This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
GG-mvs-BLEND99.59 13999.54 20799.49 12799.17 36699.52 7299.96 11999.68 273100.00 199.33 26299.71 13699.99 9899.96 124
gg-mvs-nofinetune96.95 25596.10 27799.50 15199.41 24599.36 14499.07 37999.52 7283.69 38899.96 11983.60 404100.00 199.20 26799.68 14799.99 9899.96 124
iter_conf0598.73 15798.77 14498.60 22399.65 17499.22 159100.00 199.22 28096.68 23198.98 23599.97 19799.99 398.84 29299.29 18995.11 28097.75 273
CHOSEN 280x42099.85 399.87 199.80 10199.99 4999.97 2199.97 24199.98 1698.96 32100.00 1100.00 199.96 499.42 255100.00 1100.00 1100.00 1
test_yl99.51 6799.37 7799.95 5199.82 12199.90 58100.00 199.47 7997.48 166100.00 1100.00 199.80 5100.00 199.98 7397.75 23099.94 135
DCV-MVSNet99.51 6799.37 7799.95 5199.82 12199.90 58100.00 199.47 7997.48 166100.00 1100.00 199.80 5100.00 199.98 7397.75 23099.94 135
UWE-MVS99.18 11299.06 11199.51 14899.67 16498.80 191100.00 199.43 12296.80 21599.93 14999.86 23799.79 799.94 16297.78 26298.33 19699.80 218
patch_mono-299.04 12599.79 696.81 32299.92 10490.47 370100.00 199.41 18498.95 35100.00 1100.00 199.78 8100.00 1100.00 1100.00 199.95 130
MVSTER98.58 17198.52 16698.77 21699.65 17499.68 102100.00 199.29 24695.63 27798.65 25799.80 25499.78 898.88 29098.59 23195.31 26697.73 302
CDS-MVSNet98.96 14098.95 12799.01 20199.48 23298.36 22199.93 25899.37 20696.79 21699.31 21399.83 24599.77 1098.91 28498.07 25197.98 21199.77 225
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPM99.78 1699.76 1299.85 8599.01 28299.95 32100.00 199.75 5299.37 399.99 103100.00 199.76 1199.60 215100.00 1100.00 1100.00 1
DP-MVS Recon99.76 1899.69 2299.98 23100.00 199.95 32100.00 199.52 7297.99 11099.99 103100.00 199.72 12100.00 199.96 85100.00 1100.00 1
TESTMET0.1,199.08 12198.96 12399.44 15899.63 18299.38 140100.00 199.45 10295.53 28199.48 198100.00 199.71 1399.02 27496.84 29199.99 9899.91 149
test-mter98.96 14098.82 13999.40 16799.40 25099.28 150100.00 199.45 10295.44 29099.42 20299.12 32399.70 1499.01 27596.82 29299.99 9899.91 149
MSP-MVS99.81 1199.77 999.94 63100.00 199.86 77100.00 199.42 13898.87 47100.00 1100.00 199.65 1599.96 137100.00 1100.00 1100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_0728_THIRD98.79 60100.00 1100.00 199.61 16100.00 1100.00 1100.00 1100.00 1
test_one_0601100.00 199.99 599.42 13898.72 64100.00 1100.00 199.60 17
MSLP-MVS++99.89 199.85 299.99 12100.00 199.96 24100.00 199.95 1999.11 7100.00 1100.00 199.60 17100.00 1100.00 1100.00 1100.00 1
PAPM_NR99.74 2299.66 3099.99 12100.00 199.96 24100.00 199.47 7997.87 123100.00 1100.00 199.60 17100.00 1100.00 1100.00 1100.00 1
NCCC99.86 299.82 3100.00 1100.00 199.99 5100.00 199.71 6199.07 10100.00 1100.00 199.59 20100.00 1100.00 1100.00 1100.00 1
PLCcopyleft98.56 299.70 3299.74 1699.58 143100.00 198.79 192100.00 199.54 7198.58 7299.96 119100.00 199.59 20100.00 1100.00 1100.00 199.94 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DPM-MVS99.63 5199.51 63100.00 199.90 108100.00 1100.00 199.43 12299.00 27100.00 1100.00 199.58 22100.00 197.64 266100.00 1100.00 1
test_241102_TWO99.42 13899.03 20100.00 1100.00 199.56 23100.00 1100.00 1100.00 1100.00 1
APDe-MVScopyleft99.84 699.78 799.99 12100.00 199.98 17100.00 199.44 11699.06 12100.00 1100.00 199.56 2399.99 94100.00 1100.00 1100.00 1
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
segment_acmp99.55 25
DVP-MVS++99.81 1199.75 14100.00 1100.00 199.99 5100.00 199.42 13898.79 60100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
PC_three_145298.80 57100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
OPU-MVS100.00 1100.00 1100.00 1100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
DVP-MVScopyleft99.83 799.78 7100.00 1100.00 199.99 5100.00 199.42 13899.04 15100.00 1100.00 199.53 29100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test0726100.00 199.99 5100.00 199.42 13899.04 15100.00 1100.00 199.53 29
TEST9100.00 199.95 32100.00 199.42 13897.65 142100.00 1100.00 199.53 2999.97 125
SteuartSystems-ACMMP99.78 1699.71 2099.98 2399.76 14899.95 32100.00 199.42 13898.69 65100.00 1100.00 199.52 3299.99 94100.00 1100.00 1100.00 1
Skip Steuart: Steuart Systems R&D Blog.
train_agg99.71 2999.63 3799.97 31100.00 199.95 32100.00 199.42 13897.70 137100.00 1100.00 199.51 3399.97 125100.00 1100.00 1100.00 1
test_8100.00 199.91 51100.00 199.42 13897.70 137100.00 1100.00 199.51 3399.98 118
PAPR99.76 1899.68 2599.99 12100.00 199.96 24100.00 199.47 7998.16 96100.00 1100.00 199.51 33100.00 1100.00 1100.00 1100.00 1
EPP-MVSNet99.10 12099.00 11899.40 16799.51 22298.68 20099.92 25999.43 12295.47 28799.65 190100.00 199.51 3399.76 20299.53 17498.00 21099.75 228
SED-MVS99.83 799.77 9100.00 1100.00 199.99 5100.00 199.42 13899.03 20100.00 1100.00 199.50 37100.00 1100.00 1100.00 1100.00 1
test_241102_ONE100.00 199.99 599.42 13899.03 20100.00 1100.00 199.50 37100.00 1
miper_enhance_ethall98.33 19198.27 18398.51 22899.66 17399.04 175100.00 199.22 28097.53 15998.51 26999.38 31299.49 3998.75 30198.02 25392.61 30897.76 263
test_post89.05 39799.49 3999.59 217
HyFIR lowres test99.32 9299.24 9299.58 14399.95 9699.26 152100.00 199.99 1396.72 22599.29 21499.91 22999.49 3999.47 24799.74 12898.08 209100.00 1
PatchmatchNetpermissive99.03 12798.96 12399.26 18799.49 23098.33 22399.38 34099.45 10296.64 23499.96 11999.58 29699.49 3999.50 24397.63 26799.00 16799.93 145
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Patchmatch-test97.83 21197.42 22499.06 19599.08 27397.66 26798.66 38799.21 28893.65 33098.25 28699.58 29699.47 4399.57 22290.25 36498.59 17699.95 130
test_prior2100.00 198.82 55100.00 1100.00 199.47 43100.00 1100.00 1
TSAR-MVS + MP.99.82 999.77 999.99 12100.00 199.96 24100.00 199.43 12299.05 14100.00 1100.00 199.45 4599.99 94100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
thisisatest053099.37 8499.27 8699.69 12299.59 19599.41 138100.00 199.46 9496.46 24399.90 155100.00 199.44 4699.85 18498.97 20699.58 15699.80 218
tttt051799.34 8899.23 9599.67 12599.57 20399.38 140100.00 199.46 9496.33 25499.89 158100.00 199.44 4699.84 18698.93 20899.46 15999.78 224
thisisatest051599.42 7999.31 8599.74 11399.59 19599.55 114100.00 199.46 9496.65 23399.92 150100.00 199.44 4699.85 18499.09 20399.63 15499.81 204
PGM-MVS99.69 3599.61 4299.95 5199.99 4999.85 80100.00 199.58 6797.69 139100.00 1100.00 199.44 46100.00 199.79 119100.00 1100.00 1
testing1199.26 10199.19 10099.46 15599.64 18098.61 204100.00 199.43 12296.94 20399.92 15099.94 22299.43 5099.97 12599.67 15097.79 22899.82 195
SMA-MVScopyleft99.69 3599.59 4499.98 2399.99 4999.93 43100.00 199.43 12297.50 164100.00 1100.00 199.43 50100.00 1100.00 1100.00 1100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
原ACMM199.93 66100.00 199.80 8799.66 6398.18 95100.00 1100.00 199.43 50100.00 199.50 176100.00 1100.00 1
testdata99.66 12899.99 4998.97 18599.73 5697.96 117100.00 1100.00 199.42 53100.00 199.28 190100.00 1100.00 1
baseline298.99 13698.93 13099.18 19299.26 26399.15 167100.00 199.46 9496.71 22696.79 338100.00 199.42 5399.25 26698.75 22099.94 11999.15 250
patchmatchnet-post97.79 37399.41 5599.54 234
Patchmatch-RL test93.49 32993.63 32893.05 36091.78 39183.41 38698.21 39196.95 39691.58 35891.05 37697.64 37699.40 5695.83 38594.11 33481.95 38299.91 149
CNVR-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.77 4899.07 10100.00 1100.00 199.39 57100.00 1100.00 1100.00 1100.00 1
FE-MVS99.16 11598.99 12099.66 12899.65 17499.18 16499.58 31999.43 12295.24 29199.91 15399.59 29499.37 5899.97 12598.31 24199.81 14199.83 190
sam_mvs99.33 59
test_post199.32 34588.24 39999.33 5999.59 21798.31 241
SD-MVS99.81 1199.75 1499.99 1299.99 4999.96 24100.00 199.42 13899.01 26100.00 1100.00 199.33 59100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ZD-MVS100.00 199.98 1799.80 4397.31 182100.00 1100.00 199.32 6299.99 94100.00 1100.00 1
CDPH-MVS99.73 2599.64 3399.99 12100.00 199.97 21100.00 199.42 13898.02 108100.00 1100.00 199.32 6299.99 94100.00 1100.00 1100.00 1
HFP-MVS99.74 2299.67 2799.96 42100.00 199.89 65100.00 199.76 4997.95 118100.00 1100.00 199.31 64100.00 199.99 61100.00 1100.00 1
test-LLR99.03 12798.91 13299.40 16799.40 25099.28 150100.00 199.45 10296.70 22799.42 20299.12 32399.31 6499.01 27596.82 29299.99 9899.91 149
test0.0.03 198.12 20298.03 20298.39 23499.11 26998.07 241100.00 199.93 3096.70 22796.91 33499.95 21799.31 6498.19 33891.93 35098.44 18398.91 254
MCST-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.73 5699.19 5100.00 1100.00 199.31 64100.00 1100.00 1100.00 1100.00 1
TAPA-MVS96.40 1097.64 21997.37 22898.45 23199.94 9995.70 311100.00 199.40 18897.65 14299.53 194100.00 199.31 6499.66 21280.48 391100.00 1100.00 1
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test22299.99 4999.90 58100.00 199.69 6297.66 141100.00 1100.00 199.30 69100.00 1100.00 1
sam_mvs199.29 7099.91 149
ACMMPR99.74 2299.67 2799.96 42100.00 199.89 65100.00 199.76 4997.95 118100.00 1100.00 199.29 70100.00 199.99 61100.00 1100.00 1
CostFormer98.84 15098.77 14499.04 19999.41 24597.58 26999.67 30999.35 22394.66 30499.96 11999.36 31499.28 7299.74 20599.41 18097.81 22599.81 204
旧先验199.99 4999.88 7299.82 40100.00 199.27 73100.00 1100.00 1
APD-MVScopyleft99.68 4099.58 4699.97 3199.99 4999.96 24100.00 199.42 13897.53 159100.00 1100.00 199.27 7399.97 125100.00 1100.00 1100.00 1
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test1299.95 5199.99 4999.89 6599.42 138100.00 199.24 7599.97 125100.00 1100.00 1
DPE-MVScopyleft99.79 1499.73 1799.99 1299.99 4999.98 17100.00 199.42 13898.91 41100.00 1100.00 199.22 76100.00 1100.00 1100.00 1100.00 1
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HPM-MVS++copyleft99.82 999.76 1299.99 1299.99 4999.98 17100.00 199.83 3998.88 4499.96 119100.00 199.21 77100.00 1100.00 1100.00 199.99 109
新几何199.99 12100.00 199.96 2499.81 4297.89 121100.00 1100.00 199.20 78100.00 197.91 258100.00 1100.00 1
region2R99.72 2699.64 3399.97 31100.00 199.90 58100.00 199.74 5597.86 124100.00 1100.00 199.19 79100.00 199.99 61100.00 1100.00 1
F-COLMAP99.64 4899.64 3399.67 12599.99 4999.07 170100.00 199.44 11698.30 8999.90 155100.00 199.18 8099.99 9499.91 98100.00 199.94 135
XVS99.79 1499.73 1799.98 23100.00 199.94 40100.00 199.75 5298.67 67100.00 1100.00 199.16 81100.00 1100.00 1100.00 1100.00 1
X-MVStestdata97.04 25096.06 27999.98 23100.00 199.94 40100.00 199.75 5298.67 67100.00 166.97 40799.16 81100.00 1100.00 1100.00 1100.00 1
9.1499.57 4999.99 49100.00 199.42 13897.54 157100.00 1100.00 199.15 8399.99 94100.00 1100.00 1
CNLPA99.72 2699.65 3199.91 6899.97 8999.72 95100.00 199.47 7998.43 7899.88 160100.00 199.14 84100.00 199.97 83100.00 1100.00 1
testing398.44 18298.37 17898.65 22099.51 22298.32 225100.00 199.62 6696.43 24497.93 30299.99 18499.11 8597.81 36194.88 32497.80 22699.82 195
Test By Simon99.10 86
myMVS_eth3d98.52 17798.51 16798.53 22799.50 22697.98 248100.00 199.57 6896.23 25798.07 292100.00 199.09 8797.81 36196.17 30497.96 21399.82 195
CP-MVS99.67 4399.58 4699.95 51100.00 199.84 82100.00 199.42 13897.77 132100.00 1100.00 199.07 88100.00 1100.00 1100.00 1100.00 1
testing9999.18 11299.10 10899.41 16399.60 19198.43 211100.00 199.43 12296.76 21899.84 16499.92 22799.06 8999.98 11899.62 16097.67 23499.81 204
alignmvs99.38 8299.21 9699.91 6899.73 15199.92 48100.00 199.51 7697.61 150100.00 1100.00 199.06 8999.93 16699.83 11397.12 24299.90 158
testing9199.18 11299.10 10899.41 16399.60 19198.43 211100.00 199.43 12296.76 21899.82 17599.92 22799.05 9199.98 11899.62 16097.67 23499.81 204
SF-MVS99.66 4599.57 4999.95 5199.99 4999.85 80100.00 199.42 13897.67 140100.00 1100.00 199.05 9199.99 94100.00 1100.00 1100.00 1
EPMVS99.25 10599.13 10699.60 13799.60 19199.20 16199.60 317100.00 196.93 20499.92 15099.36 31499.05 9199.71 20998.77 21898.94 16899.90 158
EI-MVSNet-Vis-set99.70 3299.64 3399.87 78100.00 199.64 10599.98 23599.44 11698.35 8699.99 103100.00 199.04 9499.96 13799.98 73100.00 1100.00 1
mPP-MVS99.69 3599.60 4399.97 31100.00 199.91 51100.00 199.42 13897.91 120100.00 1100.00 199.04 94100.00 1100.00 1100.00 1100.00 1
tpmrst98.98 13998.93 13099.14 19499.61 18997.74 26499.52 32699.36 21296.05 26499.98 10999.64 28299.04 9499.86 17898.94 20798.19 20499.82 195
SR-MVS99.68 4099.58 4699.98 23100.00 199.95 32100.00 199.64 6497.59 153100.00 1100.00 198.99 9799.99 94100.00 1100.00 1100.00 1
EI-MVSNet-UG-set99.69 3599.63 3799.87 7899.99 4999.64 10599.95 25299.44 11698.35 86100.00 1100.00 198.98 9899.97 12599.98 73100.00 1100.00 1
ZNCC-MVS99.71 2999.62 4199.97 3199.99 4999.90 58100.00 199.79 4597.97 11499.97 114100.00 198.97 99100.00 199.94 93100.00 1100.00 1
APD-MVS_3200maxsize99.65 4699.55 5699.97 3199.99 4999.91 51100.00 199.48 7897.54 157100.00 1100.00 198.97 9999.99 9499.98 73100.00 1100.00 1
EPNet99.62 5699.69 2299.42 16299.99 4998.37 219100.00 199.89 3798.83 53100.00 1100.00 198.97 99100.00 199.90 9999.61 15599.89 163
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm298.64 16598.58 16398.81 21499.42 24397.12 28899.69 30699.37 20693.63 33199.94 14599.67 27498.96 10299.47 24798.62 22997.95 21599.83 190
TSAR-MVS + GP.99.61 5899.69 2299.35 17399.99 4998.06 243100.00 199.36 21299.83 2100.00 1100.00 198.95 10399.99 94100.00 199.11 163100.00 1
HPM-MVS_fast99.60 6199.49 6699.91 6899.99 4999.78 88100.00 199.42 13897.09 194100.00 1100.00 198.95 10399.96 13799.98 73100.00 1100.00 1
RE-MVS-def99.55 5699.99 4999.91 51100.00 199.42 13897.62 146100.00 1100.00 198.94 10599.99 61100.00 1100.00 1
WTY-MVS99.54 6699.40 7299.95 5199.81 12799.93 43100.00 1100.00 197.98 11299.84 164100.00 198.94 10599.98 11899.86 10798.21 20299.94 135
HY-MVS96.53 999.50 7099.35 8299.96 4299.81 12799.93 4399.64 311100.00 197.97 11499.84 16499.85 24298.94 10599.99 9499.86 10798.23 20199.95 130
MDTV_nov1_ep1398.94 12899.53 21098.36 22199.39 33999.46 9496.54 23999.99 10399.63 28698.92 10899.86 17898.30 24498.71 175
API-MVS99.72 2699.70 2199.79 10399.97 8999.37 14399.96 24699.94 2298.48 75100.00 1100.00 198.92 108100.00 1100.00 1100.00 1100.00 1
ACMMPcopyleft99.65 4699.57 4999.89 7399.99 4999.66 10399.75 29399.73 5698.16 9699.75 184100.00 198.90 110100.00 199.96 8599.88 129100.00 1
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMMP_NAP99.67 4399.57 4999.97 3199.98 8599.92 48100.00 199.42 13897.83 127100.00 1100.00 198.89 111100.00 199.98 73100.00 1100.00 1
test250699.48 7499.38 7499.75 11299.89 11099.51 12299.45 332100.00 198.38 8099.83 167100.00 198.86 11299.81 19399.25 19198.78 17199.94 135
MDTV_nov1_ep13_2view99.24 15699.56 32196.31 25599.96 11998.86 11298.92 20999.89 163
KD-MVS_2432*160094.15 32493.08 33397.35 29799.53 21097.83 26199.63 31399.19 29292.88 34896.29 34697.68 37498.84 11496.70 37389.73 36663.92 39797.53 347
miper_refine_blended94.15 32493.08 33397.35 29799.53 21097.83 26199.63 31399.19 29292.88 34896.29 34697.68 37498.84 11496.70 37389.73 36663.92 39797.53 347
dp98.72 15898.61 15999.03 20099.53 21097.39 27599.45 33299.39 20195.62 27899.94 14599.52 30498.83 11699.82 19096.77 29798.42 18599.89 163
TAMVS98.76 15598.73 14998.86 21199.44 24197.69 26599.57 32099.34 22996.57 23799.12 22499.81 25198.83 11699.16 26897.97 25797.91 21799.73 233
IB-MVS96.24 1297.54 22796.95 24299.33 17799.67 16498.10 240100.00 199.47 7997.42 17299.26 21599.69 26998.83 11699.89 17299.43 17878.77 388100.00 1
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DeepC-MVS_fast98.92 199.75 2099.67 2799.99 1299.99 4999.96 2499.73 29999.52 7299.06 12100.00 1100.00 198.80 119100.00 199.95 91100.00 1100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVS-pluss99.61 5899.50 6499.97 3199.98 8599.92 48100.00 199.42 13897.53 15999.77 181100.00 198.77 120100.00 199.99 61100.00 199.99 109
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pcd_1.5k_mvsjas8.24 37710.99 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.14 41098.75 1210.00 4100.00 4090.00 4080.00 406
PS-MVSNAJss98.03 20598.06 19997.94 27697.63 35097.33 28199.89 26699.23 27796.27 25698.03 29599.59 29498.75 12198.78 29698.52 23394.61 29197.70 318
PS-MVSNAJ99.64 4899.57 4999.85 8599.78 14599.81 8599.95 25299.42 13898.38 80100.00 1100.00 198.75 121100.00 199.88 10399.99 9899.74 229
dcpmvs_298.87 14899.53 5996.90 31699.87 11490.88 36999.94 25699.07 33498.20 94100.00 1100.00 198.69 12499.86 178100.00 1100.00 199.95 130
ETVMVS99.16 11598.98 12199.69 12299.67 16499.56 113100.00 199.45 10296.36 25199.98 10999.95 21798.65 12599.64 21399.11 20297.63 23799.88 174
SR-MVS-dyc-post99.63 5199.52 6199.97 3199.99 4999.91 51100.00 199.42 13897.62 146100.00 1100.00 198.65 12599.99 9499.99 61100.00 1100.00 1
MTAPA99.68 4099.59 4499.97 3199.99 4999.91 51100.00 199.42 13898.32 8899.94 145100.00 198.65 125100.00 199.96 85100.00 1100.00 1
HPM-MVScopyleft99.59 6299.50 6499.89 73100.00 199.70 100100.00 199.42 13897.46 168100.00 1100.00 198.60 12899.96 13799.99 61100.00 1100.00 1
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MG-MVS99.75 2099.68 2599.97 31100.00 199.91 5199.98 23599.47 7999.09 9100.00 1100.00 198.59 129100.00 199.95 91100.00 1100.00 1
EPNet_dtu98.53 17698.23 18999.43 16099.92 10499.01 17999.96 24699.47 7998.80 5799.96 11999.96 20998.56 13099.30 26387.78 37699.68 148100.00 1
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testing22299.14 11798.94 12899.73 11699.67 16499.51 122100.00 199.43 12296.90 20999.99 10399.90 23198.55 13199.86 17898.85 21397.18 24199.81 204
JIA-IIPM97.09 24696.34 26899.36 17298.88 29998.59 20699.81 27899.43 12284.81 38699.96 11990.34 39698.55 13199.52 24097.00 28698.28 19999.98 111
xiu_mvs_v2_base99.51 6799.41 7199.82 9199.70 15499.73 9499.92 25999.40 18898.15 98100.00 1100.00 198.50 133100.00 199.85 10999.13 16299.74 229
sss99.45 7799.34 8499.80 10199.76 14899.50 124100.00 199.91 3697.72 13599.98 10999.94 22298.45 134100.00 199.53 17498.75 17499.89 163
IS-MVSNet99.08 12198.91 13299.59 13999.65 17499.38 14099.78 28499.24 27396.70 22799.51 196100.00 198.44 13599.52 24098.47 23598.39 18899.88 174
GST-MVS99.64 4899.53 5999.95 51100.00 199.86 77100.00 199.79 4597.72 13599.95 143100.00 198.39 136100.00 199.96 8599.99 98100.00 1
114514_t99.39 8199.25 9099.81 9699.97 8999.48 131100.00 199.42 13895.53 281100.00 1100.00 198.37 13799.95 15099.97 83100.00 1100.00 1
baseline198.91 14598.61 15999.81 9699.71 15299.77 8999.78 28499.44 11697.51 16398.81 25099.99 18498.25 13899.76 20298.60 23095.41 26199.89 163
MP-MVScopyleft99.61 5899.49 6699.98 2399.99 4999.94 40100.00 199.42 13897.82 12899.99 103100.00 198.20 139100.00 199.99 61100.00 1100.00 1
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
miper_ehance_all_eth97.81 21297.66 21898.23 24699.49 23098.37 21999.99 21199.11 32294.78 29998.25 28699.21 32098.18 14098.57 31797.35 27992.61 30897.76 263
PHI-MVS99.50 7099.39 7399.82 91100.00 199.45 133100.00 199.94 2296.38 250100.00 1100.00 198.18 140100.00 1100.00 1100.00 1100.00 1
Vis-MVSNet (Re-imp)98.99 13698.89 13699.29 18299.64 18098.89 18899.98 23599.31 23896.74 22299.48 198100.00 198.11 14299.10 27098.39 23798.34 19399.89 163
DeepPCF-MVS98.03 498.54 17599.72 1994.98 34599.99 4984.94 384100.00 199.42 13899.98 1100.00 1100.00 198.11 142100.00 1100.00 1100.00 1100.00 1
cl2298.23 19898.11 19498.58 22699.82 12199.01 179100.00 199.28 25296.92 20698.33 27899.21 32098.09 14498.97 28098.72 22192.61 30897.76 263
mvsany_test199.57 6399.48 6999.85 8599.86 11599.54 116100.00 199.36 21298.94 37100.00 1100.00 197.97 145100.00 199.88 10399.28 160100.00 1
PatchT95.90 30794.95 32198.75 21799.03 28098.39 21699.08 37799.32 23385.52 38499.96 11994.99 38897.94 14698.05 35480.20 39298.47 18299.81 204
MVS_111021_LR99.70 3299.65 3199.88 7799.96 9499.70 100100.00 199.97 1798.96 32100.00 1100.00 197.93 14799.95 15099.99 61100.00 1100.00 1
fmvsm_l_conf0.5_n99.63 5199.56 5499.86 8199.81 12799.59 110100.00 199.36 21298.98 30100.00 1100.00 197.92 14899.99 94100.00 199.95 117100.00 1
c3_l97.58 22497.42 22498.06 26499.48 23298.16 23499.96 24699.10 32494.54 30898.13 29099.20 32297.87 14998.25 33797.28 28091.20 33297.75 273
MVS_030499.69 3599.63 3799.86 8199.96 9499.63 107100.00 199.92 3499.03 2099.97 114100.00 197.87 14999.96 137100.00 199.96 114100.00 1
fmvsm_l_conf0.5_n_a99.63 5199.55 5699.86 8199.83 12099.58 111100.00 199.36 21298.98 30100.00 1100.00 197.85 15199.99 94100.00 199.94 119100.00 1
MVS_111021_HR99.71 2999.63 3799.93 6699.95 9699.83 83100.00 1100.00 198.89 43100.00 1100.00 197.85 15199.95 150100.00 1100.00 1100.00 1
FA-MVS(test-final)99.00 13398.75 14799.73 11699.63 18299.43 13699.83 27499.43 12295.84 27299.52 19599.37 31397.84 15399.96 13797.63 26799.68 14899.79 221
CSCG99.28 9899.35 8299.05 19799.99 4997.15 287100.00 199.47 7997.44 17099.42 202100.00 197.83 154100.00 199.99 61100.00 1100.00 1
CS-MVS99.33 9099.27 8699.50 15199.99 4999.00 181100.00 199.13 31597.26 18599.96 119100.00 197.79 15599.64 21399.64 15699.67 15099.87 183
ET-MVSNet_ETH3D96.41 27995.48 30999.20 19199.81 12799.75 91100.00 199.02 35097.30 18478.33 396100.00 197.73 15697.94 35899.70 13987.41 36399.92 147
tpm cat198.05 20497.76 21198.92 20799.50 22697.10 29099.77 28999.30 24290.20 37099.72 18798.71 35197.71 15799.86 17896.75 29898.20 20399.81 204
test_fmvsmvis_n_192099.46 7699.37 7799.73 11698.88 29999.18 164100.00 199.26 26698.85 4999.79 178100.00 197.70 158100.00 199.98 7399.86 133100.00 1
DELS-MVS99.62 5699.56 5499.82 9199.92 10499.45 133100.00 199.78 4798.92 3999.73 186100.00 197.70 158100.00 199.93 95100.00 1100.00 1
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DIV-MVS_self_test97.52 23097.35 22998.05 26899.46 23898.11 238100.00 199.10 32494.21 31897.62 31699.63 28697.65 16098.29 33496.47 29991.98 31997.76 263
tpmvs98.59 17098.38 17699.23 18999.69 15597.90 25599.31 34899.47 7994.52 30999.68 18999.28 31897.64 16199.89 17297.71 26498.17 20699.89 163
tpm98.24 19798.22 19098.32 24099.13 26895.79 31099.53 32599.12 32195.20 29299.96 11999.36 31497.58 16299.28 26597.41 27596.67 24999.88 174
ADS-MVSNet298.28 19598.51 16797.62 28899.51 22295.03 31999.24 35399.41 18495.52 28399.96 11999.70 26697.57 16397.94 35897.11 28398.54 17799.88 174
ADS-MVSNet98.70 16198.51 16799.28 18599.51 22298.39 21699.24 35399.44 11695.52 28399.96 11999.70 26697.57 16399.58 22197.11 28398.54 17799.88 174
CS-MVS-test99.31 9499.27 8699.43 16099.99 4998.77 193100.00 199.19 29297.24 18699.96 119100.00 197.56 16599.70 21099.68 14799.81 14199.82 195
cl____97.54 22797.32 23098.18 25099.47 23598.14 237100.00 199.10 32494.16 32197.60 31899.63 28697.52 16698.65 30896.47 29991.97 32097.76 263
h-mvs3397.03 25196.53 25798.51 22899.79 14295.90 30999.45 33299.45 10298.21 92100.00 199.78 25797.49 16799.99 9499.72 13174.92 39099.65 241
hse-mvs296.79 25996.38 26598.04 27099.68 15995.54 31399.81 27899.42 13898.21 92100.00 199.80 25497.49 16799.46 25199.72 13173.27 39399.12 251
EIA-MVS99.26 10199.19 10099.45 15799.63 18298.75 194100.00 199.27 26096.93 20499.95 143100.00 197.47 16999.79 19599.74 12899.72 14699.82 195
Test_1112_low_res98.83 15198.60 16199.51 14899.69 15598.75 19499.99 21199.14 31196.81 21498.84 24799.06 32797.45 17099.89 17298.66 22397.75 23099.89 163
1112_ss98.91 14598.71 15299.51 14899.69 15598.75 19499.99 21199.15 30696.82 21398.84 247100.00 197.45 17099.89 17298.66 22397.75 23099.89 163
ETV-MVS99.34 8899.24 9299.64 13199.58 20099.33 145100.00 199.25 26897.57 15599.96 119100.00 197.44 17299.79 19599.70 13999.65 15299.81 204
CPTT-MVS99.49 7299.38 7499.85 85100.00 199.54 116100.00 199.42 13897.58 15499.98 109100.00 197.43 173100.00 199.99 61100.00 1100.00 1
miper_lstm_enhance97.40 23497.28 23297.75 28599.48 23297.52 270100.00 199.07 33494.08 32298.01 29899.61 29297.38 17497.98 35696.44 30291.47 32997.76 263
test_fmvsmconf_n99.56 6499.46 7099.86 8199.68 15999.58 111100.00 199.31 23898.92 3999.88 160100.00 197.35 17599.99 9499.98 7399.99 98100.00 1
test_fmvsm_n_192099.55 6599.49 6699.73 11699.85 11699.19 162100.00 199.41 18498.87 47100.00 1100.00 197.34 176100.00 199.98 7399.90 126100.00 1
EI-MVSNet97.98 20797.93 20698.16 25399.11 26997.84 26099.74 29499.29 24694.39 31498.65 257100.00 197.21 17798.88 29097.62 26995.31 26697.75 273
IterMVS-LS97.56 22597.44 22397.92 27999.38 25497.90 25599.89 26699.10 32494.41 31398.32 27999.54 30397.21 17798.11 34597.50 27191.62 32497.75 273
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tfpn200view999.26 10199.03 11499.96 4299.81 12799.89 65100.00 199.94 2297.23 18799.83 16799.96 20997.04 179100.00 199.59 16497.85 22199.98 111
thres40099.26 10199.03 11499.95 5199.81 12799.89 65100.00 199.94 2297.23 18799.83 16799.96 20997.04 179100.00 199.59 16497.85 22199.97 118
thres20099.27 9999.04 11399.96 4299.81 12799.90 58100.00 199.94 2297.31 18299.83 16799.96 20997.04 179100.00 199.62 16097.88 21999.98 111
131499.38 8299.19 10099.96 4298.88 29999.89 6599.24 35399.93 3098.88 4498.79 252100.00 197.02 182100.00 1100.00 1100.00 1100.00 1
thres100view90099.25 10599.01 11699.95 5199.81 12799.87 74100.00 199.94 2297.13 19299.83 16799.96 20997.01 183100.00 199.59 16497.85 22199.98 111
thres600view799.24 10899.00 11899.95 5199.81 12799.87 74100.00 199.94 2297.13 19299.83 16799.96 20997.01 183100.00 199.54 17297.77 22999.97 118
OMC-MVS99.27 9999.38 7498.96 20599.95 9697.06 291100.00 199.40 18898.83 5399.88 160100.00 197.01 18399.86 17899.47 17799.84 13899.97 118
xiu_mvs_v1_base_debu99.35 8599.21 9699.79 10399.67 16499.71 9699.78 28499.36 21298.13 100100.00 1100.00 197.00 186100.00 199.83 11399.07 16499.66 238
xiu_mvs_v1_base99.35 8599.21 9699.79 10399.67 16499.71 9699.78 28499.36 21298.13 100100.00 1100.00 197.00 186100.00 199.83 11399.07 16499.66 238
xiu_mvs_v1_base_debi99.35 8599.21 9699.79 10399.67 16499.71 9699.78 28499.36 21298.13 100100.00 1100.00 197.00 186100.00 199.83 11399.07 16499.66 238
CR-MVSNet98.02 20697.71 21798.93 20699.31 25798.86 18999.13 37199.00 35396.53 24099.96 11998.98 33696.94 18998.10 34891.18 35598.40 18699.84 187
Patchmtry96.81 25896.37 26698.14 25499.31 25798.55 20798.91 38299.00 35390.45 36697.92 30398.98 33696.94 18998.12 34394.27 33091.53 32697.75 273
eth_miper_zixun_eth97.47 23197.28 23298.06 26499.41 24597.94 25399.62 31599.08 33094.46 31298.19 28999.56 30096.91 19198.50 32396.78 29591.49 32797.74 296
EC-MVSNet99.19 11199.09 11099.48 15499.42 24399.07 170100.00 199.21 28896.95 20299.96 119100.00 196.88 19299.48 24599.64 15699.79 14499.88 174
LS3D99.31 9499.13 10699.87 7899.99 4999.71 9699.55 32299.46 9497.32 18099.82 175100.00 196.85 19399.97 12599.14 198100.00 199.92 147
MVSFormer98.94 14398.82 13999.28 18599.45 23999.49 127100.00 199.13 31595.46 28899.97 114100.00 196.76 19498.59 31498.63 227100.00 199.74 229
lupinMVS99.29 9799.16 10499.69 12299.45 23999.49 127100.00 199.15 30697.45 16999.97 114100.00 196.76 19499.76 20299.67 150100.00 199.81 204
MAR-MVS99.49 7299.36 8099.89 7399.97 8999.66 10399.74 29499.95 1997.89 121100.00 1100.00 196.71 196100.00 1100.00 1100.00 1100.00 1
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MM99.63 5199.52 6199.94 6399.99 4999.82 84100.00 199.97 1799.11 7100.00 1100.00 196.65 197100.00 1100.00 199.97 111100.00 1
MSDG98.90 14798.63 15799.70 12199.92 10499.25 154100.00 199.37 20695.71 27599.40 208100.00 196.58 19899.95 15096.80 29499.94 11999.91 149
PVSNet_BlendedMVS98.71 15998.62 15898.98 20499.98 8599.60 108100.00 1100.00 197.23 187100.00 199.03 33296.57 19999.99 94100.00 194.75 28897.35 356
PVSNet_Blended99.48 7499.36 8099.83 8999.98 8599.60 108100.00 1100.00 197.79 130100.00 1100.00 196.57 19999.99 94100.00 199.88 12999.90 158
MVS_Test98.93 14498.65 15599.77 11099.62 18799.50 12499.99 21199.19 29295.52 28399.96 11999.86 23796.54 20199.98 11898.65 22598.48 18199.82 195
PMMVS99.12 11898.97 12299.58 14399.57 20398.98 183100.00 199.30 24297.14 19199.96 119100.00 196.53 20299.82 19099.70 13998.49 18099.94 135
PVSNet_Blended_VisFu99.33 9099.18 10399.78 10799.82 12199.49 127100.00 199.95 1997.36 17599.63 191100.00 196.45 20399.95 15099.79 11999.65 15299.89 163
mvs_anonymous98.80 15398.60 16199.38 17199.57 20399.24 156100.00 199.21 28895.87 26798.92 23899.82 24896.39 20499.03 27399.13 20098.50 17999.88 174
DP-MVS98.86 14998.54 16599.81 9699.97 8999.45 13399.52 32699.40 18894.35 31598.36 275100.00 196.13 20599.97 12599.12 201100.00 1100.00 1
PVSNet94.91 1899.30 9699.25 9099.44 158100.00 198.32 225100.00 199.86 3898.04 107100.00 1100.00 196.10 206100.00 199.55 16999.73 145100.00 1
RRT_MVS97.77 21497.76 21197.78 28497.89 34397.06 291100.00 199.29 24695.74 27498.00 30099.97 19795.94 20798.55 32098.87 21294.18 29497.72 309
Effi-MVS+-dtu98.51 17998.86 13797.47 29299.77 14794.21 342100.00 198.94 35897.61 15099.91 15398.75 35095.89 20899.51 24299.36 18299.48 15898.68 256
our_test_396.51 27496.35 26796.98 31297.61 35295.05 31899.98 23599.01 35294.68 30396.77 34099.06 32795.87 20998.14 34191.81 35192.37 31397.75 273
UA-Net99.06 12398.83 13899.74 11399.52 21799.40 13999.08 37799.45 10297.64 14499.83 167100.00 195.80 21099.94 16298.35 23999.80 14399.88 174
FMVSNet595.32 31595.43 31294.99 34499.39 25392.99 35499.25 35299.24 27390.45 36697.44 32398.45 36195.78 21194.39 39087.02 37791.88 32197.59 343
CVMVSNet98.56 17398.47 17098.82 21299.11 26997.67 26699.74 29499.47 7997.57 15599.06 230100.00 195.72 21298.97 28098.21 24797.33 24099.83 190
mvsmamba98.13 20198.06 19998.32 24098.22 33098.50 210100.00 199.22 28096.41 24798.91 24099.96 20995.69 21398.73 30399.19 19794.95 28797.73 302
RPMNet95.26 31793.82 32599.56 14699.31 25798.86 18999.13 37199.42 13879.82 39399.96 11995.13 38695.69 21399.98 11877.54 39698.40 18699.84 187
MVS99.22 10998.96 12399.98 2399.00 28699.95 3299.24 35399.94 2298.14 9998.88 242100.00 195.63 215100.00 199.85 109100.00 1100.00 1
jason99.11 11998.96 12399.59 13999.17 26699.31 148100.00 199.13 31597.38 17499.83 167100.00 195.54 21699.72 20899.57 16899.97 11199.74 229
jason: jason.
AdaColmapbinary99.44 7899.26 8999.95 51100.00 199.86 7799.70 30499.99 1398.53 7399.90 155100.00 195.34 217100.00 199.92 96100.00 1100.00 1
CANet99.40 8099.24 9299.89 7399.99 4999.76 90100.00 199.73 5698.40 7999.78 180100.00 195.28 21899.96 137100.00 199.99 9899.96 124
FIs97.95 20897.73 21698.62 22298.53 31599.24 156100.00 199.43 12296.74 22297.87 30699.82 24895.27 21998.89 28798.78 21793.07 30397.74 296
canonicalmvs99.03 12798.73 14999.94 6399.75 15099.95 32100.00 199.30 24297.64 144100.00 1100.00 195.22 22099.97 12599.76 12696.90 24899.91 149
fmvsm_s_conf0.5_n_a99.32 9299.15 10599.81 9699.80 13899.47 132100.00 199.35 22398.22 91100.00 1100.00 195.21 22199.99 9499.96 8599.86 13399.98 111
FC-MVSNet-test97.84 21097.63 22098.45 23198.30 32599.05 174100.00 199.43 12296.63 23697.61 31799.82 24895.19 22298.57 31798.64 22693.05 30497.73 302
UniMVSNet_NR-MVSNet97.16 24396.80 24798.22 24798.38 31998.41 213100.00 199.45 10296.14 26297.76 30899.64 28295.05 22398.50 32397.98 25486.84 36697.75 273
Fast-Effi-MVS+-dtu98.38 18998.56 16497.82 28299.58 20094.44 339100.00 199.16 30596.75 22099.51 19699.63 28695.03 22499.60 21597.71 26499.67 15099.42 246
UniMVSNet (Re)97.29 23996.85 24698.59 22598.49 31699.13 168100.00 199.42 13896.52 24198.24 28898.90 34494.93 22598.89 28797.54 27087.61 36297.75 273
BH-w/o98.82 15298.81 14198.88 21099.62 18796.71 299100.00 199.28 25297.09 19498.81 250100.00 194.91 22699.96 13799.54 172100.00 199.96 124
AUN-MVS96.26 29095.67 30198.06 26499.68 15995.60 31299.82 27799.42 13896.78 21799.88 16099.80 25494.84 22799.47 24797.48 27273.29 39299.12 251
test_fmvsmconf0.1_n99.25 10599.05 11299.82 9198.92 29599.55 114100.00 199.23 27798.91 4199.75 18499.97 19794.79 22899.94 16299.94 9399.99 9899.97 118
PCF-MVS98.23 398.69 16298.37 17899.62 13499.78 14599.02 17799.23 35899.06 34296.43 24498.08 291100.00 194.72 22999.95 15098.16 24899.91 12599.90 158
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VNet99.04 12598.75 14799.90 7199.81 12799.75 9199.50 32899.47 7998.36 84100.00 199.99 18494.66 230100.00 199.90 9997.09 24399.96 124
diffmvspermissive98.96 14098.73 14999.63 13299.54 20799.16 166100.00 199.18 29997.33 17999.96 119100.00 194.60 23199.91 16999.66 15498.33 19699.82 195
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-untuned98.64 16598.65 15598.60 22399.59 19596.17 305100.00 199.28 25296.67 23298.41 274100.00 194.52 23299.83 18799.41 180100.00 199.81 204
nrg03097.64 21997.27 23498.75 21798.34 32099.53 118100.00 199.22 28096.21 26098.27 28499.95 21794.40 23398.98 27899.23 19489.78 34497.75 273
ppachtmachnet_test96.17 29595.89 28697.02 30997.61 35295.24 31599.99 21199.24 27393.31 34096.71 34199.62 29094.34 23498.07 35089.87 36592.30 31597.75 273
D2MVS97.63 22397.83 20997.05 30798.83 30694.60 335100.00 199.82 4096.89 21098.28 28299.03 33294.05 23599.47 24798.58 23294.97 28597.09 362
RPSCF97.37 23598.24 18694.76 34899.80 13884.57 38599.99 21199.05 34494.95 29699.82 175100.00 194.03 236100.00 198.15 24998.38 19099.70 234
CANet_DTU99.02 13198.90 13599.41 16399.88 11298.71 198100.00 199.29 24698.84 51100.00 1100.00 194.02 237100.00 198.08 25099.96 11499.52 244
LCM-MVSNet-Re96.52 27297.21 23894.44 34999.27 26185.80 38299.85 27296.61 39995.98 26592.75 37398.48 36093.97 23897.55 36899.58 16798.43 18499.98 111
Effi-MVS+98.58 17198.24 18699.61 13599.60 19199.26 15297.85 39399.10 32496.22 25999.97 11499.89 23293.75 23999.77 20099.43 17898.34 19399.81 204
pmmvs497.17 24296.80 24798.27 24397.68 34998.64 203100.00 199.18 29994.22 31798.55 26499.71 26393.67 24098.47 32695.66 31192.57 31197.71 317
CHOSEN 1792x268899.00 13398.91 13299.25 18899.90 10897.79 263100.00 199.99 1398.79 6098.28 282100.00 193.63 24199.95 15099.66 15499.95 117100.00 1
fmvsm_s_conf0.5_n99.21 11099.01 11699.83 8999.84 11799.53 118100.00 199.38 20398.29 90100.00 1100.00 193.62 24299.99 9499.99 6199.93 12299.98 111
WB-MVSnew97.02 25397.24 23696.37 33199.44 24197.36 277100.00 199.43 12296.12 26399.35 21199.89 23293.60 24398.42 32988.91 37598.39 18893.33 390
cdsmvs_eth3d_5k24.41 37532.55 3770.00 3910.00 4140.00 4160.00 40299.39 2010.00 4090.00 410100.00 193.55 2440.00 4100.00 4090.00 4080.00 406
AllTest98.55 17498.40 17498.99 20299.93 10197.35 278100.00 199.40 18897.08 19699.09 22699.98 18993.37 24599.95 15096.94 28799.84 13899.68 236
TestCases98.99 20299.93 10197.35 27899.40 18897.08 19699.09 22699.98 18993.37 24599.95 15096.94 28799.84 13899.68 236
FMVSNet397.30 23896.95 24298.37 23699.65 17499.25 15499.71 30299.28 25294.23 31698.53 26698.91 34393.30 24798.11 34595.31 31793.60 29797.73 302
Fast-Effi-MVS+98.40 18898.02 20399.55 14799.63 18299.06 172100.00 199.15 30695.07 29399.42 20299.95 21793.26 24899.73 20797.44 27398.24 20099.87 183
baseline98.69 16298.45 17199.41 16399.52 21798.67 201100.00 199.17 30497.03 19999.13 223100.00 193.17 24999.74 20599.70 13998.34 19399.81 204
QAPM98.99 13698.66 15499.96 4299.01 28299.87 7499.88 26899.93 3097.99 11098.68 256100.00 193.17 249100.00 199.32 186100.00 1100.00 1
PatchMatch-RL99.02 13198.78 14399.74 11399.99 4999.29 149100.00 1100.00 198.38 8099.89 15899.81 25193.14 25199.99 9497.85 26099.98 10899.95 130
WR-MVS_H96.73 26296.32 27097.95 27598.26 32797.88 25799.72 30199.43 12295.06 29496.99 33198.68 35393.02 25298.53 32197.43 27488.33 35897.43 352
3Dnovator95.63 1499.06 12398.76 14699.96 4298.86 30399.90 5899.98 23599.93 3098.95 3598.49 271100.00 192.91 253100.00 199.71 136100.00 1100.00 1
WB-MVS88.24 35490.09 35082.68 37991.56 39469.51 399100.00 198.73 36990.72 36587.29 38898.12 36892.87 25485.01 40162.19 40289.34 34993.54 389
3Dnovator+95.58 1599.03 12798.71 15299.96 4298.99 28999.89 65100.00 199.51 7698.96 3298.32 279100.00 192.78 255100.00 199.87 106100.00 1100.00 1
casdiffmvspermissive98.65 16498.38 17699.46 15599.52 21798.74 197100.00 199.15 30696.91 20799.05 231100.00 192.75 25699.83 18799.70 13998.38 19099.81 204
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive98.64 16598.39 17599.40 16799.50 22698.60 205100.00 199.22 28096.85 21199.10 225100.00 192.75 25699.78 19999.71 13698.35 19299.81 204
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NR-MVSNet96.63 26896.04 28098.38 23598.31 32398.98 18399.22 36099.35 22395.87 26794.43 36699.65 27892.73 25898.40 33096.78 29588.05 35997.75 273
SSC-MVS87.61 35589.47 35382.04 38090.63 39768.77 40099.99 21198.66 37090.34 36886.70 38998.08 36992.72 25984.12 40259.41 40588.71 35693.22 393
COLMAP_ROBcopyleft97.10 798.29 19498.17 19198.65 22099.94 9997.39 27599.30 34999.40 18895.64 27697.75 311100.00 192.69 26099.95 15098.89 21099.92 12498.62 258
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EU-MVSNet96.63 26896.53 25796.94 31497.59 35496.87 29599.76 29199.47 7996.35 25296.85 33699.78 25792.57 26196.27 38195.33 31691.08 33397.68 324
MVP-Stereo96.51 27496.48 26196.60 32695.65 38094.25 34198.84 38498.16 37595.85 27195.23 35799.04 33092.54 26299.13 26992.98 34399.98 10896.43 374
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Syy-MVS96.17 29596.57 25695.00 34399.50 22687.37 380100.00 199.57 6896.23 25798.07 292100.00 192.41 26397.81 36185.34 38197.96 21399.82 195
DeepC-MVS97.84 599.00 13398.80 14299.60 13799.93 10199.03 176100.00 199.40 18898.61 7199.33 212100.00 192.23 26499.95 15099.74 12899.96 11499.83 190
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DU-MVS96.93 25696.49 26098.22 24798.31 32398.41 213100.00 199.37 20696.41 24797.76 30899.65 27892.14 26598.50 32397.98 25486.84 36697.75 273
Baseline_NR-MVSNet96.16 29795.70 29797.56 29198.28 32696.79 298100.00 197.86 38791.93 35697.63 31499.47 30892.14 26598.35 33297.13 28286.83 36897.54 346
cascas98.43 18398.07 19899.50 15199.65 17499.02 177100.00 199.22 28094.21 31899.72 18799.98 18992.03 26799.93 16699.68 14798.12 20799.54 243
test_djsdf97.55 22697.38 22798.07 26097.50 35897.99 247100.00 199.13 31595.46 28898.47 27299.85 24292.01 26898.59 31498.63 22795.36 26497.62 339
v896.35 28595.73 29698.21 24998.11 33598.23 23199.94 25699.07 33492.66 35298.29 28199.00 33591.46 26998.77 29994.17 33188.83 35597.62 339
OpenMVScopyleft95.20 1798.76 15598.41 17399.78 10798.89 29899.81 8599.99 21199.76 4998.02 10898.02 297100.00 191.44 270100.00 199.63 15999.97 11199.55 242
v14896.29 28895.84 28897.63 28697.74 34796.53 303100.00 199.07 33493.52 33498.01 29899.42 31191.22 27198.60 31296.37 30387.22 36597.75 273
GeoE98.06 20397.65 21999.29 18299.47 23598.41 213100.00 199.19 29294.85 29898.88 242100.00 191.21 27299.59 21797.02 28598.19 20499.88 174
XVG-OURS98.30 19298.36 18098.13 25799.58 20095.91 308100.00 199.36 21298.69 6599.23 216100.00 191.20 27399.92 16899.34 18497.82 22498.56 259
WR-MVS97.09 24696.64 25298.46 23098.43 31799.09 16999.97 24199.33 23195.62 27897.76 30899.67 27491.17 27498.56 31998.49 23489.28 35097.74 296
V4296.65 26796.16 27698.11 25998.17 33498.23 23199.99 21199.09 32993.97 32398.74 25499.05 32991.09 27598.82 29495.46 31589.90 34297.27 358
v1096.14 29995.50 30598.07 26098.19 33297.96 25199.83 27499.07 33492.10 35598.07 29298.94 34191.07 27698.61 31092.41 34989.82 34397.63 337
dmvs_testset93.27 33295.48 30986.65 37298.74 30768.42 40199.92 25998.91 36196.19 26193.28 370100.00 191.06 27791.67 39789.64 36891.54 32599.86 185
v7n96.06 30395.42 31397.99 27497.58 35597.35 27899.86 27099.11 32292.81 35197.91 30499.49 30690.99 27898.92 28392.51 34688.49 35797.70 318
v114496.51 27495.97 28498.13 25797.98 34098.04 24599.99 21199.08 33093.51 33598.62 26098.98 33690.98 27998.62 30993.79 33790.79 33697.74 296
dmvs_re97.54 22797.88 20796.54 32799.55 20690.35 37199.86 27099.46 9497.00 20099.41 207100.00 190.78 28099.30 26399.60 16395.24 27199.96 124
ab-mvs98.42 18598.02 20399.61 13599.71 15299.00 18199.10 37499.64 6496.70 22799.04 23299.81 25190.64 28199.98 11899.64 15697.93 21699.84 187
Anonymous20240521197.87 20997.53 22198.90 20899.81 12796.70 30099.35 34399.46 9492.98 34698.83 24999.99 18490.63 282100.00 199.70 13997.03 244100.00 1
Anonymous2023120693.45 33093.17 33294.30 35295.00 38589.69 37399.98 23598.43 37293.30 34194.50 36598.59 35690.52 28395.73 38677.46 39790.73 33897.48 351
anonymousdsp97.16 24396.88 24498.00 27297.08 36898.06 24399.81 27899.15 30694.58 30697.84 30799.62 29090.49 28498.60 31297.98 25495.32 26597.33 357
v2v48296.70 26596.18 27498.27 24398.04 33798.39 216100.00 199.13 31594.19 32098.58 26299.08 32690.48 28598.67 30695.69 31090.44 34097.75 273
v14419296.40 28295.81 28998.17 25297.89 34398.11 23899.99 21199.06 34293.39 33798.75 25399.09 32590.43 28698.66 30793.10 34290.55 33997.75 273
Vis-MVSNetpermissive98.52 17798.25 18499.34 17499.68 15998.55 20799.68 30899.41 18497.34 17899.94 145100.00 190.38 28799.70 21099.03 20598.84 16999.76 227
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvsmconf0.01_n98.60 16998.24 18699.67 12596.90 36999.21 16099.99 21199.04 34798.80 5799.57 19399.96 20990.12 28899.91 16999.89 10199.89 12799.90 158
CP-MVSNet96.73 26296.25 27198.18 25098.21 33198.67 20199.77 28999.32 23395.06 29497.20 32899.65 27890.10 28998.19 33898.06 25288.90 35397.66 329
TranMVSNet+NR-MVSNet96.45 27896.01 28197.79 28398.00 33997.62 268100.00 199.35 22395.98 26597.31 32599.64 28290.09 29098.00 35596.89 29086.80 36997.75 273
SDMVSNet98.49 18098.08 19699.73 11699.82 12199.53 11899.99 21199.45 10297.62 14699.38 20999.86 23790.06 29199.88 17699.92 9696.61 25199.79 221
DSMNet-mixed95.18 31895.21 31695.08 34096.03 37590.21 37299.65 31093.64 40592.91 34798.34 27797.40 37790.05 29295.51 38791.02 35797.86 22099.51 245
N_pmnet91.88 34293.37 33187.40 37197.24 36766.33 40499.90 26391.05 40789.77 37295.65 35598.58 35790.05 29298.11 34585.39 38092.72 30797.75 273
fmvsm_s_conf0.1_n_a98.71 15998.36 18099.78 10799.09 27299.42 137100.00 199.26 26697.42 172100.00 1100.00 189.78 29499.96 13799.82 11899.85 13699.97 118
GA-MVS97.72 21797.27 23499.06 19599.24 26497.93 254100.00 199.24 27395.80 27398.99 23499.64 28289.77 29599.36 25895.12 32197.62 23899.89 163
fmvsm_s_conf0.1_n98.77 15498.42 17299.82 9199.47 23599.52 121100.00 199.27 26097.53 159100.00 1100.00 189.73 29699.96 13799.84 11299.93 12299.97 118
MIMVSNet97.06 24996.73 25098.05 26899.38 25496.64 30298.47 38999.35 22393.41 33699.48 19898.53 35889.66 29797.70 36794.16 33398.11 20899.80 218
IterMVS-SCA-FT96.72 26496.42 26497.62 28899.40 25096.83 29699.99 21199.14 31194.65 30597.55 32099.72 26189.65 29898.31 33395.62 31392.05 31797.73 302
SCA98.30 19297.98 20599.23 18999.41 24598.25 23099.99 21199.45 10296.91 20799.76 18399.58 29689.65 29899.54 23498.31 24198.79 17099.91 149
IterMVS96.76 26196.46 26297.63 28699.41 24596.89 29499.99 21199.13 31594.74 30297.59 31999.66 27689.63 30098.28 33595.71 30992.31 31497.72 309
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v119296.18 29395.49 30798.26 24598.01 33898.15 23599.99 21199.08 33093.36 33898.54 26598.97 33989.47 30198.89 28791.15 35690.82 33597.75 273
v192192096.16 29795.50 30598.14 25497.88 34597.96 25199.99 21199.07 33493.33 33998.60 26199.24 31989.37 30298.71 30491.28 35490.74 33797.75 273
XVG-OURS-SEG-HR98.27 19698.31 18298.14 25499.59 19595.92 307100.00 199.36 21298.48 7599.21 217100.00 189.27 30399.94 16299.76 12699.17 16198.56 259
test20.0393.11 33392.85 33793.88 35795.19 38491.83 362100.00 198.87 36493.68 32992.76 37298.88 34589.20 30492.71 39577.88 39589.19 35197.09 362
MDA-MVSNet_test_wron92.61 33791.09 34597.19 30596.71 37197.26 284100.00 199.14 31188.61 37567.90 40298.32 36689.03 30596.57 37690.47 36289.59 34597.74 296
BH-RMVSNet98.46 18198.08 19699.59 13999.61 18999.19 162100.00 199.28 25297.06 19898.95 236100.00 188.99 30699.82 19098.83 216100.00 199.77 225
v124095.96 30595.25 31498.07 26097.91 34297.87 25999.96 24699.07 33493.24 34298.64 25998.96 34088.98 30798.61 31089.58 36990.92 33497.75 273
Anonymous2023121196.29 28895.70 29798.07 26099.80 13897.49 27199.15 36999.40 18889.11 37397.75 31199.45 30988.93 30898.98 27898.26 24689.47 34797.73 302
TR-MVS98.14 20097.74 21399.33 17799.59 19598.28 22899.27 35099.21 28896.42 24699.15 22299.94 22288.87 30999.79 19598.88 21198.29 19899.93 145
CL-MVSNet_self_test91.07 34690.35 34993.24 35993.27 38889.16 37599.55 32299.25 26892.34 35395.23 35797.05 37988.86 31093.59 39380.67 39066.95 39696.96 365
YYNet192.44 33890.92 34697.03 30896.20 37397.06 29199.99 21199.14 31188.21 37867.93 40198.43 36388.63 31196.28 38090.64 35889.08 35297.74 296
HQP2-MVS88.61 312
HQP-MVS97.73 21697.85 20897.39 29499.07 27494.82 323100.00 199.40 18899.04 1599.17 21899.97 19788.61 31299.57 22299.79 11995.58 25597.77 261
HQP_MVS97.71 21897.82 21097.37 29599.00 28694.80 326100.00 199.40 18899.00 2799.08 22899.97 19788.58 31499.55 23199.79 11995.57 25997.76 263
plane_prior699.06 27894.80 32688.58 314
tfpnnormal96.36 28495.69 30098.37 23698.55 31398.71 19899.69 30699.45 10293.16 34496.69 34299.71 26388.44 31698.99 27794.17 33191.38 33097.41 353
test111198.42 18598.12 19399.29 18299.88 11298.15 23599.46 330100.00 198.36 8499.42 202100.00 187.91 31799.79 19599.31 18798.78 17199.94 135
ECVR-MVScopyleft98.43 18398.14 19299.32 17999.89 11098.21 23399.46 330100.00 198.38 8099.47 201100.00 187.91 31799.80 19499.35 18398.78 17199.94 135
TransMVSNet (Re)94.78 32093.72 32697.93 27898.34 32097.88 25799.23 35897.98 38391.60 35794.55 36399.71 26387.89 31998.36 33189.30 37184.92 37297.56 345
DTE-MVSNet95.52 31294.99 32097.08 30697.49 36096.45 304100.00 199.25 26893.82 32596.17 34999.57 29987.81 32097.18 36994.57 32686.26 37197.62 339
XXY-MVS97.14 24596.63 25398.67 21998.65 30998.92 18799.54 32499.29 24695.57 28097.63 31499.83 24587.79 32199.35 26098.39 23792.95 30597.75 273
UGNet98.41 18798.11 19499.31 18199.54 20798.55 20799.18 361100.00 198.64 7099.79 17899.04 33087.61 322100.00 199.30 18899.89 12799.40 247
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CLD-MVS97.64 21997.74 21397.36 29699.01 28294.76 331100.00 199.34 22999.30 499.00 23399.97 19787.49 32399.57 22299.96 8595.58 25597.75 273
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_cas_vis1_n_192098.63 16898.25 18499.77 11099.69 15599.32 146100.00 199.31 23898.84 5199.96 119100.00 187.42 32499.99 9499.14 19899.86 133100.00 1
PEN-MVS96.01 30495.48 30997.58 29097.74 34797.26 28499.90 26399.29 24694.55 30796.79 33899.55 30187.38 32597.84 36096.92 28987.24 36497.65 333
ACMM97.17 697.37 23597.40 22697.29 30099.01 28294.64 334100.00 199.25 26898.07 10698.44 27399.98 18987.38 32599.55 23199.25 19195.19 27497.69 322
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
jajsoiax97.07 24896.79 24997.89 28097.28 36697.12 28899.95 25299.19 29296.55 23897.31 32599.69 26987.35 32798.91 28498.70 22295.12 27997.66 329
pmmvs595.94 30695.61 30296.95 31397.42 36394.66 332100.00 198.08 37993.60 33297.05 33099.43 31087.02 32898.46 32795.76 30792.12 31697.72 309
VPA-MVSNet97.03 25196.43 26398.82 21298.64 31099.32 14699.38 34099.47 7996.73 22498.91 24098.94 34187.00 32999.40 25699.23 19489.59 34597.76 263
PS-CasMVS96.34 28695.78 29398.03 27198.18 33398.27 22999.71 30299.32 23394.75 30096.82 33799.65 27886.98 33098.15 34097.74 26388.85 35497.66 329
LPG-MVS_test97.31 23797.32 23097.28 30198.85 30494.60 335100.00 199.37 20697.35 17698.85 24599.98 18986.66 33199.56 22699.55 16995.26 26897.70 318
LGP-MVS_train97.28 30198.85 30494.60 33599.37 20697.35 17698.85 24599.98 18986.66 33199.56 22699.55 16995.26 26897.70 318
mvs_tets97.00 25496.69 25197.94 27697.41 36597.27 28399.60 31799.18 29996.51 24297.35 32499.69 26986.53 33398.91 28498.84 21495.09 28197.65 333
pm-mvs195.76 30995.01 31998.00 27298.23 32997.45 27399.24 35399.04 34793.13 34595.93 35399.72 26186.28 33498.84 29295.62 31387.92 36097.72 309
KD-MVS_self_test91.16 34590.09 35094.35 35194.44 38791.27 36799.74 29499.08 33090.82 36494.53 36494.91 38986.11 33594.78 38982.67 38668.52 39596.99 364
MVS-HIRNet94.12 32692.73 33998.29 24299.33 25695.95 30699.38 34099.19 29274.54 39698.26 28586.34 40086.07 33699.06 27291.60 35399.87 13299.85 186
DeepMVS_CXcopyleft89.98 36598.90 29771.46 39699.18 29997.61 15096.92 33299.83 24586.07 33699.83 18796.02 30597.65 23698.65 257
OPM-MVS97.21 24097.18 23997.32 29998.08 33694.66 332100.00 199.28 25298.65 6998.92 23899.98 18986.03 33899.56 22698.28 24595.41 26197.72 309
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
new_pmnet94.11 32793.47 33096.04 33696.60 37292.82 35599.97 24198.91 36190.21 36995.26 35698.05 37285.89 33998.14 34184.28 38392.01 31897.16 360
ACMP97.00 897.19 24197.16 24097.27 30398.97 29194.58 338100.00 199.32 23397.97 11497.45 32299.98 18985.79 34099.56 22699.70 13995.24 27197.67 328
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OurMVSNet-221017-096.14 29995.98 28396.62 32597.49 36093.44 34999.92 25998.16 37595.86 26997.65 31399.95 21785.71 34198.78 29694.93 32394.18 29497.64 336
sd_testset97.81 21297.48 22298.79 21599.82 12196.80 29799.32 34599.45 10297.62 14699.38 20999.86 23785.56 34299.77 20099.72 13196.61 25199.79 221
SixPastTwentyTwo95.71 31095.49 30796.38 33097.42 36393.01 35299.84 27398.23 37494.75 30095.98 35299.97 19785.35 34398.43 32894.71 32593.17 30297.69 322
test_fmvs198.37 19098.04 20199.34 17499.84 11798.07 241100.00 199.00 35398.85 49100.00 1100.00 185.11 34499.96 13799.69 14699.88 129100.00 1
LTVRE_ROB95.29 1696.32 28796.10 27796.99 31198.55 31393.88 34499.45 33299.28 25294.50 31096.46 34499.52 30484.86 34599.48 24597.26 28195.03 28297.59 343
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ITE_SJBPF96.84 32098.96 29293.49 34898.12 37798.12 10398.35 27699.97 19784.45 34699.56 22695.63 31295.25 27097.49 349
PVSNet_093.57 1996.41 27995.74 29598.41 23399.84 11795.22 316100.00 1100.00 198.08 10597.55 32099.78 25784.40 347100.00 1100.00 181.99 381100.00 1
K. test v395.46 31495.14 31796.40 32997.53 35793.40 35099.99 21199.23 27795.49 28692.70 37499.73 26084.26 34898.12 34393.94 33693.38 30197.68 324
GBi-Net96.07 30195.80 29196.89 31799.53 21094.87 32099.18 36199.27 26093.71 32698.53 26698.81 34784.23 34998.07 35095.31 31793.60 29797.72 309
test196.07 30195.80 29196.89 31799.53 21094.87 32099.18 36199.27 26093.71 32698.53 26698.81 34784.23 34998.07 35095.31 31793.60 29797.72 309
FMVSNet296.22 29195.60 30398.06 26499.53 21098.33 22399.45 33299.27 26093.71 32698.03 29598.84 34684.23 34998.10 34893.97 33593.40 30097.73 302
testgi96.18 29395.93 28596.93 31598.98 29094.20 343100.00 199.07 33497.16 19096.06 35199.86 23784.08 35297.79 36490.38 36397.80 22698.81 255
Anonymous2024052193.29 33192.76 33894.90 34795.64 38191.27 36799.97 24198.82 36787.04 38194.71 36198.19 36783.86 35396.80 37284.04 38492.56 31296.64 371
iter_conf05_1198.21 19997.74 21399.65 13099.67 16499.06 172100.00 198.87 36497.84 12699.96 119100.00 183.57 35499.88 17699.72 131100.00 1100.00 1
ACMH96.25 1196.77 26096.62 25497.21 30498.96 29294.43 34099.64 31199.33 23197.43 17196.55 34399.97 19783.52 35599.54 23499.07 20495.13 27897.66 329
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052996.93 25696.22 27399.05 19799.79 14297.30 28299.16 36799.47 7988.51 37698.69 255100.00 183.50 356100.00 199.83 11397.02 24599.83 190
lessismore_v096.05 33597.55 35691.80 36399.22 28091.87 37599.91 22983.50 35698.68 30592.48 34790.42 34197.68 324
bld_raw_dy_0_6497.64 21996.98 24199.63 13299.67 16498.94 186100.00 197.98 38397.85 12598.93 237100.00 183.23 35899.96 13799.72 13195.41 261100.00 1
UnsupCasMVSNet_eth94.25 32393.89 32495.34 33997.63 35092.13 36099.73 29999.36 21294.88 29792.78 37198.63 35582.72 35996.53 37794.57 32684.73 37397.36 355
LF4IMVS96.19 29296.18 27496.23 33498.26 32792.09 361100.00 197.89 38697.82 12897.94 30199.87 23582.71 36099.38 25797.41 27593.71 29697.20 359
ACMH+96.20 1396.49 27796.33 26997.00 31099.06 27893.80 34599.81 27899.31 23897.32 18095.89 35499.97 19782.62 36199.54 23498.34 24094.63 29097.65 333
pmmvs390.62 34989.36 35594.40 35090.53 39891.49 365100.00 196.73 39784.21 38793.65 36996.65 38182.56 36294.83 38882.28 38777.62 38996.89 367
XVG-ACMP-BASELINE96.60 27096.52 25996.84 32098.41 31893.29 35199.99 21199.32 23397.76 13498.51 26999.29 31781.95 36399.54 23498.40 23695.03 28297.68 324
VPNet96.41 27995.76 29498.33 23998.61 31198.30 22799.48 32999.45 10296.98 20198.87 24499.88 23481.57 36498.93 28299.22 19687.82 36197.76 263
MDA-MVSNet-bldmvs91.65 34489.94 35296.79 32396.72 37096.70 30099.42 33798.94 35888.89 37466.97 40498.37 36481.43 36595.91 38489.24 37289.46 34897.75 273
MS-PatchMatch95.66 31195.87 28795.05 34197.80 34689.25 37498.88 38399.30 24296.35 25296.86 33599.01 33481.35 36699.43 25393.30 34199.98 10896.46 373
USDC95.90 30795.70 29796.50 32898.60 31292.56 359100.00 198.30 37397.77 13296.92 33299.94 22281.25 36799.45 25293.54 33994.96 28697.49 349
TDRefinement91.93 34090.48 34896.27 33381.60 40492.65 35899.10 37497.61 39293.96 32493.77 36899.85 24280.03 36899.53 23997.82 26170.59 39496.63 372
test_040294.35 32293.70 32796.32 33297.92 34193.60 34699.61 31698.85 36688.19 37994.68 36299.48 30780.01 36998.58 31689.39 37095.15 27796.77 368
tt080596.52 27296.23 27297.40 29399.30 26093.55 34799.32 34599.45 10296.75 22097.88 30599.99 18479.99 37099.59 21797.39 27795.98 25499.06 253
TinyColmap95.50 31395.12 31896.64 32498.69 30893.00 35399.40 33897.75 38996.40 24996.14 35099.87 23579.47 37199.50 24393.62 33894.72 28997.40 354
LFMVS97.42 23396.62 25499.81 9699.80 13899.50 12499.16 36799.56 7094.48 311100.00 1100.00 179.35 372100.00 199.89 10197.37 23999.94 135
pmmvs-eth3d91.73 34390.67 34794.92 34691.63 39392.71 35799.90 26398.54 37191.19 36088.08 38595.50 38479.31 37396.13 38290.55 36181.32 38495.91 379
new-patchmatchnet90.30 35089.46 35492.84 36190.77 39688.55 37899.83 27498.80 36890.07 37187.86 38695.00 38778.77 37494.30 39184.86 38279.15 38695.68 382
test12379.44 36479.23 36680.05 38280.03 40571.72 395100.00 177.93 41362.52 39994.81 36099.69 26978.21 37574.53 40692.57 34527.33 40693.90 386
CMPMVSbinary66.12 2290.65 34892.04 34186.46 37396.18 37466.87 40398.03 39299.38 20383.38 38985.49 39199.55 30177.59 37698.80 29594.44 32894.31 29393.72 388
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_vis1_n_192097.77 21497.24 23699.34 17499.79 14298.04 245100.00 199.25 26898.88 44100.00 1100.00 177.52 377100.00 199.88 10399.85 136100.00 1
pmmvs693.64 32892.87 33695.94 33797.47 36291.41 36698.92 38199.02 35087.84 38095.01 35999.61 29277.24 37898.77 29994.33 32986.41 37097.63 337
tmp_tt75.80 36874.26 37080.43 38152.91 41353.67 41287.42 40097.98 38361.80 40067.04 403100.00 176.43 37996.40 37896.47 29928.26 40591.23 395
APD_test193.07 33594.14 32389.85 36699.18 26572.49 39499.76 29198.90 36392.86 35096.35 34599.94 22275.56 38099.91 16986.73 37897.98 21197.15 361
MIMVSNet191.96 33991.20 34294.23 35494.94 38691.69 36499.34 34499.22 28088.23 37794.18 36798.45 36175.52 38193.41 39479.37 39391.49 32797.60 342
test_fmvs1_n97.43 23296.86 24599.15 19399.68 15997.48 27299.99 21198.98 35698.82 55100.00 1100.00 174.85 38299.96 13799.67 15099.70 147100.00 1
VDDNet96.39 28395.55 30498.90 20899.27 26197.45 27399.15 36999.92 3491.28 35999.98 109100.00 173.55 383100.00 199.85 10996.98 24699.24 248
test_fmvs295.17 31995.23 31595.01 34298.95 29488.99 37699.99 21197.77 38897.79 13098.58 26299.70 26673.36 38499.34 26195.88 30695.03 28296.70 370
EGC-MVSNET79.46 36374.04 37195.72 33896.00 37692.73 35699.09 37699.04 3475.08 40816.72 40898.71 35173.03 38598.74 30282.05 38896.64 25095.69 381
FMVSNet194.45 32193.63 32896.89 31798.87 30294.87 32099.18 36199.27 26090.95 36397.31 32598.81 34772.89 38698.07 35092.61 34492.81 30697.72 309
VDD-MVS96.58 27195.99 28298.34 23899.52 21795.33 31499.18 36199.38 20396.64 23499.77 181100.00 172.51 387100.00 1100.00 196.94 24799.70 234
EG-PatchMatch MVS92.94 33692.49 34094.29 35395.87 37787.07 38199.07 37998.11 37893.19 34388.98 38398.66 35470.89 38899.08 27192.43 34895.21 27396.72 369
test_method91.04 34791.10 34490.85 36398.34 32077.63 390100.00 198.93 36076.69 39496.25 34898.52 35970.44 38997.98 35689.02 37491.74 32296.92 366
UniMVSNet_ETH3D95.28 31694.41 32297.89 28098.91 29695.14 31799.13 37199.35 22392.11 35497.17 32999.66 27670.28 39099.36 25897.88 25995.18 27599.16 249
OpenMVS_ROBcopyleft88.34 2091.89 34191.12 34394.19 35595.55 38287.63 37999.26 35198.03 38086.61 38390.65 38196.82 38070.14 39198.78 29686.54 37996.50 25396.15 375
testmvs80.17 36181.95 36474.80 38458.54 41159.58 409100.00 187.14 41076.09 39599.61 192100.00 167.06 39274.19 40798.84 21450.30 40190.64 396
test_vis1_n96.69 26695.81 28999.32 17999.14 26797.98 24899.97 24198.98 35698.45 77100.00 1100.00 166.44 39399.99 9499.78 12599.57 157100.00 1
UnsupCasMVSNet_bld89.50 35188.00 35793.99 35695.30 38388.86 37798.52 38899.28 25285.50 38587.80 38794.11 39061.63 39496.96 37190.63 35979.26 38596.15 375
test_vis1_rt93.10 33492.93 33593.58 35899.63 18285.07 38399.99 21193.71 40497.49 16590.96 37797.10 37860.40 39599.95 15099.24 19397.90 21895.72 380
Gipumacopyleft84.73 35883.50 36388.40 36997.50 35882.21 38788.87 39899.05 34465.81 39885.71 39090.49 39553.70 39696.31 37978.64 39491.74 32286.67 397
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
mvsany_test389.36 35288.96 35690.56 36491.95 39078.97 38999.74 29496.59 40096.84 21289.25 38296.07 38252.59 39797.11 37095.17 32082.44 38095.58 383
EMVS69.88 37069.09 37372.24 38884.70 40165.82 40599.96 24687.08 41149.82 40571.51 39984.74 40249.30 39875.32 40550.97 40743.71 40375.59 403
PM-MVS88.39 35387.41 35891.31 36291.73 39282.02 38899.79 28396.62 39891.06 36290.71 38095.73 38348.60 39995.96 38390.56 36081.91 38395.97 378
E-PMN70.72 36970.06 37272.69 38783.92 40265.48 40699.95 25292.72 40649.88 40472.30 39886.26 40147.17 40077.43 40453.83 40644.49 40275.17 404
testf184.40 35984.79 36183.23 37795.71 37858.71 41098.79 38597.75 38981.58 39084.94 39298.07 37045.33 40197.73 36577.09 39883.85 37593.24 391
APD_test284.40 35984.79 36183.23 37795.71 37858.71 41098.79 38597.75 38981.58 39084.94 39298.07 37045.33 40197.73 36577.09 39883.85 37593.24 391
ambc88.45 36886.84 40070.76 39797.79 39498.02 38290.91 37895.14 38538.69 40398.51 32294.97 32284.23 37496.09 377
test_f86.87 35786.06 36089.28 36791.45 39576.37 39299.87 26997.11 39491.10 36188.46 38493.05 39338.31 40496.66 37591.77 35283.46 37894.82 384
test_fmvs387.19 35687.02 35987.71 37092.69 38976.64 39199.96 24697.27 39393.55 33390.82 37994.03 39138.00 40592.19 39693.49 34083.35 37994.32 385
FPMVS77.92 36779.45 36573.34 38676.87 40746.81 41398.24 39099.05 34459.89 40173.55 39798.34 36536.81 40686.55 39980.96 38991.35 33186.65 398
PMMVS279.15 36577.28 36884.76 37582.34 40372.66 39399.70 30495.11 40371.68 39784.78 39490.87 39432.05 40789.99 39875.53 40063.45 39991.64 394
LCM-MVSNet79.01 36676.93 36985.27 37478.28 40668.01 40296.57 39598.03 38055.10 40282.03 39593.27 39231.99 40893.95 39282.72 38574.37 39193.84 387
test_vis3_rt79.61 36278.19 36783.86 37688.68 39969.56 39899.81 27882.19 41286.78 38268.57 40084.51 40325.06 40998.26 33689.18 37378.94 38783.75 400
ANet_high66.05 37263.44 37673.88 38561.14 41063.45 40795.68 39787.18 40979.93 39247.35 40680.68 40622.35 41072.33 40861.24 40335.42 40485.88 399
wuyk23d28.28 37429.73 37823.92 39075.89 40832.61 41566.50 40112.88 41416.09 40714.59 40916.59 40812.35 41132.36 40939.36 40813.36 4076.79 405
PMVScopyleft60.66 2365.98 37365.05 37468.75 38955.06 41238.40 41488.19 39996.98 39548.30 40644.82 40788.52 39812.22 41286.49 40067.58 40183.79 37781.35 402
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive68.59 2167.22 37164.68 37574.84 38374.67 40962.32 40895.84 39690.87 40850.98 40358.72 40581.05 40512.20 41378.95 40361.06 40456.75 40083.24 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_blank0.07 3780.09 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.79 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.01 3790.02 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.14 4100.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.01 3790.02 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.14 4100.00 4140.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.01 3790.02 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.14 4100.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.01 3790.02 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.14 4100.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.01 3790.02 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.14 4100.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.01 3790.02 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.14 4100.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.33 37611.11 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.01 3790.02 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.14 4100.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS97.98 24895.74 308
FOURS1100.00 199.97 21100.00 199.42 13898.52 74100.00 1
MSC_two_6792asdad100.00 1100.00 1100.00 199.42 138100.00 1100.00 1100.00 1100.00 1
No_MVS100.00 1100.00 1100.00 199.42 138100.00 1100.00 1100.00 1100.00 1
eth-test20.00 414
eth-test0.00 414
IU-MVS100.00 199.99 599.42 13899.12 6100.00 1100.00 1100.00 1100.00 1
save fliter99.99 4999.93 43100.00 199.42 13898.93 38
test_0728_SECOND100.00 199.99 4999.99 5100.00 199.42 138100.00 1100.00 1100.00 1100.00 1
GSMVS99.91 149
test_part2100.00 199.99 5100.00 1
MTGPAbinary99.42 138
MTMP100.00 199.18 299
gm-plane-assit99.52 21797.26 28495.86 269100.00 199.43 25398.76 219
test9_res100.00 1100.00 1100.00 1
agg_prior2100.00 1100.00 1100.00 1
agg_prior100.00 199.88 7299.42 138100.00 199.97 125
test_prior499.93 43100.00 1
test_prior99.90 71100.00 199.75 9199.73 5699.97 125100.00 1
旧先验2100.00 198.11 104100.00 1100.00 199.67 150
新几何2100.00 1
无先验100.00 199.80 4397.98 112100.00 199.33 185100.00 1
原ACMM2100.00 1
testdata2100.00 197.36 278
testdata1100.00 198.77 63
plane_prior799.00 28694.78 330
plane_prior599.40 18899.55 23199.79 11995.57 25997.76 263
plane_prior499.97 197
plane_prior394.79 32999.03 2099.08 228
plane_prior2100.00 199.00 27
plane_prior199.02 281
plane_prior94.80 326100.00 199.03 2095.58 255
n20.00 415
nn0.00 415
door-mid96.32 401
test1199.42 138
door96.13 402
HQP5-MVS94.82 323
HQP-NCC99.07 274100.00 199.04 1599.17 218
ACMP_Plane99.07 274100.00 199.04 1599.17 218
BP-MVS99.79 119
HQP4-MVS99.17 21899.57 22297.77 261
HQP3-MVS99.40 18895.58 255
NP-MVS99.07 27494.81 32599.97 197
ACMMP++_ref94.58 292
ACMMP++95.17 276