This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
reproduce_model99.76 1899.69 2299.98 2399.96 9699.93 47100.00 199.42 14198.81 59100.00 1100.00 198.98 102100.00 1100.00 1100.00 1100.00 1
reproduce-ours99.76 1899.69 2299.98 2399.96 9699.94 41100.00 199.42 14198.82 55100.00 1100.00 198.99 99100.00 1100.00 1100.00 1100.00 1
our_new_method99.76 1899.69 2299.98 2399.96 9699.94 41100.00 199.42 14198.82 55100.00 1100.00 198.99 99100.00 1100.00 1100.00 1100.00 1
MM99.63 5499.52 6499.94 6699.99 4999.82 89100.00 199.97 1799.11 8100.00 1100.00 196.65 209100.00 1100.00 199.97 116100.00 1
test_fmvsmvis_n_192099.46 7999.37 8099.73 12398.88 31199.18 171100.00 199.26 27998.85 4999.79 190100.00 197.70 166100.00 199.98 7699.86 138100.00 1
test_fmvsm_n_192099.55 6899.49 6999.73 12399.85 12099.19 169100.00 199.41 19098.87 47100.00 1100.00 197.34 186100.00 199.98 7699.90 131100.00 1
test_vis1_n_192097.77 22797.24 24899.34 18199.79 14698.04 253100.00 199.25 28198.88 44100.00 1100.00 177.52 390100.00 199.88 10699.85 141100.00 1
mvsany_test199.57 6699.48 7299.85 9099.86 11999.54 123100.00 199.36 21898.94 37100.00 1100.00 197.97 150100.00 199.88 10699.28 167100.00 1
patch_mono-299.04 13299.79 696.81 33599.92 10890.47 385100.00 199.41 19098.95 35100.00 1100.00 199.78 8100.00 1100.00 1100.00 199.95 131
DVP-MVS++99.81 1199.75 14100.00 1100.00 199.99 5100.00 199.42 14198.79 63100.00 1100.00 199.54 28100.00 1100.00 1100.00 1100.00 1
MSC_two_6792asdad100.00 1100.00 1100.00 199.42 141100.00 1100.00 1100.00 1100.00 1
PC_three_145298.80 60100.00 1100.00 199.54 28100.00 1100.00 1100.00 1100.00 1
No_MVS100.00 1100.00 1100.00 199.42 141100.00 1100.00 1100.00 1100.00 1
SED-MVS99.83 799.77 9100.00 1100.00 199.99 5100.00 199.42 14199.03 21100.00 1100.00 199.50 39100.00 1100.00 1100.00 1100.00 1
OPU-MVS100.00 1100.00 1100.00 1100.00 1100.00 199.54 28100.00 1100.00 1100.00 1100.00 1
test_241102_TWO99.42 14199.03 21100.00 1100.00 199.56 25100.00 1100.00 1100.00 1100.00 1
test_241102_ONE100.00 199.99 599.42 14199.03 21100.00 1100.00 199.50 39100.00 1
ZNCC-MVS99.71 3399.62 4499.97 3499.99 4999.90 63100.00 199.79 4597.97 11899.97 122100.00 198.97 104100.00 199.94 96100.00 1100.00 1
DVP-MVScopyleft99.83 799.78 7100.00 1100.00 199.99 5100.00 199.42 14199.04 16100.00 1100.00 199.53 31100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.79 63100.00 1100.00 199.61 18100.00 1100.00 1100.00 1100.00 1
test_0728_SECOND100.00 199.99 4999.99 5100.00 199.42 141100.00 1100.00 1100.00 1100.00 1
DPM-MVS99.63 5499.51 66100.00 199.90 112100.00 1100.00 199.43 12499.00 27100.00 1100.00 199.58 24100.00 197.64 277100.00 1100.00 1
GST-MVS99.64 5199.53 6299.95 54100.00 199.86 82100.00 199.79 4597.72 13899.95 153100.00 198.39 141100.00 199.96 8899.99 103100.00 1
test_yl99.51 7099.37 8099.95 5499.82 12599.90 63100.00 199.47 7997.48 171100.00 1100.00 199.80 5100.00 199.98 7697.75 24199.94 136
Anonymous2024052996.93 26796.22 28499.05 20599.79 14697.30 29099.16 38099.47 7988.51 39098.69 266100.00 183.50 370100.00 199.83 11697.02 25699.83 199
Anonymous20240521197.87 22297.53 23398.90 21699.81 13196.70 30899.35 35699.46 9492.98 36098.83 26099.99 18790.63 296100.00 199.70 14897.03 255100.00 1
DCV-MVSNet99.51 7099.37 8099.95 5499.82 12599.90 63100.00 199.47 7997.48 171100.00 1100.00 199.80 5100.00 199.98 7697.75 24199.94 136
SMA-MVScopyleft99.69 3999.59 4799.98 2399.99 4999.93 47100.00 199.43 12497.50 169100.00 1100.00 199.43 52100.00 1100.00 1100.00 1100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft99.79 1499.73 1799.99 1299.99 4999.98 17100.00 199.42 14198.91 41100.00 1100.00 199.22 78100.00 1100.00 1100.00 1100.00 1
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
thres100view90099.25 11199.01 12399.95 5499.81 13199.87 79100.00 199.94 2297.13 19799.83 17899.96 21697.01 193100.00 199.59 17597.85 23299.98 112
tfpn200view999.26 10799.03 12199.96 4599.81 13199.89 70100.00 199.94 2297.23 19299.83 17899.96 21697.04 189100.00 199.59 17597.85 23299.98 112
CANet_DTU99.02 13998.90 14399.41 17099.88 11698.71 205100.00 199.29 25698.84 51100.00 1100.00 194.02 250100.00 198.08 26099.96 11999.52 256
MVS_030499.72 2999.65 3499.93 7099.99 4999.79 93100.00 199.91 3599.17 6100.00 1100.00 197.84 159100.00 1100.00 199.95 121100.00 1
MP-MVS-pluss99.61 6199.50 6799.97 3499.98 8699.92 53100.00 199.42 14197.53 16499.77 193100.00 198.77 125100.00 199.99 64100.00 199.99 110
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
xiu_mvs_v1_base_debu99.35 9199.21 10299.79 11099.67 17399.71 10299.78 29799.36 21898.13 104100.00 1100.00 197.00 196100.00 199.83 11699.07 17299.66 250
ACMMP_NAP99.67 4699.57 5299.97 3499.98 8699.92 53100.00 199.42 14197.83 129100.00 1100.00 198.89 116100.00 199.98 76100.00 1100.00 1
xiu_mvs_v2_base99.51 7099.41 7499.82 9799.70 16099.73 10099.92 27199.40 19498.15 102100.00 1100.00 198.50 138100.00 199.85 11299.13 17099.74 241
xiu_mvs_v1_base99.35 9199.21 10299.79 11099.67 17399.71 10299.78 29799.36 21898.13 104100.00 1100.00 197.00 196100.00 199.83 11699.07 17299.66 250
xiu_mvs_v1_base_debi99.35 9199.21 10299.79 11099.67 17399.71 10299.78 29799.36 21898.13 104100.00 1100.00 197.00 196100.00 199.83 11699.07 17299.66 250
MTAPA99.68 4399.59 4799.97 3499.99 4999.91 56100.00 199.42 14198.32 9299.94 155100.00 198.65 130100.00 199.96 88100.00 1100.00 1
HFP-MVS99.74 2599.67 3099.96 45100.00 199.89 70100.00 199.76 4997.95 122100.00 1100.00 199.31 66100.00 199.99 64100.00 1100.00 1
region2R99.72 2999.64 3799.97 34100.00 199.90 63100.00 199.74 5597.86 128100.00 1100.00 199.19 81100.00 199.99 64100.00 1100.00 1
PS-MVSNAJ99.64 5199.57 5299.85 9099.78 14999.81 9099.95 26199.42 14198.38 84100.00 1100.00 198.75 126100.00 199.88 10699.99 10399.74 241
HPM-MVS++copyleft99.82 999.76 1299.99 1299.99 4999.98 17100.00 199.83 3998.88 4499.96 126100.00 199.21 79100.00 1100.00 1100.00 199.99 110
XVS99.79 1499.73 1799.98 23100.00 199.94 41100.00 199.75 5298.67 70100.00 1100.00 199.16 83100.00 1100.00 1100.00 1100.00 1
X-MVStestdata97.04 26196.06 29099.98 23100.00 199.94 41100.00 199.75 5298.67 70100.00 166.97 42299.16 83100.00 1100.00 1100.00 1100.00 1
旧先验2100.00 198.11 108100.00 1100.00 199.67 159
新几何199.99 12100.00 199.96 2499.81 4297.89 125100.00 1100.00 199.20 80100.00 197.91 269100.00 1100.00 1
无先验100.00 199.80 4397.98 116100.00 199.33 196100.00 1
原ACMM199.93 70100.00 199.80 9299.66 6398.18 99100.00 1100.00 199.43 52100.00 199.50 187100.00 1100.00 1
testdata2100.00 197.36 290
testdata99.66 13599.99 4998.97 19399.73 5697.96 121100.00 1100.00 199.42 55100.00 199.28 200100.00 1100.00 1
131499.38 8799.19 10699.96 4598.88 31199.89 7099.24 36699.93 3098.88 4498.79 263100.00 197.02 192100.00 1100.00 1100.00 1100.00 1
LFMVS97.42 24496.62 26599.81 10299.80 14299.50 13199.16 38099.56 7094.48 322100.00 1100.00 179.35 385100.00 199.89 10497.37 25099.94 136
VDD-MVS96.58 28295.99 29398.34 25099.52 22995.33 32799.18 37499.38 20996.64 24199.77 193100.00 172.51 402100.00 1100.00 196.94 25899.70 246
VDDNet96.39 29495.55 31698.90 21699.27 27397.45 28199.15 38299.92 3491.28 37399.98 117100.00 173.55 398100.00 199.85 11296.98 25799.24 260
MVS99.22 11598.96 13199.98 2399.00 29899.95 3299.24 36699.94 2298.14 10398.88 253100.00 195.63 225100.00 199.85 112100.00 1100.00 1
SD-MVS99.81 1199.75 1499.99 1299.99 4999.96 24100.00 199.42 14199.01 26100.00 1100.00 199.33 61100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSLP-MVS++99.89 199.85 299.99 12100.00 199.96 24100.00 199.95 1999.11 8100.00 1100.00 199.60 19100.00 1100.00 1100.00 1100.00 1
VNet99.04 13298.75 15499.90 7799.81 13199.75 9799.50 34199.47 7998.36 88100.00 199.99 18794.66 242100.00 199.90 10297.09 25499.96 125
ACMMPR99.74 2599.67 3099.96 45100.00 199.89 70100.00 199.76 4997.95 122100.00 1100.00 199.29 72100.00 199.99 64100.00 1100.00 1
thres600view799.24 11499.00 12599.95 5499.81 13199.87 79100.00 199.94 2297.13 19799.83 17899.96 21697.01 193100.00 199.54 18397.77 24099.97 119
MP-MVScopyleft99.61 6199.49 6999.98 2399.99 4999.94 41100.00 199.42 14197.82 13099.99 111100.00 198.20 144100.00 199.99 64100.00 1100.00 1
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
thres40099.26 10799.03 12199.95 5499.81 13199.89 70100.00 199.94 2297.23 19299.83 17899.96 21697.04 189100.00 199.59 17597.85 23299.97 119
thres20099.27 10599.04 12099.96 4599.81 13199.90 63100.00 199.94 2297.31 18799.83 17899.96 21697.04 189100.00 199.62 16997.88 23099.98 112
PGM-MVS99.69 3999.61 4599.95 5499.99 4999.85 85100.00 199.58 6797.69 142100.00 1100.00 199.44 48100.00 199.79 123100.00 1100.00 1
MCST-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.73 5699.19 5100.00 1100.00 199.31 66100.00 1100.00 1100.00 1100.00 1
mPP-MVS99.69 3999.60 4699.97 34100.00 199.91 56100.00 199.42 14197.91 124100.00 1100.00 199.04 96100.00 1100.00 1100.00 1100.00 1
EPNet99.62 5999.69 2299.42 16999.99 4998.37 226100.00 199.89 3798.83 53100.00 1100.00 198.97 104100.00 199.90 10299.61 16199.89 168
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNVR-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.77 4899.07 11100.00 1100.00 199.39 59100.00 1100.00 1100.00 1100.00 1
NCCC99.86 299.82 3100.00 1100.00 199.99 5100.00 199.71 6199.07 11100.00 1100.00 199.59 22100.00 1100.00 1100.00 1100.00 1
CP-MVS99.67 4699.58 4999.95 54100.00 199.84 87100.00 199.42 14197.77 135100.00 1100.00 199.07 90100.00 1100.00 1100.00 1100.00 1
DELS-MVS99.62 5999.56 5799.82 9799.92 10899.45 140100.00 199.78 4798.92 3999.73 198100.00 197.70 166100.00 199.93 98100.00 1100.00 1
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CPTT-MVS99.49 7599.38 7799.85 90100.00 199.54 123100.00 199.42 14197.58 15999.98 117100.00 197.43 183100.00 199.99 64100.00 1100.00 1
UGNet98.41 20098.11 20899.31 18899.54 21998.55 21599.18 374100.00 198.64 7399.79 19099.04 34387.61 336100.00 199.30 19999.89 13299.40 259
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
sss99.45 8099.34 8799.80 10799.76 15299.50 131100.00 199.91 3597.72 13899.98 11799.94 22998.45 139100.00 199.53 18598.75 18299.89 168
DP-MVS Recon99.76 1899.69 2299.98 23100.00 199.95 32100.00 199.52 7297.99 11499.99 111100.00 199.72 12100.00 199.96 88100.00 1100.00 1
QAPM98.99 14598.66 16399.96 4599.01 29499.87 7999.88 28199.93 3097.99 11498.68 267100.00 193.17 262100.00 199.32 197100.00 1100.00 1
PAPM_NR99.74 2599.66 3399.99 12100.00 199.96 24100.00 199.47 7997.87 127100.00 1100.00 199.60 19100.00 1100.00 1100.00 1100.00 1
PAPR99.76 1899.68 2899.99 12100.00 199.96 24100.00 199.47 7998.16 100100.00 1100.00 199.51 35100.00 1100.00 1100.00 1100.00 1
RPSCF97.37 24698.24 20094.76 36399.80 14284.57 40099.99 21799.05 35794.95 30799.82 186100.00 194.03 249100.00 198.15 25998.38 19899.70 246
CSCG99.28 10499.35 8599.05 20599.99 4997.15 296100.00 199.47 7997.44 17599.42 216100.00 197.83 161100.00 199.99 64100.00 1100.00 1
API-MVS99.72 2999.70 2199.79 11099.97 9099.37 15099.96 25599.94 2298.48 79100.00 1100.00 198.92 113100.00 1100.00 1100.00 1100.00 1
ACMMPcopyleft99.65 4999.57 5299.89 7999.99 4999.66 11099.75 30699.73 5698.16 10099.75 196100.00 198.90 115100.00 199.96 8899.88 134100.00 1
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA99.72 2999.65 3499.91 7499.97 9099.72 101100.00 199.47 7998.43 8299.88 171100.00 199.14 86100.00 199.97 86100.00 1100.00 1
PHI-MVS99.50 7399.39 7699.82 97100.00 199.45 140100.00 199.94 2296.38 258100.00 1100.00 198.18 145100.00 1100.00 1100.00 1100.00 1
PVSNet94.91 1899.30 10299.25 9599.44 164100.00 198.32 232100.00 199.86 3898.04 111100.00 1100.00 196.10 218100.00 199.55 18099.73 150100.00 1
PVSNet_093.57 1996.41 29095.74 30798.41 24599.84 12195.22 329100.00 1100.00 198.08 10997.55 33299.78 26584.40 362100.00 1100.00 181.99 395100.00 1
DeepPCF-MVS98.03 498.54 18899.72 1994.98 36099.99 4984.94 399100.00 199.42 14199.98 1100.00 1100.00 198.11 147100.00 1100.00 1100.00 1100.00 1
DeepC-MVS_fast98.92 199.75 2399.67 3099.99 1299.99 4999.96 2499.73 31299.52 7299.06 13100.00 1100.00 198.80 124100.00 199.95 94100.00 1100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS99.75 2399.68 2899.97 34100.00 199.91 5699.98 24399.47 7999.09 10100.00 1100.00 198.59 134100.00 199.95 94100.00 1100.00 1
AdaColmapbinary99.44 8199.26 9499.95 54100.00 199.86 8299.70 31799.99 1398.53 7699.90 166100.00 195.34 227100.00 199.92 99100.00 1100.00 1
PLCcopyleft98.56 299.70 3699.74 1699.58 149100.00 198.79 199100.00 199.54 7198.58 7599.96 126100.00 199.59 22100.00 1100.00 1100.00 199.94 136
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MAR-MVS99.49 7599.36 8399.89 7999.97 9099.66 11099.74 30799.95 1997.89 125100.00 1100.00 196.71 208100.00 1100.00 1100.00 1100.00 1
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
3Dnovator+95.58 1599.03 13498.71 16099.96 4598.99 30199.89 70100.00 199.51 7698.96 3298.32 291100.00 192.78 268100.00 199.87 109100.00 1100.00 1
3Dnovator95.63 1499.06 12998.76 15399.96 4598.86 31599.90 6399.98 24399.93 3098.95 3598.49 282100.00 192.91 266100.00 199.71 145100.00 1100.00 1
OpenMVScopyleft95.20 1798.76 16598.41 18699.78 11498.89 31099.81 9099.99 21799.76 4998.02 11298.02 309100.00 191.44 284100.00 199.63 16899.97 11699.55 254
UBG99.36 9099.27 9099.63 13899.63 19099.01 186100.00 199.43 12496.99 207100.00 199.92 23499.69 1599.99 9899.74 13698.06 22099.88 181
fmvsm_l_conf0.5_n_a99.63 5499.55 5999.86 8799.83 12499.58 118100.00 199.36 21898.98 30100.00 1100.00 197.85 15799.99 98100.00 199.94 124100.00 1
fmvsm_l_conf0.5_n99.63 5499.56 5799.86 8799.81 13199.59 116100.00 199.36 21898.98 30100.00 1100.00 197.92 15399.99 98100.00 199.95 121100.00 1
fmvsm_s_conf0.5_n_a99.32 9899.15 11199.81 10299.80 14299.47 139100.00 199.35 22998.22 95100.00 1100.00 195.21 23299.99 9899.96 8899.86 13899.98 112
fmvsm_s_conf0.5_n99.21 11699.01 12399.83 9599.84 12199.53 125100.00 199.38 20998.29 94100.00 1100.00 193.62 25599.99 9899.99 6499.93 12799.98 112
test_fmvsmconf_n99.56 6799.46 7399.86 8799.68 16599.58 118100.00 199.31 24698.92 3999.88 171100.00 197.35 18599.99 9899.98 7699.99 103100.00 1
test_cas_vis1_n_192098.63 17898.25 19799.77 11799.69 16199.32 153100.00 199.31 24698.84 5199.96 126100.00 187.42 33899.99 9899.14 20799.86 138100.00 1
test_vis1_n96.69 27795.81 30199.32 18699.14 27997.98 25699.97 24998.98 36998.45 81100.00 1100.00 166.44 40899.99 9899.78 12999.57 163100.00 1
h-mvs3397.03 26296.53 26898.51 23799.79 14695.90 31999.45 34599.45 10298.21 96100.00 199.78 26597.49 17799.99 9899.72 14174.92 40599.65 253
ZD-MVS100.00 199.98 1799.80 4397.31 187100.00 1100.00 199.32 6499.99 98100.00 1100.00 1
SR-MVS-dyc-post99.63 5499.52 6499.97 3499.99 4999.91 56100.00 199.42 14197.62 150100.00 1100.00 198.65 13099.99 9899.99 64100.00 1100.00 1
SF-MVS99.66 4899.57 5299.95 5499.99 4999.85 85100.00 199.42 14197.67 143100.00 1100.00 199.05 9399.99 98100.00 1100.00 1100.00 1
9.1499.57 5299.99 49100.00 199.42 14197.54 162100.00 1100.00 199.15 8599.99 98100.00 1100.00 1
SR-MVS99.68 4399.58 4999.98 23100.00 199.95 32100.00 199.64 6497.59 158100.00 1100.00 198.99 9999.99 98100.00 1100.00 1100.00 1
TSAR-MVS + MP.99.82 999.77 999.99 12100.00 199.96 24100.00 199.43 12499.05 15100.00 1100.00 199.45 4799.99 98100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APDe-MVScopyleft99.84 699.78 799.99 12100.00 199.98 17100.00 199.44 11699.06 13100.00 1100.00 199.56 2599.99 98100.00 1100.00 1100.00 1
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize99.65 4999.55 5999.97 3499.99 4999.91 56100.00 199.48 7897.54 162100.00 1100.00 198.97 10499.99 9899.98 76100.00 1100.00 1
CDPH-MVS99.73 2899.64 3799.99 12100.00 199.97 21100.00 199.42 14198.02 112100.00 1100.00 199.32 6499.99 98100.00 1100.00 1100.00 1
TSAR-MVS + GP.99.61 6199.69 2299.35 18099.99 4998.06 251100.00 199.36 21899.83 2100.00 1100.00 198.95 10899.99 98100.00 199.11 171100.00 1
SteuartSystems-ACMMP99.78 1699.71 2099.98 2399.76 15299.95 32100.00 199.42 14198.69 68100.00 1100.00 199.52 3499.99 98100.00 1100.00 1100.00 1
Skip Steuart: Steuart Systems R&D Blog.
PVSNet_BlendedMVS98.71 16998.62 16898.98 21299.98 8699.60 114100.00 1100.00 197.23 192100.00 199.03 34696.57 21199.99 98100.00 194.75 29897.35 367
PVSNet_Blended99.48 7799.36 8399.83 9599.98 8699.60 114100.00 1100.00 197.79 133100.00 1100.00 196.57 21199.99 98100.00 199.88 13499.90 162
HY-MVS96.53 999.50 7399.35 8599.96 4599.81 13199.93 4799.64 324100.00 197.97 11899.84 17599.85 25098.94 11099.99 9899.86 11098.23 21199.95 131
PatchMatch-RL99.02 13998.78 15199.74 12099.99 4999.29 156100.00 1100.00 198.38 8499.89 16999.81 25993.14 26499.99 9897.85 27199.98 11399.95 131
F-COLMAP99.64 5199.64 3799.67 13299.99 4999.07 177100.00 199.44 11698.30 9399.90 166100.00 199.18 8299.99 9899.91 101100.00 199.94 136
testing9199.18 11899.10 11599.41 17099.60 20198.43 218100.00 199.43 12496.76 22599.82 18699.92 23499.05 9399.98 12399.62 16997.67 24599.81 213
testing9999.18 11899.10 11599.41 17099.60 20198.43 218100.00 199.43 12496.76 22599.84 17599.92 23499.06 9199.98 12399.62 16997.67 24599.81 213
test_8100.00 199.91 56100.00 199.42 14197.70 140100.00 1100.00 199.51 3599.98 123
MVS_Test98.93 15498.65 16499.77 11799.62 19799.50 13199.99 21799.19 30395.52 29399.96 12699.86 24596.54 21399.98 12398.65 23498.48 18999.82 204
RPMNet95.26 32993.82 33899.56 15299.31 26998.86 19699.13 38599.42 14179.82 40899.96 12695.13 40195.69 22499.98 12377.54 41198.40 19499.84 195
WTY-MVS99.54 6999.40 7599.95 5499.81 13199.93 47100.00 1100.00 197.98 11699.84 175100.00 198.94 11099.98 12399.86 11098.21 21299.94 136
ab-mvs98.42 19898.02 21799.61 14199.71 15899.00 18999.10 38899.64 6496.70 23499.04 24699.81 25990.64 29599.98 12399.64 16597.93 22799.84 195
testing1199.26 10799.19 10699.46 16199.64 18898.61 211100.00 199.43 12496.94 21099.92 16199.94 22999.43 5299.97 13099.67 15997.79 23999.82 204
sasdasda99.03 13498.73 15699.94 6699.75 15499.95 32100.00 199.30 25097.64 147100.00 1100.00 195.22 23099.97 13099.76 13296.90 25999.91 151
FE-MVS99.16 12198.99 12799.66 13599.65 18299.18 17199.58 33299.43 12495.24 30299.91 16499.59 30299.37 6099.97 13098.31 25199.81 14699.83 199
TEST9100.00 199.95 32100.00 199.42 14197.65 145100.00 1100.00 199.53 3199.97 130
train_agg99.71 3399.63 4199.97 34100.00 199.95 32100.00 199.42 14197.70 140100.00 1100.00 199.51 3599.97 130100.00 1100.00 1100.00 1
agg_prior100.00 199.88 7799.42 141100.00 199.97 130
canonicalmvs99.03 13498.73 15699.94 6699.75 15499.95 32100.00 199.30 25097.64 147100.00 1100.00 195.22 23099.97 13099.76 13296.90 25999.91 151
EI-MVSNet-UG-set99.69 3999.63 4199.87 8499.99 4999.64 11299.95 26199.44 11698.35 90100.00 1100.00 198.98 10299.97 13099.98 76100.00 1100.00 1
test_prior99.90 77100.00 199.75 9799.73 5699.97 130100.00 1
test1299.95 5499.99 4999.89 7099.42 141100.00 199.24 7799.97 130100.00 1100.00 1
APD-MVScopyleft99.68 4399.58 4999.97 3499.99 4999.96 24100.00 199.42 14197.53 164100.00 1100.00 199.27 7599.97 130100.00 1100.00 1100.00 1
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DP-MVS98.86 15998.54 17599.81 10299.97 9099.45 14099.52 33999.40 19494.35 32698.36 287100.00 196.13 21799.97 13099.12 210100.00 1100.00 1
LS3D99.31 10099.13 11299.87 8499.99 4999.71 10299.55 33599.46 9497.32 18599.82 186100.00 196.85 20399.97 13099.14 207100.00 199.92 149
MGCFI-Net99.01 14198.70 16299.93 7099.74 15699.94 41100.00 199.29 25697.60 157100.00 1100.00 195.10 23499.96 14399.74 13696.85 26199.91 151
fmvsm_s_conf0.1_n_a98.71 16998.36 19399.78 11499.09 28499.42 144100.00 199.26 27997.42 177100.00 1100.00 189.78 30899.96 14399.82 12199.85 14199.97 119
fmvsm_s_conf0.1_n98.77 16498.42 18599.82 9799.47 24799.52 128100.00 199.27 27297.53 164100.00 1100.00 189.73 31099.96 14399.84 11599.93 12799.97 119
test_fmvs1_n97.43 24396.86 25699.15 20199.68 16597.48 28099.99 21798.98 36998.82 55100.00 1100.00 174.85 39799.96 14399.67 15999.70 152100.00 1
test_fmvs198.37 20398.04 21599.34 18199.84 12198.07 249100.00 199.00 36698.85 49100.00 1100.00 185.11 35999.96 14399.69 15599.88 134100.00 1
FA-MVS(test-final)99.00 14298.75 15499.73 12399.63 19099.43 14399.83 28799.43 12495.84 28399.52 20899.37 32397.84 15999.96 14397.63 27899.68 15399.79 233
CANet99.40 8499.24 9899.89 7999.99 4999.76 96100.00 199.73 5698.40 8399.78 192100.00 195.28 22899.96 143100.00 199.99 10399.96 125
MSP-MVS99.81 1199.77 999.94 66100.00 199.86 82100.00 199.42 14198.87 47100.00 1100.00 199.65 1799.96 143100.00 1100.00 1100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
RRT-MVS98.75 16798.52 17899.44 16499.65 18298.57 21499.90 27599.08 34296.51 24999.96 12699.95 22392.59 27499.96 14399.60 17399.45 16699.81 213
EI-MVSNet-Vis-set99.70 3699.64 3799.87 84100.00 199.64 11299.98 24399.44 11698.35 9099.99 111100.00 199.04 9699.96 14399.98 76100.00 1100.00 1
HPM-MVS_fast99.60 6499.49 6999.91 7499.99 4999.78 94100.00 199.42 14197.09 199100.00 1100.00 198.95 10899.96 14399.98 76100.00 1100.00 1
HPM-MVScopyleft99.59 6599.50 6799.89 79100.00 199.70 106100.00 199.42 14197.46 173100.00 1100.00 198.60 13399.96 14399.99 64100.00 1100.00 1
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
BH-w/o98.82 16298.81 14998.88 21899.62 19796.71 307100.00 199.28 26297.09 19998.81 261100.00 194.91 23899.96 14399.54 183100.00 199.96 125
test_vis1_rt93.10 34992.93 35093.58 37399.63 19085.07 39899.99 21793.71 41997.49 17090.96 39197.10 39360.40 41099.95 15699.24 20397.90 22995.72 395
AllTest98.55 18598.40 18798.99 21099.93 10597.35 286100.00 199.40 19497.08 20199.09 24099.98 19293.37 25899.95 15696.94 29999.84 14399.68 248
TestCases98.99 21099.93 10597.35 28699.40 19497.08 20199.09 24099.98 19293.37 25899.95 15696.94 29999.84 14399.68 248
CHOSEN 1792x268899.00 14298.91 14099.25 19699.90 11297.79 271100.00 199.99 1398.79 6398.28 294100.00 193.63 25499.95 15699.66 16399.95 121100.00 1
114514_t99.39 8599.25 9599.81 10299.97 9099.48 138100.00 199.42 14195.53 291100.00 1100.00 198.37 14299.95 15699.97 86100.00 1100.00 1
PVSNet_Blended_VisFu99.33 9699.18 10999.78 11499.82 12599.49 134100.00 199.95 1997.36 18099.63 204100.00 196.45 21599.95 15699.79 12399.65 15799.89 168
MVS_111021_LR99.70 3699.65 3499.88 8399.96 9699.70 106100.00 199.97 1798.96 32100.00 1100.00 197.93 15299.95 15699.99 64100.00 1100.00 1
MVS_111021_HR99.71 3399.63 4199.93 7099.95 10099.83 88100.00 1100.00 198.89 43100.00 1100.00 197.85 15799.95 156100.00 1100.00 1100.00 1
DeepC-MVS97.84 599.00 14298.80 15099.60 14399.93 10599.03 182100.00 199.40 19498.61 7499.33 226100.00 192.23 27899.95 15699.74 13699.96 11999.83 199
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PCF-MVS98.23 398.69 17298.37 19199.62 14099.78 14999.02 18499.23 37199.06 35596.43 25298.08 303100.00 194.72 24199.95 15698.16 25899.91 13099.90 162
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MSDG98.90 15798.63 16799.70 12899.92 10899.25 162100.00 199.37 21295.71 28599.40 222100.00 196.58 21099.95 15696.80 30699.94 12499.91 151
COLMAP_ROBcopyleft97.10 798.29 20798.17 20598.65 22999.94 10397.39 28399.30 36299.40 19495.64 28697.75 323100.00 192.69 27399.95 15698.89 22099.92 12998.62 270
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
UWE-MVS99.18 11899.06 11899.51 15499.67 17398.80 198100.00 199.43 12496.80 22299.93 16099.86 24599.79 799.94 16897.78 27398.33 20499.80 230
test_fmvsmconf0.1_n99.25 11199.05 11999.82 9798.92 30799.55 121100.00 199.23 29098.91 4199.75 19699.97 20194.79 24099.94 16899.94 9699.99 10399.97 119
UA-Net99.06 12998.83 14699.74 12099.52 22999.40 14699.08 39199.45 10297.64 14799.83 178100.00 195.80 22199.94 16898.35 24999.80 14899.88 181
XVG-OURS-SEG-HR98.27 21098.31 19598.14 26699.59 20595.92 317100.00 199.36 21898.48 7999.21 231100.00 189.27 31799.94 16899.76 13299.17 16898.56 271
balanced_conf0399.43 8299.28 8999.85 9099.68 16599.68 10899.97 24999.28 26297.03 20499.96 12699.97 20197.90 15499.93 17299.77 130100.00 199.94 136
alignmvs99.38 8799.21 10299.91 7499.73 15799.92 53100.00 199.51 7697.61 154100.00 1100.00 199.06 9199.93 17299.83 11697.12 25399.90 162
cascas98.43 19698.07 21399.50 15799.65 18299.02 184100.00 199.22 29394.21 32999.72 19999.98 19292.03 28199.93 17299.68 15698.12 21799.54 255
MVSMamba_PlusPlus99.39 8599.25 9599.80 10799.68 16599.59 11699.99 21799.30 25096.66 23999.96 12699.97 20197.89 15599.92 17599.76 132100.00 199.90 162
XVG-OURS98.30 20598.36 19398.13 26999.58 21095.91 318100.00 199.36 21898.69 6899.23 230100.00 191.20 28799.92 17599.34 19597.82 23598.56 271
test_fmvsmconf0.01_n98.60 18098.24 20099.67 13296.90 38399.21 16799.99 21799.04 36098.80 6099.57 20699.96 21690.12 30299.91 17799.89 10499.89 13299.90 162
APD_test193.07 35094.14 33689.85 38199.18 27772.49 40999.76 30498.90 37692.86 36496.35 35799.94 22975.56 39599.91 17786.73 39397.98 22297.15 372
diffmvspermissive98.96 14998.73 15699.63 13899.54 21999.16 173100.00 199.18 31097.33 18499.96 126100.00 194.60 24399.91 17799.66 16398.33 20499.82 204
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tpmvs98.59 18198.38 18999.23 19799.69 16197.90 26399.31 36199.47 7994.52 32099.68 20299.28 32897.64 16999.89 18097.71 27598.17 21699.89 168
mvsmamba99.05 13198.98 12899.27 19499.57 21498.10 247100.00 199.28 26295.92 27799.96 12699.97 20196.73 20799.89 18099.72 14199.65 15799.81 213
Test_1112_low_res98.83 16198.60 17199.51 15499.69 16198.75 20199.99 21799.14 32396.81 22198.84 25899.06 34097.45 18099.89 18098.66 23297.75 24199.89 168
1112_ss98.91 15598.71 16099.51 15499.69 16198.75 20199.99 21799.15 31896.82 22098.84 258100.00 197.45 18099.89 18098.66 23297.75 24199.89 168
IB-MVS96.24 1297.54 23896.95 25399.33 18499.67 17398.10 247100.00 199.47 7997.42 17799.26 22999.69 27798.83 12199.89 18099.43 18978.77 403100.00 1
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
SDMVSNet98.49 19398.08 21199.73 12399.82 12599.53 12599.99 21799.45 10297.62 15099.38 22399.86 24590.06 30599.88 18599.92 9996.61 26499.79 233
mamv498.95 15299.11 11498.46 24099.68 16595.67 32499.14 38499.27 27296.43 25299.94 15599.97 20197.79 16299.88 18599.77 130100.00 199.84 195
testing22299.14 12398.94 13699.73 12399.67 17399.51 129100.00 199.43 12496.90 21699.99 11199.90 23998.55 13699.86 18798.85 22297.18 25299.81 213
dcpmvs_298.87 15899.53 6296.90 32999.87 11890.88 38499.94 26699.07 34798.20 98100.00 1100.00 198.69 12999.86 187100.00 1100.00 199.95 131
tpm cat198.05 21797.76 22598.92 21599.50 23897.10 29999.77 30299.30 25090.20 38499.72 19998.71 36597.71 16599.86 18796.75 31098.20 21399.81 213
tpmrst98.98 14898.93 13899.14 20299.61 19997.74 27299.52 33999.36 21896.05 27499.98 11799.64 29099.04 9699.86 18798.94 21798.19 21499.82 204
MDTV_nov1_ep1398.94 13699.53 22298.36 22899.39 35299.46 9496.54 24699.99 11199.63 29498.92 11399.86 18798.30 25498.71 183
OMC-MVS99.27 10599.38 7798.96 21399.95 10097.06 300100.00 199.40 19498.83 5399.88 171100.00 197.01 19399.86 18799.47 18899.84 14399.97 119
mmtdpeth94.58 33394.18 33595.81 35298.82 32091.09 38399.99 21798.61 38596.38 258100.00 197.23 39276.52 39399.85 19399.82 12180.22 39996.48 384
thisisatest053099.37 8999.27 9099.69 12999.59 20599.41 145100.00 199.46 9496.46 25199.90 166100.00 199.44 4899.85 19398.97 21699.58 16299.80 230
thisisatest051599.42 8399.31 8899.74 12099.59 20599.55 121100.00 199.46 9496.65 24099.92 161100.00 199.44 4899.85 19399.09 21299.63 16099.81 213
tttt051799.34 9499.23 10199.67 13299.57 21499.38 147100.00 199.46 9496.33 26399.89 169100.00 199.44 4899.84 19698.93 21899.46 16599.78 236
casdiffmvspermissive98.65 17498.38 18999.46 16199.52 22998.74 204100.00 199.15 31896.91 21499.05 245100.00 192.75 26999.83 19799.70 14898.38 19899.81 213
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-untuned98.64 17598.65 16498.60 23399.59 20596.17 314100.00 199.28 26296.67 23898.41 285100.00 194.52 24499.83 19799.41 191100.00 199.81 213
DeepMVS_CXcopyleft89.98 38098.90 30971.46 41199.18 31097.61 15496.92 34499.83 25386.07 35199.83 19796.02 31897.65 24798.65 269
dp98.72 16898.61 16999.03 20899.53 22297.39 28399.45 34599.39 20795.62 28899.94 15599.52 31398.83 12199.82 20096.77 30998.42 19399.89 168
BH-RMVSNet98.46 19498.08 21199.59 14599.61 19999.19 169100.00 199.28 26297.06 20398.95 249100.00 188.99 32099.82 20098.83 225100.00 199.77 237
PMMVS99.12 12498.97 13099.58 14999.57 21498.98 191100.00 199.30 25097.14 19699.96 126100.00 196.53 21499.82 20099.70 14898.49 18899.94 136
kuosan98.55 18598.53 17798.62 23199.66 18096.16 315100.00 199.44 11693.93 33699.81 18999.98 19297.58 17099.81 20398.08 26098.28 20799.89 168
test250699.48 7799.38 7799.75 11999.89 11499.51 12999.45 345100.00 198.38 8499.83 178100.00 198.86 11799.81 20399.25 20198.78 17999.94 136
ECVR-MVScopyleft98.43 19698.14 20699.32 18699.89 11498.21 24099.46 343100.00 198.38 8499.47 214100.00 187.91 33199.80 20599.35 19498.78 17999.94 136
test111198.42 19898.12 20799.29 18999.88 11698.15 24299.46 343100.00 198.36 8899.42 216100.00 187.91 33199.79 20699.31 19898.78 17999.94 136
EIA-MVS99.26 10799.19 10699.45 16399.63 19098.75 201100.00 199.27 27296.93 21199.95 153100.00 197.47 17999.79 20699.74 13699.72 15199.82 204
ETV-MVS99.34 9499.24 9899.64 13799.58 21099.33 152100.00 199.25 28197.57 16099.96 126100.00 197.44 18299.79 20699.70 14899.65 15799.81 213
TR-MVS98.14 21497.74 22699.33 18499.59 20598.28 23599.27 36399.21 29996.42 25599.15 23699.94 22988.87 32399.79 20698.88 22198.29 20699.93 147
casdiffmvs_mvgpermissive98.64 17598.39 18899.40 17499.50 23898.60 212100.00 199.22 29396.85 21899.10 239100.00 192.75 26999.78 21099.71 14598.35 20099.81 213
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
sd_testset97.81 22597.48 23498.79 22499.82 12596.80 30599.32 35899.45 10297.62 15099.38 22399.86 24585.56 35799.77 21199.72 14196.61 26499.79 233
Effi-MVS+98.58 18298.24 20099.61 14199.60 20199.26 16097.85 40799.10 33696.22 26999.97 12299.89 24093.75 25299.77 21199.43 18998.34 20199.81 213
baseline198.91 15598.61 16999.81 10299.71 15899.77 9599.78 29799.44 11697.51 16898.81 26199.99 18798.25 14399.76 21398.60 24095.41 27499.89 168
lupinMVS99.29 10399.16 11099.69 12999.45 25199.49 134100.00 199.15 31897.45 17499.97 122100.00 196.76 20499.76 21399.67 159100.00 199.81 213
EPP-MVSNet99.10 12699.00 12599.40 17499.51 23498.68 20799.92 27199.43 12495.47 29799.65 203100.00 199.51 3599.76 21399.53 18598.00 22199.75 240
baseline98.69 17298.45 18499.41 17099.52 22998.67 208100.00 199.17 31597.03 20499.13 237100.00 193.17 26299.74 21699.70 14898.34 20199.81 213
CostFormer98.84 16098.77 15299.04 20799.41 25797.58 27799.67 32299.35 22994.66 31599.96 12699.36 32499.28 7499.74 21699.41 19197.81 23699.81 213
Fast-Effi-MVS+98.40 20198.02 21799.55 15399.63 19099.06 179100.00 199.15 31895.07 30499.42 21699.95 22393.26 26199.73 21897.44 28598.24 21099.87 191
jason99.11 12598.96 13199.59 14599.17 27899.31 155100.00 199.13 32797.38 17999.83 178100.00 195.54 22699.72 21999.57 17999.97 11699.74 241
jason: jason.
EPMVS99.25 11199.13 11299.60 14399.60 20199.20 16899.60 330100.00 196.93 21199.92 16199.36 32499.05 9399.71 22098.77 22798.94 17699.90 162
SPE-MVS-test99.31 10099.27 9099.43 16799.99 4998.77 200100.00 199.19 30397.24 19199.96 126100.00 197.56 17499.70 22199.68 15699.81 14699.82 204
Vis-MVSNetpermissive98.52 19098.25 19799.34 18199.68 16598.55 21599.68 32199.41 19097.34 18399.94 155100.00 190.38 30199.70 22199.03 21498.84 17799.76 239
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAPA-MVS96.40 1097.64 23197.37 24098.45 24299.94 10395.70 323100.00 199.40 19497.65 14599.53 207100.00 199.31 6699.66 22380.48 406100.00 1100.00 1
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ETVMVS99.16 12198.98 12899.69 12999.67 17399.56 120100.00 199.45 10296.36 26099.98 11799.95 22398.65 13099.64 22499.11 21197.63 24899.88 181
CS-MVS99.33 9699.27 9099.50 15799.99 4999.00 189100.00 199.13 32797.26 19099.96 126100.00 197.79 16299.64 22499.64 16599.67 15599.87 191
Fast-Effi-MVS+-dtu98.38 20298.56 17497.82 29499.58 21094.44 352100.00 199.16 31696.75 22799.51 20999.63 29495.03 23699.60 22697.71 27599.67 15599.42 258
PAPM99.78 1699.76 1299.85 9099.01 29499.95 32100.00 199.75 5299.37 399.99 111100.00 199.76 1199.60 226100.00 1100.00 1100.00 1
tt080596.52 28396.23 28397.40 30499.30 27293.55 36099.32 35899.45 10296.75 22797.88 31699.99 18779.99 38399.59 22897.39 28995.98 26799.06 265
GeoE98.06 21697.65 23199.29 18999.47 24798.41 220100.00 199.19 30394.85 30998.88 253100.00 191.21 28699.59 22897.02 29798.19 21499.88 181
test_post199.32 35888.24 41499.33 6199.59 22898.31 251
test_post89.05 41299.49 4199.59 228
ADS-MVSNet98.70 17198.51 18099.28 19299.51 23498.39 22399.24 36699.44 11695.52 29399.96 12699.70 27497.57 17299.58 23297.11 29598.54 18599.88 181
Patchmatch-test97.83 22497.42 23699.06 20399.08 28597.66 27598.66 40199.21 29993.65 34298.25 29899.58 30499.47 4599.57 23390.25 37998.59 18499.95 131
HQP4-MVS99.17 23299.57 23397.77 273
HQP-MVS97.73 22897.85 22297.39 30599.07 28694.82 336100.00 199.40 19499.04 1699.17 23299.97 20188.61 32699.57 23399.79 12395.58 26897.77 273
CLD-MVS97.64 23197.74 22697.36 30799.01 29494.76 344100.00 199.34 23599.30 499.00 24799.97 20187.49 33799.57 23399.96 8895.58 26897.75 286
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
OPM-MVS97.21 25197.18 25197.32 31098.08 35094.66 345100.00 199.28 26298.65 7298.92 25099.98 19286.03 35399.56 23798.28 25595.41 27497.72 321
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LPG-MVS_test97.31 24897.32 24297.28 31398.85 31694.60 348100.00 199.37 21297.35 18198.85 25699.98 19286.66 34599.56 23799.55 18095.26 28097.70 329
LGP-MVS_train97.28 31398.85 31694.60 34899.37 21297.35 18198.85 25699.98 19286.66 34599.56 23799.55 18095.26 28097.70 329
ITE_SJBPF96.84 33398.96 30493.49 36198.12 39298.12 10798.35 28899.97 20184.45 36199.56 23795.63 32595.25 28297.49 360
ACMP97.00 897.19 25297.16 25297.27 31598.97 30394.58 351100.00 199.32 24097.97 11897.45 33499.98 19285.79 35599.56 23799.70 14895.24 28397.67 339
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HQP_MVS97.71 23097.82 22497.37 30699.00 29894.80 339100.00 199.40 19499.00 2799.08 24299.97 20188.58 32899.55 24299.79 12395.57 27297.76 275
plane_prior599.40 19499.55 24299.79 12395.57 27297.76 275
ACMM97.17 697.37 24697.40 23897.29 31299.01 29494.64 347100.00 199.25 28198.07 11098.44 28499.98 19287.38 33999.55 24299.25 20195.19 28697.69 333
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
patchmatchnet-post97.79 38799.41 5799.54 245
SCA98.30 20597.98 21999.23 19799.41 25798.25 23799.99 21799.45 10296.91 21499.76 19599.58 30489.65 31299.54 24598.31 25198.79 17899.91 151
XVG-ACMP-BASELINE96.60 28196.52 27096.84 33398.41 33293.29 36599.99 21799.32 24097.76 13798.51 28099.29 32781.95 37699.54 24598.40 24695.03 29397.68 335
ACMH+96.20 1396.49 28896.33 28097.00 32399.06 29093.80 35899.81 29199.31 24697.32 18595.89 36699.97 20182.62 37499.54 24598.34 25094.63 30097.65 344
ACMH96.25 1196.77 27196.62 26597.21 31698.96 30494.43 35399.64 32499.33 23797.43 17696.55 35599.97 20183.52 36999.54 24599.07 21395.13 29097.66 340
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TDRefinement91.93 35590.48 36396.27 34681.60 41992.65 37299.10 38897.61 40793.96 33593.77 38199.85 25080.03 38199.53 25097.82 27270.59 40996.63 383
JIA-IIPM97.09 25796.34 27999.36 17998.88 31198.59 21399.81 29199.43 12484.81 40199.96 12690.34 41198.55 13699.52 25197.00 29898.28 20799.98 112
IS-MVSNet99.08 12798.91 14099.59 14599.65 18299.38 14799.78 29799.24 28696.70 23499.51 209100.00 198.44 14099.52 25198.47 24598.39 19699.88 181
dongtai98.29 20798.25 19798.42 24499.58 21095.86 320100.00 199.44 11693.46 34999.69 20199.97 20197.53 17599.51 25396.28 31698.27 20999.89 168
Effi-MVS+-dtu98.51 19298.86 14597.47 30399.77 15194.21 355100.00 198.94 37197.61 15499.91 16498.75 36495.89 21999.51 25399.36 19399.48 16498.68 268
PatchmatchNetpermissive99.03 13498.96 13199.26 19599.49 24298.33 23099.38 35399.45 10296.64 24199.96 12699.58 30499.49 4199.50 25597.63 27899.00 17599.93 147
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TinyColmap95.50 32595.12 33096.64 33798.69 32293.00 36799.40 35197.75 40496.40 25796.14 36299.87 24379.47 38499.50 25593.62 35294.72 29997.40 365
EC-MVSNet99.19 11799.09 11799.48 16099.42 25599.07 177100.00 199.21 29996.95 20999.96 126100.00 196.88 20299.48 25799.64 16599.79 14999.88 181
LTVRE_ROB95.29 1696.32 29896.10 28896.99 32498.55 32793.88 35799.45 34599.28 26294.50 32196.46 35699.52 31384.86 36099.48 25797.26 29395.03 29397.59 354
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
AUN-MVS96.26 30195.67 31398.06 27699.68 16595.60 32599.82 29099.42 14196.78 22499.88 17199.80 26294.84 23999.47 25997.48 28473.29 40799.12 263
D2MVS97.63 23497.83 22397.05 32098.83 31894.60 348100.00 199.82 4096.89 21798.28 29499.03 34694.05 24899.47 25998.58 24294.97 29697.09 373
tpm298.64 17598.58 17398.81 22399.42 25597.12 29799.69 31999.37 21293.63 34399.94 15599.67 28298.96 10799.47 25998.62 23997.95 22699.83 199
HyFIR lowres test99.32 9899.24 9899.58 14999.95 10099.26 160100.00 199.99 1396.72 23299.29 22899.91 23799.49 4199.47 25999.74 13698.08 219100.00 1
hse-mvs296.79 27096.38 27698.04 28299.68 16595.54 32699.81 29199.42 14198.21 96100.00 199.80 26297.49 17799.46 26399.72 14173.27 40899.12 263
reproduce_monomvs98.61 17998.54 17598.82 22099.97 9099.28 157100.00 199.33 23798.51 7897.87 31799.24 33099.98 399.45 26499.02 21592.93 31597.74 308
USDC95.90 31995.70 30996.50 34198.60 32692.56 373100.00 198.30 38897.77 13596.92 34499.94 22981.25 38099.45 26493.54 35394.96 29797.49 360
gm-plane-assit99.52 22997.26 29295.86 280100.00 199.43 26698.76 228
MS-PatchMatch95.66 32395.87 29995.05 35697.80 35989.25 38998.88 39799.30 25096.35 26196.86 34799.01 34881.35 37999.43 26693.30 35599.98 11396.46 385
CHOSEN 280x42099.85 399.87 199.80 10799.99 4999.97 2199.97 24999.98 1698.96 32100.00 1100.00 199.96 499.42 268100.00 1100.00 1100.00 1
VPA-MVSNet97.03 26296.43 27498.82 22098.64 32499.32 15399.38 35399.47 7996.73 23198.91 25298.94 35587.00 34399.40 26999.23 20489.59 35797.76 275
LF4IMVS96.19 30496.18 28596.23 34798.26 34192.09 375100.00 197.89 40197.82 13097.94 31299.87 24382.71 37399.38 27097.41 28793.71 30597.20 370
UniMVSNet_ETH3D95.28 32894.41 33497.89 29298.91 30895.14 33099.13 38599.35 22992.11 36897.17 34199.66 28470.28 40599.36 27197.88 27095.18 28799.16 261
GA-MVS97.72 22997.27 24699.06 20399.24 27697.93 262100.00 199.24 28695.80 28498.99 24899.64 29089.77 30999.36 27195.12 33497.62 24999.89 168
XXY-MVS97.14 25696.63 26498.67 22898.65 32398.92 19499.54 33799.29 25695.57 29097.63 32699.83 25387.79 33599.35 27398.39 24792.95 31497.75 286
test_fmvs295.17 33195.23 32795.01 35798.95 30688.99 39199.99 21797.77 40397.79 13398.58 27399.70 27473.36 39999.34 27495.88 31995.03 29396.70 381
GG-mvs-BLEND99.59 14599.54 21999.49 13499.17 37999.52 7299.96 12699.68 281100.00 199.33 27599.71 14599.99 10399.96 125
dmvs_re97.54 23897.88 22196.54 34099.55 21890.35 38699.86 28399.46 9497.00 20699.41 221100.00 190.78 29499.30 27699.60 17395.24 28399.96 125
EPNet_dtu98.53 18998.23 20399.43 16799.92 10899.01 18699.96 25599.47 7998.80 6099.96 12699.96 21698.56 13599.30 27687.78 39199.68 153100.00 1
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm98.24 21198.22 20498.32 25299.13 28095.79 32199.53 33899.12 33395.20 30399.96 12699.36 32497.58 17099.28 27897.41 28796.67 26299.88 181
baseline298.99 14598.93 13899.18 20099.26 27599.15 174100.00 199.46 9496.71 23396.79 350100.00 199.42 5599.25 27998.75 22999.94 12499.15 262
MonoMVSNet98.55 18598.64 16698.26 25698.21 34495.76 32299.94 26699.16 31696.23 26699.47 21499.24 33096.75 20699.22 28099.61 17299.17 16899.81 213
gg-mvs-nofinetune96.95 26696.10 28899.50 15799.41 25799.36 15199.07 39399.52 7283.69 40399.96 12683.60 419100.00 199.20 28199.68 15699.99 10399.96 125
TAMVS98.76 16598.73 15698.86 21999.44 25397.69 27399.57 33399.34 23596.57 24499.12 23899.81 25998.83 12199.16 28297.97 26897.91 22899.73 245
MVP-Stereo96.51 28596.48 27296.60 33995.65 39494.25 35498.84 39898.16 39095.85 28295.23 36999.04 34392.54 27699.13 28392.98 35799.98 11396.43 386
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Vis-MVSNet (Re-imp)98.99 14598.89 14499.29 18999.64 18898.89 19599.98 24399.31 24696.74 22999.48 211100.00 198.11 14799.10 28498.39 24798.34 20199.89 168
EG-PatchMatch MVS92.94 35192.49 35594.29 36895.87 39187.07 39699.07 39398.11 39393.19 35788.98 39798.66 36870.89 40399.08 28592.43 36295.21 28596.72 380
MVS-HIRNet94.12 34092.73 35498.29 25399.33 26895.95 31699.38 35399.19 30374.54 41198.26 29786.34 41586.07 35199.06 28691.60 36799.87 13799.85 194
mvs_anonymous98.80 16398.60 17199.38 17899.57 21499.24 164100.00 199.21 29995.87 27898.92 25099.82 25696.39 21699.03 28799.13 20998.50 18799.88 181
TESTMET0.1,199.08 12798.96 13199.44 16499.63 19099.38 147100.00 199.45 10295.53 29199.48 211100.00 199.71 1399.02 28896.84 30399.99 10399.91 151
ttmdpeth96.24 30295.88 29897.32 31097.80 35996.61 31199.95 26198.77 38297.80 13293.42 38399.28 32886.42 34899.01 28997.63 27891.84 33396.33 388
test-LLR99.03 13498.91 14099.40 17499.40 26299.28 157100.00 199.45 10296.70 23499.42 21699.12 33699.31 6699.01 28996.82 30499.99 10399.91 151
test-mter98.96 14998.82 14799.40 17499.40 26299.28 157100.00 199.45 10295.44 30199.42 21699.12 33699.70 1499.01 28996.82 30499.99 10399.91 151
tfpnnormal96.36 29595.69 31298.37 24898.55 32798.71 20599.69 31999.45 10293.16 35896.69 35499.71 27188.44 33098.99 29294.17 34491.38 34297.41 364
Anonymous2023121196.29 29995.70 30998.07 27299.80 14297.49 27999.15 38299.40 19489.11 38797.75 32399.45 31888.93 32298.98 29398.26 25689.47 35997.73 315
nrg03097.64 23197.27 24698.75 22698.34 33499.53 125100.00 199.22 29396.21 27098.27 29699.95 22394.40 24598.98 29399.23 20489.78 35697.75 286
mvs5depth93.81 34293.00 34996.23 34794.25 40293.33 36497.43 40998.07 39593.47 34894.15 38099.58 30477.52 39098.97 29593.64 35188.92 36596.39 387
cl2298.23 21298.11 20898.58 23599.82 12599.01 186100.00 199.28 26296.92 21398.33 29099.21 33398.09 14998.97 29598.72 23092.61 31897.76 275
CVMVSNet98.56 18498.47 18398.82 22099.11 28197.67 27499.74 30799.47 7997.57 16099.06 244100.00 195.72 22398.97 29598.21 25797.33 25199.83 199
VPNet96.41 29095.76 30698.33 25198.61 32598.30 23499.48 34299.45 10296.98 20898.87 25599.88 24281.57 37798.93 29899.22 20687.82 37497.76 275
v7n96.06 31595.42 32597.99 28697.58 36997.35 28699.86 28399.11 33492.81 36597.91 31599.49 31590.99 29298.92 29992.51 36088.49 37097.70 329
jajsoiax97.07 25996.79 26097.89 29297.28 38097.12 29799.95 26199.19 30396.55 24597.31 33799.69 27787.35 34198.91 30098.70 23195.12 29197.66 340
mvs_tets97.00 26596.69 26297.94 28897.41 37997.27 29199.60 33099.18 31096.51 24997.35 33699.69 27786.53 34798.91 30098.84 22395.09 29297.65 344
CDS-MVSNet98.96 14998.95 13599.01 20999.48 24498.36 22899.93 26999.37 21296.79 22399.31 22799.83 25399.77 1098.91 30098.07 26297.98 22299.77 237
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
FIs97.95 22197.73 22898.62 23198.53 32999.24 164100.00 199.43 12496.74 22997.87 31799.82 25695.27 22998.89 30398.78 22693.07 31297.74 308
v119296.18 30595.49 31998.26 25698.01 35298.15 24299.99 21799.08 34293.36 35298.54 27698.97 35389.47 31598.89 30391.15 37090.82 34797.75 286
UniMVSNet (Re)97.29 25096.85 25798.59 23498.49 33099.13 175100.00 199.42 14196.52 24898.24 30098.90 35894.93 23798.89 30397.54 28287.61 37597.75 286
EI-MVSNet97.98 22097.93 22098.16 26599.11 28197.84 26899.74 30799.29 25694.39 32598.65 268100.00 197.21 18798.88 30697.62 28195.31 27897.75 286
MVSTER98.58 18298.52 17898.77 22599.65 18299.68 108100.00 199.29 25695.63 28798.65 26899.80 26299.78 898.88 30698.59 24195.31 27897.73 315
pm-mvs195.76 32195.01 33198.00 28498.23 34397.45 28199.24 36699.04 36093.13 35995.93 36599.72 26986.28 34998.84 30895.62 32687.92 37397.72 321
V4296.65 27896.16 28798.11 27198.17 34898.23 23899.99 21799.09 34193.97 33498.74 26599.05 34291.09 28998.82 30995.46 32889.90 35497.27 369
CMPMVSbinary66.12 2290.65 36392.04 35686.46 38896.18 38866.87 41898.03 40699.38 20983.38 40485.49 40599.55 31077.59 38998.80 31094.44 34194.31 30393.72 403
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PS-MVSNAJss98.03 21898.06 21497.94 28897.63 36497.33 28999.89 27999.23 29096.27 26598.03 30799.59 30298.75 12698.78 31198.52 24394.61 30197.70 329
OurMVSNet-221017-096.14 31195.98 29496.62 33897.49 37493.44 36299.92 27198.16 39095.86 28097.65 32599.95 22385.71 35698.78 31194.93 33694.18 30497.64 347
OpenMVS_ROBcopyleft88.34 2091.89 35691.12 35894.19 37095.55 39687.63 39499.26 36498.03 39686.61 39890.65 39596.82 39570.14 40698.78 31186.54 39496.50 26696.15 389
pmmvs693.64 34392.87 35195.94 35197.47 37691.41 38098.92 39599.02 36387.84 39495.01 37199.61 30077.24 39298.77 31494.33 34286.41 38497.63 348
v896.35 29695.73 30898.21 26198.11 34998.23 23899.94 26699.07 34792.66 36698.29 29399.00 34991.46 28398.77 31494.17 34488.83 36897.62 350
miper_enhance_ethall98.33 20498.27 19698.51 23799.66 18099.04 181100.00 199.22 29397.53 16498.51 28099.38 32299.49 4198.75 31698.02 26492.61 31897.76 275
EGC-MVSNET79.46 37874.04 38695.72 35396.00 39092.73 37099.09 39099.04 3605.08 42316.72 42398.71 36573.03 40098.74 31782.05 40396.64 26395.69 396
v192192096.16 30995.50 31798.14 26697.88 35897.96 25999.99 21799.07 34793.33 35398.60 27299.24 33089.37 31698.71 31891.28 36890.74 34997.75 286
lessismore_v096.05 34997.55 37091.80 37799.22 29391.87 38999.91 23783.50 37098.68 31992.48 36190.42 35397.68 335
v2v48296.70 27696.18 28598.27 25498.04 35198.39 223100.00 199.13 32794.19 33198.58 27399.08 33990.48 29998.67 32095.69 32390.44 35297.75 286
v14419296.40 29395.81 30198.17 26497.89 35798.11 24599.99 21799.06 35593.39 35198.75 26499.09 33890.43 30098.66 32193.10 35690.55 35197.75 286
cl____97.54 23897.32 24298.18 26299.47 24798.14 244100.00 199.10 33694.16 33297.60 33099.63 29497.52 17698.65 32296.47 31191.97 33197.76 275
v114496.51 28595.97 29598.13 26997.98 35498.04 25399.99 21799.08 34293.51 34798.62 27198.98 35090.98 29398.62 32393.79 35090.79 34897.74 308
WBMVS98.19 21398.10 21098.47 23999.63 19099.03 182100.00 199.32 24095.46 29898.39 28699.40 32199.69 1598.61 32498.64 23592.39 32397.76 275
v124095.96 31795.25 32698.07 27297.91 35697.87 26799.96 25599.07 34793.24 35698.64 27098.96 35488.98 32198.61 32489.58 38490.92 34697.75 286
v1096.14 31195.50 31798.07 27298.19 34697.96 25999.83 28799.07 34792.10 36998.07 30498.94 35591.07 29098.61 32492.41 36389.82 35597.63 348
anonymousdsp97.16 25496.88 25598.00 28497.08 38298.06 25199.81 29199.15 31894.58 31797.84 31999.62 29890.49 29898.60 32797.98 26595.32 27797.33 368
v14896.29 29995.84 30097.63 29797.74 36196.53 312100.00 199.07 34793.52 34698.01 31099.42 32091.22 28598.60 32796.37 31587.22 37897.75 286
MVSFormer98.94 15398.82 14799.28 19299.45 25199.49 134100.00 199.13 32795.46 29899.97 122100.00 196.76 20498.59 32998.63 237100.00 199.74 241
test_djsdf97.55 23797.38 23998.07 27297.50 37297.99 255100.00 199.13 32795.46 29898.47 28399.85 25092.01 28298.59 32998.63 23795.36 27697.62 350
test_040294.35 33593.70 34096.32 34597.92 35593.60 35999.61 32998.85 37888.19 39394.68 37499.48 31680.01 38298.58 33189.39 38595.15 28996.77 379
miper_ehance_all_eth97.81 22597.66 23098.23 25899.49 24298.37 22699.99 21799.11 33494.78 31098.25 29899.21 33398.18 14598.57 33297.35 29192.61 31897.76 275
FC-MVSNet-test97.84 22397.63 23298.45 24298.30 33999.05 180100.00 199.43 12496.63 24397.61 32999.82 25695.19 23398.57 33298.64 23593.05 31397.73 315
WR-MVS97.09 25796.64 26398.46 24098.43 33199.09 17699.97 24999.33 23795.62 28897.76 32099.67 28291.17 28898.56 33498.49 24489.28 36297.74 308
WR-MVS_H96.73 27396.32 28197.95 28798.26 34197.88 26599.72 31499.43 12495.06 30596.99 34398.68 36793.02 26598.53 33597.43 28688.33 37197.43 363
ambc88.45 38386.84 41570.76 41297.79 40898.02 39890.91 39295.14 40038.69 41898.51 33694.97 33584.23 38896.09 392
eth_miper_zixun_eth97.47 24297.28 24498.06 27699.41 25797.94 26199.62 32899.08 34294.46 32398.19 30199.56 30996.91 20198.50 33796.78 30791.49 33997.74 308
UniMVSNet_NR-MVSNet97.16 25496.80 25898.22 25998.38 33398.41 220100.00 199.45 10296.14 27297.76 32099.64 29095.05 23598.50 33797.98 26586.84 37997.75 286
DU-MVS96.93 26796.49 27198.22 25998.31 33798.41 220100.00 199.37 21296.41 25697.76 32099.65 28692.14 27998.50 33797.98 26586.84 37997.75 286
pmmvs497.17 25396.80 25898.27 25497.68 36398.64 210100.00 199.18 31094.22 32898.55 27599.71 27193.67 25398.47 34095.66 32492.57 32197.71 328
pmmvs595.94 31895.61 31496.95 32697.42 37794.66 345100.00 198.08 39493.60 34497.05 34299.43 31987.02 34298.46 34195.76 32092.12 32797.72 321
SixPastTwentyTwo95.71 32295.49 31996.38 34397.42 37793.01 36699.84 28698.23 38994.75 31195.98 36499.97 20185.35 35898.43 34294.71 33893.17 31197.69 333
WB-MVSnew97.02 26497.24 24896.37 34499.44 25397.36 285100.00 199.43 12496.12 27399.35 22599.89 24093.60 25698.42 34388.91 39098.39 19693.33 405
NR-MVSNet96.63 27996.04 29198.38 24798.31 33798.98 19199.22 37399.35 22995.87 27894.43 37899.65 28692.73 27198.40 34496.78 30788.05 37297.75 286
TransMVSNet (Re)94.78 33293.72 33997.93 29098.34 33497.88 26599.23 37197.98 39991.60 37194.55 37599.71 27187.89 33398.36 34589.30 38684.92 38697.56 356
Baseline_NR-MVSNet96.16 30995.70 30997.56 30298.28 34096.79 306100.00 197.86 40291.93 37097.63 32699.47 31792.14 27998.35 34697.13 29486.83 38197.54 357
IterMVS-SCA-FT96.72 27596.42 27597.62 29999.40 26296.83 30499.99 21799.14 32394.65 31697.55 33299.72 26989.65 31298.31 34795.62 32692.05 32897.73 315
DIV-MVS_self_test97.52 24197.35 24198.05 28099.46 25098.11 245100.00 199.10 33694.21 32997.62 32899.63 29497.65 16898.29 34896.47 31191.98 33097.76 275
IterMVS96.76 27296.46 27397.63 29799.41 25796.89 30299.99 21799.13 32794.74 31397.59 33199.66 28489.63 31498.28 34995.71 32292.31 32597.72 321
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_vis3_rt79.61 37778.19 38283.86 39188.68 41469.56 41399.81 29182.19 42786.78 39768.57 41584.51 41825.06 42498.26 35089.18 38878.94 40283.75 415
MVStest194.27 33693.30 34597.19 31798.83 31897.18 29599.93 26998.79 38186.80 39684.88 40899.04 34394.32 24798.25 35190.55 37586.57 38396.12 391
c3_l97.58 23597.42 23698.06 27699.48 24498.16 24199.96 25599.10 33694.54 31998.13 30299.20 33597.87 15698.25 35197.28 29291.20 34497.75 286
test0.0.03 198.12 21598.03 21698.39 24699.11 28198.07 249100.00 199.93 3096.70 23496.91 34699.95 22399.31 6698.19 35391.93 36498.44 19198.91 266
CP-MVSNet96.73 27396.25 28298.18 26298.21 34498.67 20899.77 30299.32 24095.06 30597.20 34099.65 28690.10 30398.19 35398.06 26388.90 36697.66 340
PS-CasMVS96.34 29795.78 30598.03 28398.18 34798.27 23699.71 31599.32 24094.75 31196.82 34999.65 28686.98 34498.15 35597.74 27488.85 36797.66 340
our_test_396.51 28596.35 27896.98 32597.61 36695.05 33199.98 24399.01 36594.68 31496.77 35299.06 34095.87 22098.14 35691.81 36592.37 32497.75 286
new_pmnet94.11 34193.47 34396.04 35096.60 38692.82 36999.97 24998.91 37490.21 38395.26 36898.05 38685.89 35498.14 35684.28 39892.01 32997.16 371
K. test v395.46 32695.14 32996.40 34297.53 37193.40 36399.99 21799.23 29095.49 29692.70 38899.73 26884.26 36398.12 35893.94 34993.38 31097.68 335
Patchmtry96.81 26996.37 27798.14 26699.31 26998.55 21598.91 39699.00 36690.45 38097.92 31498.98 35096.94 19998.12 35894.27 34391.53 33897.75 286
FMVSNet397.30 24996.95 25398.37 24899.65 18299.25 16299.71 31599.28 26294.23 32798.53 27798.91 35793.30 26098.11 36095.31 33093.60 30697.73 315
N_pmnet91.88 35793.37 34487.40 38697.24 38166.33 41999.90 27591.05 42289.77 38695.65 36798.58 37190.05 30698.11 36085.39 39592.72 31797.75 286
IterMVS-LS97.56 23697.44 23597.92 29199.38 26697.90 26399.89 27999.10 33694.41 32498.32 29199.54 31297.21 18798.11 36097.50 28391.62 33697.75 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CR-MVSNet98.02 21997.71 22998.93 21499.31 26998.86 19699.13 38599.00 36696.53 24799.96 12698.98 35096.94 19998.10 36391.18 36998.40 19499.84 195
FMVSNet296.22 30395.60 31598.06 27699.53 22298.33 23099.45 34599.27 27293.71 33898.03 30798.84 36084.23 36498.10 36393.97 34893.40 30997.73 315
ppachtmachnet_test96.17 30795.89 29797.02 32297.61 36695.24 32899.99 21799.24 28693.31 35496.71 35399.62 29894.34 24698.07 36589.87 38092.30 32697.75 286
GBi-Net96.07 31395.80 30396.89 33099.53 22294.87 33399.18 37499.27 27293.71 33898.53 27798.81 36184.23 36498.07 36595.31 33093.60 30697.72 321
test196.07 31395.80 30396.89 33099.53 22294.87 33399.18 37499.27 27293.71 33898.53 27798.81 36184.23 36498.07 36595.31 33093.60 30697.72 321
FMVSNet194.45 33493.63 34196.89 33098.87 31494.87 33399.18 37499.27 27290.95 37797.31 33798.81 36172.89 40198.07 36592.61 35892.81 31697.72 321
PatchT95.90 31994.95 33398.75 22699.03 29298.39 22399.08 39199.32 24085.52 39999.96 12694.99 40397.94 15198.05 36980.20 40798.47 19099.81 213
TranMVSNet+NR-MVSNet96.45 28996.01 29297.79 29598.00 35397.62 276100.00 199.35 22995.98 27597.31 33799.64 29090.09 30498.00 37096.89 30286.80 38297.75 286
test_method91.04 36291.10 35990.85 37898.34 33477.63 405100.00 198.93 37376.69 40996.25 36098.52 37370.44 40497.98 37189.02 38991.74 33496.92 377
miper_lstm_enhance97.40 24597.28 24497.75 29699.48 24497.52 278100.00 199.07 34794.08 33398.01 31099.61 30097.38 18497.98 37196.44 31491.47 34197.76 275
ET-MVSNet_ETH3D96.41 29095.48 32199.20 19999.81 13199.75 97100.00 199.02 36397.30 18978.33 411100.00 197.73 16497.94 37399.70 14887.41 37699.92 149
ADS-MVSNet298.28 20998.51 18097.62 29999.51 23495.03 33299.24 36699.41 19095.52 29399.96 12699.70 27497.57 17297.94 37397.11 29598.54 18599.88 181
PEN-MVS96.01 31695.48 32197.58 30197.74 36197.26 29299.90 27599.29 25694.55 31896.79 35099.55 31087.38 33997.84 37596.92 30187.24 37797.65 344
Syy-MVS96.17 30796.57 26795.00 35899.50 23887.37 395100.00 199.57 6896.23 26698.07 304100.00 192.41 27797.81 37685.34 39697.96 22499.82 204
myMVS_eth3d98.52 19098.51 18098.53 23699.50 23897.98 256100.00 199.57 6896.23 26698.07 304100.00 199.09 8997.81 37696.17 31797.96 22499.82 204
testing398.44 19598.37 19198.65 22999.51 23498.32 232100.00 199.62 6696.43 25297.93 31399.99 18799.11 8797.81 37694.88 33797.80 23799.82 204
testgi96.18 30595.93 29696.93 32898.98 30294.20 356100.00 199.07 34797.16 19596.06 36399.86 24584.08 36797.79 37990.38 37897.80 23798.81 267
testf184.40 37484.79 37683.23 39295.71 39258.71 42598.79 39997.75 40481.58 40584.94 40698.07 38445.33 41697.73 38077.09 41383.85 38993.24 406
APD_test284.40 37484.79 37683.23 39295.71 39258.71 42598.79 39997.75 40481.58 40584.94 40698.07 38445.33 41697.73 38077.09 41383.85 38993.24 406
MIMVSNet97.06 26096.73 26198.05 28099.38 26696.64 31098.47 40399.35 22993.41 35099.48 21198.53 37289.66 31197.70 38294.16 34698.11 21899.80 230
LCM-MVSNet-Re96.52 28397.21 25094.44 36499.27 27385.80 39799.85 28596.61 41495.98 27592.75 38798.48 37493.97 25197.55 38399.58 17898.43 19299.98 112
DTE-MVSNet95.52 32494.99 33297.08 31997.49 37496.45 313100.00 199.25 28193.82 33796.17 36199.57 30887.81 33497.18 38494.57 33986.26 38597.62 350
mvsany_test389.36 36788.96 37190.56 37991.95 40578.97 40499.74 30796.59 41596.84 21989.25 39696.07 39752.59 41297.11 38595.17 33382.44 39495.58 398
UnsupCasMVSNet_bld89.50 36688.00 37293.99 37195.30 39788.86 39298.52 40299.28 26285.50 40087.80 40194.11 40561.63 40996.96 38690.63 37379.26 40096.15 389
Anonymous2024052193.29 34692.76 35394.90 36295.64 39591.27 38199.97 24998.82 37987.04 39594.71 37398.19 38183.86 36896.80 38784.04 39992.56 32296.64 382
KD-MVS_2432*160094.15 33893.08 34797.35 30899.53 22297.83 26999.63 32699.19 30392.88 36296.29 35897.68 38898.84 11996.70 38889.73 38163.92 41297.53 358
miper_refine_blended94.15 33893.08 34797.35 30899.53 22297.83 26999.63 32699.19 30392.88 36296.29 35897.68 38898.84 11996.70 38889.73 38163.92 41297.53 358
test_f86.87 37286.06 37589.28 38291.45 41076.37 40799.87 28297.11 40991.10 37588.46 39893.05 40838.31 41996.66 39091.77 36683.46 39294.82 399
MDA-MVSNet_test_wron92.61 35291.09 36097.19 31796.71 38597.26 292100.00 199.14 32388.61 38967.90 41798.32 38089.03 31996.57 39190.47 37789.59 35797.74 308
UnsupCasMVSNet_eth94.25 33793.89 33795.34 35497.63 36492.13 37499.73 31299.36 21894.88 30892.78 38598.63 36982.72 37296.53 39294.57 33984.73 38797.36 366
tmp_tt75.80 38374.26 38580.43 39652.91 42853.67 42787.42 41597.98 39961.80 41567.04 418100.00 176.43 39496.40 39396.47 31128.26 42091.23 410
Gipumacopyleft84.73 37383.50 37888.40 38497.50 37282.21 40288.87 41399.05 35765.81 41385.71 40490.49 41053.70 41196.31 39478.64 40991.74 33486.67 412
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
YYNet192.44 35390.92 36197.03 32196.20 38797.06 30099.99 21799.14 32388.21 39267.93 41698.43 37788.63 32596.28 39590.64 37289.08 36497.74 308
EU-MVSNet96.63 27996.53 26896.94 32797.59 36896.87 30399.76 30499.47 7996.35 26196.85 34899.78 26592.57 27596.27 39695.33 32991.08 34597.68 335
pmmvs-eth3d91.73 35890.67 36294.92 36191.63 40892.71 37199.90 27598.54 38691.19 37488.08 39995.50 39979.31 38696.13 39790.55 37581.32 39895.91 394
PM-MVS88.39 36887.41 37391.31 37791.73 40782.02 40399.79 29696.62 41391.06 37690.71 39495.73 39848.60 41495.96 39890.56 37481.91 39795.97 393
MDA-MVSNet-bldmvs91.65 35989.94 36796.79 33696.72 38496.70 30899.42 35098.94 37188.89 38866.97 41998.37 37881.43 37895.91 39989.24 38789.46 36097.75 286
Patchmatch-RL test93.49 34493.63 34193.05 37591.78 40683.41 40198.21 40596.95 41191.58 37291.05 39097.64 39099.40 5895.83 40094.11 34781.95 39699.91 151
Anonymous2023120693.45 34593.17 34694.30 36795.00 39989.69 38899.98 24398.43 38793.30 35594.50 37798.59 37090.52 29795.73 40177.46 41290.73 35097.48 362
DSMNet-mixed95.18 33095.21 32895.08 35596.03 38990.21 38799.65 32393.64 42092.91 36198.34 28997.40 39190.05 30695.51 40291.02 37197.86 23199.51 257
pmmvs390.62 36489.36 37094.40 36590.53 41391.49 379100.00 196.73 41284.21 40293.65 38296.65 39682.56 37594.83 40382.28 40277.62 40496.89 378
KD-MVS_self_test91.16 36090.09 36594.35 36694.44 40191.27 38199.74 30799.08 34290.82 37894.53 37694.91 40486.11 35094.78 40482.67 40168.52 41096.99 375
FMVSNet595.32 32795.43 32494.99 35999.39 26592.99 36899.25 36599.24 28690.45 38097.44 33598.45 37595.78 22294.39 40587.02 39291.88 33297.59 354
new-patchmatchnet90.30 36589.46 36992.84 37690.77 41188.55 39399.83 28798.80 38090.07 38587.86 40095.00 40278.77 38794.30 40684.86 39779.15 40195.68 397
LCM-MVSNet79.01 38176.93 38485.27 38978.28 42168.01 41796.57 41098.03 39655.10 41782.03 41093.27 40731.99 42393.95 40782.72 40074.37 40693.84 402
CL-MVSNet_self_test91.07 36190.35 36493.24 37493.27 40389.16 39099.55 33599.25 28192.34 36795.23 36997.05 39488.86 32493.59 40880.67 40566.95 41196.96 376
MIMVSNet191.96 35491.20 35794.23 36994.94 40091.69 37899.34 35799.22 29388.23 39194.18 37998.45 37575.52 39693.41 40979.37 40891.49 33997.60 353
test20.0393.11 34892.85 35293.88 37295.19 39891.83 376100.00 198.87 37793.68 34192.76 38698.88 35989.20 31892.71 41077.88 41089.19 36397.09 373
test_fmvs387.19 37187.02 37487.71 38592.69 40476.64 40699.96 25597.27 40893.55 34590.82 39394.03 40638.00 42092.19 41193.49 35483.35 39394.32 400
dmvs_testset93.27 34795.48 32186.65 38798.74 32168.42 41699.92 27198.91 37496.19 27193.28 384100.00 191.06 29191.67 41289.64 38391.54 33799.86 193
PMMVS279.15 38077.28 38384.76 39082.34 41872.66 40899.70 31795.11 41871.68 41284.78 40990.87 40932.05 42289.99 41375.53 41563.45 41491.64 409
FPMVS77.92 38279.45 38073.34 40176.87 42246.81 42898.24 40499.05 35759.89 41673.55 41298.34 37936.81 42186.55 41480.96 40491.35 34386.65 413
PMVScopyleft60.66 2365.98 38865.05 38968.75 40455.06 42738.40 42988.19 41496.98 41048.30 42144.82 42288.52 41312.22 42786.49 41567.58 41683.79 39181.35 417
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
WB-MVS88.24 36990.09 36582.68 39491.56 40969.51 414100.00 198.73 38390.72 37987.29 40298.12 38292.87 26785.01 41662.19 41789.34 36193.54 404
SSC-MVS87.61 37089.47 36882.04 39590.63 41268.77 41599.99 21798.66 38490.34 38286.70 40398.08 38392.72 27284.12 41759.41 42088.71 36993.22 408
MVEpermissive68.59 2167.22 38664.68 39074.84 39874.67 42462.32 42395.84 41190.87 42350.98 41858.72 42081.05 42012.20 42878.95 41861.06 41956.75 41583.24 416
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN70.72 38470.06 38772.69 40283.92 41765.48 42199.95 26192.72 42149.88 41972.30 41386.26 41647.17 41577.43 41953.83 42144.49 41775.17 419
EMVS69.88 38569.09 38872.24 40384.70 41665.82 42099.96 25587.08 42649.82 42071.51 41484.74 41749.30 41375.32 42050.97 42243.71 41875.59 418
test12379.44 37979.23 38180.05 39780.03 42071.72 410100.00 177.93 42862.52 41494.81 37299.69 27778.21 38874.53 42192.57 35927.33 42193.90 401
testmvs80.17 37681.95 37974.80 39958.54 42659.58 424100.00 187.14 42576.09 41099.61 205100.00 167.06 40774.19 42298.84 22350.30 41690.64 411
ANet_high66.05 38763.44 39173.88 40061.14 42563.45 42295.68 41287.18 42479.93 40747.35 42180.68 42122.35 42572.33 42361.24 41835.42 41985.88 414
wuyk23d28.28 38929.73 39323.92 40575.89 42332.61 43066.50 41612.88 42916.09 42214.59 42416.59 42312.35 42632.36 42439.36 42313.36 4226.79 420
mmdepth0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.07 3930.09 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.79 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k24.41 39032.55 3920.00 4060.00 4290.00 4310.00 41799.39 2070.00 4240.00 425100.00 193.55 2570.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas8.24 39210.99 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 42598.75 1260.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re8.33 39111.11 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS97.98 25695.74 321
FOURS1100.00 199.97 21100.00 199.42 14198.52 77100.00 1
test_one_0601100.00 199.99 599.42 14198.72 67100.00 1100.00 199.60 19
eth-test20.00 429
eth-test0.00 429
RE-MVS-def99.55 5999.99 4999.91 56100.00 199.42 14197.62 150100.00 1100.00 198.94 11099.99 64100.00 1100.00 1
IU-MVS100.00 199.99 599.42 14199.12 7100.00 1100.00 1100.00 1100.00 1
save fliter99.99 4999.93 47100.00 199.42 14198.93 38
test0726100.00 199.99 5100.00 199.42 14199.04 16100.00 1100.00 199.53 31
GSMVS99.91 151
test_part2100.00 199.99 5100.00 1
sam_mvs199.29 7299.91 151
sam_mvs99.33 61
MTGPAbinary99.42 141
MTMP100.00 199.18 310
test9_res100.00 1100.00 1100.00 1
agg_prior2100.00 1100.00 1100.00 1
test_prior499.93 47100.00 1
test_prior2100.00 198.82 55100.00 1100.00 199.47 45100.00 1100.00 1
新几何2100.00 1
旧先验199.99 4999.88 7799.82 40100.00 199.27 75100.00 1100.00 1
原ACMM2100.00 1
test22299.99 4999.90 63100.00 199.69 6297.66 144100.00 1100.00 199.30 71100.00 1100.00 1
segment_acmp99.55 27
testdata1100.00 198.77 66
plane_prior799.00 29894.78 343
plane_prior699.06 29094.80 33988.58 328
plane_prior499.97 201
plane_prior394.79 34299.03 2199.08 242
plane_prior2100.00 199.00 27
plane_prior199.02 293
plane_prior94.80 339100.00 199.03 2195.58 268
n20.00 430
nn0.00 430
door-mid96.32 416
test1199.42 141
door96.13 417
HQP5-MVS94.82 336
HQP-NCC99.07 286100.00 199.04 1699.17 232
ACMP_Plane99.07 286100.00 199.04 1699.17 232
BP-MVS99.79 123
HQP3-MVS99.40 19495.58 268
HQP2-MVS88.61 326
NP-MVS99.07 28694.81 33899.97 201
MDTV_nov1_ep13_2view99.24 16499.56 33496.31 26499.96 12698.86 11798.92 21999.89 168
ACMMP++_ref94.58 302
ACMMP++95.17 288
Test By Simon99.10 88