This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
MM89.16 689.23 788.97 490.79 9073.65 1092.66 2391.17 11686.57 187.39 3594.97 1671.70 5097.68 192.19 195.63 2895.57 1
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6687.65 19967.22 15088.69 11993.04 3879.64 1885.33 5292.54 8373.30 3594.50 10883.49 5991.14 9095.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
dcpmvs_285.63 5286.15 4484.06 12691.71 7564.94 19786.47 18991.87 9573.63 13286.60 4393.02 7276.57 1591.87 21783.36 6092.15 7695.35 3
casdiffmvspermissive85.11 6185.14 6085.01 8487.20 21565.77 18087.75 15292.83 5577.84 3784.36 7392.38 8572.15 4493.93 13181.27 8190.48 9795.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
3Dnovator+77.84 485.48 5484.47 6988.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19693.37 6260.40 18896.75 2677.20 11893.73 6395.29 5
CS-MVS86.69 3586.95 3185.90 6390.76 9167.57 13992.83 1793.30 3279.67 1784.57 6992.27 8671.47 5395.02 8884.24 5493.46 6495.13 6
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7474.62 11188.90 2093.85 5275.75 2096.00 4987.80 2894.63 4895.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
baseline84.93 6384.98 6184.80 9487.30 21365.39 18887.30 16492.88 5277.62 3984.04 7992.26 8771.81 4793.96 12581.31 8090.30 10095.03 8
MVS_030488.08 1488.08 1788.08 1489.67 11472.04 4892.26 3389.26 17384.19 285.01 5595.18 1369.93 6997.20 1491.63 295.60 2994.99 9
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
PC_three_145268.21 24592.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
IS-MVSNet83.15 8882.81 8884.18 11789.94 11063.30 23291.59 4388.46 20479.04 2579.49 13592.16 8865.10 12094.28 11367.71 20991.86 8294.95 10
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10792.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test250677.30 22176.49 21779.74 24690.08 10352.02 35687.86 15163.10 39174.88 10480.16 12992.79 7938.29 36092.35 19968.74 20292.50 7394.86 17
ECVR-MVScopyleft79.61 15979.26 15080.67 22890.08 10354.69 34087.89 14977.44 34874.88 10480.27 12692.79 7948.96 29392.45 19368.55 20392.50 7394.86 17
IU-MVS95.30 271.25 5792.95 5166.81 25592.39 688.94 1696.63 494.85 19
test111179.43 16679.18 15480.15 23889.99 10853.31 35387.33 16377.05 35175.04 10180.23 12892.77 8148.97 29292.33 20168.87 20092.40 7594.81 20
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8789.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
CS-MVS-test86.29 4286.48 3785.71 6591.02 8367.21 15192.36 2993.78 1878.97 2883.51 8891.20 11170.65 6395.15 7981.96 7694.89 4194.77 22
canonicalmvs85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13281.50 7988.80 12194.77 22
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 24
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5994.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
alignmvs85.48 5485.32 5785.96 6289.51 12069.47 9289.74 8092.47 6876.17 8087.73 3391.46 10570.32 6593.78 13781.51 7888.95 11894.63 26
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7893.50 2575.17 10086.34 4495.29 1270.86 5996.00 4988.78 1996.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 9989.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 27
VDD-MVS83.01 9382.36 9484.96 8691.02 8366.40 16288.91 10888.11 20777.57 4184.39 7293.29 6452.19 24793.91 13277.05 12088.70 12394.57 29
VDDNet81.52 11780.67 11984.05 12990.44 9664.13 21489.73 8185.91 25171.11 17883.18 9193.48 5850.54 27193.49 15173.40 15688.25 12994.54 30
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 8991.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 31
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
No_MVS89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7693.82 1673.07 14884.86 6292.89 7476.22 1796.33 3884.89 4495.13 3694.40 34
CANet86.45 3886.10 4587.51 3790.09 10270.94 6789.70 8292.59 6681.78 481.32 11491.43 10670.34 6497.23 1384.26 5293.36 6594.37 35
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15385.22 5491.90 9269.47 7496.42 3783.28 6295.94 1994.35 36
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 37
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5394.32 3171.76 4896.93 1985.53 3995.79 2294.32 38
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8283.81 8393.95 5169.77 7296.01 4885.15 4094.66 4794.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CDPH-MVS85.76 5085.29 5987.17 4393.49 4771.08 6188.58 12392.42 7268.32 24484.61 6793.48 5872.32 4296.15 4579.00 9995.43 3194.28 40
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 41
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 42
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7084.22 7493.36 6371.44 5496.76 2580.82 8595.33 3494.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EPP-MVSNet83.40 8483.02 8484.57 9890.13 10164.47 20792.32 3090.73 12874.45 11579.35 13791.10 11469.05 8195.12 8072.78 16387.22 13994.13 44
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5581.50 585.79 4893.47 6073.02 3997.00 1884.90 4294.94 3994.10 45
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5693.59 2376.27 7988.14 2495.09 1571.06 5796.67 2987.67 2996.37 1494.09 46
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8594.17 3667.45 9596.60 3383.06 6394.50 5194.07 47
X-MVStestdata80.37 14677.83 18388.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8512.47 40367.45 9596.60 3383.06 6394.50 5194.07 47
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7094.52 2169.09 7896.70 2784.37 5194.83 4594.03 49
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6694.52 2168.81 8496.65 3084.53 4994.90 4094.00 50
test_fmvsmconf_n85.92 4686.04 4785.57 6885.03 25369.51 9089.62 8690.58 13173.42 13987.75 3194.02 4472.85 4093.24 16190.37 390.75 9493.96 51
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8592.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 52
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_fmvsm_n_192085.29 5985.34 5585.13 8086.12 23369.93 8388.65 12190.78 12769.97 20488.27 2393.98 4971.39 5591.54 22988.49 2390.45 9893.91 53
test_prior86.33 5492.61 6569.59 8892.97 5095.48 6493.91 53
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6393.99 4870.67 6296.82 2284.18 5695.01 3793.90 55
test_fmvsmconf0.1_n85.61 5385.65 5185.50 6982.99 29869.39 9689.65 8390.29 14473.31 14287.77 3094.15 3871.72 4993.23 16290.31 490.67 9693.89 56
Anonymous20240521178.25 19477.01 20381.99 19591.03 8260.67 26784.77 23083.90 27870.65 19180.00 13091.20 11141.08 34791.43 23665.21 23185.26 16793.85 57
LFMVS81.82 10881.23 10983.57 14591.89 7363.43 23089.84 7581.85 30977.04 5883.21 9093.10 6752.26 24693.43 15671.98 16989.95 10893.85 57
Effi-MVS+83.62 7983.08 8285.24 7588.38 16967.45 14188.89 10989.15 17975.50 9282.27 10188.28 18669.61 7394.45 11077.81 11287.84 13193.84 59
Anonymous2024052980.19 15178.89 15984.10 11990.60 9264.75 20188.95 10790.90 12365.97 27280.59 12491.17 11349.97 27693.73 14369.16 19782.70 21193.81 60
MVS_Test83.15 8883.06 8383.41 15086.86 21963.21 23486.11 20092.00 8774.31 11682.87 9589.44 15670.03 6793.21 16477.39 11788.50 12793.81 60
test_fmvsmconf0.01_n84.73 6684.52 6885.34 7280.25 33869.03 9989.47 8889.65 16173.24 14686.98 4094.27 3266.62 10193.23 16290.26 589.95 10893.78 62
GeoE81.71 11081.01 11483.80 14089.51 12064.45 20888.97 10688.73 19971.27 17578.63 15089.76 14266.32 10793.20 16769.89 18986.02 15993.74 63
diffmvspermissive82.10 10181.88 10382.76 18383.00 29663.78 22083.68 25489.76 15772.94 15182.02 10489.85 14065.96 11490.79 25382.38 7487.30 13893.71 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 5994.44 2870.78 6096.61 3284.53 4994.89 4193.66 65
VNet82.21 10082.41 9281.62 20190.82 8860.93 26284.47 23889.78 15676.36 7784.07 7891.88 9364.71 12490.26 25970.68 18088.89 11993.66 65
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7093.04 3875.53 9183.86 8194.42 2967.87 9296.64 3182.70 7294.57 5093.66 65
DELS-MVS85.41 5785.30 5885.77 6488.49 16367.93 13285.52 21993.44 2778.70 2983.63 8789.03 16474.57 2495.71 5780.26 9294.04 6093.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13787.63 3094.27 5893.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 9794.23 3572.13 4597.09 1684.83 4595.37 3293.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
patch_mono-283.65 7684.54 6680.99 22090.06 10765.83 17684.21 24788.74 19871.60 16885.01 5592.44 8474.51 2583.50 33382.15 7592.15 7693.64 71
EIA-MVS83.31 8782.80 8984.82 9289.59 11665.59 18288.21 13692.68 6074.66 10978.96 14186.42 24169.06 8095.26 7575.54 13890.09 10493.62 72
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6477.57 4183.84 8294.40 3072.24 4396.28 4085.65 3895.30 3593.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVS_fast85.35 5884.95 6386.57 5393.69 4270.58 7592.15 3691.62 10373.89 12682.67 10094.09 4062.60 14495.54 6280.93 8392.93 6793.57 74
fmvsm_s_conf0.1_n83.56 8083.38 7884.10 11984.86 25567.28 14789.40 9383.01 29470.67 18787.08 3893.96 5068.38 8791.45 23588.56 2284.50 17593.56 75
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5793.56 2473.95 12383.16 9291.07 11675.94 1895.19 7779.94 9494.38 5593.55 76
test1286.80 4992.63 6470.70 7291.79 9982.71 9971.67 5196.16 4494.50 5193.54 77
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4573.54 13685.94 4594.51 2465.80 11595.61 5983.04 6592.51 7293.53 78
iter_conf05_1181.63 11580.44 12585.20 7789.46 12366.20 16686.21 19686.97 23571.53 17083.35 8988.53 17943.22 33395.94 5379.82 9594.85 4393.47 79
bld_raw_dy_0_6480.78 13579.36 14785.06 8289.46 12366.03 16889.63 8585.46 25869.76 21181.88 10589.06 16343.39 33195.70 5879.82 9585.74 16693.47 79
mvs_anonymous79.42 16779.11 15580.34 23484.45 26457.97 29482.59 27387.62 22167.40 25476.17 21288.56 17868.47 8689.59 27270.65 18186.05 15893.47 79
fmvsm_s_conf0.5_n83.80 7383.71 7484.07 12486.69 22567.31 14689.46 8983.07 29371.09 17986.96 4193.70 5569.02 8391.47 23488.79 1884.62 17493.44 82
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8076.87 6282.81 9894.25 3466.44 10596.24 4182.88 6794.28 5793.38 83
EPNet83.72 7582.92 8786.14 5984.22 26769.48 9191.05 5585.27 25981.30 676.83 19191.65 9766.09 11095.56 6076.00 13293.85 6193.38 83
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Vis-MVSNetpermissive83.46 8282.80 8985.43 7190.25 9968.74 11090.30 6990.13 14876.33 7880.87 12292.89 7461.00 17694.20 11972.45 16890.97 9193.35 85
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 5977.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 86
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
UniMVSNet_ETH3D79.10 17678.24 17481.70 20086.85 22060.24 27487.28 16588.79 19374.25 11876.84 19090.53 12949.48 28291.56 22767.98 20782.15 21593.29 87
EI-MVSNet-Vis-set84.19 6883.81 7385.31 7388.18 17467.85 13387.66 15489.73 15980.05 1482.95 9389.59 14870.74 6194.82 9780.66 8984.72 17293.28 88
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18692.02 8579.45 1985.88 4694.80 1768.07 8996.21 4286.69 3695.34 3393.23 89
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5876.62 7083.68 8494.46 2567.93 9095.95 5284.20 5594.39 5493.23 89
ACMMPcopyleft85.89 4885.39 5487.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12393.82 5364.33 12596.29 3982.67 7390.69 9593.23 89
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_s_conf0.1_n_a83.32 8682.99 8584.28 11283.79 27668.07 12989.34 9582.85 29969.80 20887.36 3694.06 4268.34 8891.56 22787.95 2783.46 20093.21 92
PAPM_NR83.02 9282.41 9284.82 9292.47 6766.37 16387.93 14791.80 9873.82 12777.32 18090.66 12567.90 9194.90 9370.37 18389.48 11393.19 93
OMC-MVS82.69 9581.97 10284.85 9188.75 15567.42 14287.98 14390.87 12574.92 10379.72 13291.65 9762.19 15493.96 12575.26 14086.42 15193.16 94
fmvsm_s_conf0.5_n_a83.63 7883.41 7784.28 11286.14 23268.12 12789.43 9082.87 29870.27 19887.27 3793.80 5469.09 7891.58 22588.21 2683.65 19493.14 95
PAPR81.66 11480.89 11683.99 13490.27 9864.00 21586.76 18291.77 10168.84 23577.13 18989.50 14967.63 9394.88 9567.55 21188.52 12693.09 96
UA-Net85.08 6284.96 6285.45 7092.07 7068.07 12989.78 7990.86 12682.48 384.60 6893.20 6669.35 7595.22 7671.39 17490.88 9393.07 97
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5480.26 1187.78 2994.27 3275.89 1996.81 2387.45 3296.44 993.05 98
thisisatest053079.40 16877.76 18884.31 11087.69 19865.10 19487.36 16184.26 27470.04 20177.42 17788.26 18849.94 27794.79 9970.20 18484.70 17393.03 99
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11591.89 9368.69 23785.00 5793.10 6774.43 2695.41 6984.97 4195.71 2593.02 100
EC-MVSNet86.01 4386.38 3884.91 9089.31 13266.27 16592.32 3093.63 2179.37 2084.17 7691.88 9369.04 8295.43 6783.93 5793.77 6293.01 101
EI-MVSNet-UG-set83.81 7283.38 7885.09 8187.87 18767.53 14087.44 16089.66 16079.74 1682.23 10289.41 15770.24 6694.74 10079.95 9383.92 18692.99 102
tttt051779.40 16877.91 18083.90 13988.10 17963.84 21888.37 13184.05 27671.45 17276.78 19389.12 16049.93 27994.89 9470.18 18583.18 20492.96 103
test9_res84.90 4295.70 2692.87 104
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 6774.50 11286.84 4294.65 2067.31 9795.77 5584.80 4692.85 6892.84 105
ETV-MVS84.90 6584.67 6585.59 6789.39 12768.66 11688.74 11792.64 6579.97 1584.10 7785.71 25469.32 7695.38 7180.82 8591.37 8792.72 106
agg_prior282.91 6695.45 3092.70 107
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5573.01 15088.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 107
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ET-MVSNet_ETH3D78.63 18776.63 21684.64 9786.73 22469.47 9285.01 22584.61 26769.54 21566.51 33786.59 23450.16 27491.75 22076.26 12884.24 18392.69 109
Vis-MVSNet (Re-imp)78.36 19378.45 16778.07 27788.64 15951.78 36286.70 18379.63 33374.14 12175.11 24090.83 12361.29 17089.75 26958.10 29591.60 8392.69 109
TSAR-MVS + GP.85.71 5185.33 5686.84 4791.34 7872.50 3689.07 10487.28 22876.41 7285.80 4790.22 13474.15 3195.37 7481.82 7791.88 7992.65 111
test_fmvsmvis_n_192084.02 7083.87 7284.49 10384.12 26969.37 9788.15 14087.96 21270.01 20283.95 8093.23 6568.80 8591.51 23288.61 2089.96 10792.57 112
FA-MVS(test-final)80.96 12679.91 13484.10 11988.30 17265.01 19584.55 23790.01 15173.25 14579.61 13387.57 20358.35 19794.72 10171.29 17586.25 15492.56 113
test_yl81.17 12280.47 12383.24 15689.13 14063.62 22186.21 19689.95 15372.43 15681.78 11089.61 14657.50 20593.58 14570.75 17886.90 14392.52 114
DCV-MVSNet81.17 12280.47 12383.24 15689.13 14063.62 22186.21 19689.95 15372.43 15681.78 11089.61 14657.50 20593.58 14570.75 17886.90 14392.52 114
SR-MVS-dyc-post85.77 4985.61 5286.23 5693.06 5570.63 7391.88 3992.27 7673.53 13785.69 4994.45 2665.00 12395.56 6082.75 6891.87 8092.50 116
RE-MVS-def85.48 5393.06 5570.63 7391.88 3992.27 7673.53 13785.69 4994.45 2663.87 12982.75 6891.87 8092.50 116
nrg03083.88 7183.53 7584.96 8686.77 22369.28 9890.46 6592.67 6174.79 10682.95 9391.33 10872.70 4193.09 17580.79 8779.28 25192.50 116
MG-MVS83.41 8383.45 7683.28 15392.74 6262.28 24888.17 13889.50 16475.22 9681.49 11392.74 8266.75 10095.11 8272.85 16291.58 8492.45 119
FIs82.07 10382.42 9181.04 21988.80 15258.34 28888.26 13593.49 2676.93 6078.47 15591.04 11769.92 7092.34 20069.87 19084.97 16992.44 120
FC-MVSNet-test81.52 11782.02 10080.03 24088.42 16855.97 32687.95 14593.42 2977.10 5677.38 17890.98 12269.96 6891.79 21868.46 20584.50 17592.33 121
Fast-Effi-MVS+80.81 13079.92 13383.47 14688.85 14764.51 20485.53 21789.39 16770.79 18478.49 15485.06 27267.54 9493.58 14567.03 21986.58 14892.32 122
TranMVSNet+NR-MVSNet80.84 12880.31 12782.42 18887.85 18862.33 24687.74 15391.33 11280.55 977.99 16889.86 13965.23 11992.62 18767.05 21875.24 30892.30 123
ab-mvs79.51 16278.97 15881.14 21688.46 16560.91 26383.84 25289.24 17570.36 19479.03 14088.87 16863.23 13690.21 26165.12 23282.57 21292.28 124
CANet_DTU80.61 13879.87 13582.83 17585.60 24063.17 23787.36 16188.65 20076.37 7675.88 21588.44 18253.51 23693.07 17673.30 15789.74 11192.25 125
UniMVSNet_NR-MVSNet81.88 10681.54 10682.92 17288.46 16563.46 22887.13 16792.37 7380.19 1278.38 15689.14 15971.66 5293.05 17770.05 18676.46 28192.25 125
fmvsm_l_conf0.5_n84.47 6784.54 6684.27 11485.42 24368.81 10588.49 12587.26 22968.08 24688.03 2793.49 5772.04 4691.77 21988.90 1789.14 11792.24 127
DU-MVS81.12 12480.52 12282.90 17387.80 19163.46 22887.02 17191.87 9579.01 2678.38 15689.07 16165.02 12193.05 17770.05 18676.46 28192.20 128
NR-MVSNet80.23 14979.38 14582.78 18187.80 19163.34 23186.31 19391.09 12079.01 2672.17 27689.07 16167.20 9892.81 18666.08 22575.65 29492.20 128
TAPA-MVS73.13 979.15 17477.94 17982.79 18089.59 11662.99 24188.16 13991.51 10765.77 27377.14 18891.09 11560.91 17793.21 16450.26 34187.05 14192.17 130
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
fmvsm_l_conf0.5_n_a84.13 6984.16 7184.06 12685.38 24468.40 12088.34 13286.85 23867.48 25387.48 3493.40 6170.89 5891.61 22388.38 2589.22 11692.16 131
3Dnovator76.31 583.38 8582.31 9586.59 5287.94 18572.94 2890.64 5992.14 8477.21 5275.47 22292.83 7658.56 19594.72 10173.24 15992.71 7092.13 132
MVS_111021_HR85.14 6084.75 6486.32 5591.65 7672.70 3085.98 20290.33 14176.11 8182.08 10391.61 10071.36 5694.17 12181.02 8292.58 7192.08 133
MVSFormer82.85 9482.05 9985.24 7587.35 20770.21 7790.50 6290.38 13768.55 23981.32 11489.47 15161.68 15993.46 15478.98 10090.26 10192.05 134
jason81.39 12080.29 12884.70 9686.63 22769.90 8585.95 20386.77 23963.24 30081.07 12089.47 15161.08 17592.15 20678.33 10890.07 10692.05 134
jason: jason.
mvsmamba81.69 11180.74 11784.56 9987.45 20666.72 15891.26 4885.89 25274.66 10978.23 16090.56 12754.33 22794.91 9080.73 8883.54 19892.04 136
HyFIR lowres test77.53 21675.40 23383.94 13789.59 11666.62 15980.36 30488.64 20156.29 36076.45 20185.17 26957.64 20393.28 15961.34 26883.10 20591.91 137
XVG-OURS-SEG-HR80.81 13079.76 13783.96 13685.60 24068.78 10783.54 26090.50 13470.66 19076.71 19591.66 9660.69 18091.26 24076.94 12181.58 22291.83 138
lupinMVS81.39 12080.27 12984.76 9587.35 20770.21 7785.55 21586.41 24362.85 30781.32 11488.61 17561.68 15992.24 20478.41 10790.26 10191.83 138
WR-MVS79.49 16379.22 15280.27 23688.79 15358.35 28785.06 22488.61 20278.56 3077.65 17388.34 18463.81 13190.66 25664.98 23477.22 27091.80 140
h-mvs3383.15 8882.19 9686.02 6190.56 9370.85 7088.15 14089.16 17876.02 8384.67 6491.39 10761.54 16295.50 6382.71 7075.48 29891.72 141
UniMVSNet (Re)81.60 11681.11 11183.09 16388.38 16964.41 20987.60 15593.02 4278.42 3278.56 15288.16 19069.78 7193.26 16069.58 19376.49 28091.60 142
UGNet80.83 12979.59 14184.54 10088.04 18268.09 12889.42 9188.16 20676.95 5976.22 20889.46 15349.30 28693.94 12868.48 20490.31 9991.60 142
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
testing9176.54 23075.66 22879.18 25888.43 16755.89 32781.08 29083.00 29573.76 13075.34 22984.29 28446.20 31190.07 26364.33 23884.50 17591.58 144
XVG-OURS80.41 14379.23 15183.97 13585.64 23969.02 10183.03 27190.39 13671.09 17977.63 17491.49 10454.62 22691.35 23875.71 13483.47 19991.54 145
RRT_MVS80.35 14779.22 15283.74 14187.63 20065.46 18591.08 5488.92 19173.82 12776.44 20490.03 13649.05 29194.25 11876.84 12279.20 25391.51 146
LCM-MVSNet-Re77.05 22376.94 20677.36 28787.20 21551.60 36380.06 30780.46 32375.20 9767.69 31986.72 22662.48 14788.98 28363.44 24489.25 11591.51 146
DP-MVS Recon83.11 9182.09 9886.15 5894.44 1970.92 6888.79 11392.20 8170.53 19279.17 13991.03 11964.12 12796.03 4668.39 20690.14 10391.50 148
PS-MVSNAJss82.07 10381.31 10784.34 10986.51 22867.27 14889.27 9691.51 10771.75 16279.37 13690.22 13463.15 13894.27 11477.69 11382.36 21491.49 149
testing9976.09 24175.12 23979.00 25988.16 17555.50 33280.79 29481.40 31373.30 14375.17 23784.27 28644.48 32490.02 26464.28 23984.22 18491.48 150
thisisatest051577.33 22075.38 23483.18 15985.27 24663.80 21982.11 27883.27 28865.06 28075.91 21483.84 29349.54 28194.27 11467.24 21586.19 15591.48 150
DPM-MVS84.93 6384.29 7086.84 4790.20 10073.04 2387.12 16893.04 3869.80 20882.85 9691.22 11073.06 3896.02 4776.72 12694.63 4891.46 152
iter_conf0580.00 15578.70 16183.91 13887.84 18965.83 17688.84 11284.92 26471.61 16778.70 14688.94 16543.88 32894.56 10479.28 9884.28 18291.33 153
HQP_MVS83.64 7783.14 8185.14 7890.08 10368.71 11291.25 5092.44 6979.12 2378.92 14391.00 12060.42 18695.38 7178.71 10386.32 15291.33 153
plane_prior592.44 6995.38 7178.71 10386.32 15291.33 153
GA-MVS76.87 22775.17 23881.97 19682.75 30262.58 24381.44 28786.35 24672.16 16074.74 24782.89 31046.20 31192.02 21068.85 20181.09 22791.30 156
VPA-MVSNet80.60 13980.55 12180.76 22688.07 18160.80 26586.86 17691.58 10575.67 9080.24 12789.45 15563.34 13290.25 26070.51 18279.22 25291.23 157
Effi-MVS+-dtu80.03 15378.57 16584.42 10585.13 25168.74 11088.77 11488.10 20874.99 10274.97 24483.49 30157.27 20893.36 15773.53 15380.88 22991.18 158
v2v48280.23 14979.29 14983.05 16683.62 27964.14 21387.04 17089.97 15273.61 13378.18 16387.22 21461.10 17493.82 13576.11 12976.78 27891.18 158
FE-MVS77.78 20975.68 22684.08 12388.09 18066.00 17183.13 26687.79 21868.42 24378.01 16785.23 26745.50 31995.12 8059.11 28485.83 16391.11 160
Anonymous2023121178.97 18077.69 19182.81 17790.54 9464.29 21190.11 7291.51 10765.01 28276.16 21388.13 19550.56 27093.03 18069.68 19277.56 26891.11 160
hse-mvs281.72 10980.94 11584.07 12488.72 15667.68 13785.87 20687.26 22976.02 8384.67 6488.22 18961.54 16293.48 15282.71 7073.44 32691.06 162
AUN-MVS79.21 17377.60 19384.05 12988.71 15767.61 13885.84 20887.26 22969.08 22877.23 18388.14 19453.20 24093.47 15375.50 13973.45 32591.06 162
HQP4-MVS77.24 18295.11 8291.03 164
HQP-MVS82.61 9782.02 10084.37 10689.33 12966.98 15489.17 9892.19 8276.41 7277.23 18390.23 13360.17 18995.11 8277.47 11585.99 16091.03 164
RPSCF73.23 27371.46 27678.54 26882.50 30859.85 27782.18 27782.84 30058.96 34171.15 28689.41 15745.48 32084.77 32558.82 28871.83 33791.02 166
test_djsdf80.30 14879.32 14883.27 15483.98 27365.37 18990.50 6290.38 13768.55 23976.19 20988.70 17156.44 21393.46 15478.98 10080.14 24190.97 167
PCF-MVS73.52 780.38 14478.84 16085.01 8487.71 19668.99 10283.65 25591.46 11163.00 30477.77 17290.28 13166.10 10995.09 8661.40 26688.22 13090.94 168
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VPNet78.69 18678.66 16378.76 26388.31 17155.72 32984.45 24186.63 24176.79 6478.26 15990.55 12859.30 19189.70 27166.63 22077.05 27290.88 169
CPTT-MVS83.73 7483.33 8084.92 8993.28 4970.86 6992.09 3790.38 13768.75 23679.57 13492.83 7660.60 18493.04 17980.92 8491.56 8590.86 170
tt080578.73 18477.83 18381.43 20685.17 24760.30 27389.41 9290.90 12371.21 17677.17 18788.73 17046.38 30693.21 16472.57 16678.96 25490.79 171
CLD-MVS82.31 9981.65 10584.29 11188.47 16467.73 13685.81 21092.35 7475.78 8678.33 15886.58 23664.01 12894.35 11176.05 13187.48 13690.79 171
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
v119279.59 16178.43 16983.07 16583.55 28164.52 20386.93 17490.58 13170.83 18377.78 17185.90 25059.15 19293.94 12873.96 15077.19 27190.76 173
IterMVS-LS80.06 15279.38 14582.11 19285.89 23563.20 23586.79 17989.34 16874.19 11975.45 22586.72 22666.62 10192.39 19672.58 16576.86 27590.75 174
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet80.52 14279.98 13282.12 19184.28 26563.19 23686.41 19088.95 18974.18 12078.69 14787.54 20666.62 10192.43 19472.57 16680.57 23590.74 175
v192192079.22 17278.03 17782.80 17883.30 28663.94 21786.80 17890.33 14169.91 20677.48 17685.53 26058.44 19693.75 14173.60 15276.85 27690.71 176
QAPM80.88 12779.50 14385.03 8388.01 18468.97 10391.59 4392.00 8766.63 26475.15 23992.16 8857.70 20295.45 6563.52 24288.76 12290.66 177
v14419279.47 16478.37 17082.78 18183.35 28463.96 21686.96 17290.36 14069.99 20377.50 17585.67 25760.66 18193.77 13974.27 14776.58 27990.62 178
v124078.99 17977.78 18682.64 18483.21 28863.54 22586.62 18590.30 14369.74 21477.33 17985.68 25657.04 21093.76 14073.13 16076.92 27390.62 178
v114480.03 15379.03 15683.01 16883.78 27764.51 20487.11 16990.57 13371.96 16178.08 16686.20 24661.41 16693.94 12874.93 14177.23 26990.60 180
1112_ss77.40 21976.43 21980.32 23589.11 14460.41 27283.65 25587.72 22062.13 31773.05 26586.72 22662.58 14689.97 26562.11 26080.80 23190.59 181
CP-MVSNet78.22 19578.34 17177.84 27987.83 19054.54 34287.94 14691.17 11677.65 3873.48 26088.49 18062.24 15388.43 29262.19 25774.07 31790.55 182
testing22274.04 26272.66 26578.19 27487.89 18655.36 33381.06 29179.20 33771.30 17474.65 24983.57 30039.11 35688.67 28951.43 33385.75 16490.53 183
PS-CasMVS78.01 20478.09 17677.77 28187.71 19654.39 34488.02 14291.22 11377.50 4673.26 26288.64 17460.73 17888.41 29361.88 26173.88 32190.53 183
CDS-MVSNet79.07 17777.70 19083.17 16087.60 20168.23 12584.40 24486.20 24767.49 25276.36 20586.54 23861.54 16290.79 25361.86 26287.33 13790.49 185
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS78.89 18277.51 19583.03 16787.80 19167.79 13584.72 23185.05 26267.63 24976.75 19487.70 19962.25 15290.82 25258.53 29187.13 14090.49 185
PEN-MVS77.73 21077.69 19177.84 27987.07 21853.91 34787.91 14891.18 11577.56 4373.14 26488.82 16961.23 17189.17 27959.95 27672.37 33290.43 187
Test_1112_low_res76.40 23675.44 23179.27 25589.28 13458.09 29081.69 28287.07 23359.53 33672.48 27286.67 23161.30 16989.33 27660.81 27280.15 24090.41 188
HY-MVS69.67 1277.95 20577.15 20180.36 23387.57 20560.21 27583.37 26287.78 21966.11 26875.37 22887.06 22163.27 13490.48 25861.38 26782.43 21390.40 189
CHOSEN 1792x268877.63 21575.69 22583.44 14789.98 10968.58 11878.70 32587.50 22456.38 35975.80 21786.84 22258.67 19491.40 23761.58 26585.75 16490.34 190
SDMVSNet80.38 14480.18 13080.99 22089.03 14564.94 19780.45 30389.40 16675.19 9876.61 19989.98 13760.61 18387.69 30176.83 12483.55 19690.33 191
sd_testset77.70 21377.40 19678.60 26689.03 14560.02 27679.00 32185.83 25375.19 9876.61 19989.98 13754.81 21985.46 31962.63 25383.55 19690.33 191
114514_t80.68 13779.51 14284.20 11694.09 3867.27 14889.64 8491.11 11958.75 34474.08 25590.72 12458.10 19895.04 8769.70 19189.42 11490.30 193
eth_miper_zixun_eth77.92 20676.69 21481.61 20383.00 29661.98 25183.15 26589.20 17769.52 21674.86 24684.35 28361.76 15892.56 19071.50 17372.89 33090.28 194
PVSNet_Blended_VisFu82.62 9681.83 10484.96 8690.80 8969.76 8788.74 11791.70 10269.39 21778.96 14188.46 18165.47 11794.87 9674.42 14588.57 12490.24 195
MVS_111021_LR82.61 9782.11 9784.11 11888.82 15071.58 5385.15 22286.16 24874.69 10880.47 12591.04 11762.29 15190.55 25780.33 9190.08 10590.20 196
MSLP-MVS++85.43 5685.76 5084.45 10491.93 7270.24 7690.71 5892.86 5377.46 4784.22 7492.81 7867.16 9992.94 18180.36 9094.35 5690.16 197
mvs_tets79.13 17577.77 18783.22 15884.70 25766.37 16389.17 9890.19 14669.38 21875.40 22789.46 15344.17 32693.15 17176.78 12580.70 23390.14 198
BH-RMVSNet79.61 15978.44 16883.14 16189.38 12865.93 17384.95 22787.15 23273.56 13578.19 16289.79 14156.67 21293.36 15759.53 28086.74 14690.13 199
c3_l78.75 18377.91 18081.26 21282.89 30061.56 25784.09 25089.13 18169.97 20475.56 22084.29 28466.36 10692.09 20873.47 15575.48 29890.12 200
v7n78.97 18077.58 19483.14 16183.45 28365.51 18388.32 13391.21 11473.69 13172.41 27386.32 24457.93 19993.81 13669.18 19675.65 29490.11 201
jajsoiax79.29 17177.96 17883.27 15484.68 25866.57 16189.25 9790.16 14769.20 22575.46 22489.49 15045.75 31793.13 17376.84 12280.80 23190.11 201
v14878.72 18577.80 18581.47 20582.73 30361.96 25286.30 19488.08 20973.26 14476.18 21085.47 26262.46 14892.36 19871.92 17073.82 32290.09 203
GBi-Net78.40 19177.40 19681.40 20887.60 20163.01 23888.39 12889.28 17071.63 16475.34 22987.28 21054.80 22091.11 24362.72 24979.57 24590.09 203
test178.40 19177.40 19681.40 20887.60 20163.01 23888.39 12889.28 17071.63 16475.34 22987.28 21054.80 22091.11 24362.72 24979.57 24590.09 203
FMVSNet177.44 21776.12 22381.40 20886.81 22263.01 23888.39 12889.28 17070.49 19374.39 25287.28 21049.06 29091.11 24360.91 27078.52 25790.09 203
WR-MVS_H78.51 19078.49 16678.56 26788.02 18356.38 32088.43 12692.67 6177.14 5473.89 25687.55 20566.25 10889.24 27858.92 28673.55 32490.06 207
DTE-MVSNet76.99 22476.80 20977.54 28686.24 23053.06 35587.52 15790.66 12977.08 5772.50 27188.67 17360.48 18589.52 27357.33 30270.74 34390.05 208
v879.97 15679.02 15782.80 17884.09 27064.50 20687.96 14490.29 14474.13 12275.24 23686.81 22362.88 14393.89 13474.39 14675.40 30390.00 209
thres600view776.50 23275.44 23179.68 24889.40 12657.16 30685.53 21783.23 28973.79 12976.26 20787.09 21951.89 25691.89 21548.05 35583.72 19390.00 209
thres40076.50 23275.37 23579.86 24389.13 14057.65 30085.17 22083.60 28173.41 14076.45 20186.39 24252.12 24891.95 21248.33 35083.75 19090.00 209
cl2278.07 20177.01 20381.23 21382.37 31261.83 25483.55 25987.98 21168.96 23375.06 24283.87 29161.40 16791.88 21673.53 15376.39 28389.98 212
OPM-MVS83.50 8182.95 8685.14 7888.79 15370.95 6689.13 10391.52 10677.55 4480.96 12191.75 9560.71 17994.50 10879.67 9786.51 15089.97 213
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
baseline275.70 24573.83 25581.30 21183.26 28761.79 25582.57 27480.65 31966.81 25566.88 32883.42 30257.86 20192.19 20563.47 24379.57 24589.91 214
v1079.74 15878.67 16282.97 17184.06 27164.95 19687.88 15090.62 13073.11 14775.11 24086.56 23761.46 16594.05 12473.68 15175.55 29689.90 215
MVSTER79.01 17877.88 18282.38 18983.07 29364.80 20084.08 25188.95 18969.01 23278.69 14787.17 21754.70 22492.43 19474.69 14280.57 23589.89 216
ACMP74.13 681.51 11980.57 12084.36 10789.42 12568.69 11589.97 7491.50 11074.46 11475.04 24390.41 13053.82 23394.54 10577.56 11482.91 20689.86 217
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LPG-MVS_test82.08 10281.27 10884.50 10189.23 13668.76 10890.22 7091.94 9175.37 9476.64 19791.51 10254.29 22894.91 9078.44 10583.78 18789.83 218
LGP-MVS_train84.50 10189.23 13668.76 10891.94 9175.37 9476.64 19791.51 10254.29 22894.91 9078.44 10583.78 18789.83 218
V4279.38 17078.24 17482.83 17581.10 33065.50 18485.55 21589.82 15571.57 16978.21 16186.12 24860.66 18193.18 17075.64 13575.46 30089.81 220
MAR-MVS81.84 10780.70 11885.27 7491.32 7971.53 5489.82 7690.92 12269.77 21078.50 15386.21 24562.36 15094.52 10765.36 23092.05 7889.77 221
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DIV-MVS_self_test77.72 21176.76 21180.58 22982.48 31060.48 27083.09 26787.86 21669.22 22374.38 25385.24 26662.10 15591.53 23071.09 17675.40 30389.74 222
cl____77.72 21176.76 21180.58 22982.49 30960.48 27083.09 26787.87 21569.22 22374.38 25385.22 26862.10 15591.53 23071.09 17675.41 30289.73 223
miper_ehance_all_eth78.59 18977.76 18881.08 21882.66 30561.56 25783.65 25589.15 17968.87 23475.55 22183.79 29566.49 10492.03 20973.25 15876.39 28389.64 224
anonymousdsp78.60 18877.15 20182.98 17080.51 33667.08 15287.24 16689.53 16365.66 27575.16 23887.19 21652.52 24192.25 20377.17 11979.34 25089.61 225
FMVSNet278.20 19777.21 20081.20 21487.60 20162.89 24287.47 15989.02 18471.63 16475.29 23587.28 21054.80 22091.10 24662.38 25479.38 24989.61 225
baseline176.98 22576.75 21377.66 28288.13 17755.66 33085.12 22381.89 30773.04 14976.79 19288.90 16662.43 14987.78 30063.30 24671.18 34189.55 227
ETVMVS72.25 28371.05 28275.84 29987.77 19551.91 35979.39 31574.98 36069.26 22173.71 25782.95 30840.82 34986.14 31146.17 36384.43 18089.47 228
FMVSNet377.88 20776.85 20880.97 22286.84 22162.36 24586.52 18888.77 19471.13 17775.34 22986.66 23254.07 23191.10 24662.72 24979.57 24589.45 229
miper_enhance_ethall77.87 20876.86 20780.92 22381.65 31961.38 25982.68 27288.98 18665.52 27775.47 22282.30 31865.76 11692.00 21172.95 16176.39 28389.39 230
testing1175.14 25474.01 25078.53 26988.16 17556.38 32080.74 29780.42 32470.67 18772.69 27083.72 29743.61 33089.86 26662.29 25683.76 18989.36 231
cascas76.72 22974.64 24282.99 16985.78 23765.88 17582.33 27589.21 17660.85 32572.74 26781.02 32947.28 30093.75 14167.48 21285.02 16889.34 232
Fast-Effi-MVS+-dtu78.02 20376.49 21782.62 18583.16 29266.96 15686.94 17387.45 22672.45 15371.49 28384.17 28854.79 22391.58 22567.61 21080.31 23889.30 233
IB-MVS68.01 1575.85 24473.36 25983.31 15284.76 25666.03 16883.38 26185.06 26170.21 20069.40 30581.05 32845.76 31694.66 10365.10 23375.49 29789.25 234
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres100view90076.50 23275.55 23079.33 25489.52 11956.99 30985.83 20983.23 28973.94 12476.32 20687.12 21851.89 25691.95 21248.33 35083.75 19089.07 235
tfpn200view976.42 23575.37 23579.55 25389.13 14057.65 30085.17 22083.60 28173.41 14076.45 20186.39 24252.12 24891.95 21248.33 35083.75 19089.07 235
xiu_mvs_v1_base_debu80.80 13279.72 13884.03 13187.35 20770.19 7985.56 21288.77 19469.06 22981.83 10688.16 19050.91 26592.85 18378.29 10987.56 13389.06 237
xiu_mvs_v1_base80.80 13279.72 13884.03 13187.35 20770.19 7985.56 21288.77 19469.06 22981.83 10688.16 19050.91 26592.85 18378.29 10987.56 13389.06 237
xiu_mvs_v1_base_debi80.80 13279.72 13884.03 13187.35 20770.19 7985.56 21288.77 19469.06 22981.83 10688.16 19050.91 26592.85 18378.29 10987.56 13389.06 237
EPNet_dtu75.46 24974.86 24077.23 29082.57 30754.60 34186.89 17583.09 29271.64 16366.25 33985.86 25255.99 21488.04 29754.92 31586.55 14989.05 240
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pm-mvs177.25 22276.68 21578.93 26184.22 26758.62 28686.41 19088.36 20571.37 17373.31 26188.01 19661.22 17289.15 28064.24 24073.01 32989.03 241
PVSNet_Blended80.98 12580.34 12682.90 17388.85 14765.40 18684.43 24292.00 8767.62 25078.11 16485.05 27366.02 11294.27 11471.52 17189.50 11289.01 242
PAPM77.68 21476.40 22081.51 20487.29 21461.85 25383.78 25389.59 16264.74 28471.23 28488.70 17162.59 14593.66 14452.66 32687.03 14289.01 242
WTY-MVS75.65 24675.68 22675.57 30386.40 22956.82 31177.92 33582.40 30365.10 27976.18 21087.72 19863.13 14180.90 34860.31 27481.96 21889.00 244
无先验87.48 15888.98 18660.00 33194.12 12267.28 21488.97 245
GSMVS88.96 246
sam_mvs151.32 26288.96 246
SCA74.22 26072.33 26979.91 24284.05 27262.17 24979.96 31079.29 33666.30 26772.38 27480.13 33851.95 25488.60 29059.25 28277.67 26788.96 246
miper_lstm_enhance74.11 26173.11 26277.13 29180.11 34059.62 28072.23 36286.92 23766.76 25770.40 29082.92 30956.93 21182.92 33769.06 19872.63 33188.87 249
ACMM73.20 880.78 13579.84 13683.58 14489.31 13268.37 12189.99 7391.60 10470.28 19777.25 18189.66 14453.37 23893.53 15074.24 14882.85 20788.85 250
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs674.69 25673.39 25878.61 26581.38 32557.48 30386.64 18487.95 21364.99 28370.18 29386.61 23350.43 27289.52 27362.12 25970.18 34588.83 251
原ACMM184.35 10893.01 5768.79 10692.44 6963.96 29781.09 11991.57 10166.06 11195.45 6567.19 21694.82 4688.81 252
CNLPA78.08 20076.79 21081.97 19690.40 9771.07 6287.59 15684.55 26866.03 27172.38 27489.64 14557.56 20486.04 31259.61 27983.35 20188.79 253
UWE-MVS72.13 28471.49 27574.03 31986.66 22647.70 37681.40 28876.89 35363.60 29975.59 21984.22 28739.94 35285.62 31648.98 34786.13 15788.77 254
K. test v371.19 28968.51 30179.21 25783.04 29557.78 29984.35 24576.91 35272.90 15262.99 35882.86 31139.27 35491.09 24861.65 26452.66 38588.75 255
旧先验191.96 7165.79 17986.37 24593.08 7169.31 7792.74 6988.74 256
PatchmatchNetpermissive73.12 27471.33 27978.49 27183.18 29060.85 26479.63 31278.57 34064.13 29171.73 28079.81 34351.20 26385.97 31357.40 30176.36 28888.66 257
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SixPastTwentyTwo73.37 26971.26 28179.70 24785.08 25257.89 29685.57 21183.56 28371.03 18165.66 34185.88 25142.10 34292.57 18959.11 28463.34 36788.65 258
PS-MVSNAJ81.69 11181.02 11383.70 14289.51 12068.21 12684.28 24690.09 14970.79 18481.26 11885.62 25963.15 13894.29 11275.62 13688.87 12088.59 259
xiu_mvs_v2_base81.69 11181.05 11283.60 14389.15 13968.03 13184.46 24090.02 15070.67 18781.30 11786.53 23963.17 13794.19 12075.60 13788.54 12588.57 260
CostFormer75.24 25373.90 25379.27 25582.65 30658.27 28980.80 29382.73 30161.57 32075.33 23383.13 30655.52 21591.07 24964.98 23478.34 26288.45 261
lessismore_v078.97 26081.01 33157.15 30765.99 38561.16 36382.82 31239.12 35591.34 23959.67 27846.92 39188.43 262
OpenMVScopyleft72.83 1079.77 15778.33 17284.09 12285.17 24769.91 8490.57 6090.97 12166.70 25872.17 27691.91 9154.70 22493.96 12561.81 26390.95 9288.41 263
OurMVSNet-221017-074.26 25972.42 26879.80 24583.76 27859.59 28185.92 20586.64 24066.39 26666.96 32787.58 20239.46 35391.60 22465.76 22869.27 34888.22 264
LS3D76.95 22674.82 24183.37 15190.45 9567.36 14589.15 10286.94 23661.87 31969.52 30490.61 12651.71 25994.53 10646.38 36286.71 14788.21 265
XVG-ACMP-BASELINE76.11 24074.27 24981.62 20183.20 28964.67 20283.60 25889.75 15869.75 21271.85 27987.09 21932.78 37292.11 20769.99 18880.43 23788.09 266
tpm273.26 27271.46 27678.63 26483.34 28556.71 31480.65 29980.40 32556.63 35873.55 25982.02 32351.80 25891.24 24156.35 31178.42 26087.95 267
MDTV_nov1_ep13_2view37.79 39875.16 35155.10 36366.53 33449.34 28553.98 31987.94 268
Patchmatch-test64.82 33763.24 33869.57 34879.42 35249.82 37363.49 39069.05 38051.98 37259.95 36880.13 33850.91 26570.98 38840.66 37873.57 32387.90 269
PLCcopyleft70.83 1178.05 20276.37 22183.08 16491.88 7467.80 13488.19 13789.46 16564.33 29069.87 30188.38 18353.66 23493.58 14558.86 28782.73 20987.86 270
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpm72.37 28171.71 27374.35 31682.19 31352.00 35779.22 31877.29 34964.56 28672.95 26683.68 29951.35 26183.26 33658.33 29375.80 29287.81 271
Patchmatch-RL test70.24 30167.78 31477.61 28477.43 36059.57 28271.16 36570.33 37462.94 30668.65 31272.77 37750.62 26985.49 31869.58 19366.58 35887.77 272
F-COLMAP76.38 23774.33 24882.50 18789.28 13466.95 15788.41 12789.03 18364.05 29466.83 32988.61 17546.78 30492.89 18257.48 29978.55 25687.67 273
Baseline_NR-MVSNet78.15 19978.33 17277.61 28485.79 23656.21 32486.78 18085.76 25473.60 13477.93 16987.57 20365.02 12188.99 28267.14 21775.33 30587.63 274
CL-MVSNet_self_test72.37 28171.46 27675.09 30879.49 35153.53 34980.76 29685.01 26369.12 22770.51 28882.05 32257.92 20084.13 32852.27 32866.00 36187.60 275
ACMH+68.96 1476.01 24274.01 25082.03 19488.60 16065.31 19088.86 11087.55 22270.25 19967.75 31887.47 20841.27 34593.19 16958.37 29275.94 29187.60 275
131476.53 23175.30 23780.21 23783.93 27462.32 24784.66 23288.81 19260.23 32970.16 29584.07 29055.30 21790.73 25567.37 21383.21 20387.59 277
API-MVS81.99 10581.23 10984.26 11590.94 8570.18 8291.10 5389.32 16971.51 17178.66 14988.28 18665.26 11895.10 8564.74 23691.23 8987.51 278
AdaColmapbinary80.58 14179.42 14484.06 12693.09 5468.91 10489.36 9488.97 18869.27 22075.70 21889.69 14357.20 20995.77 5563.06 24788.41 12887.50 279
PVSNet_BlendedMVS80.60 13980.02 13182.36 19088.85 14765.40 18686.16 19992.00 8769.34 21978.11 16486.09 24966.02 11294.27 11471.52 17182.06 21787.39 280
sss73.60 26773.64 25773.51 32382.80 30155.01 33876.12 34281.69 31062.47 31374.68 24885.85 25357.32 20778.11 35960.86 27180.93 22887.39 280
IterMVS-SCA-FT75.43 25073.87 25480.11 23982.69 30464.85 19981.57 28483.47 28569.16 22670.49 28984.15 28951.95 25488.15 29569.23 19572.14 33587.34 282
PVSNet64.34 1872.08 28570.87 28575.69 30186.21 23156.44 31874.37 35680.73 31862.06 31870.17 29482.23 32042.86 33683.31 33554.77 31684.45 17987.32 283
新几何183.42 14893.13 5270.71 7185.48 25757.43 35481.80 10991.98 9063.28 13392.27 20264.60 23792.99 6687.27 284
TR-MVS77.44 21776.18 22281.20 21488.24 17363.24 23384.61 23586.40 24467.55 25177.81 17086.48 24054.10 23093.15 17157.75 29882.72 21087.20 285
TransMVSNet (Re)75.39 25274.56 24477.86 27885.50 24257.10 30886.78 18086.09 25072.17 15971.53 28287.34 20963.01 14289.31 27756.84 30761.83 36987.17 286
ACMH67.68 1675.89 24373.93 25281.77 19988.71 15766.61 16088.62 12289.01 18569.81 20766.78 33086.70 23041.95 34491.51 23255.64 31378.14 26387.17 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
KD-MVS_self_test68.81 31167.59 31872.46 33274.29 37345.45 38177.93 33487.00 23463.12 30163.99 35378.99 35142.32 33984.77 32556.55 31064.09 36687.16 288
EPMVS69.02 31068.16 30571.59 33679.61 34949.80 37477.40 33766.93 38362.82 30970.01 29679.05 34745.79 31577.86 36156.58 30975.26 30787.13 289
CR-MVSNet73.37 26971.27 28079.67 24981.32 32865.19 19175.92 34480.30 32659.92 33272.73 26881.19 32652.50 24286.69 30659.84 27777.71 26587.11 290
RPMNet73.51 26870.49 28882.58 18681.32 32865.19 19175.92 34492.27 7657.60 35272.73 26876.45 36552.30 24595.43 6748.14 35477.71 26587.11 290
test_vis1_n_192075.52 24875.78 22474.75 31379.84 34457.44 30483.26 26385.52 25662.83 30879.34 13886.17 24745.10 32179.71 35278.75 10281.21 22687.10 292
XXY-MVS75.41 25175.56 22974.96 30983.59 28057.82 29880.59 30083.87 27966.54 26574.93 24588.31 18563.24 13580.09 35162.16 25876.85 27686.97 293
tpmrst72.39 27972.13 27073.18 32780.54 33549.91 37279.91 31179.08 33863.11 30271.69 28179.95 34055.32 21682.77 33865.66 22973.89 32086.87 294
thres20075.55 24774.47 24678.82 26287.78 19457.85 29783.07 26983.51 28472.44 15575.84 21684.42 27952.08 25191.75 22047.41 35783.64 19586.86 295
ITE_SJBPF78.22 27381.77 31860.57 26883.30 28769.25 22267.54 32087.20 21536.33 36687.28 30454.34 31874.62 31486.80 296
test22291.50 7768.26 12484.16 24883.20 29154.63 36579.74 13191.63 9958.97 19391.42 8686.77 297
MIMVSNet70.69 29669.30 29574.88 31084.52 26256.35 32275.87 34679.42 33464.59 28567.76 31782.41 31641.10 34681.54 34446.64 36181.34 22386.75 298
BH-untuned79.47 16478.60 16482.05 19389.19 13865.91 17486.07 20188.52 20372.18 15875.42 22687.69 20061.15 17393.54 14960.38 27386.83 14586.70 299
LTVRE_ROB69.57 1376.25 23874.54 24581.41 20788.60 16064.38 21079.24 31789.12 18270.76 18669.79 30387.86 19749.09 28993.20 16756.21 31280.16 23986.65 300
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
testdata79.97 24190.90 8664.21 21284.71 26559.27 33885.40 5192.91 7362.02 15789.08 28168.95 19991.37 8786.63 301
MIMVSNet168.58 31466.78 32473.98 32080.07 34151.82 36180.77 29584.37 26964.40 28859.75 36982.16 32136.47 36583.63 33242.73 37470.33 34486.48 302
tfpnnormal74.39 25773.16 26178.08 27686.10 23458.05 29184.65 23487.53 22370.32 19671.22 28585.63 25854.97 21889.86 26643.03 37375.02 31086.32 303
D2MVS74.82 25573.21 26079.64 25079.81 34562.56 24480.34 30587.35 22764.37 28968.86 31082.66 31446.37 30790.10 26267.91 20881.24 22586.25 304
tpm cat170.57 29768.31 30377.35 28882.41 31157.95 29578.08 33280.22 32852.04 37068.54 31477.66 36052.00 25387.84 29951.77 32972.07 33686.25 304
CVMVSNet72.99 27672.58 26674.25 31784.28 26550.85 36886.41 19083.45 28644.56 38173.23 26387.54 20649.38 28485.70 31465.90 22678.44 25986.19 306
AllTest70.96 29268.09 30779.58 25185.15 24963.62 22184.58 23679.83 33062.31 31460.32 36686.73 22432.02 37388.96 28550.28 33971.57 33986.15 307
TestCases79.58 25185.15 24963.62 22179.83 33062.31 31460.32 36686.73 22432.02 37388.96 28550.28 33971.57 33986.15 307
test-LLR72.94 27772.43 26774.48 31481.35 32658.04 29278.38 32877.46 34666.66 25969.95 29979.00 34948.06 29679.24 35366.13 22284.83 17086.15 307
test-mter71.41 28870.39 29174.48 31481.35 32658.04 29278.38 32877.46 34660.32 32869.95 29979.00 34936.08 36779.24 35366.13 22284.83 17086.15 307
IterMVS74.29 25872.94 26378.35 27281.53 32263.49 22781.58 28382.49 30268.06 24769.99 29883.69 29851.66 26085.54 31765.85 22771.64 33886.01 311
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS76.78 22874.57 24383.42 14893.29 4869.46 9488.55 12483.70 28063.98 29670.20 29288.89 16754.01 23294.80 9846.66 35981.88 22086.01 311
ppachtmachnet_test70.04 30367.34 32078.14 27579.80 34661.13 26079.19 31980.59 32059.16 33965.27 34479.29 34646.75 30587.29 30349.33 34566.72 35686.00 313
test_fmvs1_n70.86 29470.24 29272.73 33072.51 38555.28 33581.27 28979.71 33251.49 37478.73 14584.87 27427.54 38277.02 36476.06 13079.97 24385.88 314
Patchmtry70.74 29569.16 29875.49 30580.72 33254.07 34674.94 35580.30 32658.34 34570.01 29681.19 32652.50 24286.54 30753.37 32371.09 34285.87 315
WB-MVSnew71.96 28671.65 27472.89 32884.67 26151.88 36082.29 27677.57 34562.31 31473.67 25883.00 30753.49 23781.10 34745.75 36682.13 21685.70 316
test_fmvs268.35 31867.48 31970.98 34469.50 38851.95 35880.05 30876.38 35549.33 37774.65 24984.38 28123.30 38875.40 37974.51 14475.17 30985.60 317
ambc75.24 30773.16 38050.51 37063.05 39187.47 22564.28 35077.81 35917.80 39389.73 27057.88 29760.64 37385.49 318
UnsupCasMVSNet_eth67.33 32365.99 32771.37 33873.48 37851.47 36575.16 35185.19 26065.20 27860.78 36480.93 33342.35 33877.20 36357.12 30353.69 38485.44 319
PatchT68.46 31767.85 31070.29 34680.70 33343.93 38872.47 36174.88 36160.15 33070.55 28776.57 36449.94 27781.59 34350.58 33574.83 31285.34 320
Anonymous2024052168.80 31267.22 32173.55 32274.33 37254.11 34583.18 26485.61 25558.15 34761.68 36180.94 33130.71 37881.27 34657.00 30573.34 32885.28 321
test_cas_vis1_n_192073.76 26673.74 25673.81 32175.90 36559.77 27880.51 30182.40 30358.30 34681.62 11285.69 25544.35 32576.41 37076.29 12778.61 25585.23 322
ADS-MVSNet266.20 33463.33 33774.82 31179.92 34258.75 28567.55 37975.19 35953.37 36765.25 34575.86 36842.32 33980.53 35041.57 37668.91 35085.18 323
ADS-MVSNet64.36 33862.88 34168.78 35479.92 34247.17 37867.55 37971.18 37353.37 36765.25 34575.86 36842.32 33973.99 38441.57 37668.91 35085.18 323
FMVSNet569.50 30767.96 30874.15 31882.97 29955.35 33480.01 30982.12 30662.56 31263.02 35681.53 32536.92 36481.92 34248.42 34974.06 31885.17 325
pmmvs571.55 28770.20 29375.61 30277.83 35856.39 31981.74 28180.89 31557.76 35067.46 32284.49 27849.26 28785.32 32157.08 30475.29 30685.11 326
testing368.56 31567.67 31671.22 34287.33 21242.87 39083.06 27071.54 37270.36 19469.08 30984.38 28130.33 37985.69 31537.50 38475.45 30185.09 327
CMPMVSbinary51.72 2170.19 30268.16 30576.28 29673.15 38157.55 30279.47 31483.92 27748.02 37856.48 37984.81 27543.13 33486.42 30962.67 25281.81 22184.89 328
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testgi66.67 32866.53 32567.08 36075.62 36841.69 39575.93 34376.50 35466.11 26865.20 34786.59 23435.72 36874.71 38143.71 37173.38 32784.84 329
MSDG73.36 27170.99 28380.49 23184.51 26365.80 17880.71 29886.13 24965.70 27465.46 34283.74 29644.60 32290.91 25151.13 33476.89 27484.74 330
pmmvs474.03 26471.91 27180.39 23281.96 31568.32 12281.45 28682.14 30559.32 33769.87 30185.13 27052.40 24488.13 29660.21 27574.74 31384.73 331
gg-mvs-nofinetune69.95 30467.96 30875.94 29883.07 29354.51 34377.23 33970.29 37563.11 30270.32 29162.33 38643.62 32988.69 28853.88 32087.76 13284.62 332
test_fmvs170.93 29370.52 28772.16 33373.71 37555.05 33780.82 29278.77 33951.21 37578.58 15184.41 28031.20 37776.94 36575.88 13380.12 24284.47 333
BH-w/o78.21 19677.33 19980.84 22488.81 15165.13 19384.87 22887.85 21769.75 21274.52 25184.74 27761.34 16893.11 17458.24 29485.84 16284.27 334
MVS78.19 19876.99 20581.78 19885.66 23866.99 15384.66 23290.47 13555.08 36472.02 27885.27 26563.83 13094.11 12366.10 22489.80 11084.24 335
COLMAP_ROBcopyleft66.92 1773.01 27570.41 29080.81 22587.13 21765.63 18188.30 13484.19 27562.96 30563.80 35587.69 20038.04 36192.56 19046.66 35974.91 31184.24 335
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
new-patchmatchnet61.73 34461.73 34561.70 36672.74 38324.50 40769.16 37578.03 34261.40 32156.72 37875.53 37138.42 35876.48 36945.95 36557.67 37684.13 337
TESTMET0.1,169.89 30569.00 29972.55 33179.27 35456.85 31078.38 32874.71 36457.64 35168.09 31677.19 36237.75 36276.70 36663.92 24184.09 18584.10 338
test_fmvs363.36 34161.82 34467.98 35762.51 39546.96 38077.37 33874.03 36645.24 38067.50 32178.79 35212.16 39972.98 38772.77 16466.02 36083.99 339
our_test_369.14 30967.00 32275.57 30379.80 34658.80 28477.96 33377.81 34359.55 33562.90 35978.25 35647.43 29883.97 32951.71 33067.58 35583.93 340
test_vis1_n69.85 30669.21 29771.77 33572.66 38455.27 33681.48 28576.21 35652.03 37175.30 23483.20 30528.97 38076.22 37274.60 14378.41 26183.81 341
tpmvs71.09 29169.29 29676.49 29582.04 31456.04 32578.92 32381.37 31464.05 29467.18 32678.28 35549.74 28089.77 26849.67 34472.37 33283.67 342
test20.0367.45 32266.95 32368.94 35175.48 36944.84 38677.50 33677.67 34466.66 25963.01 35783.80 29447.02 30278.40 35742.53 37568.86 35283.58 343
test0.0.03 168.00 32067.69 31568.90 35277.55 35947.43 37775.70 34772.95 37166.66 25966.56 33382.29 31948.06 29675.87 37444.97 37074.51 31583.41 344
Anonymous2023120668.60 31367.80 31371.02 34380.23 33950.75 36978.30 33180.47 32256.79 35766.11 34082.63 31546.35 30878.95 35543.62 37275.70 29383.36 345
EU-MVSNet68.53 31667.61 31771.31 34178.51 35747.01 37984.47 23884.27 27342.27 38466.44 33884.79 27640.44 35083.76 33058.76 28968.54 35383.17 346
dp66.80 32665.43 32870.90 34579.74 34848.82 37575.12 35374.77 36259.61 33464.08 35277.23 36142.89 33580.72 34948.86 34866.58 35883.16 347
pmmvs-eth3d70.50 29967.83 31278.52 27077.37 36166.18 16781.82 27981.51 31158.90 34263.90 35480.42 33642.69 33786.28 31058.56 29065.30 36383.11 348
YYNet165.03 33562.91 34071.38 33775.85 36656.60 31669.12 37674.66 36557.28 35554.12 38277.87 35845.85 31474.48 38249.95 34261.52 37183.05 349
MDA-MVSNet-bldmvs66.68 32763.66 33675.75 30079.28 35360.56 26973.92 35878.35 34164.43 28750.13 38779.87 34244.02 32783.67 33146.10 36456.86 37783.03 350
MDA-MVSNet_test_wron65.03 33562.92 33971.37 33875.93 36456.73 31269.09 37774.73 36357.28 35554.03 38377.89 35745.88 31374.39 38349.89 34361.55 37082.99 351
USDC70.33 30068.37 30276.21 29780.60 33456.23 32379.19 31986.49 24260.89 32461.29 36285.47 26231.78 37589.47 27553.37 32376.21 28982.94 352
Syy-MVS68.05 31967.85 31068.67 35584.68 25840.97 39678.62 32673.08 36966.65 26266.74 33179.46 34452.11 25082.30 34032.89 38876.38 28682.75 353
myMVS_eth3d67.02 32566.29 32669.21 35084.68 25842.58 39178.62 32673.08 36966.65 26266.74 33179.46 34431.53 37682.30 34039.43 38176.38 28682.75 353
OpenMVS_ROBcopyleft64.09 1970.56 29868.19 30477.65 28380.26 33759.41 28385.01 22582.96 29758.76 34365.43 34382.33 31737.63 36391.23 24245.34 36976.03 29082.32 355
JIA-IIPM66.32 33162.82 34276.82 29377.09 36261.72 25665.34 38675.38 35858.04 34964.51 34962.32 38742.05 34386.51 30851.45 33269.22 34982.21 356
dmvs_re71.14 29070.58 28672.80 32981.96 31559.68 27975.60 34879.34 33568.55 23969.27 30880.72 33449.42 28376.54 36752.56 32777.79 26482.19 357
EG-PatchMatch MVS74.04 26271.82 27280.71 22784.92 25467.42 14285.86 20788.08 20966.04 27064.22 35183.85 29235.10 36992.56 19057.44 30080.83 23082.16 358
MVP-Stereo76.12 23974.46 24781.13 21785.37 24569.79 8684.42 24387.95 21365.03 28167.46 32285.33 26453.28 23991.73 22258.01 29683.27 20281.85 359
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TDRefinement67.49 32164.34 33176.92 29273.47 37961.07 26184.86 22982.98 29659.77 33358.30 37385.13 27026.06 38387.89 29847.92 35660.59 37481.81 360
GG-mvs-BLEND75.38 30681.59 32155.80 32879.32 31669.63 37767.19 32573.67 37543.24 33288.90 28750.41 33684.50 17581.45 361
KD-MVS_2432*160066.22 33263.89 33473.21 32475.47 37053.42 35170.76 36884.35 27064.10 29266.52 33578.52 35334.55 37084.98 32250.40 33750.33 38881.23 362
miper_refine_blended66.22 33263.89 33473.21 32475.47 37053.42 35170.76 36884.35 27064.10 29266.52 33578.52 35334.55 37084.98 32250.40 33750.33 38881.23 362
test_040272.79 27870.44 28979.84 24488.13 17765.99 17285.93 20484.29 27265.57 27667.40 32485.49 26146.92 30392.61 18835.88 38574.38 31680.94 364
UnsupCasMVSNet_bld63.70 34061.53 34670.21 34773.69 37651.39 36672.82 36081.89 30755.63 36257.81 37571.80 37938.67 35778.61 35649.26 34652.21 38680.63 365
LCM-MVSNet54.25 35149.68 36167.97 35853.73 40345.28 38466.85 38280.78 31735.96 39239.45 39362.23 3888.70 40378.06 36048.24 35351.20 38780.57 366
N_pmnet52.79 35653.26 35551.40 38078.99 3557.68 41269.52 3723.89 41151.63 37357.01 37774.98 37240.83 34865.96 39537.78 38364.67 36480.56 367
TinyColmap67.30 32464.81 32974.76 31281.92 31756.68 31580.29 30681.49 31260.33 32756.27 38083.22 30324.77 38587.66 30245.52 36769.47 34779.95 368
PM-MVS66.41 33064.14 33273.20 32673.92 37456.45 31778.97 32264.96 38963.88 29864.72 34880.24 33719.84 39183.44 33466.24 22164.52 36579.71 369
ANet_high50.57 36046.10 36463.99 36348.67 40639.13 39770.99 36780.85 31661.39 32231.18 39557.70 39317.02 39473.65 38631.22 39015.89 40379.18 370
LF4IMVS64.02 33962.19 34369.50 34970.90 38653.29 35476.13 34177.18 35052.65 36958.59 37180.98 33023.55 38776.52 36853.06 32566.66 35778.68 371
PatchMatch-RL72.38 28070.90 28476.80 29488.60 16067.38 14479.53 31376.17 35762.75 31069.36 30682.00 32445.51 31884.89 32453.62 32180.58 23478.12 372
MS-PatchMatch73.83 26572.67 26477.30 28983.87 27566.02 17081.82 27984.66 26661.37 32368.61 31382.82 31247.29 29988.21 29459.27 28184.32 18177.68 373
DSMNet-mixed57.77 34956.90 35160.38 36867.70 39035.61 39969.18 37453.97 40032.30 39657.49 37679.88 34140.39 35168.57 39338.78 38272.37 33276.97 374
CHOSEN 280x42066.51 32964.71 33071.90 33481.45 32363.52 22657.98 39368.95 38153.57 36662.59 36076.70 36346.22 31075.29 38055.25 31479.68 24476.88 375
mvsany_test353.99 35251.45 35761.61 36755.51 39944.74 38763.52 38945.41 40643.69 38358.11 37476.45 36517.99 39263.76 39754.77 31647.59 39076.34 376
dmvs_testset62.63 34264.11 33358.19 37078.55 35624.76 40675.28 34965.94 38667.91 24860.34 36576.01 36753.56 23573.94 38531.79 38967.65 35475.88 377
mvsany_test162.30 34361.26 34765.41 36269.52 38754.86 33966.86 38149.78 40246.65 37968.50 31583.21 30449.15 28866.28 39456.93 30660.77 37275.11 378
PMMVS69.34 30868.67 30071.35 34075.67 36762.03 25075.17 35073.46 36750.00 37668.68 31179.05 34752.07 25278.13 35861.16 26982.77 20873.90 379
test_vis1_rt60.28 34658.42 34965.84 36167.25 39155.60 33170.44 37060.94 39444.33 38259.00 37066.64 38424.91 38468.67 39262.80 24869.48 34673.25 380
pmmvs357.79 34854.26 35368.37 35664.02 39456.72 31375.12 35365.17 38740.20 38652.93 38469.86 38320.36 39075.48 37745.45 36855.25 38372.90 381
PVSNet_057.27 2061.67 34559.27 34868.85 35379.61 34957.44 30468.01 37873.44 36855.93 36158.54 37270.41 38244.58 32377.55 36247.01 35835.91 39471.55 382
WB-MVS54.94 35054.72 35255.60 37673.50 37720.90 40874.27 35761.19 39359.16 33950.61 38674.15 37347.19 30175.78 37517.31 40035.07 39570.12 383
SSC-MVS53.88 35353.59 35454.75 37872.87 38219.59 40973.84 35960.53 39557.58 35349.18 38873.45 37646.34 30975.47 37816.20 40332.28 39769.20 384
test_f52.09 35750.82 35855.90 37453.82 40242.31 39459.42 39258.31 39836.45 39156.12 38170.96 38112.18 39857.79 39953.51 32256.57 37967.60 385
PMMVS240.82 36638.86 36946.69 38153.84 40116.45 41048.61 39649.92 40137.49 38931.67 39460.97 3898.14 40556.42 40028.42 39230.72 39867.19 386
new_pmnet50.91 35950.29 35952.78 37968.58 38934.94 40163.71 38856.63 39939.73 38744.95 38965.47 38521.93 38958.48 39834.98 38656.62 37864.92 387
MVS-HIRNet59.14 34757.67 35063.57 36481.65 31943.50 38971.73 36365.06 38839.59 38851.43 38557.73 39238.34 35982.58 33939.53 37973.95 31964.62 388
APD_test153.31 35549.93 36063.42 36565.68 39250.13 37171.59 36466.90 38434.43 39340.58 39271.56 3808.65 40476.27 37134.64 38755.36 38263.86 389
test_method31.52 36829.28 37238.23 38327.03 4106.50 41320.94 40162.21 3924.05 40422.35 40252.50 39613.33 39647.58 40327.04 39434.04 39660.62 390
EGC-MVSNET52.07 35847.05 36267.14 35983.51 28260.71 26680.50 30267.75 3820.07 4060.43 40775.85 37024.26 38681.54 34428.82 39162.25 36859.16 391
test_vis3_rt49.26 36147.02 36356.00 37354.30 40045.27 38566.76 38348.08 40336.83 39044.38 39053.20 3957.17 40664.07 39656.77 30855.66 38058.65 392
FPMVS53.68 35451.64 35659.81 36965.08 39351.03 36769.48 37369.58 37841.46 38540.67 39172.32 37816.46 39570.00 39124.24 39765.42 36258.40 393
testf145.72 36241.96 36557.00 37156.90 39745.32 38266.14 38459.26 39626.19 39730.89 39660.96 3904.14 40770.64 38926.39 39546.73 39255.04 394
APD_test245.72 36241.96 36557.00 37156.90 39745.32 38266.14 38459.26 39626.19 39730.89 39660.96 3904.14 40770.64 38926.39 39546.73 39255.04 394
PMVScopyleft37.38 2244.16 36540.28 36855.82 37540.82 40842.54 39365.12 38763.99 39034.43 39324.48 39957.12 3943.92 40976.17 37317.10 40155.52 38148.75 396
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive26.22 2330.37 37025.89 37443.81 38244.55 40735.46 40028.87 40039.07 40718.20 40118.58 40340.18 3982.68 41047.37 40417.07 40223.78 40048.60 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft45.18 36441.86 36755.16 37777.03 36351.52 36432.50 39980.52 32132.46 39527.12 39835.02 3999.52 40275.50 37622.31 39860.21 37538.45 398
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft27.40 38640.17 40926.90 40424.59 41017.44 40223.95 40048.61 3979.77 40126.48 40518.06 39924.47 39928.83 399
E-PMN31.77 36730.64 37035.15 38452.87 40427.67 40357.09 39447.86 40424.64 39916.40 40433.05 40011.23 40054.90 40114.46 40418.15 40122.87 400
EMVS30.81 36929.65 37134.27 38550.96 40525.95 40556.58 39546.80 40524.01 40015.53 40530.68 40112.47 39754.43 40212.81 40517.05 40222.43 401
tmp_tt18.61 37221.40 37510.23 3884.82 41110.11 41134.70 39830.74 4091.48 40523.91 40126.07 40228.42 38113.41 40727.12 39315.35 4047.17 402
wuyk23d16.82 37315.94 37619.46 38758.74 39631.45 40239.22 3973.74 4126.84 4036.04 4062.70 4061.27 41124.29 40610.54 40614.40 4052.63 403
test1236.12 3758.11 3780.14 3890.06 4130.09 41471.05 3660.03 4140.04 4080.25 4091.30 4080.05 4120.03 4090.21 4080.01 4070.29 404
testmvs6.04 3768.02 3790.10 3900.08 4120.03 41569.74 3710.04 4130.05 4070.31 4081.68 4070.02 4130.04 4080.24 4070.02 4060.25 405
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k19.96 37126.61 3730.00 3910.00 4140.00 4160.00 40289.26 1730.00 4090.00 41088.61 17561.62 1610.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas5.26 3777.02 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40963.15 1380.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re7.23 3749.64 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41086.72 2260.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS42.58 39139.46 380
FOURS195.00 1072.39 3995.06 193.84 1574.49 11391.30 15
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 414
eth-test0.00 414
ZD-MVS94.38 2572.22 4492.67 6170.98 18287.75 3194.07 4174.01 3296.70 2784.66 4794.84 44
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
9.1488.26 1592.84 6091.52 4694.75 173.93 12588.57 2294.67 1975.57 2295.79 5486.77 3595.76 23
save fliter93.80 4072.35 4290.47 6491.17 11674.31 116
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
test_part295.06 872.65 3291.80 13
sam_mvs50.01 275
MTGPAbinary92.02 85
test_post178.90 3245.43 40548.81 29585.44 32059.25 282
test_post5.46 40450.36 27384.24 327
patchmatchnet-post74.00 37451.12 26488.60 290
MTMP92.18 3532.83 408
gm-plane-assit81.40 32453.83 34862.72 31180.94 33192.39 19663.40 245
TEST993.26 5072.96 2588.75 11591.89 9368.44 24285.00 5793.10 6774.36 2895.41 69
test_893.13 5272.57 3588.68 12091.84 9768.69 23784.87 6193.10 6774.43 2695.16 78
agg_prior92.85 5971.94 5191.78 10084.41 7194.93 89
test_prior472.60 3489.01 105
test_prior288.85 11175.41 9384.91 5993.54 5674.28 2983.31 6195.86 20
旧先验286.56 18758.10 34887.04 3988.98 28374.07 149
新几何286.29 195
原ACMM286.86 176
testdata291.01 25062.37 255
segment_acmp73.08 37
testdata184.14 24975.71 87
plane_prior790.08 10368.51 119
plane_prior689.84 11268.70 11460.42 186
plane_prior491.00 120
plane_prior368.60 11778.44 3178.92 143
plane_prior291.25 5079.12 23
plane_prior189.90 111
plane_prior68.71 11290.38 6777.62 3986.16 156
n20.00 415
nn0.00 415
door-mid69.98 376
test1192.23 79
door69.44 379
HQP5-MVS66.98 154
HQP-NCC89.33 12989.17 9876.41 7277.23 183
ACMP_Plane89.33 12989.17 9876.41 7277.23 183
BP-MVS77.47 115
HQP3-MVS92.19 8285.99 160
HQP2-MVS60.17 189
NP-MVS89.62 11568.32 12290.24 132
MDTV_nov1_ep1369.97 29483.18 29053.48 35077.10 34080.18 32960.45 32669.33 30780.44 33548.89 29486.90 30551.60 33178.51 258
ACMMP++_ref81.95 219
ACMMP++81.25 224
Test By Simon64.33 125