APDe-MVS | | | 89.15 6 | 89.63 6 | 87.73 26 | 94.49 18 | 71.69 50 | 93.83 4 | 93.96 13 | 75.70 87 | 91.06 16 | 96.03 1 | 76.84 14 | 97.03 15 | 89.09 6 | 95.65 27 | 94.47 29 |
|
SMA-MVS |  | | 89.08 7 | 89.23 7 | 88.61 5 | 94.25 31 | 73.73 9 | 92.40 23 | 93.63 21 | 74.77 103 | 92.29 7 | 95.97 2 | 74.28 29 | 97.24 11 | 88.58 13 | 96.91 1 | 94.87 14 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
test0726 | | | | | | 95.27 5 | 71.25 55 | 93.60 6 | 94.11 6 | 77.33 46 | 92.81 3 | 95.79 3 | 80.98 9 | | | | |
|
DVP-MVS |  | | 89.60 3 | 90.35 3 | 87.33 38 | 95.27 5 | 71.25 55 | 93.49 9 | 92.73 59 | 77.33 46 | 92.12 9 | 95.78 4 | 80.98 9 | 97.40 7 | 89.08 7 | 96.41 12 | 93.33 76 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_THIRD | | | | | | | | | | 78.38 31 | 92.12 9 | 95.78 4 | 81.46 7 | 97.40 7 | 89.42 4 | 96.57 7 | 94.67 22 |
|
DVP-MVS++ | | | 90.23 1 | 91.01 1 | 87.89 22 | 94.34 27 | 71.25 55 | 95.06 1 | 94.23 3 | 78.38 31 | 92.78 4 | 95.74 6 | 82.45 3 | 97.49 3 | 89.42 4 | 96.68 2 | 94.95 8 |
|
test_one_0601 | | | | | | 95.07 7 | 71.46 53 | | 94.14 5 | 78.27 33 | 92.05 11 | 95.74 6 | 80.83 11 | | | | |
|
SED-MVS | | | 90.08 2 | 90.85 2 | 87.77 24 | 95.30 2 | 70.98 61 | 93.57 7 | 94.06 10 | 77.24 48 | 93.10 1 | 95.72 8 | 82.99 1 | 97.44 5 | 89.07 9 | 96.63 4 | 94.88 12 |
|
test_241102_TWO | | | | | | | | | 94.06 10 | 77.24 48 | 92.78 4 | 95.72 8 | 81.26 8 | 97.44 5 | 89.07 9 | 96.58 6 | 94.26 39 |
|
DPE-MVS |  | | 89.48 5 | 89.98 4 | 88.01 14 | 94.80 11 | 72.69 30 | 91.59 41 | 94.10 8 | 75.90 83 | 92.29 7 | 95.66 10 | 81.67 6 | 97.38 9 | 87.44 20 | 96.34 15 | 93.95 49 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
test_241102_ONE | | | | | | 95.30 2 | 70.98 61 | | 94.06 10 | 77.17 51 | 93.10 1 | 95.39 11 | 82.99 1 | 97.27 10 | | | |
|
MP-MVS-pluss | | | 87.67 19 | 87.72 19 | 87.54 34 | 93.64 44 | 72.04 47 | 89.80 77 | 93.50 25 | 75.17 96 | 86.34 33 | 95.29 12 | 70.86 53 | 96.00 47 | 88.78 12 | 96.04 16 | 94.58 25 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
SF-MVS | | | 88.46 11 | 88.74 11 | 87.64 33 | 92.78 61 | 71.95 48 | 92.40 23 | 94.74 2 | 75.71 85 | 89.16 19 | 95.10 13 | 75.65 21 | 96.19 41 | 87.07 21 | 96.01 17 | 94.79 19 |
|
ACMMP_NAP | | | 88.05 15 | 88.08 16 | 87.94 17 | 93.70 41 | 73.05 21 | 90.86 54 | 93.59 23 | 76.27 77 | 88.14 23 | 95.09 14 | 71.06 52 | 96.67 27 | 87.67 16 | 96.37 14 | 94.09 44 |
|
MTAPA | | | 87.23 26 | 87.00 27 | 87.90 20 | 94.18 35 | 74.25 5 | 86.58 174 | 92.02 85 | 79.45 17 | 85.88 35 | 94.80 15 | 68.07 77 | 96.21 40 | 86.69 23 | 95.34 31 | 93.23 79 |
|
SteuartSystems-ACMMP | | | 88.72 10 | 88.86 10 | 88.32 8 | 92.14 69 | 72.96 24 | 93.73 5 | 93.67 20 | 80.19 10 | 88.10 24 | 94.80 15 | 73.76 33 | 97.11 13 | 87.51 18 | 95.82 21 | 94.90 11 |
Skip Steuart: Steuart Systems R&D Blog. |
9.14 | | | | 88.26 14 | | 92.84 60 | | 91.52 44 | 94.75 1 | 73.93 121 | 88.57 22 | 94.67 17 | 75.57 22 | 95.79 51 | 86.77 22 | 95.76 23 | |
|
SR-MVS | | | 86.73 32 | 86.67 33 | 86.91 44 | 94.11 37 | 72.11 46 | 92.37 27 | 92.56 67 | 74.50 108 | 86.84 31 | 94.65 18 | 67.31 85 | 95.77 52 | 84.80 33 | 92.85 65 | 92.84 93 |
|
region2R | | | 87.42 23 | 87.20 26 | 88.09 12 | 94.63 14 | 73.55 12 | 93.03 14 | 93.12 37 | 76.73 66 | 84.45 58 | 94.52 19 | 69.09 71 | 96.70 25 | 84.37 38 | 94.83 42 | 94.03 47 |
|
ACMMPR | | | 87.44 21 | 87.23 25 | 88.08 13 | 94.64 13 | 73.59 11 | 93.04 12 | 93.20 34 | 76.78 63 | 84.66 54 | 94.52 19 | 68.81 75 | 96.65 28 | 84.53 36 | 94.90 38 | 94.00 48 |
|
APD-MVS |  | | 87.44 21 | 87.52 21 | 87.19 40 | 94.24 32 | 72.39 38 | 91.86 39 | 92.83 55 | 73.01 142 | 88.58 21 | 94.52 19 | 73.36 34 | 96.49 34 | 84.26 39 | 95.01 35 | 92.70 95 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
APD-MVS_3200maxsize | | | 85.97 43 | 85.88 45 | 86.22 55 | 92.69 63 | 69.53 86 | 91.93 36 | 92.99 45 | 73.54 131 | 85.94 34 | 94.51 22 | 65.80 102 | 95.61 55 | 83.04 52 | 92.51 69 | 93.53 71 |
|
CP-MVS | | | 87.11 28 | 86.92 30 | 87.68 32 | 94.20 34 | 73.86 7 | 93.98 3 | 92.82 58 | 76.62 68 | 83.68 71 | 94.46 23 | 67.93 78 | 95.95 50 | 84.20 42 | 94.39 51 | 93.23 79 |
|
SR-MVS-dyc-post | | | 85.77 46 | 85.61 48 | 86.23 54 | 93.06 55 | 70.63 71 | 91.88 37 | 92.27 76 | 73.53 132 | 85.69 38 | 94.45 24 | 65.00 110 | 95.56 56 | 82.75 55 | 91.87 77 | 92.50 103 |
|
RE-MVS-def | | | | 85.48 49 | | 93.06 55 | 70.63 71 | 91.88 37 | 92.27 76 | 73.53 132 | 85.69 38 | 94.45 24 | 63.87 116 | | 82.75 55 | 91.87 77 | 92.50 103 |
|
HFP-MVS | | | 87.58 20 | 87.47 22 | 87.94 17 | 94.58 16 | 73.54 14 | 93.04 12 | 93.24 33 | 76.78 63 | 84.91 47 | 94.44 26 | 70.78 54 | 96.61 30 | 84.53 36 | 94.89 39 | 93.66 59 |
|
PGM-MVS | | | 86.68 34 | 86.27 38 | 87.90 20 | 94.22 33 | 73.38 17 | 90.22 68 | 93.04 38 | 75.53 89 | 83.86 68 | 94.42 27 | 67.87 80 | 96.64 29 | 82.70 59 | 94.57 47 | 93.66 59 |
|
MP-MVS |  | | 87.71 18 | 87.64 20 | 87.93 19 | 94.36 26 | 73.88 6 | 92.71 22 | 92.65 64 | 77.57 39 | 83.84 69 | 94.40 28 | 72.24 42 | 96.28 38 | 85.65 25 | 95.30 33 | 93.62 66 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ZNCC-MVS | | | 87.94 17 | 87.85 18 | 88.20 11 | 94.39 24 | 73.33 18 | 93.03 14 | 93.81 17 | 76.81 61 | 85.24 42 | 94.32 29 | 71.76 46 | 96.93 17 | 85.53 26 | 95.79 22 | 94.32 36 |
|
HPM-MVS++ |  | | 89.02 8 | 89.15 8 | 88.63 4 | 95.01 9 | 76.03 1 | 92.38 26 | 92.85 54 | 80.26 9 | 87.78 27 | 94.27 30 | 75.89 19 | 96.81 21 | 87.45 19 | 96.44 9 | 93.05 86 |
|
mPP-MVS | | | 86.67 35 | 86.32 37 | 87.72 28 | 94.41 22 | 73.55 12 | 92.74 20 | 92.22 80 | 76.87 60 | 82.81 84 | 94.25 31 | 66.44 92 | 96.24 39 | 82.88 54 | 94.28 54 | 93.38 73 |
|
DeepC-MVS | | 79.81 2 | 87.08 30 | 86.88 32 | 87.69 31 | 91.16 80 | 72.32 42 | 90.31 66 | 93.94 14 | 77.12 53 | 82.82 83 | 94.23 32 | 72.13 44 | 97.09 14 | 84.83 32 | 95.37 30 | 93.65 63 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
XVS | | | 87.18 27 | 86.91 31 | 88.00 15 | 94.42 20 | 73.33 18 | 92.78 18 | 92.99 45 | 79.14 19 | 83.67 72 | 94.17 33 | 67.45 83 | 96.60 31 | 83.06 50 | 94.50 48 | 94.07 45 |
|
MSP-MVS | | | 89.51 4 | 89.91 5 | 88.30 9 | 94.28 30 | 73.46 16 | 92.90 16 | 94.11 6 | 80.27 8 | 91.35 14 | 94.16 34 | 78.35 13 | 96.77 22 | 89.59 3 | 94.22 56 | 94.67 22 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DeepPCF-MVS | | 80.84 1 | 88.10 12 | 88.56 12 | 86.73 48 | 92.24 68 | 69.03 93 | 89.57 83 | 93.39 30 | 77.53 43 | 89.79 18 | 94.12 35 | 78.98 12 | 96.58 33 | 85.66 24 | 95.72 24 | 94.58 25 |
|
HPM-MVS_fast | | | 85.35 54 | 84.95 58 | 86.57 51 | 93.69 42 | 70.58 73 | 92.15 34 | 91.62 103 | 73.89 122 | 82.67 86 | 94.09 36 | 62.60 131 | 95.54 58 | 80.93 70 | 92.93 64 | 93.57 68 |
|
ZD-MVS | | | | | | 94.38 25 | 72.22 43 | | 92.67 61 | 70.98 171 | 87.75 28 | 94.07 37 | 74.01 32 | 96.70 25 | 84.66 34 | 94.84 41 | |
|
CNVR-MVS | | | 88.93 9 | 89.13 9 | 88.33 7 | 94.77 12 | 73.82 8 | 90.51 59 | 93.00 43 | 80.90 5 | 88.06 25 | 94.06 38 | 76.43 16 | 96.84 19 | 88.48 14 | 95.99 18 | 94.34 35 |
|
OPU-MVS | | | | | 89.06 3 | 94.62 15 | 75.42 4 | 93.57 7 | | | | 94.02 39 | 82.45 3 | 96.87 18 | 83.77 45 | 96.48 8 | 94.88 12 |
|
PC_three_1452 | | | | | | | | | | 68.21 225 | 92.02 12 | 94.00 40 | 82.09 5 | 95.98 49 | 84.58 35 | 96.68 2 | 94.95 8 |
|
SD-MVS | | | 88.06 13 | 88.50 13 | 86.71 49 | 92.60 66 | 72.71 28 | 91.81 40 | 93.19 35 | 77.87 34 | 90.32 17 | 94.00 40 | 74.83 23 | 93.78 134 | 87.63 17 | 94.27 55 | 93.65 63 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
GST-MVS | | | 87.42 23 | 87.26 23 | 87.89 22 | 94.12 36 | 72.97 23 | 92.39 25 | 93.43 28 | 76.89 59 | 84.68 51 | 93.99 42 | 70.67 56 | 96.82 20 | 84.18 43 | 95.01 35 | 93.90 51 |
|
HPM-MVS |  | | 87.11 28 | 86.98 28 | 87.50 36 | 93.88 39 | 72.16 44 | 92.19 32 | 93.33 31 | 76.07 80 | 83.81 70 | 93.95 43 | 69.77 65 | 96.01 46 | 85.15 27 | 94.66 44 | 94.32 36 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
TSAR-MVS + MP. | | | 88.02 16 | 88.11 15 | 87.72 28 | 93.68 43 | 72.13 45 | 91.41 45 | 92.35 74 | 74.62 107 | 88.90 20 | 93.85 44 | 75.75 20 | 96.00 47 | 87.80 15 | 94.63 45 | 95.04 6 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
ACMMP |  | | 85.89 45 | 85.39 50 | 87.38 37 | 93.59 45 | 72.63 32 | 92.74 20 | 93.18 36 | 76.78 63 | 80.73 107 | 93.82 45 | 64.33 112 | 96.29 37 | 82.67 60 | 90.69 91 | 93.23 79 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
test_prior2 | | | | | | | | 88.85 102 | | 75.41 91 | 84.91 47 | 93.54 46 | 74.28 29 | | 83.31 48 | 95.86 20 | |
|
VDDNet | | | 81.52 103 | 80.67 106 | 84.05 115 | 90.44 95 | 64.13 200 | 89.73 80 | 85.91 240 | 71.11 168 | 83.18 77 | 93.48 47 | 50.54 253 | 93.49 148 | 73.40 140 | 88.25 119 | 94.54 28 |
|
CDPH-MVS | | | 85.76 47 | 85.29 54 | 87.17 41 | 93.49 47 | 71.08 59 | 88.58 113 | 92.42 72 | 68.32 224 | 84.61 55 | 93.48 47 | 72.32 41 | 96.15 43 | 79.00 85 | 95.43 29 | 94.28 38 |
|
NCCC | | | 88.06 13 | 88.01 17 | 88.24 10 | 94.41 22 | 73.62 10 | 91.22 50 | 92.83 55 | 81.50 3 | 85.79 37 | 93.47 49 | 73.02 39 | 97.00 16 | 84.90 29 | 94.94 37 | 94.10 43 |
|
3Dnovator+ | | 77.84 4 | 85.48 50 | 84.47 62 | 88.51 6 | 91.08 81 | 73.49 15 | 93.18 11 | 93.78 18 | 80.79 6 | 76.66 180 | 93.37 50 | 60.40 174 | 96.75 24 | 77.20 103 | 93.73 60 | 95.29 4 |
|
DeepC-MVS_fast | | 79.65 3 | 86.91 31 | 86.62 34 | 87.76 25 | 93.52 46 | 72.37 40 | 91.26 46 | 93.04 38 | 76.62 68 | 84.22 62 | 93.36 51 | 71.44 50 | 96.76 23 | 80.82 72 | 95.33 32 | 94.16 41 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
VDD-MVS | | | 83.01 80 | 82.36 81 | 84.96 78 | 91.02 83 | 66.40 150 | 88.91 99 | 88.11 200 | 77.57 39 | 84.39 60 | 93.29 52 | 52.19 230 | 93.91 129 | 77.05 105 | 88.70 113 | 94.57 27 |
|
UA-Net | | | 85.08 57 | 84.96 57 | 85.45 66 | 92.07 70 | 68.07 119 | 89.78 78 | 90.86 125 | 82.48 1 | 84.60 56 | 93.20 53 | 69.35 68 | 95.22 72 | 71.39 158 | 90.88 90 | 93.07 85 |
|
TEST9 | | | | | | 93.26 50 | 72.96 24 | 88.75 106 | 91.89 93 | 68.44 222 | 85.00 45 | 93.10 54 | 74.36 28 | 95.41 65 | | | |
|
train_agg | | | 86.43 37 | 86.20 39 | 87.13 42 | 93.26 50 | 72.96 24 | 88.75 106 | 91.89 93 | 68.69 218 | 85.00 45 | 93.10 54 | 74.43 26 | 95.41 65 | 84.97 28 | 95.71 25 | 93.02 88 |
|
test_8 | | | | | | 93.13 52 | 72.57 34 | 88.68 111 | 91.84 97 | 68.69 218 | 84.87 49 | 93.10 54 | 74.43 26 | 95.16 74 | | | |
|
LFMVS | | | 81.82 95 | 81.23 96 | 83.57 131 | 91.89 73 | 63.43 216 | 89.84 74 | 81.85 291 | 77.04 56 | 83.21 76 | 93.10 54 | 52.26 229 | 93.43 153 | 71.98 153 | 89.95 101 | 93.85 52 |
|
旧先验1 | | | | | | 91.96 71 | 65.79 165 | | 86.37 234 | | | 93.08 58 | 69.31 70 | | | 92.74 66 | 88.74 235 |
|
dcpmvs_2 | | | 85.63 49 | 86.15 42 | 84.06 113 | 91.71 75 | 64.94 184 | 86.47 177 | 91.87 95 | 73.63 127 | 86.60 32 | 93.02 59 | 76.57 15 | 91.87 211 | 83.36 47 | 92.15 73 | 95.35 2 |
|
testdata | | | | | 79.97 227 | 90.90 86 | 64.21 198 | | 84.71 251 | 59.27 311 | 85.40 40 | 92.91 60 | 62.02 144 | 89.08 264 | 68.95 183 | 91.37 84 | 86.63 279 |
|
MCST-MVS | | | 87.37 25 | 87.25 24 | 87.73 26 | 94.53 17 | 72.46 37 | 89.82 75 | 93.82 16 | 73.07 140 | 84.86 50 | 92.89 61 | 76.22 17 | 96.33 36 | 84.89 31 | 95.13 34 | 94.40 32 |
|
Vis-MVSNet |  | | 83.46 70 | 82.80 76 | 85.43 67 | 90.25 98 | 68.74 102 | 90.30 67 | 90.13 144 | 76.33 76 | 80.87 106 | 92.89 61 | 61.00 163 | 94.20 116 | 72.45 152 | 90.97 88 | 93.35 75 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
CPTT-MVS | | | 83.73 64 | 83.33 68 | 84.92 81 | 93.28 49 | 70.86 67 | 92.09 35 | 90.38 134 | 68.75 217 | 79.57 118 | 92.83 63 | 60.60 170 | 93.04 173 | 80.92 71 | 91.56 82 | 90.86 154 |
|
3Dnovator | | 76.31 5 | 83.38 73 | 82.31 82 | 86.59 50 | 87.94 177 | 72.94 27 | 90.64 57 | 92.14 84 | 77.21 50 | 75.47 203 | 92.83 63 | 58.56 181 | 94.72 97 | 73.24 143 | 92.71 67 | 92.13 117 |
|
MSLP-MVS++ | | | 85.43 52 | 85.76 47 | 84.45 96 | 91.93 72 | 70.24 74 | 90.71 56 | 92.86 53 | 77.46 45 | 84.22 62 | 92.81 65 | 67.16 87 | 92.94 175 | 80.36 77 | 94.35 53 | 90.16 178 |
|
test2506 | | | 77.30 205 | 76.49 201 | 79.74 232 | 90.08 102 | 52.02 335 | 87.86 139 | 63.10 363 | 74.88 100 | 80.16 113 | 92.79 66 | 38.29 331 | 92.35 193 | 68.74 186 | 92.50 70 | 94.86 15 |
|
ECVR-MVS |  | | 79.61 144 | 79.26 135 | 80.67 214 | 90.08 102 | 54.69 319 | 87.89 137 | 77.44 326 | 74.88 100 | 80.27 110 | 92.79 66 | 48.96 274 | 92.45 187 | 68.55 187 | 92.50 70 | 94.86 15 |
|
test1111 | | | 79.43 151 | 79.18 139 | 80.15 224 | 89.99 107 | 53.31 332 | 87.33 151 | 77.05 329 | 75.04 97 | 80.23 112 | 92.77 68 | 48.97 273 | 92.33 195 | 68.87 184 | 92.40 72 | 94.81 18 |
|
MG-MVS | | | 83.41 71 | 83.45 66 | 83.28 139 | 92.74 62 | 62.28 234 | 88.17 126 | 89.50 159 | 75.22 94 | 81.49 97 | 92.74 69 | 66.75 88 | 95.11 78 | 72.85 146 | 91.58 81 | 92.45 106 |
|
casdiffmvs_mvg |  | | 85.99 42 | 86.09 44 | 85.70 64 | 87.65 189 | 67.22 138 | 88.69 110 | 93.04 38 | 79.64 16 | 85.33 41 | 92.54 70 | 73.30 35 | 94.50 105 | 83.49 46 | 91.14 87 | 95.37 1 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
patch_mono-2 | | | 83.65 66 | 84.54 61 | 80.99 207 | 90.06 106 | 65.83 162 | 84.21 234 | 88.74 191 | 71.60 160 | 85.01 44 | 92.44 71 | 74.51 25 | 83.50 312 | 82.15 62 | 92.15 73 | 93.64 65 |
|
casdiffmvs |  | | 85.11 56 | 85.14 55 | 85.01 76 | 87.20 204 | 65.77 166 | 87.75 140 | 92.83 55 | 77.84 35 | 84.36 61 | 92.38 72 | 72.15 43 | 93.93 128 | 81.27 68 | 90.48 92 | 95.33 3 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
CS-MVS | | | 86.69 33 | 86.95 29 | 85.90 61 | 90.76 90 | 67.57 129 | 92.83 17 | 93.30 32 | 79.67 15 | 84.57 57 | 92.27 73 | 71.47 49 | 95.02 84 | 84.24 41 | 93.46 61 | 95.13 5 |
|
baseline | | | 84.93 58 | 84.98 56 | 84.80 86 | 87.30 202 | 65.39 175 | 87.30 152 | 92.88 52 | 77.62 37 | 84.04 67 | 92.26 74 | 71.81 45 | 93.96 122 | 81.31 67 | 90.30 94 | 95.03 7 |
|
QAPM | | | 80.88 113 | 79.50 128 | 85.03 75 | 88.01 176 | 68.97 96 | 91.59 41 | 92.00 87 | 66.63 240 | 75.15 218 | 92.16 75 | 57.70 188 | 95.45 61 | 63.52 224 | 88.76 112 | 90.66 161 |
|
IS-MVSNet | | | 83.15 75 | 82.81 75 | 84.18 106 | 89.94 109 | 63.30 218 | 91.59 41 | 88.46 197 | 79.04 23 | 79.49 119 | 92.16 75 | 65.10 107 | 94.28 110 | 67.71 193 | 91.86 79 | 94.95 8 |
|
æ–°å‡ ä½•1 | | | | | 83.42 134 | 93.13 52 | 70.71 69 | | 85.48 244 | 57.43 324 | 81.80 94 | 91.98 77 | 63.28 120 | 92.27 196 | 64.60 221 | 92.99 63 | 87.27 263 |
|
OpenMVS |  | 72.83 10 | 79.77 142 | 78.33 157 | 84.09 110 | 85.17 230 | 69.91 81 | 90.57 58 | 90.97 120 | 66.70 236 | 72.17 252 | 91.91 78 | 54.70 209 | 93.96 122 | 61.81 243 | 90.95 89 | 88.41 242 |
|
PHI-MVS | | | 86.43 37 | 86.17 41 | 87.24 39 | 90.88 87 | 70.96 63 | 92.27 31 | 94.07 9 | 72.45 145 | 85.22 43 | 91.90 79 | 69.47 67 | 96.42 35 | 83.28 49 | 95.94 19 | 94.35 34 |
|
VNet | | | 82.21 87 | 82.41 79 | 81.62 187 | 90.82 88 | 60.93 248 | 84.47 225 | 89.78 152 | 76.36 75 | 84.07 66 | 91.88 80 | 64.71 111 | 90.26 245 | 70.68 164 | 88.89 109 | 93.66 59 |
|
DROMVSNet | | | 86.01 41 | 86.38 36 | 84.91 82 | 89.31 129 | 66.27 153 | 92.32 29 | 93.63 21 | 79.37 18 | 84.17 64 | 91.88 80 | 69.04 74 | 95.43 63 | 83.93 44 | 93.77 59 | 93.01 89 |
|
OPM-MVS | | | 83.50 69 | 82.95 73 | 85.14 72 | 88.79 148 | 70.95 64 | 89.13 94 | 91.52 106 | 77.55 42 | 80.96 105 | 91.75 82 | 60.71 166 | 94.50 105 | 79.67 82 | 86.51 140 | 89.97 194 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
XVG-OURS-SEG-HR | | | 80.81 116 | 79.76 122 | 83.96 122 | 85.60 225 | 68.78 99 | 83.54 248 | 90.50 131 | 70.66 177 | 76.71 179 | 91.66 83 | 60.69 167 | 91.26 226 | 76.94 106 | 81.58 200 | 91.83 123 |
|
EPNet | | | 83.72 65 | 82.92 74 | 86.14 57 | 84.22 246 | 69.48 87 | 91.05 53 | 85.27 245 | 81.30 4 | 76.83 175 | 91.65 84 | 66.09 97 | 95.56 56 | 76.00 116 | 93.85 58 | 93.38 73 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
OMC-MVS | | | 82.69 82 | 81.97 89 | 84.85 83 | 88.75 150 | 67.42 132 | 87.98 131 | 90.87 124 | 74.92 99 | 79.72 116 | 91.65 84 | 62.19 141 | 93.96 122 | 75.26 124 | 86.42 141 | 93.16 83 |
|
test222 | | | | | | 91.50 77 | 68.26 115 | 84.16 235 | 83.20 279 | 54.63 335 | 79.74 115 | 91.63 86 | 58.97 179 | | | 91.42 83 | 86.77 275 |
|
MVS_111021_HR | | | 85.14 55 | 84.75 59 | 86.32 53 | 91.65 76 | 72.70 29 | 85.98 189 | 90.33 138 | 76.11 79 | 82.08 89 | 91.61 87 | 71.36 51 | 94.17 118 | 81.02 69 | 92.58 68 | 92.08 118 |
|
原ACMM1 | | | | | 84.35 100 | 93.01 57 | 68.79 98 | | 92.44 69 | 63.96 273 | 81.09 103 | 91.57 88 | 66.06 98 | 95.45 61 | 67.19 200 | 94.82 43 | 88.81 232 |
|
LPG-MVS_test | | | 82.08 89 | 81.27 95 | 84.50 93 | 89.23 133 | 68.76 100 | 90.22 68 | 91.94 91 | 75.37 92 | 76.64 181 | 91.51 89 | 54.29 213 | 94.91 86 | 78.44 90 | 83.78 170 | 89.83 199 |
|
LGP-MVS_train | | | | | 84.50 93 | 89.23 133 | 68.76 100 | | 91.94 91 | 75.37 92 | 76.64 181 | 91.51 89 | 54.29 213 | 94.91 86 | 78.44 90 | 83.78 170 | 89.83 199 |
|
XVG-OURS | | | 80.41 129 | 79.23 136 | 83.97 121 | 85.64 224 | 69.02 94 | 83.03 257 | 90.39 133 | 71.09 169 | 77.63 158 | 91.49 91 | 54.62 211 | 91.35 224 | 75.71 118 | 83.47 178 | 91.54 129 |
|
alignmvs | | | 85.48 50 | 85.32 52 | 85.96 60 | 89.51 118 | 69.47 88 | 89.74 79 | 92.47 68 | 76.17 78 | 87.73 29 | 91.46 92 | 70.32 59 | 93.78 134 | 81.51 65 | 88.95 108 | 94.63 24 |
|
CANet | | | 86.45 36 | 86.10 43 | 87.51 35 | 90.09 101 | 70.94 65 | 89.70 81 | 92.59 66 | 81.78 2 | 81.32 98 | 91.43 93 | 70.34 58 | 97.23 12 | 84.26 39 | 93.36 62 | 94.37 33 |
|
h-mvs33 | | | 83.15 75 | 82.19 83 | 86.02 59 | 90.56 92 | 70.85 68 | 88.15 128 | 89.16 171 | 76.02 81 | 84.67 52 | 91.39 94 | 61.54 149 | 95.50 59 | 82.71 57 | 75.48 272 | 91.72 126 |
|
nrg030 | | | 83.88 62 | 83.53 65 | 84.96 78 | 86.77 212 | 69.28 92 | 90.46 63 | 92.67 61 | 74.79 102 | 82.95 79 | 91.33 95 | 72.70 40 | 93.09 169 | 80.79 74 | 79.28 229 | 92.50 103 |
|
canonicalmvs | | | 85.91 44 | 85.87 46 | 86.04 58 | 89.84 111 | 69.44 91 | 90.45 64 | 93.00 43 | 76.70 67 | 88.01 26 | 91.23 96 | 73.28 36 | 93.91 129 | 81.50 66 | 88.80 111 | 94.77 20 |
|
DPM-MVS | | | 84.93 58 | 84.29 63 | 86.84 45 | 90.20 99 | 73.04 22 | 87.12 156 | 93.04 38 | 69.80 191 | 82.85 82 | 91.22 97 | 73.06 38 | 96.02 45 | 76.72 111 | 94.63 45 | 91.46 135 |
|
Anonymous202405211 | | | 78.25 179 | 77.01 187 | 81.99 181 | 91.03 82 | 60.67 253 | 84.77 217 | 83.90 265 | 70.65 178 | 80.00 114 | 91.20 98 | 41.08 321 | 91.43 222 | 65.21 215 | 85.26 154 | 93.85 52 |
|
CS-MVS-test | | | 86.29 40 | 86.48 35 | 85.71 63 | 91.02 83 | 67.21 139 | 92.36 28 | 93.78 18 | 78.97 26 | 83.51 75 | 91.20 98 | 70.65 57 | 95.15 75 | 81.96 63 | 94.89 39 | 94.77 20 |
|
Anonymous20240529 | | | 80.19 136 | 78.89 144 | 84.10 108 | 90.60 91 | 64.75 187 | 88.95 98 | 90.90 122 | 65.97 248 | 80.59 108 | 91.17 100 | 49.97 258 | 93.73 140 | 69.16 181 | 82.70 189 | 93.81 55 |
|
EPP-MVSNet | | | 83.40 72 | 83.02 72 | 84.57 90 | 90.13 100 | 64.47 193 | 92.32 29 | 90.73 126 | 74.45 111 | 79.35 121 | 91.10 101 | 69.05 73 | 95.12 76 | 72.78 147 | 87.22 129 | 94.13 42 |
|
TAPA-MVS | | 73.13 9 | 79.15 159 | 77.94 164 | 82.79 166 | 89.59 114 | 62.99 227 | 88.16 127 | 91.51 107 | 65.77 249 | 77.14 172 | 91.09 102 | 60.91 164 | 93.21 158 | 50.26 320 | 87.05 131 | 92.17 116 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CSCG | | | 86.41 39 | 86.19 40 | 87.07 43 | 92.91 58 | 72.48 36 | 90.81 55 | 93.56 24 | 73.95 119 | 83.16 78 | 91.07 103 | 75.94 18 | 95.19 73 | 79.94 81 | 94.38 52 | 93.55 69 |
|
FIs | | | 82.07 90 | 82.42 78 | 81.04 206 | 88.80 147 | 58.34 272 | 88.26 123 | 93.49 26 | 76.93 58 | 78.47 138 | 91.04 104 | 69.92 63 | 92.34 194 | 69.87 174 | 84.97 156 | 92.44 107 |
|
MVS_111021_LR | | | 82.61 84 | 82.11 84 | 84.11 107 | 88.82 145 | 71.58 51 | 85.15 209 | 86.16 237 | 74.69 104 | 80.47 109 | 91.04 104 | 62.29 138 | 90.55 243 | 80.33 78 | 90.08 99 | 90.20 177 |
|
DP-MVS Recon | | | 83.11 78 | 82.09 85 | 86.15 56 | 94.44 19 | 70.92 66 | 88.79 104 | 92.20 81 | 70.53 179 | 79.17 122 | 91.03 106 | 64.12 114 | 96.03 44 | 68.39 190 | 90.14 97 | 91.50 132 |
|
HQP_MVS | | | 83.64 67 | 83.14 69 | 85.14 72 | 90.08 102 | 68.71 104 | 91.25 48 | 92.44 69 | 79.12 21 | 78.92 126 | 91.00 107 | 60.42 172 | 95.38 67 | 78.71 88 | 86.32 142 | 91.33 136 |
|
plane_prior4 | | | | | | | | | | | | 91.00 107 | | | | | |
|
FC-MVSNet-test | | | 81.52 103 | 82.02 87 | 80.03 226 | 88.42 162 | 55.97 308 | 87.95 133 | 93.42 29 | 77.10 54 | 77.38 162 | 90.98 109 | 69.96 62 | 91.79 212 | 68.46 189 | 84.50 161 | 92.33 108 |
|
Vis-MVSNet (Re-imp) | | | 78.36 178 | 78.45 152 | 78.07 258 | 88.64 154 | 51.78 339 | 86.70 171 | 79.63 313 | 74.14 117 | 75.11 219 | 90.83 110 | 61.29 157 | 89.75 252 | 58.10 276 | 91.60 80 | 92.69 97 |
|
114514_t | | | 80.68 122 | 79.51 127 | 84.20 105 | 94.09 38 | 67.27 136 | 89.64 82 | 91.11 118 | 58.75 316 | 74.08 233 | 90.72 111 | 58.10 184 | 95.04 83 | 69.70 175 | 89.42 106 | 90.30 174 |
|
PAPM_NR | | | 83.02 79 | 82.41 79 | 84.82 84 | 92.47 67 | 66.37 151 | 87.93 135 | 91.80 98 | 73.82 123 | 77.32 164 | 90.66 112 | 67.90 79 | 94.90 89 | 70.37 167 | 89.48 105 | 93.19 82 |
|
LS3D | | | 76.95 211 | 74.82 223 | 83.37 137 | 90.45 94 | 67.36 135 | 89.15 93 | 86.94 226 | 61.87 292 | 69.52 280 | 90.61 113 | 51.71 241 | 94.53 103 | 46.38 340 | 86.71 137 | 88.21 244 |
|
mvsmamba | | | 81.69 98 | 80.74 104 | 84.56 91 | 87.45 196 | 66.72 146 | 91.26 46 | 85.89 241 | 74.66 105 | 78.23 144 | 90.56 114 | 54.33 212 | 94.91 86 | 80.73 75 | 83.54 177 | 92.04 121 |
|
VPNet | | | 78.69 171 | 78.66 148 | 78.76 247 | 88.31 165 | 55.72 310 | 84.45 228 | 86.63 230 | 76.79 62 | 78.26 143 | 90.55 115 | 59.30 177 | 89.70 254 | 66.63 204 | 77.05 248 | 90.88 153 |
|
UniMVSNet_ETH3D | | | 79.10 161 | 78.24 159 | 81.70 186 | 86.85 209 | 60.24 260 | 87.28 153 | 88.79 186 | 74.25 114 | 76.84 174 | 90.53 116 | 49.48 264 | 91.56 218 | 67.98 191 | 82.15 193 | 93.29 77 |
|
ACMP | | 74.13 6 | 81.51 105 | 80.57 107 | 84.36 99 | 89.42 121 | 68.69 107 | 89.97 72 | 91.50 110 | 74.46 110 | 75.04 222 | 90.41 117 | 53.82 218 | 94.54 102 | 77.56 99 | 82.91 184 | 89.86 198 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PCF-MVS | | 73.52 7 | 80.38 130 | 78.84 145 | 85.01 76 | 87.71 186 | 68.99 95 | 83.65 243 | 91.46 111 | 63.00 279 | 77.77 156 | 90.28 118 | 66.10 96 | 95.09 82 | 61.40 246 | 88.22 120 | 90.94 152 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
NP-MVS | | | | | | 89.62 113 | 68.32 113 | | | | | 90.24 119 | | | | | |
|
HQP-MVS | | | 82.61 84 | 82.02 87 | 84.37 98 | 89.33 126 | 66.98 142 | 89.17 89 | 92.19 82 | 76.41 70 | 77.23 167 | 90.23 120 | 60.17 175 | 95.11 78 | 77.47 100 | 85.99 149 | 91.03 148 |
|
PS-MVSNAJss | | | 82.07 90 | 81.31 94 | 84.34 101 | 86.51 215 | 67.27 136 | 89.27 87 | 91.51 107 | 71.75 154 | 79.37 120 | 90.22 121 | 63.15 125 | 94.27 111 | 77.69 98 | 82.36 192 | 91.49 133 |
|
TSAR-MVS + GP. | | | 85.71 48 | 85.33 51 | 86.84 45 | 91.34 78 | 72.50 35 | 89.07 95 | 87.28 220 | 76.41 70 | 85.80 36 | 90.22 121 | 74.15 31 | 95.37 70 | 81.82 64 | 91.88 76 | 92.65 99 |
|
RRT_MVS | | | 80.35 132 | 79.22 137 | 83.74 127 | 87.63 190 | 65.46 172 | 91.08 52 | 88.92 184 | 73.82 123 | 76.44 186 | 90.03 123 | 49.05 272 | 94.25 115 | 76.84 107 | 79.20 231 | 91.51 130 |
|
TranMVSNet+NR-MVSNet | | | 80.84 114 | 80.31 113 | 82.42 174 | 87.85 179 | 62.33 232 | 87.74 141 | 91.33 112 | 80.55 7 | 77.99 152 | 89.86 124 | 65.23 106 | 92.62 181 | 67.05 202 | 75.24 281 | 92.30 110 |
|
diffmvs |  | | 82.10 88 | 81.88 90 | 82.76 169 | 83.00 273 | 63.78 206 | 83.68 242 | 89.76 153 | 72.94 143 | 82.02 90 | 89.85 125 | 65.96 101 | 90.79 239 | 82.38 61 | 87.30 128 | 93.71 58 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
BH-RMVSNet | | | 79.61 144 | 78.44 153 | 83.14 147 | 89.38 124 | 65.93 159 | 84.95 214 | 87.15 223 | 73.56 130 | 78.19 146 | 89.79 126 | 56.67 198 | 93.36 154 | 59.53 260 | 86.74 136 | 90.13 180 |
|
GeoE | | | 81.71 97 | 81.01 101 | 83.80 126 | 89.51 118 | 64.45 194 | 88.97 97 | 88.73 192 | 71.27 165 | 78.63 133 | 89.76 127 | 66.32 94 | 93.20 161 | 69.89 173 | 86.02 148 | 93.74 57 |
|
AdaColmap |  | | 80.58 127 | 79.42 129 | 84.06 113 | 93.09 54 | 68.91 97 | 89.36 86 | 88.97 181 | 69.27 201 | 75.70 200 | 89.69 128 | 57.20 195 | 95.77 52 | 63.06 229 | 88.41 118 | 87.50 258 |
|
ACMM | | 73.20 8 | 80.78 121 | 79.84 121 | 83.58 130 | 89.31 129 | 68.37 112 | 89.99 71 | 91.60 104 | 70.28 183 | 77.25 165 | 89.66 129 | 53.37 221 | 93.53 147 | 74.24 132 | 82.85 185 | 88.85 230 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CNLPA | | | 78.08 185 | 76.79 194 | 81.97 182 | 90.40 96 | 71.07 60 | 87.59 144 | 84.55 254 | 66.03 247 | 72.38 250 | 89.64 130 | 57.56 190 | 86.04 294 | 59.61 259 | 83.35 179 | 88.79 233 |
|
test_yl | | | 81.17 108 | 80.47 110 | 83.24 142 | 89.13 137 | 63.62 207 | 86.21 184 | 89.95 149 | 72.43 148 | 81.78 95 | 89.61 131 | 57.50 191 | 93.58 142 | 70.75 162 | 86.90 133 | 92.52 101 |
|
DCV-MVSNet | | | 81.17 108 | 80.47 110 | 83.24 142 | 89.13 137 | 63.62 207 | 86.21 184 | 89.95 149 | 72.43 148 | 81.78 95 | 89.61 131 | 57.50 191 | 93.58 142 | 70.75 162 | 86.90 133 | 92.52 101 |
|
EI-MVSNet-Vis-set | | | 84.19 61 | 83.81 64 | 85.31 68 | 88.18 168 | 67.85 122 | 87.66 142 | 89.73 155 | 80.05 12 | 82.95 79 | 89.59 133 | 70.74 55 | 94.82 93 | 80.66 76 | 84.72 159 | 93.28 78 |
|
PAPR | | | 81.66 101 | 80.89 103 | 83.99 120 | 90.27 97 | 64.00 201 | 86.76 170 | 91.77 101 | 68.84 216 | 77.13 173 | 89.50 134 | 67.63 81 | 94.88 91 | 67.55 195 | 88.52 116 | 93.09 84 |
|
jajsoiax | | | 79.29 156 | 77.96 163 | 83.27 140 | 84.68 240 | 66.57 149 | 89.25 88 | 90.16 143 | 69.20 205 | 75.46 205 | 89.49 135 | 45.75 296 | 93.13 167 | 76.84 107 | 80.80 208 | 90.11 182 |
|
MVSFormer | | | 82.85 81 | 82.05 86 | 85.24 70 | 87.35 197 | 70.21 75 | 90.50 60 | 90.38 134 | 68.55 220 | 81.32 98 | 89.47 136 | 61.68 146 | 93.46 151 | 78.98 86 | 90.26 95 | 92.05 119 |
|
jason | | | 81.39 106 | 80.29 114 | 84.70 88 | 86.63 214 | 69.90 82 | 85.95 190 | 86.77 228 | 63.24 275 | 81.07 104 | 89.47 136 | 61.08 162 | 92.15 200 | 78.33 93 | 90.07 100 | 92.05 119 |
jason: jason. |
mvs_tets | | | 79.13 160 | 77.77 172 | 83.22 144 | 84.70 239 | 66.37 151 | 89.17 89 | 90.19 142 | 69.38 199 | 75.40 208 | 89.46 138 | 44.17 302 | 93.15 165 | 76.78 109 | 80.70 210 | 90.14 179 |
|
UGNet | | | 80.83 115 | 79.59 126 | 84.54 92 | 88.04 174 | 68.09 118 | 89.42 84 | 88.16 199 | 76.95 57 | 76.22 190 | 89.46 138 | 49.30 267 | 93.94 125 | 68.48 188 | 90.31 93 | 91.60 127 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
VPA-MVSNet | | | 80.60 125 | 80.55 108 | 80.76 212 | 88.07 173 | 60.80 251 | 86.86 164 | 91.58 105 | 75.67 88 | 80.24 111 | 89.45 140 | 63.34 119 | 90.25 246 | 70.51 166 | 79.22 230 | 91.23 140 |
|
MVS_Test | | | 83.15 75 | 83.06 71 | 83.41 136 | 86.86 208 | 63.21 220 | 86.11 187 | 92.00 87 | 74.31 112 | 82.87 81 | 89.44 141 | 70.03 61 | 93.21 158 | 77.39 102 | 88.50 117 | 93.81 55 |
|
EI-MVSNet-UG-set | | | 83.81 63 | 83.38 67 | 85.09 74 | 87.87 178 | 67.53 130 | 87.44 148 | 89.66 156 | 79.74 14 | 82.23 88 | 89.41 142 | 70.24 60 | 94.74 96 | 79.95 80 | 83.92 169 | 92.99 90 |
|
RPSCF | | | 73.23 252 | 71.46 253 | 78.54 251 | 82.50 284 | 59.85 262 | 82.18 262 | 82.84 283 | 58.96 313 | 71.15 262 | 89.41 142 | 45.48 299 | 84.77 304 | 58.82 269 | 71.83 310 | 91.02 150 |
|
bld_raw_dy_0_64 | | | 77.29 206 | 75.98 208 | 81.22 200 | 85.04 236 | 65.47 171 | 88.14 129 | 77.56 323 | 69.20 205 | 73.77 235 | 89.40 144 | 42.24 315 | 88.85 271 | 76.78 109 | 81.64 199 | 89.33 212 |
|
UniMVSNet_NR-MVSNet | | | 81.88 93 | 81.54 93 | 82.92 158 | 88.46 160 | 63.46 214 | 87.13 155 | 92.37 73 | 80.19 10 | 78.38 139 | 89.14 145 | 71.66 48 | 93.05 171 | 70.05 170 | 76.46 257 | 92.25 112 |
|
tttt0517 | | | 79.40 153 | 77.91 165 | 83.90 125 | 88.10 171 | 63.84 204 | 88.37 120 | 84.05 263 | 71.45 163 | 76.78 177 | 89.12 146 | 49.93 261 | 94.89 90 | 70.18 169 | 83.18 182 | 92.96 91 |
|
DU-MVS | | | 81.12 110 | 80.52 109 | 82.90 159 | 87.80 182 | 63.46 214 | 87.02 159 | 91.87 95 | 79.01 24 | 78.38 139 | 89.07 147 | 65.02 108 | 93.05 171 | 70.05 170 | 76.46 257 | 92.20 114 |
|
NR-MVSNet | | | 80.23 134 | 79.38 130 | 82.78 167 | 87.80 182 | 63.34 217 | 86.31 181 | 91.09 119 | 79.01 24 | 72.17 252 | 89.07 147 | 67.20 86 | 92.81 180 | 66.08 209 | 75.65 268 | 92.20 114 |
|
DELS-MVS | | | 85.41 53 | 85.30 53 | 85.77 62 | 88.49 158 | 67.93 121 | 85.52 206 | 93.44 27 | 78.70 27 | 83.63 74 | 89.03 149 | 74.57 24 | 95.71 54 | 80.26 79 | 94.04 57 | 93.66 59 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
iter_conf_final | | | 80.63 123 | 79.35 132 | 84.46 95 | 89.36 125 | 67.70 126 | 89.85 73 | 84.49 255 | 73.19 138 | 78.30 142 | 88.94 150 | 45.98 291 | 94.56 100 | 79.59 83 | 84.48 163 | 91.11 143 |
|
iter_conf05 | | | 80.00 140 | 78.70 146 | 83.91 124 | 87.84 180 | 65.83 162 | 88.84 103 | 84.92 250 | 71.61 159 | 78.70 129 | 88.94 150 | 43.88 304 | 94.56 100 | 79.28 84 | 84.28 166 | 91.33 136 |
|
baseline1 | | | 76.98 210 | 76.75 197 | 77.66 263 | 88.13 169 | 55.66 311 | 85.12 210 | 81.89 289 | 73.04 141 | 76.79 176 | 88.90 152 | 62.43 136 | 87.78 283 | 63.30 228 | 71.18 314 | 89.55 208 |
|
DP-MVS | | | 76.78 213 | 74.57 225 | 83.42 134 | 93.29 48 | 69.46 90 | 88.55 114 | 83.70 267 | 63.98 272 | 70.20 268 | 88.89 153 | 54.01 217 | 94.80 94 | 46.66 337 | 81.88 197 | 86.01 289 |
|
ab-mvs | | | 79.51 147 | 78.97 143 | 81.14 203 | 88.46 160 | 60.91 249 | 83.84 240 | 89.24 168 | 70.36 181 | 79.03 123 | 88.87 154 | 63.23 123 | 90.21 247 | 65.12 216 | 82.57 190 | 92.28 111 |
|
PEN-MVS | | | 77.73 195 | 77.69 176 | 77.84 260 | 87.07 207 | 53.91 326 | 87.91 136 | 91.18 115 | 77.56 41 | 73.14 241 | 88.82 155 | 61.23 158 | 89.17 262 | 59.95 256 | 72.37 305 | 90.43 170 |
|
tt0805 | | | 78.73 169 | 77.83 168 | 81.43 192 | 85.17 230 | 60.30 259 | 89.41 85 | 90.90 122 | 71.21 166 | 77.17 171 | 88.73 156 | 46.38 286 | 93.21 158 | 72.57 150 | 78.96 232 | 90.79 155 |
|
test_djsdf | | | 80.30 133 | 79.32 133 | 83.27 140 | 83.98 251 | 65.37 176 | 90.50 60 | 90.38 134 | 68.55 220 | 76.19 191 | 88.70 157 | 56.44 199 | 93.46 151 | 78.98 86 | 80.14 218 | 90.97 151 |
|
PAPM | | | 77.68 198 | 76.40 204 | 81.51 190 | 87.29 203 | 61.85 239 | 83.78 241 | 89.59 157 | 64.74 260 | 71.23 260 | 88.70 157 | 62.59 132 | 93.66 141 | 52.66 307 | 87.03 132 | 89.01 222 |
|
DTE-MVSNet | | | 76.99 209 | 76.80 193 | 77.54 267 | 86.24 217 | 53.06 334 | 87.52 145 | 90.66 127 | 77.08 55 | 72.50 247 | 88.67 159 | 60.48 171 | 89.52 256 | 57.33 283 | 70.74 316 | 90.05 189 |
|
PS-CasMVS | | | 78.01 189 | 78.09 161 | 77.77 262 | 87.71 186 | 54.39 323 | 88.02 130 | 91.22 113 | 77.50 44 | 73.26 239 | 88.64 160 | 60.73 165 | 88.41 276 | 61.88 241 | 73.88 294 | 90.53 167 |
|
cdsmvs_eth3d_5k | | | 19.96 341 | 26.61 343 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 89.26 167 | 0.00 379 | 0.00 380 | 88.61 161 | 61.62 148 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
lupinMVS | | | 81.39 106 | 80.27 115 | 84.76 87 | 87.35 197 | 70.21 75 | 85.55 202 | 86.41 232 | 62.85 282 | 81.32 98 | 88.61 161 | 61.68 146 | 92.24 198 | 78.41 92 | 90.26 95 | 91.83 123 |
|
F-COLMAP | | | 76.38 221 | 74.33 230 | 82.50 173 | 89.28 131 | 66.95 145 | 88.41 116 | 89.03 176 | 64.05 270 | 66.83 304 | 88.61 161 | 46.78 284 | 92.89 176 | 57.48 280 | 78.55 233 | 87.67 252 |
|
mvs_anonymous | | | 79.42 152 | 79.11 140 | 80.34 220 | 84.45 243 | 57.97 278 | 82.59 259 | 87.62 213 | 67.40 231 | 76.17 194 | 88.56 164 | 68.47 76 | 89.59 255 | 70.65 165 | 86.05 147 | 93.47 72 |
|
CP-MVSNet | | | 78.22 180 | 78.34 156 | 77.84 260 | 87.83 181 | 54.54 321 | 87.94 134 | 91.17 116 | 77.65 36 | 73.48 237 | 88.49 165 | 62.24 140 | 88.43 275 | 62.19 237 | 74.07 290 | 90.55 166 |
|
PVSNet_Blended_VisFu | | | 82.62 83 | 81.83 91 | 84.96 78 | 90.80 89 | 69.76 84 | 88.74 108 | 91.70 102 | 69.39 198 | 78.96 124 | 88.46 166 | 65.47 104 | 94.87 92 | 74.42 129 | 88.57 114 | 90.24 176 |
|
CANet_DTU | | | 80.61 124 | 79.87 120 | 82.83 161 | 85.60 225 | 63.17 223 | 87.36 149 | 88.65 193 | 76.37 74 | 75.88 197 | 88.44 167 | 53.51 220 | 93.07 170 | 73.30 141 | 89.74 103 | 92.25 112 |
|
PLC |  | 70.83 11 | 78.05 187 | 76.37 205 | 83.08 150 | 91.88 74 | 67.80 123 | 88.19 125 | 89.46 160 | 64.33 266 | 69.87 277 | 88.38 168 | 53.66 219 | 93.58 142 | 58.86 268 | 82.73 187 | 87.86 249 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
WR-MVS | | | 79.49 148 | 79.22 137 | 80.27 222 | 88.79 148 | 58.35 271 | 85.06 211 | 88.61 195 | 78.56 28 | 77.65 157 | 88.34 169 | 63.81 118 | 90.66 242 | 64.98 218 | 77.22 246 | 91.80 125 |
|
XXY-MVS | | | 75.41 233 | 75.56 212 | 74.96 290 | 83.59 257 | 57.82 282 | 80.59 280 | 83.87 266 | 66.54 241 | 74.93 224 | 88.31 170 | 63.24 122 | 80.09 327 | 62.16 238 | 76.85 252 | 86.97 271 |
|
Effi-MVS+ | | | 83.62 68 | 83.08 70 | 85.24 70 | 88.38 163 | 67.45 131 | 88.89 100 | 89.15 172 | 75.50 90 | 82.27 87 | 88.28 171 | 69.61 66 | 94.45 107 | 77.81 97 | 87.84 121 | 93.84 54 |
|
API-MVS | | | 81.99 92 | 81.23 96 | 84.26 104 | 90.94 85 | 70.18 80 | 91.10 51 | 89.32 163 | 71.51 162 | 78.66 132 | 88.28 171 | 65.26 105 | 95.10 81 | 64.74 220 | 91.23 86 | 87.51 257 |
|
thisisatest0530 | | | 79.40 153 | 77.76 173 | 84.31 102 | 87.69 188 | 65.10 181 | 87.36 149 | 84.26 261 | 70.04 186 | 77.42 161 | 88.26 173 | 49.94 259 | 94.79 95 | 70.20 168 | 84.70 160 | 93.03 87 |
|
hse-mvs2 | | | 81.72 96 | 80.94 102 | 84.07 112 | 88.72 151 | 67.68 127 | 85.87 193 | 87.26 221 | 76.02 81 | 84.67 52 | 88.22 174 | 61.54 149 | 93.48 149 | 82.71 57 | 73.44 299 | 91.06 146 |
|
xiu_mvs_v1_base_debu | | | 80.80 118 | 79.72 123 | 84.03 117 | 87.35 197 | 70.19 77 | 85.56 199 | 88.77 187 | 69.06 210 | 81.83 91 | 88.16 175 | 50.91 247 | 92.85 177 | 78.29 94 | 87.56 123 | 89.06 217 |
|
xiu_mvs_v1_base | | | 80.80 118 | 79.72 123 | 84.03 117 | 87.35 197 | 70.19 77 | 85.56 199 | 88.77 187 | 69.06 210 | 81.83 91 | 88.16 175 | 50.91 247 | 92.85 177 | 78.29 94 | 87.56 123 | 89.06 217 |
|
xiu_mvs_v1_base_debi | | | 80.80 118 | 79.72 123 | 84.03 117 | 87.35 197 | 70.19 77 | 85.56 199 | 88.77 187 | 69.06 210 | 81.83 91 | 88.16 175 | 50.91 247 | 92.85 177 | 78.29 94 | 87.56 123 | 89.06 217 |
|
UniMVSNet (Re) | | | 81.60 102 | 81.11 98 | 83.09 149 | 88.38 163 | 64.41 195 | 87.60 143 | 93.02 42 | 78.42 30 | 78.56 135 | 88.16 175 | 69.78 64 | 93.26 157 | 69.58 177 | 76.49 256 | 91.60 127 |
|
AUN-MVS | | | 79.21 158 | 77.60 178 | 84.05 115 | 88.71 152 | 67.61 128 | 85.84 195 | 87.26 221 | 69.08 209 | 77.23 167 | 88.14 179 | 53.20 223 | 93.47 150 | 75.50 123 | 73.45 298 | 91.06 146 |
|
Anonymous20231211 | | | 78.97 165 | 77.69 176 | 82.81 163 | 90.54 93 | 64.29 197 | 90.11 70 | 91.51 107 | 65.01 258 | 76.16 195 | 88.13 180 | 50.56 252 | 93.03 174 | 69.68 176 | 77.56 244 | 91.11 143 |
|
pm-mvs1 | | | 77.25 207 | 76.68 199 | 78.93 245 | 84.22 246 | 58.62 270 | 86.41 178 | 88.36 198 | 71.37 164 | 73.31 238 | 88.01 181 | 61.22 159 | 89.15 263 | 64.24 222 | 73.01 302 | 89.03 221 |
|
LTVRE_ROB | | 69.57 13 | 76.25 222 | 74.54 227 | 81.41 193 | 88.60 155 | 64.38 196 | 79.24 294 | 89.12 175 | 70.76 175 | 69.79 279 | 87.86 182 | 49.09 270 | 93.20 161 | 56.21 293 | 80.16 216 | 86.65 278 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
WTY-MVS | | | 75.65 229 | 75.68 210 | 75.57 284 | 86.40 216 | 56.82 294 | 77.92 309 | 82.40 286 | 65.10 255 | 76.18 192 | 87.72 183 | 63.13 128 | 80.90 324 | 60.31 254 | 81.96 195 | 89.00 224 |
|
TAMVS | | | 78.89 167 | 77.51 180 | 83.03 153 | 87.80 182 | 67.79 124 | 84.72 218 | 85.05 248 | 67.63 227 | 76.75 178 | 87.70 184 | 62.25 139 | 90.82 238 | 58.53 272 | 87.13 130 | 90.49 168 |
|
BH-untuned | | | 79.47 149 | 78.60 149 | 82.05 179 | 89.19 135 | 65.91 160 | 86.07 188 | 88.52 196 | 72.18 150 | 75.42 207 | 87.69 185 | 61.15 160 | 93.54 146 | 60.38 253 | 86.83 135 | 86.70 277 |
|
COLMAP_ROB |  | 66.92 17 | 73.01 254 | 70.41 266 | 80.81 211 | 87.13 206 | 65.63 167 | 88.30 122 | 84.19 262 | 62.96 280 | 63.80 328 | 87.69 185 | 38.04 332 | 92.56 184 | 46.66 337 | 74.91 284 | 84.24 311 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
OurMVSNet-221017-0 | | | 74.26 240 | 72.42 247 | 79.80 231 | 83.76 255 | 59.59 265 | 85.92 192 | 86.64 229 | 66.39 242 | 66.96 301 | 87.58 187 | 39.46 325 | 91.60 216 | 65.76 212 | 69.27 321 | 88.22 243 |
|
FA-MVS(test-final) | | | 80.96 112 | 79.91 119 | 84.10 108 | 88.30 166 | 65.01 182 | 84.55 224 | 90.01 147 | 73.25 137 | 79.61 117 | 87.57 188 | 58.35 183 | 94.72 97 | 71.29 159 | 86.25 144 | 92.56 100 |
|
Baseline_NR-MVSNet | | | 78.15 184 | 78.33 157 | 77.61 265 | 85.79 221 | 56.21 306 | 86.78 168 | 85.76 242 | 73.60 129 | 77.93 153 | 87.57 188 | 65.02 108 | 88.99 265 | 67.14 201 | 75.33 278 | 87.63 253 |
|
WR-MVS_H | | | 78.51 175 | 78.49 151 | 78.56 250 | 88.02 175 | 56.38 303 | 88.43 115 | 92.67 61 | 77.14 52 | 73.89 234 | 87.55 190 | 66.25 95 | 89.24 261 | 58.92 267 | 73.55 297 | 90.06 188 |
|
EI-MVSNet | | | 80.52 128 | 79.98 117 | 82.12 177 | 84.28 244 | 63.19 222 | 86.41 178 | 88.95 182 | 74.18 116 | 78.69 130 | 87.54 191 | 66.62 89 | 92.43 188 | 72.57 150 | 80.57 212 | 90.74 159 |
|
CVMVSNet | | | 72.99 255 | 72.58 245 | 74.25 297 | 84.28 244 | 50.85 345 | 86.41 178 | 83.45 274 | 44.56 351 | 73.23 240 | 87.54 191 | 49.38 265 | 85.70 296 | 65.90 210 | 78.44 236 | 86.19 284 |
|
ACMH+ | | 68.96 14 | 76.01 225 | 74.01 232 | 82.03 180 | 88.60 155 | 65.31 177 | 88.86 101 | 87.55 214 | 70.25 184 | 67.75 292 | 87.47 193 | 41.27 319 | 93.19 163 | 58.37 273 | 75.94 265 | 87.60 254 |
|
TransMVSNet (Re) | | | 75.39 234 | 74.56 226 | 77.86 259 | 85.50 227 | 57.10 291 | 86.78 168 | 86.09 239 | 72.17 151 | 71.53 258 | 87.34 194 | 63.01 129 | 89.31 260 | 56.84 288 | 61.83 341 | 87.17 265 |
|
GBi-Net | | | 78.40 176 | 77.40 181 | 81.40 194 | 87.60 191 | 63.01 224 | 88.39 117 | 89.28 164 | 71.63 156 | 75.34 210 | 87.28 195 | 54.80 205 | 91.11 229 | 62.72 231 | 79.57 223 | 90.09 184 |
|
test1 | | | 78.40 176 | 77.40 181 | 81.40 194 | 87.60 191 | 63.01 224 | 88.39 117 | 89.28 164 | 71.63 156 | 75.34 210 | 87.28 195 | 54.80 205 | 91.11 229 | 62.72 231 | 79.57 223 | 90.09 184 |
|
FMVSNet2 | | | 78.20 182 | 77.21 184 | 81.20 201 | 87.60 191 | 62.89 228 | 87.47 147 | 89.02 177 | 71.63 156 | 75.29 215 | 87.28 195 | 54.80 205 | 91.10 232 | 62.38 235 | 79.38 227 | 89.61 206 |
|
FMVSNet1 | | | 77.44 201 | 76.12 207 | 81.40 194 | 86.81 211 | 63.01 224 | 88.39 117 | 89.28 164 | 70.49 180 | 74.39 230 | 87.28 195 | 49.06 271 | 91.11 229 | 60.91 250 | 78.52 234 | 90.09 184 |
|
v2v482 | | | 80.23 134 | 79.29 134 | 83.05 152 | 83.62 256 | 64.14 199 | 87.04 158 | 89.97 148 | 73.61 128 | 78.18 147 | 87.22 199 | 61.10 161 | 93.82 132 | 76.11 113 | 76.78 254 | 91.18 141 |
|
ITE_SJBPF | | | | | 78.22 255 | 81.77 294 | 60.57 254 | | 83.30 275 | 69.25 202 | 67.54 294 | 87.20 200 | 36.33 337 | 87.28 287 | 54.34 299 | 74.62 287 | 86.80 274 |
|
anonymousdsp | | | 78.60 173 | 77.15 185 | 82.98 156 | 80.51 312 | 67.08 140 | 87.24 154 | 89.53 158 | 65.66 251 | 75.16 217 | 87.19 201 | 52.52 224 | 92.25 197 | 77.17 104 | 79.34 228 | 89.61 206 |
|
MVSTER | | | 79.01 163 | 77.88 167 | 82.38 175 | 83.07 270 | 64.80 186 | 84.08 239 | 88.95 182 | 69.01 213 | 78.69 130 | 87.17 202 | 54.70 209 | 92.43 188 | 74.69 126 | 80.57 212 | 89.89 197 |
|
thres100view900 | | | 76.50 216 | 75.55 213 | 79.33 240 | 89.52 117 | 56.99 292 | 85.83 196 | 83.23 277 | 73.94 120 | 76.32 188 | 87.12 203 | 51.89 238 | 91.95 206 | 48.33 328 | 83.75 172 | 89.07 215 |
|
thres600view7 | | | 76.50 216 | 75.44 214 | 79.68 234 | 89.40 122 | 57.16 289 | 85.53 204 | 83.23 277 | 73.79 125 | 76.26 189 | 87.09 204 | 51.89 238 | 91.89 209 | 48.05 333 | 83.72 175 | 90.00 190 |
|
XVG-ACMP-BASELINE | | | 76.11 224 | 74.27 231 | 81.62 187 | 83.20 266 | 64.67 188 | 83.60 246 | 89.75 154 | 69.75 193 | 71.85 255 | 87.09 204 | 32.78 344 | 92.11 201 | 69.99 172 | 80.43 214 | 88.09 245 |
|
HY-MVS | | 69.67 12 | 77.95 190 | 77.15 185 | 80.36 219 | 87.57 195 | 60.21 261 | 83.37 250 | 87.78 211 | 66.11 244 | 75.37 209 | 87.06 206 | 63.27 121 | 90.48 244 | 61.38 247 | 82.43 191 | 90.40 172 |
|
CHOSEN 1792x2688 | | | 77.63 199 | 75.69 209 | 83.44 133 | 89.98 108 | 68.58 110 | 78.70 301 | 87.50 216 | 56.38 329 | 75.80 199 | 86.84 207 | 58.67 180 | 91.40 223 | 61.58 245 | 85.75 153 | 90.34 173 |
|
v8 | | | 79.97 141 | 79.02 142 | 82.80 164 | 84.09 248 | 64.50 192 | 87.96 132 | 90.29 141 | 74.13 118 | 75.24 216 | 86.81 208 | 62.88 130 | 93.89 131 | 74.39 130 | 75.40 276 | 90.00 190 |
|
AllTest | | | 70.96 268 | 68.09 283 | 79.58 237 | 85.15 232 | 63.62 207 | 84.58 223 | 79.83 310 | 62.31 288 | 60.32 338 | 86.73 209 | 32.02 345 | 88.96 268 | 50.28 318 | 71.57 312 | 86.15 285 |
|
TestCases | | | | | 79.58 237 | 85.15 232 | 63.62 207 | | 79.83 310 | 62.31 288 | 60.32 338 | 86.73 209 | 32.02 345 | 88.96 268 | 50.28 318 | 71.57 312 | 86.15 285 |
|
LCM-MVSNet-Re | | | 77.05 208 | 76.94 190 | 77.36 268 | 87.20 204 | 51.60 340 | 80.06 285 | 80.46 304 | 75.20 95 | 67.69 293 | 86.72 211 | 62.48 134 | 88.98 266 | 63.44 226 | 89.25 107 | 91.51 130 |
|
1112_ss | | | 77.40 203 | 76.43 203 | 80.32 221 | 89.11 141 | 60.41 258 | 83.65 243 | 87.72 212 | 62.13 290 | 73.05 242 | 86.72 211 | 62.58 133 | 89.97 249 | 62.11 240 | 80.80 208 | 90.59 165 |
|
ab-mvs-re | | | 7.23 344 | 9.64 347 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 86.72 211 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
IterMVS-LS | | | 80.06 137 | 79.38 130 | 82.11 178 | 85.89 220 | 63.20 221 | 86.79 167 | 89.34 162 | 74.19 115 | 75.45 206 | 86.72 211 | 66.62 89 | 92.39 190 | 72.58 149 | 76.86 251 | 90.75 158 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
ACMH | | 67.68 16 | 75.89 226 | 73.93 233 | 81.77 185 | 88.71 152 | 66.61 148 | 88.62 112 | 89.01 178 | 69.81 190 | 66.78 305 | 86.70 215 | 41.95 318 | 91.51 221 | 55.64 294 | 78.14 240 | 87.17 265 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Test_1112_low_res | | | 76.40 220 | 75.44 214 | 79.27 241 | 89.28 131 | 58.09 274 | 81.69 267 | 87.07 224 | 59.53 309 | 72.48 248 | 86.67 216 | 61.30 156 | 89.33 259 | 60.81 252 | 80.15 217 | 90.41 171 |
|
FMVSNet3 | | | 77.88 192 | 76.85 192 | 80.97 208 | 86.84 210 | 62.36 231 | 86.52 176 | 88.77 187 | 71.13 167 | 75.34 210 | 86.66 217 | 54.07 216 | 91.10 232 | 62.72 231 | 79.57 223 | 89.45 209 |
|
pmmvs6 | | | 74.69 237 | 73.39 238 | 78.61 249 | 81.38 301 | 57.48 287 | 86.64 172 | 87.95 205 | 64.99 259 | 70.18 269 | 86.61 218 | 50.43 254 | 89.52 256 | 62.12 239 | 70.18 318 | 88.83 231 |
|
ET-MVSNet_ETH3D | | | 78.63 172 | 76.63 200 | 84.64 89 | 86.73 213 | 69.47 88 | 85.01 212 | 84.61 253 | 69.54 196 | 66.51 310 | 86.59 219 | 50.16 256 | 91.75 213 | 76.26 112 | 84.24 167 | 92.69 97 |
|
testgi | | | 66.67 301 | 66.53 299 | 67.08 333 | 75.62 340 | 41.69 368 | 75.93 317 | 76.50 331 | 66.11 244 | 65.20 320 | 86.59 219 | 35.72 339 | 74.71 352 | 43.71 347 | 73.38 300 | 84.84 304 |
|
CLD-MVS | | | 82.31 86 | 81.65 92 | 84.29 103 | 88.47 159 | 67.73 125 | 85.81 197 | 92.35 74 | 75.78 84 | 78.33 141 | 86.58 221 | 64.01 115 | 94.35 108 | 76.05 115 | 87.48 126 | 90.79 155 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
v10 | | | 79.74 143 | 78.67 147 | 82.97 157 | 84.06 249 | 64.95 183 | 87.88 138 | 90.62 128 | 73.11 139 | 75.11 219 | 86.56 222 | 61.46 152 | 94.05 121 | 73.68 135 | 75.55 270 | 89.90 196 |
|
CDS-MVSNet | | | 79.07 162 | 77.70 175 | 83.17 146 | 87.60 191 | 68.23 116 | 84.40 231 | 86.20 236 | 67.49 230 | 76.36 187 | 86.54 223 | 61.54 149 | 90.79 239 | 61.86 242 | 87.33 127 | 90.49 168 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
xiu_mvs_v2_base | | | 81.69 98 | 81.05 99 | 83.60 129 | 89.15 136 | 68.03 120 | 84.46 227 | 90.02 146 | 70.67 176 | 81.30 101 | 86.53 224 | 63.17 124 | 94.19 117 | 75.60 121 | 88.54 115 | 88.57 239 |
|
TR-MVS | | | 77.44 201 | 76.18 206 | 81.20 201 | 88.24 167 | 63.24 219 | 84.61 222 | 86.40 233 | 67.55 229 | 77.81 154 | 86.48 225 | 54.10 215 | 93.15 165 | 57.75 279 | 82.72 188 | 87.20 264 |
|
EIA-MVS | | | 83.31 74 | 82.80 76 | 84.82 84 | 89.59 114 | 65.59 168 | 88.21 124 | 92.68 60 | 74.66 105 | 78.96 124 | 86.42 226 | 69.06 72 | 95.26 71 | 75.54 122 | 90.09 98 | 93.62 66 |
|
tfpn200view9 | | | 76.42 219 | 75.37 218 | 79.55 239 | 89.13 137 | 57.65 284 | 85.17 207 | 83.60 268 | 73.41 134 | 76.45 183 | 86.39 227 | 52.12 231 | 91.95 206 | 48.33 328 | 83.75 172 | 89.07 215 |
|
thres400 | | | 76.50 216 | 75.37 218 | 79.86 229 | 89.13 137 | 57.65 284 | 85.17 207 | 83.60 268 | 73.41 134 | 76.45 183 | 86.39 227 | 52.12 231 | 91.95 206 | 48.33 328 | 83.75 172 | 90.00 190 |
|
v7n | | | 78.97 165 | 77.58 179 | 83.14 147 | 83.45 260 | 65.51 169 | 88.32 121 | 91.21 114 | 73.69 126 | 72.41 249 | 86.32 229 | 57.93 185 | 93.81 133 | 69.18 180 | 75.65 268 | 90.11 182 |
|
MAR-MVS | | | 81.84 94 | 80.70 105 | 85.27 69 | 91.32 79 | 71.53 52 | 89.82 75 | 90.92 121 | 69.77 192 | 78.50 136 | 86.21 230 | 62.36 137 | 94.52 104 | 65.36 214 | 92.05 75 | 89.77 202 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
v1144 | | | 80.03 138 | 79.03 141 | 83.01 154 | 83.78 254 | 64.51 190 | 87.11 157 | 90.57 130 | 71.96 153 | 78.08 150 | 86.20 231 | 61.41 153 | 93.94 125 | 74.93 125 | 77.23 245 | 90.60 164 |
|
V42 | | | 79.38 155 | 78.24 159 | 82.83 161 | 81.10 306 | 65.50 170 | 85.55 202 | 89.82 151 | 71.57 161 | 78.21 145 | 86.12 232 | 60.66 168 | 93.18 164 | 75.64 119 | 75.46 274 | 89.81 201 |
|
PVSNet_BlendedMVS | | | 80.60 125 | 80.02 116 | 82.36 176 | 88.85 142 | 65.40 173 | 86.16 186 | 92.00 87 | 69.34 200 | 78.11 148 | 86.09 233 | 66.02 99 | 94.27 111 | 71.52 155 | 82.06 194 | 87.39 259 |
|
v1192 | | | 79.59 146 | 78.43 154 | 83.07 151 | 83.55 258 | 64.52 189 | 86.93 162 | 90.58 129 | 70.83 172 | 77.78 155 | 85.90 234 | 59.15 178 | 93.94 125 | 73.96 134 | 77.19 247 | 90.76 157 |
|
SixPastTwentyTwo | | | 73.37 248 | 71.26 258 | 79.70 233 | 85.08 235 | 57.89 280 | 85.57 198 | 83.56 270 | 71.03 170 | 65.66 314 | 85.88 235 | 42.10 316 | 92.57 183 | 59.11 264 | 63.34 339 | 88.65 237 |
|
EPNet_dtu | | | 75.46 231 | 74.86 222 | 77.23 272 | 82.57 283 | 54.60 320 | 86.89 163 | 83.09 280 | 71.64 155 | 66.25 312 | 85.86 236 | 55.99 200 | 88.04 280 | 54.92 296 | 86.55 139 | 89.05 220 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
sss | | | 73.60 246 | 73.64 237 | 73.51 301 | 82.80 277 | 55.01 317 | 76.12 316 | 81.69 292 | 62.47 287 | 74.68 227 | 85.85 237 | 57.32 193 | 78.11 334 | 60.86 251 | 80.93 205 | 87.39 259 |
|
ETV-MVS | | | 84.90 60 | 84.67 60 | 85.59 65 | 89.39 123 | 68.66 108 | 88.74 108 | 92.64 65 | 79.97 13 | 84.10 65 | 85.71 238 | 69.32 69 | 95.38 67 | 80.82 72 | 91.37 84 | 92.72 94 |
|
v1240 | | | 78.99 164 | 77.78 171 | 82.64 170 | 83.21 265 | 63.54 211 | 86.62 173 | 90.30 140 | 69.74 195 | 77.33 163 | 85.68 239 | 57.04 196 | 93.76 137 | 73.13 144 | 76.92 249 | 90.62 162 |
|
v144192 | | | 79.47 149 | 78.37 155 | 82.78 167 | 83.35 261 | 63.96 202 | 86.96 160 | 90.36 137 | 69.99 187 | 77.50 159 | 85.67 240 | 60.66 168 | 93.77 136 | 74.27 131 | 76.58 255 | 90.62 162 |
|
tfpnnormal | | | 74.39 238 | 73.16 241 | 78.08 257 | 86.10 219 | 58.05 275 | 84.65 221 | 87.53 215 | 70.32 182 | 71.22 261 | 85.63 241 | 54.97 204 | 89.86 250 | 43.03 349 | 75.02 283 | 86.32 281 |
|
PS-MVSNAJ | | | 81.69 98 | 81.02 100 | 83.70 128 | 89.51 118 | 68.21 117 | 84.28 233 | 90.09 145 | 70.79 173 | 81.26 102 | 85.62 242 | 63.15 125 | 94.29 109 | 75.62 120 | 88.87 110 | 88.59 238 |
|
v1921920 | | | 79.22 157 | 78.03 162 | 82.80 164 | 83.30 263 | 63.94 203 | 86.80 166 | 90.33 138 | 69.91 189 | 77.48 160 | 85.53 243 | 58.44 182 | 93.75 138 | 73.60 136 | 76.85 252 | 90.71 160 |
|
test_0402 | | | 72.79 257 | 70.44 265 | 79.84 230 | 88.13 169 | 65.99 158 | 85.93 191 | 84.29 259 | 65.57 252 | 67.40 298 | 85.49 244 | 46.92 283 | 92.61 182 | 35.88 358 | 74.38 289 | 80.94 337 |
|
v148 | | | 78.72 170 | 77.80 170 | 81.47 191 | 82.73 279 | 61.96 238 | 86.30 182 | 88.08 202 | 73.26 136 | 76.18 192 | 85.47 245 | 62.46 135 | 92.36 192 | 71.92 154 | 73.82 295 | 90.09 184 |
|
USDC | | | 70.33 276 | 68.37 278 | 76.21 279 | 80.60 310 | 56.23 305 | 79.19 296 | 86.49 231 | 60.89 297 | 61.29 335 | 85.47 245 | 31.78 347 | 89.47 258 | 53.37 304 | 76.21 263 | 82.94 328 |
|
MVP-Stereo | | | 76.12 223 | 74.46 229 | 81.13 204 | 85.37 228 | 69.79 83 | 84.42 230 | 87.95 205 | 65.03 257 | 67.46 296 | 85.33 247 | 53.28 222 | 91.73 215 | 58.01 277 | 83.27 180 | 81.85 332 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
MVS | | | 78.19 183 | 76.99 189 | 81.78 184 | 85.66 223 | 66.99 141 | 84.66 219 | 90.47 132 | 55.08 334 | 72.02 254 | 85.27 248 | 63.83 117 | 94.11 120 | 66.10 208 | 89.80 102 | 84.24 311 |
|
DIV-MVS_self_test | | | 77.72 196 | 76.76 195 | 80.58 215 | 82.48 286 | 60.48 256 | 83.09 254 | 87.86 208 | 69.22 203 | 74.38 231 | 85.24 249 | 62.10 142 | 91.53 219 | 71.09 160 | 75.40 276 | 89.74 203 |
|
FE-MVS | | | 77.78 194 | 75.68 210 | 84.08 111 | 88.09 172 | 66.00 157 | 83.13 253 | 87.79 210 | 68.42 223 | 78.01 151 | 85.23 250 | 45.50 298 | 95.12 76 | 59.11 264 | 85.83 152 | 91.11 143 |
|
cl____ | | | 77.72 196 | 76.76 195 | 80.58 215 | 82.49 285 | 60.48 256 | 83.09 254 | 87.87 207 | 69.22 203 | 74.38 231 | 85.22 251 | 62.10 142 | 91.53 219 | 71.09 160 | 75.41 275 | 89.73 204 |
|
HyFIR lowres test | | | 77.53 200 | 75.40 216 | 83.94 123 | 89.59 114 | 66.62 147 | 80.36 282 | 88.64 194 | 56.29 330 | 76.45 183 | 85.17 252 | 57.64 189 | 93.28 156 | 61.34 248 | 83.10 183 | 91.91 122 |
|
pmmvs4 | | | 74.03 244 | 71.91 250 | 80.39 218 | 81.96 292 | 68.32 113 | 81.45 271 | 82.14 287 | 59.32 310 | 69.87 277 | 85.13 253 | 52.40 227 | 88.13 279 | 60.21 255 | 74.74 286 | 84.73 306 |
|
TDRefinement | | | 67.49 295 | 64.34 304 | 76.92 274 | 73.47 350 | 61.07 247 | 84.86 216 | 82.98 281 | 59.77 306 | 58.30 345 | 85.13 253 | 26.06 353 | 87.89 281 | 47.92 334 | 60.59 346 | 81.81 333 |
|
Fast-Effi-MVS+ | | | 80.81 116 | 79.92 118 | 83.47 132 | 88.85 142 | 64.51 190 | 85.53 204 | 89.39 161 | 70.79 173 | 78.49 137 | 85.06 255 | 67.54 82 | 93.58 142 | 67.03 203 | 86.58 138 | 92.32 109 |
|
PVSNet_Blended | | | 80.98 111 | 80.34 112 | 82.90 159 | 88.85 142 | 65.40 173 | 84.43 229 | 92.00 87 | 67.62 228 | 78.11 148 | 85.05 256 | 66.02 99 | 94.27 111 | 71.52 155 | 89.50 104 | 89.01 222 |
|
test_fmvs1_n | | | 70.86 270 | 70.24 268 | 72.73 306 | 72.51 355 | 55.28 314 | 81.27 273 | 79.71 312 | 51.49 344 | 78.73 128 | 84.87 257 | 27.54 352 | 77.02 339 | 76.06 114 | 79.97 220 | 85.88 292 |
|
CMPMVS |  | 51.72 21 | 70.19 278 | 68.16 281 | 76.28 278 | 73.15 352 | 57.55 286 | 79.47 292 | 83.92 264 | 48.02 348 | 56.48 351 | 84.81 258 | 43.13 307 | 86.42 292 | 62.67 234 | 81.81 198 | 84.89 303 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
EU-MVSNet | | | 68.53 291 | 67.61 291 | 71.31 317 | 78.51 330 | 47.01 355 | 84.47 225 | 84.27 260 | 42.27 354 | 66.44 311 | 84.79 259 | 40.44 323 | 83.76 309 | 58.76 270 | 68.54 326 | 83.17 322 |
|
BH-w/o | | | 78.21 181 | 77.33 183 | 80.84 210 | 88.81 146 | 65.13 180 | 84.87 215 | 87.85 209 | 69.75 193 | 74.52 229 | 84.74 260 | 61.34 155 | 93.11 168 | 58.24 275 | 85.84 151 | 84.27 310 |
|
pmmvs5 | | | 71.55 264 | 70.20 269 | 75.61 283 | 77.83 331 | 56.39 302 | 81.74 266 | 80.89 296 | 57.76 321 | 67.46 296 | 84.49 261 | 49.26 268 | 85.32 300 | 57.08 285 | 75.29 279 | 85.11 302 |
|
thres200 | | | 75.55 230 | 74.47 228 | 78.82 246 | 87.78 185 | 57.85 281 | 83.07 256 | 83.51 271 | 72.44 147 | 75.84 198 | 84.42 262 | 52.08 233 | 91.75 213 | 47.41 335 | 83.64 176 | 86.86 273 |
|
test_fmvs1 | | | 70.93 269 | 70.52 263 | 72.16 309 | 73.71 347 | 55.05 316 | 80.82 274 | 78.77 317 | 51.21 345 | 78.58 134 | 84.41 263 | 31.20 348 | 76.94 340 | 75.88 117 | 80.12 219 | 84.47 309 |
|
test_fmvs2 | | | 68.35 293 | 67.48 293 | 70.98 319 | 69.50 358 | 51.95 337 | 80.05 286 | 76.38 332 | 49.33 347 | 74.65 228 | 84.38 264 | 23.30 358 | 75.40 350 | 74.51 128 | 75.17 282 | 85.60 294 |
|
eth_miper_zixun_eth | | | 77.92 191 | 76.69 198 | 81.61 189 | 83.00 273 | 61.98 237 | 83.15 252 | 89.20 170 | 69.52 197 | 74.86 225 | 84.35 265 | 61.76 145 | 92.56 184 | 71.50 157 | 72.89 303 | 90.28 175 |
|
c3_l | | | 78.75 168 | 77.91 165 | 81.26 198 | 82.89 276 | 61.56 243 | 84.09 238 | 89.13 174 | 69.97 188 | 75.56 201 | 84.29 266 | 66.36 93 | 92.09 202 | 73.47 139 | 75.48 272 | 90.12 181 |
|
Fast-Effi-MVS+-dtu | | | 78.02 188 | 76.49 201 | 82.62 171 | 83.16 269 | 66.96 144 | 86.94 161 | 87.45 218 | 72.45 145 | 71.49 259 | 84.17 267 | 54.79 208 | 91.58 217 | 67.61 194 | 80.31 215 | 89.30 213 |
|
IterMVS-SCA-FT | | | 75.43 232 | 73.87 235 | 80.11 225 | 82.69 280 | 64.85 185 | 81.57 269 | 83.47 273 | 69.16 207 | 70.49 265 | 84.15 268 | 51.95 236 | 88.15 278 | 69.23 179 | 72.14 308 | 87.34 261 |
|
1314 | | | 76.53 215 | 75.30 220 | 80.21 223 | 83.93 252 | 62.32 233 | 84.66 219 | 88.81 185 | 60.23 302 | 70.16 271 | 84.07 269 | 55.30 203 | 90.73 241 | 67.37 197 | 83.21 181 | 87.59 256 |
|
cl22 | | | 78.07 186 | 77.01 187 | 81.23 199 | 82.37 288 | 61.83 240 | 83.55 247 | 87.98 204 | 68.96 214 | 75.06 221 | 83.87 270 | 61.40 154 | 91.88 210 | 73.53 137 | 76.39 259 | 89.98 193 |
|
EG-PatchMatch MVS | | | 74.04 243 | 71.82 251 | 80.71 213 | 84.92 237 | 67.42 132 | 85.86 194 | 88.08 202 | 66.04 246 | 64.22 324 | 83.85 271 | 35.10 340 | 92.56 184 | 57.44 281 | 80.83 207 | 82.16 331 |
|
thisisatest0515 | | | 77.33 204 | 75.38 217 | 83.18 145 | 85.27 229 | 63.80 205 | 82.11 263 | 83.27 276 | 65.06 256 | 75.91 196 | 83.84 272 | 49.54 263 | 94.27 111 | 67.24 199 | 86.19 145 | 91.48 134 |
|
test20.03 | | | 67.45 296 | 66.95 297 | 68.94 325 | 75.48 341 | 44.84 362 | 77.50 310 | 77.67 322 | 66.66 237 | 63.01 330 | 83.80 273 | 47.02 282 | 78.40 332 | 42.53 351 | 68.86 325 | 83.58 319 |
|
miper_ehance_all_eth | | | 78.59 174 | 77.76 173 | 81.08 205 | 82.66 281 | 61.56 243 | 83.65 243 | 89.15 172 | 68.87 215 | 75.55 202 | 83.79 274 | 66.49 91 | 92.03 203 | 73.25 142 | 76.39 259 | 89.64 205 |
|
MSDG | | | 73.36 250 | 70.99 259 | 80.49 217 | 84.51 242 | 65.80 164 | 80.71 278 | 86.13 238 | 65.70 250 | 65.46 315 | 83.74 275 | 44.60 300 | 90.91 237 | 51.13 313 | 76.89 250 | 84.74 305 |
|
IterMVS | | | 74.29 239 | 72.94 243 | 78.35 254 | 81.53 298 | 63.49 213 | 81.58 268 | 82.49 285 | 68.06 226 | 69.99 274 | 83.69 276 | 51.66 242 | 85.54 297 | 65.85 211 | 71.64 311 | 86.01 289 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
tpm | | | 72.37 261 | 71.71 252 | 74.35 296 | 82.19 290 | 52.00 336 | 79.22 295 | 77.29 327 | 64.56 262 | 72.95 243 | 83.68 277 | 51.35 243 | 83.26 315 | 58.33 274 | 75.80 266 | 87.81 250 |
|
Effi-MVS+-dtu | | | 80.03 138 | 78.57 150 | 84.42 97 | 85.13 234 | 68.74 102 | 88.77 105 | 88.10 201 | 74.99 98 | 74.97 223 | 83.49 278 | 57.27 194 | 93.36 154 | 73.53 137 | 80.88 206 | 91.18 141 |
|
baseline2 | | | 75.70 228 | 73.83 236 | 81.30 197 | 83.26 264 | 61.79 241 | 82.57 260 | 80.65 300 | 66.81 233 | 66.88 302 | 83.42 279 | 57.86 187 | 92.19 199 | 63.47 225 | 79.57 223 | 89.91 195 |
|
TinyColmap | | | 67.30 298 | 64.81 302 | 74.76 293 | 81.92 293 | 56.68 298 | 80.29 284 | 81.49 294 | 60.33 300 | 56.27 352 | 83.22 280 | 24.77 355 | 87.66 284 | 45.52 343 | 69.47 320 | 79.95 341 |
|
mvsany_test1 | | | 62.30 315 | 61.26 319 | 65.41 335 | 69.52 357 | 54.86 318 | 66.86 351 | 49.78 372 | 46.65 349 | 68.50 289 | 83.21 281 | 49.15 269 | 66.28 364 | 56.93 287 | 60.77 344 | 75.11 350 |
|
test_vis1_n | | | 69.85 282 | 69.21 273 | 71.77 311 | 72.66 354 | 55.27 315 | 81.48 270 | 76.21 333 | 52.03 341 | 75.30 214 | 83.20 282 | 28.97 350 | 76.22 345 | 74.60 127 | 78.41 238 | 83.81 317 |
|
CostFormer | | | 75.24 235 | 73.90 234 | 79.27 241 | 82.65 282 | 58.27 273 | 80.80 275 | 82.73 284 | 61.57 293 | 75.33 213 | 83.13 283 | 55.52 201 | 91.07 235 | 64.98 218 | 78.34 239 | 88.45 240 |
|
miper_lstm_enhance | | | 74.11 242 | 73.11 242 | 77.13 273 | 80.11 315 | 59.62 264 | 72.23 332 | 86.92 227 | 66.76 235 | 70.40 266 | 82.92 284 | 56.93 197 | 82.92 316 | 69.06 182 | 72.63 304 | 88.87 229 |
|
GA-MVS | | | 76.87 212 | 75.17 221 | 81.97 182 | 82.75 278 | 62.58 229 | 81.44 272 | 86.35 235 | 72.16 152 | 74.74 226 | 82.89 285 | 46.20 290 | 92.02 204 | 68.85 185 | 81.09 204 | 91.30 139 |
|
K. test v3 | | | 71.19 266 | 68.51 277 | 79.21 243 | 83.04 272 | 57.78 283 | 84.35 232 | 76.91 330 | 72.90 144 | 62.99 331 | 82.86 286 | 39.27 326 | 91.09 234 | 61.65 244 | 52.66 357 | 88.75 234 |
|
MS-PatchMatch | | | 73.83 245 | 72.67 244 | 77.30 270 | 83.87 253 | 66.02 156 | 81.82 264 | 84.66 252 | 61.37 296 | 68.61 287 | 82.82 287 | 47.29 280 | 88.21 277 | 59.27 261 | 84.32 165 | 77.68 346 |
|
lessismore_v0 | | | | | 78.97 244 | 81.01 307 | 57.15 290 | | 65.99 358 | | 61.16 336 | 82.82 287 | 39.12 327 | 91.34 225 | 59.67 258 | 46.92 363 | 88.43 241 |
|
D2MVS | | | 74.82 236 | 73.21 240 | 79.64 236 | 79.81 319 | 62.56 230 | 80.34 283 | 87.35 219 | 64.37 265 | 68.86 284 | 82.66 289 | 46.37 287 | 90.10 248 | 67.91 192 | 81.24 203 | 86.25 282 |
|
Anonymous20231206 | | | 68.60 289 | 67.80 288 | 71.02 318 | 80.23 314 | 50.75 346 | 78.30 305 | 80.47 303 | 56.79 327 | 66.11 313 | 82.63 290 | 46.35 288 | 78.95 330 | 43.62 348 | 75.70 267 | 83.36 321 |
|
MIMVSNet | | | 70.69 272 | 69.30 271 | 74.88 291 | 84.52 241 | 56.35 304 | 75.87 320 | 79.42 314 | 64.59 261 | 67.76 291 | 82.41 291 | 41.10 320 | 81.54 321 | 46.64 339 | 81.34 201 | 86.75 276 |
|
OpenMVS_ROB |  | 64.09 19 | 70.56 274 | 68.19 280 | 77.65 264 | 80.26 313 | 59.41 267 | 85.01 212 | 82.96 282 | 58.76 315 | 65.43 316 | 82.33 292 | 37.63 334 | 91.23 228 | 45.34 345 | 76.03 264 | 82.32 329 |
|
miper_enhance_ethall | | | 77.87 193 | 76.86 191 | 80.92 209 | 81.65 295 | 61.38 245 | 82.68 258 | 88.98 179 | 65.52 253 | 75.47 203 | 82.30 293 | 65.76 103 | 92.00 205 | 72.95 145 | 76.39 259 | 89.39 210 |
|
test0.0.03 1 | | | 68.00 294 | 67.69 290 | 68.90 326 | 77.55 332 | 47.43 353 | 75.70 321 | 72.95 345 | 66.66 237 | 66.56 306 | 82.29 294 | 48.06 277 | 75.87 347 | 44.97 346 | 74.51 288 | 83.41 320 |
|
PVSNet | | 64.34 18 | 72.08 263 | 70.87 262 | 75.69 282 | 86.21 218 | 56.44 301 | 74.37 328 | 80.73 299 | 62.06 291 | 70.17 270 | 82.23 295 | 42.86 309 | 83.31 314 | 54.77 297 | 84.45 164 | 87.32 262 |
|
MIMVSNet1 | | | 68.58 290 | 66.78 298 | 73.98 299 | 80.07 316 | 51.82 338 | 80.77 276 | 84.37 256 | 64.40 264 | 59.75 341 | 82.16 296 | 36.47 336 | 83.63 311 | 42.73 350 | 70.33 317 | 86.48 280 |
|
CL-MVSNet_self_test | | | 72.37 261 | 71.46 253 | 75.09 289 | 79.49 325 | 53.53 328 | 80.76 277 | 85.01 249 | 69.12 208 | 70.51 264 | 82.05 297 | 57.92 186 | 84.13 307 | 52.27 308 | 66.00 333 | 87.60 254 |
|
tpm2 | | | 73.26 251 | 71.46 253 | 78.63 248 | 83.34 262 | 56.71 297 | 80.65 279 | 80.40 305 | 56.63 328 | 73.55 236 | 82.02 298 | 51.80 240 | 91.24 227 | 56.35 292 | 78.42 237 | 87.95 246 |
|
PatchMatch-RL | | | 72.38 260 | 70.90 260 | 76.80 276 | 88.60 155 | 67.38 134 | 79.53 291 | 76.17 334 | 62.75 284 | 69.36 282 | 82.00 299 | 45.51 297 | 84.89 303 | 53.62 302 | 80.58 211 | 78.12 345 |
|
FMVSNet5 | | | 69.50 283 | 67.96 284 | 74.15 298 | 82.97 275 | 55.35 313 | 80.01 287 | 82.12 288 | 62.56 286 | 63.02 329 | 81.53 300 | 36.92 335 | 81.92 319 | 48.42 327 | 74.06 291 | 85.17 301 |
|
CR-MVSNet | | | 73.37 248 | 71.27 257 | 79.67 235 | 81.32 304 | 65.19 178 | 75.92 318 | 80.30 306 | 59.92 305 | 72.73 245 | 81.19 301 | 52.50 225 | 86.69 289 | 59.84 257 | 77.71 241 | 87.11 269 |
|
Patchmtry | | | 70.74 271 | 69.16 274 | 75.49 286 | 80.72 308 | 54.07 325 | 74.94 327 | 80.30 306 | 58.34 317 | 70.01 272 | 81.19 301 | 52.50 225 | 86.54 290 | 53.37 304 | 71.09 315 | 85.87 293 |
|
IB-MVS | | 68.01 15 | 75.85 227 | 73.36 239 | 83.31 138 | 84.76 238 | 66.03 155 | 83.38 249 | 85.06 247 | 70.21 185 | 69.40 281 | 81.05 303 | 45.76 295 | 94.66 99 | 65.10 217 | 75.49 271 | 89.25 214 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
cascas | | | 76.72 214 | 74.64 224 | 82.99 155 | 85.78 222 | 65.88 161 | 82.33 261 | 89.21 169 | 60.85 298 | 72.74 244 | 81.02 304 | 47.28 281 | 93.75 138 | 67.48 196 | 85.02 155 | 89.34 211 |
|
LF4IMVS | | | 64.02 312 | 62.19 315 | 69.50 324 | 70.90 356 | 53.29 333 | 76.13 315 | 77.18 328 | 52.65 339 | 58.59 343 | 80.98 305 | 23.55 357 | 76.52 342 | 53.06 306 | 66.66 329 | 78.68 344 |
|
Anonymous20240521 | | | 68.80 288 | 67.22 295 | 73.55 300 | 74.33 344 | 54.11 324 | 83.18 251 | 85.61 243 | 58.15 318 | 61.68 334 | 80.94 306 | 30.71 349 | 81.27 323 | 57.00 286 | 73.34 301 | 85.28 298 |
|
gm-plane-assit | | | | | | 81.40 300 | 53.83 327 | | | 62.72 285 | | 80.94 306 | | 92.39 190 | 63.40 227 | | |
|
UnsupCasMVSNet_eth | | | 67.33 297 | 65.99 300 | 71.37 314 | 73.48 349 | 51.47 342 | 75.16 323 | 85.19 246 | 65.20 254 | 60.78 337 | 80.93 308 | 42.35 311 | 77.20 338 | 57.12 284 | 53.69 356 | 85.44 296 |
|
MVS_0304 | | | 72.48 258 | 70.89 261 | 77.24 271 | 82.20 289 | 59.68 263 | 84.11 237 | 83.49 272 | 67.10 232 | 66.87 303 | 80.59 309 | 35.00 341 | 87.40 285 | 59.07 266 | 79.58 222 | 84.63 307 |
|
MDTV_nov1_ep13 | | | | 69.97 270 | | 83.18 267 | 53.48 329 | 77.10 314 | 80.18 309 | 60.45 299 | 69.33 283 | 80.44 310 | 48.89 275 | 86.90 288 | 51.60 311 | 78.51 235 | |
|
pmmvs-eth3d | | | 70.50 275 | 67.83 287 | 78.52 252 | 77.37 334 | 66.18 154 | 81.82 264 | 81.51 293 | 58.90 314 | 63.90 327 | 80.42 311 | 42.69 310 | 86.28 293 | 58.56 271 | 65.30 335 | 83.11 324 |
|
PM-MVS | | | 66.41 303 | 64.14 305 | 73.20 304 | 73.92 346 | 56.45 300 | 78.97 298 | 64.96 361 | 63.88 274 | 64.72 321 | 80.24 312 | 19.84 361 | 83.44 313 | 66.24 205 | 64.52 337 | 79.71 342 |
|
SCA | | | 74.22 241 | 72.33 248 | 79.91 228 | 84.05 250 | 62.17 235 | 79.96 288 | 79.29 315 | 66.30 243 | 72.38 250 | 80.13 313 | 51.95 236 | 88.60 273 | 59.25 262 | 77.67 243 | 88.96 226 |
|
Patchmatch-test | | | 64.82 310 | 63.24 310 | 69.57 323 | 79.42 326 | 49.82 350 | 63.49 360 | 69.05 353 | 51.98 342 | 59.95 340 | 80.13 313 | 50.91 247 | 70.98 358 | 40.66 354 | 73.57 296 | 87.90 248 |
|
tpmrst | | | 72.39 259 | 72.13 249 | 73.18 305 | 80.54 311 | 49.91 349 | 79.91 289 | 79.08 316 | 63.11 277 | 71.69 257 | 79.95 315 | 55.32 202 | 82.77 317 | 65.66 213 | 73.89 293 | 86.87 272 |
|
DSMNet-mixed | | | 57.77 321 | 56.90 323 | 60.38 341 | 67.70 360 | 35.61 371 | 69.18 344 | 53.97 370 | 32.30 366 | 57.49 348 | 79.88 316 | 40.39 324 | 68.57 363 | 38.78 356 | 72.37 305 | 76.97 347 |
|
MDA-MVSNet-bldmvs | | | 66.68 300 | 63.66 308 | 75.75 281 | 79.28 327 | 60.56 255 | 73.92 329 | 78.35 319 | 64.43 263 | 50.13 358 | 79.87 317 | 44.02 303 | 83.67 310 | 46.10 341 | 56.86 349 | 83.03 326 |
|
PatchmatchNet |  | | 73.12 253 | 71.33 256 | 78.49 253 | 83.18 267 | 60.85 250 | 79.63 290 | 78.57 318 | 64.13 267 | 71.73 256 | 79.81 318 | 51.20 245 | 85.97 295 | 57.40 282 | 76.36 262 | 88.66 236 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
ppachtmachnet_test | | | 70.04 279 | 67.34 294 | 78.14 256 | 79.80 320 | 61.13 246 | 79.19 296 | 80.59 301 | 59.16 312 | 65.27 317 | 79.29 319 | 46.75 285 | 87.29 286 | 49.33 324 | 66.72 328 | 86.00 291 |
|
EPMVS | | | 69.02 286 | 68.16 281 | 71.59 312 | 79.61 323 | 49.80 351 | 77.40 311 | 66.93 356 | 62.82 283 | 70.01 272 | 79.05 320 | 45.79 294 | 77.86 336 | 56.58 290 | 75.26 280 | 87.13 268 |
|
PMMVS | | | 69.34 284 | 68.67 276 | 71.35 316 | 75.67 339 | 62.03 236 | 75.17 322 | 73.46 343 | 50.00 346 | 68.68 285 | 79.05 320 | 52.07 234 | 78.13 333 | 61.16 249 | 82.77 186 | 73.90 351 |
|
test-LLR | | | 72.94 256 | 72.43 246 | 74.48 294 | 81.35 302 | 58.04 276 | 78.38 302 | 77.46 324 | 66.66 237 | 69.95 275 | 79.00 322 | 48.06 277 | 79.24 328 | 66.13 206 | 84.83 157 | 86.15 285 |
|
test-mter | | | 71.41 265 | 70.39 267 | 74.48 294 | 81.35 302 | 58.04 276 | 78.38 302 | 77.46 324 | 60.32 301 | 69.95 275 | 79.00 322 | 36.08 338 | 79.24 328 | 66.13 206 | 84.83 157 | 86.15 285 |
|
KD-MVS_self_test | | | 68.81 287 | 67.59 292 | 72.46 308 | 74.29 345 | 45.45 357 | 77.93 308 | 87.00 225 | 63.12 276 | 63.99 326 | 78.99 324 | 42.32 312 | 84.77 304 | 56.55 291 | 64.09 338 | 87.16 267 |
|
test_fmvs3 | | | 63.36 314 | 61.82 316 | 67.98 330 | 62.51 365 | 46.96 356 | 77.37 312 | 74.03 342 | 45.24 350 | 67.50 295 | 78.79 325 | 12.16 369 | 72.98 357 | 72.77 148 | 66.02 332 | 83.99 315 |
|
KD-MVS_2432*1600 | | | 66.22 305 | 63.89 306 | 73.21 302 | 75.47 342 | 53.42 330 | 70.76 338 | 84.35 257 | 64.10 268 | 66.52 308 | 78.52 326 | 34.55 342 | 84.98 301 | 50.40 316 | 50.33 360 | 81.23 335 |
|
miper_refine_blended | | | 66.22 305 | 63.89 306 | 73.21 302 | 75.47 342 | 53.42 330 | 70.76 338 | 84.35 257 | 64.10 268 | 66.52 308 | 78.52 326 | 34.55 342 | 84.98 301 | 50.40 316 | 50.33 360 | 81.23 335 |
|
tpmvs | | | 71.09 267 | 69.29 272 | 76.49 277 | 82.04 291 | 56.04 307 | 78.92 299 | 81.37 295 | 64.05 270 | 67.18 300 | 78.28 328 | 49.74 262 | 89.77 251 | 49.67 323 | 72.37 305 | 83.67 318 |
|
our_test_3 | | | 69.14 285 | 67.00 296 | 75.57 284 | 79.80 320 | 58.80 268 | 77.96 307 | 77.81 321 | 59.55 308 | 62.90 332 | 78.25 329 | 47.43 279 | 83.97 308 | 51.71 310 | 67.58 327 | 83.93 316 |
|
MDA-MVSNet_test_wron | | | 65.03 308 | 62.92 311 | 71.37 314 | 75.93 337 | 56.73 295 | 69.09 347 | 74.73 339 | 57.28 325 | 54.03 355 | 77.89 330 | 45.88 292 | 74.39 354 | 49.89 322 | 61.55 342 | 82.99 327 |
|
YYNet1 | | | 65.03 308 | 62.91 312 | 71.38 313 | 75.85 338 | 56.60 299 | 69.12 346 | 74.66 341 | 57.28 325 | 54.12 354 | 77.87 331 | 45.85 293 | 74.48 353 | 49.95 321 | 61.52 343 | 83.05 325 |
|
ambc | | | | | 75.24 288 | 73.16 351 | 50.51 347 | 63.05 361 | 87.47 217 | | 64.28 323 | 77.81 332 | 17.80 363 | 89.73 253 | 57.88 278 | 60.64 345 | 85.49 295 |
|
tpm cat1 | | | 70.57 273 | 68.31 279 | 77.35 269 | 82.41 287 | 57.95 279 | 78.08 306 | 80.22 308 | 52.04 340 | 68.54 288 | 77.66 333 | 52.00 235 | 87.84 282 | 51.77 309 | 72.07 309 | 86.25 282 |
|
dp | | | 66.80 299 | 65.43 301 | 70.90 320 | 79.74 322 | 48.82 352 | 75.12 325 | 74.77 338 | 59.61 307 | 64.08 325 | 77.23 334 | 42.89 308 | 80.72 325 | 48.86 326 | 66.58 330 | 83.16 323 |
|
TESTMET0.1,1 | | | 69.89 281 | 69.00 275 | 72.55 307 | 79.27 328 | 56.85 293 | 78.38 302 | 74.71 340 | 57.64 322 | 68.09 290 | 77.19 335 | 37.75 333 | 76.70 341 | 63.92 223 | 84.09 168 | 84.10 314 |
|
CHOSEN 280x420 | | | 66.51 302 | 64.71 303 | 71.90 310 | 81.45 299 | 63.52 212 | 57.98 363 | 68.95 354 | 53.57 336 | 62.59 333 | 76.70 336 | 46.22 289 | 75.29 351 | 55.25 295 | 79.68 221 | 76.88 348 |
|
PatchT | | | 68.46 292 | 67.85 286 | 70.29 321 | 80.70 309 | 43.93 364 | 72.47 331 | 74.88 337 | 60.15 303 | 70.55 263 | 76.57 337 | 49.94 259 | 81.59 320 | 50.58 314 | 74.83 285 | 85.34 297 |
|
mvsany_test3 | | | 53.99 323 | 51.45 327 | 61.61 340 | 55.51 369 | 44.74 363 | 63.52 359 | 45.41 376 | 43.69 353 | 58.11 346 | 76.45 338 | 17.99 362 | 63.76 367 | 54.77 297 | 47.59 362 | 76.34 349 |
|
RPMNet | | | 73.51 247 | 70.49 264 | 82.58 172 | 81.32 304 | 65.19 178 | 75.92 318 | 92.27 76 | 57.60 323 | 72.73 245 | 76.45 338 | 52.30 228 | 95.43 63 | 48.14 332 | 77.71 241 | 87.11 269 |
|
ADS-MVSNet2 | | | 66.20 307 | 63.33 309 | 74.82 292 | 79.92 317 | 58.75 269 | 67.55 349 | 75.19 336 | 53.37 337 | 65.25 318 | 75.86 340 | 42.32 312 | 80.53 326 | 41.57 352 | 68.91 323 | 85.18 299 |
|
ADS-MVSNet | | | 64.36 311 | 62.88 313 | 68.78 328 | 79.92 317 | 47.17 354 | 67.55 349 | 71.18 346 | 53.37 337 | 65.25 318 | 75.86 340 | 42.32 312 | 73.99 355 | 41.57 352 | 68.91 323 | 85.18 299 |
|
EGC-MVSNET | | | 52.07 328 | 47.05 332 | 67.14 332 | 83.51 259 | 60.71 252 | 80.50 281 | 67.75 355 | 0.07 376 | 0.43 377 | 75.85 342 | 24.26 356 | 81.54 321 | 28.82 362 | 62.25 340 | 59.16 361 |
|
new-patchmatchnet | | | 61.73 316 | 61.73 317 | 61.70 339 | 72.74 353 | 24.50 378 | 69.16 345 | 78.03 320 | 61.40 294 | 56.72 350 | 75.53 343 | 38.42 329 | 76.48 343 | 45.95 342 | 57.67 348 | 84.13 313 |
|
N_pmnet | | | 52.79 326 | 53.26 325 | 51.40 350 | 78.99 329 | 7.68 381 | 69.52 342 | 3.89 381 | 51.63 343 | 57.01 349 | 74.98 344 | 40.83 322 | 65.96 365 | 37.78 357 | 64.67 336 | 80.56 340 |
|
patchmatchnet-post | | | | | | | | | | | | 74.00 345 | 51.12 246 | 88.60 273 | | | |
|
GG-mvs-BLEND | | | | | 75.38 287 | 81.59 297 | 55.80 309 | 79.32 293 | 69.63 350 | | 67.19 299 | 73.67 346 | 43.24 306 | 88.90 270 | 50.41 315 | 84.50 161 | 81.45 334 |
|
Patchmatch-RL test | | | 70.24 277 | 67.78 289 | 77.61 265 | 77.43 333 | 59.57 266 | 71.16 335 | 70.33 347 | 62.94 281 | 68.65 286 | 72.77 347 | 50.62 251 | 85.49 298 | 69.58 177 | 66.58 330 | 87.77 251 |
|
FPMVS | | | 53.68 324 | 51.64 326 | 59.81 342 | 65.08 363 | 51.03 344 | 69.48 343 | 69.58 351 | 41.46 355 | 40.67 361 | 72.32 348 | 16.46 365 | 70.00 361 | 24.24 368 | 65.42 334 | 58.40 363 |
|
UnsupCasMVSNet_bld | | | 63.70 313 | 61.53 318 | 70.21 322 | 73.69 348 | 51.39 343 | 72.82 330 | 81.89 289 | 55.63 332 | 57.81 347 | 71.80 349 | 38.67 328 | 78.61 331 | 49.26 325 | 52.21 358 | 80.63 338 |
|
APD_test1 | | | 53.31 325 | 49.93 330 | 63.42 338 | 65.68 362 | 50.13 348 | 71.59 334 | 66.90 357 | 34.43 363 | 40.58 362 | 71.56 350 | 8.65 374 | 76.27 344 | 34.64 360 | 55.36 354 | 63.86 359 |
|
test_f | | | 52.09 327 | 50.82 328 | 55.90 346 | 53.82 372 | 42.31 367 | 59.42 362 | 58.31 368 | 36.45 361 | 56.12 353 | 70.96 351 | 12.18 368 | 57.79 369 | 53.51 303 | 56.57 351 | 67.60 355 |
|
PVSNet_0 | | 57.27 20 | 61.67 317 | 59.27 320 | 68.85 327 | 79.61 323 | 57.44 288 | 68.01 348 | 73.44 344 | 55.93 331 | 58.54 344 | 70.41 352 | 44.58 301 | 77.55 337 | 47.01 336 | 35.91 366 | 71.55 354 |
|
pmmvs3 | | | 57.79 320 | 54.26 324 | 68.37 329 | 64.02 364 | 56.72 296 | 75.12 325 | 65.17 359 | 40.20 356 | 52.93 356 | 69.86 353 | 20.36 360 | 75.48 349 | 45.45 344 | 55.25 355 | 72.90 353 |
|
test_vis1_rt | | | 60.28 318 | 58.42 321 | 65.84 334 | 67.25 361 | 55.60 312 | 70.44 340 | 60.94 365 | 44.33 352 | 59.00 342 | 66.64 354 | 24.91 354 | 68.67 362 | 62.80 230 | 69.48 319 | 73.25 352 |
|
new_pmnet | | | 50.91 329 | 50.29 329 | 52.78 349 | 68.58 359 | 34.94 373 | 63.71 358 | 56.63 369 | 39.73 357 | 44.95 359 | 65.47 355 | 21.93 359 | 58.48 368 | 34.98 359 | 56.62 350 | 64.92 357 |
|
gg-mvs-nofinetune | | | 69.95 280 | 67.96 284 | 75.94 280 | 83.07 270 | 54.51 322 | 77.23 313 | 70.29 348 | 63.11 277 | 70.32 267 | 62.33 356 | 43.62 305 | 88.69 272 | 53.88 301 | 87.76 122 | 84.62 308 |
|
JIA-IIPM | | | 66.32 304 | 62.82 314 | 76.82 275 | 77.09 335 | 61.72 242 | 65.34 356 | 75.38 335 | 58.04 320 | 64.51 322 | 62.32 357 | 42.05 317 | 86.51 291 | 51.45 312 | 69.22 322 | 82.21 330 |
|
LCM-MVSNet | | | 54.25 322 | 49.68 331 | 67.97 331 | 53.73 373 | 45.28 360 | 66.85 352 | 80.78 298 | 35.96 362 | 39.45 363 | 62.23 358 | 8.70 373 | 78.06 335 | 48.24 331 | 51.20 359 | 80.57 339 |
|
PMMVS2 | | | 40.82 336 | 38.86 339 | 46.69 351 | 53.84 371 | 16.45 379 | 48.61 366 | 49.92 371 | 37.49 359 | 31.67 364 | 60.97 359 | 8.14 375 | 56.42 370 | 28.42 363 | 30.72 368 | 67.19 356 |
|
testf1 | | | 45.72 332 | 41.96 335 | 57.00 343 | 56.90 367 | 45.32 358 | 66.14 354 | 59.26 366 | 26.19 367 | 30.89 366 | 60.96 360 | 4.14 377 | 70.64 359 | 26.39 366 | 46.73 364 | 55.04 364 |
|
APD_test2 | | | 45.72 332 | 41.96 335 | 57.00 343 | 56.90 367 | 45.32 358 | 66.14 354 | 59.26 366 | 26.19 367 | 30.89 366 | 60.96 360 | 4.14 377 | 70.64 359 | 26.39 366 | 46.73 364 | 55.04 364 |
|
MVS-HIRNet | | | 59.14 319 | 57.67 322 | 63.57 337 | 81.65 295 | 43.50 365 | 71.73 333 | 65.06 360 | 39.59 358 | 51.43 357 | 57.73 362 | 38.34 330 | 82.58 318 | 39.53 355 | 73.95 292 | 64.62 358 |
|
ANet_high | | | 50.57 330 | 46.10 334 | 63.99 336 | 48.67 376 | 39.13 369 | 70.99 337 | 80.85 297 | 61.39 295 | 31.18 365 | 57.70 363 | 17.02 364 | 73.65 356 | 31.22 361 | 15.89 373 | 79.18 343 |
|
PMVS |  | 37.38 22 | 44.16 335 | 40.28 338 | 55.82 347 | 40.82 378 | 42.54 366 | 65.12 357 | 63.99 362 | 34.43 363 | 24.48 369 | 57.12 364 | 3.92 379 | 76.17 346 | 17.10 371 | 55.52 353 | 48.75 366 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
test_vis3_rt | | | 49.26 331 | 47.02 333 | 56.00 345 | 54.30 370 | 45.27 361 | 66.76 353 | 48.08 373 | 36.83 360 | 44.38 360 | 53.20 365 | 7.17 376 | 64.07 366 | 56.77 289 | 55.66 352 | 58.65 362 |
|
test_method | | | 31.52 338 | 29.28 342 | 38.23 353 | 27.03 380 | 6.50 382 | 20.94 371 | 62.21 364 | 4.05 374 | 22.35 372 | 52.50 366 | 13.33 366 | 47.58 373 | 27.04 365 | 34.04 367 | 60.62 360 |
|
DeepMVS_CX |  | | | | 27.40 356 | 40.17 379 | 26.90 376 | | 24.59 380 | 17.44 372 | 23.95 370 | 48.61 367 | 9.77 371 | 26.48 375 | 18.06 370 | 24.47 369 | 28.83 369 |
|
MVE |  | 26.22 23 | 30.37 340 | 25.89 344 | 43.81 352 | 44.55 377 | 35.46 372 | 28.87 370 | 39.07 377 | 18.20 371 | 18.58 373 | 40.18 368 | 2.68 380 | 47.37 374 | 17.07 372 | 23.78 370 | 48.60 367 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
Gipuma |  | | 45.18 334 | 41.86 337 | 55.16 348 | 77.03 336 | 51.52 341 | 32.50 369 | 80.52 302 | 32.46 365 | 27.12 368 | 35.02 369 | 9.52 372 | 75.50 348 | 22.31 369 | 60.21 347 | 38.45 368 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
E-PMN | | | 31.77 337 | 30.64 340 | 35.15 354 | 52.87 374 | 27.67 375 | 57.09 364 | 47.86 374 | 24.64 369 | 16.40 374 | 33.05 370 | 11.23 370 | 54.90 371 | 14.46 373 | 18.15 371 | 22.87 370 |
|
EMVS | | | 30.81 339 | 29.65 341 | 34.27 355 | 50.96 375 | 25.95 377 | 56.58 365 | 46.80 375 | 24.01 370 | 15.53 375 | 30.68 371 | 12.47 367 | 54.43 372 | 12.81 374 | 17.05 372 | 22.43 371 |
|
tmp_tt | | | 18.61 342 | 21.40 345 | 10.23 358 | 4.82 381 | 10.11 380 | 34.70 368 | 30.74 379 | 1.48 375 | 23.91 371 | 26.07 372 | 28.42 351 | 13.41 377 | 27.12 364 | 15.35 374 | 7.17 372 |
|
X-MVStestdata | | | 80.37 131 | 77.83 168 | 88.00 15 | 94.42 20 | 73.33 18 | 92.78 18 | 92.99 45 | 79.14 19 | 83.67 72 | 12.47 373 | 67.45 83 | 96.60 31 | 83.06 50 | 94.50 48 | 94.07 45 |
|
test_post | | | | | | | | | | | | 5.46 374 | 50.36 255 | 84.24 306 | | | |
|
test_post1 | | | | | | | | 78.90 300 | | | | 5.43 375 | 48.81 276 | 85.44 299 | 59.25 262 | | |
|
wuyk23d | | | 16.82 343 | 15.94 346 | 19.46 357 | 58.74 366 | 31.45 374 | 39.22 367 | 3.74 382 | 6.84 373 | 6.04 376 | 2.70 376 | 1.27 381 | 24.29 376 | 10.54 375 | 14.40 375 | 2.63 373 |
|
testmvs | | | 6.04 346 | 8.02 349 | 0.10 360 | 0.08 382 | 0.03 384 | 69.74 341 | 0.04 383 | 0.05 377 | 0.31 378 | 1.68 377 | 0.02 383 | 0.04 378 | 0.24 376 | 0.02 376 | 0.25 375 |
|
test123 | | | 6.12 345 | 8.11 348 | 0.14 359 | 0.06 383 | 0.09 383 | 71.05 336 | 0.03 384 | 0.04 378 | 0.25 379 | 1.30 378 | 0.05 382 | 0.03 379 | 0.21 377 | 0.01 377 | 0.29 374 |
|
test_blank | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uanet_test | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
DCPMVS | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
pcd_1.5k_mvsjas | | | 5.26 347 | 7.02 350 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 63.15 125 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
sosnet-low-res | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
sosnet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uncertanet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
Regformer | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uanet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
FOURS1 | | | | | | 95.00 10 | 72.39 38 | 95.06 1 | 93.84 15 | 74.49 109 | 91.30 15 | | | | | | |
|
MSC_two_6792asdad | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 45 | | | | | 97.53 1 | 89.67 1 | 96.44 9 | 94.41 30 |
|
No_MVS | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 45 | | | | | 97.53 1 | 89.67 1 | 96.44 9 | 94.41 30 |
|
eth-test2 | | | | | | 0.00 384 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 384 | | | | | | | | | | | |
|
IU-MVS | | | | | | 95.30 2 | 71.25 55 | | 92.95 51 | 66.81 233 | 92.39 6 | | | | 88.94 11 | 96.63 4 | 94.85 17 |
|
save fliter | | | | | | 93.80 40 | 72.35 41 | 90.47 62 | 91.17 116 | 74.31 112 | | | | | | | |
|
test_0728_SECOND | | | | | 87.71 30 | 95.34 1 | 71.43 54 | 93.49 9 | 94.23 3 | | | | | 97.49 3 | 89.08 7 | 96.41 12 | 94.21 40 |
|
GSMVS | | | | | | | | | | | | | | | | | 88.96 226 |
|
test_part2 | | | | | | 95.06 8 | 72.65 31 | | | | 91.80 13 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 51.32 244 | | | | 88.96 226 |
|
sam_mvs | | | | | | | | | | | | | 50.01 257 | | | | |
|
MTGPA |  | | | | | | | | 92.02 85 | | | | | | | | |
|
MTMP | | | | | | | | 92.18 33 | 32.83 378 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 84.90 29 | 95.70 26 | 92.87 92 |
|
agg_prior2 | | | | | | | | | | | | | | | 82.91 53 | 95.45 28 | 92.70 95 |
|
agg_prior | | | | | | 92.85 59 | 71.94 49 | | 91.78 100 | | 84.41 59 | | | 94.93 85 | | | |
|
test_prior4 | | | | | | | 72.60 33 | 89.01 96 | | | | | | | | | |
|
test_prior | | | | | 86.33 52 | 92.61 65 | 69.59 85 | | 92.97 50 | | | | | 95.48 60 | | | 93.91 50 |
|
旧先验2 | | | | | | | | 86.56 175 | | 58.10 319 | 87.04 30 | | | 88.98 266 | 74.07 133 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 86.29 183 | | | | | | | | | |
|
æ— å…ˆéªŒ | | | | | | | | 87.48 146 | 88.98 179 | 60.00 304 | | | | 94.12 119 | 67.28 198 | | 88.97 225 |
|
原ACMM2 | | | | | | | | 86.86 164 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 91.01 236 | 62.37 236 | | |
|
segment_acmp | | | | | | | | | | | | | 73.08 37 | | | | |
|
testdata1 | | | | | | | | 84.14 236 | | 75.71 85 | | | | | | | |
|
test12 | | | | | 86.80 47 | 92.63 64 | 70.70 70 | | 91.79 99 | | 82.71 85 | | 71.67 47 | 96.16 42 | | 94.50 48 | 93.54 70 |
|
plane_prior7 | | | | | | 90.08 102 | 68.51 111 | | | | | | | | | | |
|
plane_prior6 | | | | | | 89.84 111 | 68.70 106 | | | | | | 60.42 172 | | | | |
|
plane_prior5 | | | | | | | | | 92.44 69 | | | | | 95.38 67 | 78.71 88 | 86.32 142 | 91.33 136 |
|
plane_prior3 | | | | | | | 68.60 109 | | | 78.44 29 | 78.92 126 | | | | | | |
|
plane_prior2 | | | | | | | | 91.25 48 | | 79.12 21 | | | | | | | |
|
plane_prior1 | | | | | | 89.90 110 | | | | | | | | | | | |
|
plane_prior | | | | | | | 68.71 104 | 90.38 65 | | 77.62 37 | | | | | | 86.16 146 | |
|
n2 | | | | | | | | | 0.00 385 | | | | | | | | |
|
nn | | | | | | | | | 0.00 385 | | | | | | | | |
|
door-mid | | | | | | | | | 69.98 349 | | | | | | | | |
|
test11 | | | | | | | | | 92.23 79 | | | | | | | | |
|
door | | | | | | | | | 69.44 352 | | | | | | | | |
|
HQP5-MVS | | | | | | | 66.98 142 | | | | | | | | | | |
|
HQP-NCC | | | | | | 89.33 126 | | 89.17 89 | | 76.41 70 | 77.23 167 | | | | | | |
|
ACMP_Plane | | | | | | 89.33 126 | | 89.17 89 | | 76.41 70 | 77.23 167 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.47 100 | | |
|
HQP4-MVS | | | | | | | | | | | 77.24 166 | | | 95.11 78 | | | 91.03 148 |
|
HQP3-MVS | | | | | | | | | 92.19 82 | | | | | | | 85.99 149 | |
|
HQP2-MVS | | | | | | | | | | | | | 60.17 175 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 37.79 370 | 75.16 323 | | 55.10 333 | 66.53 307 | | 49.34 266 | | 53.98 300 | | 87.94 247 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 81.95 196 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 81.25 202 | |
|
Test By Simon | | | | | | | | | | | | | 64.33 112 | | | | |
|