This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
DPM-MVS96.21 295.53 1398.26 196.26 10595.09 199.15 896.98 3893.39 1496.45 2598.79 890.17 999.99 189.33 13799.25 699.70 3
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2497.10 3195.17 392.11 8598.46 2687.33 2499.97 297.21 2999.31 499.63 7
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2499.06 1797.12 2994.66 596.79 1798.78 986.42 2899.95 397.59 2399.18 799.00 31
NCCC95.63 795.94 894.69 3299.21 685.15 6899.16 796.96 4194.11 995.59 3498.64 1785.07 3499.91 495.61 4699.10 999.00 31
API-MVS90.18 12488.97 13493.80 5498.66 2882.95 10997.50 9595.63 17275.16 32586.31 16497.69 7372.49 20199.90 581.26 21096.07 10898.56 54
DeepC-MVS_fast89.06 294.48 2594.30 2995.02 2298.86 2185.68 4998.06 5596.64 8193.64 1291.74 9198.54 2080.17 7799.90 592.28 9398.75 2999.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DP-MVS Recon91.72 8790.85 9694.34 3899.50 185.00 7398.51 3595.96 15080.57 25188.08 14897.63 8176.84 12899.89 785.67 16894.88 12298.13 83
CANet94.89 1694.64 2295.63 1397.55 7688.12 1899.06 1796.39 11394.07 1095.34 3697.80 7076.83 13099.87 897.08 3197.64 6898.89 36
DeepPCF-MVS89.82 194.61 2296.17 589.91 20997.09 9470.21 34298.99 2396.69 7395.57 295.08 4199.23 186.40 2999.87 897.84 2098.66 3299.65 6
MVS_030495.58 995.44 1596.01 1097.63 7089.26 1299.27 396.59 8894.71 497.08 1597.99 5578.69 9999.86 1099.15 297.85 6298.91 35
HPM-MVS++copyleft95.32 1195.48 1494.85 2698.62 3486.04 3997.81 7096.93 4492.45 2095.69 3398.50 2485.38 3299.85 1194.75 5999.18 798.65 50
PHI-MVS93.59 3993.63 3893.48 7598.05 5881.76 13498.64 3197.13 2782.60 21994.09 5698.49 2580.35 7299.85 1194.74 6098.62 3398.83 38
DVP-MVS++96.05 496.41 394.96 2499.05 985.34 5898.13 4996.77 6188.38 7497.70 898.77 1092.06 399.84 1397.47 2499.37 199.70 3
OPU-MVS97.30 299.19 792.31 399.12 1298.54 2092.06 399.84 1399.11 399.37 199.74 1
test_0728_SECOND95.14 2099.04 1486.14 3899.06 1796.77 6199.84 1397.90 1798.85 2199.45 10
SMA-MVScopyleft94.70 2194.68 2194.76 2998.02 5985.94 4397.47 9696.77 6185.32 14297.92 398.70 1583.09 5599.84 1395.79 4399.08 1098.49 57
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
patch_mono-295.14 1396.08 792.33 12198.44 4377.84 24798.43 3697.21 2292.58 1997.68 1097.65 7986.88 2599.83 1798.25 997.60 6999.33 18
ACMMP_NAP93.46 4093.23 4694.17 4597.16 9284.28 8596.82 15596.65 7886.24 12294.27 5397.99 5577.94 10999.83 1793.39 7598.57 3498.39 63
SED-MVS95.88 596.22 494.87 2599.03 1585.03 7199.12 1296.78 5588.72 6697.79 698.91 288.48 1799.82 1998.15 1198.97 1799.74 1
test_241102_TWO96.78 5588.72 6697.70 898.91 287.86 2199.82 1998.15 1199.00 1599.47 9
test_241102_ONE99.03 1585.03 7196.78 5588.72 6697.79 698.90 588.48 1799.82 19
MSC_two_6792asdad97.14 399.05 992.19 496.83 5299.81 2298.08 1498.81 2499.43 11
PC_three_145291.12 3698.33 298.42 3092.51 299.81 2298.96 499.37 199.70 3
No_MVS97.14 399.05 992.19 496.83 5299.81 2298.08 1498.81 2499.43 11
fmvsm_s_conf0.5_n93.69 3794.13 3392.34 11994.56 16082.01 12299.07 1697.13 2792.09 2396.25 2698.53 2276.47 13599.80 2598.39 894.71 12595.22 215
MM95.85 695.74 1096.15 896.34 10289.50 999.18 698.10 895.68 196.64 2197.92 6180.72 6899.80 2599.16 197.96 5899.15 27
ZNCC-MVS92.75 5292.60 6093.23 8298.24 5181.82 13297.63 8196.50 9985.00 15391.05 10297.74 7278.38 10299.80 2590.48 11898.34 4898.07 86
test_fmvsm_n_192094.81 1995.60 1192.45 11495.29 13880.96 15499.29 297.21 2294.50 797.29 1398.44 2782.15 6099.78 2898.56 797.68 6796.61 177
fmvsm_l_conf0.5_n_a94.91 1595.30 1693.72 6094.50 16784.30 8499.14 1096.00 14691.94 2897.91 598.60 1884.78 3699.77 2998.84 596.03 11097.08 159
fmvsm_s_conf0.5_n_a93.34 4293.71 3692.22 12893.38 20381.71 13798.86 2596.98 3891.64 2996.85 1698.55 1975.58 15399.77 2997.88 1993.68 14095.18 216
DVP-MVScopyleft95.58 995.91 994.57 3499.05 985.18 6399.06 1796.46 10388.75 6496.69 1898.76 1287.69 2299.76 3197.90 1798.85 2198.77 40
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD88.38 7496.69 1898.76 1289.64 1299.76 3197.47 2498.84 2399.38 14
GST-MVS92.43 7092.22 7093.04 9098.17 5481.64 13997.40 10596.38 11484.71 16090.90 10597.40 9377.55 11799.76 3189.75 13197.74 6597.72 114
MTAPA92.45 6992.31 6692.86 9797.90 6180.85 15892.88 30896.33 11987.92 8690.20 11498.18 4176.71 13399.76 3192.57 9298.09 5397.96 98
PAPR92.74 5392.17 7194.45 3698.89 2084.87 7697.20 11696.20 13187.73 9288.40 14398.12 4678.71 9899.76 3187.99 15196.28 10398.74 42
PAPM_NR91.46 9390.82 9793.37 7898.50 4081.81 13395.03 25596.13 13684.65 16286.10 16797.65 7979.24 8999.75 3683.20 19696.88 9298.56 54
MAR-MVS90.63 11490.22 11291.86 14598.47 4278.20 23597.18 11896.61 8483.87 18988.18 14798.18 4168.71 23399.75 3683.66 19097.15 8497.63 122
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
fmvsm_l_conf0.5_n94.89 1695.24 1793.86 5294.42 17084.61 7999.13 1196.15 13592.06 2597.92 398.52 2384.52 3899.74 3898.76 695.67 11697.22 151
fmvsm_s_conf0.1_n92.93 4993.16 4892.24 12690.52 28381.92 12698.42 3796.24 12791.17 3596.02 3098.35 3475.34 16499.74 3897.84 2094.58 12795.05 217
DPE-MVScopyleft95.32 1195.55 1294.64 3398.79 2384.87 7697.77 7296.74 6686.11 12496.54 2498.89 688.39 1999.74 3897.67 2299.05 1299.31 20
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss92.58 6592.35 6493.29 7997.30 9082.53 11496.44 17996.04 14484.68 16189.12 13098.37 3277.48 11899.74 3893.31 8098.38 4597.59 125
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
QAPM86.88 19184.51 21293.98 4894.04 18485.89 4497.19 11796.05 14373.62 33775.12 29795.62 14762.02 27699.74 3870.88 30496.06 10996.30 189
test_fmvsmvis_n_192092.12 7692.10 7392.17 13190.87 27681.04 15098.34 4093.90 27492.71 1887.24 15697.90 6474.83 17199.72 4396.96 3296.20 10495.76 200
AdaColmapbinary88.81 15087.61 16292.39 11899.33 479.95 18296.70 16595.58 17377.51 30483.05 20496.69 12661.90 27999.72 4384.29 17893.47 14497.50 133
fmvsm_s_conf0.1_n_a92.38 7192.49 6292.06 13688.08 32281.62 14097.97 6196.01 14590.62 4396.58 2298.33 3574.09 18399.71 4597.23 2893.46 14594.86 221
HFP-MVS92.89 5092.86 5592.98 9298.71 2581.12 14797.58 8696.70 7185.20 14791.75 9097.97 6078.47 10199.71 4590.95 10798.41 4398.12 84
DeepC-MVS86.58 391.53 9291.06 9492.94 9494.52 16381.89 12895.95 20995.98 14890.76 4183.76 19696.76 12273.24 19499.71 4591.67 10396.96 8997.22 151
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft92.61 6492.67 5892.42 11798.13 5679.73 19197.33 10996.20 13185.63 13590.53 10997.66 7578.14 10799.70 4892.12 9698.30 5097.85 104
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVS90.60 11588.64 14196.50 594.25 17490.53 893.33 29697.21 2277.59 30378.88 25097.31 9571.52 21599.69 4989.60 13298.03 5699.27 22
DELS-MVS94.98 1494.49 2496.44 696.42 10190.59 799.21 597.02 3694.40 891.46 9397.08 10983.32 5299.69 4992.83 8898.70 3199.04 29
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
mPP-MVS91.88 8391.82 7792.07 13598.38 4478.63 21997.29 11196.09 13985.12 14988.45 14297.66 7575.53 15499.68 5189.83 12998.02 5797.88 100
3Dnovator82.32 1089.33 13887.64 15994.42 3793.73 19185.70 4797.73 7696.75 6586.73 12076.21 28395.93 13762.17 27399.68 5181.67 20897.81 6397.88 100
region2R92.72 5692.70 5792.79 10098.68 2680.53 16997.53 9196.51 9785.22 14591.94 8897.98 5877.26 12099.67 5390.83 11298.37 4698.18 77
ACMMPR92.69 6092.67 5892.75 10198.66 2880.57 16597.58 8696.69 7385.20 14791.57 9297.92 6177.01 12599.67 5390.95 10798.41 4398.00 93
test_fmvsmconf_n93.99 3494.36 2892.86 9792.82 22181.12 14799.26 496.37 11793.47 1395.16 3798.21 3979.00 9299.64 5598.21 1096.73 9897.83 106
OpenMVScopyleft79.58 1486.09 20483.62 22993.50 7390.95 27386.71 3497.44 9995.83 16175.35 32272.64 31995.72 14257.42 31499.64 5571.41 29895.85 11494.13 235
ACMMPcopyleft90.39 12089.97 12091.64 15597.58 7478.21 23496.78 15896.72 6984.73 15984.72 18397.23 10271.22 21799.63 5788.37 14992.41 15897.08 159
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CHOSEN 1792x268891.07 10590.21 11393.64 6495.18 14283.53 9896.26 19296.13 13688.92 6384.90 17993.10 21572.86 19699.62 5888.86 14095.67 11697.79 110
SD-MVS94.84 1895.02 1994.29 4097.87 6484.61 7997.76 7496.19 13389.59 5796.66 2098.17 4484.33 4099.60 5996.09 3898.50 3898.66 49
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_fmvsmconf0.1_n93.08 4693.22 4792.65 10788.45 31780.81 15999.00 2295.11 20193.21 1594.00 5797.91 6376.84 12899.59 6097.91 1696.55 10197.54 127
test_vis1_n_192089.95 12790.59 10188.03 24992.36 23168.98 35199.12 1294.34 25193.86 1193.64 6297.01 11251.54 34299.59 6096.76 3596.71 9995.53 206
XVS92.69 6092.71 5692.63 10998.52 3780.29 17297.37 10796.44 10587.04 11191.38 9497.83 6977.24 12299.59 6090.46 12098.07 5498.02 88
X-MVStestdata86.26 20284.14 22292.63 10998.52 3780.29 17297.37 10796.44 10587.04 11191.38 9420.73 42077.24 12299.59 6090.46 12098.07 5498.02 88
PVSNet_BlendedMVS90.05 12589.96 12190.33 19597.47 7783.86 9098.02 5896.73 6787.98 8489.53 12389.61 26776.42 13799.57 6494.29 6579.59 26687.57 334
PVSNet_Blended93.13 4392.98 5193.57 6997.47 7783.86 9099.32 196.73 6791.02 4089.53 12396.21 13276.42 13799.57 6494.29 6595.81 11597.29 149
PGM-MVS91.93 8091.80 7892.32 12398.27 5079.74 19095.28 23997.27 2083.83 19090.89 10697.78 7176.12 14399.56 6688.82 14197.93 6197.66 119
MVS_111021_HR93.41 4193.39 4493.47 7797.34 8982.83 11097.56 8898.27 689.16 6289.71 11897.14 10579.77 8399.56 6693.65 7397.94 5998.02 88
test_fmvsmconf0.01_n91.08 10490.68 10092.29 12482.43 37680.12 18097.94 6293.93 27092.07 2491.97 8697.60 8267.56 23899.53 6897.09 3095.56 11897.21 153
无先验96.87 15196.78 5577.39 30599.52 6979.95 22198.43 61
CSCG92.02 7891.65 8193.12 8698.53 3680.59 16497.47 9697.18 2577.06 31284.64 18597.98 5883.98 4699.52 6990.72 11497.33 7899.23 24
新几何193.12 8697.44 8181.60 14196.71 7074.54 33191.22 10097.57 8379.13 9199.51 7177.40 24998.46 4098.26 73
3Dnovator+82.88 889.63 13487.85 15494.99 2394.49 16886.76 3397.84 6795.74 16686.10 12575.47 29496.02 13665.00 25999.51 7182.91 20097.07 8698.72 47
CANet_DTU90.98 10790.04 11893.83 5394.76 15686.23 3796.32 18993.12 31693.11 1693.71 6096.82 12063.08 26999.48 7384.29 17895.12 12195.77 199
testdata299.48 7376.45 258
SteuartSystems-ACMMP94.13 3294.44 2693.20 8395.41 13381.35 14499.02 2196.59 8889.50 5894.18 5598.36 3383.68 5099.45 7594.77 5898.45 4198.81 39
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + GP.94.35 2694.50 2393.89 5197.38 8883.04 10898.10 5195.29 19691.57 3093.81 5997.45 8886.64 2699.43 7696.28 3794.01 13499.20 25
131488.94 14587.20 17394.17 4593.21 20685.73 4693.33 29696.64 8182.89 21175.98 28696.36 12966.83 24699.39 7783.52 19496.02 11197.39 142
SF-MVS94.17 3094.05 3494.55 3597.56 7585.95 4197.73 7696.43 10784.02 18295.07 4298.74 1482.93 5699.38 7895.42 5098.51 3698.32 66
DP-MVS81.47 28078.28 29791.04 17398.14 5578.48 22195.09 25486.97 37961.14 39171.12 33092.78 22059.59 28999.38 7853.11 38086.61 21295.27 214
9.1494.26 3198.10 5798.14 4696.52 9684.74 15894.83 4798.80 782.80 5899.37 8095.95 4198.42 42
TEST998.64 3183.71 9397.82 6896.65 7884.29 17595.16 3798.09 4884.39 3999.36 81
train_agg94.28 2794.45 2593.74 5798.64 3183.71 9397.82 6896.65 7884.50 16695.16 3798.09 4884.33 4099.36 8195.91 4298.96 1998.16 79
sss90.87 11189.96 12193.60 6794.15 17883.84 9297.14 12598.13 785.93 13189.68 11996.09 13571.67 21299.30 8387.69 15489.16 18297.66 119
PVSNet_Blended_VisFu91.24 9990.77 9892.66 10695.09 14482.40 11897.77 7295.87 16088.26 7786.39 16393.94 19876.77 13199.27 8488.80 14294.00 13596.31 188
PLCcopyleft83.97 788.00 17387.38 17089.83 21298.02 5976.46 27797.16 12294.43 24679.26 28381.98 21796.28 13169.36 23199.27 8477.71 24292.25 16093.77 242
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
reproduce-ours92.70 5893.02 4991.75 15097.45 7977.77 25196.16 19895.94 15384.12 17892.45 7698.43 2880.06 7999.24 8695.35 5197.18 8298.24 74
our_new_method92.70 5893.02 4991.75 15097.45 7977.77 25196.16 19895.94 15384.12 17892.45 7698.43 2880.06 7999.24 8695.35 5197.18 8298.24 74
test_898.63 3383.64 9697.81 7096.63 8384.50 16695.10 4098.11 4784.33 4099.23 88
test1294.25 4198.34 4685.55 5596.35 11892.36 8080.84 6799.22 8998.31 4997.98 95
reproduce_model92.53 6792.87 5391.50 16097.41 8377.14 26896.02 20595.91 15683.65 19692.45 7698.39 3179.75 8499.21 9095.27 5496.98 8898.14 81
MSLP-MVS++94.28 2794.39 2793.97 4998.30 4984.06 8898.64 3196.93 4490.71 4293.08 6998.70 1579.98 8199.21 9094.12 6899.07 1198.63 51
CDPH-MVS93.12 4492.91 5293.74 5798.65 3083.88 8997.67 8096.26 12583.00 20993.22 6798.24 3881.31 6599.21 9089.12 13898.74 3098.14 81
CP-MVS92.54 6692.60 6092.34 11998.50 4079.90 18498.40 3896.40 11184.75 15790.48 11198.09 4877.40 11999.21 9091.15 10698.23 5297.92 99
LS3D82.22 27179.94 28589.06 22397.43 8274.06 30793.20 30292.05 33161.90 38573.33 31295.21 16159.35 29299.21 9054.54 37692.48 15793.90 240
PCF-MVS84.09 586.77 19585.00 20792.08 13492.06 25183.07 10792.14 31794.47 24179.63 27476.90 27094.78 17971.15 21899.20 9572.87 28991.05 16993.98 238
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_111021_LR91.60 9191.64 8291.47 16295.74 12378.79 21696.15 20096.77 6188.49 7188.64 14097.07 11072.33 20499.19 9693.13 8596.48 10296.43 182
APDe-MVScopyleft94.56 2494.75 2093.96 5098.84 2283.40 10198.04 5796.41 10985.79 13395.00 4398.28 3784.32 4399.18 9797.35 2698.77 2899.28 21
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
PS-MVSNAJ94.17 3093.52 4196.10 995.65 12692.35 298.21 4495.79 16392.42 2196.24 2798.18 4171.04 22099.17 9896.77 3497.39 7796.79 170
agg_prior98.59 3583.13 10696.56 9394.19 5499.16 99
ZD-MVS99.09 883.22 10596.60 8782.88 21293.61 6398.06 5382.93 5699.14 10095.51 4998.49 39
EI-MVSNet-Vis-set91.84 8491.77 7992.04 13897.60 7281.17 14696.61 16796.87 4988.20 8089.19 12897.55 8778.69 9999.14 10090.29 12590.94 17095.80 198
EI-MVSNet-UG-set91.35 9791.22 8991.73 15297.39 8680.68 16296.47 17696.83 5287.92 8688.30 14697.36 9477.84 11299.13 10289.43 13689.45 17995.37 210
EPNet94.06 3394.15 3293.76 5697.27 9184.35 8298.29 4197.64 1494.57 695.36 3596.88 11679.96 8299.12 10391.30 10496.11 10797.82 108
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSP-MVS95.62 896.54 192.86 9798.31 4880.10 18197.42 10396.78 5592.20 2297.11 1498.29 3693.46 199.10 10496.01 3999.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
UGNet87.73 17986.55 18791.27 16795.16 14379.11 20796.35 18696.23 12888.14 8187.83 15090.48 25450.65 34599.09 10580.13 22094.03 13295.60 203
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test_cas_vis1_n_192089.90 12890.02 11989.54 21790.14 29274.63 30098.71 2794.43 24693.04 1792.40 7996.35 13053.41 33899.08 10695.59 4796.16 10594.90 219
test_prior93.09 8898.68 2681.91 12796.40 11199.06 10798.29 70
WTY-MVS92.65 6391.68 8095.56 1496.00 11288.90 1398.23 4397.65 1388.57 6989.82 11797.22 10379.29 8799.06 10789.57 13388.73 18998.73 46
HY-MVS84.06 691.63 8990.37 10995.39 1996.12 10988.25 1790.22 33697.58 1588.33 7690.50 11091.96 23379.26 8899.06 10790.29 12589.07 18398.88 37
MG-MVS94.25 2993.72 3595.85 1299.38 389.35 1197.98 5998.09 989.99 5392.34 8196.97 11381.30 6698.99 11088.54 14498.88 2099.20 25
原ACMM191.22 17097.77 6578.10 23796.61 8481.05 24191.28 9997.42 9277.92 11198.98 11179.85 22398.51 3696.59 178
Anonymous20240521184.41 23481.93 25591.85 14796.78 9778.41 22597.44 9991.34 34470.29 35984.06 18894.26 18941.09 38198.96 11279.46 22582.65 24998.17 78
xiu_mvs_v2_base93.92 3593.26 4595.91 1195.07 14692.02 698.19 4595.68 16992.06 2596.01 3198.14 4570.83 22498.96 11296.74 3696.57 10096.76 173
VNet92.11 7791.22 8994.79 2896.91 9586.98 3097.91 6397.96 1086.38 12193.65 6195.74 14170.16 22998.95 11493.39 7588.87 18798.43 61
CNLPA86.96 18985.37 19991.72 15397.59 7379.34 20197.21 11491.05 34974.22 33278.90 24996.75 12467.21 24398.95 11474.68 27590.77 17196.88 168
ab-mvs87.08 18784.94 20893.48 7593.34 20483.67 9588.82 34595.70 16881.18 23984.55 18690.14 26262.72 27098.94 11685.49 17082.54 25097.85 104
HPM-MVScopyleft91.62 9091.53 8491.89 14397.88 6379.22 20396.99 13795.73 16782.07 22989.50 12597.19 10475.59 15298.93 11790.91 10997.94 5997.54 127
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet82.34 989.02 14387.79 15692.71 10495.49 13181.50 14297.70 7897.29 1887.76 9185.47 17395.12 16856.90 31798.90 11880.33 21594.02 13397.71 116
h-mvs3389.30 13988.95 13690.36 19495.07 14676.04 28496.96 14497.11 3090.39 4892.22 8395.10 16974.70 17398.86 11993.14 8365.89 35996.16 190
MSDG80.62 29277.77 30289.14 22293.43 20277.24 26391.89 32090.18 35869.86 36368.02 34491.94 23552.21 34198.84 12059.32 35883.12 24091.35 258
Anonymous2024052983.15 25480.60 27490.80 18195.74 12378.27 22996.81 15694.92 20960.10 39581.89 21992.54 22145.82 36598.82 12179.25 22978.32 28195.31 212
test_yl91.46 9390.53 10394.24 4297.41 8385.18 6398.08 5297.72 1180.94 24289.85 11596.14 13375.61 15098.81 12290.42 12388.56 19398.74 42
DCV-MVSNet91.46 9390.53 10394.24 4297.41 8385.18 6398.08 5297.72 1180.94 24289.85 11596.14 13375.61 15098.81 12290.42 12388.56 19398.74 42
HPM-MVS_fast90.38 12290.17 11591.03 17497.61 7177.35 26297.15 12495.48 18179.51 27688.79 13696.90 11471.64 21498.81 12287.01 16297.44 7496.94 163
APD-MVScopyleft93.61 3893.59 3993.69 6298.76 2483.26 10497.21 11496.09 13982.41 22394.65 4998.21 3981.96 6398.81 12294.65 6198.36 4799.01 30
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SR-MVS92.16 7592.27 6791.83 14898.37 4578.41 22596.67 16695.76 16482.19 22791.97 8698.07 5276.44 13698.64 12693.71 7297.27 8098.45 60
SR-MVS-dyc-post91.29 9891.45 8590.80 18197.76 6776.03 28596.20 19695.44 18580.56 25290.72 10797.84 6775.76 14998.61 12791.99 9996.79 9597.75 112
alignmvs92.97 4892.26 6895.12 2195.54 13087.77 2298.67 2996.38 11488.04 8393.01 7097.45 8879.20 9098.60 12893.25 8188.76 18898.99 33
OMC-MVS88.80 15188.16 15090.72 18495.30 13777.92 24494.81 26094.51 23786.80 11684.97 17896.85 11767.53 23998.60 12885.08 17287.62 20495.63 202
sasdasda92.27 7391.22 8995.41 1795.80 12188.31 1597.09 13294.64 22988.49 7192.99 7197.31 9572.68 19898.57 13093.38 7788.58 19199.36 16
canonicalmvs92.27 7391.22 8995.41 1795.80 12188.31 1597.09 13294.64 22988.49 7192.99 7197.31 9572.68 19898.57 13093.38 7788.58 19199.36 16
APD-MVS_3200maxsize91.23 10091.35 8690.89 17997.89 6276.35 28096.30 19095.52 17879.82 27091.03 10397.88 6674.70 17398.54 13292.11 9796.89 9197.77 111
IB-MVS85.34 488.67 15487.14 17693.26 8093.12 21284.32 8398.76 2697.27 2087.19 10979.36 24690.45 25583.92 4898.53 13384.41 17769.79 32696.93 164
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
114514_t88.79 15287.57 16492.45 11498.21 5381.74 13596.99 13795.45 18475.16 32582.48 20795.69 14468.59 23498.50 13480.33 21595.18 12097.10 158
FA-MVS(test-final)87.71 18186.23 18992.17 13194.19 17680.55 16687.16 36296.07 14282.12 22885.98 16888.35 28472.04 20998.49 13580.26 21789.87 17697.48 135
TSAR-MVS + MP.94.79 2095.17 1893.64 6497.66 6984.10 8795.85 21796.42 10891.26 3497.49 1296.80 12186.50 2798.49 13595.54 4899.03 1398.33 65
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
VDD-MVS88.28 16787.02 17992.06 13695.09 14480.18 17997.55 9094.45 24383.09 20589.10 13195.92 13947.97 35698.49 13593.08 8786.91 21097.52 132
MGCFI-Net91.95 7991.03 9594.72 3195.68 12586.38 3596.93 14794.48 23888.25 7892.78 7497.24 10172.34 20398.46 13893.13 8588.43 19599.32 19
test_fmvs1_n86.34 20086.72 18585.17 30587.54 32963.64 37596.91 14992.37 32887.49 9891.33 9795.58 14940.81 38498.46 13895.00 5693.49 14393.41 250
PatchMatch-RL85.00 22483.66 22789.02 22595.86 11874.55 30292.49 31293.60 29379.30 28179.29 24791.47 23858.53 29998.45 14070.22 30992.17 16294.07 237
F-COLMAP84.50 23383.44 23487.67 25595.22 14072.22 32095.95 20993.78 28475.74 32076.30 28095.18 16459.50 29198.45 14072.67 29186.59 21392.35 256
test_fmvs187.79 17888.52 14485.62 29892.98 21864.31 37097.88 6592.42 32687.95 8592.24 8295.82 14047.94 35798.44 14295.31 5394.09 13194.09 236
RPMNet79.85 29675.92 31691.64 15590.16 29079.75 18879.02 39595.44 18558.43 40082.27 21472.55 39873.03 19598.41 14346.10 39686.25 21696.75 174
FE-MVS86.06 20584.15 22191.78 14994.33 17379.81 18584.58 38096.61 8476.69 31585.00 17787.38 29770.71 22598.37 14470.39 30891.70 16697.17 156
balanced_conf0394.60 2394.30 2995.48 1696.45 10088.82 1496.33 18895.58 17391.12 3695.84 3293.87 20083.47 5198.37 14497.26 2798.81 2499.24 23
xiu_mvs_v1_base_debu90.54 11689.54 12793.55 7092.31 23287.58 2696.99 13794.87 21287.23 10693.27 6497.56 8457.43 31198.32 14692.72 8993.46 14594.74 225
xiu_mvs_v1_base90.54 11689.54 12793.55 7092.31 23287.58 2696.99 13794.87 21287.23 10693.27 6497.56 8457.43 31198.32 14692.72 8993.46 14594.74 225
xiu_mvs_v1_base_debi90.54 11689.54 12793.55 7092.31 23287.58 2696.99 13794.87 21287.23 10693.27 6497.56 8457.43 31198.32 14692.72 8993.46 14594.74 225
CPTT-MVS89.72 13189.87 12589.29 22098.33 4773.30 31197.70 7895.35 19375.68 32187.40 15297.44 9170.43 22698.25 14989.56 13496.90 9096.33 187
LFMVS89.27 14087.64 15994.16 4797.16 9285.52 5697.18 11894.66 22679.17 28489.63 12196.57 12755.35 32898.22 15089.52 13589.54 17898.74 42
PVSNet_077.72 1581.70 27778.95 29489.94 20890.77 28076.72 27495.96 20896.95 4285.01 15270.24 33788.53 28052.32 33998.20 15186.68 16444.08 40594.89 220
TAPA-MVS81.61 1285.02 22383.67 22689.06 22396.79 9673.27 31495.92 21194.79 21974.81 32880.47 23296.83 11871.07 21998.19 15249.82 38992.57 15495.71 201
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UA-Net88.92 14688.48 14590.24 19794.06 18377.18 26693.04 30494.66 22687.39 10191.09 10193.89 19974.92 17098.18 15375.83 26591.43 16795.35 211
RRT-MVS89.67 13288.67 14092.67 10594.44 16981.08 14994.34 26994.45 24386.05 12785.79 16992.39 22363.39 26798.16 15493.22 8293.95 13698.76 41
UBG92.68 6292.35 6493.70 6195.61 12785.65 5297.25 11297.06 3487.92 8689.28 12795.03 17186.06 3198.07 15592.24 9490.69 17397.37 143
dcpmvs_293.10 4593.46 4392.02 13997.77 6579.73 19194.82 25993.86 27786.91 11391.33 9796.76 12285.20 3398.06 15696.90 3397.60 6998.27 72
testing1192.48 6892.04 7593.78 5595.94 11686.00 4097.56 8897.08 3287.52 9789.32 12695.40 15384.60 3798.02 15791.93 10189.04 18497.32 145
thres20088.92 14687.65 15892.73 10396.30 10385.62 5497.85 6698.86 184.38 17084.82 18093.99 19775.12 16898.01 15870.86 30586.67 21194.56 230
cascas86.50 19784.48 21492.55 11292.64 22785.95 4197.04 13695.07 20475.32 32380.50 23191.02 24654.33 33597.98 15986.79 16387.62 20493.71 243
thres100view90088.30 16686.95 18092.33 12196.10 11084.90 7597.14 12598.85 282.69 21783.41 19893.66 20575.43 15897.93 16069.04 31386.24 21894.17 232
tfpn200view988.48 16087.15 17492.47 11396.21 10685.30 6197.44 9998.85 283.37 20083.99 19093.82 20175.36 16197.93 16069.04 31386.24 21894.17 232
gm-plane-assit92.27 23679.64 19484.47 16895.15 16697.93 16085.81 167
testdata90.13 20095.92 11774.17 30596.49 10273.49 34094.82 4897.99 5578.80 9797.93 16083.53 19397.52 7198.29 70
thres40088.42 16387.15 17492.23 12796.21 10685.30 6197.44 9998.85 283.37 20083.99 19093.82 20175.36 16197.93 16069.04 31386.24 21893.45 248
VDDNet86.44 19884.51 21292.22 12891.56 26081.83 13197.10 13194.64 22969.50 36487.84 14995.19 16348.01 35597.92 16589.82 13086.92 20996.89 167
testing9191.90 8291.31 8893.66 6395.99 11385.68 4997.39 10696.89 4786.75 11988.85 13595.23 15983.93 4797.90 16688.91 13987.89 20297.41 139
testing9991.91 8191.35 8693.60 6795.98 11485.70 4797.31 11096.92 4686.82 11588.91 13395.25 15684.26 4497.89 16788.80 14287.94 20197.21 153
thisisatest051590.95 10990.26 11093.01 9194.03 18684.27 8697.91 6396.67 7583.18 20386.87 16195.51 15188.66 1597.85 16880.46 21489.01 18596.92 166
thres600view788.06 17186.70 18692.15 13396.10 11085.17 6797.14 12598.85 282.70 21683.41 19893.66 20575.43 15897.82 16967.13 32285.88 22293.45 248
MVS_Test90.29 12389.18 13193.62 6695.23 13984.93 7494.41 26694.66 22684.31 17190.37 11391.02 24675.13 16797.82 16983.11 19894.42 12998.12 84
旧先验296.97 14274.06 33596.10 2897.76 17188.38 148
EIA-MVS91.73 8592.05 7490.78 18394.52 16376.40 27998.06 5595.34 19489.19 6188.90 13497.28 10077.56 11697.73 17290.77 11396.86 9498.20 76
MVSMamba_PlusPlus92.37 7291.55 8394.83 2795.37 13587.69 2495.60 22995.42 18974.65 33093.95 5892.81 21783.11 5497.70 17394.49 6398.53 3599.11 28
SDMVSNet87.02 18885.61 19491.24 16894.14 17983.30 10393.88 28495.98 14884.30 17379.63 24392.01 22958.23 30197.68 17490.28 12782.02 25492.75 251
thisisatest053089.65 13389.02 13391.53 15993.46 20180.78 16096.52 17296.67 7581.69 23583.79 19594.90 17688.85 1497.68 17477.80 23887.49 20796.14 191
BH-RMVSNet86.84 19285.28 20091.49 16195.35 13680.26 17596.95 14592.21 32982.86 21381.77 22295.46 15259.34 29397.64 17669.79 31193.81 13996.57 179
1112_ss88.60 15787.47 16892.00 14093.21 20680.97 15396.47 17692.46 32583.64 19780.86 22897.30 9880.24 7597.62 17777.60 24485.49 22697.40 141
casdiffmvs_mvgpermissive91.13 10290.45 10693.17 8592.99 21783.58 9797.46 9894.56 23587.69 9387.19 15794.98 17574.50 17897.60 17891.88 10292.79 15298.34 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Test_1112_low_res88.03 17286.73 18491.94 14293.15 20980.88 15796.44 17992.41 32783.59 19980.74 23091.16 24480.18 7697.59 17977.48 24785.40 22797.36 144
tttt051788.57 15888.19 14989.71 21693.00 21475.99 28895.67 22496.67 7580.78 24681.82 22094.40 18688.97 1397.58 18076.05 26386.31 21595.57 204
ECVR-MVScopyleft88.35 16587.25 17291.65 15493.54 19579.40 19896.56 17190.78 35486.78 11785.57 17195.25 15657.25 31597.56 18184.73 17694.80 12397.98 95
lupinMVS93.87 3693.58 4094.75 3093.00 21488.08 1999.15 895.50 18091.03 3994.90 4497.66 7578.84 9597.56 18194.64 6297.46 7298.62 52
XVG-OURS85.18 22184.38 21687.59 25990.42 28671.73 33191.06 33194.07 26682.00 23183.29 20095.08 17056.42 32297.55 18383.70 18983.42 23893.49 247
TR-MVS86.30 20184.93 20990.42 19294.63 15877.58 25796.57 16993.82 27980.30 26082.42 20995.16 16558.74 29797.55 18374.88 27387.82 20396.13 192
test_vis1_rt73.96 33672.40 33978.64 36283.91 37061.16 38695.63 22768.18 41576.32 31660.09 38374.77 38929.01 40497.54 18587.74 15375.94 28877.22 398
casdiffmvspermissive90.95 10990.39 10792.63 10992.82 22182.53 11496.83 15394.47 24187.69 9388.47 14195.56 15074.04 18497.54 18590.90 11092.74 15397.83 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XVG-OURS-SEG-HR85.74 21185.16 20487.49 26590.22 28871.45 33491.29 32894.09 26581.37 23783.90 19495.22 16060.30 28697.53 18785.58 16984.42 23393.50 246
baseline90.76 11290.10 11692.74 10292.90 22082.56 11394.60 26394.56 23587.69 9389.06 13295.67 14573.76 18797.51 18890.43 12292.23 16198.16 79
test250690.96 10890.39 10792.65 10793.54 19582.46 11796.37 18497.35 1786.78 11787.55 15195.25 15677.83 11397.50 18984.07 18094.80 12397.98 95
ETV-MVS92.72 5692.87 5392.28 12594.54 16281.89 12897.98 5995.21 19989.77 5693.11 6896.83 11877.23 12497.50 18995.74 4495.38 11997.44 137
Effi-MVS+90.70 11389.90 12493.09 8893.61 19283.48 9995.20 24592.79 32283.22 20291.82 8995.70 14371.82 21197.48 19191.25 10593.67 14198.32 66
baseline290.39 12090.21 11390.93 17690.86 27780.99 15295.20 24597.41 1686.03 12980.07 24094.61 18290.58 697.47 19287.29 15889.86 17794.35 231
diffmvspermissive91.17 10190.74 9992.44 11693.11 21382.50 11696.25 19393.62 29287.79 9090.40 11295.93 13773.44 19297.42 19393.62 7492.55 15597.41 139
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tpmvs83.04 25780.77 27089.84 21195.43 13277.96 24185.59 37395.32 19575.31 32476.27 28183.70 35373.89 18597.41 19459.53 35581.93 25694.14 234
tt080581.20 28579.06 29387.61 25786.50 33672.97 31793.66 28795.48 18174.11 33376.23 28291.99 23141.36 38097.40 19577.44 24874.78 29592.45 254
test111188.11 17087.04 17891.35 16393.15 20978.79 21696.57 16990.78 35486.88 11485.04 17695.20 16257.23 31697.39 19683.88 18294.59 12697.87 102
PMMVS89.46 13689.92 12388.06 24794.64 15769.57 34896.22 19494.95 20787.27 10591.37 9696.54 12865.88 25197.39 19688.54 14493.89 13797.23 150
PAPM92.87 5192.40 6394.30 3992.25 23987.85 2196.40 18396.38 11491.07 3888.72 13996.90 11482.11 6197.37 19890.05 12897.70 6697.67 118
HQP4-MVS82.30 21097.32 19991.13 259
HQP-MVS87.91 17687.55 16588.98 22692.08 24878.48 22197.63 8194.80 21790.52 4582.30 21094.56 18365.40 25597.32 19987.67 15583.01 24291.13 259
HQP_MVS87.50 18487.09 17788.74 23191.86 25777.96 24197.18 11894.69 22289.89 5481.33 22394.15 19364.77 26097.30 20187.08 15982.82 24690.96 261
plane_prior594.69 22297.30 20187.08 15982.82 24690.96 261
jason92.73 5492.23 6994.21 4490.50 28487.30 2998.65 3095.09 20290.61 4492.76 7597.13 10675.28 16597.30 20193.32 7996.75 9798.02 88
jason: jason.
CLD-MVS87.97 17487.48 16789.44 21892.16 24480.54 16898.14 4694.92 20991.41 3279.43 24595.40 15362.34 27297.27 20490.60 11782.90 24590.50 266
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
OPM-MVS85.84 20885.10 20688.06 24788.34 31977.83 24895.72 22294.20 25887.89 8980.45 23394.05 19558.57 29897.26 20583.88 18282.76 24889.09 296
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
BH-w/o88.24 16887.47 16890.54 19095.03 14978.54 22097.41 10493.82 27984.08 18078.23 25694.51 18569.34 23297.21 20680.21 21994.58 12795.87 197
Vis-MVSNetpermissive88.67 15487.82 15591.24 16892.68 22378.82 21396.95 14593.85 27887.55 9687.07 15995.13 16763.43 26697.21 20677.58 24596.15 10697.70 117
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_vis1_n85.60 21485.70 19385.33 30284.79 36064.98 36896.83 15391.61 33987.36 10291.00 10494.84 17836.14 39197.18 20895.66 4593.03 15093.82 241
AllTest75.92 32873.06 33684.47 31692.18 24267.29 35691.07 33084.43 39267.63 36963.48 36590.18 25938.20 38797.16 20957.04 36673.37 30188.97 304
TestCases84.47 31692.18 24267.29 35684.43 39267.63 36963.48 36590.18 25938.20 38797.16 20957.04 36673.37 30188.97 304
ACMH75.40 1777.99 31274.96 32087.10 27490.67 28176.41 27893.19 30391.64 33872.47 34963.44 36787.61 29543.34 37197.16 20958.34 36073.94 29887.72 329
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SPE-MVS-test92.98 4793.67 3790.90 17896.52 9976.87 27098.68 2894.73 22190.36 5094.84 4697.89 6577.94 10997.15 21294.28 6797.80 6498.70 48
ACMM80.70 1383.72 24582.85 24286.31 28691.19 26872.12 32495.88 21494.29 25380.44 25577.02 26891.96 23355.24 32997.14 21379.30 22880.38 26189.67 282
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EPP-MVSNet89.76 13089.72 12689.87 21093.78 18876.02 28797.22 11396.51 9779.35 27885.11 17595.01 17384.82 3597.10 21487.46 15788.21 19996.50 180
tpm cat183.63 24681.38 26390.39 19393.53 20078.19 23685.56 37495.09 20270.78 35778.51 25283.28 35774.80 17297.03 21566.77 32384.05 23495.95 194
mmtdpeth78.04 31176.76 31081.86 34389.60 30366.12 36592.34 31687.18 37876.83 31485.55 17276.49 38646.77 36297.02 21690.85 11145.24 40282.43 383
CS-MVS92.73 5493.48 4290.48 19196.27 10475.93 29098.55 3494.93 20889.32 5994.54 5197.67 7478.91 9497.02 21693.80 7097.32 7998.49 57
BH-untuned86.95 19085.94 19189.99 20494.52 16377.46 25996.78 15893.37 30581.80 23276.62 27493.81 20366.64 24797.02 21676.06 26293.88 13895.48 208
sd_testset84.62 22983.11 23789.17 22194.14 17977.78 25091.54 32794.38 24984.30 17379.63 24392.01 22952.28 34096.98 21977.67 24382.02 25492.75 251
LTVRE_ROB73.68 1877.99 31275.74 31784.74 30990.45 28572.02 32586.41 36891.12 34672.57 34866.63 35387.27 29954.95 33296.98 21956.29 37075.98 28785.21 365
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TESTMET0.1,189.83 12989.34 13091.31 16492.54 22980.19 17897.11 12896.57 9186.15 12386.85 16291.83 23779.32 8696.95 22181.30 20992.35 15996.77 172
LPG-MVS_test84.20 23783.49 23386.33 28390.88 27473.06 31595.28 23994.13 26282.20 22576.31 27893.20 21154.83 33396.95 22183.72 18780.83 25988.98 302
LGP-MVS_train86.33 28390.88 27473.06 31594.13 26282.20 22576.31 27893.20 21154.83 33396.95 22183.72 18780.83 25988.98 302
COLMAP_ROBcopyleft73.24 1975.74 33073.00 33783.94 32292.38 23069.08 35091.85 32186.93 38061.48 38865.32 36090.27 25842.27 37696.93 22450.91 38575.63 29185.80 362
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
baseline188.85 14987.49 16692.93 9595.21 14186.85 3195.47 23494.61 23287.29 10383.11 20394.99 17480.70 6996.89 22582.28 20473.72 29995.05 217
ACMP81.66 1184.00 24083.22 23686.33 28391.53 26372.95 31895.91 21393.79 28383.70 19573.79 30492.22 22654.31 33696.89 22583.98 18179.74 26489.16 294
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CostFormer89.08 14288.39 14691.15 17193.13 21179.15 20688.61 34896.11 13883.14 20489.58 12286.93 30683.83 4996.87 22788.22 15085.92 22197.42 138
EC-MVSNet91.73 8592.11 7290.58 18793.54 19577.77 25198.07 5494.40 24887.44 9992.99 7197.11 10874.59 17796.87 22793.75 7197.08 8597.11 157
USDC78.65 30776.25 31385.85 29187.58 32774.60 30189.58 34090.58 35784.05 18163.13 36988.23 28640.69 38596.86 22966.57 32775.81 29086.09 356
MS-PatchMatch83.05 25681.82 25786.72 28189.64 30179.10 20894.88 25894.59 23479.70 27370.67 33389.65 26650.43 34796.82 23070.82 30795.99 11284.25 371
HyFIR lowres test89.36 13788.60 14291.63 15794.91 15280.76 16195.60 22995.53 17682.56 22084.03 18991.24 24378.03 10896.81 23187.07 16188.41 19697.32 145
RPSCF77.73 31676.63 31181.06 34888.66 31555.76 39987.77 35787.88 37664.82 37874.14 30392.79 21949.22 35296.81 23167.47 32076.88 28590.62 264
test-LLR88.48 16087.98 15289.98 20592.26 23777.23 26497.11 12895.96 15083.76 19386.30 16591.38 24072.30 20596.78 23380.82 21191.92 16395.94 195
test-mter88.95 14488.60 14289.98 20592.26 23777.23 26497.11 12895.96 15085.32 14286.30 16591.38 24076.37 13996.78 23380.82 21191.92 16395.94 195
tpmrst88.36 16487.38 17091.31 16494.36 17279.92 18387.32 36095.26 19885.32 14288.34 14486.13 32380.60 7196.70 23583.78 18485.34 22997.30 148
Fast-Effi-MVS+87.93 17586.94 18190.92 17794.04 18479.16 20598.26 4293.72 28881.29 23883.94 19392.90 21669.83 23096.68 23676.70 25591.74 16596.93 164
AUN-MVS86.25 20385.57 19588.26 24293.57 19473.38 30995.45 23595.88 15883.94 18685.47 17394.21 19173.70 19096.67 23783.54 19264.41 36394.73 228
hse-mvs288.22 16988.21 14888.25 24393.54 19573.41 30895.41 23795.89 15790.39 4892.22 8394.22 19074.70 17396.66 23893.14 8364.37 36494.69 229
testing22291.09 10390.49 10592.87 9695.82 11985.04 7096.51 17497.28 1986.05 12789.13 12995.34 15580.16 7896.62 23985.82 16688.31 19796.96 162
MDTV_nov1_ep1383.69 22594.09 18281.01 15186.78 36596.09 13983.81 19184.75 18284.32 34774.44 17996.54 24063.88 33985.07 230
XXY-MVS83.84 24282.00 25489.35 21987.13 33181.38 14395.72 22294.26 25480.15 26475.92 28890.63 25261.96 27896.52 24178.98 23273.28 30490.14 273
ACMH+76.62 1677.47 31974.94 32185.05 30691.07 27271.58 33393.26 30090.01 35971.80 35264.76 36288.55 27841.62 37896.48 24262.35 34671.00 31487.09 343
GA-MVS85.79 21084.04 22391.02 17589.47 30680.27 17496.90 15094.84 21585.57 13680.88 22789.08 27056.56 32196.47 24377.72 24185.35 22896.34 185
tpm287.35 18686.26 18890.62 18692.93 21978.67 21888.06 35595.99 14779.33 27987.40 15286.43 31780.28 7496.40 24480.23 21885.73 22596.79 170
dp84.30 23682.31 24990.28 19694.24 17577.97 24086.57 36695.53 17679.94 26980.75 22985.16 33871.49 21696.39 24563.73 34083.36 23996.48 181
ETVMVS90.99 10690.26 11093.19 8495.81 12085.64 5396.97 14297.18 2585.43 13988.77 13894.86 17782.00 6296.37 24682.70 20188.60 19097.57 126
nrg03086.79 19485.43 19790.87 18088.76 31185.34 5897.06 13594.33 25284.31 17180.45 23391.98 23272.36 20296.36 24788.48 14771.13 31390.93 263
CMPMVSbinary54.94 2175.71 33174.56 32679.17 35979.69 38455.98 39689.59 33993.30 30760.28 39353.85 39789.07 27147.68 36096.33 24876.55 25681.02 25785.22 364
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
VPA-MVSNet85.32 21983.83 22489.77 21590.25 28782.63 11296.36 18597.07 3383.03 20881.21 22589.02 27261.58 28096.31 24985.02 17470.95 31590.36 267
XVG-ACMP-BASELINE79.38 30377.90 30183.81 32384.98 35967.14 36289.03 34493.18 31280.26 26372.87 31788.15 28838.55 38696.26 25076.05 26378.05 28288.02 325
EPMVS87.47 18585.90 19292.18 13095.41 13382.26 12187.00 36396.28 12385.88 13284.23 18785.57 33075.07 16996.26 25071.14 30392.50 15698.03 87
reproduce_monomvs87.80 17787.60 16388.40 23796.56 9880.26 17595.80 22096.32 12191.56 3173.60 30588.36 28388.53 1696.25 25290.47 11967.23 35288.67 309
IS-MVSNet88.67 15488.16 15090.20 19993.61 19276.86 27196.77 16093.07 31784.02 18283.62 19795.60 14874.69 17696.24 25378.43 23793.66 14297.49 134
GG-mvs-BLEND93.49 7494.94 15086.26 3681.62 38897.00 3788.32 14594.30 18891.23 596.21 25488.49 14697.43 7598.00 93
dmvs_re84.10 23882.90 24087.70 25491.41 26573.28 31290.59 33493.19 31085.02 15177.96 26093.68 20457.92 30996.18 25575.50 26880.87 25893.63 244
GeoE86.36 19985.20 20189.83 21293.17 20876.13 28297.53 9192.11 33079.58 27580.99 22694.01 19666.60 24896.17 25673.48 28789.30 18097.20 155
gg-mvs-nofinetune85.48 21882.90 24093.24 8194.51 16685.82 4579.22 39396.97 4061.19 39087.33 15453.01 40990.58 696.07 25786.07 16597.23 8197.81 109
v2v48283.46 24881.86 25688.25 24386.19 34279.65 19396.34 18794.02 26881.56 23677.32 26488.23 28665.62 25296.03 25877.77 23969.72 32889.09 296
V4283.04 25781.53 26187.57 26186.27 34179.09 20995.87 21594.11 26480.35 25977.22 26686.79 30965.32 25796.02 25977.74 24070.14 32087.61 333
VPNet84.69 22882.92 23990.01 20389.01 31083.45 10096.71 16395.46 18385.71 13479.65 24292.18 22856.66 32096.01 26083.05 19967.84 34690.56 265
test_post33.80 41676.17 14295.97 261
EI-MVSNet85.80 20985.20 20187.59 25991.55 26177.41 26095.13 24995.36 19180.43 25780.33 23594.71 18073.72 18895.97 26176.96 25378.64 27589.39 284
MVSTER89.25 14188.92 13790.24 19795.98 11484.66 7896.79 15795.36 19187.19 10980.33 23590.61 25390.02 1195.97 26185.38 17178.64 27590.09 276
PatchmatchNetpermissive86.83 19385.12 20591.95 14194.12 18182.27 12086.55 36795.64 17184.59 16482.98 20584.99 34277.26 12095.96 26468.61 31691.34 16897.64 121
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TinyColmap72.41 34668.99 35582.68 33688.11 32169.59 34788.41 34985.20 38865.55 37557.91 38984.82 34430.80 40295.94 26551.38 38268.70 33582.49 382
v114482.90 26081.27 26587.78 25386.29 34079.07 21096.14 20193.93 27080.05 26677.38 26286.80 30865.50 25395.93 26675.21 27170.13 32188.33 320
v14419282.43 26680.73 27187.54 26285.81 34978.22 23195.98 20793.78 28479.09 28677.11 26786.49 31364.66 26295.91 26774.20 28169.42 32988.49 314
v119282.31 27080.55 27587.60 25885.94 34678.47 22495.85 21793.80 28279.33 27976.97 26986.51 31263.33 26895.87 26873.11 28870.13 32188.46 316
v124081.70 27779.83 28787.30 27085.50 35177.70 25695.48 23393.44 29878.46 29576.53 27586.44 31560.85 28495.84 26971.59 29770.17 31988.35 319
v192192082.02 27380.23 27987.41 26685.62 35077.92 24495.79 22193.69 28978.86 29076.67 27286.44 31562.50 27195.83 27072.69 29069.77 32788.47 315
v881.88 27580.06 28387.32 26886.63 33579.04 21194.41 26693.65 29178.77 29173.19 31485.57 33066.87 24595.81 27173.84 28567.61 34887.11 342
D2MVS82.67 26381.55 26086.04 29087.77 32576.47 27695.21 24496.58 9082.66 21870.26 33685.46 33360.39 28595.80 27276.40 25979.18 27085.83 361
mvsmamba90.53 11990.08 11791.88 14494.81 15480.93 15593.94 28294.45 24388.24 7987.02 16092.35 22468.04 23595.80 27294.86 5797.03 8798.92 34
WBMVS87.73 17986.79 18290.56 18895.61 12785.68 4997.63 8195.52 17883.77 19278.30 25588.44 28286.14 3095.78 27482.54 20273.15 30590.21 271
PS-MVSNAJss84.91 22584.30 21786.74 27785.89 34874.40 30494.95 25694.16 26183.93 18776.45 27690.11 26371.04 22095.77 27583.16 19779.02 27290.06 278
MVP-Stereo82.65 26481.67 25985.59 29986.10 34578.29 22893.33 29692.82 32177.75 30169.17 34387.98 29059.28 29495.76 27671.77 29596.88 9282.73 379
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tfpnnormal78.14 31075.42 31886.31 28688.33 32079.24 20294.41 26696.22 12973.51 33869.81 33985.52 33255.43 32795.75 27747.65 39467.86 34583.95 374
v14882.41 26980.89 26886.99 27586.18 34376.81 27296.27 19193.82 27980.49 25475.28 29686.11 32467.32 24295.75 27775.48 26967.03 35588.42 318
v1081.43 28179.53 28987.11 27386.38 33778.87 21294.31 27193.43 30077.88 29973.24 31385.26 33465.44 25495.75 27772.14 29467.71 34786.72 346
TAMVS88.48 16087.79 15690.56 18891.09 27179.18 20496.45 17895.88 15883.64 19783.12 20293.33 21075.94 14695.74 28082.40 20388.27 19896.75 174
cl2285.11 22284.17 22087.92 25095.06 14878.82 21395.51 23294.22 25779.74 27276.77 27187.92 29175.96 14595.68 28179.93 22272.42 30789.27 291
UniMVSNet_ETH3D80.86 28978.75 29587.22 27286.31 33972.02 32591.95 31893.76 28773.51 33875.06 29890.16 26143.04 37495.66 28276.37 26078.55 27893.98 238
Anonymous2023121179.72 29877.19 30687.33 26795.59 12977.16 26795.18 24894.18 26059.31 39872.57 32086.20 32247.89 35895.66 28274.53 27969.24 33289.18 293
CHOSEN 280x42091.71 8891.85 7691.29 16694.94 15082.69 11187.89 35696.17 13485.94 13087.27 15594.31 18790.27 895.65 28494.04 6995.86 11395.53 206
CDS-MVSNet89.50 13588.96 13591.14 17291.94 25680.93 15597.09 13295.81 16284.26 17684.72 18394.20 19280.31 7395.64 28583.37 19588.96 18696.85 169
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS-HIRNet71.36 35367.00 35984.46 31890.58 28269.74 34679.15 39487.74 37746.09 40661.96 37650.50 41045.14 36695.64 28553.74 37888.11 20088.00 326
v7n79.32 30477.34 30485.28 30384.05 36972.89 31993.38 29493.87 27675.02 32770.68 33284.37 34659.58 29095.62 28767.60 31867.50 34987.32 341
Effi-MVS+-dtu84.61 23084.90 21083.72 32791.96 25463.14 37894.95 25693.34 30685.57 13679.79 24187.12 30361.99 27795.61 28883.55 19185.83 22392.41 255
JIA-IIPM79.00 30677.20 30584.40 31989.74 29964.06 37375.30 40395.44 18562.15 38481.90 21859.08 40778.92 9395.59 28966.51 32885.78 22493.54 245
Fast-Effi-MVS+-dtu83.33 25082.60 24685.50 30089.55 30469.38 34996.09 20491.38 34182.30 22475.96 28791.41 23956.71 31895.58 29075.13 27284.90 23191.54 257
EG-PatchMatch MVS74.92 33372.02 34183.62 32883.76 37373.28 31293.62 28992.04 33268.57 36758.88 38683.80 35231.87 40095.57 29156.97 36878.67 27482.00 387
UniMVSNet (Re)85.31 22084.23 21888.55 23489.75 29780.55 16696.72 16196.89 4785.42 14078.40 25388.93 27375.38 16095.52 29278.58 23568.02 34389.57 283
OpenMVS_ROBcopyleft68.52 2073.02 34469.57 35183.37 33180.54 38271.82 32993.60 29088.22 37462.37 38361.98 37583.15 35835.31 39595.47 29345.08 39875.88 28982.82 377
miper_enhance_ethall85.95 20785.20 20188.19 24694.85 15379.76 18796.00 20694.06 26782.98 21077.74 26188.76 27579.42 8595.46 29480.58 21372.42 30789.36 289
patchmatchnet-post77.09 38577.78 11495.39 295
SCA85.63 21383.64 22891.60 15892.30 23581.86 13092.88 30895.56 17584.85 15582.52 20685.12 34058.04 30495.39 29573.89 28387.58 20697.54 127
jajsoiax82.12 27281.15 26785.03 30784.19 36670.70 33894.22 27693.95 26983.07 20673.48 30789.75 26549.66 35195.37 29782.24 20579.76 26289.02 300
mvs_anonymous88.68 15387.62 16191.86 14594.80 15581.69 13893.53 29294.92 20982.03 23078.87 25190.43 25675.77 14895.34 29885.04 17393.16 14998.55 56
ITE_SJBPF82.38 33887.00 33265.59 36689.55 36279.99 26869.37 34191.30 24241.60 37995.33 29962.86 34574.63 29786.24 353
eth_miper_zixun_eth83.12 25582.01 25386.47 28291.85 25974.80 29894.33 27093.18 31279.11 28575.74 29287.25 30172.71 19795.32 30076.78 25467.13 35389.27 291
mvs_tets81.74 27680.71 27284.84 30884.22 36570.29 34193.91 28393.78 28482.77 21573.37 31089.46 26847.36 36195.31 30181.99 20679.55 26888.92 306
FIs86.73 19686.10 19088.61 23390.05 29380.21 17796.14 20196.95 4285.56 13878.37 25492.30 22576.73 13295.28 30279.51 22479.27 26990.35 268
pm-mvs180.05 29578.02 30086.15 28885.42 35275.81 29295.11 25192.69 32477.13 30970.36 33587.43 29658.44 30095.27 30371.36 29964.25 36587.36 340
miper_ehance_all_eth84.57 23183.60 23087.50 26392.64 22778.25 23095.40 23893.47 29779.28 28276.41 27787.64 29476.53 13495.24 30478.58 23572.42 30789.01 301
ADS-MVSNet81.26 28378.36 29689.96 20793.78 18879.78 18679.48 39193.60 29373.09 34380.14 23779.99 37562.15 27495.24 30459.49 35683.52 23694.85 222
cl____83.27 25182.12 25186.74 27792.20 24075.95 28995.11 25193.27 30878.44 29674.82 29987.02 30574.19 18195.19 30674.67 27669.32 33089.09 296
DIV-MVS_self_test83.27 25182.12 25186.74 27792.19 24175.92 29195.11 25193.26 30978.44 29674.81 30087.08 30474.19 18195.19 30674.66 27769.30 33189.11 295
IterMVS-LS83.93 24182.80 24387.31 26991.46 26477.39 26195.66 22593.43 30080.44 25575.51 29387.26 30073.72 18895.16 30876.99 25170.72 31789.39 284
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_NR-MVSNet85.49 21784.59 21188.21 24589.44 30779.36 19996.71 16396.41 10985.22 14578.11 25790.98 24876.97 12795.14 30979.14 23068.30 34090.12 274
DU-MVS84.57 23183.33 23588.28 24188.76 31179.36 19996.43 18195.41 19085.42 14078.11 25790.82 24967.61 23695.14 30979.14 23068.30 34090.33 269
c3_l83.80 24382.65 24587.25 27192.10 24777.74 25595.25 24293.04 31878.58 29376.01 28587.21 30275.25 16695.11 31177.54 24668.89 33488.91 307
MVSFormer91.36 9690.57 10293.73 5993.00 21488.08 1994.80 26194.48 23880.74 24794.90 4497.13 10678.84 9595.10 31283.77 18597.46 7298.02 88
test_djsdf83.00 25982.45 24884.64 31384.07 36869.78 34594.80 26194.48 23880.74 24775.41 29587.70 29361.32 28395.10 31283.77 18579.76 26289.04 299
test_post185.88 37230.24 41973.77 18695.07 31473.89 283
pmmvs482.54 26580.79 26987.79 25286.11 34480.49 17093.55 29193.18 31277.29 30773.35 31189.40 26965.26 25895.05 31575.32 27073.61 30087.83 328
anonymousdsp80.98 28879.97 28484.01 32181.73 37870.44 34092.49 31293.58 29577.10 31172.98 31686.31 31957.58 31094.90 31679.32 22778.63 27786.69 347
NR-MVSNet83.35 24981.52 26288.84 22888.76 31181.31 14594.45 26595.16 20084.65 16267.81 34590.82 24970.36 22794.87 31774.75 27466.89 35690.33 269
WR-MVS84.32 23582.96 23888.41 23689.38 30880.32 17196.59 16896.25 12683.97 18476.63 27390.36 25767.53 23994.86 31875.82 26670.09 32490.06 278
pmmvs674.65 33571.67 34283.60 32979.13 38669.94 34393.31 29990.88 35361.05 39265.83 35784.15 34943.43 37094.83 31966.62 32560.63 37486.02 357
MonoMVSNet85.68 21284.22 21990.03 20288.43 31877.83 24892.95 30791.46 34087.28 10478.11 25785.96 32566.31 25094.81 32090.71 11576.81 28697.46 136
UWE-MVS88.56 15988.91 13887.50 26394.17 17772.19 32295.82 21997.05 3584.96 15484.78 18193.51 20981.33 6494.75 32179.43 22689.17 18195.57 204
FC-MVSNet-test85.96 20685.39 19887.66 25689.38 30878.02 23895.65 22696.87 4985.12 14977.34 26391.94 23576.28 14194.74 32277.09 25078.82 27390.21 271
WB-MVSnew84.08 23983.51 23285.80 29291.34 26676.69 27595.62 22896.27 12481.77 23381.81 22192.81 21758.23 30194.70 32366.66 32487.06 20885.99 358
Vis-MVSNet (Re-imp)88.88 14888.87 13988.91 22793.89 18774.43 30396.93 14794.19 25984.39 16983.22 20195.67 14578.24 10494.70 32378.88 23394.40 13097.61 124
tpm85.55 21584.47 21588.80 23090.19 28975.39 29588.79 34694.69 22284.83 15683.96 19285.21 33678.22 10594.68 32576.32 26178.02 28396.34 185
TranMVSNet+NR-MVSNet83.24 25381.71 25887.83 25187.71 32678.81 21596.13 20394.82 21684.52 16576.18 28490.78 25164.07 26394.60 32674.60 27866.59 35890.09 276
Patchmatch-test78.25 30974.72 32488.83 22991.20 26774.10 30673.91 40688.70 37359.89 39666.82 35185.12 34078.38 10294.54 32748.84 39279.58 26797.86 103
mvsany_test187.58 18388.22 14785.67 29689.78 29667.18 35895.25 24287.93 37583.96 18588.79 13697.06 11172.52 20094.53 32892.21 9586.45 21495.30 213
FMVSNet384.71 22782.71 24490.70 18594.55 16187.71 2395.92 21194.67 22581.73 23475.82 28988.08 28966.99 24494.47 32971.23 30075.38 29289.91 280
pmmvs581.34 28279.54 28886.73 28085.02 35876.91 26996.22 19491.65 33777.65 30273.55 30688.61 27755.70 32694.43 33074.12 28273.35 30388.86 308
Baseline_NR-MVSNet81.22 28480.07 28284.68 31185.32 35675.12 29796.48 17588.80 37076.24 31977.28 26586.40 31867.61 23694.39 33175.73 26766.73 35784.54 368
FMVSNet282.79 26180.44 27689.83 21292.66 22485.43 5795.42 23694.35 25079.06 28774.46 30187.28 29856.38 32394.31 33269.72 31274.68 29689.76 281
SixPastTwentyTwo76.04 32774.32 32881.22 34684.54 36261.43 38591.16 32989.30 36677.89 29864.04 36486.31 31948.23 35394.29 33363.54 34263.84 36787.93 327
mamv485.50 21686.76 18381.72 34493.23 20554.93 40189.95 33892.94 31969.96 36179.00 24892.20 22780.69 7094.22 33492.06 9890.77 17196.01 193
TDRefinement69.20 36065.78 36479.48 35666.04 41162.21 38188.21 35086.12 38562.92 38161.03 38085.61 32933.23 39794.16 33555.82 37353.02 38882.08 386
TransMVSNet (Re)76.94 32374.38 32784.62 31485.92 34775.25 29695.28 23989.18 36773.88 33667.22 34686.46 31459.64 28894.10 33659.24 35952.57 39084.50 369
OurMVSNet-221017-077.18 32276.06 31480.55 35183.78 37260.00 38990.35 33591.05 34977.01 31366.62 35487.92 29147.73 35994.03 33771.63 29668.44 33887.62 332
EPNet_dtu87.65 18287.89 15386.93 27694.57 15971.37 33696.72 16196.50 9988.56 7087.12 15895.02 17275.91 14794.01 33866.62 32590.00 17595.42 209
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
mvs5depth71.40 35268.36 35780.54 35275.31 40165.56 36779.94 39085.14 38969.11 36671.75 32581.59 36441.02 38293.94 33960.90 35350.46 39282.10 385
lessismore_v079.98 35480.59 38158.34 39380.87 40158.49 38783.46 35543.10 37393.89 34063.11 34448.68 39587.72 329
GBi-Net82.42 26780.43 27788.39 23892.66 22481.95 12394.30 27293.38 30279.06 28775.82 28985.66 32656.38 32393.84 34171.23 30075.38 29289.38 286
test182.42 26780.43 27788.39 23892.66 22481.95 12394.30 27293.38 30279.06 28775.82 28985.66 32656.38 32393.84 34171.23 30075.38 29289.38 286
FMVSNet179.50 30176.54 31288.39 23888.47 31681.95 12394.30 27293.38 30273.14 34272.04 32485.66 32643.86 36893.84 34165.48 33272.53 30689.38 286
test_040272.68 34569.54 35282.09 34188.67 31471.81 33092.72 31086.77 38361.52 38762.21 37483.91 35143.22 37293.76 34434.60 40672.23 31080.72 393
CR-MVSNet83.53 24781.36 26490.06 20190.16 29079.75 18879.02 39591.12 34684.24 17782.27 21480.35 37275.45 15693.67 34563.37 34386.25 21696.75 174
ET-MVSNet_ETH3D90.01 12689.03 13292.95 9394.38 17186.77 3298.14 4696.31 12289.30 6063.33 36896.72 12590.09 1093.63 34690.70 11682.29 25398.46 59
Patchmtry77.36 32074.59 32585.67 29689.75 29775.75 29377.85 39891.12 34660.28 39371.23 32880.35 37275.45 15693.56 34757.94 36167.34 35187.68 331
test_fmvs279.59 29979.90 28678.67 36182.86 37555.82 39895.20 24589.55 36281.09 24080.12 23989.80 26434.31 39693.51 34887.82 15278.36 28086.69 347
miper_lstm_enhance81.66 27980.66 27384.67 31291.19 26871.97 32791.94 31993.19 31077.86 30072.27 32285.26 33473.46 19193.42 34973.71 28667.05 35488.61 310
PatchT79.75 29776.85 30988.42 23589.55 30475.49 29477.37 39994.61 23263.07 38082.46 20873.32 39575.52 15593.41 35051.36 38384.43 23296.36 183
ppachtmachnet_test77.19 32174.22 32986.13 28985.39 35378.22 23193.98 27991.36 34371.74 35367.11 34884.87 34356.67 31993.37 35152.21 38164.59 36286.80 345
our_test_377.90 31575.37 31985.48 30185.39 35376.74 27393.63 28891.67 33673.39 34165.72 35884.65 34558.20 30393.13 35257.82 36267.87 34486.57 349
LCM-MVSNet-Re83.75 24483.54 23184.39 32093.54 19564.14 37292.51 31184.03 39583.90 18866.14 35686.59 31167.36 24192.68 35384.89 17592.87 15196.35 184
WR-MVS_H81.02 28680.09 28083.79 32488.08 32271.26 33794.46 26496.54 9480.08 26572.81 31886.82 30770.36 22792.65 35464.18 33767.50 34987.46 339
ambc76.02 37368.11 40851.43 40364.97 41189.59 36160.49 38174.49 39117.17 41092.46 35561.50 34952.85 38984.17 372
PEN-MVS79.47 30278.26 29883.08 33386.36 33868.58 35293.85 28594.77 22079.76 27171.37 32688.55 27859.79 28792.46 35564.50 33665.40 36088.19 322
CP-MVSNet81.01 28780.08 28183.79 32487.91 32470.51 33994.29 27595.65 17080.83 24472.54 32188.84 27463.71 26492.32 35768.58 31768.36 33988.55 311
LF4IMVS72.36 34770.82 34576.95 36979.18 38556.33 39586.12 37086.11 38669.30 36563.06 37086.66 31033.03 39892.25 35865.33 33368.64 33682.28 384
PS-CasMVS80.27 29479.18 29083.52 33087.56 32869.88 34494.08 27895.29 19680.27 26272.08 32388.51 28159.22 29592.23 35967.49 31968.15 34288.45 317
DTE-MVSNet78.37 30877.06 30782.32 34085.22 35767.17 36193.40 29393.66 29078.71 29270.53 33488.29 28559.06 29692.23 35961.38 35063.28 36987.56 335
UnsupCasMVSNet_bld68.60 36264.50 36680.92 34974.63 40267.80 35483.97 38292.94 31965.12 37754.63 39668.23 40335.97 39292.17 36160.13 35444.83 40382.78 378
KD-MVS_2432*160077.63 31774.92 32285.77 29390.86 27779.44 19688.08 35393.92 27276.26 31767.05 34982.78 35972.15 20791.92 36261.53 34741.62 40885.94 359
miper_refine_blended77.63 31774.92 32285.77 29390.86 27779.44 19688.08 35393.92 27276.26 31767.05 34982.78 35972.15 20791.92 36261.53 34741.62 40885.94 359
test_vis3_rt54.10 37451.04 37763.27 39058.16 41446.08 41184.17 38149.32 42556.48 40336.56 40949.48 4128.03 42191.91 36467.29 32149.87 39351.82 411
N_pmnet61.30 36860.20 37164.60 38784.32 36417.00 42891.67 32510.98 42661.77 38658.45 38878.55 37949.89 35091.83 36542.27 40263.94 36684.97 366
K. test v373.62 33771.59 34379.69 35582.98 37459.85 39090.85 33388.83 36977.13 30958.90 38582.11 36143.62 36991.72 36665.83 33154.10 38587.50 338
Patchmatch-RL test76.65 32574.01 33284.55 31577.37 39364.23 37178.49 39782.84 39978.48 29464.63 36373.40 39476.05 14491.70 36776.99 25157.84 37897.72 114
IterMVS-SCA-FT80.51 29379.10 29284.73 31089.63 30274.66 29992.98 30591.81 33580.05 26671.06 33185.18 33758.04 30491.40 36872.48 29370.70 31888.12 324
IterMVS80.67 29179.16 29185.20 30489.79 29576.08 28392.97 30691.86 33380.28 26171.20 32985.14 33957.93 30891.34 36972.52 29270.74 31688.18 323
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MDA-MVSNet-bldmvs71.45 35167.94 35881.98 34285.33 35568.50 35392.35 31588.76 37170.40 35842.99 40581.96 36246.57 36391.31 37048.75 39354.39 38486.11 355
pmmvs-eth3d73.59 33870.66 34682.38 33876.40 39773.38 30989.39 34389.43 36472.69 34760.34 38277.79 38146.43 36491.26 37166.42 32957.06 37982.51 380
PM-MVS69.32 35966.93 36076.49 37173.60 40355.84 39785.91 37179.32 40574.72 32961.09 37978.18 38021.76 40791.10 37270.86 30556.90 38082.51 380
Anonymous2024052172.06 34969.91 35078.50 36377.11 39461.67 38491.62 32690.97 35165.52 37662.37 37379.05 37836.32 39090.96 37357.75 36368.52 33782.87 376
Anonymous2023120675.29 33273.64 33380.22 35380.75 37963.38 37793.36 29590.71 35673.09 34367.12 34783.70 35350.33 34890.85 37453.63 37970.10 32386.44 350
MIMVSNet79.18 30575.99 31588.72 23287.37 33080.66 16379.96 38991.82 33477.38 30674.33 30281.87 36341.78 37790.74 37566.36 33083.10 24194.76 224
UnsupCasMVSNet_eth73.25 34270.57 34781.30 34577.53 39166.33 36487.24 36193.89 27580.38 25857.90 39081.59 36442.91 37590.56 37665.18 33448.51 39687.01 344
YYNet173.53 34170.43 34882.85 33584.52 36371.73 33191.69 32491.37 34267.63 36946.79 40181.21 36855.04 33190.43 37755.93 37159.70 37686.38 351
MDA-MVSNet_test_wron73.54 34070.43 34882.86 33484.55 36171.85 32891.74 32391.32 34567.63 36946.73 40281.09 36955.11 33090.42 37855.91 37259.76 37586.31 352
CVMVSNet84.83 22685.57 19582.63 33791.55 26160.38 38795.13 24995.03 20580.60 25082.10 21694.71 18066.40 24990.19 37974.30 28090.32 17497.31 147
ADS-MVSNet279.57 30077.53 30385.71 29593.78 18872.13 32379.48 39186.11 38673.09 34380.14 23779.99 37562.15 27490.14 38059.49 35683.52 23694.85 222
CL-MVSNet_self_test75.81 32974.14 33180.83 35078.33 38967.79 35594.22 27693.52 29677.28 30869.82 33881.54 36661.47 28289.22 38157.59 36453.51 38685.48 363
test0.0.03 182.79 26182.48 24783.74 32686.81 33472.22 32096.52 17295.03 20583.76 19373.00 31593.20 21172.30 20588.88 38264.15 33877.52 28490.12 274
testgi74.88 33473.40 33479.32 35880.13 38361.75 38293.21 30186.64 38479.49 27766.56 35591.06 24535.51 39488.67 38356.79 36971.25 31287.56 335
ttmdpeth69.58 35566.92 36177.54 36775.95 40062.40 38088.09 35284.32 39462.87 38265.70 35986.25 32136.53 38988.53 38455.65 37446.96 40181.70 390
KD-MVS_self_test70.97 35469.31 35375.95 37576.24 39955.39 40087.45 35890.94 35270.20 36062.96 37277.48 38244.01 36788.09 38561.25 35153.26 38784.37 370
new_pmnet66.18 36563.18 36775.18 37776.27 39861.74 38383.79 38384.66 39156.64 40251.57 39871.85 40131.29 40187.93 38649.98 38862.55 37075.86 399
Syy-MVS77.97 31478.05 29977.74 36592.13 24556.85 39493.97 28094.23 25582.43 22173.39 30893.57 20757.95 30787.86 38732.40 40882.34 25188.51 312
myMVS_eth3d81.93 27482.18 25081.18 34792.13 24567.18 35893.97 28094.23 25582.43 22173.39 30893.57 20776.98 12687.86 38750.53 38782.34 25188.51 312
mvsany_test367.19 36365.34 36572.72 37863.08 41248.57 40583.12 38578.09 40672.07 35061.21 37877.11 38422.94 40687.78 38978.59 23451.88 39181.80 388
FMVSNet576.46 32674.16 33083.35 33290.05 29376.17 28189.58 34089.85 36071.39 35565.29 36180.42 37150.61 34687.70 39061.05 35269.24 33286.18 354
EU-MVSNet76.92 32476.95 30876.83 37084.10 36754.73 40291.77 32292.71 32372.74 34669.57 34088.69 27658.03 30687.43 39164.91 33570.00 32588.33 320
testing380.74 29081.17 26679.44 35791.15 27063.48 37697.16 12295.76 16480.83 24471.36 32793.15 21478.22 10587.30 39243.19 40079.67 26587.55 337
new-patchmatchnet68.85 36165.93 36377.61 36673.57 40463.94 37490.11 33788.73 37271.62 35455.08 39573.60 39340.84 38387.22 39351.35 38448.49 39781.67 391
DSMNet-mixed73.13 34372.45 33875.19 37677.51 39246.82 40785.09 37882.01 40067.61 37369.27 34281.33 36750.89 34486.28 39454.54 37683.80 23592.46 253
pmmvs365.75 36662.18 36976.45 37267.12 41064.54 36988.68 34785.05 39054.77 40457.54 39273.79 39229.40 40386.21 39555.49 37547.77 39978.62 396
MIMVSNet169.44 35866.65 36277.84 36476.48 39662.84 37987.42 35988.97 36866.96 37457.75 39179.72 37732.77 39985.83 39646.32 39563.42 36884.85 367
test20.0372.36 34771.15 34475.98 37477.79 39059.16 39192.40 31489.35 36574.09 33461.50 37784.32 34748.09 35485.54 39750.63 38662.15 37283.24 375
test_f64.01 36762.13 37069.65 38163.00 41345.30 41283.66 38480.68 40261.30 38955.70 39472.62 39714.23 41384.64 39869.84 31058.11 37779.00 395
kuosan73.55 33972.39 34077.01 36889.68 30066.72 36385.24 37793.44 29867.76 36860.04 38483.40 35671.90 21084.25 39945.34 39754.75 38180.06 394
MVStest166.93 36463.01 36878.69 36078.56 38771.43 33585.51 37586.81 38149.79 40548.57 40084.15 34953.46 33783.31 40043.14 40137.15 41181.34 392
EGC-MVSNET52.46 37647.56 37967.15 38381.98 37760.11 38882.54 38772.44 4110.11 4230.70 42474.59 39025.11 40583.26 40129.04 41061.51 37358.09 408
test_fmvs369.56 35669.19 35470.67 38069.01 40647.05 40690.87 33286.81 38171.31 35666.79 35277.15 38316.40 41183.17 40281.84 20762.51 37181.79 389
APD_test156.56 37153.58 37565.50 38467.93 40946.51 40977.24 40172.95 41038.09 40842.75 40675.17 38813.38 41482.78 40340.19 40454.53 38367.23 405
dmvs_testset72.00 35073.36 33567.91 38283.83 37131.90 42285.30 37677.12 40782.80 21463.05 37192.46 22261.54 28182.55 40442.22 40371.89 31189.29 290
DeepMVS_CXcopyleft64.06 38878.53 38843.26 41368.11 41769.94 36238.55 40776.14 38718.53 40979.34 40543.72 39941.62 40869.57 403
dongtai69.47 35768.98 35670.93 37986.87 33358.45 39288.19 35193.18 31263.98 37956.04 39380.17 37470.97 22379.24 40633.46 40747.94 39875.09 400
WB-MVS57.26 36956.22 37260.39 39369.29 40535.91 42086.39 36970.06 41359.84 39746.46 40372.71 39651.18 34378.11 40715.19 41734.89 41267.14 406
SSC-MVS56.01 37254.96 37359.17 39468.42 40734.13 42184.98 37969.23 41458.08 40145.36 40471.67 40250.30 34977.46 40814.28 41832.33 41365.91 407
FPMVS55.09 37352.93 37661.57 39155.98 41540.51 41683.11 38683.41 39837.61 40934.95 41071.95 39914.40 41276.95 40929.81 40965.16 36167.25 404
LCM-MVSNet52.52 37548.24 37865.35 38547.63 42241.45 41472.55 40783.62 39731.75 41037.66 40857.92 4089.19 42076.76 41049.26 39044.60 40477.84 397
Gipumacopyleft45.11 38142.05 38354.30 39780.69 38051.30 40435.80 41583.81 39628.13 41127.94 41534.53 41511.41 41876.70 41121.45 41454.65 38234.90 415
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS250.90 37746.31 38064.67 38655.53 41646.67 40877.30 40071.02 41240.89 40734.16 41159.32 4069.83 41976.14 41240.09 40528.63 41471.21 401
PMVScopyleft34.80 2339.19 38335.53 38650.18 39829.72 42530.30 42359.60 41366.20 41826.06 41417.91 41849.53 4113.12 42474.09 41318.19 41649.40 39446.14 412
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testf145.70 37942.41 38155.58 39553.29 41940.02 41768.96 40962.67 41927.45 41229.85 41261.58 4045.98 42273.83 41428.49 41243.46 40652.90 409
APD_test245.70 37942.41 38155.58 39553.29 41940.02 41768.96 40962.67 41927.45 41229.85 41261.58 4045.98 42273.83 41428.49 41243.46 40652.90 409
ANet_high46.22 37841.28 38561.04 39239.91 42446.25 41070.59 40876.18 40858.87 39923.09 41648.00 41312.58 41666.54 41628.65 41113.62 41770.35 402
test_method56.77 37054.53 37463.49 38976.49 39540.70 41575.68 40274.24 40919.47 41748.73 39971.89 40019.31 40865.80 41757.46 36547.51 40083.97 373
MVEpermissive35.65 2233.85 38429.49 38946.92 39941.86 42336.28 41950.45 41456.52 42218.75 41818.28 41737.84 4142.41 42558.41 41818.71 41520.62 41546.06 413
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN32.70 38532.39 38733.65 40153.35 41825.70 42574.07 40553.33 42321.08 41517.17 41933.63 41711.85 41754.84 41912.98 41914.04 41620.42 416
EMVS31.70 38631.45 38832.48 40250.72 42123.95 42674.78 40452.30 42420.36 41616.08 42031.48 41812.80 41553.60 42011.39 42013.10 41919.88 417
tmp_tt41.54 38241.93 38440.38 40020.10 42626.84 42461.93 41259.09 42114.81 41928.51 41480.58 37035.53 39348.33 42163.70 34113.11 41845.96 414
wuyk23d14.10 38813.89 39114.72 40355.23 41722.91 42733.83 4163.56 4274.94 4204.11 4212.28 4232.06 42619.66 42210.23 4218.74 4201.59 420
test1239.07 39011.73 3931.11 4040.50 4280.77 42989.44 3420.20 4290.34 4222.15 42310.72 4220.34 4270.32 4231.79 4230.08 4222.23 418
testmvs9.92 38912.94 3920.84 4050.65 4270.29 43093.78 2860.39 4280.42 4212.85 42215.84 4210.17 4280.30 4242.18 4220.21 4211.91 419
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k21.43 38728.57 3900.00 4060.00 4290.00 4310.00 41795.93 1550.00 4240.00 42597.66 7563.57 2650.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas5.92 3927.89 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42471.04 2200.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re8.11 39110.81 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42597.30 980.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS67.18 35849.00 391
FOURS198.51 3978.01 23998.13 4996.21 13083.04 20794.39 52
test_one_060198.91 1884.56 8196.70 7188.06 8296.57 2398.77 1088.04 20
eth-test20.00 429
eth-test0.00 429
RE-MVS-def91.18 9397.76 6776.03 28596.20 19695.44 18580.56 25290.72 10797.84 6773.36 19391.99 9996.79 9597.75 112
IU-MVS99.03 1585.34 5896.86 5192.05 2798.74 198.15 1198.97 1799.42 13
save fliter98.24 5183.34 10298.61 3396.57 9191.32 33
test072699.05 985.18 6399.11 1596.78 5588.75 6497.65 1198.91 287.69 22
GSMVS97.54 127
test_part298.90 1985.14 6996.07 29
sam_mvs177.59 11597.54 127
sam_mvs75.35 163
MTGPAbinary96.33 119
MTMP97.53 9168.16 416
test9_res96.00 4099.03 1398.31 68
agg_prior294.30 6499.00 1598.57 53
test_prior482.34 11997.75 75
test_prior298.37 3986.08 12694.57 5098.02 5483.14 5395.05 5598.79 27
新几何296.42 182
旧先验197.39 8679.58 19596.54 9498.08 5184.00 4597.42 7697.62 123
原ACMM296.84 152
test22296.15 10878.41 22595.87 21596.46 10371.97 35189.66 12097.45 8876.33 14098.24 5198.30 69
segment_acmp82.69 59
testdata195.57 23187.44 99
plane_prior791.86 25777.55 258
plane_prior691.98 25377.92 24464.77 260
plane_prior494.15 193
plane_prior377.75 25490.17 5281.33 223
plane_prior297.18 11889.89 54
plane_prior191.95 255
plane_prior77.96 24197.52 9490.36 5082.96 244
n20.00 430
nn0.00 430
door-mid79.75 404
test1196.50 99
door80.13 403
HQP5-MVS78.48 221
HQP-NCC92.08 24897.63 8190.52 4582.30 210
ACMP_Plane92.08 24897.63 8190.52 4582.30 210
BP-MVS87.67 155
HQP3-MVS94.80 21783.01 242
HQP2-MVS65.40 255
NP-MVS92.04 25278.22 23194.56 183
MDTV_nov1_ep13_2view81.74 13586.80 36480.65 24985.65 17074.26 18076.52 25796.98 161
ACMMP++_ref78.45 279
ACMMP++79.05 271
Test By Simon71.65 213