This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS99.09 198.91 199.63 499.71 2199.24 599.02 7198.87 5897.65 1099.73 199.48 897.53 799.94 498.43 2699.81 1299.70 54
DVP-MVS++99.08 298.89 299.64 399.17 10399.23 799.69 198.88 5197.32 3399.53 999.47 1097.81 399.94 498.47 2299.72 5499.74 37
patch_mono-298.36 4898.87 396.82 21199.53 3990.68 31498.64 15199.29 897.88 599.19 2999.52 396.80 1599.97 199.11 199.86 199.82 10
APDe-MVS99.02 498.84 499.55 999.57 3598.96 1699.39 1298.93 3997.38 3099.41 1399.54 196.66 1799.84 5798.86 499.85 599.87 1
DVP-MVScopyleft99.03 398.83 599.63 499.72 1399.25 298.97 8198.58 15397.62 1299.45 1199.46 1397.42 999.94 498.47 2299.81 1299.69 57
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SteuartSystems-ACMMP98.90 698.75 699.36 2499.22 9898.43 3899.10 5598.87 5897.38 3099.35 1799.40 1797.78 599.87 4897.77 6299.85 599.78 16
Skip Steuart: Steuart Systems R&D Blog.
SD-MVS98.64 1598.68 798.53 9499.33 6998.36 4798.90 9198.85 6897.28 3699.72 399.39 1896.63 1997.60 33598.17 3699.85 599.64 76
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DPE-MVScopyleft98.92 598.67 899.65 299.58 3499.20 998.42 18498.91 4597.58 1599.54 899.46 1397.10 1299.94 497.64 7399.84 1099.83 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + MP.98.78 798.62 999.24 4399.69 2698.28 5399.14 4598.66 13696.84 6299.56 699.31 3996.34 2399.70 11998.32 3399.73 4799.73 42
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
dcpmvs_298.08 6198.59 1096.56 23499.57 3590.34 32099.15 4398.38 19596.82 6499.29 2099.49 795.78 4899.57 14098.94 299.86 199.77 23
MSLP-MVS++98.56 2998.57 1198.55 9099.26 8996.80 11598.71 13699.05 2597.28 3698.84 5599.28 4496.47 2299.40 16598.52 2099.70 5799.47 107
CNVR-MVS98.78 798.56 1299.45 1799.32 7298.87 1998.47 17698.81 8097.72 798.76 6199.16 6897.05 1399.78 10098.06 4199.66 6399.69 57
MSP-MVS98.74 998.55 1399.29 3499.75 498.23 5499.26 2698.88 5197.52 1799.41 1398.78 12496.00 3899.79 9697.79 6199.59 7799.85 4
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
Regformer-498.64 1598.53 1498.99 6699.43 6197.37 9298.40 18698.79 9697.46 2399.09 3699.31 3995.86 4699.80 8498.64 899.76 3699.79 13
Regformer-298.69 1298.52 1599.19 4699.35 6498.01 6798.37 18898.81 8097.48 2099.21 2599.21 5596.13 3199.80 8498.40 3099.73 4799.75 32
Regformer-198.66 1398.51 1699.12 6099.35 6497.81 7998.37 18898.76 10397.49 1999.20 2699.21 5596.08 3399.79 9698.42 2899.73 4799.75 32
xxxxxxxxxxxxxcwj98.70 1098.50 1799.30 3399.46 5598.38 4098.21 21098.52 16497.95 399.32 1899.39 1896.22 2499.84 5797.72 6599.73 4799.67 67
CS-MVS-test98.49 3798.50 1798.46 10199.20 10197.05 10599.64 498.50 17297.45 2598.88 5399.14 7295.25 7299.15 18698.83 599.56 8699.20 139
Regformer-398.59 2198.50 1798.86 7699.43 6197.05 10598.40 18698.68 12597.43 2699.06 3799.31 3995.80 4799.77 10598.62 1099.76 3699.78 16
CS-MVS98.44 4298.49 2098.31 11299.08 11396.73 11999.67 398.47 17897.17 4698.94 4599.10 7895.73 4999.13 18998.71 799.49 9699.09 157
XVS98.70 1098.49 2099.34 2699.70 2498.35 4899.29 2298.88 5197.40 2798.46 7999.20 5995.90 4499.89 3997.85 5699.74 4599.78 16
DeepPCF-MVS96.37 297.93 6998.48 2296.30 25999.00 12189.54 33097.43 28198.87 5898.16 299.26 2299.38 2596.12 3299.64 13098.30 3499.77 3099.72 46
HFP-MVS98.63 1798.40 2399.32 3199.72 1398.29 5199.23 2998.96 3396.10 9598.94 4599.17 6396.06 3499.92 2597.62 7499.78 2799.75 32
EI-MVSNet-Vis-set98.47 4098.39 2498.69 8199.46 5596.49 13298.30 20198.69 12297.21 4398.84 5599.36 3095.41 6099.78 10098.62 1099.65 6499.80 12
region2R98.61 1898.38 2599.29 3499.74 898.16 6099.23 2998.93 3996.15 9098.94 4599.17 6395.91 4399.94 497.55 8199.79 2399.78 16
MCST-MVS98.65 1498.37 2699.48 1399.60 3398.87 1998.41 18598.68 12597.04 5498.52 7898.80 12296.78 1699.83 6097.93 4899.61 7399.74 37
ACMMPR98.59 2198.36 2799.29 3499.74 898.15 6199.23 2998.95 3596.10 9598.93 5099.19 6295.70 5099.94 497.62 7499.79 2399.78 16
CP-MVS98.57 2798.36 2799.19 4699.66 2897.86 7399.34 1898.87 5895.96 10098.60 7599.13 7396.05 3699.94 497.77 6299.86 199.77 23
test117298.56 2998.35 2999.16 5399.53 3997.94 7199.09 5698.83 7296.52 7799.05 3899.34 3595.34 6599.82 6897.86 5599.64 6899.73 42
SR-MVS-dyc-post98.54 3398.35 2999.13 5799.49 4997.86 7399.11 5298.80 9196.49 7899.17 3099.35 3295.34 6599.82 6897.72 6599.65 6499.71 50
SR-MVS98.57 2798.35 2999.24 4399.53 3998.18 5899.09 5698.82 7496.58 7499.10 3599.32 3795.39 6199.82 6897.70 7099.63 7099.72 46
NCCC98.61 1898.35 2999.38 2099.28 8698.61 2998.45 17798.76 10397.82 698.45 8298.93 10796.65 1899.83 6097.38 8999.41 10699.71 50
RE-MVS-def98.34 3399.49 4997.86 7399.11 5298.80 9196.49 7899.17 3099.35 3295.29 6997.72 6599.65 6499.71 50
EI-MVSNet-UG-set98.41 4498.34 3398.61 8699.45 5996.32 14198.28 20498.68 12597.17 4698.74 6299.37 2695.25 7299.79 9698.57 1299.54 9199.73 42
MVS_111021_HR98.47 4098.34 3398.88 7599.22 9897.32 9397.91 24699.58 397.20 4498.33 9099.00 9595.99 3999.64 13098.05 4399.76 3699.69 57
DeepC-MVS_fast96.70 198.55 3198.34 3399.18 5099.25 9098.04 6598.50 17398.78 9997.72 798.92 5199.28 4495.27 7099.82 6897.55 8199.77 3099.69 57
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APD-MVS_3200maxsize98.53 3598.33 3799.15 5699.50 4597.92 7299.15 4398.81 8096.24 8799.20 2699.37 2695.30 6899.80 8497.73 6499.67 6099.72 46
SF-MVS98.59 2198.32 3899.41 1999.54 3898.71 2299.04 6498.81 8095.12 14299.32 1899.39 1896.22 2499.84 5797.72 6599.73 4799.67 67
ACMMP_NAP98.61 1898.30 3999.55 999.62 3298.95 1798.82 11198.81 8095.80 10799.16 3299.47 1095.37 6399.92 2597.89 5299.75 4299.79 13
MTAPA98.58 2498.29 4099.46 1599.76 298.64 2798.90 9198.74 10897.27 4098.02 10499.39 1894.81 8499.96 297.91 4999.79 2399.77 23
#test#98.54 3398.27 4199.32 3199.72 1398.29 5198.98 8098.96 3395.65 11598.94 4599.17 6396.06 3499.92 2597.21 9599.78 2799.75 32
mPP-MVS98.51 3698.26 4299.25 4299.75 498.04 6599.28 2498.81 8096.24 8798.35 8999.23 5295.46 5799.94 497.42 8799.81 1299.77 23
SMA-MVScopyleft98.58 2498.25 4399.56 899.51 4399.04 1598.95 8598.80 9193.67 21199.37 1699.52 396.52 2199.89 3998.06 4199.81 1299.76 30
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
zzz-MVS98.55 3198.25 4399.46 1599.76 298.64 2798.55 16698.74 10897.27 4098.02 10499.39 1894.81 8499.96 297.91 4999.79 2399.77 23
HPM-MVS++copyleft98.58 2498.25 4399.55 999.50 4599.08 1198.72 13598.66 13697.51 1898.15 9398.83 11995.70 5099.92 2597.53 8399.67 6099.66 71
TSAR-MVS + GP.98.38 4698.24 4698.81 7799.22 9897.25 10098.11 22998.29 21397.19 4598.99 4499.02 9096.22 2499.67 12698.52 2098.56 14699.51 98
PGM-MVS98.49 3798.23 4799.27 4199.72 1398.08 6498.99 7799.49 595.43 12499.03 3999.32 3795.56 5399.94 496.80 12199.77 3099.78 16
MVS_111021_LR98.34 5298.23 4798.67 8399.27 8796.90 11297.95 24299.58 397.14 4998.44 8399.01 9495.03 8099.62 13697.91 4999.75 4299.50 100
ZNCC-MVS98.49 3798.20 4999.35 2599.73 1298.39 3999.19 3998.86 6495.77 10898.31 9299.10 7895.46 5799.93 1997.57 8099.81 1299.74 37
DELS-MVS98.40 4598.20 4998.99 6699.00 12197.66 8197.75 26398.89 4897.71 998.33 9098.97 9794.97 8199.88 4798.42 2899.76 3699.42 117
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast98.38 4698.13 5199.12 6099.75 497.86 7399.44 1198.82 7494.46 17398.94 4599.20 5995.16 7699.74 11197.58 7799.85 599.77 23
GST-MVS98.43 4398.12 5299.34 2699.72 1398.38 4099.09 5698.82 7495.71 11198.73 6499.06 8895.27 7099.93 1997.07 9999.63 7099.72 46
DROMVSNet98.21 6098.11 5398.49 9898.34 17797.26 9999.61 598.43 18696.78 6598.87 5498.84 11793.72 10699.01 20998.91 399.50 9599.19 143
HPM-MVScopyleft98.36 4898.10 5499.13 5799.74 897.82 7799.53 898.80 9194.63 16698.61 7498.97 9795.13 7799.77 10597.65 7299.83 1199.79 13
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
9.1498.06 5599.47 5298.71 13698.82 7494.36 17599.16 3299.29 4396.05 3699.81 7597.00 10099.71 56
PHI-MVS98.34 5298.06 5599.18 5099.15 10998.12 6399.04 6499.09 2193.32 22498.83 5799.10 7896.54 2099.83 6097.70 7099.76 3699.59 87
abl_698.30 5798.03 5799.13 5799.56 3797.76 8099.13 4898.82 7496.14 9199.26 2299.37 2693.33 10999.93 1996.96 10499.67 6099.69 57
MP-MVScopyleft98.33 5498.01 5899.28 3899.75 498.18 5899.22 3398.79 9696.13 9297.92 11799.23 5294.54 9099.94 496.74 12599.78 2799.73 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ETH3D-3000-0.198.35 5098.00 5999.38 2099.47 5298.68 2598.67 14698.84 6994.66 16599.11 3499.25 5095.46 5799.81 7596.80 12199.73 4799.63 79
APD-MVScopyleft98.35 5098.00 5999.42 1899.51 4398.72 2198.80 11898.82 7494.52 17099.23 2499.25 5095.54 5599.80 8496.52 13199.77 3099.74 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
testtj98.33 5497.95 6199.47 1499.49 4998.70 2398.83 10898.86 6495.48 12198.91 5299.17 6395.48 5699.93 1995.80 15599.53 9299.76 30
ACMMPcopyleft98.23 5897.95 6199.09 6299.74 897.62 8499.03 6799.41 695.98 9897.60 13899.36 3094.45 9599.93 1997.14 9698.85 13399.70 54
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MP-MVS-pluss98.31 5697.92 6399.49 1299.72 1398.88 1898.43 18298.78 9994.10 18197.69 13099.42 1695.25 7299.92 2598.09 4099.80 1999.67 67
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_prior398.22 5997.90 6499.19 4699.31 7498.22 5597.80 25898.84 6996.12 9397.89 11998.69 13395.96 4099.70 11996.89 11099.60 7499.65 73
ETV-MVS97.96 6497.81 6598.40 10798.42 16797.27 9598.73 13198.55 15896.84 6298.38 8697.44 25495.39 6199.35 16897.62 7498.89 12998.58 198
PS-MVSNAJ97.73 7697.77 6697.62 16498.68 15095.58 17697.34 29098.51 16797.29 3598.66 7197.88 21594.51 9199.90 3797.87 5499.17 11897.39 232
CANet98.05 6297.76 6798.90 7498.73 14297.27 9598.35 19198.78 9997.37 3297.72 12898.96 10391.53 14599.92 2598.79 699.65 6499.51 98
CSCG97.85 7297.74 6898.20 12099.67 2795.16 19399.22 3399.32 793.04 23697.02 15698.92 10995.36 6499.91 3497.43 8699.64 6899.52 94
xiu_mvs_v2_base97.66 8097.70 6997.56 16898.61 15695.46 18297.44 27998.46 17997.15 4898.65 7298.15 19294.33 9799.80 8497.84 5898.66 14297.41 230
UA-Net97.96 6497.62 7098.98 6898.86 13397.47 8998.89 9599.08 2296.67 7198.72 6599.54 193.15 11299.81 7594.87 18198.83 13499.65 73
MG-MVS97.81 7397.60 7198.44 10399.12 11195.97 15797.75 26398.78 9996.89 6198.46 7999.22 5493.90 10599.68 12594.81 18599.52 9499.67 67
EIA-MVS97.75 7597.58 7298.27 11498.38 16996.44 13499.01 7398.60 14695.88 10497.26 14597.53 24894.97 8199.33 17097.38 8999.20 11699.05 163
DeepC-MVS95.98 397.88 7097.58 7298.77 7899.25 9096.93 11098.83 10898.75 10696.96 5896.89 16399.50 590.46 16799.87 4897.84 5899.76 3699.52 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
xiu_mvs_v1_base_debu97.60 8397.56 7497.72 15498.35 17295.98 15297.86 25398.51 16797.13 5099.01 4198.40 16691.56 14199.80 8498.53 1498.68 13897.37 234
xiu_mvs_v1_base97.60 8397.56 7497.72 15498.35 17295.98 15297.86 25398.51 16797.13 5099.01 4198.40 16691.56 14199.80 8498.53 1498.68 13897.37 234
xiu_mvs_v1_base_debi97.60 8397.56 7497.72 15498.35 17295.98 15297.86 25398.51 16797.13 5099.01 4198.40 16691.56 14199.80 8498.53 1498.68 13897.37 234
ETH3D cwj APD-0.1697.96 6497.52 7799.29 3499.05 11498.52 3298.33 19398.68 12593.18 23098.68 6699.13 7394.62 8899.83 6096.45 13399.55 9099.52 94
train_agg97.97 6397.52 7799.33 3099.31 7498.50 3497.92 24498.73 11292.98 23897.74 12598.68 13596.20 2799.80 8496.59 12799.57 8199.68 63
agg_prior197.95 6797.51 7999.28 3899.30 7998.38 4097.81 25798.72 11493.16 23297.57 13998.66 13896.14 3099.81 7596.63 12699.56 8699.66 71
CDPH-MVS97.94 6897.49 8099.28 3899.47 5298.44 3697.91 24698.67 13392.57 25298.77 6098.85 11595.93 4299.72 11395.56 16599.69 5899.68 63
MVSFormer97.57 8897.49 8097.84 14198.07 20195.76 17199.47 998.40 19094.98 15098.79 5898.83 11992.34 12098.41 28296.91 10699.59 7799.34 121
PVSNet_Blended_VisFu97.70 7897.46 8298.44 10399.27 8795.91 16598.63 15399.16 1894.48 17297.67 13198.88 11292.80 11599.91 3497.11 9799.12 11999.50 100
DP-MVS Recon97.86 7197.46 8299.06 6499.53 3998.35 4898.33 19398.89 4892.62 24998.05 9998.94 10695.34 6599.65 12896.04 14699.42 10599.19 143
baseline97.64 8197.44 8498.25 11798.35 17296.20 14599.00 7598.32 20396.33 8698.03 10299.17 6391.35 14899.16 18398.10 3998.29 16199.39 118
casdiffmvs97.63 8297.41 8598.28 11398.33 17996.14 14898.82 11198.32 20396.38 8497.95 11299.21 5591.23 15299.23 17798.12 3898.37 15599.48 105
VNet97.79 7497.40 8698.96 7098.88 13197.55 8698.63 15398.93 3996.74 6899.02 4098.84 11790.33 17099.83 6098.53 1496.66 20099.50 100
diffmvs97.58 8797.40 8698.13 12598.32 18195.81 17098.06 23298.37 19696.20 8998.74 6298.89 11191.31 15099.25 17498.16 3798.52 14799.34 121
OMC-MVS97.55 9097.34 8898.20 12099.33 6995.92 16498.28 20498.59 14895.52 12097.97 11199.10 7893.28 11199.49 15595.09 17898.88 13099.19 143
CPTT-MVS97.72 7797.32 8998.92 7299.64 3097.10 10499.12 5098.81 8092.34 26098.09 9799.08 8693.01 11399.92 2596.06 14599.77 3099.75 32
EPP-MVSNet97.46 9297.28 9097.99 13498.64 15395.38 18499.33 2198.31 20593.61 21497.19 14799.07 8794.05 10199.23 17796.89 11098.43 15499.37 120
API-MVS97.41 9997.25 9197.91 13898.70 14796.80 11598.82 11198.69 12294.53 16898.11 9598.28 18194.50 9499.57 14094.12 20899.49 9697.37 234
canonicalmvs97.67 7997.23 9298.98 6898.70 14798.38 4099.34 1898.39 19296.76 6797.67 13197.40 25792.26 12399.49 15598.28 3596.28 21699.08 161
lupinMVS97.44 9697.22 9398.12 12798.07 20195.76 17197.68 26797.76 27794.50 17198.79 5898.61 14292.34 12099.30 17197.58 7799.59 7799.31 127
CHOSEN 280x42097.18 11197.18 9497.20 18398.81 13893.27 27195.78 34899.15 1995.25 13696.79 16998.11 19592.29 12299.07 19998.56 1399.85 599.25 136
PVSNet_Blended97.38 10197.12 9598.14 12399.25 9095.35 18797.28 29599.26 993.13 23397.94 11498.21 18892.74 11699.81 7596.88 11399.40 10899.27 134
Vis-MVSNetpermissive97.42 9897.11 9698.34 11098.66 15196.23 14499.22 3399.00 2896.63 7398.04 10199.21 5588.05 22399.35 16896.01 14899.21 11599.45 113
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PAPM_NR97.46 9297.11 9698.50 9699.50 4596.41 13798.63 15398.60 14695.18 13997.06 15498.06 19894.26 9999.57 14093.80 21998.87 13299.52 94
jason97.32 10497.08 9898.06 13197.45 24695.59 17597.87 25297.91 27294.79 15898.55 7798.83 11991.12 15399.23 17797.58 7799.60 7499.34 121
jason: jason.
alignmvs97.56 8997.07 9999.01 6598.66 15198.37 4698.83 10898.06 25796.74 6898.00 11097.65 23790.80 16199.48 15998.37 3196.56 20499.19 143
CNLPA97.45 9597.03 10098.73 7999.05 11497.44 9198.07 23198.53 16295.32 13296.80 16898.53 15193.32 11099.72 11394.31 20299.31 11399.02 165
ETH3 D test640097.59 8697.01 10199.34 2699.40 6398.56 3098.20 21398.81 8091.63 28398.44 8398.85 11593.98 10499.82 6894.11 21099.69 5899.64 76
MVS_Test97.28 10597.00 10298.13 12598.33 17995.97 15798.74 12798.07 25294.27 17798.44 8398.07 19792.48 11899.26 17396.43 13598.19 16299.16 149
DPM-MVS97.55 9096.99 10399.23 4599.04 11698.55 3197.17 30398.35 19994.85 15797.93 11698.58 14795.07 7999.71 11892.60 25299.34 11199.43 115
sss97.39 10096.98 10498.61 8698.60 15796.61 12498.22 20998.93 3993.97 18998.01 10898.48 15691.98 13399.85 5496.45 13398.15 16399.39 118
3Dnovator94.51 597.46 9296.93 10599.07 6397.78 21897.64 8299.35 1799.06 2397.02 5593.75 26499.16 6889.25 19099.92 2597.22 9499.75 4299.64 76
WTY-MVS97.37 10296.92 10698.72 8098.86 13396.89 11498.31 19998.71 11895.26 13597.67 13198.56 15092.21 12699.78 10095.89 15096.85 19599.48 105
IS-MVSNet97.22 10796.88 10798.25 11798.85 13596.36 13999.19 3997.97 26595.39 12697.23 14698.99 9691.11 15498.93 22094.60 19198.59 14499.47 107
EPNet97.28 10596.87 10898.51 9594.98 34596.14 14898.90 9197.02 32698.28 195.99 19799.11 7691.36 14799.89 3996.98 10199.19 11799.50 100
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268897.12 11496.80 10998.08 12999.30 7994.56 22698.05 23399.71 193.57 21597.09 15098.91 11088.17 21899.89 3996.87 11699.56 8699.81 11
F-COLMAP97.09 11696.80 10997.97 13599.45 5994.95 20698.55 16698.62 14593.02 23796.17 19298.58 14794.01 10299.81 7593.95 21498.90 12899.14 152
TAMVS97.02 11796.79 11197.70 15798.06 20395.31 18998.52 16898.31 20593.95 19097.05 15598.61 14293.49 10898.52 26295.33 17097.81 17599.29 132
test_yl97.22 10796.78 11298.54 9298.73 14296.60 12598.45 17798.31 20594.70 15998.02 10498.42 16490.80 16199.70 11996.81 11996.79 19799.34 121
DCV-MVSNet97.22 10796.78 11298.54 9298.73 14296.60 12598.45 17798.31 20594.70 15998.02 10498.42 16490.80 16199.70 11996.81 11996.79 19799.34 121
PLCcopyleft95.07 497.20 11096.78 11298.44 10399.29 8296.31 14398.14 22498.76 10392.41 25896.39 18798.31 17994.92 8399.78 10094.06 21298.77 13799.23 137
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
3Dnovator+94.38 697.43 9796.78 11299.38 2097.83 21698.52 3299.37 1498.71 11897.09 5392.99 28999.13 7389.36 18699.89 3996.97 10299.57 8199.71 50
112197.37 10296.77 11699.16 5399.34 6697.99 7098.19 21798.68 12590.14 32098.01 10898.97 9794.80 8699.87 4893.36 23199.46 10299.61 82
AdaColmapbinary97.15 11396.70 11798.48 9999.16 10796.69 12198.01 23798.89 4894.44 17496.83 16498.68 13590.69 16499.76 10794.36 19899.29 11498.98 169
Effi-MVS+97.12 11496.69 11898.39 10898.19 19196.72 12097.37 28698.43 18693.71 20497.65 13498.02 20092.20 12799.25 17496.87 11697.79 17699.19 143
CDS-MVSNet96.99 11896.69 11897.90 13998.05 20495.98 15298.20 21398.33 20293.67 21196.95 15798.49 15593.54 10798.42 27495.24 17697.74 17999.31 127
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mvs-test196.60 13096.68 12096.37 25497.89 21391.81 29198.56 16498.10 24496.57 7596.52 18297.94 20990.81 15999.45 16395.72 15898.01 16797.86 220
LS3D97.16 11296.66 12198.68 8298.53 16197.19 10298.93 8998.90 4692.83 24595.99 19799.37 2692.12 12999.87 4893.67 22399.57 8198.97 170
PVSNet_BlendedMVS96.73 12796.60 12297.12 19099.25 9095.35 18798.26 20799.26 994.28 17697.94 11497.46 25192.74 11699.81 7596.88 11393.32 26396.20 327
Effi-MVS+-dtu96.29 14696.56 12395.51 28697.89 21390.22 32198.80 11898.10 24496.57 7596.45 18696.66 31090.81 15998.91 22295.72 15897.99 16897.40 231
CANet_DTU96.96 11996.55 12498.21 11998.17 19596.07 15097.98 24098.21 22197.24 4297.13 14998.93 10786.88 24799.91 3495.00 18099.37 11098.66 192
Vis-MVSNet (Re-imp)96.87 12396.55 12497.83 14298.73 14295.46 18299.20 3798.30 21194.96 15296.60 17598.87 11390.05 17398.59 25493.67 22398.60 14399.46 111
mvs_anonymous96.70 12896.53 12697.18 18598.19 19193.78 24998.31 19998.19 22494.01 18694.47 22598.27 18492.08 13198.46 26997.39 8897.91 17199.31 127
HyFIR lowres test96.90 12296.49 12798.14 12399.33 6995.56 17797.38 28499.65 292.34 26097.61 13798.20 18989.29 18899.10 19696.97 10297.60 18499.77 23
XVG-OURS96.55 13696.41 12896.99 19798.75 14193.76 25097.50 27898.52 16495.67 11396.83 16499.30 4288.95 20399.53 15095.88 15196.26 21797.69 226
MAR-MVS96.91 12196.40 12998.45 10298.69 14996.90 11298.66 14998.68 12592.40 25997.07 15397.96 20791.54 14499.75 10993.68 22198.92 12798.69 188
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
XVG-OURS-SEG-HR96.51 13796.34 13097.02 19698.77 14093.76 25097.79 26198.50 17295.45 12396.94 15899.09 8487.87 22899.55 14996.76 12495.83 22697.74 223
PMMVS96.60 13096.33 13197.41 17397.90 21293.93 24597.35 28998.41 18892.84 24497.76 12397.45 25391.10 15599.20 18096.26 13997.91 17199.11 155
mvsmamba96.57 13596.32 13297.32 17996.60 29596.43 13599.54 797.98 26396.49 7895.20 20798.64 14090.82 15898.55 25897.97 4593.65 25396.98 245
UGNet96.78 12696.30 13398.19 12298.24 18495.89 16798.88 9898.93 3997.39 2996.81 16797.84 21982.60 30999.90 3796.53 13099.49 9698.79 181
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
114514_t96.93 12096.27 13498.92 7299.50 4597.63 8398.85 10498.90 4684.80 35697.77 12299.11 7692.84 11499.66 12794.85 18299.77 3099.47 107
PS-MVSNAJss96.43 13996.26 13596.92 20695.84 32995.08 19899.16 4298.50 17295.87 10593.84 26098.34 17694.51 9198.61 25196.88 11393.45 26097.06 240
PAPR96.84 12496.24 13698.65 8498.72 14696.92 11197.36 28898.57 15493.33 22396.67 17197.57 24594.30 9899.56 14391.05 28898.59 14499.47 107
HY-MVS93.96 896.82 12596.23 13798.57 8898.46 16597.00 10798.14 22498.21 22193.95 19096.72 17097.99 20491.58 14099.76 10794.51 19596.54 20598.95 173
PVSNet91.96 1896.35 14496.15 13896.96 20199.17 10392.05 28896.08 34198.68 12593.69 20797.75 12497.80 22588.86 20499.69 12494.26 20499.01 12499.15 150
iter_conf_final96.42 14096.12 13997.34 17898.46 16596.55 13099.08 5998.06 25796.03 9795.63 20198.46 16087.72 23098.59 25497.84 5893.80 24996.87 262
FIs96.51 13796.12 13997.67 16097.13 26797.54 8799.36 1599.22 1595.89 10294.03 25198.35 17291.98 13398.44 27296.40 13692.76 27097.01 243
GeoE96.58 13496.07 14198.10 12898.35 17295.89 16799.34 1898.12 23993.12 23496.09 19398.87 11389.71 17998.97 21192.95 24498.08 16699.43 115
FC-MVSNet-test96.42 14096.05 14297.53 16996.95 27597.27 9599.36 1599.23 1395.83 10693.93 25498.37 17092.00 13298.32 29196.02 14792.72 27197.00 244
CVMVSNet95.43 18896.04 14393.57 32997.93 21083.62 36498.12 22798.59 14895.68 11296.56 17699.02 9087.51 23597.51 33993.56 22797.44 18699.60 85
PatchMatch-RL96.59 13296.03 14498.27 11499.31 7496.51 13197.91 24699.06 2393.72 20396.92 16198.06 19888.50 21399.65 12891.77 27699.00 12598.66 192
1112_ss96.63 12996.00 14598.50 9698.56 15896.37 13898.18 22198.10 24492.92 24194.84 21398.43 16292.14 12899.58 13994.35 19996.51 20699.56 93
FA-MVS(test-final)96.41 14395.94 14697.82 14498.21 18795.20 19297.80 25897.58 28793.21 22897.36 14397.70 23189.47 18399.56 14394.12 20897.99 16898.71 187
DP-MVS96.59 13295.93 14798.57 8899.34 6696.19 14798.70 14098.39 19289.45 33194.52 22399.35 3291.85 13599.85 5492.89 24898.88 13099.68 63
HQP_MVS96.14 15295.90 14896.85 20997.42 24794.60 22498.80 11898.56 15697.28 3695.34 20498.28 18187.09 24299.03 20496.07 14294.27 23296.92 251
Fast-Effi-MVS+-dtu95.87 16595.85 14995.91 27497.74 22291.74 29598.69 14298.15 23595.56 11894.92 21197.68 23688.98 20198.79 23893.19 23697.78 17797.20 238
EI-MVSNet95.96 15995.83 15096.36 25597.93 21093.70 25698.12 22798.27 21493.70 20695.07 20899.02 9092.23 12598.54 26094.68 18793.46 25896.84 267
iter_conf0596.13 15395.79 15197.15 18798.16 19695.99 15198.88 9897.98 26395.91 10195.58 20298.46 16085.53 27098.59 25497.88 5393.75 25096.86 265
test111195.94 16295.78 15296.41 25198.99 12490.12 32299.04 6492.45 37296.99 5798.03 10299.27 4681.40 31599.48 15996.87 11699.04 12199.63 79
RRT_MVS95.98 15895.78 15296.56 23496.48 30394.22 24099.57 697.92 27095.89 10293.95 25398.70 13289.27 18998.42 27497.23 9393.02 26797.04 241
131496.25 15095.73 15497.79 14797.13 26795.55 17998.19 21798.59 14893.47 21892.03 31597.82 22391.33 14999.49 15594.62 19098.44 15298.32 208
nrg03096.28 14895.72 15597.96 13796.90 28098.15 6199.39 1298.31 20595.47 12294.42 23198.35 17292.09 13098.69 24397.50 8589.05 31597.04 241
BH-untuned95.95 16095.72 15596.65 22198.55 16092.26 28498.23 20897.79 27693.73 20294.62 22098.01 20288.97 20299.00 21093.04 24198.51 14898.68 189
MVSTER96.06 15595.72 15597.08 19398.23 18595.93 16398.73 13198.27 21494.86 15695.07 20898.09 19688.21 21798.54 26096.59 12793.46 25896.79 271
ECVR-MVScopyleft95.95 16095.71 15896.65 22199.02 11890.86 30999.03 6791.80 37396.96 5898.10 9699.26 4781.31 31699.51 15496.90 10999.04 12199.59 87
ab-mvs96.42 14095.71 15898.55 9098.63 15496.75 11897.88 25198.74 10893.84 19596.54 18098.18 19185.34 27599.75 10995.93 14996.35 21099.15 150
Fast-Effi-MVS+96.28 14895.70 16098.03 13298.29 18395.97 15798.58 15998.25 21991.74 27895.29 20697.23 26691.03 15799.15 18692.90 24697.96 17098.97 170
test_djsdf96.00 15795.69 16196.93 20395.72 33195.49 18199.47 998.40 19094.98 15094.58 22197.86 21689.16 19398.41 28296.91 10694.12 24096.88 260
tpmrst95.63 17995.69 16195.44 29097.54 23688.54 34696.97 31397.56 28993.50 21797.52 14196.93 29889.49 18199.16 18395.25 17596.42 20998.64 194
Test_1112_low_res96.34 14595.66 16398.36 10998.56 15895.94 16097.71 26598.07 25292.10 27094.79 21797.29 26291.75 13799.56 14394.17 20696.50 20799.58 91
h-mvs3396.17 15195.62 16497.81 14699.03 11794.45 22898.64 15198.75 10697.48 2098.67 6798.72 13189.76 17799.86 5397.95 4681.59 35599.11 155
PatchmatchNetpermissive95.71 17495.52 16596.29 26097.58 23190.72 31396.84 32797.52 29694.06 18297.08 15196.96 29489.24 19198.90 22592.03 27098.37 15599.26 135
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tttt051796.07 15495.51 16697.78 14898.41 16894.84 21099.28 2494.33 36494.26 17897.64 13598.64 14084.05 29899.47 16195.34 16997.60 18499.03 164
MDTV_nov1_ep1395.40 16797.48 24088.34 34996.85 32697.29 31393.74 20197.48 14297.26 26389.18 19299.05 20091.92 27397.43 187
HQP-MVS95.72 17395.40 16796.69 21997.20 26094.25 23898.05 23398.46 17996.43 8194.45 22697.73 22886.75 24898.96 21595.30 17194.18 23696.86 265
QAPM96.29 14695.40 16798.96 7097.85 21597.60 8599.23 2998.93 3989.76 32693.11 28699.02 9089.11 19599.93 1991.99 27199.62 7299.34 121
RPSCF94.87 22495.40 16793.26 33598.89 13082.06 36998.33 19398.06 25790.30 31796.56 17699.26 4787.09 24299.49 15593.82 21896.32 21298.24 209
ACMM93.85 995.69 17795.38 17196.61 22797.61 22993.84 24898.91 9098.44 18395.25 13694.28 23798.47 15886.04 26399.12 19195.50 16793.95 24596.87 262
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thisisatest053096.01 15695.36 17297.97 13598.38 16995.52 18098.88 9894.19 36694.04 18397.64 13598.31 17983.82 30599.46 16295.29 17397.70 18198.93 174
LPG-MVS_test95.62 18095.34 17396.47 24597.46 24293.54 25998.99 7798.54 16094.67 16394.36 23398.77 12685.39 27299.11 19395.71 16094.15 23896.76 274
CLD-MVS95.62 18095.34 17396.46 24897.52 23993.75 25297.27 29698.46 17995.53 11994.42 23198.00 20386.21 25898.97 21196.25 14094.37 23096.66 289
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
OPM-MVS95.69 17795.33 17596.76 21496.16 31894.63 21998.43 18298.39 19296.64 7295.02 21098.78 12485.15 27899.05 20095.21 17794.20 23596.60 294
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LCM-MVSNet-Re95.22 20395.32 17694.91 30498.18 19387.85 35598.75 12495.66 35295.11 14388.96 34196.85 30390.26 17297.65 33395.65 16398.44 15299.22 138
BH-RMVSNet95.92 16495.32 17697.69 15898.32 18194.64 21898.19 21797.45 30394.56 16796.03 19598.61 14285.02 27999.12 19190.68 29399.06 12099.30 130
bld_raw_dy_0_6495.74 17295.31 17897.03 19596.35 30995.76 17199.12 5097.37 31095.97 9994.70 21998.48 15685.80 26598.49 26496.55 12993.48 25796.84 267
hse-mvs295.71 17495.30 17996.93 20398.50 16293.53 26198.36 19098.10 24497.48 2098.67 6797.99 20489.76 17799.02 20797.95 4680.91 35998.22 210
MSDG95.93 16395.30 17997.83 14298.90 12995.36 18596.83 32898.37 19691.32 29494.43 23098.73 13090.27 17199.60 13790.05 30298.82 13598.52 199
VDD-MVS95.82 16995.23 18197.61 16598.84 13693.98 24498.68 14397.40 30795.02 14997.95 11299.34 3574.37 35999.78 10098.64 896.80 19699.08 161
IterMVS-LS95.46 18595.21 18296.22 26298.12 19893.72 25598.32 19898.13 23893.71 20494.26 23897.31 26192.24 12498.10 30994.63 18890.12 29896.84 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet (Re)95.78 17095.19 18397.58 16696.99 27497.47 8998.79 12299.18 1795.60 11693.92 25597.04 28591.68 13898.48 26595.80 15587.66 33196.79 271
UniMVSNet_NR-MVSNet95.71 17495.15 18497.40 17596.84 28396.97 10898.74 12799.24 1195.16 14093.88 25797.72 23091.68 13898.31 29395.81 15387.25 33696.92 251
SCA95.46 18595.13 18596.46 24897.67 22591.29 30497.33 29197.60 28694.68 16296.92 16197.10 27283.97 30098.89 22692.59 25498.32 16099.20 139
baseline195.84 16795.12 18698.01 13398.49 16495.98 15298.73 13197.03 32495.37 12996.22 19098.19 19089.96 17599.16 18394.60 19187.48 33298.90 176
VPA-MVSNet95.75 17195.11 18797.69 15897.24 25697.27 9598.94 8799.23 1395.13 14195.51 20397.32 26085.73 26698.91 22297.33 9189.55 30796.89 259
D2MVS95.18 20695.08 18895.48 28797.10 26992.07 28798.30 20199.13 2094.02 18592.90 29096.73 30789.48 18298.73 24294.48 19693.60 25695.65 340
BH-w/o95.38 19295.08 18896.26 26198.34 17791.79 29297.70 26697.43 30592.87 24394.24 24097.22 26788.66 20798.84 23291.55 28097.70 18198.16 213
jajsoiax95.45 18795.03 19096.73 21595.42 34294.63 21999.14 4598.52 16495.74 10993.22 28098.36 17183.87 30398.65 24996.95 10594.04 24196.91 256
mvs_tets95.41 19195.00 19196.65 22195.58 33594.42 23099.00 7598.55 15895.73 11093.21 28198.38 16983.45 30798.63 25097.09 9894.00 24396.91 256
OpenMVScopyleft93.04 1395.83 16895.00 19198.32 11197.18 26497.32 9399.21 3698.97 3189.96 32291.14 32399.05 8986.64 25099.92 2593.38 22999.47 9997.73 224
LFMVS95.86 16694.98 19398.47 10098.87 13296.32 14198.84 10796.02 34693.40 22198.62 7399.20 5974.99 35599.63 13397.72 6597.20 19099.46 111
ACMP93.49 1095.34 19794.98 19396.43 25097.67 22593.48 26398.73 13198.44 18394.94 15592.53 30298.53 15184.50 29099.14 18895.48 16894.00 24396.66 289
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EPNet_dtu95.21 20494.95 19595.99 26996.17 31690.45 31898.16 22397.27 31596.77 6693.14 28598.33 17790.34 16998.42 27485.57 34098.81 13699.09 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
anonymousdsp95.42 18994.91 19696.94 20295.10 34495.90 16699.14 4598.41 18893.75 19993.16 28297.46 25187.50 23798.41 28295.63 16494.03 24296.50 313
FE-MVS95.62 18094.90 19797.78 14898.37 17194.92 20797.17 30397.38 30990.95 30697.73 12797.70 23185.32 27799.63 13391.18 28398.33 15898.79 181
thisisatest051595.61 18394.89 19897.76 15198.15 19795.15 19596.77 32994.41 36292.95 24097.18 14897.43 25584.78 28499.45 16394.63 18897.73 18098.68 189
test-LLR95.10 21094.87 19995.80 27996.77 28589.70 32696.91 31895.21 35495.11 14394.83 21595.72 33887.71 23198.97 21193.06 23998.50 14998.72 185
COLMAP_ROBcopyleft93.27 1295.33 19894.87 19996.71 21699.29 8293.24 27398.58 15998.11 24289.92 32393.57 26899.10 7886.37 25699.79 9690.78 29198.10 16597.09 239
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
thres600view795.49 18494.77 20197.67 16098.98 12595.02 19998.85 10496.90 33295.38 12796.63 17396.90 29984.29 29199.59 13888.65 32296.33 21198.40 203
DU-MVS95.42 18994.76 20297.40 17596.53 29996.97 10898.66 14998.99 3095.43 12493.88 25797.69 23388.57 20998.31 29395.81 15387.25 33696.92 251
miper_enhance_ethall95.10 21094.75 20396.12 26697.53 23893.73 25496.61 33598.08 25092.20 26993.89 25696.65 31292.44 11998.30 29594.21 20591.16 28896.34 321
CostFormer94.95 22094.73 20495.60 28597.28 25489.06 33797.53 27796.89 33489.66 32896.82 16696.72 30886.05 26198.95 21995.53 16696.13 22298.79 181
thres100view90095.38 19294.70 20597.41 17398.98 12594.92 20798.87 10196.90 33295.38 12796.61 17496.88 30084.29 29199.56 14388.11 32396.29 21397.76 221
miper_ehance_all_eth95.01 21494.69 20695.97 27197.70 22493.31 27097.02 31198.07 25292.23 26693.51 27296.96 29491.85 13598.15 30593.68 22191.16 28896.44 318
AllTest95.24 20294.65 20796.99 19799.25 9093.21 27498.59 15798.18 22791.36 29093.52 27098.77 12684.67 28699.72 11389.70 30997.87 17398.02 216
tfpn200view995.32 19994.62 20897.43 17298.94 12794.98 20398.68 14396.93 33095.33 13096.55 17896.53 31684.23 29499.56 14388.11 32396.29 21397.76 221
thres40095.38 19294.62 20897.65 16398.94 12794.98 20398.68 14396.93 33095.33 13096.55 17896.53 31684.23 29499.56 14388.11 32396.29 21398.40 203
thres20095.25 20194.57 21097.28 18098.81 13894.92 20798.20 21397.11 31995.24 13896.54 18096.22 32784.58 28899.53 15087.93 32796.50 20797.39 232
TAPA-MVS93.98 795.35 19694.56 21197.74 15399.13 11094.83 21298.33 19398.64 14186.62 34596.29 18998.61 14294.00 10399.29 17280.00 36099.41 10699.09 157
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
VDDNet95.36 19594.53 21297.86 14098.10 20095.13 19698.85 10497.75 27890.46 31298.36 8799.39 1873.27 36199.64 13097.98 4496.58 20398.81 180
baseline295.11 20994.52 21396.87 20896.65 29493.56 25898.27 20694.10 36893.45 21992.02 31697.43 25587.45 23999.19 18193.88 21697.41 18897.87 219
Anonymous20240521195.28 20094.49 21497.67 16099.00 12193.75 25298.70 14097.04 32390.66 30896.49 18398.80 12278.13 33899.83 6096.21 14195.36 22899.44 114
TranMVSNet+NR-MVSNet95.14 20894.48 21597.11 19196.45 30596.36 13999.03 6799.03 2695.04 14893.58 26797.93 21088.27 21698.03 31694.13 20786.90 34196.95 250
EPMVS94.99 21694.48 21596.52 24197.22 25891.75 29497.23 29791.66 37494.11 18097.28 14496.81 30585.70 26798.84 23293.04 24197.28 18998.97 170
WR-MVS_H95.05 21394.46 21796.81 21296.86 28295.82 16999.24 2899.24 1193.87 19492.53 30296.84 30490.37 16898.24 30193.24 23487.93 32896.38 320
WR-MVS95.15 20794.46 21797.22 18296.67 29396.45 13398.21 21098.81 8094.15 17993.16 28297.69 23387.51 23598.30 29595.29 17388.62 32196.90 258
ADS-MVSNet95.00 21594.45 21996.63 22598.00 20591.91 29096.04 34297.74 27990.15 31896.47 18496.64 31387.89 22698.96 21590.08 30097.06 19199.02 165
XXY-MVS95.20 20594.45 21997.46 17096.75 28896.56 12898.86 10398.65 14093.30 22693.27 27998.27 18484.85 28398.87 22994.82 18491.26 28796.96 248
c3_l94.79 22794.43 22195.89 27697.75 21993.12 27797.16 30598.03 26092.23 26693.46 27597.05 28491.39 14698.01 31793.58 22689.21 31396.53 305
eth_miper_zixun_eth94.68 23294.41 22295.47 28897.64 22791.71 29696.73 33298.07 25292.71 24793.64 26597.21 26890.54 16698.17 30493.38 22989.76 30296.54 303
ADS-MVSNet294.58 24194.40 22395.11 29998.00 20588.74 34396.04 34297.30 31290.15 31896.47 18496.64 31387.89 22697.56 33790.08 30097.06 19199.02 165
tpmvs94.60 23894.36 22495.33 29397.46 24288.60 34596.88 32497.68 28091.29 29693.80 26296.42 32088.58 20899.24 17691.06 28696.04 22498.17 212
CP-MVSNet94.94 22294.30 22596.83 21096.72 29095.56 17799.11 5298.95 3593.89 19292.42 30897.90 21287.19 24198.12 30894.32 20188.21 32596.82 270
FMVSNet394.97 21994.26 22697.11 19198.18 19396.62 12298.56 16498.26 21893.67 21194.09 24797.10 27284.25 29398.01 31792.08 26692.14 27496.70 283
Anonymous2024052995.10 21094.22 22797.75 15299.01 12094.26 23798.87 10198.83 7285.79 35396.64 17298.97 9778.73 33399.85 5496.27 13894.89 22999.12 154
TR-MVS94.94 22294.20 22897.17 18697.75 21994.14 24197.59 27497.02 32692.28 26595.75 20097.64 23983.88 30298.96 21589.77 30696.15 22198.40 203
cl2294.68 23294.19 22996.13 26598.11 19993.60 25796.94 31598.31 20592.43 25793.32 27896.87 30286.51 25198.28 29994.10 21191.16 28896.51 311
VPNet94.99 21694.19 22997.40 17597.16 26596.57 12798.71 13698.97 3195.67 11394.84 21398.24 18780.36 32598.67 24796.46 13287.32 33596.96 248
NR-MVSNet94.98 21894.16 23197.44 17196.53 29997.22 10198.74 12798.95 3594.96 15289.25 34097.69 23389.32 18798.18 30394.59 19387.40 33496.92 251
CR-MVSNet94.76 22994.15 23296.59 23097.00 27293.43 26494.96 35497.56 28992.46 25396.93 15996.24 32388.15 21997.88 32987.38 32996.65 20198.46 201
V4294.78 22894.14 23396.70 21896.33 31195.22 19198.97 8198.09 24992.32 26294.31 23697.06 28288.39 21498.55 25892.90 24688.87 31996.34 321
EU-MVSNet93.66 28194.14 23392.25 34295.96 32583.38 36598.52 16898.12 23994.69 16192.61 29998.13 19487.36 24096.39 35891.82 27490.00 30096.98 245
XVG-ACMP-BASELINE94.54 24394.14 23395.75 28296.55 29891.65 29798.11 22998.44 18394.96 15294.22 24197.90 21279.18 33299.11 19394.05 21393.85 24796.48 315
miper_lstm_enhance94.33 25694.07 23695.11 29997.75 21990.97 30897.22 29898.03 26091.67 28292.76 29496.97 29290.03 17497.78 33192.51 25989.64 30496.56 300
DIV-MVS_self_test94.52 24594.03 23795.99 26997.57 23593.38 26897.05 30997.94 26891.74 27892.81 29297.10 27289.12 19498.07 31392.60 25290.30 29696.53 305
v2v48294.69 23094.03 23796.65 22196.17 31694.79 21598.67 14698.08 25092.72 24694.00 25297.16 27087.69 23498.45 27092.91 24588.87 31996.72 279
GA-MVS94.81 22694.03 23797.14 18897.15 26693.86 24796.76 33097.58 28794.00 18794.76 21897.04 28580.91 32098.48 26591.79 27596.25 21899.09 157
cl____94.51 24694.01 24096.02 26897.58 23193.40 26797.05 30997.96 26791.73 28092.76 29497.08 27889.06 19798.13 30792.61 25190.29 29796.52 308
OurMVSNet-221017-094.21 26394.00 24194.85 30795.60 33489.22 33598.89 9597.43 30595.29 13392.18 31298.52 15482.86 30898.59 25493.46 22891.76 27996.74 276
PAPM94.95 22094.00 24197.78 14897.04 27195.65 17496.03 34498.25 21991.23 29994.19 24397.80 22591.27 15198.86 23182.61 35497.61 18398.84 179
pmmvs494.69 23093.99 24396.81 21295.74 33095.94 16097.40 28297.67 28190.42 31493.37 27697.59 24389.08 19698.20 30292.97 24391.67 28196.30 325
PS-CasMVS94.67 23593.99 24396.71 21696.68 29295.26 19099.13 4899.03 2693.68 20992.33 30997.95 20885.35 27498.10 30993.59 22588.16 32796.79 271
ACMH92.88 1694.55 24293.95 24596.34 25797.63 22893.26 27298.81 11798.49 17793.43 22089.74 33598.53 15181.91 31299.08 19893.69 22093.30 26496.70 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVP-Stereo94.28 26193.92 24695.35 29294.95 34692.60 28297.97 24197.65 28291.61 28490.68 32897.09 27686.32 25798.42 27489.70 30999.34 11195.02 351
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v114494.59 24093.92 24696.60 22996.21 31394.78 21698.59 15798.14 23791.86 27794.21 24297.02 28787.97 22498.41 28291.72 27789.57 30596.61 293
test250694.44 25193.91 24896.04 26799.02 11888.99 34099.06 6179.47 38396.96 5898.36 8799.26 4777.21 34699.52 15396.78 12399.04 12199.59 87
dp94.15 26893.90 24994.90 30597.31 25386.82 36096.97 31397.19 31891.22 30096.02 19696.61 31585.51 27199.02 20790.00 30494.30 23198.85 177
LTVRE_ROB92.95 1594.60 23893.90 24996.68 22097.41 25094.42 23098.52 16898.59 14891.69 28191.21 32298.35 17284.87 28299.04 20391.06 28693.44 26196.60 294
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IterMVS-SCA-FT94.11 27193.87 25194.85 30797.98 20990.56 31797.18 30198.11 24293.75 19992.58 30097.48 25083.97 30097.41 34092.48 26191.30 28596.58 296
cascas94.63 23793.86 25296.93 20396.91 27994.27 23696.00 34598.51 16785.55 35494.54 22296.23 32584.20 29698.87 22995.80 15596.98 19497.66 227
IterMVS94.09 27393.85 25394.80 31097.99 20790.35 31997.18 30198.12 23993.68 20992.46 30797.34 25884.05 29897.41 34092.51 25991.33 28496.62 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_part194.82 22593.82 25497.82 14498.84 13697.82 7799.03 6798.81 8092.31 26492.51 30497.89 21481.96 31198.67 24794.80 18688.24 32496.98 245
Baseline_NR-MVSNet94.35 25593.81 25595.96 27296.20 31494.05 24398.61 15696.67 34391.44 28893.85 25997.60 24288.57 20998.14 30694.39 19786.93 33995.68 339
tpm94.13 26993.80 25695.12 29896.50 30187.91 35497.44 27995.89 35192.62 24996.37 18896.30 32284.13 29798.30 29593.24 23491.66 28299.14 152
GBi-Net94.49 24793.80 25696.56 23498.21 18795.00 20098.82 11198.18 22792.46 25394.09 24797.07 27981.16 31797.95 32192.08 26692.14 27496.72 279
test194.49 24793.80 25696.56 23498.21 18795.00 20098.82 11198.18 22792.46 25394.09 24797.07 27981.16 31797.95 32192.08 26692.14 27496.72 279
v894.47 24993.77 25996.57 23396.36 30894.83 21299.05 6398.19 22491.92 27493.16 28296.97 29288.82 20698.48 26591.69 27887.79 32996.39 319
ACMH+92.99 1494.30 25893.77 25995.88 27797.81 21792.04 28998.71 13698.37 19693.99 18890.60 32998.47 15880.86 32299.05 20092.75 25092.40 27396.55 302
v14894.29 25993.76 26195.91 27496.10 31992.93 27998.58 15997.97 26592.59 25193.47 27496.95 29688.53 21298.32 29192.56 25687.06 33896.49 314
tpm294.19 26593.76 26195.46 28997.23 25789.04 33897.31 29396.85 33887.08 34496.21 19196.79 30683.75 30698.74 24192.43 26296.23 21998.59 196
AUN-MVS94.53 24493.73 26396.92 20698.50 16293.52 26298.34 19298.10 24493.83 19795.94 19997.98 20685.59 26999.03 20494.35 19980.94 35898.22 210
PEN-MVS94.42 25293.73 26396.49 24396.28 31294.84 21099.17 4199.00 2893.51 21692.23 31197.83 22286.10 26097.90 32592.55 25786.92 34096.74 276
v14419294.39 25493.70 26596.48 24496.06 32194.35 23498.58 15998.16 23491.45 28794.33 23597.02 28787.50 23798.45 27091.08 28589.11 31496.63 291
TESTMET0.1,194.18 26793.69 26695.63 28496.92 27789.12 33696.91 31894.78 35993.17 23194.88 21296.45 31978.52 33498.92 22193.09 23898.50 14998.85 177
Patchmatch-test94.42 25293.68 26796.63 22597.60 23091.76 29394.83 35897.49 30089.45 33194.14 24597.10 27288.99 19898.83 23485.37 34398.13 16499.29 132
MS-PatchMatch93.84 28093.63 26894.46 32196.18 31589.45 33197.76 26298.27 21492.23 26692.13 31397.49 24979.50 32998.69 24389.75 30799.38 10995.25 344
FMVSNet294.47 24993.61 26997.04 19498.21 18796.43 13598.79 12298.27 21492.46 25393.50 27397.09 27681.16 31798.00 31991.09 28491.93 27796.70 283
v119294.32 25793.58 27096.53 24096.10 31994.45 22898.50 17398.17 23291.54 28594.19 24397.06 28286.95 24698.43 27390.14 29889.57 30596.70 283
v1094.29 25993.55 27196.51 24296.39 30794.80 21498.99 7798.19 22491.35 29293.02 28896.99 29088.09 22198.41 28290.50 29588.41 32396.33 323
MVS94.67 23593.54 27298.08 12996.88 28196.56 12898.19 21798.50 17278.05 36592.69 29798.02 20091.07 15699.63 13390.09 29998.36 15798.04 215
test-mter94.08 27493.51 27395.80 27996.77 28589.70 32696.91 31895.21 35492.89 24294.83 21595.72 33877.69 34198.97 21193.06 23998.50 14998.72 185
test0.0.03 194.08 27493.51 27395.80 27995.53 33792.89 28097.38 28495.97 34895.11 14392.51 30496.66 31087.71 23196.94 34787.03 33193.67 25197.57 228
v192192094.20 26493.47 27596.40 25395.98 32494.08 24298.52 16898.15 23591.33 29394.25 23997.20 26986.41 25598.42 27490.04 30389.39 31196.69 288
v7n94.19 26593.43 27696.47 24595.90 32694.38 23399.26 2698.34 20191.99 27292.76 29497.13 27188.31 21598.52 26289.48 31487.70 33096.52 308
PCF-MVS93.45 1194.68 23293.43 27698.42 10698.62 15596.77 11795.48 35298.20 22384.63 35793.34 27798.32 17888.55 21199.81 7584.80 34798.96 12698.68 189
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UniMVSNet_ETH3D94.24 26293.33 27896.97 20097.19 26393.38 26898.74 12798.57 15491.21 30193.81 26198.58 14772.85 36298.77 24095.05 17993.93 24698.77 184
our_test_393.65 28393.30 27994.69 31295.45 34089.68 32896.91 31897.65 28291.97 27391.66 31996.88 30089.67 18097.93 32488.02 32691.49 28396.48 315
v124094.06 27693.29 28096.34 25796.03 32393.90 24698.44 18098.17 23291.18 30294.13 24697.01 28986.05 26198.42 27489.13 31989.50 30996.70 283
Anonymous2023121194.10 27293.26 28196.61 22799.11 11294.28 23599.01 7398.88 5186.43 34792.81 29297.57 24581.66 31498.68 24694.83 18389.02 31796.88 260
DTE-MVSNet93.98 27893.26 28196.14 26496.06 32194.39 23299.20 3798.86 6493.06 23591.78 31797.81 22485.87 26497.58 33690.53 29486.17 34596.46 317
pm-mvs193.94 27993.06 28396.59 23096.49 30295.16 19398.95 8598.03 26092.32 26291.08 32497.84 21984.54 28998.41 28292.16 26486.13 34796.19 328
ET-MVSNet_ETH3D94.13 26992.98 28497.58 16698.22 18696.20 14597.31 29395.37 35394.53 16879.56 36597.63 24186.51 25197.53 33896.91 10690.74 29299.02 165
pmmvs593.65 28392.97 28595.68 28395.49 33892.37 28398.20 21397.28 31489.66 32892.58 30097.26 26382.14 31098.09 31193.18 23790.95 29196.58 296
SixPastTwentyTwo93.34 28792.86 28694.75 31195.67 33289.41 33398.75 12496.67 34393.89 19290.15 33398.25 18680.87 32198.27 30090.90 28990.64 29396.57 298
tpm cat193.36 28592.80 28795.07 30197.58 23187.97 35396.76 33097.86 27482.17 36193.53 26996.04 33186.13 25999.13 18989.24 31795.87 22598.10 214
LF4IMVS93.14 29492.79 28894.20 32495.88 32788.67 34497.66 26997.07 32193.81 19891.71 31897.65 23777.96 34098.81 23691.47 28191.92 27895.12 347
USDC93.33 28892.71 28995.21 29596.83 28490.83 31196.91 31897.50 29893.84 19590.72 32798.14 19377.69 34198.82 23589.51 31393.21 26695.97 333
tfpnnormal93.66 28192.70 29096.55 23996.94 27695.94 16098.97 8199.19 1691.04 30491.38 32197.34 25884.94 28198.61 25185.45 34289.02 31795.11 348
ppachtmachnet_test93.22 29192.63 29194.97 30395.45 34090.84 31096.88 32497.88 27390.60 30992.08 31497.26 26388.08 22297.86 33085.12 34490.33 29596.22 326
DSMNet-mixed92.52 30192.58 29292.33 34094.15 35482.65 36798.30 20194.26 36589.08 33592.65 29895.73 33685.01 28095.76 36186.24 33597.76 17898.59 196
JIA-IIPM93.35 28692.49 29395.92 27396.48 30390.65 31595.01 35396.96 32885.93 35196.08 19487.33 36787.70 23398.78 23991.35 28295.58 22798.34 206
testgi93.06 29592.45 29494.88 30696.43 30689.90 32398.75 12497.54 29595.60 11691.63 32097.91 21174.46 35897.02 34586.10 33693.67 25197.72 225
Patchmtry93.22 29192.35 29595.84 27896.77 28593.09 27894.66 35997.56 28987.37 34392.90 29096.24 32388.15 21997.90 32587.37 33090.10 29996.53 305
X-MVStestdata94.06 27692.30 29699.34 2699.70 2498.35 4899.29 2298.88 5197.40 2798.46 7943.50 37695.90 4499.89 3997.85 5699.74 4599.78 16
MIMVSNet93.26 29092.21 29796.41 25197.73 22393.13 27695.65 34997.03 32491.27 29894.04 25096.06 33075.33 35397.19 34386.56 33396.23 21998.92 175
FMVSNet193.19 29392.07 29896.56 23497.54 23695.00 20098.82 11198.18 22790.38 31592.27 31097.07 27973.68 36097.95 32189.36 31691.30 28596.72 279
MVS_030492.81 29792.01 29995.23 29497.46 24291.33 30298.17 22298.81 8091.13 30393.80 26295.68 34166.08 36998.06 31490.79 29096.13 22296.32 324
PatchT93.06 29591.97 30096.35 25696.69 29192.67 28194.48 36097.08 32086.62 34597.08 15192.23 36287.94 22597.90 32578.89 36496.69 19998.49 200
IB-MVS91.98 1793.27 28991.97 30097.19 18497.47 24193.41 26697.09 30895.99 34793.32 22492.47 30695.73 33678.06 33999.53 15094.59 19382.98 35098.62 195
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
K. test v392.55 30091.91 30294.48 31995.64 33389.24 33499.07 6094.88 35894.04 18386.78 35197.59 24377.64 34497.64 33492.08 26689.43 31096.57 298
TinyColmap92.31 30291.53 30394.65 31496.92 27789.75 32596.92 31696.68 34290.45 31389.62 33697.85 21876.06 35198.81 23686.74 33292.51 27295.41 342
TransMVSNet (Re)92.67 29991.51 30496.15 26396.58 29794.65 21798.90 9196.73 33990.86 30789.46 33997.86 21685.62 26898.09 31186.45 33481.12 35695.71 338
RPMNet92.81 29791.34 30597.24 18197.00 27293.43 26494.96 35498.80 9182.27 36096.93 15992.12 36386.98 24599.82 6876.32 36896.65 20198.46 201
Anonymous2023120691.66 30691.10 30693.33 33394.02 35887.35 35798.58 15997.26 31690.48 31190.16 33296.31 32183.83 30496.53 35679.36 36289.90 30196.12 329
FMVSNet591.81 30490.92 30794.49 31897.21 25992.09 28698.00 23997.55 29489.31 33390.86 32695.61 34274.48 35795.32 36485.57 34089.70 30396.07 331
Patchmatch-RL test91.49 30790.85 30893.41 33191.37 36784.40 36292.81 36495.93 35091.87 27687.25 34994.87 34888.99 19896.53 35692.54 25882.00 35299.30 130
pmmvs691.77 30590.63 30995.17 29794.69 35291.24 30598.67 14697.92 27086.14 34989.62 33697.56 24775.79 35298.34 28990.75 29284.56 34995.94 334
gg-mvs-nofinetune92.21 30390.58 31097.13 18996.75 28895.09 19795.85 34689.40 37785.43 35594.50 22481.98 37080.80 32398.40 28892.16 26498.33 15897.88 218
Anonymous2024052191.18 31090.44 31193.42 33093.70 35988.47 34798.94 8797.56 28988.46 33889.56 33895.08 34777.15 34896.97 34683.92 35089.55 30794.82 353
test20.0390.89 31490.38 31292.43 33993.48 36088.14 35298.33 19397.56 28993.40 22187.96 34796.71 30980.69 32494.13 36979.15 36386.17 34595.01 352
test_040291.32 30890.27 31394.48 31996.60 29591.12 30698.50 17397.22 31786.10 35088.30 34696.98 29177.65 34397.99 32078.13 36692.94 26994.34 355
EG-PatchMatch MVS91.13 31190.12 31494.17 32694.73 35189.00 33998.13 22697.81 27589.22 33485.32 35896.46 31867.71 36698.42 27487.89 32893.82 24895.08 349
PVSNet_088.72 1991.28 30990.03 31595.00 30297.99 20787.29 35894.84 35798.50 17292.06 27189.86 33495.19 34479.81 32899.39 16692.27 26369.79 36998.33 207
UnsupCasMVSNet_eth90.99 31389.92 31694.19 32594.08 35589.83 32497.13 30798.67 13393.69 20785.83 35696.19 32875.15 35496.74 35089.14 31879.41 36096.00 332
TDRefinement91.06 31289.68 31795.21 29585.35 37491.49 30098.51 17297.07 32191.47 28688.83 34497.84 21977.31 34599.09 19792.79 24977.98 36295.04 350
CMPMVSbinary66.06 2189.70 32289.67 31889.78 34693.19 36176.56 37197.00 31298.35 19980.97 36281.57 36397.75 22774.75 35698.61 25189.85 30593.63 25494.17 357
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
YYNet190.70 31689.39 31994.62 31594.79 35090.65 31597.20 29997.46 30187.54 34272.54 36995.74 33486.51 25196.66 35486.00 33786.76 34396.54 303
KD-MVS_self_test90.38 31789.38 32093.40 33292.85 36388.94 34197.95 24297.94 26890.35 31690.25 33193.96 35579.82 32795.94 36084.62 34976.69 36495.33 343
MDA-MVSNet_test_wron90.71 31589.38 32094.68 31394.83 34890.78 31297.19 30097.46 30187.60 34172.41 37095.72 33886.51 25196.71 35385.92 33886.80 34296.56 300
CL-MVSNet_self_test90.11 31989.14 32293.02 33791.86 36688.23 35196.51 33898.07 25290.49 31090.49 33094.41 35084.75 28595.34 36380.79 35874.95 36695.50 341
pmmvs-eth3d90.36 31889.05 32394.32 32391.10 36892.12 28597.63 27396.95 32988.86 33684.91 35993.13 35878.32 33596.74 35088.70 32181.81 35494.09 359
new_pmnet90.06 32089.00 32493.22 33694.18 35388.32 35096.42 34096.89 33486.19 34885.67 35793.62 35677.18 34797.10 34481.61 35689.29 31294.23 356
MVS-HIRNet89.46 32688.40 32592.64 33897.58 23182.15 36894.16 36393.05 37175.73 36790.90 32582.52 36979.42 33098.33 29083.53 35298.68 13897.43 229
MDA-MVSNet-bldmvs89.97 32188.35 32694.83 30995.21 34391.34 30197.64 27097.51 29788.36 33971.17 37196.13 32979.22 33196.63 35583.65 35186.27 34496.52 308
MIMVSNet189.67 32388.28 32793.82 32792.81 36491.08 30798.01 23797.45 30387.95 34087.90 34895.87 33367.63 36794.56 36878.73 36588.18 32695.83 336
KD-MVS_2432*160089.61 32487.96 32894.54 31694.06 35691.59 29895.59 35097.63 28489.87 32488.95 34294.38 35278.28 33696.82 34884.83 34568.05 37095.21 345
miper_refine_blended89.61 32487.96 32894.54 31694.06 35691.59 29895.59 35097.63 28489.87 32488.95 34294.38 35278.28 33696.82 34884.83 34568.05 37095.21 345
N_pmnet87.12 33187.77 33085.17 35195.46 33961.92 37897.37 28670.66 38485.83 35288.73 34596.04 33185.33 27697.76 33280.02 35990.48 29495.84 335
new-patchmatchnet88.50 32887.45 33191.67 34490.31 37085.89 36197.16 30597.33 31189.47 33083.63 36192.77 35976.38 34995.06 36682.70 35377.29 36394.06 360
OpenMVS_ROBcopyleft86.42 2089.00 32787.43 33293.69 32893.08 36289.42 33297.91 24696.89 33478.58 36485.86 35594.69 34969.48 36498.29 29877.13 36793.29 26593.36 364
PM-MVS87.77 32986.55 33391.40 34591.03 36983.36 36696.92 31695.18 35691.28 29786.48 35493.42 35753.27 37396.74 35089.43 31581.97 35394.11 358
UnsupCasMVSNet_bld87.17 33085.12 33493.31 33491.94 36588.77 34294.92 35698.30 21184.30 35882.30 36290.04 36463.96 37197.25 34285.85 33974.47 36893.93 362
pmmvs386.67 33284.86 33592.11 34388.16 37187.19 35996.63 33494.75 36079.88 36387.22 35092.75 36066.56 36895.20 36581.24 35776.56 36593.96 361
test_method79.03 33378.17 33681.63 35386.06 37354.40 38382.75 37296.89 33439.54 37680.98 36495.57 34358.37 37294.73 36784.74 34878.61 36195.75 337
FPMVS77.62 33777.14 33779.05 35579.25 37860.97 37995.79 34795.94 34965.96 36967.93 37294.40 35137.73 37888.88 37468.83 37188.46 32287.29 368
Gipumacopyleft78.40 33576.75 33883.38 35295.54 33680.43 37079.42 37397.40 30764.67 37073.46 36880.82 37145.65 37593.14 37066.32 37287.43 33376.56 373
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet78.70 33476.24 33986.08 34977.26 38071.99 37594.34 36196.72 34061.62 37176.53 36689.33 36533.91 38092.78 37181.85 35574.60 36793.46 363
PMMVS277.95 33675.44 34085.46 35082.54 37574.95 37394.23 36293.08 37072.80 36874.68 36787.38 36636.36 37991.56 37273.95 36963.94 37289.87 367
EGC-MVSNET75.22 33869.54 34192.28 34194.81 34989.58 32997.64 27096.50 3451.82 3815.57 38295.74 33468.21 36596.26 35973.80 37091.71 28090.99 366
tmp_tt68.90 34066.97 34274.68 35750.78 38459.95 38087.13 36983.47 38138.80 37762.21 37396.23 32564.70 37076.91 37988.91 32030.49 37787.19 369
ANet_high69.08 33965.37 34380.22 35465.99 38271.96 37690.91 36890.09 37682.62 35949.93 37778.39 37229.36 38181.75 37562.49 37338.52 37686.95 370
E-PMN64.94 34264.25 34467.02 35982.28 37659.36 38191.83 36785.63 37952.69 37360.22 37477.28 37341.06 37780.12 37746.15 37641.14 37461.57 375
PMVScopyleft61.03 2365.95 34163.57 34573.09 35857.90 38351.22 38485.05 37193.93 36954.45 37244.32 37883.57 36813.22 38289.15 37358.68 37481.00 35778.91 372
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS64.07 34363.26 34666.53 36081.73 37758.81 38291.85 36684.75 38051.93 37559.09 37575.13 37443.32 37679.09 37842.03 37739.47 37561.69 374
MVEpermissive62.14 2263.28 34459.38 34774.99 35674.33 38165.47 37785.55 37080.50 38252.02 37451.10 37675.00 37510.91 38580.50 37651.60 37553.40 37378.99 371
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k23.98 34631.98 3480.00 3640.00 3870.00 3880.00 37598.59 1480.00 3820.00 38398.61 14290.60 1650.00 3830.00 3810.00 3810.00 379
wuyk23d30.17 34530.18 34930.16 36178.61 37943.29 38566.79 37414.21 38517.31 37814.82 38111.93 38111.55 38441.43 38037.08 37819.30 3785.76 378
testmvs21.48 34724.95 35011.09 36314.89 3856.47 38796.56 3369.87 3867.55 37917.93 37939.02 3779.43 3865.90 38216.56 38012.72 37920.91 377
test12320.95 34823.72 35112.64 36213.54 3868.19 38696.55 3376.13 3877.48 38016.74 38037.98 37812.97 3836.05 38116.69 3795.43 38023.68 376
ab-mvs-re8.20 34910.94 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38398.43 1620.00 3870.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas7.88 35010.50 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38294.51 910.00 3830.00 3810.00 3810.00 379
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
FOURS199.82 198.66 2699.69 198.95 3597.46 2399.39 15
MSC_two_6792asdad99.62 699.17 10399.08 1198.63 14399.94 498.53 1499.80 1999.86 2
PC_three_145295.08 14799.60 599.16 6897.86 298.47 26897.52 8499.72 5499.74 37
No_MVS99.62 699.17 10399.08 1198.63 14399.94 498.53 1499.80 1999.86 2
test_one_060199.66 2899.25 298.86 6497.55 1699.20 2699.47 1097.57 6
eth-test20.00 387
eth-test0.00 387
ZD-MVS99.46 5598.70 2398.79 9693.21 22898.67 6798.97 9795.70 5099.83 6096.07 14299.58 80
IU-MVS99.71 2199.23 798.64 14195.28 13499.63 498.35 3299.81 1299.83 7
OPU-MVS99.37 2399.24 9699.05 1499.02 7199.16 6897.81 399.37 16797.24 9299.73 4799.70 54
test_241102_TWO98.87 5897.65 1099.53 999.48 897.34 1199.94 498.43 2699.80 1999.83 7
test_241102_ONE99.71 2199.24 598.87 5897.62 1299.73 199.39 1897.53 799.74 111
save fliter99.46 5598.38 4098.21 21098.71 11897.95 3
test_0728_THIRD97.32 3399.45 1199.46 1397.88 199.94 498.47 2299.86 199.85 4
test_0728_SECOND99.71 199.72 1399.35 198.97 8198.88 5199.94 498.47 2299.81 1299.84 6
test072699.72 1399.25 299.06 6198.88 5197.62 1299.56 699.50 597.42 9
GSMVS99.20 139
test_part299.63 3199.18 1099.27 21
sam_mvs189.45 18499.20 139
sam_mvs88.99 198
ambc89.49 34786.66 37275.78 37292.66 36596.72 34086.55 35392.50 36146.01 37497.90 32590.32 29682.09 35194.80 354
MTGPAbinary98.74 108
test_post196.68 33330.43 38087.85 22998.69 24392.59 254
test_post31.83 37988.83 20598.91 222
patchmatchnet-post95.10 34689.42 18598.89 226
GG-mvs-BLEND96.59 23096.34 31094.98 20396.51 33888.58 37893.10 28794.34 35480.34 32698.05 31589.53 31296.99 19396.74 276
MTMP98.89 9594.14 367
gm-plane-assit95.88 32787.47 35689.74 32796.94 29799.19 18193.32 233
test9_res96.39 13799.57 8199.69 57
TEST999.31 7498.50 3497.92 24498.73 11292.63 24897.74 12598.68 13596.20 2799.80 84
test_899.29 8298.44 3697.89 25098.72 11492.98 23897.70 12998.66 13896.20 2799.80 84
agg_prior295.87 15299.57 8199.68 63
agg_prior99.30 7998.38 4098.72 11497.57 13999.81 75
TestCases96.99 19799.25 9093.21 27498.18 22791.36 29093.52 27098.77 12684.67 28699.72 11389.70 30997.87 17398.02 216
test_prior498.01 6797.86 253
test_prior297.80 25896.12 9397.89 11998.69 13395.96 4096.89 11099.60 74
test_prior99.19 4699.31 7498.22 5598.84 6999.70 11999.65 73
旧先验297.57 27691.30 29598.67 6799.80 8495.70 162
新几何297.64 270
新几何199.16 5399.34 6698.01 6798.69 12290.06 32198.13 9498.95 10594.60 8999.89 3991.97 27299.47 9999.59 87
旧先验199.29 8297.48 8898.70 12199.09 8495.56 5399.47 9999.61 82
无先验97.58 27598.72 11491.38 28999.87 4893.36 23199.60 85
原ACMM297.67 268
原ACMM198.65 8499.32 7296.62 12298.67 13393.27 22797.81 12198.97 9795.18 7599.83 6093.84 21799.46 10299.50 100
test22299.23 9797.17 10397.40 28298.66 13688.68 33798.05 9998.96 10394.14 10099.53 9299.61 82
testdata299.89 3991.65 279
segment_acmp96.85 14
testdata98.26 11699.20 10195.36 18598.68 12591.89 27598.60 7599.10 7894.44 9699.82 6894.27 20399.44 10499.58 91
testdata197.32 29296.34 85
test1299.18 5099.16 10798.19 5798.53 16298.07 9895.13 7799.72 11399.56 8699.63 79
plane_prior797.42 24794.63 219
plane_prior697.35 25294.61 22287.09 242
plane_prior598.56 15699.03 20496.07 14294.27 23296.92 251
plane_prior498.28 181
plane_prior394.61 22297.02 5595.34 204
plane_prior298.80 11897.28 36
plane_prior197.37 251
plane_prior94.60 22498.44 18096.74 6894.22 234
n20.00 388
nn0.00 388
door-mid94.37 363
lessismore_v094.45 32294.93 34788.44 34891.03 37586.77 35297.64 23976.23 35098.42 27490.31 29785.64 34896.51 311
LGP-MVS_train96.47 24597.46 24293.54 25998.54 16094.67 16394.36 23398.77 12685.39 27299.11 19395.71 16094.15 23896.76 274
test1198.66 136
door94.64 361
HQP5-MVS94.25 238
HQP-NCC97.20 26098.05 23396.43 8194.45 226
ACMP_Plane97.20 26098.05 23396.43 8194.45 226
BP-MVS95.30 171
HQP4-MVS94.45 22698.96 21596.87 262
HQP3-MVS98.46 17994.18 236
HQP2-MVS86.75 248
NP-MVS97.28 25494.51 22797.73 228
MDTV_nov1_ep13_2view84.26 36396.89 32390.97 30597.90 11889.89 17693.91 21599.18 148
ACMMP++_ref92.97 268
ACMMP++93.61 255
Test By Simon94.64 87
ITE_SJBPF95.44 29097.42 24791.32 30397.50 29895.09 14693.59 26698.35 17281.70 31398.88 22889.71 30893.39 26296.12 329
DeepMVS_CXcopyleft86.78 34897.09 27072.30 37495.17 35775.92 36684.34 36095.19 34470.58 36395.35 36279.98 36189.04 31692.68 365