This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
MSP-MVS95.62 796.54 192.86 8598.31 4880.10 16797.42 10096.78 4992.20 2297.11 1298.29 3193.46 199.10 9996.01 3699.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PC_three_145291.12 3398.33 298.42 2692.51 299.81 2198.96 399.37 199.70 3
DVP-MVS++96.05 496.41 394.96 2299.05 985.34 4998.13 4796.77 5588.38 7197.70 698.77 1092.06 399.84 1297.47 2299.37 199.70 3
OPU-MVS97.30 299.19 792.31 399.12 998.54 1992.06 399.84 1299.11 299.37 199.74 1
GG-mvs-BLEND93.49 6494.94 13586.26 3381.62 36597.00 3388.32 13094.30 17591.23 596.21 23688.49 12997.43 7398.00 84
gg-mvs-nofinetune85.48 19782.90 22093.24 7194.51 15185.82 4179.22 36996.97 3661.19 36787.33 13953.01 38590.58 696.07 23986.07 14997.23 7997.81 100
baseline290.39 10390.21 9790.93 16090.86 25680.99 14095.20 23097.41 1786.03 11880.07 22294.61 16990.58 697.47 17887.29 14189.86 16694.35 211
iter_conf0590.14 10889.79 10991.17 15495.85 10986.93 2897.68 7888.67 35189.93 5081.73 20492.80 20290.37 896.03 24090.44 10580.65 24290.56 246
CHOSEN 280x42091.71 7491.85 6791.29 14994.94 13582.69 10087.89 33596.17 12585.94 11987.27 14094.31 17490.27 995.65 26794.04 6195.86 10695.53 186
DPM-MVS96.21 295.53 1298.26 196.26 9895.09 199.15 796.98 3493.39 1496.45 2298.79 890.17 1099.99 189.33 12199.25 699.70 3
ET-MVSNet_ETH3D90.01 11089.03 11792.95 8294.38 15386.77 3098.14 4496.31 11489.30 5763.33 34796.72 11890.09 1193.63 32690.70 10082.29 23398.46 53
MVSTER89.25 12588.92 12290.24 18195.98 10684.66 6896.79 14995.36 17487.19 10180.33 21790.61 23890.02 1295.97 24585.38 15478.64 25890.09 258
test_0728_THIRD88.38 7196.69 1598.76 1289.64 1399.76 3097.47 2298.84 2399.38 14
tttt051788.57 14288.19 13289.71 19993.00 19475.99 26995.67 21096.67 6980.78 23081.82 20294.40 17388.97 1497.58 16676.05 24586.31 19595.57 185
thisisatest053089.65 11689.02 11891.53 14393.46 18280.78 14796.52 16496.67 6981.69 21983.79 17694.90 16488.85 1597.68 16077.80 22087.49 18896.14 173
thisisatest051590.95 9390.26 9593.01 8094.03 16784.27 7597.91 6196.67 6983.18 18786.87 14595.51 14488.66 1697.85 15580.46 19789.01 17296.92 148
SED-MVS95.88 596.22 494.87 2399.03 1585.03 6199.12 996.78 4988.72 6497.79 498.91 288.48 1799.82 1898.15 998.97 1799.74 1
test_241102_ONE99.03 1585.03 6196.78 4988.72 6497.79 498.90 588.48 1799.82 18
DPE-MVScopyleft95.32 1095.55 1194.64 2998.79 2384.87 6697.77 7096.74 6086.11 11596.54 2198.89 688.39 1999.74 3797.67 2099.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_one_060198.91 1884.56 7096.70 6588.06 7796.57 2098.77 1088.04 20
test_241102_TWO96.78 4988.72 6497.70 698.91 287.86 2199.82 1898.15 999.00 1599.47 9
DVP-MVScopyleft95.58 895.91 994.57 3099.05 985.18 5499.06 1496.46 9688.75 6296.69 1598.76 1287.69 2299.76 3097.90 1598.85 2198.77 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.05 985.18 5499.11 1296.78 4988.75 6297.65 998.91 287.69 22
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2197.10 3095.17 392.11 7698.46 2487.33 2499.97 297.21 2699.31 499.63 7
iter_conf_final89.51 11889.21 11590.39 17695.60 11484.44 7197.22 10789.09 34489.11 6082.07 19892.80 20287.03 2596.03 24089.10 12380.89 23890.70 244
patch_mono-295.14 1296.08 792.33 10898.44 4377.84 23398.43 3497.21 2292.58 1997.68 897.65 7486.88 2699.83 1698.25 797.60 6799.33 17
TSAR-MVS + GP.94.35 2294.50 2093.89 4797.38 8483.04 9798.10 4995.29 17991.57 2893.81 5597.45 8386.64 2799.43 7496.28 3494.01 12699.20 22
TSAR-MVS + MP.94.79 1795.17 1593.64 5597.66 6984.10 7695.85 20596.42 10191.26 3197.49 1096.80 11486.50 2898.49 12995.54 4599.03 1398.33 59
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2299.06 1497.12 2894.66 596.79 1498.78 986.42 2999.95 397.59 2199.18 799.00 27
DeepPCF-MVS89.82 194.61 1996.17 589.91 19297.09 9070.21 32498.99 2096.69 6795.57 295.08 3899.23 186.40 3099.87 897.84 1898.66 3199.65 6
HPM-MVS++copyleft95.32 1095.48 1394.85 2498.62 3486.04 3697.81 6896.93 4092.45 2095.69 2998.50 2285.38 3199.85 1094.75 5299.18 798.65 43
dcpmvs_293.10 4193.46 3992.02 12697.77 6579.73 17794.82 24493.86 25786.91 10591.33 8896.76 11585.20 3298.06 14696.90 3097.60 6798.27 66
NCCC95.63 695.94 894.69 2899.21 685.15 5999.16 696.96 3794.11 995.59 3098.64 1785.07 3399.91 495.61 4399.10 999.00 27
EPP-MVSNet89.76 11489.72 11089.87 19393.78 16976.02 26897.22 10796.51 9079.35 26285.11 15795.01 16184.82 3497.10 20087.46 14088.21 18296.50 162
TEST998.64 3183.71 8297.82 6696.65 7284.29 16295.16 3398.09 4384.39 3599.36 79
train_agg94.28 2394.45 2293.74 5198.64 3183.71 8297.82 6696.65 7284.50 15395.16 3398.09 4384.33 3699.36 7995.91 3998.96 1998.16 71
test_898.63 3383.64 8597.81 6896.63 7784.50 15395.10 3798.11 4284.33 3699.23 84
SD-MVS94.84 1595.02 1694.29 3697.87 6484.61 6997.76 7296.19 12489.59 5496.66 1798.17 3984.33 3699.60 5796.09 3598.50 3698.66 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVScopyleft94.56 2094.75 1793.96 4698.84 2283.40 9098.04 5596.41 10285.79 12295.00 4098.28 3284.32 3999.18 9297.35 2498.77 2799.28 19
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
旧先验197.39 8279.58 18196.54 8798.08 4684.00 4097.42 7497.62 114
CSCG92.02 6791.65 7293.12 7598.53 3680.59 15197.47 9397.18 2577.06 29684.64 16697.98 5383.98 4199.52 6790.72 9997.33 7699.23 21
IB-MVS85.34 488.67 13887.14 15893.26 7093.12 19284.32 7398.76 2497.27 2087.19 10179.36 22890.45 24083.92 4298.53 12784.41 16069.79 30996.93 146
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CostFormer89.08 12688.39 12991.15 15593.13 19179.15 19288.61 32996.11 12883.14 18889.58 11386.93 28983.83 4396.87 21288.22 13385.92 20197.42 127
SteuartSystems-ACMMP94.13 2894.44 2393.20 7395.41 11981.35 13399.02 1896.59 8289.50 5594.18 5298.36 2883.68 4499.45 7394.77 5198.45 3998.81 33
Skip Steuart: Steuart Systems R&D Blog.
DELS-MVS94.98 1394.49 2196.44 696.42 9590.59 799.21 497.02 3294.40 891.46 8497.08 10283.32 4599.69 4792.83 7798.70 3099.04 25
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test_prior298.37 3786.08 11794.57 4798.02 4983.14 4695.05 4998.79 26
SMA-MVScopyleft94.70 1894.68 1894.76 2698.02 5985.94 3997.47 9396.77 5585.32 13097.92 398.70 1583.09 4799.84 1295.79 4099.08 1098.49 51
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ZD-MVS99.09 883.22 9496.60 8182.88 19793.61 5998.06 4882.93 4899.14 9595.51 4698.49 37
SF-MVS94.17 2694.05 3094.55 3197.56 7485.95 3797.73 7496.43 10084.02 16795.07 3998.74 1482.93 4899.38 7695.42 4798.51 3498.32 60
9.1494.26 2798.10 5798.14 4496.52 8984.74 14594.83 4498.80 782.80 5099.37 7895.95 3898.42 40
segment_acmp82.69 51
test_fmvsm_n_192094.81 1695.60 1092.45 10195.29 12380.96 14299.29 297.21 2294.50 797.29 1198.44 2582.15 5299.78 2898.56 597.68 6596.61 159
PAPM92.87 4792.40 5694.30 3592.25 21987.85 1996.40 17496.38 10791.07 3488.72 12496.90 10782.11 5397.37 18490.05 11297.70 6497.67 109
APD-MVScopyleft93.61 3493.59 3593.69 5498.76 2483.26 9397.21 10996.09 12982.41 20894.65 4698.21 3481.96 5498.81 11794.65 5498.36 4599.01 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CDPH-MVS93.12 4092.91 4693.74 5198.65 3083.88 7897.67 7996.26 11683.00 19493.22 6398.24 3381.31 5599.21 8689.12 12298.74 2998.14 73
MG-MVS94.25 2593.72 3195.85 1199.38 389.35 1197.98 5798.09 989.99 4992.34 7296.97 10681.30 5698.99 10588.54 12798.88 2099.20 22
test1294.25 3798.34 4685.55 4696.35 11192.36 7180.84 5799.22 8598.31 4797.98 86
MVS_030495.36 995.20 1495.85 1194.89 13889.22 1298.83 2397.88 1194.68 495.14 3697.99 5080.80 5899.81 2198.60 497.95 5798.50 50
MM96.15 889.50 999.18 598.10 895.68 196.64 1897.92 5680.72 5999.80 2599.16 197.96 5699.15 24
baseline188.85 13387.49 14892.93 8495.21 12686.85 2995.47 21894.61 21487.29 9683.11 18494.99 16280.70 6096.89 21082.28 18673.72 28395.05 197
tpmrst88.36 14787.38 15291.31 14794.36 15479.92 16987.32 33995.26 18185.32 13088.34 12986.13 30580.60 6196.70 22083.78 16885.34 20997.30 134
PHI-MVS93.59 3593.63 3493.48 6598.05 5881.76 12398.64 2997.13 2682.60 20494.09 5398.49 2380.35 6299.85 1094.74 5398.62 3298.83 32
CDS-MVSNet89.50 11988.96 12091.14 15691.94 23680.93 14397.09 12795.81 14884.26 16384.72 16494.20 17980.31 6395.64 26883.37 17988.96 17396.85 151
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tpm287.35 16786.26 16890.62 17092.93 19978.67 20488.06 33495.99 13679.33 26387.40 13786.43 30080.28 6496.40 22880.23 20185.73 20596.79 152
1112_ss88.60 14187.47 15092.00 12793.21 18680.97 14196.47 16792.46 30283.64 18180.86 21097.30 9280.24 6597.62 16377.60 22685.49 20697.40 129
Test_1112_low_res88.03 15586.73 16491.94 12993.15 18980.88 14496.44 17092.41 30483.59 18380.74 21291.16 22880.18 6697.59 16577.48 22985.40 20797.36 131
DeepC-MVS_fast89.06 294.48 2194.30 2695.02 2098.86 2185.68 4498.06 5396.64 7593.64 1291.74 8298.54 1980.17 6799.90 592.28 8298.75 2899.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSLP-MVS++94.28 2394.39 2493.97 4598.30 4984.06 7798.64 2996.93 4090.71 3893.08 6598.70 1579.98 6899.21 8694.12 6099.07 1198.63 44
EPNet94.06 2994.15 2893.76 5097.27 8784.35 7298.29 3997.64 1594.57 695.36 3196.88 10979.96 6999.12 9891.30 9096.11 10197.82 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_111021_HR93.41 3793.39 4093.47 6797.34 8582.83 9997.56 8698.27 689.16 5989.71 10997.14 9879.77 7099.56 6493.65 6597.94 5898.02 79
miper_enhance_ethall85.95 18885.20 18188.19 22894.85 13979.76 17396.00 19494.06 24782.98 19577.74 24188.76 26079.42 7195.46 27780.58 19672.42 29089.36 272
TESTMET0.1,189.83 11389.34 11491.31 14792.54 20980.19 16497.11 12396.57 8486.15 11486.85 14691.83 21979.32 7296.95 20681.30 19192.35 15096.77 154
WTY-MVS92.65 5691.68 7195.56 1496.00 10588.90 1398.23 4197.65 1488.57 6789.82 10897.22 9679.29 7399.06 10289.57 11788.73 17698.73 39
HY-MVS84.06 691.63 7590.37 9495.39 1796.12 10288.25 1590.22 31897.58 1688.33 7390.50 10191.96 21579.26 7499.06 10290.29 10989.07 17198.88 31
PAPM_NR91.46 7990.82 8393.37 6898.50 4081.81 12295.03 24096.13 12684.65 14986.10 15197.65 7479.24 7599.75 3583.20 18096.88 8698.56 47
alignmvs92.97 4492.26 6095.12 1995.54 11687.77 2098.67 2796.38 10788.04 7893.01 6697.45 8379.20 7698.60 12393.25 7288.76 17598.99 29
新几何193.12 7597.44 7881.60 13096.71 6474.54 31391.22 9197.57 7879.13 7799.51 6977.40 23198.46 3898.26 67
test_fmvsmconf_n93.99 3094.36 2592.86 8592.82 20181.12 13699.26 396.37 11093.47 1395.16 3398.21 3479.00 7899.64 5398.21 896.73 9297.83 97
JIA-IIPM79.00 28777.20 28684.40 30289.74 27864.06 35275.30 37995.44 16962.15 36181.90 20059.08 38378.92 7995.59 27266.51 30985.78 20493.54 225
CS-MVS92.73 5093.48 3890.48 17496.27 9775.93 27198.55 3294.93 19189.32 5694.54 4897.67 6978.91 8097.02 20293.80 6297.32 7798.49 51
MVSFormer91.36 8290.57 8893.73 5393.00 19488.08 1794.80 24694.48 22080.74 23194.90 4197.13 9978.84 8195.10 29583.77 16997.46 7098.02 79
lupinMVS93.87 3293.58 3694.75 2793.00 19488.08 1799.15 795.50 16491.03 3594.90 4197.66 7078.84 8197.56 16794.64 5597.46 7098.62 45
testdata90.13 18495.92 10774.17 28896.49 9573.49 32294.82 4597.99 5078.80 8397.93 14983.53 17797.52 6998.29 64
PAPR92.74 4992.17 6394.45 3298.89 2084.87 6697.20 11196.20 12287.73 8688.40 12898.12 4178.71 8499.76 3087.99 13496.28 9798.74 35
EI-MVSNet-Vis-set91.84 7091.77 7092.04 12597.60 7181.17 13596.61 15996.87 4388.20 7589.19 11797.55 8278.69 8599.14 9590.29 10990.94 16195.80 179
HFP-MVS92.89 4692.86 4892.98 8198.71 2581.12 13697.58 8496.70 6585.20 13591.75 8197.97 5578.47 8699.71 4390.95 9398.41 4198.12 75
ZNCC-MVS92.75 4892.60 5393.23 7298.24 5181.82 12197.63 8096.50 9285.00 14191.05 9397.74 6778.38 8799.80 2590.48 10298.34 4698.07 77
Patchmatch-test78.25 29074.72 30488.83 21291.20 24674.10 28973.91 38288.70 35059.89 37366.82 33185.12 32178.38 8794.54 30948.84 37179.58 25097.86 94
Vis-MVSNet (Re-imp)88.88 13288.87 12388.91 21093.89 16874.43 28696.93 14094.19 23984.39 15683.22 18295.67 13878.24 8994.70 30578.88 21594.40 12297.61 115
testing380.74 27181.17 24679.44 33791.15 24963.48 35597.16 11795.76 15080.83 22871.36 30793.15 19978.22 9087.30 37143.19 37879.67 24887.55 320
tpm85.55 19584.47 19688.80 21390.19 26875.39 27688.79 32794.69 20584.83 14383.96 17385.21 31778.22 9094.68 30676.32 24378.02 26796.34 167
MP-MVScopyleft92.61 5792.67 5192.42 10498.13 5679.73 17797.33 10596.20 12285.63 12490.53 10097.66 7078.14 9299.70 4692.12 8498.30 4897.85 95
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HyFIR lowres test89.36 12188.60 12591.63 14194.91 13780.76 14895.60 21495.53 16182.56 20584.03 17091.24 22778.03 9396.81 21687.07 14488.41 18097.32 132
ACMMP_NAP93.46 3693.23 4294.17 4197.16 8884.28 7496.82 14796.65 7286.24 11394.27 5097.99 5077.94 9499.83 1693.39 6798.57 3398.39 57
CS-MVS-test92.98 4393.67 3390.90 16296.52 9476.87 25298.68 2694.73 20490.36 4694.84 4397.89 6077.94 9497.15 19894.28 5997.80 6298.70 41
原ACMM191.22 15397.77 6578.10 22396.61 7881.05 22591.28 9097.42 8777.92 9698.98 10679.85 20698.51 3496.59 160
EI-MVSNet-UG-set91.35 8391.22 7791.73 13697.39 8280.68 14996.47 16796.83 4687.92 8188.30 13197.36 8977.84 9799.13 9789.43 12089.45 16895.37 190
test250690.96 9290.39 9292.65 9493.54 17682.46 10696.37 17597.35 1886.78 10987.55 13695.25 14777.83 9897.50 17584.07 16394.80 11597.98 86
patchmatchnet-post77.09 36277.78 9995.39 278
sam_mvs177.59 10097.54 117
EIA-MVS91.73 7192.05 6690.78 16794.52 14876.40 26098.06 5395.34 17789.19 5888.90 12197.28 9477.56 10197.73 15990.77 9896.86 8898.20 68
GST-MVS92.43 6192.22 6293.04 7998.17 5481.64 12897.40 10296.38 10784.71 14790.90 9697.40 8877.55 10299.76 3089.75 11597.74 6397.72 105
MP-MVS-pluss92.58 5892.35 5793.29 6997.30 8682.53 10396.44 17096.04 13484.68 14889.12 11898.37 2777.48 10399.74 3793.31 7198.38 4397.59 116
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CP-MVS92.54 5992.60 5392.34 10698.50 4079.90 17098.40 3696.40 10484.75 14490.48 10298.09 4377.40 10499.21 8691.15 9298.23 5097.92 90
region2R92.72 5292.70 5092.79 8898.68 2680.53 15697.53 8896.51 9085.22 13391.94 7997.98 5377.26 10599.67 5190.83 9798.37 4498.18 69
PatchmatchNetpermissive86.83 17485.12 18591.95 12894.12 16282.27 10986.55 34695.64 15784.59 15182.98 18684.99 32377.26 10595.96 24868.61 29891.34 15997.64 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
XVS92.69 5492.71 4992.63 9698.52 3780.29 15997.37 10396.44 9887.04 10391.38 8597.83 6477.24 10799.59 5890.46 10398.07 5298.02 79
X-MVStestdata86.26 18384.14 20292.63 9698.52 3780.29 15997.37 10396.44 9887.04 10391.38 8520.73 39677.24 10799.59 5890.46 10398.07 5298.02 79
ETV-MVS92.72 5292.87 4792.28 11294.54 14781.89 11797.98 5795.21 18289.77 5393.11 6496.83 11177.23 10997.50 17595.74 4195.38 11197.44 126
ACMMPR92.69 5492.67 5192.75 8998.66 2880.57 15297.58 8496.69 6785.20 13591.57 8397.92 5677.01 11099.67 5190.95 9398.41 4198.00 84
myMVS_eth3d81.93 25582.18 23081.18 32892.13 22567.18 34093.97 26594.23 23582.43 20673.39 28993.57 19376.98 11187.86 36650.53 36682.34 23188.51 295
UniMVSNet_NR-MVSNet85.49 19684.59 19188.21 22789.44 28479.36 18596.71 15596.41 10285.22 13378.11 23890.98 23276.97 11295.14 29279.14 21268.30 32390.12 255
test_fmvsmconf0.1_n93.08 4293.22 4392.65 9488.45 29480.81 14699.00 1995.11 18493.21 1594.00 5497.91 5876.84 11399.59 5897.91 1496.55 9597.54 117
DP-MVS Recon91.72 7390.85 8294.34 3499.50 185.00 6398.51 3395.96 13980.57 23588.08 13397.63 7676.84 11399.89 785.67 15194.88 11498.13 74
CANet94.89 1494.64 1995.63 1397.55 7588.12 1699.06 1496.39 10694.07 1095.34 3297.80 6576.83 11599.87 897.08 2897.64 6698.89 30
PVSNet_Blended_VisFu91.24 8590.77 8492.66 9395.09 12982.40 10797.77 7095.87 14688.26 7486.39 14793.94 18576.77 11699.27 8288.80 12694.00 12796.31 170
FIs86.73 17786.10 17088.61 21690.05 27280.21 16396.14 19096.95 3885.56 12778.37 23692.30 20876.73 11795.28 28579.51 20779.27 25290.35 250
MTAPA92.45 6092.31 5892.86 8597.90 6180.85 14592.88 29196.33 11287.92 8190.20 10598.18 3676.71 11899.76 3092.57 8198.09 5197.96 89
miper_ehance_all_eth84.57 21183.60 21087.50 24592.64 20778.25 21695.40 22293.47 27779.28 26676.41 25887.64 27776.53 11995.24 28778.58 21772.42 29089.01 285
fmvsm_s_conf0.5_n93.69 3394.13 2992.34 10694.56 14582.01 11199.07 1397.13 2692.09 2396.25 2398.53 2176.47 12099.80 2598.39 694.71 11795.22 195
SR-MVS92.16 6492.27 5991.83 13498.37 4578.41 21196.67 15895.76 15082.19 21291.97 7798.07 4776.44 12198.64 12193.71 6497.27 7898.45 54
PVSNet_BlendedMVS90.05 10989.96 10490.33 17997.47 7683.86 7998.02 5696.73 6187.98 7989.53 11489.61 25276.42 12299.57 6294.29 5779.59 24987.57 317
PVSNet_Blended93.13 3992.98 4593.57 5997.47 7683.86 7999.32 196.73 6191.02 3689.53 11496.21 12576.42 12299.57 6294.29 5795.81 10897.29 135
test-mter88.95 12888.60 12589.98 18892.26 21777.23 24797.11 12395.96 13985.32 13086.30 14991.38 22376.37 12496.78 21880.82 19491.92 15495.94 176
test22296.15 10178.41 21195.87 20396.46 9671.97 33389.66 11197.45 8376.33 12598.24 4998.30 63
FC-MVSNet-test85.96 18785.39 17887.66 23889.38 28578.02 22495.65 21296.87 4385.12 13777.34 24391.94 21776.28 12694.74 30477.09 23278.82 25690.21 253
test_post33.80 39276.17 12795.97 245
PGM-MVS91.93 6891.80 6992.32 11098.27 5079.74 17695.28 22497.27 2083.83 17590.89 9797.78 6676.12 12899.56 6488.82 12597.93 6097.66 110
Patchmatch-RL test76.65 30574.01 31284.55 29877.37 37064.23 35078.49 37382.84 37478.48 27864.63 34273.40 37076.05 12991.70 34776.99 23357.84 36097.72 105
cl2285.11 20284.17 20087.92 23295.06 13378.82 19995.51 21694.22 23779.74 25676.77 25187.92 27475.96 13095.68 26479.93 20572.42 29089.27 274
TAMVS88.48 14387.79 13990.56 17291.09 25079.18 19096.45 16995.88 14483.64 18183.12 18393.33 19575.94 13195.74 26382.40 18588.27 18196.75 156
EPNet_dtu87.65 16387.89 13686.93 25894.57 14471.37 31896.72 15396.50 9288.56 6887.12 14395.02 16075.91 13294.01 31966.62 30690.00 16495.42 189
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
mvs_anonymous88.68 13787.62 14491.86 13194.80 14081.69 12793.53 27694.92 19282.03 21578.87 23290.43 24175.77 13395.34 28185.04 15693.16 14098.55 49
SR-MVS-dyc-post91.29 8491.45 7590.80 16597.76 6776.03 26696.20 18795.44 16980.56 23690.72 9897.84 6275.76 13498.61 12291.99 8696.79 8997.75 103
test_yl91.46 7990.53 8994.24 3897.41 8085.18 5498.08 5097.72 1280.94 22689.85 10696.14 12675.61 13598.81 11790.42 10788.56 17898.74 35
DCV-MVSNet91.46 7990.53 8994.24 3897.41 8085.18 5498.08 5097.72 1280.94 22689.85 10696.14 12675.61 13598.81 11790.42 10788.56 17898.74 35
HPM-MVScopyleft91.62 7691.53 7491.89 13097.88 6379.22 18996.99 13195.73 15382.07 21489.50 11697.19 9775.59 13798.93 11290.91 9597.94 5897.54 117
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
fmvsm_s_conf0.5_n_a93.34 3893.71 3292.22 11593.38 18481.71 12698.86 2296.98 3491.64 2796.85 1398.55 1875.58 13899.77 2997.88 1793.68 13195.18 196
mPP-MVS91.88 6991.82 6892.07 12298.38 4478.63 20597.29 10696.09 12985.12 13788.45 12797.66 7075.53 13999.68 4989.83 11398.02 5597.88 91
PatchT79.75 27876.85 29088.42 21889.55 28175.49 27577.37 37594.61 21463.07 35882.46 18973.32 37175.52 14093.41 33051.36 36284.43 21296.36 165
CR-MVSNet83.53 22781.36 24490.06 18590.16 26979.75 17479.02 37191.12 32284.24 16482.27 19580.35 35075.45 14193.67 32563.37 32486.25 19696.75 156
Patchmtry77.36 30074.59 30585.67 27989.75 27675.75 27477.85 37491.12 32260.28 37071.23 30880.35 35075.45 14193.56 32757.94 34167.34 33487.68 314
thres100view90088.30 14986.95 16292.33 10896.10 10384.90 6597.14 12098.85 282.69 20283.41 17993.66 19175.43 14397.93 14969.04 29586.24 19894.17 212
thres600view788.06 15486.70 16692.15 12096.10 10385.17 5897.14 12098.85 282.70 20183.41 17993.66 19175.43 14397.82 15667.13 30485.88 20293.45 228
UniMVSNet (Re)85.31 19984.23 19988.55 21789.75 27680.55 15396.72 15396.89 4285.42 12878.40 23588.93 25875.38 14595.52 27578.58 21768.02 32689.57 266
tfpn200view988.48 14387.15 15692.47 10096.21 9985.30 5297.44 9698.85 283.37 18483.99 17193.82 18775.36 14697.93 14969.04 29586.24 19894.17 212
thres40088.42 14687.15 15692.23 11496.21 9985.30 5297.44 9698.85 283.37 18483.99 17193.82 18775.36 14697.93 14969.04 29586.24 19893.45 228
sam_mvs75.35 148
fmvsm_s_conf0.1_n92.93 4593.16 4492.24 11390.52 26281.92 11598.42 3596.24 11891.17 3296.02 2798.35 2975.34 14999.74 3797.84 1894.58 11995.05 197
jason92.73 5092.23 6194.21 4090.50 26387.30 2698.65 2895.09 18590.61 4092.76 6997.13 9975.28 15097.30 18793.32 7096.75 9198.02 79
jason: jason.
c3_l83.80 22382.65 22587.25 25292.10 22777.74 23895.25 22793.04 29678.58 27776.01 26687.21 28575.25 15195.11 29477.54 22868.89 31788.91 291
MVS_Test90.29 10689.18 11693.62 5795.23 12484.93 6494.41 25194.66 20984.31 15890.37 10491.02 23075.13 15297.82 15683.11 18294.42 12198.12 75
thres20088.92 13087.65 14192.73 9196.30 9685.62 4597.85 6498.86 184.38 15784.82 16293.99 18475.12 15398.01 14770.86 28786.67 19194.56 210
EPMVS87.47 16685.90 17292.18 11795.41 11982.26 11087.00 34296.28 11585.88 12184.23 16885.57 31175.07 15496.26 23371.14 28592.50 14798.03 78
UA-Net88.92 13088.48 12890.24 18194.06 16477.18 24993.04 28894.66 20987.39 9491.09 9293.89 18674.92 15598.18 14575.83 24791.43 15895.35 191
test_fmvsmvis_n_192092.12 6592.10 6592.17 11890.87 25581.04 13898.34 3893.90 25492.71 1887.24 14197.90 5974.83 15699.72 4196.96 2996.20 9895.76 181
tpm cat183.63 22681.38 24390.39 17693.53 18178.19 22285.56 35395.09 18570.78 33978.51 23483.28 33674.80 15797.03 20166.77 30584.05 21495.95 175
h-mvs3389.30 12388.95 12190.36 17895.07 13176.04 26596.96 13797.11 2990.39 4492.22 7495.10 15874.70 15898.86 11493.14 7365.89 34196.16 172
hse-mvs288.22 15288.21 13188.25 22593.54 17673.41 29195.41 22195.89 14390.39 4492.22 7494.22 17774.70 15896.66 22393.14 7364.37 34694.69 209
APD-MVS_3200maxsize91.23 8691.35 7690.89 16397.89 6276.35 26196.30 18095.52 16379.82 25491.03 9497.88 6174.70 15898.54 12692.11 8596.89 8597.77 102
IS-MVSNet88.67 13888.16 13390.20 18393.61 17376.86 25396.77 15293.07 29584.02 16783.62 17895.60 14174.69 16196.24 23578.43 21993.66 13397.49 124
EC-MVSNet91.73 7192.11 6490.58 17193.54 17677.77 23698.07 5294.40 22787.44 9292.99 6797.11 10174.59 16296.87 21293.75 6397.08 8197.11 141
casdiffmvs_mvgpermissive91.13 8890.45 9193.17 7492.99 19783.58 8697.46 9594.56 21787.69 8787.19 14294.98 16374.50 16397.60 16491.88 8892.79 14398.34 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MDTV_nov1_ep1383.69 20594.09 16381.01 13986.78 34496.09 12983.81 17684.75 16384.32 32874.44 16496.54 22463.88 32085.07 210
MDTV_nov1_ep13_2view81.74 12486.80 34380.65 23385.65 15374.26 16576.52 23996.98 144
cl____83.27 23182.12 23186.74 25992.20 22075.95 27095.11 23693.27 28778.44 28074.82 28187.02 28874.19 16695.19 28974.67 25869.32 31389.09 280
DIV-MVS_self_test83.27 23182.12 23186.74 25992.19 22175.92 27295.11 23693.26 28878.44 28074.81 28287.08 28774.19 16695.19 28974.66 25969.30 31489.11 279
fmvsm_s_conf0.1_n_a92.38 6292.49 5592.06 12388.08 29881.62 12997.97 5996.01 13590.62 3996.58 1998.33 3074.09 16899.71 4397.23 2593.46 13694.86 201
casdiffmvspermissive90.95 9390.39 9292.63 9692.82 20182.53 10396.83 14594.47 22287.69 8788.47 12695.56 14374.04 16997.54 17190.90 9692.74 14497.83 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tpmvs83.04 23780.77 25089.84 19495.43 11877.96 22785.59 35295.32 17875.31 30776.27 26283.70 33373.89 17097.41 18059.53 33581.93 23694.14 214
test_post185.88 35130.24 39573.77 17195.07 29873.89 265
baseline90.76 9690.10 10092.74 9092.90 20082.56 10294.60 24894.56 21787.69 8789.06 12095.67 13873.76 17297.51 17490.43 10692.23 15298.16 71
EI-MVSNet85.80 19085.20 18187.59 24191.55 24177.41 24395.13 23495.36 17480.43 24180.33 21794.71 16773.72 17395.97 24576.96 23578.64 25889.39 267
IterMVS-LS83.93 22082.80 22387.31 25091.46 24477.39 24495.66 21193.43 27980.44 23975.51 27587.26 28373.72 17395.16 29176.99 23370.72 30089.39 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AUN-MVS86.25 18485.57 17588.26 22493.57 17573.38 29295.45 21995.88 14483.94 17185.47 15594.21 17873.70 17596.67 22283.54 17664.41 34594.73 208
miper_lstm_enhance81.66 26080.66 25484.67 29591.19 24771.97 31091.94 30193.19 28977.86 28472.27 30385.26 31573.46 17693.42 32973.71 26867.05 33688.61 293
diffmvspermissive91.17 8790.74 8592.44 10393.11 19382.50 10596.25 18393.62 27287.79 8490.40 10395.93 13073.44 17797.42 17993.62 6692.55 14697.41 128
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
RE-MVS-def91.18 8097.76 6776.03 26696.20 18795.44 16980.56 23690.72 9897.84 6273.36 17891.99 8696.79 8997.75 103
DeepC-MVS86.58 391.53 7891.06 8192.94 8394.52 14881.89 11795.95 19795.98 13790.76 3783.76 17796.76 11573.24 17999.71 4391.67 8996.96 8397.22 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RPMNet79.85 27775.92 29691.64 13990.16 26979.75 17479.02 37195.44 16958.43 37782.27 19572.55 37473.03 18098.41 13646.10 37586.25 19696.75 156
CHOSEN 1792x268891.07 9090.21 9793.64 5595.18 12783.53 8796.26 18296.13 12688.92 6184.90 16193.10 20072.86 18199.62 5688.86 12495.67 10997.79 101
eth_miper_zixun_eth83.12 23582.01 23386.47 26491.85 23974.80 28194.33 25593.18 29179.11 26975.74 27487.25 28472.71 18295.32 28376.78 23667.13 33589.27 274
canonicalmvs92.27 6391.22 7795.41 1695.80 11088.31 1497.09 12794.64 21288.49 6992.99 6797.31 9072.68 18398.57 12593.38 6988.58 17799.36 16
mvsany_test187.58 16488.22 13085.67 27989.78 27567.18 34095.25 22787.93 35383.96 17088.79 12297.06 10472.52 18494.53 31092.21 8386.45 19495.30 193
API-MVS90.18 10788.97 11993.80 4998.66 2882.95 9897.50 9295.63 15875.16 30886.31 14897.69 6872.49 18599.90 581.26 19296.07 10298.56 47
nrg03086.79 17585.43 17790.87 16488.76 28885.34 4997.06 12994.33 23184.31 15880.45 21591.98 21472.36 18696.36 23088.48 13071.13 29690.93 243
MVS_111021_LR91.60 7791.64 7391.47 14595.74 11178.79 20296.15 18996.77 5588.49 6988.64 12597.07 10372.33 18799.19 9193.13 7596.48 9696.43 164
test-LLR88.48 14387.98 13589.98 18892.26 21777.23 24797.11 12395.96 13983.76 17886.30 14991.38 22372.30 18896.78 21880.82 19491.92 15495.94 176
test0.0.03 182.79 24182.48 22783.74 30986.81 31172.22 30396.52 16495.03 18883.76 17873.00 29693.20 19672.30 18888.88 36264.15 31977.52 26890.12 255
KD-MVS_2432*160077.63 29774.92 30285.77 27590.86 25679.44 18288.08 33293.92 25276.26 30067.05 32982.78 33872.15 19091.92 34261.53 32841.62 38585.94 341
miper_refine_blended77.63 29774.92 30285.77 27590.86 25679.44 18288.08 33293.92 25276.26 30067.05 32982.78 33872.15 19091.92 34261.53 32841.62 38585.94 341
FA-MVS(test-final)87.71 16286.23 16992.17 11894.19 15880.55 15387.16 34196.07 13282.12 21385.98 15288.35 26772.04 19298.49 12980.26 20089.87 16597.48 125
Effi-MVS+90.70 9789.90 10793.09 7793.61 17383.48 8895.20 23092.79 29983.22 18691.82 8095.70 13671.82 19397.48 17791.25 9193.67 13298.32 60
sss90.87 9589.96 10493.60 5894.15 15983.84 8197.14 12098.13 785.93 12089.68 11096.09 12871.67 19499.30 8187.69 13789.16 17097.66 110
Test By Simon71.65 195
HPM-MVS_fast90.38 10590.17 9991.03 15897.61 7077.35 24597.15 11995.48 16579.51 26088.79 12296.90 10771.64 19698.81 11787.01 14597.44 7296.94 145
MVS90.60 9988.64 12496.50 594.25 15690.53 893.33 28097.21 2277.59 28778.88 23197.31 9071.52 19799.69 4789.60 11698.03 5499.27 20
dp84.30 21682.31 22990.28 18094.24 15777.97 22686.57 34595.53 16179.94 25380.75 21185.16 31971.49 19896.39 22963.73 32183.36 21996.48 163
ACMMPcopyleft90.39 10389.97 10391.64 13997.58 7378.21 22096.78 15096.72 6384.73 14684.72 16497.23 9571.22 19999.63 5588.37 13292.41 14997.08 143
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PCF-MVS84.09 586.77 17685.00 18792.08 12192.06 23183.07 9692.14 29994.47 22279.63 25876.90 25094.78 16671.15 20099.20 9072.87 27191.05 16093.98 218
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TAPA-MVS81.61 1285.02 20383.67 20689.06 20696.79 9273.27 29795.92 19994.79 20274.81 31180.47 21496.83 11171.07 20198.19 14449.82 36892.57 14595.71 182
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
pcd_1.5k_mvsjas5.92 3677.89 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40071.04 2020.00 4010.00 4000.00 3990.00 397
PS-MVSNAJss84.91 20584.30 19886.74 25985.89 32574.40 28794.95 24194.16 24183.93 17276.45 25790.11 24871.04 20295.77 25883.16 18179.02 25590.06 260
PS-MVSNAJ94.17 2693.52 3796.10 995.65 11392.35 298.21 4295.79 14992.42 2196.24 2498.18 3671.04 20299.17 9396.77 3197.39 7596.79 152
xiu_mvs_v2_base93.92 3193.26 4195.91 1095.07 13192.02 698.19 4395.68 15592.06 2596.01 2898.14 4070.83 20598.96 10796.74 3396.57 9496.76 155
FE-MVS86.06 18684.15 20191.78 13594.33 15579.81 17184.58 35796.61 7876.69 29885.00 15987.38 28070.71 20698.37 13770.39 29091.70 15797.17 140
CPTT-MVS89.72 11589.87 10889.29 20398.33 4773.30 29497.70 7695.35 17675.68 30487.40 13797.44 8670.43 20798.25 14189.56 11896.90 8496.33 169
WR-MVS_H81.02 26780.09 26183.79 30788.08 29871.26 31994.46 24996.54 8780.08 24972.81 29986.82 29070.36 20892.65 33464.18 31867.50 33287.46 322
NR-MVSNet83.35 22981.52 24288.84 21188.76 28881.31 13494.45 25095.16 18384.65 14967.81 32590.82 23470.36 20894.87 30174.75 25666.89 33890.33 251
VNet92.11 6691.22 7794.79 2596.91 9186.98 2797.91 6197.96 1086.38 11293.65 5795.74 13470.16 21098.95 10993.39 6788.87 17498.43 55
Fast-Effi-MVS+87.93 15886.94 16390.92 16194.04 16579.16 19198.26 4093.72 26881.29 22283.94 17492.90 20169.83 21196.68 22176.70 23791.74 15696.93 146
PLCcopyleft83.97 788.00 15687.38 15289.83 19598.02 5976.46 25897.16 11794.43 22579.26 26781.98 19996.28 12469.36 21299.27 8277.71 22492.25 15193.77 222
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
BH-w/o88.24 15187.47 15090.54 17395.03 13478.54 20697.41 10193.82 25984.08 16578.23 23794.51 17269.34 21397.21 19280.21 20294.58 11995.87 178
MAR-MVS90.63 9890.22 9691.86 13198.47 4278.20 22197.18 11396.61 7883.87 17488.18 13298.18 3668.71 21499.75 3583.66 17497.15 8097.63 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
114514_t88.79 13687.57 14692.45 10198.21 5381.74 12496.99 13195.45 16875.16 30882.48 18895.69 13768.59 21598.50 12880.33 19895.18 11297.10 142
DU-MVS84.57 21183.33 21488.28 22388.76 28879.36 18596.43 17295.41 17385.42 12878.11 23890.82 23467.61 21695.14 29279.14 21268.30 32390.33 251
Baseline_NR-MVSNet81.22 26580.07 26384.68 29485.32 33475.12 27896.48 16688.80 34776.24 30277.28 24586.40 30167.61 21694.39 31375.73 24966.73 33984.54 350
test_fmvsmconf0.01_n91.08 8990.68 8692.29 11182.43 35480.12 16697.94 6093.93 25092.07 2491.97 7797.60 7767.56 21899.53 6697.09 2795.56 11097.21 138
WR-MVS84.32 21582.96 21888.41 21989.38 28580.32 15896.59 16096.25 11783.97 16976.63 25390.36 24267.53 21994.86 30275.82 24870.09 30790.06 260
OMC-MVS88.80 13588.16 13390.72 16895.30 12277.92 23094.81 24594.51 21986.80 10884.97 16096.85 11067.53 21998.60 12385.08 15587.62 18595.63 183
LCM-MVSNet-Re83.75 22483.54 21184.39 30393.54 17664.14 35192.51 29484.03 37083.90 17366.14 33686.59 29467.36 22192.68 33384.89 15892.87 14296.35 166
v14882.41 24980.89 24886.99 25786.18 32076.81 25496.27 18193.82 25980.49 23875.28 27886.11 30667.32 22295.75 26075.48 25167.03 33788.42 301
CNLPA86.96 17085.37 17991.72 13797.59 7279.34 18797.21 10991.05 32574.22 31478.90 23096.75 11767.21 22398.95 10974.68 25790.77 16296.88 150
FMVSNet384.71 20782.71 22490.70 16994.55 14687.71 2195.92 19994.67 20881.73 21875.82 27188.08 27266.99 22494.47 31171.23 28275.38 27689.91 262
v881.88 25680.06 26487.32 24986.63 31279.04 19794.41 25193.65 27178.77 27573.19 29585.57 31166.87 22595.81 25673.84 26767.61 33187.11 325
131488.94 12987.20 15594.17 4193.21 18685.73 4293.33 28096.64 7582.89 19675.98 26796.36 12266.83 22699.39 7583.52 17896.02 10497.39 130
BH-untuned86.95 17185.94 17189.99 18794.52 14877.46 24296.78 15093.37 28481.80 21776.62 25493.81 18966.64 22797.02 20276.06 24493.88 12995.48 188
GeoE86.36 18085.20 18189.83 19593.17 18876.13 26397.53 8892.11 30779.58 25980.99 20894.01 18366.60 22896.17 23873.48 26989.30 16997.20 139
CVMVSNet84.83 20685.57 17582.63 32091.55 24160.38 36595.13 23495.03 18880.60 23482.10 19794.71 16766.40 22990.19 35974.30 26290.32 16397.31 133
PMMVS89.46 12089.92 10688.06 22994.64 14269.57 33096.22 18494.95 19087.27 9791.37 8796.54 12165.88 23097.39 18288.54 12793.89 12897.23 136
v2v48283.46 22881.86 23688.25 22586.19 31979.65 17996.34 17894.02 24881.56 22077.32 24488.23 26965.62 23196.03 24077.77 22169.72 31189.09 280
v114482.90 24081.27 24587.78 23586.29 31779.07 19696.14 19093.93 25080.05 25077.38 24286.80 29165.50 23295.93 25075.21 25370.13 30488.33 303
v1081.43 26279.53 27087.11 25486.38 31478.87 19894.31 25693.43 27977.88 28373.24 29485.26 31565.44 23395.75 26072.14 27667.71 33086.72 329
HQP2-MVS65.40 234
HQP-MVS87.91 15987.55 14788.98 20992.08 22878.48 20797.63 8094.80 20090.52 4182.30 19194.56 17065.40 23497.32 18587.67 13883.01 22291.13 239
V4283.04 23781.53 24187.57 24386.27 31879.09 19595.87 20394.11 24480.35 24377.22 24686.79 29265.32 23696.02 24377.74 22270.14 30387.61 316
pmmvs482.54 24580.79 24987.79 23486.11 32180.49 15793.55 27593.18 29177.29 29173.35 29289.40 25465.26 23795.05 29975.32 25273.61 28487.83 311
3Dnovator+82.88 889.63 11787.85 13794.99 2194.49 15286.76 3197.84 6595.74 15286.10 11675.47 27696.02 12965.00 23899.51 6982.91 18497.07 8298.72 40
mvsmamba85.17 20184.54 19287.05 25687.94 30075.11 27996.22 18487.79 35586.91 10578.55 23391.77 22064.93 23995.91 25186.94 14679.80 24490.12 255
HQP_MVS87.50 16587.09 15988.74 21491.86 23777.96 22797.18 11394.69 20589.89 5181.33 20594.15 18064.77 24097.30 18787.08 14282.82 22690.96 241
plane_prior691.98 23377.92 23064.77 240
v14419282.43 24680.73 25287.54 24485.81 32678.22 21795.98 19593.78 26479.09 27077.11 24786.49 29664.66 24295.91 25174.20 26369.42 31288.49 297
TranMVSNet+NR-MVSNet83.24 23381.71 23887.83 23387.71 30378.81 20196.13 19294.82 19984.52 15276.18 26590.78 23664.07 24394.60 30774.60 26066.59 34090.09 258
CP-MVSNet81.01 26880.08 26283.79 30787.91 30170.51 32194.29 26095.65 15680.83 22872.54 30288.84 25963.71 24492.32 33768.58 29968.36 32288.55 294
cdsmvs_eth3d_5k21.43 36228.57 3650.00 3820.00 4040.00 4070.00 39395.93 1420.00 4000.00 40197.66 7063.57 2450.00 4010.00 4000.00 3990.00 397
Vis-MVSNetpermissive88.67 13887.82 13891.24 15192.68 20378.82 19996.95 13893.85 25887.55 9087.07 14495.13 15663.43 24697.21 19277.58 22796.15 10097.70 108
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v119282.31 25080.55 25687.60 24085.94 32378.47 21095.85 20593.80 26279.33 26376.97 24986.51 29563.33 24795.87 25373.11 27070.13 30488.46 299
CANet_DTU90.98 9190.04 10193.83 4894.76 14186.23 3496.32 17993.12 29493.11 1693.71 5696.82 11363.08 24899.48 7184.29 16195.12 11395.77 180
ab-mvs87.08 16884.94 18893.48 6593.34 18583.67 8488.82 32695.70 15481.18 22384.55 16790.14 24762.72 24998.94 11185.49 15382.54 23097.85 95
v192192082.02 25480.23 26087.41 24785.62 32877.92 23095.79 20793.69 26978.86 27476.67 25286.44 29862.50 25095.83 25572.69 27269.77 31088.47 298
CLD-MVS87.97 15787.48 14989.44 20192.16 22480.54 15598.14 4494.92 19291.41 2979.43 22795.40 14662.34 25197.27 19090.60 10182.90 22590.50 248
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
3Dnovator82.32 1089.33 12287.64 14294.42 3393.73 17285.70 4397.73 7496.75 5986.73 11176.21 26495.93 13062.17 25299.68 4981.67 19097.81 6197.88 91
ADS-MVSNet279.57 28177.53 28485.71 27793.78 16972.13 30579.48 36786.11 36373.09 32580.14 21979.99 35262.15 25390.14 36059.49 33683.52 21694.85 202
ADS-MVSNet81.26 26478.36 27789.96 19093.78 16979.78 17279.48 36793.60 27373.09 32580.14 21979.99 35262.15 25395.24 28759.49 33683.52 21694.85 202
QAPM86.88 17284.51 19393.98 4494.04 16585.89 4097.19 11296.05 13373.62 31975.12 27995.62 14062.02 25599.74 3770.88 28696.06 10396.30 171
Effi-MVS+-dtu84.61 21084.90 19083.72 31091.96 23463.14 35794.95 24193.34 28585.57 12579.79 22387.12 28661.99 25695.61 27183.55 17585.83 20392.41 235
XXY-MVS83.84 22282.00 23489.35 20287.13 30981.38 13295.72 20894.26 23480.15 24875.92 26990.63 23761.96 25796.52 22578.98 21473.28 28890.14 254
AdaColmapbinary88.81 13487.61 14592.39 10599.33 479.95 16896.70 15795.58 15977.51 28883.05 18596.69 11961.90 25899.72 4184.29 16193.47 13597.50 123
VPA-MVSNet85.32 19883.83 20489.77 19890.25 26682.63 10196.36 17697.07 3183.03 19381.21 20789.02 25761.58 25996.31 23285.02 15770.95 29890.36 249
dmvs_testset72.00 32973.36 31567.91 35883.83 34931.90 39885.30 35477.12 38382.80 19963.05 35092.46 20761.54 26082.55 38142.22 38071.89 29489.29 273
CL-MVSNet_self_test75.81 30974.14 31180.83 33178.33 36667.79 33794.22 26193.52 27677.28 29269.82 31881.54 34461.47 26189.22 36157.59 34453.51 36785.48 345
test_djsdf83.00 23982.45 22884.64 29684.07 34669.78 32794.80 24694.48 22080.74 23175.41 27787.70 27661.32 26295.10 29583.77 16979.76 24589.04 283
v124081.70 25879.83 26887.30 25185.50 32977.70 23995.48 21793.44 27878.46 27976.53 25586.44 29860.85 26395.84 25471.59 27970.17 30288.35 302
RRT_MVS83.88 22183.27 21585.71 27787.53 30772.12 30695.35 22394.33 23183.81 17675.86 27091.28 22660.55 26495.09 29783.93 16576.76 27089.90 263
D2MVS82.67 24381.55 24086.04 27387.77 30276.47 25795.21 22996.58 8382.66 20370.26 31685.46 31460.39 26595.80 25776.40 24179.18 25385.83 343
XVG-OURS-SEG-HR85.74 19285.16 18487.49 24690.22 26771.45 31791.29 31094.09 24581.37 22183.90 17595.22 14960.30 26697.53 17385.58 15284.42 21393.50 226
PEN-MVS79.47 28378.26 27983.08 31686.36 31568.58 33493.85 26994.77 20379.76 25571.37 30688.55 26359.79 26792.46 33564.50 31765.40 34288.19 305
TransMVSNet (Re)76.94 30374.38 30784.62 29785.92 32475.25 27795.28 22489.18 34373.88 31867.22 32686.46 29759.64 26894.10 31759.24 33952.57 37184.50 351
DP-MVS81.47 26178.28 27891.04 15798.14 5578.48 20795.09 23986.97 35761.14 36871.12 31092.78 20559.59 26999.38 7653.11 35986.61 19295.27 194
v7n79.32 28577.34 28585.28 28684.05 34772.89 30293.38 27893.87 25675.02 31070.68 31284.37 32759.58 27095.62 27067.60 30067.50 33287.32 324
F-COLMAP84.50 21383.44 21387.67 23795.22 12572.22 30395.95 19793.78 26475.74 30376.30 26195.18 15359.50 27198.45 13372.67 27386.59 19392.35 236
LS3D82.22 25179.94 26689.06 20697.43 7974.06 29093.20 28692.05 30861.90 36273.33 29395.21 15059.35 27299.21 8654.54 35592.48 14893.90 220
BH-RMVSNet86.84 17385.28 18091.49 14495.35 12180.26 16296.95 13892.21 30682.86 19881.77 20395.46 14559.34 27397.64 16269.79 29393.81 13096.57 161
MVP-Stereo82.65 24481.67 23985.59 28286.10 32278.29 21493.33 28092.82 29877.75 28569.17 32387.98 27359.28 27495.76 25971.77 27796.88 8682.73 361
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PS-CasMVS80.27 27579.18 27183.52 31387.56 30569.88 32694.08 26395.29 17980.27 24672.08 30488.51 26659.22 27592.23 33967.49 30168.15 32588.45 300
DTE-MVSNet78.37 28977.06 28882.32 32385.22 33567.17 34393.40 27793.66 27078.71 27670.53 31488.29 26859.06 27692.23 33961.38 33163.28 35187.56 318
TR-MVS86.30 18284.93 18990.42 17594.63 14377.58 24096.57 16193.82 25980.30 24482.42 19095.16 15458.74 27797.55 16974.88 25587.82 18496.13 174
OPM-MVS85.84 18985.10 18688.06 22988.34 29577.83 23495.72 20894.20 23887.89 8380.45 21594.05 18258.57 27897.26 19183.88 16682.76 22889.09 280
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PatchMatch-RL85.00 20483.66 20789.02 20895.86 10874.55 28592.49 29593.60 27379.30 26579.29 22991.47 22158.53 27998.45 13370.22 29192.17 15394.07 217
pm-mvs180.05 27678.02 28186.15 27185.42 33075.81 27395.11 23692.69 30177.13 29370.36 31587.43 27958.44 28095.27 28671.36 28164.25 34787.36 323
SDMVSNet87.02 16985.61 17491.24 15194.14 16083.30 9293.88 26895.98 13784.30 16079.63 22592.01 21158.23 28197.68 16090.28 11182.02 23492.75 231
our_test_377.90 29575.37 29985.48 28485.39 33176.74 25593.63 27291.67 31373.39 32365.72 33884.65 32658.20 28293.13 33257.82 34267.87 32786.57 332
IterMVS-SCA-FT80.51 27479.10 27384.73 29389.63 28074.66 28292.98 28991.81 31280.05 25071.06 31185.18 31858.04 28391.40 34872.48 27570.70 30188.12 307
SCA85.63 19383.64 20891.60 14292.30 21581.86 11992.88 29195.56 16084.85 14282.52 18785.12 32158.04 28395.39 27873.89 26587.58 18797.54 117
EU-MVSNet76.92 30476.95 28976.83 34784.10 34554.73 37891.77 30492.71 30072.74 32869.57 32088.69 26158.03 28587.43 37064.91 31670.00 30888.33 303
Syy-MVS77.97 29478.05 28077.74 34492.13 22556.85 37193.97 26594.23 23582.43 20673.39 28993.57 19357.95 28687.86 36632.40 38482.34 23188.51 295
IterMVS80.67 27279.16 27285.20 28789.79 27476.08 26492.97 29091.86 31080.28 24571.20 30985.14 32057.93 28791.34 34972.52 27470.74 29988.18 306
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dmvs_re84.10 21882.90 22087.70 23691.41 24573.28 29590.59 31693.19 28985.02 13977.96 24093.68 19057.92 28896.18 23775.50 25080.87 23993.63 224
anonymousdsp80.98 26979.97 26584.01 30481.73 35670.44 32292.49 29593.58 27577.10 29572.98 29786.31 30257.58 28994.90 30079.32 20978.63 26086.69 330
xiu_mvs_v1_base_debu90.54 10089.54 11193.55 6092.31 21287.58 2396.99 13194.87 19587.23 9893.27 6097.56 7957.43 29098.32 13892.72 7893.46 13694.74 205
xiu_mvs_v1_base90.54 10089.54 11193.55 6092.31 21287.58 2396.99 13194.87 19587.23 9893.27 6097.56 7957.43 29098.32 13892.72 7893.46 13694.74 205
xiu_mvs_v1_base_debi90.54 10089.54 11193.55 6092.31 21287.58 2396.99 13194.87 19587.23 9893.27 6097.56 7957.43 29098.32 13892.72 7893.46 13694.74 205
OpenMVScopyleft79.58 1486.09 18583.62 20993.50 6390.95 25286.71 3297.44 9695.83 14775.35 30572.64 30095.72 13557.42 29399.64 5371.41 28095.85 10794.13 215
ECVR-MVScopyleft88.35 14887.25 15491.65 13893.54 17679.40 18496.56 16390.78 33086.78 10985.57 15495.25 14757.25 29497.56 16784.73 15994.80 11597.98 86
test111188.11 15387.04 16091.35 14693.15 18978.79 20296.57 16190.78 33086.88 10785.04 15895.20 15157.23 29597.39 18283.88 16694.59 11897.87 93
PVSNet82.34 989.02 12787.79 13992.71 9295.49 11781.50 13197.70 7697.29 1987.76 8585.47 15595.12 15756.90 29698.90 11380.33 19894.02 12597.71 107
Fast-Effi-MVS+-dtu83.33 23082.60 22685.50 28389.55 28169.38 33196.09 19391.38 31782.30 20975.96 26891.41 22256.71 29795.58 27375.13 25484.90 21191.54 237
ppachtmachnet_test77.19 30174.22 30986.13 27285.39 33178.22 21793.98 26491.36 31971.74 33567.11 32884.87 32456.67 29893.37 33152.21 36064.59 34486.80 328
VPNet84.69 20882.92 21990.01 18689.01 28783.45 8996.71 15595.46 16785.71 12379.65 22492.18 21056.66 29996.01 24483.05 18367.84 32990.56 246
GA-MVS85.79 19184.04 20391.02 15989.47 28380.27 16196.90 14294.84 19885.57 12580.88 20989.08 25556.56 30096.47 22777.72 22385.35 20896.34 167
XVG-OURS85.18 20084.38 19787.59 24190.42 26571.73 31491.06 31394.07 24682.00 21683.29 18195.08 15956.42 30197.55 16983.70 17383.42 21893.49 227
GBi-Net82.42 24780.43 25888.39 22092.66 20481.95 11294.30 25793.38 28179.06 27175.82 27185.66 30756.38 30293.84 32171.23 28275.38 27689.38 269
test182.42 24780.43 25888.39 22092.66 20481.95 11294.30 25793.38 28179.06 27175.82 27185.66 30756.38 30293.84 32171.23 28275.38 27689.38 269
FMVSNet282.79 24180.44 25789.83 19592.66 20485.43 4895.42 22094.35 22979.06 27174.46 28387.28 28156.38 30294.31 31469.72 29474.68 28089.76 264
pmmvs581.34 26379.54 26986.73 26285.02 33676.91 25196.22 18491.65 31477.65 28673.55 28788.61 26255.70 30594.43 31274.12 26473.35 28788.86 292
tfpnnormal78.14 29175.42 29886.31 26888.33 29679.24 18894.41 25196.22 12073.51 32069.81 31985.52 31355.43 30695.75 26047.65 37367.86 32883.95 356
LFMVS89.27 12487.64 14294.16 4397.16 8885.52 4797.18 11394.66 20979.17 26889.63 11296.57 12055.35 30798.22 14289.52 11989.54 16798.74 35
ACMM80.70 1383.72 22582.85 22286.31 26891.19 24772.12 30695.88 20294.29 23380.44 23977.02 24891.96 21555.24 30897.14 19979.30 21080.38 24389.67 265
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MDA-MVSNet_test_wron73.54 31970.43 32782.86 31784.55 33971.85 31191.74 30591.32 32167.63 34846.73 37881.09 34755.11 30990.42 35855.91 35259.76 35786.31 335
YYNet173.53 32070.43 32782.85 31884.52 34171.73 31491.69 30691.37 31867.63 34846.79 37781.21 34655.04 31090.43 35755.93 35159.70 35886.38 334
LTVRE_ROB73.68 1877.99 29275.74 29784.74 29290.45 26472.02 30886.41 34791.12 32272.57 33066.63 33387.27 28254.95 31196.98 20456.29 35075.98 27185.21 347
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LPG-MVS_test84.20 21783.49 21286.33 26590.88 25373.06 29895.28 22494.13 24282.20 21076.31 25993.20 19654.83 31296.95 20683.72 17180.83 24088.98 286
LGP-MVS_train86.33 26590.88 25373.06 29894.13 24282.20 21076.31 25993.20 19654.83 31296.95 20683.72 17180.83 24088.98 286
cascas86.50 17884.48 19592.55 9992.64 20785.95 3797.04 13095.07 18775.32 30680.50 21391.02 23054.33 31497.98 14886.79 14787.62 18593.71 223
ACMP81.66 1184.00 21983.22 21686.33 26591.53 24372.95 30195.91 20193.79 26383.70 18073.79 28692.22 20954.31 31596.89 21083.98 16479.74 24789.16 277
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
bld_raw_dy_0_6482.13 25280.76 25186.24 27085.78 32775.03 28094.40 25482.62 37583.12 18976.46 25690.96 23353.83 31694.55 30881.04 19378.60 26189.14 278
test_cas_vis1_n_192089.90 11290.02 10289.54 20090.14 27174.63 28398.71 2594.43 22593.04 1792.40 7096.35 12353.41 31799.08 10195.59 4496.16 9994.90 199
PVSNet_077.72 1581.70 25878.95 27589.94 19190.77 25976.72 25695.96 19696.95 3885.01 14070.24 31788.53 26552.32 31898.20 14386.68 14844.08 38294.89 200
sd_testset84.62 20983.11 21789.17 20494.14 16077.78 23591.54 30994.38 22884.30 16079.63 22592.01 21152.28 31996.98 20477.67 22582.02 23492.75 231
MSDG80.62 27377.77 28389.14 20593.43 18377.24 24691.89 30290.18 33469.86 34468.02 32491.94 21752.21 32098.84 11559.32 33883.12 22091.35 238
test_vis1_n_192089.95 11190.59 8788.03 23192.36 21168.98 33399.12 994.34 23093.86 1193.64 5897.01 10551.54 32199.59 5896.76 3296.71 9395.53 186
WB-MVS57.26 34456.22 34760.39 36969.29 38035.91 39686.39 34870.06 38959.84 37446.46 37972.71 37251.18 32278.11 38315.19 39334.89 38867.14 382
DSMNet-mixed73.13 32272.45 31875.19 35377.51 36946.82 38385.09 35582.01 37667.61 35269.27 32281.33 34550.89 32386.28 37354.54 35583.80 21592.46 233
UGNet87.73 16186.55 16791.27 15095.16 12879.11 19396.35 17796.23 11988.14 7687.83 13590.48 23950.65 32499.09 10080.13 20394.03 12495.60 184
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FMVSNet576.46 30674.16 31083.35 31590.05 27276.17 26289.58 32189.85 33671.39 33765.29 34080.42 34950.61 32587.70 36961.05 33369.24 31586.18 337
MS-PatchMatch83.05 23681.82 23786.72 26389.64 27979.10 19494.88 24394.59 21679.70 25770.67 31389.65 25150.43 32696.82 21570.82 28995.99 10584.25 353
Anonymous2023120675.29 31273.64 31380.22 33380.75 35763.38 35693.36 27990.71 33273.09 32567.12 32783.70 33350.33 32790.85 35453.63 35870.10 30686.44 333
SSC-MVS56.01 34754.96 34859.17 37068.42 38234.13 39784.98 35669.23 39058.08 37845.36 38071.67 37850.30 32877.46 38414.28 39432.33 38965.91 383
N_pmnet61.30 34360.20 34664.60 36384.32 34217.00 40491.67 30710.98 40261.77 36358.45 36678.55 35649.89 32991.83 34542.27 37963.94 34884.97 348
jajsoiax82.12 25381.15 24785.03 29084.19 34470.70 32094.22 26193.95 24983.07 19173.48 28889.75 25049.66 33095.37 28082.24 18779.76 24589.02 284
RPSCF77.73 29676.63 29181.06 32988.66 29255.76 37687.77 33687.88 35464.82 35774.14 28592.79 20449.22 33196.81 21667.47 30276.88 26990.62 245
SixPastTwentyTwo76.04 30774.32 30881.22 32784.54 34061.43 36391.16 31189.30 34277.89 28264.04 34386.31 30248.23 33294.29 31563.54 32363.84 34987.93 310
test20.0372.36 32671.15 32375.98 35177.79 36759.16 36992.40 29789.35 34174.09 31661.50 35684.32 32848.09 33385.54 37650.63 36562.15 35483.24 357
VDDNet86.44 17984.51 19392.22 11591.56 24081.83 12097.10 12694.64 21269.50 34587.84 13495.19 15248.01 33497.92 15489.82 11486.92 18996.89 149
VDD-MVS88.28 15087.02 16192.06 12395.09 12980.18 16597.55 8794.45 22483.09 19089.10 11995.92 13247.97 33598.49 12993.08 7686.91 19097.52 122
test_fmvs187.79 16088.52 12785.62 28192.98 19864.31 34997.88 6392.42 30387.95 8092.24 7395.82 13347.94 33698.44 13595.31 4894.09 12394.09 216
Anonymous2023121179.72 27977.19 28787.33 24895.59 11577.16 25095.18 23394.18 24059.31 37572.57 30186.20 30447.89 33795.66 26574.53 26169.24 31589.18 276
OurMVSNet-221017-077.18 30276.06 29480.55 33283.78 35060.00 36790.35 31791.05 32577.01 29766.62 33487.92 27447.73 33894.03 31871.63 27868.44 32187.62 315
CMPMVSbinary54.94 2175.71 31174.56 30679.17 33979.69 36255.98 37389.59 32093.30 28660.28 37053.85 37489.07 25647.68 33996.33 23176.55 23881.02 23785.22 346
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
mvs_tets81.74 25780.71 25384.84 29184.22 34370.29 32393.91 26793.78 26482.77 20073.37 29189.46 25347.36 34095.31 28481.99 18879.55 25188.92 290
MDA-MVSNet-bldmvs71.45 33067.94 33581.98 32585.33 33368.50 33592.35 29888.76 34870.40 34042.99 38181.96 34146.57 34191.31 35048.75 37254.39 36586.11 338
pmmvs-eth3d73.59 31870.66 32582.38 32176.40 37473.38 29289.39 32489.43 34072.69 32960.34 36177.79 35846.43 34291.26 35166.42 31057.06 36182.51 362
Anonymous2024052983.15 23480.60 25590.80 16595.74 11178.27 21596.81 14894.92 19260.10 37281.89 20192.54 20645.82 34398.82 11679.25 21178.32 26595.31 192
MVS-HIRNet71.36 33167.00 33684.46 30190.58 26169.74 32879.15 37087.74 35646.09 38261.96 35550.50 38645.14 34495.64 26853.74 35788.11 18388.00 309
KD-MVS_self_test70.97 33269.31 33275.95 35276.24 37655.39 37787.45 33790.94 32870.20 34262.96 35177.48 35944.01 34588.09 36461.25 33253.26 36884.37 352
FMVSNet179.50 28276.54 29288.39 22088.47 29381.95 11294.30 25793.38 28173.14 32472.04 30585.66 30743.86 34693.84 32165.48 31372.53 28989.38 269
K. test v373.62 31771.59 32279.69 33582.98 35259.85 36890.85 31588.83 34677.13 29358.90 36382.11 34043.62 34791.72 34665.83 31254.10 36687.50 321
pmmvs674.65 31571.67 32183.60 31279.13 36469.94 32593.31 28390.88 32961.05 36965.83 33784.15 33043.43 34894.83 30366.62 30660.63 35686.02 340
ACMH75.40 1777.99 29274.96 30087.10 25590.67 26076.41 25993.19 28791.64 31572.47 33163.44 34687.61 27843.34 34997.16 19558.34 34073.94 28287.72 312
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_040272.68 32469.54 33182.09 32488.67 29171.81 31392.72 29386.77 36061.52 36462.21 35383.91 33143.22 35093.76 32434.60 38372.23 29380.72 371
lessismore_v079.98 33480.59 35958.34 37080.87 37758.49 36583.46 33543.10 35193.89 32063.11 32548.68 37587.72 312
UniMVSNet_ETH3D80.86 27078.75 27687.22 25386.31 31672.02 30891.95 30093.76 26773.51 32075.06 28090.16 24643.04 35295.66 26576.37 24278.55 26293.98 218
UnsupCasMVSNet_eth73.25 32170.57 32681.30 32677.53 36866.33 34587.24 34093.89 25580.38 24257.90 36881.59 34342.91 35390.56 35665.18 31548.51 37687.01 327
COLMAP_ROBcopyleft73.24 1975.74 31073.00 31783.94 30592.38 21069.08 33291.85 30386.93 35861.48 36565.32 33990.27 24342.27 35496.93 20950.91 36475.63 27585.80 344
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet79.18 28675.99 29588.72 21587.37 30880.66 15079.96 36691.82 31177.38 29074.33 28481.87 34241.78 35590.74 35566.36 31183.10 22194.76 204
ACMH+76.62 1677.47 29974.94 30185.05 28991.07 25171.58 31693.26 28490.01 33571.80 33464.76 34188.55 26341.62 35696.48 22662.35 32771.00 29787.09 326
ITE_SJBPF82.38 32187.00 31065.59 34689.55 33879.99 25269.37 32191.30 22541.60 35795.33 28262.86 32674.63 28186.24 336
tt080581.20 26679.06 27487.61 23986.50 31372.97 30093.66 27195.48 16574.11 31576.23 26391.99 21341.36 35897.40 18177.44 23074.78 27992.45 234
Anonymous20240521184.41 21481.93 23591.85 13396.78 9378.41 21197.44 9691.34 32070.29 34184.06 16994.26 17641.09 35998.96 10779.46 20882.65 22998.17 70
new-patchmatchnet68.85 33765.93 33977.61 34573.57 37963.94 35390.11 31988.73 34971.62 33655.08 37273.60 36940.84 36087.22 37251.35 36348.49 37781.67 370
test_fmvs1_n86.34 18186.72 16585.17 28887.54 30663.64 35496.91 14192.37 30587.49 9191.33 8895.58 14240.81 36198.46 13295.00 5093.49 13493.41 230
USDC78.65 28876.25 29385.85 27487.58 30474.60 28489.58 32190.58 33384.05 16663.13 34888.23 26940.69 36296.86 21466.57 30875.81 27486.09 339
XVG-ACMP-BASELINE79.38 28477.90 28283.81 30684.98 33767.14 34489.03 32593.18 29180.26 24772.87 29888.15 27138.55 36396.26 23376.05 24578.05 26688.02 308
AllTest75.92 30873.06 31684.47 29992.18 22267.29 33891.07 31284.43 36867.63 34863.48 34490.18 24438.20 36497.16 19557.04 34673.37 28588.97 288
TestCases84.47 29992.18 22267.29 33884.43 36867.63 34863.48 34490.18 24438.20 36497.16 19557.04 34673.37 28588.97 288
Anonymous2024052172.06 32869.91 32978.50 34277.11 37161.67 36291.62 30890.97 32765.52 35562.37 35279.05 35536.32 36690.96 35357.75 34368.52 32082.87 358
test_vis1_n85.60 19485.70 17385.33 28584.79 33864.98 34796.83 14591.61 31687.36 9591.00 9594.84 16536.14 36797.18 19495.66 4293.03 14193.82 221
UnsupCasMVSNet_bld68.60 33864.50 34280.92 33074.63 37767.80 33683.97 35992.94 29765.12 35654.63 37368.23 37935.97 36892.17 34160.13 33444.83 38082.78 360
tmp_tt41.54 35741.93 35940.38 37620.10 40126.84 40061.93 38859.09 39714.81 39528.51 39080.58 34835.53 36948.33 39763.70 32213.11 39445.96 390
testgi74.88 31473.40 31479.32 33880.13 36161.75 36093.21 28586.64 36179.49 26166.56 33591.06 22935.51 37088.67 36356.79 34971.25 29587.56 318
OpenMVS_ROBcopyleft68.52 2073.02 32369.57 33083.37 31480.54 36071.82 31293.60 27488.22 35262.37 36061.98 35483.15 33735.31 37195.47 27645.08 37675.88 27382.82 359
test_fmvs279.59 28079.90 26778.67 34082.86 35355.82 37595.20 23089.55 33881.09 22480.12 22189.80 24934.31 37293.51 32887.82 13578.36 26486.69 330
TDRefinement69.20 33665.78 34079.48 33666.04 38662.21 35988.21 33186.12 36262.92 35961.03 35985.61 31033.23 37394.16 31655.82 35353.02 36982.08 366
LF4IMVS72.36 32670.82 32476.95 34679.18 36356.33 37286.12 34986.11 36369.30 34663.06 34986.66 29333.03 37492.25 33865.33 31468.64 31982.28 365
MIMVSNet169.44 33466.65 33877.84 34376.48 37362.84 35887.42 33888.97 34566.96 35357.75 36979.72 35432.77 37585.83 37546.32 37463.42 35084.85 349
EG-PatchMatch MVS74.92 31372.02 32083.62 31183.76 35173.28 29593.62 27392.04 30968.57 34758.88 36483.80 33231.87 37695.57 27456.97 34878.67 25782.00 367
new_pmnet66.18 34063.18 34375.18 35476.27 37561.74 36183.79 36084.66 36756.64 37951.57 37571.85 37731.29 37787.93 36549.98 36762.55 35275.86 376
TinyColmap72.41 32568.99 33482.68 31988.11 29769.59 32988.41 33085.20 36565.55 35457.91 36784.82 32530.80 37895.94 24951.38 36168.70 31882.49 364
pmmvs365.75 34162.18 34476.45 34967.12 38564.54 34888.68 32885.05 36654.77 38157.54 37073.79 36829.40 37986.21 37455.49 35447.77 37878.62 373
test_vis1_rt73.96 31672.40 31978.64 34183.91 34861.16 36495.63 21368.18 39176.32 29960.09 36274.77 36529.01 38097.54 17187.74 13675.94 27277.22 375
EGC-MVSNET52.46 35147.56 35467.15 35981.98 35560.11 36682.54 36472.44 3870.11 3990.70 40074.59 36625.11 38183.26 37829.04 38661.51 35558.09 384
mvsany_test367.19 33965.34 34172.72 35563.08 38748.57 38183.12 36278.09 38272.07 33261.21 35777.11 36122.94 38287.78 36878.59 21651.88 37281.80 368
PM-MVS69.32 33566.93 33776.49 34873.60 37855.84 37485.91 35079.32 38174.72 31261.09 35878.18 35721.76 38391.10 35270.86 28756.90 36282.51 362
test_method56.77 34554.53 34963.49 36576.49 37240.70 39175.68 37874.24 38519.47 39348.73 37671.89 37619.31 38465.80 39357.46 34547.51 37983.97 355
DeepMVS_CXcopyleft64.06 36478.53 36543.26 38968.11 39369.94 34338.55 38376.14 36318.53 38579.34 38243.72 37741.62 38569.57 379
ambc76.02 35068.11 38351.43 37964.97 38789.59 33760.49 36074.49 36717.17 38692.46 33561.50 33052.85 37084.17 354
test_fmvs369.56 33369.19 33370.67 35669.01 38147.05 38290.87 31486.81 35971.31 33866.79 33277.15 36016.40 38783.17 37981.84 18962.51 35381.79 369
FPMVS55.09 34852.93 35161.57 36755.98 39040.51 39283.11 36383.41 37337.61 38534.95 38671.95 37514.40 38876.95 38529.81 38565.16 34367.25 380
test_f64.01 34262.13 34569.65 35763.00 38845.30 38883.66 36180.68 37861.30 36655.70 37172.62 37314.23 38984.64 37769.84 29258.11 35979.00 372
APD_test156.56 34653.58 35065.50 36067.93 38446.51 38577.24 37772.95 38638.09 38442.75 38275.17 36413.38 39082.78 38040.19 38154.53 36467.23 381
EMVS31.70 36131.45 36332.48 37850.72 39623.95 40274.78 38052.30 40020.36 39216.08 39631.48 39412.80 39153.60 39611.39 39613.10 39519.88 393
ANet_high46.22 35341.28 36061.04 36839.91 39946.25 38670.59 38476.18 38458.87 37623.09 39248.00 38912.58 39266.54 39228.65 38713.62 39370.35 378
E-PMN32.70 36032.39 36233.65 37753.35 39325.70 40174.07 38153.33 39921.08 39117.17 39533.63 39311.85 39354.84 39512.98 39514.04 39220.42 392
Gipumacopyleft45.11 35642.05 35854.30 37380.69 35851.30 38035.80 39183.81 37128.13 38727.94 39134.53 39111.41 39476.70 38721.45 39054.65 36334.90 391
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS250.90 35246.31 35564.67 36255.53 39146.67 38477.30 37671.02 38840.89 38334.16 38759.32 3829.83 39576.14 38840.09 38228.63 39071.21 377
LCM-MVSNet52.52 35048.24 35365.35 36147.63 39741.45 39072.55 38383.62 37231.75 38637.66 38457.92 3849.19 39676.76 38649.26 36944.60 38177.84 374
test_vis3_rt54.10 34951.04 35263.27 36658.16 38946.08 38784.17 35849.32 40156.48 38036.56 38549.48 3888.03 39791.91 34467.29 30349.87 37351.82 387
testf145.70 35442.41 35655.58 37153.29 39440.02 39368.96 38562.67 39527.45 38829.85 38861.58 3805.98 39873.83 39028.49 38843.46 38352.90 385
APD_test245.70 35442.41 35655.58 37153.29 39440.02 39368.96 38562.67 39527.45 38829.85 38861.58 3805.98 39873.83 39028.49 38843.46 38352.90 385
PMVScopyleft34.80 2339.19 35835.53 36150.18 37429.72 40030.30 39959.60 38966.20 39426.06 39017.91 39449.53 3873.12 40074.09 38918.19 39249.40 37446.14 388
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive35.65 2233.85 35929.49 36446.92 37541.86 39836.28 39550.45 39056.52 39818.75 39418.28 39337.84 3902.41 40158.41 39418.71 39120.62 39146.06 389
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d14.10 36313.89 36614.72 37955.23 39222.91 40333.83 3923.56 4034.94 3964.11 3972.28 3992.06 40219.66 39810.23 3978.74 3961.59 396
test1239.07 36511.73 3681.11 3800.50 4030.77 40589.44 3230.20 4050.34 3982.15 39910.72 3980.34 4030.32 3991.79 3990.08 3982.23 394
testmvs9.92 36412.94 3670.84 3810.65 4020.29 40693.78 2700.39 4040.42 3972.85 39815.84 3970.17 4040.30 4002.18 3980.21 3971.91 395
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re8.11 36610.81 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40197.30 920.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
WAC-MVS67.18 34049.00 370
FOURS198.51 3978.01 22598.13 4796.21 12183.04 19294.39 49
MSC_two_6792asdad97.14 399.05 992.19 496.83 4699.81 2198.08 1298.81 2499.43 11
No_MVS97.14 399.05 992.19 496.83 4699.81 2198.08 1298.81 2499.43 11
eth-test20.00 404
eth-test0.00 404
IU-MVS99.03 1585.34 4996.86 4592.05 2698.74 198.15 998.97 1799.42 13
save fliter98.24 5183.34 9198.61 3196.57 8491.32 30
test_0728_SECOND95.14 1899.04 1486.14 3599.06 1496.77 5599.84 1297.90 1598.85 2199.45 10
GSMVS97.54 117
test_part298.90 1985.14 6096.07 26
MTGPAbinary96.33 112
MTMP97.53 8868.16 392
gm-plane-assit92.27 21679.64 18084.47 15595.15 15597.93 14985.81 150
test9_res96.00 3799.03 1398.31 62
agg_prior294.30 5699.00 1598.57 46
agg_prior98.59 3583.13 9596.56 8694.19 5199.16 94
test_prior482.34 10897.75 73
test_prior93.09 7798.68 2681.91 11696.40 10499.06 10298.29 64
旧先验296.97 13674.06 31796.10 2597.76 15888.38 131
新几何296.42 173
无先验96.87 14396.78 4977.39 28999.52 6779.95 20498.43 55
原ACMM296.84 144
testdata299.48 7176.45 240
testdata195.57 21587.44 92
plane_prior791.86 23777.55 241
plane_prior594.69 20597.30 18787.08 14282.82 22690.96 241
plane_prior494.15 180
plane_prior377.75 23790.17 4881.33 205
plane_prior297.18 11389.89 51
plane_prior191.95 235
plane_prior77.96 22797.52 9190.36 4682.96 224
n20.00 406
nn0.00 406
door-mid79.75 380
test1196.50 92
door80.13 379
HQP5-MVS78.48 207
HQP-NCC92.08 22897.63 8090.52 4182.30 191
ACMP_Plane92.08 22897.63 8090.52 4182.30 191
BP-MVS87.67 138
HQP4-MVS82.30 19197.32 18591.13 239
HQP3-MVS94.80 20083.01 222
NP-MVS92.04 23278.22 21794.56 170
ACMMP++_ref78.45 263
ACMMP++79.05 254