This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 6077.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 89
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8792.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 56
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 6294.67 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9191.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 34
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MM89.16 689.23 788.97 490.79 9073.65 1092.66 2391.17 12386.57 187.39 3794.97 1671.70 5297.68 192.19 195.63 2895.57 1
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10992.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5580.26 1187.78 3094.27 3275.89 1996.81 2387.45 3296.44 993.05 101
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6093.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 41
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8989.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 10089.57 8693.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 29
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13987.63 3094.27 6193.65 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
9.1488.26 1592.84 6091.52 4694.75 173.93 12788.57 2294.67 1975.57 2295.79 5386.77 3595.76 23
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7974.62 11388.90 2093.85 5275.75 2096.00 4987.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MVS_030488.08 1488.08 1788.08 1489.67 11672.04 4892.26 3389.26 18084.19 285.01 5795.18 1369.93 7197.20 1491.63 295.60 2994.99 9
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5593.59 2376.27 8188.14 2495.09 1571.06 5996.67 2987.67 2996.37 1494.09 50
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5681.50 585.79 5093.47 6073.02 4097.00 1884.90 4294.94 3994.10 49
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5594.32 3171.76 5096.93 1985.53 3995.79 2294.32 42
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7893.50 2575.17 10286.34 4695.29 1270.86 6196.00 4988.78 1996.04 1694.58 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6577.57 4183.84 8794.40 3072.24 4596.28 4085.65 3895.30 3593.62 77
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5673.01 15188.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 110
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 6194.44 2870.78 6296.61 3284.53 4994.89 4193.66 70
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6593.99 4870.67 6496.82 2284.18 5695.01 3793.90 59
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7693.82 1673.07 14984.86 6492.89 7476.22 1796.33 3884.89 4495.13 3694.40 38
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6894.52 2168.81 8996.65 3084.53 4994.90 4094.00 54
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7494.52 2169.09 8096.70 2784.37 5194.83 4494.03 53
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18992.02 9179.45 1985.88 4894.80 1768.07 9696.21 4286.69 3695.34 3393.23 92
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8483.81 8893.95 5169.77 7496.01 4885.15 4094.66 4694.32 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS86.69 3586.95 3185.90 6590.76 9167.57 14292.83 1793.30 3279.67 1784.57 7192.27 8671.47 5595.02 9084.24 5493.46 6795.13 6
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5976.62 7183.68 8994.46 2567.93 9795.95 5284.20 5594.39 5593.23 92
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 9094.17 3667.45 10296.60 3383.06 6394.50 5094.07 51
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 10294.23 3572.13 4797.09 1684.83 4595.37 3293.65 74
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 7174.50 11486.84 4494.65 2067.31 10495.77 5484.80 4692.85 7192.84 108
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7184.22 7893.36 6371.44 5696.76 2580.82 9095.33 3494.16 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS-test86.29 4286.48 3785.71 6891.02 8367.21 15492.36 2993.78 1878.97 2883.51 9391.20 11370.65 6595.15 8081.96 7694.89 4194.77 22
EC-MVSNet86.01 4386.38 3884.91 9289.31 13666.27 16992.32 3093.63 2179.37 2084.17 8091.88 9369.04 8495.43 6783.93 5793.77 6593.01 104
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8676.87 6282.81 10394.25 3466.44 11296.24 4182.88 6794.28 6093.38 86
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7093.04 3875.53 9383.86 8694.42 2967.87 9996.64 3182.70 7294.57 4993.66 70
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11491.89 9968.69 24085.00 5993.10 6774.43 2695.41 6984.97 4195.71 2593.02 103
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5693.56 2473.95 12583.16 9691.07 11875.94 1895.19 7879.94 10094.38 5793.55 81
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15485.22 5691.90 9269.47 7696.42 3783.28 6295.94 1994.35 40
dcpmvs_285.63 5386.15 4484.06 12991.71 7564.94 19886.47 19291.87 10173.63 13386.60 4593.02 7276.57 1591.87 22083.36 6092.15 7995.35 3
CANet86.45 3886.10 4587.51 3790.09 10270.94 6789.70 8292.59 7081.78 481.32 11991.43 10670.34 6697.23 1384.26 5293.36 6894.37 39
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6987.65 20267.22 15388.69 11893.04 3879.64 1885.33 5492.54 8373.30 3594.50 11083.49 5991.14 9395.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf_n85.92 4686.04 4785.57 7185.03 25669.51 9089.62 8590.58 13873.42 14087.75 3294.02 4472.85 4193.24 16490.37 390.75 9793.96 55
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4673.54 13785.94 4794.51 2465.80 12295.61 5883.04 6592.51 7593.53 83
sasdasda85.91 4785.87 4986.04 6089.84 11369.44 9590.45 6593.00 4376.70 6988.01 2891.23 11073.28 3693.91 13381.50 7988.80 12494.77 22
canonicalmvs85.91 4785.87 4986.04 6089.84 11369.44 9590.45 6593.00 4376.70 6988.01 2891.23 11073.28 3693.91 13381.50 7988.80 12494.77 22
MSLP-MVS++85.43 5785.76 5184.45 10791.93 7270.24 7690.71 5792.86 5477.46 4784.22 7892.81 7867.16 10692.94 18480.36 9594.35 5890.16 200
test_fmvsmconf0.1_n85.61 5485.65 5285.50 7282.99 30169.39 9789.65 8390.29 15173.31 14387.77 3194.15 3871.72 5193.23 16590.31 490.67 9993.89 60
SR-MVS-dyc-post85.77 5085.61 5386.23 5693.06 5570.63 7391.88 3992.27 8173.53 13885.69 5194.45 2665.00 13095.56 6082.75 6891.87 8392.50 120
MGCFI-Net85.06 6485.51 5483.70 14489.42 12763.01 24089.43 8992.62 6976.43 7387.53 3591.34 10872.82 4293.42 15981.28 8388.74 12794.66 27
RE-MVS-def85.48 5593.06 5570.63 7391.88 3992.27 8173.53 13885.69 5194.45 2663.87 13682.75 6891.87 8392.50 120
ACMMPcopyleft85.89 4985.39 5687.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12893.82 5364.33 13296.29 3982.67 7390.69 9893.23 92
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsm_n_192085.29 6085.34 5785.13 8286.12 23669.93 8388.65 12090.78 13469.97 20888.27 2393.98 4971.39 5791.54 23288.49 2390.45 10193.91 57
TSAR-MVS + GP.85.71 5285.33 5886.84 4791.34 7872.50 3689.07 10487.28 23476.41 7485.80 4990.22 13874.15 3195.37 7481.82 7791.88 8292.65 114
alignmvs85.48 5585.32 5985.96 6389.51 12269.47 9289.74 8092.47 7376.17 8287.73 3491.46 10570.32 6793.78 13981.51 7888.95 12194.63 28
DELS-MVS85.41 5885.30 6085.77 6788.49 16767.93 13385.52 22293.44 2778.70 2983.63 9289.03 16874.57 2495.71 5680.26 9894.04 6393.66 70
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CDPH-MVS85.76 5185.29 6187.17 4393.49 4771.08 6188.58 12292.42 7768.32 24784.61 6993.48 5872.32 4496.15 4579.00 10395.43 3194.28 44
casdiffmvspermissive85.11 6285.14 6285.01 8587.20 21865.77 18187.75 15492.83 5677.84 3784.36 7792.38 8572.15 4693.93 13281.27 8490.48 10095.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline84.93 6784.98 6384.80 9687.30 21665.39 18887.30 16692.88 5377.62 3984.04 8492.26 8771.81 4993.96 12681.31 8290.30 10395.03 8
UA-Net85.08 6384.96 6485.45 7392.07 7068.07 13089.78 7990.86 13382.48 384.60 7093.20 6669.35 7795.22 7771.39 17790.88 9693.07 100
HPM-MVS_fast85.35 5984.95 6586.57 5393.69 4270.58 7592.15 3691.62 10973.89 12882.67 10594.09 4062.60 15195.54 6280.93 8892.93 7093.57 79
MVS_111021_HR85.14 6184.75 6686.32 5591.65 7672.70 3085.98 20590.33 14876.11 8382.08 10891.61 10071.36 5894.17 12281.02 8692.58 7492.08 137
MVSMamba_pp84.98 6684.70 6785.80 6689.43 12667.63 14088.44 12592.64 6772.17 16284.54 7290.39 13368.88 8895.28 7581.45 8194.39 5594.49 33
mamv485.00 6584.68 6885.93 6489.51 12267.64 13988.38 13192.65 6572.35 15984.47 7390.26 13568.98 8795.69 5781.09 8594.45 5394.47 34
ETV-MVS84.90 6984.67 6985.59 7089.39 13068.66 11788.74 11692.64 6779.97 1584.10 8285.71 25769.32 7895.38 7180.82 9091.37 9092.72 109
fmvsm_l_conf0.5_n84.47 7184.54 7084.27 11785.42 24668.81 10688.49 12487.26 23568.08 24988.03 2793.49 5772.04 4891.77 22288.90 1789.14 12092.24 131
patch_mono-283.65 8284.54 7080.99 22390.06 10765.83 17884.21 25088.74 20471.60 17285.01 5792.44 8474.51 2583.50 33682.15 7592.15 7993.64 76
test_fmvsmconf0.01_n84.73 7084.52 7285.34 7580.25 34169.03 10089.47 8789.65 16873.24 14786.98 4294.27 3266.62 10893.23 16590.26 589.95 11193.78 67
3Dnovator+77.84 485.48 5584.47 7388.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 20093.37 6260.40 19596.75 2677.20 12293.73 6695.29 5
bld_raw_dy_0_6484.37 7284.35 7484.46 10689.86 11264.47 20886.68 18692.49 7272.08 16584.16 8189.77 14668.76 9195.08 8880.97 8794.34 5993.82 64
DPM-MVS84.93 6784.29 7586.84 4790.20 10073.04 2387.12 17093.04 3869.80 21282.85 10091.22 11273.06 3996.02 4776.72 12994.63 4791.46 156
fmvsm_l_conf0.5_n_a84.13 7484.16 7684.06 12985.38 24768.40 12188.34 13386.85 24367.48 25687.48 3693.40 6170.89 6091.61 22688.38 2589.22 11992.16 135
test_fmvsmvis_n_192084.02 7583.87 7784.49 10584.12 27269.37 9888.15 14287.96 21870.01 20683.95 8593.23 6568.80 9091.51 23588.61 2089.96 11092.57 116
EI-MVSNet-Vis-set84.19 7383.81 7885.31 7688.18 17867.85 13487.66 15689.73 16680.05 1482.95 9789.59 15370.74 6394.82 10080.66 9484.72 17793.28 91
fmvsm_s_conf0.5_n83.80 7983.71 7984.07 12786.69 22867.31 14989.46 8883.07 29671.09 18286.96 4393.70 5569.02 8591.47 23788.79 1884.62 17993.44 85
iter_conf05_1183.91 7683.56 8084.97 8789.34 13266.68 16286.01 20492.25 8470.16 20482.83 10188.56 18169.00 8695.60 5979.43 10294.43 5492.63 115
nrg03083.88 7783.53 8184.96 8886.77 22669.28 9990.46 6492.67 6274.79 10882.95 9791.33 10972.70 4393.09 17880.79 9279.28 25592.50 120
MG-MVS83.41 8983.45 8283.28 15692.74 6262.28 25188.17 14089.50 17175.22 9881.49 11792.74 8266.75 10795.11 8372.85 16591.58 8792.45 123
fmvsm_s_conf0.5_n_a83.63 8483.41 8384.28 11586.14 23568.12 12889.43 8982.87 30170.27 20187.27 3993.80 5469.09 8091.58 22888.21 2683.65 19893.14 98
fmvsm_s_conf0.1_n83.56 8683.38 8484.10 12284.86 25867.28 15089.40 9383.01 29770.67 19087.08 4093.96 5068.38 9491.45 23888.56 2284.50 18093.56 80
EI-MVSNet-UG-set83.81 7883.38 8485.09 8387.87 19167.53 14387.44 16289.66 16779.74 1682.23 10789.41 16270.24 6894.74 10379.95 9983.92 19092.99 105
CPTT-MVS83.73 8083.33 8684.92 9193.28 4970.86 6992.09 3790.38 14468.75 23979.57 13992.83 7660.60 19193.04 18280.92 8991.56 8890.86 173
HQP_MVS83.64 8383.14 8785.14 8090.08 10368.71 11391.25 5092.44 7479.12 2378.92 14891.00 12260.42 19395.38 7178.71 10786.32 15791.33 157
Effi-MVS+83.62 8583.08 8885.24 7888.38 17367.45 14488.89 10989.15 18675.50 9482.27 10688.28 18969.61 7594.45 11277.81 11687.84 13693.84 63
MVS_Test83.15 9583.06 8983.41 15386.86 22263.21 23686.11 20292.00 9374.31 11882.87 9989.44 16170.03 6993.21 16777.39 12188.50 13293.81 65
EPP-MVSNet83.40 9083.02 9084.57 10090.13 10164.47 20892.32 3090.73 13574.45 11779.35 14291.10 11669.05 8395.12 8172.78 16687.22 14494.13 48
fmvsm_s_conf0.1_n_a83.32 9282.99 9184.28 11583.79 27968.07 13089.34 9582.85 30269.80 21287.36 3894.06 4268.34 9591.56 23087.95 2783.46 20493.21 95
OPM-MVS83.50 8782.95 9285.14 8088.79 15770.95 6689.13 10391.52 11277.55 4480.96 12691.75 9560.71 18694.50 11079.67 10186.51 15589.97 216
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EPNet83.72 8182.92 9386.14 5984.22 27069.48 9191.05 5485.27 26381.30 676.83 19591.65 9766.09 11795.56 6076.00 13593.85 6493.38 86
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
iter_conf0583.17 9482.90 9483.97 13887.59 20765.09 19588.29 13691.52 11272.35 15981.39 11890.13 14068.76 9194.84 9980.30 9785.75 16991.98 141
IS-MVSNet83.15 9582.81 9584.18 12089.94 11063.30 23491.59 4388.46 21079.04 2579.49 14092.16 8865.10 12794.28 11567.71 21291.86 8594.95 10
EIA-MVS83.31 9382.80 9684.82 9489.59 11865.59 18388.21 13892.68 6174.66 11178.96 14686.42 24469.06 8295.26 7675.54 14190.09 10793.62 77
Vis-MVSNetpermissive83.46 8882.80 9685.43 7490.25 9968.74 11190.30 6990.13 15576.33 8080.87 12792.89 7461.00 18394.20 12072.45 17190.97 9493.35 88
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FIs82.07 11082.42 9881.04 22288.80 15658.34 29188.26 13793.49 2676.93 6078.47 15991.04 11969.92 7292.34 20369.87 19384.97 17492.44 124
VNet82.21 10782.41 9981.62 20490.82 8860.93 26584.47 24189.78 16376.36 7984.07 8391.88 9364.71 13190.26 26270.68 18388.89 12293.66 70
PAPM_NR83.02 9982.41 9984.82 9492.47 6766.37 16787.93 14991.80 10473.82 12977.32 18490.66 12767.90 9894.90 9570.37 18689.48 11693.19 96
VDD-MVS83.01 10082.36 10184.96 8891.02 8366.40 16688.91 10888.11 21377.57 4184.39 7693.29 6452.19 25493.91 13377.05 12488.70 12894.57 31
3Dnovator76.31 583.38 9182.31 10286.59 5287.94 18972.94 2890.64 5892.14 9077.21 5275.47 22592.83 7658.56 20294.72 10473.24 16292.71 7392.13 136
h-mvs3383.15 9582.19 10386.02 6290.56 9370.85 7088.15 14289.16 18576.02 8584.67 6691.39 10761.54 16995.50 6382.71 7075.48 30191.72 146
MVS_111021_LR82.61 10482.11 10484.11 12188.82 15471.58 5385.15 22586.16 25374.69 11080.47 13091.04 11962.29 15890.55 26080.33 9690.08 10890.20 199
DP-MVS Recon83.11 9882.09 10586.15 5894.44 1970.92 6888.79 11292.20 8770.53 19579.17 14491.03 12164.12 13496.03 4668.39 20990.14 10691.50 152
MVSFormer82.85 10182.05 10685.24 7887.35 21070.21 7790.50 6190.38 14468.55 24281.32 11989.47 15661.68 16693.46 15678.98 10490.26 10492.05 138
FC-MVSNet-test81.52 12382.02 10780.03 24388.42 17255.97 32987.95 14793.42 2977.10 5677.38 18290.98 12469.96 7091.79 22168.46 20884.50 18092.33 125
HQP-MVS82.61 10482.02 10784.37 10989.33 13366.98 15789.17 9892.19 8876.41 7477.23 18790.23 13760.17 19695.11 8377.47 11985.99 16591.03 167
OMC-MVS82.69 10281.97 10984.85 9388.75 15967.42 14587.98 14590.87 13274.92 10579.72 13791.65 9762.19 16193.96 12675.26 14386.42 15693.16 97
diffmvspermissive82.10 10881.88 11082.76 18683.00 29963.78 22283.68 25789.76 16472.94 15282.02 10989.85 14465.96 12190.79 25682.38 7487.30 14393.71 69
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu82.62 10381.83 11184.96 8890.80 8969.76 8788.74 11691.70 10869.39 22078.96 14688.46 18465.47 12494.87 9874.42 14888.57 12990.24 198
CLD-MVS82.31 10681.65 11284.29 11488.47 16867.73 13785.81 21392.35 7975.78 8878.33 16286.58 23964.01 13594.35 11376.05 13487.48 14190.79 174
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_NR-MVSNet81.88 11381.54 11382.92 17588.46 16963.46 23087.13 16992.37 7880.19 1278.38 16089.14 16471.66 5493.05 18070.05 18976.46 28492.25 129
PS-MVSNAJss82.07 11081.31 11484.34 11286.51 23167.27 15189.27 9691.51 11471.75 16779.37 14190.22 13863.15 14594.27 11677.69 11782.36 21891.49 153
LPG-MVS_test82.08 10981.27 11584.50 10389.23 14068.76 10990.22 7091.94 9775.37 9676.64 20191.51 10254.29 23594.91 9278.44 10983.78 19189.83 221
LFMVS81.82 11581.23 11683.57 14891.89 7363.43 23289.84 7581.85 31277.04 5883.21 9493.10 6752.26 25393.43 15871.98 17289.95 11193.85 61
API-MVS81.99 11281.23 11684.26 11890.94 8570.18 8291.10 5389.32 17671.51 17478.66 15388.28 18965.26 12595.10 8664.74 23991.23 9287.51 281
UniMVSNet (Re)81.60 12281.11 11883.09 16688.38 17364.41 21187.60 15793.02 4278.42 3278.56 15688.16 19369.78 7393.26 16369.58 19676.49 28391.60 147
xiu_mvs_v2_base81.69 11881.05 11983.60 14689.15 14368.03 13284.46 24390.02 15770.67 19081.30 12286.53 24263.17 14494.19 12175.60 14088.54 13088.57 263
PS-MVSNAJ81.69 11881.02 12083.70 14489.51 12268.21 12784.28 24990.09 15670.79 18781.26 12385.62 26263.15 14594.29 11475.62 13988.87 12388.59 262
GeoE81.71 11781.01 12183.80 14389.51 12264.45 21088.97 10688.73 20571.27 17878.63 15489.76 14766.32 11493.20 17069.89 19286.02 16493.74 68
hse-mvs281.72 11680.94 12284.07 12788.72 16067.68 13885.87 20987.26 23576.02 8584.67 6688.22 19261.54 16993.48 15482.71 7073.44 32991.06 165
PAPR81.66 12180.89 12383.99 13790.27 9864.00 21786.76 18491.77 10768.84 23877.13 19389.50 15467.63 10094.88 9767.55 21488.52 13193.09 99
mvsmamba81.69 11880.74 12484.56 10187.45 20966.72 16191.26 4885.89 25774.66 11178.23 16490.56 12954.33 23494.91 9280.73 9383.54 20292.04 140
MAR-MVS81.84 11480.70 12585.27 7791.32 7971.53 5489.82 7690.92 12969.77 21478.50 15786.21 24862.36 15794.52 10965.36 23392.05 8189.77 224
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VDDNet81.52 12380.67 12684.05 13290.44 9664.13 21689.73 8185.91 25671.11 18183.18 9593.48 5850.54 27893.49 15373.40 15988.25 13494.54 32
ACMP74.13 681.51 12580.57 12784.36 11089.42 12768.69 11689.97 7491.50 11774.46 11675.04 24690.41 13253.82 24094.54 10777.56 11882.91 21089.86 220
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
VPA-MVSNet80.60 14480.55 12880.76 22988.07 18560.80 26886.86 17891.58 11175.67 9280.24 13289.45 16063.34 13990.25 26370.51 18579.22 25691.23 160
DU-MVS81.12 13080.52 12982.90 17687.80 19463.46 23087.02 17391.87 10179.01 2678.38 16089.07 16665.02 12893.05 18070.05 18976.46 28492.20 132
test_yl81.17 12880.47 13083.24 15989.13 14463.62 22386.21 19989.95 16072.43 15781.78 11489.61 15157.50 21293.58 14770.75 18186.90 14892.52 118
DCV-MVSNet81.17 12880.47 13083.24 15989.13 14463.62 22386.21 19989.95 16072.43 15781.78 11489.61 15157.50 21293.58 14770.75 18186.90 14892.52 118
PVSNet_Blended80.98 13180.34 13282.90 17688.85 15165.40 18684.43 24592.00 9367.62 25378.11 16885.05 27666.02 11994.27 11671.52 17489.50 11589.01 245
TranMVSNet+NR-MVSNet80.84 13480.31 13382.42 19187.85 19262.33 24987.74 15591.33 11980.55 977.99 17289.86 14365.23 12692.62 19067.05 22175.24 31192.30 127
jason81.39 12680.29 13484.70 9886.63 23069.90 8585.95 20686.77 24463.24 30381.07 12589.47 15661.08 18292.15 20978.33 11290.07 10992.05 138
jason: jason.
lupinMVS81.39 12680.27 13584.76 9787.35 21070.21 7785.55 21886.41 24862.85 31081.32 11988.61 17861.68 16692.24 20778.41 11190.26 10491.83 143
SDMVSNet80.38 14980.18 13680.99 22389.03 14964.94 19880.45 30689.40 17375.19 10076.61 20389.98 14160.61 19087.69 30476.83 12783.55 20090.33 194
PVSNet_BlendedMVS80.60 14480.02 13782.36 19388.85 15165.40 18686.16 20192.00 9369.34 22278.11 16886.09 25266.02 11994.27 11671.52 17482.06 22187.39 283
EI-MVSNet80.52 14779.98 13882.12 19484.28 26863.19 23886.41 19388.95 19674.18 12278.69 15187.54 20966.62 10892.43 19772.57 16980.57 23990.74 178
Fast-Effi-MVS+80.81 13679.92 13983.47 14988.85 15164.51 20585.53 22089.39 17470.79 18778.49 15885.06 27567.54 10193.58 14767.03 22286.58 15392.32 126
FA-MVS(test-final)80.96 13279.91 14084.10 12288.30 17665.01 19684.55 24090.01 15873.25 14679.61 13887.57 20658.35 20494.72 10471.29 17886.25 15992.56 117
CANet_DTU80.61 14379.87 14182.83 17885.60 24363.17 23987.36 16388.65 20676.37 7875.88 21888.44 18553.51 24393.07 17973.30 16089.74 11492.25 129
ACMM73.20 880.78 14179.84 14283.58 14789.31 13668.37 12289.99 7391.60 11070.28 20077.25 18589.66 14953.37 24593.53 15274.24 15182.85 21188.85 253
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-OURS-SEG-HR80.81 13679.76 14383.96 14085.60 24368.78 10883.54 26390.50 14170.66 19376.71 19991.66 9660.69 18791.26 24376.94 12581.58 22691.83 143
xiu_mvs_v1_base_debu80.80 13879.72 14484.03 13487.35 21070.19 7985.56 21588.77 20069.06 23281.83 11088.16 19350.91 27292.85 18678.29 11387.56 13889.06 240
xiu_mvs_v1_base80.80 13879.72 14484.03 13487.35 21070.19 7985.56 21588.77 20069.06 23281.83 11088.16 19350.91 27292.85 18678.29 11387.56 13889.06 240
xiu_mvs_v1_base_debi80.80 13879.72 14484.03 13487.35 21070.19 7985.56 21588.77 20069.06 23281.83 11088.16 19350.91 27292.85 18678.29 11387.56 13889.06 240
UGNet80.83 13579.59 14784.54 10288.04 18668.09 12989.42 9188.16 21276.95 5976.22 21189.46 15849.30 29393.94 12968.48 20790.31 10291.60 147
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
114514_t80.68 14279.51 14884.20 11994.09 3867.27 15189.64 8491.11 12658.75 34774.08 25890.72 12658.10 20595.04 8969.70 19489.42 11790.30 196
QAPM80.88 13379.50 14985.03 8488.01 18868.97 10491.59 4392.00 9366.63 26775.15 24292.16 8857.70 20995.45 6563.52 24588.76 12690.66 180
AdaColmapbinary80.58 14679.42 15084.06 12993.09 5468.91 10589.36 9488.97 19569.27 22375.70 22189.69 14857.20 21695.77 5463.06 25088.41 13387.50 282
NR-MVSNet80.23 15379.38 15182.78 18487.80 19463.34 23386.31 19691.09 12779.01 2672.17 27989.07 16667.20 10592.81 18966.08 22875.65 29792.20 132
IterMVS-LS80.06 15679.38 15182.11 19585.89 23863.20 23786.79 18189.34 17574.19 12175.45 22886.72 22966.62 10892.39 19972.58 16876.86 27890.75 177
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_djsdf80.30 15279.32 15383.27 15783.98 27665.37 18990.50 6190.38 14468.55 24276.19 21288.70 17456.44 22093.46 15678.98 10480.14 24590.97 170
v2v48280.23 15379.29 15483.05 16983.62 28264.14 21587.04 17289.97 15973.61 13478.18 16787.22 21761.10 18193.82 13776.11 13276.78 28191.18 161
ECVR-MVScopyleft79.61 16279.26 15580.67 23190.08 10354.69 34387.89 15177.44 35174.88 10680.27 13192.79 7948.96 29992.45 19668.55 20692.50 7694.86 17
XVG-OURS80.41 14879.23 15683.97 13885.64 24269.02 10283.03 27490.39 14371.09 18277.63 17891.49 10454.62 23391.35 24175.71 13783.47 20391.54 150
WR-MVS79.49 16679.22 15780.27 23988.79 15758.35 29085.06 22788.61 20878.56 3077.65 17788.34 18763.81 13890.66 25964.98 23777.22 27391.80 145
test111179.43 16979.18 15880.15 24189.99 10853.31 35687.33 16577.05 35475.04 10380.23 13392.77 8148.97 29892.33 20468.87 20392.40 7894.81 20
mvs_anonymous79.42 17079.11 15980.34 23784.45 26757.97 29782.59 27687.62 22767.40 25776.17 21588.56 18168.47 9389.59 27570.65 18486.05 16393.47 84
v114480.03 15779.03 16083.01 17183.78 28064.51 20587.11 17190.57 14071.96 16678.08 17086.20 24961.41 17393.94 12974.93 14477.23 27290.60 183
v879.97 15979.02 16182.80 18184.09 27364.50 20787.96 14690.29 15174.13 12475.24 23986.81 22662.88 15093.89 13674.39 14975.40 30690.00 212
ab-mvs79.51 16578.97 16281.14 21988.46 16960.91 26683.84 25589.24 18270.36 19779.03 14588.87 17163.23 14390.21 26465.12 23582.57 21692.28 128
Anonymous2024052980.19 15578.89 16384.10 12290.60 9264.75 20288.95 10790.90 13065.97 27580.59 12991.17 11549.97 28393.73 14569.16 20082.70 21593.81 65
PCF-MVS73.52 780.38 14978.84 16485.01 8587.71 19968.99 10383.65 25891.46 11863.00 30777.77 17690.28 13466.10 11695.09 8761.40 26988.22 13590.94 171
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v1079.74 16178.67 16582.97 17484.06 27464.95 19787.88 15290.62 13773.11 14875.11 24386.56 24061.46 17294.05 12573.68 15475.55 29989.90 218
VPNet78.69 18978.66 16678.76 26688.31 17555.72 33284.45 24486.63 24676.79 6478.26 16390.55 13059.30 19889.70 27466.63 22377.05 27590.88 172
BH-untuned79.47 16778.60 16782.05 19689.19 14265.91 17686.07 20388.52 20972.18 16175.42 22987.69 20361.15 18093.54 15160.38 27686.83 15086.70 302
Effi-MVS+-dtu80.03 15778.57 16884.42 10885.13 25468.74 11188.77 11388.10 21474.99 10474.97 24783.49 30457.27 21593.36 16073.53 15680.88 23391.18 161
WR-MVS_H78.51 19378.49 16978.56 27088.02 18756.38 32388.43 12692.67 6277.14 5473.89 25987.55 20866.25 11589.24 28158.92 28973.55 32790.06 210
Vis-MVSNet (Re-imp)78.36 19678.45 17078.07 28088.64 16351.78 36586.70 18579.63 33674.14 12375.11 24390.83 12561.29 17789.75 27258.10 29891.60 8692.69 112
BH-RMVSNet79.61 16278.44 17183.14 16489.38 13165.93 17584.95 23087.15 23873.56 13678.19 16689.79 14556.67 21993.36 16059.53 28386.74 15190.13 202
v119279.59 16478.43 17283.07 16883.55 28464.52 20486.93 17690.58 13870.83 18677.78 17585.90 25359.15 19993.94 12973.96 15377.19 27490.76 176
v14419279.47 16778.37 17382.78 18483.35 28763.96 21886.96 17490.36 14769.99 20777.50 17985.67 26060.66 18893.77 14174.27 15076.58 28290.62 181
CP-MVSNet78.22 19878.34 17477.84 28287.83 19354.54 34587.94 14891.17 12377.65 3873.48 26388.49 18362.24 16088.43 29562.19 26074.07 32090.55 185
Baseline_NR-MVSNet78.15 20278.33 17577.61 28785.79 23956.21 32786.78 18285.76 25973.60 13577.93 17387.57 20665.02 12888.99 28567.14 22075.33 30887.63 277
OpenMVScopyleft72.83 1079.77 16078.33 17584.09 12585.17 25069.91 8490.57 5990.97 12866.70 26172.17 27991.91 9154.70 23193.96 12661.81 26690.95 9588.41 266
UniMVSNet_ETH3D79.10 17978.24 17781.70 20386.85 22360.24 27787.28 16788.79 19974.25 12076.84 19490.53 13149.48 28991.56 23067.98 21082.15 21993.29 90
V4279.38 17378.24 17782.83 17881.10 33365.50 18585.55 21889.82 16271.57 17378.21 16586.12 25160.66 18893.18 17375.64 13875.46 30389.81 223
PS-CasMVS78.01 20778.09 17977.77 28487.71 19954.39 34788.02 14491.22 12077.50 4673.26 26588.64 17760.73 18588.41 29661.88 26473.88 32490.53 186
v192192079.22 17578.03 18082.80 18183.30 28963.94 21986.80 18090.33 14869.91 21077.48 18085.53 26358.44 20393.75 14373.60 15576.85 27990.71 179
jajsoiax79.29 17477.96 18183.27 15784.68 26166.57 16589.25 9790.16 15469.20 22875.46 22789.49 15545.75 32393.13 17676.84 12680.80 23590.11 204
TAPA-MVS73.13 979.15 17777.94 18282.79 18389.59 11862.99 24488.16 14191.51 11465.77 27677.14 19291.09 11760.91 18493.21 16750.26 34487.05 14692.17 134
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tttt051779.40 17177.91 18383.90 14288.10 18363.84 22088.37 13284.05 27971.45 17576.78 19789.12 16549.93 28694.89 9670.18 18883.18 20892.96 106
c3_l78.75 18677.91 18381.26 21582.89 30361.56 26084.09 25389.13 18869.97 20875.56 22384.29 28766.36 11392.09 21173.47 15875.48 30190.12 203
MVSTER79.01 18177.88 18582.38 19283.07 29664.80 20184.08 25488.95 19669.01 23578.69 15187.17 22054.70 23192.43 19774.69 14580.57 23989.89 219
tt080578.73 18777.83 18681.43 20985.17 25060.30 27689.41 9290.90 13071.21 17977.17 19188.73 17346.38 31293.21 16772.57 16978.96 25790.79 174
X-MVStestdata80.37 15177.83 18688.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 9012.47 40867.45 10296.60 3383.06 6394.50 5094.07 51
v14878.72 18877.80 18881.47 20882.73 30661.96 25586.30 19788.08 21573.26 14576.18 21385.47 26562.46 15592.36 20171.92 17373.82 32590.09 206
v124078.99 18277.78 18982.64 18783.21 29163.54 22786.62 18890.30 15069.74 21777.33 18385.68 25957.04 21793.76 14273.13 16376.92 27690.62 181
mvs_tets79.13 17877.77 19083.22 16184.70 26066.37 16789.17 9890.19 15369.38 22175.40 23089.46 15844.17 33293.15 17476.78 12880.70 23790.14 201
miper_ehance_all_eth78.59 19277.76 19181.08 22182.66 30861.56 26083.65 25889.15 18668.87 23775.55 22483.79 29866.49 11192.03 21273.25 16176.39 28689.64 227
thisisatest053079.40 17177.76 19184.31 11387.69 20165.10 19487.36 16384.26 27770.04 20577.42 18188.26 19149.94 28494.79 10270.20 18784.70 17893.03 102
CDS-MVSNet79.07 18077.70 19383.17 16387.60 20368.23 12684.40 24786.20 25267.49 25576.36 20886.54 24161.54 16990.79 25661.86 26587.33 14290.49 188
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Anonymous2023121178.97 18377.69 19482.81 18090.54 9464.29 21390.11 7291.51 11465.01 28576.16 21688.13 19850.56 27793.03 18369.68 19577.56 27191.11 163
PEN-MVS77.73 21377.69 19477.84 28287.07 22153.91 35087.91 15091.18 12277.56 4373.14 26788.82 17261.23 17889.17 28259.95 27972.37 33590.43 190
AUN-MVS79.21 17677.60 19684.05 13288.71 16167.61 14185.84 21187.26 23569.08 23177.23 18788.14 19753.20 24793.47 15575.50 14273.45 32891.06 165
v7n78.97 18377.58 19783.14 16483.45 28665.51 18488.32 13491.21 12173.69 13272.41 27686.32 24757.93 20693.81 13869.18 19975.65 29790.11 204
TAMVS78.89 18577.51 19883.03 17087.80 19467.79 13684.72 23485.05 26667.63 25276.75 19887.70 20262.25 15990.82 25558.53 29487.13 14590.49 188
sd_testset77.70 21677.40 19978.60 26989.03 14960.02 27979.00 32485.83 25875.19 10076.61 20389.98 14154.81 22685.46 32262.63 25683.55 20090.33 194
GBi-Net78.40 19477.40 19981.40 21187.60 20363.01 24088.39 12889.28 17771.63 16975.34 23287.28 21354.80 22791.11 24662.72 25279.57 24990.09 206
test178.40 19477.40 19981.40 21187.60 20363.01 24088.39 12889.28 17771.63 16975.34 23287.28 21354.80 22791.11 24662.72 25279.57 24990.09 206
BH-w/o78.21 19977.33 20280.84 22788.81 15565.13 19384.87 23187.85 22369.75 21574.52 25484.74 28061.34 17593.11 17758.24 29785.84 16784.27 337
FMVSNet278.20 20077.21 20381.20 21787.60 20362.89 24587.47 16189.02 19171.63 16975.29 23887.28 21354.80 22791.10 24962.38 25779.38 25389.61 228
anonymousdsp78.60 19177.15 20482.98 17380.51 33967.08 15587.24 16889.53 17065.66 27875.16 24187.19 21952.52 24892.25 20677.17 12379.34 25489.61 228
HY-MVS69.67 1277.95 20877.15 20480.36 23687.57 20860.21 27883.37 26587.78 22566.11 27175.37 23187.06 22463.27 14190.48 26161.38 27082.43 21790.40 192
cl2278.07 20477.01 20681.23 21682.37 31561.83 25783.55 26287.98 21768.96 23675.06 24583.87 29461.40 17491.88 21973.53 15676.39 28689.98 215
Anonymous20240521178.25 19777.01 20681.99 19891.03 8260.67 27084.77 23383.90 28170.65 19480.00 13591.20 11341.08 35091.43 23965.21 23485.26 17293.85 61
MVS78.19 20176.99 20881.78 20185.66 24166.99 15684.66 23590.47 14255.08 36772.02 28185.27 26863.83 13794.11 12466.10 22789.80 11384.24 338
LCM-MVSNet-Re77.05 22676.94 20977.36 29087.20 21851.60 36680.06 31080.46 32675.20 9967.69 32286.72 22962.48 15488.98 28663.44 24789.25 11891.51 151
miper_enhance_ethall77.87 21176.86 21080.92 22681.65 32261.38 26282.68 27588.98 19365.52 28075.47 22582.30 32165.76 12392.00 21472.95 16476.39 28689.39 233
FMVSNet377.88 21076.85 21180.97 22586.84 22462.36 24886.52 19188.77 20071.13 18075.34 23286.66 23554.07 23891.10 24962.72 25279.57 24989.45 232
DTE-MVSNet76.99 22776.80 21277.54 28986.24 23353.06 35887.52 15990.66 13677.08 5772.50 27488.67 17660.48 19289.52 27657.33 30570.74 34690.05 211
CNLPA78.08 20376.79 21381.97 19990.40 9771.07 6287.59 15884.55 27166.03 27472.38 27789.64 15057.56 21186.04 31559.61 28283.35 20588.79 256
cl____77.72 21476.76 21480.58 23282.49 31260.48 27383.09 27087.87 22169.22 22674.38 25685.22 27162.10 16291.53 23371.09 17975.41 30589.73 226
DIV-MVS_self_test77.72 21476.76 21480.58 23282.48 31360.48 27383.09 27087.86 22269.22 22674.38 25685.24 26962.10 16291.53 23371.09 17975.40 30689.74 225
baseline176.98 22876.75 21677.66 28588.13 18155.66 33385.12 22681.89 31073.04 15076.79 19688.90 16962.43 15687.78 30363.30 24971.18 34489.55 230
eth_miper_zixun_eth77.92 20976.69 21781.61 20683.00 29961.98 25483.15 26889.20 18469.52 21974.86 24984.35 28661.76 16592.56 19371.50 17672.89 33390.28 197
pm-mvs177.25 22576.68 21878.93 26484.22 27058.62 28986.41 19388.36 21171.37 17673.31 26488.01 19961.22 17989.15 28364.24 24373.01 33289.03 244
ET-MVSNet_ETH3D78.63 19076.63 21984.64 9986.73 22769.47 9285.01 22884.61 27069.54 21866.51 34086.59 23750.16 28191.75 22376.26 13184.24 18792.69 112
test250677.30 22476.49 22079.74 24990.08 10352.02 35987.86 15363.10 39474.88 10680.16 13492.79 7938.29 36392.35 20268.74 20592.50 7694.86 17
Fast-Effi-MVS+-dtu78.02 20676.49 22082.62 18883.16 29566.96 15986.94 17587.45 23272.45 15471.49 28684.17 29154.79 23091.58 22867.61 21380.31 24289.30 236
1112_ss77.40 22276.43 22280.32 23889.11 14860.41 27583.65 25887.72 22662.13 32073.05 26886.72 22962.58 15389.97 26862.11 26380.80 23590.59 184
PAPM77.68 21776.40 22381.51 20787.29 21761.85 25683.78 25689.59 16964.74 28771.23 28788.70 17462.59 15293.66 14652.66 32987.03 14789.01 245
PLCcopyleft70.83 1178.05 20576.37 22483.08 16791.88 7467.80 13588.19 13989.46 17264.33 29369.87 30488.38 18653.66 24193.58 14758.86 29082.73 21387.86 273
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TR-MVS77.44 22076.18 22581.20 21788.24 17763.24 23584.61 23886.40 24967.55 25477.81 17486.48 24354.10 23793.15 17457.75 30182.72 21487.20 288
FMVSNet177.44 22076.12 22681.40 21186.81 22563.01 24088.39 12889.28 17770.49 19674.39 25587.28 21349.06 29791.11 24660.91 27378.52 26090.09 206
test_vis1_n_192075.52 25175.78 22774.75 31679.84 34757.44 30783.26 26685.52 26162.83 31179.34 14386.17 25045.10 32779.71 35578.75 10681.21 23087.10 295
CHOSEN 1792x268877.63 21875.69 22883.44 15089.98 10968.58 11978.70 32887.50 23056.38 36275.80 22086.84 22558.67 20191.40 24061.58 26885.75 16990.34 193
FE-MVS77.78 21275.68 22984.08 12688.09 18466.00 17383.13 26987.79 22468.42 24678.01 17185.23 27045.50 32595.12 8159.11 28785.83 16891.11 163
WTY-MVS75.65 24975.68 22975.57 30686.40 23256.82 31477.92 33882.40 30665.10 28276.18 21387.72 20163.13 14880.90 35160.31 27781.96 22289.00 247
testing9176.54 23375.66 23179.18 26188.43 17155.89 33081.08 29383.00 29873.76 13175.34 23284.29 28746.20 31790.07 26664.33 24184.50 18091.58 149
XXY-MVS75.41 25475.56 23274.96 31283.59 28357.82 30180.59 30383.87 28266.54 26874.93 24888.31 18863.24 14280.09 35462.16 26176.85 27986.97 296
thres100view90076.50 23575.55 23379.33 25789.52 12156.99 31285.83 21283.23 29273.94 12676.32 20987.12 22151.89 26391.95 21548.33 35383.75 19489.07 238
thres600view776.50 23575.44 23479.68 25189.40 12957.16 30985.53 22083.23 29273.79 13076.26 21087.09 22251.89 26391.89 21848.05 35883.72 19790.00 212
Test_1112_low_res76.40 23975.44 23479.27 25889.28 13858.09 29381.69 28587.07 23959.53 33972.48 27586.67 23461.30 17689.33 27960.81 27580.15 24490.41 191
HyFIR lowres test77.53 21975.40 23683.94 14189.59 11866.62 16380.36 30788.64 20756.29 36376.45 20585.17 27257.64 21093.28 16261.34 27183.10 20991.91 142
thisisatest051577.33 22375.38 23783.18 16285.27 24963.80 22182.11 28183.27 29165.06 28375.91 21783.84 29649.54 28894.27 11667.24 21886.19 16091.48 154
tfpn200view976.42 23875.37 23879.55 25689.13 14457.65 30385.17 22383.60 28473.41 14176.45 20586.39 24552.12 25591.95 21548.33 35383.75 19489.07 238
thres40076.50 23575.37 23879.86 24689.13 14457.65 30385.17 22383.60 28473.41 14176.45 20586.39 24552.12 25591.95 21548.33 35383.75 19490.00 212
131476.53 23475.30 24080.21 24083.93 27762.32 25084.66 23588.81 19860.23 33270.16 29884.07 29355.30 22490.73 25867.37 21683.21 20787.59 280
GA-MVS76.87 23075.17 24181.97 19982.75 30562.58 24681.44 29086.35 25172.16 16474.74 25082.89 31346.20 31792.02 21368.85 20481.09 23191.30 159
testing9976.09 24475.12 24279.00 26288.16 17955.50 33580.79 29781.40 31673.30 14475.17 24084.27 28944.48 33090.02 26764.28 24284.22 18891.48 154
EPNet_dtu75.46 25274.86 24377.23 29382.57 31054.60 34486.89 17783.09 29571.64 16866.25 34285.86 25555.99 22188.04 30054.92 31886.55 15489.05 243
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LS3D76.95 22974.82 24483.37 15490.45 9567.36 14889.15 10286.94 24161.87 32269.52 30790.61 12851.71 26694.53 10846.38 36586.71 15288.21 268
cascas76.72 23274.64 24582.99 17285.78 24065.88 17782.33 27889.21 18360.85 32872.74 27081.02 33247.28 30693.75 14367.48 21585.02 17389.34 235
DP-MVS76.78 23174.57 24683.42 15193.29 4869.46 9488.55 12383.70 28363.98 29970.20 29588.89 17054.01 23994.80 10146.66 36281.88 22486.01 314
TransMVSNet (Re)75.39 25574.56 24777.86 28185.50 24557.10 31186.78 18286.09 25572.17 16271.53 28587.34 21263.01 14989.31 28056.84 31061.83 37287.17 289
LTVRE_ROB69.57 1376.25 24174.54 24881.41 21088.60 16464.38 21279.24 32089.12 18970.76 18969.79 30687.86 20049.09 29693.20 17056.21 31580.16 24386.65 303
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
thres20075.55 25074.47 24978.82 26587.78 19757.85 30083.07 27283.51 28772.44 15675.84 21984.42 28252.08 25891.75 22347.41 36083.64 19986.86 298
MVP-Stereo76.12 24274.46 25081.13 22085.37 24869.79 8684.42 24687.95 21965.03 28467.46 32585.33 26753.28 24691.73 22558.01 29983.27 20681.85 362
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
F-COLMAP76.38 24074.33 25182.50 19089.28 13866.95 16088.41 12789.03 19064.05 29766.83 33288.61 17846.78 31092.89 18557.48 30278.55 25987.67 276
XVG-ACMP-BASELINE76.11 24374.27 25281.62 20483.20 29264.67 20383.60 26189.75 16569.75 21571.85 28287.09 22232.78 37592.11 21069.99 19180.43 24188.09 269
testing1175.14 25774.01 25378.53 27288.16 17956.38 32380.74 30080.42 32770.67 19072.69 27383.72 30043.61 33589.86 26962.29 25983.76 19389.36 234
ACMH+68.96 1476.01 24574.01 25382.03 19788.60 16465.31 19088.86 11087.55 22870.25 20267.75 32187.47 21141.27 34893.19 17258.37 29575.94 29487.60 278
ACMH67.68 1675.89 24673.93 25581.77 20288.71 16166.61 16488.62 12189.01 19269.81 21166.78 33386.70 23341.95 34791.51 23555.64 31678.14 26687.17 289
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CostFormer75.24 25673.90 25679.27 25882.65 30958.27 29280.80 29682.73 30461.57 32375.33 23683.13 30955.52 22291.07 25264.98 23778.34 26588.45 264
IterMVS-SCA-FT75.43 25373.87 25780.11 24282.69 30764.85 20081.57 28783.47 28869.16 22970.49 29284.15 29251.95 26188.15 29869.23 19872.14 33887.34 285
baseline275.70 24873.83 25881.30 21483.26 29061.79 25882.57 27780.65 32266.81 25866.88 33183.42 30557.86 20892.19 20863.47 24679.57 24989.91 217
test_cas_vis1_n_192073.76 26973.74 25973.81 32475.90 36859.77 28180.51 30482.40 30658.30 34981.62 11685.69 25844.35 33176.41 37376.29 13078.61 25885.23 325
sss73.60 27073.64 26073.51 32682.80 30455.01 34176.12 34581.69 31362.47 31674.68 25185.85 25657.32 21478.11 36260.86 27480.93 23287.39 283
pmmvs674.69 25973.39 26178.61 26881.38 32857.48 30686.64 18787.95 21964.99 28670.18 29686.61 23650.43 27989.52 27662.12 26270.18 34888.83 254
IB-MVS68.01 1575.85 24773.36 26283.31 15584.76 25966.03 17183.38 26485.06 26570.21 20369.40 30881.05 33145.76 32294.66 10665.10 23675.49 30089.25 237
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
D2MVS74.82 25873.21 26379.64 25379.81 34862.56 24780.34 30887.35 23364.37 29268.86 31382.66 31746.37 31390.10 26567.91 21181.24 22986.25 307
tfpnnormal74.39 26073.16 26478.08 27986.10 23758.05 29484.65 23787.53 22970.32 19971.22 28885.63 26154.97 22589.86 26943.03 37675.02 31386.32 306
miper_lstm_enhance74.11 26473.11 26577.13 29480.11 34359.62 28372.23 36586.92 24266.76 26070.40 29382.92 31256.93 21882.92 34069.06 20172.63 33488.87 252
IterMVS74.29 26172.94 26678.35 27581.53 32563.49 22981.58 28682.49 30568.06 25069.99 30183.69 30151.66 26785.54 32065.85 23071.64 34186.01 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MS-PatchMatch73.83 26872.67 26777.30 29283.87 27866.02 17281.82 28284.66 26961.37 32668.61 31682.82 31547.29 30588.21 29759.27 28484.32 18677.68 376
testing22274.04 26572.66 26878.19 27787.89 19055.36 33681.06 29479.20 34071.30 17774.65 25283.57 30339.11 35988.67 29251.43 33685.75 16990.53 186
CVMVSNet72.99 27972.58 26974.25 32084.28 26850.85 37186.41 19383.45 28944.56 38673.23 26687.54 20949.38 29185.70 31765.90 22978.44 26286.19 309
test-LLR72.94 28072.43 27074.48 31781.35 32958.04 29578.38 33177.46 34966.66 26269.95 30279.00 35248.06 30279.24 35666.13 22584.83 17586.15 310
OurMVSNet-221017-074.26 26272.42 27179.80 24883.76 28159.59 28485.92 20886.64 24566.39 26966.96 33087.58 20539.46 35691.60 22765.76 23169.27 35188.22 267
SCA74.22 26372.33 27279.91 24584.05 27562.17 25279.96 31379.29 33966.30 27072.38 27780.13 34151.95 26188.60 29359.25 28577.67 27088.96 249
tpmrst72.39 28272.13 27373.18 33080.54 33849.91 37579.91 31479.08 34163.11 30571.69 28479.95 34355.32 22382.77 34165.66 23273.89 32386.87 297
pmmvs474.03 26771.91 27480.39 23581.96 31868.32 12381.45 28982.14 30859.32 34069.87 30485.13 27352.40 25188.13 29960.21 27874.74 31684.73 334
EG-PatchMatch MVS74.04 26571.82 27580.71 23084.92 25767.42 14585.86 21088.08 21566.04 27364.22 35483.85 29535.10 37292.56 19357.44 30380.83 23482.16 361
tpm72.37 28471.71 27674.35 31982.19 31652.00 36079.22 32177.29 35264.56 28972.95 26983.68 30251.35 26883.26 33958.33 29675.80 29587.81 274
WB-MVSnew71.96 28971.65 27772.89 33184.67 26451.88 36382.29 27977.57 34862.31 31773.67 26183.00 31053.49 24481.10 35045.75 36982.13 22085.70 319
UWE-MVS72.13 28771.49 27874.03 32286.66 22947.70 37981.40 29176.89 35663.60 30275.59 22284.22 29039.94 35585.62 31948.98 35086.13 16288.77 257
CL-MVSNet_self_test72.37 28471.46 27975.09 31179.49 35453.53 35280.76 29985.01 26769.12 23070.51 29182.05 32557.92 20784.13 33152.27 33166.00 36487.60 278
tpm273.26 27571.46 27978.63 26783.34 28856.71 31780.65 30280.40 32856.63 36173.55 26282.02 32651.80 26591.24 24456.35 31478.42 26387.95 270
RPSCF73.23 27671.46 27978.54 27182.50 31159.85 28082.18 28082.84 30358.96 34471.15 28989.41 16245.48 32684.77 32858.82 29171.83 34091.02 169
PatchmatchNetpermissive73.12 27771.33 28278.49 27483.18 29360.85 26779.63 31578.57 34364.13 29471.73 28379.81 34651.20 27085.97 31657.40 30476.36 29188.66 260
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CR-MVSNet73.37 27271.27 28379.67 25281.32 33165.19 19175.92 34780.30 32959.92 33572.73 27181.19 32952.50 24986.69 30959.84 28077.71 26887.11 293
SixPastTwentyTwo73.37 27271.26 28479.70 25085.08 25557.89 29985.57 21483.56 28671.03 18465.66 34485.88 25442.10 34592.57 19259.11 28763.34 37088.65 261
ETVMVS72.25 28671.05 28575.84 30287.77 19851.91 36279.39 31874.98 36369.26 22473.71 26082.95 31140.82 35286.14 31446.17 36684.43 18589.47 231
MSDG73.36 27470.99 28680.49 23484.51 26665.80 17980.71 30186.13 25465.70 27765.46 34583.74 29944.60 32890.91 25451.13 33776.89 27784.74 333
PatchMatch-RL72.38 28370.90 28776.80 29788.60 16467.38 14779.53 31676.17 36062.75 31369.36 30982.00 32745.51 32484.89 32753.62 32480.58 23878.12 375
PVSNet64.34 1872.08 28870.87 28875.69 30486.21 23456.44 32174.37 35980.73 32162.06 32170.17 29782.23 32342.86 33983.31 33854.77 31984.45 18487.32 286
dmvs_re71.14 29370.58 28972.80 33281.96 31859.68 28275.60 35179.34 33868.55 24269.27 31180.72 33749.42 29076.54 37052.56 33077.79 26782.19 360
test_fmvs170.93 29670.52 29072.16 33673.71 37855.05 34080.82 29578.77 34251.21 37978.58 15584.41 28331.20 38076.94 36875.88 13680.12 24684.47 336
RPMNet73.51 27170.49 29182.58 18981.32 33165.19 19175.92 34792.27 8157.60 35572.73 27176.45 36852.30 25295.43 6748.14 35777.71 26887.11 293
test_040272.79 28170.44 29279.84 24788.13 18165.99 17485.93 20784.29 27565.57 27967.40 32785.49 26446.92 30992.61 19135.88 38874.38 31980.94 367
COLMAP_ROBcopyleft66.92 1773.01 27870.41 29380.81 22887.13 22065.63 18288.30 13584.19 27862.96 30863.80 35887.69 20338.04 36492.56 19346.66 36274.91 31484.24 338
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test-mter71.41 29170.39 29474.48 31781.35 32958.04 29578.38 33177.46 34960.32 33169.95 30279.00 35236.08 37079.24 35666.13 22584.83 17586.15 310
test_fmvs1_n70.86 29770.24 29572.73 33372.51 38955.28 33881.27 29279.71 33551.49 37878.73 15084.87 27727.54 38577.02 36776.06 13379.97 24785.88 317
pmmvs571.55 29070.20 29675.61 30577.83 36156.39 32281.74 28480.89 31857.76 35367.46 32584.49 28149.26 29485.32 32457.08 30775.29 30985.11 329
MDTV_nov1_ep1369.97 29783.18 29353.48 35377.10 34380.18 33260.45 32969.33 31080.44 33848.89 30086.90 30851.60 33478.51 261
MIMVSNet70.69 29969.30 29874.88 31384.52 26556.35 32575.87 34979.42 33764.59 28867.76 32082.41 31941.10 34981.54 34746.64 36481.34 22786.75 301
tpmvs71.09 29469.29 29976.49 29882.04 31756.04 32878.92 32681.37 31764.05 29767.18 32978.28 35849.74 28789.77 27149.67 34772.37 33583.67 345
test_vis1_n69.85 30969.21 30071.77 33872.66 38855.27 33981.48 28876.21 35952.03 37575.30 23783.20 30828.97 38376.22 37574.60 14678.41 26483.81 344
Patchmtry70.74 29869.16 30175.49 30880.72 33554.07 34974.94 35880.30 32958.34 34870.01 29981.19 32952.50 24986.54 31053.37 32671.09 34585.87 318
TESTMET0.1,169.89 30869.00 30272.55 33479.27 35756.85 31378.38 33174.71 36757.64 35468.09 31977.19 36537.75 36576.70 36963.92 24484.09 18984.10 341
PMMVS69.34 31168.67 30371.35 34375.67 37062.03 25375.17 35373.46 37050.00 38068.68 31479.05 35052.07 25978.13 36161.16 27282.77 21273.90 382
K. test v371.19 29268.51 30479.21 26083.04 29857.78 30284.35 24876.91 35572.90 15362.99 36182.86 31439.27 35791.09 25161.65 26752.66 38888.75 258
USDC70.33 30368.37 30576.21 30080.60 33756.23 32679.19 32286.49 24760.89 32761.29 36585.47 26531.78 37889.47 27853.37 32676.21 29282.94 355
tpm cat170.57 30068.31 30677.35 29182.41 31457.95 29878.08 33580.22 33152.04 37468.54 31777.66 36352.00 26087.84 30251.77 33272.07 33986.25 307
OpenMVS_ROBcopyleft64.09 1970.56 30168.19 30777.65 28680.26 34059.41 28685.01 22882.96 30058.76 34665.43 34682.33 32037.63 36691.23 24545.34 37276.03 29382.32 358
EPMVS69.02 31368.16 30871.59 33979.61 35249.80 37777.40 34066.93 38662.82 31270.01 29979.05 35045.79 32177.86 36456.58 31275.26 31087.13 292
CMPMVSbinary51.72 2170.19 30568.16 30876.28 29973.15 38557.55 30579.47 31783.92 28048.02 38256.48 38284.81 27843.13 33786.42 31262.67 25581.81 22584.89 331
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
AllTest70.96 29568.09 31079.58 25485.15 25263.62 22384.58 23979.83 33362.31 31760.32 36986.73 22732.02 37688.96 28850.28 34271.57 34286.15 310
gg-mvs-nofinetune69.95 30767.96 31175.94 30183.07 29654.51 34677.23 34270.29 37863.11 30570.32 29462.33 38943.62 33488.69 29153.88 32387.76 13784.62 335
FMVSNet569.50 31067.96 31174.15 32182.97 30255.35 33780.01 31282.12 30962.56 31563.02 35981.53 32836.92 36781.92 34548.42 35274.06 32185.17 328
Syy-MVS68.05 32267.85 31368.67 35884.68 26140.97 39978.62 32973.08 37266.65 26566.74 33479.46 34752.11 25782.30 34332.89 39176.38 28982.75 356
PatchT68.46 32067.85 31370.29 34980.70 33643.93 39172.47 36474.88 36460.15 33370.55 29076.57 36749.94 28481.59 34650.58 33874.83 31585.34 323
pmmvs-eth3d70.50 30267.83 31578.52 27377.37 36466.18 17081.82 28281.51 31458.90 34563.90 35780.42 33942.69 34086.28 31358.56 29365.30 36683.11 351
Anonymous2023120668.60 31667.80 31671.02 34680.23 34250.75 37278.30 33480.47 32556.79 36066.11 34382.63 31846.35 31478.95 35843.62 37575.70 29683.36 348
Patchmatch-RL test70.24 30467.78 31777.61 28777.43 36359.57 28571.16 36870.33 37762.94 30968.65 31572.77 38050.62 27685.49 32169.58 19666.58 36187.77 275
test0.0.03 168.00 32367.69 31868.90 35577.55 36247.43 38075.70 35072.95 37466.66 26266.56 33682.29 32248.06 30275.87 37744.97 37374.51 31883.41 347
testing368.56 31867.67 31971.22 34587.33 21542.87 39383.06 27371.54 37570.36 19769.08 31284.38 28430.33 38285.69 31837.50 38775.45 30485.09 330
EU-MVSNet68.53 31967.61 32071.31 34478.51 36047.01 38284.47 24184.27 27642.27 38966.44 34184.79 27940.44 35383.76 33358.76 29268.54 35683.17 349
KD-MVS_self_test68.81 31467.59 32172.46 33574.29 37645.45 38477.93 33787.00 24063.12 30463.99 35678.99 35442.32 34284.77 32856.55 31364.09 36987.16 291
test_fmvs268.35 32167.48 32270.98 34769.50 39251.95 36180.05 31176.38 35849.33 38174.65 25284.38 28423.30 39375.40 38274.51 14775.17 31285.60 320
ppachtmachnet_test70.04 30667.34 32378.14 27879.80 34961.13 26379.19 32280.59 32359.16 34265.27 34779.29 34946.75 31187.29 30649.33 34866.72 35986.00 316
Anonymous2024052168.80 31567.22 32473.55 32574.33 37554.11 34883.18 26785.61 26058.15 35061.68 36480.94 33430.71 38181.27 34957.00 30873.34 33185.28 324
our_test_369.14 31267.00 32575.57 30679.80 34958.80 28777.96 33677.81 34659.55 33862.90 36278.25 35947.43 30483.97 33251.71 33367.58 35883.93 343
test20.0367.45 32566.95 32668.94 35475.48 37244.84 38977.50 33977.67 34766.66 26263.01 36083.80 29747.02 30878.40 36042.53 37868.86 35583.58 346
MIMVSNet168.58 31766.78 32773.98 32380.07 34451.82 36480.77 29884.37 27264.40 29159.75 37282.16 32436.47 36883.63 33542.73 37770.33 34786.48 305
testgi66.67 33166.53 32867.08 36375.62 37141.69 39875.93 34676.50 35766.11 27165.20 35086.59 23735.72 37174.71 38443.71 37473.38 33084.84 332
myMVS_eth3d67.02 32866.29 32969.21 35384.68 26142.58 39478.62 32973.08 37266.65 26566.74 33479.46 34731.53 37982.30 34339.43 38476.38 28982.75 356
UnsupCasMVSNet_eth67.33 32665.99 33071.37 34173.48 38151.47 36875.16 35485.19 26465.20 28160.78 36780.93 33642.35 34177.20 36657.12 30653.69 38785.44 322
dp66.80 32965.43 33170.90 34879.74 35148.82 37875.12 35674.77 36559.61 33764.08 35577.23 36442.89 33880.72 35248.86 35166.58 36183.16 350
TinyColmap67.30 32764.81 33274.76 31581.92 32056.68 31880.29 30981.49 31560.33 33056.27 38383.22 30624.77 38987.66 30545.52 37069.47 35079.95 371
CHOSEN 280x42066.51 33264.71 33371.90 33781.45 32663.52 22857.98 39868.95 38453.57 37062.59 36376.70 36646.22 31675.29 38355.25 31779.68 24876.88 378
TDRefinement67.49 32464.34 33476.92 29573.47 38261.07 26484.86 23282.98 29959.77 33658.30 37685.13 27326.06 38687.89 30147.92 35960.59 37781.81 363
PM-MVS66.41 33364.14 33573.20 32973.92 37756.45 32078.97 32564.96 39263.88 30164.72 35180.24 34019.84 39683.44 33766.24 22464.52 36879.71 372
dmvs_testset62.63 34564.11 33658.19 37378.55 35924.76 41175.28 35265.94 38967.91 25160.34 36876.01 37053.56 24273.94 38831.79 39267.65 35775.88 380
KD-MVS_2432*160066.22 33563.89 33773.21 32775.47 37353.42 35470.76 37184.35 27364.10 29566.52 33878.52 35634.55 37384.98 32550.40 34050.33 39181.23 365
miper_refine_blended66.22 33563.89 33773.21 32775.47 37353.42 35470.76 37184.35 27364.10 29566.52 33878.52 35634.55 37384.98 32550.40 34050.33 39181.23 365
MDA-MVSNet-bldmvs66.68 33063.66 33975.75 30379.28 35660.56 27273.92 36178.35 34464.43 29050.13 39079.87 34544.02 33383.67 33446.10 36756.86 38083.03 353
ADS-MVSNet266.20 33763.33 34074.82 31479.92 34558.75 28867.55 38375.19 36253.37 37165.25 34875.86 37142.32 34280.53 35341.57 37968.91 35385.18 326
Patchmatch-test64.82 34063.24 34169.57 35179.42 35549.82 37663.49 39569.05 38351.98 37659.95 37180.13 34150.91 27270.98 39140.66 38173.57 32687.90 272
MDA-MVSNet_test_wron65.03 33862.92 34271.37 34175.93 36756.73 31569.09 38074.73 36657.28 35854.03 38677.89 36045.88 31974.39 38649.89 34661.55 37382.99 354
YYNet165.03 33862.91 34371.38 34075.85 36956.60 31969.12 37974.66 36857.28 35854.12 38577.87 36145.85 32074.48 38549.95 34561.52 37483.05 352
ADS-MVSNet64.36 34162.88 34468.78 35779.92 34547.17 38167.55 38371.18 37653.37 37165.25 34875.86 37142.32 34273.99 38741.57 37968.91 35385.18 326
JIA-IIPM66.32 33462.82 34576.82 29677.09 36561.72 25965.34 39175.38 36158.04 35264.51 35262.32 39042.05 34686.51 31151.45 33569.22 35282.21 359
LF4IMVS64.02 34262.19 34669.50 35270.90 39053.29 35776.13 34477.18 35352.65 37358.59 37480.98 33323.55 39276.52 37153.06 32866.66 36078.68 374
test_fmvs363.36 34461.82 34767.98 36062.51 40046.96 38377.37 34174.03 36945.24 38567.50 32478.79 35512.16 40472.98 39072.77 16766.02 36383.99 342
new-patchmatchnet61.73 34761.73 34861.70 36972.74 38724.50 41269.16 37878.03 34561.40 32456.72 38175.53 37438.42 36176.48 37245.95 36857.67 37984.13 340
UnsupCasMVSNet_bld63.70 34361.53 34970.21 35073.69 37951.39 36972.82 36381.89 31055.63 36557.81 37871.80 38238.67 36078.61 35949.26 34952.21 38980.63 368
mvsany_test162.30 34661.26 35065.41 36569.52 39154.86 34266.86 38549.78 40546.65 38368.50 31883.21 30749.15 29566.28 39756.93 30960.77 37575.11 381
PVSNet_057.27 2061.67 34859.27 35168.85 35679.61 35257.44 30768.01 38173.44 37155.93 36458.54 37570.41 38544.58 32977.55 36547.01 36135.91 39771.55 385
test_vis1_rt60.28 34958.42 35265.84 36467.25 39555.60 33470.44 37360.94 39744.33 38759.00 37366.64 38724.91 38868.67 39562.80 25169.48 34973.25 383
MVS-HIRNet59.14 35057.67 35363.57 36781.65 32243.50 39271.73 36665.06 39139.59 39351.43 38857.73 39538.34 36282.58 34239.53 38273.95 32264.62 391
DSMNet-mixed57.77 35256.90 35460.38 37167.70 39435.61 40269.18 37753.97 40332.30 40157.49 37979.88 34440.39 35468.57 39638.78 38572.37 33576.97 377
WB-MVS54.94 35354.72 35555.60 37973.50 38020.90 41374.27 36061.19 39659.16 34250.61 38974.15 37647.19 30775.78 37817.31 40435.07 39870.12 386
pmmvs357.79 35154.26 35668.37 35964.02 39956.72 31675.12 35665.17 39040.20 39152.93 38769.86 38620.36 39575.48 38045.45 37155.25 38672.90 384
SSC-MVS53.88 35653.59 35754.75 38172.87 38619.59 41473.84 36260.53 39857.58 35649.18 39273.45 37946.34 31575.47 38116.20 40732.28 40069.20 387
N_pmnet52.79 35953.26 35851.40 38378.99 3587.68 41769.52 3753.89 41651.63 37757.01 38074.98 37540.83 35165.96 39837.78 38664.67 36780.56 370
FPMVS53.68 35751.64 35959.81 37265.08 39751.03 37069.48 37669.58 38141.46 39040.67 39672.32 38116.46 40070.00 39424.24 40065.42 36558.40 396
mvsany_test353.99 35551.45 36061.61 37055.51 40444.74 39063.52 39445.41 40943.69 38858.11 37776.45 36817.99 39763.76 40054.77 31947.59 39376.34 379
test_f52.09 36050.82 36155.90 37753.82 40742.31 39759.42 39758.31 40136.45 39656.12 38470.96 38412.18 40357.79 40353.51 32556.57 38267.60 388
new_pmnet50.91 36250.29 36252.78 38268.58 39334.94 40463.71 39356.63 40239.73 39244.95 39365.47 38821.93 39458.48 40234.98 38956.62 38164.92 390
APD_test153.31 35849.93 36363.42 36865.68 39650.13 37471.59 36766.90 38734.43 39840.58 39771.56 3838.65 40976.27 37434.64 39055.36 38563.86 392
LCM-MVSNet54.25 35449.68 36467.97 36153.73 40845.28 38766.85 38680.78 32035.96 39739.45 39862.23 3918.70 40878.06 36348.24 35651.20 39080.57 369
EGC-MVSNET52.07 36147.05 36567.14 36283.51 28560.71 26980.50 30567.75 3850.07 4110.43 41275.85 37324.26 39081.54 34728.82 39462.25 37159.16 394
test_vis3_rt49.26 36447.02 36656.00 37654.30 40545.27 38866.76 38748.08 40636.83 39544.38 39453.20 3997.17 41164.07 39956.77 31155.66 38358.65 395
ANet_high50.57 36346.10 36763.99 36648.67 41139.13 40070.99 37080.85 31961.39 32531.18 40057.70 39617.02 39973.65 38931.22 39315.89 40879.18 373
dongtai45.42 36745.38 36845.55 38573.36 38326.85 40967.72 38234.19 41154.15 36949.65 39156.41 39825.43 38762.94 40119.45 40228.09 40246.86 401
testf145.72 36541.96 36957.00 37456.90 40245.32 38566.14 38859.26 39926.19 40230.89 40160.96 3934.14 41270.64 39226.39 39846.73 39555.04 397
APD_test245.72 36541.96 36957.00 37456.90 40245.32 38566.14 38859.26 39926.19 40230.89 40160.96 3934.14 41270.64 39226.39 39846.73 39555.04 397
Gipumacopyleft45.18 36841.86 37155.16 38077.03 36651.52 36732.50 40480.52 32432.46 40027.12 40335.02 4049.52 40775.50 37922.31 40160.21 37838.45 403
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
kuosan39.70 37140.40 37237.58 38864.52 39826.98 40765.62 39033.02 41246.12 38442.79 39548.99 40124.10 39146.56 40912.16 41026.30 40339.20 402
PMVScopyleft37.38 2244.16 36940.28 37355.82 37840.82 41342.54 39665.12 39263.99 39334.43 39824.48 40457.12 3973.92 41476.17 37617.10 40555.52 38448.75 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS240.82 37038.86 37446.69 38453.84 40616.45 41548.61 40149.92 40437.49 39431.67 39960.97 3928.14 41056.42 40428.42 39530.72 40167.19 389
E-PMN31.77 37230.64 37535.15 38952.87 40927.67 40657.09 39947.86 40724.64 40416.40 40933.05 40511.23 40554.90 40514.46 40818.15 40622.87 405
EMVS30.81 37429.65 37634.27 39050.96 41025.95 41056.58 40046.80 40824.01 40515.53 41030.68 40612.47 40254.43 40612.81 40917.05 40722.43 406
test_method31.52 37329.28 37738.23 38727.03 4156.50 41820.94 40662.21 3954.05 40922.35 40752.50 40013.33 40147.58 40727.04 39734.04 39960.62 393
cdsmvs_eth3d_5k19.96 37626.61 3780.00 3960.00 4190.00 4210.00 40789.26 1800.00 4140.00 41588.61 17861.62 1680.00 4150.00 4140.00 4130.00 411
MVEpermissive26.22 2330.37 37525.89 37943.81 38644.55 41235.46 40328.87 40539.07 41018.20 40618.58 40840.18 4032.68 41547.37 40817.07 40623.78 40548.60 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt18.61 37721.40 38010.23 3934.82 41610.11 41634.70 40330.74 4141.48 41023.91 40626.07 40728.42 38413.41 41227.12 39615.35 4097.17 407
wuyk23d16.82 37815.94 38119.46 39258.74 40131.45 40539.22 4023.74 4176.84 4086.04 4112.70 4111.27 41624.29 41110.54 41114.40 4102.63 408
ab-mvs-re7.23 3799.64 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41586.72 2290.00 4190.00 4150.00 4140.00 4130.00 411
test1236.12 3808.11 3830.14 3940.06 4180.09 41971.05 3690.03 4190.04 4130.25 4141.30 4130.05 4170.03 4140.21 4130.01 4120.29 409
testmvs6.04 3818.02 3840.10 3950.08 4170.03 42069.74 3740.04 4180.05 4120.31 4131.68 4120.02 4180.04 4130.24 4120.02 4110.25 410
pcd_1.5k_mvsjas5.26 3827.02 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41463.15 1450.00 4150.00 4140.00 4130.00 411
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS42.58 39439.46 383
FOURS195.00 1072.39 3995.06 193.84 1574.49 11591.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 36
PC_three_145268.21 24892.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
No_MVS89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 36
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 419
eth-test0.00 419
ZD-MVS94.38 2572.22 4492.67 6270.98 18587.75 3294.07 4174.01 3296.70 2784.66 4794.84 43
IU-MVS95.30 271.25 5792.95 5266.81 25892.39 688.94 1696.63 494.85 19
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 45
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
save fliter93.80 4072.35 4290.47 6391.17 12374.31 118
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 25
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 46
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
GSMVS88.96 249
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26988.96 249
sam_mvs50.01 282
ambc75.24 31073.16 38450.51 37363.05 39687.47 23164.28 35377.81 36217.80 39889.73 27357.88 30060.64 37685.49 321
MTGPAbinary92.02 91
test_post178.90 3275.43 41048.81 30185.44 32359.25 285
test_post5.46 40950.36 28084.24 330
patchmatchnet-post74.00 37751.12 27188.60 293
GG-mvs-BLEND75.38 30981.59 32455.80 33179.32 31969.63 38067.19 32873.67 37843.24 33688.90 29050.41 33984.50 18081.45 364
MTMP92.18 3532.83 413
gm-plane-assit81.40 32753.83 35162.72 31480.94 33492.39 19963.40 248
test9_res84.90 4295.70 2692.87 107
TEST993.26 5072.96 2588.75 11491.89 9968.44 24585.00 5993.10 6774.36 2895.41 69
test_893.13 5272.57 3588.68 11991.84 10368.69 24084.87 6393.10 6774.43 2695.16 79
agg_prior282.91 6695.45 3092.70 110
agg_prior92.85 5971.94 5191.78 10684.41 7594.93 91
TestCases79.58 25485.15 25263.62 22379.83 33362.31 31760.32 36986.73 22732.02 37688.96 28850.28 34271.57 34286.15 310
test_prior472.60 3489.01 105
test_prior288.85 11175.41 9584.91 6193.54 5674.28 2983.31 6195.86 20
test_prior86.33 5492.61 6569.59 8892.97 5195.48 6493.91 57
旧先验286.56 19058.10 35187.04 4188.98 28674.07 152
新几何286.29 198
新几何183.42 15193.13 5270.71 7185.48 26257.43 35781.80 11391.98 9063.28 14092.27 20564.60 24092.99 6987.27 287
旧先验191.96 7165.79 18086.37 25093.08 7169.31 7992.74 7288.74 259
无先验87.48 16088.98 19360.00 33494.12 12367.28 21788.97 248
原ACMM286.86 178
原ACMM184.35 11193.01 5768.79 10792.44 7463.96 30081.09 12491.57 10166.06 11895.45 6567.19 21994.82 4588.81 255
test22291.50 7768.26 12584.16 25183.20 29454.63 36879.74 13691.63 9958.97 20091.42 8986.77 300
testdata291.01 25362.37 258
segment_acmp73.08 38
testdata79.97 24490.90 8664.21 21484.71 26859.27 34185.40 5392.91 7362.02 16489.08 28468.95 20291.37 9086.63 304
testdata184.14 25275.71 89
test1286.80 4992.63 6470.70 7291.79 10582.71 10471.67 5396.16 4494.50 5093.54 82
plane_prior790.08 10368.51 120
plane_prior689.84 11368.70 11560.42 193
plane_prior592.44 7495.38 7178.71 10786.32 15791.33 157
plane_prior491.00 122
plane_prior368.60 11878.44 3178.92 148
plane_prior291.25 5079.12 23
plane_prior189.90 111
plane_prior68.71 11390.38 6777.62 3986.16 161
n20.00 420
nn0.00 420
door-mid69.98 379
lessismore_v078.97 26381.01 33457.15 31065.99 38861.16 36682.82 31539.12 35891.34 24259.67 28146.92 39488.43 265
LGP-MVS_train84.50 10389.23 14068.76 10991.94 9775.37 9676.64 20191.51 10254.29 23594.91 9278.44 10983.78 19189.83 221
test1192.23 85
door69.44 382
HQP5-MVS66.98 157
HQP-NCC89.33 13389.17 9876.41 7477.23 187
ACMP_Plane89.33 13389.17 9876.41 7477.23 187
BP-MVS77.47 119
HQP4-MVS77.24 18695.11 8391.03 167
HQP3-MVS92.19 8885.99 165
HQP2-MVS60.17 196
NP-MVS89.62 11768.32 12390.24 136
MDTV_nov1_ep13_2view37.79 40175.16 35455.10 36666.53 33749.34 29253.98 32287.94 271
ACMMP++_ref81.95 223
ACMMP++81.25 228
Test By Simon64.33 132
ITE_SJBPF78.22 27681.77 32160.57 27183.30 29069.25 22567.54 32387.20 21836.33 36987.28 30754.34 32174.62 31786.80 299
DeepMVS_CXcopyleft27.40 39140.17 41426.90 40824.59 41517.44 40723.95 40548.61 4029.77 40626.48 41018.06 40324.47 40428.83 404