This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
MSP-MVS95.62 796.54 192.86 9598.31 5480.10 17097.42 9396.78 4792.20 1397.11 1098.29 3193.46 199.10 9996.01 2499.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PC_three_145291.12 2198.33 298.42 2892.51 299.81 2098.96 299.37 199.70 3
DVP-MVS++.96.05 496.41 394.96 2199.05 1085.34 4998.13 3896.77 5388.38 5997.70 698.77 1292.06 399.84 1297.47 1399.37 199.70 3
OPU-MVS97.30 299.19 892.31 399.12 698.54 2292.06 399.84 1299.11 199.37 199.74 1
GG-mvs-BLEND93.49 6994.94 14786.26 3181.62 34197.00 2888.32 12894.30 17091.23 596.21 22788.49 12197.43 7898.00 89
gg-mvs-nofinetune85.48 19082.90 21093.24 7794.51 16185.82 3979.22 34596.97 3261.19 34787.33 13653.01 35990.58 696.07 22986.07 13997.23 8397.81 103
baseline290.39 10590.21 9690.93 15690.86 25380.99 14695.20 22097.41 1586.03 10280.07 21394.61 16490.58 697.47 17187.29 13189.86 15994.35 207
CHOSEN 280x42091.71 7691.85 7091.29 14794.94 14782.69 10687.89 32096.17 12985.94 10387.27 13794.31 16990.27 895.65 25594.04 5095.86 10995.53 188
DPM-MVS96.21 295.53 1098.26 196.26 11095.09 199.15 496.98 3093.39 996.45 1798.79 1090.17 999.99 189.33 11499.25 699.70 3
ET-MVSNet_ETH3D90.01 11189.03 11692.95 9194.38 16486.77 2898.14 3596.31 11989.30 4363.33 33196.72 11990.09 1093.63 31390.70 9482.29 22498.46 51
MVSTER89.25 12488.92 12190.24 17695.98 11884.66 6996.79 14295.36 17487.19 8880.33 20890.61 22190.02 1195.97 23385.38 14478.64 24390.09 246
test_0728_THIRD88.38 5996.69 1298.76 1489.64 1299.76 2497.47 1398.84 2499.38 14
tttt051788.57 14188.19 12989.71 19593.00 19975.99 26695.67 20396.67 6880.78 21381.82 19494.40 16888.97 1397.58 16176.05 23186.31 18895.57 187
thisisatest053089.65 11689.02 11791.53 14193.46 18980.78 15296.52 15696.67 6881.69 20383.79 16994.90 16088.85 1497.68 15777.80 20787.49 18296.14 175
thisisatest051590.95 9390.26 9493.01 8894.03 17484.27 7697.91 5196.67 6883.18 17586.87 14195.51 14288.66 1597.85 15280.46 18489.01 16596.92 151
SED-MVS95.88 596.22 494.87 2299.03 1685.03 6199.12 696.78 4788.72 5197.79 498.91 388.48 1699.82 1798.15 398.97 1799.74 1
test_241102_ONE99.03 1685.03 6196.78 4788.72 5197.79 498.90 688.48 1699.82 17
DPE-MVScopyleft95.32 1095.55 994.64 2898.79 2584.87 6697.77 6096.74 5886.11 9896.54 1698.89 788.39 1899.74 3297.67 1199.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_one_060198.91 2084.56 7196.70 6388.06 6696.57 1598.77 1288.04 19
test_241102_TWO96.78 4788.72 5197.70 698.91 387.86 2099.82 1798.15 399.00 1599.47 9
DVP-MVScopyleft95.58 895.91 894.57 2999.05 1085.18 5499.06 996.46 9988.75 4996.69 1298.76 1487.69 2199.76 2497.90 898.85 2298.77 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.05 1085.18 5499.11 896.78 4788.75 4997.65 898.91 387.69 21
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 1597.10 2495.17 292.11 7298.46 2687.33 2399.97 297.21 1699.31 499.63 7
TSAR-MVS + GP.94.35 2294.50 1993.89 4997.38 9683.04 10298.10 4095.29 18091.57 1693.81 5197.45 8486.64 2499.43 6596.28 2194.01 12599.20 22
DWT-MVSNet_test90.52 10489.80 10892.70 10395.73 12482.20 11693.69 25796.55 8888.34 6187.04 14095.34 14586.53 2597.55 16376.32 22888.66 17098.34 56
TSAR-MVS + MP.94.79 1595.17 1393.64 6097.66 8084.10 7895.85 19896.42 10491.26 2097.49 996.80 11686.50 2698.49 13195.54 3299.03 1398.33 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS96.30 196.54 195.55 1499.31 587.69 2199.06 997.12 2294.66 396.79 1198.78 1186.42 2799.95 397.59 1299.18 799.00 27
DeepPCF-MVS89.82 194.61 1796.17 589.91 18897.09 10270.21 31698.99 1496.69 6695.57 195.08 3199.23 186.40 2899.87 897.84 1098.66 3499.65 6
ETH3 D test640095.56 995.41 1296.00 999.02 1989.42 998.75 1896.80 4687.28 8395.88 2298.95 285.92 2999.41 6697.15 1798.95 2099.18 24
HPM-MVS++copyleft95.32 1095.48 1194.85 2398.62 3886.04 3497.81 5896.93 3692.45 1195.69 2398.50 2485.38 3099.85 1094.75 4299.18 798.65 42
NCCC95.63 695.94 794.69 2799.21 785.15 5999.16 396.96 3394.11 695.59 2498.64 2185.07 3199.91 495.61 3199.10 999.00 27
EPP-MVSNet89.76 11489.72 10989.87 18993.78 17876.02 26597.22 10096.51 9379.35 24585.11 15195.01 15884.82 3297.10 19087.46 13088.21 17696.50 164
agg_prior194.10 2994.31 2693.48 7098.59 3983.13 9897.77 6096.56 8684.38 14594.19 4598.13 4184.66 3399.16 9395.74 2998.74 3198.15 74
TEST998.64 3583.71 8597.82 5696.65 7284.29 14995.16 2898.09 4684.39 3499.36 74
train_agg94.28 2394.45 2193.74 5498.64 3583.71 8597.82 5696.65 7284.50 14195.16 2898.09 4684.33 3599.36 7495.91 2798.96 1998.16 72
test_898.63 3783.64 8897.81 5896.63 7784.50 14195.10 3098.11 4584.33 3599.23 80
SD-MVS94.84 1495.02 1494.29 3797.87 7584.61 7097.76 6496.19 12889.59 3996.66 1498.17 3984.33 3599.60 5096.09 2298.50 4198.66 41
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVS94.56 1894.75 1593.96 4898.84 2483.40 9298.04 4696.41 10585.79 10695.00 3498.28 3284.32 3899.18 9197.35 1598.77 2999.28 19
旧先验197.39 9379.58 18396.54 8998.08 4984.00 3997.42 7997.62 118
CSCG92.02 6891.65 7593.12 8298.53 4180.59 15697.47 8597.18 2077.06 28084.64 15897.98 5783.98 4099.52 5790.72 9397.33 8199.23 21
IB-MVS85.34 488.67 13787.14 15593.26 7693.12 19784.32 7398.76 1797.27 1787.19 8879.36 21790.45 22483.92 4198.53 12984.41 15069.79 29196.93 149
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CostFormer89.08 12588.39 12791.15 15193.13 19679.15 19388.61 31496.11 13283.14 17689.58 11186.93 27283.83 4296.87 20288.22 12585.92 19497.42 130
SteuartSystems-ACMMP94.13 2894.44 2293.20 7995.41 13181.35 13999.02 1396.59 8289.50 4094.18 4898.36 3083.68 4399.45 6494.77 4198.45 4498.81 33
Skip Steuart: Steuart Systems R&D Blog.
RRT_test8_iter0587.14 16286.41 16389.32 19994.41 16381.10 14497.06 12395.33 17884.67 13676.27 25090.48 22283.60 4496.33 22185.10 14570.78 28090.53 235
ETH3D-3000-0.194.43 2094.42 2394.45 3197.78 7685.78 4097.98 4896.53 9185.29 12095.45 2598.81 883.36 4599.38 6896.07 2398.53 3798.19 69
DELS-MVS94.98 1294.49 2096.44 696.42 10890.59 799.21 297.02 2794.40 591.46 8197.08 10483.32 4699.69 4092.83 6898.70 3399.04 25
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test_prior394.03 3294.34 2593.09 8498.68 2981.91 12298.37 2896.40 10886.08 10094.57 4198.02 5283.14 4799.06 10195.05 3898.79 2798.29 63
test_prior298.37 2886.08 10094.57 4198.02 5283.14 4795.05 3898.79 27
ETH3D cwj APD-0.1693.91 3693.76 3494.36 3496.70 10685.74 4197.22 10096.41 10583.94 15894.13 4998.69 2083.13 4999.37 7295.25 3798.39 5197.97 92
SMA-MVScopyleft94.70 1694.68 1694.76 2598.02 6985.94 3797.47 8596.77 5385.32 11797.92 398.70 1883.09 5099.84 1295.79 2899.08 1098.49 50
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ZD-MVS99.09 983.22 9796.60 8182.88 18493.61 5498.06 5182.93 5199.14 9595.51 3398.49 42
xxxxxxxxxxxxxcwj94.38 2194.62 1893.68 5898.24 5783.34 9398.61 2392.69 29691.32 1895.07 3298.74 1682.93 5199.38 6895.42 3498.51 3898.32 58
SF-MVS94.17 2694.05 3194.55 3097.56 8585.95 3597.73 6696.43 10384.02 15595.07 3298.74 1682.93 5199.38 6895.42 3498.51 3898.32 58
9.1494.26 2898.10 6598.14 3596.52 9284.74 13294.83 3798.80 982.80 5499.37 7295.95 2698.42 46
testtj94.09 3094.08 3094.09 4599.28 683.32 9597.59 7596.61 7883.60 17094.77 3998.46 2682.72 5599.64 4695.29 3698.42 4699.32 17
segment_acmp82.69 56
Regformer-194.00 3394.04 3293.87 5098.41 4884.29 7497.43 9197.04 2689.50 4092.75 6698.13 4182.60 5799.26 7993.55 5596.99 8898.06 81
Regformer-293.92 3494.01 3393.67 5998.41 4883.75 8497.43 9197.00 2889.43 4292.69 6798.13 4182.48 5899.22 8293.51 5696.99 8898.04 82
PAPM92.87 5092.40 5894.30 3692.25 22087.85 1896.40 16896.38 11291.07 2288.72 12296.90 10982.11 5997.37 17590.05 10497.70 7297.67 113
APD-MVScopyleft93.61 3893.59 3793.69 5798.76 2683.26 9697.21 10296.09 13382.41 19294.65 4098.21 3481.96 6098.81 11894.65 4498.36 5499.01 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CDPH-MVS93.12 4492.91 4893.74 5498.65 3483.88 8097.67 7096.26 12183.00 18193.22 5898.24 3381.31 6199.21 8489.12 11598.74 3198.14 75
MG-MVS94.25 2593.72 3595.85 1199.38 389.35 1197.98 4898.09 889.99 3592.34 6996.97 10881.30 6298.99 10588.54 11998.88 2199.20 22
test1294.25 3898.34 5285.55 4696.35 11592.36 6880.84 6399.22 8298.31 5697.98 91
Regformer-393.19 4293.19 4493.19 8098.10 6583.01 10397.08 12196.98 3088.98 4691.35 8697.89 6280.80 6499.23 8092.30 7495.20 11597.32 135
baseline188.85 13287.49 14592.93 9395.21 13786.85 2795.47 21094.61 21687.29 8283.11 17794.99 15980.70 6596.89 20082.28 17573.72 26495.05 195
tpmrst88.36 14687.38 14991.31 14594.36 16579.92 17287.32 32495.26 18285.32 11788.34 12786.13 28880.60 6696.70 21083.78 15585.34 20297.30 138
Regformer-493.06 4693.12 4592.89 9498.10 6582.20 11697.08 12196.92 3888.87 4891.23 8897.89 6280.57 6799.19 8992.21 7695.20 11597.29 139
PHI-MVS93.59 3993.63 3693.48 7098.05 6881.76 13098.64 2197.13 2182.60 19094.09 5098.49 2580.35 6899.85 1094.74 4398.62 3598.83 32
CDS-MVSNet89.50 11888.96 11991.14 15291.94 23680.93 14897.09 11995.81 14984.26 15084.72 15694.20 17480.31 6995.64 25683.37 16788.96 16696.85 154
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tpm287.35 16186.26 16490.62 16592.93 20278.67 20488.06 31995.99 13879.33 24687.40 13486.43 28380.28 7096.40 21880.23 18785.73 19896.79 155
1112_ss88.60 14087.47 14792.00 12793.21 19280.97 14796.47 15992.46 29883.64 16880.86 20197.30 9480.24 7197.62 15977.60 21285.49 19997.40 132
Test_1112_low_res88.03 15286.73 16091.94 12993.15 19580.88 14996.44 16492.41 29983.59 17180.74 20391.16 21280.18 7297.59 16077.48 21585.40 20097.36 134
DeepC-MVS_fast89.06 294.48 1994.30 2795.02 1998.86 2385.68 4498.06 4496.64 7593.64 891.74 7898.54 2280.17 7399.90 592.28 7598.75 3099.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSLP-MVS++94.28 2394.39 2493.97 4798.30 5584.06 7998.64 2196.93 3690.71 2693.08 6098.70 1879.98 7499.21 8494.12 4999.07 1198.63 43
EPNet94.06 3194.15 2993.76 5397.27 9984.35 7298.29 3097.64 1394.57 495.36 2696.88 11179.96 7599.12 9891.30 8496.11 10497.82 102
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_111021_HR93.41 4193.39 4093.47 7397.34 9782.83 10597.56 7898.27 689.16 4589.71 10797.14 10079.77 7699.56 5593.65 5397.94 6698.02 84
miper_enhance_ethall85.95 18285.20 17588.19 22594.85 15079.76 17596.00 18794.06 24482.98 18277.74 23088.76 24579.42 7795.46 26580.58 18372.42 27289.36 261
TESTMET0.1,189.83 11289.34 11491.31 14592.54 21180.19 16897.11 11596.57 8486.15 9786.85 14291.83 20579.32 7896.95 19681.30 17992.35 14496.77 157
WTY-MVS92.65 5991.68 7495.56 1396.00 11788.90 1298.23 3297.65 1288.57 5589.82 10697.22 9879.29 7999.06 10189.57 11088.73 16998.73 39
112190.66 9889.82 10793.16 8197.39 9381.71 13393.33 26696.66 7174.45 29691.38 8297.55 8279.27 8099.52 5779.95 19098.43 4598.26 66
HY-MVS84.06 691.63 7890.37 9395.39 1696.12 11488.25 1490.22 30397.58 1488.33 6290.50 9891.96 20179.26 8199.06 10190.29 10289.07 16498.88 31
PAPM_NR91.46 8290.82 8693.37 7498.50 4581.81 12995.03 22996.13 13084.65 13786.10 14797.65 7679.24 8299.75 3083.20 16996.88 9398.56 46
alignmvs92.97 4892.26 6295.12 1895.54 12887.77 1998.67 1996.38 11288.04 6793.01 6197.45 8479.20 8398.60 12593.25 6288.76 16898.99 29
新几何193.12 8297.44 8981.60 13696.71 6274.54 29591.22 8997.57 7879.13 8499.51 6077.40 21698.46 4398.26 66
CS-MVS93.12 4493.27 4192.64 10593.86 17783.12 10098.85 1694.85 20088.61 5494.19 4597.42 8879.02 8597.02 19294.89 4097.77 7097.78 105
JIA-IIPM79.00 27377.20 27184.40 29089.74 27264.06 34075.30 35495.44 16962.15 34281.90 19259.08 35778.92 8695.59 26066.51 29285.78 19793.54 218
MVSFormer91.36 8590.57 8993.73 5693.00 19988.08 1694.80 23494.48 22180.74 21494.90 3597.13 10178.84 8795.10 28483.77 15697.46 7598.02 84
lupinMVS93.87 3793.58 3894.75 2693.00 19988.08 1699.15 495.50 16591.03 2394.90 3597.66 7278.84 8797.56 16294.64 4597.46 7598.62 44
testdata90.13 17995.92 11974.17 28396.49 9873.49 30494.82 3897.99 5578.80 8997.93 14683.53 16597.52 7498.29 63
PAPR92.74 5292.17 6594.45 3198.89 2284.87 6697.20 10496.20 12687.73 7588.40 12698.12 4478.71 9099.76 2487.99 12696.28 10298.74 35
EI-MVSNet-Vis-set91.84 7291.77 7392.04 12697.60 8281.17 14196.61 15396.87 4088.20 6489.19 11697.55 8278.69 9199.14 9590.29 10290.94 15495.80 181
HFP-MVS92.89 4992.86 5092.98 8998.71 2781.12 14297.58 7696.70 6385.20 12391.75 7697.97 5978.47 9299.71 3690.95 8798.41 4898.12 77
#test#92.99 4792.99 4692.98 8998.71 2781.12 14297.77 6096.70 6385.75 10791.75 7697.97 5978.47 9299.71 3691.36 8398.41 4898.12 77
ZNCC-MVS92.75 5192.60 5693.23 7898.24 5781.82 12897.63 7196.50 9585.00 12891.05 9197.74 7078.38 9499.80 2390.48 9698.34 5598.07 80
Patchmatch-test78.25 27774.72 29088.83 20991.20 24574.10 28473.91 35788.70 33959.89 35366.82 31685.12 30478.38 9494.54 29748.84 35279.58 23597.86 98
Vis-MVSNet (Re-imp)88.88 13188.87 12288.91 20693.89 17674.43 28196.93 13594.19 23584.39 14483.22 17595.67 13778.24 9694.70 29478.88 20394.40 12297.61 119
tpm85.55 18884.47 18988.80 21090.19 26475.39 27388.79 31294.69 20784.83 13083.96 16685.21 30078.22 9794.68 29576.32 22878.02 25096.34 169
MP-MVScopyleft92.61 6092.67 5492.42 11398.13 6479.73 17997.33 9896.20 12685.63 10990.53 9797.66 7278.14 9899.70 3992.12 7798.30 5797.85 99
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HyFIR lowres test89.36 12088.60 12491.63 13994.91 14980.76 15395.60 20695.53 16282.56 19184.03 16391.24 21178.03 9996.81 20687.07 13488.41 17497.32 135
ACMMP_NAP93.46 4093.23 4394.17 4297.16 10084.28 7596.82 14096.65 7286.24 9694.27 4497.99 5577.94 10099.83 1693.39 5798.57 3698.39 55
原ACMM191.22 15097.77 7778.10 22396.61 7881.05 20991.28 8797.42 8877.92 10198.98 10679.85 19398.51 3896.59 162
EI-MVSNet-UG-set91.35 8691.22 8091.73 13597.39 9380.68 15496.47 15996.83 4387.92 6988.30 12997.36 9177.84 10299.13 9789.43 11389.45 16195.37 191
patchmatchnet-post77.09 34477.78 10395.39 266
sam_mvs177.59 10497.54 121
EIA-MVS91.73 7392.05 6890.78 16294.52 15876.40 25798.06 4495.34 17789.19 4488.90 12097.28 9677.56 10597.73 15690.77 9296.86 9598.20 68
GST-MVS92.43 6492.22 6493.04 8798.17 6281.64 13597.40 9596.38 11284.71 13490.90 9397.40 9077.55 10699.76 2489.75 10897.74 7197.72 109
MP-MVS-pluss92.58 6192.35 5993.29 7597.30 9882.53 10996.44 16496.04 13784.68 13589.12 11798.37 2977.48 10799.74 3293.31 6198.38 5297.59 120
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CP-MVS92.54 6292.60 5692.34 11598.50 4579.90 17398.40 2696.40 10884.75 13190.48 9998.09 4677.40 10899.21 8491.15 8698.23 5997.92 95
region2R92.72 5592.70 5392.79 9898.68 2980.53 16097.53 8096.51 9385.22 12191.94 7497.98 5777.26 10999.67 4490.83 9198.37 5398.18 70
PatchmatchNetpermissive86.83 16985.12 17991.95 12894.12 16982.27 11486.55 33095.64 15884.59 13982.98 17984.99 30677.26 10995.96 23668.61 28291.34 15297.64 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
XVS92.69 5792.71 5192.63 10698.52 4280.29 16397.37 9696.44 10187.04 9191.38 8297.83 6777.24 11199.59 5190.46 9798.07 6298.02 84
X-MVStestdata86.26 17884.14 19492.63 10698.52 4280.29 16397.37 9696.44 10187.04 9191.38 8220.73 36977.24 11199.59 5190.46 9798.07 6298.02 84
ETV-MVS92.72 5592.87 4992.28 11894.54 15781.89 12497.98 4895.21 18389.77 3893.11 5996.83 11377.23 11397.50 16995.74 2995.38 11397.44 129
CS-MVS-test91.92 7092.11 6691.37 14494.00 17579.66 18098.39 2794.38 22887.14 9092.87 6497.05 10677.17 11496.97 19591.44 8296.55 10097.47 128
ACMMPR92.69 5792.67 5492.75 9998.66 3280.57 15797.58 7696.69 6685.20 12391.57 8097.92 6177.01 11599.67 4490.95 8798.41 4898.00 89
UniMVSNet_NR-MVSNet85.49 18984.59 18588.21 22489.44 27879.36 18696.71 14996.41 10585.22 12178.11 22890.98 21676.97 11695.14 28079.14 20068.30 30590.12 244
DP-MVS Recon91.72 7590.85 8594.34 3599.50 185.00 6398.51 2595.96 14080.57 21888.08 13197.63 7776.84 11799.89 785.67 14194.88 11998.13 76
CANet94.89 1394.64 1795.63 1297.55 8688.12 1599.06 996.39 11194.07 795.34 2797.80 6876.83 11899.87 897.08 1897.64 7398.89 30
PVSNet_Blended_VisFu91.24 8890.77 8792.66 10495.09 14082.40 11297.77 6095.87 14788.26 6386.39 14393.94 18076.77 11999.27 7788.80 11894.00 12696.31 172
FIs86.73 17386.10 16588.61 21390.05 26780.21 16796.14 18396.95 3485.56 11378.37 22692.30 19676.73 12095.28 27379.51 19479.27 23790.35 238
zzz-MVS92.74 5292.71 5192.86 9597.90 7180.85 15096.47 15996.33 11687.92 6990.20 10298.18 3576.71 12199.76 2492.57 7298.09 6097.96 93
MTAPA92.45 6392.31 6092.86 9597.90 7180.85 15092.88 27996.33 11687.92 6990.20 10298.18 3576.71 12199.76 2492.57 7298.09 6097.96 93
miper_ehance_all_eth84.57 20383.60 20287.50 23992.64 20978.25 21695.40 21493.47 27179.28 24976.41 24687.64 26176.53 12395.24 27578.58 20472.42 27289.01 272
SR-MVS92.16 6692.27 6191.83 13498.37 5178.41 21196.67 15295.76 15182.19 19691.97 7398.07 5076.44 12498.64 12293.71 5297.27 8298.45 52
PVSNet_BlendedMVS90.05 11089.96 10290.33 17497.47 8783.86 8198.02 4796.73 5987.98 6889.53 11289.61 23576.42 12599.57 5394.29 4779.59 23487.57 303
PVSNet_Blended93.13 4392.98 4793.57 6497.47 8783.86 8199.32 196.73 5991.02 2489.53 11296.21 12576.42 12599.57 5394.29 4795.81 11197.29 139
test-mter88.95 12788.60 12489.98 18492.26 21877.23 24597.11 11595.96 14085.32 11786.30 14591.38 20876.37 12796.78 20880.82 18191.92 14895.94 178
test22296.15 11378.41 21195.87 19696.46 9971.97 31589.66 10997.45 8476.33 12898.24 5898.30 62
FC-MVSNet-test85.96 18185.39 17287.66 23389.38 27978.02 22495.65 20596.87 4085.12 12577.34 23291.94 20376.28 12994.74 29377.09 21778.82 24190.21 242
test_post33.80 36576.17 13095.97 233
PGM-MVS91.93 6991.80 7292.32 11798.27 5679.74 17895.28 21597.27 1783.83 16390.89 9497.78 6976.12 13199.56 5588.82 11797.93 6897.66 114
Patchmatch-RL test76.65 29174.01 29884.55 28677.37 35364.23 33878.49 34982.84 35978.48 26264.63 32673.40 34976.05 13291.70 33376.99 21857.84 34097.72 109
cl-mvsnet285.11 19484.17 19387.92 22895.06 14478.82 20095.51 20894.22 23379.74 23976.77 24087.92 25875.96 13395.68 25279.93 19272.42 27289.27 262
TAMVS88.48 14287.79 13690.56 16791.09 24879.18 19196.45 16295.88 14583.64 16883.12 17693.33 18775.94 13495.74 25182.40 17488.27 17596.75 159
EPNet_dtu87.65 15887.89 13386.93 25194.57 15571.37 31096.72 14796.50 9588.56 5687.12 13895.02 15775.91 13594.01 30666.62 28990.00 15895.42 190
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
mvs_anonymous88.68 13687.62 14191.86 13194.80 15181.69 13493.53 26294.92 19482.03 19878.87 22190.43 22575.77 13695.34 26985.04 14793.16 13698.55 48
test117291.64 7792.00 6990.54 16898.20 6174.48 28096.45 16295.65 15681.97 20091.63 7998.02 5275.76 13798.61 12393.16 6397.17 8498.52 49
SR-MVS-dyc-post91.29 8791.45 7890.80 16097.76 7876.03 26396.20 18095.44 16980.56 21990.72 9597.84 6575.76 13798.61 12391.99 7996.79 9697.75 107
test_yl91.46 8290.53 9094.24 3997.41 9185.18 5498.08 4197.72 1080.94 21089.85 10496.14 12675.61 13998.81 11890.42 10088.56 17298.74 35
DCV-MVSNet91.46 8290.53 9094.24 3997.41 9185.18 5498.08 4197.72 1080.94 21089.85 10496.14 12675.61 13998.81 11890.42 10088.56 17298.74 35
HPM-MVScopyleft91.62 7991.53 7791.89 13097.88 7479.22 19096.99 12695.73 15382.07 19789.50 11497.19 9975.59 14198.93 11390.91 8997.94 6697.54 121
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS91.88 7191.82 7192.07 12498.38 5078.63 20597.29 9996.09 13385.12 12588.45 12597.66 7275.53 14299.68 4289.83 10698.02 6597.88 96
PatchT79.75 26576.85 27588.42 21589.55 27575.49 27277.37 35194.61 21663.07 33982.46 18273.32 35075.52 14393.41 31651.36 34584.43 20596.36 167
CR-MVSNet83.53 21881.36 23490.06 18190.16 26579.75 17679.02 34791.12 31584.24 15182.27 18880.35 33375.45 14493.67 31263.37 30786.25 18996.75 159
Patchmtry77.36 28674.59 29185.67 27189.75 27075.75 27077.85 35091.12 31560.28 35071.23 29380.35 33375.45 14493.56 31457.94 32467.34 31787.68 299
thres100view90088.30 14786.95 15892.33 11696.10 11584.90 6597.14 11298.85 282.69 18883.41 17293.66 18575.43 14697.93 14669.04 27886.24 19194.17 208
thres600view788.06 15186.70 16192.15 12296.10 11585.17 5897.14 11298.85 282.70 18783.41 17293.66 18575.43 14697.82 15367.13 28785.88 19593.45 221
UniMVSNet (Re)85.31 19284.23 19288.55 21489.75 27080.55 15896.72 14796.89 3985.42 11478.40 22588.93 24375.38 14895.52 26378.58 20468.02 30889.57 254
tfpn200view988.48 14287.15 15392.47 11096.21 11185.30 5297.44 8798.85 283.37 17283.99 16493.82 18275.36 14997.93 14669.04 27886.24 19194.17 208
thres40088.42 14587.15 15392.23 11996.21 11185.30 5297.44 8798.85 283.37 17283.99 16493.82 18275.36 14997.93 14669.04 27886.24 19193.45 221
sam_mvs75.35 151
jason92.73 5492.23 6394.21 4190.50 25987.30 2598.65 2095.09 18690.61 2792.76 6597.13 10175.28 15297.30 17893.32 6096.75 9898.02 84
jason: jason.
cl_fuxian83.80 21482.65 21687.25 24692.10 22677.74 23695.25 21893.04 29178.58 26176.01 25487.21 26875.25 15395.11 28277.54 21468.89 29988.91 278
MVS_Test90.29 10889.18 11593.62 6295.23 13584.93 6494.41 24094.66 21184.31 14790.37 10191.02 21475.13 15497.82 15383.11 17194.42 12198.12 77
thres20088.92 12987.65 13892.73 10196.30 10985.62 4597.85 5498.86 184.38 14584.82 15493.99 17975.12 15598.01 14470.86 27286.67 18594.56 206
EPMVS87.47 16085.90 16892.18 12195.41 13182.26 11587.00 32696.28 12085.88 10584.23 16185.57 29475.07 15696.26 22471.14 27092.50 14198.03 83
UA-Net88.92 12988.48 12690.24 17694.06 17177.18 24793.04 27594.66 21187.39 8191.09 9093.89 18174.92 15798.18 14375.83 23391.43 15195.35 192
tpm cat183.63 21781.38 23390.39 17193.53 18878.19 22285.56 33695.09 18670.78 32078.51 22483.28 31974.80 15897.03 19166.77 28884.05 20795.95 177
hse-mvs389.30 12288.95 12090.36 17295.07 14276.04 26296.96 13297.11 2390.39 3192.22 7095.10 15574.70 15998.86 11593.14 6465.89 32496.16 174
hse-mvs288.22 15088.21 12888.25 22293.54 18573.41 28695.41 21395.89 14490.39 3192.22 7094.22 17274.70 15996.66 21393.14 6464.37 32994.69 205
APD-MVS_3200maxsize91.23 8991.35 7990.89 15897.89 7376.35 25896.30 17495.52 16479.82 23791.03 9297.88 6474.70 15998.54 12892.11 7896.89 9297.77 106
IS-MVSNet88.67 13788.16 13090.20 17893.61 18276.86 25096.77 14593.07 29084.02 15583.62 17195.60 14074.69 16296.24 22678.43 20693.66 13197.49 127
DROMVSNet91.73 7392.11 6690.58 16693.54 18577.77 23498.07 4394.40 22787.44 7992.99 6297.11 10374.59 16396.87 20293.75 5197.08 8697.11 144
MDTV_nov1_ep1383.69 19794.09 17081.01 14586.78 32896.09 13383.81 16484.75 15584.32 31174.44 16496.54 21463.88 30385.07 203
MDTV_nov1_ep13_2view81.74 13186.80 32780.65 21685.65 14874.26 16576.52 22496.98 147
cl-mvsnet____83.27 22282.12 22186.74 25292.20 22175.95 26795.11 22593.27 28378.44 26474.82 26987.02 27174.19 16695.19 27774.67 24369.32 29589.09 267
cl-mvsnet183.27 22282.12 22186.74 25292.19 22275.92 26895.11 22593.26 28478.44 26474.81 27087.08 27074.19 16695.19 27774.66 24469.30 29689.11 266
casdiffmvs90.95 9390.39 9292.63 10692.82 20482.53 10996.83 13994.47 22387.69 7688.47 12495.56 14174.04 16897.54 16690.90 9092.74 13897.83 101
tpmvs83.04 22880.77 23989.84 19095.43 13077.96 22785.59 33595.32 17975.31 28976.27 25083.70 31673.89 16997.41 17359.53 31881.93 22594.14 210
test_post185.88 33430.24 36873.77 17095.07 28673.89 250
baseline90.76 9690.10 9992.74 10092.90 20382.56 10894.60 23694.56 21987.69 7689.06 11995.67 13773.76 17197.51 16890.43 9992.23 14698.16 72
EI-MVSNet85.80 18485.20 17587.59 23591.55 24177.41 24195.13 22395.36 17480.43 22480.33 20894.71 16273.72 17295.97 23376.96 22078.64 24389.39 256
IterMVS-LS83.93 21282.80 21487.31 24491.46 24477.39 24295.66 20493.43 27480.44 22275.51 26387.26 26673.72 17295.16 27976.99 21870.72 28289.39 256
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AUN-MVS86.25 17985.57 16988.26 22193.57 18473.38 28795.45 21195.88 14583.94 15885.47 14994.21 17373.70 17496.67 21283.54 16464.41 32894.73 204
miper_lstm_enhance81.66 24980.66 24284.67 28391.19 24671.97 30291.94 28993.19 28577.86 26872.27 28985.26 29873.46 17593.42 31573.71 25367.05 31988.61 280
diffmvs91.17 9090.74 8892.44 11293.11 19882.50 11196.25 17793.62 26687.79 7390.40 10095.93 13073.44 17697.42 17293.62 5492.55 14097.41 131
RE-MVS-def91.18 8397.76 7876.03 26396.20 18095.44 16980.56 21990.72 9597.84 6573.36 17791.99 7996.79 9697.75 107
DeepC-MVS86.58 391.53 8191.06 8492.94 9294.52 15881.89 12495.95 19095.98 13990.76 2583.76 17096.76 11773.24 17899.71 3691.67 8196.96 9097.22 142
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RPMNet79.85 26475.92 28291.64 13790.16 26579.75 17679.02 34795.44 16958.43 35682.27 18872.55 35173.03 17998.41 13546.10 35686.25 18996.75 159
CHOSEN 1792x268891.07 9190.21 9693.64 6095.18 13883.53 8996.26 17696.13 13088.92 4784.90 15393.10 19172.86 18099.62 4988.86 11695.67 11297.79 104
eth_miper_zixun_eth83.12 22682.01 22386.47 25791.85 23974.80 27694.33 24393.18 28679.11 25275.74 26287.25 26772.71 18195.32 27176.78 22167.13 31889.27 262
canonicalmvs92.27 6591.22 8095.41 1595.80 12188.31 1397.09 11994.64 21488.49 5792.99 6297.31 9272.68 18298.57 12793.38 5988.58 17199.36 16
API-MVS90.18 10988.97 11893.80 5298.66 3282.95 10497.50 8495.63 15975.16 29086.31 14497.69 7172.49 18399.90 581.26 18096.07 10598.56 46
nrg03086.79 17185.43 17190.87 15988.76 28285.34 4997.06 12394.33 23084.31 14780.45 20691.98 20072.36 18496.36 22088.48 12271.13 27790.93 232
MVS_111021_LR91.60 8091.64 7691.47 14395.74 12278.79 20396.15 18296.77 5388.49 5788.64 12397.07 10572.33 18599.19 8993.13 6696.48 10196.43 166
test-LLR88.48 14287.98 13289.98 18492.26 21877.23 24597.11 11595.96 14083.76 16586.30 14591.38 20872.30 18696.78 20880.82 18191.92 14895.94 178
test0.0.03 182.79 23282.48 21883.74 29786.81 30172.22 29696.52 15695.03 19083.76 16573.00 28293.20 18872.30 18688.88 34864.15 30277.52 25190.12 244
KD-MVS_2432*160077.63 28374.92 28885.77 26890.86 25379.44 18488.08 31793.92 24876.26 28267.05 31482.78 32172.15 18891.92 32961.53 31141.62 36085.94 325
miper_refine_blended77.63 28374.92 28885.77 26890.86 25379.44 18488.08 31793.92 24876.26 28267.05 31482.78 32172.15 18891.92 32961.53 31141.62 36085.94 325
Effi-MVS+90.70 9789.90 10593.09 8493.61 18283.48 9095.20 22092.79 29483.22 17491.82 7595.70 13571.82 19097.48 17091.25 8593.67 13098.32 58
sss90.87 9589.96 10293.60 6394.15 16883.84 8397.14 11298.13 785.93 10489.68 10896.09 12871.67 19199.30 7687.69 12789.16 16397.66 114
Test By Simon71.65 192
HPM-MVS_fast90.38 10790.17 9891.03 15497.61 8177.35 24397.15 11195.48 16679.51 24388.79 12196.90 10971.64 19398.81 11887.01 13597.44 7796.94 148
MVS90.60 10088.64 12396.50 594.25 16690.53 893.33 26697.21 1977.59 27178.88 22097.31 9271.52 19499.69 4089.60 10998.03 6499.27 20
dp84.30 20982.31 22090.28 17594.24 16777.97 22686.57 32995.53 16279.94 23680.75 20285.16 30271.49 19596.39 21963.73 30483.36 21296.48 165
ACMMPcopyleft90.39 10589.97 10191.64 13797.58 8478.21 22096.78 14396.72 6184.73 13384.72 15697.23 9771.22 19699.63 4888.37 12492.41 14397.08 146
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PCF-MVS84.09 586.77 17285.00 18192.08 12392.06 23083.07 10192.14 28794.47 22379.63 24176.90 23994.78 16171.15 19799.20 8872.87 25691.05 15393.98 213
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TAPA-MVS81.61 1285.02 19583.67 19889.06 20296.79 10473.27 29195.92 19294.79 20574.81 29380.47 20596.83 11371.07 19898.19 14249.82 35092.57 13995.71 184
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
pcd_1.5k_mvsjas5.92 3417.89 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37371.04 1990.00 3740.00 3720.00 3720.00 370
PS-MVSNAJss84.91 19784.30 19186.74 25285.89 31474.40 28294.95 23094.16 23783.93 16076.45 24590.11 23271.04 19995.77 24683.16 17079.02 24090.06 248
PS-MVSNAJ94.17 2693.52 3996.10 895.65 12692.35 298.21 3395.79 15092.42 1296.24 1898.18 3571.04 19999.17 9296.77 1997.39 8096.79 155
xiu_mvs_v2_base93.92 3493.26 4295.91 1095.07 14292.02 698.19 3495.68 15592.06 1496.01 2198.14 4070.83 20298.96 10796.74 2096.57 9996.76 158
RRT_MVS86.89 16685.96 16689.68 19695.01 14684.13 7796.33 17294.98 19284.20 15280.10 21292.07 19970.52 20395.01 28883.30 16877.14 25289.91 250
CPTT-MVS89.72 11589.87 10689.29 20098.33 5373.30 28997.70 6895.35 17675.68 28687.40 13497.44 8770.43 20498.25 13989.56 11196.90 9196.33 171
WR-MVS_H81.02 25580.09 24983.79 29588.08 29271.26 31194.46 23896.54 8980.08 23272.81 28586.82 27370.36 20592.65 32164.18 30167.50 31487.46 307
NR-MVSNet83.35 22081.52 23288.84 20888.76 28281.31 14094.45 23995.16 18484.65 13767.81 31090.82 21770.36 20594.87 29074.75 24166.89 32190.33 239
VNet92.11 6791.22 8094.79 2496.91 10386.98 2697.91 5197.96 986.38 9593.65 5395.74 13370.16 20798.95 11093.39 5788.87 16798.43 53
Fast-Effi-MVS+87.93 15586.94 15990.92 15794.04 17279.16 19298.26 3193.72 26281.29 20683.94 16792.90 19269.83 20896.68 21176.70 22291.74 15096.93 149
PLCcopyleft83.97 788.00 15387.38 14989.83 19198.02 6976.46 25597.16 11094.43 22679.26 25081.98 19196.28 12469.36 20999.27 7777.71 21192.25 14593.77 216
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
BH-w/o88.24 14987.47 14790.54 16895.03 14578.54 20697.41 9493.82 25384.08 15378.23 22794.51 16769.34 21097.21 18380.21 18894.58 12095.87 180
abl_689.80 11389.71 11090.07 18096.53 10775.52 27194.48 23795.04 18981.12 20889.22 11597.00 10768.83 21198.96 10789.86 10595.27 11495.73 183
MAR-MVS90.63 9990.22 9591.86 13198.47 4778.20 22197.18 10696.61 7883.87 16288.18 13098.18 3568.71 21299.75 3083.66 16197.15 8597.63 117
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
114514_t88.79 13587.57 14392.45 11198.21 6081.74 13196.99 12695.45 16875.16 29082.48 18195.69 13668.59 21398.50 13080.33 18595.18 11797.10 145
test_part184.72 19982.85 21190.34 17395.73 12484.79 6896.75 14694.10 24179.05 25775.97 25689.51 23667.69 21495.94 23779.34 19667.50 31490.30 241
DU-MVS84.57 20383.33 20688.28 22088.76 28279.36 18696.43 16695.41 17385.42 11478.11 22890.82 21767.61 21595.14 28079.14 20068.30 30590.33 239
Baseline_NR-MVSNet81.22 25480.07 25184.68 28285.32 32275.12 27596.48 15888.80 33676.24 28477.28 23486.40 28467.61 21594.39 30075.73 23566.73 32284.54 334
WR-MVS84.32 20882.96 20888.41 21689.38 27980.32 16296.59 15496.25 12283.97 15776.63 24290.36 22667.53 21794.86 29175.82 23470.09 28990.06 248
OMC-MVS88.80 13488.16 13090.72 16395.30 13477.92 23094.81 23394.51 22086.80 9384.97 15296.85 11267.53 21798.60 12585.08 14687.62 17995.63 185
LCM-MVSNet-Re83.75 21583.54 20384.39 29193.54 18564.14 33992.51 28284.03 35583.90 16166.14 32086.59 27767.36 21992.68 32084.89 14992.87 13796.35 168
v14882.41 24080.89 23786.99 25086.18 30976.81 25196.27 17593.82 25380.49 22175.28 26686.11 28967.32 22095.75 24875.48 23667.03 32088.42 286
CNLPA86.96 16485.37 17391.72 13697.59 8379.34 18897.21 10291.05 31874.22 29778.90 21996.75 11867.21 22198.95 11074.68 24290.77 15596.88 153
FMVSNet384.71 20082.71 21590.70 16494.55 15687.71 2095.92 19294.67 21081.73 20275.82 25988.08 25666.99 22294.47 29871.23 26775.38 25889.91 250
v881.88 24580.06 25287.32 24386.63 30279.04 19894.41 24093.65 26578.77 25973.19 28185.57 29466.87 22395.81 24473.84 25267.61 31387.11 310
131488.94 12887.20 15194.17 4293.21 19285.73 4293.33 26696.64 7582.89 18375.98 25596.36 12366.83 22499.39 6783.52 16696.02 10797.39 133
BH-untuned86.95 16585.94 16789.99 18394.52 15877.46 24096.78 14393.37 27981.80 20176.62 24393.81 18466.64 22597.02 19276.06 23093.88 12895.48 189
GeoE86.36 17685.20 17589.83 19193.17 19476.13 26097.53 8092.11 30179.58 24280.99 19994.01 17866.60 22696.17 22873.48 25489.30 16297.20 143
CVMVSNet84.83 19885.57 16982.63 30991.55 24160.38 35095.13 22395.03 19080.60 21782.10 19094.71 16266.40 22790.19 34574.30 24790.32 15797.31 137
PMMVS89.46 11989.92 10488.06 22694.64 15369.57 32396.22 17894.95 19387.27 8491.37 8596.54 12265.88 22897.39 17488.54 11993.89 12797.23 141
v2v48283.46 21981.86 22688.25 22286.19 30879.65 18196.34 17194.02 24581.56 20477.32 23388.23 25365.62 22996.03 23077.77 20869.72 29389.09 267
v114482.90 23181.27 23587.78 23186.29 30679.07 19796.14 18393.93 24780.05 23377.38 23186.80 27465.50 23095.93 23975.21 23870.13 28688.33 288
v1081.43 25179.53 25787.11 24886.38 30378.87 19994.31 24493.43 27477.88 26773.24 28085.26 29865.44 23195.75 24872.14 26167.71 31286.72 314
HQP2-MVS65.40 232
HQP-MVS87.91 15687.55 14488.98 20592.08 22778.48 20797.63 7194.80 20390.52 2882.30 18494.56 16565.40 23297.32 17687.67 12883.01 21591.13 228
V4283.04 22881.53 23187.57 23786.27 30779.09 19695.87 19694.11 24080.35 22677.22 23586.79 27565.32 23496.02 23177.74 20970.14 28587.61 302
pmmvs482.54 23680.79 23887.79 23086.11 31080.49 16193.55 26193.18 28677.29 27573.35 27889.40 23865.26 23595.05 28775.32 23773.61 26587.83 296
3Dnovator+82.88 889.63 11787.85 13494.99 2094.49 16286.76 2997.84 5595.74 15286.10 9975.47 26496.02 12965.00 23699.51 6082.91 17397.07 8798.72 40
HQP_MVS87.50 15987.09 15688.74 21191.86 23777.96 22797.18 10694.69 20789.89 3681.33 19694.15 17564.77 23797.30 17887.08 13282.82 21990.96 230
plane_prior691.98 23277.92 23064.77 237
v14419282.43 23780.73 24087.54 23885.81 31578.22 21795.98 18893.78 25879.09 25377.11 23686.49 27964.66 23995.91 24074.20 24869.42 29488.49 282
TranMVSNet+NR-MVSNet83.24 22481.71 22887.83 22987.71 29578.81 20296.13 18594.82 20284.52 14076.18 25390.78 21964.07 24094.60 29674.60 24566.59 32390.09 246
CP-MVSNet81.01 25680.08 25083.79 29587.91 29370.51 31394.29 24895.65 15680.83 21272.54 28888.84 24463.71 24192.32 32468.58 28368.36 30488.55 281
cdsmvs_eth3d_5k21.43 33628.57 3390.00 3550.00 3780.00 3790.00 36695.93 1430.00 3730.00 37497.66 7263.57 2420.00 3740.00 3720.00 3720.00 370
Vis-MVSNetpermissive88.67 13787.82 13591.24 14992.68 20578.82 20096.95 13393.85 25287.55 7887.07 13995.13 15363.43 24397.21 18377.58 21396.15 10397.70 112
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v119282.31 24180.55 24487.60 23485.94 31278.47 21095.85 19893.80 25679.33 24676.97 23886.51 27863.33 24495.87 24173.11 25570.13 28688.46 284
CANet_DTU90.98 9290.04 10093.83 5194.76 15286.23 3296.32 17393.12 28993.11 1093.71 5296.82 11563.08 24599.48 6284.29 15195.12 11895.77 182
ab-mvs87.08 16384.94 18293.48 7093.34 19183.67 8788.82 31195.70 15481.18 20784.55 15990.14 23162.72 24698.94 11285.49 14382.54 22397.85 99
v192192082.02 24480.23 24887.41 24185.62 31677.92 23095.79 20093.69 26378.86 25876.67 24186.44 28162.50 24795.83 24372.69 25769.77 29288.47 283
CLD-MVS87.97 15487.48 14689.44 19792.16 22580.54 15998.14 3594.92 19491.41 1779.43 21695.40 14462.34 24897.27 18190.60 9582.90 21890.50 236
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
bset_n11_16_dypcd84.35 20782.83 21388.91 20682.54 33882.07 11894.12 25193.47 27185.39 11678.55 22388.98 24262.23 24995.11 28286.75 13773.42 26689.55 255
3Dnovator82.32 1089.33 12187.64 13994.42 3393.73 18185.70 4397.73 6696.75 5786.73 9476.21 25295.93 13062.17 25099.68 4281.67 17897.81 6997.88 96
ADS-MVSNet279.57 26777.53 26985.71 27093.78 17872.13 29879.48 34386.11 34873.09 30780.14 21079.99 33662.15 25190.14 34659.49 31983.52 20994.85 198
ADS-MVSNet81.26 25378.36 26389.96 18693.78 17879.78 17479.48 34393.60 26773.09 30780.14 21079.99 33662.15 25195.24 27559.49 31983.52 20994.85 198
QAPM86.88 16784.51 18693.98 4694.04 17285.89 3897.19 10596.05 13673.62 30175.12 26795.62 13962.02 25399.74 3270.88 27196.06 10696.30 173
Effi-MVS+-dtu84.61 20284.90 18483.72 29891.96 23363.14 34394.95 23093.34 28085.57 11079.79 21487.12 26961.99 25495.61 25983.55 16285.83 19692.41 224
mvs-test186.83 16987.17 15285.81 26791.96 23365.24 33697.90 5393.34 28085.57 11084.51 16095.14 15261.99 25497.19 18583.55 16290.55 15695.00 196
XXY-MVS83.84 21382.00 22489.35 19887.13 29981.38 13895.72 20194.26 23280.15 23175.92 25890.63 22061.96 25696.52 21578.98 20273.28 27090.14 243
AdaColmapbinary88.81 13387.61 14292.39 11499.33 479.95 17196.70 15195.58 16077.51 27283.05 17896.69 12061.90 25799.72 3584.29 15193.47 13297.50 126
VPA-MVSNet85.32 19183.83 19689.77 19490.25 26282.63 10796.36 16997.07 2583.03 18081.21 19889.02 24161.58 25896.31 22385.02 14870.95 27990.36 237
CL-MVSNet_2432*160075.81 29574.14 29780.83 31978.33 34967.79 32994.22 24993.52 27077.28 27669.82 30381.54 32761.47 25989.22 34757.59 32753.51 34685.48 329
test_djsdf83.00 23082.45 21984.64 28484.07 33369.78 32094.80 23494.48 22180.74 21475.41 26587.70 26061.32 26095.10 28483.77 15679.76 23189.04 270
v124081.70 24779.83 25587.30 24585.50 31777.70 23795.48 20993.44 27378.46 26376.53 24486.44 28160.85 26195.84 24271.59 26470.17 28488.35 287
D2MVS82.67 23481.55 23086.04 26587.77 29476.47 25495.21 21996.58 8382.66 18970.26 30185.46 29760.39 26295.80 24576.40 22679.18 23885.83 327
XVG-OURS-SEG-HR85.74 18685.16 17887.49 24090.22 26371.45 30991.29 29794.09 24281.37 20583.90 16895.22 14660.30 26397.53 16785.58 14284.42 20693.50 219
PEN-MVS79.47 26978.26 26583.08 30586.36 30468.58 32693.85 25594.77 20679.76 23871.37 29288.55 24859.79 26492.46 32264.50 30065.40 32588.19 290
TransMVSNet (Re)76.94 28974.38 29384.62 28585.92 31375.25 27495.28 21589.18 33373.88 30067.22 31186.46 28059.64 26594.10 30459.24 32252.57 35084.50 335
DP-MVS81.47 25078.28 26491.04 15398.14 6378.48 20795.09 22886.97 34361.14 34871.12 29592.78 19459.59 26699.38 6853.11 34286.61 18695.27 194
v7n79.32 27177.34 27085.28 27584.05 33472.89 29593.38 26493.87 25175.02 29270.68 29784.37 31059.58 26795.62 25867.60 28467.50 31487.32 309
F-COLMAP84.50 20583.44 20587.67 23295.22 13672.22 29695.95 19093.78 25875.74 28576.30 24995.18 14959.50 26898.45 13372.67 25886.59 18792.35 225
LS3D82.22 24279.94 25489.06 20297.43 9074.06 28593.20 27392.05 30261.90 34373.33 27995.21 14759.35 26999.21 8454.54 33892.48 14293.90 215
BH-RMVSNet86.84 16885.28 17491.49 14295.35 13380.26 16696.95 13392.21 30082.86 18581.77 19595.46 14359.34 27097.64 15869.79 27693.81 12996.57 163
MVP-Stereo82.65 23581.67 22985.59 27286.10 31178.29 21493.33 26692.82 29377.75 26969.17 30887.98 25759.28 27195.76 24771.77 26296.88 9382.73 345
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PS-CasMVS80.27 26279.18 25883.52 30287.56 29769.88 31894.08 25295.29 18080.27 22972.08 29088.51 25159.22 27292.23 32667.49 28568.15 30788.45 285
DTE-MVSNet78.37 27677.06 27382.32 31285.22 32367.17 33293.40 26393.66 26478.71 26070.53 29988.29 25259.06 27392.23 32661.38 31463.28 33487.56 304
TR-MVS86.30 17784.93 18390.42 17094.63 15477.58 23896.57 15593.82 25380.30 22782.42 18395.16 15058.74 27497.55 16374.88 24087.82 17896.13 176
OPM-MVS85.84 18385.10 18088.06 22688.34 28877.83 23395.72 20194.20 23487.89 7280.45 20694.05 17758.57 27597.26 18283.88 15482.76 22189.09 267
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PatchMatch-RL85.00 19683.66 19989.02 20495.86 12074.55 27992.49 28393.60 26779.30 24879.29 21891.47 20658.53 27698.45 13370.22 27592.17 14794.07 212
pm-mvs180.05 26378.02 26686.15 26385.42 31875.81 26995.11 22592.69 29677.13 27770.36 30087.43 26358.44 27795.27 27471.36 26664.25 33087.36 308
our_test_377.90 28175.37 28585.48 27485.39 31976.74 25293.63 25891.67 30773.39 30565.72 32284.65 30958.20 27893.13 31957.82 32567.87 30986.57 316
IterMVS-SCA-FT80.51 26179.10 26084.73 28189.63 27474.66 27792.98 27691.81 30680.05 23371.06 29685.18 30158.04 27991.40 33472.48 26070.70 28388.12 292
SCA85.63 18783.64 20091.60 14092.30 21681.86 12692.88 27995.56 16184.85 12982.52 18085.12 30458.04 27995.39 26673.89 25087.58 18197.54 121
EU-MVSNet76.92 29076.95 27476.83 33184.10 33254.73 36091.77 29292.71 29572.74 31069.57 30588.69 24658.03 28187.43 35364.91 29970.00 29088.33 288
IterMVS80.67 25979.16 25985.20 27689.79 26976.08 26192.97 27791.86 30480.28 22871.20 29485.14 30357.93 28291.34 33572.52 25970.74 28188.18 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
anonymousdsp80.98 25779.97 25384.01 29281.73 33970.44 31492.49 28393.58 26977.10 27972.98 28386.31 28557.58 28394.90 28979.32 19778.63 24586.69 315
xiu_mvs_v1_base_debu90.54 10189.54 11193.55 6592.31 21387.58 2296.99 12694.87 19787.23 8593.27 5597.56 7957.43 28498.32 13692.72 6993.46 13394.74 201
xiu_mvs_v1_base90.54 10189.54 11193.55 6592.31 21387.58 2296.99 12694.87 19787.23 8593.27 5597.56 7957.43 28498.32 13692.72 6993.46 13394.74 201
xiu_mvs_v1_base_debi90.54 10189.54 11193.55 6592.31 21387.58 2296.99 12694.87 19787.23 8593.27 5597.56 7957.43 28498.32 13692.72 6993.46 13394.74 201
OpenMVScopyleft79.58 1486.09 18083.62 20193.50 6890.95 25086.71 3097.44 8795.83 14875.35 28772.64 28695.72 13457.42 28799.64 4671.41 26595.85 11094.13 211
PVSNet82.34 989.02 12687.79 13692.71 10295.49 12981.50 13797.70 6897.29 1687.76 7485.47 14995.12 15456.90 28898.90 11480.33 18594.02 12497.71 111
Fast-Effi-MVS+-dtu83.33 22182.60 21785.50 27389.55 27569.38 32496.09 18691.38 31082.30 19375.96 25791.41 20756.71 28995.58 26175.13 23984.90 20491.54 226
ppachtmachnet_test77.19 28774.22 29586.13 26485.39 31978.22 21793.98 25391.36 31271.74 31767.11 31384.87 30756.67 29093.37 31752.21 34364.59 32786.80 313
VPNet84.69 20182.92 20990.01 18289.01 28183.45 9196.71 14995.46 16785.71 10879.65 21592.18 19856.66 29196.01 23283.05 17267.84 31190.56 234
GA-MVS85.79 18584.04 19591.02 15589.47 27780.27 16596.90 13694.84 20185.57 11080.88 20089.08 23956.56 29296.47 21777.72 21085.35 20196.34 169
XVG-OURS85.18 19384.38 19087.59 23590.42 26171.73 30691.06 30094.07 24382.00 19983.29 17495.08 15656.42 29397.55 16383.70 16083.42 21193.49 220
GBi-Net82.42 23880.43 24688.39 21792.66 20681.95 11994.30 24593.38 27679.06 25475.82 25985.66 29056.38 29493.84 30871.23 26775.38 25889.38 258
test182.42 23880.43 24688.39 21792.66 20681.95 11994.30 24593.38 27679.06 25475.82 25985.66 29056.38 29493.84 30871.23 26775.38 25889.38 258
FMVSNet282.79 23280.44 24589.83 19192.66 20685.43 4895.42 21294.35 22979.06 25474.46 27187.28 26456.38 29494.31 30169.72 27774.68 26189.76 252
pmmvs581.34 25279.54 25686.73 25585.02 32476.91 24996.22 17891.65 30877.65 27073.55 27588.61 24755.70 29794.43 29974.12 24973.35 26988.86 279
tfpnnormal78.14 27875.42 28486.31 26188.33 28979.24 18994.41 24096.22 12473.51 30269.81 30485.52 29655.43 29895.75 24847.65 35467.86 31083.95 340
LFMVS89.27 12387.64 13994.16 4497.16 10085.52 4797.18 10694.66 21179.17 25189.63 11096.57 12155.35 29998.22 14089.52 11289.54 16098.74 35
ACMM80.70 1383.72 21682.85 21186.31 26191.19 24672.12 29995.88 19594.29 23180.44 22277.02 23791.96 20155.24 30097.14 18979.30 19880.38 22989.67 253
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MDA-MVSNet_test_wron73.54 30470.43 31182.86 30684.55 32671.85 30391.74 29391.32 31467.63 32946.73 35881.09 33055.11 30190.42 34455.91 33559.76 33886.31 319
YYNet173.53 30570.43 31182.85 30784.52 32871.73 30691.69 29491.37 31167.63 32946.79 35781.21 32955.04 30290.43 34355.93 33459.70 33986.38 318
LTVRE_ROB73.68 1877.99 27975.74 28384.74 28090.45 26072.02 30086.41 33191.12 31572.57 31266.63 31787.27 26554.95 30396.98 19456.29 33375.98 25485.21 331
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LPG-MVS_test84.20 21083.49 20486.33 25890.88 25173.06 29295.28 21594.13 23882.20 19476.31 24793.20 18854.83 30496.95 19683.72 15880.83 22788.98 273
LGP-MVS_train86.33 25890.88 25173.06 29294.13 23882.20 19476.31 24793.20 18854.83 30496.95 19683.72 15880.83 22788.98 273
cascas86.50 17484.48 18892.55 10992.64 20985.95 3597.04 12595.07 18875.32 28880.50 20491.02 21454.33 30697.98 14586.79 13687.62 17993.71 217
ACMP81.66 1184.00 21183.22 20786.33 25891.53 24372.95 29495.91 19493.79 25783.70 16773.79 27492.22 19754.31 30796.89 20083.98 15379.74 23389.16 265
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PVSNet_077.72 1581.70 24778.95 26189.94 18790.77 25676.72 25395.96 18996.95 3485.01 12770.24 30288.53 25052.32 30898.20 14186.68 13844.08 35994.89 197
MSDG80.62 26077.77 26889.14 20193.43 19077.24 24491.89 29090.18 32569.86 32568.02 30991.94 20352.21 30998.84 11659.32 32183.12 21391.35 227
DSMNet-mixed73.13 30772.45 30375.19 33777.51 35246.82 36385.09 33782.01 36067.61 33369.27 30781.33 32850.89 31086.28 35554.54 33883.80 20892.46 223
UGNet87.73 15786.55 16291.27 14895.16 13979.11 19496.35 17096.23 12388.14 6587.83 13390.48 22250.65 31199.09 10080.13 18994.03 12395.60 186
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FMVSNet576.46 29274.16 29683.35 30490.05 26776.17 25989.58 30689.85 32771.39 31965.29 32480.42 33250.61 31287.70 35261.05 31669.24 29786.18 321
MS-PatchMatch83.05 22781.82 22786.72 25689.64 27379.10 19594.88 23294.59 21879.70 24070.67 29889.65 23450.43 31396.82 20570.82 27495.99 10884.25 337
Anonymous2023120675.29 29873.64 29980.22 32180.75 34063.38 34293.36 26590.71 32373.09 30767.12 31283.70 31650.33 31490.85 34053.63 34170.10 28886.44 317
N_pmnet61.30 32460.20 32764.60 34184.32 32917.00 37691.67 29510.98 37561.77 34458.45 34778.55 34049.89 31591.83 33142.27 35963.94 33184.97 332
jajsoiax82.12 24381.15 23685.03 27884.19 33170.70 31294.22 24993.95 24683.07 17873.48 27689.75 23349.66 31695.37 26882.24 17679.76 23189.02 271
RPSCF77.73 28276.63 27781.06 31788.66 28655.76 35887.77 32187.88 34164.82 33874.14 27392.79 19349.22 31796.81 20667.47 28676.88 25390.62 233
SixPastTwentyTwo76.04 29374.32 29481.22 31684.54 32761.43 34991.16 29889.30 33277.89 26664.04 32786.31 28548.23 31894.29 30263.54 30663.84 33287.93 295
test20.0372.36 31171.15 30775.98 33577.79 35059.16 35392.40 28589.35 33174.09 29861.50 33984.32 31148.09 31985.54 35850.63 34862.15 33683.24 341
VDDNet86.44 17584.51 18692.22 12091.56 24081.83 12797.10 11894.64 21469.50 32687.84 13295.19 14848.01 32097.92 15189.82 10786.92 18396.89 152
VDD-MVS88.28 14887.02 15792.06 12595.09 14080.18 16997.55 7994.45 22583.09 17789.10 11895.92 13247.97 32198.49 13193.08 6786.91 18497.52 125
Anonymous2023121179.72 26677.19 27287.33 24295.59 12777.16 24895.18 22294.18 23659.31 35472.57 28786.20 28747.89 32295.66 25374.53 24669.24 29789.18 264
OurMVSNet-221017-077.18 28876.06 28080.55 32083.78 33560.00 35190.35 30291.05 31877.01 28166.62 31887.92 25847.73 32394.03 30571.63 26368.44 30387.62 301
CMPMVSbinary54.94 2175.71 29774.56 29279.17 32679.69 34555.98 35689.59 30593.30 28260.28 35053.85 35489.07 24047.68 32496.33 22176.55 22381.02 22685.22 330
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
mvs_tets81.74 24680.71 24184.84 27984.22 33070.29 31593.91 25493.78 25882.77 18673.37 27789.46 23747.36 32595.31 27281.99 17779.55 23688.92 277
MDA-MVSNet-bldmvs71.45 31467.94 31881.98 31485.33 32168.50 32792.35 28688.76 33770.40 32142.99 35981.96 32446.57 32691.31 33648.75 35354.39 34486.11 322
pmmvs-eth3d73.59 30370.66 30982.38 31076.40 35773.38 28789.39 30989.43 33072.69 31160.34 34377.79 34246.43 32791.26 33766.42 29357.06 34182.51 346
Anonymous2024052983.15 22580.60 24390.80 16095.74 12278.27 21596.81 14194.92 19460.10 35281.89 19392.54 19545.82 32898.82 11779.25 19978.32 24895.31 193
MVS-HIRNet71.36 31567.00 31984.46 28990.58 25869.74 32179.15 34687.74 34246.09 35961.96 33850.50 36045.14 32995.64 25653.74 34088.11 17788.00 294
DIV-MVS_2432*160070.97 31669.31 31675.95 33676.24 35955.39 35987.45 32290.94 32170.20 32362.96 33477.48 34344.01 33088.09 35061.25 31553.26 34784.37 336
FMVSNet179.50 26876.54 27888.39 21788.47 28781.95 11994.30 24593.38 27673.14 30672.04 29185.66 29043.86 33193.84 30865.48 29672.53 27189.38 258
K. test v373.62 30271.59 30679.69 32382.98 33759.85 35290.85 30188.83 33577.13 27758.90 34482.11 32343.62 33291.72 33265.83 29554.10 34587.50 306
pmmvs674.65 30171.67 30583.60 30079.13 34769.94 31793.31 27090.88 32261.05 34965.83 32184.15 31343.43 33394.83 29266.62 28960.63 33786.02 324
ACMH75.40 1777.99 27974.96 28687.10 24990.67 25776.41 25693.19 27491.64 30972.47 31363.44 33087.61 26243.34 33497.16 18658.34 32373.94 26387.72 297
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_040272.68 30969.54 31582.09 31388.67 28571.81 30592.72 28186.77 34561.52 34562.21 33683.91 31443.22 33593.76 31134.60 36172.23 27580.72 353
lessismore_v079.98 32280.59 34258.34 35480.87 36158.49 34683.46 31843.10 33693.89 30763.11 30848.68 35287.72 297
UniMVSNet_ETH3D80.86 25878.75 26287.22 24786.31 30572.02 30091.95 28893.76 26173.51 30275.06 26890.16 23043.04 33795.66 25376.37 22778.55 24693.98 213
UnsupCasMVSNet_eth73.25 30670.57 31081.30 31577.53 35166.33 33487.24 32593.89 25080.38 22557.90 34981.59 32642.91 33890.56 34265.18 29848.51 35387.01 312
COLMAP_ROBcopyleft73.24 1975.74 29673.00 30283.94 29392.38 21269.08 32591.85 29186.93 34461.48 34665.32 32390.27 22742.27 33996.93 19950.91 34775.63 25785.80 328
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet79.18 27275.99 28188.72 21287.37 29880.66 15579.96 34291.82 30577.38 27474.33 27281.87 32541.78 34090.74 34166.36 29483.10 21494.76 200
ACMH+76.62 1677.47 28574.94 28785.05 27791.07 24971.58 30893.26 27190.01 32671.80 31664.76 32588.55 24841.62 34196.48 21662.35 31071.00 27887.09 311
ITE_SJBPF82.38 31087.00 30065.59 33589.55 32979.99 23569.37 30691.30 21041.60 34295.33 27062.86 30974.63 26286.24 320
Anonymous20240521184.41 20681.93 22591.85 13396.78 10578.41 21197.44 8791.34 31370.29 32284.06 16294.26 17141.09 34398.96 10779.46 19582.65 22298.17 71
new-patchmatchnet68.85 32065.93 32277.61 32973.57 36263.94 34190.11 30488.73 33871.62 31855.08 35273.60 34840.84 34487.22 35451.35 34648.49 35481.67 352
USDC78.65 27476.25 27985.85 26687.58 29674.60 27889.58 30690.58 32484.05 15463.13 33288.23 25340.69 34596.86 20466.57 29175.81 25686.09 323
XVG-ACMP-BASELINE79.38 27077.90 26783.81 29484.98 32567.14 33389.03 31093.18 28680.26 23072.87 28488.15 25538.55 34696.26 22476.05 23178.05 24988.02 293
AllTest75.92 29473.06 30184.47 28792.18 22367.29 33091.07 29984.43 35367.63 32963.48 32890.18 22838.20 34797.16 18657.04 32973.37 26788.97 275
TestCases84.47 28792.18 22367.29 33084.43 35367.63 32963.48 32890.18 22838.20 34797.16 18657.04 32973.37 26788.97 275
Anonymous2024052172.06 31369.91 31378.50 32777.11 35461.67 34891.62 29690.97 32065.52 33662.37 33579.05 33936.32 34990.96 33957.75 32668.52 30282.87 342
UnsupCasMVSNet_bld68.60 32164.50 32480.92 31874.63 36067.80 32883.97 33892.94 29265.12 33754.63 35368.23 35535.97 35092.17 32860.13 31744.83 35782.78 344
tmp_tt41.54 33141.93 33340.38 34920.10 37526.84 37261.93 36159.09 37114.81 36928.51 36480.58 33135.53 35148.33 37063.70 30513.11 36745.96 363
testgi74.88 30073.40 30079.32 32580.13 34461.75 34693.21 27286.64 34679.49 24466.56 31991.06 21335.51 35288.67 34956.79 33271.25 27687.56 304
OpenMVS_ROBcopyleft68.52 2073.02 30869.57 31483.37 30380.54 34371.82 30493.60 26088.22 34062.37 34161.98 33783.15 32035.31 35395.47 26445.08 35775.88 25582.82 343
MVS_030478.43 27576.70 27683.60 30088.22 29069.81 31992.91 27895.10 18572.32 31478.71 22280.29 33533.78 35493.37 31768.77 28180.23 23087.63 300
TDRefinement69.20 31965.78 32379.48 32466.04 36562.21 34588.21 31686.12 34762.92 34061.03 34185.61 29333.23 35594.16 30355.82 33653.02 34882.08 350
LF4IMVS72.36 31170.82 30876.95 33079.18 34656.33 35586.12 33286.11 34869.30 32763.06 33386.66 27633.03 35692.25 32565.33 29768.64 30182.28 349
MIMVSNet169.44 31766.65 32177.84 32876.48 35662.84 34487.42 32388.97 33466.96 33457.75 35079.72 33832.77 35785.83 35746.32 35563.42 33384.85 333
EG-PatchMatch MVS74.92 29972.02 30483.62 29983.76 33673.28 29093.62 25992.04 30368.57 32858.88 34583.80 31531.87 35895.57 26256.97 33178.67 24282.00 351
new_pmnet66.18 32263.18 32575.18 33876.27 35861.74 34783.79 33984.66 35256.64 35751.57 35571.85 35431.29 35987.93 35149.98 34962.55 33575.86 356
TinyColmap72.41 31068.99 31782.68 30888.11 29169.59 32288.41 31585.20 35065.55 33557.91 34884.82 30830.80 36095.94 23751.38 34468.70 30082.49 348
pmmvs365.75 32362.18 32676.45 33367.12 36464.54 33788.68 31385.05 35154.77 35857.54 35173.79 34729.40 36186.21 35655.49 33747.77 35578.62 354
PM-MVS69.32 31866.93 32076.49 33273.60 36155.84 35785.91 33379.32 36474.72 29461.09 34078.18 34121.76 36291.10 33870.86 27256.90 34282.51 346
test_method56.77 32554.53 32863.49 34376.49 35540.70 36875.68 35374.24 36619.47 36748.73 35671.89 35319.31 36365.80 36657.46 32847.51 35683.97 339
DeepMVS_CXcopyleft64.06 34278.53 34843.26 36668.11 36969.94 32438.55 36076.14 34518.53 36479.34 35943.72 35841.62 36069.57 359
ambc76.02 33468.11 36351.43 36164.97 36089.59 32860.49 34274.49 34617.17 36592.46 32261.50 31352.85 34984.17 338
FPMVS55.09 32652.93 32961.57 34455.98 36640.51 36983.11 34083.41 35837.61 36134.95 36271.95 35214.40 36676.95 36029.81 36265.16 32667.25 360
EMVS31.70 33531.45 33732.48 35150.72 37023.95 37474.78 35552.30 37420.36 36616.08 37031.48 36712.80 36753.60 36911.39 36813.10 36819.88 366
ANet_high46.22 32941.28 33461.04 34539.91 37346.25 36570.59 35976.18 36558.87 35523.09 36648.00 36212.58 36866.54 36528.65 36313.62 36670.35 358
E-PMN32.70 33432.39 33633.65 35053.35 36925.70 37374.07 35653.33 37321.08 36517.17 36933.63 36611.85 36954.84 36812.98 36714.04 36520.42 365
Gipumacopyleft45.11 33042.05 33254.30 34680.69 34151.30 36235.80 36483.81 35628.13 36327.94 36534.53 36411.41 37076.70 36221.45 36454.65 34334.90 364
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS250.90 32846.31 33164.67 34055.53 36746.67 36477.30 35271.02 36740.89 36034.16 36359.32 3569.83 37176.14 36340.09 36028.63 36371.21 357
LCM-MVSNet52.52 32748.24 33065.35 33947.63 37141.45 36772.55 35883.62 35731.75 36237.66 36157.92 3589.19 37276.76 36149.26 35144.60 35877.84 355
PMVScopyleft34.80 2339.19 33235.53 33550.18 34729.72 37430.30 37159.60 36266.20 37026.06 36417.91 36849.53 3613.12 37374.09 36418.19 36649.40 35146.14 361
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive35.65 2233.85 33329.49 33846.92 34841.86 37236.28 37050.45 36356.52 37218.75 36818.28 36737.84 3632.41 37458.41 36718.71 36520.62 36446.06 362
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d14.10 33713.89 34014.72 35255.23 36822.91 37533.83 3653.56 3764.94 3704.11 3712.28 3722.06 37519.66 37110.23 3698.74 3691.59 369
test1239.07 33911.73 3421.11 3530.50 3770.77 37789.44 3080.20 3780.34 3722.15 37310.72 3710.34 3760.32 3721.79 3710.08 3712.23 367
testmvs9.92 33812.94 3410.84 3540.65 3760.29 37893.78 2560.39 3770.42 3712.85 37215.84 3700.17 3770.30 3732.18 3700.21 3701.91 368
test_blank0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs-re8.11 34010.81 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37497.30 940.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
FOURS198.51 4478.01 22598.13 3896.21 12583.04 17994.39 43
MSC_two_6792asdad97.14 399.05 1092.19 496.83 4399.81 2098.08 698.81 2599.43 11
No_MVS97.14 399.05 1092.19 496.83 4399.81 2098.08 698.81 2599.43 11
eth-test20.00 378
eth-test0.00 378
IU-MVS99.03 1685.34 4996.86 4292.05 1598.74 198.15 398.97 1799.42 13
save fliter98.24 5783.34 9398.61 2396.57 8491.32 18
test_0728_SECOND95.14 1799.04 1586.14 3399.06 996.77 5399.84 1297.90 898.85 2299.45 10
GSMVS97.54 121
test_part298.90 2185.14 6096.07 20
MTGPAbinary96.33 116
MTMP97.53 8068.16 368
gm-plane-assit92.27 21779.64 18284.47 14395.15 15197.93 14685.81 140
test9_res96.00 2599.03 1398.31 61
agg_prior294.30 4699.00 1598.57 45
agg_prior98.59 3983.13 9896.56 8694.19 4599.16 93
test_prior482.34 11397.75 65
test_prior93.09 8498.68 2981.91 12296.40 10899.06 10198.29 63
旧先验296.97 13174.06 29996.10 1997.76 15588.38 123
新几何296.42 167
无先验96.87 13796.78 4777.39 27399.52 5779.95 19098.43 53
原ACMM296.84 138
testdata299.48 6276.45 225
testdata195.57 20787.44 79
plane_prior791.86 23777.55 239
plane_prior594.69 20797.30 17887.08 13282.82 21990.96 230
plane_prior494.15 175
plane_prior377.75 23590.17 3481.33 196
plane_prior297.18 10689.89 36
plane_prior191.95 235
plane_prior77.96 22797.52 8390.36 3382.96 217
n20.00 379
nn0.00 379
door-mid79.75 363
test1196.50 95
door80.13 362
HQP5-MVS78.48 207
HQP-NCC92.08 22797.63 7190.52 2882.30 184
ACMP_Plane92.08 22797.63 7190.52 2882.30 184
BP-MVS87.67 128
HQP4-MVS82.30 18497.32 17691.13 228
HQP3-MVS94.80 20383.01 215
NP-MVS92.04 23178.22 21794.56 165
ACMMP++_ref78.45 247
ACMMP++79.05 239