This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
MSP-MVS82.30 683.47 178.80 5982.99 11952.71 13385.04 13288.63 4366.08 7086.77 392.75 3272.05 191.46 7083.35 2093.53 192.23 37
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVS++82.44 382.38 682.62 491.77 457.49 1984.98 13588.88 3258.00 21583.60 693.39 1867.21 296.39 481.64 3191.98 493.98 5
OPU-MVS81.71 1392.05 355.97 5092.48 394.01 567.21 295.10 1589.82 392.55 394.06 3
PC_three_145266.58 5887.27 293.70 1066.82 494.95 1789.74 491.98 493.98 5
DPM-MVS82.39 482.36 782.49 580.12 19359.50 592.24 890.72 1469.37 3283.22 894.47 263.81 593.18 3274.02 8593.25 294.80 1
DELS-MVS82.32 582.50 581.79 1286.80 4556.89 3192.77 286.30 8777.83 177.88 3392.13 4160.24 694.78 1978.97 4589.61 893.69 8
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
dcpmvs_279.33 2178.94 2180.49 2689.75 1256.54 3884.83 14283.68 15367.85 4369.36 10490.24 8460.20 792.10 5984.14 1680.40 8492.82 25
baseline275.15 8074.54 7876.98 10781.67 15351.74 15483.84 17091.94 369.97 2658.98 22486.02 16459.73 891.73 6568.37 11670.40 18487.48 164
CSCG80.41 1579.72 1682.49 589.12 2557.67 1789.29 4091.54 559.19 19171.82 8190.05 9259.72 996.04 1078.37 5188.40 1493.75 7
GG-mvs-BLEND77.77 8586.68 4650.61 17368.67 33888.45 4968.73 10987.45 14559.15 1090.67 9154.83 22487.67 1892.03 44
SED-MVS81.92 881.75 982.44 789.48 1756.89 3192.48 388.94 3057.50 22984.61 494.09 358.81 1196.37 682.28 2687.60 1994.06 3
test_241102_ONE89.48 1756.89 3188.94 3057.53 22784.61 493.29 2258.81 1196.45 1
gg-mvs-nofinetune67.43 21464.53 23976.13 12685.95 5247.79 25764.38 35288.28 5139.34 35666.62 12341.27 39158.69 1389.00 13849.64 26086.62 3391.59 58
balanced_conf0380.28 1679.73 1581.90 1186.47 4959.34 680.45 25289.51 2269.76 2871.05 9386.66 15858.68 1493.24 3184.64 1490.40 693.14 18
testing1179.18 2278.85 2280.16 3488.33 3056.99 2888.31 5192.06 172.82 970.62 10088.37 12357.69 1592.30 5275.25 7576.24 12891.20 73
MVSMamba_PlusPlus75.28 7673.39 8780.96 2180.85 17758.25 1074.47 30087.61 6550.53 29965.24 14183.41 19857.38 1692.83 3673.92 8787.13 2291.80 53
iter_conf0574.57 8472.83 9679.80 4180.85 17758.10 1274.55 29982.97 17050.53 29963.52 17483.41 19857.38 1692.83 3673.92 8788.34 1588.48 145
testing9978.45 2577.78 3380.45 2988.28 3356.81 3487.95 5891.49 671.72 1370.84 9588.09 13157.29 1892.63 4669.24 11175.13 14191.91 48
CostFormer73.89 9672.30 10578.66 6582.36 13856.58 3575.56 28985.30 10866.06 7170.50 10276.88 28257.02 1989.06 13468.27 11868.74 19590.33 92
test_0728_THIRD58.00 21581.91 1493.64 1256.54 2096.44 281.64 3186.86 2892.23 37
DPE-MVScopyleft79.82 1979.66 1780.29 3189.27 2455.08 7288.70 4687.92 5655.55 25981.21 1993.69 1156.51 2194.27 2278.36 5285.70 4291.51 63
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ETVMVS75.80 7175.44 6376.89 11086.23 5150.38 18285.55 11691.42 771.30 1968.80 10887.94 13756.42 2289.24 12956.54 21374.75 14791.07 77
DeepPCF-MVS69.37 180.65 1381.56 1177.94 8485.46 6449.56 20290.99 2186.66 8070.58 2280.07 2495.30 156.18 2390.97 8682.57 2586.22 3893.28 13
test_241102_TWO88.76 3957.50 22983.60 694.09 356.14 2496.37 682.28 2687.43 2192.55 30
testing9178.30 3177.54 3680.61 2488.16 3557.12 2787.94 5991.07 1371.43 1670.75 9688.04 13555.82 2592.65 4469.61 10875.00 14592.05 43
bld_raw_conf0377.39 4376.21 5480.94 2285.57 6158.25 1074.47 30087.61 6565.51 7865.24 14185.42 17255.43 2692.75 4279.53 3987.13 2291.80 53
patch_mono-280.84 1281.59 1078.62 6690.34 953.77 10388.08 5388.36 5076.17 279.40 2791.09 6455.43 2690.09 10985.01 1280.40 8491.99 47
testing22277.70 3977.22 4179.14 5086.95 4354.89 7887.18 7791.96 272.29 1171.17 9288.70 11755.19 2891.24 7565.18 14376.32 12791.29 71
DVP-MVScopyleft81.30 1081.00 1382.20 889.40 2057.45 2192.34 589.99 1857.71 22381.91 1493.64 1255.17 2996.44 281.68 2987.13 2292.72 28
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072689.40 2057.45 2192.32 788.63 4357.71 22383.14 993.96 655.17 29
TSAR-MVS + MP.78.31 3078.26 2578.48 7081.33 16656.31 4481.59 23286.41 8469.61 3081.72 1688.16 13055.09 3188.04 17774.12 8486.31 3691.09 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
baseline172.51 11972.12 11173.69 19485.05 7144.46 29683.51 17986.13 9071.61 1564.64 15187.97 13655.00 3289.48 12459.07 18356.05 30487.13 171
test_one_060189.39 2257.29 2488.09 5357.21 23582.06 1393.39 1854.94 33
MM82.69 283.29 380.89 2384.38 8355.40 6092.16 1089.85 2075.28 482.41 1193.86 854.30 3493.98 2390.29 187.13 2293.30 12
TSAR-MVS + GP.77.82 3777.59 3578.49 6985.25 6950.27 18990.02 2690.57 1556.58 24874.26 5391.60 5954.26 3592.16 5675.87 6779.91 9293.05 20
EPP-MVSNet71.14 14070.07 14474.33 17379.18 20746.52 27283.81 17186.49 8256.32 25257.95 24384.90 18054.23 3689.14 13358.14 19669.65 19087.33 167
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1893.77 191.10 1075.95 377.10 3793.09 2754.15 3795.57 1285.80 1085.87 4093.31 11
alignmvs78.08 3477.98 2978.39 7483.53 10053.22 12189.77 3285.45 10166.11 6876.59 4191.99 4854.07 3889.05 13577.34 6177.00 11692.89 23
WTY-MVS77.47 4277.52 3777.30 9588.33 3046.25 27988.46 4990.32 1671.40 1772.32 7791.72 5453.44 3992.37 5166.28 13075.42 13593.28 13
IB-MVS68.87 274.01 9372.03 11579.94 3983.04 11655.50 5590.24 2588.65 4167.14 5261.38 19581.74 23253.21 4094.28 2160.45 17662.41 25190.03 104
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HPM-MVS++copyleft80.50 1480.71 1479.88 4087.34 4155.20 6789.93 2987.55 6766.04 7379.46 2693.00 3053.10 4191.76 6480.40 3789.56 992.68 29
miper_enhance_ethall69.77 16768.90 15972.38 22078.93 21349.91 19483.29 18878.85 24564.90 8959.37 21779.46 25052.77 4285.16 25863.78 14758.72 27382.08 256
MVSTER73.25 10772.33 10376.01 13085.54 6253.76 10483.52 17587.16 7067.06 5363.88 16781.66 23352.77 4290.44 9764.66 14564.69 22683.84 233
CNVR-MVS81.76 981.90 881.33 1890.04 1057.70 1691.71 1188.87 3470.31 2477.64 3693.87 752.58 4493.91 2684.17 1587.92 1792.39 33
FIs70.00 16270.24 14269.30 27577.93 23338.55 34483.99 16687.72 6266.86 5657.66 25084.17 18552.28 4585.31 25352.72 24468.80 19484.02 224
tpm270.82 14868.44 16377.98 8180.78 18056.11 4674.21 30381.28 19960.24 17168.04 11375.27 30052.26 4688.50 15955.82 22168.03 19989.33 118
thisisatest051573.64 10372.20 10777.97 8281.63 15453.01 12886.69 8988.81 3762.53 13064.06 16285.65 16852.15 4792.50 4858.43 18969.84 18788.39 146
casdiffmvs_mvgpermissive77.75 3877.28 3979.16 4980.42 18954.44 9187.76 6085.46 10071.67 1471.38 8788.35 12551.58 4891.22 7679.02 4479.89 9491.83 52
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet_NR-MVSNet68.82 18468.29 16670.40 26175.71 26842.59 32084.23 15886.78 7666.31 6458.51 23482.45 21851.57 4984.64 26653.11 23555.96 30583.96 230
PAPM76.76 5476.07 5678.81 5880.20 19159.11 786.86 8686.23 8868.60 3470.18 10388.84 11551.57 4987.16 20665.48 13686.68 3290.15 100
tttt051768.33 19566.29 20574.46 16878.08 22949.06 21280.88 24789.08 2854.40 27354.75 28280.77 24151.31 5190.33 10149.35 26258.01 28583.99 226
mvs_anonymous72.29 12370.74 12976.94 10982.85 12654.72 8278.43 27681.54 19363.77 10561.69 19279.32 25251.11 5285.31 25362.15 15975.79 13190.79 83
HY-MVS67.03 573.90 9573.14 9276.18 12584.70 7747.36 26275.56 28986.36 8666.27 6570.66 9983.91 18851.05 5389.31 12767.10 12472.61 16391.88 50
thisisatest053070.47 15568.56 16176.20 12379.78 19751.52 16083.49 18188.58 4757.62 22658.60 23382.79 20751.03 5491.48 6952.84 23962.36 25385.59 204
sasdasda78.17 3277.86 3179.12 5284.30 8454.22 9487.71 6184.57 13467.70 4777.70 3492.11 4450.90 5589.95 11278.18 5577.54 11193.20 15
miper_ehance_all_eth68.70 19067.58 18072.08 22776.91 25049.48 20682.47 20978.45 25862.68 12858.28 24277.88 26550.90 5585.01 26161.91 16058.72 27381.75 261
canonicalmvs78.17 3277.86 3179.12 5284.30 8454.22 9487.71 6184.57 13467.70 4777.70 3492.11 4450.90 5589.95 11278.18 5577.54 11193.20 15
casdiffmvspermissive77.36 4476.85 4578.88 5780.40 19054.66 8787.06 8085.88 9372.11 1271.57 8488.63 12250.89 5890.35 10076.00 6679.11 10091.63 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_030482.10 782.64 480.47 2886.63 4754.69 8492.20 986.66 8074.48 582.63 1093.80 950.83 5993.70 2890.11 286.44 3593.01 21
baseline76.86 5276.24 5378.71 6280.47 18854.20 9883.90 16884.88 12471.38 1871.51 8589.15 11050.51 6090.55 9675.71 6878.65 10391.39 66
MVS_Test75.85 6774.93 7278.62 6684.08 8955.20 6783.99 16685.17 11568.07 4073.38 6182.76 20850.44 6189.00 13865.90 13280.61 8091.64 56
FC-MVSNet-test67.49 21267.91 17166.21 30676.06 26133.06 36480.82 24887.18 6964.44 9354.81 28082.87 20550.40 6282.60 28348.05 27266.55 21282.98 249
nrg03072.27 12571.56 11874.42 17075.93 26550.60 17486.97 8283.21 16462.75 12667.15 11984.38 18250.07 6386.66 22171.19 10162.37 25285.99 193
fmvsm_l_conf0.5_n75.95 6476.16 5575.31 14976.01 26448.44 23584.98 13571.08 33663.50 11381.70 1793.52 1550.00 6487.18 20587.80 576.87 11990.32 93
cl2268.85 18267.69 17872.35 22178.07 23049.98 19382.45 21078.48 25762.50 13258.46 23877.95 26349.99 6585.17 25762.55 15458.72 27381.90 259
fmvsm_l_conf0.5_n_a75.88 6676.07 5675.31 14976.08 26048.34 23885.24 12370.62 33963.13 12181.45 1893.62 1449.98 6687.40 20187.76 676.77 12090.20 98
tpmrst71.04 14469.77 14774.86 16383.19 11155.86 5275.64 28878.73 25167.88 4264.99 14873.73 31149.96 6779.56 31565.92 13167.85 20289.14 125
CANet80.90 1181.17 1280.09 3887.62 3954.21 9691.60 1486.47 8373.13 879.89 2593.10 2549.88 6892.98 3384.09 1784.75 5293.08 19
ET-MVSNet_ETH3D75.23 7874.08 8278.67 6484.52 8055.59 5388.92 4389.21 2668.06 4153.13 29690.22 8649.71 6987.62 19572.12 9870.82 17992.82 25
c3_l67.97 20066.66 19871.91 23876.20 25949.31 20982.13 21678.00 26461.99 13857.64 25176.94 27949.41 7084.93 26260.62 17157.01 29581.49 265
Vis-MVSNet (Re-imp)65.52 24465.63 22265.17 31477.49 23930.54 37175.49 29277.73 26859.34 18652.26 30386.69 15749.38 7180.53 30337.07 31975.28 13784.42 218
EPNet78.36 2978.49 2477.97 8285.49 6352.04 14689.36 3884.07 14673.22 777.03 3891.72 5449.32 7290.17 10873.46 9282.77 6291.69 55
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testing359.97 28160.19 27159.32 34277.60 23630.01 37681.75 22681.79 18953.54 27750.34 31479.94 24548.99 7376.91 33517.19 39150.59 33571.03 365
tpm68.36 19367.48 18570.97 25379.93 19651.34 16476.58 28678.75 25067.73 4563.54 17374.86 30248.33 7472.36 35953.93 23163.71 23489.21 122
APDe-MVScopyleft78.44 2678.20 2679.19 4788.56 2654.55 8989.76 3387.77 6055.91 25478.56 3092.49 3748.20 7592.65 4479.49 4083.04 6190.39 90
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MG-MVS78.42 2776.99 4482.73 293.17 164.46 189.93 2988.51 4864.83 9073.52 5988.09 13148.07 7692.19 5562.24 15784.53 5491.53 62
DeepC-MVS67.15 476.90 5176.27 5278.80 5980.70 18255.02 7386.39 9286.71 7866.96 5567.91 11489.97 9448.03 7791.41 7175.60 7084.14 5689.96 106
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MGCFI-Net74.07 9274.64 7772.34 22282.90 12343.33 31280.04 26179.96 22065.61 7674.93 4591.85 5148.01 7880.86 29671.41 10077.10 11492.84 24
test_prior289.04 4261.88 14173.55 5891.46 6348.01 7874.73 7885.46 44
myMVS_eth3d63.52 25563.56 24663.40 32381.73 14834.28 35780.97 24481.02 20260.93 16055.06 27882.64 21348.00 8080.81 29723.42 37758.32 27775.10 340
SF-MVS77.64 4077.42 3878.32 7683.75 9752.47 13886.63 9087.80 5758.78 20374.63 4892.38 3847.75 8191.35 7278.18 5586.85 2991.15 75
test250672.91 11172.43 10274.32 17480.12 19344.18 30383.19 19184.77 12864.02 9965.97 13287.43 14647.67 8288.72 14959.08 18279.66 9690.08 102
1112_ss70.05 16069.37 15272.10 22680.77 18142.78 31885.12 13076.75 28559.69 17861.19 19792.12 4247.48 8383.84 27253.04 23768.21 19789.66 111
Effi-MVS+75.24 7773.61 8680.16 3481.92 14357.42 2385.21 12476.71 28860.68 16673.32 6289.34 10547.30 8491.63 6668.28 11779.72 9591.42 65
UniMVSNet (Re)67.71 20666.80 19470.45 25974.44 28342.93 31682.42 21184.90 12363.69 10859.63 21180.99 23847.18 8585.23 25651.17 25256.75 29683.19 244
test1279.24 4686.89 4456.08 4785.16 11672.27 7847.15 8691.10 8185.93 3990.54 88
PVSNet_Blended_VisFu73.40 10672.44 10176.30 11881.32 16754.70 8385.81 10378.82 24763.70 10764.53 15585.38 17347.11 8787.38 20267.75 12077.55 11086.81 180
test_fmvsm_n_192075.56 7375.54 6175.61 13774.60 28249.51 20581.82 22474.08 31066.52 6180.40 2293.46 1746.95 8889.72 11986.69 775.30 13687.61 162
NCCC79.57 2079.23 2080.59 2589.50 1556.99 2891.38 1688.17 5267.71 4673.81 5692.75 3246.88 8993.28 3078.79 4884.07 5791.50 64
9.1478.19 2785.67 5888.32 5088.84 3659.89 17474.58 5092.62 3546.80 9092.66 4381.40 3585.62 43
VNet77.99 3677.92 3078.19 7887.43 4050.12 19090.93 2291.41 867.48 5075.12 4390.15 9046.77 9191.00 8373.52 9178.46 10593.44 9
PVSNet_BlendedMVS73.42 10573.30 8873.76 19185.91 5351.83 15286.18 9784.24 14365.40 8269.09 10680.86 24046.70 9288.13 17375.43 7165.92 21981.33 273
PVSNet_Blended76.53 5676.54 4876.50 11685.91 5351.83 15288.89 4484.24 14367.82 4469.09 10689.33 10746.70 9288.13 17375.43 7181.48 7589.55 114
SMA-MVScopyleft79.10 2378.76 2380.12 3684.42 8155.87 5187.58 6786.76 7761.48 14880.26 2393.10 2546.53 9492.41 5079.97 3888.77 1192.08 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_fmvsmconf_n74.41 8774.05 8375.49 14374.16 28848.38 23682.66 20272.57 32367.05 5475.11 4492.88 3146.35 9587.81 18283.93 1871.71 17090.28 94
tpm cat166.28 23762.78 24776.77 11581.40 16457.14 2670.03 33177.19 27753.00 28258.76 23270.73 34146.17 9686.73 21943.27 29964.46 22886.44 185
cl____67.43 21465.93 21571.95 23576.33 25548.02 24982.58 20479.12 24261.30 15156.72 26476.92 28046.12 9786.44 22857.98 19856.31 29981.38 272
DIV-MVS_self_test67.43 21465.93 21571.94 23676.33 25548.01 25082.57 20579.11 24361.31 15056.73 26376.92 28046.09 9886.43 22957.98 19856.31 29981.39 271
IS-MVSNet68.80 18667.55 18272.54 21578.50 22443.43 31081.03 24279.35 23859.12 19657.27 26086.71 15646.05 9987.70 19044.32 29575.60 13486.49 184
diffmvspermissive75.11 8174.65 7676.46 11778.52 22353.35 11683.28 18979.94 22170.51 2371.64 8388.72 11646.02 10086.08 24077.52 5975.75 13389.96 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet69.70 17068.70 16072.68 21275.00 27648.90 22079.54 26587.16 7061.05 15663.88 16783.74 19145.87 10190.44 9757.42 20864.68 22778.70 301
IterMVS-LS66.63 23265.36 23070.42 26075.10 27448.90 22081.45 23876.69 28961.05 15655.71 27477.10 27745.86 10283.65 27657.44 20757.88 28978.70 301
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EIA-MVS75.92 6575.18 6878.13 7985.14 7051.60 15787.17 7885.32 10764.69 9168.56 11090.53 7745.79 10391.58 6767.21 12382.18 6891.20 73
MVS76.91 4975.48 6281.23 1984.56 7955.21 6680.23 25891.64 458.65 20565.37 14091.48 6245.72 10495.05 1672.11 9989.52 1093.44 9
PAPM_NR71.80 13369.98 14577.26 9881.54 16053.34 11778.60 27585.25 11253.46 27860.53 20388.66 11845.69 10589.24 12956.49 21479.62 9889.19 123
CS-MVS76.77 5376.70 4776.99 10683.55 9948.75 22488.60 4785.18 11466.38 6372.47 7591.62 5845.53 10690.99 8574.48 8082.51 6491.23 72
DeepC-MVS_fast67.50 378.00 3577.63 3479.13 5188.52 2755.12 6989.95 2885.98 9268.31 3571.33 8892.75 3245.52 10790.37 9971.15 10285.14 4891.91 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.5_n74.48 8574.12 8175.56 13976.96 24947.85 25585.32 12169.80 34664.16 9778.74 2893.48 1645.51 10889.29 12886.48 866.62 21089.55 114
fmvsm_s_conf0.5_n_a73.68 10273.15 9075.29 15275.45 27148.05 24883.88 16968.84 35063.43 11578.60 2993.37 2045.32 10988.92 14585.39 1164.04 23088.89 130
Test_1112_low_res67.18 22166.23 20770.02 26978.75 21641.02 33483.43 18273.69 31557.29 23258.45 23982.39 22045.30 11080.88 29550.50 25466.26 21888.16 147
ETV-MVS77.17 4676.74 4678.48 7081.80 14654.55 8986.13 9885.33 10668.20 3773.10 6490.52 7845.23 11190.66 9279.37 4180.95 7690.22 96
CS-MVS-test77.20 4577.25 4077.05 10184.60 7849.04 21589.42 3685.83 9565.90 7472.85 6891.98 5045.10 11291.27 7375.02 7784.56 5390.84 82
NR-MVSNet67.25 21965.99 21371.04 25273.27 29743.91 30485.32 12184.75 12966.05 7253.65 29482.11 22745.05 11385.97 24447.55 27456.18 30283.24 242
UWE-MVS72.17 12672.15 10972.21 22482.26 13944.29 30086.83 8789.58 2165.58 7765.82 13585.06 17645.02 11484.35 26854.07 22975.18 13887.99 154
train_agg76.91 4976.40 5078.45 7285.68 5655.42 5787.59 6584.00 14757.84 22072.99 6590.98 6744.99 11588.58 15478.19 5385.32 4691.34 70
test_885.72 5555.31 6287.60 6483.88 15057.84 22072.84 6990.99 6644.99 11588.34 165
segment_acmp44.97 117
test_fmvsmconf0.1_n73.69 10173.15 9075.34 14770.71 32548.26 24182.15 21471.83 32866.75 5774.47 5292.59 3644.89 11887.78 18783.59 1971.35 17489.97 105
TEST985.68 5655.42 5787.59 6584.00 14757.72 22272.99 6590.98 6744.87 11988.58 154
eth_miper_zixun_eth66.98 22865.28 23172.06 22875.61 26950.40 18081.00 24376.97 28462.00 13756.99 26276.97 27844.84 12085.58 24858.75 18654.42 31880.21 289
MVSFormer73.53 10472.19 10877.57 8983.02 11755.24 6481.63 22981.44 19550.28 30176.67 3990.91 7044.82 12186.11 23560.83 16880.09 8891.36 68
lupinMVS78.38 2878.11 2879.19 4783.02 11755.24 6491.57 1584.82 12569.12 3376.67 3992.02 4644.82 12190.23 10680.83 3680.09 8892.08 41
WR-MVS67.58 20966.76 19570.04 26875.92 26645.06 29486.23 9685.28 11064.31 9458.50 23681.00 23744.80 12382.00 28849.21 26455.57 31083.06 247
fmvsm_s_conf0.1_n73.80 9773.26 8975.43 14473.28 29647.80 25684.57 15169.43 34863.34 11678.40 3193.29 2244.73 12489.22 13185.99 966.28 21789.26 119
ZD-MVS89.55 1453.46 10984.38 13757.02 23773.97 5591.03 6544.57 12591.17 7875.41 7481.78 73
Fast-Effi-MVS+72.73 11471.15 12677.48 9182.75 12954.76 7986.77 8880.64 20863.05 12265.93 13384.01 18644.42 12689.03 13656.45 21776.36 12688.64 137
fmvsm_s_conf0.1_n_a72.82 11372.05 11375.12 15770.95 32447.97 25182.72 20168.43 35262.52 13178.17 3293.08 2844.21 12788.86 14684.82 1363.54 23688.54 141
PCF-MVS61.03 1070.10 15868.40 16475.22 15677.15 24751.99 14779.30 27082.12 18156.47 25061.88 19186.48 16243.98 12887.24 20455.37 22272.79 16286.43 186
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CDS-MVSNet70.48 15469.43 15073.64 19577.56 23848.83 22283.51 17977.45 27363.27 11862.33 18585.54 17143.85 12983.29 28157.38 20974.00 15088.79 134
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EI-MVSNet-Vis-set73.19 10872.60 9874.99 16182.56 13549.80 19882.55 20789.00 2966.17 6765.89 13488.98 11143.83 13092.29 5365.38 14269.01 19382.87 251
APD-MVScopyleft76.15 6175.68 5877.54 9088.52 2753.44 11287.26 7685.03 12053.79 27574.91 4691.68 5643.80 13190.31 10274.36 8181.82 7188.87 131
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR76.39 5875.38 6579.42 4485.33 6756.47 4088.15 5284.97 12165.15 8866.06 13189.88 9543.79 13292.16 5675.03 7680.03 9189.64 112
thres100view90066.87 23065.42 22971.24 24783.29 10843.15 31481.67 22887.78 5859.04 19755.92 27382.18 22643.73 13387.80 18428.80 35566.36 21482.78 252
thres600view766.46 23565.12 23370.47 25883.41 10243.80 30682.15 21487.78 5859.37 18556.02 27282.21 22543.73 13386.90 21526.51 36764.94 22380.71 283
v14868.24 19866.35 20373.88 18671.76 31351.47 16184.23 15881.90 18863.69 10858.94 22576.44 28743.72 13587.78 18760.63 17055.86 30782.39 254
SD-MVS76.18 6074.85 7380.18 3385.39 6556.90 3085.75 10782.45 17856.79 24374.48 5191.81 5243.72 13590.75 9074.61 7978.65 10392.91 22
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
XXY-MVS70.18 15669.28 15672.89 20977.64 23542.88 31785.06 13187.50 6862.58 12962.66 18382.34 22443.64 13789.83 11558.42 19163.70 23585.96 195
tfpn200view967.57 21066.13 20971.89 23984.05 9045.07 29183.40 18487.71 6360.79 16357.79 24782.76 20843.53 13887.80 18428.80 35566.36 21482.78 252
thres40067.40 21766.13 20971.19 24984.05 9045.07 29183.40 18487.71 6360.79 16357.79 24782.76 20843.53 13887.80 18428.80 35566.36 21480.71 283
PAPR75.20 7974.13 8078.41 7388.31 3255.10 7184.31 15685.66 9763.76 10667.55 11690.73 7443.48 14089.40 12666.36 12977.03 11590.73 84
kuosan50.20 33750.09 32850.52 36173.09 29929.09 38265.25 34774.89 30448.27 31441.34 35560.85 37043.45 14167.48 36918.59 38925.07 39255.01 384
MP-MVScopyleft74.99 8274.33 7976.95 10882.89 12453.05 12785.63 11283.50 15857.86 21967.25 11890.24 8443.38 14288.85 14876.03 6582.23 6788.96 128
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EI-MVSNet-UG-set72.37 12071.73 11674.29 17581.60 15649.29 21081.85 22288.64 4265.29 8765.05 14588.29 12843.18 14391.83 6363.74 14867.97 20081.75 261
thres20068.71 18867.27 18973.02 20484.73 7646.76 26985.03 13387.73 6162.34 13459.87 20683.45 19743.15 14488.32 16731.25 34867.91 20183.98 228
PHI-MVS77.49 4177.00 4378.95 5485.33 6750.69 17288.57 4888.59 4658.14 21273.60 5793.31 2143.14 14593.79 2773.81 8988.53 1392.37 34
ab-mvs70.65 15169.11 15775.29 15280.87 17646.23 28073.48 30885.24 11359.99 17366.65 12280.94 23943.13 14688.69 15063.58 14968.07 19890.95 80
CDPH-MVS76.05 6375.19 6778.62 6686.51 4854.98 7587.32 7184.59 13358.62 20670.75 9690.85 7243.10 14790.63 9470.50 10584.51 5590.24 95
v867.25 21964.99 23574.04 18172.89 30353.31 11982.37 21280.11 21761.54 14654.29 28776.02 29642.89 14888.41 16158.43 18956.36 29780.39 287
EC-MVSNet75.30 7575.20 6675.62 13680.98 17049.00 21687.43 6884.68 13163.49 11470.97 9490.15 9042.86 14991.14 8074.33 8281.90 7086.71 181
h-mvs3373.95 9472.89 9577.15 10080.17 19250.37 18384.68 14683.33 15968.08 3871.97 7988.65 12142.50 15091.15 7978.82 4657.78 29189.91 108
hse-mvs271.44 13870.68 13073.73 19376.34 25447.44 26179.45 26879.47 23368.08 3871.97 7986.01 16642.50 15086.93 21478.82 4653.46 32786.83 179
SteuartSystems-ACMMP77.08 4776.33 5179.34 4580.98 17055.31 6289.76 3386.91 7462.94 12471.65 8291.56 6042.33 15292.56 4777.14 6283.69 5990.15 100
Skip Steuart: Steuart Systems R&D Blog.
HyFIR lowres test69.94 16567.58 18077.04 10277.11 24857.29 2481.49 23779.11 24358.27 21058.86 22980.41 24342.33 15286.96 21261.91 16068.68 19686.87 174
ZNCC-MVS75.82 7075.02 7078.23 7783.88 9553.80 10286.91 8586.05 9159.71 17767.85 11590.55 7642.23 15491.02 8272.66 9785.29 4789.87 109
FMVSNet368.84 18367.40 18673.19 20385.05 7148.53 23085.71 11185.36 10460.90 16257.58 25279.15 25542.16 15586.77 21747.25 27763.40 23784.27 220
VPA-MVSNet71.12 14170.66 13172.49 21778.75 21644.43 29887.64 6390.02 1763.97 10265.02 14681.58 23542.14 15687.42 20063.42 15063.38 24085.63 203
jason77.01 4876.45 4978.69 6379.69 19854.74 8090.56 2483.99 14968.26 3674.10 5490.91 7042.14 15689.99 11179.30 4279.12 9991.36 68
jason: jason.
CLD-MVS75.60 7275.39 6476.24 12080.69 18352.40 13990.69 2386.20 8974.40 665.01 14788.93 11242.05 15890.58 9576.57 6473.96 15185.73 199
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_yl75.85 6774.83 7478.91 5588.08 3751.94 14891.30 1789.28 2457.91 21771.19 9089.20 10842.03 15992.77 3969.41 10975.07 14392.01 45
DCV-MVSNet75.85 6774.83 7478.91 5588.08 3751.94 14891.30 1789.28 2457.91 21771.19 9089.20 10842.03 15992.77 3969.41 10975.07 14392.01 45
TAMVS69.51 17468.16 16973.56 19876.30 25748.71 22682.57 20577.17 27862.10 13661.32 19684.23 18441.90 16183.46 27954.80 22673.09 15988.50 143
TransMVSNet (Re)62.82 26360.76 26569.02 27773.98 29041.61 32886.36 9379.30 24156.90 23852.53 29976.44 28741.85 16287.60 19638.83 31240.61 36677.86 314
VPNet72.07 12771.42 12274.04 18178.64 22147.17 26689.91 3187.97 5572.56 1064.66 15085.04 17741.83 16388.33 16661.17 16660.97 25886.62 182
v2v48269.55 17367.64 17975.26 15572.32 31053.83 10184.93 13981.94 18465.37 8460.80 20079.25 25341.62 16488.98 14163.03 15259.51 26682.98 249
API-MVS74.17 9172.07 11280.49 2690.02 1158.55 987.30 7384.27 14057.51 22865.77 13787.77 14041.61 16595.97 1151.71 24782.63 6386.94 172
GeoE69.96 16467.88 17376.22 12181.11 16951.71 15584.15 16076.74 28759.83 17560.91 19884.38 18241.56 16688.10 17551.67 24870.57 18288.84 132
CHOSEN 1792x268876.24 5974.03 8482.88 183.09 11462.84 285.73 10985.39 10369.79 2764.87 14983.49 19641.52 16793.69 2970.55 10481.82 7192.12 40
LFMVS78.52 2477.14 4282.67 389.58 1358.90 891.27 1988.05 5463.22 11974.63 4890.83 7341.38 16894.40 2075.42 7379.90 9394.72 2
MAR-MVS76.76 5475.60 6080.21 3290.87 754.68 8589.14 4189.11 2762.95 12370.54 10192.33 3941.05 16994.95 1757.90 20186.55 3491.00 79
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
dongtai43.51 34744.07 34841.82 37063.75 36621.90 39463.80 35372.05 32739.59 35533.35 38254.54 38141.04 17057.30 38310.75 39917.77 40046.26 393
test_fmvsmvis_n_192071.29 13970.38 13674.00 18371.04 32348.79 22379.19 27164.62 36062.75 12666.73 12091.99 4840.94 17188.35 16483.00 2173.18 15684.85 214
GST-MVS74.87 8373.90 8577.77 8583.30 10753.45 11185.75 10785.29 10959.22 19066.50 12789.85 9640.94 17190.76 8970.94 10383.35 6089.10 126
DU-MVS66.84 23165.74 22070.16 26473.27 29742.59 32081.50 23582.92 17263.53 11258.51 23482.11 22740.75 17384.64 26653.11 23555.96 30583.24 242
Baseline_NR-MVSNet65.49 24564.27 24169.13 27674.37 28641.65 32783.39 18678.85 24559.56 18059.62 21276.88 28240.75 17387.44 19949.99 25655.05 31278.28 310
miper_lstm_enhance63.91 25162.30 25068.75 28375.06 27546.78 26869.02 33581.14 20059.68 17952.76 29872.39 32840.71 17577.99 32656.81 21253.09 32881.48 267
HFP-MVS74.37 8873.13 9478.10 8084.30 8453.68 10585.58 11384.36 13856.82 24165.78 13690.56 7540.70 17690.90 8769.18 11280.88 7789.71 110
CL-MVSNet_self_test62.98 26161.14 26268.50 28965.86 35342.96 31584.37 15382.98 16960.98 15853.95 29072.70 32440.43 17783.71 27541.10 30647.93 34278.83 300
ACMMP_NAP76.43 5775.66 5978.73 6181.92 14354.67 8684.06 16485.35 10561.10 15572.99 6591.50 6140.25 17891.00 8376.84 6386.98 2790.51 89
v114468.81 18566.82 19374.80 16472.34 30953.46 10984.68 14681.77 19164.25 9560.28 20477.91 26440.23 17988.95 14260.37 17759.52 26581.97 257
WR-MVS_H58.91 29358.04 28561.54 33469.07 33733.83 36176.91 28381.99 18351.40 29548.17 32374.67 30340.23 17974.15 34731.78 34548.10 34076.64 327
原ACMM176.13 12684.89 7554.59 8885.26 11151.98 28966.70 12187.07 15240.15 18189.70 12051.23 25185.06 5084.10 222
MVP-Stereo70.97 14570.44 13472.59 21476.03 26351.36 16385.02 13486.99 7360.31 17056.53 26878.92 25740.11 18290.00 11060.00 18090.01 776.41 330
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v1066.61 23364.20 24273.83 18972.59 30653.37 11581.88 22179.91 22361.11 15454.09 28975.60 29840.06 18388.26 17156.47 21556.10 30379.86 293
test_fmvsmconf0.01_n71.97 12970.95 12875.04 15866.21 35047.87 25480.35 25570.08 34365.85 7572.69 7091.68 5639.99 18487.67 19182.03 2869.66 18989.58 113
MP-MVS-pluss75.54 7475.03 6977.04 10281.37 16552.65 13584.34 15584.46 13661.16 15269.14 10591.76 5339.98 18588.99 14078.19 5384.89 5189.48 117
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TranMVSNet+NR-MVSNet66.94 22965.61 22370.93 25473.45 29343.38 31183.02 19784.25 14165.31 8658.33 24181.90 23139.92 18685.52 24949.43 26154.89 31483.89 232
Patchmatch-test53.33 32648.17 33668.81 28173.31 29442.38 32442.98 38858.23 37032.53 37438.79 36670.77 33939.66 18773.51 35325.18 37052.06 33290.55 86
Test By Simon39.38 188
v14419267.86 20265.76 21974.16 17871.68 31453.09 12584.14 16180.83 20662.85 12559.21 22277.28 27439.30 18988.00 17858.67 18757.88 28981.40 270
BH-w/o70.02 16168.51 16274.56 16682.77 12850.39 18186.60 9178.14 26259.77 17659.65 21085.57 17039.27 19087.30 20349.86 25874.94 14685.99 193
dmvs_testset57.65 30258.21 28455.97 35374.62 2819.82 41263.75 35463.34 36467.23 5148.89 32183.68 19539.12 19176.14 34023.43 37659.80 26481.96 258
CR-MVSNet62.47 26859.04 28072.77 21073.97 29156.57 3660.52 36671.72 33060.04 17257.49 25565.86 35638.94 19280.31 30542.86 30259.93 26281.42 268
Patchmtry56.56 30852.95 31567.42 29572.53 30750.59 17559.05 37071.72 33037.86 36246.92 33365.86 35638.94 19280.06 30936.94 32146.72 35271.60 361
sam_mvs138.86 19488.13 150
UA-Net67.32 21866.23 20770.59 25778.85 21441.23 33373.60 30675.45 30061.54 14666.61 12484.53 18138.73 19586.57 22642.48 30574.24 14983.98 228
cdsmvs_eth3d_5k18.33 37524.44 3670.00 3960.00 4180.00 4200.00 40789.40 230.00 4120.00 41592.02 4638.55 1960.00 4130.00 4140.00 4110.00 411
patchmatchnet-post59.74 37338.41 19779.91 312
CHOSEN 280x42057.53 30456.38 29760.97 33874.01 28948.10 24746.30 38454.31 37548.18 31650.88 31277.43 27238.37 19859.16 38154.83 22463.14 24575.66 334
V4267.66 20765.60 22473.86 18770.69 32753.63 10681.50 23578.61 25463.85 10459.49 21677.49 27037.98 19987.65 19262.33 15558.43 27680.29 288
tpmvs62.45 26959.42 27671.53 24483.93 9254.32 9270.03 33177.61 27051.91 29053.48 29568.29 35037.91 20086.66 22133.36 33858.27 27973.62 350
PatchmatchNetpermissive67.07 22663.63 24577.40 9383.10 11258.03 1372.11 32277.77 26758.85 20159.37 21770.83 33837.84 20184.93 26242.96 30169.83 18889.26 119
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
pcd_1.5k_mvsjas3.15 3824.20 3850.00 3960.00 4180.00 4200.00 4070.00 4180.00 4120.00 4150.00 41437.77 2020.00 4130.00 4140.00 4110.00 411
PS-MVSNAJss68.78 18767.17 19073.62 19773.01 30048.33 24084.95 13884.81 12659.30 18958.91 22879.84 24837.77 20288.86 14662.83 15363.12 24683.67 236
PS-MVSNAJ80.06 1779.52 1881.68 1485.58 6060.97 391.69 1287.02 7270.62 2180.75 2193.22 2437.77 20292.50 4882.75 2386.25 3791.57 60
pm-mvs164.12 25062.56 24868.78 28271.68 31438.87 34282.89 19981.57 19255.54 26053.89 29177.82 26637.73 20586.74 21848.46 27053.49 32580.72 282
RPMNet59.29 28554.25 30874.42 17073.97 29156.57 3660.52 36676.98 28135.72 36857.49 25558.87 37637.73 20585.26 25527.01 36659.93 26281.42 268
SDMVSNet71.89 13070.62 13275.70 13581.70 15051.61 15673.89 30488.72 4066.58 5861.64 19382.38 22137.63 20789.48 12477.44 6065.60 22086.01 191
xiu_mvs_v2_base79.86 1879.31 1981.53 1585.03 7360.73 491.65 1386.86 7570.30 2580.77 2093.07 2937.63 20792.28 5482.73 2485.71 4191.57 60
Patchmatch-RL test58.72 29554.32 30771.92 23763.91 36544.25 30161.73 36255.19 37357.38 23149.31 31954.24 38237.60 20980.89 29462.19 15847.28 34790.63 85
HPM-MVScopyleft72.60 11671.50 11975.89 13282.02 14151.42 16280.70 25083.05 16756.12 25364.03 16389.53 10137.55 21088.37 16270.48 10680.04 9087.88 155
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test_post16.22 40637.52 21184.72 264
PatchT56.60 30752.97 31467.48 29472.94 30246.16 28157.30 37473.78 31438.77 35854.37 28657.26 37937.52 21178.06 32332.02 34352.79 32978.23 312
v119267.96 20165.74 22074.63 16571.79 31253.43 11484.06 16480.99 20463.19 12059.56 21377.46 27137.50 21388.65 15158.20 19558.93 27281.79 260
HQP2-MVS37.35 214
HQP-MVS72.34 12171.44 12175.03 15979.02 21051.56 15888.00 5483.68 15365.45 7964.48 15685.13 17437.35 21488.62 15266.70 12573.12 15784.91 212
region2R73.75 9972.55 9977.33 9483.90 9452.98 12985.54 11784.09 14556.83 24065.10 14490.45 7937.34 21690.24 10568.89 11480.83 7988.77 135
TESTMET0.1,172.86 11272.33 10374.46 16881.98 14250.77 17085.13 12785.47 9966.09 6967.30 11783.69 19337.27 21783.57 27765.06 14478.97 10289.05 127
mvsmamba69.38 17567.52 18474.95 16282.86 12552.22 14467.36 34376.75 28561.14 15349.43 31782.04 22937.26 21884.14 26973.93 8676.91 11788.50 143
ACMMPR73.76 9872.61 9777.24 9983.92 9352.96 13085.58 11384.29 13956.82 24165.12 14390.45 7937.24 21990.18 10769.18 11280.84 7888.58 139
sss70.49 15370.13 14371.58 24381.59 15739.02 34180.78 24984.71 13059.34 18666.61 12488.09 13137.17 22085.52 24961.82 16271.02 17790.20 98
EPNet_dtu66.25 23866.71 19664.87 31678.66 22034.12 35982.80 20075.51 29861.75 14264.47 15986.90 15337.06 22172.46 35843.65 29869.63 19188.02 153
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
mamv442.60 34944.05 34938.26 37559.21 37738.00 34744.14 38739.03 39125.03 38640.61 36168.39 34937.01 22224.28 40946.62 28236.43 37252.50 387
v192192067.45 21365.23 23274.10 18071.51 31752.90 13183.75 17380.44 21162.48 13359.12 22377.13 27536.98 22387.90 18057.53 20658.14 28381.49 265
旧先验181.57 15947.48 25971.83 32888.66 11836.94 22478.34 10788.67 136
test-LLR69.65 17169.01 15871.60 24178.67 21848.17 24385.13 12779.72 22659.18 19363.13 17682.58 21536.91 22580.24 30660.56 17275.17 13986.39 187
test0.0.03 162.54 26562.44 24962.86 32772.28 31129.51 37982.93 19878.78 24859.18 19353.07 29782.41 21936.91 22577.39 33237.45 31558.96 27181.66 263
MDTV_nov1_ep13_2view43.62 30771.13 32754.95 26759.29 22136.76 22746.33 28587.32 168
KD-MVS_2432*160059.04 29156.44 29566.86 30079.07 20845.87 28372.13 32080.42 21255.03 26548.15 32471.01 33636.73 22878.05 32435.21 32930.18 38676.67 324
miper_refine_blended59.04 29156.44 29566.86 30079.07 20845.87 28372.13 32080.42 21255.03 26548.15 32471.01 33636.73 22878.05 32435.21 32930.18 38676.67 324
GBi-Net67.09 22465.47 22671.96 23282.71 13046.36 27483.52 17583.31 16058.55 20757.58 25276.23 29136.72 23086.20 23147.25 27763.40 23783.32 239
test167.09 22465.47 22671.96 23282.71 13046.36 27483.52 17583.31 16058.55 20757.58 25276.23 29136.72 23086.20 23147.25 27763.40 23783.32 239
FMVSNet267.57 21065.79 21872.90 20782.71 13047.97 25185.15 12684.93 12258.55 20756.71 26578.26 26236.72 23086.67 22046.15 28662.94 24884.07 223
AUN-MVS68.20 19966.35 20373.76 19176.37 25347.45 26079.52 26779.52 23160.98 15862.34 18486.02 16436.59 23386.94 21362.32 15653.47 32686.89 173
BH-untuned68.28 19666.40 20273.91 18581.62 15550.01 19285.56 11577.39 27457.63 22557.47 25783.69 19336.36 23487.08 20844.81 29173.08 16084.65 215
EPMVS68.45 19265.44 22877.47 9284.91 7456.17 4571.89 32481.91 18761.72 14360.85 19972.49 32536.21 23587.06 20947.32 27671.62 17189.17 124
MSLP-MVS++74.21 9072.25 10680.11 3781.45 16356.47 4086.32 9479.65 22958.19 21166.36 12892.29 4036.11 23690.66 9267.39 12182.49 6593.18 17
FA-MVS(test-final)69.00 18166.60 20076.19 12483.48 10147.96 25374.73 29682.07 18257.27 23362.18 18778.47 26136.09 23792.89 3453.76 23371.32 17587.73 159
MTAPA72.73 11471.22 12477.27 9781.54 16053.57 10767.06 34581.31 19759.41 18468.39 11190.96 6936.07 23889.01 13773.80 9082.45 6689.23 121
HQP_MVS70.96 14669.91 14674.12 17977.95 23149.57 20085.76 10582.59 17563.60 11062.15 18883.28 20236.04 23988.30 16865.46 13772.34 16584.49 216
plane_prior678.42 22649.39 20836.04 239
sam_mvs35.99 241
PGM-MVS72.60 11671.20 12576.80 11382.95 12052.82 13283.07 19582.14 18056.51 24963.18 17589.81 9735.68 24289.76 11867.30 12280.19 8787.83 156
XVS72.92 11071.62 11776.81 11183.41 10252.48 13684.88 14083.20 16558.03 21363.91 16589.63 10035.50 24389.78 11665.50 13480.50 8288.16 147
X-MVStestdata65.85 24362.20 25176.81 11183.41 10252.48 13684.88 14083.20 16558.03 21363.91 1654.82 41035.50 24389.78 11665.50 13480.50 8288.16 147
v124066.99 22764.68 23773.93 18471.38 32052.66 13483.39 18679.98 21961.97 13958.44 24077.11 27635.25 24587.81 18256.46 21658.15 28181.33 273
test111171.06 14370.42 13572.97 20679.48 20041.49 33084.82 14382.74 17464.20 9662.98 17887.43 14635.20 24687.92 17958.54 18878.42 10689.49 116
dp64.41 24761.58 25572.90 20782.40 13654.09 9972.53 31476.59 29160.39 16955.68 27570.39 34235.18 24776.90 33739.34 31161.71 25587.73 159
Syy-MVS61.51 27461.35 25962.00 33081.73 14830.09 37480.97 24481.02 20260.93 16055.06 27882.64 21335.09 24880.81 29716.40 39358.32 27775.10 340
ECVR-MVScopyleft71.81 13271.00 12774.26 17680.12 19343.49 30884.69 14582.16 17964.02 9964.64 15187.43 14635.04 24989.21 13261.24 16579.66 9690.08 102
CP-MVS72.59 11871.46 12076.00 13182.93 12252.32 14286.93 8482.48 17755.15 26363.65 16990.44 8235.03 25088.53 15868.69 11577.83 10987.15 170
CP-MVSNet58.54 29957.57 28861.46 33568.50 34133.96 36076.90 28478.60 25551.67 29447.83 32676.60 28634.99 25172.79 35635.45 32647.58 34477.64 318
dmvs_re67.61 20866.00 21272.42 21981.86 14543.45 30964.67 35180.00 21869.56 3160.07 20585.00 17834.71 25287.63 19351.48 24966.68 20886.17 190
MDTV_nov1_ep1361.56 25681.68 15255.12 6972.41 31678.18 26159.19 19158.85 23069.29 34634.69 25386.16 23436.76 32362.96 247
WB-MVSnew69.36 17668.24 16772.72 21179.26 20549.40 20785.72 11088.85 3561.33 14964.59 15482.38 22134.57 25487.53 19846.82 28170.63 18081.22 277
3Dnovator64.70 674.46 8672.48 10080.41 3082.84 12755.40 6083.08 19488.61 4567.61 4959.85 20788.66 11834.57 25493.97 2458.42 19188.70 1291.85 51
Vis-MVSNetpermissive70.61 15269.34 15374.42 17080.95 17548.49 23286.03 10177.51 27258.74 20465.55 13987.78 13934.37 25685.95 24552.53 24580.61 8088.80 133
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_post170.84 32814.72 40934.33 25783.86 27148.80 266
OPM-MVS70.75 15069.58 14974.26 17675.55 27051.34 16486.05 10083.29 16361.94 14062.95 17985.77 16734.15 25888.44 16065.44 14071.07 17682.99 248
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DP-MVS Recon71.99 12870.31 13877.01 10490.65 853.44 11289.37 3782.97 17056.33 25163.56 17289.47 10234.02 25992.15 5854.05 23072.41 16485.43 206
PEN-MVS58.35 30057.15 29061.94 33167.55 34834.39 35677.01 28278.35 26051.87 29147.72 32776.73 28433.91 26073.75 35134.03 33647.17 34877.68 316
QAPM71.88 13169.33 15479.52 4282.20 14054.30 9386.30 9588.77 3856.61 24759.72 20987.48 14433.90 26195.36 1347.48 27581.49 7488.90 129
新几何173.30 20283.10 11253.48 10871.43 33445.55 33266.14 12987.17 15033.88 26280.54 30248.50 26980.33 8685.88 198
131471.11 14269.41 15176.22 12179.32 20350.49 17780.23 25885.14 11859.44 18358.93 22688.89 11433.83 26389.60 12361.49 16377.42 11388.57 140
SR-MVS70.92 14769.73 14874.50 16783.38 10650.48 17884.27 15779.35 23848.96 31166.57 12690.45 7933.65 26487.11 20766.42 12774.56 14885.91 196
mPP-MVS71.79 13470.38 13676.04 12982.65 13352.06 14584.45 15281.78 19055.59 25862.05 19089.68 9933.48 26588.28 17065.45 13978.24 10887.77 158
OMC-MVS65.97 24265.06 23468.71 28472.97 30142.58 32278.61 27475.35 30154.72 26959.31 21986.25 16333.30 26677.88 32857.99 19767.05 20685.66 201
BH-RMVSNet70.08 15968.01 17076.27 11984.21 8851.22 16887.29 7479.33 24058.96 20063.63 17086.77 15533.29 26790.30 10444.63 29373.96 15187.30 169
JIA-IIPM52.33 33147.77 33966.03 30771.20 32146.92 26740.00 39376.48 29237.10 36346.73 33437.02 39332.96 26877.88 32835.97 32452.45 33173.29 353
PS-CasMVS58.12 30157.03 29261.37 33668.24 34533.80 36276.73 28578.01 26351.20 29647.54 33076.20 29432.85 26972.76 35735.17 33147.37 34677.55 319
DTE-MVSNet57.03 30555.73 30160.95 33965.94 35232.57 36775.71 28777.09 28051.16 29746.65 33676.34 28932.84 27073.22 35530.94 34944.87 35777.06 321
pmmvs463.34 25861.07 26370.16 26470.14 32950.53 17679.97 26271.41 33555.08 26454.12 28878.58 25932.79 27182.09 28750.33 25557.22 29477.86 314
TR-MVS69.71 16867.85 17675.27 15482.94 12148.48 23387.40 7080.86 20557.15 23664.61 15387.08 15132.67 27289.64 12246.38 28471.55 17387.68 161
VDD-MVS76.08 6274.97 7179.44 4384.27 8753.33 11891.13 2085.88 9365.33 8572.37 7689.34 10532.52 27392.76 4177.90 5875.96 12992.22 39
3Dnovator+62.71 772.29 12370.50 13377.65 8883.40 10551.29 16687.32 7186.40 8559.01 19858.49 23788.32 12732.40 27491.27 7357.04 21082.15 6990.38 91
tfpnnormal61.47 27559.09 27968.62 28676.29 25841.69 32681.14 24185.16 11654.48 27251.32 30773.63 31532.32 27586.89 21621.78 38155.71 30977.29 320
MS-PatchMatch72.34 12171.26 12375.61 13782.38 13755.55 5488.00 5489.95 1965.38 8356.51 26980.74 24232.28 27692.89 3457.95 20088.10 1678.39 308
v7n62.50 26759.27 27872.20 22567.25 34949.83 19777.87 27980.12 21652.50 28648.80 32273.07 31932.10 27787.90 18046.83 28054.92 31378.86 299
IterMVS63.77 25461.67 25470.08 26672.68 30551.24 16780.44 25375.51 29860.51 16851.41 30673.70 31432.08 27878.91 31654.30 22854.35 31980.08 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT59.12 28858.81 28260.08 34070.68 32845.07 29180.42 25474.25 30843.54 34650.02 31573.73 31131.97 27956.74 38451.06 25353.60 32478.42 307
SCA63.84 25260.01 27375.32 14878.58 22257.92 1461.61 36377.53 27156.71 24457.75 24970.77 33931.97 27979.91 31248.80 26656.36 29788.13 150
ACMMPcopyleft70.81 14969.29 15575.39 14681.52 16251.92 15083.43 18283.03 16856.67 24658.80 23188.91 11331.92 28188.58 15465.89 13373.39 15585.67 200
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APD-MVS_3200maxsize69.62 17268.23 16873.80 19081.58 15848.22 24281.91 22079.50 23248.21 31564.24 16189.75 9831.91 28287.55 19763.08 15173.85 15385.64 202
VDDNet74.37 8872.13 11081.09 2079.58 19956.52 3990.02 2686.70 7952.61 28571.23 8987.20 14931.75 28393.96 2574.30 8375.77 13292.79 27
pmmvs562.80 26461.18 26167.66 29369.53 33342.37 32582.65 20375.19 30254.30 27452.03 30478.51 26031.64 28480.67 29948.60 26858.15 28179.95 292
LCM-MVSNet-Re58.82 29456.54 29365.68 30879.31 20429.09 38261.39 36545.79 38160.73 16537.65 36972.47 32631.42 28581.08 29349.66 25970.41 18386.87 174
testdata67.08 29877.59 23745.46 28869.20 34944.47 33971.50 8688.34 12631.21 28670.76 36452.20 24675.88 13085.03 209
SR-MVS-dyc-post68.27 19766.87 19272.48 21880.96 17248.14 24581.54 23376.98 28146.42 32762.75 18189.42 10331.17 28786.09 23960.52 17472.06 16883.19 244
GA-MVS69.04 17966.70 19776.06 12875.11 27352.36 14083.12 19380.23 21563.32 11760.65 20279.22 25430.98 28888.37 16261.25 16466.41 21387.46 165
OpenMVScopyleft61.00 1169.99 16367.55 18277.30 9578.37 22754.07 10084.36 15485.76 9657.22 23456.71 26587.67 14230.79 28992.83 3643.04 30084.06 5885.01 210
Effi-MVS+-dtu66.24 23964.96 23670.08 26675.17 27249.64 19982.01 21774.48 30762.15 13557.83 24576.08 29530.59 29083.79 27365.40 14160.93 25976.81 323
sd_testset67.79 20565.95 21473.32 20081.70 15046.33 27768.99 33680.30 21466.58 5861.64 19382.38 22130.45 29187.63 19355.86 21965.60 22086.01 191
test22279.36 20150.97 16977.99 27867.84 35342.54 35062.84 18086.53 16030.26 29276.91 11785.23 207
MVS_111021_LR69.07 17867.91 17172.54 21577.27 24249.56 20279.77 26373.96 31359.33 18860.73 20187.82 13830.19 29381.53 28969.94 10772.19 16786.53 183
114514_t69.87 16667.88 17375.85 13388.38 2952.35 14186.94 8383.68 15353.70 27655.68 27585.60 16930.07 29491.20 7755.84 22071.02 17783.99 226
CPTT-MVS67.15 22265.84 21771.07 25180.96 17250.32 18681.94 21974.10 30946.18 33057.91 24487.64 14329.57 29581.31 29164.10 14670.18 18681.56 264
CANet_DTU73.71 10073.14 9275.40 14582.61 13450.05 19184.67 14879.36 23769.72 2975.39 4290.03 9329.41 29685.93 24667.99 11979.11 10090.22 96
AdaColmapbinary67.86 20265.48 22575.00 16088.15 3654.99 7486.10 9976.63 29049.30 30857.80 24686.65 15929.39 29788.94 14445.10 29070.21 18581.06 278
RE-MVS-def66.66 19880.96 17248.14 24581.54 23376.98 28146.42 32762.75 18189.42 10329.28 29860.52 17472.06 16883.19 244
CVMVSNet60.85 27860.44 26862.07 32875.00 27632.73 36679.54 26573.49 31836.98 36456.28 27183.74 19129.28 29869.53 36746.48 28363.23 24283.94 231
PMMVS72.98 10972.05 11375.78 13483.57 9848.60 22784.08 16282.85 17361.62 14468.24 11290.33 8328.35 30087.78 18772.71 9676.69 12190.95 80
our_test_359.11 28955.08 30571.18 25071.42 31853.29 12081.96 21874.52 30648.32 31342.08 35069.28 34728.14 30182.15 28534.35 33545.68 35678.11 313
Fast-Effi-MVS+-dtu66.53 23464.10 24373.84 18872.41 30852.30 14384.73 14475.66 29759.51 18156.34 27079.11 25628.11 30285.85 24757.74 20563.29 24183.35 238
Anonymous2023121166.08 24163.67 24473.31 20183.07 11548.75 22486.01 10284.67 13245.27 33456.54 26776.67 28528.06 30388.95 14252.78 24159.95 26182.23 255
Anonymous2024052969.71 16867.28 18877.00 10583.78 9650.36 18488.87 4585.10 11947.22 32064.03 16383.37 20027.93 30492.10 5957.78 20467.44 20488.53 142
HPM-MVS_fast67.86 20266.28 20672.61 21380.67 18448.34 23881.18 24075.95 29650.81 29859.55 21488.05 13427.86 30585.98 24258.83 18573.58 15483.51 237
FMVSNet164.57 24662.11 25271.96 23277.32 24146.36 27483.52 17583.31 16052.43 28754.42 28576.23 29127.80 30686.20 23142.59 30461.34 25783.32 239
CNLPA60.59 27958.44 28367.05 29979.21 20647.26 26479.75 26464.34 36242.46 35151.90 30583.94 18727.79 30775.41 34437.12 31759.49 26778.47 305
TAPA-MVS56.12 1461.82 27360.18 27266.71 30278.48 22537.97 34875.19 29476.41 29346.82 32357.04 26186.52 16127.67 30877.03 33426.50 36867.02 20785.14 208
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
pmmvs659.64 28357.15 29067.09 29766.01 35136.86 35280.50 25178.64 25245.05 33649.05 32073.94 30927.28 30986.10 23743.96 29749.94 33778.31 309
test-mter68.36 19367.29 18771.60 24178.67 21848.17 24385.13 12779.72 22653.38 27963.13 17682.58 21527.23 31080.24 30660.56 17275.17 13986.39 187
D2MVS63.49 25661.39 25869.77 27069.29 33548.93 21978.89 27377.71 26960.64 16749.70 31672.10 33327.08 31183.48 27854.48 22762.65 24976.90 322
XVG-OURS-SEG-HR62.02 27159.54 27569.46 27365.30 35645.88 28265.06 34973.57 31746.45 32657.42 25883.35 20126.95 31278.09 32253.77 23264.03 23184.42 218
test_djsdf63.84 25261.56 25670.70 25668.78 33844.69 29581.63 22981.44 19550.28 30152.27 30276.26 29026.72 31386.11 23560.83 16855.84 30881.29 276
Anonymous2023120659.08 29057.59 28763.55 32168.77 33932.14 36980.26 25779.78 22550.00 30549.39 31872.39 32826.64 31478.36 31933.12 34157.94 28680.14 290
ppachtmachnet_test58.56 29754.34 30671.24 24771.42 31854.74 8081.84 22372.27 32549.02 31045.86 34068.99 34826.27 31583.30 28030.12 35043.23 36175.69 333
test20.0355.22 31654.07 30958.68 34563.14 36925.00 38877.69 28074.78 30552.64 28443.43 34572.39 32826.21 31674.76 34629.31 35347.05 35076.28 331
FE-MVS64.15 24960.43 26975.30 15180.85 17749.86 19668.28 34078.37 25950.26 30459.31 21973.79 31026.19 31791.92 6240.19 30866.67 20984.12 221
FMVSNet558.61 29656.45 29465.10 31577.20 24639.74 33874.77 29577.12 27950.27 30343.28 34767.71 35126.15 31876.90 33736.78 32254.78 31578.65 303
ACMP61.11 966.24 23964.33 24072.00 23174.89 27849.12 21183.18 19279.83 22455.41 26152.29 30182.68 21225.83 31986.10 23760.89 16763.94 23380.78 281
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MIMVSNet63.12 26060.29 27071.61 24075.92 26646.65 27065.15 34881.94 18459.14 19554.65 28369.47 34525.74 32080.63 30041.03 30769.56 19287.55 163
LPG-MVS_test66.44 23664.58 23872.02 22974.42 28448.60 22783.07 19580.64 20854.69 27053.75 29283.83 18925.73 32186.98 21060.33 17864.71 22480.48 285
LGP-MVS_train72.02 22974.42 28448.60 22780.64 20854.69 27053.75 29283.83 18925.73 32186.98 21060.33 17864.71 22480.48 285
test_vis1_n_192068.59 19168.31 16569.44 27469.16 33641.51 32984.63 14968.58 35158.80 20273.26 6388.37 12325.30 32380.60 30179.10 4367.55 20386.23 189
ACMM58.35 1264.35 24862.01 25371.38 24574.21 28748.51 23182.25 21379.66 22847.61 31854.54 28480.11 24425.26 32486.00 24151.26 25063.16 24479.64 294
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-OURS61.88 27259.34 27769.49 27265.37 35546.27 27864.80 35073.49 31847.04 32257.41 25982.85 20625.15 32578.18 32053.00 23864.98 22284.01 225
PVSNet_057.04 1361.19 27657.24 28973.02 20477.45 24050.31 18779.43 26977.36 27663.96 10347.51 33172.45 32725.03 32683.78 27452.76 24319.22 39984.96 211
WB-MVS37.41 35536.37 35640.54 37354.23 38410.43 41165.29 34643.75 38434.86 37327.81 39154.63 38024.94 32763.21 3726.81 40615.00 40147.98 392
UniMVSNet_ETH3D62.51 26660.49 26768.57 28868.30 34440.88 33673.89 30479.93 22251.81 29354.77 28179.61 24924.80 32881.10 29249.93 25761.35 25683.73 234
DP-MVS59.24 28656.12 29868.63 28588.24 3450.35 18582.51 20864.43 36141.10 35346.70 33578.77 25824.75 32988.57 15722.26 37956.29 30166.96 371
test_cas_vis1_n_192067.10 22366.60 20068.59 28765.17 35843.23 31383.23 19069.84 34555.34 26270.67 9887.71 14124.70 33076.66 33978.57 5064.20 22985.89 197
tt080563.39 25761.31 26069.64 27169.36 33438.87 34278.00 27785.48 9848.82 31255.66 27781.66 23324.38 33186.37 23049.04 26559.36 26983.68 235
cascas69.01 18066.13 20977.66 8779.36 20155.41 5986.99 8183.75 15256.69 24558.92 22781.35 23624.31 33292.10 5953.23 23470.61 18185.46 205
CMPMVSbinary40.41 2155.34 31552.64 31863.46 32260.88 37543.84 30561.58 36471.06 33730.43 38036.33 37174.63 30424.14 33375.44 34348.05 27266.62 21071.12 364
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UGNet68.71 18867.11 19173.50 19980.55 18747.61 25884.08 16278.51 25659.45 18265.68 13882.73 21123.78 33485.08 26052.80 24076.40 12287.80 157
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
YYNet153.82 32349.96 32965.41 31270.09 33148.95 21772.30 31771.66 33244.25 34231.89 38463.07 36423.73 33573.95 34933.26 33939.40 36873.34 352
MDA-MVSNet_test_wron53.82 32349.95 33065.43 31170.13 33049.05 21372.30 31771.65 33344.23 34331.85 38563.13 36323.68 33674.01 34833.25 34039.35 36973.23 354
PLCcopyleft52.38 1860.89 27758.97 28166.68 30481.77 14745.70 28678.96 27274.04 31243.66 34547.63 32883.19 20423.52 33777.78 33137.47 31460.46 26076.55 329
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SSC-MVS35.20 35734.30 35937.90 37652.58 3868.65 41461.86 36141.64 38831.81 37825.54 39352.94 38623.39 33859.28 3806.10 40712.86 40245.78 395
ADS-MVSNet255.21 31751.44 32266.51 30580.60 18549.56 20255.03 37765.44 35744.72 33751.00 30961.19 36822.83 33975.41 34428.54 35853.63 32274.57 344
ADS-MVSNet56.17 31151.95 32168.84 27980.60 18553.07 12655.03 37770.02 34444.72 33751.00 30961.19 36822.83 33978.88 31728.54 35853.63 32274.57 344
test_040256.45 30953.03 31366.69 30376.78 25150.31 18781.76 22569.61 34742.79 34943.88 34272.13 33122.82 34186.46 22716.57 39250.94 33463.31 379
UnsupCasMVSNet_eth57.56 30355.15 30364.79 31764.57 36333.12 36373.17 31183.87 15158.98 19941.75 35370.03 34322.54 34279.92 31046.12 28735.31 37581.32 275
xiu_mvs_v1_base_debu71.60 13570.29 13975.55 14077.26 24353.15 12285.34 11879.37 23455.83 25572.54 7190.19 8722.38 34386.66 22173.28 9376.39 12386.85 176
xiu_mvs_v1_base71.60 13570.29 13975.55 14077.26 24353.15 12285.34 11879.37 23455.83 25572.54 7190.19 8722.38 34386.66 22173.28 9376.39 12386.85 176
xiu_mvs_v1_base_debi71.60 13570.29 13975.55 14077.26 24353.15 12285.34 11879.37 23455.83 25572.54 7190.19 8722.38 34386.66 22173.28 9376.39 12386.85 176
LS3D56.40 31053.82 31064.12 31881.12 16845.69 28773.42 30966.14 35635.30 37243.24 34879.88 24622.18 34679.62 31419.10 38764.00 23267.05 370
PVSNet62.49 869.27 17767.81 17773.64 19584.41 8251.85 15184.63 14977.80 26666.42 6259.80 20884.95 17922.14 34780.44 30455.03 22375.11 14288.62 138
MDA-MVSNet-bldmvs51.56 33347.75 34063.00 32571.60 31647.32 26369.70 33472.12 32643.81 34427.65 39263.38 36221.97 34875.96 34127.30 36532.19 38365.70 376
pmmvs-eth3d55.97 31352.78 31765.54 31061.02 37446.44 27375.36 29367.72 35449.61 30743.65 34467.58 35221.63 34977.04 33344.11 29644.33 35873.15 355
anonymousdsp60.46 28057.65 28668.88 27863.63 36745.09 29072.93 31278.63 25346.52 32551.12 30872.80 32321.46 35083.07 28257.79 20353.97 32078.47 305
MVS-HIRNet49.01 33944.71 34361.92 33276.06 26146.61 27163.23 35754.90 37424.77 38733.56 37936.60 39521.28 35175.88 34229.49 35262.54 25063.26 380
Anonymous20240521170.11 15767.88 17376.79 11487.20 4247.24 26589.49 3577.38 27554.88 26866.14 12986.84 15420.93 35291.54 6856.45 21771.62 17191.59 58
UnsupCasMVSNet_bld53.86 32250.53 32663.84 31963.52 36834.75 35571.38 32581.92 18646.53 32438.95 36557.93 37720.55 35380.20 30839.91 31034.09 38276.57 328
EU-MVSNet52.63 32850.72 32558.37 34662.69 37128.13 38572.60 31375.97 29530.94 37940.76 36072.11 33220.16 35470.80 36335.11 33246.11 35476.19 332
N_pmnet41.25 35039.77 35345.66 36668.50 3410.82 41872.51 3150.38 41735.61 36935.26 37561.51 36720.07 35567.74 36823.51 37540.63 36568.42 369
MSDG59.44 28455.14 30472.32 22374.69 27950.71 17174.39 30273.58 31644.44 34043.40 34677.52 26919.45 35690.87 8831.31 34757.49 29375.38 336
K. test v354.04 32149.42 33367.92 29268.55 34042.57 32375.51 29163.07 36552.07 28839.21 36364.59 36019.34 35782.21 28437.11 31825.31 39178.97 298
lessismore_v067.98 29164.76 36241.25 33245.75 38236.03 37365.63 35819.29 35884.11 27035.67 32521.24 39778.59 304
KD-MVS_self_test49.24 33846.85 34156.44 35154.32 38322.87 39157.39 37373.36 32244.36 34137.98 36859.30 37518.97 35971.17 36233.48 33742.44 36275.26 337
OpenMVS_ROBcopyleft53.19 1759.20 28756.00 29968.83 28071.13 32244.30 29983.64 17475.02 30346.42 32746.48 33773.03 32018.69 36088.14 17227.74 36361.80 25474.05 347
mvsany_test143.38 34842.57 35145.82 36550.96 39026.10 38755.80 37527.74 40527.15 38347.41 33274.39 30618.67 36144.95 39644.66 29236.31 37366.40 373
LTVRE_ROB45.45 1952.73 32749.74 33161.69 33369.78 33234.99 35444.52 38567.60 35543.11 34843.79 34374.03 30818.54 36281.45 29028.39 36057.94 28668.62 368
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
SixPastTwentyTwo54.37 31850.10 32767.21 29670.70 32641.46 33174.73 29664.69 35947.56 31939.12 36469.49 34418.49 36384.69 26531.87 34434.20 38175.48 335
new-patchmatchnet48.21 34046.55 34253.18 35757.73 38018.19 40470.24 32971.02 33845.70 33133.70 37860.23 37118.00 36469.86 36627.97 36234.35 37971.49 363
F-COLMAP55.96 31453.65 31262.87 32672.76 30442.77 31974.70 29870.37 34140.03 35441.11 35879.36 25117.77 36573.70 35232.80 34253.96 32172.15 357
jajsoiax63.21 25960.84 26470.32 26268.33 34344.45 29781.23 23981.05 20153.37 28050.96 31177.81 26717.49 36685.49 25159.31 18158.05 28481.02 279
RPSCF45.77 34544.13 34750.68 35957.67 38129.66 37854.92 37945.25 38326.69 38445.92 33975.92 29717.43 36745.70 39527.44 36445.95 35576.67 324
PatchMatch-RL56.66 30653.75 31165.37 31377.91 23445.28 28969.78 33360.38 36841.35 35247.57 32973.73 31116.83 36876.91 33536.99 32059.21 27073.92 348
mvs_tets62.96 26260.55 26670.19 26368.22 34644.24 30280.90 24680.74 20752.99 28350.82 31377.56 26816.74 36985.44 25259.04 18457.94 28680.89 280
ACMH+54.58 1558.55 29855.24 30268.50 28974.68 28045.80 28580.27 25670.21 34247.15 32142.77 34975.48 29916.73 37085.98 24235.10 33354.78 31573.72 349
ACMH53.70 1659.78 28255.94 30071.28 24676.59 25248.35 23780.15 26076.11 29449.74 30641.91 35273.45 31816.50 37190.31 10231.42 34657.63 29275.17 338
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MIMVSNet150.35 33647.81 33857.96 34761.53 37327.80 38667.40 34274.06 31143.25 34733.31 38365.38 35916.03 37271.34 36121.80 38047.55 34574.75 342
DSMNet-mixed38.35 35335.36 35847.33 36448.11 39514.91 40837.87 39436.60 39619.18 39234.37 37659.56 37415.53 37353.01 38820.14 38546.89 35174.07 346
EG-PatchMatch MVS62.40 27059.59 27470.81 25573.29 29549.05 21385.81 10384.78 12751.85 29244.19 34173.48 31715.52 37489.85 11440.16 30967.24 20573.54 351
testgi54.25 32052.57 31959.29 34362.76 37021.65 39672.21 31970.47 34053.25 28141.94 35177.33 27314.28 37577.95 32729.18 35451.72 33378.28 310
COLMAP_ROBcopyleft43.60 2050.90 33548.05 33759.47 34167.81 34740.57 33771.25 32662.72 36736.49 36736.19 37273.51 31613.48 37673.92 35020.71 38350.26 33663.92 378
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OurMVSNet-221017-052.39 33048.73 33463.35 32465.21 35738.42 34568.54 33964.95 35838.19 35939.57 36271.43 33513.23 37779.92 31037.16 31640.32 36771.72 360
test_fmvs153.60 32552.54 32056.78 34958.07 37830.26 37268.95 33742.19 38732.46 37563.59 17182.56 21711.55 37860.81 37558.25 19455.27 31179.28 295
tmp_tt9.44 37710.68 3805.73 3932.49 4164.21 41710.48 40618.04 4120.34 41012.59 40220.49 40411.39 3797.03 41213.84 3966.46 4095.95 407
ITE_SJBPF51.84 35858.03 37931.94 37053.57 37836.67 36541.32 35675.23 30111.17 38051.57 38925.81 36948.04 34172.02 359
Anonymous2024052151.65 33248.42 33561.34 33756.43 38239.65 34073.57 30773.47 32136.64 36636.59 37063.98 36110.75 38172.25 36035.35 32749.01 33872.11 358
AllTest47.32 34244.66 34455.32 35565.08 35937.50 35062.96 35954.25 37635.45 37033.42 38072.82 3219.98 38259.33 37824.13 37343.84 35969.13 366
TestCases55.32 35565.08 35937.50 35054.25 37635.45 37033.42 38072.82 3219.98 38259.33 37824.13 37343.84 35969.13 366
USDC54.36 31951.23 32363.76 32064.29 36437.71 34962.84 36073.48 32056.85 23935.47 37471.94 3349.23 38478.43 31838.43 31348.57 33975.13 339
XVG-ACMP-BASELINE56.03 31252.85 31665.58 30961.91 37240.95 33563.36 35572.43 32445.20 33546.02 33874.09 3079.20 38578.12 32145.13 28958.27 27977.66 317
test_fmvs1_n52.55 32951.19 32456.65 35051.90 38830.14 37367.66 34142.84 38632.27 37662.30 18682.02 2309.12 38660.84 37457.82 20254.75 31778.99 297
test_vis1_n51.19 33449.66 33255.76 35451.26 38929.85 37767.20 34438.86 39232.12 37759.50 21579.86 2478.78 38758.23 38256.95 21152.46 33079.19 296
pmmvs345.53 34641.55 35257.44 34848.97 39339.68 33970.06 33057.66 37128.32 38234.06 37757.29 3788.50 38866.85 37034.86 33434.26 38065.80 375
EGC-MVSNET33.75 35930.42 36343.75 36964.94 36136.21 35360.47 36840.70 3900.02 4110.10 41253.79 3837.39 38960.26 37611.09 39835.23 37734.79 397
test_fmvs245.89 34444.32 34650.62 36045.85 39724.70 38958.87 37237.84 39525.22 38552.46 30074.56 3057.07 39054.69 38549.28 26347.70 34372.48 356
ANet_high34.39 35829.59 36448.78 36230.34 40722.28 39255.53 37663.79 36338.11 36015.47 39936.56 3966.94 39159.98 37713.93 3955.64 41064.08 377
FPMVS35.40 35633.67 36040.57 37246.34 39628.74 38441.05 39057.05 37220.37 39122.27 39553.38 3846.87 39244.94 3978.62 40047.11 34948.01 391
test_vis1_rt40.29 35238.64 35445.25 36748.91 39430.09 37459.44 36927.07 40624.52 38838.48 36751.67 3876.71 39349.44 39044.33 29446.59 35356.23 382
new_pmnet33.56 36031.89 36238.59 37449.01 39220.42 39751.01 38037.92 39420.58 38923.45 39446.79 3896.66 39449.28 39220.00 38631.57 38546.09 394
TinyColmap48.15 34144.49 34559.13 34465.73 35438.04 34663.34 35662.86 36638.78 35729.48 38767.23 3546.46 39573.30 35424.59 37241.90 36466.04 374
ambc62.06 32953.98 38529.38 38035.08 39679.65 22941.37 35459.96 3726.27 39682.15 28535.34 32838.22 37074.65 343
TDRefinement40.91 35138.37 35548.55 36350.45 39133.03 36558.98 37150.97 37928.50 38129.89 38667.39 3536.21 39754.51 38617.67 39035.25 37658.11 381
PM-MVS46.92 34343.76 35056.41 35252.18 38732.26 36863.21 35838.18 39337.99 36140.78 35966.20 3555.09 39865.42 37148.19 27141.99 36371.54 362
LF4IMVS33.04 36132.55 36134.52 37940.96 39822.03 39344.45 38635.62 39720.42 39028.12 39062.35 3655.03 39931.88 40821.61 38234.42 37849.63 390
EMVS18.42 37417.66 37820.71 39034.13 40412.64 41046.94 38329.94 40310.46 4045.58 41014.93 4084.23 40038.83 4005.24 4107.51 40710.67 406
E-PMN19.16 37318.40 37721.44 38936.19 40213.63 40947.59 38230.89 40110.73 4025.91 40916.59 4053.66 40139.77 3995.95 4088.14 40510.92 405
test_method24.09 37021.07 37433.16 38227.67 4118.35 41626.63 40235.11 3993.40 40814.35 40036.98 3943.46 40235.31 40319.08 38822.95 39455.81 383
mvsany_test328.00 36325.98 36534.05 38028.97 40815.31 40634.54 39718.17 41116.24 39529.30 38853.37 3852.79 40333.38 40730.01 35120.41 39853.45 386
test_f27.12 36524.85 36633.93 38126.17 41315.25 40730.24 40122.38 41012.53 40028.23 38949.43 3882.59 40434.34 40625.12 37126.99 38952.20 388
test_fmvs337.95 35435.75 35744.55 36835.50 40318.92 40048.32 38134.00 40018.36 39441.31 35761.58 3662.29 40548.06 39442.72 30337.71 37166.66 372
PMMVS226.71 36622.98 37137.87 37736.89 4018.51 41542.51 38929.32 40419.09 39313.01 40137.54 3922.23 40653.11 38714.54 39411.71 40351.99 389
Gipumacopyleft27.47 36424.26 36937.12 37860.55 37629.17 38111.68 40560.00 36914.18 39710.52 40615.12 4072.20 40763.01 3738.39 40135.65 37419.18 403
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet28.07 36223.85 37040.71 37127.46 41218.93 39930.82 40046.19 38012.76 39916.40 39734.70 3981.90 40848.69 39320.25 38424.22 39354.51 385
DeepMVS_CXcopyleft13.10 39121.34 4158.99 41310.02 41510.59 4037.53 40830.55 4011.82 40914.55 4106.83 4057.52 40615.75 404
APD_test126.46 36724.41 36832.62 38437.58 40021.74 39540.50 39230.39 40211.45 40116.33 39843.76 3901.63 41041.62 39811.24 39726.82 39034.51 398
PMVScopyleft19.57 2225.07 36822.43 37332.99 38323.12 41422.98 39040.98 39135.19 39815.99 39611.95 40535.87 3971.47 41149.29 3915.41 40931.90 38426.70 402
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis3_rt24.79 36922.95 37230.31 38528.59 40918.92 40037.43 39517.27 41312.90 39821.28 39629.92 4021.02 41236.35 40128.28 36129.82 38835.65 396
MVEpermissive16.60 2317.34 37613.39 37929.16 38628.43 41019.72 39813.73 40423.63 4097.23 4077.96 40721.41 4030.80 41336.08 4026.97 40410.39 40431.69 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testf121.11 37119.08 37527.18 38730.56 40518.28 40233.43 39824.48 4078.02 40512.02 40333.50 3990.75 41435.09 4047.68 40221.32 39528.17 400
APD_test221.11 37119.08 37527.18 38730.56 40518.28 40233.43 39824.48 4078.02 40512.02 40333.50 3990.75 41435.09 4047.68 40221.32 39528.17 400
wuyk23d9.11 3788.77 38210.15 39240.18 39916.76 40520.28 4031.01 4162.58 4092.66 4110.98 4110.23 41612.49 4114.08 4116.90 4081.19 408
test_blank0.00 3830.00 3860.00 3960.00 4180.00 4200.00 4070.00 4180.00 4120.00 4150.00 4140.00 4170.00 4130.00 4140.00 4110.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4180.00 4200.00 4070.00 4180.00 4120.00 4150.00 4140.00 4170.00 4130.00 4140.00 4110.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4180.00 4200.00 4070.00 4180.00 4120.00 4150.00 4140.00 4170.00 4130.00 4140.00 4110.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4180.00 4200.00 4070.00 4180.00 4120.00 4150.00 4140.00 4170.00 4130.00 4140.00 4110.00 411
sosnet0.00 3830.00 3860.00 3960.00 4180.00 4200.00 4070.00 4180.00 4120.00 4150.00 4140.00 4170.00 4130.00 4140.00 4110.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4180.00 4200.00 4070.00 4180.00 4120.00 4150.00 4140.00 4170.00 4130.00 4140.00 4110.00 411
Regformer0.00 3830.00 3860.00 3960.00 4180.00 4200.00 4070.00 4180.00 4120.00 4150.00 4140.00 4170.00 4130.00 4140.00 4110.00 411
testmvs6.14 3808.18 3830.01 3940.01 4170.00 42073.40 3100.00 4180.00 4120.02 4130.15 4120.00 4170.00 4130.02 4120.00 4110.02 409
test1236.01 3818.01 3840.01 3940.00 4180.01 41971.93 3230.00 4180.00 4120.02 4130.11 4130.00 4170.00 4130.02 4120.00 4110.02 409
ab-mvs-re7.68 37910.24 3810.00 3960.00 4180.00 4200.00 4070.00 4180.00 4120.00 41592.12 420.00 4170.00 4130.00 4140.00 4110.00 411
uanet0.00 3830.00 3860.00 3960.00 4180.00 4200.00 4070.00 4180.00 4120.00 4150.00 4140.00 4170.00 4130.00 4140.00 4110.00 411
WAC-MVS34.28 35722.56 378
FOURS183.24 10949.90 19584.98 13578.76 24947.71 31773.42 60
MSC_two_6792asdad81.53 1591.77 456.03 4891.10 1096.22 881.46 3386.80 3092.34 35
No_MVS81.53 1591.77 456.03 4891.10 1096.22 881.46 3386.80 3092.34 35
eth-test20.00 418
eth-test0.00 418
IU-MVS89.48 1757.49 1991.38 966.22 6688.26 182.83 2287.60 1992.44 32
save fliter85.35 6656.34 4389.31 3981.46 19461.55 145
test_0728_SECOND82.20 889.50 1557.73 1592.34 588.88 3296.39 481.68 2987.13 2292.47 31
GSMVS88.13 150
test_part289.33 2355.48 5682.27 12
MTGPAbinary81.31 197
MTMP87.27 7515.34 414
gm-plane-assit83.24 10954.21 9670.91 2088.23 12995.25 1466.37 128
test9_res78.72 4985.44 4591.39 66
agg_prior275.65 6985.11 4991.01 78
agg_prior85.64 5954.92 7683.61 15772.53 7488.10 175
test_prior456.39 4287.15 79
test_prior78.39 7486.35 5054.91 7785.45 10189.70 12090.55 86
旧先验281.73 22745.53 33374.66 4770.48 36558.31 193
新几何281.61 231
无先验85.19 12578.00 26449.08 30985.13 25952.78 24187.45 166
原ACMM283.77 172
testdata277.81 33045.64 288
testdata177.55 28164.14 98
plane_prior777.95 23148.46 234
plane_prior582.59 17588.30 16865.46 13772.34 16584.49 216
plane_prior483.28 202
plane_prior348.95 21764.01 10162.15 188
plane_prior285.76 10563.60 110
plane_prior178.31 228
plane_prior49.57 20087.43 6864.57 9272.84 161
n20.00 418
nn0.00 418
door-mid41.31 389
test1184.25 141
door43.27 385
HQP5-MVS51.56 158
HQP-NCC79.02 21088.00 5465.45 7964.48 156
ACMP_Plane79.02 21088.00 5465.45 7964.48 156
BP-MVS66.70 125
HQP4-MVS64.47 15988.61 15384.91 212
HQP3-MVS83.68 15373.12 157
NP-MVS78.76 21550.43 17985.12 175
ACMMP++_ref63.20 243
ACMMP++59.38 268