| DeepPCF-MVS | | 81.17 1 | 89.72 10 | 91.38 4 | 84.72 134 | 93.00 75 | 58.16 312 | 96.72 9 | 94.41 49 | 86.50 8 | 90.25 22 | 97.83 1 | 75.46 14 | 98.67 25 | 92.78 19 | 95.49 13 | 97.32 6 |
|
| DeepC-MVS_fast | | 79.48 2 | 87.95 22 | 88.00 25 | 87.79 31 | 95.86 27 | 68.32 80 | 95.74 21 | 94.11 61 | 83.82 16 | 83.49 76 | 96.19 32 | 64.53 89 | 98.44 31 | 83.42 101 | 94.88 25 | 96.61 18 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| DeepC-MVS | | 77.85 3 | 85.52 66 | 85.24 66 | 86.37 78 | 88.80 185 | 66.64 128 | 92.15 150 | 93.68 76 | 81.07 46 | 76.91 154 | 93.64 110 | 62.59 118 | 98.44 31 | 85.50 76 | 92.84 59 | 94.03 133 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| IB-MVS | | 77.80 4 | 82.18 127 | 80.46 148 | 87.35 45 | 89.14 177 | 70.28 35 | 95.59 26 | 95.17 22 | 78.85 86 | 70.19 231 | 85.82 246 | 70.66 41 | 97.67 51 | 72.19 191 | 66.52 292 | 94.09 129 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| HY-MVS | | 76.49 5 | 84.28 85 | 83.36 97 | 87.02 55 | 92.22 95 | 67.74 97 | 84.65 309 | 94.50 44 | 79.15 79 | 82.23 89 | 87.93 215 | 66.88 61 | 96.94 107 | 80.53 124 | 82.20 172 | 96.39 33 |
|
| 3Dnovator | | 73.91 6 | 82.69 121 | 80.82 138 | 88.31 26 | 89.57 162 | 71.26 22 | 92.60 135 | 94.39 52 | 78.84 87 | 67.89 263 | 92.48 135 | 48.42 273 | 98.52 28 | 68.80 222 | 94.40 36 | 95.15 78 |
|
| 3Dnovator+ | | 73.60 7 | 82.10 131 | 80.60 145 | 86.60 68 | 90.89 138 | 66.80 125 | 95.20 34 | 93.44 87 | 74.05 153 | 67.42 270 | 92.49 134 | 49.46 263 | 97.65 55 | 70.80 201 | 91.68 74 | 95.33 66 |
|
| PVSNet | | 73.49 8 | 80.05 167 | 78.63 175 | 84.31 152 | 90.92 137 | 64.97 169 | 92.47 141 | 91.05 198 | 79.18 78 | 72.43 203 | 90.51 173 | 37.05 344 | 94.06 228 | 68.06 226 | 86.00 138 | 93.90 140 |
|
| PCF-MVS | | 73.15 9 | 79.29 180 | 77.63 190 | 84.29 153 | 86.06 249 | 65.96 145 | 87.03 294 | 91.10 192 | 69.86 253 | 69.79 238 | 90.64 169 | 57.54 174 | 96.59 119 | 64.37 265 | 82.29 168 | 90.32 220 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| ACMP | | 71.68 10 | 75.58 248 | 74.23 241 | 79.62 277 | 84.97 270 | 59.64 294 | 90.80 214 | 89.07 274 | 70.39 246 | 62.95 312 | 87.30 226 | 38.28 328 | 93.87 241 | 72.89 178 | 71.45 259 | 85.36 305 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| OpenMVS |  | 70.45 11 | 78.54 198 | 75.92 217 | 86.41 77 | 85.93 254 | 71.68 18 | 92.74 125 | 92.51 127 | 66.49 286 | 64.56 294 | 91.96 147 | 43.88 306 | 98.10 37 | 54.61 313 | 90.65 89 | 89.44 236 |
|
| TAPA-MVS | | 70.22 12 | 74.94 255 | 73.53 251 | 79.17 284 | 90.40 146 | 52.07 351 | 89.19 261 | 89.61 249 | 62.69 320 | 70.07 232 | 92.67 130 | 48.89 272 | 94.32 214 | 38.26 379 | 79.97 191 | 91.12 212 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| ACMM | | 69.62 13 | 74.34 258 | 72.73 261 | 79.17 284 | 84.25 283 | 57.87 314 | 90.36 231 | 89.93 236 | 63.17 315 | 65.64 285 | 86.04 245 | 37.79 336 | 94.10 224 | 65.89 251 | 71.52 258 | 85.55 301 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| PLC |  | 68.80 14 | 75.23 251 | 73.68 250 | 79.86 271 | 92.93 76 | 58.68 308 | 90.64 222 | 88.30 300 | 60.90 334 | 64.43 298 | 90.53 172 | 42.38 312 | 94.57 204 | 56.52 306 | 76.54 224 | 86.33 279 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| PVSNet_0 | | 68.08 15 | 71.81 284 | 68.32 300 | 82.27 207 | 84.68 272 | 62.31 243 | 88.68 269 | 90.31 220 | 75.84 129 | 57.93 343 | 80.65 312 | 37.85 335 | 94.19 221 | 69.94 208 | 29.05 409 | 90.31 221 |
|
| ACMH+ | | 65.35 16 | 67.65 318 | 64.55 323 | 76.96 311 | 84.59 275 | 57.10 324 | 88.08 276 | 80.79 364 | 58.59 349 | 53.00 360 | 81.09 307 | 26.63 381 | 92.95 259 | 46.51 347 | 61.69 337 | 80.82 355 |
|
| ACMH | | 63.93 17 | 68.62 308 | 64.81 320 | 80.03 264 | 85.22 264 | 63.25 217 | 87.72 285 | 84.66 343 | 60.83 335 | 51.57 367 | 79.43 328 | 27.29 379 | 94.96 189 | 41.76 366 | 64.84 305 | 81.88 346 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| OpenMVS_ROB |  | 61.12 18 | 66.39 325 | 62.92 334 | 76.80 313 | 76.51 364 | 57.77 315 | 89.22 259 | 83.41 356 | 55.48 364 | 53.86 358 | 77.84 338 | 26.28 382 | 93.95 237 | 34.90 386 | 68.76 275 | 78.68 374 |
|
| LTVRE_ROB | | 59.60 19 | 66.27 326 | 63.54 330 | 74.45 328 | 84.00 286 | 51.55 354 | 67.08 395 | 83.53 354 | 58.78 347 | 54.94 353 | 80.31 316 | 34.54 353 | 93.23 253 | 40.64 372 | 68.03 281 | 78.58 375 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| COLMAP_ROB |  | 57.96 20 | 62.98 344 | 59.65 347 | 72.98 340 | 81.44 313 | 53.00 348 | 83.75 315 | 75.53 379 | 48.34 384 | 48.81 379 | 81.40 299 | 24.14 384 | 90.30 319 | 32.95 391 | 60.52 345 | 75.65 385 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| CMPMVS |  | 48.56 21 | 66.77 324 | 64.41 326 | 73.84 334 | 70.65 386 | 50.31 362 | 77.79 364 | 85.73 335 | 45.54 391 | 44.76 390 | 82.14 286 | 35.40 350 | 90.14 326 | 63.18 274 | 74.54 234 | 81.07 353 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| PMVS |  | 26.43 22 | 31.84 383 | 28.16 386 | 42.89 396 | 25.87 426 | 27.58 417 | 50.92 411 | 49.78 414 | 21.37 412 | 14.17 418 | 40.81 413 | 2.01 425 | 66.62 406 | 9.61 418 | 38.88 396 | 34.49 414 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| MVE |  | 24.84 23 | 24.35 385 | 19.77 391 | 38.09 399 | 34.56 425 | 26.92 418 | 26.57 415 | 38.87 422 | 11.73 418 | 11.37 419 | 27.44 415 | 1.37 426 | 50.42 418 | 11.41 416 | 14.60 416 | 36.93 412 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| BP-MVS1 | | | 86.54 45 | 86.68 43 | 86.13 84 | 87.80 215 | 67.18 113 | 92.97 117 | 95.62 10 | 79.92 62 | 82.84 83 | 94.14 99 | 74.95 15 | 96.46 128 | 82.91 104 | 88.96 106 | 94.74 97 |
|
| reproduce_monomvs | | | 79.49 177 | 79.11 171 | 80.64 249 | 92.91 77 | 61.47 260 | 91.17 203 | 93.28 93 | 83.09 20 | 64.04 300 | 82.38 282 | 66.19 67 | 94.57 204 | 81.19 120 | 57.71 355 | 85.88 294 |
|
| mmtdpeth | | | 68.33 312 | 66.37 309 | 74.21 332 | 82.81 301 | 51.73 352 | 84.34 311 | 80.42 366 | 67.01 283 | 71.56 215 | 68.58 382 | 30.52 370 | 92.35 287 | 75.89 157 | 36.21 398 | 78.56 376 |
|
| reproduce_model | | | 83.15 111 | 82.96 104 | 83.73 169 | 92.02 102 | 59.74 293 | 90.37 230 | 92.08 142 | 63.70 307 | 82.86 82 | 95.48 50 | 58.62 162 | 97.17 85 | 83.06 103 | 88.42 111 | 94.26 119 |
|
| reproduce-ours | | | 83.51 104 | 83.33 98 | 84.06 158 | 92.18 98 | 60.49 281 | 90.74 217 | 92.04 144 | 64.35 300 | 83.24 77 | 95.59 47 | 59.05 156 | 97.27 80 | 83.61 97 | 89.17 103 | 94.41 116 |
|
| our_new_method | | | 83.51 104 | 83.33 98 | 84.06 158 | 92.18 98 | 60.49 281 | 90.74 217 | 92.04 144 | 64.35 300 | 83.24 77 | 95.59 47 | 59.05 156 | 97.27 80 | 83.61 97 | 89.17 103 | 94.41 116 |
|
| mmdepth | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 430 | 0.00 426 | 0.00 425 | 0.00 423 | 0.00 422 |
|
| monomultidepth | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 430 | 0.00 426 | 0.00 425 | 0.00 423 | 0.00 422 |
|
| mvs5depth | | | 61.03 349 | 57.65 354 | 71.18 353 | 67.16 394 | 47.04 382 | 72.74 378 | 77.49 371 | 57.47 354 | 60.52 324 | 72.53 365 | 22.84 388 | 88.38 339 | 49.15 333 | 38.94 394 | 78.11 379 |
|
| MVStest1 | | | 51.35 365 | 46.89 369 | 64.74 371 | 65.06 398 | 51.10 358 | 67.33 394 | 72.58 385 | 30.20 407 | 35.30 402 | 74.82 360 | 27.70 377 | 69.89 402 | 24.44 404 | 24.57 411 | 73.22 389 |
|
| ttmdpeth | | | 53.34 364 | 49.96 367 | 63.45 374 | 62.07 404 | 40.04 399 | 72.06 379 | 65.64 401 | 42.54 399 | 51.88 364 | 77.79 339 | 13.94 406 | 76.48 393 | 32.93 392 | 30.82 408 | 73.84 388 |
|
| WBMVS | | | 81.67 136 | 80.98 137 | 83.72 171 | 93.07 73 | 69.40 53 | 94.33 54 | 93.05 104 | 76.84 117 | 72.05 208 | 84.14 263 | 74.49 19 | 93.88 240 | 72.76 182 | 68.09 280 | 87.88 253 |
|
| dongtai | | | 55.18 362 | 55.46 361 | 54.34 387 | 76.03 369 | 36.88 405 | 76.07 370 | 84.61 344 | 51.28 374 | 43.41 395 | 64.61 391 | 56.56 190 | 67.81 405 | 18.09 410 | 28.50 410 | 58.32 403 |
|
| kuosan | | | 60.86 351 | 60.24 344 | 62.71 376 | 81.57 311 | 46.43 384 | 75.70 373 | 85.88 332 | 57.98 350 | 48.95 378 | 69.53 380 | 58.42 164 | 76.53 392 | 28.25 401 | 35.87 399 | 65.15 400 |
|
| MVSMamba_PlusPlus | | | 84.97 75 | 83.65 85 | 88.93 14 | 90.17 151 | 74.04 8 | 87.84 283 | 92.69 118 | 62.18 323 | 81.47 96 | 87.64 220 | 71.47 39 | 96.28 133 | 84.69 86 | 94.74 31 | 96.47 28 |
|
| MGCFI-Net | | | 85.59 65 | 85.73 60 | 85.17 118 | 91.41 127 | 62.44 237 | 92.87 121 | 91.31 181 | 79.65 68 | 86.99 44 | 95.14 67 | 62.90 116 | 96.12 140 | 87.13 64 | 84.13 157 | 96.96 13 |
|
| testing91 | | | 85.93 56 | 85.31 65 | 87.78 32 | 93.59 57 | 71.47 19 | 93.50 98 | 95.08 26 | 80.26 56 | 80.53 109 | 91.93 149 | 70.43 42 | 96.51 125 | 80.32 126 | 82.13 173 | 95.37 63 |
|
| testing11 | | | 86.71 43 | 86.44 45 | 87.55 40 | 93.54 59 | 71.35 21 | 93.65 89 | 95.58 11 | 81.36 43 | 80.69 106 | 92.21 143 | 72.30 33 | 96.46 128 | 85.18 80 | 83.43 159 | 94.82 95 |
|
| testing99 | | | 86.01 54 | 85.47 62 | 87.63 38 | 93.62 55 | 71.25 23 | 93.47 101 | 95.23 19 | 80.42 54 | 80.60 108 | 91.95 148 | 71.73 38 | 96.50 126 | 80.02 128 | 82.22 171 | 95.13 79 |
|
| UBG | | | 86.83 39 | 86.70 42 | 87.20 48 | 93.07 73 | 69.81 46 | 93.43 103 | 95.56 13 | 81.52 36 | 81.50 94 | 92.12 144 | 73.58 26 | 96.28 133 | 84.37 90 | 85.20 143 | 95.51 58 |
|
| UWE-MVS | | | 80.81 153 | 81.01 136 | 80.20 259 | 89.33 169 | 57.05 325 | 91.91 165 | 94.71 36 | 75.67 131 | 75.01 172 | 89.37 193 | 63.13 112 | 91.44 312 | 67.19 237 | 82.80 166 | 92.12 194 |
|
| ETVMVS | | | 84.22 89 | 83.71 83 | 85.76 97 | 92.58 89 | 68.25 85 | 92.45 142 | 95.53 15 | 79.54 70 | 79.46 122 | 91.64 156 | 70.29 43 | 94.18 222 | 69.16 217 | 82.76 167 | 94.84 92 |
|
| sasdasda | | | 86.85 37 | 86.25 48 | 88.66 20 | 91.80 113 | 71.92 16 | 93.54 95 | 91.71 164 | 80.26 56 | 87.55 37 | 95.25 61 | 63.59 103 | 96.93 109 | 88.18 50 | 84.34 150 | 97.11 9 |
|
| testing222 | | | 85.18 70 | 84.69 75 | 86.63 67 | 92.91 77 | 69.91 42 | 92.61 134 | 95.80 9 | 80.31 55 | 80.38 111 | 92.27 140 | 68.73 48 | 95.19 183 | 75.94 156 | 83.27 161 | 94.81 96 |
|
| WB-MVSnew | | | 77.14 219 | 76.18 214 | 80.01 265 | 86.18 247 | 63.24 218 | 91.26 196 | 94.11 61 | 71.72 216 | 73.52 186 | 87.29 227 | 45.14 301 | 93.00 257 | 56.98 305 | 79.42 195 | 83.80 319 |
|
| fmvsm_l_conf0.5_n_a | | | 87.44 30 | 88.15 24 | 85.30 112 | 87.10 230 | 64.19 191 | 94.41 52 | 88.14 305 | 80.24 59 | 92.54 5 | 96.97 10 | 69.52 47 | 97.17 85 | 95.89 3 | 88.51 110 | 94.56 106 |
|
| fmvsm_l_conf0.5_n | | | 87.49 28 | 88.19 23 | 85.39 108 | 86.95 233 | 64.37 184 | 94.30 55 | 88.45 296 | 80.51 51 | 92.70 4 | 96.86 15 | 69.98 45 | 97.15 89 | 95.83 4 | 88.08 115 | 94.65 103 |
|
| fmvsm_s_conf0.1_n_a | | | 84.76 77 | 84.84 74 | 84.53 143 | 80.23 327 | 63.50 213 | 92.79 123 | 88.73 287 | 80.46 52 | 89.84 27 | 96.65 22 | 60.96 134 | 97.57 61 | 93.80 13 | 80.14 190 | 92.53 179 |
|
| fmvsm_s_conf0.1_n | | | 85.61 64 | 85.93 55 | 84.68 137 | 82.95 300 | 63.48 214 | 94.03 68 | 89.46 252 | 81.69 34 | 89.86 26 | 96.74 20 | 61.85 126 | 97.75 49 | 94.74 9 | 82.01 175 | 92.81 172 |
|
| fmvsm_s_conf0.5_n_a | | | 85.75 60 | 86.09 52 | 84.72 134 | 85.73 257 | 63.58 209 | 93.79 83 | 89.32 258 | 81.42 41 | 90.21 23 | 96.91 14 | 62.41 120 | 97.67 51 | 94.48 10 | 80.56 188 | 92.90 170 |
|
| fmvsm_s_conf0.5_n | | | 86.39 47 | 86.91 38 | 84.82 127 | 87.36 225 | 63.54 212 | 94.74 47 | 90.02 234 | 82.52 25 | 90.14 25 | 96.92 13 | 62.93 115 | 97.84 46 | 95.28 8 | 82.26 169 | 93.07 164 |
|
| MM | | | 90.87 2 | 91.52 2 | 88.92 15 | 92.12 100 | 71.10 27 | 97.02 3 | 96.04 6 | 88.70 2 | 91.57 14 | 96.19 32 | 70.12 44 | 98.91 18 | 96.83 1 | 95.06 17 | 96.76 15 |
|
| WAC-MVS | | | | | | | 49.45 367 | | | | | | | | 31.56 399 | | |
|
| Syy-MVS | | | 69.65 300 | 69.52 292 | 70.03 357 | 87.87 211 | 43.21 393 | 88.07 277 | 89.01 276 | 72.91 179 | 63.11 309 | 88.10 211 | 45.28 300 | 85.54 360 | 22.07 407 | 69.23 271 | 81.32 350 |
|
| test_fmvsmconf0.1_n | | | 85.71 61 | 86.08 53 | 84.62 141 | 80.83 317 | 62.33 241 | 93.84 80 | 88.81 284 | 83.50 19 | 87.00 43 | 96.01 37 | 63.36 107 | 96.93 109 | 94.04 12 | 87.29 124 | 94.61 105 |
|
| test_fmvsmconf0.01_n | | | 83.70 102 | 83.52 86 | 84.25 155 | 75.26 370 | 61.72 255 | 92.17 149 | 87.24 318 | 82.36 27 | 84.91 64 | 95.41 51 | 55.60 200 | 96.83 114 | 92.85 18 | 85.87 139 | 94.21 122 |
|
| myMVS_eth3d | | | 72.58 282 | 72.74 260 | 72.10 349 | 87.87 211 | 49.45 367 | 88.07 277 | 89.01 276 | 72.91 179 | 63.11 309 | 88.10 211 | 63.63 100 | 85.54 360 | 32.73 394 | 69.23 271 | 81.32 350 |
|
| testing3 | | | 70.38 294 | 70.83 279 | 69.03 361 | 85.82 255 | 43.93 392 | 90.72 219 | 90.56 210 | 68.06 272 | 60.24 326 | 86.82 235 | 64.83 84 | 84.12 366 | 26.33 402 | 64.10 314 | 79.04 371 |
|
| SSC-MVS | | | 44.51 372 | 43.35 374 | 47.99 394 | 61.01 406 | 18.90 425 | 74.12 376 | 54.36 410 | 43.42 397 | 34.10 405 | 60.02 399 | 34.42 354 | 70.39 401 | 9.14 419 | 19.57 413 | 54.68 406 |
|
| test_fmvsmconf_n | | | 86.58 44 | 87.17 34 | 84.82 127 | 85.28 263 | 62.55 236 | 94.26 57 | 89.78 240 | 83.81 17 | 87.78 36 | 96.33 29 | 65.33 77 | 96.98 101 | 94.40 11 | 87.55 121 | 94.95 87 |
|
| WB-MVS | | | 46.23 370 | 44.94 372 | 50.11 390 | 62.13 403 | 21.23 423 | 76.48 368 | 55.49 409 | 45.89 390 | 35.78 401 | 61.44 398 | 35.54 349 | 72.83 398 | 9.96 417 | 21.75 412 | 56.27 405 |
|
| test_fmvsmvis_n_1920 | | | 83.80 98 | 83.48 89 | 84.77 131 | 82.51 303 | 63.72 202 | 91.37 190 | 83.99 352 | 81.42 41 | 77.68 143 | 95.74 42 | 58.37 165 | 97.58 59 | 93.38 14 | 86.87 127 | 93.00 167 |
|
| dmvs_re | | | 76.93 223 | 75.36 224 | 81.61 226 | 87.78 216 | 60.71 276 | 80.00 353 | 87.99 309 | 79.42 72 | 69.02 245 | 89.47 192 | 46.77 285 | 94.32 214 | 63.38 271 | 74.45 235 | 89.81 227 |
|
| SDMVSNet | | | 80.26 162 | 78.88 173 | 84.40 148 | 89.25 172 | 67.63 101 | 85.35 305 | 93.02 105 | 76.77 120 | 70.84 222 | 87.12 229 | 47.95 279 | 96.09 142 | 85.04 81 | 74.55 232 | 89.48 234 |
|
| dmvs_testset | | | 65.55 331 | 66.45 307 | 62.86 375 | 79.87 330 | 22.35 421 | 76.55 367 | 71.74 389 | 77.42 112 | 55.85 350 | 87.77 218 | 51.39 245 | 80.69 388 | 31.51 400 | 65.92 295 | 85.55 301 |
|
| sd_testset | | | 77.08 221 | 75.37 223 | 82.20 211 | 89.25 172 | 62.11 246 | 82.06 332 | 89.09 272 | 76.77 120 | 70.84 222 | 87.12 229 | 41.43 315 | 95.01 187 | 67.23 236 | 74.55 232 | 89.48 234 |
|
| test_fmvsm_n_1920 | | | 87.69 26 | 88.50 19 | 85.27 114 | 87.05 232 | 63.55 211 | 93.69 87 | 91.08 195 | 84.18 13 | 90.17 24 | 97.04 8 | 67.58 57 | 97.99 39 | 95.72 5 | 90.03 95 | 94.26 119 |
|
| test_cas_vis1_n_1920 | | | 80.45 159 | 80.61 144 | 79.97 268 | 78.25 353 | 57.01 327 | 94.04 67 | 88.33 299 | 79.06 84 | 82.81 85 | 93.70 108 | 38.65 324 | 91.63 304 | 90.82 36 | 79.81 192 | 91.27 210 |
|
| test_vis1_n_1920 | | | 81.66 137 | 82.01 121 | 80.64 249 | 82.24 305 | 55.09 339 | 94.76 46 | 86.87 320 | 81.67 35 | 84.40 69 | 94.63 80 | 38.17 329 | 94.67 201 | 91.98 27 | 83.34 160 | 92.16 193 |
|
| test_vis1_n | | | 71.63 286 | 70.73 282 | 74.31 331 | 69.63 389 | 47.29 379 | 86.91 296 | 72.11 387 | 63.21 314 | 75.18 170 | 90.17 182 | 20.40 393 | 85.76 359 | 84.59 88 | 74.42 236 | 89.87 226 |
|
| test_fmvs1_n | | | 72.69 280 | 71.92 271 | 74.99 324 | 71.15 383 | 47.08 380 | 87.34 292 | 75.67 376 | 63.48 310 | 78.08 140 | 91.17 164 | 20.16 395 | 87.87 344 | 84.65 87 | 75.57 230 | 90.01 225 |
|
| mvsany_test1 | | | 68.77 307 | 68.56 296 | 69.39 359 | 73.57 376 | 45.88 387 | 80.93 343 | 60.88 407 | 59.65 343 | 71.56 215 | 90.26 180 | 43.22 309 | 75.05 394 | 74.26 172 | 62.70 323 | 87.25 266 |
|
| APD_test1 | | | 40.50 375 | 37.31 378 | 50.09 391 | 51.88 411 | 35.27 408 | 59.45 405 | 52.59 412 | 21.64 411 | 26.12 409 | 57.80 401 | 4.56 419 | 66.56 407 | 22.64 406 | 39.09 393 | 48.43 407 |
|
| test_vis1_rt | | | 59.09 357 | 57.31 356 | 64.43 372 | 68.44 392 | 46.02 386 | 83.05 327 | 48.63 416 | 51.96 372 | 49.57 375 | 63.86 392 | 16.30 398 | 80.20 389 | 71.21 198 | 62.79 322 | 67.07 399 |
|
| test_vis3_rt | | | 40.46 376 | 37.79 377 | 48.47 393 | 44.49 418 | 33.35 410 | 66.56 396 | 32.84 424 | 32.39 405 | 29.65 406 | 39.13 414 | 3.91 422 | 68.65 403 | 50.17 327 | 40.99 391 | 43.40 409 |
|
| test_fmvs2 | | | 65.78 330 | 64.84 319 | 68.60 363 | 66.54 395 | 41.71 395 | 83.27 321 | 69.81 394 | 54.38 366 | 67.91 261 | 84.54 260 | 15.35 400 | 81.22 387 | 75.65 159 | 66.16 293 | 82.88 332 |
|
| test_fmvs1 | | | 74.07 261 | 73.69 249 | 75.22 321 | 78.91 345 | 47.34 378 | 89.06 265 | 74.69 381 | 63.68 308 | 79.41 123 | 91.59 157 | 24.36 383 | 87.77 347 | 85.22 78 | 76.26 226 | 90.55 219 |
|
| test_fmvs3 | | | 56.82 358 | 54.86 362 | 62.69 377 | 53.59 410 | 35.47 407 | 75.87 371 | 65.64 401 | 43.91 395 | 55.10 352 | 71.43 376 | 6.91 415 | 74.40 397 | 68.64 223 | 52.63 369 | 78.20 378 |
|
| mvsany_test3 | | | 48.86 368 | 46.35 371 | 56.41 381 | 46.00 416 | 31.67 412 | 62.26 400 | 47.25 417 | 43.71 396 | 45.54 388 | 68.15 384 | 10.84 408 | 64.44 413 | 57.95 301 | 35.44 402 | 73.13 390 |
|
| testf1 | | | 32.77 381 | 29.47 384 | 42.67 397 | 41.89 420 | 30.81 413 | 52.07 408 | 43.45 418 | 15.45 414 | 18.52 414 | 44.82 408 | 2.12 423 | 58.38 414 | 16.05 412 | 30.87 406 | 38.83 410 |
|
| APD_test2 | | | 32.77 381 | 29.47 384 | 42.67 397 | 41.89 420 | 30.81 413 | 52.07 408 | 43.45 418 | 15.45 414 | 18.52 414 | 44.82 408 | 2.12 423 | 58.38 414 | 16.05 412 | 30.87 406 | 38.83 410 |
|
| test_f | | | 46.58 369 | 43.45 373 | 55.96 382 | 45.18 417 | 32.05 411 | 61.18 401 | 49.49 415 | 33.39 404 | 42.05 397 | 62.48 395 | 7.00 414 | 65.56 409 | 47.08 346 | 43.21 387 | 70.27 396 |
|
| FE-MVS | | | 75.97 240 | 73.02 256 | 84.82 127 | 89.78 157 | 65.56 154 | 77.44 365 | 91.07 196 | 64.55 298 | 72.66 195 | 79.85 323 | 46.05 295 | 96.69 117 | 54.97 312 | 80.82 186 | 92.21 191 |
|
| FA-MVS(test-final) | | | 79.12 183 | 77.23 199 | 84.81 130 | 90.54 143 | 63.98 195 | 81.35 340 | 91.71 164 | 71.09 235 | 74.85 174 | 82.94 275 | 52.85 231 | 97.05 92 | 67.97 227 | 81.73 179 | 93.41 151 |
|
| balanced_conf03 | | | 89.08 15 | 88.84 17 | 89.81 6 | 93.66 54 | 75.15 5 | 90.61 225 | 93.43 88 | 84.06 14 | 86.20 49 | 90.17 182 | 72.42 32 | 96.98 101 | 93.09 16 | 95.92 10 | 97.29 7 |
|
| MonoMVSNet | | | 76.99 222 | 75.08 228 | 82.73 193 | 83.32 294 | 63.24 218 | 86.47 301 | 86.37 324 | 79.08 82 | 66.31 282 | 79.30 329 | 49.80 261 | 91.72 301 | 79.37 132 | 65.70 296 | 93.23 157 |
|
| patch_mono-2 | | | 89.71 11 | 90.99 6 | 85.85 93 | 96.04 24 | 63.70 204 | 95.04 40 | 95.19 20 | 86.74 7 | 91.53 15 | 95.15 66 | 73.86 22 | 97.58 59 | 93.38 14 | 92.00 69 | 96.28 37 |
|
| EGC-MVSNET | | | 42.35 373 | 38.09 376 | 55.11 384 | 74.57 372 | 46.62 383 | 71.63 382 | 55.77 408 | 0.04 422 | 0.24 423 | 62.70 394 | 14.24 404 | 74.91 396 | 17.59 411 | 46.06 382 | 43.80 408 |
|
| test2506 | | | 83.29 108 | 82.92 107 | 84.37 150 | 88.39 195 | 63.18 222 | 92.01 159 | 91.35 180 | 77.66 105 | 78.49 137 | 91.42 159 | 64.58 88 | 95.09 185 | 73.19 175 | 89.23 100 | 94.85 89 |
|
| test1111 | | | 80.84 152 | 80.02 151 | 83.33 182 | 87.87 211 | 60.76 273 | 92.62 133 | 86.86 321 | 77.86 101 | 75.73 162 | 91.39 161 | 46.35 290 | 94.70 200 | 72.79 181 | 88.68 109 | 94.52 111 |
|
| ECVR-MVS |  | | 81.29 143 | 80.38 149 | 84.01 163 | 88.39 195 | 61.96 249 | 92.56 140 | 86.79 322 | 77.66 105 | 76.63 155 | 91.42 159 | 46.34 291 | 95.24 182 | 74.36 171 | 89.23 100 | 94.85 89 |
|
| test_blank | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 430 | 0.00 426 | 0.00 425 | 0.00 423 | 0.00 422 |
|
| tt0805 | | | 73.07 270 | 70.73 282 | 80.07 262 | 78.37 352 | 57.05 325 | 87.78 284 | 92.18 140 | 61.23 333 | 67.04 275 | 86.49 238 | 31.35 366 | 94.58 202 | 65.06 261 | 67.12 287 | 88.57 244 |
|
| DVP-MVS++ | | | 90.53 4 | 91.09 5 | 88.87 16 | 97.31 4 | 69.91 42 | 93.96 70 | 94.37 53 | 72.48 188 | 92.07 9 | 96.85 16 | 83.82 2 | 99.15 2 | 91.53 30 | 97.42 4 | 97.55 4 |
|
| FOURS1 | | | | | | 93.95 46 | 61.77 252 | 93.96 70 | 91.92 151 | 62.14 325 | 86.57 46 | | | | | | |
|
| MSC_two_6792asdad | | | | | 89.60 9 | 97.31 4 | 73.22 12 | | 95.05 27 | | | | | 99.07 13 | 92.01 25 | 94.77 26 | 96.51 24 |
|
| PC_three_1452 | | | | | | | | | | 80.91 48 | 94.07 2 | 96.83 18 | 83.57 4 | 99.12 5 | 95.70 7 | 97.42 4 | 97.55 4 |
|
| No_MVS | | | | | 89.60 9 | 97.31 4 | 73.22 12 | | 95.05 27 | | | | | 99.07 13 | 92.01 25 | 94.77 26 | 96.51 24 |
|
| test_one_0601 | | | | | | 96.32 18 | 69.74 49 | | 94.18 58 | 71.42 229 | 90.67 19 | 96.85 16 | 74.45 20 | | | | |
|
| eth-test2 | | | | | | 0.00 430 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 430 | | | | | | | | | | | |
|
| GeoE | | | 78.90 188 | 77.43 193 | 83.29 183 | 88.95 181 | 62.02 247 | 92.31 144 | 86.23 328 | 70.24 248 | 71.34 219 | 89.27 194 | 54.43 215 | 94.04 231 | 63.31 272 | 80.81 187 | 93.81 143 |
|
| test_method | | | 38.59 378 | 35.16 381 | 48.89 392 | 54.33 409 | 21.35 422 | 45.32 413 | 53.71 411 | 7.41 419 | 28.74 407 | 51.62 403 | 8.70 412 | 52.87 416 | 33.73 387 | 32.89 404 | 72.47 392 |
|
| Anonymous20240521 | | | 62.09 345 | 59.08 349 | 71.10 354 | 67.19 393 | 48.72 372 | 83.91 314 | 85.23 338 | 50.38 378 | 47.84 381 | 71.22 377 | 20.74 392 | 85.51 362 | 46.47 348 | 58.75 353 | 79.06 370 |
|
| h-mvs33 | | | 83.01 114 | 82.56 114 | 84.35 151 | 89.34 167 | 62.02 247 | 92.72 126 | 93.76 70 | 81.45 38 | 82.73 86 | 92.25 142 | 60.11 142 | 97.13 90 | 87.69 55 | 62.96 320 | 93.91 138 |
|
| hse-mvs2 | | | 81.12 147 | 81.11 134 | 81.16 236 | 86.52 240 | 57.48 320 | 89.40 256 | 91.16 188 | 81.45 38 | 82.73 86 | 90.49 174 | 60.11 142 | 94.58 202 | 87.69 55 | 60.41 347 | 91.41 203 |
|
| CL-MVSNet_self_test | | | 69.92 297 | 68.09 301 | 75.41 320 | 73.25 377 | 55.90 334 | 90.05 241 | 89.90 237 | 69.96 251 | 61.96 320 | 76.54 349 | 51.05 249 | 87.64 348 | 49.51 332 | 50.59 375 | 82.70 338 |
|
| KD-MVS_2432*1600 | | | 69.03 305 | 66.37 309 | 77.01 309 | 85.56 259 | 61.06 266 | 81.44 338 | 90.25 223 | 67.27 279 | 58.00 341 | 76.53 350 | 54.49 212 | 87.63 349 | 48.04 339 | 35.77 400 | 82.34 342 |
|
| KD-MVS_self_test | | | 60.87 350 | 58.60 350 | 67.68 366 | 66.13 396 | 39.93 401 | 75.63 374 | 84.70 342 | 57.32 355 | 49.57 375 | 68.45 383 | 29.55 371 | 82.87 378 | 48.09 338 | 47.94 379 | 80.25 363 |
|
| AUN-MVS | | | 78.37 200 | 77.43 193 | 81.17 235 | 86.60 239 | 57.45 321 | 89.46 255 | 91.16 188 | 74.11 152 | 74.40 177 | 90.49 174 | 55.52 201 | 94.57 204 | 74.73 170 | 60.43 346 | 91.48 201 |
|
| ZD-MVS | | | | | | 96.63 9 | 65.50 157 | | 93.50 84 | 70.74 243 | 85.26 62 | 95.19 65 | 64.92 83 | 97.29 76 | 87.51 57 | 93.01 56 | |
|
| SR-MVS-dyc-post | | | 81.06 148 | 80.70 141 | 82.15 213 | 92.02 102 | 58.56 309 | 90.90 209 | 90.45 211 | 62.76 318 | 78.89 129 | 94.46 83 | 51.26 248 | 95.61 166 | 78.77 141 | 86.77 131 | 92.28 186 |
|
| RE-MVS-def | | | | 80.48 147 | | 92.02 102 | 58.56 309 | 90.90 209 | 90.45 211 | 62.76 318 | 78.89 129 | 94.46 83 | 49.30 265 | | 78.77 141 | 86.77 131 | 92.28 186 |
|
| SED-MVS | | | 89.94 9 | 90.36 10 | 88.70 18 | 96.45 12 | 69.38 55 | 96.89 6 | 94.44 47 | 71.65 218 | 92.11 7 | 97.21 4 | 76.79 9 | 99.11 6 | 92.34 22 | 95.36 14 | 97.62 2 |
|
| IU-MVS | | | | | | 96.46 11 | 69.91 42 | | 95.18 21 | 80.75 49 | 95.28 1 | | | | 92.34 22 | 95.36 14 | 96.47 28 |
|
| OPU-MVS | | | | | 89.97 3 | 97.52 3 | 73.15 14 | 96.89 6 | | | | 97.00 9 | 83.82 2 | 99.15 2 | 95.72 5 | 97.63 3 | 97.62 2 |
|
| test_241102_TWO | | | | | | | | | 94.41 49 | 71.65 218 | 92.07 9 | 97.21 4 | 74.58 18 | 99.11 6 | 92.34 22 | 95.36 14 | 96.59 19 |
|
| test_241102_ONE | | | | | | 96.45 12 | 69.38 55 | | 94.44 47 | 71.65 218 | 92.11 7 | 97.05 7 | 76.79 9 | 99.11 6 | | | |
|
| SF-MVS | | | 87.03 35 | 87.09 35 | 86.84 59 | 92.70 85 | 67.45 107 | 93.64 90 | 93.76 70 | 70.78 242 | 86.25 47 | 96.44 26 | 66.98 60 | 97.79 47 | 88.68 49 | 94.56 34 | 95.28 72 |
|
| cl22 | | | 77.94 208 | 76.78 205 | 81.42 230 | 87.57 218 | 64.93 171 | 90.67 220 | 88.86 283 | 72.45 190 | 67.63 267 | 82.68 279 | 64.07 92 | 92.91 264 | 71.79 192 | 65.30 298 | 86.44 278 |
|
| miper_ehance_all_eth | | | 77.60 212 | 76.44 209 | 81.09 242 | 85.70 258 | 64.41 182 | 90.65 221 | 88.64 292 | 72.31 194 | 67.37 273 | 82.52 280 | 64.77 86 | 92.64 277 | 70.67 203 | 65.30 298 | 86.24 282 |
|
| miper_enhance_ethall | | | 78.86 189 | 77.97 185 | 81.54 228 | 88.00 208 | 65.17 163 | 91.41 183 | 89.15 267 | 75.19 139 | 68.79 250 | 83.98 266 | 67.17 59 | 92.82 266 | 72.73 183 | 65.30 298 | 86.62 277 |
|
| ZNCC-MVS | | | 85.33 68 | 85.08 69 | 86.06 85 | 93.09 72 | 65.65 151 | 93.89 75 | 93.41 90 | 73.75 162 | 79.94 116 | 94.68 79 | 60.61 138 | 98.03 38 | 82.63 107 | 93.72 46 | 94.52 111 |
|
| dcpmvs_2 | | | 87.37 31 | 87.55 30 | 86.85 58 | 95.04 32 | 68.20 87 | 90.36 231 | 90.66 207 | 79.37 74 | 81.20 98 | 93.67 109 | 74.73 16 | 96.55 123 | 90.88 35 | 92.00 69 | 95.82 48 |
|
| cl____ | | | 76.07 234 | 74.67 230 | 80.28 256 | 85.15 265 | 61.76 253 | 90.12 238 | 88.73 287 | 71.16 232 | 65.43 286 | 81.57 295 | 61.15 130 | 92.95 259 | 66.54 243 | 62.17 328 | 86.13 286 |
|
| DIV-MVS_self_test | | | 76.07 234 | 74.67 230 | 80.28 256 | 85.14 266 | 61.75 254 | 90.12 238 | 88.73 287 | 71.16 232 | 65.42 287 | 81.60 294 | 61.15 130 | 92.94 263 | 66.54 243 | 62.16 330 | 86.14 284 |
|
| eth_miper_zixun_eth | | | 75.96 241 | 74.40 238 | 80.66 248 | 84.66 273 | 63.02 224 | 89.28 258 | 88.27 302 | 71.88 208 | 65.73 284 | 81.65 292 | 59.45 150 | 92.81 267 | 68.13 225 | 60.53 344 | 86.14 284 |
|
| 9.14 | | | | 87.63 28 | | 93.86 48 | | 94.41 52 | 94.18 58 | 72.76 183 | 86.21 48 | 96.51 24 | 66.64 63 | 97.88 44 | 90.08 39 | 94.04 39 | |
|
| uanet_test | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 430 | 0.00 426 | 0.00 425 | 0.00 423 | 0.00 422 |
|
| DCPMVS | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 430 | 0.00 426 | 0.00 425 | 0.00 423 | 0.00 422 |
|
| save fliter | | | | | | 93.84 49 | 67.89 94 | 95.05 39 | 92.66 120 | 78.19 95 | | | | | | | |
|
| ET-MVSNet_ETH3D | | | 84.01 93 | 83.15 103 | 86.58 70 | 90.78 141 | 70.89 28 | 94.74 47 | 94.62 41 | 81.44 40 | 58.19 338 | 93.64 110 | 73.64 25 | 92.35 287 | 82.66 106 | 78.66 205 | 96.50 27 |
|
| UniMVSNet_ETH3D | | | 72.74 277 | 70.53 284 | 79.36 281 | 78.62 350 | 56.64 329 | 85.01 307 | 89.20 263 | 63.77 306 | 64.84 292 | 84.44 261 | 34.05 355 | 91.86 298 | 63.94 267 | 70.89 263 | 89.57 232 |
|
| EIA-MVS | | | 84.84 76 | 84.88 72 | 84.69 136 | 91.30 129 | 62.36 240 | 93.85 77 | 92.04 144 | 79.45 71 | 79.33 125 | 94.28 95 | 62.42 119 | 96.35 131 | 80.05 127 | 91.25 83 | 95.38 62 |
|
| miper_refine_blended | | | 69.03 305 | 66.37 309 | 77.01 309 | 85.56 259 | 61.06 266 | 81.44 338 | 90.25 223 | 67.27 279 | 58.00 341 | 76.53 350 | 54.49 212 | 87.63 349 | 48.04 339 | 35.77 400 | 82.34 342 |
|
| miper_lstm_enhance | | | 73.05 271 | 71.73 274 | 77.03 308 | 83.80 287 | 58.32 311 | 81.76 333 | 88.88 281 | 69.80 254 | 61.01 321 | 78.23 335 | 57.19 176 | 87.51 351 | 65.34 259 | 59.53 349 | 85.27 308 |
|
| ETV-MVS | | | 86.01 54 | 86.11 51 | 85.70 100 | 90.21 150 | 67.02 119 | 93.43 103 | 91.92 151 | 81.21 45 | 84.13 73 | 94.07 102 | 60.93 135 | 95.63 164 | 89.28 43 | 89.81 96 | 94.46 115 |
|
| CS-MVS | | | 85.80 59 | 86.65 44 | 83.27 184 | 92.00 106 | 58.92 305 | 95.31 31 | 91.86 156 | 79.97 61 | 84.82 65 | 95.40 52 | 62.26 121 | 95.51 174 | 86.11 73 | 92.08 68 | 95.37 63 |
|
| D2MVS | | | 73.80 265 | 72.02 270 | 79.15 286 | 79.15 340 | 62.97 225 | 88.58 271 | 90.07 230 | 72.94 177 | 59.22 332 | 78.30 333 | 42.31 313 | 92.70 273 | 65.59 256 | 72.00 254 | 81.79 347 |
|
| DVP-MVS |  | | 89.41 13 | 89.73 14 | 88.45 25 | 96.40 15 | 69.99 38 | 96.64 10 | 94.52 43 | 71.92 204 | 90.55 20 | 96.93 11 | 73.77 23 | 99.08 11 | 91.91 28 | 94.90 22 | 96.29 35 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_THIRD | | | | | | | | | | 72.48 188 | 90.55 20 | 96.93 11 | 76.24 11 | 99.08 11 | 91.53 30 | 94.99 18 | 96.43 31 |
|
| test_0728_SECOND | | | | | 88.70 18 | 96.45 12 | 70.43 33 | 96.64 10 | 94.37 53 | | | | | 99.15 2 | 91.91 28 | 94.90 22 | 96.51 24 |
|
| test0726 | | | | | | 96.40 15 | 69.99 38 | 96.76 8 | 94.33 55 | 71.92 204 | 91.89 11 | 97.11 6 | 73.77 23 | | | | |
|
| SR-MVS | | | 82.81 117 | 82.58 113 | 83.50 179 | 93.35 63 | 61.16 265 | 92.23 148 | 91.28 185 | 64.48 299 | 81.27 97 | 95.28 57 | 53.71 223 | 95.86 152 | 82.87 105 | 88.77 108 | 93.49 150 |
|
| DPM-MVS | | | 90.70 3 | 90.52 9 | 91.24 1 | 89.68 160 | 76.68 2 | 97.29 1 | 95.35 16 | 82.87 22 | 91.58 13 | 97.22 3 | 79.93 5 | 99.10 9 | 83.12 102 | 97.64 2 | 97.94 1 |
|
| GST-MVS | | | 84.63 80 | 84.29 79 | 85.66 101 | 92.82 81 | 65.27 160 | 93.04 114 | 93.13 101 | 73.20 171 | 78.89 129 | 94.18 98 | 59.41 152 | 97.85 45 | 81.45 115 | 92.48 63 | 93.86 141 |
|
| test_yl | | | 84.28 85 | 83.16 101 | 87.64 34 | 94.52 37 | 69.24 59 | 95.78 18 | 95.09 24 | 69.19 261 | 81.09 100 | 92.88 126 | 57.00 180 | 97.44 66 | 81.11 121 | 81.76 177 | 96.23 38 |
|
| thisisatest0530 | | | 81.15 144 | 80.07 150 | 84.39 149 | 88.26 199 | 65.63 152 | 91.40 185 | 94.62 41 | 71.27 231 | 70.93 221 | 89.18 195 | 72.47 31 | 96.04 147 | 65.62 255 | 76.89 222 | 91.49 200 |
|
| Anonymous20240529 | | | 76.84 226 | 74.15 242 | 84.88 125 | 91.02 134 | 64.95 170 | 93.84 80 | 91.09 193 | 53.57 368 | 73.00 189 | 87.42 224 | 35.91 348 | 97.32 74 | 69.14 218 | 72.41 253 | 92.36 182 |
|
| Anonymous202405211 | | | 77.96 207 | 75.33 225 | 85.87 91 | 93.73 53 | 64.52 174 | 94.85 44 | 85.36 337 | 62.52 321 | 76.11 159 | 90.18 181 | 29.43 373 | 97.29 76 | 68.51 224 | 77.24 220 | 95.81 49 |
|
| DCV-MVSNet | | | 84.28 85 | 83.16 101 | 87.64 34 | 94.52 37 | 69.24 59 | 95.78 18 | 95.09 24 | 69.19 261 | 81.09 100 | 92.88 126 | 57.00 180 | 97.44 66 | 81.11 121 | 81.76 177 | 96.23 38 |
|
| tttt0517 | | | 79.50 176 | 78.53 177 | 82.41 204 | 87.22 227 | 61.43 261 | 89.75 249 | 94.76 33 | 69.29 259 | 67.91 261 | 88.06 214 | 72.92 28 | 95.63 164 | 62.91 276 | 73.90 242 | 90.16 222 |
|
| our_test_3 | | | 68.29 313 | 64.69 322 | 79.11 287 | 78.92 343 | 64.85 172 | 88.40 274 | 85.06 339 | 60.32 339 | 52.68 361 | 76.12 354 | 40.81 317 | 89.80 331 | 44.25 358 | 55.65 361 | 82.67 340 |
|
| thisisatest0515 | | | 83.41 106 | 82.49 115 | 86.16 83 | 89.46 166 | 68.26 83 | 93.54 95 | 94.70 37 | 74.31 149 | 75.75 161 | 90.92 166 | 72.62 30 | 96.52 124 | 69.64 209 | 81.50 180 | 93.71 144 |
|
| ppachtmachnet_test | | | 67.72 317 | 63.70 329 | 79.77 274 | 78.92 343 | 66.04 142 | 88.68 269 | 82.90 360 | 60.11 341 | 55.45 351 | 75.96 355 | 39.19 321 | 90.55 316 | 39.53 374 | 52.55 371 | 82.71 337 |
|
| SMA-MVS |  | | 88.14 18 | 88.29 22 | 87.67 33 | 93.21 67 | 68.72 72 | 93.85 77 | 94.03 63 | 74.18 151 | 91.74 12 | 96.67 21 | 65.61 75 | 98.42 33 | 89.24 44 | 96.08 7 | 95.88 47 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| GSMVS | | | | | | | | | | | | | | | | | 94.68 100 |
|
| DPE-MVS |  | | 88.77 17 | 89.21 16 | 87.45 43 | 96.26 20 | 67.56 102 | 94.17 58 | 94.15 60 | 68.77 267 | 90.74 18 | 97.27 2 | 76.09 12 | 98.49 29 | 90.58 38 | 94.91 21 | 96.30 34 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| test_part2 | | | | | | 96.29 19 | 68.16 88 | | | | 90.78 17 | | | | | | |
|
| thres100view900 | | | 78.37 200 | 77.01 202 | 82.46 200 | 91.89 111 | 63.21 220 | 91.19 202 | 96.33 1 | 72.28 196 | 70.45 227 | 87.89 216 | 60.31 139 | 95.32 178 | 45.16 353 | 77.58 213 | 88.83 238 |
|
| tfpnnormal | | | 70.10 295 | 67.36 304 | 78.32 292 | 83.45 293 | 60.97 268 | 88.85 266 | 92.77 114 | 64.85 297 | 60.83 323 | 78.53 332 | 43.52 308 | 93.48 249 | 31.73 397 | 61.70 336 | 80.52 359 |
|
| tfpn200view9 | | | 78.79 192 | 77.43 193 | 82.88 190 | 92.21 96 | 64.49 175 | 92.05 157 | 96.28 4 | 73.48 168 | 71.75 212 | 88.26 207 | 60.07 144 | 95.32 178 | 45.16 353 | 77.58 213 | 88.83 238 |
|
| c3_l | | | 76.83 227 | 75.47 222 | 80.93 246 | 85.02 269 | 64.18 192 | 90.39 229 | 88.11 306 | 71.66 217 | 66.65 281 | 81.64 293 | 63.58 105 | 92.56 278 | 69.31 215 | 62.86 321 | 86.04 288 |
|
| CHOSEN 280x420 | | | 77.35 216 | 76.95 204 | 78.55 290 | 87.07 231 | 62.68 235 | 69.71 386 | 82.95 359 | 68.80 266 | 71.48 217 | 87.27 228 | 66.03 70 | 84.00 370 | 76.47 154 | 82.81 165 | 88.95 237 |
|
| CANet | | | 89.61 12 | 89.99 12 | 88.46 24 | 94.39 39 | 69.71 50 | 96.53 13 | 93.78 67 | 86.89 6 | 89.68 28 | 95.78 40 | 65.94 71 | 99.10 9 | 92.99 17 | 93.91 42 | 96.58 21 |
|
| Fast-Effi-MVS+-dtu | | | 75.04 253 | 73.37 253 | 80.07 262 | 80.86 316 | 59.52 297 | 91.20 201 | 85.38 336 | 71.90 206 | 65.20 288 | 84.84 255 | 41.46 314 | 92.97 258 | 66.50 245 | 72.96 247 | 87.73 255 |
|
| Effi-MVS+-dtu | | | 76.14 233 | 75.28 226 | 78.72 289 | 83.22 295 | 55.17 338 | 89.87 246 | 87.78 312 | 75.42 135 | 67.98 259 | 81.43 297 | 45.08 302 | 92.52 280 | 75.08 164 | 71.63 256 | 88.48 246 |
|
| CANet_DTU | | | 84.09 92 | 83.52 86 | 85.81 94 | 90.30 148 | 66.82 123 | 91.87 167 | 89.01 276 | 85.27 9 | 86.09 51 | 93.74 107 | 47.71 282 | 96.98 101 | 77.90 147 | 89.78 98 | 93.65 146 |
|
| MVS_0304 | | | 90.32 6 | 90.90 7 | 88.55 23 | 94.05 45 | 70.23 36 | 97.00 5 | 93.73 74 | 87.30 4 | 92.15 6 | 96.15 34 | 66.38 66 | 98.94 17 | 96.71 2 | 94.67 33 | 96.47 28 |
|
| MP-MVS-pluss | | | 85.24 69 | 85.13 68 | 85.56 103 | 91.42 124 | 65.59 153 | 91.54 181 | 92.51 127 | 74.56 145 | 80.62 107 | 95.64 44 | 59.15 155 | 97.00 97 | 86.94 67 | 93.80 43 | 94.07 131 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| MSP-MVS | | | 90.38 5 | 91.87 1 | 85.88 90 | 92.83 79 | 64.03 194 | 93.06 112 | 94.33 55 | 82.19 29 | 93.65 3 | 96.15 34 | 85.89 1 | 97.19 84 | 91.02 34 | 97.75 1 | 96.43 31 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| sam_mvs1 | | | | | | | | | | | | | 57.85 170 | | | | 94.68 100 |
|
| sam_mvs | | | | | | | | | | | | | 54.91 209 | | | | |
|
| IterMVS-SCA-FT | | | 71.55 287 | 69.97 287 | 76.32 315 | 81.48 312 | 60.67 278 | 87.64 288 | 85.99 331 | 66.17 288 | 59.50 330 | 78.88 330 | 45.53 297 | 83.65 372 | 62.58 279 | 61.93 331 | 84.63 314 |
|
| TSAR-MVS + MP. | | | 88.11 20 | 88.64 18 | 86.54 72 | 91.73 115 | 68.04 90 | 90.36 231 | 93.55 81 | 82.89 21 | 91.29 16 | 92.89 125 | 72.27 34 | 96.03 148 | 87.99 52 | 94.77 26 | 95.54 57 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| xiu_mvs_v1_base_debu | | | 82.16 128 | 81.12 131 | 85.26 115 | 86.42 241 | 68.72 72 | 92.59 137 | 90.44 214 | 73.12 174 | 84.20 70 | 94.36 87 | 38.04 332 | 95.73 158 | 84.12 92 | 86.81 128 | 91.33 204 |
|
| OPM-MVS | | | 79.00 185 | 78.09 182 | 81.73 223 | 83.52 292 | 63.83 197 | 91.64 180 | 90.30 221 | 76.36 126 | 71.97 209 | 89.93 188 | 46.30 293 | 95.17 184 | 75.10 163 | 77.70 211 | 86.19 283 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| ACMMP_NAP | | | 86.05 53 | 85.80 58 | 86.80 62 | 91.58 119 | 67.53 104 | 91.79 171 | 93.49 85 | 74.93 142 | 84.61 66 | 95.30 56 | 59.42 151 | 97.92 41 | 86.13 72 | 94.92 20 | 94.94 88 |
|
| ambc | | | | | 69.61 358 | 61.38 405 | 41.35 396 | 49.07 412 | 85.86 334 | | 50.18 374 | 66.40 386 | 10.16 409 | 88.14 342 | 45.73 352 | 44.20 384 | 79.32 369 |
|
| MTGPA |  | | | | | | | | 92.23 133 | | | | | | | | |
|
| SPE-MVS-test | | | 86.14 52 | 87.01 36 | 83.52 176 | 92.63 87 | 59.36 301 | 95.49 27 | 91.92 151 | 80.09 60 | 85.46 59 | 95.53 49 | 61.82 127 | 95.77 156 | 86.77 69 | 93.37 52 | 95.41 60 |
|
| Effi-MVS+ | | | 83.82 97 | 82.76 110 | 86.99 56 | 89.56 163 | 69.40 53 | 91.35 192 | 86.12 330 | 72.59 185 | 83.22 80 | 92.81 129 | 59.60 149 | 96.01 150 | 81.76 112 | 87.80 118 | 95.56 56 |
|
| xiu_mvs_v2_base | | | 87.92 23 | 87.38 33 | 89.55 12 | 91.41 127 | 76.43 3 | 95.74 21 | 93.12 102 | 83.53 18 | 89.55 29 | 95.95 38 | 53.45 228 | 97.68 50 | 91.07 33 | 92.62 60 | 94.54 109 |
|
| xiu_mvs_v1_base | | | 82.16 128 | 81.12 131 | 85.26 115 | 86.42 241 | 68.72 72 | 92.59 137 | 90.44 214 | 73.12 174 | 84.20 70 | 94.36 87 | 38.04 332 | 95.73 158 | 84.12 92 | 86.81 128 | 91.33 204 |
|
| new-patchmatchnet | | | 59.30 356 | 56.48 358 | 67.79 365 | 65.86 397 | 44.19 389 | 82.47 330 | 81.77 361 | 59.94 342 | 43.65 394 | 66.20 387 | 27.67 378 | 81.68 385 | 39.34 375 | 41.40 389 | 77.50 381 |
|
| pmmvs6 | | | 67.57 319 | 64.76 321 | 76.00 318 | 72.82 380 | 53.37 346 | 88.71 268 | 86.78 323 | 53.19 369 | 57.58 346 | 78.03 337 | 35.33 351 | 92.41 283 | 55.56 310 | 54.88 365 | 82.21 344 |
|
| pmmvs5 | | | 73.35 268 | 71.52 275 | 78.86 288 | 78.64 349 | 60.61 280 | 91.08 205 | 86.90 319 | 67.69 274 | 63.32 307 | 83.64 268 | 44.33 305 | 90.53 317 | 62.04 282 | 66.02 294 | 85.46 303 |
|
| test_post1 | | | | | | | | 78.95 356 | | | | 20.70 419 | 53.05 229 | 91.50 311 | 60.43 290 | | |
|
| test_post | | | | | | | | | | | | 23.01 416 | 56.49 191 | 92.67 274 | | | |
|
| Fast-Effi-MVS+ | | | 81.14 145 | 80.01 152 | 84.51 145 | 90.24 149 | 65.86 147 | 94.12 62 | 89.15 267 | 73.81 161 | 75.37 169 | 88.26 207 | 57.26 175 | 94.53 209 | 66.97 240 | 84.92 145 | 93.15 160 |
|
| patchmatchnet-post | | | | | | | | | | | | 67.62 385 | 57.62 173 | 90.25 320 | | | |
|
| Anonymous20231211 | | | 73.08 269 | 70.39 285 | 81.13 237 | 90.62 142 | 63.33 216 | 91.40 185 | 90.06 232 | 51.84 373 | 64.46 297 | 80.67 311 | 36.49 346 | 94.07 227 | 63.83 268 | 64.17 313 | 85.98 290 |
|
| pmmvs-eth3d | | | 65.53 332 | 62.32 338 | 75.19 322 | 69.39 390 | 59.59 295 | 82.80 329 | 83.43 355 | 62.52 321 | 51.30 369 | 72.49 366 | 32.86 357 | 87.16 354 | 55.32 311 | 50.73 374 | 78.83 373 |
|
| GG-mvs-BLEND | | | | | 86.53 73 | 91.91 110 | 69.67 52 | 75.02 375 | 94.75 34 | | 78.67 136 | 90.85 168 | 77.91 7 | 94.56 207 | 72.25 188 | 93.74 45 | 95.36 65 |
|
| xiu_mvs_v1_base_debi | | | 82.16 128 | 81.12 131 | 85.26 115 | 86.42 241 | 68.72 72 | 92.59 137 | 90.44 214 | 73.12 174 | 84.20 70 | 94.36 87 | 38.04 332 | 95.73 158 | 84.12 92 | 86.81 128 | 91.33 204 |
|
| Anonymous20231206 | | | 67.53 320 | 65.78 312 | 72.79 342 | 74.95 371 | 47.59 376 | 88.23 275 | 87.32 315 | 61.75 331 | 58.07 340 | 77.29 343 | 37.79 336 | 87.29 353 | 42.91 361 | 63.71 318 | 83.48 324 |
|
| MTAPA | | | 83.91 95 | 83.38 96 | 85.50 104 | 91.89 111 | 65.16 164 | 81.75 334 | 92.23 133 | 75.32 137 | 80.53 109 | 95.21 64 | 56.06 196 | 97.16 88 | 84.86 85 | 92.55 62 | 94.18 123 |
|
| MTMP | | | | | | | | 93.77 84 | 32.52 425 | | | | | | | | |
|
| gm-plane-assit | | | | | | 88.42 193 | 67.04 118 | | | 78.62 91 | | 91.83 151 | | 97.37 70 | 76.57 153 | | |
|
| test9_res | | | | | | | | | | | | | | | 89.41 40 | 94.96 19 | 95.29 70 |
|
| MVP-Stereo | | | 77.12 220 | 76.23 212 | 79.79 273 | 81.72 310 | 66.34 136 | 89.29 257 | 90.88 201 | 70.56 245 | 62.01 319 | 82.88 276 | 49.34 264 | 94.13 223 | 65.55 257 | 93.80 43 | 78.88 372 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| TEST9 | | | | | | 94.18 41 | 67.28 109 | 94.16 59 | 93.51 82 | 71.75 215 | 85.52 57 | 95.33 54 | 68.01 53 | 97.27 80 | | | |
|
| train_agg | | | 87.21 33 | 87.42 32 | 86.60 68 | 94.18 41 | 67.28 109 | 94.16 59 | 93.51 82 | 71.87 209 | 85.52 57 | 95.33 54 | 68.19 51 | 97.27 80 | 89.09 45 | 94.90 22 | 95.25 76 |
|
| gg-mvs-nofinetune | | | 77.18 218 | 74.31 239 | 85.80 95 | 91.42 124 | 68.36 79 | 71.78 380 | 94.72 35 | 49.61 380 | 77.12 151 | 45.92 406 | 77.41 8 | 93.98 235 | 67.62 232 | 93.16 55 | 95.05 83 |
|
| SCA | | | 75.82 243 | 72.76 259 | 85.01 122 | 86.63 238 | 70.08 37 | 81.06 342 | 89.19 264 | 71.60 223 | 70.01 233 | 77.09 346 | 45.53 297 | 90.25 320 | 60.43 290 | 73.27 244 | 94.68 100 |
|
| Patchmatch-test | | | 65.86 328 | 60.94 343 | 80.62 251 | 83.75 288 | 58.83 306 | 58.91 406 | 75.26 380 | 44.50 394 | 50.95 371 | 77.09 346 | 58.81 161 | 87.90 343 | 35.13 385 | 64.03 315 | 95.12 80 |
|
| test_8 | | | | | | 94.19 40 | 67.19 111 | 94.15 61 | 93.42 89 | 71.87 209 | 85.38 60 | 95.35 53 | 68.19 51 | 96.95 106 | | | |
|
| MS-PatchMatch | | | 77.90 210 | 76.50 208 | 82.12 215 | 85.99 250 | 69.95 41 | 91.75 176 | 92.70 116 | 73.97 156 | 62.58 316 | 84.44 261 | 41.11 316 | 95.78 154 | 63.76 269 | 92.17 66 | 80.62 358 |
|
| Patchmatch-RL test | | | 68.17 314 | 64.49 325 | 79.19 283 | 71.22 382 | 53.93 344 | 70.07 385 | 71.54 391 | 69.22 260 | 56.79 348 | 62.89 393 | 56.58 189 | 88.61 335 | 69.53 212 | 52.61 370 | 95.03 85 |
|
| cdsmvs_eth3d_5k | | | 19.86 388 | 26.47 387 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 93.45 86 | 0.00 425 | 0.00 426 | 95.27 59 | 49.56 262 | 0.00 426 | 0.00 425 | 0.00 423 | 0.00 422 |
|
| pcd_1.5k_mvsjas | | | 4.46 393 | 5.95 396 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 0.00 425 | 53.55 224 | 0.00 426 | 0.00 425 | 0.00 423 | 0.00 422 |
|
| agg_prior2 | | | | | | | | | | | | | | | 86.41 70 | 94.75 30 | 95.33 66 |
|
| agg_prior | | | | | | 94.16 43 | 66.97 120 | | 93.31 92 | | 84.49 68 | | | 96.75 116 | | | |
|
| tmp_tt | | | 22.26 387 | 23.75 389 | 17.80 403 | 5.23 427 | 12.06 428 | 35.26 414 | 39.48 421 | 2.82 421 | 18.94 412 | 44.20 410 | 22.23 390 | 24.64 422 | 36.30 380 | 9.31 419 | 16.69 416 |
|
| canonicalmvs | | | 86.85 37 | 86.25 48 | 88.66 20 | 91.80 113 | 71.92 16 | 93.54 95 | 91.71 164 | 80.26 56 | 87.55 37 | 95.25 61 | 63.59 103 | 96.93 109 | 88.18 50 | 84.34 150 | 97.11 9 |
|
| anonymousdsp | | | 71.14 289 | 69.37 293 | 76.45 314 | 72.95 378 | 54.71 341 | 84.19 312 | 88.88 281 | 61.92 328 | 62.15 318 | 79.77 324 | 38.14 331 | 91.44 312 | 68.90 221 | 67.45 286 | 83.21 329 |
|
| alignmvs | | | 87.28 32 | 86.97 37 | 88.24 27 | 91.30 129 | 71.14 26 | 95.61 25 | 93.56 80 | 79.30 75 | 87.07 42 | 95.25 61 | 68.43 49 | 96.93 109 | 87.87 53 | 84.33 152 | 96.65 17 |
|
| nrg030 | | | 80.93 150 | 79.86 155 | 84.13 157 | 83.69 289 | 68.83 68 | 93.23 108 | 91.20 186 | 75.55 133 | 75.06 171 | 88.22 210 | 63.04 114 | 94.74 196 | 81.88 111 | 66.88 289 | 88.82 240 |
|
| v144192 | | | 76.05 237 | 74.03 244 | 82.12 215 | 79.50 335 | 66.55 132 | 91.39 187 | 89.71 248 | 72.30 195 | 68.17 257 | 81.33 300 | 51.75 241 | 94.03 233 | 67.94 228 | 64.19 312 | 85.77 296 |
|
| FIs | | | 79.47 178 | 79.41 164 | 79.67 275 | 85.95 251 | 59.40 298 | 91.68 178 | 93.94 64 | 78.06 97 | 68.96 247 | 88.28 205 | 66.61 64 | 91.77 300 | 66.20 249 | 74.99 231 | 87.82 254 |
|
| v1921920 | | | 75.63 247 | 73.49 252 | 82.06 219 | 79.38 336 | 66.35 135 | 91.07 207 | 89.48 251 | 71.98 203 | 67.99 258 | 81.22 303 | 49.16 269 | 93.90 239 | 66.56 242 | 64.56 310 | 85.92 293 |
|
| UA-Net | | | 80.02 168 | 79.65 158 | 81.11 238 | 89.33 169 | 57.72 316 | 86.33 302 | 89.00 279 | 77.44 110 | 81.01 102 | 89.15 196 | 59.33 153 | 95.90 151 | 61.01 287 | 84.28 154 | 89.73 230 |
|
| v1192 | | | 75.98 239 | 73.92 246 | 82.15 213 | 79.73 331 | 66.24 139 | 91.22 199 | 89.75 242 | 72.67 184 | 68.49 255 | 81.42 298 | 49.86 259 | 94.27 218 | 67.08 238 | 65.02 303 | 85.95 291 |
|
| FC-MVSNet-test | | | 77.99 206 | 78.08 183 | 77.70 298 | 84.89 271 | 55.51 336 | 90.27 234 | 93.75 73 | 76.87 115 | 66.80 280 | 87.59 221 | 65.71 74 | 90.23 324 | 62.89 277 | 73.94 240 | 87.37 261 |
|
| v1144 | | | 76.73 229 | 74.88 229 | 82.27 207 | 80.23 327 | 66.60 130 | 91.68 178 | 90.21 227 | 73.69 164 | 69.06 244 | 81.89 288 | 52.73 233 | 94.40 213 | 69.21 216 | 65.23 301 | 85.80 295 |
|
| sosnet-low-res | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 430 | 0.00 426 | 0.00 425 | 0.00 423 | 0.00 422 |
|
| HFP-MVS | | | 84.73 78 | 84.40 78 | 85.72 99 | 93.75 52 | 65.01 168 | 93.50 98 | 93.19 98 | 72.19 198 | 79.22 126 | 94.93 71 | 59.04 158 | 97.67 51 | 81.55 113 | 92.21 64 | 94.49 114 |
|
| v148 | | | 76.19 232 | 74.47 237 | 81.36 231 | 80.05 329 | 64.44 179 | 91.75 176 | 90.23 225 | 73.68 165 | 67.13 274 | 80.84 308 | 55.92 198 | 93.86 243 | 68.95 220 | 61.73 335 | 85.76 298 |
|
| sosnet | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 430 | 0.00 426 | 0.00 425 | 0.00 423 | 0.00 422 |
|
| uncertanet | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 430 | 0.00 426 | 0.00 425 | 0.00 423 | 0.00 422 |
|
| AllTest | | | 61.66 346 | 58.06 351 | 72.46 344 | 79.57 332 | 51.42 356 | 80.17 350 | 68.61 396 | 51.25 375 | 45.88 384 | 81.23 301 | 19.86 396 | 86.58 356 | 38.98 376 | 57.01 358 | 79.39 367 |
|
| TestCases | | | | | 72.46 344 | 79.57 332 | 51.42 356 | | 68.61 396 | 51.25 375 | 45.88 384 | 81.23 301 | 19.86 396 | 86.58 356 | 38.98 376 | 57.01 358 | 79.39 367 |
|
| v7n | | | 71.31 288 | 68.65 295 | 79.28 282 | 76.40 365 | 60.77 272 | 86.71 299 | 89.45 253 | 64.17 303 | 58.77 337 | 78.24 334 | 44.59 304 | 93.54 247 | 57.76 302 | 61.75 334 | 83.52 323 |
|
| region2R | | | 84.36 83 | 84.03 81 | 85.36 110 | 93.54 59 | 64.31 187 | 93.43 103 | 92.95 109 | 72.16 201 | 78.86 133 | 94.84 75 | 56.97 182 | 97.53 63 | 81.38 117 | 92.11 67 | 94.24 121 |
|
| RRT-MVS | | | 82.61 122 | 81.16 129 | 86.96 57 | 91.10 133 | 68.75 70 | 87.70 286 | 92.20 137 | 76.97 114 | 72.68 194 | 87.10 231 | 51.30 247 | 96.41 130 | 83.56 99 | 87.84 117 | 95.74 50 |
|
| mamv4 | | | 65.18 333 | 67.43 303 | 58.44 379 | 77.88 359 | 49.36 370 | 69.40 387 | 70.99 392 | 48.31 385 | 57.78 344 | 85.53 249 | 59.01 159 | 51.88 417 | 73.67 174 | 64.32 311 | 74.07 387 |
|
| PS-MVSNAJss | | | 77.26 217 | 76.31 211 | 80.13 261 | 80.64 321 | 59.16 303 | 90.63 224 | 91.06 197 | 72.80 182 | 68.58 254 | 84.57 259 | 53.55 224 | 93.96 236 | 72.97 177 | 71.96 255 | 87.27 265 |
|
| PS-MVSNAJ | | | 88.14 18 | 87.61 29 | 89.71 7 | 92.06 101 | 76.72 1 | 95.75 20 | 93.26 94 | 83.86 15 | 89.55 29 | 96.06 36 | 53.55 224 | 97.89 43 | 91.10 32 | 93.31 53 | 94.54 109 |
|
| jajsoiax | | | 73.05 271 | 71.51 276 | 77.67 299 | 77.46 360 | 54.83 340 | 88.81 267 | 90.04 233 | 69.13 263 | 62.85 314 | 83.51 270 | 31.16 367 | 92.75 270 | 70.83 200 | 69.80 264 | 85.43 304 |
|
| mvs_tets | | | 72.71 278 | 71.11 277 | 77.52 300 | 77.41 361 | 54.52 342 | 88.45 273 | 89.76 241 | 68.76 268 | 62.70 315 | 83.26 273 | 29.49 372 | 92.71 271 | 70.51 206 | 69.62 266 | 85.34 306 |
|
| EI-MVSNet-UG-set | | | 83.14 112 | 82.96 104 | 83.67 174 | 92.28 93 | 63.19 221 | 91.38 189 | 94.68 38 | 79.22 77 | 76.60 156 | 93.75 106 | 62.64 117 | 97.76 48 | 78.07 146 | 78.01 208 | 90.05 224 |
|
| EI-MVSNet-Vis-set | | | 83.77 99 | 83.67 84 | 84.06 158 | 92.79 84 | 63.56 210 | 91.76 174 | 94.81 32 | 79.65 68 | 77.87 141 | 94.09 100 | 63.35 108 | 97.90 42 | 79.35 133 | 79.36 197 | 90.74 215 |
|
| HPM-MVS++ |  | | 89.37 14 | 89.95 13 | 87.64 34 | 95.10 30 | 68.23 86 | 95.24 33 | 94.49 45 | 82.43 26 | 88.90 32 | 96.35 27 | 71.89 37 | 98.63 26 | 88.76 48 | 96.40 6 | 96.06 41 |
|
| test_prior4 | | | | | | | 67.18 113 | 93.92 73 | | | | | | | | | |
|
| XVS | | | 83.87 96 | 83.47 90 | 85.05 120 | 93.22 65 | 63.78 198 | 92.92 119 | 92.66 120 | 73.99 154 | 78.18 138 | 94.31 94 | 55.25 202 | 97.41 68 | 79.16 135 | 91.58 76 | 93.95 136 |
|
| v1240 | | | 75.21 252 | 72.98 257 | 81.88 221 | 79.20 338 | 66.00 143 | 90.75 216 | 89.11 271 | 71.63 222 | 67.41 271 | 81.22 303 | 47.36 283 | 93.87 241 | 65.46 258 | 64.72 308 | 85.77 296 |
|
| pm-mvs1 | | | 72.89 274 | 71.09 278 | 78.26 294 | 79.10 342 | 57.62 318 | 90.80 214 | 89.30 259 | 67.66 275 | 62.91 313 | 81.78 290 | 49.11 270 | 92.95 259 | 60.29 292 | 58.89 352 | 84.22 315 |
|
| test_prior2 | | | | | | | | 95.10 38 | | 75.40 136 | 85.25 63 | 95.61 45 | 67.94 54 | | 87.47 59 | 94.77 26 | |
|
| X-MVStestdata | | | 76.86 224 | 74.13 243 | 85.05 120 | 93.22 65 | 63.78 198 | 92.92 119 | 92.66 120 | 73.99 154 | 78.18 138 | 10.19 421 | 55.25 202 | 97.41 68 | 79.16 135 | 91.58 76 | 93.95 136 |
|
| test_prior | | | | | 86.42 76 | 94.71 35 | 67.35 108 | | 93.10 103 | | | | | 96.84 113 | | | 95.05 83 |
|
| 旧先验2 | | | | | | | | 92.00 162 | | 59.37 345 | 87.54 39 | | | 93.47 250 | 75.39 161 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 91.41 183 | | | | | | | | | |
|
| æ–°å‡ ä½•1 | | | | | 84.73 133 | 92.32 92 | 64.28 188 | | 91.46 177 | 59.56 344 | 79.77 118 | 92.90 124 | 56.95 183 | 96.57 121 | 63.40 270 | 92.91 58 | 93.34 153 |
|
| 旧先验1 | | | | | | 91.94 107 | 60.74 275 | | 91.50 175 | | | 94.36 87 | 65.23 78 | | | 91.84 71 | 94.55 107 |
|
| æ— å…ˆéªŒ | | | | | | | | 92.71 127 | 92.61 124 | 62.03 326 | | | | 97.01 96 | 66.63 241 | | 93.97 135 |
|
| 原ACMM2 | | | | | | | | 92.01 159 | | | | | | | | | |
|
| 原ACMM1 | | | | | 84.42 147 | 93.21 67 | 64.27 189 | | 93.40 91 | 65.39 293 | 79.51 121 | 92.50 132 | 58.11 169 | 96.69 117 | 65.27 260 | 93.96 40 | 92.32 184 |
|
| test222 | | | | | | 89.77 158 | 61.60 257 | 89.55 251 | 89.42 255 | 56.83 359 | 77.28 149 | 92.43 136 | 52.76 232 | | | 91.14 85 | 93.09 162 |
|
| testdata2 | | | | | | | | | | | | | | 96.09 142 | 61.26 286 | | |
|
| segment_acmp | | | | | | | | | | | | | 65.94 71 | | | | |
|
| testdata | | | | | 81.34 232 | 89.02 179 | 57.72 316 | | 89.84 239 | 58.65 348 | 85.32 61 | 94.09 100 | 57.03 178 | 93.28 252 | 69.34 214 | 90.56 91 | 93.03 165 |
|
| testdata1 | | | | | | | | 89.21 260 | | 77.55 108 | | | | | | | |
|
| v8 | | | 75.35 249 | 73.26 254 | 81.61 226 | 80.67 320 | 66.82 123 | 89.54 252 | 89.27 260 | 71.65 218 | 63.30 308 | 80.30 317 | 54.99 208 | 94.06 228 | 67.33 235 | 62.33 327 | 83.94 317 |
|
| 1314 | | | 80.70 154 | 78.95 172 | 85.94 89 | 87.77 217 | 67.56 102 | 87.91 281 | 92.55 126 | 72.17 200 | 67.44 269 | 93.09 118 | 50.27 255 | 97.04 95 | 71.68 196 | 87.64 120 | 93.23 157 |
|
| LFMVS | | | 84.34 84 | 82.73 111 | 89.18 13 | 94.76 33 | 73.25 11 | 94.99 42 | 91.89 154 | 71.90 206 | 82.16 90 | 93.49 114 | 47.98 278 | 97.05 92 | 82.55 108 | 84.82 146 | 97.25 8 |
|
| VDD-MVS | | | 83.06 113 | 81.81 124 | 86.81 61 | 90.86 139 | 67.70 98 | 95.40 29 | 91.50 175 | 75.46 134 | 81.78 92 | 92.34 139 | 40.09 319 | 97.13 90 | 86.85 68 | 82.04 174 | 95.60 54 |
|
| VDDNet | | | 80.50 157 | 78.26 180 | 87.21 47 | 86.19 246 | 69.79 47 | 94.48 50 | 91.31 181 | 60.42 337 | 79.34 124 | 90.91 167 | 38.48 327 | 96.56 122 | 82.16 109 | 81.05 183 | 95.27 73 |
|
| v10 | | | 74.77 256 | 72.54 265 | 81.46 229 | 80.33 325 | 66.71 127 | 89.15 262 | 89.08 273 | 70.94 237 | 63.08 311 | 79.86 322 | 52.52 234 | 94.04 231 | 65.70 254 | 62.17 328 | 83.64 320 |
|
| VPNet | | | 78.82 190 | 77.53 192 | 82.70 195 | 84.52 276 | 66.44 133 | 93.93 72 | 92.23 133 | 80.46 52 | 72.60 197 | 88.38 204 | 49.18 267 | 93.13 254 | 72.47 187 | 63.97 317 | 88.55 245 |
|
| MVS | | | 84.66 79 | 82.86 109 | 90.06 2 | 90.93 136 | 74.56 7 | 87.91 281 | 95.54 14 | 68.55 269 | 72.35 205 | 94.71 78 | 59.78 147 | 98.90 20 | 81.29 119 | 94.69 32 | 96.74 16 |
|
| v2v482 | | | 77.42 215 | 75.65 221 | 82.73 193 | 80.38 323 | 67.13 115 | 91.85 169 | 90.23 225 | 75.09 140 | 69.37 239 | 83.39 272 | 53.79 222 | 94.44 212 | 71.77 193 | 65.00 304 | 86.63 276 |
|
| V42 | | | 76.46 231 | 74.55 235 | 82.19 212 | 79.14 341 | 67.82 95 | 90.26 235 | 89.42 255 | 73.75 162 | 68.63 253 | 81.89 288 | 51.31 246 | 94.09 225 | 71.69 195 | 64.84 305 | 84.66 312 |
|
| SD-MVS | | | 87.49 28 | 87.49 31 | 87.50 42 | 93.60 56 | 68.82 69 | 93.90 74 | 92.63 123 | 76.86 116 | 87.90 35 | 95.76 41 | 66.17 68 | 97.63 56 | 89.06 46 | 91.48 78 | 96.05 42 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| GA-MVS | | | 78.33 202 | 76.23 212 | 84.65 138 | 83.65 290 | 66.30 137 | 91.44 182 | 90.14 228 | 76.01 128 | 70.32 229 | 84.02 265 | 42.50 311 | 94.72 197 | 70.98 199 | 77.00 221 | 92.94 168 |
|
| MSLP-MVS++ | | | 86.27 49 | 85.91 56 | 87.35 45 | 92.01 105 | 68.97 66 | 95.04 40 | 92.70 116 | 79.04 85 | 81.50 94 | 96.50 25 | 58.98 160 | 96.78 115 | 83.49 100 | 93.93 41 | 96.29 35 |
|
| APDe-MVS |  | | 87.54 27 | 87.84 26 | 86.65 66 | 96.07 23 | 66.30 137 | 94.84 45 | 93.78 67 | 69.35 258 | 88.39 33 | 96.34 28 | 67.74 56 | 97.66 54 | 90.62 37 | 93.44 51 | 96.01 44 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| APD-MVS_3200maxsize | | | 81.64 138 | 81.32 128 | 82.59 199 | 92.36 91 | 58.74 307 | 91.39 187 | 91.01 200 | 63.35 311 | 79.72 119 | 94.62 81 | 51.82 238 | 96.14 139 | 79.71 129 | 87.93 116 | 92.89 171 |
|
| ADS-MVSNet2 | | | 66.90 323 | 63.44 331 | 77.26 307 | 88.06 205 | 60.70 277 | 68.01 391 | 75.56 378 | 57.57 351 | 64.48 295 | 69.87 378 | 38.68 322 | 84.10 367 | 40.87 370 | 67.89 283 | 86.97 268 |
|
| EI-MVSNet | | | 78.97 186 | 78.22 181 | 81.25 233 | 85.33 261 | 62.73 234 | 89.53 253 | 93.21 95 | 72.39 193 | 72.14 206 | 90.13 185 | 60.99 132 | 94.72 197 | 67.73 231 | 72.49 251 | 86.29 280 |
|
| Regformer | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 430 | 0.00 426 | 0.00 425 | 0.00 423 | 0.00 422 |
|
| CVMVSNet | | | 74.04 262 | 74.27 240 | 73.33 337 | 85.33 261 | 43.94 391 | 89.53 253 | 88.39 297 | 54.33 367 | 70.37 228 | 90.13 185 | 49.17 268 | 84.05 368 | 61.83 284 | 79.36 197 | 91.99 195 |
|
| pmmvs4 | | | 73.92 264 | 71.81 273 | 80.25 258 | 79.17 339 | 65.24 161 | 87.43 290 | 87.26 317 | 67.64 277 | 63.46 306 | 83.91 267 | 48.96 271 | 91.53 310 | 62.94 275 | 65.49 297 | 83.96 316 |
|
| EU-MVSNet | | | 64.01 339 | 63.01 333 | 67.02 369 | 74.40 374 | 38.86 404 | 83.27 321 | 86.19 329 | 45.11 392 | 54.27 355 | 81.15 306 | 36.91 345 | 80.01 390 | 48.79 336 | 57.02 357 | 82.19 345 |
|
| VNet | | | 86.20 50 | 85.65 61 | 87.84 30 | 93.92 47 | 69.99 38 | 95.73 23 | 95.94 7 | 78.43 93 | 86.00 52 | 93.07 120 | 58.22 167 | 97.00 97 | 85.22 78 | 84.33 152 | 96.52 23 |
|
| test-LLR | | | 80.10 166 | 79.56 160 | 81.72 224 | 86.93 236 | 61.17 263 | 92.70 128 | 91.54 172 | 71.51 227 | 75.62 164 | 86.94 233 | 53.83 220 | 92.38 284 | 72.21 189 | 84.76 148 | 91.60 198 |
|
| TESTMET0.1,1 | | | 82.41 124 | 81.98 122 | 83.72 171 | 88.08 204 | 63.74 200 | 92.70 128 | 93.77 69 | 79.30 75 | 77.61 145 | 87.57 222 | 58.19 168 | 94.08 226 | 73.91 173 | 86.68 134 | 93.33 155 |
|
| test-mter | | | 79.96 169 | 79.38 166 | 81.72 224 | 86.93 236 | 61.17 263 | 92.70 128 | 91.54 172 | 73.85 159 | 75.62 164 | 86.94 233 | 49.84 260 | 92.38 284 | 72.21 189 | 84.76 148 | 91.60 198 |
|
| VPA-MVSNet | | | 79.03 184 | 78.00 184 | 82.11 218 | 85.95 251 | 64.48 177 | 93.22 109 | 94.66 39 | 75.05 141 | 74.04 183 | 84.95 254 | 52.17 237 | 93.52 248 | 74.90 168 | 67.04 288 | 88.32 250 |
|
| ACMMPR | | | 84.37 82 | 84.06 80 | 85.28 113 | 93.56 58 | 64.37 184 | 93.50 98 | 93.15 100 | 72.19 198 | 78.85 134 | 94.86 74 | 56.69 187 | 97.45 65 | 81.55 113 | 92.20 65 | 94.02 134 |
|
| testgi | | | 64.48 337 | 62.87 335 | 69.31 360 | 71.24 381 | 40.62 398 | 85.49 304 | 79.92 368 | 65.36 294 | 54.18 356 | 83.49 271 | 23.74 386 | 84.55 365 | 41.60 367 | 60.79 343 | 82.77 334 |
|
| test20.03 | | | 63.83 340 | 62.65 336 | 67.38 368 | 70.58 387 | 39.94 400 | 86.57 300 | 84.17 347 | 63.29 312 | 51.86 365 | 77.30 342 | 37.09 343 | 82.47 380 | 38.87 378 | 54.13 367 | 79.73 365 |
|
| thres600view7 | | | 78.00 205 | 76.66 207 | 82.03 220 | 91.93 108 | 63.69 205 | 91.30 195 | 96.33 1 | 72.43 191 | 70.46 226 | 87.89 216 | 60.31 139 | 94.92 192 | 42.64 365 | 76.64 223 | 87.48 258 |
|
| ADS-MVSNet | | | 68.54 310 | 64.38 327 | 81.03 243 | 88.06 205 | 66.90 122 | 68.01 391 | 84.02 349 | 57.57 351 | 64.48 295 | 69.87 378 | 38.68 322 | 89.21 334 | 40.87 370 | 67.89 283 | 86.97 268 |
|
| MP-MVS |  | | 85.02 72 | 84.97 71 | 85.17 118 | 92.60 88 | 64.27 189 | 93.24 107 | 92.27 132 | 73.13 173 | 79.63 120 | 94.43 85 | 61.90 124 | 97.17 85 | 85.00 82 | 92.56 61 | 94.06 132 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| testmvs | | | 7.23 391 | 9.62 394 | 0.06 406 | 0.04 428 | 0.02 431 | 84.98 308 | 0.02 429 | 0.03 423 | 0.18 424 | 1.21 423 | 0.01 429 | 0.02 424 | 0.14 423 | 0.01 422 | 0.13 421 |
|
| thres400 | | | 78.68 194 | 77.43 193 | 82.43 201 | 92.21 96 | 64.49 175 | 92.05 157 | 96.28 4 | 73.48 168 | 71.75 212 | 88.26 207 | 60.07 144 | 95.32 178 | 45.16 353 | 77.58 213 | 87.48 258 |
|
| test123 | | | 6.92 392 | 9.21 395 | 0.08 405 | 0.03 429 | 0.05 430 | 81.65 336 | 0.01 430 | 0.02 424 | 0.14 425 | 0.85 424 | 0.03 428 | 0.02 424 | 0.12 424 | 0.00 423 | 0.16 420 |
|
| thres200 | | | 79.66 173 | 78.33 178 | 83.66 175 | 92.54 90 | 65.82 149 | 93.06 112 | 96.31 3 | 74.90 143 | 73.30 188 | 88.66 199 | 59.67 148 | 95.61 166 | 47.84 342 | 78.67 204 | 89.56 233 |
|
| test0.0.03 1 | | | 72.76 276 | 72.71 262 | 72.88 341 | 80.25 326 | 47.99 374 | 91.22 199 | 89.45 253 | 71.51 227 | 62.51 317 | 87.66 219 | 53.83 220 | 85.06 364 | 50.16 328 | 67.84 285 | 85.58 299 |
|
| pmmvs3 | | | 55.51 360 | 51.50 366 | 67.53 367 | 57.90 408 | 50.93 360 | 80.37 346 | 73.66 383 | 40.63 401 | 44.15 393 | 64.75 390 | 16.30 398 | 78.97 391 | 44.77 357 | 40.98 392 | 72.69 391 |
|
| EMVS | | | 23.76 386 | 23.20 390 | 25.46 402 | 41.52 422 | 16.90 427 | 60.56 403 | 38.79 423 | 14.62 417 | 8.99 421 | 20.24 420 | 7.35 413 | 45.82 420 | 7.25 421 | 9.46 418 | 13.64 418 |
|
| E-PMN | | | 24.61 384 | 24.00 388 | 26.45 401 | 43.74 419 | 18.44 426 | 60.86 402 | 39.66 420 | 15.11 416 | 9.53 420 | 22.10 417 | 6.52 416 | 46.94 419 | 8.31 420 | 10.14 417 | 13.98 417 |
|
| PGM-MVS | | | 83.25 109 | 82.70 112 | 84.92 123 | 92.81 83 | 64.07 193 | 90.44 226 | 92.20 137 | 71.28 230 | 77.23 150 | 94.43 85 | 55.17 206 | 97.31 75 | 79.33 134 | 91.38 80 | 93.37 152 |
|
| LCM-MVSNet-Re | | | 72.93 273 | 71.84 272 | 76.18 317 | 88.49 189 | 48.02 373 | 80.07 352 | 70.17 393 | 73.96 157 | 52.25 363 | 80.09 321 | 49.98 257 | 88.24 341 | 67.35 233 | 84.23 155 | 92.28 186 |
|
| LCM-MVSNet | | | 40.54 374 | 35.79 379 | 54.76 386 | 36.92 423 | 30.81 413 | 51.41 410 | 69.02 395 | 22.07 410 | 24.63 410 | 45.37 407 | 4.56 419 | 65.81 408 | 33.67 388 | 34.50 403 | 67.67 397 |
|
| MCST-MVS | | | 91.08 1 | 91.46 3 | 89.94 4 | 97.66 2 | 73.37 10 | 97.13 2 | 95.58 11 | 89.33 1 | 85.77 54 | 96.26 30 | 72.84 29 | 99.38 1 | 92.64 20 | 95.93 9 | 97.08 11 |
|
| mvs_anonymous | | | 81.36 142 | 79.99 153 | 85.46 105 | 90.39 147 | 68.40 78 | 86.88 298 | 90.61 209 | 74.41 146 | 70.31 230 | 84.67 257 | 63.79 97 | 92.32 289 | 73.13 176 | 85.70 140 | 95.67 51 |
|
| MVS_Test | | | 84.16 91 | 83.20 100 | 87.05 54 | 91.56 120 | 69.82 45 | 89.99 245 | 92.05 143 | 77.77 102 | 82.84 83 | 86.57 237 | 63.93 95 | 96.09 142 | 74.91 167 | 89.18 102 | 95.25 76 |
|
| MDA-MVSNet-bldmvs | | | 61.54 348 | 57.70 353 | 73.05 339 | 79.53 334 | 57.00 328 | 83.08 325 | 81.23 362 | 57.57 351 | 34.91 404 | 72.45 367 | 32.79 358 | 86.26 358 | 35.81 383 | 41.95 388 | 75.89 384 |
|
| CDPH-MVS | | | 85.71 61 | 85.46 63 | 86.46 74 | 94.75 34 | 67.19 111 | 93.89 75 | 92.83 113 | 70.90 238 | 83.09 81 | 95.28 57 | 63.62 101 | 97.36 71 | 80.63 123 | 94.18 37 | 94.84 92 |
|
| test12 | | | | | 87.09 52 | 94.60 36 | 68.86 67 | | 92.91 110 | | 82.67 88 | | 65.44 76 | 97.55 62 | | 93.69 48 | 94.84 92 |
|
| casdiffmvs |  | | 85.37 67 | 84.87 73 | 86.84 59 | 88.25 200 | 69.07 62 | 93.04 114 | 91.76 161 | 81.27 44 | 80.84 105 | 92.07 146 | 64.23 91 | 96.06 146 | 84.98 83 | 87.43 123 | 95.39 61 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| diffmvs |  | | 84.28 85 | 83.83 82 | 85.61 102 | 87.40 223 | 68.02 91 | 90.88 211 | 89.24 261 | 80.54 50 | 81.64 93 | 92.52 131 | 59.83 146 | 94.52 210 | 87.32 61 | 85.11 144 | 94.29 118 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| baseline2 | | | 83.68 103 | 83.42 94 | 84.48 146 | 87.37 224 | 66.00 143 | 90.06 240 | 95.93 8 | 79.71 67 | 69.08 243 | 90.39 176 | 77.92 6 | 96.28 133 | 78.91 139 | 81.38 181 | 91.16 211 |
|
| baseline1 | | | 81.84 134 | 81.03 135 | 84.28 154 | 91.60 118 | 66.62 129 | 91.08 205 | 91.66 169 | 81.87 32 | 74.86 173 | 91.67 155 | 69.98 45 | 94.92 192 | 71.76 194 | 64.75 307 | 91.29 209 |
|
| YYNet1 | | | 63.76 342 | 60.14 346 | 74.62 327 | 78.06 356 | 60.19 288 | 83.46 319 | 83.99 352 | 56.18 362 | 39.25 399 | 71.56 375 | 37.18 341 | 83.34 375 | 42.90 362 | 48.70 378 | 80.32 361 |
|
| PMMVS2 | | | 37.93 379 | 33.61 382 | 50.92 389 | 46.31 415 | 24.76 419 | 60.55 404 | 50.05 413 | 28.94 409 | 20.93 411 | 47.59 404 | 4.41 421 | 65.13 410 | 25.14 403 | 18.55 415 | 62.87 401 |
|
| MDA-MVSNet_test_wron | | | 63.78 341 | 60.16 345 | 74.64 326 | 78.15 355 | 60.41 283 | 83.49 317 | 84.03 348 | 56.17 363 | 39.17 400 | 71.59 374 | 37.22 340 | 83.24 377 | 42.87 363 | 48.73 377 | 80.26 362 |
|
| tpmvs | | | 72.88 275 | 69.76 291 | 82.22 210 | 90.98 135 | 67.05 117 | 78.22 362 | 88.30 300 | 63.10 316 | 64.35 299 | 74.98 359 | 55.09 207 | 94.27 218 | 43.25 359 | 69.57 267 | 85.34 306 |
|
| PM-MVS | | | 59.40 355 | 56.59 357 | 67.84 364 | 63.63 399 | 41.86 394 | 76.76 366 | 63.22 404 | 59.01 346 | 51.07 370 | 72.27 371 | 11.72 407 | 83.25 376 | 61.34 285 | 50.28 376 | 78.39 377 |
|
| HQP_MVS | | | 80.34 161 | 79.75 157 | 82.12 215 | 86.94 234 | 62.42 238 | 93.13 110 | 91.31 181 | 78.81 88 | 72.53 199 | 89.14 197 | 50.66 251 | 95.55 171 | 76.74 151 | 78.53 206 | 88.39 248 |
|
| plane_prior7 | | | | | | 86.94 234 | 61.51 258 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 87.23 226 | 62.32 242 | | | | | | 50.66 251 | | | | |
|
| plane_prior5 | | | | | | | | | 91.31 181 | | | | | 95.55 171 | 76.74 151 | 78.53 206 | 88.39 248 |
|
| plane_prior4 | | | | | | | | | | | | 89.14 197 | | | | | |
|
| plane_prior3 | | | | | | | 61.95 250 | | | 79.09 81 | 72.53 199 | | | | | | |
|
| plane_prior2 | | | | | | | | 93.13 110 | | 78.81 88 | | | | | | | |
|
| plane_prior1 | | | | | | 87.15 228 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 62.42 238 | 93.85 77 | | 79.38 73 | | | | | | 78.80 203 | |
|
| PS-CasMVS | | | 69.86 299 | 69.13 294 | 72.07 350 | 80.35 324 | 50.57 361 | 87.02 295 | 89.75 242 | 67.27 279 | 59.19 333 | 82.28 283 | 46.58 288 | 82.24 383 | 50.69 325 | 59.02 351 | 83.39 327 |
|
| UniMVSNet_NR-MVSNet | | | 78.15 204 | 77.55 191 | 79.98 266 | 84.46 278 | 60.26 285 | 92.25 146 | 93.20 97 | 77.50 109 | 68.88 248 | 86.61 236 | 66.10 69 | 92.13 292 | 66.38 246 | 62.55 324 | 87.54 256 |
|
| PEN-MVS | | | 69.46 302 | 68.56 296 | 72.17 348 | 79.27 337 | 49.71 365 | 86.90 297 | 89.24 261 | 67.24 282 | 59.08 334 | 82.51 281 | 47.23 284 | 83.54 373 | 48.42 337 | 57.12 356 | 83.25 328 |
|
| TransMVSNet (Re) | | | 70.07 296 | 67.66 302 | 77.31 306 | 80.62 322 | 59.13 304 | 91.78 173 | 84.94 341 | 65.97 289 | 60.08 328 | 80.44 314 | 50.78 250 | 91.87 297 | 48.84 335 | 45.46 383 | 80.94 354 |
|
| DTE-MVSNet | | | 68.46 311 | 67.33 305 | 71.87 352 | 77.94 357 | 49.00 371 | 86.16 303 | 88.58 294 | 66.36 287 | 58.19 338 | 82.21 285 | 46.36 289 | 83.87 371 | 44.97 356 | 55.17 363 | 82.73 335 |
|
| DU-MVS | | | 76.86 224 | 75.84 218 | 79.91 269 | 82.96 298 | 60.26 285 | 91.26 196 | 91.54 172 | 76.46 125 | 68.88 248 | 86.35 239 | 56.16 193 | 92.13 292 | 66.38 246 | 62.55 324 | 87.35 262 |
|
| UniMVSNet (Re) | | | 77.58 213 | 76.78 205 | 79.98 266 | 84.11 284 | 60.80 270 | 91.76 174 | 93.17 99 | 76.56 124 | 69.93 237 | 84.78 256 | 63.32 109 | 92.36 286 | 64.89 262 | 62.51 326 | 86.78 272 |
|
| CP-MVSNet | | | 70.50 292 | 69.91 289 | 72.26 346 | 80.71 319 | 51.00 359 | 87.23 293 | 90.30 221 | 67.84 273 | 59.64 329 | 82.69 278 | 50.23 256 | 82.30 382 | 51.28 323 | 59.28 350 | 83.46 325 |
|
| WR-MVS_H | | | 70.59 291 | 69.94 288 | 72.53 343 | 81.03 315 | 51.43 355 | 87.35 291 | 92.03 147 | 67.38 278 | 60.23 327 | 80.70 309 | 55.84 199 | 83.45 374 | 46.33 349 | 58.58 354 | 82.72 336 |
|
| WR-MVS | | | 76.76 228 | 75.74 220 | 79.82 272 | 84.60 274 | 62.27 244 | 92.60 135 | 92.51 127 | 76.06 127 | 67.87 264 | 85.34 250 | 56.76 184 | 90.24 323 | 62.20 281 | 63.69 319 | 86.94 270 |
|
| NR-MVSNet | | | 76.05 237 | 74.59 233 | 80.44 252 | 82.96 298 | 62.18 245 | 90.83 213 | 91.73 162 | 77.12 113 | 60.96 322 | 86.35 239 | 59.28 154 | 91.80 299 | 60.74 288 | 61.34 339 | 87.35 262 |
|
| Baseline_NR-MVSNet | | | 73.99 263 | 72.83 258 | 77.48 302 | 80.78 318 | 59.29 302 | 91.79 171 | 84.55 345 | 68.85 265 | 68.99 246 | 80.70 309 | 56.16 193 | 92.04 295 | 62.67 278 | 60.98 341 | 81.11 352 |
|
| TranMVSNet+NR-MVSNet | | | 75.86 242 | 74.52 236 | 79.89 270 | 82.44 304 | 60.64 279 | 91.37 190 | 91.37 179 | 76.63 122 | 67.65 266 | 86.21 242 | 52.37 236 | 91.55 306 | 61.84 283 | 60.81 342 | 87.48 258 |
|
| TSAR-MVS + GP. | | | 87.96 21 | 88.37 21 | 86.70 65 | 93.51 61 | 65.32 159 | 95.15 36 | 93.84 66 | 78.17 96 | 85.93 53 | 94.80 76 | 75.80 13 | 98.21 34 | 89.38 41 | 88.78 107 | 96.59 19 |
|
| n2 | | | | | | | | | 0.00 431 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 431 | | | | | | | | |
|
| mPP-MVS | | | 82.96 116 | 82.44 116 | 84.52 144 | 92.83 79 | 62.92 229 | 92.76 124 | 91.85 158 | 71.52 226 | 75.61 166 | 94.24 96 | 53.48 227 | 96.99 100 | 78.97 138 | 90.73 87 | 93.64 147 |
|
| door-mid | | | | | | | | | 66.01 400 | | | | | | | | |
|
| XVG-OURS-SEG-HR | | | 74.70 257 | 73.08 255 | 79.57 278 | 78.25 353 | 57.33 323 | 80.49 345 | 87.32 315 | 63.22 313 | 68.76 251 | 90.12 187 | 44.89 303 | 91.59 305 | 70.55 205 | 74.09 239 | 89.79 228 |
|
| mvsmamba | | | 81.55 139 | 80.72 140 | 84.03 162 | 91.42 124 | 66.93 121 | 83.08 325 | 89.13 269 | 78.55 92 | 67.50 268 | 87.02 232 | 51.79 240 | 90.07 328 | 87.48 58 | 90.49 92 | 95.10 81 |
|
| MVSFormer | | | 83.75 100 | 82.88 108 | 86.37 78 | 89.24 175 | 71.18 24 | 89.07 263 | 90.69 204 | 65.80 290 | 87.13 40 | 94.34 92 | 64.99 80 | 92.67 274 | 72.83 179 | 91.80 72 | 95.27 73 |
|
| jason | | | 86.40 46 | 86.17 50 | 87.11 51 | 86.16 248 | 70.54 32 | 95.71 24 | 92.19 139 | 82.00 31 | 84.58 67 | 94.34 92 | 61.86 125 | 95.53 173 | 87.76 54 | 90.89 86 | 95.27 73 |
| jason: jason. |
| lupinMVS | | | 87.74 25 | 87.77 27 | 87.63 38 | 89.24 175 | 71.18 24 | 96.57 12 | 92.90 111 | 82.70 24 | 87.13 40 | 95.27 59 | 64.99 80 | 95.80 153 | 89.34 42 | 91.80 72 | 95.93 45 |
|
| test_djsdf | | | 73.76 267 | 72.56 264 | 77.39 304 | 77.00 363 | 53.93 344 | 89.07 263 | 90.69 204 | 65.80 290 | 63.92 301 | 82.03 287 | 43.14 310 | 92.67 274 | 72.83 179 | 68.53 277 | 85.57 300 |
|
| HPM-MVS_fast | | | 80.25 163 | 79.55 162 | 82.33 205 | 91.55 121 | 59.95 290 | 91.32 194 | 89.16 266 | 65.23 296 | 74.71 175 | 93.07 120 | 47.81 281 | 95.74 157 | 74.87 169 | 88.23 112 | 91.31 208 |
|
| K. test v3 | | | 63.09 343 | 59.61 348 | 73.53 336 | 76.26 366 | 49.38 369 | 83.27 321 | 77.15 373 | 64.35 300 | 47.77 382 | 72.32 370 | 28.73 374 | 87.79 346 | 49.93 330 | 36.69 397 | 83.41 326 |
|
| lessismore_v0 | | | | | 73.72 335 | 72.93 379 | 47.83 375 | | 61.72 406 | | 45.86 386 | 73.76 363 | 28.63 376 | 89.81 329 | 47.75 344 | 31.37 405 | 83.53 322 |
|
| SixPastTwentyTwo | | | 64.92 334 | 61.78 341 | 74.34 330 | 78.74 347 | 49.76 364 | 83.42 320 | 79.51 370 | 62.86 317 | 50.27 372 | 77.35 341 | 30.92 369 | 90.49 318 | 45.89 351 | 47.06 380 | 82.78 333 |
|
| OurMVSNet-221017-0 | | | 64.68 335 | 62.17 339 | 72.21 347 | 76.08 368 | 47.35 377 | 80.67 344 | 81.02 363 | 56.19 361 | 51.60 366 | 79.66 326 | 27.05 380 | 88.56 337 | 53.60 319 | 53.63 368 | 80.71 357 |
|
| HPM-MVS |  | | 83.25 109 | 82.95 106 | 84.17 156 | 92.25 94 | 62.88 231 | 90.91 208 | 91.86 156 | 70.30 247 | 77.12 151 | 93.96 104 | 56.75 185 | 96.28 133 | 82.04 110 | 91.34 82 | 93.34 153 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| XVG-OURS | | | 74.25 260 | 72.46 266 | 79.63 276 | 78.45 351 | 57.59 319 | 80.33 347 | 87.39 314 | 63.86 305 | 68.76 251 | 89.62 191 | 40.50 318 | 91.72 301 | 69.00 219 | 74.25 237 | 89.58 231 |
|
| XVG-ACMP-BASELINE | | | 68.04 315 | 65.53 316 | 75.56 319 | 74.06 375 | 52.37 349 | 78.43 359 | 85.88 332 | 62.03 326 | 58.91 336 | 81.21 305 | 20.38 394 | 91.15 314 | 60.69 289 | 68.18 279 | 83.16 330 |
|
| casdiffmvs_mvg |  | | 85.66 63 | 85.18 67 | 87.09 52 | 88.22 202 | 69.35 58 | 93.74 86 | 91.89 154 | 81.47 37 | 80.10 114 | 91.45 158 | 64.80 85 | 96.35 131 | 87.23 63 | 87.69 119 | 95.58 55 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| LPG-MVS_test | | | 75.82 243 | 74.58 234 | 79.56 279 | 84.31 281 | 59.37 299 | 90.44 226 | 89.73 245 | 69.49 256 | 64.86 290 | 88.42 202 | 38.65 324 | 94.30 216 | 72.56 185 | 72.76 248 | 85.01 309 |
|
| LGP-MVS_train | | | | | 79.56 279 | 84.31 281 | 59.37 299 | | 89.73 245 | 69.49 256 | 64.86 290 | 88.42 202 | 38.65 324 | 94.30 216 | 72.56 185 | 72.76 248 | 85.01 309 |
|
| baseline | | | 85.01 73 | 84.44 77 | 86.71 64 | 88.33 197 | 68.73 71 | 90.24 236 | 91.82 160 | 81.05 47 | 81.18 99 | 92.50 132 | 63.69 99 | 96.08 145 | 84.45 89 | 86.71 133 | 95.32 68 |
|
| test11 | | | | | | | | | 93.01 106 | | | | | | | | |
|
| door | | | | | | | | | 66.57 399 | | | | | | | | |
|
| EPNet_dtu | | | 78.80 191 | 79.26 168 | 77.43 303 | 88.06 205 | 49.71 365 | 91.96 164 | 91.95 150 | 77.67 104 | 76.56 157 | 91.28 163 | 58.51 163 | 90.20 325 | 56.37 307 | 80.95 184 | 92.39 181 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| CHOSEN 1792x2688 | | | 84.98 74 | 83.45 91 | 89.57 11 | 89.94 155 | 75.14 6 | 92.07 156 | 92.32 130 | 81.87 32 | 75.68 163 | 88.27 206 | 60.18 141 | 98.60 27 | 80.46 125 | 90.27 94 | 94.96 86 |
|
| EPNet | | | 87.84 24 | 88.38 20 | 86.23 82 | 93.30 64 | 66.05 141 | 95.26 32 | 94.84 30 | 87.09 5 | 88.06 34 | 94.53 82 | 66.79 62 | 97.34 73 | 83.89 95 | 91.68 74 | 95.29 70 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| HQP5-MVS | | | | | | | 63.66 207 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 87.54 219 | | 94.06 63 | | 79.80 64 | 74.18 178 | | | | | | |
|
| ACMP_Plane | | | | | | 87.54 219 | | 94.06 63 | | 79.80 64 | 74.18 178 | | | | | | |
|
| APD-MVS |  | | 85.93 56 | 85.99 54 | 85.76 97 | 95.98 26 | 65.21 162 | 93.59 93 | 92.58 125 | 66.54 285 | 86.17 50 | 95.88 39 | 63.83 96 | 97.00 97 | 86.39 71 | 92.94 57 | 95.06 82 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| BP-MVS | | | | | | | | | | | | | | | 77.63 148 | | |
|
| HQP4-MVS | | | | | | | | | | | 74.18 178 | | | 95.61 166 | | | 88.63 242 |
|
| HQP3-MVS | | | | | | | | | 91.70 167 | | | | | | | 78.90 201 | |
|
| HQP2-MVS | | | | | | | | | | | | | 51.63 243 | | | | |
|
| CNVR-MVS | | | 90.32 6 | 90.89 8 | 88.61 22 | 96.76 8 | 70.65 30 | 96.47 14 | 94.83 31 | 84.83 11 | 89.07 31 | 96.80 19 | 70.86 40 | 99.06 15 | 92.64 20 | 95.71 11 | 96.12 40 |
|
| NCCC | | | 89.07 16 | 89.46 15 | 87.91 28 | 96.60 10 | 69.05 63 | 96.38 15 | 94.64 40 | 84.42 12 | 86.74 45 | 96.20 31 | 66.56 65 | 98.76 24 | 89.03 47 | 94.56 34 | 95.92 46 |
|
| 114514_t | | | 79.17 182 | 77.67 188 | 83.68 173 | 95.32 29 | 65.53 156 | 92.85 122 | 91.60 171 | 63.49 309 | 67.92 260 | 90.63 171 | 46.65 287 | 95.72 162 | 67.01 239 | 83.54 158 | 89.79 228 |
|
| CP-MVS | | | 83.71 101 | 83.40 95 | 84.65 138 | 93.14 70 | 63.84 196 | 94.59 49 | 92.28 131 | 71.03 236 | 77.41 147 | 94.92 72 | 55.21 205 | 96.19 137 | 81.32 118 | 90.70 88 | 93.91 138 |
|
| DSMNet-mixed | | | 56.78 359 | 54.44 363 | 63.79 373 | 63.21 400 | 29.44 416 | 64.43 398 | 64.10 403 | 42.12 400 | 51.32 368 | 71.60 373 | 31.76 363 | 75.04 395 | 36.23 381 | 65.20 302 | 86.87 271 |
|
| tpm2 | | | 79.80 172 | 77.95 186 | 85.34 111 | 88.28 198 | 68.26 83 | 81.56 337 | 91.42 178 | 70.11 249 | 77.59 146 | 80.50 313 | 67.40 58 | 94.26 220 | 67.34 234 | 77.35 217 | 93.51 149 |
|
| NP-MVS | | | | | | 87.41 222 | 63.04 223 | | | | | 90.30 178 | | | | | |
|
| EG-PatchMatch MVS | | | 68.55 309 | 65.41 317 | 77.96 297 | 78.69 348 | 62.93 227 | 89.86 247 | 89.17 265 | 60.55 336 | 50.27 372 | 77.73 340 | 22.60 389 | 94.06 228 | 47.18 345 | 72.65 250 | 76.88 382 |
|
| tpm cat1 | | | 75.30 250 | 72.21 268 | 84.58 142 | 88.52 188 | 67.77 96 | 78.16 363 | 88.02 308 | 61.88 329 | 68.45 256 | 76.37 352 | 60.65 136 | 94.03 233 | 53.77 318 | 74.11 238 | 91.93 196 |
|
| SteuartSystems-ACMMP | | | 86.82 41 | 86.90 39 | 86.58 70 | 90.42 145 | 66.38 134 | 96.09 17 | 93.87 65 | 77.73 103 | 84.01 74 | 95.66 43 | 63.39 106 | 97.94 40 | 87.40 60 | 93.55 50 | 95.42 59 |
| Skip Steuart: Steuart Systems R&D Blog. |
| CostFormer | | | 82.33 125 | 81.15 130 | 85.86 92 | 89.01 180 | 68.46 77 | 82.39 331 | 93.01 106 | 75.59 132 | 80.25 113 | 81.57 295 | 72.03 36 | 94.96 189 | 79.06 137 | 77.48 216 | 94.16 125 |
|
| CR-MVSNet | | | 73.79 266 | 70.82 281 | 82.70 195 | 83.15 296 | 67.96 92 | 70.25 383 | 84.00 350 | 73.67 166 | 69.97 235 | 72.41 368 | 57.82 171 | 89.48 332 | 52.99 321 | 73.13 245 | 90.64 217 |
|
| JIA-IIPM | | | 66.06 327 | 62.45 337 | 76.88 312 | 81.42 314 | 54.45 343 | 57.49 407 | 88.67 290 | 49.36 381 | 63.86 302 | 46.86 405 | 56.06 196 | 90.25 320 | 49.53 331 | 68.83 274 | 85.95 291 |
|
| Patchmtry | | | 67.53 320 | 63.93 328 | 78.34 291 | 82.12 307 | 64.38 183 | 68.72 388 | 84.00 350 | 48.23 386 | 59.24 331 | 72.41 368 | 57.82 171 | 89.27 333 | 46.10 350 | 56.68 360 | 81.36 349 |
|
| PatchT | | | 69.11 304 | 65.37 318 | 80.32 254 | 82.07 308 | 63.68 206 | 67.96 393 | 87.62 313 | 50.86 377 | 69.37 239 | 65.18 388 | 57.09 177 | 88.53 338 | 41.59 368 | 66.60 291 | 88.74 241 |
|
| tpmrst | | | 80.57 155 | 79.14 170 | 84.84 126 | 90.10 152 | 68.28 82 | 81.70 335 | 89.72 247 | 77.63 107 | 75.96 160 | 79.54 327 | 64.94 82 | 92.71 271 | 75.43 160 | 77.28 219 | 93.55 148 |
|
| BH-w/o | | | 80.49 158 | 79.30 167 | 84.05 161 | 90.83 140 | 64.36 186 | 93.60 92 | 89.42 255 | 74.35 148 | 69.09 242 | 90.15 184 | 55.23 204 | 95.61 166 | 64.61 263 | 86.43 137 | 92.17 192 |
|
| tpm | | | 78.58 197 | 77.03 201 | 83.22 185 | 85.94 253 | 64.56 173 | 83.21 324 | 91.14 191 | 78.31 94 | 73.67 185 | 79.68 325 | 64.01 93 | 92.09 294 | 66.07 250 | 71.26 261 | 93.03 165 |
|
| DELS-MVS | | | 90.05 8 | 90.09 11 | 89.94 4 | 93.14 70 | 73.88 9 | 97.01 4 | 94.40 51 | 88.32 3 | 85.71 55 | 94.91 73 | 74.11 21 | 98.91 18 | 87.26 62 | 95.94 8 | 97.03 12 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| BH-untuned | | | 78.68 194 | 77.08 200 | 83.48 180 | 89.84 156 | 63.74 200 | 92.70 128 | 88.59 293 | 71.57 224 | 66.83 279 | 88.65 200 | 51.75 241 | 95.39 176 | 59.03 298 | 84.77 147 | 91.32 207 |
|
| RPMNet | | | 70.42 293 | 65.68 314 | 84.63 140 | 83.15 296 | 67.96 92 | 70.25 383 | 90.45 211 | 46.83 389 | 69.97 235 | 65.10 389 | 56.48 192 | 95.30 181 | 35.79 384 | 73.13 245 | 90.64 217 |
|
| MVSTER | | | 82.47 123 | 82.05 119 | 83.74 167 | 92.68 86 | 69.01 64 | 91.90 166 | 93.21 95 | 79.83 63 | 72.14 206 | 85.71 248 | 74.72 17 | 94.72 197 | 75.72 158 | 72.49 251 | 87.50 257 |
|
| CPTT-MVS | | | 79.59 174 | 79.16 169 | 80.89 247 | 91.54 122 | 59.80 292 | 92.10 153 | 88.54 295 | 60.42 337 | 72.96 190 | 93.28 116 | 48.27 274 | 92.80 268 | 78.89 140 | 86.50 136 | 90.06 223 |
|
| GBi-Net | | | 75.65 245 | 73.83 247 | 81.10 239 | 88.85 182 | 65.11 165 | 90.01 242 | 90.32 217 | 70.84 239 | 67.04 275 | 80.25 318 | 48.03 275 | 91.54 307 | 59.80 295 | 69.34 268 | 86.64 273 |
|
| PVSNet_Blended_VisFu | | | 83.97 94 | 83.50 88 | 85.39 108 | 90.02 153 | 66.59 131 | 93.77 84 | 91.73 162 | 77.43 111 | 77.08 153 | 89.81 189 | 63.77 98 | 96.97 104 | 79.67 130 | 88.21 113 | 92.60 176 |
|
| PVSNet_BlendedMVS | | | 83.38 107 | 83.43 92 | 83.22 185 | 93.76 50 | 67.53 104 | 94.06 63 | 93.61 78 | 79.13 80 | 81.00 103 | 85.14 252 | 63.19 110 | 97.29 76 | 87.08 65 | 73.91 241 | 84.83 311 |
|
| UnsupCasMVSNet_eth | | | 65.79 329 | 63.10 332 | 73.88 333 | 70.71 385 | 50.29 363 | 81.09 341 | 89.88 238 | 72.58 186 | 49.25 377 | 74.77 362 | 32.57 360 | 87.43 352 | 55.96 309 | 41.04 390 | 83.90 318 |
|
| UnsupCasMVSNet_bld | | | 61.60 347 | 57.71 352 | 73.29 338 | 68.73 391 | 51.64 353 | 78.61 358 | 89.05 275 | 57.20 356 | 46.11 383 | 61.96 396 | 28.70 375 | 88.60 336 | 50.08 329 | 38.90 395 | 79.63 366 |
|
| PVSNet_Blended | | | 86.73 42 | 86.86 40 | 86.31 81 | 93.76 50 | 67.53 104 | 96.33 16 | 93.61 78 | 82.34 28 | 81.00 103 | 93.08 119 | 63.19 110 | 97.29 76 | 87.08 65 | 91.38 80 | 94.13 127 |
|
| FMVSNet5 | | | 68.04 315 | 65.66 315 | 75.18 323 | 84.43 279 | 57.89 313 | 83.54 316 | 86.26 327 | 61.83 330 | 53.64 359 | 73.30 364 | 37.15 342 | 85.08 363 | 48.99 334 | 61.77 333 | 82.56 341 |
|
| test1 | | | 75.65 245 | 73.83 247 | 81.10 239 | 88.85 182 | 65.11 165 | 90.01 242 | 90.32 217 | 70.84 239 | 67.04 275 | 80.25 318 | 48.03 275 | 91.54 307 | 59.80 295 | 69.34 268 | 86.64 273 |
|
| new_pmnet | | | 49.31 367 | 46.44 370 | 57.93 380 | 62.84 401 | 40.74 397 | 68.47 390 | 62.96 405 | 36.48 402 | 35.09 403 | 57.81 400 | 14.97 402 | 72.18 399 | 32.86 393 | 46.44 381 | 60.88 402 |
|
| FMVSNet3 | | | 77.73 211 | 76.04 215 | 82.80 191 | 91.20 132 | 68.99 65 | 91.87 167 | 91.99 148 | 73.35 170 | 67.04 275 | 83.19 274 | 56.62 188 | 92.14 291 | 59.80 295 | 69.34 268 | 87.28 264 |
|
| dp | | | 75.01 254 | 72.09 269 | 83.76 166 | 89.28 171 | 66.22 140 | 79.96 355 | 89.75 242 | 71.16 232 | 67.80 265 | 77.19 345 | 51.81 239 | 92.54 279 | 50.39 326 | 71.44 260 | 92.51 180 |
|
| FMVSNet2 | | | 76.07 234 | 74.01 245 | 82.26 209 | 88.85 182 | 67.66 99 | 91.33 193 | 91.61 170 | 70.84 239 | 65.98 283 | 82.25 284 | 48.03 275 | 92.00 296 | 58.46 300 | 68.73 276 | 87.10 267 |
|
| FMVSNet1 | | | 72.71 278 | 69.91 289 | 81.10 239 | 83.60 291 | 65.11 165 | 90.01 242 | 90.32 217 | 63.92 304 | 63.56 305 | 80.25 318 | 36.35 347 | 91.54 307 | 54.46 314 | 66.75 290 | 86.64 273 |
|
| N_pmnet | | | 50.55 366 | 49.11 368 | 54.88 385 | 77.17 362 | 4.02 429 | 84.36 310 | 2.00 427 | 48.59 382 | 45.86 386 | 68.82 381 | 32.22 361 | 82.80 379 | 31.58 398 | 51.38 373 | 77.81 380 |
|
| cascas | | | 78.18 203 | 75.77 219 | 85.41 107 | 87.14 229 | 69.11 61 | 92.96 118 | 91.15 190 | 66.71 284 | 70.47 225 | 86.07 243 | 37.49 338 | 96.48 127 | 70.15 207 | 79.80 193 | 90.65 216 |
|
| BH-RMVSNet | | | 79.46 179 | 77.65 189 | 84.89 124 | 91.68 117 | 65.66 150 | 93.55 94 | 88.09 307 | 72.93 178 | 73.37 187 | 91.12 165 | 46.20 294 | 96.12 140 | 56.28 308 | 85.61 142 | 92.91 169 |
|
| UGNet | | | 79.87 171 | 78.68 174 | 83.45 181 | 89.96 154 | 61.51 258 | 92.13 151 | 90.79 202 | 76.83 118 | 78.85 134 | 86.33 241 | 38.16 330 | 96.17 138 | 67.93 229 | 87.17 125 | 92.67 174 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| WTY-MVS | | | 86.32 48 | 85.81 57 | 87.85 29 | 92.82 81 | 69.37 57 | 95.20 34 | 95.25 18 | 82.71 23 | 81.91 91 | 94.73 77 | 67.93 55 | 97.63 56 | 79.55 131 | 82.25 170 | 96.54 22 |
|
| XXY-MVS | | | 77.94 208 | 76.44 209 | 82.43 201 | 82.60 302 | 64.44 179 | 92.01 159 | 91.83 159 | 73.59 167 | 70.00 234 | 85.82 246 | 54.43 215 | 94.76 194 | 69.63 210 | 68.02 282 | 88.10 252 |
|
| EC-MVSNet | | | 84.53 81 | 85.04 70 | 83.01 188 | 89.34 167 | 61.37 262 | 94.42 51 | 91.09 193 | 77.91 100 | 83.24 77 | 94.20 97 | 58.37 165 | 95.40 175 | 85.35 77 | 91.41 79 | 92.27 189 |
|
| sss | | | 82.71 120 | 82.38 117 | 83.73 169 | 89.25 172 | 59.58 296 | 92.24 147 | 94.89 29 | 77.96 98 | 79.86 117 | 92.38 137 | 56.70 186 | 97.05 92 | 77.26 150 | 80.86 185 | 94.55 107 |
|
| Test_1112_low_res | | | 79.56 175 | 78.60 176 | 82.43 201 | 88.24 201 | 60.39 284 | 92.09 154 | 87.99 309 | 72.10 202 | 71.84 210 | 87.42 224 | 64.62 87 | 93.04 255 | 65.80 253 | 77.30 218 | 93.85 142 |
|
| 1112_ss | | | 80.56 156 | 79.83 156 | 82.77 192 | 88.65 187 | 60.78 271 | 92.29 145 | 88.36 298 | 72.58 186 | 72.46 202 | 94.95 69 | 65.09 79 | 93.42 251 | 66.38 246 | 77.71 210 | 94.10 128 |
|
| ab-mvs-re | | | 7.91 390 | 10.55 393 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 94.95 69 | 0.00 430 | 0.00 426 | 0.00 425 | 0.00 423 | 0.00 422 |
|
| ab-mvs | | | 80.18 164 | 78.31 179 | 85.80 95 | 88.44 192 | 65.49 158 | 83.00 328 | 92.67 119 | 71.82 212 | 77.36 148 | 85.01 253 | 54.50 211 | 96.59 119 | 76.35 155 | 75.63 229 | 95.32 68 |
|
| TR-MVS | | | 78.77 193 | 77.37 198 | 82.95 189 | 90.49 144 | 60.88 269 | 93.67 88 | 90.07 230 | 70.08 250 | 74.51 176 | 91.37 162 | 45.69 296 | 95.70 163 | 60.12 293 | 80.32 189 | 92.29 185 |
|
| MDTV_nov1_ep13_2view | | | | | | | 59.90 291 | 80.13 351 | | 67.65 276 | 72.79 193 | | 54.33 217 | | 59.83 294 | | 92.58 177 |
|
| MDTV_nov1_ep13 | | | | 72.61 263 | | 89.06 178 | 68.48 76 | 80.33 347 | 90.11 229 | 71.84 211 | 71.81 211 | 75.92 356 | 53.01 230 | 93.92 238 | 48.04 339 | 73.38 243 | |
|
| MIMVSNet1 | | | 60.16 354 | 57.33 355 | 68.67 362 | 69.71 388 | 44.13 390 | 78.92 357 | 84.21 346 | 55.05 365 | 44.63 391 | 71.85 372 | 23.91 385 | 81.54 386 | 32.63 395 | 55.03 364 | 80.35 360 |
|
| MIMVSNet | | | 71.64 285 | 68.44 298 | 81.23 234 | 81.97 309 | 64.44 179 | 73.05 377 | 88.80 285 | 69.67 255 | 64.59 293 | 74.79 361 | 32.79 358 | 87.82 345 | 53.99 316 | 76.35 225 | 91.42 202 |
|
| IterMVS-LS | | | 76.49 230 | 75.18 227 | 80.43 253 | 84.49 277 | 62.74 233 | 90.64 222 | 88.80 285 | 72.40 192 | 65.16 289 | 81.72 291 | 60.98 133 | 92.27 290 | 67.74 230 | 64.65 309 | 86.29 280 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| CDS-MVSNet | | | 81.43 141 | 80.74 139 | 83.52 176 | 86.26 245 | 64.45 178 | 92.09 154 | 90.65 208 | 75.83 130 | 73.95 184 | 89.81 189 | 63.97 94 | 92.91 264 | 71.27 197 | 82.82 164 | 93.20 159 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| ACMMP++_ref | | | | | | | | | | | | | | | | 71.63 256 | |
|
| IterMVS | | | 72.65 281 | 70.83 279 | 78.09 296 | 82.17 306 | 62.96 226 | 87.64 288 | 86.28 326 | 71.56 225 | 60.44 325 | 78.85 331 | 45.42 299 | 86.66 355 | 63.30 273 | 61.83 332 | 84.65 313 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| DP-MVS Recon | | | 82.73 118 | 81.65 125 | 85.98 87 | 97.31 4 | 67.06 116 | 95.15 36 | 91.99 148 | 69.08 264 | 76.50 158 | 93.89 105 | 54.48 214 | 98.20 35 | 70.76 202 | 85.66 141 | 92.69 173 |
|
| MVS_111021_LR | | | 82.02 132 | 81.52 126 | 83.51 178 | 88.42 193 | 62.88 231 | 89.77 248 | 88.93 280 | 76.78 119 | 75.55 167 | 93.10 117 | 50.31 254 | 95.38 177 | 83.82 96 | 87.02 126 | 92.26 190 |
|
| DP-MVS | | | 69.90 298 | 66.48 306 | 80.14 260 | 95.36 28 | 62.93 227 | 89.56 250 | 76.11 374 | 50.27 379 | 57.69 345 | 85.23 251 | 39.68 320 | 95.73 158 | 33.35 389 | 71.05 262 | 81.78 348 |
|
| ACMMP++ | | | | | | | | | | | | | | | | 69.72 265 | |
|
| HQP-MVS | | | 81.14 145 | 80.64 143 | 82.64 197 | 87.54 219 | 63.66 207 | 94.06 63 | 91.70 167 | 79.80 64 | 74.18 178 | 90.30 178 | 51.63 243 | 95.61 166 | 77.63 148 | 78.90 201 | 88.63 242 |
|
| QAPM | | | 79.95 170 | 77.39 197 | 87.64 34 | 89.63 161 | 71.41 20 | 93.30 106 | 93.70 75 | 65.34 295 | 67.39 272 | 91.75 153 | 47.83 280 | 98.96 16 | 57.71 303 | 89.81 96 | 92.54 178 |
|
| Vis-MVSNet |  | | 80.92 151 | 79.98 154 | 83.74 167 | 88.48 190 | 61.80 251 | 93.44 102 | 88.26 304 | 73.96 157 | 77.73 142 | 91.76 152 | 49.94 258 | 94.76 194 | 65.84 252 | 90.37 93 | 94.65 103 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| MVS-HIRNet | | | 60.25 353 | 55.55 360 | 74.35 329 | 84.37 280 | 56.57 330 | 71.64 381 | 74.11 382 | 34.44 403 | 45.54 388 | 42.24 411 | 31.11 368 | 89.81 329 | 40.36 373 | 76.10 227 | 76.67 383 |
|
| IS-MVSNet | | | 80.14 165 | 79.41 164 | 82.33 205 | 87.91 209 | 60.08 289 | 91.97 163 | 88.27 302 | 72.90 181 | 71.44 218 | 91.73 154 | 61.44 129 | 93.66 246 | 62.47 280 | 86.53 135 | 93.24 156 |
|
| HyFIR lowres test | | | 81.03 149 | 79.56 160 | 85.43 106 | 87.81 214 | 68.11 89 | 90.18 237 | 90.01 235 | 70.65 244 | 72.95 191 | 86.06 244 | 63.61 102 | 94.50 211 | 75.01 165 | 79.75 194 | 93.67 145 |
|
| EPMVS | | | 78.49 199 | 75.98 216 | 86.02 86 | 91.21 131 | 69.68 51 | 80.23 349 | 91.20 186 | 75.25 138 | 72.48 201 | 78.11 336 | 54.65 210 | 93.69 245 | 57.66 304 | 83.04 162 | 94.69 99 |
|
| PAPM_NR | | | 82.97 115 | 81.84 123 | 86.37 78 | 94.10 44 | 66.76 126 | 87.66 287 | 92.84 112 | 69.96 251 | 74.07 182 | 93.57 112 | 63.10 113 | 97.50 64 | 70.66 204 | 90.58 90 | 94.85 89 |
|
| TAMVS | | | 80.37 160 | 79.45 163 | 83.13 187 | 85.14 266 | 63.37 215 | 91.23 198 | 90.76 203 | 74.81 144 | 72.65 196 | 88.49 201 | 60.63 137 | 92.95 259 | 69.41 213 | 81.95 176 | 93.08 163 |
|
| PAPR | | | 85.15 71 | 84.47 76 | 87.18 49 | 96.02 25 | 68.29 81 | 91.85 169 | 93.00 108 | 76.59 123 | 79.03 128 | 95.00 68 | 61.59 128 | 97.61 58 | 78.16 145 | 89.00 105 | 95.63 53 |
|
| RPSCF | | | 64.24 338 | 61.98 340 | 71.01 355 | 76.10 367 | 45.00 388 | 75.83 372 | 75.94 375 | 46.94 388 | 58.96 335 | 84.59 258 | 31.40 365 | 82.00 384 | 47.76 343 | 60.33 348 | 86.04 288 |
|
| Vis-MVSNet (Re-imp) | | | 79.24 181 | 79.57 159 | 78.24 295 | 88.46 191 | 52.29 350 | 90.41 228 | 89.12 270 | 74.24 150 | 69.13 241 | 91.91 150 | 65.77 73 | 90.09 327 | 59.00 299 | 88.09 114 | 92.33 183 |
|
| test_0402 | | | 64.54 336 | 61.09 342 | 74.92 325 | 84.10 285 | 60.75 274 | 87.95 280 | 79.71 369 | 52.03 371 | 52.41 362 | 77.20 344 | 32.21 362 | 91.64 303 | 23.14 405 | 61.03 340 | 72.36 393 |
|
| MVS_111021_HR | | | 86.19 51 | 85.80 58 | 87.37 44 | 93.17 69 | 69.79 47 | 93.99 69 | 93.76 70 | 79.08 82 | 78.88 132 | 93.99 103 | 62.25 122 | 98.15 36 | 85.93 75 | 91.15 84 | 94.15 126 |
|
| CSCG | | | 86.87 36 | 86.26 47 | 88.72 17 | 95.05 31 | 70.79 29 | 93.83 82 | 95.33 17 | 68.48 271 | 77.63 144 | 94.35 91 | 73.04 27 | 98.45 30 | 84.92 84 | 93.71 47 | 96.92 14 |
|
| PatchMatch-RL | | | 72.06 283 | 69.98 286 | 78.28 293 | 89.51 165 | 55.70 335 | 83.49 317 | 83.39 357 | 61.24 332 | 63.72 304 | 82.76 277 | 34.77 352 | 93.03 256 | 53.37 320 | 77.59 212 | 86.12 287 |
|
| API-MVS | | | 82.28 126 | 80.53 146 | 87.54 41 | 96.13 22 | 70.59 31 | 93.63 91 | 91.04 199 | 65.72 292 | 75.45 168 | 92.83 128 | 56.11 195 | 98.89 21 | 64.10 266 | 89.75 99 | 93.15 160 |
|
| Test By Simon | | | | | | | | | | | | | 54.21 218 | | | | |
|
| TDRefinement | | | 55.28 361 | 51.58 365 | 66.39 370 | 59.53 407 | 46.15 385 | 76.23 369 | 72.80 384 | 44.60 393 | 42.49 396 | 76.28 353 | 15.29 401 | 82.39 381 | 33.20 390 | 43.75 385 | 70.62 395 |
|
| USDC | | | 67.43 322 | 64.51 324 | 76.19 316 | 77.94 357 | 55.29 337 | 78.38 360 | 85.00 340 | 73.17 172 | 48.36 380 | 80.37 315 | 21.23 391 | 92.48 282 | 52.15 322 | 64.02 316 | 80.81 356 |
|
| EPP-MVSNet | | | 81.79 135 | 81.52 126 | 82.61 198 | 88.77 186 | 60.21 287 | 93.02 116 | 93.66 77 | 68.52 270 | 72.90 192 | 90.39 176 | 72.19 35 | 94.96 189 | 74.93 166 | 79.29 199 | 92.67 174 |
|
| PMMVS | | | 81.98 133 | 82.04 120 | 81.78 222 | 89.76 159 | 56.17 331 | 91.13 204 | 90.69 204 | 77.96 98 | 80.09 115 | 93.57 112 | 46.33 292 | 94.99 188 | 81.41 116 | 87.46 122 | 94.17 124 |
|
| PAPM | | | 85.89 58 | 85.46 63 | 87.18 49 | 88.20 203 | 72.42 15 | 92.41 143 | 92.77 114 | 82.11 30 | 80.34 112 | 93.07 120 | 68.27 50 | 95.02 186 | 78.39 144 | 93.59 49 | 94.09 129 |
|
| ACMMP |  | | 81.49 140 | 80.67 142 | 83.93 164 | 91.71 116 | 62.90 230 | 92.13 151 | 92.22 136 | 71.79 213 | 71.68 214 | 93.49 114 | 50.32 253 | 96.96 105 | 78.47 143 | 84.22 156 | 91.93 196 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| CNLPA | | | 74.31 259 | 72.30 267 | 80.32 254 | 91.49 123 | 61.66 256 | 90.85 212 | 80.72 365 | 56.67 360 | 63.85 303 | 90.64 169 | 46.75 286 | 90.84 315 | 53.79 317 | 75.99 228 | 88.47 247 |
|
| PatchmatchNet |  | | 77.46 214 | 74.63 232 | 85.96 88 | 89.55 164 | 70.35 34 | 79.97 354 | 89.55 250 | 72.23 197 | 70.94 220 | 76.91 348 | 57.03 178 | 92.79 269 | 54.27 315 | 81.17 182 | 94.74 97 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| PHI-MVS | | | 86.83 39 | 86.85 41 | 86.78 63 | 93.47 62 | 65.55 155 | 95.39 30 | 95.10 23 | 71.77 214 | 85.69 56 | 96.52 23 | 62.07 123 | 98.77 23 | 86.06 74 | 95.60 12 | 96.03 43 |
|
| F-COLMAP | | | 70.66 290 | 68.44 298 | 77.32 305 | 86.37 244 | 55.91 333 | 88.00 279 | 86.32 325 | 56.94 358 | 57.28 347 | 88.07 213 | 33.58 356 | 92.49 281 | 51.02 324 | 68.37 278 | 83.55 321 |
|
| ANet_high | | | 40.27 377 | 35.20 380 | 55.47 383 | 34.74 424 | 34.47 409 | 63.84 399 | 71.56 390 | 48.42 383 | 18.80 413 | 41.08 412 | 9.52 411 | 64.45 412 | 20.18 408 | 8.66 420 | 67.49 398 |
|
| wuyk23d | | | 11.30 389 | 10.95 392 | 12.33 404 | 48.05 414 | 19.89 424 | 25.89 416 | 1.92 428 | 3.58 420 | 3.12 422 | 1.37 422 | 0.64 427 | 15.77 423 | 6.23 422 | 7.77 421 | 1.35 419 |
|
| OMC-MVS | | | 78.67 196 | 77.91 187 | 80.95 245 | 85.76 256 | 57.40 322 | 88.49 272 | 88.67 290 | 73.85 159 | 72.43 203 | 92.10 145 | 49.29 266 | 94.55 208 | 72.73 183 | 77.89 209 | 90.91 214 |
|
| MG-MVS | | | 87.11 34 | 86.27 46 | 89.62 8 | 97.79 1 | 76.27 4 | 94.96 43 | 94.49 45 | 78.74 90 | 83.87 75 | 92.94 123 | 64.34 90 | 96.94 107 | 75.19 162 | 94.09 38 | 95.66 52 |
|
| AdaColmap |  | | 78.94 187 | 77.00 203 | 84.76 132 | 96.34 17 | 65.86 147 | 92.66 132 | 87.97 311 | 62.18 323 | 70.56 224 | 92.37 138 | 43.53 307 | 97.35 72 | 64.50 264 | 82.86 163 | 91.05 213 |
|
| uanet | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 430 | 0.00 426 | 0.00 425 | 0.00 423 | 0.00 422 |
|
| ITE_SJBPF | | | | | 70.43 356 | 74.44 373 | 47.06 381 | | 77.32 372 | 60.16 340 | 54.04 357 | 83.53 269 | 23.30 387 | 84.01 369 | 43.07 360 | 61.58 338 | 80.21 364 |
|
| DeepMVS_CX |  | | | | 34.71 400 | 51.45 412 | 24.73 420 | | 28.48 426 | 31.46 406 | 17.49 416 | 52.75 402 | 5.80 417 | 42.60 421 | 18.18 409 | 19.42 414 | 36.81 413 |
|
| TinyColmap | | | 60.32 352 | 56.42 359 | 72.00 351 | 78.78 346 | 53.18 347 | 78.36 361 | 75.64 377 | 52.30 370 | 41.59 398 | 75.82 357 | 14.76 403 | 88.35 340 | 35.84 382 | 54.71 366 | 74.46 386 |
|
| MAR-MVS | | | 84.18 90 | 83.43 92 | 86.44 75 | 96.25 21 | 65.93 146 | 94.28 56 | 94.27 57 | 74.41 146 | 79.16 127 | 95.61 45 | 53.99 219 | 98.88 22 | 69.62 211 | 93.26 54 | 94.50 113 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| LF4IMVS | | | 54.01 363 | 52.12 364 | 59.69 378 | 62.41 402 | 39.91 402 | 68.59 389 | 68.28 398 | 42.96 398 | 44.55 392 | 75.18 358 | 14.09 405 | 68.39 404 | 41.36 369 | 51.68 372 | 70.78 394 |
|
| MSDG | | | 69.54 301 | 65.73 313 | 80.96 244 | 85.11 268 | 63.71 203 | 84.19 312 | 83.28 358 | 56.95 357 | 54.50 354 | 84.03 264 | 31.50 364 | 96.03 148 | 42.87 363 | 69.13 273 | 83.14 331 |
|
| LS3D | | | 69.17 303 | 66.40 308 | 77.50 301 | 91.92 109 | 56.12 332 | 85.12 306 | 80.37 367 | 46.96 387 | 56.50 349 | 87.51 223 | 37.25 339 | 93.71 244 | 32.52 396 | 79.40 196 | 82.68 339 |
|
| CLD-MVS | | | 82.73 118 | 82.35 118 | 83.86 165 | 87.90 210 | 67.65 100 | 95.45 28 | 92.18 140 | 85.06 10 | 72.58 198 | 92.27 140 | 52.46 235 | 95.78 154 | 84.18 91 | 79.06 200 | 88.16 251 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| FPMVS | | | 45.64 371 | 43.10 375 | 53.23 388 | 51.42 413 | 36.46 406 | 64.97 397 | 71.91 388 | 29.13 408 | 27.53 408 | 61.55 397 | 9.83 410 | 65.01 411 | 16.00 414 | 55.58 362 | 58.22 404 |
|
| Gipuma |  | | 34.91 380 | 31.44 383 | 45.30 395 | 70.99 384 | 39.64 403 | 19.85 417 | 72.56 386 | 20.10 413 | 16.16 417 | 21.47 418 | 5.08 418 | 71.16 400 | 13.07 415 | 43.70 386 | 25.08 415 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |