This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
CHOSEN 280x42096.80 3396.85 2896.66 8497.85 10894.42 5194.76 32898.36 2992.50 8395.62 10697.52 15097.92 197.38 23898.31 4498.80 9298.20 181
GG-mvs-BLEND96.98 6596.53 16394.81 4187.20 37697.74 7793.91 13696.40 20396.56 296.94 25495.08 10998.95 8599.20 106
gg-mvs-nofinetune90.00 21087.71 23796.89 7396.15 18394.69 4585.15 38297.74 7768.32 38292.97 15160.16 39596.10 396.84 25793.89 13198.87 8999.14 110
MSP-MVS97.77 998.18 296.53 9299.54 3690.14 14299.41 6997.70 8695.46 3098.60 3099.19 3295.71 499.49 11298.15 4899.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
iter_conf0593.48 13293.18 12994.39 18297.15 14194.17 5799.30 8192.97 35392.38 9086.70 22995.42 22695.67 596.59 26794.67 12184.32 26492.39 261
baseline294.04 11493.80 11394.74 16793.07 28890.25 13798.12 21798.16 3989.86 14686.53 23096.95 18195.56 698.05 19491.44 16494.53 17095.93 239
PC_three_145294.60 3899.41 499.12 4895.50 799.96 2899.84 299.92 399.97 7
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2299.55 4597.68 9093.01 7299.23 1199.45 1495.12 899.98 999.25 1899.92 399.97 7
OPU-MVS99.49 499.64 1798.51 499.77 1899.19 3295.12 899.97 2199.90 199.92 399.99 1
tttt051793.30 14093.01 13494.17 19095.57 20286.47 23198.51 17697.60 11285.99 25390.55 18697.19 16894.80 1098.31 17885.06 23891.86 20497.74 191
thisisatest053094.00 11593.52 11795.43 14095.76 19790.02 15198.99 12597.60 11286.58 24291.74 16397.36 15894.78 1198.34 17786.37 22392.48 19297.94 189
thisisatest051594.75 9494.19 9696.43 9796.13 18892.64 8999.47 5697.60 11287.55 22393.17 14797.59 14794.71 1298.42 17588.28 20293.20 18198.24 178
test_0728_THIRD93.01 7299.07 1699.46 1094.66 1399.97 2199.25 1899.82 1999.95 15
ET-MVSNet_ETH3D92.56 15891.45 16695.88 12596.39 17194.13 5899.46 6096.97 19492.18 9366.94 37698.29 12294.65 1494.28 34994.34 12683.82 27199.24 102
MVSTER92.71 15292.32 14693.86 20297.29 13292.95 8299.01 12396.59 20890.09 14085.51 23794.00 24894.61 1596.56 27090.77 17483.03 27792.08 278
DPM-MVS97.86 897.25 2199.68 198.25 9499.10 199.76 2197.78 7396.61 1298.15 4299.53 793.62 16100.00 191.79 16299.80 2699.94 18
test_one_060199.59 2894.89 3497.64 10393.14 7198.93 2299.45 1493.45 17
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2599.77 1897.72 8194.17 4599.30 999.54 393.32 1899.98 999.70 499.81 2399.99 1
test_241102_ONE99.63 1895.24 2597.72 8194.16 4799.30 999.49 993.32 1899.98 9
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2199.29 8297.72 8194.50 3998.64 2999.54 393.32 1899.97 2199.58 1099.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3099.72 2497.47 14193.95 5099.07 1699.46 1093.18 2199.97 2199.64 799.82 1999.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.66 1295.20 3099.77 1897.70 8693.95 5099.35 799.54 393.18 21
test_241102_TWO97.72 8194.17 4599.23 1199.54 393.14 2399.98 999.70 499.82 1999.99 1
CNVR-MVS98.46 198.38 198.72 999.80 496.19 1599.80 1697.99 5297.05 699.41 499.59 292.89 24100.00 198.99 2599.90 799.96 10
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2797.98 5397.18 395.96 9599.33 1992.62 25100.00 198.99 2599.93 199.98 6
NCCC98.12 598.11 398.13 2499.76 694.46 4899.81 1297.88 5796.54 1398.84 2599.46 1092.55 2699.98 998.25 4699.93 199.94 18
patch_mono-297.10 2697.97 894.49 17599.21 6183.73 29099.62 3898.25 3295.28 3299.38 698.91 7792.28 2799.94 3499.61 999.22 7199.78 38
SteuartSystems-ACMMP97.25 1997.34 2097.01 6097.38 12691.46 10699.75 2297.66 9594.14 4998.13 4399.26 2192.16 2899.66 9497.91 5499.64 4099.90 22
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + MP.97.44 1897.46 1697.39 4899.12 6593.49 6998.52 17397.50 13694.46 4098.99 1898.64 10191.58 2999.08 14898.49 3799.83 1599.60 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
TSAR-MVS + GP.96.95 2996.91 2697.07 5798.88 7991.62 10299.58 4296.54 21495.09 3496.84 7798.63 10391.16 3099.77 8599.04 2496.42 14599.81 33
EPP-MVSNet93.75 12593.67 11594.01 19895.86 19385.70 25998.67 15697.66 9584.46 27891.36 17597.18 16991.16 3097.79 20892.93 15093.75 17798.53 160
HPM-MVS++copyleft97.72 1197.59 1398.14 2399.53 4094.76 4299.19 9197.75 7695.66 2498.21 4199.29 2091.10 3299.99 597.68 5799.87 999.68 56
UWE-MVS93.18 14493.40 12292.50 22996.56 16183.55 29298.09 22397.84 6189.50 15991.72 16496.23 20991.08 3396.70 26386.28 22493.33 18097.26 206
旧先验198.97 7392.90 8497.74 7799.15 4191.05 3499.33 6499.60 67
train_agg97.20 2397.08 2397.57 4299.57 3393.17 7399.38 7297.66 9590.18 13698.39 3699.18 3590.94 3599.66 9498.58 3699.85 1399.88 26
test_899.55 3593.07 7699.37 7597.64 10390.18 13698.36 3899.19 3290.94 3599.64 100
fmvsm_l_conf0.5_n_a97.70 1297.80 1197.42 4597.59 11792.91 8399.86 598.04 4896.70 1099.58 299.26 2190.90 3799.94 3499.57 1198.66 9999.40 87
TEST999.57 3393.17 7399.38 7297.66 9589.57 15698.39 3699.18 3590.88 3899.66 94
SD-MVS97.51 1697.40 1897.81 3499.01 7293.79 6399.33 7997.38 15493.73 6198.83 2699.02 6090.87 3999.88 5498.69 3099.74 2999.77 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVScopyleft97.53 1497.47 1597.70 3699.58 3093.63 6499.56 4497.52 13193.59 6598.01 5199.12 4890.80 4099.55 10699.26 1799.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
testing1195.33 7894.98 8396.37 10297.20 13592.31 9299.29 8297.68 9090.59 12494.43 12597.20 16690.79 4198.60 16895.25 10692.38 19398.18 182
IB-MVS89.43 692.12 16890.83 18195.98 12295.40 21090.78 12599.81 1298.06 4591.23 11185.63 23693.66 25890.63 4298.78 15691.22 16571.85 35198.36 171
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
segment_acmp90.56 43
dcpmvs_295.67 7096.18 4594.12 19298.82 8184.22 28397.37 26095.45 29390.70 11995.77 10298.63 10390.47 4498.68 16499.20 2099.22 7199.45 83
test_prior299.57 4391.43 10698.12 4598.97 6490.43 4598.33 4299.81 23
fmvsm_l_conf0.5_n97.65 1397.72 1297.41 4697.51 12192.78 8599.85 898.05 4696.78 899.60 199.23 2690.42 4699.92 4099.55 1298.50 10499.55 72
SF-MVS97.22 2296.92 2598.12 2699.11 6694.88 3599.44 6397.45 14489.60 15498.70 2799.42 1790.42 4699.72 8998.47 3899.65 3899.77 43
DeepPCF-MVS93.56 196.55 4097.84 1092.68 22698.71 8578.11 34899.70 2797.71 8598.18 197.36 6399.76 190.37 4899.94 3499.27 1699.54 5399.99 1
SMA-MVScopyleft97.24 2096.99 2498.00 2999.30 5494.20 5599.16 9797.65 10289.55 15899.22 1399.52 890.34 4999.99 598.32 4399.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
testing9994.88 8894.45 8996.17 11297.20 13591.91 9799.20 9097.66 9589.95 14493.68 14097.06 17590.28 5098.50 17193.52 13991.54 21398.12 184
testing9194.88 8894.44 9096.21 10897.19 13791.90 9899.23 8897.66 9589.91 14593.66 14197.05 17790.21 5198.50 17193.52 13991.53 21698.25 175
ZD-MVS99.67 1093.28 7197.61 11087.78 21497.41 6199.16 3890.15 5299.56 10598.35 4199.70 35
CostFormer92.89 15092.48 14594.12 19294.99 23385.89 25492.89 34697.00 19286.98 23395.00 11790.78 30990.05 5397.51 23192.92 15191.73 20898.96 125
MSLP-MVS++97.50 1797.45 1797.63 3899.65 1693.21 7299.70 2798.13 4294.61 3797.78 5699.46 1089.85 5499.81 7997.97 5299.91 699.88 26
9.1496.87 2799.34 5099.50 5297.49 13889.41 16298.59 3199.43 1689.78 5599.69 9198.69 3099.62 45
PAPM96.35 4395.94 5497.58 4094.10 25795.25 2498.93 13098.17 3794.26 4493.94 13598.72 9389.68 5697.88 20296.36 8499.29 6899.62 66
CSCG94.87 9094.71 8595.36 14299.54 3686.49 23099.34 7898.15 4082.71 30990.15 19499.25 2389.48 5799.86 6394.97 11498.82 9199.72 50
PHI-MVS96.65 3796.46 3897.21 5499.34 5091.77 9999.70 2798.05 4686.48 24798.05 4899.20 3089.33 5899.96 2898.38 3999.62 4599.90 22
TESTMET0.1,193.82 12393.26 12795.49 13895.21 21690.25 13799.15 10397.54 12689.18 16791.79 16294.87 23589.13 5997.63 22386.21 22596.29 15098.60 158
APD-MVScopyleft96.95 2996.72 3297.63 3899.51 4193.58 6599.16 9797.44 14790.08 14198.59 3199.07 5389.06 6099.42 12397.92 5399.66 3799.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CDS-MVSNet93.47 13393.04 13394.76 16594.75 24289.45 16398.82 13997.03 18887.91 21190.97 17996.48 20189.06 6096.36 28489.50 18892.81 18798.49 162
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Patchmatch-test86.25 27784.06 29492.82 22094.42 24882.88 30382.88 39194.23 33771.58 36979.39 31590.62 31889.00 6296.42 28163.03 37391.37 22099.16 108
CDPH-MVS96.56 3996.18 4597.70 3699.59 2893.92 6099.13 10997.44 14789.02 17197.90 5499.22 2788.90 6399.49 11294.63 12299.79 2799.68 56
MG-MVS97.24 2096.83 3198.47 1599.79 595.71 1899.07 11499.06 1094.45 4296.42 8998.70 9788.81 6499.74 8895.35 10399.86 1299.97 7
patchmatchnet-post84.86 36788.73 6596.81 259
test1297.83 3399.33 5394.45 4997.55 12397.56 5788.60 6699.50 11199.71 3499.55 72
MVS_111021_HR96.69 3596.69 3396.72 8098.58 8891.00 12199.14 10699.45 193.86 5695.15 11498.73 9188.48 6799.76 8697.23 6599.56 5199.40 87
sam_mvs188.39 6898.84 138
ETVMVS94.50 10593.90 11096.31 10597.48 12492.98 7999.07 11497.86 5988.09 20494.40 12796.90 18488.35 6997.28 24290.72 17592.25 19998.66 157
PatchmatchNetpermissive92.05 17191.04 17495.06 15496.17 18289.04 17091.26 36497.26 16089.56 15790.64 18590.56 32288.35 6997.11 24679.53 29196.07 15599.03 120
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst92.78 15192.16 15094.65 17096.27 17687.45 21191.83 35597.10 18289.10 17094.68 12290.69 31388.22 7197.73 21889.78 18591.80 20698.77 148
test_fmvsm_n_192097.08 2797.55 1495.67 13397.94 10589.61 16199.93 298.48 2497.08 599.08 1599.13 4688.17 7299.93 3899.11 2399.06 7697.47 200
DELS-MVS97.12 2596.60 3598.68 1098.03 10396.57 1199.84 997.84 6196.36 1895.20 11398.24 12388.17 7299.83 7396.11 8899.60 4999.64 62
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
testdata95.26 14898.20 9687.28 21797.60 11285.21 26498.48 3499.15 4188.15 7498.72 16290.29 17999.45 5899.78 38
原ACMM196.18 11099.03 7190.08 14597.63 10788.98 17297.00 7398.97 6488.14 7599.71 9088.23 20399.62 4598.76 149
新几何197.40 4798.92 7792.51 9197.77 7585.52 26096.69 8499.06 5588.08 7699.89 5384.88 24199.62 4599.79 36
test-mter93.27 14292.89 13794.40 17994.94 23687.27 21899.15 10397.25 16188.95 17491.57 16794.04 24488.03 7797.58 22785.94 22996.13 15198.36 171
JIA-IIPM85.97 28084.85 28089.33 30893.23 28573.68 36485.05 38397.13 17769.62 37891.56 16968.03 39388.03 7796.96 25277.89 30593.12 18297.34 203
test_yl95.27 8094.60 8797.28 5198.53 8992.98 7999.05 11898.70 1986.76 23994.65 12397.74 13987.78 7999.44 11995.57 9992.61 18999.44 84
DCV-MVSNet95.27 8094.60 8797.28 5198.53 8992.98 7999.05 11898.70 1986.76 23994.65 12397.74 13987.78 7999.44 11995.57 9992.61 18999.44 84
PAPM_NR95.43 7495.05 8196.57 9099.42 4790.14 14298.58 17097.51 13390.65 12292.44 15698.90 7887.77 8199.90 5090.88 17099.32 6599.68 56
HFP-MVS96.42 4296.26 4296.90 6999.69 890.96 12299.47 5697.81 6890.54 12796.88 7499.05 5687.57 8299.96 2895.65 9499.72 3199.78 38
tpm291.77 17391.09 17293.82 20494.83 24085.56 26292.51 35197.16 17484.00 28493.83 13890.66 31587.54 8397.17 24487.73 20991.55 21298.72 150
EPNet96.82 3296.68 3497.25 5398.65 8693.10 7599.48 5498.76 1596.54 1397.84 5598.22 12487.49 8499.66 9495.35 10397.78 11999.00 121
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CP-MVS96.22 4896.15 5196.42 9899.67 1089.62 16099.70 2797.61 11090.07 14296.00 9499.16 3887.43 8599.92 4096.03 9099.72 3199.70 52
miper_enhance_ethall90.33 20189.70 19692.22 23297.12 14488.93 17898.35 19895.96 25288.60 18383.14 26092.33 28087.38 8696.18 29886.49 22277.89 30291.55 293
test_post46.00 40387.37 8797.11 246
XVS96.47 4196.37 4096.77 7499.62 2290.66 13099.43 6697.58 11892.41 8796.86 7598.96 6887.37 8799.87 5895.65 9499.43 6099.78 38
X-MVStestdata90.69 19688.66 21996.77 7499.62 2290.66 13099.43 6697.58 11892.41 8796.86 7529.59 40787.37 8799.87 5895.65 9499.43 6099.78 38
DP-MVS Recon95.85 6295.15 7797.95 3099.87 294.38 5299.60 3997.48 13986.58 24294.42 12699.13 4687.36 9099.98 993.64 13798.33 10899.48 79
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2499.61 2494.45 4998.85 13697.64 10396.51 1695.88 9899.39 1887.35 9199.99 596.61 7999.69 3699.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PAPR96.35 4395.82 5897.94 3199.63 1894.19 5699.42 6897.55 12392.43 8493.82 13999.12 4887.30 9299.91 4594.02 12999.06 7699.74 47
Patchmatch-RL test81.90 32180.13 32487.23 33080.71 38570.12 37884.07 38888.19 38983.16 30070.57 36182.18 37687.18 9392.59 36482.28 27362.78 37598.98 123
testing22294.48 10694.00 10395.95 12397.30 13092.27 9398.82 13997.92 5589.20 16594.82 11897.26 16187.13 9497.32 24191.95 16091.56 21198.25 175
CS-MVS95.75 6896.19 4394.40 17997.88 10786.22 24199.66 3596.12 24192.69 8098.07 4798.89 8087.09 9597.59 22696.71 7498.62 10099.39 89
sam_mvs87.08 96
EI-MVSNet-Vis-set95.76 6795.63 7096.17 11299.14 6490.33 13598.49 17997.82 6591.92 9694.75 12098.88 8287.06 9799.48 11695.40 10297.17 13598.70 152
1112_ss92.71 15291.55 16496.20 10995.56 20391.12 11498.48 18194.69 32488.29 19886.89 22698.50 11087.02 9898.66 16584.75 24289.77 23298.81 143
Test_1112_low_res92.27 16590.97 17596.18 11095.53 20591.10 11698.47 18394.66 32588.28 19986.83 22793.50 26387.00 9998.65 16784.69 24389.74 23398.80 144
MDTV_nov1_ep1390.47 18896.14 18588.55 18791.34 36397.51 13389.58 15592.24 15890.50 32686.99 10097.61 22577.64 30692.34 195
MVS_030497.53 1497.15 2298.67 1197.30 13096.52 1299.60 3998.88 1497.14 497.21 6798.94 7486.89 10199.91 4599.43 1598.91 8799.59 71
region2R96.30 4696.17 4896.70 8199.70 790.31 13699.46 6097.66 9590.55 12697.07 7299.07 5386.85 10299.97 2195.43 10199.74 2999.81 33
baseline192.61 15691.28 16996.58 8897.05 14894.63 4697.72 24696.20 23489.82 14788.56 20896.85 18886.85 10297.82 20688.42 20080.10 29397.30 204
SR-MVS96.13 5096.16 5096.07 11699.42 4789.04 17098.59 16897.33 15890.44 13096.84 7799.12 4886.75 10499.41 12697.47 6099.44 5999.76 45
test22298.32 9291.21 11098.08 22497.58 11883.74 28995.87 9999.02 6086.74 10599.64 4099.81 33
SR-MVS-dyc-post95.75 6895.86 5795.41 14199.22 5987.26 22098.40 19197.21 16789.63 15296.67 8598.97 6486.73 10699.36 13096.62 7799.31 6699.60 67
MDTV_nov1_ep13_2view91.17 11391.38 36287.45 22593.08 14986.67 10787.02 21398.95 129
ETV-MVS96.00 5396.00 5396.00 12096.56 16191.05 11999.63 3796.61 20693.26 7097.39 6298.30 12186.62 10898.13 18798.07 4997.57 12298.82 142
ZNCC-MVS96.09 5195.81 6096.95 6899.42 4791.19 11199.55 4597.53 12789.72 14995.86 10098.94 7486.59 10999.97 2195.13 10899.56 5199.68 56
ACMMP_NAP96.59 3896.18 4597.81 3498.82 8193.55 6698.88 13597.59 11690.66 12097.98 5299.14 4486.59 109100.00 196.47 8399.46 5699.89 25
WTY-MVS95.97 5695.11 7998.54 1397.62 11496.65 999.44 6398.74 1692.25 9195.21 11298.46 11786.56 11199.46 11895.00 11392.69 18899.50 78
HY-MVS88.56 795.29 7994.23 9498.48 1497.72 11096.41 1394.03 33698.74 1692.42 8695.65 10594.76 23886.52 11299.49 11295.29 10592.97 18499.53 74
ACMMPR96.28 4796.14 5296.73 7899.68 990.47 13499.47 5697.80 7090.54 12796.83 7999.03 5886.51 11399.95 3195.65 9499.72 3199.75 46
EPMVS92.59 15791.59 16395.59 13797.22 13490.03 15091.78 35698.04 4890.42 13191.66 16690.65 31686.49 11497.46 23381.78 27896.31 14899.28 99
MTAPA96.09 5195.80 6196.96 6799.29 5591.19 11197.23 26797.45 14492.58 8194.39 12899.24 2586.43 11599.99 596.22 8599.40 6399.71 51
GST-MVS95.97 5695.66 6696.90 6999.49 4591.22 10999.45 6297.48 13989.69 15095.89 9798.72 9386.37 11699.95 3194.62 12399.22 7199.52 75
CS-MVS-test95.98 5596.34 4194.90 16098.06 10287.66 20499.69 3496.10 24293.66 6298.35 3999.05 5686.28 11797.66 22096.96 7198.90 8899.37 90
alignmvs95.77 6695.00 8298.06 2897.35 12895.68 1999.71 2697.50 13691.50 10396.16 9398.61 10586.28 11799.00 15096.19 8691.74 20799.51 77
EI-MVSNet-UG-set95.43 7495.29 7395.86 12699.07 7089.87 15498.43 18597.80 7091.78 9894.11 13298.77 8786.25 11999.48 11694.95 11596.45 14498.22 179
testing387.75 25188.22 23086.36 33594.66 24577.41 35199.52 5197.95 5486.05 25281.12 29596.69 19686.18 12089.31 38361.65 37790.12 23092.35 266
mPP-MVS95.90 6195.75 6396.38 10199.58 3089.41 16499.26 8697.41 15190.66 12094.82 11898.95 7186.15 12199.98 995.24 10799.64 4099.74 47
EIA-MVS95.11 8395.27 7494.64 17296.34 17386.51 22999.59 4196.62 20592.51 8294.08 13398.64 10186.05 12298.24 18495.07 11098.50 10499.18 107
test250694.80 9294.21 9596.58 8896.41 16992.18 9598.01 22898.96 1190.82 11793.46 14497.28 15985.92 12398.45 17489.82 18497.19 13399.12 113
PLCcopyleft91.07 394.23 11094.01 10294.87 16199.17 6387.49 20999.25 8796.55 21388.43 19191.26 17698.21 12685.92 12399.86 6389.77 18697.57 12297.24 207
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PGM-MVS95.85 6295.65 6896.45 9699.50 4289.77 15798.22 20798.90 1389.19 16696.74 8298.95 7185.91 12599.92 4093.94 13099.46 5699.66 60
MM97.76 1097.39 1998.86 598.30 9396.83 799.81 1299.13 997.66 298.29 4098.96 6885.84 12699.90 5099.72 398.80 9299.85 30
MP-MVS-pluss95.80 6495.30 7297.29 5098.95 7692.66 8698.59 16897.14 17588.95 17493.12 14899.25 2385.62 12799.94 3496.56 8199.48 5599.28 99
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MVSFormer94.71 9894.08 10196.61 8595.05 23194.87 3697.77 24296.17 23886.84 23698.04 4998.52 10885.52 12895.99 30689.83 18298.97 8298.96 125
lupinMVS96.32 4595.94 5497.44 4495.05 23194.87 3699.86 596.50 21693.82 5998.04 4998.77 8785.52 12898.09 19096.98 7098.97 8299.37 90
MP-MVScopyleft96.00 5395.82 5896.54 9199.47 4690.13 14499.36 7697.41 15190.64 12395.49 10898.95 7185.51 13099.98 996.00 9199.59 5099.52 75
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVS_3200maxsize95.64 7195.65 6895.62 13599.24 5887.80 20098.42 18697.22 16688.93 17696.64 8798.98 6385.49 13199.36 13096.68 7699.27 6999.70 52
HyFIR lowres test93.68 12893.29 12694.87 16197.57 11988.04 19698.18 21198.47 2587.57 22291.24 17795.05 23285.49 13197.46 23393.22 14692.82 18599.10 115
EPNet_dtu92.28 16492.15 15192.70 22597.29 13284.84 27598.64 16097.82 6592.91 7793.02 15097.02 17885.48 13395.70 32072.25 34494.89 16897.55 199
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Vis-MVSNet (Re-imp)93.26 14393.00 13594.06 19596.14 18586.71 22898.68 15496.70 20188.30 19789.71 20197.64 14585.43 13496.39 28288.06 20696.32 14799.08 117
test_post190.74 37041.37 40685.38 13596.36 28483.16 263
test_fmvsmconf_n96.78 3496.84 2996.61 8595.99 19090.25 13799.90 398.13 4296.68 1198.42 3598.92 7685.34 13699.88 5499.12 2299.08 7499.70 52
RE-MVS-def95.70 6499.22 5987.26 22098.40 19197.21 16789.63 15296.67 8598.97 6485.24 13796.62 7799.31 6699.60 67
myMVS_eth3d88.68 23989.07 20987.50 32795.14 22279.74 33497.68 24996.66 20386.52 24582.63 26596.84 18985.22 13889.89 37969.43 35391.54 21392.87 254
tpm89.67 21588.95 21291.82 24392.54 29281.43 31892.95 34595.92 25987.81 21390.50 18889.44 34184.99 13995.65 32183.67 26082.71 28098.38 168
HPM-MVScopyleft95.41 7695.22 7595.99 12199.29 5589.14 16799.17 9697.09 18387.28 22795.40 10998.48 11484.93 14099.38 12895.64 9899.65 3899.47 80
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test-LLR93.11 14792.68 14094.40 17994.94 23687.27 21899.15 10397.25 16190.21 13491.57 16794.04 24484.89 14197.58 22785.94 22996.13 15198.36 171
test0.0.03 188.96 22488.61 22090.03 29091.09 31784.43 28098.97 12897.02 19090.21 13480.29 30396.31 20884.89 14191.93 37372.98 34085.70 25393.73 249
mvsany_test194.57 10395.09 8092.98 21795.84 19482.07 31298.76 14895.24 30692.87 7996.45 8898.71 9684.81 14399.15 14197.68 5795.49 16397.73 192
PatchT85.44 29083.19 29992.22 23293.13 28783.00 29883.80 39096.37 22370.62 37290.55 18679.63 38584.81 14394.87 33958.18 38491.59 21098.79 145
TAMVS92.62 15592.09 15394.20 18994.10 25787.68 20298.41 18896.97 19487.53 22489.74 19996.04 21584.77 14596.49 27788.97 19892.31 19698.42 164
CR-MVSNet88.83 23187.38 24293.16 21493.47 27886.24 23984.97 38494.20 33888.92 17790.76 18386.88 36184.43 14694.82 34170.64 34892.17 20198.41 165
Patchmtry83.61 31381.64 31389.50 30493.36 28282.84 30484.10 38794.20 33869.47 37979.57 31386.88 36184.43 14694.78 34268.48 35774.30 32790.88 315
dp90.16 20788.83 21594.14 19196.38 17286.42 23291.57 36097.06 18584.76 27588.81 20690.19 33484.29 14897.43 23675.05 32391.35 22198.56 159
miper_ehance_all_eth88.94 22588.12 23291.40 25295.32 21286.93 22497.85 23795.55 28784.19 28181.97 28491.50 29684.16 14995.91 31384.69 24377.89 30291.36 301
MVS_111021_LR95.78 6595.94 5495.28 14798.19 9887.69 20198.80 14299.26 793.39 6795.04 11698.69 9884.09 15099.76 8696.96 7199.06 7698.38 168
FE-MVS91.38 18090.16 19195.05 15696.46 16787.53 20889.69 37397.84 6182.97 30392.18 15992.00 28784.07 15198.93 15380.71 28595.52 16298.68 153
tpmvs89.16 22187.76 23593.35 21097.19 13784.75 27790.58 37197.36 15681.99 32184.56 24489.31 34483.98 15298.17 18574.85 32690.00 23197.12 209
API-MVS94.78 9394.18 9896.59 8799.21 6190.06 14998.80 14297.78 7383.59 29393.85 13799.21 2983.79 15399.97 2192.37 15799.00 8099.74 47
cl2289.57 21788.79 21691.91 24097.94 10587.62 20597.98 23096.51 21585.03 26982.37 27591.79 29083.65 15496.50 27585.96 22877.89 30291.61 290
Test By Simon83.62 155
PVSNet_BlendedMVS93.36 13893.20 12893.84 20398.77 8391.61 10399.47 5698.04 4891.44 10594.21 13092.63 27883.50 15699.87 5897.41 6183.37 27590.05 337
PVSNet_Blended95.94 5995.66 6696.75 7698.77 8391.61 10399.88 498.04 4893.64 6494.21 13097.76 13783.50 15699.87 5897.41 6197.75 12098.79 145
HPM-MVS_fast94.89 8794.62 8695.70 13199.11 6688.44 19099.14 10697.11 17985.82 25595.69 10498.47 11583.46 15899.32 13593.16 14799.63 4499.35 92
thres20093.69 12692.59 14396.97 6697.76 10994.74 4399.35 7799.36 289.23 16491.21 17896.97 18083.42 15998.77 15785.08 23790.96 22297.39 202
tfpn200view993.43 13592.27 14896.90 6997.68 11294.84 3899.18 9399.36 288.45 18890.79 18196.90 18483.31 16098.75 15984.11 25390.69 22497.12 209
thres40093.39 13792.27 14896.73 7897.68 11294.84 3899.18 9399.36 288.45 18890.79 18196.90 18483.31 16098.75 15984.11 25390.69 22496.61 224
thres100view90093.34 13992.15 15196.90 6997.62 11494.84 3899.06 11799.36 287.96 20990.47 18996.78 19283.29 16298.75 15984.11 25390.69 22497.12 209
thres600view793.18 14492.00 15496.75 7697.62 11494.92 3399.07 11499.36 287.96 20990.47 18996.78 19283.29 16298.71 16382.93 26790.47 22896.61 224
PVSNet_Blended_VisFu94.67 9994.11 9996.34 10497.14 14291.10 11699.32 8097.43 14992.10 9591.53 17196.38 20683.29 16299.68 9293.42 14496.37 14698.25 175
h-mvs3392.47 16091.95 15694.05 19697.13 14385.01 27398.36 19798.08 4493.85 5796.27 9196.73 19483.19 16599.43 12295.81 9268.09 36197.70 193
hse-mvs291.67 17591.51 16592.15 23696.22 17882.61 30897.74 24597.53 12793.85 5796.27 9196.15 21083.19 16597.44 23595.81 9266.86 36896.40 233
AUN-MVS90.17 20689.50 19992.19 23496.21 17982.67 30697.76 24497.53 12788.05 20591.67 16596.15 21083.10 16797.47 23288.11 20566.91 36796.43 232
FA-MVS(test-final)92.22 16791.08 17395.64 13496.05 18988.98 17391.60 35997.25 16186.99 23091.84 16192.12 28183.03 16899.00 15086.91 21793.91 17698.93 131
IS-MVSNet93.00 14992.51 14494.49 17596.14 18587.36 21498.31 20295.70 27888.58 18490.17 19397.50 15183.02 16997.22 24387.06 21296.07 15598.90 134
tpm cat188.89 22787.27 24493.76 20595.79 19585.32 26790.76 36997.09 18376.14 35785.72 23588.59 34782.92 17098.04 19576.96 31091.43 21897.90 190
UniMVSNet_NR-MVSNet89.60 21688.55 22492.75 22392.17 29890.07 14698.74 14998.15 4088.37 19383.21 25693.98 24982.86 17195.93 31086.95 21572.47 34592.25 267
c3_l88.19 24687.23 24591.06 25894.97 23486.17 24497.72 24695.38 29883.43 29581.68 29191.37 29882.81 17295.72 31984.04 25673.70 33391.29 305
EC-MVSNet95.09 8495.17 7694.84 16395.42 20888.17 19299.48 5495.92 25991.47 10497.34 6498.36 11882.77 17397.41 23797.24 6498.58 10198.94 130
TAPA-MVS87.50 990.35 20089.05 21094.25 18798.48 9185.17 27098.42 18696.58 21182.44 31687.24 22098.53 10782.77 17398.84 15559.09 38297.88 11598.72 150
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
KD-MVS_2432*160082.98 31480.52 32290.38 27994.32 25288.98 17392.87 34795.87 26980.46 33773.79 34887.49 35482.76 17593.29 35670.56 34946.53 39788.87 354
miper_refine_blended82.98 31480.52 32290.38 27994.32 25288.98 17392.87 34795.87 26980.46 33773.79 34887.49 35482.76 17593.29 35670.56 34946.53 39788.87 354
test_fmvsmconf0.1_n95.94 5995.79 6296.40 10092.42 29489.92 15399.79 1796.85 19796.53 1597.22 6698.67 9982.71 17799.84 6998.92 2798.98 8199.43 86
CANet97.00 2896.49 3698.55 1298.86 8096.10 1699.83 1097.52 13195.90 1997.21 6798.90 7882.66 17899.93 3898.71 2998.80 9299.63 64
CPTT-MVS94.60 10194.43 9195.09 15399.66 1286.85 22599.44 6397.47 14183.22 29894.34 12998.96 6882.50 17999.55 10694.81 11699.50 5498.88 135
mvs_anonymous92.50 15991.65 16295.06 15496.60 16089.64 15997.06 27396.44 22086.64 24184.14 24993.93 25082.49 18096.17 29991.47 16396.08 15499.35 92
pcd_1.5k_mvsjas6.87 3779.16 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40982.48 1810.00 4100.00 4090.00 4080.00 406
PS-MVSNAJss89.54 21889.05 21091.00 26088.77 34784.36 28197.39 25795.97 25088.47 18581.88 28693.80 25482.48 18196.50 27589.34 19283.34 27692.15 274
PS-MVSNAJ96.87 3196.40 3998.29 1997.35 12897.29 599.03 12097.11 17995.83 2098.97 2099.14 4482.48 18199.60 10398.60 3399.08 7498.00 187
test_fmvsmvis_n_192095.47 7395.40 7195.70 13194.33 25190.22 14099.70 2796.98 19396.80 792.75 15298.89 8082.46 18499.92 4098.36 4098.33 10896.97 217
fmvsm_s_conf0.5_n96.19 4996.49 3695.30 14697.37 12789.16 16699.86 598.47 2595.68 2398.87 2399.15 4182.44 18599.92 4099.14 2197.43 12896.83 220
UA-Net93.30 14092.62 14295.34 14396.27 17688.53 18995.88 31496.97 19490.90 11595.37 11097.07 17482.38 18699.10 14783.91 25794.86 16998.38 168
FIs90.70 19589.87 19493.18 21392.29 29591.12 11498.17 21398.25 3289.11 16983.44 25494.82 23782.26 18796.17 29987.76 20882.76 27992.25 267
ACMMPcopyleft94.67 9994.30 9295.79 12899.25 5788.13 19498.41 18898.67 2290.38 13291.43 17298.72 9382.22 18899.95 3193.83 13495.76 15899.29 98
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
xiu_mvs_v2_base96.66 3696.17 4898.11 2797.11 14596.96 699.01 12397.04 18695.51 2998.86 2499.11 5282.19 18999.36 13098.59 3598.14 11298.00 187
DIV-MVS_self_test87.82 24886.81 25190.87 26594.87 23985.39 26597.81 23895.22 31182.92 30780.76 29891.31 30081.99 19095.81 31781.36 27975.04 31891.42 299
miper_lstm_enhance86.90 26386.20 25989.00 31494.53 24781.19 32496.74 28795.24 30682.33 31780.15 30590.51 32581.99 19094.68 34580.71 28573.58 33591.12 309
cl____87.82 24886.79 25290.89 26494.88 23885.43 26397.81 23895.24 30682.91 30880.71 29991.22 30181.97 19295.84 31581.34 28075.06 31791.40 300
FC-MVSNet-test90.22 20489.40 20392.67 22791.78 30789.86 15597.89 23398.22 3588.81 17982.96 26194.66 23981.90 19395.96 30885.89 23182.52 28292.20 273
UniMVSNet (Re)89.50 21988.32 22893.03 21592.21 29790.96 12298.90 13498.39 2789.13 16883.22 25592.03 28381.69 19496.34 29086.79 21972.53 34491.81 283
MVS_Test93.67 12992.67 14196.69 8296.72 15892.66 8697.22 26896.03 24787.69 22095.12 11594.03 24681.55 19598.28 18189.17 19696.46 14399.14 110
sss94.85 9193.94 10897.58 4096.43 16894.09 5998.93 13099.16 889.50 15995.27 11197.85 13181.50 19699.65 9892.79 15494.02 17598.99 122
eth_miper_zixun_eth87.76 25087.00 24990.06 28694.67 24482.65 30797.02 27695.37 29984.19 28181.86 28991.58 29581.47 19795.90 31483.24 26173.61 33491.61 290
jason95.40 7794.86 8497.03 5992.91 28994.23 5499.70 2796.30 22793.56 6696.73 8398.52 10881.46 19897.91 19996.08 8998.47 10698.96 125
jason: jason.
fmvsm_s_conf0.5_n_a95.97 5696.19 4395.31 14596.51 16589.01 17299.81 1298.39 2795.46 3099.19 1499.16 3881.44 19999.91 4598.83 2896.97 13797.01 216
IterMVS-LS88.34 24287.44 24091.04 25994.10 25785.85 25698.10 22095.48 29185.12 26582.03 28391.21 30281.35 20095.63 32283.86 25875.73 31491.63 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet89.87 21389.38 20491.36 25494.32 25285.87 25597.61 25396.59 20885.10 26685.51 23797.10 17281.30 20196.56 27083.85 25983.03 27791.64 285
fmvsm_s_conf0.1_n95.56 7295.68 6595.20 14994.35 25089.10 16899.50 5297.67 9494.76 3698.68 2899.03 5881.13 20299.86 6398.63 3297.36 13096.63 223
RPMNet85.07 29481.88 31194.64 17293.47 27886.24 23984.97 38497.21 16764.85 38990.76 18378.80 38680.95 20399.27 13753.76 38892.17 20198.41 165
114514_t94.06 11393.05 13297.06 5899.08 6992.26 9498.97 12897.01 19182.58 31192.57 15498.22 12480.68 20499.30 13689.34 19299.02 7999.63 64
CNLPA93.64 13092.74 13996.36 10398.96 7590.01 15299.19 9195.89 26786.22 25089.40 20298.85 8380.66 20599.84 6988.57 19996.92 13899.24 102
diffmvspermissive94.59 10294.19 9695.81 12795.54 20490.69 12898.70 15295.68 28091.61 10095.96 9597.81 13380.11 20698.06 19296.52 8295.76 15898.67 154
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_s_conf0.1_n_a95.16 8295.15 7795.18 15092.06 30088.94 17699.29 8297.53 12794.46 4098.98 1998.99 6279.99 20799.85 6798.24 4796.86 13996.73 221
casdiffmvs_mvgpermissive94.00 11593.33 12496.03 11895.22 21590.90 12499.09 11295.99 24890.58 12591.55 17097.37 15779.91 20898.06 19295.01 11295.22 16599.13 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive93.98 11793.43 12095.61 13695.07 23089.86 15598.80 14295.84 27290.98 11492.74 15397.66 14479.71 20998.10 18994.72 11995.37 16498.87 137
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Effi-MVS+93.87 12193.15 13096.02 11995.79 19590.76 12696.70 28995.78 27386.98 23395.71 10397.17 17079.58 21098.01 19794.57 12496.09 15399.31 96
baseline93.91 11993.30 12595.72 13095.10 22890.07 14697.48 25695.91 26491.03 11293.54 14397.68 14279.58 21098.02 19694.27 12795.14 16699.08 117
canonicalmvs95.02 8693.96 10798.20 2197.53 12095.92 1798.71 15096.19 23691.78 9895.86 10098.49 11279.53 21299.03 14996.12 8791.42 21999.66 60
OMC-MVS93.90 12093.62 11694.73 16898.63 8787.00 22398.04 22796.56 21292.19 9292.46 15598.73 9179.49 21399.14 14592.16 15994.34 17398.03 186
MVS93.92 11892.28 14798.83 795.69 19996.82 896.22 30498.17 3784.89 27384.34 24898.61 10579.32 21499.83 7393.88 13299.43 6099.86 29
VNet95.08 8594.26 9397.55 4398.07 10193.88 6198.68 15498.73 1890.33 13397.16 7197.43 15579.19 21599.53 10996.91 7391.85 20599.24 102
CHOSEN 1792x268894.35 10893.82 11295.95 12397.40 12588.74 18498.41 18898.27 3192.18 9391.43 17296.40 20378.88 21699.81 7993.59 13897.81 11699.30 97
ADS-MVSNet287.62 25686.88 25089.86 29396.21 17979.14 33887.15 37792.99 35283.01 30189.91 19787.27 35778.87 21792.80 36274.20 33192.27 19797.64 194
ADS-MVSNet88.99 22387.30 24394.07 19496.21 17987.56 20787.15 37796.78 20083.01 30189.91 19787.27 35778.87 21797.01 25174.20 33192.27 19797.64 194
nrg03090.23 20388.87 21394.32 18491.53 31193.54 6798.79 14695.89 26788.12 20384.55 24594.61 24078.80 21996.88 25692.35 15875.21 31692.53 260
F-COLMAP92.07 17091.75 16193.02 21698.16 9982.89 30298.79 14695.97 25086.54 24487.92 21297.80 13478.69 22099.65 9885.97 22795.93 15796.53 229
MAR-MVS94.43 10794.09 10095.45 13999.10 6887.47 21098.39 19597.79 7288.37 19394.02 13499.17 3778.64 22199.91 4592.48 15698.85 9098.96 125
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PCF-MVS89.78 591.26 18289.63 19796.16 11495.44 20791.58 10595.29 32496.10 24285.07 26882.75 26297.45 15478.28 22299.78 8480.60 28795.65 16197.12 209
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DeepC-MVS91.02 494.56 10493.92 10996.46 9497.16 14090.76 12698.39 19597.11 17993.92 5288.66 20798.33 11978.14 22399.85 6795.02 11198.57 10298.78 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
WR-MVS_H86.53 27285.49 27089.66 30191.04 31883.31 29697.53 25598.20 3684.95 27279.64 31190.90 30778.01 22495.33 33076.29 31672.81 34190.35 329
Fast-Effi-MVS+91.72 17490.79 18294.49 17595.89 19287.40 21399.54 5095.70 27885.01 27189.28 20495.68 22177.75 22597.57 23083.22 26295.06 16798.51 161
131493.44 13491.98 15597.84 3295.24 21394.38 5296.22 30497.92 5590.18 13682.28 27697.71 14177.63 22699.80 8191.94 16198.67 9899.34 94
NR-MVSNet87.74 25486.00 26292.96 21891.46 31290.68 12996.65 29097.42 15088.02 20773.42 35093.68 25677.31 22795.83 31684.26 24971.82 35292.36 263
BH-w/o92.32 16291.79 15993.91 20196.85 15186.18 24399.11 11195.74 27688.13 20284.81 24197.00 17977.26 22897.91 19989.16 19798.03 11397.64 194
PMMVS93.62 13193.90 11092.79 22196.79 15681.40 31998.85 13696.81 19891.25 11096.82 8098.15 12877.02 22998.13 18793.15 14896.30 14998.83 141
CVMVSNet90.30 20290.91 17788.46 32094.32 25273.58 36597.61 25397.59 11690.16 13988.43 21097.10 17276.83 23092.86 35982.64 26993.54 17998.93 131
mvsmamba89.99 21189.42 20291.69 24990.64 32386.34 23798.40 19192.27 36291.01 11384.80 24294.93 23376.12 23196.51 27492.81 15383.84 26892.21 271
LCM-MVSNet-Re88.59 24088.61 22088.51 31995.53 20572.68 36996.85 28188.43 38888.45 18873.14 35390.63 31775.82 23294.38 34892.95 14995.71 16098.48 163
LS3D90.19 20588.72 21794.59 17498.97 7386.33 23896.90 27996.60 20774.96 36184.06 25198.74 9075.78 23399.83 7374.93 32497.57 12297.62 197
pmmvs487.58 25786.17 26091.80 24489.58 33788.92 17997.25 26595.28 30282.54 31280.49 30193.17 27075.62 23496.05 30482.75 26878.90 29790.42 328
BH-untuned91.46 17890.84 17993.33 21196.51 16584.83 27698.84 13895.50 29086.44 24983.50 25396.70 19575.49 23597.77 21086.78 22097.81 11697.40 201
AdaColmapbinary93.82 12393.06 13196.10 11599.88 189.07 16998.33 19997.55 12386.81 23890.39 19198.65 10075.09 23699.98 993.32 14597.53 12599.26 101
DU-MVS88.83 23187.51 23992.79 22191.46 31290.07 14698.71 15097.62 10988.87 17883.21 25693.68 25674.63 23795.93 31086.95 21572.47 34592.36 263
Baseline_NR-MVSNet85.83 28384.82 28188.87 31788.73 34883.34 29598.63 16191.66 37180.41 33982.44 27091.35 29974.63 23795.42 32884.13 25271.39 35487.84 359
v14886.38 27585.06 27590.37 28189.47 34184.10 28598.52 17395.48 29183.80 28880.93 29790.22 33274.60 23996.31 29280.92 28371.55 35390.69 323
3Dnovator+87.72 893.43 13591.84 15898.17 2295.73 19895.08 3298.92 13297.04 18691.42 10781.48 29397.60 14674.60 23999.79 8290.84 17198.97 8299.64 62
v886.11 27884.45 28991.10 25789.99 32986.85 22597.24 26695.36 30081.99 32179.89 30989.86 33774.53 24196.39 28278.83 29972.32 34790.05 337
DP-MVS88.75 23586.56 25495.34 14398.92 7787.45 21197.64 25293.52 34970.55 37381.49 29297.25 16374.43 24299.88 5471.14 34794.09 17498.67 154
GeoE90.60 19889.56 19893.72 20795.10 22885.43 26399.41 6994.94 31583.96 28687.21 22196.83 19174.37 24397.05 25080.50 28993.73 17898.67 154
cdsmvs_eth3d_5k22.52 37230.03 3750.00 3910.00 4140.00 4160.00 40297.17 1730.00 4090.00 41098.77 8774.35 2440.00 4100.00 4090.00 4080.00 406
Effi-MVS+-dtu89.97 21290.68 18487.81 32495.15 22171.98 37197.87 23695.40 29791.92 9687.57 21591.44 29774.27 24596.84 25789.45 18993.10 18394.60 247
WR-MVS88.54 24187.22 24692.52 22891.93 30589.50 16298.56 17197.84 6186.99 23081.87 28793.81 25374.25 24695.92 31285.29 23574.43 32592.12 276
FMVSNet388.81 23387.08 24793.99 19996.52 16494.59 4798.08 22496.20 23485.85 25482.12 27991.60 29474.05 24795.40 32979.04 29580.24 29091.99 281
V4287.00 26285.68 26790.98 26189.91 33086.08 24798.32 20195.61 28483.67 29282.72 26390.67 31474.00 24896.53 27281.94 27774.28 32890.32 330
D2MVS87.96 24787.39 24189.70 29991.84 30683.40 29498.31 20298.49 2388.04 20678.23 32890.26 32873.57 24996.79 26184.21 25083.53 27388.90 353
v114486.83 26585.31 27391.40 25289.75 33487.21 22298.31 20295.45 29383.22 29882.70 26490.78 30973.36 25096.36 28479.49 29274.69 32290.63 325
HQP2-MVS73.34 251
HQP-MVS91.50 17691.23 17092.29 23193.95 26286.39 23499.16 9796.37 22393.92 5287.57 21596.67 19773.34 25197.77 21093.82 13586.29 24592.72 256
v1085.73 28784.01 29590.87 26590.03 32886.73 22797.20 26995.22 31181.25 32979.85 31089.75 33873.30 25396.28 29676.87 31172.64 34389.61 345
test_fmvsmconf0.01_n94.14 11293.51 11896.04 11786.79 36789.19 16599.28 8595.94 25595.70 2195.50 10798.49 11273.27 25499.79 8298.28 4598.32 11099.15 109
RRT_MVS88.91 22688.56 22389.93 29190.31 32781.61 31698.08 22496.38 22289.30 16382.41 27394.84 23673.15 25596.04 30590.38 17782.23 28492.15 274
v2v48287.27 26085.76 26591.78 24889.59 33687.58 20698.56 17195.54 28884.53 27782.51 26991.78 29173.11 25696.47 27882.07 27474.14 33191.30 304
HQP_MVS91.26 18290.95 17692.16 23593.84 26986.07 24999.02 12196.30 22793.38 6886.99 22396.52 19972.92 25797.75 21693.46 14286.17 24892.67 258
plane_prior693.92 26686.02 25172.92 257
QAPM91.41 17989.49 20097.17 5695.66 20193.42 7098.60 16697.51 13380.92 33481.39 29497.41 15672.89 25999.87 5882.33 27298.68 9798.21 180
v14419286.40 27484.89 27990.91 26289.48 34085.59 26098.21 20995.43 29682.45 31582.62 26790.58 32172.79 26096.36 28478.45 30274.04 33290.79 318
TranMVSNet+NR-MVSNet87.75 25186.31 25792.07 23890.81 32088.56 18698.33 19997.18 17287.76 21581.87 28793.90 25172.45 26195.43 32783.13 26571.30 35592.23 269
xiu_mvs_v1_base_debu94.73 9593.98 10496.99 6295.19 21795.24 2598.62 16296.50 21692.99 7497.52 5898.83 8472.37 26299.15 14197.03 6796.74 14096.58 226
xiu_mvs_v1_base94.73 9593.98 10496.99 6295.19 21795.24 2598.62 16296.50 21692.99 7497.52 5898.83 8472.37 26299.15 14197.03 6796.74 14096.58 226
xiu_mvs_v1_base_debi94.73 9593.98 10496.99 6295.19 21795.24 2598.62 16296.50 21692.99 7497.52 5898.83 8472.37 26299.15 14197.03 6796.74 14096.58 226
test_djsdf88.26 24587.73 23689.84 29488.05 35682.21 31097.77 24296.17 23886.84 23682.41 27391.95 28972.07 26595.99 30689.83 18284.50 26191.32 303
3Dnovator87.35 1193.17 14691.77 16097.37 4995.41 20993.07 7698.82 13997.85 6091.53 10282.56 26897.58 14871.97 26699.82 7691.01 16899.23 7099.22 105
CANet_DTU94.31 10993.35 12397.20 5597.03 14994.71 4498.62 16295.54 28895.61 2797.21 6798.47 11571.88 26799.84 6988.38 20197.46 12797.04 214
CP-MVSNet86.54 27185.45 27189.79 29691.02 31982.78 30597.38 25997.56 12285.37 26279.53 31493.03 27271.86 26895.25 33279.92 29073.43 33991.34 302
PatchMatch-RL91.47 17790.54 18694.26 18698.20 9686.36 23696.94 27797.14 17587.75 21688.98 20595.75 22071.80 26999.40 12780.92 28397.39 12997.02 215
our_test_384.47 30382.80 30389.50 30489.01 34483.90 28897.03 27494.56 32781.33 32875.36 34290.52 32471.69 27094.54 34768.81 35576.84 31090.07 335
XVG-OURS90.83 19290.49 18791.86 24195.23 21481.25 32395.79 31995.92 25988.96 17390.02 19698.03 13071.60 27199.35 13391.06 16787.78 23894.98 245
v119286.32 27684.71 28491.17 25689.53 33986.40 23398.13 21595.44 29582.52 31382.42 27290.62 31871.58 27296.33 29177.23 30774.88 31990.79 318
Vis-MVSNetpermissive92.64 15491.85 15795.03 15795.12 22488.23 19198.48 18196.81 19891.61 10092.16 16097.22 16571.58 27298.00 19885.85 23297.81 11698.88 135
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PVSNet87.13 1293.69 12692.83 13896.28 10697.99 10490.22 14099.38 7298.93 1291.42 10793.66 14197.68 14271.29 27499.64 10087.94 20797.20 13298.98 123
v192192086.02 27984.44 29090.77 26889.32 34285.20 26898.10 22095.35 30182.19 31982.25 27790.71 31170.73 27596.30 29576.85 31274.49 32490.80 317
EU-MVSNet84.19 30684.42 29183.52 35388.64 35067.37 38296.04 30995.76 27585.29 26378.44 32593.18 26970.67 27691.48 37575.79 32075.98 31291.70 284
XVG-OURS-SEG-HR90.95 19090.66 18591.83 24295.18 22081.14 32695.92 31195.92 25988.40 19290.33 19297.85 13170.66 27799.38 12892.83 15288.83 23494.98 245
WB-MVSnew88.69 23788.34 22789.77 29794.30 25685.99 25298.14 21497.31 15987.15 22987.85 21396.07 21469.91 27895.52 32472.83 34291.47 21787.80 361
v7n84.42 30482.75 30689.43 30788.15 35481.86 31396.75 28695.67 28180.53 33578.38 32689.43 34269.89 27996.35 28973.83 33572.13 34990.07 335
ppachtmachnet_test83.63 31281.57 31589.80 29589.01 34485.09 27297.13 27194.50 32878.84 34376.14 33491.00 30569.78 28094.61 34663.40 37174.36 32689.71 344
MSDG88.29 24486.37 25694.04 19796.90 15086.15 24596.52 29294.36 33477.89 35179.22 31796.95 18169.72 28199.59 10473.20 33992.58 19196.37 234
dmvs_testset77.17 34378.99 33071.71 37187.25 36338.55 40891.44 36181.76 39985.77 25669.49 36595.94 21769.71 28284.37 39152.71 39076.82 31192.21 271
CLD-MVS91.06 18890.71 18392.10 23794.05 26186.10 24699.55 4596.29 23094.16 4784.70 24397.17 17069.62 28397.82 20694.74 11886.08 25092.39 261
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
v124085.77 28684.11 29390.73 26989.26 34385.15 27197.88 23595.23 31081.89 32482.16 27890.55 32369.60 28496.31 29275.59 32174.87 32090.72 322
Fast-Effi-MVS+-dtu88.84 22988.59 22289.58 30293.44 28178.18 34698.65 15894.62 32688.46 18784.12 25095.37 22868.91 28596.52 27382.06 27591.70 20994.06 248
anonymousdsp86.69 26785.75 26689.53 30386.46 36982.94 29996.39 29595.71 27783.97 28579.63 31290.70 31268.85 28695.94 30986.01 22684.02 26789.72 343
VPA-MVSNet89.10 22287.66 23893.45 20992.56 29191.02 12097.97 23198.32 3086.92 23586.03 23292.01 28568.84 28797.10 24890.92 16975.34 31592.23 269
ab-mvs91.05 18989.17 20796.69 8295.96 19191.72 10192.62 35097.23 16585.61 25989.74 19993.89 25268.55 28899.42 12391.09 16687.84 23798.92 133
CL-MVSNet_self_test79.89 33078.34 33184.54 34881.56 38375.01 35896.88 28095.62 28381.10 33075.86 33885.81 36668.49 28990.26 37763.21 37256.51 38688.35 356
PEN-MVS85.21 29283.93 29689.07 31389.89 33281.31 32297.09 27297.24 16484.45 27978.66 32192.68 27768.44 29094.87 33975.98 31870.92 35691.04 311
BH-RMVSNet91.25 18489.99 19295.03 15796.75 15788.55 18798.65 15894.95 31487.74 21787.74 21497.80 13468.27 29198.14 18680.53 28897.49 12698.41 165
Syy-MVS84.10 30984.53 28882.83 35595.14 22265.71 38397.68 24996.66 20386.52 24582.63 26596.84 18968.15 29289.89 37945.62 39391.54 21392.87 254
GA-MVS90.10 20888.69 21894.33 18392.44 29387.97 19899.08 11396.26 23189.65 15186.92 22593.11 27168.09 29396.96 25282.54 27190.15 22998.05 185
MDA-MVSNet_test_wron79.65 33177.05 33687.45 32887.79 36080.13 33196.25 30294.44 32973.87 36551.80 39187.47 35668.04 29492.12 37166.02 36567.79 36490.09 333
OpenMVScopyleft85.28 1490.75 19488.84 21496.48 9393.58 27693.51 6898.80 14297.41 15182.59 31078.62 32297.49 15268.00 29599.82 7684.52 24798.55 10396.11 237
YYNet179.64 33277.04 33787.43 32987.80 35979.98 33296.23 30394.44 32973.83 36651.83 39087.53 35267.96 29692.07 37266.00 36667.75 36590.23 332
DTE-MVSNet84.14 30782.80 30388.14 32188.95 34679.87 33396.81 28296.24 23283.50 29477.60 33092.52 27967.89 29794.24 35072.64 34369.05 35990.32 330
MVP-Stereo86.61 27085.83 26488.93 31688.70 34983.85 28996.07 30894.41 33382.15 32075.64 34091.96 28867.65 29896.45 28077.20 30998.72 9686.51 371
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
dmvs_re88.69 23788.06 23390.59 27193.83 27178.68 34295.75 32096.18 23787.99 20884.48 24796.32 20767.52 29996.94 25484.98 24085.49 25496.14 236
XXY-MVS87.75 25186.02 26192.95 21990.46 32589.70 15897.71 24895.90 26584.02 28380.95 29694.05 24367.51 30097.10 24885.16 23678.41 29992.04 280
PS-CasMVS85.81 28484.58 28789.49 30690.77 32182.11 31197.20 26997.36 15684.83 27479.12 31992.84 27567.42 30195.16 33478.39 30373.25 34091.21 307
ACMM86.95 1388.77 23488.22 23090.43 27793.61 27581.34 32198.50 17795.92 25987.88 21283.85 25295.20 23167.20 30297.89 20186.90 21884.90 25792.06 279
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TransMVSNet (Re)81.97 31979.61 32889.08 31289.70 33584.01 28697.26 26491.85 37078.84 34373.07 35691.62 29367.17 30395.21 33367.50 36059.46 38288.02 358
OPM-MVS89.76 21489.15 20891.57 25190.53 32485.58 26198.11 21995.93 25892.88 7886.05 23196.47 20267.06 30497.87 20389.29 19586.08 25091.26 306
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
TR-MVS90.77 19389.44 20194.76 16596.31 17488.02 19797.92 23295.96 25285.52 26088.22 21197.23 16466.80 30598.09 19084.58 24592.38 19398.17 183
IterMVS-SCA-FT85.73 28784.64 28689.00 31493.46 28082.90 30196.27 29994.70 32385.02 27078.62 32290.35 32766.61 30693.33 35579.38 29477.36 30990.76 320
SCA90.64 19789.25 20694.83 16494.95 23588.83 18096.26 30197.21 16790.06 14390.03 19590.62 31866.61 30696.81 25983.16 26394.36 17298.84 138
IterMVS85.81 28484.67 28589.22 30993.51 27783.67 29196.32 29894.80 32085.09 26778.69 32090.17 33566.57 30893.17 35879.48 29377.42 30890.81 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SDMVSNet91.09 18689.91 19394.65 17096.80 15490.54 13397.78 24097.81 6888.34 19585.73 23395.26 22966.44 30998.26 18294.25 12886.75 24295.14 242
LPG-MVS_test88.86 22888.47 22690.06 28693.35 28380.95 32898.22 20795.94 25587.73 21883.17 25896.11 21266.28 31097.77 21090.19 18085.19 25591.46 296
LGP-MVS_train90.06 28693.35 28380.95 32895.94 25587.73 21883.17 25896.11 21266.28 31097.77 21090.19 18085.19 25591.46 296
ACMP87.39 1088.71 23688.24 22990.12 28593.91 26781.06 32798.50 17795.67 28189.43 16180.37 30295.55 22265.67 31297.83 20590.55 17684.51 26091.47 295
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LTVRE_ROB81.71 1984.59 30082.72 30790.18 28392.89 29083.18 29793.15 34394.74 32178.99 34275.14 34392.69 27665.64 31397.63 22369.46 35281.82 28689.74 342
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ECVR-MVScopyleft92.29 16391.33 16895.15 15196.41 16987.84 19998.10 22094.84 31790.82 11791.42 17497.28 15965.61 31498.49 17390.33 17897.19 13399.12 113
test111192.12 16891.19 17194.94 15996.15 18387.36 21498.12 21794.84 31790.85 11690.97 17997.26 16165.60 31598.37 17689.74 18797.14 13699.07 119
pm-mvs184.68 29882.78 30590.40 27889.58 33785.18 26997.31 26194.73 32281.93 32376.05 33592.01 28565.48 31696.11 30278.75 30069.14 35889.91 340
test_cas_vis1_n_192093.86 12293.74 11494.22 18895.39 21186.08 24799.73 2396.07 24596.38 1797.19 7097.78 13665.46 31799.86 6396.71 7498.92 8696.73 221
cascas90.93 19189.33 20595.76 12995.69 19993.03 7898.99 12596.59 20880.49 33686.79 22894.45 24165.23 31898.60 16893.52 13992.18 20095.66 241
tfpnnormal83.65 31181.35 31790.56 27491.37 31488.06 19597.29 26297.87 5878.51 34676.20 33390.91 30664.78 31996.47 27861.71 37673.50 33687.13 368
pmmvs585.87 28184.40 29290.30 28288.53 35184.23 28298.60 16693.71 34581.53 32680.29 30392.02 28464.51 32095.52 32482.04 27678.34 30091.15 308
RPSCF85.33 29185.55 26984.67 34794.63 24662.28 38693.73 33893.76 34374.38 36485.23 24097.06 17564.09 32198.31 17880.98 28186.08 25093.41 253
N_pmnet70.19 35369.87 35571.12 37388.24 35330.63 41295.85 31728.70 41170.18 37568.73 36886.55 36364.04 32293.81 35153.12 38973.46 33788.94 352
DSMNet-mixed81.60 32281.43 31682.10 35884.36 37560.79 38793.63 34086.74 39179.00 34179.32 31687.15 35963.87 32389.78 38166.89 36391.92 20395.73 240
WB-MVS66.44 35666.29 35966.89 37674.84 39244.93 40393.00 34484.09 39771.15 37155.82 38881.63 37763.79 32480.31 39821.85 40250.47 39575.43 389
FMVSNet582.29 31780.54 32187.52 32693.79 27384.01 28693.73 33892.47 36076.92 35474.27 34586.15 36563.69 32589.24 38469.07 35474.79 32189.29 349
SSC-MVS65.42 35765.20 36066.06 37773.96 39343.83 40492.08 35383.54 39869.77 37754.73 38980.92 38163.30 32679.92 39920.48 40348.02 39674.44 390
GBi-Net86.67 26884.96 27691.80 24495.11 22588.81 18196.77 28395.25 30382.94 30482.12 27990.25 32962.89 32794.97 33679.04 29580.24 29091.62 287
test186.67 26884.96 27691.80 24495.11 22588.81 18196.77 28395.25 30382.94 30482.12 27990.25 32962.89 32794.97 33679.04 29580.24 29091.62 287
FMVSNet286.90 26384.79 28293.24 21295.11 22592.54 9097.67 25195.86 27182.94 30480.55 30091.17 30362.89 32795.29 33177.23 30779.71 29691.90 282
VPNet88.30 24386.57 25393.49 20891.95 30391.35 10798.18 21197.20 17188.61 18284.52 24694.89 23462.21 33096.76 26289.34 19272.26 34892.36 263
PVSNet_083.28 1687.31 25985.16 27493.74 20694.78 24184.59 27898.91 13398.69 2189.81 14878.59 32493.23 26861.95 33199.34 13494.75 11755.72 38897.30 204
jajsoiax87.35 25886.51 25589.87 29287.75 36181.74 31497.03 27495.98 24988.47 18580.15 30593.80 25461.47 33296.36 28489.44 19084.47 26291.50 294
OurMVSNet-221017-084.13 30883.59 29885.77 34087.81 35870.24 37694.89 32793.65 34786.08 25176.53 33293.28 26761.41 33396.14 30180.95 28277.69 30790.93 313
Anonymous2023120680.76 32579.42 32984.79 34684.78 37472.98 36696.53 29192.97 35379.56 34074.33 34488.83 34561.27 33492.15 37060.59 37975.92 31389.24 350
sd_testset89.23 22088.05 23492.74 22496.80 15485.33 26695.85 31797.03 18888.34 19585.73 23395.26 22961.12 33597.76 21585.61 23386.75 24295.14 242
LFMVS92.23 16690.84 17996.42 9898.24 9591.08 11898.24 20696.22 23383.39 29694.74 12198.31 12061.12 33598.85 15494.45 12592.82 18599.32 95
UGNet91.91 17290.85 17895.10 15297.06 14788.69 18598.01 22898.24 3492.41 8792.39 15793.61 25960.52 33799.68 9288.14 20497.25 13196.92 218
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
SixPastTwentyTwo82.63 31681.58 31485.79 33988.12 35571.01 37495.17 32592.54 35984.33 28072.93 35792.08 28260.41 33895.61 32374.47 32874.15 33090.75 321
mvs_tets87.09 26186.22 25889.71 29887.87 35781.39 32096.73 28895.90 26588.19 20179.99 30793.61 25959.96 33996.31 29289.40 19184.34 26391.43 298
test_fmvs192.35 16192.94 13690.57 27297.19 13775.43 35799.55 4594.97 31395.20 3396.82 8097.57 14959.59 34099.84 6997.30 6398.29 11196.46 231
COLMAP_ROBcopyleft82.69 1884.54 30182.82 30289.70 29996.72 15878.85 33995.89 31292.83 35671.55 37077.54 33195.89 21859.40 34199.14 14567.26 36188.26 23591.11 310
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_vis1_n_192093.08 14893.42 12192.04 23996.31 17479.36 33699.83 1096.06 24696.72 998.53 3398.10 12958.57 34299.91 4597.86 5598.79 9596.85 219
Anonymous2023121184.72 29782.65 30890.91 26297.71 11184.55 27997.28 26396.67 20266.88 38679.18 31890.87 30858.47 34396.60 26682.61 27074.20 32991.59 292
MS-PatchMatch86.75 26685.92 26389.22 30991.97 30182.47 30996.91 27896.14 24083.74 28977.73 32993.53 26258.19 34497.37 24076.75 31398.35 10787.84 359
iter_conf05_1194.23 11093.49 11996.46 9497.51 12191.32 10899.96 194.31 33595.62 2699.32 899.22 2757.79 34598.59 17098.00 5099.64 4099.46 81
test20.0378.51 33877.48 33481.62 36083.07 37971.03 37396.11 30792.83 35681.66 32569.31 36689.68 33957.53 34687.29 38958.65 38368.47 36086.53 370
MVS-HIRNet79.01 33375.13 34590.66 27093.82 27281.69 31585.16 38193.75 34454.54 39174.17 34659.15 39757.46 34796.58 26963.74 37094.38 17193.72 250
MDA-MVSNet-bldmvs77.82 34174.75 34787.03 33188.33 35278.52 34496.34 29792.85 35575.57 35848.87 39387.89 34957.32 34892.49 36760.79 37864.80 37390.08 334
bld_raw_dy_0_6491.37 18189.75 19596.23 10797.51 12190.58 13299.16 9788.98 38795.64 2587.18 22299.20 3057.19 34998.66 16598.00 5084.86 25899.46 81
ACMH83.09 1784.60 29982.61 30990.57 27293.18 28682.94 29996.27 29994.92 31681.01 33272.61 35993.61 25956.54 35097.79 20874.31 32981.07 28890.99 312
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ITE_SJBPF87.93 32292.26 29676.44 35493.47 35087.67 22179.95 30895.49 22556.50 35197.38 23875.24 32282.33 28389.98 339
pmmvs-eth3d78.71 33676.16 34186.38 33480.25 38781.19 32494.17 33492.13 36677.97 34866.90 37782.31 37555.76 35292.56 36573.63 33762.31 37885.38 375
K. test v381.04 32479.77 32784.83 34587.41 36270.23 37795.60 32293.93 34283.70 29167.51 37489.35 34355.76 35293.58 35476.67 31468.03 36290.67 324
AllTest84.97 29583.12 30090.52 27596.82 15278.84 34095.89 31292.17 36477.96 34975.94 33695.50 22355.48 35499.18 13971.15 34587.14 23993.55 251
TestCases90.52 27596.82 15278.84 34092.17 36477.96 34975.94 33695.50 22355.48 35499.18 13971.15 34587.14 23993.55 251
KD-MVS_self_test77.47 34275.88 34282.24 35681.59 38268.93 38092.83 34994.02 34177.03 35373.14 35383.39 37155.44 35690.42 37667.95 35857.53 38587.38 363
CMPMVSbinary58.40 2180.48 32680.11 32581.59 36185.10 37359.56 38994.14 33595.95 25468.54 38160.71 38593.31 26555.35 35797.87 20383.06 26684.85 25987.33 365
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous2024052987.66 25585.58 26893.92 20097.59 11785.01 27398.13 21597.13 17766.69 38788.47 20996.01 21655.09 35899.51 11087.00 21484.12 26697.23 208
VDDNet90.08 20988.54 22594.69 16994.41 24987.68 20298.21 20996.40 22176.21 35693.33 14697.75 13854.93 35998.77 15794.71 12090.96 22297.61 198
ACMH+83.78 1584.21 30582.56 31089.15 31193.73 27479.16 33796.43 29494.28 33681.09 33174.00 34794.03 24654.58 36097.67 21976.10 31778.81 29890.63 325
VDD-MVS91.24 18590.18 19094.45 17897.08 14685.84 25798.40 19196.10 24286.99 23093.36 14598.16 12754.27 36199.20 13896.59 8090.63 22798.31 174
lessismore_v085.08 34385.59 37269.28 37990.56 37967.68 37390.21 33354.21 36295.46 32673.88 33362.64 37690.50 327
USDC84.74 29682.93 30190.16 28491.73 30883.54 29395.00 32693.30 35188.77 18073.19 35293.30 26653.62 36397.65 22275.88 31981.54 28789.30 348
Anonymous20240521188.84 22987.03 24894.27 18598.14 10084.18 28498.44 18495.58 28676.79 35589.34 20396.88 18753.42 36499.54 10887.53 21187.12 24199.09 116
XVG-ACMP-BASELINE85.86 28284.95 27888.57 31889.90 33177.12 35294.30 33295.60 28587.40 22682.12 27992.99 27453.42 36497.66 22085.02 23983.83 26990.92 314
test_040278.81 33576.33 34086.26 33691.18 31678.44 34595.88 31491.34 37568.55 38070.51 36389.91 33652.65 36694.99 33547.14 39279.78 29585.34 377
MIMVSNet84.48 30281.83 31292.42 23091.73 30887.36 21485.52 38094.42 33281.40 32781.91 28587.58 35151.92 36792.81 36173.84 33488.15 23697.08 213
UnsupCasMVSNet_eth78.90 33476.67 33985.58 34182.81 38174.94 35991.98 35496.31 22684.64 27665.84 38087.71 35051.33 36892.23 36972.89 34156.50 38789.56 346
tt080586.50 27384.79 28291.63 25091.97 30181.49 31796.49 29397.38 15482.24 31882.44 27095.82 21951.22 36998.25 18384.55 24680.96 28995.13 244
new-patchmatchnet74.80 34972.40 35281.99 35978.36 39072.20 37094.44 33092.36 36177.06 35263.47 38279.98 38451.04 37088.85 38560.53 38054.35 38984.92 380
pmmvs679.90 32977.31 33587.67 32584.17 37678.13 34795.86 31693.68 34667.94 38372.67 35889.62 34050.98 37195.75 31874.80 32766.04 36989.14 351
test_fmvs1_n91.07 18791.41 16790.06 28694.10 25774.31 36199.18 9394.84 31794.81 3596.37 9097.46 15350.86 37299.82 7697.14 6697.90 11496.04 238
FMVSNet183.94 31081.32 31891.80 24491.94 30488.81 18196.77 28395.25 30377.98 34778.25 32790.25 32950.37 37394.97 33673.27 33877.81 30691.62 287
UniMVSNet_ETH3D85.65 28983.79 29791.21 25590.41 32680.75 33095.36 32395.78 27378.76 34581.83 29094.33 24249.86 37496.66 26484.30 24883.52 27496.22 235
Anonymous2024052178.63 33776.90 33883.82 35182.82 38072.86 36795.72 32193.57 34873.55 36772.17 36084.79 36849.69 37592.51 36665.29 36874.50 32386.09 373
TDRefinement78.01 33975.31 34386.10 33870.06 39873.84 36393.59 34191.58 37374.51 36373.08 35591.04 30449.63 37697.12 24574.88 32559.47 38187.33 365
LF4IMVS81.94 32081.17 31984.25 34987.23 36568.87 38193.35 34291.93 36983.35 29775.40 34193.00 27349.25 37796.65 26578.88 29878.11 30187.22 367
new_pmnet76.02 34473.71 34982.95 35483.88 37772.85 36891.26 36492.26 36370.44 37462.60 38381.37 37847.64 37892.32 36861.85 37572.10 35083.68 383
TinyColmap80.42 32777.94 33287.85 32392.09 29978.58 34393.74 33789.94 38174.99 36069.77 36491.78 29146.09 37997.58 22765.17 36977.89 30287.38 363
testgi82.29 31781.00 32086.17 33787.24 36474.84 36097.39 25791.62 37288.63 18175.85 33995.42 22646.07 38091.55 37466.87 36479.94 29492.12 276
test_fmvs285.10 29385.45 27184.02 35089.85 33365.63 38498.49 17992.59 35890.45 12985.43 23993.32 26443.94 38196.59 26790.81 17284.19 26589.85 341
OpenMVS_ROBcopyleft73.86 2077.99 34075.06 34686.77 33383.81 37877.94 34996.38 29691.53 37467.54 38468.38 36987.13 36043.94 38196.08 30355.03 38781.83 28586.29 372
test_vis1_n90.40 19990.27 18990.79 26791.55 31076.48 35399.12 11094.44 32994.31 4397.34 6496.95 18143.60 38399.42 12397.57 5997.60 12196.47 230
tmp_tt53.66 36652.86 36856.05 38332.75 41141.97 40773.42 39776.12 40421.91 40439.68 40096.39 20542.59 38465.10 40378.00 30414.92 40461.08 396
pmmvs372.86 35169.76 35682.17 35773.86 39474.19 36294.20 33389.01 38664.23 39067.72 37280.91 38241.48 38588.65 38662.40 37454.02 39083.68 383
UnsupCasMVSNet_bld73.85 35070.14 35484.99 34479.44 38875.73 35588.53 37495.24 30670.12 37661.94 38474.81 39041.41 38693.62 35368.65 35651.13 39485.62 374
MIMVSNet175.92 34573.30 35083.81 35281.29 38475.57 35692.26 35292.05 36773.09 36867.48 37586.18 36440.87 38787.64 38855.78 38670.68 35788.21 357
EG-PatchMatch MVS79.92 32877.59 33386.90 33287.06 36677.90 35096.20 30694.06 34074.61 36266.53 37888.76 34640.40 38896.20 29767.02 36283.66 27286.61 369
EGC-MVSNET60.70 36055.37 36476.72 36586.35 37071.08 37289.96 37284.44 3960.38 4081.50 40984.09 37037.30 38988.10 38740.85 39773.44 33870.97 393
test_vis1_rt81.31 32380.05 32685.11 34291.29 31570.66 37598.98 12777.39 40385.76 25768.80 36782.40 37436.56 39099.44 11992.67 15586.55 24485.24 378
DeepMVS_CXcopyleft76.08 36690.74 32251.65 39990.84 37786.47 24857.89 38787.98 34835.88 39192.60 36365.77 36765.06 37283.97 382
mvsany_test375.85 34674.52 34879.83 36373.53 39560.64 38891.73 35787.87 39083.91 28770.55 36282.52 37331.12 39293.66 35286.66 22162.83 37485.19 379
test_method70.10 35468.66 35774.41 37086.30 37155.84 39294.47 32989.82 38235.18 39966.15 37984.75 36930.54 39377.96 40070.40 35160.33 38089.44 347
PM-MVS74.88 34872.85 35180.98 36278.98 38964.75 38590.81 36885.77 39280.95 33368.23 37182.81 37229.08 39492.84 36076.54 31562.46 37785.36 376
APD_test168.93 35566.98 35874.77 36980.62 38653.15 39687.97 37585.01 39453.76 39259.26 38687.52 35325.19 39589.95 37856.20 38567.33 36681.19 387
ambc79.60 36472.76 39756.61 39176.20 39592.01 36868.25 37080.23 38323.34 39694.73 34373.78 33660.81 37987.48 362
test_fmvs375.09 34775.19 34474.81 36877.45 39154.08 39495.93 31090.64 37882.51 31473.29 35181.19 37922.29 39786.29 39085.50 23467.89 36384.06 381
test_f71.94 35270.82 35375.30 36772.77 39653.28 39591.62 35889.66 38475.44 35964.47 38178.31 38720.48 39889.56 38278.63 30166.02 37083.05 386
FPMVS61.57 35860.32 36165.34 37860.14 40542.44 40691.02 36789.72 38344.15 39442.63 39780.93 38019.02 39980.59 39742.50 39472.76 34273.00 391
EMVS39.96 37139.88 37340.18 38759.57 40632.12 41184.79 38664.57 40926.27 40226.14 40344.18 40518.73 40059.29 40617.03 40517.67 40329.12 402
Gipumacopyleft54.77 36552.22 36962.40 38286.50 36859.37 39050.20 40090.35 38036.52 39841.20 39949.49 40018.33 40181.29 39332.10 39965.34 37146.54 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN41.02 37040.93 37241.29 38661.97 40333.83 40984.00 38965.17 40827.17 40127.56 40146.72 40217.63 40260.41 40519.32 40418.82 40129.61 401
PMMVS258.97 36255.07 36570.69 37462.72 40255.37 39385.97 37980.52 40049.48 39345.94 39468.31 39215.73 40380.78 39649.79 39137.12 39975.91 388
ANet_high50.71 36746.17 37064.33 37944.27 40952.30 39876.13 39678.73 40164.95 38827.37 40255.23 39914.61 40467.74 40236.01 39818.23 40272.95 392
LCM-MVSNet60.07 36156.37 36371.18 37254.81 40748.67 40082.17 39289.48 38537.95 39749.13 39269.12 39113.75 40581.76 39259.28 38151.63 39383.10 385
test_vis3_rt61.29 35958.75 36268.92 37567.41 39952.84 39791.18 36659.23 41066.96 38541.96 39858.44 39811.37 40694.72 34474.25 33057.97 38459.20 397
testf156.38 36353.73 36664.31 38064.84 40045.11 40180.50 39375.94 40538.87 39542.74 39575.07 38811.26 40781.19 39441.11 39553.27 39166.63 394
APD_test256.38 36353.73 36664.31 38064.84 40045.11 40180.50 39375.94 40538.87 39542.74 39575.07 38811.26 40781.19 39441.11 39553.27 39166.63 394
PMVScopyleft41.42 2345.67 36842.50 37155.17 38434.28 41032.37 41066.24 39878.71 40230.72 40022.04 40559.59 3964.59 40977.85 40127.49 40058.84 38355.29 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d16.71 37416.73 37816.65 38860.15 40425.22 41341.24 4015.17 4126.56 4055.48 4083.61 4083.64 41022.72 40715.20 4069.52 4051.99 405
MVEpermissive44.00 2241.70 36937.64 37453.90 38549.46 40843.37 40565.09 39966.66 40726.19 40325.77 40448.53 4013.58 41163.35 40426.15 40127.28 40054.97 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test12316.58 37519.47 3777.91 3893.59 4135.37 41494.32 3311.39 4142.49 40713.98 40744.60 4042.91 4122.65 40811.35 4080.57 40715.70 403
testmvs18.81 37323.05 3766.10 3904.48 4122.29 41597.78 2403.00 4133.27 40618.60 40662.71 3941.53 4132.49 40914.26 4071.80 40613.50 404
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.21 37610.94 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41098.50 1100.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS79.74 33467.75 359
FOURS199.50 4288.94 17699.55 4597.47 14191.32 10998.12 45
MSC_two_6792asdad99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
eth-test20.00 414
eth-test0.00 414
IU-MVS99.63 1895.38 2297.73 8095.54 2899.54 399.69 699.81 2399.99 1
save fliter99.34 5093.85 6299.65 3697.63 10795.69 22
test_0728_SECOND98.77 899.66 1296.37 1499.72 2497.68 9099.98 999.64 799.82 1999.96 10
GSMVS98.84 138
test_part299.54 3695.42 2098.13 43
MTGPAbinary97.45 144
MTMP99.21 8991.09 376
gm-plane-assit94.69 24388.14 19388.22 20097.20 16698.29 18090.79 173
test9_res98.60 3399.87 999.90 22
agg_prior297.84 5699.87 999.91 21
agg_prior99.54 3692.66 8697.64 10397.98 5299.61 102
test_prior492.00 9699.41 69
test_prior97.01 6099.58 3091.77 9997.57 12199.49 11299.79 36
旧先验298.67 15685.75 25898.96 2198.97 15293.84 133
新几何298.26 205
无先验98.52 17397.82 6587.20 22899.90 5087.64 21099.85 30
原ACMM298.69 153
testdata299.88 5484.16 251
testdata197.89 23392.43 84
plane_prior793.84 26985.73 258
plane_prior596.30 22797.75 21693.46 14286.17 24892.67 258
plane_prior496.52 199
plane_prior385.91 25393.65 6386.99 223
plane_prior299.02 12193.38 68
plane_prior193.90 268
plane_prior86.07 24999.14 10693.81 6086.26 247
n20.00 415
nn0.00 415
door-mid84.90 395
test1197.68 90
door85.30 393
HQP5-MVS86.39 234
HQP-NCC93.95 26299.16 9793.92 5287.57 215
ACMP_Plane93.95 26299.16 9793.92 5287.57 215
BP-MVS93.82 135
HQP4-MVS87.57 21597.77 21092.72 256
HQP3-MVS96.37 22386.29 245
NP-MVS93.94 26586.22 24196.67 197
ACMMP++_ref82.64 281
ACMMP++83.83 269