This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++90.23 191.01 187.89 2294.34 2771.25 5595.06 194.23 378.38 3192.78 495.74 682.45 397.49 389.42 496.68 294.95 8
SED-MVS90.08 290.85 287.77 2495.30 270.98 6193.57 794.06 1077.24 4893.10 195.72 882.99 197.44 589.07 996.63 494.88 12
DVP-MVScopyleft89.60 390.35 387.33 3895.27 571.25 5593.49 992.73 5977.33 4692.12 995.78 480.98 997.40 789.08 796.41 1293.33 76
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft89.48 589.98 488.01 1494.80 1172.69 3091.59 4194.10 875.90 8392.29 795.66 1081.67 697.38 987.44 2096.34 1593.95 49
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS89.51 489.91 588.30 994.28 3073.46 1692.90 1694.11 680.27 891.35 1494.16 3478.35 1396.77 2289.59 394.22 5694.67 22
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVS89.15 689.63 687.73 2694.49 1871.69 5093.83 493.96 1375.70 8791.06 1696.03 176.84 1497.03 1589.09 695.65 2794.47 29
SMA-MVScopyleft89.08 789.23 788.61 594.25 3173.73 992.40 2393.63 2174.77 10392.29 795.97 274.28 2997.24 1188.58 1396.91 194.87 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft89.02 889.15 888.63 495.01 976.03 192.38 2692.85 5480.26 987.78 2794.27 3075.89 1996.81 2187.45 1996.44 993.05 86
CNVR-MVS88.93 989.13 988.33 794.77 1273.82 890.51 5993.00 4380.90 588.06 2594.06 3876.43 1696.84 1988.48 1495.99 1894.34 35
SteuartSystems-ACMMP88.72 1088.86 1088.32 892.14 6972.96 2493.73 593.67 2080.19 1088.10 2494.80 1573.76 3397.11 1387.51 1895.82 2194.90 11
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS88.46 1188.74 1187.64 3392.78 6171.95 4892.40 2394.74 275.71 8589.16 1995.10 1375.65 2196.19 4187.07 2196.01 1794.79 19
DeepPCF-MVS80.84 188.10 1288.56 1286.73 4892.24 6869.03 9389.57 8393.39 3077.53 4389.79 1894.12 3578.98 1296.58 3385.66 2495.72 2494.58 25
SD-MVS88.06 1388.50 1386.71 4992.60 6672.71 2891.81 4093.19 3577.87 3490.32 1794.00 4074.83 2393.78 13487.63 1794.27 5593.65 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
9.1488.26 1492.84 6091.52 4494.75 173.93 12188.57 2294.67 1775.57 2295.79 5186.77 2295.76 23
TSAR-MVS + MP.88.02 1688.11 1587.72 2893.68 4372.13 4591.41 4592.35 7474.62 10788.90 2093.85 4475.75 2096.00 4787.80 1594.63 4595.04 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMP_NAP88.05 1588.08 1687.94 1793.70 4173.05 2190.86 5493.59 2376.27 7788.14 2395.09 1471.06 5296.67 2787.67 1696.37 1494.09 44
NCCC88.06 1388.01 1788.24 1094.41 2273.62 1091.22 5092.83 5581.50 385.79 3793.47 4973.02 3997.00 1684.90 2994.94 3794.10 43
ZNCC-MVS87.94 1787.85 1888.20 1194.39 2473.33 1893.03 1493.81 1776.81 6185.24 4294.32 2971.76 4696.93 1785.53 2695.79 2294.32 36
MP-MVS-pluss87.67 1987.72 1987.54 3493.64 4472.04 4789.80 7793.50 2575.17 9686.34 3395.29 1270.86 5396.00 4788.78 1296.04 1694.58 25
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft87.71 1887.64 2087.93 1994.36 2673.88 692.71 2292.65 6477.57 3983.84 6994.40 2872.24 4296.28 3885.65 2595.30 3393.62 66
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft87.44 2187.52 2187.19 4094.24 3272.39 3891.86 3992.83 5573.01 14288.58 2194.52 1973.36 3496.49 3484.26 3995.01 3592.70 95
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS87.58 2087.47 2287.94 1794.58 1673.54 1493.04 1293.24 3376.78 6384.91 4794.44 2670.78 5496.61 3084.53 3694.89 3993.66 59
GST-MVS87.42 2387.26 2387.89 2294.12 3672.97 2392.39 2593.43 2876.89 5984.68 5193.99 4270.67 5696.82 2084.18 4395.01 3593.90 51
MCST-MVS87.37 2587.25 2487.73 2694.53 1772.46 3789.82 7593.82 1673.07 14084.86 5092.89 6176.22 1796.33 3684.89 3195.13 3494.40 32
ACMMPR87.44 2187.23 2588.08 1394.64 1373.59 1193.04 1293.20 3476.78 6384.66 5494.52 1968.81 7596.65 2884.53 3694.90 3894.00 48
region2R87.42 2387.20 2688.09 1294.63 1473.55 1293.03 1493.12 3776.73 6684.45 5894.52 1969.09 7196.70 2584.37 3894.83 4294.03 47
MTAPA87.23 2687.00 2787.90 2094.18 3574.25 586.58 17492.02 8579.45 1785.88 3594.80 1568.07 7796.21 4086.69 2395.34 3193.23 79
HPM-MVScopyleft87.11 2886.98 2887.50 3693.88 3972.16 4492.19 3293.33 3176.07 8083.81 7093.95 4369.77 6596.01 4685.15 2794.66 4494.32 36
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS86.69 3386.95 2985.90 6190.76 9067.57 12992.83 1793.30 3279.67 1584.57 5792.27 7371.47 4995.02 8484.24 4193.46 6195.13 5
CP-MVS87.11 2886.92 3087.68 3294.20 3473.86 793.98 392.82 5876.62 6883.68 7194.46 2367.93 7895.95 5084.20 4294.39 5193.23 79
XVS87.18 2786.91 3188.00 1594.42 2073.33 1892.78 1892.99 4579.14 1983.67 7294.17 3367.45 8396.60 3183.06 5094.50 4894.07 45
DeepC-MVS79.81 287.08 3086.88 3287.69 3191.16 8072.32 4290.31 6693.94 1477.12 5382.82 8394.23 3272.13 4497.09 1484.83 3295.37 3093.65 63
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS86.73 3286.67 3386.91 4494.11 3772.11 4692.37 2792.56 6774.50 10886.84 3194.65 1867.31 8595.77 5284.80 3392.85 6592.84 93
DeepC-MVS_fast79.65 386.91 3186.62 3487.76 2593.52 4672.37 4091.26 4693.04 3876.62 6884.22 6293.36 5171.44 5096.76 2380.82 7295.33 3294.16 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS-test86.29 4086.48 3585.71 6391.02 8367.21 13992.36 2893.78 1878.97 2683.51 7591.20 9870.65 5795.15 7581.96 6394.89 3994.77 20
DROMVSNet86.01 4186.38 3684.91 8289.31 12966.27 15392.32 2993.63 2179.37 1884.17 6491.88 8069.04 7495.43 6383.93 4493.77 5993.01 89
mPP-MVS86.67 3586.32 3787.72 2894.41 2273.55 1292.74 2092.22 8076.87 6082.81 8494.25 3166.44 9296.24 3982.88 5494.28 5493.38 73
PGM-MVS86.68 3486.27 3887.90 2094.22 3373.38 1790.22 6893.04 3875.53 8983.86 6894.42 2767.87 8096.64 2982.70 5994.57 4793.66 59
train_agg86.43 3786.20 3987.13 4293.26 5072.96 2488.75 10691.89 9368.69 21885.00 4593.10 5474.43 2695.41 6584.97 2895.71 2593.02 88
CSCG86.41 3986.19 4087.07 4392.91 5872.48 3690.81 5593.56 2473.95 11983.16 7891.07 10375.94 1895.19 7379.94 8194.38 5293.55 69
PHI-MVS86.43 3786.17 4187.24 3990.88 8770.96 6392.27 3194.07 972.45 14585.22 4391.90 7969.47 6796.42 3583.28 4995.94 1994.35 34
dcpmvs_285.63 4986.15 4284.06 11391.71 7564.94 18486.47 17791.87 9573.63 12786.60 3293.02 5976.57 1591.87 21183.36 4792.15 7395.35 2
CANet86.45 3686.10 4387.51 3590.09 10170.94 6589.70 8192.59 6681.78 281.32 9891.43 9370.34 5897.23 1284.26 3993.36 6294.37 33
casdiffmvs_mvgpermissive85.99 4286.09 4485.70 6487.65 18967.22 13888.69 11093.04 3879.64 1685.33 4192.54 7073.30 3594.50 10583.49 4691.14 8795.37 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVS_3200maxsize85.97 4385.88 4586.22 5592.69 6369.53 8691.93 3692.99 4573.54 13185.94 3494.51 2265.80 10295.61 5583.04 5292.51 6993.53 71
canonicalmvs85.91 4485.87 4686.04 5889.84 11169.44 9190.45 6493.00 4376.70 6788.01 2691.23 9673.28 3693.91 12981.50 6688.80 11194.77 20
MSLP-MVS++85.43 5285.76 4784.45 9691.93 7270.24 7490.71 5692.86 5377.46 4584.22 6292.81 6567.16 8792.94 17580.36 7794.35 5390.16 178
SR-MVS-dyc-post85.77 4685.61 4886.23 5493.06 5570.63 7191.88 3792.27 7673.53 13285.69 3894.45 2465.00 11095.56 5682.75 5591.87 7792.50 103
RE-MVS-def85.48 4993.06 5570.63 7191.88 3792.27 7673.53 13285.69 3894.45 2463.87 11682.75 5591.87 7792.50 103
ACMMPcopyleft85.89 4585.39 5087.38 3793.59 4572.63 3292.74 2093.18 3676.78 6380.73 10793.82 4564.33 11296.29 3782.67 6090.69 9193.23 79
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TSAR-MVS + GP.85.71 4885.33 5186.84 4591.34 7872.50 3589.07 9587.28 22076.41 7085.80 3690.22 12174.15 3195.37 7081.82 6491.88 7692.65 99
alignmvs85.48 5085.32 5285.96 6089.51 11869.47 8889.74 7992.47 6876.17 7887.73 2991.46 9270.32 5993.78 13481.51 6588.95 10894.63 24
DELS-MVS85.41 5385.30 5385.77 6288.49 15867.93 12185.52 20693.44 2778.70 2783.63 7489.03 14974.57 2495.71 5480.26 7994.04 5793.66 59
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CDPH-MVS85.76 4785.29 5487.17 4193.49 4771.08 5988.58 11392.42 7268.32 22484.61 5593.48 4772.32 4196.15 4379.00 8595.43 2994.28 38
casdiffmvspermissive85.11 5685.14 5585.01 7687.20 20465.77 16687.75 14092.83 5577.84 3584.36 6192.38 7272.15 4393.93 12881.27 6890.48 9295.33 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline84.93 5884.98 5684.80 8687.30 20265.39 17587.30 15292.88 5277.62 3784.04 6792.26 7471.81 4593.96 12281.31 6790.30 9495.03 7
UA-Net85.08 5784.96 5785.45 6692.07 7068.07 11989.78 7890.86 12582.48 184.60 5693.20 5369.35 6895.22 7271.39 15890.88 9093.07 85
HPM-MVS_fast85.35 5484.95 5886.57 5193.69 4270.58 7392.15 3491.62 10373.89 12282.67 8694.09 3662.60 13195.54 5880.93 7092.93 6493.57 68
MVS_111021_HR85.14 5584.75 5986.32 5391.65 7672.70 2985.98 18990.33 13876.11 7982.08 8991.61 8771.36 5194.17 11881.02 6992.58 6892.08 118
ETV-MVS84.90 6084.67 6085.59 6589.39 12368.66 10888.74 10892.64 6579.97 1384.10 6585.71 23869.32 6995.38 6780.82 7291.37 8492.72 94
patch_mono-283.65 6684.54 6180.99 20790.06 10665.83 16284.21 23488.74 19171.60 16085.01 4492.44 7174.51 2583.50 31282.15 6292.15 7393.64 65
3Dnovator+77.84 485.48 5084.47 6288.51 691.08 8173.49 1593.18 1193.78 1880.79 676.66 18093.37 5060.40 17496.75 2477.20 10393.73 6095.29 4
DPM-MVS84.93 5884.29 6386.84 4590.20 9973.04 2287.12 15693.04 3869.80 19182.85 8291.22 9773.06 3896.02 4576.72 11194.63 4591.46 135
EI-MVSNet-Vis-set84.19 6183.81 6485.31 6888.18 16867.85 12287.66 14289.73 15580.05 1282.95 7989.59 13370.74 5594.82 9380.66 7684.72 15993.28 78
nrg03083.88 6283.53 6584.96 7886.77 21269.28 9290.46 6392.67 6174.79 10282.95 7991.33 9572.70 4093.09 16980.79 7479.28 22992.50 103
MG-MVS83.41 7183.45 6683.28 13992.74 6262.28 23488.17 12689.50 15975.22 9481.49 9792.74 6966.75 8895.11 7872.85 14691.58 8192.45 106
EI-MVSNet-UG-set83.81 6383.38 6785.09 7487.87 17867.53 13087.44 14889.66 15679.74 1482.23 8889.41 14270.24 6094.74 9679.95 8083.92 16992.99 90
CPTT-MVS83.73 6483.33 6884.92 8193.28 4970.86 6792.09 3590.38 13468.75 21779.57 11892.83 6360.60 17093.04 17380.92 7191.56 8290.86 154
HQP_MVS83.64 6783.14 6985.14 7290.08 10268.71 10491.25 4892.44 6979.12 2178.92 12691.00 10760.42 17295.38 6778.71 8886.32 14291.33 136
Effi-MVS+83.62 6883.08 7085.24 7088.38 16367.45 13188.89 10089.15 17275.50 9082.27 8788.28 17169.61 6694.45 10777.81 9787.84 12193.84 54
MVS_Test83.15 7583.06 7183.41 13686.86 20863.21 22086.11 18792.00 8774.31 11282.87 8189.44 14170.03 6193.21 15877.39 10288.50 11793.81 55
EPP-MVSNet83.40 7283.02 7284.57 9090.13 10064.47 19392.32 2990.73 12674.45 11179.35 12191.10 10169.05 7395.12 7672.78 14787.22 12994.13 42
OPM-MVS83.50 6982.95 7385.14 7288.79 14870.95 6489.13 9491.52 10677.55 4280.96 10591.75 8260.71 16694.50 10579.67 8286.51 14089.97 194
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EPNet83.72 6582.92 7486.14 5784.22 24669.48 8791.05 5385.27 24581.30 476.83 17591.65 8466.09 9795.56 5676.00 11693.85 5893.38 73
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS-MVSNet83.15 7582.81 7584.18 10689.94 10963.30 21891.59 4188.46 19779.04 2379.49 11992.16 7565.10 10794.28 11067.71 19391.86 7994.95 8
EIA-MVS83.31 7482.80 7684.82 8489.59 11465.59 16888.21 12492.68 6074.66 10578.96 12486.42 22669.06 7295.26 7175.54 12290.09 9893.62 66
Vis-MVSNetpermissive83.46 7082.80 7685.43 6790.25 9868.74 10290.30 6790.13 14476.33 7680.87 10692.89 6161.00 16394.20 11672.45 15290.97 8893.35 75
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FIs82.07 9082.42 7881.04 20688.80 14758.34 27288.26 12393.49 2676.93 5878.47 13891.04 10469.92 6392.34 19469.87 17484.97 15692.44 107
VNet82.21 8782.41 7981.62 18790.82 8860.93 24884.47 22589.78 15276.36 7584.07 6691.88 8064.71 11190.26 24570.68 16488.89 10993.66 59
PAPM_NR83.02 7982.41 7984.82 8492.47 6766.37 15187.93 13591.80 9873.82 12377.32 16490.66 11267.90 7994.90 8970.37 16789.48 10593.19 82
VDD-MVS83.01 8082.36 8184.96 7891.02 8366.40 15088.91 9988.11 20077.57 3984.39 6093.29 5252.19 23093.91 12977.05 10588.70 11394.57 27
3Dnovator76.31 583.38 7382.31 8286.59 5087.94 17772.94 2790.64 5792.14 8477.21 5075.47 20392.83 6358.56 18194.72 9773.24 14392.71 6792.13 117
h-mvs3383.15 7582.19 8386.02 5990.56 9270.85 6888.15 12889.16 17176.02 8184.67 5291.39 9461.54 14995.50 5982.71 5775.48 27291.72 126
MVS_111021_LR82.61 8482.11 8484.11 10788.82 14571.58 5185.15 20986.16 23774.69 10480.47 10991.04 10462.29 13890.55 24380.33 7890.08 9990.20 177
DP-MVS Recon83.11 7882.09 8586.15 5694.44 1970.92 6688.79 10492.20 8170.53 17979.17 12291.03 10664.12 11496.03 4468.39 19090.14 9791.50 132
MVSFormer82.85 8182.05 8685.24 7087.35 19770.21 7590.50 6090.38 13468.55 22081.32 9889.47 13661.68 14693.46 15178.98 8690.26 9592.05 119
FC-MVSNet-test81.52 10382.02 8780.03 22688.42 16255.97 30887.95 13393.42 2977.10 5477.38 16290.98 10969.96 6291.79 21268.46 18984.50 16192.33 108
HQP-MVS82.61 8482.02 8784.37 9889.33 12666.98 14289.17 8992.19 8276.41 7077.23 16790.23 12060.17 17595.11 7877.47 10085.99 14991.03 148
OMC-MVS82.69 8281.97 8984.85 8388.75 15067.42 13287.98 13190.87 12474.92 9979.72 11691.65 8462.19 14193.96 12275.26 12486.42 14193.16 83
diffmvspermissive82.10 8881.88 9082.76 16983.00 27363.78 20683.68 24289.76 15372.94 14382.02 9089.85 12565.96 10190.79 23982.38 6187.30 12893.71 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu82.62 8381.83 9184.96 7890.80 8969.76 8488.74 10891.70 10269.39 19878.96 12488.46 16665.47 10494.87 9274.42 12988.57 11490.24 176
CLD-MVS82.31 8681.65 9284.29 10388.47 15967.73 12585.81 19792.35 7475.78 8478.33 14186.58 22164.01 11594.35 10876.05 11587.48 12690.79 155
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_NR-MVSNet81.88 9381.54 9382.92 15888.46 16063.46 21487.13 15592.37 7380.19 1078.38 13989.14 14571.66 4893.05 17170.05 17076.46 25792.25 112
PS-MVSNAJss82.07 9081.31 9484.34 10186.51 21567.27 13689.27 8791.51 10771.75 15479.37 12090.22 12163.15 12594.27 11177.69 9882.36 19291.49 133
LPG-MVS_test82.08 8981.27 9584.50 9389.23 13368.76 10090.22 6891.94 9175.37 9276.64 18191.51 8954.29 21394.91 8678.44 9083.78 17089.83 199
LFMVS81.82 9581.23 9683.57 13191.89 7363.43 21689.84 7481.85 29177.04 5683.21 7693.10 5452.26 22993.43 15371.98 15389.95 10193.85 52
API-MVS81.99 9281.23 9684.26 10490.94 8570.18 8091.10 5189.32 16371.51 16278.66 13288.28 17165.26 10595.10 8164.74 22091.23 8687.51 257
UniMVSNet (Re)81.60 10281.11 9883.09 14988.38 16364.41 19587.60 14393.02 4278.42 3078.56 13588.16 17569.78 6493.26 15769.58 17776.49 25691.60 127
xiu_mvs_v2_base81.69 9881.05 9983.60 12989.15 13668.03 12084.46 22790.02 14670.67 17681.30 10186.53 22463.17 12494.19 11775.60 12188.54 11588.57 239
PS-MVSNAJ81.69 9881.02 10083.70 12889.51 11868.21 11784.28 23390.09 14570.79 17381.26 10285.62 24263.15 12594.29 10975.62 12088.87 11088.59 238
GeoE81.71 9781.01 10183.80 12689.51 11864.45 19488.97 9788.73 19271.27 16578.63 13389.76 12766.32 9493.20 16169.89 17386.02 14893.74 57
hse-mvs281.72 9680.94 10284.07 11288.72 15167.68 12785.87 19387.26 22176.02 8184.67 5288.22 17461.54 14993.48 14982.71 5773.44 29991.06 146
PAPR81.66 10180.89 10383.99 12090.27 9764.00 20186.76 17091.77 10168.84 21677.13 17389.50 13467.63 8194.88 9167.55 19588.52 11693.09 84
mvsmamba81.69 9880.74 10484.56 9187.45 19666.72 14691.26 4685.89 24174.66 10578.23 14490.56 11454.33 21294.91 8680.73 7583.54 17792.04 121
MAR-MVS81.84 9480.70 10585.27 6991.32 7971.53 5289.82 7590.92 12169.77 19278.50 13686.21 23062.36 13794.52 10465.36 21492.05 7589.77 202
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VDDNet81.52 10380.67 10684.05 11590.44 9564.13 20089.73 8085.91 24071.11 16883.18 7793.48 4750.54 25393.49 14873.40 14088.25 11994.54 28
ACMP74.13 681.51 10580.57 10784.36 9989.42 12168.69 10789.97 7291.50 11074.46 11075.04 22290.41 11753.82 21894.54 10277.56 9982.91 18489.86 198
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
VPA-MVSNet80.60 12580.55 10880.76 21288.07 17360.80 25186.86 16491.58 10575.67 8880.24 11189.45 14063.34 11990.25 24670.51 16679.22 23091.23 140
DU-MVS81.12 11080.52 10982.90 15987.80 18263.46 21487.02 15991.87 9579.01 2478.38 13989.07 14765.02 10893.05 17170.05 17076.46 25792.20 114
test_yl81.17 10880.47 11083.24 14289.13 13763.62 20786.21 18489.95 14972.43 14881.78 9589.61 13157.50 19193.58 14270.75 16286.90 13392.52 101
DCV-MVSNet81.17 10880.47 11083.24 14289.13 13763.62 20786.21 18489.95 14972.43 14881.78 9589.61 13157.50 19193.58 14270.75 16286.90 13392.52 101
PVSNet_Blended80.98 11180.34 11282.90 15988.85 14265.40 17384.43 22992.00 8767.62 22878.11 14885.05 25666.02 9994.27 11171.52 15589.50 10489.01 222
TranMVSNet+NR-MVSNet80.84 11480.31 11382.42 17487.85 17962.33 23287.74 14191.33 11280.55 777.99 15289.86 12465.23 10692.62 18167.05 20275.24 28192.30 110
jason81.39 10680.29 11484.70 8886.63 21469.90 8285.95 19086.77 22863.24 27581.07 10489.47 13661.08 16292.15 20078.33 9390.07 10092.05 119
jason: jason.
lupinMVS81.39 10680.27 11584.76 8787.35 19770.21 7585.55 20286.41 23262.85 28281.32 9888.61 16161.68 14692.24 19878.41 9290.26 9591.83 123
PVSNet_BlendedMVS80.60 12580.02 11682.36 17688.85 14265.40 17386.16 18692.00 8769.34 20078.11 14886.09 23366.02 9994.27 11171.52 15582.06 19487.39 259
EI-MVSNet80.52 12879.98 11782.12 17784.28 24463.19 22286.41 17888.95 18274.18 11678.69 13087.54 19166.62 8992.43 18872.57 15080.57 21290.74 159
Fast-Effi-MVS+80.81 11679.92 11883.47 13288.85 14264.51 19085.53 20489.39 16170.79 17378.49 13785.06 25567.54 8293.58 14267.03 20386.58 13892.32 109
FA-MVS(test-final)80.96 11279.91 11984.10 10888.30 16665.01 18284.55 22490.01 14773.25 13779.61 11787.57 18858.35 18394.72 9771.29 15986.25 14492.56 100
CANet_DTU80.61 12479.87 12082.83 16185.60 22563.17 22387.36 14988.65 19376.37 7475.88 19788.44 16753.51 22093.07 17073.30 14189.74 10392.25 112
ACMM73.20 880.78 12179.84 12183.58 13089.31 12968.37 11289.99 7191.60 10470.28 18377.25 16589.66 12953.37 22193.53 14774.24 13282.85 18588.85 230
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-OURS-SEG-HR80.81 11679.76 12283.96 12285.60 22568.78 9983.54 24890.50 13170.66 17776.71 17991.66 8360.69 16791.26 22676.94 10681.58 20091.83 123
xiu_mvs_v1_base_debu80.80 11879.72 12384.03 11787.35 19770.19 7785.56 19988.77 18769.06 21081.83 9188.16 17550.91 24792.85 17778.29 9487.56 12389.06 217
xiu_mvs_v1_base80.80 11879.72 12384.03 11787.35 19770.19 7785.56 19988.77 18769.06 21081.83 9188.16 17550.91 24792.85 17778.29 9487.56 12389.06 217
xiu_mvs_v1_base_debi80.80 11879.72 12384.03 11787.35 19770.19 7785.56 19988.77 18769.06 21081.83 9188.16 17550.91 24792.85 17778.29 9487.56 12389.06 217
UGNet80.83 11579.59 12684.54 9288.04 17468.09 11889.42 8488.16 19976.95 5776.22 19089.46 13849.30 26793.94 12568.48 18890.31 9391.60 127
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
114514_t80.68 12279.51 12784.20 10594.09 3867.27 13689.64 8291.11 11858.75 31674.08 23390.72 11158.10 18495.04 8369.70 17589.42 10690.30 174
QAPM80.88 11379.50 12885.03 7588.01 17668.97 9691.59 4192.00 8766.63 24075.15 21892.16 7557.70 18895.45 6163.52 22488.76 11290.66 161
AdaColmapbinary80.58 12779.42 12984.06 11393.09 5468.91 9789.36 8688.97 18169.27 20175.70 20089.69 12857.20 19595.77 5263.06 22988.41 11887.50 258
NR-MVSNet80.23 13479.38 13082.78 16787.80 18263.34 21786.31 18191.09 11979.01 2472.17 25289.07 14767.20 8692.81 18066.08 20975.65 26892.20 114
IterMVS-LS80.06 13779.38 13082.11 17885.89 22063.20 22186.79 16789.34 16274.19 11575.45 20686.72 21166.62 8992.39 19072.58 14976.86 25190.75 158
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
iter_conf_final80.63 12379.35 13284.46 9589.36 12567.70 12689.85 7384.49 25573.19 13878.30 14288.94 15045.98 29194.56 10079.59 8384.48 16391.11 143
test_djsdf80.30 13379.32 13383.27 14083.98 25165.37 17690.50 6090.38 13468.55 22076.19 19188.70 15756.44 19993.46 15178.98 8680.14 21890.97 151
v2v48280.23 13479.29 13483.05 15283.62 25664.14 19987.04 15889.97 14873.61 12878.18 14787.22 19961.10 16193.82 13276.11 11376.78 25491.18 141
ECVR-MVScopyleft79.61 14479.26 13580.67 21490.08 10254.69 31987.89 13777.44 32674.88 10080.27 11092.79 6648.96 27492.45 18768.55 18792.50 7094.86 15
XVG-OURS80.41 12979.23 13683.97 12185.64 22469.02 9483.03 25790.39 13371.09 16977.63 15891.49 9154.62 21191.35 22475.71 11883.47 17891.54 129
RRT_MVS80.35 13279.22 13783.74 12787.63 19065.46 17291.08 5288.92 18473.82 12376.44 18690.03 12349.05 27294.25 11576.84 10779.20 23191.51 130
WR-MVS79.49 14879.22 13780.27 22288.79 14858.35 27185.06 21188.61 19578.56 2877.65 15788.34 16963.81 11890.66 24264.98 21877.22 24691.80 125
test111179.43 15179.18 13980.15 22489.99 10753.31 33287.33 15177.05 32975.04 9780.23 11292.77 6848.97 27392.33 19568.87 18492.40 7294.81 18
mvs_anonymous79.42 15279.11 14080.34 22084.45 24357.97 27882.59 25987.62 21367.40 23176.17 19488.56 16468.47 7689.59 25570.65 16586.05 14793.47 72
v114480.03 13879.03 14183.01 15483.78 25464.51 19087.11 15790.57 13071.96 15378.08 15086.20 23161.41 15393.94 12574.93 12577.23 24590.60 164
v879.97 14179.02 14282.80 16484.09 24864.50 19287.96 13290.29 14174.13 11875.24 21686.81 20862.88 13093.89 13174.39 13075.40 27690.00 190
ab-mvs79.51 14778.97 14381.14 20388.46 16060.91 24983.84 24089.24 16870.36 18179.03 12388.87 15463.23 12390.21 24765.12 21682.57 19092.28 111
Anonymous2024052980.19 13678.89 14484.10 10890.60 9164.75 18788.95 9890.90 12265.97 24880.59 10891.17 10049.97 25893.73 14069.16 18182.70 18993.81 55
PCF-MVS73.52 780.38 13078.84 14585.01 7687.71 18668.99 9583.65 24391.46 11163.00 27977.77 15690.28 11866.10 9695.09 8261.40 24688.22 12090.94 152
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
iter_conf0580.00 14078.70 14683.91 12487.84 18065.83 16288.84 10384.92 25071.61 15978.70 12988.94 15043.88 30494.56 10079.28 8484.28 16691.33 136
v1079.74 14378.67 14782.97 15784.06 24964.95 18387.88 13890.62 12873.11 13975.11 21986.56 22261.46 15294.05 12173.68 13575.55 27089.90 196
VPNet78.69 17178.66 14878.76 24788.31 16555.72 31084.45 22886.63 23076.79 6278.26 14390.55 11559.30 17789.70 25466.63 20477.05 24890.88 153
BH-untuned79.47 14978.60 14982.05 17989.19 13565.91 16086.07 18888.52 19672.18 15075.42 20787.69 18561.15 16093.54 14660.38 25386.83 13586.70 277
Effi-MVS+-dtu80.03 13878.57 15084.42 9785.13 23468.74 10288.77 10588.10 20174.99 9874.97 22383.49 27857.27 19493.36 15473.53 13780.88 20691.18 141
WR-MVS_H78.51 17578.49 15178.56 25088.02 17556.38 30388.43 11592.67 6177.14 5273.89 23487.55 19066.25 9589.24 26158.92 26773.55 29790.06 188
Vis-MVSNet (Re-imp)78.36 17878.45 15278.07 25888.64 15451.78 33986.70 17179.63 31374.14 11775.11 21990.83 11061.29 15789.75 25258.10 27691.60 8092.69 97
BH-RMVSNet79.61 14478.44 15383.14 14789.38 12465.93 15984.95 21487.15 22373.56 13078.19 14689.79 12656.67 19893.36 15459.53 26086.74 13690.13 180
v119279.59 14678.43 15483.07 15183.55 25864.52 18986.93 16290.58 12970.83 17277.78 15585.90 23459.15 17893.94 12573.96 13477.19 24790.76 157
v14419279.47 14978.37 15582.78 16783.35 26163.96 20286.96 16090.36 13769.99 18777.50 15985.67 24060.66 16893.77 13674.27 13176.58 25590.62 162
CP-MVSNet78.22 18078.34 15677.84 26087.83 18154.54 32187.94 13491.17 11677.65 3673.48 23788.49 16562.24 14088.43 27562.19 23774.07 29090.55 166
Baseline_NR-MVSNet78.15 18478.33 15777.61 26585.79 22156.21 30686.78 16885.76 24273.60 12977.93 15387.57 18865.02 10888.99 26567.14 20175.33 27887.63 253
OpenMVScopyleft72.83 1079.77 14278.33 15784.09 11085.17 23069.91 8190.57 5890.97 12066.70 23672.17 25291.91 7854.70 20993.96 12261.81 24390.95 8988.41 242
UniMVSNet_ETH3D79.10 16178.24 15981.70 18686.85 20960.24 26087.28 15388.79 18674.25 11476.84 17490.53 11649.48 26491.56 21867.98 19182.15 19393.29 77
V4279.38 15578.24 15982.83 16181.10 30665.50 17085.55 20289.82 15171.57 16178.21 14586.12 23260.66 16893.18 16475.64 11975.46 27489.81 201
PS-CasMVS78.01 18978.09 16177.77 26287.71 18654.39 32388.02 13091.22 11377.50 4473.26 23988.64 16060.73 16588.41 27661.88 24173.88 29490.53 167
v192192079.22 15778.03 16282.80 16483.30 26363.94 20386.80 16690.33 13869.91 18977.48 16085.53 24358.44 18293.75 13873.60 13676.85 25290.71 160
jajsoiax79.29 15677.96 16383.27 14084.68 24066.57 14989.25 8890.16 14369.20 20575.46 20589.49 13545.75 29693.13 16776.84 10780.80 20890.11 182
TAPA-MVS73.13 979.15 15977.94 16482.79 16689.59 11462.99 22788.16 12791.51 10765.77 24977.14 17291.09 10260.91 16493.21 15850.26 32087.05 13192.17 116
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tttt051779.40 15377.91 16583.90 12588.10 17163.84 20488.37 12084.05 26371.45 16376.78 17789.12 14649.93 26194.89 9070.18 16983.18 18292.96 91
c3_l78.75 16877.91 16581.26 19882.89 27661.56 24384.09 23889.13 17469.97 18875.56 20184.29 26666.36 9392.09 20273.47 13975.48 27290.12 181
MVSTER79.01 16377.88 16782.38 17583.07 27064.80 18684.08 23988.95 18269.01 21378.69 13087.17 20254.70 20992.43 18874.69 12680.57 21289.89 197
tt080578.73 16977.83 16881.43 19285.17 23060.30 25989.41 8590.90 12271.21 16677.17 17188.73 15646.38 28693.21 15872.57 15078.96 23290.79 155
X-MVStestdata80.37 13177.83 16888.00 1594.42 2073.33 1892.78 1892.99 4579.14 1983.67 7212.47 37367.45 8396.60 3183.06 5094.50 4894.07 45
v14878.72 17077.80 17081.47 19182.73 27961.96 23886.30 18288.08 20273.26 13676.18 19285.47 24562.46 13592.36 19271.92 15473.82 29590.09 184
v124078.99 16477.78 17182.64 17083.21 26563.54 21186.62 17390.30 14069.74 19577.33 16385.68 23957.04 19693.76 13773.13 14476.92 24990.62 162
mvs_tets79.13 16077.77 17283.22 14484.70 23966.37 15189.17 8990.19 14269.38 19975.40 20889.46 13844.17 30293.15 16576.78 10980.70 21090.14 179
miper_ehance_all_eth78.59 17477.76 17381.08 20582.66 28161.56 24383.65 24389.15 17268.87 21575.55 20283.79 27466.49 9192.03 20373.25 14276.39 25989.64 205
thisisatest053079.40 15377.76 17384.31 10287.69 18865.10 18187.36 14984.26 26170.04 18677.42 16188.26 17349.94 25994.79 9570.20 16884.70 16093.03 87
CDS-MVSNet79.07 16277.70 17583.17 14687.60 19168.23 11684.40 23186.20 23667.49 23076.36 18786.54 22361.54 14990.79 23961.86 24287.33 12790.49 168
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Anonymous2023121178.97 16577.69 17682.81 16390.54 9364.29 19790.11 7091.51 10765.01 25876.16 19588.13 18050.56 25293.03 17469.68 17677.56 24491.11 143
PEN-MVS77.73 19577.69 17677.84 26087.07 20753.91 32687.91 13691.18 11577.56 4173.14 24188.82 15561.23 15889.17 26259.95 25672.37 30590.43 170
AUN-MVS79.21 15877.60 17884.05 11588.71 15267.61 12885.84 19587.26 22169.08 20977.23 16788.14 17953.20 22393.47 15075.50 12373.45 29891.06 146
v7n78.97 16577.58 17983.14 14783.45 26065.51 16988.32 12191.21 11473.69 12672.41 24986.32 22957.93 18593.81 13369.18 18075.65 26890.11 182
TAMVS78.89 16777.51 18083.03 15387.80 18267.79 12484.72 21885.05 24867.63 22776.75 17887.70 18462.25 13990.82 23858.53 27287.13 13090.49 168
GBi-Net78.40 17677.40 18181.40 19487.60 19163.01 22488.39 11789.28 16471.63 15675.34 21087.28 19554.80 20591.11 22962.72 23179.57 22390.09 184
test178.40 17677.40 18181.40 19487.60 19163.01 22488.39 11789.28 16471.63 15675.34 21087.28 19554.80 20591.11 22962.72 23179.57 22390.09 184
BH-w/o78.21 18177.33 18380.84 21088.81 14665.13 18084.87 21587.85 20969.75 19374.52 22984.74 26061.34 15593.11 16858.24 27585.84 15184.27 310
FMVSNet278.20 18277.21 18481.20 20187.60 19162.89 22887.47 14789.02 17771.63 15675.29 21587.28 19554.80 20591.10 23262.38 23579.38 22789.61 206
anonymousdsp78.60 17377.15 18582.98 15680.51 31267.08 14087.24 15489.53 15865.66 25175.16 21787.19 20152.52 22492.25 19777.17 10479.34 22889.61 206
HY-MVS69.67 1277.95 19077.15 18580.36 21987.57 19560.21 26183.37 25087.78 21166.11 24475.37 20987.06 20663.27 12190.48 24461.38 24782.43 19190.40 172
cl2278.07 18677.01 18781.23 19982.37 28861.83 24083.55 24787.98 20468.96 21475.06 22183.87 27061.40 15491.88 21073.53 13776.39 25989.98 193
Anonymous20240521178.25 17977.01 18781.99 18191.03 8260.67 25384.77 21783.90 26570.65 17880.00 11491.20 9841.08 32191.43 22265.21 21585.26 15493.85 52
MVS78.19 18376.99 18981.78 18485.66 22366.99 14184.66 21990.47 13255.08 33472.02 25485.27 24863.83 11794.11 12066.10 20889.80 10284.24 311
LCM-MVSNet-Re77.05 20876.94 19077.36 26887.20 20451.60 34080.06 28580.46 30475.20 9567.69 29386.72 21162.48 13488.98 26663.44 22689.25 10791.51 130
miper_enhance_ethall77.87 19376.86 19180.92 20981.65 29561.38 24582.68 25888.98 17965.52 25375.47 20382.30 29365.76 10392.00 20572.95 14576.39 25989.39 210
FMVSNet377.88 19276.85 19280.97 20886.84 21062.36 23186.52 17688.77 18771.13 16775.34 21086.66 21754.07 21691.10 23262.72 23179.57 22389.45 209
DTE-MVSNet76.99 20976.80 19377.54 26786.24 21753.06 33487.52 14590.66 12777.08 5572.50 24788.67 15960.48 17189.52 25657.33 28370.74 31690.05 189
CNLPA78.08 18576.79 19481.97 18290.40 9671.07 6087.59 14484.55 25466.03 24772.38 25089.64 13057.56 19086.04 29459.61 25983.35 17988.79 233
cl____77.72 19676.76 19580.58 21582.49 28560.48 25683.09 25487.87 20769.22 20374.38 23185.22 25162.10 14291.53 21971.09 16075.41 27589.73 204
DIV-MVS_self_test77.72 19676.76 19580.58 21582.48 28660.48 25683.09 25487.86 20869.22 20374.38 23185.24 24962.10 14291.53 21971.09 16075.40 27689.74 203
baseline176.98 21076.75 19777.66 26388.13 16955.66 31185.12 21081.89 28973.04 14176.79 17688.90 15262.43 13687.78 28363.30 22871.18 31489.55 208
eth_miper_zixun_eth77.92 19176.69 19881.61 18983.00 27361.98 23783.15 25289.20 17069.52 19774.86 22584.35 26561.76 14592.56 18471.50 15772.89 30390.28 175
pm-mvs177.25 20776.68 19978.93 24584.22 24658.62 27086.41 17888.36 19871.37 16473.31 23888.01 18161.22 15989.15 26364.24 22273.01 30289.03 221
ET-MVSNet_ETH3D78.63 17276.63 20084.64 8986.73 21369.47 8885.01 21284.61 25369.54 19666.51 31086.59 21950.16 25691.75 21376.26 11284.24 16792.69 97
test250677.30 20576.49 20179.74 23290.08 10252.02 33587.86 13963.10 36374.88 10080.16 11392.79 6638.29 33192.35 19368.74 18692.50 7094.86 15
Fast-Effi-MVS+-dtu78.02 18876.49 20182.62 17183.16 26966.96 14486.94 16187.45 21872.45 14571.49 25984.17 26754.79 20891.58 21767.61 19480.31 21589.30 213
1112_ss77.40 20376.43 20380.32 22189.11 14160.41 25883.65 24387.72 21262.13 29073.05 24286.72 21162.58 13389.97 24962.11 24080.80 20890.59 165
PAPM77.68 19876.40 20481.51 19087.29 20361.85 23983.78 24189.59 15764.74 26071.23 26088.70 15762.59 13293.66 14152.66 30787.03 13289.01 222
PLCcopyleft70.83 1178.05 18776.37 20583.08 15091.88 7467.80 12388.19 12589.46 16064.33 26669.87 27788.38 16853.66 21993.58 14258.86 26882.73 18787.86 249
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TR-MVS77.44 20176.18 20681.20 20188.24 16763.24 21984.61 22286.40 23367.55 22977.81 15486.48 22554.10 21593.15 16557.75 27982.72 18887.20 264
FMVSNet177.44 20176.12 20781.40 19486.81 21163.01 22488.39 11789.28 16470.49 18074.39 23087.28 19549.06 27191.11 22960.91 25078.52 23490.09 184
bld_raw_dy_0_6477.29 20675.98 20881.22 20085.04 23665.47 17188.14 12977.56 32369.20 20573.77 23589.40 14442.24 31588.85 27176.78 10981.64 19989.33 212
CHOSEN 1792x268877.63 19975.69 20983.44 13389.98 10868.58 11078.70 30187.50 21656.38 32975.80 19986.84 20758.67 18091.40 22361.58 24585.75 15390.34 173
FE-MVS77.78 19475.68 21084.08 11188.09 17266.00 15783.13 25387.79 21068.42 22378.01 15185.23 25045.50 29895.12 7659.11 26485.83 15291.11 143
WTY-MVS75.65 22975.68 21075.57 28486.40 21656.82 29477.92 30982.40 28665.10 25576.18 19287.72 18363.13 12880.90 32460.31 25481.96 19589.00 224
XXY-MVS75.41 23375.56 21274.96 29083.59 25757.82 28280.59 28083.87 26666.54 24174.93 22488.31 17063.24 12280.09 32762.16 23876.85 25286.97 271
thres100view90076.50 21675.55 21379.33 24089.52 11756.99 29285.83 19683.23 27773.94 12076.32 18887.12 20351.89 23891.95 20648.33 32883.75 17289.07 215
thres600view776.50 21675.44 21479.68 23489.40 12257.16 28985.53 20483.23 27773.79 12576.26 18987.09 20451.89 23891.89 20948.05 33383.72 17590.00 190
Test_1112_low_res76.40 22075.44 21479.27 24189.28 13158.09 27481.69 26787.07 22459.53 30972.48 24886.67 21661.30 15689.33 25960.81 25280.15 21790.41 171
HyFIR lowres test77.53 20075.40 21683.94 12389.59 11466.62 14780.36 28288.64 19456.29 33076.45 18385.17 25257.64 18993.28 15661.34 24883.10 18391.91 122
thisisatest051577.33 20475.38 21783.18 14585.27 22963.80 20582.11 26383.27 27665.06 25675.91 19683.84 27249.54 26394.27 11167.24 19986.19 14591.48 134
tfpn200view976.42 21975.37 21879.55 23989.13 13757.65 28485.17 20783.60 26873.41 13476.45 18386.39 22752.12 23191.95 20648.33 32883.75 17289.07 215
thres40076.50 21675.37 21879.86 22989.13 13757.65 28485.17 20783.60 26873.41 13476.45 18386.39 22752.12 23191.95 20648.33 32883.75 17290.00 190
131476.53 21575.30 22080.21 22383.93 25262.32 23384.66 21988.81 18560.23 30270.16 27184.07 26955.30 20390.73 24167.37 19783.21 18187.59 256
GA-MVS76.87 21275.17 22181.97 18282.75 27862.58 22981.44 27286.35 23572.16 15274.74 22682.89 28546.20 29092.02 20468.85 18581.09 20491.30 139
EPNet_dtu75.46 23174.86 22277.23 27282.57 28354.60 32086.89 16383.09 28071.64 15566.25 31285.86 23655.99 20088.04 28054.92 29686.55 13989.05 220
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LS3D76.95 21174.82 22383.37 13790.45 9467.36 13589.15 9386.94 22661.87 29269.52 28090.61 11351.71 24194.53 10346.38 34086.71 13788.21 244
cascas76.72 21474.64 22482.99 15585.78 22265.88 16182.33 26189.21 16960.85 29872.74 24481.02 30447.28 28193.75 13867.48 19685.02 15589.34 211
DP-MVS76.78 21374.57 22583.42 13493.29 4869.46 9088.55 11483.70 26763.98 27270.20 26888.89 15354.01 21794.80 9446.66 33781.88 19786.01 289
TransMVSNet (Re)75.39 23474.56 22677.86 25985.50 22757.10 29186.78 16886.09 23972.17 15171.53 25887.34 19463.01 12989.31 26056.84 28861.83 34187.17 265
LTVRE_ROB69.57 1376.25 22274.54 22781.41 19388.60 15564.38 19679.24 29489.12 17570.76 17569.79 27987.86 18249.09 27093.20 16156.21 29380.16 21686.65 278
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
thres20075.55 23074.47 22878.82 24687.78 18557.85 28183.07 25683.51 27172.44 14775.84 19884.42 26252.08 23391.75 21347.41 33583.64 17686.86 273
MVP-Stereo76.12 22374.46 22981.13 20485.37 22869.79 8384.42 23087.95 20565.03 25767.46 29685.33 24753.28 22291.73 21558.01 27783.27 18081.85 332
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
F-COLMAP76.38 22174.33 23082.50 17389.28 13166.95 14588.41 11689.03 17664.05 27066.83 30488.61 16146.78 28492.89 17657.48 28078.55 23387.67 252
XVG-ACMP-BASELINE76.11 22474.27 23181.62 18783.20 26664.67 18883.60 24689.75 15469.75 19371.85 25587.09 20432.78 34492.11 20169.99 17280.43 21488.09 245
ACMH+68.96 1476.01 22574.01 23282.03 18088.60 15565.31 17788.86 10187.55 21470.25 18467.75 29287.47 19341.27 31993.19 16358.37 27375.94 26587.60 254
ACMH67.68 1675.89 22673.93 23381.77 18588.71 15266.61 14888.62 11289.01 17869.81 19066.78 30586.70 21541.95 31891.51 22155.64 29478.14 24087.17 265
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CostFormer75.24 23573.90 23479.27 24182.65 28258.27 27380.80 27582.73 28461.57 29375.33 21383.13 28355.52 20191.07 23564.98 21878.34 23988.45 240
IterMVS-SCA-FT75.43 23273.87 23580.11 22582.69 28064.85 18581.57 26983.47 27369.16 20770.49 26584.15 26851.95 23688.15 27869.23 17972.14 30887.34 261
baseline275.70 22873.83 23681.30 19783.26 26461.79 24182.57 26080.65 30066.81 23366.88 30283.42 27957.86 18792.19 19963.47 22579.57 22389.91 195
sss73.60 24673.64 23773.51 30182.80 27755.01 31776.12 31681.69 29262.47 28774.68 22785.85 23757.32 19378.11 33460.86 25180.93 20587.39 259
pmmvs674.69 23773.39 23878.61 24981.38 30157.48 28786.64 17287.95 20564.99 25970.18 26986.61 21850.43 25489.52 25662.12 23970.18 31888.83 231
IB-MVS68.01 1575.85 22773.36 23983.31 13884.76 23866.03 15583.38 24985.06 24770.21 18569.40 28181.05 30345.76 29594.66 9965.10 21775.49 27189.25 214
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
D2MVS74.82 23673.21 24079.64 23679.81 31962.56 23080.34 28387.35 21964.37 26568.86 28482.66 28946.37 28790.10 24867.91 19281.24 20386.25 282
tfpnnormal74.39 23873.16 24178.08 25786.10 21958.05 27584.65 22187.53 21570.32 18271.22 26185.63 24154.97 20489.86 25043.03 34975.02 28386.32 281
miper_lstm_enhance74.11 24273.11 24277.13 27380.11 31559.62 26472.23 33286.92 22766.76 23570.40 26682.92 28456.93 19782.92 31669.06 18272.63 30488.87 229
IterMVS74.29 23972.94 24378.35 25481.53 29863.49 21381.58 26882.49 28568.06 22669.99 27483.69 27651.66 24285.54 29765.85 21171.64 31186.01 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MS-PatchMatch73.83 24572.67 24477.30 27083.87 25366.02 15681.82 26484.66 25261.37 29668.61 28782.82 28747.29 28088.21 27759.27 26184.32 16577.68 346
CVMVSNet72.99 25572.58 24574.25 29784.28 24450.85 34586.41 17883.45 27444.56 35173.23 24087.54 19149.38 26585.70 29665.90 21078.44 23686.19 284
test-LLR72.94 25672.43 24674.48 29481.35 30258.04 27678.38 30277.46 32466.66 23769.95 27579.00 32248.06 27779.24 32866.13 20684.83 15786.15 285
OurMVSNet-221017-074.26 24072.42 24779.80 23183.76 25559.59 26585.92 19286.64 22966.39 24266.96 30187.58 18739.46 32591.60 21665.76 21269.27 32188.22 243
SCA74.22 24172.33 24879.91 22884.05 25062.17 23579.96 28879.29 31566.30 24372.38 25080.13 31351.95 23688.60 27359.25 26277.67 24388.96 226
tpmrst72.39 25972.13 24973.18 30580.54 31149.91 34979.91 28979.08 31663.11 27771.69 25779.95 31555.32 20282.77 31765.66 21373.89 29386.87 272
pmmvs474.03 24471.91 25080.39 21881.96 29268.32 11381.45 27182.14 28759.32 31069.87 27785.13 25352.40 22788.13 27960.21 25574.74 28684.73 306
EG-PatchMatch MVS74.04 24371.82 25180.71 21384.92 23767.42 13285.86 19488.08 20266.04 24664.22 32483.85 27135.10 34092.56 18457.44 28180.83 20782.16 331
tpm72.37 26171.71 25274.35 29682.19 29052.00 33679.22 29577.29 32764.56 26272.95 24383.68 27751.35 24383.26 31558.33 27475.80 26687.81 250
CL-MVSNet_self_test72.37 26171.46 25375.09 28979.49 32553.53 32880.76 27785.01 24969.12 20870.51 26482.05 29757.92 18684.13 30752.27 30866.00 33387.60 254
tpm273.26 25171.46 25378.63 24883.34 26256.71 29780.65 27980.40 30556.63 32873.55 23682.02 29851.80 24091.24 22756.35 29278.42 23787.95 246
RPSCF73.23 25271.46 25378.54 25182.50 28459.85 26282.18 26282.84 28358.96 31371.15 26289.41 14245.48 29984.77 30458.82 26971.83 31091.02 150
PatchmatchNetpermissive73.12 25371.33 25678.49 25383.18 26760.85 25079.63 29078.57 31864.13 26771.73 25679.81 31851.20 24585.97 29557.40 28276.36 26288.66 236
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CR-MVSNet73.37 24871.27 25779.67 23581.32 30465.19 17875.92 31880.30 30659.92 30572.73 24581.19 30152.50 22586.69 28959.84 25777.71 24187.11 269
SixPastTwentyTwo73.37 24871.26 25879.70 23385.08 23557.89 28085.57 19883.56 27071.03 17065.66 31485.88 23542.10 31692.57 18359.11 26463.34 33988.65 237
MSDG73.36 25070.99 25980.49 21784.51 24265.80 16480.71 27886.13 23865.70 25065.46 31583.74 27544.60 30090.91 23751.13 31376.89 25084.74 305
PatchMatch-RL72.38 26070.90 26076.80 27688.60 15567.38 13479.53 29176.17 33462.75 28469.36 28282.00 29945.51 29784.89 30353.62 30280.58 21178.12 345
MVS_030472.48 25870.89 26177.24 27182.20 28959.68 26384.11 23783.49 27267.10 23266.87 30380.59 30935.00 34187.40 28559.07 26679.58 22284.63 307
PVSNet64.34 1872.08 26370.87 26275.69 28286.21 21856.44 30174.37 32880.73 29962.06 29170.17 27082.23 29542.86 30983.31 31454.77 29784.45 16487.32 262
test_fmvs170.93 26970.52 26372.16 30973.71 34755.05 31680.82 27478.77 31751.21 34578.58 13484.41 26331.20 34876.94 34075.88 11780.12 21984.47 309
RPMNet73.51 24770.49 26482.58 17281.32 30465.19 17875.92 31892.27 7657.60 32372.73 24576.45 33852.30 22895.43 6348.14 33277.71 24187.11 269
test_040272.79 25770.44 26579.84 23088.13 16965.99 15885.93 19184.29 25965.57 25267.40 29885.49 24446.92 28392.61 18235.88 35874.38 28980.94 337
COLMAP_ROBcopyleft66.92 1773.01 25470.41 26680.81 21187.13 20665.63 16788.30 12284.19 26262.96 28063.80 32887.69 18538.04 33292.56 18446.66 33774.91 28484.24 311
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test-mter71.41 26570.39 26774.48 29481.35 30258.04 27678.38 30277.46 32460.32 30169.95 27579.00 32236.08 33879.24 32866.13 20684.83 15786.15 285
test_fmvs1_n70.86 27070.24 26872.73 30672.51 35555.28 31481.27 27379.71 31251.49 34478.73 12884.87 25727.54 35277.02 33976.06 11479.97 22085.88 292
pmmvs571.55 26470.20 26975.61 28377.83 33156.39 30281.74 26680.89 29657.76 32167.46 29684.49 26149.26 26885.32 30057.08 28575.29 27985.11 302
MDTV_nov1_ep1369.97 27083.18 26753.48 32977.10 31480.18 30960.45 29969.33 28380.44 31048.89 27586.90 28851.60 31178.51 235
MIMVSNet70.69 27269.30 27174.88 29184.52 24156.35 30475.87 32079.42 31464.59 26167.76 29182.41 29141.10 32081.54 32146.64 33981.34 20186.75 276
tpmvs71.09 26769.29 27276.49 27782.04 29156.04 30778.92 29981.37 29564.05 27067.18 30078.28 32849.74 26289.77 25149.67 32372.37 30583.67 318
test_vis1_n69.85 28269.21 27371.77 31172.66 35455.27 31581.48 27076.21 33352.03 34175.30 21483.20 28228.97 35076.22 34574.60 12778.41 23883.81 317
Patchmtry70.74 27169.16 27475.49 28680.72 30854.07 32574.94 32780.30 30658.34 31770.01 27281.19 30152.50 22586.54 29053.37 30471.09 31585.87 293
TESTMET0.1,169.89 28169.00 27572.55 30779.27 32856.85 29378.38 30274.71 34057.64 32268.09 29077.19 33537.75 33376.70 34163.92 22384.09 16884.10 314
PMMVS69.34 28468.67 27671.35 31675.67 33962.03 23675.17 32273.46 34350.00 34668.68 28579.05 32052.07 23478.13 33361.16 24982.77 18673.90 351
K. test v371.19 26668.51 27779.21 24383.04 27257.78 28384.35 23276.91 33072.90 14462.99 33182.86 28639.27 32691.09 23461.65 24452.66 35788.75 234
USDC70.33 27668.37 27876.21 27980.60 31056.23 30579.19 29686.49 23160.89 29761.29 33585.47 24531.78 34789.47 25853.37 30476.21 26382.94 328
tpm cat170.57 27368.31 27977.35 26982.41 28757.95 27978.08 30680.22 30852.04 34068.54 28877.66 33352.00 23587.84 28251.77 30972.07 30986.25 282
OpenMVS_ROBcopyleft64.09 1970.56 27468.19 28077.65 26480.26 31359.41 26785.01 21282.96 28258.76 31565.43 31682.33 29237.63 33491.23 22845.34 34576.03 26482.32 329
EPMVS69.02 28668.16 28171.59 31279.61 32349.80 35177.40 31166.93 35662.82 28370.01 27279.05 32045.79 29477.86 33656.58 29075.26 28087.13 268
CMPMVSbinary51.72 2170.19 27868.16 28176.28 27873.15 35257.55 28679.47 29283.92 26448.02 34856.48 35184.81 25843.13 30786.42 29262.67 23481.81 19884.89 303
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
AllTest70.96 26868.09 28379.58 23785.15 23263.62 20784.58 22379.83 31062.31 28860.32 33886.73 20932.02 34588.96 26850.28 31871.57 31286.15 285
gg-mvs-nofinetune69.95 28067.96 28475.94 28083.07 27054.51 32277.23 31370.29 34863.11 27770.32 26762.33 35643.62 30588.69 27253.88 30187.76 12284.62 308
FMVSNet569.50 28367.96 28474.15 29882.97 27555.35 31380.01 28782.12 28862.56 28663.02 32981.53 30036.92 33581.92 31948.42 32774.06 29185.17 301
PatchT68.46 29267.85 28670.29 32180.70 30943.93 36472.47 33174.88 33760.15 30370.55 26376.57 33749.94 25981.59 32050.58 31474.83 28585.34 297
pmmvs-eth3d70.50 27567.83 28778.52 25277.37 33466.18 15481.82 26481.51 29358.90 31463.90 32780.42 31142.69 31086.28 29358.56 27165.30 33583.11 324
Anonymous2023120668.60 28967.80 28871.02 31880.23 31450.75 34678.30 30580.47 30356.79 32766.11 31382.63 29046.35 28878.95 33043.62 34875.70 26783.36 321
Patchmatch-RL test70.24 27767.78 28977.61 26577.43 33359.57 26671.16 33570.33 34762.94 28168.65 28672.77 34750.62 25185.49 29869.58 17766.58 33087.77 251
test0.0.03 168.00 29467.69 29068.90 32677.55 33247.43 35375.70 32172.95 34566.66 23766.56 30682.29 29448.06 27775.87 34744.97 34674.51 28883.41 320
EU-MVSNet68.53 29167.61 29171.31 31778.51 33047.01 35584.47 22584.27 26042.27 35466.44 31184.79 25940.44 32383.76 30958.76 27068.54 32683.17 322
KD-MVS_self_test68.81 28767.59 29272.46 30874.29 34545.45 35777.93 30887.00 22563.12 27663.99 32678.99 32442.32 31284.77 30456.55 29164.09 33887.16 267
test_fmvs268.35 29367.48 29370.98 31969.50 35851.95 33780.05 28676.38 33249.33 34774.65 22884.38 26423.30 35875.40 35074.51 12875.17 28285.60 294
ppachtmachnet_test70.04 27967.34 29478.14 25679.80 32061.13 24679.19 29680.59 30159.16 31265.27 31779.29 31946.75 28587.29 28649.33 32466.72 32886.00 291
Anonymous2024052168.80 28867.22 29573.55 30074.33 34454.11 32483.18 25185.61 24358.15 31861.68 33480.94 30630.71 34981.27 32357.00 28673.34 30185.28 298
our_test_369.14 28567.00 29675.57 28479.80 32058.80 26877.96 30777.81 32159.55 30862.90 33278.25 32947.43 27983.97 30851.71 31067.58 32783.93 316
test20.0367.45 29666.95 29768.94 32575.48 34144.84 36277.50 31077.67 32266.66 23763.01 33083.80 27347.02 28278.40 33242.53 35168.86 32583.58 319
MIMVSNet168.58 29066.78 29873.98 29980.07 31651.82 33880.77 27684.37 25664.40 26459.75 34182.16 29636.47 33683.63 31142.73 35070.33 31786.48 280
testgi66.67 30166.53 29967.08 33375.62 34041.69 36875.93 31776.50 33166.11 24465.20 32086.59 21935.72 33974.71 35243.71 34773.38 30084.84 304
UnsupCasMVSNet_eth67.33 29765.99 30071.37 31473.48 34951.47 34275.16 32385.19 24665.20 25460.78 33780.93 30842.35 31177.20 33857.12 28453.69 35685.44 296
dp66.80 29965.43 30170.90 32079.74 32248.82 35275.12 32574.77 33859.61 30764.08 32577.23 33442.89 30880.72 32548.86 32666.58 33083.16 323
TinyColmap67.30 29864.81 30274.76 29381.92 29356.68 29880.29 28481.49 29460.33 30056.27 35283.22 28024.77 35587.66 28445.52 34369.47 32079.95 341
CHOSEN 280x42066.51 30264.71 30371.90 31081.45 29963.52 21257.98 36368.95 35453.57 33662.59 33376.70 33646.22 28975.29 35155.25 29579.68 22176.88 348
TDRefinement67.49 29564.34 30476.92 27473.47 35061.07 24784.86 21682.98 28159.77 30658.30 34585.13 25326.06 35387.89 28147.92 33460.59 34681.81 333
PM-MVS66.41 30364.14 30573.20 30473.92 34656.45 30078.97 29864.96 36163.88 27464.72 32180.24 31219.84 36183.44 31366.24 20564.52 33779.71 342
KD-MVS_2432*160066.22 30563.89 30673.21 30275.47 34253.42 33070.76 33884.35 25764.10 26866.52 30878.52 32634.55 34284.98 30150.40 31650.33 36081.23 335
miper_refine_blended66.22 30563.89 30673.21 30275.47 34253.42 33070.76 33884.35 25764.10 26866.52 30878.52 32634.55 34284.98 30150.40 31650.33 36081.23 335
MDA-MVSNet-bldmvs66.68 30063.66 30875.75 28179.28 32760.56 25573.92 32978.35 31964.43 26350.13 35879.87 31744.02 30383.67 31046.10 34156.86 34983.03 326
ADS-MVSNet266.20 30763.33 30974.82 29279.92 31758.75 26967.55 34975.19 33653.37 33765.25 31875.86 34042.32 31280.53 32641.57 35268.91 32385.18 299
Patchmatch-test64.82 31063.24 31069.57 32379.42 32649.82 35063.49 36069.05 35351.98 34259.95 34080.13 31350.91 24770.98 35840.66 35473.57 29687.90 248
MDA-MVSNet_test_wron65.03 30862.92 31171.37 31475.93 33756.73 29569.09 34774.73 33957.28 32554.03 35577.89 33045.88 29274.39 35449.89 32261.55 34282.99 327
YYNet165.03 30862.91 31271.38 31375.85 33856.60 29969.12 34674.66 34157.28 32554.12 35477.87 33145.85 29374.48 35349.95 32161.52 34383.05 325
ADS-MVSNet64.36 31162.88 31368.78 32879.92 31747.17 35467.55 34971.18 34653.37 33765.25 31875.86 34042.32 31273.99 35541.57 35268.91 32385.18 299
JIA-IIPM66.32 30462.82 31476.82 27577.09 33561.72 24265.34 35675.38 33558.04 32064.51 32262.32 35742.05 31786.51 29151.45 31269.22 32282.21 330
LF4IMVS64.02 31262.19 31569.50 32470.90 35653.29 33376.13 31577.18 32852.65 33958.59 34380.98 30523.55 35776.52 34253.06 30666.66 32978.68 344
test_fmvs363.36 31461.82 31667.98 33062.51 36546.96 35677.37 31274.03 34245.24 35067.50 29578.79 32512.16 36972.98 35772.77 14866.02 33283.99 315
new-patchmatchnet61.73 31661.73 31761.70 33972.74 35324.50 37869.16 34578.03 32061.40 29456.72 35075.53 34338.42 32976.48 34345.95 34257.67 34884.13 313
UnsupCasMVSNet_bld63.70 31361.53 31870.21 32273.69 34851.39 34372.82 33081.89 28955.63 33257.81 34771.80 34938.67 32878.61 33149.26 32552.21 35880.63 338
mvsany_test162.30 31561.26 31965.41 33569.52 35754.86 31866.86 35149.78 37246.65 34968.50 28983.21 28149.15 26966.28 36456.93 28760.77 34475.11 350
PVSNet_057.27 2061.67 31759.27 32068.85 32779.61 32357.44 28868.01 34873.44 34455.93 33158.54 34470.41 35244.58 30177.55 33747.01 33635.91 36671.55 354
test_vis1_rt60.28 31858.42 32165.84 33467.25 36155.60 31270.44 34060.94 36544.33 35259.00 34266.64 35424.91 35468.67 36262.80 23069.48 31973.25 352
MVS-HIRNet59.14 31957.67 32263.57 33781.65 29543.50 36571.73 33365.06 36039.59 35851.43 35757.73 36238.34 33082.58 31839.53 35573.95 29264.62 358
DSMNet-mixed57.77 32156.90 32360.38 34167.70 36035.61 37169.18 34453.97 37032.30 36657.49 34879.88 31640.39 32468.57 36338.78 35672.37 30576.97 347
pmmvs357.79 32054.26 32468.37 32964.02 36456.72 29675.12 32565.17 35940.20 35652.93 35669.86 35320.36 36075.48 34945.45 34455.25 35572.90 353
N_pmnet52.79 32653.26 32551.40 35078.99 3297.68 38169.52 3423.89 38151.63 34357.01 34974.98 34440.83 32265.96 36537.78 35764.67 33680.56 340
FPMVS53.68 32451.64 32659.81 34265.08 36351.03 34469.48 34369.58 35141.46 35540.67 36172.32 34816.46 36570.00 36124.24 36865.42 33458.40 363
mvsany_test353.99 32351.45 32761.61 34055.51 36944.74 36363.52 35945.41 37643.69 35358.11 34676.45 33817.99 36263.76 36754.77 29747.59 36276.34 349
test_f52.09 32750.82 32855.90 34653.82 37242.31 36759.42 36258.31 36836.45 36156.12 35370.96 35112.18 36857.79 36953.51 30356.57 35167.60 355
new_pmnet50.91 32950.29 32952.78 34968.58 35934.94 37363.71 35856.63 36939.73 35744.95 35965.47 35521.93 35958.48 36834.98 35956.62 35064.92 357
APD_test153.31 32549.93 33063.42 33865.68 36250.13 34871.59 33466.90 35734.43 36340.58 36271.56 3508.65 37476.27 34434.64 36055.36 35463.86 359
LCM-MVSNet54.25 32249.68 33167.97 33153.73 37345.28 36066.85 35280.78 29835.96 36239.45 36362.23 3588.70 37378.06 33548.24 33151.20 35980.57 339
EGC-MVSNET52.07 32847.05 33267.14 33283.51 25960.71 25280.50 28167.75 3550.07 3760.43 37775.85 34224.26 35681.54 32128.82 36262.25 34059.16 361
test_vis3_rt49.26 33147.02 33356.00 34554.30 37045.27 36166.76 35348.08 37336.83 36044.38 36053.20 3657.17 37664.07 36656.77 28955.66 35258.65 362
ANet_high50.57 33046.10 33463.99 33648.67 37639.13 36970.99 33780.85 29761.39 29531.18 36557.70 36317.02 36473.65 35631.22 36115.89 37379.18 343
testf145.72 33241.96 33557.00 34356.90 36745.32 35866.14 35459.26 36626.19 36730.89 36660.96 3604.14 37770.64 35926.39 36646.73 36455.04 364
APD_test245.72 33241.96 33557.00 34356.90 36745.32 35866.14 35459.26 36626.19 36730.89 36660.96 3604.14 37770.64 35926.39 36646.73 36455.04 364
Gipumacopyleft45.18 33441.86 33755.16 34877.03 33651.52 34132.50 36980.52 30232.46 36527.12 36835.02 3699.52 37275.50 34822.31 36960.21 34738.45 368
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft37.38 2244.16 33540.28 33855.82 34740.82 37842.54 36665.12 35763.99 36234.43 36324.48 36957.12 3643.92 37976.17 34617.10 37155.52 35348.75 366
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS240.82 33638.86 33946.69 35153.84 37116.45 37948.61 36649.92 37137.49 35931.67 36460.97 3598.14 37556.42 37028.42 36330.72 36867.19 356
E-PMN31.77 33730.64 34035.15 35452.87 37427.67 37557.09 36447.86 37424.64 36916.40 37433.05 37011.23 37054.90 37114.46 37318.15 37122.87 370
EMVS30.81 33929.65 34134.27 35550.96 37525.95 37756.58 36546.80 37524.01 37015.53 37530.68 37112.47 36754.43 37212.81 37417.05 37222.43 371
test_method31.52 33829.28 34238.23 35327.03 3806.50 38220.94 37162.21 3644.05 37422.35 37252.50 36613.33 36647.58 37327.04 36534.04 36760.62 360
cdsmvs_eth3d_5k19.96 34126.61 3430.00 3610.00 3840.00 3850.00 37289.26 1670.00 3790.00 38088.61 16161.62 1480.00 3800.00 3780.00 3780.00 376
MVEpermissive26.22 2330.37 34025.89 34443.81 35244.55 37735.46 37228.87 37039.07 37718.20 37118.58 37340.18 3682.68 38047.37 37417.07 37223.78 37048.60 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt18.61 34221.40 34510.23 3584.82 38110.11 38034.70 36830.74 3791.48 37523.91 37126.07 37228.42 35113.41 37727.12 36415.35 3747.17 372
wuyk23d16.82 34315.94 34619.46 35758.74 36631.45 37439.22 3673.74 3826.84 3736.04 3762.70 3761.27 38124.29 37610.54 37514.40 3752.63 373
ab-mvs-re7.23 3449.64 3470.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38086.72 2110.00 3840.00 3800.00 3780.00 3780.00 376
test1236.12 3458.11 3480.14 3590.06 3830.09 38371.05 3360.03 3840.04 3780.25 3791.30 3780.05 3820.03 3790.21 3770.01 3770.29 374
testmvs6.04 3468.02 3490.10 3600.08 3820.03 38469.74 3410.04 3830.05 3770.31 3781.68 3770.02 3830.04 3780.24 3760.02 3760.25 375
pcd_1.5k_mvsjas5.26 3477.02 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 37963.15 1250.00 3800.00 3780.00 3780.00 376
test_blank0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet_test0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
sosnet-low-res0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
sosnet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
Regformer0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
FOURS195.00 1072.39 3895.06 193.84 1574.49 10991.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 189.67 196.44 994.41 30
PC_three_145268.21 22592.02 1294.00 4082.09 595.98 4984.58 3596.68 294.95 8
No_MVS89.16 194.34 2775.53 292.99 4597.53 189.67 196.44 994.41 30
test_one_060195.07 771.46 5394.14 578.27 3392.05 1195.74 680.83 11
eth-test20.00 384
eth-test0.00 384
ZD-MVS94.38 2572.22 4392.67 6170.98 17187.75 2894.07 3774.01 3296.70 2584.66 3494.84 41
IU-MVS95.30 271.25 5592.95 5166.81 23392.39 688.94 1196.63 494.85 17
OPU-MVS89.06 394.62 1575.42 493.57 794.02 3982.45 396.87 1883.77 4596.48 894.88 12
test_241102_TWO94.06 1077.24 4892.78 495.72 881.26 897.44 589.07 996.58 694.26 39
test_241102_ONE95.30 270.98 6194.06 1077.17 5193.10 195.39 1182.99 197.27 10
save fliter93.80 4072.35 4190.47 6291.17 11674.31 112
test_0728_THIRD78.38 3192.12 995.78 481.46 797.40 789.42 496.57 794.67 22
test_0728_SECOND87.71 3095.34 171.43 5493.49 994.23 397.49 389.08 796.41 1294.21 40
test072695.27 571.25 5593.60 694.11 677.33 4692.81 395.79 380.98 9
GSMVS88.96 226
test_part295.06 872.65 3191.80 13
sam_mvs151.32 24488.96 226
sam_mvs50.01 257
ambc75.24 28873.16 35150.51 34763.05 36187.47 21764.28 32377.81 33217.80 36389.73 25357.88 27860.64 34585.49 295
MTGPAbinary92.02 85
test_post178.90 3005.43 37548.81 27685.44 29959.25 262
test_post5.46 37450.36 25584.24 306
patchmatchnet-post74.00 34551.12 24688.60 273
GG-mvs-BLEND75.38 28781.59 29755.80 30979.32 29369.63 35067.19 29973.67 34643.24 30688.90 27050.41 31584.50 16181.45 334
MTMP92.18 3332.83 378
gm-plane-assit81.40 30053.83 32762.72 28580.94 30692.39 19063.40 227
test9_res84.90 2995.70 2692.87 92
TEST993.26 5072.96 2488.75 10691.89 9368.44 22285.00 4593.10 5474.36 2895.41 65
test_893.13 5272.57 3488.68 11191.84 9768.69 21884.87 4993.10 5474.43 2695.16 74
agg_prior282.91 5395.45 2892.70 95
agg_prior92.85 5971.94 4991.78 10084.41 5994.93 85
TestCases79.58 23785.15 23263.62 20779.83 31062.31 28860.32 33886.73 20932.02 34588.96 26850.28 31871.57 31286.15 285
test_prior472.60 3389.01 96
test_prior288.85 10275.41 9184.91 4793.54 4674.28 2983.31 4895.86 20
test_prior86.33 5292.61 6569.59 8592.97 5095.48 6093.91 50
旧先验286.56 17558.10 31987.04 3088.98 26674.07 133
新几何286.29 183
新几何183.42 13493.13 5270.71 6985.48 24457.43 32481.80 9491.98 7763.28 12092.27 19664.60 22192.99 6387.27 263
旧先验191.96 7165.79 16586.37 23493.08 5869.31 7092.74 6688.74 235
无先验87.48 14688.98 17960.00 30494.12 11967.28 19888.97 225
原ACMM286.86 164
原ACMM184.35 10093.01 5768.79 9892.44 6963.96 27381.09 10391.57 8866.06 9895.45 6167.19 20094.82 4388.81 232
test22291.50 7768.26 11584.16 23583.20 27954.63 33579.74 11591.63 8658.97 17991.42 8386.77 275
testdata291.01 23662.37 236
segment_acmp73.08 37
testdata79.97 22790.90 8664.21 19884.71 25159.27 31185.40 4092.91 6062.02 14489.08 26468.95 18391.37 8486.63 279
testdata184.14 23675.71 85
test1286.80 4792.63 6470.70 7091.79 9982.71 8571.67 4796.16 4294.50 4893.54 70
plane_prior790.08 10268.51 111
plane_prior689.84 11168.70 10660.42 172
plane_prior592.44 6995.38 6778.71 8886.32 14291.33 136
plane_prior491.00 107
plane_prior368.60 10978.44 2978.92 126
plane_prior291.25 4879.12 21
plane_prior189.90 110
plane_prior68.71 10490.38 6577.62 3786.16 146
n20.00 385
nn0.00 385
door-mid69.98 349
lessismore_v078.97 24481.01 30757.15 29065.99 35861.16 33682.82 28739.12 32791.34 22559.67 25846.92 36388.43 241
LGP-MVS_train84.50 9389.23 13368.76 10091.94 9175.37 9276.64 18191.51 8954.29 21394.91 8678.44 9083.78 17089.83 199
test1192.23 79
door69.44 352
HQP5-MVS66.98 142
HQP-NCC89.33 12689.17 8976.41 7077.23 167
ACMP_Plane89.33 12689.17 8976.41 7077.23 167
BP-MVS77.47 100
HQP4-MVS77.24 16695.11 7891.03 148
HQP3-MVS92.19 8285.99 149
HQP2-MVS60.17 175
NP-MVS89.62 11368.32 11390.24 119
MDTV_nov1_ep13_2view37.79 37075.16 32355.10 33366.53 30749.34 26653.98 30087.94 247
ACMMP++_ref81.95 196
ACMMP++81.25 202
Test By Simon64.33 112
ITE_SJBPF78.22 25581.77 29460.57 25483.30 27569.25 20267.54 29487.20 20036.33 33787.28 28754.34 29974.62 28786.80 274
DeepMVS_CXcopyleft27.40 35640.17 37926.90 37624.59 38017.44 37223.95 37048.61 3679.77 37126.48 37518.06 37024.47 36928.83 369