This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 5977.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8592.29 795.66 1081.67 697.38 1087.44 3196.34 1593.95 52
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5894.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVScopyleft89.15 689.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 8991.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 31
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SMA-MVScopyleft89.08 789.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10792.29 795.97 274.28 2997.24 1288.58 2096.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft89.02 889.15 888.63 595.01 976.03 192.38 2792.85 5480.26 1187.78 2894.27 3275.89 1996.81 2387.45 3096.44 993.05 96
CNVR-MVS88.93 989.13 988.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2395.99 1894.34 37
SteuartSystems-ACMMP88.72 1088.86 1088.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 2995.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS88.46 1188.74 1187.64 3592.78 6171.95 5092.40 2494.74 275.71 8789.16 1995.10 1475.65 2196.19 4387.07 3296.01 1794.79 21
DeepPCF-MVS80.84 188.10 1288.56 1286.73 5092.24 6869.03 9989.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3595.72 2494.58 27
SD-MVS88.06 1488.50 1386.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13687.63 2894.27 5793.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
9.1488.26 1492.84 6091.52 4694.75 173.93 12588.57 2294.67 1975.57 2295.79 5386.77 3395.76 23
TSAR-MVS + MP.88.02 1788.11 1587.72 3093.68 4372.13 4691.41 4792.35 7474.62 11188.90 2093.85 5275.75 2096.00 4987.80 2694.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MVS_030488.08 1388.08 1688.08 1489.67 11372.04 4892.26 3389.26 17384.19 285.01 5395.18 1369.93 6797.20 1491.63 295.60 2994.99 9
ACMMP_NAP88.05 1688.08 1687.94 1993.70 4173.05 2290.86 5693.59 2376.27 7988.14 2495.09 1571.06 5696.67 2987.67 2796.37 1494.09 46
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5292.83 5581.50 585.79 4693.47 5973.02 3997.00 1884.90 4094.94 3994.10 45
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5194.32 3171.76 4796.93 1985.53 3795.79 2294.32 38
MP-MVS-pluss87.67 2087.72 2087.54 3693.64 4472.04 4889.80 7993.50 2575.17 10086.34 4295.29 1270.86 5796.00 4988.78 1896.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 6477.57 4183.84 8094.40 3072.24 4396.28 4085.65 3695.30 3593.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft87.44 2287.52 2287.19 4294.24 3272.39 3991.86 4192.83 5573.01 14988.58 2194.52 2173.36 3496.49 3684.26 5095.01 3792.70 105
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS87.58 2187.47 2387.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 5794.44 2870.78 5896.61 3284.53 4794.89 4193.66 65
GST-MVS87.42 2487.26 2487.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6193.99 4870.67 6096.82 2284.18 5495.01 3793.90 55
MCST-MVS87.37 2687.25 2587.73 2894.53 1772.46 3889.82 7793.82 1673.07 14784.86 6092.89 7276.22 1796.33 3884.89 4295.13 3694.40 34
ACMMPR87.44 2287.23 2688.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6494.52 2168.81 8296.65 3084.53 4794.90 4094.00 50
region2R87.42 2487.20 2788.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 6894.52 2169.09 7696.70 2784.37 4994.83 4494.03 49
MTAPA87.23 2787.00 2887.90 2294.18 3574.25 586.58 18592.02 8579.45 1985.88 4494.80 1768.07 8796.21 4286.69 3495.34 3393.23 87
HPM-MVScopyleft87.11 2986.98 2987.50 3893.88 3972.16 4592.19 3493.33 3176.07 8283.81 8193.95 5169.77 7096.01 4885.15 3894.66 4694.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS86.69 3486.95 3085.90 6390.76 9067.57 13892.83 1793.30 3279.67 1784.57 6792.27 8471.47 5295.02 8684.24 5293.46 6395.13 6
CP-MVS87.11 2986.92 3187.68 3494.20 3473.86 793.98 392.82 5876.62 7083.68 8294.46 2567.93 8895.95 5284.20 5394.39 5393.23 87
XVS87.18 2886.91 3288.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8394.17 3667.45 9396.60 3383.06 6194.50 5094.07 47
DeepC-MVS79.81 287.08 3186.88 3387.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 9494.23 3572.13 4597.09 1684.83 4395.37 3293.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS86.73 3386.67 3486.91 4694.11 3772.11 4792.37 2892.56 6774.50 11286.84 4094.65 2067.31 9595.77 5484.80 4492.85 6792.84 103
DeepC-MVS_fast79.65 386.91 3286.62 3587.76 2793.52 4672.37 4191.26 4893.04 3876.62 7084.22 7293.36 6171.44 5396.76 2580.82 8395.33 3494.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS-test86.29 4186.48 3685.71 6591.02 8367.21 15092.36 2993.78 1878.97 2883.51 8691.20 10970.65 6195.15 7781.96 7494.89 4194.77 22
EC-MVSNet86.01 4286.38 3784.91 8889.31 13066.27 16492.32 3093.63 2179.37 2084.17 7491.88 9169.04 8095.43 6583.93 5593.77 6193.01 99
mPP-MVS86.67 3686.32 3887.72 3094.41 2273.55 1392.74 2092.22 8076.87 6282.81 9594.25 3466.44 10396.24 4182.88 6594.28 5693.38 81
PGM-MVS86.68 3586.27 3987.90 2294.22 3373.38 1890.22 7093.04 3875.53 9183.86 7994.42 2967.87 9096.64 3182.70 7094.57 4993.66 65
train_agg86.43 3886.20 4087.13 4493.26 5072.96 2588.75 11591.89 9368.69 23285.00 5593.10 6574.43 2695.41 6784.97 3995.71 2593.02 98
CSCG86.41 4086.19 4187.07 4592.91 5872.48 3790.81 5793.56 2473.95 12383.16 8991.07 11475.94 1895.19 7579.94 9294.38 5493.55 76
PHI-MVS86.43 3886.17 4287.24 4190.88 8770.96 6592.27 3294.07 972.45 15285.22 5291.90 9069.47 7296.42 3783.28 6095.94 1994.35 36
dcpmvs_285.63 5186.15 4384.06 12491.71 7564.94 19586.47 18891.87 9573.63 13186.60 4193.02 7076.57 1591.87 21683.36 5892.15 7595.35 3
CANet86.45 3786.10 4487.51 3790.09 10170.94 6789.70 8392.59 6681.78 481.32 11091.43 10470.34 6297.23 1384.26 5093.36 6494.37 35
casdiffmvs_mvgpermissive85.99 4386.09 4585.70 6687.65 19267.22 14988.69 11993.04 3879.64 1885.33 5092.54 8173.30 3594.50 10783.49 5791.14 8995.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf_n85.92 4586.04 4685.57 6885.03 24469.51 9089.62 8690.58 13173.42 13887.75 3094.02 4472.85 4093.24 16090.37 390.75 9393.96 51
APD-MVS_3200maxsize85.97 4485.88 4786.22 5792.69 6369.53 8991.93 3892.99 4573.54 13585.94 4394.51 2465.80 11395.61 5783.04 6392.51 7193.53 78
canonicalmvs85.91 4685.87 4886.04 6089.84 11169.44 9590.45 6693.00 4376.70 6988.01 2791.23 10773.28 3693.91 13181.50 7788.80 11894.77 22
MSLP-MVS++85.43 5585.76 4984.45 10391.93 7270.24 7690.71 5892.86 5377.46 4784.22 7292.81 7667.16 9792.94 18080.36 8894.35 5590.16 191
test_fmvsmconf0.1_n85.61 5285.65 5085.50 6982.99 28869.39 9689.65 8490.29 14473.31 14187.77 2994.15 3871.72 4893.23 16190.31 490.67 9593.89 56
SR-MVS-dyc-post85.77 4885.61 5186.23 5693.06 5570.63 7391.88 3992.27 7673.53 13685.69 4794.45 2665.00 12195.56 5882.75 6691.87 7992.50 114
RE-MVS-def85.48 5293.06 5570.63 7391.88 3992.27 7673.53 13685.69 4794.45 2663.87 12782.75 6691.87 7992.50 114
ACMMPcopyleft85.89 4785.39 5387.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 11993.82 5364.33 12396.29 3982.67 7190.69 9493.23 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsm_n_192085.29 5885.34 5485.13 7986.12 22569.93 8388.65 12190.78 12769.97 20088.27 2393.98 4971.39 5491.54 22688.49 2290.45 9793.91 53
TSAR-MVS + GP.85.71 5085.33 5586.84 4791.34 7872.50 3689.07 10487.28 22876.41 7285.80 4590.22 13274.15 3195.37 7281.82 7591.88 7892.65 109
alignmvs85.48 5385.32 5685.96 6289.51 11969.47 9289.74 8192.47 6876.17 8087.73 3291.46 10370.32 6393.78 13681.51 7688.95 11594.63 26
DELS-MVS85.41 5685.30 5785.77 6488.49 16167.93 13085.52 21793.44 2778.70 2983.63 8589.03 16274.57 2495.71 5680.26 9094.04 5993.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CDPH-MVS85.76 4985.29 5887.17 4393.49 4771.08 6188.58 12392.42 7268.32 23984.61 6593.48 5772.32 4296.15 4579.00 9695.43 3194.28 40
casdiffmvspermissive85.11 6085.14 5985.01 8287.20 20865.77 17787.75 15192.83 5577.84 3784.36 7192.38 8372.15 4493.93 13081.27 7990.48 9695.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline84.93 6284.98 6084.80 9287.30 20665.39 18687.30 16392.88 5277.62 3984.04 7792.26 8571.81 4693.96 12481.31 7890.30 9995.03 8
UA-Net85.08 6184.96 6185.45 7092.07 7068.07 12789.78 8090.86 12682.48 384.60 6693.20 6469.35 7395.22 7471.39 17290.88 9293.07 95
HPM-MVS_fast85.35 5784.95 6286.57 5393.69 4270.58 7592.15 3691.62 10373.89 12682.67 9794.09 4062.60 14295.54 6080.93 8192.93 6693.57 74
MVS_111021_HR85.14 5984.75 6386.32 5591.65 7672.70 3085.98 20090.33 14176.11 8182.08 10091.61 9871.36 5594.17 12081.02 8092.58 7092.08 129
ETV-MVS84.90 6484.67 6485.59 6789.39 12468.66 11588.74 11792.64 6579.97 1584.10 7585.71 25269.32 7495.38 6980.82 8391.37 8692.72 104
patch_mono-283.65 7384.54 6580.99 21890.06 10665.83 17384.21 24588.74 19871.60 16785.01 5392.44 8274.51 2583.50 32582.15 7392.15 7593.64 71
test_fmvsmconf0.01_n84.73 6584.52 6685.34 7280.25 32869.03 9989.47 8889.65 16173.24 14486.98 3894.27 3266.62 9993.23 16190.26 589.95 10793.78 62
3Dnovator+77.84 485.48 5384.47 6788.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19393.37 6060.40 18696.75 2677.20 11593.73 6295.29 5
DPM-MVS84.93 6284.29 6886.84 4790.20 9973.04 2387.12 16793.04 3869.80 20482.85 9391.22 10873.06 3896.02 4776.72 12494.63 4791.46 146
test_fmvsmvis_n_192084.02 6783.87 6984.49 10184.12 25969.37 9788.15 13887.96 21270.01 19883.95 7893.23 6368.80 8391.51 22988.61 1989.96 10692.57 110
EI-MVSNet-Vis-set84.19 6683.81 7085.31 7388.18 17167.85 13187.66 15389.73 15980.05 1482.95 9089.59 14670.74 5994.82 9580.66 8784.72 16693.28 86
fmvsm_s_conf0.5_n83.80 7083.71 7184.07 12286.69 21867.31 14589.46 8983.07 29071.09 17686.96 3993.70 5569.02 8191.47 23188.79 1784.62 16893.44 80
nrg03083.88 6883.53 7284.96 8486.77 21669.28 9890.46 6592.67 6174.79 10682.95 9091.33 10672.70 4193.09 17480.79 8579.28 24292.50 114
MG-MVS83.41 8083.45 7383.28 15092.74 6262.28 24688.17 13689.50 16475.22 9681.49 10992.74 8066.75 9895.11 8072.85 16091.58 8392.45 117
fmvsm_s_conf0.5_n_a83.63 7583.41 7484.28 11186.14 22468.12 12589.43 9082.87 29470.27 19487.27 3593.80 5469.09 7691.58 22288.21 2483.65 18593.14 93
fmvsm_s_conf0.1_n83.56 7783.38 7584.10 11784.86 24667.28 14689.40 9383.01 29170.67 18487.08 3693.96 5068.38 8591.45 23288.56 2184.50 16993.56 75
EI-MVSNet-UG-set83.81 6983.38 7585.09 8087.87 18167.53 13987.44 15989.66 16079.74 1682.23 9989.41 15570.24 6494.74 9879.95 9183.92 17892.99 100
CPTT-MVS83.73 7183.33 7784.92 8793.28 4970.86 6992.09 3790.38 13768.75 23179.57 13092.83 7460.60 18293.04 17880.92 8291.56 8490.86 165
HQP_MVS83.64 7483.14 7885.14 7790.08 10268.71 11191.25 5092.44 6979.12 2378.92 13991.00 11860.42 18495.38 6978.71 10086.32 14991.33 147
Effi-MVS+83.62 7683.08 7985.24 7588.38 16667.45 14088.89 10989.15 17975.50 9282.27 9888.28 18469.61 7194.45 10977.81 10987.84 12893.84 59
MVS_Test83.15 8583.06 8083.41 14786.86 21263.21 23286.11 19892.00 8774.31 11682.87 9289.44 15470.03 6593.21 16377.39 11488.50 12493.81 60
EPP-MVSNet83.40 8183.02 8184.57 9690.13 10064.47 20592.32 3090.73 12874.45 11579.35 13391.10 11269.05 7995.12 7872.78 16187.22 13694.13 44
fmvsm_s_conf0.1_n_a83.32 8382.99 8284.28 11183.79 26668.07 12789.34 9582.85 29569.80 20487.36 3494.06 4268.34 8691.56 22487.95 2583.46 19193.21 90
OPM-MVS83.50 7882.95 8385.14 7788.79 15170.95 6689.13 10391.52 10677.55 4480.96 11791.75 9360.71 17794.50 10779.67 9386.51 14789.97 207
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EPNet83.72 7282.92 8486.14 5984.22 25769.48 9191.05 5585.27 25581.30 676.83 18891.65 9566.09 10895.56 5876.00 13093.85 6093.38 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS-MVSNet83.15 8582.81 8584.18 11589.94 10963.30 23091.59 4388.46 20479.04 2579.49 13192.16 8665.10 11894.28 11267.71 20791.86 8194.95 10
EIA-MVS83.31 8482.80 8684.82 9089.59 11565.59 17988.21 13492.68 6074.66 10978.96 13786.42 23969.06 7895.26 7375.54 13690.09 10393.62 72
Vis-MVSNetpermissive83.46 7982.80 8685.43 7190.25 9868.74 10990.30 6990.13 14876.33 7880.87 11892.89 7261.00 17494.20 11872.45 16690.97 9093.35 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FIs82.07 10082.42 8881.04 21788.80 15058.34 28688.26 13393.49 2676.93 6078.47 15191.04 11569.92 6892.34 19969.87 18884.97 16392.44 118
VNet82.21 9782.41 8981.62 19890.82 8860.93 26084.47 23689.78 15676.36 7784.07 7691.88 9164.71 12290.26 25670.68 17888.89 11693.66 65
PAPM_NR83.02 8982.41 8984.82 9092.47 6766.37 16287.93 14691.80 9873.82 12777.32 17790.66 12367.90 8994.90 9170.37 18189.48 11293.19 91
VDD-MVS83.01 9082.36 9184.96 8491.02 8366.40 16188.91 10888.11 20777.57 4184.39 7093.29 6252.19 24493.91 13177.05 11788.70 12094.57 29
3Dnovator76.31 583.38 8282.31 9286.59 5287.94 18072.94 2890.64 5992.14 8477.21 5275.47 21892.83 7458.56 19394.72 9973.24 15792.71 6992.13 128
h-mvs3383.15 8582.19 9386.02 6190.56 9270.85 7088.15 13889.16 17876.02 8384.67 6291.39 10561.54 16095.50 6182.71 6875.48 28991.72 137
MVS_111021_LR82.61 9482.11 9484.11 11688.82 14871.58 5385.15 22086.16 24574.69 10880.47 12191.04 11562.29 14990.55 25480.33 8990.08 10490.20 190
DP-MVS Recon83.11 8882.09 9586.15 5894.44 1970.92 6888.79 11392.20 8170.53 18879.17 13591.03 11764.12 12596.03 4668.39 20490.14 10291.50 143
MVSFormer82.85 9182.05 9685.24 7587.35 20070.21 7790.50 6290.38 13768.55 23481.32 11089.47 14961.68 15793.46 15378.98 9790.26 10092.05 130
FC-MVSNet-test81.52 11382.02 9780.03 23888.42 16555.97 32387.95 14493.42 2977.10 5677.38 17590.98 12069.96 6691.79 21768.46 20384.50 16992.33 119
HQP-MVS82.61 9482.02 9784.37 10589.33 12766.98 15389.17 9892.19 8276.41 7277.23 18090.23 13160.17 18795.11 8077.47 11285.99 15691.03 159
OMC-MVS82.69 9281.97 9984.85 8988.75 15367.42 14187.98 14290.87 12574.92 10379.72 12891.65 9562.19 15293.96 12475.26 13886.42 14893.16 92
diffmvspermissive82.10 9881.88 10082.76 18083.00 28663.78 21883.68 25289.76 15772.94 15082.02 10189.85 13865.96 11290.79 25082.38 7287.30 13593.71 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu82.62 9381.83 10184.96 8490.80 8969.76 8788.74 11791.70 10269.39 21278.96 13788.46 17965.47 11594.87 9474.42 14388.57 12190.24 189
CLD-MVS82.31 9681.65 10284.29 11088.47 16267.73 13485.81 20892.35 7475.78 8678.33 15486.58 23464.01 12694.35 11076.05 12987.48 13390.79 166
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_NR-MVSNet81.88 10381.54 10382.92 16988.46 16363.46 22687.13 16692.37 7380.19 1278.38 15289.14 15871.66 5193.05 17670.05 18476.46 27292.25 123
PS-MVSNAJss82.07 10081.31 10484.34 10886.51 22067.27 14789.27 9691.51 10771.75 16179.37 13290.22 13263.15 13694.27 11377.69 11082.36 20591.49 144
LPG-MVS_test82.08 9981.27 10584.50 9989.23 13468.76 10790.22 7091.94 9175.37 9476.64 19491.51 10054.29 22694.91 8878.44 10283.78 17989.83 212
LFMVS81.82 10581.23 10683.57 14291.89 7363.43 22889.84 7681.85 30577.04 5883.21 8793.10 6552.26 24393.43 15571.98 16789.95 10793.85 57
API-MVS81.99 10281.23 10684.26 11390.94 8570.18 8291.10 5389.32 16971.51 16978.66 14588.28 18465.26 11695.10 8364.74 23491.23 8887.51 270
UniMVSNet (Re)81.60 11281.11 10883.09 16088.38 16664.41 20787.60 15493.02 4278.42 3278.56 14888.16 18869.78 6993.26 15969.58 19176.49 27191.60 138
xiu_mvs_v2_base81.69 10881.05 10983.60 14089.15 13768.03 12984.46 23890.02 15070.67 18481.30 11386.53 23763.17 13594.19 11975.60 13588.54 12288.57 252
PS-MVSNAJ81.69 10881.02 11083.70 13989.51 11968.21 12484.28 24490.09 14970.79 18181.26 11485.62 25763.15 13694.29 11175.62 13488.87 11788.59 251
GeoE81.71 10781.01 11183.80 13789.51 11964.45 20688.97 10688.73 19971.27 17278.63 14689.76 14066.32 10593.20 16669.89 18786.02 15593.74 63
hse-mvs281.72 10680.94 11284.07 12288.72 15467.68 13685.87 20487.26 22976.02 8384.67 6288.22 18761.54 16093.48 15182.71 6873.44 31791.06 157
PAPR81.66 11180.89 11383.99 13190.27 9764.00 21386.76 18191.77 10168.84 23077.13 18689.50 14767.63 9194.88 9367.55 20988.52 12393.09 94
mvsmamba81.69 10880.74 11484.56 9787.45 19966.72 15791.26 4885.89 24974.66 10978.23 15790.56 12554.33 22594.91 8880.73 8683.54 18992.04 132
MAR-MVS81.84 10480.70 11585.27 7491.32 7971.53 5489.82 7790.92 12269.77 20678.50 14986.21 24362.36 14894.52 10665.36 22892.05 7789.77 215
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VDDNet81.52 11380.67 11684.05 12690.44 9564.13 21289.73 8285.91 24871.11 17583.18 8893.48 5750.54 26893.49 15073.40 15488.25 12694.54 30
ACMP74.13 681.51 11580.57 11784.36 10689.42 12268.69 11489.97 7491.50 11074.46 11475.04 23790.41 12853.82 23194.54 10477.56 11182.91 19789.86 211
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
VPA-MVSNet80.60 13580.55 11880.76 22488.07 17660.80 26386.86 17591.58 10575.67 9080.24 12389.45 15363.34 13090.25 25770.51 18079.22 24391.23 151
DU-MVS81.12 12080.52 11982.90 17087.80 18563.46 22687.02 17091.87 9579.01 2678.38 15289.07 16065.02 11993.05 17670.05 18476.46 27292.20 125
test_yl81.17 11880.47 12083.24 15389.13 13863.62 21986.21 19589.95 15372.43 15581.78 10689.61 14457.50 20393.58 14470.75 17686.90 14092.52 112
DCV-MVSNet81.17 11880.47 12083.24 15389.13 13863.62 21986.21 19589.95 15372.43 15581.78 10689.61 14457.50 20393.58 14470.75 17686.90 14092.52 112
PVSNet_Blended80.98 12180.34 12282.90 17088.85 14565.40 18484.43 24092.00 8767.62 24478.11 16185.05 27166.02 11094.27 11371.52 16989.50 11189.01 235
TranMVSNet+NR-MVSNet80.84 12480.31 12382.42 18587.85 18262.33 24487.74 15291.33 11280.55 977.99 16589.86 13765.23 11792.62 18667.05 21675.24 29992.30 121
jason81.39 11680.29 12484.70 9486.63 21969.90 8585.95 20186.77 23663.24 29281.07 11689.47 14961.08 17392.15 20578.33 10590.07 10592.05 130
jason: jason.
lupinMVS81.39 11680.27 12584.76 9387.35 20070.21 7785.55 21386.41 24062.85 29981.32 11088.61 17461.68 15792.24 20378.41 10490.26 10091.83 134
SDMVSNet80.38 14080.18 12680.99 21889.03 14364.94 19580.45 29589.40 16675.19 9876.61 19689.98 13560.61 18187.69 29576.83 12183.55 18790.33 185
PVSNet_BlendedMVS80.60 13580.02 12782.36 18788.85 14565.40 18486.16 19792.00 8769.34 21478.11 16186.09 24766.02 11094.27 11371.52 16982.06 20787.39 272
EI-MVSNet80.52 13879.98 12882.12 18884.28 25563.19 23486.41 18988.95 18974.18 12078.69 14387.54 20466.62 9992.43 19372.57 16480.57 22690.74 170
Fast-Effi-MVS+80.81 12679.92 12983.47 14388.85 14564.51 20285.53 21589.39 16770.79 18178.49 15085.06 27067.54 9293.58 14467.03 21786.58 14592.32 120
FA-MVS(test-final)80.96 12279.91 13084.10 11788.30 16965.01 19384.55 23590.01 15173.25 14379.61 12987.57 20158.35 19594.72 9971.29 17386.25 15192.56 111
CANet_DTU80.61 13479.87 13182.83 17285.60 23263.17 23587.36 16088.65 20076.37 7675.88 21288.44 18053.51 23493.07 17573.30 15589.74 11092.25 123
ACMM73.20 880.78 13179.84 13283.58 14189.31 13068.37 11989.99 7391.60 10470.28 19377.25 17889.66 14253.37 23593.53 14974.24 14682.85 19888.85 243
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-OURS-SEG-HR80.81 12679.76 13383.96 13385.60 23268.78 10683.54 25890.50 13470.66 18676.71 19291.66 9460.69 17891.26 23776.94 11881.58 21391.83 134
xiu_mvs_v1_base_debu80.80 12879.72 13484.03 12887.35 20070.19 7985.56 21088.77 19469.06 22481.83 10288.16 18850.91 26292.85 18278.29 10687.56 13089.06 230
xiu_mvs_v1_base80.80 12879.72 13484.03 12887.35 20070.19 7985.56 21088.77 19469.06 22481.83 10288.16 18850.91 26292.85 18278.29 10687.56 13089.06 230
xiu_mvs_v1_base_debi80.80 12879.72 13484.03 12887.35 20070.19 7985.56 21088.77 19469.06 22481.83 10288.16 18850.91 26292.85 18278.29 10687.56 13089.06 230
UGNet80.83 12579.59 13784.54 9888.04 17768.09 12689.42 9188.16 20676.95 5976.22 20589.46 15149.30 28393.94 12768.48 20290.31 9891.60 138
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
114514_t80.68 13279.51 13884.20 11494.09 3867.27 14789.64 8591.11 11958.75 33574.08 24890.72 12258.10 19695.04 8569.70 18989.42 11390.30 187
QAPM80.88 12379.50 13985.03 8188.01 17968.97 10391.59 4392.00 8766.63 25775.15 23392.16 8657.70 20095.45 6363.52 23888.76 11990.66 172
AdaColmapbinary80.58 13779.42 14084.06 12493.09 5468.91 10489.36 9488.97 18869.27 21575.70 21589.69 14157.20 20795.77 5463.06 24388.41 12587.50 271
NR-MVSNet80.23 14579.38 14182.78 17887.80 18563.34 22986.31 19291.09 12079.01 2672.17 26789.07 16067.20 9692.81 18566.08 22375.65 28592.20 125
IterMVS-LS80.06 14879.38 14182.11 18985.89 22763.20 23386.79 17889.34 16874.19 11975.45 22186.72 22466.62 9992.39 19572.58 16376.86 26690.75 169
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
iter_conf_final80.63 13379.35 14384.46 10289.36 12667.70 13589.85 7584.49 26573.19 14578.30 15588.94 16345.98 30994.56 10279.59 9484.48 17291.11 154
test_djsdf80.30 14479.32 14483.27 15183.98 26365.37 18790.50 6290.38 13768.55 23476.19 20688.70 17056.44 21193.46 15378.98 9780.14 23290.97 162
v2v48280.23 14579.29 14583.05 16383.62 26964.14 21187.04 16989.97 15273.61 13278.18 16087.22 21261.10 17293.82 13476.11 12776.78 26991.18 152
ECVR-MVScopyleft79.61 15579.26 14680.67 22690.08 10254.69 33487.89 14877.44 34174.88 10480.27 12292.79 7748.96 29092.45 19268.55 20192.50 7294.86 17
XVG-OURS80.41 13979.23 14783.97 13285.64 23169.02 10183.03 26990.39 13671.09 17677.63 17191.49 10254.62 22491.35 23575.71 13283.47 19091.54 140
RRT_MVS80.35 14379.22 14883.74 13887.63 19365.46 18391.08 5488.92 19173.82 12776.44 20190.03 13449.05 28894.25 11776.84 11979.20 24491.51 141
WR-MVS79.49 15979.22 14880.27 23488.79 15158.35 28585.06 22288.61 20278.56 3077.65 17088.34 18263.81 12990.66 25364.98 23277.22 26191.80 136
test111179.43 16279.18 15080.15 23689.99 10753.31 34787.33 16277.05 34475.04 10180.23 12492.77 7948.97 28992.33 20068.87 19892.40 7494.81 20
mvs_anonymous79.42 16379.11 15180.34 23284.45 25457.97 29282.59 27187.62 22167.40 24776.17 20988.56 17768.47 8489.59 26670.65 17986.05 15493.47 79
v114480.03 14979.03 15283.01 16583.78 26764.51 20287.11 16890.57 13371.96 16078.08 16386.20 24461.41 16493.94 12774.93 13977.23 26090.60 175
v879.97 15279.02 15382.80 17584.09 26064.50 20487.96 14390.29 14474.13 12275.24 23186.81 22162.88 14193.89 13374.39 14475.40 29490.00 203
ab-mvs79.51 15878.97 15481.14 21488.46 16360.91 26183.84 25089.24 17570.36 19079.03 13688.87 16763.23 13490.21 25865.12 23082.57 20392.28 122
Anonymous2024052980.19 14778.89 15584.10 11790.60 9164.75 19988.95 10790.90 12365.97 26580.59 12091.17 11149.97 27393.73 14269.16 19582.70 20293.81 60
PCF-MVS73.52 780.38 14078.84 15685.01 8287.71 18968.99 10283.65 25391.46 11163.00 29677.77 16990.28 12966.10 10795.09 8461.40 26188.22 12790.94 163
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
iter_conf0580.00 15178.70 15783.91 13587.84 18365.83 17388.84 11284.92 26071.61 16678.70 14288.94 16343.88 32494.56 10279.28 9584.28 17591.33 147
v1079.74 15478.67 15882.97 16884.06 26164.95 19487.88 14990.62 13073.11 14675.11 23486.56 23561.46 16394.05 12373.68 14975.55 28789.90 209
VPNet78.69 18278.66 15978.76 25988.31 16855.72 32584.45 23986.63 23876.79 6478.26 15690.55 12659.30 18989.70 26566.63 21877.05 26390.88 164
BH-untuned79.47 16078.60 16082.05 19089.19 13665.91 17186.07 19988.52 20372.18 15775.42 22287.69 19861.15 17193.54 14860.38 26886.83 14286.70 291
Effi-MVS+-dtu80.03 14978.57 16184.42 10485.13 24168.74 10988.77 11488.10 20874.99 10274.97 23883.49 29457.27 20693.36 15673.53 15180.88 22091.18 152
WR-MVS_H78.51 18678.49 16278.56 26388.02 17856.38 31888.43 12592.67 6177.14 5473.89 24987.55 20366.25 10689.24 27258.92 28173.55 31590.06 201
Vis-MVSNet (Re-imp)78.36 18978.45 16378.07 27188.64 15751.78 35486.70 18279.63 32774.14 12175.11 23490.83 12161.29 16889.75 26358.10 29091.60 8292.69 107
BH-RMVSNet79.61 15578.44 16483.14 15889.38 12565.93 17084.95 22587.15 23173.56 13478.19 15989.79 13956.67 21093.36 15659.53 27586.74 14390.13 193
v119279.59 15778.43 16583.07 16283.55 27164.52 20186.93 17390.58 13170.83 18077.78 16885.90 24859.15 19093.94 12773.96 14877.19 26290.76 168
v14419279.47 16078.37 16682.78 17883.35 27463.96 21486.96 17190.36 14069.99 19977.50 17285.67 25560.66 17993.77 13874.27 14576.58 27090.62 173
CP-MVSNet78.22 19178.34 16777.84 27387.83 18454.54 33687.94 14591.17 11677.65 3873.48 25288.49 17862.24 15188.43 28662.19 25274.07 30890.55 177
Baseline_NR-MVSNet78.15 19578.33 16877.61 27885.79 22856.21 32186.78 17985.76 25173.60 13377.93 16687.57 20165.02 11988.99 27667.14 21575.33 29687.63 266
OpenMVScopyleft72.83 1079.77 15378.33 16884.09 12085.17 23769.91 8490.57 6090.97 12166.70 25172.17 26791.91 8954.70 22293.96 12461.81 25890.95 9188.41 255
UniMVSNet_ETH3D79.10 17278.24 17081.70 19786.85 21360.24 27287.28 16488.79 19374.25 11876.84 18790.53 12749.48 27991.56 22467.98 20582.15 20693.29 85
V4279.38 16678.24 17082.83 17281.10 32065.50 18185.55 21389.82 15571.57 16878.21 15886.12 24660.66 17993.18 16975.64 13375.46 29189.81 214
PS-CasMVS78.01 20078.09 17277.77 27587.71 18954.39 33888.02 14191.22 11377.50 4673.26 25488.64 17360.73 17688.41 28761.88 25673.88 31290.53 178
v192192079.22 16878.03 17382.80 17583.30 27663.94 21586.80 17790.33 14169.91 20277.48 17385.53 25858.44 19493.75 14073.60 15076.85 26790.71 171
jajsoiax79.29 16777.96 17483.27 15184.68 24966.57 16089.25 9790.16 14769.20 21975.46 22089.49 14845.75 31493.13 17276.84 11980.80 22290.11 195
TAPA-MVS73.13 979.15 17077.94 17582.79 17789.59 11562.99 23988.16 13791.51 10765.77 26677.14 18591.09 11360.91 17593.21 16350.26 33587.05 13892.17 127
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tttt051779.40 16477.91 17683.90 13688.10 17463.84 21688.37 13084.05 27371.45 17076.78 19089.12 15949.93 27694.89 9270.18 18383.18 19592.96 101
c3_l78.75 17977.91 17681.26 20982.89 29061.56 25584.09 24889.13 18169.97 20075.56 21684.29 28266.36 10492.09 20773.47 15375.48 28990.12 194
MVSTER79.01 17477.88 17882.38 18683.07 28364.80 19884.08 24988.95 18969.01 22778.69 14387.17 21554.70 22292.43 19374.69 14080.57 22689.89 210
tt080578.73 18077.83 17981.43 20385.17 23760.30 27189.41 9290.90 12371.21 17377.17 18488.73 16946.38 30393.21 16372.57 16478.96 24590.79 166
X-MVStestdata80.37 14277.83 17988.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8312.47 39467.45 9396.60 3383.06 6194.50 5094.07 47
v14878.72 18177.80 18181.47 20282.73 29361.96 25086.30 19388.08 20973.26 14276.18 20785.47 26062.46 14692.36 19771.92 16873.82 31390.09 197
v124078.99 17577.78 18282.64 18183.21 27863.54 22386.62 18490.30 14369.74 20977.33 17685.68 25457.04 20893.76 13973.13 15876.92 26490.62 173
mvs_tets79.13 17177.77 18383.22 15584.70 24866.37 16289.17 9890.19 14669.38 21375.40 22389.46 15144.17 32293.15 17076.78 12280.70 22490.14 192
miper_ehance_all_eth78.59 18577.76 18481.08 21682.66 29561.56 25583.65 25389.15 17968.87 22975.55 21783.79 29066.49 10292.03 20873.25 15676.39 27489.64 218
thisisatest053079.40 16477.76 18484.31 10987.69 19165.10 19287.36 16084.26 27170.04 19777.42 17488.26 18649.94 27494.79 9770.20 18284.70 16793.03 97
CDS-MVSNet79.07 17377.70 18683.17 15787.60 19468.23 12384.40 24286.20 24467.49 24676.36 20286.54 23661.54 16090.79 25061.86 25787.33 13490.49 179
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Anonymous2023121178.97 17677.69 18782.81 17490.54 9364.29 20990.11 7291.51 10765.01 27576.16 21088.13 19350.56 26793.03 17969.68 19077.56 25991.11 154
PEN-MVS77.73 20677.69 18777.84 27387.07 21153.91 34187.91 14791.18 11577.56 4373.14 25688.82 16861.23 16989.17 27359.95 27172.37 32390.43 181
AUN-MVS79.21 16977.60 18984.05 12688.71 15567.61 13785.84 20687.26 22969.08 22377.23 18088.14 19253.20 23793.47 15275.50 13773.45 31691.06 157
v7n78.97 17677.58 19083.14 15883.45 27365.51 18088.32 13191.21 11473.69 13072.41 26486.32 24257.93 19793.81 13569.18 19475.65 28590.11 195
TAMVS78.89 17877.51 19183.03 16487.80 18567.79 13384.72 22985.05 25867.63 24376.75 19187.70 19762.25 15090.82 24958.53 28687.13 13790.49 179
sd_testset77.70 20977.40 19278.60 26289.03 14360.02 27479.00 31285.83 25075.19 9876.61 19689.98 13554.81 21785.46 31162.63 24983.55 18790.33 185
GBi-Net78.40 18777.40 19281.40 20587.60 19463.01 23688.39 12789.28 17071.63 16375.34 22587.28 20854.80 21891.11 24062.72 24579.57 23690.09 197
test178.40 18777.40 19281.40 20587.60 19463.01 23688.39 12789.28 17071.63 16375.34 22587.28 20854.80 21891.11 24062.72 24579.57 23690.09 197
BH-w/o78.21 19277.33 19580.84 22288.81 14965.13 19184.87 22687.85 21769.75 20774.52 24484.74 27561.34 16693.11 17358.24 28985.84 15884.27 325
FMVSNet278.20 19377.21 19681.20 21287.60 19462.89 24087.47 15889.02 18471.63 16375.29 23087.28 20854.80 21891.10 24362.38 25079.38 24089.61 219
anonymousdsp78.60 18477.15 19782.98 16780.51 32667.08 15187.24 16589.53 16365.66 26875.16 23287.19 21452.52 23892.25 20277.17 11679.34 24189.61 219
HY-MVS69.67 1277.95 20177.15 19780.36 23187.57 19860.21 27383.37 26087.78 21966.11 26175.37 22487.06 21963.27 13290.48 25561.38 26282.43 20490.40 183
cl2278.07 19777.01 19981.23 21082.37 30261.83 25283.55 25787.98 21168.96 22875.06 23683.87 28661.40 16591.88 21573.53 15176.39 27489.98 206
Anonymous20240521178.25 19077.01 19981.99 19291.03 8260.67 26584.77 22883.90 27570.65 18780.00 12691.20 10941.08 34191.43 23365.21 22985.26 16193.85 57
MVS78.19 19476.99 20181.78 19585.66 23066.99 15284.66 23090.47 13555.08 35572.02 26985.27 26363.83 12894.11 12266.10 22289.80 10984.24 326
LCM-MVSNet-Re77.05 22076.94 20277.36 28187.20 20851.60 35580.06 29980.46 31875.20 9767.69 31086.72 22462.48 14588.98 27763.44 24089.25 11491.51 141
miper_enhance_ethall77.87 20476.86 20380.92 22181.65 30961.38 25782.68 27088.98 18665.52 27075.47 21882.30 30965.76 11492.00 21072.95 15976.39 27489.39 223
FMVSNet377.88 20376.85 20480.97 22086.84 21462.36 24386.52 18788.77 19471.13 17475.34 22586.66 23054.07 22991.10 24362.72 24579.57 23689.45 222
DTE-MVSNet76.99 22176.80 20577.54 28086.24 22253.06 34987.52 15690.66 12977.08 5772.50 26288.67 17260.48 18389.52 26757.33 29770.74 33490.05 202
CNLPA78.08 19676.79 20681.97 19390.40 9671.07 6287.59 15584.55 26466.03 26472.38 26589.64 14357.56 20286.04 30559.61 27483.35 19288.79 246
cl____77.72 20776.76 20780.58 22782.49 29960.48 26883.09 26587.87 21569.22 21774.38 24685.22 26662.10 15391.53 22771.09 17475.41 29389.73 217
DIV-MVS_self_test77.72 20776.76 20780.58 22782.48 30060.48 26883.09 26587.86 21669.22 21774.38 24685.24 26462.10 15391.53 22771.09 17475.40 29489.74 216
baseline176.98 22276.75 20977.66 27688.13 17255.66 32685.12 22181.89 30373.04 14876.79 18988.90 16562.43 14787.78 29463.30 24271.18 33289.55 221
eth_miper_zixun_eth77.92 20276.69 21081.61 20083.00 28661.98 24983.15 26389.20 17769.52 21174.86 24084.35 28161.76 15692.56 18971.50 17172.89 32190.28 188
pm-mvs177.25 21976.68 21178.93 25784.22 25758.62 28486.41 18988.36 20571.37 17173.31 25388.01 19461.22 17089.15 27464.24 23673.01 32089.03 234
ET-MVSNet_ETH3D78.63 18376.63 21284.64 9586.73 21769.47 9285.01 22384.61 26369.54 21066.51 32886.59 23250.16 27191.75 21876.26 12684.24 17692.69 107
test250677.30 21776.49 21379.74 24490.08 10252.02 35087.86 15063.10 38274.88 10480.16 12592.79 7738.29 35192.35 19868.74 20092.50 7294.86 17
Fast-Effi-MVS+-dtu78.02 19976.49 21382.62 18283.16 28266.96 15586.94 17287.45 22672.45 15271.49 27484.17 28354.79 22191.58 22267.61 20880.31 22989.30 226
1112_ss77.40 21576.43 21580.32 23389.11 14260.41 27083.65 25387.72 22062.13 30873.05 25786.72 22462.58 14489.97 26062.11 25580.80 22290.59 176
PAPM77.68 21076.40 21681.51 20187.29 20761.85 25183.78 25189.59 16264.74 27771.23 27588.70 17062.59 14393.66 14352.66 32187.03 13989.01 235
PLCcopyleft70.83 1178.05 19876.37 21783.08 16191.88 7467.80 13288.19 13589.46 16564.33 28369.87 29288.38 18153.66 23293.58 14458.86 28282.73 20087.86 262
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TR-MVS77.44 21376.18 21881.20 21288.24 17063.24 23184.61 23386.40 24167.55 24577.81 16786.48 23854.10 22893.15 17057.75 29382.72 20187.20 277
FMVSNet177.44 21376.12 21981.40 20586.81 21563.01 23688.39 12789.28 17070.49 18974.39 24587.28 20849.06 28791.11 24060.91 26578.52 24890.09 197
bld_raw_dy_0_6477.29 21875.98 22081.22 21185.04 24365.47 18288.14 14077.56 33869.20 21973.77 25089.40 15742.24 33588.85 28276.78 12281.64 21289.33 225
test_vis1_n_192075.52 24375.78 22174.75 30679.84 33457.44 30283.26 26185.52 25362.83 30079.34 13486.17 24545.10 31879.71 34378.75 9981.21 21787.10 284
CHOSEN 1792x268877.63 21175.69 22283.44 14489.98 10868.58 11778.70 31687.50 22456.38 35075.80 21486.84 22058.67 19291.40 23461.58 26085.75 16090.34 184
FE-MVS77.78 20575.68 22384.08 12188.09 17566.00 16883.13 26487.79 21868.42 23878.01 16485.23 26545.50 31695.12 7859.11 27985.83 15991.11 154
WTY-MVS75.65 24175.68 22375.57 29686.40 22156.82 30977.92 32682.40 29965.10 27276.18 20787.72 19663.13 13980.90 33960.31 26981.96 20889.00 237
XXY-MVS75.41 24675.56 22574.96 30283.59 27057.82 29680.59 29283.87 27666.54 25874.93 23988.31 18363.24 13380.09 34262.16 25376.85 26786.97 285
thres100view90076.50 22875.55 22679.33 25289.52 11856.99 30785.83 20783.23 28673.94 12476.32 20387.12 21651.89 25391.95 21148.33 34383.75 18189.07 228
thres600view776.50 22875.44 22779.68 24689.40 12357.16 30485.53 21583.23 28673.79 12976.26 20487.09 21751.89 25391.89 21448.05 34883.72 18490.00 203
Test_1112_low_res76.40 23275.44 22779.27 25389.28 13258.09 28881.69 27987.07 23259.53 32772.48 26386.67 22961.30 16789.33 27060.81 26780.15 23190.41 182
HyFIR lowres test77.53 21275.40 22983.94 13489.59 11566.62 15880.36 29688.64 20156.29 35176.45 19885.17 26757.64 20193.28 15861.34 26383.10 19691.91 133
thisisatest051577.33 21675.38 23083.18 15685.27 23663.80 21782.11 27583.27 28565.06 27375.91 21183.84 28849.54 27894.27 11367.24 21386.19 15291.48 145
tfpn200view976.42 23175.37 23179.55 25189.13 13857.65 29885.17 21883.60 27873.41 13976.45 19886.39 24052.12 24591.95 21148.33 34383.75 18189.07 228
thres40076.50 22875.37 23179.86 24189.13 13857.65 29885.17 21883.60 27873.41 13976.45 19886.39 24052.12 24591.95 21148.33 34383.75 18190.00 203
131476.53 22775.30 23380.21 23583.93 26462.32 24584.66 23088.81 19260.23 32070.16 28684.07 28555.30 21590.73 25267.37 21183.21 19487.59 269
GA-MVS76.87 22475.17 23481.97 19382.75 29262.58 24181.44 28486.35 24372.16 15974.74 24182.89 30146.20 30892.02 20968.85 19981.09 21891.30 150
EPNet_dtu75.46 24474.86 23577.23 28482.57 29754.60 33586.89 17483.09 28971.64 16266.25 33085.86 25055.99 21288.04 29154.92 31086.55 14689.05 233
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LS3D76.95 22374.82 23683.37 14890.45 9467.36 14489.15 10286.94 23461.87 31069.52 29590.61 12451.71 25694.53 10546.38 35586.71 14488.21 257
cascas76.72 22674.64 23782.99 16685.78 22965.88 17282.33 27389.21 17660.85 31672.74 25981.02 32047.28 29793.75 14067.48 21085.02 16289.34 224
DP-MVS76.78 22574.57 23883.42 14593.29 4869.46 9488.55 12483.70 27763.98 28970.20 28388.89 16654.01 23094.80 9646.66 35281.88 21086.01 303
TransMVSNet (Re)75.39 24774.56 23977.86 27285.50 23457.10 30686.78 17986.09 24772.17 15871.53 27387.34 20763.01 14089.31 27156.84 30261.83 36087.17 278
LTVRE_ROB69.57 1376.25 23474.54 24081.41 20488.60 15864.38 20879.24 30889.12 18270.76 18369.79 29487.86 19549.09 28693.20 16656.21 30780.16 23086.65 292
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
thres20075.55 24274.47 24178.82 25887.78 18857.85 29583.07 26783.51 28172.44 15475.84 21384.42 27752.08 24891.75 21847.41 35083.64 18686.86 287
MVP-Stereo76.12 23574.46 24281.13 21585.37 23569.79 8684.42 24187.95 21365.03 27467.46 31385.33 26253.28 23691.73 22058.01 29183.27 19381.85 350
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
F-COLMAP76.38 23374.33 24382.50 18489.28 13266.95 15688.41 12689.03 18364.05 28766.83 32088.61 17446.78 30192.89 18157.48 29478.55 24787.67 265
XVG-ACMP-BASELINE76.11 23674.27 24481.62 19883.20 27964.67 20083.60 25689.75 15869.75 20771.85 27087.09 21732.78 36392.11 20669.99 18680.43 22888.09 258
ACMH+68.96 1476.01 23774.01 24582.03 19188.60 15865.31 18888.86 11087.55 22270.25 19567.75 30987.47 20641.27 33993.19 16858.37 28775.94 28287.60 267
ACMH67.68 1675.89 23873.93 24681.77 19688.71 15566.61 15988.62 12289.01 18569.81 20366.78 32186.70 22841.95 33891.51 22955.64 30878.14 25487.17 278
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CostFormer75.24 24873.90 24779.27 25382.65 29658.27 28780.80 28782.73 29761.57 31175.33 22883.13 29955.52 21391.07 24664.98 23278.34 25388.45 253
IterMVS-SCA-FT75.43 24573.87 24880.11 23782.69 29464.85 19781.57 28183.47 28269.16 22170.49 28084.15 28451.95 25188.15 28969.23 19372.14 32687.34 274
baseline275.70 24073.83 24981.30 20883.26 27761.79 25382.57 27280.65 31466.81 24866.88 31983.42 29557.86 19992.19 20463.47 23979.57 23689.91 208
test_cas_vis1_n_192073.76 25973.74 25073.81 31375.90 35559.77 27680.51 29382.40 29958.30 33781.62 10885.69 25344.35 32176.41 36176.29 12578.61 24685.23 313
sss73.60 26073.64 25173.51 31582.80 29155.01 33276.12 33381.69 30662.47 30574.68 24285.85 25157.32 20578.11 35060.86 26680.93 21987.39 272
pmmvs674.69 25073.39 25278.61 26181.38 31557.48 30186.64 18387.95 21364.99 27670.18 28486.61 23150.43 26989.52 26762.12 25470.18 33688.83 244
IB-MVS68.01 1575.85 23973.36 25383.31 14984.76 24766.03 16683.38 25985.06 25770.21 19669.40 29681.05 31945.76 31394.66 10165.10 23175.49 28889.25 227
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
D2MVS74.82 24973.21 25479.64 24879.81 33562.56 24280.34 29787.35 22764.37 28268.86 30182.66 30546.37 30490.10 25967.91 20681.24 21686.25 296
tfpnnormal74.39 25173.16 25578.08 27086.10 22658.05 28984.65 23287.53 22370.32 19271.22 27685.63 25654.97 21689.86 26143.03 36475.02 30186.32 295
miper_lstm_enhance74.11 25573.11 25677.13 28580.11 33059.62 27872.23 35386.92 23566.76 25070.40 28182.92 30056.93 20982.92 32969.06 19672.63 32288.87 242
IterMVS74.29 25272.94 25778.35 26781.53 31263.49 22581.58 28082.49 29868.06 24169.99 28983.69 29251.66 25785.54 30965.85 22571.64 32986.01 303
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MS-PatchMatch73.83 25872.67 25877.30 28383.87 26566.02 16781.82 27684.66 26261.37 31468.61 30482.82 30347.29 29688.21 28859.27 27684.32 17477.68 364
CVMVSNet72.99 26972.58 25974.25 31084.28 25550.85 36086.41 18983.45 28344.56 37273.23 25587.54 20449.38 28185.70 30765.90 22478.44 25086.19 298
test-LLR72.94 27072.43 26074.48 30781.35 31658.04 29078.38 31977.46 33966.66 25269.95 29079.00 34048.06 29379.24 34466.13 22084.83 16486.15 299
OurMVSNet-221017-074.26 25372.42 26179.80 24383.76 26859.59 27985.92 20386.64 23766.39 25966.96 31887.58 20039.46 34591.60 22165.76 22669.27 33988.22 256
SCA74.22 25472.33 26279.91 24084.05 26262.17 24779.96 30279.29 33066.30 26072.38 26580.13 32951.95 25188.60 28459.25 27777.67 25888.96 239
tpmrst72.39 27272.13 26373.18 31980.54 32549.91 36479.91 30379.08 33163.11 29471.69 27279.95 33155.32 21482.77 33065.66 22773.89 31186.87 286
pmmvs474.03 25771.91 26480.39 23081.96 30568.32 12081.45 28382.14 30159.32 32869.87 29285.13 26852.40 24188.13 29060.21 27074.74 30484.73 322
EG-PatchMatch MVS74.04 25671.82 26580.71 22584.92 24567.42 14185.86 20588.08 20966.04 26364.22 34283.85 28735.10 36092.56 18957.44 29580.83 22182.16 349
tpm72.37 27471.71 26674.35 30982.19 30352.00 35179.22 30977.29 34264.56 27972.95 25883.68 29351.35 25883.26 32858.33 28875.80 28387.81 263
CL-MVSNet_self_test72.37 27471.46 26775.09 30179.49 34153.53 34380.76 28985.01 25969.12 22270.51 27982.05 31357.92 19884.13 32052.27 32366.00 35287.60 267
tpm273.26 26571.46 26778.63 26083.34 27556.71 31280.65 29180.40 31956.63 34973.55 25182.02 31451.80 25591.24 23856.35 30678.42 25187.95 259
RPSCF73.23 26671.46 26778.54 26482.50 29859.85 27582.18 27482.84 29658.96 33271.15 27789.41 15545.48 31784.77 31758.82 28371.83 32891.02 161
PatchmatchNetpermissive73.12 26771.33 27078.49 26683.18 28060.85 26279.63 30478.57 33364.13 28471.73 27179.81 33451.20 26085.97 30657.40 29676.36 27988.66 249
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CR-MVSNet73.37 26271.27 27179.67 24781.32 31865.19 18975.92 33580.30 32059.92 32372.73 26081.19 31752.50 23986.69 30059.84 27277.71 25687.11 282
SixPastTwentyTwo73.37 26271.26 27279.70 24585.08 24257.89 29485.57 20983.56 28071.03 17865.66 33285.88 24942.10 33692.57 18859.11 27963.34 35888.65 250
MSDG73.36 26470.99 27380.49 22984.51 25365.80 17580.71 29086.13 24665.70 26765.46 33383.74 29144.60 31990.91 24851.13 32876.89 26584.74 321
PatchMatch-RL72.38 27370.90 27476.80 28888.60 15867.38 14379.53 30576.17 34962.75 30269.36 29782.00 31545.51 31584.89 31653.62 31680.58 22578.12 363
PVSNet64.34 1872.08 27670.87 27575.69 29486.21 22356.44 31674.37 34780.73 31362.06 30970.17 28582.23 31142.86 32983.31 32754.77 31184.45 17387.32 275
dmvs_re71.14 28070.58 27672.80 32081.96 30559.68 27775.60 33979.34 32968.55 23469.27 29980.72 32549.42 28076.54 35852.56 32277.79 25582.19 348
test_fmvs170.93 28370.52 27772.16 32473.71 36555.05 33180.82 28678.77 33251.21 36678.58 14784.41 27831.20 36876.94 35675.88 13180.12 23384.47 324
RPMNet73.51 26170.49 27882.58 18381.32 31865.19 18975.92 33592.27 7657.60 34372.73 26076.45 35652.30 24295.43 6548.14 34777.71 25687.11 282
test_040272.79 27170.44 27979.84 24288.13 17265.99 16985.93 20284.29 26965.57 26967.40 31585.49 25946.92 30092.61 18735.88 37674.38 30780.94 355
COLMAP_ROBcopyleft66.92 1773.01 26870.41 28080.81 22387.13 21065.63 17888.30 13284.19 27262.96 29763.80 34687.69 19838.04 35292.56 18946.66 35274.91 30284.24 326
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test-mter71.41 27870.39 28174.48 30781.35 31658.04 29078.38 31977.46 33960.32 31969.95 29079.00 34036.08 35879.24 34466.13 22084.83 16486.15 299
test_fmvs1_n70.86 28470.24 28272.73 32172.51 37555.28 32981.27 28579.71 32651.49 36578.73 14184.87 27227.54 37377.02 35576.06 12879.97 23485.88 306
pmmvs571.55 27770.20 28375.61 29577.83 34856.39 31781.74 27880.89 31057.76 34167.46 31384.49 27649.26 28485.32 31357.08 29975.29 29785.11 317
MDTV_nov1_ep1369.97 28483.18 28053.48 34477.10 33180.18 32360.45 31769.33 29880.44 32648.89 29186.90 29951.60 32678.51 249
MIMVSNet70.69 28669.30 28574.88 30384.52 25256.35 31975.87 33779.42 32864.59 27867.76 30882.41 30741.10 34081.54 33646.64 35481.34 21486.75 290
tpmvs71.09 28169.29 28676.49 28982.04 30456.04 32278.92 31481.37 30964.05 28767.18 31778.28 34649.74 27789.77 26249.67 33872.37 32383.67 333
test_vis1_n69.85 29669.21 28771.77 32672.66 37455.27 33081.48 28276.21 34852.03 36275.30 22983.20 29828.97 37176.22 36374.60 14178.41 25283.81 332
Patchmtry70.74 28569.16 28875.49 29880.72 32254.07 34074.94 34680.30 32058.34 33670.01 28781.19 31752.50 23986.54 30153.37 31871.09 33385.87 307
TESTMET0.1,169.89 29569.00 28972.55 32279.27 34456.85 30878.38 31974.71 35557.64 34268.09 30777.19 35337.75 35376.70 35763.92 23784.09 17784.10 329
PMMVS69.34 29868.67 29071.35 33175.67 35762.03 24875.17 34173.46 35850.00 36768.68 30279.05 33852.07 24978.13 34961.16 26482.77 19973.90 370
K. test v371.19 27968.51 29179.21 25583.04 28557.78 29784.35 24376.91 34572.90 15162.99 34982.86 30239.27 34691.09 24561.65 25952.66 37688.75 247
USDC70.33 29068.37 29276.21 29180.60 32456.23 32079.19 31086.49 23960.89 31561.29 35385.47 26031.78 36689.47 26953.37 31876.21 28082.94 343
tpm cat170.57 28768.31 29377.35 28282.41 30157.95 29378.08 32380.22 32252.04 36168.54 30577.66 35152.00 25087.84 29351.77 32472.07 32786.25 296
OpenMVS_ROBcopyleft64.09 1970.56 28868.19 29477.65 27780.26 32759.41 28185.01 22382.96 29358.76 33465.43 33482.33 30837.63 35491.23 23945.34 36076.03 28182.32 346
EPMVS69.02 30068.16 29571.59 32779.61 33949.80 36677.40 32866.93 37462.82 30170.01 28779.05 33845.79 31277.86 35256.58 30475.26 29887.13 281
CMPMVSbinary51.72 2170.19 29268.16 29576.28 29073.15 37157.55 30079.47 30683.92 27448.02 36956.48 37084.81 27343.13 32786.42 30362.67 24881.81 21184.89 319
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
AllTest70.96 28268.09 29779.58 24985.15 23963.62 21984.58 23479.83 32462.31 30660.32 35786.73 22232.02 36488.96 27950.28 33371.57 33086.15 299
gg-mvs-nofinetune69.95 29467.96 29875.94 29283.07 28354.51 33777.23 33070.29 36663.11 29470.32 28262.33 37743.62 32588.69 28353.88 31587.76 12984.62 323
FMVSNet569.50 29767.96 29874.15 31182.97 28955.35 32880.01 30182.12 30262.56 30463.02 34781.53 31636.92 35581.92 33448.42 34274.06 30985.17 316
Syy-MVS68.05 30967.85 30068.67 34684.68 24940.97 38778.62 31773.08 36066.65 25566.74 32279.46 33552.11 24782.30 33232.89 37976.38 27782.75 344
PatchT68.46 30767.85 30070.29 33780.70 32343.93 37972.47 35274.88 35260.15 32170.55 27876.57 35549.94 27481.59 33550.58 32974.83 30385.34 311
pmmvs-eth3d70.50 28967.83 30278.52 26577.37 35166.18 16581.82 27681.51 30758.90 33363.90 34580.42 32742.69 33086.28 30458.56 28565.30 35483.11 339
Anonymous2023120668.60 30367.80 30371.02 33480.23 32950.75 36178.30 32280.47 31756.79 34866.11 33182.63 30646.35 30578.95 34643.62 36375.70 28483.36 336
Patchmatch-RL test70.24 29167.78 30477.61 27877.43 35059.57 28071.16 35670.33 36562.94 29868.65 30372.77 36850.62 26685.49 31069.58 19166.58 34987.77 264
test0.0.03 168.00 31067.69 30568.90 34377.55 34947.43 36875.70 33872.95 36266.66 25266.56 32482.29 31048.06 29375.87 36544.97 36174.51 30683.41 335
testing368.56 30567.67 30671.22 33387.33 20542.87 38183.06 26871.54 36370.36 19069.08 30084.38 27930.33 37085.69 30837.50 37575.45 29285.09 318
EU-MVSNet68.53 30667.61 30771.31 33278.51 34747.01 37084.47 23684.27 27042.27 37566.44 32984.79 27440.44 34383.76 32258.76 28468.54 34483.17 337
KD-MVS_self_test68.81 30167.59 30872.46 32374.29 36345.45 37277.93 32587.00 23363.12 29363.99 34478.99 34242.32 33284.77 31756.55 30564.09 35787.16 280
test_fmvs268.35 30867.48 30970.98 33569.50 37851.95 35280.05 30076.38 34749.33 36874.65 24384.38 27923.30 37975.40 37074.51 14275.17 30085.60 308
ppachtmachnet_test70.04 29367.34 31078.14 26979.80 33661.13 25879.19 31080.59 31559.16 33065.27 33579.29 33746.75 30287.29 29749.33 33966.72 34786.00 305
Anonymous2024052168.80 30267.22 31173.55 31474.33 36254.11 33983.18 26285.61 25258.15 33861.68 35280.94 32230.71 36981.27 33857.00 30073.34 31985.28 312
our_test_369.14 29967.00 31275.57 29679.80 33658.80 28277.96 32477.81 33659.55 32662.90 35078.25 34747.43 29583.97 32151.71 32567.58 34683.93 331
test20.0367.45 31266.95 31368.94 34275.48 35944.84 37777.50 32777.67 33766.66 25263.01 34883.80 28947.02 29978.40 34842.53 36668.86 34383.58 334
MIMVSNet168.58 30466.78 31473.98 31280.07 33151.82 35380.77 28884.37 26664.40 28159.75 36082.16 31236.47 35683.63 32442.73 36570.33 33586.48 294
testgi66.67 31866.53 31567.08 35175.62 35841.69 38675.93 33476.50 34666.11 26165.20 33886.59 23235.72 35974.71 37243.71 36273.38 31884.84 320
myMVS_eth3d67.02 31566.29 31669.21 34184.68 24942.58 38278.62 31773.08 36066.65 25566.74 32279.46 33531.53 36782.30 33239.43 37276.38 27782.75 344
UnsupCasMVSNet_eth67.33 31365.99 31771.37 32973.48 36851.47 35775.16 34285.19 25665.20 27160.78 35580.93 32442.35 33177.20 35457.12 29853.69 37585.44 310
dp66.80 31665.43 31870.90 33679.74 33848.82 36775.12 34474.77 35359.61 32564.08 34377.23 35242.89 32880.72 34048.86 34166.58 34983.16 338
TinyColmap67.30 31464.81 31974.76 30581.92 30756.68 31380.29 29881.49 30860.33 31856.27 37183.22 29624.77 37687.66 29645.52 35869.47 33879.95 359
CHOSEN 280x42066.51 31964.71 32071.90 32581.45 31363.52 22457.98 38468.95 37253.57 35762.59 35176.70 35446.22 30775.29 37155.25 30979.68 23576.88 366
TDRefinement67.49 31164.34 32176.92 28673.47 36961.07 25984.86 22782.98 29259.77 32458.30 36485.13 26826.06 37487.89 29247.92 34960.59 36581.81 351
PM-MVS66.41 32064.14 32273.20 31873.92 36456.45 31578.97 31364.96 38063.88 29164.72 33980.24 32819.84 38283.44 32666.24 21964.52 35679.71 360
dmvs_testset62.63 33264.11 32358.19 36178.55 34624.76 39775.28 34065.94 37767.91 24260.34 35676.01 35853.56 23373.94 37631.79 38067.65 34575.88 368
KD-MVS_2432*160066.22 32263.89 32473.21 31675.47 36053.42 34570.76 35984.35 26764.10 28566.52 32678.52 34434.55 36184.98 31450.40 33150.33 37981.23 353
miper_refine_blended66.22 32263.89 32473.21 31675.47 36053.42 34570.76 35984.35 26764.10 28566.52 32678.52 34434.55 36184.98 31450.40 33150.33 37981.23 353
MDA-MVSNet-bldmvs66.68 31763.66 32675.75 29379.28 34360.56 26773.92 34978.35 33464.43 28050.13 37879.87 33344.02 32383.67 32346.10 35656.86 36883.03 341
ADS-MVSNet266.20 32463.33 32774.82 30479.92 33258.75 28367.55 37075.19 35153.37 35865.25 33675.86 35942.32 33280.53 34141.57 36768.91 34185.18 314
Patchmatch-test64.82 32763.24 32869.57 33979.42 34249.82 36563.49 38169.05 37151.98 36359.95 35980.13 32950.91 26270.98 37940.66 36973.57 31487.90 261
MDA-MVSNet_test_wron65.03 32562.92 32971.37 32975.93 35456.73 31069.09 36874.73 35457.28 34654.03 37477.89 34845.88 31074.39 37449.89 33761.55 36182.99 342
YYNet165.03 32562.91 33071.38 32875.85 35656.60 31469.12 36774.66 35657.28 34654.12 37377.87 34945.85 31174.48 37349.95 33661.52 36283.05 340
ADS-MVSNet64.36 32862.88 33168.78 34579.92 33247.17 36967.55 37071.18 36453.37 35865.25 33675.86 35942.32 33273.99 37541.57 36768.91 34185.18 314
JIA-IIPM66.32 32162.82 33276.82 28777.09 35261.72 25465.34 37775.38 35058.04 34064.51 34062.32 37842.05 33786.51 30251.45 32769.22 34082.21 347
LF4IMVS64.02 32962.19 33369.50 34070.90 37653.29 34876.13 33277.18 34352.65 36058.59 36280.98 32123.55 37876.52 35953.06 32066.66 34878.68 362
test_fmvs363.36 33161.82 33467.98 34862.51 38546.96 37177.37 32974.03 35745.24 37167.50 31278.79 34312.16 39072.98 37872.77 16266.02 35183.99 330
new-patchmatchnet61.73 33461.73 33561.70 35772.74 37324.50 39869.16 36678.03 33561.40 31256.72 36975.53 36238.42 34976.48 36045.95 35757.67 36784.13 328
UnsupCasMVSNet_bld63.70 33061.53 33670.21 33873.69 36651.39 35872.82 35181.89 30355.63 35357.81 36671.80 37038.67 34878.61 34749.26 34052.21 37780.63 356
mvsany_test162.30 33361.26 33765.41 35369.52 37754.86 33366.86 37249.78 39346.65 37068.50 30683.21 29749.15 28566.28 38556.93 30160.77 36375.11 369
PVSNet_057.27 2061.67 33559.27 33868.85 34479.61 33957.44 30268.01 36973.44 35955.93 35258.54 36370.41 37344.58 32077.55 35347.01 35135.91 38571.55 373
test_vis1_rt60.28 33658.42 33965.84 35267.25 38155.60 32770.44 36160.94 38544.33 37359.00 36166.64 37524.91 37568.67 38362.80 24469.48 33773.25 371
MVS-HIRNet59.14 33757.67 34063.57 35581.65 30943.50 38071.73 35465.06 37939.59 37951.43 37657.73 38338.34 35082.58 33139.53 37073.95 31064.62 379
DSMNet-mixed57.77 33956.90 34160.38 35967.70 38035.61 39069.18 36553.97 39132.30 38757.49 36779.88 33240.39 34468.57 38438.78 37372.37 32376.97 365
WB-MVS54.94 34054.72 34255.60 36773.50 36720.90 39974.27 34861.19 38459.16 33050.61 37774.15 36447.19 29875.78 36617.31 39135.07 38670.12 374
pmmvs357.79 33854.26 34368.37 34764.02 38456.72 31175.12 34465.17 37840.20 37752.93 37569.86 37420.36 38175.48 36845.45 35955.25 37472.90 372
SSC-MVS53.88 34353.59 34454.75 36972.87 37219.59 40073.84 35060.53 38657.58 34449.18 37973.45 36746.34 30675.47 36916.20 39432.28 38869.20 375
N_pmnet52.79 34653.26 34551.40 37178.99 3457.68 40369.52 3633.89 40251.63 36457.01 36874.98 36340.83 34265.96 38637.78 37464.67 35580.56 358
FPMVS53.68 34451.64 34659.81 36065.08 38351.03 35969.48 36469.58 36941.46 37640.67 38272.32 36916.46 38670.00 38224.24 38865.42 35358.40 384
mvsany_test353.99 34251.45 34761.61 35855.51 38944.74 37863.52 38045.41 39743.69 37458.11 36576.45 35617.99 38363.76 38854.77 31147.59 38176.34 367
test_f52.09 34750.82 34855.90 36553.82 39242.31 38559.42 38358.31 38936.45 38256.12 37270.96 37212.18 38957.79 39053.51 31756.57 37067.60 376
new_pmnet50.91 34950.29 34952.78 37068.58 37934.94 39263.71 37956.63 39039.73 37844.95 38065.47 37621.93 38058.48 38934.98 37756.62 36964.92 378
APD_test153.31 34549.93 35063.42 35665.68 38250.13 36371.59 35566.90 37534.43 38440.58 38371.56 3718.65 39576.27 36234.64 37855.36 37363.86 380
LCM-MVSNet54.25 34149.68 35167.97 34953.73 39345.28 37566.85 37380.78 31235.96 38339.45 38462.23 3798.70 39478.06 35148.24 34651.20 37880.57 357
EGC-MVSNET52.07 34847.05 35267.14 35083.51 27260.71 26480.50 29467.75 3730.07 3970.43 39875.85 36124.26 37781.54 33628.82 38262.25 35959.16 382
test_vis3_rt49.26 35147.02 35356.00 36454.30 39045.27 37666.76 37448.08 39436.83 38144.38 38153.20 3867.17 39764.07 38756.77 30355.66 37158.65 383
ANet_high50.57 35046.10 35463.99 35448.67 39639.13 38870.99 35880.85 31161.39 31331.18 38657.70 38417.02 38573.65 37731.22 38115.89 39479.18 361
testf145.72 35241.96 35557.00 36256.90 38745.32 37366.14 37559.26 38726.19 38830.89 38760.96 3814.14 39870.64 38026.39 38646.73 38355.04 385
APD_test245.72 35241.96 35557.00 36256.90 38745.32 37366.14 37559.26 38726.19 38830.89 38760.96 3814.14 39870.64 38026.39 38646.73 38355.04 385
Gipumacopyleft45.18 35441.86 35755.16 36877.03 35351.52 35632.50 39080.52 31632.46 38627.12 38935.02 3909.52 39375.50 36722.31 38960.21 36638.45 389
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft37.38 2244.16 35540.28 35855.82 36640.82 39842.54 38465.12 37863.99 38134.43 38424.48 39057.12 3853.92 40076.17 36417.10 39255.52 37248.75 387
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS240.82 35638.86 35946.69 37253.84 39116.45 40148.61 38749.92 39237.49 38031.67 38560.97 3808.14 39656.42 39128.42 38330.72 38967.19 377
E-PMN31.77 35730.64 36035.15 37552.87 39427.67 39457.09 38547.86 39524.64 39016.40 39533.05 39111.23 39154.90 39214.46 39518.15 39222.87 391
EMVS30.81 35929.65 36134.27 37650.96 39525.95 39656.58 38646.80 39624.01 39115.53 39630.68 39212.47 38854.43 39312.81 39617.05 39322.43 392
test_method31.52 35829.28 36238.23 37427.03 4006.50 40420.94 39262.21 3834.05 39522.35 39352.50 38713.33 38747.58 39427.04 38534.04 38760.62 381
cdsmvs_eth3d_5k19.96 36126.61 3630.00 3820.00 4040.00 4070.00 39389.26 1730.00 4000.00 40188.61 17461.62 1590.00 4010.00 4000.00 3990.00 397
MVEpermissive26.22 2330.37 36025.89 36443.81 37344.55 39735.46 39128.87 39139.07 39818.20 39218.58 39440.18 3892.68 40147.37 39517.07 39323.78 39148.60 388
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt18.61 36221.40 36510.23 3794.82 40110.11 40234.70 38930.74 4001.48 39623.91 39226.07 39328.42 37213.41 39827.12 38415.35 3957.17 393
wuyk23d16.82 36315.94 36619.46 37858.74 38631.45 39339.22 3883.74 4036.84 3946.04 3972.70 3971.27 40224.29 39710.54 39714.40 3962.63 394
ab-mvs-re7.23 3649.64 3670.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40186.72 2240.00 4050.00 4010.00 4000.00 3990.00 397
test1236.12 3658.11 3680.14 3800.06 4030.09 40571.05 3570.03 4050.04 3990.25 4001.30 3990.05 4030.03 4000.21 3990.01 3980.29 395
testmvs6.04 3668.02 3690.10 3810.08 4020.03 40669.74 3620.04 4040.05 3980.31 3991.68 3980.02 4040.04 3990.24 3980.02 3970.25 396
pcd_1.5k_mvsjas5.26 3677.02 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40063.15 1360.00 4010.00 4000.00 3990.00 397
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
MM88.97 473.65 1092.66 2391.17 11686.57 187.39 3394.97 1671.70 4997.68 192.19 195.63 2895.57 1
WAC-MVS42.58 38239.46 371
FOURS195.00 1072.39 3995.06 193.84 1574.49 11391.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
PC_three_145268.21 24092.02 1294.00 4682.09 595.98 5184.58 4696.68 294.95 10
No_MVS89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 404
eth-test0.00 404
ZD-MVS94.38 2572.22 4492.67 6170.98 17987.75 3094.07 4174.01 3296.70 2784.66 4594.84 43
IU-MVS95.30 271.25 5792.95 5166.81 24892.39 688.94 1696.63 494.85 19
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5696.48 894.88 14
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 41
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
save fliter93.80 4072.35 4290.47 6491.17 11674.31 116
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 24
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 42
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
GSMVS88.96 239
test_part295.06 872.65 3291.80 13
sam_mvs151.32 25988.96 239
sam_mvs50.01 272
ambc75.24 30073.16 37050.51 36263.05 38287.47 22564.28 34177.81 35017.80 38489.73 26457.88 29260.64 36485.49 309
MTGPAbinary92.02 85
test_post178.90 3155.43 39648.81 29285.44 31259.25 277
test_post5.46 39550.36 27084.24 319
patchmatchnet-post74.00 36551.12 26188.60 284
GG-mvs-BLEND75.38 29981.59 31155.80 32479.32 30769.63 36867.19 31673.67 36643.24 32688.90 28150.41 33084.50 16981.45 352
MTMP92.18 3532.83 399
gm-plane-assit81.40 31453.83 34262.72 30380.94 32292.39 19563.40 241
test9_res84.90 4095.70 2692.87 102
TEST993.26 5072.96 2588.75 11591.89 9368.44 23785.00 5593.10 6574.36 2895.41 67
test_893.13 5272.57 3588.68 12091.84 9768.69 23284.87 5993.10 6574.43 2695.16 76
agg_prior282.91 6495.45 3092.70 105
agg_prior92.85 5971.94 5191.78 10084.41 6994.93 87
TestCases79.58 24985.15 23963.62 21979.83 32462.31 30660.32 35786.73 22232.02 36488.96 27950.28 33371.57 33086.15 299
test_prior472.60 3489.01 105
test_prior288.85 11175.41 9384.91 5793.54 5674.28 2983.31 5995.86 20
test_prior86.33 5492.61 6569.59 8892.97 5095.48 6293.91 53
旧先验286.56 18658.10 33987.04 3788.98 27774.07 147
新几何286.29 194
新几何183.42 14593.13 5270.71 7185.48 25457.43 34581.80 10591.98 8863.28 13192.27 20164.60 23592.99 6587.27 276
旧先验191.96 7165.79 17686.37 24293.08 6969.31 7592.74 6888.74 248
无先验87.48 15788.98 18660.00 32294.12 12167.28 21288.97 238
原ACMM286.86 175
原ACMM184.35 10793.01 5768.79 10592.44 6963.96 29081.09 11591.57 9966.06 10995.45 6367.19 21494.82 4588.81 245
test22291.50 7768.26 12284.16 24683.20 28854.63 35679.74 12791.63 9758.97 19191.42 8586.77 289
testdata291.01 24762.37 251
segment_acmp73.08 37
testdata79.97 23990.90 8664.21 21084.71 26159.27 32985.40 4992.91 7162.02 15589.08 27568.95 19791.37 8686.63 293
testdata184.14 24775.71 87
test1286.80 4992.63 6470.70 7291.79 9982.71 9671.67 5096.16 4494.50 5093.54 77
plane_prior790.08 10268.51 118
plane_prior689.84 11168.70 11360.42 184
plane_prior592.44 6995.38 6978.71 10086.32 14991.33 147
plane_prior491.00 118
plane_prior368.60 11678.44 3178.92 139
plane_prior291.25 5079.12 23
plane_prior189.90 110
plane_prior68.71 11190.38 6777.62 3986.16 153
n20.00 406
nn0.00 406
door-mid69.98 367
lessismore_v078.97 25681.01 32157.15 30565.99 37661.16 35482.82 30339.12 34791.34 23659.67 27346.92 38288.43 254
LGP-MVS_train84.50 9989.23 13468.76 10791.94 9175.37 9476.64 19491.51 10054.29 22694.91 8878.44 10283.78 17989.83 212
test1192.23 79
door69.44 370
HQP5-MVS66.98 153
HQP-NCC89.33 12789.17 9876.41 7277.23 180
ACMP_Plane89.33 12789.17 9876.41 7277.23 180
BP-MVS77.47 112
HQP4-MVS77.24 17995.11 8091.03 159
HQP3-MVS92.19 8285.99 156
HQP2-MVS60.17 187
NP-MVS89.62 11468.32 12090.24 130
MDTV_nov1_ep13_2view37.79 38975.16 34255.10 35466.53 32549.34 28253.98 31487.94 260
ACMMP++_ref81.95 209
ACMMP++81.25 215
Test By Simon64.33 123
ITE_SJBPF78.22 26881.77 30860.57 26683.30 28469.25 21667.54 31187.20 21336.33 35787.28 29854.34 31374.62 30586.80 288
DeepMVS_CXcopyleft27.40 37740.17 39926.90 39524.59 40117.44 39323.95 39148.61 3889.77 39226.48 39618.06 39024.47 39028.83 390