MSP-MVS | | | 82.30 6 | 83.47 1 | 78.80 51 | 82.99 123 | 52.71 131 | 85.04 134 | 88.63 40 | 66.08 58 | 86.77 3 | 92.75 24 | 72.05 1 | 91.46 69 | 83.35 8 | 93.53 1 | 92.23 33 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DVP-MVS++ | | | 82.44 3 | 82.38 5 | 82.62 5 | 91.77 4 | 57.49 17 | 84.98 137 | 88.88 31 | 58.00 197 | 83.60 6 | 93.39 13 | 67.21 2 | 96.39 4 | 81.64 18 | 91.98 4 | 93.98 5 |
|
OPU-MVS | | | | | 81.71 13 | 92.05 3 | 55.97 46 | 92.48 3 | | | | 94.01 6 | 67.21 2 | 95.10 16 | 89.82 1 | 92.55 3 | 94.06 3 |
|
PC_three_1452 | | | | | | | | | | 66.58 47 | 87.27 2 | 93.70 9 | 66.82 4 | 94.95 18 | 89.74 2 | 91.98 4 | 93.98 5 |
|
DPM-MVS | | | 82.39 4 | 82.36 6 | 82.49 6 | 80.12 188 | 59.50 5 | 92.24 8 | 90.72 10 | 69.37 23 | 83.22 8 | 94.47 2 | 63.81 5 | 93.18 34 | 74.02 70 | 93.25 2 | 94.80 1 |
|
DELS-MVS | | | 82.32 5 | 82.50 4 | 81.79 12 | 86.80 46 | 56.89 28 | 92.77 2 | 86.30 84 | 77.83 1 | 77.88 25 | 92.13 35 | 60.24 6 | 94.78 22 | 78.97 30 | 89.61 8 | 93.69 8 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
baseline2 | | | 75.15 75 | 74.54 73 | 76.98 107 | 81.67 150 | 51.74 155 | 83.84 168 | 91.94 1 | 69.97 19 | 58.98 208 | 86.02 156 | 59.73 7 | 91.73 63 | 68.37 101 | 70.40 176 | 87.48 148 |
|
CSCG | | | 80.41 14 | 79.72 14 | 82.49 6 | 89.12 26 | 57.67 15 | 89.29 41 | 91.54 3 | 59.19 171 | 71.82 75 | 90.05 90 | 59.72 8 | 96.04 10 | 78.37 35 | 88.40 14 | 93.75 7 |
|
ETH3 D test6400 | | | 83.28 1 | 83.47 1 | 82.72 3 | 91.48 7 | 59.33 6 | 92.10 9 | 90.95 9 | 65.68 62 | 80.67 18 | 94.42 3 | 59.41 9 | 95.89 12 | 86.74 3 | 89.75 7 | 92.94 18 |
|
GG-mvs-BLEND | | | | | 77.77 84 | 86.68 47 | 50.61 175 | 68.67 323 | 88.45 47 | | 68.73 95 | 87.45 137 | 59.15 10 | 90.67 90 | 54.83 210 | 87.67 17 | 92.03 39 |
|
SED-MVS | | | 81.92 7 | 81.75 8 | 82.44 8 | 89.48 18 | 56.89 28 | 92.48 3 | 88.94 29 | 57.50 212 | 84.61 4 | 94.09 4 | 58.81 11 | 96.37 6 | 82.28 13 | 87.60 18 | 94.06 3 |
|
test_241102_ONE | | | | | | 89.48 18 | 56.89 28 | | 88.94 29 | 57.53 210 | 84.61 4 | 93.29 16 | 58.81 11 | 96.45 1 | | | |
|
gg-mvs-nofinetune | | | 67.43 200 | 64.53 224 | 76.13 127 | 85.95 51 | 47.79 247 | 64.38 330 | 88.28 49 | 39.34 336 | 66.62 111 | 41.27 358 | 58.69 13 | 89.00 134 | 49.64 245 | 86.62 31 | 91.59 49 |
|
CostFormer | | | 73.89 90 | 72.30 96 | 78.66 59 | 82.36 141 | 56.58 31 | 75.56 281 | 85.30 105 | 66.06 59 | 70.50 89 | 76.88 261 | 57.02 14 | 89.06 128 | 68.27 103 | 68.74 186 | 90.33 85 |
|
test_0728_THIRD | | | | | | | | | | 58.00 197 | 81.91 12 | 93.64 11 | 56.54 15 | 96.44 2 | 81.64 18 | 86.86 25 | 92.23 33 |
|
DPE-MVS |  | | 79.82 17 | 79.66 15 | 80.29 24 | 89.27 25 | 55.08 67 | 88.70 49 | 87.92 55 | 55.55 241 | 81.21 15 | 93.69 10 | 56.51 16 | 94.27 25 | 78.36 36 | 85.70 40 | 91.51 54 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
DeepPCF-MVS | | 69.37 1 | 80.65 12 | 81.56 10 | 77.94 83 | 85.46 67 | 49.56 205 | 90.99 20 | 86.66 78 | 70.58 15 | 80.07 20 | 95.30 1 | 56.18 17 | 90.97 84 | 82.57 12 | 86.22 36 | 93.28 12 |
|
test_241102_TWO | | | | | | | | | 88.76 37 | 57.50 212 | 83.60 6 | 94.09 4 | 56.14 18 | 96.37 6 | 82.28 13 | 87.43 20 | 92.55 25 |
|
patch_mono-2 | | | 80.84 11 | 81.59 9 | 78.62 60 | 90.34 10 | 53.77 96 | 88.08 57 | 88.36 48 | 76.17 2 | 79.40 23 | 91.09 56 | 55.43 19 | 90.09 108 | 85.01 5 | 80.40 87 | 91.99 42 |
|
DVP-MVS |  | | 81.30 9 | 81.00 12 | 82.20 9 | 89.40 21 | 57.45 19 | 92.34 5 | 89.99 16 | 57.71 206 | 81.91 12 | 93.64 11 | 55.17 20 | 96.44 2 | 81.68 15 | 87.13 21 | 92.72 23 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 89.40 21 | 57.45 19 | 92.32 7 | 88.63 40 | 57.71 206 | 83.14 9 | 93.96 7 | 55.17 20 | | | | |
|
TSAR-MVS + MP. | | | 78.31 27 | 78.26 22 | 78.48 64 | 81.33 165 | 56.31 40 | 81.59 227 | 86.41 81 | 69.61 22 | 81.72 14 | 88.16 125 | 55.09 22 | 88.04 171 | 74.12 69 | 86.31 34 | 91.09 67 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
baseline1 | | | 72.51 111 | 72.12 102 | 73.69 182 | 85.05 75 | 44.46 287 | 83.51 177 | 86.13 88 | 71.61 10 | 64.64 139 | 87.97 129 | 55.00 23 | 89.48 122 | 59.07 174 | 56.05 285 | 87.13 155 |
|
test_one_0601 | | | | | | 89.39 23 | 57.29 22 | | 88.09 51 | 57.21 217 | 82.06 11 | 93.39 13 | 54.94 24 | | | | |
|
TSAR-MVS + GP. | | | 77.82 32 | 77.59 31 | 78.49 63 | 85.25 73 | 50.27 191 | 90.02 26 | 90.57 11 | 56.58 230 | 74.26 45 | 91.60 50 | 54.26 25 | 92.16 55 | 75.87 51 | 79.91 95 | 93.05 17 |
|
EPP-MVSNet | | | 71.14 128 | 70.07 132 | 74.33 162 | 79.18 201 | 46.52 264 | 83.81 169 | 86.49 79 | 56.32 234 | 57.95 227 | 84.90 170 | 54.23 26 | 89.14 127 | 58.14 186 | 69.65 181 | 87.33 151 |
|
MCST-MVS | | | 83.01 2 | 83.30 3 | 82.15 11 | 92.84 2 | 57.58 16 | 93.77 1 | 91.10 6 | 75.95 3 | 77.10 28 | 93.09 20 | 54.15 27 | 95.57 13 | 85.80 4 | 85.87 38 | 93.31 11 |
|
alignmvs | | | 78.08 29 | 77.98 27 | 78.39 69 | 83.53 104 | 53.22 119 | 89.77 33 | 85.45 97 | 66.11 56 | 76.59 32 | 91.99 41 | 54.07 28 | 89.05 130 | 77.34 45 | 77.00 118 | 92.89 20 |
|
WTY-MVS | | | 77.47 37 | 77.52 32 | 77.30 96 | 88.33 31 | 46.25 270 | 88.46 53 | 90.32 12 | 71.40 11 | 72.32 70 | 91.72 46 | 53.44 29 | 92.37 50 | 66.28 116 | 75.42 132 | 93.28 12 |
|
IB-MVS | | 68.87 2 | 74.01 87 | 72.03 105 | 79.94 32 | 83.04 120 | 55.50 51 | 90.24 25 | 88.65 38 | 67.14 43 | 61.38 179 | 81.74 212 | 53.21 30 | 94.28 24 | 60.45 166 | 62.41 233 | 90.03 94 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
HPM-MVS++ |  | | 80.50 13 | 80.71 13 | 79.88 33 | 87.34 41 | 55.20 62 | 89.93 29 | 87.55 64 | 66.04 61 | 79.46 22 | 93.00 22 | 53.10 31 | 91.76 62 | 80.40 25 | 89.56 9 | 92.68 24 |
|
miper_enhance_ethall | | | 69.77 155 | 68.90 147 | 72.38 209 | 78.93 207 | 49.91 198 | 83.29 186 | 78.85 235 | 64.90 74 | 59.37 201 | 79.46 229 | 52.77 32 | 85.16 246 | 63.78 136 | 58.72 254 | 82.08 239 |
|
MVSTER | | | 73.25 99 | 72.33 94 | 76.01 131 | 85.54 63 | 53.76 97 | 83.52 173 | 87.16 67 | 67.06 44 | 63.88 155 | 81.66 213 | 52.77 32 | 90.44 96 | 64.66 133 | 64.69 211 | 83.84 216 |
|
CNVR-MVS | | | 81.76 8 | 81.90 7 | 81.33 18 | 90.04 11 | 57.70 14 | 91.71 10 | 88.87 33 | 70.31 17 | 77.64 27 | 93.87 8 | 52.58 34 | 93.91 28 | 84.17 6 | 87.92 16 | 92.39 28 |
|
FIs | | | 70.00 150 | 70.24 130 | 69.30 261 | 77.93 228 | 38.55 329 | 83.99 165 | 87.72 61 | 66.86 46 | 57.66 234 | 84.17 175 | 52.28 35 | 85.31 240 | 52.72 230 | 68.80 185 | 84.02 207 |
|
tpm2 | | | 70.82 136 | 68.44 151 | 77.98 80 | 80.78 176 | 56.11 42 | 74.21 291 | 81.28 194 | 60.24 149 | 68.04 101 | 75.27 279 | 52.26 36 | 88.50 153 | 55.82 207 | 68.03 190 | 89.33 107 |
|
thisisatest0515 | | | 73.64 95 | 72.20 98 | 77.97 81 | 81.63 151 | 53.01 126 | 86.69 92 | 88.81 35 | 62.53 110 | 64.06 149 | 85.65 161 | 52.15 37 | 92.50 46 | 58.43 180 | 69.84 179 | 88.39 133 |
|
test_part1 | | | 73.80 91 | 72.13 100 | 78.79 53 | 85.92 52 | 58.26 10 | 90.60 23 | 86.85 73 | 63.98 86 | 63.95 152 | 81.54 215 | 52.08 38 | 92.24 53 | 64.93 132 | 59.32 250 | 85.87 181 |
|
DWT-MVSNet_test | | | 75.47 70 | 73.87 79 | 80.29 24 | 87.33 42 | 57.05 25 | 82.86 197 | 87.96 54 | 72.59 7 | 67.29 106 | 87.79 131 | 51.61 39 | 91.52 67 | 54.75 213 | 72.63 157 | 92.29 32 |
|
UniMVSNet_NR-MVSNet | | | 68.82 171 | 68.29 154 | 70.40 248 | 75.71 259 | 42.59 307 | 84.23 156 | 86.78 74 | 66.31 52 | 58.51 218 | 82.45 202 | 51.57 40 | 84.64 255 | 53.11 220 | 55.96 286 | 83.96 213 |
|
PAPM | | | 76.76 50 | 76.07 53 | 78.81 50 | 80.20 186 | 59.11 7 | 86.86 89 | 86.23 85 | 68.60 26 | 70.18 90 | 88.84 113 | 51.57 40 | 87.16 193 | 65.48 123 | 86.68 30 | 90.15 90 |
|
tttt0517 | | | 68.33 182 | 66.29 191 | 74.46 157 | 78.08 224 | 49.06 213 | 80.88 241 | 89.08 25 | 54.40 256 | 54.75 263 | 80.77 222 | 51.31 42 | 90.33 100 | 49.35 247 | 58.01 265 | 83.99 209 |
|
mvs_anonymous | | | 72.29 115 | 70.74 119 | 76.94 109 | 82.85 128 | 54.72 78 | 78.43 268 | 81.54 187 | 63.77 90 | 61.69 178 | 79.32 231 | 51.11 43 | 85.31 240 | 62.15 148 | 75.79 128 | 90.79 74 |
|
HY-MVS | | 67.03 5 | 73.90 89 | 73.14 83 | 76.18 126 | 84.70 81 | 47.36 254 | 75.56 281 | 86.36 83 | 66.27 53 | 70.66 87 | 83.91 178 | 51.05 44 | 89.31 124 | 67.10 109 | 72.61 158 | 91.88 44 |
|
thisisatest0530 | | | 70.47 143 | 68.56 149 | 76.20 125 | 79.78 192 | 51.52 161 | 83.49 179 | 88.58 45 | 57.62 209 | 58.60 217 | 82.79 194 | 51.03 45 | 91.48 68 | 52.84 224 | 62.36 235 | 85.59 188 |
|
miper_ehance_all_eth | | | 68.70 178 | 67.58 167 | 72.08 214 | 76.91 243 | 49.48 208 | 82.47 206 | 78.45 248 | 62.68 108 | 58.28 226 | 77.88 244 | 50.90 46 | 85.01 250 | 61.91 149 | 58.72 254 | 81.75 244 |
|
canonicalmvs | | | 78.17 28 | 77.86 29 | 79.12 43 | 84.30 86 | 54.22 88 | 87.71 62 | 84.57 131 | 67.70 39 | 77.70 26 | 92.11 38 | 50.90 46 | 89.95 111 | 78.18 39 | 77.54 113 | 93.20 14 |
|
casdiffmvs | | | 77.36 38 | 76.85 40 | 78.88 47 | 80.40 185 | 54.66 82 | 87.06 82 | 85.88 91 | 72.11 9 | 71.57 78 | 88.63 119 | 50.89 48 | 90.35 99 | 76.00 50 | 79.11 102 | 91.63 48 |
|
baseline | | | 76.86 49 | 76.24 51 | 78.71 56 | 80.47 184 | 54.20 91 | 83.90 167 | 84.88 121 | 71.38 12 | 71.51 79 | 89.15 108 | 50.51 49 | 90.55 95 | 75.71 52 | 78.65 105 | 91.39 57 |
|
MVS_Test | | | 75.85 64 | 74.93 67 | 78.62 60 | 84.08 92 | 55.20 62 | 83.99 165 | 85.17 112 | 68.07 33 | 73.38 54 | 82.76 195 | 50.44 50 | 89.00 134 | 65.90 119 | 80.61 83 | 91.64 47 |
|
FC-MVSNet-test | | | 67.49 198 | 67.91 158 | 66.21 291 | 76.06 253 | 33.06 347 | 80.82 242 | 87.18 66 | 64.44 78 | 54.81 261 | 82.87 192 | 50.40 51 | 82.60 270 | 48.05 255 | 66.55 199 | 82.98 232 |
|
nrg030 | | | 72.27 117 | 71.56 108 | 74.42 159 | 75.93 256 | 50.60 176 | 86.97 84 | 83.21 161 | 62.75 107 | 67.15 108 | 84.38 172 | 50.07 52 | 86.66 208 | 71.19 86 | 62.37 234 | 85.99 176 |
|
cl22 | | | 68.85 169 | 67.69 165 | 72.35 210 | 78.07 225 | 49.98 197 | 82.45 207 | 78.48 247 | 62.50 111 | 58.46 222 | 77.95 242 | 49.99 53 | 85.17 245 | 62.55 143 | 58.72 254 | 81.90 241 |
|
tpmrst | | | 71.04 132 | 69.77 135 | 74.86 151 | 83.19 114 | 55.86 48 | 75.64 280 | 78.73 241 | 67.88 35 | 64.99 136 | 73.73 287 | 49.96 54 | 79.56 298 | 65.92 118 | 67.85 193 | 89.14 115 |
|
CANet | | | 80.90 10 | 81.17 11 | 80.09 31 | 87.62 39 | 54.21 89 | 91.60 13 | 86.47 80 | 73.13 6 | 79.89 21 | 93.10 18 | 49.88 55 | 92.98 35 | 84.09 7 | 84.75 51 | 93.08 16 |
|
ET-MVSNet_ETH3D | | | 75.23 73 | 74.08 76 | 78.67 58 | 84.52 83 | 55.59 49 | 88.92 45 | 89.21 22 | 68.06 34 | 53.13 277 | 90.22 83 | 49.71 56 | 87.62 184 | 72.12 83 | 70.82 172 | 92.82 21 |
|
c3_l | | | 67.97 188 | 66.66 186 | 71.91 225 | 76.20 252 | 49.31 210 | 82.13 213 | 78.00 255 | 61.99 118 | 57.64 235 | 76.94 258 | 49.41 57 | 84.93 251 | 60.62 161 | 57.01 275 | 81.49 248 |
|
Vis-MVSNet (Re-imp) | | | 65.52 229 | 65.63 207 | 65.17 299 | 77.49 233 | 30.54 354 | 75.49 284 | 77.73 259 | 59.34 166 | 52.26 284 | 86.69 150 | 49.38 58 | 80.53 286 | 37.07 297 | 75.28 133 | 84.42 202 |
|
EPNet | | | 78.36 25 | 78.49 21 | 77.97 81 | 85.49 64 | 52.04 146 | 89.36 38 | 84.07 143 | 73.22 5 | 77.03 29 | 91.72 46 | 49.32 59 | 90.17 107 | 73.46 76 | 82.77 61 | 91.69 46 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
ETH3D cwj APD-0.16 | | | 78.36 25 | 78.19 24 | 78.86 49 | 84.21 90 | 52.68 132 | 86.70 91 | 89.02 27 | 59.13 177 | 75.37 35 | 92.49 28 | 49.06 60 | 93.20 33 | 80.67 24 | 87.08 23 | 90.71 76 |
|
ETH3D-3000-0.1 | | | 78.73 20 | 78.71 20 | 78.78 54 | 85.58 61 | 52.40 139 | 88.42 54 | 89.03 26 | 60.01 151 | 76.06 33 | 92.80 23 | 48.34 61 | 92.88 37 | 81.66 17 | 86.48 33 | 91.04 68 |
|
tpm | | | 68.36 180 | 67.48 172 | 70.97 240 | 79.93 191 | 51.34 166 | 76.58 277 | 78.75 240 | 67.73 37 | 63.54 161 | 74.86 281 | 48.33 62 | 72.36 341 | 53.93 217 | 63.71 217 | 89.21 112 |
|
APDe-MVS | | | 78.44 22 | 78.20 23 | 79.19 40 | 88.56 27 | 54.55 84 | 89.76 34 | 87.77 59 | 55.91 236 | 78.56 24 | 92.49 28 | 48.20 63 | 92.65 44 | 79.49 27 | 83.04 60 | 90.39 83 |
|
MG-MVS | | | 78.42 23 | 76.99 39 | 82.73 2 | 93.17 1 | 64.46 1 | 89.93 29 | 88.51 46 | 64.83 75 | 73.52 52 | 88.09 126 | 48.07 64 | 92.19 54 | 62.24 146 | 84.53 53 | 91.53 53 |
|
DeepC-MVS | | 67.15 4 | 76.90 48 | 76.27 50 | 78.80 51 | 80.70 178 | 55.02 68 | 86.39 96 | 86.71 76 | 66.96 45 | 67.91 102 | 89.97 92 | 48.03 65 | 91.41 70 | 75.60 54 | 84.14 55 | 89.96 95 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
test_prior3 | | | 77.59 35 | 77.33 35 | 78.39 69 | 86.35 49 | 54.91 73 | 89.04 43 | 85.45 97 | 61.88 121 | 73.55 50 | 91.46 54 | 48.01 66 | 89.70 117 | 74.73 61 | 85.46 42 | 90.55 78 |
|
test_prior2 | | | | | | | | 89.04 43 | | 61.88 121 | 73.55 50 | 91.46 54 | 48.01 66 | | 74.73 61 | 85.46 42 | |
|
CS-MVS-test | | | 76.94 45 | 77.04 37 | 76.62 115 | 83.59 101 | 47.60 249 | 89.87 32 | 85.55 95 | 66.52 48 | 72.49 66 | 90.53 74 | 47.76 68 | 91.03 79 | 74.53 64 | 82.55 63 | 91.25 62 |
|
xxxxxxxxxxxxxcwj | | | 77.31 39 | 76.54 44 | 79.61 34 | 85.35 69 | 56.34 38 | 89.31 39 | 72.84 313 | 61.55 126 | 74.63 40 | 92.38 30 | 47.75 69 | 91.35 71 | 78.18 39 | 86.85 26 | 91.15 65 |
|
SF-MVS | | | 77.64 34 | 77.42 34 | 78.32 72 | 83.75 100 | 52.47 137 | 86.63 93 | 87.80 56 | 58.78 185 | 74.63 40 | 92.38 30 | 47.75 69 | 91.35 71 | 78.18 39 | 86.85 26 | 91.15 65 |
|
Regformer-1 | | | 77.80 33 | 77.44 33 | 78.88 47 | 87.78 37 | 52.44 138 | 87.60 64 | 90.08 14 | 68.86 25 | 72.49 66 | 91.79 43 | 47.69 71 | 94.90 20 | 73.57 74 | 77.05 115 | 89.31 108 |
|
test2506 | | | 72.91 103 | 72.43 93 | 74.32 163 | 80.12 188 | 44.18 293 | 83.19 188 | 84.77 125 | 64.02 83 | 65.97 121 | 87.43 138 | 47.67 72 | 88.72 143 | 59.08 173 | 79.66 98 | 90.08 92 |
|
1112_ss | | | 70.05 148 | 69.37 140 | 72.10 213 | 80.77 177 | 42.78 305 | 85.12 130 | 76.75 277 | 59.69 157 | 61.19 182 | 92.12 36 | 47.48 73 | 83.84 259 | 53.04 222 | 68.21 188 | 89.66 101 |
|
Effi-MVS+ | | | 75.24 72 | 73.61 81 | 80.16 28 | 81.92 145 | 57.42 21 | 85.21 124 | 76.71 279 | 60.68 144 | 73.32 55 | 89.34 103 | 47.30 74 | 91.63 64 | 68.28 102 | 79.72 97 | 91.42 56 |
|
UniMVSNet (Re) | | | 67.71 193 | 66.80 181 | 70.45 246 | 74.44 272 | 42.93 303 | 82.42 208 | 84.90 120 | 63.69 93 | 59.63 196 | 80.99 219 | 47.18 75 | 85.23 244 | 51.17 237 | 56.75 277 | 83.19 227 |
|
test12 | | | | | 79.24 39 | 86.89 45 | 56.08 43 | | 85.16 113 | | 72.27 71 | | 47.15 76 | 91.10 78 | | 85.93 37 | 90.54 81 |
|
PVSNet_Blended_VisFu | | | 73.40 98 | 72.44 92 | 76.30 120 | 81.32 166 | 54.70 79 | 85.81 107 | 78.82 237 | 63.70 92 | 64.53 142 | 85.38 165 | 47.11 77 | 87.38 190 | 67.75 105 | 77.55 112 | 86.81 164 |
|
NCCC | | | 79.57 18 | 79.23 18 | 80.59 21 | 89.50 16 | 56.99 26 | 91.38 15 | 88.17 50 | 67.71 38 | 73.81 48 | 92.75 24 | 46.88 78 | 93.28 32 | 78.79 33 | 84.07 56 | 91.50 55 |
|
9.14 | | | | 78.19 24 | | 85.67 58 | | 88.32 55 | 88.84 34 | 59.89 153 | 74.58 43 | 92.62 27 | 46.80 79 | 92.66 43 | 81.40 22 | 85.62 41 | |
|
VNet | | | 77.99 31 | 77.92 28 | 78.19 74 | 87.43 40 | 50.12 194 | 90.93 21 | 91.41 4 | 67.48 41 | 75.12 36 | 90.15 87 | 46.77 80 | 91.00 81 | 73.52 75 | 78.46 107 | 93.44 9 |
|
PVSNet_BlendedMVS | | | 73.42 97 | 73.30 82 | 73.76 179 | 85.91 53 | 51.83 153 | 86.18 101 | 84.24 140 | 65.40 66 | 69.09 93 | 80.86 221 | 46.70 81 | 88.13 166 | 75.43 55 | 65.92 206 | 81.33 256 |
|
PVSNet_Blended | | | 76.53 54 | 76.54 44 | 76.50 117 | 85.91 53 | 51.83 153 | 88.89 46 | 84.24 140 | 67.82 36 | 69.09 93 | 89.33 105 | 46.70 81 | 88.13 166 | 75.43 55 | 81.48 77 | 89.55 103 |
|
SMA-MVS |  | | 79.10 19 | 78.76 19 | 80.12 29 | 84.42 84 | 55.87 47 | 87.58 69 | 86.76 75 | 61.48 130 | 80.26 19 | 93.10 18 | 46.53 83 | 92.41 49 | 79.97 26 | 88.77 11 | 92.08 37 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
Regformer-3 | | | 76.02 62 | 75.47 58 | 77.70 86 | 85.49 64 | 51.47 162 | 85.12 130 | 90.19 13 | 68.52 27 | 69.36 91 | 90.66 69 | 46.45 84 | 94.81 21 | 70.25 92 | 73.16 149 | 86.81 164 |
|
tpm cat1 | | | 66.28 222 | 62.78 233 | 76.77 114 | 81.40 163 | 57.14 24 | 70.03 318 | 77.19 268 | 53.00 264 | 58.76 216 | 70.73 317 | 46.17 85 | 86.73 206 | 43.27 278 | 64.46 213 | 86.44 170 |
|
cl____ | | | 67.43 200 | 65.93 200 | 71.95 222 | 76.33 248 | 48.02 244 | 82.58 201 | 79.12 232 | 61.30 132 | 56.72 248 | 76.92 259 | 46.12 86 | 86.44 215 | 57.98 188 | 56.31 280 | 81.38 255 |
|
DIV-MVS_self_test | | | 67.43 200 | 65.93 200 | 71.94 223 | 76.33 248 | 48.01 245 | 82.57 202 | 79.11 233 | 61.31 131 | 56.73 247 | 76.92 259 | 46.09 87 | 86.43 216 | 57.98 188 | 56.31 280 | 81.39 254 |
|
IS-MVSNet | | | 68.80 173 | 67.55 170 | 72.54 204 | 78.50 219 | 43.43 299 | 81.03 238 | 79.35 228 | 59.12 178 | 57.27 244 | 86.71 149 | 46.05 88 | 87.70 182 | 44.32 274 | 75.60 131 | 86.49 169 |
|
Regformer-2 | | | 77.15 41 | 76.82 41 | 78.14 75 | 87.78 37 | 51.84 152 | 87.60 64 | 89.12 23 | 67.23 42 | 71.93 74 | 91.79 43 | 46.03 89 | 93.53 31 | 72.85 80 | 77.05 115 | 89.05 117 |
|
diffmvs | | | 75.11 76 | 74.65 71 | 76.46 119 | 78.52 218 | 53.35 114 | 83.28 187 | 79.94 211 | 70.51 16 | 71.64 77 | 88.72 114 | 46.02 90 | 86.08 227 | 77.52 44 | 75.75 130 | 89.96 95 |
|
RRT_test8_iter05 | | | 72.74 105 | 71.20 115 | 77.36 94 | 87.25 43 | 53.51 104 | 88.68 50 | 89.53 18 | 65.20 72 | 61.32 180 | 81.27 217 | 45.89 91 | 92.48 48 | 65.99 117 | 55.65 291 | 86.10 175 |
|
EI-MVSNet | | | 69.70 158 | 68.70 148 | 72.68 201 | 75.00 267 | 48.90 220 | 79.54 258 | 87.16 67 | 61.05 136 | 63.88 155 | 83.74 181 | 45.87 92 | 90.44 96 | 57.42 197 | 64.68 212 | 78.70 282 |
|
IterMVS-LS | | | 66.63 217 | 65.36 215 | 70.42 247 | 75.10 265 | 48.90 220 | 81.45 233 | 76.69 280 | 61.05 136 | 55.71 258 | 77.10 256 | 45.86 93 | 83.65 263 | 57.44 196 | 57.88 269 | 78.70 282 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EIA-MVS | | | 75.92 63 | 75.18 63 | 78.13 76 | 85.14 74 | 51.60 158 | 87.17 80 | 85.32 104 | 64.69 76 | 68.56 96 | 90.53 74 | 45.79 94 | 91.58 65 | 67.21 108 | 82.18 70 | 91.20 64 |
|
MVS | | | 76.91 46 | 75.48 57 | 81.23 19 | 84.56 82 | 55.21 61 | 80.23 250 | 91.64 2 | 58.65 187 | 65.37 129 | 91.48 53 | 45.72 95 | 95.05 17 | 72.11 84 | 89.52 10 | 93.44 9 |
|
PAPM_NR | | | 71.80 122 | 69.98 133 | 77.26 100 | 81.54 157 | 53.34 115 | 78.60 267 | 85.25 109 | 53.46 260 | 60.53 189 | 88.66 115 | 45.69 96 | 89.24 125 | 56.49 201 | 79.62 100 | 89.19 113 |
|
CS-MVS | | | 76.69 52 | 76.72 43 | 76.60 116 | 83.54 103 | 47.58 250 | 88.59 51 | 85.23 111 | 66.38 51 | 72.48 68 | 91.62 49 | 45.57 97 | 91.00 81 | 74.50 65 | 82.55 63 | 91.23 63 |
|
DeepC-MVS_fast | | 67.50 3 | 78.00 30 | 77.63 30 | 79.13 42 | 88.52 28 | 55.12 64 | 89.95 28 | 85.98 90 | 68.31 28 | 71.33 81 | 92.75 24 | 45.52 98 | 90.37 98 | 71.15 87 | 85.14 47 | 91.91 43 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
agg_prior1 | | | 76.68 53 | 76.24 51 | 78.00 79 | 85.64 59 | 54.92 71 | 87.55 70 | 83.61 153 | 57.99 199 | 72.53 64 | 91.05 57 | 45.36 99 | 88.10 168 | 77.76 43 | 84.68 52 | 90.99 71 |
|
Test_1112_low_res | | | 67.18 207 | 66.23 193 | 70.02 256 | 78.75 210 | 41.02 320 | 83.43 180 | 73.69 305 | 57.29 215 | 58.45 223 | 82.39 204 | 45.30 100 | 80.88 282 | 50.50 239 | 66.26 204 | 88.16 134 |
|
ETV-MVS | | | 77.17 40 | 76.74 42 | 78.48 64 | 81.80 147 | 54.55 84 | 86.13 102 | 85.33 103 | 68.20 30 | 73.10 56 | 90.52 76 | 45.23 101 | 90.66 91 | 79.37 28 | 80.95 78 | 90.22 87 |
|
NR-MVSNet | | | 67.25 205 | 65.99 199 | 71.04 239 | 73.27 284 | 43.91 294 | 85.32 123 | 84.75 126 | 66.05 60 | 53.65 275 | 82.11 208 | 45.05 102 | 85.97 231 | 47.55 257 | 56.18 283 | 83.24 225 |
|
train_agg | | | 76.91 46 | 76.40 48 | 78.45 66 | 85.68 56 | 55.42 53 | 87.59 67 | 84.00 144 | 57.84 203 | 72.99 57 | 90.98 60 | 44.99 103 | 88.58 148 | 78.19 37 | 85.32 45 | 91.34 61 |
|
test_8 | | | | | | 85.72 55 | 55.31 57 | 87.60 64 | 83.88 147 | 57.84 203 | 72.84 60 | 90.99 59 | 44.99 103 | 88.34 158 | | | |
|
segment_acmp | | | | | | | | | | | | | 44.97 105 | | | | |
|
TEST9 | | | | | | 85.68 56 | 55.42 53 | 87.59 67 | 84.00 144 | 57.72 205 | 72.99 57 | 90.98 60 | 44.87 106 | 88.58 148 | | | |
|
eth_miper_zixun_eth | | | 66.98 213 | 65.28 216 | 72.06 215 | 75.61 260 | 50.40 182 | 81.00 239 | 76.97 275 | 62.00 117 | 56.99 246 | 76.97 257 | 44.84 107 | 85.58 235 | 58.75 177 | 54.42 298 | 80.21 272 |
|
MVSFormer | | | 73.53 96 | 72.19 99 | 77.57 89 | 83.02 121 | 55.24 59 | 81.63 224 | 81.44 189 | 50.28 281 | 76.67 30 | 90.91 64 | 44.82 108 | 86.11 221 | 60.83 158 | 80.09 91 | 91.36 59 |
|
lupinMVS | | | 78.38 24 | 78.11 26 | 79.19 40 | 83.02 121 | 55.24 59 | 91.57 14 | 84.82 122 | 69.12 24 | 76.67 30 | 92.02 39 | 44.82 108 | 90.23 105 | 80.83 23 | 80.09 91 | 92.08 37 |
|
WR-MVS | | | 67.58 195 | 66.76 183 | 70.04 255 | 75.92 257 | 45.06 285 | 86.23 100 | 85.28 107 | 64.31 79 | 58.50 220 | 81.00 218 | 44.80 110 | 82.00 275 | 49.21 248 | 55.57 292 | 83.06 230 |
|
ZD-MVS | | | | | | 89.55 15 | 53.46 106 | | 84.38 133 | 57.02 219 | 73.97 47 | 91.03 58 | 44.57 111 | 91.17 75 | 75.41 58 | 81.78 75 | |
|
Fast-Effi-MVS+ | | | 72.73 106 | 71.15 117 | 77.48 91 | 82.75 132 | 54.76 75 | 86.77 90 | 80.64 201 | 63.05 103 | 65.93 122 | 84.01 176 | 44.42 112 | 89.03 131 | 56.45 204 | 76.36 125 | 88.64 127 |
|
testtj | | | 76.96 44 | 76.48 46 | 78.40 68 | 89.89 13 | 53.67 100 | 88.72 48 | 86.15 87 | 54.56 254 | 74.86 38 | 92.31 33 | 44.38 113 | 91.97 60 | 75.19 59 | 82.24 68 | 89.54 104 |
|
Regformer-4 | | | 75.06 77 | 74.59 72 | 76.47 118 | 85.49 64 | 50.33 187 | 85.12 130 | 88.61 42 | 66.42 49 | 68.48 97 | 90.66 69 | 44.15 114 | 92.68 42 | 69.24 96 | 73.16 149 | 86.39 172 |
|
PCF-MVS | | 61.03 10 | 70.10 146 | 68.40 152 | 75.22 147 | 77.15 241 | 51.99 147 | 79.30 263 | 82.12 177 | 56.47 232 | 61.88 177 | 86.48 154 | 43.98 115 | 87.24 192 | 55.37 208 | 72.79 156 | 86.43 171 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
CDS-MVSNet | | | 70.48 142 | 69.43 138 | 73.64 184 | 77.56 232 | 48.83 223 | 83.51 177 | 77.45 264 | 63.27 100 | 62.33 172 | 85.54 164 | 43.85 116 | 83.29 268 | 57.38 198 | 74.00 142 | 88.79 124 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
EI-MVSNet-Vis-set | | | 73.19 100 | 72.60 89 | 74.99 150 | 82.56 138 | 49.80 201 | 82.55 204 | 89.00 28 | 66.17 55 | 65.89 123 | 88.98 109 | 43.83 117 | 92.29 51 | 65.38 130 | 69.01 184 | 82.87 234 |
|
APD-MVS |  | | 76.15 59 | 75.68 54 | 77.54 90 | 88.52 28 | 53.44 110 | 87.26 79 | 85.03 117 | 53.79 258 | 74.91 37 | 91.68 48 | 43.80 118 | 90.31 101 | 74.36 66 | 81.82 73 | 88.87 121 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
MVS_111021_HR | | | 76.39 56 | 75.38 60 | 79.42 37 | 85.33 71 | 56.47 35 | 88.15 56 | 84.97 118 | 65.15 73 | 66.06 120 | 89.88 93 | 43.79 119 | 92.16 55 | 75.03 60 | 80.03 94 | 89.64 102 |
|
thres100view900 | | | 66.87 215 | 65.42 214 | 71.24 234 | 83.29 111 | 43.15 301 | 81.67 223 | 87.78 57 | 59.04 179 | 55.92 257 | 82.18 207 | 43.73 120 | 87.80 177 | 28.80 332 | 66.36 201 | 82.78 235 |
|
thres600view7 | | | 66.46 220 | 65.12 218 | 70.47 245 | 83.41 105 | 43.80 296 | 82.15 212 | 87.78 57 | 59.37 165 | 56.02 256 | 82.21 206 | 43.73 120 | 86.90 202 | 26.51 343 | 64.94 208 | 80.71 266 |
|
v148 | | | 68.24 185 | 66.35 189 | 73.88 174 | 71.76 299 | 51.47 162 | 84.23 156 | 81.90 183 | 63.69 93 | 58.94 209 | 76.44 266 | 43.72 122 | 87.78 180 | 60.63 160 | 55.86 288 | 82.39 237 |
|
SD-MVS | | | 76.18 58 | 74.85 68 | 80.18 27 | 85.39 68 | 56.90 27 | 85.75 111 | 82.45 174 | 56.79 225 | 74.48 44 | 91.81 42 | 43.72 122 | 90.75 89 | 74.61 63 | 78.65 105 | 92.91 19 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
XXY-MVS | | | 70.18 144 | 69.28 144 | 72.89 199 | 77.64 230 | 42.88 304 | 85.06 133 | 87.50 65 | 62.58 109 | 62.66 170 | 82.34 205 | 43.64 124 | 89.83 113 | 58.42 182 | 63.70 218 | 85.96 178 |
|
tfpn200view9 | | | 67.57 196 | 66.13 196 | 71.89 226 | 84.05 93 | 45.07 282 | 83.40 182 | 87.71 62 | 60.79 141 | 57.79 231 | 82.76 195 | 43.53 125 | 87.80 177 | 28.80 332 | 66.36 201 | 82.78 235 |
|
thres400 | | | 67.40 203 | 66.13 196 | 71.19 236 | 84.05 93 | 45.07 282 | 83.40 182 | 87.71 62 | 60.79 141 | 57.79 231 | 82.76 195 | 43.53 125 | 87.80 177 | 28.80 332 | 66.36 201 | 80.71 266 |
|
PAPR | | | 75.20 74 | 74.13 75 | 78.41 67 | 88.31 32 | 55.10 66 | 84.31 154 | 85.66 94 | 63.76 91 | 67.55 104 | 90.73 68 | 43.48 127 | 89.40 123 | 66.36 115 | 77.03 117 | 90.73 75 |
|
MP-MVS |  | | 74.99 78 | 74.33 74 | 76.95 108 | 82.89 127 | 53.05 125 | 85.63 115 | 83.50 155 | 57.86 202 | 67.25 107 | 90.24 82 | 43.38 128 | 88.85 142 | 76.03 49 | 82.23 69 | 88.96 119 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
EI-MVSNet-UG-set | | | 72.37 112 | 71.73 106 | 74.29 164 | 81.60 153 | 49.29 211 | 81.85 219 | 88.64 39 | 65.29 71 | 65.05 133 | 88.29 122 | 43.18 129 | 91.83 61 | 63.74 137 | 67.97 191 | 81.75 244 |
|
thres200 | | | 68.71 176 | 67.27 176 | 73.02 194 | 84.73 80 | 46.76 261 | 85.03 135 | 87.73 60 | 62.34 113 | 59.87 191 | 83.45 186 | 43.15 130 | 88.32 160 | 31.25 326 | 67.91 192 | 83.98 211 |
|
PHI-MVS | | | 77.49 36 | 77.00 38 | 78.95 44 | 85.33 71 | 50.69 174 | 88.57 52 | 88.59 44 | 58.14 194 | 73.60 49 | 93.31 15 | 43.14 131 | 93.79 29 | 73.81 71 | 88.53 13 | 92.37 29 |
|
ab-mvs | | | 70.65 139 | 69.11 145 | 75.29 144 | 80.87 175 | 46.23 271 | 73.48 295 | 85.24 110 | 59.99 152 | 66.65 110 | 80.94 220 | 43.13 132 | 88.69 144 | 63.58 138 | 68.07 189 | 90.95 72 |
|
CDPH-MVS | | | 76.05 61 | 75.19 62 | 78.62 60 | 86.51 48 | 54.98 70 | 87.32 74 | 84.59 130 | 58.62 188 | 70.75 86 | 90.85 66 | 43.10 133 | 90.63 93 | 70.50 90 | 84.51 54 | 90.24 86 |
|
v8 | | | 67.25 205 | 64.99 220 | 74.04 170 | 72.89 289 | 53.31 117 | 82.37 209 | 80.11 209 | 61.54 128 | 54.29 268 | 76.02 275 | 42.89 134 | 88.41 155 | 58.43 180 | 56.36 278 | 80.39 270 |
|
DROMVSNet | | | 75.30 71 | 75.20 61 | 75.62 136 | 80.98 169 | 49.00 216 | 87.43 71 | 84.68 128 | 63.49 98 | 70.97 85 | 90.15 87 | 42.86 135 | 91.14 77 | 74.33 67 | 81.90 72 | 86.71 166 |
|
h-mvs33 | | | 73.95 88 | 72.89 87 | 77.15 102 | 80.17 187 | 50.37 184 | 84.68 146 | 83.33 156 | 68.08 31 | 71.97 72 | 88.65 118 | 42.50 136 | 91.15 76 | 78.82 31 | 57.78 271 | 89.91 97 |
|
hse-mvs2 | | | 71.44 127 | 70.68 120 | 73.73 181 | 76.34 247 | 47.44 253 | 79.45 261 | 79.47 223 | 68.08 31 | 71.97 72 | 86.01 158 | 42.50 136 | 86.93 201 | 78.82 31 | 53.46 307 | 86.83 163 |
|
SteuartSystems-ACMMP | | | 77.08 42 | 76.33 49 | 79.34 38 | 80.98 169 | 55.31 57 | 89.76 34 | 86.91 71 | 62.94 105 | 71.65 76 | 91.56 51 | 42.33 138 | 92.56 45 | 77.14 46 | 83.69 58 | 90.15 90 |
Skip Steuart: Steuart Systems R&D Blog. |
HyFIR lowres test | | | 69.94 153 | 67.58 167 | 77.04 103 | 77.11 242 | 57.29 22 | 81.49 232 | 79.11 233 | 58.27 192 | 58.86 213 | 80.41 224 | 42.33 138 | 86.96 199 | 61.91 149 | 68.68 187 | 86.87 158 |
|
ZNCC-MVS | | | 75.82 67 | 75.02 65 | 78.23 73 | 83.88 98 | 53.80 95 | 86.91 88 | 86.05 89 | 59.71 156 | 67.85 103 | 90.55 73 | 42.23 140 | 91.02 80 | 72.66 82 | 85.29 46 | 89.87 98 |
|
FMVSNet3 | | | 68.84 170 | 67.40 173 | 73.19 193 | 85.05 75 | 48.53 229 | 85.71 114 | 85.36 101 | 60.90 140 | 57.58 236 | 79.15 234 | 42.16 141 | 86.77 204 | 47.25 260 | 63.40 219 | 84.27 204 |
|
VPA-MVSNet | | | 71.12 129 | 70.66 121 | 72.49 206 | 78.75 210 | 44.43 289 | 87.64 63 | 90.02 15 | 63.97 87 | 65.02 134 | 81.58 214 | 42.14 142 | 87.42 189 | 63.42 139 | 63.38 222 | 85.63 187 |
|
jason | | | 77.01 43 | 76.45 47 | 78.69 57 | 79.69 193 | 54.74 76 | 90.56 24 | 83.99 146 | 68.26 29 | 74.10 46 | 90.91 64 | 42.14 142 | 89.99 110 | 79.30 29 | 79.12 101 | 91.36 59 |
jason: jason. |
CLD-MVS | | | 75.60 68 | 75.39 59 | 76.24 122 | 80.69 179 | 52.40 139 | 90.69 22 | 86.20 86 | 74.40 4 | 65.01 135 | 88.93 110 | 42.05 144 | 90.58 94 | 76.57 48 | 73.96 143 | 85.73 183 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
test_yl | | | 75.85 64 | 74.83 69 | 78.91 45 | 88.08 35 | 51.94 148 | 91.30 16 | 89.28 20 | 57.91 200 | 71.19 83 | 89.20 106 | 42.03 145 | 92.77 39 | 69.41 94 | 75.07 137 | 92.01 40 |
|
DCV-MVSNet | | | 75.85 64 | 74.83 69 | 78.91 45 | 88.08 35 | 51.94 148 | 91.30 16 | 89.28 20 | 57.91 200 | 71.19 83 | 89.20 106 | 42.03 145 | 92.77 39 | 69.41 94 | 75.07 137 | 92.01 40 |
|
TAMVS | | | 69.51 163 | 68.16 156 | 73.56 187 | 76.30 250 | 48.71 225 | 82.57 202 | 77.17 269 | 62.10 116 | 61.32 180 | 84.23 174 | 41.90 147 | 83.46 266 | 54.80 212 | 73.09 153 | 88.50 132 |
|
TransMVSNet (Re) | | | 62.82 247 | 60.76 249 | 69.02 263 | 73.98 278 | 41.61 315 | 86.36 97 | 79.30 231 | 56.90 220 | 52.53 280 | 76.44 266 | 41.85 148 | 87.60 185 | 38.83 290 | 40.61 343 | 77.86 295 |
|
VPNet | | | 72.07 118 | 71.42 112 | 74.04 170 | 78.64 215 | 47.17 258 | 89.91 31 | 87.97 53 | 72.56 8 | 64.66 138 | 85.04 168 | 41.83 149 | 88.33 159 | 61.17 155 | 60.97 240 | 86.62 167 |
|
v2v482 | | | 69.55 162 | 67.64 166 | 75.26 146 | 72.32 296 | 53.83 94 | 84.93 140 | 81.94 179 | 65.37 68 | 60.80 185 | 79.25 232 | 41.62 150 | 88.98 137 | 63.03 141 | 59.51 247 | 82.98 232 |
|
API-MVS | | | 74.17 85 | 72.07 103 | 80.49 22 | 90.02 12 | 58.55 9 | 87.30 76 | 84.27 137 | 57.51 211 | 65.77 126 | 87.77 133 | 41.61 151 | 95.97 11 | 51.71 233 | 82.63 62 | 86.94 156 |
|
GeoE | | | 69.96 152 | 67.88 160 | 76.22 123 | 81.11 168 | 51.71 156 | 84.15 158 | 76.74 278 | 59.83 154 | 60.91 183 | 84.38 172 | 41.56 152 | 88.10 168 | 51.67 234 | 70.57 174 | 88.84 122 |
|
CHOSEN 1792x2688 | | | 76.24 57 | 74.03 77 | 82.88 1 | 83.09 117 | 62.84 2 | 85.73 113 | 85.39 100 | 69.79 20 | 64.87 137 | 83.49 185 | 41.52 153 | 93.69 30 | 70.55 89 | 81.82 73 | 92.12 36 |
|
LFMVS | | | 78.52 21 | 77.14 36 | 82.67 4 | 89.58 14 | 58.90 8 | 91.27 18 | 88.05 52 | 63.22 101 | 74.63 40 | 90.83 67 | 41.38 154 | 94.40 23 | 75.42 57 | 79.90 96 | 94.72 2 |
|
MAR-MVS | | | 76.76 50 | 75.60 56 | 80.21 26 | 90.87 8 | 54.68 80 | 89.14 42 | 89.11 24 | 62.95 104 | 70.54 88 | 92.33 32 | 41.05 155 | 94.95 18 | 57.90 191 | 86.55 32 | 91.00 70 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
GST-MVS | | | 74.87 79 | 73.90 78 | 77.77 84 | 83.30 110 | 53.45 109 | 85.75 111 | 85.29 106 | 59.22 170 | 66.50 115 | 89.85 94 | 40.94 156 | 90.76 88 | 70.94 88 | 83.35 59 | 89.10 116 |
|
DU-MVS | | | 66.84 216 | 65.74 205 | 70.16 251 | 73.27 284 | 42.59 307 | 81.50 230 | 82.92 168 | 63.53 97 | 58.51 218 | 82.11 208 | 40.75 157 | 84.64 255 | 53.11 220 | 55.96 286 | 83.24 225 |
|
Baseline_NR-MVSNet | | | 65.49 231 | 64.27 226 | 69.13 262 | 74.37 275 | 41.65 314 | 83.39 184 | 78.85 235 | 59.56 159 | 59.62 197 | 76.88 261 | 40.75 157 | 87.44 188 | 49.99 241 | 55.05 293 | 78.28 291 |
|
miper_lstm_enhance | | | 63.91 237 | 62.30 236 | 68.75 269 | 75.06 266 | 46.78 260 | 69.02 322 | 81.14 195 | 59.68 158 | 52.76 279 | 72.39 304 | 40.71 159 | 77.99 310 | 56.81 200 | 53.09 308 | 81.48 250 |
|
HFP-MVS | | | 74.37 82 | 73.13 85 | 78.10 77 | 84.30 86 | 53.68 98 | 85.58 116 | 84.36 134 | 56.82 223 | 65.78 124 | 90.56 71 | 40.70 160 | 90.90 85 | 69.18 97 | 80.88 79 | 89.71 99 |
|
#test# | | | 74.86 80 | 73.78 80 | 78.10 77 | 84.30 86 | 53.68 98 | 86.95 85 | 84.36 134 | 59.00 181 | 65.78 124 | 90.56 71 | 40.70 160 | 90.90 85 | 71.48 85 | 80.88 79 | 89.71 99 |
|
CL-MVSNet_self_test | | | 62.98 245 | 61.14 246 | 68.50 274 | 65.86 335 | 42.96 302 | 84.37 151 | 82.98 166 | 60.98 138 | 53.95 271 | 72.70 300 | 40.43 162 | 83.71 262 | 41.10 285 | 47.93 321 | 78.83 281 |
|
ACMMP_NAP | | | 76.43 55 | 75.66 55 | 78.73 55 | 81.92 145 | 54.67 81 | 84.06 162 | 85.35 102 | 61.10 135 | 72.99 57 | 91.50 52 | 40.25 163 | 91.00 81 | 76.84 47 | 86.98 24 | 90.51 82 |
|
v1144 | | | 68.81 172 | 66.82 180 | 74.80 153 | 72.34 295 | 53.46 106 | 84.68 146 | 81.77 185 | 64.25 80 | 60.28 190 | 77.91 243 | 40.23 164 | 88.95 138 | 60.37 167 | 59.52 246 | 81.97 240 |
|
WR-MVS_H | | | 58.91 275 | 58.04 266 | 61.54 317 | 69.07 319 | 33.83 344 | 76.91 274 | 81.99 178 | 51.40 277 | 48.17 301 | 74.67 282 | 40.23 164 | 74.15 329 | 31.78 323 | 48.10 319 | 76.64 308 |
|
原ACMM1 | | | | | 76.13 127 | 84.89 79 | 54.59 83 | | 85.26 108 | 51.98 271 | 66.70 109 | 87.07 145 | 40.15 166 | 89.70 117 | 51.23 236 | 85.06 49 | 84.10 205 |
|
MVP-Stereo | | | 70.97 133 | 70.44 123 | 72.59 203 | 76.03 255 | 51.36 165 | 85.02 136 | 86.99 70 | 60.31 148 | 56.53 252 | 78.92 236 | 40.11 167 | 90.00 109 | 60.00 171 | 90.01 6 | 76.41 311 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
v10 | | | 66.61 218 | 64.20 227 | 73.83 177 | 72.59 292 | 53.37 113 | 81.88 218 | 79.91 213 | 61.11 134 | 54.09 270 | 75.60 277 | 40.06 168 | 88.26 164 | 56.47 202 | 56.10 284 | 79.86 277 |
|
MP-MVS-pluss | | | 75.54 69 | 75.03 64 | 77.04 103 | 81.37 164 | 52.65 134 | 84.34 153 | 84.46 132 | 61.16 133 | 69.14 92 | 91.76 45 | 39.98 169 | 88.99 136 | 78.19 37 | 84.89 50 | 89.48 106 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
TranMVSNet+NR-MVSNet | | | 66.94 214 | 65.61 208 | 70.93 241 | 73.45 281 | 43.38 300 | 83.02 194 | 84.25 138 | 65.31 70 | 58.33 225 | 81.90 211 | 39.92 170 | 85.52 236 | 49.43 246 | 54.89 295 | 83.89 215 |
|
Patchmatch-test | | | 53.33 307 | 48.17 314 | 68.81 267 | 73.31 282 | 42.38 311 | 42.98 358 | 58.23 350 | 32.53 353 | 38.79 340 | 70.77 315 | 39.66 171 | 73.51 335 | 25.18 346 | 52.06 311 | 90.55 78 |
|
Test By Simon | | | | | | | | | | | | | 39.38 172 | | | | |
|
v144192 | | | 67.86 190 | 65.76 204 | 74.16 167 | 71.68 300 | 53.09 123 | 84.14 159 | 80.83 199 | 62.85 106 | 59.21 205 | 77.28 253 | 39.30 173 | 88.00 172 | 58.67 178 | 57.88 269 | 81.40 253 |
|
BH-w/o | | | 70.02 149 | 68.51 150 | 74.56 155 | 82.77 130 | 50.39 183 | 86.60 94 | 78.14 252 | 59.77 155 | 59.65 195 | 85.57 163 | 39.27 174 | 87.30 191 | 49.86 243 | 74.94 139 | 85.99 176 |
|
CR-MVSNet | | | 62.47 252 | 59.04 262 | 72.77 200 | 73.97 279 | 56.57 32 | 60.52 341 | 71.72 319 | 60.04 150 | 57.49 239 | 65.86 332 | 38.94 175 | 80.31 288 | 42.86 282 | 59.93 244 | 81.42 251 |
|
Patchmtry | | | 56.56 290 | 52.95 297 | 67.42 280 | 72.53 293 | 50.59 177 | 59.05 344 | 71.72 319 | 37.86 342 | 46.92 310 | 65.86 332 | 38.94 175 | 80.06 292 | 36.94 299 | 46.72 330 | 71.60 340 |
|
sam_mvs1 | | | | | | | | | | | | | 38.86 177 | | | | 88.13 137 |
|
UA-Net | | | 67.32 204 | 66.23 193 | 70.59 244 | 78.85 208 | 41.23 319 | 73.60 293 | 75.45 291 | 61.54 128 | 66.61 112 | 84.53 171 | 38.73 178 | 86.57 213 | 42.48 284 | 74.24 141 | 83.98 211 |
|
cdsmvs_eth3d_5k | | | 18.33 339 | 24.44 335 | 0.00 360 | 0.00 382 | 0.00 383 | 0.00 371 | 89.40 19 | 0.00 376 | 0.00 379 | 92.02 39 | 38.55 179 | 0.00 377 | 0.00 377 | 0.00 375 | 0.00 375 |
|
patchmatchnet-post | | | | | | | | | | | | 59.74 347 | 38.41 180 | 79.91 295 | | | |
|
CHOSEN 280x420 | | | 57.53 285 | 56.38 278 | 60.97 322 | 74.01 277 | 48.10 243 | 46.30 355 | 54.31 355 | 48.18 293 | 50.88 293 | 77.43 251 | 38.37 181 | 59.16 358 | 54.83 210 | 63.14 227 | 75.66 315 |
|
V42 | | | 67.66 194 | 65.60 209 | 73.86 175 | 70.69 311 | 53.63 101 | 81.50 230 | 78.61 244 | 63.85 89 | 59.49 200 | 77.49 249 | 37.98 182 | 87.65 183 | 62.33 144 | 58.43 258 | 80.29 271 |
|
tpmvs | | | 62.45 253 | 59.42 258 | 71.53 231 | 83.93 95 | 54.32 86 | 70.03 318 | 77.61 261 | 51.91 272 | 53.48 276 | 68.29 325 | 37.91 183 | 86.66 208 | 33.36 316 | 58.27 259 | 73.62 329 |
|
PatchmatchNet |  | | 67.07 211 | 63.63 231 | 77.40 93 | 83.10 115 | 58.03 11 | 72.11 309 | 77.77 258 | 58.85 184 | 59.37 201 | 70.83 314 | 37.84 184 | 84.93 251 | 42.96 281 | 69.83 180 | 89.26 109 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
pcd_1.5k_mvsjas | | | 3.15 346 | 4.20 349 | 0.00 360 | 0.00 382 | 0.00 383 | 0.00 371 | 0.00 382 | 0.00 376 | 0.00 379 | 0.00 378 | 37.77 185 | 0.00 377 | 0.00 377 | 0.00 375 | 0.00 375 |
|
PS-MVSNAJss | | | 68.78 175 | 67.17 177 | 73.62 186 | 73.01 286 | 48.33 237 | 84.95 139 | 84.81 123 | 59.30 169 | 58.91 212 | 79.84 227 | 37.77 185 | 88.86 141 | 62.83 142 | 63.12 228 | 83.67 218 |
|
PS-MVSNAJ | | | 80.06 15 | 79.52 16 | 81.68 14 | 85.58 61 | 60.97 3 | 91.69 11 | 87.02 69 | 70.62 14 | 80.75 17 | 93.22 17 | 37.77 185 | 92.50 46 | 82.75 10 | 86.25 35 | 91.57 51 |
|
pm-mvs1 | | | 64.12 236 | 62.56 234 | 68.78 268 | 71.68 300 | 38.87 328 | 82.89 196 | 81.57 186 | 55.54 242 | 53.89 272 | 77.82 245 | 37.73 188 | 86.74 205 | 48.46 253 | 53.49 305 | 80.72 265 |
|
RPMNet | | | 59.29 267 | 54.25 290 | 74.42 159 | 73.97 279 | 56.57 32 | 60.52 341 | 76.98 272 | 35.72 348 | 57.49 239 | 58.87 350 | 37.73 188 | 85.26 243 | 27.01 342 | 59.93 244 | 81.42 251 |
|
xiu_mvs_v2_base | | | 79.86 16 | 79.31 17 | 81.53 15 | 85.03 77 | 60.73 4 | 91.65 12 | 86.86 72 | 70.30 18 | 80.77 16 | 93.07 21 | 37.63 190 | 92.28 52 | 82.73 11 | 85.71 39 | 91.57 51 |
|
Patchmatch-RL test | | | 58.72 277 | 54.32 289 | 71.92 224 | 63.91 346 | 44.25 291 | 61.73 337 | 55.19 353 | 57.38 214 | 49.31 298 | 54.24 354 | 37.60 191 | 80.89 281 | 62.19 147 | 47.28 325 | 90.63 77 |
|
HPM-MVS |  | | 72.60 108 | 71.50 109 | 75.89 133 | 82.02 143 | 51.42 164 | 80.70 244 | 83.05 164 | 56.12 235 | 64.03 150 | 89.53 99 | 37.55 192 | 88.37 156 | 70.48 91 | 80.04 93 | 87.88 141 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
test_post | | | | | | | | | | | | 16.22 370 | 37.52 193 | 84.72 253 | | | |
|
PatchT | | | 56.60 289 | 52.97 296 | 67.48 279 | 72.94 288 | 46.16 272 | 57.30 347 | 73.78 304 | 38.77 338 | 54.37 267 | 57.26 353 | 37.52 193 | 78.06 307 | 32.02 321 | 52.79 309 | 78.23 293 |
|
v1192 | | | 67.96 189 | 65.74 205 | 74.63 154 | 71.79 298 | 53.43 112 | 84.06 162 | 80.99 197 | 63.19 102 | 59.56 198 | 77.46 250 | 37.50 195 | 88.65 145 | 58.20 185 | 58.93 253 | 81.79 243 |
|
HQP2-MVS | | | | | | | | | | | | | 37.35 196 | | | | |
|
HQP-MVS | | | 72.34 113 | 71.44 111 | 75.03 148 | 79.02 204 | 51.56 159 | 88.00 58 | 83.68 150 | 65.45 63 | 64.48 143 | 85.13 166 | 37.35 196 | 88.62 146 | 66.70 111 | 73.12 151 | 84.91 197 |
|
region2R | | | 73.75 93 | 72.55 90 | 77.33 95 | 83.90 97 | 52.98 127 | 85.54 119 | 84.09 142 | 56.83 222 | 65.10 132 | 90.45 77 | 37.34 198 | 90.24 104 | 68.89 99 | 80.83 82 | 88.77 125 |
|
TESTMET0.1,1 | | | 72.86 104 | 72.33 94 | 74.46 157 | 81.98 144 | 50.77 172 | 85.13 127 | 85.47 96 | 66.09 57 | 67.30 105 | 83.69 183 | 37.27 199 | 83.57 264 | 65.06 131 | 78.97 104 | 89.05 117 |
|
ACMMPR | | | 73.76 92 | 72.61 88 | 77.24 101 | 83.92 96 | 52.96 128 | 85.58 116 | 84.29 136 | 56.82 223 | 65.12 131 | 90.45 77 | 37.24 200 | 90.18 106 | 69.18 97 | 80.84 81 | 88.58 129 |
|
sss | | | 70.49 141 | 70.13 131 | 71.58 230 | 81.59 154 | 39.02 327 | 80.78 243 | 84.71 127 | 59.34 166 | 66.61 112 | 88.09 126 | 37.17 201 | 85.52 236 | 61.82 151 | 71.02 170 | 90.20 89 |
|
EPNet_dtu | | | 66.25 223 | 66.71 184 | 64.87 301 | 78.66 214 | 34.12 342 | 82.80 198 | 75.51 289 | 61.75 123 | 64.47 146 | 86.90 146 | 37.06 202 | 72.46 340 | 43.65 277 | 69.63 182 | 88.02 140 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
v1921920 | | | 67.45 199 | 65.23 217 | 74.10 169 | 71.51 303 | 52.90 129 | 83.75 171 | 80.44 204 | 62.48 112 | 59.12 207 | 77.13 254 | 36.98 203 | 87.90 174 | 57.53 195 | 58.14 263 | 81.49 248 |
|
旧先验1 | | | | | | 81.57 156 | 47.48 251 | | 71.83 318 | | | 88.66 115 | 36.94 204 | | | 78.34 109 | 88.67 126 |
|
test-LLR | | | 69.65 159 | 69.01 146 | 71.60 228 | 78.67 212 | 48.17 239 | 85.13 127 | 79.72 216 | 59.18 173 | 63.13 163 | 82.58 200 | 36.91 205 | 80.24 289 | 60.56 162 | 75.17 134 | 86.39 172 |
|
test0.0.03 1 | | | 62.54 249 | 62.44 235 | 62.86 311 | 72.28 297 | 29.51 356 | 82.93 195 | 78.78 238 | 59.18 173 | 53.07 278 | 82.41 203 | 36.91 205 | 77.39 316 | 37.45 293 | 58.96 252 | 81.66 246 |
|
MDTV_nov1_ep13_2view | | | | | | | 43.62 297 | 71.13 314 | | 54.95 249 | 59.29 204 | | 36.76 207 | | 46.33 266 | | 87.32 152 |
|
KD-MVS_2432*1600 | | | 59.04 273 | 56.44 276 | 66.86 285 | 79.07 202 | 45.87 274 | 72.13 307 | 80.42 205 | 55.03 247 | 48.15 302 | 71.01 312 | 36.73 208 | 78.05 308 | 35.21 307 | 30.18 360 | 76.67 305 |
|
miper_refine_blended | | | 59.04 273 | 56.44 276 | 66.86 285 | 79.07 202 | 45.87 274 | 72.13 307 | 80.42 205 | 55.03 247 | 48.15 302 | 71.01 312 | 36.73 208 | 78.05 308 | 35.21 307 | 30.18 360 | 76.67 305 |
|
GBi-Net | | | 67.09 209 | 65.47 211 | 71.96 219 | 82.71 133 | 46.36 266 | 83.52 173 | 83.31 157 | 58.55 189 | 57.58 236 | 76.23 270 | 36.72 210 | 86.20 217 | 47.25 260 | 63.40 219 | 83.32 222 |
|
test1 | | | 67.09 209 | 65.47 211 | 71.96 219 | 82.71 133 | 46.36 266 | 83.52 173 | 83.31 157 | 58.55 189 | 57.58 236 | 76.23 270 | 36.72 210 | 86.20 217 | 47.25 260 | 63.40 219 | 83.32 222 |
|
FMVSNet2 | | | 67.57 196 | 65.79 203 | 72.90 197 | 82.71 133 | 47.97 246 | 85.15 126 | 84.93 119 | 58.55 189 | 56.71 249 | 78.26 241 | 36.72 210 | 86.67 207 | 46.15 267 | 62.94 230 | 84.07 206 |
|
AUN-MVS | | | 68.20 186 | 66.35 189 | 73.76 179 | 76.37 246 | 47.45 252 | 79.52 260 | 79.52 221 | 60.98 138 | 62.34 171 | 86.02 156 | 36.59 213 | 86.94 200 | 62.32 145 | 53.47 306 | 86.89 157 |
|
BH-untuned | | | 68.28 183 | 66.40 188 | 73.91 173 | 81.62 152 | 50.01 196 | 85.56 118 | 77.39 265 | 57.63 208 | 57.47 241 | 83.69 183 | 36.36 214 | 87.08 195 | 44.81 272 | 73.08 154 | 84.65 199 |
|
EPMVS | | | 68.45 179 | 65.44 213 | 77.47 92 | 84.91 78 | 56.17 41 | 71.89 311 | 81.91 182 | 61.72 124 | 60.85 184 | 72.49 301 | 36.21 215 | 87.06 196 | 47.32 259 | 71.62 165 | 89.17 114 |
|
MSLP-MVS++ | | | 74.21 84 | 72.25 97 | 80.11 30 | 81.45 162 | 56.47 35 | 86.32 98 | 79.65 219 | 58.19 193 | 66.36 116 | 92.29 34 | 36.11 216 | 90.66 91 | 67.39 106 | 82.49 65 | 93.18 15 |
|
zzz-MVS | | | 74.15 86 | 73.11 86 | 77.27 98 | 81.54 157 | 53.57 102 | 84.02 164 | 81.31 191 | 59.41 163 | 68.39 98 | 90.96 62 | 36.07 217 | 89.01 132 | 73.80 72 | 82.45 66 | 89.23 110 |
|
MTAPA | | | 72.73 106 | 71.22 114 | 77.27 98 | 81.54 157 | 53.57 102 | 67.06 326 | 81.31 191 | 59.41 163 | 68.39 98 | 90.96 62 | 36.07 217 | 89.01 132 | 73.80 72 | 82.45 66 | 89.23 110 |
|
HQP_MVS | | | 70.96 134 | 69.91 134 | 74.12 168 | 77.95 226 | 49.57 203 | 85.76 109 | 82.59 171 | 63.60 95 | 62.15 173 | 83.28 189 | 36.04 219 | 88.30 161 | 65.46 124 | 72.34 160 | 84.49 200 |
|
plane_prior6 | | | | | | 78.42 221 | 49.39 209 | | | | | | 36.04 219 | | | | |
|
sam_mvs | | | | | | | | | | | | | 35.99 221 | | | | |
|
PGM-MVS | | | 72.60 108 | 71.20 115 | 76.80 112 | 82.95 124 | 52.82 130 | 83.07 192 | 82.14 176 | 56.51 231 | 63.18 162 | 89.81 95 | 35.68 222 | 89.76 116 | 67.30 107 | 80.19 90 | 87.83 142 |
|
XVS | | | 72.92 102 | 71.62 107 | 76.81 110 | 83.41 105 | 52.48 135 | 84.88 141 | 83.20 162 | 58.03 195 | 63.91 153 | 89.63 98 | 35.50 223 | 89.78 114 | 65.50 121 | 80.50 85 | 88.16 134 |
|
X-MVStestdata | | | 65.85 228 | 62.20 237 | 76.81 110 | 83.41 105 | 52.48 135 | 84.88 141 | 83.20 162 | 58.03 195 | 63.91 153 | 4.82 374 | 35.50 223 | 89.78 114 | 65.50 121 | 80.50 85 | 88.16 134 |
|
v1240 | | | 66.99 212 | 64.68 222 | 73.93 172 | 71.38 306 | 52.66 133 | 83.39 184 | 79.98 210 | 61.97 119 | 58.44 224 | 77.11 255 | 35.25 225 | 87.81 176 | 56.46 203 | 58.15 261 | 81.33 256 |
|
test1111 | | | 71.06 131 | 70.42 124 | 72.97 196 | 79.48 195 | 41.49 316 | 84.82 143 | 82.74 170 | 64.20 81 | 62.98 165 | 87.43 138 | 35.20 226 | 87.92 173 | 58.54 179 | 78.42 108 | 89.49 105 |
|
dp | | | 64.41 234 | 61.58 241 | 72.90 197 | 82.40 139 | 54.09 92 | 72.53 301 | 76.59 282 | 60.39 147 | 55.68 259 | 70.39 318 | 35.18 227 | 76.90 320 | 39.34 289 | 61.71 237 | 87.73 145 |
|
ECVR-MVS |  | | 71.81 121 | 71.00 118 | 74.26 165 | 80.12 188 | 43.49 298 | 84.69 145 | 82.16 175 | 64.02 83 | 64.64 139 | 87.43 138 | 35.04 228 | 89.21 126 | 61.24 154 | 79.66 98 | 90.08 92 |
|
CP-MVS | | | 72.59 110 | 71.46 110 | 76.00 132 | 82.93 126 | 52.32 143 | 86.93 87 | 82.48 173 | 55.15 245 | 63.65 158 | 90.44 80 | 35.03 229 | 88.53 152 | 68.69 100 | 77.83 111 | 87.15 154 |
|
CP-MVSNet | | | 58.54 281 | 57.57 269 | 61.46 318 | 68.50 324 | 33.96 343 | 76.90 275 | 78.60 245 | 51.67 276 | 47.83 304 | 76.60 265 | 34.99 230 | 72.79 338 | 35.45 304 | 47.58 322 | 77.64 299 |
|
MDTV_nov1_ep13 | | | | 61.56 242 | | 81.68 149 | 55.12 64 | 72.41 303 | 78.18 251 | 59.19 171 | 58.85 214 | 69.29 322 | 34.69 231 | 86.16 220 | 36.76 301 | 62.96 229 | |
|
3Dnovator | | 64.70 6 | 74.46 81 | 72.48 91 | 80.41 23 | 82.84 129 | 55.40 56 | 83.08 191 | 88.61 42 | 67.61 40 | 59.85 192 | 88.66 115 | 34.57 232 | 93.97 26 | 58.42 182 | 88.70 12 | 91.85 45 |
|
Vis-MVSNet |  | | 70.61 140 | 69.34 141 | 74.42 159 | 80.95 174 | 48.49 231 | 86.03 105 | 77.51 263 | 58.74 186 | 65.55 128 | 87.78 132 | 34.37 233 | 85.95 232 | 52.53 231 | 80.61 83 | 88.80 123 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
test_post1 | | | | | | | | 70.84 315 | | | | 14.72 373 | 34.33 234 | 83.86 258 | 48.80 249 | | |
|
OPM-MVS | | | 70.75 138 | 69.58 137 | 74.26 165 | 75.55 261 | 51.34 166 | 86.05 104 | 83.29 160 | 61.94 120 | 62.95 166 | 85.77 160 | 34.15 235 | 88.44 154 | 65.44 127 | 71.07 169 | 82.99 231 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
1121 | | | 68.79 174 | 66.77 182 | 74.82 152 | 83.08 118 | 53.46 106 | 80.23 250 | 71.53 323 | 45.47 313 | 66.31 117 | 87.19 142 | 34.02 236 | 85.13 247 | 52.78 226 | 80.36 88 | 85.87 181 |
|
DP-MVS Recon | | | 71.99 119 | 70.31 126 | 77.01 105 | 90.65 9 | 53.44 110 | 89.37 37 | 82.97 167 | 56.33 233 | 63.56 160 | 89.47 100 | 34.02 236 | 92.15 57 | 54.05 216 | 72.41 159 | 85.43 190 |
|
PEN-MVS | | | 58.35 282 | 57.15 271 | 61.94 314 | 67.55 331 | 34.39 341 | 77.01 273 | 78.35 249 | 51.87 273 | 47.72 305 | 76.73 263 | 33.91 238 | 73.75 333 | 34.03 314 | 47.17 326 | 77.68 297 |
|
QAPM | | | 71.88 120 | 69.33 142 | 79.52 35 | 82.20 142 | 54.30 87 | 86.30 99 | 88.77 36 | 56.61 229 | 59.72 194 | 87.48 136 | 33.90 239 | 95.36 14 | 47.48 258 | 81.49 76 | 88.90 120 |
|
新几何1 | | | | | 73.30 192 | 83.10 115 | 53.48 105 | | 71.43 324 | 45.55 311 | 66.14 118 | 87.17 143 | 33.88 240 | 80.54 285 | 48.50 252 | 80.33 89 | 85.88 180 |
|
1314 | | | 71.11 130 | 69.41 139 | 76.22 123 | 79.32 198 | 50.49 179 | 80.23 250 | 85.14 115 | 59.44 162 | 58.93 210 | 88.89 112 | 33.83 241 | 89.60 121 | 61.49 152 | 77.42 114 | 88.57 130 |
|
SR-MVS | | | 70.92 135 | 69.73 136 | 74.50 156 | 83.38 109 | 50.48 180 | 84.27 155 | 79.35 228 | 48.96 290 | 66.57 114 | 90.45 77 | 33.65 242 | 87.11 194 | 66.42 113 | 74.56 140 | 85.91 179 |
|
mPP-MVS | | | 71.79 123 | 70.38 125 | 76.04 130 | 82.65 136 | 52.06 145 | 84.45 150 | 81.78 184 | 55.59 240 | 62.05 176 | 89.68 97 | 33.48 243 | 88.28 163 | 65.45 126 | 78.24 110 | 87.77 144 |
|
OMC-MVS | | | 65.97 227 | 65.06 219 | 68.71 270 | 72.97 287 | 42.58 309 | 78.61 266 | 75.35 292 | 54.72 251 | 59.31 203 | 86.25 155 | 33.30 244 | 77.88 312 | 57.99 187 | 67.05 196 | 85.66 185 |
|
BH-RMVSNet | | | 70.08 147 | 68.01 157 | 76.27 121 | 84.21 90 | 51.22 170 | 87.29 77 | 79.33 230 | 58.96 183 | 63.63 159 | 86.77 148 | 33.29 245 | 90.30 103 | 44.63 273 | 73.96 143 | 87.30 153 |
|
JIA-IIPM | | | 52.33 311 | 47.77 317 | 66.03 292 | 71.20 307 | 46.92 259 | 40.00 362 | 76.48 283 | 37.10 343 | 46.73 311 | 37.02 360 | 32.96 246 | 77.88 312 | 35.97 302 | 52.45 310 | 73.29 332 |
|
PS-CasMVS | | | 58.12 283 | 57.03 273 | 61.37 319 | 68.24 328 | 33.80 345 | 76.73 276 | 78.01 254 | 51.20 278 | 47.54 308 | 76.20 273 | 32.85 247 | 72.76 339 | 35.17 309 | 47.37 324 | 77.55 300 |
|
DTE-MVSNet | | | 57.03 286 | 55.73 282 | 60.95 323 | 65.94 334 | 32.57 350 | 75.71 279 | 77.09 271 | 51.16 279 | 46.65 313 | 76.34 268 | 32.84 248 | 73.22 337 | 30.94 327 | 44.87 334 | 77.06 302 |
|
pmmvs4 | | | 63.34 242 | 61.07 247 | 70.16 251 | 70.14 313 | 50.53 178 | 79.97 254 | 71.41 325 | 55.08 246 | 54.12 269 | 78.58 239 | 32.79 249 | 82.09 274 | 50.33 240 | 57.22 274 | 77.86 295 |
|
TR-MVS | | | 69.71 156 | 67.85 163 | 75.27 145 | 82.94 125 | 48.48 232 | 87.40 73 | 80.86 198 | 57.15 218 | 64.61 141 | 87.08 144 | 32.67 250 | 89.64 120 | 46.38 265 | 71.55 167 | 87.68 146 |
|
VDD-MVS | | | 76.08 60 | 74.97 66 | 79.44 36 | 84.27 89 | 53.33 116 | 91.13 19 | 85.88 91 | 65.33 69 | 72.37 69 | 89.34 103 | 32.52 251 | 92.76 41 | 77.90 42 | 75.96 126 | 92.22 35 |
|
3Dnovator+ | | 62.71 7 | 72.29 115 | 70.50 122 | 77.65 88 | 83.40 108 | 51.29 168 | 87.32 74 | 86.40 82 | 59.01 180 | 58.49 221 | 88.32 121 | 32.40 252 | 91.27 73 | 57.04 199 | 82.15 71 | 90.38 84 |
|
tfpnnormal | | | 61.47 258 | 59.09 261 | 68.62 272 | 76.29 251 | 41.69 313 | 81.14 237 | 85.16 113 | 54.48 255 | 51.32 288 | 73.63 291 | 32.32 253 | 86.89 203 | 21.78 353 | 55.71 290 | 77.29 301 |
|
MS-PatchMatch | | | 72.34 113 | 71.26 113 | 75.61 137 | 82.38 140 | 55.55 50 | 88.00 58 | 89.95 17 | 65.38 67 | 56.51 253 | 80.74 223 | 32.28 254 | 92.89 36 | 57.95 190 | 88.10 15 | 78.39 289 |
|
v7n | | | 62.50 251 | 59.27 260 | 72.20 212 | 67.25 332 | 49.83 200 | 77.87 270 | 80.12 208 | 52.50 268 | 48.80 300 | 73.07 295 | 32.10 255 | 87.90 174 | 46.83 263 | 54.92 294 | 78.86 280 |
|
IterMVS | | | 63.77 240 | 61.67 240 | 70.08 253 | 72.68 291 | 51.24 169 | 80.44 246 | 75.51 289 | 60.51 146 | 51.41 287 | 73.70 290 | 32.08 256 | 78.91 300 | 54.30 215 | 54.35 299 | 80.08 274 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 59.12 270 | 58.81 264 | 60.08 324 | 70.68 312 | 45.07 282 | 80.42 247 | 74.25 299 | 43.54 327 | 50.02 295 | 73.73 287 | 31.97 257 | 56.74 359 | 51.06 238 | 53.60 304 | 78.42 288 |
|
SCA | | | 63.84 238 | 60.01 255 | 75.32 143 | 78.58 216 | 57.92 12 | 61.61 338 | 77.53 262 | 56.71 226 | 57.75 233 | 70.77 315 | 31.97 257 | 79.91 295 | 48.80 249 | 56.36 278 | 88.13 137 |
|
ACMMP |  | | 70.81 137 | 69.29 143 | 75.39 142 | 81.52 161 | 51.92 150 | 83.43 180 | 83.03 165 | 56.67 228 | 58.80 215 | 88.91 111 | 31.92 259 | 88.58 148 | 65.89 120 | 73.39 148 | 85.67 184 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
APD-MVS_3200maxsize | | | 69.62 161 | 68.23 155 | 73.80 178 | 81.58 155 | 48.22 238 | 81.91 217 | 79.50 222 | 48.21 292 | 64.24 148 | 89.75 96 | 31.91 260 | 87.55 186 | 63.08 140 | 73.85 145 | 85.64 186 |
|
VDDNet | | | 74.37 82 | 72.13 100 | 81.09 20 | 79.58 194 | 56.52 34 | 90.02 26 | 86.70 77 | 52.61 267 | 71.23 82 | 87.20 141 | 31.75 261 | 93.96 27 | 74.30 68 | 75.77 129 | 92.79 22 |
|
pmmvs5 | | | 62.80 248 | 61.18 245 | 67.66 278 | 69.53 317 | 42.37 312 | 82.65 200 | 75.19 293 | 54.30 257 | 52.03 285 | 78.51 240 | 31.64 262 | 80.67 283 | 48.60 251 | 58.15 261 | 79.95 275 |
|
LCM-MVSNet-Re | | | 58.82 276 | 56.54 274 | 65.68 293 | 79.31 199 | 29.09 359 | 61.39 340 | 45.79 361 | 60.73 143 | 37.65 342 | 72.47 302 | 31.42 263 | 81.08 280 | 49.66 244 | 70.41 175 | 86.87 158 |
|
testdata | | | | | 67.08 283 | 77.59 231 | 45.46 279 | | 69.20 333 | 44.47 319 | 71.50 80 | 88.34 120 | 31.21 264 | 70.76 346 | 52.20 232 | 75.88 127 | 85.03 194 |
|
test1172 | | | 69.64 160 | 68.38 153 | 73.41 190 | 82.77 130 | 48.84 222 | 82.79 199 | 78.34 250 | 47.02 301 | 65.27 130 | 90.07 89 | 31.17 265 | 86.09 225 | 64.51 134 | 73.49 147 | 85.31 191 |
|
SR-MVS-dyc-post | | | 68.27 184 | 66.87 179 | 72.48 207 | 80.96 171 | 48.14 241 | 81.54 228 | 76.98 272 | 46.42 306 | 62.75 168 | 89.42 101 | 31.17 265 | 86.09 225 | 60.52 164 | 72.06 163 | 83.19 227 |
|
GA-MVS | | | 69.04 166 | 66.70 185 | 76.06 129 | 75.11 264 | 52.36 141 | 83.12 190 | 80.23 207 | 63.32 99 | 60.65 187 | 79.22 233 | 30.98 267 | 88.37 156 | 61.25 153 | 66.41 200 | 87.46 149 |
|
OpenMVS |  | 61.00 11 | 69.99 151 | 67.55 170 | 77.30 96 | 78.37 222 | 54.07 93 | 84.36 152 | 85.76 93 | 57.22 216 | 56.71 249 | 87.67 134 | 30.79 268 | 92.83 38 | 43.04 279 | 84.06 57 | 85.01 195 |
|
Effi-MVS+-dtu | | | 66.24 224 | 64.96 221 | 70.08 253 | 75.17 262 | 49.64 202 | 82.01 214 | 74.48 297 | 62.15 114 | 57.83 229 | 76.08 274 | 30.59 269 | 83.79 260 | 65.40 128 | 60.93 241 | 76.81 304 |
|
mvs-test1 | | | 69.04 166 | 67.57 169 | 73.44 189 | 75.17 262 | 51.68 157 | 86.57 95 | 74.48 297 | 62.15 114 | 62.07 175 | 85.79 159 | 30.59 269 | 87.48 187 | 65.40 128 | 65.94 205 | 81.18 260 |
|
test222 | | | | | | 79.36 196 | 50.97 171 | 77.99 269 | 67.84 335 | 42.54 331 | 62.84 167 | 86.53 152 | 30.26 271 | | | 76.91 119 | 85.23 192 |
|
MVS_111021_LR | | | 69.07 165 | 67.91 158 | 72.54 204 | 77.27 236 | 49.56 205 | 79.77 255 | 73.96 303 | 59.33 168 | 60.73 186 | 87.82 130 | 30.19 272 | 81.53 276 | 69.94 93 | 72.19 162 | 86.53 168 |
|
114514_t | | | 69.87 154 | 67.88 160 | 75.85 134 | 88.38 30 | 52.35 142 | 86.94 86 | 83.68 150 | 53.70 259 | 55.68 259 | 85.60 162 | 30.07 273 | 91.20 74 | 55.84 206 | 71.02 170 | 83.99 209 |
|
CPTT-MVS | | | 67.15 208 | 65.84 202 | 71.07 238 | 80.96 171 | 50.32 188 | 81.94 216 | 74.10 300 | 46.18 309 | 57.91 228 | 87.64 135 | 29.57 274 | 81.31 278 | 64.10 135 | 70.18 178 | 81.56 247 |
|
CANet_DTU | | | 73.71 94 | 73.14 83 | 75.40 141 | 82.61 137 | 50.05 195 | 84.67 148 | 79.36 227 | 69.72 21 | 75.39 34 | 90.03 91 | 29.41 275 | 85.93 233 | 67.99 104 | 79.11 102 | 90.22 87 |
|
AdaColmap |  | | 67.86 190 | 65.48 210 | 75.00 149 | 88.15 34 | 54.99 69 | 86.10 103 | 76.63 281 | 49.30 287 | 57.80 230 | 86.65 151 | 29.39 276 | 88.94 140 | 45.10 271 | 70.21 177 | 81.06 261 |
|
RE-MVS-def | | | | 66.66 186 | | 80.96 171 | 48.14 241 | 81.54 228 | 76.98 272 | 46.42 306 | 62.75 168 | 89.42 101 | 29.28 277 | | 60.52 164 | 72.06 163 | 83.19 227 |
|
CVMVSNet | | | 60.85 261 | 60.44 252 | 62.07 312 | 75.00 267 | 32.73 349 | 79.54 258 | 73.49 308 | 36.98 344 | 56.28 255 | 83.74 181 | 29.28 277 | 69.53 349 | 46.48 264 | 63.23 224 | 83.94 214 |
|
PMMVS | | | 72.98 101 | 72.05 104 | 75.78 135 | 83.57 102 | 48.60 226 | 84.08 160 | 82.85 169 | 61.62 125 | 68.24 100 | 90.33 81 | 28.35 279 | 87.78 180 | 72.71 81 | 76.69 120 | 90.95 72 |
|
abl_6 | | | 68.03 187 | 66.15 195 | 73.66 183 | 78.54 217 | 48.48 232 | 79.77 255 | 78.04 253 | 47.39 297 | 63.70 157 | 88.25 123 | 28.21 280 | 89.06 128 | 60.17 170 | 71.25 168 | 83.45 220 |
|
our_test_3 | | | 59.11 271 | 55.08 287 | 71.18 237 | 71.42 304 | 53.29 118 | 81.96 215 | 74.52 296 | 48.32 291 | 42.08 327 | 69.28 323 | 28.14 281 | 82.15 272 | 34.35 313 | 45.68 333 | 78.11 294 |
|
Fast-Effi-MVS+-dtu | | | 66.53 219 | 64.10 228 | 73.84 176 | 72.41 294 | 52.30 144 | 84.73 144 | 75.66 288 | 59.51 160 | 56.34 254 | 79.11 235 | 28.11 282 | 85.85 234 | 57.74 194 | 63.29 223 | 83.35 221 |
|
Anonymous20231211 | | | 66.08 226 | 63.67 230 | 73.31 191 | 83.07 119 | 48.75 224 | 86.01 106 | 84.67 129 | 45.27 314 | 56.54 251 | 76.67 264 | 28.06 283 | 88.95 138 | 52.78 226 | 59.95 243 | 82.23 238 |
|
Anonymous20240529 | | | 69.71 156 | 67.28 175 | 77.00 106 | 83.78 99 | 50.36 185 | 88.87 47 | 85.10 116 | 47.22 298 | 64.03 150 | 83.37 187 | 27.93 284 | 92.10 58 | 57.78 193 | 67.44 194 | 88.53 131 |
|
HPM-MVS_fast | | | 67.86 190 | 66.28 192 | 72.61 202 | 80.67 180 | 48.34 236 | 81.18 236 | 75.95 287 | 50.81 280 | 59.55 199 | 88.05 128 | 27.86 285 | 85.98 229 | 58.83 176 | 73.58 146 | 83.51 219 |
|
FMVSNet1 | | | 64.57 233 | 62.11 238 | 71.96 219 | 77.32 235 | 46.36 266 | 83.52 173 | 83.31 157 | 52.43 269 | 54.42 266 | 76.23 270 | 27.80 286 | 86.20 217 | 42.59 283 | 61.34 239 | 83.32 222 |
|
CNLPA | | | 60.59 262 | 58.44 265 | 67.05 284 | 79.21 200 | 47.26 256 | 79.75 257 | 64.34 343 | 42.46 332 | 51.90 286 | 83.94 177 | 27.79 287 | 75.41 325 | 37.12 295 | 59.49 248 | 78.47 286 |
|
TAPA-MVS | | 56.12 14 | 61.82 257 | 60.18 254 | 66.71 287 | 78.48 220 | 37.97 332 | 75.19 286 | 76.41 284 | 46.82 302 | 57.04 245 | 86.52 153 | 27.67 288 | 77.03 318 | 26.50 344 | 67.02 197 | 85.14 193 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
pmmvs6 | | | 59.64 265 | 57.15 271 | 67.09 282 | 66.01 333 | 36.86 336 | 80.50 245 | 78.64 242 | 45.05 316 | 49.05 299 | 73.94 286 | 27.28 289 | 86.10 223 | 43.96 276 | 49.94 316 | 78.31 290 |
|
test-mter | | | 68.36 180 | 67.29 174 | 71.60 228 | 78.67 212 | 48.17 239 | 85.13 127 | 79.72 216 | 53.38 261 | 63.13 163 | 82.58 200 | 27.23 290 | 80.24 289 | 60.56 162 | 75.17 134 | 86.39 172 |
|
D2MVS | | | 63.49 241 | 61.39 244 | 69.77 257 | 69.29 318 | 48.93 219 | 78.89 265 | 77.71 260 | 60.64 145 | 49.70 296 | 72.10 309 | 27.08 291 | 83.48 265 | 54.48 214 | 62.65 231 | 76.90 303 |
|
XVG-OURS-SEG-HR | | | 62.02 255 | 59.54 257 | 69.46 260 | 65.30 338 | 45.88 273 | 65.06 328 | 73.57 307 | 46.45 305 | 57.42 242 | 83.35 188 | 26.95 292 | 78.09 306 | 53.77 218 | 64.03 214 | 84.42 202 |
|
test_djsdf | | | 63.84 238 | 61.56 242 | 70.70 243 | 68.78 321 | 44.69 286 | 81.63 224 | 81.44 189 | 50.28 281 | 52.27 283 | 76.26 269 | 26.72 293 | 86.11 221 | 60.83 158 | 55.84 289 | 81.29 259 |
|
Anonymous20231206 | | | 59.08 272 | 57.59 268 | 63.55 306 | 68.77 322 | 32.14 352 | 80.26 249 | 79.78 215 | 50.00 284 | 49.39 297 | 72.39 304 | 26.64 294 | 78.36 303 | 33.12 319 | 57.94 266 | 80.14 273 |
|
ppachtmachnet_test | | | 58.56 279 | 54.34 288 | 71.24 234 | 71.42 304 | 54.74 76 | 81.84 220 | 72.27 316 | 49.02 289 | 45.86 317 | 68.99 324 | 26.27 295 | 83.30 267 | 30.12 328 | 43.23 338 | 75.69 314 |
|
test20.03 | | | 55.22 298 | 54.07 291 | 58.68 328 | 63.14 349 | 25.00 363 | 77.69 271 | 74.78 295 | 52.64 266 | 43.43 322 | 72.39 304 | 26.21 296 | 74.76 327 | 29.31 330 | 47.05 328 | 76.28 312 |
|
FMVSNet5 | | | 58.61 278 | 56.45 275 | 65.10 300 | 77.20 240 | 39.74 324 | 74.77 287 | 77.12 270 | 50.27 283 | 43.28 324 | 67.71 327 | 26.15 297 | 76.90 320 | 36.78 300 | 54.78 296 | 78.65 284 |
|
ACMP | | 61.11 9 | 66.24 224 | 64.33 225 | 72.00 218 | 74.89 269 | 49.12 212 | 83.18 189 | 79.83 214 | 55.41 243 | 52.29 282 | 82.68 199 | 25.83 298 | 86.10 223 | 60.89 157 | 63.94 216 | 80.78 264 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
MIMVSNet | | | 63.12 244 | 60.29 253 | 71.61 227 | 75.92 257 | 46.65 262 | 65.15 327 | 81.94 179 | 59.14 176 | 54.65 264 | 69.47 321 | 25.74 299 | 80.63 284 | 41.03 286 | 69.56 183 | 87.55 147 |
|
LPG-MVS_test | | | 66.44 221 | 64.58 223 | 72.02 216 | 74.42 273 | 48.60 226 | 83.07 192 | 80.64 201 | 54.69 252 | 53.75 273 | 83.83 179 | 25.73 300 | 86.98 197 | 60.33 168 | 64.71 209 | 80.48 268 |
|
LGP-MVS_train | | | | | 72.02 216 | 74.42 273 | 48.60 226 | | 80.64 201 | 54.69 252 | 53.75 273 | 83.83 179 | 25.73 300 | 86.98 197 | 60.33 168 | 64.71 209 | 80.48 268 |
|
bset_n11_16_dypcd | | | 65.51 230 | 63.21 232 | 72.41 208 | 68.84 320 | 50.15 192 | 81.25 234 | 72.40 315 | 59.17 175 | 59.20 206 | 78.66 238 | 25.69 302 | 85.27 242 | 66.80 110 | 56.88 276 | 81.80 242 |
|
ACMM | | 58.35 12 | 64.35 235 | 62.01 239 | 71.38 232 | 74.21 276 | 48.51 230 | 82.25 211 | 79.66 218 | 47.61 295 | 54.54 265 | 80.11 225 | 25.26 303 | 86.00 228 | 51.26 235 | 63.16 226 | 79.64 278 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
RRT_MVS | | | 65.43 232 | 64.01 229 | 69.68 258 | 81.54 157 | 50.15 192 | 82.31 210 | 76.78 276 | 55.25 244 | 60.64 188 | 82.00 210 | 25.18 304 | 79.00 299 | 60.96 156 | 51.45 313 | 79.89 276 |
|
XVG-OURS | | | 61.88 256 | 59.34 259 | 69.49 259 | 65.37 337 | 46.27 269 | 64.80 329 | 73.49 308 | 47.04 300 | 57.41 243 | 82.85 193 | 25.15 305 | 78.18 304 | 53.00 223 | 64.98 207 | 84.01 208 |
|
PVSNet_0 | | 57.04 13 | 61.19 259 | 57.24 270 | 73.02 194 | 77.45 234 | 50.31 189 | 79.43 262 | 77.36 267 | 63.96 88 | 47.51 309 | 72.45 303 | 25.03 306 | 83.78 261 | 52.76 229 | 19.22 366 | 84.96 196 |
|
UniMVSNet_ETH3D | | | 62.51 250 | 60.49 251 | 68.57 273 | 68.30 327 | 40.88 322 | 73.89 292 | 79.93 212 | 51.81 275 | 54.77 262 | 79.61 228 | 24.80 307 | 81.10 279 | 49.93 242 | 61.35 238 | 83.73 217 |
|
DP-MVS | | | 59.24 268 | 56.12 279 | 68.63 271 | 88.24 33 | 50.35 186 | 82.51 205 | 64.43 342 | 41.10 334 | 46.70 312 | 78.77 237 | 24.75 308 | 88.57 151 | 22.26 351 | 56.29 282 | 66.96 349 |
|
cascas | | | 69.01 168 | 66.13 196 | 77.66 87 | 79.36 196 | 55.41 55 | 86.99 83 | 83.75 149 | 56.69 227 | 58.92 211 | 81.35 216 | 24.31 309 | 92.10 58 | 53.23 219 | 70.61 173 | 85.46 189 |
|
CMPMVS |  | 40.41 21 | 55.34 297 | 52.64 300 | 63.46 307 | 60.88 355 | 43.84 295 | 61.58 339 | 71.06 326 | 30.43 355 | 36.33 344 | 74.63 283 | 24.14 310 | 75.44 324 | 48.05 255 | 66.62 198 | 71.12 343 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
UGNet | | | 68.71 176 | 67.11 178 | 73.50 188 | 80.55 183 | 47.61 248 | 84.08 160 | 78.51 246 | 59.45 161 | 65.68 127 | 82.73 198 | 23.78 311 | 85.08 249 | 52.80 225 | 76.40 121 | 87.80 143 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
YYNet1 | | | 53.82 305 | 49.96 308 | 65.41 297 | 70.09 315 | 48.95 217 | 72.30 304 | 71.66 321 | 44.25 322 | 31.89 356 | 63.07 340 | 23.73 312 | 73.95 331 | 33.26 317 | 39.40 345 | 73.34 331 |
|
MDA-MVSNet_test_wron | | | 53.82 305 | 49.95 309 | 65.43 296 | 70.13 314 | 49.05 214 | 72.30 304 | 71.65 322 | 44.23 323 | 31.85 357 | 63.13 339 | 23.68 313 | 74.01 330 | 33.25 318 | 39.35 346 | 73.23 333 |
|
PLC |  | 52.38 18 | 60.89 260 | 58.97 263 | 66.68 289 | 81.77 148 | 45.70 277 | 78.96 264 | 74.04 302 | 43.66 326 | 47.63 306 | 83.19 191 | 23.52 314 | 77.78 315 | 37.47 292 | 60.46 242 | 76.55 310 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
ADS-MVSNet2 | | | 55.21 299 | 51.44 303 | 66.51 290 | 80.60 181 | 49.56 205 | 55.03 349 | 65.44 339 | 44.72 317 | 51.00 290 | 61.19 343 | 22.83 315 | 75.41 325 | 28.54 335 | 53.63 302 | 74.57 323 |
|
ADS-MVSNet | | | 56.17 293 | 51.95 302 | 68.84 265 | 80.60 181 | 53.07 124 | 55.03 349 | 70.02 331 | 44.72 317 | 51.00 290 | 61.19 343 | 22.83 315 | 78.88 301 | 28.54 335 | 53.63 302 | 74.57 323 |
|
test_0402 | | | 56.45 291 | 53.03 295 | 66.69 288 | 76.78 244 | 50.31 189 | 81.76 221 | 69.61 332 | 42.79 330 | 43.88 319 | 72.13 307 | 22.82 317 | 86.46 214 | 16.57 362 | 50.94 314 | 63.31 355 |
|
UnsupCasMVSNet_eth | | | 57.56 284 | 55.15 285 | 64.79 302 | 64.57 344 | 33.12 346 | 73.17 298 | 83.87 148 | 58.98 182 | 41.75 330 | 70.03 319 | 22.54 318 | 79.92 293 | 46.12 268 | 35.31 349 | 81.32 258 |
|
xiu_mvs_v1_base_debu | | | 71.60 124 | 70.29 127 | 75.55 138 | 77.26 237 | 53.15 120 | 85.34 120 | 79.37 224 | 55.83 237 | 72.54 61 | 90.19 84 | 22.38 319 | 86.66 208 | 73.28 77 | 76.39 122 | 86.85 160 |
|
xiu_mvs_v1_base | | | 71.60 124 | 70.29 127 | 75.55 138 | 77.26 237 | 53.15 120 | 85.34 120 | 79.37 224 | 55.83 237 | 72.54 61 | 90.19 84 | 22.38 319 | 86.66 208 | 73.28 77 | 76.39 122 | 86.85 160 |
|
xiu_mvs_v1_base_debi | | | 71.60 124 | 70.29 127 | 75.55 138 | 77.26 237 | 53.15 120 | 85.34 120 | 79.37 224 | 55.83 237 | 72.54 61 | 90.19 84 | 22.38 319 | 86.66 208 | 73.28 77 | 76.39 122 | 86.85 160 |
|
LS3D | | | 56.40 292 | 53.82 292 | 64.12 303 | 81.12 167 | 45.69 278 | 73.42 296 | 66.14 338 | 35.30 352 | 43.24 325 | 79.88 226 | 22.18 322 | 79.62 297 | 19.10 359 | 64.00 215 | 67.05 348 |
|
PVSNet | | 62.49 8 | 69.27 164 | 67.81 164 | 73.64 184 | 84.41 85 | 51.85 151 | 84.63 149 | 77.80 257 | 66.42 49 | 59.80 193 | 84.95 169 | 22.14 323 | 80.44 287 | 55.03 209 | 75.11 136 | 88.62 128 |
|
MDA-MVSNet-bldmvs | | | 51.56 313 | 47.75 318 | 63.00 309 | 71.60 302 | 47.32 255 | 69.70 321 | 72.12 317 | 43.81 325 | 27.65 361 | 63.38 338 | 21.97 324 | 75.96 322 | 27.30 341 | 32.19 357 | 65.70 352 |
|
pmmvs-eth3d | | | 55.97 295 | 52.78 299 | 65.54 295 | 61.02 354 | 46.44 265 | 75.36 285 | 67.72 336 | 49.61 286 | 43.65 321 | 67.58 328 | 21.63 325 | 77.04 317 | 44.11 275 | 44.33 335 | 73.15 334 |
|
anonymousdsp | | | 60.46 263 | 57.65 267 | 68.88 264 | 63.63 347 | 45.09 281 | 72.93 299 | 78.63 243 | 46.52 304 | 51.12 289 | 72.80 299 | 21.46 326 | 83.07 269 | 57.79 192 | 53.97 300 | 78.47 286 |
|
MVS-HIRNet | | | 49.01 317 | 44.71 321 | 61.92 315 | 76.06 253 | 46.61 263 | 63.23 333 | 54.90 354 | 24.77 359 | 33.56 352 | 36.60 362 | 21.28 327 | 75.88 323 | 29.49 329 | 62.54 232 | 63.26 356 |
|
Anonymous202405211 | | | 70.11 145 | 67.88 160 | 76.79 113 | 87.20 44 | 47.24 257 | 89.49 36 | 77.38 266 | 54.88 250 | 66.14 118 | 86.84 147 | 20.93 328 | 91.54 66 | 56.45 204 | 71.62 165 | 91.59 49 |
|
UnsupCasMVSNet_bld | | | 53.86 304 | 50.53 306 | 63.84 304 | 63.52 348 | 34.75 340 | 71.38 312 | 81.92 181 | 46.53 303 | 38.95 339 | 57.93 351 | 20.55 329 | 80.20 291 | 39.91 288 | 34.09 356 | 76.57 309 |
|
EU-MVSNet | | | 52.63 309 | 50.72 305 | 58.37 329 | 62.69 351 | 28.13 361 | 72.60 300 | 75.97 286 | 30.94 354 | 40.76 335 | 72.11 308 | 20.16 330 | 70.80 345 | 35.11 310 | 46.11 331 | 76.19 313 |
|
N_pmnet | | | 41.25 324 | 39.77 327 | 45.66 342 | 68.50 324 | 0.82 381 | 72.51 302 | 0.38 381 | 35.61 349 | 35.26 348 | 61.51 342 | 20.07 331 | 67.74 350 | 23.51 350 | 40.63 342 | 68.42 347 |
|
MSDG | | | 59.44 266 | 55.14 286 | 72.32 211 | 74.69 270 | 50.71 173 | 74.39 290 | 73.58 306 | 44.44 320 | 43.40 323 | 77.52 248 | 19.45 332 | 90.87 87 | 31.31 325 | 57.49 273 | 75.38 317 |
|
K. test v3 | | | 54.04 303 | 49.42 311 | 67.92 277 | 68.55 323 | 42.57 310 | 75.51 283 | 63.07 345 | 52.07 270 | 39.21 337 | 64.59 336 | 19.34 333 | 82.21 271 | 37.11 296 | 25.31 362 | 78.97 279 |
|
lessismore_v0 | | | | | 67.98 276 | 64.76 343 | 41.25 318 | | 45.75 362 | | 36.03 346 | 65.63 334 | 19.29 334 | 84.11 257 | 35.67 303 | 21.24 365 | 78.59 285 |
|
KD-MVS_self_test | | | 49.24 316 | 46.85 319 | 56.44 332 | 54.32 361 | 22.87 365 | 57.39 346 | 73.36 312 | 44.36 321 | 37.98 341 | 59.30 349 | 18.97 335 | 71.17 344 | 33.48 315 | 42.44 339 | 75.26 318 |
|
OpenMVS_ROB |  | 53.19 17 | 59.20 269 | 56.00 280 | 68.83 266 | 71.13 308 | 44.30 290 | 83.64 172 | 75.02 294 | 46.42 306 | 46.48 314 | 73.03 296 | 18.69 336 | 88.14 165 | 27.74 339 | 61.80 236 | 74.05 326 |
|
LTVRE_ROB | | 45.45 19 | 52.73 308 | 49.74 310 | 61.69 316 | 69.78 316 | 34.99 339 | 44.52 356 | 67.60 337 | 43.11 329 | 43.79 320 | 74.03 285 | 18.54 337 | 81.45 277 | 28.39 337 | 57.94 266 | 68.62 346 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
SixPastTwentyTwo | | | 54.37 300 | 50.10 307 | 67.21 281 | 70.70 310 | 41.46 317 | 74.73 288 | 64.69 341 | 47.56 296 | 39.12 338 | 69.49 320 | 18.49 338 | 84.69 254 | 31.87 322 | 34.20 355 | 75.48 316 |
|
new-patchmatchnet | | | 48.21 318 | 46.55 320 | 53.18 336 | 57.73 358 | 18.19 372 | 70.24 316 | 71.02 327 | 45.70 310 | 33.70 351 | 60.23 345 | 18.00 339 | 69.86 348 | 27.97 338 | 34.35 353 | 71.49 342 |
|
F-COLMAP | | | 55.96 296 | 53.65 294 | 62.87 310 | 72.76 290 | 42.77 306 | 74.70 289 | 70.37 329 | 40.03 335 | 41.11 333 | 79.36 230 | 17.77 340 | 73.70 334 | 32.80 320 | 53.96 301 | 72.15 336 |
|
jajsoiax | | | 63.21 243 | 60.84 248 | 70.32 249 | 68.33 326 | 44.45 288 | 81.23 235 | 81.05 196 | 53.37 262 | 50.96 292 | 77.81 246 | 17.49 341 | 85.49 238 | 59.31 172 | 58.05 264 | 81.02 262 |
|
RPSCF | | | 45.77 322 | 44.13 324 | 50.68 338 | 57.67 359 | 29.66 355 | 54.92 351 | 45.25 363 | 26.69 358 | 45.92 316 | 75.92 276 | 17.43 342 | 45.70 367 | 27.44 340 | 45.95 332 | 76.67 305 |
|
PatchMatch-RL | | | 56.66 288 | 53.75 293 | 65.37 298 | 77.91 229 | 45.28 280 | 69.78 320 | 60.38 348 | 41.35 333 | 47.57 307 | 73.73 287 | 16.83 343 | 76.91 319 | 36.99 298 | 59.21 251 | 73.92 327 |
|
mvs_tets | | | 62.96 246 | 60.55 250 | 70.19 250 | 68.22 329 | 44.24 292 | 80.90 240 | 80.74 200 | 52.99 265 | 50.82 294 | 77.56 247 | 16.74 344 | 85.44 239 | 59.04 175 | 57.94 266 | 80.89 263 |
|
ACMH+ | | 54.58 15 | 58.55 280 | 55.24 283 | 68.50 274 | 74.68 271 | 45.80 276 | 80.27 248 | 70.21 330 | 47.15 299 | 42.77 326 | 75.48 278 | 16.73 345 | 85.98 229 | 35.10 311 | 54.78 296 | 73.72 328 |
|
ACMH | | 53.70 16 | 59.78 264 | 55.94 281 | 71.28 233 | 76.59 245 | 48.35 235 | 80.15 253 | 76.11 285 | 49.74 285 | 41.91 329 | 73.45 294 | 16.50 346 | 90.31 101 | 31.42 324 | 57.63 272 | 75.17 319 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
MIMVSNet1 | | | 50.35 315 | 47.81 316 | 57.96 330 | 61.53 353 | 27.80 362 | 67.40 325 | 74.06 301 | 43.25 328 | 33.31 355 | 65.38 335 | 16.03 347 | 71.34 343 | 21.80 352 | 47.55 323 | 74.75 321 |
|
DSMNet-mixed | | | 38.35 326 | 35.36 329 | 47.33 341 | 48.11 367 | 14.91 374 | 37.87 363 | 36.60 369 | 19.18 363 | 34.37 349 | 59.56 348 | 15.53 348 | 53.01 362 | 20.14 357 | 46.89 329 | 74.07 325 |
|
EG-PatchMatch MVS | | | 62.40 254 | 59.59 256 | 70.81 242 | 73.29 283 | 49.05 214 | 85.81 107 | 84.78 124 | 51.85 274 | 44.19 318 | 73.48 293 | 15.52 349 | 89.85 112 | 40.16 287 | 67.24 195 | 73.54 330 |
|
MVS_0304 | | | 56.72 287 | 55.17 284 | 61.37 319 | 70.71 309 | 36.80 337 | 75.74 278 | 68.75 334 | 44.11 324 | 52.53 280 | 68.20 326 | 15.05 350 | 74.53 328 | 42.98 280 | 58.44 257 | 72.79 335 |
|
testgi | | | 54.25 302 | 52.57 301 | 59.29 326 | 62.76 350 | 21.65 368 | 72.21 306 | 70.47 328 | 53.25 263 | 41.94 328 | 77.33 252 | 14.28 351 | 77.95 311 | 29.18 331 | 51.72 312 | 78.28 291 |
|
COLMAP_ROB |  | 43.60 20 | 50.90 314 | 48.05 315 | 59.47 325 | 67.81 330 | 40.57 323 | 71.25 313 | 62.72 347 | 36.49 347 | 36.19 345 | 73.51 292 | 13.48 352 | 73.92 332 | 20.71 355 | 50.26 315 | 63.92 354 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
OurMVSNet-221017-0 | | | 52.39 310 | 48.73 312 | 63.35 308 | 65.21 339 | 38.42 330 | 68.54 324 | 64.95 340 | 38.19 339 | 39.57 336 | 71.43 311 | 13.23 353 | 79.92 293 | 37.16 294 | 40.32 344 | 71.72 339 |
|
tmp_tt | | | 9.44 341 | 10.68 344 | 5.73 357 | 2.49 380 | 4.21 380 | 10.48 370 | 18.04 377 | 0.34 374 | 12.59 368 | 20.49 368 | 11.39 354 | 7.03 376 | 13.84 365 | 6.46 373 | 5.95 371 |
|
ITE_SJBPF | | | | | 51.84 337 | 58.03 357 | 31.94 353 | | 53.57 358 | 36.67 345 | 41.32 332 | 75.23 280 | 11.17 355 | 51.57 363 | 25.81 345 | 48.04 320 | 72.02 338 |
|
Anonymous20240521 | | | 51.65 312 | 48.42 313 | 61.34 321 | 56.43 360 | 39.65 326 | 73.57 294 | 73.47 311 | 36.64 346 | 36.59 343 | 63.98 337 | 10.75 356 | 72.25 342 | 35.35 305 | 49.01 317 | 72.11 337 |
|
AllTest | | | 47.32 320 | 44.66 322 | 55.32 334 | 65.08 340 | 37.50 334 | 62.96 335 | 54.25 356 | 35.45 350 | 33.42 353 | 72.82 297 | 9.98 357 | 59.33 356 | 24.13 348 | 43.84 336 | 69.13 344 |
|
TestCases | | | | | 55.32 334 | 65.08 340 | 37.50 334 | | 54.25 356 | 35.45 350 | 33.42 353 | 72.82 297 | 9.98 357 | 59.33 356 | 24.13 348 | 43.84 336 | 69.13 344 |
|
USDC | | | 54.36 301 | 51.23 304 | 63.76 305 | 64.29 345 | 37.71 333 | 62.84 336 | 73.48 310 | 56.85 221 | 35.47 347 | 71.94 310 | 9.23 359 | 78.43 302 | 38.43 291 | 48.57 318 | 75.13 320 |
|
XVG-ACMP-BASELINE | | | 56.03 294 | 52.85 298 | 65.58 294 | 61.91 352 | 40.95 321 | 63.36 331 | 72.43 314 | 45.20 315 | 46.02 315 | 74.09 284 | 9.20 360 | 78.12 305 | 45.13 270 | 58.27 259 | 77.66 298 |
|
pmmvs3 | | | 45.53 323 | 41.55 326 | 57.44 331 | 48.97 366 | 39.68 325 | 70.06 317 | 57.66 351 | 28.32 357 | 34.06 350 | 57.29 352 | 8.50 361 | 66.85 351 | 34.86 312 | 34.26 354 | 65.80 351 |
|
EGC-MVSNET | | | 33.75 329 | 30.42 333 | 43.75 343 | 64.94 342 | 36.21 338 | 60.47 343 | 40.70 366 | 0.02 375 | 0.10 376 | 53.79 355 | 7.39 362 | 60.26 354 | 11.09 366 | 35.23 351 | 34.79 364 |
|
ANet_high | | | 34.39 328 | 29.59 334 | 48.78 339 | 30.34 374 | 22.28 366 | 55.53 348 | 63.79 344 | 38.11 340 | 15.47 365 | 36.56 363 | 6.94 363 | 59.98 355 | 13.93 364 | 5.64 374 | 64.08 353 |
|
FPMVS | | | 35.40 327 | 33.67 330 | 40.57 345 | 46.34 368 | 28.74 360 | 41.05 360 | 57.05 352 | 20.37 362 | 22.27 363 | 53.38 356 | 6.87 364 | 44.94 368 | 8.62 367 | 47.11 327 | 48.01 362 |
|
new_pmnet | | | 33.56 330 | 31.89 332 | 38.59 346 | 49.01 365 | 20.42 369 | 51.01 352 | 37.92 368 | 20.58 360 | 23.45 362 | 46.79 357 | 6.66 365 | 49.28 365 | 20.00 358 | 31.57 359 | 46.09 363 |
|
TinyColmap | | | 48.15 319 | 44.49 323 | 59.13 327 | 65.73 336 | 38.04 331 | 63.34 332 | 62.86 346 | 38.78 337 | 29.48 359 | 67.23 330 | 6.46 366 | 73.30 336 | 24.59 347 | 41.90 341 | 66.04 350 |
|
ambc | | | | | 62.06 313 | 53.98 362 | 29.38 357 | 35.08 364 | 79.65 219 | | 41.37 331 | 59.96 346 | 6.27 367 | 82.15 272 | 35.34 306 | 38.22 347 | 74.65 322 |
|
TDRefinement | | | 40.91 325 | 38.37 328 | 48.55 340 | 50.45 364 | 33.03 348 | 58.98 345 | 50.97 359 | 28.50 356 | 29.89 358 | 67.39 329 | 6.21 368 | 54.51 360 | 17.67 361 | 35.25 350 | 58.11 357 |
|
PM-MVS | | | 46.92 321 | 43.76 325 | 56.41 333 | 52.18 363 | 32.26 351 | 63.21 334 | 38.18 367 | 37.99 341 | 40.78 334 | 66.20 331 | 5.09 369 | 65.42 352 | 48.19 254 | 41.99 340 | 71.54 341 |
|
LF4IMVS | | | 33.04 331 | 32.55 331 | 34.52 349 | 40.96 369 | 22.03 367 | 44.45 357 | 35.62 370 | 20.42 361 | 28.12 360 | 62.35 341 | 5.03 370 | 31.88 373 | 21.61 354 | 34.42 352 | 49.63 361 |
|
EMVS | | | 18.42 338 | 17.66 342 | 20.71 354 | 34.13 373 | 12.64 376 | 46.94 354 | 29.94 374 | 10.46 370 | 5.58 374 | 14.93 372 | 4.23 371 | 38.83 370 | 5.24 373 | 7.51 371 | 10.67 370 |
|
E-PMN | | | 19.16 337 | 18.40 341 | 21.44 353 | 36.19 372 | 13.63 375 | 47.59 353 | 30.89 373 | 10.73 368 | 5.91 373 | 16.59 369 | 3.66 372 | 39.77 369 | 5.95 371 | 8.14 369 | 10.92 369 |
|
test_method | | | 24.09 336 | 21.07 340 | 33.16 350 | 27.67 376 | 8.35 379 | 26.63 366 | 35.11 372 | 3.40 372 | 14.35 366 | 36.98 361 | 3.46 373 | 35.31 372 | 19.08 360 | 22.95 364 | 55.81 358 |
|
PMMVS2 | | | 26.71 334 | 22.98 338 | 37.87 347 | 36.89 371 | 8.51 378 | 42.51 359 | 29.32 375 | 19.09 364 | 13.01 367 | 37.54 359 | 2.23 374 | 53.11 361 | 14.54 363 | 11.71 367 | 51.99 360 |
|
Gipuma |  | | 27.47 333 | 24.26 336 | 37.12 348 | 60.55 356 | 29.17 358 | 11.68 369 | 60.00 349 | 14.18 366 | 10.52 370 | 15.12 371 | 2.20 375 | 63.01 353 | 8.39 368 | 35.65 348 | 19.18 367 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
LCM-MVSNet | | | 28.07 332 | 23.85 337 | 40.71 344 | 27.46 377 | 18.93 371 | 30.82 365 | 46.19 360 | 12.76 367 | 16.40 364 | 34.70 365 | 1.90 376 | 48.69 366 | 20.25 356 | 24.22 363 | 54.51 359 |
|
DeepMVS_CX |  | | | | 13.10 355 | 21.34 379 | 8.99 377 | | 10.02 379 | 10.59 369 | 7.53 372 | 30.55 366 | 1.82 377 | 14.55 374 | 6.83 370 | 7.52 370 | 15.75 368 |
|
PMVS |  | 19.57 22 | 25.07 335 | 22.43 339 | 32.99 351 | 23.12 378 | 22.98 364 | 40.98 361 | 35.19 371 | 15.99 365 | 11.95 369 | 35.87 364 | 1.47 378 | 49.29 364 | 5.41 372 | 31.90 358 | 26.70 366 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVE |  | 16.60 23 | 17.34 340 | 13.39 343 | 29.16 352 | 28.43 375 | 19.72 370 | 13.73 368 | 23.63 376 | 7.23 371 | 7.96 371 | 21.41 367 | 0.80 379 | 36.08 371 | 6.97 369 | 10.39 368 | 31.69 365 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
wuyk23d | | | 9.11 342 | 8.77 346 | 10.15 356 | 40.18 370 | 16.76 373 | 20.28 367 | 1.01 380 | 2.58 373 | 2.66 375 | 0.98 375 | 0.23 380 | 12.49 375 | 4.08 374 | 6.90 372 | 1.19 372 |
|
test_blank | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 382 | 0.00 383 | 0.00 371 | 0.00 382 | 0.00 376 | 0.00 379 | 0.00 378 | 0.00 381 | 0.00 377 | 0.00 377 | 0.00 375 | 0.00 375 |
|
uanet_test | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 382 | 0.00 383 | 0.00 371 | 0.00 382 | 0.00 376 | 0.00 379 | 0.00 378 | 0.00 381 | 0.00 377 | 0.00 377 | 0.00 375 | 0.00 375 |
|
sosnet-low-res | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 382 | 0.00 383 | 0.00 371 | 0.00 382 | 0.00 376 | 0.00 379 | 0.00 378 | 0.00 381 | 0.00 377 | 0.00 377 | 0.00 375 | 0.00 375 |
|
sosnet | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 382 | 0.00 383 | 0.00 371 | 0.00 382 | 0.00 376 | 0.00 379 | 0.00 378 | 0.00 381 | 0.00 377 | 0.00 377 | 0.00 375 | 0.00 375 |
|
uncertanet | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 382 | 0.00 383 | 0.00 371 | 0.00 382 | 0.00 376 | 0.00 379 | 0.00 378 | 0.00 381 | 0.00 377 | 0.00 377 | 0.00 375 | 0.00 375 |
|
Regformer | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 382 | 0.00 383 | 0.00 371 | 0.00 382 | 0.00 376 | 0.00 379 | 0.00 378 | 0.00 381 | 0.00 377 | 0.00 377 | 0.00 375 | 0.00 375 |
|
testmvs | | | 6.14 344 | 8.18 347 | 0.01 358 | 0.01 381 | 0.00 383 | 73.40 297 | 0.00 382 | 0.00 376 | 0.02 377 | 0.15 376 | 0.00 381 | 0.00 377 | 0.02 375 | 0.00 375 | 0.02 373 |
|
test123 | | | 6.01 345 | 8.01 348 | 0.01 358 | 0.00 382 | 0.01 382 | 71.93 310 | 0.00 382 | 0.00 376 | 0.02 377 | 0.11 377 | 0.00 381 | 0.00 377 | 0.02 375 | 0.00 375 | 0.02 373 |
|
ab-mvs-re | | | 7.68 343 | 10.24 345 | 0.00 360 | 0.00 382 | 0.00 383 | 0.00 371 | 0.00 382 | 0.00 376 | 0.00 379 | 92.12 36 | 0.00 381 | 0.00 377 | 0.00 377 | 0.00 375 | 0.00 375 |
|
uanet | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 382 | 0.00 383 | 0.00 371 | 0.00 382 | 0.00 376 | 0.00 379 | 0.00 378 | 0.00 381 | 0.00 377 | 0.00 377 | 0.00 375 | 0.00 375 |
|
FOURS1 | | | | | | 83.24 112 | 49.90 199 | 84.98 137 | 78.76 239 | 47.71 294 | 73.42 53 | | | | | | |
|
MSC_two_6792asdad | | | | | 81.53 15 | 91.77 4 | 56.03 44 | | 91.10 6 | | | | | 96.22 8 | 81.46 20 | 86.80 28 | 92.34 30 |
|
No_MVS | | | | | 81.53 15 | 91.77 4 | 56.03 44 | | 91.10 6 | | | | | 96.22 8 | 81.46 20 | 86.80 28 | 92.34 30 |
|
eth-test2 | | | | | | 0.00 382 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 382 | | | | | | | | | | | |
|
IU-MVS | | | | | | 89.48 18 | 57.49 17 | | 91.38 5 | 66.22 54 | 88.26 1 | | | | 82.83 9 | 87.60 18 | 92.44 27 |
|
save fliter | | | | | | 85.35 69 | 56.34 38 | 89.31 39 | 81.46 188 | 61.55 126 | | | | | | | |
|
test_0728_SECOND | | | | | 82.20 9 | 89.50 16 | 57.73 13 | 92.34 5 | 88.88 31 | | | | | 96.39 4 | 81.68 15 | 87.13 21 | 92.47 26 |
|
GSMVS | | | | | | | | | | | | | | | | | 88.13 137 |
|
test_part2 | | | | | | 89.33 24 | 55.48 52 | | | | 82.27 10 | | | | | | |
|
MTGPA |  | | | | | | | | 81.31 191 | | | | | | | | |
|
MTMP | | | | | | | | 87.27 78 | 15.34 378 | | | | | | | | |
|
gm-plane-assit | | | | | | 83.24 112 | 54.21 89 | | | 70.91 13 | | 88.23 124 | | 95.25 15 | 66.37 114 | | |
|
test9_res | | | | | | | | | | | | | | | 78.72 34 | 85.44 44 | 91.39 57 |
|
agg_prior2 | | | | | | | | | | | | | | | 75.65 53 | 85.11 48 | 91.01 69 |
|
agg_prior | | | | | | 85.64 59 | 54.92 71 | | 83.61 153 | | 72.53 64 | | | 88.10 168 | | | |
|
test_prior4 | | | | | | | 56.39 37 | 87.15 81 | | | | | | | | | |
|
test_prior | | | | | 78.39 69 | 86.35 49 | 54.91 73 | | 85.45 97 | | | | | 89.70 117 | | | 90.55 78 |
|
旧先验2 | | | | | | | | 81.73 222 | | 45.53 312 | 74.66 39 | | | 70.48 347 | 58.31 184 | | |
|
新几何2 | | | | | | | | 81.61 226 | | | | | | | | | |
|
无先验 | | | | | | | | 85.19 125 | 78.00 255 | 49.08 288 | | | | 85.13 247 | 52.78 226 | | 87.45 150 |
|
原ACMM2 | | | | | | | | 83.77 170 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 77.81 314 | 45.64 269 | | |
|
testdata1 | | | | | | | | 77.55 272 | | 64.14 82 | | | | | | | |
|
plane_prior7 | | | | | | 77.95 226 | 48.46 234 | | | | | | | | | | |
|
plane_prior5 | | | | | | | | | 82.59 171 | | | | | 88.30 161 | 65.46 124 | 72.34 160 | 84.49 200 |
|
plane_prior4 | | | | | | | | | | | | 83.28 189 | | | | | |
|
plane_prior3 | | | | | | | 48.95 217 | | | 64.01 85 | 62.15 173 | | | | | | |
|
plane_prior2 | | | | | | | | 85.76 109 | | 63.60 95 | | | | | | | |
|
plane_prior1 | | | | | | 78.31 223 | | | | | | | | | | | |
|
plane_prior | | | | | | | 49.57 203 | 87.43 71 | | 64.57 77 | | | | | | 72.84 155 | |
|
n2 | | | | | | | | | 0.00 382 | | | | | | | | |
|
nn | | | | | | | | | 0.00 382 | | | | | | | | |
|
door-mid | | | | | | | | | 41.31 365 | | | | | | | | |
|
test11 | | | | | | | | | 84.25 138 | | | | | | | | |
|
door | | | | | | | | | 43.27 364 | | | | | | | | |
|
HQP5-MVS | | | | | | | 51.56 159 | | | | | | | | | | |
|
HQP-NCC | | | | | | 79.02 204 | | 88.00 58 | | 65.45 63 | 64.48 143 | | | | | | |
|
ACMP_Plane | | | | | | 79.02 204 | | 88.00 58 | | 65.45 63 | 64.48 143 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 66.70 111 | | |
|
HQP4-MVS | | | | | | | | | | | 64.47 146 | | | 88.61 147 | | | 84.91 197 |
|
HQP3-MVS | | | | | | | | | 83.68 150 | | | | | | | 73.12 151 | |
|
NP-MVS | | | | | | 78.76 209 | 50.43 181 | | | | | 85.12 167 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 63.20 225 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 59.38 249 | |
|