APDe-MVS | | | 89.15 6 | 89.63 6 | 87.73 30 | 94.49 20 | 71.69 58 | 93.83 4 | 93.96 16 | 75.70 92 | 91.06 16 | 96.03 1 | 76.84 15 | 97.03 15 | 89.09 6 | 95.65 32 | 94.47 31 |
|
SMA-MVS |  | | 89.08 7 | 89.23 7 | 88.61 5 | 94.25 33 | 73.73 10 | 92.40 23 | 93.63 24 | 74.77 113 | 92.29 7 | 95.97 2 | 74.28 36 | 97.24 11 | 88.58 13 | 96.91 1 | 94.87 13 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
test0726 | | | | | | 95.27 5 | 71.25 63 | 93.60 6 | 94.11 8 | 77.33 50 | 92.81 3 | 95.79 3 | 80.98 9 | | | | |
|
DVP-MVS |  | | 89.60 3 | 90.35 3 | 87.33 45 | 95.27 5 | 71.25 63 | 93.49 9 | 92.73 65 | 77.33 50 | 92.12 9 | 95.78 4 | 80.98 9 | 97.40 7 | 89.08 7 | 96.41 12 | 93.33 86 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_THIRD | | | | | | | | | | 78.38 35 | 92.12 9 | 95.78 4 | 81.46 7 | 97.40 7 | 89.42 4 | 96.57 7 | 94.67 24 |
|
DVP-MVS++ | | | 90.23 1 | 91.01 1 | 87.89 24 | 94.34 29 | 71.25 63 | 95.06 1 | 94.23 5 | 78.38 35 | 92.78 4 | 95.74 6 | 82.45 3 | 97.49 3 | 89.42 4 | 96.68 2 | 94.95 7 |
|
test_one_0601 | | | | | | 95.07 7 | 71.46 61 | | 94.14 7 | 78.27 37 | 92.05 11 | 95.74 6 | 80.83 11 | | | | |
|
SED-MVS | | | 90.08 2 | 90.85 2 | 87.77 26 | 95.30 2 | 70.98 70 | 93.57 7 | 94.06 12 | 77.24 52 | 93.10 1 | 95.72 8 | 82.99 1 | 97.44 5 | 89.07 9 | 96.63 4 | 94.88 11 |
|
test_241102_TWO | | | | | | | | | 94.06 12 | 77.24 52 | 92.78 4 | 95.72 8 | 81.26 8 | 97.44 5 | 89.07 9 | 96.58 6 | 94.26 41 |
|
DPE-MVS |  | | 89.48 5 | 89.98 4 | 88.01 14 | 94.80 11 | 72.69 32 | 91.59 44 | 94.10 10 | 75.90 88 | 92.29 7 | 95.66 10 | 81.67 6 | 97.38 9 | 87.44 20 | 96.34 15 | 93.95 54 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
test_241102_ONE | | | | | | 95.30 2 | 70.98 70 | | 94.06 12 | 77.17 56 | 93.10 1 | 95.39 11 | 82.99 1 | 97.27 10 | | | |
|
MP-MVS-pluss | | | 87.67 22 | 87.72 22 | 87.54 39 | 93.64 50 | 72.04 52 | 89.80 89 | 93.50 28 | 75.17 103 | 86.34 41 | 95.29 12 | 70.86 63 | 96.00 53 | 88.78 12 | 96.04 16 | 94.58 27 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
xxxxxxxxxxxxxcwj | | | 87.88 19 | 87.92 19 | 87.77 26 | 93.80 44 | 72.35 45 | 90.47 70 | 89.69 168 | 74.31 124 | 89.16 19 | 95.10 13 | 75.65 22 | 96.19 45 | 87.07 21 | 96.01 17 | 94.79 18 |
|
SF-MVS | | | 88.46 11 | 88.74 11 | 87.64 38 | 92.78 69 | 71.95 53 | 92.40 23 | 94.74 2 | 75.71 90 | 89.16 19 | 95.10 13 | 75.65 22 | 96.19 45 | 87.07 21 | 96.01 17 | 94.79 18 |
|
ACMMP_NAP | | | 88.05 16 | 88.08 17 | 87.94 17 | 93.70 47 | 73.05 23 | 90.86 60 | 93.59 26 | 76.27 82 | 88.14 26 | 95.09 15 | 71.06 62 | 96.67 28 | 87.67 16 | 96.37 14 | 94.09 46 |
|
zzz-MVS | | | 87.53 24 | 87.41 27 | 87.90 21 | 94.18 37 | 74.25 5 | 90.23 77 | 92.02 94 | 79.45 20 | 85.88 43 | 94.80 16 | 68.07 88 | 96.21 43 | 86.69 24 | 95.34 36 | 93.23 89 |
|
MTAPA | | | 87.23 33 | 87.00 34 | 87.90 21 | 94.18 37 | 74.25 5 | 86.58 191 | 92.02 94 | 79.45 20 | 85.88 43 | 94.80 16 | 68.07 88 | 96.21 43 | 86.69 24 | 95.34 36 | 93.23 89 |
|
SteuartSystems-ACMMP | | | 88.72 10 | 88.86 10 | 88.32 8 | 92.14 80 | 72.96 26 | 93.73 5 | 93.67 23 | 80.19 14 | 88.10 27 | 94.80 16 | 73.76 41 | 97.11 13 | 87.51 18 | 95.82 24 | 94.90 10 |
Skip Steuart: Steuart Systems R&D Blog. |
9.14 | | | | 88.26 15 | | 92.84 68 | | 91.52 47 | 94.75 1 | 73.93 134 | 88.57 24 | 94.67 19 | 75.57 24 | 95.79 59 | 86.77 23 | 95.76 28 | |
|
SR-MVS | | | 86.73 39 | 86.67 41 | 86.91 52 | 94.11 40 | 72.11 51 | 92.37 27 | 92.56 73 | 74.50 119 | 86.84 37 | 94.65 20 | 67.31 97 | 95.77 60 | 84.80 37 | 92.85 75 | 92.84 106 |
|
ETH3D-3000-0.1 | | | 88.09 13 | 88.29 14 | 87.50 41 | 92.76 70 | 71.89 56 | 91.43 48 | 94.70 3 | 74.47 121 | 88.86 22 | 94.61 21 | 75.23 25 | 95.84 58 | 86.62 26 | 95.92 21 | 94.78 20 |
|
test1172 | | | 86.20 52 | 86.22 49 | 86.12 70 | 93.95 42 | 69.89 95 | 91.79 43 | 92.28 82 | 75.07 105 | 86.40 40 | 94.58 22 | 65.00 122 | 95.56 65 | 84.34 45 | 92.60 78 | 92.90 104 |
|
region2R | | | 87.42 28 | 87.20 32 | 88.09 12 | 94.63 14 | 73.55 13 | 93.03 14 | 93.12 42 | 76.73 71 | 84.45 71 | 94.52 23 | 69.09 82 | 96.70 26 | 84.37 44 | 94.83 51 | 94.03 49 |
|
ACMMPR | | | 87.44 26 | 87.23 31 | 88.08 13 | 94.64 13 | 73.59 12 | 93.04 12 | 93.20 39 | 76.78 68 | 84.66 67 | 94.52 23 | 68.81 86 | 96.65 29 | 84.53 41 | 94.90 45 | 94.00 52 |
|
APD-MVS |  | | 87.44 26 | 87.52 24 | 87.19 47 | 94.24 34 | 72.39 42 | 91.86 41 | 92.83 61 | 73.01 155 | 88.58 23 | 94.52 23 | 73.36 42 | 96.49 37 | 84.26 46 | 95.01 42 | 92.70 108 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
APD-MVS_3200maxsize | | | 85.97 54 | 85.88 56 | 86.22 67 | 92.69 72 | 69.53 102 | 91.93 38 | 92.99 49 | 73.54 144 | 85.94 42 | 94.51 26 | 65.80 114 | 95.61 63 | 83.04 64 | 92.51 80 | 93.53 81 |
|
CP-MVS | | | 87.11 35 | 86.92 37 | 87.68 37 | 94.20 36 | 73.86 8 | 93.98 3 | 92.82 64 | 76.62 73 | 83.68 85 | 94.46 27 | 67.93 90 | 95.95 56 | 84.20 49 | 94.39 60 | 93.23 89 |
|
SR-MVS-dyc-post | | | 85.77 57 | 85.61 59 | 86.23 66 | 93.06 62 | 70.63 82 | 91.88 39 | 92.27 83 | 73.53 145 | 85.69 47 | 94.45 28 | 65.00 122 | 95.56 65 | 82.75 67 | 91.87 88 | 92.50 115 |
|
RE-MVS-def | | | | 85.48 60 | | 93.06 62 | 70.63 82 | 91.88 39 | 92.27 83 | 73.53 145 | 85.69 47 | 94.45 28 | 63.87 129 | | 82.75 67 | 91.87 88 | 92.50 115 |
|
HFP-MVS | | | 87.58 23 | 87.47 25 | 87.94 17 | 94.58 16 | 73.54 15 | 93.04 12 | 93.24 37 | 76.78 68 | 84.91 58 | 94.44 30 | 70.78 64 | 96.61 32 | 84.53 41 | 94.89 46 | 93.66 68 |
|
#test# | | | 87.33 31 | 87.13 33 | 87.94 17 | 94.58 16 | 73.54 15 | 92.34 29 | 93.24 37 | 75.23 100 | 84.91 58 | 94.44 30 | 70.78 64 | 96.61 32 | 83.75 55 | 94.89 46 | 93.66 68 |
|
testtj | | | 87.78 20 | 87.78 21 | 87.77 26 | 94.55 18 | 72.47 39 | 92.23 33 | 93.49 29 | 74.75 114 | 88.33 25 | 94.43 32 | 73.27 44 | 97.02 16 | 84.18 50 | 94.84 49 | 93.82 62 |
|
PGM-MVS | | | 86.68 42 | 86.27 48 | 87.90 21 | 94.22 35 | 73.38 19 | 90.22 78 | 93.04 43 | 75.53 94 | 83.86 82 | 94.42 33 | 67.87 92 | 96.64 30 | 82.70 71 | 94.57 56 | 93.66 68 |
|
MP-MVS |  | | 87.71 21 | 87.64 23 | 87.93 20 | 94.36 28 | 73.88 7 | 92.71 22 | 92.65 70 | 77.57 43 | 83.84 83 | 94.40 34 | 72.24 52 | 96.28 41 | 85.65 28 | 95.30 40 | 93.62 76 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ZNCC-MVS | | | 87.94 18 | 87.85 20 | 88.20 11 | 94.39 26 | 73.33 20 | 93.03 14 | 93.81 20 | 76.81 66 | 85.24 52 | 94.32 35 | 71.76 56 | 96.93 18 | 85.53 29 | 95.79 25 | 94.32 38 |
|
ETH3D cwj APD-0.16 | | | 87.31 32 | 87.27 28 | 87.44 43 | 91.60 88 | 72.45 41 | 90.02 82 | 94.37 4 | 71.76 167 | 87.28 34 | 94.27 36 | 75.18 26 | 96.08 49 | 85.16 30 | 95.77 26 | 93.80 65 |
|
HPM-MVS++ |  | | 89.02 8 | 89.15 8 | 88.63 4 | 95.01 9 | 76.03 1 | 92.38 26 | 92.85 60 | 80.26 13 | 87.78 30 | 94.27 36 | 75.89 20 | 96.81 22 | 87.45 19 | 96.44 9 | 93.05 97 |
|
mPP-MVS | | | 86.67 43 | 86.32 47 | 87.72 32 | 94.41 24 | 73.55 13 | 92.74 20 | 92.22 87 | 76.87 65 | 82.81 98 | 94.25 38 | 66.44 104 | 96.24 42 | 82.88 66 | 94.28 63 | 93.38 83 |
|
DeepC-MVS | | 79.81 2 | 87.08 37 | 86.88 39 | 87.69 36 | 91.16 92 | 72.32 47 | 90.31 75 | 93.94 17 | 77.12 58 | 82.82 97 | 94.23 39 | 72.13 54 | 97.09 14 | 84.83 36 | 95.37 35 | 93.65 73 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
XVS | | | 87.18 34 | 86.91 38 | 88.00 15 | 94.42 22 | 73.33 20 | 92.78 18 | 92.99 49 | 79.14 23 | 83.67 86 | 94.17 40 | 67.45 95 | 96.60 34 | 83.06 62 | 94.50 57 | 94.07 47 |
|
MSP-MVS | | | 89.51 4 | 89.91 5 | 88.30 9 | 94.28 32 | 73.46 18 | 92.90 16 | 94.11 8 | 80.27 12 | 91.35 14 | 94.16 41 | 78.35 13 | 96.77 23 | 89.59 3 | 94.22 65 | 94.67 24 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
abl_6 | | | 85.23 67 | 84.95 71 | 86.07 71 | 92.23 79 | 70.48 85 | 90.80 62 | 92.08 92 | 73.51 147 | 85.26 51 | 94.16 41 | 62.75 146 | 95.92 57 | 82.46 74 | 91.30 97 | 91.81 140 |
|
DeepPCF-MVS | | 80.84 1 | 88.10 12 | 88.56 12 | 86.73 56 | 92.24 78 | 69.03 109 | 89.57 95 | 93.39 34 | 77.53 47 | 89.79 18 | 94.12 43 | 78.98 12 | 96.58 36 | 85.66 27 | 95.72 29 | 94.58 27 |
|
HPM-MVS_fast | | | 85.35 66 | 84.95 71 | 86.57 61 | 93.69 48 | 70.58 84 | 92.15 36 | 91.62 114 | 73.89 135 | 82.67 100 | 94.09 44 | 62.60 147 | 95.54 68 | 80.93 84 | 92.93 73 | 93.57 78 |
|
ZD-MVS | | | | | | 94.38 27 | 72.22 48 | | 92.67 67 | 70.98 184 | 87.75 31 | 94.07 45 | 74.01 40 | 96.70 26 | 84.66 39 | 94.84 49 | |
|
CNVR-MVS | | | 88.93 9 | 89.13 9 | 88.33 7 | 94.77 12 | 73.82 9 | 90.51 67 | 93.00 47 | 80.90 9 | 88.06 28 | 94.06 46 | 76.43 17 | 96.84 20 | 88.48 14 | 95.99 19 | 94.34 37 |
|
OPU-MVS | | | | | 89.06 3 | 94.62 15 | 75.42 4 | 93.57 7 | | | | 94.02 47 | 82.45 3 | 96.87 19 | 83.77 54 | 96.48 8 | 94.88 11 |
|
PC_three_1452 | | | | | | | | | | 68.21 240 | 92.02 12 | 94.00 48 | 82.09 5 | 95.98 55 | 84.58 40 | 96.68 2 | 94.95 7 |
|
SD-MVS | | | 88.06 14 | 88.50 13 | 86.71 57 | 92.60 76 | 72.71 30 | 91.81 42 | 93.19 40 | 77.87 38 | 90.32 17 | 94.00 48 | 74.83 28 | 93.78 150 | 87.63 17 | 94.27 64 | 93.65 73 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
GST-MVS | | | 87.42 28 | 87.26 29 | 87.89 24 | 94.12 39 | 72.97 25 | 92.39 25 | 93.43 32 | 76.89 64 | 84.68 64 | 93.99 50 | 70.67 67 | 96.82 21 | 84.18 50 | 95.01 42 | 93.90 57 |
|
HPM-MVS |  | | 87.11 35 | 86.98 35 | 87.50 41 | 93.88 43 | 72.16 49 | 92.19 34 | 93.33 35 | 76.07 85 | 83.81 84 | 93.95 51 | 69.77 76 | 96.01 52 | 85.15 31 | 94.66 53 | 94.32 38 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
TSAR-MVS + MP. | | | 88.02 17 | 88.11 16 | 87.72 32 | 93.68 49 | 72.13 50 | 91.41 49 | 92.35 80 | 74.62 118 | 88.90 21 | 93.85 52 | 75.75 21 | 96.00 53 | 87.80 15 | 94.63 54 | 95.04 5 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
ACMMP |  | | 85.89 56 | 85.39 62 | 87.38 44 | 93.59 51 | 72.63 34 | 92.74 20 | 93.18 41 | 76.78 68 | 80.73 122 | 93.82 53 | 64.33 125 | 96.29 40 | 82.67 72 | 90.69 102 | 93.23 89 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
test_prior3 | | | 86.73 39 | 86.86 40 | 86.33 63 | 92.61 74 | 69.59 100 | 88.85 114 | 92.97 54 | 75.41 96 | 84.91 58 | 93.54 54 | 74.28 36 | 95.48 70 | 83.31 57 | 95.86 22 | 93.91 55 |
|
test_prior2 | | | | | | | | 88.85 114 | | 75.41 96 | 84.91 58 | 93.54 54 | 74.28 36 | | 83.31 57 | 95.86 22 | |
|
ETH3 D test6400 | | | 87.50 25 | 87.44 26 | 87.70 35 | 93.71 46 | 71.75 57 | 90.62 65 | 94.05 15 | 70.80 186 | 87.59 33 | 93.51 56 | 77.57 14 | 96.63 31 | 83.31 57 | 95.77 26 | 94.72 23 |
|
VDDNet | | | 81.52 118 | 80.67 121 | 84.05 130 | 90.44 108 | 64.13 217 | 89.73 92 | 85.91 254 | 71.11 181 | 83.18 91 | 93.48 57 | 50.54 269 | 93.49 165 | 73.40 154 | 88.25 132 | 94.54 30 |
|
CDPH-MVS | | | 85.76 58 | 85.29 66 | 87.17 48 | 93.49 53 | 71.08 68 | 88.58 126 | 92.42 78 | 68.32 239 | 84.61 68 | 93.48 57 | 72.32 51 | 96.15 48 | 79.00 100 | 95.43 34 | 94.28 40 |
|
NCCC | | | 88.06 14 | 88.01 18 | 88.24 10 | 94.41 24 | 73.62 11 | 91.22 54 | 92.83 61 | 81.50 6 | 85.79 46 | 93.47 59 | 73.02 47 | 97.00 17 | 84.90 33 | 94.94 44 | 94.10 45 |
|
3Dnovator+ | | 77.84 4 | 85.48 62 | 84.47 76 | 88.51 6 | 91.08 93 | 73.49 17 | 93.18 11 | 93.78 21 | 80.79 10 | 76.66 192 | 93.37 60 | 60.40 190 | 96.75 25 | 77.20 119 | 93.73 69 | 95.29 3 |
|
DeepC-MVS_fast | | 79.65 3 | 86.91 38 | 86.62 42 | 87.76 29 | 93.52 52 | 72.37 44 | 91.26 50 | 93.04 43 | 76.62 73 | 84.22 76 | 93.36 61 | 71.44 60 | 96.76 24 | 80.82 86 | 95.33 38 | 94.16 43 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
VDD-MVS | | | 83.01 94 | 82.36 95 | 84.96 93 | 91.02 95 | 66.40 167 | 88.91 111 | 88.11 214 | 77.57 43 | 84.39 74 | 93.29 62 | 52.19 246 | 93.91 145 | 77.05 121 | 88.70 126 | 94.57 29 |
|
UA-Net | | | 85.08 71 | 84.96 70 | 85.45 80 | 92.07 81 | 68.07 136 | 89.78 90 | 90.86 137 | 82.48 2 | 84.60 69 | 93.20 63 | 69.35 79 | 95.22 85 | 71.39 170 | 90.88 101 | 93.07 96 |
|
agg_prior1 | | | 86.22 51 | 86.09 55 | 86.62 59 | 92.85 66 | 71.94 54 | 88.59 125 | 91.78 110 | 68.96 229 | 84.41 72 | 93.18 64 | 74.94 27 | 94.93 98 | 84.75 38 | 95.33 38 | 93.01 100 |
|
TEST9 | | | | | | 93.26 56 | 72.96 26 | 88.75 119 | 91.89 103 | 68.44 238 | 85.00 56 | 93.10 65 | 74.36 35 | 95.41 76 | | | |
|
train_agg | | | 86.43 46 | 86.20 50 | 87.13 49 | 93.26 56 | 72.96 26 | 88.75 119 | 91.89 103 | 68.69 234 | 85.00 56 | 93.10 65 | 74.43 32 | 95.41 76 | 84.97 32 | 95.71 30 | 93.02 99 |
|
test_8 | | | | | | 93.13 58 | 72.57 36 | 88.68 123 | 91.84 107 | 68.69 234 | 84.87 62 | 93.10 65 | 74.43 32 | 95.16 87 | | | |
|
LFMVS | | | 81.82 110 | 81.23 111 | 83.57 147 | 91.89 84 | 63.43 233 | 89.84 86 | 81.85 307 | 77.04 61 | 83.21 90 | 93.10 65 | 52.26 245 | 93.43 170 | 71.98 165 | 89.95 114 | 93.85 59 |
|
旧先验1 | | | | | | 91.96 82 | 65.79 182 | | 86.37 248 | | | 93.08 69 | 69.31 81 | | | 92.74 76 | 88.74 250 |
|
dcpmvs_2 | | | 85.63 61 | 86.15 53 | 84.06 128 | 91.71 86 | 64.94 200 | 86.47 194 | 91.87 105 | 73.63 140 | 86.60 39 | 93.02 70 | 76.57 16 | 91.87 227 | 83.36 56 | 92.15 84 | 95.35 1 |
|
testdata | | | | | 79.97 243 | 90.90 98 | 64.21 215 | | 84.71 267 | 59.27 326 | 85.40 49 | 92.91 71 | 62.02 160 | 89.08 280 | 68.95 194 | 91.37 95 | 86.63 295 |
|
MCST-MVS | | | 87.37 30 | 87.25 30 | 87.73 30 | 94.53 19 | 72.46 40 | 89.82 87 | 93.82 19 | 73.07 153 | 84.86 63 | 92.89 72 | 76.22 18 | 96.33 39 | 84.89 35 | 95.13 41 | 94.40 34 |
|
Vis-MVSNet |  | | 83.46 84 | 82.80 90 | 85.43 81 | 90.25 111 | 68.74 119 | 90.30 76 | 90.13 156 | 76.33 81 | 80.87 121 | 92.89 72 | 61.00 179 | 94.20 130 | 72.45 164 | 90.97 99 | 93.35 85 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
CPTT-MVS | | | 83.73 78 | 83.33 82 | 84.92 96 | 93.28 55 | 70.86 77 | 92.09 37 | 90.38 146 | 68.75 233 | 79.57 133 | 92.83 74 | 60.60 186 | 93.04 189 | 80.92 85 | 91.56 93 | 90.86 170 |
|
3Dnovator | | 76.31 5 | 83.38 87 | 82.31 96 | 86.59 60 | 87.94 192 | 72.94 29 | 90.64 64 | 92.14 91 | 77.21 54 | 75.47 217 | 92.83 74 | 58.56 197 | 94.72 112 | 73.24 157 | 92.71 77 | 92.13 130 |
|
MSLP-MVS++ | | | 85.43 64 | 85.76 58 | 84.45 112 | 91.93 83 | 70.24 86 | 90.71 63 | 92.86 59 | 77.46 49 | 84.22 76 | 92.81 76 | 67.16 99 | 92.94 191 | 80.36 91 | 94.35 62 | 90.16 193 |
|
test2506 | | | 77.30 221 | 76.49 218 | 79.74 248 | 90.08 115 | 52.02 346 | 87.86 156 | 63.10 373 | 74.88 110 | 80.16 129 | 92.79 77 | 38.29 346 | 92.35 209 | 68.74 197 | 92.50 81 | 94.86 14 |
|
ECVR-MVS |  | | 79.61 162 | 79.26 152 | 80.67 230 | 90.08 115 | 54.69 330 | 87.89 154 | 77.44 340 | 74.88 110 | 80.27 126 | 92.79 77 | 48.96 291 | 92.45 203 | 68.55 198 | 92.50 81 | 94.86 14 |
|
test1111 | | | 79.43 169 | 79.18 156 | 80.15 240 | 89.99 120 | 53.31 343 | 87.33 168 | 77.05 343 | 75.04 106 | 80.23 128 | 92.77 79 | 48.97 290 | 92.33 211 | 68.87 195 | 92.40 83 | 94.81 17 |
|
MG-MVS | | | 83.41 85 | 83.45 80 | 83.28 155 | 92.74 71 | 62.28 251 | 88.17 143 | 89.50 172 | 75.22 101 | 81.49 112 | 92.74 80 | 66.75 100 | 95.11 90 | 72.85 160 | 91.58 92 | 92.45 118 |
|
patch_mono-2 | | | 83.65 80 | 84.54 75 | 80.99 223 | 90.06 119 | 65.83 179 | 84.21 251 | 88.74 205 | 71.60 174 | 85.01 54 | 92.44 81 | 74.51 30 | 83.50 328 | 82.15 76 | 92.15 84 | 93.64 75 |
|
casdiffmvs | | | 85.11 70 | 85.14 67 | 85.01 91 | 87.20 218 | 65.77 183 | 87.75 157 | 92.83 61 | 77.84 39 | 84.36 75 | 92.38 82 | 72.15 53 | 93.93 144 | 81.27 82 | 90.48 105 | 95.33 2 |
|
CS-MVS | | | 86.69 41 | 86.95 36 | 85.90 75 | 90.76 102 | 67.57 146 | 92.83 17 | 93.30 36 | 79.67 19 | 84.57 70 | 92.27 83 | 71.47 59 | 95.02 96 | 84.24 48 | 93.46 70 | 95.13 4 |
|
baseline | | | 84.93 72 | 84.98 69 | 84.80 102 | 87.30 216 | 65.39 192 | 87.30 169 | 92.88 58 | 77.62 41 | 84.04 81 | 92.26 84 | 71.81 55 | 93.96 138 | 81.31 81 | 90.30 107 | 95.03 6 |
|
QAPM | | | 80.88 128 | 79.50 144 | 85.03 90 | 88.01 191 | 68.97 113 | 91.59 44 | 92.00 97 | 66.63 255 | 75.15 231 | 92.16 85 | 57.70 203 | 95.45 72 | 63.52 236 | 88.76 125 | 90.66 176 |
|
IS-MVSNet | | | 83.15 89 | 82.81 89 | 84.18 123 | 89.94 122 | 63.30 235 | 91.59 44 | 88.46 211 | 79.04 27 | 79.49 134 | 92.16 85 | 65.10 119 | 94.28 123 | 67.71 204 | 91.86 90 | 94.95 7 |
|
1121 | | | 80.84 130 | 79.77 137 | 84.05 130 | 93.11 60 | 70.78 79 | 84.66 236 | 85.42 259 | 57.37 340 | 81.76 111 | 92.02 87 | 63.41 133 | 94.12 134 | 67.28 209 | 92.93 73 | 87.26 279 |
|
æ–°å‡ ä½•1 | | | | | 83.42 150 | 93.13 58 | 70.71 80 | | 85.48 258 | 57.43 339 | 81.80 108 | 91.98 88 | 63.28 135 | 92.27 212 | 64.60 233 | 92.99 72 | 87.27 278 |
|
OpenMVS |  | 72.83 10 | 79.77 160 | 78.33 175 | 84.09 126 | 85.17 246 | 69.91 93 | 90.57 66 | 90.97 133 | 66.70 251 | 72.17 264 | 91.91 89 | 54.70 225 | 93.96 138 | 61.81 254 | 90.95 100 | 88.41 257 |
|
PHI-MVS | | | 86.43 46 | 86.17 52 | 87.24 46 | 90.88 99 | 70.96 72 | 92.27 32 | 94.07 11 | 72.45 158 | 85.22 53 | 91.90 90 | 69.47 78 | 96.42 38 | 83.28 60 | 95.94 20 | 94.35 36 |
|
VNet | | | 82.21 102 | 82.41 93 | 81.62 204 | 90.82 100 | 60.93 265 | 84.47 242 | 89.78 164 | 76.36 80 | 84.07 80 | 91.88 91 | 64.71 124 | 90.26 261 | 70.68 175 | 88.89 122 | 93.66 68 |
|
DROMVSNet | | | 86.01 53 | 86.38 45 | 84.91 97 | 89.31 144 | 66.27 170 | 92.32 30 | 93.63 24 | 79.37 22 | 84.17 78 | 91.88 91 | 69.04 85 | 95.43 74 | 83.93 53 | 93.77 68 | 93.01 100 |
|
OPM-MVS | | | 83.50 83 | 82.95 87 | 85.14 87 | 88.79 165 | 70.95 73 | 89.13 106 | 91.52 117 | 77.55 46 | 80.96 120 | 91.75 93 | 60.71 182 | 94.50 119 | 79.67 97 | 86.51 155 | 89.97 209 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
XVG-OURS-SEG-HR | | | 80.81 133 | 79.76 138 | 83.96 138 | 85.60 241 | 68.78 116 | 83.54 265 | 90.50 143 | 70.66 191 | 76.71 191 | 91.66 94 | 60.69 183 | 91.26 242 | 76.94 122 | 81.58 216 | 91.83 138 |
|
EPNet | | | 83.72 79 | 82.92 88 | 86.14 69 | 84.22 262 | 69.48 103 | 91.05 58 | 85.27 260 | 81.30 7 | 76.83 187 | 91.65 95 | 66.09 109 | 95.56 65 | 76.00 132 | 93.85 67 | 93.38 83 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
OMC-MVS | | | 82.69 97 | 81.97 104 | 84.85 99 | 88.75 167 | 67.42 149 | 87.98 148 | 90.87 136 | 74.92 109 | 79.72 132 | 91.65 95 | 62.19 157 | 93.96 138 | 75.26 139 | 86.42 156 | 93.16 94 |
|
test222 | | | | | | 91.50 89 | 68.26 132 | 84.16 252 | 83.20 295 | 54.63 351 | 79.74 131 | 91.63 97 | 58.97 195 | | | 91.42 94 | 86.77 291 |
|
MVS_111021_HR | | | 85.14 69 | 84.75 73 | 86.32 65 | 91.65 87 | 72.70 31 | 85.98 206 | 90.33 150 | 76.11 84 | 82.08 103 | 91.61 98 | 71.36 61 | 94.17 133 | 81.02 83 | 92.58 79 | 92.08 131 |
|
原ACMM1 | | | | | 84.35 116 | 93.01 64 | 68.79 115 | | 92.44 75 | 63.96 288 | 81.09 118 | 91.57 99 | 66.06 110 | 95.45 72 | 67.19 212 | 94.82 52 | 88.81 247 |
|
LPG-MVS_test | | | 82.08 104 | 81.27 110 | 84.50 109 | 89.23 148 | 68.76 117 | 90.22 78 | 91.94 101 | 75.37 98 | 76.64 193 | 91.51 100 | 54.29 229 | 94.91 100 | 78.44 105 | 83.78 183 | 89.83 214 |
|
LGP-MVS_train | | | | | 84.50 109 | 89.23 148 | 68.76 117 | | 91.94 101 | 75.37 98 | 76.64 193 | 91.51 100 | 54.29 229 | 94.91 100 | 78.44 105 | 83.78 183 | 89.83 214 |
|
XVG-OURS | | | 80.41 146 | 79.23 153 | 83.97 137 | 85.64 240 | 69.02 110 | 83.03 273 | 90.39 145 | 71.09 182 | 77.63 171 | 91.49 102 | 54.62 227 | 91.35 240 | 75.71 133 | 83.47 191 | 91.54 145 |
|
alignmvs | | | 85.48 62 | 85.32 64 | 85.96 74 | 89.51 131 | 69.47 104 | 89.74 91 | 92.47 74 | 76.17 83 | 87.73 32 | 91.46 103 | 70.32 70 | 93.78 150 | 81.51 79 | 88.95 121 | 94.63 26 |
|
CANet | | | 86.45 45 | 86.10 54 | 87.51 40 | 90.09 114 | 70.94 74 | 89.70 93 | 92.59 72 | 81.78 4 | 81.32 113 | 91.43 104 | 70.34 69 | 97.23 12 | 84.26 46 | 93.36 71 | 94.37 35 |
|
h-mvs33 | | | 83.15 89 | 82.19 97 | 86.02 73 | 90.56 105 | 70.85 78 | 88.15 145 | 89.16 185 | 76.02 86 | 84.67 65 | 91.39 105 | 61.54 165 | 95.50 69 | 82.71 69 | 75.48 285 | 91.72 142 |
|
nrg030 | | | 83.88 76 | 83.53 79 | 84.96 93 | 86.77 227 | 69.28 108 | 90.46 72 | 92.67 67 | 74.79 112 | 82.95 93 | 91.33 106 | 72.70 48 | 93.09 185 | 80.79 88 | 79.28 243 | 92.50 115 |
|
canonicalmvs | | | 85.91 55 | 85.87 57 | 86.04 72 | 89.84 124 | 69.44 107 | 90.45 73 | 93.00 47 | 76.70 72 | 88.01 29 | 91.23 107 | 73.28 43 | 93.91 145 | 81.50 80 | 88.80 124 | 94.77 21 |
|
DPM-MVS | | | 84.93 72 | 84.29 77 | 86.84 53 | 90.20 112 | 73.04 24 | 87.12 173 | 93.04 43 | 69.80 205 | 82.85 96 | 91.22 108 | 73.06 46 | 96.02 51 | 76.72 127 | 94.63 54 | 91.46 151 |
|
Anonymous202405211 | | | 78.25 196 | 77.01 204 | 81.99 198 | 91.03 94 | 60.67 270 | 84.77 234 | 83.90 281 | 70.65 192 | 80.00 130 | 91.20 109 | 41.08 336 | 91.43 238 | 65.21 227 | 85.26 167 | 93.85 59 |
|
CS-MVS-test | | | 86.29 50 | 86.48 44 | 85.71 77 | 91.02 95 | 67.21 155 | 92.36 28 | 93.78 21 | 78.97 30 | 83.51 89 | 91.20 109 | 70.65 68 | 95.15 88 | 81.96 77 | 94.89 46 | 94.77 21 |
|
Anonymous20240529 | | | 80.19 153 | 78.89 162 | 84.10 125 | 90.60 104 | 64.75 203 | 88.95 110 | 90.90 135 | 65.97 263 | 80.59 123 | 91.17 111 | 49.97 275 | 93.73 156 | 69.16 192 | 82.70 204 | 93.81 63 |
|
EPP-MVSNet | | | 83.40 86 | 83.02 86 | 84.57 106 | 90.13 113 | 64.47 210 | 92.32 30 | 90.73 138 | 74.45 123 | 79.35 136 | 91.10 112 | 69.05 84 | 95.12 89 | 72.78 161 | 87.22 144 | 94.13 44 |
|
TAPA-MVS | | 73.13 9 | 79.15 177 | 77.94 182 | 82.79 183 | 89.59 127 | 62.99 244 | 88.16 144 | 91.51 118 | 65.77 264 | 77.14 184 | 91.09 113 | 60.91 180 | 93.21 175 | 50.26 326 | 87.05 146 | 92.17 129 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CSCG | | | 86.41 48 | 86.19 51 | 87.07 50 | 92.91 65 | 72.48 38 | 90.81 61 | 93.56 27 | 73.95 132 | 83.16 92 | 91.07 114 | 75.94 19 | 95.19 86 | 79.94 96 | 94.38 61 | 93.55 79 |
|
FIs | | | 82.07 105 | 82.42 92 | 81.04 222 | 88.80 164 | 58.34 288 | 88.26 140 | 93.49 29 | 76.93 63 | 78.47 151 | 91.04 115 | 69.92 74 | 92.34 210 | 69.87 185 | 84.97 169 | 92.44 119 |
|
MVS_111021_LR | | | 82.61 99 | 82.11 98 | 84.11 124 | 88.82 162 | 71.58 59 | 85.15 226 | 86.16 251 | 74.69 115 | 80.47 125 | 91.04 115 | 62.29 154 | 90.55 259 | 80.33 92 | 90.08 112 | 90.20 192 |
|
DP-MVS Recon | | | 83.11 92 | 82.09 99 | 86.15 68 | 94.44 21 | 70.92 76 | 88.79 117 | 92.20 88 | 70.53 193 | 79.17 137 | 91.03 117 | 64.12 127 | 96.03 50 | 68.39 201 | 90.14 110 | 91.50 148 |
|
HQP_MVS | | | 83.64 81 | 83.14 83 | 85.14 87 | 90.08 115 | 68.71 121 | 91.25 52 | 92.44 75 | 79.12 25 | 78.92 141 | 91.00 118 | 60.42 188 | 95.38 79 | 78.71 103 | 86.32 157 | 91.33 153 |
|
plane_prior4 | | | | | | | | | | | | 91.00 118 | | | | | |
|
FC-MVSNet-test | | | 81.52 118 | 82.02 102 | 80.03 242 | 88.42 179 | 55.97 324 | 87.95 150 | 93.42 33 | 77.10 59 | 77.38 175 | 90.98 120 | 69.96 73 | 91.79 228 | 68.46 200 | 84.50 174 | 92.33 120 |
|
Vis-MVSNet (Re-imp) | | | 78.36 195 | 78.45 170 | 78.07 274 | 88.64 171 | 51.78 349 | 86.70 188 | 79.63 328 | 74.14 130 | 75.11 232 | 90.83 121 | 61.29 173 | 89.75 268 | 58.10 286 | 91.60 91 | 92.69 110 |
|
114514_t | | | 80.68 139 | 79.51 143 | 84.20 122 | 94.09 41 | 67.27 153 | 89.64 94 | 91.11 131 | 58.75 331 | 74.08 245 | 90.72 122 | 58.10 199 | 95.04 95 | 69.70 186 | 89.42 119 | 90.30 189 |
|
PAPM_NR | | | 83.02 93 | 82.41 93 | 84.82 100 | 92.47 77 | 66.37 168 | 87.93 152 | 91.80 108 | 73.82 136 | 77.32 177 | 90.66 123 | 67.90 91 | 94.90 104 | 70.37 178 | 89.48 118 | 93.19 93 |
|
LS3D | | | 76.95 227 | 74.82 239 | 83.37 153 | 90.45 107 | 67.36 152 | 89.15 105 | 86.94 240 | 61.87 307 | 69.52 292 | 90.61 124 | 51.71 257 | 94.53 117 | 46.38 346 | 86.71 152 | 88.21 259 |
|
mvsmamba | | | 81.69 113 | 80.74 119 | 84.56 107 | 87.45 210 | 66.72 163 | 91.26 50 | 85.89 255 | 74.66 116 | 78.23 157 | 90.56 125 | 54.33 228 | 94.91 100 | 80.73 89 | 83.54 190 | 92.04 134 |
|
VPNet | | | 78.69 188 | 78.66 166 | 78.76 263 | 88.31 182 | 55.72 326 | 84.45 245 | 86.63 244 | 76.79 67 | 78.26 156 | 90.55 126 | 59.30 193 | 89.70 270 | 66.63 216 | 77.05 260 | 90.88 169 |
|
bld_raw_conf005 | | | 81.08 126 | 79.99 132 | 84.35 116 | 87.16 220 | 66.17 172 | 91.08 56 | 84.98 265 | 75.09 104 | 77.71 169 | 90.54 127 | 50.04 273 | 94.91 100 | 79.96 94 | 83.32 193 | 91.98 135 |
|
UniMVSNet_ETH3D | | | 79.10 179 | 78.24 177 | 81.70 203 | 86.85 224 | 60.24 276 | 87.28 170 | 88.79 200 | 74.25 127 | 76.84 186 | 90.53 128 | 49.48 282 | 91.56 234 | 67.98 202 | 82.15 209 | 93.29 87 |
|
ACMP | | 74.13 6 | 81.51 120 | 80.57 122 | 84.36 115 | 89.42 134 | 68.69 124 | 89.97 84 | 91.50 121 | 74.46 122 | 75.04 235 | 90.41 129 | 53.82 234 | 94.54 116 | 77.56 115 | 82.91 199 | 89.86 213 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PCF-MVS | | 73.52 7 | 80.38 147 | 78.84 163 | 85.01 91 | 87.71 201 | 68.99 112 | 83.65 260 | 91.46 122 | 63.00 294 | 77.77 168 | 90.28 130 | 66.10 108 | 95.09 94 | 61.40 257 | 88.22 133 | 90.94 168 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
NP-MVS | | | | | | 89.62 126 | 68.32 130 | | | | | 90.24 131 | | | | | |
|
test_low_dy_conf_001 | | | 80.11 154 | 79.08 158 | 83.17 162 | 86.54 230 | 64.59 205 | 90.19 80 | 89.19 184 | 69.61 210 | 75.86 211 | 90.23 132 | 49.52 281 | 93.59 158 | 78.26 112 | 82.32 208 | 91.34 152 |
|
HQP-MVS | | | 82.61 99 | 82.02 102 | 84.37 114 | 89.33 139 | 66.98 158 | 89.17 101 | 92.19 89 | 76.41 75 | 77.23 180 | 90.23 132 | 60.17 191 | 95.11 90 | 77.47 116 | 85.99 163 | 91.03 164 |
|
PS-MVSNAJss | | | 82.07 105 | 81.31 109 | 84.34 118 | 86.51 231 | 67.27 153 | 89.27 99 | 91.51 118 | 71.75 168 | 79.37 135 | 90.22 134 | 63.15 140 | 94.27 124 | 77.69 114 | 82.36 207 | 91.49 149 |
|
TSAR-MVS + GP. | | | 85.71 59 | 85.33 63 | 86.84 53 | 91.34 90 | 72.50 37 | 89.07 107 | 87.28 234 | 76.41 75 | 85.80 45 | 90.22 134 | 74.15 39 | 95.37 82 | 81.82 78 | 91.88 87 | 92.65 112 |
|
Regformer-1 | | | 86.41 48 | 86.33 46 | 86.64 58 | 89.33 139 | 70.93 75 | 88.43 128 | 91.39 123 | 82.14 3 | 86.65 38 | 90.09 136 | 74.39 34 | 95.01 97 | 83.97 52 | 90.63 103 | 93.97 53 |
|
Regformer-2 | | | 86.63 44 | 86.53 43 | 86.95 51 | 89.33 139 | 71.24 67 | 88.43 128 | 92.05 93 | 82.50 1 | 86.88 36 | 90.09 136 | 74.45 31 | 95.61 63 | 84.38 43 | 90.63 103 | 94.01 51 |
|
test_part1 | | | 82.78 96 | 82.08 100 | 84.89 98 | 90.66 103 | 66.97 160 | 90.96 59 | 92.93 57 | 77.19 55 | 80.53 124 | 90.04 138 | 63.44 132 | 95.39 78 | 76.04 131 | 76.90 262 | 92.31 122 |
|
RRT_MVS | | | 80.35 149 | 79.22 154 | 83.74 143 | 87.63 204 | 65.46 189 | 91.08 56 | 88.92 198 | 73.82 136 | 76.44 198 | 90.03 139 | 49.05 289 | 94.25 129 | 76.84 123 | 79.20 245 | 91.51 146 |
|
Regformer-3 | | | 85.23 67 | 85.07 68 | 85.70 78 | 88.95 157 | 69.01 111 | 88.29 138 | 89.91 162 | 80.95 8 | 85.01 54 | 90.01 140 | 72.45 50 | 94.19 131 | 82.50 73 | 87.57 136 | 93.90 57 |
|
Regformer-4 | | | 85.68 60 | 85.45 61 | 86.35 62 | 88.95 157 | 69.67 99 | 88.29 138 | 91.29 125 | 81.73 5 | 85.36 50 | 90.01 140 | 72.62 49 | 95.35 83 | 83.28 60 | 87.57 136 | 94.03 49 |
|
TranMVSNet+NR-MVSNet | | | 80.84 130 | 80.31 128 | 82.42 191 | 87.85 194 | 62.33 249 | 87.74 158 | 91.33 124 | 80.55 11 | 77.99 164 | 89.86 142 | 65.23 118 | 92.62 197 | 67.05 214 | 75.24 294 | 92.30 123 |
|
diffmvs | | | 82.10 103 | 81.88 105 | 82.76 186 | 83.00 289 | 63.78 223 | 83.68 259 | 89.76 165 | 72.94 156 | 82.02 104 | 89.85 143 | 65.96 113 | 90.79 255 | 82.38 75 | 87.30 143 | 93.71 67 |
|
BH-RMVSNet | | | 79.61 162 | 78.44 171 | 83.14 164 | 89.38 137 | 65.93 176 | 84.95 231 | 87.15 237 | 73.56 143 | 78.19 159 | 89.79 144 | 56.67 214 | 93.36 171 | 59.53 271 | 86.74 151 | 90.13 195 |
|
GeoE | | | 81.71 112 | 81.01 116 | 83.80 142 | 89.51 131 | 64.45 211 | 88.97 109 | 88.73 206 | 71.27 179 | 78.63 147 | 89.76 145 | 66.32 106 | 93.20 177 | 69.89 184 | 86.02 162 | 93.74 66 |
|
AdaColmap |  | | 80.58 144 | 79.42 145 | 84.06 128 | 93.09 61 | 68.91 114 | 89.36 97 | 88.97 195 | 69.27 216 | 75.70 214 | 89.69 146 | 57.20 211 | 95.77 60 | 63.06 241 | 88.41 131 | 87.50 273 |
|
ACMM | | 73.20 8 | 80.78 138 | 79.84 136 | 83.58 146 | 89.31 144 | 68.37 129 | 89.99 83 | 91.60 115 | 70.28 197 | 77.25 178 | 89.66 147 | 53.37 237 | 93.53 164 | 74.24 145 | 82.85 200 | 88.85 245 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CNLPA | | | 78.08 202 | 76.79 211 | 81.97 199 | 90.40 109 | 71.07 69 | 87.59 161 | 84.55 270 | 66.03 262 | 72.38 262 | 89.64 148 | 57.56 205 | 86.04 310 | 59.61 270 | 83.35 192 | 88.79 248 |
|
test_yl | | | 81.17 123 | 80.47 125 | 83.24 158 | 89.13 152 | 63.62 224 | 86.21 201 | 89.95 160 | 72.43 161 | 81.78 109 | 89.61 149 | 57.50 206 | 93.58 159 | 70.75 173 | 86.90 148 | 92.52 113 |
|
DCV-MVSNet | | | 81.17 123 | 80.47 125 | 83.24 158 | 89.13 152 | 63.62 224 | 86.21 201 | 89.95 160 | 72.43 161 | 81.78 109 | 89.61 149 | 57.50 206 | 93.58 159 | 70.75 173 | 86.90 148 | 92.52 113 |
|
EI-MVSNet-Vis-set | | | 84.19 75 | 83.81 78 | 85.31 82 | 88.18 184 | 67.85 139 | 87.66 159 | 89.73 167 | 80.05 16 | 82.95 93 | 89.59 151 | 70.74 66 | 94.82 108 | 80.66 90 | 84.72 172 | 93.28 88 |
|
PAPR | | | 81.66 116 | 80.89 118 | 83.99 136 | 90.27 110 | 64.00 218 | 86.76 187 | 91.77 112 | 68.84 232 | 77.13 185 | 89.50 152 | 67.63 93 | 94.88 106 | 67.55 206 | 88.52 129 | 93.09 95 |
|
jajsoiax | | | 79.29 174 | 77.96 181 | 83.27 156 | 84.68 256 | 66.57 166 | 89.25 100 | 90.16 155 | 69.20 220 | 75.46 219 | 89.49 153 | 45.75 312 | 93.13 183 | 76.84 123 | 80.80 224 | 90.11 197 |
|
MVSFormer | | | 82.85 95 | 82.05 101 | 85.24 85 | 87.35 211 | 70.21 87 | 90.50 68 | 90.38 146 | 68.55 236 | 81.32 113 | 89.47 154 | 61.68 162 | 93.46 168 | 78.98 101 | 90.26 108 | 92.05 132 |
|
jason | | | 81.39 121 | 80.29 129 | 84.70 104 | 86.63 229 | 69.90 94 | 85.95 207 | 86.77 242 | 63.24 290 | 81.07 119 | 89.47 154 | 61.08 178 | 92.15 216 | 78.33 108 | 90.07 113 | 92.05 132 |
jason: jason. |
mvs_tets | | | 79.13 178 | 77.77 189 | 83.22 160 | 84.70 255 | 66.37 168 | 89.17 101 | 90.19 154 | 69.38 214 | 75.40 222 | 89.46 156 | 44.17 317 | 93.15 181 | 76.78 125 | 80.70 226 | 90.14 194 |
|
UGNet | | | 80.83 132 | 79.59 142 | 84.54 108 | 88.04 189 | 68.09 135 | 89.42 96 | 88.16 213 | 76.95 62 | 76.22 203 | 89.46 156 | 49.30 285 | 93.94 141 | 68.48 199 | 90.31 106 | 91.60 143 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
VPA-MVSNet | | | 80.60 142 | 80.55 123 | 80.76 228 | 88.07 188 | 60.80 268 | 86.86 181 | 91.58 116 | 75.67 93 | 80.24 127 | 89.45 158 | 63.34 134 | 90.25 262 | 70.51 177 | 79.22 244 | 91.23 157 |
|
MVS_Test | | | 83.15 89 | 83.06 85 | 83.41 152 | 86.86 223 | 63.21 237 | 86.11 204 | 92.00 97 | 74.31 124 | 82.87 95 | 89.44 159 | 70.03 72 | 93.21 175 | 77.39 118 | 88.50 130 | 93.81 63 |
|
EI-MVSNet-UG-set | | | 83.81 77 | 83.38 81 | 85.09 89 | 87.87 193 | 67.53 147 | 87.44 165 | 89.66 169 | 79.74 18 | 82.23 102 | 89.41 160 | 70.24 71 | 94.74 111 | 79.95 95 | 83.92 182 | 92.99 102 |
|
RPSCF | | | 73.23 268 | 71.46 269 | 78.54 267 | 82.50 300 | 59.85 278 | 82.18 278 | 82.84 299 | 58.96 328 | 71.15 274 | 89.41 160 | 45.48 314 | 84.77 320 | 58.82 279 | 71.83 322 | 91.02 166 |
|
bld_raw_dy_0_64 | | | 77.29 222 | 75.98 225 | 81.22 216 | 85.04 252 | 65.47 188 | 88.14 146 | 77.56 337 | 69.20 220 | 73.77 247 | 89.40 162 | 42.24 330 | 88.85 287 | 76.78 125 | 81.64 215 | 89.33 227 |
|
UniMVSNet_NR-MVSNet | | | 81.88 108 | 81.54 108 | 82.92 175 | 88.46 177 | 63.46 231 | 87.13 172 | 92.37 79 | 80.19 14 | 78.38 152 | 89.14 163 | 71.66 58 | 93.05 187 | 70.05 181 | 76.46 270 | 92.25 125 |
|
tttt0517 | | | 79.40 171 | 77.91 183 | 83.90 141 | 88.10 187 | 63.84 221 | 88.37 135 | 84.05 279 | 71.45 177 | 76.78 189 | 89.12 164 | 49.93 278 | 94.89 105 | 70.18 180 | 83.18 196 | 92.96 103 |
|
DU-MVS | | | 81.12 125 | 80.52 124 | 82.90 176 | 87.80 197 | 63.46 231 | 87.02 176 | 91.87 105 | 79.01 28 | 78.38 152 | 89.07 165 | 65.02 120 | 93.05 187 | 70.05 181 | 76.46 270 | 92.20 127 |
|
NR-MVSNet | | | 80.23 151 | 79.38 147 | 82.78 184 | 87.80 197 | 63.34 234 | 86.31 198 | 91.09 132 | 79.01 28 | 72.17 264 | 89.07 165 | 67.20 98 | 92.81 196 | 66.08 221 | 75.65 281 | 92.20 127 |
|
DELS-MVS | | | 85.41 65 | 85.30 65 | 85.77 76 | 88.49 175 | 67.93 138 | 85.52 223 | 93.44 31 | 78.70 31 | 83.63 88 | 89.03 167 | 74.57 29 | 95.71 62 | 80.26 93 | 94.04 66 | 93.66 68 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
iter_conf_final | | | 80.63 140 | 79.35 149 | 84.46 111 | 89.36 138 | 67.70 143 | 89.85 85 | 84.49 271 | 73.19 151 | 78.30 155 | 88.94 168 | 45.98 307 | 94.56 114 | 79.59 98 | 84.48 176 | 91.11 160 |
|
iter_conf05 | | | 80.00 158 | 78.70 164 | 83.91 140 | 87.84 195 | 65.83 179 | 88.84 116 | 84.92 266 | 71.61 173 | 78.70 143 | 88.94 168 | 43.88 319 | 94.56 114 | 79.28 99 | 84.28 179 | 91.33 153 |
|
baseline1 | | | 76.98 226 | 76.75 214 | 77.66 279 | 88.13 185 | 55.66 327 | 85.12 227 | 81.89 305 | 73.04 154 | 76.79 188 | 88.90 170 | 62.43 152 | 87.78 299 | 63.30 240 | 71.18 326 | 89.55 223 |
|
DP-MVS | | | 76.78 229 | 74.57 241 | 83.42 150 | 93.29 54 | 69.46 106 | 88.55 127 | 83.70 283 | 63.98 287 | 70.20 280 | 88.89 171 | 54.01 233 | 94.80 109 | 46.66 343 | 81.88 213 | 86.01 305 |
|
ab-mvs | | | 79.51 165 | 78.97 161 | 81.14 219 | 88.46 177 | 60.91 266 | 83.84 257 | 89.24 181 | 70.36 195 | 79.03 138 | 88.87 172 | 63.23 138 | 90.21 263 | 65.12 228 | 82.57 205 | 92.28 124 |
|
PEN-MVS | | | 77.73 211 | 77.69 193 | 77.84 276 | 87.07 222 | 53.91 337 | 87.91 153 | 91.18 128 | 77.56 45 | 73.14 253 | 88.82 173 | 61.23 174 | 89.17 278 | 59.95 267 | 72.37 317 | 90.43 185 |
|
test_djsdf | | | 80.30 150 | 79.32 150 | 83.27 156 | 83.98 267 | 65.37 193 | 90.50 68 | 90.38 146 | 68.55 236 | 76.19 204 | 88.70 174 | 56.44 215 | 93.46 168 | 78.98 101 | 80.14 234 | 90.97 167 |
|
PAPM | | | 77.68 214 | 76.40 221 | 81.51 207 | 87.29 217 | 61.85 256 | 83.78 258 | 89.59 170 | 64.74 275 | 71.23 272 | 88.70 174 | 62.59 148 | 93.66 157 | 52.66 313 | 87.03 147 | 89.01 237 |
|
DTE-MVSNet | | | 76.99 225 | 76.80 210 | 77.54 283 | 86.24 233 | 53.06 345 | 87.52 162 | 90.66 139 | 77.08 60 | 72.50 259 | 88.67 176 | 60.48 187 | 89.52 272 | 57.33 293 | 70.74 328 | 90.05 204 |
|
PS-CasMVS | | | 78.01 206 | 78.09 179 | 77.77 278 | 87.71 201 | 54.39 334 | 88.02 147 | 91.22 126 | 77.50 48 | 73.26 251 | 88.64 177 | 60.73 181 | 88.41 292 | 61.88 252 | 73.88 306 | 90.53 182 |
|
cdsmvs_eth3d_5k | | | 19.96 344 | 26.61 346 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 89.26 180 | 0.00 382 | 0.00 383 | 88.61 178 | 61.62 164 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
lupinMVS | | | 81.39 121 | 80.27 130 | 84.76 103 | 87.35 211 | 70.21 87 | 85.55 219 | 86.41 246 | 62.85 297 | 81.32 113 | 88.61 178 | 61.68 162 | 92.24 214 | 78.41 107 | 90.26 108 | 91.83 138 |
|
F-COLMAP | | | 76.38 237 | 74.33 246 | 82.50 190 | 89.28 146 | 66.95 162 | 88.41 131 | 89.03 190 | 64.05 285 | 66.83 314 | 88.61 178 | 46.78 301 | 92.89 192 | 57.48 290 | 78.55 246 | 87.67 267 |
|
mvs_anonymous | | | 79.42 170 | 79.11 157 | 80.34 236 | 84.45 259 | 57.97 294 | 82.59 275 | 87.62 227 | 67.40 246 | 76.17 207 | 88.56 181 | 68.47 87 | 89.59 271 | 70.65 176 | 86.05 161 | 93.47 82 |
|
CP-MVSNet | | | 78.22 197 | 78.34 174 | 77.84 276 | 87.83 196 | 54.54 332 | 87.94 151 | 91.17 129 | 77.65 40 | 73.48 249 | 88.49 182 | 62.24 156 | 88.43 291 | 62.19 248 | 74.07 302 | 90.55 181 |
|
PVSNet_Blended_VisFu | | | 82.62 98 | 81.83 106 | 84.96 93 | 90.80 101 | 69.76 97 | 88.74 121 | 91.70 113 | 69.39 213 | 78.96 139 | 88.46 183 | 65.47 116 | 94.87 107 | 74.42 142 | 88.57 127 | 90.24 191 |
|
CANet_DTU | | | 80.61 141 | 79.87 135 | 82.83 178 | 85.60 241 | 63.17 240 | 87.36 166 | 88.65 207 | 76.37 79 | 75.88 210 | 88.44 184 | 53.51 236 | 93.07 186 | 73.30 155 | 89.74 116 | 92.25 125 |
|
PLC |  | 70.83 11 | 78.05 204 | 76.37 222 | 83.08 167 | 91.88 85 | 67.80 140 | 88.19 142 | 89.46 173 | 64.33 281 | 69.87 289 | 88.38 185 | 53.66 235 | 93.58 159 | 58.86 278 | 82.73 202 | 87.86 264 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
WR-MVS | | | 79.49 166 | 79.22 154 | 80.27 238 | 88.79 165 | 58.35 287 | 85.06 228 | 88.61 209 | 78.56 32 | 77.65 170 | 88.34 186 | 63.81 131 | 90.66 258 | 64.98 230 | 77.22 258 | 91.80 141 |
|
XXY-MVS | | | 75.41 249 | 75.56 228 | 74.96 306 | 83.59 273 | 57.82 298 | 80.59 293 | 83.87 282 | 66.54 256 | 74.93 237 | 88.31 187 | 63.24 137 | 80.09 343 | 62.16 249 | 76.85 265 | 86.97 287 |
|
Effi-MVS+ | | | 83.62 82 | 83.08 84 | 85.24 85 | 88.38 180 | 67.45 148 | 88.89 112 | 89.15 186 | 75.50 95 | 82.27 101 | 88.28 188 | 69.61 77 | 94.45 120 | 77.81 113 | 87.84 134 | 93.84 61 |
|
API-MVS | | | 81.99 107 | 81.23 111 | 84.26 121 | 90.94 97 | 70.18 92 | 91.10 55 | 89.32 176 | 71.51 176 | 78.66 146 | 88.28 188 | 65.26 117 | 95.10 93 | 64.74 232 | 91.23 98 | 87.51 272 |
|
thisisatest0530 | | | 79.40 171 | 77.76 190 | 84.31 119 | 87.69 203 | 65.10 198 | 87.36 166 | 84.26 277 | 70.04 200 | 77.42 174 | 88.26 190 | 49.94 276 | 94.79 110 | 70.20 179 | 84.70 173 | 93.03 98 |
|
hse-mvs2 | | | 81.72 111 | 80.94 117 | 84.07 127 | 88.72 168 | 67.68 144 | 85.87 210 | 87.26 235 | 76.02 86 | 84.67 65 | 88.22 191 | 61.54 165 | 93.48 166 | 82.71 69 | 73.44 311 | 91.06 162 |
|
xiu_mvs_v1_base_debu | | | 80.80 135 | 79.72 139 | 84.03 133 | 87.35 211 | 70.19 89 | 85.56 216 | 88.77 201 | 69.06 225 | 81.83 105 | 88.16 192 | 50.91 263 | 92.85 193 | 78.29 109 | 87.56 138 | 89.06 232 |
|
xiu_mvs_v1_base | | | 80.80 135 | 79.72 139 | 84.03 133 | 87.35 211 | 70.19 89 | 85.56 216 | 88.77 201 | 69.06 225 | 81.83 105 | 88.16 192 | 50.91 263 | 92.85 193 | 78.29 109 | 87.56 138 | 89.06 232 |
|
xiu_mvs_v1_base_debi | | | 80.80 135 | 79.72 139 | 84.03 133 | 87.35 211 | 70.19 89 | 85.56 216 | 88.77 201 | 69.06 225 | 81.83 105 | 88.16 192 | 50.91 263 | 92.85 193 | 78.29 109 | 87.56 138 | 89.06 232 |
|
UniMVSNet (Re) | | | 81.60 117 | 81.11 113 | 83.09 166 | 88.38 180 | 64.41 212 | 87.60 160 | 93.02 46 | 78.42 34 | 78.56 148 | 88.16 192 | 69.78 75 | 93.26 174 | 69.58 188 | 76.49 269 | 91.60 143 |
|
AUN-MVS | | | 79.21 176 | 77.60 195 | 84.05 130 | 88.71 169 | 67.61 145 | 85.84 212 | 87.26 235 | 69.08 224 | 77.23 180 | 88.14 196 | 53.20 239 | 93.47 167 | 75.50 138 | 73.45 310 | 91.06 162 |
|
Anonymous20231211 | | | 78.97 183 | 77.69 193 | 82.81 180 | 90.54 106 | 64.29 214 | 90.11 81 | 91.51 118 | 65.01 273 | 76.16 208 | 88.13 197 | 50.56 268 | 93.03 190 | 69.68 187 | 77.56 256 | 91.11 160 |
|
pm-mvs1 | | | 77.25 223 | 76.68 216 | 78.93 261 | 84.22 262 | 58.62 286 | 86.41 195 | 88.36 212 | 71.37 178 | 73.31 250 | 88.01 198 | 61.22 175 | 89.15 279 | 64.24 234 | 73.01 314 | 89.03 236 |
|
LTVRE_ROB | | 69.57 13 | 76.25 238 | 74.54 243 | 81.41 209 | 88.60 172 | 64.38 213 | 79.24 306 | 89.12 189 | 70.76 189 | 69.79 291 | 87.86 199 | 49.09 287 | 93.20 177 | 56.21 301 | 80.16 232 | 86.65 294 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
WTY-MVS | | | 75.65 245 | 75.68 227 | 75.57 300 | 86.40 232 | 56.82 310 | 77.92 321 | 82.40 302 | 65.10 270 | 76.18 205 | 87.72 200 | 63.13 143 | 80.90 340 | 60.31 265 | 81.96 211 | 89.00 239 |
|
TAMVS | | | 78.89 185 | 77.51 197 | 83.03 170 | 87.80 197 | 67.79 141 | 84.72 235 | 85.05 263 | 67.63 242 | 76.75 190 | 87.70 201 | 62.25 155 | 90.82 254 | 58.53 282 | 87.13 145 | 90.49 183 |
|
BH-untuned | | | 79.47 167 | 78.60 167 | 82.05 196 | 89.19 150 | 65.91 177 | 86.07 205 | 88.52 210 | 72.18 163 | 75.42 221 | 87.69 202 | 61.15 176 | 93.54 163 | 60.38 264 | 86.83 150 | 86.70 293 |
|
COLMAP_ROB |  | 66.92 17 | 73.01 270 | 70.41 281 | 80.81 227 | 87.13 221 | 65.63 184 | 88.30 137 | 84.19 278 | 62.96 295 | 63.80 338 | 87.69 202 | 38.04 347 | 92.56 200 | 46.66 343 | 74.91 296 | 84.24 324 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
OurMVSNet-221017-0 | | | 74.26 256 | 72.42 263 | 79.80 247 | 83.76 271 | 59.59 281 | 85.92 209 | 86.64 243 | 66.39 257 | 66.96 311 | 87.58 204 | 39.46 340 | 91.60 232 | 65.76 224 | 69.27 332 | 88.22 258 |
|
Baseline_NR-MVSNet | | | 78.15 201 | 78.33 175 | 77.61 281 | 85.79 237 | 56.21 322 | 86.78 185 | 85.76 256 | 73.60 142 | 77.93 165 | 87.57 205 | 65.02 120 | 88.99 281 | 67.14 213 | 75.33 291 | 87.63 268 |
|
WR-MVS_H | | | 78.51 192 | 78.49 169 | 78.56 266 | 88.02 190 | 56.38 319 | 88.43 128 | 92.67 67 | 77.14 57 | 73.89 246 | 87.55 206 | 66.25 107 | 89.24 277 | 58.92 277 | 73.55 309 | 90.06 203 |
|
EI-MVSNet | | | 80.52 145 | 79.98 133 | 82.12 194 | 84.28 260 | 63.19 239 | 86.41 195 | 88.95 196 | 74.18 129 | 78.69 144 | 87.54 207 | 66.62 101 | 92.43 204 | 72.57 163 | 80.57 228 | 90.74 174 |
|
CVMVSNet | | | 72.99 271 | 72.58 261 | 74.25 313 | 84.28 260 | 50.85 355 | 86.41 195 | 83.45 290 | 44.56 361 | 73.23 252 | 87.54 207 | 49.38 283 | 85.70 312 | 65.90 222 | 78.44 249 | 86.19 300 |
|
ACMH+ | | 68.96 14 | 76.01 241 | 74.01 248 | 82.03 197 | 88.60 172 | 65.31 194 | 88.86 113 | 87.55 228 | 70.25 198 | 67.75 303 | 87.47 209 | 41.27 334 | 93.19 179 | 58.37 283 | 75.94 278 | 87.60 269 |
|
TransMVSNet (Re) | | | 75.39 250 | 74.56 242 | 77.86 275 | 85.50 243 | 57.10 307 | 86.78 185 | 86.09 253 | 72.17 164 | 71.53 270 | 87.34 210 | 63.01 144 | 89.31 276 | 56.84 297 | 61.83 351 | 87.17 281 |
|
GBi-Net | | | 78.40 193 | 77.40 198 | 81.40 210 | 87.60 205 | 63.01 241 | 88.39 132 | 89.28 177 | 71.63 170 | 75.34 224 | 87.28 211 | 54.80 221 | 91.11 245 | 62.72 242 | 79.57 237 | 90.09 199 |
|
test1 | | | 78.40 193 | 77.40 198 | 81.40 210 | 87.60 205 | 63.01 241 | 88.39 132 | 89.28 177 | 71.63 170 | 75.34 224 | 87.28 211 | 54.80 221 | 91.11 245 | 62.72 242 | 79.57 237 | 90.09 199 |
|
FMVSNet2 | | | 78.20 199 | 77.21 201 | 81.20 217 | 87.60 205 | 62.89 245 | 87.47 164 | 89.02 191 | 71.63 170 | 75.29 228 | 87.28 211 | 54.80 221 | 91.10 248 | 62.38 246 | 79.38 241 | 89.61 221 |
|
FMVSNet1 | | | 77.44 217 | 76.12 224 | 81.40 210 | 86.81 226 | 63.01 241 | 88.39 132 | 89.28 177 | 70.49 194 | 74.39 242 | 87.28 211 | 49.06 288 | 91.11 245 | 60.91 261 | 78.52 247 | 90.09 199 |
|
v2v482 | | | 80.23 151 | 79.29 151 | 83.05 169 | 83.62 272 | 64.14 216 | 87.04 175 | 89.97 159 | 73.61 141 | 78.18 160 | 87.22 215 | 61.10 177 | 93.82 148 | 76.11 129 | 76.78 267 | 91.18 158 |
|
ITE_SJBPF | | | | | 78.22 271 | 81.77 310 | 60.57 271 | | 83.30 291 | 69.25 217 | 67.54 305 | 87.20 216 | 36.33 352 | 87.28 303 | 54.34 306 | 74.62 299 | 86.80 290 |
|
anonymousdsp | | | 78.60 190 | 77.15 202 | 82.98 173 | 80.51 328 | 67.08 156 | 87.24 171 | 89.53 171 | 65.66 266 | 75.16 230 | 87.19 217 | 52.52 240 | 92.25 213 | 77.17 120 | 79.34 242 | 89.61 221 |
|
MVSTER | | | 79.01 181 | 77.88 185 | 82.38 192 | 83.07 286 | 64.80 202 | 84.08 256 | 88.95 196 | 69.01 228 | 78.69 144 | 87.17 218 | 54.70 225 | 92.43 204 | 74.69 141 | 80.57 228 | 89.89 212 |
|
thres100view900 | | | 76.50 232 | 75.55 229 | 79.33 256 | 89.52 130 | 56.99 308 | 85.83 213 | 83.23 293 | 73.94 133 | 76.32 201 | 87.12 219 | 51.89 254 | 91.95 222 | 48.33 334 | 83.75 185 | 89.07 230 |
|
thres600view7 | | | 76.50 232 | 75.44 230 | 79.68 250 | 89.40 135 | 57.16 305 | 85.53 221 | 83.23 293 | 73.79 138 | 76.26 202 | 87.09 220 | 51.89 254 | 91.89 225 | 48.05 339 | 83.72 188 | 90.00 205 |
|
XVG-ACMP-BASELINE | | | 76.11 240 | 74.27 247 | 81.62 204 | 83.20 282 | 64.67 204 | 83.60 263 | 89.75 166 | 69.75 207 | 71.85 267 | 87.09 220 | 32.78 359 | 92.11 217 | 69.99 183 | 80.43 230 | 88.09 260 |
|
HY-MVS | | 69.67 12 | 77.95 207 | 77.15 202 | 80.36 235 | 87.57 209 | 60.21 277 | 83.37 267 | 87.78 225 | 66.11 259 | 75.37 223 | 87.06 222 | 63.27 136 | 90.48 260 | 61.38 258 | 82.43 206 | 90.40 187 |
|
CHOSEN 1792x2688 | | | 77.63 215 | 75.69 226 | 83.44 149 | 89.98 121 | 68.58 127 | 78.70 313 | 87.50 230 | 56.38 345 | 75.80 213 | 86.84 223 | 58.67 196 | 91.40 239 | 61.58 256 | 85.75 166 | 90.34 188 |
|
v8 | | | 79.97 159 | 79.02 160 | 82.80 181 | 84.09 264 | 64.50 209 | 87.96 149 | 90.29 153 | 74.13 131 | 75.24 229 | 86.81 224 | 62.88 145 | 93.89 147 | 74.39 143 | 75.40 289 | 90.00 205 |
|
AllTest | | | 70.96 284 | 68.09 296 | 79.58 253 | 85.15 247 | 63.62 224 | 84.58 241 | 79.83 326 | 62.31 303 | 60.32 348 | 86.73 225 | 32.02 360 | 88.96 284 | 50.28 324 | 71.57 324 | 86.15 301 |
|
TestCases | | | | | 79.58 253 | 85.15 247 | 63.62 224 | | 79.83 326 | 62.31 303 | 60.32 348 | 86.73 225 | 32.02 360 | 88.96 284 | 50.28 324 | 71.57 324 | 86.15 301 |
|
mvs-test1 | | | 80.88 128 | 79.40 146 | 85.29 83 | 85.13 249 | 69.75 98 | 89.28 98 | 88.10 215 | 74.99 107 | 76.44 198 | 86.72 227 | 57.27 209 | 94.26 128 | 73.53 150 | 83.18 196 | 91.87 137 |
|
LCM-MVSNet-Re | | | 77.05 224 | 76.94 207 | 77.36 284 | 87.20 218 | 51.60 350 | 80.06 298 | 80.46 320 | 75.20 102 | 67.69 304 | 86.72 227 | 62.48 150 | 88.98 282 | 63.44 238 | 89.25 120 | 91.51 146 |
|
1112_ss | | | 77.40 219 | 76.43 220 | 80.32 237 | 89.11 156 | 60.41 275 | 83.65 260 | 87.72 226 | 62.13 305 | 73.05 254 | 86.72 227 | 62.58 149 | 89.97 265 | 62.11 251 | 80.80 224 | 90.59 180 |
|
ab-mvs-re | | | 7.23 347 | 9.64 350 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 86.72 227 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
IterMVS-LS | | | 80.06 155 | 79.38 147 | 82.11 195 | 85.89 236 | 63.20 238 | 86.79 184 | 89.34 175 | 74.19 128 | 75.45 220 | 86.72 227 | 66.62 101 | 92.39 206 | 72.58 162 | 76.86 264 | 90.75 173 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
ACMH | | 67.68 16 | 75.89 242 | 73.93 249 | 81.77 202 | 88.71 169 | 66.61 165 | 88.62 124 | 89.01 192 | 69.81 204 | 66.78 315 | 86.70 232 | 41.95 333 | 91.51 237 | 55.64 302 | 78.14 252 | 87.17 281 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Test_1112_low_res | | | 76.40 236 | 75.44 230 | 79.27 257 | 89.28 146 | 58.09 290 | 81.69 283 | 87.07 238 | 59.53 324 | 72.48 260 | 86.67 233 | 61.30 172 | 89.33 275 | 60.81 263 | 80.15 233 | 90.41 186 |
|
FMVSNet3 | | | 77.88 209 | 76.85 209 | 80.97 224 | 86.84 225 | 62.36 248 | 86.52 193 | 88.77 201 | 71.13 180 | 75.34 224 | 86.66 234 | 54.07 232 | 91.10 248 | 62.72 242 | 79.57 237 | 89.45 224 |
|
pmmvs6 | | | 74.69 253 | 73.39 254 | 78.61 265 | 81.38 317 | 57.48 303 | 86.64 189 | 87.95 220 | 64.99 274 | 70.18 281 | 86.61 235 | 50.43 270 | 89.52 272 | 62.12 250 | 70.18 330 | 88.83 246 |
|
ET-MVSNet_ETH3D | | | 78.63 189 | 76.63 217 | 84.64 105 | 86.73 228 | 69.47 104 | 85.01 229 | 84.61 269 | 69.54 211 | 66.51 320 | 86.59 236 | 50.16 272 | 91.75 229 | 76.26 128 | 84.24 180 | 92.69 110 |
|
testgi | | | 66.67 313 | 66.53 311 | 67.08 344 | 75.62 356 | 41.69 371 | 75.93 328 | 76.50 345 | 66.11 259 | 65.20 330 | 86.59 236 | 35.72 354 | 74.71 363 | 43.71 353 | 73.38 312 | 84.84 318 |
|
CLD-MVS | | | 82.31 101 | 81.65 107 | 84.29 120 | 88.47 176 | 67.73 142 | 85.81 214 | 92.35 80 | 75.78 89 | 78.33 154 | 86.58 238 | 64.01 128 | 94.35 121 | 76.05 130 | 87.48 141 | 90.79 171 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
v10 | | | 79.74 161 | 78.67 165 | 82.97 174 | 84.06 265 | 64.95 199 | 87.88 155 | 90.62 140 | 73.11 152 | 75.11 232 | 86.56 239 | 61.46 168 | 94.05 137 | 73.68 148 | 75.55 283 | 89.90 211 |
|
CDS-MVSNet | | | 79.07 180 | 77.70 192 | 83.17 162 | 87.60 205 | 68.23 133 | 84.40 248 | 86.20 250 | 67.49 245 | 76.36 200 | 86.54 240 | 61.54 165 | 90.79 255 | 61.86 253 | 87.33 142 | 90.49 183 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
xiu_mvs_v2_base | | | 81.69 113 | 81.05 114 | 83.60 145 | 89.15 151 | 68.03 137 | 84.46 244 | 90.02 158 | 70.67 190 | 81.30 116 | 86.53 241 | 63.17 139 | 94.19 131 | 75.60 136 | 88.54 128 | 88.57 254 |
|
TR-MVS | | | 77.44 217 | 76.18 223 | 81.20 217 | 88.24 183 | 63.24 236 | 84.61 240 | 86.40 247 | 67.55 244 | 77.81 166 | 86.48 242 | 54.10 231 | 93.15 181 | 57.75 289 | 82.72 203 | 87.20 280 |
|
EIA-MVS | | | 83.31 88 | 82.80 90 | 84.82 100 | 89.59 127 | 65.59 185 | 88.21 141 | 92.68 66 | 74.66 116 | 78.96 139 | 86.42 243 | 69.06 83 | 95.26 84 | 75.54 137 | 90.09 111 | 93.62 76 |
|
tfpn200view9 | | | 76.42 235 | 75.37 234 | 79.55 255 | 89.13 152 | 57.65 300 | 85.17 224 | 83.60 284 | 73.41 148 | 76.45 195 | 86.39 244 | 52.12 247 | 91.95 222 | 48.33 334 | 83.75 185 | 89.07 230 |
|
thres400 | | | 76.50 232 | 75.37 234 | 79.86 245 | 89.13 152 | 57.65 300 | 85.17 224 | 83.60 284 | 73.41 148 | 76.45 195 | 86.39 244 | 52.12 247 | 91.95 222 | 48.33 334 | 83.75 185 | 90.00 205 |
|
v7n | | | 78.97 183 | 77.58 196 | 83.14 164 | 83.45 276 | 65.51 186 | 88.32 136 | 91.21 127 | 73.69 139 | 72.41 261 | 86.32 246 | 57.93 200 | 93.81 149 | 69.18 191 | 75.65 281 | 90.11 197 |
|
MAR-MVS | | | 81.84 109 | 80.70 120 | 85.27 84 | 91.32 91 | 71.53 60 | 89.82 87 | 90.92 134 | 69.77 206 | 78.50 149 | 86.21 247 | 62.36 153 | 94.52 118 | 65.36 226 | 92.05 86 | 89.77 217 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
v1144 | | | 80.03 156 | 79.03 159 | 83.01 171 | 83.78 270 | 64.51 207 | 87.11 174 | 90.57 142 | 71.96 166 | 78.08 163 | 86.20 248 | 61.41 169 | 93.94 141 | 74.93 140 | 77.23 257 | 90.60 179 |
|
V42 | | | 79.38 173 | 78.24 177 | 82.83 178 | 81.10 322 | 65.50 187 | 85.55 219 | 89.82 163 | 71.57 175 | 78.21 158 | 86.12 249 | 60.66 184 | 93.18 180 | 75.64 134 | 75.46 287 | 89.81 216 |
|
PVSNet_BlendedMVS | | | 80.60 142 | 80.02 131 | 82.36 193 | 88.85 159 | 65.40 190 | 86.16 203 | 92.00 97 | 69.34 215 | 78.11 161 | 86.09 250 | 66.02 111 | 94.27 124 | 71.52 167 | 82.06 210 | 87.39 274 |
|
v1192 | | | 79.59 164 | 78.43 172 | 83.07 168 | 83.55 274 | 64.52 206 | 86.93 179 | 90.58 141 | 70.83 185 | 77.78 167 | 85.90 251 | 59.15 194 | 93.94 141 | 73.96 147 | 77.19 259 | 90.76 172 |
|
SixPastTwentyTwo | | | 73.37 264 | 71.26 274 | 79.70 249 | 85.08 251 | 57.89 296 | 85.57 215 | 83.56 286 | 71.03 183 | 65.66 324 | 85.88 252 | 42.10 331 | 92.57 199 | 59.11 275 | 63.34 349 | 88.65 252 |
|
EPNet_dtu | | | 75.46 247 | 74.86 238 | 77.23 288 | 82.57 299 | 54.60 331 | 86.89 180 | 83.09 296 | 71.64 169 | 66.25 322 | 85.86 253 | 55.99 216 | 88.04 296 | 54.92 304 | 86.55 154 | 89.05 235 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
sss | | | 73.60 262 | 73.64 253 | 73.51 317 | 82.80 293 | 55.01 329 | 76.12 327 | 81.69 308 | 62.47 302 | 74.68 240 | 85.85 254 | 57.32 208 | 78.11 350 | 60.86 262 | 80.93 221 | 87.39 274 |
|
ETV-MVS | | | 84.90 74 | 84.67 74 | 85.59 79 | 89.39 136 | 68.66 125 | 88.74 121 | 92.64 71 | 79.97 17 | 84.10 79 | 85.71 255 | 69.32 80 | 95.38 79 | 80.82 86 | 91.37 95 | 92.72 107 |
|
v1240 | | | 78.99 182 | 77.78 188 | 82.64 187 | 83.21 281 | 63.54 228 | 86.62 190 | 90.30 152 | 69.74 209 | 77.33 176 | 85.68 256 | 57.04 212 | 93.76 153 | 73.13 158 | 76.92 261 | 90.62 177 |
|
v144192 | | | 79.47 167 | 78.37 173 | 82.78 184 | 83.35 277 | 63.96 219 | 86.96 177 | 90.36 149 | 69.99 201 | 77.50 172 | 85.67 257 | 60.66 184 | 93.77 152 | 74.27 144 | 76.58 268 | 90.62 177 |
|
tfpnnormal | | | 74.39 254 | 73.16 257 | 78.08 273 | 86.10 235 | 58.05 291 | 84.65 239 | 87.53 229 | 70.32 196 | 71.22 273 | 85.63 258 | 54.97 220 | 89.86 266 | 43.03 355 | 75.02 295 | 86.32 297 |
|
PS-MVSNAJ | | | 81.69 113 | 81.02 115 | 83.70 144 | 89.51 131 | 68.21 134 | 84.28 250 | 90.09 157 | 70.79 187 | 81.26 117 | 85.62 259 | 63.15 140 | 94.29 122 | 75.62 135 | 88.87 123 | 88.59 253 |
|
v1921920 | | | 79.22 175 | 78.03 180 | 82.80 181 | 83.30 279 | 63.94 220 | 86.80 183 | 90.33 150 | 69.91 203 | 77.48 173 | 85.53 260 | 58.44 198 | 93.75 154 | 73.60 149 | 76.85 265 | 90.71 175 |
|
test_0402 | | | 72.79 273 | 70.44 280 | 79.84 246 | 88.13 185 | 65.99 175 | 85.93 208 | 84.29 275 | 65.57 267 | 67.40 308 | 85.49 261 | 46.92 300 | 92.61 198 | 35.88 364 | 74.38 301 | 80.94 348 |
|
v148 | | | 78.72 187 | 77.80 187 | 81.47 208 | 82.73 295 | 61.96 255 | 86.30 199 | 88.08 217 | 73.26 150 | 76.18 205 | 85.47 262 | 62.46 151 | 92.36 208 | 71.92 166 | 73.82 307 | 90.09 199 |
|
USDC | | | 70.33 290 | 68.37 291 | 76.21 295 | 80.60 326 | 56.23 321 | 79.19 308 | 86.49 245 | 60.89 312 | 61.29 345 | 85.47 262 | 31.78 362 | 89.47 274 | 53.37 310 | 76.21 276 | 82.94 339 |
|
MVP-Stereo | | | 76.12 239 | 74.46 245 | 81.13 220 | 85.37 244 | 69.79 96 | 84.42 247 | 87.95 220 | 65.03 272 | 67.46 306 | 85.33 264 | 53.28 238 | 91.73 231 | 58.01 287 | 83.27 194 | 81.85 343 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
MVS | | | 78.19 200 | 76.99 206 | 81.78 201 | 85.66 239 | 66.99 157 | 84.66 236 | 90.47 144 | 55.08 350 | 72.02 266 | 85.27 265 | 63.83 130 | 94.11 136 | 66.10 220 | 89.80 115 | 84.24 324 |
|
DIV-MVS_self_test | | | 77.72 212 | 76.76 212 | 80.58 231 | 82.48 302 | 60.48 273 | 83.09 270 | 87.86 223 | 69.22 218 | 74.38 243 | 85.24 266 | 62.10 158 | 91.53 235 | 71.09 171 | 75.40 289 | 89.74 218 |
|
cl____ | | | 77.72 212 | 76.76 212 | 80.58 231 | 82.49 301 | 60.48 273 | 83.09 270 | 87.87 222 | 69.22 218 | 74.38 243 | 85.22 267 | 62.10 158 | 91.53 235 | 71.09 171 | 75.41 288 | 89.73 219 |
|
HyFIR lowres test | | | 77.53 216 | 75.40 232 | 83.94 139 | 89.59 127 | 66.62 164 | 80.36 295 | 88.64 208 | 56.29 346 | 76.45 195 | 85.17 268 | 57.64 204 | 93.28 173 | 61.34 259 | 83.10 198 | 91.91 136 |
|
pmmvs4 | | | 74.03 260 | 71.91 266 | 80.39 234 | 81.96 308 | 68.32 130 | 81.45 286 | 82.14 303 | 59.32 325 | 69.87 289 | 85.13 269 | 52.40 243 | 88.13 295 | 60.21 266 | 74.74 298 | 84.73 320 |
|
TDRefinement | | | 67.49 307 | 64.34 316 | 76.92 290 | 73.47 365 | 61.07 264 | 84.86 233 | 82.98 297 | 59.77 321 | 58.30 354 | 85.13 269 | 26.06 365 | 87.89 297 | 47.92 340 | 60.59 355 | 81.81 344 |
|
Fast-Effi-MVS+ | | | 80.81 133 | 79.92 134 | 83.47 148 | 88.85 159 | 64.51 207 | 85.53 221 | 89.39 174 | 70.79 187 | 78.49 150 | 85.06 271 | 67.54 94 | 93.58 159 | 67.03 215 | 86.58 153 | 92.32 121 |
|
PVSNet_Blended | | | 80.98 127 | 80.34 127 | 82.90 176 | 88.85 159 | 65.40 190 | 84.43 246 | 92.00 97 | 67.62 243 | 78.11 161 | 85.05 272 | 66.02 111 | 94.27 124 | 71.52 167 | 89.50 117 | 89.01 237 |
|
CMPMVS |  | 51.72 21 | 70.19 292 | 68.16 294 | 76.28 294 | 73.15 367 | 57.55 302 | 79.47 304 | 83.92 280 | 48.02 360 | 56.48 359 | 84.81 273 | 43.13 322 | 86.42 308 | 62.67 245 | 81.81 214 | 84.89 317 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
EU-MVSNet | | | 68.53 304 | 67.61 304 | 71.31 330 | 78.51 346 | 47.01 364 | 84.47 242 | 84.27 276 | 42.27 362 | 66.44 321 | 84.79 274 | 40.44 338 | 83.76 325 | 58.76 280 | 68.54 337 | 83.17 333 |
|
BH-w/o | | | 78.21 198 | 77.33 200 | 80.84 226 | 88.81 163 | 65.13 197 | 84.87 232 | 87.85 224 | 69.75 207 | 74.52 241 | 84.74 275 | 61.34 171 | 93.11 184 | 58.24 285 | 85.84 165 | 84.27 323 |
|
pmmvs5 | | | 71.55 280 | 70.20 283 | 75.61 299 | 77.83 347 | 56.39 318 | 81.74 282 | 80.89 312 | 57.76 336 | 67.46 306 | 84.49 276 | 49.26 286 | 85.32 316 | 57.08 295 | 75.29 292 | 85.11 316 |
|
thres200 | | | 75.55 246 | 74.47 244 | 78.82 262 | 87.78 200 | 57.85 297 | 83.07 272 | 83.51 287 | 72.44 160 | 75.84 212 | 84.42 277 | 52.08 249 | 91.75 229 | 47.41 341 | 83.64 189 | 86.86 289 |
|
eth_miper_zixun_eth | | | 77.92 208 | 76.69 215 | 81.61 206 | 83.00 289 | 61.98 254 | 83.15 269 | 89.20 183 | 69.52 212 | 74.86 238 | 84.35 278 | 61.76 161 | 92.56 200 | 71.50 169 | 72.89 315 | 90.28 190 |
|
c3_l | | | 78.75 186 | 77.91 183 | 81.26 214 | 82.89 292 | 61.56 260 | 84.09 255 | 89.13 188 | 69.97 202 | 75.56 215 | 84.29 279 | 66.36 105 | 92.09 218 | 73.47 153 | 75.48 285 | 90.12 196 |
|
Fast-Effi-MVS+-dtu | | | 78.02 205 | 76.49 218 | 82.62 188 | 83.16 285 | 66.96 161 | 86.94 178 | 87.45 232 | 72.45 158 | 71.49 271 | 84.17 280 | 54.79 224 | 91.58 233 | 67.61 205 | 80.31 231 | 89.30 228 |
|
IterMVS-SCA-FT | | | 75.43 248 | 73.87 251 | 80.11 241 | 82.69 296 | 64.85 201 | 81.57 285 | 83.47 289 | 69.16 222 | 70.49 277 | 84.15 281 | 51.95 252 | 88.15 294 | 69.23 190 | 72.14 320 | 87.34 276 |
|
1314 | | | 76.53 231 | 75.30 236 | 80.21 239 | 83.93 268 | 62.32 250 | 84.66 236 | 88.81 199 | 60.23 317 | 70.16 283 | 84.07 282 | 55.30 219 | 90.73 257 | 67.37 208 | 83.21 195 | 87.59 271 |
|
cl22 | | | 78.07 203 | 77.01 204 | 81.23 215 | 82.37 304 | 61.83 257 | 83.55 264 | 87.98 219 | 68.96 229 | 75.06 234 | 83.87 283 | 61.40 170 | 91.88 226 | 73.53 150 | 76.39 272 | 89.98 208 |
|
EG-PatchMatch MVS | | | 74.04 259 | 71.82 267 | 80.71 229 | 84.92 253 | 67.42 149 | 85.86 211 | 88.08 217 | 66.04 261 | 64.22 334 | 83.85 284 | 35.10 355 | 92.56 200 | 57.44 291 | 80.83 223 | 82.16 342 |
|
thisisatest0515 | | | 77.33 220 | 75.38 233 | 83.18 161 | 85.27 245 | 63.80 222 | 82.11 279 | 83.27 292 | 65.06 271 | 75.91 209 | 83.84 285 | 49.54 280 | 94.27 124 | 67.24 211 | 86.19 159 | 91.48 150 |
|
test20.03 | | | 67.45 308 | 66.95 309 | 68.94 337 | 75.48 357 | 44.84 367 | 77.50 322 | 77.67 336 | 66.66 252 | 63.01 340 | 83.80 286 | 47.02 299 | 78.40 348 | 42.53 357 | 68.86 336 | 83.58 330 |
|
miper_ehance_all_eth | | | 78.59 191 | 77.76 190 | 81.08 221 | 82.66 297 | 61.56 260 | 83.65 260 | 89.15 186 | 68.87 231 | 75.55 216 | 83.79 287 | 66.49 103 | 92.03 219 | 73.25 156 | 76.39 272 | 89.64 220 |
|
MSDG | | | 73.36 266 | 70.99 275 | 80.49 233 | 84.51 258 | 65.80 181 | 80.71 291 | 86.13 252 | 65.70 265 | 65.46 325 | 83.74 288 | 44.60 315 | 90.91 253 | 51.13 319 | 76.89 263 | 84.74 319 |
|
IterMVS | | | 74.29 255 | 72.94 259 | 78.35 270 | 81.53 314 | 63.49 230 | 81.58 284 | 82.49 301 | 68.06 241 | 69.99 286 | 83.69 289 | 51.66 258 | 85.54 313 | 65.85 223 | 71.64 323 | 86.01 305 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
tpm | | | 72.37 277 | 71.71 268 | 74.35 312 | 82.19 306 | 52.00 347 | 79.22 307 | 77.29 341 | 64.56 277 | 72.95 255 | 83.68 290 | 51.35 259 | 83.26 331 | 58.33 284 | 75.80 279 | 87.81 265 |
|
Effi-MVS+-dtu | | | 80.03 156 | 78.57 168 | 84.42 113 | 85.13 249 | 68.74 119 | 88.77 118 | 88.10 215 | 74.99 107 | 74.97 236 | 83.49 291 | 57.27 209 | 93.36 171 | 73.53 150 | 80.88 222 | 91.18 158 |
|
baseline2 | | | 75.70 244 | 73.83 252 | 81.30 213 | 83.26 280 | 61.79 258 | 82.57 276 | 80.65 316 | 66.81 248 | 66.88 312 | 83.42 292 | 57.86 202 | 92.19 215 | 63.47 237 | 79.57 237 | 89.91 210 |
|
TinyColmap | | | 67.30 310 | 64.81 314 | 74.76 309 | 81.92 309 | 56.68 314 | 80.29 297 | 81.49 310 | 60.33 315 | 56.27 360 | 83.22 293 | 24.77 366 | 87.66 300 | 45.52 349 | 69.47 331 | 79.95 352 |
|
CostFormer | | | 75.24 251 | 73.90 250 | 79.27 257 | 82.65 298 | 58.27 289 | 80.80 288 | 82.73 300 | 61.57 308 | 75.33 227 | 83.13 294 | 55.52 217 | 91.07 251 | 64.98 230 | 78.34 251 | 88.45 255 |
|
miper_lstm_enhance | | | 74.11 258 | 73.11 258 | 77.13 289 | 80.11 331 | 59.62 280 | 72.23 343 | 86.92 241 | 66.76 250 | 70.40 278 | 82.92 295 | 56.93 213 | 82.92 332 | 69.06 193 | 72.63 316 | 88.87 244 |
|
GA-MVS | | | 76.87 228 | 75.17 237 | 81.97 199 | 82.75 294 | 62.58 246 | 81.44 287 | 86.35 249 | 72.16 165 | 74.74 239 | 82.89 296 | 46.20 306 | 92.02 220 | 68.85 196 | 81.09 220 | 91.30 156 |
|
K. test v3 | | | 71.19 282 | 68.51 290 | 79.21 259 | 83.04 288 | 57.78 299 | 84.35 249 | 76.91 344 | 72.90 157 | 62.99 341 | 82.86 297 | 39.27 341 | 91.09 250 | 61.65 255 | 52.66 363 | 88.75 249 |
|
MS-PatchMatch | | | 73.83 261 | 72.67 260 | 77.30 286 | 83.87 269 | 66.02 174 | 81.82 280 | 84.66 268 | 61.37 311 | 68.61 299 | 82.82 298 | 47.29 297 | 88.21 293 | 59.27 272 | 84.32 178 | 77.68 357 |
|
lessismore_v0 | | | | | 78.97 260 | 81.01 323 | 57.15 306 | | 65.99 368 | | 61.16 346 | 82.82 298 | 39.12 342 | 91.34 241 | 59.67 269 | 46.92 368 | 88.43 256 |
|
D2MVS | | | 74.82 252 | 73.21 256 | 79.64 252 | 79.81 335 | 62.56 247 | 80.34 296 | 87.35 233 | 64.37 280 | 68.86 296 | 82.66 300 | 46.37 303 | 90.10 264 | 67.91 203 | 81.24 219 | 86.25 298 |
|
Anonymous20231206 | | | 68.60 302 | 67.80 301 | 71.02 331 | 80.23 330 | 50.75 356 | 78.30 317 | 80.47 319 | 56.79 343 | 66.11 323 | 82.63 301 | 46.35 304 | 78.95 346 | 43.62 354 | 75.70 280 | 83.36 332 |
|
MIMVSNet | | | 70.69 286 | 69.30 285 | 74.88 307 | 84.52 257 | 56.35 320 | 75.87 331 | 79.42 329 | 64.59 276 | 67.76 302 | 82.41 302 | 41.10 335 | 81.54 337 | 46.64 345 | 81.34 217 | 86.75 292 |
|
OpenMVS_ROB |  | 64.09 19 | 70.56 288 | 68.19 293 | 77.65 280 | 80.26 329 | 59.41 283 | 85.01 229 | 82.96 298 | 58.76 330 | 65.43 326 | 82.33 303 | 37.63 349 | 91.23 244 | 45.34 351 | 76.03 277 | 82.32 340 |
|
miper_enhance_ethall | | | 77.87 210 | 76.86 208 | 80.92 225 | 81.65 311 | 61.38 262 | 82.68 274 | 88.98 193 | 65.52 268 | 75.47 217 | 82.30 304 | 65.76 115 | 92.00 221 | 72.95 159 | 76.39 272 | 89.39 225 |
|
test0.0.03 1 | | | 68.00 306 | 67.69 303 | 68.90 338 | 77.55 348 | 47.43 362 | 75.70 332 | 72.95 356 | 66.66 252 | 66.56 316 | 82.29 305 | 48.06 294 | 75.87 359 | 44.97 352 | 74.51 300 | 83.41 331 |
|
PVSNet | | 64.34 18 | 72.08 279 | 70.87 278 | 75.69 298 | 86.21 234 | 56.44 317 | 74.37 339 | 80.73 315 | 62.06 306 | 70.17 282 | 82.23 306 | 42.86 324 | 83.31 330 | 54.77 305 | 84.45 177 | 87.32 277 |
|
MIMVSNet1 | | | 68.58 303 | 66.78 310 | 73.98 315 | 80.07 332 | 51.82 348 | 80.77 289 | 84.37 272 | 64.40 279 | 59.75 351 | 82.16 307 | 36.47 351 | 83.63 327 | 42.73 356 | 70.33 329 | 86.48 296 |
|
CL-MVSNet_self_test | | | 72.37 277 | 71.46 269 | 75.09 305 | 79.49 341 | 53.53 339 | 80.76 290 | 85.01 264 | 69.12 223 | 70.51 276 | 82.05 308 | 57.92 201 | 84.13 323 | 52.27 314 | 66.00 343 | 87.60 269 |
|
tpm2 | | | 73.26 267 | 71.46 269 | 78.63 264 | 83.34 278 | 56.71 313 | 80.65 292 | 80.40 321 | 56.63 344 | 73.55 248 | 82.02 309 | 51.80 256 | 91.24 243 | 56.35 300 | 78.42 250 | 87.95 261 |
|
PatchMatch-RL | | | 72.38 276 | 70.90 276 | 76.80 292 | 88.60 172 | 67.38 151 | 79.53 303 | 76.17 346 | 62.75 299 | 69.36 294 | 82.00 310 | 45.51 313 | 84.89 319 | 53.62 309 | 80.58 227 | 78.12 356 |
|
FMVSNet5 | | | 69.50 296 | 67.96 297 | 74.15 314 | 82.97 291 | 55.35 328 | 80.01 299 | 82.12 304 | 62.56 301 | 63.02 339 | 81.53 311 | 36.92 350 | 81.92 335 | 48.42 333 | 74.06 303 | 85.17 315 |
|
CR-MVSNet | | | 73.37 264 | 71.27 273 | 79.67 251 | 81.32 320 | 65.19 195 | 75.92 329 | 80.30 322 | 59.92 320 | 72.73 257 | 81.19 312 | 52.50 241 | 86.69 305 | 59.84 268 | 77.71 253 | 87.11 285 |
|
Patchmtry | | | 70.74 285 | 69.16 287 | 75.49 302 | 80.72 324 | 54.07 336 | 74.94 338 | 80.30 322 | 58.34 332 | 70.01 284 | 81.19 312 | 52.50 241 | 86.54 306 | 53.37 310 | 71.09 327 | 85.87 308 |
|
IB-MVS | | 68.01 15 | 75.85 243 | 73.36 255 | 83.31 154 | 84.76 254 | 66.03 173 | 83.38 266 | 85.06 262 | 70.21 199 | 69.40 293 | 81.05 314 | 45.76 311 | 94.66 113 | 65.10 229 | 75.49 284 | 89.25 229 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
cascas | | | 76.72 230 | 74.64 240 | 82.99 172 | 85.78 238 | 65.88 178 | 82.33 277 | 89.21 182 | 60.85 313 | 72.74 256 | 81.02 315 | 47.28 298 | 93.75 154 | 67.48 207 | 85.02 168 | 89.34 226 |
|
LF4IMVS | | | 64.02 324 | 62.19 327 | 69.50 336 | 70.90 369 | 53.29 344 | 76.13 326 | 77.18 342 | 52.65 355 | 58.59 352 | 80.98 316 | 23.55 368 | 76.52 356 | 53.06 312 | 66.66 340 | 78.68 355 |
|
Anonymous20240521 | | | 68.80 301 | 67.22 307 | 73.55 316 | 74.33 360 | 54.11 335 | 83.18 268 | 85.61 257 | 58.15 333 | 61.68 344 | 80.94 317 | 30.71 363 | 81.27 339 | 57.00 296 | 73.34 313 | 85.28 312 |
|
gm-plane-assit | | | | | | 81.40 316 | 53.83 338 | | | 62.72 300 | | 80.94 317 | | 92.39 206 | 63.40 239 | | |
|
UnsupCasMVSNet_eth | | | 67.33 309 | 65.99 312 | 71.37 327 | 73.48 364 | 51.47 352 | 75.16 334 | 85.19 261 | 65.20 269 | 60.78 347 | 80.93 319 | 42.35 326 | 77.20 354 | 57.12 294 | 53.69 362 | 85.44 310 |
|
MVS_0304 | | | 72.48 274 | 70.89 277 | 77.24 287 | 82.20 305 | 59.68 279 | 84.11 254 | 83.49 288 | 67.10 247 | 66.87 313 | 80.59 320 | 35.00 356 | 87.40 301 | 59.07 276 | 79.58 236 | 84.63 321 |
|
MDTV_nov1_ep13 | | | | 69.97 284 | | 83.18 283 | 53.48 340 | 77.10 325 | 80.18 325 | 60.45 314 | 69.33 295 | 80.44 321 | 48.89 292 | 86.90 304 | 51.60 317 | 78.51 248 | |
|
pmmvs-eth3d | | | 70.50 289 | 67.83 300 | 78.52 268 | 77.37 350 | 66.18 171 | 81.82 280 | 81.51 309 | 58.90 329 | 63.90 337 | 80.42 322 | 42.69 325 | 86.28 309 | 58.56 281 | 65.30 345 | 83.11 335 |
|
PM-MVS | | | 66.41 315 | 64.14 317 | 73.20 320 | 73.92 362 | 56.45 316 | 78.97 310 | 64.96 371 | 63.88 289 | 64.72 331 | 80.24 323 | 19.84 371 | 83.44 329 | 66.24 217 | 64.52 347 | 79.71 353 |
|
SCA | | | 74.22 257 | 72.33 264 | 79.91 244 | 84.05 266 | 62.17 252 | 79.96 300 | 79.29 330 | 66.30 258 | 72.38 262 | 80.13 324 | 51.95 252 | 88.60 289 | 59.25 273 | 77.67 255 | 88.96 241 |
|
Patchmatch-test | | | 64.82 322 | 63.24 322 | 69.57 335 | 79.42 342 | 49.82 359 | 63.49 364 | 69.05 364 | 51.98 357 | 59.95 350 | 80.13 324 | 50.91 263 | 70.98 368 | 40.66 360 | 73.57 308 | 87.90 263 |
|
tpmrst | | | 72.39 275 | 72.13 265 | 73.18 321 | 80.54 327 | 49.91 358 | 79.91 301 | 79.08 331 | 63.11 292 | 71.69 269 | 79.95 326 | 55.32 218 | 82.77 333 | 65.66 225 | 73.89 305 | 86.87 288 |
|
DSMNet-mixed | | | 57.77 330 | 56.90 332 | 60.38 348 | 67.70 371 | 35.61 374 | 69.18 353 | 53.97 376 | 32.30 371 | 57.49 356 | 79.88 327 | 40.39 339 | 68.57 370 | 38.78 362 | 72.37 317 | 76.97 358 |
|
MDA-MVSNet-bldmvs | | | 66.68 312 | 63.66 320 | 75.75 297 | 79.28 343 | 60.56 272 | 73.92 340 | 78.35 333 | 64.43 278 | 50.13 365 | 79.87 328 | 44.02 318 | 83.67 326 | 46.10 347 | 56.86 358 | 83.03 337 |
|
PatchmatchNet |  | | 73.12 269 | 71.33 272 | 78.49 269 | 83.18 283 | 60.85 267 | 79.63 302 | 78.57 332 | 64.13 282 | 71.73 268 | 79.81 329 | 51.20 261 | 85.97 311 | 57.40 292 | 76.36 275 | 88.66 251 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
ppachtmachnet_test | | | 70.04 293 | 67.34 306 | 78.14 272 | 79.80 336 | 61.13 263 | 79.19 308 | 80.59 317 | 59.16 327 | 65.27 327 | 79.29 330 | 46.75 302 | 87.29 302 | 49.33 330 | 66.72 339 | 86.00 307 |
|
EPMVS | | | 69.02 299 | 68.16 294 | 71.59 325 | 79.61 339 | 49.80 360 | 77.40 323 | 66.93 367 | 62.82 298 | 70.01 284 | 79.05 331 | 45.79 310 | 77.86 352 | 56.58 298 | 75.26 293 | 87.13 284 |
|
PMMVS | | | 69.34 297 | 68.67 289 | 71.35 329 | 75.67 355 | 62.03 253 | 75.17 333 | 73.46 354 | 50.00 359 | 68.68 297 | 79.05 331 | 52.07 250 | 78.13 349 | 61.16 260 | 82.77 201 | 73.90 360 |
|
test-LLR | | | 72.94 272 | 72.43 262 | 74.48 310 | 81.35 318 | 58.04 292 | 78.38 314 | 77.46 338 | 66.66 252 | 69.95 287 | 79.00 333 | 48.06 294 | 79.24 344 | 66.13 218 | 84.83 170 | 86.15 301 |
|
test-mter | | | 71.41 281 | 70.39 282 | 74.48 310 | 81.35 318 | 58.04 292 | 78.38 314 | 77.46 338 | 60.32 316 | 69.95 287 | 79.00 333 | 36.08 353 | 79.24 344 | 66.13 218 | 84.83 170 | 86.15 301 |
|
KD-MVS_self_test | | | 68.81 300 | 67.59 305 | 72.46 323 | 74.29 361 | 45.45 365 | 77.93 320 | 87.00 239 | 63.12 291 | 63.99 336 | 78.99 335 | 42.32 327 | 84.77 320 | 56.55 299 | 64.09 348 | 87.16 283 |
|
KD-MVS_2432*1600 | | | 66.22 317 | 63.89 318 | 73.21 318 | 75.47 358 | 53.42 341 | 70.76 348 | 84.35 273 | 64.10 283 | 66.52 318 | 78.52 336 | 34.55 357 | 84.98 317 | 50.40 322 | 50.33 366 | 81.23 346 |
|
miper_refine_blended | | | 66.22 317 | 63.89 318 | 73.21 318 | 75.47 358 | 53.42 341 | 70.76 348 | 84.35 273 | 64.10 283 | 66.52 318 | 78.52 336 | 34.55 357 | 84.98 317 | 50.40 322 | 50.33 366 | 81.23 346 |
|
tpmvs | | | 71.09 283 | 69.29 286 | 76.49 293 | 82.04 307 | 56.04 323 | 78.92 311 | 81.37 311 | 64.05 285 | 67.18 310 | 78.28 338 | 49.74 279 | 89.77 267 | 49.67 329 | 72.37 317 | 83.67 329 |
|
our_test_3 | | | 69.14 298 | 67.00 308 | 75.57 300 | 79.80 336 | 58.80 284 | 77.96 319 | 77.81 335 | 59.55 323 | 62.90 342 | 78.25 339 | 47.43 296 | 83.97 324 | 51.71 316 | 67.58 338 | 83.93 328 |
|
MDA-MVSNet_test_wron | | | 65.03 320 | 62.92 323 | 71.37 327 | 75.93 353 | 56.73 311 | 69.09 356 | 74.73 351 | 57.28 341 | 54.03 362 | 77.89 340 | 45.88 308 | 74.39 365 | 49.89 328 | 61.55 352 | 82.99 338 |
|
YYNet1 | | | 65.03 320 | 62.91 324 | 71.38 326 | 75.85 354 | 56.60 315 | 69.12 355 | 74.66 353 | 57.28 341 | 54.12 361 | 77.87 341 | 45.85 309 | 74.48 364 | 49.95 327 | 61.52 353 | 83.05 336 |
|
ambc | | | | | 75.24 304 | 73.16 366 | 50.51 357 | 63.05 365 | 87.47 231 | | 64.28 333 | 77.81 342 | 17.80 372 | 89.73 269 | 57.88 288 | 60.64 354 | 85.49 309 |
|
tpm cat1 | | | 70.57 287 | 68.31 292 | 77.35 285 | 82.41 303 | 57.95 295 | 78.08 318 | 80.22 324 | 52.04 356 | 68.54 300 | 77.66 343 | 52.00 251 | 87.84 298 | 51.77 315 | 72.07 321 | 86.25 298 |
|
dp | | | 66.80 311 | 65.43 313 | 70.90 332 | 79.74 338 | 48.82 361 | 75.12 336 | 74.77 350 | 59.61 322 | 64.08 335 | 77.23 344 | 42.89 323 | 80.72 341 | 48.86 332 | 66.58 341 | 83.16 334 |
|
TESTMET0.1,1 | | | 69.89 295 | 69.00 288 | 72.55 322 | 79.27 344 | 56.85 309 | 78.38 314 | 74.71 352 | 57.64 337 | 68.09 301 | 77.19 345 | 37.75 348 | 76.70 355 | 63.92 235 | 84.09 181 | 84.10 327 |
|
CHOSEN 280x420 | | | 66.51 314 | 64.71 315 | 71.90 324 | 81.45 315 | 63.52 229 | 57.98 366 | 68.95 365 | 53.57 352 | 62.59 343 | 76.70 346 | 46.22 305 | 75.29 362 | 55.25 303 | 79.68 235 | 76.88 359 |
|
PatchT | | | 68.46 305 | 67.85 299 | 70.29 333 | 80.70 325 | 43.93 368 | 72.47 342 | 74.88 349 | 60.15 318 | 70.55 275 | 76.57 347 | 49.94 276 | 81.59 336 | 50.58 320 | 74.83 297 | 85.34 311 |
|
RPMNet | | | 73.51 263 | 70.49 279 | 82.58 189 | 81.32 320 | 65.19 195 | 75.92 329 | 92.27 83 | 57.60 338 | 72.73 257 | 76.45 348 | 52.30 244 | 95.43 74 | 48.14 338 | 77.71 253 | 87.11 285 |
|
ADS-MVSNet2 | | | 66.20 319 | 63.33 321 | 74.82 308 | 79.92 333 | 58.75 285 | 67.55 358 | 75.19 348 | 53.37 353 | 65.25 328 | 75.86 349 | 42.32 327 | 80.53 342 | 41.57 358 | 68.91 334 | 85.18 313 |
|
ADS-MVSNet | | | 64.36 323 | 62.88 325 | 68.78 340 | 79.92 333 | 47.17 363 | 67.55 358 | 71.18 357 | 53.37 353 | 65.25 328 | 75.86 349 | 42.32 327 | 73.99 366 | 41.57 358 | 68.91 334 | 85.18 313 |
|
EGC-MVSNET | | | 52.07 334 | 47.05 338 | 67.14 343 | 83.51 275 | 60.71 269 | 80.50 294 | 67.75 366 | 0.07 379 | 0.43 380 | 75.85 351 | 24.26 367 | 81.54 337 | 28.82 367 | 62.25 350 | 59.16 367 |
|
new-patchmatchnet | | | 61.73 326 | 61.73 328 | 61.70 347 | 72.74 368 | 24.50 381 | 69.16 354 | 78.03 334 | 61.40 309 | 56.72 358 | 75.53 352 | 38.42 344 | 76.48 357 | 45.95 348 | 57.67 357 | 84.13 326 |
|
N_pmnet | | | 52.79 333 | 53.26 334 | 51.40 353 | 78.99 345 | 7.68 384 | 69.52 351 | 3.89 384 | 51.63 358 | 57.01 357 | 74.98 353 | 40.83 337 | 65.96 371 | 37.78 363 | 64.67 346 | 80.56 351 |
|
patchmatchnet-post | | | | | | | | | | | | 74.00 354 | 51.12 262 | 88.60 289 | | | |
|
GG-mvs-BLEND | | | | | 75.38 303 | 81.59 313 | 55.80 325 | 79.32 305 | 69.63 361 | | 67.19 309 | 73.67 355 | 43.24 321 | 88.90 286 | 50.41 321 | 84.50 174 | 81.45 345 |
|
Patchmatch-RL test | | | 70.24 291 | 67.78 302 | 77.61 281 | 77.43 349 | 59.57 282 | 71.16 345 | 70.33 358 | 62.94 296 | 68.65 298 | 72.77 356 | 50.62 267 | 85.49 314 | 69.58 188 | 66.58 341 | 87.77 266 |
|
FPMVS | | | 53.68 332 | 51.64 335 | 59.81 349 | 65.08 372 | 51.03 354 | 69.48 352 | 69.58 362 | 41.46 363 | 40.67 367 | 72.32 357 | 16.46 374 | 70.00 369 | 24.24 371 | 65.42 344 | 58.40 368 |
|
UnsupCasMVSNet_bld | | | 63.70 325 | 61.53 329 | 70.21 334 | 73.69 363 | 51.39 353 | 72.82 341 | 81.89 305 | 55.63 348 | 57.81 355 | 71.80 358 | 38.67 343 | 78.61 347 | 49.26 331 | 52.21 364 | 80.63 349 |
|
PVSNet_0 | | 57.27 20 | 61.67 327 | 59.27 330 | 68.85 339 | 79.61 339 | 57.44 304 | 68.01 357 | 73.44 355 | 55.93 347 | 58.54 353 | 70.41 359 | 44.58 316 | 77.55 353 | 47.01 342 | 35.91 369 | 71.55 362 |
|
pmmvs3 | | | 57.79 329 | 54.26 333 | 68.37 341 | 64.02 373 | 56.72 312 | 75.12 336 | 65.17 369 | 40.20 364 | 52.93 363 | 69.86 360 | 20.36 370 | 75.48 361 | 45.45 350 | 55.25 361 | 72.90 361 |
|
new_pmnet | | | 50.91 335 | 50.29 336 | 52.78 352 | 68.58 370 | 34.94 376 | 63.71 363 | 56.63 375 | 39.73 365 | 44.95 366 | 65.47 361 | 21.93 369 | 58.48 372 | 34.98 365 | 56.62 359 | 64.92 364 |
|
gg-mvs-nofinetune | | | 69.95 294 | 67.96 297 | 75.94 296 | 83.07 286 | 54.51 333 | 77.23 324 | 70.29 359 | 63.11 292 | 70.32 279 | 62.33 362 | 43.62 320 | 88.69 288 | 53.88 308 | 87.76 135 | 84.62 322 |
|
JIA-IIPM | | | 66.32 316 | 62.82 326 | 76.82 291 | 77.09 351 | 61.72 259 | 65.34 361 | 75.38 347 | 58.04 335 | 64.51 332 | 62.32 363 | 42.05 332 | 86.51 307 | 51.45 318 | 69.22 333 | 82.21 341 |
|
LCM-MVSNet | | | 54.25 331 | 49.68 337 | 67.97 342 | 53.73 376 | 45.28 366 | 66.85 360 | 80.78 314 | 35.96 368 | 39.45 368 | 62.23 364 | 8.70 380 | 78.06 351 | 48.24 337 | 51.20 365 | 80.57 350 |
|
PMMVS2 | | | 40.82 339 | 38.86 342 | 46.69 354 | 53.84 375 | 16.45 382 | 48.61 369 | 49.92 377 | 37.49 367 | 31.67 369 | 60.97 365 | 8.14 381 | 56.42 373 | 28.42 368 | 30.72 371 | 67.19 363 |
|
MVS-HIRNet | | | 59.14 328 | 57.67 331 | 63.57 346 | 81.65 311 | 43.50 369 | 71.73 344 | 65.06 370 | 39.59 366 | 51.43 364 | 57.73 366 | 38.34 345 | 82.58 334 | 39.53 361 | 73.95 304 | 64.62 365 |
|
ANet_high | | | 50.57 336 | 46.10 339 | 63.99 345 | 48.67 379 | 39.13 372 | 70.99 347 | 80.85 313 | 61.39 310 | 31.18 370 | 57.70 367 | 17.02 373 | 73.65 367 | 31.22 366 | 15.89 376 | 79.18 354 |
|
PMVS |  | 37.38 22 | 44.16 338 | 40.28 341 | 55.82 350 | 40.82 381 | 42.54 370 | 65.12 362 | 63.99 372 | 34.43 369 | 24.48 372 | 57.12 368 | 3.92 382 | 76.17 358 | 17.10 374 | 55.52 360 | 48.75 369 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
test_method | | | 31.52 341 | 29.28 345 | 38.23 356 | 27.03 383 | 6.50 385 | 20.94 374 | 62.21 374 | 4.05 377 | 22.35 375 | 52.50 369 | 13.33 375 | 47.58 376 | 27.04 370 | 34.04 370 | 60.62 366 |
|
DeepMVS_CX |  | | | | 27.40 359 | 40.17 382 | 26.90 379 | | 24.59 383 | 17.44 375 | 23.95 373 | 48.61 370 | 9.77 378 | 26.48 378 | 18.06 373 | 24.47 372 | 28.83 372 |
|
MVE |  | 26.22 23 | 30.37 343 | 25.89 347 | 43.81 355 | 44.55 380 | 35.46 375 | 28.87 373 | 39.07 380 | 18.20 374 | 18.58 376 | 40.18 371 | 2.68 383 | 47.37 377 | 17.07 375 | 23.78 373 | 48.60 370 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
Gipuma |  | | 45.18 337 | 41.86 340 | 55.16 351 | 77.03 352 | 51.52 351 | 32.50 372 | 80.52 318 | 32.46 370 | 27.12 371 | 35.02 372 | 9.52 379 | 75.50 360 | 22.31 372 | 60.21 356 | 38.45 371 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
E-PMN | | | 31.77 340 | 30.64 343 | 35.15 357 | 52.87 377 | 27.67 378 | 57.09 367 | 47.86 378 | 24.64 372 | 16.40 377 | 33.05 373 | 11.23 377 | 54.90 374 | 14.46 376 | 18.15 374 | 22.87 373 |
|
EMVS | | | 30.81 342 | 29.65 344 | 34.27 358 | 50.96 378 | 25.95 380 | 56.58 368 | 46.80 379 | 24.01 373 | 15.53 378 | 30.68 374 | 12.47 376 | 54.43 375 | 12.81 377 | 17.05 375 | 22.43 374 |
|
tmp_tt | | | 18.61 345 | 21.40 348 | 10.23 361 | 4.82 384 | 10.11 383 | 34.70 371 | 30.74 382 | 1.48 378 | 23.91 374 | 26.07 375 | 28.42 364 | 13.41 380 | 27.12 369 | 15.35 377 | 7.17 375 |
|
X-MVStestdata | | | 80.37 148 | 77.83 186 | 88.00 15 | 94.42 22 | 73.33 20 | 92.78 18 | 92.99 49 | 79.14 23 | 83.67 86 | 12.47 376 | 67.45 95 | 96.60 34 | 83.06 62 | 94.50 57 | 94.07 47 |
|
test_post | | | | | | | | | | | | 5.46 377 | 50.36 271 | 84.24 322 | | | |
|
test_post1 | | | | | | | | 78.90 312 | | | | 5.43 378 | 48.81 293 | 85.44 315 | 59.25 273 | | |
|
wuyk23d | | | 16.82 346 | 15.94 349 | 19.46 360 | 58.74 374 | 31.45 377 | 39.22 370 | 3.74 385 | 6.84 376 | 6.04 379 | 2.70 379 | 1.27 384 | 24.29 379 | 10.54 378 | 14.40 378 | 2.63 376 |
|
testmvs | | | 6.04 349 | 8.02 352 | 0.10 363 | 0.08 385 | 0.03 387 | 69.74 350 | 0.04 386 | 0.05 380 | 0.31 381 | 1.68 380 | 0.02 386 | 0.04 381 | 0.24 379 | 0.02 379 | 0.25 378 |
|
test123 | | | 6.12 348 | 8.11 351 | 0.14 362 | 0.06 386 | 0.09 386 | 71.05 346 | 0.03 387 | 0.04 381 | 0.25 382 | 1.30 381 | 0.05 385 | 0.03 382 | 0.21 380 | 0.01 380 | 0.29 377 |
|
test_blank | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uanet_test | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
DCPMVS | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
pcd_1.5k_mvsjas | | | 5.26 350 | 7.02 353 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 63.15 140 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
sosnet-low-res | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
sosnet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uncertanet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
Regformer | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uanet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
FOURS1 | | | | | | 95.00 10 | 72.39 42 | 95.06 1 | 93.84 18 | 74.49 120 | 91.30 15 | | | | | | |
|
MSC_two_6792asdad | | | | | 89.16 1 | 94.34 29 | 75.53 2 | | 92.99 49 | | | | | 97.53 1 | 89.67 1 | 96.44 9 | 94.41 32 |
|
No_MVS | | | | | 89.16 1 | 94.34 29 | 75.53 2 | | 92.99 49 | | | | | 97.53 1 | 89.67 1 | 96.44 9 | 94.41 32 |
|
eth-test2 | | | | | | 0.00 387 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 387 | | | | | | | | | | | |
|
IU-MVS | | | | | | 95.30 2 | 71.25 63 | | 92.95 56 | 66.81 248 | 92.39 6 | | | | 88.94 11 | 96.63 4 | 94.85 16 |
|
save fliter | | | | | | 93.80 44 | 72.35 45 | 90.47 70 | 91.17 129 | 74.31 124 | | | | | | | |
|
test_0728_SECOND | | | | | 87.71 34 | 95.34 1 | 71.43 62 | 93.49 9 | 94.23 5 | | | | | 97.49 3 | 89.08 7 | 96.41 12 | 94.21 42 |
|
GSMVS | | | | | | | | | | | | | | | | | 88.96 241 |
|
test_part2 | | | | | | 95.06 8 | 72.65 33 | | | | 91.80 13 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 51.32 260 | | | | 88.96 241 |
|
sam_mvs | | | | | | | | | | | | | 50.01 274 | | | | |
|
MTGPA |  | | | | | | | | 92.02 94 | | | | | | | | |
|
MTMP | | | | | | | | 92.18 35 | 32.83 381 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 84.90 33 | 95.70 31 | 92.87 105 |
|
agg_prior2 | | | | | | | | | | | | | | | 82.91 65 | 95.45 33 | 92.70 108 |
|
agg_prior | | | | | | 92.85 66 | 71.94 54 | | 91.78 110 | | 84.41 72 | | | 94.93 98 | | | |
|
test_prior4 | | | | | | | 72.60 35 | 89.01 108 | | | | | | | | | |
|
test_prior | | | | | 86.33 63 | 92.61 74 | 69.59 100 | | 92.97 54 | | | | | 95.48 70 | | | 93.91 55 |
|
旧先验2 | | | | | | | | 86.56 192 | | 58.10 334 | 87.04 35 | | | 88.98 282 | 74.07 146 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 86.29 200 | | | | | | | | | |
|
æ— å…ˆéªŒ | | | | | | | | 87.48 163 | 88.98 193 | 60.00 319 | | | | 94.12 134 | 67.28 209 | | 88.97 240 |
|
原ACMM2 | | | | | | | | 86.86 181 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 91.01 252 | 62.37 247 | | |
|
segment_acmp | | | | | | | | | | | | | 73.08 45 | | | | |
|
testdata1 | | | | | | | | 84.14 253 | | 75.71 90 | | | | | | | |
|
test12 | | | | | 86.80 55 | 92.63 73 | 70.70 81 | | 91.79 109 | | 82.71 99 | | 71.67 57 | 96.16 47 | | 94.50 57 | 93.54 80 |
|
plane_prior7 | | | | | | 90.08 115 | 68.51 128 | | | | | | | | | | |
|
plane_prior6 | | | | | | 89.84 124 | 68.70 123 | | | | | | 60.42 188 | | | | |
|
plane_prior5 | | | | | | | | | 92.44 75 | | | | | 95.38 79 | 78.71 103 | 86.32 157 | 91.33 153 |
|
plane_prior3 | | | | | | | 68.60 126 | | | 78.44 33 | 78.92 141 | | | | | | |
|
plane_prior2 | | | | | | | | 91.25 52 | | 79.12 25 | | | | | | | |
|
plane_prior1 | | | | | | 89.90 123 | | | | | | | | | | | |
|
plane_prior | | | | | | | 68.71 121 | 90.38 74 | | 77.62 41 | | | | | | 86.16 160 | |
|
n2 | | | | | | | | | 0.00 388 | | | | | | | | |
|
nn | | | | | | | | | 0.00 388 | | | | | | | | |
|
door-mid | | | | | | | | | 69.98 360 | | | | | | | | |
|
test11 | | | | | | | | | 92.23 86 | | | | | | | | |
|
door | | | | | | | | | 69.44 363 | | | | | | | | |
|
HQP5-MVS | | | | | | | 66.98 158 | | | | | | | | | | |
|
HQP-NCC | | | | | | 89.33 139 | | 89.17 101 | | 76.41 75 | 77.23 180 | | | | | | |
|
ACMP_Plane | | | | | | 89.33 139 | | 89.17 101 | | 76.41 75 | 77.23 180 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.47 116 | | |
|
HQP4-MVS | | | | | | | | | | | 77.24 179 | | | 95.11 90 | | | 91.03 164 |
|
HQP3-MVS | | | | | | | | | 92.19 89 | | | | | | | 85.99 163 | |
|
HQP2-MVS | | | | | | | | | | | | | 60.17 191 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 37.79 373 | 75.16 334 | | 55.10 349 | 66.53 317 | | 49.34 284 | | 53.98 307 | | 87.94 262 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 81.95 212 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 81.25 218 | |
|
Test By Simon | | | | | | | | | | | | | 64.33 125 | | | | |
|