This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 5977.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8592.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 52
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5894.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVScopyleft89.15 689.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 8991.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 31
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SMA-MVScopyleft89.08 789.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10792.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft89.02 889.15 888.63 595.01 976.03 192.38 2792.85 5480.26 1187.78 2994.27 3275.89 1996.81 2387.45 3296.44 993.05 96
CNVR-MVS88.93 989.13 988.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 37
SteuartSystems-ACMMP88.72 1088.86 1088.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS88.46 1188.74 1187.64 3592.78 6171.95 5092.40 2494.74 275.71 8789.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
DeepPCF-MVS80.84 188.10 1288.56 1286.73 5092.24 6869.03 9989.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 27
SD-MVS88.06 1488.50 1386.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13687.63 3094.27 5793.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
9.1488.26 1492.84 6091.52 4694.75 173.93 12588.57 2294.67 1975.57 2295.79 5386.77 3595.76 23
TSAR-MVS + MP.88.02 1788.11 1587.72 3093.68 4372.13 4691.41 4792.35 7474.62 11188.90 2093.85 5275.75 2096.00 4987.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MVS_030488.08 1388.08 1688.08 1489.67 11372.04 4892.26 3389.26 17384.19 285.01 5595.18 1369.93 6997.20 1491.63 295.60 2994.99 9
ACMMP_NAP88.05 1688.08 1687.94 1993.70 4173.05 2290.86 5693.59 2376.27 7988.14 2495.09 1571.06 5796.67 2987.67 2996.37 1494.09 46
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5292.83 5581.50 585.79 4893.47 6073.02 3997.00 1884.90 4294.94 3994.10 45
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5394.32 3171.76 4896.93 1985.53 3995.79 2294.32 38
MP-MVS-pluss87.67 2087.72 2087.54 3693.64 4472.04 4889.80 7993.50 2575.17 10086.34 4495.29 1270.86 5996.00 4988.78 1996.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 6477.57 4183.84 8294.40 3072.24 4396.28 4085.65 3895.30 3593.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft87.44 2287.52 2287.19 4294.24 3272.39 3991.86 4192.83 5573.01 14988.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 105
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS87.58 2187.47 2387.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 5994.44 2870.78 6096.61 3284.53 4994.89 4193.66 65
GST-MVS87.42 2487.26 2487.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6393.99 4870.67 6296.82 2284.18 5695.01 3793.90 55
MCST-MVS87.37 2687.25 2587.73 2894.53 1772.46 3889.82 7793.82 1673.07 14784.86 6292.89 7476.22 1796.33 3884.89 4495.13 3694.40 34
ACMMPR87.44 2287.23 2688.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6694.52 2168.81 8496.65 3084.53 4994.90 4094.00 50
region2R87.42 2487.20 2788.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7094.52 2169.09 7896.70 2784.37 5194.83 4494.03 49
MTAPA87.23 2787.00 2887.90 2294.18 3574.25 586.58 18792.02 8579.45 1985.88 4694.80 1768.07 8996.21 4286.69 3695.34 3393.23 87
HPM-MVScopyleft87.11 2986.98 2987.50 3893.88 3972.16 4592.19 3493.33 3176.07 8283.81 8393.95 5169.77 7296.01 4885.15 4094.66 4694.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS86.69 3486.95 3085.90 6390.76 9067.57 14092.83 1793.30 3279.67 1784.57 6992.27 8671.47 5395.02 8684.24 5493.46 6395.13 6
CP-MVS87.11 2986.92 3187.68 3494.20 3473.86 793.98 392.82 5876.62 7083.68 8494.46 2567.93 9095.95 5284.20 5594.39 5393.23 87
XVS87.18 2886.91 3288.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8594.17 3667.45 9596.60 3383.06 6394.50 5094.07 47
DeepC-MVS79.81 287.08 3186.88 3387.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 9694.23 3572.13 4597.09 1684.83 4595.37 3293.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS86.73 3386.67 3486.91 4694.11 3772.11 4792.37 2892.56 6774.50 11286.84 4294.65 2067.31 9795.77 5484.80 4692.85 6792.84 103
DeepC-MVS_fast79.65 386.91 3286.62 3587.76 2793.52 4672.37 4191.26 4893.04 3876.62 7084.22 7493.36 6371.44 5496.76 2580.82 8595.33 3494.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS-test86.29 4186.48 3685.71 6591.02 8367.21 15292.36 2993.78 1878.97 2883.51 8891.20 11170.65 6395.15 7781.96 7694.89 4194.77 22
EC-MVSNet86.01 4286.38 3784.91 8889.31 13066.27 16692.32 3093.63 2179.37 2084.17 7691.88 9369.04 8295.43 6583.93 5793.77 6193.01 99
mPP-MVS86.67 3686.32 3887.72 3094.41 2273.55 1392.74 2092.22 8076.87 6282.81 9794.25 3466.44 10596.24 4182.88 6794.28 5693.38 81
PGM-MVS86.68 3586.27 3987.90 2294.22 3373.38 1890.22 7093.04 3875.53 9183.86 8194.42 2967.87 9296.64 3182.70 7294.57 4993.66 65
train_agg86.43 3886.20 4087.13 4493.26 5072.96 2588.75 11591.89 9368.69 23385.00 5793.10 6774.43 2695.41 6784.97 4195.71 2593.02 98
CSCG86.41 4086.19 4187.07 4592.91 5872.48 3790.81 5793.56 2473.95 12383.16 9191.07 11675.94 1895.19 7579.94 9494.38 5493.55 76
PHI-MVS86.43 3886.17 4287.24 4190.88 8770.96 6592.27 3294.07 972.45 15285.22 5491.90 9269.47 7496.42 3783.28 6295.94 1994.35 36
dcpmvs_285.63 5186.15 4384.06 12591.71 7564.94 19786.47 19091.87 9573.63 13186.60 4393.02 7276.57 1591.87 21683.36 6092.15 7595.35 3
CANet86.45 3786.10 4487.51 3790.09 10170.94 6789.70 8392.59 6681.78 481.32 11291.43 10670.34 6497.23 1384.26 5293.36 6494.37 35
casdiffmvs_mvgpermissive85.99 4386.09 4585.70 6687.65 19367.22 15188.69 11993.04 3879.64 1885.33 5292.54 8373.30 3594.50 10783.49 5991.14 8995.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf_n85.92 4586.04 4685.57 6885.03 24769.51 9089.62 8690.58 13173.42 13887.75 3194.02 4472.85 4093.24 16090.37 390.75 9393.96 51
APD-MVS_3200maxsize85.97 4485.88 4786.22 5792.69 6369.53 8991.93 3892.99 4573.54 13585.94 4594.51 2465.80 11595.61 5783.04 6592.51 7193.53 78
canonicalmvs85.91 4685.87 4886.04 6089.84 11169.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13181.50 7988.80 12094.77 22
MSLP-MVS++85.43 5585.76 4984.45 10391.93 7270.24 7690.71 5892.86 5377.46 4784.22 7492.81 7867.16 9992.94 18080.36 9094.35 5590.16 194
test_fmvsmconf0.1_n85.61 5285.65 5085.50 6982.99 29269.39 9689.65 8490.29 14473.31 14187.77 3094.15 3871.72 4993.23 16190.31 490.67 9593.89 56
SR-MVS-dyc-post85.77 4885.61 5186.23 5693.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2665.00 12395.56 5882.75 6891.87 7992.50 114
RE-MVS-def85.48 5293.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2663.87 12982.75 6891.87 7992.50 114
ACMMPcopyleft85.89 4785.39 5387.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12193.82 5364.33 12596.29 3982.67 7390.69 9493.23 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsm_n_192085.29 5885.34 5485.13 7986.12 22669.93 8388.65 12190.78 12769.97 20188.27 2393.98 4971.39 5591.54 22888.49 2390.45 9793.91 53
TSAR-MVS + GP.85.71 5085.33 5586.84 4791.34 7872.50 3689.07 10487.28 22876.41 7285.80 4790.22 13474.15 3195.37 7281.82 7791.88 7892.65 109
alignmvs85.48 5385.32 5685.96 6289.51 11969.47 9289.74 8192.47 6876.17 8087.73 3391.46 10570.32 6593.78 13681.51 7888.95 11794.63 26
DELS-MVS85.41 5685.30 5785.77 6488.49 16167.93 13285.52 21993.44 2778.70 2983.63 8789.03 16474.57 2495.71 5680.26 9294.04 5993.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CDPH-MVS85.76 4985.29 5887.17 4393.49 4771.08 6188.58 12392.42 7268.32 24084.61 6793.48 5872.32 4296.15 4579.00 9895.43 3194.28 40
casdiffmvspermissive85.11 6085.14 5985.01 8287.20 20965.77 17987.75 15392.83 5577.84 3784.36 7392.38 8572.15 4493.93 13081.27 8190.48 9695.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline84.93 6284.98 6084.80 9287.30 20765.39 18887.30 16592.88 5277.62 3984.04 7992.26 8771.81 4793.96 12481.31 8090.30 9995.03 8
UA-Net85.08 6184.96 6185.45 7092.07 7068.07 12989.78 8090.86 12682.48 384.60 6893.20 6669.35 7595.22 7471.39 17490.88 9293.07 95
HPM-MVS_fast85.35 5784.95 6286.57 5393.69 4270.58 7592.15 3691.62 10373.89 12682.67 9994.09 4062.60 14495.54 6080.93 8392.93 6693.57 74
MVS_111021_HR85.14 5984.75 6386.32 5591.65 7672.70 3085.98 20290.33 14176.11 8182.08 10291.61 10071.36 5694.17 12081.02 8292.58 7092.08 131
ETV-MVS84.90 6484.67 6485.59 6789.39 12468.66 11688.74 11792.64 6579.97 1584.10 7785.71 25469.32 7695.38 6980.82 8591.37 8692.72 104
fmvsm_l_conf0.5_n84.47 6684.54 6584.27 11385.42 23668.81 10588.49 12587.26 22968.08 24288.03 2793.49 5772.04 4691.77 21888.90 1789.14 11692.24 125
patch_mono-283.65 7584.54 6580.99 22090.06 10665.83 17584.21 24788.74 19871.60 16785.01 5592.44 8474.51 2583.50 32882.15 7592.15 7593.64 71
test_fmvsmconf0.01_n84.73 6584.52 6785.34 7280.25 33269.03 9989.47 8889.65 16173.24 14486.98 4094.27 3266.62 10193.23 16190.26 589.95 10793.78 62
3Dnovator+77.84 485.48 5384.47 6888.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19593.37 6260.40 18896.75 2677.20 11793.73 6295.29 5
DPM-MVS84.93 6284.29 6986.84 4790.20 9973.04 2387.12 16993.04 3869.80 20582.85 9591.22 11073.06 3896.02 4776.72 12694.63 4791.46 148
fmvsm_l_conf0.5_n_a84.13 6884.16 7084.06 12585.38 23768.40 12088.34 13286.85 23767.48 24987.48 3493.40 6170.89 5891.61 22288.38 2589.22 11592.16 129
test_fmvsmvis_n_192084.02 6983.87 7184.49 10184.12 26369.37 9788.15 14087.96 21270.01 19983.95 8093.23 6568.80 8591.51 23188.61 2089.96 10692.57 110
EI-MVSNet-Vis-set84.19 6783.81 7285.31 7388.18 17167.85 13387.66 15589.73 15980.05 1482.95 9289.59 14870.74 6194.82 9580.66 8984.72 16993.28 86
fmvsm_s_conf0.5_n83.80 7283.71 7384.07 12386.69 21967.31 14789.46 8983.07 29271.09 17786.96 4193.70 5569.02 8391.47 23388.79 1884.62 17193.44 80
nrg03083.88 7083.53 7484.96 8486.77 21769.28 9890.46 6592.67 6174.79 10682.95 9291.33 10872.70 4193.09 17480.79 8779.28 24692.50 114
MG-MVS83.41 8283.45 7583.28 15292.74 6262.28 24888.17 13889.50 16475.22 9681.49 11192.74 8266.75 10095.11 8072.85 16291.58 8392.45 117
fmvsm_s_conf0.5_n_a83.63 7783.41 7684.28 11186.14 22568.12 12789.43 9082.87 29670.27 19587.27 3793.80 5469.09 7891.58 22488.21 2683.65 18893.14 93
fmvsm_s_conf0.1_n83.56 7983.38 7784.10 11884.86 24967.28 14889.40 9383.01 29370.67 18587.08 3893.96 5068.38 8791.45 23488.56 2284.50 17293.56 75
EI-MVSNet-UG-set83.81 7183.38 7785.09 8087.87 18267.53 14187.44 16189.66 16079.74 1682.23 10189.41 15770.24 6694.74 9879.95 9383.92 18192.99 100
CPTT-MVS83.73 7383.33 7984.92 8793.28 4970.86 6992.09 3790.38 13768.75 23279.57 13292.83 7660.60 18493.04 17880.92 8491.56 8490.86 167
HQP_MVS83.64 7683.14 8085.14 7790.08 10268.71 11291.25 5092.44 6979.12 2378.92 14191.00 12060.42 18695.38 6978.71 10286.32 15191.33 149
Effi-MVS+83.62 7883.08 8185.24 7588.38 16667.45 14288.89 10989.15 17975.50 9282.27 10088.28 18669.61 7394.45 10977.81 11187.84 13093.84 59
MVS_Test83.15 8783.06 8283.41 14986.86 21363.21 23486.11 20092.00 8774.31 11682.87 9489.44 15670.03 6793.21 16377.39 11688.50 12693.81 60
EPP-MVSNet83.40 8383.02 8384.57 9690.13 10064.47 20792.32 3090.73 12874.45 11579.35 13591.10 11469.05 8195.12 7872.78 16387.22 13894.13 44
fmvsm_s_conf0.1_n_a83.32 8582.99 8484.28 11183.79 27068.07 12989.34 9582.85 29769.80 20587.36 3694.06 4268.34 8891.56 22687.95 2783.46 19493.21 90
OPM-MVS83.50 8082.95 8585.14 7788.79 15170.95 6689.13 10391.52 10677.55 4480.96 11991.75 9560.71 17994.50 10779.67 9586.51 14989.97 210
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EPNet83.72 7482.92 8686.14 5984.22 26169.48 9191.05 5585.27 25781.30 676.83 19091.65 9766.09 11095.56 5876.00 13293.85 6093.38 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS-MVSNet83.15 8782.81 8784.18 11689.94 10963.30 23291.59 4388.46 20479.04 2579.49 13392.16 8865.10 12094.28 11267.71 20991.86 8194.95 10
EIA-MVS83.31 8682.80 8884.82 9089.59 11565.59 18188.21 13692.68 6074.66 10978.96 13986.42 24169.06 8095.26 7375.54 13890.09 10393.62 72
Vis-MVSNetpermissive83.46 8182.80 8885.43 7190.25 9868.74 11090.30 6990.13 14876.33 7880.87 12092.89 7461.00 17694.20 11872.45 16890.97 9093.35 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FIs82.07 10282.42 9081.04 21988.80 15058.34 28888.26 13593.49 2676.93 6078.47 15391.04 11769.92 7092.34 19969.87 19084.97 16692.44 118
VNet82.21 9982.41 9181.62 20090.82 8860.93 26284.47 23889.78 15676.36 7784.07 7891.88 9364.71 12490.26 25870.68 18088.89 11893.66 65
PAPM_NR83.02 9182.41 9184.82 9092.47 6766.37 16487.93 14891.80 9873.82 12777.32 17990.66 12567.90 9194.90 9170.37 18389.48 11293.19 91
VDD-MVS83.01 9282.36 9384.96 8491.02 8366.40 16388.91 10888.11 20777.57 4184.39 7293.29 6452.19 24793.91 13177.05 11988.70 12294.57 29
3Dnovator76.31 583.38 8482.31 9486.59 5287.94 18072.94 2890.64 5992.14 8477.21 5275.47 22092.83 7658.56 19594.72 9973.24 15992.71 6992.13 130
h-mvs3383.15 8782.19 9586.02 6190.56 9270.85 7088.15 14089.16 17876.02 8384.67 6491.39 10761.54 16295.50 6182.71 7075.48 29391.72 139
MVS_111021_LR82.61 9682.11 9684.11 11788.82 14871.58 5385.15 22286.16 24774.69 10880.47 12391.04 11762.29 15190.55 25680.33 9190.08 10490.20 193
DP-MVS Recon83.11 9082.09 9786.15 5894.44 1970.92 6888.79 11392.20 8170.53 18979.17 13791.03 11964.12 12796.03 4668.39 20690.14 10291.50 145
MVSFormer82.85 9382.05 9885.24 7587.35 20170.21 7790.50 6290.38 13768.55 23581.32 11289.47 15161.68 15993.46 15378.98 9990.26 10092.05 132
FC-MVSNet-test81.52 11582.02 9980.03 24088.42 16555.97 32587.95 14693.42 2977.10 5677.38 17790.98 12269.96 6891.79 21768.46 20584.50 17292.33 119
HQP-MVS82.61 9682.02 9984.37 10589.33 12766.98 15589.17 9892.19 8276.41 7277.23 18290.23 13360.17 18995.11 8077.47 11485.99 15891.03 161
OMC-MVS82.69 9481.97 10184.85 8988.75 15367.42 14387.98 14490.87 12574.92 10379.72 13091.65 9762.19 15493.96 12475.26 14086.42 15093.16 92
diffmvspermissive82.10 10081.88 10282.76 18283.00 29063.78 22083.68 25489.76 15772.94 15082.02 10389.85 14065.96 11490.79 25282.38 7487.30 13793.71 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu82.62 9581.83 10384.96 8490.80 8969.76 8788.74 11791.70 10269.39 21378.96 13988.46 18165.47 11794.87 9474.42 14588.57 12390.24 192
CLD-MVS82.31 9881.65 10484.29 11088.47 16267.73 13685.81 21092.35 7475.78 8678.33 15686.58 23664.01 12894.35 11076.05 13187.48 13590.79 168
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_NR-MVSNet81.88 10581.54 10582.92 17188.46 16363.46 22887.13 16892.37 7380.19 1278.38 15489.14 16071.66 5293.05 17670.05 18676.46 27692.25 123
PS-MVSNAJss82.07 10281.31 10684.34 10886.51 22167.27 14989.27 9691.51 10771.75 16179.37 13490.22 13463.15 13894.27 11377.69 11282.36 20891.49 146
LPG-MVS_test82.08 10181.27 10784.50 9989.23 13468.76 10890.22 7091.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18289.83 215
LFMVS81.82 10781.23 10883.57 14491.89 7363.43 23089.84 7681.85 30777.04 5883.21 8993.10 6752.26 24693.43 15571.98 16989.95 10793.85 57
API-MVS81.99 10481.23 10884.26 11490.94 8570.18 8291.10 5389.32 16971.51 16978.66 14788.28 18665.26 11895.10 8364.74 23691.23 8887.51 273
UniMVSNet (Re)81.60 11481.11 11083.09 16288.38 16664.41 20987.60 15693.02 4278.42 3278.56 15088.16 19069.78 7193.26 15969.58 19376.49 27591.60 140
xiu_mvs_v2_base81.69 11081.05 11183.60 14289.15 13768.03 13184.46 24090.02 15070.67 18581.30 11586.53 23963.17 13794.19 11975.60 13788.54 12488.57 255
PS-MVSNAJ81.69 11081.02 11283.70 14189.51 11968.21 12684.28 24690.09 14970.79 18281.26 11685.62 25963.15 13894.29 11175.62 13688.87 11988.59 254
GeoE81.71 10981.01 11383.80 13989.51 11964.45 20888.97 10688.73 19971.27 17378.63 14889.76 14266.32 10793.20 16669.89 18986.02 15793.74 63
hse-mvs281.72 10880.94 11484.07 12388.72 15467.68 13885.87 20687.26 22976.02 8384.67 6488.22 18961.54 16293.48 15182.71 7073.44 32191.06 159
PAPR81.66 11380.89 11583.99 13390.27 9764.00 21586.76 18391.77 10168.84 23177.13 18889.50 14967.63 9394.88 9367.55 21188.52 12593.09 94
mvsmamba81.69 11080.74 11684.56 9787.45 20066.72 15991.26 4885.89 25174.66 10978.23 15990.56 12754.33 22794.91 8880.73 8883.54 19292.04 134
MAR-MVS81.84 10680.70 11785.27 7491.32 7971.53 5489.82 7790.92 12269.77 20778.50 15186.21 24562.36 15094.52 10665.36 23092.05 7789.77 218
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VDDNet81.52 11580.67 11884.05 12890.44 9564.13 21489.73 8285.91 25071.11 17683.18 9093.48 5850.54 27193.49 15073.40 15688.25 12894.54 30
ACMP74.13 681.51 11780.57 11984.36 10689.42 12268.69 11589.97 7491.50 11074.46 11475.04 23990.41 13053.82 23394.54 10477.56 11382.91 20089.86 214
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
VPA-MVSNet80.60 13780.55 12080.76 22688.07 17660.80 26586.86 17791.58 10575.67 9080.24 12589.45 15563.34 13290.25 25970.51 18279.22 24791.23 153
DU-MVS81.12 12280.52 12182.90 17287.80 18663.46 22887.02 17291.87 9579.01 2678.38 15489.07 16265.02 12193.05 17670.05 18676.46 27692.20 126
test_yl81.17 12080.47 12283.24 15589.13 13863.62 22186.21 19789.95 15372.43 15581.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
DCV-MVSNet81.17 12080.47 12283.24 15589.13 13863.62 22186.21 19789.95 15372.43 15581.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
PVSNet_Blended80.98 12380.34 12482.90 17288.85 14565.40 18684.43 24292.00 8767.62 24678.11 16385.05 27366.02 11294.27 11371.52 17189.50 11189.01 238
TranMVSNet+NR-MVSNet80.84 12680.31 12582.42 18787.85 18362.33 24687.74 15491.33 11280.55 977.99 16789.86 13965.23 11992.62 18667.05 21875.24 30392.30 121
jason81.39 11880.29 12684.70 9486.63 22069.90 8585.95 20386.77 23863.24 29581.07 11889.47 15161.08 17592.15 20578.33 10790.07 10592.05 132
jason: jason.
lupinMVS81.39 11880.27 12784.76 9387.35 20170.21 7785.55 21586.41 24262.85 30281.32 11288.61 17661.68 15992.24 20378.41 10690.26 10091.83 136
SDMVSNet80.38 14280.18 12880.99 22089.03 14364.94 19780.45 29989.40 16675.19 9876.61 19889.98 13760.61 18387.69 29876.83 12383.55 19090.33 188
PVSNet_BlendedMVS80.60 13780.02 12982.36 18988.85 14565.40 18686.16 19992.00 8769.34 21578.11 16386.09 24966.02 11294.27 11371.52 17182.06 21187.39 275
EI-MVSNet80.52 14079.98 13082.12 19084.28 25963.19 23686.41 19188.95 18974.18 12078.69 14587.54 20666.62 10192.43 19372.57 16680.57 23090.74 172
Fast-Effi-MVS+80.81 12879.92 13183.47 14588.85 14564.51 20485.53 21789.39 16770.79 18278.49 15285.06 27267.54 9493.58 14467.03 21986.58 14792.32 120
FA-MVS(test-final)80.96 12479.91 13284.10 11888.30 16965.01 19584.55 23790.01 15173.25 14379.61 13187.57 20358.35 19794.72 9971.29 17586.25 15392.56 111
CANet_DTU80.61 13679.87 13382.83 17485.60 23363.17 23787.36 16288.65 20076.37 7675.88 21488.44 18253.51 23693.07 17573.30 15789.74 11092.25 123
ACMM73.20 880.78 13379.84 13483.58 14389.31 13068.37 12189.99 7391.60 10470.28 19477.25 18089.66 14453.37 23893.53 14974.24 14882.85 20188.85 246
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-OURS-SEG-HR80.81 12879.76 13583.96 13585.60 23368.78 10783.54 26090.50 13470.66 18776.71 19491.66 9660.69 18091.26 23976.94 12081.58 21791.83 136
xiu_mvs_v1_base_debu80.80 13079.72 13684.03 13087.35 20170.19 7985.56 21288.77 19469.06 22581.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 233
xiu_mvs_v1_base80.80 13079.72 13684.03 13087.35 20170.19 7985.56 21288.77 19469.06 22581.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 233
xiu_mvs_v1_base_debi80.80 13079.72 13684.03 13087.35 20170.19 7985.56 21288.77 19469.06 22581.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 233
UGNet80.83 12779.59 13984.54 9888.04 17768.09 12889.42 9188.16 20676.95 5976.22 20789.46 15349.30 28693.94 12768.48 20490.31 9891.60 140
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
114514_t80.68 13479.51 14084.20 11594.09 3867.27 14989.64 8591.11 11958.75 33974.08 25190.72 12458.10 19895.04 8569.70 19189.42 11390.30 190
QAPM80.88 12579.50 14185.03 8188.01 17968.97 10391.59 4392.00 8766.63 26075.15 23592.16 8857.70 20295.45 6363.52 24088.76 12190.66 174
AdaColmapbinary80.58 13979.42 14284.06 12593.09 5468.91 10489.36 9488.97 18869.27 21675.70 21789.69 14357.20 20995.77 5463.06 24588.41 12787.50 274
NR-MVSNet80.23 14779.38 14382.78 18087.80 18663.34 23186.31 19491.09 12079.01 2672.17 27189.07 16267.20 9892.81 18566.08 22575.65 28992.20 126
IterMVS-LS80.06 15079.38 14382.11 19185.89 22863.20 23586.79 18089.34 16874.19 11975.45 22386.72 22666.62 10192.39 19572.58 16576.86 27090.75 171
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
iter_conf_final80.63 13579.35 14584.46 10289.36 12667.70 13789.85 7584.49 26773.19 14578.30 15788.94 16545.98 31294.56 10279.59 9684.48 17591.11 156
test_djsdf80.30 14679.32 14683.27 15383.98 26765.37 18990.50 6290.38 13768.55 23576.19 20888.70 17256.44 21393.46 15378.98 9980.14 23690.97 164
v2v48280.23 14779.29 14783.05 16583.62 27364.14 21387.04 17189.97 15273.61 13278.18 16287.22 21461.10 17493.82 13476.11 12976.78 27391.18 154
ECVR-MVScopyleft79.61 15779.26 14880.67 22890.08 10254.69 33787.89 15077.44 34574.88 10480.27 12492.79 7948.96 29392.45 19268.55 20392.50 7294.86 17
XVG-OURS80.41 14179.23 14983.97 13485.64 23269.02 10183.03 27190.39 13671.09 17777.63 17391.49 10454.62 22691.35 23775.71 13483.47 19391.54 142
RRT_MVS80.35 14579.22 15083.74 14087.63 19465.46 18591.08 5488.92 19173.82 12776.44 20390.03 13649.05 29194.25 11776.84 12179.20 24891.51 143
WR-MVS79.49 16179.22 15080.27 23688.79 15158.35 28785.06 22488.61 20278.56 3077.65 17288.34 18463.81 13190.66 25564.98 23477.22 26591.80 138
test111179.43 16479.18 15280.15 23889.99 10753.31 35087.33 16477.05 34875.04 10180.23 12692.77 8148.97 29292.33 20068.87 20092.40 7494.81 20
mvs_anonymous79.42 16579.11 15380.34 23484.45 25857.97 29482.59 27387.62 22167.40 25076.17 21188.56 17968.47 8689.59 26870.65 18186.05 15693.47 79
v114480.03 15179.03 15483.01 16783.78 27164.51 20487.11 17090.57 13371.96 16078.08 16586.20 24661.41 16693.94 12774.93 14177.23 26490.60 177
v879.97 15479.02 15582.80 17784.09 26464.50 20687.96 14590.29 14474.13 12275.24 23386.81 22362.88 14393.89 13374.39 14675.40 29890.00 206
ab-mvs79.51 16078.97 15681.14 21688.46 16360.91 26383.84 25289.24 17570.36 19179.03 13888.87 16963.23 13690.21 26065.12 23282.57 20692.28 122
Anonymous2024052980.19 14978.89 15784.10 11890.60 9164.75 20188.95 10790.90 12365.97 26880.59 12291.17 11349.97 27693.73 14269.16 19782.70 20593.81 60
PCF-MVS73.52 780.38 14278.84 15885.01 8287.71 19068.99 10283.65 25591.46 11163.00 29977.77 17190.28 13166.10 10995.09 8461.40 26388.22 12990.94 165
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
iter_conf0580.00 15378.70 15983.91 13787.84 18465.83 17588.84 11284.92 26271.61 16678.70 14488.94 16543.88 32794.56 10279.28 9784.28 17891.33 149
v1079.74 15678.67 16082.97 17084.06 26564.95 19687.88 15190.62 13073.11 14675.11 23686.56 23761.46 16594.05 12373.68 15175.55 29189.90 212
VPNet78.69 18478.66 16178.76 26188.31 16855.72 32784.45 24186.63 24076.79 6478.26 15890.55 12859.30 19189.70 26766.63 22077.05 26790.88 166
BH-untuned79.47 16278.60 16282.05 19289.19 13665.91 17386.07 20188.52 20372.18 15775.42 22487.69 20061.15 17393.54 14860.38 27086.83 14486.70 294
Effi-MVS+-dtu80.03 15178.57 16384.42 10485.13 24468.74 11088.77 11488.10 20874.99 10274.97 24083.49 29757.27 20893.36 15673.53 15380.88 22491.18 154
WR-MVS_H78.51 18878.49 16478.56 26588.02 17856.38 32088.43 12692.67 6177.14 5473.89 25287.55 20566.25 10889.24 27458.92 28373.55 31990.06 204
Vis-MVSNet (Re-imp)78.36 19178.45 16578.07 27488.64 15751.78 35886.70 18479.63 32974.14 12175.11 23690.83 12361.29 17089.75 26558.10 29291.60 8292.69 107
BH-RMVSNet79.61 15778.44 16683.14 16089.38 12565.93 17284.95 22787.15 23273.56 13478.19 16189.79 14156.67 21293.36 15659.53 27786.74 14590.13 196
v119279.59 15978.43 16783.07 16483.55 27564.52 20386.93 17590.58 13170.83 18177.78 17085.90 25059.15 19293.94 12773.96 15077.19 26690.76 170
v14419279.47 16278.37 16882.78 18083.35 27863.96 21686.96 17390.36 14069.99 20077.50 17485.67 25760.66 18193.77 13874.27 14776.58 27490.62 175
CP-MVSNet78.22 19378.34 16977.84 27687.83 18554.54 33987.94 14791.17 11677.65 3873.48 25688.49 18062.24 15388.43 28962.19 25474.07 31290.55 179
Baseline_NR-MVSNet78.15 19778.33 17077.61 28185.79 22956.21 32386.78 18185.76 25373.60 13377.93 16887.57 20365.02 12188.99 27867.14 21775.33 30087.63 269
OpenMVScopyleft72.83 1079.77 15578.33 17084.09 12185.17 24069.91 8490.57 6090.97 12166.70 25472.17 27191.91 9154.70 22493.96 12461.81 26090.95 9188.41 258
UniMVSNet_ETH3D79.10 17478.24 17281.70 19986.85 21460.24 27487.28 16688.79 19374.25 11876.84 18990.53 12949.48 28291.56 22667.98 20782.15 20993.29 85
V4279.38 16878.24 17282.83 17481.10 32465.50 18385.55 21589.82 15571.57 16878.21 16086.12 24860.66 18193.18 16975.64 13575.46 29589.81 217
PS-CasMVS78.01 20278.09 17477.77 27887.71 19054.39 34188.02 14391.22 11377.50 4673.26 25888.64 17560.73 17888.41 29061.88 25873.88 31690.53 180
v192192079.22 17078.03 17582.80 17783.30 28063.94 21786.80 17990.33 14169.91 20377.48 17585.53 26058.44 19693.75 14073.60 15276.85 27190.71 173
jajsoiax79.29 16977.96 17683.27 15384.68 25266.57 16289.25 9790.16 14769.20 22075.46 22289.49 15045.75 31793.13 17276.84 12180.80 22690.11 198
TAPA-MVS73.13 979.15 17277.94 17782.79 17989.59 11562.99 24188.16 13991.51 10765.77 26977.14 18791.09 11560.91 17793.21 16350.26 33887.05 14092.17 128
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tttt051779.40 16677.91 17883.90 13888.10 17463.84 21888.37 13184.05 27571.45 17076.78 19289.12 16149.93 27994.89 9270.18 18583.18 19892.96 101
c3_l78.75 18177.91 17881.26 21182.89 29461.56 25784.09 25089.13 18169.97 20175.56 21884.29 28466.36 10692.09 20773.47 15575.48 29390.12 197
MVSTER79.01 17677.88 18082.38 18883.07 28764.80 20084.08 25188.95 18969.01 22878.69 14587.17 21754.70 22492.43 19374.69 14280.57 23089.89 213
tt080578.73 18277.83 18181.43 20585.17 24060.30 27389.41 9290.90 12371.21 17477.17 18688.73 17146.38 30693.21 16372.57 16678.96 24990.79 168
X-MVStestdata80.37 14477.83 18188.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8512.47 39867.45 9596.60 3383.06 6394.50 5094.07 47
v14878.72 18377.80 18381.47 20482.73 29761.96 25286.30 19588.08 20973.26 14276.18 20985.47 26262.46 14892.36 19771.92 17073.82 31790.09 200
v124078.99 17777.78 18482.64 18383.21 28263.54 22586.62 18690.30 14369.74 21077.33 17885.68 25657.04 21093.76 13973.13 16076.92 26890.62 175
mvs_tets79.13 17377.77 18583.22 15784.70 25166.37 16489.17 9890.19 14669.38 21475.40 22589.46 15344.17 32593.15 17076.78 12480.70 22890.14 195
miper_ehance_all_eth78.59 18777.76 18681.08 21882.66 29961.56 25783.65 25589.15 17968.87 23075.55 21983.79 29266.49 10492.03 20873.25 15876.39 27889.64 221
thisisatest053079.40 16677.76 18684.31 10987.69 19265.10 19487.36 16284.26 27370.04 19877.42 17688.26 18849.94 27794.79 9770.20 18484.70 17093.03 97
CDS-MVSNet79.07 17577.70 18883.17 15987.60 19568.23 12584.40 24486.20 24667.49 24876.36 20486.54 23861.54 16290.79 25261.86 25987.33 13690.49 182
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Anonymous2023121178.97 17877.69 18982.81 17690.54 9364.29 21190.11 7291.51 10765.01 27876.16 21288.13 19550.56 27093.03 17969.68 19277.56 26391.11 156
PEN-MVS77.73 20877.69 18977.84 27687.07 21253.91 34487.91 14991.18 11577.56 4373.14 26088.82 17061.23 17189.17 27559.95 27372.37 32790.43 184
AUN-MVS79.21 17177.60 19184.05 12888.71 15567.61 13985.84 20887.26 22969.08 22477.23 18288.14 19453.20 24093.47 15275.50 13973.45 32091.06 159
v7n78.97 17877.58 19283.14 16083.45 27765.51 18288.32 13391.21 11473.69 13072.41 26886.32 24457.93 19993.81 13569.18 19675.65 28990.11 198
TAMVS78.89 18077.51 19383.03 16687.80 18667.79 13584.72 23185.05 26067.63 24576.75 19387.70 19962.25 15290.82 25158.53 28887.13 13990.49 182
sd_testset77.70 21177.40 19478.60 26489.03 14360.02 27679.00 31685.83 25275.19 9876.61 19889.98 13754.81 21985.46 31462.63 25183.55 19090.33 188
GBi-Net78.40 18977.40 19481.40 20787.60 19563.01 23888.39 12889.28 17071.63 16375.34 22787.28 21054.80 22091.11 24262.72 24779.57 24090.09 200
test178.40 18977.40 19481.40 20787.60 19563.01 23888.39 12889.28 17071.63 16375.34 22787.28 21054.80 22091.11 24262.72 24779.57 24090.09 200
BH-w/o78.21 19477.33 19780.84 22488.81 14965.13 19384.87 22887.85 21769.75 20874.52 24784.74 27761.34 16893.11 17358.24 29185.84 16084.27 329
FMVSNet278.20 19577.21 19881.20 21487.60 19562.89 24287.47 16089.02 18471.63 16375.29 23287.28 21054.80 22091.10 24562.38 25279.38 24489.61 222
anonymousdsp78.60 18677.15 19982.98 16980.51 33067.08 15387.24 16789.53 16365.66 27175.16 23487.19 21652.52 24192.25 20277.17 11879.34 24589.61 222
HY-MVS69.67 1277.95 20377.15 19980.36 23387.57 19960.21 27583.37 26287.78 21966.11 26475.37 22687.06 22163.27 13490.48 25761.38 26482.43 20790.40 186
cl2278.07 19977.01 20181.23 21282.37 30661.83 25483.55 25987.98 21168.96 22975.06 23883.87 28861.40 16791.88 21573.53 15376.39 27889.98 209
Anonymous20240521178.25 19277.01 20181.99 19491.03 8260.67 26784.77 23083.90 27770.65 18880.00 12891.20 11141.08 34491.43 23565.21 23185.26 16493.85 57
MVS78.19 19676.99 20381.78 19785.66 23166.99 15484.66 23290.47 13555.08 35972.02 27385.27 26563.83 13094.11 12266.10 22489.80 10984.24 330
LCM-MVSNet-Re77.05 22276.94 20477.36 28487.20 20951.60 35980.06 30380.46 32075.20 9767.69 31486.72 22662.48 14788.98 27963.44 24289.25 11491.51 143
miper_enhance_ethall77.87 20676.86 20580.92 22381.65 31361.38 25982.68 27288.98 18665.52 27375.47 22082.30 31365.76 11692.00 21072.95 16176.39 27889.39 226
FMVSNet377.88 20576.85 20680.97 22286.84 21562.36 24586.52 18988.77 19471.13 17575.34 22786.66 23254.07 23191.10 24562.72 24779.57 24089.45 225
DTE-MVSNet76.99 22376.80 20777.54 28386.24 22353.06 35287.52 15890.66 12977.08 5772.50 26688.67 17460.48 18589.52 26957.33 29970.74 33890.05 205
CNLPA78.08 19876.79 20881.97 19590.40 9671.07 6287.59 15784.55 26666.03 26772.38 26989.64 14557.56 20486.04 30859.61 27683.35 19588.79 249
cl____77.72 20976.76 20980.58 22982.49 30360.48 27083.09 26787.87 21569.22 21874.38 24985.22 26862.10 15591.53 22971.09 17675.41 29789.73 220
DIV-MVS_self_test77.72 20976.76 20980.58 22982.48 30460.48 27083.09 26787.86 21669.22 21874.38 24985.24 26662.10 15591.53 22971.09 17675.40 29889.74 219
baseline176.98 22476.75 21177.66 27988.13 17255.66 32885.12 22381.89 30573.04 14876.79 19188.90 16762.43 14987.78 29763.30 24471.18 33689.55 224
eth_miper_zixun_eth77.92 20476.69 21281.61 20283.00 29061.98 25183.15 26589.20 17769.52 21274.86 24284.35 28361.76 15892.56 18971.50 17372.89 32590.28 191
pm-mvs177.25 22176.68 21378.93 25984.22 26158.62 28686.41 19188.36 20571.37 17173.31 25788.01 19661.22 17289.15 27664.24 23873.01 32489.03 237
ET-MVSNet_ETH3D78.63 18576.63 21484.64 9586.73 21869.47 9285.01 22584.61 26569.54 21166.51 33286.59 23450.16 27491.75 21976.26 12884.24 17992.69 107
test250677.30 21976.49 21579.74 24690.08 10252.02 35387.86 15263.10 38674.88 10480.16 12792.79 7938.29 35592.35 19868.74 20292.50 7294.86 17
Fast-Effi-MVS+-dtu78.02 20176.49 21582.62 18483.16 28666.96 15786.94 17487.45 22672.45 15271.49 27884.17 28554.79 22391.58 22467.61 21080.31 23389.30 229
1112_ss77.40 21776.43 21780.32 23589.11 14260.41 27283.65 25587.72 22062.13 31273.05 26186.72 22662.58 14689.97 26262.11 25780.80 22690.59 178
PAPM77.68 21276.40 21881.51 20387.29 20861.85 25383.78 25389.59 16264.74 28071.23 27988.70 17262.59 14593.66 14352.66 32387.03 14189.01 238
PLCcopyleft70.83 1178.05 20076.37 21983.08 16391.88 7467.80 13488.19 13789.46 16564.33 28669.87 29688.38 18353.66 23493.58 14458.86 28482.73 20387.86 265
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TR-MVS77.44 21576.18 22081.20 21488.24 17063.24 23384.61 23586.40 24367.55 24777.81 16986.48 24054.10 23093.15 17057.75 29582.72 20487.20 280
FMVSNet177.44 21576.12 22181.40 20786.81 21663.01 23888.39 12889.28 17070.49 19074.39 24887.28 21049.06 29091.11 24260.91 26778.52 25290.09 200
bld_raw_dy_0_6477.29 22075.98 22281.22 21385.04 24665.47 18488.14 14277.56 34269.20 22073.77 25389.40 15942.24 33888.85 28476.78 12481.64 21689.33 228
test_vis1_n_192075.52 24575.78 22374.75 30979.84 33857.44 30483.26 26385.52 25562.83 30379.34 13686.17 24745.10 32179.71 34778.75 10181.21 22187.10 287
CHOSEN 1792x268877.63 21375.69 22483.44 14689.98 10868.58 11878.70 32087.50 22456.38 35475.80 21686.84 22258.67 19491.40 23661.58 26285.75 16290.34 187
FE-MVS77.78 20775.68 22584.08 12288.09 17566.00 17083.13 26687.79 21868.42 23978.01 16685.23 26745.50 31995.12 7859.11 28185.83 16191.11 156
WTY-MVS75.65 24375.68 22575.57 29986.40 22256.82 31177.92 33082.40 30165.10 27576.18 20987.72 19863.13 14180.90 34360.31 27181.96 21289.00 240
XXY-MVS75.41 24875.56 22774.96 30583.59 27457.82 29880.59 29683.87 27866.54 26174.93 24188.31 18563.24 13580.09 34662.16 25576.85 27186.97 288
thres100view90076.50 23075.55 22879.33 25489.52 11856.99 30985.83 20983.23 28873.94 12476.32 20587.12 21851.89 25691.95 21148.33 34683.75 18489.07 231
thres600view776.50 23075.44 22979.68 24889.40 12357.16 30685.53 21783.23 28873.79 12976.26 20687.09 21951.89 25691.89 21448.05 35183.72 18790.00 206
Test_1112_low_res76.40 23475.44 22979.27 25589.28 13258.09 29081.69 28287.07 23359.53 33172.48 26786.67 23161.30 16989.33 27260.81 26980.15 23590.41 185
HyFIR lowres test77.53 21475.40 23183.94 13689.59 11566.62 16080.36 30088.64 20156.29 35576.45 20085.17 26957.64 20393.28 15861.34 26583.10 19991.91 135
thisisatest051577.33 21875.38 23283.18 15885.27 23963.80 21982.11 27883.27 28765.06 27675.91 21383.84 29049.54 28194.27 11367.24 21586.19 15491.48 147
tfpn200view976.42 23375.37 23379.55 25389.13 13857.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24891.95 21148.33 34683.75 18489.07 231
thres40076.50 23075.37 23379.86 24389.13 13857.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24891.95 21148.33 34683.75 18490.00 206
131476.53 22975.30 23580.21 23783.93 26862.32 24784.66 23288.81 19260.23 32470.16 29084.07 28755.30 21790.73 25467.37 21383.21 19787.59 272
GA-MVS76.87 22675.17 23681.97 19582.75 29662.58 24381.44 28786.35 24572.16 15974.74 24382.89 30546.20 31192.02 20968.85 20181.09 22291.30 152
EPNet_dtu75.46 24674.86 23777.23 28782.57 30154.60 33886.89 17683.09 29171.64 16266.25 33485.86 25255.99 21488.04 29454.92 31286.55 14889.05 236
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LS3D76.95 22574.82 23883.37 15090.45 9467.36 14689.15 10286.94 23561.87 31469.52 29990.61 12651.71 25994.53 10546.38 35886.71 14688.21 260
cascas76.72 22874.64 23982.99 16885.78 23065.88 17482.33 27589.21 17660.85 32072.74 26381.02 32447.28 30093.75 14067.48 21285.02 16589.34 227
DP-MVS76.78 22774.57 24083.42 14793.29 4869.46 9488.55 12483.70 27963.98 29270.20 28788.89 16854.01 23294.80 9646.66 35581.88 21486.01 306
TransMVSNet (Re)75.39 24974.56 24177.86 27585.50 23557.10 30886.78 18186.09 24972.17 15871.53 27787.34 20963.01 14289.31 27356.84 30461.83 36487.17 281
LTVRE_ROB69.57 1376.25 23674.54 24281.41 20688.60 15864.38 21079.24 31289.12 18270.76 18469.79 29887.86 19749.09 28993.20 16656.21 30980.16 23486.65 295
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
thres20075.55 24474.47 24378.82 26087.78 18957.85 29783.07 26983.51 28372.44 15475.84 21584.42 27952.08 25191.75 21947.41 35383.64 18986.86 290
MVP-Stereo76.12 23774.46 24481.13 21785.37 23869.79 8684.42 24387.95 21365.03 27767.46 31785.33 26453.28 23991.73 22158.01 29383.27 19681.85 354
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
F-COLMAP76.38 23574.33 24582.50 18689.28 13266.95 15888.41 12789.03 18364.05 29066.83 32488.61 17646.78 30492.89 18157.48 29678.55 25187.67 268
XVG-ACMP-BASELINE76.11 23874.27 24681.62 20083.20 28364.67 20283.60 25889.75 15869.75 20871.85 27487.09 21932.78 36792.11 20669.99 18880.43 23288.09 261
ACMH+68.96 1476.01 23974.01 24782.03 19388.60 15865.31 19088.86 11087.55 22270.25 19667.75 31387.47 20841.27 34293.19 16858.37 28975.94 28687.60 270
ACMH67.68 1675.89 24073.93 24881.77 19888.71 15566.61 16188.62 12289.01 18569.81 20466.78 32586.70 23041.95 34191.51 23155.64 31078.14 25887.17 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CostFormer75.24 25073.90 24979.27 25582.65 30058.27 28980.80 29182.73 29961.57 31575.33 23083.13 30255.52 21591.07 24864.98 23478.34 25788.45 256
IterMVS-SCA-FT75.43 24773.87 25080.11 23982.69 29864.85 19981.57 28483.47 28469.16 22270.49 28484.15 28651.95 25488.15 29269.23 19572.14 33087.34 277
baseline275.70 24273.83 25181.30 21083.26 28161.79 25582.57 27480.65 31666.81 25166.88 32383.42 29857.86 20192.19 20463.47 24179.57 24089.91 211
test_cas_vis1_n_192073.76 26273.74 25273.81 31675.90 35959.77 27880.51 29782.40 30158.30 34181.62 11085.69 25544.35 32476.41 36576.29 12778.61 25085.23 317
sss73.60 26373.64 25373.51 31882.80 29555.01 33576.12 33781.69 30862.47 30874.68 24485.85 25357.32 20778.11 35460.86 26880.93 22387.39 275
pmmvs674.69 25273.39 25478.61 26381.38 31957.48 30386.64 18587.95 21364.99 27970.18 28886.61 23350.43 27289.52 26962.12 25670.18 34088.83 247
IB-MVS68.01 1575.85 24173.36 25583.31 15184.76 25066.03 16883.38 26185.06 25970.21 19769.40 30081.05 32345.76 31694.66 10165.10 23375.49 29289.25 230
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
D2MVS74.82 25173.21 25679.64 25079.81 33962.56 24480.34 30187.35 22764.37 28568.86 30582.66 30946.37 30790.10 26167.91 20881.24 22086.25 299
tfpnnormal74.39 25373.16 25778.08 27386.10 22758.05 29184.65 23487.53 22370.32 19371.22 28085.63 25854.97 21889.86 26343.03 36875.02 30586.32 298
miper_lstm_enhance74.11 25773.11 25877.13 28880.11 33459.62 28072.23 35786.92 23666.76 25370.40 28582.92 30456.93 21182.92 33269.06 19872.63 32688.87 245
IterMVS74.29 25472.94 25978.35 26981.53 31663.49 22781.58 28382.49 30068.06 24369.99 29383.69 29451.66 26085.54 31265.85 22771.64 33386.01 306
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MS-PatchMatch73.83 26172.67 26077.30 28683.87 26966.02 16981.82 27984.66 26461.37 31868.61 30882.82 30747.29 29988.21 29159.27 27884.32 17777.68 368
testing22274.04 25872.66 26178.19 27187.89 18155.36 33081.06 28979.20 33371.30 17274.65 24583.57 29639.11 35188.67 28651.43 33085.75 16290.53 180
CVMVSNet72.99 27272.58 26274.25 31384.28 25950.85 36486.41 19183.45 28544.56 37673.23 25987.54 20649.38 28485.70 31065.90 22678.44 25486.19 301
test-LLR72.94 27372.43 26374.48 31081.35 32058.04 29278.38 32377.46 34366.66 25569.95 29479.00 34448.06 29679.24 34866.13 22284.83 16786.15 302
OurMVSNet-221017-074.26 25572.42 26479.80 24583.76 27259.59 28185.92 20586.64 23966.39 26266.96 32287.58 20239.46 34891.60 22365.76 22869.27 34388.22 259
SCA74.22 25672.33 26579.91 24284.05 26662.17 24979.96 30679.29 33266.30 26372.38 26980.13 33351.95 25488.60 28759.25 27977.67 26288.96 242
tpmrst72.39 27572.13 26673.18 32280.54 32949.91 36879.91 30779.08 33463.11 29771.69 27679.95 33555.32 21682.77 33365.66 22973.89 31586.87 289
pmmvs474.03 26071.91 26780.39 23281.96 30968.32 12281.45 28682.14 30359.32 33269.87 29685.13 27052.40 24488.13 29360.21 27274.74 30884.73 326
EG-PatchMatch MVS74.04 25871.82 26880.71 22784.92 24867.42 14385.86 20788.08 20966.04 26664.22 34683.85 28935.10 36492.56 18957.44 29780.83 22582.16 353
tpm72.37 27771.71 26974.35 31282.19 30752.00 35479.22 31377.29 34664.56 28272.95 26283.68 29551.35 26183.26 33158.33 29075.80 28787.81 266
WB-MVSnew71.96 28071.65 27072.89 32384.67 25551.88 35682.29 27677.57 34162.31 30973.67 25483.00 30353.49 23781.10 34245.75 36182.13 21085.70 311
CL-MVSNet_self_test72.37 27771.46 27175.09 30479.49 34553.53 34680.76 29385.01 26169.12 22370.51 28382.05 31757.92 20084.13 32352.27 32566.00 35687.60 270
tpm273.26 26871.46 27178.63 26283.34 27956.71 31480.65 29580.40 32156.63 35373.55 25582.02 31851.80 25891.24 24056.35 30878.42 25587.95 262
RPSCF73.23 26971.46 27178.54 26682.50 30259.85 27782.18 27782.84 29858.96 33671.15 28189.41 15745.48 32084.77 32058.82 28571.83 33291.02 163
PatchmatchNetpermissive73.12 27071.33 27478.49 26883.18 28460.85 26479.63 30878.57 33664.13 28771.73 27579.81 33851.20 26385.97 30957.40 29876.36 28388.66 252
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CR-MVSNet73.37 26571.27 27579.67 24981.32 32265.19 19175.92 33980.30 32259.92 32772.73 26481.19 32152.50 24286.69 30359.84 27477.71 26087.11 285
SixPastTwentyTwo73.37 26571.26 27679.70 24785.08 24557.89 29685.57 21183.56 28271.03 17965.66 33685.88 25142.10 33992.57 18859.11 28163.34 36288.65 253
MSDG73.36 26770.99 27780.49 23184.51 25765.80 17780.71 29486.13 24865.70 27065.46 33783.74 29344.60 32290.91 25051.13 33176.89 26984.74 325
PatchMatch-RL72.38 27670.90 27876.80 29188.60 15867.38 14579.53 30976.17 35362.75 30569.36 30182.00 31945.51 31884.89 31953.62 31880.58 22978.12 367
PVSNet64.34 1872.08 27970.87 27975.69 29786.21 22456.44 31874.37 35180.73 31562.06 31370.17 28982.23 31542.86 33283.31 33054.77 31384.45 17687.32 278
dmvs_re71.14 28470.58 28072.80 32481.96 30959.68 27975.60 34379.34 33168.55 23569.27 30380.72 32949.42 28376.54 36252.56 32477.79 25982.19 352
test_fmvs170.93 28770.52 28172.16 32873.71 36955.05 33480.82 29078.77 33551.21 37078.58 14984.41 28031.20 37276.94 36075.88 13380.12 23784.47 328
RPMNet73.51 26470.49 28282.58 18581.32 32265.19 19175.92 33992.27 7657.60 34772.73 26476.45 36052.30 24595.43 6548.14 35077.71 26087.11 285
test_040272.79 27470.44 28379.84 24488.13 17265.99 17185.93 20484.29 27165.57 27267.40 31985.49 26146.92 30392.61 18735.88 38074.38 31180.94 359
COLMAP_ROBcopyleft66.92 1773.01 27170.41 28480.81 22587.13 21165.63 18088.30 13484.19 27462.96 30063.80 35087.69 20038.04 35692.56 18946.66 35574.91 30684.24 330
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test-mter71.41 28270.39 28574.48 31081.35 32058.04 29278.38 32377.46 34360.32 32369.95 29479.00 34436.08 36279.24 34866.13 22284.83 16786.15 302
test_fmvs1_n70.86 28870.24 28672.73 32572.51 37955.28 33281.27 28879.71 32851.49 36978.73 14384.87 27427.54 37777.02 35976.06 13079.97 23885.88 309
pmmvs571.55 28170.20 28775.61 29877.83 35256.39 31981.74 28180.89 31257.76 34567.46 31784.49 27849.26 28785.32 31657.08 30175.29 30185.11 321
MDTV_nov1_ep1369.97 28883.18 28453.48 34777.10 33580.18 32560.45 32169.33 30280.44 33048.89 29486.90 30251.60 32878.51 253
MIMVSNet70.69 29069.30 28974.88 30684.52 25656.35 32175.87 34179.42 33064.59 28167.76 31282.41 31141.10 34381.54 33946.64 35781.34 21886.75 293
tpmvs71.09 28569.29 29076.49 29282.04 30856.04 32478.92 31881.37 31164.05 29067.18 32178.28 35049.74 28089.77 26449.67 34172.37 32783.67 337
test_vis1_n69.85 30069.21 29171.77 33072.66 37855.27 33381.48 28576.21 35252.03 36675.30 23183.20 30128.97 37576.22 36774.60 14378.41 25683.81 336
Patchmtry70.74 28969.16 29275.49 30180.72 32654.07 34374.94 35080.30 32258.34 34070.01 29181.19 32152.50 24286.54 30453.37 32071.09 33785.87 310
TESTMET0.1,169.89 29969.00 29372.55 32679.27 34856.85 31078.38 32374.71 35957.64 34668.09 31177.19 35737.75 35776.70 36163.92 23984.09 18084.10 333
PMMVS69.34 30268.67 29471.35 33575.67 36162.03 25075.17 34573.46 36250.00 37168.68 30679.05 34252.07 25278.13 35361.16 26682.77 20273.90 374
K. test v371.19 28368.51 29579.21 25783.04 28957.78 29984.35 24576.91 34972.90 15162.99 35382.86 30639.27 34991.09 24761.65 26152.66 38088.75 250
USDC70.33 29468.37 29676.21 29480.60 32856.23 32279.19 31486.49 24160.89 31961.29 35785.47 26231.78 37089.47 27153.37 32076.21 28482.94 347
tpm cat170.57 29168.31 29777.35 28582.41 30557.95 29578.08 32780.22 32452.04 36568.54 30977.66 35552.00 25387.84 29651.77 32672.07 33186.25 299
OpenMVS_ROBcopyleft64.09 1970.56 29268.19 29877.65 28080.26 33159.41 28385.01 22582.96 29558.76 33865.43 33882.33 31237.63 35891.23 24145.34 36476.03 28582.32 350
EPMVS69.02 30468.16 29971.59 33179.61 34349.80 37077.40 33266.93 37862.82 30470.01 29179.05 34245.79 31577.86 35656.58 30675.26 30287.13 284
CMPMVSbinary51.72 2170.19 29668.16 29976.28 29373.15 37557.55 30279.47 31083.92 27648.02 37356.48 37484.81 27543.13 33086.42 30662.67 25081.81 21584.89 323
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
AllTest70.96 28668.09 30179.58 25185.15 24263.62 22184.58 23679.83 32662.31 30960.32 36186.73 22432.02 36888.96 28150.28 33671.57 33486.15 302
gg-mvs-nofinetune69.95 29867.96 30275.94 29583.07 28754.51 34077.23 33470.29 37063.11 29770.32 28662.33 38143.62 32888.69 28553.88 31787.76 13184.62 327
FMVSNet569.50 30167.96 30274.15 31482.97 29355.35 33180.01 30582.12 30462.56 30763.02 35181.53 32036.92 35981.92 33748.42 34574.06 31385.17 320
Syy-MVS68.05 31367.85 30468.67 35084.68 25240.97 39178.62 32173.08 36466.65 25866.74 32679.46 33952.11 25082.30 33532.89 38376.38 28182.75 348
PatchT68.46 31167.85 30470.29 34180.70 32743.93 38372.47 35674.88 35660.15 32570.55 28276.57 35949.94 27781.59 33850.58 33274.83 30785.34 315
pmmvs-eth3d70.50 29367.83 30678.52 26777.37 35566.18 16781.82 27981.51 30958.90 33763.90 34980.42 33142.69 33386.28 30758.56 28765.30 35883.11 343
Anonymous2023120668.60 30767.80 30771.02 33880.23 33350.75 36578.30 32680.47 31956.79 35266.11 33582.63 31046.35 30878.95 35043.62 36775.70 28883.36 340
Patchmatch-RL test70.24 29567.78 30877.61 28177.43 35459.57 28271.16 36070.33 36962.94 30168.65 30772.77 37250.62 26985.49 31369.58 19366.58 35387.77 267
test0.0.03 168.00 31467.69 30968.90 34777.55 35347.43 37275.70 34272.95 36666.66 25566.56 32882.29 31448.06 29675.87 36944.97 36574.51 31083.41 339
testing368.56 30967.67 31071.22 33787.33 20642.87 38583.06 27071.54 36770.36 19169.08 30484.38 28130.33 37485.69 31137.50 37975.45 29685.09 322
EU-MVSNet68.53 31067.61 31171.31 33678.51 35147.01 37484.47 23884.27 27242.27 37966.44 33384.79 27640.44 34683.76 32558.76 28668.54 34883.17 341
KD-MVS_self_test68.81 30567.59 31272.46 32774.29 36745.45 37677.93 32987.00 23463.12 29663.99 34878.99 34642.32 33584.77 32056.55 30764.09 36187.16 283
test_fmvs268.35 31267.48 31370.98 33969.50 38251.95 35580.05 30476.38 35149.33 37274.65 24584.38 28123.30 38375.40 37474.51 14475.17 30485.60 312
ppachtmachnet_test70.04 29767.34 31478.14 27279.80 34061.13 26079.19 31480.59 31759.16 33465.27 33979.29 34146.75 30587.29 30049.33 34266.72 35186.00 308
Anonymous2024052168.80 30667.22 31573.55 31774.33 36654.11 34283.18 26485.61 25458.15 34261.68 35680.94 32630.71 37381.27 34157.00 30273.34 32385.28 316
our_test_369.14 30367.00 31675.57 29979.80 34058.80 28477.96 32877.81 33959.55 33062.90 35478.25 35147.43 29883.97 32451.71 32767.58 35083.93 335
test20.0367.45 31666.95 31768.94 34675.48 36344.84 38177.50 33177.67 34066.66 25563.01 35283.80 29147.02 30278.40 35242.53 37068.86 34783.58 338
MIMVSNet168.58 30866.78 31873.98 31580.07 33551.82 35780.77 29284.37 26864.40 28459.75 36482.16 31636.47 36083.63 32742.73 36970.33 33986.48 297
testgi66.67 32266.53 31967.08 35575.62 36241.69 39075.93 33876.50 35066.11 26465.20 34286.59 23435.72 36374.71 37643.71 36673.38 32284.84 324
myMVS_eth3d67.02 31966.29 32069.21 34584.68 25242.58 38678.62 32173.08 36466.65 25866.74 32679.46 33931.53 37182.30 33539.43 37676.38 28182.75 348
UnsupCasMVSNet_eth67.33 31765.99 32171.37 33373.48 37251.47 36175.16 34685.19 25865.20 27460.78 35980.93 32842.35 33477.20 35857.12 30053.69 37985.44 314
dp66.80 32065.43 32270.90 34079.74 34248.82 37175.12 34874.77 35759.61 32964.08 34777.23 35642.89 33180.72 34448.86 34466.58 35383.16 342
TinyColmap67.30 31864.81 32374.76 30881.92 31156.68 31580.29 30281.49 31060.33 32256.27 37583.22 29924.77 38087.66 29945.52 36269.47 34279.95 363
CHOSEN 280x42066.51 32364.71 32471.90 32981.45 31763.52 22657.98 38868.95 37653.57 36162.59 35576.70 35846.22 31075.29 37555.25 31179.68 23976.88 370
TDRefinement67.49 31564.34 32576.92 28973.47 37361.07 26184.86 22982.98 29459.77 32858.30 36885.13 27026.06 37887.89 29547.92 35260.59 36981.81 355
PM-MVS66.41 32464.14 32673.20 32173.92 36856.45 31778.97 31764.96 38463.88 29464.72 34380.24 33219.84 38683.44 32966.24 22164.52 36079.71 364
dmvs_testset62.63 33664.11 32758.19 36578.55 35024.76 40175.28 34465.94 38167.91 24460.34 36076.01 36253.56 23573.94 38031.79 38467.65 34975.88 372
KD-MVS_2432*160066.22 32663.89 32873.21 31975.47 36453.42 34870.76 36384.35 26964.10 28866.52 33078.52 34834.55 36584.98 31750.40 33450.33 38381.23 357
miper_refine_blended66.22 32663.89 32873.21 31975.47 36453.42 34870.76 36384.35 26964.10 28866.52 33078.52 34834.55 36584.98 31750.40 33450.33 38381.23 357
MDA-MVSNet-bldmvs66.68 32163.66 33075.75 29679.28 34760.56 26973.92 35378.35 33764.43 28350.13 38279.87 33744.02 32683.67 32646.10 35956.86 37283.03 345
ADS-MVSNet266.20 32863.33 33174.82 30779.92 33658.75 28567.55 37475.19 35553.37 36265.25 34075.86 36342.32 33580.53 34541.57 37168.91 34585.18 318
Patchmatch-test64.82 33163.24 33269.57 34379.42 34649.82 36963.49 38569.05 37551.98 36759.95 36380.13 33350.91 26570.98 38340.66 37373.57 31887.90 264
MDA-MVSNet_test_wron65.03 32962.92 33371.37 33375.93 35856.73 31269.09 37274.73 35857.28 35054.03 37877.89 35245.88 31374.39 37849.89 34061.55 36582.99 346
YYNet165.03 32962.91 33471.38 33275.85 36056.60 31669.12 37174.66 36057.28 35054.12 37777.87 35345.85 31474.48 37749.95 33961.52 36683.05 344
ADS-MVSNet64.36 33262.88 33568.78 34979.92 33647.17 37367.55 37471.18 36853.37 36265.25 34075.86 36342.32 33573.99 37941.57 37168.91 34585.18 318
JIA-IIPM66.32 32562.82 33676.82 29077.09 35661.72 25665.34 38175.38 35458.04 34464.51 34462.32 38242.05 34086.51 30551.45 32969.22 34482.21 351
LF4IMVS64.02 33362.19 33769.50 34470.90 38053.29 35176.13 33677.18 34752.65 36458.59 36680.98 32523.55 38276.52 36353.06 32266.66 35278.68 366
test_fmvs363.36 33561.82 33867.98 35262.51 38946.96 37577.37 33374.03 36145.24 37567.50 31678.79 34712.16 39472.98 38272.77 16466.02 35583.99 334
new-patchmatchnet61.73 33861.73 33961.70 36172.74 37724.50 40269.16 37078.03 33861.40 31656.72 37375.53 36638.42 35376.48 36445.95 36057.67 37184.13 332
UnsupCasMVSNet_bld63.70 33461.53 34070.21 34273.69 37051.39 36272.82 35581.89 30555.63 35757.81 37071.80 37438.67 35278.61 35149.26 34352.21 38180.63 360
mvsany_test162.30 33761.26 34165.41 35769.52 38154.86 33666.86 37649.78 39746.65 37468.50 31083.21 30049.15 28866.28 38956.93 30360.77 36775.11 373
PVSNet_057.27 2061.67 33959.27 34268.85 34879.61 34357.44 30468.01 37373.44 36355.93 35658.54 36770.41 37744.58 32377.55 35747.01 35435.91 38971.55 377
test_vis1_rt60.28 34058.42 34365.84 35667.25 38555.60 32970.44 36560.94 38944.33 37759.00 36566.64 37924.91 37968.67 38762.80 24669.48 34173.25 375
MVS-HIRNet59.14 34157.67 34463.57 35981.65 31343.50 38471.73 35865.06 38339.59 38351.43 38057.73 38738.34 35482.58 33439.53 37473.95 31464.62 383
DSMNet-mixed57.77 34356.90 34560.38 36367.70 38435.61 39469.18 36953.97 39532.30 39157.49 37179.88 33640.39 34768.57 38838.78 37772.37 32776.97 369
WB-MVS54.94 34454.72 34655.60 37173.50 37120.90 40374.27 35261.19 38859.16 33450.61 38174.15 36847.19 30175.78 37017.31 39535.07 39070.12 378
pmmvs357.79 34254.26 34768.37 35164.02 38856.72 31375.12 34865.17 38240.20 38152.93 37969.86 37820.36 38575.48 37245.45 36355.25 37872.90 376
SSC-MVS53.88 34753.59 34854.75 37372.87 37619.59 40473.84 35460.53 39057.58 34849.18 38373.45 37146.34 30975.47 37316.20 39832.28 39269.20 379
N_pmnet52.79 35053.26 34951.40 37578.99 3497.68 40769.52 3673.89 40651.63 36857.01 37274.98 36740.83 34565.96 39037.78 37864.67 35980.56 362
FPMVS53.68 34851.64 35059.81 36465.08 38751.03 36369.48 36869.58 37341.46 38040.67 38672.32 37316.46 39070.00 38624.24 39265.42 35758.40 388
mvsany_test353.99 34651.45 35161.61 36255.51 39344.74 38263.52 38445.41 40143.69 37858.11 36976.45 36017.99 38763.76 39254.77 31347.59 38576.34 371
test_f52.09 35150.82 35255.90 36953.82 39642.31 38959.42 38758.31 39336.45 38656.12 37670.96 37612.18 39357.79 39453.51 31956.57 37467.60 380
new_pmnet50.91 35350.29 35352.78 37468.58 38334.94 39663.71 38356.63 39439.73 38244.95 38465.47 38021.93 38458.48 39334.98 38156.62 37364.92 382
APD_test153.31 34949.93 35463.42 36065.68 38650.13 36771.59 35966.90 37934.43 38840.58 38771.56 3758.65 39976.27 36634.64 38255.36 37763.86 384
LCM-MVSNet54.25 34549.68 35567.97 35353.73 39745.28 37966.85 37780.78 31435.96 38739.45 38862.23 3838.70 39878.06 35548.24 34951.20 38280.57 361
EGC-MVSNET52.07 35247.05 35667.14 35483.51 27660.71 26680.50 29867.75 3770.07 4010.43 40275.85 36524.26 38181.54 33928.82 38662.25 36359.16 386
test_vis3_rt49.26 35547.02 35756.00 36854.30 39445.27 38066.76 37848.08 39836.83 38544.38 38553.20 3907.17 40164.07 39156.77 30555.66 37558.65 387
ANet_high50.57 35446.10 35863.99 35848.67 40039.13 39270.99 36280.85 31361.39 31731.18 39057.70 38817.02 38973.65 38131.22 38515.89 39879.18 365
testf145.72 35641.96 35957.00 36656.90 39145.32 37766.14 37959.26 39126.19 39230.89 39160.96 3854.14 40270.64 38426.39 39046.73 38755.04 389
APD_test245.72 35641.96 35957.00 36656.90 39145.32 37766.14 37959.26 39126.19 39230.89 39160.96 3854.14 40270.64 38426.39 39046.73 38755.04 389
Gipumacopyleft45.18 35841.86 36155.16 37277.03 35751.52 36032.50 39480.52 31832.46 39027.12 39335.02 3949.52 39775.50 37122.31 39360.21 37038.45 393
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft37.38 2244.16 35940.28 36255.82 37040.82 40242.54 38865.12 38263.99 38534.43 38824.48 39457.12 3893.92 40476.17 36817.10 39655.52 37648.75 391
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS240.82 36038.86 36346.69 37653.84 39516.45 40548.61 39149.92 39637.49 38431.67 38960.97 3848.14 40056.42 39528.42 38730.72 39367.19 381
E-PMN31.77 36130.64 36435.15 37952.87 39827.67 39857.09 38947.86 39924.64 39416.40 39933.05 39511.23 39554.90 39614.46 39918.15 39622.87 395
EMVS30.81 36329.65 36534.27 38050.96 39925.95 40056.58 39046.80 40024.01 39515.53 40030.68 39612.47 39254.43 39712.81 40017.05 39722.43 396
test_method31.52 36229.28 36638.23 37827.03 4046.50 40820.94 39662.21 3874.05 39922.35 39752.50 39113.33 39147.58 39827.04 38934.04 39160.62 385
cdsmvs_eth3d_5k19.96 36526.61 3670.00 3860.00 4080.00 4110.00 39789.26 1730.00 4040.00 40588.61 17661.62 1610.00 4050.00 4040.00 4030.00 401
MVEpermissive26.22 2330.37 36425.89 36843.81 37744.55 40135.46 39528.87 39539.07 40218.20 39618.58 39840.18 3932.68 40547.37 39917.07 39723.78 39548.60 392
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt18.61 36621.40 36910.23 3834.82 40510.11 40634.70 39330.74 4041.48 40023.91 39626.07 39728.42 37613.41 40227.12 38815.35 3997.17 397
wuyk23d16.82 36715.94 37019.46 38258.74 39031.45 39739.22 3923.74 4076.84 3986.04 4012.70 4011.27 40624.29 40110.54 40114.40 4002.63 398
ab-mvs-re7.23 3689.64 3710.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 40586.72 2260.00 4090.00 4050.00 4040.00 4030.00 401
test1236.12 3698.11 3720.14 3840.06 4070.09 40971.05 3610.03 4090.04 4030.25 4041.30 4030.05 4070.03 4040.21 4030.01 4020.29 399
testmvs6.04 3708.02 3730.10 3850.08 4060.03 41069.74 3660.04 4080.05 4020.31 4031.68 4020.02 4080.04 4030.24 4020.02 4010.25 400
pcd_1.5k_mvsjas5.26 3717.02 3740.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 40463.15 1380.00 4050.00 4040.00 4030.00 401
test_blank0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
uanet_test0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
DCPMVS0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
sosnet-low-res0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
sosnet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
uncertanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
Regformer0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
uanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
MM88.97 473.65 1092.66 2391.17 11686.57 187.39 3594.97 1671.70 5097.68 192.19 195.63 2895.57 1
WAC-MVS42.58 38639.46 375
FOURS195.00 1072.39 3995.06 193.84 1574.49 11391.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
PC_three_145268.21 24192.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
No_MVS89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 408
eth-test0.00 408
ZD-MVS94.38 2572.22 4492.67 6170.98 18087.75 3194.07 4174.01 3296.70 2784.66 4794.84 43
IU-MVS95.30 271.25 5792.95 5166.81 25192.39 688.94 1696.63 494.85 19
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 41
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
save fliter93.80 4072.35 4290.47 6491.17 11674.31 116
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 24
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 42
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
GSMVS88.96 242
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26288.96 242
sam_mvs50.01 275
ambc75.24 30373.16 37450.51 36663.05 38687.47 22564.28 34577.81 35417.80 38889.73 26657.88 29460.64 36885.49 313
MTGPAbinary92.02 85
test_post178.90 3195.43 40048.81 29585.44 31559.25 279
test_post5.46 39950.36 27384.24 322
patchmatchnet-post74.00 36951.12 26488.60 287
GG-mvs-BLEND75.38 30281.59 31555.80 32679.32 31169.63 37267.19 32073.67 37043.24 32988.90 28350.41 33384.50 17281.45 356
MTMP92.18 3532.83 403
gm-plane-assit81.40 31853.83 34562.72 30680.94 32692.39 19563.40 243
test9_res84.90 4295.70 2692.87 102
TEST993.26 5072.96 2588.75 11591.89 9368.44 23885.00 5793.10 6774.36 2895.41 67
test_893.13 5272.57 3588.68 12091.84 9768.69 23384.87 6193.10 6774.43 2695.16 76
agg_prior282.91 6695.45 3092.70 105
agg_prior92.85 5971.94 5191.78 10084.41 7194.93 87
TestCases79.58 25185.15 24263.62 22179.83 32662.31 30960.32 36186.73 22432.02 36888.96 28150.28 33671.57 33486.15 302
test_prior472.60 3489.01 105
test_prior288.85 11175.41 9384.91 5993.54 5674.28 2983.31 6195.86 20
test_prior86.33 5492.61 6569.59 8892.97 5095.48 6293.91 53
旧先验286.56 18858.10 34387.04 3988.98 27974.07 149
新几何286.29 196
新几何183.42 14793.13 5270.71 7185.48 25657.43 34981.80 10791.98 9063.28 13392.27 20164.60 23792.99 6587.27 279
旧先验191.96 7165.79 17886.37 24493.08 7169.31 7792.74 6888.74 251
无先验87.48 15988.98 18660.00 32694.12 12167.28 21488.97 241
原ACMM286.86 177
原ACMM184.35 10793.01 5768.79 10692.44 6963.96 29381.09 11791.57 10166.06 11195.45 6367.19 21694.82 4588.81 248
test22291.50 7768.26 12484.16 24883.20 29054.63 36079.74 12991.63 9958.97 19391.42 8586.77 292
testdata291.01 24962.37 253
segment_acmp73.08 37
testdata79.97 24190.90 8664.21 21284.71 26359.27 33385.40 5192.91 7362.02 15789.08 27768.95 19991.37 8686.63 296
testdata184.14 24975.71 87
test1286.80 4992.63 6470.70 7291.79 9982.71 9871.67 5196.16 4494.50 5093.54 77
plane_prior790.08 10268.51 119
plane_prior689.84 11168.70 11460.42 186
plane_prior592.44 6995.38 6978.71 10286.32 15191.33 149
plane_prior491.00 120
plane_prior368.60 11778.44 3178.92 141
plane_prior291.25 5079.12 23
plane_prior189.90 110
plane_prior68.71 11290.38 6777.62 3986.16 155
n20.00 410
nn0.00 410
door-mid69.98 371
lessismore_v078.97 25881.01 32557.15 30765.99 38061.16 35882.82 30739.12 35091.34 23859.67 27546.92 38688.43 257
LGP-MVS_train84.50 9989.23 13468.76 10891.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18289.83 215
test1192.23 79
door69.44 374
HQP5-MVS66.98 155
HQP-NCC89.33 12789.17 9876.41 7277.23 182
ACMP_Plane89.33 12789.17 9876.41 7277.23 182
BP-MVS77.47 114
HQP4-MVS77.24 18195.11 8091.03 161
HQP3-MVS92.19 8285.99 158
HQP2-MVS60.17 189
NP-MVS89.62 11468.32 12290.24 132
MDTV_nov1_ep13_2view37.79 39375.16 34655.10 35866.53 32949.34 28553.98 31687.94 263
ACMMP++_ref81.95 213
ACMMP++81.25 219
Test By Simon64.33 125
ITE_SJBPF78.22 27081.77 31260.57 26883.30 28669.25 21767.54 31587.20 21536.33 36187.28 30154.34 31574.62 30986.80 291
DeepMVS_CXcopyleft27.40 38140.17 40326.90 39924.59 40517.44 39723.95 39548.61 3929.77 39626.48 40018.06 39424.47 39428.83 394