| MM | | | 89.16 6 | 89.23 7 | 88.97 4 | 90.79 95 | 73.65 10 | 92.66 23 | 91.17 124 | 86.57 1 | 87.39 41 | 94.97 18 | 71.70 53 | 97.68 1 | 92.19 1 | 95.63 28 | 95.57 1 |
|
| casdiffmvs_mvg |  | | 85.99 48 | 86.09 50 | 85.70 73 | 87.65 208 | 67.22 158 | 88.69 123 | 93.04 41 | 79.64 18 | 85.33 59 | 92.54 86 | 73.30 35 | 94.50 111 | 83.49 65 | 91.14 95 | 95.37 2 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| dcpmvs_2 | | | 85.63 58 | 86.15 48 | 84.06 132 | 91.71 78 | 64.94 201 | 86.47 195 | 91.87 102 | 73.63 139 | 86.60 50 | 93.02 75 | 76.57 15 | 91.87 222 | 83.36 66 | 92.15 80 | 95.35 3 |
|
| casdiffmvs |  | | 85.11 67 | 85.14 67 | 85.01 89 | 87.20 222 | 65.77 184 | 87.75 156 | 92.83 60 | 77.84 37 | 84.36 80 | 92.38 88 | 72.15 46 | 93.93 133 | 81.27 90 | 90.48 102 | 95.33 4 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| 3Dnovator+ | | 77.84 4 | 85.48 60 | 84.47 76 | 88.51 7 | 91.08 86 | 73.49 16 | 93.18 11 | 93.78 18 | 80.79 8 | 76.66 202 | 93.37 65 | 60.40 196 | 96.75 26 | 77.20 124 | 93.73 64 | 95.29 5 |
|
| BP-MVS1 | | | 84.32 75 | 83.71 81 | 86.17 61 | 87.84 198 | 67.85 137 | 89.38 98 | 89.64 170 | 77.73 38 | 83.98 87 | 92.12 93 | 56.89 220 | 95.43 70 | 84.03 62 | 91.75 87 | 95.24 6 |
|
| MVS_0304 | | | 87.69 20 | 87.55 24 | 88.12 13 | 89.45 129 | 71.76 51 | 91.47 49 | 89.54 172 | 82.14 3 | 86.65 49 | 94.28 34 | 68.28 95 | 97.46 6 | 90.81 2 | 95.31 34 | 95.15 7 |
|
| CS-MVS | | | 86.69 39 | 86.95 35 | 85.90 70 | 90.76 96 | 67.57 146 | 92.83 17 | 93.30 32 | 79.67 17 | 84.57 76 | 92.27 89 | 71.47 56 | 95.02 92 | 84.24 59 | 93.46 67 | 95.13 8 |
|
| TSAR-MVS + MP. | | | 88.02 17 | 88.11 16 | 87.72 30 | 93.68 43 | 72.13 46 | 91.41 50 | 92.35 81 | 74.62 119 | 88.90 22 | 93.85 55 | 75.75 20 | 96.00 54 | 87.80 28 | 94.63 48 | 95.04 9 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| baseline | | | 84.93 70 | 84.98 68 | 84.80 99 | 87.30 220 | 65.39 192 | 87.30 170 | 92.88 57 | 77.62 40 | 84.04 86 | 92.26 90 | 71.81 50 | 93.96 127 | 81.31 88 | 90.30 105 | 95.03 10 |
|
| DVP-MVS++ | | | 90.23 1 | 91.01 1 | 87.89 24 | 94.34 27 | 71.25 59 | 95.06 1 | 94.23 3 | 78.38 33 | 92.78 4 | 95.74 6 | 82.45 3 | 97.49 4 | 89.42 9 | 96.68 2 | 94.95 11 |
|
| PC_three_1452 | | | | | | | | | | 68.21 253 | 92.02 12 | 94.00 49 | 82.09 5 | 95.98 56 | 84.58 53 | 96.68 2 | 94.95 11 |
|
| IS-MVSNet | | | 83.15 96 | 82.81 96 | 84.18 122 | 89.94 115 | 63.30 236 | 91.59 43 | 88.46 212 | 79.04 25 | 79.49 142 | 92.16 91 | 65.10 128 | 94.28 116 | 67.71 218 | 91.86 86 | 94.95 11 |
|
| SteuartSystems-ACMMP | | | 88.72 11 | 88.86 11 | 88.32 9 | 92.14 72 | 72.96 25 | 93.73 5 | 93.67 20 | 80.19 12 | 88.10 28 | 94.80 19 | 73.76 33 | 97.11 15 | 87.51 31 | 95.82 21 | 94.90 14 |
| Skip Steuart: Steuart Systems R&D Blog. |
| SED-MVS | | | 90.08 2 | 90.85 2 | 87.77 26 | 95.30 2 | 70.98 66 | 93.57 7 | 94.06 10 | 77.24 53 | 93.10 1 | 95.72 8 | 82.99 1 | 97.44 7 | 89.07 14 | 96.63 4 | 94.88 15 |
|
| OPU-MVS | | | | | 89.06 3 | 94.62 15 | 75.42 4 | 93.57 7 | | | | 94.02 47 | 82.45 3 | 96.87 20 | 83.77 64 | 96.48 8 | 94.88 15 |
|
| SMA-MVS |  | | 89.08 8 | 89.23 7 | 88.61 6 | 94.25 31 | 73.73 9 | 92.40 24 | 93.63 21 | 74.77 115 | 92.29 7 | 95.97 2 | 74.28 29 | 97.24 13 | 88.58 21 | 96.91 1 | 94.87 17 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| test2506 | | | 77.30 226 | 76.49 223 | 79.74 251 | 90.08 108 | 52.02 367 | 87.86 155 | 63.10 405 | 74.88 111 | 80.16 135 | 92.79 82 | 38.29 371 | 92.35 204 | 68.74 211 | 92.50 77 | 94.86 18 |
|
| ECVR-MVS |  | | 79.61 164 | 79.26 157 | 80.67 233 | 90.08 108 | 54.69 350 | 87.89 153 | 77.44 359 | 74.88 111 | 80.27 132 | 92.79 82 | 48.96 303 | 92.45 198 | 68.55 212 | 92.50 77 | 94.86 18 |
|
| IU-MVS | | | | | | 95.30 2 | 71.25 59 | | 92.95 55 | 66.81 264 | 92.39 6 | | | | 88.94 16 | 96.63 4 | 94.85 20 |
|
| test1111 | | | 79.43 171 | 79.18 160 | 80.15 243 | 89.99 113 | 53.31 363 | 87.33 169 | 77.05 363 | 75.04 106 | 80.23 134 | 92.77 84 | 48.97 302 | 92.33 206 | 68.87 209 | 92.40 79 | 94.81 21 |
|
| SF-MVS | | | 88.46 12 | 88.74 12 | 87.64 35 | 92.78 64 | 71.95 49 | 92.40 24 | 94.74 2 | 75.71 92 | 89.16 19 | 95.10 16 | 75.65 21 | 96.19 46 | 87.07 34 | 96.01 17 | 94.79 22 |
|
| balanced_conf03 | | | 86.78 37 | 86.99 33 | 86.15 62 | 91.24 83 | 67.61 144 | 90.51 62 | 92.90 56 | 77.26 52 | 87.44 40 | 91.63 104 | 71.27 60 | 96.06 49 | 85.62 42 | 95.01 37 | 94.78 23 |
|
| sasdasda | | | 85.91 52 | 85.87 54 | 86.04 66 | 89.84 117 | 69.44 98 | 90.45 68 | 93.00 46 | 76.70 72 | 88.01 31 | 91.23 116 | 73.28 36 | 93.91 134 | 81.50 86 | 88.80 127 | 94.77 24 |
|
| SPE-MVS-test | | | 86.29 46 | 86.48 41 | 85.71 72 | 91.02 88 | 67.21 159 | 92.36 29 | 93.78 18 | 78.97 28 | 83.51 96 | 91.20 119 | 70.65 69 | 95.15 83 | 81.96 83 | 94.89 42 | 94.77 24 |
|
| canonicalmvs | | | 85.91 52 | 85.87 54 | 86.04 66 | 89.84 117 | 69.44 98 | 90.45 68 | 93.00 46 | 76.70 72 | 88.01 31 | 91.23 116 | 73.28 36 | 93.91 134 | 81.50 86 | 88.80 127 | 94.77 24 |
|
| test_0728_THIRD | | | | | | | | | | 78.38 33 | 92.12 9 | 95.78 4 | 81.46 7 | 97.40 9 | 89.42 9 | 96.57 7 | 94.67 27 |
|
| MSP-MVS | | | 89.51 4 | 89.91 5 | 88.30 10 | 94.28 30 | 73.46 17 | 92.90 16 | 94.11 6 | 80.27 10 | 91.35 14 | 94.16 40 | 78.35 13 | 96.77 24 | 89.59 8 | 94.22 60 | 94.67 27 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| RRT-MVS | | | 82.60 107 | 82.10 106 | 84.10 124 | 87.98 192 | 62.94 247 | 87.45 165 | 91.27 120 | 77.42 49 | 79.85 137 | 90.28 139 | 56.62 222 | 94.70 106 | 79.87 103 | 88.15 139 | 94.67 27 |
|
| MGCFI-Net | | | 85.06 69 | 85.51 59 | 83.70 146 | 89.42 130 | 63.01 242 | 89.43 93 | 92.62 72 | 76.43 76 | 87.53 38 | 91.34 114 | 72.82 42 | 93.42 160 | 81.28 89 | 88.74 130 | 94.66 30 |
|
| alignmvs | | | 85.48 60 | 85.32 64 | 85.96 69 | 89.51 126 | 69.47 95 | 89.74 83 | 92.47 75 | 76.17 85 | 87.73 37 | 91.46 111 | 70.32 71 | 93.78 140 | 81.51 85 | 88.95 124 | 94.63 31 |
|
| MP-MVS-pluss | | | 87.67 21 | 87.72 20 | 87.54 36 | 93.64 44 | 72.04 48 | 89.80 81 | 93.50 25 | 75.17 105 | 86.34 51 | 95.29 15 | 70.86 65 | 96.00 54 | 88.78 19 | 96.04 16 | 94.58 32 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| DeepPCF-MVS | | 80.84 1 | 88.10 13 | 88.56 13 | 86.73 53 | 92.24 71 | 69.03 103 | 89.57 90 | 93.39 30 | 77.53 46 | 89.79 18 | 94.12 42 | 78.98 12 | 96.58 35 | 85.66 40 | 95.72 24 | 94.58 32 |
|
| VDD-MVS | | | 83.01 101 | 82.36 102 | 84.96 91 | 91.02 88 | 66.40 169 | 88.91 113 | 88.11 215 | 77.57 42 | 84.39 79 | 93.29 67 | 52.19 256 | 93.91 134 | 77.05 127 | 88.70 131 | 94.57 34 |
|
| VDDNet | | | 81.52 124 | 80.67 127 | 84.05 135 | 90.44 101 | 64.13 218 | 89.73 84 | 85.91 261 | 71.11 186 | 83.18 98 | 93.48 61 | 50.54 282 | 93.49 154 | 73.40 164 | 88.25 137 | 94.54 35 |
|
| MVSMamba_PlusPlus | | | 85.99 48 | 85.96 52 | 86.05 65 | 91.09 85 | 67.64 143 | 89.63 88 | 92.65 69 | 72.89 161 | 84.64 73 | 91.71 100 | 71.85 49 | 96.03 50 | 84.77 51 | 94.45 54 | 94.49 36 |
|
| APDe-MVS |  | | 89.15 7 | 89.63 6 | 87.73 28 | 94.49 18 | 71.69 52 | 93.83 4 | 93.96 13 | 75.70 94 | 91.06 16 | 96.03 1 | 76.84 14 | 97.03 17 | 89.09 11 | 95.65 27 | 94.47 37 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| MSC_two_6792asdad | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 49 | | | | | 97.53 2 | 89.67 6 | 96.44 9 | 94.41 38 |
|
| No_MVS | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 49 | | | | | 97.53 2 | 89.67 6 | 96.44 9 | 94.41 38 |
|
| MCST-MVS | | | 87.37 29 | 87.25 29 | 87.73 28 | 94.53 17 | 72.46 38 | 89.82 79 | 93.82 16 | 73.07 156 | 84.86 68 | 92.89 77 | 76.22 17 | 96.33 41 | 84.89 48 | 95.13 36 | 94.40 40 |
|
| CANet | | | 86.45 42 | 86.10 49 | 87.51 37 | 90.09 107 | 70.94 70 | 89.70 85 | 92.59 73 | 81.78 4 | 81.32 120 | 91.43 112 | 70.34 70 | 97.23 14 | 84.26 57 | 93.36 68 | 94.37 41 |
|
| PHI-MVS | | | 86.43 43 | 86.17 47 | 87.24 41 | 90.88 92 | 70.96 68 | 92.27 32 | 94.07 9 | 72.45 162 | 85.22 61 | 91.90 96 | 69.47 80 | 96.42 40 | 83.28 68 | 95.94 19 | 94.35 42 |
|
| CNVR-MVS | | | 88.93 10 | 89.13 10 | 88.33 8 | 94.77 12 | 73.82 8 | 90.51 62 | 93.00 46 | 80.90 7 | 88.06 29 | 94.06 45 | 76.43 16 | 96.84 21 | 88.48 24 | 95.99 18 | 94.34 43 |
|
| ZNCC-MVS | | | 87.94 18 | 87.85 19 | 88.20 12 | 94.39 24 | 73.33 19 | 93.03 14 | 93.81 17 | 76.81 66 | 85.24 60 | 94.32 33 | 71.76 51 | 96.93 19 | 85.53 43 | 95.79 22 | 94.32 44 |
|
| HPM-MVS |  | | 87.11 33 | 86.98 34 | 87.50 38 | 93.88 39 | 72.16 45 | 92.19 33 | 93.33 31 | 76.07 87 | 83.81 91 | 93.95 54 | 69.77 78 | 96.01 53 | 85.15 44 | 94.66 47 | 94.32 44 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| CDPH-MVS | | | 85.76 56 | 85.29 66 | 87.17 43 | 93.49 47 | 71.08 64 | 88.58 127 | 92.42 79 | 68.32 252 | 84.61 74 | 93.48 61 | 72.32 44 | 96.15 48 | 79.00 105 | 95.43 30 | 94.28 46 |
|
| test_241102_TWO | | | | | | | | | 94.06 10 | 77.24 53 | 92.78 4 | 95.72 8 | 81.26 8 | 97.44 7 | 89.07 14 | 96.58 6 | 94.26 47 |
|
| test_0728_SECOND | | | | | 87.71 32 | 95.34 1 | 71.43 58 | 93.49 9 | 94.23 3 | | | | | 97.49 4 | 89.08 12 | 96.41 12 | 94.21 48 |
|
| DeepC-MVS_fast | | 79.65 3 | 86.91 36 | 86.62 40 | 87.76 27 | 93.52 46 | 72.37 41 | 91.26 51 | 93.04 41 | 76.62 74 | 84.22 81 | 93.36 66 | 71.44 57 | 96.76 25 | 80.82 94 | 95.33 33 | 94.16 49 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| EPP-MVSNet | | | 83.40 92 | 83.02 92 | 84.57 103 | 90.13 106 | 64.47 211 | 92.32 30 | 90.73 136 | 74.45 123 | 79.35 144 | 91.10 122 | 69.05 87 | 95.12 84 | 72.78 171 | 87.22 148 | 94.13 50 |
|
| NCCC | | | 88.06 14 | 88.01 18 | 88.24 11 | 94.41 22 | 73.62 11 | 91.22 54 | 92.83 60 | 81.50 5 | 85.79 55 | 93.47 63 | 73.02 40 | 97.00 18 | 84.90 46 | 94.94 40 | 94.10 51 |
|
| ACMMP_NAP | | | 88.05 16 | 88.08 17 | 87.94 19 | 93.70 41 | 73.05 22 | 90.86 57 | 93.59 23 | 76.27 84 | 88.14 27 | 95.09 17 | 71.06 63 | 96.67 29 | 87.67 29 | 96.37 14 | 94.09 52 |
|
| XVS | | | 87.18 32 | 86.91 37 | 88.00 17 | 94.42 20 | 73.33 19 | 92.78 18 | 92.99 49 | 79.14 21 | 83.67 93 | 94.17 39 | 67.45 103 | 96.60 33 | 83.06 69 | 94.50 51 | 94.07 53 |
|
| X-MVStestdata | | | 80.37 153 | 77.83 189 | 88.00 17 | 94.42 20 | 73.33 19 | 92.78 18 | 92.99 49 | 79.14 21 | 83.67 93 | 12.47 419 | 67.45 103 | 96.60 33 | 83.06 69 | 94.50 51 | 94.07 53 |
|
| region2R | | | 87.42 27 | 87.20 31 | 88.09 14 | 94.63 14 | 73.55 13 | 93.03 14 | 93.12 40 | 76.73 71 | 84.45 77 | 94.52 23 | 69.09 84 | 96.70 27 | 84.37 56 | 94.83 45 | 94.03 55 |
|
| ACMMPR | | | 87.44 25 | 87.23 30 | 88.08 15 | 94.64 13 | 73.59 12 | 93.04 12 | 93.20 34 | 76.78 68 | 84.66 72 | 94.52 23 | 68.81 90 | 96.65 30 | 84.53 54 | 94.90 41 | 94.00 56 |
|
| test_fmvsmconf_n | | | 85.92 51 | 86.04 51 | 85.57 75 | 85.03 261 | 69.51 93 | 89.62 89 | 90.58 139 | 73.42 147 | 87.75 35 | 94.02 47 | 72.85 41 | 93.24 165 | 90.37 3 | 90.75 99 | 93.96 57 |
|
| DPE-MVS |  | | 89.48 5 | 89.98 4 | 88.01 16 | 94.80 11 | 72.69 31 | 91.59 43 | 94.10 8 | 75.90 90 | 92.29 7 | 95.66 10 | 81.67 6 | 97.38 11 | 87.44 33 | 96.34 15 | 93.95 58 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| test_fmvsm_n_1920 | | | 85.29 65 | 85.34 62 | 85.13 86 | 86.12 240 | 69.93 86 | 88.65 125 | 90.78 135 | 69.97 213 | 88.27 26 | 93.98 52 | 71.39 58 | 91.54 234 | 88.49 23 | 90.45 103 | 93.91 59 |
|
| test_prior | | | | | 86.33 57 | 92.61 68 | 69.59 91 | | 92.97 54 | | | | | 95.48 67 | | | 93.91 59 |
|
| GST-MVS | | | 87.42 27 | 87.26 28 | 87.89 24 | 94.12 36 | 72.97 24 | 92.39 26 | 93.43 28 | 76.89 64 | 84.68 69 | 93.99 51 | 70.67 68 | 96.82 22 | 84.18 61 | 95.01 37 | 93.90 61 |
|
| test_fmvsmconf0.1_n | | | 85.61 59 | 85.65 57 | 85.50 76 | 82.99 308 | 69.39 100 | 89.65 86 | 90.29 152 | 73.31 150 | 87.77 34 | 94.15 41 | 71.72 52 | 93.23 166 | 90.31 4 | 90.67 101 | 93.89 62 |
|
| Anonymous202405211 | | | 78.25 199 | 77.01 209 | 81.99 200 | 91.03 87 | 60.67 274 | 84.77 237 | 83.90 286 | 70.65 199 | 80.00 136 | 91.20 119 | 41.08 357 | 91.43 241 | 65.21 240 | 85.26 175 | 93.85 63 |
|
| LFMVS | | | 81.82 117 | 81.23 118 | 83.57 150 | 91.89 76 | 63.43 234 | 89.84 78 | 81.85 319 | 77.04 61 | 83.21 97 | 93.10 70 | 52.26 255 | 93.43 159 | 71.98 177 | 89.95 113 | 93.85 63 |
|
| Effi-MVS+ | | | 83.62 87 | 83.08 90 | 85.24 82 | 88.38 175 | 67.45 148 | 88.89 114 | 89.15 188 | 75.50 97 | 82.27 108 | 88.28 192 | 69.61 79 | 94.45 113 | 77.81 118 | 87.84 140 | 93.84 65 |
|
| Anonymous20240529 | | | 80.19 157 | 78.89 165 | 84.10 124 | 90.60 97 | 64.75 205 | 88.95 112 | 90.90 131 | 65.97 281 | 80.59 130 | 91.17 121 | 49.97 287 | 93.73 146 | 69.16 206 | 82.70 218 | 93.81 66 |
|
| MVS_Test | | | 83.15 96 | 83.06 91 | 83.41 155 | 86.86 226 | 63.21 238 | 86.11 206 | 92.00 94 | 74.31 124 | 82.87 102 | 89.44 164 | 70.03 74 | 93.21 168 | 77.39 123 | 88.50 135 | 93.81 66 |
|
| test_fmvsmconf0.01_n | | | 84.73 73 | 84.52 75 | 85.34 79 | 80.25 349 | 69.03 103 | 89.47 91 | 89.65 169 | 73.24 154 | 86.98 46 | 94.27 35 | 66.62 109 | 93.23 166 | 90.26 5 | 89.95 113 | 93.78 68 |
|
| GeoE | | | 81.71 119 | 81.01 123 | 83.80 145 | 89.51 126 | 64.45 212 | 88.97 111 | 88.73 207 | 71.27 183 | 78.63 156 | 89.76 150 | 66.32 115 | 93.20 171 | 69.89 198 | 86.02 168 | 93.74 69 |
|
| diffmvs |  | | 82.10 110 | 81.88 112 | 82.76 188 | 83.00 306 | 63.78 224 | 83.68 262 | 89.76 165 | 72.94 159 | 82.02 111 | 89.85 148 | 65.96 122 | 90.79 258 | 82.38 81 | 87.30 147 | 93.71 70 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| HFP-MVS | | | 87.58 22 | 87.47 26 | 87.94 19 | 94.58 16 | 73.54 15 | 93.04 12 | 93.24 33 | 76.78 68 | 84.91 65 | 94.44 30 | 70.78 66 | 96.61 32 | 84.53 54 | 94.89 42 | 93.66 71 |
|
| VNet | | | 82.21 109 | 82.41 100 | 81.62 206 | 90.82 93 | 60.93 269 | 84.47 245 | 89.78 164 | 76.36 82 | 84.07 85 | 91.88 97 | 64.71 132 | 90.26 264 | 70.68 189 | 88.89 125 | 93.66 71 |
|
| PGM-MVS | | | 86.68 40 | 86.27 44 | 87.90 22 | 94.22 33 | 73.38 18 | 90.22 73 | 93.04 41 | 75.53 96 | 83.86 89 | 94.42 31 | 67.87 100 | 96.64 31 | 82.70 79 | 94.57 50 | 93.66 71 |
|
| DELS-MVS | | | 85.41 63 | 85.30 65 | 85.77 71 | 88.49 169 | 67.93 136 | 85.52 225 | 93.44 27 | 78.70 29 | 83.63 95 | 89.03 171 | 74.57 24 | 95.71 61 | 80.26 100 | 94.04 61 | 93.66 71 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| SD-MVS | | | 88.06 14 | 88.50 14 | 86.71 54 | 92.60 69 | 72.71 29 | 91.81 41 | 93.19 35 | 77.87 36 | 90.32 17 | 94.00 49 | 74.83 23 | 93.78 140 | 87.63 30 | 94.27 59 | 93.65 75 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| DeepC-MVS | | 79.81 2 | 87.08 35 | 86.88 38 | 87.69 33 | 91.16 84 | 72.32 43 | 90.31 71 | 93.94 14 | 77.12 58 | 82.82 104 | 94.23 38 | 72.13 47 | 97.09 16 | 84.83 49 | 95.37 31 | 93.65 75 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| patch_mono-2 | | | 83.65 84 | 84.54 73 | 80.99 225 | 90.06 112 | 65.83 181 | 84.21 254 | 88.74 206 | 71.60 177 | 85.01 62 | 92.44 87 | 74.51 25 | 83.50 344 | 82.15 82 | 92.15 80 | 93.64 77 |
|
| EIA-MVS | | | 83.31 95 | 82.80 97 | 84.82 97 | 89.59 122 | 65.59 187 | 88.21 140 | 92.68 65 | 74.66 118 | 78.96 148 | 86.42 247 | 69.06 86 | 95.26 79 | 75.54 144 | 90.09 109 | 93.62 78 |
|
| MP-MVS |  | | 87.71 19 | 87.64 21 | 87.93 21 | 94.36 26 | 73.88 6 | 92.71 22 | 92.65 69 | 77.57 42 | 83.84 90 | 94.40 32 | 72.24 45 | 96.28 43 | 85.65 41 | 95.30 35 | 93.62 78 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| HPM-MVS_fast | | | 85.35 64 | 84.95 70 | 86.57 56 | 93.69 42 | 70.58 78 | 92.15 35 | 91.62 110 | 73.89 134 | 82.67 107 | 94.09 43 | 62.60 152 | 95.54 65 | 80.93 92 | 92.93 71 | 93.57 80 |
|
| fmvsm_s_conf0.1_n | | | 83.56 88 | 83.38 86 | 84.10 124 | 84.86 263 | 67.28 154 | 89.40 97 | 83.01 303 | 70.67 195 | 87.08 44 | 93.96 53 | 68.38 93 | 91.45 240 | 88.56 22 | 84.50 183 | 93.56 81 |
|
| CSCG | | | 86.41 45 | 86.19 46 | 87.07 45 | 92.91 61 | 72.48 37 | 90.81 58 | 93.56 24 | 73.95 131 | 83.16 99 | 91.07 124 | 75.94 18 | 95.19 81 | 79.94 102 | 94.38 56 | 93.55 82 |
|
| test12 | | | | | 86.80 52 | 92.63 67 | 70.70 75 | | 91.79 106 | | 82.71 106 | | 71.67 54 | 96.16 47 | | 94.50 51 | 93.54 83 |
|
| APD-MVS_3200maxsize | | | 85.97 50 | 85.88 53 | 86.22 60 | 92.69 66 | 69.53 92 | 91.93 37 | 92.99 49 | 73.54 143 | 85.94 52 | 94.51 26 | 65.80 123 | 95.61 62 | 83.04 71 | 92.51 76 | 93.53 84 |
|
| mvs_anonymous | | | 79.42 172 | 79.11 161 | 80.34 239 | 84.45 272 | 57.97 302 | 82.59 281 | 87.62 229 | 67.40 262 | 76.17 217 | 88.56 185 | 68.47 92 | 89.59 277 | 70.65 190 | 86.05 167 | 93.47 85 |
|
| fmvsm_s_conf0.5_n | | | 83.80 81 | 83.71 81 | 84.07 130 | 86.69 232 | 67.31 153 | 89.46 92 | 83.07 302 | 71.09 187 | 86.96 47 | 93.70 58 | 69.02 89 | 91.47 239 | 88.79 18 | 84.62 182 | 93.44 86 |
|
| mPP-MVS | | | 86.67 41 | 86.32 43 | 87.72 30 | 94.41 22 | 73.55 13 | 92.74 20 | 92.22 87 | 76.87 65 | 82.81 105 | 94.25 37 | 66.44 113 | 96.24 44 | 82.88 74 | 94.28 58 | 93.38 87 |
|
| EPNet | | | 83.72 83 | 82.92 95 | 86.14 64 | 84.22 275 | 69.48 94 | 91.05 56 | 85.27 267 | 81.30 6 | 76.83 197 | 91.65 102 | 66.09 118 | 95.56 63 | 76.00 138 | 93.85 62 | 93.38 87 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| Vis-MVSNet |  | | 83.46 90 | 82.80 97 | 85.43 78 | 90.25 104 | 68.74 114 | 90.30 72 | 90.13 156 | 76.33 83 | 80.87 128 | 92.89 77 | 61.00 184 | 94.20 121 | 72.45 176 | 90.97 96 | 93.35 89 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| DVP-MVS |  | | 89.60 3 | 90.35 3 | 87.33 40 | 95.27 5 | 71.25 59 | 93.49 9 | 92.73 64 | 77.33 50 | 92.12 9 | 95.78 4 | 80.98 9 | 97.40 9 | 89.08 12 | 96.41 12 | 93.33 90 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| UniMVSNet_ETH3D | | | 79.10 181 | 78.24 179 | 81.70 205 | 86.85 227 | 60.24 281 | 87.28 171 | 88.79 201 | 74.25 126 | 76.84 196 | 90.53 137 | 49.48 293 | 91.56 232 | 67.98 216 | 82.15 222 | 93.29 91 |
|
| EI-MVSNet-Vis-set | | | 84.19 76 | 83.81 80 | 85.31 80 | 88.18 180 | 67.85 137 | 87.66 158 | 89.73 167 | 80.05 14 | 82.95 100 | 89.59 156 | 70.74 67 | 94.82 100 | 80.66 97 | 84.72 180 | 93.28 92 |
|
| MTAPA | | | 87.23 31 | 87.00 32 | 87.90 22 | 94.18 35 | 74.25 5 | 86.58 192 | 92.02 92 | 79.45 19 | 85.88 53 | 94.80 19 | 68.07 96 | 96.21 45 | 86.69 36 | 95.34 32 | 93.23 93 |
|
| CP-MVS | | | 87.11 33 | 86.92 36 | 87.68 34 | 94.20 34 | 73.86 7 | 93.98 3 | 92.82 63 | 76.62 74 | 83.68 92 | 94.46 27 | 67.93 98 | 95.95 57 | 84.20 60 | 94.39 55 | 93.23 93 |
|
| ACMMP |  | | 85.89 54 | 85.39 61 | 87.38 39 | 93.59 45 | 72.63 33 | 92.74 20 | 93.18 39 | 76.78 68 | 80.73 129 | 93.82 56 | 64.33 133 | 96.29 42 | 82.67 80 | 90.69 100 | 93.23 93 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| fmvsm_s_conf0.1_n_a | | | 83.32 94 | 82.99 93 | 84.28 116 | 83.79 285 | 68.07 133 | 89.34 100 | 82.85 308 | 69.80 217 | 87.36 42 | 94.06 45 | 68.34 94 | 91.56 232 | 87.95 27 | 83.46 207 | 93.21 96 |
|
| PAPM_NR | | | 83.02 100 | 82.41 100 | 84.82 97 | 92.47 70 | 66.37 170 | 87.93 151 | 91.80 105 | 73.82 135 | 77.32 185 | 90.66 134 | 67.90 99 | 94.90 96 | 70.37 192 | 89.48 118 | 93.19 97 |
|
| reproduce_model | | | 87.28 30 | 87.39 27 | 86.95 48 | 93.10 56 | 71.24 63 | 91.60 42 | 93.19 35 | 74.69 116 | 88.80 23 | 95.61 11 | 70.29 72 | 96.44 39 | 86.20 39 | 93.08 69 | 93.16 98 |
|
| OMC-MVS | | | 82.69 103 | 81.97 111 | 84.85 96 | 88.75 161 | 67.42 149 | 87.98 147 | 90.87 133 | 74.92 110 | 79.72 139 | 91.65 102 | 62.19 162 | 93.96 127 | 75.26 148 | 86.42 160 | 93.16 98 |
|
| fmvsm_s_conf0.5_n_a | | | 83.63 86 | 83.41 85 | 84.28 116 | 86.14 239 | 68.12 131 | 89.43 93 | 82.87 307 | 70.27 206 | 87.27 43 | 93.80 57 | 69.09 84 | 91.58 230 | 88.21 26 | 83.65 202 | 93.14 100 |
|
| PAPR | | | 81.66 122 | 80.89 125 | 83.99 140 | 90.27 103 | 64.00 219 | 86.76 188 | 91.77 108 | 68.84 243 | 77.13 195 | 89.50 157 | 67.63 101 | 94.88 98 | 67.55 220 | 88.52 134 | 93.09 101 |
|
| UA-Net | | | 85.08 68 | 84.96 69 | 85.45 77 | 92.07 73 | 68.07 133 | 89.78 82 | 90.86 134 | 82.48 2 | 84.60 75 | 93.20 69 | 69.35 81 | 95.22 80 | 71.39 182 | 90.88 98 | 93.07 102 |
|
| reproduce-ours | | | 87.47 23 | 87.61 22 | 87.07 45 | 93.27 50 | 71.60 53 | 91.56 46 | 93.19 35 | 74.98 108 | 88.96 20 | 95.54 12 | 71.20 61 | 96.54 36 | 86.28 37 | 93.49 65 | 93.06 103 |
|
| our_new_method | | | 87.47 23 | 87.61 22 | 87.07 45 | 93.27 50 | 71.60 53 | 91.56 46 | 93.19 35 | 74.98 108 | 88.96 20 | 95.54 12 | 71.20 61 | 96.54 36 | 86.28 37 | 93.49 65 | 93.06 103 |
|
| HPM-MVS++ |  | | 89.02 9 | 89.15 9 | 88.63 5 | 95.01 9 | 76.03 1 | 92.38 27 | 92.85 59 | 80.26 11 | 87.78 33 | 94.27 35 | 75.89 19 | 96.81 23 | 87.45 32 | 96.44 9 | 93.05 105 |
|
| thisisatest0530 | | | 79.40 173 | 77.76 194 | 84.31 114 | 87.69 207 | 65.10 198 | 87.36 167 | 84.26 282 | 70.04 209 | 77.42 182 | 88.26 194 | 49.94 288 | 94.79 102 | 70.20 193 | 84.70 181 | 93.03 106 |
|
| train_agg | | | 86.43 43 | 86.20 45 | 87.13 44 | 93.26 52 | 72.96 25 | 88.75 119 | 91.89 100 | 68.69 245 | 85.00 63 | 93.10 70 | 74.43 26 | 95.41 73 | 84.97 45 | 95.71 25 | 93.02 107 |
|
| EC-MVSNet | | | 86.01 47 | 86.38 42 | 84.91 95 | 89.31 138 | 66.27 172 | 92.32 30 | 93.63 21 | 79.37 20 | 84.17 83 | 91.88 97 | 69.04 88 | 95.43 70 | 83.93 63 | 93.77 63 | 93.01 108 |
|
| mvsmamba | | | 80.60 145 | 79.38 152 | 84.27 118 | 89.74 120 | 67.24 157 | 87.47 163 | 86.95 243 | 70.02 210 | 75.38 233 | 88.93 172 | 51.24 273 | 92.56 194 | 75.47 146 | 89.22 121 | 93.00 109 |
|
| EI-MVSNet-UG-set | | | 83.81 80 | 83.38 86 | 85.09 87 | 87.87 196 | 67.53 147 | 87.44 166 | 89.66 168 | 79.74 16 | 82.23 109 | 89.41 165 | 70.24 73 | 94.74 103 | 79.95 101 | 83.92 194 | 92.99 110 |
|
| tttt0517 | | | 79.40 173 | 77.91 186 | 83.90 144 | 88.10 185 | 63.84 222 | 88.37 135 | 84.05 284 | 71.45 180 | 76.78 199 | 89.12 168 | 49.93 290 | 94.89 97 | 70.18 194 | 83.18 211 | 92.96 111 |
|
| test9_res | | | | | | | | | | | | | | | 84.90 46 | 95.70 26 | 92.87 112 |
|
| SR-MVS | | | 86.73 38 | 86.67 39 | 86.91 49 | 94.11 37 | 72.11 47 | 92.37 28 | 92.56 74 | 74.50 120 | 86.84 48 | 94.65 22 | 67.31 105 | 95.77 59 | 84.80 50 | 92.85 72 | 92.84 113 |
|
| ETV-MVS | | | 84.90 72 | 84.67 72 | 85.59 74 | 89.39 133 | 68.66 120 | 88.74 121 | 92.64 71 | 79.97 15 | 84.10 84 | 85.71 260 | 69.32 82 | 95.38 75 | 80.82 94 | 91.37 92 | 92.72 114 |
|
| agg_prior2 | | | | | | | | | | | | | | | 82.91 73 | 95.45 29 | 92.70 115 |
|
| APD-MVS |  | | 87.44 25 | 87.52 25 | 87.19 42 | 94.24 32 | 72.39 39 | 91.86 40 | 92.83 60 | 73.01 158 | 88.58 24 | 94.52 23 | 73.36 34 | 96.49 38 | 84.26 57 | 95.01 37 | 92.70 115 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| ET-MVSNet_ETH3D | | | 78.63 192 | 76.63 222 | 84.64 102 | 86.73 231 | 69.47 95 | 85.01 232 | 84.61 275 | 69.54 223 | 66.51 349 | 86.59 240 | 50.16 285 | 91.75 225 | 76.26 134 | 84.24 191 | 92.69 117 |
|
| Vis-MVSNet (Re-imp) | | | 78.36 198 | 78.45 172 | 78.07 284 | 88.64 165 | 51.78 373 | 86.70 189 | 79.63 344 | 74.14 129 | 75.11 246 | 90.83 132 | 61.29 178 | 89.75 274 | 58.10 306 | 91.60 88 | 92.69 117 |
|
| TSAR-MVS + GP. | | | 85.71 57 | 85.33 63 | 86.84 50 | 91.34 81 | 72.50 36 | 89.07 109 | 87.28 236 | 76.41 77 | 85.80 54 | 90.22 143 | 74.15 31 | 95.37 78 | 81.82 84 | 91.88 83 | 92.65 119 |
|
| test_fmvsmvis_n_1920 | | | 84.02 78 | 83.87 79 | 84.49 107 | 84.12 277 | 69.37 101 | 88.15 144 | 87.96 220 | 70.01 211 | 83.95 88 | 93.23 68 | 68.80 91 | 91.51 237 | 88.61 20 | 89.96 112 | 92.57 120 |
|
| FA-MVS(test-final) | | | 80.96 133 | 79.91 141 | 84.10 124 | 88.30 178 | 65.01 199 | 84.55 244 | 90.01 159 | 73.25 153 | 79.61 140 | 87.57 209 | 58.35 205 | 94.72 104 | 71.29 183 | 86.25 163 | 92.56 121 |
|
| test_yl | | | 81.17 129 | 80.47 131 | 83.24 161 | 89.13 146 | 63.62 225 | 86.21 203 | 89.95 161 | 72.43 165 | 81.78 116 | 89.61 154 | 57.50 213 | 93.58 148 | 70.75 187 | 86.90 152 | 92.52 122 |
|
| DCV-MVSNet | | | 81.17 129 | 80.47 131 | 83.24 161 | 89.13 146 | 63.62 225 | 86.21 203 | 89.95 161 | 72.43 165 | 81.78 116 | 89.61 154 | 57.50 213 | 93.58 148 | 70.75 187 | 86.90 152 | 92.52 122 |
|
| SR-MVS-dyc-post | | | 85.77 55 | 85.61 58 | 86.23 59 | 93.06 58 | 70.63 76 | 91.88 38 | 92.27 83 | 73.53 144 | 85.69 56 | 94.45 28 | 65.00 131 | 95.56 63 | 82.75 75 | 91.87 84 | 92.50 124 |
|
| RE-MVS-def | | | | 85.48 60 | | 93.06 58 | 70.63 76 | 91.88 38 | 92.27 83 | 73.53 144 | 85.69 56 | 94.45 28 | 63.87 137 | | 82.75 75 | 91.87 84 | 92.50 124 |
|
| nrg030 | | | 83.88 79 | 83.53 83 | 84.96 91 | 86.77 230 | 69.28 102 | 90.46 67 | 92.67 66 | 74.79 114 | 82.95 100 | 91.33 115 | 72.70 43 | 93.09 179 | 80.79 96 | 79.28 258 | 92.50 124 |
|
| MG-MVS | | | 83.41 91 | 83.45 84 | 83.28 158 | 92.74 65 | 62.28 254 | 88.17 142 | 89.50 174 | 75.22 101 | 81.49 119 | 92.74 85 | 66.75 108 | 95.11 86 | 72.85 170 | 91.58 89 | 92.45 127 |
|
| FIs | | | 82.07 112 | 82.42 99 | 81.04 224 | 88.80 158 | 58.34 296 | 88.26 139 | 93.49 26 | 76.93 63 | 78.47 161 | 91.04 125 | 69.92 76 | 92.34 205 | 69.87 199 | 84.97 177 | 92.44 128 |
|
| FC-MVSNet-test | | | 81.52 124 | 82.02 109 | 80.03 245 | 88.42 174 | 55.97 335 | 87.95 149 | 93.42 29 | 77.10 59 | 77.38 183 | 90.98 131 | 69.96 75 | 91.79 223 | 68.46 214 | 84.50 183 | 92.33 129 |
|
| Fast-Effi-MVS+ | | | 80.81 137 | 79.92 140 | 83.47 151 | 88.85 153 | 64.51 208 | 85.53 223 | 89.39 177 | 70.79 192 | 78.49 160 | 85.06 278 | 67.54 102 | 93.58 148 | 67.03 228 | 86.58 157 | 92.32 130 |
|
| TranMVSNet+NR-MVSNet | | | 80.84 135 | 80.31 134 | 82.42 193 | 87.85 197 | 62.33 252 | 87.74 157 | 91.33 119 | 80.55 9 | 77.99 173 | 89.86 147 | 65.23 127 | 92.62 191 | 67.05 227 | 75.24 316 | 92.30 131 |
|
| ab-mvs | | | 79.51 167 | 78.97 164 | 81.14 221 | 88.46 171 | 60.91 270 | 83.84 259 | 89.24 184 | 70.36 202 | 79.03 147 | 88.87 175 | 63.23 144 | 90.21 266 | 65.12 241 | 82.57 219 | 92.28 132 |
|
| CANet_DTU | | | 80.61 144 | 79.87 142 | 82.83 180 | 85.60 248 | 63.17 241 | 87.36 167 | 88.65 208 | 76.37 81 | 75.88 220 | 88.44 188 | 53.51 245 | 93.07 180 | 73.30 165 | 89.74 116 | 92.25 133 |
|
| UniMVSNet_NR-MVSNet | | | 81.88 115 | 81.54 115 | 82.92 177 | 88.46 171 | 63.46 232 | 87.13 173 | 92.37 80 | 80.19 12 | 78.38 162 | 89.14 167 | 71.66 55 | 93.05 181 | 70.05 195 | 76.46 289 | 92.25 133 |
|
| fmvsm_l_conf0.5_n | | | 84.47 74 | 84.54 73 | 84.27 118 | 85.42 251 | 68.81 109 | 88.49 129 | 87.26 237 | 68.08 254 | 88.03 30 | 93.49 60 | 72.04 48 | 91.77 224 | 88.90 17 | 89.14 123 | 92.24 135 |
|
| DU-MVS | | | 81.12 131 | 80.52 130 | 82.90 178 | 87.80 200 | 63.46 232 | 87.02 177 | 91.87 102 | 79.01 26 | 78.38 162 | 89.07 169 | 65.02 129 | 93.05 181 | 70.05 195 | 76.46 289 | 92.20 136 |
|
| NR-MVSNet | | | 80.23 155 | 79.38 152 | 82.78 186 | 87.80 200 | 63.34 235 | 86.31 200 | 91.09 128 | 79.01 26 | 72.17 287 | 89.07 169 | 67.20 106 | 92.81 190 | 66.08 234 | 75.65 302 | 92.20 136 |
|
| TAPA-MVS | | 73.13 9 | 79.15 179 | 77.94 185 | 82.79 185 | 89.59 122 | 62.99 246 | 88.16 143 | 91.51 114 | 65.77 282 | 77.14 194 | 91.09 123 | 60.91 185 | 93.21 168 | 50.26 353 | 87.05 150 | 92.17 138 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| fmvsm_l_conf0.5_n_a | | | 84.13 77 | 84.16 78 | 84.06 132 | 85.38 252 | 68.40 124 | 88.34 136 | 86.85 247 | 67.48 261 | 87.48 39 | 93.40 64 | 70.89 64 | 91.61 228 | 88.38 25 | 89.22 121 | 92.16 139 |
|
| 3Dnovator | | 76.31 5 | 83.38 93 | 82.31 103 | 86.59 55 | 87.94 193 | 72.94 28 | 90.64 60 | 92.14 91 | 77.21 55 | 75.47 227 | 92.83 79 | 58.56 203 | 94.72 104 | 73.24 167 | 92.71 74 | 92.13 140 |
|
| MVS_111021_HR | | | 85.14 66 | 84.75 71 | 86.32 58 | 91.65 79 | 72.70 30 | 85.98 208 | 90.33 149 | 76.11 86 | 82.08 110 | 91.61 106 | 71.36 59 | 94.17 123 | 81.02 91 | 92.58 75 | 92.08 141 |
|
| MVSFormer | | | 82.85 102 | 82.05 108 | 85.24 82 | 87.35 214 | 70.21 80 | 90.50 64 | 90.38 145 | 68.55 247 | 81.32 120 | 89.47 159 | 61.68 167 | 93.46 157 | 78.98 106 | 90.26 106 | 92.05 142 |
|
| jason | | | 81.39 127 | 80.29 135 | 84.70 101 | 86.63 234 | 69.90 88 | 85.95 209 | 86.77 248 | 63.24 312 | 81.07 126 | 89.47 159 | 61.08 183 | 92.15 211 | 78.33 114 | 90.07 111 | 92.05 142 |
| jason: jason. |
| HyFIR lowres test | | | 77.53 221 | 75.40 240 | 83.94 143 | 89.59 122 | 66.62 166 | 80.36 312 | 88.64 209 | 56.29 372 | 76.45 207 | 85.17 275 | 57.64 211 | 93.28 163 | 61.34 277 | 83.10 212 | 91.91 144 |
|
| XVG-OURS-SEG-HR | | | 80.81 137 | 79.76 144 | 83.96 142 | 85.60 248 | 68.78 111 | 83.54 268 | 90.50 142 | 70.66 198 | 76.71 201 | 91.66 101 | 60.69 188 | 91.26 245 | 76.94 128 | 81.58 229 | 91.83 145 |
|
| lupinMVS | | | 81.39 127 | 80.27 136 | 84.76 100 | 87.35 214 | 70.21 80 | 85.55 221 | 86.41 252 | 62.85 319 | 81.32 120 | 88.61 182 | 61.68 167 | 92.24 209 | 78.41 113 | 90.26 106 | 91.83 145 |
|
| WR-MVS | | | 79.49 168 | 79.22 159 | 80.27 241 | 88.79 159 | 58.35 295 | 85.06 231 | 88.61 210 | 78.56 30 | 77.65 178 | 88.34 190 | 63.81 139 | 90.66 261 | 64.98 243 | 77.22 278 | 91.80 147 |
|
| h-mvs33 | | | 83.15 96 | 82.19 104 | 86.02 68 | 90.56 98 | 70.85 73 | 88.15 144 | 89.16 187 | 76.02 88 | 84.67 70 | 91.39 113 | 61.54 170 | 95.50 66 | 82.71 77 | 75.48 306 | 91.72 148 |
|
| UniMVSNet (Re) | | | 81.60 123 | 81.11 120 | 83.09 168 | 88.38 175 | 64.41 213 | 87.60 159 | 93.02 45 | 78.42 32 | 78.56 158 | 88.16 196 | 69.78 77 | 93.26 164 | 69.58 202 | 76.49 288 | 91.60 149 |
|
| UGNet | | | 80.83 136 | 79.59 148 | 84.54 104 | 88.04 188 | 68.09 132 | 89.42 95 | 88.16 214 | 76.95 62 | 76.22 213 | 89.46 161 | 49.30 297 | 93.94 130 | 68.48 213 | 90.31 104 | 91.60 149 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| testing91 | | | 76.54 236 | 75.66 235 | 79.18 263 | 88.43 173 | 55.89 336 | 81.08 298 | 83.00 304 | 73.76 137 | 75.34 235 | 84.29 293 | 46.20 322 | 90.07 268 | 64.33 247 | 84.50 183 | 91.58 151 |
|
| XVG-OURS | | | 80.41 150 | 79.23 158 | 83.97 141 | 85.64 247 | 69.02 105 | 83.03 279 | 90.39 144 | 71.09 187 | 77.63 179 | 91.49 110 | 54.62 236 | 91.35 243 | 75.71 140 | 83.47 206 | 91.54 152 |
|
| LCM-MVSNet-Re | | | 77.05 228 | 76.94 212 | 77.36 295 | 87.20 222 | 51.60 374 | 80.06 315 | 80.46 334 | 75.20 102 | 67.69 331 | 86.72 232 | 62.48 155 | 88.98 289 | 63.44 253 | 89.25 120 | 91.51 153 |
|
| DP-MVS Recon | | | 83.11 99 | 82.09 107 | 86.15 62 | 94.44 19 | 70.92 71 | 88.79 117 | 92.20 88 | 70.53 200 | 79.17 146 | 91.03 127 | 64.12 135 | 96.03 50 | 68.39 215 | 90.14 108 | 91.50 154 |
|
| PS-MVSNAJss | | | 82.07 112 | 81.31 116 | 84.34 113 | 86.51 235 | 67.27 155 | 89.27 101 | 91.51 114 | 71.75 172 | 79.37 143 | 90.22 143 | 63.15 146 | 94.27 117 | 77.69 119 | 82.36 221 | 91.49 155 |
|
| testing99 | | | 76.09 248 | 75.12 246 | 79.00 264 | 88.16 181 | 55.50 342 | 80.79 302 | 81.40 323 | 73.30 151 | 75.17 243 | 84.27 295 | 44.48 336 | 90.02 269 | 64.28 248 | 84.22 192 | 91.48 156 |
|
| thisisatest0515 | | | 77.33 225 | 75.38 241 | 83.18 164 | 85.27 254 | 63.80 223 | 82.11 286 | 83.27 296 | 65.06 291 | 75.91 219 | 83.84 302 | 49.54 292 | 94.27 117 | 67.24 224 | 86.19 164 | 91.48 156 |
|
| DPM-MVS | | | 84.93 70 | 84.29 77 | 86.84 50 | 90.20 105 | 73.04 23 | 87.12 174 | 93.04 41 | 69.80 217 | 82.85 103 | 91.22 118 | 73.06 39 | 96.02 52 | 76.72 132 | 94.63 48 | 91.46 158 |
|
| HQP_MVS | | | 83.64 85 | 83.14 89 | 85.14 84 | 90.08 108 | 68.71 116 | 91.25 52 | 92.44 76 | 79.12 23 | 78.92 150 | 91.00 129 | 60.42 194 | 95.38 75 | 78.71 109 | 86.32 161 | 91.33 159 |
|
| plane_prior5 | | | | | | | | | 92.44 76 | | | | | 95.38 75 | 78.71 109 | 86.32 161 | 91.33 159 |
|
| GA-MVS | | | 76.87 232 | 75.17 245 | 81.97 201 | 82.75 312 | 62.58 249 | 81.44 295 | 86.35 255 | 72.16 169 | 74.74 253 | 82.89 322 | 46.20 322 | 92.02 215 | 68.85 210 | 81.09 234 | 91.30 161 |
|
| VPA-MVSNet | | | 80.60 145 | 80.55 129 | 80.76 231 | 88.07 187 | 60.80 272 | 86.86 182 | 91.58 112 | 75.67 95 | 80.24 133 | 89.45 163 | 63.34 140 | 90.25 265 | 70.51 191 | 79.22 259 | 91.23 162 |
|
| Effi-MVS+-dtu | | | 80.03 159 | 78.57 170 | 84.42 109 | 85.13 259 | 68.74 114 | 88.77 118 | 88.10 216 | 74.99 107 | 74.97 250 | 83.49 311 | 57.27 216 | 93.36 161 | 73.53 161 | 80.88 236 | 91.18 163 |
|
| v2v482 | | | 80.23 155 | 79.29 156 | 83.05 171 | 83.62 289 | 64.14 217 | 87.04 176 | 89.97 160 | 73.61 140 | 78.18 168 | 87.22 220 | 61.10 182 | 93.82 138 | 76.11 135 | 76.78 286 | 91.18 163 |
|
| FE-MVS | | | 77.78 214 | 75.68 233 | 84.08 129 | 88.09 186 | 66.00 176 | 83.13 274 | 87.79 226 | 68.42 251 | 78.01 172 | 85.23 273 | 45.50 331 | 95.12 84 | 59.11 294 | 85.83 172 | 91.11 165 |
|
| Anonymous20231211 | | | 78.97 185 | 77.69 197 | 82.81 182 | 90.54 99 | 64.29 215 | 90.11 75 | 91.51 114 | 65.01 293 | 76.16 218 | 88.13 201 | 50.56 281 | 93.03 184 | 69.68 201 | 77.56 276 | 91.11 165 |
|
| hse-mvs2 | | | 81.72 118 | 80.94 124 | 84.07 130 | 88.72 162 | 67.68 142 | 85.87 212 | 87.26 237 | 76.02 88 | 84.67 70 | 88.22 195 | 61.54 170 | 93.48 155 | 82.71 77 | 73.44 334 | 91.06 167 |
|
| AUN-MVS | | | 79.21 178 | 77.60 199 | 84.05 135 | 88.71 163 | 67.61 144 | 85.84 214 | 87.26 237 | 69.08 236 | 77.23 188 | 88.14 200 | 53.20 249 | 93.47 156 | 75.50 145 | 73.45 333 | 91.06 167 |
|
| HQP4-MVS | | | | | | | | | | | 77.24 187 | | | 95.11 86 | | | 91.03 169 |
|
| HQP-MVS | | | 82.61 105 | 82.02 109 | 84.37 110 | 89.33 135 | 66.98 162 | 89.17 103 | 92.19 89 | 76.41 77 | 77.23 188 | 90.23 142 | 60.17 197 | 95.11 86 | 77.47 121 | 85.99 169 | 91.03 169 |
|
| RPSCF | | | 73.23 283 | 71.46 287 | 78.54 274 | 82.50 318 | 59.85 284 | 82.18 285 | 82.84 309 | 58.96 353 | 71.15 298 | 89.41 165 | 45.48 332 | 84.77 336 | 58.82 298 | 71.83 346 | 91.02 171 |
|
| test_djsdf | | | 80.30 154 | 79.32 155 | 83.27 159 | 83.98 281 | 65.37 193 | 90.50 64 | 90.38 145 | 68.55 247 | 76.19 214 | 88.70 178 | 56.44 223 | 93.46 157 | 78.98 106 | 80.14 248 | 90.97 172 |
|
| PCF-MVS | | 73.52 7 | 80.38 151 | 78.84 166 | 85.01 89 | 87.71 205 | 68.99 106 | 83.65 263 | 91.46 118 | 63.00 316 | 77.77 177 | 90.28 139 | 66.10 117 | 95.09 90 | 61.40 275 | 88.22 138 | 90.94 173 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| VPNet | | | 78.69 191 | 78.66 168 | 78.76 268 | 88.31 177 | 55.72 339 | 84.45 248 | 86.63 250 | 76.79 67 | 78.26 165 | 90.55 136 | 59.30 199 | 89.70 276 | 66.63 229 | 77.05 280 | 90.88 174 |
|
| CPTT-MVS | | | 83.73 82 | 83.33 88 | 84.92 94 | 93.28 49 | 70.86 72 | 92.09 36 | 90.38 145 | 68.75 244 | 79.57 141 | 92.83 79 | 60.60 192 | 93.04 183 | 80.92 93 | 91.56 90 | 90.86 175 |
|
| tt0805 | | | 78.73 189 | 77.83 189 | 81.43 211 | 85.17 255 | 60.30 280 | 89.41 96 | 90.90 131 | 71.21 184 | 77.17 193 | 88.73 177 | 46.38 317 | 93.21 168 | 72.57 174 | 78.96 260 | 90.79 176 |
|
| CLD-MVS | | | 82.31 108 | 81.65 114 | 84.29 115 | 88.47 170 | 67.73 141 | 85.81 216 | 92.35 81 | 75.78 91 | 78.33 164 | 86.58 242 | 64.01 136 | 94.35 114 | 76.05 137 | 87.48 145 | 90.79 176 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| v1192 | | | 79.59 166 | 78.43 174 | 83.07 170 | 83.55 291 | 64.52 207 | 86.93 180 | 90.58 139 | 70.83 191 | 77.78 176 | 85.90 256 | 59.15 200 | 93.94 130 | 73.96 158 | 77.19 279 | 90.76 178 |
|
| IterMVS-LS | | | 80.06 158 | 79.38 152 | 82.11 197 | 85.89 243 | 63.20 239 | 86.79 185 | 89.34 178 | 74.19 127 | 75.45 230 | 86.72 232 | 66.62 109 | 92.39 201 | 72.58 173 | 76.86 283 | 90.75 179 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| EI-MVSNet | | | 80.52 149 | 79.98 139 | 82.12 196 | 84.28 273 | 63.19 240 | 86.41 196 | 88.95 198 | 74.18 128 | 78.69 153 | 87.54 212 | 66.62 109 | 92.43 199 | 72.57 174 | 80.57 242 | 90.74 180 |
|
| v1921920 | | | 79.22 177 | 78.03 183 | 82.80 183 | 83.30 296 | 63.94 221 | 86.80 184 | 90.33 149 | 69.91 215 | 77.48 181 | 85.53 266 | 58.44 204 | 93.75 144 | 73.60 160 | 76.85 284 | 90.71 181 |
|
| QAPM | | | 80.88 134 | 79.50 150 | 85.03 88 | 88.01 191 | 68.97 107 | 91.59 43 | 92.00 94 | 66.63 273 | 75.15 245 | 92.16 91 | 57.70 210 | 95.45 68 | 63.52 251 | 88.76 129 | 90.66 182 |
|
| v144192 | | | 79.47 169 | 78.37 175 | 82.78 186 | 83.35 294 | 63.96 220 | 86.96 178 | 90.36 148 | 69.99 212 | 77.50 180 | 85.67 263 | 60.66 189 | 93.77 142 | 74.27 155 | 76.58 287 | 90.62 183 |
|
| v1240 | | | 78.99 184 | 77.78 192 | 82.64 189 | 83.21 298 | 63.54 229 | 86.62 191 | 90.30 151 | 69.74 222 | 77.33 184 | 85.68 262 | 57.04 218 | 93.76 143 | 73.13 168 | 76.92 281 | 90.62 183 |
|
| v1144 | | | 80.03 159 | 79.03 162 | 83.01 173 | 83.78 286 | 64.51 208 | 87.11 175 | 90.57 141 | 71.96 171 | 78.08 171 | 86.20 252 | 61.41 174 | 93.94 130 | 74.93 149 | 77.23 277 | 90.60 185 |
|
| 1112_ss | | | 77.40 224 | 76.43 225 | 80.32 240 | 89.11 150 | 60.41 279 | 83.65 263 | 87.72 228 | 62.13 329 | 73.05 274 | 86.72 232 | 62.58 154 | 89.97 270 | 62.11 269 | 80.80 238 | 90.59 186 |
|
| CP-MVSNet | | | 78.22 200 | 78.34 176 | 77.84 286 | 87.83 199 | 54.54 352 | 87.94 150 | 91.17 124 | 77.65 39 | 73.48 269 | 88.49 186 | 62.24 161 | 88.43 299 | 62.19 266 | 74.07 325 | 90.55 187 |
|
| testing222 | | | 74.04 271 | 72.66 275 | 78.19 281 | 87.89 195 | 55.36 343 | 81.06 299 | 79.20 348 | 71.30 182 | 74.65 256 | 83.57 310 | 39.11 366 | 88.67 296 | 51.43 345 | 85.75 173 | 90.53 188 |
|
| PS-CasMVS | | | 78.01 209 | 78.09 182 | 77.77 288 | 87.71 205 | 54.39 354 | 88.02 146 | 91.22 121 | 77.50 47 | 73.26 271 | 88.64 181 | 60.73 186 | 88.41 300 | 61.88 270 | 73.88 329 | 90.53 188 |
|
| CDS-MVSNet | | | 79.07 182 | 77.70 196 | 83.17 165 | 87.60 209 | 68.23 129 | 84.40 251 | 86.20 257 | 67.49 260 | 76.36 210 | 86.54 244 | 61.54 170 | 90.79 258 | 61.86 271 | 87.33 146 | 90.49 190 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| TAMVS | | | 78.89 187 | 77.51 201 | 83.03 172 | 87.80 200 | 67.79 140 | 84.72 238 | 85.05 271 | 67.63 257 | 76.75 200 | 87.70 205 | 62.25 160 | 90.82 257 | 58.53 301 | 87.13 149 | 90.49 190 |
|
| PEN-MVS | | | 77.73 215 | 77.69 197 | 77.84 286 | 87.07 225 | 53.91 357 | 87.91 152 | 91.18 123 | 77.56 44 | 73.14 273 | 88.82 176 | 61.23 179 | 89.17 285 | 59.95 285 | 72.37 340 | 90.43 192 |
|
| Test_1112_low_res | | | 76.40 243 | 75.44 238 | 79.27 260 | 89.28 140 | 58.09 298 | 81.69 290 | 87.07 241 | 59.53 348 | 72.48 282 | 86.67 237 | 61.30 177 | 89.33 281 | 60.81 281 | 80.15 247 | 90.41 193 |
|
| HY-MVS | | 69.67 12 | 77.95 210 | 77.15 207 | 80.36 238 | 87.57 213 | 60.21 282 | 83.37 270 | 87.78 227 | 66.11 277 | 75.37 234 | 87.06 227 | 63.27 142 | 90.48 263 | 61.38 276 | 82.43 220 | 90.40 194 |
|
| CHOSEN 1792x2688 | | | 77.63 220 | 75.69 232 | 83.44 152 | 89.98 114 | 68.58 122 | 78.70 335 | 87.50 232 | 56.38 371 | 75.80 222 | 86.84 228 | 58.67 202 | 91.40 242 | 61.58 274 | 85.75 173 | 90.34 195 |
|
| SDMVSNet | | | 80.38 151 | 80.18 137 | 80.99 225 | 89.03 151 | 64.94 201 | 80.45 311 | 89.40 176 | 75.19 103 | 76.61 205 | 89.98 145 | 60.61 191 | 87.69 308 | 76.83 130 | 83.55 204 | 90.33 196 |
|
| sd_testset | | | 77.70 218 | 77.40 202 | 78.60 271 | 89.03 151 | 60.02 283 | 79.00 330 | 85.83 262 | 75.19 103 | 76.61 205 | 89.98 145 | 54.81 229 | 85.46 329 | 62.63 262 | 83.55 204 | 90.33 196 |
|
| 114514_t | | | 80.68 143 | 79.51 149 | 84.20 121 | 94.09 38 | 67.27 155 | 89.64 87 | 91.11 127 | 58.75 356 | 74.08 263 | 90.72 133 | 58.10 206 | 95.04 91 | 69.70 200 | 89.42 119 | 90.30 198 |
|
| eth_miper_zixun_eth | | | 77.92 211 | 76.69 220 | 81.61 208 | 83.00 306 | 61.98 257 | 83.15 273 | 89.20 186 | 69.52 224 | 74.86 252 | 84.35 292 | 61.76 166 | 92.56 194 | 71.50 181 | 72.89 338 | 90.28 199 |
|
| PVSNet_Blended_VisFu | | | 82.62 104 | 81.83 113 | 84.96 91 | 90.80 94 | 69.76 90 | 88.74 121 | 91.70 109 | 69.39 225 | 78.96 148 | 88.46 187 | 65.47 125 | 94.87 99 | 74.42 153 | 88.57 132 | 90.24 200 |
|
| MVS_111021_LR | | | 82.61 105 | 82.11 105 | 84.11 123 | 88.82 156 | 71.58 55 | 85.15 228 | 86.16 258 | 74.69 116 | 80.47 131 | 91.04 125 | 62.29 159 | 90.55 262 | 80.33 99 | 90.08 110 | 90.20 201 |
|
| MSLP-MVS++ | | | 85.43 62 | 85.76 56 | 84.45 108 | 91.93 75 | 70.24 79 | 90.71 59 | 92.86 58 | 77.46 48 | 84.22 81 | 92.81 81 | 67.16 107 | 92.94 185 | 80.36 98 | 94.35 57 | 90.16 202 |
|
| mvs_tets | | | 79.13 180 | 77.77 193 | 83.22 163 | 84.70 265 | 66.37 170 | 89.17 103 | 90.19 154 | 69.38 226 | 75.40 232 | 89.46 161 | 44.17 338 | 93.15 175 | 76.78 131 | 80.70 240 | 90.14 203 |
|
| BH-RMVSNet | | | 79.61 164 | 78.44 173 | 83.14 166 | 89.38 134 | 65.93 178 | 84.95 234 | 87.15 240 | 73.56 142 | 78.19 167 | 89.79 149 | 56.67 221 | 93.36 161 | 59.53 290 | 86.74 155 | 90.13 204 |
|
| c3_l | | | 78.75 188 | 77.91 186 | 81.26 217 | 82.89 310 | 61.56 263 | 84.09 257 | 89.13 190 | 69.97 213 | 75.56 225 | 84.29 293 | 66.36 114 | 92.09 213 | 73.47 163 | 75.48 306 | 90.12 205 |
|
| v7n | | | 78.97 185 | 77.58 200 | 83.14 166 | 83.45 293 | 65.51 188 | 88.32 137 | 91.21 122 | 73.69 138 | 72.41 283 | 86.32 250 | 57.93 207 | 93.81 139 | 69.18 205 | 75.65 302 | 90.11 206 |
|
| jajsoiax | | | 79.29 176 | 77.96 184 | 83.27 159 | 84.68 266 | 66.57 168 | 89.25 102 | 90.16 155 | 69.20 233 | 75.46 229 | 89.49 158 | 45.75 328 | 93.13 177 | 76.84 129 | 80.80 238 | 90.11 206 |
|
| v148 | | | 78.72 190 | 77.80 191 | 81.47 210 | 82.73 313 | 61.96 258 | 86.30 201 | 88.08 217 | 73.26 152 | 76.18 215 | 85.47 268 | 62.46 156 | 92.36 203 | 71.92 178 | 73.82 330 | 90.09 208 |
|
| GBi-Net | | | 78.40 196 | 77.40 202 | 81.40 213 | 87.60 209 | 63.01 242 | 88.39 132 | 89.28 180 | 71.63 174 | 75.34 235 | 87.28 216 | 54.80 230 | 91.11 248 | 62.72 258 | 79.57 252 | 90.09 208 |
|
| test1 | | | 78.40 196 | 77.40 202 | 81.40 213 | 87.60 209 | 63.01 242 | 88.39 132 | 89.28 180 | 71.63 174 | 75.34 235 | 87.28 216 | 54.80 230 | 91.11 248 | 62.72 258 | 79.57 252 | 90.09 208 |
|
| FMVSNet1 | | | 77.44 222 | 76.12 229 | 81.40 213 | 86.81 229 | 63.01 242 | 88.39 132 | 89.28 180 | 70.49 201 | 74.39 260 | 87.28 216 | 49.06 301 | 91.11 248 | 60.91 279 | 78.52 263 | 90.09 208 |
|
| WR-MVS_H | | | 78.51 195 | 78.49 171 | 78.56 273 | 88.02 189 | 56.38 329 | 88.43 130 | 92.67 66 | 77.14 57 | 73.89 264 | 87.55 211 | 66.25 116 | 89.24 284 | 58.92 296 | 73.55 332 | 90.06 212 |
|
| DTE-MVSNet | | | 76.99 229 | 76.80 215 | 77.54 294 | 86.24 237 | 53.06 366 | 87.52 161 | 90.66 137 | 77.08 60 | 72.50 281 | 88.67 180 | 60.48 193 | 89.52 278 | 57.33 313 | 70.74 352 | 90.05 213 |
|
| v8 | | | 79.97 161 | 79.02 163 | 82.80 183 | 84.09 278 | 64.50 210 | 87.96 148 | 90.29 152 | 74.13 130 | 75.24 242 | 86.81 229 | 62.88 151 | 93.89 137 | 74.39 154 | 75.40 311 | 90.00 214 |
|
| thres600view7 | | | 76.50 238 | 75.44 238 | 79.68 253 | 89.40 132 | 57.16 315 | 85.53 223 | 83.23 297 | 73.79 136 | 76.26 212 | 87.09 225 | 51.89 265 | 91.89 220 | 48.05 367 | 83.72 201 | 90.00 214 |
|
| thres400 | | | 76.50 238 | 75.37 242 | 79.86 248 | 89.13 146 | 57.65 309 | 85.17 226 | 83.60 289 | 73.41 148 | 76.45 207 | 86.39 248 | 52.12 257 | 91.95 217 | 48.33 362 | 83.75 198 | 90.00 214 |
|
| cl22 | | | 78.07 206 | 77.01 209 | 81.23 218 | 82.37 322 | 61.83 260 | 83.55 267 | 87.98 219 | 68.96 241 | 75.06 248 | 83.87 300 | 61.40 175 | 91.88 221 | 73.53 161 | 76.39 291 | 89.98 217 |
|
| OPM-MVS | | | 83.50 89 | 82.95 94 | 85.14 84 | 88.79 159 | 70.95 69 | 89.13 108 | 91.52 113 | 77.55 45 | 80.96 127 | 91.75 99 | 60.71 187 | 94.50 111 | 79.67 104 | 86.51 159 | 89.97 218 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| baseline2 | | | 75.70 252 | 73.83 263 | 81.30 216 | 83.26 297 | 61.79 261 | 82.57 282 | 80.65 330 | 66.81 264 | 66.88 340 | 83.42 312 | 57.86 209 | 92.19 210 | 63.47 252 | 79.57 252 | 89.91 219 |
|
| v10 | | | 79.74 163 | 78.67 167 | 82.97 176 | 84.06 279 | 64.95 200 | 87.88 154 | 90.62 138 | 73.11 155 | 75.11 246 | 86.56 243 | 61.46 173 | 94.05 126 | 73.68 159 | 75.55 304 | 89.90 220 |
|
| MVSTER | | | 79.01 183 | 77.88 188 | 82.38 194 | 83.07 303 | 64.80 204 | 84.08 258 | 88.95 198 | 69.01 240 | 78.69 153 | 87.17 223 | 54.70 234 | 92.43 199 | 74.69 150 | 80.57 242 | 89.89 221 |
|
| ACMP | | 74.13 6 | 81.51 126 | 80.57 128 | 84.36 111 | 89.42 130 | 68.69 119 | 89.97 77 | 91.50 117 | 74.46 122 | 75.04 249 | 90.41 138 | 53.82 242 | 94.54 108 | 77.56 120 | 82.91 213 | 89.86 222 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| LPG-MVS_test | | | 82.08 111 | 81.27 117 | 84.50 105 | 89.23 142 | 68.76 112 | 90.22 73 | 91.94 98 | 75.37 99 | 76.64 203 | 91.51 108 | 54.29 237 | 94.91 94 | 78.44 111 | 83.78 195 | 89.83 223 |
|
| LGP-MVS_train | | | | | 84.50 105 | 89.23 142 | 68.76 112 | | 91.94 98 | 75.37 99 | 76.64 203 | 91.51 108 | 54.29 237 | 94.91 94 | 78.44 111 | 83.78 195 | 89.83 223 |
|
| V42 | | | 79.38 175 | 78.24 179 | 82.83 180 | 81.10 341 | 65.50 189 | 85.55 221 | 89.82 163 | 71.57 178 | 78.21 166 | 86.12 254 | 60.66 189 | 93.18 174 | 75.64 141 | 75.46 308 | 89.81 225 |
|
| MAR-MVS | | | 81.84 116 | 80.70 126 | 85.27 81 | 91.32 82 | 71.53 56 | 89.82 79 | 90.92 130 | 69.77 219 | 78.50 159 | 86.21 251 | 62.36 158 | 94.52 110 | 65.36 239 | 92.05 82 | 89.77 226 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| DIV-MVS_self_test | | | 77.72 216 | 76.76 217 | 80.58 234 | 82.48 320 | 60.48 277 | 83.09 275 | 87.86 224 | 69.22 231 | 74.38 261 | 85.24 272 | 62.10 163 | 91.53 235 | 71.09 184 | 75.40 311 | 89.74 227 |
|
| cl____ | | | 77.72 216 | 76.76 217 | 80.58 234 | 82.49 319 | 60.48 277 | 83.09 275 | 87.87 223 | 69.22 231 | 74.38 261 | 85.22 274 | 62.10 163 | 91.53 235 | 71.09 184 | 75.41 310 | 89.73 228 |
|
| miper_ehance_all_eth | | | 78.59 194 | 77.76 194 | 81.08 223 | 82.66 315 | 61.56 263 | 83.65 263 | 89.15 188 | 68.87 242 | 75.55 226 | 83.79 304 | 66.49 112 | 92.03 214 | 73.25 166 | 76.39 291 | 89.64 229 |
|
| anonymousdsp | | | 78.60 193 | 77.15 207 | 82.98 175 | 80.51 347 | 67.08 160 | 87.24 172 | 89.53 173 | 65.66 284 | 75.16 244 | 87.19 222 | 52.52 250 | 92.25 208 | 77.17 125 | 79.34 257 | 89.61 230 |
|
| FMVSNet2 | | | 78.20 202 | 77.21 206 | 81.20 219 | 87.60 209 | 62.89 248 | 87.47 163 | 89.02 193 | 71.63 174 | 75.29 241 | 87.28 216 | 54.80 230 | 91.10 251 | 62.38 263 | 79.38 256 | 89.61 230 |
|
| baseline1 | | | 76.98 230 | 76.75 219 | 77.66 289 | 88.13 183 | 55.66 340 | 85.12 229 | 81.89 317 | 73.04 157 | 76.79 198 | 88.90 173 | 62.43 157 | 87.78 307 | 63.30 255 | 71.18 350 | 89.55 232 |
|
| ETVMVS | | | 72.25 294 | 71.05 293 | 75.84 307 | 87.77 204 | 51.91 370 | 79.39 323 | 74.98 372 | 69.26 229 | 73.71 266 | 82.95 320 | 40.82 359 | 86.14 320 | 46.17 375 | 84.43 188 | 89.47 233 |
|
| FMVSNet3 | | | 77.88 212 | 76.85 214 | 80.97 227 | 86.84 228 | 62.36 251 | 86.52 194 | 88.77 202 | 71.13 185 | 75.34 235 | 86.66 238 | 54.07 240 | 91.10 251 | 62.72 258 | 79.57 252 | 89.45 234 |
|
| miper_enhance_ethall | | | 77.87 213 | 76.86 213 | 80.92 228 | 81.65 329 | 61.38 265 | 82.68 280 | 88.98 195 | 65.52 286 | 75.47 227 | 82.30 331 | 65.76 124 | 92.00 216 | 72.95 169 | 76.39 291 | 89.39 235 |
|
| testing11 | | | 75.14 262 | 74.01 258 | 78.53 275 | 88.16 181 | 56.38 329 | 80.74 305 | 80.42 335 | 70.67 195 | 72.69 280 | 83.72 307 | 43.61 342 | 89.86 271 | 62.29 265 | 83.76 197 | 89.36 236 |
|
| cascas | | | 76.72 235 | 74.64 249 | 82.99 174 | 85.78 245 | 65.88 180 | 82.33 283 | 89.21 185 | 60.85 337 | 72.74 277 | 81.02 342 | 47.28 310 | 93.75 144 | 67.48 221 | 85.02 176 | 89.34 237 |
|
| Fast-Effi-MVS+-dtu | | | 78.02 208 | 76.49 223 | 82.62 190 | 83.16 302 | 66.96 164 | 86.94 179 | 87.45 234 | 72.45 162 | 71.49 295 | 84.17 297 | 54.79 233 | 91.58 230 | 67.61 219 | 80.31 245 | 89.30 238 |
|
| IB-MVS | | 68.01 15 | 75.85 251 | 73.36 267 | 83.31 157 | 84.76 264 | 66.03 174 | 83.38 269 | 85.06 270 | 70.21 208 | 69.40 317 | 81.05 341 | 45.76 327 | 94.66 107 | 65.10 242 | 75.49 305 | 89.25 239 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| thres100view900 | | | 76.50 238 | 75.55 237 | 79.33 259 | 89.52 125 | 56.99 318 | 85.83 215 | 83.23 297 | 73.94 132 | 76.32 211 | 87.12 224 | 51.89 265 | 91.95 217 | 48.33 362 | 83.75 198 | 89.07 240 |
|
| tfpn200view9 | | | 76.42 242 | 75.37 242 | 79.55 258 | 89.13 146 | 57.65 309 | 85.17 226 | 83.60 289 | 73.41 148 | 76.45 207 | 86.39 248 | 52.12 257 | 91.95 217 | 48.33 362 | 83.75 198 | 89.07 240 |
|
| xiu_mvs_v1_base_debu | | | 80.80 139 | 79.72 145 | 84.03 137 | 87.35 214 | 70.19 82 | 85.56 218 | 88.77 202 | 69.06 237 | 81.83 112 | 88.16 196 | 50.91 276 | 92.85 187 | 78.29 115 | 87.56 142 | 89.06 242 |
|
| xiu_mvs_v1_base | | | 80.80 139 | 79.72 145 | 84.03 137 | 87.35 214 | 70.19 82 | 85.56 218 | 88.77 202 | 69.06 237 | 81.83 112 | 88.16 196 | 50.91 276 | 92.85 187 | 78.29 115 | 87.56 142 | 89.06 242 |
|
| xiu_mvs_v1_base_debi | | | 80.80 139 | 79.72 145 | 84.03 137 | 87.35 214 | 70.19 82 | 85.56 218 | 88.77 202 | 69.06 237 | 81.83 112 | 88.16 196 | 50.91 276 | 92.85 187 | 78.29 115 | 87.56 142 | 89.06 242 |
|
| EPNet_dtu | | | 75.46 256 | 74.86 247 | 77.23 298 | 82.57 317 | 54.60 351 | 86.89 181 | 83.09 301 | 71.64 173 | 66.25 351 | 85.86 258 | 55.99 224 | 88.04 304 | 54.92 327 | 86.55 158 | 89.05 245 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| pm-mvs1 | | | 77.25 227 | 76.68 221 | 78.93 266 | 84.22 275 | 58.62 293 | 86.41 196 | 88.36 213 | 71.37 181 | 73.31 270 | 88.01 202 | 61.22 180 | 89.15 286 | 64.24 249 | 73.01 337 | 89.03 246 |
|
| PVSNet_Blended | | | 80.98 132 | 80.34 133 | 82.90 178 | 88.85 153 | 65.40 190 | 84.43 249 | 92.00 94 | 67.62 258 | 78.11 169 | 85.05 279 | 66.02 120 | 94.27 117 | 71.52 179 | 89.50 117 | 89.01 247 |
|
| PAPM | | | 77.68 219 | 76.40 226 | 81.51 209 | 87.29 221 | 61.85 259 | 83.78 260 | 89.59 171 | 64.74 295 | 71.23 296 | 88.70 178 | 62.59 153 | 93.66 147 | 52.66 338 | 87.03 151 | 89.01 247 |
|
| WTY-MVS | | | 75.65 253 | 75.68 233 | 75.57 311 | 86.40 236 | 56.82 320 | 77.92 347 | 82.40 312 | 65.10 290 | 76.18 215 | 87.72 204 | 63.13 149 | 80.90 359 | 60.31 283 | 81.96 225 | 89.00 249 |
|
| æ— å…ˆéªŒ | | | | | | | | 87.48 162 | 88.98 195 | 60.00 343 | | | | 94.12 124 | 67.28 223 | | 88.97 250 |
|
| GSMVS | | | | | | | | | | | | | | | | | 88.96 251 |
|
| sam_mvs1 | | | | | | | | | | | | | 51.32 272 | | | | 88.96 251 |
|
| SCA | | | 74.22 268 | 72.33 279 | 79.91 247 | 84.05 280 | 62.17 255 | 79.96 318 | 79.29 347 | 66.30 276 | 72.38 284 | 80.13 352 | 51.95 263 | 88.60 297 | 59.25 292 | 77.67 275 | 88.96 251 |
|
| miper_lstm_enhance | | | 74.11 270 | 73.11 270 | 77.13 299 | 80.11 351 | 59.62 287 | 72.23 375 | 86.92 246 | 66.76 266 | 70.40 302 | 82.92 321 | 56.93 219 | 82.92 348 | 69.06 207 | 72.63 339 | 88.87 254 |
|
| ACMM | | 73.20 8 | 80.78 142 | 79.84 143 | 83.58 149 | 89.31 138 | 68.37 125 | 89.99 76 | 91.60 111 | 70.28 205 | 77.25 186 | 89.66 152 | 53.37 247 | 93.53 153 | 74.24 156 | 82.85 214 | 88.85 255 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| pmmvs6 | | | 74.69 264 | 73.39 266 | 78.61 270 | 81.38 336 | 57.48 312 | 86.64 190 | 87.95 221 | 64.99 294 | 70.18 305 | 86.61 239 | 50.43 283 | 89.52 278 | 62.12 268 | 70.18 355 | 88.83 256 |
|
| 原ACMM1 | | | | | 84.35 112 | 93.01 60 | 68.79 110 | | 92.44 76 | 63.96 309 | 81.09 125 | 91.57 107 | 66.06 119 | 95.45 68 | 67.19 225 | 94.82 46 | 88.81 257 |
|
| CNLPA | | | 78.08 205 | 76.79 216 | 81.97 201 | 90.40 102 | 71.07 65 | 87.59 160 | 84.55 276 | 66.03 280 | 72.38 284 | 89.64 153 | 57.56 212 | 86.04 321 | 59.61 289 | 83.35 208 | 88.79 258 |
|
| UWE-MVS | | | 72.13 295 | 71.49 286 | 74.03 330 | 86.66 233 | 47.70 389 | 81.40 296 | 76.89 365 | 63.60 311 | 75.59 224 | 84.22 296 | 39.94 362 | 85.62 326 | 48.98 359 | 86.13 166 | 88.77 259 |
|
| UBG | | | 73.08 285 | 72.27 280 | 75.51 313 | 88.02 189 | 51.29 378 | 78.35 342 | 77.38 360 | 65.52 286 | 73.87 265 | 82.36 329 | 45.55 329 | 86.48 317 | 55.02 326 | 84.39 189 | 88.75 260 |
|
| K. test v3 | | | 71.19 300 | 68.51 312 | 79.21 262 | 83.04 305 | 57.78 308 | 84.35 252 | 76.91 364 | 72.90 160 | 62.99 370 | 82.86 323 | 39.27 364 | 91.09 253 | 61.65 273 | 52.66 396 | 88.75 260 |
|
| 旧先验1 | | | | | | 91.96 74 | 65.79 183 | | 86.37 254 | | | 93.08 74 | 69.31 83 | | | 92.74 73 | 88.74 262 |
|
| PatchmatchNet |  | | 73.12 284 | 71.33 290 | 78.49 277 | 83.18 300 | 60.85 271 | 79.63 320 | 78.57 351 | 64.13 302 | 71.73 291 | 79.81 357 | 51.20 274 | 85.97 322 | 57.40 312 | 76.36 296 | 88.66 263 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| SixPastTwentyTwo | | | 73.37 279 | 71.26 292 | 79.70 252 | 85.08 260 | 57.89 304 | 85.57 217 | 83.56 291 | 71.03 189 | 65.66 353 | 85.88 257 | 42.10 352 | 92.57 193 | 59.11 294 | 63.34 377 | 88.65 264 |
|
| PS-MVSNAJ | | | 81.69 120 | 81.02 122 | 83.70 146 | 89.51 126 | 68.21 130 | 84.28 253 | 90.09 157 | 70.79 192 | 81.26 124 | 85.62 265 | 63.15 146 | 94.29 115 | 75.62 142 | 88.87 126 | 88.59 265 |
|
| xiu_mvs_v2_base | | | 81.69 120 | 81.05 121 | 83.60 148 | 89.15 145 | 68.03 135 | 84.46 247 | 90.02 158 | 70.67 195 | 81.30 123 | 86.53 245 | 63.17 145 | 94.19 122 | 75.60 143 | 88.54 133 | 88.57 266 |
|
| MonoMVSNet | | | 76.49 241 | 75.80 230 | 78.58 272 | 81.55 332 | 58.45 294 | 86.36 199 | 86.22 256 | 74.87 113 | 74.73 254 | 83.73 306 | 51.79 268 | 88.73 294 | 70.78 186 | 72.15 343 | 88.55 267 |
|
| CostFormer | | | 75.24 261 | 73.90 261 | 79.27 260 | 82.65 316 | 58.27 297 | 80.80 301 | 82.73 310 | 61.57 332 | 75.33 239 | 83.13 317 | 55.52 225 | 91.07 254 | 64.98 243 | 78.34 268 | 88.45 268 |
|
| lessismore_v0 | | | | | 78.97 265 | 81.01 342 | 57.15 316 | | 65.99 399 | | 61.16 376 | 82.82 324 | 39.12 365 | 91.34 244 | 59.67 288 | 46.92 403 | 88.43 269 |
|
| OpenMVS |  | 72.83 10 | 79.77 162 | 78.33 177 | 84.09 128 | 85.17 255 | 69.91 87 | 90.57 61 | 90.97 129 | 66.70 267 | 72.17 287 | 91.91 95 | 54.70 234 | 93.96 127 | 61.81 272 | 90.95 97 | 88.41 270 |
|
| reproduce_monomvs | | | 75.40 259 | 74.38 255 | 78.46 278 | 83.92 283 | 57.80 307 | 83.78 260 | 86.94 244 | 73.47 146 | 72.25 286 | 84.47 287 | 38.74 367 | 89.27 283 | 75.32 147 | 70.53 353 | 88.31 271 |
|
| OurMVSNet-221017-0 | | | 74.26 267 | 72.42 278 | 79.80 250 | 83.76 287 | 59.59 288 | 85.92 211 | 86.64 249 | 66.39 275 | 66.96 339 | 87.58 208 | 39.46 363 | 91.60 229 | 65.76 237 | 69.27 358 | 88.22 272 |
|
| LS3D | | | 76.95 231 | 74.82 248 | 83.37 156 | 90.45 100 | 67.36 152 | 89.15 107 | 86.94 244 | 61.87 331 | 69.52 316 | 90.61 135 | 51.71 269 | 94.53 109 | 46.38 374 | 86.71 156 | 88.21 273 |
|
| WBMVS | | | 73.43 278 | 72.81 273 | 75.28 317 | 87.91 194 | 50.99 380 | 78.59 338 | 81.31 325 | 65.51 288 | 74.47 259 | 84.83 282 | 46.39 316 | 86.68 314 | 58.41 302 | 77.86 271 | 88.17 274 |
|
| XVG-ACMP-BASELINE | | | 76.11 247 | 74.27 257 | 81.62 206 | 83.20 299 | 64.67 206 | 83.60 266 | 89.75 166 | 69.75 220 | 71.85 290 | 87.09 225 | 32.78 384 | 92.11 212 | 69.99 197 | 80.43 244 | 88.09 275 |
|
| tpm2 | | | 73.26 282 | 71.46 287 | 78.63 269 | 83.34 295 | 56.71 323 | 80.65 307 | 80.40 336 | 56.63 370 | 73.55 268 | 82.02 336 | 51.80 267 | 91.24 246 | 56.35 322 | 78.42 266 | 87.95 276 |
|
| MDTV_nov1_ep13_2view | | | | | | | 37.79 412 | 75.16 363 | | 55.10 375 | 66.53 346 | | 49.34 296 | | 53.98 331 | | 87.94 277 |
|
| Patchmatch-test | | | 64.82 349 | 63.24 350 | 69.57 360 | 79.42 363 | 49.82 386 | 63.49 406 | 69.05 392 | 51.98 385 | 59.95 381 | 80.13 352 | 50.91 276 | 70.98 400 | 40.66 391 | 73.57 331 | 87.90 278 |
|
| PLC |  | 70.83 11 | 78.05 207 | 76.37 227 | 83.08 169 | 91.88 77 | 67.80 139 | 88.19 141 | 89.46 175 | 64.33 301 | 69.87 313 | 88.38 189 | 53.66 243 | 93.58 148 | 58.86 297 | 82.73 216 | 87.86 279 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| tpm | | | 72.37 292 | 71.71 284 | 74.35 327 | 82.19 323 | 52.00 368 | 79.22 326 | 77.29 361 | 64.56 297 | 72.95 276 | 83.68 309 | 51.35 271 | 83.26 347 | 58.33 304 | 75.80 300 | 87.81 280 |
|
| Patchmatch-RL test | | | 70.24 312 | 67.78 325 | 77.61 291 | 77.43 371 | 59.57 289 | 71.16 379 | 70.33 386 | 62.94 318 | 68.65 324 | 72.77 391 | 50.62 280 | 85.49 328 | 69.58 202 | 66.58 368 | 87.77 281 |
|
| F-COLMAP | | | 76.38 244 | 74.33 256 | 82.50 192 | 89.28 140 | 66.95 165 | 88.41 131 | 89.03 192 | 64.05 306 | 66.83 341 | 88.61 182 | 46.78 314 | 92.89 186 | 57.48 310 | 78.55 262 | 87.67 282 |
|
| Baseline_NR-MVSNet | | | 78.15 204 | 78.33 177 | 77.61 291 | 85.79 244 | 56.21 333 | 86.78 186 | 85.76 263 | 73.60 141 | 77.93 174 | 87.57 209 | 65.02 129 | 88.99 288 | 67.14 226 | 75.33 313 | 87.63 283 |
|
| CL-MVSNet_self_test | | | 72.37 292 | 71.46 287 | 75.09 319 | 79.49 362 | 53.53 359 | 80.76 304 | 85.01 272 | 69.12 235 | 70.51 300 | 82.05 335 | 57.92 208 | 84.13 339 | 52.27 340 | 66.00 371 | 87.60 284 |
|
| ACMH+ | | 68.96 14 | 76.01 249 | 74.01 258 | 82.03 199 | 88.60 166 | 65.31 194 | 88.86 115 | 87.55 230 | 70.25 207 | 67.75 330 | 87.47 214 | 41.27 355 | 93.19 173 | 58.37 303 | 75.94 299 | 87.60 284 |
|
| 1314 | | | 76.53 237 | 75.30 244 | 80.21 242 | 83.93 282 | 62.32 253 | 84.66 239 | 88.81 200 | 60.23 341 | 70.16 307 | 84.07 299 | 55.30 227 | 90.73 260 | 67.37 222 | 83.21 210 | 87.59 286 |
|
| API-MVS | | | 81.99 114 | 81.23 118 | 84.26 120 | 90.94 90 | 70.18 85 | 91.10 55 | 89.32 179 | 71.51 179 | 78.66 155 | 88.28 192 | 65.26 126 | 95.10 89 | 64.74 245 | 91.23 94 | 87.51 287 |
|
| AdaColmap |  | | 80.58 148 | 79.42 151 | 84.06 132 | 93.09 57 | 68.91 108 | 89.36 99 | 88.97 197 | 69.27 228 | 75.70 223 | 89.69 151 | 57.20 217 | 95.77 59 | 63.06 256 | 88.41 136 | 87.50 288 |
|
| PVSNet_BlendedMVS | | | 80.60 145 | 80.02 138 | 82.36 195 | 88.85 153 | 65.40 190 | 86.16 205 | 92.00 94 | 69.34 227 | 78.11 169 | 86.09 255 | 66.02 120 | 94.27 117 | 71.52 179 | 82.06 224 | 87.39 289 |
|
| sss | | | 73.60 276 | 73.64 265 | 73.51 334 | 82.80 311 | 55.01 348 | 76.12 354 | 81.69 320 | 62.47 325 | 74.68 255 | 85.85 259 | 57.32 215 | 78.11 370 | 60.86 280 | 80.93 235 | 87.39 289 |
|
| IterMVS-SCA-FT | | | 75.43 257 | 73.87 262 | 80.11 244 | 82.69 314 | 64.85 203 | 81.57 292 | 83.47 293 | 69.16 234 | 70.49 301 | 84.15 298 | 51.95 263 | 88.15 302 | 69.23 204 | 72.14 344 | 87.34 291 |
|
| PVSNet | | 64.34 18 | 72.08 296 | 70.87 296 | 75.69 309 | 86.21 238 | 56.44 327 | 74.37 369 | 80.73 329 | 62.06 330 | 70.17 306 | 82.23 333 | 42.86 346 | 83.31 346 | 54.77 328 | 84.45 187 | 87.32 292 |
|
| æ–°å‡ ä½•1 | | | | | 83.42 153 | 93.13 54 | 70.71 74 | | 85.48 266 | 57.43 366 | 81.80 115 | 91.98 94 | 63.28 141 | 92.27 207 | 64.60 246 | 92.99 70 | 87.27 293 |
|
| TR-MVS | | | 77.44 222 | 76.18 228 | 81.20 219 | 88.24 179 | 63.24 237 | 84.61 242 | 86.40 253 | 67.55 259 | 77.81 175 | 86.48 246 | 54.10 239 | 93.15 175 | 57.75 309 | 82.72 217 | 87.20 294 |
|
| TransMVSNet (Re) | | | 75.39 260 | 74.56 251 | 77.86 285 | 85.50 250 | 57.10 317 | 86.78 186 | 86.09 260 | 72.17 168 | 71.53 294 | 87.34 215 | 63.01 150 | 89.31 282 | 56.84 318 | 61.83 379 | 87.17 295 |
|
| ACMH | | 67.68 16 | 75.89 250 | 73.93 260 | 81.77 204 | 88.71 163 | 66.61 167 | 88.62 126 | 89.01 194 | 69.81 216 | 66.78 342 | 86.70 236 | 41.95 354 | 91.51 237 | 55.64 324 | 78.14 269 | 87.17 295 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| KD-MVS_self_test | | | 68.81 323 | 67.59 329 | 72.46 344 | 74.29 384 | 45.45 395 | 77.93 346 | 87.00 242 | 63.12 313 | 63.99 365 | 78.99 365 | 42.32 349 | 84.77 336 | 56.55 321 | 64.09 376 | 87.16 297 |
|
| EPMVS | | | 69.02 322 | 68.16 316 | 71.59 348 | 79.61 360 | 49.80 387 | 77.40 349 | 66.93 397 | 62.82 321 | 70.01 308 | 79.05 361 | 45.79 326 | 77.86 372 | 56.58 320 | 75.26 315 | 87.13 298 |
|
| CR-MVSNet | | | 73.37 279 | 71.27 291 | 79.67 254 | 81.32 339 | 65.19 195 | 75.92 356 | 80.30 337 | 59.92 344 | 72.73 278 | 81.19 339 | 52.50 251 | 86.69 313 | 59.84 286 | 77.71 273 | 87.11 299 |
|
| RPMNet | | | 73.51 277 | 70.49 299 | 82.58 191 | 81.32 339 | 65.19 195 | 75.92 356 | 92.27 83 | 57.60 364 | 72.73 278 | 76.45 379 | 52.30 254 | 95.43 70 | 48.14 366 | 77.71 273 | 87.11 299 |
|
| test_vis1_n_1920 | | | 75.52 255 | 75.78 231 | 74.75 324 | 79.84 355 | 57.44 313 | 83.26 271 | 85.52 265 | 62.83 320 | 79.34 145 | 86.17 253 | 45.10 333 | 79.71 363 | 78.75 108 | 81.21 233 | 87.10 301 |
|
| XXY-MVS | | | 75.41 258 | 75.56 236 | 74.96 320 | 83.59 290 | 57.82 306 | 80.59 308 | 83.87 287 | 66.54 274 | 74.93 251 | 88.31 191 | 63.24 143 | 80.09 362 | 62.16 267 | 76.85 284 | 86.97 302 |
|
| tpmrst | | | 72.39 290 | 72.13 281 | 73.18 338 | 80.54 346 | 49.91 385 | 79.91 319 | 79.08 349 | 63.11 314 | 71.69 292 | 79.95 354 | 55.32 226 | 82.77 349 | 65.66 238 | 73.89 328 | 86.87 303 |
|
| thres200 | | | 75.55 254 | 74.47 253 | 78.82 267 | 87.78 203 | 57.85 305 | 83.07 277 | 83.51 292 | 72.44 164 | 75.84 221 | 84.42 288 | 52.08 260 | 91.75 225 | 47.41 369 | 83.64 203 | 86.86 304 |
|
| ITE_SJBPF | | | | | 78.22 280 | 81.77 328 | 60.57 275 | | 83.30 295 | 69.25 230 | 67.54 332 | 87.20 221 | 36.33 377 | 87.28 311 | 54.34 330 | 74.62 322 | 86.80 305 |
|
| test222 | | | | | | 91.50 80 | 68.26 128 | 84.16 255 | 83.20 300 | 54.63 377 | 79.74 138 | 91.63 104 | 58.97 201 | | | 91.42 91 | 86.77 306 |
|
| MIMVSNet | | | 70.69 307 | 69.30 306 | 74.88 321 | 84.52 270 | 56.35 331 | 75.87 358 | 79.42 345 | 64.59 296 | 67.76 329 | 82.41 328 | 41.10 356 | 81.54 355 | 46.64 373 | 81.34 230 | 86.75 307 |
|
| BH-untuned | | | 79.47 169 | 78.60 169 | 82.05 198 | 89.19 144 | 65.91 179 | 86.07 207 | 88.52 211 | 72.18 167 | 75.42 231 | 87.69 206 | 61.15 181 | 93.54 152 | 60.38 282 | 86.83 154 | 86.70 308 |
|
| LTVRE_ROB | | 69.57 13 | 76.25 245 | 74.54 252 | 81.41 212 | 88.60 166 | 64.38 214 | 79.24 325 | 89.12 191 | 70.76 194 | 69.79 315 | 87.86 203 | 49.09 300 | 93.20 171 | 56.21 323 | 80.16 246 | 86.65 309 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| testdata | | | | | 79.97 246 | 90.90 91 | 64.21 216 | | 84.71 273 | 59.27 350 | 85.40 58 | 92.91 76 | 62.02 165 | 89.08 287 | 68.95 208 | 91.37 92 | 86.63 310 |
|
| MIMVSNet1 | | | 68.58 326 | 66.78 336 | 73.98 331 | 80.07 352 | 51.82 372 | 80.77 303 | 84.37 277 | 64.40 299 | 59.75 382 | 82.16 334 | 36.47 376 | 83.63 343 | 42.73 386 | 70.33 354 | 86.48 311 |
|
| tfpnnormal | | | 74.39 265 | 73.16 269 | 78.08 283 | 86.10 242 | 58.05 299 | 84.65 241 | 87.53 231 | 70.32 204 | 71.22 297 | 85.63 264 | 54.97 228 | 89.86 271 | 43.03 385 | 75.02 318 | 86.32 312 |
|
| D2MVS | | | 74.82 263 | 73.21 268 | 79.64 255 | 79.81 356 | 62.56 250 | 80.34 313 | 87.35 235 | 64.37 300 | 68.86 322 | 82.66 326 | 46.37 318 | 90.10 267 | 67.91 217 | 81.24 232 | 86.25 313 |
|
| tpm cat1 | | | 70.57 308 | 68.31 314 | 77.35 296 | 82.41 321 | 57.95 303 | 78.08 344 | 80.22 339 | 52.04 383 | 68.54 326 | 77.66 374 | 52.00 262 | 87.84 306 | 51.77 341 | 72.07 345 | 86.25 313 |
|
| CVMVSNet | | | 72.99 287 | 72.58 276 | 74.25 328 | 84.28 273 | 50.85 381 | 86.41 196 | 83.45 294 | 44.56 396 | 73.23 272 | 87.54 212 | 49.38 295 | 85.70 324 | 65.90 235 | 78.44 265 | 86.19 315 |
|
| AllTest | | | 70.96 303 | 68.09 318 | 79.58 256 | 85.15 257 | 63.62 225 | 84.58 243 | 79.83 341 | 62.31 326 | 60.32 379 | 86.73 230 | 32.02 385 | 88.96 291 | 50.28 351 | 71.57 348 | 86.15 316 |
|
| TestCases | | | | | 79.58 256 | 85.15 257 | 63.62 225 | | 79.83 341 | 62.31 326 | 60.32 379 | 86.73 230 | 32.02 385 | 88.96 291 | 50.28 351 | 71.57 348 | 86.15 316 |
|
| test-LLR | | | 72.94 288 | 72.43 277 | 74.48 325 | 81.35 337 | 58.04 300 | 78.38 339 | 77.46 357 | 66.66 268 | 69.95 311 | 79.00 363 | 48.06 306 | 79.24 364 | 66.13 231 | 84.83 178 | 86.15 316 |
|
| test-mter | | | 71.41 299 | 70.39 302 | 74.48 325 | 81.35 337 | 58.04 300 | 78.38 339 | 77.46 357 | 60.32 340 | 69.95 311 | 79.00 363 | 36.08 378 | 79.24 364 | 66.13 231 | 84.83 178 | 86.15 316 |
|
| IterMVS | | | 74.29 266 | 72.94 272 | 78.35 279 | 81.53 333 | 63.49 231 | 81.58 291 | 82.49 311 | 68.06 255 | 69.99 310 | 83.69 308 | 51.66 270 | 85.54 327 | 65.85 236 | 71.64 347 | 86.01 320 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| DP-MVS | | | 76.78 234 | 74.57 250 | 83.42 153 | 93.29 48 | 69.46 97 | 88.55 128 | 83.70 288 | 63.98 308 | 70.20 304 | 88.89 174 | 54.01 241 | 94.80 101 | 46.66 371 | 81.88 227 | 86.01 320 |
|
| ppachtmachnet_test | | | 70.04 314 | 67.34 332 | 78.14 282 | 79.80 357 | 61.13 266 | 79.19 327 | 80.59 331 | 59.16 351 | 65.27 356 | 79.29 360 | 46.75 315 | 87.29 310 | 49.33 357 | 66.72 366 | 86.00 322 |
|
| mmtdpeth | | | 74.16 269 | 73.01 271 | 77.60 293 | 83.72 288 | 61.13 266 | 85.10 230 | 85.10 269 | 72.06 170 | 77.21 192 | 80.33 350 | 43.84 340 | 85.75 323 | 77.14 126 | 52.61 397 | 85.91 323 |
|
| test_fmvs1_n | | | 70.86 305 | 70.24 303 | 72.73 341 | 72.51 398 | 55.28 345 | 81.27 297 | 79.71 343 | 51.49 387 | 78.73 152 | 84.87 281 | 27.54 394 | 77.02 375 | 76.06 136 | 79.97 250 | 85.88 324 |
|
| Patchmtry | | | 70.74 306 | 69.16 309 | 75.49 314 | 80.72 343 | 54.07 356 | 74.94 367 | 80.30 337 | 58.34 357 | 70.01 308 | 81.19 339 | 52.50 251 | 86.54 315 | 53.37 335 | 71.09 351 | 85.87 325 |
|
| WB-MVSnew | | | 71.96 297 | 71.65 285 | 72.89 339 | 84.67 269 | 51.88 371 | 82.29 284 | 77.57 356 | 62.31 326 | 73.67 267 | 83.00 319 | 53.49 246 | 81.10 358 | 45.75 378 | 82.13 223 | 85.70 326 |
|
| test_fmvs2 | | | 68.35 330 | 67.48 330 | 70.98 356 | 69.50 401 | 51.95 369 | 80.05 316 | 76.38 367 | 49.33 390 | 74.65 256 | 84.38 290 | 23.30 403 | 75.40 391 | 74.51 152 | 75.17 317 | 85.60 327 |
|
| ambc | | | | | 75.24 318 | 73.16 393 | 50.51 383 | 63.05 407 | 87.47 233 | | 64.28 362 | 77.81 373 | 17.80 409 | 89.73 275 | 57.88 308 | 60.64 383 | 85.49 328 |
|
| mvs5depth | | | 69.45 319 | 67.45 331 | 75.46 315 | 73.93 385 | 55.83 337 | 79.19 327 | 83.23 297 | 66.89 263 | 71.63 293 | 83.32 313 | 33.69 383 | 85.09 332 | 59.81 287 | 55.34 393 | 85.46 329 |
|
| UnsupCasMVSNet_eth | | | 67.33 335 | 65.99 339 | 71.37 350 | 73.48 390 | 51.47 376 | 75.16 363 | 85.19 268 | 65.20 289 | 60.78 377 | 80.93 346 | 42.35 348 | 77.20 374 | 57.12 314 | 53.69 395 | 85.44 330 |
|
| PatchT | | | 68.46 329 | 67.85 321 | 70.29 358 | 80.70 344 | 43.93 402 | 72.47 374 | 74.88 373 | 60.15 342 | 70.55 299 | 76.57 378 | 49.94 288 | 81.59 354 | 50.58 347 | 74.83 320 | 85.34 331 |
|
| Anonymous20240521 | | | 68.80 324 | 67.22 333 | 73.55 333 | 74.33 383 | 54.11 355 | 83.18 272 | 85.61 264 | 58.15 359 | 61.68 374 | 80.94 344 | 30.71 390 | 81.27 357 | 57.00 316 | 73.34 336 | 85.28 332 |
|
| test_cas_vis1_n_1920 | | | 73.76 275 | 73.74 264 | 73.81 332 | 75.90 376 | 59.77 285 | 80.51 309 | 82.40 312 | 58.30 358 | 81.62 118 | 85.69 261 | 44.35 337 | 76.41 381 | 76.29 133 | 78.61 261 | 85.23 333 |
|
| ADS-MVSNet2 | | | 66.20 346 | 63.33 349 | 74.82 322 | 79.92 353 | 58.75 292 | 67.55 394 | 75.19 371 | 53.37 380 | 65.25 357 | 75.86 382 | 42.32 349 | 80.53 361 | 41.57 389 | 68.91 360 | 85.18 334 |
|
| ADS-MVSNet | | | 64.36 350 | 62.88 353 | 68.78 366 | 79.92 353 | 47.17 391 | 67.55 394 | 71.18 385 | 53.37 380 | 65.25 357 | 75.86 382 | 42.32 349 | 73.99 396 | 41.57 389 | 68.91 360 | 85.18 334 |
|
| FMVSNet5 | | | 69.50 318 | 67.96 319 | 74.15 329 | 82.97 309 | 55.35 344 | 80.01 317 | 82.12 315 | 62.56 324 | 63.02 368 | 81.53 338 | 36.92 375 | 81.92 353 | 48.42 361 | 74.06 326 | 85.17 336 |
|
| pmmvs5 | | | 71.55 298 | 70.20 304 | 75.61 310 | 77.83 369 | 56.39 328 | 81.74 289 | 80.89 326 | 57.76 362 | 67.46 334 | 84.49 286 | 49.26 298 | 85.32 331 | 57.08 315 | 75.29 314 | 85.11 337 |
|
| testing3 | | | 68.56 327 | 67.67 327 | 71.22 354 | 87.33 219 | 42.87 404 | 83.06 278 | 71.54 384 | 70.36 202 | 69.08 321 | 84.38 290 | 30.33 391 | 85.69 325 | 37.50 397 | 75.45 309 | 85.09 338 |
|
| CMPMVS |  | 51.72 21 | 70.19 313 | 68.16 316 | 76.28 304 | 73.15 394 | 57.55 311 | 79.47 322 | 83.92 285 | 48.02 392 | 56.48 392 | 84.81 283 | 43.13 344 | 86.42 318 | 62.67 261 | 81.81 228 | 84.89 339 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| testgi | | | 66.67 340 | 66.53 337 | 67.08 374 | 75.62 379 | 41.69 409 | 75.93 355 | 76.50 366 | 66.11 277 | 65.20 359 | 86.59 240 | 35.72 379 | 74.71 393 | 43.71 383 | 73.38 335 | 84.84 340 |
|
| MSDG | | | 73.36 281 | 70.99 294 | 80.49 236 | 84.51 271 | 65.80 182 | 80.71 306 | 86.13 259 | 65.70 283 | 65.46 354 | 83.74 305 | 44.60 334 | 90.91 256 | 51.13 346 | 76.89 282 | 84.74 341 |
|
| pmmvs4 | | | 74.03 273 | 71.91 282 | 80.39 237 | 81.96 325 | 68.32 126 | 81.45 294 | 82.14 314 | 59.32 349 | 69.87 313 | 85.13 276 | 52.40 253 | 88.13 303 | 60.21 284 | 74.74 321 | 84.73 342 |
|
| gg-mvs-nofinetune | | | 69.95 315 | 67.96 319 | 75.94 306 | 83.07 303 | 54.51 353 | 77.23 351 | 70.29 387 | 63.11 314 | 70.32 303 | 62.33 400 | 43.62 341 | 88.69 295 | 53.88 332 | 87.76 141 | 84.62 343 |
|
| test_fmvs1 | | | 70.93 304 | 70.52 298 | 72.16 345 | 73.71 387 | 55.05 347 | 80.82 300 | 78.77 350 | 51.21 388 | 78.58 157 | 84.41 289 | 31.20 389 | 76.94 376 | 75.88 139 | 80.12 249 | 84.47 344 |
|
| BH-w/o | | | 78.21 201 | 77.33 205 | 80.84 229 | 88.81 157 | 65.13 197 | 84.87 235 | 87.85 225 | 69.75 220 | 74.52 258 | 84.74 285 | 61.34 176 | 93.11 178 | 58.24 305 | 85.84 171 | 84.27 345 |
|
| MVS | | | 78.19 203 | 76.99 211 | 81.78 203 | 85.66 246 | 66.99 161 | 84.66 239 | 90.47 143 | 55.08 376 | 72.02 289 | 85.27 271 | 63.83 138 | 94.11 125 | 66.10 233 | 89.80 115 | 84.24 346 |
|
| COLMAP_ROB |  | 66.92 17 | 73.01 286 | 70.41 301 | 80.81 230 | 87.13 224 | 65.63 186 | 88.30 138 | 84.19 283 | 62.96 317 | 63.80 367 | 87.69 206 | 38.04 372 | 92.56 194 | 46.66 371 | 74.91 319 | 84.24 346 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| new-patchmatchnet | | | 61.73 356 | 61.73 357 | 61.70 380 | 72.74 396 | 24.50 423 | 69.16 389 | 78.03 353 | 61.40 333 | 56.72 391 | 75.53 385 | 38.42 369 | 76.48 380 | 45.95 377 | 57.67 386 | 84.13 348 |
|
| TESTMET0.1,1 | | | 69.89 316 | 69.00 310 | 72.55 342 | 79.27 365 | 56.85 319 | 78.38 339 | 74.71 376 | 57.64 363 | 68.09 328 | 77.19 376 | 37.75 373 | 76.70 377 | 63.92 250 | 84.09 193 | 84.10 349 |
|
| test_fmvs3 | | | 63.36 353 | 61.82 356 | 67.98 371 | 62.51 410 | 46.96 393 | 77.37 350 | 74.03 378 | 45.24 395 | 67.50 333 | 78.79 366 | 12.16 415 | 72.98 399 | 72.77 172 | 66.02 370 | 83.99 350 |
|
| our_test_3 | | | 69.14 321 | 67.00 334 | 75.57 311 | 79.80 357 | 58.80 291 | 77.96 345 | 77.81 354 | 59.55 347 | 62.90 371 | 78.25 370 | 47.43 308 | 83.97 340 | 51.71 342 | 67.58 365 | 83.93 351 |
|
| test_vis1_n | | | 69.85 317 | 69.21 308 | 71.77 347 | 72.66 397 | 55.27 346 | 81.48 293 | 76.21 368 | 52.03 384 | 75.30 240 | 83.20 316 | 28.97 392 | 76.22 383 | 74.60 151 | 78.41 267 | 83.81 352 |
|
| mamv4 | | | 76.81 233 | 78.23 181 | 72.54 343 | 86.12 240 | 65.75 185 | 78.76 334 | 82.07 316 | 64.12 303 | 72.97 275 | 91.02 128 | 67.97 97 | 68.08 407 | 83.04 71 | 78.02 270 | 83.80 353 |
|
| tpmvs | | | 71.09 302 | 69.29 307 | 76.49 303 | 82.04 324 | 56.04 334 | 78.92 332 | 81.37 324 | 64.05 306 | 67.18 338 | 78.28 369 | 49.74 291 | 89.77 273 | 49.67 356 | 72.37 340 | 83.67 354 |
|
| test20.03 | | | 67.45 334 | 66.95 335 | 68.94 363 | 75.48 380 | 44.84 400 | 77.50 348 | 77.67 355 | 66.66 268 | 63.01 369 | 83.80 303 | 47.02 312 | 78.40 368 | 42.53 388 | 68.86 362 | 83.58 355 |
|
| test0.0.03 1 | | | 68.00 332 | 67.69 326 | 68.90 364 | 77.55 370 | 47.43 390 | 75.70 359 | 72.95 383 | 66.66 268 | 66.56 345 | 82.29 332 | 48.06 306 | 75.87 386 | 44.97 382 | 74.51 323 | 83.41 356 |
|
| Anonymous20231206 | | | 68.60 325 | 67.80 324 | 71.02 355 | 80.23 350 | 50.75 382 | 78.30 343 | 80.47 333 | 56.79 369 | 66.11 352 | 82.63 327 | 46.35 319 | 78.95 366 | 43.62 384 | 75.70 301 | 83.36 357 |
|
| EU-MVSNet | | | 68.53 328 | 67.61 328 | 71.31 353 | 78.51 368 | 47.01 392 | 84.47 245 | 84.27 281 | 42.27 399 | 66.44 350 | 84.79 284 | 40.44 360 | 83.76 341 | 58.76 299 | 68.54 363 | 83.17 358 |
|
| dp | | | 66.80 338 | 65.43 340 | 70.90 357 | 79.74 359 | 48.82 388 | 75.12 365 | 74.77 374 | 59.61 346 | 64.08 364 | 77.23 375 | 42.89 345 | 80.72 360 | 48.86 360 | 66.58 368 | 83.16 359 |
|
| pmmvs-eth3d | | | 70.50 310 | 67.83 323 | 78.52 276 | 77.37 372 | 66.18 173 | 81.82 287 | 81.51 321 | 58.90 354 | 63.90 366 | 80.42 349 | 42.69 347 | 86.28 319 | 58.56 300 | 65.30 373 | 83.11 360 |
|
| YYNet1 | | | 65.03 347 | 62.91 352 | 71.38 349 | 75.85 377 | 56.60 325 | 69.12 390 | 74.66 377 | 57.28 367 | 54.12 395 | 77.87 372 | 45.85 325 | 74.48 394 | 49.95 354 | 61.52 381 | 83.05 361 |
|
| MDA-MVSNet-bldmvs | | | 66.68 339 | 63.66 348 | 75.75 308 | 79.28 364 | 60.56 276 | 73.92 371 | 78.35 352 | 64.43 298 | 50.13 401 | 79.87 356 | 44.02 339 | 83.67 342 | 46.10 376 | 56.86 387 | 83.03 362 |
|
| MDA-MVSNet_test_wron | | | 65.03 347 | 62.92 351 | 71.37 350 | 75.93 375 | 56.73 321 | 69.09 391 | 74.73 375 | 57.28 367 | 54.03 396 | 77.89 371 | 45.88 324 | 74.39 395 | 49.89 355 | 61.55 380 | 82.99 363 |
|
| USDC | | | 70.33 311 | 68.37 313 | 76.21 305 | 80.60 345 | 56.23 332 | 79.19 327 | 86.49 251 | 60.89 336 | 61.29 375 | 85.47 268 | 31.78 387 | 89.47 280 | 53.37 335 | 76.21 297 | 82.94 364 |
|
| Syy-MVS | | | 68.05 331 | 67.85 321 | 68.67 367 | 84.68 266 | 40.97 410 | 78.62 336 | 73.08 381 | 66.65 271 | 66.74 343 | 79.46 358 | 52.11 259 | 82.30 351 | 32.89 402 | 76.38 294 | 82.75 365 |
|
| myMVS_eth3d | | | 67.02 337 | 66.29 338 | 69.21 362 | 84.68 266 | 42.58 405 | 78.62 336 | 73.08 381 | 66.65 271 | 66.74 343 | 79.46 358 | 31.53 388 | 82.30 351 | 39.43 394 | 76.38 294 | 82.75 365 |
|
| ttmdpeth | | | 59.91 359 | 57.10 363 | 68.34 369 | 67.13 405 | 46.65 394 | 74.64 368 | 67.41 396 | 48.30 391 | 62.52 373 | 85.04 280 | 20.40 405 | 75.93 385 | 42.55 387 | 45.90 406 | 82.44 367 |
|
| OpenMVS_ROB |  | 64.09 19 | 70.56 309 | 68.19 315 | 77.65 290 | 80.26 348 | 59.41 290 | 85.01 232 | 82.96 306 | 58.76 355 | 65.43 355 | 82.33 330 | 37.63 374 | 91.23 247 | 45.34 381 | 76.03 298 | 82.32 368 |
|
| JIA-IIPM | | | 66.32 343 | 62.82 354 | 76.82 301 | 77.09 373 | 61.72 262 | 65.34 402 | 75.38 370 | 58.04 361 | 64.51 361 | 62.32 401 | 42.05 353 | 86.51 316 | 51.45 344 | 69.22 359 | 82.21 369 |
|
| dmvs_re | | | 71.14 301 | 70.58 297 | 72.80 340 | 81.96 325 | 59.68 286 | 75.60 360 | 79.34 346 | 68.55 247 | 69.27 320 | 80.72 347 | 49.42 294 | 76.54 378 | 52.56 339 | 77.79 272 | 82.19 370 |
|
| EG-PatchMatch MVS | | | 74.04 271 | 71.82 283 | 80.71 232 | 84.92 262 | 67.42 149 | 85.86 213 | 88.08 217 | 66.04 279 | 64.22 363 | 83.85 301 | 35.10 380 | 92.56 194 | 57.44 311 | 80.83 237 | 82.16 371 |
|
| MVP-Stereo | | | 76.12 246 | 74.46 254 | 81.13 222 | 85.37 253 | 69.79 89 | 84.42 250 | 87.95 221 | 65.03 292 | 67.46 334 | 85.33 270 | 53.28 248 | 91.73 227 | 58.01 307 | 83.27 209 | 81.85 372 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| TDRefinement | | | 67.49 333 | 64.34 343 | 76.92 300 | 73.47 391 | 61.07 268 | 84.86 236 | 82.98 305 | 59.77 345 | 58.30 386 | 85.13 276 | 26.06 395 | 87.89 305 | 47.92 368 | 60.59 384 | 81.81 373 |
|
| GG-mvs-BLEND | | | | | 75.38 316 | 81.59 331 | 55.80 338 | 79.32 324 | 69.63 389 | | 67.19 337 | 73.67 389 | 43.24 343 | 88.90 293 | 50.41 348 | 84.50 183 | 81.45 374 |
|
| KD-MVS_2432*1600 | | | 66.22 344 | 63.89 346 | 73.21 335 | 75.47 381 | 53.42 361 | 70.76 382 | 84.35 278 | 64.10 304 | 66.52 347 | 78.52 367 | 34.55 381 | 84.98 333 | 50.40 349 | 50.33 400 | 81.23 375 |
|
| miper_refine_blended | | | 66.22 344 | 63.89 346 | 73.21 335 | 75.47 381 | 53.42 361 | 70.76 382 | 84.35 278 | 64.10 304 | 66.52 347 | 78.52 367 | 34.55 381 | 84.98 333 | 50.40 349 | 50.33 400 | 81.23 375 |
|
| test_0402 | | | 72.79 289 | 70.44 300 | 79.84 249 | 88.13 183 | 65.99 177 | 85.93 210 | 84.29 280 | 65.57 285 | 67.40 336 | 85.49 267 | 46.92 313 | 92.61 192 | 35.88 399 | 74.38 324 | 80.94 377 |
|
| MVStest1 | | | 56.63 363 | 52.76 369 | 68.25 370 | 61.67 411 | 53.25 365 | 71.67 377 | 68.90 394 | 38.59 404 | 50.59 400 | 83.05 318 | 25.08 397 | 70.66 401 | 36.76 398 | 38.56 407 | 80.83 378 |
|
| UnsupCasMVSNet_bld | | | 63.70 352 | 61.53 358 | 70.21 359 | 73.69 388 | 51.39 377 | 72.82 373 | 81.89 317 | 55.63 374 | 57.81 388 | 71.80 393 | 38.67 368 | 78.61 367 | 49.26 358 | 52.21 398 | 80.63 379 |
|
| LCM-MVSNet | | | 54.25 365 | 49.68 375 | 67.97 372 | 53.73 419 | 45.28 398 | 66.85 397 | 80.78 328 | 35.96 408 | 39.45 409 | 62.23 402 | 8.70 419 | 78.06 371 | 48.24 365 | 51.20 399 | 80.57 380 |
|
| N_pmnet | | | 52.79 370 | 53.26 368 | 51.40 394 | 78.99 366 | 7.68 428 | 69.52 386 | 3.89 427 | 51.63 386 | 57.01 390 | 74.98 386 | 40.83 358 | 65.96 409 | 37.78 396 | 64.67 374 | 80.56 381 |
|
| TinyColmap | | | 67.30 336 | 64.81 341 | 74.76 323 | 81.92 327 | 56.68 324 | 80.29 314 | 81.49 322 | 60.33 339 | 56.27 393 | 83.22 314 | 24.77 399 | 87.66 309 | 45.52 379 | 69.47 357 | 79.95 382 |
|
| PM-MVS | | | 66.41 342 | 64.14 344 | 73.20 337 | 73.92 386 | 56.45 326 | 78.97 331 | 64.96 403 | 63.88 310 | 64.72 360 | 80.24 351 | 19.84 407 | 83.44 345 | 66.24 230 | 64.52 375 | 79.71 383 |
|
| ANet_high | | | 50.57 374 | 46.10 378 | 63.99 377 | 48.67 422 | 39.13 411 | 70.99 381 | 80.85 327 | 61.39 334 | 31.18 411 | 57.70 407 | 17.02 410 | 73.65 398 | 31.22 404 | 15.89 419 | 79.18 384 |
|
| LF4IMVS | | | 64.02 351 | 62.19 355 | 69.50 361 | 70.90 399 | 53.29 364 | 76.13 353 | 77.18 362 | 52.65 382 | 58.59 384 | 80.98 343 | 23.55 402 | 76.52 379 | 53.06 337 | 66.66 367 | 78.68 385 |
|
| PatchMatch-RL | | | 72.38 291 | 70.90 295 | 76.80 302 | 88.60 166 | 67.38 151 | 79.53 321 | 76.17 369 | 62.75 322 | 69.36 318 | 82.00 337 | 45.51 330 | 84.89 335 | 53.62 333 | 80.58 241 | 78.12 386 |
|
| MS-PatchMatch | | | 73.83 274 | 72.67 274 | 77.30 297 | 83.87 284 | 66.02 175 | 81.82 287 | 84.66 274 | 61.37 335 | 68.61 325 | 82.82 324 | 47.29 309 | 88.21 301 | 59.27 291 | 84.32 190 | 77.68 387 |
|
| DSMNet-mixed | | | 57.77 362 | 56.90 364 | 60.38 382 | 67.70 403 | 35.61 413 | 69.18 388 | 53.97 414 | 32.30 412 | 57.49 389 | 79.88 355 | 40.39 361 | 68.57 406 | 38.78 395 | 72.37 340 | 76.97 388 |
|
| CHOSEN 280x420 | | | 66.51 341 | 64.71 342 | 71.90 346 | 81.45 334 | 63.52 230 | 57.98 409 | 68.95 393 | 53.57 379 | 62.59 372 | 76.70 377 | 46.22 321 | 75.29 392 | 55.25 325 | 79.68 251 | 76.88 389 |
|
| mvsany_test3 | | | 53.99 366 | 51.45 371 | 61.61 381 | 55.51 415 | 44.74 401 | 63.52 405 | 45.41 420 | 43.69 398 | 58.11 387 | 76.45 379 | 17.99 408 | 63.76 411 | 54.77 328 | 47.59 402 | 76.34 390 |
|
| dmvs_testset | | | 62.63 354 | 64.11 345 | 58.19 384 | 78.55 367 | 24.76 422 | 75.28 361 | 65.94 400 | 67.91 256 | 60.34 378 | 76.01 381 | 53.56 244 | 73.94 397 | 31.79 403 | 67.65 364 | 75.88 391 |
|
| mvsany_test1 | | | 62.30 355 | 61.26 359 | 65.41 376 | 69.52 400 | 54.86 349 | 66.86 396 | 49.78 416 | 46.65 393 | 68.50 327 | 83.21 315 | 49.15 299 | 66.28 408 | 56.93 317 | 60.77 382 | 75.11 392 |
|
| PMMVS | | | 69.34 320 | 68.67 311 | 71.35 352 | 75.67 378 | 62.03 256 | 75.17 362 | 73.46 379 | 50.00 389 | 68.68 323 | 79.05 361 | 52.07 261 | 78.13 369 | 61.16 278 | 82.77 215 | 73.90 393 |
|
| test_vis1_rt | | | 60.28 358 | 58.42 361 | 65.84 375 | 67.25 404 | 55.60 341 | 70.44 384 | 60.94 408 | 44.33 397 | 59.00 383 | 66.64 398 | 24.91 398 | 68.67 405 | 62.80 257 | 69.48 356 | 73.25 394 |
|
| pmmvs3 | | | 57.79 361 | 54.26 366 | 68.37 368 | 64.02 409 | 56.72 322 | 75.12 365 | 65.17 401 | 40.20 401 | 52.93 397 | 69.86 397 | 20.36 406 | 75.48 389 | 45.45 380 | 55.25 394 | 72.90 395 |
|
| PVSNet_0 | | 57.27 20 | 61.67 357 | 59.27 360 | 68.85 365 | 79.61 360 | 57.44 313 | 68.01 392 | 73.44 380 | 55.93 373 | 58.54 385 | 70.41 396 | 44.58 335 | 77.55 373 | 47.01 370 | 35.91 408 | 71.55 396 |
|
| WB-MVS | | | 54.94 364 | 54.72 365 | 55.60 390 | 73.50 389 | 20.90 424 | 74.27 370 | 61.19 407 | 59.16 351 | 50.61 399 | 74.15 387 | 47.19 311 | 75.78 387 | 17.31 415 | 35.07 409 | 70.12 397 |
|
| SSC-MVS | | | 53.88 367 | 53.59 367 | 54.75 392 | 72.87 395 | 19.59 425 | 73.84 372 | 60.53 409 | 57.58 365 | 49.18 403 | 73.45 390 | 46.34 320 | 75.47 390 | 16.20 418 | 32.28 411 | 69.20 398 |
|
| test_f | | | 52.09 371 | 50.82 372 | 55.90 388 | 53.82 418 | 42.31 408 | 59.42 408 | 58.31 412 | 36.45 407 | 56.12 394 | 70.96 395 | 12.18 414 | 57.79 414 | 53.51 334 | 56.57 389 | 67.60 399 |
|
| PMMVS2 | | | 40.82 381 | 38.86 385 | 46.69 395 | 53.84 417 | 16.45 426 | 48.61 412 | 49.92 415 | 37.49 405 | 31.67 410 | 60.97 403 | 8.14 421 | 56.42 415 | 28.42 406 | 30.72 412 | 67.19 400 |
|
| new_pmnet | | | 50.91 373 | 50.29 373 | 52.78 393 | 68.58 402 | 34.94 415 | 63.71 404 | 56.63 413 | 39.73 402 | 44.95 404 | 65.47 399 | 21.93 404 | 58.48 413 | 34.98 400 | 56.62 388 | 64.92 401 |
|
| MVS-HIRNet | | | 59.14 360 | 57.67 362 | 63.57 378 | 81.65 329 | 43.50 403 | 71.73 376 | 65.06 402 | 39.59 403 | 51.43 398 | 57.73 406 | 38.34 370 | 82.58 350 | 39.53 392 | 73.95 327 | 64.62 402 |
|
| APD_test1 | | | 53.31 369 | 49.93 374 | 63.42 379 | 65.68 406 | 50.13 384 | 71.59 378 | 66.90 398 | 34.43 409 | 40.58 408 | 71.56 394 | 8.65 420 | 76.27 382 | 34.64 401 | 55.36 392 | 63.86 403 |
|
| test_method | | | 31.52 384 | 29.28 388 | 38.23 398 | 27.03 426 | 6.50 429 | 20.94 417 | 62.21 406 | 4.05 420 | 22.35 418 | 52.50 411 | 13.33 412 | 47.58 418 | 27.04 408 | 34.04 410 | 60.62 404 |
|
| EGC-MVSNET | | | 52.07 372 | 47.05 376 | 67.14 373 | 83.51 292 | 60.71 273 | 80.50 310 | 67.75 395 | 0.07 422 | 0.43 423 | 75.85 384 | 24.26 400 | 81.54 355 | 28.82 405 | 62.25 378 | 59.16 405 |
|
| test_vis3_rt | | | 49.26 375 | 47.02 377 | 56.00 387 | 54.30 416 | 45.27 399 | 66.76 398 | 48.08 417 | 36.83 406 | 44.38 405 | 53.20 410 | 7.17 422 | 64.07 410 | 56.77 319 | 55.66 390 | 58.65 406 |
|
| FPMVS | | | 53.68 368 | 51.64 370 | 59.81 383 | 65.08 407 | 51.03 379 | 69.48 387 | 69.58 390 | 41.46 400 | 40.67 407 | 72.32 392 | 16.46 411 | 70.00 404 | 24.24 411 | 65.42 372 | 58.40 407 |
|
| testf1 | | | 45.72 376 | 41.96 380 | 57.00 385 | 56.90 413 | 45.32 396 | 66.14 399 | 59.26 410 | 26.19 413 | 30.89 412 | 60.96 404 | 4.14 423 | 70.64 402 | 26.39 409 | 46.73 404 | 55.04 408 |
|
| APD_test2 | | | 45.72 376 | 41.96 380 | 57.00 385 | 56.90 413 | 45.32 396 | 66.14 399 | 59.26 410 | 26.19 413 | 30.89 412 | 60.96 404 | 4.14 423 | 70.64 402 | 26.39 409 | 46.73 404 | 55.04 408 |
|
| PMVS |  | 37.38 22 | 44.16 380 | 40.28 384 | 55.82 389 | 40.82 424 | 42.54 407 | 65.12 403 | 63.99 404 | 34.43 409 | 24.48 415 | 57.12 408 | 3.92 425 | 76.17 384 | 17.10 416 | 55.52 391 | 48.75 410 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| MVE |  | 26.22 23 | 30.37 386 | 25.89 390 | 43.81 397 | 44.55 423 | 35.46 414 | 28.87 416 | 39.07 421 | 18.20 417 | 18.58 419 | 40.18 414 | 2.68 426 | 47.37 419 | 17.07 417 | 23.78 416 | 48.60 411 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| dongtai | | | 45.42 378 | 45.38 379 | 45.55 396 | 73.36 392 | 26.85 420 | 67.72 393 | 34.19 422 | 54.15 378 | 49.65 402 | 56.41 409 | 25.43 396 | 62.94 412 | 19.45 413 | 28.09 413 | 46.86 412 |
|
| kuosan | | | 39.70 382 | 40.40 383 | 37.58 399 | 64.52 408 | 26.98 418 | 65.62 401 | 33.02 423 | 46.12 394 | 42.79 406 | 48.99 412 | 24.10 401 | 46.56 420 | 12.16 421 | 26.30 414 | 39.20 413 |
|
| Gipuma |  | | 45.18 379 | 41.86 382 | 55.16 391 | 77.03 374 | 51.52 375 | 32.50 415 | 80.52 332 | 32.46 411 | 27.12 414 | 35.02 415 | 9.52 418 | 75.50 388 | 22.31 412 | 60.21 385 | 38.45 414 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| DeepMVS_CX |  | | | | 27.40 402 | 40.17 425 | 26.90 419 | | 24.59 426 | 17.44 418 | 23.95 416 | 48.61 413 | 9.77 417 | 26.48 421 | 18.06 414 | 24.47 415 | 28.83 415 |
|
| E-PMN | | | 31.77 383 | 30.64 386 | 35.15 400 | 52.87 420 | 27.67 417 | 57.09 410 | 47.86 418 | 24.64 415 | 16.40 420 | 33.05 416 | 11.23 416 | 54.90 416 | 14.46 419 | 18.15 417 | 22.87 416 |
|
| EMVS | | | 30.81 385 | 29.65 387 | 34.27 401 | 50.96 421 | 25.95 421 | 56.58 411 | 46.80 419 | 24.01 416 | 15.53 421 | 30.68 417 | 12.47 413 | 54.43 417 | 12.81 420 | 17.05 418 | 22.43 417 |
|
| tmp_tt | | | 18.61 388 | 21.40 391 | 10.23 404 | 4.82 427 | 10.11 427 | 34.70 414 | 30.74 425 | 1.48 421 | 23.91 417 | 26.07 418 | 28.42 393 | 13.41 423 | 27.12 407 | 15.35 420 | 7.17 418 |
|
| wuyk23d | | | 16.82 389 | 15.94 392 | 19.46 403 | 58.74 412 | 31.45 416 | 39.22 413 | 3.74 428 | 6.84 419 | 6.04 422 | 2.70 422 | 1.27 427 | 24.29 422 | 10.54 422 | 14.40 421 | 2.63 419 |
|
| test123 | | | 6.12 391 | 8.11 394 | 0.14 405 | 0.06 429 | 0.09 430 | 71.05 380 | 0.03 430 | 0.04 424 | 0.25 425 | 1.30 424 | 0.05 428 | 0.03 425 | 0.21 424 | 0.01 423 | 0.29 420 |
|
| testmvs | | | 6.04 392 | 8.02 395 | 0.10 406 | 0.08 428 | 0.03 431 | 69.74 385 | 0.04 429 | 0.05 423 | 0.31 424 | 1.68 423 | 0.02 429 | 0.04 424 | 0.24 423 | 0.02 422 | 0.25 421 |
|
| mmdepth | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 430 | 0.00 426 | 0.00 425 | 0.00 424 | 0.00 422 |
|
| monomultidepth | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 430 | 0.00 426 | 0.00 425 | 0.00 424 | 0.00 422 |
|
| test_blank | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 430 | 0.00 426 | 0.00 425 | 0.00 424 | 0.00 422 |
|
| uanet_test | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 430 | 0.00 426 | 0.00 425 | 0.00 424 | 0.00 422 |
|
| DCPMVS | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 430 | 0.00 426 | 0.00 425 | 0.00 424 | 0.00 422 |
|
| cdsmvs_eth3d_5k | | | 19.96 387 | 26.61 389 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 89.26 183 | 0.00 425 | 0.00 426 | 88.61 182 | 61.62 169 | 0.00 426 | 0.00 425 | 0.00 424 | 0.00 422 |
|
| pcd_1.5k_mvsjas | | | 5.26 393 | 7.02 396 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 0.00 425 | 63.15 146 | 0.00 426 | 0.00 425 | 0.00 424 | 0.00 422 |
|
| sosnet-low-res | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 430 | 0.00 426 | 0.00 425 | 0.00 424 | 0.00 422 |
|
| sosnet | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 430 | 0.00 426 | 0.00 425 | 0.00 424 | 0.00 422 |
|
| uncertanet | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 430 | 0.00 426 | 0.00 425 | 0.00 424 | 0.00 422 |
|
| Regformer | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 430 | 0.00 426 | 0.00 425 | 0.00 424 | 0.00 422 |
|
| ab-mvs-re | | | 7.23 390 | 9.64 393 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 86.72 232 | 0.00 430 | 0.00 426 | 0.00 425 | 0.00 424 | 0.00 422 |
|
| uanet | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 432 | 0.00 418 | 0.00 431 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 430 | 0.00 426 | 0.00 425 | 0.00 424 | 0.00 422 |
|
| WAC-MVS | | | | | | | 42.58 405 | | | | | | | | 39.46 393 | | |
|
| FOURS1 | | | | | | 95.00 10 | 72.39 39 | 95.06 1 | 93.84 15 | 74.49 121 | 91.30 15 | | | | | | |
|
| test_one_0601 | | | | | | 95.07 7 | 71.46 57 | | 94.14 5 | 78.27 35 | 92.05 11 | 95.74 6 | 80.83 11 | | | | |
|
| eth-test2 | | | | | | 0.00 430 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 430 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 94.38 25 | 72.22 44 | | 92.67 66 | 70.98 190 | 87.75 35 | 94.07 44 | 74.01 32 | 96.70 27 | 84.66 52 | 94.84 44 | |
|
| test_241102_ONE | | | | | | 95.30 2 | 70.98 66 | | 94.06 10 | 77.17 56 | 93.10 1 | 95.39 14 | 82.99 1 | 97.27 12 | | | |
|
| 9.14 | | | | 88.26 15 | | 92.84 63 | | 91.52 48 | 94.75 1 | 73.93 133 | 88.57 25 | 94.67 21 | 75.57 22 | 95.79 58 | 86.77 35 | 95.76 23 | |
|
| save fliter | | | | | | 93.80 40 | 72.35 42 | 90.47 66 | 91.17 124 | 74.31 124 | | | | | | | |
|
| test0726 | | | | | | 95.27 5 | 71.25 59 | 93.60 6 | 94.11 6 | 77.33 50 | 92.81 3 | 95.79 3 | 80.98 9 | | | | |
|
| test_part2 | | | | | | 95.06 8 | 72.65 32 | | | | 91.80 13 | | | | | | |
|
| sam_mvs | | | | | | | | | | | | | 50.01 286 | | | | |
|
| MTGPA |  | | | | | | | | 92.02 92 | | | | | | | | |
|
| test_post1 | | | | | | | | 78.90 333 | | | | 5.43 421 | 48.81 305 | 85.44 330 | 59.25 292 | | |
|
| test_post | | | | | | | | | | | | 5.46 420 | 50.36 284 | 84.24 338 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 74.00 388 | 51.12 275 | 88.60 297 | | | |
|
| MTMP | | | | | | | | 92.18 34 | 32.83 424 | | | | | | | | |
|
| gm-plane-assit | | | | | | 81.40 335 | 53.83 358 | | | 62.72 323 | | 80.94 344 | | 92.39 201 | 63.40 254 | | |
|
| TEST9 | | | | | | 93.26 52 | 72.96 25 | 88.75 119 | 91.89 100 | 68.44 250 | 85.00 63 | 93.10 70 | 74.36 28 | 95.41 73 | | | |
|
| test_8 | | | | | | 93.13 54 | 72.57 35 | 88.68 124 | 91.84 104 | 68.69 245 | 84.87 67 | 93.10 70 | 74.43 26 | 95.16 82 | | | |
|
| agg_prior | | | | | | 92.85 62 | 71.94 50 | | 91.78 107 | | 84.41 78 | | | 94.93 93 | | | |
|
| test_prior4 | | | | | | | 72.60 34 | 89.01 110 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 88.85 116 | | 75.41 98 | 84.91 65 | 93.54 59 | 74.28 29 | | 83.31 67 | 95.86 20 | |
|
| 旧先验2 | | | | | | | | 86.56 193 | | 58.10 360 | 87.04 45 | | | 88.98 289 | 74.07 157 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 86.29 202 | | | | | | | | | |
|
| 原ACMM2 | | | | | | | | 86.86 182 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 91.01 255 | 62.37 264 | | |
|
| segment_acmp | | | | | | | | | | | | | 73.08 38 | | | | |
|
| testdata1 | | | | | | | | 84.14 256 | | 75.71 92 | | | | | | | |
|
| plane_prior7 | | | | | | 90.08 108 | 68.51 123 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 89.84 117 | 68.70 118 | | | | | | 60.42 194 | | | | |
|
| plane_prior4 | | | | | | | | | | | | 91.00 129 | | | | | |
|
| plane_prior3 | | | | | | | 68.60 121 | | | 78.44 31 | 78.92 150 | | | | | | |
|
| plane_prior2 | | | | | | | | 91.25 52 | | 79.12 23 | | | | | | | |
|
| plane_prior1 | | | | | | 89.90 116 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 68.71 116 | 90.38 70 | | 77.62 40 | | | | | | 86.16 165 | |
|
| n2 | | | | | | | | | 0.00 431 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 431 | | | | | | | | |
|
| door-mid | | | | | | | | | 69.98 388 | | | | | | | | |
|
| test11 | | | | | | | | | 92.23 86 | | | | | | | | |
|
| door | | | | | | | | | 69.44 391 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 66.98 162 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 89.33 135 | | 89.17 103 | | 76.41 77 | 77.23 188 | | | | | | |
|
| ACMP_Plane | | | | | | 89.33 135 | | 89.17 103 | | 76.41 77 | 77.23 188 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.47 121 | | |
|
| HQP3-MVS | | | | | | | | | 92.19 89 | | | | | | | 85.99 169 | |
|
| HQP2-MVS | | | | | | | | | | | | | 60.17 197 | | | | |
|
| NP-MVS | | | | | | 89.62 121 | 68.32 126 | | | | | 90.24 141 | | | | | |
|
| MDTV_nov1_ep13 | | | | 69.97 305 | | 83.18 300 | 53.48 360 | 77.10 352 | 80.18 340 | 60.45 338 | 69.33 319 | 80.44 348 | 48.89 304 | 86.90 312 | 51.60 343 | 78.51 264 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 81.95 226 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 81.25 231 | |
|
| Test By Simon | | | | | | | | | | | | | 64.33 133 | | | | |
|