This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
DPM-MVS96.21 295.53 998.26 196.26 10595.09 199.15 496.98 3093.39 996.45 1498.79 1090.17 799.99 189.33 10899.25 499.70 3
MCST-MVS96.17 396.12 596.32 599.42 289.36 898.94 1597.10 2495.17 292.11 6698.46 2487.33 2099.97 297.21 1299.31 299.63 5
CNVR-MVS96.30 196.54 195.55 1299.31 587.69 1999.06 997.12 2294.66 396.79 998.78 1186.42 2499.95 397.59 999.18 599.00 23
NCCC95.63 595.94 694.69 2499.21 785.15 5699.16 396.96 3394.11 695.59 2198.64 1985.07 2899.91 495.61 2799.10 799.00 23
API-MVS90.18 10688.97 11593.80 4998.66 2882.95 9997.50 8095.63 15475.16 28486.31 13897.69 6872.49 17899.90 581.26 17496.07 9998.56 42
DeepC-MVS_fast89.06 294.48 1894.30 2695.02 1798.86 1985.68 4298.06 4096.64 7193.64 891.74 7298.54 2080.17 7099.90 592.28 7098.75 2699.49 6
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DP-MVS Recon91.72 7290.85 8294.34 3299.50 185.00 6098.51 2495.96 13580.57 21288.08 12597.63 7476.84 11299.89 785.67 13594.88 11398.13 72
CANet94.89 1294.64 1695.63 1097.55 8188.12 1399.06 996.39 10794.07 795.34 2497.80 6576.83 11399.87 897.08 1497.64 6898.89 26
DeepPCF-MVS89.82 194.61 1696.17 489.91 18397.09 9770.21 30998.99 1496.69 6295.57 195.08 2899.23 186.40 2599.87 897.84 798.66 3099.65 4
HPM-MVS++copyleft95.32 995.48 1094.85 2098.62 3486.04 3297.81 5496.93 3692.45 1195.69 2098.50 2285.38 2799.85 1094.75 3799.18 598.65 38
PHI-MVS93.59 3893.63 3593.48 6798.05 6381.76 12598.64 2097.13 2182.60 18494.09 4598.49 2380.35 6599.85 1094.74 3898.62 3198.83 28
OPU-MVS97.30 299.19 892.31 399.12 698.54 2092.06 299.84 1299.11 199.37 199.74 1
test_0728_SECOND95.14 1599.04 1286.14 3199.06 996.77 5199.84 1297.90 598.85 2099.45 8
SMA-MVScopyleft94.70 1594.68 1594.76 2298.02 6485.94 3597.47 8196.77 5185.32 11297.92 298.70 1683.09 4799.84 1295.79 2499.08 898.49 46
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP93.46 3993.23 4194.17 3997.16 9584.28 7196.82 13696.65 6886.24 9194.27 4097.99 5277.94 9699.83 1593.39 5298.57 3298.39 51
SED-MVS95.88 496.22 394.87 1999.03 1385.03 5899.12 696.78 4588.72 5097.79 398.91 388.48 1499.82 1698.15 298.97 1599.74 1
test_241102_TWO96.78 4588.72 5097.70 598.91 387.86 1799.82 1698.15 299.00 1399.47 7
test_241102_ONE99.03 1385.03 5896.78 4588.72 5097.79 398.90 688.48 1499.82 16
ZNCC-MVS92.75 4992.60 5493.23 7598.24 5281.82 12397.63 6796.50 9185.00 12391.05 8597.74 6778.38 9099.80 1990.48 9098.34 5198.07 76
DVP-MVS95.58 795.91 794.57 2699.05 1085.18 5199.06 996.46 9588.75 4896.69 1098.76 1287.69 1899.76 2097.90 598.85 2098.77 30
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD88.38 5796.69 1098.76 1289.64 1099.76 2097.47 1098.84 2299.38 10
GST-MVS92.43 6292.22 6393.04 8498.17 5781.64 13097.40 9196.38 10884.71 12990.90 8797.40 8677.55 10299.76 2089.75 10297.74 6697.72 104
zzz-MVS92.74 5092.71 4992.86 9297.90 6680.85 14596.47 15596.33 11287.92 6590.20 9698.18 3276.71 11699.76 2092.57 6798.09 5697.96 89
MTAPA92.45 6192.31 5992.86 9297.90 6680.85 14592.88 27596.33 11287.92 6590.20 9698.18 3276.71 11699.76 2092.57 6798.09 5697.96 89
PAPR92.74 5092.17 6494.45 2898.89 1884.87 6397.20 10096.20 12187.73 7288.40 12098.12 4178.71 8699.76 2087.99 12096.28 9698.74 31
PAPM_NR91.46 7990.82 8393.37 7198.50 4081.81 12495.03 22596.13 12584.65 13286.10 14197.65 7379.24 7999.75 2683.20 16396.88 8898.56 42
MAR-MVS90.63 9690.22 9291.86 12798.47 4278.20 21697.18 10296.61 7483.87 15788.18 12498.18 3268.71 20799.75 2683.66 15597.15 8197.63 112
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DPE-MVScopyleft95.32 995.55 894.64 2598.79 2184.87 6397.77 5696.74 5586.11 9396.54 1398.89 788.39 1699.74 2897.67 899.05 1099.31 14
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss92.58 5992.35 5893.29 7297.30 9382.53 10496.44 16096.04 13284.68 13089.12 11198.37 2677.48 10399.74 2893.31 5698.38 4897.59 115
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
QAPM86.88 16484.51 18393.98 4394.04 16785.89 3697.19 10196.05 13173.62 29575.12 26195.62 13462.02 24899.74 2870.88 26596.06 10096.30 167
AdaColmapbinary88.81 13087.61 13992.39 11099.33 479.95 16796.70 14795.58 15577.51 26683.05 17296.69 11561.90 25299.72 3184.29 14593.47 12697.50 121
HFP-MVS92.89 4792.86 4892.98 8698.71 2381.12 13797.58 7296.70 6085.20 11891.75 7097.97 5678.47 8899.71 3290.95 8198.41 4498.12 73
#test#92.99 4592.99 4492.98 8698.71 2381.12 13797.77 5696.70 6085.75 10291.75 7097.97 5678.47 8899.71 3291.36 7798.41 4498.12 73
DeepC-MVS86.58 391.53 7891.06 8192.94 8994.52 15381.89 11995.95 18695.98 13490.76 2483.76 16496.76 11273.24 17399.71 3291.67 7696.96 8597.22 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft92.61 5892.67 5292.42 10998.13 5979.73 17597.33 9496.20 12185.63 10490.53 9197.66 6978.14 9499.70 3592.12 7298.30 5397.85 95
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVS90.60 9788.64 12096.50 394.25 16190.53 693.33 26297.21 1977.59 26578.88 21497.31 8871.52 18999.69 3689.60 10398.03 6099.27 16
DELS-MVS94.98 1194.49 1996.44 496.42 10390.59 599.21 297.02 2794.40 591.46 7597.08 10083.32 4399.69 3692.83 6398.70 2999.04 21
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
mPP-MVS91.88 6991.82 6892.07 12098.38 4578.63 20097.29 9596.09 12885.12 12088.45 11997.66 6975.53 13899.68 3889.83 10098.02 6197.88 92
3Dnovator82.32 1089.33 11887.64 13694.42 3093.73 17585.70 4197.73 6296.75 5486.73 8976.21 24695.93 12562.17 24599.68 3881.67 17297.81 6597.88 92
region2R92.72 5392.70 5192.79 9598.68 2580.53 15597.53 7696.51 8985.22 11691.94 6897.98 5477.26 10599.67 4090.83 8598.37 4998.18 66
ACMMPR92.69 5592.67 5292.75 9698.66 2880.57 15297.58 7296.69 6285.20 11891.57 7497.92 5877.01 11099.67 4090.95 8198.41 4498.00 85
testtj94.09 2994.08 2994.09 4299.28 683.32 9197.59 7196.61 7483.60 16594.77 3698.46 2482.72 5299.64 4295.29 3298.42 4299.32 13
OpenMVScopyleft79.58 1486.09 17783.62 19893.50 6590.95 24386.71 2897.44 8395.83 14375.35 28172.64 28095.72 12957.42 28299.64 4271.41 25995.85 10494.13 205
ACMMPcopyleft90.39 10289.97 9891.64 13397.58 7978.21 21596.78 13996.72 5884.73 12884.72 15097.23 9371.22 19199.63 4488.37 11892.41 13797.08 140
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CHOSEN 1792x268891.07 8890.21 9393.64 5795.18 13383.53 8596.26 17296.13 12588.92 4684.90 14793.10 18672.86 17599.62 4588.86 11095.67 10697.79 100
SD-MVS94.84 1395.02 1394.29 3497.87 7084.61 6797.76 6096.19 12389.59 3896.66 1298.17 3684.33 3299.60 4696.09 1898.50 3798.66 37
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
XVS92.69 5592.71 4992.63 10298.52 3880.29 15897.37 9296.44 9787.04 8691.38 7697.83 6477.24 10799.59 4790.46 9198.07 5898.02 80
X-MVStestdata86.26 17584.14 19192.63 10298.52 3880.29 15897.37 9296.44 9787.04 8691.38 7620.73 36477.24 10799.59 4790.46 9198.07 5898.02 80
PVSNet_BlendedMVS90.05 10789.96 9990.33 16997.47 8283.86 7798.02 4396.73 5687.98 6489.53 10689.61 23076.42 12099.57 4994.29 4379.59 22887.57 297
PVSNet_Blended93.13 4292.98 4593.57 6197.47 8283.86 7799.32 196.73 5691.02 2389.53 10696.21 12076.42 12099.57 4994.29 4395.81 10597.29 134
PGM-MVS91.93 6891.80 6992.32 11398.27 5179.74 17495.28 21197.27 1783.83 15890.89 8897.78 6676.12 12699.56 5188.82 11197.93 6497.66 109
MVS_111021_HR93.41 4093.39 3993.47 7097.34 9282.83 10097.56 7498.27 689.16 4489.71 10197.14 9779.77 7399.56 5193.65 4897.94 6298.02 80
无先验96.87 13396.78 4577.39 26799.52 5379.95 18498.43 49
112190.66 9589.82 10493.16 7897.39 8881.71 12893.33 26296.66 6774.45 29091.38 7697.55 7979.27 7799.52 5379.95 18498.43 4198.26 62
CSCG92.02 6791.65 7293.12 7998.53 3780.59 15197.47 8197.18 2077.06 27484.64 15297.98 5483.98 3799.52 5390.72 8797.33 7699.23 17
新几何193.12 7997.44 8481.60 13196.71 5974.54 28991.22 8397.57 7579.13 8199.51 5677.40 21098.46 3998.26 62
3Dnovator+82.88 889.63 11487.85 13194.99 1894.49 15786.76 2797.84 5195.74 14786.10 9475.47 25896.02 12465.00 23199.51 5682.91 16797.07 8298.72 36
CANet_DTU90.98 8990.04 9793.83 4894.76 14786.23 3096.32 16993.12 28293.11 1093.71 4796.82 11063.08 24099.48 5884.29 14595.12 11295.77 176
testdata299.48 5876.45 219
SteuartSystems-ACMMP94.13 2794.44 2193.20 7695.41 12681.35 13499.02 1396.59 7889.50 3994.18 4398.36 2783.68 4099.45 6094.77 3698.45 4098.81 29
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + GP.94.35 2194.50 1893.89 4697.38 9183.04 9798.10 3795.29 17591.57 1693.81 4697.45 8186.64 2199.43 6196.28 1794.01 11999.20 18
ETH3 D test640095.56 895.41 1196.00 799.02 1689.42 798.75 1796.80 4487.28 7995.88 1998.95 285.92 2699.41 6297.15 1398.95 1899.18 20
131488.94 12587.20 14894.17 3993.21 18585.73 4093.33 26296.64 7182.89 17775.98 24996.36 11866.83 21999.39 6383.52 16096.02 10197.39 128
xxxxxxxxxxxxxcwj94.38 2094.62 1793.68 5598.24 5283.34 8998.61 2292.69 28991.32 1895.07 2998.74 1482.93 4899.38 6495.42 3098.51 3498.32 54
SF-MVS94.17 2594.05 3094.55 2797.56 8085.95 3397.73 6296.43 9984.02 15095.07 2998.74 1482.93 4899.38 6495.42 3098.51 3498.32 54
ETH3D-3000-0.194.43 1994.42 2294.45 2897.78 7185.78 3897.98 4496.53 8785.29 11595.45 2298.81 883.36 4299.38 6496.07 1998.53 3398.19 65
DP-MVS81.47 24778.28 26191.04 14998.14 5878.48 20295.09 22486.97 33661.14 34271.12 28992.78 18959.59 26199.38 6453.11 33686.61 18095.27 188
ETH3D cwj APD-0.1693.91 3593.76 3394.36 3196.70 10185.74 3997.22 9696.41 10183.94 15394.13 4498.69 1883.13 4699.37 6895.25 3398.39 4797.97 88
9.1494.26 2798.10 6098.14 3496.52 8884.74 12794.83 3498.80 982.80 5199.37 6895.95 2298.42 42
TEST998.64 3183.71 8197.82 5296.65 6884.29 14495.16 2598.09 4384.39 3199.36 70
train_agg94.28 2294.45 2093.74 5198.64 3183.71 8197.82 5296.65 6884.50 13695.16 2598.09 4384.33 3299.36 7095.91 2398.96 1798.16 68
sss90.87 9289.96 9993.60 6094.15 16383.84 7997.14 10898.13 785.93 9989.68 10296.09 12371.67 18699.30 7287.69 12189.16 15797.66 109
PVSNet_Blended_VisFu91.24 8590.77 8492.66 10195.09 13582.40 10797.77 5695.87 14288.26 6086.39 13793.94 17576.77 11499.27 7388.80 11294.00 12096.31 166
PLCcopyleft83.97 788.00 15087.38 14689.83 18698.02 6476.46 24897.16 10694.43 22179.26 24481.98 18596.28 11969.36 20499.27 7377.71 20592.25 13993.77 210
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Regformer-194.00 3294.04 3193.87 4798.41 4384.29 7097.43 8797.04 2689.50 3992.75 6098.13 3882.60 5499.26 7593.55 5096.99 8398.06 77
test_898.63 3383.64 8497.81 5496.63 7384.50 13695.10 2798.11 4284.33 3299.23 76
Regformer-393.19 4193.19 4293.19 7798.10 6083.01 9897.08 11796.98 3088.98 4591.35 8097.89 5980.80 6199.23 7692.30 6995.20 10997.32 130
Regformer-293.92 3394.01 3293.67 5698.41 4383.75 8097.43 8797.00 2889.43 4192.69 6198.13 3882.48 5599.22 7893.51 5196.99 8398.04 78
test1294.25 3598.34 4785.55 4496.35 11192.36 6280.84 6099.22 7898.31 5297.98 87
MSLP-MVS++94.28 2294.39 2393.97 4498.30 5084.06 7598.64 2096.93 3690.71 2593.08 5698.70 1679.98 7199.21 8094.12 4599.07 998.63 39
CDPH-MVS93.12 4392.91 4693.74 5198.65 3083.88 7697.67 6696.26 11783.00 17593.22 5498.24 3081.31 5899.21 8089.12 10998.74 2798.14 71
CP-MVS92.54 6092.60 5492.34 11198.50 4079.90 16998.40 2596.40 10484.75 12690.48 9398.09 4377.40 10499.21 8091.15 8098.23 5597.92 91
LS3D82.22 23979.94 25189.06 19797.43 8574.06 27893.20 26992.05 29561.90 33773.33 27395.21 14259.35 26499.21 8054.54 33292.48 13693.90 209
PCF-MVS84.09 586.77 16985.00 17892.08 11992.06 22383.07 9692.14 28394.47 21879.63 23576.90 23394.78 15671.15 19299.20 8472.87 25091.05 14793.98 207
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Regformer-493.06 4493.12 4392.89 9198.10 6082.20 11197.08 11796.92 3888.87 4791.23 8297.89 5980.57 6499.19 8592.21 7195.20 10997.29 134
MVS_111021_LR91.60 7791.64 7391.47 14095.74 11778.79 19896.15 17896.77 5188.49 5588.64 11797.07 10172.33 18099.19 8593.13 6196.48 9596.43 160
APDe-MVS94.56 1794.75 1493.96 4598.84 2083.40 8898.04 4296.41 10185.79 10195.00 3198.28 2984.32 3599.18 8797.35 1198.77 2599.28 15
PS-MVSNAJ94.17 2593.52 3896.10 695.65 12192.35 298.21 3295.79 14592.42 1296.24 1598.18 3271.04 19499.17 8896.77 1597.39 7596.79 149
agg_prior194.10 2894.31 2593.48 6798.59 3583.13 9497.77 5696.56 8284.38 14094.19 4198.13 3884.66 3099.16 8995.74 2598.74 2798.15 70
agg_prior98.59 3583.13 9496.56 8294.19 4199.16 89
ZD-MVS99.09 983.22 9396.60 7782.88 17893.61 4998.06 4882.93 4899.14 9195.51 2998.49 38
EI-MVSNet-Vis-set91.84 7091.77 7092.04 12297.60 7781.17 13696.61 14996.87 4088.20 6189.19 11097.55 7978.69 8799.14 9190.29 9690.94 14895.80 175
EI-MVSNet-UG-set91.35 8391.22 7791.73 13197.39 8880.68 14996.47 15596.83 4387.92 6588.30 12397.36 8777.84 9899.13 9389.43 10789.45 15595.37 185
EPNet94.06 3094.15 2893.76 5097.27 9484.35 6898.29 2997.64 1394.57 495.36 2396.88 10679.96 7299.12 9491.30 7896.11 9897.82 98
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSP-MVS95.62 696.54 192.86 9298.31 4980.10 16697.42 8996.78 4592.20 1397.11 898.29 2893.46 199.10 9596.01 2099.30 399.38 10
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
UGNet87.73 15486.55 15991.27 14495.16 13479.11 18996.35 16696.23 11988.14 6287.83 12790.48 21750.65 30699.09 9680.13 18394.03 11795.60 180
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test_prior394.03 3194.34 2493.09 8198.68 2581.91 11798.37 2696.40 10486.08 9594.57 3898.02 4983.14 4499.06 9795.05 3498.79 2398.29 59
test_prior93.09 8198.68 2581.91 11796.40 10499.06 9798.29 59
WTY-MVS92.65 5791.68 7195.56 1196.00 11288.90 1098.23 3197.65 1288.57 5389.82 10097.22 9579.29 7699.06 9789.57 10488.73 16398.73 35
HY-MVS84.06 691.63 7590.37 9095.39 1496.12 10988.25 1290.22 29997.58 1488.33 5990.50 9291.96 19679.26 7899.06 9790.29 9689.07 15898.88 27
MG-MVS94.25 2493.72 3495.85 999.38 389.35 997.98 4498.09 889.99 3492.34 6396.97 10381.30 5998.99 10188.54 11398.88 1999.20 18
原ACMM191.22 14697.77 7278.10 21896.61 7481.05 20391.28 8197.42 8577.92 9798.98 10279.85 18798.51 3496.59 156
Anonymous20240521184.41 20381.93 22291.85 12996.78 10078.41 20697.44 8391.34 30670.29 31684.06 15694.26 16641.09 33898.96 10379.46 18982.65 21698.17 67
xiu_mvs_v2_base93.92 3393.26 4095.91 895.07 13792.02 498.19 3395.68 15092.06 1496.01 1898.14 3770.83 19798.96 10396.74 1696.57 9496.76 152
abl_689.80 11089.71 10790.07 17596.53 10275.52 26494.48 23395.04 18481.12 20289.22 10997.00 10268.83 20698.96 10389.86 9995.27 10895.73 177
VNet92.11 6691.22 7794.79 2196.91 9886.98 2497.91 4797.96 986.38 9093.65 4895.74 12870.16 20298.95 10693.39 5288.87 16198.43 49
CNLPA86.96 16185.37 17091.72 13297.59 7879.34 18397.21 9891.05 31174.22 29178.90 21396.75 11367.21 21698.95 10674.68 23690.77 14996.88 147
ab-mvs87.08 16084.94 17993.48 6793.34 18483.67 8388.82 30795.70 14981.18 20184.55 15390.14 22662.72 24198.94 10885.49 13782.54 21797.85 95
HPM-MVScopyleft91.62 7691.53 7491.89 12697.88 6979.22 18596.99 12295.73 14882.07 19189.50 10897.19 9675.59 13798.93 10990.91 8397.94 6297.54 116
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet82.34 989.02 12387.79 13392.71 9995.49 12481.50 13297.70 6497.29 1687.76 7185.47 14395.12 14956.90 28398.90 11080.33 17994.02 11897.71 106
hse-mvs389.30 11988.95 11790.36 16795.07 13776.04 25596.96 12897.11 2390.39 3092.22 6495.10 15074.70 15598.86 11193.14 5965.89 31896.16 168
MSDG80.62 25777.77 26589.14 19693.43 18377.24 23791.89 28690.18 31869.86 31968.02 30391.94 19852.21 30498.84 11259.32 31583.12 20791.35 221
Anonymous2024052983.15 22280.60 24090.80 15695.74 11778.27 21096.81 13794.92 18960.10 34681.89 18792.54 19045.82 32398.82 11379.25 19378.32 24295.31 187
test_yl91.46 7990.53 8794.24 3697.41 8685.18 5198.08 3897.72 1080.94 20489.85 9896.14 12175.61 13598.81 11490.42 9488.56 16698.74 31
DCV-MVSNet91.46 7990.53 8794.24 3697.41 8685.18 5198.08 3897.72 1080.94 20489.85 9896.14 12175.61 13598.81 11490.42 9488.56 16698.74 31
HPM-MVS_fast90.38 10490.17 9591.03 15097.61 7677.35 23697.15 10795.48 16179.51 23788.79 11596.90 10471.64 18898.81 11487.01 12997.44 7296.94 142
APD-MVScopyleft93.61 3793.59 3693.69 5498.76 2283.26 9297.21 9896.09 12882.41 18694.65 3798.21 3181.96 5798.81 11494.65 3998.36 5099.01 22
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SR-MVS92.16 6592.27 6091.83 13098.37 4678.41 20696.67 14895.76 14682.19 19091.97 6798.07 4776.44 11998.64 11893.71 4797.27 7798.45 48
test117291.64 7492.00 6690.54 16398.20 5674.48 27396.45 15895.65 15181.97 19491.63 7398.02 4975.76 13398.61 11993.16 5897.17 8098.52 45
SR-MVS-dyc-post91.29 8491.45 7590.80 15697.76 7376.03 25696.20 17695.44 16480.56 21390.72 8997.84 6275.76 13398.61 11991.99 7496.79 9197.75 102
alignmvs92.97 4692.26 6195.12 1695.54 12387.77 1798.67 1896.38 10888.04 6393.01 5797.45 8179.20 8098.60 12193.25 5788.76 16298.99 25
OMC-MVS88.80 13188.16 12790.72 15995.30 12977.92 22494.81 22994.51 21586.80 8884.97 14696.85 10767.53 21298.60 12185.08 14087.62 17395.63 179
canonicalmvs92.27 6491.22 7795.41 1395.80 11688.31 1197.09 11594.64 20888.49 5592.99 5897.31 8872.68 17798.57 12393.38 5488.58 16599.36 12
APD-MVS_3200maxsize91.23 8691.35 7690.89 15497.89 6876.35 25196.30 17095.52 15979.82 23191.03 8697.88 6174.70 15598.54 12492.11 7396.89 8797.77 101
IB-MVS85.34 488.67 13487.14 15293.26 7393.12 19084.32 6998.76 1697.27 1787.19 8479.36 21190.45 21983.92 3898.53 12584.41 14469.79 28596.93 143
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
114514_t88.79 13287.57 14092.45 10798.21 5581.74 12696.99 12295.45 16375.16 28482.48 17595.69 13168.59 20898.50 12680.33 17995.18 11197.10 139
TSAR-MVS + MP.94.79 1495.17 1293.64 5797.66 7584.10 7495.85 19496.42 10091.26 2097.49 796.80 11186.50 2398.49 12795.54 2899.03 1198.33 53
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
VDD-MVS88.28 14587.02 15492.06 12195.09 13580.18 16497.55 7594.45 22083.09 17289.10 11295.92 12747.97 31698.49 12793.08 6286.91 17897.52 120
PatchMatch-RL85.00 19383.66 19689.02 19995.86 11574.55 27292.49 27993.60 26079.30 24279.29 21291.47 20158.53 27198.45 12970.22 26992.17 14194.07 206
F-COLMAP84.50 20283.44 20287.67 22795.22 13172.22 28995.95 18693.78 25175.74 27976.30 24395.18 14459.50 26398.45 12972.67 25286.59 18192.35 219
RPMNet79.85 26175.92 27991.64 13390.16 25879.75 17279.02 34395.44 16458.43 35082.27 18272.55 34673.03 17498.41 13146.10 35086.25 18396.75 153
xiu_mvs_v1_base_debu90.54 9889.54 10893.55 6292.31 20687.58 2096.99 12294.87 19287.23 8193.27 5197.56 7657.43 27998.32 13292.72 6493.46 12794.74 195
xiu_mvs_v1_base90.54 9889.54 10893.55 6292.31 20687.58 2096.99 12294.87 19287.23 8193.27 5197.56 7657.43 27998.32 13292.72 6493.46 12794.74 195
xiu_mvs_v1_base_debi90.54 9889.54 10893.55 6292.31 20687.58 2096.99 12294.87 19287.23 8193.27 5197.56 7657.43 27998.32 13292.72 6493.46 12794.74 195
CPTT-MVS89.72 11289.87 10389.29 19598.33 4873.30 28297.70 6495.35 17175.68 28087.40 12897.44 8470.43 19998.25 13589.56 10596.90 8696.33 165
LFMVS89.27 12087.64 13694.16 4197.16 9585.52 4597.18 10294.66 20579.17 24589.63 10496.57 11655.35 29498.22 13689.52 10689.54 15498.74 31
PVSNet_077.72 1581.70 24478.95 25889.94 18290.77 24976.72 24695.96 18596.95 3485.01 12270.24 29688.53 24552.32 30398.20 13786.68 13244.08 35394.89 191
TAPA-MVS81.61 1285.02 19283.67 19589.06 19796.79 9973.27 28495.92 18894.79 19974.81 28780.47 19996.83 10871.07 19398.19 13849.82 34492.57 13395.71 178
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UA-Net88.92 12688.48 12390.24 17194.06 16677.18 24093.04 27194.66 20587.39 7791.09 8493.89 17674.92 15398.18 13975.83 22791.43 14595.35 186
thres20088.92 12687.65 13592.73 9896.30 10485.62 4397.85 5098.86 184.38 14084.82 14893.99 17475.12 15198.01 14070.86 26686.67 17994.56 200
cascas86.50 17184.48 18592.55 10592.64 20285.95 3397.04 12195.07 18375.32 28280.50 19891.02 20954.33 30197.98 14186.79 13087.62 17393.71 211
thres100view90088.30 14486.95 15592.33 11296.10 11084.90 6297.14 10898.85 282.69 18283.41 16693.66 18075.43 14297.93 14269.04 27286.24 18594.17 202
tfpn200view988.48 13987.15 15092.47 10696.21 10685.30 4997.44 8398.85 283.37 16783.99 15893.82 17775.36 14597.93 14269.04 27286.24 18594.17 202
gm-plane-assit92.27 21079.64 17784.47 13895.15 14697.93 14285.81 134
testdata90.13 17495.92 11474.17 27696.49 9473.49 29894.82 3597.99 5278.80 8597.93 14283.53 15997.52 6998.29 59
thres40088.42 14287.15 15092.23 11596.21 10685.30 4997.44 8398.85 283.37 16783.99 15893.82 17775.36 14597.93 14269.04 27286.24 18593.45 215
VDDNet86.44 17284.51 18392.22 11691.56 23381.83 12297.10 11494.64 20869.50 32087.84 12695.19 14348.01 31597.92 14789.82 10186.92 17796.89 146
thisisatest051590.95 9090.26 9193.01 8594.03 16984.27 7297.91 4796.67 6483.18 17086.87 13595.51 13788.66 1397.85 14880.46 17889.01 15996.92 145
thres600view788.06 14886.70 15892.15 11896.10 11085.17 5597.14 10898.85 282.70 18183.41 16693.66 18075.43 14297.82 14967.13 28185.88 18993.45 215
MVS_Test90.29 10589.18 11293.62 5995.23 13084.93 6194.41 23694.66 20584.31 14290.37 9591.02 20975.13 15097.82 14983.11 16594.42 11598.12 73
旧先验296.97 12774.06 29396.10 1697.76 15188.38 117
EIA-MVS91.73 7192.05 6590.78 15894.52 15376.40 25098.06 4095.34 17289.19 4388.90 11497.28 9277.56 10197.73 15290.77 8696.86 9098.20 64
thisisatest053089.65 11389.02 11491.53 13793.46 18280.78 14796.52 15296.67 6481.69 19783.79 16394.90 15588.85 1297.68 15377.80 20187.49 17696.14 169
BH-RMVSNet86.84 16585.28 17191.49 13995.35 12880.26 16196.95 12992.21 29382.86 17981.77 18995.46 13859.34 26597.64 15469.79 27093.81 12396.57 157
1112_ss88.60 13787.47 14492.00 12393.21 18580.97 14296.47 15592.46 29183.64 16380.86 19597.30 9080.24 6897.62 15577.60 20685.49 19397.40 127
Test_1112_low_res88.03 14986.73 15791.94 12593.15 18880.88 14496.44 16092.41 29283.59 16680.74 19791.16 20780.18 6997.59 15677.48 20985.40 19497.36 129
tttt051788.57 13888.19 12689.71 19093.00 19275.99 25995.67 19996.67 6480.78 20781.82 18894.40 16388.97 1197.58 15776.05 22586.31 18295.57 181
lupinMVS93.87 3693.58 3794.75 2393.00 19288.08 1499.15 495.50 16091.03 2294.90 3297.66 6978.84 8397.56 15894.64 4097.46 7098.62 40
DWT-MVSNet_test90.52 10189.80 10592.70 10095.73 11982.20 11193.69 25396.55 8488.34 5887.04 13495.34 14086.53 2297.55 15976.32 22288.66 16498.34 52
XVG-OURS85.18 19084.38 18787.59 23090.42 25471.73 29991.06 29694.07 23682.00 19383.29 16895.08 15156.42 28897.55 15983.70 15483.42 20593.49 214
TR-MVS86.30 17484.93 18090.42 16594.63 14977.58 23196.57 15193.82 24680.30 22182.42 17795.16 14558.74 26997.55 15974.88 23487.82 17296.13 170
casdiffmvs90.95 9090.39 8992.63 10292.82 19782.53 10496.83 13594.47 21887.69 7388.47 11895.56 13674.04 16397.54 16290.90 8492.74 13297.83 97
XVG-OURS-SEG-HR85.74 18385.16 17587.49 23590.22 25671.45 30291.29 29394.09 23581.37 19983.90 16295.22 14160.30 25897.53 16385.58 13684.42 20093.50 213
baseline90.76 9390.10 9692.74 9792.90 19682.56 10394.60 23294.56 21387.69 7389.06 11395.67 13273.76 16697.51 16490.43 9392.23 14098.16 68
ETV-MVS92.72 5392.87 4792.28 11494.54 15281.89 11997.98 4495.21 17889.77 3793.11 5596.83 10877.23 10997.50 16595.74 2595.38 10797.44 123
Effi-MVS+90.70 9489.90 10293.09 8193.61 17683.48 8695.20 21692.79 28783.22 16991.82 6995.70 13071.82 18597.48 16691.25 7993.67 12498.32 54
baseline290.39 10290.21 9390.93 15290.86 24680.99 14195.20 21697.41 1586.03 9780.07 20794.61 15990.58 497.47 16787.29 12589.86 15394.35 201
diffmvs91.17 8790.74 8592.44 10893.11 19182.50 10696.25 17393.62 25987.79 7090.40 9495.93 12573.44 17197.42 16893.62 4992.55 13497.41 126
tpmvs83.04 22580.77 23689.84 18595.43 12577.96 22185.59 33195.32 17475.31 28376.27 24483.70 31173.89 16497.41 16959.53 31281.93 21994.14 204
PMMVS89.46 11689.92 10188.06 22194.64 14869.57 31696.22 17494.95 18887.27 8091.37 7996.54 11765.88 22397.39 17088.54 11393.89 12197.23 136
PAPM92.87 4892.40 5794.30 3392.25 21387.85 1696.40 16496.38 10891.07 2188.72 11696.90 10482.11 5697.37 17190.05 9897.70 6797.67 108
HQP4-MVS82.30 17897.32 17291.13 222
HQP-MVS87.91 15387.55 14188.98 20092.08 22078.48 20297.63 6794.80 19790.52 2782.30 17894.56 16065.40 22797.32 17287.67 12283.01 20991.13 222
HQP_MVS87.50 15687.09 15388.74 20691.86 23077.96 22197.18 10294.69 20189.89 3581.33 19094.15 17064.77 23297.30 17487.08 12682.82 21390.96 224
plane_prior594.69 20197.30 17487.08 12682.82 21390.96 224
jason92.73 5292.23 6294.21 3890.50 25287.30 2398.65 1995.09 18190.61 2692.76 5997.13 9875.28 14897.30 17493.32 5596.75 9398.02 80
jason: jason.
CLD-MVS87.97 15187.48 14389.44 19292.16 21880.54 15498.14 3494.92 18991.41 1779.43 21095.40 13962.34 24397.27 17790.60 8982.90 21290.50 230
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
OPM-MVS85.84 18085.10 17788.06 22188.34 28177.83 22795.72 19794.20 22787.89 6980.45 20094.05 17258.57 27097.26 17883.88 14882.76 21589.09 261
BH-w/o88.24 14687.47 14490.54 16395.03 14078.54 20197.41 9093.82 24684.08 14878.23 22194.51 16269.34 20597.21 17980.21 18294.58 11495.87 174
Vis-MVSNetpermissive88.67 13487.82 13291.24 14592.68 19878.82 19596.95 12993.85 24587.55 7587.07 13395.13 14863.43 23897.21 17977.58 20796.15 9797.70 107
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
mvs-test186.83 16687.17 14985.81 26291.96 22665.24 32997.90 4993.34 27385.57 10584.51 15495.14 14761.99 24997.19 18183.55 15690.55 15095.00 190
AllTest75.92 29173.06 29884.47 28292.18 21667.29 32391.07 29584.43 34667.63 32363.48 32290.18 22338.20 34297.16 18257.04 32373.37 26188.97 269
TestCases84.47 28292.18 21667.29 32384.43 34667.63 32363.48 32290.18 22338.20 34297.16 18257.04 32373.37 26188.97 269
ACMH75.40 1777.99 27674.96 28387.10 24490.67 25076.41 24993.19 27091.64 30272.47 30763.44 32487.61 25743.34 32997.16 18258.34 31773.94 25787.72 291
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMM80.70 1383.72 21382.85 20886.31 25691.19 23972.12 29295.88 19194.29 22480.44 21677.02 23191.96 19655.24 29597.14 18579.30 19280.38 22389.67 247
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EPP-MVSNet89.76 11189.72 10689.87 18493.78 17176.02 25897.22 9696.51 8979.35 23985.11 14595.01 15384.82 2997.10 18687.46 12488.21 17096.50 158
tpm cat183.63 21481.38 23090.39 16693.53 18178.19 21785.56 33295.09 18170.78 31478.51 21883.28 31474.80 15497.03 18766.77 28284.05 20195.95 171
BH-untuned86.95 16285.94 16489.99 17894.52 15377.46 23396.78 13993.37 27281.80 19576.62 23793.81 17966.64 22097.02 18876.06 22493.88 12295.48 183
LTVRE_ROB73.68 1877.99 27675.74 28084.74 27590.45 25372.02 29386.41 32791.12 30872.57 30666.63 31187.27 26054.95 29896.98 18956.29 32775.98 24885.21 325
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CS-MVS92.29 6392.54 5691.51 13893.78 17180.14 16598.36 2894.53 21487.91 6893.39 5097.23 9376.09 12796.96 19094.36 4197.26 7897.43 124
TESTMET0.1,189.83 10989.34 11191.31 14192.54 20480.19 16397.11 11196.57 8086.15 9286.85 13691.83 20079.32 7596.95 19181.30 17392.35 13896.77 151
LPG-MVS_test84.20 20783.49 20186.33 25390.88 24473.06 28595.28 21194.13 23182.20 18876.31 24193.20 18354.83 29996.95 19183.72 15280.83 22188.98 267
LGP-MVS_train86.33 25390.88 24473.06 28594.13 23182.20 18876.31 24193.20 18354.83 29996.95 19183.72 15280.83 22188.98 267
COLMAP_ROBcopyleft73.24 1975.74 29373.00 29983.94 28892.38 20569.08 31891.85 28786.93 33761.48 34065.32 31790.27 22242.27 33496.93 19450.91 34175.63 25185.80 322
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
baseline188.85 12987.49 14292.93 9095.21 13286.85 2595.47 20694.61 21087.29 7883.11 17194.99 15480.70 6296.89 19582.28 16973.72 25895.05 189
ACMP81.66 1184.00 20883.22 20486.33 25391.53 23672.95 28795.91 19093.79 25083.70 16273.79 26892.22 19254.31 30296.89 19583.98 14779.74 22789.16 259
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CostFormer89.08 12288.39 12491.15 14793.13 18979.15 18888.61 31096.11 12783.14 17189.58 10586.93 26783.83 3996.87 19788.22 11985.92 18897.42 125
USDC78.65 27176.25 27685.85 26187.58 28974.60 27189.58 30290.58 31784.05 14963.13 32688.23 24840.69 34096.86 19866.57 28575.81 25086.09 317
MS-PatchMatch83.05 22481.82 22486.72 25189.64 26679.10 19094.88 22894.59 21279.70 23470.67 29289.65 22950.43 30896.82 19970.82 26895.99 10284.25 331
HyFIR lowres test89.36 11788.60 12191.63 13594.91 14480.76 14895.60 20295.53 15782.56 18584.03 15791.24 20678.03 9596.81 20087.07 12888.41 16897.32 130
RPSCF77.73 27976.63 27481.06 31288.66 27955.76 35187.77 31787.88 33464.82 33274.14 26792.79 18849.22 31296.81 20067.47 28076.88 24790.62 227
test-LLR88.48 13987.98 12989.98 17992.26 21177.23 23897.11 11195.96 13583.76 16086.30 13991.38 20372.30 18196.78 20280.82 17591.92 14295.94 172
test-mter88.95 12488.60 12189.98 17992.26 21177.23 23897.11 11195.96 13585.32 11286.30 13991.38 20376.37 12296.78 20280.82 17591.92 14295.94 172
tpmrst88.36 14387.38 14691.31 14194.36 16079.92 16887.32 32095.26 17785.32 11288.34 12186.13 28380.60 6396.70 20483.78 14985.34 19697.30 133
Fast-Effi-MVS+87.93 15286.94 15690.92 15394.04 16779.16 18798.26 3093.72 25581.29 20083.94 16192.90 18769.83 20396.68 20576.70 21691.74 14496.93 143
AUN-MVS86.25 17685.57 16688.26 21693.57 17873.38 28095.45 20795.88 14083.94 15385.47 14394.21 16873.70 16996.67 20683.54 15864.41 32294.73 198
hse-mvs288.22 14788.21 12588.25 21793.54 17973.41 27995.41 20995.89 13990.39 3092.22 6494.22 16774.70 15596.66 20793.14 5964.37 32394.69 199
MDTV_nov1_ep1383.69 19494.09 16581.01 14086.78 32496.09 12883.81 15984.75 14984.32 30674.44 15996.54 20863.88 29785.07 197
XXY-MVS83.84 21082.00 22189.35 19387.13 29281.38 13395.72 19794.26 22580.15 22575.92 25290.63 21561.96 25196.52 20978.98 19673.28 26490.14 237
ACMH+76.62 1677.47 28274.94 28485.05 27291.07 24271.58 30193.26 26790.01 31971.80 31064.76 31988.55 24341.62 33696.48 21062.35 30471.00 27287.09 305
GA-MVS85.79 18284.04 19291.02 15189.47 27080.27 16096.90 13294.84 19585.57 10580.88 19489.08 23456.56 28796.47 21177.72 20485.35 19596.34 163
tpm287.35 15886.26 16190.62 16192.93 19578.67 19988.06 31595.99 13379.33 24087.40 12886.43 27880.28 6796.40 21280.23 18185.73 19296.79 149
dp84.30 20682.31 21790.28 17094.24 16277.97 22086.57 32595.53 15779.94 23080.75 19685.16 29771.49 19096.39 21363.73 29883.36 20696.48 159
nrg03086.79 16885.43 16890.87 15588.76 27585.34 4797.06 11994.33 22384.31 14280.45 20091.98 19572.36 17996.36 21488.48 11671.13 27190.93 226
RRT_test8_iter0587.14 15986.41 16089.32 19494.41 15881.10 13997.06 11995.33 17384.67 13176.27 24490.48 21783.60 4196.33 21585.10 13970.78 27490.53 229
CMPMVSbinary54.94 2175.71 29474.56 28979.17 32179.69 33855.98 34989.59 30193.30 27560.28 34453.85 34889.07 23547.68 31996.33 21576.55 21781.02 22085.22 324
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
VPA-MVSNet85.32 18883.83 19389.77 18990.25 25582.63 10296.36 16597.07 2583.03 17481.21 19289.02 23661.58 25396.31 21785.02 14270.95 27390.36 231
XVG-ACMP-BASELINE79.38 26777.90 26483.81 28984.98 31867.14 32689.03 30693.18 27980.26 22472.87 27888.15 25038.55 34196.26 21876.05 22578.05 24388.02 287
EPMVS87.47 15785.90 16592.18 11795.41 12682.26 11087.00 32296.28 11685.88 10084.23 15585.57 28975.07 15296.26 21871.14 26492.50 13598.03 79
IS-MVSNet88.67 13488.16 12790.20 17393.61 17676.86 24396.77 14193.07 28384.02 15083.62 16595.60 13574.69 15896.24 22078.43 20093.66 12597.49 122
GG-mvs-BLEND93.49 6694.94 14286.26 2981.62 33797.00 2888.32 12294.30 16591.23 396.21 22188.49 11597.43 7398.00 85
GeoE86.36 17385.20 17289.83 18693.17 18776.13 25397.53 7692.11 29479.58 23680.99 19394.01 17366.60 22196.17 22273.48 24889.30 15697.20 138
gg-mvs-nofinetune85.48 18782.90 20793.24 7494.51 15685.82 3779.22 34196.97 3261.19 34187.33 13053.01 35490.58 496.07 22386.07 13397.23 7997.81 99
v2v48283.46 21681.86 22388.25 21786.19 30179.65 17696.34 16794.02 23881.56 19877.32 22788.23 24865.62 22496.03 22477.77 20269.72 28789.09 261
V4283.04 22581.53 22887.57 23286.27 30079.09 19195.87 19294.11 23380.35 22077.22 22986.79 27065.32 22996.02 22577.74 20370.14 27987.61 296
VPNet84.69 19882.92 20690.01 17789.01 27483.45 8796.71 14595.46 16285.71 10379.65 20992.18 19356.66 28696.01 22683.05 16667.84 30590.56 228
test_post33.80 36076.17 12595.97 227
EI-MVSNet85.80 18185.20 17287.59 23091.55 23477.41 23495.13 21995.36 16980.43 21880.33 20294.71 15773.72 16795.97 22776.96 21478.64 23789.39 250
MVSTER89.25 12188.92 11890.24 17195.98 11384.66 6696.79 13895.36 16987.19 8480.33 20290.61 21690.02 995.97 22785.38 13878.64 23790.09 240
PatchmatchNetpermissive86.83 16685.12 17691.95 12494.12 16482.27 10986.55 32695.64 15384.59 13482.98 17384.99 30177.26 10595.96 23068.61 27691.34 14697.64 111
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_part184.72 19682.85 20890.34 16895.73 11984.79 6596.75 14294.10 23479.05 25175.97 25089.51 23167.69 20995.94 23179.34 19067.50 30890.30 235
TinyColmap72.41 30768.99 31482.68 30388.11 28469.59 31588.41 31185.20 34365.55 32957.91 34284.82 30330.80 35595.94 23151.38 33868.70 29482.49 342
v114482.90 22881.27 23287.78 22686.29 29979.07 19296.14 17993.93 24080.05 22777.38 22586.80 26965.50 22595.93 23375.21 23270.13 28088.33 282
v14419282.43 23480.73 23787.54 23385.81 30878.22 21295.98 18493.78 25179.09 24777.11 23086.49 27464.66 23495.91 23474.20 24269.42 28888.49 276
v119282.31 23880.55 24187.60 22985.94 30578.47 20595.85 19493.80 24979.33 24076.97 23286.51 27363.33 23995.87 23573.11 24970.13 28088.46 278
v124081.70 24479.83 25287.30 24085.50 31077.70 23095.48 20593.44 26678.46 25776.53 23886.44 27660.85 25695.84 23671.59 25870.17 27888.35 281
v192192082.02 24180.23 24587.41 23685.62 30977.92 22495.79 19693.69 25678.86 25276.67 23586.44 27662.50 24295.83 23772.69 25169.77 28688.47 277
v881.88 24280.06 24987.32 23886.63 29579.04 19394.41 23693.65 25878.77 25373.19 27585.57 28966.87 21895.81 23873.84 24667.61 30787.11 304
D2MVS82.67 23181.55 22786.04 26087.77 28776.47 24795.21 21596.58 7982.66 18370.26 29585.46 29260.39 25795.80 23976.40 22079.18 23285.83 321
PS-MVSNAJss84.91 19484.30 18886.74 24785.89 30774.40 27594.95 22694.16 23083.93 15576.45 23990.11 22771.04 19495.77 24083.16 16479.02 23490.06 242
MVP-Stereo82.65 23281.67 22685.59 26786.10 30478.29 20993.33 26292.82 28677.75 26369.17 30287.98 25259.28 26695.76 24171.77 25696.88 8882.73 339
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tfpnnormal78.14 27575.42 28186.31 25688.33 28279.24 18494.41 23696.22 12073.51 29669.81 29885.52 29155.43 29395.75 24247.65 34867.86 30483.95 334
v14882.41 23780.89 23486.99 24586.18 30276.81 24496.27 17193.82 24680.49 21575.28 26086.11 28467.32 21595.75 24275.48 23067.03 31488.42 280
v1081.43 24879.53 25487.11 24386.38 29678.87 19494.31 24093.43 26777.88 26173.24 27485.26 29365.44 22695.75 24272.14 25567.71 30686.72 308
TAMVS88.48 13987.79 13390.56 16291.09 24179.18 18696.45 15895.88 14083.64 16383.12 17093.33 18275.94 13095.74 24582.40 16888.27 16996.75 153
cl-mvsnet285.11 19184.17 19087.92 22395.06 13978.82 19595.51 20494.22 22679.74 23376.77 23487.92 25375.96 12995.68 24679.93 18672.42 26689.27 256
UniMVSNet_ETH3D80.86 25578.75 25987.22 24286.31 29872.02 29391.95 28493.76 25473.51 29675.06 26290.16 22543.04 33295.66 24776.37 22178.55 24093.98 207
Anonymous2023121179.72 26377.19 26987.33 23795.59 12277.16 24195.18 21894.18 22959.31 34872.57 28186.20 28247.89 31795.66 24774.53 24069.24 29189.18 258
CHOSEN 280x42091.71 7391.85 6791.29 14394.94 14282.69 10187.89 31696.17 12485.94 9887.27 13194.31 16490.27 695.65 24994.04 4695.86 10395.53 182
CDS-MVSNet89.50 11588.96 11691.14 14891.94 22980.93 14397.09 11595.81 14484.26 14584.72 15094.20 16980.31 6695.64 25083.37 16188.96 16096.85 148
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS-HIRNet71.36 31267.00 31684.46 28490.58 25169.74 31479.15 34287.74 33546.09 35361.96 33250.50 35545.14 32495.64 25053.74 33488.11 17188.00 288
v7n79.32 26877.34 26785.28 27084.05 32772.89 28893.38 26093.87 24475.02 28670.68 29184.37 30559.58 26295.62 25267.60 27867.50 30887.32 303
Effi-MVS+-dtu84.61 19984.90 18183.72 29391.96 22663.14 33694.95 22693.34 27385.57 10579.79 20887.12 26461.99 24995.61 25383.55 15685.83 19092.41 218
JIA-IIPM79.00 27077.20 26884.40 28589.74 26564.06 33375.30 35095.44 16462.15 33681.90 18659.08 35278.92 8295.59 25466.51 28685.78 19193.54 212
Fast-Effi-MVS+-dtu83.33 21882.60 21485.50 26889.55 26869.38 31796.09 18291.38 30382.30 18775.96 25191.41 20256.71 28495.58 25575.13 23384.90 19891.54 220
EG-PatchMatch MVS74.92 29672.02 30183.62 29483.76 32973.28 28393.62 25592.04 29668.57 32258.88 33983.80 31031.87 35395.57 25656.97 32578.67 23682.00 345
UniMVSNet (Re)85.31 18984.23 18988.55 20989.75 26380.55 15396.72 14396.89 3985.42 10978.40 21988.93 23875.38 14495.52 25778.58 19868.02 30289.57 248
OpenMVS_ROBcopyleft68.52 2073.02 30569.57 31183.37 29880.54 33671.82 29793.60 25688.22 33362.37 33561.98 33183.15 31535.31 34895.47 25845.08 35175.88 24982.82 337
miper_enhance_ethall85.95 17985.20 17288.19 22094.85 14579.76 17196.00 18394.06 23782.98 17677.74 22488.76 24079.42 7495.46 25980.58 17772.42 26689.36 255
patchmatchnet-post77.09 33977.78 9995.39 260
SCA85.63 18483.64 19791.60 13692.30 20981.86 12192.88 27595.56 15684.85 12482.52 17485.12 29958.04 27495.39 26073.89 24487.58 17597.54 116
jajsoiax82.12 24081.15 23385.03 27384.19 32470.70 30594.22 24593.95 23983.07 17373.48 27089.75 22849.66 31195.37 26282.24 17079.76 22589.02 265
mvs_anonymous88.68 13387.62 13891.86 12794.80 14681.69 12993.53 25894.92 18982.03 19278.87 21590.43 22075.77 13295.34 26385.04 14193.16 13098.55 44
ITE_SJBPF82.38 30587.00 29365.59 32889.55 32279.99 22969.37 30091.30 20541.60 33795.33 26462.86 30374.63 25686.24 314
eth_miper_zixun_eth83.12 22382.01 22086.47 25291.85 23274.80 26994.33 23993.18 27979.11 24675.74 25687.25 26272.71 17695.32 26576.78 21567.13 31289.27 256
mvs_tets81.74 24380.71 23884.84 27484.22 32370.29 30893.91 25093.78 25182.77 18073.37 27189.46 23247.36 32095.31 26681.99 17179.55 23088.92 271
FIs86.73 17086.10 16288.61 20890.05 26080.21 16296.14 17996.95 3485.56 10878.37 22092.30 19176.73 11595.28 26779.51 18879.27 23190.35 232
pm-mvs180.05 26078.02 26386.15 25885.42 31175.81 26295.11 22192.69 28977.13 27170.36 29487.43 25858.44 27295.27 26871.36 26064.25 32487.36 302
miper_ehance_all_eth84.57 20083.60 19987.50 23492.64 20278.25 21195.40 21093.47 26479.28 24376.41 24087.64 25676.53 11895.24 26978.58 19872.42 26689.01 266
ADS-MVSNet81.26 25078.36 26089.96 18193.78 17179.78 17079.48 33993.60 26073.09 30180.14 20479.99 33162.15 24695.24 26959.49 31383.52 20394.85 192
cl-mvsnet____83.27 21982.12 21886.74 24792.20 21475.95 26095.11 22193.27 27678.44 25874.82 26387.02 26674.19 16195.19 27174.67 23769.32 28989.09 261
cl-mvsnet183.27 21982.12 21886.74 24792.19 21575.92 26195.11 22193.26 27778.44 25874.81 26487.08 26574.19 16195.19 27174.66 23869.30 29089.11 260
IterMVS-LS83.93 20982.80 21187.31 23991.46 23777.39 23595.66 20093.43 26780.44 21675.51 25787.26 26173.72 16795.16 27376.99 21270.72 27689.39 250
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_NR-MVSNet85.49 18684.59 18288.21 21989.44 27179.36 18196.71 14596.41 10185.22 11678.11 22290.98 21176.97 11195.14 27479.14 19468.30 29990.12 238
DU-MVS84.57 20083.33 20388.28 21588.76 27579.36 18196.43 16295.41 16885.42 10978.11 22290.82 21267.61 21095.14 27479.14 19468.30 29990.33 233
cl_fuxian83.80 21182.65 21387.25 24192.10 21977.74 22995.25 21493.04 28478.58 25576.01 24887.21 26375.25 14995.11 27677.54 20868.89 29388.91 272
bset_n11_16_dypcd84.35 20482.83 21088.91 20182.54 33182.07 11394.12 24793.47 26485.39 11178.55 21788.98 23762.23 24495.11 27686.75 13173.42 26089.55 249
MVSFormer91.36 8290.57 8693.73 5393.00 19288.08 1494.80 23094.48 21680.74 20894.90 3297.13 9878.84 8395.10 27883.77 15097.46 7098.02 80
test_djsdf83.00 22782.45 21684.64 27984.07 32669.78 31394.80 23094.48 21680.74 20875.41 25987.70 25561.32 25595.10 27883.77 15079.76 22589.04 264
test_post185.88 33030.24 36373.77 16595.07 28073.89 244
pmmvs482.54 23380.79 23587.79 22586.11 30380.49 15693.55 25793.18 27977.29 26973.35 27289.40 23365.26 23095.05 28175.32 23173.61 25987.83 290
RRT_MVS86.89 16385.96 16389.68 19195.01 14184.13 7396.33 16894.98 18784.20 14780.10 20692.07 19470.52 19895.01 28283.30 16277.14 24689.91 244
anonymousdsp80.98 25479.97 25084.01 28781.73 33270.44 30792.49 27993.58 26277.10 27372.98 27786.31 28057.58 27894.90 28379.32 19178.63 23986.69 309
NR-MVSNet83.35 21781.52 22988.84 20388.76 27581.31 13594.45 23595.16 17984.65 13267.81 30490.82 21270.36 20094.87 28474.75 23566.89 31590.33 233
WR-MVS84.32 20582.96 20588.41 21189.38 27280.32 15796.59 15096.25 11883.97 15276.63 23690.36 22167.53 21294.86 28575.82 22870.09 28390.06 242
pmmvs674.65 29871.67 30283.60 29579.13 34069.94 31093.31 26690.88 31561.05 34365.83 31584.15 30843.43 32894.83 28666.62 28360.63 33186.02 318
FC-MVSNet-test85.96 17885.39 16987.66 22889.38 27278.02 21995.65 20196.87 4085.12 12077.34 22691.94 19876.28 12494.74 28777.09 21178.82 23590.21 236
Vis-MVSNet (Re-imp)88.88 12888.87 11988.91 20193.89 17074.43 27496.93 13194.19 22884.39 13983.22 16995.67 13278.24 9294.70 28878.88 19794.40 11697.61 114
tpm85.55 18584.47 18688.80 20590.19 25775.39 26688.79 30894.69 20184.83 12583.96 16085.21 29578.22 9394.68 28976.32 22278.02 24496.34 163
TranMVSNet+NR-MVSNet83.24 22181.71 22587.83 22487.71 28878.81 19796.13 18194.82 19684.52 13576.18 24790.78 21464.07 23594.60 29074.60 23966.59 31790.09 240
Patchmatch-test78.25 27474.72 28788.83 20491.20 23874.10 27773.91 35388.70 33259.89 34766.82 31085.12 29978.38 9094.54 29148.84 34679.58 22997.86 94
FMVSNet384.71 19782.71 21290.70 16094.55 15187.71 1895.92 18894.67 20481.73 19675.82 25388.08 25166.99 21794.47 29271.23 26175.38 25289.91 244
pmmvs581.34 24979.54 25386.73 25085.02 31776.91 24296.22 17491.65 30177.65 26473.55 26988.61 24255.70 29294.43 29374.12 24373.35 26388.86 273
Baseline_NR-MVSNet81.22 25180.07 24884.68 27785.32 31575.12 26896.48 15488.80 32976.24 27877.28 22886.40 27967.61 21094.39 29475.73 22966.73 31684.54 328
FMVSNet282.79 22980.44 24289.83 18692.66 19985.43 4695.42 20894.35 22279.06 24874.46 26587.28 25956.38 28994.31 29569.72 27174.68 25589.76 246
SixPastTwentyTwo76.04 29074.32 29181.22 31184.54 32061.43 34291.16 29489.30 32577.89 26064.04 32186.31 28048.23 31394.29 29663.54 30063.84 32687.93 289
TDRefinement69.20 31665.78 32079.48 31966.04 35862.21 33888.21 31286.12 34062.92 33461.03 33585.61 28833.23 35094.16 29755.82 33053.02 34282.08 344
TransMVSNet (Re)76.94 28674.38 29084.62 28085.92 30675.25 26795.28 21189.18 32673.88 29467.22 30586.46 27559.64 26094.10 29859.24 31652.57 34484.50 329
OurMVSNet-221017-077.18 28576.06 27780.55 31583.78 32860.00 34490.35 29891.05 31177.01 27566.62 31287.92 25347.73 31894.03 29971.63 25768.44 29787.62 295
EPNet_dtu87.65 15587.89 13086.93 24694.57 15071.37 30396.72 14396.50 9188.56 5487.12 13295.02 15275.91 13194.01 30066.62 28390.00 15295.42 184
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
lessismore_v079.98 31780.59 33558.34 34780.87 35458.49 34083.46 31343.10 33193.89 30163.11 30248.68 34687.72 291
GBi-Net82.42 23580.43 24388.39 21292.66 19981.95 11494.30 24193.38 26979.06 24875.82 25385.66 28556.38 28993.84 30271.23 26175.38 25289.38 252
test182.42 23580.43 24388.39 21292.66 19981.95 11494.30 24193.38 26979.06 24875.82 25385.66 28556.38 28993.84 30271.23 26175.38 25289.38 252
FMVSNet179.50 26576.54 27588.39 21288.47 28081.95 11494.30 24193.38 26973.14 30072.04 28585.66 28543.86 32693.84 30265.48 29072.53 26589.38 252
test_040272.68 30669.54 31282.09 30888.67 27871.81 29892.72 27786.77 33861.52 33962.21 33083.91 30943.22 33093.76 30534.60 35572.23 26980.72 347
CR-MVSNet83.53 21581.36 23190.06 17690.16 25879.75 17279.02 34391.12 30884.24 14682.27 18280.35 32875.45 14093.67 30663.37 30186.25 18396.75 153
ET-MVSNet_ETH3D90.01 10889.03 11392.95 8894.38 15986.77 2698.14 3496.31 11589.30 4263.33 32596.72 11490.09 893.63 30790.70 8882.29 21898.46 47
Patchmtry77.36 28374.59 28885.67 26689.75 26375.75 26377.85 34691.12 30860.28 34471.23 28780.35 32875.45 14093.56 30857.94 31867.34 31187.68 293
miper_lstm_enhance81.66 24680.66 23984.67 27891.19 23971.97 29591.94 28593.19 27877.86 26272.27 28385.26 29373.46 17093.42 30973.71 24767.05 31388.61 274
PatchT79.75 26276.85 27288.42 21089.55 26875.49 26577.37 34794.61 21063.07 33382.46 17673.32 34575.52 13993.41 31051.36 33984.43 19996.36 161
ppachtmachnet_test77.19 28474.22 29286.13 25985.39 31278.22 21293.98 24991.36 30571.74 31167.11 30784.87 30256.67 28593.37 31152.21 33764.59 32186.80 307
MVS_030478.43 27276.70 27383.60 29588.22 28369.81 31292.91 27495.10 18072.32 30878.71 21680.29 33033.78 34993.37 31168.77 27580.23 22487.63 294
our_test_377.90 27875.37 28285.48 26985.39 31276.74 24593.63 25491.67 30073.39 29965.72 31684.65 30458.20 27393.13 31357.82 31967.87 30386.57 310
LCM-MVSNet-Re83.75 21283.54 20084.39 28693.54 17964.14 33292.51 27884.03 34883.90 15666.14 31486.59 27267.36 21492.68 31484.89 14392.87 13196.35 162
WR-MVS_H81.02 25280.09 24683.79 29088.08 28571.26 30494.46 23496.54 8580.08 22672.81 27986.82 26870.36 20092.65 31564.18 29567.50 30887.46 301
ambc76.02 32968.11 35651.43 35464.97 35689.59 32160.49 33674.49 34117.17 36092.46 31661.50 30752.85 34384.17 332
PEN-MVS79.47 26678.26 26283.08 30086.36 29768.58 31993.85 25194.77 20079.76 23271.37 28688.55 24359.79 25992.46 31664.50 29465.40 31988.19 284
CP-MVSNet81.01 25380.08 24783.79 29087.91 28670.51 30694.29 24495.65 15180.83 20672.54 28288.84 23963.71 23692.32 31868.58 27768.36 29888.55 275
LF4IMVS72.36 30870.82 30576.95 32579.18 33956.33 34886.12 32886.11 34169.30 32163.06 32786.66 27133.03 35192.25 31965.33 29168.64 29582.28 343
PS-CasMVS80.27 25979.18 25583.52 29787.56 29069.88 31194.08 24895.29 17580.27 22372.08 28488.51 24659.22 26792.23 32067.49 27968.15 30188.45 279
DTE-MVSNet78.37 27377.06 27082.32 30785.22 31667.17 32593.40 25993.66 25778.71 25470.53 29388.29 24759.06 26892.23 32061.38 30863.28 32887.56 298
UnsupCasMVSNet_bld68.60 31864.50 32180.92 31374.63 35367.80 32183.97 33492.94 28565.12 33154.63 34768.23 35035.97 34592.17 32260.13 31144.83 35182.78 338
KD-MVS_2432*160077.63 28074.92 28585.77 26390.86 24679.44 17988.08 31393.92 24176.26 27667.05 30882.78 31672.15 18391.92 32361.53 30541.62 35485.94 319
miper_refine_blended77.63 28074.92 28585.77 26390.86 24679.44 17988.08 31393.92 24176.26 27667.05 30882.78 31672.15 18391.92 32361.53 30541.62 35485.94 319
N_pmnet61.30 32160.20 32464.60 33684.32 32217.00 36991.67 29110.98 36861.77 33858.45 34178.55 33549.89 31091.83 32542.27 35363.94 32584.97 326
K. test v373.62 29971.59 30379.69 31882.98 33059.85 34590.85 29788.83 32877.13 27158.90 33882.11 31843.62 32791.72 32665.83 28954.10 33987.50 300
Patchmatch-RL test76.65 28874.01 29584.55 28177.37 34664.23 33178.49 34582.84 35278.48 25664.63 32073.40 34476.05 12891.70 32776.99 21257.84 33497.72 104
IterMVS-SCA-FT80.51 25879.10 25784.73 27689.63 26774.66 27092.98 27291.81 29980.05 22771.06 29085.18 29658.04 27491.40 32872.48 25470.70 27788.12 286
IterMVS80.67 25679.16 25685.20 27189.79 26276.08 25492.97 27391.86 29780.28 22271.20 28885.14 29857.93 27791.34 32972.52 25370.74 27588.18 285
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MDA-MVSNet-bldmvs71.45 31167.94 31581.98 30985.33 31468.50 32092.35 28288.76 33070.40 31542.99 35381.96 31946.57 32191.31 33048.75 34754.39 33886.11 316
pmmvs-eth3d73.59 30070.66 30682.38 30576.40 35073.38 28089.39 30589.43 32372.69 30560.34 33777.79 33746.43 32291.26 33166.42 28757.06 33582.51 340
PM-MVS69.32 31566.93 31776.49 32773.60 35455.84 35085.91 32979.32 35774.72 28861.09 33478.18 33621.76 35791.10 33270.86 26656.90 33682.51 340
Anonymous2024052172.06 31069.91 31078.50 32277.11 34761.67 34191.62 29290.97 31365.52 33062.37 32979.05 33436.32 34490.96 33357.75 32068.52 29682.87 336
Anonymous2023120675.29 29573.64 29680.22 31680.75 33363.38 33593.36 26190.71 31673.09 30167.12 30683.70 31150.33 30990.85 33453.63 33570.10 28286.44 311
MIMVSNet79.18 26975.99 27888.72 20787.37 29180.66 15079.96 33891.82 29877.38 26874.33 26681.87 32041.78 33590.74 33566.36 28883.10 20894.76 194
UnsupCasMVSNet_eth73.25 30370.57 30781.30 31077.53 34466.33 32787.24 32193.89 24380.38 21957.90 34381.59 32142.91 33390.56 33665.18 29248.51 34787.01 306
YYNet173.53 30270.43 30882.85 30284.52 32171.73 29991.69 29091.37 30467.63 32346.79 35181.21 32455.04 29790.43 33755.93 32859.70 33386.38 312
MDA-MVSNet_test_wron73.54 30170.43 30882.86 30184.55 31971.85 29691.74 28991.32 30767.63 32346.73 35281.09 32555.11 29690.42 33855.91 32959.76 33286.31 313
CVMVSNet84.83 19585.57 16682.63 30491.55 23460.38 34395.13 21995.03 18580.60 21182.10 18494.71 15766.40 22290.19 33974.30 24190.32 15197.31 132
ADS-MVSNet279.57 26477.53 26685.71 26593.78 17172.13 29179.48 33986.11 34173.09 30180.14 20479.99 33162.15 24690.14 34059.49 31383.52 20394.85 192
CL-MVSNet_2432*160075.81 29274.14 29480.83 31478.33 34267.79 32294.22 24593.52 26377.28 27069.82 29781.54 32261.47 25489.22 34157.59 32153.51 34085.48 323
test0.0.03 182.79 22982.48 21583.74 29286.81 29472.22 28996.52 15295.03 18583.76 16073.00 27693.20 18372.30 18188.88 34264.15 29677.52 24590.12 238
testgi74.88 29773.40 29779.32 32080.13 33761.75 33993.21 26886.64 33979.49 23866.56 31391.06 20835.51 34788.67 34356.79 32671.25 27087.56 298
DIV-MVS_2432*160070.97 31369.31 31375.95 33176.24 35255.39 35287.45 31890.94 31470.20 31762.96 32877.48 33844.01 32588.09 34461.25 30953.26 34184.37 330
new_pmnet66.18 31963.18 32275.18 33376.27 35161.74 34083.79 33584.66 34556.64 35151.57 34971.85 34931.29 35487.93 34549.98 34362.55 32975.86 350
FMVSNet576.46 28974.16 29383.35 29990.05 26076.17 25289.58 30289.85 32071.39 31365.29 31880.42 32750.61 30787.70 34661.05 31069.24 29186.18 315
EU-MVSNet76.92 28776.95 27176.83 32684.10 32554.73 35391.77 28892.71 28872.74 30469.57 29988.69 24158.03 27687.43 34764.91 29370.00 28488.33 282
new-patchmatchnet68.85 31765.93 31977.61 32473.57 35563.94 33490.11 30088.73 33171.62 31255.08 34673.60 34340.84 33987.22 34851.35 34048.49 34881.67 346
DSMNet-mixed73.13 30472.45 30075.19 33277.51 34546.82 35685.09 33382.01 35367.61 32769.27 30181.33 32350.89 30586.28 34954.54 33283.80 20292.46 217
pmmvs365.75 32062.18 32376.45 32867.12 35764.54 33088.68 30985.05 34454.77 35257.54 34573.79 34229.40 35686.21 35055.49 33147.77 34978.62 348
MIMVSNet169.44 31466.65 31877.84 32376.48 34962.84 33787.42 31988.97 32766.96 32857.75 34479.72 33332.77 35285.83 35146.32 34963.42 32784.85 327
test20.0372.36 30871.15 30475.98 33077.79 34359.16 34692.40 28189.35 32474.09 29261.50 33384.32 30648.09 31485.54 35250.63 34262.15 33083.24 335
DeepMVS_CXcopyleft64.06 33778.53 34143.26 35968.11 36269.94 31838.55 35476.14 34018.53 35979.34 35343.72 35241.62 35469.57 353
FPMVS55.09 32352.93 32661.57 33955.98 35940.51 36283.11 33683.41 35137.61 35534.95 35671.95 34714.40 36176.95 35429.81 35665.16 32067.25 354
LCM-MVSNet52.52 32448.24 32765.35 33447.63 36441.45 36072.55 35483.62 35031.75 35637.66 35557.92 3539.19 36776.76 35549.26 34544.60 35277.84 349
Gipumacopyleft45.11 32742.05 32954.30 34180.69 33451.30 35535.80 36083.81 34928.13 35727.94 35934.53 35911.41 36576.70 35621.45 35854.65 33734.90 358
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS250.90 32546.31 32864.67 33555.53 36046.67 35777.30 34871.02 36040.89 35434.16 35759.32 3519.83 36676.14 35740.09 35428.63 35771.21 351
PMVScopyleft34.80 2339.19 32935.53 33250.18 34229.72 36730.30 36459.60 35866.20 36326.06 35817.91 36249.53 3563.12 36874.09 35818.19 36049.40 34546.14 355
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ANet_high46.22 32641.28 33161.04 34039.91 36646.25 35870.59 35576.18 35858.87 34923.09 36048.00 35712.58 36366.54 35928.65 35713.62 36070.35 352
test_method56.77 32254.53 32563.49 33876.49 34840.70 36175.68 34974.24 35919.47 36148.73 35071.89 34819.31 35865.80 36057.46 32247.51 35083.97 333
MVEpermissive35.65 2233.85 33029.49 33546.92 34341.86 36536.28 36350.45 35956.52 36518.75 36218.28 36137.84 3582.41 36958.41 36118.71 35920.62 35846.06 356
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN32.70 33132.39 33333.65 34553.35 36225.70 36674.07 35253.33 36621.08 35917.17 36333.63 36111.85 36454.84 36212.98 36114.04 35920.42 359
EMVS31.70 33231.45 33432.48 34650.72 36323.95 36774.78 35152.30 36720.36 36016.08 36431.48 36212.80 36253.60 36311.39 36213.10 36219.88 360
tmp_tt41.54 32841.93 33040.38 34420.10 36826.84 36561.93 35759.09 36414.81 36328.51 35880.58 32635.53 34648.33 36463.70 29913.11 36145.96 357
wuyk23d14.10 33413.89 33714.72 34755.23 36122.91 36833.83 3613.56 3694.94 3644.11 3652.28 3672.06 37019.66 36510.23 3638.74 3631.59 363
test1239.07 33611.73 3391.11 3480.50 3700.77 37089.44 3040.20 3710.34 3662.15 36710.72 3660.34 3710.32 3661.79 3650.08 3652.23 361
testmvs9.92 33512.94 3380.84 3490.65 3690.29 37193.78 2520.39 3700.42 3652.85 36615.84 3650.17 3720.30 3672.18 3640.21 3641.91 362
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
cdsmvs_eth3d_5k21.43 33328.57 3360.00 3500.00 3710.00 3720.00 36295.93 1380.00 3670.00 36897.66 6963.57 2370.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas5.92 3387.89 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36871.04 1940.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re8.11 33710.81 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36897.30 900.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
RE-MVS-def91.18 8097.76 7376.03 25696.20 17695.44 16480.56 21390.72 8997.84 6273.36 17291.99 7496.79 9197.75 102
IU-MVS99.03 1385.34 4796.86 4292.05 1598.74 198.15 298.97 1599.42 9
save fliter98.24 5283.34 8998.61 2296.57 8091.32 18
test072699.05 1085.18 5199.11 896.78 4588.75 4897.65 698.91 387.69 18
GSMVS97.54 116
test_part298.90 1785.14 5796.07 17
sam_mvs177.59 10097.54 116
sam_mvs75.35 147
MTGPAbinary96.33 112
MTMP97.53 7668.16 361
test9_res96.00 2199.03 1198.31 57
agg_prior294.30 4299.00 1398.57 41
test_prior482.34 10897.75 61
test_prior298.37 2686.08 9594.57 3898.02 4983.14 4495.05 3498.79 23
新几何296.42 163
旧先验197.39 8879.58 17896.54 8598.08 4684.00 3697.42 7497.62 113
原ACMM296.84 134
test22296.15 10878.41 20695.87 19296.46 9571.97 30989.66 10397.45 8176.33 12398.24 5498.30 58
segment_acmp82.69 53
testdata195.57 20387.44 76
plane_prior791.86 23077.55 232
plane_prior691.98 22577.92 22464.77 232
plane_prior494.15 170
plane_prior377.75 22890.17 3381.33 190
plane_prior297.18 10289.89 35
plane_prior191.95 228
plane_prior77.96 22197.52 7990.36 3282.96 211
n20.00 372
nn0.00 372
door-mid79.75 356
test1196.50 91
door80.13 355
HQP5-MVS78.48 202
HQP-NCC92.08 22097.63 6790.52 2782.30 178
ACMP_Plane92.08 22097.63 6790.52 2782.30 178
BP-MVS87.67 122
HQP3-MVS94.80 19783.01 209
HQP2-MVS65.40 227
NP-MVS92.04 22478.22 21294.56 160
MDTV_nov1_ep13_2view81.74 12686.80 32380.65 21085.65 14274.26 16076.52 21896.98 141
ACMMP++_ref78.45 241
ACMMP++79.05 233
Test By Simon71.65 187