This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
reproduce_monomvs95.38 18095.07 17996.32 21799.32 10496.60 12999.76 15298.85 5696.65 5987.83 31896.05 29899.52 198.11 25696.58 17181.07 34294.25 295
CHOSEN 280x42099.01 1499.03 1098.95 8399.38 10098.87 3398.46 32299.42 2197.03 4499.02 9599.09 15099.35 298.21 25199.73 3599.78 8499.77 104
GG-mvs-BLEND98.54 11098.21 18498.01 7293.87 39398.52 10797.92 14497.92 23899.02 397.94 26998.17 11899.58 10299.67 118
gg-mvs-nofinetune93.51 23391.86 25998.47 11597.72 21997.96 7692.62 39798.51 11074.70 39997.33 16269.59 41398.91 497.79 27397.77 14499.56 10399.67 118
test_0728_THIRD96.48 6399.83 1399.91 1497.87 5100.00 199.92 13100.00 1100.00 1
baseline296.71 13696.49 12897.37 18395.63 30995.96 15799.74 15998.88 5192.94 18291.61 25398.97 16497.72 698.62 21394.83 19998.08 16497.53 255
SteuartSystems-ACMMP99.02 1398.97 1399.18 5298.72 14697.71 8399.98 1598.44 12796.85 4999.80 1799.91 1497.57 799.85 11199.44 4999.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
thisisatest051597.41 10097.02 10698.59 10497.71 22197.52 9199.97 2898.54 10291.83 22997.45 15899.04 15497.50 899.10 18594.75 20296.37 19999.16 198
PC_three_145296.96 4799.80 1799.79 5897.49 9100.00 199.99 599.98 32100.00 1
test_one_060199.94 1399.30 1298.41 15296.63 6099.75 2999.93 1197.49 9
thisisatest053097.10 11296.72 11998.22 13097.60 22896.70 12499.92 7998.54 10291.11 25397.07 17098.97 16497.47 1199.03 18693.73 22996.09 20398.92 214
tttt051796.85 12696.49 12897.92 14897.48 23595.89 15999.85 12098.54 10290.72 26696.63 18198.93 17597.47 1199.02 18793.03 24195.76 21498.85 218
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5398.43 13596.48 6399.80 1799.93 1197.44 13100.00 199.92 1399.98 32100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 3599.80 5497.44 13100.00 1100.00 199.98 32100.00 1
MSP-MVS99.09 999.12 598.98 8099.93 2497.24 10399.95 5398.42 14797.50 2699.52 6099.88 2497.43 1599.71 14199.50 4499.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
NCCC99.37 299.25 299.71 1599.96 899.15 2299.97 2898.62 8298.02 1399.90 399.95 397.33 16100.00 199.54 42100.00 1100.00 1
MVSTER95.53 17695.22 17396.45 21198.56 15697.72 8299.91 8597.67 24592.38 21491.39 25597.14 25797.24 1797.30 29394.80 20087.85 28994.34 290
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5398.32 17697.28 3299.83 1399.91 1497.22 18100.00 199.99 5100.00 199.89 87
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.93 2499.29 1599.96 3598.42 14797.28 3299.86 799.94 497.22 18
test_241102_TWO98.43 13597.27 3499.80 1799.94 497.18 20100.00 1100.00 1100.00 1100.00 1
DPM-MVS98.83 2198.46 3399.97 199.33 10299.92 199.96 3598.44 12797.96 1499.55 5599.94 497.18 20100.00 193.81 22499.94 5599.98 51
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1598.69 6998.20 899.93 199.98 296.82 22100.00 199.75 31100.00 199.99 23
WBMVS94.52 20694.03 20495.98 22498.38 16996.68 12599.92 7997.63 24890.75 26589.64 28295.25 33396.77 2396.90 32094.35 21283.57 32194.35 288
UBG97.84 7497.69 7798.29 12798.38 16996.59 13199.90 9198.53 10593.91 15398.52 11998.42 21896.77 2399.17 18098.54 10196.20 20099.11 204
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3598.43 13597.27 3499.80 1799.94 496.71 25100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 13597.26 3699.80 1799.88 2496.71 25100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10698.44 12797.48 2799.64 4399.94 496.68 2799.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
segment_acmp96.68 27
UWE-MVS96.79 12996.72 11997.00 19498.51 16393.70 23099.71 17398.60 8592.96 18197.09 16898.34 22296.67 2998.85 19592.11 25096.50 19598.44 233
patch_mono-298.24 6099.12 595.59 23499.67 8186.91 35499.95 5398.89 4997.60 2299.90 399.76 6696.54 3099.98 4799.94 1199.82 8199.88 88
PAPM98.60 3398.42 3499.14 6196.05 28698.96 2699.90 9199.35 2496.68 5898.35 13099.66 9996.45 3198.51 21899.45 4899.89 7099.96 67
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2898.64 7798.47 399.13 8999.92 1396.38 32100.00 199.74 33100.00 1100.00 1
ET-MVSNet_ETH3D94.37 21193.28 22897.64 16698.30 17697.99 7399.99 497.61 25494.35 12871.57 39999.45 12096.23 3395.34 36996.91 16885.14 30999.59 137
EPP-MVSNet96.69 13796.60 12496.96 19697.74 21493.05 24699.37 23298.56 9388.75 30395.83 20399.01 15796.01 3498.56 21596.92 16797.20 18199.25 193
test_prior299.95 5395.78 8399.73 3399.76 6696.00 3599.78 27100.00 1
train_agg98.88 2098.65 2499.59 2399.92 3198.92 2999.96 3598.43 13594.35 12899.71 3599.86 2995.94 3699.85 11199.69 3899.98 3299.99 23
test_899.92 3198.88 3299.96 3598.43 13594.35 12899.69 3799.85 3395.94 3699.85 111
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 6199.98 1598.86 5397.10 4099.80 1799.94 495.92 38100.00 199.51 43100.00 1100.00 1
TEST999.92 3198.92 2999.96 3598.43 13593.90 15499.71 3599.86 2995.88 3999.85 111
test_yl97.83 7597.37 9099.21 4999.18 10897.98 7499.64 18899.27 2791.43 24397.88 14798.99 16095.84 4099.84 11998.82 8395.32 22499.79 100
DCV-MVSNet97.83 7597.37 9099.21 4999.18 10897.98 7499.64 18899.27 2791.43 24397.88 14798.99 16095.84 4099.84 11998.82 8395.32 22499.79 100
DP-MVS Recon98.41 4898.02 6099.56 2599.97 398.70 4899.92 7998.44 12792.06 22398.40 12899.84 4495.68 42100.00 198.19 11799.71 8899.97 61
旧先验199.76 6697.52 9198.64 7799.85 3395.63 4399.94 5599.99 23
SMA-MVScopyleft98.76 2698.48 3299.62 2099.87 5198.87 3399.86 11798.38 16393.19 17499.77 2799.94 495.54 44100.00 199.74 3399.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TESTMET0.1,196.74 13496.26 13498.16 13297.36 24196.48 13399.96 3598.29 18291.93 22695.77 20498.07 23195.54 4498.29 24390.55 27698.89 13799.70 113
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4599.91 8598.39 15997.20 3899.46 6499.85 3395.53 4699.79 12699.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
testing1197.48 9497.27 9498.10 13798.36 17296.02 15599.92 7998.45 12293.45 16798.15 13998.70 19295.48 4799.22 17397.85 13795.05 22899.07 208
PLCcopyleft95.54 397.93 6997.89 7198.05 14199.82 5894.77 20399.92 7998.46 12193.93 15197.20 16599.27 13795.44 4899.97 5797.41 15199.51 10899.41 173
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5398.56 9397.56 2599.44 6699.85 3395.38 49100.00 199.31 5499.99 2199.87 90
PHI-MVS98.41 4898.21 4899.03 7399.86 5397.10 11199.98 1598.80 6390.78 26499.62 4799.78 6295.30 50100.00 199.80 2599.93 6199.99 23
test-mter96.39 14995.93 15197.78 15697.02 25595.44 17799.96 3598.21 19391.81 23195.55 20696.38 28495.17 5198.27 24790.42 27998.83 14199.64 124
patchmatchnet-post91.70 38295.12 5297.95 267
MDTV_nov1_ep1395.69 15997.90 20394.15 21895.98 38398.44 12793.12 17897.98 14295.74 30395.10 5398.58 21490.02 28596.92 189
IB-MVS92.85 694.99 18993.94 20898.16 13297.72 21995.69 16999.99 498.81 6194.28 13492.70 24396.90 26795.08 5499.17 18096.07 17773.88 38199.60 136
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ZD-MVS99.92 3198.57 5698.52 10792.34 21599.31 7899.83 4695.06 5599.80 12499.70 3799.97 42
CDS-MVSNet96.34 15196.07 13997.13 19197.37 24094.96 19599.53 20797.91 22791.55 23795.37 21098.32 22395.05 5697.13 30393.80 22595.75 21599.30 187
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Patchmatch-test92.65 25591.50 26596.10 22296.85 26690.49 30691.50 40297.19 29882.76 37490.23 26695.59 31095.02 5798.00 26377.41 37896.98 18899.82 95
CostFormer96.10 15995.88 15496.78 20197.03 25492.55 26097.08 36397.83 23590.04 27998.72 11194.89 34695.01 5898.29 24396.54 17295.77 21399.50 162
TSAR-MVS + GP.98.60 3398.51 3198.86 8799.73 7396.63 12799.97 2897.92 22698.07 1198.76 10999.55 11195.00 5999.94 8199.91 1697.68 17099.99 23
CDPH-MVS98.65 3198.36 4199.49 3299.94 1398.73 4699.87 10698.33 17493.97 14899.76 2899.87 2794.99 6099.75 13598.55 100100.00 199.98 51
原ACMM198.96 8299.73 7396.99 11598.51 11094.06 14499.62 4799.85 3394.97 6199.96 6595.11 19099.95 5099.92 84
TSAR-MVS + MP.98.93 1798.77 1999.41 3899.74 7098.67 4999.77 14798.38 16396.73 5699.88 699.74 7994.89 6299.59 15299.80 2599.98 3299.97 61
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
testing9997.17 10996.91 10897.95 14498.35 17495.70 16799.91 8598.43 13592.94 18297.36 16198.72 19094.83 6399.21 17497.00 16194.64 23098.95 213
testing9197.16 11096.90 10997.97 14398.35 17495.67 17099.91 8598.42 14792.91 18497.33 16298.72 19094.81 6499.21 17496.98 16394.63 23199.03 210
test1299.43 3599.74 7098.56 5798.40 15699.65 4194.76 6599.75 13599.98 3299.99 23
mamv495.24 18396.90 10990.25 35498.65 15272.11 40198.28 33397.64 24789.99 28095.93 19998.25 22594.74 6699.11 18399.01 7299.64 9299.53 155
fmvsm_l_conf0.5_n_a99.00 1598.91 1499.28 4599.21 10797.91 7899.98 1598.85 5698.25 599.92 299.75 7294.72 6799.97 5799.87 1999.64 9299.95 74
sam_mvs194.72 6799.59 137
SF-MVS98.67 3098.40 3599.50 3099.77 6598.67 4999.90 9198.21 19393.53 16399.81 1599.89 2294.70 6999.86 11099.84 2299.93 6199.96 67
reproduce-ours98.78 2498.67 2199.09 6899.70 7897.30 10199.74 15998.25 18797.10 4099.10 9099.90 1894.59 7099.99 3699.77 2899.91 6799.99 23
our_new_method98.78 2498.67 2199.09 6899.70 7897.30 10199.74 15998.25 18797.10 4099.10 9099.90 1894.59 7099.99 3699.77 2899.91 6799.99 23
SD-MVS98.92 1898.70 2099.56 2599.70 7898.73 4699.94 6998.34 17396.38 6999.81 1599.76 6694.59 7099.98 4799.84 2299.96 4699.97 61
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
9.1498.38 3799.87 5199.91 8598.33 17493.22 17399.78 2699.89 2294.57 7399.85 11199.84 2299.97 42
reproduce_model98.75 2798.66 2399.03 7399.71 7697.10 11199.73 16698.23 19197.02 4599.18 8799.90 1894.54 7499.99 3699.77 2899.90 6999.99 23
test_post63.35 41894.43 7598.13 255
EPMVS96.53 14396.01 14198.09 13898.43 16796.12 15496.36 37499.43 2093.53 16397.64 15395.04 33994.41 7698.38 23491.13 26298.11 16199.75 106
新几何199.42 3799.75 6998.27 6498.63 8192.69 19699.55 5599.82 4994.40 77100.00 191.21 26099.94 5599.99 23
MDTV_nov1_ep13_2view96.26 14396.11 38091.89 22798.06 14094.40 7794.30 21399.67 118
PAPM_NR98.12 6497.93 6898.70 9499.94 1396.13 15299.82 13598.43 13594.56 11797.52 15599.70 8894.40 7799.98 4797.00 16199.98 3299.99 23
dcpmvs_297.42 9998.09 5795.42 23999.58 8987.24 35099.23 25096.95 32794.28 13498.93 9999.73 8194.39 8099.16 18299.89 1799.82 8199.86 92
miper_enhance_ethall94.36 21393.98 20695.49 23598.68 14895.24 18799.73 16697.29 29193.28 17289.86 27495.97 29994.37 8197.05 30992.20 24884.45 31494.19 300
XVS98.70 2998.55 2899.15 5999.94 1397.50 9399.94 6998.42 14796.22 7599.41 7099.78 6294.34 8299.96 6598.92 7699.95 5099.99 23
X-MVStestdata93.83 22192.06 25499.15 5999.94 1397.50 9399.94 6998.42 14796.22 7599.41 7041.37 42294.34 8299.96 6598.92 7699.95 5099.99 23
balanced_conf0398.27 5597.99 6199.11 6698.64 15398.43 6299.47 21797.79 23794.56 11799.74 3198.35 22094.33 8499.25 17199.12 6199.96 4699.64 124
CP-MVS98.45 4398.32 4398.87 8699.96 896.62 12899.97 2898.39 15994.43 12398.90 10099.87 2794.30 85100.00 199.04 6799.99 2199.99 23
MVSMamba_PlusPlus97.83 7597.45 8698.99 7898.60 15598.15 6599.58 19797.74 24090.34 27399.26 8398.32 22394.29 8699.23 17299.03 7099.89 7099.58 143
sam_mvs94.25 87
Patchmatch-RL test86.90 33785.98 34189.67 35984.45 40275.59 39789.71 40892.43 40686.89 33377.83 38690.94 38594.22 8893.63 38887.75 30969.61 38999.79 100
HFP-MVS98.56 3598.37 3999.14 6199.96 897.43 9799.95 5398.61 8394.77 10999.31 7899.85 3394.22 88100.00 198.70 9199.98 3299.98 51
fmvsm_l_conf0.5_n98.94 1698.84 1799.25 4699.17 11097.81 8199.98 1598.86 5398.25 599.90 399.76 6694.21 9099.97 5799.87 1999.52 10599.98 51
PatchmatchNetpermissive95.94 16395.45 16597.39 18297.83 20894.41 20996.05 38198.40 15692.86 18597.09 16895.28 33294.21 9098.07 26089.26 29298.11 16199.70 113
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
DeepPCF-MVS95.94 297.71 8898.98 1293.92 29799.63 8381.76 38499.96 3598.56 9399.47 199.19 8699.99 194.16 92100.00 199.92 1399.93 61100.00 1
APD-MVScopyleft98.62 3298.35 4299.41 3899.90 4298.51 5999.87 10698.36 16794.08 14199.74 3199.73 8194.08 9399.74 13799.42 5099.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
region2R98.54 3698.37 3999.05 7199.96 897.18 10699.96 3598.55 9994.87 10799.45 6599.85 3394.07 94100.00 198.67 93100.00 199.98 51
PAPR98.52 3898.16 5299.58 2499.97 398.77 4299.95 5398.43 13595.35 9598.03 14199.75 7294.03 9599.98 4798.11 12299.83 7799.99 23
MG-MVS98.91 1998.65 2499.68 1699.94 1399.07 2499.64 18899.44 1997.33 3199.00 9699.72 8494.03 9599.98 4798.73 90100.00 1100.00 1
MVS_111021_HR98.72 2898.62 2699.01 7799.36 10197.18 10699.93 7699.90 196.81 5498.67 11399.77 6493.92 9799.89 9999.27 5699.94 5599.96 67
tpmrst96.27 15795.98 14497.13 19197.96 20093.15 24396.34 37598.17 19892.07 22198.71 11295.12 33693.91 9898.73 20494.91 19796.62 19299.50 162
test-LLR96.47 14496.04 14097.78 15697.02 25595.44 17799.96 3598.21 19394.07 14295.55 20696.38 28493.90 9998.27 24790.42 27998.83 14199.64 124
test0.0.03 193.86 22093.61 21394.64 26595.02 31892.18 26799.93 7698.58 8894.07 14287.96 31698.50 21093.90 9994.96 37481.33 35993.17 25196.78 259
ETVMVS97.03 11896.64 12298.20 13198.67 14997.12 11099.89 10098.57 9091.10 25498.17 13898.59 20293.86 10198.19 25295.64 18595.24 22699.28 190
test22299.55 9097.41 9999.34 23598.55 9991.86 22899.27 8299.83 4693.84 10299.95 5099.99 23
dp95.05 18794.43 19396.91 19797.99 19892.73 25496.29 37797.98 21889.70 28495.93 19994.67 35293.83 10398.45 22386.91 32496.53 19499.54 151
ACMMPR98.50 3998.32 4399.05 7199.96 897.18 10699.95 5398.60 8594.77 10999.31 7899.84 4493.73 104100.00 198.70 9199.98 3299.98 51
EPNet98.49 4098.40 3598.77 9199.62 8496.80 12399.90 9199.51 1697.60 2299.20 8499.36 13193.71 10599.91 9297.99 12998.71 14499.61 134
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
alignmvs97.81 7997.33 9299.25 4698.77 14498.66 5199.99 498.44 12794.40 12798.41 12699.47 11793.65 10699.42 16798.57 9994.26 23899.67 118
testdata98.42 12099.47 9695.33 18398.56 9393.78 15799.79 2599.85 3393.64 10799.94 8194.97 19399.94 55100.00 1
EI-MVSNet-Vis-set98.27 5598.11 5698.75 9299.83 5796.59 13199.40 22598.51 11095.29 9798.51 12199.76 6693.60 10899.71 14198.53 10399.52 10599.95 74
mPP-MVS98.39 5098.20 4998.97 8199.97 396.92 11899.95 5398.38 16395.04 10198.61 11799.80 5493.39 109100.00 198.64 96100.00 199.98 51
testing22297.08 11796.75 11798.06 14098.56 15696.82 12199.85 12098.61 8392.53 20798.84 10298.84 18693.36 11098.30 24295.84 18294.30 23799.05 209
SR-MVS98.46 4298.30 4698.93 8499.88 4997.04 11399.84 12598.35 16994.92 10599.32 7799.80 5493.35 11199.78 12899.30 5599.95 5099.96 67
WTY-MVS98.10 6597.60 8199.60 2298.92 13099.28 1799.89 10099.52 1495.58 8998.24 13699.39 12893.33 11299.74 13797.98 13195.58 21899.78 103
tpm295.47 17795.18 17596.35 21696.91 26191.70 28296.96 36697.93 22388.04 31698.44 12495.40 32193.32 11397.97 26494.00 21795.61 21799.38 175
HY-MVS92.50 797.79 8297.17 10099.63 1798.98 12299.32 997.49 35399.52 1495.69 8698.32 13197.41 25093.32 11399.77 13198.08 12595.75 21599.81 97
EI-MVSNet-UG-set98.14 6397.99 6198.60 10299.80 6196.27 14299.36 23498.50 11695.21 9998.30 13299.75 7293.29 11599.73 14098.37 11199.30 12299.81 97
SR-MVS-dyc-post98.31 5298.17 5198.71 9399.79 6296.37 14099.76 15298.31 17894.43 12399.40 7299.75 7293.28 11699.78 12898.90 7999.92 6499.97 61
baseline195.78 16794.86 18598.54 11098.47 16698.07 6999.06 26697.99 21692.68 19794.13 22698.62 20193.28 11698.69 20993.79 22685.76 30298.84 219
MVS_030499.06 1198.84 1799.72 1399.76 6699.21 2199.99 499.34 2598.70 299.44 6699.75 7293.24 11899.99 3699.94 1199.41 11799.95 74
PGM-MVS98.34 5198.13 5498.99 7899.92 3197.00 11499.75 15699.50 1793.90 15499.37 7599.76 6693.24 118100.00 197.75 14699.96 4699.98 51
test_post195.78 38659.23 42193.20 12097.74 27691.06 264
CSCG97.10 11297.04 10497.27 18999.89 4591.92 27399.90 9199.07 3488.67 30595.26 21299.82 4993.17 12199.98 4798.15 12099.47 11099.90 86
DeepC-MVS_fast96.59 198.81 2398.54 2999.62 2099.90 4298.85 3599.24 24998.47 11998.14 1099.08 9299.91 1493.09 122100.00 199.04 6799.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ZNCC-MVS98.31 5298.03 5999.17 5599.88 4997.59 8899.94 6998.44 12794.31 13198.50 12299.82 4993.06 12399.99 3698.30 11599.99 2199.93 79
testing393.92 21994.23 19992.99 32497.54 23090.23 31199.99 499.16 3090.57 26791.33 25798.63 20092.99 12492.52 39682.46 35295.39 22296.22 267
GST-MVS98.27 5597.97 6399.17 5599.92 3197.57 8999.93 7698.39 15994.04 14698.80 10599.74 7992.98 125100.00 198.16 11999.76 8599.93 79
RE-MVS-def98.13 5499.79 6296.37 14099.76 15298.31 17894.43 12399.40 7299.75 7292.95 12698.90 7999.92 6499.97 61
CS-MVS97.79 8297.91 6997.43 17999.10 11394.42 20899.99 497.10 30995.07 10099.68 3899.75 7292.95 12698.34 23898.38 10999.14 12999.54 151
ACMMP_NAP98.49 4098.14 5399.54 2799.66 8298.62 5599.85 12098.37 16694.68 11499.53 5899.83 4692.87 128100.00 198.66 9599.84 7699.99 23
APD-MVS_3200maxsize98.25 5998.08 5898.78 8999.81 6096.60 12999.82 13598.30 18193.95 15099.37 7599.77 6492.84 12999.76 13498.95 7399.92 6499.97 61
JIA-IIPM91.76 27590.70 27694.94 25496.11 28487.51 34793.16 39698.13 20775.79 39597.58 15477.68 41092.84 12997.97 26488.47 30196.54 19399.33 183
Test By Simon92.82 131
MTAPA98.29 5497.96 6699.30 4499.85 5497.93 7799.39 22998.28 18395.76 8497.18 16799.88 2492.74 132100.00 198.67 9399.88 7399.99 23
EPNet_dtu95.71 17095.39 16796.66 20698.92 13093.41 23999.57 20098.90 4796.19 7797.52 15598.56 20792.65 13397.36 28777.89 37698.33 15299.20 196
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsm_n_192098.44 4498.61 2797.92 14899.27 10695.18 191100.00 198.90 4798.05 1299.80 1799.73 8192.64 13499.99 3699.58 4199.51 10898.59 231
MP-MVS-pluss98.07 6697.64 7999.38 4299.74 7098.41 6399.74 15998.18 19793.35 16896.45 18699.85 3392.64 13499.97 5798.91 7899.89 7099.77 104
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FE-MVS95.70 17295.01 18297.79 15598.21 18494.57 20495.03 38898.69 6988.90 29997.50 15796.19 29192.60 13699.49 16389.99 28697.94 16799.31 185
DELS-MVS98.54 3698.22 4799.50 3099.15 11298.65 53100.00 198.58 8897.70 2098.21 13799.24 14292.58 13799.94 8198.63 9899.94 5599.92 84
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ETV-MVS97.92 7097.80 7498.25 12998.14 19196.48 13399.98 1597.63 24895.61 8899.29 8199.46 11992.55 13898.82 19699.02 7198.54 14799.46 166
test250697.53 9297.19 9898.58 10598.66 15096.90 11998.81 29999.77 594.93 10397.95 14398.96 16692.51 13999.20 17794.93 19498.15 15899.64 124
KD-MVS_2432*160088.00 33386.10 33793.70 30696.91 26194.04 22097.17 36097.12 30784.93 35581.96 36592.41 37792.48 14094.51 38079.23 36852.68 41292.56 363
miper_refine_blended88.00 33386.10 33793.70 30696.91 26194.04 22097.17 36097.12 30784.93 35581.96 36592.41 37792.48 14094.51 38079.23 36852.68 41292.56 363
myMVS_eth3d94.46 20894.76 18893.55 31097.68 22290.97 29299.71 17398.35 16990.79 26292.10 24998.67 19492.46 14293.09 39287.13 31795.95 20896.59 262
EIA-MVS97.53 9297.46 8597.76 16098.04 19694.84 19999.98 1597.61 25494.41 12697.90 14599.59 10792.40 14398.87 19398.04 12699.13 13099.59 137
F-COLMAP96.93 12496.95 10796.87 19999.71 7691.74 27899.85 12097.95 22193.11 17995.72 20599.16 14892.35 14499.94 8195.32 18899.35 12098.92 214
API-MVS97.86 7297.66 7898.47 11599.52 9295.41 18099.47 21798.87 5291.68 23498.84 10299.85 3392.34 14599.99 3698.44 10799.96 46100.00 1
CNLPA97.76 8497.38 8998.92 8599.53 9196.84 12099.87 10698.14 20693.78 15796.55 18499.69 9092.28 14699.98 4797.13 15799.44 11499.93 79
TAMVS95.85 16595.58 16396.65 20797.07 25293.50 23699.17 25597.82 23691.39 24795.02 21498.01 23292.20 14797.30 29393.75 22895.83 21299.14 201
1112_ss96.01 16295.20 17498.42 12097.80 21096.41 13699.65 18496.66 34992.71 19492.88 24199.40 12692.16 14899.30 16991.92 25393.66 24599.55 147
Test_1112_low_res95.72 16894.83 18698.42 12097.79 21196.41 13699.65 18496.65 35092.70 19592.86 24296.13 29492.15 14999.30 16991.88 25493.64 24699.55 147
HyFIR lowres test96.66 13996.43 13097.36 18599.05 11693.91 22599.70 17799.80 390.54 26896.26 19298.08 23092.15 14998.23 25096.84 16995.46 21999.93 79
SPE-MVS-test97.88 7197.94 6797.70 16399.28 10595.20 19099.98 1597.15 30495.53 9199.62 4799.79 5892.08 15198.38 23498.75 8999.28 12399.52 157
MVS_111021_LR98.42 4798.38 3798.53 11299.39 9995.79 16199.87 10699.86 296.70 5798.78 10699.79 5892.03 15299.90 9499.17 6099.86 7599.88 88
TAPA-MVS92.12 894.42 20993.60 21596.90 19899.33 10291.78 27799.78 14498.00 21589.89 28294.52 21899.47 11791.97 15399.18 17969.90 39599.52 10599.73 108
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PatchT90.38 30188.75 31795.25 24695.99 28890.16 31391.22 40497.54 26276.80 39197.26 16486.01 40491.88 15496.07 35766.16 40395.91 21099.51 160
HPM-MVScopyleft97.96 6797.72 7598.68 9599.84 5696.39 13999.90 9198.17 19892.61 20198.62 11699.57 11091.87 15599.67 14898.87 8199.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MP-MVScopyleft98.23 6197.97 6399.03 7399.94 1397.17 10999.95 5398.39 15994.70 11398.26 13599.81 5391.84 156100.00 198.85 8299.97 4299.93 79
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVS_fast97.80 8097.50 8498.68 9599.79 6296.42 13599.88 10398.16 20291.75 23398.94 9899.54 11391.82 15799.65 15097.62 14999.99 2199.99 23
tpmvs94.28 21593.57 21796.40 21398.55 15991.50 28795.70 38798.55 9987.47 32292.15 24894.26 36291.42 15898.95 19188.15 30495.85 21198.76 223
ACMMPcopyleft97.74 8597.44 8798.66 9799.92 3196.13 15299.18 25499.45 1894.84 10896.41 18999.71 8691.40 15999.99 3697.99 12998.03 16599.87 90
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Vis-MVSNet (Re-imp)96.32 15295.98 14497.35 18697.93 20294.82 20099.47 21798.15 20591.83 22995.09 21399.11 14991.37 16097.47 28593.47 23297.43 17499.74 107
sss97.57 9197.03 10599.18 5298.37 17198.04 7199.73 16699.38 2293.46 16598.76 10999.06 15391.21 16199.89 9996.33 17397.01 18799.62 130
pcd_1.5k_mvsjas7.60 39210.13 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42591.20 1620.00 4250.00 4240.00 4230.00 421
PS-MVSNAJss93.64 23093.31 22794.61 26692.11 36892.19 26699.12 25797.38 27992.51 20988.45 30796.99 26691.20 16297.29 29694.36 21087.71 29194.36 285
PS-MVSNAJ98.44 4498.20 4999.16 5798.80 14298.92 2999.54 20698.17 19897.34 2999.85 999.85 3391.20 16299.89 9999.41 5199.67 9098.69 228
CPTT-MVS97.64 9097.32 9398.58 10599.97 395.77 16299.96 3598.35 16989.90 28198.36 12999.79 5891.18 16599.99 3698.37 11199.99 2199.99 23
test_fmvsmconf_n98.43 4698.32 4398.78 8998.12 19396.41 13699.99 498.83 6098.22 799.67 3999.64 10291.11 16699.94 8199.67 3999.62 9599.98 51
CR-MVSNet93.45 23692.62 24095.94 22696.29 27992.66 25692.01 40096.23 36192.62 20096.94 17293.31 37191.04 16796.03 35879.23 36895.96 20699.13 202
Patchmtry89.70 31788.49 32093.33 31496.24 28289.94 32091.37 40396.23 36178.22 38987.69 31993.31 37191.04 16796.03 35880.18 36682.10 33094.02 317
miper_ehance_all_eth93.16 24192.60 24194.82 26097.57 22993.56 23499.50 21297.07 31488.75 30388.85 30195.52 31490.97 16996.74 32990.77 27284.45 31494.17 301
mvsany_test197.82 7897.90 7097.55 17198.77 14493.04 24799.80 14197.93 22396.95 4899.61 5399.68 9690.92 17099.83 12199.18 5998.29 15699.80 99
MVSFormer96.94 12296.60 12497.95 14497.28 24897.70 8599.55 20497.27 29391.17 25099.43 6899.54 11390.92 17096.89 32194.67 20599.62 9599.25 193
lupinMVS97.85 7397.60 8198.62 10097.28 24897.70 8599.99 497.55 26095.50 9399.43 6899.67 9790.92 17098.71 20798.40 10899.62 9599.45 168
h-mvs3394.92 19094.36 19596.59 20898.85 13991.29 28998.93 28498.94 4195.90 8098.77 10798.42 21890.89 17399.77 13197.80 13970.76 38798.72 227
hse-mvs294.38 21094.08 20395.31 24498.27 18090.02 31699.29 24498.56 9395.90 8098.77 10798.00 23390.89 17398.26 24997.80 13969.20 39397.64 250
xiu_mvs_v2_base98.23 6197.97 6399.02 7698.69 14798.66 5199.52 20898.08 21097.05 4399.86 799.86 2990.65 17599.71 14199.39 5398.63 14598.69 228
IS-MVSNet96.29 15595.90 15397.45 17798.13 19294.80 20199.08 26197.61 25492.02 22595.54 20898.96 16690.64 17698.08 25893.73 22997.41 17799.47 165
kuosan93.17 24092.60 24194.86 25998.40 16889.54 32498.44 32498.53 10584.46 36088.49 30697.92 23890.57 17797.05 30983.10 34893.49 24797.99 243
FA-MVS(test-final)95.86 16495.09 17898.15 13597.74 21495.62 17296.31 37698.17 19891.42 24596.26 19296.13 29490.56 17899.47 16592.18 24997.07 18399.35 180
cl2293.77 22593.25 22995.33 24399.49 9594.43 20799.61 19398.09 20890.38 27089.16 29795.61 30890.56 17897.34 28991.93 25284.45 31494.21 299
MM98.83 2198.53 3099.76 1099.59 8599.33 899.99 499.76 698.39 499.39 7499.80 5490.49 18099.96 6599.89 1799.43 11599.98 51
tpm93.70 22993.41 22494.58 26995.36 31387.41 34897.01 36496.90 33490.85 26096.72 18094.14 36390.40 18196.84 32490.75 27388.54 28199.51 160
dongtai91.55 27891.13 27192.82 32798.16 18986.35 35599.47 21798.51 11083.24 36885.07 35197.56 24690.33 18294.94 37576.09 38491.73 25597.18 257
114514_t97.41 10096.83 11399.14 6199.51 9497.83 7999.89 10098.27 18588.48 30999.06 9399.66 9990.30 18399.64 15196.32 17499.97 4299.96 67
ADS-MVSNet293.80 22493.88 21093.55 31097.87 20585.94 35894.24 38996.84 33890.07 27796.43 18794.48 35790.29 18495.37 36887.44 31197.23 17999.36 178
ADS-MVSNet94.79 19494.02 20597.11 19397.87 20593.79 22694.24 38998.16 20290.07 27796.43 18794.48 35790.29 18498.19 25287.44 31197.23 17999.36 178
miper_lstm_enhance91.81 26991.39 26893.06 32397.34 24289.18 32899.38 23096.79 34386.70 33587.47 32495.22 33490.00 18695.86 36288.26 30281.37 33694.15 307
c3_l92.53 25691.87 25894.52 27297.40 23892.99 24899.40 22596.93 33287.86 31888.69 30495.44 31989.95 18796.44 34190.45 27880.69 34794.14 310
thres20096.96 12196.21 13799.22 4898.97 12398.84 3699.85 12099.71 793.17 17596.26 19298.88 17789.87 18899.51 15694.26 21494.91 22999.31 185
tpm cat193.51 23392.52 24796.47 20997.77 21291.47 28896.13 37998.06 21180.98 38192.91 24093.78 36689.66 18998.87 19387.03 32096.39 19899.09 205
test_fmvsmvis_n_192097.67 8997.59 8397.91 15097.02 25595.34 18299.95 5398.45 12297.87 1597.02 17199.59 10789.64 19099.98 4799.41 5199.34 12198.42 234
OMC-MVS97.28 10497.23 9697.41 18099.76 6693.36 24299.65 18497.95 22196.03 7997.41 16099.70 8889.61 19199.51 15696.73 17098.25 15799.38 175
DIV-MVS_self_test92.32 26091.60 26194.47 27697.31 24592.74 25299.58 19796.75 34586.99 33187.64 32095.54 31289.55 19296.50 33888.58 29882.44 32894.17 301
cl____92.31 26191.58 26294.52 27297.33 24492.77 25099.57 20096.78 34486.97 33287.56 32295.51 31589.43 19396.62 33488.60 29782.44 32894.16 306
AUN-MVS93.28 23792.60 24195.34 24298.29 17790.09 31599.31 23998.56 9391.80 23296.35 19198.00 23389.38 19498.28 24592.46 24569.22 39297.64 250
tfpn200view996.79 12995.99 14299.19 5198.94 12598.82 3799.78 14499.71 792.86 18596.02 19798.87 18089.33 19599.50 15893.84 22194.57 23299.27 191
thres40096.78 13195.99 14299.16 5798.94 12598.82 3799.78 14499.71 792.86 18596.02 19798.87 18089.33 19599.50 15893.84 22194.57 23299.16 198
thres100view90096.74 13495.92 15299.18 5298.90 13598.77 4299.74 15999.71 792.59 20395.84 20198.86 18289.25 19799.50 15893.84 22194.57 23299.27 191
thres600view796.69 13795.87 15599.14 6198.90 13598.78 4199.74 15999.71 792.59 20395.84 20198.86 18289.25 19799.50 15893.44 23394.50 23599.16 198
eth_miper_zixun_eth92.41 25991.93 25693.84 30197.28 24890.68 30198.83 29796.97 32688.57 30889.19 29695.73 30589.24 19996.69 33289.97 28781.55 33494.15 307
EC-MVSNet97.38 10297.24 9597.80 15397.41 23795.64 17199.99 497.06 31594.59 11699.63 4499.32 13389.20 20098.14 25498.76 8899.23 12699.62 130
PVSNet_Blended_VisFu97.27 10596.81 11498.66 9798.81 14196.67 12699.92 7998.64 7794.51 11996.38 19098.49 21189.05 20199.88 10597.10 15998.34 15199.43 171
PVSNet_BlendedMVS96.05 16095.82 15696.72 20499.59 8596.99 11599.95 5399.10 3194.06 14498.27 13395.80 30189.00 20299.95 7399.12 6187.53 29493.24 353
PVSNet_Blended97.94 6897.64 7998.83 8899.59 8596.99 115100.00 199.10 3195.38 9498.27 13399.08 15189.00 20299.95 7399.12 6199.25 12499.57 145
IterMVS-LS92.69 25392.11 25294.43 28096.80 26992.74 25299.45 22296.89 33588.98 29489.65 28195.38 32488.77 20496.34 34590.98 26782.04 33194.22 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet93.73 22793.40 22594.74 26196.80 26992.69 25599.06 26697.67 24588.96 29691.39 25599.02 15588.75 20597.30 29391.07 26387.85 28994.22 297
UA-Net96.54 14295.96 14898.27 12898.23 18295.71 16698.00 34698.45 12293.72 16098.41 12699.27 13788.71 20699.66 14991.19 26197.69 16999.44 170
MAR-MVS97.43 9597.19 9898.15 13599.47 9694.79 20299.05 27098.76 6492.65 19998.66 11499.82 4988.52 20799.98 4798.12 12199.63 9499.67 118
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MonoMVSNet94.82 19194.43 19395.98 22494.54 32590.73 29999.03 27397.06 31593.16 17693.15 23695.47 31888.29 20897.57 28197.85 13791.33 25999.62 130
mvs_anonymous95.65 17495.03 18197.53 17398.19 18695.74 16499.33 23697.49 26990.87 25990.47 26597.10 25988.23 20997.16 30095.92 18097.66 17199.68 116
MVS_Test96.46 14595.74 15798.61 10198.18 18797.23 10499.31 23997.15 30491.07 25598.84 10297.05 26388.17 21098.97 18894.39 20997.50 17399.61 134
mvsmamba96.94 12296.73 11897.55 17197.99 19894.37 21299.62 19197.70 24293.13 17798.42 12597.92 23888.02 21198.75 20398.78 8699.01 13599.52 157
CANet98.27 5597.82 7399.63 1799.72 7599.10 2399.98 1598.51 11097.00 4698.52 11999.71 8687.80 21299.95 7399.75 3199.38 11899.83 94
jason97.24 10696.86 11298.38 12395.73 30097.32 10099.97 2897.40 27895.34 9698.60 11899.54 11387.70 21398.56 21597.94 13299.47 11099.25 193
jason: jason.
test_fmvsmconf0.1_n97.74 8597.44 8798.64 9995.76 29796.20 14899.94 6998.05 21398.17 998.89 10199.42 12187.65 21499.90 9499.50 4499.60 10199.82 95
FIs94.10 21793.43 22196.11 22194.70 32296.82 12199.58 19798.93 4592.54 20689.34 28997.31 25387.62 21597.10 30694.22 21686.58 29894.40 283
131496.84 12795.96 14899.48 3496.74 27398.52 5898.31 33198.86 5395.82 8289.91 27298.98 16287.49 21699.96 6597.80 13999.73 8799.96 67
LS3D95.84 16695.11 17798.02 14299.85 5495.10 19398.74 30498.50 11687.22 32793.66 23099.86 2987.45 21799.95 7390.94 26899.81 8399.02 211
FC-MVSNet-test93.81 22393.15 23095.80 23194.30 33096.20 14899.42 22498.89 4992.33 21689.03 29997.27 25587.39 21896.83 32693.20 23586.48 29994.36 285
fmvsm_s_conf0.5_n97.80 8097.85 7297.67 16499.06 11594.41 20999.98 1598.97 4097.34 2999.63 4499.69 9087.27 21999.97 5799.62 4099.06 13398.62 230
RPMNet89.76 31687.28 33297.19 19096.29 27992.66 25692.01 40098.31 17870.19 40696.94 17285.87 40587.25 22099.78 12862.69 40795.96 20699.13 202
UniMVSNet_NR-MVSNet92.95 24692.11 25295.49 23594.61 32495.28 18599.83 13299.08 3391.49 23889.21 29496.86 27087.14 22196.73 33093.20 23577.52 36694.46 277
UniMVSNet (Re)93.07 24492.13 25195.88 22794.84 31996.24 14799.88 10398.98 3892.49 21089.25 29195.40 32187.09 22297.14 30293.13 23978.16 36194.26 293
DP-MVS94.54 20393.42 22297.91 15099.46 9894.04 22098.93 28497.48 27081.15 38090.04 26999.55 11187.02 22399.95 7388.97 29498.11 16199.73 108
fmvsm_s_conf0.5_n_a97.73 8797.72 7597.77 15898.63 15494.26 21599.96 3598.92 4697.18 3999.75 2999.69 9087.00 22499.97 5799.46 4798.89 13799.08 207
PMMVS96.76 13296.76 11696.76 20298.28 17992.10 26899.91 8597.98 21894.12 13999.53 5899.39 12886.93 22598.73 20496.95 16697.73 16899.45 168
sasdasda97.09 11496.32 13299.39 4098.93 12798.95 2799.72 17097.35 28194.45 12097.88 14799.42 12186.71 22699.52 15498.48 10493.97 24299.72 110
canonicalmvs97.09 11496.32 13299.39 4098.93 12798.95 2799.72 17097.35 28194.45 12097.88 14799.42 12186.71 22699.52 15498.48 10493.97 24299.72 110
MVS96.60 14095.56 16499.72 1396.85 26699.22 2098.31 33198.94 4191.57 23690.90 26199.61 10686.66 22899.96 6597.36 15299.88 7399.99 23
Effi-MVS+96.30 15495.69 15998.16 13297.85 20796.26 14397.41 35597.21 29790.37 27198.65 11598.58 20586.61 22998.70 20897.11 15897.37 17899.52 157
diffmvspermissive97.00 11996.64 12298.09 13897.64 22696.17 15199.81 13797.19 29894.67 11598.95 9799.28 13486.43 23098.76 20198.37 11197.42 17699.33 183
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
nrg03093.51 23392.53 24696.45 21194.36 32897.20 10599.81 13797.16 30391.60 23589.86 27497.46 24886.37 23197.68 27795.88 18180.31 35094.46 277
MGCFI-Net97.00 11996.22 13699.34 4398.86 13898.80 3999.67 18297.30 28894.31 13197.77 15199.41 12586.36 23299.50 15898.38 10993.90 24499.72 110
VNet97.21 10896.57 12699.13 6598.97 12397.82 8099.03 27399.21 2994.31 13199.18 8798.88 17786.26 23399.89 9998.93 7594.32 23699.69 115
AdaColmapbinary97.23 10796.80 11598.51 11399.99 195.60 17399.09 25998.84 5993.32 17096.74 17999.72 8486.04 234100.00 198.01 12799.43 11599.94 78
Effi-MVS+-dtu94.53 20595.30 17192.22 33397.77 21282.54 37799.59 19597.06 31594.92 10595.29 21195.37 32585.81 23597.89 27094.80 20097.07 18396.23 266
CVMVSNet94.68 20094.94 18493.89 30096.80 26986.92 35399.06 26698.98 3894.45 12094.23 22599.02 15585.60 23695.31 37090.91 26995.39 22299.43 171
xiu_mvs_v1_base_debu97.43 9597.06 10198.55 10797.74 21498.14 6699.31 23997.86 23296.43 6699.62 4799.69 9085.56 23799.68 14599.05 6498.31 15397.83 245
xiu_mvs_v1_base97.43 9597.06 10198.55 10797.74 21498.14 6699.31 23997.86 23296.43 6699.62 4799.69 9085.56 23799.68 14599.05 6498.31 15397.83 245
xiu_mvs_v1_base_debi97.43 9597.06 10198.55 10797.74 21498.14 6699.31 23997.86 23296.43 6699.62 4799.69 9085.56 23799.68 14599.05 6498.31 15397.83 245
casdiffmvs_mvgpermissive96.43 14695.94 15097.89 15297.44 23695.47 17699.86 11797.29 29193.35 16896.03 19699.19 14585.39 24098.72 20697.89 13697.04 18599.49 164
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline96.43 14695.98 14497.76 16097.34 24295.17 19299.51 21097.17 30193.92 15296.90 17499.28 13485.37 24198.64 21297.50 15096.86 19199.46 166
PCF-MVS94.20 595.18 18494.10 20298.43 11998.55 15995.99 15697.91 34897.31 28790.35 27289.48 28699.22 14385.19 24299.89 9990.40 28198.47 14999.41 173
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
casdiffmvspermissive96.42 14895.97 14797.77 15897.30 24694.98 19499.84 12597.09 31293.75 15996.58 18399.26 14085.07 24398.78 19997.77 14497.04 18599.54 151
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
D2MVS92.76 25092.59 24593.27 31695.13 31489.54 32499.69 17899.38 2292.26 21787.59 32194.61 35485.05 24497.79 27391.59 25788.01 28792.47 366
fmvsm_s_conf0.1_n97.30 10397.21 9797.60 17097.38 23994.40 21199.90 9198.64 7796.47 6599.51 6299.65 10184.99 24599.93 8899.22 5899.09 13298.46 232
fmvsm_s_conf0.1_n_a97.09 11496.90 10997.63 16895.65 30794.21 21799.83 13298.50 11696.27 7499.65 4199.64 10284.72 24699.93 8899.04 6798.84 14098.74 225
BH-w/o95.71 17095.38 16896.68 20598.49 16592.28 26499.84 12597.50 26892.12 22092.06 25198.79 18784.69 24798.67 21195.29 18999.66 9199.09 205
Fast-Effi-MVS+95.02 18894.19 20097.52 17497.88 20494.55 20599.97 2897.08 31388.85 30194.47 22097.96 23784.59 24898.41 22689.84 28897.10 18299.59 137
PVSNet91.05 1397.13 11196.69 12198.45 11799.52 9295.81 16099.95 5399.65 1294.73 11199.04 9499.21 14484.48 24999.95 7394.92 19598.74 14399.58 143
WR-MVS_H91.30 27990.35 28394.15 28694.17 33292.62 25999.17 25598.94 4188.87 30086.48 33894.46 35984.36 25096.61 33588.19 30378.51 35993.21 354
CHOSEN 1792x268896.81 12896.53 12797.64 16698.91 13493.07 24499.65 18499.80 395.64 8795.39 20998.86 18284.35 25199.90 9496.98 16399.16 12899.95 74
our_test_390.39 30089.48 30593.12 32092.40 36489.57 32399.33 23696.35 36087.84 31985.30 34894.99 34384.14 25296.09 35680.38 36384.56 31393.71 343
MSDG94.37 21193.36 22697.40 18198.88 13793.95 22499.37 23297.38 27985.75 34790.80 26299.17 14784.11 25399.88 10586.35 32598.43 15098.36 236
pmmvs492.10 26591.07 27395.18 24792.82 35994.96 19599.48 21696.83 33987.45 32388.66 30596.56 28283.78 25496.83 32689.29 29184.77 31293.75 338
BH-untuned95.18 18494.83 18696.22 21998.36 17291.22 29099.80 14197.32 28690.91 25891.08 25898.67 19483.51 25598.54 21794.23 21599.61 9998.92 214
LCM-MVSNet-Re92.31 26192.60 24191.43 34297.53 23179.27 39499.02 27591.83 40992.07 22180.31 37494.38 36083.50 25695.48 36697.22 15697.58 17299.54 151
cdsmvs_eth3d_5k23.43 38931.24 3920.00 4060.00 4290.00 4310.00 41798.09 2080.00 4240.00 42599.67 9783.37 2570.00 4250.00 4240.00 4230.00 421
DeepC-MVS94.51 496.92 12596.40 13198.45 11799.16 11195.90 15899.66 18398.06 21196.37 7294.37 22199.49 11683.29 25899.90 9497.63 14899.61 9999.55 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
NR-MVSNet91.56 27790.22 28795.60 23394.05 33395.76 16398.25 33498.70 6891.16 25280.78 37396.64 27883.23 25996.57 33691.41 25877.73 36594.46 277
MVStest185.03 34882.76 35791.83 33892.95 35689.16 32998.57 31694.82 38871.68 40468.54 40495.11 33783.17 26095.66 36474.69 38765.32 40190.65 383
3Dnovator+91.53 1196.31 15395.24 17299.52 2896.88 26598.64 5499.72 17098.24 18995.27 9888.42 31298.98 16282.76 26199.94 8197.10 15999.83 7799.96 67
QAPM95.40 17994.17 20199.10 6796.92 26097.71 8399.40 22598.68 7189.31 28788.94 30098.89 17682.48 26299.96 6593.12 24099.83 7799.62 130
PatchMatch-RL96.04 16195.40 16697.95 14499.59 8595.22 18999.52 20899.07 3493.96 14996.49 18598.35 22082.28 26399.82 12390.15 28499.22 12798.81 221
GeoE94.36 21393.48 22096.99 19597.29 24793.54 23599.96 3596.72 34788.35 31293.43 23198.94 17382.05 26498.05 26188.12 30696.48 19799.37 177
3Dnovator91.47 1296.28 15695.34 16999.08 7096.82 26897.47 9699.45 22298.81 6195.52 9289.39 28799.00 15981.97 26599.95 7397.27 15499.83 7799.84 93
v890.54 29889.17 30894.66 26493.43 34493.40 24099.20 25296.94 33185.76 34587.56 32294.51 35581.96 26697.19 29984.94 33778.25 36093.38 350
RRT-MVS96.24 15895.68 16197.94 14797.65 22594.92 19799.27 24797.10 30992.79 19197.43 15997.99 23581.85 26799.37 16898.46 10698.57 14699.53 155
v14890.70 29389.63 29893.92 29792.97 35490.97 29299.75 15696.89 33587.51 32188.27 31395.01 34081.67 26897.04 31287.40 31377.17 37193.75 338
DU-MVS92.46 25891.45 26795.49 23594.05 33395.28 18599.81 13798.74 6592.25 21889.21 29496.64 27881.66 26996.73 33093.20 23577.52 36694.46 277
Baseline_NR-MVSNet90.33 30389.51 30392.81 32892.84 35789.95 31899.77 14793.94 39984.69 35989.04 29895.66 30781.66 26996.52 33790.99 26676.98 37291.97 372
FMVSNet392.69 25391.58 26295.99 22398.29 17797.42 9899.26 24897.62 25189.80 28389.68 27895.32 32781.62 27196.27 34887.01 32185.65 30394.29 292
Fast-Effi-MVS+-dtu93.72 22893.86 21193.29 31597.06 25386.16 35699.80 14196.83 33992.66 19892.58 24497.83 24381.39 27297.67 27889.75 28996.87 19096.05 269
CANet_DTU96.76 13296.15 13898.60 10298.78 14397.53 9099.84 12597.63 24897.25 3799.20 8499.64 10281.36 27399.98 4792.77 24498.89 13798.28 237
WB-MVSnew92.90 24792.77 23893.26 31796.95 25993.63 23299.71 17398.16 20291.49 23894.28 22398.14 22881.33 27496.48 33979.47 36795.46 21989.68 393
V4291.28 28190.12 29294.74 26193.42 34593.46 23799.68 18097.02 31987.36 32489.85 27695.05 33881.31 27597.34 28987.34 31480.07 35293.40 348
test_djsdf92.83 24992.29 25094.47 27691.90 37192.46 26199.55 20497.27 29391.17 25089.96 27096.07 29781.10 27696.89 32194.67 20588.91 27194.05 316
ppachtmachnet_test89.58 31988.35 32293.25 31892.40 36490.44 30899.33 23696.73 34685.49 35085.90 34695.77 30281.09 27796.00 36076.00 38582.49 32793.30 351
v114491.09 28589.83 29494.87 25693.25 34793.69 23199.62 19196.98 32486.83 33489.64 28294.99 34380.94 27897.05 30985.08 33681.16 33893.87 332
v1090.25 30688.82 31594.57 27093.53 34293.43 23899.08 26196.87 33785.00 35487.34 32894.51 35580.93 27997.02 31682.85 35079.23 35593.26 352
EU-MVSNet90.14 31090.34 28489.54 36092.55 36281.06 38898.69 31098.04 21491.41 24686.59 33596.84 27380.83 28093.31 39186.20 32781.91 33294.26 293
v2v48291.30 27990.07 29395.01 25193.13 34893.79 22699.77 14797.02 31988.05 31589.25 29195.37 32580.73 28197.15 30187.28 31580.04 35394.09 313
WR-MVS92.31 26191.25 26995.48 23894.45 32795.29 18499.60 19498.68 7190.10 27688.07 31596.89 26880.68 28296.80 32893.14 23879.67 35494.36 285
HQP2-MVS80.65 283
HQP-MVS94.61 20294.50 19294.92 25595.78 29391.85 27499.87 10697.89 22896.82 5193.37 23298.65 19780.65 28398.39 23097.92 13389.60 26294.53 272
XVG-OURS94.82 19194.74 18995.06 25098.00 19789.19 32699.08 26197.55 26094.10 14094.71 21699.62 10580.51 28599.74 13796.04 17893.06 25496.25 264
v14419290.79 29289.52 30294.59 26893.11 35192.77 25099.56 20296.99 32286.38 33889.82 27794.95 34580.50 28697.10 30683.98 34280.41 34893.90 329
HQP_MVS94.49 20794.36 19594.87 25695.71 30391.74 27899.84 12597.87 23096.38 6993.01 23798.59 20280.47 28798.37 23697.79 14289.55 26594.52 274
plane_prior695.76 29791.72 28180.47 287
v7n89.65 31888.29 32393.72 30392.22 36690.56 30599.07 26597.10 30985.42 35286.73 33294.72 34880.06 28997.13 30381.14 36078.12 36293.49 346
TranMVSNet+NR-MVSNet91.68 27690.61 27994.87 25693.69 34093.98 22399.69 17898.65 7591.03 25688.44 30896.83 27480.05 29096.18 35190.26 28376.89 37494.45 282
FMVSNet588.32 32987.47 33190.88 34596.90 26488.39 34097.28 35795.68 37382.60 37584.67 35392.40 37979.83 29191.16 40176.39 38381.51 33593.09 355
test_fmvsmconf0.01_n96.39 14995.74 15798.32 12591.47 37795.56 17499.84 12597.30 28897.74 1897.89 14699.35 13279.62 29299.85 11199.25 5799.24 12599.55 147
RPSCF91.80 27292.79 23788.83 36598.15 19069.87 40398.11 34296.60 35283.93 36394.33 22299.27 13779.60 29399.46 16691.99 25193.16 25297.18 257
Vis-MVSNetpermissive95.72 16895.15 17697.45 17797.62 22794.28 21499.28 24598.24 18994.27 13696.84 17698.94 17379.39 29498.76 20193.25 23498.49 14899.30 187
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
dmvs_testset83.79 35786.07 33976.94 38792.14 36748.60 42296.75 36990.27 41289.48 28578.65 38198.55 20979.25 29586.65 41066.85 40182.69 32595.57 270
v119290.62 29789.25 30794.72 26393.13 34893.07 24499.50 21297.02 31986.33 33989.56 28595.01 34079.22 29697.09 30882.34 35481.16 33894.01 319
CP-MVSNet91.23 28390.22 28794.26 28493.96 33592.39 26399.09 25998.57 9088.95 29786.42 33996.57 28179.19 29796.37 34390.29 28278.95 35694.02 317
MDA-MVSNet_test_wron85.51 34483.32 35292.10 33490.96 38188.58 33799.20 25296.52 35579.70 38657.12 41292.69 37579.11 29893.86 38677.10 38077.46 36893.86 333
Syy-MVS90.00 31290.63 27888.11 37297.68 22274.66 39999.71 17398.35 16990.79 26292.10 24998.67 19479.10 29993.09 39263.35 40695.95 20896.59 262
YYNet185.50 34583.33 35192.00 33590.89 38288.38 34199.22 25196.55 35479.60 38757.26 41192.72 37479.09 30093.78 38777.25 37977.37 36993.84 334
XVG-OURS-SEG-HR94.79 19494.70 19095.08 24998.05 19589.19 32699.08 26197.54 26293.66 16194.87 21599.58 10978.78 30199.79 12697.31 15393.40 24996.25 264
GA-MVS93.83 22192.84 23496.80 20095.73 30093.57 23399.88 10397.24 29692.57 20592.92 23996.66 27678.73 30297.67 27887.75 30994.06 24199.17 197
dmvs_re93.20 23993.15 23093.34 31396.54 27783.81 37098.71 30798.51 11091.39 24792.37 24798.56 20778.66 30397.83 27293.89 21989.74 26198.38 235
OpenMVScopyleft90.15 1594.77 19693.59 21698.33 12496.07 28597.48 9599.56 20298.57 9090.46 26986.51 33698.95 17178.57 30499.94 8193.86 22099.74 8697.57 254
v192192090.46 29989.12 30994.50 27492.96 35592.46 26199.49 21496.98 32486.10 34189.61 28495.30 32878.55 30597.03 31482.17 35580.89 34694.01 319
MVP-Stereo90.93 28790.45 28292.37 33291.25 38088.76 33198.05 34596.17 36387.27 32684.04 35595.30 32878.46 30697.27 29883.78 34499.70 8991.09 377
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
anonymousdsp91.79 27490.92 27494.41 28190.76 38392.93 24998.93 28497.17 30189.08 28987.46 32595.30 32878.43 30796.92 31992.38 24688.73 27693.39 349
v124090.20 30788.79 31694.44 27893.05 35392.27 26599.38 23096.92 33385.89 34389.36 28894.87 34777.89 30897.03 31480.66 36281.08 34194.01 319
CLD-MVS94.06 21893.90 20994.55 27196.02 28790.69 30099.98 1597.72 24196.62 6291.05 26098.85 18577.21 30998.47 21998.11 12289.51 26794.48 276
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_cas_vis1_n_192096.59 14196.23 13597.65 16598.22 18394.23 21699.99 497.25 29597.77 1799.58 5499.08 15177.10 31099.97 5797.64 14799.45 11398.74 225
N_pmnet80.06 36780.78 36577.89 38691.94 37045.28 42498.80 30156.82 42678.10 39080.08 37693.33 36977.03 31195.76 36368.14 39982.81 32492.64 362
WB-MVS76.28 37177.28 37373.29 39181.18 40854.68 41697.87 34994.19 39581.30 37969.43 40290.70 38777.02 31282.06 41435.71 41968.11 39683.13 405
COLMAP_ROBcopyleft90.47 1492.18 26491.49 26694.25 28599.00 12088.04 34498.42 32896.70 34882.30 37688.43 31099.01 15776.97 31399.85 11186.11 32996.50 19594.86 271
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
cascas94.64 20193.61 21397.74 16297.82 20996.26 14399.96 3597.78 23985.76 34594.00 22797.54 24776.95 31499.21 17497.23 15595.43 22197.76 249
BH-RMVSNet95.18 18494.31 19897.80 15398.17 18895.23 18899.76 15297.53 26492.52 20894.27 22499.25 14176.84 31598.80 19790.89 27099.54 10499.35 180
PEN-MVS90.19 30889.06 31193.57 30993.06 35290.90 29699.06 26698.47 11988.11 31485.91 34596.30 28876.67 31695.94 36187.07 31876.91 37393.89 330
CL-MVSNet_self_test84.50 35383.15 35488.53 36986.00 39981.79 38398.82 29897.35 28185.12 35383.62 36090.91 38676.66 31791.40 40069.53 39660.36 40992.40 367
IterMVS90.91 28890.17 29093.12 32096.78 27290.42 30998.89 28897.05 31889.03 29186.49 33795.42 32076.59 31895.02 37287.22 31684.09 31793.93 327
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SSC-MVS75.42 37276.40 37572.49 39580.68 41053.62 41797.42 35494.06 39780.42 38368.75 40390.14 38976.54 31981.66 41533.25 42066.34 40082.19 406
IterMVS-SCA-FT90.85 29190.16 29192.93 32596.72 27489.96 31798.89 28896.99 32288.95 29786.63 33495.67 30676.48 32095.00 37387.04 31984.04 32093.84 334
SCA94.69 19893.81 21297.33 18797.10 25194.44 20698.86 29498.32 17693.30 17196.17 19595.59 31076.48 32097.95 26791.06 26497.43 17499.59 137
ab-mvs94.69 19893.42 22298.51 11398.07 19496.26 14396.49 37298.68 7190.31 27494.54 21797.00 26576.30 32299.71 14195.98 17993.38 25099.56 146
DTE-MVSNet89.40 32188.24 32492.88 32692.66 36189.95 31899.10 25898.22 19287.29 32585.12 35096.22 29076.27 32395.30 37183.56 34675.74 37893.41 347
ACMM91.95 1092.88 24892.52 24793.98 29695.75 29989.08 33099.77 14797.52 26693.00 18089.95 27197.99 23576.17 32498.46 22293.63 23188.87 27394.39 284
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DSMNet-mixed88.28 33088.24 32488.42 37089.64 39175.38 39898.06 34489.86 41385.59 34988.20 31492.14 38176.15 32591.95 39978.46 37496.05 20497.92 244
VPA-MVSNet92.70 25291.55 26496.16 22095.09 31596.20 14898.88 29099.00 3691.02 25791.82 25295.29 33176.05 32697.96 26695.62 18681.19 33794.30 291
SDMVSNet94.80 19393.96 20797.33 18798.92 13095.42 17999.59 19598.99 3792.41 21292.55 24597.85 24175.81 32798.93 19297.90 13591.62 25797.64 250
TR-MVS94.54 20393.56 21897.49 17697.96 20094.34 21398.71 30797.51 26790.30 27594.51 21998.69 19375.56 32898.77 20092.82 24395.99 20599.35 180
PS-CasMVS90.63 29689.51 30393.99 29593.83 33791.70 28298.98 27798.52 10788.48 30986.15 34396.53 28375.46 32996.31 34788.83 29578.86 35893.95 325
TransMVSNet (Re)87.25 33685.28 34393.16 31993.56 34191.03 29198.54 31994.05 39883.69 36681.09 37196.16 29275.32 33096.40 34276.69 38268.41 39492.06 370
LPG-MVS_test92.96 24592.71 23993.71 30495.43 31188.67 33499.75 15697.62 25192.81 18890.05 26798.49 21175.24 33198.40 22895.84 18289.12 26994.07 314
LGP-MVS_train93.71 30495.43 31188.67 33497.62 25192.81 18890.05 26798.49 21175.24 33198.40 22895.84 18289.12 26994.07 314
ECVR-MVScopyleft95.66 17395.05 18097.51 17598.66 15093.71 22998.85 29698.45 12294.93 10396.86 17598.96 16675.22 33399.20 17795.34 18798.15 15899.64 124
test111195.57 17594.98 18397.37 18398.56 15693.37 24198.86 29498.45 12294.95 10296.63 18198.95 17175.21 33499.11 18395.02 19298.14 16099.64 124
OPM-MVS93.21 23892.80 23694.44 27893.12 35090.85 29899.77 14797.61 25496.19 7791.56 25498.65 19775.16 33598.47 21993.78 22789.39 26893.99 322
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tfpnnormal89.29 32387.61 33094.34 28394.35 32994.13 21998.95 28198.94 4183.94 36284.47 35495.51 31574.84 33697.39 28677.05 38180.41 34891.48 376
AllTest92.48 25791.64 26095.00 25299.01 11888.43 33898.94 28296.82 34186.50 33688.71 30298.47 21574.73 33799.88 10585.39 33396.18 20196.71 260
TestCases95.00 25299.01 11888.43 33896.82 34186.50 33688.71 30298.47 21574.73 33799.88 10585.39 33396.18 20196.71 260
Anonymous2023120686.32 33985.42 34289.02 36489.11 39380.53 39299.05 27095.28 38185.43 35182.82 36293.92 36474.40 33993.44 39066.99 40081.83 33393.08 356
XXY-MVS91.82 26890.46 28095.88 22793.91 33695.40 18198.87 29397.69 24488.63 30787.87 31797.08 26074.38 34097.89 27091.66 25684.07 31894.35 288
ACMP92.05 992.74 25192.42 24993.73 30295.91 29188.72 33399.81 13797.53 26494.13 13887.00 33098.23 22674.07 34198.47 21996.22 17688.86 27493.99 322
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LTVRE_ROB88.28 1890.29 30589.05 31294.02 29295.08 31690.15 31497.19 35997.43 27384.91 35783.99 35797.06 26274.00 34298.28 24584.08 34087.71 29193.62 344
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pm-mvs189.36 32287.81 32894.01 29393.40 34691.93 27298.62 31596.48 35786.25 34083.86 35896.14 29373.68 34397.04 31286.16 32875.73 37993.04 357
pmmvs590.17 30989.09 31093.40 31292.10 36989.77 32199.74 15995.58 37685.88 34487.24 32995.74 30373.41 34496.48 33988.54 29983.56 32293.95 325
OurMVSNet-221017-089.81 31589.48 30590.83 34891.64 37481.21 38698.17 34095.38 38091.48 24085.65 34797.31 25372.66 34597.29 29688.15 30484.83 31193.97 324
jajsoiax91.92 26791.18 27094.15 28691.35 37890.95 29599.00 27697.42 27592.61 20187.38 32697.08 26072.46 34697.36 28794.53 20888.77 27594.13 311
UGNet95.33 18294.57 19197.62 16998.55 15994.85 19898.67 31299.32 2695.75 8596.80 17896.27 28972.18 34799.96 6594.58 20799.05 13498.04 242
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
mvs_tets91.81 26991.08 27294.00 29491.63 37590.58 30498.67 31297.43 27392.43 21187.37 32797.05 26371.76 34897.32 29194.75 20288.68 27794.11 312
SixPastTwentyTwo88.73 32688.01 32790.88 34591.85 37282.24 37998.22 33895.18 38588.97 29582.26 36496.89 26871.75 34996.67 33384.00 34182.98 32393.72 342
test_fmvs195.35 18195.68 16194.36 28298.99 12184.98 36499.96 3596.65 35097.60 2299.73 3398.96 16671.58 35099.93 8898.31 11499.37 11998.17 238
GBi-Net90.88 28989.82 29594.08 28997.53 23191.97 26998.43 32596.95 32787.05 32889.68 27894.72 34871.34 35196.11 35387.01 32185.65 30394.17 301
test190.88 28989.82 29594.08 28997.53 23191.97 26998.43 32596.95 32787.05 32889.68 27894.72 34871.34 35196.11 35387.01 32185.65 30394.17 301
FMVSNet291.02 28689.56 30095.41 24097.53 23195.74 16498.98 27797.41 27787.05 32888.43 31095.00 34271.34 35196.24 35085.12 33585.21 30894.25 295
PVSNet_088.03 1991.80 27290.27 28696.38 21598.27 18090.46 30799.94 6999.61 1393.99 14786.26 34297.39 25271.13 35499.89 9998.77 8767.05 39898.79 222
sd_testset93.55 23292.83 23595.74 23298.92 13090.89 29798.24 33598.85 5692.41 21292.55 24597.85 24171.07 35598.68 21093.93 21891.62 25797.64 250
Anonymous2023121189.86 31488.44 32194.13 28898.93 12790.68 30198.54 31998.26 18676.28 39286.73 33295.54 31270.60 35697.56 28290.82 27180.27 35194.15 307
ITE_SJBPF92.38 33195.69 30685.14 36295.71 37292.81 18889.33 29098.11 22970.23 35798.42 22585.91 33188.16 28693.59 345
ACMH89.72 1790.64 29589.63 29893.66 30895.64 30888.64 33698.55 31797.45 27189.03 29181.62 36897.61 24569.75 35898.41 22689.37 29087.62 29393.92 328
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVS-HIRNet86.22 34083.19 35395.31 24496.71 27590.29 31092.12 39997.33 28562.85 40786.82 33170.37 41269.37 35997.49 28475.12 38697.99 16698.15 239
Anonymous20240521193.10 24391.99 25596.40 21399.10 11389.65 32298.88 29097.93 22383.71 36594.00 22798.75 18968.79 36099.88 10595.08 19191.71 25699.68 116
test20.0384.72 35283.99 34586.91 37488.19 39680.62 39198.88 29095.94 36788.36 31178.87 37994.62 35368.75 36189.11 40566.52 40275.82 37791.00 379
VPNet91.81 26990.46 28095.85 22994.74 32195.54 17598.98 27798.59 8792.14 21990.77 26397.44 24968.73 36297.54 28394.89 19877.89 36394.46 277
K. test v388.05 33287.24 33390.47 35291.82 37382.23 38098.96 28097.42 27589.05 29076.93 38995.60 30968.49 36395.42 36785.87 33281.01 34493.75 338
ACMH+89.98 1690.35 30289.54 30192.78 32995.99 28886.12 35798.81 29997.18 30089.38 28683.14 36197.76 24468.42 36498.43 22489.11 29386.05 30193.78 337
MDA-MVSNet-bldmvs84.09 35581.52 36291.81 33991.32 37988.00 34598.67 31295.92 36880.22 38455.60 41393.32 37068.29 36593.60 38973.76 38876.61 37593.82 336
ttmdpeth88.23 33187.06 33491.75 34089.91 39087.35 34998.92 28795.73 37187.92 31784.02 35696.31 28768.23 36696.84 32486.33 32676.12 37691.06 378
MS-PatchMatch90.65 29490.30 28591.71 34194.22 33185.50 36198.24 33597.70 24288.67 30586.42 33996.37 28667.82 36798.03 26283.62 34599.62 9591.60 374
KD-MVS_self_test83.59 35982.06 35988.20 37186.93 39780.70 39097.21 35896.38 35882.87 37282.49 36388.97 39367.63 36892.32 39773.75 38962.30 40891.58 375
LFMVS94.75 19793.56 21898.30 12699.03 11795.70 16798.74 30497.98 21887.81 32098.47 12399.39 12867.43 36999.53 15398.01 12795.20 22799.67 118
MIMVSNet90.30 30488.67 31895.17 24896.45 27891.64 28492.39 39897.15 30485.99 34290.50 26493.19 37366.95 37094.86 37782.01 35693.43 24899.01 212
test_vis1_n_192095.44 17895.31 17095.82 23098.50 16488.74 33299.98 1597.30 28897.84 1699.85 999.19 14566.82 37199.97 5798.82 8399.46 11298.76 223
XVG-ACMP-BASELINE91.22 28490.75 27592.63 33093.73 33985.61 35998.52 32197.44 27292.77 19289.90 27396.85 27166.64 37298.39 23092.29 24788.61 27893.89 330
Anonymous2024052992.10 26590.65 27796.47 20998.82 14090.61 30398.72 30698.67 7475.54 39693.90 22998.58 20566.23 37399.90 9494.70 20490.67 26098.90 217
lessismore_v090.53 35090.58 38480.90 38995.80 36977.01 38895.84 30066.15 37496.95 31783.03 34975.05 38093.74 341
USDC90.00 31288.96 31393.10 32294.81 32088.16 34298.71 30795.54 37793.66 16183.75 35997.20 25665.58 37598.31 24183.96 34387.49 29592.85 360
pmmvs-eth3d84.03 35681.97 36090.20 35584.15 40387.09 35198.10 34394.73 39183.05 37074.10 39787.77 39965.56 37694.01 38381.08 36169.24 39189.49 396
Anonymous2024052185.15 34783.81 34989.16 36388.32 39482.69 37598.80 30195.74 37079.72 38581.53 36990.99 38465.38 37794.16 38272.69 39081.11 34090.63 384
LF4IMVS89.25 32488.85 31490.45 35392.81 36081.19 38798.12 34194.79 38991.44 24286.29 34197.11 25865.30 37898.11 25688.53 30085.25 30792.07 369
new_pmnet84.49 35482.92 35589.21 36290.03 38882.60 37696.89 36895.62 37580.59 38275.77 39489.17 39265.04 37994.79 37872.12 39281.02 34390.23 386
CMPMVSbinary61.59 2184.75 35185.14 34483.57 38090.32 38662.54 40896.98 36597.59 25874.33 40069.95 40196.66 27664.17 38098.32 24087.88 30888.41 28389.84 392
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_040285.58 34283.94 34790.50 35193.81 33885.04 36398.55 31795.20 38476.01 39379.72 37895.13 33564.15 38196.26 34966.04 40486.88 29790.21 387
TDRefinement84.76 35082.56 35891.38 34374.58 41684.80 36797.36 35694.56 39384.73 35880.21 37596.12 29663.56 38298.39 23087.92 30763.97 40490.95 381
mmtdpeth88.52 32787.75 32990.85 34795.71 30383.47 37398.94 28294.85 38788.78 30297.19 16689.58 39063.29 38398.97 18898.54 10162.86 40690.10 389
UnsupCasMVSNet_eth85.52 34383.99 34590.10 35689.36 39283.51 37296.65 37097.99 21689.14 28875.89 39393.83 36563.25 38493.92 38481.92 35767.90 39792.88 359
tt080591.28 28190.18 28994.60 26796.26 28187.55 34698.39 32998.72 6689.00 29389.22 29398.47 21562.98 38598.96 19090.57 27588.00 28897.28 256
new-patchmatchnet81.19 36279.34 36986.76 37582.86 40680.36 39397.92 34795.27 38282.09 37772.02 39886.87 40162.81 38690.74 40371.10 39363.08 40589.19 399
mvs5depth84.87 34982.90 35690.77 34985.59 40184.84 36691.10 40593.29 40483.14 36985.07 35194.33 36162.17 38797.32 29178.83 37372.59 38590.14 388
TinyColmap87.87 33586.51 33691.94 33695.05 31785.57 36097.65 35294.08 39684.40 36181.82 36796.85 27162.14 38898.33 23980.25 36586.37 30091.91 373
test_fmvs1_n94.25 21694.36 19593.92 29797.68 22283.70 37199.90 9196.57 35397.40 2899.67 3998.88 17761.82 38999.92 9198.23 11699.13 13098.14 241
VDDNet93.12 24291.91 25796.76 20296.67 27692.65 25898.69 31098.21 19382.81 37397.75 15299.28 13461.57 39099.48 16498.09 12494.09 24098.15 239
pmmvs685.69 34183.84 34891.26 34490.00 38984.41 36897.82 35096.15 36475.86 39481.29 37095.39 32361.21 39196.87 32383.52 34773.29 38292.50 365
VDD-MVS93.77 22592.94 23396.27 21898.55 15990.22 31298.77 30397.79 23790.85 26096.82 17799.42 12161.18 39299.77 13198.95 7394.13 23998.82 220
testgi89.01 32588.04 32691.90 33793.49 34384.89 36599.73 16695.66 37493.89 15685.14 34998.17 22759.68 39394.66 37977.73 37788.88 27296.16 268
FMVSNet188.50 32886.64 33594.08 28995.62 31091.97 26998.43 32596.95 32783.00 37186.08 34494.72 34859.09 39496.11 35381.82 35884.07 31894.17 301
DeepMVS_CXcopyleft82.92 38295.98 29058.66 41396.01 36692.72 19378.34 38395.51 31558.29 39598.08 25882.57 35185.29 30692.03 371
UniMVSNet_ETH3D90.06 31188.58 31994.49 27594.67 32388.09 34397.81 35197.57 25983.91 36488.44 30897.41 25057.44 39697.62 28091.41 25888.59 28097.77 248
pmmvs380.27 36677.77 37187.76 37380.32 41182.43 37898.23 33791.97 40872.74 40378.75 38087.97 39857.30 39790.99 40270.31 39462.37 40789.87 391
OpenMVS_ROBcopyleft79.82 2083.77 35881.68 36190.03 35788.30 39582.82 37498.46 32295.22 38373.92 40176.00 39291.29 38355.00 39896.94 31868.40 39888.51 28290.34 385
test_fmvs289.47 32089.70 29788.77 36894.54 32575.74 39699.83 13294.70 39294.71 11291.08 25896.82 27554.46 39997.78 27592.87 24288.27 28492.80 361
tmp_tt65.23 38162.94 38472.13 39644.90 42550.03 42181.05 41289.42 41638.45 41548.51 41799.90 1854.09 40078.70 41791.84 25518.26 41987.64 401
EGC-MVSNET69.38 37363.76 38386.26 37690.32 38681.66 38596.24 37893.85 4000.99 4233.22 42492.33 38052.44 40192.92 39459.53 41084.90 31084.21 404
test_vis1_n93.61 23193.03 23295.35 24195.86 29286.94 35299.87 10696.36 35996.85 4999.54 5798.79 18752.41 40299.83 12198.64 9698.97 13699.29 189
MIMVSNet182.58 36080.51 36688.78 36686.68 39884.20 36996.65 37095.41 37978.75 38878.59 38292.44 37651.88 40389.76 40465.26 40578.95 35692.38 368
EG-PatchMatch MVS85.35 34683.81 34989.99 35890.39 38581.89 38298.21 33996.09 36581.78 37874.73 39593.72 36751.56 40497.12 30579.16 37188.61 27890.96 380
UnsupCasMVSNet_bld79.97 36977.03 37488.78 36685.62 40081.98 38193.66 39497.35 28175.51 39770.79 40083.05 40748.70 40594.91 37678.31 37560.29 41089.46 397
test_vis1_rt86.87 33886.05 34089.34 36196.12 28378.07 39599.87 10683.54 42092.03 22478.21 38489.51 39145.80 40699.91 9296.25 17593.11 25390.03 390
test_method80.79 36479.70 36884.08 37992.83 35867.06 40599.51 21095.42 37854.34 41181.07 37293.53 36844.48 40792.22 39878.90 37277.23 37092.94 358
APD_test181.15 36380.92 36481.86 38392.45 36359.76 41296.04 38293.61 40273.29 40277.06 38796.64 27844.28 40896.16 35272.35 39182.52 32689.67 394
mvsany_test382.12 36181.14 36385.06 37881.87 40770.41 40297.09 36292.14 40791.27 24977.84 38588.73 39439.31 40995.49 36590.75 27371.24 38689.29 398
PM-MVS80.47 36578.88 37085.26 37783.79 40572.22 40095.89 38591.08 41085.71 34876.56 39188.30 39536.64 41093.90 38582.39 35369.57 39089.66 395
ambc83.23 38177.17 41462.61 40787.38 41094.55 39476.72 39086.65 40230.16 41196.36 34484.85 33869.86 38890.73 382
Gipumacopyleft66.95 38065.00 38072.79 39291.52 37667.96 40466.16 41595.15 38647.89 41358.54 41067.99 41529.74 41287.54 40950.20 41477.83 36462.87 415
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS51.44 38651.22 38852.11 40270.71 41844.97 42594.04 39175.66 42435.34 41942.40 41961.56 42028.93 41365.87 42127.64 42224.73 41745.49 418
test_fmvs379.99 36880.17 36779.45 38584.02 40462.83 40699.05 27093.49 40388.29 31380.06 37786.65 40228.09 41488.00 40688.63 29673.27 38387.54 402
test_f78.40 37077.59 37280.81 38480.82 40962.48 40996.96 36693.08 40583.44 36774.57 39684.57 40627.95 41592.63 39584.15 33972.79 38487.32 403
E-PMN52.30 38452.18 38652.67 40171.51 41745.40 42393.62 39576.60 42336.01 41743.50 41864.13 41727.11 41667.31 42031.06 42126.06 41645.30 419
FPMVS68.72 37568.72 37668.71 39765.95 42044.27 42695.97 38494.74 39051.13 41253.26 41490.50 38825.11 41783.00 41360.80 40880.97 34578.87 410
PMMVS267.15 37964.15 38276.14 38970.56 41962.07 41093.89 39287.52 41758.09 40860.02 40778.32 40922.38 41884.54 41259.56 40947.03 41481.80 407
testf168.38 37666.92 37772.78 39378.80 41250.36 41990.95 40687.35 41855.47 40958.95 40888.14 39620.64 41987.60 40757.28 41164.69 40280.39 408
APD_test268.38 37666.92 37772.78 39378.80 41250.36 41990.95 40687.35 41855.47 40958.95 40888.14 39620.64 41987.60 40757.28 41164.69 40280.39 408
LCM-MVSNet67.77 37864.73 38176.87 38862.95 42256.25 41589.37 40993.74 40144.53 41461.99 40680.74 40820.42 42186.53 41169.37 39759.50 41187.84 400
test12337.68 38839.14 39133.31 40319.94 42724.83 42998.36 3309.75 42815.53 42151.31 41587.14 40019.62 42217.74 42347.10 4153.47 42257.36 416
ANet_high56.10 38252.24 38567.66 39849.27 42456.82 41483.94 41182.02 42170.47 40533.28 42164.54 41617.23 42369.16 41945.59 41623.85 41877.02 411
test_vis3_rt68.82 37466.69 37975.21 39076.24 41560.41 41196.44 37368.71 42575.13 39850.54 41669.52 41416.42 42496.32 34680.27 36466.92 39968.89 412
testmvs40.60 38744.45 39029.05 40419.49 42814.11 43099.68 18018.47 42720.74 42064.59 40598.48 21410.95 42517.09 42456.66 41311.01 42055.94 417
PMVScopyleft49.05 2353.75 38351.34 38760.97 40040.80 42634.68 42774.82 41489.62 41537.55 41628.67 42272.12 4117.09 42681.63 41643.17 41768.21 39566.59 414
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d20.37 39020.84 39318.99 40565.34 42127.73 42850.43 4167.67 4299.50 4228.01 4236.34 4236.13 42726.24 42223.40 42310.69 4212.99 420
MVEpermissive53.74 2251.54 38547.86 38962.60 39959.56 42350.93 41879.41 41377.69 42235.69 41836.27 42061.76 4195.79 42869.63 41837.97 41836.61 41567.24 413
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.02 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re8.28 39111.04 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42599.40 1260.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS90.97 29286.10 330
FOURS199.92 3197.66 8799.95 5398.36 16795.58 8999.52 60
MSC_two_6792asdad99.93 299.91 3999.80 298.41 152100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 3999.80 298.41 152100.00 199.96 9100.00 1100.00 1
eth-test20.00 429
eth-test0.00 429
IU-MVS99.93 2499.31 1098.41 15297.71 1999.84 12100.00 1100.00 1100.00 1
save fliter99.82 5898.79 4099.96 3598.40 15697.66 21
test_0728_SECOND99.82 799.94 1399.47 799.95 5398.43 135100.00 199.99 5100.00 1100.00 1
GSMVS99.59 137
test_part299.89 4599.25 1899.49 63
MTGPAbinary98.28 183
MTMP99.87 10696.49 356
gm-plane-assit96.97 25893.76 22891.47 24198.96 16698.79 19894.92 195
test9_res99.71 3699.99 21100.00 1
agg_prior299.48 46100.00 1100.00 1
agg_prior99.93 2498.77 4298.43 13599.63 4499.85 111
test_prior498.05 7099.94 69
test_prior99.43 3599.94 1398.49 6098.65 7599.80 12499.99 23
旧先验299.46 22194.21 13799.85 999.95 7396.96 165
新几何299.40 225
无先验99.49 21498.71 6793.46 165100.00 194.36 21099.99 23
原ACMM299.90 91
testdata299.99 3690.54 277
testdata199.28 24596.35 73
plane_prior795.71 30391.59 286
plane_prior597.87 23098.37 23697.79 14289.55 26594.52 274
plane_prior498.59 202
plane_prior391.64 28496.63 6093.01 237
plane_prior299.84 12596.38 69
plane_prior195.73 300
plane_prior91.74 27899.86 11796.76 5589.59 264
n20.00 430
nn0.00 430
door-mid89.69 414
test1198.44 127
door90.31 411
HQP5-MVS91.85 274
HQP-NCC95.78 29399.87 10696.82 5193.37 232
ACMP_Plane95.78 29399.87 10696.82 5193.37 232
BP-MVS97.92 133
HQP4-MVS93.37 23298.39 23094.53 272
HQP3-MVS97.89 22889.60 262
NP-MVS95.77 29691.79 27698.65 197
ACMMP++_ref87.04 296
ACMMP++88.23 285