This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 5977.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8592.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 52
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5894.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 8991.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 31
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MM89.16 689.23 788.97 490.79 9073.65 1092.66 2391.17 11686.57 187.39 3594.97 1671.70 5097.68 192.19 195.63 2895.57 1
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10792.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5480.26 1187.78 2994.27 3275.89 1996.81 2387.45 3296.44 993.05 96
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 37
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8789.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 9989.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 27
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13687.63 3094.27 5793.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
9.1488.26 1592.84 6091.52 4694.75 173.93 12588.57 2294.67 1975.57 2295.79 5386.77 3595.76 23
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7474.62 11188.90 2093.85 5275.75 2096.00 4987.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MVS_030488.08 1488.08 1788.08 1489.67 11472.04 4892.26 3389.26 17384.19 285.01 5595.18 1369.93 6997.20 1491.63 295.60 2994.99 9
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5693.59 2376.27 7988.14 2495.09 1571.06 5796.67 2987.67 2996.37 1494.09 46
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5581.50 585.79 4893.47 6073.02 3997.00 1884.90 4294.94 3994.10 45
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5394.32 3171.76 4896.93 1985.53 3995.79 2294.32 38
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7993.50 2575.17 10086.34 4495.29 1270.86 5996.00 4988.78 1996.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6477.57 4183.84 8294.40 3072.24 4396.28 4085.65 3895.30 3593.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5573.01 15088.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 105
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 5994.44 2870.78 6096.61 3284.53 4994.89 4193.66 65
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6393.99 4870.67 6296.82 2284.18 5695.01 3793.90 55
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7793.82 1673.07 14884.86 6292.89 7476.22 1796.33 3884.89 4495.13 3694.40 34
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6694.52 2168.81 8496.65 3084.53 4994.90 4094.00 50
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7094.52 2169.09 7896.70 2784.37 5194.83 4494.03 49
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18792.02 8579.45 1985.88 4694.80 1768.07 8996.21 4286.69 3695.34 3393.23 87
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8283.81 8393.95 5169.77 7296.01 4885.15 4094.66 4694.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS86.69 3586.95 3185.90 6390.76 9167.57 14092.83 1793.30 3279.67 1784.57 6992.27 8671.47 5395.02 8684.24 5493.46 6395.13 6
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5876.62 7083.68 8494.46 2567.93 9095.95 5284.20 5594.39 5393.23 87
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8594.17 3667.45 9596.60 3383.06 6394.50 5094.07 47
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 9694.23 3572.13 4597.09 1684.83 4595.37 3293.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 6774.50 11286.84 4294.65 2067.31 9795.77 5484.80 4692.85 6792.84 103
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7084.22 7493.36 6371.44 5496.76 2580.82 8595.33 3494.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS-test86.29 4286.48 3785.71 6591.02 8367.21 15292.36 2993.78 1878.97 2883.51 8891.20 11170.65 6395.15 7781.96 7694.89 4194.77 22
EC-MVSNet86.01 4386.38 3884.91 8889.31 13166.27 16692.32 3093.63 2179.37 2084.17 7691.88 9369.04 8295.43 6583.93 5793.77 6193.01 99
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8076.87 6282.81 9794.25 3466.44 10596.24 4182.88 6794.28 5693.38 81
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7093.04 3875.53 9183.86 8194.42 2967.87 9296.64 3182.70 7294.57 4993.66 65
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11591.89 9368.69 23585.00 5793.10 6774.43 2695.41 6784.97 4195.71 2593.02 98
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5793.56 2473.95 12383.16 9191.07 11675.94 1895.19 7579.94 9494.38 5493.55 76
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15385.22 5491.90 9269.47 7496.42 3783.28 6295.94 1994.35 36
dcpmvs_285.63 5286.15 4484.06 12591.71 7564.94 19786.47 19091.87 9573.63 13186.60 4393.02 7276.57 1591.87 21683.36 6092.15 7595.35 3
CANet86.45 3886.10 4587.51 3790.09 10270.94 6789.70 8392.59 6681.78 481.32 11291.43 10670.34 6497.23 1384.26 5293.36 6494.37 35
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6687.65 19667.22 15188.69 11993.04 3879.64 1885.33 5292.54 8373.30 3594.50 10783.49 5991.14 8995.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf_n85.92 4686.04 4785.57 6885.03 25169.51 9089.62 8690.58 13173.42 13887.75 3194.02 4472.85 4093.24 16090.37 390.75 9393.96 51
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4573.54 13585.94 4594.51 2465.80 11595.61 5783.04 6592.51 7193.53 78
canonicalmvs85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13181.50 7988.80 12094.77 22
MSLP-MVS++85.43 5685.76 5084.45 10391.93 7270.24 7690.71 5892.86 5377.46 4784.22 7492.81 7867.16 9992.94 18080.36 9094.35 5590.16 195
test_fmvsmconf0.1_n85.61 5385.65 5185.50 6982.99 29669.39 9689.65 8490.29 14473.31 14187.77 3094.15 3871.72 4993.23 16190.31 490.67 9593.89 56
SR-MVS-dyc-post85.77 4985.61 5286.23 5693.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2665.00 12395.56 5882.75 6891.87 7992.50 114
RE-MVS-def85.48 5393.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2663.87 12982.75 6891.87 7992.50 114
ACMMPcopyleft85.89 4885.39 5487.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12193.82 5364.33 12596.29 3982.67 7390.69 9493.23 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsm_n_192085.29 5985.34 5585.13 7986.12 23069.93 8388.65 12190.78 12769.97 20288.27 2393.98 4971.39 5591.54 22888.49 2390.45 9793.91 53
TSAR-MVS + GP.85.71 5185.33 5686.84 4791.34 7872.50 3689.07 10487.28 22876.41 7285.80 4790.22 13474.15 3195.37 7281.82 7791.88 7892.65 109
alignmvs85.48 5485.32 5785.96 6289.51 12069.47 9289.74 8192.47 6876.17 8087.73 3391.46 10570.32 6593.78 13681.51 7888.95 11794.63 26
DELS-MVS85.41 5785.30 5885.77 6488.49 16267.93 13285.52 21993.44 2778.70 2983.63 8789.03 16474.57 2495.71 5680.26 9294.04 5993.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CDPH-MVS85.76 5085.29 5987.17 4393.49 4771.08 6188.58 12392.42 7268.32 24284.61 6793.48 5872.32 4296.15 4579.00 9895.43 3194.28 40
casdiffmvspermissive85.11 6185.14 6085.01 8287.20 21265.77 17987.75 15392.83 5577.84 3784.36 7392.38 8572.15 4493.93 13081.27 8190.48 9695.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline84.93 6384.98 6184.80 9287.30 21065.39 18887.30 16592.88 5277.62 3984.04 7992.26 8771.81 4793.96 12481.31 8090.30 9995.03 8
UA-Net85.08 6284.96 6285.45 7092.07 7068.07 12989.78 8090.86 12682.48 384.60 6893.20 6669.35 7595.22 7471.39 17490.88 9293.07 95
HPM-MVS_fast85.35 5884.95 6386.57 5393.69 4270.58 7592.15 3691.62 10373.89 12682.67 9994.09 4062.60 14495.54 6080.93 8392.93 6693.57 74
MVS_111021_HR85.14 6084.75 6486.32 5591.65 7672.70 3085.98 20290.33 14176.11 8182.08 10291.61 10071.36 5694.17 12081.02 8292.58 7092.08 131
ETV-MVS84.90 6584.67 6585.59 6789.39 12568.66 11688.74 11792.64 6579.97 1584.10 7785.71 25469.32 7695.38 6980.82 8591.37 8692.72 104
fmvsm_l_conf0.5_n84.47 6784.54 6684.27 11385.42 24068.81 10588.49 12587.26 22968.08 24488.03 2793.49 5772.04 4691.77 21888.90 1789.14 11692.24 125
patch_mono-283.65 7684.54 6680.99 22090.06 10765.83 17584.21 24788.74 19871.60 16885.01 5592.44 8474.51 2583.50 33182.15 7592.15 7593.64 71
test_fmvsmconf0.01_n84.73 6684.52 6885.34 7280.25 33669.03 9989.47 8889.65 16173.24 14586.98 4094.27 3266.62 10193.23 16190.26 589.95 10793.78 62
3Dnovator+77.84 485.48 5484.47 6988.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19593.37 6260.40 18896.75 2677.20 11793.73 6295.29 5
DPM-MVS84.93 6384.29 7086.84 4790.20 10073.04 2387.12 16993.04 3869.80 20682.85 9591.22 11073.06 3896.02 4776.72 12694.63 4791.46 149
fmvsm_l_conf0.5_n_a84.13 6984.16 7184.06 12585.38 24168.40 12088.34 13286.85 23767.48 25187.48 3493.40 6170.89 5891.61 22288.38 2589.22 11592.16 129
test_fmvsmvis_n_192084.02 7083.87 7284.49 10184.12 26769.37 9788.15 14087.96 21270.01 20083.95 8093.23 6568.80 8591.51 23188.61 2089.96 10692.57 110
EI-MVSNet-Vis-set84.19 6883.81 7385.31 7388.18 17267.85 13387.66 15589.73 15980.05 1482.95 9289.59 14870.74 6194.82 9580.66 8984.72 17093.28 86
fmvsm_s_conf0.5_n83.80 7383.71 7484.07 12386.69 22267.31 14789.46 8983.07 29271.09 17886.96 4193.70 5569.02 8391.47 23388.79 1884.62 17293.44 80
nrg03083.88 7183.53 7584.96 8486.77 22069.28 9890.46 6592.67 6174.79 10682.95 9291.33 10872.70 4193.09 17480.79 8779.28 24992.50 114
MG-MVS83.41 8383.45 7683.28 15292.74 6262.28 24888.17 13889.50 16475.22 9681.49 11192.74 8266.75 10095.11 8072.85 16291.58 8392.45 117
fmvsm_s_conf0.5_n_a83.63 7883.41 7784.28 11186.14 22968.12 12789.43 9082.87 29670.27 19687.27 3793.80 5469.09 7891.58 22488.21 2683.65 19193.14 93
fmvsm_s_conf0.1_n83.56 8083.38 7884.10 11884.86 25367.28 14889.40 9383.01 29370.67 18687.08 3893.96 5068.38 8791.45 23488.56 2284.50 17393.56 75
EI-MVSNet-UG-set83.81 7283.38 7885.09 8087.87 18467.53 14187.44 16189.66 16079.74 1682.23 10189.41 15770.24 6694.74 9879.95 9383.92 18492.99 100
CPTT-MVS83.73 7483.33 8084.92 8793.28 4970.86 6992.09 3790.38 13768.75 23479.57 13292.83 7660.60 18493.04 17880.92 8491.56 8490.86 168
HQP_MVS83.64 7783.14 8185.14 7790.08 10368.71 11291.25 5092.44 6979.12 2378.92 14191.00 12060.42 18695.38 6978.71 10286.32 15191.33 150
Effi-MVS+83.62 7983.08 8285.24 7588.38 16767.45 14288.89 10989.15 17975.50 9282.27 10088.28 18669.61 7394.45 10977.81 11187.84 13093.84 59
MVS_Test83.15 8883.06 8383.41 14986.86 21663.21 23486.11 20092.00 8774.31 11682.87 9489.44 15670.03 6793.21 16377.39 11688.50 12693.81 60
EPP-MVSNet83.40 8483.02 8484.57 9690.13 10164.47 20792.32 3090.73 12874.45 11579.35 13591.10 11469.05 8195.12 7872.78 16387.22 13894.13 44
fmvsm_s_conf0.1_n_a83.32 8682.99 8584.28 11183.79 27468.07 12989.34 9582.85 29769.80 20687.36 3694.06 4268.34 8891.56 22687.95 2783.46 19793.21 90
OPM-MVS83.50 8182.95 8685.14 7788.79 15270.95 6689.13 10391.52 10677.55 4480.96 11991.75 9560.71 17994.50 10779.67 9586.51 14989.97 211
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EPNet83.72 7582.92 8786.14 5984.22 26569.48 9191.05 5585.27 25781.30 676.83 19091.65 9766.09 11095.56 5876.00 13293.85 6093.38 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS-MVSNet83.15 8882.81 8884.18 11689.94 11063.30 23291.59 4388.46 20479.04 2579.49 13392.16 8865.10 12094.28 11267.71 20991.86 8194.95 10
EIA-MVS83.31 8782.80 8984.82 9089.59 11665.59 18188.21 13692.68 6074.66 10978.96 13986.42 24169.06 8095.26 7375.54 13890.09 10393.62 72
Vis-MVSNetpermissive83.46 8282.80 8985.43 7190.25 9968.74 11090.30 6990.13 14876.33 7880.87 12092.89 7461.00 17694.20 11872.45 16890.97 9093.35 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FIs82.07 10382.42 9181.04 21988.80 15158.34 28888.26 13593.49 2676.93 6078.47 15391.04 11769.92 7092.34 19969.87 19084.97 16792.44 118
VNet82.21 10082.41 9281.62 20090.82 8860.93 26284.47 23889.78 15676.36 7784.07 7891.88 9364.71 12490.26 25870.68 18088.89 11893.66 65
PAPM_NR83.02 9282.41 9284.82 9092.47 6766.37 16487.93 14891.80 9873.82 12777.32 17990.66 12567.90 9194.90 9170.37 18389.48 11293.19 91
VDD-MVS83.01 9382.36 9484.96 8491.02 8366.40 16388.91 10888.11 20777.57 4184.39 7293.29 6452.19 24793.91 13177.05 11988.70 12294.57 29
3Dnovator76.31 583.38 8582.31 9586.59 5287.94 18272.94 2890.64 5992.14 8477.21 5275.47 22192.83 7658.56 19594.72 9973.24 15992.71 6992.13 130
h-mvs3383.15 8882.19 9686.02 6190.56 9370.85 7088.15 14089.16 17876.02 8384.67 6491.39 10761.54 16295.50 6182.71 7075.48 29691.72 139
MVS_111021_LR82.61 9782.11 9784.11 11788.82 14971.58 5385.15 22286.16 24774.69 10880.47 12391.04 11762.29 15190.55 25680.33 9190.08 10490.20 194
DP-MVS Recon83.11 9182.09 9886.15 5894.44 1970.92 6888.79 11392.20 8170.53 19079.17 13791.03 11964.12 12796.03 4668.39 20690.14 10291.50 145
MVSFormer82.85 9482.05 9985.24 7587.35 20470.21 7790.50 6290.38 13768.55 23781.32 11289.47 15161.68 15993.46 15378.98 9990.26 10092.05 132
FC-MVSNet-test81.52 11682.02 10080.03 24088.42 16655.97 32587.95 14693.42 2977.10 5677.38 17790.98 12269.96 6891.79 21768.46 20584.50 17392.33 119
HQP-MVS82.61 9782.02 10084.37 10589.33 12866.98 15589.17 9892.19 8276.41 7277.23 18290.23 13360.17 18995.11 8077.47 11485.99 15991.03 162
OMC-MVS82.69 9581.97 10284.85 8988.75 15467.42 14387.98 14490.87 12574.92 10379.72 13091.65 9762.19 15493.96 12475.26 14086.42 15093.16 92
diffmvspermissive82.10 10181.88 10382.76 18283.00 29463.78 22083.68 25489.76 15772.94 15182.02 10389.85 14065.96 11490.79 25282.38 7487.30 13793.71 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu82.62 9681.83 10484.96 8490.80 8969.76 8788.74 11791.70 10269.39 21478.96 13988.46 18165.47 11794.87 9474.42 14588.57 12390.24 193
CLD-MVS82.31 9981.65 10584.29 11088.47 16367.73 13685.81 21092.35 7475.78 8678.33 15686.58 23664.01 12894.35 11076.05 13187.48 13590.79 169
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_NR-MVSNet81.88 10681.54 10682.92 17188.46 16463.46 22887.13 16892.37 7380.19 1278.38 15489.14 16071.66 5293.05 17670.05 18676.46 27992.25 123
PS-MVSNAJss82.07 10381.31 10784.34 10886.51 22567.27 14989.27 9691.51 10771.75 16279.37 13490.22 13463.15 13894.27 11377.69 11282.36 21191.49 146
LPG-MVS_test82.08 10281.27 10884.50 9989.23 13568.76 10890.22 7091.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18589.83 216
LFMVS81.82 10881.23 10983.57 14491.89 7363.43 23089.84 7681.85 30777.04 5883.21 8993.10 6752.26 24693.43 15571.98 16989.95 10793.85 57
API-MVS81.99 10581.23 10984.26 11490.94 8570.18 8291.10 5389.32 16971.51 17078.66 14788.28 18665.26 11895.10 8364.74 23691.23 8887.51 276
UniMVSNet (Re)81.60 11581.11 11183.09 16288.38 16764.41 20987.60 15693.02 4278.42 3278.56 15088.16 19069.78 7193.26 15969.58 19376.49 27891.60 140
xiu_mvs_v2_base81.69 11181.05 11283.60 14289.15 13868.03 13184.46 24090.02 15070.67 18681.30 11586.53 23963.17 13794.19 11975.60 13788.54 12488.57 258
PS-MVSNAJ81.69 11181.02 11383.70 14189.51 12068.21 12684.28 24690.09 14970.79 18381.26 11685.62 25963.15 13894.29 11175.62 13688.87 11988.59 257
GeoE81.71 11081.01 11483.80 13989.51 12064.45 20888.97 10688.73 19971.27 17478.63 14889.76 14266.32 10793.20 16669.89 18986.02 15893.74 63
hse-mvs281.72 10980.94 11584.07 12388.72 15567.68 13885.87 20687.26 22976.02 8384.67 6488.22 18961.54 16293.48 15182.71 7073.44 32491.06 160
PAPR81.66 11480.89 11683.99 13390.27 9864.00 21586.76 18391.77 10168.84 23377.13 18889.50 14967.63 9394.88 9367.55 21188.52 12593.09 94
mvsmamba81.69 11180.74 11784.56 9787.45 20366.72 15991.26 4885.89 25174.66 10978.23 15990.56 12754.33 22794.91 8880.73 8883.54 19592.04 134
MAR-MVS81.84 10780.70 11885.27 7491.32 7971.53 5489.82 7790.92 12269.77 20878.50 15186.21 24562.36 15094.52 10665.36 23092.05 7789.77 219
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VDDNet81.52 11680.67 11984.05 12890.44 9664.13 21489.73 8285.91 25071.11 17783.18 9093.48 5850.54 27193.49 15073.40 15688.25 12894.54 30
ACMP74.13 681.51 11880.57 12084.36 10689.42 12368.69 11589.97 7491.50 11074.46 11475.04 24190.41 13053.82 23394.54 10477.56 11382.91 20389.86 215
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
VPA-MVSNet80.60 13880.55 12180.76 22688.07 17860.80 26586.86 17791.58 10575.67 9080.24 12589.45 15563.34 13290.25 25970.51 18279.22 25091.23 154
DU-MVS81.12 12380.52 12282.90 17287.80 18863.46 22887.02 17291.87 9579.01 2678.38 15489.07 16265.02 12193.05 17670.05 18676.46 27992.20 126
test_yl81.17 12180.47 12383.24 15589.13 13963.62 22186.21 19789.95 15372.43 15681.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
DCV-MVSNet81.17 12180.47 12383.24 15589.13 13963.62 22186.21 19789.95 15372.43 15681.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
PVSNet_Blended80.98 12480.34 12582.90 17288.85 14665.40 18684.43 24292.00 8767.62 24878.11 16385.05 27366.02 11294.27 11371.52 17189.50 11189.01 240
TranMVSNet+NR-MVSNet80.84 12780.31 12682.42 18787.85 18562.33 24687.74 15491.33 11280.55 977.99 16789.86 13965.23 11992.62 18667.05 21875.24 30692.30 121
jason81.39 11980.29 12784.70 9486.63 22469.90 8585.95 20386.77 23863.24 29881.07 11889.47 15161.08 17592.15 20578.33 10790.07 10592.05 132
jason: jason.
lupinMVS81.39 11980.27 12884.76 9387.35 20470.21 7785.55 21586.41 24262.85 30581.32 11288.61 17661.68 15992.24 20378.41 10690.26 10091.83 136
SDMVSNet80.38 14380.18 12980.99 22089.03 14464.94 19780.45 30189.40 16675.19 9876.61 19889.98 13760.61 18387.69 29976.83 12383.55 19390.33 189
PVSNet_BlendedMVS80.60 13880.02 13082.36 18988.85 14665.40 18686.16 19992.00 8769.34 21678.11 16386.09 24966.02 11294.27 11371.52 17182.06 21487.39 278
EI-MVSNet80.52 14179.98 13182.12 19084.28 26363.19 23686.41 19188.95 18974.18 12078.69 14587.54 20666.62 10192.43 19372.57 16680.57 23390.74 173
Fast-Effi-MVS+80.81 12979.92 13283.47 14588.85 14664.51 20485.53 21789.39 16770.79 18378.49 15285.06 27267.54 9493.58 14467.03 21986.58 14792.32 120
FA-MVS(test-final)80.96 12579.91 13384.10 11888.30 17065.01 19584.55 23790.01 15173.25 14479.61 13187.57 20358.35 19794.72 9971.29 17586.25 15392.56 111
CANet_DTU80.61 13779.87 13482.83 17485.60 23763.17 23787.36 16288.65 20076.37 7675.88 21488.44 18253.51 23693.07 17573.30 15789.74 11092.25 123
ACMM73.20 880.78 13479.84 13583.58 14389.31 13168.37 12189.99 7391.60 10470.28 19577.25 18089.66 14453.37 23893.53 14974.24 14882.85 20488.85 248
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-OURS-SEG-HR80.81 12979.76 13683.96 13585.60 23768.78 10783.54 26090.50 13470.66 18876.71 19491.66 9660.69 18091.26 23976.94 12081.58 22091.83 136
xiu_mvs_v1_base_debu80.80 13179.72 13784.03 13087.35 20470.19 7985.56 21288.77 19469.06 22781.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 235
xiu_mvs_v1_base80.80 13179.72 13784.03 13087.35 20470.19 7985.56 21288.77 19469.06 22781.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 235
xiu_mvs_v1_base_debi80.80 13179.72 13784.03 13087.35 20470.19 7985.56 21288.77 19469.06 22781.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 235
UGNet80.83 12879.59 14084.54 9888.04 17968.09 12889.42 9188.16 20676.95 5976.22 20789.46 15349.30 28693.94 12768.48 20490.31 9891.60 140
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
114514_t80.68 13579.51 14184.20 11594.09 3867.27 14989.64 8591.11 11958.75 34274.08 25390.72 12458.10 19895.04 8569.70 19189.42 11390.30 191
QAPM80.88 12679.50 14285.03 8188.01 18168.97 10391.59 4392.00 8766.63 26275.15 23792.16 8857.70 20295.45 6363.52 24188.76 12190.66 175
AdaColmapbinary80.58 14079.42 14384.06 12593.09 5468.91 10489.36 9488.97 18869.27 21775.70 21789.69 14357.20 20995.77 5463.06 24688.41 12787.50 277
NR-MVSNet80.23 14879.38 14482.78 18087.80 18863.34 23186.31 19491.09 12079.01 2672.17 27489.07 16267.20 9892.81 18566.08 22575.65 29292.20 126
IterMVS-LS80.06 15179.38 14482.11 19185.89 23263.20 23586.79 18089.34 16874.19 11975.45 22486.72 22666.62 10192.39 19572.58 16576.86 27390.75 172
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
iter_conf_final80.63 13679.35 14684.46 10289.36 12767.70 13789.85 7584.49 26773.19 14678.30 15788.94 16545.98 31294.56 10279.59 9684.48 17691.11 157
test_djsdf80.30 14779.32 14783.27 15383.98 27165.37 18990.50 6290.38 13768.55 23776.19 20888.70 17256.44 21393.46 15378.98 9980.14 23990.97 165
v2v48280.23 14879.29 14883.05 16583.62 27764.14 21387.04 17189.97 15273.61 13278.18 16287.22 21461.10 17493.82 13476.11 12976.78 27691.18 155
ECVR-MVScopyleft79.61 15879.26 14980.67 22890.08 10354.69 33887.89 15077.44 34674.88 10480.27 12492.79 7948.96 29392.45 19268.55 20392.50 7294.86 17
XVG-OURS80.41 14279.23 15083.97 13485.64 23669.02 10183.03 27190.39 13671.09 17877.63 17391.49 10454.62 22691.35 23775.71 13483.47 19691.54 142
RRT_MVS80.35 14679.22 15183.74 14087.63 19765.46 18591.08 5488.92 19173.82 12776.44 20390.03 13649.05 29194.25 11776.84 12179.20 25191.51 143
WR-MVS79.49 16279.22 15180.27 23688.79 15258.35 28785.06 22488.61 20278.56 3077.65 17288.34 18463.81 13190.66 25564.98 23477.22 26891.80 138
test111179.43 16579.18 15380.15 23889.99 10853.31 35187.33 16477.05 34975.04 10180.23 12692.77 8148.97 29292.33 20068.87 20092.40 7494.81 20
mvs_anonymous79.42 16679.11 15480.34 23484.45 26257.97 29482.59 27387.62 22167.40 25276.17 21188.56 17968.47 8689.59 26970.65 18186.05 15793.47 79
v114480.03 15279.03 15583.01 16783.78 27564.51 20487.11 17090.57 13371.96 16178.08 16586.20 24661.41 16693.94 12774.93 14177.23 26790.60 178
v879.97 15579.02 15682.80 17784.09 26864.50 20687.96 14590.29 14474.13 12275.24 23486.81 22362.88 14393.89 13374.39 14675.40 30190.00 207
ab-mvs79.51 16178.97 15781.14 21688.46 16460.91 26383.84 25289.24 17570.36 19279.03 13888.87 16963.23 13690.21 26065.12 23282.57 20992.28 122
Anonymous2024052980.19 15078.89 15884.10 11890.60 9264.75 20188.95 10790.90 12365.97 27080.59 12291.17 11349.97 27693.73 14269.16 19782.70 20893.81 60
PCF-MVS73.52 780.38 14378.84 15985.01 8287.71 19368.99 10283.65 25591.46 11163.00 30277.77 17190.28 13166.10 10995.09 8461.40 26488.22 12990.94 166
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
iter_conf0580.00 15478.70 16083.91 13787.84 18665.83 17588.84 11284.92 26271.61 16778.70 14488.94 16543.88 32894.56 10279.28 9784.28 18091.33 150
v1079.74 15778.67 16182.97 17084.06 26964.95 19687.88 15190.62 13073.11 14775.11 23886.56 23761.46 16594.05 12373.68 15175.55 29489.90 213
VPNet78.69 18578.66 16278.76 26288.31 16955.72 32784.45 24186.63 24076.79 6478.26 15890.55 12859.30 19189.70 26866.63 22077.05 27090.88 167
BH-untuned79.47 16378.60 16382.05 19289.19 13765.91 17386.07 20188.52 20372.18 15875.42 22587.69 20061.15 17393.54 14860.38 27186.83 14486.70 297
Effi-MVS+-dtu80.03 15278.57 16484.42 10485.13 24868.74 11088.77 11488.10 20874.99 10274.97 24283.49 29957.27 20893.36 15673.53 15380.88 22791.18 155
WR-MVS_H78.51 18978.49 16578.56 26688.02 18056.38 32088.43 12692.67 6177.14 5473.89 25487.55 20566.25 10889.24 27558.92 28473.55 32290.06 205
Vis-MVSNet (Re-imp)78.36 19278.45 16678.07 27588.64 15851.78 36086.70 18479.63 33074.14 12175.11 23890.83 12361.29 17089.75 26658.10 29391.60 8292.69 107
BH-RMVSNet79.61 15878.44 16783.14 16089.38 12665.93 17284.95 22787.15 23273.56 13478.19 16189.79 14156.67 21293.36 15659.53 27886.74 14590.13 197
v119279.59 16078.43 16883.07 16483.55 27964.52 20386.93 17590.58 13170.83 18277.78 17085.90 25059.15 19293.94 12773.96 15077.19 26990.76 171
v14419279.47 16378.37 16982.78 18083.35 28263.96 21686.96 17390.36 14069.99 20177.50 17485.67 25760.66 18193.77 13874.27 14776.58 27790.62 176
CP-MVSNet78.22 19478.34 17077.84 27787.83 18754.54 34087.94 14791.17 11677.65 3873.48 25988.49 18062.24 15388.43 29062.19 25574.07 31590.55 180
Baseline_NR-MVSNet78.15 19878.33 17177.61 28285.79 23356.21 32386.78 18185.76 25373.60 13377.93 16887.57 20365.02 12188.99 27967.14 21775.33 30387.63 272
OpenMVScopyleft72.83 1079.77 15678.33 17184.09 12185.17 24469.91 8490.57 6090.97 12166.70 25672.17 27491.91 9154.70 22493.96 12461.81 26190.95 9188.41 261
UniMVSNet_ETH3D79.10 17578.24 17381.70 19986.85 21760.24 27487.28 16688.79 19374.25 11876.84 18990.53 12949.48 28291.56 22667.98 20782.15 21293.29 85
V4279.38 16978.24 17382.83 17481.10 32865.50 18385.55 21589.82 15571.57 16978.21 16086.12 24860.66 18193.18 16975.64 13575.46 29889.81 218
PS-CasMVS78.01 20378.09 17577.77 27987.71 19354.39 34288.02 14391.22 11377.50 4673.26 26188.64 17560.73 17888.41 29161.88 25973.88 31990.53 181
v192192079.22 17178.03 17682.80 17783.30 28463.94 21786.80 17990.33 14169.91 20477.48 17585.53 26058.44 19693.75 14073.60 15276.85 27490.71 174
jajsoiax79.29 17077.96 17783.27 15384.68 25666.57 16289.25 9790.16 14769.20 22275.46 22389.49 15045.75 31793.13 17276.84 12180.80 22990.11 199
TAPA-MVS73.13 979.15 17377.94 17882.79 17989.59 11662.99 24188.16 13991.51 10765.77 27177.14 18791.09 11560.91 17793.21 16350.26 33987.05 14092.17 128
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tttt051779.40 16777.91 17983.90 13888.10 17663.84 21888.37 13184.05 27571.45 17176.78 19289.12 16149.93 27994.89 9270.18 18583.18 20192.96 101
c3_l78.75 18277.91 17981.26 21182.89 29861.56 25784.09 25089.13 18169.97 20275.56 21984.29 28466.36 10692.09 20773.47 15575.48 29690.12 198
MVSTER79.01 17777.88 18182.38 18883.07 29164.80 20084.08 25188.95 18969.01 23078.69 14587.17 21754.70 22492.43 19374.69 14280.57 23389.89 214
tt080578.73 18377.83 18281.43 20585.17 24460.30 27389.41 9290.90 12371.21 17577.17 18688.73 17146.38 30693.21 16372.57 16678.96 25290.79 169
X-MVStestdata80.37 14577.83 18288.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8512.47 40167.45 9596.60 3383.06 6394.50 5094.07 47
v14878.72 18477.80 18481.47 20482.73 30161.96 25286.30 19588.08 20973.26 14376.18 20985.47 26262.46 14892.36 19771.92 17073.82 32090.09 201
v124078.99 17877.78 18582.64 18383.21 28663.54 22586.62 18690.30 14369.74 21177.33 17885.68 25657.04 21093.76 13973.13 16076.92 27190.62 176
mvs_tets79.13 17477.77 18683.22 15784.70 25566.37 16489.17 9890.19 14669.38 21575.40 22689.46 15344.17 32693.15 17076.78 12480.70 23190.14 196
miper_ehance_all_eth78.59 18877.76 18781.08 21882.66 30361.56 25783.65 25589.15 17968.87 23275.55 22083.79 29466.49 10492.03 20873.25 15876.39 28189.64 222
thisisatest053079.40 16777.76 18784.31 10987.69 19565.10 19487.36 16284.26 27370.04 19977.42 17688.26 18849.94 27794.79 9770.20 18484.70 17193.03 97
CDS-MVSNet79.07 17677.70 18983.17 15987.60 19868.23 12584.40 24486.20 24667.49 25076.36 20486.54 23861.54 16290.79 25261.86 26087.33 13690.49 183
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Anonymous2023121178.97 17977.69 19082.81 17690.54 9464.29 21190.11 7291.51 10765.01 28076.16 21288.13 19550.56 27093.03 17969.68 19277.56 26691.11 157
PEN-MVS77.73 20977.69 19077.84 27787.07 21553.91 34587.91 14991.18 11577.56 4373.14 26388.82 17061.23 17189.17 27659.95 27472.37 33090.43 185
AUN-MVS79.21 17277.60 19284.05 12888.71 15667.61 13985.84 20887.26 22969.08 22677.23 18288.14 19453.20 24093.47 15275.50 13973.45 32391.06 160
v7n78.97 17977.58 19383.14 16083.45 28165.51 18288.32 13391.21 11473.69 13072.41 27186.32 24457.93 19993.81 13569.18 19675.65 29290.11 199
TAMVS78.89 18177.51 19483.03 16687.80 18867.79 13584.72 23185.05 26067.63 24776.75 19387.70 19962.25 15290.82 25158.53 28987.13 13990.49 183
sd_testset77.70 21277.40 19578.60 26589.03 14460.02 27679.00 31985.83 25275.19 9876.61 19889.98 13754.81 21985.46 31762.63 25283.55 19390.33 189
GBi-Net78.40 19077.40 19581.40 20787.60 19863.01 23888.39 12889.28 17071.63 16475.34 22887.28 21054.80 22091.11 24262.72 24879.57 24390.09 201
test178.40 19077.40 19581.40 20787.60 19863.01 23888.39 12889.28 17071.63 16475.34 22887.28 21054.80 22091.11 24262.72 24879.57 24390.09 201
BH-w/o78.21 19577.33 19880.84 22488.81 15065.13 19384.87 22887.85 21769.75 20974.52 24984.74 27761.34 16893.11 17358.24 29285.84 16184.27 332
FMVSNet278.20 19677.21 19981.20 21487.60 19862.89 24287.47 16089.02 18471.63 16475.29 23387.28 21054.80 22091.10 24562.38 25379.38 24789.61 223
anonymousdsp78.60 18777.15 20082.98 16980.51 33467.08 15387.24 16789.53 16365.66 27375.16 23687.19 21652.52 24192.25 20277.17 11879.34 24889.61 223
HY-MVS69.67 1277.95 20477.15 20080.36 23387.57 20260.21 27583.37 26287.78 21966.11 26675.37 22787.06 22163.27 13490.48 25761.38 26582.43 21090.40 187
cl2278.07 20077.01 20281.23 21282.37 31061.83 25483.55 25987.98 21168.96 23175.06 24083.87 29061.40 16791.88 21573.53 15376.39 28189.98 210
Anonymous20240521178.25 19377.01 20281.99 19491.03 8260.67 26784.77 23083.90 27770.65 18980.00 12891.20 11141.08 34591.43 23565.21 23185.26 16593.85 57
MVS78.19 19776.99 20481.78 19785.66 23566.99 15484.66 23290.47 13555.08 36272.02 27685.27 26563.83 13094.11 12266.10 22489.80 10984.24 333
LCM-MVSNet-Re77.05 22376.94 20577.36 28587.20 21251.60 36180.06 30580.46 32175.20 9767.69 31786.72 22662.48 14788.98 28063.44 24389.25 11491.51 143
miper_enhance_ethall77.87 20776.86 20680.92 22381.65 31761.38 25982.68 27288.98 18665.52 27575.47 22182.30 31665.76 11692.00 21072.95 16176.39 28189.39 228
FMVSNet377.88 20676.85 20780.97 22286.84 21862.36 24586.52 18988.77 19471.13 17675.34 22886.66 23254.07 23191.10 24562.72 24879.57 24389.45 227
DTE-MVSNet76.99 22476.80 20877.54 28486.24 22753.06 35387.52 15890.66 12977.08 5772.50 26988.67 17460.48 18589.52 27057.33 30070.74 34190.05 206
CNLPA78.08 19976.79 20981.97 19590.40 9771.07 6287.59 15784.55 26666.03 26972.38 27289.64 14557.56 20486.04 31059.61 27783.35 19888.79 251
cl____77.72 21076.76 21080.58 22982.49 30760.48 27083.09 26787.87 21569.22 22074.38 25185.22 26862.10 15591.53 22971.09 17675.41 30089.73 221
DIV-MVS_self_test77.72 21076.76 21080.58 22982.48 30860.48 27083.09 26787.86 21669.22 22074.38 25185.24 26662.10 15591.53 22971.09 17675.40 30189.74 220
baseline176.98 22576.75 21277.66 28088.13 17455.66 32885.12 22381.89 30573.04 14976.79 19188.90 16762.43 14987.78 29863.30 24571.18 33989.55 225
eth_miper_zixun_eth77.92 20576.69 21381.61 20283.00 29461.98 25183.15 26589.20 17769.52 21374.86 24484.35 28361.76 15892.56 18971.50 17372.89 32890.28 192
pm-mvs177.25 22276.68 21478.93 26084.22 26558.62 28686.41 19188.36 20571.37 17273.31 26088.01 19661.22 17289.15 27764.24 23973.01 32789.03 239
ET-MVSNet_ETH3D78.63 18676.63 21584.64 9586.73 22169.47 9285.01 22584.61 26569.54 21266.51 33586.59 23450.16 27491.75 21976.26 12884.24 18192.69 107
test250677.30 22076.49 21679.74 24690.08 10352.02 35487.86 15263.10 38974.88 10480.16 12792.79 7938.29 35892.35 19868.74 20292.50 7294.86 17
Fast-Effi-MVS+-dtu78.02 20276.49 21682.62 18483.16 29066.96 15786.94 17487.45 22672.45 15371.49 28184.17 28754.79 22391.58 22467.61 21080.31 23689.30 231
1112_ss77.40 21876.43 21880.32 23589.11 14360.41 27283.65 25587.72 22062.13 31573.05 26486.72 22662.58 14689.97 26362.11 25880.80 22990.59 179
PAPM77.68 21376.40 21981.51 20387.29 21161.85 25383.78 25389.59 16264.74 28271.23 28288.70 17262.59 14593.66 14352.66 32487.03 14189.01 240
PLCcopyleft70.83 1178.05 20176.37 22083.08 16391.88 7467.80 13488.19 13789.46 16564.33 28869.87 29988.38 18353.66 23493.58 14458.86 28582.73 20687.86 268
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TR-MVS77.44 21676.18 22181.20 21488.24 17163.24 23384.61 23586.40 24367.55 24977.81 16986.48 24054.10 23093.15 17057.75 29682.72 20787.20 283
FMVSNet177.44 21676.12 22281.40 20786.81 21963.01 23888.39 12889.28 17070.49 19174.39 25087.28 21049.06 29091.11 24260.91 26878.52 25590.09 201
bld_raw_dy_0_6477.29 22175.98 22381.22 21385.04 25065.47 18488.14 14277.56 34369.20 22273.77 25589.40 15942.24 33988.85 28576.78 12481.64 21989.33 230
test_vis1_n_192075.52 24775.78 22474.75 31179.84 34257.44 30483.26 26385.52 25562.83 30679.34 13686.17 24745.10 32179.71 35078.75 10181.21 22487.10 290
CHOSEN 1792x268877.63 21475.69 22583.44 14689.98 10968.58 11878.70 32387.50 22456.38 35775.80 21686.84 22258.67 19491.40 23661.58 26385.75 16390.34 188
FE-MVS77.78 20875.68 22684.08 12288.09 17766.00 17083.13 26687.79 21868.42 24178.01 16685.23 26745.50 31995.12 7859.11 28285.83 16291.11 157
WTY-MVS75.65 24575.68 22675.57 30186.40 22656.82 31177.92 33382.40 30165.10 27776.18 20987.72 19863.13 14180.90 34660.31 27281.96 21589.00 242
XXY-MVS75.41 25075.56 22874.96 30783.59 27857.82 29880.59 29883.87 27866.54 26374.93 24388.31 18563.24 13580.09 34962.16 25676.85 27486.97 291
thres100view90076.50 23175.55 22979.33 25489.52 11956.99 30985.83 20983.23 28873.94 12476.32 20587.12 21851.89 25691.95 21148.33 34883.75 18789.07 233
thres600view776.50 23175.44 23079.68 24889.40 12457.16 30685.53 21783.23 28873.79 12976.26 20687.09 21951.89 25691.89 21448.05 35383.72 19090.00 207
Test_1112_low_res76.40 23575.44 23079.27 25589.28 13358.09 29081.69 28287.07 23359.53 33472.48 27086.67 23161.30 16989.33 27360.81 27080.15 23890.41 186
HyFIR lowres test77.53 21575.40 23283.94 13689.59 11666.62 16080.36 30288.64 20156.29 35876.45 20085.17 26957.64 20393.28 15861.34 26683.10 20291.91 135
thisisatest051577.33 21975.38 23383.18 15885.27 24363.80 21982.11 27883.27 28765.06 27875.91 21383.84 29249.54 28194.27 11367.24 21586.19 15491.48 147
tfpn200view976.42 23475.37 23479.55 25389.13 13957.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24891.95 21148.33 34883.75 18789.07 233
thres40076.50 23175.37 23479.86 24389.13 13957.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24891.95 21148.33 34883.75 18790.00 207
131476.53 23075.30 23680.21 23783.93 27262.32 24784.66 23288.81 19260.23 32770.16 29384.07 28955.30 21790.73 25467.37 21383.21 20087.59 275
GA-MVS76.87 22775.17 23781.97 19582.75 30062.58 24381.44 28786.35 24572.16 16074.74 24582.89 30846.20 31192.02 20968.85 20181.09 22591.30 153
testing9976.09 24075.12 23879.00 25888.16 17355.50 33080.79 29381.40 31173.30 14275.17 23584.27 28544.48 32490.02 26264.28 23884.22 18291.48 147
EPNet_dtu75.46 24874.86 23977.23 28882.57 30554.60 33986.89 17683.09 29171.64 16366.25 33785.86 25255.99 21488.04 29554.92 31386.55 14889.05 238
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LS3D76.95 22674.82 24083.37 15090.45 9567.36 14689.15 10286.94 23561.87 31769.52 30290.61 12651.71 25994.53 10546.38 36086.71 14688.21 263
cascas76.72 22974.64 24182.99 16885.78 23465.88 17482.33 27589.21 17660.85 32372.74 26681.02 32747.28 30093.75 14067.48 21285.02 16689.34 229
DP-MVS76.78 22874.57 24283.42 14793.29 4869.46 9488.55 12483.70 27963.98 29470.20 29088.89 16854.01 23294.80 9646.66 35781.88 21786.01 309
TransMVSNet (Re)75.39 25174.56 24377.86 27685.50 23957.10 30886.78 18186.09 24972.17 15971.53 28087.34 20963.01 14289.31 27456.84 30561.83 36787.17 284
LTVRE_ROB69.57 1376.25 23774.54 24481.41 20688.60 15964.38 21079.24 31589.12 18270.76 18569.79 30187.86 19749.09 28993.20 16656.21 31080.16 23786.65 298
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
thres20075.55 24674.47 24578.82 26187.78 19157.85 29783.07 26983.51 28372.44 15575.84 21584.42 27952.08 25191.75 21947.41 35583.64 19286.86 293
MVP-Stereo76.12 23874.46 24681.13 21785.37 24269.79 8684.42 24387.95 21365.03 27967.46 32085.33 26453.28 23991.73 22158.01 29483.27 19981.85 357
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
F-COLMAP76.38 23674.33 24782.50 18689.28 13366.95 15888.41 12789.03 18364.05 29266.83 32788.61 17646.78 30492.89 18157.48 29778.55 25487.67 271
XVG-ACMP-BASELINE76.11 23974.27 24881.62 20083.20 28764.67 20283.60 25889.75 15869.75 20971.85 27787.09 21932.78 37092.11 20669.99 18880.43 23588.09 264
ACMH+68.96 1476.01 24174.01 24982.03 19388.60 15965.31 19088.86 11087.55 22270.25 19767.75 31687.47 20841.27 34393.19 16858.37 29075.94 28987.60 273
ACMH67.68 1675.89 24273.93 25081.77 19888.71 15666.61 16188.62 12289.01 18569.81 20566.78 32886.70 23041.95 34291.51 23155.64 31178.14 26187.17 284
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CostFormer75.24 25273.90 25179.27 25582.65 30458.27 28980.80 29282.73 29961.57 31875.33 23183.13 30455.52 21591.07 24864.98 23478.34 26088.45 259
IterMVS-SCA-FT75.43 24973.87 25280.11 23982.69 30264.85 19981.57 28483.47 28469.16 22470.49 28784.15 28851.95 25488.15 29369.23 19572.14 33387.34 280
baseline275.70 24473.83 25381.30 21083.26 28561.79 25582.57 27480.65 31766.81 25366.88 32683.42 30057.86 20192.19 20463.47 24279.57 24389.91 212
test_cas_vis1_n_192073.76 26473.74 25473.81 31975.90 36359.77 27880.51 29982.40 30158.30 34481.62 11085.69 25544.35 32576.41 36876.29 12778.61 25385.23 320
sss73.60 26573.64 25573.51 32182.80 29955.01 33676.12 34081.69 30862.47 31174.68 24685.85 25357.32 20778.11 35760.86 26980.93 22687.39 278
pmmvs674.69 25473.39 25678.61 26481.38 32357.48 30386.64 18587.95 21364.99 28170.18 29186.61 23350.43 27289.52 27062.12 25770.18 34388.83 249
IB-MVS68.01 1575.85 24373.36 25783.31 15184.76 25466.03 16883.38 26185.06 25970.21 19869.40 30381.05 32645.76 31694.66 10165.10 23375.49 29589.25 232
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
D2MVS74.82 25373.21 25879.64 25079.81 34362.56 24480.34 30387.35 22764.37 28768.86 30882.66 31246.37 30790.10 26167.91 20881.24 22386.25 302
tfpnnormal74.39 25573.16 25978.08 27486.10 23158.05 29184.65 23487.53 22370.32 19471.22 28385.63 25854.97 21889.86 26443.03 37175.02 30886.32 301
miper_lstm_enhance74.11 25973.11 26077.13 28980.11 33859.62 28072.23 36086.92 23666.76 25570.40 28882.92 30756.93 21182.92 33569.06 19872.63 32988.87 247
IterMVS74.29 25672.94 26178.35 27081.53 32063.49 22781.58 28382.49 30068.06 24569.99 29683.69 29651.66 26085.54 31565.85 22771.64 33686.01 309
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MS-PatchMatch73.83 26372.67 26277.30 28783.87 27366.02 16981.82 27984.66 26461.37 32168.61 31182.82 31047.29 29988.21 29259.27 27984.32 17977.68 371
testing22274.04 26072.66 26378.19 27287.89 18355.36 33181.06 29079.20 33471.30 17374.65 24783.57 29839.11 35488.67 28751.43 33185.75 16390.53 181
CVMVSNet72.99 27472.58 26474.25 31584.28 26350.85 36686.41 19183.45 28544.56 37973.23 26287.54 20649.38 28485.70 31265.90 22678.44 25786.19 304
test-LLR72.94 27572.43 26574.48 31281.35 32458.04 29278.38 32677.46 34466.66 25769.95 29779.00 34748.06 29679.24 35166.13 22284.83 16886.15 305
OurMVSNet-221017-074.26 25772.42 26679.80 24583.76 27659.59 28185.92 20586.64 23966.39 26466.96 32587.58 20239.46 35191.60 22365.76 22869.27 34688.22 262
SCA74.22 25872.33 26779.91 24284.05 27062.17 24979.96 30879.29 33366.30 26572.38 27280.13 33651.95 25488.60 28859.25 28077.67 26588.96 244
tpmrst72.39 27772.13 26873.18 32580.54 33349.91 37079.91 30979.08 33563.11 30071.69 27979.95 33855.32 21682.77 33665.66 22973.89 31886.87 292
pmmvs474.03 26271.91 26980.39 23281.96 31368.32 12281.45 28682.14 30359.32 33569.87 29985.13 27052.40 24488.13 29460.21 27374.74 31184.73 329
EG-PatchMatch MVS74.04 26071.82 27080.71 22784.92 25267.42 14385.86 20788.08 20966.04 26864.22 34983.85 29135.10 36792.56 18957.44 29880.83 22882.16 356
tpm72.37 27971.71 27174.35 31482.19 31152.00 35579.22 31677.29 34764.56 28472.95 26583.68 29751.35 26183.26 33458.33 29175.80 29087.81 269
WB-MVSnew71.96 28471.65 27272.89 32684.67 25951.88 35882.29 27677.57 34262.31 31273.67 25783.00 30553.49 23781.10 34545.75 36482.13 21385.70 314
UWE-MVS72.13 28271.49 27374.03 31786.66 22347.70 37481.40 28876.89 35163.60 29775.59 21884.22 28639.94 35085.62 31448.98 34586.13 15688.77 252
CL-MVSNet_self_test72.37 27971.46 27475.09 30679.49 34953.53 34780.76 29585.01 26169.12 22570.51 28682.05 32057.92 20084.13 32652.27 32666.00 35987.60 273
tpm273.26 27071.46 27478.63 26383.34 28356.71 31480.65 29780.40 32256.63 35673.55 25882.02 32151.80 25891.24 24056.35 30978.42 25887.95 265
RPSCF73.23 27171.46 27478.54 26782.50 30659.85 27782.18 27782.84 29858.96 33971.15 28489.41 15745.48 32084.77 32358.82 28671.83 33591.02 164
PatchmatchNetpermissive73.12 27271.33 27778.49 26983.18 28860.85 26479.63 31078.57 33764.13 28971.73 27879.81 34151.20 26385.97 31157.40 29976.36 28688.66 255
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CR-MVSNet73.37 26771.27 27879.67 24981.32 32665.19 19175.92 34280.30 32359.92 33072.73 26781.19 32452.50 24286.69 30459.84 27577.71 26387.11 288
SixPastTwentyTwo73.37 26771.26 27979.70 24785.08 24957.89 29685.57 21183.56 28271.03 18065.66 33985.88 25142.10 34092.57 18859.11 28263.34 36588.65 256
ETVMVS72.25 28171.05 28075.84 29787.77 19251.91 35779.39 31374.98 35869.26 21873.71 25682.95 30640.82 34786.14 30946.17 36184.43 17889.47 226
MSDG73.36 26970.99 28180.49 23184.51 26165.80 17780.71 29686.13 24865.70 27265.46 34083.74 29544.60 32290.91 25051.13 33276.89 27284.74 328
PatchMatch-RL72.38 27870.90 28276.80 29288.60 15967.38 14579.53 31176.17 35562.75 30869.36 30482.00 32245.51 31884.89 32253.62 31980.58 23278.12 370
PVSNet64.34 1872.08 28370.87 28375.69 29986.21 22856.44 31874.37 35480.73 31662.06 31670.17 29282.23 31842.86 33383.31 33354.77 31484.45 17787.32 281
dmvs_re71.14 28870.58 28472.80 32781.96 31359.68 27975.60 34679.34 33268.55 23769.27 30680.72 33249.42 28376.54 36552.56 32577.79 26282.19 355
test_fmvs170.93 29170.52 28572.16 33173.71 37355.05 33580.82 29178.77 33651.21 37378.58 14984.41 28031.20 37576.94 36375.88 13380.12 24084.47 331
RPMNet73.51 26670.49 28682.58 18581.32 32665.19 19175.92 34292.27 7657.60 35072.73 26776.45 36352.30 24595.43 6548.14 35277.71 26387.11 288
test_040272.79 27670.44 28779.84 24488.13 17465.99 17185.93 20484.29 27165.57 27467.40 32285.49 26146.92 30392.61 18735.88 38374.38 31480.94 362
COLMAP_ROBcopyleft66.92 1773.01 27370.41 28880.81 22587.13 21465.63 18088.30 13484.19 27462.96 30363.80 35387.69 20038.04 35992.56 18946.66 35774.91 30984.24 333
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test-mter71.41 28670.39 28974.48 31281.35 32458.04 29278.38 32677.46 34460.32 32669.95 29779.00 34736.08 36579.24 35166.13 22284.83 16886.15 305
test_fmvs1_n70.86 29270.24 29072.73 32872.51 38355.28 33381.27 28979.71 32951.49 37278.73 14384.87 27427.54 38077.02 36276.06 13079.97 24185.88 312
pmmvs571.55 28570.20 29175.61 30077.83 35656.39 31981.74 28180.89 31357.76 34867.46 32084.49 27849.26 28785.32 31957.08 30275.29 30485.11 324
MDTV_nov1_ep1369.97 29283.18 28853.48 34877.10 33880.18 32660.45 32469.33 30580.44 33348.89 29486.90 30351.60 32978.51 256
MIMVSNet70.69 29469.30 29374.88 30884.52 26056.35 32175.87 34479.42 33164.59 28367.76 31582.41 31441.10 34481.54 34246.64 35981.34 22186.75 296
tpmvs71.09 28969.29 29476.49 29382.04 31256.04 32478.92 32181.37 31264.05 29267.18 32478.28 35349.74 28089.77 26549.67 34272.37 33083.67 340
test_vis1_n69.85 30469.21 29571.77 33372.66 38255.27 33481.48 28576.21 35452.03 36975.30 23283.20 30328.97 37876.22 37074.60 14378.41 25983.81 339
Patchmtry70.74 29369.16 29675.49 30380.72 33054.07 34474.94 35380.30 32358.34 34370.01 29481.19 32452.50 24286.54 30553.37 32171.09 34085.87 313
TESTMET0.1,169.89 30369.00 29772.55 32979.27 35256.85 31078.38 32674.71 36257.64 34968.09 31477.19 36037.75 36076.70 36463.92 24084.09 18384.10 336
PMMVS69.34 30668.67 29871.35 33875.67 36562.03 25075.17 34873.46 36550.00 37468.68 30979.05 34552.07 25278.13 35661.16 26782.77 20573.90 377
K. test v371.19 28768.51 29979.21 25783.04 29357.78 29984.35 24576.91 35072.90 15262.99 35682.86 30939.27 35291.09 24761.65 26252.66 38388.75 253
USDC70.33 29868.37 30076.21 29580.60 33256.23 32279.19 31786.49 24160.89 32261.29 36085.47 26231.78 37389.47 27253.37 32176.21 28782.94 350
tpm cat170.57 29568.31 30177.35 28682.41 30957.95 29578.08 33080.22 32552.04 36868.54 31277.66 35852.00 25387.84 29751.77 32772.07 33486.25 302
OpenMVS_ROBcopyleft64.09 1970.56 29668.19 30277.65 28180.26 33559.41 28385.01 22582.96 29558.76 34165.43 34182.33 31537.63 36191.23 24145.34 36776.03 28882.32 353
EPMVS69.02 30868.16 30371.59 33479.61 34749.80 37277.40 33566.93 38162.82 30770.01 29479.05 34545.79 31577.86 35956.58 30775.26 30587.13 287
CMPMVSbinary51.72 2170.19 30068.16 30376.28 29473.15 37957.55 30279.47 31283.92 27648.02 37656.48 37784.81 27543.13 33186.42 30762.67 25181.81 21884.89 326
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
AllTest70.96 29068.09 30579.58 25185.15 24663.62 22184.58 23679.83 32762.31 31260.32 36486.73 22432.02 37188.96 28250.28 33771.57 33786.15 305
gg-mvs-nofinetune69.95 30267.96 30675.94 29683.07 29154.51 34177.23 33770.29 37363.11 30070.32 28962.33 38443.62 32988.69 28653.88 31887.76 13184.62 330
FMVSNet569.50 30567.96 30674.15 31682.97 29755.35 33280.01 30782.12 30462.56 31063.02 35481.53 32336.92 36281.92 34048.42 34774.06 31685.17 323
Syy-MVS68.05 31767.85 30868.67 35384.68 25640.97 39478.62 32473.08 36766.65 26066.74 32979.46 34252.11 25082.30 33832.89 38676.38 28482.75 351
PatchT68.46 31567.85 30870.29 34480.70 33143.93 38672.47 35974.88 35960.15 32870.55 28576.57 36249.94 27781.59 34150.58 33374.83 31085.34 318
pmmvs-eth3d70.50 29767.83 31078.52 26877.37 35966.18 16781.82 27981.51 30958.90 34063.90 35280.42 33442.69 33486.28 30858.56 28865.30 36183.11 346
Anonymous2023120668.60 31167.80 31171.02 34180.23 33750.75 36778.30 32980.47 32056.79 35566.11 33882.63 31346.35 30878.95 35343.62 37075.70 29183.36 343
Patchmatch-RL test70.24 29967.78 31277.61 28277.43 35859.57 28271.16 36370.33 37262.94 30468.65 31072.77 37550.62 26985.49 31669.58 19366.58 35687.77 270
test0.0.03 168.00 31867.69 31368.90 35077.55 35747.43 37575.70 34572.95 36966.66 25766.56 33182.29 31748.06 29675.87 37244.97 36874.51 31383.41 342
testing368.56 31367.67 31471.22 34087.33 20942.87 38883.06 27071.54 37070.36 19269.08 30784.38 28130.33 37785.69 31337.50 38275.45 29985.09 325
EU-MVSNet68.53 31467.61 31571.31 33978.51 35547.01 37784.47 23884.27 27242.27 38266.44 33684.79 27640.44 34883.76 32858.76 28768.54 35183.17 344
KD-MVS_self_test68.81 30967.59 31672.46 33074.29 37145.45 37977.93 33287.00 23463.12 29963.99 35178.99 34942.32 33684.77 32356.55 30864.09 36487.16 286
test_fmvs268.35 31667.48 31770.98 34269.50 38651.95 35680.05 30676.38 35349.33 37574.65 24784.38 28123.30 38675.40 37774.51 14475.17 30785.60 315
ppachtmachnet_test70.04 30167.34 31878.14 27379.80 34461.13 26079.19 31780.59 31859.16 33765.27 34279.29 34446.75 30587.29 30149.33 34366.72 35486.00 311
Anonymous2024052168.80 31067.22 31973.55 32074.33 37054.11 34383.18 26485.61 25458.15 34561.68 35980.94 32930.71 37681.27 34457.00 30373.34 32685.28 319
our_test_369.14 30767.00 32075.57 30179.80 34458.80 28477.96 33177.81 34059.55 33362.90 35778.25 35447.43 29883.97 32751.71 32867.58 35383.93 338
test20.0367.45 32066.95 32168.94 34975.48 36744.84 38477.50 33477.67 34166.66 25763.01 35583.80 29347.02 30278.40 35542.53 37368.86 35083.58 341
MIMVSNet168.58 31266.78 32273.98 31880.07 33951.82 35980.77 29484.37 26864.40 28659.75 36782.16 31936.47 36383.63 33042.73 37270.33 34286.48 300
testgi66.67 32666.53 32367.08 35875.62 36641.69 39375.93 34176.50 35266.11 26665.20 34586.59 23435.72 36674.71 37943.71 36973.38 32584.84 327
myMVS_eth3d67.02 32366.29 32469.21 34884.68 25642.58 38978.62 32473.08 36766.65 26066.74 32979.46 34231.53 37482.30 33839.43 37976.38 28482.75 351
UnsupCasMVSNet_eth67.33 32165.99 32571.37 33673.48 37651.47 36375.16 34985.19 25865.20 27660.78 36280.93 33142.35 33577.20 36157.12 30153.69 38285.44 317
dp66.80 32465.43 32670.90 34379.74 34648.82 37375.12 35174.77 36059.61 33264.08 35077.23 35942.89 33280.72 34748.86 34666.58 35683.16 345
TinyColmap67.30 32264.81 32774.76 31081.92 31556.68 31580.29 30481.49 31060.33 32556.27 37883.22 30124.77 38387.66 30045.52 36569.47 34579.95 366
CHOSEN 280x42066.51 32764.71 32871.90 33281.45 32163.52 22657.98 39168.95 37953.57 36462.59 35876.70 36146.22 31075.29 37855.25 31279.68 24276.88 373
TDRefinement67.49 31964.34 32976.92 29073.47 37761.07 26184.86 22982.98 29459.77 33158.30 37185.13 27026.06 38187.89 29647.92 35460.59 37281.81 358
PM-MVS66.41 32864.14 33073.20 32473.92 37256.45 31778.97 32064.96 38763.88 29664.72 34680.24 33519.84 38983.44 33266.24 22164.52 36379.71 367
dmvs_testset62.63 34064.11 33158.19 36878.55 35424.76 40475.28 34765.94 38467.91 24660.34 36376.01 36553.56 23573.94 38331.79 38767.65 35275.88 375
KD-MVS_2432*160066.22 33063.89 33273.21 32275.47 36853.42 34970.76 36684.35 26964.10 29066.52 33378.52 35134.55 36884.98 32050.40 33550.33 38681.23 360
miper_refine_blended66.22 33063.89 33273.21 32275.47 36853.42 34970.76 36684.35 26964.10 29066.52 33378.52 35134.55 36884.98 32050.40 33550.33 38681.23 360
MDA-MVSNet-bldmvs66.68 32563.66 33475.75 29879.28 35160.56 26973.92 35678.35 33864.43 28550.13 38579.87 34044.02 32783.67 32946.10 36256.86 37583.03 348
ADS-MVSNet266.20 33263.33 33574.82 30979.92 34058.75 28567.55 37775.19 35753.37 36565.25 34375.86 36642.32 33680.53 34841.57 37468.91 34885.18 321
Patchmatch-test64.82 33563.24 33669.57 34679.42 35049.82 37163.49 38869.05 37851.98 37059.95 36680.13 33650.91 26570.98 38640.66 37673.57 32187.90 267
MDA-MVSNet_test_wron65.03 33362.92 33771.37 33675.93 36256.73 31269.09 37574.73 36157.28 35354.03 38177.89 35545.88 31374.39 38149.89 34161.55 36882.99 349
YYNet165.03 33362.91 33871.38 33575.85 36456.60 31669.12 37474.66 36357.28 35354.12 38077.87 35645.85 31474.48 38049.95 34061.52 36983.05 347
ADS-MVSNet64.36 33662.88 33968.78 35279.92 34047.17 37667.55 37771.18 37153.37 36565.25 34375.86 36642.32 33673.99 38241.57 37468.91 34885.18 321
JIA-IIPM66.32 32962.82 34076.82 29177.09 36061.72 25665.34 38475.38 35658.04 34764.51 34762.32 38542.05 34186.51 30651.45 33069.22 34782.21 354
LF4IMVS64.02 33762.19 34169.50 34770.90 38453.29 35276.13 33977.18 34852.65 36758.59 36980.98 32823.55 38576.52 36653.06 32366.66 35578.68 369
test_fmvs363.36 33961.82 34267.98 35562.51 39346.96 37877.37 33674.03 36445.24 37867.50 31978.79 35012.16 39772.98 38572.77 16466.02 35883.99 337
new-patchmatchnet61.73 34261.73 34361.70 36472.74 38124.50 40569.16 37378.03 33961.40 31956.72 37675.53 36938.42 35676.48 36745.95 36357.67 37484.13 335
UnsupCasMVSNet_bld63.70 33861.53 34470.21 34573.69 37451.39 36472.82 35881.89 30555.63 36057.81 37371.80 37738.67 35578.61 35449.26 34452.21 38480.63 363
mvsany_test162.30 34161.26 34565.41 36069.52 38554.86 33766.86 37949.78 40046.65 37768.50 31383.21 30249.15 28866.28 39256.93 30460.77 37075.11 376
PVSNet_057.27 2061.67 34359.27 34668.85 35179.61 34757.44 30468.01 37673.44 36655.93 35958.54 37070.41 38044.58 32377.55 36047.01 35635.91 39271.55 380
test_vis1_rt60.28 34458.42 34765.84 35967.25 38955.60 32970.44 36860.94 39244.33 38059.00 36866.64 38224.91 38268.67 39062.80 24769.48 34473.25 378
MVS-HIRNet59.14 34557.67 34863.57 36281.65 31743.50 38771.73 36165.06 38639.59 38651.43 38357.73 39038.34 35782.58 33739.53 37773.95 31764.62 386
DSMNet-mixed57.77 34756.90 34960.38 36667.70 38835.61 39769.18 37253.97 39832.30 39457.49 37479.88 33940.39 34968.57 39138.78 38072.37 33076.97 372
WB-MVS54.94 34854.72 35055.60 37473.50 37520.90 40674.27 35561.19 39159.16 33750.61 38474.15 37147.19 30175.78 37317.31 39835.07 39370.12 381
pmmvs357.79 34654.26 35168.37 35464.02 39256.72 31375.12 35165.17 38540.20 38452.93 38269.86 38120.36 38875.48 37545.45 36655.25 38172.90 379
SSC-MVS53.88 35153.59 35254.75 37672.87 38019.59 40773.84 35760.53 39357.58 35149.18 38673.45 37446.34 30975.47 37616.20 40132.28 39569.20 382
N_pmnet52.79 35453.26 35351.40 37878.99 3537.68 41069.52 3703.89 40951.63 37157.01 37574.98 37040.83 34665.96 39337.78 38164.67 36280.56 365
FPMVS53.68 35251.64 35459.81 36765.08 39151.03 36569.48 37169.58 37641.46 38340.67 38972.32 37616.46 39370.00 38924.24 39565.42 36058.40 391
mvsany_test353.99 35051.45 35561.61 36555.51 39744.74 38563.52 38745.41 40443.69 38158.11 37276.45 36317.99 39063.76 39554.77 31447.59 38876.34 374
test_f52.09 35550.82 35655.90 37253.82 40042.31 39259.42 39058.31 39636.45 38956.12 37970.96 37912.18 39657.79 39753.51 32056.57 37767.60 383
new_pmnet50.91 35750.29 35752.78 37768.58 38734.94 39963.71 38656.63 39739.73 38544.95 38765.47 38321.93 38758.48 39634.98 38456.62 37664.92 385
APD_test153.31 35349.93 35863.42 36365.68 39050.13 36971.59 36266.90 38234.43 39140.58 39071.56 3788.65 40276.27 36934.64 38555.36 38063.86 387
LCM-MVSNet54.25 34949.68 35967.97 35653.73 40145.28 38266.85 38080.78 31535.96 39039.45 39162.23 3868.70 40178.06 35848.24 35151.20 38580.57 364
EGC-MVSNET52.07 35647.05 36067.14 35783.51 28060.71 26680.50 30067.75 3800.07 4040.43 40575.85 36824.26 38481.54 34228.82 38962.25 36659.16 389
test_vis3_rt49.26 35947.02 36156.00 37154.30 39845.27 38366.76 38148.08 40136.83 38844.38 38853.20 3937.17 40464.07 39456.77 30655.66 37858.65 390
ANet_high50.57 35846.10 36263.99 36148.67 40439.13 39570.99 36580.85 31461.39 32031.18 39357.70 39117.02 39273.65 38431.22 38815.89 40179.18 368
testf145.72 36041.96 36357.00 36956.90 39545.32 38066.14 38259.26 39426.19 39530.89 39460.96 3884.14 40570.64 38726.39 39346.73 39055.04 392
APD_test245.72 36041.96 36357.00 36956.90 39545.32 38066.14 38259.26 39426.19 39530.89 39460.96 3884.14 40570.64 38726.39 39346.73 39055.04 392
Gipumacopyleft45.18 36241.86 36555.16 37577.03 36151.52 36232.50 39780.52 31932.46 39327.12 39635.02 3979.52 40075.50 37422.31 39660.21 37338.45 396
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft37.38 2244.16 36340.28 36655.82 37340.82 40642.54 39165.12 38563.99 38834.43 39124.48 39757.12 3923.92 40776.17 37117.10 39955.52 37948.75 394
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS240.82 36438.86 36746.69 37953.84 39916.45 40848.61 39449.92 39937.49 38731.67 39260.97 3878.14 40356.42 39828.42 39030.72 39667.19 384
E-PMN31.77 36530.64 36835.15 38252.87 40227.67 40157.09 39247.86 40224.64 39716.40 40233.05 39811.23 39854.90 39914.46 40218.15 39922.87 398
EMVS30.81 36729.65 36934.27 38350.96 40325.95 40356.58 39346.80 40324.01 39815.53 40330.68 39912.47 39554.43 40012.81 40317.05 40022.43 399
test_method31.52 36629.28 37038.23 38127.03 4086.50 41120.94 39962.21 3904.05 40222.35 40052.50 39413.33 39447.58 40127.04 39234.04 39460.62 388
cdsmvs_eth3d_5k19.96 36926.61 3710.00 3890.00 4120.00 4140.00 40089.26 1730.00 4070.00 40888.61 17661.62 1610.00 4080.00 4070.00 4060.00 404
MVEpermissive26.22 2330.37 36825.89 37243.81 38044.55 40535.46 39828.87 39839.07 40518.20 39918.58 40140.18 3962.68 40847.37 40217.07 40023.78 39848.60 395
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt18.61 37021.40 37310.23 3864.82 40910.11 40934.70 39630.74 4071.48 40323.91 39926.07 40028.42 37913.41 40527.12 39115.35 4027.17 400
wuyk23d16.82 37115.94 37419.46 38558.74 39431.45 40039.22 3953.74 4106.84 4016.04 4042.70 4041.27 40924.29 40410.54 40414.40 4032.63 401
ab-mvs-re7.23 3729.64 3750.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 40886.72 2260.00 4120.00 4080.00 4070.00 4060.00 404
test1236.12 3738.11 3760.14 3870.06 4110.09 41271.05 3640.03 4120.04 4060.25 4071.30 4060.05 4100.03 4070.21 4060.01 4050.29 402
testmvs6.04 3748.02 3770.10 3880.08 4100.03 41369.74 3690.04 4110.05 4050.31 4061.68 4050.02 4110.04 4060.24 4050.02 4040.25 403
pcd_1.5k_mvsjas5.26 3757.02 3780.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4080.00 40763.15 1380.00 4080.00 4070.00 4060.00 404
test_blank0.00 3760.00 3790.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4080.00 4070.00 4120.00 4080.00 4070.00 4060.00 404
uanet_test0.00 3760.00 3790.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4080.00 4070.00 4120.00 4080.00 4070.00 4060.00 404
DCPMVS0.00 3760.00 3790.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4080.00 4070.00 4120.00 4080.00 4070.00 4060.00 404
sosnet-low-res0.00 3760.00 3790.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4080.00 4070.00 4120.00 4080.00 4070.00 4060.00 404
sosnet0.00 3760.00 3790.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4080.00 4070.00 4120.00 4080.00 4070.00 4060.00 404
uncertanet0.00 3760.00 3790.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4080.00 4070.00 4120.00 4080.00 4070.00 4060.00 404
Regformer0.00 3760.00 3790.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4080.00 4070.00 4120.00 4080.00 4070.00 4060.00 404
uanet0.00 3760.00 3790.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4080.00 4070.00 4120.00 4080.00 4070.00 4060.00 404
WAC-MVS42.58 38939.46 378
FOURS195.00 1072.39 3995.06 193.84 1574.49 11391.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
PC_three_145268.21 24392.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
No_MVS89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 412
eth-test0.00 412
ZD-MVS94.38 2572.22 4492.67 6170.98 18187.75 3194.07 4174.01 3296.70 2784.66 4794.84 43
IU-MVS95.30 271.25 5792.95 5166.81 25392.39 688.94 1696.63 494.85 19
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 41
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
save fliter93.80 4072.35 4290.47 6491.17 11674.31 116
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 24
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 42
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
GSMVS88.96 244
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26288.96 244
sam_mvs50.01 275
ambc75.24 30573.16 37850.51 36863.05 38987.47 22564.28 34877.81 35717.80 39189.73 26757.88 29560.64 37185.49 316
MTGPAbinary92.02 85
test_post178.90 3225.43 40348.81 29585.44 31859.25 280
test_post5.46 40250.36 27384.24 325
patchmatchnet-post74.00 37251.12 26488.60 288
GG-mvs-BLEND75.38 30481.59 31955.80 32679.32 31469.63 37567.19 32373.67 37343.24 33088.90 28450.41 33484.50 17381.45 359
MTMP92.18 3532.83 406
gm-plane-assit81.40 32253.83 34662.72 30980.94 32992.39 19563.40 244
test9_res84.90 4295.70 2692.87 102
TEST993.26 5072.96 2588.75 11591.89 9368.44 24085.00 5793.10 6774.36 2895.41 67
test_893.13 5272.57 3588.68 12091.84 9768.69 23584.87 6193.10 6774.43 2695.16 76
agg_prior282.91 6695.45 3092.70 105
agg_prior92.85 5971.94 5191.78 10084.41 7194.93 87
TestCases79.58 25185.15 24663.62 22179.83 32762.31 31260.32 36486.73 22432.02 37188.96 28250.28 33771.57 33786.15 305
test_prior472.60 3489.01 105
test_prior288.85 11175.41 9384.91 5993.54 5674.28 2983.31 6195.86 20
test_prior86.33 5492.61 6569.59 8892.97 5095.48 6293.91 53
旧先验286.56 18858.10 34687.04 3988.98 28074.07 149
新几何286.29 196
新几何183.42 14793.13 5270.71 7185.48 25657.43 35281.80 10791.98 9063.28 13392.27 20164.60 23792.99 6587.27 282
旧先验191.96 7165.79 17886.37 24493.08 7169.31 7792.74 6888.74 254
无先验87.48 15988.98 18660.00 32994.12 12167.28 21488.97 243
原ACMM286.86 177
原ACMM184.35 10793.01 5768.79 10692.44 6963.96 29581.09 11791.57 10166.06 11195.45 6367.19 21694.82 4588.81 250
test22291.50 7768.26 12484.16 24883.20 29054.63 36379.74 12991.63 9958.97 19391.42 8586.77 295
testdata291.01 24962.37 254
segment_acmp73.08 37
testdata79.97 24190.90 8664.21 21284.71 26359.27 33685.40 5192.91 7362.02 15789.08 27868.95 19991.37 8686.63 299
testdata184.14 24975.71 87
test1286.80 4992.63 6470.70 7291.79 9982.71 9871.67 5196.16 4494.50 5093.54 77
plane_prior790.08 10368.51 119
plane_prior689.84 11268.70 11460.42 186
plane_prior592.44 6995.38 6978.71 10286.32 15191.33 150
plane_prior491.00 120
plane_prior368.60 11778.44 3178.92 141
plane_prior291.25 5079.12 23
plane_prior189.90 111
plane_prior68.71 11290.38 6777.62 3986.16 155
n20.00 413
nn0.00 413
door-mid69.98 374
lessismore_v078.97 25981.01 32957.15 30765.99 38361.16 36182.82 31039.12 35391.34 23859.67 27646.92 38988.43 260
LGP-MVS_train84.50 9989.23 13568.76 10891.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18589.83 216
test1192.23 79
door69.44 377
HQP5-MVS66.98 155
HQP-NCC89.33 12889.17 9876.41 7277.23 182
ACMP_Plane89.33 12889.17 9876.41 7277.23 182
BP-MVS77.47 114
HQP4-MVS77.24 18195.11 8091.03 162
HQP3-MVS92.19 8285.99 159
HQP2-MVS60.17 189
NP-MVS89.62 11568.32 12290.24 132
MDTV_nov1_ep13_2view37.79 39675.16 34955.10 36166.53 33249.34 28553.98 31787.94 266
ACMMP++_ref81.95 216
ACMMP++81.25 222
Test By Simon64.33 125
ITE_SJBPF78.22 27181.77 31660.57 26883.30 28669.25 21967.54 31887.20 21536.33 36487.28 30254.34 31674.62 31286.80 294
DeepMVS_CXcopyleft27.40 38440.17 40726.90 40224.59 40817.44 40023.95 39848.61 3959.77 39926.48 40318.06 39724.47 39728.83 397