This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
IU-MVS96.46 1169.91 3695.18 1580.75 3995.28 192.34 1195.36 1396.47 24
PC_three_145280.91 3894.07 296.83 1483.57 499.12 595.70 497.42 497.55 4
MSP-MVS90.38 491.87 185.88 7992.83 7164.03 18093.06 9994.33 4782.19 2393.65 396.15 2785.89 197.19 7791.02 2397.75 196.43 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SED-MVS89.94 890.36 988.70 1596.45 1269.38 4696.89 494.44 3971.65 19292.11 497.21 476.79 999.11 692.34 1195.36 1397.62 2
test_241102_ONE96.45 1269.38 4694.44 3971.65 19292.11 497.05 776.79 999.11 6
DVP-MVS++90.53 391.09 488.87 1397.31 469.91 3693.96 6494.37 4572.48 16392.07 696.85 1283.82 299.15 291.53 1997.42 497.55 4
test_241102_TWO94.41 4171.65 19292.07 697.21 474.58 1799.11 692.34 1195.36 1396.59 15
test072696.40 1569.99 3296.76 694.33 4771.92 17991.89 897.11 673.77 21
SMA-MVScopyleft88.14 1688.29 2087.67 2893.21 6368.72 6393.85 7194.03 5474.18 12891.74 996.67 1665.61 6298.42 3289.24 3396.08 795.88 42
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPM-MVS90.70 290.52 791.24 189.68 14476.68 297.29 195.35 1182.87 1791.58 1097.22 379.93 599.10 983.12 8297.64 297.94 1
patch_mono-289.71 1090.99 585.85 8296.04 2463.70 19095.04 3995.19 1486.74 691.53 1195.15 5273.86 2097.58 5593.38 592.00 6696.28 31
TSAR-MVS + MP.88.11 1888.64 1686.54 6291.73 10268.04 8090.36 20693.55 7182.89 1691.29 1292.89 10972.27 3096.03 12587.99 4094.77 2495.54 51
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_part296.29 1968.16 7890.78 13
DPE-MVScopyleft88.77 1589.21 1587.45 3696.26 2067.56 9294.17 5294.15 5268.77 24290.74 1497.27 276.09 1298.49 2890.58 2794.91 1996.30 28
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_one_060196.32 1869.74 4194.18 5071.42 20390.67 1596.85 1274.45 18
DVP-MVScopyleft89.41 1289.73 1388.45 2196.40 1569.99 3296.64 894.52 3571.92 17990.55 1696.93 1073.77 2199.08 1191.91 1794.90 2096.29 29
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD72.48 16390.55 1696.93 1076.24 1199.08 1191.53 1994.99 1696.43 25
DeepPCF-MVS81.17 189.72 991.38 384.72 11893.00 6958.16 28596.72 794.41 4186.50 790.25 1897.83 175.46 1498.67 2492.78 895.49 1297.32 6
test_fmvsm_n_192087.69 2488.50 1785.27 10087.05 21063.55 19693.69 7991.08 17584.18 1290.17 1997.04 867.58 4697.99 3895.72 290.03 9194.26 99
CANet89.61 1189.99 1188.46 2094.39 3969.71 4296.53 1193.78 5886.89 589.68 2095.78 3165.94 5899.10 992.99 793.91 3996.58 17
MVS_030490.01 790.50 888.53 1990.14 13570.94 2296.47 1295.72 887.33 389.60 2196.26 2368.44 3798.74 2395.82 194.72 2995.90 41
xiu_mvs_v2_base87.92 2187.38 2989.55 1191.41 11376.43 395.74 2093.12 9083.53 1589.55 2295.95 2953.45 19897.68 4791.07 2292.62 5794.54 91
PS-MVSNAJ88.14 1687.61 2589.71 692.06 9076.72 195.75 1993.26 8283.86 1389.55 2296.06 2853.55 19497.89 4291.10 2193.31 5094.54 91
CNVR-MVS90.32 590.89 688.61 1896.76 870.65 2596.47 1294.83 2484.83 1089.07 2496.80 1570.86 3499.06 1592.64 995.71 1096.12 34
HPM-MVS++copyleft89.37 1389.95 1287.64 2995.10 3068.23 7695.24 3294.49 3782.43 2188.90 2596.35 2171.89 3398.63 2588.76 3796.40 696.06 35
APDe-MVS87.54 2587.84 2286.65 5796.07 2366.30 12594.84 4493.78 5869.35 23388.39 2696.34 2267.74 4597.66 5090.62 2693.44 4896.01 38
EPNet87.84 2288.38 1886.23 7293.30 6066.05 12995.26 3194.84 2387.09 488.06 2794.53 6766.79 5197.34 6883.89 7891.68 7195.29 62
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SD-MVS87.49 2687.49 2787.50 3593.60 5368.82 6193.90 6892.63 10976.86 9487.90 2895.76 3266.17 5597.63 5289.06 3591.48 7596.05 36
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
canonicalmvs86.85 3386.25 3988.66 1791.80 10171.92 1493.54 8691.71 14680.26 4287.55 2995.25 4863.59 8796.93 9788.18 3984.34 13597.11 8
旧先验292.00 14459.37 31587.54 3093.47 22675.39 136
MVSFormer83.75 8082.88 8486.37 6889.24 15871.18 1989.07 23990.69 18465.80 26487.13 3194.34 7764.99 6692.67 24972.83 15391.80 6995.27 65
lupinMVS87.74 2387.77 2387.63 3389.24 15871.18 1996.57 1092.90 9882.70 2087.13 3195.27 4664.99 6695.80 13089.34 3191.80 6995.93 39
alignmvs87.28 2886.97 3288.24 2391.30 11471.14 2195.61 2493.56 7079.30 5587.07 3395.25 4868.43 3896.93 9787.87 4184.33 13696.65 13
NCCC89.07 1489.46 1487.91 2496.60 1069.05 5596.38 1494.64 3284.42 1186.74 3496.20 2566.56 5498.76 2289.03 3694.56 3195.92 40
FOURS193.95 4561.77 22993.96 6491.92 13362.14 29586.57 35
SF-MVS87.03 3187.09 3086.84 5092.70 7767.45 9793.64 8193.76 6170.78 21686.25 3696.44 2066.98 4997.79 4588.68 3894.56 3195.28 64
9.1487.63 2493.86 4794.41 5094.18 5072.76 15886.21 3796.51 1866.64 5297.88 4390.08 2894.04 36
APD-MVScopyleft85.93 4585.99 4285.76 8695.98 2665.21 15093.59 8492.58 11166.54 25986.17 3895.88 3063.83 8197.00 8786.39 5792.94 5495.06 72
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CANet_DTU84.09 7283.52 6685.81 8390.30 13266.82 11191.87 14889.01 25085.27 886.09 3993.74 9147.71 24996.98 9177.90 12389.78 9493.65 124
VNet86.20 4085.65 4787.84 2693.92 4669.99 3295.73 2295.94 678.43 7286.00 4093.07 10458.22 13997.00 8785.22 6484.33 13696.52 19
TSAR-MVS + GP.87.96 1988.37 1986.70 5693.51 5665.32 14795.15 3593.84 5778.17 7585.93 4194.80 6175.80 1398.21 3389.38 3088.78 10096.59 15
MCST-MVS91.08 191.46 289.94 497.66 273.37 897.13 295.58 989.33 185.77 4296.26 2372.84 2699.38 192.64 995.93 997.08 9
DELS-MVS90.05 690.09 1089.94 493.14 6673.88 797.01 394.40 4388.32 285.71 4394.91 5874.11 1998.91 1787.26 4995.94 897.03 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PHI-MVS86.83 3486.85 3586.78 5493.47 5765.55 14395.39 2995.10 1771.77 18985.69 4496.52 1762.07 10198.77 2186.06 6095.60 1196.03 37
TEST994.18 4167.28 9994.16 5393.51 7271.75 19085.52 4595.33 4168.01 4297.27 75
train_agg87.21 2987.42 2886.60 5894.18 4167.28 9994.16 5393.51 7271.87 18485.52 4595.33 4168.19 4097.27 7589.09 3494.90 2095.25 68
CS-MVS-test86.14 4287.01 3183.52 15192.63 8059.36 27395.49 2691.92 13380.09 4385.46 4795.53 3861.82 10595.77 13386.77 5593.37 4995.41 53
test_894.19 4067.19 10194.15 5693.42 7871.87 18485.38 4895.35 4068.19 4096.95 94
testdata81.34 20689.02 16257.72 29089.84 21758.65 31885.32 4994.09 8457.03 15093.28 22869.34 18990.56 8893.03 141
ZD-MVS96.63 965.50 14593.50 7470.74 21785.26 5095.19 5164.92 6997.29 7187.51 4593.01 53
test_prior295.10 3775.40 11385.25 5195.61 3667.94 4387.47 4694.77 24
CS-MVS85.80 4786.65 3683.27 15992.00 9458.92 27895.31 3091.86 13879.97 4484.82 5295.40 3962.26 9995.51 15186.11 5992.08 6595.37 56
ACMMP_NAP86.05 4385.80 4586.80 5391.58 10667.53 9491.79 15293.49 7574.93 11984.61 5395.30 4359.42 12897.92 4086.13 5894.92 1894.94 77
jason86.40 3786.17 4087.11 4386.16 22470.54 2795.71 2392.19 12482.00 2584.58 5494.34 7761.86 10395.53 15087.76 4290.89 8395.27 65
jason: jason.
agg_prior94.16 4366.97 10993.31 8184.49 5596.75 101
test_vis1_n_192081.66 11382.01 9880.64 22382.24 27755.09 31394.76 4586.87 28881.67 2884.40 5694.63 6538.17 29694.67 17791.98 1683.34 14292.16 166
xiu_mvs_v1_base_debu82.16 10481.12 10785.26 10186.42 21868.72 6392.59 12190.44 19373.12 15184.20 5794.36 7238.04 29995.73 13584.12 7586.81 11591.33 176
xiu_mvs_v1_base82.16 10481.12 10785.26 10186.42 21868.72 6392.59 12190.44 19373.12 15184.20 5794.36 7238.04 29995.73 13584.12 7586.81 11591.33 176
xiu_mvs_v1_base_debi82.16 10481.12 10785.26 10186.42 21868.72 6392.59 12190.44 19373.12 15184.20 5794.36 7238.04 29995.73 13584.12 7586.81 11591.33 176
ETV-MVS86.01 4486.11 4185.70 8890.21 13467.02 10893.43 9191.92 13381.21 3584.13 6094.07 8660.93 11295.63 14189.28 3289.81 9294.46 97
SteuartSystems-ACMMP86.82 3586.90 3386.58 6090.42 12966.38 12296.09 1693.87 5677.73 8284.01 6195.66 3463.39 8997.94 3987.40 4793.55 4795.42 52
Skip Steuart: Steuart Systems R&D Blog.
MG-MVS87.11 3086.27 3789.62 797.79 176.27 494.96 4294.49 3778.74 7083.87 6292.94 10764.34 7596.94 9575.19 13794.09 3595.66 46
DeepC-MVS_fast79.48 287.95 2088.00 2187.79 2795.86 2768.32 7195.74 2094.11 5383.82 1483.49 6396.19 2664.53 7498.44 3083.42 8194.88 2396.61 14
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EC-MVSNet84.53 6285.04 5483.01 16389.34 15161.37 23794.42 4991.09 17377.91 7983.24 6494.20 8258.37 13795.40 15285.35 6391.41 7692.27 162
Effi-MVS+83.82 7782.76 8686.99 4889.56 14769.40 4591.35 17486.12 29772.59 16083.22 6592.81 11359.60 12696.01 12781.76 9187.80 10795.56 50
CDPH-MVS85.71 4885.46 4886.46 6494.75 3467.19 10193.89 6992.83 10070.90 21283.09 6695.28 4463.62 8597.36 6680.63 10194.18 3494.84 81
MVS_Test84.16 7183.20 7787.05 4691.56 10769.82 3889.99 22092.05 12777.77 8182.84 6786.57 20863.93 8096.09 11974.91 14289.18 9895.25 68
test_cas_vis1_n_192080.45 13380.61 11879.97 24078.25 32257.01 30194.04 6288.33 26979.06 6382.81 6893.70 9238.65 29191.63 27890.82 2579.81 16591.27 182
h-mvs3383.01 9182.56 9184.35 13189.34 15162.02 22492.72 11193.76 6181.45 3082.73 6992.25 12560.11 11997.13 8087.69 4362.96 29193.91 116
hse-mvs281.12 12281.11 11081.16 21086.52 21757.48 29589.40 23291.16 16881.45 3082.73 6990.49 15260.11 11994.58 18087.69 4360.41 31891.41 175
test1287.09 4494.60 3668.86 5992.91 9782.67 7165.44 6397.55 5793.69 4594.84 81
HY-MVS76.49 584.28 6683.36 7687.02 4792.22 8767.74 8784.65 28194.50 3679.15 5982.23 7287.93 19166.88 5096.94 9580.53 10282.20 14996.39 27
LFMVS84.34 6582.73 8789.18 1294.76 3373.25 994.99 4191.89 13671.90 18182.16 7393.49 9847.98 24597.05 8282.55 8684.82 13197.25 7
WTY-MVS86.32 3885.81 4487.85 2592.82 7369.37 4895.20 3395.25 1382.71 1981.91 7494.73 6267.93 4497.63 5279.55 10782.25 14896.54 18
VDD-MVS83.06 9081.81 10186.81 5290.86 12367.70 8895.40 2891.50 15675.46 11181.78 7592.34 12340.09 28597.13 8086.85 5482.04 15095.60 48
diffmvspermissive84.28 6683.83 6485.61 9087.40 20368.02 8190.88 19189.24 23680.54 4081.64 7692.52 11559.83 12394.52 18787.32 4885.11 12994.29 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MSLP-MVS++86.27 3985.91 4387.35 3892.01 9368.97 5895.04 3992.70 10379.04 6481.50 7796.50 1958.98 13496.78 10083.49 8093.93 3896.29 29
SR-MVS82.81 9482.58 9083.50 15493.35 5861.16 24092.23 13191.28 16564.48 27381.27 7895.28 4453.71 19395.86 12982.87 8388.77 10193.49 128
dcpmvs_287.37 2787.55 2686.85 4995.04 3268.20 7790.36 20690.66 18779.37 5481.20 7993.67 9374.73 1596.55 10890.88 2492.00 6695.82 43
baseline85.01 5684.44 5986.71 5588.33 18068.73 6290.24 21191.82 14281.05 3781.18 8092.50 11663.69 8496.08 12284.45 7386.71 12095.32 60
test_yl84.28 6683.16 7887.64 2994.52 3769.24 5095.78 1795.09 1869.19 23681.09 8192.88 11057.00 15297.44 6181.11 9981.76 15296.23 32
DCV-MVSNet84.28 6683.16 7887.64 2994.52 3769.24 5095.78 1795.09 1869.19 23681.09 8192.88 11057.00 15297.44 6181.11 9981.76 15296.23 32
UA-Net80.02 14279.65 13281.11 21289.33 15357.72 29086.33 27489.00 25177.44 8981.01 8389.15 17259.33 13095.90 12861.01 26084.28 13889.73 202
PVSNet_BlendedMVS83.38 8483.43 7183.22 16093.76 4967.53 9494.06 5893.61 6879.13 6081.00 8485.14 22363.19 9297.29 7187.08 5173.91 21584.83 286
PVSNet_Blended86.73 3686.86 3486.31 7193.76 4967.53 9496.33 1593.61 6882.34 2281.00 8493.08 10363.19 9297.29 7187.08 5191.38 7794.13 105
casdiffmvspermissive85.37 5184.87 5786.84 5088.25 18369.07 5493.04 10191.76 14381.27 3480.84 8692.07 12764.23 7696.06 12384.98 6887.43 11195.39 54
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MP-MVS-pluss85.24 5385.13 5285.56 9191.42 11165.59 14191.54 16292.51 11374.56 12280.62 8795.64 3559.15 13297.00 8786.94 5393.80 4094.07 109
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MTAPA83.91 7583.38 7585.50 9291.89 9965.16 15281.75 30492.23 11975.32 11480.53 8895.21 5056.06 16797.16 7984.86 7092.55 5994.18 101
PAPM85.89 4685.46 4887.18 4188.20 18672.42 1392.41 12692.77 10182.11 2480.34 8993.07 10468.27 3995.02 16278.39 12093.59 4694.09 107
CostFormer82.33 10181.15 10685.86 8189.01 16368.46 6882.39 30193.01 9375.59 10980.25 9081.57 26672.03 3294.96 16579.06 11377.48 18894.16 103
casdiffmvs_mvgpermissive85.66 4985.18 5187.09 4488.22 18569.35 4993.74 7891.89 13681.47 2980.10 9191.45 13664.80 7096.35 11187.23 5087.69 10895.58 49
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PMMVS81.98 10982.04 9781.78 19689.76 14356.17 30591.13 18490.69 18477.96 7780.09 9293.57 9646.33 25994.99 16481.41 9587.46 11094.17 102
ZNCC-MVS85.33 5285.08 5386.06 7493.09 6865.65 13993.89 6993.41 7973.75 13979.94 9394.68 6460.61 11598.03 3782.63 8593.72 4394.52 93
sss82.71 9782.38 9483.73 14689.25 15559.58 26892.24 13094.89 2277.96 7779.86 9492.38 12156.70 15897.05 8277.26 12680.86 16094.55 89
新几何184.73 11792.32 8464.28 17591.46 15859.56 31479.77 9592.90 10856.95 15596.57 10663.40 24392.91 5593.34 131
APD-MVS_3200maxsize81.64 11481.32 10582.59 17392.36 8358.74 28091.39 16991.01 18063.35 28279.72 9694.62 6651.82 20896.14 11779.71 10587.93 10692.89 146
MP-MVScopyleft85.02 5584.97 5585.17 10492.60 8164.27 17693.24 9492.27 11873.13 15079.63 9794.43 7061.90 10297.17 7885.00 6792.56 5894.06 110
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
原ACMM184.42 12793.21 6364.27 17693.40 8065.39 26779.51 9892.50 11658.11 14196.69 10265.27 23393.96 3792.32 157
test_fmvs174.07 23473.69 22175.22 29578.91 31447.34 34789.06 24174.69 34763.68 27979.41 9991.59 13524.36 34787.77 31985.22 6476.26 19990.55 191
VDDNet80.50 13178.26 15387.21 4086.19 22369.79 3994.48 4891.31 16260.42 30779.34 10090.91 14538.48 29496.56 10782.16 8781.05 15895.27 65
EIA-MVS84.84 5884.88 5684.69 11991.30 11462.36 21893.85 7192.04 12879.45 5179.33 10194.28 8062.42 9896.35 11180.05 10491.25 8095.38 55
HFP-MVS84.73 5984.40 6085.72 8793.75 5165.01 15693.50 8893.19 8672.19 17379.22 10294.93 5659.04 13397.67 4881.55 9292.21 6194.49 96
MAR-MVS84.18 7083.43 7186.44 6596.25 2165.93 13494.28 5194.27 4974.41 12379.16 10395.61 3653.99 18998.88 2069.62 18693.26 5194.50 95
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR85.15 5484.47 5887.18 4196.02 2568.29 7291.85 15093.00 9576.59 10179.03 10495.00 5361.59 10697.61 5478.16 12189.00 9995.63 47
SR-MVS-dyc-post81.06 12380.70 11582.15 18792.02 9158.56 28290.90 18990.45 19062.76 28978.89 10594.46 6851.26 21695.61 14378.77 11786.77 11892.28 159
RE-MVS-def80.48 12192.02 9158.56 28290.90 18990.45 19062.76 28978.89 10594.46 6849.30 23278.77 11786.77 11892.28 159
GST-MVS84.63 6184.29 6185.66 8992.82 7365.27 14893.04 10193.13 8973.20 14878.89 10594.18 8359.41 12997.85 4481.45 9492.48 6093.86 119
MVS_111021_HR86.19 4185.80 4587.37 3793.17 6569.79 3993.99 6393.76 6179.08 6278.88 10893.99 8762.25 10098.15 3585.93 6191.15 8194.15 104
region2R84.36 6484.03 6385.36 9793.54 5564.31 17493.43 9192.95 9672.16 17678.86 10994.84 6056.97 15497.53 5881.38 9692.11 6494.24 100
ACMMPR84.37 6384.06 6285.28 9993.56 5464.37 17293.50 8893.15 8872.19 17378.85 11094.86 5956.69 15997.45 6081.55 9292.20 6294.02 112
UGNet79.87 14578.68 14783.45 15689.96 13861.51 23492.13 13390.79 18276.83 9678.85 11086.33 21238.16 29796.17 11667.93 20387.17 11292.67 148
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
GG-mvs-BLEND86.53 6391.91 9869.67 4475.02 34294.75 2778.67 11290.85 14677.91 794.56 18472.25 16193.74 4295.36 57
test250683.29 8582.92 8384.37 13088.39 17863.18 20292.01 14191.35 16177.66 8478.49 11391.42 13764.58 7395.09 16173.19 14989.23 9694.85 78
XVS83.87 7683.47 6985.05 10593.22 6163.78 18492.92 10692.66 10673.99 13178.18 11494.31 7955.25 17297.41 6379.16 11191.58 7393.95 114
X-MVStestdata76.86 19574.13 21585.05 10593.22 6163.78 18492.92 10692.66 10673.99 13178.18 11410.19 38355.25 17297.41 6379.16 11191.58 7393.95 114
test_fmvs1_n72.69 25371.92 24374.99 29871.15 35047.08 34987.34 26575.67 34263.48 28178.08 11691.17 14220.16 35887.87 31684.65 7175.57 20390.01 197
EI-MVSNet-Vis-set83.77 7983.67 6584.06 13892.79 7663.56 19591.76 15594.81 2579.65 5077.87 11794.09 8463.35 9097.90 4179.35 10979.36 16990.74 187
Vis-MVSNetpermissive80.92 12679.98 12883.74 14488.48 17361.80 22893.44 9088.26 27473.96 13477.73 11891.76 13149.94 22694.76 17065.84 22590.37 8994.65 88
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvsmvis_n_192083.80 7883.48 6884.77 11582.51 27463.72 18891.37 17283.99 31781.42 3377.68 11995.74 3358.37 13797.58 5593.38 586.87 11493.00 143
CSCG86.87 3286.26 3888.72 1495.05 3170.79 2493.83 7595.33 1268.48 24677.63 12094.35 7673.04 2498.45 2984.92 6993.71 4496.92 11
TESTMET0.1,182.41 10081.98 9983.72 14788.08 18763.74 18692.70 11393.77 6079.30 5577.61 12187.57 19758.19 14094.08 20373.91 14886.68 12193.33 133
tpm279.80 14677.95 15985.34 9888.28 18168.26 7481.56 30791.42 15970.11 22477.59 12280.50 28467.40 4794.26 19767.34 20877.35 18993.51 127
CP-MVS83.71 8183.40 7484.65 12093.14 6663.84 18294.59 4792.28 11771.03 21077.41 12394.92 5755.21 17596.19 11581.32 9790.70 8593.91 116
ab-mvs80.18 13878.31 15285.80 8488.44 17565.49 14683.00 29892.67 10571.82 18777.36 12485.01 22454.50 18196.59 10476.35 13175.63 20295.32 60
test22289.77 14261.60 23389.55 22789.42 23156.83 32777.28 12592.43 12052.76 20291.14 8293.09 139
PGM-MVS83.25 8782.70 8884.92 10992.81 7564.07 17990.44 20292.20 12371.28 20477.23 12694.43 7055.17 17697.31 7079.33 11091.38 7793.37 130
gg-mvs-nofinetune77.18 19174.31 21185.80 8491.42 11168.36 7071.78 34494.72 2849.61 34777.12 12745.92 36877.41 893.98 21267.62 20693.16 5295.05 73
HPM-MVScopyleft83.25 8782.95 8284.17 13692.25 8662.88 21190.91 18891.86 13870.30 22277.12 12793.96 8856.75 15796.28 11382.04 8991.34 7993.34 131
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet_Blended_VisFu83.97 7483.50 6785.39 9690.02 13766.59 11993.77 7691.73 14477.43 9077.08 12989.81 16663.77 8396.97 9279.67 10688.21 10492.60 150
DeepC-MVS77.85 385.52 5085.24 5086.37 6888.80 16866.64 11692.15 13293.68 6681.07 3676.91 13093.64 9462.59 9798.44 3085.50 6292.84 5694.03 111
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ECVR-MVScopyleft81.29 11880.38 12384.01 14088.39 17861.96 22692.56 12486.79 29077.66 8476.63 13191.42 13746.34 25895.24 15974.36 14689.23 9694.85 78
EI-MVSNet-UG-set83.14 8982.96 8183.67 14992.28 8563.19 20191.38 17194.68 3079.22 5776.60 13293.75 9062.64 9697.76 4678.07 12278.01 18090.05 196
EPNet_dtu78.80 16479.26 14277.43 27688.06 18849.71 33791.96 14691.95 13277.67 8376.56 13391.28 14158.51 13690.20 29856.37 27980.95 15992.39 154
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DP-MVS Recon82.73 9581.65 10285.98 7697.31 467.06 10595.15 3591.99 13069.08 23976.50 13493.89 8954.48 18498.20 3470.76 17585.66 12792.69 147
Anonymous20240521177.96 18075.33 19885.87 8093.73 5264.52 16294.85 4385.36 30362.52 29276.11 13590.18 15929.43 33897.29 7168.51 19877.24 19295.81 44
tpmrst80.57 12979.14 14484.84 11290.10 13668.28 7381.70 30589.72 22477.63 8675.96 13679.54 29864.94 6892.71 24675.43 13577.28 19193.55 126
thisisatest051583.41 8382.49 9286.16 7389.46 15068.26 7493.54 8694.70 2974.31 12675.75 13790.92 14472.62 2896.52 10969.64 18481.50 15593.71 122
test111180.84 12780.02 12583.33 15787.87 19460.76 24892.62 11886.86 28977.86 8075.73 13891.39 13946.35 25794.70 17672.79 15588.68 10294.52 93
CHOSEN 1792x268884.98 5783.45 7089.57 1089.94 13975.14 592.07 13892.32 11681.87 2675.68 13988.27 18460.18 11898.60 2680.46 10390.27 9094.96 76
test-LLR80.10 14079.56 13481.72 19886.93 21361.17 23892.70 11391.54 15371.51 20175.62 14086.94 20553.83 19092.38 26072.21 16284.76 13391.60 170
test-mter79.96 14379.38 14081.72 19886.93 21361.17 23892.70 11391.54 15373.85 13675.62 14086.94 20549.84 22892.38 26072.21 16284.76 13391.60 170
mPP-MVS82.96 9382.44 9384.52 12492.83 7162.92 20992.76 10991.85 14071.52 20075.61 14294.24 8153.48 19796.99 9078.97 11490.73 8493.64 125
MVS_111021_LR82.02 10881.52 10383.51 15388.42 17662.88 21189.77 22488.93 25276.78 9775.55 14393.10 10150.31 22295.38 15483.82 7987.02 11392.26 163
API-MVS82.28 10280.53 12087.54 3496.13 2270.59 2693.63 8291.04 17965.72 26675.45 14492.83 11256.11 16698.89 1964.10 23989.75 9593.15 137
Fast-Effi-MVS+81.14 12080.01 12684.51 12590.24 13365.86 13594.12 5789.15 24273.81 13875.37 14588.26 18557.26 14794.53 18666.97 21384.92 13093.15 137
test_vis1_n71.63 25870.73 25374.31 30569.63 35647.29 34886.91 26972.11 35363.21 28575.18 14690.17 16020.40 35685.76 33184.59 7274.42 21089.87 198
nrg03080.93 12579.86 12984.13 13783.69 26268.83 6093.23 9591.20 16675.55 11075.06 14788.22 18863.04 9594.74 17281.88 9066.88 26288.82 213
baseline181.84 11081.03 11184.28 13491.60 10566.62 11791.08 18591.66 15081.87 2674.86 14891.67 13469.98 3694.92 16871.76 16764.75 28091.29 181
FA-MVS(test-final)79.12 15677.23 17284.81 11490.54 12763.98 18181.35 31091.71 14671.09 20974.85 14982.94 24752.85 20197.05 8267.97 20181.73 15493.41 129
iter_conf_final81.74 11280.93 11284.18 13592.66 7969.10 5392.94 10582.80 32679.01 6574.85 14988.40 18061.83 10494.61 17879.36 10876.52 19788.83 210
HPM-MVS_fast80.25 13779.55 13682.33 17991.55 10859.95 26391.32 17689.16 24165.23 27074.71 15193.07 10447.81 24895.74 13474.87 14488.23 10391.31 180
TR-MVS78.77 16677.37 17182.95 16490.49 12860.88 24493.67 8090.07 20970.08 22574.51 15291.37 14045.69 26495.70 14060.12 26680.32 16392.29 158
AUN-MVS78.37 17377.43 16681.17 20986.60 21657.45 29689.46 23191.16 16874.11 12974.40 15390.49 15255.52 17194.57 18274.73 14560.43 31791.48 173
HQP-NCC87.54 19994.06 5879.80 4674.18 154
ACMP_Plane87.54 19994.06 5879.80 4674.18 154
HQP4-MVS74.18 15495.61 14388.63 215
HQP-MVS81.14 12080.64 11782.64 17187.54 19963.66 19394.06 5891.70 14879.80 4674.18 15490.30 15651.63 21295.61 14377.63 12478.90 17388.63 215
PAPM_NR82.97 9281.84 10086.37 6894.10 4466.76 11487.66 26092.84 9969.96 22674.07 15893.57 9663.10 9497.50 5970.66 17790.58 8794.85 78
VPA-MVSNet79.03 15778.00 15782.11 19285.95 22764.48 16593.22 9694.66 3175.05 11874.04 15984.95 22552.17 20793.52 22474.90 14367.04 26188.32 224
CDS-MVSNet81.43 11680.74 11483.52 15186.26 22264.45 16692.09 13690.65 18875.83 10873.95 16089.81 16663.97 7992.91 23971.27 17082.82 14593.20 136
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
iter_conf0583.27 8682.70 8884.98 10893.32 5971.84 1594.16 5381.76 32882.74 1873.83 16188.40 18072.77 2794.61 17882.10 8875.21 20488.48 219
tpm78.58 17077.03 17483.22 16085.94 22964.56 16183.21 29591.14 17178.31 7373.67 16279.68 29664.01 7892.09 26966.07 22371.26 23693.03 141
BH-RMVSNet79.46 15277.65 16284.89 11091.68 10465.66 13893.55 8588.09 27672.93 15573.37 16391.12 14346.20 26196.12 11856.28 28085.61 12892.91 145
thres20079.66 14778.33 15183.66 15092.54 8265.82 13793.06 9996.31 374.90 12073.30 16488.66 17559.67 12595.61 14347.84 31378.67 17689.56 205
Anonymous2024052976.84 19874.15 21484.88 11191.02 11864.95 15893.84 7491.09 17353.57 33673.00 16587.42 19935.91 31597.32 6969.14 19272.41 22892.36 155
CPTT-MVS79.59 14879.16 14380.89 22191.54 10959.80 26592.10 13588.54 26660.42 30772.96 16693.28 10048.27 24192.80 24378.89 11686.50 12390.06 195
HyFIR lowres test81.03 12479.56 13485.43 9487.81 19568.11 7990.18 21290.01 21370.65 21872.95 16786.06 21663.61 8694.50 18875.01 14079.75 16793.67 123
EPP-MVSNet81.79 11181.52 10382.61 17288.77 16960.21 26093.02 10393.66 6768.52 24572.90 16890.39 15472.19 3194.96 16574.93 14179.29 17192.67 148
MDTV_nov1_ep13_2view59.90 26480.13 32167.65 25172.79 16954.33 18759.83 26792.58 151
FE-MVS75.97 21273.02 22884.82 11389.78 14165.56 14277.44 33591.07 17664.55 27272.66 17079.85 29446.05 26396.69 10254.97 28480.82 16192.21 164
TAMVS80.37 13479.45 13783.13 16285.14 23963.37 19791.23 17990.76 18374.81 12172.65 17188.49 17760.63 11492.95 23469.41 18881.95 15193.08 140
VPNet78.82 16377.53 16582.70 16984.52 24966.44 12193.93 6692.23 11980.46 4172.60 17288.38 18249.18 23493.13 23072.47 16063.97 28888.55 218
CLD-MVS82.73 9582.35 9583.86 14287.90 19367.65 9095.45 2792.18 12585.06 972.58 17392.27 12452.46 20595.78 13184.18 7479.06 17288.16 225
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP_MVS80.34 13579.75 13182.12 18986.94 21162.42 21693.13 9791.31 16278.81 6872.53 17489.14 17350.66 21995.55 14876.74 12778.53 17888.39 222
plane_prior361.95 22779.09 6172.53 174
EPMVS78.49 17275.98 18886.02 7591.21 11669.68 4380.23 31991.20 16675.25 11572.48 17678.11 30654.65 18093.69 22157.66 27783.04 14394.69 84
1112_ss80.56 13079.83 13082.77 16788.65 17060.78 24692.29 12888.36 26872.58 16172.46 17794.95 5465.09 6593.42 22766.38 21977.71 18294.10 106
PVSNet73.49 880.05 14178.63 14884.31 13290.92 12164.97 15792.47 12591.05 17879.18 5872.43 17890.51 15137.05 31194.06 20568.06 20086.00 12593.90 118
OMC-MVS78.67 16977.91 16080.95 21985.76 23157.40 29788.49 24888.67 26173.85 13672.43 17892.10 12649.29 23394.55 18572.73 15677.89 18190.91 186
MVS84.66 6082.86 8590.06 290.93 12074.56 687.91 25595.54 1068.55 24472.35 18094.71 6359.78 12498.90 1881.29 9894.69 3096.74 12
EI-MVSNet78.97 15978.22 15481.25 20785.33 23562.73 21489.53 22993.21 8372.39 16872.14 18190.13 16260.99 11094.72 17367.73 20572.49 22686.29 254
MVSTER82.47 9982.05 9683.74 14492.68 7869.01 5691.90 14793.21 8379.83 4572.14 18185.71 22074.72 1694.72 17375.72 13372.49 22687.50 230
OPM-MVS79.00 15878.09 15581.73 19783.52 26563.83 18391.64 16190.30 20076.36 10471.97 18389.93 16546.30 26095.17 16075.10 13877.70 18386.19 258
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Test_1112_low_res79.56 14978.60 14982.43 17588.24 18460.39 25792.09 13687.99 27872.10 17771.84 18487.42 19964.62 7293.04 23165.80 22677.30 19093.85 120
MDTV_nov1_ep1372.61 23589.06 16168.48 6780.33 31790.11 20871.84 18671.81 18575.92 32553.01 20093.92 21548.04 31073.38 217
tfpn200view978.79 16577.43 16682.88 16592.21 8864.49 16392.05 13996.28 473.48 14571.75 18688.26 18560.07 12195.32 15545.16 32477.58 18588.83 210
thres40078.68 16777.43 16682.43 17592.21 8864.49 16392.05 13996.28 473.48 14571.75 18688.26 18560.07 12195.32 15545.16 32477.58 18587.48 231
ACMMPcopyleft81.49 11580.67 11683.93 14191.71 10362.90 21092.13 13392.22 12271.79 18871.68 18893.49 9850.32 22196.96 9378.47 11984.22 14091.93 168
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
mvsany_test168.77 27868.56 26769.39 32973.57 34345.88 35480.93 31360.88 37159.65 31371.56 18990.26 15843.22 27575.05 36174.26 14762.70 29487.25 240
CHOSEN 280x42077.35 18976.95 17778.55 26387.07 20962.68 21569.71 35082.95 32468.80 24171.48 19087.27 20266.03 5784.00 33976.47 13082.81 14688.95 209
IS-MVSNet80.14 13979.41 13882.33 17987.91 19260.08 26291.97 14588.27 27272.90 15671.44 19191.73 13361.44 10793.66 22262.47 25386.53 12293.24 134
GeoE78.90 16177.43 16683.29 15888.95 16462.02 22492.31 12786.23 29570.24 22371.34 19289.27 17054.43 18594.04 20863.31 24580.81 16293.81 121
PatchmatchNetpermissive77.46 18774.63 20485.96 7789.55 14870.35 2979.97 32489.55 22772.23 17270.94 19376.91 31757.03 15092.79 24454.27 28781.17 15794.74 83
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thisisatest053081.15 11980.07 12484.39 12988.26 18265.63 14091.40 16794.62 3371.27 20570.93 19489.18 17172.47 2996.04 12465.62 22876.89 19491.49 172
SDMVSNet80.26 13678.88 14684.40 12889.25 15567.63 9185.35 27793.02 9276.77 9870.84 19587.12 20347.95 24696.09 11985.04 6674.55 20689.48 206
sd_testset77.08 19375.37 19682.20 18589.25 15562.11 22382.06 30289.09 24676.77 9870.84 19587.12 20341.43 28195.01 16367.23 21074.55 20689.48 206
AdaColmapbinary78.94 16077.00 17684.76 11696.34 1765.86 13592.66 11787.97 28062.18 29470.56 19792.37 12243.53 27397.35 6764.50 23782.86 14491.05 185
cascas78.18 17675.77 19185.41 9587.14 20869.11 5292.96 10491.15 17066.71 25870.47 19886.07 21537.49 30596.48 11070.15 18079.80 16690.65 188
thres600view778.00 17876.66 18082.03 19491.93 9663.69 19191.30 17796.33 172.43 16670.46 19987.89 19260.31 11694.92 16842.64 33676.64 19587.48 231
thres100view90078.37 17377.01 17582.46 17491.89 9963.21 20091.19 18396.33 172.28 17170.45 20087.89 19260.31 11695.32 15545.16 32477.58 18588.83 210
CVMVSNet74.04 23574.27 21273.33 31085.33 23543.94 35889.53 22988.39 26754.33 33570.37 20190.13 16249.17 23584.05 33761.83 25779.36 16991.99 167
GA-MVS78.33 17576.23 18584.65 12083.65 26366.30 12591.44 16390.14 20776.01 10670.32 20284.02 23742.50 27794.72 17370.98 17277.00 19392.94 144
mvs_anonymous81.36 11779.99 12785.46 9390.39 13168.40 6986.88 27190.61 18974.41 12370.31 20384.67 22963.79 8292.32 26473.13 15085.70 12695.67 45
IB-MVS77.80 482.18 10380.46 12287.35 3889.14 16070.28 3095.59 2595.17 1678.85 6670.19 20485.82 21870.66 3597.67 4872.19 16466.52 26594.09 107
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TAPA-MVS70.22 1274.94 22773.53 22379.17 25690.40 13052.07 32589.19 23789.61 22662.69 29170.07 20592.67 11448.89 23994.32 19138.26 35079.97 16491.12 184
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SCA75.82 21572.76 23285.01 10786.63 21570.08 3181.06 31289.19 23971.60 19770.01 20677.09 31545.53 26590.25 29360.43 26373.27 21894.68 85
XXY-MVS77.94 18176.44 18282.43 17582.60 27364.44 16792.01 14191.83 14173.59 14470.00 20785.82 21854.43 18594.76 17069.63 18568.02 25588.10 226
CR-MVSNet73.79 23970.82 25282.70 16983.15 26867.96 8270.25 34784.00 31573.67 14369.97 20872.41 33557.82 14389.48 30452.99 29373.13 21990.64 189
RPMNet70.42 26665.68 28384.63 12283.15 26867.96 8270.25 34790.45 19046.83 35569.97 20865.10 35456.48 16395.30 15835.79 35573.13 21990.64 189
UniMVSNet (Re)77.58 18676.78 17879.98 23884.11 25760.80 24591.76 15593.17 8776.56 10269.93 21084.78 22863.32 9192.36 26264.89 23562.51 29786.78 246
PCF-MVS73.15 979.29 15377.63 16384.29 13386.06 22565.96 13387.03 26791.10 17269.86 22869.79 21190.64 14757.54 14696.59 10464.37 23882.29 14790.32 192
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v2v48277.42 18875.65 19482.73 16880.38 29367.13 10491.85 15090.23 20475.09 11769.37 21283.39 24453.79 19294.44 18971.77 16665.00 27786.63 250
PatchT69.11 27565.37 28780.32 22782.07 28063.68 19267.96 35687.62 28250.86 34469.37 21265.18 35357.09 14988.53 31041.59 33966.60 26488.74 214
Vis-MVSNet (Re-imp)79.24 15479.57 13378.24 26888.46 17452.29 32490.41 20489.12 24474.24 12769.13 21491.91 12965.77 6090.09 30059.00 27288.09 10592.33 156
BH-w/o80.49 13279.30 14184.05 13990.83 12464.36 17393.60 8389.42 23174.35 12569.09 21590.15 16155.23 17495.61 14364.61 23686.43 12492.17 165
baseline283.68 8283.42 7384.48 12687.37 20466.00 13190.06 21595.93 779.71 4969.08 21690.39 15477.92 696.28 11378.91 11581.38 15691.16 183
v114476.73 20174.88 20182.27 18180.23 29766.60 11891.68 15990.21 20673.69 14169.06 21781.89 25952.73 20394.40 19069.21 19165.23 27485.80 269
dmvs_re76.93 19475.36 19781.61 20087.78 19660.71 25180.00 32387.99 27879.42 5269.02 21889.47 16946.77 25294.32 19163.38 24474.45 20989.81 199
Baseline_NR-MVSNet73.99 23672.83 23177.48 27580.78 28859.29 27491.79 15284.55 31068.85 24068.99 21980.70 28056.16 16492.04 27062.67 25160.98 31281.11 324
FIs79.47 15179.41 13879.67 24785.95 22759.40 27091.68 15993.94 5578.06 7668.96 22088.28 18366.61 5391.77 27566.20 22274.99 20587.82 227
UniMVSNet_NR-MVSNet78.15 17777.55 16479.98 23884.46 25160.26 25892.25 12993.20 8577.50 8868.88 22186.61 20766.10 5692.13 26766.38 21962.55 29587.54 229
DU-MVS76.86 19575.84 19079.91 24182.96 27160.26 25891.26 17891.54 15376.46 10368.88 22186.35 21056.16 16492.13 26766.38 21962.55 29587.35 236
miper_enhance_ethall78.86 16277.97 15881.54 20288.00 19165.17 15191.41 16589.15 24275.19 11668.79 22383.98 23867.17 4892.82 24172.73 15665.30 27186.62 251
XVG-OURS-SEG-HR74.70 22973.08 22779.57 25078.25 32257.33 29880.49 31587.32 28463.22 28468.76 22490.12 16444.89 26991.59 27970.55 17874.09 21389.79 200
XVG-OURS74.25 23372.46 23879.63 24878.45 32057.59 29480.33 31787.39 28363.86 27768.76 22489.62 16840.50 28491.72 27669.00 19374.25 21189.58 203
V4276.46 20374.55 20782.19 18679.14 31067.82 8590.26 21089.42 23173.75 13968.63 22681.89 25951.31 21594.09 20271.69 16864.84 27884.66 287
PS-MVSNAJss77.26 19076.31 18480.13 23480.64 29159.16 27590.63 20191.06 17772.80 15768.58 22784.57 23153.55 19493.96 21372.97 15171.96 23087.27 239
v119275.98 21173.92 21882.15 18779.73 30066.24 12791.22 18089.75 21972.67 15968.49 22881.42 26949.86 22794.27 19567.08 21165.02 27685.95 266
tpm cat175.30 22272.21 24084.58 12388.52 17167.77 8678.16 33388.02 27761.88 29968.45 22976.37 32160.65 11394.03 21053.77 29074.11 21291.93 168
v14419276.05 20974.03 21682.12 18979.50 30466.55 12091.39 16989.71 22572.30 17068.17 23081.33 27151.75 21094.03 21067.94 20264.19 28485.77 270
v192192075.63 21973.49 22482.06 19379.38 30566.35 12391.07 18789.48 22871.98 17867.99 23181.22 27449.16 23693.90 21666.56 21564.56 28385.92 268
Effi-MVS+-dtu76.14 20575.28 19978.72 26283.22 26755.17 31289.87 22187.78 28175.42 11267.98 23281.43 26845.08 26892.52 25675.08 13971.63 23188.48 219
mvsmamba76.85 19775.71 19380.25 23183.07 27059.16 27591.44 16380.64 33376.84 9567.95 23386.33 21246.17 26294.24 19876.06 13272.92 22287.36 235
114514_t79.17 15577.67 16183.68 14895.32 2965.53 14492.85 10891.60 15263.49 28067.92 23490.63 14946.65 25495.72 13967.01 21283.54 14189.79 200
test_fmvs265.78 30064.84 28868.60 33266.54 36141.71 36083.27 29269.81 35954.38 33467.91 23584.54 23215.35 36381.22 35675.65 13466.16 26782.88 306
tttt051779.50 15078.53 15082.41 17887.22 20661.43 23689.75 22594.76 2669.29 23467.91 23588.06 19072.92 2595.63 14162.91 24973.90 21690.16 194
3Dnovator73.91 682.69 9880.82 11388.31 2289.57 14671.26 1892.60 11994.39 4478.84 6767.89 23792.48 11948.42 24098.52 2768.80 19694.40 3395.15 70
WR-MVS76.76 20075.74 19279.82 24484.60 24762.27 22192.60 11992.51 11376.06 10567.87 23885.34 22156.76 15690.24 29662.20 25463.69 29086.94 244
dp75.01 22672.09 24183.76 14389.28 15466.22 12879.96 32589.75 21971.16 20667.80 23977.19 31451.81 20992.54 25550.39 29871.44 23592.51 153
TranMVSNet+NR-MVSNet75.86 21474.52 20879.89 24282.44 27560.64 25491.37 17291.37 16076.63 10067.65 24086.21 21452.37 20691.55 28061.84 25660.81 31387.48 231
cl2277.94 18176.78 17881.42 20487.57 19864.93 15990.67 19788.86 25572.45 16567.63 24182.68 25164.07 7792.91 23971.79 16565.30 27186.44 252
131480.70 12878.95 14585.94 7887.77 19767.56 9287.91 25592.55 11272.17 17567.44 24293.09 10250.27 22397.04 8571.68 16987.64 10993.23 135
3Dnovator+73.60 782.10 10780.60 11986.60 5890.89 12266.80 11395.20 3393.44 7774.05 13067.42 24392.49 11849.46 23097.65 5170.80 17491.68 7195.33 58
v124075.21 22472.98 22981.88 19579.20 30766.00 13190.75 19689.11 24571.63 19667.41 24481.22 27447.36 25093.87 21765.46 23164.72 28185.77 270
QAPM79.95 14477.39 17087.64 2989.63 14571.41 1793.30 9393.70 6565.34 26967.39 24591.75 13247.83 24798.96 1657.71 27689.81 9292.54 152
miper_ehance_all_eth77.60 18576.44 18281.09 21685.70 23264.41 17090.65 19888.64 26372.31 16967.37 24682.52 25264.77 7192.64 25370.67 17665.30 27186.24 256
v14876.19 20474.47 20981.36 20580.05 29864.44 16791.75 15790.23 20473.68 14267.13 24780.84 27955.92 16993.86 21968.95 19461.73 30685.76 272
tt080573.07 24370.73 25380.07 23578.37 32157.05 30087.78 25792.18 12561.23 30367.04 24886.49 20931.35 33294.58 18065.06 23467.12 26088.57 217
GBi-Net75.65 21773.83 21981.10 21388.85 16565.11 15390.01 21790.32 19670.84 21367.04 24880.25 28948.03 24291.54 28159.80 26869.34 24486.64 247
test175.65 21773.83 21981.10 21388.85 16565.11 15390.01 21790.32 19670.84 21367.04 24880.25 28948.03 24291.54 28159.80 26869.34 24486.64 247
FMVSNet377.73 18476.04 18782.80 16691.20 11768.99 5791.87 14891.99 13073.35 14767.04 24883.19 24656.62 16092.14 26659.80 26869.34 24487.28 238
BH-untuned78.68 16777.08 17383.48 15589.84 14063.74 18692.70 11388.59 26471.57 19866.83 25288.65 17651.75 21095.39 15359.03 27184.77 13291.32 179
FC-MVSNet-test77.99 17978.08 15677.70 27184.89 24455.51 31090.27 20993.75 6476.87 9366.80 25387.59 19665.71 6190.23 29762.89 25073.94 21487.37 234
c3_l76.83 19975.47 19580.93 22085.02 24264.18 17890.39 20588.11 27571.66 19166.65 25481.64 26463.58 8892.56 25469.31 19062.86 29286.04 263
FMVSNet276.07 20674.01 21782.26 18388.85 16567.66 8991.33 17591.61 15170.84 21365.98 25582.25 25548.03 24292.00 27158.46 27368.73 25087.10 241
eth_miper_zixun_eth75.96 21374.40 21080.66 22284.66 24663.02 20489.28 23488.27 27271.88 18365.73 25681.65 26359.45 12792.81 24268.13 19960.53 31586.14 259
ACMM69.62 1374.34 23172.73 23379.17 25684.25 25657.87 28890.36 20689.93 21463.17 28665.64 25786.04 21737.79 30394.10 20165.89 22471.52 23385.55 275
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cl____76.07 20674.67 20280.28 22985.15 23861.76 23090.12 21388.73 25971.16 20665.43 25881.57 26661.15 10892.95 23466.54 21662.17 29986.13 261
DIV-MVS_self_test76.07 20674.67 20280.28 22985.14 23961.75 23190.12 21388.73 25971.16 20665.42 25981.60 26561.15 10892.94 23866.54 21662.16 30186.14 259
Fast-Effi-MVS+-dtu75.04 22573.37 22580.07 23580.86 28759.52 26991.20 18285.38 30271.90 18165.20 26084.84 22741.46 28092.97 23366.50 21872.96 22187.73 228
IterMVS-LS76.49 20275.18 20080.43 22684.49 25062.74 21390.64 19988.80 25672.40 16765.16 26181.72 26260.98 11192.27 26567.74 20464.65 28286.29 254
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LPG-MVS_test75.82 21574.58 20679.56 25184.31 25459.37 27190.44 20289.73 22269.49 23164.86 26288.42 17838.65 29194.30 19372.56 15872.76 22385.01 284
LGP-MVS_train79.56 25184.31 25459.37 27189.73 22269.49 23164.86 26288.42 17838.65 29194.30 19372.56 15872.76 22385.01 284
UniMVSNet_ETH3D72.74 25070.53 25579.36 25378.62 31956.64 30385.01 27989.20 23863.77 27864.84 26484.44 23334.05 32091.86 27363.94 24070.89 23889.57 204
MIMVSNet71.64 25768.44 26981.23 20881.97 28164.44 16773.05 34388.80 25669.67 23064.59 26574.79 32932.79 32487.82 31753.99 28876.35 19891.42 174
RRT_MVS74.44 23072.97 23078.84 26182.36 27657.66 29289.83 22388.79 25870.61 21964.58 26684.89 22639.24 28792.65 25270.11 18166.34 26686.21 257
OpenMVScopyleft70.45 1178.54 17175.92 18986.41 6785.93 23071.68 1692.74 11092.51 11366.49 26064.56 26791.96 12843.88 27298.10 3654.61 28590.65 8689.44 208
ADS-MVSNet266.90 29363.44 30077.26 28088.06 18860.70 25268.01 35475.56 34457.57 32064.48 26869.87 34538.68 28984.10 33640.87 34167.89 25686.97 242
ADS-MVSNet68.54 28164.38 29681.03 21788.06 18866.90 11068.01 35484.02 31457.57 32064.48 26869.87 34538.68 28989.21 30640.87 34167.89 25686.97 242
Anonymous2023121173.08 24270.39 25681.13 21190.62 12663.33 19891.40 16790.06 21151.84 34164.46 27080.67 28236.49 31394.07 20463.83 24164.17 28585.98 265
PLCcopyleft68.80 1475.23 22373.68 22279.86 24392.93 7058.68 28190.64 19988.30 27060.90 30464.43 27190.53 15042.38 27894.57 18256.52 27876.54 19686.33 253
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpmvs72.88 24869.76 26282.22 18490.98 11967.05 10678.22 33288.30 27063.10 28764.35 27274.98 32855.09 17794.27 19543.25 33069.57 24385.34 280
test_djsdf73.76 24072.56 23677.39 27777.00 33253.93 31889.07 23990.69 18465.80 26463.92 27382.03 25843.14 27692.67 24972.83 15368.53 25185.57 274
JIA-IIPM66.06 29762.45 30676.88 28681.42 28554.45 31757.49 36988.67 26149.36 34863.86 27446.86 36756.06 16790.25 29349.53 30368.83 24885.95 266
CNLPA74.31 23272.30 23980.32 22791.49 11061.66 23290.85 19280.72 33256.67 32863.85 27590.64 14746.75 25390.84 28853.79 28975.99 20188.47 221
PatchMatch-RL72.06 25569.98 25778.28 26689.51 14955.70 30983.49 28883.39 32261.24 30263.72 27682.76 24934.77 31893.03 23253.37 29277.59 18486.12 262
FMVSNet172.71 25169.91 26081.10 21383.60 26465.11 15390.01 21790.32 19663.92 27663.56 27780.25 28936.35 31491.54 28154.46 28666.75 26386.64 247
pmmvs473.92 23771.81 24580.25 23179.17 30865.24 14987.43 26387.26 28667.64 25263.46 27883.91 23948.96 23891.53 28462.94 24865.49 27083.96 291
pmmvs573.35 24171.52 24778.86 26078.64 31860.61 25591.08 18586.90 28767.69 24963.32 27983.64 24044.33 27190.53 29062.04 25566.02 26885.46 277
v875.35 22173.26 22681.61 20080.67 29066.82 11189.54 22889.27 23571.65 19263.30 28080.30 28854.99 17894.06 20567.33 20962.33 29883.94 292
v1074.77 22872.54 23781.46 20380.33 29566.71 11589.15 23889.08 24770.94 21163.08 28179.86 29352.52 20494.04 20865.70 22762.17 29983.64 294
ACMP71.68 1075.58 22074.23 21379.62 24984.97 24359.64 26690.80 19489.07 24870.39 22162.95 28287.30 20138.28 29593.87 21772.89 15271.45 23485.36 279
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pm-mvs172.89 24771.09 25078.26 26779.10 31157.62 29390.80 19489.30 23467.66 25062.91 28381.78 26149.11 23792.95 23460.29 26558.89 32384.22 290
jajsoiax73.05 24471.51 24877.67 27277.46 32954.83 31488.81 24390.04 21269.13 23862.85 28483.51 24231.16 33392.75 24570.83 17369.80 24085.43 278
mvs_tets72.71 25171.11 24977.52 27377.41 33054.52 31688.45 24989.76 21868.76 24362.70 28583.26 24529.49 33792.71 24670.51 17969.62 24285.34 280
MS-PatchMatch77.90 18376.50 18182.12 18985.99 22669.95 3591.75 15792.70 10373.97 13362.58 28684.44 23341.11 28295.78 13163.76 24292.17 6380.62 330
test0.0.03 172.76 24972.71 23472.88 31480.25 29647.99 34391.22 18089.45 22971.51 20162.51 28787.66 19553.83 19085.06 33450.16 30067.84 25885.58 273
anonymousdsp71.14 26269.37 26476.45 28872.95 34554.71 31584.19 28388.88 25361.92 29862.15 28879.77 29538.14 29891.44 28668.90 19567.45 25983.21 303
MVP-Stereo77.12 19276.23 18579.79 24581.72 28266.34 12489.29 23390.88 18170.56 22062.01 28982.88 24849.34 23194.13 20065.55 23093.80 4078.88 343
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CL-MVSNet_self_test69.92 26968.09 27275.41 29473.25 34455.90 30890.05 21689.90 21569.96 22661.96 29076.54 31851.05 21787.64 32049.51 30450.59 34582.70 312
bld_raw_dy_0_6471.59 25969.71 26377.22 28177.82 32858.12 28687.71 25973.66 34968.01 24761.90 29184.29 23533.68 32188.43 31169.91 18370.43 23985.11 283
miper_lstm_enhance73.05 24471.73 24677.03 28283.80 26058.32 28481.76 30388.88 25369.80 22961.01 29278.23 30557.19 14887.51 32365.34 23259.53 32085.27 282
NR-MVSNet76.05 20974.59 20580.44 22582.96 27162.18 22290.83 19391.73 14477.12 9260.96 29386.35 21059.28 13191.80 27460.74 26161.34 31087.35 236
tfpnnormal70.10 26767.36 27478.32 26583.45 26660.97 24388.85 24292.77 10164.85 27160.83 29478.53 30243.52 27493.48 22531.73 36661.70 30780.52 331
IterMVS72.65 25470.83 25178.09 26982.17 27862.96 20687.64 26186.28 29371.56 19960.44 29578.85 30145.42 26786.66 32763.30 24661.83 30384.65 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WR-MVS_H70.59 26469.94 25972.53 31681.03 28651.43 32887.35 26492.03 12967.38 25360.23 29680.70 28055.84 17083.45 34346.33 32058.58 32582.72 310
TransMVSNet (Re)70.07 26867.66 27377.31 27980.62 29259.13 27791.78 15484.94 30765.97 26360.08 29780.44 28550.78 21891.87 27248.84 30645.46 35380.94 326
CP-MVSNet70.50 26569.91 26072.26 31980.71 28951.00 33187.23 26690.30 20067.84 24859.64 29882.69 25050.23 22482.30 35151.28 29559.28 32183.46 299
IterMVS-SCA-FT71.55 26069.97 25876.32 28981.48 28360.67 25387.64 26185.99 29866.17 26259.50 29978.88 30045.53 26583.65 34162.58 25261.93 30284.63 289
Patchmtry67.53 29063.93 29778.34 26482.12 27964.38 17168.72 35184.00 31548.23 35259.24 30072.41 33557.82 14389.27 30546.10 32156.68 33081.36 323
D2MVS73.80 23872.02 24279.15 25879.15 30962.97 20588.58 24790.07 20972.94 15459.22 30178.30 30342.31 27992.70 24865.59 22972.00 22981.79 321
PS-CasMVS69.86 27169.13 26572.07 32280.35 29450.57 33387.02 26889.75 21967.27 25459.19 30282.28 25446.58 25582.24 35250.69 29759.02 32283.39 301
PEN-MVS69.46 27368.56 26772.17 32179.27 30649.71 33786.90 27089.24 23667.24 25759.08 30382.51 25347.23 25183.54 34248.42 30857.12 32683.25 302
RPSCF64.24 30761.98 30971.01 32676.10 33645.00 35575.83 34075.94 34146.94 35458.96 30484.59 23031.40 33182.00 35347.76 31460.33 31986.04 263
XVG-ACMP-BASELINE68.04 28565.53 28575.56 29374.06 34252.37 32378.43 32985.88 29962.03 29658.91 30581.21 27620.38 35791.15 28760.69 26268.18 25383.16 304
v7n71.31 26168.65 26679.28 25476.40 33460.77 24786.71 27289.45 22964.17 27558.77 30678.24 30444.59 27093.54 22357.76 27561.75 30583.52 297
ET-MVSNet_ETH3D84.01 7383.15 8086.58 6090.78 12570.89 2394.74 4694.62 3381.44 3258.19 30793.64 9473.64 2392.35 26382.66 8478.66 17796.50 23
DTE-MVSNet68.46 28267.33 27571.87 32477.94 32649.00 34086.16 27588.58 26566.36 26158.19 30782.21 25646.36 25683.87 34044.97 32755.17 33382.73 309
Anonymous2023120667.53 29065.78 28172.79 31574.95 33847.59 34588.23 25187.32 28461.75 30158.07 30977.29 31237.79 30387.29 32542.91 33263.71 28983.48 298
KD-MVS_2432*160069.03 27666.37 27977.01 28385.56 23361.06 24181.44 30890.25 20267.27 25458.00 31076.53 31954.49 18287.63 32148.04 31035.77 36782.34 316
miper_refine_blended69.03 27666.37 27977.01 28385.56 23361.06 24181.44 30890.25 20267.27 25458.00 31076.53 31954.49 18287.63 32148.04 31035.77 36782.34 316
PVSNet_068.08 1571.81 25668.32 27182.27 18184.68 24562.31 22088.68 24590.31 19975.84 10757.93 31280.65 28337.85 30294.19 19969.94 18229.05 37590.31 193
DP-MVS69.90 27066.48 27680.14 23395.36 2862.93 20789.56 22676.11 34050.27 34657.69 31385.23 22239.68 28695.73 13533.35 36071.05 23781.78 322
pmmvs667.57 28964.76 29076.00 29272.82 34753.37 32088.71 24486.78 29153.19 33757.58 31478.03 30735.33 31792.41 25955.56 28254.88 33582.21 318
F-COLMAP70.66 26368.44 26977.32 27886.37 22155.91 30788.00 25386.32 29256.94 32657.28 31588.07 18933.58 32292.49 25751.02 29668.37 25283.55 295
Patchmatch-RL test68.17 28464.49 29479.19 25571.22 34953.93 31870.07 34971.54 35769.22 23556.79 31662.89 35756.58 16188.61 30769.53 18752.61 34095.03 75
LS3D69.17 27466.40 27877.50 27491.92 9756.12 30685.12 27880.37 33446.96 35356.50 31787.51 19837.25 30693.71 22032.52 36579.40 16882.68 313
dmvs_testset65.55 30166.45 27762.86 34279.87 29922.35 38476.55 33771.74 35577.42 9155.85 31887.77 19451.39 21480.69 35731.51 36865.92 26985.55 275
ppachtmachnet_test67.72 28763.70 29879.77 24678.92 31266.04 13088.68 24582.90 32560.11 31155.45 31975.96 32439.19 28890.55 28939.53 34552.55 34182.71 311
test_fmvs356.82 32554.86 32862.69 34353.59 37235.47 37075.87 33965.64 36643.91 36055.10 32071.43 3436.91 37774.40 36468.64 19752.63 33978.20 348
LTVRE_ROB59.60 1966.27 29663.54 29974.45 30284.00 25951.55 32767.08 35783.53 31958.78 31754.94 32180.31 28734.54 31993.23 22940.64 34368.03 25478.58 346
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MSDG69.54 27265.73 28280.96 21885.11 24163.71 18984.19 28383.28 32356.95 32554.50 32284.03 23631.50 33096.03 12542.87 33469.13 24783.14 305
EU-MVSNet64.01 30863.01 30267.02 33874.40 34138.86 36883.27 29286.19 29645.11 35754.27 32381.15 27736.91 31280.01 35948.79 30757.02 32782.19 319
testgi64.48 30662.87 30469.31 33071.24 34840.62 36385.49 27679.92 33565.36 26854.18 32483.49 24323.74 35084.55 33541.60 33860.79 31482.77 308
ITE_SJBPF70.43 32774.44 34047.06 35077.32 33860.16 31054.04 32583.53 24123.30 35184.01 33843.07 33161.58 30980.21 336
OpenMVS_ROBcopyleft61.12 1866.39 29562.92 30376.80 28776.51 33357.77 28989.22 23583.41 32155.48 33253.86 32677.84 30826.28 34693.95 21434.90 35768.76 24978.68 345
FMVSNet568.04 28565.66 28475.18 29784.43 25257.89 28783.54 28786.26 29461.83 30053.64 32773.30 33237.15 30985.08 33348.99 30561.77 30482.56 315
ACMH+65.35 1667.65 28864.55 29276.96 28584.59 24857.10 29988.08 25280.79 33158.59 31953.00 32881.09 27826.63 34592.95 23446.51 31861.69 30880.82 327
our_test_368.29 28364.69 29179.11 25978.92 31264.85 16088.40 25085.06 30560.32 30952.68 32976.12 32340.81 28389.80 30344.25 32955.65 33182.67 314
test_040264.54 30561.09 31174.92 29984.10 25860.75 24987.95 25479.71 33652.03 33952.41 33077.20 31332.21 32891.64 27723.14 37061.03 31172.36 359
LCM-MVSNet-Re72.93 24671.84 24476.18 29188.49 17248.02 34280.07 32270.17 35873.96 13452.25 33180.09 29249.98 22588.24 31367.35 20784.23 13992.28 159
test20.0363.83 30962.65 30567.38 33770.58 35439.94 36486.57 27384.17 31263.29 28351.86 33277.30 31137.09 31082.47 34938.87 34954.13 33779.73 337
OurMVSNet-221017-064.68 30462.17 30872.21 32076.08 33747.35 34680.67 31481.02 33056.19 32951.60 33379.66 29727.05 34488.56 30953.60 29153.63 33880.71 329
ACMH63.93 1768.62 27964.81 28980.03 23785.22 23763.25 19987.72 25884.66 30960.83 30551.57 33479.43 29927.29 34394.96 16541.76 33764.84 27881.88 320
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DSMNet-mixed56.78 32654.44 32963.79 34163.21 36529.44 37964.43 36064.10 36742.12 36351.32 33571.60 34031.76 32975.04 36236.23 35265.20 27586.87 245
pmmvs-eth3d65.53 30262.32 30775.19 29669.39 35759.59 26782.80 29983.43 32062.52 29251.30 33672.49 33332.86 32387.16 32655.32 28350.73 34478.83 344
PM-MVS59.40 32256.59 32467.84 33363.63 36441.86 35976.76 33663.22 36859.01 31651.07 33772.27 33811.72 36983.25 34561.34 25850.28 34678.39 347
Patchmatch-test65.86 29860.94 31280.62 22483.75 26158.83 27958.91 36875.26 34644.50 35950.95 33877.09 31558.81 13587.90 31535.13 35664.03 28695.12 71
SixPastTwentyTwo64.92 30361.78 31074.34 30478.74 31649.76 33683.42 29179.51 33762.86 28850.27 33977.35 31030.92 33590.49 29145.89 32247.06 35082.78 307
EG-PatchMatch MVS68.55 28065.41 28677.96 27078.69 31762.93 20789.86 22289.17 24060.55 30650.27 33977.73 30922.60 35294.06 20547.18 31672.65 22576.88 351
ambc69.61 32861.38 36841.35 36149.07 37485.86 30050.18 34166.40 35110.16 37188.14 31445.73 32344.20 35479.32 341
test_vis1_rt59.09 32457.31 32364.43 34068.44 35946.02 35383.05 29748.63 37851.96 34049.57 34263.86 35616.30 36180.20 35871.21 17162.79 29367.07 365
KD-MVS_self_test60.87 31858.60 31867.68 33566.13 36239.93 36575.63 34184.70 30857.32 32349.57 34268.45 34829.55 33682.87 34748.09 30947.94 34980.25 335
UnsupCasMVSNet_eth65.79 29963.10 30173.88 30670.71 35250.29 33581.09 31189.88 21672.58 16149.25 34474.77 33032.57 32687.43 32455.96 28141.04 36083.90 293
COLMAP_ROBcopyleft57.96 2062.98 31359.65 31572.98 31381.44 28453.00 32283.75 28675.53 34548.34 35148.81 34581.40 27024.14 34890.30 29232.95 36260.52 31675.65 354
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
USDC67.43 29264.51 29376.19 29077.94 32655.29 31178.38 33085.00 30673.17 14948.36 34680.37 28621.23 35492.48 25852.15 29464.02 28780.81 328
Anonymous2024052162.09 31459.08 31771.10 32567.19 36048.72 34183.91 28585.23 30450.38 34547.84 34771.22 34420.74 35585.51 33246.47 31958.75 32479.06 342
K. test v363.09 31259.61 31673.53 30976.26 33549.38 33983.27 29277.15 33964.35 27447.77 34872.32 33728.73 33987.79 31849.93 30236.69 36683.41 300
UnsupCasMVSNet_bld61.60 31657.71 32073.29 31168.73 35851.64 32678.61 32889.05 24957.20 32446.11 34961.96 36028.70 34088.60 30850.08 30138.90 36479.63 338
AllTest61.66 31558.06 31972.46 31779.57 30151.42 32980.17 32068.61 36151.25 34245.88 35081.23 27219.86 35986.58 32838.98 34757.01 32879.39 339
TestCases72.46 31779.57 30151.42 32968.61 36151.25 34245.88 35081.23 27219.86 35986.58 32838.98 34757.01 32879.39 339
lessismore_v073.72 30872.93 34647.83 34461.72 37045.86 35273.76 33128.63 34189.81 30147.75 31531.37 37283.53 296
N_pmnet50.55 33049.11 33354.88 35077.17 3314.02 39084.36 2822.00 38948.59 34945.86 35268.82 34732.22 32782.80 34831.58 36751.38 34377.81 349
mvsany_test348.86 33246.35 33556.41 34646.00 37831.67 37562.26 36247.25 37943.71 36145.54 35468.15 34910.84 37064.44 37657.95 27435.44 36973.13 356
MVS-HIRNet60.25 32055.55 32774.35 30384.37 25356.57 30471.64 34574.11 34834.44 36645.54 35442.24 37331.11 33489.81 30140.36 34476.10 20076.67 352
CMPMVSbinary48.56 2166.77 29464.41 29573.84 30770.65 35350.31 33477.79 33485.73 30145.54 35644.76 35682.14 25735.40 31690.14 29963.18 24774.54 20881.07 325
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet160.16 32157.33 32268.67 33169.71 35544.13 35778.92 32784.21 31155.05 33344.63 35771.85 33923.91 34981.54 35532.63 36455.03 33480.35 332
LF4IMVS54.01 32952.12 33059.69 34462.41 36739.91 36668.59 35268.28 36342.96 36244.55 35875.18 32714.09 36868.39 36841.36 34051.68 34270.78 360
pmmvs355.51 32751.50 33267.53 33657.90 37050.93 33280.37 31673.66 34940.63 36444.15 35964.75 35516.30 36178.97 36044.77 32840.98 36272.69 357
new-patchmatchnet59.30 32356.48 32567.79 33465.86 36344.19 35682.47 30081.77 32759.94 31243.65 36066.20 35227.67 34281.68 35439.34 34641.40 35977.50 350
TDRefinement55.28 32851.58 33166.39 33959.53 36946.15 35276.23 33872.80 35144.60 35842.49 36176.28 32215.29 36482.39 35033.20 36143.75 35570.62 361
test_f46.58 33343.45 33655.96 34745.18 37932.05 37461.18 36349.49 37733.39 36742.05 36262.48 3597.00 37665.56 37247.08 31743.21 35770.27 362
TinyColmap60.32 31956.42 32672.00 32378.78 31553.18 32178.36 33175.64 34352.30 33841.59 36375.82 32614.76 36688.35 31235.84 35354.71 33674.46 355
YYNet163.76 31160.14 31474.62 30178.06 32560.19 26183.46 29083.99 31756.18 33039.25 36471.56 34237.18 30883.34 34442.90 33348.70 34880.32 333
MDA-MVSNet_test_wron63.78 31060.16 31374.64 30078.15 32460.41 25683.49 28884.03 31356.17 33139.17 36571.59 34137.22 30783.24 34642.87 33448.73 34780.26 334
new_pmnet49.31 33146.44 33457.93 34562.84 36640.74 36268.47 35362.96 36936.48 36535.09 36657.81 36214.97 36572.18 36532.86 36346.44 35160.88 367
MDA-MVSNet-bldmvs61.54 31757.70 32173.05 31279.53 30357.00 30283.08 29681.23 32957.57 32034.91 36772.45 33432.79 32486.26 33035.81 35441.95 35875.89 353
test_vis3_rt40.46 33837.79 33948.47 35644.49 38033.35 37366.56 35832.84 38632.39 36829.65 36839.13 3763.91 38468.65 36750.17 29940.99 36143.40 371
test_method38.59 34035.16 34348.89 35554.33 37121.35 38545.32 37553.71 3737.41 38128.74 36951.62 3658.70 37452.87 37933.73 35832.89 37172.47 358
FPMVS45.64 33443.10 33753.23 35251.42 37536.46 36964.97 35971.91 35429.13 37027.53 37061.55 3619.83 37265.01 37416.00 37755.58 33258.22 368
APD_test140.50 33737.31 34050.09 35451.88 37335.27 37159.45 36752.59 37421.64 37326.12 37157.80 3634.56 38166.56 37022.64 37139.09 36348.43 369
LCM-MVSNet40.54 33635.79 34154.76 35136.92 38530.81 37651.41 37269.02 36022.07 37224.63 37245.37 3694.56 38165.81 37133.67 35934.50 37067.67 363
PMMVS237.93 34133.61 34450.92 35346.31 37724.76 38260.55 36650.05 37528.94 37120.93 37347.59 3664.41 38365.13 37325.14 36918.55 37762.87 366
tmp_tt22.26 34923.75 35117.80 3655.23 38912.06 38935.26 37639.48 3832.82 38318.94 37444.20 37222.23 35324.64 38436.30 3519.31 38116.69 378
ANet_high40.27 33935.20 34255.47 34834.74 38634.47 37263.84 36171.56 35648.42 35018.80 37541.08 3749.52 37364.45 37520.18 3728.66 38267.49 364
testf132.77 34329.47 34642.67 35941.89 38230.81 37652.07 37043.45 38015.45 37618.52 37644.82 3702.12 38558.38 37716.05 37530.87 37338.83 372
APD_test232.77 34329.47 34642.67 35941.89 38230.81 37652.07 37043.45 38015.45 37618.52 37644.82 3702.12 38558.38 37716.05 37530.87 37338.83 372
DeepMVS_CXcopyleft34.71 36251.45 37424.73 38328.48 38831.46 36917.49 37852.75 3645.80 37942.60 38318.18 37319.42 37636.81 375
Gipumacopyleft34.91 34231.44 34545.30 35770.99 35139.64 36719.85 37972.56 35220.10 37516.16 37921.47 3805.08 38071.16 36613.07 37843.70 35625.08 377
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft26.43 2231.84 34528.16 34842.89 35825.87 38827.58 38050.92 37349.78 37621.37 37414.17 38040.81 3752.01 38766.62 3699.61 38038.88 36534.49 376
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive24.84 2324.35 34719.77 35338.09 36134.56 38726.92 38126.57 37738.87 38411.73 38011.37 38127.44 3771.37 38850.42 38011.41 37914.60 37836.93 374
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN24.61 34624.00 35026.45 36343.74 38118.44 38760.86 36439.66 38215.11 3789.53 38222.10 3796.52 37846.94 3818.31 38110.14 37913.98 379
EMVS23.76 34823.20 35225.46 36441.52 38416.90 38860.56 36538.79 38514.62 3798.99 38320.24 3827.35 37545.82 3827.25 3829.46 38013.64 380
wuyk23d11.30 35110.95 35412.33 36648.05 37619.89 38625.89 3781.92 3903.58 3823.12 3841.37 3840.64 38915.77 3856.23 3837.77 3831.35 381
EGC-MVSNET42.35 33538.09 33855.11 34974.57 33946.62 35171.63 34655.77 3720.04 3840.24 38562.70 35814.24 36774.91 36317.59 37446.06 35243.80 370
testmvs7.23 3539.62 3560.06 3680.04 3900.02 39284.98 2800.02 3910.03 3850.18 3861.21 3850.01 3910.02 3860.14 3840.01 3840.13 383
test1236.92 3549.21 3570.08 3670.03 3910.05 39181.65 3060.01 3920.02 3860.14 3870.85 3860.03 3900.02 3860.12 3850.00 3850.16 382
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3850.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3850.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3850.00 384
cdsmvs_eth3d_5k19.86 35026.47 3490.00 3690.00 3920.00 3930.00 38093.45 760.00 3870.00 38895.27 4649.56 2290.00 3880.00 3860.00 3850.00 384
pcd_1.5k_mvsjas4.46 3555.95 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38753.55 1940.00 3880.00 3860.00 3850.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3850.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3850.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3850.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3850.00 384
ab-mvs-re7.91 35210.55 3550.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38894.95 540.00 3920.00 3880.00 3860.00 3850.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3850.00 384
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2099.07 1392.01 1494.77 2496.51 20
No_MVS89.60 897.31 473.22 1095.05 2099.07 1392.01 1494.77 2496.51 20
eth-test20.00 392
eth-test0.00 392
OPU-MVS89.97 397.52 373.15 1296.89 497.00 983.82 299.15 295.72 297.63 397.62 2
save fliter93.84 4867.89 8495.05 3892.66 10678.19 74
test_0728_SECOND88.70 1596.45 1270.43 2896.64 894.37 4599.15 291.91 1794.90 2096.51 20
GSMVS94.68 85
sam_mvs157.85 14294.68 85
sam_mvs54.91 179
MTGPAbinary92.23 119
test_post178.95 32620.70 38153.05 19991.50 28560.43 263
test_post23.01 37856.49 16292.67 249
patchmatchnet-post67.62 35057.62 14590.25 293
MTMP93.77 7632.52 387
gm-plane-assit88.42 17667.04 10778.62 7191.83 13097.37 6576.57 129
test9_res89.41 2994.96 1795.29 62
agg_prior286.41 5694.75 2895.33 58
test_prior467.18 10393.92 67
test_prior86.42 6694.71 3567.35 9893.10 9196.84 9995.05 73
新几何291.41 165
旧先验191.94 9560.74 25091.50 15694.36 7265.23 6491.84 6894.55 89
无先验92.71 11292.61 11062.03 29697.01 8666.63 21493.97 113
原ACMM292.01 141
testdata296.09 11961.26 259
segment_acmp65.94 58
testdata189.21 23677.55 87
plane_prior786.94 21161.51 234
plane_prior687.23 20562.32 21950.66 219
plane_prior591.31 16295.55 14876.74 12778.53 17888.39 222
plane_prior489.14 173
plane_prior293.13 9778.81 68
plane_prior187.15 207
plane_prior62.42 21693.85 7179.38 5378.80 175
n20.00 393
nn0.00 393
door-mid66.01 365
test1193.01 93
door66.57 364
HQP5-MVS63.66 193
BP-MVS77.63 124
HQP3-MVS91.70 14878.90 173
HQP2-MVS51.63 212
NP-MVS87.41 20263.04 20390.30 156
ACMMP++_ref71.63 231
ACMMP++69.72 241
Test By Simon54.21 188