This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
MSP-MVS95.62 896.54 192.86 9498.31 4880.10 17597.42 10496.78 5592.20 2497.11 1598.29 3593.46 199.10 10196.01 4099.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PC_three_145291.12 3798.33 298.42 3092.51 299.81 2198.96 399.37 199.70 3
DVP-MVS++96.05 496.41 394.96 2299.05 985.34 5498.13 5096.77 6188.38 7497.70 998.77 1092.06 399.84 1297.47 2499.37 199.70 3
OPU-MVS97.30 299.19 792.31 399.12 1298.54 2092.06 399.84 1299.11 299.37 199.74 1
GG-mvs-BLEND93.49 7194.94 14286.26 3381.62 37497.00 3788.32 13894.30 18491.23 596.21 24588.49 13597.43 7498.00 86
gg-mvs-nofinetune85.48 20782.90 23193.24 7894.51 15885.82 4279.22 37896.97 4061.19 37687.33 14753.01 39490.58 696.07 24886.07 15597.23 8097.81 102
baseline290.39 11290.21 10690.93 16990.86 26780.99 14895.20 24097.41 1786.03 12580.07 23294.61 17890.58 697.47 18587.29 14789.86 16994.35 221
iter_conf0590.14 11789.79 11891.17 16395.85 11586.93 2897.68 8188.67 36089.93 5481.73 21492.80 21390.37 896.03 24990.44 11080.65 25290.56 255
CHOSEN 280x42091.71 8191.85 7191.29 15894.94 14282.69 10887.89 34496.17 13285.94 12687.27 14894.31 18390.27 995.65 27594.04 6595.86 10895.53 196
DPM-MVS96.21 295.53 1398.26 196.26 10195.09 199.15 896.98 3893.39 1696.45 2598.79 890.17 1099.99 189.33 12699.25 699.70 3
ET-MVSNet_ETH3D90.01 11989.03 12592.95 9094.38 16286.77 3098.14 4796.31 12089.30 6163.33 35696.72 12290.09 1193.63 33590.70 10582.29 24398.46 55
MVSTER89.25 13388.92 13090.24 18995.98 11084.66 7596.79 15695.36 18387.19 10580.33 22790.61 24790.02 1295.97 25385.38 16178.64 26890.09 267
test_0728_THIRD88.38 7496.69 1898.76 1289.64 1399.76 3197.47 2498.84 2399.38 14
tttt051788.57 15088.19 14189.71 20793.00 20475.99 27895.67 21996.67 7580.78 23981.82 21194.40 18288.97 1497.58 17376.05 25386.31 20595.57 194
thisisatest053089.65 12589.02 12691.53 15293.46 19280.78 15596.52 17196.67 7581.69 22883.79 18594.90 17288.85 1597.68 16777.80 22887.49 19796.14 182
thisisatest051590.95 10290.26 10393.01 8894.03 17784.27 8397.91 6496.67 7583.18 19686.87 15395.51 14888.66 1697.85 16280.46 20489.01 17796.92 157
SED-MVS95.88 596.22 494.87 2399.03 1585.03 6799.12 1296.78 5588.72 6797.79 798.91 288.48 1799.82 1898.15 1198.97 1799.74 1
test_241102_ONE99.03 1585.03 6796.78 5588.72 6797.79 798.90 588.48 1799.82 18
DPE-MVScopyleft95.32 1195.55 1294.64 2998.79 2384.87 7297.77 7396.74 6686.11 12196.54 2498.89 688.39 1999.74 3897.67 2299.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_one_060198.91 1884.56 7896.70 7188.06 8096.57 2398.77 1088.04 20
test_241102_TWO96.78 5588.72 6797.70 998.91 287.86 2199.82 1898.15 1199.00 1599.47 9
DVP-MVScopyleft95.58 995.91 994.57 3099.05 985.18 5999.06 1796.46 10288.75 6596.69 1898.76 1287.69 2299.76 3197.90 1798.85 2198.77 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.05 985.18 5999.11 1596.78 5588.75 6597.65 1298.91 287.69 22
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2497.10 3295.17 392.11 7998.46 2887.33 2499.97 297.21 2899.31 499.63 7
patch_mono-295.14 1396.08 792.33 11798.44 4377.84 24198.43 3797.21 2392.58 2197.68 1197.65 7886.88 2599.83 1698.25 997.60 6899.33 17
TSAR-MVS + GP.94.35 2594.50 2393.89 4997.38 8483.04 10598.10 5295.29 18891.57 3293.81 5897.45 8786.64 2699.43 7696.28 3894.01 12999.20 22
TSAR-MVS + MP.94.79 2095.17 1893.64 6197.66 6984.10 8495.85 21396.42 10791.26 3597.49 1396.80 11886.50 2798.49 13195.54 4999.03 1398.33 61
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2299.06 1797.12 3094.66 596.79 1798.78 986.42 2899.95 397.59 2399.18 799.00 29
DeepPCF-MVS89.82 194.61 2296.17 589.91 20097.09 9070.21 33398.99 2396.69 7395.57 295.08 4199.23 186.40 2999.87 897.84 2098.66 3299.65 6
HPM-MVS++copyleft95.32 1195.48 1494.85 2498.62 3486.04 3697.81 7196.93 4492.45 2295.69 3298.50 2585.38 3099.85 1094.75 5699.18 798.65 45
dcpmvs_293.10 4493.46 4292.02 13597.77 6579.73 18594.82 25493.86 26686.91 10991.33 9196.76 11985.20 3198.06 15096.90 3297.60 6898.27 68
NCCC95.63 795.94 894.69 2899.21 685.15 6499.16 796.96 4194.11 1195.59 3398.64 1785.07 3299.91 495.61 4799.10 999.00 29
EPP-MVSNet89.76 12389.72 11989.87 20193.78 17976.02 27797.22 11396.51 9679.35 27185.11 16595.01 16984.82 3397.10 20787.46 14688.21 18996.50 171
fmvsm_l_conf0.5_n_a94.91 1595.30 1593.72 5894.50 15984.30 8199.14 1096.00 14491.94 3097.91 598.60 1884.78 3499.77 2998.84 496.03 10597.08 150
testing1192.48 6392.04 7093.78 5395.94 11286.00 3797.56 8997.08 3387.52 9489.32 12095.40 15084.60 3598.02 15191.93 9289.04 17697.32 136
fmvsm_l_conf0.5_n94.89 1695.24 1693.86 5094.42 16184.61 7699.13 1196.15 13392.06 2797.92 398.52 2384.52 3699.74 3898.76 595.67 11197.22 142
TEST998.64 3183.71 9097.82 6996.65 7884.29 17195.16 3698.09 4784.39 3799.36 81
train_agg94.28 2694.45 2593.74 5598.64 3183.71 9097.82 6996.65 7884.50 16295.16 3698.09 4784.33 3899.36 8195.91 4398.96 1998.16 73
test_898.63 3383.64 9397.81 7196.63 8384.50 16295.10 4098.11 4684.33 3899.23 86
SD-MVS94.84 1895.02 1994.29 3697.87 6484.61 7697.76 7596.19 13189.59 5896.66 2098.17 4384.33 3899.60 5996.09 3998.50 3798.66 44
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVScopyleft94.56 2394.75 2093.96 4898.84 2283.40 9898.04 5896.41 10885.79 12995.00 4398.28 3684.32 4199.18 9497.35 2698.77 2799.28 19
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
testing9991.91 7491.35 8093.60 6495.98 11085.70 4497.31 11196.92 4686.82 11288.91 12695.25 15384.26 4297.89 16188.80 13187.94 19197.21 144
旧先验197.39 8279.58 18996.54 9398.08 5084.00 4397.42 7597.62 116
CSCG92.02 7191.65 7693.12 8398.53 3680.59 15997.47 9797.18 2677.06 30584.64 17597.98 5783.98 4499.52 6990.72 10497.33 7799.23 21
testing9191.90 7591.31 8293.66 6095.99 10985.68 4697.39 10796.89 4786.75 11688.85 12895.23 15683.93 4597.90 16088.91 12887.89 19297.41 131
IB-MVS85.34 488.67 14687.14 16793.26 7793.12 20284.32 8098.76 2797.27 2187.19 10579.36 23890.45 24983.92 4698.53 12984.41 16769.79 31896.93 155
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CostFormer89.08 13488.39 13891.15 16493.13 20179.15 20088.61 33896.11 13683.14 19789.58 11686.93 29883.83 4796.87 21988.22 13985.92 21197.42 130
SteuartSystems-ACMMP94.13 3194.44 2693.20 8095.41 12681.35 14199.02 2196.59 8889.50 5994.18 5598.36 3283.68 4899.45 7594.77 5598.45 4098.81 35
Skip Steuart: Steuart Systems R&D Blog.
DELS-MVS94.98 1494.49 2496.44 696.42 9590.59 799.21 597.02 3694.40 991.46 8797.08 10683.32 4999.69 4992.83 8198.70 3199.04 27
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test_prior298.37 4086.08 12394.57 5098.02 5383.14 5095.05 5398.79 26
SMA-MVScopyleft94.70 2194.68 2194.76 2698.02 5985.94 4097.47 9796.77 6185.32 13897.92 398.70 1583.09 5199.84 1295.79 4499.08 1098.49 53
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ZD-MVS99.09 883.22 10296.60 8782.88 20593.61 6298.06 5282.93 5299.14 9795.51 5098.49 38
SF-MVS94.17 2994.05 3394.55 3197.56 7485.95 3897.73 7796.43 10684.02 17695.07 4298.74 1482.93 5299.38 7895.42 5198.51 3598.32 62
9.1494.26 3098.10 5798.14 4796.52 9584.74 15494.83 4798.80 782.80 5499.37 8095.95 4298.42 41
segment_acmp82.69 55
test_fmvsm_n_192094.81 1995.60 1192.45 11095.29 13080.96 15099.29 397.21 2394.50 797.29 1498.44 2982.15 5699.78 2898.56 797.68 6696.61 168
PAPM92.87 5092.40 5994.30 3592.25 22987.85 1996.40 18296.38 11391.07 3888.72 13296.90 11182.11 5797.37 19190.05 11797.70 6597.67 111
ETVMVS90.99 9990.26 10393.19 8195.81 11785.64 4896.97 14297.18 2685.43 13588.77 13194.86 17382.00 5896.37 23882.70 19288.60 18297.57 119
APD-MVScopyleft93.61 3793.59 3893.69 5998.76 2483.26 10197.21 11496.09 13782.41 21694.65 4998.21 3881.96 5998.81 11994.65 5898.36 4699.01 28
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
UWE-MVS88.56 15188.91 13187.50 25394.17 16872.19 31395.82 21597.05 3584.96 15084.78 17193.51 20481.33 6094.75 31279.43 21689.17 17395.57 194
CDPH-MVS93.12 4392.91 4993.74 5598.65 3083.88 8697.67 8296.26 12383.00 20293.22 6698.24 3781.31 6199.21 8889.12 12798.74 3098.14 75
MG-MVS94.25 2893.72 3495.85 1199.38 389.35 1197.98 6098.09 989.99 5392.34 7596.97 11081.30 6298.99 10788.54 13398.88 2099.20 22
test1294.25 3898.34 4685.55 5096.35 11792.36 7480.84 6399.22 8798.31 4897.98 88
MVS_030495.36 1095.20 1795.85 1194.89 14589.22 1298.83 2697.88 1194.68 495.14 3997.99 5480.80 6499.81 2198.60 697.95 5898.50 52
MM95.85 695.74 1096.15 896.34 9689.50 999.18 698.10 895.68 196.64 2197.92 6080.72 6599.80 2599.16 197.96 5799.15 24
baseline188.85 14187.49 15792.93 9295.21 13386.85 2995.47 22894.61 22387.29 10083.11 19394.99 17080.70 6696.89 21782.28 19473.72 29295.05 207
tpmrst88.36 15687.38 16191.31 15694.36 16379.92 17787.32 34895.26 19085.32 13888.34 13786.13 31480.60 6796.70 22783.78 17585.34 21997.30 139
PHI-MVS93.59 3893.63 3793.48 7298.05 5881.76 13198.64 3297.13 2882.60 21294.09 5698.49 2680.35 6899.85 1094.74 5798.62 3398.83 34
CDS-MVSNet89.50 12788.96 12891.14 16591.94 24680.93 15197.09 13395.81 15784.26 17284.72 17394.20 18880.31 6995.64 27683.37 18688.96 17896.85 160
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tpm287.35 17786.26 17890.62 17992.93 20978.67 21288.06 34395.99 14579.33 27287.40 14586.43 30980.28 7096.40 23680.23 20885.73 21596.79 161
1112_ss88.60 14987.47 15992.00 13693.21 19680.97 14996.47 17592.46 31183.64 19080.86 22097.30 9680.24 7197.62 17077.60 23485.49 21697.40 133
Test_1112_low_res88.03 16586.73 17391.94 13893.15 19980.88 15296.44 17892.41 31383.59 19280.74 22291.16 23880.18 7297.59 17277.48 23785.40 21797.36 135
DeepC-MVS_fast89.06 294.48 2494.30 2995.02 2098.86 2185.68 4698.06 5696.64 8193.64 1491.74 8598.54 2080.17 7399.90 592.28 8698.75 2899.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testing22291.09 9690.49 9892.87 9395.82 11685.04 6696.51 17397.28 2086.05 12489.13 12295.34 15280.16 7496.62 23185.82 15688.31 18796.96 153
MSLP-MVS++94.28 2694.39 2793.97 4798.30 4984.06 8598.64 3296.93 4490.71 4293.08 6898.70 1579.98 7599.21 8894.12 6499.07 1198.63 46
EPNet94.06 3294.15 3193.76 5497.27 8784.35 7998.29 4297.64 1594.57 695.36 3496.88 11379.96 7699.12 10091.30 9596.11 10297.82 101
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_111021_HR93.41 4093.39 4393.47 7497.34 8582.83 10797.56 8998.27 689.16 6389.71 11297.14 10279.77 7799.56 6693.65 6997.94 5998.02 81
miper_enhance_ethall85.95 19885.20 19188.19 23694.85 14679.76 18196.00 20294.06 25682.98 20377.74 25188.76 26979.42 7895.46 28580.58 20372.42 29989.36 281
TESTMET0.1,189.83 12289.34 12391.31 15692.54 21980.19 17297.11 12996.57 9086.15 12086.85 15491.83 22979.32 7996.95 21381.30 19992.35 15396.77 163
WTY-MVS92.65 5991.68 7595.56 1496.00 10888.90 1398.23 4497.65 1488.57 7089.82 11197.22 10079.29 8099.06 10489.57 12288.73 18198.73 41
HY-MVS84.06 691.63 8290.37 10295.39 1796.12 10588.25 1590.22 32797.58 1688.33 7690.50 10491.96 22579.26 8199.06 10490.29 11489.07 17598.88 33
PAPM_NR91.46 8690.82 9093.37 7598.50 4081.81 13095.03 25096.13 13484.65 15886.10 15997.65 7879.24 8299.75 3683.20 18796.88 8798.56 49
alignmvs92.97 4792.26 6395.12 1995.54 12387.77 2098.67 3096.38 11388.04 8193.01 6997.45 8779.20 8398.60 12593.25 7688.76 18098.99 31
新几何193.12 8397.44 7881.60 13896.71 7074.54 32291.22 9497.57 8279.13 8499.51 7177.40 23998.46 3998.26 69
test_fmvsmconf_n93.99 3394.36 2892.86 9492.82 21181.12 14499.26 496.37 11693.47 1595.16 3698.21 3879.00 8599.64 5598.21 1096.73 9397.83 99
JIA-IIPM79.00 29777.20 29684.40 31189.74 28964.06 36175.30 38895.44 17862.15 37081.90 20959.08 39278.92 8695.59 28066.51 31885.78 21493.54 235
CS-MVS92.73 5393.48 4190.48 18396.27 10075.93 28098.55 3594.93 20089.32 6094.54 5197.67 7378.91 8797.02 20993.80 6697.32 7898.49 53
MVSFormer91.36 8990.57 9593.73 5793.00 20488.08 1794.80 25694.48 22980.74 24094.90 4497.13 10378.84 8895.10 30383.77 17697.46 7198.02 81
lupinMVS93.87 3593.58 3994.75 2793.00 20488.08 1799.15 895.50 17391.03 3994.90 4497.66 7478.84 8897.56 17494.64 5997.46 7198.62 47
testdata90.13 19295.92 11374.17 29696.49 10173.49 33194.82 4897.99 5478.80 9097.93 15483.53 18497.52 7098.29 66
PAPR92.74 5292.17 6694.45 3298.89 2084.87 7297.20 11696.20 12987.73 8988.40 13698.12 4578.71 9199.76 3187.99 14096.28 9898.74 37
EI-MVSNet-Vis-set91.84 7791.77 7492.04 13497.60 7181.17 14396.61 16696.87 4988.20 7889.19 12197.55 8678.69 9299.14 9790.29 11490.94 16495.80 188
HFP-MVS92.89 4992.86 5192.98 8998.71 2581.12 14497.58 8796.70 7185.20 14391.75 8497.97 5978.47 9399.71 4590.95 9898.41 4298.12 77
ZNCC-MVS92.75 5192.60 5693.23 7998.24 5181.82 12997.63 8396.50 9885.00 14991.05 9697.74 7178.38 9499.80 2590.48 10798.34 4798.07 79
Patchmatch-test78.25 30074.72 31488.83 22091.20 25774.10 29773.91 39188.70 35959.89 38266.82 34085.12 33078.38 9494.54 31848.84 38079.58 26097.86 96
Vis-MVSNet (Re-imp)88.88 14088.87 13288.91 21893.89 17874.43 29496.93 14794.19 24884.39 16583.22 19195.67 14278.24 9694.70 31478.88 22394.40 12597.61 117
testing380.74 28181.17 25779.44 34691.15 26063.48 36497.16 12395.76 15980.83 23771.36 31693.15 20978.22 9787.30 38043.19 38779.67 25887.55 328
tpm85.55 20584.47 20688.80 22190.19 27975.39 28588.79 33694.69 21484.83 15283.96 18285.21 32678.22 9794.68 31676.32 25178.02 27696.34 176
MP-MVScopyleft92.61 6092.67 5492.42 11398.13 5679.73 18597.33 11096.20 12985.63 13190.53 10397.66 7478.14 9999.70 4892.12 8898.30 4997.85 97
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HyFIR lowres test89.36 12988.60 13491.63 15094.91 14480.76 15695.60 22495.53 17082.56 21384.03 17991.24 23778.03 10096.81 22387.07 15088.41 18697.32 136
ACMMP_NAP93.46 3993.23 4594.17 4297.16 8884.28 8296.82 15496.65 7886.24 11994.27 5397.99 5477.94 10199.83 1693.39 7198.57 3498.39 59
CS-MVS-test92.98 4693.67 3690.90 17196.52 9476.87 26098.68 2994.73 21390.36 5094.84 4697.89 6477.94 10197.15 20594.28 6397.80 6398.70 43
原ACMM191.22 16297.77 6578.10 23196.61 8481.05 23491.28 9397.42 9177.92 10398.98 10879.85 21398.51 3596.59 169
EI-MVSNet-UG-set91.35 9091.22 8391.73 14597.39 8280.68 15796.47 17596.83 5287.92 8488.30 13997.36 9377.84 10499.13 9989.43 12589.45 17195.37 200
test250690.96 10190.39 10092.65 10393.54 18682.46 11496.37 18397.35 1886.78 11487.55 14495.25 15377.83 10597.50 18284.07 17094.80 11897.98 88
patchmatchnet-post77.09 37177.78 10695.39 286
sam_mvs177.59 10797.54 120
EIA-MVS91.73 7892.05 6990.78 17694.52 15576.40 26998.06 5695.34 18689.19 6288.90 12797.28 9877.56 10897.73 16690.77 10396.86 8998.20 70
GST-MVS92.43 6592.22 6593.04 8798.17 5481.64 13697.40 10696.38 11384.71 15690.90 9997.40 9277.55 10999.76 3189.75 12097.74 6497.72 107
MP-MVS-pluss92.58 6192.35 6093.29 7697.30 8682.53 11196.44 17896.04 14284.68 15789.12 12398.37 3177.48 11099.74 3893.31 7598.38 4497.59 118
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CP-MVS92.54 6292.60 5692.34 11598.50 4079.90 17898.40 3996.40 11084.75 15390.48 10598.09 4777.40 11199.21 8891.15 9798.23 5197.92 92
region2R92.72 5592.70 5392.79 9798.68 2680.53 16497.53 9296.51 9685.22 14191.94 8297.98 5777.26 11299.67 5390.83 10298.37 4598.18 71
PatchmatchNetpermissive86.83 18485.12 19591.95 13794.12 17282.27 11786.55 35595.64 16684.59 16082.98 19584.99 33277.26 11295.96 25668.61 30691.34 16297.64 114
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
XVS92.69 5792.71 5292.63 10598.52 3780.29 16797.37 10896.44 10487.04 10791.38 8897.83 6877.24 11499.59 6090.46 10898.07 5398.02 81
X-MVStestdata86.26 19384.14 21292.63 10598.52 3780.29 16797.37 10896.44 10487.04 10791.38 8820.73 40577.24 11499.59 6090.46 10898.07 5398.02 81
ETV-MVS92.72 5592.87 5092.28 12194.54 15481.89 12597.98 6095.21 19189.77 5793.11 6796.83 11577.23 11697.50 18295.74 4595.38 11497.44 129
ACMMPR92.69 5792.67 5492.75 9898.66 2880.57 16097.58 8796.69 7385.20 14391.57 8697.92 6077.01 11799.67 5390.95 9898.41 4298.00 86
myMVS_eth3d81.93 26582.18 24181.18 33792.13 23567.18 34993.97 27494.23 24482.43 21473.39 29893.57 20276.98 11887.86 37550.53 37582.34 24188.51 303
UniMVSNet_NR-MVSNet85.49 20684.59 20188.21 23589.44 29579.36 19396.71 16296.41 10885.22 14178.11 24890.98 24276.97 11995.14 30079.14 22068.30 33290.12 264
test_fmvsmconf0.1_n93.08 4593.22 4692.65 10388.45 30580.81 15499.00 2295.11 19393.21 1794.00 5797.91 6276.84 12099.59 6097.91 1696.55 9697.54 120
DP-MVS Recon91.72 8090.85 8994.34 3499.50 185.00 6998.51 3695.96 14880.57 24488.08 14197.63 8076.84 12099.89 785.67 15894.88 11798.13 76
CANet94.89 1694.64 2295.63 1397.55 7588.12 1699.06 1796.39 11294.07 1295.34 3597.80 6976.83 12299.87 897.08 3097.64 6798.89 32
PVSNet_Blended_VisFu91.24 9290.77 9192.66 10295.09 13682.40 11597.77 7395.87 15588.26 7786.39 15593.94 19476.77 12399.27 8488.80 13194.00 13096.31 179
FIs86.73 18786.10 18088.61 22490.05 28380.21 17196.14 19896.95 4285.56 13478.37 24692.30 21876.73 12495.28 29379.51 21479.27 26290.35 259
MTAPA92.45 6492.31 6192.86 9497.90 6180.85 15392.88 30096.33 11887.92 8490.20 10898.18 4076.71 12599.76 3192.57 8598.09 5297.96 91
miper_ehance_all_eth84.57 22183.60 22087.50 25392.64 21778.25 22495.40 23293.47 28679.28 27576.41 26787.64 28676.53 12695.24 29578.58 22572.42 29989.01 293
fmvsm_s_conf0.5_n93.69 3694.13 3292.34 11594.56 15282.01 11999.07 1697.13 2892.09 2596.25 2698.53 2276.47 12799.80 2598.39 894.71 12095.22 205
SR-MVS92.16 6892.27 6291.83 14398.37 4578.41 21996.67 16595.76 15982.19 22091.97 8098.07 5176.44 12898.64 12393.71 6897.27 7998.45 56
PVSNet_BlendedMVS90.05 11889.96 11390.33 18797.47 7683.86 8798.02 5996.73 6787.98 8289.53 11789.61 26176.42 12999.57 6494.29 6179.59 25987.57 325
PVSNet_Blended93.13 4292.98 4893.57 6697.47 7683.86 8799.32 296.73 6791.02 4089.53 11796.21 12976.42 12999.57 6494.29 6195.81 11097.29 140
test-mter88.95 13688.60 13489.98 19692.26 22777.23 25597.11 12995.96 14885.32 13886.30 15791.38 23376.37 13196.78 22580.82 20191.92 15795.94 185
test22296.15 10478.41 21995.87 21196.46 10271.97 34289.66 11497.45 8776.33 13298.24 5098.30 65
FC-MVSNet-test85.96 19785.39 18887.66 24689.38 29678.02 23295.65 22196.87 4985.12 14577.34 25391.94 22776.28 13394.74 31377.09 24078.82 26690.21 262
test_post33.80 40176.17 13495.97 253
PGM-MVS91.93 7391.80 7392.32 11998.27 5079.74 18495.28 23497.27 2183.83 18490.89 10097.78 7076.12 13599.56 6688.82 13097.93 6197.66 112
Patchmatch-RL test76.65 31574.01 32284.55 30777.37 38064.23 35978.49 38282.84 38478.48 28764.63 35173.40 37976.05 13691.70 35676.99 24157.84 36997.72 107
cl2285.11 21284.17 21087.92 24095.06 14078.82 20795.51 22694.22 24679.74 26576.77 26187.92 28375.96 13795.68 27279.93 21272.42 29989.27 283
TAMVS88.48 15287.79 14890.56 18191.09 26179.18 19896.45 17795.88 15383.64 19083.12 19293.33 20575.94 13895.74 27182.40 19388.27 18896.75 165
EPNet_dtu87.65 17387.89 14586.93 26794.57 15171.37 32796.72 16096.50 9888.56 7187.12 15195.02 16875.91 13994.01 32866.62 31590.00 16795.42 199
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
mvs_anonymous88.68 14587.62 15391.86 14094.80 14781.69 13593.53 28594.92 20182.03 22378.87 24290.43 25075.77 14095.34 28985.04 16393.16 14398.55 51
SR-MVS-dyc-post91.29 9191.45 7990.80 17497.76 6776.03 27596.20 19595.44 17880.56 24590.72 10197.84 6675.76 14198.61 12491.99 9096.79 9097.75 105
test_yl91.46 8690.53 9694.24 3997.41 8085.18 5998.08 5397.72 1280.94 23589.85 10996.14 13075.61 14298.81 11990.42 11288.56 18498.74 37
DCV-MVSNet91.46 8690.53 9694.24 3997.41 8085.18 5998.08 5397.72 1280.94 23589.85 10996.14 13075.61 14298.81 11990.42 11288.56 18498.74 37
HPM-MVScopyleft91.62 8391.53 7891.89 13997.88 6379.22 19796.99 13795.73 16282.07 22289.50 11997.19 10175.59 14498.93 11490.91 10097.94 5997.54 120
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
fmvsm_s_conf0.5_n_a93.34 4193.71 3592.22 12493.38 19481.71 13498.86 2596.98 3891.64 3196.85 1698.55 1975.58 14599.77 2997.88 1993.68 13495.18 206
mPP-MVS91.88 7691.82 7292.07 13198.38 4478.63 21397.29 11296.09 13785.12 14588.45 13597.66 7475.53 14699.68 5189.83 11898.02 5697.88 93
PatchT79.75 28876.85 30088.42 22689.55 29275.49 28477.37 38494.61 22363.07 36782.46 19873.32 38075.52 14793.41 33951.36 37184.43 22296.36 174
CR-MVSNet83.53 23881.36 25590.06 19390.16 28079.75 18279.02 38091.12 33284.24 17382.27 20580.35 35975.45 14893.67 33463.37 33386.25 20696.75 165
Patchmtry77.36 31074.59 31585.67 28889.75 28775.75 28377.85 38391.12 33260.28 37971.23 31780.35 35975.45 14893.56 33657.94 35067.34 34387.68 322
thres100view90088.30 15986.95 17192.33 11796.10 10684.90 7197.14 12698.85 282.69 21083.41 18893.66 20075.43 15097.93 15469.04 30386.24 20894.17 222
thres600view788.06 16486.70 17592.15 12996.10 10685.17 6397.14 12698.85 282.70 20983.41 18893.66 20075.43 15097.82 16367.13 31285.88 21293.45 238
UniMVSNet (Re)85.31 20984.23 20988.55 22589.75 28780.55 16196.72 16096.89 4785.42 13678.40 24588.93 26775.38 15295.52 28378.58 22568.02 33589.57 275
tfpn200view988.48 15287.15 16592.47 10996.21 10285.30 5797.44 10098.85 283.37 19383.99 18093.82 19675.36 15397.93 15469.04 30386.24 20894.17 222
thres40088.42 15587.15 16592.23 12396.21 10285.30 5797.44 10098.85 283.37 19383.99 18093.82 19675.36 15397.93 15469.04 30386.24 20893.45 238
sam_mvs75.35 155
fmvsm_s_conf0.1_n92.93 4893.16 4792.24 12290.52 27381.92 12398.42 3896.24 12591.17 3696.02 3098.35 3375.34 15699.74 3897.84 2094.58 12295.05 207
jason92.73 5392.23 6494.21 4190.50 27487.30 2698.65 3195.09 19490.61 4492.76 7297.13 10375.28 15797.30 19493.32 7496.75 9298.02 81
jason: jason.
c3_l83.80 23482.65 23687.25 26192.10 23777.74 24695.25 23793.04 30578.58 28676.01 27587.21 29475.25 15895.11 30277.54 23668.89 32688.91 299
MVS_Test90.29 11589.18 12493.62 6395.23 13184.93 7094.41 26194.66 21884.31 16790.37 10791.02 24075.13 15997.82 16383.11 18994.42 12498.12 77
thres20088.92 13887.65 15092.73 10096.30 9985.62 4997.85 6798.86 184.38 16684.82 17093.99 19375.12 16098.01 15270.86 29586.67 20194.56 220
EPMVS87.47 17685.90 18292.18 12695.41 12682.26 11887.00 35196.28 12185.88 12884.23 17785.57 32075.07 16196.26 24271.14 29392.50 15098.03 80
UA-Net88.92 13888.48 13790.24 18994.06 17477.18 25793.04 29794.66 21887.39 9891.09 9593.89 19574.92 16298.18 14975.83 25591.43 16195.35 201
test_fmvsmvis_n_192092.12 6992.10 6892.17 12790.87 26681.04 14698.34 4193.90 26392.71 2087.24 14997.90 6374.83 16399.72 4396.96 3196.20 9995.76 190
tpm cat183.63 23781.38 25490.39 18593.53 19178.19 23085.56 36295.09 19470.78 34878.51 24483.28 34574.80 16497.03 20866.77 31384.05 22495.95 184
h-mvs3389.30 13188.95 12990.36 18695.07 13876.04 27496.96 14497.11 3190.39 4892.22 7795.10 16674.70 16598.86 11693.14 7765.89 35096.16 181
hse-mvs288.22 16288.21 14088.25 23393.54 18673.41 29995.41 23195.89 15290.39 4892.22 7794.22 18674.70 16596.66 23093.14 7764.37 35594.69 219
APD-MVS_3200maxsize91.23 9391.35 8090.89 17297.89 6276.35 27096.30 18895.52 17279.82 26391.03 9797.88 6574.70 16598.54 12892.11 8996.89 8697.77 104
IS-MVSNet88.67 14688.16 14290.20 19193.61 18376.86 26196.77 15993.07 30484.02 17683.62 18795.60 14574.69 16896.24 24478.43 22793.66 13697.49 127
EC-MVSNet91.73 7892.11 6790.58 18093.54 18677.77 24498.07 5594.40 23687.44 9692.99 7097.11 10574.59 16996.87 21993.75 6797.08 8297.11 148
casdiffmvs_mvgpermissive91.13 9590.45 9993.17 8292.99 20783.58 9497.46 9994.56 22687.69 9087.19 15094.98 17174.50 17097.60 17191.88 9392.79 14698.34 60
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MDTV_nov1_ep1383.69 21594.09 17381.01 14786.78 35396.09 13783.81 18584.75 17284.32 33774.44 17196.54 23263.88 32985.07 220
MDTV_nov1_ep13_2view81.74 13286.80 35280.65 24285.65 16174.26 17276.52 24796.98 152
cl____83.27 24282.12 24286.74 26892.20 23075.95 27995.11 24693.27 29678.44 28974.82 29087.02 29774.19 17395.19 29774.67 26669.32 32289.09 288
DIV-MVS_self_test83.27 24282.12 24286.74 26892.19 23175.92 28195.11 24693.26 29778.44 28974.81 29187.08 29674.19 17395.19 29774.66 26769.30 32389.11 287
fmvsm_s_conf0.1_n_a92.38 6692.49 5892.06 13288.08 30981.62 13797.97 6296.01 14390.62 4396.58 2298.33 3474.09 17599.71 4597.23 2793.46 13994.86 211
casdiffmvspermissive90.95 10290.39 10092.63 10592.82 21182.53 11196.83 15294.47 23187.69 9088.47 13495.56 14774.04 17697.54 17890.90 10192.74 14797.83 99
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tpmvs83.04 24880.77 26189.84 20295.43 12577.96 23585.59 36195.32 18775.31 31676.27 27183.70 34273.89 17797.41 18759.53 34481.93 24694.14 224
test_post185.88 36030.24 40473.77 17895.07 30673.89 273
baseline90.76 10590.10 10992.74 9992.90 21082.56 11094.60 25894.56 22687.69 9089.06 12595.67 14273.76 17997.51 18190.43 11192.23 15598.16 73
EI-MVSNet85.80 20085.20 19187.59 24991.55 25177.41 25195.13 24495.36 18380.43 25080.33 22794.71 17673.72 18095.97 25376.96 24378.64 26889.39 276
IterMVS-LS83.93 23182.80 23487.31 25991.46 25477.39 25295.66 22093.43 28880.44 24875.51 28487.26 29273.72 18095.16 29976.99 24170.72 30989.39 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AUN-MVS86.25 19485.57 18588.26 23293.57 18573.38 30095.45 22995.88 15383.94 18085.47 16394.21 18773.70 18296.67 22983.54 18364.41 35494.73 218
miper_lstm_enhance81.66 27080.66 26484.67 30491.19 25871.97 31991.94 31093.19 29877.86 29372.27 31285.26 32473.46 18393.42 33873.71 27667.05 34588.61 301
diffmvspermissive91.17 9490.74 9292.44 11293.11 20382.50 11396.25 19193.62 28187.79 8790.40 10695.93 13473.44 18497.42 18693.62 7092.55 14997.41 131
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
RE-MVS-def91.18 8697.76 6776.03 27596.20 19595.44 17880.56 24590.72 10197.84 6673.36 18591.99 9096.79 9097.75 105
DeepC-MVS86.58 391.53 8591.06 8892.94 9194.52 15581.89 12595.95 20595.98 14690.76 4183.76 18696.76 11973.24 18699.71 4591.67 9496.96 8497.22 142
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RPMNet79.85 28775.92 30691.64 14890.16 28079.75 18279.02 38095.44 17858.43 38682.27 20572.55 38373.03 18798.41 13846.10 38486.25 20696.75 165
CHOSEN 1792x268891.07 9890.21 10693.64 6195.18 13483.53 9596.26 19096.13 13488.92 6484.90 16993.10 21072.86 18899.62 5888.86 12995.67 11197.79 103
eth_miper_zixun_eth83.12 24682.01 24486.47 27391.85 24974.80 28994.33 26493.18 30079.11 27875.74 28387.25 29372.71 18995.32 29176.78 24467.13 34489.27 283
canonicalmvs92.27 6791.22 8395.41 1695.80 11888.31 1497.09 13394.64 22188.49 7292.99 7097.31 9472.68 19098.57 12793.38 7388.58 18399.36 16
mvsany_test187.58 17488.22 13985.67 28889.78 28667.18 34995.25 23787.93 36283.96 17988.79 12997.06 10872.52 19194.53 31992.21 8786.45 20495.30 203
API-MVS90.18 11688.97 12793.80 5298.66 2882.95 10697.50 9695.63 16775.16 31786.31 15697.69 7272.49 19299.90 581.26 20096.07 10398.56 49
nrg03086.79 18585.43 18790.87 17388.76 29985.34 5497.06 13594.33 24084.31 16780.45 22591.98 22472.36 19396.36 23988.48 13671.13 30590.93 253
MVS_111021_LR91.60 8491.64 7791.47 15495.74 11978.79 21096.15 19796.77 6188.49 7288.64 13397.07 10772.33 19499.19 9393.13 7996.48 9796.43 173
test-LLR88.48 15287.98 14489.98 19692.26 22777.23 25597.11 12995.96 14883.76 18786.30 15791.38 23372.30 19596.78 22580.82 20191.92 15795.94 185
test0.0.03 182.79 25282.48 23883.74 31886.81 32272.22 31196.52 17195.03 19783.76 18773.00 30593.20 20672.30 19588.88 37164.15 32877.52 27790.12 264
KD-MVS_2432*160077.63 30774.92 31285.77 28490.86 26779.44 19088.08 34193.92 26176.26 30967.05 33882.78 34772.15 19791.92 35161.53 33741.62 39485.94 350
miper_refine_blended77.63 30774.92 31285.77 28490.86 26779.44 19088.08 34193.92 26176.26 30967.05 33882.78 34772.15 19791.92 35161.53 33741.62 39485.94 350
FA-MVS(test-final)87.71 17286.23 17992.17 12794.19 16780.55 16187.16 35096.07 14082.12 22185.98 16088.35 27672.04 19998.49 13180.26 20789.87 16897.48 128
Effi-MVS+90.70 10689.90 11693.09 8593.61 18383.48 9695.20 24092.79 30883.22 19591.82 8395.70 14071.82 20097.48 18491.25 9693.67 13598.32 62
sss90.87 10489.96 11393.60 6494.15 16983.84 8997.14 12698.13 785.93 12789.68 11396.09 13271.67 20199.30 8387.69 14389.16 17497.66 112
Test By Simon71.65 202
HPM-MVS_fast90.38 11490.17 10891.03 16797.61 7077.35 25397.15 12595.48 17479.51 26988.79 12996.90 11171.64 20398.81 11987.01 15197.44 7396.94 154
MVS90.60 10888.64 13396.50 594.25 16590.53 893.33 28997.21 2377.59 29678.88 24197.31 9471.52 20499.69 4989.60 12198.03 5599.27 20
dp84.30 22682.31 24090.28 18894.24 16677.97 23486.57 35495.53 17079.94 26280.75 22185.16 32871.49 20596.39 23763.73 33083.36 22996.48 172
ACMMPcopyleft90.39 11289.97 11291.64 14897.58 7378.21 22896.78 15796.72 6984.73 15584.72 17397.23 9971.22 20699.63 5788.37 13892.41 15297.08 150
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PCF-MVS84.09 586.77 18685.00 19792.08 13092.06 24183.07 10492.14 30894.47 23179.63 26776.90 26094.78 17571.15 20799.20 9272.87 27991.05 16393.98 228
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TAPA-MVS81.61 1285.02 21383.67 21689.06 21496.79 9273.27 30595.92 20794.79 21174.81 32080.47 22496.83 11571.07 20898.19 14849.82 37792.57 14895.71 191
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
pcd_1.5k_mvsjas5.92 3777.89 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40971.04 2090.00 4100.00 4090.00 4080.00 406
PS-MVSNAJss84.91 21584.30 20886.74 26885.89 33674.40 29594.95 25194.16 25083.93 18176.45 26690.11 25771.04 20995.77 26683.16 18879.02 26590.06 269
PS-MVSNAJ94.17 2993.52 4096.10 995.65 12192.35 298.21 4595.79 15892.42 2396.24 2798.18 4071.04 20999.17 9596.77 3397.39 7696.79 161
xiu_mvs_v2_base93.92 3493.26 4495.91 1095.07 13892.02 698.19 4695.68 16492.06 2796.01 3198.14 4470.83 21298.96 10996.74 3596.57 9596.76 164
FE-MVS86.06 19684.15 21191.78 14494.33 16479.81 17984.58 36696.61 8476.69 30785.00 16787.38 28970.71 21398.37 13970.39 29891.70 16097.17 147
CPTT-MVS89.72 12489.87 11789.29 21198.33 4773.30 30297.70 7995.35 18575.68 31387.40 14597.44 9070.43 21498.25 14489.56 12396.90 8596.33 178
WR-MVS_H81.02 27780.09 27183.79 31688.08 30971.26 32894.46 25996.54 9380.08 25872.81 30886.82 29970.36 21592.65 34364.18 32767.50 34187.46 330
NR-MVSNet83.35 24081.52 25388.84 21988.76 29981.31 14294.45 26095.16 19284.65 15867.81 33490.82 24370.36 21594.87 30974.75 26466.89 34790.33 260
VNet92.11 7091.22 8394.79 2596.91 9186.98 2797.91 6497.96 1086.38 11893.65 6095.74 13870.16 21798.95 11193.39 7188.87 17998.43 57
Fast-Effi-MVS+87.93 16886.94 17290.92 17094.04 17579.16 19998.26 4393.72 27781.29 23183.94 18392.90 21169.83 21896.68 22876.70 24591.74 15996.93 155
PLCcopyleft83.97 788.00 16687.38 16189.83 20398.02 5976.46 26797.16 12394.43 23479.26 27681.98 20896.28 12869.36 21999.27 8477.71 23292.25 15493.77 232
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
BH-w/o88.24 16187.47 15990.54 18295.03 14178.54 21497.41 10593.82 26884.08 17478.23 24794.51 18169.34 22097.21 19980.21 20994.58 12295.87 187
MAR-MVS90.63 10790.22 10591.86 14098.47 4278.20 22997.18 11996.61 8483.87 18388.18 14098.18 4068.71 22199.75 3683.66 18197.15 8197.63 115
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
114514_t88.79 14487.57 15592.45 11098.21 5381.74 13296.99 13795.45 17775.16 31782.48 19795.69 14168.59 22298.50 13080.33 20595.18 11597.10 149
DU-MVS84.57 22183.33 22588.28 23188.76 29979.36 19396.43 18095.41 18285.42 13678.11 24890.82 24367.61 22395.14 30079.14 22068.30 33290.33 260
Baseline_NR-MVSNet81.22 27580.07 27384.68 30385.32 34475.12 28796.48 17488.80 35676.24 31177.28 25586.40 31067.61 22394.39 32275.73 25766.73 34884.54 359
test_fmvsmconf0.01_n91.08 9790.68 9392.29 12082.43 36480.12 17497.94 6393.93 25992.07 2691.97 8097.60 8167.56 22599.53 6897.09 2995.56 11397.21 144
WR-MVS84.32 22582.96 22988.41 22789.38 29680.32 16696.59 16796.25 12483.97 17876.63 26390.36 25167.53 22694.86 31075.82 25670.09 31690.06 269
OMC-MVS88.80 14388.16 14290.72 17795.30 12977.92 23894.81 25594.51 22886.80 11384.97 16896.85 11467.53 22698.60 12585.08 16287.62 19495.63 192
LCM-MVSNet-Re83.75 23583.54 22184.39 31293.54 18664.14 36092.51 30384.03 38083.90 18266.14 34586.59 30367.36 22892.68 34284.89 16592.87 14596.35 175
v14882.41 26080.89 25986.99 26686.18 33176.81 26296.27 18993.82 26880.49 24775.28 28786.11 31567.32 22995.75 26875.48 25967.03 34688.42 309
CNLPA86.96 18085.37 18991.72 14697.59 7279.34 19597.21 11491.05 33574.22 32378.90 24096.75 12167.21 23098.95 11174.68 26590.77 16596.88 159
FMVSNet384.71 21782.71 23590.70 17894.55 15387.71 2195.92 20794.67 21781.73 22775.82 28088.08 28166.99 23194.47 32071.23 29075.38 28589.91 271
v881.88 26680.06 27487.32 25886.63 32379.04 20594.41 26193.65 28078.77 28473.19 30485.57 32066.87 23295.81 26473.84 27567.61 34087.11 333
131488.94 13787.20 16494.17 4293.21 19685.73 4393.33 28996.64 8182.89 20475.98 27696.36 12666.83 23399.39 7783.52 18596.02 10697.39 134
BH-untuned86.95 18185.94 18189.99 19594.52 15577.46 25096.78 15793.37 29381.80 22576.62 26493.81 19866.64 23497.02 20976.06 25293.88 13295.48 198
GeoE86.36 19085.20 19189.83 20393.17 19876.13 27297.53 9292.11 31679.58 26880.99 21894.01 19266.60 23596.17 24773.48 27789.30 17297.20 146
CVMVSNet84.83 21685.57 18582.63 32991.55 25160.38 37495.13 24495.03 19780.60 24382.10 20794.71 17666.40 23690.19 36874.30 27090.32 16697.31 138
PMMVS89.46 12889.92 11588.06 23794.64 14969.57 33996.22 19294.95 19987.27 10191.37 9096.54 12565.88 23797.39 18988.54 13393.89 13197.23 141
v2v48283.46 23981.86 24788.25 23386.19 33079.65 18796.34 18694.02 25781.56 22977.32 25488.23 27865.62 23896.03 24977.77 22969.72 32089.09 288
v114482.90 25181.27 25687.78 24386.29 32879.07 20496.14 19893.93 25980.05 25977.38 25286.80 30065.50 23995.93 25875.21 26170.13 31388.33 311
v1081.43 27279.53 28087.11 26386.38 32578.87 20694.31 26593.43 28877.88 29273.24 30385.26 32465.44 24095.75 26872.14 28467.71 33986.72 337
HQP2-MVS65.40 241
HQP-MVS87.91 16987.55 15688.98 21792.08 23878.48 21597.63 8394.80 20990.52 4582.30 20194.56 17965.40 24197.32 19287.67 14483.01 23291.13 249
V4283.04 24881.53 25287.57 25186.27 32979.09 20395.87 21194.11 25380.35 25277.22 25686.79 30165.32 24396.02 25177.74 23070.14 31287.61 324
pmmvs482.54 25680.79 26087.79 24286.11 33280.49 16593.55 28493.18 30077.29 30073.35 30189.40 26365.26 24495.05 30775.32 26073.61 29387.83 319
3Dnovator+82.88 889.63 12687.85 14694.99 2194.49 16086.76 3197.84 6895.74 16186.10 12275.47 28596.02 13365.00 24599.51 7182.91 19197.07 8398.72 42
mvsmamba85.17 21184.54 20287.05 26587.94 31175.11 28896.22 19287.79 36486.91 10978.55 24391.77 23064.93 24695.91 25986.94 15279.80 25490.12 264
HQP_MVS87.50 17587.09 16888.74 22291.86 24777.96 23597.18 11994.69 21489.89 5581.33 21594.15 18964.77 24797.30 19487.08 14882.82 23690.96 251
plane_prior691.98 24377.92 23864.77 247
v14419282.43 25780.73 26287.54 25285.81 33778.22 22595.98 20393.78 27379.09 27977.11 25786.49 30564.66 24995.91 25974.20 27169.42 32188.49 305
TranMVSNet+NR-MVSNet83.24 24481.71 24987.83 24187.71 31478.81 20996.13 20094.82 20884.52 16176.18 27490.78 24564.07 25094.60 31774.60 26866.59 34990.09 267
CP-MVSNet81.01 27880.08 27283.79 31687.91 31270.51 33094.29 26995.65 16580.83 23772.54 31188.84 26863.71 25192.32 34668.58 30768.36 33188.55 302
cdsmvs_eth3d_5k21.43 37228.57 3750.00 3910.00 4140.00 4160.00 40295.93 1510.00 4090.00 41097.66 7463.57 2520.00 4100.00 4090.00 4080.00 406
Vis-MVSNetpermissive88.67 14687.82 14791.24 16092.68 21378.82 20796.95 14593.85 26787.55 9387.07 15295.13 16463.43 25397.21 19977.58 23596.15 10197.70 110
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v119282.31 26180.55 26687.60 24885.94 33478.47 21895.85 21393.80 27179.33 27276.97 25986.51 30463.33 25495.87 26173.11 27870.13 31388.46 307
CANet_DTU90.98 10090.04 11093.83 5194.76 14886.23 3496.32 18793.12 30393.11 1893.71 5996.82 11763.08 25599.48 7384.29 16895.12 11695.77 189
ab-mvs87.08 17884.94 19893.48 7293.34 19583.67 9288.82 33595.70 16381.18 23284.55 17690.14 25662.72 25698.94 11385.49 16082.54 24097.85 97
v192192082.02 26480.23 27087.41 25685.62 33877.92 23895.79 21693.69 27878.86 28376.67 26286.44 30762.50 25795.83 26372.69 28069.77 31988.47 306
CLD-MVS87.97 16787.48 15889.44 20992.16 23480.54 16398.14 4794.92 20191.41 3379.43 23795.40 15062.34 25897.27 19790.60 10682.90 23590.50 257
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
3Dnovator82.32 1089.33 13087.64 15194.42 3393.73 18285.70 4497.73 7796.75 6586.73 11776.21 27395.93 13462.17 25999.68 5181.67 19897.81 6297.88 93
ADS-MVSNet279.57 29177.53 29485.71 28693.78 17972.13 31479.48 37686.11 37273.09 33480.14 22979.99 36162.15 26090.14 36959.49 34583.52 22694.85 212
ADS-MVSNet81.26 27478.36 28789.96 19893.78 17979.78 18079.48 37693.60 28273.09 33480.14 22979.99 36162.15 26095.24 29559.49 34583.52 22694.85 212
QAPM86.88 18284.51 20393.98 4694.04 17585.89 4197.19 11796.05 14173.62 32875.12 28895.62 14462.02 26299.74 3870.88 29496.06 10496.30 180
Effi-MVS+-dtu84.61 22084.90 20083.72 31991.96 24463.14 36694.95 25193.34 29485.57 13279.79 23387.12 29561.99 26395.61 27983.55 18285.83 21392.41 245
XXY-MVS83.84 23382.00 24589.35 21087.13 32081.38 14095.72 21794.26 24380.15 25775.92 27890.63 24661.96 26496.52 23378.98 22273.28 29790.14 263
AdaColmapbinary88.81 14287.61 15492.39 11499.33 479.95 17696.70 16495.58 16877.51 29783.05 19496.69 12361.90 26599.72 4384.29 16893.47 13897.50 126
VPA-MVSNet85.32 20883.83 21489.77 20690.25 27782.63 10996.36 18497.07 3483.03 20181.21 21789.02 26661.58 26696.31 24185.02 16470.95 30790.36 258
dmvs_testset72.00 33973.36 32567.91 36783.83 35931.90 40785.30 36377.12 39282.80 20763.05 35992.46 21761.54 26782.55 39042.22 38971.89 30389.29 282
CL-MVSNet_self_test75.81 31974.14 32180.83 34078.33 37667.79 34694.22 27093.52 28577.28 30169.82 32781.54 35361.47 26889.22 37057.59 35353.51 37685.48 354
test_djsdf83.00 25082.45 23984.64 30584.07 35669.78 33694.80 25694.48 22980.74 24075.41 28687.70 28561.32 26995.10 30383.77 17679.76 25589.04 291
v124081.70 26879.83 27887.30 26085.50 33977.70 24795.48 22793.44 28778.46 28876.53 26586.44 30760.85 27095.84 26271.59 28770.17 31188.35 310
RRT_MVS83.88 23283.27 22685.71 28687.53 31872.12 31595.35 23394.33 24083.81 18575.86 27991.28 23660.55 27195.09 30583.93 17276.76 27989.90 272
D2MVS82.67 25481.55 25186.04 28187.77 31376.47 26695.21 23996.58 8982.66 21170.26 32585.46 32360.39 27295.80 26576.40 24979.18 26385.83 352
XVG-OURS-SEG-HR85.74 20285.16 19487.49 25590.22 27871.45 32691.29 31994.09 25481.37 23083.90 18495.22 15760.30 27397.53 18085.58 15984.42 22393.50 236
PEN-MVS79.47 29378.26 28983.08 32586.36 32668.58 34393.85 27894.77 21279.76 26471.37 31588.55 27259.79 27492.46 34464.50 32665.40 35188.19 313
TransMVSNet (Re)76.94 31374.38 31784.62 30685.92 33575.25 28695.28 23489.18 35373.88 32767.22 33586.46 30659.64 27594.10 32659.24 34852.57 38084.50 360
DP-MVS81.47 27178.28 28891.04 16698.14 5578.48 21595.09 24986.97 36661.14 37771.12 31992.78 21559.59 27699.38 7853.11 36886.61 20295.27 204
v7n79.32 29577.34 29585.28 29584.05 35772.89 31093.38 28793.87 26575.02 31970.68 32184.37 33659.58 27795.62 27867.60 30867.50 34187.32 332
F-COLMAP84.50 22383.44 22487.67 24595.22 13272.22 31195.95 20593.78 27375.74 31276.30 27095.18 16159.50 27898.45 13572.67 28186.59 20392.35 246
LS3D82.22 26279.94 27689.06 21497.43 7974.06 29893.20 29592.05 31761.90 37173.33 30295.21 15859.35 27999.21 8854.54 36492.48 15193.90 230
BH-RMVSNet86.84 18385.28 19091.49 15395.35 12880.26 17096.95 14592.21 31582.86 20681.77 21395.46 14959.34 28097.64 16969.79 30193.81 13396.57 170
MVP-Stereo82.65 25581.67 25085.59 29186.10 33378.29 22293.33 28992.82 30777.75 29469.17 33287.98 28259.28 28195.76 26771.77 28596.88 8782.73 370
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PS-CasMVS80.27 28579.18 28183.52 32287.56 31669.88 33594.08 27295.29 18880.27 25572.08 31388.51 27559.22 28292.23 34867.49 30968.15 33488.45 308
DTE-MVSNet78.37 29977.06 29882.32 33285.22 34567.17 35293.40 28693.66 27978.71 28570.53 32388.29 27759.06 28392.23 34861.38 34063.28 36087.56 326
TR-MVS86.30 19284.93 19990.42 18494.63 15077.58 24896.57 16893.82 26880.30 25382.42 19995.16 16258.74 28497.55 17674.88 26387.82 19396.13 183
OPM-MVS85.84 19985.10 19688.06 23788.34 30677.83 24295.72 21794.20 24787.89 8680.45 22594.05 19158.57 28597.26 19883.88 17382.76 23889.09 288
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PatchMatch-RL85.00 21483.66 21789.02 21695.86 11474.55 29392.49 30493.60 28279.30 27479.29 23991.47 23158.53 28698.45 13570.22 29992.17 15694.07 227
pm-mvs180.05 28678.02 29186.15 27985.42 34075.81 28295.11 24692.69 31077.13 30270.36 32487.43 28858.44 28795.27 29471.36 28964.25 35687.36 331
WB-MVSnew84.08 22983.51 22285.80 28391.34 25676.69 26595.62 22396.27 12281.77 22681.81 21292.81 21258.23 28894.70 31466.66 31487.06 19885.99 349
SDMVSNet87.02 17985.61 18491.24 16094.14 17083.30 10093.88 27795.98 14684.30 16979.63 23592.01 22158.23 28897.68 16790.28 11682.02 24492.75 241
our_test_377.90 30575.37 30985.48 29385.39 34176.74 26393.63 28191.67 32373.39 33265.72 34784.65 33558.20 29093.13 34157.82 35167.87 33686.57 340
IterMVS-SCA-FT80.51 28479.10 28384.73 30289.63 29174.66 29092.98 29891.81 32280.05 25971.06 32085.18 32758.04 29191.40 35772.48 28370.70 31088.12 315
SCA85.63 20383.64 21891.60 15192.30 22581.86 12792.88 30095.56 16984.85 15182.52 19685.12 33058.04 29195.39 28673.89 27387.58 19697.54 120
EU-MVSNet76.92 31476.95 29976.83 35684.10 35554.73 38791.77 31392.71 30972.74 33769.57 32988.69 27058.03 29387.43 37964.91 32570.00 31788.33 311
Syy-MVS77.97 30478.05 29077.74 35392.13 23556.85 38093.97 27494.23 24482.43 21473.39 29893.57 20257.95 29487.86 37532.40 39382.34 24188.51 303
IterMVS80.67 28279.16 28285.20 29689.79 28576.08 27392.97 29991.86 31980.28 25471.20 31885.14 32957.93 29591.34 35872.52 28270.74 30888.18 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dmvs_re84.10 22882.90 23187.70 24491.41 25573.28 30390.59 32593.19 29885.02 14777.96 25093.68 19957.92 29696.18 24675.50 25880.87 24993.63 234
anonymousdsp80.98 27979.97 27584.01 31381.73 36670.44 33192.49 30493.58 28477.10 30472.98 30686.31 31157.58 29794.90 30879.32 21778.63 27086.69 338
xiu_mvs_v1_base_debu90.54 10989.54 12093.55 6792.31 22287.58 2396.99 13794.87 20487.23 10293.27 6397.56 8357.43 29898.32 14092.72 8293.46 13994.74 215
xiu_mvs_v1_base90.54 10989.54 12093.55 6792.31 22287.58 2396.99 13794.87 20487.23 10293.27 6397.56 8357.43 29898.32 14092.72 8293.46 13994.74 215
xiu_mvs_v1_base_debi90.54 10989.54 12093.55 6792.31 22287.58 2396.99 13794.87 20487.23 10293.27 6397.56 8357.43 29898.32 14092.72 8293.46 13994.74 215
OpenMVScopyleft79.58 1486.09 19583.62 21993.50 7090.95 26386.71 3297.44 10095.83 15675.35 31472.64 30995.72 13957.42 30199.64 5571.41 28895.85 10994.13 225
ECVR-MVScopyleft88.35 15787.25 16391.65 14793.54 18679.40 19296.56 17090.78 34086.78 11485.57 16295.25 15357.25 30297.56 17484.73 16694.80 11897.98 88
test111188.11 16387.04 16991.35 15593.15 19978.79 21096.57 16890.78 34086.88 11185.04 16695.20 15957.23 30397.39 18983.88 17394.59 12197.87 95
PVSNet82.34 989.02 13587.79 14892.71 10195.49 12481.50 13997.70 7997.29 1987.76 8885.47 16395.12 16556.90 30498.90 11580.33 20594.02 12897.71 109
Fast-Effi-MVS+-dtu83.33 24182.60 23785.50 29289.55 29269.38 34096.09 20191.38 32782.30 21775.96 27791.41 23256.71 30595.58 28175.13 26284.90 22191.54 247
ppachtmachnet_test77.19 31174.22 31986.13 28085.39 34178.22 22593.98 27391.36 32971.74 34467.11 33784.87 33356.67 30693.37 34052.21 36964.59 35386.80 336
VPNet84.69 21882.92 23090.01 19489.01 29883.45 9796.71 16295.46 17685.71 13079.65 23492.18 22056.66 30796.01 25283.05 19067.84 33890.56 255
GA-MVS85.79 20184.04 21391.02 16889.47 29480.27 16996.90 14994.84 20785.57 13280.88 21989.08 26456.56 30896.47 23577.72 23185.35 21896.34 176
XVG-OURS85.18 21084.38 20787.59 24990.42 27671.73 32391.06 32294.07 25582.00 22483.29 19095.08 16756.42 30997.55 17683.70 18083.42 22893.49 237
GBi-Net82.42 25880.43 26888.39 22892.66 21481.95 12094.30 26693.38 29079.06 28075.82 28085.66 31656.38 31093.84 33071.23 29075.38 28589.38 278
test182.42 25880.43 26888.39 22892.66 21481.95 12094.30 26693.38 29079.06 28075.82 28085.66 31656.38 31093.84 33071.23 29075.38 28589.38 278
FMVSNet282.79 25280.44 26789.83 20392.66 21485.43 5395.42 23094.35 23879.06 28074.46 29287.28 29056.38 31094.31 32369.72 30274.68 28989.76 273
pmmvs581.34 27379.54 27986.73 27185.02 34676.91 25996.22 19291.65 32477.65 29573.55 29688.61 27155.70 31394.43 32174.12 27273.35 29688.86 300
tfpnnormal78.14 30175.42 30886.31 27788.33 30779.24 19694.41 26196.22 12773.51 32969.81 32885.52 32255.43 31495.75 26847.65 38267.86 33783.95 365
LFMVS89.27 13287.64 15194.16 4497.16 8885.52 5197.18 11994.66 21879.17 27789.63 11596.57 12455.35 31598.22 14689.52 12489.54 17098.74 37
ACMM80.70 1383.72 23682.85 23386.31 27791.19 25872.12 31595.88 21094.29 24280.44 24877.02 25891.96 22555.24 31697.14 20679.30 21880.38 25389.67 274
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MDA-MVSNet_test_wron73.54 32970.43 33782.86 32684.55 34971.85 32091.74 31491.32 33167.63 35746.73 38781.09 35655.11 31790.42 36755.91 36159.76 36686.31 343
YYNet173.53 33070.43 33782.85 32784.52 35171.73 32391.69 31591.37 32867.63 35746.79 38681.21 35555.04 31890.43 36655.93 36059.70 36786.38 342
LTVRE_ROB73.68 1877.99 30275.74 30784.74 30190.45 27572.02 31786.41 35691.12 33272.57 33966.63 34287.27 29154.95 31996.98 21156.29 35975.98 28085.21 356
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LPG-MVS_test84.20 22783.49 22386.33 27490.88 26473.06 30695.28 23494.13 25182.20 21876.31 26893.20 20654.83 32096.95 21383.72 17880.83 25088.98 294
LGP-MVS_train86.33 27490.88 26473.06 30694.13 25182.20 21876.31 26893.20 20654.83 32096.95 21383.72 17880.83 25088.98 294
cascas86.50 18884.48 20592.55 10892.64 21785.95 3897.04 13695.07 19675.32 31580.50 22391.02 24054.33 32297.98 15386.79 15387.62 19493.71 233
ACMP81.66 1184.00 23083.22 22786.33 27491.53 25372.95 30995.91 20993.79 27283.70 18973.79 29592.22 21954.31 32396.89 21783.98 17179.74 25789.16 286
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_cas_vis1_n_192089.90 12190.02 11189.54 20890.14 28274.63 29198.71 2894.43 23493.04 1992.40 7396.35 12753.41 32499.08 10395.59 4896.16 10094.90 209
PVSNet_077.72 1581.70 26878.95 28589.94 19990.77 27076.72 26495.96 20496.95 4285.01 14870.24 32688.53 27452.32 32598.20 14786.68 15444.08 39194.89 210
sd_testset84.62 21983.11 22889.17 21294.14 17077.78 24391.54 31894.38 23784.30 16979.63 23592.01 22152.28 32696.98 21177.67 23382.02 24492.75 241
MSDG80.62 28377.77 29389.14 21393.43 19377.24 25491.89 31190.18 34469.86 35368.02 33391.94 22752.21 32798.84 11759.32 34783.12 23091.35 248
test_vis1_n_192089.95 12090.59 9488.03 23992.36 22168.98 34299.12 1294.34 23993.86 1393.64 6197.01 10951.54 32899.59 6096.76 3496.71 9495.53 196
WB-MVS57.26 35456.22 35760.39 37869.29 39035.91 40586.39 35770.06 39859.84 38346.46 38872.71 38151.18 32978.11 39215.19 40234.89 39767.14 391
DSMNet-mixed73.13 33272.45 32875.19 36277.51 37946.82 39285.09 36482.01 38567.61 36169.27 33181.33 35450.89 33086.28 38254.54 36483.80 22592.46 243
UGNet87.73 17186.55 17691.27 15995.16 13579.11 20196.35 18596.23 12688.14 7987.83 14390.48 24850.65 33199.09 10280.13 21094.03 12795.60 193
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FMVSNet576.46 31674.16 32083.35 32490.05 28376.17 27189.58 33089.85 34671.39 34665.29 34980.42 35850.61 33287.70 37861.05 34269.24 32486.18 345
MS-PatchMatch83.05 24781.82 24886.72 27289.64 29079.10 20294.88 25394.59 22579.70 26670.67 32289.65 26050.43 33396.82 22270.82 29795.99 10784.25 362
Anonymous2023120675.29 32273.64 32380.22 34280.75 36763.38 36593.36 28890.71 34273.09 33467.12 33683.70 34250.33 33490.85 36353.63 36770.10 31586.44 341
SSC-MVS56.01 35754.96 35859.17 37968.42 39234.13 40684.98 36569.23 39958.08 38745.36 38971.67 38750.30 33577.46 39314.28 40332.33 39865.91 392
N_pmnet61.30 35360.20 35664.60 37284.32 35217.00 41391.67 31610.98 41161.77 37258.45 37578.55 36549.89 33691.83 35442.27 38863.94 35784.97 357
jajsoiax82.12 26381.15 25885.03 29984.19 35470.70 32994.22 27093.95 25883.07 19973.48 29789.75 25949.66 33795.37 28882.24 19579.76 25589.02 292
RPSCF77.73 30676.63 30181.06 33888.66 30355.76 38587.77 34587.88 36364.82 36674.14 29492.79 21449.22 33896.81 22367.47 31076.88 27890.62 254
SixPastTwentyTwo76.04 31774.32 31881.22 33684.54 35061.43 37291.16 32089.30 35277.89 29164.04 35286.31 31148.23 33994.29 32463.54 33263.84 35887.93 318
test20.0372.36 33671.15 33375.98 36077.79 37759.16 37892.40 30689.35 35174.09 32561.50 36584.32 33748.09 34085.54 38550.63 37462.15 36383.24 366
VDDNet86.44 18984.51 20392.22 12491.56 25081.83 12897.10 13294.64 22169.50 35487.84 14295.19 16048.01 34197.92 15989.82 11986.92 19996.89 158
VDD-MVS88.28 16087.02 17092.06 13295.09 13680.18 17397.55 9194.45 23383.09 19889.10 12495.92 13647.97 34298.49 13193.08 8086.91 20097.52 125
test_fmvs187.79 17088.52 13685.62 29092.98 20864.31 35897.88 6692.42 31287.95 8392.24 7695.82 13747.94 34398.44 13795.31 5294.09 12694.09 226
Anonymous2023121179.72 28977.19 29787.33 25795.59 12277.16 25895.18 24394.18 24959.31 38472.57 31086.20 31347.89 34495.66 27374.53 26969.24 32489.18 285
OurMVSNet-221017-077.18 31276.06 30480.55 34183.78 36060.00 37690.35 32691.05 33577.01 30666.62 34387.92 28347.73 34594.03 32771.63 28668.44 33087.62 323
CMPMVSbinary54.94 2175.71 32174.56 31679.17 34879.69 37255.98 38289.59 32993.30 29560.28 37953.85 38389.07 26547.68 34696.33 24076.55 24681.02 24885.22 355
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
mvs_tets81.74 26780.71 26384.84 30084.22 35370.29 33293.91 27693.78 27382.77 20873.37 30089.46 26247.36 34795.31 29281.99 19679.55 26188.92 298
iter_conf05_1191.95 7291.17 8794.29 3696.33 9785.50 5299.61 191.84 32094.36 1097.89 698.51 2446.72 34898.24 14596.54 3698.75 2899.13 25
MDA-MVSNet-bldmvs71.45 34067.94 34581.98 33485.33 34368.50 34492.35 30788.76 35770.40 34942.99 39081.96 35046.57 34991.31 35948.75 38154.39 37486.11 346
pmmvs-eth3d73.59 32870.66 33582.38 33076.40 38473.38 30089.39 33389.43 35072.69 33860.34 37077.79 36746.43 35091.26 36066.42 31957.06 37082.51 371
bld_raw_dy_0_6488.31 15886.38 17794.07 4596.33 9784.79 7497.19 11784.75 37694.48 882.36 20098.47 2746.18 35198.30 14396.54 3681.13 24799.13 25
Anonymous2024052983.15 24580.60 26590.80 17495.74 11978.27 22396.81 15594.92 20160.10 38181.89 21092.54 21645.82 35298.82 11879.25 21978.32 27495.31 202
MVS-HIRNet71.36 34167.00 34684.46 31090.58 27269.74 33779.15 37987.74 36546.09 39161.96 36450.50 39545.14 35395.64 27653.74 36688.11 19088.00 317
KD-MVS_self_test70.97 34269.31 34275.95 36176.24 38655.39 38687.45 34690.94 33870.20 35162.96 36077.48 36844.01 35488.09 37361.25 34153.26 37784.37 361
FMVSNet179.50 29276.54 30288.39 22888.47 30481.95 12094.30 26693.38 29073.14 33372.04 31485.66 31643.86 35593.84 33065.48 32272.53 29889.38 278
K. test v373.62 32771.59 33279.69 34482.98 36259.85 37790.85 32488.83 35577.13 30258.90 37282.11 34943.62 35691.72 35565.83 32154.10 37587.50 329
pmmvs674.65 32571.67 33183.60 32179.13 37469.94 33493.31 29290.88 33961.05 37865.83 34684.15 33943.43 35794.83 31166.62 31560.63 36586.02 348
ACMH75.40 1777.99 30274.96 31087.10 26490.67 27176.41 26893.19 29691.64 32572.47 34063.44 35587.61 28743.34 35897.16 20258.34 34973.94 29187.72 320
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_040272.68 33469.54 34182.09 33388.67 30271.81 32292.72 30286.77 36961.52 37362.21 36283.91 34043.22 35993.76 33334.60 39272.23 30280.72 380
lessismore_v079.98 34380.59 36958.34 37980.87 38658.49 37483.46 34443.10 36093.89 32963.11 33448.68 38487.72 320
UniMVSNet_ETH3D80.86 28078.75 28687.22 26286.31 32772.02 31791.95 30993.76 27673.51 32975.06 28990.16 25543.04 36195.66 27376.37 25078.55 27193.98 228
UnsupCasMVSNet_eth73.25 33170.57 33681.30 33577.53 37866.33 35487.24 34993.89 26480.38 25157.90 37781.59 35242.91 36290.56 36565.18 32448.51 38587.01 335
COLMAP_ROBcopyleft73.24 1975.74 32073.00 32783.94 31492.38 22069.08 34191.85 31286.93 36761.48 37465.32 34890.27 25242.27 36396.93 21650.91 37375.63 28485.80 353
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet79.18 29675.99 30588.72 22387.37 31980.66 15879.96 37591.82 32177.38 29974.33 29381.87 35141.78 36490.74 36466.36 32083.10 23194.76 214
ACMH+76.62 1677.47 30974.94 31185.05 29891.07 26271.58 32593.26 29390.01 34571.80 34364.76 35088.55 27241.62 36596.48 23462.35 33671.00 30687.09 334
ITE_SJBPF82.38 33087.00 32165.59 35589.55 34879.99 26169.37 33091.30 23541.60 36695.33 29062.86 33574.63 29086.24 344
tt080581.20 27679.06 28487.61 24786.50 32472.97 30893.66 28095.48 17474.11 32476.23 27291.99 22341.36 36797.40 18877.44 23874.78 28892.45 244
Anonymous20240521184.41 22481.93 24691.85 14296.78 9378.41 21997.44 10091.34 33070.29 35084.06 17894.26 18541.09 36898.96 10979.46 21582.65 23998.17 72
new-patchmatchnet68.85 34765.93 34977.61 35473.57 38963.94 36290.11 32888.73 35871.62 34555.08 38173.60 37840.84 36987.22 38151.35 37248.49 38681.67 379
test_fmvs1_n86.34 19186.72 17485.17 29787.54 31763.64 36396.91 14892.37 31487.49 9591.33 9195.58 14640.81 37098.46 13495.00 5493.49 13793.41 240
USDC78.65 29876.25 30385.85 28287.58 31574.60 29289.58 33090.58 34384.05 17563.13 35788.23 27840.69 37196.86 22166.57 31775.81 28386.09 347
XVG-ACMP-BASELINE79.38 29477.90 29283.81 31584.98 34767.14 35389.03 33493.18 30080.26 25672.87 30788.15 28038.55 37296.26 24276.05 25378.05 27588.02 316
AllTest75.92 31873.06 32684.47 30892.18 23267.29 34791.07 32184.43 37867.63 35763.48 35390.18 25338.20 37397.16 20257.04 35573.37 29488.97 296
TestCases84.47 30892.18 23267.29 34784.43 37867.63 35763.48 35390.18 25338.20 37397.16 20257.04 35573.37 29488.97 296
Anonymous2024052172.06 33869.91 33978.50 35177.11 38161.67 37191.62 31790.97 33765.52 36462.37 36179.05 36436.32 37590.96 36257.75 35268.52 32982.87 367
test_vis1_n85.60 20485.70 18385.33 29484.79 34864.98 35696.83 15291.61 32687.36 9991.00 9894.84 17436.14 37697.18 20195.66 4693.03 14493.82 231
UnsupCasMVSNet_bld68.60 34864.50 35280.92 33974.63 38767.80 34583.97 36892.94 30665.12 36554.63 38268.23 38835.97 37792.17 35060.13 34344.83 38982.78 369
tmp_tt41.54 36741.93 36940.38 38520.10 41126.84 40961.93 39759.09 40614.81 40428.51 39980.58 35735.53 37848.33 40663.70 33113.11 40345.96 399
testgi74.88 32473.40 32479.32 34780.13 37161.75 36993.21 29486.64 37079.49 27066.56 34491.06 23935.51 37988.67 37256.79 35871.25 30487.56 326
OpenMVS_ROBcopyleft68.52 2073.02 33369.57 34083.37 32380.54 37071.82 32193.60 28388.22 36162.37 36961.98 36383.15 34635.31 38095.47 28445.08 38575.88 28282.82 368
test_fmvs279.59 29079.90 27778.67 34982.86 36355.82 38495.20 24089.55 34881.09 23380.12 23189.80 25834.31 38193.51 33787.82 14178.36 27386.69 338
TDRefinement69.20 34665.78 35079.48 34566.04 39662.21 36888.21 34086.12 37162.92 36861.03 36885.61 31933.23 38294.16 32555.82 36253.02 37882.08 375
LF4IMVS72.36 33670.82 33476.95 35579.18 37356.33 38186.12 35886.11 37269.30 35563.06 35886.66 30233.03 38392.25 34765.33 32368.64 32882.28 374
MIMVSNet169.44 34466.65 34877.84 35276.48 38362.84 36787.42 34788.97 35466.96 36257.75 37879.72 36332.77 38485.83 38446.32 38363.42 35984.85 358
EG-PatchMatch MVS74.92 32372.02 33083.62 32083.76 36173.28 30393.62 28292.04 31868.57 35658.88 37383.80 34131.87 38595.57 28256.97 35778.67 26782.00 376
new_pmnet66.18 35063.18 35375.18 36376.27 38561.74 37083.79 36984.66 37756.64 38851.57 38471.85 38631.29 38687.93 37449.98 37662.55 36175.86 385
TinyColmap72.41 33568.99 34482.68 32888.11 30869.59 33888.41 33985.20 37465.55 36357.91 37684.82 33430.80 38795.94 25751.38 37068.70 32782.49 373
pmmvs365.75 35162.18 35476.45 35867.12 39564.54 35788.68 33785.05 37554.77 39057.54 37973.79 37729.40 38886.21 38355.49 36347.77 38778.62 382
test_vis1_rt73.96 32672.40 32978.64 35083.91 35861.16 37395.63 22268.18 40076.32 30860.09 37174.77 37429.01 38997.54 17887.74 14275.94 28177.22 384
EGC-MVSNET52.46 36147.56 36467.15 36881.98 36560.11 37582.54 37372.44 3960.11 4080.70 40974.59 37525.11 39083.26 38729.04 39561.51 36458.09 393
mvsany_test367.19 34965.34 35172.72 36463.08 39748.57 39083.12 37178.09 39172.07 34161.21 36677.11 37022.94 39187.78 37778.59 22451.88 38181.80 377
PM-MVS69.32 34566.93 34776.49 35773.60 38855.84 38385.91 35979.32 39074.72 32161.09 36778.18 36621.76 39291.10 36170.86 29556.90 37182.51 371
test_method56.77 35554.53 35963.49 37476.49 38240.70 40075.68 38774.24 39419.47 40248.73 38571.89 38519.31 39365.80 40257.46 35447.51 38883.97 364
DeepMVS_CXcopyleft64.06 37378.53 37543.26 39868.11 40269.94 35238.55 39276.14 37218.53 39479.34 39143.72 38641.62 39469.57 388
ambc76.02 35968.11 39351.43 38864.97 39689.59 34760.49 36974.49 37617.17 39592.46 34461.50 33952.85 37984.17 363
test_fmvs369.56 34369.19 34370.67 36569.01 39147.05 39190.87 32386.81 36871.31 34766.79 34177.15 36916.40 39683.17 38881.84 19762.51 36281.79 378
FPMVS55.09 35852.93 36161.57 37655.98 40040.51 40183.11 37283.41 38337.61 39434.95 39571.95 38414.40 39776.95 39429.81 39465.16 35267.25 389
test_f64.01 35262.13 35569.65 36663.00 39845.30 39783.66 37080.68 38761.30 37555.70 38072.62 38214.23 39884.64 38669.84 30058.11 36879.00 381
APD_test156.56 35653.58 36065.50 36967.93 39446.51 39477.24 38672.95 39538.09 39342.75 39175.17 37313.38 39982.78 38940.19 39054.53 37367.23 390
EMVS31.70 37131.45 37332.48 38750.72 40623.95 41174.78 38952.30 40920.36 40116.08 40531.48 40312.80 40053.60 40511.39 40513.10 40419.88 402
ANet_high46.22 36341.28 37061.04 37739.91 40946.25 39570.59 39376.18 39358.87 38523.09 40148.00 39812.58 40166.54 40128.65 39613.62 40270.35 387
E-PMN32.70 37032.39 37233.65 38653.35 40325.70 41074.07 39053.33 40821.08 40017.17 40433.63 40211.85 40254.84 40412.98 40414.04 40120.42 401
Gipumacopyleft45.11 36642.05 36854.30 38280.69 36851.30 38935.80 40083.81 38128.13 39627.94 40034.53 40011.41 40376.70 39621.45 39954.65 37234.90 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS250.90 36246.31 36564.67 37155.53 40146.67 39377.30 38571.02 39740.89 39234.16 39659.32 3919.83 40476.14 39740.09 39128.63 39971.21 386
LCM-MVSNet52.52 36048.24 36365.35 37047.63 40741.45 39972.55 39283.62 38231.75 39537.66 39357.92 3939.19 40576.76 39549.26 37844.60 39077.84 383
test_vis3_rt54.10 35951.04 36263.27 37558.16 39946.08 39684.17 36749.32 41056.48 38936.56 39449.48 3978.03 40691.91 35367.29 31149.87 38251.82 396
testf145.70 36442.41 36655.58 38053.29 40440.02 40268.96 39462.67 40427.45 39729.85 39761.58 3895.98 40773.83 39928.49 39743.46 39252.90 394
APD_test245.70 36442.41 36655.58 38053.29 40440.02 40268.96 39462.67 40427.45 39729.85 39761.58 3895.98 40773.83 39928.49 39743.46 39252.90 394
PMVScopyleft34.80 2339.19 36835.53 37150.18 38329.72 41030.30 40859.60 39866.20 40326.06 39917.91 40349.53 3963.12 40974.09 39818.19 40149.40 38346.14 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive35.65 2233.85 36929.49 37446.92 38441.86 40836.28 40450.45 39956.52 40718.75 40318.28 40237.84 3992.41 41058.41 40318.71 40020.62 40046.06 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d14.10 37313.89 37614.72 38855.23 40222.91 41233.83 4013.56 4124.94 4054.11 4062.28 4082.06 41119.66 40710.23 4068.74 4051.59 405
test1239.07 37511.73 3781.11 3890.50 4130.77 41489.44 3320.20 4140.34 4072.15 40810.72 4070.34 4120.32 4081.79 4080.08 4072.23 403
testmvs9.92 37412.94 3770.84 3900.65 4120.29 41593.78 2790.39 4130.42 4062.85 40715.84 4060.17 4130.30 4092.18 4070.21 4061.91 404
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.11 37610.81 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41097.30 960.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS67.18 34949.00 379
FOURS198.51 3978.01 23398.13 5096.21 12883.04 20094.39 52
MSC_two_6792asdad97.14 399.05 992.19 496.83 5299.81 2198.08 1498.81 2499.43 11
No_MVS97.14 399.05 992.19 496.83 5299.81 2198.08 1498.81 2499.43 11
eth-test20.00 414
eth-test0.00 414
IU-MVS99.03 1585.34 5496.86 5192.05 2998.74 198.15 1198.97 1799.42 13
save fliter98.24 5183.34 9998.61 3496.57 9091.32 34
test_0728_SECOND95.14 1899.04 1486.14 3599.06 1796.77 6199.84 1297.90 1798.85 2199.45 10
GSMVS97.54 120
test_part298.90 1985.14 6596.07 29
MTGPAbinary96.33 118
MTMP97.53 9268.16 401
gm-plane-assit92.27 22679.64 18884.47 16495.15 16397.93 15485.81 157
test9_res96.00 4199.03 1398.31 64
agg_prior294.30 6099.00 1598.57 48
agg_prior98.59 3583.13 10396.56 9294.19 5499.16 96
test_prior482.34 11697.75 76
test_prior93.09 8598.68 2681.91 12496.40 11099.06 10498.29 66
旧先验296.97 14274.06 32696.10 2897.76 16588.38 137
新几何296.42 181
无先验96.87 15096.78 5577.39 29899.52 6979.95 21198.43 57
原ACMM296.84 151
testdata299.48 7376.45 248
testdata195.57 22587.44 96
plane_prior791.86 24777.55 249
plane_prior594.69 21497.30 19487.08 14882.82 23690.96 251
plane_prior494.15 189
plane_prior377.75 24590.17 5281.33 215
plane_prior297.18 11989.89 55
plane_prior191.95 245
plane_prior77.96 23597.52 9590.36 5082.96 234
n20.00 415
nn0.00 415
door-mid79.75 389
test1196.50 98
door80.13 388
HQP5-MVS78.48 215
HQP-NCC92.08 23897.63 8390.52 4582.30 201
ACMP_Plane92.08 23897.63 8390.52 4582.30 201
BP-MVS87.67 144
HQP4-MVS82.30 20197.32 19291.13 249
HQP3-MVS94.80 20983.01 232
NP-MVS92.04 24278.22 22594.56 179
ACMMP++_ref78.45 272
ACMMP++79.05 264