This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
CHOSEN 280x42096.80 3496.85 2896.66 8997.85 11394.42 5494.76 34098.36 2892.50 8695.62 11297.52 15397.92 197.38 24898.31 4898.80 9698.20 191
GG-mvs-BLEND96.98 6996.53 17194.81 4487.20 39097.74 7993.91 14496.40 20796.56 296.94 26595.08 12098.95 8999.20 113
reproduce_monomvs92.11 17891.82 16892.98 22698.25 9890.55 13698.38 20197.93 5594.81 3380.46 31192.37 28896.46 397.17 25494.06 13973.61 34391.23 316
gg-mvs-nofinetune90.00 22187.71 24696.89 7796.15 19294.69 4885.15 39797.74 7968.32 39692.97 15960.16 41096.10 496.84 26893.89 14298.87 9399.14 117
MSP-MVS97.77 1098.18 296.53 9799.54 3690.14 14699.41 6897.70 8895.46 2898.60 3199.19 3395.71 599.49 11598.15 5299.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
baseline294.04 12293.80 12294.74 17593.07 30090.25 14198.12 22398.16 3989.86 15286.53 23996.95 18495.56 698.05 20391.44 17494.53 17795.93 249
PC_three_145294.60 3799.41 499.12 4995.50 799.96 2899.84 299.92 399.97 7
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2499.55 4497.68 9293.01 7499.23 1099.45 1495.12 899.98 999.25 1899.92 399.97 7
OPU-MVS99.49 499.64 1798.51 499.77 1899.19 3395.12 899.97 2199.90 199.92 399.99 1
tttt051793.30 14893.01 14294.17 19795.57 21386.47 24098.51 18097.60 11485.99 26090.55 19697.19 17194.80 1098.31 18585.06 24891.86 21297.74 201
thisisatest053094.00 12393.52 12795.43 14795.76 20890.02 15598.99 12497.60 11486.58 24991.74 17397.36 16194.78 1198.34 18486.37 23392.48 20097.94 199
thisisatest051594.75 10294.19 10296.43 10196.13 19792.64 9499.47 5597.60 11487.55 22993.17 15597.59 15094.71 1298.42 18288.28 21293.20 18998.24 188
test_0728_THIRD93.01 7499.07 1599.46 1094.66 1399.97 2199.25 1899.82 1999.95 15
ET-MVSNet_ETH3D92.56 16691.45 17695.88 13196.39 18094.13 6199.46 5996.97 19992.18 9566.94 39098.29 12594.65 1494.28 36094.34 13683.82 27899.24 109
MVSTER92.71 16092.32 15593.86 21097.29 13792.95 8799.01 12296.59 21890.09 14685.51 24794.00 25494.61 1596.56 28090.77 18483.03 28592.08 287
DPM-MVS97.86 897.25 2299.68 198.25 9899.10 199.76 2197.78 7596.61 1298.15 4399.53 793.62 16100.00 191.79 17299.80 2699.94 18
test_one_060199.59 2894.89 3797.64 10593.14 7398.93 2199.45 1493.45 17
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2799.77 1897.72 8394.17 4499.30 899.54 393.32 1899.98 999.70 599.81 2399.99 1
test_241102_ONE99.63 1895.24 2797.72 8394.16 4699.30 899.49 993.32 1899.98 9
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2399.29 8097.72 8394.50 3898.64 3099.54 393.32 1899.97 2199.58 1199.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3299.72 2497.47 14393.95 4999.07 1599.46 1093.18 2199.97 2199.64 899.82 1999.69 58
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.66 1295.20 3299.77 1897.70 8893.95 4999.35 799.54 393.18 21
test_241102_TWO97.72 8394.17 4499.23 1099.54 393.14 2399.98 999.70 599.82 1999.99 1
CNVR-MVS98.46 198.38 198.72 1099.80 496.19 1599.80 1697.99 5297.05 699.41 499.59 292.89 24100.00 198.99 2599.90 799.96 10
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2797.98 5397.18 495.96 9999.33 2292.62 25100.00 198.99 2599.93 199.98 6
NCCC98.12 598.11 398.13 2599.76 694.46 5199.81 1297.88 5896.54 1398.84 2499.46 1092.55 2699.98 998.25 5099.93 199.94 18
WBMVS91.35 19190.49 19793.94 20796.97 15693.40 7499.27 8496.71 21087.40 23283.10 27091.76 30292.38 2796.23 30788.95 20877.89 30992.17 283
UBG95.73 7495.41 7596.69 8696.97 15693.23 7699.13 10797.79 7391.28 11494.38 13596.78 19592.37 2898.56 17696.17 9493.84 18498.26 184
patch_mono-297.10 2697.97 894.49 18399.21 6183.73 29999.62 3898.25 3195.28 3099.38 698.91 7892.28 2999.94 3599.61 1099.22 7499.78 41
SteuartSystems-ACMMP97.25 1997.34 2197.01 6497.38 13291.46 11199.75 2297.66 9794.14 4898.13 4499.26 2492.16 3099.66 9797.91 5699.64 4299.90 22
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + MP.97.44 1897.46 1797.39 5299.12 6593.49 7298.52 17797.50 13894.46 3998.99 1798.64 10291.58 3199.08 15198.49 4099.83 1599.60 73
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
TSAR-MVS + GP.96.95 2996.91 2697.07 6198.88 8391.62 10799.58 4196.54 22495.09 3296.84 7998.63 10491.16 3299.77 8899.04 2496.42 15299.81 35
EPP-MVSNet93.75 13393.67 12494.01 20595.86 20485.70 26798.67 15697.66 9784.46 28591.36 18597.18 17291.16 3297.79 21892.93 16193.75 18598.53 168
HPM-MVS++copyleft97.72 1297.59 1398.14 2499.53 4094.76 4599.19 9097.75 7895.66 2498.21 4299.29 2391.10 3499.99 597.68 6099.87 999.68 60
UWE-MVS93.18 15293.40 13192.50 23996.56 16983.55 30198.09 22997.84 6289.50 16591.72 17496.23 21391.08 3596.70 27486.28 23493.33 18897.26 216
旧先验198.97 7392.90 8997.74 7999.15 4291.05 3699.33 6599.60 73
train_agg97.20 2397.08 2397.57 4599.57 3393.17 7899.38 7197.66 9790.18 14298.39 3799.18 3690.94 3799.66 9798.58 3699.85 1399.88 26
test_899.55 3593.07 8199.37 7497.64 10590.18 14298.36 3999.19 3390.94 3799.64 103
fmvsm_l_conf0.5_n_a97.70 1397.80 1197.42 4997.59 12392.91 8899.86 598.04 4896.70 1099.58 299.26 2490.90 3999.94 3599.57 1298.66 10399.40 93
TEST999.57 3393.17 7899.38 7197.66 9789.57 16298.39 3799.18 3690.88 4099.66 97
SD-MVS97.51 1697.40 1997.81 3699.01 7293.79 6699.33 7897.38 15693.73 6098.83 2599.02 6190.87 4199.88 5498.69 3099.74 2999.77 46
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVScopyleft97.53 1597.47 1697.70 3999.58 3093.63 6799.56 4397.52 13393.59 6498.01 5299.12 4990.80 4299.55 10999.26 1799.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
testing1195.33 8494.98 8996.37 10697.20 14192.31 9799.29 8097.68 9290.59 12994.43 13197.20 16990.79 4398.60 17495.25 11792.38 20198.18 192
IB-MVS89.43 692.12 17690.83 19195.98 12895.40 22190.78 12999.81 1298.06 4591.23 11685.63 24693.66 26590.63 4498.78 16291.22 17571.85 36198.36 180
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
segment_acmp90.56 45
dcpmvs_295.67 7696.18 4994.12 19998.82 8584.22 29297.37 26795.45 30790.70 12495.77 10798.63 10490.47 4698.68 17199.20 2099.22 7499.45 89
test_prior299.57 4291.43 11098.12 4698.97 6590.43 4798.33 4699.81 23
fmvsm_l_conf0.5_n97.65 1497.72 1297.41 5097.51 12892.78 9099.85 898.05 4696.78 899.60 199.23 2990.42 4899.92 4199.55 1398.50 10899.55 77
SF-MVS97.22 2296.92 2598.12 2799.11 6694.88 3899.44 6297.45 14689.60 16098.70 2799.42 1790.42 4899.72 9298.47 4199.65 4099.77 46
DeepPCF-MVS93.56 196.55 4497.84 1092.68 23698.71 8978.11 35899.70 2797.71 8798.18 197.36 6599.76 190.37 5099.94 3599.27 1699.54 5499.99 1
SMA-MVScopyleft97.24 2096.99 2498.00 3199.30 5494.20 5999.16 9697.65 10489.55 16499.22 1299.52 890.34 5199.99 598.32 4799.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
testing9994.88 9694.45 9596.17 11797.20 14191.91 10299.20 8997.66 9789.95 15093.68 14897.06 17890.28 5298.50 17793.52 15091.54 22198.12 194
testing9194.88 9694.44 9696.21 11397.19 14391.90 10399.23 8797.66 9789.91 15193.66 14997.05 18090.21 5398.50 17793.52 15091.53 22498.25 185
ZD-MVS99.67 1093.28 7597.61 11287.78 22097.41 6399.16 3990.15 5499.56 10898.35 4599.70 37
mamv491.41 18893.57 12684.91 35897.11 15058.11 40595.68 33195.93 27082.09 33089.78 20995.71 22790.09 5598.24 19197.26 6898.50 10898.38 176
CostFormer92.89 15892.48 15494.12 19994.99 24485.89 26292.89 35997.00 19786.98 24095.00 12390.78 32190.05 5697.51 24192.92 16291.73 21698.96 133
MSLP-MVS++97.50 1797.45 1897.63 4199.65 1693.21 7799.70 2798.13 4294.61 3697.78 5899.46 1089.85 5799.81 7997.97 5499.91 699.88 26
9.1496.87 2799.34 5099.50 5197.49 14089.41 16998.59 3299.43 1689.78 5899.69 9498.69 3099.62 46
balanced_conf0396.83 3296.51 3997.81 3697.60 12295.15 3498.40 19596.77 20893.00 7698.69 2896.19 21489.75 5998.76 16598.45 4299.72 3299.51 82
PAPM96.35 4795.94 5897.58 4394.10 26995.25 2698.93 12998.17 3694.26 4393.94 14398.72 9489.68 6097.88 21296.36 9099.29 6999.62 72
MVSMamba_PlusPlus95.73 7495.15 8297.44 4797.28 13994.35 5798.26 21096.75 20983.09 30897.84 5695.97 22289.59 6198.48 18097.86 5799.73 3199.49 85
CSCG94.87 9894.71 9195.36 14999.54 3686.49 23999.34 7798.15 4082.71 31890.15 20499.25 2689.48 6299.86 6394.97 12598.82 9599.72 53
PHI-MVS96.65 4096.46 4297.21 5899.34 5091.77 10499.70 2798.05 4686.48 25498.05 4999.20 3289.33 6399.96 2898.38 4399.62 4699.90 22
TESTMET0.1,193.82 13193.26 13695.49 14595.21 22790.25 14199.15 10197.54 12889.18 17391.79 17294.87 24289.13 6497.63 23386.21 23596.29 15798.60 166
APD-MVScopyleft96.95 2996.72 3597.63 4199.51 4193.58 6899.16 9697.44 14990.08 14798.59 3299.07 5489.06 6599.42 12697.92 5599.66 3999.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CDS-MVSNet93.47 14093.04 14194.76 17394.75 25389.45 16798.82 13897.03 19387.91 21790.97 18996.48 20589.06 6596.36 29389.50 19792.81 19598.49 170
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Patchmatch-test86.25 28684.06 30392.82 23094.42 25982.88 31282.88 40694.23 35171.58 38379.39 32590.62 33089.00 6796.42 29063.03 38691.37 22999.16 115
reproduce-ours96.66 3796.80 3296.22 11198.95 7789.03 17698.62 16397.38 15693.42 6696.80 8499.36 1988.92 6899.80 8198.51 3899.26 7199.82 32
our_new_method96.66 3796.80 3296.22 11198.95 7789.03 17698.62 16397.38 15693.42 6696.80 8499.36 1988.92 6899.80 8198.51 3899.26 7199.82 32
CDPH-MVS96.56 4396.18 4997.70 3999.59 2893.92 6399.13 10797.44 14989.02 17797.90 5599.22 3088.90 7099.49 11594.63 13299.79 2799.68 60
MG-MVS97.24 2096.83 3198.47 1599.79 595.71 1999.07 11399.06 1094.45 4196.42 9398.70 9888.81 7199.74 9195.35 11399.86 1299.97 7
patchmatchnet-post84.86 38188.73 7296.81 270
reproduce_model96.57 4296.75 3496.02 12498.93 8088.46 19898.56 17497.34 16293.18 7296.96 7599.35 2188.69 7399.80 8198.53 3799.21 7799.79 38
test1297.83 3599.33 5394.45 5297.55 12597.56 5988.60 7499.50 11499.71 3699.55 77
MVS_111021_HR96.69 3696.69 3696.72 8498.58 9291.00 12599.14 10499.45 193.86 5595.15 12098.73 9288.48 7599.76 8997.23 7099.56 5299.40 93
sam_mvs188.39 7698.84 146
ETVMVS94.50 11393.90 11896.31 10997.48 13092.98 8499.07 11397.86 6088.09 21094.40 13396.90 18788.35 7797.28 25290.72 18592.25 20798.66 165
PatchmatchNetpermissive92.05 18091.04 18495.06 16296.17 19189.04 17491.26 37897.26 16589.56 16390.64 19590.56 33488.35 7797.11 25779.53 30196.07 16299.03 128
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst92.78 15992.16 15994.65 17896.27 18587.45 22091.83 36997.10 18789.10 17694.68 12890.69 32588.22 7997.73 22889.78 19491.80 21498.77 156
test_fmvsm_n_192097.08 2797.55 1495.67 13997.94 11089.61 16599.93 198.48 2397.08 599.08 1499.13 4788.17 8099.93 3999.11 2399.06 8097.47 210
DELS-MVS97.12 2596.60 3898.68 1198.03 10896.57 1199.84 997.84 6296.36 1895.20 11998.24 12688.17 8099.83 7396.11 9799.60 5099.64 68
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
testdata95.26 15698.20 10187.28 22697.60 11485.21 27198.48 3599.15 4288.15 8298.72 16990.29 18899.45 5999.78 41
原ACMM196.18 11599.03 7190.08 14997.63 10988.98 17897.00 7498.97 6588.14 8399.71 9388.23 21399.62 4698.76 157
新几何197.40 5198.92 8192.51 9697.77 7785.52 26796.69 8899.06 5688.08 8499.89 5384.88 25199.62 4699.79 38
test-mter93.27 15092.89 14594.40 18794.94 24787.27 22799.15 10197.25 16688.95 18091.57 17794.04 25088.03 8597.58 23785.94 23996.13 15898.36 180
JIA-IIPM85.97 28984.85 28989.33 31693.23 29773.68 37785.05 39897.13 18269.62 39291.56 17968.03 40888.03 8596.96 26377.89 31593.12 19097.34 213
test_yl95.27 8694.60 9397.28 5598.53 9392.98 8499.05 11798.70 1886.76 24694.65 12997.74 14287.78 8799.44 12295.57 10992.61 19799.44 90
DCV-MVSNet95.27 8694.60 9397.28 5598.53 9392.98 8499.05 11798.70 1886.76 24694.65 12997.74 14287.78 8799.44 12295.57 10992.61 19799.44 90
PAPM_NR95.43 8095.05 8796.57 9599.42 4790.14 14698.58 17397.51 13590.65 12792.44 16598.90 7987.77 8999.90 5090.88 18099.32 6699.68 60
HFP-MVS96.42 4696.26 4696.90 7399.69 890.96 12699.47 5597.81 6990.54 13396.88 7699.05 5787.57 9099.96 2895.65 10499.72 3299.78 41
tpm291.77 18291.09 18293.82 21294.83 25185.56 27092.51 36497.16 17984.00 29193.83 14690.66 32787.54 9197.17 25487.73 21991.55 22098.72 158
EPNet96.82 3396.68 3797.25 5798.65 9093.10 8099.48 5398.76 1496.54 1397.84 5698.22 12787.49 9299.66 9795.35 11397.78 12599.00 129
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CP-MVS96.22 5296.15 5596.42 10299.67 1089.62 16499.70 2797.61 11290.07 14896.00 9899.16 3987.43 9399.92 4196.03 9999.72 3299.70 55
miper_enhance_ethall90.33 21289.70 20792.22 24297.12 14988.93 18498.35 20395.96 26488.60 18983.14 26992.33 28987.38 9496.18 30986.49 23277.89 30991.55 302
test_post46.00 41887.37 9597.11 257
XVS96.47 4596.37 4496.77 7899.62 2290.66 13499.43 6597.58 12092.41 9096.86 7798.96 7087.37 9599.87 5895.65 10499.43 6199.78 41
X-MVStestdata90.69 20688.66 22996.77 7899.62 2290.66 13499.43 6597.58 12092.41 9096.86 7729.59 42287.37 9599.87 5895.65 10499.43 6199.78 41
DP-MVS Recon95.85 6695.15 8297.95 3299.87 294.38 5599.60 3997.48 14186.58 24994.42 13299.13 4787.36 9899.98 993.64 14898.33 11499.48 86
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2599.61 2494.45 5298.85 13597.64 10596.51 1695.88 10299.39 1887.35 9999.99 596.61 8599.69 3899.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PAPR96.35 4795.82 6297.94 3399.63 1894.19 6099.42 6797.55 12592.43 8793.82 14799.12 4987.30 10099.91 4694.02 14099.06 8099.74 50
Patchmatch-RL test81.90 33280.13 33687.23 33980.71 39970.12 39284.07 40388.19 40483.16 30770.57 37482.18 39187.18 10192.59 37682.28 28362.78 38698.98 131
testing22294.48 11494.00 10995.95 12997.30 13692.27 9898.82 13897.92 5689.20 17194.82 12497.26 16487.13 10297.32 25191.95 17091.56 21998.25 185
CS-MVS95.75 7296.19 4794.40 18797.88 11286.22 24999.66 3596.12 25292.69 8398.07 4898.89 8187.09 10397.59 23696.71 8098.62 10499.39 95
sam_mvs87.08 104
EI-MVSNet-Vis-set95.76 7195.63 7496.17 11799.14 6490.33 13998.49 18397.82 6691.92 9894.75 12698.88 8387.06 10599.48 11995.40 11297.17 14198.70 160
1112_ss92.71 16091.55 17496.20 11495.56 21491.12 11898.48 18594.69 33888.29 20486.89 23698.50 11187.02 10698.66 17284.75 25289.77 24298.81 151
Test_1112_low_res92.27 17390.97 18596.18 11595.53 21691.10 12098.47 18794.66 33988.28 20586.83 23793.50 27087.00 10798.65 17384.69 25389.74 24398.80 152
MDTV_nov1_ep1390.47 19996.14 19488.55 19591.34 37797.51 13589.58 16192.24 16890.50 33886.99 10897.61 23577.64 31692.34 203
region2R96.30 5096.17 5296.70 8599.70 790.31 14099.46 5997.66 9790.55 13297.07 7399.07 5486.85 10999.97 2195.43 11199.74 2999.81 35
baseline192.61 16491.28 17996.58 9397.05 15494.63 4997.72 25296.20 24489.82 15388.56 21996.85 19186.85 10997.82 21688.42 21080.10 30097.30 214
SR-MVS96.13 5496.16 5496.07 12199.42 4789.04 17498.59 17197.33 16390.44 13696.84 7999.12 4986.75 11199.41 12997.47 6399.44 6099.76 48
test22298.32 9691.21 11498.08 23097.58 12083.74 29695.87 10399.02 6186.74 11299.64 4299.81 35
SR-MVS-dyc-post95.75 7295.86 6195.41 14899.22 5987.26 22998.40 19597.21 17289.63 15896.67 8998.97 6586.73 11399.36 13396.62 8399.31 6799.60 73
MVS_030497.81 997.51 1598.74 998.97 7396.57 1199.91 298.17 3697.45 398.76 2698.97 6586.69 11499.96 2899.72 398.92 9099.69 58
MDTV_nov1_ep13_2view91.17 11791.38 37687.45 23193.08 15786.67 11587.02 22398.95 137
ETV-MVS96.00 5796.00 5796.00 12696.56 16991.05 12399.63 3796.61 21693.26 7197.39 6498.30 12486.62 11698.13 19698.07 5397.57 12898.82 150
ZNCC-MVS96.09 5595.81 6496.95 7299.42 4791.19 11599.55 4497.53 12989.72 15595.86 10498.94 7686.59 11799.97 2195.13 11999.56 5299.68 60
ACMMP_NAP96.59 4196.18 4997.81 3698.82 8593.55 6998.88 13497.59 11890.66 12597.98 5399.14 4586.59 117100.00 196.47 8999.46 5799.89 25
WTY-MVS95.97 6095.11 8598.54 1397.62 11996.65 999.44 6298.74 1592.25 9395.21 11898.46 11986.56 11999.46 12195.00 12492.69 19699.50 84
HY-MVS88.56 795.29 8594.23 10098.48 1497.72 11596.41 1394.03 34998.74 1592.42 8995.65 11194.76 24486.52 12099.49 11595.29 11692.97 19299.53 79
ACMMPR96.28 5196.14 5696.73 8299.68 990.47 13899.47 5597.80 7190.54 13396.83 8199.03 5986.51 12199.95 3295.65 10499.72 3299.75 49
EPMVS92.59 16591.59 17395.59 14497.22 14090.03 15491.78 37098.04 4890.42 13791.66 17690.65 32886.49 12297.46 24381.78 28896.31 15599.28 106
MTAPA96.09 5595.80 6596.96 7199.29 5591.19 11597.23 27497.45 14692.58 8494.39 13499.24 2886.43 12399.99 596.22 9299.40 6499.71 54
GST-MVS95.97 6095.66 7096.90 7399.49 4591.22 11399.45 6197.48 14189.69 15695.89 10198.72 9486.37 12499.95 3294.62 13399.22 7499.52 80
SPE-MVS-test95.98 5996.34 4594.90 16898.06 10787.66 21399.69 3496.10 25393.66 6198.35 4099.05 5786.28 12597.66 23096.96 7698.90 9299.37 96
alignmvs95.77 7095.00 8898.06 2997.35 13495.68 2099.71 2697.50 13891.50 10796.16 9798.61 10686.28 12599.00 15496.19 9391.74 21599.51 82
EI-MVSNet-UG-set95.43 8095.29 7895.86 13299.07 7089.87 15898.43 18997.80 7191.78 10094.11 13998.77 8886.25 12799.48 11994.95 12696.45 15198.22 189
testing387.75 26088.22 23986.36 34594.66 25677.41 36199.52 5097.95 5486.05 25981.12 30496.69 20086.18 12889.31 39761.65 39090.12 24092.35 276
mPP-MVS95.90 6595.75 6796.38 10599.58 3089.41 16899.26 8597.41 15390.66 12594.82 12498.95 7386.15 12999.98 995.24 11899.64 4299.74 50
EIA-MVS95.11 8995.27 7994.64 18096.34 18286.51 23899.59 4096.62 21592.51 8594.08 14098.64 10286.05 13098.24 19195.07 12198.50 10899.18 114
test250694.80 10094.21 10196.58 9396.41 17892.18 10098.01 23398.96 1190.82 12293.46 15297.28 16285.92 13198.45 18189.82 19397.19 13999.12 120
PLCcopyleft91.07 394.23 11994.01 10894.87 16999.17 6387.49 21899.25 8696.55 22388.43 19791.26 18698.21 12985.92 13199.86 6389.77 19597.57 12897.24 217
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PGM-MVS95.85 6695.65 7296.45 10099.50 4289.77 16198.22 21398.90 1389.19 17296.74 8698.95 7385.91 13399.92 4193.94 14199.46 5799.66 64
MM97.76 1197.39 2098.86 598.30 9796.83 799.81 1299.13 997.66 298.29 4198.96 7085.84 13499.90 5099.72 398.80 9699.85 30
MP-MVS-pluss95.80 6895.30 7797.29 5498.95 7792.66 9198.59 17197.14 18088.95 18093.12 15699.25 2685.62 13599.94 3596.56 8799.48 5699.28 106
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MVSFormer94.71 10694.08 10796.61 9095.05 24294.87 3997.77 24796.17 24986.84 24398.04 5098.52 10985.52 13695.99 31689.83 19198.97 8698.96 133
lupinMVS96.32 4995.94 5897.44 4795.05 24294.87 3999.86 596.50 22693.82 5898.04 5098.77 8885.52 13698.09 19996.98 7598.97 8699.37 96
MP-MVScopyleft96.00 5795.82 6296.54 9699.47 4690.13 14899.36 7597.41 15390.64 12895.49 11498.95 7385.51 13899.98 996.00 10099.59 5199.52 80
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVS_3200maxsize95.64 7795.65 7295.62 14299.24 5887.80 20998.42 19097.22 17188.93 18296.64 9198.98 6485.49 13999.36 13396.68 8299.27 7099.70 55
HyFIR lowres test93.68 13693.29 13594.87 16997.57 12588.04 20598.18 21798.47 2487.57 22891.24 18795.05 24085.49 13997.46 24393.22 15792.82 19399.10 123
EPNet_dtu92.28 17292.15 16092.70 23597.29 13784.84 28498.64 16097.82 6692.91 8093.02 15897.02 18185.48 14195.70 33172.25 35594.89 17597.55 209
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Vis-MVSNet (Re-imp)93.26 15193.00 14394.06 20296.14 19486.71 23798.68 15496.70 21188.30 20389.71 21297.64 14885.43 14296.39 29188.06 21696.32 15499.08 125
test_post190.74 38441.37 42185.38 14396.36 29383.16 273
test_fmvsmconf_n96.78 3596.84 2996.61 9095.99 20090.25 14199.90 398.13 4296.68 1198.42 3698.92 7785.34 14499.88 5499.12 2299.08 7899.70 55
RE-MVS-def95.70 6899.22 5987.26 22998.40 19597.21 17289.63 15896.67 8998.97 6585.24 14596.62 8399.31 6799.60 73
myMVS_eth3d88.68 24889.07 21987.50 33695.14 23379.74 34397.68 25596.66 21386.52 25282.63 27596.84 19285.22 14689.89 39369.43 36491.54 22192.87 265
tpm89.67 22588.95 22291.82 25392.54 30581.43 32692.95 35895.92 27287.81 21990.50 19889.44 35484.99 14795.65 33283.67 27082.71 28898.38 176
HPM-MVScopyleft95.41 8295.22 8095.99 12799.29 5589.14 17199.17 9597.09 18887.28 23495.40 11598.48 11684.93 14899.38 13195.64 10899.65 4099.47 88
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test-LLR93.11 15592.68 14894.40 18794.94 24787.27 22799.15 10197.25 16690.21 14091.57 17794.04 25084.89 14997.58 23785.94 23996.13 15898.36 180
test0.0.03 188.96 23488.61 23090.03 29991.09 33184.43 28998.97 12797.02 19590.21 14080.29 31396.31 21284.89 14991.93 38572.98 35085.70 26393.73 259
mvsany_test194.57 11195.09 8692.98 22695.84 20582.07 32198.76 14795.24 32092.87 8296.45 9298.71 9784.81 15199.15 14497.68 6095.49 17097.73 202
PatchT85.44 29983.19 30992.22 24293.13 29983.00 30783.80 40596.37 23370.62 38690.55 19679.63 40084.81 15194.87 35058.18 39891.59 21898.79 153
TAMVS92.62 16392.09 16294.20 19694.10 26987.68 21198.41 19296.97 19987.53 23089.74 21096.04 22084.77 15396.49 28688.97 20792.31 20498.42 172
CR-MVSNet88.83 24087.38 25193.16 22393.47 29086.24 24784.97 39994.20 35288.92 18390.76 19386.88 37584.43 15494.82 35270.64 35992.17 20998.41 173
Patchmtry83.61 32481.64 32489.50 31293.36 29482.84 31384.10 40294.20 35269.47 39379.57 32386.88 37584.43 15494.78 35368.48 36974.30 33690.88 325
dp90.16 21888.83 22594.14 19896.38 18186.42 24191.57 37497.06 19084.76 28288.81 21790.19 34684.29 15697.43 24675.05 33391.35 23098.56 167
miper_ehance_all_eth88.94 23588.12 24191.40 26195.32 22386.93 23397.85 24295.55 30184.19 28881.97 29391.50 30784.16 15795.91 32384.69 25377.89 30991.36 310
MVS_111021_LR95.78 6995.94 5895.28 15598.19 10387.69 21098.80 14199.26 793.39 6895.04 12298.69 9984.09 15899.76 8996.96 7699.06 8098.38 176
FE-MVS91.38 19090.16 20295.05 16496.46 17587.53 21789.69 38797.84 6282.97 31192.18 16992.00 29684.07 15998.93 15880.71 29595.52 16998.68 161
tpmvs89.16 23187.76 24493.35 21997.19 14384.75 28690.58 38597.36 16081.99 33184.56 25389.31 35783.98 16098.17 19474.85 33690.00 24197.12 219
API-MVS94.78 10194.18 10496.59 9299.21 6190.06 15398.80 14197.78 7583.59 30093.85 14599.21 3183.79 16199.97 2192.37 16799.00 8499.74 50
cl2289.57 22788.79 22691.91 25097.94 11087.62 21497.98 23596.51 22585.03 27682.37 28491.79 29983.65 16296.50 28485.96 23877.89 30991.61 299
Test By Simon83.62 163
PVSNet_BlendedMVS93.36 14693.20 13793.84 21198.77 8791.61 10899.47 5598.04 4891.44 10994.21 13792.63 28683.50 16499.87 5897.41 6483.37 28390.05 348
PVSNet_Blended95.94 6395.66 7096.75 8098.77 8791.61 10899.88 498.04 4893.64 6394.21 13797.76 14083.50 16499.87 5897.41 6497.75 12698.79 153
HPM-MVS_fast94.89 9494.62 9295.70 13799.11 6688.44 19999.14 10497.11 18485.82 26295.69 11098.47 11783.46 16699.32 13893.16 15899.63 4599.35 99
thres20093.69 13492.59 15296.97 7097.76 11494.74 4699.35 7699.36 289.23 17091.21 18896.97 18383.42 16798.77 16385.08 24790.96 23297.39 212
tfpn200view993.43 14292.27 15796.90 7397.68 11794.84 4199.18 9299.36 288.45 19490.79 19196.90 18783.31 16898.75 16684.11 26390.69 23497.12 219
thres40093.39 14492.27 15796.73 8297.68 11794.84 4199.18 9299.36 288.45 19490.79 19196.90 18783.31 16898.75 16684.11 26390.69 23496.61 234
thres100view90093.34 14792.15 16096.90 7397.62 11994.84 4199.06 11699.36 287.96 21590.47 19996.78 19583.29 17098.75 16684.11 26390.69 23497.12 219
thres600view793.18 15292.00 16396.75 8097.62 11994.92 3699.07 11399.36 287.96 21590.47 19996.78 19583.29 17098.71 17082.93 27790.47 23896.61 234
PVSNet_Blended_VisFu94.67 10794.11 10596.34 10897.14 14791.10 12099.32 7997.43 15192.10 9791.53 18196.38 21083.29 17099.68 9593.42 15596.37 15398.25 185
h-mvs3392.47 16891.95 16594.05 20397.13 14885.01 28198.36 20298.08 4493.85 5696.27 9596.73 19883.19 17399.43 12595.81 10268.09 37297.70 203
hse-mvs291.67 18491.51 17592.15 24696.22 18782.61 31797.74 25197.53 12993.85 5696.27 9596.15 21583.19 17397.44 24595.81 10266.86 37996.40 243
AUN-MVS90.17 21789.50 21092.19 24496.21 18882.67 31597.76 25097.53 12988.05 21191.67 17596.15 21583.10 17597.47 24288.11 21566.91 37896.43 242
FA-MVS(test-final)92.22 17591.08 18395.64 14096.05 19988.98 17991.60 37397.25 16686.99 23791.84 17192.12 29083.03 17699.00 15486.91 22793.91 18398.93 139
IS-MVSNet93.00 15792.51 15394.49 18396.14 19487.36 22398.31 20795.70 29288.58 19090.17 20397.50 15483.02 17797.22 25387.06 22296.07 16298.90 142
tpm cat188.89 23687.27 25393.76 21395.79 20685.32 27590.76 38397.09 18876.14 36985.72 24588.59 36082.92 17898.04 20476.96 32091.43 22697.90 200
UniMVSNet_NR-MVSNet89.60 22688.55 23392.75 23392.17 31190.07 15098.74 14898.15 4088.37 19983.21 26593.98 25582.86 17995.93 32086.95 22572.47 35592.25 277
c3_l88.19 25587.23 25491.06 26794.97 24586.17 25297.72 25295.38 31283.43 30281.68 30091.37 30982.81 18095.72 33084.04 26673.70 34291.29 314
EC-MVSNet95.09 9095.17 8194.84 17195.42 21988.17 20199.48 5395.92 27291.47 10897.34 6698.36 12182.77 18197.41 24797.24 6998.58 10598.94 138
TAPA-MVS87.50 990.35 21189.05 22094.25 19498.48 9585.17 27898.42 19096.58 22182.44 32587.24 23198.53 10882.77 18198.84 16059.09 39697.88 12198.72 158
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
KD-MVS_2432*160082.98 32580.52 33490.38 28894.32 26388.98 17992.87 36095.87 28280.46 34773.79 36087.49 36882.76 18393.29 36870.56 36046.53 41288.87 365
miper_refine_blended82.98 32580.52 33490.38 28894.32 26388.98 17992.87 36095.87 28280.46 34773.79 36087.49 36882.76 18393.29 36870.56 36046.53 41288.87 365
test_fmvsmconf0.1_n95.94 6395.79 6696.40 10492.42 30789.92 15799.79 1796.85 20396.53 1597.22 6898.67 10082.71 18599.84 6998.92 2798.98 8599.43 92
CANet97.00 2896.49 4098.55 1298.86 8496.10 1699.83 1097.52 13395.90 1997.21 6998.90 7982.66 18699.93 3998.71 2998.80 9699.63 70
CPTT-MVS94.60 10994.43 9795.09 16199.66 1286.85 23499.44 6297.47 14383.22 30594.34 13698.96 7082.50 18799.55 10994.81 12799.50 5598.88 143
mvs_anonymous92.50 16791.65 17295.06 16296.60 16889.64 16397.06 28096.44 23086.64 24884.14 25893.93 25782.49 18896.17 31091.47 17396.08 16199.35 99
pcd_1.5k_mvsjas6.87 3929.16 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42482.48 1890.00 4250.00 4240.00 4230.00 421
PS-MVSNAJss89.54 22889.05 22091.00 26988.77 35984.36 29097.39 26495.97 26288.47 19181.88 29593.80 26182.48 18996.50 28489.34 20183.34 28492.15 284
PS-MVSNAJ96.87 3196.40 4398.29 1997.35 13497.29 599.03 11997.11 18495.83 2098.97 1999.14 4582.48 18999.60 10698.60 3399.08 7898.00 197
test_fmvsmvis_n_192095.47 7995.40 7695.70 13794.33 26290.22 14499.70 2796.98 19896.80 792.75 16098.89 8182.46 19299.92 4198.36 4498.33 11496.97 227
fmvsm_s_conf0.5_n96.19 5396.49 4095.30 15497.37 13389.16 17099.86 598.47 2495.68 2398.87 2299.15 4282.44 19399.92 4199.14 2197.43 13496.83 230
UA-Net93.30 14892.62 15195.34 15196.27 18588.53 19795.88 32396.97 19990.90 12095.37 11697.07 17782.38 19499.10 15083.91 26794.86 17698.38 176
FIs90.70 20589.87 20593.18 22292.29 30891.12 11898.17 21998.25 3189.11 17583.44 26394.82 24382.26 19596.17 31087.76 21882.76 28792.25 277
ACMMPcopyleft94.67 10794.30 9895.79 13499.25 5788.13 20398.41 19298.67 2190.38 13891.43 18298.72 9482.22 19699.95 3293.83 14595.76 16599.29 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
xiu_mvs_v2_base96.66 3796.17 5298.11 2897.11 15096.96 699.01 12297.04 19195.51 2798.86 2399.11 5382.19 19799.36 13398.59 3598.14 11898.00 197
DIV-MVS_self_test87.82 25786.81 26090.87 27494.87 25085.39 27397.81 24395.22 32582.92 31580.76 30791.31 31181.99 19895.81 32781.36 28975.04 32791.42 308
miper_lstm_enhance86.90 27286.20 26889.00 32294.53 25881.19 33296.74 29495.24 32082.33 32680.15 31590.51 33781.99 19894.68 35680.71 29573.58 34591.12 319
cl____87.82 25786.79 26190.89 27394.88 24985.43 27197.81 24395.24 32082.91 31680.71 30891.22 31281.97 20095.84 32581.34 29075.06 32691.40 309
FC-MVSNet-test90.22 21589.40 21392.67 23791.78 32089.86 15997.89 23898.22 3488.81 18582.96 27194.66 24581.90 20195.96 31885.89 24182.52 29092.20 282
UniMVSNet (Re)89.50 22988.32 23793.03 22492.21 31090.96 12698.90 13398.39 2689.13 17483.22 26492.03 29281.69 20296.34 29986.79 22972.53 35491.81 292
MVS_Test93.67 13792.67 14996.69 8696.72 16692.66 9197.22 27596.03 25987.69 22695.12 12194.03 25281.55 20398.28 18889.17 20596.46 15099.14 117
kuosan84.40 31483.34 30887.60 33495.87 20379.21 34692.39 36596.87 20276.12 37073.79 36093.98 25581.51 20490.63 38964.13 38275.42 32392.95 264
sss94.85 9993.94 11597.58 4396.43 17694.09 6298.93 12999.16 889.50 16595.27 11797.85 13481.50 20599.65 10192.79 16494.02 18298.99 130
eth_miper_zixun_eth87.76 25987.00 25890.06 29594.67 25582.65 31697.02 28395.37 31384.19 28881.86 29891.58 30681.47 20695.90 32483.24 27173.61 34391.61 299
jason95.40 8394.86 9097.03 6392.91 30194.23 5899.70 2796.30 23793.56 6596.73 8798.52 10981.46 20797.91 20996.08 9898.47 11198.96 133
jason: jason.
fmvsm_s_conf0.5_n_a95.97 6096.19 4795.31 15396.51 17389.01 17899.81 1298.39 2695.46 2899.19 1399.16 3981.44 20899.91 4698.83 2896.97 14397.01 226
IterMVS-LS88.34 25187.44 24991.04 26894.10 26985.85 26498.10 22695.48 30585.12 27282.03 29291.21 31381.35 20995.63 33383.86 26875.73 32291.63 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet89.87 22389.38 21491.36 26394.32 26385.87 26397.61 25996.59 21885.10 27385.51 24797.10 17581.30 21096.56 28083.85 26983.03 28591.64 294
fmvsm_s_conf0.1_n95.56 7895.68 6995.20 15794.35 26189.10 17299.50 5197.67 9694.76 3598.68 2999.03 5981.13 21199.86 6398.63 3297.36 13696.63 233
dongtai81.36 33480.61 33283.62 36794.25 26873.32 37995.15 33796.81 20473.56 38069.79 37792.81 28381.00 21286.80 40452.08 40570.06 36890.75 331
RPMNet85.07 30381.88 32294.64 18093.47 29086.24 24784.97 39997.21 17264.85 40390.76 19378.80 40180.95 21399.27 14053.76 40292.17 20998.41 173
114514_t94.06 12193.05 14097.06 6299.08 6992.26 9998.97 12797.01 19682.58 32092.57 16398.22 12780.68 21499.30 13989.34 20199.02 8399.63 70
CNLPA93.64 13892.74 14796.36 10798.96 7690.01 15699.19 9095.89 28086.22 25789.40 21398.85 8480.66 21599.84 6988.57 20996.92 14599.24 109
diffmvspermissive94.59 11094.19 10295.81 13395.54 21590.69 13298.70 15295.68 29491.61 10395.96 9997.81 13680.11 21698.06 20196.52 8895.76 16598.67 162
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_s_conf0.1_n_a95.16 8895.15 8295.18 15892.06 31388.94 18299.29 8097.53 12994.46 3998.98 1898.99 6379.99 21799.85 6798.24 5196.86 14696.73 231
casdiffmvs_mvgpermissive94.00 12393.33 13396.03 12395.22 22690.90 12899.09 11195.99 26090.58 13091.55 18097.37 16079.91 21898.06 20195.01 12395.22 17299.13 119
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive93.98 12593.43 12995.61 14395.07 24189.86 15998.80 14195.84 28590.98 11992.74 16197.66 14779.71 21998.10 19894.72 13095.37 17198.87 145
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Effi-MVS+93.87 12993.15 13896.02 12495.79 20690.76 13096.70 29695.78 28686.98 24095.71 10997.17 17379.58 22098.01 20694.57 13496.09 16099.31 103
baseline93.91 12793.30 13495.72 13695.10 23990.07 15097.48 26295.91 27791.03 11893.54 15197.68 14579.58 22098.02 20594.27 13795.14 17399.08 125
sasdasda95.02 9293.96 11398.20 2197.53 12695.92 1798.71 14996.19 24691.78 10095.86 10498.49 11379.53 22299.03 15296.12 9591.42 22799.66 64
canonicalmvs95.02 9293.96 11398.20 2197.53 12695.92 1798.71 14996.19 24691.78 10095.86 10498.49 11379.53 22299.03 15296.12 9591.42 22799.66 64
OMC-MVS93.90 12893.62 12594.73 17698.63 9187.00 23298.04 23296.56 22292.19 9492.46 16498.73 9279.49 22499.14 14892.16 16994.34 18098.03 196
MVS93.92 12692.28 15698.83 795.69 21096.82 896.22 31298.17 3684.89 28084.34 25798.61 10679.32 22599.83 7393.88 14399.43 6199.86 29
MGCFI-Net94.89 9493.84 12098.06 2997.49 12995.55 2198.64 16096.10 25391.60 10595.75 10898.46 11979.31 22698.98 15695.95 10191.24 23199.65 67
VNet95.08 9194.26 9997.55 4698.07 10693.88 6498.68 15498.73 1790.33 13997.16 7297.43 15879.19 22799.53 11296.91 7891.85 21399.24 109
CHOSEN 1792x268894.35 11693.82 12195.95 12997.40 13188.74 19198.41 19298.27 3092.18 9591.43 18296.40 20778.88 22899.81 7993.59 14997.81 12299.30 104
ADS-MVSNet287.62 26586.88 25989.86 30196.21 18879.14 34887.15 39192.99 36683.01 30989.91 20787.27 37178.87 22992.80 37474.20 34192.27 20597.64 204
ADS-MVSNet88.99 23387.30 25294.07 20196.21 18887.56 21687.15 39196.78 20783.01 30989.91 20787.27 37178.87 22997.01 26274.20 34192.27 20597.64 204
nrg03090.23 21488.87 22394.32 19191.53 32593.54 7098.79 14595.89 28088.12 20984.55 25494.61 24678.80 23196.88 26792.35 16875.21 32592.53 271
F-COLMAP92.07 17991.75 17193.02 22598.16 10482.89 31198.79 14595.97 26286.54 25187.92 22397.80 13778.69 23299.65 10185.97 23795.93 16496.53 239
MAR-MVS94.43 11594.09 10695.45 14699.10 6887.47 21998.39 19997.79 7388.37 19994.02 14299.17 3878.64 23399.91 4692.48 16698.85 9498.96 133
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MonoMVSNet90.69 20689.78 20693.45 21791.78 32084.97 28396.51 30094.44 34390.56 13185.96 24290.97 31778.61 23496.27 30695.35 11383.79 27999.11 122
mvsmamba94.27 11893.91 11795.35 15096.42 17788.61 19397.77 24796.38 23291.17 11794.05 14195.27 23678.41 23597.96 20897.36 6698.40 11299.48 86
PCF-MVS89.78 591.26 19289.63 20896.16 11995.44 21891.58 11095.29 33596.10 25385.07 27582.75 27297.45 15778.28 23699.78 8780.60 29795.65 16897.12 219
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DeepC-MVS91.02 494.56 11293.92 11696.46 9997.16 14690.76 13098.39 19997.11 18493.92 5188.66 21898.33 12278.14 23799.85 6795.02 12298.57 10698.78 155
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
WR-MVS_H86.53 28185.49 27989.66 30991.04 33283.31 30597.53 26198.20 3584.95 27979.64 32190.90 31978.01 23895.33 34176.29 32672.81 35190.35 340
Fast-Effi-MVS+91.72 18390.79 19294.49 18395.89 20287.40 22299.54 4995.70 29285.01 27889.28 21595.68 22877.75 23997.57 24083.22 27295.06 17498.51 169
131493.44 14191.98 16497.84 3495.24 22494.38 5596.22 31297.92 5690.18 14282.28 28597.71 14477.63 24099.80 8191.94 17198.67 10299.34 101
NR-MVSNet87.74 26386.00 27192.96 22891.46 32690.68 13396.65 29797.42 15288.02 21373.42 36393.68 26377.31 24195.83 32684.26 25971.82 36292.36 273
BH-w/o92.32 17091.79 16993.91 20996.85 15986.18 25199.11 11095.74 29088.13 20884.81 25197.00 18277.26 24297.91 20989.16 20698.03 11997.64 204
PMMVS93.62 13993.90 11892.79 23196.79 16481.40 32798.85 13596.81 20491.25 11596.82 8298.15 13177.02 24398.13 19693.15 15996.30 15698.83 149
CVMVSNet90.30 21390.91 18788.46 32894.32 26373.58 37897.61 25997.59 11890.16 14588.43 22197.10 17576.83 24492.86 37182.64 27993.54 18798.93 139
LCM-MVSNet-Re88.59 24988.61 23088.51 32795.53 21672.68 38396.85 28888.43 40388.45 19473.14 36690.63 32975.82 24594.38 35992.95 16095.71 16798.48 171
LS3D90.19 21688.72 22794.59 18298.97 7386.33 24696.90 28696.60 21774.96 37484.06 26098.74 9175.78 24699.83 7374.93 33497.57 12897.62 207
pmmvs487.58 26686.17 26991.80 25489.58 34988.92 18597.25 27295.28 31682.54 32180.49 31093.17 27775.62 24796.05 31582.75 27878.90 30490.42 339
BH-untuned91.46 18790.84 18993.33 22096.51 17384.83 28598.84 13795.50 30486.44 25683.50 26296.70 19975.49 24897.77 22086.78 23097.81 12297.40 211
AdaColmapbinary93.82 13193.06 13996.10 12099.88 189.07 17398.33 20497.55 12586.81 24590.39 20198.65 10175.09 24999.98 993.32 15697.53 13199.26 108
DU-MVS88.83 24087.51 24892.79 23191.46 32690.07 15098.71 14997.62 11188.87 18483.21 26593.68 26374.63 25095.93 32086.95 22572.47 35592.36 273
Baseline_NR-MVSNet85.83 29284.82 29088.87 32588.73 36083.34 30498.63 16291.66 38480.41 34982.44 28091.35 31074.63 25095.42 33984.13 26271.39 36487.84 370
v14886.38 28485.06 28490.37 29089.47 35384.10 29498.52 17795.48 30583.80 29580.93 30690.22 34474.60 25296.31 30180.92 29371.55 36390.69 334
3Dnovator+87.72 893.43 14291.84 16798.17 2395.73 20995.08 3598.92 13197.04 19191.42 11181.48 30297.60 14974.60 25299.79 8590.84 18198.97 8699.64 68
v886.11 28784.45 29891.10 26689.99 34186.85 23497.24 27395.36 31481.99 33179.89 31989.86 35074.53 25496.39 29178.83 30972.32 35790.05 348
DP-MVS88.75 24486.56 26395.34 15198.92 8187.45 22097.64 25893.52 36370.55 38781.49 30197.25 16674.43 25599.88 5471.14 35894.09 18198.67 162
GeoE90.60 20989.56 20993.72 21595.10 23985.43 27199.41 6894.94 32983.96 29387.21 23296.83 19474.37 25697.05 26180.50 29993.73 18698.67 162
cdsmvs_eth3d_5k22.52 38730.03 3900.00 4060.00 4290.00 4310.00 41797.17 1780.00 4240.00 42598.77 8874.35 2570.00 4250.00 4240.00 4230.00 421
Effi-MVS+-dtu89.97 22290.68 19487.81 33295.15 23271.98 38597.87 24195.40 31191.92 9887.57 22691.44 30874.27 25896.84 26889.45 19893.10 19194.60 257
WR-MVS88.54 25087.22 25592.52 23891.93 31889.50 16698.56 17497.84 6286.99 23781.87 29693.81 26074.25 25995.92 32285.29 24574.43 33492.12 285
FMVSNet388.81 24287.08 25693.99 20696.52 17294.59 5098.08 23096.20 24485.85 26182.12 28891.60 30574.05 26095.40 34079.04 30580.24 29791.99 290
V4287.00 27185.68 27690.98 27089.91 34286.08 25598.32 20695.61 29883.67 29982.72 27390.67 32674.00 26196.53 28281.94 28774.28 33790.32 341
D2MVS87.96 25687.39 25089.70 30791.84 31983.40 30398.31 20798.49 2288.04 21278.23 33890.26 34073.57 26296.79 27284.21 26083.53 28188.90 364
v114486.83 27485.31 28291.40 26189.75 34687.21 23198.31 20795.45 30783.22 30582.70 27490.78 32173.36 26396.36 29379.49 30274.69 33190.63 336
HQP2-MVS73.34 264
HQP-MVS91.50 18591.23 18092.29 24193.95 27486.39 24399.16 9696.37 23393.92 5187.57 22696.67 20173.34 26497.77 22093.82 14686.29 25592.72 267
v1085.73 29684.01 30490.87 27490.03 34086.73 23697.20 27695.22 32581.25 33979.85 32089.75 35173.30 26696.28 30576.87 32172.64 35389.61 356
test_fmvsmconf0.01_n94.14 12093.51 12896.04 12286.79 37989.19 16999.28 8395.94 26795.70 2195.50 11398.49 11373.27 26799.79 8598.28 4998.32 11699.15 116
v2v48287.27 26985.76 27491.78 25889.59 34887.58 21598.56 17495.54 30284.53 28482.51 27991.78 30073.11 26896.47 28782.07 28474.14 34091.30 313
RRT-MVS93.39 14492.64 15095.64 14096.11 19888.75 19097.40 26395.77 28889.46 16792.70 16295.42 23372.98 26998.81 16196.91 7896.97 14399.37 96
HQP_MVS91.26 19290.95 18692.16 24593.84 28186.07 25799.02 12096.30 23793.38 6986.99 23396.52 20372.92 27097.75 22693.46 15386.17 25892.67 269
plane_prior693.92 27886.02 25972.92 270
QAPM91.41 18889.49 21197.17 6095.66 21293.42 7398.60 16997.51 13580.92 34481.39 30397.41 15972.89 27299.87 5882.33 28298.68 10198.21 190
v14419286.40 28384.89 28890.91 27189.48 35285.59 26898.21 21595.43 31082.45 32482.62 27790.58 33372.79 27396.36 29378.45 31274.04 34190.79 328
TranMVSNet+NR-MVSNet87.75 26086.31 26692.07 24890.81 33488.56 19498.33 20497.18 17787.76 22181.87 29693.90 25872.45 27495.43 33883.13 27571.30 36592.23 279
xiu_mvs_v1_base_debu94.73 10393.98 11096.99 6695.19 22895.24 2798.62 16396.50 22692.99 7797.52 6098.83 8572.37 27599.15 14497.03 7296.74 14796.58 236
xiu_mvs_v1_base94.73 10393.98 11096.99 6695.19 22895.24 2798.62 16396.50 22692.99 7797.52 6098.83 8572.37 27599.15 14497.03 7296.74 14796.58 236
xiu_mvs_v1_base_debi94.73 10393.98 11096.99 6695.19 22895.24 2798.62 16396.50 22692.99 7797.52 6098.83 8572.37 27599.15 14497.03 7296.74 14796.58 236
test_djsdf88.26 25487.73 24589.84 30288.05 36882.21 31997.77 24796.17 24986.84 24382.41 28391.95 29872.07 27895.99 31689.83 19184.50 27091.32 312
3Dnovator87.35 1193.17 15491.77 17097.37 5395.41 22093.07 8198.82 13897.85 6191.53 10682.56 27897.58 15171.97 27999.82 7691.01 17899.23 7399.22 112
CANet_DTU94.31 11793.35 13297.20 5997.03 15594.71 4798.62 16395.54 30295.61 2597.21 6998.47 11771.88 28099.84 6988.38 21197.46 13397.04 224
CP-MVSNet86.54 28085.45 28089.79 30491.02 33382.78 31497.38 26697.56 12485.37 26979.53 32493.03 27971.86 28195.25 34379.92 30073.43 34991.34 311
PatchMatch-RL91.47 18690.54 19694.26 19398.20 10186.36 24596.94 28497.14 18087.75 22288.98 21695.75 22671.80 28299.40 13080.92 29397.39 13597.02 225
our_test_384.47 31282.80 31389.50 31289.01 35683.90 29797.03 28194.56 34181.33 33875.36 35390.52 33671.69 28394.54 35868.81 36776.84 31890.07 346
XVG-OURS90.83 20290.49 19791.86 25195.23 22581.25 33195.79 32895.92 27288.96 17990.02 20698.03 13371.60 28499.35 13691.06 17787.78 24894.98 255
v119286.32 28584.71 29391.17 26589.53 35186.40 24298.13 22195.44 30982.52 32282.42 28290.62 33071.58 28596.33 30077.23 31774.88 32890.79 328
Vis-MVSNetpermissive92.64 16291.85 16695.03 16595.12 23588.23 20098.48 18596.81 20491.61 10392.16 17097.22 16871.58 28598.00 20785.85 24297.81 12298.88 143
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PVSNet87.13 1293.69 13492.83 14696.28 11097.99 10990.22 14499.38 7198.93 1291.42 11193.66 14997.68 14571.29 28799.64 10387.94 21797.20 13898.98 131
v192192086.02 28884.44 29990.77 27789.32 35485.20 27698.10 22695.35 31582.19 32882.25 28690.71 32370.73 28896.30 30476.85 32274.49 33390.80 327
EU-MVSNet84.19 31684.42 30083.52 36888.64 36267.37 39696.04 31895.76 28985.29 27078.44 33593.18 27670.67 28991.48 38775.79 33075.98 32091.70 293
XVG-OURS-SEG-HR90.95 20090.66 19591.83 25295.18 23181.14 33495.92 32095.92 27288.40 19890.33 20297.85 13470.66 29099.38 13192.83 16388.83 24494.98 255
WB-MVSnew88.69 24688.34 23689.77 30594.30 26785.99 26098.14 22097.31 16487.15 23687.85 22496.07 21969.91 29195.52 33572.83 35291.47 22587.80 372
v7n84.42 31382.75 31689.43 31588.15 36681.86 32296.75 29395.67 29580.53 34578.38 33689.43 35569.89 29296.35 29873.83 34572.13 35990.07 346
ppachtmachnet_test83.63 32381.57 32689.80 30389.01 35685.09 28097.13 27894.50 34278.84 35376.14 34591.00 31669.78 29394.61 35763.40 38474.36 33589.71 355
MSDG88.29 25386.37 26594.04 20496.90 15886.15 25396.52 29994.36 34977.89 36179.22 32796.95 18469.72 29499.59 10773.20 34992.58 19996.37 244
dmvs_testset77.17 35778.99 34271.71 38687.25 37538.55 42391.44 37581.76 41485.77 26369.49 37995.94 22369.71 29584.37 40652.71 40476.82 31992.21 281
CLD-MVS91.06 19890.71 19392.10 24794.05 27386.10 25499.55 4496.29 24094.16 4684.70 25297.17 17369.62 29697.82 21694.74 12986.08 26092.39 272
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
v124085.77 29584.11 30290.73 27889.26 35585.15 27997.88 24095.23 32481.89 33482.16 28790.55 33569.60 29796.31 30175.59 33174.87 32990.72 333
MVStest176.56 35873.43 36485.96 35086.30 38380.88 33894.26 34591.74 38361.98 40558.53 40189.96 34869.30 29891.47 38859.26 39549.56 41085.52 389
Fast-Effi-MVS+-dtu88.84 23888.59 23289.58 31093.44 29378.18 35698.65 15894.62 34088.46 19384.12 25995.37 23568.91 29996.52 28382.06 28591.70 21794.06 258
anonymousdsp86.69 27685.75 27589.53 31186.46 38182.94 30896.39 30395.71 29183.97 29279.63 32290.70 32468.85 30095.94 31986.01 23684.02 27589.72 354
VPA-MVSNet89.10 23287.66 24793.45 21792.56 30491.02 12497.97 23698.32 2986.92 24286.03 24192.01 29468.84 30197.10 25990.92 17975.34 32492.23 279
ab-mvs91.05 19989.17 21796.69 8695.96 20191.72 10692.62 36397.23 17085.61 26689.74 21093.89 25968.55 30299.42 12691.09 17687.84 24798.92 141
CL-MVSNet_self_test79.89 34278.34 34384.54 36281.56 39775.01 37196.88 28795.62 29781.10 34075.86 34985.81 38068.49 30390.26 39163.21 38556.51 39988.35 367
PEN-MVS85.21 30183.93 30589.07 32189.89 34481.31 33097.09 27997.24 16984.45 28678.66 33192.68 28568.44 30494.87 35075.98 32870.92 36691.04 321
BH-RMVSNet91.25 19489.99 20395.03 16596.75 16588.55 19598.65 15894.95 32887.74 22387.74 22597.80 13768.27 30598.14 19580.53 29897.49 13298.41 173
Syy-MVS84.10 31984.53 29782.83 37095.14 23365.71 39797.68 25596.66 21386.52 25282.63 27596.84 19268.15 30689.89 39345.62 40891.54 22192.87 265
GA-MVS90.10 21988.69 22894.33 19092.44 30687.97 20799.08 11296.26 24189.65 15786.92 23593.11 27868.09 30796.96 26382.54 28190.15 23998.05 195
MDA-MVSNet_test_wron79.65 34477.05 34987.45 33787.79 37280.13 34096.25 31094.44 34373.87 37851.80 40687.47 37068.04 30892.12 38366.02 37767.79 37590.09 344
OpenMVScopyleft85.28 1490.75 20488.84 22496.48 9893.58 28893.51 7198.80 14197.41 15382.59 31978.62 33297.49 15568.00 30999.82 7684.52 25798.55 10796.11 247
YYNet179.64 34577.04 35087.43 33887.80 37179.98 34196.23 31194.44 34373.83 37951.83 40587.53 36667.96 31092.07 38466.00 37867.75 37690.23 343
DTE-MVSNet84.14 31782.80 31388.14 32988.95 35879.87 34296.81 28996.24 24283.50 30177.60 34192.52 28767.89 31194.24 36172.64 35369.05 37090.32 341
MVP-Stereo86.61 27985.83 27388.93 32488.70 36183.85 29896.07 31794.41 34882.15 32975.64 35191.96 29767.65 31296.45 28977.20 31998.72 10086.51 382
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
dmvs_re88.69 24688.06 24290.59 28093.83 28378.68 35295.75 32996.18 24887.99 21484.48 25696.32 21167.52 31396.94 26584.98 25085.49 26496.14 246
XXY-MVS87.75 26086.02 27092.95 22990.46 33889.70 16297.71 25495.90 27884.02 29080.95 30594.05 24967.51 31497.10 25985.16 24678.41 30692.04 289
PS-CasMVS85.81 29384.58 29689.49 31490.77 33582.11 32097.20 27697.36 16084.83 28179.12 32992.84 28267.42 31595.16 34578.39 31373.25 35091.21 317
ACMM86.95 1388.77 24388.22 23990.43 28693.61 28781.34 32998.50 18195.92 27287.88 21883.85 26195.20 23967.20 31697.89 21186.90 22884.90 26792.06 288
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TransMVSNet (Re)81.97 33079.61 34089.08 32089.70 34784.01 29597.26 27191.85 38278.84 35373.07 36991.62 30467.17 31795.21 34467.50 37259.46 39588.02 369
OPM-MVS89.76 22489.15 21891.57 26090.53 33785.58 26998.11 22595.93 27092.88 8186.05 24096.47 20667.06 31897.87 21389.29 20486.08 26091.26 315
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
TR-MVS90.77 20389.44 21294.76 17396.31 18388.02 20697.92 23795.96 26485.52 26788.22 22297.23 16766.80 31998.09 19984.58 25592.38 20198.17 193
IterMVS-SCA-FT85.73 29684.64 29589.00 32293.46 29282.90 31096.27 30794.70 33785.02 27778.62 33290.35 33966.61 32093.33 36779.38 30477.36 31790.76 330
SCA90.64 20889.25 21694.83 17294.95 24688.83 18696.26 30997.21 17290.06 14990.03 20590.62 33066.61 32096.81 27083.16 27394.36 17998.84 146
IterMVS85.81 29384.67 29489.22 31793.51 28983.67 30096.32 30694.80 33485.09 27478.69 33090.17 34766.57 32293.17 37079.48 30377.42 31690.81 326
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SDMVSNet91.09 19689.91 20494.65 17896.80 16290.54 13797.78 24597.81 6988.34 20185.73 24395.26 23766.44 32398.26 18994.25 13886.75 25295.14 252
LPG-MVS_test88.86 23788.47 23590.06 29593.35 29580.95 33698.22 21395.94 26787.73 22483.17 26796.11 21766.28 32497.77 22090.19 18985.19 26591.46 305
LGP-MVS_train90.06 29593.35 29580.95 33695.94 26787.73 22483.17 26796.11 21766.28 32497.77 22090.19 18985.19 26591.46 305
ACMP87.39 1088.71 24588.24 23890.12 29493.91 27981.06 33598.50 18195.67 29589.43 16880.37 31295.55 22965.67 32697.83 21590.55 18684.51 26991.47 304
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LTVRE_ROB81.71 1984.59 30982.72 31790.18 29292.89 30283.18 30693.15 35694.74 33578.99 35275.14 35492.69 28465.64 32797.63 23369.46 36381.82 29389.74 353
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ECVR-MVScopyleft92.29 17191.33 17895.15 15996.41 17887.84 20898.10 22694.84 33190.82 12291.42 18497.28 16265.61 32898.49 17990.33 18797.19 13999.12 120
test111192.12 17691.19 18194.94 16796.15 19287.36 22398.12 22394.84 33190.85 12190.97 18997.26 16465.60 32998.37 18389.74 19697.14 14299.07 127
pm-mvs184.68 30782.78 31590.40 28789.58 34985.18 27797.31 26894.73 33681.93 33376.05 34692.01 29465.48 33096.11 31378.75 31069.14 36989.91 351
test_cas_vis1_n_192093.86 13093.74 12394.22 19595.39 22286.08 25599.73 2396.07 25796.38 1797.19 7197.78 13965.46 33199.86 6396.71 8098.92 9096.73 231
cascas90.93 20189.33 21595.76 13595.69 21093.03 8398.99 12496.59 21880.49 34686.79 23894.45 24765.23 33298.60 17493.52 15092.18 20895.66 251
tfpnnormal83.65 32281.35 32890.56 28391.37 32888.06 20497.29 26997.87 5978.51 35676.20 34490.91 31864.78 33396.47 28761.71 38973.50 34687.13 379
pmmvs585.87 29084.40 30190.30 29188.53 36384.23 29198.60 16993.71 35981.53 33680.29 31392.02 29364.51 33495.52 33582.04 28678.34 30791.15 318
RPSCF85.33 30085.55 27884.67 36194.63 25762.28 40093.73 35193.76 35774.38 37785.23 25097.06 17864.09 33598.31 18580.98 29186.08 26093.41 263
N_pmnet70.19 36869.87 37071.12 38888.24 36530.63 42795.85 32628.70 42670.18 38968.73 38286.55 37764.04 33693.81 36353.12 40373.46 34788.94 363
DSMNet-mixed81.60 33381.43 32782.10 37384.36 38860.79 40193.63 35386.74 40679.00 35179.32 32687.15 37363.87 33789.78 39566.89 37591.92 21195.73 250
WB-MVS66.44 37166.29 37466.89 39174.84 40744.93 41893.00 35784.09 41271.15 38555.82 40381.63 39263.79 33880.31 41321.85 41750.47 40975.43 404
FMVSNet582.29 32880.54 33387.52 33593.79 28584.01 29593.73 35192.47 37376.92 36474.27 35786.15 37963.69 33989.24 39869.07 36674.79 33089.29 360
SSC-MVS65.42 37265.20 37566.06 39273.96 40843.83 41992.08 36783.54 41369.77 39154.73 40480.92 39663.30 34079.92 41420.48 41848.02 41174.44 405
GBi-Net86.67 27784.96 28591.80 25495.11 23688.81 18796.77 29095.25 31782.94 31282.12 28890.25 34162.89 34194.97 34779.04 30580.24 29791.62 296
test186.67 27784.96 28591.80 25495.11 23688.81 18796.77 29095.25 31782.94 31282.12 28890.25 34162.89 34194.97 34779.04 30580.24 29791.62 296
FMVSNet286.90 27284.79 29193.24 22195.11 23692.54 9597.67 25795.86 28482.94 31280.55 30991.17 31462.89 34195.29 34277.23 31779.71 30391.90 291
VPNet88.30 25286.57 26293.49 21691.95 31691.35 11298.18 21797.20 17688.61 18884.52 25594.89 24162.21 34496.76 27389.34 20172.26 35892.36 273
PVSNet_083.28 1687.31 26885.16 28393.74 21494.78 25284.59 28798.91 13298.69 2089.81 15478.59 33493.23 27561.95 34599.34 13794.75 12855.72 40197.30 214
jajsoiax87.35 26786.51 26489.87 30087.75 37381.74 32397.03 28195.98 26188.47 19180.15 31593.80 26161.47 34696.36 29389.44 19984.47 27191.50 303
OurMVSNet-221017-084.13 31883.59 30785.77 35287.81 37070.24 39094.89 33993.65 36186.08 25876.53 34393.28 27461.41 34796.14 31280.95 29277.69 31590.93 323
Anonymous2023120680.76 33779.42 34184.79 36084.78 38772.98 38096.53 29892.97 36779.56 35074.33 35688.83 35861.27 34892.15 38260.59 39275.92 32189.24 361
sd_testset89.23 23088.05 24392.74 23496.80 16285.33 27495.85 32697.03 19388.34 20185.73 24395.26 23761.12 34997.76 22585.61 24386.75 25295.14 252
LFMVS92.23 17490.84 18996.42 10298.24 10091.08 12298.24 21296.22 24383.39 30394.74 12798.31 12361.12 34998.85 15994.45 13592.82 19399.32 102
UGNet91.91 18190.85 18895.10 16097.06 15388.69 19298.01 23398.24 3392.41 9092.39 16793.61 26660.52 35199.68 9588.14 21497.25 13796.92 228
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
SixPastTwentyTwo82.63 32781.58 32585.79 35188.12 36771.01 38895.17 33692.54 37284.33 28772.93 37092.08 29160.41 35295.61 33474.47 33874.15 33990.75 331
mvs_tets87.09 27086.22 26789.71 30687.87 36981.39 32896.73 29595.90 27888.19 20779.99 31793.61 26659.96 35396.31 30189.40 20084.34 27291.43 307
test_fmvs192.35 16992.94 14490.57 28197.19 14375.43 37099.55 4494.97 32795.20 3196.82 8297.57 15259.59 35499.84 6997.30 6798.29 11796.46 241
COLMAP_ROBcopyleft82.69 1884.54 31082.82 31289.70 30796.72 16678.85 34995.89 32192.83 36971.55 38477.54 34295.89 22459.40 35599.14 14867.26 37388.26 24591.11 320
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_vis1_n_192093.08 15693.42 13092.04 24996.31 18379.36 34599.83 1096.06 25896.72 998.53 3498.10 13258.57 35699.91 4697.86 5798.79 9996.85 229
Anonymous2023121184.72 30682.65 31890.91 27197.71 11684.55 28897.28 27096.67 21266.88 40079.18 32890.87 32058.47 35796.60 27782.61 28074.20 33891.59 301
MS-PatchMatch86.75 27585.92 27289.22 31791.97 31482.47 31896.91 28596.14 25183.74 29677.73 34093.53 26958.19 35897.37 25076.75 32398.35 11387.84 370
test20.0378.51 35177.48 34781.62 37583.07 39371.03 38796.11 31692.83 36981.66 33569.31 38089.68 35257.53 35987.29 40358.65 39768.47 37186.53 381
MVS-HIRNet79.01 34675.13 35990.66 27993.82 28481.69 32485.16 39693.75 35854.54 40674.17 35859.15 41257.46 36096.58 27963.74 38394.38 17893.72 260
MDA-MVSNet-bldmvs77.82 35574.75 36187.03 34088.33 36478.52 35496.34 30592.85 36875.57 37148.87 40887.89 36357.32 36192.49 37960.79 39164.80 38490.08 345
ACMH83.09 1784.60 30882.61 31990.57 28193.18 29882.94 30896.27 30794.92 33081.01 34272.61 37293.61 26656.54 36297.79 21874.31 33981.07 29590.99 322
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ITE_SJBPF87.93 33092.26 30976.44 36593.47 36487.67 22779.95 31895.49 23256.50 36397.38 24875.24 33282.33 29189.98 350
pmmvs-eth3d78.71 34976.16 35486.38 34480.25 40281.19 33294.17 34792.13 37877.97 35866.90 39182.31 39055.76 36492.56 37773.63 34762.31 38985.38 390
K. test v381.04 33679.77 33984.83 35987.41 37470.23 39195.60 33293.93 35683.70 29867.51 38889.35 35655.76 36493.58 36676.67 32468.03 37390.67 335
AllTest84.97 30483.12 31090.52 28496.82 16078.84 35095.89 32192.17 37677.96 35975.94 34795.50 23055.48 36699.18 14271.15 35687.14 24993.55 261
TestCases90.52 28496.82 16078.84 35092.17 37677.96 35975.94 34795.50 23055.48 36699.18 14271.15 35687.14 24993.55 261
KD-MVS_self_test77.47 35675.88 35582.24 37181.59 39668.93 39492.83 36294.02 35577.03 36373.14 36683.39 38555.44 36890.42 39067.95 37057.53 39887.38 374
CMPMVSbinary58.40 2180.48 33880.11 33781.59 37685.10 38659.56 40394.14 34895.95 26668.54 39560.71 39993.31 27255.35 36997.87 21383.06 27684.85 26887.33 376
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous2024052987.66 26485.58 27793.92 20897.59 12385.01 28198.13 22197.13 18266.69 40188.47 22096.01 22155.09 37099.51 11387.00 22484.12 27497.23 218
mmtdpeth83.69 32182.59 32086.99 34192.82 30376.98 36396.16 31591.63 38582.89 31792.41 16682.90 38654.95 37198.19 19396.27 9153.27 40485.81 386
VDDNet90.08 22088.54 23494.69 17794.41 26087.68 21198.21 21596.40 23176.21 36893.33 15497.75 14154.93 37298.77 16394.71 13190.96 23297.61 208
ACMH+83.78 1584.21 31582.56 32189.15 31993.73 28679.16 34796.43 30294.28 35081.09 34174.00 35994.03 25254.58 37397.67 22976.10 32778.81 30590.63 336
VDD-MVS91.24 19590.18 20194.45 18697.08 15285.84 26598.40 19596.10 25386.99 23793.36 15398.16 13054.27 37499.20 14196.59 8690.63 23798.31 183
lessismore_v085.08 35685.59 38569.28 39390.56 39467.68 38790.21 34554.21 37595.46 33773.88 34362.64 38790.50 338
ttmdpeth79.80 34377.91 34585.47 35483.34 39275.75 36795.32 33491.45 38976.84 36574.81 35591.71 30353.98 37694.13 36272.42 35461.29 39086.51 382
USDC84.74 30582.93 31190.16 29391.73 32283.54 30295.00 33893.30 36588.77 18673.19 36593.30 27353.62 37797.65 23275.88 32981.54 29489.30 359
Anonymous20240521188.84 23887.03 25794.27 19298.14 10584.18 29398.44 18895.58 30076.79 36689.34 21496.88 19053.42 37899.54 11187.53 22187.12 25199.09 124
XVG-ACMP-BASELINE85.86 29184.95 28788.57 32689.90 34377.12 36294.30 34495.60 29987.40 23282.12 28892.99 28153.42 37897.66 23085.02 24983.83 27690.92 324
test_040278.81 34876.33 35386.26 34691.18 33078.44 35595.88 32391.34 39068.55 39470.51 37689.91 34952.65 38094.99 34647.14 40779.78 30285.34 392
MIMVSNet84.48 31181.83 32392.42 24091.73 32287.36 22385.52 39494.42 34781.40 33781.91 29487.58 36551.92 38192.81 37373.84 34488.15 24697.08 223
mvs5depth78.17 35275.56 35685.97 34980.43 40176.44 36585.46 39589.24 40176.39 36778.17 33988.26 36151.73 38295.73 32969.31 36561.09 39185.73 387
UnsupCasMVSNet_eth78.90 34776.67 35285.58 35382.81 39574.94 37291.98 36896.31 23684.64 28365.84 39487.71 36451.33 38392.23 38172.89 35156.50 40089.56 357
tt080586.50 28284.79 29191.63 25991.97 31481.49 32596.49 30197.38 15682.24 32782.44 28095.82 22551.22 38498.25 19084.55 25680.96 29695.13 254
new-patchmatchnet74.80 36472.40 36781.99 37478.36 40572.20 38494.44 34292.36 37477.06 36263.47 39679.98 39951.04 38588.85 39960.53 39354.35 40284.92 395
pmmvs679.90 34177.31 34887.67 33384.17 38978.13 35795.86 32593.68 36067.94 39772.67 37189.62 35350.98 38695.75 32874.80 33766.04 38089.14 362
test_fmvs1_n91.07 19791.41 17790.06 29594.10 26974.31 37499.18 9294.84 33194.81 3396.37 9497.46 15650.86 38799.82 7697.14 7197.90 12096.04 248
FMVSNet183.94 32081.32 32991.80 25491.94 31788.81 18796.77 29095.25 31777.98 35778.25 33790.25 34150.37 38894.97 34773.27 34877.81 31491.62 296
UniMVSNet_ETH3D85.65 29883.79 30691.21 26490.41 33980.75 33995.36 33395.78 28678.76 35581.83 29994.33 24849.86 38996.66 27584.30 25883.52 28296.22 245
Anonymous2024052178.63 35076.90 35183.82 36582.82 39472.86 38195.72 33093.57 36273.55 38172.17 37384.79 38249.69 39092.51 37865.29 38074.50 33286.09 385
TDRefinement78.01 35375.31 35786.10 34870.06 41373.84 37693.59 35491.58 38774.51 37673.08 36891.04 31549.63 39197.12 25674.88 33559.47 39487.33 376
LF4IMVS81.94 33181.17 33084.25 36387.23 37768.87 39593.35 35591.93 38183.35 30475.40 35293.00 28049.25 39296.65 27678.88 30878.11 30887.22 378
new_pmnet76.02 35973.71 36382.95 36983.88 39072.85 38291.26 37892.26 37570.44 38862.60 39781.37 39347.64 39392.32 38061.85 38872.10 36083.68 398
TinyColmap80.42 33977.94 34487.85 33192.09 31278.58 35393.74 35089.94 39674.99 37369.77 37891.78 30046.09 39497.58 23765.17 38177.89 30987.38 374
testgi82.29 32881.00 33186.17 34787.24 37674.84 37397.39 26491.62 38688.63 18775.85 35095.42 23346.07 39591.55 38666.87 37679.94 30192.12 285
test_fmvs285.10 30285.45 28084.02 36489.85 34565.63 39898.49 18392.59 37190.45 13585.43 24993.32 27143.94 39696.59 27890.81 18284.19 27389.85 352
OpenMVS_ROBcopyleft73.86 2077.99 35475.06 36086.77 34383.81 39177.94 35996.38 30491.53 38867.54 39868.38 38387.13 37443.94 39696.08 31455.03 40181.83 29286.29 384
test_vis1_n90.40 21090.27 20090.79 27691.55 32476.48 36499.12 10994.44 34394.31 4297.34 6696.95 18443.60 39899.42 12697.57 6297.60 12796.47 240
tmp_tt53.66 38152.86 38356.05 39832.75 42641.97 42273.42 41276.12 41921.91 41939.68 41596.39 20942.59 39965.10 41878.00 31414.92 41961.08 411
pmmvs372.86 36669.76 37182.17 37273.86 40974.19 37594.20 34689.01 40264.23 40467.72 38680.91 39741.48 40088.65 40062.40 38754.02 40383.68 398
UnsupCasMVSNet_bld73.85 36570.14 36984.99 35779.44 40375.73 36888.53 38895.24 32070.12 39061.94 39874.81 40541.41 40193.62 36568.65 36851.13 40885.62 388
MIMVSNet175.92 36073.30 36583.81 36681.29 39875.57 36992.26 36692.05 37973.09 38267.48 38986.18 37840.87 40287.64 40255.78 40070.68 36788.21 368
EG-PatchMatch MVS79.92 34077.59 34686.90 34287.06 37877.90 36096.20 31494.06 35474.61 37566.53 39288.76 35940.40 40396.20 30867.02 37483.66 28086.61 380
EGC-MVSNET60.70 37555.37 37976.72 38086.35 38271.08 38689.96 38684.44 4110.38 4231.50 42484.09 38437.30 40488.10 40140.85 41273.44 34870.97 408
test_vis1_rt81.31 33580.05 33885.11 35591.29 32970.66 38998.98 12677.39 41885.76 26468.80 38182.40 38936.56 40599.44 12292.67 16586.55 25485.24 393
DeepMVS_CXcopyleft76.08 38190.74 33651.65 41490.84 39286.47 25557.89 40287.98 36235.88 40692.60 37565.77 37965.06 38383.97 397
mvsany_test375.85 36174.52 36279.83 37873.53 41060.64 40291.73 37187.87 40583.91 29470.55 37582.52 38831.12 40793.66 36486.66 23162.83 38585.19 394
test_method70.10 36968.66 37274.41 38586.30 38355.84 40794.47 34189.82 39735.18 41466.15 39384.75 38330.54 40877.96 41570.40 36260.33 39389.44 358
PM-MVS74.88 36372.85 36680.98 37778.98 40464.75 39990.81 38285.77 40780.95 34368.23 38582.81 38729.08 40992.84 37276.54 32562.46 38885.36 391
APD_test168.93 37066.98 37374.77 38480.62 40053.15 41187.97 38985.01 40953.76 40759.26 40087.52 36725.19 41089.95 39256.20 39967.33 37781.19 402
ambc79.60 37972.76 41256.61 40676.20 41092.01 38068.25 38480.23 39823.34 41194.73 35473.78 34660.81 39287.48 373
test_fmvs375.09 36275.19 35874.81 38377.45 40654.08 40995.93 31990.64 39382.51 32373.29 36481.19 39422.29 41286.29 40585.50 24467.89 37484.06 396
test_f71.94 36770.82 36875.30 38272.77 41153.28 41091.62 37289.66 39975.44 37264.47 39578.31 40220.48 41389.56 39678.63 31166.02 38183.05 401
FPMVS61.57 37360.32 37665.34 39360.14 42042.44 42191.02 38189.72 39844.15 40942.63 41280.93 39519.02 41480.59 41242.50 40972.76 35273.00 406
EMVS39.96 38639.88 38840.18 40259.57 42132.12 42684.79 40164.57 42426.27 41726.14 41844.18 42018.73 41559.29 42117.03 42017.67 41829.12 417
Gipumacopyleft54.77 38052.22 38462.40 39786.50 38059.37 40450.20 41590.35 39536.52 41341.20 41449.49 41518.33 41681.29 40832.10 41465.34 38246.54 415
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN41.02 38540.93 38741.29 40161.97 41833.83 42484.00 40465.17 42327.17 41627.56 41646.72 41717.63 41760.41 42019.32 41918.82 41629.61 416
PMMVS258.97 37755.07 38070.69 38962.72 41755.37 40885.97 39380.52 41549.48 40845.94 40968.31 40715.73 41880.78 41149.79 40637.12 41475.91 403
ANet_high50.71 38246.17 38564.33 39444.27 42452.30 41376.13 41178.73 41664.95 40227.37 41755.23 41414.61 41967.74 41736.01 41318.23 41772.95 407
LCM-MVSNet60.07 37656.37 37871.18 38754.81 42248.67 41582.17 40789.48 40037.95 41249.13 40769.12 40613.75 42081.76 40759.28 39451.63 40783.10 400
test_vis3_rt61.29 37458.75 37768.92 39067.41 41452.84 41291.18 38059.23 42566.96 39941.96 41358.44 41311.37 42194.72 35574.25 34057.97 39759.20 412
testf156.38 37853.73 38164.31 39564.84 41545.11 41680.50 40875.94 42038.87 41042.74 41075.07 40311.26 42281.19 40941.11 41053.27 40466.63 409
APD_test256.38 37853.73 38164.31 39564.84 41545.11 41680.50 40875.94 42038.87 41042.74 41075.07 40311.26 42281.19 40941.11 41053.27 40466.63 409
PMVScopyleft41.42 2345.67 38342.50 38655.17 39934.28 42532.37 42566.24 41378.71 41730.72 41522.04 42059.59 4114.59 42477.85 41627.49 41558.84 39655.29 413
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d16.71 38916.73 39316.65 40360.15 41925.22 42841.24 4165.17 4276.56 4205.48 4233.61 4233.64 42522.72 42215.20 4219.52 4201.99 420
MVEpermissive44.00 2241.70 38437.64 38953.90 40049.46 42343.37 42065.09 41466.66 42226.19 41825.77 41948.53 4163.58 42663.35 41926.15 41627.28 41554.97 414
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test12316.58 39019.47 3927.91 4043.59 4285.37 42994.32 3431.39 4292.49 42213.98 42244.60 4192.91 4272.65 42311.35 4230.57 42215.70 418
testmvs18.81 38823.05 3916.10 4054.48 4272.29 43097.78 2453.00 4283.27 42118.60 42162.71 4091.53 4282.49 42414.26 4221.80 42113.50 419
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re8.21 39110.94 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42598.50 1110.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS79.74 34367.75 371
FOURS199.50 4288.94 18299.55 4497.47 14391.32 11398.12 46
MSC_two_6792asdad99.51 299.61 2498.60 297.69 9099.98 999.55 1399.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 9099.98 999.55 1399.83 1599.96 10
eth-test20.00 429
eth-test0.00 429
IU-MVS99.63 1895.38 2497.73 8295.54 2699.54 399.69 799.81 2399.99 1
save fliter99.34 5093.85 6599.65 3697.63 10995.69 22
test_0728_SECOND98.77 899.66 1296.37 1499.72 2497.68 9299.98 999.64 899.82 1999.96 10
GSMVS98.84 146
test_part299.54 3695.42 2298.13 44
MTGPAbinary97.45 146
MTMP99.21 8891.09 391
gm-plane-assit94.69 25488.14 20288.22 20697.20 16998.29 18790.79 183
test9_res98.60 3399.87 999.90 22
agg_prior297.84 5999.87 999.91 21
agg_prior99.54 3692.66 9197.64 10597.98 5399.61 105
test_prior492.00 10199.41 68
test_prior97.01 6499.58 3091.77 10497.57 12399.49 11599.79 38
旧先验298.67 15685.75 26598.96 2098.97 15793.84 144
新几何298.26 210
无先验98.52 17797.82 6687.20 23599.90 5087.64 22099.85 30
原ACMM298.69 153
testdata299.88 5484.16 261
testdata197.89 23892.43 87
plane_prior793.84 28185.73 266
plane_prior596.30 23797.75 22693.46 15386.17 25892.67 269
plane_prior496.52 203
plane_prior385.91 26193.65 6286.99 233
plane_prior299.02 12093.38 69
plane_prior193.90 280
plane_prior86.07 25799.14 10493.81 5986.26 257
n20.00 430
nn0.00 430
door-mid84.90 410
test1197.68 92
door85.30 408
HQP5-MVS86.39 243
HQP-NCC93.95 27499.16 9693.92 5187.57 226
ACMP_Plane93.95 27499.16 9693.92 5187.57 226
BP-MVS93.82 146
HQP4-MVS87.57 22697.77 22092.72 267
HQP3-MVS96.37 23386.29 255
NP-MVS93.94 27786.22 24996.67 201
ACMMP++_ref82.64 289
ACMMP++83.83 276