This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
MSP-MVS82.30 683.47 178.80 5482.99 11752.71 13085.04 13288.63 4366.08 6986.77 392.75 3272.05 191.46 6683.35 1993.53 192.23 34
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVS++82.44 382.38 582.62 491.77 457.49 1584.98 13588.88 3258.00 21383.60 693.39 1867.21 296.39 481.64 3091.98 493.98 5
OPU-MVS81.71 1292.05 355.97 4692.48 394.01 567.21 295.10 1589.82 292.55 394.06 3
PC_three_145266.58 5787.27 293.70 966.82 494.95 1789.74 391.98 493.98 5
DPM-MVS82.39 482.36 682.49 580.12 18859.50 592.24 890.72 1469.37 3183.22 894.47 263.81 593.18 3174.02 8293.25 294.80 1
DELS-MVS82.32 582.50 481.79 1186.80 4656.89 2792.77 286.30 8477.83 177.88 3392.13 4160.24 694.78 1978.97 4389.61 793.69 8
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
dcpmvs_279.33 2078.94 2080.49 2389.75 1256.54 3484.83 14283.68 14967.85 4369.36 10190.24 8260.20 792.10 5584.14 1580.40 8092.82 21
baseline275.15 7674.54 7476.98 10381.67 15051.74 15083.84 17191.94 369.97 2658.98 22086.02 16159.73 891.73 6168.37 11070.40 17887.48 157
CSCG80.41 1579.72 1582.49 589.12 2557.67 1389.29 4091.54 559.19 18971.82 7990.05 9059.72 996.04 1078.37 4988.40 1393.75 7
GG-mvs-BLEND77.77 8086.68 4750.61 16968.67 33788.45 4968.73 10687.45 14359.15 1090.67 8954.83 22187.67 1692.03 41
SED-MVS81.92 781.75 982.44 789.48 1756.89 2792.48 388.94 3057.50 22784.61 494.09 358.81 1196.37 682.28 2587.60 1794.06 3
test_241102_ONE89.48 1756.89 2788.94 3057.53 22584.61 493.29 2258.81 1196.45 1
gg-mvs-nofinetune67.43 20964.53 23576.13 12385.95 5247.79 25364.38 34988.28 5139.34 35266.62 12041.27 38658.69 1389.00 13649.64 25886.62 2991.59 53
testing1179.18 2178.85 2180.16 3188.33 3056.99 2488.31 5192.06 172.82 970.62 9788.37 12157.69 1492.30 4875.25 7276.24 12191.20 68
testing9978.45 2477.78 3180.45 2588.28 3356.81 3087.95 5891.49 671.72 1370.84 9288.09 12957.29 1592.63 4269.24 10575.13 13491.91 45
CostFormer73.89 9072.30 9978.66 6082.36 13456.58 3175.56 29185.30 10566.06 7070.50 9976.88 28057.02 1689.06 13268.27 11268.74 18990.33 87
test_0728_THIRD58.00 21381.91 1393.64 1156.54 1796.44 281.64 3086.86 2492.23 34
DPE-MVScopyleft79.82 1879.66 1680.29 2789.27 2455.08 6988.70 4687.92 5655.55 25781.21 1893.69 1056.51 1894.27 2278.36 5085.70 3891.51 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ETVMVS75.80 6875.44 6076.89 10686.23 5050.38 17885.55 11691.42 771.30 1968.80 10587.94 13556.42 1989.24 12656.54 21074.75 14091.07 72
DeepPCF-MVS69.37 180.65 1381.56 1177.94 7985.46 6349.56 19890.99 2186.66 7870.58 2280.07 2395.30 156.18 2090.97 8282.57 2486.22 3493.28 13
test_241102_TWO88.76 3957.50 22783.60 694.09 356.14 2196.37 682.28 2587.43 1992.55 27
testing9178.30 3077.54 3480.61 2188.16 3557.12 2387.94 5991.07 1371.43 1670.75 9388.04 13355.82 2292.65 4069.61 10275.00 13892.05 40
patch_mono-280.84 1281.59 1078.62 6190.34 953.77 9988.08 5388.36 5076.17 279.40 2791.09 6255.43 2390.09 10785.01 1280.40 8091.99 44
testing22277.70 3777.22 3979.14 4686.95 4454.89 7587.18 7791.96 272.29 1171.17 9088.70 11555.19 2491.24 7165.18 13876.32 12091.29 66
DVP-MVScopyleft81.30 1081.00 1382.20 889.40 2057.45 1792.34 589.99 1857.71 22181.91 1393.64 1155.17 2596.44 281.68 2887.13 2092.72 24
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072689.40 2057.45 1792.32 788.63 4357.71 22183.14 993.96 655.17 25
TSAR-MVS + MP.78.31 2978.26 2478.48 6581.33 16356.31 4081.59 23486.41 8169.61 2981.72 1588.16 12855.09 2788.04 17574.12 8186.31 3291.09 71
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
baseline172.51 11472.12 10673.69 19085.05 7044.46 29583.51 18086.13 8771.61 1564.64 14787.97 13455.00 2889.48 12159.07 17956.05 30187.13 164
test_one_060189.39 2257.29 2088.09 5357.21 23382.06 1293.39 1854.94 29
MM82.69 283.29 380.89 2084.38 8255.40 5792.16 989.85 2075.28 482.41 1093.86 854.30 3093.98 2390.29 187.13 2093.30 12
TSAR-MVS + GP.77.82 3577.59 3378.49 6485.25 6850.27 18590.02 2690.57 1556.58 24674.26 5191.60 5754.26 3192.16 5275.87 6479.91 8893.05 18
EPP-MVSNet71.14 13670.07 13974.33 16979.18 20246.52 26983.81 17286.49 7956.32 25057.95 23984.90 17654.23 3289.14 13158.14 19269.65 18487.33 160
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1493.77 191.10 1075.95 377.10 3693.09 2754.15 3395.57 1285.80 1085.87 3693.31 11
alignmvs78.08 3277.98 2878.39 6983.53 9853.22 11889.77 3285.45 9866.11 6776.59 4091.99 4754.07 3489.05 13377.34 5877.00 11092.89 20
WTY-MVS77.47 4077.52 3577.30 9188.33 3046.25 27688.46 4990.32 1671.40 1772.32 7591.72 5253.44 3592.37 4766.28 12475.42 12893.28 13
IB-MVS68.87 274.01 8772.03 11079.94 3683.04 11455.50 5290.24 2588.65 4167.14 5161.38 19181.74 22753.21 3694.28 2160.45 17262.41 24790.03 99
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HPM-MVS++copyleft80.50 1480.71 1479.88 3787.34 4255.20 6489.93 2987.55 6566.04 7279.46 2693.00 3053.10 3791.76 6080.40 3689.56 892.68 25
miper_enhance_ethall69.77 16368.90 15572.38 21778.93 20849.91 19083.29 19078.85 23964.90 8659.37 21379.46 24652.77 3885.16 25763.78 14258.72 27082.08 252
MVSTER73.25 10272.33 9776.01 12785.54 6153.76 10083.52 17687.16 6867.06 5263.88 16481.66 22852.77 3890.44 9564.66 14064.69 22183.84 228
CNVR-MVS81.76 881.90 881.33 1790.04 1057.70 1291.71 1088.87 3470.31 2477.64 3593.87 752.58 4093.91 2684.17 1487.92 1592.39 30
MVS_030481.58 982.05 780.20 2982.36 13454.70 8091.13 1988.95 2974.49 580.04 2493.64 1152.40 4193.27 3088.85 486.56 3092.61 26
FIs70.00 15870.24 13769.30 27277.93 22838.55 34283.99 16787.72 6266.86 5557.66 24684.17 18352.28 4285.31 25252.72 24268.80 18884.02 219
tpm270.82 14468.44 15977.98 7680.78 17556.11 4274.21 30281.28 19460.24 16968.04 11075.27 29852.26 4388.50 15755.82 21868.03 19389.33 113
thisisatest051573.64 9772.20 10277.97 7781.63 15153.01 12586.69 8988.81 3762.53 12864.06 15885.65 16552.15 4492.50 4458.43 18569.84 18188.39 139
casdiffmvs_mvgpermissive77.75 3677.28 3779.16 4580.42 18454.44 8887.76 6185.46 9771.67 1471.38 8588.35 12351.58 4591.22 7279.02 4279.89 9091.83 49
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet_NR-MVSNet68.82 17968.29 16270.40 25875.71 26342.59 31884.23 15986.78 7466.31 6358.51 23082.45 21451.57 4684.64 26553.11 23355.96 30283.96 225
PAPM76.76 5176.07 5378.81 5380.20 18659.11 686.86 8686.23 8568.60 3470.18 10088.84 11351.57 4687.16 20565.48 13086.68 2890.15 95
tttt051768.33 19066.29 20074.46 16478.08 22449.06 20880.88 25089.08 2754.40 27154.75 27980.77 23751.31 4890.33 9949.35 26058.01 28283.99 221
mvs_anonymous72.29 11870.74 12476.94 10582.85 12254.72 7978.43 27781.54 18863.77 10261.69 18879.32 24851.11 4985.31 25262.15 15575.79 12490.79 78
HY-MVS67.03 573.90 8973.14 8776.18 12284.70 7647.36 25875.56 29186.36 8366.27 6470.66 9683.91 18651.05 5089.31 12467.10 11872.61 15691.88 47
thisisatest053070.47 15168.56 15776.20 12079.78 19251.52 15683.49 18288.58 4757.62 22458.60 22982.79 20351.03 5191.48 6552.84 23762.36 24985.59 198
miper_ehance_all_eth68.70 18567.58 17672.08 22376.91 24549.48 20282.47 21178.45 25262.68 12558.28 23877.88 26250.90 5285.01 26061.91 15658.72 27081.75 257
canonicalmvs78.17 3177.86 3079.12 4884.30 8354.22 9187.71 6284.57 13167.70 4777.70 3492.11 4450.90 5289.95 11078.18 5377.54 10793.20 15
casdiffmvspermissive77.36 4176.85 4378.88 5280.40 18554.66 8487.06 8085.88 9072.11 1271.57 8288.63 12050.89 5490.35 9876.00 6379.11 9691.63 52
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline76.86 4976.24 5178.71 5780.47 18354.20 9483.90 16984.88 12171.38 1871.51 8389.15 10850.51 5590.55 9475.71 6578.65 9991.39 61
MVS_Test75.85 6474.93 6978.62 6184.08 8755.20 6483.99 16785.17 11268.07 4073.38 5982.76 20450.44 5689.00 13665.90 12680.61 7691.64 51
FC-MVSNet-test67.49 20767.91 16766.21 30476.06 25633.06 36180.82 25187.18 6764.44 9054.81 27782.87 20150.40 5782.60 28148.05 27066.55 20782.98 244
nrg03072.27 12071.56 11374.42 16675.93 26050.60 17086.97 8283.21 16062.75 12367.15 11684.38 17850.07 5886.66 22071.19 9462.37 24885.99 187
fmvsm_l_conf0.5_n75.95 6176.16 5275.31 14676.01 25948.44 23184.98 13571.08 32963.50 11081.70 1693.52 1550.00 5987.18 20487.80 576.87 11290.32 88
cl2268.85 17767.69 17472.35 21878.07 22549.98 18982.45 21278.48 25162.50 13058.46 23477.95 26049.99 6085.17 25662.55 15058.72 27081.90 255
fmvsm_l_conf0.5_n_a75.88 6376.07 5375.31 14676.08 25548.34 23485.24 12370.62 33363.13 11881.45 1793.62 1449.98 6187.40 20087.76 676.77 11390.20 93
tpmrst71.04 14069.77 14274.86 15983.19 10955.86 4975.64 29078.73 24567.88 4264.99 14473.73 30949.96 6279.56 31265.92 12567.85 19689.14 120
CANet80.90 1181.17 1280.09 3587.62 4054.21 9291.60 1386.47 8073.13 879.89 2593.10 2549.88 6392.98 3284.09 1684.75 4893.08 17
ET-MVSNet_ETH3D75.23 7474.08 7878.67 5984.52 7955.59 5088.92 4389.21 2568.06 4153.13 29390.22 8449.71 6487.62 19472.12 9270.82 17292.82 21
c3_l67.97 19566.66 19371.91 23476.20 25449.31 20582.13 21878.00 25861.99 13657.64 24776.94 27749.41 6584.93 26160.62 16757.01 29281.49 261
Vis-MVSNet (Re-imp)65.52 24065.63 21765.17 31277.49 23430.54 36875.49 29477.73 26259.34 18452.26 30186.69 15549.38 6680.53 30037.07 31675.28 13084.42 213
EPNet78.36 2878.49 2377.97 7785.49 6252.04 14289.36 3884.07 14273.22 777.03 3791.72 5249.32 6790.17 10673.46 8682.77 5891.69 50
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testing359.97 27860.19 26859.32 34077.60 23130.01 37381.75 22881.79 18453.54 27650.34 31279.94 24148.99 6876.91 33317.19 38750.59 33371.03 363
tpm68.36 18867.48 18070.97 25079.93 19151.34 16076.58 28878.75 24467.73 4563.54 17074.86 30048.33 6972.36 35753.93 22963.71 22989.21 117
APDe-MVScopyleft78.44 2578.20 2579.19 4388.56 2654.55 8689.76 3387.77 6055.91 25278.56 3092.49 3748.20 7092.65 4079.49 3883.04 5790.39 85
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MG-MVS78.42 2676.99 4282.73 293.17 164.46 189.93 2988.51 4864.83 8773.52 5788.09 12948.07 7192.19 5162.24 15384.53 5091.53 57
DeepC-MVS67.15 476.90 4876.27 5078.80 5480.70 17755.02 7086.39 9286.71 7666.96 5467.91 11189.97 9248.03 7291.41 6775.60 6784.14 5289.96 101
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_prior289.04 4261.88 13973.55 5691.46 6148.01 7374.73 7585.46 40
myMVS_eth3d63.52 25263.56 24263.40 32181.73 14534.28 35480.97 24781.02 19760.93 15755.06 27582.64 20948.00 7480.81 29423.42 37458.32 27475.10 338
SF-MVS77.64 3877.42 3678.32 7183.75 9552.47 13586.63 9087.80 5758.78 20174.63 4692.38 3847.75 7591.35 6878.18 5386.85 2591.15 70
test250672.91 10672.43 9674.32 17080.12 18844.18 30283.19 19384.77 12564.02 9665.97 13087.43 14447.67 7688.72 14759.08 17879.66 9290.08 97
iter_conf0573.51 9972.24 10177.33 8987.93 3955.97 4687.90 6070.81 33268.72 3364.04 15984.36 18047.54 7790.87 8471.11 9667.75 19785.13 203
1112_ss70.05 15669.37 14872.10 22280.77 17642.78 31685.12 13076.75 27959.69 17661.19 19392.12 4247.48 7883.84 27053.04 23568.21 19189.66 106
Effi-MVS+75.24 7373.61 8280.16 3181.92 14057.42 1985.21 12476.71 28160.68 16373.32 6089.34 10347.30 7991.63 6268.28 11179.72 9191.42 60
UniMVSNet (Re)67.71 20166.80 18970.45 25674.44 27942.93 31482.42 21384.90 12063.69 10559.63 20780.99 23447.18 8085.23 25551.17 25056.75 29383.19 239
test1279.24 4286.89 4556.08 4385.16 11372.27 7647.15 8191.10 7785.93 3590.54 83
PVSNet_Blended_VisFu73.40 10172.44 9576.30 11581.32 16454.70 8085.81 10378.82 24163.70 10464.53 15185.38 16947.11 8287.38 20167.75 11477.55 10686.81 173
test_fmvsm_n_192075.56 7075.54 5875.61 13474.60 27849.51 20181.82 22674.08 30466.52 6080.40 2193.46 1746.95 8389.72 11686.69 775.30 12987.61 155
NCCC79.57 1979.23 1980.59 2289.50 1556.99 2491.38 1588.17 5267.71 4673.81 5492.75 3246.88 8493.28 2978.79 4684.07 5391.50 59
9.1478.19 2685.67 5888.32 5088.84 3659.89 17274.58 4892.62 3546.80 8592.66 3981.40 3485.62 39
VNet77.99 3477.92 2978.19 7387.43 4150.12 18690.93 2291.41 867.48 4975.12 4290.15 8846.77 8691.00 7973.52 8578.46 10193.44 9
PVSNet_BlendedMVS73.42 10073.30 8373.76 18785.91 5351.83 14886.18 9784.24 13965.40 7969.09 10380.86 23646.70 8788.13 17175.43 6865.92 21481.33 270
PVSNet_Blended76.53 5376.54 4676.50 11385.91 5351.83 14888.89 4484.24 13967.82 4469.09 10389.33 10546.70 8788.13 17175.43 6881.48 7189.55 109
SMA-MVScopyleft79.10 2278.76 2280.12 3384.42 8055.87 4887.58 6786.76 7561.48 14680.26 2293.10 2546.53 8992.41 4679.97 3788.77 1092.08 38
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_fmvsmconf_n74.41 8274.05 7975.49 14074.16 28448.38 23282.66 20472.57 31767.05 5375.11 4392.88 3146.35 9087.81 18083.93 1771.71 16390.28 89
tpm cat166.28 23362.78 24376.77 11281.40 16157.14 2270.03 33077.19 27153.00 28158.76 22870.73 33946.17 9186.73 21843.27 29664.46 22386.44 178
cl____67.43 20965.93 21071.95 23176.33 25048.02 24582.58 20679.12 23661.30 14956.72 26076.92 27846.12 9286.44 22757.98 19456.31 29681.38 269
DIV-MVS_self_test67.43 20965.93 21071.94 23276.33 25048.01 24682.57 20779.11 23761.31 14856.73 25976.92 27846.09 9386.43 22857.98 19456.31 29681.39 268
IS-MVSNet68.80 18167.55 17872.54 21278.50 21943.43 30981.03 24579.35 23259.12 19457.27 25686.71 15446.05 9487.70 18844.32 29275.60 12786.49 177
diffmvspermissive75.11 7774.65 7376.46 11478.52 21853.35 11383.28 19179.94 21570.51 2371.64 8188.72 11446.02 9586.08 23977.52 5675.75 12689.96 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet69.70 16668.70 15672.68 20975.00 27248.90 21679.54 26687.16 6861.05 15363.88 16483.74 18945.87 9690.44 9557.42 20464.68 22278.70 299
IterMVS-LS66.63 22865.36 22570.42 25775.10 26948.90 21681.45 24076.69 28261.05 15355.71 27077.10 27445.86 9783.65 27457.44 20357.88 28678.70 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EIA-MVS75.92 6275.18 6578.13 7485.14 6951.60 15387.17 7885.32 10464.69 8868.56 10790.53 7545.79 9891.58 6367.21 11782.18 6491.20 68
MVS76.91 4675.48 5981.23 1884.56 7855.21 6380.23 26091.64 458.65 20365.37 13891.48 6045.72 9995.05 1672.11 9389.52 993.44 9
PAPM_NR71.80 12869.98 14077.26 9481.54 15753.34 11478.60 27685.25 10953.46 27760.53 19988.66 11645.69 10089.24 12656.49 21179.62 9489.19 118
CS-MVS76.77 5076.70 4576.99 10283.55 9748.75 22088.60 4785.18 11166.38 6272.47 7391.62 5645.53 10190.99 8174.48 7782.51 6091.23 67
DeepC-MVS_fast67.50 378.00 3377.63 3279.13 4788.52 2755.12 6689.95 2885.98 8968.31 3571.33 8692.75 3245.52 10290.37 9771.15 9585.14 4491.91 45
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.5_n74.48 8074.12 7775.56 13676.96 24447.85 25185.32 12169.80 34064.16 9478.74 2893.48 1645.51 10389.29 12586.48 866.62 20589.55 109
fmvsm_s_conf0.5_n_a73.68 9673.15 8575.29 14975.45 26648.05 24483.88 17068.84 34563.43 11278.60 2993.37 2045.32 10488.92 14385.39 1164.04 22588.89 125
Test_1112_low_res67.18 21666.23 20270.02 26678.75 21141.02 33283.43 18373.69 30957.29 23058.45 23582.39 21645.30 10580.88 29350.50 25266.26 21388.16 140
ETV-MVS77.17 4376.74 4478.48 6581.80 14354.55 8686.13 9885.33 10368.20 3773.10 6290.52 7645.23 10690.66 9079.37 3980.95 7290.22 91
CS-MVS-test77.20 4277.25 3877.05 9784.60 7749.04 21189.42 3685.83 9265.90 7372.85 6691.98 4945.10 10791.27 6975.02 7484.56 4990.84 77
NR-MVSNet67.25 21465.99 20871.04 24973.27 29443.91 30385.32 12184.75 12666.05 7153.65 29182.11 22345.05 10885.97 24347.55 27256.18 29983.24 237
UWE-MVS72.17 12172.15 10472.21 22082.26 13644.29 29986.83 8789.58 2165.58 7565.82 13385.06 17245.02 10984.35 26754.07 22775.18 13187.99 147
train_agg76.91 4676.40 4878.45 6785.68 5655.42 5487.59 6584.00 14357.84 21872.99 6390.98 6544.99 11088.58 15278.19 5185.32 4291.34 65
test_885.72 5555.31 5987.60 6483.88 14657.84 21872.84 6790.99 6444.99 11088.34 163
segment_acmp44.97 112
test_fmvsmconf0.1_n73.69 9573.15 8575.34 14470.71 32148.26 23782.15 21671.83 32166.75 5674.47 5092.59 3644.89 11387.78 18583.59 1871.35 16789.97 100
TEST985.68 5655.42 5487.59 6584.00 14357.72 22072.99 6390.98 6544.87 11488.58 152
eth_miper_zixun_eth66.98 22365.28 22672.06 22475.61 26450.40 17681.00 24676.97 27862.00 13556.99 25876.97 27644.84 11585.58 24758.75 18254.42 31680.21 286
MVSFormer73.53 9872.19 10377.57 8483.02 11555.24 6181.63 23181.44 19050.28 29976.67 3890.91 6844.82 11686.11 23460.83 16480.09 8491.36 63
lupinMVS78.38 2778.11 2779.19 4383.02 11555.24 6191.57 1484.82 12269.12 3276.67 3892.02 4544.82 11690.23 10480.83 3580.09 8492.08 38
WR-MVS67.58 20466.76 19070.04 26575.92 26145.06 29386.23 9685.28 10764.31 9158.50 23281.00 23344.80 11882.00 28649.21 26255.57 30783.06 242
fmvsm_s_conf0.1_n73.80 9173.26 8475.43 14173.28 29347.80 25284.57 15269.43 34263.34 11378.40 3193.29 2244.73 11989.22 12885.99 966.28 21289.26 114
ZD-MVS89.55 1453.46 10684.38 13357.02 23573.97 5391.03 6344.57 12091.17 7475.41 7181.78 69
Fast-Effi-MVS+72.73 10971.15 12177.48 8682.75 12554.76 7686.77 8880.64 20363.05 11965.93 13184.01 18444.42 12189.03 13456.45 21476.36 11988.64 132
fmvsm_s_conf0.1_n_a72.82 10872.05 10875.12 15470.95 32047.97 24782.72 20368.43 34762.52 12978.17 3293.08 2844.21 12288.86 14484.82 1363.54 23188.54 136
PCF-MVS61.03 1070.10 15468.40 16075.22 15377.15 24251.99 14379.30 27182.12 17656.47 24861.88 18786.48 15943.98 12387.24 20355.37 21972.79 15586.43 179
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CDS-MVSNet70.48 15069.43 14673.64 19177.56 23348.83 21883.51 18077.45 26763.27 11562.33 18185.54 16843.85 12483.29 27957.38 20574.00 14388.79 129
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EI-MVSNet-Vis-set73.19 10372.60 9274.99 15882.56 13149.80 19482.55 20989.00 2866.17 6665.89 13288.98 10943.83 12592.29 4965.38 13769.01 18782.87 246
APD-MVScopyleft76.15 5875.68 5577.54 8588.52 2753.44 10987.26 7685.03 11753.79 27474.91 4491.68 5443.80 12690.31 10074.36 7881.82 6788.87 126
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR76.39 5575.38 6279.42 4085.33 6656.47 3688.15 5284.97 11865.15 8566.06 12989.88 9343.79 12792.16 5275.03 7380.03 8789.64 107
thres100view90066.87 22665.42 22471.24 24483.29 10643.15 31281.67 23087.78 5859.04 19555.92 26982.18 22243.73 12887.80 18228.80 35266.36 20982.78 248
thres600view766.46 23165.12 22870.47 25583.41 10043.80 30582.15 21687.78 5859.37 18356.02 26882.21 22143.73 12886.90 21426.51 36464.94 21880.71 280
v14868.24 19366.35 19873.88 18271.76 30951.47 15784.23 15981.90 18363.69 10558.94 22176.44 28543.72 13087.78 18560.63 16655.86 30482.39 250
SD-MVS76.18 5774.85 7080.18 3085.39 6456.90 2685.75 10782.45 17356.79 24174.48 4991.81 5043.72 13090.75 8874.61 7678.65 9992.91 19
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
XXY-MVS70.18 15269.28 15272.89 20677.64 23042.88 31585.06 13187.50 6662.58 12762.66 17982.34 22043.64 13289.83 11258.42 18763.70 23085.96 189
tfpn200view967.57 20566.13 20471.89 23584.05 8845.07 29083.40 18587.71 6360.79 16057.79 24382.76 20443.53 13387.80 18228.80 35266.36 20982.78 248
thres40067.40 21266.13 20471.19 24684.05 8845.07 29083.40 18587.71 6360.79 16057.79 24382.76 20443.53 13387.80 18228.80 35266.36 20980.71 280
PAPR75.20 7574.13 7678.41 6888.31 3255.10 6884.31 15785.66 9463.76 10367.55 11390.73 7243.48 13589.40 12366.36 12377.03 10990.73 79
MP-MVScopyleft74.99 7874.33 7576.95 10482.89 12153.05 12485.63 11283.50 15457.86 21767.25 11590.24 8243.38 13688.85 14676.03 6282.23 6388.96 123
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EI-MVSNet-UG-set72.37 11571.73 11174.29 17181.60 15349.29 20681.85 22488.64 4265.29 8465.05 14188.29 12643.18 13791.83 5963.74 14367.97 19481.75 257
thres20068.71 18367.27 18473.02 20184.73 7546.76 26685.03 13387.73 6162.34 13259.87 20283.45 19543.15 13888.32 16531.25 34567.91 19583.98 223
PHI-MVS77.49 3977.00 4178.95 4985.33 6650.69 16888.57 4888.59 4658.14 21073.60 5593.31 2143.14 13993.79 2773.81 8388.53 1292.37 31
ab-mvs70.65 14769.11 15375.29 14980.87 17346.23 27773.48 30785.24 11059.99 17166.65 11980.94 23543.13 14088.69 14863.58 14468.07 19290.95 75
CDPH-MVS76.05 6075.19 6478.62 6186.51 4854.98 7287.32 7184.59 13058.62 20470.75 9390.85 7043.10 14190.63 9270.50 9984.51 5190.24 90
v867.25 21464.99 23074.04 17772.89 29953.31 11682.37 21480.11 21261.54 14454.29 28476.02 29442.89 14288.41 15958.43 18556.36 29480.39 284
EC-MVSNet75.30 7275.20 6375.62 13380.98 16749.00 21287.43 6884.68 12863.49 11170.97 9190.15 8842.86 14391.14 7674.33 7981.90 6686.71 174
h-mvs3373.95 8872.89 9077.15 9680.17 18750.37 17984.68 14783.33 15568.08 3871.97 7788.65 11942.50 14491.15 7578.82 4457.78 28889.91 103
hse-mvs271.44 13470.68 12573.73 18976.34 24947.44 25779.45 26979.47 22768.08 3871.97 7786.01 16342.50 14486.93 21378.82 4453.46 32586.83 172
SteuartSystems-ACMMP77.08 4476.33 4979.34 4180.98 16755.31 5989.76 3386.91 7262.94 12171.65 8091.56 5842.33 14692.56 4377.14 5983.69 5590.15 95
Skip Steuart: Steuart Systems R&D Blog.
HyFIR lowres test69.94 16167.58 17677.04 9877.11 24357.29 2081.49 23979.11 23758.27 20858.86 22580.41 23942.33 14686.96 21161.91 15668.68 19086.87 167
ZNCC-MVS75.82 6775.02 6778.23 7283.88 9353.80 9886.91 8586.05 8859.71 17567.85 11290.55 7442.23 14891.02 7872.66 9185.29 4389.87 104
FMVSNet368.84 17867.40 18173.19 19985.05 7048.53 22685.71 11185.36 10160.90 15957.58 24879.15 25242.16 14986.77 21647.25 27563.40 23384.27 215
VPA-MVSNet71.12 13770.66 12672.49 21478.75 21144.43 29787.64 6390.02 1763.97 9965.02 14281.58 23042.14 15087.42 19963.42 14563.38 23685.63 197
jason77.01 4576.45 4778.69 5879.69 19354.74 7790.56 2483.99 14568.26 3674.10 5290.91 6842.14 15089.99 10979.30 4079.12 9591.36 63
jason: jason.
CLD-MVS75.60 6975.39 6176.24 11780.69 17852.40 13690.69 2386.20 8674.40 665.01 14388.93 11042.05 15290.58 9376.57 6173.96 14485.73 193
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_yl75.85 6474.83 7178.91 5088.08 3751.94 14491.30 1689.28 2357.91 21571.19 8889.20 10642.03 15392.77 3669.41 10375.07 13692.01 42
DCV-MVSNet75.85 6474.83 7178.91 5088.08 3751.94 14491.30 1689.28 2357.91 21571.19 8889.20 10642.03 15392.77 3669.41 10375.07 13692.01 42
TAMVS69.51 17068.16 16573.56 19476.30 25248.71 22282.57 20777.17 27262.10 13461.32 19284.23 18241.90 15583.46 27754.80 22373.09 15288.50 138
TransMVSNet (Re)62.82 26060.76 26269.02 27473.98 28641.61 32686.36 9379.30 23556.90 23652.53 29776.44 28541.85 15687.60 19538.83 30940.61 36477.86 312
VPNet72.07 12271.42 11774.04 17778.64 21647.17 26389.91 3187.97 5572.56 1064.66 14685.04 17341.83 15788.33 16461.17 16260.97 25486.62 175
v2v48269.55 16967.64 17575.26 15272.32 30653.83 9784.93 13981.94 17965.37 8160.80 19679.25 25041.62 15888.98 13963.03 14859.51 26382.98 244
API-MVS74.17 8672.07 10780.49 2390.02 1158.55 887.30 7384.27 13657.51 22665.77 13587.77 13841.61 15995.97 1151.71 24582.63 5986.94 165
GeoE69.96 16067.88 16976.22 11881.11 16651.71 15184.15 16176.74 28059.83 17360.91 19484.38 17841.56 16088.10 17351.67 24670.57 17588.84 127
CHOSEN 1792x268876.24 5674.03 8082.88 183.09 11262.84 285.73 10985.39 10069.79 2764.87 14583.49 19441.52 16193.69 2870.55 9881.82 6792.12 37
LFMVS78.52 2377.14 4082.67 389.58 1358.90 791.27 1888.05 5463.22 11674.63 4690.83 7141.38 16294.40 2075.42 7079.90 8994.72 2
MAR-MVS76.76 5175.60 5780.21 2890.87 754.68 8289.14 4189.11 2662.95 12070.54 9892.33 3941.05 16394.95 1757.90 19786.55 3191.00 74
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_fmvsmvis_n_192071.29 13570.38 13174.00 17971.04 31948.79 21979.19 27264.62 35562.75 12366.73 11791.99 4740.94 16488.35 16283.00 2073.18 14984.85 209
GST-MVS74.87 7973.90 8177.77 8083.30 10553.45 10885.75 10785.29 10659.22 18866.50 12489.85 9440.94 16490.76 8770.94 9783.35 5689.10 121
DU-MVS66.84 22765.74 21570.16 26173.27 29442.59 31881.50 23782.92 16763.53 10958.51 23082.11 22340.75 16684.64 26553.11 23355.96 30283.24 237
Baseline_NR-MVSNet65.49 24164.27 23769.13 27374.37 28241.65 32583.39 18778.85 23959.56 17859.62 20876.88 28040.75 16687.44 19849.99 25455.05 31078.28 308
miper_lstm_enhance63.91 24762.30 24668.75 28075.06 27046.78 26569.02 33481.14 19559.68 17752.76 29672.39 32640.71 16877.99 32456.81 20953.09 32681.48 263
HFP-MVS74.37 8373.13 8978.10 7584.30 8353.68 10185.58 11384.36 13456.82 23965.78 13490.56 7340.70 16990.90 8369.18 10680.88 7389.71 105
CL-MVSNet_self_test62.98 25861.14 25868.50 28665.86 35042.96 31384.37 15482.98 16560.98 15553.95 28772.70 32240.43 17083.71 27341.10 30347.93 34078.83 298
ACMMP_NAP76.43 5475.66 5678.73 5681.92 14054.67 8384.06 16585.35 10261.10 15272.99 6391.50 5940.25 17191.00 7976.84 6086.98 2390.51 84
v114468.81 18066.82 18874.80 16072.34 30553.46 10684.68 14781.77 18664.25 9260.28 20077.91 26140.23 17288.95 14060.37 17359.52 26281.97 253
WR-MVS_H58.91 29158.04 28261.54 33269.07 33333.83 35876.91 28581.99 17851.40 29448.17 32074.67 30140.23 17274.15 34531.78 34248.10 33876.64 325
原ACMM176.13 12384.89 7454.59 8585.26 10851.98 28866.70 11887.07 15040.15 17489.70 11751.23 24985.06 4684.10 217
MVP-Stereo70.97 14170.44 12972.59 21176.03 25851.36 15985.02 13486.99 7160.31 16756.53 26478.92 25440.11 17590.00 10860.00 17690.01 676.41 328
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v1066.61 22964.20 23873.83 18572.59 30253.37 11281.88 22379.91 21761.11 15154.09 28675.60 29640.06 17688.26 16956.47 21256.10 30079.86 290
test_fmvsmconf0.01_n71.97 12470.95 12375.04 15566.21 34747.87 25080.35 25770.08 33765.85 7472.69 6891.68 5439.99 17787.67 18982.03 2769.66 18389.58 108
MP-MVS-pluss75.54 7175.03 6677.04 9881.37 16252.65 13284.34 15684.46 13261.16 15069.14 10291.76 5139.98 17888.99 13878.19 5184.89 4789.48 112
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TranMVSNet+NR-MVSNet66.94 22465.61 21870.93 25173.45 29043.38 31083.02 19984.25 13765.31 8358.33 23781.90 22639.92 17985.52 24849.43 25954.89 31283.89 227
Patchmatch-test53.33 32448.17 33368.81 27873.31 29142.38 32242.98 38358.23 36632.53 37038.79 36270.77 33739.66 18073.51 35125.18 36752.06 33090.55 81
Test By Simon39.38 181
v14419267.86 19765.76 21474.16 17471.68 31053.09 12284.14 16280.83 20162.85 12259.21 21877.28 27139.30 18288.00 17658.67 18357.88 28681.40 267
BH-w/o70.02 15768.51 15874.56 16282.77 12450.39 17786.60 9178.14 25659.77 17459.65 20685.57 16739.27 18387.30 20249.86 25674.94 13985.99 187
dmvs_testset57.65 30058.21 28155.97 35174.62 2779.82 40763.75 35063.34 35967.23 5048.89 31883.68 19339.12 18476.14 33823.43 37359.80 26081.96 254
CR-MVSNet62.47 26559.04 27772.77 20773.97 28756.57 3260.52 36271.72 32360.04 17057.49 25165.86 35338.94 18580.31 30242.86 29959.93 25881.42 265
Patchmtry56.56 30652.95 31367.42 29372.53 30350.59 17159.05 36671.72 32337.86 35846.92 33165.86 35338.94 18580.06 30636.94 31846.72 35071.60 359
sam_mvs138.86 18788.13 143
UA-Net67.32 21366.23 20270.59 25478.85 20941.23 33173.60 30575.45 29461.54 14466.61 12184.53 17738.73 18886.57 22542.48 30274.24 14283.98 223
cdsmvs_eth3d_5k18.33 37024.44 3620.00 3910.00 4130.00 4150.00 40289.40 220.00 4070.00 41092.02 4538.55 1890.00 4080.00 4090.00 4060.00 406
patchmatchnet-post59.74 36938.41 19079.91 309
CHOSEN 280x42057.53 30256.38 29560.97 33674.01 28548.10 24346.30 38054.31 37148.18 31350.88 31077.43 26938.37 19159.16 37854.83 22163.14 24175.66 332
V4267.66 20265.60 21973.86 18370.69 32353.63 10281.50 23778.61 24863.85 10159.49 21277.49 26737.98 19287.65 19062.33 15158.43 27380.29 285
tpmvs62.45 26659.42 27371.53 24183.93 9054.32 8970.03 33077.61 26451.91 28953.48 29268.29 34737.91 19386.66 22033.36 33558.27 27673.62 348
PatchmatchNetpermissive67.07 22163.63 24177.40 8883.10 11058.03 972.11 32177.77 26158.85 19959.37 21370.83 33637.84 19484.93 26142.96 29869.83 18289.26 114
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
pcd_1.5k_mvsjas3.15 3774.20 3800.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 40937.77 1950.00 4080.00 4090.00 4060.00 406
PS-MVSNAJss68.78 18267.17 18573.62 19373.01 29648.33 23684.95 13884.81 12359.30 18758.91 22479.84 24437.77 19588.86 14462.83 14963.12 24283.67 231
PS-MVSNAJ80.06 1679.52 1781.68 1385.58 6060.97 391.69 1187.02 7070.62 2180.75 2093.22 2437.77 19592.50 4482.75 2286.25 3391.57 55
pm-mvs164.12 24662.56 24468.78 27971.68 31038.87 34082.89 20181.57 18755.54 25853.89 28877.82 26337.73 19886.74 21748.46 26853.49 32380.72 279
RPMNet59.29 28354.25 30674.42 16673.97 28756.57 3260.52 36276.98 27535.72 36457.49 25158.87 37237.73 19885.26 25427.01 36359.93 25881.42 265
SDMVSNet71.89 12570.62 12775.70 13281.70 14751.61 15273.89 30388.72 4066.58 5761.64 18982.38 21737.63 20089.48 12177.44 5765.60 21586.01 185
xiu_mvs_v2_base79.86 1779.31 1881.53 1485.03 7260.73 491.65 1286.86 7370.30 2580.77 1993.07 2937.63 20092.28 5082.73 2385.71 3791.57 55
Patchmatch-RL test58.72 29354.32 30571.92 23363.91 36244.25 30061.73 35855.19 36957.38 22949.31 31654.24 37737.60 20280.89 29262.19 15447.28 34590.63 80
HPM-MVScopyleft72.60 11171.50 11475.89 12982.02 13851.42 15880.70 25383.05 16356.12 25164.03 16089.53 9937.55 20388.37 16070.48 10080.04 8687.88 148
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test_post16.22 40137.52 20484.72 263
PatchT56.60 30552.97 31267.48 29272.94 29846.16 27857.30 37073.78 30838.77 35454.37 28357.26 37537.52 20478.06 32132.02 34052.79 32778.23 310
v119267.96 19665.74 21574.63 16171.79 30853.43 11184.06 16580.99 19963.19 11759.56 20977.46 26837.50 20688.65 14958.20 19158.93 26981.79 256
HQP2-MVS37.35 207
HQP-MVS72.34 11671.44 11675.03 15679.02 20551.56 15488.00 5483.68 14965.45 7664.48 15285.13 17037.35 20788.62 15066.70 11973.12 15084.91 207
region2R73.75 9372.55 9377.33 8983.90 9252.98 12685.54 11784.09 14156.83 23865.10 14090.45 7737.34 20990.24 10368.89 10880.83 7588.77 130
TESTMET0.1,172.86 10772.33 9774.46 16481.98 13950.77 16685.13 12785.47 9666.09 6867.30 11483.69 19137.27 21083.57 27565.06 13978.97 9889.05 122
ACMMPR73.76 9272.61 9177.24 9583.92 9152.96 12785.58 11384.29 13556.82 23965.12 13990.45 7737.24 21190.18 10569.18 10680.84 7488.58 134
sss70.49 14970.13 13871.58 24081.59 15439.02 33980.78 25284.71 12759.34 18466.61 12188.09 12937.17 21285.52 24861.82 15871.02 17090.20 93
EPNet_dtu66.25 23466.71 19164.87 31478.66 21534.12 35682.80 20275.51 29261.75 14064.47 15586.90 15137.06 21372.46 35643.65 29569.63 18588.02 146
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v192192067.45 20865.23 22774.10 17671.51 31352.90 12883.75 17480.44 20662.48 13159.12 21977.13 27236.98 21487.90 17857.53 20258.14 28081.49 261
旧先验181.57 15647.48 25571.83 32188.66 11636.94 21578.34 10388.67 131
test-LLR69.65 16769.01 15471.60 23878.67 21348.17 23985.13 12779.72 22059.18 19163.13 17282.58 21136.91 21680.24 30360.56 16875.17 13286.39 180
test0.0.03 162.54 26262.44 24562.86 32572.28 30729.51 37682.93 20078.78 24259.18 19153.07 29482.41 21536.91 21677.39 33037.45 31258.96 26881.66 259
MDTV_nov1_ep13_2view43.62 30671.13 32654.95 26559.29 21736.76 21846.33 28287.32 161
KD-MVS_2432*160059.04 28956.44 29366.86 29879.07 20345.87 28172.13 31980.42 20755.03 26348.15 32171.01 33436.73 21978.05 32235.21 32630.18 38376.67 322
miper_refine_blended59.04 28956.44 29366.86 29879.07 20345.87 28172.13 31980.42 20755.03 26348.15 32171.01 33436.73 21978.05 32235.21 32630.18 38376.67 322
GBi-Net67.09 21965.47 22171.96 22882.71 12646.36 27183.52 17683.31 15658.55 20557.58 24876.23 28936.72 22186.20 23047.25 27563.40 23383.32 234
test167.09 21965.47 22171.96 22882.71 12646.36 27183.52 17683.31 15658.55 20557.58 24876.23 28936.72 22186.20 23047.25 27563.40 23383.32 234
FMVSNet267.57 20565.79 21372.90 20482.71 12647.97 24785.15 12684.93 11958.55 20556.71 26178.26 25936.72 22186.67 21946.15 28362.94 24484.07 218
AUN-MVS68.20 19466.35 19873.76 18776.37 24847.45 25679.52 26879.52 22560.98 15562.34 18086.02 16136.59 22486.94 21262.32 15253.47 32486.89 166
BH-untuned68.28 19166.40 19773.91 18181.62 15250.01 18885.56 11577.39 26857.63 22357.47 25383.69 19136.36 22587.08 20744.81 28873.08 15384.65 210
EPMVS68.45 18765.44 22377.47 8784.91 7356.17 4171.89 32381.91 18261.72 14160.85 19572.49 32336.21 22687.06 20847.32 27471.62 16489.17 119
MSLP-MVS++74.21 8572.25 10080.11 3481.45 16056.47 3686.32 9479.65 22358.19 20966.36 12592.29 4036.11 22790.66 9067.39 11582.49 6193.18 16
FA-MVS(test-final)69.00 17666.60 19576.19 12183.48 9947.96 24974.73 29882.07 17757.27 23162.18 18378.47 25836.09 22892.89 3353.76 23171.32 16887.73 152
MTAPA72.73 10971.22 11977.27 9381.54 15753.57 10367.06 34381.31 19259.41 18268.39 10890.96 6736.07 22989.01 13573.80 8482.45 6289.23 116
HQP_MVS70.96 14269.91 14174.12 17577.95 22649.57 19685.76 10582.59 17063.60 10762.15 18483.28 19836.04 23088.30 16665.46 13172.34 15884.49 211
plane_prior678.42 22149.39 20436.04 230
sam_mvs35.99 232
PGM-MVS72.60 11171.20 12076.80 11082.95 11852.82 12983.07 19782.14 17556.51 24763.18 17189.81 9535.68 23389.76 11567.30 11680.19 8387.83 149
XVS72.92 10571.62 11276.81 10783.41 10052.48 13384.88 14083.20 16158.03 21163.91 16289.63 9835.50 23489.78 11365.50 12880.50 7888.16 140
X-MVStestdata65.85 23962.20 24776.81 10783.41 10052.48 13384.88 14083.20 16158.03 21163.91 1624.82 40535.50 23489.78 11365.50 12880.50 7888.16 140
v124066.99 22264.68 23373.93 18071.38 31652.66 13183.39 18779.98 21461.97 13758.44 23677.11 27335.25 23687.81 18056.46 21358.15 27881.33 270
test111171.06 13970.42 13072.97 20379.48 19541.49 32884.82 14382.74 16964.20 9362.98 17487.43 14435.20 23787.92 17758.54 18478.42 10289.49 111
dp64.41 24361.58 25172.90 20482.40 13254.09 9572.53 31376.59 28460.39 16655.68 27170.39 34035.18 23876.90 33539.34 30861.71 25187.73 152
iter_conf_final71.46 13369.68 14476.81 10786.03 5153.49 10484.73 14474.37 30160.27 16866.28 12684.36 18035.14 23990.87 8465.41 13570.51 17686.05 184
Syy-MVS61.51 27161.35 25562.00 32881.73 14530.09 37180.97 24781.02 19760.93 15755.06 27582.64 20935.09 24080.81 29416.40 38958.32 27475.10 338
ECVR-MVScopyleft71.81 12771.00 12274.26 17280.12 18843.49 30784.69 14682.16 17464.02 9664.64 14787.43 14435.04 24189.21 12961.24 16179.66 9290.08 97
CP-MVS72.59 11371.46 11576.00 12882.93 12052.32 13986.93 8482.48 17255.15 26163.65 16690.44 8035.03 24288.53 15668.69 10977.83 10587.15 163
CP-MVSNet58.54 29757.57 28561.46 33368.50 33733.96 35776.90 28678.60 24951.67 29347.83 32376.60 28434.99 24372.79 35435.45 32347.58 34277.64 316
dmvs_re67.61 20366.00 20772.42 21681.86 14243.45 30864.67 34880.00 21369.56 3060.07 20185.00 17434.71 24487.63 19251.48 24766.68 20386.17 183
MDTV_nov1_ep1361.56 25281.68 14955.12 6672.41 31578.18 25559.19 18958.85 22669.29 34434.69 24586.16 23336.76 32062.96 243
WB-MVSnew69.36 17168.24 16372.72 20879.26 20049.40 20385.72 11088.85 3561.33 14764.59 15082.38 21734.57 24687.53 19746.82 27970.63 17381.22 274
3Dnovator64.70 674.46 8172.48 9480.41 2682.84 12355.40 5783.08 19688.61 4567.61 4859.85 20388.66 11634.57 24693.97 2458.42 18788.70 1191.85 48
Vis-MVSNetpermissive70.61 14869.34 14974.42 16680.95 17248.49 22886.03 10177.51 26658.74 20265.55 13787.78 13734.37 24885.95 24452.53 24380.61 7688.80 128
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_post170.84 32714.72 40434.33 24983.86 26948.80 264
OPM-MVS70.75 14669.58 14574.26 17275.55 26551.34 16086.05 10083.29 15961.94 13862.95 17585.77 16434.15 25088.44 15865.44 13471.07 16982.99 243
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DP-MVS Recon71.99 12370.31 13377.01 10090.65 853.44 10989.37 3782.97 16656.33 24963.56 16989.47 10034.02 25192.15 5454.05 22872.41 15785.43 200
PEN-MVS58.35 29857.15 28761.94 32967.55 34434.39 35377.01 28478.35 25451.87 29047.72 32476.73 28233.91 25273.75 34934.03 33347.17 34677.68 314
QAPM71.88 12669.33 15079.52 3882.20 13754.30 9086.30 9588.77 3856.61 24559.72 20587.48 14233.90 25395.36 1347.48 27381.49 7088.90 124
新几何173.30 19883.10 11053.48 10571.43 32745.55 32966.14 12787.17 14833.88 25480.54 29948.50 26780.33 8285.88 192
131471.11 13869.41 14776.22 11879.32 19850.49 17380.23 26085.14 11559.44 18158.93 22288.89 11233.83 25589.60 12061.49 15977.42 10888.57 135
SR-MVS70.92 14369.73 14374.50 16383.38 10450.48 17484.27 15879.35 23248.96 30966.57 12390.45 7733.65 25687.11 20666.42 12174.56 14185.91 190
mPP-MVS71.79 12970.38 13176.04 12682.65 12952.06 14184.45 15381.78 18555.59 25662.05 18689.68 9733.48 25788.28 16865.45 13378.24 10487.77 151
OMC-MVS65.97 23865.06 22968.71 28172.97 29742.58 32078.61 27575.35 29554.72 26759.31 21586.25 16033.30 25877.88 32657.99 19367.05 20185.66 195
BH-RMVSNet70.08 15568.01 16676.27 11684.21 8651.22 16487.29 7479.33 23458.96 19863.63 16786.77 15333.29 25990.30 10244.63 29073.96 14487.30 162
JIA-IIPM52.33 32947.77 33666.03 30571.20 31746.92 26440.00 38876.48 28537.10 35946.73 33237.02 38832.96 26077.88 32635.97 32152.45 32973.29 351
PS-CasMVS58.12 29957.03 28961.37 33468.24 34133.80 35976.73 28778.01 25751.20 29547.54 32776.20 29232.85 26172.76 35535.17 32847.37 34477.55 317
DTE-MVSNet57.03 30355.73 29960.95 33765.94 34932.57 36475.71 28977.09 27451.16 29646.65 33476.34 28732.84 26273.22 35330.94 34644.87 35577.06 319
pmmvs463.34 25561.07 25970.16 26170.14 32550.53 17279.97 26371.41 32855.08 26254.12 28578.58 25632.79 26382.09 28550.33 25357.22 29177.86 312
TR-MVS69.71 16467.85 17275.27 15182.94 11948.48 22987.40 7080.86 20057.15 23464.61 14987.08 14932.67 26489.64 11946.38 28171.55 16687.68 154
VDD-MVS76.08 5974.97 6879.44 3984.27 8553.33 11591.13 1985.88 9065.33 8272.37 7489.34 10332.52 26592.76 3877.90 5575.96 12292.22 36
3Dnovator+62.71 772.29 11870.50 12877.65 8383.40 10351.29 16287.32 7186.40 8259.01 19658.49 23388.32 12532.40 26691.27 6957.04 20682.15 6590.38 86
tfpnnormal61.47 27259.09 27668.62 28376.29 25341.69 32481.14 24485.16 11354.48 27051.32 30573.63 31332.32 26786.89 21521.78 37855.71 30677.29 318
MS-PatchMatch72.34 11671.26 11875.61 13482.38 13355.55 5188.00 5489.95 1965.38 8056.51 26580.74 23832.28 26892.89 3357.95 19688.10 1478.39 306
v7n62.50 26459.27 27572.20 22167.25 34549.83 19377.87 28080.12 21152.50 28548.80 31973.07 31732.10 26987.90 17846.83 27854.92 31178.86 297
IterMVS63.77 25061.67 25070.08 26372.68 30151.24 16380.44 25575.51 29260.51 16551.41 30473.70 31232.08 27078.91 31454.30 22554.35 31780.08 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT59.12 28658.81 27960.08 33870.68 32445.07 29080.42 25674.25 30243.54 34350.02 31373.73 30931.97 27156.74 38051.06 25153.60 32278.42 305
SCA63.84 24860.01 27075.32 14578.58 21757.92 1061.61 35977.53 26556.71 24257.75 24570.77 33731.97 27179.91 30948.80 26456.36 29488.13 143
ACMMPcopyleft70.81 14569.29 15175.39 14381.52 15951.92 14683.43 18383.03 16456.67 24458.80 22788.91 11131.92 27388.58 15265.89 12773.39 14885.67 194
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APD-MVS_3200maxsize69.62 16868.23 16473.80 18681.58 15548.22 23881.91 22279.50 22648.21 31264.24 15789.75 9631.91 27487.55 19663.08 14773.85 14685.64 196
VDDNet74.37 8372.13 10581.09 1979.58 19456.52 3590.02 2686.70 7752.61 28471.23 8787.20 14731.75 27593.96 2574.30 8075.77 12592.79 23
pmmvs562.80 26161.18 25767.66 29169.53 32942.37 32382.65 20575.19 29654.30 27352.03 30278.51 25731.64 27680.67 29648.60 26658.15 27879.95 289
LCM-MVSNet-Re58.82 29256.54 29165.68 30679.31 19929.09 37961.39 36145.79 37760.73 16237.65 36572.47 32431.42 27781.08 29149.66 25770.41 17786.87 167
testdata67.08 29677.59 23245.46 28669.20 34444.47 33671.50 8488.34 12431.21 27870.76 36252.20 24475.88 12385.03 204
SR-MVS-dyc-post68.27 19266.87 18772.48 21580.96 16948.14 24181.54 23576.98 27546.42 32462.75 17789.42 10131.17 27986.09 23860.52 17072.06 16183.19 239
GA-MVS69.04 17466.70 19276.06 12575.11 26852.36 13783.12 19580.23 21063.32 11460.65 19879.22 25130.98 28088.37 16061.25 16066.41 20887.46 158
OpenMVScopyleft61.00 1169.99 15967.55 17877.30 9178.37 22254.07 9684.36 15585.76 9357.22 23256.71 26187.67 14030.79 28192.83 3543.04 29784.06 5485.01 205
Effi-MVS+-dtu66.24 23564.96 23170.08 26375.17 26749.64 19582.01 21974.48 30062.15 13357.83 24176.08 29330.59 28283.79 27165.40 13660.93 25576.81 321
sd_testset67.79 20065.95 20973.32 19681.70 14746.33 27468.99 33580.30 20966.58 5761.64 18982.38 21730.45 28387.63 19255.86 21665.60 21586.01 185
test22279.36 19650.97 16577.99 27967.84 34842.54 34762.84 17686.53 15730.26 28476.91 11185.23 201
MVS_111021_LR69.07 17367.91 16772.54 21277.27 23749.56 19879.77 26473.96 30759.33 18660.73 19787.82 13630.19 28581.53 28769.94 10172.19 16086.53 176
114514_t69.87 16267.88 16975.85 13088.38 2952.35 13886.94 8383.68 14953.70 27555.68 27185.60 16630.07 28691.20 7355.84 21771.02 17083.99 221
mvsmamba66.93 22564.88 23273.09 20075.06 27047.26 26083.36 18969.21 34362.64 12655.68 27181.43 23129.72 28789.20 13063.35 14663.50 23282.79 247
CPTT-MVS67.15 21765.84 21271.07 24880.96 16950.32 18281.94 22174.10 30346.18 32757.91 24087.64 14129.57 28881.31 28964.10 14170.18 18081.56 260
CANet_DTU73.71 9473.14 8775.40 14282.61 13050.05 18784.67 14979.36 23169.72 2875.39 4190.03 9129.41 28985.93 24567.99 11379.11 9690.22 91
AdaColmapbinary67.86 19765.48 22075.00 15788.15 3654.99 7186.10 9976.63 28349.30 30657.80 24286.65 15629.39 29088.94 14245.10 28770.21 17981.06 275
RE-MVS-def66.66 19380.96 16948.14 24181.54 23576.98 27546.42 32462.75 17789.42 10129.28 29160.52 17072.06 16183.19 239
CVMVSNet60.85 27560.44 26562.07 32675.00 27232.73 36379.54 26673.49 31236.98 36056.28 26783.74 18929.28 29169.53 36546.48 28063.23 23883.94 226
PMMVS72.98 10472.05 10875.78 13183.57 9648.60 22384.08 16382.85 16861.62 14268.24 10990.33 8128.35 29387.78 18572.71 9076.69 11490.95 75
our_test_359.11 28755.08 30371.18 24771.42 31453.29 11781.96 22074.52 29948.32 31142.08 34869.28 34528.14 29482.15 28334.35 33245.68 35478.11 311
Fast-Effi-MVS+-dtu66.53 23064.10 23973.84 18472.41 30452.30 14084.73 14475.66 29159.51 17956.34 26679.11 25328.11 29585.85 24657.74 20163.29 23783.35 233
Anonymous2023121166.08 23763.67 24073.31 19783.07 11348.75 22086.01 10284.67 12945.27 33156.54 26376.67 28328.06 29688.95 14052.78 23959.95 25782.23 251
Anonymous2024052969.71 16467.28 18377.00 10183.78 9450.36 18088.87 4585.10 11647.22 31764.03 16083.37 19627.93 29792.10 5557.78 20067.44 19988.53 137
HPM-MVS_fast67.86 19766.28 20172.61 21080.67 17948.34 23481.18 24375.95 29050.81 29759.55 21088.05 13227.86 29885.98 24158.83 18173.58 14783.51 232
FMVSNet164.57 24262.11 24871.96 22877.32 23646.36 27183.52 17683.31 15652.43 28654.42 28276.23 28927.80 29986.20 23042.59 30161.34 25383.32 234
CNLPA60.59 27658.44 28067.05 29779.21 20147.26 26079.75 26564.34 35742.46 34851.90 30383.94 18527.79 30075.41 34237.12 31459.49 26478.47 303
TAPA-MVS56.12 1461.82 27060.18 26966.71 30078.48 22037.97 34575.19 29676.41 28646.82 32057.04 25786.52 15827.67 30177.03 33226.50 36567.02 20285.14 202
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
pmmvs659.64 28157.15 28767.09 29566.01 34836.86 34980.50 25478.64 24645.05 33349.05 31773.94 30727.28 30286.10 23643.96 29449.94 33578.31 307
test-mter68.36 18867.29 18271.60 23878.67 21348.17 23985.13 12779.72 22053.38 27863.13 17282.58 21127.23 30380.24 30360.56 16875.17 13286.39 180
D2MVS63.49 25361.39 25469.77 26769.29 33148.93 21578.89 27477.71 26360.64 16449.70 31472.10 33127.08 30483.48 27654.48 22462.65 24576.90 320
XVG-OURS-SEG-HR62.02 26859.54 27269.46 27065.30 35345.88 28065.06 34673.57 31146.45 32357.42 25483.35 19726.95 30578.09 32053.77 23064.03 22684.42 213
test_djsdf63.84 24861.56 25270.70 25368.78 33444.69 29481.63 23181.44 19050.28 29952.27 30076.26 28826.72 30686.11 23460.83 16455.84 30581.29 273
Anonymous2023120659.08 28857.59 28463.55 31968.77 33532.14 36680.26 25979.78 21950.00 30349.39 31572.39 32626.64 30778.36 31733.12 33857.94 28380.14 287
ppachtmachnet_test58.56 29554.34 30471.24 24471.42 31454.74 7781.84 22572.27 31949.02 30845.86 33868.99 34626.27 30883.30 27830.12 34743.23 35975.69 331
test20.0355.22 31454.07 30758.68 34363.14 36525.00 38477.69 28174.78 29852.64 28343.43 34372.39 32626.21 30974.76 34429.31 35047.05 34876.28 329
FE-MVS64.15 24560.43 26675.30 14880.85 17449.86 19268.28 33978.37 25350.26 30259.31 21573.79 30826.19 31091.92 5840.19 30566.67 20484.12 216
FMVSNet558.61 29456.45 29265.10 31377.20 24139.74 33674.77 29777.12 27350.27 30143.28 34567.71 34826.15 31176.90 33536.78 31954.78 31378.65 301
ACMP61.11 966.24 23564.33 23672.00 22774.89 27449.12 20783.18 19479.83 21855.41 25952.29 29982.68 20825.83 31286.10 23660.89 16363.94 22880.78 278
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MIMVSNet63.12 25760.29 26771.61 23775.92 26146.65 26765.15 34581.94 17959.14 19354.65 28069.47 34325.74 31380.63 29741.03 30469.56 18687.55 156
LPG-MVS_test66.44 23264.58 23472.02 22574.42 28048.60 22383.07 19780.64 20354.69 26853.75 28983.83 18725.73 31486.98 20960.33 17464.71 21980.48 282
LGP-MVS_train72.02 22574.42 28048.60 22380.64 20354.69 26853.75 28983.83 18725.73 31486.98 20960.33 17464.71 21980.48 282
test_vis1_n_192068.59 18668.31 16169.44 27169.16 33241.51 32784.63 15068.58 34658.80 20073.26 6188.37 12125.30 31680.60 29879.10 4167.55 19886.23 182
ACMM58.35 1264.35 24462.01 24971.38 24274.21 28348.51 22782.25 21579.66 22247.61 31554.54 28180.11 24025.26 31786.00 24051.26 24863.16 24079.64 291
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-OURS61.88 26959.34 27469.49 26965.37 35246.27 27564.80 34773.49 31247.04 31957.41 25582.85 20225.15 31878.18 31853.00 23664.98 21784.01 220
PVSNet_057.04 1361.19 27357.24 28673.02 20177.45 23550.31 18379.43 27077.36 27063.96 10047.51 32872.45 32525.03 31983.78 27252.76 24119.22 39584.96 206
WB-MVS37.41 35036.37 35140.54 36954.23 37910.43 40665.29 34443.75 38034.86 36927.81 38654.63 37624.94 32063.21 3696.81 40115.00 39647.98 388
UniMVSNet_ETH3D62.51 26360.49 26468.57 28568.30 34040.88 33473.89 30379.93 21651.81 29254.77 27879.61 24524.80 32181.10 29049.93 25561.35 25283.73 229
DP-MVS59.24 28456.12 29668.63 28288.24 3450.35 18182.51 21064.43 35641.10 35046.70 33378.77 25524.75 32288.57 15522.26 37656.29 29866.96 369
test_cas_vis1_n_192067.10 21866.60 19568.59 28465.17 35543.23 31183.23 19269.84 33955.34 26070.67 9587.71 13924.70 32376.66 33778.57 4864.20 22485.89 191
tt080563.39 25461.31 25669.64 26869.36 33038.87 34078.00 27885.48 9548.82 31055.66 27481.66 22824.38 32486.37 22949.04 26359.36 26683.68 230
cascas69.01 17566.13 20477.66 8279.36 19655.41 5686.99 8183.75 14856.69 24358.92 22381.35 23224.31 32592.10 5553.23 23270.61 17485.46 199
CMPMVSbinary40.41 2155.34 31352.64 31663.46 32060.88 37143.84 30461.58 36071.06 33030.43 37636.33 36774.63 30224.14 32675.44 34148.05 27066.62 20571.12 362
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UGNet68.71 18367.11 18673.50 19580.55 18247.61 25484.08 16378.51 25059.45 18065.68 13682.73 20723.78 32785.08 25952.80 23876.40 11587.80 150
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
YYNet153.82 32149.96 32665.41 31070.09 32748.95 21372.30 31671.66 32544.25 33931.89 37963.07 36123.73 32873.95 34733.26 33639.40 36673.34 350
MDA-MVSNet_test_wron53.82 32149.95 32765.43 30970.13 32649.05 20972.30 31671.65 32644.23 34031.85 38063.13 36023.68 32974.01 34633.25 33739.35 36773.23 352
PLCcopyleft52.38 1860.89 27458.97 27866.68 30281.77 14445.70 28478.96 27374.04 30643.66 34247.63 32583.19 20023.52 33077.78 32937.47 31160.46 25676.55 327
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SSC-MVS35.20 35234.30 35437.90 37152.58 3818.65 40961.86 35741.64 38431.81 37425.54 38852.94 38123.39 33159.28 3776.10 40212.86 39745.78 390
ADS-MVSNet255.21 31551.44 32066.51 30380.60 18049.56 19855.03 37365.44 35244.72 33451.00 30761.19 36522.83 33275.41 34228.54 35553.63 32074.57 342
ADS-MVSNet56.17 30951.95 31968.84 27680.60 18053.07 12355.03 37370.02 33844.72 33451.00 30761.19 36522.83 33278.88 31528.54 35553.63 32074.57 342
test_040256.45 30753.03 31166.69 30176.78 24650.31 18381.76 22769.61 34142.79 34643.88 34072.13 32922.82 33486.46 22616.57 38850.94 33263.31 377
UnsupCasMVSNet_eth57.56 30155.15 30164.79 31564.57 36033.12 36073.17 31083.87 14758.98 19741.75 35170.03 34122.54 33579.92 30746.12 28435.31 37281.32 272
xiu_mvs_v1_base_debu71.60 13070.29 13475.55 13777.26 23853.15 11985.34 11879.37 22855.83 25372.54 6990.19 8522.38 33686.66 22073.28 8776.39 11686.85 169
xiu_mvs_v1_base71.60 13070.29 13475.55 13777.26 23853.15 11985.34 11879.37 22855.83 25372.54 6990.19 8522.38 33686.66 22073.28 8776.39 11686.85 169
xiu_mvs_v1_base_debi71.60 13070.29 13475.55 13777.26 23853.15 11985.34 11879.37 22855.83 25372.54 6990.19 8522.38 33686.66 22073.28 8776.39 11686.85 169
RRT_MVS63.68 25161.01 26071.70 23673.48 28945.98 27981.19 24276.08 28854.33 27252.84 29579.27 24922.21 33987.65 19054.13 22655.54 30881.46 264
LS3D56.40 30853.82 30864.12 31681.12 16545.69 28573.42 30866.14 35135.30 36843.24 34679.88 24222.18 34079.62 31119.10 38464.00 22767.05 368
PVSNet62.49 869.27 17267.81 17373.64 19184.41 8151.85 14784.63 15077.80 26066.42 6159.80 20484.95 17522.14 34180.44 30155.03 22075.11 13588.62 133
MDA-MVSNet-bldmvs51.56 33147.75 33763.00 32371.60 31247.32 25969.70 33372.12 32043.81 34127.65 38763.38 35921.97 34275.96 33927.30 36232.19 38065.70 374
pmmvs-eth3d55.97 31152.78 31565.54 30861.02 37046.44 27075.36 29567.72 34949.61 30543.65 34267.58 34921.63 34377.04 33144.11 29344.33 35673.15 353
anonymousdsp60.46 27757.65 28368.88 27563.63 36345.09 28972.93 31178.63 24746.52 32251.12 30672.80 32121.46 34483.07 28057.79 19953.97 31878.47 303
MVS-HIRNet49.01 33644.71 34061.92 33076.06 25646.61 26863.23 35354.90 37024.77 38233.56 37536.60 39021.28 34575.88 34029.49 34962.54 24663.26 378
Anonymous20240521170.11 15367.88 16976.79 11187.20 4347.24 26289.49 3577.38 26954.88 26666.14 12786.84 15220.93 34691.54 6456.45 21471.62 16491.59 53
UnsupCasMVSNet_bld53.86 32050.53 32463.84 31763.52 36434.75 35271.38 32481.92 18146.53 32138.95 36157.93 37320.55 34780.20 30539.91 30734.09 37976.57 326
EU-MVSNet52.63 32650.72 32358.37 34462.69 36728.13 38172.60 31275.97 28930.94 37540.76 35772.11 33020.16 34870.80 36135.11 32946.11 35276.19 330
N_pmnet41.25 34539.77 34845.66 36368.50 3370.82 41372.51 3140.38 41235.61 36535.26 37161.51 36420.07 34967.74 36623.51 37240.63 36368.42 367
MSDG59.44 28255.14 30272.32 21974.69 27550.71 16774.39 30173.58 31044.44 33743.40 34477.52 26619.45 35090.87 8431.31 34457.49 29075.38 334
K. test v354.04 31949.42 33067.92 29068.55 33642.57 32175.51 29363.07 36052.07 28739.21 35964.59 35719.34 35182.21 28237.11 31525.31 38878.97 296
lessismore_v067.98 28864.76 35941.25 33045.75 37836.03 36965.63 35519.29 35284.11 26835.67 32221.24 39378.59 302
KD-MVS_self_test49.24 33546.85 33856.44 34954.32 37822.87 38757.39 36973.36 31644.36 33837.98 36459.30 37118.97 35371.17 36033.48 33442.44 36075.26 335
OpenMVS_ROBcopyleft53.19 1759.20 28556.00 29768.83 27771.13 31844.30 29883.64 17575.02 29746.42 32446.48 33573.03 31818.69 35488.14 17027.74 36061.80 25074.05 345
mvsany_test143.38 34442.57 34645.82 36250.96 38526.10 38355.80 37127.74 40027.15 37947.41 32974.39 30418.67 35544.95 39244.66 28936.31 37066.40 371
LTVRE_ROB45.45 1952.73 32549.74 32861.69 33169.78 32834.99 35144.52 38167.60 35043.11 34543.79 34174.03 30618.54 35681.45 28828.39 35757.94 28368.62 366
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
SixPastTwentyTwo54.37 31650.10 32567.21 29470.70 32241.46 32974.73 29864.69 35447.56 31639.12 36069.49 34218.49 35784.69 26431.87 34134.20 37875.48 333
new-patchmatchnet48.21 33746.55 33953.18 35557.73 37518.19 39970.24 32871.02 33145.70 32833.70 37460.23 36718.00 35869.86 36427.97 35934.35 37671.49 361
F-COLMAP55.96 31253.65 31062.87 32472.76 30042.77 31774.70 30070.37 33540.03 35141.11 35579.36 24717.77 35973.70 35032.80 33953.96 31972.15 355
jajsoiax63.21 25660.84 26170.32 25968.33 33944.45 29681.23 24181.05 19653.37 27950.96 30977.81 26417.49 36085.49 25059.31 17758.05 28181.02 276
bld_raw_dy_0_6459.75 28057.01 29067.96 28966.73 34645.30 28777.59 28259.97 36550.49 29847.15 33077.03 27517.45 36179.06 31356.92 20859.76 26179.51 292
RPSCF45.77 34244.13 34450.68 35757.67 37629.66 37554.92 37545.25 37926.69 38045.92 33775.92 29517.43 36245.70 39127.44 36145.95 35376.67 322
PatchMatch-RL56.66 30453.75 30965.37 31177.91 22945.28 28869.78 33260.38 36341.35 34947.57 32673.73 30916.83 36376.91 33336.99 31759.21 26773.92 346
mvs_tets62.96 25960.55 26370.19 26068.22 34244.24 30180.90 24980.74 20252.99 28250.82 31177.56 26516.74 36485.44 25159.04 18057.94 28380.89 277
ACMH+54.58 1558.55 29655.24 30068.50 28674.68 27645.80 28380.27 25870.21 33647.15 31842.77 34775.48 29716.73 36585.98 24135.10 33054.78 31373.72 347
ACMH53.70 1659.78 27955.94 29871.28 24376.59 24748.35 23380.15 26276.11 28749.74 30441.91 35073.45 31616.50 36690.31 10031.42 34357.63 28975.17 336
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MIMVSNet150.35 33447.81 33557.96 34561.53 36927.80 38267.40 34174.06 30543.25 34433.31 37865.38 35616.03 36771.34 35921.80 37747.55 34374.75 340
DSMNet-mixed38.35 34835.36 35347.33 36148.11 39014.91 40337.87 38936.60 39119.18 38734.37 37259.56 37015.53 36853.01 38420.14 38246.89 34974.07 344
EG-PatchMatch MVS62.40 26759.59 27170.81 25273.29 29249.05 20985.81 10384.78 12451.85 29144.19 33973.48 31515.52 36989.85 11140.16 30667.24 20073.54 349
testgi54.25 31852.57 31759.29 34162.76 36621.65 39172.21 31870.47 33453.25 28041.94 34977.33 27014.28 37077.95 32529.18 35151.72 33178.28 308
COLMAP_ROBcopyleft43.60 2050.90 33348.05 33459.47 33967.81 34340.57 33571.25 32562.72 36236.49 36336.19 36873.51 31413.48 37173.92 34820.71 38050.26 33463.92 376
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OurMVSNet-221017-052.39 32848.73 33163.35 32265.21 35438.42 34368.54 33864.95 35338.19 35539.57 35871.43 33313.23 37279.92 30737.16 31340.32 36571.72 358
test_fmvs153.60 32352.54 31856.78 34758.07 37330.26 36968.95 33642.19 38332.46 37163.59 16882.56 21311.55 37360.81 37258.25 19055.27 30979.28 293
tmp_tt9.44 37210.68 3755.73 3882.49 4114.21 41210.48 40118.04 4070.34 40512.59 39720.49 39911.39 3747.03 40713.84 3926.46 4045.95 402
ITE_SJBPF51.84 35658.03 37431.94 36753.57 37436.67 36141.32 35375.23 29911.17 37551.57 38525.81 36648.04 33972.02 357
Anonymous2024052151.65 33048.42 33261.34 33556.43 37739.65 33873.57 30673.47 31536.64 36236.59 36663.98 35810.75 37672.25 35835.35 32449.01 33672.11 356
AllTest47.32 33944.66 34155.32 35365.08 35637.50 34762.96 35554.25 37235.45 36633.42 37672.82 3199.98 37759.33 37524.13 37043.84 35769.13 364
TestCases55.32 35365.08 35637.50 34754.25 37235.45 36633.42 37672.82 3199.98 37759.33 37524.13 37043.84 35769.13 364
USDC54.36 31751.23 32163.76 31864.29 36137.71 34662.84 35673.48 31456.85 23735.47 37071.94 3329.23 37978.43 31638.43 31048.57 33775.13 337
XVG-ACMP-BASELINE56.03 31052.85 31465.58 30761.91 36840.95 33363.36 35172.43 31845.20 33246.02 33674.09 3059.20 38078.12 31945.13 28658.27 27677.66 315
test_fmvs1_n52.55 32751.19 32256.65 34851.90 38330.14 37067.66 34042.84 38232.27 37262.30 18282.02 2259.12 38160.84 37157.82 19854.75 31578.99 295
test_vis1_n51.19 33249.66 32955.76 35251.26 38429.85 37467.20 34238.86 38732.12 37359.50 21179.86 2438.78 38258.23 37956.95 20752.46 32879.19 294
pmmvs345.53 34341.55 34757.44 34648.97 38839.68 33770.06 32957.66 36728.32 37834.06 37357.29 3748.50 38366.85 36734.86 33134.26 37765.80 373
EGC-MVSNET33.75 35430.42 35843.75 36664.94 35836.21 35060.47 36440.70 3860.02 4060.10 40753.79 3787.39 38460.26 37311.09 39435.23 37434.79 392
test_fmvs245.89 34144.32 34350.62 35845.85 39224.70 38558.87 36837.84 39025.22 38152.46 29874.56 3037.07 38554.69 38149.28 26147.70 34172.48 354
ANet_high34.39 35329.59 35948.78 35930.34 40222.28 38855.53 37263.79 35838.11 35615.47 39436.56 3916.94 38659.98 37413.93 3915.64 40564.08 375
FPMVS35.40 35133.67 35540.57 36846.34 39128.74 38041.05 38557.05 36820.37 38622.27 39053.38 3796.87 38744.94 3938.62 39547.11 34748.01 387
test_vis1_rt40.29 34738.64 34945.25 36448.91 38930.09 37159.44 36527.07 40124.52 38338.48 36351.67 3826.71 38849.44 38644.33 29146.59 35156.23 380
new_pmnet33.56 35531.89 35738.59 37049.01 38720.42 39251.01 37637.92 38920.58 38423.45 38946.79 3846.66 38949.28 38820.00 38331.57 38246.09 389
TinyColmap48.15 33844.49 34259.13 34265.73 35138.04 34463.34 35262.86 36138.78 35329.48 38267.23 3516.46 39073.30 35224.59 36941.90 36266.04 372
ambc62.06 32753.98 38029.38 37735.08 39179.65 22341.37 35259.96 3686.27 39182.15 28335.34 32538.22 36874.65 341
TDRefinement40.91 34638.37 35048.55 36050.45 38633.03 36258.98 36750.97 37528.50 37729.89 38167.39 3506.21 39254.51 38217.67 38635.25 37358.11 379
PM-MVS46.92 34043.76 34556.41 35052.18 38232.26 36563.21 35438.18 38837.99 35740.78 35666.20 3525.09 39365.42 36848.19 26941.99 36171.54 360
LF4IMVS33.04 35632.55 35634.52 37440.96 39322.03 38944.45 38235.62 39220.42 38528.12 38562.35 3625.03 39431.88 40421.61 37934.42 37549.63 386
EMVS18.42 36917.66 37320.71 38534.13 39912.64 40546.94 37929.94 39810.46 3995.58 40514.93 4034.23 39538.83 3965.24 4057.51 40210.67 401
E-PMN19.16 36818.40 37221.44 38436.19 39713.63 40447.59 37830.89 39610.73 3975.91 40416.59 4003.66 39639.77 3955.95 4038.14 40010.92 400
test_method24.09 36521.07 36933.16 37727.67 4068.35 41126.63 39735.11 3943.40 40314.35 39536.98 3893.46 39735.31 39919.08 38522.95 39055.81 381
mvsany_test328.00 35825.98 36034.05 37528.97 40315.31 40134.54 39218.17 40616.24 39029.30 38353.37 3802.79 39833.38 40330.01 34820.41 39453.45 383
test_f27.12 36024.85 36133.93 37626.17 40815.25 40230.24 39622.38 40512.53 39528.23 38449.43 3832.59 39934.34 40225.12 36826.99 38652.20 384
test_fmvs337.95 34935.75 35244.55 36535.50 39818.92 39548.32 37734.00 39518.36 38941.31 35461.58 3632.29 40048.06 39042.72 30037.71 36966.66 370
PMMVS226.71 36122.98 36637.87 37236.89 3968.51 41042.51 38429.32 39919.09 38813.01 39637.54 3872.23 40153.11 38314.54 39011.71 39851.99 385
Gipumacopyleft27.47 35924.26 36437.12 37360.55 37229.17 37811.68 40060.00 36414.18 39210.52 40115.12 4022.20 40263.01 3708.39 39635.65 37119.18 398
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet28.07 35723.85 36540.71 36727.46 40718.93 39430.82 39546.19 37612.76 39416.40 39234.70 3931.90 40348.69 38920.25 38124.22 38954.51 382
DeepMVS_CXcopyleft13.10 38621.34 4108.99 40810.02 41010.59 3987.53 40330.55 3961.82 40414.55 4056.83 4007.52 40115.75 399
APD_test126.46 36224.41 36332.62 37937.58 39521.74 39040.50 38730.39 39711.45 39616.33 39343.76 3851.63 40541.62 39411.24 39326.82 38734.51 393
PMVScopyleft19.57 2225.07 36322.43 36832.99 37823.12 40922.98 38640.98 38635.19 39315.99 39111.95 40035.87 3921.47 40649.29 3875.41 40431.90 38126.70 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis3_rt24.79 36422.95 36730.31 38028.59 40418.92 39537.43 39017.27 40812.90 39321.28 39129.92 3971.02 40736.35 39728.28 35829.82 38535.65 391
MVEpermissive16.60 2317.34 37113.39 37429.16 38128.43 40519.72 39313.73 39923.63 4047.23 4027.96 40221.41 3980.80 40836.08 3986.97 39910.39 39931.69 394
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testf121.11 36619.08 37027.18 38230.56 40018.28 39733.43 39324.48 4028.02 40012.02 39833.50 3940.75 40935.09 4007.68 39721.32 39128.17 395
APD_test221.11 36619.08 37027.18 38230.56 40018.28 39733.43 39324.48 4028.02 40012.02 39833.50 3940.75 40935.09 4007.68 39721.32 39128.17 395
wuyk23d9.11 3738.77 37710.15 38740.18 39416.76 40020.28 3981.01 4112.58 4042.66 4060.98 4060.23 41112.49 4064.08 4066.90 4031.19 403
test_blank0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
sosnet0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
Regformer0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
testmvs6.14 3758.18 3780.01 3890.01 4120.00 41573.40 3090.00 4130.00 4070.02 4080.15 4070.00 4120.00 4080.02 4070.00 4060.02 404
test1236.01 3768.01 3790.01 3890.00 4130.01 41471.93 3220.00 4130.00 4070.02 4080.11 4080.00 4120.00 4080.02 4070.00 4060.02 404
ab-mvs-re7.68 37410.24 3760.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 41092.12 420.00 4120.00 4080.00 4090.00 4060.00 406
uanet0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
WAC-MVS34.28 35422.56 375
FOURS183.24 10749.90 19184.98 13578.76 24347.71 31473.42 58
MSC_two_6792asdad81.53 1491.77 456.03 4491.10 1096.22 881.46 3286.80 2692.34 32
No_MVS81.53 1491.77 456.03 4491.10 1096.22 881.46 3286.80 2692.34 32
eth-test20.00 413
eth-test0.00 413
IU-MVS89.48 1757.49 1591.38 966.22 6588.26 182.83 2187.60 1792.44 29
save fliter85.35 6556.34 3989.31 3981.46 18961.55 143
test_0728_SECOND82.20 889.50 1557.73 1192.34 588.88 3296.39 481.68 2887.13 2092.47 28
GSMVS88.13 143
test_part289.33 2355.48 5382.27 11
MTGPAbinary81.31 192
MTMP87.27 7515.34 409
gm-plane-assit83.24 10754.21 9270.91 2088.23 12795.25 1466.37 122
test9_res78.72 4785.44 4191.39 61
agg_prior275.65 6685.11 4591.01 73
agg_prior85.64 5954.92 7383.61 15372.53 7288.10 173
test_prior456.39 3887.15 79
test_prior78.39 6986.35 4954.91 7485.45 9889.70 11790.55 81
旧先验281.73 22945.53 33074.66 4570.48 36358.31 189
新几何281.61 233
无先验85.19 12578.00 25849.08 30785.13 25852.78 23987.45 159
原ACMM283.77 173
testdata277.81 32845.64 285
testdata177.55 28364.14 95
plane_prior777.95 22648.46 230
plane_prior582.59 17088.30 16665.46 13172.34 15884.49 211
plane_prior483.28 198
plane_prior348.95 21364.01 9862.15 184
plane_prior285.76 10563.60 107
plane_prior178.31 223
plane_prior49.57 19687.43 6864.57 8972.84 154
n20.00 413
nn0.00 413
door-mid41.31 385
test1184.25 137
door43.27 381
HQP5-MVS51.56 154
HQP-NCC79.02 20588.00 5465.45 7664.48 152
ACMP_Plane79.02 20588.00 5465.45 7664.48 152
BP-MVS66.70 119
HQP4-MVS64.47 15588.61 15184.91 207
HQP3-MVS83.68 14973.12 150
NP-MVS78.76 21050.43 17585.12 171
ACMMP++_ref63.20 239
ACMMP++59.38 265