This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5995.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
SED-MVS90.08 290.85 287.77 2695.30 270.98 6693.57 794.06 1077.24 5293.10 195.72 882.99 197.44 789.07 1496.63 494.88 14
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5993.49 992.73 6477.33 4992.12 995.78 480.98 997.40 989.08 1296.41 1293.33 89
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8992.29 795.66 1081.67 697.38 1187.44 3396.34 1593.95 57
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 4078.35 1396.77 2489.59 894.22 6094.67 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9391.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 36
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MM89.16 689.23 788.97 490.79 9573.65 1092.66 2391.17 12486.57 187.39 4194.97 1871.70 5397.68 192.19 195.63 2895.57 1
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 11492.29 795.97 274.28 2997.24 1388.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5980.26 1187.78 3394.27 3575.89 1996.81 2387.45 3296.44 993.05 104
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6293.00 4680.90 788.06 2994.06 4576.43 1696.84 2188.48 2495.99 1894.34 42
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 7272.96 2593.73 593.67 2080.19 1288.10 2894.80 1973.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS88.46 1288.74 1287.64 3592.78 6471.95 4992.40 2494.74 275.71 9189.16 1995.10 1675.65 2196.19 4687.07 3496.01 1794.79 21
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5392.24 7169.03 10389.57 9093.39 3077.53 4589.79 1894.12 4278.98 1296.58 3585.66 4095.72 2494.58 31
SD-MVS88.06 1488.50 1486.71 5492.60 6972.71 2991.81 4193.19 3577.87 3690.32 1794.00 4974.83 2393.78 13987.63 3094.27 5993.65 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
9.1488.26 1592.84 6391.52 4894.75 173.93 13288.57 2594.67 2175.57 2295.79 5886.77 3595.76 23
TSAR-MVS + MP.88.02 1788.11 1687.72 3093.68 4372.13 4691.41 5092.35 8174.62 11888.90 2293.85 5575.75 2096.00 5487.80 2894.63 4895.04 8
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMP_NAP88.05 1688.08 1787.94 1993.70 4173.05 2290.86 5793.59 2376.27 8388.14 2795.09 1771.06 6396.67 2987.67 2996.37 1494.09 51
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5492.83 6081.50 585.79 5593.47 6373.02 4097.00 1884.90 4694.94 4094.10 50
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6585.24 6094.32 3371.76 5196.93 1985.53 4395.79 2294.32 43
MP-MVS-pluss87.67 2187.72 2087.54 3693.64 4472.04 4889.80 8193.50 2575.17 10486.34 5195.29 1570.86 6596.00 5488.78 1996.04 1694.58 31
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 6977.57 4183.84 8994.40 3272.24 4596.28 4385.65 4195.30 3593.62 77
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
reproduce-ours87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10788.96 2095.54 1271.20 6196.54 3686.28 3793.49 6593.06 102
our_new_method87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10788.96 2095.54 1271.20 6196.54 3686.28 3793.49 6593.06 102
MVS_030487.69 2087.55 2488.12 1389.45 12971.76 5191.47 4989.54 17182.14 386.65 4994.28 3468.28 9597.46 690.81 295.31 3495.15 6
APD-MVScopyleft87.44 2587.52 2587.19 4294.24 3272.39 3991.86 4092.83 6073.01 15788.58 2494.52 2373.36 3496.49 3884.26 5795.01 3792.70 114
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS87.58 2287.47 2687.94 1994.58 1673.54 1593.04 1293.24 3376.78 6784.91 6594.44 3070.78 6696.61 3284.53 5494.89 4293.66 70
reproduce_model87.28 3087.39 2786.95 4893.10 5671.24 6391.60 4293.19 3574.69 11588.80 2395.61 1170.29 7296.44 3986.20 3993.08 6993.16 97
GST-MVS87.42 2787.26 2887.89 2494.12 3672.97 2492.39 2693.43 2876.89 6384.68 6993.99 5170.67 6896.82 2284.18 6195.01 3793.90 60
MCST-MVS87.37 2987.25 2987.73 2894.53 1772.46 3889.82 7993.82 1673.07 15584.86 6892.89 7776.22 1796.33 4184.89 4895.13 3694.40 39
ACMMPR87.44 2587.23 3088.08 1594.64 1373.59 1293.04 1293.20 3476.78 6784.66 7294.52 2368.81 9096.65 3084.53 5494.90 4194.00 55
region2R87.42 2787.20 3188.09 1494.63 1473.55 1393.03 1493.12 4076.73 7084.45 7794.52 2369.09 8496.70 2784.37 5694.83 4594.03 54
MTAPA87.23 3187.00 3287.90 2294.18 3574.25 586.58 19192.02 9279.45 1985.88 5394.80 1968.07 9696.21 4586.69 3695.34 3293.23 92
balanced_conf0386.78 3786.99 3386.15 6191.24 8367.61 14390.51 6292.90 5677.26 5187.44 4091.63 10371.27 6096.06 4985.62 4295.01 3794.78 22
HPM-MVScopyleft87.11 3386.98 3487.50 3893.88 3972.16 4592.19 3393.33 3176.07 8683.81 9093.95 5469.77 7896.01 5385.15 4494.66 4794.32 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS86.69 3986.95 3585.90 6990.76 9667.57 14592.83 1793.30 3279.67 1784.57 7692.27 8971.47 5695.02 9184.24 5993.46 6795.13 7
CP-MVS87.11 3386.92 3687.68 3494.20 3473.86 793.98 392.82 6376.62 7383.68 9194.46 2767.93 9895.95 5784.20 6094.39 5593.23 92
XVS87.18 3286.91 3788.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9294.17 3967.45 10396.60 3383.06 6894.50 5194.07 52
DeepC-MVS79.81 287.08 3586.88 3887.69 3391.16 8472.32 4390.31 7193.94 1477.12 5782.82 10394.23 3872.13 4797.09 1684.83 4995.37 3193.65 74
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS86.73 3886.67 3986.91 4994.11 3772.11 4792.37 2892.56 7474.50 11986.84 4894.65 2267.31 10595.77 5984.80 5092.85 7292.84 112
DeepC-MVS_fast79.65 386.91 3686.62 4087.76 2793.52 4672.37 4191.26 5193.04 4176.62 7384.22 8193.36 6671.44 5796.76 2580.82 9395.33 3394.16 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SPE-MVS-test86.29 4686.48 4185.71 7191.02 8867.21 15892.36 2993.78 1878.97 2883.51 9591.20 11870.65 6995.15 8281.96 8294.89 4294.77 23
EC-MVSNet86.01 4786.38 4284.91 9489.31 13866.27 17192.32 3093.63 2179.37 2084.17 8391.88 9669.04 8895.43 7083.93 6293.77 6393.01 107
mPP-MVS86.67 4186.32 4387.72 3094.41 2273.55 1392.74 2092.22 8776.87 6482.81 10494.25 3766.44 11396.24 4482.88 7394.28 5893.38 86
PGM-MVS86.68 4086.27 4487.90 2294.22 3373.38 1890.22 7393.04 4175.53 9583.86 8894.42 3167.87 10096.64 3182.70 7894.57 5093.66 70
train_agg86.43 4386.20 4587.13 4493.26 5272.96 2588.75 11891.89 10068.69 24485.00 6393.10 7074.43 2695.41 7284.97 4595.71 2593.02 106
CSCG86.41 4586.19 4687.07 4592.91 6172.48 3790.81 5893.56 2473.95 13083.16 9891.07 12375.94 1895.19 8079.94 10194.38 5693.55 81
PHI-MVS86.43 4386.17 4787.24 4190.88 9270.96 6892.27 3294.07 972.45 16185.22 6191.90 9569.47 8096.42 4083.28 6795.94 1994.35 41
dcpmvs_285.63 5886.15 4884.06 13191.71 7864.94 20086.47 19491.87 10273.63 13886.60 5093.02 7576.57 1591.87 22183.36 6592.15 8095.35 3
CANet86.45 4286.10 4987.51 3790.09 10770.94 7089.70 8592.59 7381.78 481.32 11991.43 11170.34 7097.23 1484.26 5793.36 6894.37 40
casdiffmvs_mvgpermissive85.99 4886.09 5085.70 7287.65 20767.22 15788.69 12293.04 4179.64 1885.33 5992.54 8673.30 3594.50 11083.49 6491.14 9495.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf_n85.92 5186.04 5185.57 7485.03 26069.51 9389.62 8990.58 13973.42 14687.75 3594.02 4772.85 4193.24 16490.37 390.75 9893.96 56
MVSMamba_PlusPlus85.99 4885.96 5286.05 6491.09 8567.64 14289.63 8892.65 6972.89 16084.64 7391.71 9971.85 4996.03 5084.77 5194.45 5494.49 35
APD-MVS_3200maxsize85.97 5085.88 5386.22 6092.69 6669.53 9291.93 3792.99 4973.54 14285.94 5294.51 2665.80 12395.61 6283.04 7092.51 7693.53 83
sasdasda85.91 5285.87 5486.04 6589.84 11769.44 9890.45 6893.00 4676.70 7188.01 3191.23 11573.28 3693.91 13381.50 8588.80 12694.77 23
canonicalmvs85.91 5285.87 5486.04 6589.84 11769.44 9890.45 6893.00 4676.70 7188.01 3191.23 11573.28 3693.91 13381.50 8588.80 12694.77 23
MSLP-MVS++85.43 6285.76 5684.45 10791.93 7570.24 7990.71 5992.86 5877.46 4784.22 8192.81 8167.16 10792.94 18480.36 9794.35 5790.16 201
test_fmvsmconf0.1_n85.61 5985.65 5785.50 7582.99 30769.39 10089.65 8690.29 15273.31 14987.77 3494.15 4171.72 5293.23 16590.31 490.67 10093.89 61
SR-MVS-dyc-post85.77 5585.61 5886.23 5993.06 5870.63 7691.88 3892.27 8373.53 14385.69 5694.45 2865.00 13195.56 6382.75 7491.87 8492.50 123
MGCFI-Net85.06 6985.51 5983.70 14589.42 13063.01 24189.43 9392.62 7276.43 7587.53 3891.34 11372.82 4293.42 15981.28 8888.74 12994.66 29
RE-MVS-def85.48 6093.06 5870.63 7691.88 3892.27 8373.53 14385.69 5694.45 2863.87 13782.75 7491.87 8492.50 123
ACMMPcopyleft85.89 5485.39 6187.38 3993.59 4572.63 3392.74 2093.18 3976.78 6780.73 12893.82 5664.33 13396.29 4282.67 7990.69 9993.23 92
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsm_n_192085.29 6585.34 6285.13 8586.12 23969.93 8688.65 12490.78 13569.97 21288.27 2693.98 5271.39 5891.54 23388.49 2390.45 10293.91 58
TSAR-MVS + GP.85.71 5785.33 6386.84 5091.34 8172.50 3689.07 10887.28 23576.41 7685.80 5490.22 14274.15 3195.37 7781.82 8391.88 8392.65 118
alignmvs85.48 6085.32 6485.96 6889.51 12669.47 9589.74 8392.47 7576.17 8487.73 3791.46 11070.32 7193.78 13981.51 8488.95 12394.63 30
DELS-MVS85.41 6385.30 6585.77 7088.49 16967.93 13685.52 22493.44 2778.70 2983.63 9489.03 17074.57 2495.71 6180.26 9994.04 6193.66 70
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CDPH-MVS85.76 5685.29 6687.17 4393.49 4771.08 6488.58 12692.42 7968.32 25184.61 7493.48 6172.32 4496.15 4879.00 10495.43 3094.28 45
casdiffmvspermissive85.11 6785.14 6785.01 8887.20 22165.77 18387.75 15592.83 6077.84 3784.36 8092.38 8872.15 4693.93 13281.27 8990.48 10195.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline84.93 7084.98 6884.80 9887.30 21965.39 19187.30 16992.88 5777.62 3984.04 8692.26 9071.81 5093.96 12681.31 8790.30 10495.03 9
UA-Net85.08 6884.96 6985.45 7692.07 7368.07 13389.78 8290.86 13482.48 284.60 7593.20 6969.35 8195.22 7971.39 18190.88 9793.07 101
HPM-MVS_fast85.35 6484.95 7086.57 5693.69 4270.58 7892.15 3591.62 11073.89 13382.67 10694.09 4362.60 15295.54 6580.93 9192.93 7193.57 79
MVS_111021_HR85.14 6684.75 7186.32 5891.65 7972.70 3085.98 20790.33 14976.11 8582.08 10991.61 10571.36 5994.17 12281.02 9092.58 7592.08 140
ETV-MVS84.90 7284.67 7285.59 7389.39 13368.66 12088.74 12092.64 7179.97 1584.10 8485.71 25969.32 8295.38 7480.82 9391.37 9192.72 113
fmvsm_l_conf0.5_n84.47 7484.54 7384.27 11785.42 25068.81 10988.49 12887.26 23668.08 25388.03 3093.49 6072.04 4891.77 22388.90 1789.14 12292.24 134
patch_mono-283.65 8384.54 7380.99 22490.06 11265.83 18084.21 25388.74 20571.60 17685.01 6292.44 8774.51 2583.50 34382.15 8192.15 8093.64 76
test_fmvsmconf0.01_n84.73 7384.52 7585.34 7880.25 34869.03 10389.47 9189.65 16973.24 15386.98 4694.27 3566.62 10993.23 16590.26 589.95 11293.78 67
3Dnovator+77.84 485.48 6084.47 7688.51 791.08 8673.49 1693.18 1193.78 1880.79 876.66 20193.37 6560.40 19696.75 2677.20 12393.73 6495.29 5
DPM-MVS84.93 7084.29 7786.84 5090.20 10573.04 2387.12 17393.04 4169.80 21682.85 10291.22 11773.06 3996.02 5276.72 13194.63 4891.46 157
fmvsm_l_conf0.5_n_a84.13 7684.16 7884.06 13185.38 25168.40 12488.34 13586.85 24667.48 26087.48 3993.40 6470.89 6491.61 22788.38 2589.22 12092.16 138
test_fmvsmvis_n_192084.02 7783.87 7984.49 10684.12 27669.37 10188.15 14387.96 21970.01 21083.95 8793.23 6868.80 9191.51 23688.61 2089.96 11192.57 119
EI-MVSNet-Vis-set84.19 7583.81 8085.31 7988.18 18067.85 13787.66 15789.73 16780.05 1482.95 9989.59 15570.74 6794.82 9980.66 9684.72 17993.28 91
fmvsm_s_conf0.5_n83.80 8083.71 8184.07 12986.69 23167.31 15289.46 9283.07 30171.09 18686.96 4793.70 5869.02 8991.47 23888.79 1884.62 18193.44 85
nrg03083.88 7883.53 8284.96 9086.77 22969.28 10290.46 6792.67 6674.79 11382.95 9991.33 11472.70 4393.09 17880.79 9579.28 25792.50 123
MG-MVS83.41 9083.45 8383.28 15792.74 6562.28 25388.17 14189.50 17375.22 10081.49 11892.74 8566.75 10895.11 8572.85 16991.58 8892.45 126
fmvsm_s_conf0.5_n_a83.63 8583.41 8484.28 11586.14 23868.12 13189.43 9382.87 30670.27 20587.27 4393.80 5769.09 8491.58 22988.21 2683.65 20193.14 99
fmvsm_s_conf0.1_n83.56 8783.38 8584.10 12384.86 26267.28 15389.40 9783.01 30270.67 19487.08 4493.96 5368.38 9391.45 23988.56 2284.50 18293.56 80
EI-MVSNet-UG-set83.81 7983.38 8585.09 8687.87 19667.53 14687.44 16589.66 16879.74 1682.23 10889.41 16470.24 7394.74 10279.95 10083.92 19392.99 109
CPTT-MVS83.73 8183.33 8784.92 9393.28 4970.86 7292.09 3690.38 14568.75 24379.57 14092.83 7960.60 19293.04 18280.92 9291.56 8990.86 174
HQP_MVS83.64 8483.14 8885.14 8390.08 10868.71 11691.25 5292.44 7679.12 2378.92 14991.00 12860.42 19495.38 7478.71 10886.32 16091.33 158
Effi-MVS+83.62 8683.08 8985.24 8188.38 17567.45 14788.89 11389.15 18775.50 9682.27 10788.28 19169.61 7994.45 11277.81 11787.84 13993.84 64
MVS_Test83.15 9583.06 9083.41 15486.86 22563.21 23786.11 20592.00 9474.31 12382.87 10189.44 16370.03 7493.21 16777.39 12288.50 13493.81 65
EPP-MVSNet83.40 9183.02 9184.57 10290.13 10664.47 21092.32 3090.73 13674.45 12279.35 14391.10 12169.05 8795.12 8372.78 17087.22 14794.13 49
fmvsm_s_conf0.1_n_a83.32 9382.99 9284.28 11583.79 28468.07 13389.34 9982.85 30769.80 21687.36 4294.06 4568.34 9491.56 23187.95 2783.46 20693.21 95
OPM-MVS83.50 8882.95 9385.14 8388.79 15970.95 6989.13 10791.52 11377.55 4480.96 12691.75 9860.71 18794.50 11079.67 10386.51 15889.97 217
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EPNet83.72 8282.92 9486.14 6384.22 27469.48 9491.05 5685.27 26681.30 676.83 19691.65 10166.09 11895.56 6376.00 13793.85 6293.38 86
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS-MVSNet83.15 9582.81 9584.18 12189.94 11563.30 23591.59 4388.46 21179.04 2579.49 14192.16 9165.10 12894.28 11567.71 21791.86 8694.95 10
EIA-MVS83.31 9482.80 9684.82 9689.59 12265.59 18688.21 13992.68 6574.66 11778.96 14786.42 24669.06 8695.26 7875.54 14390.09 10893.62 77
Vis-MVSNetpermissive83.46 8982.80 9685.43 7790.25 10468.74 11490.30 7290.13 15676.33 8280.87 12792.89 7761.00 18494.20 12072.45 17590.97 9593.35 88
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FIs82.07 11182.42 9881.04 22388.80 15858.34 29588.26 13893.49 2676.93 6278.47 16091.04 12469.92 7692.34 20469.87 19884.97 17692.44 127
VNet82.21 10882.41 9981.62 20590.82 9360.93 26884.47 24489.78 16476.36 8184.07 8591.88 9664.71 13290.26 26370.68 18888.89 12493.66 70
PAPM_NR83.02 9982.41 9984.82 9692.47 7066.37 16987.93 15091.80 10573.82 13477.32 18490.66 13367.90 9994.90 9570.37 19189.48 11793.19 96
VDD-MVS83.01 10082.36 10184.96 9091.02 8866.40 16888.91 11288.11 21477.57 4184.39 7993.29 6752.19 25593.91 13377.05 12688.70 13094.57 33
3Dnovator76.31 583.38 9282.31 10286.59 5587.94 19372.94 2890.64 6092.14 9177.21 5475.47 22692.83 7958.56 20394.72 10373.24 16692.71 7492.13 139
h-mvs3383.15 9582.19 10386.02 6790.56 9870.85 7388.15 14389.16 18676.02 8784.67 7091.39 11261.54 17095.50 6682.71 7675.48 30591.72 147
MVS_111021_LR82.61 10482.11 10484.11 12288.82 15671.58 5585.15 22786.16 25774.69 11580.47 13091.04 12462.29 15990.55 26180.33 9890.08 10990.20 200
RRT-MVS82.60 10682.10 10584.10 12387.98 19262.94 24687.45 16491.27 12077.42 4879.85 13690.28 13856.62 22194.70 10579.87 10288.15 13894.67 26
DP-MVS Recon83.11 9882.09 10686.15 6194.44 1970.92 7188.79 11692.20 8870.53 19979.17 14591.03 12664.12 13596.03 5068.39 21490.14 10791.50 153
MVSFormer82.85 10182.05 10785.24 8187.35 21370.21 8090.50 6490.38 14568.55 24681.32 11989.47 15861.68 16793.46 15678.98 10590.26 10592.05 141
FC-MVSNet-test81.52 12382.02 10880.03 24488.42 17455.97 33487.95 14893.42 2977.10 5877.38 18290.98 13069.96 7591.79 22268.46 21384.50 18292.33 128
HQP-MVS82.61 10482.02 10884.37 10989.33 13566.98 16189.17 10292.19 8976.41 7677.23 18790.23 14160.17 19795.11 8577.47 12085.99 16891.03 168
OMC-MVS82.69 10281.97 11084.85 9588.75 16167.42 14887.98 14690.87 13374.92 10979.72 13891.65 10162.19 16293.96 12675.26 14786.42 15993.16 97
diffmvspermissive82.10 10981.88 11182.76 18783.00 30563.78 22383.68 26189.76 16572.94 15882.02 11089.85 14765.96 12290.79 25782.38 8087.30 14693.71 69
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu82.62 10381.83 11284.96 9090.80 9469.76 9088.74 12091.70 10969.39 22478.96 14788.46 18665.47 12594.87 9874.42 15288.57 13190.24 199
CLD-MVS82.31 10781.65 11384.29 11488.47 17067.73 14085.81 21592.35 8175.78 9078.33 16386.58 24164.01 13694.35 11376.05 13687.48 14490.79 175
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_NR-MVSNet81.88 11481.54 11482.92 17688.46 17163.46 23187.13 17292.37 8080.19 1278.38 16189.14 16671.66 5593.05 18070.05 19476.46 28892.25 132
PS-MVSNAJss82.07 11181.31 11584.34 11286.51 23467.27 15489.27 10091.51 11471.75 17179.37 14290.22 14263.15 14694.27 11677.69 11882.36 22091.49 154
LPG-MVS_test82.08 11081.27 11684.50 10489.23 14268.76 11290.22 7391.94 9875.37 9876.64 20291.51 10754.29 23694.91 9378.44 11083.78 19489.83 222
LFMVS81.82 11681.23 11783.57 14991.89 7663.43 23389.84 7881.85 31877.04 6083.21 9693.10 7052.26 25493.43 15871.98 17689.95 11293.85 62
API-MVS81.99 11381.23 11784.26 11990.94 9070.18 8591.10 5589.32 17871.51 17878.66 15488.28 19165.26 12695.10 8864.74 24491.23 9387.51 286
UniMVSNet (Re)81.60 12281.11 11983.09 16788.38 17564.41 21287.60 15893.02 4578.42 3278.56 15788.16 19569.78 7793.26 16369.58 20176.49 28791.60 148
xiu_mvs_v2_base81.69 11981.05 12083.60 14789.15 14568.03 13584.46 24690.02 15870.67 19481.30 12286.53 24463.17 14594.19 12175.60 14288.54 13288.57 265
PS-MVSNAJ81.69 11981.02 12183.70 14589.51 12668.21 13084.28 25290.09 15770.79 19181.26 12385.62 26463.15 14694.29 11475.62 14188.87 12588.59 264
GeoE81.71 11881.01 12283.80 14489.51 12664.45 21188.97 11088.73 20671.27 18278.63 15589.76 14966.32 11593.20 17069.89 19786.02 16793.74 68
hse-mvs281.72 11780.94 12384.07 12988.72 16267.68 14185.87 21187.26 23676.02 8784.67 7088.22 19461.54 17093.48 15482.71 7673.44 33391.06 166
PAPR81.66 12180.89 12483.99 13990.27 10364.00 21886.76 18791.77 10868.84 24277.13 19489.50 15667.63 10194.88 9767.55 21988.52 13393.09 100
MAR-MVS81.84 11580.70 12585.27 8091.32 8271.53 5689.82 7990.92 13069.77 21878.50 15886.21 25062.36 15894.52 10965.36 23892.05 8289.77 225
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VDDNet81.52 12380.67 12684.05 13490.44 10164.13 21789.73 8485.91 26071.11 18583.18 9793.48 6150.54 28193.49 15373.40 16388.25 13694.54 34
ACMP74.13 681.51 12580.57 12784.36 11089.42 13068.69 11989.97 7791.50 11774.46 12175.04 24890.41 13753.82 24194.54 10777.56 11982.91 21289.86 221
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
VPA-MVSNet80.60 14480.55 12880.76 23088.07 18760.80 27186.86 18191.58 11275.67 9480.24 13289.45 16263.34 14090.25 26470.51 19079.22 25891.23 161
DU-MVS81.12 13080.52 12982.90 17787.80 19963.46 23187.02 17691.87 10279.01 2678.38 16189.07 16865.02 12993.05 18070.05 19476.46 28892.20 135
test_yl81.17 12880.47 13083.24 16089.13 14663.62 22486.21 20289.95 16172.43 16481.78 11589.61 15357.50 21393.58 14770.75 18686.90 15192.52 121
DCV-MVSNet81.17 12880.47 13083.24 16089.13 14663.62 22486.21 20289.95 16172.43 16481.78 11589.61 15357.50 21393.58 14770.75 18686.90 15192.52 121
PVSNet_Blended80.98 13180.34 13282.90 17788.85 15365.40 18984.43 24892.00 9467.62 25778.11 16885.05 27866.02 12094.27 11671.52 17889.50 11689.01 246
TranMVSNet+NR-MVSNet80.84 13480.31 13382.42 19287.85 19762.33 25187.74 15691.33 11980.55 977.99 17289.86 14665.23 12792.62 19067.05 22675.24 31592.30 130
jason81.39 12680.29 13484.70 10086.63 23369.90 8885.95 20886.77 24763.24 31181.07 12589.47 15861.08 18392.15 21078.33 11390.07 11092.05 141
jason: jason.
lupinMVS81.39 12680.27 13584.76 9987.35 21370.21 8085.55 22086.41 25162.85 31881.32 11988.61 18161.68 16792.24 20878.41 11290.26 10591.83 144
SDMVSNet80.38 15080.18 13680.99 22489.03 15164.94 20080.45 31089.40 17575.19 10276.61 20489.98 14460.61 19187.69 30776.83 12983.55 20390.33 195
PVSNet_BlendedMVS80.60 14480.02 13782.36 19488.85 15365.40 18986.16 20492.00 9469.34 22678.11 16886.09 25466.02 12094.27 11671.52 17882.06 22387.39 288
EI-MVSNet80.52 14879.98 13882.12 19584.28 27263.19 23986.41 19588.95 19774.18 12778.69 15287.54 21166.62 10992.43 19872.57 17380.57 24190.74 179
Fast-Effi-MVS+80.81 13679.92 13983.47 15088.85 15364.51 20785.53 22289.39 17670.79 19178.49 15985.06 27767.54 10293.58 14767.03 22786.58 15692.32 129
FA-MVS(test-final)80.96 13279.91 14084.10 12388.30 17865.01 19884.55 24390.01 15973.25 15279.61 13987.57 20858.35 20594.72 10371.29 18286.25 16292.56 120
CANet_DTU80.61 14379.87 14182.83 17985.60 24763.17 24087.36 16688.65 20776.37 8075.88 21988.44 18753.51 24493.07 17973.30 16489.74 11592.25 132
ACMM73.20 880.78 14179.84 14283.58 14889.31 13868.37 12589.99 7691.60 11170.28 20477.25 18589.66 15153.37 24693.53 15274.24 15582.85 21388.85 254
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-OURS-SEG-HR80.81 13679.76 14383.96 14185.60 24768.78 11183.54 26790.50 14270.66 19776.71 20091.66 10060.69 18891.26 24476.94 12781.58 22891.83 144
xiu_mvs_v1_base_debu80.80 13879.72 14484.03 13687.35 21370.19 8285.56 21788.77 20169.06 23681.83 11188.16 19550.91 27592.85 18678.29 11487.56 14189.06 241
xiu_mvs_v1_base80.80 13879.72 14484.03 13687.35 21370.19 8285.56 21788.77 20169.06 23681.83 11188.16 19550.91 27592.85 18678.29 11487.56 14189.06 241
xiu_mvs_v1_base_debi80.80 13879.72 14484.03 13687.35 21370.19 8285.56 21788.77 20169.06 23681.83 11188.16 19550.91 27592.85 18678.29 11487.56 14189.06 241
UGNet80.83 13579.59 14784.54 10388.04 18868.09 13289.42 9588.16 21376.95 6176.22 21289.46 16049.30 29693.94 12968.48 21290.31 10391.60 148
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
114514_t80.68 14279.51 14884.20 12094.09 3867.27 15489.64 8791.11 12758.75 35574.08 26290.72 13258.10 20695.04 9069.70 19989.42 11890.30 197
QAPM80.88 13379.50 14985.03 8788.01 19168.97 10791.59 4392.00 9466.63 27275.15 24492.16 9157.70 21095.45 6863.52 25088.76 12890.66 181
AdaColmapbinary80.58 14779.42 15084.06 13193.09 5768.91 10889.36 9888.97 19669.27 22775.70 22289.69 15057.20 21795.77 5963.06 25588.41 13587.50 287
NR-MVSNet80.23 15479.38 15182.78 18587.80 19963.34 23486.31 19991.09 12879.01 2672.17 28689.07 16867.20 10692.81 18966.08 23375.65 30192.20 135
mvsmamba80.60 14479.38 15184.27 11789.74 12067.24 15687.47 16286.95 24270.02 20975.38 23288.93 17151.24 27292.56 19375.47 14589.22 12093.00 108
IterMVS-LS80.06 15779.38 15182.11 19685.89 24263.20 23886.79 18489.34 17774.19 12675.45 22986.72 23166.62 10992.39 20072.58 17276.86 28290.75 178
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_djsdf80.30 15379.32 15483.27 15883.98 28065.37 19290.50 6490.38 14568.55 24676.19 21388.70 17756.44 22293.46 15678.98 10580.14 24790.97 171
v2v48280.23 15479.29 15583.05 17083.62 28864.14 21687.04 17589.97 16073.61 13978.18 16787.22 21961.10 18293.82 13776.11 13476.78 28591.18 162
ECVR-MVScopyleft79.61 16379.26 15680.67 23290.08 10854.69 34987.89 15277.44 35874.88 11080.27 13192.79 8248.96 30292.45 19768.55 21192.50 7794.86 17
XVG-OURS80.41 14979.23 15783.97 14085.64 24669.02 10583.03 27890.39 14471.09 18677.63 17891.49 10954.62 23591.35 24275.71 13983.47 20591.54 151
WR-MVS79.49 16779.22 15880.27 24088.79 15958.35 29485.06 23088.61 20978.56 3077.65 17788.34 18963.81 13990.66 26064.98 24277.22 27791.80 146
test111179.43 17079.18 15980.15 24289.99 11353.31 36287.33 16877.05 36275.04 10580.23 13392.77 8448.97 30192.33 20568.87 20892.40 7994.81 20
mvs_anonymous79.42 17179.11 16080.34 23884.45 27157.97 30182.59 28087.62 22867.40 26176.17 21688.56 18468.47 9289.59 27670.65 18986.05 16693.47 84
v114480.03 15879.03 16183.01 17283.78 28564.51 20787.11 17490.57 14171.96 17078.08 17086.20 25161.41 17493.94 12974.93 14877.23 27690.60 184
v879.97 16079.02 16282.80 18284.09 27764.50 20987.96 14790.29 15274.13 12975.24 24186.81 22862.88 15193.89 13674.39 15375.40 31090.00 213
ab-mvs79.51 16678.97 16381.14 22088.46 17160.91 26983.84 25889.24 18370.36 20179.03 14688.87 17463.23 14490.21 26565.12 24082.57 21892.28 131
Anonymous2024052980.19 15678.89 16484.10 12390.60 9764.75 20488.95 11190.90 13165.97 28080.59 12991.17 12049.97 28693.73 14569.16 20582.70 21793.81 65
PCF-MVS73.52 780.38 15078.84 16585.01 8887.71 20468.99 10683.65 26291.46 11863.00 31577.77 17690.28 13866.10 11795.09 8961.40 27488.22 13790.94 172
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v1079.74 16278.67 16682.97 17584.06 27864.95 19987.88 15390.62 13873.11 15475.11 24586.56 24261.46 17394.05 12573.68 15875.55 30389.90 219
VPNet78.69 19078.66 16778.76 26788.31 17755.72 33884.45 24786.63 24976.79 6678.26 16490.55 13559.30 19989.70 27566.63 22877.05 27990.88 173
BH-untuned79.47 16878.60 16882.05 19789.19 14465.91 17886.07 20688.52 21072.18 16675.42 23087.69 20561.15 18193.54 15160.38 28186.83 15386.70 307
Effi-MVS+-dtu80.03 15878.57 16984.42 10885.13 25868.74 11488.77 11788.10 21574.99 10674.97 24983.49 31057.27 21693.36 16073.53 16080.88 23591.18 162
WR-MVS_H78.51 19478.49 17078.56 27288.02 18956.38 32888.43 12992.67 6677.14 5673.89 26387.55 21066.25 11689.24 28358.92 29573.55 33190.06 211
Vis-MVSNet (Re-imp)78.36 19778.45 17178.07 28388.64 16551.78 37286.70 18879.63 34374.14 12875.11 24590.83 13161.29 17889.75 27358.10 30591.60 8792.69 116
BH-RMVSNet79.61 16378.44 17283.14 16589.38 13465.93 17784.95 23387.15 23973.56 14178.19 16689.79 14856.67 22093.36 16059.53 28986.74 15490.13 203
v119279.59 16578.43 17383.07 16983.55 29064.52 20686.93 17990.58 13970.83 19077.78 17585.90 25559.15 20093.94 12973.96 15777.19 27890.76 177
v14419279.47 16878.37 17482.78 18583.35 29363.96 21986.96 17790.36 14869.99 21177.50 17985.67 26260.66 18993.77 14174.27 15476.58 28690.62 182
CP-MVSNet78.22 19978.34 17577.84 28587.83 19854.54 35187.94 14991.17 12477.65 3873.48 26888.49 18562.24 16188.43 29862.19 26574.07 32490.55 186
Baseline_NR-MVSNet78.15 20378.33 17677.61 29085.79 24356.21 33286.78 18585.76 26273.60 14077.93 17387.57 20865.02 12988.99 28767.14 22575.33 31287.63 282
OpenMVScopyleft72.83 1079.77 16178.33 17684.09 12785.17 25469.91 8790.57 6190.97 12966.70 26672.17 28691.91 9454.70 23393.96 12661.81 27190.95 9688.41 269
UniMVSNet_ETH3D79.10 18078.24 17881.70 20486.85 22660.24 28087.28 17088.79 20074.25 12576.84 19590.53 13649.48 29291.56 23167.98 21582.15 22193.29 90
V4279.38 17478.24 17882.83 17981.10 34065.50 18885.55 22089.82 16371.57 17778.21 16586.12 25360.66 18993.18 17375.64 14075.46 30789.81 224
mamv476.81 23278.23 18072.54 34286.12 23965.75 18478.76 33382.07 31564.12 30272.97 27491.02 12767.97 9768.08 40683.04 7078.02 26983.80 352
PS-CasMVS78.01 20878.09 18177.77 28787.71 20454.39 35388.02 14591.22 12177.50 4673.26 27088.64 18060.73 18688.41 29961.88 26973.88 32890.53 187
v192192079.22 17678.03 18282.80 18283.30 29563.94 22086.80 18390.33 14969.91 21477.48 18085.53 26558.44 20493.75 14373.60 15976.85 28390.71 180
jajsoiax79.29 17577.96 18383.27 15884.68 26566.57 16789.25 10190.16 15569.20 23275.46 22889.49 15745.75 32793.13 17676.84 12880.80 23790.11 205
TAPA-MVS73.13 979.15 17877.94 18482.79 18489.59 12262.99 24588.16 14291.51 11465.77 28177.14 19391.09 12260.91 18593.21 16750.26 35287.05 14992.17 137
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tttt051779.40 17277.91 18583.90 14388.10 18563.84 22188.37 13484.05 28371.45 17976.78 19889.12 16749.93 28994.89 9670.18 19383.18 21092.96 110
c3_l78.75 18777.91 18581.26 21682.89 30961.56 26284.09 25689.13 18969.97 21275.56 22484.29 29266.36 11492.09 21273.47 16275.48 30590.12 204
MVSTER79.01 18277.88 18782.38 19383.07 30264.80 20384.08 25788.95 19769.01 23978.69 15287.17 22254.70 23392.43 19874.69 14980.57 24189.89 220
tt080578.73 18877.83 18881.43 21085.17 25460.30 27989.41 9690.90 13171.21 18377.17 19288.73 17646.38 31693.21 16772.57 17378.96 25990.79 175
X-MVStestdata80.37 15277.83 18888.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9212.47 41867.45 10396.60 3383.06 6894.50 5194.07 52
v14878.72 18977.80 19081.47 20982.73 31261.96 25786.30 20088.08 21673.26 15176.18 21485.47 26762.46 15692.36 20271.92 17773.82 32990.09 207
v124078.99 18377.78 19182.64 18883.21 29763.54 22886.62 19090.30 15169.74 22177.33 18385.68 26157.04 21893.76 14273.13 16776.92 28090.62 182
mvs_tets79.13 17977.77 19283.22 16284.70 26466.37 16989.17 10290.19 15469.38 22575.40 23189.46 16044.17 33793.15 17476.78 13080.70 23990.14 202
miper_ehance_all_eth78.59 19377.76 19381.08 22282.66 31461.56 26283.65 26289.15 18768.87 24175.55 22583.79 30366.49 11292.03 21373.25 16576.39 29089.64 228
thisisatest053079.40 17277.76 19384.31 11387.69 20665.10 19787.36 16684.26 28170.04 20877.42 18188.26 19349.94 28794.79 10170.20 19284.70 18093.03 105
CDS-MVSNet79.07 18177.70 19583.17 16487.60 20868.23 12984.40 25086.20 25667.49 25976.36 20986.54 24361.54 17090.79 25761.86 27087.33 14590.49 189
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Anonymous2023121178.97 18477.69 19682.81 18190.54 9964.29 21490.11 7591.51 11465.01 29276.16 21788.13 20050.56 28093.03 18369.68 20077.56 27591.11 164
PEN-MVS77.73 21477.69 19677.84 28587.07 22453.91 35687.91 15191.18 12377.56 4373.14 27288.82 17561.23 17989.17 28459.95 28472.37 33990.43 191
AUN-MVS79.21 17777.60 19884.05 13488.71 16367.61 14385.84 21387.26 23669.08 23577.23 18788.14 19953.20 24893.47 15575.50 14473.45 33291.06 166
v7n78.97 18477.58 19983.14 16583.45 29265.51 18788.32 13691.21 12273.69 13772.41 28286.32 24957.93 20793.81 13869.18 20475.65 30190.11 205
TAMVS78.89 18677.51 20083.03 17187.80 19967.79 13984.72 23785.05 27067.63 25676.75 19987.70 20462.25 16090.82 25658.53 30087.13 14890.49 189
sd_testset77.70 21777.40 20178.60 27089.03 15160.02 28279.00 32985.83 26175.19 10276.61 20489.98 14454.81 22885.46 32862.63 26183.55 20390.33 195
GBi-Net78.40 19577.40 20181.40 21287.60 20863.01 24188.39 13189.28 17971.63 17375.34 23487.28 21554.80 22991.11 24762.72 25779.57 25190.09 207
test178.40 19577.40 20181.40 21287.60 20863.01 24188.39 13189.28 17971.63 17375.34 23487.28 21554.80 22991.11 24762.72 25779.57 25190.09 207
BH-w/o78.21 20077.33 20480.84 22888.81 15765.13 19684.87 23487.85 22469.75 21974.52 25784.74 28461.34 17693.11 17758.24 30485.84 17084.27 344
FMVSNet278.20 20177.21 20581.20 21887.60 20862.89 24787.47 16289.02 19271.63 17375.29 24087.28 21554.80 22991.10 25062.38 26279.38 25589.61 229
anonymousdsp78.60 19277.15 20682.98 17480.51 34667.08 15987.24 17189.53 17265.66 28375.16 24387.19 22152.52 24992.25 20777.17 12479.34 25689.61 229
HY-MVS69.67 1277.95 20977.15 20680.36 23787.57 21260.21 28183.37 26987.78 22666.11 27675.37 23387.06 22663.27 14290.48 26261.38 27582.43 21990.40 193
cl2278.07 20577.01 20881.23 21782.37 32161.83 25983.55 26687.98 21868.96 24075.06 24783.87 29961.40 17591.88 22073.53 16076.39 29089.98 216
Anonymous20240521178.25 19877.01 20881.99 19991.03 8760.67 27384.77 23683.90 28570.65 19880.00 13591.20 11841.08 35691.43 24065.21 23985.26 17493.85 62
MVS78.19 20276.99 21081.78 20285.66 24566.99 16084.66 23890.47 14355.08 37572.02 28885.27 27063.83 13894.11 12466.10 23289.80 11484.24 345
LCM-MVSNet-Re77.05 22776.94 21177.36 29487.20 22151.60 37380.06 31480.46 33375.20 10167.69 33086.72 23162.48 15588.98 28863.44 25289.25 11991.51 152
miper_enhance_ethall77.87 21276.86 21280.92 22781.65 32861.38 26482.68 27988.98 19465.52 28575.47 22682.30 33065.76 12492.00 21572.95 16876.39 29089.39 234
FMVSNet377.88 21176.85 21380.97 22686.84 22762.36 25086.52 19388.77 20171.13 18475.34 23486.66 23754.07 23991.10 25062.72 25779.57 25189.45 233
DTE-MVSNet76.99 22876.80 21477.54 29386.24 23653.06 36587.52 16090.66 13777.08 5972.50 28088.67 17960.48 19389.52 27757.33 31270.74 35190.05 212
CNLPA78.08 20476.79 21581.97 20090.40 10271.07 6587.59 15984.55 27566.03 27972.38 28389.64 15257.56 21286.04 32059.61 28883.35 20788.79 257
cl____77.72 21576.76 21680.58 23382.49 31860.48 27683.09 27487.87 22269.22 23074.38 26085.22 27362.10 16391.53 23471.09 18375.41 30989.73 227
DIV-MVS_self_test77.72 21576.76 21680.58 23382.48 31960.48 27683.09 27487.86 22369.22 23074.38 26085.24 27162.10 16391.53 23471.09 18375.40 31089.74 226
baseline176.98 22976.75 21877.66 28888.13 18355.66 33985.12 22881.89 31673.04 15676.79 19788.90 17262.43 15787.78 30663.30 25471.18 34989.55 231
eth_miper_zixun_eth77.92 21076.69 21981.61 20783.00 30561.98 25683.15 27289.20 18569.52 22374.86 25184.35 29161.76 16692.56 19371.50 18072.89 33790.28 198
pm-mvs177.25 22676.68 22078.93 26584.22 27458.62 29286.41 19588.36 21271.37 18073.31 26988.01 20161.22 18089.15 28564.24 24873.01 33689.03 245
ET-MVSNet_ETH3D78.63 19176.63 22184.64 10186.73 23069.47 9585.01 23184.61 27469.54 22266.51 34886.59 23950.16 28491.75 22476.26 13384.24 19092.69 116
test250677.30 22576.49 22279.74 25090.08 10852.02 36687.86 15463.10 40474.88 11080.16 13492.79 8238.29 37092.35 20368.74 21092.50 7794.86 17
Fast-Effi-MVS+-dtu78.02 20776.49 22282.62 18983.16 30166.96 16386.94 17887.45 23372.45 16171.49 29484.17 29654.79 23291.58 22967.61 21880.31 24489.30 237
1112_ss77.40 22376.43 22480.32 23989.11 15060.41 27883.65 26287.72 22762.13 32873.05 27386.72 23162.58 15489.97 26962.11 26880.80 23790.59 185
PAPM77.68 21876.40 22581.51 20887.29 22061.85 25883.78 25989.59 17064.74 29471.23 29588.70 17762.59 15393.66 14652.66 33787.03 15089.01 246
PLCcopyleft70.83 1178.05 20676.37 22683.08 16891.88 7767.80 13888.19 14089.46 17464.33 30069.87 31288.38 18853.66 24293.58 14758.86 29682.73 21587.86 278
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TR-MVS77.44 22176.18 22781.20 21888.24 17963.24 23684.61 24186.40 25267.55 25877.81 17486.48 24554.10 23893.15 17457.75 30882.72 21687.20 293
FMVSNet177.44 22176.12 22881.40 21286.81 22863.01 24188.39 13189.28 17970.49 20074.39 25987.28 21549.06 30091.11 24760.91 27878.52 26290.09 207
MonoMVSNet76.49 24075.80 22978.58 27181.55 33158.45 29386.36 19886.22 25574.87 11274.73 25383.73 30551.79 26788.73 29370.78 18572.15 34288.55 266
test_vis1_n_192075.52 25475.78 23074.75 32379.84 35457.44 31283.26 27085.52 26462.83 31979.34 14486.17 25245.10 33279.71 36278.75 10781.21 23287.10 300
CHOSEN 1792x268877.63 21975.69 23183.44 15189.98 11468.58 12278.70 33487.50 23156.38 37075.80 22186.84 22758.67 20291.40 24161.58 27385.75 17290.34 194
FE-MVS77.78 21375.68 23284.08 12888.09 18666.00 17583.13 27387.79 22568.42 25078.01 17185.23 27245.50 33095.12 8359.11 29385.83 17191.11 164
WTY-MVS75.65 25275.68 23275.57 31086.40 23556.82 31977.92 34682.40 31165.10 28976.18 21487.72 20363.13 14980.90 35860.31 28281.96 22489.00 248
testing9176.54 23575.66 23479.18 26288.43 17355.89 33581.08 29783.00 30373.76 13675.34 23484.29 29246.20 32190.07 26764.33 24684.50 18291.58 150
XXY-MVS75.41 25775.56 23574.96 31983.59 28957.82 30580.59 30783.87 28666.54 27374.93 25088.31 19063.24 14380.09 36162.16 26676.85 28386.97 301
thres100view90076.50 23775.55 23679.33 25889.52 12556.99 31785.83 21483.23 29673.94 13176.32 21087.12 22351.89 26491.95 21648.33 36183.75 19789.07 239
thres600view776.50 23775.44 23779.68 25289.40 13257.16 31485.53 22283.23 29673.79 13576.26 21187.09 22451.89 26491.89 21948.05 36683.72 20090.00 213
Test_1112_low_res76.40 24275.44 23779.27 25989.28 14058.09 29781.69 28987.07 24059.53 34772.48 28186.67 23661.30 17789.33 28060.81 28080.15 24690.41 192
HyFIR lowres test77.53 22075.40 23983.94 14289.59 12266.62 16580.36 31188.64 20856.29 37176.45 20685.17 27457.64 21193.28 16261.34 27683.10 21191.91 143
thisisatest051577.33 22475.38 24083.18 16385.27 25363.80 22282.11 28583.27 29565.06 29075.91 21883.84 30149.54 29194.27 11667.24 22386.19 16391.48 155
tfpn200view976.42 24175.37 24179.55 25789.13 14657.65 30885.17 22583.60 28873.41 14776.45 20686.39 24752.12 25691.95 21648.33 36183.75 19789.07 239
thres40076.50 23775.37 24179.86 24789.13 14657.65 30885.17 22583.60 28873.41 14776.45 20686.39 24752.12 25691.95 21648.33 36183.75 19790.00 213
131476.53 23675.30 24380.21 24183.93 28162.32 25284.66 23888.81 19960.23 34070.16 30684.07 29855.30 22690.73 25967.37 22183.21 20987.59 285
GA-MVS76.87 23175.17 24481.97 20082.75 31162.58 24881.44 29486.35 25472.16 16874.74 25282.89 32146.20 32192.02 21468.85 20981.09 23391.30 160
testing9976.09 24775.12 24579.00 26388.16 18155.50 34180.79 30181.40 32273.30 15075.17 24284.27 29444.48 33590.02 26864.28 24784.22 19191.48 155
EPNet_dtu75.46 25574.86 24677.23 29782.57 31654.60 35086.89 18083.09 30071.64 17266.25 35085.86 25755.99 22388.04 30354.92 32686.55 15789.05 244
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LS3D76.95 23074.82 24783.37 15590.45 10067.36 15189.15 10686.94 24361.87 33069.52 31590.61 13451.71 26894.53 10846.38 37386.71 15588.21 272
cascas76.72 23474.64 24882.99 17385.78 24465.88 17982.33 28289.21 18460.85 33672.74 27681.02 34147.28 30993.75 14367.48 22085.02 17589.34 236
DP-MVS76.78 23374.57 24983.42 15293.29 4869.46 9788.55 12783.70 28763.98 30770.20 30388.89 17354.01 24094.80 10046.66 37081.88 22686.01 319
TransMVSNet (Re)75.39 25974.56 25077.86 28485.50 24957.10 31686.78 18586.09 25972.17 16771.53 29387.34 21463.01 15089.31 28156.84 31761.83 37887.17 294
LTVRE_ROB69.57 1376.25 24474.54 25181.41 21188.60 16664.38 21379.24 32489.12 19070.76 19369.79 31487.86 20249.09 29993.20 17056.21 32280.16 24586.65 308
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
thres20075.55 25374.47 25278.82 26687.78 20257.85 30483.07 27683.51 29172.44 16375.84 22084.42 28752.08 25991.75 22447.41 36883.64 20286.86 303
MVP-Stereo76.12 24574.46 25381.13 22185.37 25269.79 8984.42 24987.95 22065.03 29167.46 33385.33 26953.28 24791.73 22658.01 30683.27 20881.85 371
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
reproduce_monomvs75.40 25874.38 25478.46 27783.92 28257.80 30683.78 25986.94 24373.47 14572.25 28584.47 28638.74 36689.27 28275.32 14670.53 35288.31 270
F-COLMAP76.38 24374.33 25582.50 19189.28 14066.95 16488.41 13089.03 19164.05 30566.83 34088.61 18146.78 31392.89 18557.48 30978.55 26187.67 281
XVG-ACMP-BASELINE76.11 24674.27 25681.62 20583.20 29864.67 20583.60 26589.75 16669.75 21971.85 28987.09 22432.78 38392.11 21169.99 19680.43 24388.09 274
testing1175.14 26174.01 25778.53 27488.16 18156.38 32880.74 30480.42 33470.67 19472.69 27983.72 30643.61 34189.86 27062.29 26483.76 19689.36 235
ACMH+68.96 1476.01 24874.01 25782.03 19888.60 16665.31 19388.86 11487.55 22970.25 20667.75 32987.47 21341.27 35493.19 17258.37 30275.94 29887.60 283
ACMH67.68 1675.89 24973.93 25981.77 20388.71 16366.61 16688.62 12589.01 19369.81 21566.78 34186.70 23541.95 35391.51 23655.64 32378.14 26887.17 294
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CostFormer75.24 26073.90 26079.27 25982.65 31558.27 29680.80 30082.73 30961.57 33175.33 23883.13 31655.52 22491.07 25364.98 24278.34 26788.45 267
IterMVS-SCA-FT75.43 25673.87 26180.11 24382.69 31364.85 20281.57 29183.47 29269.16 23370.49 30084.15 29751.95 26288.15 30169.23 20372.14 34387.34 290
baseline275.70 25173.83 26281.30 21583.26 29661.79 26082.57 28180.65 32966.81 26366.88 33983.42 31157.86 20992.19 20963.47 25179.57 25189.91 218
test_cas_vis1_n_192073.76 27473.74 26373.81 33175.90 37559.77 28480.51 30882.40 31158.30 35781.62 11785.69 26044.35 33676.41 38076.29 13278.61 26085.23 332
sss73.60 27573.64 26473.51 33382.80 31055.01 34776.12 35381.69 31962.47 32474.68 25485.85 25857.32 21578.11 36960.86 27980.93 23487.39 288
pmmvs674.69 26373.39 26578.61 26981.38 33557.48 31186.64 18987.95 22064.99 29370.18 30486.61 23850.43 28289.52 27762.12 26770.18 35488.83 255
IB-MVS68.01 1575.85 25073.36 26683.31 15684.76 26366.03 17383.38 26885.06 26970.21 20769.40 31681.05 34045.76 32694.66 10665.10 24175.49 30489.25 238
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
D2MVS74.82 26273.21 26779.64 25479.81 35562.56 24980.34 31287.35 23464.37 29968.86 32182.66 32546.37 31790.10 26667.91 21681.24 23186.25 312
tfpnnormal74.39 26473.16 26878.08 28286.10 24158.05 29884.65 24087.53 23070.32 20371.22 29685.63 26354.97 22789.86 27043.03 38475.02 31786.32 311
miper_lstm_enhance74.11 26973.11 26977.13 29880.11 35059.62 28672.23 37486.92 24566.76 26570.40 30182.92 32056.93 21982.92 34769.06 20672.63 33888.87 253
mmtdpeth74.16 26873.01 27077.60 29283.72 28761.13 26585.10 22985.10 26872.06 16977.21 19180.33 34943.84 33985.75 32277.14 12552.61 39685.91 322
IterMVS74.29 26572.94 27178.35 27881.53 33263.49 23081.58 29082.49 31068.06 25469.99 30983.69 30751.66 26985.54 32665.85 23571.64 34686.01 319
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WBMVS73.43 27772.81 27275.28 31687.91 19450.99 37978.59 33781.31 32465.51 28774.47 25884.83 28146.39 31586.68 31358.41 30177.86 27088.17 273
MS-PatchMatch73.83 27372.67 27377.30 29683.87 28366.02 17481.82 28684.66 27361.37 33468.61 32482.82 32347.29 30888.21 30059.27 29084.32 18977.68 386
testing22274.04 27072.66 27478.19 28087.89 19555.36 34281.06 29879.20 34771.30 18174.65 25583.57 30939.11 36588.67 29551.43 34485.75 17290.53 187
CVMVSNet72.99 28672.58 27574.25 32784.28 27250.85 38086.41 19583.45 29344.56 39573.23 27187.54 21149.38 29485.70 32365.90 23478.44 26486.19 314
test-LLR72.94 28772.43 27674.48 32481.35 33658.04 29978.38 33877.46 35666.66 26769.95 31079.00 36248.06 30579.24 36366.13 23084.83 17786.15 315
OurMVSNet-221017-074.26 26672.42 27779.80 24983.76 28659.59 28785.92 21086.64 24866.39 27466.96 33887.58 20739.46 36291.60 22865.76 23669.27 35788.22 271
SCA74.22 26772.33 27879.91 24684.05 27962.17 25479.96 31779.29 34666.30 27572.38 28380.13 35151.95 26288.60 29659.25 29177.67 27488.96 250
UBG73.08 28472.27 27975.51 31288.02 18951.29 37778.35 34177.38 35965.52 28573.87 26482.36 32845.55 32886.48 31655.02 32584.39 18888.75 259
tpmrst72.39 28972.13 28073.18 33780.54 34549.91 38479.91 31879.08 34863.11 31371.69 29179.95 35355.32 22582.77 34865.66 23773.89 32786.87 302
pmmvs474.03 27271.91 28180.39 23681.96 32468.32 12681.45 29382.14 31359.32 34869.87 31285.13 27552.40 25288.13 30260.21 28374.74 32084.73 341
EG-PatchMatch MVS74.04 27071.82 28280.71 23184.92 26167.42 14885.86 21288.08 21666.04 27864.22 36283.85 30035.10 37992.56 19357.44 31080.83 23682.16 370
tpm72.37 29171.71 28374.35 32682.19 32252.00 36779.22 32577.29 36064.56 29672.95 27583.68 30851.35 27083.26 34658.33 30375.80 29987.81 279
WB-MVSnew71.96 29671.65 28472.89 33884.67 26851.88 37082.29 28377.57 35562.31 32573.67 26683.00 31853.49 24581.10 35745.75 37782.13 22285.70 325
UWE-MVS72.13 29471.49 28574.03 32986.66 23247.70 38881.40 29576.89 36463.60 31075.59 22384.22 29539.94 36185.62 32548.98 35886.13 16588.77 258
CL-MVSNet_self_test72.37 29171.46 28675.09 31879.49 36153.53 35880.76 30385.01 27169.12 23470.51 29982.05 33457.92 20884.13 33852.27 33966.00 37087.60 283
tpm273.26 28171.46 28678.63 26883.34 29456.71 32280.65 30680.40 33556.63 36973.55 26782.02 33551.80 26691.24 24556.35 32178.42 26587.95 275
RPSCF73.23 28271.46 28678.54 27382.50 31759.85 28382.18 28482.84 30858.96 35271.15 29789.41 16445.48 33184.77 33558.82 29771.83 34591.02 170
PatchmatchNetpermissive73.12 28371.33 28978.49 27683.18 29960.85 27079.63 31978.57 35064.13 30171.73 29079.81 35651.20 27385.97 32157.40 31176.36 29588.66 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CR-MVSNet73.37 27871.27 29079.67 25381.32 33865.19 19475.92 35580.30 33659.92 34372.73 27781.19 33852.50 25086.69 31259.84 28577.71 27287.11 298
SixPastTwentyTwo73.37 27871.26 29179.70 25185.08 25957.89 30385.57 21683.56 29071.03 18865.66 35285.88 25642.10 35192.57 19259.11 29363.34 37688.65 263
ETVMVS72.25 29371.05 29275.84 30687.77 20351.91 36979.39 32274.98 37169.26 22873.71 26582.95 31940.82 35886.14 31946.17 37484.43 18789.47 232
MSDG73.36 28070.99 29380.49 23584.51 27065.80 18180.71 30586.13 25865.70 28265.46 35383.74 30444.60 33390.91 25551.13 34576.89 28184.74 340
PatchMatch-RL72.38 29070.90 29476.80 30188.60 16667.38 15079.53 32076.17 36862.75 32169.36 31782.00 33645.51 32984.89 33453.62 33280.58 24078.12 385
PVSNet64.34 1872.08 29570.87 29575.69 30886.21 23756.44 32674.37 36880.73 32862.06 32970.17 30582.23 33242.86 34583.31 34554.77 32784.45 18687.32 291
dmvs_re71.14 30070.58 29672.80 33981.96 32459.68 28575.60 35979.34 34568.55 24669.27 31980.72 34649.42 29376.54 37752.56 33877.79 27182.19 369
test_fmvs170.93 30370.52 29772.16 34473.71 38655.05 34680.82 29978.77 34951.21 38778.58 15684.41 28831.20 38876.94 37575.88 13880.12 24884.47 343
RPMNet73.51 27670.49 29882.58 19081.32 33865.19 19475.92 35592.27 8357.60 36372.73 27776.45 37852.30 25395.43 7048.14 36577.71 27287.11 298
test_040272.79 28870.44 29979.84 24888.13 18365.99 17685.93 20984.29 27965.57 28467.40 33585.49 26646.92 31292.61 19135.88 39874.38 32380.94 376
COLMAP_ROBcopyleft66.92 1773.01 28570.41 30080.81 22987.13 22365.63 18588.30 13784.19 28262.96 31663.80 36687.69 20538.04 37192.56 19346.66 37074.91 31884.24 345
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test-mter71.41 29870.39 30174.48 32481.35 33658.04 29978.38 33877.46 35660.32 33969.95 31079.00 36236.08 37779.24 36366.13 23084.83 17786.15 315
test_fmvs1_n70.86 30470.24 30272.73 34072.51 39755.28 34481.27 29679.71 34251.49 38678.73 15184.87 28027.54 39377.02 37476.06 13579.97 24985.88 323
pmmvs571.55 29770.20 30375.61 30977.83 36856.39 32781.74 28880.89 32557.76 36167.46 33384.49 28549.26 29785.32 33057.08 31475.29 31385.11 336
MDTV_nov1_ep1369.97 30483.18 29953.48 35977.10 35180.18 33960.45 33769.33 31880.44 34748.89 30386.90 31151.60 34278.51 263
MIMVSNet70.69 30669.30 30574.88 32084.52 26956.35 33075.87 35779.42 34464.59 29567.76 32882.41 32741.10 35581.54 35446.64 37281.34 22986.75 306
tpmvs71.09 30169.29 30676.49 30282.04 32356.04 33378.92 33181.37 32364.05 30567.18 33778.28 36849.74 29089.77 27249.67 35572.37 33983.67 353
test_vis1_n69.85 31669.21 30771.77 34672.66 39655.27 34581.48 29276.21 36752.03 38375.30 23983.20 31528.97 39176.22 38274.60 15078.41 26683.81 351
Patchmtry70.74 30569.16 30875.49 31380.72 34254.07 35574.94 36680.30 33658.34 35670.01 30781.19 33852.50 25086.54 31453.37 33471.09 35085.87 324
TESTMET0.1,169.89 31569.00 30972.55 34179.27 36456.85 31878.38 33874.71 37557.64 36268.09 32777.19 37537.75 37276.70 37663.92 24984.09 19284.10 348
PMMVS69.34 31968.67 31071.35 35175.67 37762.03 25575.17 36173.46 37850.00 38868.68 32279.05 36052.07 26078.13 36861.16 27782.77 21473.90 392
K. test v371.19 29968.51 31179.21 26183.04 30457.78 30784.35 25176.91 36372.90 15962.99 36982.86 32239.27 36391.09 25261.65 27252.66 39588.75 259
USDC70.33 31068.37 31276.21 30480.60 34456.23 33179.19 32686.49 25060.89 33561.29 37485.47 26731.78 38689.47 27953.37 33476.21 29682.94 363
tpm cat170.57 30768.31 31377.35 29582.41 32057.95 30278.08 34380.22 33852.04 38268.54 32577.66 37352.00 26187.84 30551.77 34072.07 34486.25 312
OpenMVS_ROBcopyleft64.09 1970.56 30868.19 31477.65 28980.26 34759.41 28985.01 23182.96 30558.76 35465.43 35482.33 32937.63 37391.23 24645.34 38076.03 29782.32 367
EPMVS69.02 32168.16 31571.59 34779.61 35949.80 38677.40 34866.93 39662.82 32070.01 30779.05 36045.79 32577.86 37156.58 31975.26 31487.13 297
CMPMVSbinary51.72 2170.19 31268.16 31576.28 30373.15 39357.55 31079.47 32183.92 28448.02 39156.48 39184.81 28243.13 34386.42 31762.67 26081.81 22784.89 338
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
AllTest70.96 30268.09 31779.58 25585.15 25663.62 22484.58 24279.83 34062.31 32560.32 37886.73 22932.02 38488.96 29050.28 35071.57 34786.15 315
gg-mvs-nofinetune69.95 31467.96 31875.94 30583.07 30254.51 35277.23 35070.29 38663.11 31370.32 30262.33 39943.62 34088.69 29453.88 33187.76 14084.62 342
FMVSNet569.50 31767.96 31874.15 32882.97 30855.35 34380.01 31682.12 31462.56 32363.02 36781.53 33736.92 37481.92 35248.42 36074.06 32585.17 335
Syy-MVS68.05 33067.85 32068.67 36684.68 26540.97 40978.62 33573.08 38066.65 27066.74 34279.46 35752.11 25882.30 35032.89 40176.38 29382.75 364
PatchT68.46 32867.85 32070.29 35780.70 34343.93 40172.47 37374.88 37260.15 34170.55 29876.57 37749.94 28781.59 35350.58 34674.83 31985.34 330
pmmvs-eth3d70.50 30967.83 32278.52 27577.37 37166.18 17281.82 28681.51 32058.90 35363.90 36580.42 34842.69 34686.28 31858.56 29965.30 37283.11 359
Anonymous2023120668.60 32467.80 32371.02 35480.23 34950.75 38178.30 34280.47 33256.79 36866.11 35182.63 32646.35 31878.95 36543.62 38375.70 30083.36 356
Patchmatch-RL test70.24 31167.78 32477.61 29077.43 37059.57 28871.16 37870.33 38562.94 31768.65 32372.77 39050.62 27985.49 32769.58 20166.58 36787.77 280
test0.0.03 168.00 33167.69 32568.90 36377.55 36947.43 38975.70 35872.95 38266.66 26766.56 34482.29 33148.06 30575.87 38544.97 38174.51 32283.41 355
testing368.56 32667.67 32671.22 35387.33 21842.87 40383.06 27771.54 38370.36 20169.08 32084.38 28930.33 39085.69 32437.50 39675.45 30885.09 337
EU-MVSNet68.53 32767.61 32771.31 35278.51 36747.01 39184.47 24484.27 28042.27 39866.44 34984.79 28340.44 35983.76 34058.76 29868.54 36283.17 357
KD-MVS_self_test68.81 32267.59 32872.46 34374.29 38345.45 39477.93 34587.00 24163.12 31263.99 36478.99 36442.32 34884.77 33556.55 32064.09 37587.16 296
test_fmvs268.35 32967.48 32970.98 35569.50 40051.95 36880.05 31576.38 36649.33 38974.65 25584.38 28923.30 40275.40 39074.51 15175.17 31685.60 326
mvs5depth69.45 31867.45 33075.46 31473.93 38455.83 33679.19 32683.23 29666.89 26271.63 29283.32 31233.69 38285.09 33159.81 28655.34 39285.46 328
ppachtmachnet_test70.04 31367.34 33178.14 28179.80 35661.13 26579.19 32680.59 33059.16 35065.27 35579.29 35946.75 31487.29 30949.33 35666.72 36586.00 321
Anonymous2024052168.80 32367.22 33273.55 33274.33 38254.11 35483.18 27185.61 26358.15 35861.68 37380.94 34330.71 38981.27 35657.00 31573.34 33585.28 331
our_test_369.14 32067.00 33375.57 31079.80 35658.80 29077.96 34477.81 35359.55 34662.90 37078.25 36947.43 30783.97 33951.71 34167.58 36483.93 350
test20.0367.45 33366.95 33468.94 36275.48 37944.84 39977.50 34777.67 35466.66 26763.01 36883.80 30247.02 31178.40 36742.53 38768.86 36183.58 354
MIMVSNet168.58 32566.78 33573.98 33080.07 35151.82 37180.77 30284.37 27664.40 29859.75 38182.16 33336.47 37583.63 34242.73 38570.33 35386.48 310
testgi66.67 33966.53 33667.08 37375.62 37841.69 40875.93 35476.50 36566.11 27665.20 35886.59 23935.72 37874.71 39243.71 38273.38 33484.84 339
myMVS_eth3d67.02 33666.29 33769.21 36184.68 26542.58 40478.62 33573.08 38066.65 27066.74 34279.46 35731.53 38782.30 35039.43 39376.38 29382.75 364
UnsupCasMVSNet_eth67.33 33465.99 33871.37 34973.48 38951.47 37575.16 36285.19 26765.20 28860.78 37680.93 34542.35 34777.20 37357.12 31353.69 39485.44 329
dp66.80 33765.43 33970.90 35679.74 35848.82 38775.12 36474.77 37359.61 34564.08 36377.23 37442.89 34480.72 35948.86 35966.58 36783.16 358
TinyColmap67.30 33564.81 34074.76 32281.92 32656.68 32380.29 31381.49 32160.33 33856.27 39283.22 31324.77 39887.66 30845.52 37869.47 35679.95 381
CHOSEN 280x42066.51 34064.71 34171.90 34581.45 33363.52 22957.98 40868.95 39253.57 37862.59 37176.70 37646.22 32075.29 39155.25 32479.68 25076.88 388
TDRefinement67.49 33264.34 34276.92 29973.47 39061.07 26784.86 23582.98 30459.77 34458.30 38585.13 27526.06 39487.89 30447.92 36760.59 38381.81 372
PM-MVS66.41 34164.14 34373.20 33673.92 38556.45 32578.97 33064.96 40263.88 30964.72 35980.24 35019.84 40683.44 34466.24 22964.52 37479.71 382
dmvs_testset62.63 35364.11 34458.19 38378.55 36624.76 42175.28 36065.94 39967.91 25560.34 37776.01 38053.56 24373.94 39631.79 40267.65 36375.88 390
KD-MVS_2432*160066.22 34363.89 34573.21 33475.47 38053.42 36070.76 38184.35 27764.10 30366.52 34678.52 36634.55 38084.98 33250.40 34850.33 39981.23 374
miper_refine_blended66.22 34363.89 34573.21 33475.47 38053.42 36070.76 38184.35 27764.10 30366.52 34678.52 36634.55 38084.98 33250.40 34850.33 39981.23 374
MDA-MVSNet-bldmvs66.68 33863.66 34775.75 30779.28 36360.56 27573.92 37078.35 35164.43 29750.13 40079.87 35544.02 33883.67 34146.10 37556.86 38683.03 361
ADS-MVSNet266.20 34563.33 34874.82 32179.92 35258.75 29167.55 39375.19 37053.37 37965.25 35675.86 38142.32 34880.53 36041.57 38868.91 35985.18 333
Patchmatch-test64.82 34863.24 34969.57 35979.42 36249.82 38563.49 40569.05 39151.98 38459.95 38080.13 35150.91 27570.98 39940.66 39073.57 33087.90 277
MDA-MVSNet_test_wron65.03 34662.92 35071.37 34975.93 37456.73 32069.09 39074.73 37457.28 36654.03 39577.89 37045.88 32374.39 39449.89 35461.55 37982.99 362
YYNet165.03 34662.91 35171.38 34875.85 37656.60 32469.12 38974.66 37657.28 36654.12 39477.87 37145.85 32474.48 39349.95 35361.52 38083.05 360
ADS-MVSNet64.36 34962.88 35268.78 36579.92 35247.17 39067.55 39371.18 38453.37 37965.25 35675.86 38142.32 34873.99 39541.57 38868.91 35985.18 333
JIA-IIPM66.32 34262.82 35376.82 30077.09 37261.72 26165.34 40175.38 36958.04 36064.51 36062.32 40042.05 35286.51 31551.45 34369.22 35882.21 368
LF4IMVS64.02 35062.19 35469.50 36070.90 39853.29 36376.13 35277.18 36152.65 38158.59 38380.98 34223.55 40176.52 37853.06 33666.66 36678.68 384
test_fmvs363.36 35261.82 35567.98 37062.51 40946.96 39277.37 34974.03 37745.24 39467.50 33278.79 36512.16 41472.98 39872.77 17166.02 36983.99 349
new-patchmatchnet61.73 35561.73 35661.70 37972.74 39524.50 42269.16 38878.03 35261.40 33256.72 39075.53 38438.42 36876.48 37945.95 37657.67 38584.13 347
UnsupCasMVSNet_bld63.70 35161.53 35770.21 35873.69 38751.39 37672.82 37281.89 31655.63 37357.81 38771.80 39238.67 36778.61 36649.26 35752.21 39780.63 378
mvsany_test162.30 35461.26 35865.41 37569.52 39954.86 34866.86 39549.78 41546.65 39268.50 32683.21 31449.15 29866.28 40756.93 31660.77 38175.11 391
PVSNet_057.27 2061.67 35659.27 35968.85 36479.61 35957.44 31268.01 39173.44 37955.93 37258.54 38470.41 39544.58 33477.55 37247.01 36935.91 40771.55 395
test_vis1_rt60.28 35758.42 36065.84 37467.25 40355.60 34070.44 38360.94 40744.33 39659.00 38266.64 39724.91 39768.67 40462.80 25669.48 35573.25 393
MVS-HIRNet59.14 35957.67 36163.57 37781.65 32843.50 40271.73 37565.06 40139.59 40251.43 39757.73 40538.34 36982.58 34939.53 39173.95 32664.62 401
ttmdpeth59.91 35857.10 36268.34 36867.13 40446.65 39374.64 36767.41 39548.30 39062.52 37285.04 27920.40 40475.93 38442.55 38645.90 40582.44 366
DSMNet-mixed57.77 36156.90 36360.38 38167.70 40235.61 41269.18 38753.97 41332.30 41157.49 38879.88 35440.39 36068.57 40538.78 39472.37 33976.97 387
WB-MVS54.94 36354.72 36455.60 38973.50 38820.90 42374.27 36961.19 40659.16 35050.61 39874.15 38647.19 31075.78 38617.31 41435.07 40870.12 396
pmmvs357.79 36054.26 36568.37 36764.02 40856.72 32175.12 36465.17 40040.20 40052.93 39669.86 39620.36 40575.48 38845.45 37955.25 39372.90 394
SSC-MVS53.88 36653.59 36654.75 39172.87 39419.59 42473.84 37160.53 40857.58 36449.18 40273.45 38946.34 31975.47 38916.20 41732.28 41069.20 397
N_pmnet52.79 36953.26 36751.40 39378.99 3657.68 42769.52 3853.89 42651.63 38557.01 38974.98 38540.83 35765.96 40837.78 39564.67 37380.56 380
MVStest156.63 36252.76 36868.25 36961.67 41053.25 36471.67 37668.90 39338.59 40350.59 39983.05 31725.08 39670.66 40036.76 39738.56 40680.83 377
FPMVS53.68 36751.64 36959.81 38265.08 40651.03 37869.48 38669.58 38941.46 39940.67 40672.32 39116.46 41070.00 40324.24 41065.42 37158.40 406
mvsany_test353.99 36551.45 37061.61 38055.51 41444.74 40063.52 40445.41 41943.69 39758.11 38676.45 37817.99 40763.76 41054.77 32747.59 40176.34 389
test_f52.09 37050.82 37155.90 38753.82 41742.31 40759.42 40758.31 41136.45 40656.12 39370.96 39412.18 41357.79 41353.51 33356.57 38867.60 398
new_pmnet50.91 37250.29 37252.78 39268.58 40134.94 41463.71 40356.63 41239.73 40144.95 40365.47 39821.93 40358.48 41234.98 39956.62 38764.92 400
APD_test153.31 36849.93 37363.42 37865.68 40550.13 38371.59 37766.90 39734.43 40840.58 40771.56 3938.65 41976.27 38134.64 40055.36 39163.86 402
LCM-MVSNet54.25 36449.68 37467.97 37153.73 41845.28 39766.85 39680.78 32735.96 40739.45 40862.23 4018.70 41878.06 37048.24 36451.20 39880.57 379
EGC-MVSNET52.07 37147.05 37567.14 37283.51 29160.71 27280.50 30967.75 3940.07 4210.43 42275.85 38324.26 39981.54 35428.82 40462.25 37759.16 404
test_vis3_rt49.26 37447.02 37656.00 38654.30 41545.27 39866.76 39748.08 41636.83 40544.38 40453.20 4097.17 42164.07 40956.77 31855.66 38958.65 405
ANet_high50.57 37346.10 37763.99 37648.67 42139.13 41070.99 38080.85 32661.39 33331.18 41057.70 40617.02 40973.65 39731.22 40315.89 41879.18 383
dongtai45.42 37745.38 37845.55 39573.36 39126.85 41967.72 39234.19 42154.15 37749.65 40156.41 40825.43 39562.94 41119.45 41228.09 41246.86 411
testf145.72 37541.96 37957.00 38456.90 41245.32 39566.14 39859.26 40926.19 41230.89 41160.96 4034.14 42270.64 40126.39 40846.73 40355.04 407
APD_test245.72 37541.96 37957.00 38456.90 41245.32 39566.14 39859.26 40926.19 41230.89 41160.96 4034.14 42270.64 40126.39 40846.73 40355.04 407
Gipumacopyleft45.18 37841.86 38155.16 39077.03 37351.52 37432.50 41480.52 33132.46 41027.12 41335.02 4149.52 41775.50 38722.31 41160.21 38438.45 413
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
kuosan39.70 38140.40 38237.58 39864.52 40726.98 41765.62 40033.02 42246.12 39342.79 40548.99 41124.10 40046.56 41912.16 42026.30 41339.20 412
PMVScopyleft37.38 2244.16 37940.28 38355.82 38840.82 42342.54 40665.12 40263.99 40334.43 40824.48 41457.12 4073.92 42476.17 38317.10 41555.52 39048.75 409
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS240.82 38038.86 38446.69 39453.84 41616.45 42548.61 41149.92 41437.49 40431.67 40960.97 4028.14 42056.42 41428.42 40530.72 41167.19 399
E-PMN31.77 38230.64 38535.15 39952.87 41927.67 41657.09 40947.86 41724.64 41416.40 41933.05 41511.23 41554.90 41514.46 41818.15 41622.87 415
EMVS30.81 38429.65 38634.27 40050.96 42025.95 42056.58 41046.80 41824.01 41515.53 42030.68 41612.47 41254.43 41612.81 41917.05 41722.43 416
test_method31.52 38329.28 38738.23 39727.03 4256.50 42820.94 41662.21 4054.05 41922.35 41752.50 41013.33 41147.58 41727.04 40734.04 40960.62 403
cdsmvs_eth3d_5k19.96 38626.61 3880.00 4060.00 4290.00 4310.00 41789.26 1820.00 4240.00 42588.61 18161.62 1690.00 4250.00 4240.00 4230.00 421
MVEpermissive26.22 2330.37 38525.89 38943.81 39644.55 42235.46 41328.87 41539.07 42018.20 41618.58 41840.18 4132.68 42547.37 41817.07 41623.78 41548.60 410
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt18.61 38721.40 39010.23 4034.82 42610.11 42634.70 41330.74 4241.48 42023.91 41626.07 41728.42 39213.41 42227.12 40615.35 4197.17 417
wuyk23d16.82 38815.94 39119.46 40258.74 41131.45 41539.22 4123.74 4276.84 4186.04 4212.70 4211.27 42624.29 42110.54 42114.40 4202.63 418
ab-mvs-re7.23 3899.64 3920.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42586.72 2310.00 4290.00 4250.00 4240.00 4230.00 421
test1236.12 3908.11 3930.14 4040.06 4280.09 42971.05 3790.03 4290.04 4230.25 4241.30 4230.05 4270.03 4240.21 4230.01 4220.29 419
testmvs6.04 3918.02 3940.10 4050.08 4270.03 43069.74 3840.04 4280.05 4220.31 4231.68 4220.02 4280.04 4230.24 4220.02 4210.25 420
pcd_1.5k_mvsjas5.26 3927.02 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42463.15 1460.00 4250.00 4240.00 4230.00 421
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS42.58 40439.46 392
FOURS195.00 1072.39 3995.06 193.84 1574.49 12091.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4997.53 289.67 696.44 994.41 37
PC_three_145268.21 25292.02 1294.00 4982.09 595.98 5684.58 5396.68 294.95 10
No_MVS89.16 194.34 2775.53 292.99 4997.53 289.67 696.44 994.41 37
test_one_060195.07 771.46 5794.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 429
eth-test0.00 429
ZD-MVS94.38 2572.22 4492.67 6670.98 18987.75 3594.07 4474.01 3296.70 2784.66 5294.84 44
IU-MVS95.30 271.25 5992.95 5566.81 26392.39 688.94 1696.63 494.85 19
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4782.45 396.87 2083.77 6396.48 894.88 14
test_241102_TWO94.06 1077.24 5292.78 495.72 881.26 897.44 789.07 1496.58 694.26 46
test_241102_ONE95.30 270.98 6694.06 1077.17 5593.10 195.39 1482.99 197.27 12
save fliter93.80 4072.35 4290.47 6691.17 12474.31 123
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 989.42 996.57 794.67 26
test_0728_SECOND87.71 3295.34 171.43 5893.49 994.23 397.49 489.08 1296.41 1294.21 47
test072695.27 571.25 5993.60 694.11 677.33 4992.81 395.79 380.98 9
GSMVS88.96 250
test_part295.06 872.65 3291.80 13
sam_mvs151.32 27188.96 250
sam_mvs50.01 285
ambc75.24 31773.16 39250.51 38263.05 40687.47 23264.28 36177.81 37217.80 40889.73 27457.88 30760.64 38285.49 327
MTGPAbinary92.02 92
test_post178.90 3325.43 42048.81 30485.44 32959.25 291
test_post5.46 41950.36 28384.24 337
patchmatchnet-post74.00 38751.12 27488.60 296
GG-mvs-BLEND75.38 31581.59 33055.80 33779.32 32369.63 38867.19 33673.67 38843.24 34288.90 29250.41 34784.50 18281.45 373
MTMP92.18 3432.83 423
gm-plane-assit81.40 33453.83 35762.72 32280.94 34392.39 20063.40 253
test9_res84.90 4695.70 2692.87 111
TEST993.26 5272.96 2588.75 11891.89 10068.44 24985.00 6393.10 7074.36 2895.41 72
test_893.13 5472.57 3588.68 12391.84 10468.69 24484.87 6793.10 7074.43 2695.16 81
agg_prior282.91 7295.45 2992.70 114
agg_prior92.85 6271.94 5091.78 10784.41 7894.93 92
TestCases79.58 25585.15 25663.62 22479.83 34062.31 32560.32 37886.73 22932.02 38488.96 29050.28 35071.57 34786.15 315
test_prior472.60 3489.01 109
test_prior288.85 11575.41 9784.91 6593.54 5974.28 2983.31 6695.86 20
test_prior86.33 5792.61 6869.59 9192.97 5495.48 6793.91 58
旧先验286.56 19258.10 35987.04 4588.98 28874.07 156
新几何286.29 201
新几何183.42 15293.13 5470.71 7485.48 26557.43 36581.80 11491.98 9363.28 14192.27 20664.60 24592.99 7087.27 292
旧先验191.96 7465.79 18286.37 25393.08 7469.31 8392.74 7388.74 261
无先验87.48 16188.98 19460.00 34294.12 12367.28 22288.97 249
原ACMM286.86 181
原ACMM184.35 11193.01 6068.79 11092.44 7663.96 30881.09 12491.57 10666.06 11995.45 6867.19 22494.82 4688.81 256
test22291.50 8068.26 12884.16 25483.20 29954.63 37679.74 13791.63 10358.97 20191.42 9086.77 305
testdata291.01 25462.37 263
segment_acmp73.08 38
testdata79.97 24590.90 9164.21 21584.71 27259.27 34985.40 5892.91 7662.02 16589.08 28668.95 20791.37 9186.63 309
testdata184.14 25575.71 91
test1286.80 5292.63 6770.70 7591.79 10682.71 10571.67 5496.16 4794.50 5193.54 82
plane_prior790.08 10868.51 123
plane_prior689.84 11768.70 11860.42 194
plane_prior592.44 7695.38 7478.71 10886.32 16091.33 158
plane_prior491.00 128
plane_prior368.60 12178.44 3178.92 149
plane_prior291.25 5279.12 23
plane_prior189.90 116
plane_prior68.71 11690.38 7077.62 3986.16 164
n20.00 430
nn0.00 430
door-mid69.98 387
lessismore_v078.97 26481.01 34157.15 31565.99 39861.16 37582.82 32339.12 36491.34 24359.67 28746.92 40288.43 268
LGP-MVS_train84.50 10489.23 14268.76 11291.94 9875.37 9876.64 20291.51 10754.29 23694.91 9378.44 11083.78 19489.83 222
test1192.23 86
door69.44 390
HQP5-MVS66.98 161
HQP-NCC89.33 13589.17 10276.41 7677.23 187
ACMP_Plane89.33 13589.17 10276.41 7677.23 187
BP-MVS77.47 120
HQP4-MVS77.24 18695.11 8591.03 168
HQP3-MVS92.19 8985.99 168
HQP2-MVS60.17 197
NP-MVS89.62 12168.32 12690.24 140
MDTV_nov1_ep13_2view37.79 41175.16 36255.10 37466.53 34549.34 29553.98 33087.94 276
ACMMP++_ref81.95 225
ACMMP++81.25 230
Test By Simon64.33 133
ITE_SJBPF78.22 27981.77 32760.57 27483.30 29469.25 22967.54 33187.20 22036.33 37687.28 31054.34 32974.62 32186.80 304
DeepMVS_CXcopyleft27.40 40140.17 42426.90 41824.59 42517.44 41723.95 41548.61 4129.77 41626.48 42018.06 41324.47 41428.83 414