This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
IU-MVS96.46 1169.91 4095.18 2080.75 4795.28 192.34 2195.36 1396.47 25
PC_three_145280.91 4694.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
MSP-MVS90.38 591.87 185.88 8492.83 7564.03 18893.06 11094.33 5482.19 2893.65 396.15 3585.89 197.19 8291.02 3397.75 196.43 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
fmvsm_l_conf0.5_n87.49 2788.19 2285.39 10286.95 22264.37 17894.30 5488.45 28480.51 4992.70 496.86 1569.98 4197.15 8695.83 388.08 10894.65 95
fmvsm_l_conf0.5_n_a87.44 2988.15 2385.30 10687.10 21964.19 18594.41 5288.14 29380.24 5692.54 596.97 1069.52 4397.17 8395.89 288.51 10494.56 98
SED-MVS89.94 990.36 1088.70 1696.45 1269.38 5196.89 594.44 4671.65 21192.11 697.21 476.79 999.11 692.34 2195.36 1397.62 2
test_241102_ONE96.45 1269.38 5194.44 4671.65 21192.11 697.05 776.79 999.11 6
DVP-MVS++90.53 491.09 588.87 1497.31 469.91 4093.96 7094.37 5272.48 18192.07 896.85 1683.82 299.15 291.53 2997.42 497.55 4
test_241102_TWO94.41 4871.65 21192.07 897.21 474.58 1799.11 692.34 2195.36 1396.59 16
test072696.40 1569.99 3696.76 794.33 5471.92 19791.89 1097.11 673.77 21
SMA-MVScopyleft88.14 1788.29 2187.67 3093.21 6668.72 6893.85 7794.03 6274.18 14491.74 1196.67 2165.61 7098.42 3389.24 4396.08 795.88 43
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPM-MVS90.70 390.52 891.24 189.68 15076.68 297.29 195.35 1582.87 2091.58 1297.22 379.93 599.10 983.12 9397.64 297.94 1
MM90.87 291.52 288.92 1392.12 9571.10 2597.02 396.04 688.70 291.57 1396.19 3370.12 4098.91 1796.83 195.06 1696.76 12
patch_mono-289.71 1190.99 685.85 8796.04 2463.70 19895.04 4095.19 1986.74 791.53 1495.15 6273.86 2097.58 5993.38 1492.00 6796.28 32
TSAR-MVS + MP.88.11 1988.64 1786.54 6791.73 10868.04 8690.36 22493.55 7982.89 1991.29 1592.89 11972.27 3196.03 13887.99 5094.77 2595.54 52
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_part296.29 1968.16 8490.78 16
DPE-MVScopyleft88.77 1689.21 1687.45 4096.26 2067.56 9894.17 5794.15 5968.77 26190.74 1797.27 276.09 1298.49 2990.58 3794.91 2096.30 29
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_one_060196.32 1869.74 4694.18 5771.42 22290.67 1896.85 1674.45 18
DVP-MVScopyleft89.41 1389.73 1488.45 2296.40 1569.99 3696.64 994.52 4271.92 19790.55 1996.93 1173.77 2199.08 1191.91 2794.90 2196.29 30
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD72.48 18190.55 1996.93 1176.24 1199.08 1191.53 2994.99 1796.43 26
DeepPCF-MVS81.17 189.72 1091.38 484.72 12893.00 7258.16 30196.72 894.41 4886.50 890.25 2197.83 175.46 1498.67 2592.78 1895.49 1297.32 6
fmvsm_s_conf0.5_n_a85.75 5686.09 4884.72 12885.73 24663.58 20393.79 8389.32 24681.42 3990.21 2296.91 1462.41 11397.67 5194.48 1080.56 17792.90 158
test_fmvsm_n_192087.69 2588.50 1885.27 10887.05 22163.55 20593.69 8791.08 18384.18 1390.17 2397.04 867.58 5497.99 3995.72 590.03 9294.26 109
fmvsm_s_conf0.5_n86.39 4386.91 3784.82 12187.36 21463.54 20694.74 4790.02 22282.52 2490.14 2496.92 1362.93 10997.84 4695.28 882.26 15893.07 152
fmvsm_s_conf0.1_n85.61 6085.93 5184.68 13182.95 28963.48 20894.03 6889.46 24081.69 3389.86 2596.74 2061.85 11997.75 4994.74 982.01 16492.81 160
fmvsm_s_conf0.1_n_a84.76 7184.84 6984.53 13780.23 31563.50 20792.79 12088.73 27580.46 5089.84 2696.65 2260.96 12897.57 6193.80 1380.14 17992.53 167
CANet89.61 1289.99 1288.46 2194.39 3969.71 4796.53 1293.78 6686.89 689.68 2795.78 4065.94 6699.10 992.99 1693.91 4096.58 18
MVS_030490.01 890.50 988.53 2090.14 14170.94 2696.47 1395.72 1087.33 489.60 2896.26 3068.44 4598.74 2495.82 494.72 3095.90 42
xiu_mvs_v2_base87.92 2287.38 3289.55 1191.41 11976.43 395.74 2193.12 9883.53 1789.55 2995.95 3853.45 21697.68 5091.07 3292.62 5894.54 101
PS-MVSNAJ88.14 1787.61 2889.71 692.06 9676.72 195.75 2093.26 9083.86 1489.55 2996.06 3653.55 21297.89 4391.10 3193.31 5194.54 101
CNVR-MVS90.32 690.89 788.61 1996.76 870.65 2996.47 1394.83 3084.83 1189.07 3196.80 1970.86 3699.06 1592.64 1995.71 1096.12 35
HPM-MVS++copyleft89.37 1489.95 1387.64 3195.10 3068.23 8295.24 3394.49 4482.43 2588.90 3296.35 2771.89 3498.63 2688.76 4796.40 696.06 36
APDe-MVScopyleft87.54 2687.84 2586.65 6196.07 2366.30 13194.84 4593.78 6669.35 25288.39 3396.34 2867.74 5397.66 5490.62 3693.44 4996.01 39
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
EPNet87.84 2388.38 1986.23 7793.30 6366.05 13595.26 3294.84 2987.09 588.06 3494.53 7766.79 5997.34 7383.89 8991.68 7295.29 64
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SD-MVS87.49 2787.49 3087.50 3993.60 5468.82 6693.90 7492.63 11776.86 10987.90 3595.76 4166.17 6397.63 5689.06 4591.48 7696.05 37
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_fmvsmconf_n86.58 4187.17 3384.82 12185.28 25262.55 22994.26 5689.78 22883.81 1687.78 3696.33 2965.33 7296.98 9894.40 1187.55 11394.95 80
canonicalmvs86.85 3686.25 4588.66 1891.80 10771.92 1493.54 9591.71 15480.26 5487.55 3795.25 5863.59 9896.93 10588.18 4984.34 14197.11 8
旧先验292.00 15959.37 33587.54 3893.47 24175.39 150
MVSFormer83.75 9482.88 9986.37 7389.24 16571.18 2289.07 25790.69 19265.80 28487.13 3994.34 8764.99 7592.67 26572.83 16791.80 7095.27 67
lupinMVS87.74 2487.77 2687.63 3589.24 16571.18 2296.57 1192.90 10682.70 2387.13 3995.27 5664.99 7595.80 14389.34 4191.80 7095.93 40
alignmvs87.28 3186.97 3688.24 2491.30 12071.14 2495.61 2593.56 7879.30 7087.07 4195.25 5868.43 4696.93 10587.87 5184.33 14296.65 14
test_fmvsmconf0.1_n85.71 5786.08 4984.62 13580.83 30562.33 23393.84 8088.81 27183.50 1887.00 4296.01 3763.36 10196.93 10594.04 1287.29 11694.61 97
NCCC89.07 1589.46 1587.91 2596.60 1069.05 6096.38 1594.64 3984.42 1286.74 4396.20 3266.56 6298.76 2389.03 4694.56 3295.92 41
FOURS193.95 4561.77 24493.96 7091.92 14162.14 31586.57 44
SF-MVS87.03 3487.09 3486.84 5492.70 8167.45 10393.64 9093.76 6970.78 23586.25 4596.44 2666.98 5797.79 4788.68 4894.56 3295.28 66
9.1487.63 2793.86 4794.41 5294.18 5772.76 17686.21 4696.51 2466.64 6097.88 4490.08 3894.04 37
APD-MVScopyleft85.93 5285.99 5085.76 9195.98 2665.21 15693.59 9392.58 11966.54 27986.17 4795.88 3963.83 9197.00 9486.39 6792.94 5595.06 75
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CANet_DTU84.09 8683.52 8085.81 8890.30 13866.82 11791.87 16489.01 26385.27 986.09 4893.74 10147.71 26796.98 9877.90 13689.78 9593.65 135
VNet86.20 4685.65 5687.84 2793.92 4669.99 3695.73 2395.94 778.43 8786.00 4993.07 11458.22 15697.00 9485.22 7484.33 14296.52 20
TSAR-MVS + GP.87.96 2088.37 2086.70 6093.51 5965.32 15395.15 3693.84 6578.17 9085.93 5094.80 7175.80 1398.21 3489.38 4088.78 10196.59 16
MCST-MVS91.08 191.46 389.94 497.66 273.37 897.13 295.58 1189.33 185.77 5196.26 3072.84 2699.38 192.64 1995.93 997.08 9
DELS-MVS90.05 790.09 1189.94 493.14 6973.88 797.01 494.40 5088.32 385.71 5294.91 6874.11 1998.91 1787.26 5995.94 897.03 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PHI-MVS86.83 3786.85 4086.78 5893.47 6065.55 14995.39 3095.10 2271.77 20785.69 5396.52 2362.07 11698.77 2286.06 7095.60 1196.03 38
TEST994.18 4167.28 10594.16 5893.51 8071.75 20885.52 5495.33 5168.01 5097.27 80
train_agg87.21 3287.42 3186.60 6394.18 4167.28 10594.16 5893.51 8071.87 20285.52 5495.33 5168.19 4897.27 8089.09 4494.90 2195.25 70
CS-MVS-test86.14 4887.01 3583.52 16692.63 8459.36 28995.49 2791.92 14180.09 5785.46 5695.53 4761.82 12195.77 14686.77 6593.37 5095.41 54
test_894.19 4067.19 10794.15 6193.42 8671.87 20285.38 5795.35 5068.19 4896.95 102
testdata81.34 22189.02 16957.72 30689.84 22758.65 33885.32 5894.09 9457.03 16793.28 24369.34 20390.56 8993.03 153
ZD-MVS96.63 965.50 15193.50 8270.74 23685.26 5995.19 6164.92 7897.29 7687.51 5593.01 54
test_prior295.10 3875.40 12985.25 6095.61 4567.94 5187.47 5694.77 25
test_fmvsmconf0.01_n83.70 9683.52 8084.25 14975.26 35761.72 24792.17 14687.24 30682.36 2684.91 6195.41 4855.60 18896.83 10992.85 1785.87 13194.21 111
CS-MVS85.80 5586.65 4183.27 17492.00 10058.92 29495.31 3191.86 14679.97 5884.82 6295.40 4962.26 11495.51 16486.11 6992.08 6695.37 57
ACMMP_NAP86.05 4985.80 5486.80 5791.58 11267.53 10091.79 16893.49 8374.93 13584.61 6395.30 5359.42 14597.92 4186.13 6894.92 1994.94 81
jason86.40 4286.17 4687.11 4786.16 23770.54 3195.71 2492.19 13282.00 3084.58 6494.34 8761.86 11895.53 16387.76 5290.89 8495.27 67
jason: jason.
agg_prior94.16 4366.97 11593.31 8984.49 6596.75 111
test_vis1_n_192081.66 12882.01 11380.64 23882.24 29455.09 33094.76 4686.87 30881.67 3484.40 6694.63 7538.17 31694.67 19191.98 2683.34 14992.16 181
xiu_mvs_v1_base_debu82.16 11981.12 12285.26 10986.42 23068.72 6892.59 13490.44 20273.12 16784.20 6794.36 8238.04 31995.73 14884.12 8686.81 12091.33 192
xiu_mvs_v1_base82.16 11981.12 12285.26 10986.42 23068.72 6892.59 13490.44 20273.12 16784.20 6794.36 8238.04 31995.73 14884.12 8686.81 12091.33 192
xiu_mvs_v1_base_debi82.16 11981.12 12285.26 10986.42 23068.72 6892.59 13490.44 20273.12 16784.20 6794.36 8238.04 31995.73 14884.12 8686.81 12091.33 192
ETV-MVS86.01 5086.11 4785.70 9490.21 14067.02 11493.43 10291.92 14181.21 4384.13 7094.07 9660.93 12995.63 15489.28 4289.81 9394.46 107
SteuartSystems-ACMMP86.82 3886.90 3886.58 6590.42 13566.38 12896.09 1793.87 6477.73 9784.01 7195.66 4363.39 10097.94 4087.40 5793.55 4895.42 53
Skip Steuart: Steuart Systems R&D Blog.
MG-MVS87.11 3386.27 4389.62 797.79 176.27 494.96 4394.49 4478.74 8583.87 7292.94 11764.34 8596.94 10375.19 15194.09 3695.66 47
DeepC-MVS_fast79.48 287.95 2188.00 2487.79 2895.86 2768.32 7695.74 2194.11 6083.82 1583.49 7396.19 3364.53 8498.44 3183.42 9294.88 2496.61 15
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EC-MVSNet84.53 7585.04 6583.01 17889.34 15761.37 25394.42 5191.09 18177.91 9483.24 7494.20 9258.37 15495.40 16585.35 7391.41 7792.27 177
Effi-MVS+83.82 9182.76 10186.99 5289.56 15369.40 5091.35 19086.12 31772.59 17883.22 7592.81 12359.60 14396.01 14081.76 10287.80 11095.56 51
CDPH-MVS85.71 5785.46 5886.46 6994.75 3467.19 10793.89 7592.83 10870.90 23183.09 7695.28 5463.62 9697.36 7180.63 11294.18 3594.84 85
MVS_Test84.16 8583.20 9287.05 5091.56 11369.82 4389.99 23892.05 13577.77 9682.84 7786.57 22863.93 9096.09 13274.91 15689.18 9995.25 70
test_cas_vis1_n_192080.45 14980.61 13479.97 25778.25 34157.01 31894.04 6788.33 28779.06 7882.81 7893.70 10238.65 31191.63 29490.82 3579.81 18191.27 198
h-mvs3383.01 10682.56 10684.35 14589.34 15762.02 23992.72 12393.76 6981.45 3682.73 7992.25 13660.11 13697.13 8787.69 5362.96 31193.91 127
hse-mvs281.12 13781.11 12581.16 22586.52 22957.48 31189.40 25091.16 17681.45 3682.73 7990.49 16760.11 13694.58 19487.69 5360.41 33891.41 191
test1287.09 4894.60 3668.86 6492.91 10582.67 8165.44 7197.55 6293.69 4694.84 85
HY-MVS76.49 584.28 7983.36 9187.02 5192.22 9267.74 9384.65 30194.50 4379.15 7482.23 8287.93 20966.88 5896.94 10380.53 11382.20 16196.39 28
LFMVS84.34 7882.73 10289.18 1294.76 3373.25 994.99 4291.89 14471.90 19982.16 8393.49 10847.98 26397.05 8982.55 9784.82 13797.25 7
WTY-MVS86.32 4485.81 5387.85 2692.82 7769.37 5395.20 3495.25 1782.71 2281.91 8494.73 7267.93 5297.63 5679.55 12082.25 15996.54 19
VDD-MVS83.06 10581.81 11686.81 5690.86 12967.70 9495.40 2991.50 16475.46 12781.78 8592.34 13340.09 30597.13 8786.85 6482.04 16395.60 49
diffmvspermissive84.28 7983.83 7785.61 9687.40 21268.02 8790.88 20889.24 24980.54 4881.64 8692.52 12559.83 14094.52 20187.32 5885.11 13594.29 108
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MSLP-MVS++86.27 4585.91 5287.35 4292.01 9968.97 6395.04 4092.70 11179.04 7981.50 8796.50 2558.98 15196.78 11083.49 9193.93 3996.29 30
SR-MVS82.81 10982.58 10583.50 16993.35 6161.16 25692.23 14591.28 17364.48 29381.27 8895.28 5453.71 21195.86 14282.87 9488.77 10293.49 139
dcpmvs_287.37 3087.55 2986.85 5395.04 3268.20 8390.36 22490.66 19579.37 6981.20 8993.67 10374.73 1596.55 11890.88 3492.00 6795.82 44
baseline85.01 6884.44 7286.71 5988.33 18768.73 6790.24 22991.82 15081.05 4581.18 9092.50 12663.69 9496.08 13584.45 8486.71 12595.32 62
test_yl84.28 7983.16 9387.64 3194.52 3769.24 5595.78 1895.09 2369.19 25581.09 9192.88 12057.00 16997.44 6681.11 11081.76 16696.23 33
DCV-MVSNet84.28 7983.16 9387.64 3194.52 3769.24 5595.78 1895.09 2369.19 25581.09 9192.88 12057.00 16997.44 6681.11 11081.76 16696.23 33
UA-Net80.02 15879.65 14881.11 22789.33 15957.72 30686.33 29489.00 26677.44 10481.01 9389.15 18859.33 14795.90 14161.01 27684.28 14489.73 218
PVSNet_BlendedMVS83.38 9983.43 8683.22 17593.76 4967.53 10094.06 6393.61 7679.13 7581.00 9485.14 24363.19 10497.29 7687.08 6173.91 23284.83 302
PVSNet_Blended86.73 3986.86 3986.31 7693.76 4967.53 10096.33 1693.61 7682.34 2781.00 9493.08 11363.19 10497.29 7687.08 6191.38 7894.13 116
casdiffmvspermissive85.37 6284.87 6886.84 5488.25 19069.07 5993.04 11291.76 15181.27 4280.84 9692.07 13964.23 8696.06 13684.98 7987.43 11595.39 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
testing1186.71 4086.44 4287.55 3793.54 5771.35 1993.65 8995.58 1181.36 4180.69 9792.21 13772.30 3096.46 12385.18 7683.43 14894.82 88
MP-MVS-pluss85.24 6485.13 6385.56 9791.42 11765.59 14791.54 17892.51 12174.56 13880.62 9895.64 4459.15 14997.00 9486.94 6393.80 4194.07 120
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
testing9986.01 5085.47 5787.63 3593.62 5371.25 2193.47 10095.23 1880.42 5280.60 9991.95 14171.73 3596.50 12180.02 11782.22 16095.13 73
testing9185.93 5285.31 6087.78 2993.59 5571.47 1793.50 9795.08 2580.26 5480.53 10091.93 14270.43 3896.51 12080.32 11582.13 16295.37 57
MTAPA83.91 8983.38 9085.50 9891.89 10565.16 15881.75 32492.23 12775.32 13080.53 10095.21 6056.06 18497.16 8584.86 8192.55 6094.18 112
testing22285.18 6584.69 7086.63 6292.91 7469.91 4092.61 13195.80 980.31 5380.38 10292.27 13468.73 4495.19 17375.94 14683.27 15094.81 89
PAPM85.89 5485.46 5887.18 4588.20 19372.42 1392.41 14092.77 10982.11 2980.34 10393.07 11468.27 4795.02 17678.39 13393.59 4794.09 118
CostFormer82.33 11681.15 12185.86 8689.01 17068.46 7382.39 32193.01 10175.59 12580.25 10481.57 28672.03 3394.96 17979.06 12677.48 20594.16 114
casdiffmvs_mvgpermissive85.66 5985.18 6287.09 4888.22 19269.35 5493.74 8691.89 14481.47 3580.10 10591.45 15164.80 8096.35 12487.23 6087.69 11195.58 50
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PMMVS81.98 12482.04 11281.78 21189.76 14956.17 32291.13 20190.69 19277.96 9280.09 10693.57 10646.33 27794.99 17881.41 10687.46 11494.17 113
ZNCC-MVS85.33 6385.08 6486.06 7993.09 7165.65 14593.89 7593.41 8773.75 15579.94 10794.68 7460.61 13298.03 3882.63 9693.72 4494.52 103
sss82.71 11282.38 10983.73 16189.25 16259.58 28492.24 14494.89 2877.96 9279.86 10892.38 13156.70 17597.05 8977.26 13980.86 17494.55 99
新几何184.73 12792.32 8964.28 18291.46 16659.56 33479.77 10992.90 11856.95 17296.57 11663.40 25992.91 5693.34 142
APD-MVS_3200maxsize81.64 12981.32 12082.59 18892.36 8858.74 29691.39 18591.01 18863.35 30279.72 11094.62 7651.82 22696.14 13079.71 11887.93 10992.89 159
MP-MVScopyleft85.02 6784.97 6685.17 11292.60 8564.27 18393.24 10592.27 12673.13 16679.63 11194.43 8061.90 11797.17 8385.00 7892.56 5994.06 121
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
原ACMM184.42 14193.21 6664.27 18393.40 8865.39 28779.51 11292.50 12658.11 15896.69 11265.27 24993.96 3892.32 172
ETVMVS84.22 8383.71 7885.76 9192.58 8668.25 8192.45 13995.53 1479.54 6579.46 11391.64 14970.29 3994.18 21469.16 20682.76 15694.84 85
test_fmvs174.07 25173.69 23875.22 31278.91 33347.34 36689.06 25974.69 36763.68 29979.41 11491.59 15024.36 36987.77 33685.22 7476.26 21690.55 207
VDDNet80.50 14778.26 16987.21 4486.19 23569.79 4494.48 5091.31 17060.42 32779.34 11590.91 16038.48 31496.56 11782.16 9881.05 17295.27 67
EIA-MVS84.84 7084.88 6784.69 13091.30 12062.36 23293.85 7792.04 13679.45 6679.33 11694.28 9062.42 11296.35 12480.05 11691.25 8195.38 56
HFP-MVS84.73 7284.40 7385.72 9393.75 5165.01 16293.50 9793.19 9472.19 19179.22 11794.93 6659.04 15097.67 5181.55 10392.21 6294.49 106
MAR-MVS84.18 8483.43 8686.44 7096.25 2165.93 14094.28 5594.27 5674.41 13979.16 11895.61 4553.99 20798.88 2169.62 20093.26 5294.50 105
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR85.15 6684.47 7187.18 4596.02 2568.29 7791.85 16693.00 10376.59 11679.03 11995.00 6361.59 12297.61 5878.16 13489.00 10095.63 48
SR-MVS-dyc-post81.06 13880.70 13182.15 20292.02 9758.56 29890.90 20690.45 19962.76 30978.89 12094.46 7851.26 23495.61 15678.77 13086.77 12392.28 174
RE-MVS-def80.48 13792.02 9758.56 29890.90 20690.45 19962.76 30978.89 12094.46 7849.30 25078.77 13086.77 12392.28 174
GST-MVS84.63 7484.29 7485.66 9592.82 7765.27 15493.04 11293.13 9773.20 16478.89 12094.18 9359.41 14697.85 4581.45 10592.48 6193.86 130
MVS_111021_HR86.19 4785.80 5487.37 4193.17 6869.79 4493.99 6993.76 6979.08 7778.88 12393.99 9762.25 11598.15 3685.93 7191.15 8294.15 115
region2R84.36 7784.03 7685.36 10493.54 5764.31 18193.43 10292.95 10472.16 19478.86 12494.84 7056.97 17197.53 6381.38 10792.11 6594.24 110
ACMMPR84.37 7684.06 7585.28 10793.56 5664.37 17893.50 9793.15 9672.19 19178.85 12594.86 6956.69 17697.45 6581.55 10392.20 6394.02 123
UGNet79.87 16178.68 16383.45 17189.96 14461.51 25092.13 14890.79 19076.83 11178.85 12586.33 23238.16 31796.17 12967.93 21887.17 11792.67 162
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
GG-mvs-BLEND86.53 6891.91 10469.67 4975.02 36394.75 3378.67 12790.85 16177.91 794.56 19872.25 17593.74 4395.36 59
test250683.29 10082.92 9884.37 14488.39 18563.18 21592.01 15691.35 16977.66 9978.49 12891.42 15264.58 8395.09 17573.19 16389.23 9794.85 82
XVS83.87 9083.47 8485.05 11393.22 6463.78 19292.92 11792.66 11473.99 14778.18 12994.31 8955.25 19097.41 6879.16 12491.58 7493.95 125
X-MVStestdata76.86 21274.13 23285.05 11393.22 6463.78 19292.92 11792.66 11473.99 14778.18 12910.19 40555.25 19097.41 6879.16 12491.58 7493.95 125
test_fmvs1_n72.69 27071.92 26174.99 31571.15 37047.08 36887.34 28575.67 36263.48 30178.08 13191.17 15720.16 38087.87 33384.65 8275.57 22090.01 213
EI-MVSNet-Vis-set83.77 9383.67 7984.06 15392.79 8063.56 20491.76 17194.81 3179.65 6477.87 13294.09 9463.35 10297.90 4279.35 12279.36 18690.74 203
Vis-MVSNetpermissive80.92 14179.98 14483.74 15988.48 18061.80 24393.44 10188.26 29273.96 15077.73 13391.76 14549.94 24494.76 18465.84 24190.37 9094.65 95
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvsmvis_n_192083.80 9283.48 8384.77 12582.51 29163.72 19691.37 18883.99 33781.42 3977.68 13495.74 4258.37 15497.58 5993.38 1486.87 11993.00 155
CSCG86.87 3586.26 4488.72 1595.05 3170.79 2893.83 8295.33 1668.48 26577.63 13594.35 8673.04 2498.45 3084.92 8093.71 4596.92 11
TESTMET0.1,182.41 11581.98 11483.72 16288.08 19463.74 19492.70 12593.77 6879.30 7077.61 13687.57 21558.19 15794.08 21873.91 16286.68 12693.33 144
tpm279.80 16277.95 17585.34 10588.28 18868.26 7981.56 32791.42 16770.11 24377.59 13780.50 30467.40 5594.26 21167.34 22377.35 20693.51 138
CP-MVS83.71 9583.40 8984.65 13293.14 6963.84 19094.59 4992.28 12571.03 22977.41 13894.92 6755.21 19396.19 12881.32 10890.70 8693.91 127
ab-mvs80.18 15478.31 16885.80 8988.44 18265.49 15283.00 31892.67 11371.82 20577.36 13985.01 24454.50 19996.59 11476.35 14475.63 21995.32 62
test22289.77 14861.60 24989.55 24589.42 24356.83 34777.28 14092.43 13052.76 22091.14 8393.09 150
PGM-MVS83.25 10282.70 10384.92 11792.81 7964.07 18790.44 22092.20 13171.28 22377.23 14194.43 8055.17 19497.31 7579.33 12391.38 7893.37 141
gg-mvs-nofinetune77.18 20774.31 22885.80 8991.42 11768.36 7571.78 36694.72 3449.61 36777.12 14245.92 39077.41 893.98 22767.62 22193.16 5395.05 76
HPM-MVScopyleft83.25 10282.95 9784.17 15192.25 9162.88 22490.91 20591.86 14670.30 24177.12 14293.96 9856.75 17496.28 12682.04 10091.34 8093.34 142
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet_Blended_VisFu83.97 8883.50 8285.39 10290.02 14366.59 12593.77 8491.73 15277.43 10577.08 14489.81 18163.77 9396.97 10079.67 11988.21 10692.60 164
DeepC-MVS77.85 385.52 6185.24 6186.37 7388.80 17566.64 12292.15 14793.68 7481.07 4476.91 14593.64 10462.59 11198.44 3185.50 7292.84 5794.03 122
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ECVR-MVScopyleft81.29 13380.38 13984.01 15588.39 18561.96 24192.56 13786.79 31077.66 9976.63 14691.42 15246.34 27695.24 17274.36 16089.23 9794.85 82
EI-MVSNet-UG-set83.14 10482.96 9683.67 16492.28 9063.19 21491.38 18794.68 3779.22 7276.60 14793.75 10062.64 11097.76 4878.07 13578.01 19790.05 212
EPNet_dtu78.80 18079.26 15877.43 29388.06 19549.71 35491.96 16191.95 14077.67 9876.56 14891.28 15658.51 15390.20 31556.37 29680.95 17392.39 169
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DP-MVS Recon82.73 11081.65 11785.98 8197.31 467.06 11195.15 3691.99 13869.08 25876.50 14993.89 9954.48 20298.20 3570.76 18985.66 13392.69 161
Anonymous20240521177.96 19675.33 21585.87 8593.73 5264.52 16894.85 4485.36 32362.52 31276.11 15090.18 17429.43 36097.29 7668.51 21377.24 20995.81 45
tpmrst80.57 14579.14 16084.84 12090.10 14268.28 7881.70 32589.72 23577.63 10175.96 15179.54 31864.94 7792.71 26275.43 14977.28 20893.55 137
thisisatest051583.41 9882.49 10786.16 7889.46 15668.26 7993.54 9594.70 3674.31 14275.75 15290.92 15972.62 2896.52 11969.64 19881.50 16993.71 133
test111180.84 14280.02 14183.33 17287.87 20160.76 26492.62 13086.86 30977.86 9575.73 15391.39 15446.35 27594.70 19072.79 16988.68 10394.52 103
CHOSEN 1792x268884.98 6983.45 8589.57 1089.94 14575.14 592.07 15392.32 12481.87 3175.68 15488.27 20060.18 13598.60 2780.46 11490.27 9194.96 79
test-LLR80.10 15679.56 15081.72 21386.93 22561.17 25492.70 12591.54 16171.51 22075.62 15586.94 22453.83 20892.38 27672.21 17684.76 13991.60 186
test-mter79.96 15979.38 15681.72 21386.93 22561.17 25492.70 12591.54 16173.85 15275.62 15586.94 22449.84 24692.38 27672.21 17684.76 13991.60 186
mPP-MVS82.96 10882.44 10884.52 13892.83 7562.92 22292.76 12191.85 14871.52 21975.61 15794.24 9153.48 21596.99 9778.97 12790.73 8593.64 136
MVS_111021_LR82.02 12381.52 11883.51 16888.42 18362.88 22489.77 24288.93 26776.78 11275.55 15893.10 11150.31 24095.38 16783.82 9087.02 11892.26 178
API-MVS82.28 11780.53 13687.54 3896.13 2270.59 3093.63 9191.04 18765.72 28675.45 15992.83 12256.11 18398.89 2064.10 25589.75 9693.15 148
Fast-Effi-MVS+81.14 13580.01 14284.51 13990.24 13965.86 14194.12 6289.15 25573.81 15475.37 16088.26 20157.26 16494.53 20066.97 22984.92 13693.15 148
test_vis1_n71.63 27670.73 27274.31 32269.63 37647.29 36786.91 28972.11 37363.21 30575.18 16190.17 17520.40 37885.76 34884.59 8374.42 22789.87 214
nrg03080.93 14079.86 14584.13 15283.69 27868.83 6593.23 10691.20 17475.55 12675.06 16288.22 20463.04 10894.74 18681.88 10166.88 28188.82 229
UWE-MVS80.81 14381.01 12780.20 24889.33 15957.05 31691.91 16294.71 3575.67 12475.01 16389.37 18563.13 10691.44 30267.19 22682.80 15592.12 182
baseline181.84 12581.03 12684.28 14891.60 11166.62 12391.08 20291.66 15881.87 3174.86 16491.67 14869.98 4194.92 18271.76 18164.75 29991.29 197
FA-MVS(test-final)79.12 17277.23 18884.81 12490.54 13363.98 18981.35 33091.71 15471.09 22874.85 16582.94 26752.85 21997.05 8967.97 21681.73 16893.41 140
iter_conf_final81.74 12780.93 12884.18 15092.66 8369.10 5892.94 11682.80 34679.01 8074.85 16588.40 19661.83 12094.61 19279.36 12176.52 21488.83 226
HPM-MVS_fast80.25 15379.55 15282.33 19491.55 11459.95 27991.32 19289.16 25465.23 29074.71 16793.07 11447.81 26695.74 14774.87 15888.23 10591.31 196
TR-MVS78.77 18277.37 18782.95 17990.49 13460.88 26093.67 8890.07 21870.08 24474.51 16891.37 15545.69 28295.70 15360.12 28280.32 17892.29 173
AUN-MVS78.37 18977.43 18281.17 22486.60 22857.45 31289.46 24991.16 17674.11 14574.40 16990.49 16755.52 18994.57 19674.73 15960.43 33791.48 189
HQP-NCC87.54 20894.06 6379.80 6074.18 170
ACMP_Plane87.54 20894.06 6379.80 6074.18 170
HQP4-MVS74.18 17095.61 15688.63 231
HQP-MVS81.14 13580.64 13382.64 18687.54 20863.66 20194.06 6391.70 15679.80 6074.18 17090.30 17151.63 23095.61 15677.63 13778.90 19088.63 231
PAPM_NR82.97 10781.84 11586.37 7394.10 4466.76 12087.66 28092.84 10769.96 24574.07 17493.57 10663.10 10797.50 6470.66 19190.58 8894.85 82
VPA-MVSNet79.03 17378.00 17382.11 20785.95 24064.48 17193.22 10794.66 3875.05 13474.04 17584.95 24552.17 22593.52 23974.90 15767.04 28088.32 240
CDS-MVSNet81.43 13180.74 13083.52 16686.26 23464.45 17292.09 15190.65 19675.83 12373.95 17689.81 18163.97 8992.91 25571.27 18482.82 15393.20 147
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
iter_conf0583.27 10182.70 10384.98 11693.32 6271.84 1594.16 5881.76 34882.74 2173.83 17788.40 19672.77 2794.61 19282.10 9975.21 22188.48 235
tpm78.58 18677.03 19083.22 17585.94 24264.56 16783.21 31591.14 17978.31 8873.67 17879.68 31664.01 8892.09 28566.07 23971.26 25393.03 153
WB-MVSnew77.14 20876.18 20380.01 25486.18 23663.24 21291.26 19494.11 6071.72 20973.52 17987.29 22045.14 28793.00 24856.98 29479.42 18483.80 310
BH-RMVSNet79.46 16877.65 17884.89 11891.68 11065.66 14493.55 9488.09 29572.93 17173.37 18091.12 15846.20 27996.12 13156.28 29785.61 13492.91 157
thres20079.66 16378.33 16783.66 16592.54 8765.82 14393.06 11096.31 374.90 13673.30 18188.66 19159.67 14295.61 15647.84 33078.67 19389.56 221
Anonymous2024052976.84 21574.15 23184.88 11991.02 12464.95 16493.84 8091.09 18153.57 35673.00 18287.42 21735.91 33597.32 7469.14 20772.41 24592.36 170
CPTT-MVS79.59 16479.16 15980.89 23691.54 11559.80 28192.10 15088.54 28360.42 32772.96 18393.28 11048.27 25992.80 25978.89 12986.50 12890.06 211
HyFIR lowres test81.03 13979.56 15085.43 10087.81 20468.11 8590.18 23090.01 22370.65 23772.95 18486.06 23663.61 9794.50 20275.01 15479.75 18393.67 134
EPP-MVSNet81.79 12681.52 11882.61 18788.77 17660.21 27693.02 11493.66 7568.52 26472.90 18590.39 16972.19 3294.96 17974.93 15579.29 18892.67 162
MDTV_nov1_ep13_2view59.90 28080.13 34167.65 27172.79 18654.33 20559.83 28392.58 165
FE-MVS75.97 22973.02 24584.82 12189.78 14765.56 14877.44 35591.07 18464.55 29272.66 18779.85 31446.05 28196.69 11254.97 30180.82 17592.21 179
TAMVS80.37 15079.45 15383.13 17785.14 25563.37 20991.23 19690.76 19174.81 13772.65 18888.49 19360.63 13192.95 25069.41 20281.95 16593.08 151
VPNet78.82 17977.53 18182.70 18484.52 26566.44 12793.93 7292.23 12780.46 5072.60 18988.38 19849.18 25293.13 24572.47 17463.97 30888.55 234
CLD-MVS82.73 11082.35 11083.86 15787.90 20067.65 9695.45 2892.18 13385.06 1072.58 19092.27 13452.46 22395.78 14484.18 8579.06 18988.16 241
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP_MVS80.34 15179.75 14782.12 20486.94 22362.42 23093.13 10891.31 17078.81 8372.53 19189.14 18950.66 23795.55 16176.74 14078.53 19588.39 238
plane_prior361.95 24279.09 7672.53 191
EPMVS78.49 18875.98 20586.02 8091.21 12269.68 4880.23 33991.20 17475.25 13172.48 19378.11 32654.65 19893.69 23657.66 29383.04 15194.69 91
1112_ss80.56 14679.83 14682.77 18288.65 17760.78 26292.29 14288.36 28672.58 17972.46 19494.95 6465.09 7493.42 24266.38 23577.71 19994.10 117
PVSNet73.49 880.05 15778.63 16484.31 14690.92 12764.97 16392.47 13891.05 18679.18 7372.43 19590.51 16637.05 33194.06 22068.06 21586.00 13093.90 129
OMC-MVS78.67 18577.91 17680.95 23485.76 24557.40 31388.49 26688.67 27873.85 15272.43 19592.10 13849.29 25194.55 19972.73 17077.89 19890.91 202
MVS84.66 7382.86 10090.06 290.93 12674.56 687.91 27595.54 1368.55 26372.35 19794.71 7359.78 14198.90 1981.29 10994.69 3196.74 13
EI-MVSNet78.97 17578.22 17081.25 22285.33 25062.73 22789.53 24793.21 9172.39 18672.14 19890.13 17760.99 12694.72 18767.73 22072.49 24386.29 270
MVSTER82.47 11482.05 11183.74 15992.68 8269.01 6191.90 16393.21 9179.83 5972.14 19885.71 24074.72 1694.72 18775.72 14772.49 24387.50 246
OPM-MVS79.00 17478.09 17181.73 21283.52 28163.83 19191.64 17790.30 20976.36 11971.97 20089.93 18046.30 27895.17 17475.10 15277.70 20086.19 274
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Test_1112_low_res79.56 16578.60 16582.43 19088.24 19160.39 27392.09 15187.99 29772.10 19571.84 20187.42 21764.62 8293.04 24665.80 24277.30 20793.85 131
MDTV_nov1_ep1372.61 25389.06 16868.48 7280.33 33790.11 21771.84 20471.81 20275.92 34553.01 21893.92 23048.04 32773.38 234
tfpn200view978.79 18177.43 18282.88 18092.21 9364.49 16992.05 15496.28 473.48 16171.75 20388.26 20160.07 13895.32 16845.16 34177.58 20288.83 226
thres40078.68 18377.43 18282.43 19092.21 9364.49 16992.05 15496.28 473.48 16171.75 20388.26 20160.07 13895.32 16845.16 34177.58 20287.48 247
ACMMPcopyleft81.49 13080.67 13283.93 15691.71 10962.90 22392.13 14892.22 13071.79 20671.68 20593.49 10850.32 23996.96 10178.47 13284.22 14691.93 184
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
mvsany_test168.77 29868.56 28769.39 34873.57 36345.88 37380.93 33360.88 39159.65 33371.56 20690.26 17343.22 29575.05 38174.26 16162.70 31487.25 256
CHOSEN 280x42077.35 20576.95 19378.55 28087.07 22062.68 22869.71 37282.95 34468.80 26071.48 20787.27 22166.03 6584.00 35976.47 14382.81 15488.95 225
IS-MVSNet80.14 15579.41 15482.33 19487.91 19960.08 27891.97 16088.27 29072.90 17471.44 20891.73 14761.44 12393.66 23762.47 26986.53 12793.24 145
GeoE78.90 17777.43 18283.29 17388.95 17162.02 23992.31 14186.23 31570.24 24271.34 20989.27 18654.43 20394.04 22363.31 26180.81 17693.81 132
PatchmatchNetpermissive77.46 20374.63 22185.96 8289.55 15470.35 3379.97 34489.55 23872.23 19070.94 21076.91 33757.03 16792.79 26054.27 30481.17 17194.74 90
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thisisatest053081.15 13480.07 14084.39 14388.26 18965.63 14691.40 18394.62 4071.27 22470.93 21189.18 18772.47 2996.04 13765.62 24476.89 21191.49 188
SDMVSNet80.26 15278.88 16284.40 14289.25 16267.63 9785.35 29793.02 10076.77 11370.84 21287.12 22247.95 26496.09 13285.04 7774.55 22389.48 222
sd_testset77.08 21075.37 21382.20 20089.25 16262.11 23882.06 32289.09 25976.77 11370.84 21287.12 22241.43 30195.01 17767.23 22574.55 22389.48 222
AdaColmapbinary78.94 17677.00 19284.76 12696.34 1765.86 14192.66 12987.97 29962.18 31470.56 21492.37 13243.53 29397.35 7264.50 25382.86 15291.05 201
cascas78.18 19275.77 20885.41 10187.14 21869.11 5792.96 11591.15 17866.71 27870.47 21586.07 23537.49 32596.48 12270.15 19479.80 18290.65 204
thres600view778.00 19476.66 19682.03 20991.93 10263.69 19991.30 19396.33 172.43 18470.46 21687.89 21060.31 13394.92 18242.64 35376.64 21287.48 247
thres100view90078.37 18977.01 19182.46 18991.89 10563.21 21391.19 20096.33 172.28 18970.45 21787.89 21060.31 13395.32 16845.16 34177.58 20288.83 226
CVMVSNet74.04 25274.27 22973.33 32785.33 25043.94 37789.53 24788.39 28554.33 35570.37 21890.13 17749.17 25384.05 35761.83 27379.36 18691.99 183
GA-MVS78.33 19176.23 20184.65 13283.65 27966.30 13191.44 17990.14 21676.01 12170.32 21984.02 25742.50 29794.72 18770.98 18677.00 21092.94 156
mvs_anonymous81.36 13279.99 14385.46 9990.39 13768.40 7486.88 29190.61 19774.41 13970.31 22084.67 24963.79 9292.32 28073.13 16485.70 13295.67 46
IB-MVS77.80 482.18 11880.46 13887.35 4289.14 16770.28 3495.59 2695.17 2178.85 8170.19 22185.82 23870.66 3797.67 5172.19 17866.52 28494.09 118
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TAPA-MVS70.22 1274.94 24473.53 24079.17 27390.40 13652.07 34289.19 25589.61 23762.69 31170.07 22292.67 12448.89 25794.32 20538.26 36779.97 18091.12 200
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SCA75.82 23272.76 24985.01 11586.63 22770.08 3581.06 33289.19 25271.60 21670.01 22377.09 33545.53 28390.25 31060.43 27973.27 23594.68 92
XXY-MVS77.94 19776.44 19882.43 19082.60 29064.44 17392.01 15691.83 14973.59 16070.00 22485.82 23854.43 20394.76 18469.63 19968.02 27488.10 242
CR-MVSNet73.79 25670.82 27182.70 18483.15 28467.96 8870.25 36984.00 33573.67 15969.97 22572.41 35557.82 16089.48 32152.99 31073.13 23690.64 205
RPMNet70.42 28465.68 30384.63 13483.15 28467.96 8870.25 36990.45 19946.83 37569.97 22565.10 37456.48 18095.30 17135.79 37273.13 23690.64 205
UniMVSNet (Re)77.58 20276.78 19479.98 25584.11 27360.80 26191.76 17193.17 9576.56 11769.93 22784.78 24863.32 10392.36 27864.89 25162.51 31786.78 262
PCF-MVS73.15 979.29 16977.63 17984.29 14786.06 23865.96 13987.03 28791.10 18069.86 24769.79 22890.64 16257.54 16396.59 11464.37 25482.29 15790.32 208
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v2v48277.42 20475.65 21182.73 18380.38 31167.13 11091.85 16690.23 21375.09 13369.37 22983.39 26453.79 21094.44 20371.77 18065.00 29686.63 266
PatchT69.11 29565.37 30780.32 24282.07 29763.68 20067.96 37887.62 30150.86 36469.37 22965.18 37357.09 16688.53 32741.59 35666.60 28388.74 230
Vis-MVSNet (Re-imp)79.24 17079.57 14978.24 28588.46 18152.29 34190.41 22289.12 25774.24 14369.13 23191.91 14365.77 6890.09 31759.00 28888.09 10792.33 171
BH-w/o80.49 14879.30 15784.05 15490.83 13064.36 18093.60 9289.42 24374.35 14169.09 23290.15 17655.23 19295.61 15664.61 25286.43 12992.17 180
baseline283.68 9783.42 8884.48 14087.37 21366.00 13790.06 23395.93 879.71 6369.08 23390.39 16977.92 696.28 12678.91 12881.38 17091.16 199
v114476.73 21874.88 21882.27 19680.23 31566.60 12491.68 17590.21 21573.69 15769.06 23481.89 27952.73 22194.40 20469.21 20565.23 29385.80 285
dmvs_re76.93 21175.36 21481.61 21587.78 20560.71 26780.00 34387.99 29779.42 6769.02 23589.47 18446.77 27094.32 20563.38 26074.45 22689.81 215
Baseline_NR-MVSNet73.99 25372.83 24877.48 29280.78 30659.29 29091.79 16884.55 33068.85 25968.99 23680.70 30056.16 18192.04 28662.67 26760.98 33281.11 343
FIs79.47 16779.41 15479.67 26485.95 24059.40 28691.68 17593.94 6378.06 9168.96 23788.28 19966.61 6191.77 29166.20 23874.99 22287.82 243
UniMVSNet_NR-MVSNet78.15 19377.55 18079.98 25584.46 26760.26 27492.25 14393.20 9377.50 10368.88 23886.61 22766.10 6492.13 28366.38 23562.55 31587.54 245
DU-MVS76.86 21275.84 20779.91 25882.96 28760.26 27491.26 19491.54 16176.46 11868.88 23886.35 23056.16 18192.13 28366.38 23562.55 31587.35 252
miper_enhance_ethall78.86 17877.97 17481.54 21788.00 19865.17 15791.41 18189.15 25575.19 13268.79 24083.98 25867.17 5692.82 25772.73 17065.30 29086.62 267
XVG-OURS-SEG-HR74.70 24673.08 24479.57 26778.25 34157.33 31480.49 33587.32 30363.22 30468.76 24190.12 17944.89 28991.59 29570.55 19274.09 23089.79 216
XVG-OURS74.25 25072.46 25679.63 26578.45 33957.59 31080.33 33787.39 30263.86 29768.76 24189.62 18340.50 30491.72 29269.00 20874.25 22889.58 219
V4276.46 22074.55 22482.19 20179.14 32967.82 9190.26 22889.42 24373.75 15568.63 24381.89 27951.31 23394.09 21771.69 18264.84 29784.66 303
PS-MVSNAJss77.26 20676.31 20080.13 25080.64 30959.16 29190.63 21991.06 18572.80 17568.58 24484.57 25153.55 21293.96 22872.97 16571.96 24787.27 255
v119275.98 22873.92 23582.15 20279.73 31966.24 13391.22 19789.75 23072.67 17768.49 24581.42 28949.86 24594.27 20967.08 22765.02 29585.95 282
tpm cat175.30 23972.21 25884.58 13688.52 17867.77 9278.16 35388.02 29661.88 31968.45 24676.37 34160.65 13094.03 22553.77 30774.11 22991.93 184
v14419276.05 22674.03 23382.12 20479.50 32366.55 12691.39 18589.71 23672.30 18868.17 24781.33 29151.75 22894.03 22567.94 21764.19 30385.77 286
v192192075.63 23673.49 24182.06 20879.38 32466.35 12991.07 20489.48 23971.98 19667.99 24881.22 29449.16 25493.90 23166.56 23164.56 30285.92 284
Effi-MVS+-dtu76.14 22275.28 21678.72 27983.22 28355.17 32989.87 23987.78 30075.42 12867.98 24981.43 28845.08 28892.52 27275.08 15371.63 24888.48 235
mvsmamba76.85 21475.71 21080.25 24683.07 28659.16 29191.44 17980.64 35376.84 11067.95 25086.33 23246.17 28094.24 21276.06 14572.92 23987.36 251
114514_t79.17 17177.67 17783.68 16395.32 2965.53 15092.85 11991.60 16063.49 30067.92 25190.63 16446.65 27295.72 15267.01 22883.54 14789.79 216
test_fmvs265.78 32064.84 30868.60 35266.54 38141.71 38183.27 31269.81 37954.38 35467.91 25284.54 25215.35 38581.22 37675.65 14866.16 28682.88 323
tttt051779.50 16678.53 16682.41 19387.22 21661.43 25289.75 24394.76 3269.29 25367.91 25288.06 20872.92 2595.63 15462.91 26573.90 23390.16 210
3Dnovator73.91 682.69 11380.82 12988.31 2389.57 15271.26 2092.60 13294.39 5178.84 8267.89 25492.48 12948.42 25898.52 2868.80 21194.40 3495.15 72
WR-MVS76.76 21775.74 20979.82 26184.60 26362.27 23692.60 13292.51 12176.06 12067.87 25585.34 24156.76 17390.24 31362.20 27063.69 31086.94 260
dp75.01 24372.09 25983.76 15889.28 16166.22 13479.96 34589.75 23071.16 22567.80 25677.19 33451.81 22792.54 27150.39 31571.44 25292.51 168
TranMVSNet+NR-MVSNet75.86 23174.52 22579.89 25982.44 29260.64 27091.37 18891.37 16876.63 11567.65 25786.21 23452.37 22491.55 29661.84 27260.81 33387.48 247
cl2277.94 19776.78 19481.42 21987.57 20764.93 16590.67 21588.86 27072.45 18367.63 25882.68 27164.07 8792.91 25571.79 17965.30 29086.44 268
131480.70 14478.95 16185.94 8387.77 20667.56 9887.91 27592.55 12072.17 19367.44 25993.09 11250.27 24197.04 9271.68 18387.64 11293.23 146
3Dnovator+73.60 782.10 12280.60 13586.60 6390.89 12866.80 11995.20 3493.44 8574.05 14667.42 26092.49 12849.46 24897.65 5570.80 18891.68 7295.33 60
v124075.21 24172.98 24681.88 21079.20 32666.00 13790.75 21389.11 25871.63 21567.41 26181.22 29447.36 26893.87 23265.46 24764.72 30085.77 286
QAPM79.95 16077.39 18687.64 3189.63 15171.41 1893.30 10493.70 7365.34 28967.39 26291.75 14647.83 26598.96 1657.71 29289.81 9392.54 166
miper_ehance_all_eth77.60 20176.44 19881.09 23185.70 24764.41 17690.65 21688.64 28072.31 18767.37 26382.52 27264.77 8192.64 26970.67 19065.30 29086.24 272
v14876.19 22174.47 22681.36 22080.05 31764.44 17391.75 17390.23 21373.68 15867.13 26480.84 29955.92 18693.86 23468.95 20961.73 32685.76 288
tt080573.07 26070.73 27280.07 25178.37 34057.05 31687.78 27792.18 13361.23 32367.04 26586.49 22931.35 35494.58 19465.06 25067.12 27988.57 233
GBi-Net75.65 23473.83 23681.10 22888.85 17265.11 15990.01 23590.32 20570.84 23267.04 26580.25 30948.03 26091.54 29759.80 28469.34 26186.64 263
test175.65 23473.83 23681.10 22888.85 17265.11 15990.01 23590.32 20570.84 23267.04 26580.25 30948.03 26091.54 29759.80 28469.34 26186.64 263
FMVSNet377.73 20076.04 20482.80 18191.20 12368.99 6291.87 16491.99 13873.35 16367.04 26583.19 26656.62 17792.14 28259.80 28469.34 26187.28 254
BH-untuned78.68 18377.08 18983.48 17089.84 14663.74 19492.70 12588.59 28171.57 21766.83 26988.65 19251.75 22895.39 16659.03 28784.77 13891.32 195
FC-MVSNet-test77.99 19578.08 17277.70 28884.89 26055.51 32790.27 22793.75 7276.87 10866.80 27087.59 21465.71 6990.23 31462.89 26673.94 23187.37 250
c3_l76.83 21675.47 21280.93 23585.02 25864.18 18690.39 22388.11 29471.66 21066.65 27181.64 28463.58 9992.56 27069.31 20462.86 31286.04 279
FMVSNet276.07 22374.01 23482.26 19888.85 17267.66 9591.33 19191.61 15970.84 23265.98 27282.25 27548.03 26092.00 28758.46 28968.73 26987.10 257
eth_miper_zixun_eth75.96 23074.40 22780.66 23784.66 26263.02 21789.28 25288.27 29071.88 20165.73 27381.65 28359.45 14492.81 25868.13 21460.53 33586.14 275
ACMM69.62 1374.34 24872.73 25179.17 27384.25 27257.87 30490.36 22489.93 22463.17 30665.64 27486.04 23737.79 32394.10 21665.89 24071.52 25085.55 291
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cl____76.07 22374.67 21980.28 24485.15 25461.76 24590.12 23188.73 27571.16 22565.43 27581.57 28661.15 12492.95 25066.54 23262.17 31986.13 277
DIV-MVS_self_test76.07 22374.67 21980.28 24485.14 25561.75 24690.12 23188.73 27571.16 22565.42 27681.60 28561.15 12492.94 25466.54 23262.16 32186.14 275
Fast-Effi-MVS+-dtu75.04 24273.37 24280.07 25180.86 30459.52 28591.20 19985.38 32271.90 19965.20 27784.84 24741.46 30092.97 24966.50 23472.96 23887.73 244
IterMVS-LS76.49 21975.18 21780.43 24184.49 26662.74 22690.64 21788.80 27272.40 18565.16 27881.72 28260.98 12792.27 28167.74 21964.65 30186.29 270
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LPG-MVS_test75.82 23274.58 22379.56 26884.31 27059.37 28790.44 22089.73 23369.49 25064.86 27988.42 19438.65 31194.30 20772.56 17272.76 24085.01 300
LGP-MVS_train79.56 26884.31 27059.37 28789.73 23369.49 25064.86 27988.42 19438.65 31194.30 20772.56 17272.76 24085.01 300
UniMVSNet_ETH3D72.74 26770.53 27479.36 27078.62 33856.64 32085.01 29989.20 25163.77 29864.84 28184.44 25334.05 34291.86 28963.94 25670.89 25589.57 220
MIMVSNet71.64 27568.44 28981.23 22381.97 29864.44 17373.05 36588.80 27269.67 24964.59 28274.79 34932.79 34687.82 33453.99 30576.35 21591.42 190
RRT_MVS74.44 24772.97 24778.84 27882.36 29357.66 30889.83 24188.79 27470.61 23864.58 28384.89 24639.24 30792.65 26870.11 19566.34 28586.21 273
OpenMVScopyleft70.45 1178.54 18775.92 20686.41 7285.93 24371.68 1692.74 12292.51 12166.49 28064.56 28491.96 14043.88 29298.10 3754.61 30290.65 8789.44 224
ADS-MVSNet266.90 31363.44 32077.26 29788.06 19560.70 26868.01 37675.56 36457.57 34064.48 28569.87 36538.68 30984.10 35640.87 35867.89 27586.97 258
ADS-MVSNet68.54 30164.38 31681.03 23288.06 19566.90 11668.01 37684.02 33457.57 34064.48 28569.87 36538.68 30989.21 32340.87 35867.89 27586.97 258
Anonymous2023121173.08 25970.39 27581.13 22690.62 13263.33 21091.40 18390.06 22051.84 36164.46 28780.67 30236.49 33394.07 21963.83 25764.17 30485.98 281
PLCcopyleft68.80 1475.23 24073.68 23979.86 26092.93 7358.68 29790.64 21788.30 28860.90 32464.43 28890.53 16542.38 29894.57 19656.52 29576.54 21386.33 269
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpmvs72.88 26569.76 28182.22 19990.98 12567.05 11278.22 35288.30 28863.10 30764.35 28974.98 34855.09 19594.27 20943.25 34769.57 26085.34 296
test_djsdf73.76 25772.56 25477.39 29477.00 35153.93 33589.07 25790.69 19265.80 28463.92 29082.03 27843.14 29692.67 26572.83 16768.53 27085.57 290
JIA-IIPM66.06 31762.45 32676.88 30381.42 30254.45 33457.49 39188.67 27849.36 36863.86 29146.86 38956.06 18490.25 31049.53 32068.83 26785.95 282
CNLPA74.31 24972.30 25780.32 24291.49 11661.66 24890.85 20980.72 35256.67 34863.85 29290.64 16246.75 27190.84 30553.79 30675.99 21888.47 237
PatchMatch-RL72.06 27369.98 27678.28 28389.51 15555.70 32683.49 30883.39 34261.24 32263.72 29382.76 26934.77 33993.03 24753.37 30977.59 20186.12 278
FMVSNet172.71 26869.91 27981.10 22883.60 28065.11 15990.01 23590.32 20563.92 29663.56 29480.25 30936.35 33491.54 29754.46 30366.75 28286.64 263
pmmvs473.92 25471.81 26380.25 24679.17 32765.24 15587.43 28387.26 30567.64 27263.46 29583.91 25948.96 25691.53 30062.94 26465.49 28983.96 307
pmmvs573.35 25871.52 26578.86 27778.64 33760.61 27191.08 20286.90 30767.69 26963.32 29683.64 26044.33 29190.53 30762.04 27166.02 28785.46 293
v875.35 23873.26 24381.61 21580.67 30866.82 11789.54 24689.27 24871.65 21163.30 29780.30 30854.99 19694.06 22067.33 22462.33 31883.94 308
Syy-MVS69.65 29169.52 28370.03 34687.87 20143.21 37988.07 27189.01 26372.91 17263.11 29888.10 20545.28 28685.54 34922.07 39269.23 26481.32 341
myMVS_eth3d72.58 27272.74 25072.10 33987.87 20149.45 35688.07 27189.01 26372.91 17263.11 29888.10 20563.63 9585.54 34932.73 38169.23 26481.32 341
v1074.77 24572.54 25581.46 21880.33 31366.71 12189.15 25689.08 26070.94 23063.08 30079.86 31352.52 22294.04 22365.70 24362.17 31983.64 311
ACMP71.68 1075.58 23774.23 23079.62 26684.97 25959.64 28290.80 21189.07 26170.39 24062.95 30187.30 21938.28 31593.87 23272.89 16671.45 25185.36 295
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pm-mvs172.89 26471.09 26878.26 28479.10 33057.62 30990.80 21189.30 24767.66 27062.91 30281.78 28149.11 25592.95 25060.29 28158.89 34384.22 306
jajsoiax73.05 26171.51 26677.67 28977.46 34854.83 33188.81 26190.04 22169.13 25762.85 30383.51 26231.16 35592.75 26170.83 18769.80 25785.43 294
mvs_tets72.71 26871.11 26777.52 29077.41 34954.52 33388.45 26789.76 22968.76 26262.70 30483.26 26529.49 35992.71 26270.51 19369.62 25985.34 296
MS-PatchMatch77.90 19976.50 19782.12 20485.99 23969.95 3991.75 17392.70 11173.97 14962.58 30584.44 25341.11 30295.78 14463.76 25892.17 6480.62 349
test0.0.03 172.76 26672.71 25272.88 33180.25 31447.99 36291.22 19789.45 24171.51 22062.51 30687.66 21353.83 20885.06 35350.16 31767.84 27785.58 289
anonymousdsp71.14 28069.37 28476.45 30572.95 36554.71 33284.19 30388.88 26861.92 31862.15 30779.77 31538.14 31891.44 30268.90 21067.45 27883.21 320
MVP-Stereo77.12 20976.23 20179.79 26281.72 29966.34 13089.29 25190.88 18970.56 23962.01 30882.88 26849.34 24994.13 21565.55 24693.80 4178.88 363
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CL-MVSNet_self_test69.92 28868.09 29275.41 31173.25 36455.90 32590.05 23489.90 22569.96 24561.96 30976.54 33851.05 23587.64 33749.51 32150.59 36582.70 329
bld_raw_dy_0_6471.59 27769.71 28277.22 29877.82 34758.12 30287.71 27973.66 36968.01 26761.90 31084.29 25533.68 34388.43 32869.91 19770.43 25685.11 299
miper_lstm_enhance73.05 26171.73 26477.03 29983.80 27658.32 30081.76 32388.88 26869.80 24861.01 31178.23 32557.19 16587.51 34065.34 24859.53 34085.27 298
NR-MVSNet76.05 22674.59 22280.44 24082.96 28762.18 23790.83 21091.73 15277.12 10760.96 31286.35 23059.28 14891.80 29060.74 27761.34 33087.35 252
tfpnnormal70.10 28667.36 29478.32 28283.45 28260.97 25988.85 26092.77 10964.85 29160.83 31378.53 32243.52 29493.48 24031.73 38461.70 32780.52 350
IterMVS72.65 27170.83 26978.09 28682.17 29562.96 21987.64 28186.28 31371.56 21860.44 31478.85 32145.42 28586.66 34463.30 26261.83 32384.65 304
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testing370.38 28570.83 26969.03 35085.82 24443.93 37890.72 21490.56 19868.06 26660.24 31586.82 22664.83 7984.12 35526.33 38864.10 30579.04 362
WR-MVS_H70.59 28269.94 27872.53 33381.03 30351.43 34587.35 28492.03 13767.38 27360.23 31680.70 30055.84 18783.45 36346.33 33758.58 34582.72 327
TransMVSNet (Re)70.07 28767.66 29377.31 29680.62 31059.13 29391.78 17084.94 32765.97 28360.08 31780.44 30550.78 23691.87 28848.84 32345.46 37380.94 345
CP-MVSNet70.50 28369.91 27972.26 33680.71 30751.00 34887.23 28690.30 20967.84 26859.64 31882.69 27050.23 24282.30 37151.28 31259.28 34183.46 316
IterMVS-SCA-FT71.55 27869.97 27776.32 30681.48 30060.67 26987.64 28185.99 31866.17 28259.50 31978.88 32045.53 28383.65 36162.58 26861.93 32284.63 305
Patchmtry67.53 31063.93 31778.34 28182.12 29664.38 17768.72 37384.00 33548.23 37259.24 32072.41 35557.82 16089.27 32246.10 33856.68 35081.36 340
D2MVS73.80 25572.02 26079.15 27579.15 32862.97 21888.58 26590.07 21872.94 17059.22 32178.30 32342.31 29992.70 26465.59 24572.00 24681.79 338
PS-CasMVS69.86 29069.13 28572.07 34080.35 31250.57 35087.02 28889.75 23067.27 27459.19 32282.28 27446.58 27382.24 37250.69 31459.02 34283.39 318
PEN-MVS69.46 29368.56 28772.17 33879.27 32549.71 35486.90 29089.24 24967.24 27759.08 32382.51 27347.23 26983.54 36248.42 32557.12 34683.25 319
RPSCF64.24 32761.98 32971.01 34476.10 35545.00 37475.83 36175.94 36146.94 37458.96 32484.59 25031.40 35382.00 37347.76 33160.33 33986.04 279
XVG-ACMP-BASELINE68.04 30565.53 30575.56 31074.06 36252.37 34078.43 34985.88 31962.03 31658.91 32581.21 29620.38 37991.15 30460.69 27868.18 27283.16 321
v7n71.31 27968.65 28679.28 27176.40 35360.77 26386.71 29289.45 24164.17 29558.77 32678.24 32444.59 29093.54 23857.76 29161.75 32583.52 314
ET-MVSNet_ETH3D84.01 8783.15 9586.58 6590.78 13170.89 2794.74 4794.62 4081.44 3858.19 32793.64 10473.64 2392.35 27982.66 9578.66 19496.50 24
DTE-MVSNet68.46 30267.33 29571.87 34277.94 34549.00 35986.16 29588.58 28266.36 28158.19 32782.21 27646.36 27483.87 36044.97 34455.17 35382.73 326
Anonymous2023120667.53 31065.78 30172.79 33274.95 35847.59 36488.23 26987.32 30361.75 32158.07 32977.29 33237.79 32387.29 34242.91 34963.71 30983.48 315
KD-MVS_2432*160069.03 29666.37 29977.01 30085.56 24861.06 25781.44 32890.25 21167.27 27458.00 33076.53 33954.49 20087.63 33848.04 32735.77 38782.34 333
miper_refine_blended69.03 29666.37 29977.01 30085.56 24861.06 25781.44 32890.25 21167.27 27458.00 33076.53 33954.49 20087.63 33848.04 32735.77 38782.34 333
PVSNet_068.08 1571.81 27468.32 29182.27 19684.68 26162.31 23588.68 26390.31 20875.84 12257.93 33280.65 30337.85 32294.19 21369.94 19629.05 39590.31 209
DP-MVS69.90 28966.48 29680.14 24995.36 2862.93 22089.56 24476.11 36050.27 36657.69 33385.23 24239.68 30695.73 14833.35 37771.05 25481.78 339
pmmvs667.57 30964.76 31076.00 30972.82 36753.37 33788.71 26286.78 31153.19 35757.58 33478.03 32735.33 33892.41 27555.56 29954.88 35582.21 335
F-COLMAP70.66 28168.44 28977.32 29586.37 23355.91 32488.00 27386.32 31256.94 34657.28 33588.07 20733.58 34492.49 27351.02 31368.37 27183.55 312
Patchmatch-RL test68.17 30464.49 31479.19 27271.22 36953.93 33570.07 37171.54 37769.22 25456.79 33662.89 37756.58 17888.61 32469.53 20152.61 36095.03 78
LS3D69.17 29466.40 29877.50 29191.92 10356.12 32385.12 29880.37 35446.96 37356.50 33787.51 21637.25 32693.71 23532.52 38379.40 18582.68 330
dmvs_testset65.55 32166.45 29762.86 36279.87 31822.35 40576.55 35771.74 37577.42 10655.85 33887.77 21251.39 23280.69 37731.51 38765.92 28885.55 291
ppachtmachnet_test67.72 30763.70 31879.77 26378.92 33166.04 13688.68 26382.90 34560.11 33155.45 33975.96 34439.19 30890.55 30639.53 36252.55 36182.71 328
test_fmvs356.82 34554.86 34862.69 36353.59 39435.47 39175.87 36065.64 38643.91 38155.10 34071.43 3636.91 39974.40 38468.64 21252.63 35978.20 368
LTVRE_ROB59.60 1966.27 31663.54 31974.45 31984.00 27551.55 34467.08 37983.53 33958.78 33754.94 34180.31 30734.54 34093.23 24440.64 36068.03 27378.58 366
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MSDG69.54 29265.73 30280.96 23385.11 25763.71 19784.19 30383.28 34356.95 34554.50 34284.03 25631.50 35296.03 13842.87 35169.13 26683.14 322
EU-MVSNet64.01 32863.01 32267.02 35874.40 36138.86 38983.27 31286.19 31645.11 37854.27 34381.15 29736.91 33280.01 37948.79 32457.02 34782.19 336
testgi64.48 32662.87 32469.31 34971.24 36840.62 38485.49 29679.92 35565.36 28854.18 34483.49 26323.74 37284.55 35441.60 35560.79 33482.77 325
ITE_SJBPF70.43 34574.44 36047.06 36977.32 35860.16 33054.04 34583.53 26123.30 37384.01 35843.07 34861.58 32980.21 355
OpenMVS_ROBcopyleft61.12 1866.39 31562.92 32376.80 30476.51 35257.77 30589.22 25383.41 34155.48 35253.86 34677.84 32826.28 36893.95 22934.90 37468.76 26878.68 365
FMVSNet568.04 30565.66 30475.18 31484.43 26857.89 30383.54 30786.26 31461.83 32053.64 34773.30 35237.15 32985.08 35248.99 32261.77 32482.56 332
ACMH+65.35 1667.65 30864.55 31276.96 30284.59 26457.10 31588.08 27080.79 35158.59 33953.00 34881.09 29826.63 36792.95 25046.51 33561.69 32880.82 346
our_test_368.29 30364.69 31179.11 27678.92 33164.85 16688.40 26885.06 32560.32 32952.68 34976.12 34340.81 30389.80 32044.25 34655.65 35182.67 331
test_040264.54 32561.09 33174.92 31684.10 27460.75 26587.95 27479.71 35652.03 35952.41 35077.20 33332.21 35091.64 29323.14 39061.03 33172.36 379
LCM-MVSNet-Re72.93 26371.84 26276.18 30888.49 17948.02 36180.07 34270.17 37873.96 15052.25 35180.09 31249.98 24388.24 33067.35 22284.23 14592.28 174
test20.0363.83 32962.65 32567.38 35770.58 37439.94 38586.57 29384.17 33263.29 30351.86 35277.30 33137.09 33082.47 36938.87 36654.13 35779.73 356
OurMVSNet-221017-064.68 32462.17 32872.21 33776.08 35647.35 36580.67 33481.02 35056.19 34951.60 35379.66 31727.05 36688.56 32653.60 30853.63 35880.71 348
ACMH63.93 1768.62 29964.81 30980.03 25385.22 25363.25 21187.72 27884.66 32960.83 32551.57 35479.43 31927.29 36594.96 17941.76 35464.84 29781.88 337
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DSMNet-mixed56.78 34654.44 34963.79 36163.21 38529.44 40064.43 38264.10 38742.12 38551.32 35571.60 36031.76 35175.04 38236.23 36965.20 29486.87 261
pmmvs-eth3d65.53 32262.32 32775.19 31369.39 37759.59 28382.80 31983.43 34062.52 31251.30 35672.49 35332.86 34587.16 34355.32 30050.73 36478.83 364
PM-MVS59.40 34256.59 34467.84 35363.63 38441.86 38076.76 35663.22 38859.01 33651.07 35772.27 35811.72 39183.25 36561.34 27450.28 36678.39 367
Patchmatch-test65.86 31860.94 33280.62 23983.75 27758.83 29558.91 39075.26 36644.50 38050.95 35877.09 33558.81 15287.90 33235.13 37364.03 30695.12 74
SixPastTwentyTwo64.92 32361.78 33074.34 32178.74 33549.76 35383.42 31179.51 35762.86 30850.27 35977.35 33030.92 35790.49 30845.89 33947.06 37082.78 324
EG-PatchMatch MVS68.55 30065.41 30677.96 28778.69 33662.93 22089.86 24089.17 25360.55 32650.27 35977.73 32922.60 37494.06 22047.18 33372.65 24276.88 371
ambc69.61 34761.38 38941.35 38249.07 39685.86 32050.18 36166.40 37110.16 39388.14 33145.73 34044.20 37479.32 360
test_vis1_rt59.09 34457.31 34364.43 36068.44 37946.02 37283.05 31748.63 40051.96 36049.57 36263.86 37616.30 38380.20 37871.21 18562.79 31367.07 385
KD-MVS_self_test60.87 33858.60 33867.68 35566.13 38239.93 38675.63 36284.70 32857.32 34349.57 36268.45 36829.55 35882.87 36748.09 32647.94 36980.25 354
UnsupCasMVSNet_eth65.79 31963.10 32173.88 32370.71 37250.29 35281.09 33189.88 22672.58 17949.25 36474.77 35032.57 34887.43 34155.96 29841.04 38083.90 309
COLMAP_ROBcopyleft57.96 2062.98 33359.65 33572.98 33081.44 30153.00 33983.75 30675.53 36548.34 37148.81 36581.40 29024.14 37090.30 30932.95 37960.52 33675.65 374
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
USDC67.43 31264.51 31376.19 30777.94 34555.29 32878.38 35085.00 32673.17 16548.36 36680.37 30621.23 37692.48 27452.15 31164.02 30780.81 347
Anonymous2024052162.09 33459.08 33771.10 34367.19 38048.72 36083.91 30585.23 32450.38 36547.84 36771.22 36420.74 37785.51 35146.47 33658.75 34479.06 361
K. test v363.09 33259.61 33673.53 32676.26 35449.38 35883.27 31277.15 35964.35 29447.77 36872.32 35728.73 36187.79 33549.93 31936.69 38683.41 317
UnsupCasMVSNet_bld61.60 33657.71 34073.29 32868.73 37851.64 34378.61 34889.05 26257.20 34446.11 36961.96 38028.70 36288.60 32550.08 31838.90 38479.63 357
AllTest61.66 33558.06 33972.46 33479.57 32051.42 34680.17 34068.61 38151.25 36245.88 37081.23 29219.86 38186.58 34538.98 36457.01 34879.39 358
TestCases72.46 33479.57 32051.42 34668.61 38151.25 36245.88 37081.23 29219.86 38186.58 34538.98 36457.01 34879.39 358
lessismore_v073.72 32572.93 36647.83 36361.72 39045.86 37273.76 35128.63 36389.81 31847.75 33231.37 39283.53 313
N_pmnet50.55 35049.11 35354.88 37077.17 3504.02 41384.36 3022.00 41148.59 36945.86 37268.82 36732.22 34982.80 36831.58 38551.38 36377.81 369
mvsany_test348.86 35246.35 35556.41 36646.00 40031.67 39662.26 38447.25 40143.71 38245.54 37468.15 36910.84 39264.44 39857.95 29035.44 38973.13 376
MVS-HIRNet60.25 34055.55 34774.35 32084.37 26956.57 32171.64 36774.11 36834.44 38845.54 37442.24 39531.11 35689.81 31840.36 36176.10 21776.67 372
CMPMVSbinary48.56 2166.77 31464.41 31573.84 32470.65 37350.31 35177.79 35485.73 32145.54 37744.76 37682.14 27735.40 33790.14 31663.18 26374.54 22581.07 344
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet160.16 34157.33 34268.67 35169.71 37544.13 37678.92 34784.21 33155.05 35344.63 37771.85 35923.91 37181.54 37532.63 38255.03 35480.35 351
LF4IMVS54.01 34952.12 35059.69 36462.41 38739.91 38768.59 37468.28 38342.96 38444.55 37875.18 34714.09 39068.39 39041.36 35751.68 36270.78 380
pmmvs355.51 34751.50 35267.53 35657.90 39250.93 34980.37 33673.66 36940.63 38644.15 37964.75 37516.30 38378.97 38044.77 34540.98 38272.69 377
new-patchmatchnet59.30 34356.48 34567.79 35465.86 38344.19 37582.47 32081.77 34759.94 33243.65 38066.20 37227.67 36481.68 37439.34 36341.40 37977.50 370
TDRefinement55.28 34851.58 35166.39 35959.53 39146.15 37176.23 35972.80 37144.60 37942.49 38176.28 34215.29 38682.39 37033.20 37843.75 37570.62 381
test_f46.58 35343.45 35755.96 36745.18 40132.05 39561.18 38549.49 39933.39 38942.05 38262.48 3797.00 39865.56 39447.08 33443.21 37770.27 382
TinyColmap60.32 33956.42 34672.00 34178.78 33453.18 33878.36 35175.64 36352.30 35841.59 38375.82 34614.76 38888.35 32935.84 37054.71 35674.46 375
YYNet163.76 33160.14 33474.62 31878.06 34460.19 27783.46 31083.99 33756.18 35039.25 38471.56 36237.18 32883.34 36442.90 35048.70 36880.32 352
MDA-MVSNet_test_wron63.78 33060.16 33374.64 31778.15 34360.41 27283.49 30884.03 33356.17 35139.17 38571.59 36137.22 32783.24 36642.87 35148.73 36780.26 353
WB-MVS46.23 35444.94 35650.11 37462.13 38821.23 40776.48 35855.49 39345.89 37635.78 38661.44 38235.54 33672.83 3859.96 40121.75 39656.27 389
new_pmnet49.31 35146.44 35457.93 36562.84 38640.74 38368.47 37562.96 38936.48 38735.09 38757.81 38414.97 38772.18 38632.86 38046.44 37160.88 387
MDA-MVSNet-bldmvs61.54 33757.70 34173.05 32979.53 32257.00 31983.08 31681.23 34957.57 34034.91 38872.45 35432.79 34686.26 34735.81 37141.95 37875.89 373
SSC-MVS44.51 35643.35 35847.99 37861.01 39018.90 40974.12 36454.36 39443.42 38334.10 38960.02 38334.42 34170.39 3889.14 40319.57 39754.68 390
test_vis3_rt40.46 36037.79 36148.47 37744.49 40233.35 39466.56 38032.84 40832.39 39029.65 39039.13 3983.91 40668.65 38950.17 31640.99 38143.40 393
test_method38.59 36235.16 36548.89 37654.33 39321.35 40645.32 39753.71 3957.41 40328.74 39151.62 3878.70 39652.87 40133.73 37532.89 39172.47 378
FPMVS45.64 35543.10 35953.23 37251.42 39736.46 39064.97 38171.91 37429.13 39227.53 39261.55 3819.83 39465.01 39616.00 39855.58 35258.22 388
APD_test140.50 35937.31 36250.09 37551.88 39535.27 39259.45 38952.59 39621.64 39526.12 39357.80 3854.56 40366.56 39222.64 39139.09 38348.43 391
LCM-MVSNet40.54 35835.79 36354.76 37136.92 40730.81 39751.41 39469.02 38022.07 39424.63 39445.37 3914.56 40365.81 39333.67 37634.50 39067.67 383
PMMVS237.93 36333.61 36650.92 37346.31 39924.76 40360.55 38850.05 39728.94 39320.93 39547.59 3884.41 40565.13 39525.14 38918.55 39962.87 386
tmp_tt22.26 37123.75 37317.80 3875.23 41112.06 41235.26 39839.48 4052.82 40518.94 39644.20 39422.23 37524.64 40636.30 3689.31 40316.69 400
ANet_high40.27 36135.20 36455.47 36834.74 40834.47 39363.84 38371.56 37648.42 37018.80 39741.08 3969.52 39564.45 39720.18 3938.66 40467.49 384
testf132.77 36529.47 36842.67 38141.89 40430.81 39752.07 39243.45 40215.45 39818.52 39844.82 3922.12 40758.38 39916.05 39630.87 39338.83 394
APD_test232.77 36529.47 36842.67 38141.89 40430.81 39752.07 39243.45 40215.45 39818.52 39844.82 3922.12 40758.38 39916.05 39630.87 39338.83 394
DeepMVS_CXcopyleft34.71 38451.45 39624.73 40428.48 41031.46 39117.49 40052.75 3865.80 40142.60 40518.18 39419.42 39836.81 397
Gipumacopyleft34.91 36431.44 36745.30 37970.99 37139.64 38819.85 40172.56 37220.10 39716.16 40121.47 4025.08 40271.16 38713.07 39943.70 37625.08 399
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft26.43 2231.84 36728.16 37042.89 38025.87 41027.58 40150.92 39549.78 39821.37 39614.17 40240.81 3972.01 40966.62 3919.61 40238.88 38534.49 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive24.84 2324.35 36919.77 37538.09 38334.56 40926.92 40226.57 39938.87 40611.73 40211.37 40327.44 3991.37 41050.42 40211.41 40014.60 40036.93 396
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN24.61 36824.00 37226.45 38543.74 40318.44 41060.86 38639.66 40415.11 4009.53 40422.10 4016.52 40046.94 4038.31 40410.14 40113.98 401
EMVS23.76 37023.20 37425.46 38641.52 40616.90 41160.56 38738.79 40714.62 4018.99 40520.24 4047.35 39745.82 4047.25 4059.46 40213.64 402
wuyk23d11.30 37310.95 37612.33 38848.05 39819.89 40825.89 4001.92 4123.58 4043.12 4061.37 4060.64 41115.77 4076.23 4067.77 4051.35 403
EGC-MVSNET42.35 35738.09 36055.11 36974.57 35946.62 37071.63 36855.77 3920.04 4060.24 40762.70 37814.24 38974.91 38317.59 39546.06 37243.80 392
testmvs7.23 3759.62 3780.06 3900.04 4120.02 41584.98 3000.02 4130.03 4070.18 4081.21 4070.01 4130.02 4080.14 4070.01 4060.13 405
test1236.92 3769.21 3790.08 3890.03 4130.05 41481.65 3260.01 4140.02 4080.14 4090.85 4080.03 4120.02 4080.12 4080.00 4070.16 404
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
cdsmvs_eth3d_5k19.86 37226.47 3710.00 3910.00 4140.00 4160.00 40293.45 840.00 4090.00 41095.27 5649.56 2470.00 4100.00 4090.00 4070.00 406
pcd_1.5k_mvsjas4.46 3775.95 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40953.55 2120.00 4100.00 4090.00 4070.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
ab-mvs-re7.91 37410.55 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41094.95 640.00 4140.00 4100.00 4090.00 4070.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
WAC-MVS49.45 35631.56 386
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2699.07 1392.01 2494.77 2596.51 21
No_MVS89.60 897.31 473.22 1095.05 2699.07 1392.01 2494.77 2596.51 21
eth-test20.00 414
eth-test0.00 414
OPU-MVS89.97 397.52 373.15 1296.89 597.00 983.82 299.15 295.72 597.63 397.62 2
save fliter93.84 4867.89 9095.05 3992.66 11478.19 89
test_0728_SECOND88.70 1696.45 1270.43 3296.64 994.37 5299.15 291.91 2794.90 2196.51 21
GSMVS94.68 92
sam_mvs157.85 15994.68 92
sam_mvs54.91 197
MTGPAbinary92.23 127
test_post178.95 34620.70 40353.05 21791.50 30160.43 279
test_post23.01 40056.49 17992.67 265
patchmatchnet-post67.62 37057.62 16290.25 310
MTMP93.77 8432.52 409
gm-plane-assit88.42 18367.04 11378.62 8691.83 14497.37 7076.57 142
test9_res89.41 3994.96 1895.29 64
agg_prior286.41 6694.75 2995.33 60
test_prior467.18 10993.92 73
test_prior86.42 7194.71 3567.35 10493.10 9996.84 10895.05 76
新几何291.41 181
旧先验191.94 10160.74 26691.50 16494.36 8265.23 7391.84 6994.55 99
无先验92.71 12492.61 11862.03 31697.01 9366.63 23093.97 124
原ACMM292.01 156
testdata296.09 13261.26 275
segment_acmp65.94 66
testdata189.21 25477.55 102
plane_prior786.94 22361.51 250
plane_prior687.23 21562.32 23450.66 237
plane_prior591.31 17095.55 16176.74 14078.53 19588.39 238
plane_prior489.14 189
plane_prior293.13 10878.81 83
plane_prior187.15 217
plane_prior62.42 23093.85 7779.38 6878.80 192
n20.00 415
nn0.00 415
door-mid66.01 385
test1193.01 101
door66.57 384
HQP5-MVS63.66 201
BP-MVS77.63 137
HQP3-MVS91.70 15678.90 190
HQP2-MVS51.63 230
NP-MVS87.41 21163.04 21690.30 171
ACMMP++_ref71.63 248
ACMMP++69.72 258
Test By Simon54.21 206