This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 6077.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 88
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8792.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 54
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5994.67 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9191.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 33
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MM89.16 689.23 788.97 490.79 9073.65 1092.66 2391.17 11886.57 187.39 3794.97 1671.70 5297.68 192.19 195.63 2895.57 1
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10992.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5580.26 1187.78 3094.27 3275.89 1996.81 2387.45 3296.44 993.05 100
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 39
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8989.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 10089.57 8893.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 29
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13887.63 3094.27 5893.65 71
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
9.1488.26 1592.84 6091.52 4694.75 173.93 12788.57 2294.67 1975.57 2295.79 5486.77 3595.76 23
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7674.62 11388.90 2093.85 5275.75 2096.00 4987.80 2894.63 4895.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MVS_030488.08 1488.08 1788.08 1489.67 11572.04 4892.26 3389.26 17584.19 285.01 5795.18 1369.93 7197.20 1491.63 295.60 2994.99 9
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5693.59 2376.27 8188.14 2495.09 1571.06 5996.67 2987.67 2996.37 1494.09 48
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5681.50 585.79 5093.47 6073.02 4097.00 1884.90 4294.94 3994.10 47
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5594.32 3171.76 5096.93 1985.53 3995.79 2294.32 40
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7993.50 2575.17 10286.34 4695.29 1270.86 6196.00 4988.78 1996.04 1694.58 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6577.57 4183.84 8494.40 3072.24 4596.28 4085.65 3895.30 3593.62 74
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5673.01 15288.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 109
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 6194.44 2870.78 6296.61 3284.53 4994.89 4193.66 67
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6593.99 4870.67 6496.82 2284.18 5695.01 3793.90 57
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7793.82 1673.07 15084.86 6492.89 7476.22 1796.33 3884.89 4495.13 3694.40 36
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6894.52 2168.81 8696.65 3084.53 4994.90 4094.00 52
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7294.52 2169.09 8096.70 2784.37 5194.83 4594.03 51
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18892.02 8779.45 1985.88 4894.80 1768.07 9196.21 4286.69 3695.34 3393.23 91
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8483.81 8593.95 5169.77 7496.01 4885.15 4094.66 4794.32 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS86.69 3586.95 3185.90 6490.76 9167.57 14092.83 1793.30 3279.67 1784.57 7192.27 8671.47 5595.02 8884.24 5493.46 6495.13 6
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5976.62 7183.68 8694.46 2567.93 9295.95 5284.20 5594.39 5493.23 91
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 8794.17 3667.45 9796.60 3383.06 6394.50 5194.07 49
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6993.94 1477.12 5582.82 9994.23 3572.13 4797.09 1684.83 4595.37 3293.65 71
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 6974.50 11486.84 4494.65 2067.31 9995.77 5584.80 4692.85 6892.84 107
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7184.22 7693.36 6371.44 5696.76 2580.82 8795.33 3494.16 45
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS-test86.29 4286.48 3785.71 6691.02 8367.21 15292.36 2993.78 1878.97 2883.51 9091.20 11370.65 6595.15 7981.96 7694.89 4194.77 22
EC-MVSNet86.01 4386.38 3884.91 9189.31 13466.27 16692.32 3093.63 2179.37 2084.17 7891.88 9369.04 8495.43 6783.93 5793.77 6293.01 103
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8276.87 6282.81 10094.25 3466.44 10796.24 4182.88 6794.28 5793.38 85
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7193.04 3875.53 9383.86 8394.42 2967.87 9496.64 3182.70 7294.57 5093.66 67
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11791.89 9568.69 23985.00 5993.10 6774.43 2695.41 6984.97 4195.71 2593.02 102
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5793.56 2473.95 12583.16 9491.07 11875.94 1895.19 7779.94 9694.38 5593.55 78
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15585.22 5691.90 9269.47 7696.42 3783.28 6295.94 1994.35 38
dcpmvs_285.63 5386.15 4484.06 12791.71 7564.94 19886.47 19191.87 9773.63 13486.60 4593.02 7276.57 1591.87 21983.36 6092.15 7695.35 3
CANet86.45 3886.10 4587.51 3790.09 10270.94 6789.70 8392.59 6881.78 481.32 11691.43 10670.34 6697.23 1384.26 5293.36 6594.37 37
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6787.65 20167.22 15188.69 12193.04 3879.64 1885.33 5492.54 8373.30 3594.50 10883.49 5991.14 9095.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf_n85.92 4686.04 4785.57 6985.03 25569.51 9089.62 8790.58 13373.42 14187.75 3294.02 4472.85 4193.24 16390.37 390.75 9493.96 53
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4673.54 13885.94 4794.51 2465.80 11795.61 5983.04 6592.51 7293.53 80
sasdasda85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 11073.28 3693.91 13281.50 7988.80 12194.77 22
canonicalmvs85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 11073.28 3693.91 13281.50 7988.80 12194.77 22
MSLP-MVS++85.43 5785.76 5184.45 10591.93 7270.24 7690.71 5892.86 5477.46 4784.22 7692.81 7867.16 10192.94 18380.36 9294.35 5690.16 199
test_fmvsmconf0.1_n85.61 5485.65 5285.50 7082.99 30069.39 9789.65 8490.29 14673.31 14487.77 3194.15 3871.72 5193.23 16490.31 490.67 9693.89 58
SR-MVS-dyc-post85.77 5085.61 5386.23 5693.06 5570.63 7391.88 3992.27 7873.53 13985.69 5194.45 2665.00 12595.56 6082.75 6891.87 8092.50 118
MGCFI-Net85.06 6485.51 5483.70 14389.42 12663.01 23989.43 9192.62 6776.43 7387.53 3591.34 10872.82 4293.42 15881.28 8288.74 12494.66 27
RE-MVS-def85.48 5593.06 5570.63 7391.88 3992.27 7873.53 13985.69 5194.45 2663.87 13182.75 6891.87 8092.50 118
ACMMPcopyleft85.89 4985.39 5687.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12593.82 5364.33 12796.29 3982.67 7390.69 9593.23 91
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsm_n_192085.29 6085.34 5785.13 8186.12 23569.93 8388.65 12390.78 12969.97 20688.27 2393.98 4971.39 5791.54 23188.49 2390.45 9893.91 55
TSAR-MVS + GP.85.71 5285.33 5886.84 4791.34 7872.50 3689.07 10687.28 23076.41 7485.80 4990.22 13674.15 3195.37 7481.82 7791.88 7992.65 113
alignmvs85.48 5585.32 5985.96 6389.51 12169.47 9289.74 8192.47 7076.17 8287.73 3491.46 10570.32 6793.78 13881.51 7888.95 11894.63 28
DELS-MVS85.41 5885.30 6085.77 6588.49 16567.93 13385.52 22193.44 2778.70 2983.63 8989.03 16674.57 2495.71 5780.26 9494.04 6093.66 67
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CDPH-MVS85.76 5185.29 6187.17 4393.49 4771.08 6188.58 12592.42 7468.32 24684.61 6993.48 5872.32 4496.15 4579.00 10195.43 3194.28 42
casdiffmvspermissive85.11 6285.14 6285.01 8587.20 21765.77 18187.75 15492.83 5677.84 3784.36 7592.38 8572.15 4693.93 13181.27 8390.48 9795.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline84.93 6584.98 6384.80 9587.30 21565.39 18987.30 16692.88 5377.62 3984.04 8192.26 8771.81 4993.96 12581.31 8190.30 10095.03 8
UA-Net85.08 6384.96 6485.45 7192.07 7068.07 13089.78 8090.86 12882.48 384.60 7093.20 6669.35 7795.22 7671.39 17690.88 9393.07 99
HPM-MVS_fast85.35 5984.95 6586.57 5393.69 4270.58 7592.15 3691.62 10573.89 12882.67 10294.09 4062.60 14695.54 6280.93 8592.93 6793.57 76
MVS_111021_HR85.14 6184.75 6686.32 5591.65 7672.70 3085.98 20490.33 14376.11 8382.08 10591.61 10071.36 5894.17 12181.02 8492.58 7192.08 135
ETV-MVS84.90 6784.67 6785.59 6889.39 12968.66 11788.74 11992.64 6679.97 1584.10 7985.71 25669.32 7895.38 7180.82 8791.37 8792.72 108
fmvsm_l_conf0.5_n84.47 6984.54 6884.27 11585.42 24568.81 10688.49 12787.26 23168.08 24888.03 2793.49 5772.04 4891.77 22188.90 1789.14 11792.24 129
patch_mono-283.65 7884.54 6880.99 22290.06 10765.83 17784.21 24988.74 20071.60 17085.01 5792.44 8474.51 2583.50 33582.15 7592.15 7693.64 73
test_fmvsmconf0.01_n84.73 6884.52 7085.34 7380.25 34069.03 10089.47 8989.65 16373.24 14886.98 4294.27 3266.62 10393.23 16490.26 589.95 10893.78 64
3Dnovator+77.84 485.48 5584.47 7188.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19893.37 6260.40 19096.75 2677.20 12093.73 6395.29 5
DPM-MVS84.93 6584.29 7286.84 4790.20 10073.04 2387.12 17093.04 3869.80 21082.85 9891.22 11273.06 3996.02 4776.72 12894.63 4891.46 154
fmvsm_l_conf0.5_n_a84.13 7184.16 7384.06 12785.38 24668.40 12188.34 13486.85 24067.48 25587.48 3693.40 6170.89 6091.61 22588.38 2589.22 11692.16 133
test_fmvsmvis_n_192084.02 7283.87 7484.49 10484.12 27169.37 9888.15 14287.96 21470.01 20483.95 8293.23 6568.80 8791.51 23488.61 2089.96 10792.57 114
EI-MVSNet-Vis-set84.19 7083.81 7585.31 7488.18 17667.85 13487.66 15689.73 16180.05 1482.95 9589.59 15070.74 6394.82 9780.66 9184.72 17493.28 90
fmvsm_s_conf0.5_n83.80 7583.71 7684.07 12586.69 22767.31 14789.46 9083.07 29571.09 18186.96 4393.70 5569.02 8591.47 23688.79 1884.62 17693.44 84
nrg03083.88 7383.53 7784.96 8786.77 22569.28 9990.46 6592.67 6274.79 10882.95 9591.33 10972.70 4393.09 17780.79 8979.28 25392.50 118
MG-MVS83.41 8583.45 7883.28 15592.74 6262.28 25088.17 14089.50 16675.22 9881.49 11592.74 8266.75 10295.11 8272.85 16491.58 8492.45 121
fmvsm_s_conf0.5_n_a83.63 8083.41 7984.28 11386.14 23468.12 12889.43 9182.87 30070.27 20087.27 3993.80 5469.09 8091.58 22788.21 2683.65 19693.14 97
fmvsm_s_conf0.1_n83.56 8283.38 8084.10 12084.86 25767.28 14889.40 9583.01 29670.67 18987.08 4093.96 5068.38 8991.45 23788.56 2284.50 17793.56 77
EI-MVSNet-UG-set83.81 7483.38 8085.09 8287.87 18967.53 14187.44 16289.66 16279.74 1682.23 10489.41 15970.24 6894.74 10079.95 9583.92 18892.99 104
CPTT-MVS83.73 7683.33 8284.92 9093.28 4970.86 6992.09 3790.38 13968.75 23879.57 13692.83 7660.60 18693.04 18180.92 8691.56 8590.86 172
HQP_MVS83.64 7983.14 8385.14 7990.08 10368.71 11391.25 5092.44 7179.12 2378.92 14591.00 12260.42 18895.38 7178.71 10586.32 15491.33 155
Effi-MVS+83.62 8183.08 8485.24 7688.38 17167.45 14288.89 11189.15 18175.50 9482.27 10388.28 18869.61 7594.45 11077.81 11487.84 13393.84 61
MVS_Test83.15 9083.06 8583.41 15286.86 22163.21 23586.11 20292.00 8974.31 11882.87 9789.44 15870.03 6993.21 16677.39 11988.50 12993.81 62
EPP-MVSNet83.40 8683.02 8684.57 9990.13 10164.47 20892.32 3090.73 13074.45 11779.35 13991.10 11669.05 8395.12 8072.78 16587.22 14194.13 46
fmvsm_s_conf0.1_n_a83.32 8882.99 8784.28 11383.79 27868.07 13089.34 9782.85 30169.80 21087.36 3894.06 4268.34 9091.56 22987.95 2783.46 20293.21 94
OPM-MVS83.50 8382.95 8885.14 7988.79 15570.95 6689.13 10591.52 10877.55 4480.96 12391.75 9560.71 18194.50 10879.67 9986.51 15289.97 215
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EPNet83.72 7782.92 8986.14 5984.22 26969.48 9191.05 5585.27 26181.30 676.83 19391.65 9766.09 11295.56 6076.00 13493.85 6193.38 85
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS-MVSNet83.15 9082.81 9084.18 11889.94 11063.30 23391.59 4388.46 20679.04 2579.49 13792.16 8865.10 12294.28 11367.71 21191.86 8294.95 10
EIA-MVS83.31 8982.80 9184.82 9389.59 11765.59 18388.21 13892.68 6174.66 11178.96 14386.42 24369.06 8295.26 7575.54 14090.09 10493.62 74
Vis-MVSNetpermissive83.46 8482.80 9185.43 7290.25 9968.74 11190.30 7090.13 15076.33 8080.87 12492.89 7461.00 17894.20 11972.45 17090.97 9193.35 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FIs82.07 10582.42 9381.04 22188.80 15458.34 29088.26 13793.49 2676.93 6078.47 15791.04 11969.92 7292.34 20269.87 19284.97 17192.44 122
VNet82.21 10282.41 9481.62 20390.82 8860.93 26484.47 24089.78 15876.36 7984.07 8091.88 9364.71 12690.26 26170.68 18288.89 11993.66 67
PAPM_NR83.02 9482.41 9484.82 9392.47 6766.37 16487.93 14991.80 10073.82 12977.32 18290.66 12767.90 9394.90 9370.37 18589.48 11393.19 95
VDD-MVS83.01 9582.36 9684.96 8791.02 8366.40 16388.91 11088.11 20977.57 4184.39 7493.29 6452.19 24993.91 13277.05 12288.70 12594.57 31
3Dnovator76.31 583.38 8782.31 9786.59 5287.94 18772.94 2890.64 5992.14 8677.21 5275.47 22492.83 7658.56 19794.72 10173.24 16192.71 7092.13 134
h-mvs3383.15 9082.19 9886.02 6290.56 9370.85 7088.15 14289.16 18076.02 8584.67 6691.39 10761.54 16495.50 6382.71 7075.48 30091.72 143
MVS_111021_LR82.61 9982.11 9984.11 11988.82 15271.58 5385.15 22486.16 25074.69 11080.47 12791.04 11962.29 15390.55 25980.33 9390.08 10590.20 198
DP-MVS Recon83.11 9382.09 10086.15 5894.44 1970.92 6888.79 11592.20 8370.53 19479.17 14191.03 12164.12 12996.03 4668.39 20890.14 10391.50 150
MVSFormer82.85 9682.05 10185.24 7687.35 20970.21 7790.50 6290.38 13968.55 24181.32 11689.47 15361.68 16193.46 15578.98 10290.26 10192.05 136
FC-MVSNet-test81.52 11982.02 10280.03 24288.42 17055.97 32887.95 14793.42 2977.10 5677.38 18090.98 12469.96 7091.79 22068.46 20784.50 17792.33 123
HQP-MVS82.61 9982.02 10284.37 10789.33 13166.98 15589.17 10092.19 8476.41 7477.23 18590.23 13560.17 19195.11 8277.47 11785.99 16291.03 166
OMC-MVS82.69 9781.97 10484.85 9288.75 15767.42 14387.98 14590.87 12774.92 10579.72 13491.65 9762.19 15693.96 12575.26 14286.42 15393.16 96
diffmvspermissive82.10 10381.88 10582.76 18583.00 29863.78 22183.68 25689.76 15972.94 15382.02 10689.85 14265.96 11690.79 25582.38 7487.30 14093.71 66
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu82.62 9881.83 10684.96 8790.80 8969.76 8788.74 11991.70 10469.39 21978.96 14388.46 18365.47 11994.87 9674.42 14788.57 12690.24 197
CLD-MVS82.31 10181.65 10784.29 11288.47 16667.73 13785.81 21292.35 7675.78 8878.33 16086.58 23864.01 13094.35 11176.05 13387.48 13890.79 173
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_NR-MVSNet81.88 10881.54 10882.92 17488.46 16763.46 22987.13 16992.37 7580.19 1278.38 15889.14 16171.66 5493.05 17970.05 18876.46 28392.25 127
PS-MVSNAJss82.07 10581.31 10984.34 11086.51 23067.27 14989.27 9891.51 10971.75 16479.37 13890.22 13663.15 14094.27 11477.69 11582.36 21691.49 151
LPG-MVS_test82.08 10481.27 11084.50 10289.23 13868.76 10990.22 7191.94 9375.37 9676.64 19991.51 10254.29 23094.91 9078.44 10783.78 18989.83 220
LFMVS81.82 11081.23 11183.57 14791.89 7363.43 23189.84 7681.85 31177.04 5883.21 9293.10 6752.26 24893.43 15771.98 17189.95 10893.85 59
API-MVS81.99 10781.23 11184.26 11690.94 8570.18 8291.10 5389.32 17171.51 17378.66 15188.28 18865.26 12095.10 8564.74 23891.23 8987.51 280
UniMVSNet (Re)81.60 11881.11 11383.09 16588.38 17164.41 21087.60 15793.02 4278.42 3278.56 15488.16 19269.78 7393.26 16269.58 19576.49 28291.60 144
xiu_mvs_v2_base81.69 11381.05 11483.60 14589.15 14168.03 13284.46 24290.02 15270.67 18981.30 11986.53 24163.17 13994.19 12075.60 13988.54 12788.57 262
PS-MVSNAJ81.69 11381.02 11583.70 14389.51 12168.21 12784.28 24890.09 15170.79 18681.26 12085.62 26163.15 14094.29 11275.62 13888.87 12088.59 261
GeoE81.71 11281.01 11683.80 14189.51 12164.45 20988.97 10888.73 20171.27 17778.63 15289.76 14466.32 10993.20 16969.89 19186.02 16193.74 65
hse-mvs281.72 11180.94 11784.07 12588.72 15867.68 13885.87 20887.26 23176.02 8584.67 6688.22 19161.54 16493.48 15382.71 7073.44 32891.06 164
PAPR81.66 11680.89 11883.99 13590.27 9864.00 21686.76 18491.77 10368.84 23777.13 19189.50 15167.63 9594.88 9567.55 21388.52 12893.09 98
mvsmamba81.69 11380.74 11984.56 10087.45 20866.72 15991.26 4885.89 25474.66 11178.23 16290.56 12954.33 22994.91 9080.73 9083.54 20092.04 138
MAR-MVS81.84 10980.70 12085.27 7591.32 7971.53 5489.82 7790.92 12469.77 21278.50 15586.21 24762.36 15294.52 10765.36 23292.05 7889.77 223
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VDDNet81.52 11980.67 12184.05 13090.44 9664.13 21589.73 8285.91 25371.11 18083.18 9393.48 5850.54 27393.49 15273.40 15888.25 13194.54 32
ACMP74.13 681.51 12180.57 12284.36 10889.42 12668.69 11689.97 7591.50 11274.46 11675.04 24590.41 13253.82 23594.54 10577.56 11682.91 20889.86 219
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
VPA-MVSNet80.60 14180.55 12380.76 22888.07 18360.80 26786.86 17891.58 10775.67 9280.24 12989.45 15763.34 13490.25 26270.51 18479.22 25491.23 159
DU-MVS81.12 12680.52 12482.90 17587.80 19363.46 22987.02 17391.87 9779.01 2678.38 15889.07 16365.02 12393.05 17970.05 18876.46 28392.20 130
test_yl81.17 12480.47 12583.24 15889.13 14263.62 22286.21 19889.95 15572.43 15881.78 11289.61 14857.50 20793.58 14670.75 18086.90 14592.52 116
DCV-MVSNet81.17 12480.47 12583.24 15889.13 14263.62 22286.21 19889.95 15572.43 15881.78 11289.61 14857.50 20793.58 14670.75 18086.90 14592.52 116
iter_conf05_1181.63 11780.44 12785.20 7889.46 12466.20 16786.21 19886.97 23771.53 17283.35 9188.53 18143.22 33595.94 5379.82 9794.85 4393.47 81
PVSNet_Blended80.98 12780.34 12882.90 17588.85 14965.40 18784.43 24492.00 8967.62 25278.11 16685.05 27566.02 11494.27 11471.52 17389.50 11289.01 244
TranMVSNet+NR-MVSNet80.84 13080.31 12982.42 19087.85 19062.33 24887.74 15591.33 11480.55 977.99 17089.86 14165.23 12192.62 18967.05 22075.24 31092.30 125
jason81.39 12280.29 13084.70 9786.63 22969.90 8585.95 20586.77 24163.24 30281.07 12289.47 15361.08 17792.15 20878.33 11090.07 10692.05 136
jason: jason.
lupinMVS81.39 12280.27 13184.76 9687.35 20970.21 7785.55 21786.41 24562.85 30981.32 11688.61 17761.68 16192.24 20678.41 10990.26 10191.83 140
SDMVSNet80.38 14680.18 13280.99 22289.03 14764.94 19880.45 30589.40 16875.19 10076.61 20189.98 13960.61 18587.69 30376.83 12683.55 19890.33 193
PVSNet_BlendedMVS80.60 14180.02 13382.36 19288.85 14965.40 18786.16 20192.00 8969.34 22178.11 16686.09 25166.02 11494.27 11471.52 17382.06 21987.39 282
EI-MVSNet80.52 14479.98 13482.12 19384.28 26763.19 23786.41 19288.95 19174.18 12278.69 14987.54 20866.62 10392.43 19672.57 16880.57 23790.74 177
Fast-Effi-MVS+80.81 13279.92 13583.47 14888.85 14964.51 20585.53 21989.39 16970.79 18678.49 15685.06 27467.54 9693.58 14667.03 22186.58 15092.32 124
FA-MVS(test-final)80.96 12879.91 13684.10 12088.30 17465.01 19684.55 23990.01 15373.25 14779.61 13587.57 20558.35 19994.72 10171.29 17786.25 15692.56 115
CANet_DTU80.61 14079.87 13782.83 17785.60 24263.17 23887.36 16388.65 20276.37 7875.88 21788.44 18453.51 23893.07 17873.30 15989.74 11192.25 127
ACMM73.20 880.78 13779.84 13883.58 14689.31 13468.37 12289.99 7491.60 10670.28 19977.25 18389.66 14653.37 24093.53 15174.24 15082.85 20988.85 252
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-OURS-SEG-HR80.81 13279.76 13983.96 13785.60 24268.78 10883.54 26290.50 13670.66 19276.71 19791.66 9660.69 18291.26 24276.94 12381.58 22491.83 140
xiu_mvs_v1_base_debu80.80 13479.72 14084.03 13287.35 20970.19 7985.56 21488.77 19669.06 23181.83 10888.16 19250.91 26792.85 18578.29 11187.56 13589.06 239
xiu_mvs_v1_base80.80 13479.72 14084.03 13287.35 20970.19 7985.56 21488.77 19669.06 23181.83 10888.16 19250.91 26792.85 18578.29 11187.56 13589.06 239
xiu_mvs_v1_base_debi80.80 13479.72 14084.03 13287.35 20970.19 7985.56 21488.77 19669.06 23181.83 10888.16 19250.91 26792.85 18578.29 11187.56 13589.06 239
UGNet80.83 13179.59 14384.54 10188.04 18468.09 12989.42 9388.16 20876.95 5976.22 21089.46 15549.30 28893.94 12868.48 20690.31 9991.60 144
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
114514_t80.68 13979.51 14484.20 11794.09 3867.27 14989.64 8591.11 12158.75 34674.08 25790.72 12658.10 20095.04 8769.70 19389.42 11490.30 195
QAPM80.88 12979.50 14585.03 8488.01 18668.97 10491.59 4392.00 8966.63 26675.15 24192.16 8857.70 20495.45 6563.52 24488.76 12390.66 179
AdaColmapbinary80.58 14379.42 14684.06 12793.09 5468.91 10589.36 9688.97 19069.27 22275.70 22089.69 14557.20 21195.77 5563.06 24988.41 13087.50 281
NR-MVSNet80.23 15179.38 14782.78 18387.80 19363.34 23286.31 19591.09 12279.01 2672.17 27889.07 16367.20 10092.81 18866.08 22775.65 29692.20 130
IterMVS-LS80.06 15479.38 14782.11 19485.89 23763.20 23686.79 18189.34 17074.19 12175.45 22786.72 22866.62 10392.39 19872.58 16776.86 27790.75 176
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
bld_raw_dy_0_6480.78 13779.36 14985.06 8389.46 12466.03 16989.63 8685.46 26069.76 21381.88 10789.06 16543.39 33395.70 5879.82 9785.74 16893.47 81
test_djsdf80.30 15079.32 15083.27 15683.98 27565.37 19090.50 6290.38 13968.55 24176.19 21188.70 17356.44 21593.46 15578.98 10280.14 24390.97 169
v2v48280.23 15179.29 15183.05 16883.62 28164.14 21487.04 17289.97 15473.61 13578.18 16587.22 21661.10 17693.82 13676.11 13176.78 28091.18 160
ECVR-MVScopyleft79.61 16179.26 15280.67 23090.08 10354.69 34287.89 15177.44 35074.88 10680.27 12892.79 7948.96 29592.45 19568.55 20592.50 7394.86 17
XVG-OURS80.41 14579.23 15383.97 13685.64 24169.02 10283.03 27390.39 13871.09 18177.63 17691.49 10454.62 22891.35 24075.71 13683.47 20191.54 147
RRT_MVS80.35 14979.22 15483.74 14287.63 20265.46 18691.08 5488.92 19373.82 12976.44 20690.03 13849.05 29394.25 11876.84 12479.20 25591.51 148
WR-MVS79.49 16579.22 15480.27 23888.79 15558.35 28985.06 22688.61 20478.56 3077.65 17588.34 18663.81 13390.66 25864.98 23677.22 27291.80 142
test111179.43 16879.18 15680.15 24089.99 10853.31 35587.33 16577.05 35375.04 10380.23 13092.77 8148.97 29492.33 20368.87 20292.40 7594.81 20
mvs_anonymous79.42 16979.11 15780.34 23684.45 26657.97 29682.59 27587.62 22367.40 25676.17 21488.56 18068.47 8889.59 27470.65 18386.05 16093.47 81
v114480.03 15579.03 15883.01 17083.78 27964.51 20587.11 17190.57 13571.96 16378.08 16886.20 24861.41 16893.94 12874.93 14377.23 27190.60 182
v879.97 15879.02 15982.80 18084.09 27264.50 20787.96 14690.29 14674.13 12475.24 23886.81 22562.88 14593.89 13574.39 14875.40 30590.00 211
ab-mvs79.51 16478.97 16081.14 21888.46 16760.91 26583.84 25489.24 17770.36 19679.03 14288.87 17063.23 13890.21 26365.12 23482.57 21492.28 126
Anonymous2024052980.19 15378.89 16184.10 12090.60 9264.75 20288.95 10990.90 12565.97 27480.59 12691.17 11549.97 27893.73 14469.16 19982.70 21393.81 62
PCF-MVS73.52 780.38 14678.84 16285.01 8587.71 19868.99 10383.65 25791.46 11363.00 30677.77 17490.28 13366.10 11195.09 8661.40 26888.22 13290.94 170
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
iter_conf0580.00 15778.70 16383.91 13987.84 19165.83 17788.84 11484.92 26671.61 16978.70 14888.94 16743.88 33094.56 10479.28 10084.28 18491.33 155
v1079.74 16078.67 16482.97 17384.06 27364.95 19787.88 15290.62 13273.11 14975.11 24286.56 23961.46 16794.05 12473.68 15375.55 29889.90 217
VPNet78.69 18878.66 16578.76 26588.31 17355.72 33184.45 24386.63 24376.79 6478.26 16190.55 13059.30 19389.70 27366.63 22277.05 27490.88 171
BH-untuned79.47 16678.60 16682.05 19589.19 14065.91 17586.07 20388.52 20572.18 16075.42 22887.69 20261.15 17593.54 15060.38 27586.83 14786.70 301
Effi-MVS+-dtu80.03 15578.57 16784.42 10685.13 25368.74 11188.77 11688.10 21074.99 10474.97 24683.49 30357.27 21093.36 15973.53 15580.88 23191.18 160
WR-MVS_H78.51 19278.49 16878.56 26988.02 18556.38 32288.43 12892.67 6277.14 5473.89 25887.55 20766.25 11089.24 28058.92 28873.55 32690.06 209
Vis-MVSNet (Re-imp)78.36 19578.45 16978.07 27988.64 16151.78 36486.70 18579.63 33574.14 12375.11 24290.83 12561.29 17289.75 27158.10 29791.60 8392.69 111
BH-RMVSNet79.61 16178.44 17083.14 16389.38 13065.93 17484.95 22987.15 23473.56 13778.19 16489.79 14356.67 21493.36 15959.53 28286.74 14890.13 201
v119279.59 16378.43 17183.07 16783.55 28364.52 20486.93 17690.58 13370.83 18577.78 17385.90 25259.15 19493.94 12873.96 15277.19 27390.76 175
v14419279.47 16678.37 17282.78 18383.35 28663.96 21786.96 17490.36 14269.99 20577.50 17785.67 25960.66 18393.77 14074.27 14976.58 28190.62 180
CP-MVSNet78.22 19778.34 17377.84 28187.83 19254.54 34487.94 14891.17 11877.65 3873.48 26288.49 18262.24 15588.43 29462.19 25974.07 31990.55 184
Baseline_NR-MVSNet78.15 20178.33 17477.61 28685.79 23856.21 32686.78 18285.76 25673.60 13677.93 17187.57 20565.02 12388.99 28467.14 21975.33 30787.63 276
OpenMVScopyleft72.83 1079.77 15978.33 17484.09 12385.17 24969.91 8490.57 6090.97 12366.70 26072.17 27891.91 9154.70 22693.96 12561.81 26590.95 9288.41 265
UniMVSNet_ETH3D79.10 17878.24 17681.70 20286.85 22260.24 27687.28 16788.79 19574.25 12076.84 19290.53 13149.48 28491.56 22967.98 20982.15 21793.29 89
V4279.38 17278.24 17682.83 17781.10 33265.50 18585.55 21789.82 15771.57 17178.21 16386.12 25060.66 18393.18 17275.64 13775.46 30289.81 222
PS-CasMVS78.01 20678.09 17877.77 28387.71 19854.39 34688.02 14491.22 11577.50 4673.26 26488.64 17660.73 18088.41 29561.88 26373.88 32390.53 185
v192192079.22 17478.03 17982.80 18083.30 28863.94 21886.80 18090.33 14369.91 20877.48 17885.53 26258.44 19893.75 14273.60 15476.85 27890.71 178
jajsoiax79.29 17377.96 18083.27 15684.68 26066.57 16289.25 9990.16 14969.20 22775.46 22689.49 15245.75 31993.13 17576.84 12480.80 23390.11 203
TAPA-MVS73.13 979.15 17677.94 18182.79 18289.59 11762.99 24388.16 14191.51 10965.77 27577.14 19091.09 11760.91 17993.21 16650.26 34387.05 14392.17 132
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tttt051779.40 17077.91 18283.90 14088.10 18163.84 21988.37 13384.05 27871.45 17476.78 19589.12 16249.93 28194.89 9470.18 18783.18 20692.96 105
c3_l78.75 18577.91 18281.26 21482.89 30261.56 25984.09 25289.13 18369.97 20675.56 22284.29 28666.36 10892.09 21073.47 15775.48 30090.12 202
MVSTER79.01 18077.88 18482.38 19183.07 29564.80 20184.08 25388.95 19169.01 23478.69 14987.17 21954.70 22692.43 19674.69 14480.57 23789.89 218
tt080578.73 18677.83 18581.43 20885.17 24960.30 27589.41 9490.90 12571.21 17877.17 18988.73 17246.38 30893.21 16672.57 16878.96 25690.79 173
X-MVStestdata80.37 14877.83 18588.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 8712.47 40567.45 9796.60 3383.06 6394.50 5194.07 49
v14878.72 18777.80 18781.47 20782.73 30561.96 25486.30 19688.08 21173.26 14676.18 21285.47 26462.46 15092.36 20071.92 17273.82 32490.09 205
v124078.99 18177.78 18882.64 18683.21 29063.54 22686.62 18790.30 14569.74 21677.33 18185.68 25857.04 21293.76 14173.13 16276.92 27590.62 180
mvs_tets79.13 17777.77 18983.22 16084.70 25966.37 16489.17 10090.19 14869.38 22075.40 22989.46 15544.17 32893.15 17376.78 12780.70 23590.14 200
miper_ehance_all_eth78.59 19177.76 19081.08 22082.66 30761.56 25983.65 25789.15 18168.87 23675.55 22383.79 29766.49 10692.03 21173.25 16076.39 28589.64 226
thisisatest053079.40 17077.76 19084.31 11187.69 20065.10 19587.36 16384.26 27670.04 20377.42 17988.26 19049.94 27994.79 9970.20 18684.70 17593.03 101
CDS-MVSNet79.07 17977.70 19283.17 16287.60 20368.23 12684.40 24686.20 24967.49 25476.36 20786.54 24061.54 16490.79 25561.86 26487.33 13990.49 187
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Anonymous2023121178.97 18277.69 19382.81 17990.54 9464.29 21290.11 7391.51 10965.01 28476.16 21588.13 19750.56 27293.03 18269.68 19477.56 27091.11 162
PEN-MVS77.73 21277.69 19377.84 28187.07 22053.91 34987.91 15091.18 11777.56 4373.14 26688.82 17161.23 17389.17 28159.95 27872.37 33490.43 189
AUN-MVS79.21 17577.60 19584.05 13088.71 15967.61 13985.84 21087.26 23169.08 23077.23 18588.14 19653.20 24293.47 15475.50 14173.45 32791.06 164
v7n78.97 18277.58 19683.14 16383.45 28565.51 18488.32 13591.21 11673.69 13372.41 27586.32 24657.93 20193.81 13769.18 19875.65 29690.11 203
TAMVS78.89 18477.51 19783.03 16987.80 19367.79 13684.72 23385.05 26467.63 25176.75 19687.70 20162.25 15490.82 25458.53 29387.13 14290.49 187
sd_testset77.70 21577.40 19878.60 26889.03 14760.02 27879.00 32385.83 25575.19 10076.61 20189.98 13954.81 22185.46 32162.63 25583.55 19890.33 193
GBi-Net78.40 19377.40 19881.40 21087.60 20363.01 23988.39 13089.28 17271.63 16675.34 23187.28 21254.80 22291.11 24562.72 25179.57 24790.09 205
test178.40 19377.40 19881.40 21087.60 20363.01 23988.39 13089.28 17271.63 16675.34 23187.28 21254.80 22291.11 24562.72 25179.57 24790.09 205
BH-w/o78.21 19877.33 20180.84 22688.81 15365.13 19484.87 23087.85 21969.75 21474.52 25384.74 27961.34 17093.11 17658.24 29685.84 16484.27 336
FMVSNet278.20 19977.21 20281.20 21687.60 20362.89 24487.47 16189.02 18671.63 16675.29 23787.28 21254.80 22291.10 24862.38 25679.38 25189.61 227
anonymousdsp78.60 19077.15 20382.98 17280.51 33867.08 15387.24 16889.53 16565.66 27775.16 24087.19 21852.52 24392.25 20577.17 12179.34 25289.61 227
HY-MVS69.67 1277.95 20777.15 20380.36 23587.57 20760.21 27783.37 26487.78 22166.11 27075.37 23087.06 22363.27 13690.48 26061.38 26982.43 21590.40 191
cl2278.07 20377.01 20581.23 21582.37 31461.83 25683.55 26187.98 21368.96 23575.06 24483.87 29361.40 16991.88 21873.53 15576.39 28589.98 214
Anonymous20240521178.25 19677.01 20581.99 19791.03 8260.67 26984.77 23283.90 28070.65 19380.00 13291.20 11341.08 34991.43 23865.21 23385.26 16993.85 59
MVS78.19 20076.99 20781.78 20085.66 24066.99 15484.66 23490.47 13755.08 36672.02 28085.27 26763.83 13294.11 12366.10 22689.80 11084.24 337
LCM-MVSNet-Re77.05 22576.94 20877.36 28987.20 21751.60 36580.06 30980.46 32575.20 9967.69 32186.72 22862.48 14988.98 28563.44 24689.25 11591.51 148
miper_enhance_ethall77.87 21076.86 20980.92 22581.65 32161.38 26182.68 27488.98 18865.52 27975.47 22482.30 32065.76 11892.00 21372.95 16376.39 28589.39 232
FMVSNet377.88 20976.85 21080.97 22486.84 22362.36 24786.52 19088.77 19671.13 17975.34 23186.66 23454.07 23391.10 24862.72 25179.57 24789.45 231
DTE-MVSNet76.99 22676.80 21177.54 28886.24 23253.06 35787.52 15990.66 13177.08 5772.50 27388.67 17560.48 18789.52 27557.33 30470.74 34590.05 210
CNLPA78.08 20276.79 21281.97 19890.40 9771.07 6287.59 15884.55 27066.03 27372.38 27689.64 14757.56 20686.04 31459.61 28183.35 20388.79 255
cl____77.72 21376.76 21380.58 23182.49 31160.48 27283.09 26987.87 21769.22 22574.38 25585.22 27062.10 15791.53 23271.09 17875.41 30489.73 225
DIV-MVS_self_test77.72 21376.76 21380.58 23182.48 31260.48 27283.09 26987.86 21869.22 22574.38 25585.24 26862.10 15791.53 23271.09 17875.40 30589.74 224
baseline176.98 22776.75 21577.66 28488.13 17955.66 33285.12 22581.89 30973.04 15176.79 19488.90 16862.43 15187.78 30263.30 24871.18 34389.55 229
eth_miper_zixun_eth77.92 20876.69 21681.61 20583.00 29861.98 25383.15 26789.20 17969.52 21874.86 24884.35 28561.76 16092.56 19271.50 17572.89 33290.28 196
pm-mvs177.25 22476.68 21778.93 26384.22 26958.62 28886.41 19288.36 20771.37 17573.31 26388.01 19861.22 17489.15 28264.24 24273.01 33189.03 243
ET-MVSNet_ETH3D78.63 18976.63 21884.64 9886.73 22669.47 9285.01 22784.61 26969.54 21766.51 33986.59 23650.16 27691.75 22276.26 13084.24 18592.69 111
test250677.30 22376.49 21979.74 24890.08 10352.02 35887.86 15363.10 39374.88 10680.16 13192.79 7938.29 36292.35 20168.74 20492.50 7394.86 17
Fast-Effi-MVS+-dtu78.02 20576.49 21982.62 18783.16 29466.96 15786.94 17587.45 22872.45 15571.49 28584.17 29054.79 22591.58 22767.61 21280.31 24089.30 235
1112_ss77.40 22176.43 22180.32 23789.11 14660.41 27483.65 25787.72 22262.13 31973.05 26786.72 22862.58 14889.97 26762.11 26280.80 23390.59 183
PAPM77.68 21676.40 22281.51 20687.29 21661.85 25583.78 25589.59 16464.74 28671.23 28688.70 17362.59 14793.66 14552.66 32887.03 14489.01 244
PLCcopyleft70.83 1178.05 20476.37 22383.08 16691.88 7467.80 13588.19 13989.46 16764.33 29269.87 30388.38 18553.66 23693.58 14658.86 28982.73 21187.86 272
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TR-MVS77.44 21976.18 22481.20 21688.24 17563.24 23484.61 23786.40 24667.55 25377.81 17286.48 24254.10 23293.15 17357.75 30082.72 21287.20 287
FMVSNet177.44 21976.12 22581.40 21086.81 22463.01 23988.39 13089.28 17270.49 19574.39 25487.28 21249.06 29291.11 24560.91 27278.52 25990.09 205
test_vis1_n_192075.52 25075.78 22674.75 31579.84 34657.44 30683.26 26585.52 25862.83 31079.34 14086.17 24945.10 32379.71 35478.75 10481.21 22887.10 294
CHOSEN 1792x268877.63 21775.69 22783.44 14989.98 10968.58 11978.70 32787.50 22656.38 36175.80 21986.84 22458.67 19691.40 23961.58 26785.75 16690.34 192
FE-MVS77.78 21175.68 22884.08 12488.09 18266.00 17283.13 26887.79 22068.42 24578.01 16985.23 26945.50 32195.12 8059.11 28685.83 16591.11 162
WTY-MVS75.65 24875.68 22875.57 30586.40 23156.82 31377.92 33782.40 30565.10 28176.18 21287.72 20063.13 14380.90 35060.31 27681.96 22089.00 246
testing9176.54 23275.66 23079.18 26088.43 16955.89 32981.08 29283.00 29773.76 13275.34 23184.29 28646.20 31390.07 26564.33 24084.50 17791.58 146
XXY-MVS75.41 25375.56 23174.96 31183.59 28257.82 30080.59 30283.87 28166.54 26774.93 24788.31 18763.24 13780.09 35362.16 26076.85 27886.97 295
thres100view90076.50 23475.55 23279.33 25689.52 12056.99 31185.83 21183.23 29173.94 12676.32 20887.12 22051.89 25891.95 21448.33 35283.75 19289.07 237
thres600view776.50 23475.44 23379.68 25089.40 12857.16 30885.53 21983.23 29173.79 13176.26 20987.09 22151.89 25891.89 21748.05 35783.72 19590.00 211
Test_1112_low_res76.40 23875.44 23379.27 25789.28 13658.09 29281.69 28487.07 23559.53 33872.48 27486.67 23361.30 17189.33 27860.81 27480.15 24290.41 190
HyFIR lowres test77.53 21875.40 23583.94 13889.59 11766.62 16080.36 30688.64 20356.29 36276.45 20385.17 27157.64 20593.28 16161.34 27083.10 20791.91 139
thisisatest051577.33 22275.38 23683.18 16185.27 24863.80 22082.11 28083.27 29065.06 28275.91 21683.84 29549.54 28394.27 11467.24 21786.19 15791.48 152
tfpn200view976.42 23775.37 23779.55 25589.13 14257.65 30285.17 22283.60 28373.41 14276.45 20386.39 24452.12 25091.95 21448.33 35283.75 19289.07 237
thres40076.50 23475.37 23779.86 24589.13 14257.65 30285.17 22283.60 28373.41 14276.45 20386.39 24452.12 25091.95 21448.33 35283.75 19290.00 211
131476.53 23375.30 23980.21 23983.93 27662.32 24984.66 23488.81 19460.23 33170.16 29784.07 29255.30 21990.73 25767.37 21583.21 20587.59 279
GA-MVS76.87 22975.17 24081.97 19882.75 30462.58 24581.44 28986.35 24872.16 16274.74 24982.89 31246.20 31392.02 21268.85 20381.09 22991.30 158
testing9976.09 24375.12 24179.00 26188.16 17755.50 33480.79 29681.40 31573.30 14575.17 23984.27 28844.48 32690.02 26664.28 24184.22 18691.48 152
EPNet_dtu75.46 25174.86 24277.23 29282.57 30954.60 34386.89 17783.09 29471.64 16566.25 34185.86 25455.99 21688.04 29954.92 31786.55 15189.05 242
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LS3D76.95 22874.82 24383.37 15390.45 9567.36 14689.15 10486.94 23861.87 32169.52 30690.61 12851.71 26194.53 10646.38 36486.71 14988.21 267
cascas76.72 23174.64 24482.99 17185.78 23965.88 17682.33 27789.21 17860.85 32772.74 26981.02 33147.28 30293.75 14267.48 21485.02 17089.34 234
DP-MVS76.78 23074.57 24583.42 15093.29 4869.46 9488.55 12683.70 28263.98 29870.20 29488.89 16954.01 23494.80 9846.66 36181.88 22286.01 313
TransMVSNet (Re)75.39 25474.56 24677.86 28085.50 24457.10 31086.78 18286.09 25272.17 16171.53 28487.34 21163.01 14489.31 27956.84 30961.83 37187.17 288
LTVRE_ROB69.57 1376.25 24074.54 24781.41 20988.60 16264.38 21179.24 31989.12 18470.76 18869.79 30587.86 19949.09 29193.20 16956.21 31480.16 24186.65 302
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
thres20075.55 24974.47 24878.82 26487.78 19657.85 29983.07 27183.51 28672.44 15775.84 21884.42 28152.08 25391.75 22247.41 35983.64 19786.86 297
MVP-Stereo76.12 24174.46 24981.13 21985.37 24769.79 8684.42 24587.95 21565.03 28367.46 32485.33 26653.28 24191.73 22458.01 29883.27 20481.85 361
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
F-COLMAP76.38 23974.33 25082.50 18989.28 13666.95 15888.41 12989.03 18564.05 29666.83 33188.61 17746.78 30692.89 18457.48 30178.55 25887.67 275
XVG-ACMP-BASELINE76.11 24274.27 25181.62 20383.20 29164.67 20383.60 26089.75 16069.75 21471.85 28187.09 22132.78 37492.11 20969.99 19080.43 23988.09 268
testing1175.14 25674.01 25278.53 27188.16 17756.38 32280.74 29980.42 32670.67 18972.69 27283.72 29943.61 33289.86 26862.29 25883.76 19189.36 233
ACMH+68.96 1476.01 24474.01 25282.03 19688.60 16265.31 19188.86 11287.55 22470.25 20167.75 32087.47 21041.27 34793.19 17158.37 29475.94 29387.60 277
ACMH67.68 1675.89 24573.93 25481.77 20188.71 15966.61 16188.62 12489.01 18769.81 20966.78 33286.70 23241.95 34691.51 23455.64 31578.14 26587.17 288
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CostFormer75.24 25573.90 25579.27 25782.65 30858.27 29180.80 29582.73 30361.57 32275.33 23583.13 30855.52 21791.07 25164.98 23678.34 26488.45 263
IterMVS-SCA-FT75.43 25273.87 25680.11 24182.69 30664.85 20081.57 28683.47 28769.16 22870.49 29184.15 29151.95 25688.15 29769.23 19772.14 33787.34 284
baseline275.70 24773.83 25781.30 21383.26 28961.79 25782.57 27680.65 32166.81 25766.88 33083.42 30457.86 20392.19 20763.47 24579.57 24789.91 216
test_cas_vis1_n_192073.76 26873.74 25873.81 32375.90 36759.77 28080.51 30382.40 30558.30 34881.62 11485.69 25744.35 32776.41 37276.29 12978.61 25785.23 324
sss73.60 26973.64 25973.51 32582.80 30355.01 34076.12 34481.69 31262.47 31574.68 25085.85 25557.32 20978.11 36160.86 27380.93 23087.39 282
pmmvs674.69 25873.39 26078.61 26781.38 32757.48 30586.64 18687.95 21564.99 28570.18 29586.61 23550.43 27489.52 27562.12 26170.18 34788.83 253
IB-MVS68.01 1575.85 24673.36 26183.31 15484.76 25866.03 16983.38 26385.06 26370.21 20269.40 30781.05 33045.76 31894.66 10365.10 23575.49 29989.25 236
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
D2MVS74.82 25773.21 26279.64 25279.81 34762.56 24680.34 30787.35 22964.37 29168.86 31282.66 31646.37 30990.10 26467.91 21081.24 22786.25 306
tfpnnormal74.39 25973.16 26378.08 27886.10 23658.05 29384.65 23687.53 22570.32 19871.22 28785.63 26054.97 22089.86 26843.03 37575.02 31286.32 305
miper_lstm_enhance74.11 26373.11 26477.13 29380.11 34259.62 28272.23 36486.92 23966.76 25970.40 29282.92 31156.93 21382.92 33969.06 20072.63 33388.87 251
IterMVS74.29 26072.94 26578.35 27481.53 32463.49 22881.58 28582.49 30468.06 24969.99 30083.69 30051.66 26285.54 31965.85 22971.64 34086.01 313
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MS-PatchMatch73.83 26772.67 26677.30 29183.87 27766.02 17181.82 28184.66 26861.37 32568.61 31582.82 31447.29 30188.21 29659.27 28384.32 18377.68 375
testing22274.04 26472.66 26778.19 27687.89 18855.36 33581.06 29379.20 33971.30 17674.65 25183.57 30239.11 35888.67 29151.43 33585.75 16690.53 185
CVMVSNet72.99 27872.58 26874.25 31984.28 26750.85 37086.41 19283.45 28844.56 38373.23 26587.54 20849.38 28685.70 31665.90 22878.44 26186.19 308
test-LLR72.94 27972.43 26974.48 31681.35 32858.04 29478.38 33077.46 34866.66 26169.95 30179.00 35148.06 29879.24 35566.13 22484.83 17286.15 309
OurMVSNet-221017-074.26 26172.42 27079.80 24783.76 28059.59 28385.92 20786.64 24266.39 26866.96 32987.58 20439.46 35591.60 22665.76 23069.27 35088.22 266
SCA74.22 26272.33 27179.91 24484.05 27462.17 25179.96 31279.29 33866.30 26972.38 27680.13 34051.95 25688.60 29259.25 28477.67 26988.96 248
tpmrst72.39 28172.13 27273.18 32980.54 33749.91 37479.91 31379.08 34063.11 30471.69 28379.95 34255.32 21882.77 34065.66 23173.89 32286.87 296
pmmvs474.03 26671.91 27380.39 23481.96 31768.32 12381.45 28882.14 30759.32 33969.87 30385.13 27252.40 24688.13 29860.21 27774.74 31584.73 333
EG-PatchMatch MVS74.04 26471.82 27480.71 22984.92 25667.42 14385.86 20988.08 21166.04 27264.22 35383.85 29435.10 37192.56 19257.44 30280.83 23282.16 360
tpm72.37 28371.71 27574.35 31882.19 31552.00 35979.22 32077.29 35164.56 28872.95 26883.68 30151.35 26383.26 33858.33 29575.80 29487.81 273
WB-MVSnew71.96 28871.65 27672.89 33084.67 26351.88 36282.29 27877.57 34762.31 31673.67 26083.00 30953.49 23981.10 34945.75 36882.13 21885.70 318
UWE-MVS72.13 28671.49 27774.03 32186.66 22847.70 37881.40 29076.89 35563.60 30175.59 22184.22 28939.94 35485.62 31848.98 34986.13 15988.77 256
CL-MVSNet_self_test72.37 28371.46 27875.09 31079.49 35353.53 35180.76 29885.01 26569.12 22970.51 29082.05 32457.92 20284.13 33052.27 33066.00 36387.60 277
tpm273.26 27471.46 27878.63 26683.34 28756.71 31680.65 30180.40 32756.63 36073.55 26182.02 32551.80 26091.24 24356.35 31378.42 26287.95 269
RPSCF73.23 27571.46 27878.54 27082.50 31059.85 27982.18 27982.84 30258.96 34371.15 28889.41 15945.48 32284.77 32758.82 29071.83 33991.02 168
PatchmatchNetpermissive73.12 27671.33 28178.49 27383.18 29260.85 26679.63 31478.57 34264.13 29371.73 28279.81 34551.20 26585.97 31557.40 30376.36 29088.66 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CR-MVSNet73.37 27171.27 28279.67 25181.32 33065.19 19275.92 34680.30 32859.92 33472.73 27081.19 32852.50 24486.69 30859.84 27977.71 26787.11 292
SixPastTwentyTwo73.37 27171.26 28379.70 24985.08 25457.89 29885.57 21383.56 28571.03 18365.66 34385.88 25342.10 34492.57 19159.11 28663.34 36988.65 260
ETVMVS72.25 28571.05 28475.84 30187.77 19751.91 36179.39 31774.98 36269.26 22373.71 25982.95 31040.82 35186.14 31346.17 36584.43 18289.47 230
MSDG73.36 27370.99 28580.49 23384.51 26565.80 17980.71 30086.13 25165.70 27665.46 34483.74 29844.60 32490.91 25351.13 33676.89 27684.74 332
PatchMatch-RL72.38 28270.90 28676.80 29688.60 16267.38 14579.53 31576.17 35962.75 31269.36 30882.00 32645.51 32084.89 32653.62 32380.58 23678.12 374
PVSNet64.34 1872.08 28770.87 28775.69 30386.21 23356.44 32074.37 35880.73 32062.06 32070.17 29682.23 32242.86 33883.31 33754.77 31884.45 18187.32 285
dmvs_re71.14 29270.58 28872.80 33181.96 31759.68 28175.60 35079.34 33768.55 24169.27 31080.72 33649.42 28576.54 36952.56 32977.79 26682.19 359
test_fmvs170.93 29570.52 28972.16 33573.71 37755.05 33980.82 29478.77 34151.21 37778.58 15384.41 28231.20 37976.94 36775.88 13580.12 24484.47 335
RPMNet73.51 27070.49 29082.58 18881.32 33065.19 19275.92 34692.27 7857.60 35472.73 27076.45 36752.30 24795.43 6748.14 35677.71 26787.11 292
test_040272.79 28070.44 29179.84 24688.13 17965.99 17385.93 20684.29 27465.57 27867.40 32685.49 26346.92 30592.61 19035.88 38774.38 31880.94 366
COLMAP_ROBcopyleft66.92 1773.01 27770.41 29280.81 22787.13 21965.63 18288.30 13684.19 27762.96 30763.80 35787.69 20238.04 36392.56 19246.66 36174.91 31384.24 337
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test-mter71.41 29070.39 29374.48 31681.35 32858.04 29478.38 33077.46 34860.32 33069.95 30179.00 35136.08 36979.24 35566.13 22484.83 17286.15 309
test_fmvs1_n70.86 29670.24 29472.73 33272.51 38755.28 33781.27 29179.71 33451.49 37678.73 14784.87 27627.54 38477.02 36676.06 13279.97 24585.88 316
pmmvs571.55 28970.20 29575.61 30477.83 36056.39 32181.74 28380.89 31757.76 35267.46 32484.49 28049.26 28985.32 32357.08 30675.29 30885.11 328
MDTV_nov1_ep1369.97 29683.18 29253.48 35277.10 34280.18 33160.45 32869.33 30980.44 33748.89 29686.90 30751.60 33378.51 260
MIMVSNet70.69 29869.30 29774.88 31284.52 26456.35 32475.87 34879.42 33664.59 28767.76 31982.41 31841.10 34881.54 34646.64 36381.34 22586.75 300
tpmvs71.09 29369.29 29876.49 29782.04 31656.04 32778.92 32581.37 31664.05 29667.18 32878.28 35749.74 28289.77 27049.67 34672.37 33483.67 344
test_vis1_n69.85 30869.21 29971.77 33772.66 38655.27 33881.48 28776.21 35852.03 37375.30 23683.20 30728.97 38276.22 37474.60 14578.41 26383.81 343
Patchmtry70.74 29769.16 30075.49 30780.72 33454.07 34874.94 35780.30 32858.34 34770.01 29881.19 32852.50 24486.54 30953.37 32571.09 34485.87 317
TESTMET0.1,169.89 30769.00 30172.55 33379.27 35656.85 31278.38 33074.71 36657.64 35368.09 31877.19 36437.75 36476.70 36863.92 24384.09 18784.10 340
PMMVS69.34 31068.67 30271.35 34275.67 36962.03 25275.17 35273.46 36950.00 37868.68 31379.05 34952.07 25478.13 36061.16 27182.77 21073.90 381
K. test v371.19 29168.51 30379.21 25983.04 29757.78 30184.35 24776.91 35472.90 15462.99 36082.86 31339.27 35691.09 25061.65 26652.66 38788.75 257
USDC70.33 30268.37 30476.21 29980.60 33656.23 32579.19 32186.49 24460.89 32661.29 36485.47 26431.78 37789.47 27753.37 32576.21 29182.94 354
tpm cat170.57 29968.31 30577.35 29082.41 31357.95 29778.08 33480.22 33052.04 37268.54 31677.66 36252.00 25587.84 30151.77 33172.07 33886.25 306
OpenMVS_ROBcopyleft64.09 1970.56 30068.19 30677.65 28580.26 33959.41 28585.01 22782.96 29958.76 34565.43 34582.33 31937.63 36591.23 24445.34 37176.03 29282.32 357
EPMVS69.02 31268.16 30771.59 33879.61 35149.80 37677.40 33966.93 38562.82 31170.01 29879.05 34945.79 31777.86 36356.58 31175.26 30987.13 291
CMPMVSbinary51.72 2170.19 30468.16 30776.28 29873.15 38357.55 30479.47 31683.92 27948.02 38056.48 38184.81 27743.13 33686.42 31162.67 25481.81 22384.89 330
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
AllTest70.96 29468.09 30979.58 25385.15 25163.62 22284.58 23879.83 33262.31 31660.32 36886.73 22632.02 37588.96 28750.28 34171.57 34186.15 309
gg-mvs-nofinetune69.95 30667.96 31075.94 30083.07 29554.51 34577.23 34170.29 37763.11 30470.32 29362.33 38843.62 33188.69 29053.88 32287.76 13484.62 334
FMVSNet569.50 30967.96 31074.15 32082.97 30155.35 33680.01 31182.12 30862.56 31463.02 35881.53 32736.92 36681.92 34448.42 35174.06 32085.17 327
Syy-MVS68.05 32167.85 31268.67 35784.68 26040.97 39878.62 32873.08 37166.65 26466.74 33379.46 34652.11 25282.30 34232.89 39076.38 28882.75 355
PatchT68.46 31967.85 31270.29 34880.70 33543.93 39072.47 36374.88 36360.15 33270.55 28976.57 36649.94 27981.59 34550.58 33774.83 31485.34 322
pmmvs-eth3d70.50 30167.83 31478.52 27277.37 36366.18 16881.82 28181.51 31358.90 34463.90 35680.42 33842.69 33986.28 31258.56 29265.30 36583.11 350
Anonymous2023120668.60 31567.80 31571.02 34580.23 34150.75 37178.30 33380.47 32456.79 35966.11 34282.63 31746.35 31078.95 35743.62 37475.70 29583.36 347
Patchmatch-RL test70.24 30367.78 31677.61 28677.43 36259.57 28471.16 36770.33 37662.94 30868.65 31472.77 37950.62 27185.49 32069.58 19566.58 36087.77 274
test0.0.03 168.00 32267.69 31768.90 35477.55 36147.43 37975.70 34972.95 37366.66 26166.56 33582.29 32148.06 29875.87 37644.97 37274.51 31783.41 346
testing368.56 31767.67 31871.22 34487.33 21442.87 39283.06 27271.54 37470.36 19669.08 31184.38 28330.33 38185.69 31737.50 38675.45 30385.09 329
EU-MVSNet68.53 31867.61 31971.31 34378.51 35947.01 38184.47 24084.27 27542.27 38666.44 34084.79 27840.44 35283.76 33258.76 29168.54 35583.17 348
KD-MVS_self_test68.81 31367.59 32072.46 33474.29 37545.45 38377.93 33687.00 23663.12 30363.99 35578.99 35342.32 34184.77 32756.55 31264.09 36887.16 290
test_fmvs268.35 32067.48 32170.98 34669.50 39051.95 36080.05 31076.38 35749.33 37974.65 25184.38 28323.30 39075.40 38174.51 14675.17 31185.60 319
ppachtmachnet_test70.04 30567.34 32278.14 27779.80 34861.13 26279.19 32180.59 32259.16 34165.27 34679.29 34846.75 30787.29 30549.33 34766.72 35886.00 315
Anonymous2024052168.80 31467.22 32373.55 32474.33 37454.11 34783.18 26685.61 25758.15 34961.68 36380.94 33330.71 38081.27 34857.00 30773.34 33085.28 323
our_test_369.14 31167.00 32475.57 30579.80 34858.80 28677.96 33577.81 34559.55 33762.90 36178.25 35847.43 30083.97 33151.71 33267.58 35783.93 342
test20.0367.45 32466.95 32568.94 35375.48 37144.84 38877.50 33877.67 34666.66 26163.01 35983.80 29647.02 30478.40 35942.53 37768.86 35483.58 345
MIMVSNet168.58 31666.78 32673.98 32280.07 34351.82 36380.77 29784.37 27164.40 29059.75 37182.16 32336.47 36783.63 33442.73 37670.33 34686.48 304
testgi66.67 33066.53 32767.08 36275.62 37041.69 39775.93 34576.50 35666.11 27065.20 34986.59 23635.72 37074.71 38343.71 37373.38 32984.84 331
myMVS_eth3d67.02 32766.29 32869.21 35284.68 26042.58 39378.62 32873.08 37166.65 26466.74 33379.46 34631.53 37882.30 34239.43 38376.38 28882.75 355
UnsupCasMVSNet_eth67.33 32565.99 32971.37 34073.48 38051.47 36775.16 35385.19 26265.20 28060.78 36680.93 33542.35 34077.20 36557.12 30553.69 38685.44 321
dp66.80 32865.43 33070.90 34779.74 35048.82 37775.12 35574.77 36459.61 33664.08 35477.23 36342.89 33780.72 35148.86 35066.58 36083.16 349
TinyColmap67.30 32664.81 33174.76 31481.92 31956.68 31780.29 30881.49 31460.33 32956.27 38283.22 30524.77 38787.66 30445.52 36969.47 34979.95 370
CHOSEN 280x42066.51 33164.71 33271.90 33681.45 32563.52 22757.98 39568.95 38353.57 36862.59 36276.70 36546.22 31275.29 38255.25 31679.68 24676.88 377
TDRefinement67.49 32364.34 33376.92 29473.47 38161.07 26384.86 23182.98 29859.77 33558.30 37585.13 27226.06 38587.89 30047.92 35860.59 37681.81 362
PM-MVS66.41 33264.14 33473.20 32873.92 37656.45 31978.97 32464.96 39163.88 30064.72 35080.24 33919.84 39383.44 33666.24 22364.52 36779.71 371
dmvs_testset62.63 34464.11 33558.19 37278.55 35824.76 40875.28 35165.94 38867.91 25060.34 36776.01 36953.56 23773.94 38731.79 39167.65 35675.88 379
KD-MVS_2432*160066.22 33463.89 33673.21 32675.47 37253.42 35370.76 37084.35 27264.10 29466.52 33778.52 35534.55 37284.98 32450.40 33950.33 39081.23 364
miper_refine_blended66.22 33463.89 33673.21 32675.47 37253.42 35370.76 37084.35 27264.10 29466.52 33778.52 35534.55 37284.98 32450.40 33950.33 39081.23 364
MDA-MVSNet-bldmvs66.68 32963.66 33875.75 30279.28 35560.56 27173.92 36078.35 34364.43 28950.13 38979.87 34444.02 32983.67 33346.10 36656.86 37983.03 352
ADS-MVSNet266.20 33663.33 33974.82 31379.92 34458.75 28767.55 38175.19 36153.37 36965.25 34775.86 37042.32 34180.53 35241.57 37868.91 35285.18 325
Patchmatch-test64.82 33963.24 34069.57 35079.42 35449.82 37563.49 39269.05 38251.98 37459.95 37080.13 34050.91 26770.98 39040.66 38073.57 32587.90 271
MDA-MVSNet_test_wron65.03 33762.92 34171.37 34075.93 36656.73 31469.09 37974.73 36557.28 35754.03 38577.89 35945.88 31574.39 38549.89 34561.55 37282.99 353
YYNet165.03 33762.91 34271.38 33975.85 36856.60 31869.12 37874.66 36757.28 35754.12 38477.87 36045.85 31674.48 38449.95 34461.52 37383.05 351
ADS-MVSNet64.36 34062.88 34368.78 35679.92 34447.17 38067.55 38171.18 37553.37 36965.25 34775.86 37042.32 34173.99 38641.57 37868.91 35285.18 325
JIA-IIPM66.32 33362.82 34476.82 29577.09 36461.72 25865.34 38875.38 36058.04 35164.51 35162.32 38942.05 34586.51 31051.45 33469.22 35182.21 358
LF4IMVS64.02 34162.19 34569.50 35170.90 38853.29 35676.13 34377.18 35252.65 37158.59 37380.98 33223.55 38976.52 37053.06 32766.66 35978.68 373
test_fmvs363.36 34361.82 34667.98 35962.51 39746.96 38277.37 34074.03 36845.24 38267.50 32378.79 35412.16 40172.98 38972.77 16666.02 36283.99 341
new-patchmatchnet61.73 34661.73 34761.70 36872.74 38524.50 40969.16 37778.03 34461.40 32356.72 38075.53 37338.42 36076.48 37145.95 36757.67 37884.13 339
UnsupCasMVSNet_bld63.70 34261.53 34870.21 34973.69 37851.39 36872.82 36281.89 30955.63 36457.81 37771.80 38138.67 35978.61 35849.26 34852.21 38880.63 367
mvsany_test162.30 34561.26 34965.41 36469.52 38954.86 34166.86 38349.78 40446.65 38168.50 31783.21 30649.15 29066.28 39656.93 30860.77 37475.11 380
PVSNet_057.27 2061.67 34759.27 35068.85 35579.61 35157.44 30668.01 38073.44 37055.93 36358.54 37470.41 38444.58 32577.55 36447.01 36035.91 39671.55 384
test_vis1_rt60.28 34858.42 35165.84 36367.25 39355.60 33370.44 37260.94 39644.33 38459.00 37266.64 38624.91 38668.67 39462.80 25069.48 34873.25 382
MVS-HIRNet59.14 34957.67 35263.57 36681.65 32143.50 39171.73 36565.06 39039.59 39051.43 38757.73 39438.34 36182.58 34139.53 38173.95 32164.62 390
DSMNet-mixed57.77 35156.90 35360.38 37067.70 39235.61 40169.18 37653.97 40232.30 39857.49 37879.88 34340.39 35368.57 39538.78 38472.37 33476.97 376
WB-MVS54.94 35254.72 35455.60 37873.50 37920.90 41074.27 35961.19 39559.16 34150.61 38874.15 37547.19 30375.78 37717.31 40235.07 39770.12 385
pmmvs357.79 35054.26 35568.37 35864.02 39656.72 31575.12 35565.17 38940.20 38852.93 38669.86 38520.36 39275.48 37945.45 37055.25 38572.90 383
SSC-MVS53.88 35553.59 35654.75 38072.87 38419.59 41173.84 36160.53 39757.58 35549.18 39073.45 37846.34 31175.47 38016.20 40532.28 39969.20 386
N_pmnet52.79 35853.26 35751.40 38278.99 3577.68 41469.52 3743.89 41351.63 37557.01 37974.98 37440.83 35065.96 39737.78 38564.67 36680.56 369
FPMVS53.68 35651.64 35859.81 37165.08 39551.03 36969.48 37569.58 38041.46 38740.67 39372.32 38016.46 39770.00 39324.24 39965.42 36458.40 395
mvsany_test353.99 35451.45 35961.61 36955.51 40144.74 38963.52 39145.41 40843.69 38558.11 37676.45 36717.99 39463.76 39954.77 31847.59 39276.34 378
test_f52.09 35950.82 36055.90 37653.82 40442.31 39659.42 39458.31 40036.45 39356.12 38370.96 38312.18 40057.79 40153.51 32456.57 38167.60 387
new_pmnet50.91 36150.29 36152.78 38168.58 39134.94 40363.71 39056.63 40139.73 38944.95 39165.47 38721.93 39158.48 40034.98 38856.62 38064.92 389
APD_test153.31 35749.93 36263.42 36765.68 39450.13 37371.59 36666.90 38634.43 39540.58 39471.56 3828.65 40676.27 37334.64 38955.36 38463.86 391
LCM-MVSNet54.25 35349.68 36367.97 36053.73 40545.28 38666.85 38480.78 31935.96 39439.45 39562.23 3908.70 40578.06 36248.24 35551.20 38980.57 368
EGC-MVSNET52.07 36047.05 36467.14 36183.51 28460.71 26880.50 30467.75 3840.07 4080.43 40975.85 37224.26 38881.54 34628.82 39362.25 37059.16 393
test_vis3_rt49.26 36347.02 36556.00 37554.30 40245.27 38766.76 38548.08 40536.83 39244.38 39253.20 3977.17 40864.07 39856.77 31055.66 38258.65 394
ANet_high50.57 36246.10 36663.99 36548.67 40839.13 39970.99 36980.85 31861.39 32431.18 39757.70 39517.02 39673.65 38831.22 39215.89 40579.18 372
testf145.72 36441.96 36757.00 37356.90 39945.32 38466.14 38659.26 39826.19 39930.89 39860.96 3924.14 40970.64 39126.39 39746.73 39455.04 396
APD_test245.72 36441.96 36757.00 37356.90 39945.32 38466.14 38659.26 39826.19 39930.89 39860.96 3924.14 40970.64 39126.39 39746.73 39455.04 396
Gipumacopyleft45.18 36641.86 36955.16 37977.03 36551.52 36632.50 40180.52 32332.46 39727.12 40035.02 4019.52 40475.50 37822.31 40060.21 37738.45 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft37.38 2244.16 36740.28 37055.82 37740.82 41042.54 39565.12 38963.99 39234.43 39524.48 40157.12 3963.92 41176.17 37517.10 40355.52 38348.75 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS240.82 36838.86 37146.69 38353.84 40316.45 41248.61 39849.92 40337.49 39131.67 39660.97 3918.14 40756.42 40228.42 39430.72 40067.19 388
E-PMN31.77 36930.64 37235.15 38652.87 40627.67 40557.09 39647.86 40624.64 40116.40 40633.05 40211.23 40254.90 40314.46 40618.15 40322.87 402
EMVS30.81 37129.65 37334.27 38750.96 40725.95 40756.58 39746.80 40724.01 40215.53 40730.68 40312.47 39954.43 40412.81 40717.05 40422.43 403
test_method31.52 37029.28 37438.23 38527.03 4126.50 41520.94 40362.21 3944.05 40622.35 40452.50 39813.33 39847.58 40527.04 39634.04 39860.62 392
cdsmvs_eth3d_5k19.96 37326.61 3750.00 3930.00 4160.00 4180.00 40489.26 1750.00 4110.00 41288.61 17761.62 1630.00 4120.00 4110.00 4100.00 408
MVEpermissive26.22 2330.37 37225.89 37643.81 38444.55 40935.46 40228.87 40239.07 40918.20 40318.58 40540.18 4002.68 41247.37 40617.07 40423.78 40248.60 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt18.61 37421.40 37710.23 3904.82 41310.11 41334.70 40030.74 4111.48 40723.91 40326.07 40428.42 38313.41 40927.12 39515.35 4067.17 404
wuyk23d16.82 37515.94 37819.46 38958.74 39831.45 40439.22 3993.74 4146.84 4056.04 4082.70 4081.27 41324.29 40810.54 40814.40 4072.63 405
ab-mvs-re7.23 3769.64 3790.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41286.72 2280.00 4160.00 4120.00 4110.00 4100.00 408
test1236.12 3778.11 3800.14 3910.06 4150.09 41671.05 3680.03 4160.04 4100.25 4111.30 4100.05 4140.03 4110.21 4100.01 4090.29 406
testmvs6.04 3788.02 3810.10 3920.08 4140.03 41769.74 3730.04 4150.05 4090.31 4101.68 4090.02 4150.04 4100.24 4090.02 4080.25 407
pcd_1.5k_mvsjas5.26 3797.02 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41163.15 1400.00 4120.00 4110.00 4100.00 408
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS42.58 39339.46 382
FOURS195.00 1072.39 3995.06 193.84 1574.49 11591.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 34
PC_three_145268.21 24792.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
No_MVS89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 34
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 416
eth-test0.00 416
ZD-MVS94.38 2572.22 4492.67 6270.98 18487.75 3294.07 4174.01 3296.70 2784.66 4794.84 44
IU-MVS95.30 271.25 5792.95 5266.81 25792.39 688.94 1696.63 494.85 19
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 43
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
save fliter93.80 4072.35 4290.47 6491.17 11874.31 118
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 25
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 44
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
GSMVS88.96 248
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26488.96 248
sam_mvs50.01 277
ambc75.24 30973.16 38250.51 37263.05 39387.47 22764.28 35277.81 36117.80 39589.73 27257.88 29960.64 37585.49 320
MTGPAbinary92.02 87
test_post178.90 3265.43 40748.81 29785.44 32259.25 284
test_post5.46 40650.36 27584.24 329
patchmatchnet-post74.00 37651.12 26688.60 292
GG-mvs-BLEND75.38 30881.59 32355.80 33079.32 31869.63 37967.19 32773.67 37743.24 33488.90 28950.41 33884.50 17781.45 363
MTMP92.18 3532.83 410
gm-plane-assit81.40 32653.83 35062.72 31380.94 33392.39 19863.40 247
test9_res84.90 4295.70 2692.87 106
TEST993.26 5072.96 2588.75 11791.89 9568.44 24485.00 5993.10 6774.36 2895.41 69
test_893.13 5272.57 3588.68 12291.84 9968.69 23984.87 6393.10 6774.43 2695.16 78
agg_prior282.91 6695.45 3092.70 109
agg_prior92.85 5971.94 5191.78 10284.41 7394.93 89
TestCases79.58 25385.15 25163.62 22279.83 33262.31 31660.32 36886.73 22632.02 37588.96 28750.28 34171.57 34186.15 309
test_prior472.60 3489.01 107
test_prior288.85 11375.41 9584.91 6193.54 5674.28 2983.31 6195.86 20
test_prior86.33 5492.61 6569.59 8892.97 5195.48 6493.91 55
旧先验286.56 18958.10 35087.04 4188.98 28574.07 151
新几何286.29 197
新几何183.42 15093.13 5270.71 7185.48 25957.43 35681.80 11191.98 9063.28 13592.27 20464.60 23992.99 6687.27 286
旧先验191.96 7165.79 18086.37 24793.08 7169.31 7992.74 6988.74 258
无先验87.48 16088.98 18860.00 33394.12 12267.28 21688.97 247
原ACMM286.86 178
原ACMM184.35 10993.01 5768.79 10792.44 7163.96 29981.09 12191.57 10166.06 11395.45 6567.19 21894.82 4688.81 254
test22291.50 7768.26 12584.16 25083.20 29354.63 36779.74 13391.63 9958.97 19591.42 8686.77 299
testdata291.01 25262.37 257
segment_acmp73.08 38
testdata79.97 24390.90 8664.21 21384.71 26759.27 34085.40 5392.91 7362.02 15989.08 28368.95 20191.37 8786.63 303
testdata184.14 25175.71 89
test1286.80 4992.63 6470.70 7291.79 10182.71 10171.67 5396.16 4494.50 5193.54 79
plane_prior790.08 10368.51 120
plane_prior689.84 11268.70 11560.42 188
plane_prior592.44 7195.38 7178.71 10586.32 15491.33 155
plane_prior491.00 122
plane_prior368.60 11878.44 3178.92 145
plane_prior291.25 5079.12 23
plane_prior189.90 111
plane_prior68.71 11390.38 6877.62 3986.16 158
n20.00 417
nn0.00 417
door-mid69.98 378
lessismore_v078.97 26281.01 33357.15 30965.99 38761.16 36582.82 31439.12 35791.34 24159.67 28046.92 39388.43 264
LGP-MVS_train84.50 10289.23 13868.76 10991.94 9375.37 9676.64 19991.51 10254.29 23094.91 9078.44 10783.78 18989.83 220
test1192.23 81
door69.44 381
HQP5-MVS66.98 155
HQP-NCC89.33 13189.17 10076.41 7477.23 185
ACMP_Plane89.33 13189.17 10076.41 7477.23 185
BP-MVS77.47 117
HQP4-MVS77.24 18495.11 8291.03 166
HQP3-MVS92.19 8485.99 162
HQP2-MVS60.17 191
NP-MVS89.62 11668.32 12390.24 134
MDTV_nov1_ep13_2view37.79 40075.16 35355.10 36566.53 33649.34 28753.98 32187.94 270
ACMMP++_ref81.95 221
ACMMP++81.25 226
Test By Simon64.33 127
ITE_SJBPF78.22 27581.77 32060.57 27083.30 28969.25 22467.54 32287.20 21736.33 36887.28 30654.34 32074.62 31686.80 298
DeepMVS_CXcopyleft27.40 38840.17 41126.90 40624.59 41217.44 40423.95 40248.61 3999.77 40326.48 40718.06 40124.47 40128.83 401