This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
GG-mvs-BLEND99.59 14599.54 21999.49 13499.17 37999.52 7299.96 12699.68 281100.00 199.33 27599.71 14599.99 10399.96 125
gg-mvs-nofinetune96.95 26696.10 28899.50 15799.41 25799.36 15199.07 39399.52 7283.69 40399.96 12683.60 419100.00 199.20 28199.68 15699.99 10399.96 125
reproduce_monomvs98.61 17998.54 17598.82 22099.97 9099.28 157100.00 199.33 23798.51 7897.87 31799.24 33099.98 399.45 26499.02 21592.93 31597.74 308
CHOSEN 280x42099.85 399.87 199.80 10799.99 4999.97 2199.97 24999.98 1698.96 32100.00 1100.00 199.96 499.42 268100.00 1100.00 1100.00 1
test_yl99.51 7099.37 8099.95 5499.82 12599.90 63100.00 199.47 7997.48 171100.00 1100.00 199.80 5100.00 199.98 7697.75 24199.94 136
DCV-MVSNet99.51 7099.37 8099.95 5499.82 12599.90 63100.00 199.47 7997.48 171100.00 1100.00 199.80 5100.00 199.98 7697.75 24199.94 136
UWE-MVS99.18 11899.06 11899.51 15499.67 17398.80 198100.00 199.43 12496.80 22299.93 16099.86 24599.79 799.94 16897.78 27398.33 20499.80 230
patch_mono-299.04 13299.79 696.81 33599.92 10890.47 385100.00 199.41 19098.95 35100.00 1100.00 199.78 8100.00 1100.00 1100.00 199.95 131
MVSTER98.58 18298.52 17898.77 22599.65 18299.68 108100.00 199.29 25695.63 28798.65 26899.80 26299.78 898.88 30698.59 24195.31 27897.73 315
CDS-MVSNet98.96 14998.95 13599.01 20999.48 24498.36 22899.93 26999.37 21296.79 22399.31 22799.83 25399.77 1098.91 30098.07 26297.98 22299.77 237
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPM99.78 1699.76 1299.85 9099.01 29499.95 32100.00 199.75 5299.37 399.99 111100.00 199.76 1199.60 226100.00 1100.00 1100.00 1
DP-MVS Recon99.76 1899.69 2299.98 23100.00 199.95 32100.00 199.52 7297.99 11499.99 111100.00 199.72 12100.00 199.96 88100.00 1100.00 1
TESTMET0.1,199.08 12798.96 13199.44 16499.63 19099.38 147100.00 199.45 10295.53 29199.48 211100.00 199.71 1399.02 28896.84 30399.99 10399.91 151
test-mter98.96 14998.82 14799.40 17499.40 26299.28 157100.00 199.45 10295.44 30199.42 21699.12 33699.70 1499.01 28996.82 30499.99 10399.91 151
WBMVS98.19 21398.10 21098.47 23999.63 19099.03 182100.00 199.32 24095.46 29898.39 28699.40 32199.69 1598.61 32498.64 23592.39 32397.76 275
UBG99.36 9099.27 9099.63 13899.63 19099.01 186100.00 199.43 12496.99 207100.00 199.92 23499.69 1599.99 9899.74 13698.06 22099.88 181
MSP-MVS99.81 1199.77 999.94 66100.00 199.86 82100.00 199.42 14198.87 47100.00 1100.00 199.65 1799.96 143100.00 1100.00 1100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_0728_THIRD98.79 63100.00 1100.00 199.61 18100.00 1100.00 1100.00 1100.00 1
test_one_0601100.00 199.99 599.42 14198.72 67100.00 1100.00 199.60 19
MSLP-MVS++99.89 199.85 299.99 12100.00 199.96 24100.00 199.95 1999.11 8100.00 1100.00 199.60 19100.00 1100.00 1100.00 1100.00 1
PAPM_NR99.74 2599.66 3399.99 12100.00 199.96 24100.00 199.47 7997.87 127100.00 1100.00 199.60 19100.00 1100.00 1100.00 1100.00 1
NCCC99.86 299.82 3100.00 1100.00 199.99 5100.00 199.71 6199.07 11100.00 1100.00 199.59 22100.00 1100.00 1100.00 1100.00 1
PLCcopyleft98.56 299.70 3699.74 1699.58 149100.00 198.79 199100.00 199.54 7198.58 7599.96 126100.00 199.59 22100.00 1100.00 1100.00 199.94 136
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DPM-MVS99.63 5499.51 66100.00 199.90 112100.00 1100.00 199.43 12499.00 27100.00 1100.00 199.58 24100.00 197.64 277100.00 1100.00 1
test_241102_TWO99.42 14199.03 21100.00 1100.00 199.56 25100.00 1100.00 1100.00 1100.00 1
APDe-MVScopyleft99.84 699.78 799.99 12100.00 199.98 17100.00 199.44 11699.06 13100.00 1100.00 199.56 2599.99 98100.00 1100.00 1100.00 1
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
segment_acmp99.55 27
DVP-MVS++99.81 1199.75 14100.00 1100.00 199.99 5100.00 199.42 14198.79 63100.00 1100.00 199.54 28100.00 1100.00 1100.00 1100.00 1
PC_three_145298.80 60100.00 1100.00 199.54 28100.00 1100.00 1100.00 1100.00 1
OPU-MVS100.00 1100.00 1100.00 1100.00 1100.00 199.54 28100.00 1100.00 1100.00 1100.00 1
DVP-MVScopyleft99.83 799.78 7100.00 1100.00 199.99 5100.00 199.42 14199.04 16100.00 1100.00 199.53 31100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test0726100.00 199.99 5100.00 199.42 14199.04 16100.00 1100.00 199.53 31
TEST9100.00 199.95 32100.00 199.42 14197.65 145100.00 1100.00 199.53 3199.97 130
SteuartSystems-ACMMP99.78 1699.71 2099.98 2399.76 15299.95 32100.00 199.42 14198.69 68100.00 1100.00 199.52 3499.99 98100.00 1100.00 1100.00 1
Skip Steuart: Steuart Systems R&D Blog.
train_agg99.71 3399.63 4199.97 34100.00 199.95 32100.00 199.42 14197.70 140100.00 1100.00 199.51 3599.97 130100.00 1100.00 1100.00 1
test_8100.00 199.91 56100.00 199.42 14197.70 140100.00 1100.00 199.51 3599.98 123
PAPR99.76 1899.68 2899.99 12100.00 199.96 24100.00 199.47 7998.16 100100.00 1100.00 199.51 35100.00 1100.00 1100.00 1100.00 1
EPP-MVSNet99.10 12699.00 12599.40 17499.51 23498.68 20799.92 27199.43 12495.47 29799.65 203100.00 199.51 3599.76 21399.53 18598.00 22199.75 240
SED-MVS99.83 799.77 9100.00 1100.00 199.99 5100.00 199.42 14199.03 21100.00 1100.00 199.50 39100.00 1100.00 1100.00 1100.00 1
test_241102_ONE100.00 199.99 599.42 14199.03 21100.00 1100.00 199.50 39100.00 1
miper_enhance_ethall98.33 20498.27 19698.51 23799.66 18099.04 181100.00 199.22 29397.53 16498.51 28099.38 32299.49 4198.75 31698.02 26492.61 31897.76 275
test_post89.05 41299.49 4199.59 228
HyFIR lowres test99.32 9899.24 9899.58 14999.95 10099.26 160100.00 199.99 1396.72 23299.29 22899.91 23799.49 4199.47 25999.74 13698.08 219100.00 1
PatchmatchNetpermissive99.03 13498.96 13199.26 19599.49 24298.33 23099.38 35399.45 10296.64 24199.96 12699.58 30499.49 4199.50 25597.63 27899.00 17599.93 147
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Patchmatch-test97.83 22497.42 23699.06 20399.08 28597.66 27598.66 40199.21 29993.65 34298.25 29899.58 30499.47 4599.57 23390.25 37998.59 18499.95 131
test_prior2100.00 198.82 55100.00 1100.00 199.47 45100.00 1100.00 1
TSAR-MVS + MP.99.82 999.77 999.99 12100.00 199.96 24100.00 199.43 12499.05 15100.00 1100.00 199.45 4799.99 98100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
thisisatest053099.37 8999.27 9099.69 12999.59 20599.41 145100.00 199.46 9496.46 25199.90 166100.00 199.44 4899.85 19398.97 21699.58 16299.80 230
tttt051799.34 9499.23 10199.67 13299.57 21499.38 147100.00 199.46 9496.33 26399.89 169100.00 199.44 4899.84 19698.93 21899.46 16599.78 236
thisisatest051599.42 8399.31 8899.74 12099.59 20599.55 121100.00 199.46 9496.65 24099.92 161100.00 199.44 4899.85 19399.09 21299.63 16099.81 213
PGM-MVS99.69 3999.61 4599.95 5499.99 4999.85 85100.00 199.58 6797.69 142100.00 1100.00 199.44 48100.00 199.79 123100.00 1100.00 1
testing1199.26 10799.19 10699.46 16199.64 18898.61 211100.00 199.43 12496.94 21099.92 16199.94 22999.43 5299.97 13099.67 15997.79 23999.82 204
SMA-MVScopyleft99.69 3999.59 4799.98 2399.99 4999.93 47100.00 199.43 12497.50 169100.00 1100.00 199.43 52100.00 1100.00 1100.00 1100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
原ACMM199.93 70100.00 199.80 9299.66 6398.18 99100.00 1100.00 199.43 52100.00 199.50 187100.00 1100.00 1
testdata99.66 13599.99 4998.97 19399.73 5697.96 121100.00 1100.00 199.42 55100.00 199.28 200100.00 1100.00 1
baseline298.99 14598.93 13899.18 20099.26 27599.15 174100.00 199.46 9496.71 23396.79 350100.00 199.42 5599.25 27998.75 22999.94 12499.15 262
patchmatchnet-post97.79 38799.41 5799.54 245
Patchmatch-RL test93.49 34493.63 34193.05 37591.78 40683.41 40198.21 40596.95 41191.58 37291.05 39097.64 39099.40 5895.83 40094.11 34781.95 39699.91 151
CNVR-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.77 4899.07 11100.00 1100.00 199.39 59100.00 1100.00 1100.00 1100.00 1
FE-MVS99.16 12198.99 12799.66 13599.65 18299.18 17199.58 33299.43 12495.24 30299.91 16499.59 30299.37 6099.97 13098.31 25199.81 14699.83 199
sam_mvs99.33 61
test_post199.32 35888.24 41499.33 6199.59 22898.31 251
SD-MVS99.81 1199.75 1499.99 1299.99 4999.96 24100.00 199.42 14199.01 26100.00 1100.00 199.33 61100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ZD-MVS100.00 199.98 1799.80 4397.31 187100.00 1100.00 199.32 6499.99 98100.00 1100.00 1
CDPH-MVS99.73 2899.64 3799.99 12100.00 199.97 21100.00 199.42 14198.02 112100.00 1100.00 199.32 6499.99 98100.00 1100.00 1100.00 1
HFP-MVS99.74 2599.67 3099.96 45100.00 199.89 70100.00 199.76 4997.95 122100.00 1100.00 199.31 66100.00 199.99 64100.00 1100.00 1
test-LLR99.03 13498.91 14099.40 17499.40 26299.28 157100.00 199.45 10296.70 23499.42 21699.12 33699.31 6699.01 28996.82 30499.99 10399.91 151
test0.0.03 198.12 21598.03 21698.39 24699.11 28198.07 249100.00 199.93 3096.70 23496.91 34699.95 22399.31 6698.19 35391.93 36498.44 19198.91 266
MCST-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.73 5699.19 5100.00 1100.00 199.31 66100.00 1100.00 1100.00 1100.00 1
TAPA-MVS96.40 1097.64 23197.37 24098.45 24299.94 10395.70 323100.00 199.40 19497.65 14599.53 207100.00 199.31 6699.66 22380.48 406100.00 1100.00 1
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test22299.99 4999.90 63100.00 199.69 6297.66 144100.00 1100.00 199.30 71100.00 1100.00 1
sam_mvs199.29 7299.91 151
ACMMPR99.74 2599.67 3099.96 45100.00 199.89 70100.00 199.76 4997.95 122100.00 1100.00 199.29 72100.00 199.99 64100.00 1100.00 1
CostFormer98.84 16098.77 15299.04 20799.41 25797.58 27799.67 32299.35 22994.66 31599.96 12699.36 32499.28 7499.74 21699.41 19197.81 23699.81 213
旧先验199.99 4999.88 7799.82 40100.00 199.27 75100.00 1100.00 1
APD-MVScopyleft99.68 4399.58 4999.97 3499.99 4999.96 24100.00 199.42 14197.53 164100.00 1100.00 199.27 7599.97 130100.00 1100.00 1100.00 1
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test1299.95 5499.99 4999.89 7099.42 141100.00 199.24 7799.97 130100.00 1100.00 1
DPE-MVScopyleft99.79 1499.73 1799.99 1299.99 4999.98 17100.00 199.42 14198.91 41100.00 1100.00 199.22 78100.00 1100.00 1100.00 1100.00 1
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HPM-MVS++copyleft99.82 999.76 1299.99 1299.99 4999.98 17100.00 199.83 3998.88 4499.96 126100.00 199.21 79100.00 1100.00 1100.00 199.99 110
新几何199.99 12100.00 199.96 2499.81 4297.89 125100.00 1100.00 199.20 80100.00 197.91 269100.00 1100.00 1
region2R99.72 2999.64 3799.97 34100.00 199.90 63100.00 199.74 5597.86 128100.00 1100.00 199.19 81100.00 199.99 64100.00 1100.00 1
F-COLMAP99.64 5199.64 3799.67 13299.99 4999.07 177100.00 199.44 11698.30 9399.90 166100.00 199.18 8299.99 9899.91 101100.00 199.94 136
XVS99.79 1499.73 1799.98 23100.00 199.94 41100.00 199.75 5298.67 70100.00 1100.00 199.16 83100.00 1100.00 1100.00 1100.00 1
X-MVStestdata97.04 26196.06 29099.98 23100.00 199.94 41100.00 199.75 5298.67 70100.00 166.97 42299.16 83100.00 1100.00 1100.00 1100.00 1
9.1499.57 5299.99 49100.00 199.42 14197.54 162100.00 1100.00 199.15 8599.99 98100.00 1100.00 1
CNLPA99.72 2999.65 3499.91 7499.97 9099.72 101100.00 199.47 7998.43 8299.88 171100.00 199.14 86100.00 199.97 86100.00 1100.00 1
testing398.44 19598.37 19198.65 22999.51 23498.32 232100.00 199.62 6696.43 25297.93 31399.99 18799.11 8797.81 37694.88 33797.80 23799.82 204
Test By Simon99.10 88
myMVS_eth3d98.52 19098.51 18098.53 23699.50 23897.98 256100.00 199.57 6896.23 26698.07 304100.00 199.09 8997.81 37696.17 31797.96 22499.82 204
CP-MVS99.67 4699.58 4999.95 54100.00 199.84 87100.00 199.42 14197.77 135100.00 1100.00 199.07 90100.00 1100.00 1100.00 1100.00 1
testing9999.18 11899.10 11599.41 17099.60 20198.43 218100.00 199.43 12496.76 22599.84 17599.92 23499.06 9199.98 12399.62 16997.67 24599.81 213
alignmvs99.38 8799.21 10299.91 7499.73 15799.92 53100.00 199.51 7697.61 154100.00 1100.00 199.06 9199.93 17299.83 11697.12 25399.90 162
testing9199.18 11899.10 11599.41 17099.60 20198.43 218100.00 199.43 12496.76 22599.82 18699.92 23499.05 9399.98 12399.62 16997.67 24599.81 213
SF-MVS99.66 4899.57 5299.95 5499.99 4999.85 85100.00 199.42 14197.67 143100.00 1100.00 199.05 9399.99 98100.00 1100.00 1100.00 1
EPMVS99.25 11199.13 11299.60 14399.60 20199.20 16899.60 330100.00 196.93 21199.92 16199.36 32499.05 9399.71 22098.77 22798.94 17699.90 162
EI-MVSNet-Vis-set99.70 3699.64 3799.87 84100.00 199.64 11299.98 24399.44 11698.35 9099.99 111100.00 199.04 9699.96 14399.98 76100.00 1100.00 1
mPP-MVS99.69 3999.60 4699.97 34100.00 199.91 56100.00 199.42 14197.91 124100.00 1100.00 199.04 96100.00 1100.00 1100.00 1100.00 1
tpmrst98.98 14898.93 13899.14 20299.61 19997.74 27299.52 33999.36 21896.05 27499.98 11799.64 29099.04 9699.86 18798.94 21798.19 21499.82 204
reproduce-ours99.76 1899.69 2299.98 2399.96 9699.94 41100.00 199.42 14198.82 55100.00 1100.00 198.99 99100.00 1100.00 1100.00 1100.00 1
our_new_method99.76 1899.69 2299.98 2399.96 9699.94 41100.00 199.42 14198.82 55100.00 1100.00 198.99 99100.00 1100.00 1100.00 1100.00 1
SR-MVS99.68 4399.58 4999.98 23100.00 199.95 32100.00 199.64 6497.59 158100.00 1100.00 198.99 9999.99 98100.00 1100.00 1100.00 1
reproduce_model99.76 1899.69 2299.98 2399.96 9699.93 47100.00 199.42 14198.81 59100.00 1100.00 198.98 102100.00 1100.00 1100.00 1100.00 1
EI-MVSNet-UG-set99.69 3999.63 4199.87 8499.99 4999.64 11299.95 26199.44 11698.35 90100.00 1100.00 198.98 10299.97 13099.98 76100.00 1100.00 1
ZNCC-MVS99.71 3399.62 4499.97 3499.99 4999.90 63100.00 199.79 4597.97 11899.97 122100.00 198.97 104100.00 199.94 96100.00 1100.00 1
APD-MVS_3200maxsize99.65 4999.55 5999.97 3499.99 4999.91 56100.00 199.48 7897.54 162100.00 1100.00 198.97 10499.99 9899.98 76100.00 1100.00 1
EPNet99.62 5999.69 2299.42 16999.99 4998.37 226100.00 199.89 3798.83 53100.00 1100.00 198.97 104100.00 199.90 10299.61 16199.89 168
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm298.64 17598.58 17398.81 22399.42 25597.12 29799.69 31999.37 21293.63 34399.94 15599.67 28298.96 10799.47 25998.62 23997.95 22699.83 199
TSAR-MVS + GP.99.61 6199.69 2299.35 18099.99 4998.06 251100.00 199.36 21899.83 2100.00 1100.00 198.95 10899.99 98100.00 199.11 171100.00 1
HPM-MVS_fast99.60 6499.49 6999.91 7499.99 4999.78 94100.00 199.42 14197.09 199100.00 1100.00 198.95 10899.96 14399.98 76100.00 1100.00 1
RE-MVS-def99.55 5999.99 4999.91 56100.00 199.42 14197.62 150100.00 1100.00 198.94 11099.99 64100.00 1100.00 1
WTY-MVS99.54 6999.40 7599.95 5499.81 13199.93 47100.00 1100.00 197.98 11699.84 175100.00 198.94 11099.98 12399.86 11098.21 21299.94 136
HY-MVS96.53 999.50 7399.35 8599.96 4599.81 13199.93 4799.64 324100.00 197.97 11899.84 17599.85 25098.94 11099.99 9899.86 11098.23 21199.95 131
MDTV_nov1_ep1398.94 13699.53 22298.36 22899.39 35299.46 9496.54 24699.99 11199.63 29498.92 11399.86 18798.30 25498.71 183
API-MVS99.72 2999.70 2199.79 11099.97 9099.37 15099.96 25599.94 2298.48 79100.00 1100.00 198.92 113100.00 1100.00 1100.00 1100.00 1
ACMMPcopyleft99.65 4999.57 5299.89 7999.99 4999.66 11099.75 30699.73 5698.16 10099.75 196100.00 198.90 115100.00 199.96 8899.88 134100.00 1
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMMP_NAP99.67 4699.57 5299.97 3499.98 8699.92 53100.00 199.42 14197.83 129100.00 1100.00 198.89 116100.00 199.98 76100.00 1100.00 1
test250699.48 7799.38 7799.75 11999.89 11499.51 12999.45 345100.00 198.38 8499.83 178100.00 198.86 11799.81 20399.25 20198.78 17999.94 136
MDTV_nov1_ep13_2view99.24 16499.56 33496.31 26499.96 12698.86 11798.92 21999.89 168
KD-MVS_2432*160094.15 33893.08 34797.35 30899.53 22297.83 26999.63 32699.19 30392.88 36296.29 35897.68 38898.84 11996.70 38889.73 38163.92 41297.53 358
miper_refine_blended94.15 33893.08 34797.35 30899.53 22297.83 26999.63 32699.19 30392.88 36296.29 35897.68 38898.84 11996.70 38889.73 38163.92 41297.53 358
dp98.72 16898.61 16999.03 20899.53 22297.39 28399.45 34599.39 20795.62 28899.94 15599.52 31398.83 12199.82 20096.77 30998.42 19399.89 168
TAMVS98.76 16598.73 15698.86 21999.44 25397.69 27399.57 33399.34 23596.57 24499.12 23899.81 25998.83 12199.16 28297.97 26897.91 22899.73 245
IB-MVS96.24 1297.54 23896.95 25399.33 18499.67 17398.10 247100.00 199.47 7997.42 17799.26 22999.69 27798.83 12199.89 18099.43 18978.77 403100.00 1
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DeepC-MVS_fast98.92 199.75 2399.67 3099.99 1299.99 4999.96 2499.73 31299.52 7299.06 13100.00 1100.00 198.80 124100.00 199.95 94100.00 1100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVS-pluss99.61 6199.50 6799.97 3499.98 8699.92 53100.00 199.42 14197.53 16499.77 193100.00 198.77 125100.00 199.99 64100.00 199.99 110
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pcd_1.5k_mvsjas8.24 39210.99 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 42598.75 1260.00 4250.00 4240.00 4230.00 421
PS-MVSNAJss98.03 21898.06 21497.94 28897.63 36497.33 28999.89 27999.23 29096.27 26598.03 30799.59 30298.75 12698.78 31198.52 24394.61 30197.70 329
PS-MVSNAJ99.64 5199.57 5299.85 9099.78 14999.81 9099.95 26199.42 14198.38 84100.00 1100.00 198.75 126100.00 199.88 10699.99 10399.74 241
dcpmvs_298.87 15899.53 6296.90 32999.87 11890.88 38499.94 26699.07 34798.20 98100.00 1100.00 198.69 12999.86 187100.00 1100.00 199.95 131
ETVMVS99.16 12198.98 12899.69 12999.67 17399.56 120100.00 199.45 10296.36 26099.98 11799.95 22398.65 13099.64 22499.11 21197.63 24899.88 181
SR-MVS-dyc-post99.63 5499.52 6499.97 3499.99 4999.91 56100.00 199.42 14197.62 150100.00 1100.00 198.65 13099.99 9899.99 64100.00 1100.00 1
MTAPA99.68 4399.59 4799.97 3499.99 4999.91 56100.00 199.42 14198.32 9299.94 155100.00 198.65 130100.00 199.96 88100.00 1100.00 1
HPM-MVScopyleft99.59 6599.50 6799.89 79100.00 199.70 106100.00 199.42 14197.46 173100.00 1100.00 198.60 13399.96 14399.99 64100.00 1100.00 1
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MG-MVS99.75 2399.68 2899.97 34100.00 199.91 5699.98 24399.47 7999.09 10100.00 1100.00 198.59 134100.00 199.95 94100.00 1100.00 1
EPNet_dtu98.53 18998.23 20399.43 16799.92 10899.01 18699.96 25599.47 7998.80 6099.96 12699.96 21698.56 13599.30 27687.78 39199.68 153100.00 1
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testing22299.14 12398.94 13699.73 12399.67 17399.51 129100.00 199.43 12496.90 21699.99 11199.90 23998.55 13699.86 18798.85 22297.18 25299.81 213
JIA-IIPM97.09 25796.34 27999.36 17998.88 31198.59 21399.81 29199.43 12484.81 40199.96 12690.34 41198.55 13699.52 25197.00 29898.28 20799.98 112
xiu_mvs_v2_base99.51 7099.41 7499.82 9799.70 16099.73 10099.92 27199.40 19498.15 102100.00 1100.00 198.50 138100.00 199.85 11299.13 17099.74 241
sss99.45 8099.34 8799.80 10799.76 15299.50 131100.00 199.91 3597.72 13899.98 11799.94 22998.45 139100.00 199.53 18598.75 18299.89 168
IS-MVSNet99.08 12798.91 14099.59 14599.65 18299.38 14799.78 29799.24 28696.70 23499.51 209100.00 198.44 14099.52 25198.47 24598.39 19699.88 181
GST-MVS99.64 5199.53 6299.95 54100.00 199.86 82100.00 199.79 4597.72 13899.95 153100.00 198.39 141100.00 199.96 8899.99 103100.00 1
114514_t99.39 8599.25 9599.81 10299.97 9099.48 138100.00 199.42 14195.53 291100.00 1100.00 198.37 14299.95 15699.97 86100.00 1100.00 1
baseline198.91 15598.61 16999.81 10299.71 15899.77 9599.78 29799.44 11697.51 16898.81 26199.99 18798.25 14399.76 21398.60 24095.41 27499.89 168
MP-MVScopyleft99.61 6199.49 6999.98 2399.99 4999.94 41100.00 199.42 14197.82 13099.99 111100.00 198.20 144100.00 199.99 64100.00 1100.00 1
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
miper_ehance_all_eth97.81 22597.66 23098.23 25899.49 24298.37 22699.99 21799.11 33494.78 31098.25 29899.21 33398.18 14598.57 33297.35 29192.61 31897.76 275
PHI-MVS99.50 7399.39 7699.82 97100.00 199.45 140100.00 199.94 2296.38 258100.00 1100.00 198.18 145100.00 1100.00 1100.00 1100.00 1
Vis-MVSNet (Re-imp)98.99 14598.89 14499.29 18999.64 18898.89 19599.98 24399.31 24696.74 22999.48 211100.00 198.11 14799.10 28498.39 24798.34 20199.89 168
DeepPCF-MVS98.03 498.54 18899.72 1994.98 36099.99 4984.94 399100.00 199.42 14199.98 1100.00 1100.00 198.11 147100.00 1100.00 1100.00 1100.00 1
cl2298.23 21298.11 20898.58 23599.82 12599.01 186100.00 199.28 26296.92 21398.33 29099.21 33398.09 14998.97 29598.72 23092.61 31897.76 275
mvsany_test199.57 6699.48 7299.85 9099.86 11999.54 123100.00 199.36 21898.94 37100.00 1100.00 197.97 150100.00 199.88 10699.28 167100.00 1
PatchT95.90 31994.95 33398.75 22699.03 29298.39 22399.08 39199.32 24085.52 39999.96 12694.99 40397.94 15198.05 36980.20 40798.47 19099.81 213
MVS_111021_LR99.70 3699.65 3499.88 8399.96 9699.70 106100.00 199.97 1798.96 32100.00 1100.00 197.93 15299.95 15699.99 64100.00 1100.00 1
fmvsm_l_conf0.5_n99.63 5499.56 5799.86 8799.81 13199.59 116100.00 199.36 21898.98 30100.00 1100.00 197.92 15399.99 98100.00 199.95 121100.00 1
balanced_conf0399.43 8299.28 8999.85 9099.68 16599.68 10899.97 24999.28 26297.03 20499.96 12699.97 20197.90 15499.93 17299.77 130100.00 199.94 136
MVSMamba_PlusPlus99.39 8599.25 9599.80 10799.68 16599.59 11699.99 21799.30 25096.66 23999.96 12699.97 20197.89 15599.92 17599.76 132100.00 199.90 162
c3_l97.58 23597.42 23698.06 27699.48 24498.16 24199.96 25599.10 33694.54 31998.13 30299.20 33597.87 15698.25 35197.28 29291.20 34497.75 286
fmvsm_l_conf0.5_n_a99.63 5499.55 5999.86 8799.83 12499.58 118100.00 199.36 21898.98 30100.00 1100.00 197.85 15799.99 98100.00 199.94 124100.00 1
MVS_111021_HR99.71 3399.63 4199.93 7099.95 10099.83 88100.00 1100.00 198.89 43100.00 1100.00 197.85 15799.95 156100.00 1100.00 1100.00 1
FA-MVS(test-final)99.00 14298.75 15499.73 12399.63 19099.43 14399.83 28799.43 12495.84 28399.52 20899.37 32397.84 15999.96 14397.63 27899.68 15399.79 233
MVS_030499.72 2999.65 3499.93 7099.99 4999.79 93100.00 199.91 3599.17 6100.00 1100.00 197.84 159100.00 1100.00 199.95 121100.00 1
CSCG99.28 10499.35 8599.05 20599.99 4997.15 296100.00 199.47 7997.44 17599.42 216100.00 197.83 161100.00 199.99 64100.00 1100.00 1
CS-MVS99.33 9699.27 9099.50 15799.99 4999.00 189100.00 199.13 32797.26 19099.96 126100.00 197.79 16299.64 22499.64 16599.67 15599.87 191
mamv498.95 15299.11 11498.46 24099.68 16595.67 32499.14 38499.27 27296.43 25299.94 15599.97 20197.79 16299.88 18599.77 130100.00 199.84 195
ET-MVSNet_ETH3D96.41 29095.48 32199.20 19999.81 13199.75 97100.00 199.02 36397.30 18978.33 411100.00 197.73 16497.94 37399.70 14887.41 37699.92 149
tpm cat198.05 21797.76 22598.92 21599.50 23897.10 29999.77 30299.30 25090.20 38499.72 19998.71 36597.71 16599.86 18796.75 31098.20 21399.81 213
test_fmvsmvis_n_192099.46 7999.37 8099.73 12398.88 31199.18 171100.00 199.26 27998.85 4999.79 190100.00 197.70 166100.00 199.98 7699.86 138100.00 1
DELS-MVS99.62 5999.56 5799.82 9799.92 10899.45 140100.00 199.78 4798.92 3999.73 198100.00 197.70 166100.00 199.93 98100.00 1100.00 1
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DIV-MVS_self_test97.52 24197.35 24198.05 28099.46 25098.11 245100.00 199.10 33694.21 32997.62 32899.63 29497.65 16898.29 34896.47 31191.98 33097.76 275
tpmvs98.59 18198.38 18999.23 19799.69 16197.90 26399.31 36199.47 7994.52 32099.68 20299.28 32897.64 16999.89 18097.71 27598.17 21699.89 168
kuosan98.55 18598.53 17798.62 23199.66 18096.16 315100.00 199.44 11693.93 33699.81 18999.98 19297.58 17099.81 20398.08 26098.28 20799.89 168
tpm98.24 21198.22 20498.32 25299.13 28095.79 32199.53 33899.12 33395.20 30399.96 12699.36 32497.58 17099.28 27897.41 28796.67 26299.88 181
ADS-MVSNet298.28 20998.51 18097.62 29999.51 23495.03 33299.24 36699.41 19095.52 29399.96 12699.70 27497.57 17297.94 37397.11 29598.54 18599.88 181
ADS-MVSNet98.70 17198.51 18099.28 19299.51 23498.39 22399.24 36699.44 11695.52 29399.96 12699.70 27497.57 17299.58 23297.11 29598.54 18599.88 181
SPE-MVS-test99.31 10099.27 9099.43 16799.99 4998.77 200100.00 199.19 30397.24 19199.96 126100.00 197.56 17499.70 22199.68 15699.81 14699.82 204
dongtai98.29 20798.25 19798.42 24499.58 21095.86 320100.00 199.44 11693.46 34999.69 20199.97 20197.53 17599.51 25396.28 31698.27 20999.89 168
cl____97.54 23897.32 24298.18 26299.47 24798.14 244100.00 199.10 33694.16 33297.60 33099.63 29497.52 17698.65 32296.47 31191.97 33197.76 275
h-mvs3397.03 26296.53 26898.51 23799.79 14695.90 31999.45 34599.45 10298.21 96100.00 199.78 26597.49 17799.99 9899.72 14174.92 40599.65 253
hse-mvs296.79 27096.38 27698.04 28299.68 16595.54 32699.81 29199.42 14198.21 96100.00 199.80 26297.49 17799.46 26399.72 14173.27 40899.12 263
EIA-MVS99.26 10799.19 10699.45 16399.63 19098.75 201100.00 199.27 27296.93 21199.95 153100.00 197.47 17999.79 20699.74 13699.72 15199.82 204
Test_1112_low_res98.83 16198.60 17199.51 15499.69 16198.75 20199.99 21799.14 32396.81 22198.84 25899.06 34097.45 18099.89 18098.66 23297.75 24199.89 168
1112_ss98.91 15598.71 16099.51 15499.69 16198.75 20199.99 21799.15 31896.82 22098.84 258100.00 197.45 18099.89 18098.66 23297.75 24199.89 168
ETV-MVS99.34 9499.24 9899.64 13799.58 21099.33 152100.00 199.25 28197.57 16099.96 126100.00 197.44 18299.79 20699.70 14899.65 15799.81 213
CPTT-MVS99.49 7599.38 7799.85 90100.00 199.54 123100.00 199.42 14197.58 15999.98 117100.00 197.43 183100.00 199.99 64100.00 1100.00 1
miper_lstm_enhance97.40 24597.28 24497.75 29699.48 24497.52 278100.00 199.07 34794.08 33398.01 31099.61 30097.38 18497.98 37196.44 31491.47 34197.76 275
test_fmvsmconf_n99.56 6799.46 7399.86 8799.68 16599.58 118100.00 199.31 24698.92 3999.88 171100.00 197.35 18599.99 9899.98 7699.99 103100.00 1
test_fmvsm_n_192099.55 6899.49 6999.73 12399.85 12099.19 169100.00 199.41 19098.87 47100.00 1100.00 197.34 186100.00 199.98 7699.90 131100.00 1
EI-MVSNet97.98 22097.93 22098.16 26599.11 28197.84 26899.74 30799.29 25694.39 32598.65 268100.00 197.21 18798.88 30697.62 28195.31 27897.75 286
IterMVS-LS97.56 23697.44 23597.92 29199.38 26697.90 26399.89 27999.10 33694.41 32498.32 29199.54 31297.21 18798.11 36097.50 28391.62 33697.75 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tfpn200view999.26 10799.03 12199.96 4599.81 13199.89 70100.00 199.94 2297.23 19299.83 17899.96 21697.04 189100.00 199.59 17597.85 23299.98 112
thres40099.26 10799.03 12199.95 5499.81 13199.89 70100.00 199.94 2297.23 19299.83 17899.96 21697.04 189100.00 199.59 17597.85 23299.97 119
thres20099.27 10599.04 12099.96 4599.81 13199.90 63100.00 199.94 2297.31 18799.83 17899.96 21697.04 189100.00 199.62 16997.88 23099.98 112
131499.38 8799.19 10699.96 4598.88 31199.89 7099.24 36699.93 3098.88 4498.79 263100.00 197.02 192100.00 1100.00 1100.00 1100.00 1
thres100view90099.25 11199.01 12399.95 5499.81 13199.87 79100.00 199.94 2297.13 19799.83 17899.96 21697.01 193100.00 199.59 17597.85 23299.98 112
thres600view799.24 11499.00 12599.95 5499.81 13199.87 79100.00 199.94 2297.13 19799.83 17899.96 21697.01 193100.00 199.54 18397.77 24099.97 119
OMC-MVS99.27 10599.38 7798.96 21399.95 10097.06 300100.00 199.40 19498.83 5399.88 171100.00 197.01 19399.86 18799.47 18899.84 14399.97 119
xiu_mvs_v1_base_debu99.35 9199.21 10299.79 11099.67 17399.71 10299.78 29799.36 21898.13 104100.00 1100.00 197.00 196100.00 199.83 11699.07 17299.66 250
xiu_mvs_v1_base99.35 9199.21 10299.79 11099.67 17399.71 10299.78 29799.36 21898.13 104100.00 1100.00 197.00 196100.00 199.83 11699.07 17299.66 250
xiu_mvs_v1_base_debi99.35 9199.21 10299.79 11099.67 17399.71 10299.78 29799.36 21898.13 104100.00 1100.00 197.00 196100.00 199.83 11699.07 17299.66 250
CR-MVSNet98.02 21997.71 22998.93 21499.31 26998.86 19699.13 38599.00 36696.53 24799.96 12698.98 35096.94 19998.10 36391.18 36998.40 19499.84 195
Patchmtry96.81 26996.37 27798.14 26699.31 26998.55 21598.91 39699.00 36690.45 38097.92 31498.98 35096.94 19998.12 35894.27 34391.53 33897.75 286
eth_miper_zixun_eth97.47 24297.28 24498.06 27699.41 25797.94 26199.62 32899.08 34294.46 32398.19 30199.56 30996.91 20198.50 33796.78 30791.49 33997.74 308
EC-MVSNet99.19 11799.09 11799.48 16099.42 25599.07 177100.00 199.21 29996.95 20999.96 126100.00 196.88 20299.48 25799.64 16599.79 14999.88 181
LS3D99.31 10099.13 11299.87 8499.99 4999.71 10299.55 33599.46 9497.32 18599.82 186100.00 196.85 20399.97 13099.14 207100.00 199.92 149
MVSFormer98.94 15398.82 14799.28 19299.45 25199.49 134100.00 199.13 32795.46 29899.97 122100.00 196.76 20498.59 32998.63 237100.00 199.74 241
lupinMVS99.29 10399.16 11099.69 12999.45 25199.49 134100.00 199.15 31897.45 17499.97 122100.00 196.76 20499.76 21399.67 159100.00 199.81 213
MonoMVSNet98.55 18598.64 16698.26 25698.21 34495.76 32299.94 26699.16 31696.23 26699.47 21499.24 33096.75 20699.22 28099.61 17299.17 16899.81 213
mvsmamba99.05 13198.98 12899.27 19499.57 21498.10 247100.00 199.28 26295.92 27799.96 12699.97 20196.73 20799.89 18099.72 14199.65 15799.81 213
MAR-MVS99.49 7599.36 8399.89 7999.97 9099.66 11099.74 30799.95 1997.89 125100.00 1100.00 196.71 208100.00 1100.00 1100.00 1100.00 1
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MM99.63 5499.52 6499.94 6699.99 4999.82 89100.00 199.97 1799.11 8100.00 1100.00 196.65 209100.00 1100.00 199.97 116100.00 1
MSDG98.90 15798.63 16799.70 12899.92 10899.25 162100.00 199.37 21295.71 28599.40 222100.00 196.58 21099.95 15696.80 30699.94 12499.91 151
PVSNet_BlendedMVS98.71 16998.62 16898.98 21299.98 8699.60 114100.00 1100.00 197.23 192100.00 199.03 34696.57 21199.99 98100.00 194.75 29897.35 367
PVSNet_Blended99.48 7799.36 8399.83 9599.98 8699.60 114100.00 1100.00 197.79 133100.00 1100.00 196.57 21199.99 98100.00 199.88 13499.90 162
MVS_Test98.93 15498.65 16499.77 11799.62 19799.50 13199.99 21799.19 30395.52 29399.96 12699.86 24596.54 21399.98 12398.65 23498.48 18999.82 204
PMMVS99.12 12498.97 13099.58 14999.57 21498.98 191100.00 199.30 25097.14 19699.96 126100.00 196.53 21499.82 20099.70 14898.49 18899.94 136
PVSNet_Blended_VisFu99.33 9699.18 10999.78 11499.82 12599.49 134100.00 199.95 1997.36 18099.63 204100.00 196.45 21599.95 15699.79 12399.65 15799.89 168
mvs_anonymous98.80 16398.60 17199.38 17899.57 21499.24 164100.00 199.21 29995.87 27898.92 25099.82 25696.39 21699.03 28799.13 20998.50 18799.88 181
DP-MVS98.86 15998.54 17599.81 10299.97 9099.45 14099.52 33999.40 19494.35 32698.36 287100.00 196.13 21799.97 13099.12 210100.00 1100.00 1
PVSNet94.91 1899.30 10299.25 9599.44 164100.00 198.32 232100.00 199.86 3898.04 111100.00 1100.00 196.10 218100.00 199.55 18099.73 150100.00 1
Effi-MVS+-dtu98.51 19298.86 14597.47 30399.77 15194.21 355100.00 198.94 37197.61 15499.91 16498.75 36495.89 21999.51 25399.36 19399.48 16498.68 268
our_test_396.51 28596.35 27896.98 32597.61 36695.05 33199.98 24399.01 36594.68 31496.77 35299.06 34095.87 22098.14 35691.81 36592.37 32497.75 286
UA-Net99.06 12998.83 14699.74 12099.52 22999.40 14699.08 39199.45 10297.64 14799.83 178100.00 195.80 22199.94 16898.35 24999.80 14899.88 181
FMVSNet595.32 32795.43 32494.99 35999.39 26592.99 36899.25 36599.24 28690.45 38097.44 33598.45 37595.78 22294.39 40587.02 39291.88 33297.59 354
CVMVSNet98.56 18498.47 18398.82 22099.11 28197.67 27499.74 30799.47 7997.57 16099.06 244100.00 195.72 22398.97 29598.21 25797.33 25199.83 199
RPMNet95.26 32993.82 33899.56 15299.31 26998.86 19699.13 38599.42 14179.82 40899.96 12695.13 40195.69 22499.98 12377.54 41198.40 19499.84 195
MVS99.22 11598.96 13199.98 2399.00 29899.95 3299.24 36699.94 2298.14 10398.88 253100.00 195.63 225100.00 199.85 112100.00 1100.00 1
jason99.11 12598.96 13199.59 14599.17 27899.31 155100.00 199.13 32797.38 17999.83 178100.00 195.54 22699.72 21999.57 17999.97 11699.74 241
jason: jason.
AdaColmapbinary99.44 8199.26 9499.95 54100.00 199.86 8299.70 31799.99 1398.53 7699.90 166100.00 195.34 227100.00 199.92 99100.00 1100.00 1
CANet99.40 8499.24 9899.89 7999.99 4999.76 96100.00 199.73 5698.40 8399.78 192100.00 195.28 22899.96 143100.00 199.99 10399.96 125
FIs97.95 22197.73 22898.62 23198.53 32999.24 164100.00 199.43 12496.74 22997.87 31799.82 25695.27 22998.89 30398.78 22693.07 31297.74 308
sasdasda99.03 13498.73 15699.94 6699.75 15499.95 32100.00 199.30 25097.64 147100.00 1100.00 195.22 23099.97 13099.76 13296.90 25999.91 151
canonicalmvs99.03 13498.73 15699.94 6699.75 15499.95 32100.00 199.30 25097.64 147100.00 1100.00 195.22 23099.97 13099.76 13296.90 25999.91 151
fmvsm_s_conf0.5_n_a99.32 9899.15 11199.81 10299.80 14299.47 139100.00 199.35 22998.22 95100.00 1100.00 195.21 23299.99 9899.96 8899.86 13899.98 112
FC-MVSNet-test97.84 22397.63 23298.45 24298.30 33999.05 180100.00 199.43 12496.63 24397.61 32999.82 25695.19 23398.57 33298.64 23593.05 31397.73 315
MGCFI-Net99.01 14198.70 16299.93 7099.74 15699.94 41100.00 199.29 25697.60 157100.00 1100.00 195.10 23499.96 14399.74 13696.85 26199.91 151
UniMVSNet_NR-MVSNet97.16 25496.80 25898.22 25998.38 33398.41 220100.00 199.45 10296.14 27297.76 32099.64 29095.05 23598.50 33797.98 26586.84 37997.75 286
Fast-Effi-MVS+-dtu98.38 20298.56 17497.82 29499.58 21094.44 352100.00 199.16 31696.75 22799.51 20999.63 29495.03 23699.60 22697.71 27599.67 15599.42 258
UniMVSNet (Re)97.29 25096.85 25798.59 23498.49 33099.13 175100.00 199.42 14196.52 24898.24 30098.90 35894.93 23798.89 30397.54 28287.61 37597.75 286
BH-w/o98.82 16298.81 14998.88 21899.62 19796.71 307100.00 199.28 26297.09 19998.81 261100.00 194.91 23899.96 14399.54 183100.00 199.96 125
AUN-MVS96.26 30195.67 31398.06 27699.68 16595.60 32599.82 29099.42 14196.78 22499.88 17199.80 26294.84 23999.47 25997.48 28473.29 40799.12 263
test_fmvsmconf0.1_n99.25 11199.05 11999.82 9798.92 30799.55 121100.00 199.23 29098.91 4199.75 19699.97 20194.79 24099.94 16899.94 9699.99 10399.97 119
PCF-MVS98.23 398.69 17298.37 19199.62 14099.78 14999.02 18499.23 37199.06 35596.43 25298.08 303100.00 194.72 24199.95 15698.16 25899.91 13099.90 162
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VNet99.04 13298.75 15499.90 7799.81 13199.75 9799.50 34199.47 7998.36 88100.00 199.99 18794.66 242100.00 199.90 10297.09 25499.96 125
diffmvspermissive98.96 14998.73 15699.63 13899.54 21999.16 173100.00 199.18 31097.33 18499.96 126100.00 194.60 24399.91 17799.66 16398.33 20499.82 204
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-untuned98.64 17598.65 16498.60 23399.59 20596.17 314100.00 199.28 26296.67 23898.41 285100.00 194.52 24499.83 19799.41 191100.00 199.81 213
nrg03097.64 23197.27 24698.75 22698.34 33499.53 125100.00 199.22 29396.21 27098.27 29699.95 22394.40 24598.98 29399.23 20489.78 35697.75 286
ppachtmachnet_test96.17 30795.89 29797.02 32297.61 36695.24 32899.99 21799.24 28693.31 35496.71 35399.62 29894.34 24698.07 36589.87 38092.30 32697.75 286
MVStest194.27 33693.30 34597.19 31798.83 31897.18 29599.93 26998.79 38186.80 39684.88 40899.04 34394.32 24798.25 35190.55 37586.57 38396.12 391
D2MVS97.63 23497.83 22397.05 32098.83 31894.60 348100.00 199.82 4096.89 21798.28 29499.03 34694.05 24899.47 25998.58 24294.97 29697.09 373
RPSCF97.37 24698.24 20094.76 36399.80 14284.57 40099.99 21799.05 35794.95 30799.82 186100.00 194.03 249100.00 198.15 25998.38 19899.70 246
CANet_DTU99.02 13998.90 14399.41 17099.88 11698.71 205100.00 199.29 25698.84 51100.00 1100.00 194.02 250100.00 198.08 26099.96 11999.52 256
LCM-MVSNet-Re96.52 28397.21 25094.44 36499.27 27385.80 39799.85 28596.61 41495.98 27592.75 38798.48 37493.97 25197.55 38399.58 17898.43 19299.98 112
Effi-MVS+98.58 18298.24 20099.61 14199.60 20199.26 16097.85 40799.10 33696.22 26999.97 12299.89 24093.75 25299.77 21199.43 18998.34 20199.81 213
pmmvs497.17 25396.80 25898.27 25497.68 36398.64 210100.00 199.18 31094.22 32898.55 27599.71 27193.67 25398.47 34095.66 32492.57 32197.71 328
CHOSEN 1792x268899.00 14298.91 14099.25 19699.90 11297.79 271100.00 199.99 1398.79 6398.28 294100.00 193.63 25499.95 15699.66 16399.95 121100.00 1
fmvsm_s_conf0.5_n99.21 11699.01 12399.83 9599.84 12199.53 125100.00 199.38 20998.29 94100.00 1100.00 193.62 25599.99 9899.99 6499.93 12799.98 112
WB-MVSnew97.02 26497.24 24896.37 34499.44 25397.36 285100.00 199.43 12496.12 27399.35 22599.89 24093.60 25698.42 34388.91 39098.39 19693.33 405
cdsmvs_eth3d_5k24.41 39032.55 3920.00 4060.00 4290.00 4310.00 41799.39 2070.00 4240.00 425100.00 193.55 2570.00 4250.00 4240.00 4230.00 421
AllTest98.55 18598.40 18798.99 21099.93 10597.35 286100.00 199.40 19497.08 20199.09 24099.98 19293.37 25899.95 15696.94 29999.84 14399.68 248
TestCases98.99 21099.93 10597.35 28699.40 19497.08 20199.09 24099.98 19293.37 25899.95 15696.94 29999.84 14399.68 248
FMVSNet397.30 24996.95 25398.37 24899.65 18299.25 16299.71 31599.28 26294.23 32798.53 27798.91 35793.30 26098.11 36095.31 33093.60 30697.73 315
Fast-Effi-MVS+98.40 20198.02 21799.55 15399.63 19099.06 179100.00 199.15 31895.07 30499.42 21699.95 22393.26 26199.73 21897.44 28598.24 21099.87 191
baseline98.69 17298.45 18499.41 17099.52 22998.67 208100.00 199.17 31597.03 20499.13 237100.00 193.17 26299.74 21699.70 14898.34 20199.81 213
QAPM98.99 14598.66 16399.96 4599.01 29499.87 7999.88 28199.93 3097.99 11498.68 267100.00 193.17 262100.00 199.32 197100.00 1100.00 1
PatchMatch-RL99.02 13998.78 15199.74 12099.99 4999.29 156100.00 1100.00 198.38 8499.89 16999.81 25993.14 26499.99 9897.85 27199.98 11399.95 131
WR-MVS_H96.73 27396.32 28197.95 28798.26 34197.88 26599.72 31499.43 12495.06 30596.99 34398.68 36793.02 26598.53 33597.43 28688.33 37197.43 363
3Dnovator95.63 1499.06 12998.76 15399.96 4598.86 31599.90 6399.98 24399.93 3098.95 3598.49 282100.00 192.91 266100.00 199.71 145100.00 1100.00 1
WB-MVS88.24 36990.09 36582.68 39491.56 40969.51 414100.00 198.73 38390.72 37987.29 40298.12 38292.87 26785.01 41662.19 41789.34 36193.54 404
3Dnovator+95.58 1599.03 13498.71 16099.96 4598.99 30199.89 70100.00 199.51 7698.96 3298.32 291100.00 192.78 268100.00 199.87 109100.00 1100.00 1
casdiffmvspermissive98.65 17498.38 18999.46 16199.52 22998.74 204100.00 199.15 31896.91 21499.05 245100.00 192.75 26999.83 19799.70 14898.38 19899.81 213
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive98.64 17598.39 18899.40 17499.50 23898.60 212100.00 199.22 29396.85 21899.10 239100.00 192.75 26999.78 21099.71 14598.35 20099.81 213
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NR-MVSNet96.63 27996.04 29198.38 24798.31 33798.98 19199.22 37399.35 22995.87 27894.43 37899.65 28692.73 27198.40 34496.78 30788.05 37297.75 286
SSC-MVS87.61 37089.47 36882.04 39590.63 41268.77 41599.99 21798.66 38490.34 38286.70 40398.08 38392.72 27284.12 41759.41 42088.71 36993.22 408
COLMAP_ROBcopyleft97.10 798.29 20798.17 20598.65 22999.94 10397.39 28399.30 36299.40 19495.64 28697.75 323100.00 192.69 27399.95 15698.89 22099.92 12998.62 270
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RRT-MVS98.75 16798.52 17899.44 16499.65 18298.57 21499.90 27599.08 34296.51 24999.96 12699.95 22392.59 27499.96 14399.60 17399.45 16699.81 213
EU-MVSNet96.63 27996.53 26896.94 32797.59 36896.87 30399.76 30499.47 7996.35 26196.85 34899.78 26592.57 27596.27 39695.33 32991.08 34597.68 335
MVP-Stereo96.51 28596.48 27296.60 33995.65 39494.25 35498.84 39898.16 39095.85 28295.23 36999.04 34392.54 27699.13 28392.98 35799.98 11396.43 386
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Syy-MVS96.17 30796.57 26795.00 35899.50 23887.37 395100.00 199.57 6896.23 26698.07 304100.00 192.41 27797.81 37685.34 39697.96 22499.82 204
DeepC-MVS97.84 599.00 14298.80 15099.60 14399.93 10599.03 182100.00 199.40 19498.61 7499.33 226100.00 192.23 27899.95 15699.74 13699.96 11999.83 199
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DU-MVS96.93 26796.49 27198.22 25998.31 33798.41 220100.00 199.37 21296.41 25697.76 32099.65 28692.14 27998.50 33797.98 26586.84 37997.75 286
Baseline_NR-MVSNet96.16 30995.70 30997.56 30298.28 34096.79 306100.00 197.86 40291.93 37097.63 32699.47 31792.14 27998.35 34697.13 29486.83 38197.54 357
cascas98.43 19698.07 21399.50 15799.65 18299.02 184100.00 199.22 29394.21 32999.72 19999.98 19292.03 28199.93 17299.68 15698.12 21799.54 255
test_djsdf97.55 23797.38 23998.07 27297.50 37297.99 255100.00 199.13 32795.46 29898.47 28399.85 25092.01 28298.59 32998.63 23795.36 27697.62 350
v896.35 29695.73 30898.21 26198.11 34998.23 23899.94 26699.07 34792.66 36698.29 29399.00 34991.46 28398.77 31494.17 34488.83 36897.62 350
OpenMVScopyleft95.20 1798.76 16598.41 18699.78 11498.89 31099.81 9099.99 21799.76 4998.02 11298.02 309100.00 191.44 284100.00 199.63 16899.97 11699.55 254
v14896.29 29995.84 30097.63 29797.74 36196.53 312100.00 199.07 34793.52 34698.01 31099.42 32091.22 28598.60 32796.37 31587.22 37897.75 286
GeoE98.06 21697.65 23199.29 18999.47 24798.41 220100.00 199.19 30394.85 30998.88 253100.00 191.21 28699.59 22897.02 29798.19 21499.88 181
XVG-OURS98.30 20598.36 19398.13 26999.58 21095.91 318100.00 199.36 21898.69 6899.23 230100.00 191.20 28799.92 17599.34 19597.82 23598.56 271
WR-MVS97.09 25796.64 26398.46 24098.43 33199.09 17699.97 24999.33 23795.62 28897.76 32099.67 28291.17 28898.56 33498.49 24489.28 36297.74 308
V4296.65 27896.16 28798.11 27198.17 34898.23 23899.99 21799.09 34193.97 33498.74 26599.05 34291.09 28998.82 30995.46 32889.90 35497.27 369
v1096.14 31195.50 31798.07 27298.19 34697.96 25999.83 28799.07 34792.10 36998.07 30498.94 35591.07 29098.61 32492.41 36389.82 35597.63 348
dmvs_testset93.27 34795.48 32186.65 38798.74 32168.42 41699.92 27198.91 37496.19 27193.28 384100.00 191.06 29191.67 41289.64 38391.54 33799.86 193
v7n96.06 31595.42 32597.99 28697.58 36997.35 28699.86 28399.11 33492.81 36597.91 31599.49 31590.99 29298.92 29992.51 36088.49 37097.70 329
v114496.51 28595.97 29598.13 26997.98 35498.04 25399.99 21799.08 34293.51 34798.62 27198.98 35090.98 29398.62 32393.79 35090.79 34897.74 308
dmvs_re97.54 23897.88 22196.54 34099.55 21890.35 38699.86 28399.46 9497.00 20699.41 221100.00 190.78 29499.30 27699.60 17395.24 28399.96 125
ab-mvs98.42 19898.02 21799.61 14199.71 15899.00 18999.10 38899.64 6496.70 23499.04 24699.81 25990.64 29599.98 12399.64 16597.93 22799.84 195
Anonymous20240521197.87 22297.53 23398.90 21699.81 13196.70 30899.35 35699.46 9492.98 36098.83 26099.99 18790.63 296100.00 199.70 14897.03 255100.00 1
Anonymous2023120693.45 34593.17 34694.30 36795.00 39989.69 38899.98 24398.43 38793.30 35594.50 37798.59 37090.52 29795.73 40177.46 41290.73 35097.48 362
anonymousdsp97.16 25496.88 25598.00 28497.08 38298.06 25199.81 29199.15 31894.58 31797.84 31999.62 29890.49 29898.60 32797.98 26595.32 27797.33 368
v2v48296.70 27696.18 28598.27 25498.04 35198.39 223100.00 199.13 32794.19 33198.58 27399.08 33990.48 29998.67 32095.69 32390.44 35297.75 286
v14419296.40 29395.81 30198.17 26497.89 35798.11 24599.99 21799.06 35593.39 35198.75 26499.09 33890.43 30098.66 32193.10 35690.55 35197.75 286
Vis-MVSNetpermissive98.52 19098.25 19799.34 18199.68 16598.55 21599.68 32199.41 19097.34 18399.94 155100.00 190.38 30199.70 22199.03 21498.84 17799.76 239
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvsmconf0.01_n98.60 18098.24 20099.67 13296.90 38399.21 16799.99 21799.04 36098.80 6099.57 20699.96 21690.12 30299.91 17799.89 10499.89 13299.90 162
CP-MVSNet96.73 27396.25 28298.18 26298.21 34498.67 20899.77 30299.32 24095.06 30597.20 34099.65 28690.10 30398.19 35398.06 26388.90 36697.66 340
TranMVSNet+NR-MVSNet96.45 28996.01 29297.79 29598.00 35397.62 276100.00 199.35 22995.98 27597.31 33799.64 29090.09 30498.00 37096.89 30286.80 38297.75 286
SDMVSNet98.49 19398.08 21199.73 12399.82 12599.53 12599.99 21799.45 10297.62 15099.38 22399.86 24590.06 30599.88 18599.92 9996.61 26499.79 233
DSMNet-mixed95.18 33095.21 32895.08 35596.03 38990.21 38799.65 32393.64 42092.91 36198.34 28997.40 39190.05 30695.51 40291.02 37197.86 23199.51 257
N_pmnet91.88 35793.37 34487.40 38697.24 38166.33 41999.90 27591.05 42289.77 38695.65 36798.58 37190.05 30698.11 36085.39 39592.72 31797.75 286
fmvsm_s_conf0.1_n_a98.71 16998.36 19399.78 11499.09 28499.42 144100.00 199.26 27997.42 177100.00 1100.00 189.78 30899.96 14399.82 12199.85 14199.97 119
GA-MVS97.72 22997.27 24699.06 20399.24 27697.93 262100.00 199.24 28695.80 28498.99 24899.64 29089.77 30999.36 27195.12 33497.62 24999.89 168
fmvsm_s_conf0.1_n98.77 16498.42 18599.82 9799.47 24799.52 128100.00 199.27 27297.53 164100.00 1100.00 189.73 31099.96 14399.84 11599.93 12799.97 119
MIMVSNet97.06 26096.73 26198.05 28099.38 26696.64 31098.47 40399.35 22993.41 35099.48 21198.53 37289.66 31197.70 38294.16 34698.11 21899.80 230
IterMVS-SCA-FT96.72 27596.42 27597.62 29999.40 26296.83 30499.99 21799.14 32394.65 31697.55 33299.72 26989.65 31298.31 34795.62 32692.05 32897.73 315
SCA98.30 20597.98 21999.23 19799.41 25798.25 23799.99 21799.45 10296.91 21499.76 19599.58 30489.65 31299.54 24598.31 25198.79 17899.91 151
IterMVS96.76 27296.46 27397.63 29799.41 25796.89 30299.99 21799.13 32794.74 31397.59 33199.66 28489.63 31498.28 34995.71 32292.31 32597.72 321
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v119296.18 30595.49 31998.26 25698.01 35298.15 24299.99 21799.08 34293.36 35298.54 27698.97 35389.47 31598.89 30391.15 37090.82 34797.75 286
v192192096.16 30995.50 31798.14 26697.88 35897.96 25999.99 21799.07 34793.33 35398.60 27299.24 33089.37 31698.71 31891.28 36890.74 34997.75 286
XVG-OURS-SEG-HR98.27 21098.31 19598.14 26699.59 20595.92 317100.00 199.36 21898.48 7999.21 231100.00 189.27 31799.94 16899.76 13299.17 16898.56 271
test20.0393.11 34892.85 35293.88 37295.19 39891.83 376100.00 198.87 37793.68 34192.76 38698.88 35989.20 31892.71 41077.88 41089.19 36397.09 373
MDA-MVSNet_test_wron92.61 35291.09 36097.19 31796.71 38597.26 292100.00 199.14 32388.61 38967.90 41798.32 38089.03 31996.57 39190.47 37789.59 35797.74 308
BH-RMVSNet98.46 19498.08 21199.59 14599.61 19999.19 169100.00 199.28 26297.06 20398.95 249100.00 188.99 32099.82 20098.83 225100.00 199.77 237
v124095.96 31795.25 32698.07 27297.91 35697.87 26799.96 25599.07 34793.24 35698.64 27098.96 35488.98 32198.61 32489.58 38490.92 34697.75 286
Anonymous2023121196.29 29995.70 30998.07 27299.80 14297.49 27999.15 38299.40 19489.11 38797.75 32399.45 31888.93 32298.98 29398.26 25689.47 35997.73 315
TR-MVS98.14 21497.74 22699.33 18499.59 20598.28 23599.27 36399.21 29996.42 25599.15 23699.94 22988.87 32399.79 20698.88 22198.29 20699.93 147
CL-MVSNet_self_test91.07 36190.35 36493.24 37493.27 40389.16 39099.55 33599.25 28192.34 36795.23 36997.05 39488.86 32493.59 40880.67 40566.95 41196.96 376
YYNet192.44 35390.92 36197.03 32196.20 38797.06 30099.99 21799.14 32388.21 39267.93 41698.43 37788.63 32596.28 39590.64 37289.08 36497.74 308
HQP2-MVS88.61 326
HQP-MVS97.73 22897.85 22297.39 30599.07 28694.82 336100.00 199.40 19499.04 1699.17 23299.97 20188.61 32699.57 23399.79 12395.58 26897.77 273
HQP_MVS97.71 23097.82 22497.37 30699.00 29894.80 339100.00 199.40 19499.00 2799.08 24299.97 20188.58 32899.55 24299.79 12395.57 27297.76 275
plane_prior699.06 29094.80 33988.58 328
tfpnnormal96.36 29595.69 31298.37 24898.55 32798.71 20599.69 31999.45 10293.16 35896.69 35499.71 27188.44 33098.99 29294.17 34491.38 34297.41 364
test111198.42 19898.12 20799.29 18999.88 11698.15 24299.46 343100.00 198.36 8899.42 216100.00 187.91 33199.79 20699.31 19898.78 17999.94 136
ECVR-MVScopyleft98.43 19698.14 20699.32 18699.89 11498.21 24099.46 343100.00 198.38 8499.47 214100.00 187.91 33199.80 20599.35 19498.78 17999.94 136
TransMVSNet (Re)94.78 33293.72 33997.93 29098.34 33497.88 26599.23 37197.98 39991.60 37194.55 37599.71 27187.89 33398.36 34589.30 38684.92 38697.56 356
DTE-MVSNet95.52 32494.99 33297.08 31997.49 37496.45 313100.00 199.25 28193.82 33796.17 36199.57 30887.81 33497.18 38494.57 33986.26 38597.62 350
XXY-MVS97.14 25696.63 26498.67 22898.65 32398.92 19499.54 33799.29 25695.57 29097.63 32699.83 25387.79 33599.35 27398.39 24792.95 31497.75 286
UGNet98.41 20098.11 20899.31 18899.54 21998.55 21599.18 374100.00 198.64 7399.79 19099.04 34387.61 336100.00 199.30 19999.89 13299.40 259
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CLD-MVS97.64 23197.74 22697.36 30799.01 29494.76 344100.00 199.34 23599.30 499.00 24799.97 20187.49 33799.57 23399.96 8895.58 26897.75 286
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_cas_vis1_n_192098.63 17898.25 19799.77 11799.69 16199.32 153100.00 199.31 24698.84 5199.96 126100.00 187.42 33899.99 9899.14 20799.86 138100.00 1
PEN-MVS96.01 31695.48 32197.58 30197.74 36197.26 29299.90 27599.29 25694.55 31896.79 35099.55 31087.38 33997.84 37596.92 30187.24 37797.65 344
ACMM97.17 697.37 24697.40 23897.29 31299.01 29494.64 347100.00 199.25 28198.07 11098.44 28499.98 19287.38 33999.55 24299.25 20195.19 28697.69 333
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
jajsoiax97.07 25996.79 26097.89 29297.28 38097.12 29799.95 26199.19 30396.55 24597.31 33799.69 27787.35 34198.91 30098.70 23195.12 29197.66 340
pmmvs595.94 31895.61 31496.95 32697.42 37794.66 345100.00 198.08 39493.60 34497.05 34299.43 31987.02 34298.46 34195.76 32092.12 32797.72 321
VPA-MVSNet97.03 26296.43 27498.82 22098.64 32499.32 15399.38 35399.47 7996.73 23198.91 25298.94 35587.00 34399.40 26999.23 20489.59 35797.76 275
PS-CasMVS96.34 29795.78 30598.03 28398.18 34798.27 23699.71 31599.32 24094.75 31196.82 34999.65 28686.98 34498.15 35597.74 27488.85 36797.66 340
LPG-MVS_test97.31 24897.32 24297.28 31398.85 31694.60 348100.00 199.37 21297.35 18198.85 25699.98 19286.66 34599.56 23799.55 18095.26 28097.70 329
LGP-MVS_train97.28 31398.85 31694.60 34899.37 21297.35 18198.85 25699.98 19286.66 34599.56 23799.55 18095.26 28097.70 329
mvs_tets97.00 26596.69 26297.94 28897.41 37997.27 29199.60 33099.18 31096.51 24997.35 33699.69 27786.53 34798.91 30098.84 22395.09 29297.65 344
ttmdpeth96.24 30295.88 29897.32 31097.80 35996.61 31199.95 26198.77 38297.80 13293.42 38399.28 32886.42 34899.01 28997.63 27891.84 33396.33 388
pm-mvs195.76 32195.01 33198.00 28498.23 34397.45 28199.24 36699.04 36093.13 35995.93 36599.72 26986.28 34998.84 30895.62 32687.92 37397.72 321
KD-MVS_self_test91.16 36090.09 36594.35 36694.44 40191.27 38199.74 30799.08 34290.82 37894.53 37694.91 40486.11 35094.78 40482.67 40168.52 41096.99 375
MVS-HIRNet94.12 34092.73 35498.29 25399.33 26895.95 31699.38 35399.19 30374.54 41198.26 29786.34 41586.07 35199.06 28691.60 36799.87 13799.85 194
DeepMVS_CXcopyleft89.98 38098.90 30971.46 41199.18 31097.61 15496.92 34499.83 25386.07 35199.83 19796.02 31897.65 24798.65 269
OPM-MVS97.21 25197.18 25197.32 31098.08 35094.66 345100.00 199.28 26298.65 7298.92 25099.98 19286.03 35399.56 23798.28 25595.41 27497.72 321
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
new_pmnet94.11 34193.47 34396.04 35096.60 38692.82 36999.97 24998.91 37490.21 38395.26 36898.05 38685.89 35498.14 35684.28 39892.01 32997.16 371
ACMP97.00 897.19 25297.16 25297.27 31598.97 30394.58 351100.00 199.32 24097.97 11897.45 33499.98 19285.79 35599.56 23799.70 14895.24 28397.67 339
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OurMVSNet-221017-096.14 31195.98 29496.62 33897.49 37493.44 36299.92 27198.16 39095.86 28097.65 32599.95 22385.71 35698.78 31194.93 33694.18 30497.64 347
sd_testset97.81 22597.48 23498.79 22499.82 12596.80 30599.32 35899.45 10297.62 15099.38 22399.86 24585.56 35799.77 21199.72 14196.61 26499.79 233
SixPastTwentyTwo95.71 32295.49 31996.38 34397.42 37793.01 36699.84 28698.23 38994.75 31195.98 36499.97 20185.35 35898.43 34294.71 33893.17 31197.69 333
test_fmvs198.37 20398.04 21599.34 18199.84 12198.07 249100.00 199.00 36698.85 49100.00 1100.00 185.11 35999.96 14399.69 15599.88 134100.00 1
LTVRE_ROB95.29 1696.32 29896.10 28896.99 32498.55 32793.88 35799.45 34599.28 26294.50 32196.46 35699.52 31384.86 36099.48 25797.26 29395.03 29397.59 354
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ITE_SJBPF96.84 33398.96 30493.49 36198.12 39298.12 10798.35 28899.97 20184.45 36199.56 23795.63 32595.25 28297.49 360
PVSNet_093.57 1996.41 29095.74 30798.41 24599.84 12195.22 329100.00 1100.00 198.08 10997.55 33299.78 26584.40 362100.00 1100.00 181.99 395100.00 1
K. test v395.46 32695.14 32996.40 34297.53 37193.40 36399.99 21799.23 29095.49 29692.70 38899.73 26884.26 36398.12 35893.94 34993.38 31097.68 335
GBi-Net96.07 31395.80 30396.89 33099.53 22294.87 33399.18 37499.27 27293.71 33898.53 27798.81 36184.23 36498.07 36595.31 33093.60 30697.72 321
test196.07 31395.80 30396.89 33099.53 22294.87 33399.18 37499.27 27293.71 33898.53 27798.81 36184.23 36498.07 36595.31 33093.60 30697.72 321
FMVSNet296.22 30395.60 31598.06 27699.53 22298.33 23099.45 34599.27 27293.71 33898.03 30798.84 36084.23 36498.10 36393.97 34893.40 30997.73 315
testgi96.18 30595.93 29696.93 32898.98 30294.20 356100.00 199.07 34797.16 19596.06 36399.86 24584.08 36797.79 37990.38 37897.80 23798.81 267
Anonymous2024052193.29 34692.76 35394.90 36295.64 39591.27 38199.97 24998.82 37987.04 39594.71 37398.19 38183.86 36896.80 38784.04 39992.56 32296.64 382
ACMH96.25 1196.77 27196.62 26597.21 31698.96 30494.43 35399.64 32499.33 23797.43 17696.55 35599.97 20183.52 36999.54 24599.07 21395.13 29097.66 340
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052996.93 26796.22 28499.05 20599.79 14697.30 29099.16 38099.47 7988.51 39098.69 266100.00 183.50 370100.00 199.83 11697.02 25699.83 199
lessismore_v096.05 34997.55 37091.80 37799.22 29391.87 38999.91 23783.50 37098.68 31992.48 36190.42 35397.68 335
UnsupCasMVSNet_eth94.25 33793.89 33795.34 35497.63 36492.13 37499.73 31299.36 21894.88 30892.78 38598.63 36982.72 37296.53 39294.57 33984.73 38797.36 366
LF4IMVS96.19 30496.18 28596.23 34798.26 34192.09 375100.00 197.89 40197.82 13097.94 31299.87 24382.71 37399.38 27097.41 28793.71 30597.20 370
ACMH+96.20 1396.49 28896.33 28097.00 32399.06 29093.80 35899.81 29199.31 24697.32 18595.89 36699.97 20182.62 37499.54 24598.34 25094.63 30097.65 344
pmmvs390.62 36489.36 37094.40 36590.53 41391.49 379100.00 196.73 41284.21 40293.65 38296.65 39682.56 37594.83 40382.28 40277.62 40496.89 378
XVG-ACMP-BASELINE96.60 28196.52 27096.84 33398.41 33293.29 36599.99 21799.32 24097.76 13798.51 28099.29 32781.95 37699.54 24598.40 24695.03 29397.68 335
VPNet96.41 29095.76 30698.33 25198.61 32598.30 23499.48 34299.45 10296.98 20898.87 25599.88 24281.57 37798.93 29899.22 20687.82 37497.76 275
MDA-MVSNet-bldmvs91.65 35989.94 36796.79 33696.72 38496.70 30899.42 35098.94 37188.89 38866.97 41998.37 37881.43 37895.91 39989.24 38789.46 36097.75 286
MS-PatchMatch95.66 32395.87 29995.05 35697.80 35989.25 38998.88 39799.30 25096.35 26196.86 34799.01 34881.35 37999.43 26693.30 35599.98 11396.46 385
USDC95.90 31995.70 30996.50 34198.60 32692.56 373100.00 198.30 38897.77 13596.92 34499.94 22981.25 38099.45 26493.54 35394.96 29797.49 360
TDRefinement91.93 35590.48 36396.27 34681.60 41992.65 37299.10 38897.61 40793.96 33593.77 38199.85 25080.03 38199.53 25097.82 27270.59 40996.63 383
test_040294.35 33593.70 34096.32 34597.92 35593.60 35999.61 32998.85 37888.19 39394.68 37499.48 31680.01 38298.58 33189.39 38595.15 28996.77 379
tt080596.52 28396.23 28397.40 30499.30 27293.55 36099.32 35899.45 10296.75 22797.88 31699.99 18779.99 38399.59 22897.39 28995.98 26799.06 265
TinyColmap95.50 32595.12 33096.64 33798.69 32293.00 36799.40 35197.75 40496.40 25796.14 36299.87 24379.47 38499.50 25593.62 35294.72 29997.40 365
LFMVS97.42 24496.62 26599.81 10299.80 14299.50 13199.16 38099.56 7094.48 322100.00 1100.00 179.35 385100.00 199.89 10497.37 25099.94 136
pmmvs-eth3d91.73 35890.67 36294.92 36191.63 40892.71 37199.90 27598.54 38691.19 37488.08 39995.50 39979.31 38696.13 39790.55 37581.32 39895.91 394
new-patchmatchnet90.30 36589.46 36992.84 37690.77 41188.55 39399.83 28798.80 38090.07 38587.86 40095.00 40278.77 38794.30 40684.86 39779.15 40195.68 397
test12379.44 37979.23 38180.05 39780.03 42071.72 410100.00 177.93 42862.52 41494.81 37299.69 27778.21 38874.53 42192.57 35927.33 42193.90 401
CMPMVSbinary66.12 2290.65 36392.04 35686.46 38896.18 38866.87 41898.03 40699.38 20983.38 40485.49 40599.55 31077.59 38998.80 31094.44 34194.31 30393.72 403
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
mvs5depth93.81 34293.00 34996.23 34794.25 40293.33 36497.43 40998.07 39593.47 34894.15 38099.58 30477.52 39098.97 29593.64 35188.92 36596.39 387
test_vis1_n_192097.77 22797.24 24899.34 18199.79 14698.04 253100.00 199.25 28198.88 44100.00 1100.00 177.52 390100.00 199.88 10699.85 141100.00 1
pmmvs693.64 34392.87 35195.94 35197.47 37691.41 38098.92 39599.02 36387.84 39495.01 37199.61 30077.24 39298.77 31494.33 34286.41 38497.63 348
mmtdpeth94.58 33394.18 33595.81 35298.82 32091.09 38399.99 21798.61 38596.38 258100.00 197.23 39276.52 39399.85 19399.82 12180.22 39996.48 384
tmp_tt75.80 38374.26 38580.43 39652.91 42853.67 42787.42 41597.98 39961.80 41567.04 418100.00 176.43 39496.40 39396.47 31128.26 42091.23 410
APD_test193.07 35094.14 33689.85 38199.18 27772.49 40999.76 30498.90 37692.86 36496.35 35799.94 22975.56 39599.91 17786.73 39397.98 22297.15 372
MIMVSNet191.96 35491.20 35794.23 36994.94 40091.69 37899.34 35799.22 29388.23 39194.18 37998.45 37575.52 39693.41 40979.37 40891.49 33997.60 353
test_fmvs1_n97.43 24396.86 25699.15 20199.68 16597.48 28099.99 21798.98 36998.82 55100.00 1100.00 174.85 39799.96 14399.67 15999.70 152100.00 1
VDDNet96.39 29495.55 31698.90 21699.27 27397.45 28199.15 38299.92 3491.28 37399.98 117100.00 173.55 398100.00 199.85 11296.98 25799.24 260
test_fmvs295.17 33195.23 32795.01 35798.95 30688.99 39199.99 21797.77 40397.79 13398.58 27399.70 27473.36 39999.34 27495.88 31995.03 29396.70 381
EGC-MVSNET79.46 37874.04 38695.72 35396.00 39092.73 37099.09 39099.04 3605.08 42316.72 42398.71 36573.03 40098.74 31782.05 40396.64 26395.69 396
FMVSNet194.45 33493.63 34196.89 33098.87 31494.87 33399.18 37499.27 27290.95 37797.31 33798.81 36172.89 40198.07 36592.61 35892.81 31697.72 321
VDD-MVS96.58 28295.99 29398.34 25099.52 22995.33 32799.18 37499.38 20996.64 24199.77 193100.00 172.51 402100.00 1100.00 196.94 25899.70 246
EG-PatchMatch MVS92.94 35192.49 35594.29 36895.87 39187.07 39699.07 39398.11 39393.19 35788.98 39798.66 36870.89 40399.08 28592.43 36295.21 28596.72 380
test_method91.04 36291.10 35990.85 37898.34 33477.63 405100.00 198.93 37376.69 40996.25 36098.52 37370.44 40497.98 37189.02 38991.74 33496.92 377
UniMVSNet_ETH3D95.28 32894.41 33497.89 29298.91 30895.14 33099.13 38599.35 22992.11 36897.17 34199.66 28470.28 40599.36 27197.88 27095.18 28799.16 261
OpenMVS_ROBcopyleft88.34 2091.89 35691.12 35894.19 37095.55 39687.63 39499.26 36498.03 39686.61 39890.65 39596.82 39570.14 40698.78 31186.54 39496.50 26696.15 389
testmvs80.17 37681.95 37974.80 39958.54 42659.58 424100.00 187.14 42576.09 41099.61 205100.00 167.06 40774.19 42298.84 22350.30 41690.64 411
test_vis1_n96.69 27795.81 30199.32 18699.14 27997.98 25699.97 24998.98 36998.45 81100.00 1100.00 166.44 40899.99 9899.78 12999.57 163100.00 1
UnsupCasMVSNet_bld89.50 36688.00 37293.99 37195.30 39788.86 39298.52 40299.28 26285.50 40087.80 40194.11 40561.63 40996.96 38690.63 37379.26 40096.15 389
test_vis1_rt93.10 34992.93 35093.58 37399.63 19085.07 39899.99 21793.71 41997.49 17090.96 39197.10 39360.40 41099.95 15699.24 20397.90 22995.72 395
Gipumacopyleft84.73 37383.50 37888.40 38497.50 37282.21 40288.87 41399.05 35765.81 41385.71 40490.49 41053.70 41196.31 39478.64 40991.74 33486.67 412
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
mvsany_test389.36 36788.96 37190.56 37991.95 40578.97 40499.74 30796.59 41596.84 21989.25 39696.07 39752.59 41297.11 38595.17 33382.44 39495.58 398
EMVS69.88 38569.09 38872.24 40384.70 41665.82 42099.96 25587.08 42649.82 42071.51 41484.74 41749.30 41375.32 42050.97 42243.71 41875.59 418
PM-MVS88.39 36887.41 37391.31 37791.73 40782.02 40399.79 29696.62 41391.06 37690.71 39495.73 39848.60 41495.96 39890.56 37481.91 39795.97 393
E-PMN70.72 38470.06 38772.69 40283.92 41765.48 42199.95 26192.72 42149.88 41972.30 41386.26 41647.17 41577.43 41953.83 42144.49 41775.17 419
testf184.40 37484.79 37683.23 39295.71 39258.71 42598.79 39997.75 40481.58 40584.94 40698.07 38445.33 41697.73 38077.09 41383.85 38993.24 406
APD_test284.40 37484.79 37683.23 39295.71 39258.71 42598.79 39997.75 40481.58 40584.94 40698.07 38445.33 41697.73 38077.09 41383.85 38993.24 406
ambc88.45 38386.84 41570.76 41297.79 40898.02 39890.91 39295.14 40038.69 41898.51 33694.97 33584.23 38896.09 392
test_f86.87 37286.06 37589.28 38291.45 41076.37 40799.87 28297.11 40991.10 37588.46 39893.05 40838.31 41996.66 39091.77 36683.46 39294.82 399
test_fmvs387.19 37187.02 37487.71 38592.69 40476.64 40699.96 25597.27 40893.55 34590.82 39394.03 40638.00 42092.19 41193.49 35483.35 39394.32 400
FPMVS77.92 38279.45 38073.34 40176.87 42246.81 42898.24 40499.05 35759.89 41673.55 41298.34 37936.81 42186.55 41480.96 40491.35 34386.65 413
PMMVS279.15 38077.28 38384.76 39082.34 41872.66 40899.70 31795.11 41871.68 41284.78 40990.87 40932.05 42289.99 41375.53 41563.45 41491.64 409
LCM-MVSNet79.01 38176.93 38485.27 38978.28 42168.01 41796.57 41098.03 39655.10 41782.03 41093.27 40731.99 42393.95 40782.72 40074.37 40693.84 402
test_vis3_rt79.61 37778.19 38283.86 39188.68 41469.56 41399.81 29182.19 42786.78 39768.57 41584.51 41825.06 42498.26 35089.18 38878.94 40283.75 415
ANet_high66.05 38763.44 39173.88 40061.14 42563.45 42295.68 41287.18 42479.93 40747.35 42180.68 42122.35 42572.33 42361.24 41835.42 41985.88 414
wuyk23d28.28 38929.73 39323.92 40575.89 42332.61 43066.50 41612.88 42916.09 42214.59 42416.59 42312.35 42632.36 42439.36 42313.36 4226.79 420
PMVScopyleft60.66 2365.98 38865.05 38968.75 40455.06 42738.40 42988.19 41496.98 41048.30 42144.82 42288.52 41312.22 42786.49 41567.58 41683.79 39181.35 417
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive68.59 2167.22 38664.68 39074.84 39874.67 42462.32 42395.84 41190.87 42350.98 41858.72 42081.05 42012.20 42878.95 41861.06 41956.75 41583.24 416
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
mmdepth0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.07 3930.09 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.79 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re8.33 39111.11 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.01 3940.02 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.14 4250.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS97.98 25695.74 321
FOURS1100.00 199.97 21100.00 199.42 14198.52 77100.00 1
MSC_two_6792asdad100.00 1100.00 1100.00 199.42 141100.00 1100.00 1100.00 1100.00 1
No_MVS100.00 1100.00 1100.00 199.42 141100.00 1100.00 1100.00 1100.00 1
eth-test20.00 429
eth-test0.00 429
IU-MVS100.00 199.99 599.42 14199.12 7100.00 1100.00 1100.00 1100.00 1
save fliter99.99 4999.93 47100.00 199.42 14198.93 38
test_0728_SECOND100.00 199.99 4999.99 5100.00 199.42 141100.00 1100.00 1100.00 1100.00 1
GSMVS99.91 151
test_part2100.00 199.99 5100.00 1
MTGPAbinary99.42 141
MTMP100.00 199.18 310
gm-plane-assit99.52 22997.26 29295.86 280100.00 199.43 26698.76 228
test9_res100.00 1100.00 1100.00 1
agg_prior2100.00 1100.00 1100.00 1
agg_prior100.00 199.88 7799.42 141100.00 199.97 130
test_prior499.93 47100.00 1
test_prior99.90 77100.00 199.75 9799.73 5699.97 130100.00 1
旧先验2100.00 198.11 108100.00 1100.00 199.67 159
新几何2100.00 1
无先验100.00 199.80 4397.98 116100.00 199.33 196100.00 1
原ACMM2100.00 1
testdata2100.00 197.36 290
testdata1100.00 198.77 66
plane_prior799.00 29894.78 343
plane_prior599.40 19499.55 24299.79 12395.57 27297.76 275
plane_prior499.97 201
plane_prior394.79 34299.03 2199.08 242
plane_prior2100.00 199.00 27
plane_prior199.02 293
plane_prior94.80 339100.00 199.03 2195.58 268
n20.00 430
nn0.00 430
door-mid96.32 416
test1199.42 141
door96.13 417
HQP5-MVS94.82 336
HQP-NCC99.07 286100.00 199.04 1699.17 232
ACMP_Plane99.07 286100.00 199.04 1699.17 232
BP-MVS99.79 123
HQP4-MVS99.17 23299.57 23397.77 273
HQP3-MVS99.40 19495.58 268
NP-MVS99.07 28694.81 33899.97 201
ACMMP++_ref94.58 302
ACMMP++95.17 288