| MM | | | 89.16 6 | 89.23 7 | 88.97 4 | 90.79 95 | 73.65 10 | 92.66 23 | 91.17 125 | 86.57 1 | 87.39 43 | 94.97 18 | 71.70 53 | 97.68 1 | 92.19 1 | 95.63 28 | 95.57 1 |
|
| casdiffmvs_mvg |  | | 85.99 48 | 86.09 50 | 85.70 74 | 87.65 209 | 67.22 159 | 88.69 124 | 93.04 41 | 79.64 18 | 85.33 61 | 92.54 88 | 73.30 35 | 94.50 112 | 83.49 67 | 91.14 95 | 95.37 2 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| dcpmvs_2 | | | 85.63 58 | 86.15 48 | 84.06 133 | 91.71 78 | 64.94 203 | 86.47 198 | 91.87 103 | 73.63 141 | 86.60 52 | 93.02 77 | 76.57 15 | 91.87 225 | 83.36 68 | 92.15 80 | 95.35 3 |
|
| casdiffmvs |  | | 85.11 67 | 85.14 67 | 85.01 90 | 87.20 223 | 65.77 185 | 87.75 157 | 92.83 60 | 77.84 37 | 84.36 82 | 92.38 90 | 72.15 46 | 93.93 134 | 81.27 92 | 90.48 102 | 95.33 4 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| 3Dnovator+ | | 77.84 4 | 85.48 60 | 84.47 76 | 88.51 7 | 91.08 86 | 73.49 16 | 93.18 11 | 93.78 18 | 80.79 8 | 76.66 205 | 93.37 67 | 60.40 198 | 96.75 26 | 77.20 127 | 93.73 64 | 95.29 5 |
|
| BP-MVS1 | | | 84.32 75 | 83.71 83 | 86.17 61 | 87.84 199 | 67.85 138 | 89.38 98 | 89.64 171 | 77.73 38 | 83.98 89 | 92.12 95 | 56.89 222 | 95.43 70 | 84.03 64 | 91.75 87 | 95.24 6 |
|
| MVS_0304 | | | 87.69 20 | 87.55 24 | 88.12 13 | 89.45 129 | 71.76 51 | 91.47 49 | 89.54 173 | 82.14 3 | 86.65 51 | 94.28 35 | 68.28 95 | 97.46 6 | 90.81 2 | 95.31 34 | 95.15 7 |
|
| CS-MVS | | | 86.69 39 | 86.95 35 | 85.90 71 | 90.76 96 | 67.57 147 | 92.83 17 | 93.30 32 | 79.67 17 | 84.57 78 | 92.27 91 | 71.47 56 | 95.02 93 | 84.24 61 | 93.46 67 | 95.13 8 |
|
| TSAR-MVS + MP. | | | 88.02 17 | 88.11 16 | 87.72 30 | 93.68 43 | 72.13 46 | 91.41 50 | 92.35 82 | 74.62 119 | 88.90 22 | 93.85 57 | 75.75 20 | 96.00 54 | 87.80 30 | 94.63 48 | 95.04 9 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| baseline | | | 84.93 70 | 84.98 68 | 84.80 100 | 87.30 221 | 65.39 193 | 87.30 171 | 92.88 57 | 77.62 40 | 84.04 88 | 92.26 92 | 71.81 50 | 93.96 128 | 81.31 90 | 90.30 105 | 95.03 10 |
|
| DVP-MVS++ | | | 90.23 1 | 91.01 1 | 87.89 24 | 94.34 27 | 71.25 59 | 95.06 1 | 94.23 3 | 78.38 33 | 92.78 4 | 95.74 6 | 82.45 3 | 97.49 4 | 89.42 11 | 96.68 2 | 94.95 11 |
|
| PC_three_1452 | | | | | | | | | | 68.21 256 | 92.02 12 | 94.00 51 | 82.09 5 | 95.98 56 | 84.58 55 | 96.68 2 | 94.95 11 |
|
| IS-MVSNet | | | 83.15 99 | 82.81 98 | 84.18 123 | 89.94 115 | 63.30 239 | 91.59 43 | 88.46 213 | 79.04 25 | 79.49 145 | 92.16 93 | 65.10 128 | 94.28 117 | 67.71 221 | 91.86 86 | 94.95 11 |
|
| SteuartSystems-ACMMP | | | 88.72 11 | 88.86 11 | 88.32 9 | 92.14 72 | 72.96 25 | 93.73 5 | 93.67 20 | 80.19 12 | 88.10 29 | 94.80 19 | 73.76 33 | 97.11 15 | 87.51 33 | 95.82 21 | 94.90 14 |
| Skip Steuart: Steuart Systems R&D Blog. |
| SED-MVS | | | 90.08 2 | 90.85 2 | 87.77 26 | 95.30 2 | 70.98 66 | 93.57 7 | 94.06 10 | 77.24 53 | 93.10 1 | 95.72 8 | 82.99 1 | 97.44 7 | 89.07 16 | 96.63 4 | 94.88 15 |
|
| OPU-MVS | | | | | 89.06 3 | 94.62 15 | 75.42 4 | 93.57 7 | | | | 94.02 49 | 82.45 3 | 96.87 20 | 83.77 66 | 96.48 8 | 94.88 15 |
|
| SMA-MVS |  | | 89.08 8 | 89.23 7 | 88.61 6 | 94.25 31 | 73.73 9 | 92.40 24 | 93.63 21 | 74.77 115 | 92.29 7 | 95.97 2 | 74.28 29 | 97.24 13 | 88.58 23 | 96.91 1 | 94.87 17 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| test2506 | | | 77.30 229 | 76.49 226 | 79.74 254 | 90.08 108 | 52.02 370 | 87.86 156 | 63.10 408 | 74.88 111 | 80.16 138 | 92.79 84 | 38.29 374 | 92.35 207 | 68.74 214 | 92.50 77 | 94.86 18 |
|
| ECVR-MVS |  | | 79.61 167 | 79.26 160 | 80.67 236 | 90.08 108 | 54.69 353 | 87.89 154 | 77.44 362 | 74.88 111 | 80.27 135 | 92.79 84 | 48.96 306 | 92.45 201 | 68.55 215 | 92.50 77 | 94.86 18 |
|
| IU-MVS | | | | | | 95.30 2 | 71.25 59 | | 92.95 55 | 66.81 267 | 92.39 6 | | | | 88.94 18 | 96.63 4 | 94.85 20 |
|
| test1111 | | | 79.43 174 | 79.18 163 | 80.15 246 | 89.99 113 | 53.31 366 | 87.33 170 | 77.05 366 | 75.04 106 | 80.23 137 | 92.77 86 | 48.97 305 | 92.33 209 | 68.87 212 | 92.40 79 | 94.81 21 |
|
| SF-MVS | | | 88.46 12 | 88.74 12 | 87.64 35 | 92.78 64 | 71.95 49 | 92.40 24 | 94.74 2 | 75.71 92 | 89.16 19 | 95.10 16 | 75.65 21 | 96.19 46 | 87.07 36 | 96.01 17 | 94.79 22 |
|
| balanced_conf03 | | | 86.78 37 | 86.99 33 | 86.15 63 | 91.24 83 | 67.61 145 | 90.51 62 | 92.90 56 | 77.26 52 | 87.44 42 | 91.63 107 | 71.27 60 | 96.06 49 | 85.62 44 | 95.01 37 | 94.78 23 |
|
| sasdasda | | | 85.91 52 | 85.87 54 | 86.04 67 | 89.84 117 | 69.44 98 | 90.45 68 | 93.00 46 | 76.70 72 | 88.01 32 | 91.23 119 | 73.28 36 | 93.91 135 | 81.50 88 | 88.80 128 | 94.77 24 |
|
| SPE-MVS-test | | | 86.29 46 | 86.48 41 | 85.71 73 | 91.02 88 | 67.21 160 | 92.36 29 | 93.78 18 | 78.97 28 | 83.51 99 | 91.20 122 | 70.65 69 | 95.15 84 | 81.96 85 | 94.89 42 | 94.77 24 |
|
| canonicalmvs | | | 85.91 52 | 85.87 54 | 86.04 67 | 89.84 117 | 69.44 98 | 90.45 68 | 93.00 46 | 76.70 72 | 88.01 32 | 91.23 119 | 73.28 36 | 93.91 135 | 81.50 88 | 88.80 128 | 94.77 24 |
|
| GDP-MVS | | | 83.52 91 | 82.64 101 | 86.16 62 | 88.14 183 | 68.45 124 | 89.13 108 | 92.69 65 | 72.82 164 | 83.71 94 | 91.86 101 | 55.69 227 | 95.35 79 | 80.03 103 | 89.74 116 | 94.69 27 |
|
| test_0728_THIRD | | | | | | | | | | 78.38 33 | 92.12 9 | 95.78 4 | 81.46 7 | 97.40 9 | 89.42 11 | 96.57 7 | 94.67 28 |
|
| MSP-MVS | | | 89.51 4 | 89.91 5 | 88.30 10 | 94.28 30 | 73.46 17 | 92.90 16 | 94.11 6 | 80.27 10 | 91.35 14 | 94.16 42 | 78.35 13 | 96.77 24 | 89.59 10 | 94.22 60 | 94.67 28 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| RRT-MVS | | | 82.60 110 | 82.10 109 | 84.10 125 | 87.98 193 | 62.94 250 | 87.45 166 | 91.27 121 | 77.42 49 | 79.85 140 | 90.28 142 | 56.62 224 | 94.70 107 | 79.87 106 | 88.15 140 | 94.67 28 |
|
| MGCFI-Net | | | 85.06 69 | 85.51 59 | 83.70 149 | 89.42 130 | 63.01 245 | 89.43 93 | 92.62 73 | 76.43 76 | 87.53 40 | 91.34 117 | 72.82 42 | 93.42 161 | 81.28 91 | 88.74 131 | 94.66 31 |
|
| alignmvs | | | 85.48 60 | 85.32 64 | 85.96 70 | 89.51 126 | 69.47 95 | 89.74 83 | 92.47 76 | 76.17 85 | 87.73 39 | 91.46 114 | 70.32 71 | 93.78 141 | 81.51 87 | 88.95 125 | 94.63 32 |
|
| MP-MVS-pluss | | | 87.67 21 | 87.72 20 | 87.54 36 | 93.64 44 | 72.04 48 | 89.80 81 | 93.50 25 | 75.17 105 | 86.34 53 | 95.29 15 | 70.86 65 | 96.00 54 | 88.78 21 | 96.04 16 | 94.58 33 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| DeepPCF-MVS | | 80.84 1 | 88.10 13 | 88.56 13 | 86.73 53 | 92.24 71 | 69.03 103 | 89.57 90 | 93.39 30 | 77.53 46 | 89.79 18 | 94.12 44 | 78.98 12 | 96.58 35 | 85.66 42 | 95.72 24 | 94.58 33 |
|
| VDD-MVS | | | 83.01 104 | 82.36 105 | 84.96 92 | 91.02 88 | 66.40 170 | 88.91 114 | 88.11 216 | 77.57 42 | 84.39 81 | 93.29 69 | 52.19 259 | 93.91 135 | 77.05 130 | 88.70 132 | 94.57 35 |
|
| VDDNet | | | 81.52 127 | 80.67 130 | 84.05 136 | 90.44 101 | 64.13 221 | 89.73 84 | 85.91 264 | 71.11 189 | 83.18 101 | 93.48 63 | 50.54 285 | 93.49 155 | 73.40 167 | 88.25 138 | 94.54 36 |
|
| MVSMamba_PlusPlus | | | 85.99 48 | 85.96 52 | 86.05 66 | 91.09 85 | 67.64 144 | 89.63 88 | 92.65 70 | 72.89 163 | 84.64 75 | 91.71 103 | 71.85 49 | 96.03 50 | 84.77 53 | 94.45 54 | 94.49 37 |
|
| APDe-MVS |  | | 89.15 7 | 89.63 6 | 87.73 28 | 94.49 18 | 71.69 52 | 93.83 4 | 93.96 13 | 75.70 94 | 91.06 16 | 96.03 1 | 76.84 14 | 97.03 17 | 89.09 13 | 95.65 27 | 94.47 38 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| MSC_two_6792asdad | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 49 | | | | | 97.53 2 | 89.67 8 | 96.44 9 | 94.41 39 |
|
| No_MVS | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 49 | | | | | 97.53 2 | 89.67 8 | 96.44 9 | 94.41 39 |
|
| MCST-MVS | | | 87.37 29 | 87.25 29 | 87.73 28 | 94.53 17 | 72.46 38 | 89.82 79 | 93.82 16 | 73.07 158 | 84.86 70 | 92.89 79 | 76.22 17 | 96.33 41 | 84.89 50 | 95.13 36 | 94.40 41 |
|
| CANet | | | 86.45 42 | 86.10 49 | 87.51 37 | 90.09 107 | 70.94 70 | 89.70 85 | 92.59 74 | 81.78 4 | 81.32 123 | 91.43 115 | 70.34 70 | 97.23 14 | 84.26 59 | 93.36 68 | 94.37 42 |
|
| PHI-MVS | | | 86.43 43 | 86.17 47 | 87.24 41 | 90.88 92 | 70.96 68 | 92.27 32 | 94.07 9 | 72.45 165 | 85.22 63 | 91.90 98 | 69.47 80 | 96.42 40 | 83.28 70 | 95.94 19 | 94.35 43 |
|
| CNVR-MVS | | | 88.93 10 | 89.13 10 | 88.33 8 | 94.77 12 | 73.82 8 | 90.51 62 | 93.00 46 | 80.90 7 | 88.06 30 | 94.06 47 | 76.43 16 | 96.84 21 | 88.48 26 | 95.99 18 | 94.34 44 |
|
| ZNCC-MVS | | | 87.94 18 | 87.85 19 | 88.20 12 | 94.39 24 | 73.33 19 | 93.03 14 | 93.81 17 | 76.81 66 | 85.24 62 | 94.32 34 | 71.76 51 | 96.93 19 | 85.53 45 | 95.79 22 | 94.32 45 |
|
| HPM-MVS |  | | 87.11 33 | 86.98 34 | 87.50 38 | 93.88 39 | 72.16 45 | 92.19 33 | 93.33 31 | 76.07 87 | 83.81 93 | 93.95 56 | 69.77 78 | 96.01 53 | 85.15 46 | 94.66 47 | 94.32 45 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| CDPH-MVS | | | 85.76 56 | 85.29 66 | 87.17 43 | 93.49 47 | 71.08 64 | 88.58 128 | 92.42 80 | 68.32 255 | 84.61 76 | 93.48 63 | 72.32 44 | 96.15 48 | 79.00 108 | 95.43 30 | 94.28 47 |
|
| test_241102_TWO | | | | | | | | | 94.06 10 | 77.24 53 | 92.78 4 | 95.72 8 | 81.26 8 | 97.44 7 | 89.07 16 | 96.58 6 | 94.26 48 |
|
| test_0728_SECOND | | | | | 87.71 32 | 95.34 1 | 71.43 58 | 93.49 9 | 94.23 3 | | | | | 97.49 4 | 89.08 14 | 96.41 12 | 94.21 49 |
|
| DeepC-MVS_fast | | 79.65 3 | 86.91 36 | 86.62 40 | 87.76 27 | 93.52 46 | 72.37 41 | 91.26 51 | 93.04 41 | 76.62 74 | 84.22 83 | 93.36 68 | 71.44 57 | 96.76 25 | 80.82 96 | 95.33 33 | 94.16 50 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| EPP-MVSNet | | | 83.40 95 | 83.02 94 | 84.57 104 | 90.13 106 | 64.47 214 | 92.32 30 | 90.73 137 | 74.45 123 | 79.35 147 | 91.10 125 | 69.05 87 | 95.12 85 | 72.78 174 | 87.22 151 | 94.13 51 |
|
| NCCC | | | 88.06 14 | 88.01 18 | 88.24 11 | 94.41 22 | 73.62 11 | 91.22 54 | 92.83 60 | 81.50 5 | 85.79 57 | 93.47 65 | 73.02 40 | 97.00 18 | 84.90 48 | 94.94 40 | 94.10 52 |
|
| ACMMP_NAP | | | 88.05 16 | 88.08 17 | 87.94 19 | 93.70 41 | 73.05 22 | 90.86 57 | 93.59 23 | 76.27 84 | 88.14 28 | 95.09 17 | 71.06 63 | 96.67 29 | 87.67 31 | 96.37 14 | 94.09 53 |
|
| XVS | | | 87.18 32 | 86.91 37 | 88.00 17 | 94.42 20 | 73.33 19 | 92.78 18 | 92.99 49 | 79.14 21 | 83.67 96 | 94.17 41 | 67.45 103 | 96.60 33 | 83.06 71 | 94.50 51 | 94.07 54 |
|
| X-MVStestdata | | | 80.37 156 | 77.83 192 | 88.00 17 | 94.42 20 | 73.33 19 | 92.78 18 | 92.99 49 | 79.14 21 | 83.67 96 | 12.47 422 | 67.45 103 | 96.60 33 | 83.06 71 | 94.50 51 | 94.07 54 |
|
| region2R | | | 87.42 27 | 87.20 31 | 88.09 14 | 94.63 14 | 73.55 13 | 93.03 14 | 93.12 40 | 76.73 71 | 84.45 79 | 94.52 23 | 69.09 84 | 96.70 27 | 84.37 58 | 94.83 45 | 94.03 56 |
|
| ACMMPR | | | 87.44 25 | 87.23 30 | 88.08 15 | 94.64 13 | 73.59 12 | 93.04 12 | 93.20 34 | 76.78 68 | 84.66 74 | 94.52 23 | 68.81 90 | 96.65 30 | 84.53 56 | 94.90 41 | 94.00 57 |
|
| fmvsm_s_conf0.1_n_2 | | | 83.80 82 | 83.79 82 | 83.83 146 | 85.62 250 | 64.94 203 | 87.03 178 | 86.62 253 | 74.32 125 | 87.97 34 | 94.33 33 | 60.67 190 | 92.60 194 | 89.72 7 | 87.79 143 | 93.96 58 |
|
| test_fmvsmconf_n | | | 85.92 51 | 86.04 51 | 85.57 76 | 85.03 264 | 69.51 93 | 89.62 89 | 90.58 140 | 73.42 149 | 87.75 37 | 94.02 49 | 72.85 41 | 93.24 166 | 90.37 3 | 90.75 99 | 93.96 58 |
|
| DPE-MVS |  | | 89.48 5 | 89.98 4 | 88.01 16 | 94.80 11 | 72.69 31 | 91.59 43 | 94.10 8 | 75.90 90 | 92.29 7 | 95.66 10 | 81.67 6 | 97.38 11 | 87.44 35 | 96.34 15 | 93.95 60 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| test_fmvsm_n_1920 | | | 85.29 65 | 85.34 62 | 85.13 87 | 86.12 242 | 69.93 86 | 88.65 126 | 90.78 136 | 69.97 216 | 88.27 26 | 93.98 54 | 71.39 58 | 91.54 237 | 88.49 25 | 90.45 103 | 93.91 61 |
|
| test_prior | | | | | 86.33 57 | 92.61 68 | 69.59 91 | | 92.97 54 | | | | | 95.48 67 | | | 93.91 61 |
|
| GST-MVS | | | 87.42 27 | 87.26 28 | 87.89 24 | 94.12 36 | 72.97 24 | 92.39 26 | 93.43 28 | 76.89 64 | 84.68 71 | 93.99 53 | 70.67 68 | 96.82 22 | 84.18 63 | 95.01 37 | 93.90 63 |
|
| test_fmvsmconf0.1_n | | | 85.61 59 | 85.65 57 | 85.50 77 | 82.99 311 | 69.39 100 | 89.65 86 | 90.29 153 | 73.31 152 | 87.77 36 | 94.15 43 | 71.72 52 | 93.23 167 | 90.31 4 | 90.67 101 | 93.89 64 |
|
| Anonymous202405211 | | | 78.25 202 | 77.01 212 | 81.99 203 | 91.03 87 | 60.67 277 | 84.77 240 | 83.90 289 | 70.65 202 | 80.00 139 | 91.20 122 | 41.08 360 | 91.43 244 | 65.21 243 | 85.26 178 | 93.85 65 |
|
| LFMVS | | | 81.82 120 | 81.23 121 | 83.57 153 | 91.89 76 | 63.43 237 | 89.84 78 | 81.85 322 | 77.04 61 | 83.21 100 | 93.10 72 | 52.26 258 | 93.43 160 | 71.98 180 | 89.95 113 | 93.85 65 |
|
| fmvsm_s_conf0.5_n_2 | | | 84.04 78 | 84.11 79 | 83.81 147 | 86.17 240 | 65.00 201 | 86.96 180 | 87.28 237 | 74.35 124 | 88.25 27 | 94.23 39 | 61.82 166 | 92.60 194 | 89.85 6 | 88.09 141 | 93.84 67 |
|
| Effi-MVS+ | | | 83.62 89 | 83.08 92 | 85.24 83 | 88.38 175 | 67.45 149 | 88.89 115 | 89.15 189 | 75.50 97 | 82.27 111 | 88.28 195 | 69.61 79 | 94.45 114 | 77.81 121 | 87.84 142 | 93.84 67 |
|
| Anonymous20240529 | | | 80.19 160 | 78.89 168 | 84.10 125 | 90.60 97 | 64.75 208 | 88.95 113 | 90.90 132 | 65.97 284 | 80.59 133 | 91.17 124 | 49.97 290 | 93.73 147 | 69.16 209 | 82.70 221 | 93.81 69 |
|
| MVS_Test | | | 83.15 99 | 83.06 93 | 83.41 158 | 86.86 227 | 63.21 241 | 86.11 209 | 92.00 95 | 74.31 126 | 82.87 105 | 89.44 167 | 70.03 74 | 93.21 169 | 77.39 126 | 88.50 136 | 93.81 69 |
|
| test_fmvsmconf0.01_n | | | 84.73 73 | 84.52 75 | 85.34 80 | 80.25 352 | 69.03 103 | 89.47 91 | 89.65 170 | 73.24 156 | 86.98 48 | 94.27 36 | 66.62 109 | 93.23 167 | 90.26 5 | 89.95 113 | 93.78 71 |
|
| GeoE | | | 81.71 122 | 81.01 126 | 83.80 148 | 89.51 126 | 64.45 215 | 88.97 112 | 88.73 208 | 71.27 186 | 78.63 159 | 89.76 153 | 66.32 115 | 93.20 172 | 69.89 201 | 86.02 171 | 93.74 72 |
|
| diffmvs |  | | 82.10 113 | 81.88 115 | 82.76 191 | 83.00 309 | 63.78 227 | 83.68 265 | 89.76 166 | 72.94 161 | 82.02 114 | 89.85 151 | 65.96 122 | 90.79 261 | 82.38 83 | 87.30 150 | 93.71 73 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| HFP-MVS | | | 87.58 22 | 87.47 26 | 87.94 19 | 94.58 16 | 73.54 15 | 93.04 12 | 93.24 33 | 76.78 68 | 84.91 67 | 94.44 30 | 70.78 66 | 96.61 32 | 84.53 56 | 94.89 42 | 93.66 74 |
|
| VNet | | | 82.21 112 | 82.41 103 | 81.62 209 | 90.82 93 | 60.93 272 | 84.47 248 | 89.78 165 | 76.36 82 | 84.07 87 | 91.88 99 | 64.71 132 | 90.26 267 | 70.68 192 | 88.89 126 | 93.66 74 |
|
| PGM-MVS | | | 86.68 40 | 86.27 44 | 87.90 22 | 94.22 33 | 73.38 18 | 90.22 73 | 93.04 41 | 75.53 96 | 83.86 91 | 94.42 31 | 67.87 100 | 96.64 31 | 82.70 81 | 94.57 50 | 93.66 74 |
|
| DELS-MVS | | | 85.41 63 | 85.30 65 | 85.77 72 | 88.49 169 | 67.93 137 | 85.52 228 | 93.44 27 | 78.70 29 | 83.63 98 | 89.03 174 | 74.57 24 | 95.71 61 | 80.26 102 | 94.04 61 | 93.66 74 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| SD-MVS | | | 88.06 14 | 88.50 14 | 86.71 54 | 92.60 69 | 72.71 29 | 91.81 41 | 93.19 35 | 77.87 36 | 90.32 17 | 94.00 51 | 74.83 23 | 93.78 141 | 87.63 32 | 94.27 59 | 93.65 78 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| DeepC-MVS | | 79.81 2 | 87.08 35 | 86.88 38 | 87.69 33 | 91.16 84 | 72.32 43 | 90.31 71 | 93.94 14 | 77.12 58 | 82.82 107 | 94.23 39 | 72.13 47 | 97.09 16 | 84.83 51 | 95.37 31 | 93.65 78 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| patch_mono-2 | | | 83.65 86 | 84.54 73 | 80.99 228 | 90.06 112 | 65.83 182 | 84.21 257 | 88.74 207 | 71.60 180 | 85.01 64 | 92.44 89 | 74.51 25 | 83.50 347 | 82.15 84 | 92.15 80 | 93.64 80 |
|
| EIA-MVS | | | 83.31 98 | 82.80 99 | 84.82 98 | 89.59 122 | 65.59 188 | 88.21 141 | 92.68 66 | 74.66 118 | 78.96 151 | 86.42 250 | 69.06 86 | 95.26 80 | 75.54 147 | 90.09 109 | 93.62 81 |
|
| MP-MVS |  | | 87.71 19 | 87.64 21 | 87.93 21 | 94.36 26 | 73.88 6 | 92.71 22 | 92.65 70 | 77.57 42 | 83.84 92 | 94.40 32 | 72.24 45 | 96.28 43 | 85.65 43 | 95.30 35 | 93.62 81 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| HPM-MVS_fast | | | 85.35 64 | 84.95 70 | 86.57 56 | 93.69 42 | 70.58 78 | 92.15 35 | 91.62 111 | 73.89 136 | 82.67 110 | 94.09 45 | 62.60 152 | 95.54 65 | 80.93 94 | 92.93 71 | 93.57 83 |
|
| fmvsm_s_conf0.1_n | | | 83.56 90 | 83.38 88 | 84.10 125 | 84.86 266 | 67.28 155 | 89.40 97 | 83.01 306 | 70.67 198 | 87.08 46 | 93.96 55 | 68.38 93 | 91.45 243 | 88.56 24 | 84.50 186 | 93.56 84 |
|
| CSCG | | | 86.41 45 | 86.19 46 | 87.07 45 | 92.91 61 | 72.48 37 | 90.81 58 | 93.56 24 | 73.95 133 | 83.16 102 | 91.07 127 | 75.94 18 | 95.19 82 | 79.94 105 | 94.38 56 | 93.55 85 |
|
| test12 | | | | | 86.80 52 | 92.63 67 | 70.70 75 | | 91.79 107 | | 82.71 109 | | 71.67 54 | 96.16 47 | | 94.50 51 | 93.54 86 |
|
| APD-MVS_3200maxsize | | | 85.97 50 | 85.88 53 | 86.22 60 | 92.69 66 | 69.53 92 | 91.93 37 | 92.99 49 | 73.54 145 | 85.94 54 | 94.51 26 | 65.80 123 | 95.61 62 | 83.04 73 | 92.51 76 | 93.53 87 |
|
| mvs_anonymous | | | 79.42 175 | 79.11 164 | 80.34 242 | 84.45 275 | 57.97 305 | 82.59 284 | 87.62 230 | 67.40 265 | 76.17 220 | 88.56 188 | 68.47 92 | 89.59 280 | 70.65 193 | 86.05 170 | 93.47 88 |
|
| fmvsm_s_conf0.5_n | | | 83.80 82 | 83.71 83 | 84.07 131 | 86.69 233 | 67.31 154 | 89.46 92 | 83.07 305 | 71.09 190 | 86.96 49 | 93.70 60 | 69.02 89 | 91.47 242 | 88.79 20 | 84.62 185 | 93.44 89 |
|
| mPP-MVS | | | 86.67 41 | 86.32 43 | 87.72 30 | 94.41 22 | 73.55 13 | 92.74 20 | 92.22 88 | 76.87 65 | 82.81 108 | 94.25 38 | 66.44 113 | 96.24 44 | 82.88 76 | 94.28 58 | 93.38 90 |
|
| EPNet | | | 83.72 85 | 82.92 97 | 86.14 65 | 84.22 278 | 69.48 94 | 91.05 56 | 85.27 270 | 81.30 6 | 76.83 200 | 91.65 105 | 66.09 118 | 95.56 63 | 76.00 141 | 93.85 62 | 93.38 90 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| Vis-MVSNet |  | | 83.46 93 | 82.80 99 | 85.43 79 | 90.25 104 | 68.74 114 | 90.30 72 | 90.13 157 | 76.33 83 | 80.87 131 | 92.89 79 | 61.00 185 | 94.20 122 | 72.45 179 | 90.97 96 | 93.35 92 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| DVP-MVS |  | | 89.60 3 | 90.35 3 | 87.33 40 | 95.27 5 | 71.25 59 | 93.49 9 | 92.73 64 | 77.33 50 | 92.12 9 | 95.78 4 | 80.98 9 | 97.40 9 | 89.08 14 | 96.41 12 | 93.33 93 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| UniMVSNet_ETH3D | | | 79.10 184 | 78.24 182 | 81.70 208 | 86.85 228 | 60.24 284 | 87.28 172 | 88.79 202 | 74.25 128 | 76.84 199 | 90.53 140 | 49.48 296 | 91.56 235 | 67.98 219 | 82.15 225 | 93.29 94 |
|
| EI-MVSNet-Vis-set | | | 84.19 76 | 83.81 81 | 85.31 81 | 88.18 180 | 67.85 138 | 87.66 159 | 89.73 168 | 80.05 14 | 82.95 103 | 89.59 159 | 70.74 67 | 94.82 101 | 80.66 99 | 84.72 183 | 93.28 95 |
|
| MTAPA | | | 87.23 31 | 87.00 32 | 87.90 22 | 94.18 35 | 74.25 5 | 86.58 195 | 92.02 93 | 79.45 19 | 85.88 55 | 94.80 19 | 68.07 96 | 96.21 45 | 86.69 38 | 95.34 32 | 93.23 96 |
|
| CP-MVS | | | 87.11 33 | 86.92 36 | 87.68 34 | 94.20 34 | 73.86 7 | 93.98 3 | 92.82 63 | 76.62 74 | 83.68 95 | 94.46 27 | 67.93 98 | 95.95 57 | 84.20 62 | 94.39 55 | 93.23 96 |
|
| ACMMP |  | | 85.89 54 | 85.39 61 | 87.38 39 | 93.59 45 | 72.63 33 | 92.74 20 | 93.18 39 | 76.78 68 | 80.73 132 | 93.82 58 | 64.33 133 | 96.29 42 | 82.67 82 | 90.69 100 | 93.23 96 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| fmvsm_s_conf0.1_n_a | | | 83.32 97 | 82.99 95 | 84.28 117 | 83.79 288 | 68.07 134 | 89.34 100 | 82.85 311 | 69.80 220 | 87.36 44 | 94.06 47 | 68.34 94 | 91.56 235 | 87.95 29 | 83.46 210 | 93.21 99 |
|
| PAPM_NR | | | 83.02 103 | 82.41 103 | 84.82 98 | 92.47 70 | 66.37 171 | 87.93 152 | 91.80 106 | 73.82 137 | 77.32 188 | 90.66 137 | 67.90 99 | 94.90 97 | 70.37 195 | 89.48 119 | 93.19 100 |
|
| reproduce_model | | | 87.28 30 | 87.39 27 | 86.95 48 | 93.10 56 | 71.24 63 | 91.60 42 | 93.19 35 | 74.69 116 | 88.80 23 | 95.61 11 | 70.29 72 | 96.44 39 | 86.20 41 | 93.08 69 | 93.16 101 |
|
| OMC-MVS | | | 82.69 106 | 81.97 114 | 84.85 97 | 88.75 161 | 67.42 150 | 87.98 148 | 90.87 134 | 74.92 110 | 79.72 142 | 91.65 105 | 62.19 162 | 93.96 128 | 75.26 151 | 86.42 163 | 93.16 101 |
|
| fmvsm_s_conf0.5_n_a | | | 83.63 88 | 83.41 87 | 84.28 117 | 86.14 241 | 68.12 132 | 89.43 93 | 82.87 310 | 70.27 209 | 87.27 45 | 93.80 59 | 69.09 84 | 91.58 233 | 88.21 28 | 83.65 205 | 93.14 103 |
|
| PAPR | | | 81.66 125 | 80.89 128 | 83.99 141 | 90.27 103 | 64.00 222 | 86.76 191 | 91.77 109 | 68.84 246 | 77.13 198 | 89.50 160 | 67.63 101 | 94.88 99 | 67.55 223 | 88.52 135 | 93.09 104 |
|
| UA-Net | | | 85.08 68 | 84.96 69 | 85.45 78 | 92.07 73 | 68.07 134 | 89.78 82 | 90.86 135 | 82.48 2 | 84.60 77 | 93.20 71 | 69.35 81 | 95.22 81 | 71.39 185 | 90.88 98 | 93.07 105 |
|
| reproduce-ours | | | 87.47 23 | 87.61 22 | 87.07 45 | 93.27 50 | 71.60 53 | 91.56 46 | 93.19 35 | 74.98 108 | 88.96 20 | 95.54 12 | 71.20 61 | 96.54 36 | 86.28 39 | 93.49 65 | 93.06 106 |
|
| our_new_method | | | 87.47 23 | 87.61 22 | 87.07 45 | 93.27 50 | 71.60 53 | 91.56 46 | 93.19 35 | 74.98 108 | 88.96 20 | 95.54 12 | 71.20 61 | 96.54 36 | 86.28 39 | 93.49 65 | 93.06 106 |
|
| HPM-MVS++ |  | | 89.02 9 | 89.15 9 | 88.63 5 | 95.01 9 | 76.03 1 | 92.38 27 | 92.85 59 | 80.26 11 | 87.78 35 | 94.27 36 | 75.89 19 | 96.81 23 | 87.45 34 | 96.44 9 | 93.05 108 |
|
| thisisatest0530 | | | 79.40 176 | 77.76 197 | 84.31 115 | 87.69 208 | 65.10 199 | 87.36 168 | 84.26 285 | 70.04 212 | 77.42 185 | 88.26 197 | 49.94 291 | 94.79 103 | 70.20 196 | 84.70 184 | 93.03 109 |
|
| train_agg | | | 86.43 43 | 86.20 45 | 87.13 44 | 93.26 52 | 72.96 25 | 88.75 120 | 91.89 101 | 68.69 248 | 85.00 65 | 93.10 72 | 74.43 26 | 95.41 73 | 84.97 47 | 95.71 25 | 93.02 110 |
|
| EC-MVSNet | | | 86.01 47 | 86.38 42 | 84.91 96 | 89.31 138 | 66.27 173 | 92.32 30 | 93.63 21 | 79.37 20 | 84.17 85 | 91.88 99 | 69.04 88 | 95.43 70 | 83.93 65 | 93.77 63 | 93.01 111 |
|
| mvsmamba | | | 80.60 148 | 79.38 155 | 84.27 119 | 89.74 120 | 67.24 158 | 87.47 164 | 86.95 245 | 70.02 213 | 75.38 236 | 88.93 175 | 51.24 276 | 92.56 197 | 75.47 149 | 89.22 122 | 93.00 112 |
|
| EI-MVSNet-UG-set | | | 83.81 81 | 83.38 88 | 85.09 88 | 87.87 197 | 67.53 148 | 87.44 167 | 89.66 169 | 79.74 16 | 82.23 112 | 89.41 168 | 70.24 73 | 94.74 104 | 79.95 104 | 83.92 197 | 92.99 113 |
|
| tttt0517 | | | 79.40 176 | 77.91 189 | 83.90 145 | 88.10 186 | 63.84 225 | 88.37 136 | 84.05 287 | 71.45 183 | 76.78 202 | 89.12 171 | 49.93 293 | 94.89 98 | 70.18 197 | 83.18 214 | 92.96 114 |
|
| test9_res | | | | | | | | | | | | | | | 84.90 48 | 95.70 26 | 92.87 115 |
|
| SR-MVS | | | 86.73 38 | 86.67 39 | 86.91 49 | 94.11 37 | 72.11 47 | 92.37 28 | 92.56 75 | 74.50 120 | 86.84 50 | 94.65 22 | 67.31 105 | 95.77 59 | 84.80 52 | 92.85 72 | 92.84 116 |
|
| ETV-MVS | | | 84.90 72 | 84.67 72 | 85.59 75 | 89.39 133 | 68.66 120 | 88.74 122 | 92.64 72 | 79.97 15 | 84.10 86 | 85.71 263 | 69.32 82 | 95.38 75 | 80.82 96 | 91.37 92 | 92.72 117 |
|
| agg_prior2 | | | | | | | | | | | | | | | 82.91 75 | 95.45 29 | 92.70 118 |
|
| APD-MVS |  | | 87.44 25 | 87.52 25 | 87.19 42 | 94.24 32 | 72.39 39 | 91.86 40 | 92.83 60 | 73.01 160 | 88.58 24 | 94.52 23 | 73.36 34 | 96.49 38 | 84.26 59 | 95.01 37 | 92.70 118 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| ET-MVSNet_ETH3D | | | 78.63 195 | 76.63 225 | 84.64 103 | 86.73 232 | 69.47 95 | 85.01 235 | 84.61 278 | 69.54 226 | 66.51 352 | 86.59 243 | 50.16 288 | 91.75 228 | 76.26 137 | 84.24 194 | 92.69 120 |
|
| Vis-MVSNet (Re-imp) | | | 78.36 201 | 78.45 175 | 78.07 287 | 88.64 165 | 51.78 376 | 86.70 192 | 79.63 347 | 74.14 131 | 75.11 249 | 90.83 135 | 61.29 179 | 89.75 277 | 58.10 309 | 91.60 88 | 92.69 120 |
|
| TSAR-MVS + GP. | | | 85.71 57 | 85.33 63 | 86.84 50 | 91.34 81 | 72.50 36 | 89.07 110 | 87.28 237 | 76.41 77 | 85.80 56 | 90.22 146 | 74.15 31 | 95.37 78 | 81.82 86 | 91.88 83 | 92.65 122 |
|
| test_fmvsmvis_n_1920 | | | 84.02 79 | 83.87 80 | 84.49 108 | 84.12 280 | 69.37 101 | 88.15 145 | 87.96 221 | 70.01 214 | 83.95 90 | 93.23 70 | 68.80 91 | 91.51 240 | 88.61 22 | 89.96 112 | 92.57 123 |
|
| FA-MVS(test-final) | | | 80.96 136 | 79.91 144 | 84.10 125 | 88.30 178 | 65.01 200 | 84.55 247 | 90.01 160 | 73.25 155 | 79.61 143 | 87.57 212 | 58.35 207 | 94.72 105 | 71.29 186 | 86.25 166 | 92.56 124 |
|
| test_yl | | | 81.17 132 | 80.47 134 | 83.24 164 | 89.13 146 | 63.62 228 | 86.21 206 | 89.95 162 | 72.43 168 | 81.78 119 | 89.61 157 | 57.50 215 | 93.58 149 | 70.75 190 | 86.90 155 | 92.52 125 |
|
| DCV-MVSNet | | | 81.17 132 | 80.47 134 | 83.24 164 | 89.13 146 | 63.62 228 | 86.21 206 | 89.95 162 | 72.43 168 | 81.78 119 | 89.61 157 | 57.50 215 | 93.58 149 | 70.75 190 | 86.90 155 | 92.52 125 |
|
| SR-MVS-dyc-post | | | 85.77 55 | 85.61 58 | 86.23 59 | 93.06 58 | 70.63 76 | 91.88 38 | 92.27 84 | 73.53 146 | 85.69 58 | 94.45 28 | 65.00 131 | 95.56 63 | 82.75 77 | 91.87 84 | 92.50 127 |
|
| RE-MVS-def | | | | 85.48 60 | | 93.06 58 | 70.63 76 | 91.88 38 | 92.27 84 | 73.53 146 | 85.69 58 | 94.45 28 | 63.87 137 | | 82.75 77 | 91.87 84 | 92.50 127 |
|
| nrg030 | | | 83.88 80 | 83.53 85 | 84.96 92 | 86.77 231 | 69.28 102 | 90.46 67 | 92.67 67 | 74.79 114 | 82.95 103 | 91.33 118 | 72.70 43 | 93.09 180 | 80.79 98 | 79.28 261 | 92.50 127 |
|
| MG-MVS | | | 83.41 94 | 83.45 86 | 83.28 161 | 92.74 65 | 62.28 257 | 88.17 143 | 89.50 175 | 75.22 101 | 81.49 122 | 92.74 87 | 66.75 108 | 95.11 87 | 72.85 173 | 91.58 89 | 92.45 130 |
|
| FIs | | | 82.07 115 | 82.42 102 | 81.04 227 | 88.80 158 | 58.34 299 | 88.26 140 | 93.49 26 | 76.93 63 | 78.47 164 | 91.04 128 | 69.92 76 | 92.34 208 | 69.87 202 | 84.97 180 | 92.44 131 |
|
| FC-MVSNet-test | | | 81.52 127 | 82.02 112 | 80.03 248 | 88.42 174 | 55.97 338 | 87.95 150 | 93.42 29 | 77.10 59 | 77.38 186 | 90.98 134 | 69.96 75 | 91.79 226 | 68.46 217 | 84.50 186 | 92.33 132 |
|
| Fast-Effi-MVS+ | | | 80.81 140 | 79.92 143 | 83.47 154 | 88.85 153 | 64.51 211 | 85.53 226 | 89.39 178 | 70.79 195 | 78.49 163 | 85.06 281 | 67.54 102 | 93.58 149 | 67.03 231 | 86.58 160 | 92.32 133 |
|
| TranMVSNet+NR-MVSNet | | | 80.84 138 | 80.31 137 | 82.42 196 | 87.85 198 | 62.33 255 | 87.74 158 | 91.33 120 | 80.55 9 | 77.99 176 | 89.86 150 | 65.23 127 | 92.62 192 | 67.05 230 | 75.24 319 | 92.30 134 |
|
| ab-mvs | | | 79.51 170 | 78.97 167 | 81.14 224 | 88.46 171 | 60.91 273 | 83.84 262 | 89.24 185 | 70.36 205 | 79.03 150 | 88.87 178 | 63.23 144 | 90.21 269 | 65.12 244 | 82.57 222 | 92.28 135 |
|
| CANet_DTU | | | 80.61 147 | 79.87 145 | 82.83 183 | 85.60 251 | 63.17 244 | 87.36 168 | 88.65 209 | 76.37 81 | 75.88 223 | 88.44 191 | 53.51 248 | 93.07 181 | 73.30 168 | 89.74 116 | 92.25 136 |
|
| UniMVSNet_NR-MVSNet | | | 81.88 118 | 81.54 118 | 82.92 180 | 88.46 171 | 63.46 235 | 87.13 174 | 92.37 81 | 80.19 12 | 78.38 165 | 89.14 170 | 71.66 55 | 93.05 182 | 70.05 198 | 76.46 292 | 92.25 136 |
|
| fmvsm_l_conf0.5_n | | | 84.47 74 | 84.54 73 | 84.27 119 | 85.42 254 | 68.81 109 | 88.49 130 | 87.26 239 | 68.08 257 | 88.03 31 | 93.49 62 | 72.04 48 | 91.77 227 | 88.90 19 | 89.14 124 | 92.24 138 |
|
| DU-MVS | | | 81.12 134 | 80.52 133 | 82.90 181 | 87.80 201 | 63.46 235 | 87.02 179 | 91.87 103 | 79.01 26 | 78.38 165 | 89.07 172 | 65.02 129 | 93.05 182 | 70.05 198 | 76.46 292 | 92.20 139 |
|
| NR-MVSNet | | | 80.23 158 | 79.38 155 | 82.78 189 | 87.80 201 | 63.34 238 | 86.31 203 | 91.09 129 | 79.01 26 | 72.17 290 | 89.07 172 | 67.20 106 | 92.81 191 | 66.08 237 | 75.65 305 | 92.20 139 |
|
| TAPA-MVS | | 73.13 9 | 79.15 182 | 77.94 188 | 82.79 188 | 89.59 122 | 62.99 249 | 88.16 144 | 91.51 115 | 65.77 285 | 77.14 197 | 91.09 126 | 60.91 186 | 93.21 169 | 50.26 356 | 87.05 153 | 92.17 141 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| fmvsm_l_conf0.5_n_a | | | 84.13 77 | 84.16 78 | 84.06 133 | 85.38 255 | 68.40 125 | 88.34 137 | 86.85 249 | 67.48 264 | 87.48 41 | 93.40 66 | 70.89 64 | 91.61 231 | 88.38 27 | 89.22 122 | 92.16 142 |
|
| 3Dnovator | | 76.31 5 | 83.38 96 | 82.31 106 | 86.59 55 | 87.94 194 | 72.94 28 | 90.64 60 | 92.14 92 | 77.21 55 | 75.47 230 | 92.83 81 | 58.56 205 | 94.72 105 | 73.24 170 | 92.71 74 | 92.13 143 |
|
| MVS_111021_HR | | | 85.14 66 | 84.75 71 | 86.32 58 | 91.65 79 | 72.70 30 | 85.98 211 | 90.33 150 | 76.11 86 | 82.08 113 | 91.61 109 | 71.36 59 | 94.17 124 | 81.02 93 | 92.58 75 | 92.08 144 |
|
| MVSFormer | | | 82.85 105 | 82.05 111 | 85.24 83 | 87.35 215 | 70.21 80 | 90.50 64 | 90.38 146 | 68.55 250 | 81.32 123 | 89.47 162 | 61.68 168 | 93.46 158 | 78.98 109 | 90.26 106 | 92.05 145 |
|
| jason | | | 81.39 130 | 80.29 138 | 84.70 102 | 86.63 235 | 69.90 88 | 85.95 212 | 86.77 250 | 63.24 315 | 81.07 129 | 89.47 162 | 61.08 184 | 92.15 214 | 78.33 117 | 90.07 111 | 92.05 145 |
| jason: jason. |
| HyFIR lowres test | | | 77.53 224 | 75.40 243 | 83.94 144 | 89.59 122 | 66.62 167 | 80.36 315 | 88.64 210 | 56.29 375 | 76.45 210 | 85.17 278 | 57.64 213 | 93.28 164 | 61.34 280 | 83.10 215 | 91.91 147 |
|
| XVG-OURS-SEG-HR | | | 80.81 140 | 79.76 147 | 83.96 143 | 85.60 251 | 68.78 111 | 83.54 271 | 90.50 143 | 70.66 201 | 76.71 204 | 91.66 104 | 60.69 189 | 91.26 248 | 76.94 131 | 81.58 232 | 91.83 148 |
|
| lupinMVS | | | 81.39 130 | 80.27 139 | 84.76 101 | 87.35 215 | 70.21 80 | 85.55 224 | 86.41 255 | 62.85 322 | 81.32 123 | 88.61 185 | 61.68 168 | 92.24 212 | 78.41 116 | 90.26 106 | 91.83 148 |
|
| WR-MVS | | | 79.49 171 | 79.22 162 | 80.27 244 | 88.79 159 | 58.35 298 | 85.06 234 | 88.61 211 | 78.56 30 | 77.65 181 | 88.34 193 | 63.81 139 | 90.66 264 | 64.98 246 | 77.22 281 | 91.80 150 |
|
| h-mvs33 | | | 83.15 99 | 82.19 107 | 86.02 69 | 90.56 98 | 70.85 73 | 88.15 145 | 89.16 188 | 76.02 88 | 84.67 72 | 91.39 116 | 61.54 171 | 95.50 66 | 82.71 79 | 75.48 309 | 91.72 151 |
|
| UniMVSNet (Re) | | | 81.60 126 | 81.11 123 | 83.09 171 | 88.38 175 | 64.41 216 | 87.60 160 | 93.02 45 | 78.42 32 | 78.56 161 | 88.16 199 | 69.78 77 | 93.26 165 | 69.58 205 | 76.49 291 | 91.60 152 |
|
| UGNet | | | 80.83 139 | 79.59 151 | 84.54 105 | 88.04 189 | 68.09 133 | 89.42 95 | 88.16 215 | 76.95 62 | 76.22 216 | 89.46 164 | 49.30 300 | 93.94 131 | 68.48 216 | 90.31 104 | 91.60 152 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| testing91 | | | 76.54 239 | 75.66 238 | 79.18 266 | 88.43 173 | 55.89 339 | 81.08 301 | 83.00 307 | 73.76 139 | 75.34 238 | 84.29 296 | 46.20 325 | 90.07 271 | 64.33 250 | 84.50 186 | 91.58 154 |
|
| XVG-OURS | | | 80.41 153 | 79.23 161 | 83.97 142 | 85.64 249 | 69.02 105 | 83.03 282 | 90.39 145 | 71.09 190 | 77.63 182 | 91.49 113 | 54.62 239 | 91.35 246 | 75.71 143 | 83.47 209 | 91.54 155 |
|
| LCM-MVSNet-Re | | | 77.05 231 | 76.94 215 | 77.36 298 | 87.20 223 | 51.60 377 | 80.06 318 | 80.46 337 | 75.20 102 | 67.69 334 | 86.72 235 | 62.48 155 | 88.98 292 | 63.44 256 | 89.25 121 | 91.51 156 |
|
| DP-MVS Recon | | | 83.11 102 | 82.09 110 | 86.15 63 | 94.44 19 | 70.92 71 | 88.79 118 | 92.20 89 | 70.53 203 | 79.17 149 | 91.03 130 | 64.12 135 | 96.03 50 | 68.39 218 | 90.14 108 | 91.50 157 |
|
| PS-MVSNAJss | | | 82.07 115 | 81.31 119 | 84.34 114 | 86.51 236 | 67.27 156 | 89.27 101 | 91.51 115 | 71.75 175 | 79.37 146 | 90.22 146 | 63.15 146 | 94.27 118 | 77.69 122 | 82.36 224 | 91.49 158 |
|
| testing99 | | | 76.09 251 | 75.12 249 | 79.00 267 | 88.16 181 | 55.50 345 | 80.79 305 | 81.40 326 | 73.30 153 | 75.17 246 | 84.27 298 | 44.48 339 | 90.02 272 | 64.28 251 | 84.22 195 | 91.48 159 |
|
| thisisatest0515 | | | 77.33 228 | 75.38 244 | 83.18 167 | 85.27 257 | 63.80 226 | 82.11 289 | 83.27 299 | 65.06 294 | 75.91 222 | 83.84 305 | 49.54 295 | 94.27 118 | 67.24 227 | 86.19 167 | 91.48 159 |
|
| DPM-MVS | | | 84.93 70 | 84.29 77 | 86.84 50 | 90.20 105 | 73.04 23 | 87.12 175 | 93.04 41 | 69.80 220 | 82.85 106 | 91.22 121 | 73.06 39 | 96.02 52 | 76.72 135 | 94.63 48 | 91.46 161 |
|
| HQP_MVS | | | 83.64 87 | 83.14 91 | 85.14 85 | 90.08 108 | 68.71 116 | 91.25 52 | 92.44 77 | 79.12 23 | 78.92 153 | 91.00 132 | 60.42 196 | 95.38 75 | 78.71 112 | 86.32 164 | 91.33 162 |
|
| plane_prior5 | | | | | | | | | 92.44 77 | | | | | 95.38 75 | 78.71 112 | 86.32 164 | 91.33 162 |
|
| GA-MVS | | | 76.87 235 | 75.17 248 | 81.97 204 | 82.75 315 | 62.58 252 | 81.44 298 | 86.35 258 | 72.16 172 | 74.74 256 | 82.89 325 | 46.20 325 | 92.02 218 | 68.85 213 | 81.09 237 | 91.30 164 |
|
| VPA-MVSNet | | | 80.60 148 | 80.55 132 | 80.76 234 | 88.07 188 | 60.80 275 | 86.86 185 | 91.58 113 | 75.67 95 | 80.24 136 | 89.45 166 | 63.34 140 | 90.25 268 | 70.51 194 | 79.22 262 | 91.23 165 |
|
| Effi-MVS+-dtu | | | 80.03 162 | 78.57 173 | 84.42 110 | 85.13 262 | 68.74 114 | 88.77 119 | 88.10 217 | 74.99 107 | 74.97 253 | 83.49 314 | 57.27 218 | 93.36 162 | 73.53 164 | 80.88 239 | 91.18 166 |
|
| v2v482 | | | 80.23 158 | 79.29 159 | 83.05 174 | 83.62 292 | 64.14 220 | 87.04 177 | 89.97 161 | 73.61 142 | 78.18 171 | 87.22 223 | 61.10 183 | 93.82 139 | 76.11 138 | 76.78 289 | 91.18 166 |
|
| FE-MVS | | | 77.78 217 | 75.68 236 | 84.08 130 | 88.09 187 | 66.00 177 | 83.13 277 | 87.79 227 | 68.42 254 | 78.01 175 | 85.23 276 | 45.50 334 | 95.12 85 | 59.11 297 | 85.83 175 | 91.11 168 |
|
| Anonymous20231211 | | | 78.97 188 | 77.69 200 | 82.81 185 | 90.54 99 | 64.29 218 | 90.11 75 | 91.51 115 | 65.01 296 | 76.16 221 | 88.13 204 | 50.56 284 | 93.03 185 | 69.68 204 | 77.56 279 | 91.11 168 |
|
| hse-mvs2 | | | 81.72 121 | 80.94 127 | 84.07 131 | 88.72 162 | 67.68 143 | 85.87 215 | 87.26 239 | 76.02 88 | 84.67 72 | 88.22 198 | 61.54 171 | 93.48 156 | 82.71 79 | 73.44 337 | 91.06 170 |
|
| AUN-MVS | | | 79.21 181 | 77.60 202 | 84.05 136 | 88.71 163 | 67.61 145 | 85.84 217 | 87.26 239 | 69.08 239 | 77.23 191 | 88.14 203 | 53.20 252 | 93.47 157 | 75.50 148 | 73.45 336 | 91.06 170 |
|
| HQP4-MVS | | | | | | | | | | | 77.24 190 | | | 95.11 87 | | | 91.03 172 |
|
| HQP-MVS | | | 82.61 108 | 82.02 112 | 84.37 111 | 89.33 135 | 66.98 163 | 89.17 103 | 92.19 90 | 76.41 77 | 77.23 191 | 90.23 145 | 60.17 199 | 95.11 87 | 77.47 124 | 85.99 172 | 91.03 172 |
|
| RPSCF | | | 73.23 286 | 71.46 290 | 78.54 277 | 82.50 321 | 59.85 287 | 82.18 288 | 82.84 312 | 58.96 356 | 71.15 301 | 89.41 168 | 45.48 335 | 84.77 339 | 58.82 301 | 71.83 349 | 91.02 174 |
|
| test_djsdf | | | 80.30 157 | 79.32 158 | 83.27 162 | 83.98 284 | 65.37 194 | 90.50 64 | 90.38 146 | 68.55 250 | 76.19 217 | 88.70 181 | 56.44 225 | 93.46 158 | 78.98 109 | 80.14 251 | 90.97 175 |
|
| PCF-MVS | | 73.52 7 | 80.38 154 | 78.84 169 | 85.01 90 | 87.71 206 | 68.99 106 | 83.65 266 | 91.46 119 | 63.00 319 | 77.77 180 | 90.28 142 | 66.10 117 | 95.09 91 | 61.40 278 | 88.22 139 | 90.94 176 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| VPNet | | | 78.69 194 | 78.66 171 | 78.76 271 | 88.31 177 | 55.72 342 | 84.45 251 | 86.63 252 | 76.79 67 | 78.26 168 | 90.55 139 | 59.30 201 | 89.70 279 | 66.63 232 | 77.05 283 | 90.88 177 |
|
| CPTT-MVS | | | 83.73 84 | 83.33 90 | 84.92 95 | 93.28 49 | 70.86 72 | 92.09 36 | 90.38 146 | 68.75 247 | 79.57 144 | 92.83 81 | 60.60 194 | 93.04 184 | 80.92 95 | 91.56 90 | 90.86 178 |
|
| tt0805 | | | 78.73 192 | 77.83 192 | 81.43 214 | 85.17 258 | 60.30 283 | 89.41 96 | 90.90 132 | 71.21 187 | 77.17 196 | 88.73 180 | 46.38 320 | 93.21 169 | 72.57 177 | 78.96 263 | 90.79 179 |
|
| CLD-MVS | | | 82.31 111 | 81.65 117 | 84.29 116 | 88.47 170 | 67.73 142 | 85.81 219 | 92.35 82 | 75.78 91 | 78.33 167 | 86.58 245 | 64.01 136 | 94.35 115 | 76.05 140 | 87.48 148 | 90.79 179 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| v1192 | | | 79.59 169 | 78.43 177 | 83.07 173 | 83.55 294 | 64.52 210 | 86.93 183 | 90.58 140 | 70.83 194 | 77.78 179 | 85.90 259 | 59.15 202 | 93.94 131 | 73.96 161 | 77.19 282 | 90.76 181 |
|
| IterMVS-LS | | | 80.06 161 | 79.38 155 | 82.11 200 | 85.89 245 | 63.20 242 | 86.79 188 | 89.34 179 | 74.19 129 | 75.45 233 | 86.72 235 | 66.62 109 | 92.39 204 | 72.58 176 | 76.86 286 | 90.75 182 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| EI-MVSNet | | | 80.52 152 | 79.98 142 | 82.12 199 | 84.28 276 | 63.19 243 | 86.41 199 | 88.95 199 | 74.18 130 | 78.69 156 | 87.54 215 | 66.62 109 | 92.43 202 | 72.57 177 | 80.57 245 | 90.74 183 |
|
| v1921920 | | | 79.22 180 | 78.03 186 | 82.80 186 | 83.30 299 | 63.94 224 | 86.80 187 | 90.33 150 | 69.91 218 | 77.48 184 | 85.53 269 | 58.44 206 | 93.75 145 | 73.60 163 | 76.85 287 | 90.71 184 |
|
| QAPM | | | 80.88 137 | 79.50 153 | 85.03 89 | 88.01 192 | 68.97 107 | 91.59 43 | 92.00 95 | 66.63 276 | 75.15 248 | 92.16 93 | 57.70 212 | 95.45 68 | 63.52 254 | 88.76 130 | 90.66 185 |
|
| v144192 | | | 79.47 172 | 78.37 178 | 82.78 189 | 83.35 297 | 63.96 223 | 86.96 180 | 90.36 149 | 69.99 215 | 77.50 183 | 85.67 266 | 60.66 191 | 93.77 143 | 74.27 158 | 76.58 290 | 90.62 186 |
|
| v1240 | | | 78.99 187 | 77.78 195 | 82.64 192 | 83.21 301 | 63.54 232 | 86.62 194 | 90.30 152 | 69.74 225 | 77.33 187 | 85.68 265 | 57.04 220 | 93.76 144 | 73.13 171 | 76.92 284 | 90.62 186 |
|
| v1144 | | | 80.03 162 | 79.03 165 | 83.01 176 | 83.78 289 | 64.51 211 | 87.11 176 | 90.57 142 | 71.96 174 | 78.08 174 | 86.20 255 | 61.41 175 | 93.94 131 | 74.93 152 | 77.23 280 | 90.60 188 |
|
| 1112_ss | | | 77.40 227 | 76.43 228 | 80.32 243 | 89.11 150 | 60.41 282 | 83.65 266 | 87.72 229 | 62.13 332 | 73.05 277 | 86.72 235 | 62.58 154 | 89.97 273 | 62.11 272 | 80.80 241 | 90.59 189 |
|
| CP-MVSNet | | | 78.22 203 | 78.34 179 | 77.84 289 | 87.83 200 | 54.54 355 | 87.94 151 | 91.17 125 | 77.65 39 | 73.48 272 | 88.49 189 | 62.24 161 | 88.43 302 | 62.19 269 | 74.07 328 | 90.55 190 |
|
| testing222 | | | 74.04 274 | 72.66 278 | 78.19 284 | 87.89 196 | 55.36 346 | 81.06 302 | 79.20 351 | 71.30 185 | 74.65 259 | 83.57 313 | 39.11 369 | 88.67 299 | 51.43 348 | 85.75 176 | 90.53 191 |
|
| PS-CasMVS | | | 78.01 212 | 78.09 185 | 77.77 291 | 87.71 206 | 54.39 357 | 88.02 147 | 91.22 122 | 77.50 47 | 73.26 274 | 88.64 184 | 60.73 187 | 88.41 303 | 61.88 273 | 73.88 332 | 90.53 191 |
|
| CDS-MVSNet | | | 79.07 185 | 77.70 199 | 83.17 168 | 87.60 210 | 68.23 130 | 84.40 254 | 86.20 260 | 67.49 263 | 76.36 213 | 86.54 247 | 61.54 171 | 90.79 261 | 61.86 274 | 87.33 149 | 90.49 193 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| TAMVS | | | 78.89 190 | 77.51 204 | 83.03 175 | 87.80 201 | 67.79 141 | 84.72 241 | 85.05 274 | 67.63 260 | 76.75 203 | 87.70 208 | 62.25 160 | 90.82 260 | 58.53 304 | 87.13 152 | 90.49 193 |
|
| PEN-MVS | | | 77.73 218 | 77.69 200 | 77.84 289 | 87.07 226 | 53.91 360 | 87.91 153 | 91.18 124 | 77.56 44 | 73.14 276 | 88.82 179 | 61.23 180 | 89.17 288 | 59.95 288 | 72.37 343 | 90.43 195 |
|
| Test_1112_low_res | | | 76.40 246 | 75.44 241 | 79.27 263 | 89.28 140 | 58.09 301 | 81.69 293 | 87.07 243 | 59.53 351 | 72.48 285 | 86.67 240 | 61.30 178 | 89.33 284 | 60.81 284 | 80.15 250 | 90.41 196 |
|
| HY-MVS | | 69.67 12 | 77.95 213 | 77.15 210 | 80.36 241 | 87.57 214 | 60.21 285 | 83.37 273 | 87.78 228 | 66.11 280 | 75.37 237 | 87.06 230 | 63.27 142 | 90.48 266 | 61.38 279 | 82.43 223 | 90.40 197 |
|
| CHOSEN 1792x2688 | | | 77.63 223 | 75.69 235 | 83.44 155 | 89.98 114 | 68.58 122 | 78.70 338 | 87.50 233 | 56.38 374 | 75.80 225 | 86.84 231 | 58.67 204 | 91.40 245 | 61.58 277 | 85.75 176 | 90.34 198 |
|
| SDMVSNet | | | 80.38 154 | 80.18 140 | 80.99 228 | 89.03 151 | 64.94 203 | 80.45 314 | 89.40 177 | 75.19 103 | 76.61 208 | 89.98 148 | 60.61 193 | 87.69 311 | 76.83 133 | 83.55 207 | 90.33 199 |
|
| sd_testset | | | 77.70 221 | 77.40 205 | 78.60 274 | 89.03 151 | 60.02 286 | 79.00 333 | 85.83 265 | 75.19 103 | 76.61 208 | 89.98 148 | 54.81 232 | 85.46 332 | 62.63 265 | 83.55 207 | 90.33 199 |
|
| 114514_t | | | 80.68 146 | 79.51 152 | 84.20 122 | 94.09 38 | 67.27 156 | 89.64 87 | 91.11 128 | 58.75 359 | 74.08 266 | 90.72 136 | 58.10 208 | 95.04 92 | 69.70 203 | 89.42 120 | 90.30 201 |
|
| eth_miper_zixun_eth | | | 77.92 214 | 76.69 223 | 81.61 211 | 83.00 309 | 61.98 260 | 83.15 276 | 89.20 187 | 69.52 227 | 74.86 255 | 84.35 295 | 61.76 167 | 92.56 197 | 71.50 184 | 72.89 341 | 90.28 202 |
|
| PVSNet_Blended_VisFu | | | 82.62 107 | 81.83 116 | 84.96 92 | 90.80 94 | 69.76 90 | 88.74 122 | 91.70 110 | 69.39 228 | 78.96 151 | 88.46 190 | 65.47 125 | 94.87 100 | 74.42 156 | 88.57 133 | 90.24 203 |
|
| MVS_111021_LR | | | 82.61 108 | 82.11 108 | 84.11 124 | 88.82 156 | 71.58 55 | 85.15 231 | 86.16 261 | 74.69 116 | 80.47 134 | 91.04 128 | 62.29 159 | 90.55 265 | 80.33 101 | 90.08 110 | 90.20 204 |
|
| MSLP-MVS++ | | | 85.43 62 | 85.76 56 | 84.45 109 | 91.93 75 | 70.24 79 | 90.71 59 | 92.86 58 | 77.46 48 | 84.22 83 | 92.81 83 | 67.16 107 | 92.94 186 | 80.36 100 | 94.35 57 | 90.16 205 |
|
| mvs_tets | | | 79.13 183 | 77.77 196 | 83.22 166 | 84.70 268 | 66.37 171 | 89.17 103 | 90.19 155 | 69.38 229 | 75.40 235 | 89.46 164 | 44.17 341 | 93.15 176 | 76.78 134 | 80.70 243 | 90.14 206 |
|
| BH-RMVSNet | | | 79.61 167 | 78.44 176 | 83.14 169 | 89.38 134 | 65.93 179 | 84.95 237 | 87.15 242 | 73.56 144 | 78.19 170 | 89.79 152 | 56.67 223 | 93.36 162 | 59.53 293 | 86.74 158 | 90.13 207 |
|
| c3_l | | | 78.75 191 | 77.91 189 | 81.26 220 | 82.89 313 | 61.56 266 | 84.09 260 | 89.13 191 | 69.97 216 | 75.56 228 | 84.29 296 | 66.36 114 | 92.09 216 | 73.47 166 | 75.48 309 | 90.12 208 |
|
| v7n | | | 78.97 188 | 77.58 203 | 83.14 169 | 83.45 296 | 65.51 189 | 88.32 138 | 91.21 123 | 73.69 140 | 72.41 286 | 86.32 253 | 57.93 209 | 93.81 140 | 69.18 208 | 75.65 305 | 90.11 209 |
|
| jajsoiax | | | 79.29 179 | 77.96 187 | 83.27 162 | 84.68 269 | 66.57 169 | 89.25 102 | 90.16 156 | 69.20 236 | 75.46 232 | 89.49 161 | 45.75 331 | 93.13 178 | 76.84 132 | 80.80 241 | 90.11 209 |
|
| v148 | | | 78.72 193 | 77.80 194 | 81.47 213 | 82.73 316 | 61.96 261 | 86.30 204 | 88.08 218 | 73.26 154 | 76.18 218 | 85.47 271 | 62.46 156 | 92.36 206 | 71.92 181 | 73.82 333 | 90.09 211 |
|
| GBi-Net | | | 78.40 199 | 77.40 205 | 81.40 216 | 87.60 210 | 63.01 245 | 88.39 133 | 89.28 181 | 71.63 177 | 75.34 238 | 87.28 219 | 54.80 233 | 91.11 251 | 62.72 261 | 79.57 255 | 90.09 211 |
|
| test1 | | | 78.40 199 | 77.40 205 | 81.40 216 | 87.60 210 | 63.01 245 | 88.39 133 | 89.28 181 | 71.63 177 | 75.34 238 | 87.28 219 | 54.80 233 | 91.11 251 | 62.72 261 | 79.57 255 | 90.09 211 |
|
| FMVSNet1 | | | 77.44 225 | 76.12 232 | 81.40 216 | 86.81 230 | 63.01 245 | 88.39 133 | 89.28 181 | 70.49 204 | 74.39 263 | 87.28 219 | 49.06 304 | 91.11 251 | 60.91 282 | 78.52 266 | 90.09 211 |
|
| WR-MVS_H | | | 78.51 198 | 78.49 174 | 78.56 276 | 88.02 190 | 56.38 332 | 88.43 131 | 92.67 67 | 77.14 57 | 73.89 267 | 87.55 214 | 66.25 116 | 89.24 287 | 58.92 299 | 73.55 335 | 90.06 215 |
|
| DTE-MVSNet | | | 76.99 232 | 76.80 218 | 77.54 297 | 86.24 238 | 53.06 369 | 87.52 162 | 90.66 138 | 77.08 60 | 72.50 284 | 88.67 183 | 60.48 195 | 89.52 281 | 57.33 316 | 70.74 355 | 90.05 216 |
|
| v8 | | | 79.97 164 | 79.02 166 | 82.80 186 | 84.09 281 | 64.50 213 | 87.96 149 | 90.29 153 | 74.13 132 | 75.24 245 | 86.81 232 | 62.88 151 | 93.89 138 | 74.39 157 | 75.40 314 | 90.00 217 |
|
| thres600view7 | | | 76.50 241 | 75.44 241 | 79.68 256 | 89.40 132 | 57.16 318 | 85.53 226 | 83.23 300 | 73.79 138 | 76.26 215 | 87.09 228 | 51.89 268 | 91.89 223 | 48.05 370 | 83.72 204 | 90.00 217 |
|
| thres400 | | | 76.50 241 | 75.37 245 | 79.86 251 | 89.13 146 | 57.65 312 | 85.17 229 | 83.60 292 | 73.41 150 | 76.45 210 | 86.39 251 | 52.12 260 | 91.95 220 | 48.33 365 | 83.75 201 | 90.00 217 |
|
| cl22 | | | 78.07 209 | 77.01 212 | 81.23 221 | 82.37 325 | 61.83 263 | 83.55 270 | 87.98 220 | 68.96 244 | 75.06 251 | 83.87 303 | 61.40 176 | 91.88 224 | 73.53 164 | 76.39 294 | 89.98 220 |
|
| OPM-MVS | | | 83.50 92 | 82.95 96 | 85.14 85 | 88.79 159 | 70.95 69 | 89.13 108 | 91.52 114 | 77.55 45 | 80.96 130 | 91.75 102 | 60.71 188 | 94.50 112 | 79.67 107 | 86.51 162 | 89.97 221 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| baseline2 | | | 75.70 255 | 73.83 266 | 81.30 219 | 83.26 300 | 61.79 264 | 82.57 285 | 80.65 333 | 66.81 267 | 66.88 343 | 83.42 315 | 57.86 211 | 92.19 213 | 63.47 255 | 79.57 255 | 89.91 222 |
|
| v10 | | | 79.74 166 | 78.67 170 | 82.97 179 | 84.06 282 | 64.95 202 | 87.88 155 | 90.62 139 | 73.11 157 | 75.11 249 | 86.56 246 | 61.46 174 | 94.05 127 | 73.68 162 | 75.55 307 | 89.90 223 |
|
| MVSTER | | | 79.01 186 | 77.88 191 | 82.38 197 | 83.07 306 | 64.80 207 | 84.08 261 | 88.95 199 | 69.01 243 | 78.69 156 | 87.17 226 | 54.70 237 | 92.43 202 | 74.69 153 | 80.57 245 | 89.89 224 |
|
| ACMP | | 74.13 6 | 81.51 129 | 80.57 131 | 84.36 112 | 89.42 130 | 68.69 119 | 89.97 77 | 91.50 118 | 74.46 122 | 75.04 252 | 90.41 141 | 53.82 245 | 94.54 109 | 77.56 123 | 82.91 216 | 89.86 225 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| LPG-MVS_test | | | 82.08 114 | 81.27 120 | 84.50 106 | 89.23 142 | 68.76 112 | 90.22 73 | 91.94 99 | 75.37 99 | 76.64 206 | 91.51 111 | 54.29 240 | 94.91 95 | 78.44 114 | 83.78 198 | 89.83 226 |
|
| LGP-MVS_train | | | | | 84.50 106 | 89.23 142 | 68.76 112 | | 91.94 99 | 75.37 99 | 76.64 206 | 91.51 111 | 54.29 240 | 94.91 95 | 78.44 114 | 83.78 198 | 89.83 226 |
|
| V42 | | | 79.38 178 | 78.24 182 | 82.83 183 | 81.10 344 | 65.50 190 | 85.55 224 | 89.82 164 | 71.57 181 | 78.21 169 | 86.12 257 | 60.66 191 | 93.18 175 | 75.64 144 | 75.46 311 | 89.81 228 |
|
| MAR-MVS | | | 81.84 119 | 80.70 129 | 85.27 82 | 91.32 82 | 71.53 56 | 89.82 79 | 90.92 131 | 69.77 222 | 78.50 162 | 86.21 254 | 62.36 158 | 94.52 111 | 65.36 242 | 92.05 82 | 89.77 229 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| DIV-MVS_self_test | | | 77.72 219 | 76.76 220 | 80.58 237 | 82.48 323 | 60.48 280 | 83.09 278 | 87.86 225 | 69.22 234 | 74.38 264 | 85.24 275 | 62.10 163 | 91.53 238 | 71.09 187 | 75.40 314 | 89.74 230 |
|
| cl____ | | | 77.72 219 | 76.76 220 | 80.58 237 | 82.49 322 | 60.48 280 | 83.09 278 | 87.87 224 | 69.22 234 | 74.38 264 | 85.22 277 | 62.10 163 | 91.53 238 | 71.09 187 | 75.41 313 | 89.73 231 |
|
| miper_ehance_all_eth | | | 78.59 197 | 77.76 197 | 81.08 226 | 82.66 318 | 61.56 266 | 83.65 266 | 89.15 189 | 68.87 245 | 75.55 229 | 83.79 307 | 66.49 112 | 92.03 217 | 73.25 169 | 76.39 294 | 89.64 232 |
|
| anonymousdsp | | | 78.60 196 | 77.15 210 | 82.98 178 | 80.51 350 | 67.08 161 | 87.24 173 | 89.53 174 | 65.66 287 | 75.16 247 | 87.19 225 | 52.52 253 | 92.25 211 | 77.17 128 | 79.34 260 | 89.61 233 |
|
| FMVSNet2 | | | 78.20 205 | 77.21 209 | 81.20 222 | 87.60 210 | 62.89 251 | 87.47 164 | 89.02 194 | 71.63 177 | 75.29 244 | 87.28 219 | 54.80 233 | 91.10 254 | 62.38 266 | 79.38 259 | 89.61 233 |
|
| baseline1 | | | 76.98 233 | 76.75 222 | 77.66 292 | 88.13 184 | 55.66 343 | 85.12 232 | 81.89 320 | 73.04 159 | 76.79 201 | 88.90 176 | 62.43 157 | 87.78 310 | 63.30 258 | 71.18 353 | 89.55 235 |
|
| ETVMVS | | | 72.25 297 | 71.05 296 | 75.84 310 | 87.77 205 | 51.91 373 | 79.39 326 | 74.98 375 | 69.26 232 | 73.71 269 | 82.95 323 | 40.82 362 | 86.14 323 | 46.17 378 | 84.43 191 | 89.47 236 |
|
| FMVSNet3 | | | 77.88 215 | 76.85 217 | 80.97 230 | 86.84 229 | 62.36 254 | 86.52 197 | 88.77 203 | 71.13 188 | 75.34 238 | 86.66 241 | 54.07 243 | 91.10 254 | 62.72 261 | 79.57 255 | 89.45 237 |
|
| miper_enhance_ethall | | | 77.87 216 | 76.86 216 | 80.92 231 | 81.65 332 | 61.38 268 | 82.68 283 | 88.98 196 | 65.52 289 | 75.47 230 | 82.30 334 | 65.76 124 | 92.00 219 | 72.95 172 | 76.39 294 | 89.39 238 |
|
| testing11 | | | 75.14 265 | 74.01 261 | 78.53 278 | 88.16 181 | 56.38 332 | 80.74 308 | 80.42 338 | 70.67 198 | 72.69 283 | 83.72 310 | 43.61 345 | 89.86 274 | 62.29 268 | 83.76 200 | 89.36 239 |
|
| cascas | | | 76.72 238 | 74.64 252 | 82.99 177 | 85.78 247 | 65.88 181 | 82.33 286 | 89.21 186 | 60.85 340 | 72.74 280 | 81.02 345 | 47.28 313 | 93.75 145 | 67.48 224 | 85.02 179 | 89.34 240 |
|
| Fast-Effi-MVS+-dtu | | | 78.02 211 | 76.49 226 | 82.62 193 | 83.16 305 | 66.96 165 | 86.94 182 | 87.45 235 | 72.45 165 | 71.49 298 | 84.17 300 | 54.79 236 | 91.58 233 | 67.61 222 | 80.31 248 | 89.30 241 |
|
| IB-MVS | | 68.01 15 | 75.85 254 | 73.36 270 | 83.31 160 | 84.76 267 | 66.03 175 | 83.38 272 | 85.06 273 | 70.21 211 | 69.40 320 | 81.05 344 | 45.76 330 | 94.66 108 | 65.10 245 | 75.49 308 | 89.25 242 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| thres100view900 | | | 76.50 241 | 75.55 240 | 79.33 262 | 89.52 125 | 56.99 321 | 85.83 218 | 83.23 300 | 73.94 134 | 76.32 214 | 87.12 227 | 51.89 268 | 91.95 220 | 48.33 365 | 83.75 201 | 89.07 243 |
|
| tfpn200view9 | | | 76.42 245 | 75.37 245 | 79.55 261 | 89.13 146 | 57.65 312 | 85.17 229 | 83.60 292 | 73.41 150 | 76.45 210 | 86.39 251 | 52.12 260 | 91.95 220 | 48.33 365 | 83.75 201 | 89.07 243 |
|
| xiu_mvs_v1_base_debu | | | 80.80 142 | 79.72 148 | 84.03 138 | 87.35 215 | 70.19 82 | 85.56 221 | 88.77 203 | 69.06 240 | 81.83 115 | 88.16 199 | 50.91 279 | 92.85 188 | 78.29 118 | 87.56 145 | 89.06 245 |
|
| xiu_mvs_v1_base | | | 80.80 142 | 79.72 148 | 84.03 138 | 87.35 215 | 70.19 82 | 85.56 221 | 88.77 203 | 69.06 240 | 81.83 115 | 88.16 199 | 50.91 279 | 92.85 188 | 78.29 118 | 87.56 145 | 89.06 245 |
|
| xiu_mvs_v1_base_debi | | | 80.80 142 | 79.72 148 | 84.03 138 | 87.35 215 | 70.19 82 | 85.56 221 | 88.77 203 | 69.06 240 | 81.83 115 | 88.16 199 | 50.91 279 | 92.85 188 | 78.29 118 | 87.56 145 | 89.06 245 |
|
| EPNet_dtu | | | 75.46 259 | 74.86 250 | 77.23 301 | 82.57 320 | 54.60 354 | 86.89 184 | 83.09 304 | 71.64 176 | 66.25 354 | 85.86 261 | 55.99 226 | 88.04 307 | 54.92 330 | 86.55 161 | 89.05 248 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| pm-mvs1 | | | 77.25 230 | 76.68 224 | 78.93 269 | 84.22 278 | 58.62 296 | 86.41 199 | 88.36 214 | 71.37 184 | 73.31 273 | 88.01 205 | 61.22 181 | 89.15 289 | 64.24 252 | 73.01 340 | 89.03 249 |
|
| PVSNet_Blended | | | 80.98 135 | 80.34 136 | 82.90 181 | 88.85 153 | 65.40 191 | 84.43 252 | 92.00 95 | 67.62 261 | 78.11 172 | 85.05 282 | 66.02 120 | 94.27 118 | 71.52 182 | 89.50 118 | 89.01 250 |
|
| PAPM | | | 77.68 222 | 76.40 229 | 81.51 212 | 87.29 222 | 61.85 262 | 83.78 263 | 89.59 172 | 64.74 298 | 71.23 299 | 88.70 181 | 62.59 153 | 93.66 148 | 52.66 341 | 87.03 154 | 89.01 250 |
|
| WTY-MVS | | | 75.65 256 | 75.68 236 | 75.57 314 | 86.40 237 | 56.82 323 | 77.92 350 | 82.40 315 | 65.10 293 | 76.18 218 | 87.72 207 | 63.13 149 | 80.90 362 | 60.31 286 | 81.96 228 | 89.00 252 |
|
| æ— å…ˆéªŒ | | | | | | | | 87.48 163 | 88.98 196 | 60.00 346 | | | | 94.12 125 | 67.28 226 | | 88.97 253 |
|
| GSMVS | | | | | | | | | | | | | | | | | 88.96 254 |
|
| sam_mvs1 | | | | | | | | | | | | | 51.32 275 | | | | 88.96 254 |
|
| SCA | | | 74.22 271 | 72.33 282 | 79.91 250 | 84.05 283 | 62.17 258 | 79.96 321 | 79.29 350 | 66.30 279 | 72.38 287 | 80.13 355 | 51.95 266 | 88.60 300 | 59.25 295 | 77.67 278 | 88.96 254 |
|
| miper_lstm_enhance | | | 74.11 273 | 73.11 273 | 77.13 302 | 80.11 354 | 59.62 290 | 72.23 378 | 86.92 248 | 66.76 269 | 70.40 305 | 82.92 324 | 56.93 221 | 82.92 351 | 69.06 210 | 72.63 342 | 88.87 257 |
|
| ACMM | | 73.20 8 | 80.78 145 | 79.84 146 | 83.58 152 | 89.31 138 | 68.37 126 | 89.99 76 | 91.60 112 | 70.28 208 | 77.25 189 | 89.66 155 | 53.37 250 | 93.53 154 | 74.24 159 | 82.85 217 | 88.85 258 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| pmmvs6 | | | 74.69 267 | 73.39 269 | 78.61 273 | 81.38 339 | 57.48 315 | 86.64 193 | 87.95 222 | 64.99 297 | 70.18 308 | 86.61 242 | 50.43 286 | 89.52 281 | 62.12 271 | 70.18 358 | 88.83 259 |
|
| 原ACMM1 | | | | | 84.35 113 | 93.01 60 | 68.79 110 | | 92.44 77 | 63.96 312 | 81.09 128 | 91.57 110 | 66.06 119 | 95.45 68 | 67.19 228 | 94.82 46 | 88.81 260 |
|
| CNLPA | | | 78.08 208 | 76.79 219 | 81.97 204 | 90.40 102 | 71.07 65 | 87.59 161 | 84.55 279 | 66.03 283 | 72.38 287 | 89.64 156 | 57.56 214 | 86.04 324 | 59.61 292 | 83.35 211 | 88.79 261 |
|
| UWE-MVS | | | 72.13 298 | 71.49 289 | 74.03 333 | 86.66 234 | 47.70 392 | 81.40 299 | 76.89 368 | 63.60 314 | 75.59 227 | 84.22 299 | 39.94 365 | 85.62 329 | 48.98 362 | 86.13 169 | 88.77 262 |
|
| UBG | | | 73.08 288 | 72.27 283 | 75.51 316 | 88.02 190 | 51.29 381 | 78.35 345 | 77.38 363 | 65.52 289 | 73.87 268 | 82.36 332 | 45.55 332 | 86.48 320 | 55.02 329 | 84.39 192 | 88.75 263 |
|
| K. test v3 | | | 71.19 303 | 68.51 315 | 79.21 265 | 83.04 308 | 57.78 311 | 84.35 255 | 76.91 367 | 72.90 162 | 62.99 373 | 82.86 326 | 39.27 367 | 91.09 256 | 61.65 276 | 52.66 399 | 88.75 263 |
|
| 旧先验1 | | | | | | 91.96 74 | 65.79 184 | | 86.37 257 | | | 93.08 76 | 69.31 83 | | | 92.74 73 | 88.74 265 |
|
| PatchmatchNet |  | | 73.12 287 | 71.33 293 | 78.49 280 | 83.18 303 | 60.85 274 | 79.63 323 | 78.57 354 | 64.13 305 | 71.73 294 | 79.81 360 | 51.20 277 | 85.97 325 | 57.40 315 | 76.36 299 | 88.66 266 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| SixPastTwentyTwo | | | 73.37 282 | 71.26 295 | 79.70 255 | 85.08 263 | 57.89 307 | 85.57 220 | 83.56 294 | 71.03 192 | 65.66 356 | 85.88 260 | 42.10 355 | 92.57 196 | 59.11 297 | 63.34 380 | 88.65 267 |
|
| PS-MVSNAJ | | | 81.69 123 | 81.02 125 | 83.70 149 | 89.51 126 | 68.21 131 | 84.28 256 | 90.09 158 | 70.79 195 | 81.26 127 | 85.62 268 | 63.15 146 | 94.29 116 | 75.62 145 | 88.87 127 | 88.59 268 |
|
| xiu_mvs_v2_base | | | 81.69 123 | 81.05 124 | 83.60 151 | 89.15 145 | 68.03 136 | 84.46 250 | 90.02 159 | 70.67 198 | 81.30 126 | 86.53 248 | 63.17 145 | 94.19 123 | 75.60 146 | 88.54 134 | 88.57 269 |
|
| MonoMVSNet | | | 76.49 244 | 75.80 233 | 78.58 275 | 81.55 335 | 58.45 297 | 86.36 202 | 86.22 259 | 74.87 113 | 74.73 257 | 83.73 309 | 51.79 271 | 88.73 297 | 70.78 189 | 72.15 346 | 88.55 270 |
|
| CostFormer | | | 75.24 264 | 73.90 264 | 79.27 263 | 82.65 319 | 58.27 300 | 80.80 304 | 82.73 313 | 61.57 335 | 75.33 242 | 83.13 320 | 55.52 228 | 91.07 257 | 64.98 246 | 78.34 271 | 88.45 271 |
|
| lessismore_v0 | | | | | 78.97 268 | 81.01 345 | 57.15 319 | | 65.99 402 | | 61.16 379 | 82.82 327 | 39.12 368 | 91.34 247 | 59.67 291 | 46.92 406 | 88.43 272 |
|
| OpenMVS |  | 72.83 10 | 79.77 165 | 78.33 180 | 84.09 129 | 85.17 258 | 69.91 87 | 90.57 61 | 90.97 130 | 66.70 270 | 72.17 290 | 91.91 97 | 54.70 237 | 93.96 128 | 61.81 275 | 90.95 97 | 88.41 273 |
|
| reproduce_monomvs | | | 75.40 262 | 74.38 258 | 78.46 281 | 83.92 286 | 57.80 310 | 83.78 263 | 86.94 246 | 73.47 148 | 72.25 289 | 84.47 290 | 38.74 370 | 89.27 286 | 75.32 150 | 70.53 356 | 88.31 274 |
|
| OurMVSNet-221017-0 | | | 74.26 270 | 72.42 281 | 79.80 253 | 83.76 290 | 59.59 291 | 85.92 214 | 86.64 251 | 66.39 278 | 66.96 342 | 87.58 211 | 39.46 366 | 91.60 232 | 65.76 240 | 69.27 361 | 88.22 275 |
|
| LS3D | | | 76.95 234 | 74.82 251 | 83.37 159 | 90.45 100 | 67.36 153 | 89.15 107 | 86.94 246 | 61.87 334 | 69.52 319 | 90.61 138 | 51.71 272 | 94.53 110 | 46.38 377 | 86.71 159 | 88.21 276 |
|
| WBMVS | | | 73.43 281 | 72.81 276 | 75.28 320 | 87.91 195 | 50.99 383 | 78.59 341 | 81.31 328 | 65.51 291 | 74.47 262 | 84.83 285 | 46.39 319 | 86.68 317 | 58.41 305 | 77.86 274 | 88.17 277 |
|
| XVG-ACMP-BASELINE | | | 76.11 250 | 74.27 260 | 81.62 209 | 83.20 302 | 64.67 209 | 83.60 269 | 89.75 167 | 69.75 223 | 71.85 293 | 87.09 228 | 32.78 387 | 92.11 215 | 69.99 200 | 80.43 247 | 88.09 278 |
|
| tpm2 | | | 73.26 285 | 71.46 290 | 78.63 272 | 83.34 298 | 56.71 326 | 80.65 310 | 80.40 339 | 56.63 373 | 73.55 271 | 82.02 339 | 51.80 270 | 91.24 249 | 56.35 325 | 78.42 269 | 87.95 279 |
|
| MDTV_nov1_ep13_2view | | | | | | | 37.79 415 | 75.16 366 | | 55.10 378 | 66.53 349 | | 49.34 299 | | 53.98 334 | | 87.94 280 |
|
| Patchmatch-test | | | 64.82 352 | 63.24 353 | 69.57 363 | 79.42 366 | 49.82 389 | 63.49 409 | 69.05 395 | 51.98 388 | 59.95 384 | 80.13 355 | 50.91 279 | 70.98 403 | 40.66 394 | 73.57 334 | 87.90 281 |
|
| PLC |  | 70.83 11 | 78.05 210 | 76.37 230 | 83.08 172 | 91.88 77 | 67.80 140 | 88.19 142 | 89.46 176 | 64.33 304 | 69.87 316 | 88.38 192 | 53.66 246 | 93.58 149 | 58.86 300 | 82.73 219 | 87.86 282 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| tpm | | | 72.37 295 | 71.71 287 | 74.35 330 | 82.19 326 | 52.00 371 | 79.22 329 | 77.29 364 | 64.56 300 | 72.95 279 | 83.68 312 | 51.35 274 | 83.26 350 | 58.33 307 | 75.80 303 | 87.81 283 |
|
| Patchmatch-RL test | | | 70.24 315 | 67.78 328 | 77.61 294 | 77.43 374 | 59.57 292 | 71.16 382 | 70.33 389 | 62.94 321 | 68.65 327 | 72.77 394 | 50.62 283 | 85.49 331 | 69.58 205 | 66.58 371 | 87.77 284 |
|
| F-COLMAP | | | 76.38 247 | 74.33 259 | 82.50 195 | 89.28 140 | 66.95 166 | 88.41 132 | 89.03 193 | 64.05 309 | 66.83 344 | 88.61 185 | 46.78 317 | 92.89 187 | 57.48 313 | 78.55 265 | 87.67 285 |
|
| Baseline_NR-MVSNet | | | 78.15 207 | 78.33 180 | 77.61 294 | 85.79 246 | 56.21 336 | 86.78 189 | 85.76 266 | 73.60 143 | 77.93 177 | 87.57 212 | 65.02 129 | 88.99 291 | 67.14 229 | 75.33 316 | 87.63 286 |
|
| CL-MVSNet_self_test | | | 72.37 295 | 71.46 290 | 75.09 322 | 79.49 365 | 53.53 362 | 80.76 307 | 85.01 275 | 69.12 238 | 70.51 303 | 82.05 338 | 57.92 210 | 84.13 342 | 52.27 343 | 66.00 374 | 87.60 287 |
|
| ACMH+ | | 68.96 14 | 76.01 252 | 74.01 261 | 82.03 202 | 88.60 166 | 65.31 195 | 88.86 116 | 87.55 231 | 70.25 210 | 67.75 333 | 87.47 217 | 41.27 358 | 93.19 174 | 58.37 306 | 75.94 302 | 87.60 287 |
|
| 1314 | | | 76.53 240 | 75.30 247 | 80.21 245 | 83.93 285 | 62.32 256 | 84.66 242 | 88.81 201 | 60.23 344 | 70.16 310 | 84.07 302 | 55.30 230 | 90.73 263 | 67.37 225 | 83.21 213 | 87.59 289 |
|
| API-MVS | | | 81.99 117 | 81.23 121 | 84.26 121 | 90.94 90 | 70.18 85 | 91.10 55 | 89.32 180 | 71.51 182 | 78.66 158 | 88.28 195 | 65.26 126 | 95.10 90 | 64.74 248 | 91.23 94 | 87.51 290 |
|
| AdaColmap |  | | 80.58 151 | 79.42 154 | 84.06 133 | 93.09 57 | 68.91 108 | 89.36 99 | 88.97 198 | 69.27 231 | 75.70 226 | 89.69 154 | 57.20 219 | 95.77 59 | 63.06 259 | 88.41 137 | 87.50 291 |
|
| PVSNet_BlendedMVS | | | 80.60 148 | 80.02 141 | 82.36 198 | 88.85 153 | 65.40 191 | 86.16 208 | 92.00 95 | 69.34 230 | 78.11 172 | 86.09 258 | 66.02 120 | 94.27 118 | 71.52 182 | 82.06 227 | 87.39 292 |
|
| sss | | | 73.60 279 | 73.64 268 | 73.51 337 | 82.80 314 | 55.01 351 | 76.12 357 | 81.69 323 | 62.47 328 | 74.68 258 | 85.85 262 | 57.32 217 | 78.11 373 | 60.86 283 | 80.93 238 | 87.39 292 |
|
| IterMVS-SCA-FT | | | 75.43 260 | 73.87 265 | 80.11 247 | 82.69 317 | 64.85 206 | 81.57 295 | 83.47 296 | 69.16 237 | 70.49 304 | 84.15 301 | 51.95 266 | 88.15 305 | 69.23 207 | 72.14 347 | 87.34 294 |
|
| PVSNet | | 64.34 18 | 72.08 299 | 70.87 299 | 75.69 312 | 86.21 239 | 56.44 330 | 74.37 372 | 80.73 332 | 62.06 333 | 70.17 309 | 82.23 336 | 42.86 349 | 83.31 349 | 54.77 331 | 84.45 190 | 87.32 295 |
|
| æ–°å‡ ä½•1 | | | | | 83.42 156 | 93.13 54 | 70.71 74 | | 85.48 269 | 57.43 369 | 81.80 118 | 91.98 96 | 63.28 141 | 92.27 210 | 64.60 249 | 92.99 70 | 87.27 296 |
|
| TR-MVS | | | 77.44 225 | 76.18 231 | 81.20 222 | 88.24 179 | 63.24 240 | 84.61 245 | 86.40 256 | 67.55 262 | 77.81 178 | 86.48 249 | 54.10 242 | 93.15 176 | 57.75 312 | 82.72 220 | 87.20 297 |
|
| TransMVSNet (Re) | | | 75.39 263 | 74.56 254 | 77.86 288 | 85.50 253 | 57.10 320 | 86.78 189 | 86.09 263 | 72.17 171 | 71.53 297 | 87.34 218 | 63.01 150 | 89.31 285 | 56.84 321 | 61.83 382 | 87.17 298 |
|
| ACMH | | 67.68 16 | 75.89 253 | 73.93 263 | 81.77 207 | 88.71 163 | 66.61 168 | 88.62 127 | 89.01 195 | 69.81 219 | 66.78 345 | 86.70 239 | 41.95 357 | 91.51 240 | 55.64 327 | 78.14 272 | 87.17 298 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| KD-MVS_self_test | | | 68.81 326 | 67.59 332 | 72.46 347 | 74.29 387 | 45.45 398 | 77.93 349 | 87.00 244 | 63.12 316 | 63.99 368 | 78.99 368 | 42.32 352 | 84.77 339 | 56.55 324 | 64.09 379 | 87.16 300 |
|
| EPMVS | | | 69.02 325 | 68.16 319 | 71.59 351 | 79.61 363 | 49.80 390 | 77.40 352 | 66.93 400 | 62.82 324 | 70.01 311 | 79.05 364 | 45.79 329 | 77.86 375 | 56.58 323 | 75.26 318 | 87.13 301 |
|
| CR-MVSNet | | | 73.37 282 | 71.27 294 | 79.67 257 | 81.32 342 | 65.19 196 | 75.92 359 | 80.30 340 | 59.92 347 | 72.73 281 | 81.19 342 | 52.50 254 | 86.69 316 | 59.84 289 | 77.71 276 | 87.11 302 |
|
| RPMNet | | | 73.51 280 | 70.49 302 | 82.58 194 | 81.32 342 | 65.19 196 | 75.92 359 | 92.27 84 | 57.60 367 | 72.73 281 | 76.45 382 | 52.30 257 | 95.43 70 | 48.14 369 | 77.71 276 | 87.11 302 |
|
| test_vis1_n_1920 | | | 75.52 258 | 75.78 234 | 74.75 327 | 79.84 358 | 57.44 316 | 83.26 274 | 85.52 268 | 62.83 323 | 79.34 148 | 86.17 256 | 45.10 336 | 79.71 366 | 78.75 111 | 81.21 236 | 87.10 304 |
|
| XXY-MVS | | | 75.41 261 | 75.56 239 | 74.96 323 | 83.59 293 | 57.82 309 | 80.59 311 | 83.87 290 | 66.54 277 | 74.93 254 | 88.31 194 | 63.24 143 | 80.09 365 | 62.16 270 | 76.85 287 | 86.97 305 |
|
| tpmrst | | | 72.39 293 | 72.13 284 | 73.18 341 | 80.54 349 | 49.91 388 | 79.91 322 | 79.08 352 | 63.11 317 | 71.69 295 | 79.95 357 | 55.32 229 | 82.77 352 | 65.66 241 | 73.89 331 | 86.87 306 |
|
| thres200 | | | 75.55 257 | 74.47 256 | 78.82 270 | 87.78 204 | 57.85 308 | 83.07 280 | 83.51 295 | 72.44 167 | 75.84 224 | 84.42 291 | 52.08 263 | 91.75 228 | 47.41 372 | 83.64 206 | 86.86 307 |
|
| ITE_SJBPF | | | | | 78.22 283 | 81.77 331 | 60.57 278 | | 83.30 298 | 69.25 233 | 67.54 335 | 87.20 224 | 36.33 380 | 87.28 314 | 54.34 333 | 74.62 325 | 86.80 308 |
|
| test222 | | | | | | 91.50 80 | 68.26 129 | 84.16 258 | 83.20 303 | 54.63 380 | 79.74 141 | 91.63 107 | 58.97 203 | | | 91.42 91 | 86.77 309 |
|
| MIMVSNet | | | 70.69 310 | 69.30 309 | 74.88 324 | 84.52 273 | 56.35 334 | 75.87 361 | 79.42 348 | 64.59 299 | 67.76 332 | 82.41 331 | 41.10 359 | 81.54 358 | 46.64 376 | 81.34 233 | 86.75 310 |
|
| BH-untuned | | | 79.47 172 | 78.60 172 | 82.05 201 | 89.19 144 | 65.91 180 | 86.07 210 | 88.52 212 | 72.18 170 | 75.42 234 | 87.69 209 | 61.15 182 | 93.54 153 | 60.38 285 | 86.83 157 | 86.70 311 |
|
| LTVRE_ROB | | 69.57 13 | 76.25 248 | 74.54 255 | 81.41 215 | 88.60 166 | 64.38 217 | 79.24 328 | 89.12 192 | 70.76 197 | 69.79 318 | 87.86 206 | 49.09 303 | 93.20 172 | 56.21 326 | 80.16 249 | 86.65 312 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| testdata | | | | | 79.97 249 | 90.90 91 | 64.21 219 | | 84.71 276 | 59.27 353 | 85.40 60 | 92.91 78 | 62.02 165 | 89.08 290 | 68.95 211 | 91.37 92 | 86.63 313 |
|
| MIMVSNet1 | | | 68.58 329 | 66.78 339 | 73.98 334 | 80.07 355 | 51.82 375 | 80.77 306 | 84.37 280 | 64.40 302 | 59.75 385 | 82.16 337 | 36.47 379 | 83.63 346 | 42.73 389 | 70.33 357 | 86.48 314 |
|
| tfpnnormal | | | 74.39 268 | 73.16 272 | 78.08 286 | 86.10 244 | 58.05 302 | 84.65 244 | 87.53 232 | 70.32 207 | 71.22 300 | 85.63 267 | 54.97 231 | 89.86 274 | 43.03 388 | 75.02 321 | 86.32 315 |
|
| D2MVS | | | 74.82 266 | 73.21 271 | 79.64 258 | 79.81 359 | 62.56 253 | 80.34 316 | 87.35 236 | 64.37 303 | 68.86 325 | 82.66 329 | 46.37 321 | 90.10 270 | 67.91 220 | 81.24 235 | 86.25 316 |
|
| tpm cat1 | | | 70.57 311 | 68.31 317 | 77.35 299 | 82.41 324 | 57.95 306 | 78.08 347 | 80.22 342 | 52.04 386 | 68.54 329 | 77.66 377 | 52.00 265 | 87.84 309 | 51.77 344 | 72.07 348 | 86.25 316 |
|
| CVMVSNet | | | 72.99 290 | 72.58 279 | 74.25 331 | 84.28 276 | 50.85 384 | 86.41 199 | 83.45 297 | 44.56 399 | 73.23 275 | 87.54 215 | 49.38 298 | 85.70 327 | 65.90 238 | 78.44 268 | 86.19 318 |
|
| AllTest | | | 70.96 306 | 68.09 321 | 79.58 259 | 85.15 260 | 63.62 228 | 84.58 246 | 79.83 344 | 62.31 329 | 60.32 382 | 86.73 233 | 32.02 388 | 88.96 294 | 50.28 354 | 71.57 351 | 86.15 319 |
|
| TestCases | | | | | 79.58 259 | 85.15 260 | 63.62 228 | | 79.83 344 | 62.31 329 | 60.32 382 | 86.73 233 | 32.02 388 | 88.96 294 | 50.28 354 | 71.57 351 | 86.15 319 |
|
| test-LLR | | | 72.94 291 | 72.43 280 | 74.48 328 | 81.35 340 | 58.04 303 | 78.38 342 | 77.46 360 | 66.66 271 | 69.95 314 | 79.00 366 | 48.06 309 | 79.24 367 | 66.13 234 | 84.83 181 | 86.15 319 |
|
| test-mter | | | 71.41 302 | 70.39 305 | 74.48 328 | 81.35 340 | 58.04 303 | 78.38 342 | 77.46 360 | 60.32 343 | 69.95 314 | 79.00 366 | 36.08 381 | 79.24 367 | 66.13 234 | 84.83 181 | 86.15 319 |
|
| IterMVS | | | 74.29 269 | 72.94 275 | 78.35 282 | 81.53 336 | 63.49 234 | 81.58 294 | 82.49 314 | 68.06 258 | 69.99 313 | 83.69 311 | 51.66 273 | 85.54 330 | 65.85 239 | 71.64 350 | 86.01 323 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| DP-MVS | | | 76.78 237 | 74.57 253 | 83.42 156 | 93.29 48 | 69.46 97 | 88.55 129 | 83.70 291 | 63.98 311 | 70.20 307 | 88.89 177 | 54.01 244 | 94.80 102 | 46.66 374 | 81.88 230 | 86.01 323 |
|
| ppachtmachnet_test | | | 70.04 317 | 67.34 335 | 78.14 285 | 79.80 360 | 61.13 269 | 79.19 330 | 80.59 334 | 59.16 354 | 65.27 359 | 79.29 363 | 46.75 318 | 87.29 313 | 49.33 360 | 66.72 369 | 86.00 325 |
|
| mmtdpeth | | | 74.16 272 | 73.01 274 | 77.60 296 | 83.72 291 | 61.13 269 | 85.10 233 | 85.10 272 | 72.06 173 | 77.21 195 | 80.33 353 | 43.84 343 | 85.75 326 | 77.14 129 | 52.61 400 | 85.91 326 |
|
| test_fmvs1_n | | | 70.86 308 | 70.24 306 | 72.73 344 | 72.51 401 | 55.28 348 | 81.27 300 | 79.71 346 | 51.49 390 | 78.73 155 | 84.87 284 | 27.54 397 | 77.02 378 | 76.06 139 | 79.97 253 | 85.88 327 |
|
| Patchmtry | | | 70.74 309 | 69.16 312 | 75.49 317 | 80.72 346 | 54.07 359 | 74.94 370 | 80.30 340 | 58.34 360 | 70.01 311 | 81.19 342 | 52.50 254 | 86.54 318 | 53.37 338 | 71.09 354 | 85.87 328 |
|
| WB-MVSnew | | | 71.96 300 | 71.65 288 | 72.89 342 | 84.67 272 | 51.88 374 | 82.29 287 | 77.57 359 | 62.31 329 | 73.67 270 | 83.00 322 | 53.49 249 | 81.10 361 | 45.75 381 | 82.13 226 | 85.70 329 |
|
| test_fmvs2 | | | 68.35 333 | 67.48 333 | 70.98 359 | 69.50 404 | 51.95 372 | 80.05 319 | 76.38 370 | 49.33 393 | 74.65 259 | 84.38 293 | 23.30 406 | 75.40 394 | 74.51 155 | 75.17 320 | 85.60 330 |
|
| ambc | | | | | 75.24 321 | 73.16 396 | 50.51 386 | 63.05 410 | 87.47 234 | | 64.28 365 | 77.81 376 | 17.80 412 | 89.73 278 | 57.88 311 | 60.64 386 | 85.49 331 |
|
| mvs5depth | | | 69.45 322 | 67.45 334 | 75.46 318 | 73.93 388 | 55.83 340 | 79.19 330 | 83.23 300 | 66.89 266 | 71.63 296 | 83.32 316 | 33.69 386 | 85.09 335 | 59.81 290 | 55.34 396 | 85.46 332 |
|
| UnsupCasMVSNet_eth | | | 67.33 338 | 65.99 342 | 71.37 353 | 73.48 393 | 51.47 379 | 75.16 366 | 85.19 271 | 65.20 292 | 60.78 380 | 80.93 349 | 42.35 351 | 77.20 377 | 57.12 317 | 53.69 398 | 85.44 333 |
|
| PatchT | | | 68.46 332 | 67.85 324 | 70.29 361 | 80.70 347 | 43.93 405 | 72.47 377 | 74.88 376 | 60.15 345 | 70.55 302 | 76.57 381 | 49.94 291 | 81.59 357 | 50.58 350 | 74.83 323 | 85.34 334 |
|
| Anonymous20240521 | | | 68.80 327 | 67.22 336 | 73.55 336 | 74.33 386 | 54.11 358 | 83.18 275 | 85.61 267 | 58.15 362 | 61.68 377 | 80.94 347 | 30.71 393 | 81.27 360 | 57.00 319 | 73.34 339 | 85.28 335 |
|
| test_cas_vis1_n_1920 | | | 73.76 278 | 73.74 267 | 73.81 335 | 75.90 379 | 59.77 288 | 80.51 312 | 82.40 315 | 58.30 361 | 81.62 121 | 85.69 264 | 44.35 340 | 76.41 384 | 76.29 136 | 78.61 264 | 85.23 336 |
|
| ADS-MVSNet2 | | | 66.20 349 | 63.33 352 | 74.82 325 | 79.92 356 | 58.75 295 | 67.55 397 | 75.19 374 | 53.37 383 | 65.25 360 | 75.86 385 | 42.32 352 | 80.53 364 | 41.57 392 | 68.91 363 | 85.18 337 |
|
| ADS-MVSNet | | | 64.36 353 | 62.88 356 | 68.78 369 | 79.92 356 | 47.17 394 | 67.55 397 | 71.18 388 | 53.37 383 | 65.25 360 | 75.86 385 | 42.32 352 | 73.99 399 | 41.57 392 | 68.91 363 | 85.18 337 |
|
| FMVSNet5 | | | 69.50 321 | 67.96 322 | 74.15 332 | 82.97 312 | 55.35 347 | 80.01 320 | 82.12 318 | 62.56 327 | 63.02 371 | 81.53 341 | 36.92 378 | 81.92 356 | 48.42 364 | 74.06 329 | 85.17 339 |
|
| pmmvs5 | | | 71.55 301 | 70.20 307 | 75.61 313 | 77.83 372 | 56.39 331 | 81.74 292 | 80.89 329 | 57.76 365 | 67.46 337 | 84.49 289 | 49.26 301 | 85.32 334 | 57.08 318 | 75.29 317 | 85.11 340 |
|
| testing3 | | | 68.56 330 | 67.67 330 | 71.22 357 | 87.33 220 | 42.87 407 | 83.06 281 | 71.54 387 | 70.36 205 | 69.08 324 | 84.38 293 | 30.33 394 | 85.69 328 | 37.50 400 | 75.45 312 | 85.09 341 |
|
| CMPMVS |  | 51.72 21 | 70.19 316 | 68.16 319 | 76.28 307 | 73.15 397 | 57.55 314 | 79.47 325 | 83.92 288 | 48.02 395 | 56.48 395 | 84.81 286 | 43.13 347 | 86.42 321 | 62.67 264 | 81.81 231 | 84.89 342 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| testgi | | | 66.67 343 | 66.53 340 | 67.08 377 | 75.62 382 | 41.69 412 | 75.93 358 | 76.50 369 | 66.11 280 | 65.20 362 | 86.59 243 | 35.72 382 | 74.71 396 | 43.71 386 | 73.38 338 | 84.84 343 |
|
| MSDG | | | 73.36 284 | 70.99 297 | 80.49 239 | 84.51 274 | 65.80 183 | 80.71 309 | 86.13 262 | 65.70 286 | 65.46 357 | 83.74 308 | 44.60 337 | 90.91 259 | 51.13 349 | 76.89 285 | 84.74 344 |
|
| pmmvs4 | | | 74.03 276 | 71.91 285 | 80.39 240 | 81.96 328 | 68.32 127 | 81.45 297 | 82.14 317 | 59.32 352 | 69.87 316 | 85.13 279 | 52.40 256 | 88.13 306 | 60.21 287 | 74.74 324 | 84.73 345 |
|
| gg-mvs-nofinetune | | | 69.95 318 | 67.96 322 | 75.94 309 | 83.07 306 | 54.51 356 | 77.23 354 | 70.29 390 | 63.11 317 | 70.32 306 | 62.33 403 | 43.62 344 | 88.69 298 | 53.88 335 | 87.76 144 | 84.62 346 |
|
| test_fmvs1 | | | 70.93 307 | 70.52 301 | 72.16 348 | 73.71 390 | 55.05 350 | 80.82 303 | 78.77 353 | 51.21 391 | 78.58 160 | 84.41 292 | 31.20 392 | 76.94 379 | 75.88 142 | 80.12 252 | 84.47 347 |
|
| BH-w/o | | | 78.21 204 | 77.33 208 | 80.84 232 | 88.81 157 | 65.13 198 | 84.87 238 | 87.85 226 | 69.75 223 | 74.52 261 | 84.74 288 | 61.34 177 | 93.11 179 | 58.24 308 | 85.84 174 | 84.27 348 |
|
| MVS | | | 78.19 206 | 76.99 214 | 81.78 206 | 85.66 248 | 66.99 162 | 84.66 242 | 90.47 144 | 55.08 379 | 72.02 292 | 85.27 274 | 63.83 138 | 94.11 126 | 66.10 236 | 89.80 115 | 84.24 349 |
|
| COLMAP_ROB |  | 66.92 17 | 73.01 289 | 70.41 304 | 80.81 233 | 87.13 225 | 65.63 187 | 88.30 139 | 84.19 286 | 62.96 320 | 63.80 370 | 87.69 209 | 38.04 375 | 92.56 197 | 46.66 374 | 74.91 322 | 84.24 349 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| new-patchmatchnet | | | 61.73 359 | 61.73 360 | 61.70 383 | 72.74 399 | 24.50 426 | 69.16 392 | 78.03 356 | 61.40 336 | 56.72 394 | 75.53 388 | 38.42 372 | 76.48 383 | 45.95 380 | 57.67 389 | 84.13 351 |
|
| TESTMET0.1,1 | | | 69.89 319 | 69.00 313 | 72.55 345 | 79.27 368 | 56.85 322 | 78.38 342 | 74.71 379 | 57.64 366 | 68.09 331 | 77.19 379 | 37.75 376 | 76.70 380 | 63.92 253 | 84.09 196 | 84.10 352 |
|
| test_fmvs3 | | | 63.36 356 | 61.82 359 | 67.98 374 | 62.51 413 | 46.96 396 | 77.37 353 | 74.03 381 | 45.24 398 | 67.50 336 | 78.79 369 | 12.16 418 | 72.98 402 | 72.77 175 | 66.02 373 | 83.99 353 |
|
| our_test_3 | | | 69.14 324 | 67.00 337 | 75.57 314 | 79.80 360 | 58.80 294 | 77.96 348 | 77.81 357 | 59.55 350 | 62.90 374 | 78.25 373 | 47.43 311 | 83.97 343 | 51.71 345 | 67.58 368 | 83.93 354 |
|
| test_vis1_n | | | 69.85 320 | 69.21 311 | 71.77 350 | 72.66 400 | 55.27 349 | 81.48 296 | 76.21 371 | 52.03 387 | 75.30 243 | 83.20 319 | 28.97 395 | 76.22 386 | 74.60 154 | 78.41 270 | 83.81 355 |
|
| mamv4 | | | 76.81 236 | 78.23 184 | 72.54 346 | 86.12 242 | 65.75 186 | 78.76 337 | 82.07 319 | 64.12 306 | 72.97 278 | 91.02 131 | 67.97 97 | 68.08 410 | 83.04 73 | 78.02 273 | 83.80 356 |
|
| tpmvs | | | 71.09 305 | 69.29 310 | 76.49 306 | 82.04 327 | 56.04 337 | 78.92 335 | 81.37 327 | 64.05 309 | 67.18 341 | 78.28 372 | 49.74 294 | 89.77 276 | 49.67 359 | 72.37 343 | 83.67 357 |
|
| test20.03 | | | 67.45 337 | 66.95 338 | 68.94 366 | 75.48 383 | 44.84 403 | 77.50 351 | 77.67 358 | 66.66 271 | 63.01 372 | 83.80 306 | 47.02 315 | 78.40 371 | 42.53 391 | 68.86 365 | 83.58 358 |
|
| test0.0.03 1 | | | 68.00 335 | 67.69 329 | 68.90 367 | 77.55 373 | 47.43 393 | 75.70 362 | 72.95 386 | 66.66 271 | 66.56 348 | 82.29 335 | 48.06 309 | 75.87 389 | 44.97 385 | 74.51 326 | 83.41 359 |
|
| Anonymous20231206 | | | 68.60 328 | 67.80 327 | 71.02 358 | 80.23 353 | 50.75 385 | 78.30 346 | 80.47 336 | 56.79 372 | 66.11 355 | 82.63 330 | 46.35 322 | 78.95 369 | 43.62 387 | 75.70 304 | 83.36 360 |
|
| EU-MVSNet | | | 68.53 331 | 67.61 331 | 71.31 356 | 78.51 371 | 47.01 395 | 84.47 248 | 84.27 284 | 42.27 402 | 66.44 353 | 84.79 287 | 40.44 363 | 83.76 344 | 58.76 302 | 68.54 366 | 83.17 361 |
|
| dp | | | 66.80 341 | 65.43 343 | 70.90 360 | 79.74 362 | 48.82 391 | 75.12 368 | 74.77 377 | 59.61 349 | 64.08 367 | 77.23 378 | 42.89 348 | 80.72 363 | 48.86 363 | 66.58 371 | 83.16 362 |
|
| pmmvs-eth3d | | | 70.50 313 | 67.83 326 | 78.52 279 | 77.37 375 | 66.18 174 | 81.82 290 | 81.51 324 | 58.90 357 | 63.90 369 | 80.42 352 | 42.69 350 | 86.28 322 | 58.56 303 | 65.30 376 | 83.11 363 |
|
| YYNet1 | | | 65.03 350 | 62.91 355 | 71.38 352 | 75.85 380 | 56.60 328 | 69.12 393 | 74.66 380 | 57.28 370 | 54.12 398 | 77.87 375 | 45.85 328 | 74.48 397 | 49.95 357 | 61.52 384 | 83.05 364 |
|
| MDA-MVSNet-bldmvs | | | 66.68 342 | 63.66 351 | 75.75 311 | 79.28 367 | 60.56 279 | 73.92 374 | 78.35 355 | 64.43 301 | 50.13 404 | 79.87 359 | 44.02 342 | 83.67 345 | 46.10 379 | 56.86 390 | 83.03 365 |
|
| MDA-MVSNet_test_wron | | | 65.03 350 | 62.92 354 | 71.37 353 | 75.93 378 | 56.73 324 | 69.09 394 | 74.73 378 | 57.28 370 | 54.03 399 | 77.89 374 | 45.88 327 | 74.39 398 | 49.89 358 | 61.55 383 | 82.99 366 |
|
| USDC | | | 70.33 314 | 68.37 316 | 76.21 308 | 80.60 348 | 56.23 335 | 79.19 330 | 86.49 254 | 60.89 339 | 61.29 378 | 85.47 271 | 31.78 390 | 89.47 283 | 53.37 338 | 76.21 300 | 82.94 367 |
|
| Syy-MVS | | | 68.05 334 | 67.85 324 | 68.67 370 | 84.68 269 | 40.97 413 | 78.62 339 | 73.08 384 | 66.65 274 | 66.74 346 | 79.46 361 | 52.11 262 | 82.30 354 | 32.89 405 | 76.38 297 | 82.75 368 |
|
| myMVS_eth3d | | | 67.02 340 | 66.29 341 | 69.21 365 | 84.68 269 | 42.58 408 | 78.62 339 | 73.08 384 | 66.65 274 | 66.74 346 | 79.46 361 | 31.53 391 | 82.30 354 | 39.43 397 | 76.38 297 | 82.75 368 |
|
| ttmdpeth | | | 59.91 362 | 57.10 366 | 68.34 372 | 67.13 408 | 46.65 397 | 74.64 371 | 67.41 399 | 48.30 394 | 62.52 376 | 85.04 283 | 20.40 408 | 75.93 388 | 42.55 390 | 45.90 409 | 82.44 370 |
|
| OpenMVS_ROB |  | 64.09 19 | 70.56 312 | 68.19 318 | 77.65 293 | 80.26 351 | 59.41 293 | 85.01 235 | 82.96 309 | 58.76 358 | 65.43 358 | 82.33 333 | 37.63 377 | 91.23 250 | 45.34 384 | 76.03 301 | 82.32 371 |
|
| JIA-IIPM | | | 66.32 346 | 62.82 357 | 76.82 304 | 77.09 376 | 61.72 265 | 65.34 405 | 75.38 373 | 58.04 364 | 64.51 364 | 62.32 404 | 42.05 356 | 86.51 319 | 51.45 347 | 69.22 362 | 82.21 372 |
|
| dmvs_re | | | 71.14 304 | 70.58 300 | 72.80 343 | 81.96 328 | 59.68 289 | 75.60 363 | 79.34 349 | 68.55 250 | 69.27 323 | 80.72 350 | 49.42 297 | 76.54 381 | 52.56 342 | 77.79 275 | 82.19 373 |
|
| EG-PatchMatch MVS | | | 74.04 274 | 71.82 286 | 80.71 235 | 84.92 265 | 67.42 150 | 85.86 216 | 88.08 218 | 66.04 282 | 64.22 366 | 83.85 304 | 35.10 383 | 92.56 197 | 57.44 314 | 80.83 240 | 82.16 374 |
|
| MVP-Stereo | | | 76.12 249 | 74.46 257 | 81.13 225 | 85.37 256 | 69.79 89 | 84.42 253 | 87.95 222 | 65.03 295 | 67.46 337 | 85.33 273 | 53.28 251 | 91.73 230 | 58.01 310 | 83.27 212 | 81.85 375 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| TDRefinement | | | 67.49 336 | 64.34 346 | 76.92 303 | 73.47 394 | 61.07 271 | 84.86 239 | 82.98 308 | 59.77 348 | 58.30 389 | 85.13 279 | 26.06 398 | 87.89 308 | 47.92 371 | 60.59 387 | 81.81 376 |
|
| GG-mvs-BLEND | | | | | 75.38 319 | 81.59 334 | 55.80 341 | 79.32 327 | 69.63 392 | | 67.19 340 | 73.67 392 | 43.24 346 | 88.90 296 | 50.41 351 | 84.50 186 | 81.45 377 |
|
| KD-MVS_2432*1600 | | | 66.22 347 | 63.89 349 | 73.21 338 | 75.47 384 | 53.42 364 | 70.76 385 | 84.35 281 | 64.10 307 | 66.52 350 | 78.52 370 | 34.55 384 | 84.98 336 | 50.40 352 | 50.33 403 | 81.23 378 |
|
| miper_refine_blended | | | 66.22 347 | 63.89 349 | 73.21 338 | 75.47 384 | 53.42 364 | 70.76 385 | 84.35 281 | 64.10 307 | 66.52 350 | 78.52 370 | 34.55 384 | 84.98 336 | 50.40 352 | 50.33 403 | 81.23 378 |
|
| test_0402 | | | 72.79 292 | 70.44 303 | 79.84 252 | 88.13 184 | 65.99 178 | 85.93 213 | 84.29 283 | 65.57 288 | 67.40 339 | 85.49 270 | 46.92 316 | 92.61 193 | 35.88 402 | 74.38 327 | 80.94 380 |
|
| MVStest1 | | | 56.63 366 | 52.76 372 | 68.25 373 | 61.67 414 | 53.25 368 | 71.67 380 | 68.90 397 | 38.59 407 | 50.59 403 | 83.05 321 | 25.08 400 | 70.66 404 | 36.76 401 | 38.56 410 | 80.83 381 |
|
| UnsupCasMVSNet_bld | | | 63.70 355 | 61.53 361 | 70.21 362 | 73.69 391 | 51.39 380 | 72.82 376 | 81.89 320 | 55.63 377 | 57.81 391 | 71.80 396 | 38.67 371 | 78.61 370 | 49.26 361 | 52.21 401 | 80.63 382 |
|
| LCM-MVSNet | | | 54.25 368 | 49.68 378 | 67.97 375 | 53.73 422 | 45.28 401 | 66.85 400 | 80.78 331 | 35.96 411 | 39.45 412 | 62.23 405 | 8.70 422 | 78.06 374 | 48.24 368 | 51.20 402 | 80.57 383 |
|
| N_pmnet | | | 52.79 373 | 53.26 371 | 51.40 397 | 78.99 369 | 7.68 431 | 69.52 389 | 3.89 430 | 51.63 389 | 57.01 393 | 74.98 389 | 40.83 361 | 65.96 412 | 37.78 399 | 64.67 377 | 80.56 384 |
|
| TinyColmap | | | 67.30 339 | 64.81 344 | 74.76 326 | 81.92 330 | 56.68 327 | 80.29 317 | 81.49 325 | 60.33 342 | 56.27 396 | 83.22 317 | 24.77 402 | 87.66 312 | 45.52 382 | 69.47 360 | 79.95 385 |
|
| PM-MVS | | | 66.41 345 | 64.14 347 | 73.20 340 | 73.92 389 | 56.45 329 | 78.97 334 | 64.96 406 | 63.88 313 | 64.72 363 | 80.24 354 | 19.84 410 | 83.44 348 | 66.24 233 | 64.52 378 | 79.71 386 |
|
| ANet_high | | | 50.57 377 | 46.10 381 | 63.99 380 | 48.67 425 | 39.13 414 | 70.99 384 | 80.85 330 | 61.39 337 | 31.18 414 | 57.70 410 | 17.02 413 | 73.65 401 | 31.22 407 | 15.89 422 | 79.18 387 |
|
| LF4IMVS | | | 64.02 354 | 62.19 358 | 69.50 364 | 70.90 402 | 53.29 367 | 76.13 356 | 77.18 365 | 52.65 385 | 58.59 387 | 80.98 346 | 23.55 405 | 76.52 382 | 53.06 340 | 66.66 370 | 78.68 388 |
|
| PatchMatch-RL | | | 72.38 294 | 70.90 298 | 76.80 305 | 88.60 166 | 67.38 152 | 79.53 324 | 76.17 372 | 62.75 325 | 69.36 321 | 82.00 340 | 45.51 333 | 84.89 338 | 53.62 336 | 80.58 244 | 78.12 389 |
|
| MS-PatchMatch | | | 73.83 277 | 72.67 277 | 77.30 300 | 83.87 287 | 66.02 176 | 81.82 290 | 84.66 277 | 61.37 338 | 68.61 328 | 82.82 327 | 47.29 312 | 88.21 304 | 59.27 294 | 84.32 193 | 77.68 390 |
|
| DSMNet-mixed | | | 57.77 365 | 56.90 367 | 60.38 385 | 67.70 406 | 35.61 416 | 69.18 391 | 53.97 417 | 32.30 415 | 57.49 392 | 79.88 358 | 40.39 364 | 68.57 409 | 38.78 398 | 72.37 343 | 76.97 391 |
|
| CHOSEN 280x420 | | | 66.51 344 | 64.71 345 | 71.90 349 | 81.45 337 | 63.52 233 | 57.98 412 | 68.95 396 | 53.57 382 | 62.59 375 | 76.70 380 | 46.22 324 | 75.29 395 | 55.25 328 | 79.68 254 | 76.88 392 |
|
| mvsany_test3 | | | 53.99 369 | 51.45 374 | 61.61 384 | 55.51 418 | 44.74 404 | 63.52 408 | 45.41 423 | 43.69 401 | 58.11 390 | 76.45 382 | 17.99 411 | 63.76 414 | 54.77 331 | 47.59 405 | 76.34 393 |
|
| dmvs_testset | | | 62.63 357 | 64.11 348 | 58.19 387 | 78.55 370 | 24.76 425 | 75.28 364 | 65.94 403 | 67.91 259 | 60.34 381 | 76.01 384 | 53.56 247 | 73.94 400 | 31.79 406 | 67.65 367 | 75.88 394 |
|
| mvsany_test1 | | | 62.30 358 | 61.26 362 | 65.41 379 | 69.52 403 | 54.86 352 | 66.86 399 | 49.78 419 | 46.65 396 | 68.50 330 | 83.21 318 | 49.15 302 | 66.28 411 | 56.93 320 | 60.77 385 | 75.11 395 |
|
| PMMVS | | | 69.34 323 | 68.67 314 | 71.35 355 | 75.67 381 | 62.03 259 | 75.17 365 | 73.46 382 | 50.00 392 | 68.68 326 | 79.05 364 | 52.07 264 | 78.13 372 | 61.16 281 | 82.77 218 | 73.90 396 |
|
| test_vis1_rt | | | 60.28 361 | 58.42 364 | 65.84 378 | 67.25 407 | 55.60 344 | 70.44 387 | 60.94 411 | 44.33 400 | 59.00 386 | 66.64 401 | 24.91 401 | 68.67 408 | 62.80 260 | 69.48 359 | 73.25 397 |
|
| pmmvs3 | | | 57.79 364 | 54.26 369 | 68.37 371 | 64.02 412 | 56.72 325 | 75.12 368 | 65.17 404 | 40.20 404 | 52.93 400 | 69.86 400 | 20.36 409 | 75.48 392 | 45.45 383 | 55.25 397 | 72.90 398 |
|
| PVSNet_0 | | 57.27 20 | 61.67 360 | 59.27 363 | 68.85 368 | 79.61 363 | 57.44 316 | 68.01 395 | 73.44 383 | 55.93 376 | 58.54 388 | 70.41 399 | 44.58 338 | 77.55 376 | 47.01 373 | 35.91 411 | 71.55 399 |
|
| WB-MVS | | | 54.94 367 | 54.72 368 | 55.60 393 | 73.50 392 | 20.90 427 | 74.27 373 | 61.19 410 | 59.16 354 | 50.61 402 | 74.15 390 | 47.19 314 | 75.78 390 | 17.31 418 | 35.07 412 | 70.12 400 |
|
| SSC-MVS | | | 53.88 370 | 53.59 370 | 54.75 395 | 72.87 398 | 19.59 428 | 73.84 375 | 60.53 412 | 57.58 368 | 49.18 406 | 73.45 393 | 46.34 323 | 75.47 393 | 16.20 421 | 32.28 414 | 69.20 401 |
|
| test_f | | | 52.09 374 | 50.82 375 | 55.90 391 | 53.82 421 | 42.31 411 | 59.42 411 | 58.31 415 | 36.45 410 | 56.12 397 | 70.96 398 | 12.18 417 | 57.79 417 | 53.51 337 | 56.57 392 | 67.60 402 |
|
| PMMVS2 | | | 40.82 384 | 38.86 388 | 46.69 398 | 53.84 420 | 16.45 429 | 48.61 415 | 49.92 418 | 37.49 408 | 31.67 413 | 60.97 406 | 8.14 424 | 56.42 418 | 28.42 409 | 30.72 415 | 67.19 403 |
|
| new_pmnet | | | 50.91 376 | 50.29 376 | 52.78 396 | 68.58 405 | 34.94 418 | 63.71 407 | 56.63 416 | 39.73 405 | 44.95 407 | 65.47 402 | 21.93 407 | 58.48 416 | 34.98 403 | 56.62 391 | 64.92 404 |
|
| MVS-HIRNet | | | 59.14 363 | 57.67 365 | 63.57 381 | 81.65 332 | 43.50 406 | 71.73 379 | 65.06 405 | 39.59 406 | 51.43 401 | 57.73 409 | 38.34 373 | 82.58 353 | 39.53 395 | 73.95 330 | 64.62 405 |
|
| APD_test1 | | | 53.31 372 | 49.93 377 | 63.42 382 | 65.68 409 | 50.13 387 | 71.59 381 | 66.90 401 | 34.43 412 | 40.58 411 | 71.56 397 | 8.65 423 | 76.27 385 | 34.64 404 | 55.36 395 | 63.86 406 |
|
| test_method | | | 31.52 387 | 29.28 391 | 38.23 401 | 27.03 429 | 6.50 432 | 20.94 420 | 62.21 409 | 4.05 423 | 22.35 421 | 52.50 414 | 13.33 415 | 47.58 421 | 27.04 411 | 34.04 413 | 60.62 407 |
|
| EGC-MVSNET | | | 52.07 375 | 47.05 379 | 67.14 376 | 83.51 295 | 60.71 276 | 80.50 313 | 67.75 398 | 0.07 425 | 0.43 426 | 75.85 387 | 24.26 403 | 81.54 358 | 28.82 408 | 62.25 381 | 59.16 408 |
|
| test_vis3_rt | | | 49.26 378 | 47.02 380 | 56.00 390 | 54.30 419 | 45.27 402 | 66.76 401 | 48.08 420 | 36.83 409 | 44.38 408 | 53.20 413 | 7.17 425 | 64.07 413 | 56.77 322 | 55.66 393 | 58.65 409 |
|
| FPMVS | | | 53.68 371 | 51.64 373 | 59.81 386 | 65.08 410 | 51.03 382 | 69.48 390 | 69.58 393 | 41.46 403 | 40.67 410 | 72.32 395 | 16.46 414 | 70.00 407 | 24.24 414 | 65.42 375 | 58.40 410 |
|
| testf1 | | | 45.72 379 | 41.96 383 | 57.00 388 | 56.90 416 | 45.32 399 | 66.14 402 | 59.26 413 | 26.19 416 | 30.89 415 | 60.96 407 | 4.14 426 | 70.64 405 | 26.39 412 | 46.73 407 | 55.04 411 |
|
| APD_test2 | | | 45.72 379 | 41.96 383 | 57.00 388 | 56.90 416 | 45.32 399 | 66.14 402 | 59.26 413 | 26.19 416 | 30.89 415 | 60.96 407 | 4.14 426 | 70.64 405 | 26.39 412 | 46.73 407 | 55.04 411 |
|
| PMVS |  | 37.38 22 | 44.16 383 | 40.28 387 | 55.82 392 | 40.82 427 | 42.54 410 | 65.12 406 | 63.99 407 | 34.43 412 | 24.48 418 | 57.12 411 | 3.92 428 | 76.17 387 | 17.10 419 | 55.52 394 | 48.75 413 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| MVE |  | 26.22 23 | 30.37 389 | 25.89 393 | 43.81 400 | 44.55 426 | 35.46 417 | 28.87 419 | 39.07 424 | 18.20 420 | 18.58 422 | 40.18 417 | 2.68 429 | 47.37 422 | 17.07 420 | 23.78 419 | 48.60 414 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| dongtai | | | 45.42 381 | 45.38 382 | 45.55 399 | 73.36 395 | 26.85 423 | 67.72 396 | 34.19 425 | 54.15 381 | 49.65 405 | 56.41 412 | 25.43 399 | 62.94 415 | 19.45 416 | 28.09 416 | 46.86 415 |
|
| kuosan | | | 39.70 385 | 40.40 386 | 37.58 402 | 64.52 411 | 26.98 421 | 65.62 404 | 33.02 426 | 46.12 397 | 42.79 409 | 48.99 415 | 24.10 404 | 46.56 423 | 12.16 424 | 26.30 417 | 39.20 416 |
|
| Gipuma |  | | 45.18 382 | 41.86 385 | 55.16 394 | 77.03 377 | 51.52 378 | 32.50 418 | 80.52 335 | 32.46 414 | 27.12 417 | 35.02 418 | 9.52 421 | 75.50 391 | 22.31 415 | 60.21 388 | 38.45 417 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| DeepMVS_CX |  | | | | 27.40 405 | 40.17 428 | 26.90 422 | | 24.59 429 | 17.44 421 | 23.95 419 | 48.61 416 | 9.77 420 | 26.48 424 | 18.06 417 | 24.47 418 | 28.83 418 |
|
| E-PMN | | | 31.77 386 | 30.64 389 | 35.15 403 | 52.87 423 | 27.67 420 | 57.09 413 | 47.86 421 | 24.64 418 | 16.40 423 | 33.05 419 | 11.23 419 | 54.90 419 | 14.46 422 | 18.15 420 | 22.87 419 |
|
| EMVS | | | 30.81 388 | 29.65 390 | 34.27 404 | 50.96 424 | 25.95 424 | 56.58 414 | 46.80 422 | 24.01 419 | 15.53 424 | 30.68 420 | 12.47 416 | 54.43 420 | 12.81 423 | 17.05 421 | 22.43 420 |
|
| tmp_tt | | | 18.61 391 | 21.40 394 | 10.23 407 | 4.82 430 | 10.11 430 | 34.70 417 | 30.74 428 | 1.48 424 | 23.91 420 | 26.07 421 | 28.42 396 | 13.41 426 | 27.12 410 | 15.35 423 | 7.17 421 |
|
| wuyk23d | | | 16.82 392 | 15.94 395 | 19.46 406 | 58.74 415 | 31.45 419 | 39.22 416 | 3.74 431 | 6.84 422 | 6.04 425 | 2.70 425 | 1.27 430 | 24.29 425 | 10.54 425 | 14.40 424 | 2.63 422 |
|
| test123 | | | 6.12 394 | 8.11 397 | 0.14 408 | 0.06 432 | 0.09 433 | 71.05 383 | 0.03 433 | 0.04 427 | 0.25 428 | 1.30 427 | 0.05 431 | 0.03 428 | 0.21 427 | 0.01 426 | 0.29 423 |
|
| testmvs | | | 6.04 395 | 8.02 398 | 0.10 409 | 0.08 431 | 0.03 434 | 69.74 388 | 0.04 432 | 0.05 426 | 0.31 427 | 1.68 426 | 0.02 432 | 0.04 427 | 0.24 426 | 0.02 425 | 0.25 424 |
|
| mmdepth | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| monomultidepth | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| test_blank | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| uanet_test | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| DCPMVS | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| cdsmvs_eth3d_5k | | | 19.96 390 | 26.61 392 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 89.26 184 | 0.00 428 | 0.00 429 | 88.61 185 | 61.62 170 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| pcd_1.5k_mvsjas | | | 5.26 396 | 7.02 399 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 63.15 146 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| sosnet-low-res | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| sosnet | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| uncertanet | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| Regformer | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| ab-mvs-re | | | 7.23 393 | 9.64 396 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 86.72 235 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| uanet | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| WAC-MVS | | | | | | | 42.58 408 | | | | | | | | 39.46 396 | | |
|
| FOURS1 | | | | | | 95.00 10 | 72.39 39 | 95.06 1 | 93.84 15 | 74.49 121 | 91.30 15 | | | | | | |
|
| test_one_0601 | | | | | | 95.07 7 | 71.46 57 | | 94.14 5 | 78.27 35 | 92.05 11 | 95.74 6 | 80.83 11 | | | | |
|
| eth-test2 | | | | | | 0.00 433 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 433 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 94.38 25 | 72.22 44 | | 92.67 67 | 70.98 193 | 87.75 37 | 94.07 46 | 74.01 32 | 96.70 27 | 84.66 54 | 94.84 44 | |
|
| test_241102_ONE | | | | | | 95.30 2 | 70.98 66 | | 94.06 10 | 77.17 56 | 93.10 1 | 95.39 14 | 82.99 1 | 97.27 12 | | | |
|
| 9.14 | | | | 88.26 15 | | 92.84 63 | | 91.52 48 | 94.75 1 | 73.93 135 | 88.57 25 | 94.67 21 | 75.57 22 | 95.79 58 | 86.77 37 | 95.76 23 | |
|
| save fliter | | | | | | 93.80 40 | 72.35 42 | 90.47 66 | 91.17 125 | 74.31 126 | | | | | | | |
|
| test0726 | | | | | | 95.27 5 | 71.25 59 | 93.60 6 | 94.11 6 | 77.33 50 | 92.81 3 | 95.79 3 | 80.98 9 | | | | |
|
| test_part2 | | | | | | 95.06 8 | 72.65 32 | | | | 91.80 13 | | | | | | |
|
| sam_mvs | | | | | | | | | | | | | 50.01 289 | | | | |
|
| MTGPA |  | | | | | | | | 92.02 93 | | | | | | | | |
|
| test_post1 | | | | | | | | 78.90 336 | | | | 5.43 424 | 48.81 308 | 85.44 333 | 59.25 295 | | |
|
| test_post | | | | | | | | | | | | 5.46 423 | 50.36 287 | 84.24 341 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 74.00 391 | 51.12 278 | 88.60 300 | | | |
|
| MTMP | | | | | | | | 92.18 34 | 32.83 427 | | | | | | | | |
|
| gm-plane-assit | | | | | | 81.40 338 | 53.83 361 | | | 62.72 326 | | 80.94 347 | | 92.39 204 | 63.40 257 | | |
|
| TEST9 | | | | | | 93.26 52 | 72.96 25 | 88.75 120 | 91.89 101 | 68.44 253 | 85.00 65 | 93.10 72 | 74.36 28 | 95.41 73 | | | |
|
| test_8 | | | | | | 93.13 54 | 72.57 35 | 88.68 125 | 91.84 105 | 68.69 248 | 84.87 69 | 93.10 72 | 74.43 26 | 95.16 83 | | | |
|
| agg_prior | | | | | | 92.85 62 | 71.94 50 | | 91.78 108 | | 84.41 80 | | | 94.93 94 | | | |
|
| test_prior4 | | | | | | | 72.60 34 | 89.01 111 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 88.85 117 | | 75.41 98 | 84.91 67 | 93.54 61 | 74.28 29 | | 83.31 69 | 95.86 20 | |
|
| 旧先验2 | | | | | | | | 86.56 196 | | 58.10 363 | 87.04 47 | | | 88.98 292 | 74.07 160 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 86.29 205 | | | | | | | | | |
|
| 原ACMM2 | | | | | | | | 86.86 185 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 91.01 258 | 62.37 267 | | |
|
| segment_acmp | | | | | | | | | | | | | 73.08 38 | | | | |
|
| testdata1 | | | | | | | | 84.14 259 | | 75.71 92 | | | | | | | |
|
| plane_prior7 | | | | | | 90.08 108 | 68.51 123 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 89.84 117 | 68.70 118 | | | | | | 60.42 196 | | | | |
|
| plane_prior4 | | | | | | | | | | | | 91.00 132 | | | | | |
|
| plane_prior3 | | | | | | | 68.60 121 | | | 78.44 31 | 78.92 153 | | | | | | |
|
| plane_prior2 | | | | | | | | 91.25 52 | | 79.12 23 | | | | | | | |
|
| plane_prior1 | | | | | | 89.90 116 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 68.71 116 | 90.38 70 | | 77.62 40 | | | | | | 86.16 168 | |
|
| n2 | | | | | | | | | 0.00 434 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 434 | | | | | | | | |
|
| door-mid | | | | | | | | | 69.98 391 | | | | | | | | |
|
| test11 | | | | | | | | | 92.23 87 | | | | | | | | |
|
| door | | | | | | | | | 69.44 394 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 66.98 163 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 89.33 135 | | 89.17 103 | | 76.41 77 | 77.23 191 | | | | | | |
|
| ACMP_Plane | | | | | | 89.33 135 | | 89.17 103 | | 76.41 77 | 77.23 191 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.47 124 | | |
|
| HQP3-MVS | | | | | | | | | 92.19 90 | | | | | | | 85.99 172 | |
|
| HQP2-MVS | | | | | | | | | | | | | 60.17 199 | | | | |
|
| NP-MVS | | | | | | 89.62 121 | 68.32 127 | | | | | 90.24 144 | | | | | |
|
| MDTV_nov1_ep13 | | | | 69.97 308 | | 83.18 303 | 53.48 363 | 77.10 355 | 80.18 343 | 60.45 341 | 69.33 322 | 80.44 351 | 48.89 307 | 86.90 315 | 51.60 346 | 78.51 267 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 81.95 229 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 81.25 234 | |
|
| Test By Simon | | | | | | | | | | | | | 64.33 133 | | | | |
|