This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
GG-mvs-BLEND99.59 13399.54 19799.49 12399.17 35799.52 7299.96 11599.68 264100.00 199.33 25299.71 13299.99 9799.96 120
gg-mvs-nofinetune96.95 24596.10 26799.50 14499.41 23499.36 14099.07 37099.52 7283.69 37999.96 11583.60 395100.00 199.20 25799.68 14399.99 9799.96 120
iter_conf0598.73 14898.77 13598.60 21399.65 16699.22 155100.00 199.22 27196.68 22298.98 22699.97 19399.99 398.84 28299.29 18295.11 27097.75 264
iter_conf_final98.72 14998.76 13798.59 21599.64 17299.17 162100.00 199.22 27196.63 22799.02 22399.97 19399.98 498.84 28299.22 18995.18 26497.76 253
CHOSEN 280x42099.85 399.87 199.80 9999.99 4999.97 2199.97 23199.98 1698.96 30100.00 1100.00 199.96 599.42 245100.00 1100.00 1100.00 1
test_yl99.51 6499.37 7499.95 5199.82 11999.90 58100.00 199.47 7997.48 162100.00 1100.00 199.80 6100.00 199.98 7197.75 22499.94 131
DCV-MVSNet99.51 6499.37 7499.95 5199.82 11999.90 58100.00 199.47 7997.48 162100.00 1100.00 199.80 6100.00 199.98 7197.75 22499.94 131
patch_mono-299.04 11699.79 696.81 31499.92 10390.47 361100.00 199.41 17798.95 33100.00 1100.00 199.78 8100.00 1100.00 1100.00 199.95 126
MVSTER98.58 16398.52 15898.77 20699.65 16699.68 102100.00 199.29 23795.63 26898.65 24899.80 24599.78 898.88 28098.59 22495.31 25597.73 293
CDS-MVSNet98.96 13198.95 11999.01 19199.48 22298.36 21299.93 24999.37 19996.79 20999.31 20399.83 23699.77 1098.91 27498.07 24497.98 20699.77 215
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPM99.78 1699.76 1299.85 8399.01 27199.95 32100.00 199.75 5299.37 399.99 101100.00 199.76 1199.60 205100.00 1100.00 1100.00 1
DP-MVS Recon99.76 1899.69 2299.98 23100.00 199.95 32100.00 199.52 7297.99 10899.99 101100.00 199.72 12100.00 199.96 83100.00 1100.00 1
TESTMET0.1,199.08 11298.96 11599.44 15099.63 17499.38 136100.00 199.45 10295.53 27299.48 189100.00 199.71 1399.02 26496.84 28399.99 9799.91 145
test-mter98.96 13198.82 13099.40 15799.40 23999.28 146100.00 199.45 10295.44 28199.42 19399.12 31499.70 1499.01 26596.82 28499.99 9799.91 145
MSP-MVS99.81 1199.77 999.94 63100.00 199.86 77100.00 199.42 13198.87 45100.00 1100.00 199.65 1599.96 132100.00 1100.00 1100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_0728_THIRD98.79 58100.00 1100.00 199.61 16100.00 1100.00 1100.00 1100.00 1
test_one_0601100.00 199.99 599.42 13198.72 62100.00 1100.00 199.60 17
MSLP-MVS++99.89 199.85 299.99 12100.00 199.96 24100.00 199.95 1999.11 7100.00 1100.00 199.60 17100.00 1100.00 1100.00 1100.00 1
PAPM_NR99.74 2299.66 3099.99 12100.00 199.96 24100.00 199.47 7997.87 121100.00 1100.00 199.60 17100.00 1100.00 1100.00 1100.00 1
NCCC99.86 299.82 3100.00 1100.00 199.99 5100.00 199.71 6199.07 10100.00 1100.00 199.59 20100.00 1100.00 1100.00 1100.00 1
PLCcopyleft98.56 299.70 3299.74 1699.58 137100.00 198.79 186100.00 199.54 7198.58 7099.96 115100.00 199.59 20100.00 1100.00 1100.00 199.94 131
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DPM-MVS99.63 5199.51 60100.00 199.90 107100.00 1100.00 199.43 12199.00 27100.00 1100.00 199.58 22100.00 197.64 258100.00 1100.00 1
test_241102_TWO99.42 13199.03 20100.00 1100.00 199.56 23100.00 1100.00 1100.00 1100.00 1
APDe-MVScopyleft99.84 699.78 799.99 12100.00 199.98 17100.00 199.44 11599.06 12100.00 1100.00 199.56 2399.99 94100.00 1100.00 1100.00 1
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
segment_acmp99.55 25
DVP-MVS++99.81 1199.75 14100.00 1100.00 199.99 5100.00 199.42 13198.79 58100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
PC_three_145298.80 55100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
OPU-MVS100.00 1100.00 1100.00 1100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
DVP-MVScopyleft99.83 799.78 7100.00 1100.00 199.99 5100.00 199.42 13199.04 15100.00 1100.00 199.53 29100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test0726100.00 199.99 5100.00 199.42 13199.04 15100.00 1100.00 199.53 29
TEST9100.00 199.95 32100.00 199.42 13197.65 138100.00 1100.00 199.53 2999.97 121
SteuartSystems-ACMMP99.78 1699.71 2099.98 2399.76 14599.95 32100.00 199.42 13198.69 63100.00 1100.00 199.52 3299.99 94100.00 1100.00 1100.00 1
Skip Steuart: Steuart Systems R&D Blog.
train_agg99.71 2999.63 3799.97 31100.00 199.95 32100.00 199.42 13197.70 133100.00 1100.00 199.51 3399.97 121100.00 1100.00 1100.00 1
test_8100.00 199.91 51100.00 199.42 13197.70 133100.00 1100.00 199.51 3399.98 116
PAPR99.76 1899.68 2599.99 12100.00 199.96 24100.00 199.47 7998.16 94100.00 1100.00 199.51 33100.00 1100.00 1100.00 1100.00 1
EPP-MVSNet99.10 11199.00 11199.40 15799.51 21298.68 19499.92 25099.43 12195.47 27899.65 181100.00 199.51 3399.76 19399.53 16798.00 20599.75 218
SED-MVS99.83 799.77 9100.00 1100.00 199.99 5100.00 199.42 13199.03 20100.00 1100.00 199.50 37100.00 1100.00 1100.00 1100.00 1
test_241102_ONE100.00 199.99 599.42 13199.03 20100.00 1100.00 199.50 37100.00 1
miper_enhance_ethall98.33 18398.27 17598.51 21999.66 16599.04 171100.00 199.22 27197.53 15598.51 26099.38 30399.49 3998.75 29298.02 24692.61 29997.76 253
test_post89.05 38899.49 3999.59 207
HyFIR lowres test99.32 8999.24 8999.58 13799.95 9599.26 148100.00 199.99 1396.72 21699.29 20499.91 22399.49 3999.47 23799.74 12698.08 204100.00 1
PatchmatchNetpermissive99.03 11898.96 11599.26 17799.49 22098.33 21499.38 33199.45 10296.64 22599.96 11599.58 28799.49 3999.50 23397.63 25999.00 16499.93 141
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Patchmatch-test97.83 20297.42 21699.06 18599.08 26297.66 25998.66 37899.21 28093.65 32198.25 27799.58 28799.47 4399.57 21290.25 35698.59 17399.95 126
test_prior2100.00 198.82 53100.00 1100.00 199.47 43100.00 1100.00 1
TSAR-MVS + MP.99.82 999.77 999.99 12100.00 199.96 24100.00 199.43 12199.05 14100.00 1100.00 199.45 4599.99 94100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
thisisatest053099.37 8199.27 8399.69 11999.59 18599.41 134100.00 199.46 9496.46 23599.90 148100.00 199.44 4699.85 17598.97 19999.58 15399.80 209
tttt051799.34 8599.23 9299.67 12199.57 19399.38 136100.00 199.46 9496.33 24599.89 151100.00 199.44 4699.84 17798.93 20199.46 15699.78 214
thisisatest051599.42 7699.31 8299.74 11199.59 18599.55 111100.00 199.46 9496.65 22499.92 144100.00 199.44 4699.85 17599.09 19699.63 15199.81 198
PGM-MVS99.69 3599.61 4299.95 5199.99 4999.85 80100.00 199.58 6797.69 135100.00 1100.00 199.44 46100.00 199.79 117100.00 1100.00 1
SMA-MVScopyleft99.69 3599.59 4499.98 2399.99 4999.93 43100.00 199.43 12197.50 160100.00 1100.00 199.43 50100.00 1100.00 1100.00 1100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
原ACMM199.93 66100.00 199.80 8799.66 6398.18 93100.00 1100.00 199.43 50100.00 199.50 169100.00 1100.00 1
testdata99.66 12499.99 4998.97 18199.73 5697.96 115100.00 1100.00 199.42 52100.00 199.28 183100.00 1100.00 1
baseline298.99 12798.93 12199.18 18299.26 25299.15 164100.00 199.46 9496.71 21796.79 329100.00 199.42 5299.25 25698.75 21299.94 11799.15 240
patchmatchnet-post97.79 36499.41 5499.54 224
Patchmatch-RL test93.49 31993.63 31893.05 35191.78 38183.41 37798.21 38296.95 38791.58 34991.05 36797.64 36799.40 5595.83 37694.11 32681.95 37399.91 145
CNVR-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.77 4899.07 10100.00 1100.00 199.39 56100.00 1100.00 1100.00 1100.00 1
FE-MVS99.16 10898.99 11399.66 12499.65 16699.18 16099.58 31099.43 12195.24 28299.91 14699.59 28599.37 5799.97 12198.31 23499.81 13899.83 185
sam_mvs99.33 58
test_post199.32 33688.24 39099.33 5899.59 20798.31 234
SD-MVS99.81 1199.75 1499.99 1299.99 4999.96 24100.00 199.42 13199.01 26100.00 1100.00 199.33 58100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ZD-MVS100.00 199.98 1799.80 4397.31 178100.00 1100.00 199.32 6199.99 94100.00 1100.00 1
CDPH-MVS99.73 2599.64 3399.99 12100.00 199.97 21100.00 199.42 13198.02 106100.00 1100.00 199.32 6199.99 94100.00 1100.00 1100.00 1
HFP-MVS99.74 2299.67 2799.96 42100.00 199.89 65100.00 199.76 4997.95 116100.00 1100.00 199.31 63100.00 199.99 59100.00 1100.00 1
test-LLR99.03 11898.91 12399.40 15799.40 23999.28 146100.00 199.45 10296.70 21899.42 19399.12 31499.31 6399.01 26596.82 28499.99 9799.91 145
test0.0.03 198.12 19398.03 19498.39 22599.11 25898.07 233100.00 199.93 3096.70 21896.91 32599.95 21599.31 6398.19 32991.93 34298.44 18098.91 244
MCST-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.73 5699.19 5100.00 1100.00 199.31 63100.00 1100.00 1100.00 1100.00 1
TAPA-MVS96.40 1097.64 21197.37 22098.45 22299.94 9895.70 302100.00 199.40 18197.65 13899.53 185100.00 199.31 6399.66 20380.48 382100.00 1100.00 1
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test22299.99 4999.90 58100.00 199.69 6297.66 137100.00 1100.00 199.30 68100.00 1100.00 1
sam_mvs199.29 6999.91 145
ACMMPR99.74 2299.67 2799.96 42100.00 199.89 65100.00 199.76 4997.95 116100.00 1100.00 199.29 69100.00 199.99 59100.00 1100.00 1
CostFormer98.84 14198.77 13599.04 18999.41 23497.58 26199.67 30099.35 21494.66 29599.96 11599.36 30599.28 7199.74 19699.41 17397.81 22099.81 198
旧先验199.99 4999.88 7299.82 40100.00 199.27 72100.00 1100.00 1
APD-MVScopyleft99.68 4099.58 4699.97 3199.99 4999.96 24100.00 199.42 13197.53 155100.00 1100.00 199.27 7299.97 121100.00 1100.00 1100.00 1
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test1299.95 5199.99 4999.89 6599.42 131100.00 199.24 7499.97 121100.00 1100.00 1
DPE-MVScopyleft99.79 1499.73 1799.99 1299.99 4999.98 17100.00 199.42 13198.91 39100.00 1100.00 199.22 75100.00 1100.00 1100.00 1100.00 1
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HPM-MVS++copyleft99.82 999.76 1299.99 1299.99 4999.98 17100.00 199.83 3998.88 4299.96 115100.00 199.21 76100.00 1100.00 1100.00 199.99 105
新几何199.99 12100.00 199.96 2499.81 4297.89 119100.00 1100.00 199.20 77100.00 197.91 251100.00 1100.00 1
region2R99.72 2699.64 3399.97 31100.00 199.90 58100.00 199.74 5597.86 122100.00 1100.00 199.19 78100.00 199.99 59100.00 1100.00 1
F-COLMAP99.64 4899.64 3399.67 12199.99 4999.07 167100.00 199.44 11598.30 8799.90 148100.00 199.18 7999.99 9499.91 96100.00 199.94 131
XVS99.79 1499.73 1799.98 23100.00 199.94 40100.00 199.75 5298.67 65100.00 1100.00 199.16 80100.00 1100.00 1100.00 1100.00 1
X-MVStestdata97.04 24196.06 26999.98 23100.00 199.94 40100.00 199.75 5298.67 65100.00 166.97 39899.16 80100.00 1100.00 1100.00 1100.00 1
9.1499.57 4999.99 49100.00 199.42 13197.54 153100.00 1100.00 199.15 8299.99 94100.00 1100.00 1
CNLPA99.72 2699.65 3199.91 6899.97 8899.72 95100.00 199.47 7998.43 7699.88 153100.00 199.14 83100.00 199.97 81100.00 1100.00 1
testing398.44 17498.37 17098.65 21099.51 21298.32 216100.00 199.62 6696.43 23697.93 29399.99 18099.11 8497.81 35294.88 31697.80 22199.82 190
Test By Simon99.10 85
myMVS_eth3d98.52 16998.51 15998.53 21899.50 21697.98 240100.00 199.57 6896.23 24898.07 283100.00 199.09 8697.81 35296.17 29697.96 20899.82 190
CP-MVS99.67 4399.58 4699.95 51100.00 199.84 82100.00 199.42 13197.77 128100.00 1100.00 199.07 87100.00 1100.00 1100.00 1100.00 1
alignmvs99.38 7999.21 9399.91 6899.73 14899.92 48100.00 199.51 7697.61 146100.00 1100.00 199.06 8899.93 15999.83 11197.12 23299.90 154
SF-MVS99.66 4599.57 4999.95 5199.99 4999.85 80100.00 199.42 13197.67 136100.00 1100.00 199.05 8999.99 94100.00 1100.00 1100.00 1
EPMVS99.25 10199.13 10299.60 13199.60 18399.20 15799.60 308100.00 196.93 19999.92 14499.36 30599.05 8999.71 20098.77 21098.94 16599.90 154
EI-MVSNet-Vis-set99.70 3299.64 3399.87 78100.00 199.64 10599.98 22599.44 11598.35 8499.99 101100.00 199.04 9199.96 13299.98 71100.00 1100.00 1
mPP-MVS99.69 3599.60 4399.97 31100.00 199.91 51100.00 199.42 13197.91 118100.00 1100.00 199.04 91100.00 1100.00 1100.00 1100.00 1
tpmrst98.98 13098.93 12199.14 18499.61 18197.74 25699.52 31799.36 20596.05 25499.98 10699.64 27399.04 9199.86 17098.94 20098.19 19999.82 190
SR-MVS99.68 4099.58 4699.98 23100.00 199.95 32100.00 199.64 6497.59 149100.00 1100.00 198.99 9499.99 94100.00 1100.00 1100.00 1
EI-MVSNet-UG-set99.69 3599.63 3799.87 7899.99 4999.64 10599.95 24299.44 11598.35 84100.00 1100.00 198.98 9599.97 12199.98 71100.00 1100.00 1
ZNCC-MVS99.71 2999.62 4199.97 3199.99 4999.90 58100.00 199.79 4597.97 11299.97 110100.00 198.97 96100.00 199.94 91100.00 1100.00 1
APD-MVS_3200maxsize99.65 4699.55 5599.97 3199.99 4999.91 51100.00 199.48 7897.54 153100.00 1100.00 198.97 9699.99 9499.98 71100.00 1100.00 1
EPNet99.62 5399.69 2299.42 15499.99 4998.37 210100.00 199.89 3798.83 51100.00 1100.00 198.97 96100.00 199.90 9799.61 15299.89 159
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm298.64 15798.58 15598.81 20499.42 23297.12 27999.69 29799.37 19993.63 32299.94 14099.67 26598.96 9999.47 23798.62 22297.95 21099.83 185
TSAR-MVS + GP.99.61 5599.69 2299.35 16399.99 4998.06 235100.00 199.36 20599.83 2100.00 1100.00 198.95 10099.99 94100.00 199.11 160100.00 1
HPM-MVS_fast99.60 5899.49 6399.91 6899.99 4999.78 88100.00 199.42 13197.09 190100.00 1100.00 198.95 10099.96 13299.98 71100.00 1100.00 1
RE-MVS-def99.55 5599.99 4999.91 51100.00 199.42 13197.62 142100.00 1100.00 198.94 10299.99 59100.00 1100.00 1
WTY-MVS99.54 6399.40 6999.95 5199.81 12599.93 43100.00 1100.00 197.98 11099.84 157100.00 198.94 10299.98 11699.86 10598.21 19799.94 131
HY-MVS96.53 999.50 6799.35 7999.96 4299.81 12599.93 4399.64 302100.00 197.97 11299.84 15799.85 23398.94 10299.99 9499.86 10598.23 19699.95 126
MDTV_nov1_ep1398.94 12099.53 20098.36 21299.39 33099.46 9496.54 23199.99 10199.63 27798.92 10599.86 17098.30 23798.71 172
API-MVS99.72 2699.70 2199.79 10199.97 8899.37 13999.96 23699.94 2298.48 73100.00 1100.00 198.92 105100.00 1100.00 1100.00 1100.00 1
ACMMPcopyleft99.65 4699.57 4999.89 7399.99 4999.66 10399.75 28499.73 5698.16 9499.75 175100.00 198.90 107100.00 199.96 8399.88 126100.00 1
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMMP_NAP99.67 4399.57 4999.97 3199.98 8499.92 48100.00 199.42 13197.83 123100.00 1100.00 198.89 108100.00 199.98 71100.00 1100.00 1
test250699.48 7199.38 7199.75 11099.89 10999.51 11999.45 323100.00 198.38 7899.83 159100.00 198.86 10999.81 18499.25 18498.78 16899.94 131
MDTV_nov1_ep13_2view99.24 15299.56 31296.31 24699.96 11598.86 10998.92 20299.89 159
KD-MVS_2432*160094.15 31493.08 32397.35 28999.53 20097.83 25399.63 30499.19 28492.88 33996.29 33797.68 36598.84 11196.70 36489.73 35863.92 38897.53 339
miper_refine_blended94.15 31493.08 32397.35 28999.53 20097.83 25399.63 30499.19 28492.88 33996.29 33797.68 36598.84 11196.70 36489.73 35863.92 38897.53 339
dp98.72 14998.61 15199.03 19099.53 20097.39 26799.45 32399.39 19495.62 26999.94 14099.52 29598.83 11399.82 18196.77 28998.42 18299.89 159
TAMVS98.76 14698.73 14198.86 20199.44 23197.69 25799.57 31199.34 22096.57 22999.12 21499.81 24298.83 11399.16 25897.97 25097.91 21299.73 223
IB-MVS96.24 1297.54 21896.95 23299.33 16799.67 16198.10 232100.00 199.47 7997.42 16899.26 20599.69 26098.83 11399.89 16599.43 17178.77 379100.00 1
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DeepC-MVS_fast98.92 199.75 2099.67 2799.99 1299.99 4999.96 2499.73 29099.52 7299.06 12100.00 1100.00 198.80 116100.00 199.95 89100.00 1100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVS-pluss99.61 5599.50 6199.97 3199.98 8499.92 48100.00 199.42 13197.53 15599.77 172100.00 198.77 117100.00 199.99 59100.00 199.99 105
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pcd_1.5k_mvsjas8.24 36710.99 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.14 40198.75 1180.00 4010.00 4000.00 3990.00 397
PS-MVSNAJss98.03 19698.06 19197.94 26897.63 34097.33 27299.89 25799.23 26896.27 24798.03 28699.59 28598.75 11898.78 28798.52 22694.61 28297.70 309
PS-MVSNAJ99.64 4899.57 4999.85 8399.78 14299.81 8599.95 24299.42 13198.38 78100.00 1100.00 198.75 118100.00 199.88 10199.99 9799.74 219
dcpmvs_298.87 13999.53 5796.90 30899.87 11390.88 36099.94 24799.07 32798.20 92100.00 1100.00 198.69 12199.86 170100.00 1100.00 199.95 126
SR-MVS-dyc-post99.63 5199.52 5999.97 3199.99 4999.91 51100.00 199.42 13197.62 142100.00 1100.00 198.65 12299.99 9499.99 59100.00 1100.00 1
MTAPA99.68 4099.59 4499.97 3199.99 4999.91 51100.00 199.42 13198.32 8699.94 140100.00 198.65 122100.00 199.96 83100.00 1100.00 1
HPM-MVScopyleft99.59 5999.50 6199.89 73100.00 199.70 100100.00 199.42 13197.46 164100.00 1100.00 198.60 12499.96 13299.99 59100.00 1100.00 1
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MG-MVS99.75 2099.68 2599.97 31100.00 199.91 5199.98 22599.47 7999.09 9100.00 1100.00 198.59 125100.00 199.95 89100.00 1100.00 1
EPNet_dtu98.53 16898.23 18199.43 15299.92 10399.01 17599.96 23699.47 7998.80 5599.96 11599.96 20798.56 12699.30 25387.78 36799.68 145100.00 1
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
JIA-IIPM97.09 23796.34 25899.36 16298.88 28898.59 19999.81 26999.43 12184.81 37799.96 11590.34 38798.55 12799.52 23097.00 27898.28 19499.98 107
xiu_mvs_v2_base99.51 6499.41 6899.82 8999.70 15199.73 9499.92 25099.40 18198.15 96100.00 1100.00 198.50 128100.00 199.85 10799.13 15999.74 219
sss99.45 7499.34 8199.80 9999.76 14599.50 120100.00 199.91 3697.72 13199.98 10699.94 21998.45 129100.00 199.53 16798.75 17199.89 159
IS-MVSNet99.08 11298.91 12399.59 13399.65 16699.38 13699.78 27599.24 26496.70 21899.51 187100.00 198.44 13099.52 23098.47 22898.39 18599.88 170
GST-MVS99.64 4899.53 5799.95 51100.00 199.86 77100.00 199.79 4597.72 13199.95 138100.00 198.39 131100.00 199.96 8399.99 97100.00 1
114514_t99.39 7899.25 8799.81 9499.97 8899.48 127100.00 199.42 13195.53 272100.00 1100.00 198.37 13299.95 14499.97 81100.00 1100.00 1
baseline198.91 13698.61 15199.81 9499.71 14999.77 8999.78 27599.44 11597.51 15998.81 24099.99 18098.25 13399.76 19398.60 22395.41 25199.89 159
MP-MVScopyleft99.61 5599.49 6399.98 2399.99 4999.94 40100.00 199.42 13197.82 12499.99 101100.00 198.20 134100.00 199.99 59100.00 1100.00 1
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
miper_ehance_all_eth97.81 20397.66 20998.23 23799.49 22098.37 21099.99 20199.11 31594.78 29098.25 27799.21 31198.18 13598.57 30997.35 27192.61 29997.76 253
PHI-MVS99.50 6799.39 7099.82 89100.00 199.45 129100.00 199.94 2296.38 242100.00 1100.00 198.18 135100.00 1100.00 1100.00 1100.00 1
Vis-MVSNet (Re-imp)98.99 12798.89 12799.29 17299.64 17298.89 18399.98 22599.31 22996.74 21399.48 189100.00 198.11 13799.10 26098.39 23098.34 18999.89 159
DeepPCF-MVS98.03 498.54 16799.72 1994.98 33699.99 4984.94 375100.00 199.42 13199.98 1100.00 1100.00 198.11 137100.00 1100.00 1100.00 1100.00 1
cl2298.23 19098.11 18698.58 21799.82 11999.01 175100.00 199.28 24396.92 20198.33 26999.21 31198.09 13998.97 27098.72 21392.61 29997.76 253
mvsany_test199.57 6099.48 6699.85 8399.86 11499.54 113100.00 199.36 20598.94 35100.00 1100.00 197.97 140100.00 199.88 10199.28 157100.00 1
PatchT95.90 29794.95 31198.75 20799.03 26998.39 20799.08 36899.32 22485.52 37599.96 11594.99 37997.94 14198.05 34580.20 38398.47 17999.81 198
MVS_111021_LR99.70 3299.65 3199.88 7799.96 9399.70 100100.00 199.97 1798.96 30100.00 1100.00 197.93 14299.95 14499.99 59100.00 1100.00 1
c3_l97.58 21597.42 21698.06 25699.48 22298.16 22599.96 23699.10 31794.54 29998.13 28199.20 31397.87 14398.25 32897.28 27291.20 32397.75 264
MVS_030499.69 3599.63 3799.86 8199.96 9399.63 107100.00 199.92 3499.03 2099.97 110100.00 197.87 14399.96 132100.00 199.96 113100.00 1
MVS_111021_HR99.71 2999.63 3799.93 6699.95 9599.83 83100.00 1100.00 198.89 41100.00 1100.00 197.85 14599.95 144100.00 1100.00 1100.00 1
FA-MVS(test-final)99.00 12498.75 13999.73 11499.63 17499.43 13299.83 26599.43 12195.84 26399.52 18699.37 30497.84 14699.96 13297.63 25999.68 14599.79 211
CSCG99.28 9599.35 7999.05 18799.99 4997.15 278100.00 199.47 7997.44 16699.42 193100.00 197.83 147100.00 199.99 59100.00 1100.00 1
CS-MVS99.33 8799.27 8399.50 14499.99 4999.00 177100.00 199.13 30797.26 18199.96 115100.00 197.79 14899.64 20499.64 15199.67 14799.87 178
ET-MVSNet_ETH3D96.41 26995.48 29999.20 18199.81 12599.75 91100.00 199.02 34397.30 18078.33 387100.00 197.73 14997.94 34999.70 13587.41 35499.92 143
tpm cat198.05 19597.76 20398.92 19799.50 21697.10 28199.77 28099.30 23390.20 36199.72 17898.71 34297.71 15099.86 17096.75 29098.20 19899.81 198
test_fmvsmvis_n_192099.46 7399.37 7499.73 11498.88 28899.18 160100.00 199.26 25798.85 4799.79 169100.00 197.70 151100.00 199.98 7199.86 130100.00 1
DELS-MVS99.62 5399.56 5499.82 8999.92 10399.45 129100.00 199.78 4798.92 3799.73 177100.00 197.70 151100.00 199.93 93100.00 1100.00 1
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DIV-MVS_self_test97.52 22197.35 22198.05 26099.46 22898.11 230100.00 199.10 31794.21 30997.62 30799.63 27797.65 15398.29 32596.47 29191.98 31097.76 253
tpmvs98.59 16298.38 16899.23 17999.69 15297.90 24799.31 33999.47 7994.52 30099.68 18099.28 30997.64 15499.89 16597.71 25698.17 20199.89 159
tpm98.24 18998.22 18298.32 23199.13 25795.79 30199.53 31699.12 31395.20 28399.96 11599.36 30597.58 15599.28 25597.41 26796.67 23999.88 170
ADS-MVSNet298.28 18798.51 15997.62 28099.51 21295.03 31099.24 34499.41 17795.52 27499.96 11599.70 25797.57 15697.94 34997.11 27598.54 17499.88 170
ADS-MVSNet98.70 15398.51 15999.28 17599.51 21298.39 20799.24 34499.44 11595.52 27499.96 11599.70 25797.57 15699.58 21197.11 27598.54 17499.88 170
CS-MVS-test99.31 9199.27 8399.43 15299.99 4998.77 187100.00 199.19 28497.24 18299.96 115100.00 197.56 15899.70 20199.68 14399.81 13899.82 190
cl____97.54 21897.32 22298.18 24199.47 22598.14 229100.00 199.10 31794.16 31297.60 30999.63 27797.52 15998.65 29996.47 29191.97 31197.76 253
h-mvs3397.03 24296.53 24798.51 21999.79 13995.90 30099.45 32399.45 10298.21 90100.00 199.78 24897.49 16099.99 9499.72 12974.92 38199.65 231
hse-mvs296.79 24996.38 25598.04 26299.68 15695.54 30499.81 26999.42 13198.21 90100.00 199.80 24597.49 16099.46 24199.72 12973.27 38499.12 241
EIA-MVS99.26 9899.19 9799.45 14999.63 17498.75 188100.00 199.27 25196.93 19999.95 138100.00 197.47 16299.79 18699.74 12699.72 14399.82 190
Test_1112_low_res98.83 14298.60 15399.51 14299.69 15298.75 18899.99 20199.14 30396.81 20898.84 23799.06 31897.45 16399.89 16598.66 21597.75 22499.89 159
1112_ss98.91 13698.71 14499.51 14299.69 15298.75 18899.99 20199.15 29896.82 20798.84 237100.00 197.45 16399.89 16598.66 21597.75 22499.89 159
ETV-MVS99.34 8599.24 8999.64 12699.58 19099.33 141100.00 199.25 25997.57 15199.96 115100.00 197.44 16599.79 18699.70 13599.65 14999.81 198
CPTT-MVS99.49 6999.38 7199.85 83100.00 199.54 113100.00 199.42 13197.58 15099.98 106100.00 197.43 166100.00 199.99 59100.00 1100.00 1
miper_lstm_enhance97.40 22597.28 22497.75 27799.48 22297.52 262100.00 199.07 32794.08 31398.01 28999.61 28397.38 16797.98 34796.44 29491.47 32097.76 253
test_fmvsmconf_n99.56 6199.46 6799.86 8199.68 15699.58 110100.00 199.31 22998.92 3799.88 153100.00 197.35 16899.99 9499.98 7199.99 97100.00 1
test_fmvsm_n_192099.55 6299.49 6399.73 11499.85 11599.19 158100.00 199.41 17798.87 45100.00 1100.00 197.34 169100.00 199.98 7199.90 123100.00 1
EI-MVSNet97.98 19897.93 19898.16 24499.11 25897.84 25299.74 28599.29 23794.39 30598.65 248100.00 197.21 17098.88 28097.62 26195.31 25597.75 264
IterMVS-LS97.56 21697.44 21597.92 27199.38 24397.90 24799.89 25799.10 31794.41 30498.32 27099.54 29497.21 17098.11 33697.50 26391.62 31597.75 264
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tfpn200view999.26 9899.03 10799.96 4299.81 12599.89 65100.00 199.94 2297.23 18399.83 15999.96 20797.04 172100.00 199.59 15797.85 21699.98 107
thres40099.26 9899.03 10799.95 5199.81 12599.89 65100.00 199.94 2297.23 18399.83 15999.96 20797.04 172100.00 199.59 15797.85 21699.97 114
thres20099.27 9699.04 10699.96 4299.81 12599.90 58100.00 199.94 2297.31 17899.83 15999.96 20797.04 172100.00 199.62 15597.88 21499.98 107
131499.38 7999.19 9799.96 4298.88 28899.89 6599.24 34499.93 3098.88 4298.79 242100.00 197.02 175100.00 1100.00 1100.00 1100.00 1
thres100view90099.25 10199.01 10999.95 5199.81 12599.87 74100.00 199.94 2297.13 18899.83 15999.96 20797.01 176100.00 199.59 15797.85 21699.98 107
thres600view799.24 10499.00 11199.95 5199.81 12599.87 74100.00 199.94 2297.13 18899.83 15999.96 20797.01 176100.00 199.54 16597.77 22399.97 114
OMC-MVS99.27 9699.38 7198.96 19599.95 9597.06 282100.00 199.40 18198.83 5199.88 153100.00 197.01 17699.86 17099.47 17099.84 13599.97 114
xiu_mvs_v1_base_debu99.35 8299.21 9399.79 10199.67 16199.71 9699.78 27599.36 20598.13 98100.00 1100.00 197.00 179100.00 199.83 11199.07 16199.66 228
xiu_mvs_v1_base99.35 8299.21 9399.79 10199.67 16199.71 9699.78 27599.36 20598.13 98100.00 1100.00 197.00 179100.00 199.83 11199.07 16199.66 228
xiu_mvs_v1_base_debi99.35 8299.21 9399.79 10199.67 16199.71 9699.78 27599.36 20598.13 98100.00 1100.00 197.00 179100.00 199.83 11199.07 16199.66 228
CR-MVSNet98.02 19797.71 20898.93 19699.31 24698.86 18499.13 36299.00 34696.53 23299.96 11598.98 32796.94 18298.10 33991.18 34798.40 18399.84 182
Patchmtry96.81 24896.37 25698.14 24699.31 24698.55 20098.91 37399.00 34690.45 35797.92 29498.98 32796.94 18298.12 33494.27 32291.53 31797.75 264
eth_miper_zixun_eth97.47 22297.28 22498.06 25699.41 23497.94 24599.62 30699.08 32394.46 30398.19 28099.56 29196.91 18498.50 31596.78 28791.49 31897.74 287
EC-MVSNet99.19 10799.09 10499.48 14799.42 23299.07 167100.00 199.21 28096.95 19899.96 115100.00 196.88 18599.48 23599.64 15199.79 14199.88 170
LS3D99.31 9199.13 10299.87 7899.99 4999.71 9699.55 31399.46 9497.32 17699.82 167100.00 196.85 18699.97 12199.14 192100.00 199.92 143
MVSFormer98.94 13498.82 13099.28 17599.45 22999.49 123100.00 199.13 30795.46 27999.97 110100.00 196.76 18798.59 30698.63 220100.00 199.74 219
lupinMVS99.29 9499.16 10099.69 11999.45 22999.49 123100.00 199.15 29897.45 16599.97 110100.00 196.76 18799.76 19399.67 146100.00 199.81 198
MAR-MVS99.49 6999.36 7799.89 7399.97 8899.66 10399.74 28599.95 1997.89 119100.00 1100.00 196.71 189100.00 1100.00 1100.00 1100.00 1
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MM99.94 6399.82 84100.00 199.97 1799.11 7100.00 1100.00 196.65 190100.00 1100.00 199.97 110100.00 1
MSDG98.90 13898.63 14999.70 11899.92 10399.25 150100.00 199.37 19995.71 26699.40 199100.00 196.58 19199.95 14496.80 28699.94 11799.91 145
PVSNet_BlendedMVS98.71 15198.62 15098.98 19499.98 8499.60 108100.00 1100.00 197.23 183100.00 199.03 32396.57 19299.99 94100.00 194.75 27897.35 348
PVSNet_Blended99.48 7199.36 7799.83 8799.98 8499.60 108100.00 1100.00 197.79 126100.00 1100.00 196.57 19299.99 94100.00 199.88 12699.90 154
MVS_Test98.93 13598.65 14799.77 10899.62 17999.50 12099.99 20199.19 28495.52 27499.96 11599.86 22996.54 19499.98 11698.65 21798.48 17899.82 190
PMMVS99.12 10998.97 11499.58 13799.57 19398.98 179100.00 199.30 23397.14 18799.96 115100.00 196.53 19599.82 18199.70 13598.49 17799.94 131
PVSNet_Blended_VisFu99.33 8799.18 9999.78 10599.82 11999.49 123100.00 199.95 1997.36 17199.63 182100.00 196.45 19699.95 14499.79 11799.65 14999.89 159
mvs_anonymous98.80 14498.60 15399.38 16199.57 19399.24 152100.00 199.21 28095.87 25898.92 22899.82 23996.39 19799.03 26399.13 19498.50 17699.88 170
DP-MVS98.86 14098.54 15799.81 9499.97 8899.45 12999.52 31799.40 18194.35 30698.36 266100.00 196.13 19899.97 12199.12 195100.00 1100.00 1
PVSNet94.91 1899.30 9399.25 8799.44 150100.00 198.32 216100.00 199.86 3898.04 105100.00 1100.00 196.10 199100.00 199.55 16299.73 142100.00 1
RRT_MVS97.77 20597.76 20397.78 27697.89 33297.06 282100.00 199.29 23795.74 26598.00 29199.97 19395.94 20098.55 31298.87 20594.18 28597.72 300
Effi-MVS+-dtu98.51 17198.86 12897.47 28499.77 14494.21 333100.00 198.94 35197.61 14699.91 14698.75 34195.89 20199.51 23299.36 17599.48 15598.68 246
our_test_396.51 26496.35 25796.98 30497.61 34295.05 30999.98 22599.01 34594.68 29496.77 33199.06 31895.87 20298.14 33291.81 34392.37 30497.75 264
UA-Net99.06 11498.83 12999.74 11199.52 20799.40 13599.08 36899.45 10297.64 14099.83 159100.00 195.80 20399.94 15698.35 23299.80 14099.88 170
FMVSNet595.32 30595.43 30294.99 33599.39 24292.99 34599.25 34399.24 26490.45 35797.44 31498.45 35295.78 20494.39 38187.02 36891.88 31297.59 335
CVMVSNet98.56 16598.47 16298.82 20299.11 25897.67 25899.74 28599.47 7997.57 15199.06 220100.00 195.72 20598.97 27098.21 24097.33 23199.83 185
mvsmamba98.13 19298.06 19198.32 23198.22 31998.50 203100.00 199.22 27196.41 23998.91 23099.96 20795.69 20698.73 29499.19 19194.95 27797.73 293
RPMNet95.26 30793.82 31599.56 14099.31 24698.86 18499.13 36299.42 13179.82 38499.96 11595.13 37795.69 20699.98 11677.54 38798.40 18399.84 182
MVS99.22 10598.96 11599.98 2399.00 27599.95 3299.24 34499.94 2298.14 9798.88 232100.00 195.63 208100.00 199.85 107100.00 1100.00 1
jason99.11 11098.96 11599.59 13399.17 25599.31 144100.00 199.13 30797.38 17099.83 159100.00 195.54 20999.72 19999.57 16199.97 11099.74 219
jason: jason.
AdaColmapbinary99.44 7599.26 8699.95 51100.00 199.86 7799.70 29599.99 1398.53 7199.90 148100.00 195.34 210100.00 199.92 94100.00 1100.00 1
CANet99.40 7799.24 8999.89 7399.99 4999.76 90100.00 199.73 5698.40 7799.78 171100.00 195.28 21199.96 132100.00 199.99 9799.96 120
FIs97.95 19997.73 20798.62 21298.53 30499.24 152100.00 199.43 12196.74 21397.87 29799.82 23995.27 21298.89 27798.78 20993.07 29497.74 287
canonicalmvs99.03 11898.73 14199.94 6399.75 14799.95 32100.00 199.30 23397.64 140100.00 1100.00 195.22 21399.97 12199.76 12496.90 23899.91 145
fmvsm_s_conf0.5_n_a99.32 8999.15 10199.81 9499.80 13599.47 128100.00 199.35 21498.22 89100.00 1100.00 195.21 21499.99 9499.96 8399.86 13099.98 107
FC-MVSNet-test97.84 20197.63 21198.45 22298.30 31499.05 170100.00 199.43 12196.63 22797.61 30899.82 23995.19 21598.57 30998.64 21893.05 29597.73 293
UniMVSNet_NR-MVSNet97.16 23496.80 23798.22 23898.38 30898.41 204100.00 199.45 10296.14 25397.76 29999.64 27395.05 21698.50 31597.98 24786.84 35797.75 264
Fast-Effi-MVS+-dtu98.38 18198.56 15697.82 27499.58 19094.44 330100.00 199.16 29796.75 21199.51 18799.63 27795.03 21799.60 20597.71 25699.67 14799.42 236
UniMVSNet (Re)97.29 23096.85 23698.59 21598.49 30599.13 165100.00 199.42 13196.52 23398.24 27998.90 33594.93 21898.89 27797.54 26287.61 35397.75 264
BH-w/o98.82 14398.81 13298.88 20099.62 17996.71 290100.00 199.28 24397.09 19098.81 240100.00 194.91 21999.96 13299.54 165100.00 199.96 120
AUN-MVS96.26 28095.67 29198.06 25699.68 15695.60 30399.82 26899.42 13196.78 21099.88 15399.80 24594.84 22099.47 23797.48 26473.29 38399.12 241
test_fmvsmconf0.1_n99.25 10199.05 10599.82 8998.92 28499.55 111100.00 199.23 26898.91 3999.75 17599.97 19394.79 22199.94 15699.94 9199.99 9799.97 114
PCF-MVS98.23 398.69 15498.37 17099.62 12899.78 14299.02 17399.23 34999.06 33596.43 23698.08 282100.00 194.72 22299.95 14498.16 24199.91 12299.90 154
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VNet99.04 11698.75 13999.90 7199.81 12599.75 9199.50 31999.47 7998.36 82100.00 199.99 18094.66 223100.00 199.90 9797.09 23399.96 120
diffmvspermissive98.96 13198.73 14199.63 12799.54 19799.16 163100.00 199.18 29197.33 17599.96 115100.00 194.60 22499.91 16299.66 14998.33 19299.82 190
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-untuned98.64 15798.65 14798.60 21399.59 18596.17 296100.00 199.28 24396.67 22398.41 265100.00 194.52 22599.83 17899.41 173100.00 199.81 198
nrg03097.64 21197.27 22698.75 20798.34 30999.53 115100.00 199.22 27196.21 25198.27 27599.95 21594.40 22698.98 26899.23 18789.78 33597.75 264
ppachtmachnet_test96.17 28595.89 27697.02 30197.61 34295.24 30699.99 20199.24 26493.31 33196.71 33299.62 28194.34 22798.07 34189.87 35792.30 30697.75 264
D2MVS97.63 21497.83 20197.05 29998.83 29594.60 326100.00 199.82 4096.89 20498.28 27399.03 32394.05 22899.47 23798.58 22594.97 27597.09 354
RPSCF97.37 22698.24 17894.76 33999.80 13584.57 37699.99 20199.05 33794.95 28799.82 167100.00 194.03 229100.00 198.15 24298.38 18699.70 224
CANet_DTU99.02 12298.90 12699.41 15599.88 11198.71 192100.00 199.29 23798.84 49100.00 1100.00 194.02 230100.00 198.08 24399.96 11399.52 234
LCM-MVSNet-Re96.52 26297.21 22994.44 34099.27 25085.80 37399.85 26396.61 39095.98 25592.75 36498.48 35193.97 23197.55 35999.58 16098.43 18199.98 107
Effi-MVS+98.58 16398.24 17899.61 12999.60 18399.26 14897.85 38499.10 31796.22 25099.97 11099.89 22593.75 23299.77 19199.43 17198.34 18999.81 198
pmmvs497.17 23396.80 23798.27 23497.68 33998.64 197100.00 199.18 29194.22 30898.55 25599.71 25493.67 23398.47 31895.66 30392.57 30297.71 308
CHOSEN 1792x268899.00 12498.91 12399.25 17899.90 10797.79 255100.00 199.99 1398.79 5898.28 273100.00 193.63 23499.95 14499.66 14999.95 116100.00 1
fmvsm_s_conf0.5_n99.21 10699.01 10999.83 8799.84 11699.53 115100.00 199.38 19698.29 88100.00 1100.00 193.62 23599.99 9499.99 5999.93 11999.98 107
cdsmvs_eth3d_5k24.41 36532.55 3670.00 3820.00 4040.00 4070.00 39399.39 1940.00 4000.00 401100.00 193.55 2360.00 4010.00 4000.00 3990.00 397
AllTest98.55 16698.40 16698.99 19299.93 10097.35 269100.00 199.40 18197.08 19299.09 21699.98 18593.37 23799.95 14496.94 27999.84 13599.68 226
TestCases98.99 19299.93 10097.35 26999.40 18197.08 19299.09 21699.98 18593.37 23799.95 14496.94 27999.84 13599.68 226
FMVSNet397.30 22996.95 23298.37 22799.65 16699.25 15099.71 29399.28 24394.23 30798.53 25798.91 33493.30 23998.11 33695.31 30993.60 28897.73 293
Fast-Effi-MVS+98.40 18098.02 19599.55 14199.63 17499.06 169100.00 199.15 29895.07 28499.42 19399.95 21593.26 24099.73 19897.44 26598.24 19599.87 178
bld_raw_dy_0_6497.71 20997.56 21298.15 24597.83 33598.16 22599.95 24299.12 31395.95 25798.73 24599.97 19393.19 24198.63 30098.64 21894.69 28097.66 320
baseline98.69 15498.45 16399.41 15599.52 20798.67 195100.00 199.17 29697.03 19599.13 213100.00 193.17 24299.74 19699.70 13598.34 18999.81 198
QAPM98.99 12798.66 14699.96 4299.01 27199.87 7499.88 25999.93 3097.99 10898.68 247100.00 193.17 242100.00 199.32 179100.00 1100.00 1
PatchMatch-RL99.02 12298.78 13499.74 11199.99 4999.29 145100.00 1100.00 198.38 7899.89 15199.81 24293.14 24499.99 9497.85 25399.98 10799.95 126
WR-MVS_H96.73 25296.32 26097.95 26798.26 31697.88 24999.72 29299.43 12195.06 28596.99 32298.68 34493.02 24598.53 31397.43 26688.33 34997.43 344
3Dnovator95.63 1499.06 11498.76 13799.96 4298.86 29299.90 5899.98 22599.93 3098.95 3398.49 262100.00 192.91 246100.00 199.71 132100.00 1100.00 1
WB-MVS88.24 34490.09 34082.68 37091.56 38469.51 390100.00 198.73 36190.72 35687.29 37998.12 35992.87 24785.01 39262.19 39389.34 34093.54 381
3Dnovator+95.58 1599.03 11898.71 14499.96 4298.99 27899.89 65100.00 199.51 7698.96 3098.32 270100.00 192.78 248100.00 199.87 104100.00 1100.00 1
casdiffmvspermissive98.65 15698.38 16899.46 14899.52 20798.74 191100.00 199.15 29896.91 20299.05 221100.00 192.75 24999.83 17899.70 13598.38 18699.81 198
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive98.64 15798.39 16799.40 15799.50 21698.60 198100.00 199.22 27196.85 20599.10 215100.00 192.75 24999.78 19099.71 13298.35 18899.81 198
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NR-MVSNet96.63 25896.04 27098.38 22698.31 31298.98 17999.22 35199.35 21495.87 25894.43 35799.65 26992.73 25198.40 32196.78 28788.05 35097.75 264
SSC-MVS87.61 34589.47 34382.04 37190.63 38768.77 39199.99 20198.66 36290.34 35986.70 38098.08 36092.72 25284.12 39359.41 39688.71 34793.22 384
COLMAP_ROBcopyleft97.10 798.29 18698.17 18398.65 21099.94 9897.39 26799.30 34099.40 18195.64 26797.75 302100.00 192.69 25399.95 14498.89 20399.92 12198.62 248
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EU-MVSNet96.63 25896.53 24796.94 30697.59 34496.87 28699.76 28299.47 7996.35 24396.85 32799.78 24892.57 25496.27 37295.33 30891.08 32497.68 315
MVP-Stereo96.51 26496.48 25196.60 31895.65 37094.25 33298.84 37598.16 36795.85 26295.23 34899.04 32192.54 25599.13 25992.98 33599.98 10796.43 366
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Syy-MVS96.17 28596.57 24695.00 33499.50 21687.37 371100.00 199.57 6896.23 24898.07 283100.00 192.41 25697.81 35285.34 37297.96 20899.82 190
DeepC-MVS97.84 599.00 12498.80 13399.60 13199.93 10099.03 172100.00 199.40 18198.61 6999.33 202100.00 192.23 25799.95 14499.74 12699.96 11399.83 185
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DU-MVS96.93 24696.49 25098.22 23898.31 31298.41 204100.00 199.37 19996.41 23997.76 29999.65 26992.14 25898.50 31597.98 24786.84 35797.75 264
Baseline_NR-MVSNet96.16 28795.70 28797.56 28398.28 31596.79 289100.00 197.86 37891.93 34797.63 30599.47 29992.14 25898.35 32397.13 27486.83 35997.54 338
cascas98.43 17598.07 19099.50 14499.65 16699.02 173100.00 199.22 27194.21 30999.72 17899.98 18592.03 26099.93 15999.68 14398.12 20299.54 233
test_djsdf97.55 21797.38 21998.07 25297.50 34897.99 239100.00 199.13 30795.46 27998.47 26399.85 23392.01 26198.59 30698.63 22095.36 25397.62 331
v896.35 27595.73 28698.21 24098.11 32498.23 22299.94 24799.07 32792.66 34398.29 27299.00 32691.46 26298.77 29094.17 32388.83 34697.62 331
OpenMVScopyleft95.20 1798.76 14698.41 16599.78 10598.89 28799.81 8599.99 20199.76 4998.02 10698.02 288100.00 191.44 263100.00 199.63 15499.97 11099.55 232
v14896.29 27895.84 27897.63 27897.74 33796.53 294100.00 199.07 32793.52 32598.01 28999.42 30291.22 26498.60 30496.37 29587.22 35697.75 264
GeoE98.06 19497.65 21099.29 17299.47 22598.41 204100.00 199.19 28494.85 28998.88 232100.00 191.21 26599.59 20797.02 27798.19 19999.88 170
XVG-OURS98.30 18498.36 17298.13 24999.58 19095.91 299100.00 199.36 20598.69 6399.23 206100.00 191.20 26699.92 16199.34 17797.82 21998.56 249
WR-MVS97.09 23796.64 24298.46 22198.43 30699.09 16699.97 23199.33 22295.62 26997.76 29999.67 26591.17 26798.56 31198.49 22789.28 34197.74 287
V4296.65 25796.16 26698.11 25198.17 32398.23 22299.99 20199.09 32293.97 31498.74 24499.05 32091.09 26898.82 28595.46 30789.90 33397.27 350
v1096.14 28995.50 29598.07 25298.19 32197.96 24399.83 26599.07 32792.10 34698.07 28398.94 33291.07 26998.61 30292.41 34189.82 33497.63 329
dmvs_testset93.27 32295.48 29986.65 36398.74 29668.42 39299.92 25098.91 35496.19 25293.28 361100.00 191.06 27091.67 38889.64 36091.54 31699.86 180
v7n96.06 29395.42 30397.99 26697.58 34597.35 26999.86 26199.11 31592.81 34297.91 29599.49 29790.99 27198.92 27392.51 33888.49 34897.70 309
v114496.51 26495.97 27498.13 24997.98 32998.04 23799.99 20199.08 32393.51 32698.62 25198.98 32790.98 27298.62 30193.79 32990.79 32797.74 287
dmvs_re97.54 21897.88 19996.54 31999.55 19690.35 36299.86 26199.46 9497.00 19699.41 198100.00 190.78 27399.30 25399.60 15695.24 26099.96 120
ab-mvs98.42 17798.02 19599.61 12999.71 14999.00 17799.10 36599.64 6496.70 21899.04 22299.81 24290.64 27499.98 11699.64 15197.93 21199.84 182
Anonymous20240521197.87 20097.53 21398.90 19899.81 12596.70 29199.35 33499.46 9492.98 33798.83 23999.99 18090.63 275100.00 199.70 13597.03 234100.00 1
Anonymous2023120693.45 32093.17 32294.30 34395.00 37589.69 36499.98 22598.43 36493.30 33294.50 35698.59 34790.52 27695.73 37777.46 38890.73 32997.48 343
anonymousdsp97.16 23496.88 23498.00 26497.08 35898.06 23599.81 26999.15 29894.58 29797.84 29899.62 28190.49 27798.60 30497.98 24795.32 25497.33 349
v2v48296.70 25596.18 26498.27 23498.04 32698.39 207100.00 199.13 30794.19 31198.58 25399.08 31790.48 27898.67 29795.69 30290.44 33197.75 264
v14419296.40 27295.81 27998.17 24397.89 33298.11 23099.99 20199.06 33593.39 32898.75 24399.09 31690.43 27998.66 29893.10 33490.55 33097.75 264
Vis-MVSNetpermissive98.52 16998.25 17699.34 16499.68 15698.55 20099.68 29999.41 17797.34 17499.94 140100.00 190.38 28099.70 20199.03 19898.84 16699.76 217
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvsmconf0.01_n98.60 16198.24 17899.67 12196.90 35999.21 15699.99 20199.04 34098.80 5599.57 18499.96 20790.12 28199.91 16299.89 9999.89 12499.90 154
CP-MVSNet96.73 25296.25 26198.18 24198.21 32098.67 19599.77 28099.32 22495.06 28597.20 31999.65 26990.10 28298.19 32998.06 24588.90 34497.66 320
TranMVSNet+NR-MVSNet96.45 26896.01 27197.79 27598.00 32897.62 260100.00 199.35 21495.98 25597.31 31699.64 27390.09 28398.00 34696.89 28286.80 36097.75 264
SDMVSNet98.49 17298.08 18899.73 11499.82 11999.53 11599.99 20199.45 10297.62 14299.38 20099.86 22990.06 28499.88 16999.92 9496.61 24199.79 211
DSMNet-mixed95.18 30895.21 30695.08 33196.03 36590.21 36399.65 30193.64 39692.91 33898.34 26897.40 36890.05 28595.51 37891.02 34997.86 21599.51 235
N_pmnet91.88 33293.37 32187.40 36297.24 35766.33 39599.90 25491.05 39889.77 36395.65 34698.58 34890.05 28598.11 33685.39 37192.72 29897.75 264
fmvsm_s_conf0.1_n_a98.71 15198.36 17299.78 10599.09 26199.42 133100.00 199.26 25797.42 168100.00 1100.00 189.78 28799.96 13299.82 11699.85 13399.97 114
GA-MVS97.72 20897.27 22699.06 18599.24 25397.93 246100.00 199.24 26495.80 26498.99 22599.64 27389.77 28899.36 24895.12 31397.62 22999.89 159
fmvsm_s_conf0.1_n98.77 14598.42 16499.82 8999.47 22599.52 118100.00 199.27 25197.53 155100.00 1100.00 189.73 28999.96 13299.84 11099.93 11999.97 114
MIMVSNet97.06 24096.73 24098.05 26099.38 24396.64 29398.47 38099.35 21493.41 32799.48 18998.53 34989.66 29097.70 35894.16 32598.11 20399.80 209
IterMVS-SCA-FT96.72 25496.42 25497.62 28099.40 23996.83 28799.99 20199.14 30394.65 29697.55 31199.72 25289.65 29198.31 32495.62 30592.05 30897.73 293
SCA98.30 18497.98 19799.23 17999.41 23498.25 22199.99 20199.45 10296.91 20299.76 17499.58 28789.65 29199.54 22498.31 23498.79 16799.91 145
IterMVS96.76 25196.46 25297.63 27899.41 23496.89 28599.99 20199.13 30794.74 29397.59 31099.66 26789.63 29398.28 32695.71 30192.31 30597.72 300
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v119296.18 28395.49 29798.26 23698.01 32798.15 22799.99 20199.08 32393.36 32998.54 25698.97 33089.47 29498.89 27791.15 34890.82 32697.75 264
v192192096.16 28795.50 29598.14 24697.88 33497.96 24399.99 20199.07 32793.33 33098.60 25299.24 31089.37 29598.71 29591.28 34690.74 32897.75 264
XVG-OURS-SEG-HR98.27 18898.31 17498.14 24699.59 18595.92 298100.00 199.36 20598.48 7399.21 207100.00 189.27 29699.94 15699.76 12499.17 15898.56 249
test20.0393.11 32392.85 32793.88 34895.19 37491.83 353100.00 198.87 35793.68 32092.76 36398.88 33689.20 29792.71 38677.88 38689.19 34297.09 354
MDA-MVSNet_test_wron92.61 32791.09 33597.19 29796.71 36197.26 275100.00 199.14 30388.61 36667.90 39398.32 35789.03 29896.57 36790.47 35489.59 33697.74 287
BH-RMVSNet98.46 17398.08 18899.59 13399.61 18199.19 158100.00 199.28 24397.06 19498.95 227100.00 188.99 29999.82 18198.83 208100.00 199.77 215
v124095.96 29595.25 30498.07 25297.91 33197.87 25199.96 23699.07 32793.24 33398.64 25098.96 33188.98 30098.61 30289.58 36190.92 32597.75 264
Anonymous2023121196.29 27895.70 28798.07 25299.80 13597.49 26399.15 36099.40 18189.11 36497.75 30299.45 30088.93 30198.98 26898.26 23989.47 33897.73 293
TR-MVS98.14 19197.74 20599.33 16799.59 18598.28 21999.27 34199.21 28096.42 23899.15 21299.94 21988.87 30299.79 18698.88 20498.29 19399.93 141
CL-MVSNet_self_test91.07 33690.35 33993.24 35093.27 37889.16 36699.55 31399.25 25992.34 34495.23 34897.05 37088.86 30393.59 38480.67 38166.95 38796.96 357
YYNet192.44 32890.92 33697.03 30096.20 36397.06 28299.99 20199.14 30388.21 36967.93 39298.43 35488.63 30496.28 37190.64 35089.08 34397.74 287
HQP2-MVS88.61 305
HQP-MVS97.73 20797.85 20097.39 28699.07 26394.82 314100.00 199.40 18199.04 1599.17 20899.97 19388.61 30599.57 21299.79 11795.58 24597.77 251
HQP_MVS97.71 20997.82 20297.37 28799.00 27594.80 317100.00 199.40 18199.00 2799.08 21899.97 19388.58 30799.55 22199.79 11795.57 24997.76 253
plane_prior699.06 26794.80 31788.58 307
tfpnnormal96.36 27495.69 29098.37 22798.55 30298.71 19299.69 29799.45 10293.16 33596.69 33399.71 25488.44 30998.99 26794.17 32391.38 32197.41 345
test111198.42 17798.12 18599.29 17299.88 11198.15 22799.46 321100.00 198.36 8299.42 193100.00 187.91 31099.79 18699.31 18098.78 16899.94 131
ECVR-MVScopyleft98.43 17598.14 18499.32 16999.89 10998.21 22499.46 321100.00 198.38 7899.47 192100.00 187.91 31099.80 18599.35 17698.78 16899.94 131
TransMVSNet (Re)94.78 31093.72 31697.93 27098.34 30997.88 24999.23 34997.98 37591.60 34894.55 35499.71 25487.89 31298.36 32289.30 36384.92 36397.56 337
DTE-MVSNet95.52 30294.99 31097.08 29897.49 35096.45 295100.00 199.25 25993.82 31696.17 34099.57 29087.81 31397.18 36094.57 31886.26 36297.62 331
XXY-MVS97.14 23696.63 24398.67 20998.65 29898.92 18299.54 31599.29 23795.57 27197.63 30599.83 23687.79 31499.35 25098.39 23092.95 29697.75 264
UGNet98.41 17998.11 18699.31 17199.54 19798.55 20099.18 352100.00 198.64 6899.79 16999.04 32187.61 315100.00 199.30 18199.89 12499.40 237
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CLD-MVS97.64 21197.74 20597.36 28899.01 27194.76 322100.00 199.34 22099.30 499.00 22499.97 19387.49 31699.57 21299.96 8395.58 24597.75 264
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_cas_vis1_n_192098.63 16098.25 17699.77 10899.69 15299.32 142100.00 199.31 22998.84 4999.96 115100.00 187.42 31799.99 9499.14 19299.86 130100.00 1
PEN-MVS96.01 29495.48 29997.58 28297.74 33797.26 27599.90 25499.29 23794.55 29896.79 32999.55 29287.38 31897.84 35196.92 28187.24 35597.65 325
ACMM97.17 697.37 22697.40 21897.29 29299.01 27194.64 325100.00 199.25 25998.07 10498.44 26499.98 18587.38 31899.55 22199.25 18495.19 26397.69 313
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
jajsoiax97.07 23996.79 23997.89 27297.28 35697.12 27999.95 24299.19 28496.55 23097.31 31699.69 26087.35 32098.91 27498.70 21495.12 26997.66 320
pmmvs595.94 29695.61 29296.95 30597.42 35394.66 323100.00 198.08 37193.60 32397.05 32199.43 30187.02 32198.46 31995.76 29992.12 30797.72 300
VPA-MVSNet97.03 24296.43 25398.82 20298.64 29999.32 14299.38 33199.47 7996.73 21598.91 23098.94 33287.00 32299.40 24699.23 18789.59 33697.76 253
PS-CasMVS96.34 27695.78 28398.03 26398.18 32298.27 22099.71 29399.32 22494.75 29196.82 32899.65 26986.98 32398.15 33197.74 25588.85 34597.66 320
LPG-MVS_test97.31 22897.32 22297.28 29398.85 29394.60 326100.00 199.37 19997.35 17298.85 23599.98 18586.66 32499.56 21699.55 16295.26 25797.70 309
LGP-MVS_train97.28 29398.85 29394.60 32699.37 19997.35 17298.85 23599.98 18586.66 32499.56 21699.55 16295.26 25797.70 309
mvs_tets97.00 24496.69 24197.94 26897.41 35597.27 27499.60 30899.18 29196.51 23497.35 31599.69 26086.53 32698.91 27498.84 20695.09 27197.65 325
pm-mvs195.76 29995.01 30998.00 26498.23 31897.45 26599.24 34499.04 34093.13 33695.93 34499.72 25286.28 32798.84 28295.62 30587.92 35197.72 300
KD-MVS_self_test91.16 33590.09 34094.35 34294.44 37791.27 35899.74 28599.08 32390.82 35594.53 35594.91 38086.11 32894.78 38082.67 37768.52 38696.99 356
MVS-HIRNet94.12 31692.73 32998.29 23399.33 24595.95 29799.38 33199.19 28474.54 38798.26 27686.34 39186.07 32999.06 26291.60 34599.87 12999.85 181
DeepMVS_CXcopyleft89.98 35698.90 28671.46 38799.18 29197.61 14696.92 32399.83 23686.07 32999.83 17896.02 29797.65 22898.65 247
OPM-MVS97.21 23197.18 23097.32 29198.08 32594.66 323100.00 199.28 24398.65 6798.92 22899.98 18586.03 33199.56 21698.28 23895.41 25197.72 300
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
new_pmnet94.11 31793.47 32096.04 32796.60 36292.82 34699.97 23198.91 35490.21 36095.26 34798.05 36385.89 33298.14 33284.28 37492.01 30997.16 352
ACMP97.00 897.19 23297.16 23197.27 29598.97 28094.58 329100.00 199.32 22497.97 11297.45 31399.98 18585.79 33399.56 21699.70 13595.24 26097.67 319
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OurMVSNet-221017-096.14 28995.98 27396.62 31797.49 35093.44 34099.92 25098.16 36795.86 26097.65 30499.95 21585.71 33498.78 28794.93 31594.18 28597.64 328
sd_testset97.81 20397.48 21498.79 20599.82 11996.80 28899.32 33699.45 10297.62 14299.38 20099.86 22985.56 33599.77 19199.72 12996.61 24199.79 211
SixPastTwentyTwo95.71 30095.49 29796.38 32297.42 35393.01 34399.84 26498.23 36694.75 29195.98 34399.97 19385.35 33698.43 32094.71 31793.17 29397.69 313
test_fmvs198.37 18298.04 19399.34 16499.84 11698.07 233100.00 199.00 34698.85 47100.00 1100.00 185.11 33799.96 13299.69 14299.88 126100.00 1
LTVRE_ROB95.29 1696.32 27796.10 26796.99 30398.55 30293.88 33599.45 32399.28 24394.50 30196.46 33599.52 29584.86 33899.48 23597.26 27395.03 27297.59 335
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ITE_SJBPF96.84 31298.96 28193.49 33998.12 36998.12 10198.35 26799.97 19384.45 33999.56 21695.63 30495.25 25997.49 341
PVSNet_093.57 1996.41 26995.74 28598.41 22499.84 11695.22 307100.00 1100.00 198.08 10397.55 31199.78 24884.40 340100.00 1100.00 181.99 372100.00 1
K. test v395.46 30495.14 30796.40 32197.53 34793.40 34199.99 20199.23 26895.49 27792.70 36599.73 25184.26 34198.12 33493.94 32893.38 29297.68 315
GBi-Net96.07 29195.80 28196.89 30999.53 20094.87 31199.18 35299.27 25193.71 31798.53 25798.81 33884.23 34298.07 34195.31 30993.60 28897.72 300
test196.07 29195.80 28196.89 30999.53 20094.87 31199.18 35299.27 25193.71 31798.53 25798.81 33884.23 34298.07 34195.31 30993.60 28897.72 300
FMVSNet296.22 28195.60 29398.06 25699.53 20098.33 21499.45 32399.27 25193.71 31798.03 28698.84 33784.23 34298.10 33993.97 32793.40 29197.73 293
testgi96.18 28395.93 27596.93 30798.98 27994.20 334100.00 199.07 32797.16 18696.06 34299.86 22984.08 34597.79 35590.38 35597.80 22198.81 245
Anonymous2024052193.29 32192.76 32894.90 33895.64 37191.27 35899.97 23198.82 35987.04 37294.71 35298.19 35883.86 34696.80 36384.04 37592.56 30396.64 363
ACMH96.25 1196.77 25096.62 24497.21 29698.96 28194.43 33199.64 30299.33 22297.43 16796.55 33499.97 19383.52 34799.54 22499.07 19795.13 26897.66 320
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052996.93 24696.22 26399.05 18799.79 13997.30 27399.16 35899.47 7988.51 36798.69 246100.00 183.50 348100.00 199.83 11197.02 23599.83 185
lessismore_v096.05 32697.55 34691.80 35499.22 27191.87 36699.91 22383.50 34898.68 29692.48 33990.42 33297.68 315
UnsupCasMVSNet_eth94.25 31393.89 31495.34 33097.63 34092.13 35199.73 29099.36 20594.88 28892.78 36298.63 34682.72 35096.53 36894.57 31884.73 36497.36 347
LF4IMVS96.19 28296.18 26496.23 32598.26 31692.09 352100.00 197.89 37797.82 12497.94 29299.87 22782.71 35199.38 24797.41 26793.71 28797.20 351
ACMH+96.20 1396.49 26796.33 25997.00 30299.06 26793.80 33699.81 26999.31 22997.32 17695.89 34599.97 19382.62 35299.54 22498.34 23394.63 28197.65 325
pmmvs390.62 33989.36 34594.40 34190.53 38891.49 356100.00 196.73 38884.21 37893.65 36096.65 37282.56 35394.83 37982.28 37877.62 38096.89 359
XVG-ACMP-BASELINE96.60 26096.52 24996.84 31298.41 30793.29 34299.99 20199.32 22497.76 13098.51 26099.29 30881.95 35499.54 22498.40 22995.03 27297.68 315
VPNet96.41 26995.76 28498.33 23098.61 30098.30 21899.48 32099.45 10296.98 19798.87 23499.88 22681.57 35598.93 27299.22 18987.82 35297.76 253
MDA-MVSNet-bldmvs91.65 33489.94 34296.79 31596.72 36096.70 29199.42 32898.94 35188.89 36566.97 39598.37 35581.43 35695.91 37589.24 36489.46 33997.75 264
MS-PatchMatch95.66 30195.87 27795.05 33297.80 33689.25 36598.88 37499.30 23396.35 24396.86 32699.01 32581.35 35799.43 24393.30 33399.98 10796.46 365
USDC95.90 29795.70 28796.50 32098.60 30192.56 350100.00 198.30 36597.77 12896.92 32399.94 21981.25 35899.45 24293.54 33194.96 27697.49 341
TDRefinement91.93 33090.48 33896.27 32481.60 39492.65 34999.10 36597.61 38393.96 31593.77 35999.85 23380.03 35999.53 22997.82 25470.59 38596.63 364
test_040294.35 31293.70 31796.32 32397.92 33093.60 33799.61 30798.85 35888.19 37094.68 35399.48 29880.01 36098.58 30889.39 36295.15 26796.77 360
tt080596.52 26296.23 26297.40 28599.30 24993.55 33899.32 33699.45 10296.75 21197.88 29699.99 18079.99 36199.59 20797.39 26995.98 24499.06 243
TinyColmap95.50 30395.12 30896.64 31698.69 29793.00 34499.40 32997.75 38096.40 24196.14 34199.87 22779.47 36299.50 23393.62 33094.72 27997.40 346
LFMVS97.42 22496.62 24499.81 9499.80 13599.50 12099.16 35899.56 7094.48 302100.00 1100.00 179.35 363100.00 199.89 9997.37 23099.94 131
pmmvs-eth3d91.73 33390.67 33794.92 33791.63 38392.71 34899.90 25498.54 36391.19 35188.08 37695.50 37579.31 36496.13 37390.55 35381.32 37595.91 371
new-patchmatchnet90.30 34089.46 34492.84 35290.77 38688.55 36999.83 26598.80 36090.07 36287.86 37795.00 37878.77 36594.30 38284.86 37379.15 37795.68 374
test12379.44 35479.23 35680.05 37380.03 39571.72 386100.00 177.93 40462.52 39094.81 35199.69 26078.21 36674.53 39792.57 33727.33 39793.90 378
CMPMVSbinary66.12 2290.65 33892.04 33186.46 36496.18 36466.87 39498.03 38399.38 19683.38 38085.49 38299.55 29277.59 36798.80 28694.44 32094.31 28493.72 380
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_vis1_n_192097.77 20597.24 22899.34 16499.79 13998.04 237100.00 199.25 25998.88 42100.00 1100.00 177.52 368100.00 199.88 10199.85 133100.00 1
pmmvs693.64 31892.87 32695.94 32897.47 35291.41 35798.92 37299.02 34387.84 37195.01 35099.61 28377.24 36998.77 29094.33 32186.41 36197.63 329
tmp_tt75.80 35874.26 36080.43 37252.91 40353.67 40387.42 39197.98 37561.80 39167.04 394100.00 176.43 37096.40 36996.47 29128.26 39691.23 386
APD_test193.07 32594.14 31389.85 35799.18 25472.49 38599.76 28298.90 35692.86 34196.35 33699.94 21975.56 37199.91 16286.73 36997.98 20697.15 353
MIMVSNet191.96 32991.20 33294.23 34594.94 37691.69 35599.34 33599.22 27188.23 36894.18 35898.45 35275.52 37293.41 38579.37 38491.49 31897.60 334
test_fmvs1_n97.43 22396.86 23599.15 18399.68 15697.48 26499.99 20198.98 34998.82 53100.00 1100.00 174.85 37399.96 13299.67 14699.70 144100.00 1
VDDNet96.39 27395.55 29498.90 19899.27 25097.45 26599.15 36099.92 3491.28 35099.98 106100.00 173.55 374100.00 199.85 10796.98 23699.24 238
test_fmvs295.17 30995.23 30595.01 33398.95 28388.99 36799.99 20197.77 37997.79 12698.58 25399.70 25773.36 37599.34 25195.88 29895.03 27296.70 362
EGC-MVSNET79.46 35374.04 36195.72 32996.00 36692.73 34799.09 36799.04 3405.08 39916.72 39998.71 34273.03 37698.74 29382.05 37996.64 24095.69 373
FMVSNet194.45 31193.63 31896.89 30998.87 29194.87 31199.18 35299.27 25190.95 35497.31 31698.81 33872.89 37798.07 34192.61 33692.81 29797.72 300
VDD-MVS96.58 26195.99 27298.34 22999.52 20795.33 30599.18 35299.38 19696.64 22599.77 172100.00 172.51 378100.00 1100.00 196.94 23799.70 224
EG-PatchMatch MVS92.94 32692.49 33094.29 34495.87 36787.07 37299.07 37098.11 37093.19 33488.98 37498.66 34570.89 37999.08 26192.43 34095.21 26296.72 361
test_method91.04 33791.10 33490.85 35498.34 30977.63 381100.00 198.93 35376.69 38596.25 33998.52 35070.44 38097.98 34789.02 36691.74 31396.92 358
UniMVSNet_ETH3D95.28 30694.41 31297.89 27298.91 28595.14 30899.13 36299.35 21492.11 34597.17 32099.66 26770.28 38199.36 24897.88 25295.18 26499.16 239
OpenMVS_ROBcopyleft88.34 2091.89 33191.12 33394.19 34695.55 37287.63 37099.26 34298.03 37286.61 37490.65 37296.82 37170.14 38298.78 28786.54 37096.50 24396.15 367
testmvs80.17 35181.95 35474.80 37558.54 40159.58 400100.00 187.14 40176.09 38699.61 183100.00 167.06 38374.19 39898.84 20650.30 39290.64 387
test_vis1_n96.69 25695.81 27999.32 16999.14 25697.98 24099.97 23198.98 34998.45 75100.00 1100.00 166.44 38499.99 9499.78 12399.57 154100.00 1
UnsupCasMVSNet_bld89.50 34188.00 34793.99 34795.30 37388.86 36898.52 37999.28 24385.50 37687.80 37894.11 38161.63 38596.96 36290.63 35179.26 37696.15 367
test_vis1_rt93.10 32492.93 32593.58 34999.63 17485.07 37499.99 20193.71 39597.49 16190.96 36897.10 36960.40 38699.95 14499.24 18697.90 21395.72 372
Gipumacopyleft84.73 34883.50 35388.40 36097.50 34882.21 37888.87 38999.05 33765.81 38985.71 38190.49 38653.70 38796.31 37078.64 38591.74 31386.67 388
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
mvsany_test389.36 34288.96 34690.56 35591.95 38078.97 38099.74 28596.59 39196.84 20689.25 37396.07 37352.59 38897.11 36195.17 31282.44 37195.58 375
EMVS69.88 36069.09 36372.24 37984.70 39165.82 39699.96 23687.08 40249.82 39671.51 39084.74 39349.30 38975.32 39650.97 39843.71 39475.59 394
PM-MVS88.39 34387.41 34891.31 35391.73 38282.02 37999.79 27496.62 38991.06 35390.71 37195.73 37448.60 39095.96 37490.56 35281.91 37495.97 370
E-PMN70.72 35970.06 36272.69 37883.92 39265.48 39799.95 24292.72 39749.88 39572.30 38986.26 39247.17 39177.43 39553.83 39744.49 39375.17 395
testf184.40 34984.79 35183.23 36895.71 36858.71 40198.79 37697.75 38081.58 38184.94 38398.07 36145.33 39297.73 35677.09 38983.85 36693.24 382
APD_test284.40 34984.79 35183.23 36895.71 36858.71 40198.79 37697.75 38081.58 38184.94 38398.07 36145.33 39297.73 35677.09 38983.85 36693.24 382
ambc88.45 35986.84 39070.76 38897.79 38598.02 37490.91 36995.14 37638.69 39498.51 31494.97 31484.23 36596.09 369
test_f86.87 34786.06 35089.28 35891.45 38576.37 38399.87 26097.11 38591.10 35288.46 37593.05 38438.31 39596.66 36691.77 34483.46 36994.82 376
test_fmvs387.19 34687.02 34987.71 36192.69 37976.64 38299.96 23697.27 38493.55 32490.82 37094.03 38238.00 39692.19 38793.49 33283.35 37094.32 377
FPMVS77.92 35779.45 35573.34 37776.87 39746.81 40498.24 38199.05 33759.89 39273.55 38898.34 35636.81 39786.55 39080.96 38091.35 32286.65 389
PMMVS279.15 35577.28 35884.76 36682.34 39372.66 38499.70 29595.11 39471.68 38884.78 38590.87 38532.05 39889.99 38975.53 39163.45 39091.64 385
LCM-MVSNet79.01 35676.93 35985.27 36578.28 39668.01 39396.57 38698.03 37255.10 39382.03 38693.27 38331.99 39993.95 38382.72 37674.37 38293.84 379
test_vis3_rt79.61 35278.19 35783.86 36788.68 38969.56 38999.81 26982.19 40386.78 37368.57 39184.51 39425.06 40098.26 32789.18 36578.94 37883.75 391
ANet_high66.05 36263.44 36673.88 37661.14 40063.45 39895.68 38887.18 40079.93 38347.35 39780.68 39722.35 40172.33 39961.24 39435.42 39585.88 390
wuyk23d28.28 36429.73 36823.92 38175.89 39832.61 40666.50 39212.88 40516.09 39814.59 40016.59 39912.35 40232.36 40039.36 39913.36 3986.79 396
PMVScopyleft60.66 2365.98 36365.05 36468.75 38055.06 40238.40 40588.19 39096.98 38648.30 39744.82 39888.52 38912.22 40386.49 39167.58 39283.79 36881.35 393
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive68.59 2167.22 36164.68 36574.84 37474.67 39962.32 39995.84 38790.87 39950.98 39458.72 39681.05 39612.20 40478.95 39461.06 39556.75 39183.24 392
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_blank0.07 3680.09 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.79 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.01 3690.02 3720.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.14 4010.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.01 3690.02 3720.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.14 4010.00 4050.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.01 3690.02 3720.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.14 4010.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.01 3690.02 3720.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.14 4010.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.01 3690.02 3720.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.14 4010.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.01 3690.02 3720.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.14 4010.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re8.33 36611.11 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.01 3690.02 3720.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.14 4010.00 4050.00 4010.00 4000.00 3990.00 397
WAC-MVS97.98 24095.74 300
FOURS1100.00 199.97 21100.00 199.42 13198.52 72100.00 1
MSC_two_6792asdad100.00 1100.00 1100.00 199.42 131100.00 1100.00 1100.00 1100.00 1
No_MVS100.00 1100.00 1100.00 199.42 131100.00 1100.00 1100.00 1100.00 1
eth-test20.00 404
eth-test0.00 404
IU-MVS100.00 199.99 599.42 13199.12 6100.00 1100.00 1100.00 1100.00 1
save fliter99.99 4999.93 43100.00 199.42 13198.93 36
test_0728_SECOND100.00 199.99 4999.99 5100.00 199.42 131100.00 1100.00 1100.00 1100.00 1
GSMVS99.91 145
test_part2100.00 199.99 5100.00 1
MTGPAbinary99.42 131
MTMP100.00 199.18 291
gm-plane-assit99.52 20797.26 27595.86 260100.00 199.43 24398.76 211
test9_res100.00 1100.00 1100.00 1
agg_prior2100.00 1100.00 1100.00 1
agg_prior100.00 199.88 7299.42 131100.00 199.97 121
test_prior499.93 43100.00 1
test_prior99.90 71100.00 199.75 9199.73 5699.97 121100.00 1
旧先验2100.00 198.11 102100.00 1100.00 199.67 146
新几何2100.00 1
无先验100.00 199.80 4397.98 110100.00 199.33 178100.00 1
原ACMM2100.00 1
testdata2100.00 197.36 270
testdata1100.00 198.77 61
plane_prior799.00 27594.78 321
plane_prior599.40 18199.55 22199.79 11795.57 24997.76 253
plane_prior499.97 193
plane_prior394.79 32099.03 2099.08 218
plane_prior2100.00 199.00 27
plane_prior199.02 270
plane_prior94.80 317100.00 199.03 2095.58 245
n20.00 406
nn0.00 406
door-mid96.32 392
test1199.42 131
door96.13 393
HQP5-MVS94.82 314
HQP-NCC99.07 263100.00 199.04 1599.17 208
ACMP_Plane99.07 263100.00 199.04 1599.17 208
BP-MVS99.79 117
HQP4-MVS99.17 20899.57 21297.77 251
HQP3-MVS99.40 18195.58 245
NP-MVS99.07 26394.81 31699.97 193
ACMMP++_ref94.58 283
ACMMP++95.17 266