This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
APDe-MVS89.15 689.63 687.73 2694.49 1871.69 5093.83 493.96 1375.70 8791.06 1696.03 176.84 1497.03 1589.09 695.65 2794.47 29
SMA-MVScopyleft89.08 789.23 788.61 594.25 3173.73 992.40 2393.63 2174.77 10392.29 795.97 274.28 2997.24 1188.58 1396.91 194.87 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test072695.27 571.25 5593.60 694.11 677.33 4692.81 395.79 380.98 9
DVP-MVScopyleft89.60 390.35 387.33 3895.27 571.25 5593.49 992.73 5977.33 4692.12 995.78 480.98 997.40 789.08 796.41 1293.33 76
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD78.38 3192.12 995.78 481.46 797.40 789.42 496.57 794.67 22
DVP-MVS++90.23 191.01 187.89 2294.34 2771.25 5595.06 194.23 378.38 3192.78 495.74 682.45 397.49 389.42 496.68 294.95 8
test_one_060195.07 771.46 5394.14 578.27 3392.05 1195.74 680.83 11
SED-MVS90.08 290.85 287.77 2495.30 270.98 6193.57 794.06 1077.24 4893.10 195.72 882.99 197.44 589.07 996.63 494.88 12
test_241102_TWO94.06 1077.24 4892.78 495.72 881.26 897.44 589.07 996.58 694.26 39
DPE-MVScopyleft89.48 589.98 488.01 1494.80 1172.69 3091.59 4194.10 875.90 8392.29 795.66 1081.67 697.38 987.44 2096.34 1593.95 49
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_241102_ONE95.30 270.98 6194.06 1077.17 5193.10 195.39 1182.99 197.27 10
MP-MVS-pluss87.67 1987.72 1987.54 3493.64 4472.04 4789.80 7793.50 2575.17 9686.34 3395.29 1270.86 5396.00 4788.78 1296.04 1694.58 25
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SF-MVS88.46 1188.74 1187.64 3392.78 6171.95 4892.40 2394.74 275.71 8589.16 1995.10 1375.65 2196.19 4187.07 2196.01 1794.79 19
ACMMP_NAP88.05 1588.08 1687.94 1793.70 4173.05 2190.86 5493.59 2376.27 7788.14 2395.09 1471.06 5296.67 2787.67 1696.37 1494.09 44
MTAPA87.23 2687.00 2787.90 2094.18 3574.25 586.58 17492.02 8579.45 1785.88 3594.80 1568.07 7796.21 4086.69 2395.34 3193.23 79
SteuartSystems-ACMMP88.72 1088.86 1088.32 892.14 6972.96 2493.73 593.67 2080.19 1088.10 2494.80 1573.76 3397.11 1387.51 1895.82 2194.90 11
Skip Steuart: Steuart Systems R&D Blog.
9.1488.26 1492.84 6091.52 4494.75 173.93 12188.57 2294.67 1775.57 2295.79 5186.77 2295.76 23
SR-MVS86.73 3286.67 3386.91 4494.11 3772.11 4692.37 2792.56 6774.50 10886.84 3194.65 1867.31 8595.77 5284.80 3392.85 6592.84 93
region2R87.42 2387.20 2688.09 1294.63 1473.55 1293.03 1493.12 3776.73 6684.45 5894.52 1969.09 7196.70 2584.37 3894.83 4294.03 47
ACMMPR87.44 2187.23 2588.08 1394.64 1373.59 1193.04 1293.20 3476.78 6384.66 5494.52 1968.81 7596.65 2884.53 3694.90 3894.00 48
APD-MVScopyleft87.44 2187.52 2187.19 4094.24 3272.39 3891.86 3992.83 5573.01 14288.58 2194.52 1973.36 3496.49 3484.26 3995.01 3592.70 95
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
APD-MVS_3200maxsize85.97 4385.88 4586.22 5592.69 6369.53 8691.93 3692.99 4573.54 13185.94 3494.51 2265.80 10295.61 5583.04 5292.51 6993.53 71
CP-MVS87.11 2886.92 3087.68 3294.20 3473.86 793.98 392.82 5876.62 6883.68 7194.46 2367.93 7895.95 5084.20 4294.39 5193.23 79
SR-MVS-dyc-post85.77 4685.61 4886.23 5493.06 5570.63 7191.88 3792.27 7673.53 13285.69 3894.45 2465.00 11095.56 5682.75 5591.87 7792.50 103
RE-MVS-def85.48 4993.06 5570.63 7191.88 3792.27 7673.53 13285.69 3894.45 2463.87 11682.75 5591.87 7792.50 103
HFP-MVS87.58 2087.47 2287.94 1794.58 1673.54 1493.04 1293.24 3376.78 6384.91 4794.44 2670.78 5496.61 3084.53 3694.89 3993.66 59
PGM-MVS86.68 3486.27 3887.90 2094.22 3373.38 1790.22 6893.04 3875.53 8983.86 6894.42 2767.87 8096.64 2982.70 5994.57 4793.66 59
MP-MVScopyleft87.71 1887.64 2087.93 1994.36 2673.88 692.71 2292.65 6477.57 3983.84 6994.40 2872.24 4296.28 3885.65 2595.30 3393.62 66
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS87.94 1787.85 1888.20 1194.39 2473.33 1893.03 1493.81 1776.81 6185.24 4294.32 2971.76 4696.93 1785.53 2695.79 2294.32 36
HPM-MVS++copyleft89.02 889.15 888.63 495.01 976.03 192.38 2692.85 5480.26 987.78 2794.27 3075.89 1996.81 2187.45 1996.44 993.05 86
mPP-MVS86.67 3586.32 3787.72 2894.41 2273.55 1292.74 2092.22 8076.87 6082.81 8494.25 3166.44 9296.24 3982.88 5494.28 5493.38 73
DeepC-MVS79.81 287.08 3086.88 3287.69 3191.16 8072.32 4290.31 6693.94 1477.12 5382.82 8394.23 3272.13 4497.09 1484.83 3295.37 3093.65 63
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVS87.18 2786.91 3188.00 1594.42 2073.33 1892.78 1892.99 4579.14 1983.67 7294.17 3367.45 8396.60 3183.06 5094.50 4894.07 45
MSP-MVS89.51 489.91 588.30 994.28 3073.46 1692.90 1694.11 680.27 891.35 1494.16 3478.35 1396.77 2289.59 394.22 5694.67 22
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepPCF-MVS80.84 188.10 1288.56 1286.73 4892.24 6869.03 9389.57 8393.39 3077.53 4389.79 1894.12 3578.98 1296.58 3385.66 2495.72 2494.58 25
HPM-MVS_fast85.35 5484.95 5886.57 5193.69 4270.58 7392.15 3491.62 10373.89 12282.67 8694.09 3662.60 13195.54 5880.93 7092.93 6493.57 68
ZD-MVS94.38 2572.22 4392.67 6170.98 17187.75 2894.07 3774.01 3296.70 2584.66 3494.84 41
CNVR-MVS88.93 989.13 988.33 794.77 1273.82 890.51 5993.00 4380.90 588.06 2594.06 3876.43 1696.84 1988.48 1495.99 1894.34 35
OPU-MVS89.06 394.62 1575.42 493.57 794.02 3982.45 396.87 1883.77 4596.48 894.88 12
PC_three_145268.21 22592.02 1294.00 4082.09 595.98 4984.58 3596.68 294.95 8
SD-MVS88.06 1388.50 1386.71 4992.60 6672.71 2891.81 4093.19 3577.87 3490.32 1794.00 4074.83 2393.78 13487.63 1794.27 5593.65 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GST-MVS87.42 2387.26 2387.89 2294.12 3672.97 2392.39 2593.43 2876.89 5984.68 5193.99 4270.67 5696.82 2084.18 4395.01 3593.90 51
HPM-MVScopyleft87.11 2886.98 2887.50 3693.88 3972.16 4492.19 3293.33 3176.07 8083.81 7093.95 4369.77 6596.01 4685.15 2794.66 4494.32 36
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TSAR-MVS + MP.88.02 1688.11 1587.72 2893.68 4372.13 4591.41 4592.35 7474.62 10788.90 2093.85 4475.75 2096.00 4787.80 1594.63 4595.04 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMPcopyleft85.89 4585.39 5087.38 3793.59 4572.63 3292.74 2093.18 3676.78 6380.73 10793.82 4564.33 11296.29 3782.67 6090.69 9193.23 79
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_prior288.85 10275.41 9184.91 4793.54 4674.28 2983.31 4895.86 20
VDDNet81.52 10380.67 10684.05 11590.44 9564.13 20089.73 8085.91 24071.11 16883.18 7793.48 4750.54 25393.49 14873.40 14088.25 11994.54 28
CDPH-MVS85.76 4785.29 5487.17 4193.49 4771.08 5988.58 11392.42 7268.32 22484.61 5593.48 4772.32 4196.15 4379.00 8595.43 2994.28 38
NCCC88.06 1388.01 1788.24 1094.41 2273.62 1091.22 5092.83 5581.50 385.79 3793.47 4973.02 3997.00 1684.90 2994.94 3794.10 43
3Dnovator+77.84 485.48 5084.47 6288.51 691.08 8173.49 1593.18 1193.78 1880.79 676.66 18093.37 5060.40 17496.75 2477.20 10393.73 6095.29 4
DeepC-MVS_fast79.65 386.91 3186.62 3487.76 2593.52 4672.37 4091.26 4693.04 3876.62 6884.22 6293.36 5171.44 5096.76 2380.82 7295.33 3294.16 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDD-MVS83.01 8082.36 8184.96 7891.02 8366.40 15088.91 9988.11 20077.57 3984.39 6093.29 5252.19 23093.91 12977.05 10588.70 11394.57 27
UA-Net85.08 5784.96 5785.45 6692.07 7068.07 11989.78 7890.86 12582.48 184.60 5693.20 5369.35 6895.22 7271.39 15890.88 9093.07 85
TEST993.26 5072.96 2488.75 10691.89 9368.44 22285.00 4593.10 5474.36 2895.41 65
train_agg86.43 3786.20 3987.13 4293.26 5072.96 2488.75 10691.89 9368.69 21885.00 4593.10 5474.43 2695.41 6584.97 2895.71 2593.02 88
test_893.13 5272.57 3488.68 11191.84 9768.69 21884.87 4993.10 5474.43 2695.16 74
LFMVS81.82 9581.23 9683.57 13191.89 7363.43 21689.84 7481.85 29177.04 5683.21 7693.10 5452.26 22993.43 15371.98 15389.95 10193.85 52
旧先验191.96 7165.79 16586.37 23493.08 5869.31 7092.74 6688.74 235
dcpmvs_285.63 4986.15 4284.06 11391.71 7564.94 18486.47 17791.87 9573.63 12786.60 3293.02 5976.57 1591.87 21183.36 4792.15 7395.35 2
testdata79.97 22790.90 8664.21 19884.71 25159.27 31185.40 4092.91 6062.02 14489.08 26468.95 18391.37 8486.63 279
MCST-MVS87.37 2587.25 2487.73 2694.53 1772.46 3789.82 7593.82 1673.07 14084.86 5092.89 6176.22 1796.33 3684.89 3195.13 3494.40 32
Vis-MVSNetpermissive83.46 7082.80 7685.43 6790.25 9868.74 10290.30 6790.13 14476.33 7680.87 10692.89 6161.00 16394.20 11672.45 15290.97 8893.35 75
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CPTT-MVS83.73 6483.33 6884.92 8193.28 4970.86 6792.09 3590.38 13468.75 21779.57 11892.83 6360.60 17093.04 17380.92 7191.56 8290.86 154
3Dnovator76.31 583.38 7382.31 8286.59 5087.94 17772.94 2790.64 5792.14 8477.21 5075.47 20392.83 6358.56 18194.72 9773.24 14392.71 6792.13 117
MSLP-MVS++85.43 5285.76 4784.45 9691.93 7270.24 7490.71 5692.86 5377.46 4584.22 6292.81 6567.16 8792.94 17580.36 7794.35 5390.16 178
test250677.30 20576.49 20179.74 23290.08 10252.02 33587.86 13963.10 36374.88 10080.16 11392.79 6638.29 33192.35 19368.74 18692.50 7094.86 15
ECVR-MVScopyleft79.61 14479.26 13580.67 21490.08 10254.69 31987.89 13777.44 32674.88 10080.27 11092.79 6648.96 27492.45 18768.55 18792.50 7094.86 15
test111179.43 15179.18 13980.15 22489.99 10753.31 33287.33 15177.05 32975.04 9780.23 11292.77 6848.97 27392.33 19568.87 18492.40 7294.81 18
MG-MVS83.41 7183.45 6683.28 13992.74 6262.28 23488.17 12689.50 15975.22 9481.49 9792.74 6966.75 8895.11 7872.85 14691.58 8192.45 106
casdiffmvs_mvgpermissive85.99 4286.09 4485.70 6487.65 18967.22 13888.69 11093.04 3879.64 1685.33 4192.54 7073.30 3594.50 10583.49 4691.14 8795.37 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
patch_mono-283.65 6684.54 6180.99 20790.06 10665.83 16284.21 23488.74 19171.60 16085.01 4492.44 7174.51 2583.50 31282.15 6292.15 7393.64 65
casdiffmvspermissive85.11 5685.14 5585.01 7687.20 20465.77 16687.75 14092.83 5577.84 3584.36 6192.38 7272.15 4393.93 12881.27 6890.48 9295.33 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS86.69 3386.95 2985.90 6190.76 9067.57 12992.83 1793.30 3279.67 1584.57 5792.27 7371.47 4995.02 8484.24 4193.46 6195.13 5
baseline84.93 5884.98 5684.80 8687.30 20265.39 17587.30 15292.88 5277.62 3784.04 6792.26 7471.81 4593.96 12281.31 6790.30 9495.03 7
QAPM80.88 11379.50 12885.03 7588.01 17668.97 9691.59 4192.00 8766.63 24075.15 21892.16 7557.70 18895.45 6163.52 22488.76 11290.66 161
IS-MVSNet83.15 7582.81 7584.18 10689.94 10963.30 21891.59 4188.46 19779.04 2379.49 11992.16 7565.10 10794.28 11067.71 19391.86 7994.95 8
新几何183.42 13493.13 5270.71 6985.48 24457.43 32481.80 9491.98 7763.28 12092.27 19664.60 22192.99 6387.27 263
OpenMVScopyleft72.83 1079.77 14278.33 15784.09 11085.17 23069.91 8190.57 5890.97 12066.70 23672.17 25291.91 7854.70 20993.96 12261.81 24390.95 8988.41 242
PHI-MVS86.43 3786.17 4187.24 3990.88 8770.96 6392.27 3194.07 972.45 14585.22 4391.90 7969.47 6796.42 3583.28 4995.94 1994.35 34
VNet82.21 8782.41 7981.62 18790.82 8860.93 24884.47 22589.78 15276.36 7584.07 6691.88 8064.71 11190.26 24570.68 16488.89 10993.66 59
DROMVSNet86.01 4186.38 3684.91 8289.31 12966.27 15392.32 2993.63 2179.37 1884.17 6491.88 8069.04 7495.43 6383.93 4493.77 5993.01 89
OPM-MVS83.50 6982.95 7385.14 7288.79 14870.95 6489.13 9491.52 10677.55 4280.96 10591.75 8260.71 16694.50 10579.67 8286.51 14089.97 194
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XVG-OURS-SEG-HR80.81 11679.76 12283.96 12285.60 22568.78 9983.54 24890.50 13170.66 17776.71 17991.66 8360.69 16791.26 22676.94 10681.58 20091.83 123
EPNet83.72 6582.92 7486.14 5784.22 24669.48 8791.05 5385.27 24581.30 476.83 17591.65 8466.09 9795.56 5676.00 11693.85 5893.38 73
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OMC-MVS82.69 8281.97 8984.85 8388.75 15067.42 13287.98 13190.87 12474.92 9979.72 11691.65 8462.19 14193.96 12275.26 12486.42 14193.16 83
test22291.50 7768.26 11584.16 23583.20 27954.63 33579.74 11591.63 8658.97 17991.42 8386.77 275
MVS_111021_HR85.14 5584.75 5986.32 5391.65 7672.70 2985.98 18990.33 13876.11 7982.08 8991.61 8771.36 5194.17 11881.02 6992.58 6892.08 118
原ACMM184.35 10093.01 5768.79 9892.44 6963.96 27381.09 10391.57 8866.06 9895.45 6167.19 20094.82 4388.81 232
LPG-MVS_test82.08 8981.27 9584.50 9389.23 13368.76 10090.22 6891.94 9175.37 9276.64 18191.51 8954.29 21394.91 8678.44 9083.78 17089.83 199
LGP-MVS_train84.50 9389.23 13368.76 10091.94 9175.37 9276.64 18191.51 8954.29 21394.91 8678.44 9083.78 17089.83 199
XVG-OURS80.41 12979.23 13683.97 12185.64 22469.02 9483.03 25790.39 13371.09 16977.63 15891.49 9154.62 21191.35 22475.71 11883.47 17891.54 129
alignmvs85.48 5085.32 5285.96 6089.51 11869.47 8889.74 7992.47 6876.17 7887.73 2991.46 9270.32 5993.78 13481.51 6588.95 10894.63 24
CANet86.45 3686.10 4387.51 3590.09 10170.94 6589.70 8192.59 6681.78 281.32 9891.43 9370.34 5897.23 1284.26 3993.36 6294.37 33
h-mvs3383.15 7582.19 8386.02 5990.56 9270.85 6888.15 12889.16 17176.02 8184.67 5291.39 9461.54 14995.50 5982.71 5775.48 27291.72 126
nrg03083.88 6283.53 6584.96 7886.77 21269.28 9290.46 6392.67 6174.79 10282.95 7991.33 9572.70 4093.09 16980.79 7479.28 22992.50 103
canonicalmvs85.91 4485.87 4686.04 5889.84 11169.44 9190.45 6493.00 4376.70 6788.01 2691.23 9673.28 3693.91 12981.50 6688.80 11194.77 20
DPM-MVS84.93 5884.29 6386.84 4590.20 9973.04 2287.12 15693.04 3869.80 19182.85 8291.22 9773.06 3896.02 4576.72 11194.63 4591.46 135
Anonymous20240521178.25 17977.01 18781.99 18191.03 8260.67 25384.77 21783.90 26570.65 17880.00 11491.20 9841.08 32191.43 22265.21 21585.26 15493.85 52
CS-MVS-test86.29 4086.48 3585.71 6391.02 8367.21 13992.36 2893.78 1878.97 2683.51 7591.20 9870.65 5795.15 7581.96 6394.89 3994.77 20
Anonymous2024052980.19 13678.89 14484.10 10890.60 9164.75 18788.95 9890.90 12265.97 24880.59 10891.17 10049.97 25893.73 14069.16 18182.70 18993.81 55
EPP-MVSNet83.40 7283.02 7284.57 9090.13 10064.47 19392.32 2990.73 12674.45 11179.35 12191.10 10169.05 7395.12 7672.78 14787.22 12994.13 42
TAPA-MVS73.13 979.15 15977.94 16482.79 16689.59 11462.99 22788.16 12791.51 10765.77 24977.14 17291.09 10260.91 16493.21 15850.26 32087.05 13192.17 116
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CSCG86.41 3986.19 4087.07 4392.91 5872.48 3690.81 5593.56 2473.95 11983.16 7891.07 10375.94 1895.19 7379.94 8194.38 5293.55 69
FIs82.07 9082.42 7881.04 20688.80 14758.34 27288.26 12393.49 2676.93 5878.47 13891.04 10469.92 6392.34 19469.87 17484.97 15692.44 107
MVS_111021_LR82.61 8482.11 8484.11 10788.82 14571.58 5185.15 20986.16 23774.69 10480.47 10991.04 10462.29 13890.55 24380.33 7890.08 9990.20 177
DP-MVS Recon83.11 7882.09 8586.15 5694.44 1970.92 6688.79 10492.20 8170.53 17979.17 12291.03 10664.12 11496.03 4468.39 19090.14 9791.50 132
HQP_MVS83.64 6783.14 6985.14 7290.08 10268.71 10491.25 4892.44 6979.12 2178.92 12691.00 10760.42 17295.38 6778.71 8886.32 14291.33 136
plane_prior491.00 107
FC-MVSNet-test81.52 10382.02 8780.03 22688.42 16255.97 30887.95 13393.42 2977.10 5477.38 16290.98 10969.96 6291.79 21268.46 18984.50 16192.33 108
Vis-MVSNet (Re-imp)78.36 17878.45 15278.07 25888.64 15451.78 33986.70 17179.63 31374.14 11775.11 21990.83 11061.29 15789.75 25258.10 27691.60 8092.69 97
114514_t80.68 12279.51 12784.20 10594.09 3867.27 13689.64 8291.11 11858.75 31674.08 23390.72 11158.10 18495.04 8369.70 17589.42 10690.30 174
PAPM_NR83.02 7982.41 7984.82 8492.47 6766.37 15187.93 13591.80 9873.82 12377.32 16490.66 11267.90 7994.90 8970.37 16789.48 10593.19 82
LS3D76.95 21174.82 22383.37 13790.45 9467.36 13589.15 9386.94 22661.87 29269.52 28090.61 11351.71 24194.53 10346.38 34086.71 13788.21 244
mvsmamba81.69 9880.74 10484.56 9187.45 19666.72 14691.26 4685.89 24174.66 10578.23 14490.56 11454.33 21294.91 8680.73 7583.54 17792.04 121
VPNet78.69 17178.66 14878.76 24788.31 16555.72 31084.45 22886.63 23076.79 6278.26 14390.55 11559.30 17789.70 25466.63 20477.05 24890.88 153
UniMVSNet_ETH3D79.10 16178.24 15981.70 18686.85 20960.24 26087.28 15388.79 18674.25 11476.84 17490.53 11649.48 26491.56 21867.98 19182.15 19393.29 77
ACMP74.13 681.51 10580.57 10784.36 9989.42 12168.69 10789.97 7291.50 11074.46 11075.04 22290.41 11753.82 21894.54 10277.56 9982.91 18489.86 198
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PCF-MVS73.52 780.38 13078.84 14585.01 7687.71 18668.99 9583.65 24391.46 11163.00 27977.77 15690.28 11866.10 9695.09 8261.40 24688.22 12090.94 152
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
NP-MVS89.62 11368.32 11390.24 119
HQP-MVS82.61 8482.02 8784.37 9889.33 12666.98 14289.17 8992.19 8276.41 7077.23 16790.23 12060.17 17595.11 7877.47 10085.99 14991.03 148
PS-MVSNAJss82.07 9081.31 9484.34 10186.51 21567.27 13689.27 8791.51 10771.75 15479.37 12090.22 12163.15 12594.27 11177.69 9882.36 19291.49 133
TSAR-MVS + GP.85.71 4885.33 5186.84 4591.34 7872.50 3589.07 9587.28 22076.41 7085.80 3690.22 12174.15 3195.37 7081.82 6491.88 7692.65 99
RRT_MVS80.35 13279.22 13783.74 12787.63 19065.46 17291.08 5288.92 18473.82 12376.44 18690.03 12349.05 27294.25 11576.84 10779.20 23191.51 130
TranMVSNet+NR-MVSNet80.84 11480.31 11382.42 17487.85 17962.33 23287.74 14191.33 11280.55 777.99 15289.86 12465.23 10692.62 18167.05 20275.24 28192.30 110
diffmvspermissive82.10 8881.88 9082.76 16983.00 27363.78 20683.68 24289.76 15372.94 14382.02 9089.85 12565.96 10190.79 23982.38 6187.30 12893.71 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-RMVSNet79.61 14478.44 15383.14 14789.38 12465.93 15984.95 21487.15 22373.56 13078.19 14689.79 12656.67 19893.36 15459.53 26086.74 13690.13 180
GeoE81.71 9781.01 10183.80 12689.51 11864.45 19488.97 9788.73 19271.27 16578.63 13389.76 12766.32 9493.20 16169.89 17386.02 14893.74 57
AdaColmapbinary80.58 12779.42 12984.06 11393.09 5468.91 9789.36 8688.97 18169.27 20175.70 20089.69 12857.20 19595.77 5263.06 22988.41 11887.50 258
ACMM73.20 880.78 12179.84 12183.58 13089.31 12968.37 11289.99 7191.60 10470.28 18377.25 16589.66 12953.37 22193.53 14774.24 13282.85 18588.85 230
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CNLPA78.08 18576.79 19481.97 18290.40 9671.07 6087.59 14484.55 25466.03 24772.38 25089.64 13057.56 19086.04 29459.61 25983.35 17988.79 233
test_yl81.17 10880.47 11083.24 14289.13 13763.62 20786.21 18489.95 14972.43 14881.78 9589.61 13157.50 19193.58 14270.75 16286.90 13392.52 101
DCV-MVSNet81.17 10880.47 11083.24 14289.13 13763.62 20786.21 18489.95 14972.43 14881.78 9589.61 13157.50 19193.58 14270.75 16286.90 13392.52 101
EI-MVSNet-Vis-set84.19 6183.81 6485.31 6888.18 16867.85 12287.66 14289.73 15580.05 1282.95 7989.59 13370.74 5594.82 9380.66 7684.72 15993.28 78
PAPR81.66 10180.89 10383.99 12090.27 9764.00 20186.76 17091.77 10168.84 21677.13 17389.50 13467.63 8194.88 9167.55 19588.52 11693.09 84
jajsoiax79.29 15677.96 16383.27 14084.68 24066.57 14989.25 8890.16 14369.20 20575.46 20589.49 13545.75 29693.13 16776.84 10780.80 20890.11 182
MVSFormer82.85 8182.05 8685.24 7087.35 19770.21 7590.50 6090.38 13468.55 22081.32 9889.47 13661.68 14693.46 15178.98 8690.26 9592.05 119
jason81.39 10680.29 11484.70 8886.63 21469.90 8285.95 19086.77 22863.24 27581.07 10489.47 13661.08 16292.15 20078.33 9390.07 10092.05 119
jason: jason.
mvs_tets79.13 16077.77 17283.22 14484.70 23966.37 15189.17 8990.19 14269.38 19975.40 20889.46 13844.17 30293.15 16576.78 10980.70 21090.14 179
UGNet80.83 11579.59 12684.54 9288.04 17468.09 11889.42 8488.16 19976.95 5776.22 19089.46 13849.30 26793.94 12568.48 18890.31 9391.60 127
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VPA-MVSNet80.60 12580.55 10880.76 21288.07 17360.80 25186.86 16491.58 10575.67 8880.24 11189.45 14063.34 11990.25 24670.51 16679.22 23091.23 140
MVS_Test83.15 7583.06 7183.41 13686.86 20863.21 22086.11 18792.00 8774.31 11282.87 8189.44 14170.03 6193.21 15877.39 10288.50 11793.81 55
EI-MVSNet-UG-set83.81 6383.38 6785.09 7487.87 17867.53 13087.44 14889.66 15679.74 1482.23 8889.41 14270.24 6094.74 9679.95 8083.92 16992.99 90
RPSCF73.23 25271.46 25378.54 25182.50 28459.85 26282.18 26282.84 28358.96 31371.15 26289.41 14245.48 29984.77 30458.82 26971.83 31091.02 150
bld_raw_dy_0_6477.29 20675.98 20881.22 20085.04 23665.47 17188.14 12977.56 32369.20 20573.77 23589.40 14442.24 31588.85 27176.78 10981.64 19989.33 212
UniMVSNet_NR-MVSNet81.88 9381.54 9382.92 15888.46 16063.46 21487.13 15592.37 7380.19 1078.38 13989.14 14571.66 4893.05 17170.05 17076.46 25792.25 112
tttt051779.40 15377.91 16583.90 12588.10 17163.84 20488.37 12084.05 26371.45 16376.78 17789.12 14649.93 26194.89 9070.18 16983.18 18292.96 91
DU-MVS81.12 11080.52 10982.90 15987.80 18263.46 21487.02 15991.87 9579.01 2478.38 13989.07 14765.02 10893.05 17170.05 17076.46 25792.20 114
NR-MVSNet80.23 13479.38 13082.78 16787.80 18263.34 21786.31 18191.09 11979.01 2472.17 25289.07 14767.20 8692.81 18066.08 20975.65 26892.20 114
DELS-MVS85.41 5385.30 5385.77 6288.49 15867.93 12185.52 20693.44 2778.70 2783.63 7489.03 14974.57 2495.71 5480.26 7994.04 5793.66 59
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
iter_conf_final80.63 12379.35 13284.46 9589.36 12567.70 12689.85 7384.49 25573.19 13878.30 14288.94 15045.98 29194.56 10079.59 8384.48 16391.11 143
iter_conf0580.00 14078.70 14683.91 12487.84 18065.83 16288.84 10384.92 25071.61 15978.70 12988.94 15043.88 30494.56 10079.28 8484.28 16691.33 136
baseline176.98 21076.75 19777.66 26388.13 16955.66 31185.12 21081.89 28973.04 14176.79 17688.90 15262.43 13687.78 28363.30 22871.18 31489.55 208
DP-MVS76.78 21374.57 22583.42 13493.29 4869.46 9088.55 11483.70 26763.98 27270.20 26888.89 15354.01 21794.80 9446.66 33781.88 19786.01 289
ab-mvs79.51 14778.97 14381.14 20388.46 16060.91 24983.84 24089.24 16870.36 18179.03 12388.87 15463.23 12390.21 24765.12 21682.57 19092.28 111
PEN-MVS77.73 19577.69 17677.84 26087.07 20753.91 32687.91 13691.18 11577.56 4173.14 24188.82 15561.23 15889.17 26259.95 25672.37 30590.43 170
tt080578.73 16977.83 16881.43 19285.17 23060.30 25989.41 8590.90 12271.21 16677.17 17188.73 15646.38 28693.21 15872.57 15078.96 23290.79 155
test_djsdf80.30 13379.32 13383.27 14083.98 25165.37 17690.50 6090.38 13468.55 22076.19 19188.70 15756.44 19993.46 15178.98 8680.14 21890.97 151
PAPM77.68 19876.40 20481.51 19087.29 20361.85 23983.78 24189.59 15764.74 26071.23 26088.70 15762.59 13293.66 14152.66 30787.03 13289.01 222
DTE-MVSNet76.99 20976.80 19377.54 26786.24 21753.06 33487.52 14590.66 12777.08 5572.50 24788.67 15960.48 17189.52 25657.33 28370.74 31690.05 189
PS-CasMVS78.01 18978.09 16177.77 26287.71 18654.39 32388.02 13091.22 11377.50 4473.26 23988.64 16060.73 16588.41 27661.88 24173.88 29490.53 167
cdsmvs_eth3d_5k19.96 34126.61 3430.00 3610.00 3840.00 3850.00 37289.26 1670.00 3790.00 38088.61 16161.62 1480.00 3800.00 3780.00 3780.00 376
lupinMVS81.39 10680.27 11584.76 8787.35 19770.21 7585.55 20286.41 23262.85 28281.32 9888.61 16161.68 14692.24 19878.41 9290.26 9591.83 123
F-COLMAP76.38 22174.33 23082.50 17389.28 13166.95 14588.41 11689.03 17664.05 27066.83 30488.61 16146.78 28492.89 17657.48 28078.55 23387.67 252
mvs_anonymous79.42 15279.11 14080.34 22084.45 24357.97 27882.59 25987.62 21367.40 23176.17 19488.56 16468.47 7689.59 25570.65 16586.05 14793.47 72
CP-MVSNet78.22 18078.34 15677.84 26087.83 18154.54 32187.94 13491.17 11677.65 3673.48 23788.49 16562.24 14088.43 27562.19 23774.07 29090.55 166
PVSNet_Blended_VisFu82.62 8381.83 9184.96 7890.80 8969.76 8488.74 10891.70 10269.39 19878.96 12488.46 16665.47 10494.87 9274.42 12988.57 11490.24 176
CANet_DTU80.61 12479.87 12082.83 16185.60 22563.17 22387.36 14988.65 19376.37 7475.88 19788.44 16753.51 22093.07 17073.30 14189.74 10392.25 112
PLCcopyleft70.83 1178.05 18776.37 20583.08 15091.88 7467.80 12388.19 12589.46 16064.33 26669.87 27788.38 16853.66 21993.58 14258.86 26882.73 18787.86 249
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
WR-MVS79.49 14879.22 13780.27 22288.79 14858.35 27185.06 21188.61 19578.56 2877.65 15788.34 16963.81 11890.66 24264.98 21877.22 24691.80 125
XXY-MVS75.41 23375.56 21274.96 29083.59 25757.82 28280.59 28083.87 26666.54 24174.93 22488.31 17063.24 12280.09 32762.16 23876.85 25286.97 271
Effi-MVS+83.62 6883.08 7085.24 7088.38 16367.45 13188.89 10089.15 17275.50 9082.27 8788.28 17169.61 6694.45 10777.81 9787.84 12193.84 54
API-MVS81.99 9281.23 9684.26 10490.94 8570.18 8091.10 5189.32 16371.51 16278.66 13288.28 17165.26 10595.10 8164.74 22091.23 8687.51 257
thisisatest053079.40 15377.76 17384.31 10287.69 18865.10 18187.36 14984.26 26170.04 18677.42 16188.26 17349.94 25994.79 9570.20 16884.70 16093.03 87
hse-mvs281.72 9680.94 10284.07 11288.72 15167.68 12785.87 19387.26 22176.02 8184.67 5288.22 17461.54 14993.48 14982.71 5773.44 29991.06 146
xiu_mvs_v1_base_debu80.80 11879.72 12384.03 11787.35 19770.19 7785.56 19988.77 18769.06 21081.83 9188.16 17550.91 24792.85 17778.29 9487.56 12389.06 217
xiu_mvs_v1_base80.80 11879.72 12384.03 11787.35 19770.19 7785.56 19988.77 18769.06 21081.83 9188.16 17550.91 24792.85 17778.29 9487.56 12389.06 217
xiu_mvs_v1_base_debi80.80 11879.72 12384.03 11787.35 19770.19 7785.56 19988.77 18769.06 21081.83 9188.16 17550.91 24792.85 17778.29 9487.56 12389.06 217
UniMVSNet (Re)81.60 10281.11 9883.09 14988.38 16364.41 19587.60 14393.02 4278.42 3078.56 13588.16 17569.78 6493.26 15769.58 17776.49 25691.60 127
AUN-MVS79.21 15877.60 17884.05 11588.71 15267.61 12885.84 19587.26 22169.08 20977.23 16788.14 17953.20 22393.47 15075.50 12373.45 29891.06 146
Anonymous2023121178.97 16577.69 17682.81 16390.54 9364.29 19790.11 7091.51 10765.01 25876.16 19588.13 18050.56 25293.03 17469.68 17677.56 24491.11 143
pm-mvs177.25 20776.68 19978.93 24584.22 24658.62 27086.41 17888.36 19871.37 16473.31 23888.01 18161.22 15989.15 26364.24 22273.01 30289.03 221
LTVRE_ROB69.57 1376.25 22274.54 22781.41 19388.60 15564.38 19679.24 29489.12 17570.76 17569.79 27987.86 18249.09 27093.20 16156.21 29380.16 21686.65 278
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WTY-MVS75.65 22975.68 21075.57 28486.40 21656.82 29477.92 30982.40 28665.10 25576.18 19287.72 18363.13 12880.90 32460.31 25481.96 19589.00 224
TAMVS78.89 16777.51 18083.03 15387.80 18267.79 12484.72 21885.05 24867.63 22776.75 17887.70 18462.25 13990.82 23858.53 27287.13 13090.49 168
BH-untuned79.47 14978.60 14982.05 17989.19 13565.91 16086.07 18888.52 19672.18 15075.42 20787.69 18561.15 16093.54 14660.38 25386.83 13586.70 277
COLMAP_ROBcopyleft66.92 1773.01 25470.41 26680.81 21187.13 20665.63 16788.30 12284.19 26262.96 28063.80 32887.69 18538.04 33292.56 18446.66 33774.91 28484.24 311
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OurMVSNet-221017-074.26 24072.42 24779.80 23183.76 25559.59 26585.92 19286.64 22966.39 24266.96 30187.58 18739.46 32591.60 21665.76 21269.27 32188.22 243
FA-MVS(test-final)80.96 11279.91 11984.10 10888.30 16665.01 18284.55 22490.01 14773.25 13779.61 11787.57 18858.35 18394.72 9771.29 15986.25 14492.56 100
Baseline_NR-MVSNet78.15 18478.33 15777.61 26585.79 22156.21 30686.78 16885.76 24273.60 12977.93 15387.57 18865.02 10888.99 26567.14 20175.33 27887.63 253
WR-MVS_H78.51 17578.49 15178.56 25088.02 17556.38 30388.43 11592.67 6177.14 5273.89 23487.55 19066.25 9589.24 26158.92 26773.55 29790.06 188
EI-MVSNet80.52 12879.98 11782.12 17784.28 24463.19 22286.41 17888.95 18274.18 11678.69 13087.54 19166.62 8992.43 18872.57 15080.57 21290.74 159
CVMVSNet72.99 25572.58 24574.25 29784.28 24450.85 34586.41 17883.45 27444.56 35173.23 24087.54 19149.38 26585.70 29665.90 21078.44 23686.19 284
ACMH+68.96 1476.01 22574.01 23282.03 18088.60 15565.31 17788.86 10187.55 21470.25 18467.75 29287.47 19341.27 31993.19 16358.37 27375.94 26587.60 254
TransMVSNet (Re)75.39 23474.56 22677.86 25985.50 22757.10 29186.78 16886.09 23972.17 15171.53 25887.34 19463.01 12989.31 26056.84 28861.83 34187.17 265
GBi-Net78.40 17677.40 18181.40 19487.60 19163.01 22488.39 11789.28 16471.63 15675.34 21087.28 19554.80 20591.11 22962.72 23179.57 22390.09 184
test178.40 17677.40 18181.40 19487.60 19163.01 22488.39 11789.28 16471.63 15675.34 21087.28 19554.80 20591.11 22962.72 23179.57 22390.09 184
FMVSNet278.20 18277.21 18481.20 20187.60 19162.89 22887.47 14789.02 17771.63 15675.29 21587.28 19554.80 20591.10 23262.38 23579.38 22789.61 206
FMVSNet177.44 20176.12 20781.40 19486.81 21163.01 22488.39 11789.28 16470.49 18074.39 23087.28 19549.06 27191.11 22960.91 25078.52 23490.09 184
v2v48280.23 13479.29 13483.05 15283.62 25664.14 19987.04 15889.97 14873.61 12878.18 14787.22 19961.10 16193.82 13276.11 11376.78 25491.18 141
ITE_SJBPF78.22 25581.77 29460.57 25483.30 27569.25 20267.54 29487.20 20036.33 33787.28 28754.34 29974.62 28786.80 274
anonymousdsp78.60 17377.15 18582.98 15680.51 31267.08 14087.24 15489.53 15865.66 25175.16 21787.19 20152.52 22492.25 19777.17 10479.34 22889.61 206
MVSTER79.01 16377.88 16782.38 17583.07 27064.80 18684.08 23988.95 18269.01 21378.69 13087.17 20254.70 20992.43 18874.69 12680.57 21289.89 197
thres100view90076.50 21675.55 21379.33 24089.52 11756.99 29285.83 19683.23 27773.94 12076.32 18887.12 20351.89 23891.95 20648.33 32883.75 17289.07 215
thres600view776.50 21675.44 21479.68 23489.40 12257.16 28985.53 20483.23 27773.79 12576.26 18987.09 20451.89 23891.89 20948.05 33383.72 17590.00 190
XVG-ACMP-BASELINE76.11 22474.27 23181.62 18783.20 26664.67 18883.60 24689.75 15469.75 19371.85 25587.09 20432.78 34492.11 20169.99 17280.43 21488.09 245
HY-MVS69.67 1277.95 19077.15 18580.36 21987.57 19560.21 26183.37 25087.78 21166.11 24475.37 20987.06 20663.27 12190.48 24461.38 24782.43 19190.40 172
CHOSEN 1792x268877.63 19975.69 20983.44 13389.98 10868.58 11078.70 30187.50 21656.38 32975.80 19986.84 20758.67 18091.40 22361.58 24585.75 15390.34 173
v879.97 14179.02 14282.80 16484.09 24864.50 19287.96 13290.29 14174.13 11875.24 21686.81 20862.88 13093.89 13174.39 13075.40 27690.00 190
AllTest70.96 26868.09 28379.58 23785.15 23263.62 20784.58 22379.83 31062.31 28860.32 33886.73 20932.02 34588.96 26850.28 31871.57 31286.15 285
TestCases79.58 23785.15 23263.62 20779.83 31062.31 28860.32 33886.73 20932.02 34588.96 26850.28 31871.57 31286.15 285
LCM-MVSNet-Re77.05 20876.94 19077.36 26887.20 20451.60 34080.06 28580.46 30475.20 9567.69 29386.72 21162.48 13488.98 26663.44 22689.25 10791.51 130
1112_ss77.40 20376.43 20380.32 22189.11 14160.41 25883.65 24387.72 21262.13 29073.05 24286.72 21162.58 13389.97 24962.11 24080.80 20890.59 165
ab-mvs-re7.23 3449.64 3470.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38086.72 2110.00 3840.00 3800.00 3780.00 3780.00 376
IterMVS-LS80.06 13779.38 13082.11 17885.89 22063.20 22186.79 16789.34 16274.19 11575.45 20686.72 21166.62 8992.39 19072.58 14976.86 25190.75 158
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH67.68 1675.89 22673.93 23381.77 18588.71 15266.61 14888.62 11289.01 17869.81 19066.78 30586.70 21541.95 31891.51 22155.64 29478.14 24087.17 265
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Test_1112_low_res76.40 22075.44 21479.27 24189.28 13158.09 27481.69 26787.07 22459.53 30972.48 24886.67 21661.30 15689.33 25960.81 25280.15 21790.41 171
FMVSNet377.88 19276.85 19280.97 20886.84 21062.36 23186.52 17688.77 18771.13 16775.34 21086.66 21754.07 21691.10 23262.72 23179.57 22389.45 209
pmmvs674.69 23773.39 23878.61 24981.38 30157.48 28786.64 17287.95 20564.99 25970.18 26986.61 21850.43 25489.52 25662.12 23970.18 31888.83 231
ET-MVSNet_ETH3D78.63 17276.63 20084.64 8986.73 21369.47 8885.01 21284.61 25369.54 19666.51 31086.59 21950.16 25691.75 21376.26 11284.24 16792.69 97
testgi66.67 30166.53 29967.08 33375.62 34041.69 36875.93 31776.50 33166.11 24465.20 32086.59 21935.72 33974.71 35243.71 34773.38 30084.84 304
CLD-MVS82.31 8681.65 9284.29 10388.47 15967.73 12585.81 19792.35 7475.78 8478.33 14186.58 22164.01 11594.35 10876.05 11587.48 12690.79 155
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
v1079.74 14378.67 14782.97 15784.06 24964.95 18387.88 13890.62 12873.11 13975.11 21986.56 22261.46 15294.05 12173.68 13575.55 27089.90 196
CDS-MVSNet79.07 16277.70 17583.17 14687.60 19168.23 11684.40 23186.20 23667.49 23076.36 18786.54 22361.54 14990.79 23961.86 24287.33 12790.49 168
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
xiu_mvs_v2_base81.69 9881.05 9983.60 12989.15 13668.03 12084.46 22790.02 14670.67 17681.30 10186.53 22463.17 12494.19 11775.60 12188.54 11588.57 239
TR-MVS77.44 20176.18 20681.20 20188.24 16763.24 21984.61 22286.40 23367.55 22977.81 15486.48 22554.10 21593.15 16557.75 27982.72 18887.20 264
EIA-MVS83.31 7482.80 7684.82 8489.59 11465.59 16888.21 12492.68 6074.66 10578.96 12486.42 22669.06 7295.26 7175.54 12290.09 9893.62 66
tfpn200view976.42 21975.37 21879.55 23989.13 13757.65 28485.17 20783.60 26873.41 13476.45 18386.39 22752.12 23191.95 20648.33 32883.75 17289.07 215
thres40076.50 21675.37 21879.86 22989.13 13757.65 28485.17 20783.60 26873.41 13476.45 18386.39 22752.12 23191.95 20648.33 32883.75 17290.00 190
v7n78.97 16577.58 17983.14 14783.45 26065.51 16988.32 12191.21 11473.69 12672.41 24986.32 22957.93 18593.81 13369.18 18075.65 26890.11 182
MAR-MVS81.84 9480.70 10585.27 6991.32 7971.53 5289.82 7590.92 12169.77 19278.50 13686.21 23062.36 13794.52 10465.36 21492.05 7589.77 202
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
v114480.03 13879.03 14183.01 15483.78 25464.51 19087.11 15790.57 13071.96 15378.08 15086.20 23161.41 15393.94 12574.93 12577.23 24590.60 164
V4279.38 15578.24 15982.83 16181.10 30665.50 17085.55 20289.82 15171.57 16178.21 14586.12 23260.66 16893.18 16475.64 11975.46 27489.81 201
PVSNet_BlendedMVS80.60 12580.02 11682.36 17688.85 14265.40 17386.16 18692.00 8769.34 20078.11 14886.09 23366.02 9994.27 11171.52 15582.06 19487.39 259
v119279.59 14678.43 15483.07 15183.55 25864.52 18986.93 16290.58 12970.83 17277.78 15585.90 23459.15 17893.94 12573.96 13477.19 24790.76 157
SixPastTwentyTwo73.37 24871.26 25879.70 23385.08 23557.89 28085.57 19883.56 27071.03 17065.66 31485.88 23542.10 31692.57 18359.11 26463.34 33988.65 237
EPNet_dtu75.46 23174.86 22277.23 27282.57 28354.60 32086.89 16383.09 28071.64 15566.25 31285.86 23655.99 20088.04 28054.92 29686.55 13989.05 220
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
sss73.60 24673.64 23773.51 30182.80 27755.01 31776.12 31681.69 29262.47 28774.68 22785.85 23757.32 19378.11 33460.86 25180.93 20587.39 259
ETV-MVS84.90 6084.67 6085.59 6589.39 12368.66 10888.74 10892.64 6579.97 1384.10 6585.71 23869.32 6995.38 6780.82 7291.37 8492.72 94
v124078.99 16477.78 17182.64 17083.21 26563.54 21186.62 17390.30 14069.74 19577.33 16385.68 23957.04 19693.76 13773.13 14476.92 24990.62 162
v14419279.47 14978.37 15582.78 16783.35 26163.96 20286.96 16090.36 13769.99 18777.50 15985.67 24060.66 16893.77 13674.27 13176.58 25590.62 162
tfpnnormal74.39 23873.16 24178.08 25786.10 21958.05 27584.65 22187.53 21570.32 18271.22 26185.63 24154.97 20489.86 25043.03 34975.02 28386.32 281
PS-MVSNAJ81.69 9881.02 10083.70 12889.51 11868.21 11784.28 23390.09 14570.79 17381.26 10285.62 24263.15 12594.29 10975.62 12088.87 11088.59 238
v192192079.22 15778.03 16282.80 16483.30 26363.94 20386.80 16690.33 13869.91 18977.48 16085.53 24358.44 18293.75 13873.60 13676.85 25290.71 160
test_040272.79 25770.44 26579.84 23088.13 16965.99 15885.93 19184.29 25965.57 25267.40 29885.49 24446.92 28392.61 18235.88 35874.38 28980.94 337
v14878.72 17077.80 17081.47 19182.73 27961.96 23886.30 18288.08 20273.26 13676.18 19285.47 24562.46 13592.36 19271.92 15473.82 29590.09 184
USDC70.33 27668.37 27876.21 27980.60 31056.23 30579.19 29686.49 23160.89 29761.29 33585.47 24531.78 34789.47 25853.37 30476.21 26382.94 328
MVP-Stereo76.12 22374.46 22981.13 20485.37 22869.79 8384.42 23087.95 20565.03 25767.46 29685.33 24753.28 22291.73 21558.01 27783.27 18081.85 332
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MVS78.19 18376.99 18981.78 18485.66 22366.99 14184.66 21990.47 13255.08 33472.02 25485.27 24863.83 11794.11 12066.10 20889.80 10284.24 311
DIV-MVS_self_test77.72 19676.76 19580.58 21582.48 28660.48 25683.09 25487.86 20869.22 20374.38 23185.24 24962.10 14291.53 21971.09 16075.40 27689.74 203
FE-MVS77.78 19475.68 21084.08 11188.09 17266.00 15783.13 25387.79 21068.42 22378.01 15185.23 25045.50 29895.12 7659.11 26485.83 15291.11 143
cl____77.72 19676.76 19580.58 21582.49 28560.48 25683.09 25487.87 20769.22 20374.38 23185.22 25162.10 14291.53 21971.09 16075.41 27589.73 204
HyFIR lowres test77.53 20075.40 21683.94 12389.59 11466.62 14780.36 28288.64 19456.29 33076.45 18385.17 25257.64 18993.28 15661.34 24883.10 18391.91 122
pmmvs474.03 24471.91 25080.39 21881.96 29268.32 11381.45 27182.14 28759.32 31069.87 27785.13 25352.40 22788.13 27960.21 25574.74 28684.73 306
TDRefinement67.49 29564.34 30476.92 27473.47 35061.07 24784.86 21682.98 28159.77 30658.30 34585.13 25326.06 35387.89 28147.92 33460.59 34681.81 333
Fast-Effi-MVS+80.81 11679.92 11883.47 13288.85 14264.51 19085.53 20489.39 16170.79 17378.49 13785.06 25567.54 8293.58 14267.03 20386.58 13892.32 109
PVSNet_Blended80.98 11180.34 11282.90 15988.85 14265.40 17384.43 22992.00 8767.62 22878.11 14885.05 25666.02 9994.27 11171.52 15589.50 10489.01 222
test_fmvs1_n70.86 27070.24 26872.73 30672.51 35555.28 31481.27 27379.71 31251.49 34478.73 12884.87 25727.54 35277.02 33976.06 11479.97 22085.88 292
CMPMVSbinary51.72 2170.19 27868.16 28176.28 27873.15 35257.55 28679.47 29283.92 26448.02 34856.48 35184.81 25843.13 30786.42 29262.67 23481.81 19884.89 303
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EU-MVSNet68.53 29167.61 29171.31 31778.51 33047.01 35584.47 22584.27 26042.27 35466.44 31184.79 25940.44 32383.76 30958.76 27068.54 32683.17 322
BH-w/o78.21 18177.33 18380.84 21088.81 14665.13 18084.87 21587.85 20969.75 19374.52 22984.74 26061.34 15593.11 16858.24 27585.84 15184.27 310
pmmvs571.55 26470.20 26975.61 28377.83 33156.39 30281.74 26680.89 29657.76 32167.46 29684.49 26149.26 26885.32 30057.08 28575.29 27985.11 302
thres20075.55 23074.47 22878.82 24687.78 18557.85 28183.07 25683.51 27172.44 14775.84 19884.42 26252.08 23391.75 21347.41 33583.64 17686.86 273
test_fmvs170.93 26970.52 26372.16 30973.71 34755.05 31680.82 27478.77 31751.21 34578.58 13484.41 26331.20 34876.94 34075.88 11780.12 21984.47 309
test_fmvs268.35 29367.48 29370.98 31969.50 35851.95 33780.05 28676.38 33249.33 34774.65 22884.38 26423.30 35875.40 35074.51 12875.17 28285.60 294
eth_miper_zixun_eth77.92 19176.69 19881.61 18983.00 27361.98 23783.15 25289.20 17069.52 19774.86 22584.35 26561.76 14592.56 18471.50 15772.89 30390.28 175
c3_l78.75 16877.91 16581.26 19882.89 27661.56 24384.09 23889.13 17469.97 18875.56 20184.29 26666.36 9392.09 20273.47 13975.48 27290.12 181
Fast-Effi-MVS+-dtu78.02 18876.49 20182.62 17183.16 26966.96 14486.94 16187.45 21872.45 14571.49 25984.17 26754.79 20891.58 21767.61 19480.31 21589.30 213
IterMVS-SCA-FT75.43 23273.87 23580.11 22582.69 28064.85 18581.57 26983.47 27369.16 20770.49 26584.15 26851.95 23688.15 27869.23 17972.14 30887.34 261
131476.53 21575.30 22080.21 22383.93 25262.32 23384.66 21988.81 18560.23 30270.16 27184.07 26955.30 20390.73 24167.37 19783.21 18187.59 256
cl2278.07 18677.01 18781.23 19982.37 28861.83 24083.55 24787.98 20468.96 21475.06 22183.87 27061.40 15491.88 21073.53 13776.39 25989.98 193
EG-PatchMatch MVS74.04 24371.82 25180.71 21384.92 23767.42 13285.86 19488.08 20266.04 24664.22 32483.85 27135.10 34092.56 18457.44 28180.83 20782.16 331
thisisatest051577.33 20475.38 21783.18 14585.27 22963.80 20582.11 26383.27 27665.06 25675.91 19683.84 27249.54 26394.27 11167.24 19986.19 14591.48 134
test20.0367.45 29666.95 29768.94 32575.48 34144.84 36277.50 31077.67 32266.66 23763.01 33083.80 27347.02 28278.40 33242.53 35168.86 32583.58 319
miper_ehance_all_eth78.59 17477.76 17381.08 20582.66 28161.56 24383.65 24389.15 17268.87 21575.55 20283.79 27466.49 9192.03 20373.25 14276.39 25989.64 205
MSDG73.36 25070.99 25980.49 21784.51 24265.80 16480.71 27886.13 23865.70 25065.46 31583.74 27544.60 30090.91 23751.13 31376.89 25084.74 305
IterMVS74.29 23972.94 24378.35 25481.53 29863.49 21381.58 26882.49 28568.06 22669.99 27483.69 27651.66 24285.54 29765.85 21171.64 31186.01 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tpm72.37 26171.71 25274.35 29682.19 29052.00 33679.22 29577.29 32764.56 26272.95 24383.68 27751.35 24383.26 31558.33 27475.80 26687.81 250
Effi-MVS+-dtu80.03 13878.57 15084.42 9785.13 23468.74 10288.77 10588.10 20174.99 9874.97 22383.49 27857.27 19493.36 15473.53 13780.88 20691.18 141
baseline275.70 22873.83 23681.30 19783.26 26461.79 24182.57 26080.65 30066.81 23366.88 30283.42 27957.86 18792.19 19963.47 22579.57 22389.91 195
TinyColmap67.30 29864.81 30274.76 29381.92 29356.68 29880.29 28481.49 29460.33 30056.27 35283.22 28024.77 35587.66 28445.52 34369.47 32079.95 341
mvsany_test162.30 31561.26 31965.41 33569.52 35754.86 31866.86 35149.78 37246.65 34968.50 28983.21 28149.15 26966.28 36456.93 28760.77 34475.11 350
test_vis1_n69.85 28269.21 27371.77 31172.66 35455.27 31581.48 27076.21 33352.03 34175.30 21483.20 28228.97 35076.22 34574.60 12778.41 23883.81 317
CostFormer75.24 23573.90 23479.27 24182.65 28258.27 27380.80 27582.73 28461.57 29375.33 21383.13 28355.52 20191.07 23564.98 21878.34 23988.45 240
miper_lstm_enhance74.11 24273.11 24277.13 27380.11 31559.62 26472.23 33286.92 22766.76 23570.40 26682.92 28456.93 19782.92 31669.06 18272.63 30488.87 229
GA-MVS76.87 21275.17 22181.97 18282.75 27862.58 22981.44 27286.35 23572.16 15274.74 22682.89 28546.20 29092.02 20468.85 18581.09 20491.30 139
K. test v371.19 26668.51 27779.21 24383.04 27257.78 28384.35 23276.91 33072.90 14462.99 33182.86 28639.27 32691.09 23461.65 24452.66 35788.75 234
MS-PatchMatch73.83 24572.67 24477.30 27083.87 25366.02 15681.82 26484.66 25261.37 29668.61 28782.82 28747.29 28088.21 27759.27 26184.32 16577.68 346
lessismore_v078.97 24481.01 30757.15 29065.99 35861.16 33682.82 28739.12 32791.34 22559.67 25846.92 36388.43 241
D2MVS74.82 23673.21 24079.64 23679.81 31962.56 23080.34 28387.35 21964.37 26568.86 28482.66 28946.37 28790.10 24867.91 19281.24 20386.25 282
Anonymous2023120668.60 28967.80 28871.02 31880.23 31450.75 34678.30 30580.47 30356.79 32766.11 31382.63 29046.35 28878.95 33043.62 34875.70 26783.36 321
MIMVSNet70.69 27269.30 27174.88 29184.52 24156.35 30475.87 32079.42 31464.59 26167.76 29182.41 29141.10 32081.54 32146.64 33981.34 20186.75 276
OpenMVS_ROBcopyleft64.09 1970.56 27468.19 28077.65 26480.26 31359.41 26785.01 21282.96 28258.76 31565.43 31682.33 29237.63 33491.23 22845.34 34576.03 26482.32 329
miper_enhance_ethall77.87 19376.86 19180.92 20981.65 29561.38 24582.68 25888.98 17965.52 25375.47 20382.30 29365.76 10392.00 20572.95 14576.39 25989.39 210
test0.0.03 168.00 29467.69 29068.90 32677.55 33247.43 35375.70 32172.95 34566.66 23766.56 30682.29 29448.06 27775.87 34744.97 34674.51 28883.41 320
PVSNet64.34 1872.08 26370.87 26275.69 28286.21 21856.44 30174.37 32880.73 29962.06 29170.17 27082.23 29542.86 30983.31 31454.77 29784.45 16487.32 262
MIMVSNet168.58 29066.78 29873.98 29980.07 31651.82 33880.77 27684.37 25664.40 26459.75 34182.16 29636.47 33683.63 31142.73 35070.33 31786.48 280
CL-MVSNet_self_test72.37 26171.46 25375.09 28979.49 32553.53 32880.76 27785.01 24969.12 20870.51 26482.05 29757.92 18684.13 30752.27 30866.00 33387.60 254
tpm273.26 25171.46 25378.63 24883.34 26256.71 29780.65 27980.40 30556.63 32873.55 23682.02 29851.80 24091.24 22756.35 29278.42 23787.95 246
PatchMatch-RL72.38 26070.90 26076.80 27688.60 15567.38 13479.53 29176.17 33462.75 28469.36 28282.00 29945.51 29784.89 30353.62 30280.58 21178.12 345
FMVSNet569.50 28367.96 28474.15 29882.97 27555.35 31380.01 28782.12 28862.56 28663.02 32981.53 30036.92 33581.92 31948.42 32774.06 29185.17 301
CR-MVSNet73.37 24871.27 25779.67 23581.32 30465.19 17875.92 31880.30 30659.92 30572.73 24581.19 30152.50 22586.69 28959.84 25777.71 24187.11 269
Patchmtry70.74 27169.16 27475.49 28680.72 30854.07 32574.94 32780.30 30658.34 31770.01 27281.19 30152.50 22586.54 29053.37 30471.09 31585.87 293
IB-MVS68.01 1575.85 22773.36 23983.31 13884.76 23866.03 15583.38 24985.06 24770.21 18569.40 28181.05 30345.76 29594.66 9965.10 21775.49 27189.25 214
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cascas76.72 21474.64 22482.99 15585.78 22265.88 16182.33 26189.21 16960.85 29872.74 24481.02 30447.28 28193.75 13867.48 19685.02 15589.34 211
LF4IMVS64.02 31262.19 31569.50 32470.90 35653.29 33376.13 31577.18 32852.65 33958.59 34380.98 30523.55 35776.52 34253.06 30666.66 32978.68 344
Anonymous2024052168.80 28867.22 29573.55 30074.33 34454.11 32483.18 25185.61 24358.15 31861.68 33480.94 30630.71 34981.27 32357.00 28673.34 30185.28 298
gm-plane-assit81.40 30053.83 32762.72 28580.94 30692.39 19063.40 227
UnsupCasMVSNet_eth67.33 29765.99 30071.37 31473.48 34951.47 34275.16 32385.19 24665.20 25460.78 33780.93 30842.35 31177.20 33857.12 28453.69 35685.44 296
MVS_030472.48 25870.89 26177.24 27182.20 28959.68 26384.11 23783.49 27267.10 23266.87 30380.59 30935.00 34187.40 28559.07 26679.58 22284.63 307
MDTV_nov1_ep1369.97 27083.18 26753.48 32977.10 31480.18 30960.45 29969.33 28380.44 31048.89 27586.90 28851.60 31178.51 235
pmmvs-eth3d70.50 27567.83 28778.52 25277.37 33466.18 15481.82 26481.51 29358.90 31463.90 32780.42 31142.69 31086.28 29358.56 27165.30 33583.11 324
PM-MVS66.41 30364.14 30573.20 30473.92 34656.45 30078.97 29864.96 36163.88 27464.72 32180.24 31219.84 36183.44 31366.24 20564.52 33779.71 342
SCA74.22 24172.33 24879.91 22884.05 25062.17 23579.96 28879.29 31566.30 24372.38 25080.13 31351.95 23688.60 27359.25 26277.67 24388.96 226
Patchmatch-test64.82 31063.24 31069.57 32379.42 32649.82 35063.49 36069.05 35351.98 34259.95 34080.13 31350.91 24770.98 35840.66 35473.57 29687.90 248
tpmrst72.39 25972.13 24973.18 30580.54 31149.91 34979.91 28979.08 31663.11 27771.69 25779.95 31555.32 20282.77 31765.66 21373.89 29386.87 272
DSMNet-mixed57.77 32156.90 32360.38 34167.70 36035.61 37169.18 34453.97 37032.30 36657.49 34879.88 31640.39 32468.57 36338.78 35672.37 30576.97 347
MDA-MVSNet-bldmvs66.68 30063.66 30875.75 28179.28 32760.56 25573.92 32978.35 31964.43 26350.13 35879.87 31744.02 30383.67 31046.10 34156.86 34983.03 326
PatchmatchNetpermissive73.12 25371.33 25678.49 25383.18 26760.85 25079.63 29078.57 31864.13 26771.73 25679.81 31851.20 24585.97 29557.40 28276.36 26288.66 236
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ppachtmachnet_test70.04 27967.34 29478.14 25679.80 32061.13 24679.19 29680.59 30159.16 31265.27 31779.29 31946.75 28587.29 28649.33 32466.72 32886.00 291
EPMVS69.02 28668.16 28171.59 31279.61 32349.80 35177.40 31166.93 35662.82 28370.01 27279.05 32045.79 29477.86 33656.58 29075.26 28087.13 268
PMMVS69.34 28468.67 27671.35 31675.67 33962.03 23675.17 32273.46 34350.00 34668.68 28579.05 32052.07 23478.13 33361.16 24982.77 18673.90 351
test-LLR72.94 25672.43 24674.48 29481.35 30258.04 27678.38 30277.46 32466.66 23769.95 27579.00 32248.06 27779.24 32866.13 20684.83 15786.15 285
test-mter71.41 26570.39 26774.48 29481.35 30258.04 27678.38 30277.46 32460.32 30169.95 27579.00 32236.08 33879.24 32866.13 20684.83 15786.15 285
KD-MVS_self_test68.81 28767.59 29272.46 30874.29 34545.45 35777.93 30887.00 22563.12 27663.99 32678.99 32442.32 31284.77 30456.55 29164.09 33887.16 267
test_fmvs363.36 31461.82 31667.98 33062.51 36546.96 35677.37 31274.03 34245.24 35067.50 29578.79 32512.16 36972.98 35772.77 14866.02 33283.99 315
KD-MVS_2432*160066.22 30563.89 30673.21 30275.47 34253.42 33070.76 33884.35 25764.10 26866.52 30878.52 32634.55 34284.98 30150.40 31650.33 36081.23 335
miper_refine_blended66.22 30563.89 30673.21 30275.47 34253.42 33070.76 33884.35 25764.10 26866.52 30878.52 32634.55 34284.98 30150.40 31650.33 36081.23 335
tpmvs71.09 26769.29 27276.49 27782.04 29156.04 30778.92 29981.37 29564.05 27067.18 30078.28 32849.74 26289.77 25149.67 32372.37 30583.67 318
our_test_369.14 28567.00 29675.57 28479.80 32058.80 26877.96 30777.81 32159.55 30862.90 33278.25 32947.43 27983.97 30851.71 31067.58 32783.93 316
MDA-MVSNet_test_wron65.03 30862.92 31171.37 31475.93 33756.73 29569.09 34774.73 33957.28 32554.03 35577.89 33045.88 29274.39 35449.89 32261.55 34282.99 327
YYNet165.03 30862.91 31271.38 31375.85 33856.60 29969.12 34674.66 34157.28 32554.12 35477.87 33145.85 29374.48 35349.95 32161.52 34383.05 325
ambc75.24 28873.16 35150.51 34763.05 36187.47 21764.28 32377.81 33217.80 36389.73 25357.88 27860.64 34585.49 295
tpm cat170.57 27368.31 27977.35 26982.41 28757.95 27978.08 30680.22 30852.04 34068.54 28877.66 33352.00 23587.84 28251.77 30972.07 30986.25 282
dp66.80 29965.43 30170.90 32079.74 32248.82 35275.12 32574.77 33859.61 30764.08 32577.23 33442.89 30880.72 32548.86 32666.58 33083.16 323
TESTMET0.1,169.89 28169.00 27572.55 30779.27 32856.85 29378.38 30274.71 34057.64 32268.09 29077.19 33537.75 33376.70 34163.92 22384.09 16884.10 314
CHOSEN 280x42066.51 30264.71 30371.90 31081.45 29963.52 21257.98 36368.95 35453.57 33662.59 33376.70 33646.22 28975.29 35155.25 29579.68 22176.88 348
PatchT68.46 29267.85 28670.29 32180.70 30943.93 36472.47 33174.88 33760.15 30370.55 26376.57 33749.94 25981.59 32050.58 31474.83 28585.34 297
mvsany_test353.99 32351.45 32761.61 34055.51 36944.74 36363.52 35945.41 37643.69 35358.11 34676.45 33817.99 36263.76 36754.77 29747.59 36276.34 349
RPMNet73.51 24770.49 26482.58 17281.32 30465.19 17875.92 31892.27 7657.60 32372.73 24576.45 33852.30 22895.43 6348.14 33277.71 24187.11 269
ADS-MVSNet266.20 30763.33 30974.82 29279.92 31758.75 26967.55 34975.19 33653.37 33765.25 31875.86 34042.32 31280.53 32641.57 35268.91 32385.18 299
ADS-MVSNet64.36 31162.88 31368.78 32879.92 31747.17 35467.55 34971.18 34653.37 33765.25 31875.86 34042.32 31273.99 35541.57 35268.91 32385.18 299
EGC-MVSNET52.07 32847.05 33267.14 33283.51 25960.71 25280.50 28167.75 3550.07 3760.43 37775.85 34224.26 35681.54 32128.82 36262.25 34059.16 361
new-patchmatchnet61.73 31661.73 31761.70 33972.74 35324.50 37869.16 34578.03 32061.40 29456.72 35075.53 34338.42 32976.48 34345.95 34257.67 34884.13 313
N_pmnet52.79 32653.26 32551.40 35078.99 3297.68 38169.52 3423.89 38151.63 34357.01 34974.98 34440.83 32265.96 36537.78 35764.67 33680.56 340
patchmatchnet-post74.00 34551.12 24688.60 273
GG-mvs-BLEND75.38 28781.59 29755.80 30979.32 29369.63 35067.19 29973.67 34643.24 30688.90 27050.41 31584.50 16181.45 334
Patchmatch-RL test70.24 27767.78 28977.61 26577.43 33359.57 26671.16 33570.33 34762.94 28168.65 28672.77 34750.62 25185.49 29869.58 17766.58 33087.77 251
FPMVS53.68 32451.64 32659.81 34265.08 36351.03 34469.48 34369.58 35141.46 35540.67 36172.32 34816.46 36570.00 36124.24 36865.42 33458.40 363
UnsupCasMVSNet_bld63.70 31361.53 31870.21 32273.69 34851.39 34372.82 33081.89 28955.63 33257.81 34771.80 34938.67 32878.61 33149.26 32552.21 35880.63 338
APD_test153.31 32549.93 33063.42 33865.68 36250.13 34871.59 33466.90 35734.43 36340.58 36271.56 3508.65 37476.27 34434.64 36055.36 35463.86 359
test_f52.09 32750.82 32855.90 34653.82 37242.31 36759.42 36258.31 36836.45 36156.12 35370.96 35112.18 36857.79 36953.51 30356.57 35167.60 355
PVSNet_057.27 2061.67 31759.27 32068.85 32779.61 32357.44 28868.01 34873.44 34455.93 33158.54 34470.41 35244.58 30177.55 33747.01 33635.91 36671.55 354
pmmvs357.79 32054.26 32468.37 32964.02 36456.72 29675.12 32565.17 35940.20 35652.93 35669.86 35320.36 36075.48 34945.45 34455.25 35572.90 353
test_vis1_rt60.28 31858.42 32165.84 33467.25 36155.60 31270.44 34060.94 36544.33 35259.00 34266.64 35424.91 35468.67 36262.80 23069.48 31973.25 352
new_pmnet50.91 32950.29 32952.78 34968.58 35934.94 37363.71 35856.63 36939.73 35744.95 35965.47 35521.93 35958.48 36834.98 35956.62 35064.92 357
gg-mvs-nofinetune69.95 28067.96 28475.94 28083.07 27054.51 32277.23 31370.29 34863.11 27770.32 26762.33 35643.62 30588.69 27253.88 30187.76 12284.62 308
JIA-IIPM66.32 30462.82 31476.82 27577.09 33561.72 24265.34 35675.38 33558.04 32064.51 32262.32 35742.05 31786.51 29151.45 31269.22 32282.21 330
LCM-MVSNet54.25 32249.68 33167.97 33153.73 37345.28 36066.85 35280.78 29835.96 36239.45 36362.23 3588.70 37378.06 33548.24 33151.20 35980.57 339
PMMVS240.82 33638.86 33946.69 35153.84 37116.45 37948.61 36649.92 37137.49 35931.67 36460.97 3598.14 37556.42 37028.42 36330.72 36867.19 356
testf145.72 33241.96 33557.00 34356.90 36745.32 35866.14 35459.26 36626.19 36730.89 36660.96 3604.14 37770.64 35926.39 36646.73 36455.04 364
APD_test245.72 33241.96 33557.00 34356.90 36745.32 35866.14 35459.26 36626.19 36730.89 36660.96 3604.14 37770.64 35926.39 36646.73 36455.04 364
MVS-HIRNet59.14 31957.67 32263.57 33781.65 29543.50 36571.73 33365.06 36039.59 35851.43 35757.73 36238.34 33082.58 31839.53 35573.95 29264.62 358
ANet_high50.57 33046.10 33463.99 33648.67 37639.13 36970.99 33780.85 29761.39 29531.18 36557.70 36317.02 36473.65 35631.22 36115.89 37379.18 343
PMVScopyleft37.38 2244.16 33540.28 33855.82 34740.82 37842.54 36665.12 35763.99 36234.43 36324.48 36957.12 3643.92 37976.17 34617.10 37155.52 35348.75 366
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis3_rt49.26 33147.02 33356.00 34554.30 37045.27 36166.76 35348.08 37336.83 36044.38 36053.20 3657.17 37664.07 36656.77 28955.66 35258.65 362
test_method31.52 33829.28 34238.23 35327.03 3806.50 38220.94 37162.21 3644.05 37422.35 37252.50 36613.33 36647.58 37327.04 36534.04 36760.62 360
DeepMVS_CXcopyleft27.40 35640.17 37926.90 37624.59 38017.44 37223.95 37048.61 3679.77 37126.48 37518.06 37024.47 36928.83 369
MVEpermissive26.22 2330.37 34025.89 34443.81 35244.55 37735.46 37228.87 37039.07 37718.20 37118.58 37340.18 3682.68 38047.37 37417.07 37223.78 37048.60 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft45.18 33441.86 33755.16 34877.03 33651.52 34132.50 36980.52 30232.46 36527.12 36835.02 3699.52 37275.50 34822.31 36960.21 34738.45 368
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN31.77 33730.64 34035.15 35452.87 37427.67 37557.09 36447.86 37424.64 36916.40 37433.05 37011.23 37054.90 37114.46 37318.15 37122.87 370
EMVS30.81 33929.65 34134.27 35550.96 37525.95 37756.58 36546.80 37524.01 37015.53 37530.68 37112.47 36754.43 37212.81 37417.05 37222.43 371
tmp_tt18.61 34221.40 34510.23 3584.82 38110.11 38034.70 36830.74 3791.48 37523.91 37126.07 37228.42 35113.41 37727.12 36415.35 3747.17 372
X-MVStestdata80.37 13177.83 16888.00 1594.42 2073.33 1892.78 1892.99 4579.14 1983.67 7212.47 37367.45 8396.60 3183.06 5094.50 4894.07 45
test_post5.46 37450.36 25584.24 306
test_post178.90 3005.43 37548.81 27685.44 29959.25 262
wuyk23d16.82 34315.94 34619.46 35758.74 36631.45 37439.22 3673.74 3826.84 3736.04 3762.70 3761.27 38124.29 37610.54 37514.40 3752.63 373
testmvs6.04 3468.02 3490.10 3600.08 3820.03 38469.74 3410.04 3830.05 3770.31 3781.68 3770.02 3830.04 3780.24 3760.02 3760.25 375
test1236.12 3458.11 3480.14 3590.06 3830.09 38371.05 3360.03 3840.04 3780.25 3791.30 3780.05 3820.03 3790.21 3770.01 3770.29 374
test_blank0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet_test0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
pcd_1.5k_mvsjas5.26 3477.02 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 37963.15 1250.00 3800.00 3780.00 3780.00 376
sosnet-low-res0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
sosnet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
Regformer0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
FOURS195.00 1072.39 3895.06 193.84 1574.49 10991.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 189.67 196.44 994.41 30
No_MVS89.16 194.34 2775.53 292.99 4597.53 189.67 196.44 994.41 30
eth-test20.00 384
eth-test0.00 384
IU-MVS95.30 271.25 5592.95 5166.81 23392.39 688.94 1196.63 494.85 17
save fliter93.80 4072.35 4190.47 6291.17 11674.31 112
test_0728_SECOND87.71 3095.34 171.43 5493.49 994.23 397.49 389.08 796.41 1294.21 40
GSMVS88.96 226
test_part295.06 872.65 3191.80 13
sam_mvs151.32 24488.96 226
sam_mvs50.01 257
MTGPAbinary92.02 85
MTMP92.18 3332.83 378
test9_res84.90 2995.70 2692.87 92
agg_prior282.91 5395.45 2892.70 95
agg_prior92.85 5971.94 4991.78 10084.41 5994.93 85
test_prior472.60 3389.01 96
test_prior86.33 5292.61 6569.59 8592.97 5095.48 6093.91 50
旧先验286.56 17558.10 31987.04 3088.98 26674.07 133
新几何286.29 183
无先验87.48 14688.98 17960.00 30494.12 11967.28 19888.97 225
原ACMM286.86 164
testdata291.01 23662.37 236
segment_acmp73.08 37
testdata184.14 23675.71 85
test1286.80 4792.63 6470.70 7091.79 9982.71 8571.67 4796.16 4294.50 4893.54 70
plane_prior790.08 10268.51 111
plane_prior689.84 11168.70 10660.42 172
plane_prior592.44 6995.38 6778.71 8886.32 14291.33 136
plane_prior368.60 10978.44 2978.92 126
plane_prior291.25 4879.12 21
plane_prior189.90 110
plane_prior68.71 10490.38 6577.62 3786.16 146
n20.00 385
nn0.00 385
door-mid69.98 349
test1192.23 79
door69.44 352
HQP5-MVS66.98 142
HQP-NCC89.33 12689.17 8976.41 7077.23 167
ACMP_Plane89.33 12689.17 8976.41 7077.23 167
BP-MVS77.47 100
HQP4-MVS77.24 16695.11 7891.03 148
HQP3-MVS92.19 8285.99 149
HQP2-MVS60.17 175
MDTV_nov1_ep13_2view37.79 37075.16 32355.10 33366.53 30749.34 26653.98 30087.94 247
ACMMP++_ref81.95 196
ACMMP++81.25 202
Test By Simon64.33 112