| MSP-MVS | | | 95.62 7 | 96.54 1 | 92.86 85 | 98.31 48 | 80.10 167 | 97.42 100 | 96.78 49 | 92.20 22 | 97.11 12 | 98.29 31 | 93.46 1 | 99.10 99 | 96.01 36 | 99.30 5 | 99.38 14 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| PC_three_1452 | | | | | | | | | | 91.12 33 | 98.33 2 | 98.42 26 | 92.51 2 | 99.81 21 | 98.96 3 | 99.37 1 | 99.70 3 |
|
| DVP-MVS++ | | | 96.05 4 | 96.41 3 | 94.96 22 | 99.05 9 | 85.34 49 | 98.13 47 | 96.77 55 | 88.38 71 | 97.70 6 | 98.77 10 | 92.06 3 | 99.84 12 | 97.47 22 | 99.37 1 | 99.70 3 |
|
| OPU-MVS | | | | | 97.30 2 | 99.19 7 | 92.31 3 | 99.12 9 | | | | 98.54 19 | 92.06 3 | 99.84 12 | 99.11 2 | 99.37 1 | 99.74 1 |
|
| GG-mvs-BLEND | | | | | 93.49 64 | 94.94 135 | 86.26 33 | 81.62 365 | 97.00 33 | | 88.32 130 | 94.30 175 | 91.23 5 | 96.21 236 | 88.49 129 | 97.43 73 | 98.00 84 |
|
| gg-mvs-nofinetune | | | 85.48 197 | 82.90 220 | 93.24 71 | 94.51 151 | 85.82 41 | 79.22 369 | 96.97 36 | 61.19 367 | 87.33 139 | 53.01 385 | 90.58 6 | 96.07 239 | 86.07 149 | 97.23 79 | 97.81 100 |
|
| baseline2 | | | 90.39 103 | 90.21 97 | 90.93 160 | 90.86 256 | 80.99 140 | 95.20 230 | 97.41 17 | 86.03 118 | 80.07 222 | 94.61 169 | 90.58 6 | 97.47 178 | 87.29 141 | 89.86 166 | 94.35 211 |
|
| iter_conf05 | | | 90.14 108 | 89.79 109 | 91.17 154 | 95.85 109 | 86.93 28 | 97.68 78 | 88.67 351 | 89.93 50 | 81.73 204 | 92.80 202 | 90.37 8 | 96.03 240 | 90.44 105 | 80.65 242 | 90.56 246 |
|
| CHOSEN 280x420 | | | 91.71 74 | 91.85 67 | 91.29 149 | 94.94 135 | 82.69 100 | 87.89 335 | 96.17 125 | 85.94 119 | 87.27 140 | 94.31 174 | 90.27 9 | 95.65 267 | 94.04 61 | 95.86 106 | 95.53 186 |
|
| DPM-MVS | | | 96.21 2 | 95.53 12 | 98.26 1 | 96.26 98 | 95.09 1 | 99.15 7 | 96.98 34 | 93.39 14 | 96.45 22 | 98.79 8 | 90.17 10 | 99.99 1 | 89.33 121 | 99.25 6 | 99.70 3 |
|
| ET-MVSNet_ETH3D | | | 90.01 110 | 89.03 117 | 92.95 82 | 94.38 153 | 86.77 30 | 98.14 44 | 96.31 114 | 89.30 57 | 63.33 347 | 96.72 118 | 90.09 11 | 93.63 326 | 90.70 100 | 82.29 233 | 98.46 53 |
|
| MVSTER | | | 89.25 125 | 88.92 122 | 90.24 181 | 95.98 106 | 84.66 68 | 96.79 149 | 95.36 174 | 87.19 101 | 80.33 217 | 90.61 238 | 90.02 12 | 95.97 245 | 85.38 154 | 78.64 258 | 90.09 258 |
|
| test_0728_THIRD | | | | | | | | | | 88.38 71 | 96.69 15 | 98.76 12 | 89.64 13 | 99.76 30 | 97.47 22 | 98.84 23 | 99.38 14 |
|
| tttt0517 | | | 88.57 142 | 88.19 132 | 89.71 199 | 93.00 194 | 75.99 269 | 95.67 210 | 96.67 69 | 80.78 230 | 81.82 202 | 94.40 173 | 88.97 14 | 97.58 166 | 76.05 245 | 86.31 195 | 95.57 185 |
|
| thisisatest0530 | | | 89.65 116 | 89.02 118 | 91.53 143 | 93.46 182 | 80.78 147 | 96.52 164 | 96.67 69 | 81.69 219 | 83.79 176 | 94.90 164 | 88.85 15 | 97.68 160 | 77.80 220 | 87.49 188 | 96.14 173 |
|
| thisisatest0515 | | | 90.95 93 | 90.26 95 | 93.01 80 | 94.03 167 | 84.27 75 | 97.91 61 | 96.67 69 | 83.18 187 | 86.87 145 | 95.51 144 | 88.66 16 | 97.85 155 | 80.46 197 | 89.01 172 | 96.92 148 |
|
| SED-MVS | | | 95.88 5 | 96.22 4 | 94.87 23 | 99.03 15 | 85.03 61 | 99.12 9 | 96.78 49 | 88.72 64 | 97.79 4 | 98.91 2 | 88.48 17 | 99.82 18 | 98.15 9 | 98.97 17 | 99.74 1 |
|
| test_241102_ONE | | | | | | 99.03 15 | 85.03 61 | | 96.78 49 | 88.72 64 | 97.79 4 | 98.90 5 | 88.48 17 | 99.82 18 | | | |
|
| DPE-MVS |  | | 95.32 10 | 95.55 11 | 94.64 29 | 98.79 23 | 84.87 66 | 97.77 70 | 96.74 60 | 86.11 115 | 96.54 21 | 98.89 6 | 88.39 19 | 99.74 37 | 97.67 20 | 99.05 12 | 99.31 18 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| test_one_0601 | | | | | | 98.91 18 | 84.56 70 | | 96.70 65 | 88.06 77 | 96.57 20 | 98.77 10 | 88.04 20 | | | | |
|
| test_241102_TWO | | | | | | | | | 96.78 49 | 88.72 64 | 97.70 6 | 98.91 2 | 87.86 21 | 99.82 18 | 98.15 9 | 99.00 15 | 99.47 9 |
|
| DVP-MVS |  | | 95.58 8 | 95.91 9 | 94.57 30 | 99.05 9 | 85.18 54 | 99.06 14 | 96.46 96 | 88.75 62 | 96.69 15 | 98.76 12 | 87.69 22 | 99.76 30 | 97.90 15 | 98.85 21 | 98.77 34 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 99.05 9 | 85.18 54 | 99.11 12 | 96.78 49 | 88.75 62 | 97.65 9 | 98.91 2 | 87.69 22 | | | | |
|
| MCST-MVS | | | 96.17 3 | 96.12 6 | 96.32 7 | 99.42 2 | 89.36 10 | 98.94 21 | 97.10 30 | 95.17 3 | 92.11 76 | 98.46 24 | 87.33 24 | 99.97 2 | 97.21 26 | 99.31 4 | 99.63 7 |
|
| iter_conf_final | | | 89.51 118 | 89.21 115 | 90.39 176 | 95.60 114 | 84.44 71 | 97.22 107 | 89.09 344 | 89.11 60 | 82.07 198 | 92.80 202 | 87.03 25 | 96.03 240 | 89.10 123 | 80.89 238 | 90.70 244 |
|
| patch_mono-2 | | | 95.14 12 | 96.08 7 | 92.33 108 | 98.44 43 | 77.84 233 | 98.43 34 | 97.21 22 | 92.58 19 | 97.68 8 | 97.65 74 | 86.88 26 | 99.83 16 | 98.25 7 | 97.60 67 | 99.33 17 |
|
| TSAR-MVS + GP. | | | 94.35 22 | 94.50 20 | 93.89 47 | 97.38 84 | 83.04 97 | 98.10 49 | 95.29 179 | 91.57 28 | 93.81 55 | 97.45 83 | 86.64 27 | 99.43 74 | 96.28 34 | 94.01 126 | 99.20 22 |
|
| TSAR-MVS + MP. | | | 94.79 17 | 95.17 15 | 93.64 55 | 97.66 69 | 84.10 76 | 95.85 205 | 96.42 101 | 91.26 31 | 97.49 10 | 96.80 114 | 86.50 28 | 98.49 129 | 95.54 45 | 99.03 13 | 98.33 59 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| CNVR-MVS | | | 96.30 1 | 96.54 1 | 95.55 15 | 99.31 5 | 87.69 22 | 99.06 14 | 97.12 28 | 94.66 5 | 96.79 14 | 98.78 9 | 86.42 29 | 99.95 3 | 97.59 21 | 99.18 7 | 99.00 27 |
|
| DeepPCF-MVS | | 89.82 1 | 94.61 19 | 96.17 5 | 89.91 192 | 97.09 90 | 70.21 324 | 98.99 20 | 96.69 67 | 95.57 2 | 95.08 38 | 99.23 1 | 86.40 30 | 99.87 8 | 97.84 18 | 98.66 31 | 99.65 6 |
|
| HPM-MVS++ |  | | 95.32 10 | 95.48 13 | 94.85 24 | 98.62 34 | 86.04 36 | 97.81 68 | 96.93 40 | 92.45 20 | 95.69 29 | 98.50 22 | 85.38 31 | 99.85 10 | 94.75 52 | 99.18 7 | 98.65 43 |
|
| dcpmvs_2 | | | 93.10 41 | 93.46 39 | 92.02 126 | 97.77 65 | 79.73 177 | 94.82 244 | 93.86 257 | 86.91 105 | 91.33 88 | 96.76 115 | 85.20 32 | 98.06 146 | 96.90 30 | 97.60 67 | 98.27 66 |
|
| NCCC | | | 95.63 6 | 95.94 8 | 94.69 28 | 99.21 6 | 85.15 59 | 99.16 6 | 96.96 37 | 94.11 9 | 95.59 30 | 98.64 17 | 85.07 33 | 99.91 4 | 95.61 43 | 99.10 9 | 99.00 27 |
|
| EPP-MVSNet | | | 89.76 114 | 89.72 110 | 89.87 193 | 93.78 169 | 76.02 268 | 97.22 107 | 96.51 90 | 79.35 262 | 85.11 157 | 95.01 161 | 84.82 34 | 97.10 200 | 87.46 140 | 88.21 182 | 96.50 162 |
|
| TEST9 | | | | | | 98.64 31 | 83.71 82 | 97.82 66 | 96.65 72 | 84.29 162 | 95.16 33 | 98.09 43 | 84.39 35 | 99.36 79 | | | |
|
| train_agg | | | 94.28 23 | 94.45 22 | 93.74 51 | 98.64 31 | 83.71 82 | 97.82 66 | 96.65 72 | 84.50 153 | 95.16 33 | 98.09 43 | 84.33 36 | 99.36 79 | 95.91 39 | 98.96 19 | 98.16 71 |
|
| test_8 | | | | | | 98.63 33 | 83.64 85 | 97.81 68 | 96.63 77 | 84.50 153 | 95.10 37 | 98.11 42 | 84.33 36 | 99.23 84 | | | |
|
| SD-MVS | | | 94.84 15 | 95.02 16 | 94.29 36 | 97.87 64 | 84.61 69 | 97.76 72 | 96.19 124 | 89.59 54 | 96.66 17 | 98.17 39 | 84.33 36 | 99.60 57 | 96.09 35 | 98.50 36 | 98.66 42 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| APDe-MVS |  | | 94.56 20 | 94.75 17 | 93.96 46 | 98.84 22 | 83.40 90 | 98.04 55 | 96.41 102 | 85.79 122 | 95.00 40 | 98.28 32 | 84.32 39 | 99.18 92 | 97.35 24 | 98.77 27 | 99.28 19 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| 旧先验1 | | | | | | 97.39 82 | 79.58 181 | | 96.54 87 | | | 98.08 46 | 84.00 40 | | | 97.42 74 | 97.62 114 |
|
| CSCG | | | 92.02 67 | 91.65 72 | 93.12 75 | 98.53 36 | 80.59 151 | 97.47 93 | 97.18 25 | 77.06 296 | 84.64 166 | 97.98 53 | 83.98 41 | 99.52 67 | 90.72 99 | 97.33 76 | 99.23 21 |
|
| IB-MVS | | 85.34 4 | 88.67 138 | 87.14 158 | 93.26 70 | 93.12 192 | 84.32 73 | 98.76 24 | 97.27 20 | 87.19 101 | 79.36 228 | 90.45 240 | 83.92 42 | 98.53 127 | 84.41 160 | 69.79 309 | 96.93 146 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| CostFormer | | | 89.08 126 | 88.39 129 | 91.15 155 | 93.13 191 | 79.15 192 | 88.61 329 | 96.11 128 | 83.14 188 | 89.58 113 | 86.93 289 | 83.83 43 | 96.87 212 | 88.22 133 | 85.92 201 | 97.42 127 |
|
| SteuartSystems-ACMMP | | | 94.13 28 | 94.44 23 | 93.20 73 | 95.41 119 | 81.35 133 | 99.02 18 | 96.59 82 | 89.50 55 | 94.18 52 | 98.36 28 | 83.68 44 | 99.45 73 | 94.77 51 | 98.45 39 | 98.81 33 |
| Skip Steuart: Steuart Systems R&D Blog. |
| DELS-MVS | | | 94.98 13 | 94.49 21 | 96.44 6 | 96.42 95 | 90.59 7 | 99.21 4 | 97.02 32 | 94.40 8 | 91.46 84 | 97.08 102 | 83.32 45 | 99.69 47 | 92.83 77 | 98.70 30 | 99.04 25 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| test_prior2 | | | | | | | | 98.37 37 | | 86.08 117 | 94.57 47 | 98.02 49 | 83.14 46 | | 95.05 49 | 98.79 26 | |
|
| SMA-MVS |  | | 94.70 18 | 94.68 18 | 94.76 26 | 98.02 59 | 85.94 39 | 97.47 93 | 96.77 55 | 85.32 130 | 97.92 3 | 98.70 15 | 83.09 47 | 99.84 12 | 95.79 40 | 99.08 10 | 98.49 51 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| ZD-MVS | | | | | | 99.09 8 | 83.22 94 | | 96.60 81 | 82.88 197 | 93.61 59 | 98.06 48 | 82.93 48 | 99.14 95 | 95.51 46 | 98.49 37 | |
|
| SF-MVS | | | 94.17 26 | 94.05 30 | 94.55 31 | 97.56 74 | 85.95 37 | 97.73 74 | 96.43 100 | 84.02 167 | 95.07 39 | 98.74 14 | 82.93 48 | 99.38 76 | 95.42 47 | 98.51 34 | 98.32 60 |
|
| 9.14 | | | | 94.26 27 | | 98.10 57 | | 98.14 44 | 96.52 89 | 84.74 145 | 94.83 44 | 98.80 7 | 82.80 50 | 99.37 78 | 95.95 38 | 98.42 40 | |
|
| segment_acmp | | | | | | | | | | | | | 82.69 51 | | | | |
|
| test_fmvsm_n_1920 | | | 94.81 16 | 95.60 10 | 92.45 101 | 95.29 123 | 80.96 142 | 99.29 2 | 97.21 22 | 94.50 7 | 97.29 11 | 98.44 25 | 82.15 52 | 99.78 28 | 98.56 5 | 97.68 65 | 96.61 159 |
|
| PAPM | | | 92.87 47 | 92.40 56 | 94.30 35 | 92.25 219 | 87.85 19 | 96.40 174 | 96.38 107 | 91.07 34 | 88.72 124 | 96.90 107 | 82.11 53 | 97.37 184 | 90.05 112 | 97.70 64 | 97.67 109 |
|
| APD-MVS |  | | 93.61 34 | 93.59 35 | 93.69 54 | 98.76 24 | 83.26 93 | 97.21 109 | 96.09 129 | 82.41 208 | 94.65 46 | 98.21 34 | 81.96 54 | 98.81 117 | 94.65 54 | 98.36 45 | 99.01 26 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| CDPH-MVS | | | 93.12 40 | 92.91 46 | 93.74 51 | 98.65 30 | 83.88 78 | 97.67 79 | 96.26 116 | 83.00 194 | 93.22 63 | 98.24 33 | 81.31 55 | 99.21 86 | 89.12 122 | 98.74 29 | 98.14 73 |
|
| MG-MVS | | | 94.25 25 | 93.72 31 | 95.85 11 | 99.38 3 | 89.35 11 | 97.98 57 | 98.09 9 | 89.99 49 | 92.34 72 | 96.97 106 | 81.30 56 | 98.99 105 | 88.54 127 | 98.88 20 | 99.20 22 |
|
| test12 | | | | | 94.25 37 | 98.34 46 | 85.55 46 | | 96.35 111 | | 92.36 71 | | 80.84 57 | 99.22 85 | | 98.31 47 | 97.98 86 |
|
| MVS_0304 | | | 95.36 9 | 95.20 14 | 95.85 11 | 94.89 138 | 89.22 12 | 98.83 23 | 97.88 11 | 94.68 4 | 95.14 36 | 97.99 50 | 80.80 58 | 99.81 21 | 98.60 4 | 97.95 57 | 98.50 50 |
|
| MM | | | | | 96.15 8 | | 89.50 9 | 99.18 5 | 98.10 8 | 95.68 1 | 96.64 18 | 97.92 56 | 80.72 59 | 99.80 25 | 99.16 1 | 97.96 56 | 99.15 24 |
|
| baseline1 | | | 88.85 133 | 87.49 148 | 92.93 84 | 95.21 126 | 86.85 29 | 95.47 218 | 94.61 214 | 87.29 96 | 83.11 184 | 94.99 162 | 80.70 60 | 96.89 210 | 82.28 186 | 73.72 283 | 95.05 197 |
|
| tpmrst | | | 88.36 147 | 87.38 152 | 91.31 147 | 94.36 154 | 79.92 169 | 87.32 339 | 95.26 181 | 85.32 130 | 88.34 129 | 86.13 305 | 80.60 61 | 96.70 220 | 83.78 168 | 85.34 209 | 97.30 134 |
|
| PHI-MVS | | | 93.59 35 | 93.63 34 | 93.48 65 | 98.05 58 | 81.76 123 | 98.64 29 | 97.13 26 | 82.60 204 | 94.09 53 | 98.49 23 | 80.35 62 | 99.85 10 | 94.74 53 | 98.62 32 | 98.83 32 |
|
| CDS-MVSNet | | | 89.50 119 | 88.96 120 | 91.14 156 | 91.94 236 | 80.93 143 | 97.09 127 | 95.81 148 | 84.26 163 | 84.72 164 | 94.20 179 | 80.31 63 | 95.64 268 | 83.37 179 | 88.96 173 | 96.85 151 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| tpm2 | | | 87.35 167 | 86.26 168 | 90.62 170 | 92.93 199 | 78.67 204 | 88.06 334 | 95.99 136 | 79.33 263 | 87.40 137 | 86.43 300 | 80.28 64 | 96.40 228 | 80.23 201 | 85.73 205 | 96.79 152 |
|
| 1112_ss | | | 88.60 141 | 87.47 150 | 92.00 127 | 93.21 186 | 80.97 141 | 96.47 167 | 92.46 302 | 83.64 181 | 80.86 210 | 97.30 92 | 80.24 65 | 97.62 163 | 77.60 226 | 85.49 206 | 97.40 129 |
|
| Test_1112_low_res | | | 88.03 155 | 86.73 164 | 91.94 129 | 93.15 189 | 80.88 144 | 96.44 170 | 92.41 304 | 83.59 183 | 80.74 212 | 91.16 228 | 80.18 66 | 97.59 165 | 77.48 229 | 85.40 207 | 97.36 131 |
|
| DeepC-MVS_fast | | 89.06 2 | 94.48 21 | 94.30 26 | 95.02 20 | 98.86 21 | 85.68 44 | 98.06 53 | 96.64 75 | 93.64 12 | 91.74 82 | 98.54 19 | 80.17 67 | 99.90 5 | 92.28 82 | 98.75 28 | 99.49 8 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| MSLP-MVS++ | | | 94.28 23 | 94.39 24 | 93.97 45 | 98.30 49 | 84.06 77 | 98.64 29 | 96.93 40 | 90.71 38 | 93.08 65 | 98.70 15 | 79.98 68 | 99.21 86 | 94.12 60 | 99.07 11 | 98.63 44 |
|
| EPNet | | | 94.06 29 | 94.15 28 | 93.76 50 | 97.27 87 | 84.35 72 | 98.29 39 | 97.64 15 | 94.57 6 | 95.36 31 | 96.88 109 | 79.96 69 | 99.12 98 | 91.30 90 | 96.11 101 | 97.82 99 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| MVS_111021_HR | | | 93.41 37 | 93.39 40 | 93.47 67 | 97.34 85 | 82.83 99 | 97.56 86 | 98.27 6 | 89.16 59 | 89.71 109 | 97.14 98 | 79.77 70 | 99.56 64 | 93.65 65 | 97.94 58 | 98.02 79 |
|
| miper_enhance_ethall | | | 85.95 188 | 85.20 181 | 88.19 228 | 94.85 139 | 79.76 173 | 96.00 194 | 94.06 247 | 82.98 195 | 77.74 241 | 88.76 260 | 79.42 71 | 95.46 277 | 80.58 196 | 72.42 290 | 89.36 272 |
|
| TESTMET0.1,1 | | | 89.83 113 | 89.34 114 | 91.31 147 | 92.54 209 | 80.19 164 | 97.11 123 | 96.57 84 | 86.15 114 | 86.85 146 | 91.83 219 | 79.32 72 | 96.95 206 | 81.30 191 | 92.35 150 | 96.77 154 |
|
| WTY-MVS | | | 92.65 56 | 91.68 71 | 95.56 14 | 96.00 105 | 88.90 13 | 98.23 41 | 97.65 14 | 88.57 67 | 89.82 108 | 97.22 96 | 79.29 73 | 99.06 102 | 89.57 117 | 88.73 176 | 98.73 39 |
|
| HY-MVS | | 84.06 6 | 91.63 75 | 90.37 94 | 95.39 17 | 96.12 102 | 88.25 15 | 90.22 318 | 97.58 16 | 88.33 73 | 90.50 101 | 91.96 215 | 79.26 74 | 99.06 102 | 90.29 109 | 89.07 171 | 98.88 31 |
|
| PAPM_NR | | | 91.46 79 | 90.82 83 | 93.37 68 | 98.50 40 | 81.81 122 | 95.03 240 | 96.13 126 | 84.65 149 | 86.10 151 | 97.65 74 | 79.24 75 | 99.75 35 | 83.20 180 | 96.88 86 | 98.56 47 |
|
| alignmvs | | | 92.97 44 | 92.26 60 | 95.12 19 | 95.54 116 | 87.77 20 | 98.67 27 | 96.38 107 | 88.04 78 | 93.01 66 | 97.45 83 | 79.20 76 | 98.60 123 | 93.25 72 | 88.76 175 | 98.99 29 |
|
| 新几何1 | | | | | 93.12 75 | 97.44 78 | 81.60 130 | | 96.71 64 | 74.54 313 | 91.22 91 | 97.57 78 | 79.13 77 | 99.51 69 | 77.40 231 | 98.46 38 | 98.26 67 |
|
| test_fmvsmconf_n | | | 93.99 30 | 94.36 25 | 92.86 85 | 92.82 201 | 81.12 136 | 99.26 3 | 96.37 110 | 93.47 13 | 95.16 33 | 98.21 34 | 79.00 78 | 99.64 53 | 98.21 8 | 96.73 92 | 97.83 97 |
|
| JIA-IIPM | | | 79.00 287 | 77.20 286 | 84.40 302 | 89.74 278 | 64.06 352 | 75.30 379 | 95.44 169 | 62.15 361 | 81.90 200 | 59.08 383 | 78.92 79 | 95.59 272 | 66.51 309 | 85.78 204 | 93.54 225 |
|
| CS-MVS | | | 92.73 50 | 93.48 38 | 90.48 174 | 96.27 97 | 75.93 271 | 98.55 32 | 94.93 191 | 89.32 56 | 94.54 48 | 97.67 69 | 78.91 80 | 97.02 202 | 93.80 62 | 97.32 77 | 98.49 51 |
|
| MVSFormer | | | 91.36 82 | 90.57 88 | 93.73 53 | 93.00 194 | 88.08 17 | 94.80 246 | 94.48 220 | 80.74 231 | 94.90 41 | 97.13 99 | 78.84 81 | 95.10 295 | 83.77 169 | 97.46 70 | 98.02 79 |
|
| lupinMVS | | | 93.87 32 | 93.58 36 | 94.75 27 | 93.00 194 | 88.08 17 | 99.15 7 | 95.50 164 | 91.03 35 | 94.90 41 | 97.66 70 | 78.84 81 | 97.56 167 | 94.64 55 | 97.46 70 | 98.62 45 |
|
| testdata | | | | | 90.13 184 | 95.92 107 | 74.17 288 | | 96.49 95 | 73.49 322 | 94.82 45 | 97.99 50 | 78.80 83 | 97.93 149 | 83.53 177 | 97.52 69 | 98.29 64 |
|
| PAPR | | | 92.74 49 | 92.17 63 | 94.45 32 | 98.89 20 | 84.87 66 | 97.20 111 | 96.20 122 | 87.73 86 | 88.40 128 | 98.12 41 | 78.71 84 | 99.76 30 | 87.99 134 | 96.28 97 | 98.74 35 |
|
| EI-MVSNet-Vis-set | | | 91.84 70 | 91.77 70 | 92.04 125 | 97.60 71 | 81.17 135 | 96.61 159 | 96.87 43 | 88.20 75 | 89.19 117 | 97.55 82 | 78.69 85 | 99.14 95 | 90.29 109 | 90.94 161 | 95.80 179 |
|
| HFP-MVS | | | 92.89 46 | 92.86 48 | 92.98 81 | 98.71 25 | 81.12 136 | 97.58 84 | 96.70 65 | 85.20 135 | 91.75 81 | 97.97 55 | 78.47 86 | 99.71 43 | 90.95 93 | 98.41 41 | 98.12 75 |
|
| ZNCC-MVS | | | 92.75 48 | 92.60 53 | 93.23 72 | 98.24 51 | 81.82 121 | 97.63 80 | 96.50 92 | 85.00 141 | 91.05 93 | 97.74 67 | 78.38 87 | 99.80 25 | 90.48 102 | 98.34 46 | 98.07 77 |
|
| Patchmatch-test | | | 78.25 290 | 74.72 304 | 88.83 212 | 91.20 246 | 74.10 289 | 73.91 382 | 88.70 350 | 59.89 373 | 66.82 331 | 85.12 321 | 78.38 87 | 94.54 309 | 48.84 371 | 79.58 250 | 97.86 94 |
|
| Vis-MVSNet (Re-imp) | | | 88.88 132 | 88.87 123 | 88.91 210 | 93.89 168 | 74.43 286 | 96.93 140 | 94.19 239 | 84.39 156 | 83.22 182 | 95.67 138 | 78.24 89 | 94.70 305 | 78.88 215 | 94.40 122 | 97.61 115 |
|
| testing3 | | | 80.74 271 | 81.17 246 | 79.44 337 | 91.15 249 | 63.48 355 | 97.16 117 | 95.76 150 | 80.83 228 | 71.36 307 | 93.15 199 | 78.22 90 | 87.30 371 | 43.19 378 | 79.67 248 | 87.55 320 |
|
| tpm | | | 85.55 195 | 84.47 196 | 88.80 213 | 90.19 268 | 75.39 276 | 88.79 327 | 94.69 205 | 84.83 143 | 83.96 173 | 85.21 317 | 78.22 90 | 94.68 306 | 76.32 243 | 78.02 267 | 96.34 167 |
|
| MP-MVS |  | | 92.61 57 | 92.67 51 | 92.42 104 | 98.13 56 | 79.73 177 | 97.33 105 | 96.20 122 | 85.63 124 | 90.53 100 | 97.66 70 | 78.14 92 | 99.70 46 | 92.12 84 | 98.30 48 | 97.85 95 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| HyFIR lowres test | | | 89.36 121 | 88.60 125 | 91.63 141 | 94.91 137 | 80.76 148 | 95.60 214 | 95.53 161 | 82.56 205 | 84.03 170 | 91.24 227 | 78.03 93 | 96.81 216 | 87.07 144 | 88.41 180 | 97.32 132 |
|
| ACMMP_NAP | | | 93.46 36 | 93.23 42 | 94.17 41 | 97.16 88 | 84.28 74 | 96.82 147 | 96.65 72 | 86.24 113 | 94.27 50 | 97.99 50 | 77.94 94 | 99.83 16 | 93.39 67 | 98.57 33 | 98.39 57 |
|
| CS-MVS-test | | | 92.98 43 | 93.67 33 | 90.90 162 | 96.52 94 | 76.87 252 | 98.68 26 | 94.73 204 | 90.36 46 | 94.84 43 | 97.89 60 | 77.94 94 | 97.15 198 | 94.28 59 | 97.80 62 | 98.70 41 |
|
| 原ACMM1 | | | | | 91.22 153 | 97.77 65 | 78.10 223 | | 96.61 78 | 81.05 225 | 91.28 90 | 97.42 87 | 77.92 96 | 98.98 106 | 79.85 206 | 98.51 34 | 96.59 160 |
|
| EI-MVSNet-UG-set | | | 91.35 83 | 91.22 77 | 91.73 136 | 97.39 82 | 80.68 149 | 96.47 167 | 96.83 46 | 87.92 81 | 88.30 131 | 97.36 89 | 77.84 97 | 99.13 97 | 89.43 120 | 89.45 168 | 95.37 190 |
|
| test2506 | | | 90.96 92 | 90.39 92 | 92.65 94 | 93.54 176 | 82.46 106 | 96.37 175 | 97.35 18 | 86.78 109 | 87.55 136 | 95.25 147 | 77.83 98 | 97.50 175 | 84.07 163 | 94.80 115 | 97.98 86 |
|
| patchmatchnet-post | | | | | | | | | | | | 77.09 362 | 77.78 99 | 95.39 278 | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 77.59 100 | | | | 97.54 117 |
|
| EIA-MVS | | | 91.73 71 | 92.05 66 | 90.78 167 | 94.52 148 | 76.40 260 | 98.06 53 | 95.34 177 | 89.19 58 | 88.90 121 | 97.28 94 | 77.56 101 | 97.73 159 | 90.77 98 | 96.86 88 | 98.20 68 |
|
| GST-MVS | | | 92.43 61 | 92.22 62 | 93.04 79 | 98.17 54 | 81.64 128 | 97.40 102 | 96.38 107 | 84.71 147 | 90.90 96 | 97.40 88 | 77.55 102 | 99.76 30 | 89.75 115 | 97.74 63 | 97.72 105 |
|
| MP-MVS-pluss | | | 92.58 58 | 92.35 57 | 93.29 69 | 97.30 86 | 82.53 103 | 96.44 170 | 96.04 134 | 84.68 148 | 89.12 118 | 98.37 27 | 77.48 103 | 99.74 37 | 93.31 71 | 98.38 43 | 97.59 116 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| CP-MVS | | | 92.54 59 | 92.60 53 | 92.34 106 | 98.50 40 | 79.90 170 | 98.40 36 | 96.40 104 | 84.75 144 | 90.48 102 | 98.09 43 | 77.40 104 | 99.21 86 | 91.15 92 | 98.23 50 | 97.92 90 |
|
| region2R | | | 92.72 52 | 92.70 50 | 92.79 88 | 98.68 26 | 80.53 156 | 97.53 88 | 96.51 90 | 85.22 133 | 91.94 79 | 97.98 53 | 77.26 105 | 99.67 51 | 90.83 97 | 98.37 44 | 98.18 69 |
|
| PatchmatchNet |  | | 86.83 174 | 85.12 185 | 91.95 128 | 94.12 162 | 82.27 109 | 86.55 346 | 95.64 157 | 84.59 151 | 82.98 186 | 84.99 323 | 77.26 105 | 95.96 248 | 68.61 298 | 91.34 159 | 97.64 112 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| XVS | | | 92.69 54 | 92.71 49 | 92.63 96 | 98.52 37 | 80.29 159 | 97.37 103 | 96.44 98 | 87.04 103 | 91.38 85 | 97.83 64 | 77.24 107 | 99.59 58 | 90.46 103 | 98.07 52 | 98.02 79 |
|
| X-MVStestdata | | | 86.26 183 | 84.14 202 | 92.63 96 | 98.52 37 | 80.29 159 | 97.37 103 | 96.44 98 | 87.04 103 | 91.38 85 | 20.73 396 | 77.24 107 | 99.59 58 | 90.46 103 | 98.07 52 | 98.02 79 |
|
| ETV-MVS | | | 92.72 52 | 92.87 47 | 92.28 112 | 94.54 147 | 81.89 117 | 97.98 57 | 95.21 182 | 89.77 53 | 93.11 64 | 96.83 111 | 77.23 109 | 97.50 175 | 95.74 41 | 95.38 111 | 97.44 126 |
|
| ACMMPR | | | 92.69 54 | 92.67 51 | 92.75 89 | 98.66 28 | 80.57 152 | 97.58 84 | 96.69 67 | 85.20 135 | 91.57 83 | 97.92 56 | 77.01 110 | 99.67 51 | 90.95 93 | 98.41 41 | 98.00 84 |
|
| myMVS_eth3d | | | 81.93 255 | 82.18 230 | 81.18 328 | 92.13 225 | 67.18 340 | 93.97 265 | 94.23 235 | 82.43 206 | 73.39 289 | 93.57 193 | 76.98 111 | 87.86 366 | 50.53 366 | 82.34 231 | 88.51 295 |
|
| UniMVSNet_NR-MVSNet | | | 85.49 196 | 84.59 191 | 88.21 227 | 89.44 284 | 79.36 185 | 96.71 155 | 96.41 102 | 85.22 133 | 78.11 238 | 90.98 232 | 76.97 112 | 95.14 292 | 79.14 212 | 68.30 323 | 90.12 255 |
|
| test_fmvsmconf0.1_n | | | 93.08 42 | 93.22 43 | 92.65 94 | 88.45 294 | 80.81 146 | 99.00 19 | 95.11 184 | 93.21 15 | 94.00 54 | 97.91 58 | 76.84 113 | 99.59 58 | 97.91 14 | 96.55 95 | 97.54 117 |
|
| DP-MVS Recon | | | 91.72 73 | 90.85 82 | 94.34 34 | 99.50 1 | 85.00 63 | 98.51 33 | 95.96 139 | 80.57 235 | 88.08 133 | 97.63 76 | 76.84 113 | 99.89 7 | 85.67 151 | 94.88 114 | 98.13 74 |
|
| CANet | | | 94.89 14 | 94.64 19 | 95.63 13 | 97.55 75 | 88.12 16 | 99.06 14 | 96.39 106 | 94.07 10 | 95.34 32 | 97.80 65 | 76.83 115 | 99.87 8 | 97.08 28 | 97.64 66 | 98.89 30 |
|
| PVSNet_Blended_VisFu | | | 91.24 85 | 90.77 84 | 92.66 93 | 95.09 129 | 82.40 107 | 97.77 70 | 95.87 146 | 88.26 74 | 86.39 147 | 93.94 185 | 76.77 116 | 99.27 82 | 88.80 126 | 94.00 127 | 96.31 170 |
|
| FIs | | | 86.73 177 | 86.10 170 | 88.61 216 | 90.05 272 | 80.21 163 | 96.14 190 | 96.95 38 | 85.56 127 | 78.37 236 | 92.30 208 | 76.73 117 | 95.28 285 | 79.51 207 | 79.27 252 | 90.35 250 |
|
| MTAPA | | | 92.45 60 | 92.31 58 | 92.86 85 | 97.90 61 | 80.85 145 | 92.88 291 | 96.33 112 | 87.92 81 | 90.20 105 | 98.18 36 | 76.71 118 | 99.76 30 | 92.57 81 | 98.09 51 | 97.96 89 |
|
| miper_ehance_all_eth | | | 84.57 211 | 83.60 210 | 87.50 245 | 92.64 207 | 78.25 216 | 95.40 222 | 93.47 277 | 79.28 266 | 76.41 258 | 87.64 277 | 76.53 119 | 95.24 287 | 78.58 217 | 72.42 290 | 89.01 285 |
|
| fmvsm_s_conf0.5_n | | | 93.69 33 | 94.13 29 | 92.34 106 | 94.56 145 | 82.01 111 | 99.07 13 | 97.13 26 | 92.09 23 | 96.25 23 | 98.53 21 | 76.47 120 | 99.80 25 | 98.39 6 | 94.71 117 | 95.22 195 |
|
| SR-MVS | | | 92.16 64 | 92.27 59 | 91.83 134 | 98.37 45 | 78.41 211 | 96.67 158 | 95.76 150 | 82.19 212 | 91.97 77 | 98.07 47 | 76.44 121 | 98.64 121 | 93.71 64 | 97.27 78 | 98.45 54 |
|
| PVSNet_BlendedMVS | | | 90.05 109 | 89.96 104 | 90.33 179 | 97.47 76 | 83.86 79 | 98.02 56 | 96.73 61 | 87.98 79 | 89.53 114 | 89.61 252 | 76.42 122 | 99.57 62 | 94.29 57 | 79.59 249 | 87.57 317 |
|
| PVSNet_Blended | | | 93.13 39 | 92.98 45 | 93.57 59 | 97.47 76 | 83.86 79 | 99.32 1 | 96.73 61 | 91.02 36 | 89.53 114 | 96.21 125 | 76.42 122 | 99.57 62 | 94.29 57 | 95.81 108 | 97.29 135 |
|
| test-mter | | | 88.95 128 | 88.60 125 | 89.98 188 | 92.26 217 | 77.23 247 | 97.11 123 | 95.96 139 | 85.32 130 | 86.30 149 | 91.38 223 | 76.37 124 | 96.78 218 | 80.82 194 | 91.92 154 | 95.94 176 |
|
| test222 | | | | | | 96.15 101 | 78.41 211 | 95.87 203 | 96.46 96 | 71.97 333 | 89.66 111 | 97.45 83 | 76.33 125 | | | 98.24 49 | 98.30 63 |
|
| FC-MVSNet-test | | | 85.96 187 | 85.39 178 | 87.66 238 | 89.38 285 | 78.02 224 | 95.65 212 | 96.87 43 | 85.12 137 | 77.34 243 | 91.94 217 | 76.28 126 | 94.74 304 | 77.09 232 | 78.82 256 | 90.21 253 |
|
| test_post | | | | | | | | | | | | 33.80 392 | 76.17 127 | 95.97 245 | | | |
|
| PGM-MVS | | | 91.93 68 | 91.80 69 | 92.32 110 | 98.27 50 | 79.74 176 | 95.28 224 | 97.27 20 | 83.83 175 | 90.89 97 | 97.78 66 | 76.12 128 | 99.56 64 | 88.82 125 | 97.93 60 | 97.66 110 |
|
| Patchmatch-RL test | | | 76.65 305 | 74.01 312 | 84.55 298 | 77.37 370 | 64.23 350 | 78.49 373 | 82.84 374 | 78.48 278 | 64.63 342 | 73.40 370 | 76.05 129 | 91.70 347 | 76.99 233 | 57.84 360 | 97.72 105 |
|
| cl22 | | | 85.11 202 | 84.17 200 | 87.92 232 | 95.06 133 | 78.82 199 | 95.51 216 | 94.22 237 | 79.74 256 | 76.77 251 | 87.92 274 | 75.96 130 | 95.68 264 | 79.93 205 | 72.42 290 | 89.27 274 |
|
| TAMVS | | | 88.48 143 | 87.79 139 | 90.56 172 | 91.09 250 | 79.18 190 | 96.45 169 | 95.88 144 | 83.64 181 | 83.12 183 | 93.33 195 | 75.94 131 | 95.74 263 | 82.40 185 | 88.27 181 | 96.75 156 |
|
| EPNet_dtu | | | 87.65 163 | 87.89 136 | 86.93 258 | 94.57 144 | 71.37 318 | 96.72 153 | 96.50 92 | 88.56 68 | 87.12 143 | 95.02 160 | 75.91 132 | 94.01 319 | 66.62 306 | 90.00 164 | 95.42 189 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| mvs_anonymous | | | 88.68 137 | 87.62 144 | 91.86 131 | 94.80 140 | 81.69 127 | 93.53 276 | 94.92 192 | 82.03 215 | 78.87 232 | 90.43 241 | 75.77 133 | 95.34 281 | 85.04 156 | 93.16 140 | 98.55 49 |
|
| SR-MVS-dyc-post | | | 91.29 84 | 91.45 75 | 90.80 165 | 97.76 67 | 76.03 266 | 96.20 187 | 95.44 169 | 80.56 236 | 90.72 98 | 97.84 62 | 75.76 134 | 98.61 122 | 91.99 86 | 96.79 89 | 97.75 103 |
|
| test_yl | | | 91.46 79 | 90.53 89 | 94.24 38 | 97.41 80 | 85.18 54 | 98.08 50 | 97.72 12 | 80.94 226 | 89.85 106 | 96.14 126 | 75.61 135 | 98.81 117 | 90.42 107 | 88.56 178 | 98.74 35 |
|
| DCV-MVSNet | | | 91.46 79 | 90.53 89 | 94.24 38 | 97.41 80 | 85.18 54 | 98.08 50 | 97.72 12 | 80.94 226 | 89.85 106 | 96.14 126 | 75.61 135 | 98.81 117 | 90.42 107 | 88.56 178 | 98.74 35 |
|
| HPM-MVS |  | | 91.62 76 | 91.53 74 | 91.89 130 | 97.88 63 | 79.22 189 | 96.99 131 | 95.73 153 | 82.07 214 | 89.50 116 | 97.19 97 | 75.59 137 | 98.93 112 | 90.91 95 | 97.94 58 | 97.54 117 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| fmvsm_s_conf0.5_n_a | | | 93.34 38 | 93.71 32 | 92.22 115 | 93.38 184 | 81.71 126 | 98.86 22 | 96.98 34 | 91.64 27 | 96.85 13 | 98.55 18 | 75.58 138 | 99.77 29 | 97.88 17 | 93.68 131 | 95.18 196 |
|
| mPP-MVS | | | 91.88 69 | 91.82 68 | 92.07 122 | 98.38 44 | 78.63 205 | 97.29 106 | 96.09 129 | 85.12 137 | 88.45 127 | 97.66 70 | 75.53 139 | 99.68 49 | 89.83 113 | 98.02 55 | 97.88 91 |
|
| PatchT | | | 79.75 278 | 76.85 290 | 88.42 218 | 89.55 281 | 75.49 275 | 77.37 375 | 94.61 214 | 63.07 358 | 82.46 189 | 73.32 371 | 75.52 140 | 93.41 330 | 51.36 362 | 84.43 212 | 96.36 165 |
|
| CR-MVSNet | | | 83.53 227 | 81.36 244 | 90.06 185 | 90.16 269 | 79.75 174 | 79.02 371 | 91.12 322 | 84.24 164 | 82.27 195 | 80.35 350 | 75.45 141 | 93.67 325 | 63.37 324 | 86.25 196 | 96.75 156 |
|
| Patchmtry | | | 77.36 300 | 74.59 305 | 85.67 279 | 89.75 276 | 75.75 274 | 77.85 374 | 91.12 322 | 60.28 370 | 71.23 308 | 80.35 350 | 75.45 141 | 93.56 327 | 57.94 341 | 67.34 334 | 87.68 314 |
|
| thres100view900 | | | 88.30 149 | 86.95 162 | 92.33 108 | 96.10 103 | 84.90 65 | 97.14 120 | 98.85 2 | 82.69 202 | 83.41 179 | 93.66 191 | 75.43 143 | 97.93 149 | 69.04 295 | 86.24 198 | 94.17 212 |
|
| thres600view7 | | | 88.06 154 | 86.70 166 | 92.15 120 | 96.10 103 | 85.17 58 | 97.14 120 | 98.85 2 | 82.70 201 | 83.41 179 | 93.66 191 | 75.43 143 | 97.82 156 | 67.13 304 | 85.88 202 | 93.45 228 |
|
| UniMVSNet (Re) | | | 85.31 199 | 84.23 199 | 88.55 217 | 89.75 276 | 80.55 153 | 96.72 153 | 96.89 42 | 85.42 128 | 78.40 235 | 88.93 258 | 75.38 145 | 95.52 275 | 78.58 217 | 68.02 326 | 89.57 266 |
|
| tfpn200view9 | | | 88.48 143 | 87.15 156 | 92.47 100 | 96.21 99 | 85.30 52 | 97.44 96 | 98.85 2 | 83.37 184 | 83.99 171 | 93.82 187 | 75.36 146 | 97.93 149 | 69.04 295 | 86.24 198 | 94.17 212 |
|
| thres400 | | | 88.42 146 | 87.15 156 | 92.23 114 | 96.21 99 | 85.30 52 | 97.44 96 | 98.85 2 | 83.37 184 | 83.99 171 | 93.82 187 | 75.36 146 | 97.93 149 | 69.04 295 | 86.24 198 | 93.45 228 |
|
| sam_mvs | | | | | | | | | | | | | 75.35 148 | | | | |
|
| fmvsm_s_conf0.1_n | | | 92.93 45 | 93.16 44 | 92.24 113 | 90.52 262 | 81.92 115 | 98.42 35 | 96.24 118 | 91.17 32 | 96.02 27 | 98.35 29 | 75.34 149 | 99.74 37 | 97.84 18 | 94.58 119 | 95.05 197 |
|
| jason | | | 92.73 50 | 92.23 61 | 94.21 40 | 90.50 263 | 87.30 26 | 98.65 28 | 95.09 185 | 90.61 40 | 92.76 69 | 97.13 99 | 75.28 150 | 97.30 187 | 93.32 70 | 96.75 91 | 98.02 79 |
| jason: jason. |
| c3_l | | | 83.80 223 | 82.65 225 | 87.25 252 | 92.10 227 | 77.74 238 | 95.25 227 | 93.04 296 | 78.58 277 | 76.01 266 | 87.21 285 | 75.25 151 | 95.11 294 | 77.54 228 | 68.89 317 | 88.91 291 |
|
| MVS_Test | | | 90.29 106 | 89.18 116 | 93.62 57 | 95.23 124 | 84.93 64 | 94.41 251 | 94.66 209 | 84.31 158 | 90.37 104 | 91.02 230 | 75.13 152 | 97.82 156 | 83.11 182 | 94.42 121 | 98.12 75 |
|
| thres200 | | | 88.92 130 | 87.65 141 | 92.73 91 | 96.30 96 | 85.62 45 | 97.85 64 | 98.86 1 | 84.38 157 | 84.82 162 | 93.99 184 | 75.12 153 | 98.01 147 | 70.86 287 | 86.67 191 | 94.56 210 |
|
| EPMVS | | | 87.47 166 | 85.90 172 | 92.18 117 | 95.41 119 | 82.26 110 | 87.00 342 | 96.28 115 | 85.88 121 | 84.23 168 | 85.57 311 | 75.07 154 | 96.26 233 | 71.14 285 | 92.50 147 | 98.03 78 |
|
| UA-Net | | | 88.92 130 | 88.48 128 | 90.24 181 | 94.06 164 | 77.18 249 | 93.04 288 | 94.66 209 | 87.39 94 | 91.09 92 | 93.89 186 | 74.92 155 | 98.18 145 | 75.83 247 | 91.43 158 | 95.35 191 |
|
| test_fmvsmvis_n_1920 | | | 92.12 65 | 92.10 65 | 92.17 118 | 90.87 255 | 81.04 138 | 98.34 38 | 93.90 254 | 92.71 18 | 87.24 141 | 97.90 59 | 74.83 156 | 99.72 41 | 96.96 29 | 96.20 98 | 95.76 181 |
|
| tpm cat1 | | | 83.63 226 | 81.38 243 | 90.39 176 | 93.53 181 | 78.19 222 | 85.56 353 | 95.09 185 | 70.78 339 | 78.51 234 | 83.28 336 | 74.80 157 | 97.03 201 | 66.77 305 | 84.05 214 | 95.95 175 |
|
| h-mvs33 | | | 89.30 123 | 88.95 121 | 90.36 178 | 95.07 131 | 76.04 265 | 96.96 137 | 97.11 29 | 90.39 44 | 92.22 74 | 95.10 158 | 74.70 158 | 98.86 114 | 93.14 73 | 65.89 341 | 96.16 172 |
|
| hse-mvs2 | | | 88.22 152 | 88.21 131 | 88.25 225 | 93.54 176 | 73.41 291 | 95.41 221 | 95.89 143 | 90.39 44 | 92.22 74 | 94.22 177 | 74.70 158 | 96.66 223 | 93.14 73 | 64.37 346 | 94.69 209 |
|
| APD-MVS_3200maxsize | | | 91.23 86 | 91.35 76 | 90.89 163 | 97.89 62 | 76.35 261 | 96.30 180 | 95.52 163 | 79.82 254 | 91.03 94 | 97.88 61 | 74.70 158 | 98.54 126 | 92.11 85 | 96.89 85 | 97.77 102 |
|
| IS-MVSNet | | | 88.67 138 | 88.16 133 | 90.20 183 | 93.61 173 | 76.86 253 | 96.77 152 | 93.07 295 | 84.02 167 | 83.62 178 | 95.60 141 | 74.69 161 | 96.24 235 | 78.43 219 | 93.66 133 | 97.49 124 |
|
| EC-MVSNet | | | 91.73 71 | 92.11 64 | 90.58 171 | 93.54 176 | 77.77 236 | 98.07 52 | 94.40 227 | 87.44 92 | 92.99 67 | 97.11 101 | 74.59 162 | 96.87 212 | 93.75 63 | 97.08 81 | 97.11 141 |
|
| casdiffmvs_mvg |  | | 91.13 88 | 90.45 91 | 93.17 74 | 92.99 197 | 83.58 86 | 97.46 95 | 94.56 217 | 87.69 87 | 87.19 142 | 94.98 163 | 74.50 163 | 97.60 164 | 91.88 88 | 92.79 143 | 98.34 58 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MDTV_nov1_ep13 | | | | 83.69 205 | | 94.09 163 | 81.01 139 | 86.78 344 | 96.09 129 | 83.81 176 | 84.75 163 | 84.32 328 | 74.44 164 | 96.54 224 | 63.88 320 | 85.07 210 | |
|
| MDTV_nov1_ep13_2view | | | | | | | 81.74 124 | 86.80 343 | | 80.65 233 | 85.65 153 | | 74.26 165 | | 76.52 239 | | 96.98 144 |
|
| cl____ | | | 83.27 231 | 82.12 231 | 86.74 259 | 92.20 220 | 75.95 270 | 95.11 236 | 93.27 287 | 78.44 280 | 74.82 281 | 87.02 288 | 74.19 166 | 95.19 289 | 74.67 258 | 69.32 313 | 89.09 280 |
|
| DIV-MVS_self_test | | | 83.27 231 | 82.12 231 | 86.74 259 | 92.19 221 | 75.92 272 | 95.11 236 | 93.26 288 | 78.44 280 | 74.81 282 | 87.08 287 | 74.19 166 | 95.19 289 | 74.66 259 | 69.30 314 | 89.11 279 |
|
| fmvsm_s_conf0.1_n_a | | | 92.38 62 | 92.49 55 | 92.06 123 | 88.08 298 | 81.62 129 | 97.97 59 | 96.01 135 | 90.62 39 | 96.58 19 | 98.33 30 | 74.09 168 | 99.71 43 | 97.23 25 | 93.46 136 | 94.86 201 |
|
| casdiffmvs |  | | 90.95 93 | 90.39 92 | 92.63 96 | 92.82 201 | 82.53 103 | 96.83 145 | 94.47 222 | 87.69 87 | 88.47 126 | 95.56 143 | 74.04 169 | 97.54 171 | 90.90 96 | 92.74 144 | 97.83 97 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| tpmvs | | | 83.04 237 | 80.77 250 | 89.84 194 | 95.43 118 | 77.96 227 | 85.59 352 | 95.32 178 | 75.31 307 | 76.27 262 | 83.70 333 | 73.89 170 | 97.41 180 | 59.53 335 | 81.93 236 | 94.14 214 |
|
| test_post1 | | | | | | | | 85.88 351 | | | | 30.24 395 | 73.77 171 | 95.07 298 | 73.89 265 | | |
|
| baseline | | | 90.76 96 | 90.10 100 | 92.74 90 | 92.90 200 | 82.56 102 | 94.60 248 | 94.56 217 | 87.69 87 | 89.06 120 | 95.67 138 | 73.76 172 | 97.51 174 | 90.43 106 | 92.23 152 | 98.16 71 |
|
| EI-MVSNet | | | 85.80 190 | 85.20 181 | 87.59 241 | 91.55 241 | 77.41 243 | 95.13 234 | 95.36 174 | 80.43 241 | 80.33 217 | 94.71 167 | 73.72 173 | 95.97 245 | 76.96 235 | 78.64 258 | 89.39 267 |
|
| IterMVS-LS | | | 83.93 220 | 82.80 223 | 87.31 250 | 91.46 244 | 77.39 244 | 95.66 211 | 93.43 279 | 80.44 239 | 75.51 275 | 87.26 283 | 73.72 173 | 95.16 291 | 76.99 233 | 70.72 300 | 89.39 267 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| AUN-MVS | | | 86.25 184 | 85.57 175 | 88.26 224 | 93.57 175 | 73.38 292 | 95.45 219 | 95.88 144 | 83.94 171 | 85.47 155 | 94.21 178 | 73.70 175 | 96.67 222 | 83.54 176 | 64.41 345 | 94.73 208 |
|
| miper_lstm_enhance | | | 81.66 260 | 80.66 254 | 84.67 295 | 91.19 247 | 71.97 310 | 91.94 301 | 93.19 289 | 77.86 284 | 72.27 303 | 85.26 315 | 73.46 176 | 93.42 329 | 73.71 268 | 67.05 336 | 88.61 293 |
|
| diffmvs |  | | 91.17 87 | 90.74 85 | 92.44 103 | 93.11 193 | 82.50 105 | 96.25 183 | 93.62 272 | 87.79 84 | 90.40 103 | 95.93 130 | 73.44 177 | 97.42 179 | 93.62 66 | 92.55 146 | 97.41 128 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| RE-MVS-def | | | | 91.18 80 | | 97.76 67 | 76.03 266 | 96.20 187 | 95.44 169 | 80.56 236 | 90.72 98 | 97.84 62 | 73.36 178 | | 91.99 86 | 96.79 89 | 97.75 103 |
|
| DeepC-MVS | | 86.58 3 | 91.53 78 | 91.06 81 | 92.94 83 | 94.52 148 | 81.89 117 | 95.95 197 | 95.98 137 | 90.76 37 | 83.76 177 | 96.76 115 | 73.24 179 | 99.71 43 | 91.67 89 | 96.96 83 | 97.22 137 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| RPMNet | | | 79.85 277 | 75.92 296 | 91.64 139 | 90.16 269 | 79.75 174 | 79.02 371 | 95.44 169 | 58.43 377 | 82.27 195 | 72.55 374 | 73.03 180 | 98.41 136 | 46.10 375 | 86.25 196 | 96.75 156 |
|
| CHOSEN 1792x2688 | | | 91.07 90 | 90.21 97 | 93.64 55 | 95.18 127 | 83.53 87 | 96.26 182 | 96.13 126 | 88.92 61 | 84.90 161 | 93.10 200 | 72.86 181 | 99.62 56 | 88.86 124 | 95.67 109 | 97.79 101 |
|
| eth_miper_zixun_eth | | | 83.12 235 | 82.01 233 | 86.47 264 | 91.85 239 | 74.80 281 | 94.33 255 | 93.18 291 | 79.11 269 | 75.74 274 | 87.25 284 | 72.71 182 | 95.32 283 | 76.78 236 | 67.13 335 | 89.27 274 |
|
| canonicalmvs | | | 92.27 63 | 91.22 77 | 95.41 16 | 95.80 110 | 88.31 14 | 97.09 127 | 94.64 212 | 88.49 69 | 92.99 67 | 97.31 90 | 72.68 183 | 98.57 125 | 93.38 69 | 88.58 177 | 99.36 16 |
|
| mvsany_test1 | | | 87.58 164 | 88.22 130 | 85.67 279 | 89.78 275 | 67.18 340 | 95.25 227 | 87.93 353 | 83.96 170 | 88.79 122 | 97.06 104 | 72.52 184 | 94.53 310 | 92.21 83 | 86.45 194 | 95.30 193 |
|
| API-MVS | | | 90.18 107 | 88.97 119 | 93.80 49 | 98.66 28 | 82.95 98 | 97.50 92 | 95.63 158 | 75.16 308 | 86.31 148 | 97.69 68 | 72.49 185 | 99.90 5 | 81.26 192 | 96.07 102 | 98.56 47 |
|
| nrg030 | | | 86.79 175 | 85.43 177 | 90.87 164 | 88.76 288 | 85.34 49 | 97.06 129 | 94.33 231 | 84.31 158 | 80.45 215 | 91.98 214 | 72.36 186 | 96.36 230 | 88.48 130 | 71.13 296 | 90.93 243 |
|
| MVS_111021_LR | | | 91.60 77 | 91.64 73 | 91.47 145 | 95.74 111 | 78.79 202 | 96.15 189 | 96.77 55 | 88.49 69 | 88.64 125 | 97.07 103 | 72.33 187 | 99.19 91 | 93.13 75 | 96.48 96 | 96.43 164 |
|
| test-LLR | | | 88.48 143 | 87.98 135 | 89.98 188 | 92.26 217 | 77.23 247 | 97.11 123 | 95.96 139 | 83.76 178 | 86.30 149 | 91.38 223 | 72.30 188 | 96.78 218 | 80.82 194 | 91.92 154 | 95.94 176 |
|
| test0.0.03 1 | | | 82.79 241 | 82.48 227 | 83.74 309 | 86.81 311 | 72.22 303 | 96.52 164 | 95.03 188 | 83.76 178 | 73.00 296 | 93.20 196 | 72.30 188 | 88.88 362 | 64.15 319 | 77.52 268 | 90.12 255 |
|
| KD-MVS_2432*1600 | | | 77.63 297 | 74.92 302 | 85.77 275 | 90.86 256 | 79.44 182 | 88.08 332 | 93.92 252 | 76.26 300 | 67.05 329 | 82.78 338 | 72.15 190 | 91.92 342 | 61.53 328 | 41.62 385 | 85.94 341 |
|
| miper_refine_blended | | | 77.63 297 | 74.92 302 | 85.77 275 | 90.86 256 | 79.44 182 | 88.08 332 | 93.92 252 | 76.26 300 | 67.05 329 | 82.78 338 | 72.15 190 | 91.92 342 | 61.53 328 | 41.62 385 | 85.94 341 |
|
| FA-MVS(test-final) | | | 87.71 162 | 86.23 169 | 92.17 118 | 94.19 158 | 80.55 153 | 87.16 341 | 96.07 132 | 82.12 213 | 85.98 152 | 88.35 267 | 72.04 192 | 98.49 129 | 80.26 200 | 89.87 165 | 97.48 125 |
|
| Effi-MVS+ | | | 90.70 97 | 89.90 107 | 93.09 77 | 93.61 173 | 83.48 88 | 95.20 230 | 92.79 299 | 83.22 186 | 91.82 80 | 95.70 136 | 71.82 193 | 97.48 177 | 91.25 91 | 93.67 132 | 98.32 60 |
|
| sss | | | 90.87 95 | 89.96 104 | 93.60 58 | 94.15 159 | 83.84 81 | 97.14 120 | 98.13 7 | 85.93 120 | 89.68 110 | 96.09 128 | 71.67 194 | 99.30 81 | 87.69 137 | 89.16 170 | 97.66 110 |
|
| Test By Simon | | | | | | | | | | | | | 71.65 195 | | | | |
|
| HPM-MVS_fast | | | 90.38 105 | 90.17 99 | 91.03 158 | 97.61 70 | 77.35 245 | 97.15 119 | 95.48 165 | 79.51 260 | 88.79 122 | 96.90 107 | 71.64 196 | 98.81 117 | 87.01 145 | 97.44 72 | 96.94 145 |
|
| MVS | | | 90.60 99 | 88.64 124 | 96.50 5 | 94.25 156 | 90.53 8 | 93.33 280 | 97.21 22 | 77.59 287 | 78.88 231 | 97.31 90 | 71.52 197 | 99.69 47 | 89.60 116 | 98.03 54 | 99.27 20 |
|
| dp | | | 84.30 216 | 82.31 229 | 90.28 180 | 94.24 157 | 77.97 226 | 86.57 345 | 95.53 161 | 79.94 253 | 80.75 211 | 85.16 319 | 71.49 198 | 96.39 229 | 63.73 321 | 83.36 219 | 96.48 163 |
|
| ACMMP |  | | 90.39 103 | 89.97 103 | 91.64 139 | 97.58 73 | 78.21 220 | 96.78 150 | 96.72 63 | 84.73 146 | 84.72 164 | 97.23 95 | 71.22 199 | 99.63 55 | 88.37 132 | 92.41 149 | 97.08 143 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| PCF-MVS | | 84.09 5 | 86.77 176 | 85.00 187 | 92.08 121 | 92.06 231 | 83.07 96 | 92.14 299 | 94.47 222 | 79.63 258 | 76.90 250 | 94.78 166 | 71.15 200 | 99.20 90 | 72.87 271 | 91.05 160 | 93.98 218 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| TAPA-MVS | | 81.61 12 | 85.02 203 | 83.67 206 | 89.06 206 | 96.79 92 | 73.27 297 | 95.92 199 | 94.79 202 | 74.81 311 | 80.47 214 | 96.83 111 | 71.07 201 | 98.19 144 | 49.82 368 | 92.57 145 | 95.71 182 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| pcd_1.5k_mvsjas | | | 5.92 367 | 7.89 370 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 71.04 202 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| PS-MVSNAJss | | | 84.91 205 | 84.30 198 | 86.74 259 | 85.89 325 | 74.40 287 | 94.95 241 | 94.16 241 | 83.93 172 | 76.45 257 | 90.11 248 | 71.04 202 | 95.77 258 | 83.16 181 | 79.02 255 | 90.06 260 |
|
| PS-MVSNAJ | | | 94.17 26 | 93.52 37 | 96.10 9 | 95.65 113 | 92.35 2 | 98.21 42 | 95.79 149 | 92.42 21 | 96.24 24 | 98.18 36 | 71.04 202 | 99.17 93 | 96.77 31 | 97.39 75 | 96.79 152 |
|
| xiu_mvs_v2_base | | | 93.92 31 | 93.26 41 | 95.91 10 | 95.07 131 | 92.02 6 | 98.19 43 | 95.68 155 | 92.06 25 | 96.01 28 | 98.14 40 | 70.83 205 | 98.96 107 | 96.74 33 | 96.57 94 | 96.76 155 |
|
| FE-MVS | | | 86.06 186 | 84.15 201 | 91.78 135 | 94.33 155 | 79.81 171 | 84.58 357 | 96.61 78 | 76.69 298 | 85.00 159 | 87.38 280 | 70.71 206 | 98.37 137 | 70.39 290 | 91.70 157 | 97.17 140 |
|
| CPTT-MVS | | | 89.72 115 | 89.87 108 | 89.29 203 | 98.33 47 | 73.30 294 | 97.70 76 | 95.35 176 | 75.68 304 | 87.40 137 | 97.44 86 | 70.43 207 | 98.25 141 | 89.56 118 | 96.90 84 | 96.33 169 |
|
| WR-MVS_H | | | 81.02 267 | 80.09 261 | 83.79 307 | 88.08 298 | 71.26 319 | 94.46 249 | 96.54 87 | 80.08 249 | 72.81 299 | 86.82 290 | 70.36 208 | 92.65 334 | 64.18 318 | 67.50 332 | 87.46 322 |
|
| NR-MVSNet | | | 83.35 229 | 81.52 242 | 88.84 211 | 88.76 288 | 81.31 134 | 94.45 250 | 95.16 183 | 84.65 149 | 67.81 325 | 90.82 234 | 70.36 208 | 94.87 301 | 74.75 256 | 66.89 338 | 90.33 251 |
|
| VNet | | | 92.11 66 | 91.22 77 | 94.79 25 | 96.91 91 | 86.98 27 | 97.91 61 | 97.96 10 | 86.38 112 | 93.65 57 | 95.74 134 | 70.16 210 | 98.95 109 | 93.39 67 | 88.87 174 | 98.43 55 |
|
| Fast-Effi-MVS+ | | | 87.93 158 | 86.94 163 | 90.92 161 | 94.04 165 | 79.16 191 | 98.26 40 | 93.72 268 | 81.29 222 | 83.94 174 | 92.90 201 | 69.83 211 | 96.68 221 | 76.70 237 | 91.74 156 | 96.93 146 |
|
| PLC |  | 83.97 7 | 88.00 156 | 87.38 152 | 89.83 195 | 98.02 59 | 76.46 258 | 97.16 117 | 94.43 225 | 79.26 267 | 81.98 199 | 96.28 124 | 69.36 212 | 99.27 82 | 77.71 224 | 92.25 151 | 93.77 222 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| BH-w/o | | | 88.24 151 | 87.47 150 | 90.54 173 | 95.03 134 | 78.54 206 | 97.41 101 | 93.82 259 | 84.08 165 | 78.23 237 | 94.51 172 | 69.34 213 | 97.21 192 | 80.21 202 | 94.58 119 | 95.87 178 |
|
| MAR-MVS | | | 90.63 98 | 90.22 96 | 91.86 131 | 98.47 42 | 78.20 221 | 97.18 113 | 96.61 78 | 83.87 174 | 88.18 132 | 98.18 36 | 68.71 214 | 99.75 35 | 83.66 174 | 97.15 80 | 97.63 113 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| 114514_t | | | 88.79 136 | 87.57 146 | 92.45 101 | 98.21 53 | 81.74 124 | 96.99 131 | 95.45 168 | 75.16 308 | 82.48 188 | 95.69 137 | 68.59 215 | 98.50 128 | 80.33 198 | 95.18 112 | 97.10 142 |
|
| DU-MVS | | | 84.57 211 | 83.33 214 | 88.28 223 | 88.76 288 | 79.36 185 | 96.43 172 | 95.41 173 | 85.42 128 | 78.11 238 | 90.82 234 | 67.61 216 | 95.14 292 | 79.14 212 | 68.30 323 | 90.33 251 |
|
| Baseline_NR-MVSNet | | | 81.22 265 | 80.07 263 | 84.68 294 | 85.32 334 | 75.12 278 | 96.48 166 | 88.80 347 | 76.24 302 | 77.28 245 | 86.40 301 | 67.61 216 | 94.39 313 | 75.73 249 | 66.73 339 | 84.54 350 |
|
| test_fmvsmconf0.01_n | | | 91.08 89 | 90.68 86 | 92.29 111 | 82.43 354 | 80.12 166 | 97.94 60 | 93.93 250 | 92.07 24 | 91.97 77 | 97.60 77 | 67.56 218 | 99.53 66 | 97.09 27 | 95.56 110 | 97.21 138 |
|
| WR-MVS | | | 84.32 215 | 82.96 218 | 88.41 219 | 89.38 285 | 80.32 158 | 96.59 160 | 96.25 117 | 83.97 169 | 76.63 253 | 90.36 242 | 67.53 219 | 94.86 302 | 75.82 248 | 70.09 307 | 90.06 260 |
|
| OMC-MVS | | | 88.80 135 | 88.16 133 | 90.72 168 | 95.30 122 | 77.92 230 | 94.81 245 | 94.51 219 | 86.80 108 | 84.97 160 | 96.85 110 | 67.53 219 | 98.60 123 | 85.08 155 | 87.62 185 | 95.63 183 |
|
| LCM-MVSNet-Re | | | 83.75 224 | 83.54 211 | 84.39 303 | 93.54 176 | 64.14 351 | 92.51 294 | 84.03 370 | 83.90 173 | 66.14 336 | 86.59 294 | 67.36 221 | 92.68 333 | 84.89 158 | 92.87 142 | 96.35 166 |
|
| v148 | | | 82.41 249 | 80.89 248 | 86.99 257 | 86.18 320 | 76.81 254 | 96.27 181 | 93.82 259 | 80.49 238 | 75.28 278 | 86.11 306 | 67.32 222 | 95.75 260 | 75.48 251 | 67.03 337 | 88.42 301 |
|
| CNLPA | | | 86.96 170 | 85.37 179 | 91.72 137 | 97.59 72 | 79.34 187 | 97.21 109 | 91.05 325 | 74.22 314 | 78.90 230 | 96.75 117 | 67.21 223 | 98.95 109 | 74.68 257 | 90.77 162 | 96.88 150 |
|
| FMVSNet3 | | | 84.71 207 | 82.71 224 | 90.70 169 | 94.55 146 | 87.71 21 | 95.92 199 | 94.67 208 | 81.73 218 | 75.82 271 | 88.08 272 | 66.99 224 | 94.47 311 | 71.23 282 | 75.38 276 | 89.91 262 |
|
| v8 | | | 81.88 256 | 80.06 264 | 87.32 249 | 86.63 312 | 79.04 197 | 94.41 251 | 93.65 271 | 78.77 275 | 73.19 295 | 85.57 311 | 66.87 225 | 95.81 256 | 73.84 267 | 67.61 331 | 87.11 325 |
|
| 1314 | | | 88.94 129 | 87.20 155 | 94.17 41 | 93.21 186 | 85.73 42 | 93.33 280 | 96.64 75 | 82.89 196 | 75.98 267 | 96.36 122 | 66.83 226 | 99.39 75 | 83.52 178 | 96.02 104 | 97.39 130 |
|
| BH-untuned | | | 86.95 171 | 85.94 171 | 89.99 187 | 94.52 148 | 77.46 242 | 96.78 150 | 93.37 284 | 81.80 217 | 76.62 254 | 93.81 189 | 66.64 227 | 97.02 202 | 76.06 244 | 93.88 129 | 95.48 188 |
|
| GeoE | | | 86.36 180 | 85.20 181 | 89.83 195 | 93.17 188 | 76.13 263 | 97.53 88 | 92.11 307 | 79.58 259 | 80.99 208 | 94.01 183 | 66.60 228 | 96.17 238 | 73.48 269 | 89.30 169 | 97.20 139 |
|
| CVMVSNet | | | 84.83 206 | 85.57 175 | 82.63 320 | 91.55 241 | 60.38 365 | 95.13 234 | 95.03 188 | 80.60 234 | 82.10 197 | 94.71 167 | 66.40 229 | 90.19 359 | 74.30 262 | 90.32 163 | 97.31 133 |
|
| PMMVS | | | 89.46 120 | 89.92 106 | 88.06 229 | 94.64 142 | 69.57 330 | 96.22 184 | 94.95 190 | 87.27 97 | 91.37 87 | 96.54 121 | 65.88 230 | 97.39 182 | 88.54 127 | 93.89 128 | 97.23 136 |
|
| v2v482 | | | 83.46 228 | 81.86 236 | 88.25 225 | 86.19 319 | 79.65 179 | 96.34 178 | 94.02 248 | 81.56 220 | 77.32 244 | 88.23 269 | 65.62 231 | 96.03 240 | 77.77 221 | 69.72 311 | 89.09 280 |
|
| v1144 | | | 82.90 240 | 81.27 245 | 87.78 235 | 86.29 317 | 79.07 196 | 96.14 190 | 93.93 250 | 80.05 250 | 77.38 242 | 86.80 291 | 65.50 232 | 95.93 250 | 75.21 253 | 70.13 304 | 88.33 303 |
|
| v10 | | | 81.43 262 | 79.53 270 | 87.11 254 | 86.38 314 | 78.87 198 | 94.31 256 | 93.43 279 | 77.88 283 | 73.24 294 | 85.26 315 | 65.44 233 | 95.75 260 | 72.14 276 | 67.71 330 | 86.72 329 |
|
| HQP2-MVS | | | | | | | | | | | | | 65.40 234 | | | | |
|
| HQP-MVS | | | 87.91 159 | 87.55 147 | 88.98 209 | 92.08 228 | 78.48 207 | 97.63 80 | 94.80 200 | 90.52 41 | 82.30 191 | 94.56 170 | 65.40 234 | 97.32 185 | 87.67 138 | 83.01 222 | 91.13 239 |
|
| V42 | | | 83.04 237 | 81.53 241 | 87.57 243 | 86.27 318 | 79.09 195 | 95.87 203 | 94.11 244 | 80.35 243 | 77.22 246 | 86.79 292 | 65.32 236 | 96.02 243 | 77.74 222 | 70.14 303 | 87.61 316 |
|
| pmmvs4 | | | 82.54 245 | 80.79 249 | 87.79 234 | 86.11 321 | 80.49 157 | 93.55 275 | 93.18 291 | 77.29 291 | 73.35 292 | 89.40 254 | 65.26 237 | 95.05 299 | 75.32 252 | 73.61 284 | 87.83 311 |
|
| 3Dnovator+ | | 82.88 8 | 89.63 117 | 87.85 137 | 94.99 21 | 94.49 152 | 86.76 31 | 97.84 65 | 95.74 152 | 86.10 116 | 75.47 276 | 96.02 129 | 65.00 238 | 99.51 69 | 82.91 184 | 97.07 82 | 98.72 40 |
|
| mvsmamba | | | 85.17 201 | 84.54 192 | 87.05 256 | 87.94 300 | 75.11 279 | 96.22 184 | 87.79 355 | 86.91 105 | 78.55 233 | 91.77 220 | 64.93 239 | 95.91 251 | 86.94 146 | 79.80 244 | 90.12 255 |
|
| HQP_MVS | | | 87.50 165 | 87.09 159 | 88.74 214 | 91.86 237 | 77.96 227 | 97.18 113 | 94.69 205 | 89.89 51 | 81.33 205 | 94.15 180 | 64.77 240 | 97.30 187 | 87.08 142 | 82.82 226 | 90.96 241 |
|
| plane_prior6 | | | | | | 91.98 233 | 77.92 230 | | | | | | 64.77 240 | | | | |
|
| v144192 | | | 82.43 246 | 80.73 252 | 87.54 244 | 85.81 326 | 78.22 217 | 95.98 195 | 93.78 264 | 79.09 270 | 77.11 247 | 86.49 296 | 64.66 242 | 95.91 251 | 74.20 263 | 69.42 312 | 88.49 297 |
|
| TranMVSNet+NR-MVSNet | | | 83.24 233 | 81.71 238 | 87.83 233 | 87.71 303 | 78.81 201 | 96.13 192 | 94.82 199 | 84.52 152 | 76.18 265 | 90.78 236 | 64.07 243 | 94.60 307 | 74.60 260 | 66.59 340 | 90.09 258 |
|
| CP-MVSNet | | | 81.01 268 | 80.08 262 | 83.79 307 | 87.91 301 | 70.51 321 | 94.29 260 | 95.65 156 | 80.83 228 | 72.54 302 | 88.84 259 | 63.71 244 | 92.32 337 | 68.58 299 | 68.36 322 | 88.55 294 |
|
| cdsmvs_eth3d_5k | | | 21.43 362 | 28.57 365 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 95.93 142 | 0.00 400 | 0.00 401 | 97.66 70 | 63.57 245 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| Vis-MVSNet |  | | 88.67 138 | 87.82 138 | 91.24 151 | 92.68 203 | 78.82 199 | 96.95 138 | 93.85 258 | 87.55 90 | 87.07 144 | 95.13 156 | 63.43 246 | 97.21 192 | 77.58 227 | 96.15 100 | 97.70 108 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| v1192 | | | 82.31 250 | 80.55 256 | 87.60 240 | 85.94 323 | 78.47 210 | 95.85 205 | 93.80 262 | 79.33 263 | 76.97 249 | 86.51 295 | 63.33 247 | 95.87 253 | 73.11 270 | 70.13 304 | 88.46 299 |
|
| CANet_DTU | | | 90.98 91 | 90.04 101 | 93.83 48 | 94.76 141 | 86.23 34 | 96.32 179 | 93.12 294 | 93.11 16 | 93.71 56 | 96.82 113 | 63.08 248 | 99.48 71 | 84.29 161 | 95.12 113 | 95.77 180 |
|
| ab-mvs | | | 87.08 168 | 84.94 188 | 93.48 65 | 93.34 185 | 83.67 84 | 88.82 326 | 95.70 154 | 81.18 223 | 84.55 167 | 90.14 247 | 62.72 249 | 98.94 111 | 85.49 153 | 82.54 230 | 97.85 95 |
|
| v1921920 | | | 82.02 254 | 80.23 260 | 87.41 247 | 85.62 328 | 77.92 230 | 95.79 207 | 93.69 269 | 78.86 274 | 76.67 252 | 86.44 298 | 62.50 250 | 95.83 255 | 72.69 272 | 69.77 310 | 88.47 298 |
|
| CLD-MVS | | | 87.97 157 | 87.48 149 | 89.44 201 | 92.16 224 | 80.54 155 | 98.14 44 | 94.92 192 | 91.41 29 | 79.43 227 | 95.40 146 | 62.34 251 | 97.27 190 | 90.60 101 | 82.90 225 | 90.50 248 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| 3Dnovator | | 82.32 10 | 89.33 122 | 87.64 142 | 94.42 33 | 93.73 172 | 85.70 43 | 97.73 74 | 96.75 59 | 86.73 111 | 76.21 264 | 95.93 130 | 62.17 252 | 99.68 49 | 81.67 190 | 97.81 61 | 97.88 91 |
|
| ADS-MVSNet2 | | | 79.57 281 | 77.53 284 | 85.71 277 | 93.78 169 | 72.13 305 | 79.48 367 | 86.11 363 | 73.09 325 | 80.14 219 | 79.99 352 | 62.15 253 | 90.14 360 | 59.49 336 | 83.52 216 | 94.85 202 |
|
| ADS-MVSNet | | | 81.26 264 | 78.36 277 | 89.96 190 | 93.78 169 | 79.78 172 | 79.48 367 | 93.60 273 | 73.09 325 | 80.14 219 | 79.99 352 | 62.15 253 | 95.24 287 | 59.49 336 | 83.52 216 | 94.85 202 |
|
| QAPM | | | 86.88 172 | 84.51 193 | 93.98 44 | 94.04 165 | 85.89 40 | 97.19 112 | 96.05 133 | 73.62 319 | 75.12 279 | 95.62 140 | 62.02 255 | 99.74 37 | 70.88 286 | 96.06 103 | 96.30 171 |
|
| Effi-MVS+-dtu | | | 84.61 210 | 84.90 190 | 83.72 310 | 91.96 234 | 63.14 357 | 94.95 241 | 93.34 285 | 85.57 125 | 79.79 223 | 87.12 286 | 61.99 256 | 95.61 271 | 83.55 175 | 85.83 203 | 92.41 235 |
|
| XXY-MVS | | | 83.84 222 | 82.00 234 | 89.35 202 | 87.13 309 | 81.38 132 | 95.72 208 | 94.26 234 | 80.15 248 | 75.92 269 | 90.63 237 | 61.96 257 | 96.52 225 | 78.98 214 | 73.28 288 | 90.14 254 |
|
| AdaColmap |  | | 88.81 134 | 87.61 145 | 92.39 105 | 99.33 4 | 79.95 168 | 96.70 157 | 95.58 159 | 77.51 288 | 83.05 185 | 96.69 119 | 61.90 258 | 99.72 41 | 84.29 161 | 93.47 135 | 97.50 123 |
|
| VPA-MVSNet | | | 85.32 198 | 83.83 204 | 89.77 198 | 90.25 266 | 82.63 101 | 96.36 176 | 97.07 31 | 83.03 193 | 81.21 207 | 89.02 257 | 61.58 259 | 96.31 232 | 85.02 157 | 70.95 298 | 90.36 249 |
|
| dmvs_testset | | | 72.00 329 | 73.36 315 | 67.91 358 | 83.83 349 | 31.90 398 | 85.30 354 | 77.12 383 | 82.80 199 | 63.05 350 | 92.46 207 | 61.54 260 | 82.55 381 | 42.22 380 | 71.89 294 | 89.29 273 |
|
| CL-MVSNet_self_test | | | 75.81 309 | 74.14 311 | 80.83 331 | 78.33 366 | 67.79 337 | 94.22 261 | 93.52 276 | 77.28 292 | 69.82 318 | 81.54 344 | 61.47 261 | 89.22 361 | 57.59 344 | 53.51 367 | 85.48 345 |
|
| test_djsdf | | | 83.00 239 | 82.45 228 | 84.64 296 | 84.07 346 | 69.78 327 | 94.80 246 | 94.48 220 | 80.74 231 | 75.41 277 | 87.70 276 | 61.32 262 | 95.10 295 | 83.77 169 | 79.76 245 | 89.04 283 |
|
| v1240 | | | 81.70 258 | 79.83 268 | 87.30 251 | 85.50 329 | 77.70 239 | 95.48 217 | 93.44 278 | 78.46 279 | 76.53 255 | 86.44 298 | 60.85 263 | 95.84 254 | 71.59 279 | 70.17 302 | 88.35 302 |
|
| RRT_MVS | | | 83.88 221 | 83.27 215 | 85.71 277 | 87.53 307 | 72.12 306 | 95.35 223 | 94.33 231 | 83.81 176 | 75.86 270 | 91.28 226 | 60.55 264 | 95.09 297 | 83.93 165 | 76.76 270 | 89.90 263 |
|
| D2MVS | | | 82.67 243 | 81.55 240 | 86.04 273 | 87.77 302 | 76.47 257 | 95.21 229 | 96.58 83 | 82.66 203 | 70.26 316 | 85.46 314 | 60.39 265 | 95.80 257 | 76.40 241 | 79.18 253 | 85.83 343 |
|
| XVG-OURS-SEG-HR | | | 85.74 192 | 85.16 184 | 87.49 246 | 90.22 267 | 71.45 317 | 91.29 310 | 94.09 245 | 81.37 221 | 83.90 175 | 95.22 149 | 60.30 266 | 97.53 173 | 85.58 152 | 84.42 213 | 93.50 226 |
|
| PEN-MVS | | | 79.47 283 | 78.26 279 | 83.08 316 | 86.36 315 | 68.58 334 | 93.85 269 | 94.77 203 | 79.76 255 | 71.37 306 | 88.55 263 | 59.79 267 | 92.46 335 | 64.50 317 | 65.40 342 | 88.19 305 |
|
| TransMVSNet (Re) | | | 76.94 303 | 74.38 307 | 84.62 297 | 85.92 324 | 75.25 277 | 95.28 224 | 89.18 343 | 73.88 318 | 67.22 326 | 86.46 297 | 59.64 268 | 94.10 317 | 59.24 339 | 52.57 371 | 84.50 351 |
|
| DP-MVS | | | 81.47 261 | 78.28 278 | 91.04 157 | 98.14 55 | 78.48 207 | 95.09 239 | 86.97 357 | 61.14 368 | 71.12 310 | 92.78 205 | 59.59 269 | 99.38 76 | 53.11 359 | 86.61 192 | 95.27 194 |
|
| v7n | | | 79.32 285 | 77.34 285 | 85.28 286 | 84.05 347 | 72.89 302 | 93.38 278 | 93.87 256 | 75.02 310 | 70.68 312 | 84.37 327 | 59.58 270 | 95.62 270 | 67.60 300 | 67.50 332 | 87.32 324 |
|
| F-COLMAP | | | 84.50 213 | 83.44 213 | 87.67 237 | 95.22 125 | 72.22 303 | 95.95 197 | 93.78 264 | 75.74 303 | 76.30 261 | 95.18 153 | 59.50 271 | 98.45 133 | 72.67 273 | 86.59 193 | 92.35 236 |
|
| LS3D | | | 82.22 251 | 79.94 266 | 89.06 206 | 97.43 79 | 74.06 290 | 93.20 286 | 92.05 308 | 61.90 362 | 73.33 293 | 95.21 150 | 59.35 272 | 99.21 86 | 54.54 355 | 92.48 148 | 93.90 220 |
|
| BH-RMVSNet | | | 86.84 173 | 85.28 180 | 91.49 144 | 95.35 121 | 80.26 162 | 96.95 138 | 92.21 306 | 82.86 198 | 81.77 203 | 95.46 145 | 59.34 273 | 97.64 162 | 69.79 293 | 93.81 130 | 96.57 161 |
|
| MVP-Stereo | | | 82.65 244 | 81.67 239 | 85.59 282 | 86.10 322 | 78.29 214 | 93.33 280 | 92.82 298 | 77.75 285 | 69.17 323 | 87.98 273 | 59.28 274 | 95.76 259 | 71.77 277 | 96.88 86 | 82.73 361 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| PS-CasMVS | | | 80.27 275 | 79.18 271 | 83.52 313 | 87.56 305 | 69.88 326 | 94.08 263 | 95.29 179 | 80.27 246 | 72.08 304 | 88.51 266 | 59.22 275 | 92.23 339 | 67.49 301 | 68.15 325 | 88.45 300 |
|
| DTE-MVSNet | | | 78.37 289 | 77.06 288 | 82.32 323 | 85.22 335 | 67.17 343 | 93.40 277 | 93.66 270 | 78.71 276 | 70.53 314 | 88.29 268 | 59.06 276 | 92.23 339 | 61.38 331 | 63.28 351 | 87.56 318 |
|
| TR-MVS | | | 86.30 182 | 84.93 189 | 90.42 175 | 94.63 143 | 77.58 240 | 96.57 161 | 93.82 259 | 80.30 244 | 82.42 190 | 95.16 154 | 58.74 277 | 97.55 169 | 74.88 255 | 87.82 184 | 96.13 174 |
|
| OPM-MVS | | | 85.84 189 | 85.10 186 | 88.06 229 | 88.34 295 | 77.83 234 | 95.72 208 | 94.20 238 | 87.89 83 | 80.45 215 | 94.05 182 | 58.57 278 | 97.26 191 | 83.88 166 | 82.76 228 | 89.09 280 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| PatchMatch-RL | | | 85.00 204 | 83.66 207 | 89.02 208 | 95.86 108 | 74.55 285 | 92.49 295 | 93.60 273 | 79.30 265 | 79.29 229 | 91.47 221 | 58.53 279 | 98.45 133 | 70.22 291 | 92.17 153 | 94.07 217 |
|
| pm-mvs1 | | | 80.05 276 | 78.02 281 | 86.15 271 | 85.42 330 | 75.81 273 | 95.11 236 | 92.69 301 | 77.13 293 | 70.36 315 | 87.43 279 | 58.44 280 | 95.27 286 | 71.36 281 | 64.25 347 | 87.36 323 |
|
| SDMVSNet | | | 87.02 169 | 85.61 174 | 91.24 151 | 94.14 160 | 83.30 92 | 93.88 268 | 95.98 137 | 84.30 160 | 79.63 225 | 92.01 211 | 58.23 281 | 97.68 160 | 90.28 111 | 82.02 234 | 92.75 231 |
|
| our_test_3 | | | 77.90 295 | 75.37 299 | 85.48 284 | 85.39 331 | 76.74 255 | 93.63 272 | 91.67 313 | 73.39 323 | 65.72 338 | 84.65 326 | 58.20 282 | 93.13 332 | 57.82 342 | 67.87 327 | 86.57 332 |
|
| IterMVS-SCA-FT | | | 80.51 274 | 79.10 273 | 84.73 293 | 89.63 280 | 74.66 282 | 92.98 289 | 91.81 312 | 80.05 250 | 71.06 311 | 85.18 318 | 58.04 283 | 91.40 348 | 72.48 275 | 70.70 301 | 88.12 307 |
|
| SCA | | | 85.63 193 | 83.64 208 | 91.60 142 | 92.30 215 | 81.86 119 | 92.88 291 | 95.56 160 | 84.85 142 | 82.52 187 | 85.12 321 | 58.04 283 | 95.39 278 | 73.89 265 | 87.58 187 | 97.54 117 |
|
| EU-MVSNet | | | 76.92 304 | 76.95 289 | 76.83 347 | 84.10 345 | 54.73 378 | 91.77 304 | 92.71 300 | 72.74 328 | 69.57 320 | 88.69 261 | 58.03 285 | 87.43 370 | 64.91 316 | 70.00 308 | 88.33 303 |
|
| Syy-MVS | | | 77.97 294 | 78.05 280 | 77.74 344 | 92.13 225 | 56.85 371 | 93.97 265 | 94.23 235 | 82.43 206 | 73.39 289 | 93.57 193 | 57.95 286 | 87.86 366 | 32.40 384 | 82.34 231 | 88.51 295 |
|
| IterMVS | | | 80.67 272 | 79.16 272 | 85.20 287 | 89.79 274 | 76.08 264 | 92.97 290 | 91.86 310 | 80.28 245 | 71.20 309 | 85.14 320 | 57.93 287 | 91.34 349 | 72.52 274 | 70.74 299 | 88.18 306 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| dmvs_re | | | 84.10 218 | 82.90 220 | 87.70 236 | 91.41 245 | 73.28 295 | 90.59 316 | 93.19 289 | 85.02 139 | 77.96 240 | 93.68 190 | 57.92 288 | 96.18 237 | 75.50 250 | 80.87 239 | 93.63 224 |
|
| anonymousdsp | | | 80.98 269 | 79.97 265 | 84.01 304 | 81.73 356 | 70.44 322 | 92.49 295 | 93.58 275 | 77.10 295 | 72.98 297 | 86.31 302 | 57.58 289 | 94.90 300 | 79.32 209 | 78.63 260 | 86.69 330 |
|
| xiu_mvs_v1_base_debu | | | 90.54 100 | 89.54 111 | 93.55 60 | 92.31 212 | 87.58 23 | 96.99 131 | 94.87 195 | 87.23 98 | 93.27 60 | 97.56 79 | 57.43 290 | 98.32 138 | 92.72 78 | 93.46 136 | 94.74 205 |
|
| xiu_mvs_v1_base | | | 90.54 100 | 89.54 111 | 93.55 60 | 92.31 212 | 87.58 23 | 96.99 131 | 94.87 195 | 87.23 98 | 93.27 60 | 97.56 79 | 57.43 290 | 98.32 138 | 92.72 78 | 93.46 136 | 94.74 205 |
|
| xiu_mvs_v1_base_debi | | | 90.54 100 | 89.54 111 | 93.55 60 | 92.31 212 | 87.58 23 | 96.99 131 | 94.87 195 | 87.23 98 | 93.27 60 | 97.56 79 | 57.43 290 | 98.32 138 | 92.72 78 | 93.46 136 | 94.74 205 |
|
| OpenMVS |  | 79.58 14 | 86.09 185 | 83.62 209 | 93.50 63 | 90.95 252 | 86.71 32 | 97.44 96 | 95.83 147 | 75.35 305 | 72.64 300 | 95.72 135 | 57.42 293 | 99.64 53 | 71.41 280 | 95.85 107 | 94.13 215 |
|
| ECVR-MVS |  | | 88.35 148 | 87.25 154 | 91.65 138 | 93.54 176 | 79.40 184 | 96.56 163 | 90.78 330 | 86.78 109 | 85.57 154 | 95.25 147 | 57.25 294 | 97.56 167 | 84.73 159 | 94.80 115 | 97.98 86 |
|
| test1111 | | | 88.11 153 | 87.04 160 | 91.35 146 | 93.15 189 | 78.79 202 | 96.57 161 | 90.78 330 | 86.88 107 | 85.04 158 | 95.20 151 | 57.23 295 | 97.39 182 | 83.88 166 | 94.59 118 | 97.87 93 |
|
| PVSNet | | 82.34 9 | 89.02 127 | 87.79 139 | 92.71 92 | 95.49 117 | 81.50 131 | 97.70 76 | 97.29 19 | 87.76 85 | 85.47 155 | 95.12 157 | 56.90 296 | 98.90 113 | 80.33 198 | 94.02 125 | 97.71 107 |
|
| Fast-Effi-MVS+-dtu | | | 83.33 230 | 82.60 226 | 85.50 283 | 89.55 281 | 69.38 331 | 96.09 193 | 91.38 317 | 82.30 209 | 75.96 268 | 91.41 222 | 56.71 297 | 95.58 273 | 75.13 254 | 84.90 211 | 91.54 237 |
|
| ppachtmachnet_test | | | 77.19 301 | 74.22 309 | 86.13 272 | 85.39 331 | 78.22 217 | 93.98 264 | 91.36 319 | 71.74 335 | 67.11 328 | 84.87 324 | 56.67 298 | 93.37 331 | 52.21 360 | 64.59 344 | 86.80 328 |
|
| VPNet | | | 84.69 208 | 82.92 219 | 90.01 186 | 89.01 287 | 83.45 89 | 96.71 155 | 95.46 167 | 85.71 123 | 79.65 224 | 92.18 210 | 56.66 299 | 96.01 244 | 83.05 183 | 67.84 329 | 90.56 246 |
|
| GA-MVS | | | 85.79 191 | 84.04 203 | 91.02 159 | 89.47 283 | 80.27 161 | 96.90 142 | 94.84 198 | 85.57 125 | 80.88 209 | 89.08 255 | 56.56 300 | 96.47 227 | 77.72 223 | 85.35 208 | 96.34 167 |
|
| XVG-OURS | | | 85.18 200 | 84.38 197 | 87.59 241 | 90.42 265 | 71.73 314 | 91.06 313 | 94.07 246 | 82.00 216 | 83.29 181 | 95.08 159 | 56.42 301 | 97.55 169 | 83.70 173 | 83.42 218 | 93.49 227 |
|
| GBi-Net | | | 82.42 247 | 80.43 258 | 88.39 220 | 92.66 204 | 81.95 112 | 94.30 257 | 93.38 281 | 79.06 271 | 75.82 271 | 85.66 307 | 56.38 302 | 93.84 321 | 71.23 282 | 75.38 276 | 89.38 269 |
|
| test1 | | | 82.42 247 | 80.43 258 | 88.39 220 | 92.66 204 | 81.95 112 | 94.30 257 | 93.38 281 | 79.06 271 | 75.82 271 | 85.66 307 | 56.38 302 | 93.84 321 | 71.23 282 | 75.38 276 | 89.38 269 |
|
| FMVSNet2 | | | 82.79 241 | 80.44 257 | 89.83 195 | 92.66 204 | 85.43 48 | 95.42 220 | 94.35 229 | 79.06 271 | 74.46 283 | 87.28 281 | 56.38 302 | 94.31 314 | 69.72 294 | 74.68 280 | 89.76 264 |
|
| pmmvs5 | | | 81.34 263 | 79.54 269 | 86.73 262 | 85.02 336 | 76.91 251 | 96.22 184 | 91.65 314 | 77.65 286 | 73.55 287 | 88.61 262 | 55.70 305 | 94.43 312 | 74.12 264 | 73.35 287 | 88.86 292 |
|
| tfpnnormal | | | 78.14 291 | 75.42 298 | 86.31 268 | 88.33 296 | 79.24 188 | 94.41 251 | 96.22 120 | 73.51 320 | 69.81 319 | 85.52 313 | 55.43 306 | 95.75 260 | 47.65 373 | 67.86 328 | 83.95 356 |
|
| LFMVS | | | 89.27 124 | 87.64 142 | 94.16 43 | 97.16 88 | 85.52 47 | 97.18 113 | 94.66 209 | 79.17 268 | 89.63 112 | 96.57 120 | 55.35 307 | 98.22 142 | 89.52 119 | 89.54 167 | 98.74 35 |
|
| ACMM | | 80.70 13 | 83.72 225 | 82.85 222 | 86.31 268 | 91.19 247 | 72.12 306 | 95.88 202 | 94.29 233 | 80.44 239 | 77.02 248 | 91.96 215 | 55.24 308 | 97.14 199 | 79.30 210 | 80.38 243 | 89.67 265 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| MDA-MVSNet_test_wron | | | 73.54 319 | 70.43 327 | 82.86 317 | 84.55 339 | 71.85 311 | 91.74 305 | 91.32 321 | 67.63 348 | 46.73 378 | 81.09 347 | 55.11 309 | 90.42 358 | 55.91 352 | 59.76 357 | 86.31 335 |
|
| YYNet1 | | | 73.53 320 | 70.43 327 | 82.85 318 | 84.52 341 | 71.73 314 | 91.69 306 | 91.37 318 | 67.63 348 | 46.79 377 | 81.21 346 | 55.04 310 | 90.43 357 | 55.93 351 | 59.70 358 | 86.38 334 |
|
| LTVRE_ROB | | 73.68 18 | 77.99 292 | 75.74 297 | 84.74 292 | 90.45 264 | 72.02 308 | 86.41 347 | 91.12 322 | 72.57 330 | 66.63 333 | 87.27 282 | 54.95 311 | 96.98 204 | 56.29 350 | 75.98 271 | 85.21 347 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| LPG-MVS_test | | | 84.20 217 | 83.49 212 | 86.33 265 | 90.88 253 | 73.06 298 | 95.28 224 | 94.13 242 | 82.20 210 | 76.31 259 | 93.20 196 | 54.83 312 | 96.95 206 | 83.72 171 | 80.83 240 | 88.98 286 |
|
| LGP-MVS_train | | | | | 86.33 265 | 90.88 253 | 73.06 298 | | 94.13 242 | 82.20 210 | 76.31 259 | 93.20 196 | 54.83 312 | 96.95 206 | 83.72 171 | 80.83 240 | 88.98 286 |
|
| cascas | | | 86.50 178 | 84.48 195 | 92.55 99 | 92.64 207 | 85.95 37 | 97.04 130 | 95.07 187 | 75.32 306 | 80.50 213 | 91.02 230 | 54.33 314 | 97.98 148 | 86.79 147 | 87.62 185 | 93.71 223 |
|
| ACMP | | 81.66 11 | 84.00 219 | 83.22 216 | 86.33 265 | 91.53 243 | 72.95 301 | 95.91 201 | 93.79 263 | 83.70 180 | 73.79 286 | 92.22 209 | 54.31 315 | 96.89 210 | 83.98 164 | 79.74 247 | 89.16 277 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| bld_raw_dy_0_64 | | | 82.13 252 | 80.76 251 | 86.24 270 | 85.78 327 | 75.03 280 | 94.40 254 | 82.62 375 | 83.12 189 | 76.46 256 | 90.96 233 | 53.83 316 | 94.55 308 | 81.04 193 | 78.60 261 | 89.14 278 |
|
| test_cas_vis1_n_1920 | | | 89.90 112 | 90.02 102 | 89.54 200 | 90.14 271 | 74.63 283 | 98.71 25 | 94.43 225 | 93.04 17 | 92.40 70 | 96.35 123 | 53.41 317 | 99.08 101 | 95.59 44 | 96.16 99 | 94.90 199 |
|
| PVSNet_0 | | 77.72 15 | 81.70 258 | 78.95 275 | 89.94 191 | 90.77 259 | 76.72 256 | 95.96 196 | 96.95 38 | 85.01 140 | 70.24 317 | 88.53 265 | 52.32 318 | 98.20 143 | 86.68 148 | 44.08 382 | 94.89 200 |
|
| sd_testset | | | 84.62 209 | 83.11 217 | 89.17 204 | 94.14 160 | 77.78 235 | 91.54 309 | 94.38 228 | 84.30 160 | 79.63 225 | 92.01 211 | 52.28 319 | 96.98 204 | 77.67 225 | 82.02 234 | 92.75 231 |
|
| MSDG | | | 80.62 273 | 77.77 283 | 89.14 205 | 93.43 183 | 77.24 246 | 91.89 302 | 90.18 334 | 69.86 344 | 68.02 324 | 91.94 217 | 52.21 320 | 98.84 115 | 59.32 338 | 83.12 220 | 91.35 238 |
|
| test_vis1_n_1920 | | | 89.95 111 | 90.59 87 | 88.03 231 | 92.36 211 | 68.98 333 | 99.12 9 | 94.34 230 | 93.86 11 | 93.64 58 | 97.01 105 | 51.54 321 | 99.59 58 | 96.76 32 | 96.71 93 | 95.53 186 |
|
| WB-MVS | | | 57.26 344 | 56.22 347 | 60.39 369 | 69.29 380 | 35.91 396 | 86.39 348 | 70.06 389 | 59.84 374 | 46.46 379 | 72.71 372 | 51.18 322 | 78.11 383 | 15.19 393 | 34.89 388 | 67.14 382 |
|
| DSMNet-mixed | | | 73.13 322 | 72.45 318 | 75.19 353 | 77.51 369 | 46.82 383 | 85.09 355 | 82.01 376 | 67.61 352 | 69.27 322 | 81.33 345 | 50.89 323 | 86.28 373 | 54.54 355 | 83.80 215 | 92.46 233 |
|
| UGNet | | | 87.73 161 | 86.55 167 | 91.27 150 | 95.16 128 | 79.11 193 | 96.35 177 | 96.23 119 | 88.14 76 | 87.83 135 | 90.48 239 | 50.65 324 | 99.09 100 | 80.13 203 | 94.03 124 | 95.60 184 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| FMVSNet5 | | | 76.46 306 | 74.16 310 | 83.35 315 | 90.05 272 | 76.17 262 | 89.58 321 | 89.85 336 | 71.39 337 | 65.29 340 | 80.42 349 | 50.61 325 | 87.70 369 | 61.05 333 | 69.24 315 | 86.18 337 |
|
| MS-PatchMatch | | | 83.05 236 | 81.82 237 | 86.72 263 | 89.64 279 | 79.10 194 | 94.88 243 | 94.59 216 | 79.70 257 | 70.67 313 | 89.65 251 | 50.43 326 | 96.82 215 | 70.82 289 | 95.99 105 | 84.25 353 |
|
| Anonymous20231206 | | | 75.29 312 | 73.64 313 | 80.22 333 | 80.75 357 | 63.38 356 | 93.36 279 | 90.71 332 | 73.09 325 | 67.12 327 | 83.70 333 | 50.33 327 | 90.85 354 | 53.63 358 | 70.10 306 | 86.44 333 |
|
| SSC-MVS | | | 56.01 347 | 54.96 348 | 59.17 370 | 68.42 382 | 34.13 397 | 84.98 356 | 69.23 390 | 58.08 378 | 45.36 380 | 71.67 378 | 50.30 328 | 77.46 384 | 14.28 394 | 32.33 389 | 65.91 383 |
|
| N_pmnet | | | 61.30 343 | 60.20 346 | 64.60 363 | 84.32 342 | 17.00 404 | 91.67 307 | 10.98 402 | 61.77 363 | 58.45 366 | 78.55 356 | 49.89 329 | 91.83 345 | 42.27 379 | 63.94 348 | 84.97 348 |
|
| jajsoiax | | | 82.12 253 | 81.15 247 | 85.03 290 | 84.19 344 | 70.70 320 | 94.22 261 | 93.95 249 | 83.07 191 | 73.48 288 | 89.75 250 | 49.66 330 | 95.37 280 | 82.24 187 | 79.76 245 | 89.02 284 |
|
| RPSCF | | | 77.73 296 | 76.63 291 | 81.06 329 | 88.66 292 | 55.76 376 | 87.77 336 | 87.88 354 | 64.82 357 | 74.14 285 | 92.79 204 | 49.22 331 | 96.81 216 | 67.47 302 | 76.88 269 | 90.62 245 |
|
| SixPastTwentyTwo | | | 76.04 307 | 74.32 308 | 81.22 327 | 84.54 340 | 61.43 363 | 91.16 311 | 89.30 342 | 77.89 282 | 64.04 343 | 86.31 302 | 48.23 332 | 94.29 315 | 63.54 323 | 63.84 349 | 87.93 310 |
|
| test20.03 | | | 72.36 326 | 71.15 323 | 75.98 351 | 77.79 367 | 59.16 369 | 92.40 297 | 89.35 341 | 74.09 316 | 61.50 356 | 84.32 328 | 48.09 333 | 85.54 376 | 50.63 365 | 62.15 354 | 83.24 357 |
|
| VDDNet | | | 86.44 179 | 84.51 193 | 92.22 115 | 91.56 240 | 81.83 120 | 97.10 126 | 94.64 212 | 69.50 345 | 87.84 134 | 95.19 152 | 48.01 334 | 97.92 154 | 89.82 114 | 86.92 189 | 96.89 149 |
|
| VDD-MVS | | | 88.28 150 | 87.02 161 | 92.06 123 | 95.09 129 | 80.18 165 | 97.55 87 | 94.45 224 | 83.09 190 | 89.10 119 | 95.92 132 | 47.97 335 | 98.49 129 | 93.08 76 | 86.91 190 | 97.52 122 |
|
| test_fmvs1 | | | 87.79 160 | 88.52 127 | 85.62 281 | 92.98 198 | 64.31 349 | 97.88 63 | 92.42 303 | 87.95 80 | 92.24 73 | 95.82 133 | 47.94 336 | 98.44 135 | 95.31 48 | 94.09 123 | 94.09 216 |
|
| Anonymous20231211 | | | 79.72 279 | 77.19 287 | 87.33 248 | 95.59 115 | 77.16 250 | 95.18 233 | 94.18 240 | 59.31 375 | 72.57 301 | 86.20 304 | 47.89 337 | 95.66 265 | 74.53 261 | 69.24 315 | 89.18 276 |
|
| OurMVSNet-221017-0 | | | 77.18 302 | 76.06 294 | 80.55 332 | 83.78 350 | 60.00 367 | 90.35 317 | 91.05 325 | 77.01 297 | 66.62 334 | 87.92 274 | 47.73 338 | 94.03 318 | 71.63 278 | 68.44 321 | 87.62 315 |
|
| CMPMVS |  | 54.94 21 | 75.71 311 | 74.56 306 | 79.17 339 | 79.69 362 | 55.98 373 | 89.59 320 | 93.30 286 | 60.28 370 | 53.85 374 | 89.07 256 | 47.68 339 | 96.33 231 | 76.55 238 | 81.02 237 | 85.22 346 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| mvs_tets | | | 81.74 257 | 80.71 253 | 84.84 291 | 84.22 343 | 70.29 323 | 93.91 267 | 93.78 264 | 82.77 200 | 73.37 291 | 89.46 253 | 47.36 340 | 95.31 284 | 81.99 188 | 79.55 251 | 88.92 290 |
|
| MDA-MVSNet-bldmvs | | | 71.45 330 | 67.94 335 | 81.98 325 | 85.33 333 | 68.50 335 | 92.35 298 | 88.76 348 | 70.40 340 | 42.99 381 | 81.96 341 | 46.57 341 | 91.31 350 | 48.75 372 | 54.39 365 | 86.11 338 |
|
| pmmvs-eth3d | | | 73.59 318 | 70.66 325 | 82.38 321 | 76.40 374 | 73.38 292 | 89.39 324 | 89.43 340 | 72.69 329 | 60.34 361 | 77.79 358 | 46.43 342 | 91.26 351 | 66.42 310 | 57.06 361 | 82.51 362 |
|
| Anonymous20240529 | | | 83.15 234 | 80.60 255 | 90.80 165 | 95.74 111 | 78.27 215 | 96.81 148 | 94.92 192 | 60.10 372 | 81.89 201 | 92.54 206 | 45.82 343 | 98.82 116 | 79.25 211 | 78.32 265 | 95.31 192 |
|
| MVS-HIRNet | | | 71.36 331 | 67.00 336 | 84.46 301 | 90.58 261 | 69.74 328 | 79.15 370 | 87.74 356 | 46.09 382 | 61.96 355 | 50.50 386 | 45.14 344 | 95.64 268 | 53.74 357 | 88.11 183 | 88.00 309 |
|
| KD-MVS_self_test | | | 70.97 332 | 69.31 332 | 75.95 352 | 76.24 376 | 55.39 377 | 87.45 337 | 90.94 328 | 70.20 342 | 62.96 351 | 77.48 359 | 44.01 345 | 88.09 364 | 61.25 332 | 53.26 368 | 84.37 352 |
|
| FMVSNet1 | | | 79.50 282 | 76.54 292 | 88.39 220 | 88.47 293 | 81.95 112 | 94.30 257 | 93.38 281 | 73.14 324 | 72.04 305 | 85.66 307 | 43.86 346 | 93.84 321 | 65.48 313 | 72.53 289 | 89.38 269 |
|
| K. test v3 | | | 73.62 317 | 71.59 322 | 79.69 335 | 82.98 352 | 59.85 368 | 90.85 315 | 88.83 346 | 77.13 293 | 58.90 363 | 82.11 340 | 43.62 347 | 91.72 346 | 65.83 312 | 54.10 366 | 87.50 321 |
|
| pmmvs6 | | | 74.65 315 | 71.67 321 | 83.60 312 | 79.13 364 | 69.94 325 | 93.31 283 | 90.88 329 | 61.05 369 | 65.83 337 | 84.15 330 | 43.43 348 | 94.83 303 | 66.62 306 | 60.63 356 | 86.02 340 |
|
| ACMH | | 75.40 17 | 77.99 292 | 74.96 300 | 87.10 255 | 90.67 260 | 76.41 259 | 93.19 287 | 91.64 315 | 72.47 331 | 63.44 346 | 87.61 278 | 43.34 349 | 97.16 195 | 58.34 340 | 73.94 282 | 87.72 312 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| test_0402 | | | 72.68 324 | 69.54 331 | 82.09 324 | 88.67 291 | 71.81 313 | 92.72 293 | 86.77 360 | 61.52 364 | 62.21 353 | 83.91 331 | 43.22 350 | 93.76 324 | 34.60 383 | 72.23 293 | 80.72 371 |
|
| lessismore_v0 | | | | | 79.98 334 | 80.59 359 | 58.34 370 | | 80.87 377 | | 58.49 365 | 83.46 335 | 43.10 351 | 93.89 320 | 63.11 325 | 48.68 375 | 87.72 312 |
|
| UniMVSNet_ETH3D | | | 80.86 270 | 78.75 276 | 87.22 253 | 86.31 316 | 72.02 308 | 91.95 300 | 93.76 267 | 73.51 320 | 75.06 280 | 90.16 246 | 43.04 352 | 95.66 265 | 76.37 242 | 78.55 262 | 93.98 218 |
|
| UnsupCasMVSNet_eth | | | 73.25 321 | 70.57 326 | 81.30 326 | 77.53 368 | 66.33 345 | 87.24 340 | 93.89 255 | 80.38 242 | 57.90 368 | 81.59 343 | 42.91 353 | 90.56 356 | 65.18 315 | 48.51 376 | 87.01 327 |
|
| COLMAP_ROB |  | 73.24 19 | 75.74 310 | 73.00 317 | 83.94 305 | 92.38 210 | 69.08 332 | 91.85 303 | 86.93 358 | 61.48 365 | 65.32 339 | 90.27 243 | 42.27 354 | 96.93 209 | 50.91 364 | 75.63 275 | 85.80 344 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| MIMVSNet | | | 79.18 286 | 75.99 295 | 88.72 215 | 87.37 308 | 80.66 150 | 79.96 366 | 91.82 311 | 77.38 290 | 74.33 284 | 81.87 342 | 41.78 355 | 90.74 355 | 66.36 311 | 83.10 221 | 94.76 204 |
|
| ACMH+ | | 76.62 16 | 77.47 299 | 74.94 301 | 85.05 289 | 91.07 251 | 71.58 316 | 93.26 284 | 90.01 335 | 71.80 334 | 64.76 341 | 88.55 263 | 41.62 356 | 96.48 226 | 62.35 327 | 71.00 297 | 87.09 326 |
|
| ITE_SJBPF | | | | | 82.38 321 | 87.00 310 | 65.59 346 | | 89.55 338 | 79.99 252 | 69.37 321 | 91.30 225 | 41.60 357 | 95.33 282 | 62.86 326 | 74.63 281 | 86.24 336 |
|
| tt0805 | | | 81.20 266 | 79.06 274 | 87.61 239 | 86.50 313 | 72.97 300 | 93.66 271 | 95.48 165 | 74.11 315 | 76.23 263 | 91.99 213 | 41.36 358 | 97.40 181 | 77.44 230 | 74.78 279 | 92.45 234 |
|
| Anonymous202405211 | | | 84.41 214 | 81.93 235 | 91.85 133 | 96.78 93 | 78.41 211 | 97.44 96 | 91.34 320 | 70.29 341 | 84.06 169 | 94.26 176 | 41.09 359 | 98.96 107 | 79.46 208 | 82.65 229 | 98.17 70 |
|
| new-patchmatchnet | | | 68.85 337 | 65.93 339 | 77.61 345 | 73.57 379 | 63.94 353 | 90.11 319 | 88.73 349 | 71.62 336 | 55.08 372 | 73.60 369 | 40.84 360 | 87.22 372 | 51.35 363 | 48.49 377 | 81.67 370 |
|
| test_fmvs1_n | | | 86.34 181 | 86.72 165 | 85.17 288 | 87.54 306 | 63.64 354 | 96.91 141 | 92.37 305 | 87.49 91 | 91.33 88 | 95.58 142 | 40.81 361 | 98.46 132 | 95.00 50 | 93.49 134 | 93.41 230 |
|
| USDC | | | 78.65 288 | 76.25 293 | 85.85 274 | 87.58 304 | 74.60 284 | 89.58 321 | 90.58 333 | 84.05 166 | 63.13 348 | 88.23 269 | 40.69 362 | 96.86 214 | 66.57 308 | 75.81 274 | 86.09 339 |
|
| XVG-ACMP-BASELINE | | | 79.38 284 | 77.90 282 | 83.81 306 | 84.98 337 | 67.14 344 | 89.03 325 | 93.18 291 | 80.26 247 | 72.87 298 | 88.15 271 | 38.55 363 | 96.26 233 | 76.05 245 | 78.05 266 | 88.02 308 |
|
| AllTest | | | 75.92 308 | 73.06 316 | 84.47 299 | 92.18 222 | 67.29 338 | 91.07 312 | 84.43 368 | 67.63 348 | 63.48 344 | 90.18 244 | 38.20 364 | 97.16 195 | 57.04 346 | 73.37 285 | 88.97 288 |
|
| TestCases | | | | | 84.47 299 | 92.18 222 | 67.29 338 | | 84.43 368 | 67.63 348 | 63.48 344 | 90.18 244 | 38.20 364 | 97.16 195 | 57.04 346 | 73.37 285 | 88.97 288 |
|
| Anonymous20240521 | | | 72.06 328 | 69.91 329 | 78.50 342 | 77.11 371 | 61.67 362 | 91.62 308 | 90.97 327 | 65.52 355 | 62.37 352 | 79.05 355 | 36.32 366 | 90.96 353 | 57.75 343 | 68.52 320 | 82.87 358 |
|
| test_vis1_n | | | 85.60 194 | 85.70 173 | 85.33 285 | 84.79 338 | 64.98 347 | 96.83 145 | 91.61 316 | 87.36 95 | 91.00 95 | 94.84 165 | 36.14 367 | 97.18 194 | 95.66 42 | 93.03 141 | 93.82 221 |
|
| UnsupCasMVSNet_bld | | | 68.60 338 | 64.50 342 | 80.92 330 | 74.63 377 | 67.80 336 | 83.97 359 | 92.94 297 | 65.12 356 | 54.63 373 | 68.23 379 | 35.97 368 | 92.17 341 | 60.13 334 | 44.83 380 | 82.78 360 |
|
| tmp_tt | | | 41.54 357 | 41.93 359 | 40.38 376 | 20.10 401 | 26.84 400 | 61.93 388 | 59.09 397 | 14.81 395 | 28.51 390 | 80.58 348 | 35.53 369 | 48.33 397 | 63.70 322 | 13.11 394 | 45.96 390 |
|
| testgi | | | 74.88 314 | 73.40 314 | 79.32 338 | 80.13 361 | 61.75 360 | 93.21 285 | 86.64 361 | 79.49 261 | 66.56 335 | 91.06 229 | 35.51 370 | 88.67 363 | 56.79 349 | 71.25 295 | 87.56 318 |
|
| OpenMVS_ROB |  | 68.52 20 | 73.02 323 | 69.57 330 | 83.37 314 | 80.54 360 | 71.82 312 | 93.60 274 | 88.22 352 | 62.37 360 | 61.98 354 | 83.15 337 | 35.31 371 | 95.47 276 | 45.08 376 | 75.88 273 | 82.82 359 |
|
| test_fmvs2 | | | 79.59 280 | 79.90 267 | 78.67 340 | 82.86 353 | 55.82 375 | 95.20 230 | 89.55 338 | 81.09 224 | 80.12 221 | 89.80 249 | 34.31 372 | 93.51 328 | 87.82 135 | 78.36 264 | 86.69 330 |
|
| TDRefinement | | | 69.20 336 | 65.78 340 | 79.48 336 | 66.04 386 | 62.21 359 | 88.21 331 | 86.12 362 | 62.92 359 | 61.03 359 | 85.61 310 | 33.23 373 | 94.16 316 | 55.82 353 | 53.02 369 | 82.08 366 |
|
| LF4IMVS | | | 72.36 326 | 70.82 324 | 76.95 346 | 79.18 363 | 56.33 372 | 86.12 349 | 86.11 363 | 69.30 346 | 63.06 349 | 86.66 293 | 33.03 374 | 92.25 338 | 65.33 314 | 68.64 319 | 82.28 365 |
|
| MIMVSNet1 | | | 69.44 334 | 66.65 338 | 77.84 343 | 76.48 373 | 62.84 358 | 87.42 338 | 88.97 345 | 66.96 353 | 57.75 369 | 79.72 354 | 32.77 375 | 85.83 375 | 46.32 374 | 63.42 350 | 84.85 349 |
|
| EG-PatchMatch MVS | | | 74.92 313 | 72.02 320 | 83.62 311 | 83.76 351 | 73.28 295 | 93.62 273 | 92.04 309 | 68.57 347 | 58.88 364 | 83.80 332 | 31.87 376 | 95.57 274 | 56.97 348 | 78.67 257 | 82.00 367 |
|
| new_pmnet | | | 66.18 340 | 63.18 343 | 75.18 354 | 76.27 375 | 61.74 361 | 83.79 360 | 84.66 367 | 56.64 379 | 51.57 375 | 71.85 377 | 31.29 377 | 87.93 365 | 49.98 367 | 62.55 352 | 75.86 376 |
|
| TinyColmap | | | 72.41 325 | 68.99 334 | 82.68 319 | 88.11 297 | 69.59 329 | 88.41 330 | 85.20 365 | 65.55 354 | 57.91 367 | 84.82 325 | 30.80 378 | 95.94 249 | 51.38 361 | 68.70 318 | 82.49 364 |
|
| pmmvs3 | | | 65.75 341 | 62.18 344 | 76.45 349 | 67.12 385 | 64.54 348 | 88.68 328 | 85.05 366 | 54.77 381 | 57.54 370 | 73.79 368 | 29.40 379 | 86.21 374 | 55.49 354 | 47.77 378 | 78.62 373 |
|
| test_vis1_rt | | | 73.96 316 | 72.40 319 | 78.64 341 | 83.91 348 | 61.16 364 | 95.63 213 | 68.18 391 | 76.32 299 | 60.09 362 | 74.77 365 | 29.01 380 | 97.54 171 | 87.74 136 | 75.94 272 | 77.22 375 |
|
| EGC-MVSNET | | | 52.46 351 | 47.56 354 | 67.15 359 | 81.98 355 | 60.11 366 | 82.54 364 | 72.44 387 | 0.11 399 | 0.70 400 | 74.59 366 | 25.11 381 | 83.26 378 | 29.04 386 | 61.51 355 | 58.09 384 |
|
| mvsany_test3 | | | 67.19 339 | 65.34 341 | 72.72 355 | 63.08 387 | 48.57 381 | 83.12 362 | 78.09 382 | 72.07 332 | 61.21 357 | 77.11 361 | 22.94 382 | 87.78 368 | 78.59 216 | 51.88 372 | 81.80 368 |
|
| PM-MVS | | | 69.32 335 | 66.93 337 | 76.49 348 | 73.60 378 | 55.84 374 | 85.91 350 | 79.32 381 | 74.72 312 | 61.09 358 | 78.18 357 | 21.76 383 | 91.10 352 | 70.86 287 | 56.90 362 | 82.51 362 |
|
| test_method | | | 56.77 345 | 54.53 349 | 63.49 365 | 76.49 372 | 40.70 391 | 75.68 378 | 74.24 385 | 19.47 393 | 48.73 376 | 71.89 376 | 19.31 384 | 65.80 393 | 57.46 345 | 47.51 379 | 83.97 355 |
|
| DeepMVS_CX |  | | | | 64.06 364 | 78.53 365 | 43.26 389 | | 68.11 393 | 69.94 343 | 38.55 383 | 76.14 363 | 18.53 385 | 79.34 382 | 43.72 377 | 41.62 385 | 69.57 379 |
|
| ambc | | | | | 76.02 350 | 68.11 383 | 51.43 379 | 64.97 387 | 89.59 337 | | 60.49 360 | 74.49 367 | 17.17 386 | 92.46 335 | 61.50 330 | 52.85 370 | 84.17 354 |
|
| test_fmvs3 | | | 69.56 333 | 69.19 333 | 70.67 356 | 69.01 381 | 47.05 382 | 90.87 314 | 86.81 359 | 71.31 338 | 66.79 332 | 77.15 360 | 16.40 387 | 83.17 379 | 81.84 189 | 62.51 353 | 81.79 369 |
|
| FPMVS | | | 55.09 348 | 52.93 351 | 61.57 367 | 55.98 390 | 40.51 392 | 83.11 363 | 83.41 373 | 37.61 385 | 34.95 386 | 71.95 375 | 14.40 388 | 76.95 385 | 29.81 385 | 65.16 343 | 67.25 380 |
|
| test_f | | | 64.01 342 | 62.13 345 | 69.65 357 | 63.00 388 | 45.30 388 | 83.66 361 | 80.68 378 | 61.30 366 | 55.70 371 | 72.62 373 | 14.23 389 | 84.64 377 | 69.84 292 | 58.11 359 | 79.00 372 |
|
| APD_test1 | | | 56.56 346 | 53.58 350 | 65.50 360 | 67.93 384 | 46.51 385 | 77.24 377 | 72.95 386 | 38.09 384 | 42.75 382 | 75.17 364 | 13.38 390 | 82.78 380 | 40.19 381 | 54.53 364 | 67.23 381 |
|
| EMVS | | | 31.70 361 | 31.45 363 | 32.48 378 | 50.72 396 | 23.95 402 | 74.78 380 | 52.30 400 | 20.36 392 | 16.08 396 | 31.48 394 | 12.80 391 | 53.60 396 | 11.39 396 | 13.10 395 | 19.88 393 |
|
| ANet_high | | | 46.22 353 | 41.28 360 | 61.04 368 | 39.91 399 | 46.25 386 | 70.59 384 | 76.18 384 | 58.87 376 | 23.09 392 | 48.00 389 | 12.58 392 | 66.54 392 | 28.65 387 | 13.62 393 | 70.35 378 |
|
| E-PMN | | | 32.70 360 | 32.39 362 | 33.65 377 | 53.35 393 | 25.70 401 | 74.07 381 | 53.33 399 | 21.08 391 | 17.17 395 | 33.63 393 | 11.85 393 | 54.84 395 | 12.98 395 | 14.04 392 | 20.42 392 |
|
| Gipuma |  | | 45.11 356 | 42.05 358 | 54.30 373 | 80.69 358 | 51.30 380 | 35.80 391 | 83.81 371 | 28.13 387 | 27.94 391 | 34.53 391 | 11.41 394 | 76.70 387 | 21.45 390 | 54.65 363 | 34.90 391 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| PMMVS2 | | | 50.90 352 | 46.31 355 | 64.67 362 | 55.53 391 | 46.67 384 | 77.30 376 | 71.02 388 | 40.89 383 | 34.16 387 | 59.32 382 | 9.83 395 | 76.14 388 | 40.09 382 | 28.63 390 | 71.21 377 |
|
| LCM-MVSNet | | | 52.52 350 | 48.24 353 | 65.35 361 | 47.63 397 | 41.45 390 | 72.55 383 | 83.62 372 | 31.75 386 | 37.66 384 | 57.92 384 | 9.19 396 | 76.76 386 | 49.26 369 | 44.60 381 | 77.84 374 |
|
| test_vis3_rt | | | 54.10 349 | 51.04 352 | 63.27 366 | 58.16 389 | 46.08 387 | 84.17 358 | 49.32 401 | 56.48 380 | 36.56 385 | 49.48 388 | 8.03 397 | 91.91 344 | 67.29 303 | 49.87 373 | 51.82 387 |
|
| testf1 | | | 45.70 354 | 42.41 356 | 55.58 371 | 53.29 394 | 40.02 393 | 68.96 385 | 62.67 395 | 27.45 388 | 29.85 388 | 61.58 380 | 5.98 398 | 73.83 390 | 28.49 388 | 43.46 383 | 52.90 385 |
|
| APD_test2 | | | 45.70 354 | 42.41 356 | 55.58 371 | 53.29 394 | 40.02 393 | 68.96 385 | 62.67 395 | 27.45 388 | 29.85 388 | 61.58 380 | 5.98 398 | 73.83 390 | 28.49 388 | 43.46 383 | 52.90 385 |
|
| PMVS |  | 34.80 23 | 39.19 358 | 35.53 361 | 50.18 374 | 29.72 400 | 30.30 399 | 59.60 389 | 66.20 394 | 26.06 390 | 17.91 394 | 49.53 387 | 3.12 400 | 74.09 389 | 18.19 392 | 49.40 374 | 46.14 388 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| MVE |  | 35.65 22 | 33.85 359 | 29.49 364 | 46.92 375 | 41.86 398 | 36.28 395 | 50.45 390 | 56.52 398 | 18.75 394 | 18.28 393 | 37.84 390 | 2.41 401 | 58.41 394 | 18.71 391 | 20.62 391 | 46.06 389 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| wuyk23d | | | 14.10 363 | 13.89 366 | 14.72 379 | 55.23 392 | 22.91 403 | 33.83 392 | 3.56 403 | 4.94 396 | 4.11 397 | 2.28 399 | 2.06 402 | 19.66 398 | 10.23 397 | 8.74 396 | 1.59 396 |
|
| test123 | | | 9.07 365 | 11.73 368 | 1.11 380 | 0.50 403 | 0.77 405 | 89.44 323 | 0.20 405 | 0.34 398 | 2.15 399 | 10.72 398 | 0.34 403 | 0.32 399 | 1.79 399 | 0.08 398 | 2.23 394 |
|
| testmvs | | | 9.92 364 | 12.94 367 | 0.84 381 | 0.65 402 | 0.29 406 | 93.78 270 | 0.39 404 | 0.42 397 | 2.85 398 | 15.84 397 | 0.17 404 | 0.30 400 | 2.18 398 | 0.21 397 | 1.91 395 |
|
| test_blank | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| uanet_test | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| DCPMVS | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| sosnet-low-res | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| sosnet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| uncertanet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| Regformer | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| ab-mvs-re | | | 8.11 366 | 10.81 369 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 97.30 92 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| uanet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| WAC-MVS | | | | | | | 67.18 340 | | | | | | | | 49.00 370 | | |
|
| FOURS1 | | | | | | 98.51 39 | 78.01 225 | 98.13 47 | 96.21 121 | 83.04 192 | 94.39 49 | | | | | | |
|
| MSC_two_6792asdad | | | | | 97.14 3 | 99.05 9 | 92.19 4 | | 96.83 46 | | | | | 99.81 21 | 98.08 12 | 98.81 24 | 99.43 11 |
|
| No_MVS | | | | | 97.14 3 | 99.05 9 | 92.19 4 | | 96.83 46 | | | | | 99.81 21 | 98.08 12 | 98.81 24 | 99.43 11 |
|
| eth-test2 | | | | | | 0.00 404 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 404 | | | | | | | | | | | |
|
| IU-MVS | | | | | | 99.03 15 | 85.34 49 | | 96.86 45 | 92.05 26 | 98.74 1 | | | | 98.15 9 | 98.97 17 | 99.42 13 |
|
| save fliter | | | | | | 98.24 51 | 83.34 91 | 98.61 31 | 96.57 84 | 91.32 30 | | | | | | | |
|
| test_0728_SECOND | | | | | 95.14 18 | 99.04 14 | 86.14 35 | 99.06 14 | 96.77 55 | | | | | 99.84 12 | 97.90 15 | 98.85 21 | 99.45 10 |
|
| GSMVS | | | | | | | | | | | | | | | | | 97.54 117 |
|
| test_part2 | | | | | | 98.90 19 | 85.14 60 | | | | 96.07 26 | | | | | | |
|
| MTGPA |  | | | | | | | | 96.33 112 | | | | | | | | |
|
| MTMP | | | | | | | | 97.53 88 | 68.16 392 | | | | | | | | |
|
| gm-plane-assit | | | | | | 92.27 216 | 79.64 180 | | | 84.47 155 | | 95.15 155 | | 97.93 149 | 85.81 150 | | |
|
| test9_res | | | | | | | | | | | | | | | 96.00 37 | 99.03 13 | 98.31 62 |
|
| agg_prior2 | | | | | | | | | | | | | | | 94.30 56 | 99.00 15 | 98.57 46 |
|
| agg_prior | | | | | | 98.59 35 | 83.13 95 | | 96.56 86 | | 94.19 51 | | | 99.16 94 | | | |
|
| test_prior4 | | | | | | | 82.34 108 | 97.75 73 | | | | | | | | | |
|
| test_prior | | | | | 93.09 77 | 98.68 26 | 81.91 116 | | 96.40 104 | | | | | 99.06 102 | | | 98.29 64 |
|
| 旧先验2 | | | | | | | | 96.97 136 | | 74.06 317 | 96.10 25 | | | 97.76 158 | 88.38 131 | | |
|
| 新几何2 | | | | | | | | 96.42 173 | | | | | | | | | |
|
| 无先验 | | | | | | | | 96.87 143 | 96.78 49 | 77.39 289 | | | | 99.52 67 | 79.95 204 | | 98.43 55 |
|
| 原ACMM2 | | | | | | | | 96.84 144 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.48 71 | 76.45 240 | | |
|
| testdata1 | | | | | | | | 95.57 215 | | 87.44 92 | | | | | | | |
|
| plane_prior7 | | | | | | 91.86 237 | 77.55 241 | | | | | | | | | | |
|
| plane_prior5 | | | | | | | | | 94.69 205 | | | | | 97.30 187 | 87.08 142 | 82.82 226 | 90.96 241 |
|
| plane_prior4 | | | | | | | | | | | | 94.15 180 | | | | | |
|
| plane_prior3 | | | | | | | 77.75 237 | | | 90.17 48 | 81.33 205 | | | | | | |
|
| plane_prior2 | | | | | | | | 97.18 113 | | 89.89 51 | | | | | | | |
|
| plane_prior1 | | | | | | 91.95 235 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 77.96 227 | 97.52 91 | | 90.36 46 | | | | | | 82.96 224 | |
|
| n2 | | | | | | | | | 0.00 406 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 406 | | | | | | | | |
|
| door-mid | | | | | | | | | 79.75 380 | | | | | | | | |
|
| test11 | | | | | | | | | 96.50 92 | | | | | | | | |
|
| door | | | | | | | | | 80.13 379 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 78.48 207 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 92.08 228 | | 97.63 80 | | 90.52 41 | 82.30 191 | | | | | | |
|
| ACMP_Plane | | | | | | 92.08 228 | | 97.63 80 | | 90.52 41 | 82.30 191 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 87.67 138 | | |
|
| HQP4-MVS | | | | | | | | | | | 82.30 191 | | | 97.32 185 | | | 91.13 239 |
|
| HQP3-MVS | | | | | | | | | 94.80 200 | | | | | | | 83.01 222 | |
|
| NP-MVS | | | | | | 92.04 232 | 78.22 217 | | | | | 94.56 170 | | | | | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 78.45 263 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 79.05 254 | |
|