This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 5977.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 86
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8592.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 52
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5994.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 8991.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 31
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MM89.16 689.23 788.97 490.79 9073.65 1092.66 2391.17 11686.57 187.39 3594.97 1671.70 5097.68 192.19 195.63 2895.57 1
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10792.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5480.26 1187.78 2994.27 3275.89 1996.81 2387.45 3296.44 993.05 98
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 37
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8789.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 9989.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 27
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13787.63 3094.27 5893.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
9.1488.26 1592.84 6091.52 4694.75 173.93 12588.57 2294.67 1975.57 2295.79 5486.77 3595.76 23
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7474.62 11188.90 2093.85 5275.75 2096.00 4987.80 2894.63 4895.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MVS_030488.08 1488.08 1788.08 1489.67 11472.04 4892.26 3389.26 17384.19 285.01 5595.18 1369.93 6997.20 1491.63 295.60 2994.99 9
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5693.59 2376.27 7988.14 2495.09 1571.06 5796.67 2987.67 2996.37 1494.09 46
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5581.50 585.79 4893.47 6073.02 3997.00 1884.90 4294.94 3994.10 45
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5394.32 3171.76 4896.93 1985.53 3995.79 2294.32 38
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7893.50 2575.17 10086.34 4495.29 1270.86 5996.00 4988.78 1996.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6477.57 4183.84 8294.40 3072.24 4396.28 4085.65 3895.30 3593.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5573.01 15088.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 107
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 5994.44 2870.78 6096.61 3284.53 4994.89 4193.66 65
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6393.99 4870.67 6296.82 2284.18 5695.01 3793.90 55
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7693.82 1673.07 14884.86 6292.89 7476.22 1796.33 3884.89 4495.13 3694.40 34
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6694.52 2168.81 8496.65 3084.53 4994.90 4094.00 50
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7094.52 2169.09 7896.70 2784.37 5194.83 4594.03 49
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18692.02 8579.45 1985.88 4694.80 1768.07 8996.21 4286.69 3695.34 3393.23 89
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8283.81 8393.95 5169.77 7296.01 4885.15 4094.66 4794.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS86.69 3586.95 3185.90 6390.76 9167.57 13992.83 1793.30 3279.67 1784.57 6992.27 8671.47 5395.02 8884.24 5493.46 6495.13 6
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5876.62 7083.68 8494.46 2567.93 9095.95 5284.20 5594.39 5493.23 89
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8594.17 3667.45 9596.60 3383.06 6394.50 5194.07 47
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 9794.23 3572.13 4597.09 1684.83 4595.37 3293.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 6774.50 11286.84 4294.65 2067.31 9795.77 5584.80 4692.85 6892.84 105
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7084.22 7493.36 6371.44 5496.76 2580.82 8595.33 3494.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS-test86.29 4286.48 3785.71 6591.02 8367.21 15192.36 2993.78 1878.97 2883.51 8891.20 11170.65 6395.15 7981.96 7694.89 4194.77 22
EC-MVSNet86.01 4386.38 3884.91 9089.31 13266.27 16592.32 3093.63 2179.37 2084.17 7691.88 9369.04 8295.43 6783.93 5793.77 6293.01 101
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8076.87 6282.81 9894.25 3466.44 10596.24 4182.88 6794.28 5793.38 83
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7093.04 3875.53 9183.86 8194.42 2967.87 9296.64 3182.70 7294.57 5093.66 65
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11591.89 9368.69 23785.00 5793.10 6774.43 2695.41 6984.97 4195.71 2593.02 100
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5793.56 2473.95 12383.16 9291.07 11675.94 1895.19 7779.94 9494.38 5593.55 76
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15385.22 5491.90 9269.47 7496.42 3783.28 6295.94 1994.35 36
dcpmvs_285.63 5286.15 4484.06 12691.71 7564.94 19786.47 18991.87 9573.63 13286.60 4393.02 7276.57 1591.87 21783.36 6092.15 7695.35 3
CANet86.45 3886.10 4587.51 3790.09 10270.94 6789.70 8292.59 6681.78 481.32 11491.43 10670.34 6497.23 1384.26 5293.36 6594.37 35
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6687.65 19967.22 15088.69 11993.04 3879.64 1885.33 5292.54 8373.30 3594.50 10883.49 5991.14 9095.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf_n85.92 4686.04 4785.57 6885.03 25369.51 9089.62 8690.58 13173.42 13987.75 3194.02 4472.85 4093.24 16190.37 390.75 9493.96 51
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4573.54 13685.94 4594.51 2465.80 11595.61 5983.04 6592.51 7293.53 78
canonicalmvs85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13281.50 7988.80 12194.77 22
MSLP-MVS++85.43 5685.76 5084.45 10491.93 7270.24 7690.71 5892.86 5377.46 4784.22 7492.81 7867.16 9992.94 18180.36 9094.35 5690.16 197
test_fmvsmconf0.1_n85.61 5385.65 5185.50 6982.99 29869.39 9689.65 8390.29 14473.31 14287.77 3094.15 3871.72 4993.23 16290.31 490.67 9693.89 56
SR-MVS-dyc-post85.77 4985.61 5286.23 5693.06 5570.63 7391.88 3992.27 7673.53 13785.69 4994.45 2665.00 12395.56 6082.75 6891.87 8092.50 116
RE-MVS-def85.48 5393.06 5570.63 7391.88 3992.27 7673.53 13785.69 4994.45 2663.87 12982.75 6891.87 8092.50 116
ACMMPcopyleft85.89 4885.39 5487.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12393.82 5364.33 12596.29 3982.67 7390.69 9593.23 89
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsm_n_192085.29 5985.34 5585.13 8086.12 23369.93 8388.65 12190.78 12769.97 20488.27 2393.98 4971.39 5591.54 22988.49 2390.45 9893.91 53
TSAR-MVS + GP.85.71 5185.33 5686.84 4791.34 7872.50 3689.07 10487.28 22876.41 7285.80 4790.22 13474.15 3195.37 7481.82 7791.88 7992.65 111
alignmvs85.48 5485.32 5785.96 6289.51 12069.47 9289.74 8092.47 6876.17 8087.73 3391.46 10570.32 6593.78 13781.51 7888.95 11894.63 26
DELS-MVS85.41 5785.30 5885.77 6488.49 16367.93 13285.52 21993.44 2778.70 2983.63 8789.03 16474.57 2495.71 5780.26 9294.04 6093.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CDPH-MVS85.76 5085.29 5987.17 4393.49 4771.08 6188.58 12392.42 7268.32 24484.61 6793.48 5872.32 4296.15 4579.00 9995.43 3194.28 40
casdiffmvspermissive85.11 6185.14 6085.01 8487.20 21565.77 18087.75 15292.83 5577.84 3784.36 7392.38 8572.15 4493.93 13181.27 8190.48 9795.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline84.93 6384.98 6184.80 9487.30 21365.39 18887.30 16492.88 5277.62 3984.04 7992.26 8771.81 4793.96 12581.31 8090.30 10095.03 8
UA-Net85.08 6284.96 6285.45 7092.07 7068.07 12989.78 7990.86 12682.48 384.60 6893.20 6669.35 7595.22 7671.39 17490.88 9393.07 97
HPM-MVS_fast85.35 5884.95 6386.57 5393.69 4270.58 7592.15 3691.62 10373.89 12682.67 10094.09 4062.60 14495.54 6280.93 8392.93 6793.57 74
MVS_111021_HR85.14 6084.75 6486.32 5591.65 7672.70 3085.98 20290.33 14176.11 8182.08 10391.61 10071.36 5694.17 12181.02 8292.58 7192.08 133
ETV-MVS84.90 6584.67 6585.59 6789.39 12768.66 11688.74 11792.64 6579.97 1584.10 7785.71 25469.32 7695.38 7180.82 8591.37 8792.72 106
fmvsm_l_conf0.5_n84.47 6784.54 6684.27 11485.42 24368.81 10588.49 12587.26 22968.08 24688.03 2793.49 5772.04 4691.77 21988.90 1789.14 11792.24 127
patch_mono-283.65 7684.54 6680.99 22090.06 10765.83 17684.21 24788.74 19871.60 16885.01 5592.44 8474.51 2583.50 33382.15 7592.15 7693.64 71
test_fmvsmconf0.01_n84.73 6684.52 6885.34 7280.25 33869.03 9989.47 8889.65 16173.24 14686.98 4094.27 3266.62 10193.23 16290.26 589.95 10893.78 62
3Dnovator+77.84 485.48 5484.47 6988.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19693.37 6260.40 18896.75 2677.20 11893.73 6395.29 5
DPM-MVS84.93 6384.29 7086.84 4790.20 10073.04 2387.12 16893.04 3869.80 20882.85 9691.22 11073.06 3896.02 4776.72 12694.63 4891.46 152
fmvsm_l_conf0.5_n_a84.13 6984.16 7184.06 12685.38 24468.40 12088.34 13286.85 23867.48 25387.48 3493.40 6170.89 5891.61 22388.38 2589.22 11692.16 131
test_fmvsmvis_n_192084.02 7083.87 7284.49 10384.12 26969.37 9788.15 14087.96 21270.01 20283.95 8093.23 6568.80 8591.51 23288.61 2089.96 10792.57 112
EI-MVSNet-Vis-set84.19 6883.81 7385.31 7388.18 17467.85 13387.66 15489.73 15980.05 1482.95 9389.59 14870.74 6194.82 9780.66 8984.72 17293.28 88
fmvsm_s_conf0.5_n83.80 7383.71 7484.07 12486.69 22567.31 14689.46 8983.07 29371.09 17986.96 4193.70 5569.02 8391.47 23488.79 1884.62 17493.44 82
nrg03083.88 7183.53 7584.96 8686.77 22369.28 9890.46 6592.67 6174.79 10682.95 9391.33 10872.70 4193.09 17580.79 8779.28 25192.50 116
MG-MVS83.41 8383.45 7683.28 15392.74 6262.28 24888.17 13889.50 16475.22 9681.49 11392.74 8266.75 10095.11 8272.85 16291.58 8492.45 119
fmvsm_s_conf0.5_n_a83.63 7883.41 7784.28 11286.14 23268.12 12789.43 9082.87 29870.27 19887.27 3793.80 5469.09 7891.58 22588.21 2683.65 19493.14 95
fmvsm_s_conf0.1_n83.56 8083.38 7884.10 11984.86 25567.28 14789.40 9383.01 29470.67 18787.08 3893.96 5068.38 8791.45 23588.56 2284.50 17593.56 75
EI-MVSNet-UG-set83.81 7283.38 7885.09 8187.87 18767.53 14087.44 16089.66 16079.74 1682.23 10289.41 15770.24 6694.74 10079.95 9383.92 18692.99 102
CPTT-MVS83.73 7483.33 8084.92 8993.28 4970.86 6992.09 3790.38 13768.75 23679.57 13492.83 7660.60 18493.04 17980.92 8491.56 8590.86 170
HQP_MVS83.64 7783.14 8185.14 7890.08 10368.71 11291.25 5092.44 6979.12 2378.92 14391.00 12060.42 18695.38 7178.71 10386.32 15291.33 153
Effi-MVS+83.62 7983.08 8285.24 7588.38 16967.45 14188.89 10989.15 17975.50 9282.27 10188.28 18669.61 7394.45 11077.81 11287.84 13193.84 59
MVS_Test83.15 8883.06 8383.41 15086.86 21963.21 23486.11 20092.00 8774.31 11682.87 9589.44 15670.03 6793.21 16477.39 11788.50 12793.81 60
EPP-MVSNet83.40 8483.02 8484.57 9890.13 10164.47 20792.32 3090.73 12874.45 11579.35 13791.10 11469.05 8195.12 8072.78 16387.22 13994.13 44
fmvsm_s_conf0.1_n_a83.32 8682.99 8584.28 11283.79 27668.07 12989.34 9582.85 29969.80 20887.36 3694.06 4268.34 8891.56 22787.95 2783.46 20093.21 92
OPM-MVS83.50 8182.95 8685.14 7888.79 15370.95 6689.13 10391.52 10677.55 4480.96 12191.75 9560.71 17994.50 10879.67 9786.51 15089.97 213
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EPNet83.72 7582.92 8786.14 5984.22 26769.48 9191.05 5585.27 25981.30 676.83 19191.65 9766.09 11095.56 6076.00 13293.85 6193.38 83
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS-MVSNet83.15 8882.81 8884.18 11789.94 11063.30 23291.59 4388.46 20479.04 2579.49 13592.16 8865.10 12094.28 11367.71 20991.86 8294.95 10
EIA-MVS83.31 8782.80 8984.82 9289.59 11665.59 18288.21 13692.68 6074.66 10978.96 14186.42 24169.06 8095.26 7575.54 13890.09 10493.62 72
Vis-MVSNetpermissive83.46 8282.80 8985.43 7190.25 9968.74 11090.30 6990.13 14876.33 7880.87 12292.89 7461.00 17694.20 11972.45 16890.97 9193.35 85
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FIs82.07 10382.42 9181.04 21988.80 15258.34 28888.26 13593.49 2676.93 6078.47 15591.04 11769.92 7092.34 20069.87 19084.97 16992.44 120
VNet82.21 10082.41 9281.62 20190.82 8860.93 26284.47 23889.78 15676.36 7784.07 7891.88 9364.71 12490.26 25970.68 18088.89 11993.66 65
PAPM_NR83.02 9282.41 9284.82 9292.47 6766.37 16387.93 14791.80 9873.82 12777.32 18090.66 12567.90 9194.90 9370.37 18389.48 11393.19 93
VDD-MVS83.01 9382.36 9484.96 8691.02 8366.40 16288.91 10888.11 20777.57 4184.39 7293.29 6452.19 24793.91 13277.05 12088.70 12394.57 29
3Dnovator76.31 583.38 8582.31 9586.59 5287.94 18572.94 2890.64 5992.14 8477.21 5275.47 22292.83 7658.56 19594.72 10173.24 15992.71 7092.13 132
h-mvs3383.15 8882.19 9686.02 6190.56 9370.85 7088.15 14089.16 17876.02 8384.67 6491.39 10761.54 16295.50 6382.71 7075.48 29891.72 141
MVS_111021_LR82.61 9782.11 9784.11 11888.82 15071.58 5385.15 22286.16 24874.69 10880.47 12591.04 11762.29 15190.55 25780.33 9190.08 10590.20 196
DP-MVS Recon83.11 9182.09 9886.15 5894.44 1970.92 6888.79 11392.20 8170.53 19279.17 13991.03 11964.12 12796.03 4668.39 20690.14 10391.50 148
MVSFormer82.85 9482.05 9985.24 7587.35 20770.21 7790.50 6290.38 13768.55 23981.32 11489.47 15161.68 15993.46 15478.98 10090.26 10192.05 134
FC-MVSNet-test81.52 11782.02 10080.03 24088.42 16855.97 32687.95 14593.42 2977.10 5677.38 17890.98 12269.96 6891.79 21868.46 20584.50 17592.33 121
HQP-MVS82.61 9782.02 10084.37 10689.33 12966.98 15489.17 9892.19 8276.41 7277.23 18390.23 13360.17 18995.11 8277.47 11585.99 16091.03 164
OMC-MVS82.69 9581.97 10284.85 9188.75 15567.42 14287.98 14390.87 12574.92 10379.72 13291.65 9762.19 15493.96 12575.26 14086.42 15193.16 94
diffmvspermissive82.10 10181.88 10382.76 18383.00 29663.78 22083.68 25489.76 15772.94 15182.02 10489.85 14065.96 11490.79 25382.38 7487.30 13893.71 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu82.62 9681.83 10484.96 8690.80 8969.76 8788.74 11791.70 10269.39 21778.96 14188.46 18165.47 11794.87 9674.42 14588.57 12490.24 195
CLD-MVS82.31 9981.65 10584.29 11188.47 16467.73 13685.81 21092.35 7475.78 8678.33 15886.58 23664.01 12894.35 11176.05 13187.48 13690.79 171
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_NR-MVSNet81.88 10681.54 10682.92 17288.46 16563.46 22887.13 16792.37 7380.19 1278.38 15689.14 15971.66 5293.05 17770.05 18676.46 28192.25 125
PS-MVSNAJss82.07 10381.31 10784.34 10986.51 22867.27 14889.27 9691.51 10771.75 16279.37 13690.22 13463.15 13894.27 11477.69 11382.36 21491.49 149
LPG-MVS_test82.08 10281.27 10884.50 10189.23 13668.76 10890.22 7091.94 9175.37 9476.64 19791.51 10254.29 22894.91 9078.44 10583.78 18789.83 218
LFMVS81.82 10881.23 10983.57 14591.89 7363.43 23089.84 7581.85 30977.04 5883.21 9093.10 6752.26 24693.43 15671.98 16989.95 10893.85 57
API-MVS81.99 10581.23 10984.26 11590.94 8570.18 8291.10 5389.32 16971.51 17178.66 14988.28 18665.26 11895.10 8564.74 23691.23 8987.51 278
UniMVSNet (Re)81.60 11681.11 11183.09 16388.38 16964.41 20987.60 15593.02 4278.42 3278.56 15288.16 19069.78 7193.26 16069.58 19376.49 28091.60 142
xiu_mvs_v2_base81.69 11181.05 11283.60 14389.15 13968.03 13184.46 24090.02 15070.67 18781.30 11786.53 23963.17 13794.19 12075.60 13788.54 12588.57 260
PS-MVSNAJ81.69 11181.02 11383.70 14289.51 12068.21 12684.28 24690.09 14970.79 18481.26 11885.62 25963.15 13894.29 11275.62 13688.87 12088.59 259
GeoE81.71 11081.01 11483.80 14089.51 12064.45 20888.97 10688.73 19971.27 17578.63 15089.76 14266.32 10793.20 16769.89 18986.02 15993.74 63
hse-mvs281.72 10980.94 11584.07 12488.72 15667.68 13785.87 20687.26 22976.02 8384.67 6488.22 18961.54 16293.48 15282.71 7073.44 32691.06 162
PAPR81.66 11480.89 11683.99 13490.27 9864.00 21586.76 18291.77 10168.84 23577.13 18989.50 14967.63 9394.88 9567.55 21188.52 12693.09 96
mvsmamba81.69 11180.74 11784.56 9987.45 20666.72 15891.26 4885.89 25274.66 10978.23 16090.56 12754.33 22794.91 9080.73 8883.54 19892.04 136
MAR-MVS81.84 10780.70 11885.27 7491.32 7971.53 5489.82 7690.92 12269.77 21078.50 15386.21 24562.36 15094.52 10765.36 23092.05 7889.77 221
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VDDNet81.52 11780.67 11984.05 12990.44 9664.13 21489.73 8185.91 25171.11 17883.18 9193.48 5850.54 27193.49 15173.40 15688.25 12994.54 30
ACMP74.13 681.51 11980.57 12084.36 10789.42 12568.69 11589.97 7491.50 11074.46 11475.04 24390.41 13053.82 23394.54 10577.56 11482.91 20689.86 217
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
VPA-MVSNet80.60 13980.55 12180.76 22688.07 18160.80 26586.86 17691.58 10575.67 9080.24 12789.45 15563.34 13290.25 26070.51 18279.22 25291.23 157
DU-MVS81.12 12480.52 12282.90 17387.80 19163.46 22887.02 17191.87 9579.01 2678.38 15689.07 16165.02 12193.05 17770.05 18676.46 28192.20 128
test_yl81.17 12280.47 12383.24 15689.13 14063.62 22186.21 19689.95 15372.43 15681.78 11089.61 14657.50 20593.58 14570.75 17886.90 14392.52 114
DCV-MVSNet81.17 12280.47 12383.24 15689.13 14063.62 22186.21 19689.95 15372.43 15681.78 11089.61 14657.50 20593.58 14570.75 17886.90 14392.52 114
iter_conf05_1181.63 11580.44 12585.20 7789.46 12366.20 16686.21 19686.97 23571.53 17083.35 8988.53 17943.22 33395.94 5379.82 9594.85 4393.47 79
PVSNet_Blended80.98 12580.34 12682.90 17388.85 14765.40 18684.43 24292.00 8767.62 25078.11 16485.05 27366.02 11294.27 11471.52 17189.50 11289.01 242
TranMVSNet+NR-MVSNet80.84 12880.31 12782.42 18887.85 18862.33 24687.74 15391.33 11280.55 977.99 16889.86 13965.23 11992.62 18767.05 21875.24 30892.30 123
jason81.39 12080.29 12884.70 9686.63 22769.90 8585.95 20386.77 23963.24 30081.07 12089.47 15161.08 17592.15 20678.33 10890.07 10692.05 134
jason: jason.
lupinMVS81.39 12080.27 12984.76 9587.35 20770.21 7785.55 21586.41 24362.85 30781.32 11488.61 17561.68 15992.24 20478.41 10790.26 10191.83 138
SDMVSNet80.38 14480.18 13080.99 22089.03 14564.94 19780.45 30389.40 16675.19 9876.61 19989.98 13760.61 18387.69 30176.83 12483.55 19690.33 191
PVSNet_BlendedMVS80.60 13980.02 13182.36 19088.85 14765.40 18686.16 19992.00 8769.34 21978.11 16486.09 24966.02 11294.27 11471.52 17182.06 21787.39 280
EI-MVSNet80.52 14279.98 13282.12 19184.28 26563.19 23686.41 19088.95 18974.18 12078.69 14787.54 20666.62 10192.43 19472.57 16680.57 23590.74 175
Fast-Effi-MVS+80.81 13079.92 13383.47 14688.85 14764.51 20485.53 21789.39 16770.79 18478.49 15485.06 27267.54 9493.58 14567.03 21986.58 14892.32 122
FA-MVS(test-final)80.96 12679.91 13484.10 11988.30 17265.01 19584.55 23790.01 15173.25 14579.61 13387.57 20358.35 19794.72 10171.29 17586.25 15492.56 113
CANet_DTU80.61 13879.87 13582.83 17585.60 24063.17 23787.36 16188.65 20076.37 7675.88 21588.44 18253.51 23693.07 17673.30 15789.74 11192.25 125
ACMM73.20 880.78 13579.84 13683.58 14489.31 13268.37 12189.99 7391.60 10470.28 19777.25 18189.66 14453.37 23893.53 15074.24 14882.85 20788.85 250
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-OURS-SEG-HR80.81 13079.76 13783.96 13685.60 24068.78 10783.54 26090.50 13470.66 19076.71 19591.66 9660.69 18091.26 24076.94 12181.58 22291.83 138
xiu_mvs_v1_base_debu80.80 13279.72 13884.03 13187.35 20770.19 7985.56 21288.77 19469.06 22981.83 10688.16 19050.91 26592.85 18378.29 10987.56 13389.06 237
xiu_mvs_v1_base80.80 13279.72 13884.03 13187.35 20770.19 7985.56 21288.77 19469.06 22981.83 10688.16 19050.91 26592.85 18378.29 10987.56 13389.06 237
xiu_mvs_v1_base_debi80.80 13279.72 13884.03 13187.35 20770.19 7985.56 21288.77 19469.06 22981.83 10688.16 19050.91 26592.85 18378.29 10987.56 13389.06 237
UGNet80.83 12979.59 14184.54 10088.04 18268.09 12889.42 9188.16 20676.95 5976.22 20889.46 15349.30 28693.94 12868.48 20490.31 9991.60 142
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
114514_t80.68 13779.51 14284.20 11694.09 3867.27 14889.64 8491.11 11958.75 34474.08 25590.72 12458.10 19895.04 8769.70 19189.42 11490.30 193
QAPM80.88 12779.50 14385.03 8388.01 18468.97 10391.59 4392.00 8766.63 26475.15 23992.16 8857.70 20295.45 6563.52 24288.76 12290.66 177
AdaColmapbinary80.58 14179.42 14484.06 12693.09 5468.91 10489.36 9488.97 18869.27 22075.70 21889.69 14357.20 20995.77 5563.06 24788.41 12887.50 279
NR-MVSNet80.23 14979.38 14582.78 18187.80 19163.34 23186.31 19391.09 12079.01 2672.17 27689.07 16167.20 9892.81 18666.08 22575.65 29492.20 128
IterMVS-LS80.06 15279.38 14582.11 19285.89 23563.20 23586.79 17989.34 16874.19 11975.45 22586.72 22666.62 10192.39 19672.58 16576.86 27590.75 174
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
bld_raw_dy_0_6480.78 13579.36 14785.06 8289.46 12366.03 16889.63 8585.46 25869.76 21181.88 10589.06 16343.39 33195.70 5879.82 9585.74 16693.47 79
test_djsdf80.30 14879.32 14883.27 15483.98 27365.37 18990.50 6290.38 13768.55 23976.19 20988.70 17156.44 21393.46 15478.98 10080.14 24190.97 167
v2v48280.23 14979.29 14983.05 16683.62 27964.14 21387.04 17089.97 15273.61 13378.18 16387.22 21461.10 17493.82 13576.11 12976.78 27891.18 158
ECVR-MVScopyleft79.61 15979.26 15080.67 22890.08 10354.69 34087.89 14977.44 34874.88 10480.27 12692.79 7948.96 29392.45 19368.55 20392.50 7394.86 17
XVG-OURS80.41 14379.23 15183.97 13585.64 23969.02 10183.03 27190.39 13671.09 17977.63 17491.49 10454.62 22691.35 23875.71 13483.47 19991.54 145
RRT_MVS80.35 14779.22 15283.74 14187.63 20065.46 18591.08 5488.92 19173.82 12776.44 20490.03 13649.05 29194.25 11876.84 12279.20 25391.51 146
WR-MVS79.49 16379.22 15280.27 23688.79 15358.35 28785.06 22488.61 20278.56 3077.65 17388.34 18463.81 13190.66 25664.98 23477.22 27091.80 140
test111179.43 16679.18 15480.15 23889.99 10853.31 35387.33 16377.05 35175.04 10180.23 12892.77 8148.97 29292.33 20168.87 20092.40 7594.81 20
mvs_anonymous79.42 16779.11 15580.34 23484.45 26457.97 29482.59 27387.62 22167.40 25476.17 21288.56 17868.47 8689.59 27270.65 18186.05 15893.47 79
v114480.03 15379.03 15683.01 16883.78 27764.51 20487.11 16990.57 13371.96 16178.08 16686.20 24661.41 16693.94 12874.93 14177.23 26990.60 180
v879.97 15679.02 15782.80 17884.09 27064.50 20687.96 14490.29 14474.13 12275.24 23686.81 22362.88 14393.89 13474.39 14675.40 30390.00 209
ab-mvs79.51 16278.97 15881.14 21688.46 16560.91 26383.84 25289.24 17570.36 19479.03 14088.87 16863.23 13690.21 26165.12 23282.57 21292.28 124
Anonymous2024052980.19 15178.89 15984.10 11990.60 9264.75 20188.95 10790.90 12365.97 27280.59 12491.17 11349.97 27693.73 14369.16 19782.70 21193.81 60
PCF-MVS73.52 780.38 14478.84 16085.01 8487.71 19668.99 10283.65 25591.46 11163.00 30477.77 17290.28 13166.10 10995.09 8661.40 26688.22 13090.94 168
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
iter_conf0580.00 15578.70 16183.91 13887.84 18965.83 17688.84 11284.92 26471.61 16778.70 14688.94 16543.88 32894.56 10479.28 9884.28 18291.33 153
v1079.74 15878.67 16282.97 17184.06 27164.95 19687.88 15090.62 13073.11 14775.11 24086.56 23761.46 16594.05 12473.68 15175.55 29689.90 215
VPNet78.69 18678.66 16378.76 26388.31 17155.72 32984.45 24186.63 24176.79 6478.26 15990.55 12859.30 19189.70 27166.63 22077.05 27290.88 169
BH-untuned79.47 16478.60 16482.05 19389.19 13865.91 17486.07 20188.52 20372.18 15875.42 22687.69 20061.15 17393.54 14960.38 27386.83 14586.70 299
Effi-MVS+-dtu80.03 15378.57 16584.42 10585.13 25168.74 11088.77 11488.10 20874.99 10274.97 24483.49 30157.27 20893.36 15773.53 15380.88 22991.18 158
WR-MVS_H78.51 19078.49 16678.56 26788.02 18356.38 32088.43 12692.67 6177.14 5473.89 25687.55 20566.25 10889.24 27858.92 28673.55 32490.06 207
Vis-MVSNet (Re-imp)78.36 19378.45 16778.07 27788.64 15951.78 36286.70 18379.63 33374.14 12175.11 24090.83 12361.29 17089.75 26958.10 29591.60 8392.69 109
BH-RMVSNet79.61 15978.44 16883.14 16189.38 12865.93 17384.95 22787.15 23273.56 13578.19 16289.79 14156.67 21293.36 15759.53 28086.74 14690.13 199
v119279.59 16178.43 16983.07 16583.55 28164.52 20386.93 17490.58 13170.83 18377.78 17185.90 25059.15 19293.94 12873.96 15077.19 27190.76 173
v14419279.47 16478.37 17082.78 18183.35 28463.96 21686.96 17290.36 14069.99 20377.50 17585.67 25760.66 18193.77 13974.27 14776.58 27990.62 178
CP-MVSNet78.22 19578.34 17177.84 27987.83 19054.54 34287.94 14691.17 11677.65 3873.48 26088.49 18062.24 15388.43 29262.19 25774.07 31790.55 182
Baseline_NR-MVSNet78.15 19978.33 17277.61 28485.79 23656.21 32486.78 18085.76 25473.60 13477.93 16987.57 20365.02 12188.99 28267.14 21775.33 30587.63 274
OpenMVScopyleft72.83 1079.77 15778.33 17284.09 12285.17 24769.91 8490.57 6090.97 12166.70 25872.17 27691.91 9154.70 22493.96 12561.81 26390.95 9288.41 263
UniMVSNet_ETH3D79.10 17678.24 17481.70 20086.85 22060.24 27487.28 16588.79 19374.25 11876.84 19090.53 12949.48 28291.56 22767.98 20782.15 21593.29 87
V4279.38 17078.24 17482.83 17581.10 33065.50 18485.55 21589.82 15571.57 16978.21 16186.12 24860.66 18193.18 17075.64 13575.46 30089.81 220
PS-CasMVS78.01 20478.09 17677.77 28187.71 19654.39 34488.02 14291.22 11377.50 4673.26 26288.64 17460.73 17888.41 29361.88 26173.88 32190.53 183
v192192079.22 17278.03 17782.80 17883.30 28663.94 21786.80 17890.33 14169.91 20677.48 17685.53 26058.44 19693.75 14173.60 15276.85 27690.71 176
jajsoiax79.29 17177.96 17883.27 15484.68 25866.57 16189.25 9790.16 14769.20 22575.46 22489.49 15045.75 31793.13 17376.84 12280.80 23190.11 201
TAPA-MVS73.13 979.15 17477.94 17982.79 18089.59 11662.99 24188.16 13991.51 10765.77 27377.14 18891.09 11560.91 17793.21 16450.26 34187.05 14192.17 130
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tttt051779.40 16877.91 18083.90 13988.10 17963.84 21888.37 13184.05 27671.45 17276.78 19389.12 16049.93 27994.89 9470.18 18583.18 20492.96 103
c3_l78.75 18377.91 18081.26 21282.89 30061.56 25784.09 25089.13 18169.97 20475.56 22084.29 28466.36 10692.09 20873.47 15575.48 29890.12 200
MVSTER79.01 17877.88 18282.38 18983.07 29364.80 20084.08 25188.95 18969.01 23278.69 14787.17 21754.70 22492.43 19474.69 14280.57 23589.89 216
tt080578.73 18477.83 18381.43 20685.17 24760.30 27389.41 9290.90 12371.21 17677.17 18788.73 17046.38 30693.21 16472.57 16678.96 25490.79 171
X-MVStestdata80.37 14677.83 18388.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8512.47 40367.45 9596.60 3383.06 6394.50 5194.07 47
v14878.72 18577.80 18581.47 20582.73 30361.96 25286.30 19488.08 20973.26 14476.18 21085.47 26262.46 14892.36 19871.92 17073.82 32290.09 203
v124078.99 17977.78 18682.64 18483.21 28863.54 22586.62 18590.30 14369.74 21477.33 17985.68 25657.04 21093.76 14073.13 16076.92 27390.62 178
mvs_tets79.13 17577.77 18783.22 15884.70 25766.37 16389.17 9890.19 14669.38 21875.40 22789.46 15344.17 32693.15 17176.78 12580.70 23390.14 198
miper_ehance_all_eth78.59 18977.76 18881.08 21882.66 30561.56 25783.65 25589.15 17968.87 23475.55 22183.79 29566.49 10492.03 20973.25 15876.39 28389.64 224
thisisatest053079.40 16877.76 18884.31 11087.69 19865.10 19487.36 16184.26 27470.04 20177.42 17788.26 18849.94 27794.79 9970.20 18484.70 17393.03 99
CDS-MVSNet79.07 17777.70 19083.17 16087.60 20168.23 12584.40 24486.20 24767.49 25276.36 20586.54 23861.54 16290.79 25361.86 26287.33 13790.49 185
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Anonymous2023121178.97 18077.69 19182.81 17790.54 9464.29 21190.11 7291.51 10765.01 28276.16 21388.13 19550.56 27093.03 18069.68 19277.56 26891.11 160
PEN-MVS77.73 21077.69 19177.84 27987.07 21853.91 34787.91 14891.18 11577.56 4373.14 26488.82 16961.23 17189.17 27959.95 27672.37 33290.43 187
AUN-MVS79.21 17377.60 19384.05 12988.71 15767.61 13885.84 20887.26 22969.08 22877.23 18388.14 19453.20 24093.47 15375.50 13973.45 32591.06 162
v7n78.97 18077.58 19483.14 16183.45 28365.51 18388.32 13391.21 11473.69 13172.41 27386.32 24457.93 19993.81 13669.18 19675.65 29490.11 201
TAMVS78.89 18277.51 19583.03 16787.80 19167.79 13584.72 23185.05 26267.63 24976.75 19487.70 19962.25 15290.82 25258.53 29187.13 14090.49 185
sd_testset77.70 21377.40 19678.60 26689.03 14560.02 27679.00 32185.83 25375.19 9876.61 19989.98 13754.81 21985.46 31962.63 25383.55 19690.33 191
GBi-Net78.40 19177.40 19681.40 20887.60 20163.01 23888.39 12889.28 17071.63 16475.34 22987.28 21054.80 22091.11 24362.72 24979.57 24590.09 203
test178.40 19177.40 19681.40 20887.60 20163.01 23888.39 12889.28 17071.63 16475.34 22987.28 21054.80 22091.11 24362.72 24979.57 24590.09 203
BH-w/o78.21 19677.33 19980.84 22488.81 15165.13 19384.87 22887.85 21769.75 21274.52 25184.74 27761.34 16893.11 17458.24 29485.84 16284.27 334
FMVSNet278.20 19777.21 20081.20 21487.60 20162.89 24287.47 15989.02 18471.63 16475.29 23587.28 21054.80 22091.10 24662.38 25479.38 24989.61 225
anonymousdsp78.60 18877.15 20182.98 17080.51 33667.08 15287.24 16689.53 16365.66 27575.16 23887.19 21652.52 24192.25 20377.17 11979.34 25089.61 225
HY-MVS69.67 1277.95 20577.15 20180.36 23387.57 20560.21 27583.37 26287.78 21966.11 26875.37 22887.06 22163.27 13490.48 25861.38 26782.43 21390.40 189
cl2278.07 20177.01 20381.23 21382.37 31261.83 25483.55 25987.98 21168.96 23375.06 24283.87 29161.40 16791.88 21673.53 15376.39 28389.98 212
Anonymous20240521178.25 19477.01 20381.99 19591.03 8260.67 26784.77 23083.90 27870.65 19180.00 13091.20 11141.08 34791.43 23665.21 23185.26 16793.85 57
MVS78.19 19876.99 20581.78 19885.66 23866.99 15384.66 23290.47 13555.08 36472.02 27885.27 26563.83 13094.11 12366.10 22489.80 11084.24 335
LCM-MVSNet-Re77.05 22376.94 20677.36 28787.20 21551.60 36380.06 30780.46 32375.20 9767.69 31986.72 22662.48 14788.98 28363.44 24489.25 11591.51 146
miper_enhance_ethall77.87 20876.86 20780.92 22381.65 31961.38 25982.68 27288.98 18665.52 27775.47 22282.30 31865.76 11692.00 21172.95 16176.39 28389.39 230
FMVSNet377.88 20776.85 20880.97 22286.84 22162.36 24586.52 18888.77 19471.13 17775.34 22986.66 23254.07 23191.10 24662.72 24979.57 24589.45 229
DTE-MVSNet76.99 22476.80 20977.54 28686.24 23053.06 35587.52 15790.66 12977.08 5772.50 27188.67 17360.48 18589.52 27357.33 30270.74 34390.05 208
CNLPA78.08 20076.79 21081.97 19690.40 9771.07 6287.59 15684.55 26866.03 27172.38 27489.64 14557.56 20486.04 31259.61 27983.35 20188.79 253
cl____77.72 21176.76 21180.58 22982.49 30960.48 27083.09 26787.87 21569.22 22374.38 25385.22 26862.10 15591.53 23071.09 17675.41 30289.73 223
DIV-MVS_self_test77.72 21176.76 21180.58 22982.48 31060.48 27083.09 26787.86 21669.22 22374.38 25385.24 26662.10 15591.53 23071.09 17675.40 30389.74 222
baseline176.98 22576.75 21377.66 28288.13 17755.66 33085.12 22381.89 30773.04 14976.79 19288.90 16662.43 14987.78 30063.30 24671.18 34189.55 227
eth_miper_zixun_eth77.92 20676.69 21481.61 20383.00 29661.98 25183.15 26589.20 17769.52 21674.86 24684.35 28361.76 15892.56 19071.50 17372.89 33090.28 194
pm-mvs177.25 22276.68 21578.93 26184.22 26758.62 28686.41 19088.36 20571.37 17373.31 26188.01 19661.22 17289.15 28064.24 24073.01 32989.03 241
ET-MVSNet_ETH3D78.63 18776.63 21684.64 9786.73 22469.47 9285.01 22584.61 26769.54 21566.51 33786.59 23450.16 27491.75 22076.26 12884.24 18392.69 109
test250677.30 22176.49 21779.74 24690.08 10352.02 35687.86 15163.10 39174.88 10480.16 12992.79 7938.29 36092.35 19968.74 20292.50 7394.86 17
Fast-Effi-MVS+-dtu78.02 20376.49 21782.62 18583.16 29266.96 15686.94 17387.45 22672.45 15371.49 28384.17 28854.79 22391.58 22567.61 21080.31 23889.30 233
1112_ss77.40 21976.43 21980.32 23589.11 14460.41 27283.65 25587.72 22062.13 31773.05 26586.72 22662.58 14689.97 26562.11 26080.80 23190.59 181
PAPM77.68 21476.40 22081.51 20487.29 21461.85 25383.78 25389.59 16264.74 28471.23 28488.70 17162.59 14593.66 14452.66 32687.03 14289.01 242
PLCcopyleft70.83 1178.05 20276.37 22183.08 16491.88 7467.80 13488.19 13789.46 16564.33 29069.87 30188.38 18353.66 23493.58 14558.86 28782.73 20987.86 270
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TR-MVS77.44 21776.18 22281.20 21488.24 17363.24 23384.61 23586.40 24467.55 25177.81 17086.48 24054.10 23093.15 17157.75 29882.72 21087.20 285
FMVSNet177.44 21776.12 22381.40 20886.81 22263.01 23888.39 12889.28 17070.49 19374.39 25287.28 21049.06 29091.11 24360.91 27078.52 25790.09 203
test_vis1_n_192075.52 24875.78 22474.75 31379.84 34457.44 30483.26 26385.52 25662.83 30879.34 13886.17 24745.10 32179.71 35278.75 10281.21 22687.10 292
CHOSEN 1792x268877.63 21575.69 22583.44 14789.98 10968.58 11878.70 32587.50 22456.38 35975.80 21786.84 22258.67 19491.40 23761.58 26585.75 16490.34 190
FE-MVS77.78 20975.68 22684.08 12388.09 18066.00 17183.13 26687.79 21868.42 24378.01 16785.23 26745.50 31995.12 8059.11 28485.83 16391.11 160
WTY-MVS75.65 24675.68 22675.57 30386.40 22956.82 31177.92 33582.40 30365.10 27976.18 21087.72 19863.13 14180.90 34860.31 27481.96 21889.00 244
testing9176.54 23075.66 22879.18 25888.43 16755.89 32781.08 29083.00 29573.76 13075.34 22984.29 28446.20 31190.07 26364.33 23884.50 17591.58 144
XXY-MVS75.41 25175.56 22974.96 30983.59 28057.82 29880.59 30083.87 27966.54 26574.93 24588.31 18563.24 13580.09 35162.16 25876.85 27686.97 293
thres100view90076.50 23275.55 23079.33 25489.52 11956.99 30985.83 20983.23 28973.94 12476.32 20687.12 21851.89 25691.95 21248.33 35083.75 19089.07 235
thres600view776.50 23275.44 23179.68 24889.40 12657.16 30685.53 21783.23 28973.79 12976.26 20787.09 21951.89 25691.89 21548.05 35583.72 19390.00 209
Test_1112_low_res76.40 23675.44 23179.27 25589.28 13458.09 29081.69 28287.07 23359.53 33672.48 27286.67 23161.30 16989.33 27660.81 27280.15 24090.41 188
HyFIR lowres test77.53 21675.40 23383.94 13789.59 11666.62 15980.36 30488.64 20156.29 36076.45 20185.17 26957.64 20393.28 15961.34 26883.10 20591.91 137
thisisatest051577.33 22075.38 23483.18 15985.27 24663.80 21982.11 27883.27 28865.06 28075.91 21483.84 29349.54 28194.27 11467.24 21586.19 15591.48 150
tfpn200view976.42 23575.37 23579.55 25389.13 14057.65 30085.17 22083.60 28173.41 14076.45 20186.39 24252.12 24891.95 21248.33 35083.75 19089.07 235
thres40076.50 23275.37 23579.86 24389.13 14057.65 30085.17 22083.60 28173.41 14076.45 20186.39 24252.12 24891.95 21248.33 35083.75 19090.00 209
131476.53 23175.30 23780.21 23783.93 27462.32 24784.66 23288.81 19260.23 32970.16 29584.07 29055.30 21790.73 25567.37 21383.21 20387.59 277
GA-MVS76.87 22775.17 23881.97 19682.75 30262.58 24381.44 28786.35 24672.16 16074.74 24782.89 31046.20 31192.02 21068.85 20181.09 22791.30 156
testing9976.09 24175.12 23979.00 25988.16 17555.50 33280.79 29481.40 31373.30 14375.17 23784.27 28644.48 32490.02 26464.28 23984.22 18491.48 150
EPNet_dtu75.46 24974.86 24077.23 29082.57 30754.60 34186.89 17583.09 29271.64 16366.25 33985.86 25255.99 21488.04 29754.92 31586.55 14989.05 240
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LS3D76.95 22674.82 24183.37 15190.45 9567.36 14589.15 10286.94 23661.87 31969.52 30490.61 12651.71 25994.53 10646.38 36286.71 14788.21 265
cascas76.72 22974.64 24282.99 16985.78 23765.88 17582.33 27589.21 17660.85 32572.74 26781.02 32947.28 30093.75 14167.48 21285.02 16889.34 232
DP-MVS76.78 22874.57 24383.42 14893.29 4869.46 9488.55 12483.70 28063.98 29670.20 29288.89 16754.01 23294.80 9846.66 35981.88 22086.01 311
TransMVSNet (Re)75.39 25274.56 24477.86 27885.50 24257.10 30886.78 18086.09 25072.17 15971.53 28287.34 20963.01 14289.31 27756.84 30761.83 36987.17 286
LTVRE_ROB69.57 1376.25 23874.54 24581.41 20788.60 16064.38 21079.24 31789.12 18270.76 18669.79 30387.86 19749.09 28993.20 16756.21 31280.16 23986.65 300
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
thres20075.55 24774.47 24678.82 26287.78 19457.85 29783.07 26983.51 28472.44 15575.84 21684.42 27952.08 25191.75 22047.41 35783.64 19586.86 295
MVP-Stereo76.12 23974.46 24781.13 21785.37 24569.79 8684.42 24387.95 21365.03 28167.46 32285.33 26453.28 23991.73 22258.01 29683.27 20281.85 359
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
F-COLMAP76.38 23774.33 24882.50 18789.28 13466.95 15788.41 12789.03 18364.05 29466.83 32988.61 17546.78 30492.89 18257.48 29978.55 25687.67 273
XVG-ACMP-BASELINE76.11 24074.27 24981.62 20183.20 28964.67 20283.60 25889.75 15869.75 21271.85 27987.09 21932.78 37292.11 20769.99 18880.43 23788.09 266
testing1175.14 25474.01 25078.53 26988.16 17556.38 32080.74 29780.42 32470.67 18772.69 27083.72 29743.61 33089.86 26662.29 25683.76 18989.36 231
ACMH+68.96 1476.01 24274.01 25082.03 19488.60 16065.31 19088.86 11087.55 22270.25 19967.75 31887.47 20841.27 34593.19 16958.37 29275.94 29187.60 275
ACMH67.68 1675.89 24373.93 25281.77 19988.71 15766.61 16088.62 12289.01 18569.81 20766.78 33086.70 23041.95 34491.51 23255.64 31378.14 26387.17 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CostFormer75.24 25373.90 25379.27 25582.65 30658.27 28980.80 29382.73 30161.57 32075.33 23383.13 30655.52 21591.07 24964.98 23478.34 26288.45 261
IterMVS-SCA-FT75.43 25073.87 25480.11 23982.69 30464.85 19981.57 28483.47 28569.16 22670.49 28984.15 28951.95 25488.15 29569.23 19572.14 33587.34 282
baseline275.70 24573.83 25581.30 21183.26 28761.79 25582.57 27480.65 31966.81 25566.88 32883.42 30257.86 20192.19 20563.47 24379.57 24589.91 214
test_cas_vis1_n_192073.76 26673.74 25673.81 32175.90 36559.77 27880.51 30182.40 30358.30 34681.62 11285.69 25544.35 32576.41 37076.29 12778.61 25585.23 322
sss73.60 26773.64 25773.51 32382.80 30155.01 33876.12 34281.69 31062.47 31374.68 24885.85 25357.32 20778.11 35960.86 27180.93 22887.39 280
pmmvs674.69 25673.39 25878.61 26581.38 32557.48 30386.64 18487.95 21364.99 28370.18 29386.61 23350.43 27289.52 27362.12 25970.18 34588.83 251
IB-MVS68.01 1575.85 24473.36 25983.31 15284.76 25666.03 16883.38 26185.06 26170.21 20069.40 30581.05 32845.76 31694.66 10365.10 23375.49 29789.25 234
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
D2MVS74.82 25573.21 26079.64 25079.81 34562.56 24480.34 30587.35 22764.37 28968.86 31082.66 31446.37 30790.10 26267.91 20881.24 22586.25 304
tfpnnormal74.39 25773.16 26178.08 27686.10 23458.05 29184.65 23487.53 22370.32 19671.22 28585.63 25854.97 21889.86 26643.03 37375.02 31086.32 303
miper_lstm_enhance74.11 26173.11 26277.13 29180.11 34059.62 28072.23 36286.92 23766.76 25770.40 29082.92 30956.93 21182.92 33769.06 19872.63 33188.87 249
IterMVS74.29 25872.94 26378.35 27281.53 32263.49 22781.58 28382.49 30268.06 24769.99 29883.69 29851.66 26085.54 31765.85 22771.64 33886.01 311
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MS-PatchMatch73.83 26572.67 26477.30 28983.87 27566.02 17081.82 27984.66 26661.37 32368.61 31382.82 31247.29 29988.21 29459.27 28184.32 18177.68 373
testing22274.04 26272.66 26578.19 27487.89 18655.36 33381.06 29179.20 33771.30 17474.65 24983.57 30039.11 35688.67 28951.43 33385.75 16490.53 183
CVMVSNet72.99 27672.58 26674.25 31784.28 26550.85 36886.41 19083.45 28644.56 38173.23 26387.54 20649.38 28485.70 31465.90 22678.44 25986.19 306
test-LLR72.94 27772.43 26774.48 31481.35 32658.04 29278.38 32877.46 34666.66 25969.95 29979.00 34948.06 29679.24 35366.13 22284.83 17086.15 307
OurMVSNet-221017-074.26 25972.42 26879.80 24583.76 27859.59 28185.92 20586.64 24066.39 26666.96 32787.58 20239.46 35391.60 22465.76 22869.27 34888.22 264
SCA74.22 26072.33 26979.91 24284.05 27262.17 24979.96 31079.29 33666.30 26772.38 27480.13 33851.95 25488.60 29059.25 28277.67 26788.96 246
tpmrst72.39 27972.13 27073.18 32780.54 33549.91 37279.91 31179.08 33863.11 30271.69 28179.95 34055.32 21682.77 33865.66 22973.89 32086.87 294
pmmvs474.03 26471.91 27180.39 23281.96 31568.32 12281.45 28682.14 30559.32 33769.87 30185.13 27052.40 24488.13 29660.21 27574.74 31384.73 331
EG-PatchMatch MVS74.04 26271.82 27280.71 22784.92 25467.42 14285.86 20788.08 20966.04 27064.22 35183.85 29235.10 36992.56 19057.44 30080.83 23082.16 358
tpm72.37 28171.71 27374.35 31682.19 31352.00 35779.22 31877.29 34964.56 28672.95 26683.68 29951.35 26183.26 33658.33 29375.80 29287.81 271
WB-MVSnew71.96 28671.65 27472.89 32884.67 26151.88 36082.29 27677.57 34562.31 31473.67 25883.00 30753.49 23781.10 34745.75 36682.13 21685.70 316
UWE-MVS72.13 28471.49 27574.03 31986.66 22647.70 37681.40 28876.89 35363.60 29975.59 21984.22 28739.94 35285.62 31648.98 34786.13 15788.77 254
CL-MVSNet_self_test72.37 28171.46 27675.09 30879.49 35153.53 34980.76 29685.01 26369.12 22770.51 28882.05 32257.92 20084.13 32852.27 32866.00 36187.60 275
tpm273.26 27271.46 27678.63 26483.34 28556.71 31480.65 29980.40 32556.63 35873.55 25982.02 32351.80 25891.24 24156.35 31178.42 26087.95 267
RPSCF73.23 27371.46 27678.54 26882.50 30859.85 27782.18 27782.84 30058.96 34171.15 28689.41 15745.48 32084.77 32558.82 28871.83 33791.02 166
PatchmatchNetpermissive73.12 27471.33 27978.49 27183.18 29060.85 26479.63 31278.57 34064.13 29171.73 28079.81 34351.20 26385.97 31357.40 30176.36 28888.66 257
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CR-MVSNet73.37 26971.27 28079.67 24981.32 32865.19 19175.92 34480.30 32659.92 33272.73 26881.19 32652.50 24286.69 30659.84 27777.71 26587.11 290
SixPastTwentyTwo73.37 26971.26 28179.70 24785.08 25257.89 29685.57 21183.56 28371.03 18165.66 34185.88 25142.10 34292.57 18959.11 28463.34 36788.65 258
ETVMVS72.25 28371.05 28275.84 29987.77 19551.91 35979.39 31574.98 36069.26 22173.71 25782.95 30840.82 34986.14 31146.17 36384.43 18089.47 228
MSDG73.36 27170.99 28380.49 23184.51 26365.80 17880.71 29886.13 24965.70 27465.46 34283.74 29644.60 32290.91 25151.13 33476.89 27484.74 330
PatchMatch-RL72.38 28070.90 28476.80 29488.60 16067.38 14479.53 31376.17 35762.75 31069.36 30682.00 32445.51 31884.89 32453.62 32180.58 23478.12 372
PVSNet64.34 1872.08 28570.87 28575.69 30186.21 23156.44 31874.37 35680.73 31862.06 31870.17 29482.23 32042.86 33683.31 33554.77 31684.45 17987.32 283
dmvs_re71.14 29070.58 28672.80 32981.96 31559.68 27975.60 34879.34 33568.55 23969.27 30880.72 33449.42 28376.54 36752.56 32777.79 26482.19 357
test_fmvs170.93 29370.52 28772.16 33373.71 37555.05 33780.82 29278.77 33951.21 37578.58 15184.41 28031.20 37776.94 36575.88 13380.12 24284.47 333
RPMNet73.51 26870.49 28882.58 18681.32 32865.19 19175.92 34492.27 7657.60 35272.73 26876.45 36552.30 24595.43 6748.14 35477.71 26587.11 290
test_040272.79 27870.44 28979.84 24488.13 17765.99 17285.93 20484.29 27265.57 27667.40 32485.49 26146.92 30392.61 18835.88 38574.38 31680.94 364
COLMAP_ROBcopyleft66.92 1773.01 27570.41 29080.81 22587.13 21765.63 18188.30 13484.19 27562.96 30563.80 35587.69 20038.04 36192.56 19046.66 35974.91 31184.24 335
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test-mter71.41 28870.39 29174.48 31481.35 32658.04 29278.38 32877.46 34660.32 32869.95 29979.00 34936.08 36779.24 35366.13 22284.83 17086.15 307
test_fmvs1_n70.86 29470.24 29272.73 33072.51 38555.28 33581.27 28979.71 33251.49 37478.73 14584.87 27427.54 38277.02 36476.06 13079.97 24385.88 314
pmmvs571.55 28770.20 29375.61 30277.83 35856.39 31981.74 28180.89 31557.76 35067.46 32284.49 27849.26 28785.32 32157.08 30475.29 30685.11 326
MDTV_nov1_ep1369.97 29483.18 29053.48 35077.10 34080.18 32960.45 32669.33 30780.44 33548.89 29486.90 30551.60 33178.51 258
MIMVSNet70.69 29669.30 29574.88 31084.52 26256.35 32275.87 34679.42 33464.59 28567.76 31782.41 31641.10 34681.54 34446.64 36181.34 22386.75 298
tpmvs71.09 29169.29 29676.49 29582.04 31456.04 32578.92 32381.37 31464.05 29467.18 32678.28 35549.74 28089.77 26849.67 34472.37 33283.67 342
test_vis1_n69.85 30669.21 29771.77 33572.66 38455.27 33681.48 28576.21 35652.03 37175.30 23483.20 30528.97 38076.22 37274.60 14378.41 26183.81 341
Patchmtry70.74 29569.16 29875.49 30580.72 33254.07 34674.94 35580.30 32658.34 34570.01 29681.19 32652.50 24286.54 30753.37 32371.09 34285.87 315
TESTMET0.1,169.89 30569.00 29972.55 33179.27 35456.85 31078.38 32874.71 36457.64 35168.09 31677.19 36237.75 36276.70 36663.92 24184.09 18584.10 338
PMMVS69.34 30868.67 30071.35 34075.67 36762.03 25075.17 35073.46 36750.00 37668.68 31179.05 34752.07 25278.13 35861.16 26982.77 20873.90 379
K. test v371.19 28968.51 30179.21 25783.04 29557.78 29984.35 24576.91 35272.90 15262.99 35882.86 31139.27 35491.09 24861.65 26452.66 38588.75 255
USDC70.33 30068.37 30276.21 29780.60 33456.23 32379.19 31986.49 24260.89 32461.29 36285.47 26231.78 37589.47 27553.37 32376.21 28982.94 352
tpm cat170.57 29768.31 30377.35 28882.41 31157.95 29578.08 33280.22 32852.04 37068.54 31477.66 36052.00 25387.84 29951.77 32972.07 33686.25 304
OpenMVS_ROBcopyleft64.09 1970.56 29868.19 30477.65 28380.26 33759.41 28385.01 22582.96 29758.76 34365.43 34382.33 31737.63 36391.23 24245.34 36976.03 29082.32 355
EPMVS69.02 31068.16 30571.59 33679.61 34949.80 37477.40 33766.93 38362.82 30970.01 29679.05 34745.79 31577.86 36156.58 30975.26 30787.13 289
CMPMVSbinary51.72 2170.19 30268.16 30576.28 29673.15 38157.55 30279.47 31483.92 27748.02 37856.48 37984.81 27543.13 33486.42 30962.67 25281.81 22184.89 328
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
AllTest70.96 29268.09 30779.58 25185.15 24963.62 22184.58 23679.83 33062.31 31460.32 36686.73 22432.02 37388.96 28550.28 33971.57 33986.15 307
gg-mvs-nofinetune69.95 30467.96 30875.94 29883.07 29354.51 34377.23 33970.29 37563.11 30270.32 29162.33 38643.62 32988.69 28853.88 32087.76 13284.62 332
FMVSNet569.50 30767.96 30874.15 31882.97 29955.35 33480.01 30982.12 30662.56 31263.02 35681.53 32536.92 36481.92 34248.42 34974.06 31885.17 325
Syy-MVS68.05 31967.85 31068.67 35584.68 25840.97 39678.62 32673.08 36966.65 26266.74 33179.46 34452.11 25082.30 34032.89 38876.38 28682.75 353
PatchT68.46 31767.85 31070.29 34680.70 33343.93 38872.47 36174.88 36160.15 33070.55 28776.57 36449.94 27781.59 34350.58 33574.83 31285.34 320
pmmvs-eth3d70.50 29967.83 31278.52 27077.37 36166.18 16781.82 27981.51 31158.90 34263.90 35480.42 33642.69 33786.28 31058.56 29065.30 36383.11 348
Anonymous2023120668.60 31367.80 31371.02 34380.23 33950.75 36978.30 33180.47 32256.79 35766.11 34082.63 31546.35 30878.95 35543.62 37275.70 29383.36 345
Patchmatch-RL test70.24 30167.78 31477.61 28477.43 36059.57 28271.16 36570.33 37462.94 30668.65 31272.77 37750.62 26985.49 31869.58 19366.58 35887.77 272
test0.0.03 168.00 32067.69 31568.90 35277.55 35947.43 37775.70 34772.95 37166.66 25966.56 33382.29 31948.06 29675.87 37444.97 37074.51 31583.41 344
testing368.56 31567.67 31671.22 34287.33 21242.87 39083.06 27071.54 37270.36 19469.08 30984.38 28130.33 37985.69 31537.50 38475.45 30185.09 327
EU-MVSNet68.53 31667.61 31771.31 34178.51 35747.01 37984.47 23884.27 27342.27 38466.44 33884.79 27640.44 35083.76 33058.76 28968.54 35383.17 346
KD-MVS_self_test68.81 31167.59 31872.46 33274.29 37345.45 38177.93 33487.00 23463.12 30163.99 35378.99 35142.32 33984.77 32556.55 31064.09 36687.16 288
test_fmvs268.35 31867.48 31970.98 34469.50 38851.95 35880.05 30876.38 35549.33 37774.65 24984.38 28123.30 38875.40 37974.51 14475.17 30985.60 317
ppachtmachnet_test70.04 30367.34 32078.14 27579.80 34661.13 26079.19 31980.59 32059.16 33965.27 34479.29 34646.75 30587.29 30349.33 34566.72 35686.00 313
Anonymous2024052168.80 31267.22 32173.55 32274.33 37254.11 34583.18 26485.61 25558.15 34761.68 36180.94 33130.71 37881.27 34657.00 30573.34 32885.28 321
our_test_369.14 30967.00 32275.57 30379.80 34658.80 28477.96 33377.81 34359.55 33562.90 35978.25 35647.43 29883.97 32951.71 33067.58 35583.93 340
test20.0367.45 32266.95 32368.94 35175.48 36944.84 38677.50 33677.67 34466.66 25963.01 35783.80 29447.02 30278.40 35742.53 37568.86 35283.58 343
MIMVSNet168.58 31466.78 32473.98 32080.07 34151.82 36180.77 29584.37 26964.40 28859.75 36982.16 32136.47 36583.63 33242.73 37470.33 34486.48 302
testgi66.67 32866.53 32567.08 36075.62 36841.69 39575.93 34376.50 35466.11 26865.20 34786.59 23435.72 36874.71 38143.71 37173.38 32784.84 329
myMVS_eth3d67.02 32566.29 32669.21 35084.68 25842.58 39178.62 32673.08 36966.65 26266.74 33179.46 34431.53 37682.30 34039.43 38176.38 28682.75 353
UnsupCasMVSNet_eth67.33 32365.99 32771.37 33873.48 37851.47 36575.16 35185.19 26065.20 27860.78 36480.93 33342.35 33877.20 36357.12 30353.69 38485.44 319
dp66.80 32665.43 32870.90 34579.74 34848.82 37575.12 35374.77 36259.61 33464.08 35277.23 36142.89 33580.72 34948.86 34866.58 35883.16 347
TinyColmap67.30 32464.81 32974.76 31281.92 31756.68 31580.29 30681.49 31260.33 32756.27 38083.22 30324.77 38587.66 30245.52 36769.47 34779.95 368
CHOSEN 280x42066.51 32964.71 33071.90 33481.45 32363.52 22657.98 39368.95 38153.57 36662.59 36076.70 36346.22 31075.29 38055.25 31479.68 24476.88 375
TDRefinement67.49 32164.34 33176.92 29273.47 37961.07 26184.86 22982.98 29659.77 33358.30 37385.13 27026.06 38387.89 29847.92 35660.59 37481.81 360
PM-MVS66.41 33064.14 33273.20 32673.92 37456.45 31778.97 32264.96 38963.88 29864.72 34880.24 33719.84 39183.44 33466.24 22164.52 36579.71 369
dmvs_testset62.63 34264.11 33358.19 37078.55 35624.76 40675.28 34965.94 38667.91 24860.34 36576.01 36753.56 23573.94 38531.79 38967.65 35475.88 377
KD-MVS_2432*160066.22 33263.89 33473.21 32475.47 37053.42 35170.76 36884.35 27064.10 29266.52 33578.52 35334.55 37084.98 32250.40 33750.33 38881.23 362
miper_refine_blended66.22 33263.89 33473.21 32475.47 37053.42 35170.76 36884.35 27064.10 29266.52 33578.52 35334.55 37084.98 32250.40 33750.33 38881.23 362
MDA-MVSNet-bldmvs66.68 32763.66 33675.75 30079.28 35360.56 26973.92 35878.35 34164.43 28750.13 38779.87 34244.02 32783.67 33146.10 36456.86 37783.03 350
ADS-MVSNet266.20 33463.33 33774.82 31179.92 34258.75 28567.55 37975.19 35953.37 36765.25 34575.86 36842.32 33980.53 35041.57 37668.91 35085.18 323
Patchmatch-test64.82 33763.24 33869.57 34879.42 35249.82 37363.49 39069.05 38051.98 37259.95 36880.13 33850.91 26570.98 38840.66 37873.57 32387.90 269
MDA-MVSNet_test_wron65.03 33562.92 33971.37 33875.93 36456.73 31269.09 37774.73 36357.28 35554.03 38377.89 35745.88 31374.39 38349.89 34361.55 37082.99 351
YYNet165.03 33562.91 34071.38 33775.85 36656.60 31669.12 37674.66 36557.28 35554.12 38277.87 35845.85 31474.48 38249.95 34261.52 37183.05 349
ADS-MVSNet64.36 33862.88 34168.78 35479.92 34247.17 37867.55 37971.18 37353.37 36765.25 34575.86 36842.32 33973.99 38441.57 37668.91 35085.18 323
JIA-IIPM66.32 33162.82 34276.82 29377.09 36261.72 25665.34 38675.38 35858.04 34964.51 34962.32 38742.05 34386.51 30851.45 33269.22 34982.21 356
LF4IMVS64.02 33962.19 34369.50 34970.90 38653.29 35476.13 34177.18 35052.65 36958.59 37180.98 33023.55 38776.52 36853.06 32566.66 35778.68 371
test_fmvs363.36 34161.82 34467.98 35762.51 39546.96 38077.37 33874.03 36645.24 38067.50 32178.79 35212.16 39972.98 38772.77 16466.02 36083.99 339
new-patchmatchnet61.73 34461.73 34561.70 36672.74 38324.50 40769.16 37578.03 34261.40 32156.72 37875.53 37138.42 35876.48 36945.95 36557.67 37684.13 337
UnsupCasMVSNet_bld63.70 34061.53 34670.21 34773.69 37651.39 36672.82 36081.89 30755.63 36257.81 37571.80 37938.67 35778.61 35649.26 34652.21 38680.63 365
mvsany_test162.30 34361.26 34765.41 36269.52 38754.86 33966.86 38149.78 40246.65 37968.50 31583.21 30449.15 28866.28 39456.93 30660.77 37275.11 378
PVSNet_057.27 2061.67 34559.27 34868.85 35379.61 34957.44 30468.01 37873.44 36855.93 36158.54 37270.41 38244.58 32377.55 36247.01 35835.91 39471.55 382
test_vis1_rt60.28 34658.42 34965.84 36167.25 39155.60 33170.44 37060.94 39444.33 38259.00 37066.64 38424.91 38468.67 39262.80 24869.48 34673.25 380
MVS-HIRNet59.14 34757.67 35063.57 36481.65 31943.50 38971.73 36365.06 38839.59 38851.43 38557.73 39238.34 35982.58 33939.53 37973.95 31964.62 388
DSMNet-mixed57.77 34956.90 35160.38 36867.70 39035.61 39969.18 37453.97 40032.30 39657.49 37679.88 34140.39 35168.57 39338.78 38272.37 33276.97 374
WB-MVS54.94 35054.72 35255.60 37673.50 37720.90 40874.27 35761.19 39359.16 33950.61 38674.15 37347.19 30175.78 37517.31 40035.07 39570.12 383
pmmvs357.79 34854.26 35368.37 35664.02 39456.72 31375.12 35365.17 38740.20 38652.93 38469.86 38320.36 39075.48 37745.45 36855.25 38372.90 381
SSC-MVS53.88 35353.59 35454.75 37872.87 38219.59 40973.84 35960.53 39557.58 35349.18 38873.45 37646.34 30975.47 37816.20 40332.28 39769.20 384
N_pmnet52.79 35653.26 35551.40 38078.99 3557.68 41269.52 3723.89 41151.63 37357.01 37774.98 37240.83 34865.96 39537.78 38364.67 36480.56 367
FPMVS53.68 35451.64 35659.81 36965.08 39351.03 36769.48 37369.58 37841.46 38540.67 39172.32 37816.46 39570.00 39124.24 39765.42 36258.40 393
mvsany_test353.99 35251.45 35761.61 36755.51 39944.74 38763.52 38945.41 40643.69 38358.11 37476.45 36517.99 39263.76 39754.77 31647.59 39076.34 376
test_f52.09 35750.82 35855.90 37453.82 40242.31 39459.42 39258.31 39836.45 39156.12 38170.96 38112.18 39857.79 39953.51 32256.57 37967.60 385
new_pmnet50.91 35950.29 35952.78 37968.58 38934.94 40163.71 38856.63 39939.73 38744.95 38965.47 38521.93 38958.48 39834.98 38656.62 37864.92 387
APD_test153.31 35549.93 36063.42 36565.68 39250.13 37171.59 36466.90 38434.43 39340.58 39271.56 3808.65 40476.27 37134.64 38755.36 38263.86 389
LCM-MVSNet54.25 35149.68 36167.97 35853.73 40345.28 38466.85 38280.78 31735.96 39239.45 39362.23 3888.70 40378.06 36048.24 35351.20 38780.57 366
EGC-MVSNET52.07 35847.05 36267.14 35983.51 28260.71 26680.50 30267.75 3820.07 4060.43 40775.85 37024.26 38681.54 34428.82 39162.25 36859.16 391
test_vis3_rt49.26 36147.02 36356.00 37354.30 40045.27 38566.76 38348.08 40336.83 39044.38 39053.20 3957.17 40664.07 39656.77 30855.66 38058.65 392
ANet_high50.57 36046.10 36463.99 36348.67 40639.13 39770.99 36780.85 31661.39 32231.18 39557.70 39317.02 39473.65 38631.22 39015.89 40379.18 370
testf145.72 36241.96 36557.00 37156.90 39745.32 38266.14 38459.26 39626.19 39730.89 39660.96 3904.14 40770.64 38926.39 39546.73 39255.04 394
APD_test245.72 36241.96 36557.00 37156.90 39745.32 38266.14 38459.26 39626.19 39730.89 39660.96 3904.14 40770.64 38926.39 39546.73 39255.04 394
Gipumacopyleft45.18 36441.86 36755.16 37777.03 36351.52 36432.50 39980.52 32132.46 39527.12 39835.02 3999.52 40275.50 37622.31 39860.21 37538.45 398
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft37.38 2244.16 36540.28 36855.82 37540.82 40842.54 39365.12 38763.99 39034.43 39324.48 39957.12 3943.92 40976.17 37317.10 40155.52 38148.75 396
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS240.82 36638.86 36946.69 38153.84 40116.45 41048.61 39649.92 40137.49 38931.67 39460.97 3898.14 40556.42 40028.42 39230.72 39867.19 386
E-PMN31.77 36730.64 37035.15 38452.87 40427.67 40357.09 39447.86 40424.64 39916.40 40433.05 40011.23 40054.90 40114.46 40418.15 40122.87 400
EMVS30.81 36929.65 37134.27 38550.96 40525.95 40556.58 39546.80 40524.01 40015.53 40530.68 40112.47 39754.43 40212.81 40517.05 40222.43 401
test_method31.52 36829.28 37238.23 38327.03 4106.50 41320.94 40162.21 3924.05 40422.35 40252.50 39613.33 39647.58 40327.04 39434.04 39660.62 390
cdsmvs_eth3d_5k19.96 37126.61 3730.00 3910.00 4140.00 4160.00 40289.26 1730.00 4090.00 41088.61 17561.62 1610.00 4100.00 4090.00 4080.00 406
MVEpermissive26.22 2330.37 37025.89 37443.81 38244.55 40735.46 40028.87 40039.07 40718.20 40118.58 40340.18 3982.68 41047.37 40417.07 40223.78 40048.60 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt18.61 37221.40 37510.23 3884.82 41110.11 41134.70 39830.74 4091.48 40523.91 40126.07 40228.42 38113.41 40727.12 39315.35 4047.17 402
wuyk23d16.82 37315.94 37619.46 38758.74 39631.45 40239.22 3973.74 4126.84 4036.04 4062.70 4061.27 41124.29 40610.54 40614.40 4052.63 403
ab-mvs-re7.23 3749.64 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41086.72 2260.00 4140.00 4100.00 4090.00 4080.00 406
test1236.12 3758.11 3780.14 3890.06 4130.09 41471.05 3660.03 4140.04 4080.25 4091.30 4080.05 4120.03 4090.21 4080.01 4070.29 404
testmvs6.04 3768.02 3790.10 3900.08 4120.03 41569.74 3710.04 4130.05 4070.31 4081.68 4070.02 4130.04 4080.24 4070.02 4060.25 405
pcd_1.5k_mvsjas5.26 3777.02 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40963.15 1380.00 4100.00 4090.00 4080.00 406
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS42.58 39139.46 380
FOURS195.00 1072.39 3995.06 193.84 1574.49 11391.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
PC_three_145268.21 24592.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
No_MVS89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 414
eth-test0.00 414
ZD-MVS94.38 2572.22 4492.67 6170.98 18287.75 3194.07 4174.01 3296.70 2784.66 4794.84 44
IU-MVS95.30 271.25 5792.95 5166.81 25592.39 688.94 1696.63 494.85 19
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 41
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
save fliter93.80 4072.35 4290.47 6491.17 11674.31 116
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 24
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 42
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
GSMVS88.96 246
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26288.96 246
sam_mvs50.01 275
ambc75.24 30773.16 38050.51 37063.05 39187.47 22564.28 35077.81 35917.80 39389.73 27057.88 29760.64 37385.49 318
MTGPAbinary92.02 85
test_post178.90 3245.43 40548.81 29585.44 32059.25 282
test_post5.46 40450.36 27384.24 327
patchmatchnet-post74.00 37451.12 26488.60 290
GG-mvs-BLEND75.38 30681.59 32155.80 32879.32 31669.63 37767.19 32573.67 37543.24 33288.90 28750.41 33684.50 17581.45 361
MTMP92.18 3532.83 408
gm-plane-assit81.40 32453.83 34862.72 31180.94 33192.39 19663.40 245
test9_res84.90 4295.70 2692.87 104
TEST993.26 5072.96 2588.75 11591.89 9368.44 24285.00 5793.10 6774.36 2895.41 69
test_893.13 5272.57 3588.68 12091.84 9768.69 23784.87 6193.10 6774.43 2695.16 78
agg_prior282.91 6695.45 3092.70 107
agg_prior92.85 5971.94 5191.78 10084.41 7194.93 89
TestCases79.58 25185.15 24963.62 22179.83 33062.31 31460.32 36686.73 22432.02 37388.96 28550.28 33971.57 33986.15 307
test_prior472.60 3489.01 105
test_prior288.85 11175.41 9384.91 5993.54 5674.28 2983.31 6195.86 20
test_prior86.33 5492.61 6569.59 8892.97 5095.48 6493.91 53
旧先验286.56 18758.10 34887.04 3988.98 28374.07 149
新几何286.29 195
新几何183.42 14893.13 5270.71 7185.48 25757.43 35481.80 10991.98 9063.28 13392.27 20264.60 23792.99 6687.27 284
旧先验191.96 7165.79 17986.37 24593.08 7169.31 7792.74 6988.74 256
无先验87.48 15888.98 18660.00 33194.12 12267.28 21488.97 245
原ACMM286.86 176
原ACMM184.35 10893.01 5768.79 10692.44 6963.96 29781.09 11991.57 10166.06 11195.45 6567.19 21694.82 4688.81 252
test22291.50 7768.26 12484.16 24883.20 29154.63 36579.74 13191.63 9958.97 19391.42 8686.77 297
testdata291.01 25062.37 255
segment_acmp73.08 37
testdata79.97 24190.90 8664.21 21284.71 26559.27 33885.40 5192.91 7362.02 15789.08 28168.95 19991.37 8786.63 301
testdata184.14 24975.71 87
test1286.80 4992.63 6470.70 7291.79 9982.71 9971.67 5196.16 4494.50 5193.54 77
plane_prior790.08 10368.51 119
plane_prior689.84 11268.70 11460.42 186
plane_prior592.44 6995.38 7178.71 10386.32 15291.33 153
plane_prior491.00 120
plane_prior368.60 11778.44 3178.92 143
plane_prior291.25 5079.12 23
plane_prior189.90 111
plane_prior68.71 11290.38 6777.62 3986.16 156
n20.00 415
nn0.00 415
door-mid69.98 376
lessismore_v078.97 26081.01 33157.15 30765.99 38561.16 36382.82 31239.12 35591.34 23959.67 27846.92 39188.43 262
LGP-MVS_train84.50 10189.23 13668.76 10891.94 9175.37 9476.64 19791.51 10254.29 22894.91 9078.44 10583.78 18789.83 218
test1192.23 79
door69.44 379
HQP5-MVS66.98 154
HQP-NCC89.33 12989.17 9876.41 7277.23 183
ACMP_Plane89.33 12989.17 9876.41 7277.23 183
BP-MVS77.47 115
HQP4-MVS77.24 18295.11 8291.03 164
HQP3-MVS92.19 8285.99 160
HQP2-MVS60.17 189
NP-MVS89.62 11568.32 12290.24 132
MDTV_nov1_ep13_2view37.79 39875.16 35155.10 36366.53 33449.34 28553.98 31987.94 268
ACMMP++_ref81.95 219
ACMMP++81.25 224
Test By Simon64.33 125
ITE_SJBPF78.22 27381.77 31860.57 26883.30 28769.25 22267.54 32087.20 21536.33 36687.28 30454.34 31874.62 31486.80 296
DeepMVS_CXcopyleft27.40 38640.17 40926.90 40424.59 41017.44 40223.95 40048.61 3979.77 40126.48 40518.06 39924.47 39928.83 399