This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepPCF-MVS81.17 189.72 1091.38 484.72 13493.00 7558.16 31296.72 994.41 4986.50 890.25 2297.83 175.46 1498.67 2592.78 1995.49 1397.32 6
DeepC-MVS_fast79.48 287.95 2288.00 2587.79 3195.86 2768.32 8095.74 2194.11 6183.82 1683.49 7696.19 3264.53 8998.44 3183.42 10194.88 2596.61 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS77.85 385.52 6685.24 6686.37 7888.80 18566.64 12892.15 15093.68 7681.07 4676.91 15493.64 11062.59 11898.44 3185.50 7692.84 5994.03 133
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
IB-MVS77.80 482.18 12780.46 14887.35 4589.14 17770.28 3595.59 2695.17 2278.85 8670.19 23185.82 24670.66 4197.67 5172.19 19166.52 29294.09 129
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HY-MVS76.49 584.28 8583.36 9787.02 5592.22 9567.74 9784.65 30994.50 4479.15 7982.23 8987.93 21566.88 6196.94 10780.53 12482.20 17296.39 33
3Dnovator73.91 682.69 12180.82 13888.31 2689.57 16271.26 2292.60 13594.39 5278.84 8767.89 26392.48 13548.42 27398.52 2868.80 22294.40 3695.15 78
3Dnovator+73.60 782.10 13180.60 14586.60 6890.89 13866.80 12595.20 3493.44 8774.05 15367.42 27092.49 13449.46 26397.65 5570.80 20191.68 7495.33 66
PVSNet73.49 880.05 16778.63 17584.31 15290.92 13764.97 16992.47 14191.05 19879.18 7872.43 20390.51 17337.05 34494.06 22868.06 22686.00 13893.90 140
PCF-MVS73.15 979.29 18077.63 19084.29 15386.06 24965.96 14587.03 29491.10 19269.86 25369.79 23890.64 16957.54 17496.59 11964.37 26582.29 16890.32 220
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ACMP71.68 1075.58 24874.23 24179.62 27784.97 27059.64 29490.80 21489.07 27470.39 24662.95 31287.30 22638.28 32893.87 24172.89 17871.45 25985.36 305
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OpenMVScopyleft70.45 1178.54 19875.92 21786.41 7785.93 25471.68 1892.74 12592.51 12766.49 28664.56 29491.96 14743.88 30698.10 3754.61 31390.65 8989.44 236
TAPA-MVS70.22 1274.94 25573.53 25179.17 28490.40 14652.07 35189.19 26189.61 24962.69 32070.07 23292.67 13048.89 27294.32 21438.26 37979.97 19191.12 212
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMM69.62 1374.34 25872.73 26179.17 28484.25 28357.87 31490.36 23189.93 23663.17 31565.64 28586.04 24537.79 33694.10 22465.89 25171.52 25885.55 301
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PLCcopyleft68.80 1475.23 25173.68 25079.86 27192.93 7658.68 30890.64 22288.30 30060.90 33464.43 29890.53 17242.38 31294.57 20456.52 30676.54 22486.33 279
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PVSNet_068.08 1571.81 28468.32 30082.27 20784.68 27262.31 24388.68 26990.31 22075.84 12957.93 34380.65 31237.85 33594.19 22169.94 20829.05 40990.31 221
ACMH+65.35 1667.65 31864.55 32376.96 31184.59 27557.10 32488.08 27680.79 36458.59 34953.00 36081.09 30726.63 38192.95 25946.51 34761.69 33780.82 355
ACMH63.93 1768.62 30864.81 32080.03 26485.22 26463.25 21787.72 28584.66 34360.83 33551.57 36779.43 32827.29 37994.96 18941.76 36664.84 30581.88 346
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OpenMVS_ROBcopyleft61.12 1866.39 32562.92 33476.80 31376.51 36457.77 31589.22 25983.41 35655.48 36453.86 35877.84 33826.28 38293.95 23734.90 38668.76 27578.68 374
LTVRE_ROB59.60 1966.27 32663.54 33074.45 32884.00 28651.55 35467.08 39583.53 35458.78 34754.94 35380.31 31634.54 35393.23 25340.64 37268.03 28178.58 375
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
COLMAP_ROBcopyleft57.96 2062.98 34459.65 34772.98 34081.44 31353.00 34883.75 31575.53 37948.34 38448.81 37981.40 29924.14 38490.30 31932.95 39160.52 34575.65 385
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CMPMVSbinary48.56 2166.77 32464.41 32673.84 33470.65 38650.31 36277.79 36485.73 33545.54 39144.76 39082.14 28635.40 35090.14 32663.18 27474.54 23481.07 353
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PMVScopyleft26.43 2231.84 38328.16 38642.89 39625.87 42627.58 41750.92 41149.78 41421.37 41214.17 41840.81 4132.01 42566.62 4069.61 41838.88 39634.49 414
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive24.84 2324.35 38519.77 39138.09 39934.56 42526.92 41826.57 41538.87 42211.73 41811.37 41927.44 4151.37 42650.42 41811.41 41614.60 41636.93 412
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
BP-MVS186.54 4586.68 4386.13 8487.80 21567.18 11392.97 11795.62 1079.92 6282.84 8394.14 9974.95 1596.46 12882.91 10488.96 10694.74 97
reproduce_monomvs79.49 17779.11 17180.64 24992.91 7761.47 26091.17 20393.28 9383.09 2064.04 30082.38 28266.19 6794.57 20481.19 12057.71 35585.88 294
mmtdpeth68.33 31266.37 30974.21 33282.81 30151.73 35284.34 31180.42 36667.01 28371.56 21568.58 38230.52 37092.35 28775.89 15736.21 39878.56 376
reproduce_model83.15 11182.96 10483.73 16992.02 10259.74 29390.37 23092.08 14263.70 30782.86 8295.48 5058.62 16297.17 8583.06 10388.42 11194.26 119
reproduce-ours83.51 10483.33 9884.06 15892.18 9860.49 28190.74 21792.04 14464.35 30083.24 7795.59 4759.05 15697.27 8083.61 9789.17 10394.41 116
our_new_method83.51 10483.33 9884.06 15892.18 9860.49 28190.74 21792.04 14464.35 30083.24 7795.59 4759.05 15697.27 8083.61 9789.17 10394.41 116
mmdepth0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
monomultidepth0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
mvs5depth61.03 34957.65 35471.18 35367.16 39447.04 38272.74 37877.49 37157.47 35460.52 32472.53 36522.84 38888.38 33949.15 33338.94 39478.11 379
MVStest151.35 36546.89 36964.74 37165.06 39851.10 35867.33 39472.58 38530.20 40735.30 40274.82 36027.70 37769.89 40224.44 40424.57 41173.22 389
ttmdpeth53.34 36449.96 36763.45 37462.07 40440.04 39972.06 37965.64 40142.54 39951.88 36477.79 33913.94 40676.48 39332.93 39230.82 40873.84 388
WBMVS81.67 13680.98 13783.72 17193.07 7369.40 5394.33 5493.05 10476.84 11772.05 20884.14 26374.49 1993.88 24072.76 18268.09 28087.88 253
dongtai55.18 36255.46 36154.34 38776.03 36936.88 40576.07 37084.61 34451.28 37443.41 39564.61 39156.56 19067.81 40518.09 41028.50 41058.32 403
kuosan60.86 35160.24 34462.71 37681.57 31146.43 38475.70 37385.88 33257.98 35048.95 37869.53 38058.42 16476.53 39228.25 40135.87 39965.15 400
MVSMamba_PlusPlus84.97 7583.65 8588.93 1490.17 15174.04 887.84 28392.69 11862.18 32381.47 9687.64 22071.47 3996.28 13384.69 8694.74 3196.47 28
MGCFI-Net85.59 6585.73 6085.17 11891.41 12762.44 23792.87 12191.31 18179.65 6886.99 4495.14 6762.90 11696.12 14087.13 6484.13 15796.96 13
testing9185.93 5685.31 6587.78 3293.59 5771.47 1993.50 9895.08 2680.26 5680.53 10991.93 14970.43 4296.51 12580.32 12682.13 17395.37 63
testing1186.71 4386.44 4587.55 4093.54 5971.35 2193.65 8995.58 1181.36 4380.69 10692.21 14372.30 3396.46 12885.18 8083.43 15994.82 95
testing9986.01 5485.47 6287.63 3893.62 5571.25 2393.47 10195.23 1980.42 5480.60 10891.95 14871.73 3896.50 12680.02 12882.22 17195.13 79
UBG86.83 3986.70 4287.20 4893.07 7369.81 4693.43 10395.56 1381.52 3681.50 9492.12 14473.58 2696.28 13384.37 9085.20 14395.51 58
UWE-MVS80.81 15381.01 13680.20 25989.33 16957.05 32591.91 16594.71 3675.67 13175.01 17289.37 19363.13 11291.44 31267.19 23782.80 16692.12 194
ETVMVS84.22 8983.71 8385.76 9792.58 8968.25 8592.45 14295.53 1579.54 7079.46 12291.64 15670.29 4394.18 22269.16 21782.76 16794.84 92
sasdasda86.85 3786.25 4888.66 2091.80 11371.92 1693.54 9591.71 16480.26 5687.55 3795.25 6163.59 10396.93 10988.18 5084.34 15097.11 9
testing22285.18 7084.69 7586.63 6792.91 7769.91 4292.61 13495.80 980.31 5580.38 11192.27 14068.73 4895.19 18375.94 15683.27 16194.81 96
WB-MVSnew77.14 21976.18 21480.01 26586.18 24763.24 21891.26 19694.11 6171.72 21673.52 18687.29 22745.14 30193.00 25756.98 30579.42 19583.80 319
fmvsm_l_conf0.5_n_a87.44 3088.15 2485.30 11287.10 23064.19 19194.41 5288.14 30580.24 5992.54 596.97 1069.52 4797.17 8595.89 388.51 11094.56 106
fmvsm_l_conf0.5_n87.49 2888.19 2385.39 10886.95 23364.37 18494.30 5588.45 29680.51 5192.70 496.86 1569.98 4597.15 8995.83 488.08 11594.65 103
fmvsm_s_conf0.1_n_a84.76 7784.84 7484.53 14380.23 32763.50 21392.79 12388.73 28780.46 5289.84 2796.65 2260.96 13497.57 6193.80 1380.14 19092.53 179
fmvsm_s_conf0.1_n85.61 6485.93 5584.68 13782.95 30063.48 21494.03 6889.46 25281.69 3489.86 2696.74 2061.85 12697.75 4994.74 982.01 17592.81 172
fmvsm_s_conf0.5_n_a85.75 6086.09 5284.72 13485.73 25763.58 20993.79 8389.32 25881.42 4190.21 2396.91 1462.41 12097.67 5194.48 1080.56 18892.90 170
fmvsm_s_conf0.5_n86.39 4786.91 3884.82 12787.36 22563.54 21294.74 4790.02 23482.52 2590.14 2596.92 1362.93 11597.84 4695.28 882.26 16993.07 164
MM90.87 291.52 288.92 1592.12 10071.10 2797.02 396.04 688.70 291.57 1496.19 3270.12 4498.91 1896.83 195.06 1796.76 15
WAC-MVS49.45 36731.56 399
Syy-MVS69.65 30069.52 29270.03 35787.87 21143.21 39388.07 27789.01 27672.91 17963.11 30988.10 21145.28 30085.54 36022.07 40769.23 27181.32 350
test_fmvsmconf0.1_n85.71 6186.08 5384.62 14180.83 31762.33 24193.84 8088.81 28483.50 1987.00 4396.01 3763.36 10796.93 10994.04 1287.29 12494.61 105
test_fmvsmconf0.01_n83.70 10283.52 8684.25 15575.26 37061.72 25592.17 14987.24 31882.36 2784.91 6495.41 5155.60 20096.83 11492.85 1885.87 13994.21 122
myMVS_eth3d72.58 28272.74 26072.10 34987.87 21149.45 36788.07 27789.01 27672.91 17963.11 30988.10 21163.63 10085.54 36032.73 39469.23 27181.32 350
testing370.38 29470.83 27969.03 36185.82 25543.93 39290.72 21990.56 21068.06 27260.24 32686.82 23564.83 8484.12 36626.33 40264.10 31479.04 371
SSC-MVS44.51 37243.35 37447.99 39461.01 40618.90 42574.12 37654.36 41043.42 39734.10 40560.02 39934.42 35470.39 4019.14 41919.57 41354.68 406
test_fmvsmconf_n86.58 4487.17 3484.82 12785.28 26362.55 23694.26 5789.78 24083.81 1787.78 3696.33 2965.33 7796.98 10194.40 1187.55 12194.95 87
WB-MVS46.23 37044.94 37250.11 39062.13 40321.23 42376.48 36855.49 40945.89 39035.78 40161.44 39835.54 34972.83 3989.96 41721.75 41256.27 405
test_fmvsmvis_n_192083.80 9883.48 8984.77 13182.51 30363.72 20291.37 19083.99 35281.42 4177.68 14395.74 4258.37 16597.58 5993.38 1486.87 12793.00 167
dmvs_re76.93 22375.36 22481.61 22687.78 21660.71 27680.00 35387.99 30979.42 7269.02 24589.47 19246.77 28594.32 21463.38 27174.45 23589.81 227
SDMVSNet80.26 16278.88 17384.40 14889.25 17267.63 10185.35 30593.02 10576.77 12070.84 22287.12 22947.95 27996.09 14285.04 8174.55 23289.48 234
dmvs_testset65.55 33166.45 30762.86 37579.87 33022.35 42176.55 36771.74 38977.42 11255.85 35087.77 21851.39 24580.69 38831.51 40065.92 29585.55 301
sd_testset77.08 22175.37 22382.20 21189.25 17262.11 24682.06 33289.09 27276.77 12070.84 22287.12 22941.43 31595.01 18767.23 23674.55 23289.48 234
test_fmvsm_n_192087.69 2688.50 1985.27 11487.05 23263.55 21193.69 8791.08 19584.18 1390.17 2497.04 867.58 5797.99 3995.72 590.03 9594.26 119
test_cas_vis1_n_192080.45 15980.61 14479.97 26878.25 35357.01 32794.04 6788.33 29979.06 8482.81 8593.70 10838.65 32491.63 30490.82 3679.81 19291.27 210
test_vis1_n_192081.66 13782.01 12180.64 24982.24 30555.09 33994.76 4686.87 32081.67 3584.40 6994.63 8038.17 32994.67 20191.98 2783.34 16092.16 193
test_vis1_n71.63 28670.73 28274.31 33169.63 38947.29 37986.91 29672.11 38763.21 31475.18 17090.17 18220.40 39385.76 35984.59 8874.42 23689.87 226
test_fmvs1_n72.69 28071.92 27174.99 32471.15 38347.08 38087.34 29275.67 37663.48 31078.08 14091.17 16420.16 39587.87 34484.65 8775.57 23090.01 225
mvsany_test168.77 30768.56 29669.39 35973.57 37645.88 38780.93 34360.88 40759.65 34371.56 21590.26 18043.22 30975.05 39474.26 17262.70 32387.25 266
APD_test140.50 37537.31 37850.09 39151.88 41135.27 40859.45 40552.59 41221.64 41126.12 40957.80 4014.56 41966.56 40722.64 40639.09 39348.43 407
test_vis1_rt59.09 35757.31 35664.43 37268.44 39246.02 38683.05 32748.63 41651.96 37249.57 37563.86 39216.30 39880.20 38971.21 19862.79 32267.07 399
test_vis3_rt40.46 37637.79 37748.47 39344.49 41833.35 41066.56 39632.84 42432.39 40529.65 40639.13 4143.91 42268.65 40350.17 32740.99 39143.40 409
test_fmvs265.78 33064.84 31968.60 36366.54 39541.71 39583.27 32169.81 39454.38 36667.91 26184.54 26015.35 40081.22 38775.65 15966.16 29382.88 332
test_fmvs174.07 26173.69 24975.22 32178.91 34547.34 37889.06 26574.69 38163.68 30879.41 12391.59 15724.36 38387.77 34785.22 7876.26 22690.55 219
test_fmvs356.82 35854.86 36262.69 37753.59 41035.47 40775.87 37165.64 40143.91 39555.10 35271.43 3766.91 41574.40 39768.64 22352.63 36978.20 378
mvsany_test348.86 36846.35 37156.41 38146.00 41631.67 41262.26 40047.25 41743.71 39645.54 38868.15 38410.84 40864.44 41357.95 30135.44 40273.13 390
testf132.77 38129.47 38442.67 39741.89 42030.81 41352.07 40843.45 41815.45 41418.52 41444.82 4082.12 42358.38 41416.05 41230.87 40638.83 410
APD_test232.77 38129.47 38442.67 39741.89 42030.81 41352.07 40843.45 41815.45 41418.52 41444.82 4082.12 42358.38 41416.05 41230.87 40638.83 410
test_f46.58 36943.45 37355.96 38245.18 41732.05 41161.18 40149.49 41533.39 40442.05 39762.48 3957.00 41465.56 40947.08 34643.21 38770.27 396
FE-MVS75.97 24073.02 25684.82 12789.78 15765.56 15477.44 36591.07 19664.55 29872.66 19579.85 32346.05 29596.69 11754.97 31280.82 18692.21 191
FA-MVS(test-final)79.12 18377.23 19984.81 13090.54 14363.98 19581.35 34091.71 16471.09 23574.85 17482.94 27552.85 23197.05 9267.97 22781.73 17993.41 151
balanced_conf0389.08 1588.84 1789.81 693.66 5475.15 590.61 22593.43 8884.06 1486.20 4990.17 18272.42 3296.98 10193.09 1695.92 1097.29 7
MonoMVSNet76.99 22275.08 22882.73 19383.32 29463.24 21886.47 30186.37 32479.08 8266.31 28279.30 32949.80 26191.72 30179.37 13265.70 29693.23 157
patch_mono-289.71 1190.99 685.85 9396.04 2463.70 20495.04 4095.19 2086.74 791.53 1595.15 6673.86 2297.58 5993.38 1492.00 6996.28 37
EGC-MVSNET42.35 37338.09 37655.11 38474.57 37246.62 38371.63 38255.77 4080.04 4220.24 42362.70 39414.24 40474.91 39617.59 41146.06 38243.80 408
test250683.29 10882.92 10784.37 15088.39 19563.18 22292.01 15991.35 18077.66 10578.49 13791.42 15964.58 8895.09 18573.19 17589.23 10094.85 89
test111180.84 15280.02 15183.33 18287.87 21160.76 27392.62 13386.86 32177.86 10175.73 16291.39 16146.35 29094.70 20072.79 18188.68 10994.52 111
ECVR-MVScopyleft81.29 14380.38 14984.01 16388.39 19561.96 24992.56 14086.79 32277.66 10576.63 15591.42 15946.34 29195.24 18274.36 17189.23 10094.85 89
test_blank0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
tt080573.07 27070.73 28280.07 26278.37 35257.05 32587.78 28492.18 14061.23 33367.04 27586.49 23831.35 36694.58 20265.06 26167.12 28788.57 244
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4293.96 7094.37 5372.48 18892.07 996.85 1683.82 299.15 291.53 3097.42 497.55 4
FOURS193.95 4661.77 25293.96 7091.92 15162.14 32586.57 46
MSC_two_6792asdad89.60 997.31 473.22 1295.05 2799.07 1392.01 2594.77 2696.51 24
PC_three_145280.91 4894.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
No_MVS89.60 997.31 473.22 1295.05 2799.07 1392.01 2594.77 2696.51 24
test_one_060196.32 1869.74 4994.18 5871.42 22990.67 1996.85 1674.45 20
eth-test20.00 430
eth-test0.00 430
GeoE78.90 18877.43 19383.29 18388.95 18162.02 24792.31 14486.23 32870.24 24871.34 21989.27 19454.43 21594.04 23163.31 27280.81 18793.81 143
test_method38.59 37835.16 38148.89 39254.33 40921.35 42245.32 41353.71 4117.41 41928.74 40751.62 4038.70 41252.87 41633.73 38732.89 40472.47 392
Anonymous2024052162.09 34559.08 34971.10 35467.19 39348.72 37283.91 31485.23 33850.38 37847.84 38171.22 37720.74 39285.51 36246.47 34858.75 35379.06 370
h-mvs3383.01 11482.56 11484.35 15189.34 16762.02 24792.72 12693.76 7081.45 3882.73 8692.25 14260.11 14297.13 9087.69 5562.96 32093.91 138
hse-mvs281.12 14781.11 13481.16 23686.52 24057.48 32089.40 25691.16 18881.45 3882.73 8690.49 17460.11 14294.58 20287.69 5560.41 34791.41 203
CL-MVSNet_self_test69.92 29768.09 30175.41 32073.25 37755.90 33490.05 24189.90 23769.96 25161.96 32076.54 34951.05 24987.64 34849.51 33250.59 37582.70 338
KD-MVS_2432*160069.03 30566.37 30977.01 30985.56 25961.06 26681.44 33890.25 22367.27 27958.00 34176.53 35054.49 21287.63 34948.04 33935.77 40082.34 342
KD-MVS_self_test60.87 35058.60 35067.68 36666.13 39639.93 40175.63 37484.70 34257.32 35549.57 37568.45 38329.55 37182.87 37848.09 33847.94 37980.25 363
AUN-MVS78.37 20077.43 19381.17 23586.60 23957.45 32189.46 25591.16 18874.11 15274.40 17790.49 17455.52 20194.57 20474.73 17060.43 34691.48 201
ZD-MVS96.63 965.50 15793.50 8470.74 24385.26 6295.19 6564.92 8397.29 7687.51 5793.01 56
SR-MVS-dyc-post81.06 14880.70 14182.15 21392.02 10258.56 30990.90 20990.45 21162.76 31878.89 12994.46 8351.26 24895.61 16678.77 14186.77 13192.28 186
RE-MVS-def80.48 14792.02 10258.56 30990.90 20990.45 21162.76 31878.89 12994.46 8349.30 26578.77 14186.77 13192.28 186
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5596.89 694.44 4771.65 21892.11 797.21 476.79 999.11 692.34 2295.36 1497.62 2
IU-MVS96.46 1169.91 4295.18 2180.75 4995.28 192.34 2295.36 1496.47 28
OPU-MVS89.97 397.52 373.15 1496.89 697.00 983.82 299.15 295.72 597.63 397.62 2
test_241102_TWO94.41 4971.65 21892.07 997.21 474.58 1899.11 692.34 2295.36 1496.59 19
test_241102_ONE96.45 1269.38 5594.44 4771.65 21892.11 797.05 776.79 999.11 6
SF-MVS87.03 3587.09 3586.84 5992.70 8567.45 10793.64 9093.76 7070.78 24286.25 4796.44 2666.98 6097.79 4788.68 4994.56 3495.28 72
cl2277.94 20876.78 20581.42 23087.57 21864.93 17190.67 22088.86 28372.45 19067.63 26782.68 27964.07 9292.91 26471.79 19265.30 29886.44 278
miper_ehance_all_eth77.60 21276.44 20981.09 24285.70 25864.41 18290.65 22188.64 29272.31 19467.37 27382.52 28064.77 8692.64 27770.67 20365.30 29886.24 282
miper_enhance_ethall78.86 18977.97 18581.54 22888.00 20865.17 16391.41 18389.15 26775.19 13968.79 25083.98 26667.17 5992.82 26672.73 18365.30 29886.62 277
ZNCC-MVS85.33 6885.08 6986.06 8593.09 7265.65 15193.89 7593.41 9073.75 16279.94 11694.68 7960.61 13898.03 3882.63 10793.72 4694.52 111
dcpmvs_287.37 3187.55 3086.85 5895.04 3268.20 8790.36 23190.66 20779.37 7481.20 9893.67 10974.73 1696.55 12390.88 3592.00 6995.82 48
cl____76.07 23474.67 23080.28 25685.15 26561.76 25390.12 23888.73 28771.16 23265.43 28681.57 29561.15 13092.95 25966.54 24362.17 32886.13 286
DIV-MVS_self_test76.07 23474.67 23080.28 25685.14 26661.75 25490.12 23888.73 28771.16 23265.42 28781.60 29461.15 13092.94 26366.54 24362.16 33086.14 284
eth_miper_zixun_eth75.96 24174.40 23880.66 24884.66 27363.02 22489.28 25888.27 30271.88 20865.73 28481.65 29259.45 15092.81 26768.13 22560.53 34486.14 284
9.1487.63 2893.86 4894.41 5294.18 5872.76 18386.21 4896.51 2466.64 6397.88 4490.08 3994.04 39
uanet_test0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
DCPMVS0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
save fliter93.84 4967.89 9495.05 3992.66 12078.19 95
ET-MVSNet_ETH3D84.01 9383.15 10386.58 7090.78 14170.89 2894.74 4794.62 4181.44 4058.19 33893.64 11073.64 2592.35 28782.66 10678.66 20596.50 27
UniMVSNet_ETH3D72.74 27770.53 28479.36 28178.62 35056.64 32985.01 30789.20 26363.77 30664.84 29284.44 26134.05 35591.86 29863.94 26770.89 26389.57 232
EIA-MVS84.84 7684.88 7284.69 13691.30 12962.36 24093.85 7792.04 14479.45 7179.33 12594.28 9562.42 11996.35 13180.05 12791.25 8395.38 62
miper_refine_blended69.03 30566.37 30977.01 30985.56 25961.06 26681.44 33890.25 22367.27 27958.00 34176.53 35054.49 21287.63 34948.04 33935.77 40082.34 342
miper_lstm_enhance73.05 27171.73 27477.03 30883.80 28758.32 31181.76 33388.88 28169.80 25461.01 32178.23 33557.19 17687.51 35165.34 25959.53 34985.27 308
ETV-MVS86.01 5486.11 5185.70 10090.21 15067.02 11993.43 10391.92 15181.21 4584.13 7394.07 10260.93 13595.63 16489.28 4389.81 9694.46 115
CS-MVS85.80 5986.65 4483.27 18492.00 10658.92 30595.31 3191.86 15679.97 6184.82 6595.40 5262.26 12195.51 17486.11 7392.08 6895.37 63
D2MVS73.80 26572.02 27079.15 28679.15 34062.97 22588.58 27190.07 23072.94 17759.22 33278.30 33342.31 31392.70 27365.59 25672.00 25481.79 347
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3896.64 1094.52 4371.92 20490.55 2096.93 1173.77 2399.08 1191.91 2894.90 2296.29 35
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD72.48 18890.55 2096.93 1176.24 1199.08 1191.53 3094.99 1896.43 31
test_0728_SECOND88.70 1896.45 1270.43 3396.64 1094.37 5399.15 291.91 2894.90 2296.51 24
test072696.40 1569.99 3896.76 894.33 5571.92 20491.89 1197.11 673.77 23
SR-MVS82.81 11782.58 11383.50 17993.35 6361.16 26592.23 14891.28 18564.48 29981.27 9795.28 5753.71 22395.86 15282.87 10588.77 10893.49 150
DPM-MVS90.70 390.52 991.24 189.68 16076.68 297.29 195.35 1682.87 2291.58 1397.22 379.93 599.10 983.12 10297.64 297.94 1
GST-MVS84.63 8084.29 7985.66 10192.82 8165.27 16093.04 11493.13 10173.20 17178.89 12994.18 9859.41 15297.85 4581.45 11592.48 6393.86 141
test_yl84.28 8583.16 10187.64 3494.52 3769.24 5995.78 1895.09 2469.19 26181.09 10092.88 12657.00 18097.44 6681.11 12181.76 17796.23 38
thisisatest053081.15 14480.07 15084.39 14988.26 19965.63 15291.40 18594.62 4171.27 23170.93 22189.18 19572.47 3196.04 14765.62 25576.89 22291.49 200
Anonymous2024052976.84 22674.15 24284.88 12591.02 13464.95 17093.84 8091.09 19353.57 36873.00 18987.42 22435.91 34897.32 7469.14 21872.41 25392.36 182
Anonymous20240521177.96 20775.33 22585.87 9193.73 5364.52 17494.85 4485.36 33762.52 32176.11 15990.18 18129.43 37397.29 7668.51 22477.24 22095.81 49
DCV-MVSNet84.28 8583.16 10187.64 3494.52 3769.24 5995.78 1895.09 2469.19 26181.09 10092.88 12657.00 18097.44 6681.11 12181.76 17796.23 38
tttt051779.50 17678.53 17782.41 20487.22 22761.43 26189.75 24994.76 3369.29 25967.91 26188.06 21472.92 2895.63 16462.91 27673.90 24290.16 222
our_test_368.29 31364.69 32279.11 28778.92 34364.85 17288.40 27485.06 33960.32 33952.68 36176.12 35440.81 31789.80 33144.25 35855.65 36182.67 340
thisisatest051583.41 10682.49 11586.16 8389.46 16668.26 8393.54 9594.70 3774.31 14975.75 16190.92 16672.62 3096.52 12469.64 20981.50 18093.71 144
ppachtmachnet_test67.72 31763.70 32979.77 27478.92 34366.04 14288.68 26982.90 36060.11 34155.45 35175.96 35539.19 32190.55 31639.53 37452.55 37182.71 337
SMA-MVScopyleft88.14 1888.29 2287.67 3393.21 6768.72 7293.85 7794.03 6374.18 15191.74 1296.67 2165.61 7598.42 3389.24 4496.08 795.88 47
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS94.68 100
DPE-MVScopyleft88.77 1789.21 1687.45 4396.26 2067.56 10294.17 5894.15 6068.77 26790.74 1897.27 276.09 1298.49 2990.58 3894.91 2196.30 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part296.29 1968.16 8890.78 17
thres100view90078.37 20077.01 20282.46 20091.89 11163.21 22091.19 20296.33 172.28 19670.45 22787.89 21660.31 13995.32 17845.16 35377.58 21388.83 238
tfpnnormal70.10 29567.36 30478.32 29283.45 29360.97 26888.85 26692.77 11464.85 29760.83 32378.53 33243.52 30893.48 24931.73 39761.70 33680.52 359
tfpn200view978.79 19277.43 19382.88 19092.21 9664.49 17592.05 15796.28 473.48 16871.75 21288.26 20760.07 14495.32 17845.16 35377.58 21388.83 238
c3_l76.83 22775.47 22280.93 24685.02 26964.18 19290.39 22988.11 30671.66 21766.65 28181.64 29363.58 10592.56 27869.31 21562.86 32186.04 288
CHOSEN 280x42077.35 21676.95 20478.55 29087.07 23162.68 23569.71 38682.95 35968.80 26671.48 21787.27 22866.03 7084.00 37076.47 15482.81 16588.95 237
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1393.78 6786.89 689.68 2895.78 4065.94 7199.10 992.99 1793.91 4296.58 21
Fast-Effi-MVS+-dtu75.04 25373.37 25380.07 26280.86 31659.52 29791.20 20185.38 33671.90 20665.20 28884.84 25541.46 31492.97 25866.50 24572.96 24787.73 255
Effi-MVS+-dtu76.14 23375.28 22678.72 28983.22 29555.17 33889.87 24687.78 31275.42 13567.98 25981.43 29745.08 30292.52 28075.08 16471.63 25688.48 246
CANet_DTU84.09 9283.52 8685.81 9490.30 14866.82 12391.87 16789.01 27685.27 986.09 5193.74 10747.71 28296.98 10177.90 14789.78 9893.65 146
MVS_030490.32 690.90 788.55 2394.05 4570.23 3697.00 593.73 7487.30 492.15 696.15 3466.38 6698.94 1796.71 294.67 3396.47 28
MP-MVS-pluss85.24 6985.13 6885.56 10391.42 12465.59 15391.54 18192.51 12774.56 14580.62 10795.64 4459.15 15597.00 9786.94 6793.80 4394.07 131
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS90.38 591.87 185.88 9092.83 7964.03 19493.06 11294.33 5582.19 2993.65 396.15 3485.89 197.19 8491.02 3497.75 196.43 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs157.85 17094.68 100
sam_mvs54.91 209
IterMVS-SCA-FT71.55 28769.97 28776.32 31581.48 31260.67 27887.64 28885.99 33166.17 28859.50 33078.88 33045.53 29783.65 37262.58 27961.93 33184.63 314
TSAR-MVS + MP.88.11 2088.64 1886.54 7291.73 11568.04 9090.36 23193.55 8182.89 2191.29 1692.89 12572.27 3496.03 14887.99 5294.77 2695.54 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu82.16 12881.12 13185.26 11586.42 24168.72 7292.59 13790.44 21473.12 17484.20 7094.36 8738.04 33295.73 15884.12 9286.81 12891.33 204
OPM-MVS79.00 18578.09 18281.73 22383.52 29263.83 19791.64 18090.30 22176.36 12671.97 20989.93 18846.30 29395.17 18475.10 16377.70 21186.19 283
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP86.05 5385.80 5886.80 6291.58 11967.53 10491.79 17193.49 8574.93 14284.61 6695.30 5659.42 15197.92 4186.13 7294.92 2094.94 88
ambc69.61 35861.38 40541.35 39649.07 41285.86 33450.18 37466.40 38610.16 40988.14 34245.73 35244.20 38479.32 369
MTGPAbinary92.23 133
SPE-MVS-test86.14 5287.01 3683.52 17692.63 8759.36 30195.49 2791.92 15180.09 6085.46 5995.53 4961.82 12795.77 15686.77 6993.37 5295.41 60
Effi-MVS+83.82 9782.76 11086.99 5689.56 16369.40 5391.35 19286.12 33072.59 18583.22 8092.81 12959.60 14996.01 15081.76 11287.80 11895.56 56
xiu_mvs_v2_base87.92 2387.38 3389.55 1291.41 12776.43 395.74 2193.12 10283.53 1889.55 2995.95 3853.45 22897.68 5091.07 3392.62 6094.54 109
xiu_mvs_v1_base82.16 12881.12 13185.26 11586.42 24168.72 7292.59 13790.44 21473.12 17484.20 7094.36 8738.04 33295.73 15884.12 9286.81 12891.33 204
new-patchmatchnet59.30 35656.48 35867.79 36565.86 39744.19 38982.47 33081.77 36159.94 34243.65 39466.20 38727.67 37881.68 38539.34 37541.40 38977.50 381
pmmvs667.57 31964.76 32176.00 31872.82 38053.37 34688.71 26886.78 32353.19 36957.58 34678.03 33735.33 35192.41 28355.56 31054.88 36582.21 344
pmmvs573.35 26871.52 27578.86 28878.64 34960.61 28091.08 20586.90 31967.69 27463.32 30783.64 26844.33 30590.53 31762.04 28266.02 29485.46 303
test_post178.95 35620.70 41953.05 22991.50 31160.43 290
test_post23.01 41656.49 19192.67 274
Fast-Effi-MVS+81.14 14580.01 15284.51 14590.24 14965.86 14794.12 6289.15 26773.81 16175.37 16988.26 20757.26 17594.53 20966.97 24084.92 14593.15 160
patchmatchnet-post67.62 38557.62 17390.25 320
Anonymous2023121173.08 26970.39 28581.13 23790.62 14263.33 21691.40 18590.06 23251.84 37364.46 29780.67 31136.49 34694.07 22763.83 26864.17 31385.98 290
pmmvs-eth3d65.53 33262.32 33875.19 32269.39 39059.59 29582.80 32983.43 35562.52 32151.30 36972.49 36632.86 35787.16 35455.32 31150.73 37478.83 373
GG-mvs-BLEND86.53 7391.91 11069.67 5275.02 37594.75 3478.67 13690.85 16877.91 794.56 20772.25 18893.74 4595.36 65
xiu_mvs_v1_base_debi82.16 12881.12 13185.26 11586.42 24168.72 7292.59 13790.44 21473.12 17484.20 7094.36 8738.04 33295.73 15884.12 9286.81 12891.33 204
Anonymous2023120667.53 32065.78 31272.79 34274.95 37147.59 37688.23 27587.32 31561.75 33158.07 34077.29 34337.79 33687.29 35342.91 36163.71 31883.48 324
MTAPA83.91 9583.38 9685.50 10491.89 11165.16 16481.75 33492.23 13375.32 13780.53 10995.21 6456.06 19697.16 8884.86 8592.55 6294.18 123
MTMP93.77 8432.52 425
gm-plane-assit88.42 19367.04 11878.62 9191.83 15197.37 7076.57 153
test9_res89.41 4094.96 1995.29 70
MVP-Stereo77.12 22076.23 21279.79 27381.72 31066.34 13689.29 25790.88 20170.56 24562.01 31982.88 27649.34 26494.13 22365.55 25793.80 4378.88 372
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST994.18 4167.28 10994.16 5993.51 8271.75 21585.52 5795.33 5468.01 5397.27 80
train_agg87.21 3387.42 3286.60 6894.18 4167.28 10994.16 5993.51 8271.87 20985.52 5795.33 5468.19 5197.27 8089.09 4594.90 2295.25 76
gg-mvs-nofinetune77.18 21874.31 23985.80 9591.42 12468.36 7971.78 38094.72 3549.61 38077.12 15145.92 40677.41 893.98 23567.62 23293.16 5595.05 83
SCA75.82 24372.76 25985.01 12286.63 23870.08 3781.06 34289.19 26471.60 22370.01 23377.09 34645.53 29790.25 32060.43 29073.27 24494.68 100
Patchmatch-test65.86 32860.94 34380.62 25183.75 28858.83 30658.91 40675.26 38044.50 39450.95 37177.09 34658.81 16187.90 34335.13 38564.03 31595.12 80
test_894.19 4067.19 11194.15 6193.42 8971.87 20985.38 6095.35 5368.19 5196.95 106
MS-PatchMatch77.90 21076.50 20882.12 21585.99 25069.95 4191.75 17692.70 11673.97 15662.58 31684.44 26141.11 31695.78 15463.76 26992.17 6680.62 358
Patchmatch-RL test68.17 31464.49 32579.19 28371.22 38253.93 34470.07 38571.54 39169.22 26056.79 34862.89 39356.58 18988.61 33569.53 21252.61 37095.03 85
cdsmvs_eth3d_5k19.86 38826.47 3870.00 4070.00 4300.00 4320.00 41893.45 860.00 4250.00 42695.27 5949.56 2620.00 4260.00 4250.00 4230.00 422
pcd_1.5k_mvsjas4.46 3935.95 3960.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 42553.55 2240.00 4260.00 4250.00 4230.00 422
agg_prior286.41 7094.75 3095.33 66
agg_prior94.16 4366.97 12093.31 9284.49 6896.75 116
tmp_tt22.26 38723.75 38917.80 4035.23 42712.06 42835.26 41439.48 4212.82 42118.94 41244.20 41022.23 39024.64 42236.30 3809.31 41916.69 416
canonicalmvs86.85 3786.25 4888.66 2091.80 11371.92 1693.54 9591.71 16480.26 5687.55 3795.25 6163.59 10396.93 10988.18 5084.34 15097.11 9
anonymousdsp71.14 28969.37 29376.45 31472.95 37854.71 34184.19 31288.88 28161.92 32862.15 31879.77 32438.14 33191.44 31268.90 22167.45 28683.21 329
alignmvs87.28 3286.97 3788.24 2791.30 12971.14 2695.61 2593.56 8079.30 7587.07 4295.25 6168.43 4996.93 10987.87 5384.33 15296.65 17
nrg03080.93 15079.86 15584.13 15783.69 28968.83 6893.23 10891.20 18675.55 13375.06 17188.22 21063.04 11494.74 19681.88 11166.88 28988.82 240
v14419276.05 23774.03 24482.12 21579.50 33566.55 13291.39 18789.71 24872.30 19568.17 25781.33 30051.75 24194.03 23367.94 22864.19 31285.77 296
FIs79.47 17879.41 16479.67 27585.95 25159.40 29891.68 17893.94 6478.06 9768.96 24788.28 20566.61 6491.77 30066.20 24974.99 23187.82 254
v192192075.63 24773.49 25282.06 21979.38 33666.35 13591.07 20789.48 25171.98 20367.99 25881.22 30349.16 26993.90 23966.56 24264.56 31085.92 293
UA-Net80.02 16879.65 15881.11 23889.33 16957.72 31686.33 30289.00 27977.44 11081.01 10289.15 19659.33 15395.90 15161.01 28784.28 15489.73 230
v119275.98 23973.92 24682.15 21379.73 33166.24 13991.22 19989.75 24272.67 18468.49 25581.42 29849.86 25994.27 21867.08 23865.02 30385.95 291
FC-MVSNet-test77.99 20678.08 18377.70 29884.89 27155.51 33690.27 23493.75 7376.87 11566.80 28087.59 22165.71 7490.23 32462.89 27773.94 24087.37 261
v114476.73 22974.88 22982.27 20780.23 32766.60 13091.68 17890.21 22773.69 16469.06 24481.89 28852.73 23394.40 21369.21 21665.23 30185.80 295
sosnet-low-res0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
HFP-MVS84.73 7884.40 7885.72 9993.75 5265.01 16893.50 9893.19 9872.19 19879.22 12694.93 7159.04 15897.67 5181.55 11392.21 6494.49 114
v14876.19 23274.47 23781.36 23180.05 32964.44 17991.75 17690.23 22573.68 16567.13 27480.84 30855.92 19893.86 24368.95 22061.73 33585.76 298
sosnet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
uncertanet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
AllTest61.66 34658.06 35172.46 34479.57 33251.42 35680.17 35068.61 39651.25 37545.88 38481.23 30119.86 39686.58 35638.98 37657.01 35879.39 367
TestCases72.46 34479.57 33251.42 35668.61 39651.25 37545.88 38481.23 30119.86 39686.58 35638.98 37657.01 35879.39 367
v7n71.31 28868.65 29579.28 28276.40 36560.77 27286.71 29989.45 25364.17 30358.77 33778.24 33444.59 30493.54 24757.76 30261.75 33483.52 323
region2R84.36 8384.03 8185.36 11093.54 5964.31 18793.43 10392.95 10972.16 20178.86 13394.84 7556.97 18297.53 6381.38 11792.11 6794.24 121
RRT-MVS82.61 12281.16 12986.96 5791.10 13368.75 7087.70 28692.20 13776.97 11472.68 19487.10 23151.30 24796.41 13083.56 9987.84 11795.74 50
mamv465.18 33367.43 30358.44 37977.88 35949.36 37069.40 38770.99 39248.31 38557.78 34485.53 24959.01 15951.88 41773.67 17464.32 31174.07 387
PS-MVSNAJss77.26 21776.31 21180.13 26180.64 32159.16 30390.63 22491.06 19772.80 18268.58 25484.57 25953.55 22493.96 23672.97 17771.96 25587.27 265
PS-MVSNAJ88.14 1887.61 2989.71 792.06 10176.72 195.75 2093.26 9483.86 1589.55 2996.06 3653.55 22497.89 4391.10 3293.31 5394.54 109
jajsoiax73.05 27171.51 27677.67 29977.46 36054.83 34088.81 26790.04 23369.13 26362.85 31483.51 27031.16 36792.75 27070.83 20069.80 26485.43 304
mvs_tets72.71 27871.11 27777.52 30077.41 36154.52 34288.45 27389.76 24168.76 26862.70 31583.26 27329.49 37292.71 27170.51 20669.62 26685.34 306
EI-MVSNet-UG-set83.14 11282.96 10483.67 17492.28 9363.19 22191.38 18994.68 3879.22 7776.60 15693.75 10662.64 11797.76 4878.07 14678.01 20890.05 224
EI-MVSNet-Vis-set83.77 9983.67 8484.06 15892.79 8463.56 21091.76 17494.81 3279.65 6877.87 14194.09 10063.35 10897.90 4279.35 13379.36 19790.74 215
HPM-MVS++copyleft89.37 1489.95 1387.64 3495.10 3068.23 8695.24 3394.49 4582.43 2688.90 3296.35 2771.89 3798.63 2688.76 4896.40 696.06 41
test_prior467.18 11393.92 73
XVS83.87 9683.47 9085.05 12093.22 6563.78 19892.92 11992.66 12073.99 15478.18 13894.31 9455.25 20297.41 6879.16 13591.58 7693.95 136
v124075.21 25272.98 25781.88 22179.20 33866.00 14390.75 21689.11 27171.63 22267.41 27181.22 30347.36 28393.87 24165.46 25864.72 30885.77 296
pm-mvs172.89 27471.09 27878.26 29479.10 34257.62 31890.80 21489.30 25967.66 27562.91 31381.78 29049.11 27092.95 25960.29 29258.89 35284.22 315
test_prior295.10 3875.40 13685.25 6395.61 4567.94 5487.47 5994.77 26
X-MVStestdata76.86 22474.13 24385.05 12093.22 6563.78 19892.92 11992.66 12073.99 15478.18 13810.19 42155.25 20297.41 6879.16 13591.58 7693.95 136
test_prior86.42 7694.71 3567.35 10893.10 10396.84 11395.05 83
旧先验292.00 16259.37 34587.54 3993.47 25075.39 161
新几何291.41 183
新几何184.73 13392.32 9264.28 18891.46 17759.56 34479.77 11892.90 12456.95 18396.57 12163.40 27092.91 5893.34 153
旧先验191.94 10760.74 27591.50 17594.36 8765.23 7891.84 7194.55 107
无先验92.71 12792.61 12462.03 32697.01 9666.63 24193.97 135
原ACMM292.01 159
原ACMM184.42 14793.21 6764.27 18993.40 9165.39 29379.51 12192.50 13258.11 16996.69 11765.27 26093.96 4092.32 184
test22289.77 15861.60 25789.55 25189.42 25556.83 35977.28 14992.43 13652.76 23291.14 8593.09 162
testdata296.09 14261.26 286
segment_acmp65.94 71
testdata81.34 23289.02 17957.72 31689.84 23958.65 34885.32 6194.09 10057.03 17893.28 25269.34 21490.56 9193.03 165
testdata189.21 26077.55 108
v875.35 24973.26 25481.61 22680.67 32066.82 12389.54 25289.27 26071.65 21863.30 30880.30 31754.99 20894.06 22867.33 23562.33 32783.94 317
131480.70 15478.95 17285.94 8987.77 21767.56 10287.91 28192.55 12672.17 20067.44 26993.09 11850.27 25597.04 9571.68 19687.64 12093.23 157
LFMVS84.34 8482.73 11189.18 1394.76 3373.25 1194.99 4291.89 15471.90 20682.16 9093.49 11447.98 27897.05 9282.55 10884.82 14697.25 8
VDD-MVS83.06 11381.81 12486.81 6190.86 13967.70 9895.40 2991.50 17575.46 13481.78 9292.34 13940.09 31997.13 9086.85 6882.04 17495.60 54
VDDNet80.50 15778.26 18087.21 4786.19 24669.79 4794.48 5091.31 18160.42 33779.34 12490.91 16738.48 32796.56 12282.16 10981.05 18395.27 73
v1074.77 25672.54 26581.46 22980.33 32566.71 12789.15 26289.08 27370.94 23763.08 31179.86 32252.52 23494.04 23165.70 25462.17 32883.64 320
VPNet78.82 19077.53 19282.70 19584.52 27666.44 13393.93 7292.23 13380.46 5272.60 19788.38 20449.18 26793.13 25472.47 18763.97 31788.55 245
MVS84.66 7982.86 10990.06 290.93 13674.56 787.91 28195.54 1468.55 26972.35 20594.71 7859.78 14798.90 2081.29 11994.69 3296.74 16
v2v48277.42 21575.65 22182.73 19380.38 32367.13 11591.85 16990.23 22575.09 14069.37 23983.39 27253.79 22294.44 21271.77 19365.00 30486.63 276
V4276.46 23174.55 23582.19 21279.14 34167.82 9590.26 23589.42 25573.75 16268.63 25381.89 28851.31 24694.09 22571.69 19564.84 30584.66 312
SD-MVS87.49 2887.49 3187.50 4293.60 5668.82 6993.90 7492.63 12376.86 11687.90 3595.76 4166.17 6897.63 5689.06 4691.48 7896.05 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS78.33 20276.23 21284.65 13883.65 29066.30 13791.44 18290.14 22876.01 12870.32 22984.02 26542.50 31194.72 19770.98 19977.00 22192.94 168
MSLP-MVS++86.27 4985.91 5687.35 4592.01 10568.97 6695.04 4092.70 11679.04 8581.50 9496.50 2558.98 16096.78 11583.49 10093.93 4196.29 35
APDe-MVScopyleft87.54 2787.84 2686.65 6696.07 2366.30 13794.84 4593.78 6769.35 25888.39 3396.34 2867.74 5697.66 5490.62 3793.44 5196.01 44
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize81.64 13881.32 12882.59 19992.36 9158.74 30791.39 18791.01 20063.35 31179.72 11994.62 8151.82 23896.14 13979.71 12987.93 11692.89 171
ADS-MVSNet266.90 32363.44 33177.26 30788.06 20560.70 27768.01 39175.56 37857.57 35164.48 29569.87 37838.68 32284.10 36740.87 37067.89 28386.97 268
EI-MVSNet78.97 18678.22 18181.25 23385.33 26162.73 23489.53 25393.21 9572.39 19372.14 20690.13 18560.99 13294.72 19767.73 23172.49 25186.29 280
Regformer0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
CVMVSNet74.04 26274.27 24073.33 33785.33 26143.94 39189.53 25388.39 29754.33 36770.37 22890.13 18549.17 26884.05 36861.83 28479.36 19791.99 195
pmmvs473.92 26471.81 27380.25 25879.17 33965.24 16187.43 29087.26 31767.64 27763.46 30683.91 26748.96 27191.53 31062.94 27565.49 29783.96 316
EU-MVSNet64.01 33963.01 33367.02 36974.40 37438.86 40483.27 32186.19 32945.11 39254.27 35581.15 30636.91 34580.01 39048.79 33657.02 35782.19 345
VNet86.20 5085.65 6187.84 3093.92 4769.99 3895.73 2395.94 778.43 9386.00 5293.07 12058.22 16797.00 9785.22 7884.33 15296.52 23
test-LLR80.10 16679.56 16081.72 22486.93 23661.17 26392.70 12891.54 17271.51 22775.62 16486.94 23353.83 22092.38 28472.21 18984.76 14891.60 198
TESTMET0.1,182.41 12481.98 12283.72 17188.08 20463.74 20092.70 12893.77 6979.30 7577.61 14587.57 22258.19 16894.08 22673.91 17386.68 13493.33 155
test-mter79.96 16979.38 16681.72 22486.93 23661.17 26392.70 12891.54 17273.85 15975.62 16486.94 23349.84 26092.38 28472.21 18984.76 14891.60 198
VPA-MVSNet79.03 18478.00 18482.11 21885.95 25164.48 17793.22 10994.66 3975.05 14174.04 18384.95 25452.17 23793.52 24874.90 16867.04 28888.32 250
ACMMPR84.37 8284.06 8085.28 11393.56 5864.37 18493.50 9893.15 10072.19 19878.85 13494.86 7456.69 18797.45 6581.55 11392.20 6594.02 134
testgi64.48 33762.87 33569.31 36071.24 38140.62 39885.49 30479.92 36865.36 29454.18 35683.49 27123.74 38684.55 36541.60 36760.79 34382.77 334
test20.0363.83 34062.65 33667.38 36870.58 38739.94 40086.57 30084.17 34763.29 31251.86 36577.30 34237.09 34382.47 38038.87 37854.13 36779.73 365
thres600view778.00 20576.66 20782.03 22091.93 10863.69 20591.30 19596.33 172.43 19170.46 22687.89 21660.31 13994.92 19242.64 36576.64 22387.48 258
ADS-MVSNet68.54 31064.38 32781.03 24388.06 20566.90 12268.01 39184.02 34957.57 35164.48 29569.87 37838.68 32289.21 33440.87 37067.89 28386.97 268
MP-MVScopyleft85.02 7284.97 7185.17 11892.60 8864.27 18993.24 10792.27 13273.13 17379.63 12094.43 8561.90 12497.17 8585.00 8292.56 6194.06 132
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs7.23 3919.62 3940.06 4060.04 4280.02 43184.98 3080.02 4290.03 4230.18 4241.21 4230.01 4290.02 4240.14 4230.01 4220.13 421
thres40078.68 19477.43 19382.43 20192.21 9664.49 17592.05 15796.28 473.48 16871.75 21288.26 20760.07 14495.32 17845.16 35377.58 21387.48 258
test1236.92 3929.21 3950.08 4050.03 4290.05 43081.65 3360.01 4300.02 4240.14 4250.85 4240.03 4280.02 4240.12 4240.00 4230.16 420
thres20079.66 17378.33 17883.66 17592.54 9065.82 14993.06 11296.31 374.90 14373.30 18888.66 19959.67 14895.61 16647.84 34278.67 20489.56 233
test0.0.03 172.76 27672.71 26272.88 34180.25 32647.99 37491.22 19989.45 25371.51 22762.51 31787.66 21953.83 22085.06 36450.16 32867.84 28585.58 299
pmmvs355.51 36051.50 36667.53 36757.90 40850.93 36080.37 34673.66 38340.63 40144.15 39364.75 39016.30 39878.97 39144.77 35740.98 39272.69 391
EMVS23.76 38623.20 39025.46 40241.52 42216.90 42760.56 40338.79 42314.62 4178.99 42120.24 4207.35 41345.82 4207.25 4219.46 41813.64 418
E-PMN24.61 38424.00 38826.45 40143.74 41918.44 42660.86 40239.66 42015.11 4169.53 42022.10 4176.52 41646.94 4198.31 42010.14 41713.98 417
PGM-MVS83.25 10982.70 11284.92 12392.81 8364.07 19390.44 22692.20 13771.28 23077.23 15094.43 8555.17 20697.31 7579.33 13491.38 8093.37 152
LCM-MVSNet-Re72.93 27371.84 27276.18 31788.49 18948.02 37380.07 35270.17 39373.96 15752.25 36380.09 32149.98 25788.24 34167.35 23384.23 15592.28 186
LCM-MVSNet40.54 37435.79 37954.76 38636.92 42330.81 41351.41 41069.02 39522.07 41024.63 41045.37 4074.56 41965.81 40833.67 38834.50 40367.67 397
MCST-MVS91.08 191.46 389.94 497.66 273.37 1097.13 295.58 1189.33 185.77 5496.26 3072.84 2999.38 192.64 2095.93 997.08 11
mvs_anonymous81.36 14279.99 15385.46 10590.39 14768.40 7886.88 29890.61 20974.41 14670.31 23084.67 25763.79 9792.32 28973.13 17685.70 14095.67 51
MVS_Test84.16 9183.20 10087.05 5491.56 12069.82 4589.99 24592.05 14377.77 10282.84 8386.57 23763.93 9596.09 14274.91 16789.18 10295.25 76
MDA-MVSNet-bldmvs61.54 34857.70 35373.05 33979.53 33457.00 32883.08 32581.23 36257.57 35134.91 40472.45 36732.79 35886.26 35835.81 38341.95 38875.89 384
CDPH-MVS85.71 6185.46 6386.46 7494.75 3467.19 11193.89 7592.83 11370.90 23883.09 8195.28 5763.62 10197.36 7180.63 12394.18 3794.84 92
test1287.09 5294.60 3668.86 6792.91 11082.67 8865.44 7697.55 6293.69 4894.84 92
casdiffmvspermissive85.37 6784.87 7386.84 5988.25 20069.07 6293.04 11491.76 16181.27 4480.84 10592.07 14664.23 9196.06 14684.98 8387.43 12395.39 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive84.28 8583.83 8285.61 10287.40 22368.02 9190.88 21189.24 26180.54 5081.64 9392.52 13159.83 14694.52 21087.32 6185.11 14494.29 118
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline283.68 10383.42 9484.48 14687.37 22466.00 14390.06 24095.93 879.71 6769.08 24390.39 17677.92 696.28 13378.91 13981.38 18191.16 211
baseline181.84 13481.03 13584.28 15491.60 11866.62 12991.08 20591.66 16981.87 3274.86 17391.67 15569.98 4594.92 19271.76 19464.75 30791.29 209
YYNet163.76 34260.14 34674.62 32778.06 35660.19 28883.46 31983.99 35256.18 36239.25 39971.56 37537.18 34183.34 37542.90 36248.70 37880.32 361
PMMVS237.93 37933.61 38250.92 38946.31 41524.76 41960.55 40450.05 41328.94 40920.93 41147.59 4044.41 42165.13 41025.14 40318.55 41562.87 401
MDA-MVSNet_test_wron63.78 34160.16 34574.64 32678.15 35560.41 28383.49 31784.03 34856.17 36339.17 40071.59 37437.22 34083.24 37742.87 36348.73 37780.26 362
tpmvs72.88 27569.76 29182.22 21090.98 13567.05 11778.22 36288.30 30063.10 31664.35 29974.98 35955.09 20794.27 21843.25 35969.57 26785.34 306
PM-MVS59.40 35556.59 35767.84 36463.63 39941.86 39476.76 36663.22 40459.01 34651.07 37072.27 37111.72 40783.25 37661.34 28550.28 37678.39 377
HQP_MVS80.34 16179.75 15782.12 21586.94 23462.42 23893.13 11091.31 18178.81 8872.53 19989.14 19750.66 25195.55 17176.74 15178.53 20688.39 248
plane_prior786.94 23461.51 258
plane_prior687.23 22662.32 24250.66 251
plane_prior591.31 18195.55 17176.74 15178.53 20688.39 248
plane_prior489.14 197
plane_prior361.95 25079.09 8172.53 199
plane_prior293.13 11078.81 88
plane_prior187.15 228
plane_prior62.42 23893.85 7779.38 7378.80 203
PS-CasMVS69.86 29969.13 29472.07 35080.35 32450.57 36187.02 29589.75 24267.27 27959.19 33382.28 28346.58 28882.24 38350.69 32559.02 35183.39 327
UniMVSNet_NR-MVSNet78.15 20477.55 19179.98 26684.46 27860.26 28592.25 14693.20 9777.50 10968.88 24886.61 23666.10 6992.13 29266.38 24662.55 32487.54 256
PEN-MVS69.46 30268.56 29672.17 34879.27 33749.71 36586.90 29789.24 26167.24 28259.08 33482.51 28147.23 28483.54 37348.42 33757.12 35683.25 328
TransMVSNet (Re)70.07 29667.66 30277.31 30680.62 32259.13 30491.78 17384.94 34165.97 28960.08 32880.44 31450.78 25091.87 29748.84 33545.46 38380.94 354
DTE-MVSNet68.46 31167.33 30571.87 35277.94 35749.00 37186.16 30388.58 29466.36 28758.19 33882.21 28546.36 28983.87 37144.97 35655.17 36382.73 335
DU-MVS76.86 22475.84 21879.91 26982.96 29860.26 28591.26 19691.54 17276.46 12568.88 24886.35 23956.16 19392.13 29266.38 24662.55 32487.35 262
UniMVSNet (Re)77.58 21376.78 20579.98 26684.11 28460.80 27091.76 17493.17 9976.56 12469.93 23784.78 25663.32 10992.36 28664.89 26262.51 32686.78 272
CP-MVSNet70.50 29269.91 28972.26 34680.71 31951.00 35987.23 29390.30 22167.84 27359.64 32982.69 27850.23 25682.30 38251.28 32359.28 35083.46 325
WR-MVS_H70.59 29169.94 28872.53 34381.03 31551.43 35587.35 29192.03 14767.38 27860.23 32780.70 30955.84 19983.45 37446.33 34958.58 35482.72 336
WR-MVS76.76 22875.74 22079.82 27284.60 27462.27 24492.60 13592.51 12776.06 12767.87 26485.34 25056.76 18490.24 32362.20 28163.69 31986.94 270
NR-MVSNet76.05 23774.59 23380.44 25282.96 29862.18 24590.83 21391.73 16277.12 11360.96 32286.35 23959.28 15491.80 29960.74 28861.34 33987.35 262
Baseline_NR-MVSNet73.99 26372.83 25877.48 30280.78 31859.29 30291.79 17184.55 34568.85 26568.99 24680.70 30956.16 19392.04 29562.67 27860.98 34181.11 352
TranMVSNet+NR-MVSNet75.86 24274.52 23679.89 27082.44 30460.64 27991.37 19091.37 17976.63 12267.65 26686.21 24252.37 23691.55 30661.84 28360.81 34287.48 258
TSAR-MVS + GP.87.96 2188.37 2186.70 6593.51 6165.32 15995.15 3693.84 6678.17 9685.93 5394.80 7675.80 1398.21 3489.38 4188.78 10796.59 19
n20.00 431
nn0.00 431
mPP-MVS82.96 11682.44 11684.52 14492.83 7962.92 22992.76 12491.85 15871.52 22675.61 16694.24 9653.48 22796.99 10078.97 13890.73 8793.64 147
door-mid66.01 400
XVG-OURS-SEG-HR74.70 25773.08 25579.57 27878.25 35357.33 32380.49 34587.32 31563.22 31368.76 25190.12 18744.89 30391.59 30570.55 20574.09 23989.79 228
mvsmamba81.55 13980.72 14084.03 16291.42 12466.93 12183.08 32589.13 26978.55 9267.50 26887.02 23251.79 24090.07 32887.48 5890.49 9295.10 81
MVSFormer83.75 10082.88 10886.37 7889.24 17571.18 2489.07 26390.69 20465.80 29087.13 4094.34 9264.99 8092.67 27472.83 17991.80 7295.27 73
jason86.40 4686.17 5087.11 5186.16 24870.54 3295.71 2492.19 13982.00 3184.58 6794.34 9261.86 12595.53 17387.76 5490.89 8695.27 73
jason: jason.
lupinMVS87.74 2587.77 2787.63 3889.24 17571.18 2496.57 1292.90 11182.70 2487.13 4095.27 5964.99 8095.80 15389.34 4291.80 7295.93 45
test_djsdf73.76 26772.56 26477.39 30477.00 36353.93 34489.07 26390.69 20465.80 29063.92 30182.03 28743.14 31092.67 27472.83 17968.53 27785.57 300
HPM-MVS_fast80.25 16379.55 16282.33 20591.55 12159.95 29091.32 19489.16 26665.23 29674.71 17593.07 12047.81 28195.74 15774.87 16988.23 11291.31 208
K. test v363.09 34359.61 34873.53 33676.26 36649.38 36983.27 32177.15 37364.35 30047.77 38272.32 37028.73 37487.79 34649.93 33036.69 39783.41 326
lessismore_v073.72 33572.93 37947.83 37561.72 40645.86 38673.76 36328.63 37689.81 32947.75 34431.37 40583.53 322
SixPastTwentyTwo64.92 33461.78 34174.34 33078.74 34749.76 36483.42 32079.51 37062.86 31750.27 37277.35 34130.92 36990.49 31845.89 35147.06 38082.78 333
OurMVSNet-221017-064.68 33562.17 33972.21 34776.08 36847.35 37780.67 34481.02 36356.19 36151.60 36679.66 32627.05 38088.56 33753.60 31953.63 36880.71 357
HPM-MVScopyleft83.25 10982.95 10684.17 15692.25 9462.88 23190.91 20891.86 15670.30 24777.12 15193.96 10456.75 18596.28 13382.04 11091.34 8293.34 153
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS74.25 26072.46 26679.63 27678.45 35157.59 31980.33 34787.39 31463.86 30568.76 25189.62 19140.50 31891.72 30169.00 21974.25 23789.58 231
XVG-ACMP-BASELINE68.04 31565.53 31675.56 31974.06 37552.37 34978.43 35985.88 33262.03 32658.91 33681.21 30520.38 39491.15 31460.69 28968.18 27983.16 330
casdiffmvs_mvgpermissive85.66 6385.18 6787.09 5288.22 20269.35 5893.74 8691.89 15481.47 3780.10 11491.45 15864.80 8596.35 13187.23 6387.69 11995.58 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test75.82 24374.58 23479.56 27984.31 28159.37 29990.44 22689.73 24569.49 25664.86 29088.42 20238.65 32494.30 21672.56 18572.76 24885.01 309
LGP-MVS_train79.56 27984.31 28159.37 29989.73 24569.49 25664.86 29088.42 20238.65 32494.30 21672.56 18572.76 24885.01 309
baseline85.01 7384.44 7786.71 6488.33 19768.73 7190.24 23691.82 16081.05 4781.18 9992.50 13263.69 9996.08 14584.45 8986.71 13395.32 68
test1193.01 106
door66.57 399
EPNet_dtu78.80 19179.26 16877.43 30388.06 20549.71 36591.96 16491.95 15077.67 10476.56 15791.28 16358.51 16390.20 32556.37 30780.95 18492.39 181
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268884.98 7483.45 9189.57 1189.94 15575.14 692.07 15692.32 13081.87 3275.68 16388.27 20660.18 14198.60 2780.46 12590.27 9494.96 86
EPNet87.84 2488.38 2086.23 8293.30 6466.05 14195.26 3294.84 3087.09 588.06 3494.53 8266.79 6297.34 7383.89 9591.68 7495.29 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS63.66 207
HQP-NCC87.54 21994.06 6379.80 6474.18 178
ACMP_Plane87.54 21994.06 6379.80 6474.18 178
APD-MVScopyleft85.93 5685.99 5485.76 9795.98 2665.21 16293.59 9392.58 12566.54 28586.17 5095.88 3963.83 9697.00 9786.39 7192.94 5795.06 82
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS77.63 148
HQP4-MVS74.18 17895.61 16688.63 242
HQP3-MVS91.70 16778.90 201
HQP2-MVS51.63 243
CNVR-MVS90.32 690.89 888.61 2296.76 870.65 3096.47 1494.83 3184.83 1189.07 3196.80 1970.86 4099.06 1592.64 2095.71 1196.12 40
NCCC89.07 1689.46 1587.91 2896.60 1069.05 6396.38 1594.64 4084.42 1286.74 4596.20 3166.56 6598.76 2489.03 4794.56 3495.92 46
114514_t79.17 18277.67 18883.68 17395.32 2965.53 15692.85 12291.60 17163.49 30967.92 26090.63 17146.65 28795.72 16267.01 23983.54 15889.79 228
CP-MVS83.71 10183.40 9584.65 13893.14 7063.84 19694.59 4992.28 13171.03 23677.41 14794.92 7255.21 20596.19 13781.32 11890.70 8893.91 138
DSMNet-mixed56.78 35954.44 36363.79 37363.21 40029.44 41664.43 39864.10 40342.12 40051.32 36871.60 37331.76 36375.04 39536.23 38165.20 30286.87 271
tpm279.80 17277.95 18685.34 11188.28 19868.26 8381.56 33791.42 17870.11 24977.59 14680.50 31367.40 5894.26 22067.34 23477.35 21793.51 149
NP-MVS87.41 22263.04 22390.30 178
EG-PatchMatch MVS68.55 30965.41 31777.96 29778.69 34862.93 22789.86 24789.17 26560.55 33650.27 37277.73 34022.60 38994.06 22847.18 34572.65 25076.88 382
tpm cat175.30 25072.21 26884.58 14288.52 18867.77 9678.16 36388.02 30861.88 32968.45 25676.37 35260.65 13694.03 23353.77 31874.11 23891.93 196
SteuartSystems-ACMMP86.82 4186.90 3986.58 7090.42 14566.38 13496.09 1793.87 6577.73 10384.01 7495.66 4363.39 10697.94 4087.40 6093.55 5095.42 59
Skip Steuart: Steuart Systems R&D Blog.
CostFormer82.33 12581.15 13085.86 9289.01 18068.46 7782.39 33193.01 10675.59 13280.25 11381.57 29572.03 3694.96 18979.06 13777.48 21694.16 125
CR-MVSNet73.79 26670.82 28182.70 19583.15 29667.96 9270.25 38384.00 35073.67 16669.97 23572.41 36857.82 17189.48 33252.99 32173.13 24590.64 217
JIA-IIPM66.06 32762.45 33776.88 31281.42 31454.45 34357.49 40788.67 29049.36 38163.86 30246.86 40556.06 19690.25 32049.53 33168.83 27485.95 291
Patchmtry67.53 32063.93 32878.34 29182.12 30764.38 18368.72 38884.00 35048.23 38659.24 33172.41 36857.82 17189.27 33346.10 35056.68 36081.36 349
PatchT69.11 30465.37 31880.32 25482.07 30863.68 20667.96 39387.62 31350.86 37769.37 23965.18 38857.09 17788.53 33841.59 36866.60 29188.74 241
tpmrst80.57 15579.14 17084.84 12690.10 15268.28 8281.70 33589.72 24777.63 10775.96 16079.54 32764.94 8292.71 27175.43 16077.28 21993.55 148
BH-w/o80.49 15879.30 16784.05 16190.83 14064.36 18693.60 9289.42 25574.35 14869.09 24290.15 18455.23 20495.61 16664.61 26386.43 13792.17 192
tpm78.58 19777.03 20183.22 18585.94 25364.56 17383.21 32491.14 19178.31 9473.67 18579.68 32564.01 9392.09 29466.07 25071.26 26193.03 165
DELS-MVS90.05 890.09 1189.94 493.14 7073.88 997.01 494.40 5188.32 385.71 5594.91 7374.11 2198.91 1887.26 6295.94 897.03 12
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned78.68 19477.08 20083.48 18089.84 15663.74 20092.70 12888.59 29371.57 22466.83 27988.65 20051.75 24195.39 17659.03 29884.77 14791.32 207
RPMNet70.42 29365.68 31484.63 14083.15 29667.96 9270.25 38390.45 21146.83 38969.97 23565.10 38956.48 19295.30 18135.79 38473.13 24590.64 217
MVSTER82.47 12382.05 11983.74 16792.68 8669.01 6491.90 16693.21 9579.83 6372.14 20685.71 24874.72 1794.72 19775.72 15872.49 25187.50 257
CPTT-MVS79.59 17479.16 16980.89 24791.54 12259.80 29292.10 15388.54 29560.42 33772.96 19093.28 11648.27 27492.80 26878.89 14086.50 13690.06 223
GBi-Net75.65 24573.83 24781.10 23988.85 18265.11 16590.01 24290.32 21770.84 23967.04 27580.25 31848.03 27591.54 30759.80 29569.34 26886.64 273
PVSNet_Blended_VisFu83.97 9483.50 8885.39 10890.02 15366.59 13193.77 8491.73 16277.43 11177.08 15389.81 18963.77 9896.97 10479.67 13088.21 11392.60 176
PVSNet_BlendedMVS83.38 10783.43 9283.22 18593.76 5067.53 10494.06 6393.61 7879.13 8081.00 10385.14 25263.19 11097.29 7687.08 6573.91 24184.83 311
UnsupCasMVSNet_eth65.79 32963.10 33273.88 33370.71 38550.29 36381.09 34189.88 23872.58 18649.25 37774.77 36232.57 36087.43 35255.96 30941.04 39083.90 318
UnsupCasMVSNet_bld61.60 34757.71 35273.29 33868.73 39151.64 35378.61 35889.05 27557.20 35646.11 38361.96 39628.70 37588.60 33650.08 32938.90 39579.63 366
PVSNet_Blended86.73 4286.86 4086.31 8193.76 5067.53 10496.33 1693.61 7882.34 2881.00 10393.08 11963.19 11097.29 7687.08 6591.38 8094.13 127
FMVSNet568.04 31565.66 31575.18 32384.43 27957.89 31383.54 31686.26 32761.83 33053.64 35973.30 36437.15 34285.08 36348.99 33461.77 33382.56 341
test175.65 24573.83 24781.10 23988.85 18265.11 16590.01 24290.32 21770.84 23967.04 27580.25 31848.03 27591.54 30759.80 29569.34 26886.64 273
new_pmnet49.31 36746.44 37057.93 38062.84 40140.74 39768.47 39062.96 40536.48 40235.09 40357.81 40014.97 40272.18 39932.86 39346.44 38160.88 402
FMVSNet377.73 21176.04 21582.80 19191.20 13268.99 6591.87 16791.99 14873.35 17067.04 27583.19 27456.62 18892.14 29159.80 29569.34 26887.28 264
dp75.01 25472.09 26983.76 16689.28 17166.22 14079.96 35589.75 24271.16 23267.80 26577.19 34551.81 23992.54 27950.39 32671.44 26092.51 180
FMVSNet276.07 23474.01 24582.26 20988.85 18267.66 9991.33 19391.61 17070.84 23965.98 28382.25 28448.03 27592.00 29658.46 30068.73 27687.10 267
FMVSNet172.71 27869.91 28981.10 23983.60 29165.11 16590.01 24290.32 21763.92 30463.56 30580.25 31836.35 34791.54 30754.46 31466.75 29086.64 273
N_pmnet50.55 36649.11 36854.88 38577.17 3624.02 42984.36 3102.00 42748.59 38245.86 38668.82 38132.22 36182.80 37931.58 39851.38 37377.81 380
cascas78.18 20375.77 21985.41 10787.14 22969.11 6192.96 11891.15 19066.71 28470.47 22586.07 24337.49 33896.48 12770.15 20779.80 19390.65 216
BH-RMVSNet79.46 17977.65 18984.89 12491.68 11765.66 15093.55 9488.09 30772.93 17873.37 18791.12 16546.20 29496.12 14056.28 30885.61 14292.91 169
UGNet79.87 17178.68 17483.45 18189.96 15461.51 25892.13 15190.79 20276.83 11878.85 13486.33 24138.16 33096.17 13867.93 22987.17 12592.67 174
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS86.32 4885.81 5787.85 2992.82 8169.37 5795.20 3495.25 1882.71 2381.91 9194.73 7767.93 5597.63 5679.55 13182.25 17096.54 22
XXY-MVS77.94 20876.44 20982.43 20182.60 30264.44 17992.01 15991.83 15973.59 16770.00 23485.82 24654.43 21594.76 19469.63 21068.02 28288.10 252
EC-MVSNet84.53 8185.04 7083.01 18889.34 16761.37 26294.42 5191.09 19377.91 10083.24 7794.20 9758.37 16595.40 17585.35 7791.41 7992.27 189
sss82.71 12082.38 11783.73 16989.25 17259.58 29692.24 14794.89 2977.96 9879.86 11792.38 13756.70 18697.05 9277.26 15080.86 18594.55 107
Test_1112_low_res79.56 17578.60 17682.43 20188.24 20160.39 28492.09 15487.99 30972.10 20271.84 21087.42 22464.62 8793.04 25565.80 25377.30 21893.85 142
1112_ss80.56 15679.83 15682.77 19288.65 18760.78 27192.29 14588.36 29872.58 18672.46 20294.95 6965.09 7993.42 25166.38 24677.71 21094.10 128
ab-mvs-re7.91 39010.55 3930.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 42694.95 690.00 4300.00 4260.00 4250.00 4230.00 422
ab-mvs80.18 16478.31 17985.80 9588.44 19265.49 15883.00 32892.67 11971.82 21277.36 14885.01 25354.50 21196.59 11976.35 15575.63 22995.32 68
TR-MVS78.77 19377.37 19882.95 18990.49 14460.88 26993.67 8890.07 23070.08 25074.51 17691.37 16245.69 29695.70 16360.12 29380.32 18992.29 185
MDTV_nov1_ep13_2view59.90 29180.13 35167.65 27672.79 19354.33 21759.83 29492.58 177
MDTV_nov1_ep1372.61 26389.06 17868.48 7680.33 34790.11 22971.84 21171.81 21175.92 35653.01 23093.92 23848.04 33973.38 243
MIMVSNet160.16 35457.33 35568.67 36269.71 38844.13 39078.92 35784.21 34655.05 36544.63 39171.85 37223.91 38581.54 38632.63 39555.03 36480.35 360
MIMVSNet71.64 28568.44 29881.23 23481.97 30964.44 17973.05 37788.80 28569.67 25564.59 29374.79 36132.79 35887.82 34553.99 31676.35 22591.42 202
IterMVS-LS76.49 23075.18 22780.43 25384.49 27762.74 23390.64 22288.80 28572.40 19265.16 28981.72 29160.98 13392.27 29067.74 23064.65 30986.29 280
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet81.43 14180.74 13983.52 17686.26 24564.45 17892.09 15490.65 20875.83 13073.95 18489.81 18963.97 9492.91 26471.27 19782.82 16493.20 159
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref71.63 256
IterMVS72.65 28170.83 27978.09 29682.17 30662.96 22687.64 28886.28 32671.56 22560.44 32578.85 33145.42 29986.66 35563.30 27361.83 33284.65 313
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon82.73 11881.65 12585.98 8797.31 467.06 11695.15 3691.99 14869.08 26476.50 15893.89 10554.48 21498.20 3570.76 20285.66 14192.69 173
MVS_111021_LR82.02 13281.52 12683.51 17888.42 19362.88 23189.77 24888.93 28076.78 11975.55 16793.10 11750.31 25495.38 17783.82 9687.02 12692.26 190
DP-MVS69.90 29866.48 30680.14 26095.36 2862.93 22789.56 25076.11 37450.27 37957.69 34585.23 25139.68 32095.73 15833.35 38971.05 26281.78 348
ACMMP++69.72 265
HQP-MVS81.14 14580.64 14382.64 19787.54 21963.66 20794.06 6391.70 16779.80 6474.18 17890.30 17851.63 24395.61 16677.63 14878.90 20188.63 242
QAPM79.95 17077.39 19787.64 3489.63 16171.41 2093.30 10693.70 7565.34 29567.39 27291.75 15347.83 28098.96 1657.71 30389.81 9692.54 178
Vis-MVSNetpermissive80.92 15179.98 15483.74 16788.48 19061.80 25193.44 10288.26 30473.96 15777.73 14291.76 15249.94 25894.76 19465.84 25290.37 9394.65 103
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet60.25 35355.55 36074.35 32984.37 28056.57 33071.64 38174.11 38234.44 40345.54 38842.24 41131.11 36889.81 32940.36 37376.10 22776.67 383
IS-MVSNet80.14 16579.41 16482.33 20587.91 20960.08 28991.97 16388.27 30272.90 18171.44 21891.73 15461.44 12993.66 24662.47 28086.53 13593.24 156
HyFIR lowres test81.03 14979.56 16085.43 10687.81 21468.11 8990.18 23790.01 23570.65 24472.95 19186.06 24463.61 10294.50 21175.01 16579.75 19493.67 145
EPMVS78.49 19975.98 21686.02 8691.21 13169.68 5180.23 34991.20 18675.25 13872.48 20178.11 33654.65 21093.69 24557.66 30483.04 16294.69 99
PAPM_NR82.97 11581.84 12386.37 7894.10 4466.76 12687.66 28792.84 11269.96 25174.07 18293.57 11263.10 11397.50 6470.66 20490.58 9094.85 89
TAMVS80.37 16079.45 16383.13 18785.14 26663.37 21591.23 19890.76 20374.81 14472.65 19688.49 20160.63 13792.95 25969.41 21381.95 17693.08 163
PAPR85.15 7184.47 7687.18 4996.02 2568.29 8191.85 16993.00 10876.59 12379.03 12895.00 6861.59 12897.61 5878.16 14589.00 10595.63 53
RPSCF64.24 33861.98 34071.01 35576.10 36745.00 38875.83 37275.94 37546.94 38858.96 33584.59 25831.40 36582.00 38447.76 34360.33 34886.04 288
Vis-MVSNet (Re-imp)79.24 18179.57 15978.24 29588.46 19152.29 35090.41 22889.12 27074.24 15069.13 24191.91 15065.77 7390.09 32759.00 29988.09 11492.33 183
test_040264.54 33661.09 34274.92 32584.10 28560.75 27487.95 28079.71 36952.03 37152.41 36277.20 34432.21 36291.64 30323.14 40561.03 34072.36 393
MVS_111021_HR86.19 5185.80 5887.37 4493.17 6969.79 4793.99 6993.76 7079.08 8278.88 13293.99 10362.25 12298.15 3685.93 7591.15 8494.15 126
CSCG86.87 3686.26 4788.72 1795.05 3170.79 2993.83 8295.33 1768.48 27177.63 14494.35 9173.04 2798.45 3084.92 8493.71 4796.92 14
PatchMatch-RL72.06 28369.98 28678.28 29389.51 16555.70 33583.49 31783.39 35761.24 33263.72 30482.76 27734.77 35293.03 25653.37 32077.59 21286.12 287
API-MVS82.28 12680.53 14687.54 4196.13 2270.59 3193.63 9191.04 19965.72 29275.45 16892.83 12856.11 19598.89 2164.10 26689.75 9993.15 160
Test By Simon54.21 218
TDRefinement55.28 36151.58 36566.39 37059.53 40746.15 38576.23 36972.80 38444.60 39342.49 39676.28 35315.29 40182.39 38133.20 39043.75 38570.62 395
USDC67.43 32264.51 32476.19 31677.94 35755.29 33778.38 36085.00 34073.17 17248.36 38080.37 31521.23 39192.48 28252.15 32264.02 31680.81 356
EPP-MVSNet81.79 13581.52 12682.61 19888.77 18660.21 28793.02 11693.66 7768.52 27072.90 19290.39 17672.19 3594.96 18974.93 16679.29 19992.67 174
PMMVS81.98 13382.04 12081.78 22289.76 15956.17 33191.13 20490.69 20477.96 9880.09 11593.57 11246.33 29294.99 18881.41 11687.46 12294.17 124
PAPM85.89 5885.46 6387.18 4988.20 20372.42 1592.41 14392.77 11482.11 3080.34 11293.07 12068.27 5095.02 18678.39 14493.59 4994.09 129
ACMMPcopyleft81.49 14080.67 14283.93 16491.71 11662.90 23092.13 15192.22 13671.79 21371.68 21493.49 11450.32 25396.96 10578.47 14384.22 15691.93 196
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA74.31 25972.30 26780.32 25491.49 12361.66 25690.85 21280.72 36556.67 36063.85 30390.64 16946.75 28690.84 31553.79 31775.99 22888.47 247
PatchmatchNetpermissive77.46 21474.63 23285.96 8889.55 16470.35 3479.97 35489.55 25072.23 19770.94 22076.91 34857.03 17892.79 26954.27 31581.17 18294.74 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS86.83 3986.85 4186.78 6393.47 6265.55 15595.39 3095.10 2371.77 21485.69 5696.52 2362.07 12398.77 2386.06 7495.60 1296.03 43
F-COLMAP70.66 29068.44 29877.32 30586.37 24455.91 33388.00 27986.32 32556.94 35857.28 34788.07 21333.58 35692.49 28151.02 32468.37 27883.55 321
ANet_high40.27 37735.20 38055.47 38334.74 42434.47 40963.84 39971.56 39048.42 38318.80 41341.08 4129.52 41164.45 41220.18 4088.66 42067.49 398
wuyk23d11.30 38910.95 39212.33 40448.05 41419.89 42425.89 4161.92 4283.58 4203.12 4221.37 4220.64 42715.77 4236.23 4227.77 4211.35 419
OMC-MVS78.67 19677.91 18780.95 24585.76 25657.40 32288.49 27288.67 29073.85 15972.43 20392.10 14549.29 26694.55 20872.73 18377.89 20990.91 214
MG-MVS87.11 3486.27 4689.62 897.79 176.27 494.96 4394.49 4578.74 9083.87 7592.94 12364.34 9096.94 10775.19 16294.09 3895.66 52
AdaColmapbinary78.94 18777.00 20384.76 13296.34 1765.86 14792.66 13287.97 31162.18 32370.56 22492.37 13843.53 30797.35 7264.50 26482.86 16391.05 213
uanet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
ITE_SJBPF70.43 35674.44 37347.06 38177.32 37260.16 34054.04 35783.53 26923.30 38784.01 36943.07 36061.58 33880.21 364
DeepMVS_CXcopyleft34.71 40051.45 41224.73 42028.48 42631.46 40617.49 41652.75 4025.80 41742.60 42118.18 40919.42 41436.81 413
TinyColmap60.32 35256.42 35972.00 35178.78 34653.18 34778.36 36175.64 37752.30 37041.59 39875.82 35714.76 40388.35 34035.84 38254.71 36674.46 386
MAR-MVS84.18 9083.43 9286.44 7596.25 2165.93 14694.28 5694.27 5774.41 14679.16 12795.61 4553.99 21998.88 2269.62 21193.26 5494.50 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS54.01 36352.12 36459.69 37862.41 40239.91 40268.59 38968.28 39842.96 39844.55 39275.18 35814.09 40568.39 40441.36 36951.68 37270.78 394
MSDG69.54 30165.73 31380.96 24485.11 26863.71 20384.19 31283.28 35856.95 35754.50 35484.03 26431.50 36496.03 14842.87 36369.13 27383.14 331
LS3D69.17 30366.40 30877.50 30191.92 10956.12 33285.12 30680.37 36746.96 38756.50 34987.51 22337.25 33993.71 24432.52 39679.40 19682.68 339
CLD-MVS82.73 11882.35 11883.86 16587.90 21067.65 10095.45 2892.18 14085.06 1072.58 19892.27 14052.46 23595.78 15484.18 9179.06 20088.16 251
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS45.64 37143.10 37553.23 38851.42 41336.46 40664.97 39771.91 38829.13 40827.53 40861.55 3979.83 41065.01 41116.00 41455.58 36258.22 404
Gipumacopyleft34.91 38031.44 38345.30 39570.99 38439.64 40319.85 41772.56 38620.10 41316.16 41721.47 4185.08 41871.16 40013.07 41543.70 38625.08 415
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015