This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
SED-MVS90.08 290.85 287.77 2695.30 270.98 7093.57 794.06 1277.24 5193.10 195.72 882.99 197.44 589.07 996.63 494.88 9
test_241102_ONE95.30 270.98 7094.06 1277.17 5593.10 195.39 1182.99 197.27 10
DVP-MVS++.90.23 191.01 187.89 2494.34 2971.25 6395.06 194.23 578.38 3392.78 495.74 682.45 397.49 389.42 496.68 294.95 5
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4782.45 396.87 1983.77 5396.48 894.88 9
PC_three_145268.21 23192.02 1294.00 4882.09 595.98 5584.58 4096.68 294.95 5
DPE-MVScopyleft89.48 589.98 488.01 1494.80 1172.69 3291.59 4294.10 1075.90 8892.29 795.66 1081.67 697.38 987.44 2096.34 1593.95 48
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 789.42 496.57 794.67 18
test_241102_TWO94.06 1277.24 5192.78 495.72 881.26 897.44 589.07 996.58 694.26 35
DVP-MVScopyleft89.60 390.35 387.33 4595.27 571.25 6393.49 992.73 6577.33 4992.12 995.78 480.98 997.40 789.08 796.41 1293.33 79
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072695.27 571.25 6393.60 694.11 877.33 4992.81 395.79 380.98 9
test_one_060195.07 771.46 6194.14 778.27 3592.05 1195.74 680.83 11
DeepPCF-MVS80.84 188.10 1288.56 1286.73 5692.24 7869.03 11089.57 8993.39 3577.53 4689.79 1894.12 4378.98 1296.58 3685.66 2795.72 2994.58 21
MSP-MVS89.51 489.91 588.30 994.28 3273.46 1892.90 1694.11 880.27 1291.35 1494.16 4178.35 1396.77 2389.59 394.22 6494.67 18
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ETH3 D test640087.50 2587.44 2687.70 3593.71 4671.75 5790.62 6194.05 1570.80 17887.59 3393.51 5677.57 1496.63 3183.31 5595.77 2694.72 17
APDe-MVS89.15 689.63 687.73 3094.49 2071.69 5893.83 493.96 1675.70 9291.06 1696.03 176.84 1597.03 1589.09 695.65 3294.47 25
CNVR-MVS88.93 989.13 988.33 794.77 1273.82 990.51 6393.00 4780.90 988.06 2894.06 4676.43 1696.84 2088.48 1495.99 1994.34 31
MCST-MVS87.37 3087.25 3087.73 3094.53 1972.46 4089.82 8193.82 1973.07 14584.86 6192.89 7176.22 1796.33 3984.89 3595.13 4194.40 28
CSCG86.41 4786.19 4987.07 5092.91 6572.48 3890.81 5793.56 2673.95 12783.16 8891.07 10775.94 1895.19 8879.94 9294.38 6093.55 72
HPM-MVS++copyleft89.02 889.15 888.63 495.01 976.03 192.38 2592.85 6080.26 1387.78 3094.27 3675.89 1996.81 2287.45 1996.44 993.05 90
TSAR-MVS + MP.88.02 1788.11 1687.72 3293.68 4972.13 5091.41 4792.35 8074.62 11388.90 2193.85 5275.75 2096.00 5387.80 1594.63 5395.04 3
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xxxxxxxxxxxxxcwj87.88 1987.92 1987.77 2693.80 4472.35 4590.47 6689.69 16874.31 11989.16 1995.10 1375.65 2196.19 4587.07 2196.01 1794.79 13
SF-MVS88.46 1188.74 1187.64 3892.78 6971.95 5392.40 2294.74 275.71 9089.16 1995.10 1375.65 2196.19 4587.07 2196.01 1794.79 13
9.1488.26 1592.84 6891.52 4594.75 173.93 12988.57 2494.67 1975.57 2395.79 5986.77 2395.76 28
ETH3D-3000-0.188.09 1388.29 1487.50 4192.76 7071.89 5691.43 4694.70 374.47 11688.86 2294.61 2175.23 2495.84 5886.62 2695.92 2194.78 15
ETH3D cwj APD-0.1687.31 3287.27 2887.44 4391.60 8772.45 4190.02 7794.37 471.76 16187.28 3494.27 3675.18 2596.08 4985.16 3095.77 2693.80 59
agg_prior186.22 4986.09 5286.62 5992.85 6671.94 5488.59 12091.78 10968.96 22084.41 6993.18 6474.94 2694.93 9884.75 3895.33 3893.01 93
SD-MVS88.06 1488.50 1386.71 5792.60 7672.71 3091.81 4093.19 4077.87 3690.32 1794.00 4874.83 2793.78 14587.63 1794.27 6393.65 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DELS-MVS85.41 6285.30 6285.77 7588.49 16867.93 13985.52 21493.44 3278.70 2983.63 8589.03 15874.57 2895.71 6280.26 9094.04 6593.66 62
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Regformer-286.63 4386.53 4286.95 5189.33 13171.24 6788.43 12392.05 9382.50 186.88 3690.09 12674.45 2995.61 6384.38 4390.63 9894.01 45
train_agg86.43 4586.20 4887.13 4993.26 5672.96 2688.75 11391.89 10368.69 22585.00 5493.10 6574.43 3095.41 7784.97 3295.71 3093.02 92
test_893.13 5872.57 3688.68 11891.84 10668.69 22584.87 6093.10 6574.43 3095.16 89
Regformer-186.41 4786.33 4486.64 5889.33 13170.93 7588.43 12391.39 12282.14 386.65 3890.09 12674.39 3295.01 9783.97 5190.63 9893.97 47
TEST993.26 5672.96 2688.75 11391.89 10368.44 22985.00 5493.10 6574.36 3395.41 77
SMA-MVScopyleft89.08 789.23 788.61 594.25 3373.73 1092.40 2293.63 2374.77 10992.29 795.97 274.28 3497.24 1188.58 1396.91 194.87 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_prior386.73 3986.86 3986.33 6392.61 7469.59 10188.85 10892.97 5475.41 9684.91 5693.54 5474.28 3495.48 7183.31 5595.86 2293.91 49
test_prior288.85 10875.41 9684.91 5693.54 5474.28 3483.31 5595.86 22
TSAR-MVS + GP.85.71 5785.33 6086.84 5391.34 8972.50 3789.07 10187.28 23276.41 7485.80 4490.22 12474.15 3795.37 8381.82 7591.88 8292.65 105
ZD-MVS94.38 2772.22 4892.67 6770.98 17687.75 3194.07 4574.01 3896.70 2684.66 3994.84 48
SteuartSystems-ACMMP88.72 1088.86 1088.32 892.14 8072.96 2693.73 593.67 2280.19 1488.10 2794.80 1673.76 3997.11 1387.51 1895.82 2494.90 8
Skip Steuart: Steuart Systems R&D Blog.
APD-MVScopyleft87.44 2687.52 2487.19 4794.24 3472.39 4291.86 3992.83 6173.01 14788.58 2394.52 2373.36 4096.49 3784.26 4695.01 4292.70 101
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
canonicalmvs85.91 5385.87 5486.04 7289.84 11769.44 10890.45 6993.00 4776.70 7188.01 2991.23 10173.28 4193.91 14081.50 7788.80 11994.77 16
testtj87.78 2087.78 2187.77 2694.55 1872.47 3992.23 3193.49 3074.75 11088.33 2594.43 3273.27 4297.02 1684.18 4994.84 4893.82 56
segment_acmp73.08 43
DPM-MVS84.93 7084.29 7586.84 5390.20 10973.04 2487.12 16493.04 4369.80 19882.85 9391.22 10273.06 4496.02 5176.72 12194.63 5391.46 142
NCCC88.06 1488.01 1888.24 1094.41 2473.62 1191.22 5192.83 6181.50 685.79 4593.47 5973.02 4597.00 1784.90 3394.94 4494.10 39
nrg03083.88 7583.53 7784.96 9186.77 21769.28 10990.46 6892.67 6774.79 10882.95 9091.33 10072.70 4693.09 18080.79 8579.28 23392.50 108
Regformer-485.68 5885.45 5886.35 6288.95 15069.67 10088.29 13391.29 12481.73 585.36 4990.01 12972.62 4795.35 8483.28 5887.57 13194.03 43
Regformer-385.23 6485.07 6685.70 7688.95 15069.01 11288.29 13389.91 16280.95 885.01 5390.01 12972.45 4894.19 12682.50 7187.57 13193.90 51
CDPH-MVS85.76 5685.29 6387.17 4893.49 5371.08 6888.58 12192.42 7868.32 23084.61 6693.48 5772.32 4996.15 4879.00 9495.43 3494.28 34
MP-MVScopyleft87.71 2187.64 2387.93 2094.36 2873.88 792.71 2192.65 7077.57 4283.84 8094.40 3472.24 5096.28 4185.65 2895.30 4093.62 69
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
casdiffmvs85.11 6785.14 6585.01 8987.20 20965.77 17887.75 14992.83 6177.84 3784.36 7292.38 7772.15 5193.93 13981.27 7990.48 10095.33 1
DeepC-MVS79.81 287.08 3786.88 3887.69 3691.16 9172.32 4790.31 7193.94 1777.12 5782.82 9494.23 3972.13 5297.09 1484.83 3695.37 3593.65 67
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline84.93 7084.98 6784.80 10087.30 20765.39 18687.30 16092.88 5877.62 4084.04 7892.26 7871.81 5393.96 13381.31 7890.30 10295.03 4
ZNCC-MVS87.94 1887.85 2088.20 1194.39 2673.33 2093.03 1493.81 2076.81 6585.24 5194.32 3571.76 5496.93 1885.53 2995.79 2594.32 32
test1286.80 5592.63 7370.70 8191.79 10882.71 9671.67 5596.16 4794.50 5693.54 73
UniMVSNet_NR-MVSNet81.88 10681.54 10682.92 16988.46 17063.46 22387.13 16392.37 7980.19 1478.38 14789.14 15371.66 5693.05 18270.05 17576.46 26192.25 118
DeepC-MVS_fast79.65 386.91 3886.62 4187.76 2993.52 5272.37 4491.26 4893.04 4376.62 7284.22 7393.36 6171.44 5796.76 2480.82 8395.33 3894.16 37
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_111021_HR85.14 6684.75 7286.32 6591.65 8672.70 3185.98 19790.33 15076.11 8382.08 10091.61 9271.36 5894.17 12881.02 8092.58 7892.08 124
ACMMP_NAP88.05 1688.08 1787.94 1793.70 4773.05 2390.86 5693.59 2576.27 8188.14 2695.09 1571.06 5996.67 2887.67 1696.37 1494.09 40
MP-MVS-pluss87.67 2287.72 2287.54 3993.64 5072.04 5289.80 8393.50 2875.17 10386.34 4095.29 1270.86 6096.00 5388.78 1296.04 1694.58 21
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS87.58 2387.47 2587.94 1794.58 1673.54 1593.04 1293.24 3776.78 6784.91 5694.44 3070.78 6196.61 3284.53 4194.89 4693.66 62
#test#87.33 3187.13 3387.94 1794.58 1673.54 1592.34 2793.24 3775.23 10084.91 5694.44 3070.78 6196.61 3283.75 5494.89 4693.66 62
EI-MVSNet-Vis-set84.19 7483.81 7685.31 8088.18 17767.85 14087.66 15189.73 16780.05 1682.95 9089.59 14270.74 6394.82 10680.66 8684.72 16793.28 81
GST-MVS87.42 2887.26 2987.89 2494.12 3972.97 2592.39 2493.43 3376.89 6384.68 6293.99 5070.67 6496.82 2184.18 4995.01 4293.90 51
CS-MVS-test85.02 6985.21 6484.46 10889.28 13865.70 17991.16 5293.56 2677.83 3881.80 10589.89 13170.67 6495.61 6380.39 8792.34 8092.06 125
CANet86.45 4486.10 5187.51 4090.09 11170.94 7489.70 8792.59 7281.78 481.32 11191.43 9870.34 6697.23 1284.26 4693.36 7094.37 29
alignmvs85.48 5985.32 6185.96 7489.51 12469.47 10589.74 8592.47 7476.17 8287.73 3291.46 9770.32 6793.78 14581.51 7688.95 11694.63 20
CS-MVS84.53 7384.97 6883.23 15487.54 20163.27 22888.82 11093.50 2875.98 8783.07 8989.73 13670.29 6895.23 8682.07 7493.70 6991.18 148
EI-MVSNet-UG-set83.81 7683.38 7985.09 8787.87 18667.53 14687.44 15789.66 16979.74 1882.23 9989.41 15170.24 6994.74 10979.95 9183.92 17592.99 95
MVS_Test83.15 8783.06 8383.41 14686.86 21363.21 23086.11 19592.00 9774.31 11982.87 9289.44 15070.03 7093.21 17077.39 11388.50 12593.81 57
FC-MVSNet-test81.52 11582.02 10080.03 23488.42 17255.97 31887.95 14493.42 3477.10 5877.38 16790.98 11369.96 7191.79 22168.46 19184.50 16992.33 113
FIs82.07 10382.42 9081.04 21788.80 15758.34 28288.26 13593.49 3076.93 6278.47 14691.04 10869.92 7292.34 20369.87 17984.97 16492.44 112
UniMVSNet (Re)81.60 11481.11 11183.09 16088.38 17364.41 20487.60 15293.02 4678.42 3278.56 14388.16 18169.78 7393.26 16969.58 18276.49 26091.60 135
HPM-MVScopyleft87.11 3586.98 3587.50 4193.88 4372.16 4992.19 3293.33 3676.07 8483.81 8193.95 5169.77 7496.01 5285.15 3194.66 5294.32 32
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
Effi-MVS+83.62 8083.08 8285.24 8388.38 17367.45 14788.89 10689.15 18575.50 9582.27 9888.28 17769.61 7594.45 11677.81 10887.84 12993.84 55
PHI-MVS86.43 4586.17 5087.24 4690.88 9770.96 7292.27 3094.07 1172.45 15085.22 5291.90 8469.47 7696.42 3883.28 5895.94 2094.35 30
UA-Net85.08 6884.96 6985.45 7892.07 8168.07 13789.78 8490.86 13782.48 284.60 6793.20 6369.35 7795.22 8771.39 16490.88 9693.07 89
ETV-MVS84.90 7284.67 7385.59 7789.39 12968.66 12688.74 11592.64 7179.97 1784.10 7685.71 24569.32 7895.38 8080.82 8391.37 9092.72 100
旧先验191.96 8265.79 17786.37 24693.08 6969.31 7992.74 7588.74 240
region2R87.42 2887.20 3288.09 1294.63 1473.55 1393.03 1493.12 4276.73 7084.45 6894.52 2369.09 8096.70 2684.37 4494.83 5094.03 43
EIA-MVS83.31 8682.80 8884.82 9889.59 12065.59 18188.21 13692.68 6674.66 11278.96 13486.42 23369.06 8195.26 8575.54 13190.09 10693.62 69
EPP-MVSNet83.40 8483.02 8484.57 10490.13 11064.47 20292.32 2890.73 13874.45 11879.35 13191.10 10569.05 8295.12 9072.78 15587.22 13994.13 38
DROMVSNet86.01 5186.38 4384.91 9589.31 13666.27 16792.32 2893.63 2379.37 2184.17 7591.88 8569.04 8395.43 7583.93 5293.77 6793.01 93
ACMMPR87.44 2687.23 3188.08 1394.64 1373.59 1293.04 1293.20 3976.78 6784.66 6594.52 2368.81 8496.65 2984.53 4194.90 4594.00 46
mvs_anonymous79.42 16179.11 14980.34 22984.45 24957.97 28882.59 26587.62 22567.40 23776.17 19888.56 17068.47 8589.59 26570.65 17086.05 15693.47 75
zzz-MVS87.53 2487.41 2787.90 2194.18 3774.25 590.23 7392.02 9479.45 1985.88 4294.80 1668.07 8696.21 4386.69 2495.34 3693.23 82
MTAPA87.23 3387.00 3487.90 2194.18 3774.25 586.58 18292.02 9479.45 1985.88 4294.80 1668.07 8696.21 4386.69 2495.34 3693.23 82
CP-MVS87.11 3586.92 3687.68 3794.20 3673.86 893.98 392.82 6476.62 7283.68 8294.46 2767.93 8895.95 5684.20 4894.39 5993.23 82
PAPM_NR83.02 9182.41 9184.82 9892.47 7766.37 16587.93 14691.80 10773.82 13177.32 16990.66 11667.90 8994.90 10270.37 17289.48 11393.19 86
PGM-MVS86.68 4186.27 4687.90 2194.22 3573.38 1990.22 7493.04 4375.53 9483.86 7994.42 3367.87 9096.64 3082.70 6994.57 5593.66 62
PAPR81.66 11380.89 11683.99 13290.27 10764.00 21086.76 17891.77 11168.84 22377.13 17789.50 14367.63 9194.88 10467.55 19788.52 12493.09 88
Fast-Effi-MVS+80.81 12979.92 13083.47 14288.85 15264.51 19985.53 21289.39 17470.79 17978.49 14585.06 26167.54 9293.58 15467.03 20686.58 14892.32 114
XVS87.18 3486.91 3788.00 1594.42 2273.33 2092.78 1792.99 4979.14 2283.67 8394.17 4067.45 9396.60 3483.06 6094.50 5694.07 41
X-MVStestdata80.37 14377.83 17788.00 1594.42 2273.33 2092.78 1792.99 4979.14 2283.67 8312.47 36767.45 9396.60 3483.06 6094.50 5694.07 41
SR-MVS86.73 3986.67 4086.91 5294.11 4072.11 5192.37 2692.56 7374.50 11486.84 3794.65 2067.31 9595.77 6084.80 3792.85 7492.84 99
NR-MVSNet80.23 14579.38 14382.78 17887.80 18963.34 22686.31 18991.09 13279.01 2772.17 25589.07 15667.20 9692.81 19166.08 21275.65 27292.20 120
MSLP-MVS++85.43 6185.76 5584.45 10991.93 8370.24 8790.71 5992.86 5977.46 4884.22 7392.81 7567.16 9792.94 18680.36 8894.35 6190.16 184
MG-MVS83.41 8383.45 7883.28 14992.74 7162.28 24488.17 13889.50 17275.22 10181.49 11092.74 7666.75 9895.11 9172.85 15491.58 8792.45 111
EI-MVSNet80.52 14079.98 12982.12 18884.28 25063.19 23286.41 18688.95 19574.18 12478.69 13987.54 19666.62 9992.43 19872.57 15780.57 21790.74 164
IterMVS-LS80.06 14879.38 14382.11 18985.89 22663.20 23186.79 17589.34 17574.19 12375.45 21286.72 21766.62 9992.39 20072.58 15676.86 25590.75 163
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_ehance_all_eth78.59 18277.76 18181.08 21682.66 28761.56 25383.65 25089.15 18568.87 22275.55 20883.79 27766.49 10192.03 21373.25 15076.39 26389.64 211
mPP-MVS86.67 4286.32 4587.72 3294.41 2473.55 1392.74 1992.22 8776.87 6482.81 9594.25 3866.44 10296.24 4282.88 6494.28 6293.38 76
c3_l78.75 17777.91 17481.26 21082.89 28261.56 25384.09 24589.13 18769.97 19475.56 20784.29 26966.36 10392.09 21273.47 14775.48 27690.12 187
GeoE81.71 11081.01 11483.80 13789.51 12464.45 20388.97 10388.73 20471.27 17178.63 14289.76 13566.32 10493.20 17269.89 17886.02 15793.74 60
WR-MVS_H78.51 18378.49 15978.56 25888.02 18356.38 31388.43 12392.67 6777.14 5673.89 23887.55 19566.25 10589.24 27158.92 26973.55 30190.06 194
PCF-MVS73.52 780.38 14278.84 15485.01 8987.71 19368.99 11383.65 25091.46 12163.00 28677.77 16190.28 12166.10 10695.09 9561.40 24988.22 12890.94 158
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EPNet83.72 7882.92 8686.14 6984.22 25269.48 10491.05 5485.27 25781.30 776.83 17991.65 8966.09 10795.56 6676.00 12693.85 6693.38 76
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
原ACMM184.35 11493.01 6468.79 11692.44 7563.96 28081.09 11691.57 9366.06 10895.45 7367.19 20394.82 5188.81 237
PVSNet_BlendedMVS80.60 13780.02 12882.36 18788.85 15265.40 18486.16 19492.00 9769.34 20778.11 15486.09 24066.02 10994.27 12071.52 16182.06 20087.39 266
PVSNet_Blended80.98 12380.34 12482.90 17088.85 15265.40 18484.43 23792.00 9767.62 23478.11 15485.05 26266.02 10994.27 12071.52 16189.50 11289.01 227
diffmvs82.10 10181.88 10382.76 18083.00 27863.78 21583.68 24989.76 16572.94 14882.02 10189.85 13365.96 11190.79 24882.38 7387.30 13893.71 61
APD-MVS_3200maxsize85.97 5285.88 5386.22 6792.69 7269.53 10391.93 3692.99 4973.54 13785.94 4194.51 2665.80 11295.61 6383.04 6292.51 7993.53 74
miper_enhance_ethall77.87 20276.86 20080.92 21981.65 30161.38 25582.68 26488.98 19265.52 25975.47 20982.30 29565.76 11392.00 21572.95 15376.39 26389.39 216
PVSNet_Blended_VisFu82.62 9681.83 10484.96 9190.80 9969.76 9888.74 11591.70 11269.39 20578.96 13488.46 17265.47 11494.87 10574.42 13688.57 12290.24 182
API-MVS81.99 10581.23 10984.26 11890.94 9570.18 9391.10 5389.32 17671.51 16878.66 14188.28 17765.26 11595.10 9464.74 22391.23 9387.51 264
TranMVSNet+NR-MVSNet80.84 12680.31 12582.42 18587.85 18762.33 24287.74 15091.33 12380.55 1177.99 15789.86 13265.23 11692.62 19267.05 20575.24 28692.30 116
IS-MVSNet83.15 8782.81 8784.18 12089.94 11563.30 22791.59 4288.46 20979.04 2679.49 12992.16 7965.10 11794.28 11967.71 19591.86 8594.95 5
DU-MVS81.12 12280.52 12182.90 17087.80 18963.46 22387.02 16791.87 10579.01 2778.38 14789.07 15665.02 11893.05 18270.05 17576.46 26192.20 120
Baseline_NR-MVSNet78.15 19378.33 16677.61 27385.79 22756.21 31686.78 17685.76 25373.60 13577.93 15887.57 19465.02 11888.99 27567.14 20475.33 28287.63 260
test117286.20 5086.22 4786.12 7093.95 4269.89 9691.79 4192.28 8275.07 10486.40 3994.58 2265.00 12095.56 6684.34 4592.60 7792.90 97
SR-MVS-dyc-post85.77 5585.61 5686.23 6693.06 6270.63 8291.88 3792.27 8373.53 13885.69 4694.45 2865.00 12095.56 6682.75 6591.87 8392.50 108
VNet82.21 10082.41 9181.62 19990.82 9860.93 25884.47 23389.78 16476.36 7984.07 7791.88 8564.71 12290.26 25470.68 16988.89 11793.66 62
Test By Simon64.33 123
ACMMPcopyleft85.89 5485.39 5987.38 4493.59 5172.63 3492.74 1993.18 4176.78 6780.73 12093.82 5364.33 12396.29 4082.67 7090.69 9793.23 82
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DP-MVS Recon83.11 9082.09 9786.15 6894.44 2170.92 7688.79 11192.20 8870.53 18579.17 13291.03 11064.12 12596.03 5068.39 19290.14 10591.50 139
CLD-MVS82.31 9981.65 10584.29 11788.47 16967.73 14385.81 20592.35 8075.78 8978.33 14986.58 22864.01 12694.35 11776.05 12487.48 13690.79 161
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
RE-MVS-def85.48 5793.06 6270.63 8291.88 3792.27 8373.53 13885.69 4694.45 2863.87 12782.75 6591.87 8392.50 108
MVS78.19 19276.99 19881.78 19685.66 22966.99 15584.66 22790.47 14455.08 34272.02 25785.27 25563.83 12894.11 13166.10 21189.80 11084.24 316
WR-MVS79.49 15879.22 14880.27 23188.79 15858.35 28185.06 21988.61 20778.56 3077.65 16288.34 17563.81 12990.66 25164.98 22177.22 24991.80 133
test_part182.78 9482.08 9884.89 9690.66 10066.97 15890.96 5592.93 5777.19 5480.53 12290.04 12863.44 13095.39 7976.04 12576.90 25392.31 115
112180.84 12679.77 13384.05 12693.11 6070.78 7984.66 22785.42 25657.37 33281.76 10992.02 8163.41 13194.12 12967.28 20092.93 7287.26 271
VPA-MVSNet80.60 13780.55 12080.76 22288.07 18160.80 26186.86 17291.58 11575.67 9380.24 12489.45 14963.34 13290.25 25570.51 17179.22 23491.23 147
新几何183.42 14493.13 5870.71 8085.48 25557.43 33181.80 10591.98 8263.28 13392.27 20464.60 22492.99 7187.27 270
HY-MVS69.67 1277.95 19977.15 19480.36 22887.57 20060.21 26983.37 25787.78 22366.11 25075.37 21587.06 21263.27 13490.48 25361.38 25082.43 19790.40 177
XXY-MVS75.41 24075.56 21874.96 29883.59 26357.82 29280.59 28583.87 27666.54 24774.93 22988.31 17663.24 13580.09 33462.16 24176.85 25686.97 279
ab-mvs79.51 15778.97 15281.14 21488.46 17060.91 25983.84 24789.24 18170.36 18779.03 13388.87 16163.23 13690.21 25665.12 21982.57 19692.28 117
xiu_mvs_v2_base81.69 11181.05 11283.60 13989.15 14468.03 13884.46 23590.02 15870.67 18281.30 11486.53 23163.17 13794.19 12675.60 13088.54 12388.57 244
pcd_1.5k_mvsjas5.26 3417.02 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37363.15 1380.00 3740.00 3720.00 3720.00 370
PS-MVSNAJss82.07 10381.31 10784.34 11586.51 22067.27 15289.27 9391.51 11771.75 16279.37 13090.22 12463.15 13894.27 12077.69 10982.36 19891.49 140
PS-MVSNAJ81.69 11181.02 11383.70 13889.51 12468.21 13584.28 24190.09 15770.79 17981.26 11585.62 24963.15 13894.29 11875.62 12988.87 11888.59 243
WTY-MVS75.65 23675.68 21775.57 29286.40 22156.82 30477.92 31282.40 29765.10 26276.18 19687.72 18963.13 14180.90 33160.31 25781.96 20189.00 229
TransMVSNet (Re)75.39 24174.56 23377.86 26785.50 23357.10 30186.78 17686.09 25172.17 15771.53 26187.34 20063.01 14289.31 27056.84 28961.83 34287.17 273
v879.97 15179.02 15182.80 17584.09 25464.50 20187.96 14390.29 15374.13 12675.24 22186.81 21462.88 14393.89 14274.39 13775.40 28090.00 196
abl_685.23 6484.95 7086.07 7192.23 7970.48 8690.80 5892.08 9273.51 14085.26 5094.16 4162.75 14495.92 5782.46 7291.30 9291.81 132
HPM-MVS_fast85.35 6384.95 7086.57 6193.69 4870.58 8592.15 3491.62 11373.89 13082.67 9794.09 4462.60 14595.54 6980.93 8192.93 7293.57 71
PAPM77.68 20676.40 21281.51 20287.29 20861.85 24983.78 24889.59 17064.74 26771.23 26388.70 16362.59 14693.66 15352.66 30587.03 14289.01 227
1112_ss77.40 21176.43 21180.32 23089.11 14960.41 26783.65 25087.72 22462.13 29773.05 24586.72 21762.58 14789.97 25962.11 24380.80 21390.59 170
LCM-MVSNet-Re77.05 21576.94 19977.36 27687.20 20951.60 34180.06 28980.46 31675.20 10267.69 29686.72 21762.48 14888.98 27663.44 22989.25 11591.51 138
v14878.72 17877.80 17881.47 20382.73 28561.96 24886.30 19088.08 21573.26 14376.18 19685.47 25262.46 14992.36 20271.92 16073.82 29990.09 190
baseline176.98 21776.75 20677.66 27188.13 17855.66 32185.12 21881.89 30173.04 14676.79 18088.90 15962.43 15087.78 29263.30 23171.18 31889.55 214
MAR-MVS81.84 10780.70 11785.27 8291.32 9071.53 6089.82 8190.92 13469.77 19978.50 14486.21 23762.36 15194.52 11465.36 21792.05 8189.77 208
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVS_111021_LR82.61 9782.11 9684.11 12188.82 15571.58 5985.15 21786.16 24974.69 11180.47 12391.04 10862.29 15290.55 25280.33 8990.08 10790.20 183
TAMVS78.89 17677.51 18883.03 16487.80 18967.79 14284.72 22685.05 26067.63 23376.75 18287.70 19062.25 15390.82 24758.53 27487.13 14090.49 173
CP-MVSNet78.22 18978.34 16577.84 26887.83 18854.54 32587.94 14591.17 12977.65 3973.48 24088.49 17162.24 15488.43 28462.19 24074.07 29490.55 171
OMC-MVS82.69 9581.97 10284.85 9788.75 16067.42 14887.98 14290.87 13674.92 10779.72 12791.65 8962.19 15593.96 13375.26 13386.42 15193.16 87
cl____77.72 20476.76 20480.58 22482.49 29160.48 26583.09 26087.87 22069.22 21074.38 23585.22 25762.10 15691.53 22871.09 16575.41 27989.73 210
DIV-MVS_self_test77.72 20476.76 20480.58 22482.48 29260.48 26583.09 26087.86 22169.22 21074.38 23585.24 25662.10 15691.53 22871.09 16575.40 28089.74 209
testdata79.97 23590.90 9664.21 20784.71 26259.27 31885.40 4892.91 7062.02 15889.08 27468.95 18891.37 9086.63 287
eth_miper_zixun_eth77.92 20076.69 20781.61 20183.00 27861.98 24783.15 25989.20 18369.52 20474.86 23084.35 26861.76 15992.56 19571.50 16372.89 30790.28 181
MVSFormer82.85 9382.05 9985.24 8387.35 20270.21 8890.50 6490.38 14668.55 22781.32 11189.47 14561.68 16093.46 16378.98 9590.26 10392.05 126
lupinMVS81.39 11880.27 12784.76 10187.35 20270.21 8885.55 21086.41 24462.85 28981.32 11188.61 16761.68 16092.24 20778.41 10390.26 10391.83 130
cdsmvs_eth3d_5k19.96 33526.61 3370.00 3550.00 3780.00 3790.00 36689.26 1800.00 3730.00 37488.61 16761.62 1620.00 3740.00 3720.00 3720.00 370
h-mvs3383.15 8782.19 9586.02 7390.56 10270.85 7888.15 14089.16 18476.02 8584.67 6391.39 9961.54 16395.50 7082.71 6775.48 27691.72 134
hse-mvs281.72 10980.94 11584.07 12488.72 16167.68 14485.87 20187.26 23376.02 8584.67 6388.22 18061.54 16393.48 16182.71 6773.44 30391.06 152
CDS-MVSNet79.07 17177.70 18383.17 15787.60 19668.23 13484.40 23986.20 24867.49 23676.36 19186.54 23061.54 16390.79 24861.86 24587.33 13790.49 173
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v1079.74 15478.67 15582.97 16884.06 25564.95 19387.88 14890.62 14073.11 14475.11 22486.56 22961.46 16694.05 13273.68 14275.55 27489.90 202
v114480.03 14979.03 15083.01 16583.78 26064.51 19987.11 16590.57 14271.96 16078.08 15686.20 23861.41 16793.94 13674.93 13477.23 24890.60 169
cl2278.07 19577.01 19681.23 21182.37 29461.83 25083.55 25487.98 21768.96 22075.06 22683.87 27361.40 16891.88 22073.53 14476.39 26389.98 199
BH-w/o78.21 19077.33 19280.84 22088.81 15665.13 19184.87 22387.85 22269.75 20074.52 23384.74 26561.34 16993.11 17958.24 27785.84 16084.27 315
Test_1112_low_res76.40 22775.44 22179.27 24889.28 13858.09 28481.69 27487.07 23659.53 31672.48 25186.67 22361.30 17089.33 26960.81 25580.15 22290.41 176
Vis-MVSNet (Re-imp)78.36 18778.45 16078.07 26688.64 16451.78 34086.70 17979.63 32474.14 12575.11 22490.83 11461.29 17189.75 26258.10 27891.60 8692.69 103
PEN-MVS77.73 20377.69 18477.84 26887.07 21253.91 33087.91 14791.18 12877.56 4473.14 24488.82 16261.23 17289.17 27259.95 25972.37 30990.43 175
pm-mvs177.25 21376.68 20878.93 25384.22 25258.62 28086.41 18688.36 21071.37 17073.31 24188.01 18761.22 17389.15 27364.24 22573.01 30689.03 226
BH-untuned79.47 15978.60 15782.05 19189.19 14365.91 17486.07 19688.52 20872.18 15675.42 21387.69 19161.15 17493.54 15860.38 25686.83 14586.70 285
v2v48280.23 14579.29 14683.05 16383.62 26264.14 20887.04 16689.97 15973.61 13478.18 15387.22 20561.10 17593.82 14376.11 12376.78 25891.18 148
jason81.39 11880.29 12684.70 10286.63 21969.90 9585.95 19886.77 24063.24 28281.07 11789.47 14561.08 17692.15 21078.33 10490.07 10892.05 126
jason: jason.
Vis-MVSNetpermissive83.46 8282.80 8885.43 7990.25 10868.74 12090.30 7290.13 15676.33 8080.87 11992.89 7161.00 17794.20 12572.45 15890.97 9493.35 78
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAPA-MVS73.13 979.15 16877.94 17382.79 17789.59 12062.99 23788.16 13991.51 11765.77 25577.14 17691.09 10660.91 17893.21 17050.26 31887.05 14192.17 122
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PS-CasMVS78.01 19878.09 17077.77 27087.71 19354.39 32788.02 14191.22 12677.50 4773.26 24288.64 16660.73 17988.41 28561.88 24473.88 29890.53 172
OPM-MVS83.50 8182.95 8585.14 8588.79 15870.95 7389.13 10091.52 11677.55 4580.96 11891.75 8760.71 18094.50 11579.67 9386.51 15089.97 200
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XVG-OURS-SEG-HR80.81 12979.76 13483.96 13485.60 23168.78 11783.54 25590.50 14370.66 18376.71 18391.66 8860.69 18191.26 23576.94 11881.58 20591.83 130
v14419279.47 15978.37 16482.78 17883.35 26663.96 21186.96 16890.36 14969.99 19377.50 16485.67 24760.66 18293.77 14774.27 13876.58 25990.62 167
V4279.38 16478.24 16882.83 17281.10 31365.50 18385.55 21089.82 16371.57 16778.21 15186.12 23960.66 18293.18 17575.64 12875.46 27889.81 207
CPTT-MVS83.73 7783.33 8084.92 9493.28 5570.86 7792.09 3590.38 14668.75 22479.57 12892.83 7360.60 18493.04 18480.92 8291.56 8890.86 160
DTE-MVSNet76.99 21676.80 20277.54 27586.24 22253.06 33787.52 15490.66 13977.08 5972.50 25088.67 16560.48 18589.52 26657.33 28570.74 32090.05 195
HQP_MVS83.64 7983.14 8185.14 8590.08 11268.71 12291.25 4992.44 7579.12 2478.92 13691.00 11160.42 18695.38 8078.71 9786.32 15291.33 144
plane_prior689.84 11768.70 12460.42 186
3Dnovator+77.84 485.48 5984.47 7488.51 691.08 9273.49 1793.18 1193.78 2180.79 1076.66 18493.37 6060.40 18896.75 2577.20 11493.73 6895.29 2
HQP2-MVS60.17 189
HQP-MVS82.61 9782.02 10084.37 11289.33 13166.98 15689.17 9592.19 8976.41 7477.23 17290.23 12360.17 18995.11 9177.47 11185.99 15891.03 154
VPNet78.69 17978.66 15678.76 25588.31 17555.72 32084.45 23686.63 24276.79 6678.26 15090.55 11859.30 19189.70 26466.63 20777.05 25190.88 159
v119279.59 15678.43 16283.07 16283.55 26464.52 19886.93 17090.58 14170.83 17777.78 16085.90 24159.15 19293.94 13673.96 14177.19 25090.76 162
test22291.50 8868.26 13384.16 24283.20 28954.63 34379.74 12691.63 9158.97 19391.42 8986.77 283
CHOSEN 1792x268877.63 20775.69 21683.44 14389.98 11468.58 12878.70 30487.50 22856.38 33775.80 20586.84 21358.67 19491.40 23261.58 24885.75 16190.34 179
3Dnovator76.31 583.38 8582.31 9486.59 6087.94 18572.94 2990.64 6092.14 9177.21 5375.47 20992.83 7358.56 19594.72 11073.24 15192.71 7692.13 123
v192192079.22 16678.03 17182.80 17583.30 26863.94 21286.80 17490.33 15069.91 19677.48 16585.53 25058.44 19693.75 14973.60 14376.85 25690.71 165
114514_t80.68 13579.51 13984.20 11994.09 4167.27 15289.64 8891.11 13158.75 32374.08 23790.72 11558.10 19795.04 9669.70 18089.42 11490.30 180
v7n78.97 17477.58 18783.14 15883.45 26565.51 18288.32 13191.21 12773.69 13372.41 25286.32 23657.93 19893.81 14469.18 18575.65 27290.11 188
CL-MVSNet_self_test72.37 26971.46 26175.09 29779.49 33253.53 33280.76 28285.01 26169.12 21470.51 26882.05 29957.92 19984.13 31652.27 30666.00 33587.60 261
baseline275.70 23573.83 24381.30 20983.26 26961.79 25182.57 26680.65 31266.81 23966.88 30483.42 28257.86 20092.19 20863.47 22879.57 22689.91 201
QAPM80.88 12479.50 14085.03 8888.01 18468.97 11491.59 4292.00 9766.63 24675.15 22392.16 7957.70 20195.45 7363.52 22788.76 12090.66 166
HyFIR lowres test77.53 20875.40 22383.94 13589.59 12066.62 16180.36 28688.64 20656.29 33876.45 18785.17 25857.64 20293.28 16861.34 25183.10 18991.91 128
CNLPA78.08 19476.79 20381.97 19490.40 10671.07 6987.59 15384.55 26566.03 25372.38 25389.64 13957.56 20386.04 30359.61 26283.35 18488.79 238
test_yl81.17 12080.47 12283.24 15289.13 14563.62 21686.21 19289.95 16072.43 15381.78 10789.61 14057.50 20493.58 15470.75 16786.90 14392.52 106
DCV-MVSNet81.17 12080.47 12283.24 15289.13 14563.62 21686.21 19289.95 16072.43 15381.78 10789.61 14057.50 20493.58 15470.75 16786.90 14392.52 106
sss73.60 25473.64 24473.51 30982.80 28355.01 32376.12 31881.69 30462.47 29474.68 23285.85 24457.32 20678.11 34160.86 25480.93 21087.39 266
Effi-MVS+-dtu80.03 14978.57 15884.42 11085.13 24068.74 12088.77 11288.10 21374.99 10574.97 22883.49 28157.27 20793.36 16673.53 14480.88 21191.18 148
mvs-test180.88 12479.40 14285.29 8185.13 24069.75 9989.28 9288.10 21374.99 10576.44 19086.72 21757.27 20794.26 12473.53 14483.18 18791.87 129
AdaColmapbinary80.58 13979.42 14184.06 12593.09 6168.91 11589.36 9188.97 19469.27 20875.70 20689.69 13757.20 20995.77 6063.06 23388.41 12687.50 265
v124078.99 17377.78 17982.64 18183.21 27063.54 22086.62 18190.30 15269.74 20277.33 16885.68 24657.04 21093.76 14873.13 15276.92 25290.62 167
miper_lstm_enhance74.11 24973.11 24977.13 28180.11 32259.62 27272.23 33486.92 23966.76 24170.40 27082.92 28656.93 21182.92 32469.06 18772.63 30888.87 234
BH-RMVSNet79.61 15578.44 16183.14 15889.38 13065.93 17384.95 22287.15 23573.56 13678.19 15289.79 13456.67 21293.36 16659.53 26386.74 14690.13 186
test_djsdf80.30 14479.32 14583.27 15083.98 25765.37 18790.50 6490.38 14668.55 22776.19 19588.70 16356.44 21393.46 16378.98 9580.14 22390.97 157
EPNet_dtu75.46 23874.86 22977.23 28082.57 28954.60 32486.89 17183.09 29171.64 16366.25 31485.86 24355.99 21488.04 28954.92 29686.55 14989.05 225
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CostFormer75.24 24273.90 24179.27 24882.65 28858.27 28380.80 28082.73 29561.57 30075.33 21983.13 28555.52 21591.07 24464.98 22178.34 24088.45 246
tpmrst72.39 26772.13 25673.18 31380.54 31849.91 34979.91 29279.08 32763.11 28471.69 26079.95 31755.32 21682.77 32565.66 21673.89 29786.87 280
131476.53 22275.30 22780.21 23283.93 25862.32 24384.66 22788.81 19760.23 30970.16 27584.07 27255.30 21790.73 25067.37 19983.21 18687.59 263
tfpnnormal74.39 24573.16 24878.08 26586.10 22458.05 28584.65 23087.53 22770.32 18871.22 26485.63 24854.97 21889.86 26043.03 34775.02 28786.32 289
GBi-Net78.40 18477.40 18981.40 20587.60 19663.01 23488.39 12789.28 17771.63 16475.34 21687.28 20154.80 21991.11 23862.72 23479.57 22690.09 190
test178.40 18477.40 18981.40 20587.60 19663.01 23488.39 12789.28 17771.63 16475.34 21687.28 20154.80 21991.11 23862.72 23479.57 22690.09 190
FMVSNet278.20 19177.21 19381.20 21287.60 19662.89 23887.47 15689.02 19071.63 16475.29 22087.28 20154.80 21991.10 24162.38 23879.38 23089.61 212
Fast-Effi-MVS+-dtu78.02 19776.49 21082.62 18283.16 27466.96 15986.94 16987.45 23072.45 15071.49 26284.17 27054.79 22291.58 22667.61 19680.31 22089.30 218
MVSTER79.01 17277.88 17682.38 18683.07 27564.80 19584.08 24688.95 19569.01 21978.69 13987.17 20854.70 22392.43 19874.69 13580.57 21789.89 203
OpenMVScopyleft72.83 1079.77 15378.33 16684.09 12385.17 23769.91 9490.57 6290.97 13366.70 24272.17 25591.91 8354.70 22393.96 13361.81 24690.95 9588.41 248
XVG-OURS80.41 14179.23 14783.97 13385.64 23069.02 11183.03 26390.39 14571.09 17477.63 16391.49 9654.62 22591.35 23375.71 12783.47 18391.54 137
LPG-MVS_test82.08 10281.27 10884.50 10689.23 14168.76 11890.22 7491.94 10175.37 9876.64 18591.51 9454.29 22694.91 10078.44 10183.78 17689.83 205
LGP-MVS_train84.50 10689.23 14168.76 11891.94 10175.37 9876.64 18591.51 9454.29 22694.91 10078.44 10183.78 17689.83 205
TR-MVS77.44 20976.18 21481.20 21288.24 17663.24 22984.61 23186.40 24567.55 23577.81 15986.48 23254.10 22893.15 17657.75 28182.72 19487.20 272
FMVSNet377.88 20176.85 20180.97 21886.84 21562.36 24186.52 18588.77 19971.13 17275.34 21686.66 22454.07 22991.10 24162.72 23479.57 22689.45 215
DP-MVS76.78 22074.57 23283.42 14493.29 5469.46 10788.55 12283.70 27763.98 27970.20 27288.89 16054.01 23094.80 10746.66 33581.88 20386.01 297
ACMP74.13 681.51 11780.57 11984.36 11389.42 12768.69 12589.97 7991.50 12074.46 11775.04 22790.41 12053.82 23194.54 11277.56 11082.91 19089.86 204
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PLCcopyleft70.83 1178.05 19676.37 21383.08 16191.88 8567.80 14188.19 13789.46 17364.33 27369.87 28188.38 17453.66 23293.58 15458.86 27082.73 19387.86 256
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CANet_DTU80.61 13679.87 13182.83 17285.60 23163.17 23387.36 15888.65 20576.37 7875.88 20388.44 17353.51 23393.07 18173.30 14989.74 11192.25 118
ACMM73.20 880.78 13479.84 13283.58 14089.31 13668.37 13089.99 7891.60 11470.28 18977.25 17089.66 13853.37 23493.53 15974.24 13982.85 19188.85 235
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVP-Stereo76.12 23074.46 23681.13 21585.37 23569.79 9784.42 23887.95 21865.03 26467.46 29885.33 25453.28 23591.73 22458.01 27983.27 18581.85 335
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
AUN-MVS79.21 16777.60 18684.05 12688.71 16267.61 14585.84 20387.26 23369.08 21577.23 17288.14 18553.20 23693.47 16275.50 13273.45 30291.06 152
anonymousdsp78.60 18177.15 19482.98 16780.51 31967.08 15487.24 16289.53 17165.66 25775.16 22287.19 20752.52 23792.25 20677.17 11579.34 23189.61 212
CR-MVSNet73.37 25671.27 26579.67 24281.32 31065.19 18975.92 32080.30 31859.92 31272.73 24881.19 30352.50 23886.69 29859.84 26077.71 24387.11 277
Patchmtry70.74 27769.16 27975.49 29480.72 31554.07 32974.94 32980.30 31858.34 32470.01 27681.19 30352.50 23886.54 29953.37 30271.09 31985.87 300
pmmvs474.03 25171.91 25780.39 22781.96 29868.32 13181.45 27782.14 29959.32 31769.87 28185.13 25952.40 24088.13 28860.21 25874.74 29084.73 312
RPMNet73.51 25570.49 27182.58 18381.32 31065.19 18975.92 32092.27 8357.60 33072.73 24876.45 34052.30 24195.43 7548.14 33077.71 24387.11 277
LFMVS81.82 10881.23 10983.57 14191.89 8463.43 22589.84 8081.85 30377.04 6083.21 8693.10 6552.26 24293.43 16571.98 15989.95 10993.85 53
VDD-MVS83.01 9282.36 9384.96 9191.02 9466.40 16488.91 10588.11 21277.57 4284.39 7193.29 6252.19 24393.91 14077.05 11688.70 12194.57 23
tfpn200view976.42 22675.37 22579.55 24689.13 14557.65 29485.17 21583.60 27873.41 14176.45 18786.39 23452.12 24491.95 21648.33 32683.75 17889.07 220
thres40076.50 22375.37 22579.86 23789.13 14557.65 29485.17 21583.60 27873.41 14176.45 18786.39 23452.12 24491.95 21648.33 32683.75 17890.00 196
thres20075.55 23774.47 23578.82 25487.78 19257.85 29183.07 26283.51 28172.44 15275.84 20484.42 26752.08 24691.75 22247.41 33383.64 18286.86 281
PMMVS69.34 28968.67 28171.35 32175.67 34662.03 24675.17 32473.46 34750.00 35168.68 28979.05 32252.07 24778.13 34061.16 25282.77 19273.90 352
tpm cat170.57 27968.31 28477.35 27782.41 29357.95 28978.08 30980.22 32052.04 34868.54 29277.66 33552.00 24887.84 29151.77 30772.07 31386.25 290
IterMVS-SCA-FT75.43 23973.87 24280.11 23382.69 28664.85 19481.57 27683.47 28369.16 21370.49 26984.15 27151.95 24988.15 28769.23 18472.14 31287.34 268
SCA74.22 24872.33 25579.91 23684.05 25662.17 24579.96 29179.29 32666.30 24972.38 25380.13 31551.95 24988.60 28259.25 26577.67 24588.96 231
thres100view90076.50 22375.55 21979.33 24789.52 12356.99 30285.83 20483.23 28773.94 12876.32 19287.12 20951.89 25191.95 21648.33 32683.75 17889.07 220
thres600view776.50 22375.44 22179.68 24189.40 12857.16 29985.53 21283.23 28773.79 13276.26 19387.09 21051.89 25191.89 21948.05 33183.72 18190.00 196
tpm273.26 25971.46 26178.63 25683.34 26756.71 30780.65 28480.40 31756.63 33673.55 23982.02 30051.80 25391.24 23656.35 29278.42 23987.95 252
LS3D76.95 21874.82 23083.37 14790.45 10467.36 15189.15 9986.94 23861.87 29969.52 28490.61 11751.71 25494.53 11346.38 33886.71 14788.21 250
IterMVS74.29 24672.94 25078.35 26281.53 30463.49 22281.58 27582.49 29668.06 23269.99 27883.69 27951.66 25585.54 30665.85 21471.64 31586.01 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tpm72.37 26971.71 26074.35 30482.19 29652.00 33879.22 29877.29 33564.56 26972.95 24683.68 28051.35 25683.26 32358.33 27675.80 27087.81 257
sam_mvs151.32 25788.96 231
PatchmatchNetpermissive73.12 26171.33 26478.49 26183.18 27260.85 26079.63 29378.57 32864.13 27471.73 25979.81 32051.20 25885.97 30457.40 28476.36 26688.66 241
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
patchmatchnet-post74.00 34551.12 25988.60 282
xiu_mvs_v1_base_debu80.80 13179.72 13584.03 12987.35 20270.19 9085.56 20788.77 19969.06 21681.83 10288.16 18150.91 26092.85 18878.29 10587.56 13389.06 222
xiu_mvs_v1_base80.80 13179.72 13584.03 12987.35 20270.19 9085.56 20788.77 19969.06 21681.83 10288.16 18150.91 26092.85 18878.29 10587.56 13389.06 222
xiu_mvs_v1_base_debi80.80 13179.72 13584.03 12987.35 20270.19 9085.56 20788.77 19969.06 21681.83 10288.16 18150.91 26092.85 18878.29 10587.56 13389.06 222
Patchmatch-test64.82 31463.24 31469.57 32779.42 33349.82 35063.49 35569.05 35751.98 34959.95 34280.13 31550.91 26070.98 35940.66 35273.57 30087.90 255
Patchmatch-RL test70.24 28367.78 29477.61 27377.43 34059.57 27471.16 33670.33 35162.94 28868.65 29072.77 34750.62 26485.49 30769.58 18266.58 33387.77 258
Anonymous2023121178.97 17477.69 18482.81 17490.54 10364.29 20690.11 7691.51 11765.01 26576.16 19988.13 18650.56 26593.03 18569.68 18177.56 24691.11 151
VDDNet81.52 11580.67 11884.05 12690.44 10564.13 20989.73 8685.91 25271.11 17383.18 8793.48 5750.54 26693.49 16073.40 14888.25 12794.54 24
pmmvs674.69 24473.39 24578.61 25781.38 30757.48 29786.64 18087.95 21864.99 26670.18 27386.61 22550.43 26789.52 26662.12 24270.18 32288.83 236
test_post5.46 36850.36 26884.24 315
ET-MVSNet_ETH3D78.63 18076.63 20984.64 10386.73 21869.47 10585.01 22084.61 26469.54 20366.51 31286.59 22650.16 26991.75 22276.26 12284.24 17392.69 103
sam_mvs50.01 270
Anonymous2024052980.19 14778.89 15384.10 12290.60 10164.75 19688.95 10490.90 13565.97 25480.59 12191.17 10449.97 27193.73 15169.16 18682.70 19593.81 57
thisisatest053079.40 16277.76 18184.31 11687.69 19565.10 19287.36 15884.26 27170.04 19277.42 16688.26 17949.94 27294.79 10870.20 17384.70 16893.03 91
PatchT68.46 29767.85 29170.29 32580.70 31643.93 35972.47 33374.88 34260.15 31070.55 26776.57 33949.94 27281.59 32850.58 31274.83 28985.34 303
tttt051779.40 16277.91 17483.90 13688.10 18063.84 21388.37 13084.05 27371.45 16976.78 18189.12 15549.93 27494.89 10370.18 17483.18 18792.96 96
tpmvs71.09 27569.29 27876.49 28582.04 29756.04 31778.92 30281.37 30764.05 27767.18 30278.28 33049.74 27589.77 26149.67 32172.37 30983.67 321
thisisatest051577.33 21275.38 22483.18 15685.27 23663.80 21482.11 27083.27 28665.06 26375.91 20183.84 27549.54 27694.27 12067.24 20286.19 15491.48 141
UniMVSNet_ETH3D79.10 17078.24 16881.70 19886.85 21460.24 26887.28 16188.79 19874.25 12276.84 17890.53 11949.48 27791.56 22767.98 19382.15 19993.29 80
CVMVSNet72.99 26372.58 25274.25 30584.28 25050.85 34686.41 18683.45 28444.56 35373.23 24387.54 19649.38 27885.70 30565.90 21378.44 23886.19 292
MDTV_nov1_ep13_2view37.79 36475.16 32555.10 34166.53 30949.34 27953.98 29987.94 254
UGNet80.83 12879.59 13884.54 10588.04 18268.09 13689.42 9088.16 21176.95 6176.22 19489.46 14749.30 28093.94 13668.48 19090.31 10191.60 135
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pmmvs571.55 27270.20 27575.61 29177.83 33856.39 31281.74 27380.89 30857.76 32867.46 29884.49 26649.26 28185.32 30957.08 28775.29 28485.11 308
LTVRE_ROB69.57 1376.25 22974.54 23481.41 20488.60 16564.38 20579.24 29789.12 18870.76 18169.79 28387.86 18849.09 28293.20 17256.21 29380.16 22186.65 286
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
FMVSNet177.44 20976.12 21581.40 20586.81 21663.01 23488.39 12789.28 17770.49 18674.39 23487.28 20149.06 28391.11 23860.91 25378.52 23690.09 190
MDTV_nov1_ep1369.97 27683.18 27253.48 33377.10 31680.18 32160.45 30669.33 28780.44 31248.89 28486.90 29751.60 30978.51 237
test_post178.90 3035.43 36948.81 28585.44 30859.25 265
test-LLR72.94 26472.43 25374.48 30281.35 30858.04 28678.38 30577.46 33366.66 24369.95 27979.00 32448.06 28679.24 33566.13 20984.83 16586.15 293
test0.0.03 168.00 29867.69 29568.90 33077.55 33947.43 35375.70 32372.95 34966.66 24366.56 30882.29 29648.06 28675.87 35044.97 34474.51 29283.41 323
bset_n11_16_dypcd77.12 21475.47 22082.06 19081.12 31265.99 17181.37 27983.20 28969.94 19576.09 20083.38 28347.75 28892.26 20578.51 9977.91 24287.95 252
our_test_369.14 29067.00 30075.57 29279.80 32758.80 27877.96 31077.81 33159.55 31562.90 33478.25 33147.43 28983.97 31751.71 30867.58 33083.93 320
MS-PatchMatch73.83 25272.67 25177.30 27883.87 25966.02 17081.82 27184.66 26361.37 30368.61 29182.82 28947.29 29088.21 28659.27 26484.32 17277.68 349
cascas76.72 22174.64 23182.99 16685.78 22865.88 17582.33 26889.21 18260.85 30572.74 24781.02 30647.28 29193.75 14967.48 19885.02 16389.34 217
test20.0367.45 30066.95 30168.94 32975.48 34844.84 35877.50 31377.67 33266.66 24363.01 33283.80 27647.02 29278.40 33942.53 34968.86 32883.58 322
test_040272.79 26570.44 27279.84 23888.13 17865.99 17185.93 19984.29 26965.57 25867.40 30085.49 25146.92 29392.61 19335.88 35674.38 29380.94 340
F-COLMAP76.38 22874.33 23782.50 18489.28 13866.95 16088.41 12689.03 18964.05 27766.83 30688.61 16746.78 29492.89 18757.48 28278.55 23587.67 259
ppachtmachnet_test70.04 28567.34 29878.14 26479.80 32761.13 25679.19 29980.59 31359.16 31965.27 31979.29 32146.75 29587.29 29549.33 32266.72 33186.00 299
D2MVS74.82 24373.21 24779.64 24379.81 32662.56 24080.34 28787.35 23164.37 27268.86 28882.66 29146.37 29690.10 25867.91 19481.24 20886.25 290
Anonymous2023120668.60 29467.80 29371.02 32380.23 32150.75 34778.30 30880.47 31556.79 33566.11 31582.63 29246.35 29778.95 33743.62 34675.70 27183.36 324
CHOSEN 280x42066.51 30664.71 30771.90 31681.45 30563.52 22157.98 35768.95 35853.57 34462.59 33576.70 33846.22 29875.29 35355.25 29579.68 22476.88 351
GA-MVS76.87 21975.17 22881.97 19482.75 28462.58 23981.44 27886.35 24772.16 15874.74 23182.89 28746.20 29992.02 21468.85 18981.09 20991.30 146
MDA-MVSNet_test_wron65.03 31262.92 31571.37 31975.93 34456.73 30569.09 34774.73 34457.28 33354.03 35477.89 33245.88 30074.39 35649.89 32061.55 34382.99 330
YYNet165.03 31262.91 31671.38 31875.85 34556.60 30969.12 34674.66 34657.28 33354.12 35377.87 33345.85 30174.48 35549.95 31961.52 34483.05 328
EPMVS69.02 29168.16 28671.59 31779.61 33049.80 35177.40 31466.93 35962.82 29070.01 27679.05 32245.79 30277.86 34356.58 29075.26 28587.13 276
IB-MVS68.01 1575.85 23473.36 24683.31 14884.76 24466.03 16983.38 25685.06 25970.21 19169.40 28581.05 30545.76 30394.66 11165.10 22075.49 27589.25 219
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
jajsoiax79.29 16577.96 17283.27 15084.68 24666.57 16389.25 9490.16 15569.20 21275.46 21189.49 14445.75 30493.13 17876.84 11980.80 21390.11 188
PatchMatch-RL72.38 26870.90 26876.80 28488.60 16567.38 15079.53 29476.17 33962.75 29169.36 28682.00 30145.51 30584.89 31253.62 30180.58 21678.12 348
RPSCF73.23 26071.46 26178.54 25982.50 29059.85 27082.18 26982.84 29458.96 32071.15 26589.41 15145.48 30684.77 31358.82 27171.83 31491.02 156
RRT_test8_iter0578.38 18677.40 18981.34 20886.00 22558.86 27786.55 18491.26 12572.13 15975.91 20187.42 19944.97 30793.73 15177.02 11775.30 28391.45 143
MSDG73.36 25870.99 26780.49 22684.51 24865.80 17680.71 28386.13 25065.70 25665.46 31783.74 27844.60 30890.91 24651.13 31176.89 25484.74 311
PVSNet_057.27 2061.67 31959.27 32268.85 33179.61 33057.44 29868.01 34873.44 34855.93 33958.54 34570.41 35044.58 30977.55 34447.01 33435.91 36071.55 354
RRT_MVS79.88 15278.38 16384.38 11185.42 23470.60 8488.71 11788.75 20372.30 15578.83 13889.14 15344.44 31092.18 20978.50 10079.33 23290.35 178
DWT-MVSNet_test73.70 25371.86 25879.21 25082.91 28158.94 27682.34 26782.17 29865.21 26071.05 26678.31 32944.21 31190.17 25763.29 23277.28 24788.53 245
mvs_tets79.13 16977.77 18083.22 15584.70 24566.37 16589.17 9590.19 15469.38 20675.40 21489.46 14744.17 31293.15 17676.78 12080.70 21590.14 185
MDA-MVSNet-bldmvs66.68 30463.66 31275.75 28979.28 33460.56 26473.92 33178.35 32964.43 27050.13 35779.87 31944.02 31383.67 31946.10 33956.86 34983.03 329
gg-mvs-nofinetune69.95 28667.96 28975.94 28883.07 27554.51 32677.23 31570.29 35263.11 28470.32 27162.33 35343.62 31488.69 28153.88 30087.76 13084.62 314
GG-mvs-BLEND75.38 29581.59 30355.80 31979.32 29669.63 35467.19 30173.67 34643.24 31588.90 28050.41 31384.50 16981.45 337
CMPMVSbinary51.72 2170.19 28468.16 28676.28 28673.15 35857.55 29679.47 29583.92 27448.02 35256.48 35184.81 26343.13 31686.42 30162.67 23781.81 20484.89 309
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
dp66.80 30365.43 30570.90 32479.74 32948.82 35275.12 32774.77 34359.61 31464.08 32777.23 33642.89 31780.72 33248.86 32466.58 33383.16 326
PVSNet64.34 1872.08 27170.87 27075.69 29086.21 22356.44 31174.37 33080.73 31162.06 29870.17 27482.23 29742.86 31883.31 32254.77 29784.45 17187.32 269
pmmvs-eth3d70.50 28167.83 29278.52 26077.37 34166.18 16881.82 27181.51 30558.90 32163.90 32980.42 31342.69 31986.28 30258.56 27365.30 33783.11 327
UnsupCasMVSNet_eth67.33 30165.99 30471.37 31973.48 35551.47 34375.16 32585.19 25865.20 26160.78 33980.93 31042.35 32077.20 34557.12 28653.69 35385.44 302
KD-MVS_self_test68.81 29267.59 29772.46 31574.29 35245.45 35677.93 31187.00 23763.12 28363.99 32878.99 32642.32 32184.77 31356.55 29164.09 34087.16 275
ADS-MVSNet266.20 31163.33 31374.82 30079.92 32458.75 27967.55 34975.19 34153.37 34565.25 32075.86 34142.32 32180.53 33341.57 35068.91 32685.18 305
ADS-MVSNet64.36 31562.88 31768.78 33279.92 32447.17 35467.55 34971.18 35053.37 34565.25 32075.86 34142.32 32173.99 35741.57 35068.91 32685.18 305
SixPastTwentyTwo73.37 25671.26 26679.70 24085.08 24257.89 29085.57 20683.56 28071.03 17565.66 31685.88 24242.10 32492.57 19459.11 26763.34 34188.65 242
JIA-IIPM66.32 30862.82 31876.82 28377.09 34261.72 25265.34 35275.38 34058.04 32764.51 32462.32 35442.05 32586.51 30051.45 31069.22 32582.21 333
ACMH67.68 1675.89 23373.93 24081.77 19788.71 16266.61 16288.62 11989.01 19169.81 19766.78 30786.70 22241.95 32691.51 23055.64 29478.14 24187.17 273
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+68.96 1476.01 23274.01 23982.03 19288.60 16565.31 18888.86 10787.55 22670.25 19067.75 29587.47 19841.27 32793.19 17458.37 27575.94 26987.60 261
MIMVSNet70.69 27869.30 27774.88 29984.52 24756.35 31475.87 32279.42 32564.59 26867.76 29482.41 29341.10 32881.54 32946.64 33781.34 20686.75 284
Anonymous20240521178.25 18877.01 19681.99 19391.03 9360.67 26284.77 22583.90 27570.65 18480.00 12591.20 10341.08 32991.43 23165.21 21885.26 16293.85 53
N_pmnet52.79 32553.26 32651.40 34478.99 3367.68 37569.52 3423.89 37551.63 35057.01 34974.98 34440.83 33065.96 36237.78 35564.67 33880.56 343
EU-MVSNet68.53 29667.61 29671.31 32278.51 33747.01 35584.47 23384.27 27042.27 35466.44 31384.79 26440.44 33183.76 31858.76 27268.54 32983.17 325
DSMNet-mixed57.77 32256.90 32460.38 33967.70 36235.61 36569.18 34453.97 36732.30 36357.49 34879.88 31840.39 33268.57 36138.78 35472.37 30976.97 350
OurMVSNet-221017-074.26 24772.42 25479.80 23983.76 26159.59 27385.92 20086.64 24166.39 24866.96 30387.58 19339.46 33391.60 22565.76 21569.27 32488.22 249
K. test v371.19 27468.51 28279.21 25083.04 27757.78 29384.35 24076.91 33772.90 14962.99 33382.86 28839.27 33491.09 24361.65 24752.66 35488.75 239
lessismore_v078.97 25281.01 31457.15 30065.99 36061.16 33882.82 28939.12 33591.34 23459.67 26146.92 35988.43 247
UnsupCasMVSNet_bld63.70 31761.53 32170.21 32673.69 35451.39 34472.82 33281.89 30155.63 34057.81 34771.80 34938.67 33678.61 33849.26 32352.21 35580.63 341
new-patchmatchnet61.73 31861.73 32061.70 33872.74 35924.50 37269.16 34578.03 33061.40 30156.72 35075.53 34338.42 33776.48 34845.95 34057.67 34884.13 318
MVS-HIRNet59.14 32057.67 32363.57 33781.65 30143.50 36071.73 33565.06 36239.59 35851.43 35657.73 35738.34 33882.58 32639.53 35373.95 29664.62 357
COLMAP_ROBcopyleft66.92 1773.01 26270.41 27380.81 22187.13 21165.63 18088.30 13284.19 27262.96 28763.80 33087.69 19138.04 33992.56 19546.66 33574.91 28884.24 316
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TESTMET0.1,169.89 28769.00 28072.55 31479.27 33556.85 30378.38 30574.71 34557.64 32968.09 29377.19 33737.75 34076.70 34663.92 22684.09 17484.10 319
OpenMVS_ROBcopyleft64.09 1970.56 28068.19 28577.65 27280.26 32059.41 27585.01 22082.96 29358.76 32265.43 31882.33 29437.63 34191.23 23745.34 34376.03 26882.32 332
FMVSNet569.50 28867.96 28974.15 30682.97 28055.35 32280.01 29082.12 30062.56 29363.02 33181.53 30236.92 34281.92 32748.42 32574.06 29585.17 307
MIMVSNet168.58 29566.78 30273.98 30780.07 32351.82 33980.77 28184.37 26664.40 27159.75 34382.16 29836.47 34383.63 32042.73 34870.33 32186.48 288
ITE_SJBPF78.22 26381.77 30060.57 26383.30 28569.25 20967.54 29787.20 20636.33 34487.28 29654.34 29874.62 29186.80 282
test-mter71.41 27370.39 27474.48 30281.35 30858.04 28678.38 30577.46 33360.32 30869.95 27979.00 32436.08 34579.24 33566.13 20984.83 16586.15 293
testgi66.67 30566.53 30367.08 33575.62 34741.69 36275.93 31976.50 33866.11 25065.20 32286.59 22635.72 34674.71 35443.71 34573.38 30484.84 310
EG-PatchMatch MVS74.04 25071.82 25980.71 22384.92 24367.42 14885.86 20288.08 21566.04 25264.22 32683.85 27435.10 34792.56 19557.44 28380.83 21282.16 334
MVS_030472.48 26670.89 26977.24 27982.20 29559.68 27184.11 24483.49 28267.10 23866.87 30580.59 31135.00 34887.40 29459.07 26879.58 22584.63 313
KD-MVS_2432*160066.22 30963.89 31073.21 31075.47 34953.42 33470.76 33984.35 26764.10 27566.52 31078.52 32734.55 34984.98 31050.40 31450.33 35781.23 338
miper_refine_blended66.22 30963.89 31073.21 31075.47 34953.42 33470.76 33984.35 26764.10 27566.52 31078.52 32734.55 34984.98 31050.40 31450.33 35781.23 338
XVG-ACMP-BASELINE76.11 23174.27 23881.62 19983.20 27164.67 19783.60 25389.75 16669.75 20071.85 25887.09 21032.78 35192.11 21169.99 17780.43 21988.09 251
AllTest70.96 27668.09 28879.58 24485.15 23863.62 21684.58 23279.83 32262.31 29560.32 34086.73 21532.02 35288.96 27850.28 31671.57 31686.15 293
TestCases79.58 24485.15 23863.62 21679.83 32262.31 29560.32 34086.73 21532.02 35288.96 27850.28 31671.57 31686.15 293
USDC70.33 28268.37 28376.21 28780.60 31756.23 31579.19 29986.49 24360.89 30461.29 33785.47 25231.78 35489.47 26853.37 30276.21 26782.94 331
Anonymous2024052168.80 29367.22 29973.55 30874.33 35154.11 32883.18 25885.61 25458.15 32561.68 33680.94 30830.71 35581.27 33057.00 28873.34 30585.28 304
tmp_tt18.61 33621.40 33910.23 3524.82 37510.11 37434.70 36230.74 3731.48 37023.91 36626.07 36628.42 35613.41 37127.12 36015.35 3687.17 366
TDRefinement67.49 29964.34 30876.92 28273.47 35661.07 25784.86 22482.98 29259.77 31358.30 34685.13 25926.06 35787.89 29047.92 33260.59 34681.81 336
TinyColmap67.30 30264.81 30674.76 30181.92 29956.68 30880.29 28881.49 30660.33 30756.27 35283.22 28424.77 35887.66 29345.52 34169.47 32379.95 344
LF4IMVS64.02 31662.19 31969.50 32870.90 36053.29 33676.13 31777.18 33652.65 34758.59 34480.98 30723.55 35976.52 34753.06 30466.66 33278.68 347
new_pmnet50.91 32650.29 32852.78 34368.58 36134.94 36763.71 35456.63 36639.73 35744.95 35865.47 35221.93 36058.48 36334.98 35756.62 35064.92 356
pmmvs357.79 32154.26 32568.37 33364.02 36456.72 30675.12 32765.17 36140.20 35652.93 35569.86 35120.36 36175.48 35245.45 34255.25 35272.90 353
PM-MVS66.41 30764.14 30973.20 31273.92 35356.45 31078.97 30164.96 36363.88 28164.72 32380.24 31419.84 36283.44 32166.24 20864.52 33979.71 345
ambc75.24 29673.16 35750.51 34863.05 35687.47 22964.28 32577.81 33417.80 36389.73 26357.88 28060.64 34585.49 301
ANet_high50.57 32746.10 33063.99 33648.67 37039.13 36370.99 33880.85 30961.39 30231.18 36257.70 35817.02 36473.65 35831.22 35815.89 36779.18 346
FPMVS53.68 32451.64 32759.81 34065.08 36351.03 34569.48 34369.58 35541.46 35540.67 35972.32 34816.46 36570.00 36024.24 36265.42 33658.40 359
test_method31.52 33229.28 33638.23 34727.03 3746.50 37620.94 36562.21 3654.05 36922.35 36752.50 36013.33 36647.58 36727.04 36134.04 36160.62 358
EMVS30.81 33329.65 33534.27 34950.96 36925.95 37156.58 35946.80 37024.01 36515.53 37030.68 36512.47 36754.43 36612.81 36817.05 36622.43 365
E-PMN31.77 33130.64 33435.15 34852.87 36827.67 36957.09 35847.86 36924.64 36416.40 36933.05 36411.23 36854.90 36514.46 36718.15 36522.87 364
DeepMVS_CXcopyleft27.40 35040.17 37326.90 37024.59 37417.44 36723.95 36548.61 3619.77 36926.48 36918.06 36424.47 36328.83 363
Gipumacopyleft45.18 32841.86 33155.16 34277.03 34351.52 34232.50 36380.52 31432.46 36227.12 36335.02 3639.52 37075.50 35122.31 36360.21 34738.45 362
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet54.25 32349.68 32967.97 33453.73 36745.28 35766.85 35180.78 31035.96 36039.45 36062.23 3558.70 37178.06 34248.24 32951.20 35680.57 342
PMMVS240.82 33038.86 33346.69 34553.84 36616.45 37348.61 36049.92 36837.49 35931.67 36160.97 3568.14 37256.42 36428.42 35930.72 36267.19 355
PMVScopyleft37.38 2244.16 32940.28 33255.82 34140.82 37242.54 36165.12 35363.99 36434.43 36124.48 36457.12 3593.92 37376.17 34917.10 36555.52 35148.75 360
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive26.22 2330.37 33425.89 33843.81 34644.55 37135.46 36628.87 36439.07 37118.20 36618.58 36840.18 3622.68 37447.37 36817.07 36623.78 36448.60 361
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d16.82 33715.94 34019.46 35158.74 36531.45 36839.22 3613.74 3766.84 3686.04 3712.70 3701.27 37524.29 37010.54 36914.40 3692.63 367
test1236.12 3398.11 3420.14 3530.06 3770.09 37771.05 3370.03 3780.04 3720.25 3731.30 3720.05 3760.03 3730.21 3710.01 3710.29 368
testmvs6.04 3408.02 3430.10 3540.08 3760.03 37869.74 3410.04 3770.05 3710.31 3721.68 3710.02 3770.04 3720.24 3700.02 3700.25 369
test_blank0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs-re7.23 3389.64 3410.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37486.72 2170.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
FOURS195.00 1072.39 4295.06 193.84 1874.49 11591.30 15
MSC_two_6792asdad89.16 194.34 2975.53 292.99 4997.53 189.67 196.44 994.41 26
No_MVS89.16 194.34 2975.53 292.99 4997.53 189.67 196.44 994.41 26
eth-test20.00 378
eth-test0.00 378
IU-MVS95.30 271.25 6392.95 5666.81 23992.39 688.94 1196.63 494.85 12
save fliter93.80 4472.35 4590.47 6691.17 12974.31 119
test_0728_SECOND87.71 3495.34 171.43 6293.49 994.23 597.49 389.08 796.41 1294.21 36
GSMVS88.96 231
test_part295.06 872.65 3391.80 13
MTGPAbinary92.02 94
MTMP92.18 3332.83 372
gm-plane-assit81.40 30653.83 33162.72 29280.94 30892.39 20063.40 230
test9_res84.90 3395.70 3192.87 98
agg_prior282.91 6395.45 3392.70 101
agg_prior92.85 6671.94 5491.78 10984.41 6994.93 98
test_prior472.60 3589.01 102
test_prior86.33 6392.61 7469.59 10192.97 5495.48 7193.91 49
旧先验286.56 18358.10 32687.04 3588.98 27674.07 140
新几何286.29 191
无先验87.48 15588.98 19260.00 31194.12 12967.28 20088.97 230
原ACMM286.86 172
testdata291.01 24562.37 239
testdata184.14 24375.71 90
plane_prior790.08 11268.51 129
plane_prior592.44 7595.38 8078.71 9786.32 15291.33 144
plane_prior491.00 111
plane_prior368.60 12778.44 3178.92 136
plane_prior291.25 4979.12 24
plane_prior189.90 116
plane_prior68.71 12290.38 7077.62 4086.16 155
n20.00 379
nn0.00 379
door-mid69.98 353
test1192.23 86
door69.44 356
HQP5-MVS66.98 156
HQP-NCC89.33 13189.17 9576.41 7477.23 172
ACMP_Plane89.33 13189.17 9576.41 7477.23 172
BP-MVS77.47 111
HQP4-MVS77.24 17195.11 9191.03 154
HQP3-MVS92.19 8985.99 158
NP-MVS89.62 11968.32 13190.24 122
ACMMP++_ref81.95 202
ACMMP++81.25 207