This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
CHOSEN 280x42096.80 3796.85 2996.66 9497.85 12294.42 5294.76 31298.36 2492.50 6695.62 10397.52 14797.92 197.38 22498.31 3998.80 10198.20 182
GG-mvs-BLEND96.98 7196.53 16494.81 4187.20 35197.74 7093.91 13096.40 19096.56 296.94 23895.08 10198.95 9499.20 113
gg-mvs-nofinetune90.00 19787.71 22096.89 8296.15 18194.69 4685.15 35797.74 7068.32 35992.97 14360.16 36996.10 396.84 24093.89 12398.87 9699.14 116
MSP-MVS97.77 998.18 296.53 10199.54 4090.14 14399.41 5997.70 8195.46 1798.60 2599.19 3495.71 499.49 10998.15 4299.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
iter_conf0593.48 12693.18 12194.39 17497.15 14494.17 5899.30 7292.97 33792.38 7586.70 21795.42 20895.67 596.59 25094.67 11284.32 24592.39 243
baseline294.04 11093.80 11194.74 16093.07 27490.25 14098.12 20298.16 3589.86 13586.53 21896.95 17395.56 698.05 18191.44 15294.53 16595.93 225
PC_three_145294.60 2199.41 299.12 4895.50 799.96 3099.84 299.92 399.97 7
DVP-MVS++98.18 298.09 598.44 1599.61 2795.38 2199.55 3597.68 8593.01 5399.23 899.45 1695.12 899.98 1099.25 1599.92 399.97 7
OPU-MVS99.49 499.64 2098.51 499.77 899.19 3495.12 899.97 2399.90 199.92 399.99 1
iter_conf_final93.22 13893.04 12593.76 19697.03 15292.22 9899.05 10193.31 33492.11 8086.93 21195.42 20895.01 1096.59 25093.98 12184.48 24292.46 242
tttt051793.30 13493.01 12794.17 18195.57 19786.47 22598.51 16297.60 10485.99 23690.55 17497.19 16294.80 1198.31 16785.06 22491.86 19597.74 190
thisisatest053094.00 11193.52 11495.43 13795.76 19290.02 15298.99 10997.60 10486.58 22891.74 15297.36 15394.78 1298.34 16686.37 21292.48 18597.94 188
thisisatest051594.75 9494.19 9696.43 10596.13 18692.64 9299.47 4597.60 10487.55 21193.17 13997.59 14594.71 1398.42 16488.28 19193.20 17498.24 179
test_0728_THIRD93.01 5399.07 1199.46 1194.66 1499.97 2399.25 1599.82 1999.95 15
ET-MVSNet_ETH3D92.56 15191.45 15995.88 12496.39 17094.13 5999.46 5096.97 18592.18 7866.94 35698.29 12294.65 1594.28 33494.34 11883.82 25199.24 109
MVSTER92.71 14592.32 13893.86 19397.29 13992.95 8699.01 10796.59 19790.09 13185.51 22394.00 23294.61 1696.56 25390.77 16283.03 26092.08 259
DPM-MVS97.86 897.25 1999.68 198.25 10999.10 199.76 1197.78 6596.61 498.15 3699.53 793.62 17100.00 191.79 15099.80 2799.94 18
test_one_060199.59 3194.89 3497.64 9493.14 5298.93 1699.45 1693.45 18
SED-MVS98.18 298.10 498.41 1799.63 2195.24 2499.77 897.72 7694.17 2699.30 699.54 393.32 1999.98 1099.70 399.81 2399.99 1
test_241102_ONE99.63 2195.24 2497.72 7694.16 2899.30 699.49 1093.32 1999.98 10
DPE-MVScopyleft98.11 698.00 698.44 1599.50 4795.39 2099.29 7397.72 7694.50 2298.64 2499.54 393.32 1999.97 2399.58 999.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft98.07 798.00 698.29 1899.66 1595.20 2999.72 1397.47 13493.95 3199.07 1199.46 1193.18 2299.97 2399.64 699.82 1999.69 65
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.66 1595.20 2999.77 897.70 8193.95 3199.35 599.54 393.18 22
test_241102_TWO97.72 7694.17 2699.23 899.54 393.14 2499.98 1099.70 399.82 1999.99 1
CNVR-MVS98.46 198.38 198.72 899.80 496.19 1499.80 797.99 4597.05 399.41 299.59 292.89 25100.00 198.99 1999.90 799.96 10
MCST-MVS98.18 297.95 998.86 599.85 396.60 999.70 1697.98 4697.18 295.96 9199.33 2392.62 26100.00 198.99 1999.93 199.98 6
NCCC98.12 598.11 398.13 2399.76 694.46 4999.81 597.88 5196.54 598.84 1899.46 1192.55 2799.98 1098.25 4099.93 199.94 18
patch_mono-297.10 2797.97 894.49 16799.21 7383.73 28399.62 2898.25 2795.28 1899.38 498.91 8092.28 2899.94 3799.61 899.22 8399.78 42
SteuartSystems-ACMMP97.25 1897.34 1797.01 6597.38 13691.46 11099.75 1297.66 8894.14 3098.13 3799.26 2692.16 2999.66 8597.91 4699.64 4799.90 24
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + MP.97.44 1697.46 1397.39 5299.12 7893.49 7198.52 15997.50 12994.46 2398.99 1398.64 10191.58 3099.08 14498.49 3099.83 1599.60 78
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
TSAR-MVS + GP.96.95 3196.91 2797.07 6298.88 9291.62 10699.58 3196.54 20495.09 1996.84 7398.63 10391.16 3199.77 7299.04 1896.42 14299.81 35
EPP-MVSNet93.75 11993.67 11294.01 18995.86 18985.70 25198.67 14297.66 8884.46 26091.36 16297.18 16391.16 3197.79 19592.93 14093.75 17198.53 163
HPM-MVS++copyleft97.72 1097.59 1198.14 2299.53 4594.76 4299.19 7797.75 6895.66 1398.21 3599.29 2491.10 3399.99 597.68 4899.87 999.68 66
旧先验198.97 8692.90 8797.74 7099.15 4391.05 3499.33 7499.60 78
train_agg97.20 2397.08 2197.57 4599.57 3793.17 7699.38 6297.66 8890.18 12798.39 3199.18 3790.94 3599.66 8598.58 2899.85 1399.88 28
test_899.55 3993.07 8099.37 6597.64 9490.18 12798.36 3399.19 3490.94 3599.64 91
TEST999.57 3793.17 7699.38 6297.66 8889.57 14698.39 3199.18 3790.88 3799.66 85
SD-MVS97.51 1397.40 1697.81 3599.01 8593.79 6599.33 7097.38 14893.73 4298.83 1999.02 6190.87 3899.88 4998.69 2399.74 3299.77 49
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
agg_prior197.12 2597.03 2397.38 5399.54 4092.66 8899.35 6797.64 9490.38 12097.98 4799.17 3990.84 3999.61 9498.57 2999.78 3199.87 31
APDe-MVS97.53 1297.47 1297.70 3999.58 3393.63 6699.56 3497.52 12393.59 4698.01 4699.12 4890.80 4099.55 9999.26 1499.79 2999.93 21
IB-MVS89.43 692.12 15990.83 17295.98 12295.40 20590.78 13099.81 598.06 4091.23 10085.63 22293.66 24290.63 4198.78 15091.22 15371.85 33398.36 174
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ETH3 D test640097.67 1197.33 1898.69 999.69 996.43 1199.63 2697.73 7491.05 10198.66 2399.53 790.59 4299.71 7899.32 1299.80 2799.91 22
segment_acmp90.56 43
dcpmvs_295.67 7596.18 4994.12 18398.82 9584.22 27697.37 24595.45 27990.70 11095.77 9998.63 10390.47 4498.68 15899.20 1799.22 8399.45 92
test_prior397.07 2897.09 2097.01 6599.58 3391.77 10199.57 3297.57 11391.43 9398.12 3998.97 6790.43 4599.49 10998.33 3699.81 2399.79 38
test_prior299.57 3291.43 9398.12 3998.97 6790.43 4598.33 3699.81 23
xxxxxxxxxxxxxcwj97.51 1397.42 1597.78 3799.34 5893.85 6399.65 2495.45 27995.69 1198.70 2199.42 1990.42 4799.72 7698.47 3199.65 4499.77 49
SF-MVS97.22 2296.92 2698.12 2599.11 7994.88 3599.44 5397.45 13789.60 14498.70 2199.42 1990.42 4799.72 7698.47 3199.65 4499.77 49
ETH3D-3000-0.197.29 1797.01 2498.12 2599.18 7594.97 3299.47 4597.52 12389.85 13698.79 2099.46 1190.41 4999.69 8098.78 2199.67 4299.70 62
DeepPCF-MVS93.56 196.55 4397.84 1092.68 21798.71 9978.11 33699.70 1697.71 8098.18 197.36 5999.76 190.37 5099.94 3799.27 1399.54 6199.99 1
SMA-MVScopyleft97.24 1996.99 2598.00 3099.30 6594.20 5699.16 8297.65 9389.55 14899.22 1099.52 990.34 5199.99 598.32 3899.83 1599.82 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ZD-MVS99.67 1393.28 7497.61 10287.78 20297.41 5799.16 4190.15 5299.56 9898.35 3599.70 39
CostFormer92.89 14392.48 13794.12 18394.99 22585.89 24692.89 32997.00 18486.98 21995.00 11390.78 29190.05 5397.51 21792.92 14191.73 19998.96 130
testtj97.23 2197.05 2297.75 3899.75 793.34 7399.16 8297.74 7091.28 9898.40 3099.29 2489.95 5499.98 1098.20 4199.70 3999.94 18
MSLP-MVS++97.50 1597.45 1497.63 4199.65 1993.21 7599.70 1698.13 3894.61 2097.78 5299.46 1189.85 5599.81 6797.97 4499.91 699.88 28
9.1496.87 2899.34 5899.50 4297.49 13189.41 15198.59 2699.43 1889.78 5699.69 8098.69 2399.62 51
Regformer-196.97 3096.80 3297.47 4799.46 5293.11 7898.89 11897.94 4792.89 5996.90 6699.02 6189.78 5699.53 10297.06 5599.26 8099.75 53
Regformer-296.94 3396.78 3397.42 4999.46 5292.97 8598.89 11897.93 4892.86 6196.88 6799.02 6189.74 5899.53 10297.03 5699.26 8099.75 53
PAPM96.35 4995.94 6097.58 4394.10 24595.25 2398.93 11398.17 3394.26 2593.94 12998.72 9589.68 5997.88 18996.36 7599.29 7899.62 76
ETH3D cwj APD-0.1696.94 3396.58 3898.01 2998.62 10294.73 4499.13 9497.38 14888.44 18198.53 2899.39 2189.66 6099.69 8098.43 3399.61 5599.61 77
CSCG94.87 9094.71 8595.36 13999.54 4086.49 22499.34 6998.15 3682.71 28990.15 18299.25 2789.48 6199.86 5794.97 10598.82 10099.72 59
PHI-MVS96.65 4096.46 4097.21 5999.34 5891.77 10199.70 1698.05 4186.48 23198.05 4399.20 3389.33 6299.96 3098.38 3499.62 5199.90 24
TESTMET0.1,193.82 11793.26 11995.49 13495.21 20990.25 14099.15 8897.54 11989.18 15791.79 15194.87 21789.13 6397.63 20986.21 21396.29 14798.60 161
APD-MVScopyleft96.95 3196.72 3497.63 4199.51 4693.58 6799.16 8297.44 14190.08 13298.59 2699.07 5489.06 6499.42 12097.92 4599.66 4399.88 28
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CDS-MVSNet93.47 12793.04 12594.76 15894.75 23489.45 16298.82 12497.03 18187.91 19990.97 16796.48 18889.06 6496.36 26889.50 17592.81 18098.49 165
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Patchmatch-test86.25 26284.06 27792.82 21294.42 23982.88 29582.88 36694.23 32071.58 34879.39 29990.62 30089.00 6696.42 26563.03 35391.37 20599.16 115
CDPH-MVS96.56 4296.18 4997.70 3999.59 3193.92 6199.13 9497.44 14189.02 16197.90 5099.22 3188.90 6799.49 10994.63 11399.79 2999.68 66
MG-MVS97.24 1996.83 3198.47 1499.79 595.71 1799.07 9899.06 994.45 2496.42 8498.70 9888.81 6899.74 7595.35 9699.86 1299.97 7
patchmatchnet-post84.86 34988.73 6996.81 242
Regformer-396.50 4496.36 4396.91 7699.34 5891.72 10498.71 13397.90 5092.48 6796.00 8898.95 7488.60 7099.52 10596.44 7398.83 9899.49 88
test1297.83 3499.33 6494.45 5097.55 11697.56 5388.60 7099.50 10899.71 3899.55 82
112195.19 8494.45 9097.42 4998.88 9292.58 9396.22 28997.75 6885.50 24396.86 7099.01 6588.59 7299.90 4587.64 20099.60 5699.79 38
MVS_111021_HR96.69 3896.69 3596.72 9098.58 10491.00 12699.14 9199.45 193.86 3795.15 11098.73 9388.48 7399.76 7397.23 5499.56 5999.40 95
Regformer-496.45 4796.33 4696.81 8399.34 5891.44 11198.71 13397.88 5192.43 6895.97 9098.95 7488.42 7499.51 10696.40 7498.83 9899.49 88
sam_mvs188.39 7598.84 142
PatchmatchNetpermissive92.05 16291.04 16595.06 14896.17 18089.04 16691.26 34297.26 15389.56 14790.64 17390.56 30488.35 7697.11 23079.53 27596.07 15299.03 125
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst92.78 14492.16 14394.65 16396.27 17487.45 20391.83 33797.10 17589.10 16094.68 11790.69 29588.22 7797.73 20489.78 17291.80 19798.77 152
DELS-MVS97.12 2596.60 3798.68 1098.03 11896.57 1099.84 397.84 5596.36 895.20 10998.24 12388.17 7899.83 6296.11 8099.60 5699.64 72
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
testdata95.26 14398.20 11187.28 20997.60 10485.21 24698.48 2999.15 4388.15 7998.72 15690.29 16699.45 6699.78 42
原ACMM196.18 11399.03 8490.08 14697.63 9988.98 16297.00 6598.97 6788.14 8099.71 7888.23 19299.62 5198.76 153
新几何197.40 5198.92 9092.51 9597.77 6785.52 24196.69 7999.06 5688.08 8199.89 4884.88 22799.62 5199.79 38
test-mter93.27 13692.89 12994.40 17194.94 22887.27 21099.15 8897.25 15488.95 16491.57 15594.04 22888.03 8297.58 21385.94 21796.13 14898.36 174
JIA-IIPM85.97 26584.85 26589.33 29593.23 27173.68 34985.05 35897.13 17069.62 35591.56 15768.03 36788.03 8296.96 23677.89 28893.12 17597.34 200
test_yl95.27 8294.60 8797.28 5698.53 10592.98 8399.05 10198.70 1786.76 22594.65 11897.74 13787.78 8499.44 11795.57 9292.61 18299.44 93
DCV-MVSNet95.27 8294.60 8797.28 5698.53 10592.98 8399.05 10198.70 1786.76 22594.65 11897.74 13787.78 8499.44 11795.57 9292.61 18299.44 93
PAPM_NR95.43 7795.05 8296.57 9999.42 5490.14 14398.58 15697.51 12690.65 11392.44 14798.90 8187.77 8699.90 4590.88 15999.32 7599.68 66
HFP-MVS96.42 4896.26 4796.90 7799.69 990.96 12799.47 4597.81 6090.54 11696.88 6799.05 5787.57 8799.96 3095.65 8799.72 3499.78 42
#test#96.48 4596.34 4496.90 7799.69 990.96 12799.53 4097.81 6090.94 10596.88 6799.05 5787.57 8799.96 3095.87 8499.72 3499.78 42
tpm291.77 16491.09 16493.82 19594.83 23285.56 25592.51 33497.16 16784.00 26693.83 13290.66 29787.54 8997.17 22887.73 19991.55 20298.72 154
EPNet96.82 3696.68 3697.25 5898.65 10093.10 7999.48 4398.76 1396.54 597.84 5198.22 12487.49 9099.66 8595.35 9697.78 12199.00 126
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CP-MVS96.22 5496.15 5596.42 10699.67 1389.62 16099.70 1697.61 10290.07 13396.00 8899.16 4187.43 9199.92 4196.03 8299.72 3499.70 62
miper_enhance_ethall90.33 18889.70 18392.22 22297.12 14788.93 17198.35 18495.96 23988.60 17383.14 24692.33 26487.38 9296.18 28386.49 21177.89 28491.55 277
test_post46.00 37687.37 9397.11 230
XVS96.47 4696.37 4296.77 8499.62 2590.66 13599.43 5697.58 11092.41 7296.86 7098.96 7287.37 9399.87 5295.65 8799.43 6899.78 42
X-MVStestdata90.69 18488.66 20596.77 8499.62 2590.66 13599.43 5697.58 11092.41 7296.86 7029.59 38087.37 9399.87 5295.65 8799.43 6899.78 42
DP-MVS Recon95.85 6795.15 8097.95 3199.87 294.38 5399.60 2997.48 13286.58 22894.42 12099.13 4787.36 9699.98 1093.64 12998.33 11499.48 90
DeepC-MVS_fast93.52 297.16 2496.84 3098.13 2399.61 2794.45 5098.85 12197.64 9496.51 795.88 9499.39 2187.35 9799.99 596.61 6899.69 4199.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PAPR96.35 4995.82 6497.94 3299.63 2194.19 5799.42 5897.55 11692.43 6893.82 13399.12 4887.30 9899.91 4394.02 12099.06 8799.74 56
Patchmatch-RL test81.90 30580.13 30887.23 31780.71 36770.12 36284.07 36388.19 37183.16 28170.57 34482.18 35687.18 9992.59 34882.28 25862.78 35398.98 128
CS-MVS95.75 7396.19 4894.40 17197.88 12186.22 23599.66 2396.12 23192.69 6298.07 4298.89 8387.09 10097.59 21296.71 6498.62 10799.39 96
sam_mvs87.08 101
EI-MVSNet-Vis-set95.76 7295.63 7496.17 11599.14 7790.33 13898.49 16697.82 5791.92 8294.75 11598.88 8487.06 10299.48 11495.40 9597.17 13498.70 156
1112_ss92.71 14591.55 15796.20 11295.56 19891.12 11998.48 16794.69 30988.29 18786.89 21398.50 11187.02 10398.66 15984.75 22889.77 21698.81 147
Test_1112_low_res92.27 15790.97 16696.18 11395.53 20091.10 12198.47 16994.66 31088.28 18886.83 21593.50 24787.00 10498.65 16084.69 22989.74 21798.80 148
MDTV_nov1_ep1390.47 17996.14 18388.55 18091.34 34197.51 12689.58 14592.24 14990.50 30886.99 10597.61 21177.64 28992.34 187
region2R96.30 5296.17 5296.70 9199.70 890.31 13999.46 5097.66 8890.55 11597.07 6499.07 5486.85 10699.97 2395.43 9499.74 3299.81 35
baseline192.61 14991.28 16196.58 9797.05 15194.63 4797.72 23396.20 22589.82 13788.56 19696.85 17886.85 10697.82 19388.42 18980.10 27597.30 201
SR-MVS96.13 5696.16 5496.07 11899.42 5489.04 16698.59 15497.33 15290.44 11896.84 7399.12 4886.75 10899.41 12297.47 4999.44 6799.76 52
test22298.32 10891.21 11498.08 20997.58 11083.74 27095.87 9599.02 6186.74 10999.64 4799.81 35
test117295.92 6596.07 5795.46 13599.42 5487.24 21498.51 16297.24 15690.29 12396.56 8399.12 4886.73 11099.36 12697.33 5299.42 7199.78 42
SR-MVS-dyc-post95.75 7395.86 6395.41 13899.22 7187.26 21298.40 17797.21 16089.63 14296.67 8098.97 6786.73 11099.36 12696.62 6699.31 7699.60 78
MDTV_nov1_ep13_2view91.17 11891.38 34087.45 21393.08 14186.67 11287.02 20498.95 134
ETV-MVS96.00 5996.00 5896.00 12096.56 16391.05 12499.63 2696.61 19593.26 5197.39 5898.30 12186.62 11398.13 17498.07 4397.57 12398.82 146
ZNCC-MVS96.09 5795.81 6696.95 7599.42 5491.19 11599.55 3597.53 12089.72 13995.86 9698.94 7986.59 11499.97 2395.13 10099.56 5999.68 66
ACMMP_NAP96.59 4196.18 4997.81 3598.82 9593.55 6898.88 12097.59 10890.66 11197.98 4799.14 4586.59 114100.00 196.47 7299.46 6499.89 27
WTY-MVS95.97 6295.11 8198.54 1297.62 12896.65 899.44 5398.74 1492.25 7695.21 10898.46 11786.56 11699.46 11695.00 10492.69 18199.50 87
HY-MVS88.56 795.29 8194.23 9498.48 1397.72 12496.41 1294.03 32098.74 1492.42 7195.65 10294.76 22186.52 11799.49 10995.29 9892.97 17799.53 83
ACMMPR96.28 5396.14 5696.73 8899.68 1290.47 13799.47 4597.80 6290.54 11696.83 7599.03 6086.51 11899.95 3495.65 8799.72 3499.75 53
EPMVS92.59 15091.59 15695.59 13397.22 14190.03 15191.78 33898.04 4290.42 11991.66 15490.65 29886.49 11997.46 21981.78 26396.31 14599.28 106
zzz-MVS96.21 5595.96 5996.96 7399.29 6691.19 11598.69 13897.45 13792.58 6394.39 12199.24 2986.43 12099.99 596.22 7699.40 7299.71 60
MTAPA96.09 5795.80 6796.96 7399.29 6691.19 11597.23 25397.45 13792.58 6394.39 12199.24 2986.43 12099.99 596.22 7699.40 7299.71 60
GST-MVS95.97 6295.66 7096.90 7799.49 5091.22 11399.45 5297.48 13289.69 14095.89 9398.72 9586.37 12299.95 3494.62 11499.22 8399.52 84
CS-MVS-test95.98 6196.34 4494.90 15398.06 11787.66 19799.69 2296.10 23293.66 4398.35 3499.05 5786.28 12397.66 20696.96 6198.90 9599.37 97
alignmvs95.77 7195.00 8398.06 2897.35 13795.68 1899.71 1597.50 12991.50 9096.16 8798.61 10586.28 12399.00 14696.19 7891.74 19899.51 86
EI-MVSNet-UG-set95.43 7795.29 7695.86 12599.07 8389.87 15498.43 17197.80 6291.78 8594.11 12698.77 8986.25 12599.48 11494.95 10696.45 14198.22 180
mPP-MVS95.90 6695.75 6896.38 10899.58 3389.41 16399.26 7497.41 14590.66 11194.82 11498.95 7486.15 12699.98 1095.24 9999.64 4799.74 56
EIA-MVS95.11 8595.27 7794.64 16496.34 17286.51 22399.59 3096.62 19492.51 6594.08 12798.64 10186.05 12798.24 17195.07 10298.50 11199.18 114
test250694.80 9294.21 9596.58 9796.41 16892.18 9998.01 21498.96 1090.82 10893.46 13697.28 15485.92 12898.45 16389.82 17197.19 13299.12 118
PLCcopyleft91.07 394.23 10894.01 10294.87 15499.17 7687.49 20199.25 7596.55 20288.43 18291.26 16398.21 12685.92 12899.86 5789.77 17397.57 12397.24 203
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PGM-MVS95.85 6795.65 7296.45 10499.50 4789.77 15798.22 19398.90 1289.19 15696.74 7798.95 7485.91 13099.92 4193.94 12299.46 6499.66 70
MP-MVS-pluss95.80 6995.30 7597.29 5598.95 8992.66 8898.59 15497.14 16888.95 16493.12 14099.25 2785.62 13199.94 3796.56 7099.48 6399.28 106
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MVSFormer94.71 9894.08 10196.61 9595.05 22394.87 3697.77 22996.17 22886.84 22298.04 4498.52 10985.52 13295.99 29289.83 16998.97 9198.96 130
lupinMVS96.32 5195.94 6097.44 4895.05 22394.87 3699.86 296.50 20693.82 4098.04 4498.77 8985.52 13298.09 17796.98 6098.97 9199.37 97
MP-MVScopyleft96.00 5995.82 6496.54 10099.47 5190.13 14599.36 6697.41 14590.64 11495.49 10498.95 7485.51 13499.98 1096.00 8399.59 5899.52 84
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVS_3200maxsize95.64 7695.65 7295.62 13199.24 7087.80 19398.42 17297.22 15988.93 16696.64 8298.98 6685.49 13599.36 12696.68 6599.27 7999.70 62
HyFIR lowres test93.68 12293.29 11894.87 15497.57 13288.04 18998.18 19798.47 2287.57 21091.24 16495.05 21485.49 13597.46 21993.22 13692.82 17899.10 120
EPNet_dtu92.28 15692.15 14492.70 21697.29 13984.84 26798.64 14697.82 5792.91 5893.02 14297.02 17085.48 13795.70 30672.25 32694.89 16397.55 197
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Vis-MVSNet (Re-imp)93.26 13793.00 12894.06 18696.14 18386.71 22298.68 14096.70 19288.30 18689.71 18997.64 14385.43 13896.39 26688.06 19596.32 14499.08 122
test_post190.74 34741.37 37985.38 13996.36 26883.16 248
RE-MVS-def95.70 6999.22 7187.26 21298.40 17797.21 16089.63 14296.67 8098.97 6785.24 14096.62 6699.31 7699.60 78
tpm89.67 20288.95 19891.82 23292.54 27981.43 30992.95 32895.92 24587.81 20190.50 17689.44 32384.99 14195.65 30783.67 24582.71 26398.38 171
HPM-MVScopyleft95.41 7995.22 7895.99 12199.29 6689.14 16499.17 8197.09 17687.28 21595.40 10598.48 11484.93 14299.38 12495.64 9199.65 4499.47 91
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test-LLR93.11 14192.68 13294.40 17194.94 22887.27 21099.15 8897.25 15490.21 12491.57 15594.04 22884.89 14397.58 21385.94 21796.13 14898.36 174
test0.0.03 188.96 21088.61 20690.03 27791.09 29984.43 27398.97 11197.02 18290.21 12480.29 28796.31 19484.89 14391.93 35772.98 32385.70 23593.73 232
PatchT85.44 27583.19 28292.22 22293.13 27383.00 29083.80 36596.37 21370.62 35090.55 17479.63 36284.81 14594.87 32458.18 36391.59 20198.79 149
TAMVS92.62 14892.09 14694.20 18094.10 24587.68 19598.41 17496.97 18587.53 21289.74 18796.04 19984.77 14696.49 26088.97 18692.31 18898.42 167
CR-MVSNet88.83 21787.38 22693.16 20793.47 26486.24 23384.97 35994.20 32188.92 16790.76 17186.88 34284.43 14794.82 32670.64 33092.17 19298.41 168
Patchmtry83.61 29781.64 29789.50 29193.36 26882.84 29684.10 36294.20 32169.47 35679.57 29786.88 34284.43 14794.78 32768.48 33874.30 30890.88 299
dp90.16 19488.83 20194.14 18296.38 17186.42 22691.57 33997.06 17884.76 25788.81 19490.19 31684.29 14997.43 22275.05 30791.35 20698.56 162
miper_ehance_all_eth88.94 21188.12 21791.40 24095.32 20686.93 21897.85 22495.55 27384.19 26381.97 26891.50 27884.16 15095.91 29984.69 22977.89 28491.36 285
MVS_111021_LR95.78 7095.94 6095.28 14298.19 11387.69 19498.80 12699.26 793.39 4895.04 11298.69 9984.09 15199.76 7396.96 6199.06 8798.38 171
tpmvs89.16 20787.76 21893.35 20397.19 14284.75 26990.58 34897.36 15081.99 30084.56 22989.31 32683.98 15298.17 17274.85 31090.00 21597.12 205
API-MVS94.78 9394.18 9896.59 9699.21 7390.06 15098.80 12697.78 6583.59 27493.85 13199.21 3283.79 15399.97 2392.37 14699.00 9099.74 56
cl2289.57 20488.79 20291.91 22997.94 12087.62 19897.98 21696.51 20585.03 25182.37 25991.79 27283.65 15496.50 25885.96 21677.89 28491.61 274
Test By Simon83.62 155
PVSNet_BlendedMVS93.36 13293.20 12093.84 19498.77 9791.61 10799.47 4598.04 4291.44 9294.21 12492.63 26283.50 15699.87 5297.41 5083.37 25790.05 322
PVSNet_Blended95.94 6495.66 7096.75 8698.77 9791.61 10799.88 198.04 4293.64 4594.21 12497.76 13583.50 15699.87 5297.41 5097.75 12298.79 149
HPM-MVS_fast94.89 8994.62 8695.70 13099.11 7988.44 18399.14 9197.11 17285.82 23895.69 10198.47 11583.46 15899.32 13293.16 13799.63 5099.35 99
thres20093.69 12092.59 13596.97 7297.76 12394.74 4399.35 6799.36 289.23 15591.21 16596.97 17283.42 15998.77 15185.08 22390.96 20797.39 199
tfpn200view993.43 12992.27 14096.90 7797.68 12694.84 3899.18 7999.36 288.45 17890.79 16996.90 17583.31 16098.75 15384.11 23890.69 20997.12 205
thres40093.39 13192.27 14096.73 8897.68 12694.84 3899.18 7999.36 288.45 17890.79 16996.90 17583.31 16098.75 15384.11 23890.69 20996.61 214
thres100view90093.34 13392.15 14496.90 7797.62 12894.84 3899.06 10099.36 287.96 19790.47 17796.78 18083.29 16298.75 15384.11 23890.69 20997.12 205
thres600view793.18 13992.00 14796.75 8697.62 12894.92 3399.07 9899.36 287.96 19790.47 17796.78 18083.29 16298.71 15782.93 25290.47 21396.61 214
PVSNet_Blended_VisFu94.67 9994.11 9996.34 11097.14 14591.10 12199.32 7197.43 14392.10 8191.53 15896.38 19383.29 16299.68 8393.42 13496.37 14398.25 178
h-mvs3392.47 15391.95 14994.05 18797.13 14685.01 26598.36 18398.08 3993.85 3896.27 8596.73 18283.19 16599.43 11995.81 8568.09 34397.70 191
hse-mvs291.67 16691.51 15892.15 22696.22 17682.61 30097.74 23297.53 12093.85 3896.27 8596.15 19583.19 16597.44 22195.81 8566.86 34896.40 221
AUN-MVS90.17 19389.50 18692.19 22496.21 17782.67 29897.76 23197.53 12088.05 19491.67 15396.15 19583.10 16797.47 21888.11 19466.91 34796.43 220
IS-MVSNet93.00 14292.51 13694.49 16796.14 18387.36 20698.31 18895.70 26488.58 17490.17 18197.50 14883.02 16897.22 22787.06 20396.07 15298.90 138
tpm cat188.89 21387.27 22893.76 19695.79 19085.32 25990.76 34697.09 17676.14 33785.72 22188.59 32982.92 16998.04 18276.96 29391.43 20397.90 189
UniMVSNet_NR-MVSNet89.60 20388.55 21092.75 21592.17 28490.07 14798.74 13298.15 3688.37 18483.21 24293.98 23382.86 17095.93 29686.95 20672.47 32792.25 248
c3_l88.19 23287.23 22991.06 24894.97 22686.17 23897.72 23395.38 28683.43 27681.68 27591.37 28082.81 17195.72 30584.04 24173.70 31491.29 289
DROMVSNet95.09 8695.17 7994.84 15695.42 20388.17 18599.48 4395.92 24591.47 9197.34 6098.36 11882.77 17297.41 22397.24 5398.58 10898.94 135
TAPA-MVS87.50 990.35 18789.05 19694.25 17998.48 10785.17 26298.42 17296.58 20082.44 29587.24 20798.53 10882.77 17298.84 14959.09 36197.88 11798.72 154
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
KD-MVS_2432*160082.98 29880.52 30690.38 26694.32 24188.98 16892.87 33095.87 25580.46 31673.79 33287.49 33582.76 17493.29 34070.56 33146.53 37088.87 338
miper_refine_blended82.98 29880.52 30690.38 26694.32 24188.98 16892.87 33095.87 25580.46 31673.79 33287.49 33582.76 17493.29 34070.56 33146.53 37088.87 338
CANet97.00 2996.49 3998.55 1198.86 9496.10 1599.83 497.52 12395.90 997.21 6198.90 8182.66 17699.93 4098.71 2298.80 10199.63 74
CPTT-MVS94.60 10294.43 9195.09 14699.66 1586.85 21999.44 5397.47 13483.22 27994.34 12398.96 7282.50 17799.55 9994.81 10799.50 6298.88 139
mvs_anonymous92.50 15291.65 15595.06 14896.60 16289.64 15997.06 25996.44 21086.64 22784.14 23493.93 23482.49 17896.17 28591.47 15196.08 15199.35 99
pcd_1.5k_mvsjas6.87 3509.16 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38282.48 1790.00 3830.00 3810.00 3810.00 379
PS-MVSNAJss89.54 20589.05 19691.00 25088.77 33184.36 27497.39 24295.97 23788.47 17581.88 27093.80 23882.48 17996.50 25889.34 18083.34 25992.15 254
PS-MVSNAJ96.87 3596.40 4198.29 1897.35 13797.29 599.03 10497.11 17295.83 1098.97 1499.14 4582.48 17999.60 9698.60 2599.08 8698.00 186
UA-Net93.30 13492.62 13495.34 14096.27 17488.53 18295.88 29996.97 18590.90 10695.37 10697.07 16882.38 18299.10 14383.91 24294.86 16498.38 171
FIs90.70 18389.87 18293.18 20692.29 28191.12 11998.17 19998.25 2789.11 15983.44 23994.82 21982.26 18396.17 28587.76 19882.76 26292.25 248
ACMMPcopyleft94.67 9994.30 9295.79 12799.25 6988.13 18798.41 17498.67 2090.38 12091.43 15998.72 9582.22 18499.95 3493.83 12695.76 15699.29 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
xiu_mvs_v2_base96.66 3996.17 5298.11 2797.11 14896.96 699.01 10797.04 17995.51 1698.86 1799.11 5382.19 18599.36 12698.59 2798.14 11598.00 186
DIV-MVS_self_test87.82 23486.81 23590.87 25594.87 23185.39 25897.81 22595.22 29882.92 28780.76 28191.31 28281.99 18695.81 30381.36 26475.04 29991.42 283
miper_lstm_enhance86.90 24986.20 24589.00 30194.53 23881.19 31596.74 27395.24 29482.33 29680.15 28990.51 30781.99 18694.68 33080.71 27073.58 31691.12 293
cl____87.82 23486.79 23690.89 25494.88 23085.43 25697.81 22595.24 29482.91 28880.71 28291.22 28381.97 18895.84 30181.34 26575.06 29891.40 284
FC-MVSNet-test90.22 19189.40 19092.67 21891.78 29189.86 15597.89 21998.22 3088.81 16982.96 24794.66 22281.90 18995.96 29485.89 21982.52 26592.20 253
UniMVSNet (Re)89.50 20688.32 21493.03 20892.21 28390.96 12798.90 11798.39 2389.13 15883.22 24192.03 26681.69 19096.34 27486.79 20972.53 32691.81 266
MVS_Test93.67 12392.67 13396.69 9296.72 16092.66 8897.22 25496.03 23587.69 20895.12 11194.03 23081.55 19198.28 17089.17 18496.46 14099.14 116
sss94.85 9193.94 10797.58 4396.43 16794.09 6098.93 11399.16 889.50 14995.27 10797.85 13081.50 19299.65 8992.79 14494.02 17098.99 127
eth_miper_zixun_eth87.76 23787.00 23390.06 27494.67 23682.65 29997.02 26295.37 28784.19 26381.86 27391.58 27781.47 19395.90 30083.24 24673.61 31591.61 274
jason95.40 8094.86 8497.03 6492.91 27694.23 5599.70 1696.30 21793.56 4796.73 7898.52 10981.46 19497.91 18696.08 8198.47 11298.96 130
jason: jason.
IterMVS-LS88.34 22887.44 22491.04 24994.10 24585.85 24898.10 20695.48 27785.12 24782.03 26791.21 28481.35 19595.63 30883.86 24375.73 29591.63 270
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet89.87 20089.38 19191.36 24294.32 24185.87 24797.61 23896.59 19785.10 24885.51 22397.10 16681.30 19696.56 25383.85 24483.03 26091.64 269
RPMNet85.07 27881.88 29594.64 16493.47 26486.24 23384.97 35997.21 16064.85 36590.76 17178.80 36380.95 19799.27 13453.76 36692.17 19298.41 168
114514_t94.06 10993.05 12497.06 6399.08 8292.26 9798.97 11197.01 18382.58 29192.57 14598.22 12480.68 19899.30 13389.34 18099.02 8999.63 74
CNLPA93.64 12492.74 13196.36 10998.96 8890.01 15399.19 7795.89 25386.22 23489.40 19098.85 8580.66 19999.84 6088.57 18896.92 13699.24 109
diffmvs94.59 10394.19 9695.81 12695.54 19990.69 13398.70 13795.68 26691.61 8795.96 9197.81 13280.11 20098.06 18096.52 7195.76 15698.67 157
abl_694.63 10194.48 8995.09 14698.61 10386.96 21798.06 21296.97 18589.31 15295.86 9698.56 10779.82 20199.64 9194.53 11698.65 10698.66 160
casdiffmvs93.98 11293.43 11595.61 13295.07 22289.86 15598.80 12695.84 25890.98 10492.74 14497.66 14279.71 20298.10 17694.72 11095.37 16098.87 141
Effi-MVS+93.87 11693.15 12296.02 11995.79 19090.76 13196.70 27595.78 25986.98 21995.71 10097.17 16479.58 20398.01 18494.57 11596.09 15099.31 103
baseline93.91 11493.30 11795.72 12995.10 22090.07 14797.48 24195.91 25091.03 10293.54 13597.68 14079.58 20398.02 18394.27 11995.14 16199.08 122
canonicalmvs95.02 8893.96 10698.20 2097.53 13495.92 1698.71 13396.19 22791.78 8595.86 9698.49 11379.53 20599.03 14596.12 7991.42 20499.66 70
OMC-MVS93.90 11593.62 11394.73 16198.63 10187.00 21698.04 21396.56 20192.19 7792.46 14698.73 9379.49 20699.14 14192.16 14894.34 16898.03 185
MVS93.92 11392.28 13998.83 695.69 19496.82 796.22 28998.17 3384.89 25584.34 23298.61 10579.32 20799.83 6293.88 12499.43 6899.86 32
VNet95.08 8794.26 9397.55 4698.07 11693.88 6298.68 14098.73 1690.33 12297.16 6397.43 15179.19 20899.53 10296.91 6391.85 19699.24 109
CHOSEN 1792x268894.35 10693.82 11095.95 12397.40 13588.74 17798.41 17498.27 2692.18 7891.43 15996.40 19078.88 20999.81 6793.59 13097.81 11899.30 104
ADS-MVSNet287.62 24286.88 23489.86 28096.21 17779.14 32787.15 35292.99 33683.01 28289.91 18587.27 33878.87 21092.80 34674.20 31492.27 18997.64 192
ADS-MVSNet88.99 20987.30 22794.07 18596.21 17787.56 20087.15 35296.78 19183.01 28289.91 18587.27 33878.87 21097.01 23574.20 31492.27 18997.64 192
nrg03090.23 19088.87 19994.32 17691.53 29493.54 6998.79 13095.89 25388.12 19384.55 23094.61 22378.80 21296.88 23992.35 14775.21 29792.53 241
F-COLMAP92.07 16191.75 15493.02 20998.16 11482.89 29498.79 13095.97 23786.54 23087.92 20097.80 13378.69 21399.65 8985.97 21595.93 15496.53 219
MAR-MVS94.43 10594.09 10095.45 13699.10 8187.47 20298.39 18197.79 6488.37 18494.02 12899.17 3978.64 21499.91 4392.48 14598.85 9798.96 130
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PCF-MVS89.78 591.26 17289.63 18496.16 11695.44 20291.58 10995.29 30896.10 23285.07 25082.75 24997.45 15078.28 21599.78 7180.60 27195.65 15997.12 205
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DeepC-MVS91.02 494.56 10493.92 10896.46 10397.16 14390.76 13198.39 18197.11 17293.92 3388.66 19598.33 11978.14 21699.85 5995.02 10398.57 10998.78 151
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
WR-MVS_H86.53 25885.49 25689.66 28891.04 30083.31 28897.53 24098.20 3284.95 25479.64 29590.90 28978.01 21795.33 31576.29 30072.81 32290.35 314
Fast-Effi-MVS+91.72 16590.79 17394.49 16795.89 18887.40 20599.54 3995.70 26485.01 25389.28 19295.68 20377.75 21897.57 21683.22 24795.06 16298.51 164
131493.44 12891.98 14897.84 3395.24 20794.38 5396.22 28997.92 4990.18 12782.28 26097.71 13977.63 21999.80 6991.94 14998.67 10599.34 101
NR-MVSNet87.74 24086.00 24892.96 21091.46 29590.68 13496.65 27697.42 14488.02 19673.42 33493.68 24077.31 22095.83 30284.26 23471.82 33492.36 245
BH-w/o92.32 15491.79 15293.91 19296.85 15586.18 23799.11 9695.74 26288.13 19284.81 22697.00 17177.26 22197.91 18689.16 18598.03 11697.64 192
PMMVS93.62 12593.90 10992.79 21396.79 15881.40 31098.85 12196.81 18991.25 9996.82 7698.15 12877.02 22298.13 17493.15 13896.30 14698.83 145
CVMVSNet90.30 18990.91 16888.46 30894.32 24173.58 35097.61 23897.59 10890.16 13088.43 19897.10 16676.83 22392.86 34382.64 25493.54 17398.93 136
mvsmamba89.99 19889.42 18991.69 23890.64 30586.34 23198.40 17792.27 34591.01 10384.80 22794.93 21576.12 22496.51 25792.81 14383.84 24892.21 252
LCM-MVSNet-Re88.59 22488.61 20688.51 30795.53 20072.68 35496.85 26788.43 37088.45 17873.14 33690.63 29975.82 22594.38 33392.95 13995.71 15898.48 166
LS3D90.19 19288.72 20394.59 16698.97 8686.33 23296.90 26596.60 19674.96 34084.06 23698.74 9275.78 22699.83 6274.93 30897.57 12397.62 195
pmmvs487.58 24386.17 24691.80 23389.58 32088.92 17297.25 25195.28 29082.54 29280.49 28493.17 25375.62 22796.05 29082.75 25378.90 27990.42 313
BH-untuned91.46 17090.84 17093.33 20496.51 16684.83 26898.84 12395.50 27686.44 23383.50 23896.70 18375.49 22897.77 19786.78 21097.81 11897.40 198
AdaColmapbinary93.82 11793.06 12396.10 11799.88 189.07 16598.33 18597.55 11686.81 22490.39 17998.65 10075.09 22999.98 1093.32 13597.53 12699.26 108
DU-MVS88.83 21787.51 22392.79 21391.46 29590.07 14798.71 13397.62 10188.87 16883.21 24293.68 24074.63 23095.93 29686.95 20672.47 32792.36 245
Baseline_NR-MVSNet85.83 26884.82 26688.87 30488.73 33283.34 28798.63 14791.66 35480.41 31882.44 25591.35 28174.63 23095.42 31384.13 23771.39 33687.84 343
v14886.38 26085.06 26090.37 26889.47 32584.10 27898.52 15995.48 27783.80 26980.93 28090.22 31474.60 23296.31 27680.92 26871.55 33590.69 308
3Dnovator+87.72 893.43 12991.84 15198.17 2195.73 19395.08 3198.92 11597.04 17991.42 9581.48 27797.60 14474.60 23299.79 7090.84 16098.97 9199.64 72
test_part188.43 22786.68 23893.67 20097.56 13392.40 9698.12 20296.55 20282.26 29780.31 28693.16 25474.59 23496.62 24885.00 22672.61 32591.99 263
v886.11 26384.45 27291.10 24689.99 31286.85 21997.24 25295.36 28881.99 30079.89 29389.86 31974.53 23596.39 26678.83 28372.32 32990.05 322
DP-MVS88.75 22286.56 24095.34 14098.92 9087.45 20397.64 23793.52 33270.55 35181.49 27697.25 15774.43 23699.88 4971.14 32994.09 16998.67 157
GeoE90.60 18689.56 18593.72 19995.10 22085.43 25699.41 5994.94 30183.96 26887.21 20896.83 17974.37 23797.05 23480.50 27393.73 17298.67 157
cdsmvs_eth3d_5k22.52 34530.03 3480.00 3640.00 3870.00 3880.00 37597.17 1660.00 3820.00 38398.77 8974.35 2380.00 3830.00 3810.00 3810.00 379
Effi-MVS+-dtu89.97 19990.68 17587.81 31295.15 21471.98 35697.87 22295.40 28491.92 8287.57 20291.44 27974.27 23996.84 24089.45 17693.10 17694.60 230
mvs-test191.57 16792.20 14289.70 28595.15 21474.34 34699.51 4195.40 28491.92 8291.02 16697.25 15774.27 23998.08 17989.45 17695.83 15596.67 213
WR-MVS88.54 22587.22 23092.52 21991.93 28989.50 16198.56 15797.84 5586.99 21781.87 27193.81 23774.25 24195.92 29885.29 22174.43 30692.12 256
FMVSNet388.81 21987.08 23193.99 19096.52 16594.59 4898.08 20996.20 22585.85 23782.12 26391.60 27674.05 24295.40 31479.04 27980.24 27291.99 263
V4287.00 24885.68 25390.98 25189.91 31386.08 24198.32 18795.61 27083.67 27382.72 25090.67 29674.00 24396.53 25581.94 26274.28 30990.32 315
D2MVS87.96 23387.39 22589.70 28591.84 29083.40 28698.31 18898.49 2188.04 19578.23 31290.26 31073.57 24496.79 24484.21 23583.53 25588.90 337
v114486.83 25185.31 25891.40 24089.75 31787.21 21598.31 18895.45 27983.22 27982.70 25190.78 29173.36 24596.36 26879.49 27674.69 30390.63 310
HQP2-MVS73.34 246
HQP-MVS91.50 16891.23 16292.29 22193.95 24986.39 22899.16 8296.37 21393.92 3387.57 20296.67 18473.34 24697.77 19793.82 12786.29 22792.72 237
v1085.73 27284.01 27890.87 25590.03 31186.73 22197.20 25595.22 29881.25 30879.85 29489.75 32073.30 24896.28 28076.87 29472.64 32489.61 329
RRT_MVS88.91 21288.56 20989.93 27890.31 30981.61 30898.08 20996.38 21289.30 15382.41 25794.84 21873.15 24996.04 29190.38 16482.23 26792.15 254
v2v48287.27 24685.76 25191.78 23789.59 31987.58 19998.56 15795.54 27484.53 25982.51 25491.78 27373.11 25096.47 26182.07 25974.14 31291.30 288
HQP_MVS91.26 17290.95 16792.16 22593.84 25686.07 24299.02 10596.30 21793.38 4986.99 20996.52 18672.92 25197.75 20293.46 13286.17 23092.67 239
plane_prior693.92 25386.02 24472.92 251
QAPM91.41 17189.49 18797.17 6195.66 19693.42 7298.60 15297.51 12680.92 31381.39 27897.41 15272.89 25399.87 5282.33 25798.68 10498.21 181
v14419286.40 25984.89 26490.91 25289.48 32485.59 25398.21 19595.43 28382.45 29482.62 25290.58 30372.79 25496.36 26878.45 28574.04 31390.79 302
TranMVSNet+NR-MVSNet87.75 23886.31 24392.07 22890.81 30288.56 17998.33 18597.18 16587.76 20381.87 27193.90 23572.45 25595.43 31283.13 25071.30 33792.23 250
xiu_mvs_v1_base_debu94.73 9593.98 10396.99 6895.19 21095.24 2498.62 14896.50 20692.99 5597.52 5498.83 8672.37 25699.15 13897.03 5696.74 13796.58 216
xiu_mvs_v1_base94.73 9593.98 10396.99 6895.19 21095.24 2498.62 14896.50 20692.99 5597.52 5498.83 8672.37 25699.15 13897.03 5696.74 13796.58 216
xiu_mvs_v1_base_debi94.73 9593.98 10396.99 6895.19 21095.24 2498.62 14896.50 20692.99 5597.52 5498.83 8672.37 25699.15 13897.03 5696.74 13796.58 216
test_djsdf88.26 23187.73 21989.84 28188.05 34082.21 30397.77 22996.17 22886.84 22282.41 25791.95 27172.07 25995.99 29289.83 16984.50 24191.32 287
3Dnovator87.35 1193.17 14091.77 15397.37 5495.41 20493.07 8098.82 12497.85 5491.53 8982.56 25397.58 14671.97 26099.82 6591.01 15799.23 8299.22 112
CANet_DTU94.31 10793.35 11697.20 6097.03 15294.71 4598.62 14895.54 27495.61 1497.21 6198.47 11571.88 26199.84 6088.38 19097.46 12897.04 210
CP-MVSNet86.54 25785.45 25789.79 28391.02 30182.78 29797.38 24497.56 11585.37 24479.53 29893.03 25671.86 26295.25 31779.92 27473.43 32091.34 286
PatchMatch-RL91.47 16990.54 17794.26 17898.20 11186.36 23096.94 26397.14 16887.75 20488.98 19395.75 20271.80 26399.40 12380.92 26897.39 12997.02 211
our_test_384.47 28782.80 28689.50 29189.01 32883.90 28197.03 26094.56 31281.33 30775.36 32690.52 30671.69 26494.54 33268.81 33676.84 29290.07 320
XVG-OURS90.83 18090.49 17891.86 23095.23 20881.25 31495.79 30495.92 24588.96 16390.02 18498.03 12971.60 26599.35 13091.06 15687.78 22294.98 228
v119286.32 26184.71 26891.17 24489.53 32386.40 22798.13 20095.44 28282.52 29382.42 25690.62 30071.58 26696.33 27577.23 29074.88 30090.79 302
Vis-MVSNetpermissive92.64 14791.85 15095.03 15095.12 21688.23 18498.48 16796.81 18991.61 8792.16 15097.22 16071.58 26698.00 18585.85 22097.81 11898.88 139
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PVSNet87.13 1293.69 12092.83 13096.28 11197.99 11990.22 14299.38 6298.93 1191.42 9593.66 13497.68 14071.29 26899.64 9187.94 19797.20 13198.98 128
test_low_dy_conf_00188.79 22088.33 21390.16 27189.83 31682.22 30297.87 22296.22 22388.25 18984.24 23395.09 21371.11 26996.19 28288.63 18783.76 25292.06 260
v192192086.02 26484.44 27390.77 25789.32 32685.20 26098.10 20695.35 28982.19 29882.25 26190.71 29370.73 27096.30 27976.85 29574.49 30590.80 301
EU-MVSNet84.19 29084.42 27483.52 33788.64 33467.37 36696.04 29595.76 26185.29 24578.44 30993.18 25270.67 27191.48 35975.79 30475.98 29391.70 267
XVG-OURS-SEG-HR90.95 17890.66 17691.83 23195.18 21381.14 31795.92 29695.92 24588.40 18390.33 18097.85 13070.66 27299.38 12492.83 14288.83 21894.98 228
v7n84.42 28882.75 28989.43 29488.15 33881.86 30596.75 27295.67 26780.53 31478.38 31089.43 32469.89 27396.35 27373.83 31872.13 33190.07 320
ppachtmachnet_test83.63 29681.57 29989.80 28289.01 32885.09 26497.13 25794.50 31378.84 32376.14 31891.00 28769.78 27494.61 33163.40 35174.36 30789.71 328
MSDG88.29 23086.37 24294.04 18896.90 15486.15 23996.52 27894.36 31877.89 33179.22 30196.95 17369.72 27599.59 9773.20 32292.58 18496.37 222
CLD-MVS91.06 17690.71 17492.10 22794.05 24886.10 24099.55 3596.29 22094.16 2884.70 22897.17 16469.62 27697.82 19394.74 10986.08 23292.39 243
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
v124085.77 27184.11 27690.73 25889.26 32785.15 26397.88 22195.23 29781.89 30382.16 26290.55 30569.60 27796.31 27675.59 30574.87 30190.72 307
Fast-Effi-MVS+-dtu88.84 21588.59 20889.58 28993.44 26778.18 33498.65 14494.62 31188.46 17784.12 23595.37 21168.91 27896.52 25682.06 26091.70 20094.06 231
anonymousdsp86.69 25385.75 25289.53 29086.46 35182.94 29196.39 28095.71 26383.97 26779.63 29690.70 29468.85 27995.94 29586.01 21484.02 24789.72 327
VPA-MVSNet89.10 20887.66 22193.45 20292.56 27891.02 12597.97 21798.32 2586.92 22186.03 22092.01 26868.84 28097.10 23290.92 15875.34 29692.23 250
ab-mvs91.05 17789.17 19496.69 9295.96 18791.72 10492.62 33397.23 15885.61 24089.74 18793.89 23668.55 28199.42 12091.09 15587.84 22198.92 137
CL-MVSNet_self_test79.89 31378.34 31384.54 33381.56 36575.01 34396.88 26695.62 26981.10 30975.86 32285.81 34868.49 28290.26 36163.21 35256.51 36388.35 340
PEN-MVS85.21 27783.93 27989.07 30089.89 31581.31 31397.09 25897.24 15684.45 26178.66 30592.68 26168.44 28394.87 32475.98 30270.92 33891.04 295
BH-RMVSNet91.25 17489.99 18195.03 15096.75 15988.55 18098.65 14494.95 30087.74 20587.74 20197.80 13368.27 28498.14 17380.53 27297.49 12798.41 168
GA-MVS90.10 19588.69 20494.33 17592.44 28087.97 19199.08 9796.26 22189.65 14186.92 21293.11 25568.09 28596.96 23682.54 25690.15 21498.05 184
MDA-MVSNet_test_wron79.65 31477.05 31887.45 31587.79 34480.13 32396.25 28794.44 31473.87 34451.80 36787.47 33768.04 28692.12 35566.02 34567.79 34590.09 318
OpenMVScopyleft85.28 1490.75 18288.84 20096.48 10293.58 26293.51 7098.80 12697.41 14582.59 29078.62 30697.49 14968.00 28799.82 6584.52 23298.55 11096.11 224
YYNet179.64 31577.04 31987.43 31687.80 34379.98 32496.23 28894.44 31473.83 34551.83 36687.53 33467.96 28892.07 35666.00 34667.75 34690.23 317
DTE-MVSNet84.14 29182.80 28688.14 30988.95 33079.87 32596.81 26896.24 22283.50 27577.60 31492.52 26367.89 28994.24 33572.64 32569.05 34190.32 315
MVP-Stereo86.61 25685.83 25088.93 30388.70 33383.85 28296.07 29494.41 31782.15 29975.64 32491.96 27067.65 29096.45 26477.20 29298.72 10386.51 354
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
XXY-MVS87.75 23886.02 24792.95 21190.46 30789.70 15897.71 23595.90 25184.02 26580.95 27994.05 22767.51 29197.10 23285.16 22278.41 28192.04 262
PS-CasMVS85.81 26984.58 27189.49 29390.77 30382.11 30497.20 25597.36 15084.83 25679.12 30392.84 25967.42 29295.16 31978.39 28673.25 32191.21 291
bld_raw_conf00588.44 22687.56 22291.09 24790.18 31084.69 27097.81 22590.17 36390.20 12682.77 24894.81 22067.23 29396.46 26391.13 15483.71 25392.11 258
ACMM86.95 1388.77 22188.22 21690.43 26493.61 26181.34 31298.50 16495.92 24587.88 20083.85 23795.20 21267.20 29497.89 18886.90 20884.90 23892.06 260
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TransMVSNet (Re)81.97 30379.61 31189.08 29989.70 31884.01 27997.26 25091.85 35378.84 32373.07 33991.62 27567.17 29595.21 31867.50 34059.46 36088.02 342
OPM-MVS89.76 20189.15 19591.57 23990.53 30685.58 25498.11 20595.93 24492.88 6086.05 21996.47 18967.06 29697.87 19089.29 18386.08 23291.26 290
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
TR-MVS90.77 18189.44 18894.76 15896.31 17388.02 19097.92 21895.96 23985.52 24188.22 19997.23 15966.80 29798.09 17784.58 23192.38 18698.17 183
IterMVS-SCA-FT85.73 27284.64 27089.00 30193.46 26682.90 29396.27 28494.70 30885.02 25278.62 30690.35 30966.61 29893.33 33979.38 27877.36 29190.76 304
SCA90.64 18589.25 19394.83 15794.95 22788.83 17396.26 28697.21 16090.06 13490.03 18390.62 30066.61 29896.81 24283.16 24894.36 16798.84 142
IterMVS85.81 26984.67 26989.22 29693.51 26383.67 28496.32 28394.80 30585.09 24978.69 30490.17 31766.57 30093.17 34279.48 27777.42 29090.81 300
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LPG-MVS_test88.86 21488.47 21290.06 27493.35 26980.95 31998.22 19395.94 24287.73 20683.17 24496.11 19766.28 30197.77 19790.19 16785.19 23691.46 280
LGP-MVS_train90.06 27493.35 26980.95 31995.94 24287.73 20683.17 24496.11 19766.28 30197.77 19790.19 16785.19 23691.46 280
bld_raw_dy_0_6487.82 23486.71 23791.15 24589.54 32285.61 25297.37 24589.16 36889.26 15483.42 24094.50 22465.79 30396.18 28388.00 19683.37 25791.67 268
ACMP87.39 1088.71 22388.24 21590.12 27393.91 25481.06 31898.50 16495.67 26789.43 15080.37 28595.55 20465.67 30497.83 19290.55 16384.51 24091.47 279
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LTVRE_ROB81.71 1984.59 28482.72 29090.18 27092.89 27783.18 28993.15 32794.74 30678.99 32275.14 32792.69 26065.64 30597.63 20969.46 33481.82 26989.74 326
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ECVR-MVScopyleft92.29 15591.33 16095.15 14496.41 16887.84 19298.10 20694.84 30390.82 10891.42 16197.28 15465.61 30698.49 16290.33 16597.19 13299.12 118
test111192.12 15991.19 16394.94 15296.15 18187.36 20698.12 20294.84 30390.85 10790.97 16797.26 15665.60 30798.37 16589.74 17497.14 13599.07 124
pm-mvs184.68 28282.78 28890.40 26589.58 32085.18 26197.31 24794.73 30781.93 30276.05 31992.01 26865.48 30896.11 28878.75 28469.14 34089.91 325
cascas90.93 17989.33 19295.76 12895.69 19493.03 8298.99 10996.59 19780.49 31586.79 21694.45 22565.23 30998.60 16193.52 13192.18 19195.66 227
tfpnnormal83.65 29581.35 30190.56 26191.37 29788.06 18897.29 24897.87 5378.51 32676.20 31790.91 28864.78 31096.47 26161.71 35673.50 31787.13 351
pmmvs585.87 26684.40 27590.30 26988.53 33584.23 27598.60 15293.71 32881.53 30580.29 28792.02 26764.51 31195.52 31082.04 26178.34 28291.15 292
RPSCF85.33 27685.55 25584.67 33294.63 23762.28 36893.73 32293.76 32674.38 34385.23 22597.06 16964.09 31298.31 16780.98 26686.08 23293.41 236
N_pmnet70.19 33269.87 33471.12 35188.24 33730.63 38495.85 30228.70 38470.18 35368.73 34886.55 34464.04 31393.81 33653.12 36773.46 31888.94 336
DSMNet-mixed81.60 30681.43 30082.10 34184.36 35760.79 36993.63 32486.74 37279.00 32179.32 30087.15 34063.87 31489.78 36266.89 34391.92 19495.73 226
FMVSNet582.29 30180.54 30587.52 31493.79 25984.01 27993.73 32292.47 34376.92 33474.27 32986.15 34763.69 31589.24 36369.07 33574.79 30289.29 333
GBi-Net86.67 25484.96 26191.80 23395.11 21788.81 17496.77 26995.25 29182.94 28482.12 26390.25 31162.89 31694.97 32179.04 27980.24 27291.62 271
test186.67 25484.96 26191.80 23395.11 21788.81 17496.77 26995.25 29182.94 28482.12 26390.25 31162.89 31694.97 32179.04 27980.24 27291.62 271
FMVSNet286.90 24984.79 26793.24 20595.11 21792.54 9497.67 23695.86 25782.94 28480.55 28391.17 28562.89 31695.29 31677.23 29079.71 27891.90 265
VPNet88.30 22986.57 23993.49 20191.95 28791.35 11298.18 19797.20 16488.61 17284.52 23194.89 21662.21 31996.76 24589.34 18072.26 33092.36 245
PVSNet_083.28 1687.31 24585.16 25993.74 19894.78 23384.59 27198.91 11698.69 1989.81 13878.59 30893.23 25161.95 32099.34 13194.75 10855.72 36597.30 201
jajsoiax87.35 24486.51 24189.87 27987.75 34581.74 30697.03 26095.98 23688.47 17580.15 28993.80 23861.47 32196.36 26889.44 17884.47 24391.50 278
OurMVSNet-221017-084.13 29283.59 28185.77 32687.81 34270.24 36094.89 31193.65 33086.08 23576.53 31693.28 25061.41 32296.14 28780.95 26777.69 28990.93 297
Anonymous2023120680.76 30879.42 31284.79 33184.78 35672.98 35196.53 27792.97 33779.56 31974.33 32888.83 32761.27 32392.15 35460.59 35875.92 29489.24 334
LFMVS92.23 15890.84 17096.42 10698.24 11091.08 12398.24 19296.22 22383.39 27794.74 11698.31 12061.12 32498.85 14894.45 11792.82 17899.32 102
UGNet91.91 16390.85 16995.10 14597.06 15088.69 17898.01 21498.24 2992.41 7292.39 14893.61 24360.52 32599.68 8388.14 19397.25 13096.92 212
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
SixPastTwentyTwo82.63 30081.58 29885.79 32588.12 33971.01 35995.17 30992.54 34284.33 26272.93 34092.08 26560.41 32695.61 30974.47 31274.15 31190.75 305
mvs_tets87.09 24786.22 24489.71 28487.87 34181.39 31196.73 27495.90 25188.19 19179.99 29193.61 24359.96 32796.31 27689.40 17984.34 24491.43 282
COLMAP_ROBcopyleft82.69 1884.54 28582.82 28589.70 28596.72 16078.85 32895.89 29792.83 34071.55 34977.54 31595.89 20159.40 32899.14 14167.26 34188.26 21991.11 294
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2023121184.72 28182.65 29290.91 25297.71 12584.55 27297.28 24996.67 19366.88 36279.18 30290.87 29058.47 32996.60 24982.61 25574.20 31091.59 276
MS-PatchMatch86.75 25285.92 24989.22 29691.97 28682.47 30196.91 26496.14 23083.74 27077.73 31393.53 24658.19 33097.37 22676.75 29698.35 11387.84 343
test20.0378.51 32177.48 31681.62 34383.07 36171.03 35896.11 29392.83 34081.66 30469.31 34789.68 32157.53 33187.29 36858.65 36268.47 34286.53 353
MVS-HIRNet79.01 31675.13 32690.66 25993.82 25881.69 30785.16 35693.75 32754.54 36774.17 33059.15 37157.46 33296.58 25263.74 35094.38 16693.72 233
MDA-MVSNet-bldmvs77.82 32474.75 32887.03 31888.33 33678.52 33296.34 28292.85 33975.57 33848.87 36987.89 33157.32 33392.49 35160.79 35764.80 35290.08 319
ACMH83.09 1784.60 28382.61 29390.57 26093.18 27282.94 29196.27 28494.92 30281.01 31172.61 34293.61 24356.54 33497.79 19574.31 31381.07 27190.99 296
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ITE_SJBPF87.93 31092.26 28276.44 34093.47 33387.67 20979.95 29295.49 20756.50 33597.38 22475.24 30682.33 26689.98 324
pmmvs-eth3d78.71 31976.16 32386.38 32180.25 36881.19 31594.17 31892.13 34977.97 32866.90 35782.31 35555.76 33692.56 34973.63 32062.31 35685.38 358
K. test v381.04 30779.77 31084.83 33087.41 34670.23 36195.60 30693.93 32583.70 27267.51 35489.35 32555.76 33693.58 33876.67 29768.03 34490.67 309
AllTest84.97 27983.12 28390.52 26296.82 15678.84 32995.89 29792.17 34777.96 32975.94 32095.50 20555.48 33899.18 13671.15 32787.14 22393.55 234
TestCases90.52 26296.82 15678.84 32992.17 34777.96 32975.94 32095.50 20555.48 33899.18 13671.15 32787.14 22393.55 234
KD-MVS_self_test77.47 32575.88 32482.24 33981.59 36468.93 36492.83 33294.02 32477.03 33373.14 33683.39 35355.44 34090.42 36067.95 33957.53 36287.38 346
CMPMVSbinary58.40 2180.48 30980.11 30981.59 34485.10 35559.56 37094.14 31995.95 24168.54 35860.71 36493.31 24855.35 34197.87 19083.06 25184.85 23987.33 348
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous2024052987.66 24185.58 25493.92 19197.59 13185.01 26598.13 20097.13 17066.69 36388.47 19796.01 20055.09 34299.51 10687.00 20584.12 24697.23 204
VDDNet90.08 19688.54 21194.69 16294.41 24087.68 19598.21 19596.40 21176.21 33693.33 13897.75 13654.93 34398.77 15194.71 11190.96 20797.61 196
ACMH+83.78 1584.21 28982.56 29489.15 29893.73 26079.16 32696.43 27994.28 31981.09 31074.00 33194.03 23054.58 34497.67 20576.10 30178.81 28090.63 310
VDD-MVS91.24 17590.18 18094.45 17097.08 14985.84 24998.40 17796.10 23286.99 21793.36 13798.16 12754.27 34599.20 13596.59 6990.63 21298.31 177
lessismore_v085.08 32885.59 35469.28 36390.56 36167.68 35390.21 31554.21 34695.46 31173.88 31662.64 35490.50 312
USDC84.74 28082.93 28490.16 27191.73 29283.54 28595.00 31093.30 33588.77 17073.19 33593.30 24953.62 34797.65 20875.88 30381.54 27089.30 332
Anonymous20240521188.84 21587.03 23294.27 17798.14 11584.18 27798.44 17095.58 27276.79 33589.34 19196.88 17753.42 34899.54 10187.53 20287.12 22599.09 121
XVG-ACMP-BASELINE85.86 26784.95 26388.57 30589.90 31477.12 33994.30 31695.60 27187.40 21482.12 26392.99 25853.42 34897.66 20685.02 22583.83 24990.92 298
test_040278.81 31876.33 32286.26 32291.18 29878.44 33395.88 29991.34 35868.55 35770.51 34589.91 31852.65 35094.99 32047.14 36979.78 27785.34 360
MIMVSNet84.48 28681.83 29692.42 22091.73 29287.36 20685.52 35594.42 31681.40 30681.91 26987.58 33351.92 35192.81 34573.84 31788.15 22097.08 209
UnsupCasMVSNet_eth78.90 31776.67 32185.58 32782.81 36374.94 34491.98 33696.31 21684.64 25865.84 36087.71 33251.33 35292.23 35372.89 32456.50 36489.56 330
new-patchmatchnet74.80 32972.40 33281.99 34278.36 37172.20 35594.44 31492.36 34477.06 33263.47 36179.98 36151.04 35388.85 36460.53 35954.35 36684.92 361
pmmvs679.90 31277.31 31787.67 31384.17 35878.13 33595.86 30193.68 32967.94 36072.67 34189.62 32250.98 35495.75 30474.80 31166.04 34989.14 335
FMVSNet183.94 29481.32 30291.80 23391.94 28888.81 17496.77 26995.25 29177.98 32778.25 31190.25 31150.37 35594.97 32173.27 32177.81 28891.62 271
UniMVSNet_ETH3D85.65 27483.79 28091.21 24390.41 30880.75 32195.36 30795.78 25978.76 32581.83 27494.33 22649.86 35696.66 24684.30 23383.52 25696.22 223
Anonymous2024052178.63 32076.90 32083.82 33582.82 36272.86 35295.72 30593.57 33173.55 34672.17 34384.79 35049.69 35792.51 35065.29 34874.50 30486.09 356
TDRefinement78.01 32275.31 32586.10 32470.06 37473.84 34893.59 32591.58 35674.51 34273.08 33891.04 28649.63 35897.12 22974.88 30959.47 35987.33 348
LF4IMVS81.94 30481.17 30384.25 33487.23 34868.87 36593.35 32691.93 35283.35 27875.40 32593.00 25749.25 35996.65 24778.88 28278.11 28387.22 350
new_pmnet76.02 32673.71 32982.95 33883.88 35972.85 35391.26 34292.26 34670.44 35262.60 36281.37 35747.64 36092.32 35261.85 35572.10 33283.68 363
TinyColmap80.42 31077.94 31487.85 31192.09 28578.58 33193.74 32189.94 36474.99 33969.77 34691.78 27346.09 36197.58 21365.17 34977.89 28487.38 346
testgi82.29 30181.00 30486.17 32387.24 34774.84 34597.39 24291.62 35588.63 17175.85 32395.42 20846.07 36291.55 35866.87 34479.94 27692.12 256
OpenMVS_ROBcopyleft73.86 2077.99 32375.06 32786.77 32083.81 36077.94 33796.38 28191.53 35767.54 36168.38 34987.13 34143.94 36396.08 28955.03 36581.83 26886.29 355
tmp_tt53.66 33952.86 34156.05 35632.75 38441.97 38073.42 37076.12 38021.91 37739.68 37396.39 19242.59 36465.10 37678.00 28714.92 37761.08 370
pmmvs372.86 33169.76 33582.17 34073.86 37274.19 34794.20 31789.01 36964.23 36667.72 35280.91 35941.48 36588.65 36562.40 35454.02 36783.68 363
UnsupCasMVSNet_bld73.85 33070.14 33384.99 32979.44 36975.73 34188.53 35095.24 29470.12 35461.94 36374.81 36441.41 36693.62 33768.65 33751.13 36985.62 357
MVS_030484.13 29282.66 29188.52 30693.07 27480.15 32295.81 30398.21 3179.27 32086.85 21486.40 34541.33 36794.69 32976.36 29986.69 22690.73 306
MIMVSNet175.92 32773.30 33083.81 33681.29 36675.57 34292.26 33592.05 35073.09 34767.48 35586.18 34640.87 36887.64 36755.78 36470.68 33988.21 341
EG-PatchMatch MVS79.92 31177.59 31586.90 31987.06 34977.90 33896.20 29294.06 32374.61 34166.53 35888.76 32840.40 36996.20 28167.02 34283.66 25486.61 352
EGC-MVSNET60.70 33555.37 33976.72 34786.35 35271.08 35789.96 34984.44 3760.38 3811.50 38284.09 35237.30 37088.10 36640.85 37173.44 31970.97 369
DeepMVS_CXcopyleft76.08 34890.74 30451.65 37690.84 36086.47 23257.89 36587.98 33035.88 37192.60 34765.77 34765.06 35183.97 362
test_method70.10 33368.66 33674.41 34986.30 35355.84 37394.47 31389.82 36535.18 37266.15 35984.75 35130.54 37277.96 37370.40 33360.33 35889.44 331
PM-MVS74.88 32872.85 33180.98 34578.98 37064.75 36790.81 34585.77 37380.95 31268.23 35182.81 35429.08 37392.84 34476.54 29862.46 35585.36 359
ambc79.60 34672.76 37356.61 37276.20 36892.01 35168.25 35080.23 36023.34 37494.73 32873.78 31960.81 35787.48 345
FPMVS61.57 33460.32 33765.34 35360.14 37842.44 37991.02 34489.72 36644.15 36942.63 37180.93 35819.02 37580.59 37242.50 37072.76 32373.00 367
EMVS39.96 34439.88 34640.18 36059.57 37932.12 38384.79 36164.57 38326.27 37526.14 37644.18 37818.73 37659.29 37917.03 37717.67 37629.12 375
Gipumacopyleft54.77 33852.22 34262.40 35586.50 35059.37 37150.20 37390.35 36236.52 37141.20 37249.49 37318.33 37781.29 37032.10 37365.34 35046.54 373
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN41.02 34340.93 34541.29 35961.97 37633.83 38184.00 36465.17 38227.17 37427.56 37446.72 37517.63 37860.41 37819.32 37618.82 37429.61 374
PMMVS258.97 33755.07 34070.69 35262.72 37555.37 37485.97 35480.52 37749.48 36845.94 37068.31 36615.73 37980.78 37149.79 36837.12 37275.91 366
ANet_high50.71 34046.17 34364.33 35444.27 38252.30 37576.13 36978.73 37864.95 36427.37 37555.23 37214.61 38067.74 37536.01 37218.23 37572.95 368
LCM-MVSNet60.07 33656.37 33871.18 35054.81 38048.67 37782.17 36789.48 36737.95 37049.13 36869.12 36513.75 38181.76 36959.28 36051.63 36883.10 365
PMVScopyleft41.42 2345.67 34142.50 34455.17 35734.28 38332.37 38266.24 37178.71 37930.72 37322.04 37859.59 3704.59 38277.85 37427.49 37458.84 36155.29 371
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d16.71 34716.73 35116.65 36160.15 37725.22 38541.24 3745.17 3856.56 3785.48 3813.61 3813.64 38322.72 38015.20 3789.52 3781.99 378
MVEpermissive44.00 2241.70 34237.64 34753.90 35849.46 38143.37 37865.09 37266.66 38126.19 37625.77 37748.53 3743.58 38463.35 37726.15 37527.28 37354.97 372
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test12316.58 34819.47 3507.91 3623.59 3865.37 38694.32 3151.39 3872.49 38013.98 38044.60 3772.91 3852.65 38111.35 3800.57 38015.70 376
testmvs18.81 34623.05 3496.10 3634.48 3852.29 38797.78 2283.00 3863.27 37918.60 37962.71 3681.53 3862.49 38214.26 3791.80 37913.50 377
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re8.21 34910.94 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38398.50 1110.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
FOURS199.50 4788.94 17099.55 3597.47 13491.32 9798.12 39
MSC_two_6792asdad99.51 299.61 2798.60 297.69 8399.98 1099.55 1099.83 1599.96 10
No_MVS99.51 299.61 2798.60 297.69 8399.98 1099.55 1099.83 1599.96 10
eth-test20.00 387
eth-test0.00 387
IU-MVS99.63 2195.38 2197.73 7495.54 1599.54 199.69 599.81 2399.99 1
save fliter99.34 5893.85 6399.65 2497.63 9995.69 11
test_0728_SECOND98.77 799.66 1596.37 1399.72 1397.68 8599.98 1099.64 699.82 1999.96 10
GSMVS98.84 142
test_part299.54 4095.42 1998.13 37
MTGPAbinary97.45 137
MTMP99.21 7691.09 359
gm-plane-assit94.69 23588.14 18688.22 19097.20 16198.29 16990.79 161
test9_res98.60 2599.87 999.90 24
agg_prior297.84 4799.87 999.91 22
agg_prior99.54 4092.66 8897.64 9497.98 4799.61 94
test_prior492.00 10099.41 59
test_prior97.01 6599.58 3391.77 10197.57 11399.49 10999.79 38
旧先验298.67 14285.75 23998.96 1598.97 14793.84 125
新几何298.26 191
无先验98.52 15997.82 5787.20 21699.90 4587.64 20099.85 33
原ACMM298.69 138
testdata299.88 4984.16 236
testdata197.89 21992.43 68
plane_prior793.84 25685.73 250
plane_prior596.30 21797.75 20293.46 13286.17 23092.67 239
plane_prior496.52 186
plane_prior385.91 24593.65 4486.99 209
plane_prior299.02 10593.38 49
plane_prior193.90 255
plane_prior86.07 24299.14 9193.81 4186.26 229
n20.00 388
nn0.00 388
door-mid84.90 375
test1197.68 85
door85.30 374
HQP5-MVS86.39 228
HQP-NCC93.95 24999.16 8293.92 3387.57 202
ACMP_Plane93.95 24999.16 8293.92 3387.57 202
BP-MVS93.82 127
HQP4-MVS87.57 20297.77 19792.72 237
HQP3-MVS96.37 21386.29 227
NP-MVS93.94 25286.22 23596.67 184
ACMMP++_ref82.64 264
ACMMP++83.83 249