This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
CHOSEN 280x42099.01 1399.03 1098.95 7499.38 9598.87 3298.46 30199.42 2297.03 4099.02 8799.09 14399.35 198.21 23299.73 3099.78 7999.77 99
GG-mvs-BLEND98.54 10198.21 16598.01 6893.87 37098.52 9997.92 13297.92 22199.02 297.94 24898.17 10499.58 9599.67 111
gg-mvs-nofinetune93.51 21391.86 23998.47 10697.72 19897.96 7292.62 37498.51 10274.70 37697.33 14669.59 38998.91 397.79 25297.77 12899.56 9699.67 111
iter_conf0596.07 14195.95 13196.44 19598.43 15297.52 8599.91 8096.85 31594.16 12992.49 22697.98 21898.20 497.34 26797.26 13988.29 26294.45 261
iter_conf_final96.01 14495.93 13396.28 20098.38 15497.03 10599.87 9897.03 29594.05 13892.61 22297.98 21898.01 597.34 26797.02 14688.39 26194.47 255
test_0728_THIRD96.48 5799.83 1199.91 1497.87 6100.00 199.92 12100.00 1100.00 1
baseline296.71 11896.49 11197.37 16695.63 28595.96 14499.74 15198.88 5192.94 17191.61 23398.97 15797.72 798.62 19594.83 18298.08 15497.53 234
SteuartSystems-ACMMP99.02 1298.97 1399.18 4898.72 13797.71 7799.98 1498.44 11796.85 4499.80 1599.91 1497.57 899.85 10699.44 4499.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
thisisatest051597.41 9097.02 9698.59 9597.71 20097.52 8599.97 2598.54 9691.83 21697.45 14499.04 14797.50 999.10 17094.75 18596.37 18899.16 184
PC_three_145296.96 4299.80 1599.79 5597.49 10100.00 199.99 599.98 32100.00 1
test_one_060199.94 1399.30 1298.41 14096.63 5499.75 2799.93 1197.49 10
thisisatest053097.10 10096.72 10498.22 12097.60 20696.70 11599.92 7698.54 9691.11 23997.07 15198.97 15797.47 1299.03 17193.73 21296.09 19198.92 195
tttt051796.85 10996.49 11197.92 13297.48 21395.89 14699.85 11498.54 9690.72 25096.63 16298.93 16897.47 1299.02 17293.03 22495.76 20298.85 199
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5098.43 12596.48 5799.80 1599.93 1197.44 14100.00 199.92 1299.98 32100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 3299.80 5197.44 14100.00 1100.00 199.98 32100.00 1
MSP-MVS99.09 999.12 598.98 7199.93 2497.24 9699.95 5098.42 13697.50 2499.52 5799.88 2197.43 1699.71 13699.50 3999.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
NCCC99.37 299.25 299.71 1499.96 899.15 2199.97 2598.62 7998.02 1199.90 299.95 397.33 17100.00 199.54 37100.00 1100.00 1
MVSTER95.53 15995.22 15596.45 19398.56 14397.72 7699.91 8097.67 22792.38 20191.39 23597.14 24097.24 1897.30 27294.80 18387.85 26994.34 271
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5098.32 16497.28 3099.83 1199.91 1497.22 19100.00 199.99 5100.00 199.89 82
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.93 2499.29 1599.96 3298.42 13697.28 3099.86 599.94 497.22 19
test_241102_TWO98.43 12597.27 3299.80 1599.94 497.18 21100.00 1100.00 1100.00 1100.00 1
DPM-MVS98.83 1998.46 2799.97 199.33 9799.92 199.96 3298.44 11797.96 1299.55 5299.94 497.18 21100.00 193.81 20799.94 5499.98 48
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1498.69 6698.20 599.93 199.98 296.82 23100.00 199.75 26100.00 199.99 23
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3298.43 12597.27 3299.80 1599.94 496.71 24100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 12597.26 3499.80 1599.88 2196.71 24100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 9898.44 11797.48 2599.64 4099.94 496.68 2699.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
segment_acmp96.68 26
patch_mono-298.24 5399.12 595.59 21599.67 7786.91 33499.95 5098.89 4997.60 2099.90 299.76 6396.54 2899.98 4399.94 1199.82 7699.88 83
PAPM98.60 2798.42 2899.14 5796.05 26398.96 2699.90 8599.35 2596.68 5398.35 12099.66 9496.45 2998.51 20099.45 4399.89 6699.96 63
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2598.64 7498.47 299.13 8399.92 1396.38 30100.00 199.74 28100.00 1100.00 1
ET-MVSNet_ETH3D94.37 19093.28 20897.64 15098.30 15797.99 6999.99 497.61 23494.35 12071.57 37699.45 11596.23 3195.34 34696.91 15285.14 29199.59 128
EPP-MVSNet96.69 11996.60 10796.96 17897.74 19393.05 22999.37 21598.56 8788.75 28495.83 18399.01 15096.01 3298.56 19796.92 15197.20 17199.25 179
test_prior299.95 5095.78 7799.73 3099.76 6396.00 3399.78 25100.00 1
train_agg98.88 1798.65 1899.59 2399.92 3198.92 2899.96 3298.43 12594.35 12099.71 3299.86 2695.94 3499.85 10699.69 3399.98 3299.99 23
test_899.92 3198.88 3199.96 3298.43 12594.35 12099.69 3499.85 3095.94 3499.85 106
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 5999.98 1498.86 5397.10 3899.80 1599.94 495.92 36100.00 199.51 38100.00 1100.00 1
TEST999.92 3198.92 2899.96 3298.43 12593.90 14699.71 3299.86 2695.88 3799.85 106
test_yl97.83 6797.37 8199.21 4599.18 10197.98 7099.64 17599.27 2791.43 22997.88 13598.99 15395.84 3899.84 11498.82 7595.32 21199.79 95
DCV-MVSNet97.83 6797.37 8199.21 4599.18 10197.98 7099.64 17599.27 2791.43 22997.88 13598.99 15395.84 3899.84 11498.82 7595.32 21199.79 95
DP-MVS Recon98.41 4298.02 5499.56 2599.97 398.70 4699.92 7698.44 11792.06 21098.40 11899.84 4195.68 40100.00 198.19 10399.71 8399.97 57
旧先验199.76 6697.52 8598.64 7499.85 3095.63 4199.94 5499.99 23
SMA-MVScopyleft98.76 2198.48 2699.62 2099.87 5198.87 3299.86 11198.38 15193.19 16699.77 2599.94 495.54 42100.00 199.74 2899.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TESTMET0.1,196.74 11696.26 11698.16 12197.36 21996.48 12199.96 3298.29 17091.93 21395.77 18498.07 21395.54 4298.29 22490.55 25898.89 12899.70 106
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4399.91 8098.39 14797.20 3699.46 6199.85 3095.53 4499.79 12199.86 19100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
PLCcopyleft95.54 397.93 6297.89 6498.05 12899.82 5894.77 18799.92 7698.46 11293.93 14497.20 14899.27 13095.44 4599.97 5397.41 13599.51 10099.41 160
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HPM-MVS++copyleft99.07 1098.88 1599.63 1799.90 4299.02 2599.95 5098.56 8797.56 2399.44 6399.85 3095.38 46100.00 199.31 4999.99 2199.87 85
PHI-MVS98.41 4298.21 4299.03 6699.86 5397.10 10399.98 1498.80 6090.78 24999.62 4499.78 5995.30 47100.00 199.80 2399.93 6099.99 23
test-mter96.39 13195.93 13397.78 14097.02 23395.44 16299.96 3298.21 17891.81 21895.55 18696.38 26795.17 4898.27 22890.42 26198.83 13299.64 117
patchmatchnet-post91.70 35995.12 4997.95 246
MDTV_nov1_ep1395.69 14297.90 18294.15 20195.98 36098.44 11793.12 16897.98 13095.74 28495.10 5098.58 19690.02 26796.92 179
IB-MVS92.85 694.99 17093.94 18798.16 12197.72 19895.69 15599.99 498.81 5894.28 12592.70 22196.90 25095.08 5199.17 16796.07 16173.88 36099.60 127
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ZD-MVS99.92 3198.57 5498.52 9992.34 20299.31 7499.83 4395.06 5299.80 11999.70 3299.97 42
CDS-MVSNet96.34 13396.07 12097.13 17497.37 21894.96 18099.53 19297.91 21191.55 22495.37 19098.32 20895.05 5397.13 28393.80 20895.75 20399.30 174
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Patchmatch-test92.65 23591.50 24596.10 20596.85 24390.49 28891.50 37997.19 27682.76 35190.23 24895.59 29195.02 5498.00 24277.41 35696.98 17899.82 90
CostFormer96.10 14095.88 13796.78 18397.03 23292.55 24397.08 34097.83 21990.04 26298.72 10394.89 32495.01 5598.29 22496.54 15695.77 20199.50 149
TSAR-MVS + GP.98.60 2798.51 2598.86 7899.73 7296.63 11799.97 2597.92 21098.07 998.76 10099.55 10695.00 5699.94 7599.91 1597.68 16099.99 23
CDPH-MVS98.65 2598.36 3599.49 3299.94 1398.73 4499.87 9898.33 16293.97 14199.76 2699.87 2494.99 5799.75 13098.55 91100.00 199.98 48
原ACMM198.96 7399.73 7296.99 10798.51 10294.06 13699.62 4499.85 3094.97 5899.96 5995.11 17299.95 4999.92 79
TSAR-MVS + MP.98.93 1498.77 1699.41 3899.74 6998.67 4799.77 14098.38 15196.73 5199.88 499.74 7494.89 5999.59 14799.80 2399.98 3299.97 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test1299.43 3599.74 6998.56 5598.40 14499.65 3894.76 6099.75 13099.98 3299.99 23
sam_mvs194.72 6199.59 128
SF-MVS98.67 2498.40 2999.50 3099.77 6598.67 4799.90 8598.21 17893.53 15699.81 1399.89 1994.70 6299.86 10599.84 2099.93 6099.96 63
SD-MVS98.92 1598.70 1799.56 2599.70 7698.73 4499.94 6698.34 16196.38 6399.81 1399.76 6394.59 6399.98 4399.84 2099.96 4699.97 57
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
9.1498.38 3199.87 5199.91 8098.33 16293.22 16599.78 2499.89 1994.57 6499.85 10699.84 2099.97 42
test_post63.35 39494.43 6598.13 235
EPMVS96.53 12596.01 12298.09 12698.43 15296.12 14296.36 35199.43 2193.53 15697.64 13995.04 31794.41 6698.38 21691.13 24498.11 15199.75 101
新几何199.42 3799.75 6898.27 6198.63 7892.69 18399.55 5299.82 4694.40 67100.00 191.21 24299.94 5499.99 23
MDTV_nov1_ep13_2view96.26 13196.11 35791.89 21498.06 12894.40 6794.30 19599.67 111
PAPM_NR98.12 5797.93 6198.70 8599.94 1396.13 14099.82 12898.43 12594.56 11197.52 14199.70 8394.40 6799.98 4397.00 14799.98 3299.99 23
dcpmvs_297.42 8998.09 5195.42 22099.58 8487.24 33099.23 23296.95 30494.28 12598.93 9199.73 7694.39 7099.16 16899.89 1699.82 7699.86 87
miper_enhance_ethall94.36 19293.98 18595.49 21698.68 13995.24 17299.73 15697.29 26993.28 16489.86 25695.97 28094.37 7197.05 28992.20 23184.45 29694.19 280
XVS98.70 2398.55 2399.15 5599.94 1397.50 8899.94 6698.42 13696.22 6999.41 6699.78 5994.34 7299.96 5998.92 6899.95 4999.99 23
X-MVStestdata93.83 20192.06 23399.15 5599.94 1397.50 8899.94 6698.42 13696.22 6999.41 6641.37 39894.34 7299.96 5998.92 6899.95 4999.99 23
CP-MVS98.45 3798.32 3798.87 7799.96 896.62 11899.97 2598.39 14794.43 11598.90 9299.87 2494.30 74100.00 199.04 6199.99 2199.99 23
sam_mvs94.25 75
Patchmatch-RL test86.90 31485.98 31889.67 33584.45 37775.59 37489.71 38492.43 38286.89 31377.83 36390.94 36294.22 7693.63 36487.75 29169.61 36799.79 95
HFP-MVS98.56 2998.37 3399.14 5799.96 897.43 9299.95 5098.61 8094.77 10399.31 7499.85 3094.22 76100.00 198.70 8299.98 3299.98 48
PatchmatchNetpermissive95.94 14695.45 14797.39 16597.83 18794.41 19396.05 35898.40 14492.86 17297.09 15095.28 31294.21 7898.07 23989.26 27498.11 15199.70 106
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
DeepPCF-MVS95.94 297.71 7998.98 1293.92 27999.63 7981.76 36199.96 3298.56 8799.47 199.19 8199.99 194.16 79100.00 199.92 1299.93 60100.00 1
APD-MVScopyleft98.62 2698.35 3699.41 3899.90 4298.51 5799.87 9898.36 15594.08 13399.74 2999.73 7694.08 8099.74 13299.42 4599.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
region2R98.54 3098.37 3399.05 6499.96 897.18 9999.96 3298.55 9394.87 10199.45 6299.85 3094.07 81100.00 198.67 84100.00 199.98 48
PAPR98.52 3298.16 4699.58 2499.97 398.77 4099.95 5098.43 12595.35 8998.03 12999.75 6894.03 8299.98 4398.11 10899.83 7299.99 23
MG-MVS98.91 1698.65 1899.68 1599.94 1399.07 2499.64 17599.44 2097.33 2999.00 8899.72 7994.03 8299.98 4398.73 81100.00 1100.00 1
MVS_111021_HR98.72 2298.62 2099.01 6999.36 9697.18 9999.93 7399.90 196.81 4998.67 10599.77 6193.92 8499.89 9499.27 5199.94 5499.96 63
tpmrst96.27 13995.98 12597.13 17497.96 17993.15 22696.34 35298.17 18392.07 20898.71 10495.12 31593.91 8598.73 18694.91 18096.62 18299.50 149
test-LLR96.47 12696.04 12197.78 14097.02 23395.44 16299.96 3298.21 17894.07 13495.55 18696.38 26793.90 8698.27 22890.42 26198.83 13299.64 117
test0.0.03 193.86 20093.61 19394.64 24795.02 29492.18 25099.93 7398.58 8394.07 13487.96 29798.50 19893.90 8694.96 35181.33 33993.17 23096.78 237
test22299.55 8597.41 9499.34 21898.55 9391.86 21599.27 7899.83 4393.84 8899.95 4999.99 23
dp95.05 16894.43 17496.91 17997.99 17892.73 23796.29 35497.98 20289.70 26695.93 18094.67 33093.83 8998.45 20586.91 30696.53 18499.54 141
ACMMPR98.50 3398.32 3799.05 6499.96 897.18 9999.95 5098.60 8194.77 10399.31 7499.84 4193.73 90100.00 198.70 8299.98 3299.98 48
EPNet98.49 3498.40 2998.77 8299.62 8096.80 11499.90 8599.51 1797.60 2099.20 7999.36 12493.71 9199.91 8797.99 11598.71 13599.61 125
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
alignmvs97.81 7097.33 8399.25 4398.77 13598.66 4999.99 498.44 11794.40 11998.41 11699.47 11293.65 9299.42 16098.57 9094.26 22099.67 111
testdata98.42 11199.47 9195.33 16898.56 8793.78 14999.79 2399.85 3093.64 9399.94 7594.97 17699.94 54100.00 1
EI-MVSNet-Vis-set98.27 4998.11 5098.75 8399.83 5796.59 12099.40 20898.51 10295.29 9198.51 11299.76 6393.60 9499.71 13698.53 9299.52 9899.95 70
mPP-MVS98.39 4498.20 4398.97 7299.97 396.92 11099.95 5098.38 15195.04 9598.61 10999.80 5193.39 95100.00 198.64 87100.00 199.98 48
SR-MVS98.46 3698.30 4098.93 7599.88 4997.04 10499.84 11898.35 15794.92 9999.32 7399.80 5193.35 9699.78 12399.30 5099.95 4999.96 63
WTY-MVS98.10 5897.60 7399.60 2298.92 12299.28 1799.89 9399.52 1595.58 8398.24 12699.39 12193.33 9799.74 13297.98 11795.58 20699.78 98
tpm295.47 16095.18 15796.35 19996.91 23891.70 26596.96 34397.93 20788.04 29798.44 11595.40 30193.32 9897.97 24394.00 19995.61 20599.38 162
HY-MVS92.50 797.79 7397.17 9099.63 1798.98 11599.32 997.49 33099.52 1595.69 8098.32 12197.41 23393.32 9899.77 12698.08 11195.75 20399.81 92
EI-MVSNet-UG-set98.14 5697.99 5598.60 9399.80 6196.27 13099.36 21798.50 10795.21 9398.30 12299.75 6893.29 10099.73 13598.37 9799.30 11499.81 92
SR-MVS-dyc-post98.31 4698.17 4598.71 8499.79 6296.37 12899.76 14598.31 16694.43 11599.40 6899.75 6893.28 10199.78 12398.90 7199.92 6399.97 57
baseline195.78 15094.86 16698.54 10198.47 15198.07 6599.06 24997.99 20092.68 18494.13 20598.62 19093.28 10198.69 19193.79 20985.76 28498.84 200
PGM-MVS98.34 4598.13 4898.99 7099.92 3197.00 10699.75 14899.50 1893.90 14699.37 7199.76 6393.24 103100.00 197.75 13099.96 4699.98 48
test_post195.78 36359.23 39793.20 10497.74 25591.06 246
CSCG97.10 10097.04 9497.27 17299.89 4591.92 25699.90 8599.07 3488.67 28695.26 19299.82 4693.17 10599.98 4398.15 10699.47 10299.90 81
DeepC-MVS_fast96.59 198.81 2098.54 2499.62 2099.90 4298.85 3499.24 23198.47 11098.14 899.08 8499.91 1493.09 106100.00 199.04 6199.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ZNCC-MVS98.31 4698.03 5399.17 5199.88 4997.59 8299.94 6698.44 11794.31 12398.50 11399.82 4693.06 10799.99 3698.30 10199.99 2199.93 74
testing393.92 19994.23 17992.99 30697.54 20890.23 29399.99 499.16 3090.57 25191.33 23898.63 18992.99 10892.52 37282.46 33295.39 20996.22 245
GST-MVS98.27 4997.97 5699.17 5199.92 3197.57 8399.93 7398.39 14794.04 13998.80 9699.74 7492.98 109100.00 198.16 10599.76 8099.93 74
RE-MVS-def98.13 4899.79 6296.37 12899.76 14598.31 16694.43 11599.40 6899.75 6892.95 11098.90 7199.92 6399.97 57
CS-MVS97.79 7397.91 6297.43 16299.10 10694.42 19299.99 497.10 28795.07 9499.68 3599.75 6892.95 11098.34 22098.38 9699.14 12199.54 141
ACMMP_NAP98.49 3498.14 4799.54 2799.66 7898.62 5399.85 11498.37 15494.68 10899.53 5599.83 4392.87 112100.00 198.66 8699.84 7199.99 23
APD-MVS_3200maxsize98.25 5298.08 5298.78 8099.81 6096.60 11999.82 12898.30 16993.95 14399.37 7199.77 6192.84 11399.76 12998.95 6599.92 6399.97 57
JIA-IIPM91.76 25590.70 25594.94 23696.11 26187.51 32893.16 37398.13 19175.79 37297.58 14077.68 38692.84 11397.97 24388.47 28396.54 18399.33 170
Test By Simon92.82 115
MVS_030498.87 1898.61 2199.67 1699.18 10199.13 2299.87 9899.65 1298.17 698.75 10299.75 6892.76 11699.94 7599.88 1899.44 10699.94 72
MTAPA98.29 4897.96 5999.30 4299.85 5497.93 7399.39 21298.28 17195.76 7897.18 14999.88 2192.74 117100.00 198.67 8499.88 6899.99 23
EPNet_dtu95.71 15395.39 14996.66 18898.92 12293.41 22299.57 18598.90 4796.19 7197.52 14198.56 19592.65 11897.36 26577.89 35498.33 14299.20 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsm_n_192098.44 3898.61 2197.92 13299.27 10095.18 176100.00 198.90 4798.05 1099.80 1599.73 7692.64 11999.99 3699.58 3699.51 10098.59 212
MP-MVS-pluss98.07 5997.64 7199.38 4199.74 6998.41 6099.74 15198.18 18293.35 16096.45 16799.85 3092.64 11999.97 5398.91 7099.89 6699.77 99
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FE-MVS95.70 15595.01 16397.79 13998.21 16594.57 18895.03 36598.69 6688.90 28197.50 14396.19 27392.60 12199.49 15689.99 26897.94 15799.31 172
DELS-MVS98.54 3098.22 4199.50 3099.15 10598.65 51100.00 198.58 8397.70 1898.21 12799.24 13592.58 12299.94 7598.63 8999.94 5499.92 79
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ETV-MVS97.92 6397.80 6798.25 11998.14 17196.48 12199.98 1497.63 22995.61 8299.29 7799.46 11492.55 12398.82 17999.02 6498.54 13799.46 153
test250697.53 8397.19 8898.58 9698.66 14096.90 11198.81 27999.77 594.93 9797.95 13198.96 15992.51 12499.20 16494.93 17798.15 14899.64 117
KD-MVS_2432*160088.00 31086.10 31493.70 28996.91 23894.04 20497.17 33797.12 28584.93 33581.96 34292.41 35492.48 12594.51 35679.23 34752.68 38892.56 344
miper_refine_blended88.00 31086.10 31493.70 28996.91 23894.04 20497.17 33797.12 28584.93 33581.96 34292.41 35492.48 12594.51 35679.23 34752.68 38892.56 344
myMVS_eth3d94.46 18794.76 16993.55 29397.68 20190.97 27599.71 16198.35 15790.79 24792.10 22998.67 18392.46 12793.09 36887.13 29995.95 19696.59 240
EIA-MVS97.53 8397.46 7797.76 14498.04 17694.84 18399.98 1497.61 23494.41 11897.90 13399.59 10292.40 12898.87 17798.04 11299.13 12299.59 128
F-COLMAP96.93 10796.95 9796.87 18199.71 7591.74 26199.85 11497.95 20593.11 16995.72 18599.16 14192.35 12999.94 7595.32 17099.35 11298.92 195
API-MVS97.86 6597.66 7098.47 10699.52 8795.41 16599.47 20298.87 5291.68 22198.84 9499.85 3092.34 13099.99 3698.44 9499.96 46100.00 1
CNLPA97.76 7597.38 8098.92 7699.53 8696.84 11299.87 9898.14 19093.78 14996.55 16599.69 8592.28 13199.98 4397.13 14299.44 10699.93 74
TAMVS95.85 14895.58 14596.65 18997.07 23093.50 21899.17 23797.82 22091.39 23395.02 19498.01 21492.20 13297.30 27293.75 21195.83 20099.14 187
1112_ss96.01 14495.20 15698.42 11197.80 18996.41 12499.65 17196.66 32792.71 18192.88 21999.40 11992.16 13399.30 16191.92 23593.66 22599.55 137
Test_1112_low_res95.72 15194.83 16798.42 11197.79 19096.41 12499.65 17196.65 32892.70 18292.86 22096.13 27692.15 13499.30 16191.88 23693.64 22699.55 137
HyFIR lowres test96.66 12196.43 11397.36 16899.05 10993.91 20999.70 16399.80 390.54 25296.26 17398.08 21292.15 13498.23 23196.84 15395.46 20799.93 74
CS-MVS-test97.88 6497.94 6097.70 14799.28 9995.20 17599.98 1497.15 28295.53 8599.62 4499.79 5592.08 13698.38 21698.75 8099.28 11599.52 145
MVS_111021_LR98.42 4198.38 3198.53 10399.39 9495.79 14899.87 9899.86 296.70 5298.78 9799.79 5592.03 13799.90 8999.17 5599.86 7099.88 83
TAPA-MVS92.12 894.42 18893.60 19596.90 18099.33 9791.78 26099.78 13798.00 19989.89 26494.52 19899.47 11291.97 13899.18 16669.90 37199.52 9899.73 103
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PatchT90.38 28088.75 29695.25 22795.99 26590.16 29591.22 38197.54 24276.80 36897.26 14786.01 38091.88 13996.07 33566.16 37995.91 19899.51 147
HPM-MVScopyleft97.96 6097.72 6898.68 8699.84 5696.39 12799.90 8598.17 18392.61 18898.62 10899.57 10591.87 14099.67 14398.87 7399.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MP-MVScopyleft98.23 5497.97 5699.03 6699.94 1397.17 10299.95 5098.39 14794.70 10798.26 12599.81 5091.84 141100.00 198.85 7499.97 4299.93 74
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVS_fast97.80 7197.50 7698.68 8699.79 6296.42 12399.88 9598.16 18791.75 22098.94 9099.54 10891.82 14299.65 14597.62 13399.99 2199.99 23
tpmvs94.28 19493.57 19796.40 19698.55 14591.50 27095.70 36498.55 9387.47 30292.15 22894.26 33991.42 14398.95 17588.15 28695.85 19998.76 204
ACMMPcopyleft97.74 7697.44 7898.66 8899.92 3196.13 14099.18 23699.45 1994.84 10296.41 17099.71 8191.40 14499.99 3697.99 11598.03 15599.87 85
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Vis-MVSNet (Re-imp)96.32 13495.98 12597.35 16997.93 18194.82 18499.47 20298.15 18991.83 21695.09 19399.11 14291.37 14597.47 26393.47 21597.43 16499.74 102
sss97.57 8297.03 9599.18 4898.37 15598.04 6799.73 15699.38 2393.46 15898.76 10099.06 14691.21 14699.89 9496.33 15797.01 17799.62 122
pcd_1.5k_mvsjas7.60 36710.13 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40191.20 1470.00 4010.00 4000.00 3990.00 397
PS-MVSNAJss93.64 21093.31 20794.61 24892.11 34592.19 24999.12 23997.38 25992.51 19688.45 28896.99 24991.20 14797.29 27594.36 19387.71 27294.36 267
PS-MVSNAJ98.44 3898.20 4399.16 5398.80 13398.92 2899.54 19198.17 18397.34 2799.85 799.85 3091.20 14799.89 9499.41 4699.67 8598.69 209
CPTT-MVS97.64 8197.32 8498.58 9699.97 395.77 14999.96 3298.35 15789.90 26398.36 11999.79 5591.18 15099.99 3698.37 9799.99 2199.99 23
test_fmvsmconf_n98.43 4098.32 3798.78 8098.12 17396.41 12499.99 498.83 5798.22 499.67 3699.64 9791.11 15199.94 7599.67 3499.62 8899.98 48
CR-MVSNet93.45 21692.62 22095.94 20796.29 25692.66 23992.01 37796.23 34092.62 18796.94 15393.31 34891.04 15296.03 33679.23 34795.96 19499.13 188
Patchmtry89.70 29688.49 29993.33 29796.24 25989.94 30391.37 38096.23 34078.22 36687.69 29993.31 34891.04 15296.03 33680.18 34682.10 31194.02 298
miper_ehance_all_eth93.16 22092.60 22194.82 24297.57 20793.56 21699.50 19797.07 29188.75 28488.85 28395.52 29590.97 15496.74 30890.77 25484.45 29694.17 281
mvsany_test197.82 6997.90 6397.55 15598.77 13593.04 23099.80 13497.93 20796.95 4399.61 5099.68 9190.92 15599.83 11699.18 5498.29 14699.80 94
MVSFormer96.94 10696.60 10797.95 13097.28 22697.70 7999.55 18997.27 27191.17 23699.43 6499.54 10890.92 15596.89 30194.67 18899.62 8899.25 179
lupinMVS97.85 6697.60 7398.62 9197.28 22697.70 7999.99 497.55 24095.50 8799.43 6499.67 9290.92 15598.71 18998.40 9599.62 8899.45 155
h-mvs3394.92 17194.36 17596.59 19098.85 13091.29 27298.93 26598.94 4195.90 7498.77 9898.42 20690.89 15899.77 12697.80 12370.76 36598.72 208
hse-mvs294.38 18994.08 18395.31 22598.27 16190.02 29999.29 22798.56 8795.90 7498.77 9898.00 21590.89 15898.26 23097.80 12369.20 37197.64 229
xiu_mvs_v2_base98.23 5497.97 5699.02 6898.69 13898.66 4999.52 19398.08 19497.05 3999.86 599.86 2690.65 16099.71 13699.39 4898.63 13698.69 209
IS-MVSNet96.29 13795.90 13697.45 16098.13 17294.80 18599.08 24497.61 23492.02 21295.54 18898.96 15990.64 16198.08 23793.73 21297.41 16799.47 152
FA-MVS(test-final)95.86 14795.09 16098.15 12497.74 19395.62 15796.31 35398.17 18391.42 23196.26 17396.13 27690.56 16299.47 15892.18 23297.07 17399.35 167
cl2293.77 20593.25 20995.33 22499.49 9094.43 19199.61 17998.09 19290.38 25489.16 27895.61 28990.56 16297.34 26791.93 23484.45 29694.21 279
MM99.76 1099.33 899.99 499.76 698.39 399.39 7099.80 5190.49 16499.96 5999.89 1699.43 10899.98 48
tpm93.70 20993.41 20494.58 25195.36 28987.41 32997.01 34196.90 31190.85 24596.72 16194.14 34090.40 16596.84 30490.75 25588.54 25899.51 147
114514_t97.41 9096.83 10099.14 5799.51 8997.83 7499.89 9398.27 17388.48 29099.06 8599.66 9490.30 16699.64 14696.32 15899.97 4299.96 63
ADS-MVSNet293.80 20493.88 18993.55 29397.87 18485.94 33794.24 36696.84 31690.07 26096.43 16894.48 33590.29 16795.37 34587.44 29397.23 16999.36 165
ADS-MVSNet94.79 17494.02 18497.11 17697.87 18493.79 21094.24 36698.16 18790.07 26096.43 16894.48 33590.29 16798.19 23387.44 29397.23 16999.36 165
miper_lstm_enhance91.81 24991.39 24893.06 30597.34 22089.18 31099.38 21396.79 32186.70 31587.47 30495.22 31390.00 16995.86 34088.26 28481.37 31794.15 287
c3_l92.53 23691.87 23894.52 25497.40 21692.99 23199.40 20896.93 30987.86 29888.69 28695.44 29989.95 17096.44 31990.45 26080.69 32794.14 290
thres20096.96 10596.21 11899.22 4498.97 11698.84 3599.85 11499.71 793.17 16796.26 17398.88 17089.87 17199.51 15094.26 19694.91 21499.31 172
tpm cat193.51 21392.52 22696.47 19197.77 19191.47 27196.13 35698.06 19580.98 35892.91 21893.78 34389.66 17298.87 17787.03 30296.39 18799.09 190
test_fmvsmvis_n_192097.67 8097.59 7597.91 13497.02 23395.34 16799.95 5098.45 11397.87 1397.02 15299.59 10289.64 17399.98 4399.41 4699.34 11398.42 214
OMC-MVS97.28 9497.23 8697.41 16399.76 6693.36 22599.65 17197.95 20596.03 7397.41 14599.70 8389.61 17499.51 15096.73 15498.25 14799.38 162
DIV-MVS_self_test92.32 24091.60 24194.47 25897.31 22392.74 23599.58 18396.75 32386.99 31187.64 30095.54 29389.55 17596.50 31788.58 28082.44 30994.17 281
cl____92.31 24191.58 24294.52 25497.33 22292.77 23399.57 18596.78 32286.97 31287.56 30295.51 29689.43 17696.62 31388.60 27982.44 30994.16 286
AUN-MVS93.28 21792.60 22195.34 22398.29 15890.09 29799.31 22298.56 8791.80 21996.35 17298.00 21589.38 17798.28 22692.46 22869.22 37097.64 229
tfpn200view996.79 11295.99 12399.19 4798.94 11898.82 3699.78 13799.71 792.86 17296.02 17898.87 17389.33 17899.50 15293.84 20494.57 21599.27 177
thres40096.78 11395.99 12399.16 5398.94 11898.82 3699.78 13799.71 792.86 17296.02 17898.87 17389.33 17899.50 15293.84 20494.57 21599.16 184
thres100view90096.74 11695.92 13599.18 4898.90 12798.77 4099.74 15199.71 792.59 19095.84 18198.86 17589.25 18099.50 15293.84 20494.57 21599.27 177
thres600view796.69 11995.87 13899.14 5798.90 12798.78 3999.74 15199.71 792.59 19095.84 18198.86 17589.25 18099.50 15293.44 21694.50 21899.16 184
eth_miper_zixun_eth92.41 23991.93 23693.84 28397.28 22690.68 28398.83 27796.97 30388.57 28989.19 27795.73 28689.24 18296.69 31189.97 26981.55 31594.15 287
EC-MVSNet97.38 9297.24 8597.80 13797.41 21595.64 15699.99 497.06 29294.59 11099.63 4199.32 12689.20 18398.14 23498.76 7999.23 11899.62 122
PVSNet_Blended_VisFu97.27 9596.81 10198.66 8898.81 13296.67 11699.92 7698.64 7494.51 11296.38 17198.49 19989.05 18499.88 10097.10 14498.34 14199.43 158
PVSNet_BlendedMVS96.05 14295.82 13996.72 18699.59 8196.99 10799.95 5099.10 3194.06 13698.27 12395.80 28289.00 18599.95 6799.12 5687.53 27593.24 334
PVSNet_Blended97.94 6197.64 7198.83 7999.59 8196.99 107100.00 199.10 3195.38 8898.27 12399.08 14489.00 18599.95 6799.12 5699.25 11699.57 135
IterMVS-LS92.69 23392.11 23194.43 26296.80 24692.74 23599.45 20596.89 31288.98 27689.65 26395.38 30488.77 18796.34 32390.98 24982.04 31294.22 277
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet93.73 20793.40 20594.74 24396.80 24692.69 23899.06 24997.67 22788.96 27891.39 23599.02 14888.75 18897.30 27291.07 24587.85 26994.22 277
UA-Net96.54 12495.96 12998.27 11898.23 16395.71 15398.00 32398.45 11393.72 15298.41 11699.27 13088.71 18999.66 14491.19 24397.69 15999.44 157
MAR-MVS97.43 8597.19 8898.15 12499.47 9194.79 18699.05 25398.76 6192.65 18698.66 10699.82 4688.52 19099.98 4398.12 10799.63 8799.67 111
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
mvs_anonymous95.65 15795.03 16297.53 15698.19 16795.74 15199.33 21997.49 24990.87 24490.47 24697.10 24288.23 19197.16 28095.92 16497.66 16199.68 109
MVS_Test96.46 12795.74 14098.61 9298.18 16897.23 9799.31 22297.15 28291.07 24098.84 9497.05 24688.17 19298.97 17394.39 19297.50 16399.61 125
CANet98.27 4997.82 6699.63 1799.72 7499.10 2399.98 1498.51 10297.00 4198.52 11199.71 8187.80 19399.95 6799.75 2699.38 11099.83 89
jason97.24 9696.86 9998.38 11495.73 27797.32 9599.97 2597.40 25895.34 9098.60 11099.54 10887.70 19498.56 19797.94 11899.47 10299.25 179
jason: jason.
test_fmvsmconf0.1_n97.74 7697.44 7898.64 9095.76 27496.20 13699.94 6698.05 19798.17 698.89 9399.42 11687.65 19599.90 8999.50 3999.60 9499.82 90
FIs94.10 19693.43 20196.11 20494.70 29896.82 11399.58 18398.93 4592.54 19389.34 27097.31 23687.62 19697.10 28694.22 19886.58 28094.40 263
131496.84 11095.96 12999.48 3496.74 25098.52 5698.31 30998.86 5395.82 7689.91 25498.98 15587.49 19799.96 5997.80 12399.73 8299.96 63
LS3D95.84 14995.11 15998.02 12999.85 5495.10 17898.74 28498.50 10787.22 30793.66 20999.86 2687.45 19899.95 6790.94 25099.81 7899.02 193
FC-MVSNet-test93.81 20393.15 21095.80 21294.30 30596.20 13699.42 20798.89 4992.33 20389.03 28097.27 23887.39 19996.83 30593.20 21886.48 28194.36 267
fmvsm_s_conf0.5_n97.80 7197.85 6597.67 14899.06 10894.41 19399.98 1498.97 4097.34 2799.63 4199.69 8587.27 20099.97 5399.62 3599.06 12598.62 211
RPMNet89.76 29587.28 31097.19 17396.29 25692.66 23992.01 37798.31 16670.19 38296.94 15385.87 38187.25 20199.78 12362.69 38395.96 19499.13 188
UniMVSNet_NR-MVSNet92.95 22692.11 23195.49 21694.61 30095.28 17099.83 12599.08 3391.49 22589.21 27596.86 25387.14 20296.73 30993.20 21877.52 34694.46 256
UniMVSNet (Re)93.07 22492.13 23095.88 20894.84 29596.24 13599.88 9598.98 3892.49 19789.25 27295.40 30187.09 20397.14 28293.13 22278.16 34194.26 274
DP-MVS94.54 18393.42 20297.91 13499.46 9394.04 20498.93 26597.48 25081.15 35790.04 25199.55 10687.02 20499.95 6788.97 27698.11 15199.73 103
fmvsm_s_conf0.5_n_a97.73 7897.72 6897.77 14298.63 14294.26 19899.96 3298.92 4697.18 3799.75 2799.69 8587.00 20599.97 5399.46 4298.89 12899.08 192
PMMVS96.76 11496.76 10396.76 18498.28 16092.10 25199.91 8097.98 20294.12 13199.53 5599.39 12186.93 20698.73 18696.95 15097.73 15899.45 155
canonicalmvs97.09 10296.32 11599.39 4098.93 12098.95 2799.72 15997.35 26194.45 11397.88 13599.42 11686.71 20799.52 14998.48 9393.97 22499.72 105
MVS96.60 12295.56 14699.72 1396.85 24399.22 2098.31 30998.94 4191.57 22390.90 24299.61 10186.66 20899.96 5997.36 13699.88 6899.99 23
Effi-MVS+96.30 13695.69 14298.16 12197.85 18696.26 13197.41 33297.21 27590.37 25598.65 10798.58 19386.61 20998.70 19097.11 14397.37 16899.52 145
diffmvspermissive97.00 10496.64 10698.09 12697.64 20496.17 13999.81 13097.19 27694.67 10998.95 8999.28 12786.43 21098.76 18498.37 9797.42 16699.33 170
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
nrg03093.51 21392.53 22596.45 19394.36 30397.20 9899.81 13097.16 28191.60 22289.86 25697.46 23186.37 21197.68 25695.88 16580.31 33094.46 256
mvsmamba94.10 19693.72 19295.25 22793.57 31694.13 20299.67 16896.45 33693.63 15591.34 23797.77 22586.29 21297.22 27896.65 15588.10 26694.40 263
VNet97.21 9896.57 10999.13 6198.97 11697.82 7599.03 25699.21 2994.31 12399.18 8298.88 17086.26 21399.89 9498.93 6794.32 21999.69 108
AdaColmapbinary97.23 9796.80 10298.51 10499.99 195.60 15899.09 24298.84 5693.32 16296.74 16099.72 7986.04 214100.00 198.01 11399.43 10899.94 72
Effi-MVS+-dtu94.53 18595.30 15392.22 31497.77 19182.54 35499.59 18197.06 29294.92 9995.29 19195.37 30585.81 21597.89 24994.80 18397.07 17396.23 244
CVMVSNet94.68 18094.94 16593.89 28296.80 24686.92 33399.06 24998.98 3894.45 11394.23 20499.02 14885.60 21695.31 34790.91 25195.39 20999.43 158
xiu_mvs_v1_base_debu97.43 8597.06 9198.55 9897.74 19398.14 6299.31 22297.86 21696.43 6099.62 4499.69 8585.56 21799.68 14099.05 5898.31 14397.83 224
xiu_mvs_v1_base97.43 8597.06 9198.55 9897.74 19398.14 6299.31 22297.86 21696.43 6099.62 4499.69 8585.56 21799.68 14099.05 5898.31 14397.83 224
xiu_mvs_v1_base_debi97.43 8597.06 9198.55 9897.74 19398.14 6299.31 22297.86 21696.43 6099.62 4499.69 8585.56 21799.68 14099.05 5898.31 14397.83 224
casdiffmvs_mvgpermissive96.43 12895.94 13297.89 13697.44 21495.47 16199.86 11197.29 26993.35 16096.03 17799.19 13885.39 22098.72 18897.89 12297.04 17599.49 151
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline96.43 12895.98 12597.76 14497.34 22095.17 17799.51 19597.17 27993.92 14596.90 15599.28 12785.37 22198.64 19497.50 13496.86 18199.46 153
PCF-MVS94.20 595.18 16594.10 18298.43 11098.55 14595.99 14397.91 32597.31 26690.35 25689.48 26799.22 13685.19 22299.89 9490.40 26398.47 13999.41 160
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
casdiffmvspermissive96.42 13095.97 12897.77 14297.30 22494.98 17999.84 11897.09 28993.75 15196.58 16499.26 13385.07 22398.78 18297.77 12897.04 17599.54 141
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
D2MVS92.76 22992.59 22493.27 29995.13 29089.54 30799.69 16499.38 2392.26 20487.59 30194.61 33285.05 22497.79 25291.59 23988.01 26792.47 347
fmvsm_s_conf0.1_n97.30 9397.21 8797.60 15497.38 21794.40 19599.90 8598.64 7496.47 5999.51 5999.65 9684.99 22599.93 8399.22 5399.09 12498.46 213
fmvsm_s_conf0.1_n_a97.09 10296.90 9897.63 15295.65 28394.21 20099.83 12598.50 10796.27 6899.65 3899.64 9784.72 22699.93 8399.04 6198.84 13198.74 206
BH-w/o95.71 15395.38 15096.68 18798.49 15092.28 24799.84 11897.50 24892.12 20792.06 23198.79 17984.69 22798.67 19395.29 17199.66 8699.09 190
Fast-Effi-MVS+95.02 16994.19 18097.52 15797.88 18394.55 18999.97 2597.08 29088.85 28394.47 20097.96 22084.59 22898.41 20889.84 27097.10 17299.59 128
PVSNet91.05 1397.13 9996.69 10598.45 10899.52 8795.81 14799.95 5099.65 1294.73 10599.04 8699.21 13784.48 22999.95 6794.92 17898.74 13499.58 134
RRT_MVS93.14 22192.92 21493.78 28493.31 32390.04 29899.66 16997.69 22592.53 19488.91 28297.76 22684.36 23096.93 29995.10 17386.99 27894.37 266
WR-MVS_H91.30 25890.35 26294.15 26894.17 30792.62 24299.17 23798.94 4188.87 28286.48 31894.46 33784.36 23096.61 31488.19 28578.51 33993.21 335
CHOSEN 1792x268896.81 11196.53 11097.64 15098.91 12693.07 22799.65 17199.80 395.64 8195.39 18998.86 17584.35 23299.90 8996.98 14899.16 12099.95 70
our_test_390.39 27989.48 28493.12 30292.40 34189.57 30699.33 21996.35 33987.84 29985.30 32894.99 32184.14 23396.09 33480.38 34384.56 29593.71 324
MSDG94.37 19093.36 20697.40 16498.88 12993.95 20899.37 21597.38 25985.75 32790.80 24399.17 14084.11 23499.88 10086.35 30798.43 14098.36 216
pmmvs492.10 24591.07 25295.18 22992.82 33694.96 18099.48 20196.83 31787.45 30388.66 28796.56 26583.78 23596.83 30589.29 27384.77 29493.75 319
BH-untuned95.18 16594.83 16796.22 20298.36 15691.22 27399.80 13497.32 26590.91 24391.08 23998.67 18383.51 23698.54 19994.23 19799.61 9298.92 195
LCM-MVSNet-Re92.31 24192.60 22191.43 32197.53 20979.27 37199.02 25791.83 38592.07 20880.31 35194.38 33883.50 23795.48 34397.22 14197.58 16299.54 141
cdsmvs_eth3d_5k23.43 36431.24 3670.00 3820.00 4040.00 4070.00 39398.09 1920.00 4000.00 40199.67 9283.37 2380.00 4010.00 4000.00 3990.00 397
DeepC-MVS94.51 496.92 10896.40 11498.45 10899.16 10495.90 14599.66 16998.06 19596.37 6694.37 20199.49 11183.29 23999.90 8997.63 13299.61 9299.55 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
NR-MVSNet91.56 25790.22 26695.60 21494.05 30895.76 15098.25 31198.70 6591.16 23880.78 35096.64 26183.23 24096.57 31591.41 24077.73 34594.46 256
3Dnovator+91.53 1196.31 13595.24 15499.52 2896.88 24298.64 5299.72 15998.24 17595.27 9288.42 29398.98 15582.76 24199.94 7597.10 14499.83 7299.96 63
QAPM95.40 16294.17 18199.10 6296.92 23797.71 7799.40 20898.68 6889.31 26988.94 28198.89 16982.48 24299.96 5993.12 22399.83 7299.62 122
PatchMatch-RL96.04 14395.40 14897.95 13099.59 8195.22 17499.52 19399.07 3493.96 14296.49 16698.35 20782.28 24399.82 11890.15 26699.22 11998.81 202
GeoE94.36 19293.48 20096.99 17797.29 22593.54 21799.96 3296.72 32588.35 29393.43 21098.94 16682.05 24498.05 24088.12 28896.48 18699.37 164
3Dnovator91.47 1296.28 13895.34 15199.08 6396.82 24597.47 9199.45 20598.81 5895.52 8689.39 26899.00 15281.97 24599.95 6797.27 13899.83 7299.84 88
v890.54 27789.17 28794.66 24693.43 32093.40 22399.20 23496.94 30885.76 32587.56 30294.51 33381.96 24697.19 27984.94 31878.25 34093.38 331
v14890.70 27289.63 27793.92 27992.97 33290.97 27599.75 14896.89 31287.51 30188.27 29495.01 31881.67 24797.04 29187.40 29577.17 35193.75 319
DU-MVS92.46 23891.45 24795.49 21694.05 30895.28 17099.81 13098.74 6292.25 20589.21 27596.64 26181.66 24896.73 30993.20 21877.52 34694.46 256
Baseline_NR-MVSNet90.33 28289.51 28292.81 30992.84 33489.95 30199.77 14093.94 37684.69 33989.04 27995.66 28881.66 24896.52 31690.99 24876.98 35291.97 353
FMVSNet392.69 23391.58 24295.99 20698.29 15897.42 9399.26 23097.62 23189.80 26589.68 26095.32 30781.62 25096.27 32687.01 30385.65 28594.29 273
Fast-Effi-MVS+-dtu93.72 20893.86 19093.29 29897.06 23186.16 33599.80 13496.83 31792.66 18592.58 22397.83 22481.39 25197.67 25789.75 27196.87 18096.05 247
CANet_DTU96.76 11496.15 11998.60 9398.78 13497.53 8499.84 11897.63 22997.25 3599.20 7999.64 9781.36 25299.98 4392.77 22798.89 12898.28 217
V4291.28 26090.12 27194.74 24393.42 32193.46 21999.68 16697.02 29687.36 30489.85 25895.05 31681.31 25397.34 26787.34 29680.07 33293.40 329
test_djsdf92.83 22892.29 22994.47 25891.90 34892.46 24499.55 18997.27 27191.17 23689.96 25296.07 27981.10 25496.89 30194.67 18888.91 24894.05 297
ppachtmachnet_test89.58 29888.35 30193.25 30092.40 34190.44 29099.33 21996.73 32485.49 33085.90 32695.77 28381.09 25596.00 33876.00 36282.49 30893.30 332
v114491.09 26489.83 27394.87 23893.25 32493.69 21499.62 17896.98 30186.83 31489.64 26494.99 32180.94 25697.05 28985.08 31781.16 31993.87 313
v1090.25 28588.82 29494.57 25293.53 31893.43 22199.08 24496.87 31485.00 33487.34 30894.51 33380.93 25797.02 29682.85 33079.23 33593.26 333
EU-MVSNet90.14 28990.34 26389.54 33692.55 33981.06 36598.69 29098.04 19891.41 23286.59 31596.84 25680.83 25893.31 36786.20 30881.91 31394.26 274
v2v48291.30 25890.07 27295.01 23393.13 32593.79 21099.77 14097.02 29688.05 29689.25 27295.37 30580.73 25997.15 28187.28 29780.04 33394.09 294
WR-MVS92.31 24191.25 24995.48 21994.45 30295.29 16999.60 18098.68 6890.10 25988.07 29696.89 25180.68 26096.80 30793.14 22179.67 33494.36 267
HQP2-MVS80.65 261
HQP-MVS94.61 18294.50 17394.92 23795.78 27091.85 25799.87 9897.89 21296.82 4693.37 21198.65 18680.65 26198.39 21297.92 11989.60 23994.53 250
XVG-OURS94.82 17294.74 17095.06 23298.00 17789.19 30899.08 24497.55 24094.10 13294.71 19699.62 10080.51 26399.74 13296.04 16293.06 23396.25 242
v14419290.79 27189.52 28194.59 25093.11 32892.77 23399.56 18796.99 29986.38 31889.82 25994.95 32380.50 26497.10 28683.98 32380.41 32893.90 310
HQP_MVS94.49 18694.36 17594.87 23895.71 28091.74 26199.84 11897.87 21496.38 6393.01 21598.59 19180.47 26598.37 21897.79 12689.55 24294.52 252
plane_prior695.76 27491.72 26480.47 265
v7n89.65 29788.29 30293.72 28692.22 34390.56 28799.07 24897.10 28785.42 33286.73 31294.72 32680.06 26797.13 28381.14 34078.12 34293.49 327
TranMVSNet+NR-MVSNet91.68 25690.61 25894.87 23893.69 31593.98 20799.69 16498.65 7291.03 24188.44 28996.83 25780.05 26896.18 32990.26 26576.89 35494.45 261
FMVSNet588.32 30787.47 30990.88 32496.90 24188.39 32197.28 33495.68 35182.60 35284.67 33192.40 35679.83 26991.16 37776.39 36181.51 31693.09 336
test_fmvsmconf0.01_n96.39 13195.74 14098.32 11691.47 35495.56 15999.84 11897.30 26797.74 1697.89 13499.35 12579.62 27099.85 10699.25 5299.24 11799.55 137
RPSCF91.80 25292.79 21888.83 34198.15 17069.87 37998.11 31996.60 33083.93 34294.33 20299.27 13079.60 27199.46 15991.99 23393.16 23197.18 236
Vis-MVSNetpermissive95.72 15195.15 15897.45 16097.62 20594.28 19799.28 22898.24 17594.27 12796.84 15798.94 16679.39 27298.76 18493.25 21798.49 13899.30 174
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
dmvs_testset83.79 33286.07 31676.94 36392.14 34448.60 39896.75 34690.27 38889.48 26778.65 35898.55 19779.25 27386.65 38666.85 37782.69 30695.57 248
v119290.62 27689.25 28694.72 24593.13 32593.07 22799.50 19797.02 29686.33 31989.56 26695.01 31879.22 27497.09 28882.34 33481.16 31994.01 300
CP-MVSNet91.23 26290.22 26694.26 26693.96 31092.39 24699.09 24298.57 8588.95 27986.42 31996.57 26479.19 27596.37 32190.29 26478.95 33694.02 298
MDA-MVSNet_test_wron85.51 32183.32 32992.10 31590.96 35888.58 31899.20 23496.52 33379.70 36357.12 38892.69 35279.11 27693.86 36277.10 35877.46 34893.86 314
Syy-MVS90.00 29190.63 25788.11 34897.68 20174.66 37699.71 16198.35 15790.79 24792.10 22998.67 18379.10 27793.09 36863.35 38295.95 19696.59 240
YYNet185.50 32283.33 32892.00 31690.89 35988.38 32299.22 23396.55 33279.60 36457.26 38792.72 35179.09 27893.78 36377.25 35777.37 34993.84 315
XVG-OURS-SEG-HR94.79 17494.70 17195.08 23198.05 17589.19 30899.08 24497.54 24293.66 15394.87 19599.58 10478.78 27999.79 12197.31 13793.40 22896.25 242
GA-MVS93.83 20192.84 21596.80 18295.73 27793.57 21599.88 9597.24 27492.57 19292.92 21796.66 25978.73 28097.67 25787.75 29194.06 22399.17 183
dmvs_re93.20 21993.15 21093.34 29696.54 25483.81 34898.71 28798.51 10291.39 23392.37 22798.56 19578.66 28197.83 25193.89 20289.74 23898.38 215
OpenMVScopyleft90.15 1594.77 17693.59 19698.33 11596.07 26297.48 9099.56 18798.57 8590.46 25386.51 31698.95 16478.57 28299.94 7593.86 20399.74 8197.57 233
v192192090.46 27889.12 28894.50 25692.96 33392.46 24499.49 19996.98 30186.10 32189.61 26595.30 30878.55 28397.03 29482.17 33580.89 32694.01 300
MVP-Stereo90.93 26690.45 26192.37 31391.25 35788.76 31298.05 32296.17 34287.27 30684.04 33395.30 30878.46 28497.27 27783.78 32599.70 8491.09 358
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
anonymousdsp91.79 25490.92 25394.41 26390.76 36092.93 23298.93 26597.17 27989.08 27187.46 30595.30 30878.43 28596.92 30092.38 22988.73 25393.39 330
bld_raw_dy_0_6492.74 23092.03 23494.87 23893.09 32993.46 21999.12 23995.41 35792.84 17590.44 24797.54 22978.08 28697.04 29193.94 20087.77 27194.11 292
v124090.20 28688.79 29594.44 26093.05 33192.27 24899.38 21396.92 31085.89 32389.36 26994.87 32577.89 28797.03 29480.66 34281.08 32294.01 300
CLD-MVS94.06 19893.90 18894.55 25396.02 26490.69 28299.98 1497.72 22396.62 5691.05 24198.85 17877.21 28898.47 20198.11 10889.51 24494.48 254
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_cas_vis1_n_192096.59 12396.23 11797.65 14998.22 16494.23 19999.99 497.25 27397.77 1599.58 5199.08 14477.10 28999.97 5397.64 13199.45 10598.74 206
N_pmnet80.06 34280.78 34077.89 36291.94 34745.28 40098.80 28156.82 40278.10 36780.08 35393.33 34677.03 29095.76 34168.14 37582.81 30592.64 343
WB-MVS76.28 34677.28 34873.29 36781.18 38354.68 39297.87 32694.19 37281.30 35669.43 37990.70 36477.02 29182.06 39035.71 39568.11 37483.13 381
COLMAP_ROBcopyleft90.47 1492.18 24491.49 24694.25 26799.00 11388.04 32598.42 30696.70 32682.30 35388.43 29199.01 15076.97 29299.85 10686.11 31096.50 18594.86 249
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
cascas94.64 18193.61 19397.74 14697.82 18896.26 13199.96 3297.78 22285.76 32594.00 20697.54 22976.95 29399.21 16397.23 14095.43 20897.76 228
BH-RMVSNet95.18 16594.31 17897.80 13798.17 16995.23 17399.76 14597.53 24492.52 19594.27 20399.25 13476.84 29498.80 18090.89 25299.54 9799.35 167
PEN-MVS90.19 28789.06 29093.57 29293.06 33090.90 27999.06 24998.47 11088.11 29585.91 32596.30 27076.67 29595.94 33987.07 30076.91 35393.89 311
CL-MVSNet_self_test84.50 32883.15 33188.53 34586.00 37581.79 36098.82 27897.35 26185.12 33383.62 33790.91 36376.66 29691.40 37669.53 37260.36 38592.40 348
IterMVS90.91 26790.17 26993.12 30296.78 24990.42 29198.89 26897.05 29489.03 27386.49 31795.42 30076.59 29795.02 34987.22 29884.09 29993.93 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SSC-MVS75.42 34776.40 35072.49 37180.68 38553.62 39397.42 33194.06 37480.42 36068.75 38090.14 36676.54 29881.66 39133.25 39666.34 37882.19 382
IterMVS-SCA-FT90.85 27090.16 27092.93 30796.72 25189.96 30098.89 26896.99 29988.95 27986.63 31495.67 28776.48 29995.00 35087.04 30184.04 30293.84 315
SCA94.69 17893.81 19197.33 17097.10 22994.44 19098.86 27498.32 16493.30 16396.17 17695.59 29176.48 29997.95 24691.06 24697.43 16499.59 128
ab-mvs94.69 17893.42 20298.51 10498.07 17496.26 13196.49 34998.68 6890.31 25794.54 19797.00 24876.30 30199.71 13695.98 16393.38 22999.56 136
DTE-MVSNet89.40 30088.24 30392.88 30892.66 33889.95 30199.10 24198.22 17787.29 30585.12 33096.22 27276.27 30295.30 34883.56 32775.74 35793.41 328
ACMM91.95 1092.88 22792.52 22693.98 27895.75 27689.08 31199.77 14097.52 24693.00 17089.95 25397.99 21776.17 30398.46 20493.63 21488.87 25094.39 265
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DSMNet-mixed88.28 30888.24 30388.42 34689.64 36775.38 37598.06 32189.86 38985.59 32988.20 29592.14 35876.15 30491.95 37578.46 35296.05 19297.92 223
VPA-MVSNet92.70 23291.55 24496.16 20395.09 29196.20 13698.88 27099.00 3691.02 24291.82 23295.29 31176.05 30597.96 24595.62 16881.19 31894.30 272
SDMVSNet94.80 17393.96 18697.33 17098.92 12295.42 16499.59 18198.99 3792.41 19992.55 22497.85 22275.81 30698.93 17697.90 12191.62 23597.64 229
TR-MVS94.54 18393.56 19897.49 15997.96 17994.34 19698.71 28797.51 24790.30 25894.51 19998.69 18275.56 30798.77 18392.82 22695.99 19399.35 167
PS-CasMVS90.63 27589.51 28293.99 27793.83 31291.70 26598.98 25998.52 9988.48 29086.15 32396.53 26675.46 30896.31 32588.83 27778.86 33893.95 306
TransMVSNet (Re)87.25 31385.28 32093.16 30193.56 31791.03 27498.54 29894.05 37583.69 34581.09 34896.16 27475.32 30996.40 32076.69 36068.41 37292.06 351
LPG-MVS_test92.96 22592.71 21993.71 28795.43 28788.67 31599.75 14897.62 23192.81 17690.05 24998.49 19975.24 31098.40 21095.84 16689.12 24694.07 295
LGP-MVS_train93.71 28795.43 28788.67 31597.62 23192.81 17690.05 24998.49 19975.24 31098.40 21095.84 16689.12 24694.07 295
ECVR-MVScopyleft95.66 15695.05 16197.51 15898.66 14093.71 21398.85 27698.45 11394.93 9796.86 15698.96 15975.22 31299.20 16495.34 16998.15 14899.64 117
test111195.57 15894.98 16497.37 16698.56 14393.37 22498.86 27498.45 11394.95 9696.63 16298.95 16475.21 31399.11 16995.02 17598.14 15099.64 117
OPM-MVS93.21 21892.80 21794.44 26093.12 32790.85 28199.77 14097.61 23496.19 7191.56 23498.65 18675.16 31498.47 20193.78 21089.39 24593.99 303
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tfpnnormal89.29 30287.61 30894.34 26594.35 30494.13 20298.95 26398.94 4183.94 34184.47 33295.51 29674.84 31597.39 26477.05 35980.41 32891.48 357
AllTest92.48 23791.64 24095.00 23499.01 11188.43 31998.94 26496.82 31986.50 31688.71 28498.47 20374.73 31699.88 10085.39 31496.18 18996.71 238
TestCases95.00 23499.01 11188.43 31996.82 31986.50 31688.71 28498.47 20374.73 31699.88 10085.39 31496.18 18996.71 238
Anonymous2023120686.32 31685.42 31989.02 34089.11 36980.53 36999.05 25395.28 36085.43 33182.82 33993.92 34174.40 31893.44 36666.99 37681.83 31493.08 337
XXY-MVS91.82 24890.46 25995.88 20893.91 31195.40 16698.87 27397.69 22588.63 28887.87 29897.08 24374.38 31997.89 24991.66 23884.07 30094.35 270
ACMP92.05 992.74 23092.42 22893.73 28595.91 26888.72 31499.81 13097.53 24494.13 13087.00 31098.23 20974.07 32098.47 20196.22 16088.86 25193.99 303
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LTVRE_ROB88.28 1890.29 28489.05 29194.02 27495.08 29290.15 29697.19 33697.43 25384.91 33783.99 33497.06 24574.00 32198.28 22684.08 32187.71 27293.62 325
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pm-mvs189.36 30187.81 30794.01 27593.40 32291.93 25598.62 29596.48 33586.25 32083.86 33596.14 27573.68 32297.04 29186.16 30975.73 35893.04 338
pmmvs590.17 28889.09 28993.40 29592.10 34689.77 30499.74 15195.58 35485.88 32487.24 30995.74 28473.41 32396.48 31888.54 28183.56 30393.95 306
OurMVSNet-221017-089.81 29489.48 28490.83 32691.64 35181.21 36398.17 31795.38 35991.48 22685.65 32797.31 23672.66 32497.29 27588.15 28684.83 29393.97 305
jajsoiax91.92 24791.18 25094.15 26891.35 35590.95 27899.00 25897.42 25592.61 18887.38 30697.08 24372.46 32597.36 26594.53 19188.77 25294.13 291
UGNet95.33 16494.57 17297.62 15398.55 14594.85 18298.67 29299.32 2695.75 7996.80 15996.27 27172.18 32699.96 5994.58 19099.05 12698.04 222
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
mvs_tets91.81 24991.08 25194.00 27691.63 35290.58 28698.67 29297.43 25392.43 19887.37 30797.05 24671.76 32797.32 27194.75 18588.68 25494.11 292
SixPastTwentyTwo88.73 30588.01 30690.88 32491.85 34982.24 35698.22 31595.18 36488.97 27782.26 34196.89 25171.75 32896.67 31284.00 32282.98 30493.72 323
test_fmvs195.35 16395.68 14494.36 26498.99 11484.98 34399.96 3296.65 32897.60 2099.73 3098.96 15971.58 32999.93 8398.31 10099.37 11198.17 218
GBi-Net90.88 26889.82 27494.08 27197.53 20991.97 25298.43 30396.95 30487.05 30889.68 26094.72 32671.34 33096.11 33187.01 30385.65 28594.17 281
test190.88 26889.82 27494.08 27197.53 20991.97 25298.43 30396.95 30487.05 30889.68 26094.72 32671.34 33096.11 33187.01 30385.65 28594.17 281
FMVSNet291.02 26589.56 27995.41 22197.53 20995.74 15198.98 25997.41 25787.05 30888.43 29195.00 32071.34 33096.24 32885.12 31685.21 29094.25 276
PVSNet_088.03 1991.80 25290.27 26596.38 19898.27 16190.46 28999.94 6699.61 1493.99 14086.26 32297.39 23571.13 33399.89 9498.77 7867.05 37698.79 203
sd_testset93.55 21292.83 21695.74 21398.92 12290.89 28098.24 31298.85 5592.41 19992.55 22497.85 22271.07 33498.68 19293.93 20191.62 23597.64 229
Anonymous2023121189.86 29388.44 30094.13 27098.93 12090.68 28398.54 29898.26 17476.28 36986.73 31295.54 29370.60 33597.56 26090.82 25380.27 33194.15 287
ITE_SJBPF92.38 31295.69 28285.14 34195.71 35092.81 17689.33 27198.11 21170.23 33698.42 20785.91 31288.16 26593.59 326
ACMH89.72 1790.64 27489.63 27793.66 29195.64 28488.64 31798.55 29697.45 25189.03 27381.62 34597.61 22869.75 33798.41 20889.37 27287.62 27493.92 309
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVS-HIRNet86.22 31783.19 33095.31 22596.71 25290.29 29292.12 37697.33 26462.85 38386.82 31170.37 38869.37 33897.49 26275.12 36397.99 15698.15 219
Anonymous20240521193.10 22391.99 23596.40 19699.10 10689.65 30598.88 27097.93 20783.71 34494.00 20698.75 18168.79 33999.88 10095.08 17491.71 23499.68 109
test20.0384.72 32783.99 32286.91 35088.19 37280.62 36898.88 27095.94 34688.36 29278.87 35694.62 33168.75 34089.11 38166.52 37875.82 35691.00 359
VPNet91.81 24990.46 25995.85 21094.74 29795.54 16098.98 25998.59 8292.14 20690.77 24497.44 23268.73 34197.54 26194.89 18177.89 34394.46 256
K. test v388.05 30987.24 31190.47 32991.82 35082.23 35798.96 26297.42 25589.05 27276.93 36695.60 29068.49 34295.42 34485.87 31381.01 32493.75 319
ACMH+89.98 1690.35 28189.54 28092.78 31095.99 26586.12 33698.81 27997.18 27889.38 26883.14 33897.76 22668.42 34398.43 20689.11 27586.05 28393.78 318
MDA-MVSNet-bldmvs84.09 33081.52 33791.81 31991.32 35688.00 32698.67 29295.92 34780.22 36155.60 38993.32 34768.29 34493.60 36573.76 36476.61 35593.82 317
MS-PatchMatch90.65 27390.30 26491.71 32094.22 30685.50 34098.24 31297.70 22488.67 28686.42 31996.37 26967.82 34598.03 24183.62 32699.62 8891.60 355
KD-MVS_self_test83.59 33482.06 33488.20 34786.93 37380.70 36797.21 33596.38 33782.87 34982.49 34088.97 36967.63 34692.32 37373.75 36562.30 38491.58 356
LFMVS94.75 17793.56 19898.30 11799.03 11095.70 15498.74 28497.98 20287.81 30098.47 11499.39 12167.43 34799.53 14898.01 11395.20 21399.67 111
MIMVSNet90.30 28388.67 29795.17 23096.45 25591.64 26792.39 37597.15 28285.99 32290.50 24593.19 35066.95 34894.86 35382.01 33693.43 22799.01 194
test_vis1_n_192095.44 16195.31 15295.82 21198.50 14988.74 31399.98 1497.30 26797.84 1499.85 799.19 13866.82 34999.97 5398.82 7599.46 10498.76 204
XVG-ACMP-BASELINE91.22 26390.75 25492.63 31193.73 31485.61 33898.52 30097.44 25292.77 17989.90 25596.85 25466.64 35098.39 21292.29 23088.61 25593.89 311
Anonymous2024052992.10 24590.65 25696.47 19198.82 13190.61 28598.72 28698.67 7175.54 37393.90 20898.58 19366.23 35199.90 8994.70 18790.67 23798.90 198
lessismore_v090.53 32790.58 36180.90 36695.80 34877.01 36595.84 28166.15 35296.95 29783.03 32975.05 35993.74 322
USDC90.00 29188.96 29293.10 30494.81 29688.16 32398.71 28795.54 35593.66 15383.75 33697.20 23965.58 35398.31 22383.96 32487.49 27692.85 341
pmmvs-eth3d84.03 33181.97 33590.20 33184.15 37887.09 33198.10 32094.73 36883.05 34774.10 37487.77 37565.56 35494.01 35981.08 34169.24 36989.49 372
Anonymous2024052185.15 32483.81 32689.16 33988.32 37082.69 35298.80 28195.74 34979.72 36281.53 34690.99 36165.38 35594.16 35872.69 36681.11 32190.63 363
LF4IMVS89.25 30388.85 29390.45 33092.81 33781.19 36498.12 31894.79 36691.44 22886.29 32197.11 24165.30 35698.11 23688.53 28285.25 28992.07 350
new_pmnet84.49 32982.92 33289.21 33890.03 36582.60 35396.89 34595.62 35380.59 35975.77 37189.17 36865.04 35794.79 35472.12 36881.02 32390.23 365
CMPMVSbinary61.59 2184.75 32685.14 32183.57 35690.32 36362.54 38496.98 34297.59 23874.33 37769.95 37896.66 25964.17 35898.32 22287.88 29088.41 26089.84 369
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_040285.58 31983.94 32490.50 32893.81 31385.04 34298.55 29695.20 36376.01 37079.72 35595.13 31464.15 35996.26 32766.04 38086.88 27990.21 366
TDRefinement84.76 32582.56 33391.38 32274.58 39184.80 34597.36 33394.56 37084.73 33880.21 35296.12 27863.56 36098.39 21287.92 28963.97 38190.95 361
UnsupCasMVSNet_eth85.52 32083.99 32290.10 33289.36 36883.51 35096.65 34797.99 20089.14 27075.89 37093.83 34263.25 36193.92 36081.92 33767.90 37592.88 340
tt080591.28 26090.18 26894.60 24996.26 25887.55 32798.39 30798.72 6389.00 27589.22 27498.47 20362.98 36298.96 17490.57 25788.00 26897.28 235
new-patchmatchnet81.19 33779.34 34486.76 35182.86 38180.36 37097.92 32495.27 36182.09 35472.02 37586.87 37762.81 36390.74 37971.10 36963.08 38289.19 375
TinyColmap87.87 31286.51 31391.94 31795.05 29385.57 33997.65 32994.08 37384.40 34081.82 34496.85 25462.14 36498.33 22180.25 34586.37 28291.91 354
test_fmvs1_n94.25 19594.36 17593.92 27997.68 20183.70 34999.90 8596.57 33197.40 2699.67 3698.88 17061.82 36599.92 8698.23 10299.13 12298.14 221
VDDNet93.12 22291.91 23796.76 18496.67 25392.65 24198.69 29098.21 17882.81 35097.75 13899.28 12761.57 36699.48 15798.09 11094.09 22298.15 219
pmmvs685.69 31883.84 32591.26 32390.00 36684.41 34697.82 32796.15 34375.86 37181.29 34795.39 30361.21 36796.87 30383.52 32873.29 36192.50 346
VDD-MVS93.77 20592.94 21396.27 20198.55 14590.22 29498.77 28397.79 22190.85 24596.82 15899.42 11661.18 36899.77 12698.95 6594.13 22198.82 201
testgi89.01 30488.04 30591.90 31893.49 31984.89 34499.73 15695.66 35293.89 14885.14 32998.17 21059.68 36994.66 35577.73 35588.88 24996.16 246
FMVSNet188.50 30686.64 31294.08 27195.62 28691.97 25298.43 30396.95 30483.00 34886.08 32494.72 32659.09 37096.11 33181.82 33884.07 30094.17 281
DeepMVS_CXcopyleft82.92 35895.98 26758.66 38996.01 34592.72 18078.34 36095.51 29658.29 37198.08 23782.57 33185.29 28892.03 352
UniMVSNet_ETH3D90.06 29088.58 29894.49 25794.67 29988.09 32497.81 32897.57 23983.91 34388.44 28997.41 23357.44 37297.62 25991.41 24088.59 25797.77 227
pmmvs380.27 34177.77 34687.76 34980.32 38682.43 35598.23 31491.97 38472.74 38078.75 35787.97 37457.30 37390.99 37870.31 37062.37 38389.87 368
OpenMVS_ROBcopyleft79.82 2083.77 33381.68 33690.03 33388.30 37182.82 35198.46 30195.22 36273.92 37876.00 36991.29 36055.00 37496.94 29868.40 37488.51 25990.34 364
test_fmvs289.47 29989.70 27688.77 34494.54 30175.74 37399.83 12594.70 36994.71 10691.08 23996.82 25854.46 37597.78 25492.87 22588.27 26392.80 342
tmp_tt65.23 35662.94 35972.13 37244.90 40050.03 39781.05 38889.42 39238.45 39148.51 39399.90 1854.09 37678.70 39391.84 23718.26 39587.64 377
EGC-MVSNET69.38 34863.76 35886.26 35290.32 36381.66 36296.24 35593.85 3770.99 3993.22 40092.33 35752.44 37792.92 37059.53 38684.90 29284.21 380
test_vis1_n93.61 21193.03 21295.35 22295.86 26986.94 33299.87 9896.36 33896.85 4499.54 5498.79 17952.41 37899.83 11698.64 8798.97 12799.29 176
MIMVSNet182.58 33580.51 34188.78 34286.68 37484.20 34796.65 34795.41 35778.75 36578.59 35992.44 35351.88 37989.76 38065.26 38178.95 33692.38 349
EG-PatchMatch MVS85.35 32383.81 32689.99 33490.39 36281.89 35998.21 31696.09 34481.78 35574.73 37293.72 34451.56 38097.12 28579.16 35088.61 25590.96 360
UnsupCasMVSNet_bld79.97 34477.03 34988.78 34285.62 37681.98 35893.66 37197.35 26175.51 37470.79 37783.05 38348.70 38194.91 35278.31 35360.29 38689.46 373
test_vis1_rt86.87 31586.05 31789.34 33796.12 26078.07 37299.87 9883.54 39692.03 21178.21 36189.51 36745.80 38299.91 8796.25 15993.11 23290.03 367
test_method80.79 33979.70 34384.08 35592.83 33567.06 38199.51 19595.42 35654.34 38781.07 34993.53 34544.48 38392.22 37478.90 35177.23 35092.94 339
APD_test181.15 33880.92 33981.86 35992.45 34059.76 38896.04 35993.61 37973.29 37977.06 36496.64 26144.28 38496.16 33072.35 36782.52 30789.67 370
mvsany_test382.12 33681.14 33885.06 35481.87 38270.41 37897.09 33992.14 38391.27 23577.84 36288.73 37039.31 38595.49 34290.75 25571.24 36489.29 374
PM-MVS80.47 34078.88 34585.26 35383.79 38072.22 37795.89 36291.08 38685.71 32876.56 36888.30 37136.64 38693.90 36182.39 33369.57 36889.66 371
ambc83.23 35777.17 38962.61 38387.38 38694.55 37176.72 36786.65 37830.16 38796.36 32284.85 31969.86 36690.73 362
Gipumacopyleft66.95 35565.00 35572.79 36891.52 35367.96 38066.16 39195.15 36547.89 38958.54 38667.99 39129.74 38887.54 38550.20 39077.83 34462.87 391
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS51.44 36151.22 36352.11 37870.71 39344.97 40194.04 36875.66 40035.34 39542.40 39561.56 39628.93 38965.87 39727.64 39824.73 39345.49 394
test_fmvs379.99 34380.17 34279.45 36184.02 37962.83 38299.05 25393.49 38088.29 29480.06 35486.65 37828.09 39088.00 38288.63 27873.27 36287.54 378
test_f78.40 34577.59 34780.81 36080.82 38462.48 38596.96 34393.08 38183.44 34674.57 37384.57 38227.95 39192.63 37184.15 32072.79 36387.32 379
E-PMN52.30 35952.18 36152.67 37771.51 39245.40 39993.62 37276.60 39936.01 39343.50 39464.13 39327.11 39267.31 39631.06 39726.06 39245.30 395
FPMVS68.72 35068.72 35168.71 37365.95 39544.27 40295.97 36194.74 36751.13 38853.26 39090.50 36525.11 39383.00 38960.80 38480.97 32578.87 386
PMMVS267.15 35464.15 35776.14 36570.56 39462.07 38693.89 36987.52 39358.09 38460.02 38378.32 38522.38 39484.54 38859.56 38547.03 39081.80 383
testf168.38 35166.92 35272.78 36978.80 38750.36 39590.95 38287.35 39455.47 38558.95 38488.14 37220.64 39587.60 38357.28 38764.69 37980.39 384
APD_test268.38 35166.92 35272.78 36978.80 38750.36 39590.95 38287.35 39455.47 38558.95 38488.14 37220.64 39587.60 38357.28 38764.69 37980.39 384
LCM-MVSNet67.77 35364.73 35676.87 36462.95 39756.25 39189.37 38593.74 37844.53 39061.99 38280.74 38420.42 39786.53 38769.37 37359.50 38787.84 376
test12337.68 36339.14 36633.31 37919.94 40224.83 40598.36 3089.75 40415.53 39751.31 39187.14 37619.62 39817.74 39947.10 3913.47 39857.36 392
ANet_high56.10 35752.24 36067.66 37449.27 39956.82 39083.94 38782.02 39770.47 38133.28 39764.54 39217.23 39969.16 39545.59 39223.85 39477.02 387
test_vis3_rt68.82 34966.69 35475.21 36676.24 39060.41 38796.44 35068.71 40175.13 37550.54 39269.52 39016.42 40096.32 32480.27 34466.92 37768.89 388
testmvs40.60 36244.45 36529.05 38019.49 40314.11 40699.68 16618.47 40320.74 39664.59 38198.48 20210.95 40117.09 40056.66 38911.01 39655.94 393
PMVScopyleft49.05 2353.75 35851.34 36260.97 37640.80 40134.68 40374.82 39089.62 39137.55 39228.67 39872.12 3877.09 40281.63 39243.17 39368.21 37366.59 390
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d20.37 36520.84 36818.99 38165.34 39627.73 40450.43 3927.67 4059.50 3988.01 3996.34 3996.13 40326.24 39823.40 39910.69 3972.99 396
MVEpermissive53.74 2251.54 36047.86 36462.60 37559.56 39850.93 39479.41 38977.69 39835.69 39436.27 39661.76 3955.79 40469.63 39437.97 39436.61 39167.24 389
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.02 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4010.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4010.00 4050.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4010.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4010.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4010.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4010.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re8.28 36611.04 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40199.40 1190.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4010.00 4050.00 4010.00 4000.00 3990.00 397
WAC-MVS90.97 27586.10 311
FOURS199.92 3197.66 8199.95 5098.36 15595.58 8399.52 57
MSC_two_6792asdad99.93 299.91 3999.80 298.41 140100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 3999.80 298.41 140100.00 199.96 9100.00 1100.00 1
eth-test20.00 404
eth-test0.00 404
IU-MVS99.93 2499.31 1098.41 14097.71 1799.84 10100.00 1100.00 1100.00 1
save fliter99.82 5898.79 3899.96 3298.40 14497.66 19
test_0728_SECOND99.82 799.94 1399.47 799.95 5098.43 125100.00 199.99 5100.00 1100.00 1
GSMVS99.59 128
test_part299.89 4599.25 1899.49 60
MTGPAbinary98.28 171
MTMP99.87 9896.49 334
gm-plane-assit96.97 23693.76 21291.47 22798.96 15998.79 18194.92 178
test9_res99.71 3199.99 21100.00 1
agg_prior299.48 41100.00 1100.00 1
agg_prior99.93 2498.77 4098.43 12599.63 4199.85 106
test_prior498.05 6699.94 66
test_prior99.43 3599.94 1398.49 5898.65 7299.80 11999.99 23
旧先验299.46 20494.21 12899.85 799.95 6796.96 149
新几何299.40 208
无先验99.49 19998.71 6493.46 158100.00 194.36 19399.99 23
原ACMM299.90 85
testdata299.99 3690.54 259
testdata199.28 22896.35 67
plane_prior795.71 28091.59 269
plane_prior597.87 21498.37 21897.79 12689.55 24294.52 252
plane_prior498.59 191
plane_prior391.64 26796.63 5493.01 215
plane_prior299.84 11896.38 63
plane_prior195.73 277
plane_prior91.74 26199.86 11196.76 5089.59 241
n20.00 406
nn0.00 406
door-mid89.69 390
test1198.44 117
door90.31 387
HQP5-MVS91.85 257
HQP-NCC95.78 27099.87 9896.82 4693.37 211
ACMP_Plane95.78 27099.87 9896.82 4693.37 211
BP-MVS97.92 119
HQP4-MVS93.37 21198.39 21294.53 250
HQP3-MVS97.89 21289.60 239
NP-MVS95.77 27391.79 25998.65 186
ACMMP++_ref87.04 277
ACMMP++88.23 264