This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
MM89.16 689.23 788.97 490.79 9173.65 1092.66 2391.17 12386.57 187.39 3794.97 1671.70 5297.68 192.19 195.63 2895.57 1
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 7087.65 20267.22 15388.69 11993.04 3879.64 1885.33 5492.54 8373.30 3594.50 11083.49 5991.14 9395.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
dcpmvs_285.63 5386.15 4484.06 12991.71 7564.94 19886.47 19391.87 10173.63 13386.60 4593.02 7276.57 1591.87 22083.36 6092.15 7995.35 3
casdiffmvspermissive85.11 6285.14 6285.01 8687.20 21865.77 18187.75 15592.83 5677.84 3784.36 7892.38 8572.15 4693.93 13281.27 8490.48 10095.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
3Dnovator+77.84 485.48 5584.47 7488.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 20093.37 6260.40 19596.75 2677.20 12293.73 6695.29 5
CS-MVS86.69 3586.95 3185.90 6590.76 9267.57 14292.83 1793.30 3279.67 1784.57 7292.27 8671.47 5595.02 9084.24 5493.46 6795.13 6
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7974.62 11388.90 2093.85 5275.75 2096.00 4987.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
baseline84.93 6784.98 6384.80 9687.30 21665.39 18887.30 16792.88 5377.62 3984.04 8592.26 8771.81 4993.96 12681.31 8290.30 10395.03 8
MVS_030488.08 1488.08 1788.08 1489.67 11772.04 4892.26 3389.26 18084.19 285.01 5795.18 1369.93 7197.20 1491.63 295.60 2994.99 9
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
PC_three_145268.21 24892.02 1294.00 4682.09 595.98 5284.58 4896.68 294.95 10
IS-MVSNet83.15 9582.81 9584.18 12089.94 11163.30 23491.59 4388.46 21079.04 2579.49 14092.16 8865.10 12794.28 11567.71 21291.86 8594.95 10
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10992.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test250677.30 22476.49 22079.74 24990.08 10452.02 35987.86 15463.10 39474.88 10680.16 13492.79 7938.29 36392.35 20268.74 20592.50 7694.86 17
ECVR-MVScopyleft79.61 16279.26 15580.67 23190.08 10454.69 34387.89 15277.44 35174.88 10680.27 13192.79 7948.96 29992.45 19668.55 20692.50 7694.86 17
IU-MVS95.30 271.25 5792.95 5266.81 25892.39 688.94 1696.63 494.85 19
test111179.43 16979.18 15880.15 24189.99 10953.31 35687.33 16677.05 35475.04 10380.23 13392.77 8148.97 29892.33 20468.87 20392.40 7894.81 20
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8989.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
sasdasda85.91 4785.87 4986.04 6089.84 11469.44 9590.45 6593.00 4376.70 6988.01 2891.23 11073.28 3693.91 13381.50 7988.80 12494.77 22
CS-MVS-test86.29 4286.48 3785.71 6991.02 8367.21 15492.36 2993.78 1878.97 2883.51 9491.20 11370.65 6595.15 8081.96 7694.89 4194.77 22
canonicalmvs85.91 4785.87 4986.04 6089.84 11469.44 9590.45 6593.00 4376.70 6988.01 2891.23 11073.28 3693.91 13381.50 7988.80 12494.77 22
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 25
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 6194.67 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MGCFI-Net85.06 6485.51 5483.70 14489.42 12863.01 24089.43 9092.62 6976.43 7387.53 3591.34 10872.82 4293.42 15981.28 8388.74 12794.66 27
alignmvs85.48 5585.32 5985.96 6389.51 12369.47 9289.74 8092.47 7376.17 8287.73 3491.46 10570.32 6793.78 13981.51 7888.95 12194.63 28
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7893.50 2575.17 10286.34 4695.29 1270.86 6196.00 4988.78 1996.04 1694.58 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 10089.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 29
VDD-MVS83.01 10082.36 10184.96 8891.02 8366.40 16688.91 10988.11 21377.57 4184.39 7793.29 6452.19 25493.91 13377.05 12488.70 12894.57 31
VDDNet81.52 12380.67 12684.05 13290.44 9764.13 21689.73 8185.91 25671.11 18283.18 9693.48 5850.54 27893.49 15373.40 15988.25 13494.54 32
MVSMamba_pp84.98 6684.70 6785.80 6789.43 12767.63 14088.44 12692.64 6772.17 16284.54 7390.39 13468.88 8795.28 7581.45 8194.39 5494.49 33
mamv485.00 6584.68 6885.93 6489.51 12367.64 13988.38 13292.65 6572.35 15984.47 7490.26 13668.98 8695.69 5881.09 8594.45 5394.47 34
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9191.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 34
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
iter_conf05_1184.86 7084.52 7285.87 6690.86 8867.18 15589.63 8592.15 8971.48 17584.64 6990.81 12668.82 8896.00 4978.50 10893.84 6494.43 36
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 37
No_MVS89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 37
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7693.82 1673.07 14984.86 6492.89 7476.22 1796.33 3884.89 4495.13 3694.40 39
CANet86.45 3886.10 4587.51 3790.09 10370.94 6789.70 8292.59 7081.78 481.32 11991.43 10670.34 6697.23 1384.26 5293.36 6894.37 40
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15485.22 5691.90 9269.47 7696.42 3783.28 6295.94 1994.35 41
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6093.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 42
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5594.32 3171.76 5096.93 1985.53 3995.79 2294.32 43
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8483.81 8993.95 5169.77 7496.01 4885.15 4094.66 4694.32 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CDPH-MVS85.76 5185.29 6187.17 4393.49 4771.08 6188.58 12392.42 7768.32 24784.61 7093.48 5872.32 4496.15 4579.00 10295.43 3194.28 45
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 46
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 47
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7184.22 7993.36 6371.44 5696.76 2580.82 9095.33 3494.16 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EPP-MVSNet83.40 9083.02 9084.57 10090.13 10264.47 20892.32 3090.73 13574.45 11779.35 14291.10 11669.05 8395.12 8172.78 16687.22 14494.13 49
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5681.50 585.79 5093.47 6073.02 4097.00 1884.90 4294.94 3994.10 50
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5593.59 2376.27 8188.14 2495.09 1571.06 5996.67 2987.67 2996.37 1494.09 51
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 9194.17 3667.45 10296.60 3383.06 6394.50 5094.07 52
X-MVStestdata80.37 15177.83 18688.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 9112.47 40867.45 10296.60 3383.06 6394.50 5094.07 52
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7594.52 2169.09 8096.70 2784.37 5194.83 4494.03 54
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6894.52 2168.81 8996.65 3084.53 4994.90 4094.00 55
test_fmvsmconf_n85.92 4686.04 4785.57 7285.03 25669.51 9089.62 8690.58 13873.42 14087.75 3294.02 4472.85 4193.24 16490.37 390.75 9793.96 56
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8792.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 57
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_fmvsm_n_192085.29 6085.34 5785.13 8386.12 23669.93 8388.65 12190.78 13469.97 20888.27 2393.98 4971.39 5791.54 23288.49 2390.45 10193.91 58
test_prior86.33 5492.61 6569.59 8892.97 5195.48 6493.91 58
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6593.99 4870.67 6496.82 2284.18 5695.01 3793.90 60
test_fmvsmconf0.1_n85.61 5485.65 5285.50 7382.99 30169.39 9789.65 8390.29 15173.31 14387.77 3194.15 3871.72 5193.23 16590.31 490.67 9993.89 61
Anonymous20240521178.25 19777.01 20681.99 19891.03 8260.67 27084.77 23383.90 28170.65 19580.00 13591.20 11341.08 35091.43 23965.21 23485.26 17293.85 62
LFMVS81.82 11581.23 11683.57 14891.89 7363.43 23289.84 7581.85 31277.04 5883.21 9593.10 6752.26 25393.43 15871.98 17289.95 11193.85 62
Effi-MVS+83.62 8583.08 8885.24 7988.38 17367.45 14488.89 11089.15 18675.50 9482.27 10688.28 18969.61 7594.45 11277.81 11687.84 13693.84 64
bld_raw_dy_0_6484.37 7384.35 7584.46 10689.86 11364.47 20886.68 18792.49 7272.08 16584.16 8289.77 14768.76 9195.08 8880.97 8794.34 5893.82 65
Anonymous2024052980.19 15578.89 16384.10 12290.60 9364.75 20288.95 10890.90 13065.97 27580.59 12991.17 11549.97 28393.73 14569.16 20082.70 21593.81 66
MVS_Test83.15 9583.06 8983.41 15386.86 22263.21 23686.11 20392.00 9374.31 11882.87 10089.44 16270.03 6993.21 16777.39 12188.50 13293.81 66
test_fmvsmconf0.01_n84.73 7184.52 7285.34 7680.25 34169.03 10089.47 8889.65 16873.24 14786.98 4294.27 3266.62 10893.23 16590.26 589.95 11193.78 68
GeoE81.71 11781.01 12183.80 14389.51 12364.45 21088.97 10788.73 20571.27 17978.63 15489.76 14866.32 11493.20 17069.89 19286.02 16493.74 69
diffmvspermissive82.10 10881.88 11082.76 18683.00 29963.78 22283.68 25789.76 16472.94 15282.02 10989.85 14565.96 12190.79 25682.38 7487.30 14393.71 70
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 6194.44 2870.78 6296.61 3284.53 4994.89 4193.66 71
VNet82.21 10782.41 9981.62 20490.82 8960.93 26584.47 24189.78 16376.36 7984.07 8491.88 9364.71 13190.26 26270.68 18388.89 12293.66 71
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7093.04 3875.53 9383.86 8794.42 2967.87 9996.64 3182.70 7294.57 4993.66 71
DELS-MVS85.41 5885.30 6085.77 6888.49 16767.93 13385.52 22293.44 2778.70 2983.63 9389.03 16974.57 2495.71 5780.26 9894.04 6293.66 71
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13987.63 3094.27 6093.65 75
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 10294.23 3572.13 4797.09 1684.83 4595.37 3293.65 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
patch_mono-283.65 8284.54 7080.99 22390.06 10865.83 17884.21 25088.74 20471.60 17285.01 5792.44 8474.51 2583.50 33682.15 7592.15 7993.64 77
EIA-MVS83.31 9382.80 9684.82 9489.59 11965.59 18388.21 13992.68 6174.66 11178.96 14686.42 24469.06 8295.26 7675.54 14190.09 10793.62 78
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6577.57 4183.84 8894.40 3072.24 4596.28 4085.65 3895.30 3593.62 78
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVS_fast85.35 5984.95 6586.57 5393.69 4270.58 7592.15 3691.62 10973.89 12882.67 10594.09 4062.60 15195.54 6280.93 8892.93 7093.57 80
fmvsm_s_conf0.1_n83.56 8683.38 8484.10 12284.86 25867.28 15089.40 9483.01 29770.67 19187.08 4093.96 5068.38 9491.45 23888.56 2284.50 18093.56 81
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5693.56 2473.95 12583.16 9791.07 11875.94 1895.19 7879.94 10094.38 5693.55 82
test1286.80 4992.63 6470.70 7291.79 10582.71 10471.67 5396.16 4494.50 5093.54 83
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4673.54 13785.94 4794.51 2465.80 12295.61 5983.04 6592.51 7593.53 84
mvs_anonymous79.42 17079.11 15980.34 23784.45 26757.97 29782.59 27687.62 22767.40 25776.17 21588.56 18268.47 9389.59 27570.65 18486.05 16393.47 85
fmvsm_s_conf0.5_n83.80 7983.71 8084.07 12786.69 22867.31 14989.46 8983.07 29671.09 18386.96 4393.70 5569.02 8591.47 23788.79 1884.62 17993.44 86
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8576.87 6282.81 10394.25 3466.44 11296.24 4182.88 6794.28 5993.38 87
EPNet83.72 8182.92 9386.14 5984.22 27069.48 9191.05 5485.27 26381.30 676.83 19591.65 9766.09 11795.56 6076.00 13593.85 6393.38 87
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Vis-MVSNetpermissive83.46 8882.80 9685.43 7590.25 10068.74 11190.30 6990.13 15576.33 8080.87 12792.89 7461.00 18394.20 12072.45 17190.97 9493.35 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 6077.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 90
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
UniMVSNet_ETH3D79.10 17978.24 17781.70 20386.85 22360.24 27787.28 16888.79 19974.25 12076.84 19490.53 13249.48 28991.56 23067.98 21082.15 21993.29 91
EI-MVSNet-Vis-set84.19 7483.81 7985.31 7788.18 17867.85 13487.66 15789.73 16680.05 1482.95 9889.59 15470.74 6394.82 10080.66 9484.72 17793.28 92
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 19092.02 9179.45 1985.88 4894.80 1768.07 9696.21 4286.69 3695.34 3393.23 93
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5976.62 7183.68 9094.46 2567.93 9795.95 5384.20 5594.39 5493.23 93
ACMMPcopyleft85.89 4985.39 5687.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12893.82 5364.33 13296.29 3982.67 7390.69 9893.23 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_s_conf0.1_n_a83.32 9282.99 9184.28 11583.79 27968.07 13089.34 9682.85 30269.80 21287.36 3894.06 4268.34 9591.56 23087.95 2783.46 20493.21 96
PAPM_NR83.02 9982.41 9984.82 9492.47 6766.37 16787.93 15091.80 10473.82 12977.32 18490.66 12867.90 9894.90 9570.37 18689.48 11693.19 97
OMC-MVS82.69 10281.97 10984.85 9388.75 15967.42 14587.98 14690.87 13274.92 10579.72 13791.65 9762.19 16193.96 12675.26 14386.42 15693.16 98
fmvsm_s_conf0.5_n_a83.63 8483.41 8384.28 11586.14 23568.12 12889.43 9082.87 30170.27 20287.27 3993.80 5469.09 8091.58 22888.21 2683.65 19893.14 99
PAPR81.66 12180.89 12383.99 13790.27 9964.00 21786.76 18591.77 10768.84 23877.13 19389.50 15567.63 10094.88 9767.55 21488.52 13193.09 100
UA-Net85.08 6384.96 6485.45 7492.07 7068.07 13089.78 7990.86 13382.48 384.60 7193.20 6669.35 7795.22 7771.39 17790.88 9693.07 101
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5580.26 1187.78 3094.27 3275.89 1996.81 2387.45 3296.44 993.05 102
thisisatest053079.40 17177.76 19184.31 11387.69 20165.10 19487.36 16484.26 27770.04 20577.42 18188.26 19149.94 28494.79 10270.20 18784.70 17893.03 103
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11591.89 9968.69 24085.00 5993.10 6774.43 2695.41 6984.97 4195.71 2593.02 104
EC-MVSNet86.01 4386.38 3884.91 9289.31 13666.27 16992.32 3093.63 2179.37 2084.17 8191.88 9369.04 8495.43 6783.93 5793.77 6593.01 105
EI-MVSNet-UG-set83.81 7883.38 8485.09 8487.87 19167.53 14387.44 16389.66 16779.74 1682.23 10789.41 16370.24 6894.74 10379.95 9983.92 19092.99 106
tttt051779.40 17177.91 18383.90 14288.10 18363.84 22088.37 13384.05 27971.45 17676.78 19789.12 16649.93 28694.89 9670.18 18883.18 20892.96 107
test9_res84.90 4295.70 2692.87 108
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 7174.50 11486.84 4494.65 2067.31 10495.77 5584.80 4692.85 7192.84 109
ETV-MVS84.90 6984.67 6985.59 7189.39 13168.66 11788.74 11792.64 6779.97 1584.10 8385.71 25769.32 7895.38 7180.82 9091.37 9092.72 110
agg_prior282.91 6695.45 3092.70 111
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5673.01 15188.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 111
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ET-MVSNet_ETH3D78.63 19076.63 21984.64 9986.73 22769.47 9285.01 22884.61 27069.54 21866.51 34086.59 23750.16 28191.75 22376.26 13184.24 18792.69 113
Vis-MVSNet (Re-imp)78.36 19678.45 17078.07 28088.64 16351.78 36586.70 18679.63 33674.14 12375.11 24390.83 12561.29 17789.75 27258.10 29891.60 8692.69 113
TSAR-MVS + GP.85.71 5285.33 5886.84 4791.34 7872.50 3689.07 10587.28 23476.41 7485.80 4990.22 13974.15 3195.37 7481.82 7791.88 8292.65 115
test_fmvsmvis_n_192084.02 7683.87 7884.49 10584.12 27269.37 9888.15 14387.96 21870.01 20683.95 8693.23 6568.80 9091.51 23588.61 2089.96 11092.57 116
FA-MVS(test-final)80.96 13279.91 14084.10 12288.30 17665.01 19684.55 24090.01 15873.25 14679.61 13887.57 20658.35 20494.72 10471.29 17886.25 15992.56 117
test_yl81.17 12880.47 13083.24 15989.13 14463.62 22386.21 20089.95 16072.43 15781.78 11489.61 15257.50 21293.58 14770.75 18186.90 14892.52 118
DCV-MVSNet81.17 12880.47 13083.24 15989.13 14463.62 22386.21 20089.95 16072.43 15781.78 11489.61 15257.50 21293.58 14770.75 18186.90 14892.52 118
SR-MVS-dyc-post85.77 5085.61 5386.23 5693.06 5570.63 7391.88 3992.27 8173.53 13885.69 5194.45 2665.00 13095.56 6082.75 6891.87 8392.50 120
RE-MVS-def85.48 5593.06 5570.63 7391.88 3992.27 8173.53 13885.69 5194.45 2663.87 13682.75 6891.87 8392.50 120
nrg03083.88 7783.53 8184.96 8886.77 22669.28 9990.46 6492.67 6274.79 10882.95 9891.33 10972.70 4393.09 17880.79 9279.28 25592.50 120
MG-MVS83.41 8983.45 8283.28 15692.74 6262.28 25188.17 14189.50 17175.22 9881.49 11792.74 8266.75 10795.11 8372.85 16591.58 8792.45 123
FIs82.07 11082.42 9881.04 22288.80 15658.34 29188.26 13893.49 2676.93 6078.47 15991.04 11969.92 7292.34 20369.87 19384.97 17492.44 124
FC-MVSNet-test81.52 12382.02 10780.03 24388.42 17255.97 32987.95 14893.42 2977.10 5677.38 18290.98 12469.96 7091.79 22168.46 20884.50 18092.33 125
Fast-Effi-MVS+80.81 13679.92 13983.47 14988.85 15164.51 20585.53 22089.39 17470.79 18878.49 15885.06 27567.54 10193.58 14767.03 22286.58 15392.32 126
TranMVSNet+NR-MVSNet80.84 13480.31 13382.42 19187.85 19262.33 24987.74 15691.33 11980.55 977.99 17289.86 14465.23 12692.62 19067.05 22175.24 31192.30 127
ab-mvs79.51 16578.97 16281.14 21988.46 16960.91 26683.84 25589.24 18270.36 19879.03 14588.87 17263.23 14390.21 26465.12 23582.57 21692.28 128
CANet_DTU80.61 14379.87 14182.83 17885.60 24363.17 23987.36 16488.65 20676.37 7875.88 21888.44 18553.51 24393.07 17973.30 16089.74 11492.25 129
UniMVSNet_NR-MVSNet81.88 11381.54 11382.92 17588.46 16963.46 23087.13 17092.37 7880.19 1278.38 16089.14 16571.66 5493.05 18070.05 18976.46 28492.25 129
fmvsm_l_conf0.5_n84.47 7284.54 7084.27 11785.42 24668.81 10688.49 12587.26 23568.08 24988.03 2793.49 5772.04 4891.77 22288.90 1789.14 12092.24 131
DU-MVS81.12 13080.52 12982.90 17687.80 19463.46 23087.02 17491.87 10179.01 2678.38 16089.07 16765.02 12893.05 18070.05 18976.46 28492.20 132
NR-MVSNet80.23 15379.38 15182.78 18487.80 19463.34 23386.31 19791.09 12779.01 2672.17 27989.07 16767.20 10592.81 18966.08 22875.65 29792.20 132
TAPA-MVS73.13 979.15 17777.94 18282.79 18389.59 11962.99 24488.16 14291.51 11465.77 27677.14 19291.09 11760.91 18493.21 16750.26 34487.05 14692.17 134
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
fmvsm_l_conf0.5_n_a84.13 7584.16 7784.06 12985.38 24768.40 12188.34 13486.85 24367.48 25687.48 3693.40 6170.89 6091.61 22688.38 2589.22 11992.16 135
3Dnovator76.31 583.38 9182.31 10286.59 5287.94 18972.94 2890.64 5892.14 9077.21 5275.47 22592.83 7658.56 20294.72 10473.24 16292.71 7392.13 136
MVS_111021_HR85.14 6184.75 6686.32 5591.65 7672.70 3085.98 20590.33 14876.11 8382.08 10891.61 10071.36 5894.17 12281.02 8692.58 7492.08 137
MVSFormer82.85 10182.05 10685.24 7987.35 21070.21 7790.50 6190.38 14468.55 24281.32 11989.47 15761.68 16693.46 15678.98 10390.26 10492.05 138
jason81.39 12680.29 13484.70 9886.63 23069.90 8585.95 20686.77 24463.24 30381.07 12589.47 15761.08 18292.15 20978.33 11290.07 10992.05 138
jason: jason.
mvsmamba81.69 11880.74 12484.56 10187.45 20966.72 16291.26 4885.89 25774.66 11178.23 16490.56 13054.33 23494.91 9280.73 9383.54 20292.04 140
iter_conf0583.17 9482.90 9483.97 13887.59 20765.09 19588.29 13791.52 11272.35 15981.39 11890.13 14168.76 9194.84 9980.30 9785.75 16991.98 141
HyFIR lowres test77.53 21975.40 23683.94 14189.59 11966.62 16380.36 30788.64 20756.29 36376.45 20585.17 27257.64 21093.28 16261.34 27183.10 20991.91 142
XVG-OURS-SEG-HR80.81 13679.76 14383.96 14085.60 24368.78 10883.54 26390.50 14170.66 19476.71 19991.66 9660.69 18791.26 24376.94 12581.58 22691.83 143
lupinMVS81.39 12680.27 13584.76 9787.35 21070.21 7785.55 21886.41 24862.85 31081.32 11988.61 17961.68 16692.24 20778.41 11190.26 10491.83 143
WR-MVS79.49 16679.22 15780.27 23988.79 15758.35 29085.06 22788.61 20878.56 3077.65 17788.34 18763.81 13890.66 25964.98 23777.22 27391.80 145
h-mvs3383.15 9582.19 10386.02 6290.56 9470.85 7088.15 14389.16 18576.02 8584.67 6691.39 10761.54 16995.50 6382.71 7075.48 30191.72 146
UniMVSNet (Re)81.60 12281.11 11883.09 16688.38 17364.41 21187.60 15893.02 4278.42 3278.56 15688.16 19369.78 7393.26 16369.58 19676.49 28391.60 147
UGNet80.83 13579.59 14784.54 10288.04 18668.09 12989.42 9288.16 21276.95 5976.22 21189.46 15949.30 29393.94 12968.48 20790.31 10291.60 147
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
testing9176.54 23375.66 23179.18 26188.43 17155.89 33081.08 29383.00 29873.76 13175.34 23284.29 28746.20 31790.07 26664.33 24184.50 18091.58 149
XVG-OURS80.41 14879.23 15683.97 13885.64 24269.02 10283.03 27490.39 14371.09 18377.63 17891.49 10454.62 23391.35 24175.71 13783.47 20391.54 150
LCM-MVSNet-Re77.05 22676.94 20977.36 29087.20 21851.60 36680.06 31080.46 32675.20 9967.69 32286.72 22962.48 15488.98 28663.44 24789.25 11891.51 151
DP-MVS Recon83.11 9882.09 10586.15 5894.44 1970.92 6888.79 11392.20 8670.53 19679.17 14491.03 12164.12 13496.03 4668.39 20990.14 10691.50 152
PS-MVSNAJss82.07 11081.31 11484.34 11286.51 23167.27 15189.27 9791.51 11471.75 16779.37 14190.22 13963.15 14594.27 11677.69 11782.36 21891.49 153
testing9976.09 24475.12 24279.00 26288.16 17955.50 33580.79 29781.40 31673.30 14475.17 24084.27 28944.48 33090.02 26764.28 24284.22 18891.48 154
thisisatest051577.33 22375.38 23783.18 16285.27 24963.80 22182.11 28183.27 29165.06 28375.91 21783.84 29649.54 28894.27 11667.24 21886.19 16091.48 154
DPM-MVS84.93 6784.29 7686.84 4790.20 10173.04 2387.12 17193.04 3869.80 21282.85 10191.22 11273.06 3996.02 4776.72 12994.63 4791.46 156
HQP_MVS83.64 8383.14 8785.14 8190.08 10468.71 11391.25 5092.44 7479.12 2378.92 14891.00 12260.42 19395.38 7178.71 10686.32 15791.33 157
plane_prior592.44 7495.38 7178.71 10686.32 15791.33 157
GA-MVS76.87 23075.17 24181.97 19982.75 30562.58 24681.44 29086.35 25172.16 16474.74 25082.89 31346.20 31792.02 21368.85 20481.09 23191.30 159
VPA-MVSNet80.60 14480.55 12880.76 22988.07 18560.80 26886.86 17991.58 11175.67 9280.24 13289.45 16163.34 13990.25 26370.51 18579.22 25691.23 160
Effi-MVS+-dtu80.03 15778.57 16884.42 10885.13 25468.74 11188.77 11488.10 21474.99 10474.97 24783.49 30457.27 21593.36 16073.53 15680.88 23391.18 161
v2v48280.23 15379.29 15483.05 16983.62 28264.14 21587.04 17389.97 15973.61 13478.18 16787.22 21761.10 18193.82 13776.11 13276.78 28191.18 161
FE-MVS77.78 21275.68 22984.08 12688.09 18466.00 17383.13 26987.79 22468.42 24678.01 17185.23 27045.50 32595.12 8159.11 28785.83 16891.11 163
Anonymous2023121178.97 18377.69 19482.81 18090.54 9564.29 21390.11 7291.51 11465.01 28576.16 21688.13 19850.56 27793.03 18369.68 19577.56 27191.11 163
hse-mvs281.72 11680.94 12284.07 12788.72 16067.68 13885.87 20987.26 23576.02 8584.67 6688.22 19261.54 16993.48 15482.71 7073.44 32991.06 165
AUN-MVS79.21 17677.60 19684.05 13288.71 16167.61 14185.84 21187.26 23569.08 23177.23 18788.14 19753.20 24793.47 15575.50 14273.45 32891.06 165
HQP4-MVS77.24 18695.11 8391.03 167
HQP-MVS82.61 10482.02 10784.37 10989.33 13366.98 15889.17 9992.19 8776.41 7477.23 18790.23 13860.17 19695.11 8377.47 11985.99 16591.03 167
RPSCF73.23 27671.46 27978.54 27182.50 31159.85 28082.18 28082.84 30358.96 34471.15 28989.41 16345.48 32684.77 32858.82 29171.83 34091.02 169
test_djsdf80.30 15279.32 15383.27 15783.98 27665.37 18990.50 6190.38 14468.55 24276.19 21288.70 17556.44 22093.46 15678.98 10380.14 24590.97 170
PCF-MVS73.52 780.38 14978.84 16485.01 8687.71 19968.99 10383.65 25891.46 11863.00 30777.77 17690.28 13566.10 11695.09 8761.40 26988.22 13590.94 171
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VPNet78.69 18978.66 16678.76 26688.31 17555.72 33284.45 24486.63 24676.79 6478.26 16390.55 13159.30 19889.70 27466.63 22377.05 27590.88 172
CPTT-MVS83.73 8083.33 8684.92 9193.28 4970.86 6992.09 3790.38 14468.75 23979.57 13992.83 7660.60 19193.04 18280.92 8991.56 8890.86 173
tt080578.73 18777.83 18681.43 20985.17 25060.30 27689.41 9390.90 13071.21 18077.17 19188.73 17446.38 31293.21 16772.57 16978.96 25790.79 174
CLD-MVS82.31 10681.65 11284.29 11488.47 16867.73 13785.81 21392.35 7975.78 8878.33 16286.58 23964.01 13594.35 11376.05 13487.48 14190.79 174
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
v119279.59 16478.43 17283.07 16883.55 28464.52 20486.93 17790.58 13870.83 18777.78 17585.90 25359.15 19993.94 12973.96 15377.19 27490.76 176
IterMVS-LS80.06 15679.38 15182.11 19585.89 23863.20 23786.79 18289.34 17574.19 12175.45 22886.72 22966.62 10892.39 19972.58 16876.86 27890.75 177
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet80.52 14779.98 13882.12 19484.28 26863.19 23886.41 19488.95 19674.18 12278.69 15187.54 20966.62 10892.43 19772.57 16980.57 23990.74 178
v192192079.22 17578.03 18082.80 18183.30 28963.94 21986.80 18190.33 14869.91 21077.48 18085.53 26358.44 20393.75 14373.60 15576.85 27990.71 179
QAPM80.88 13379.50 14985.03 8588.01 18868.97 10491.59 4392.00 9366.63 26775.15 24292.16 8857.70 20995.45 6563.52 24588.76 12690.66 180
v14419279.47 16778.37 17382.78 18483.35 28763.96 21886.96 17590.36 14769.99 20777.50 17985.67 26060.66 18893.77 14174.27 15076.58 28290.62 181
v124078.99 18277.78 18982.64 18783.21 29163.54 22786.62 18990.30 15069.74 21777.33 18385.68 25957.04 21793.76 14273.13 16376.92 27690.62 181
v114480.03 15779.03 16083.01 17183.78 28064.51 20587.11 17290.57 14071.96 16678.08 17086.20 24961.41 17393.94 12974.93 14477.23 27290.60 183
1112_ss77.40 22276.43 22280.32 23889.11 14860.41 27583.65 25887.72 22662.13 32073.05 26886.72 22962.58 15389.97 26862.11 26380.80 23590.59 184
CP-MVSNet78.22 19878.34 17477.84 28287.83 19354.54 34587.94 14991.17 12377.65 3873.48 26388.49 18362.24 16088.43 29562.19 26074.07 32090.55 185
testing22274.04 26572.66 26878.19 27787.89 19055.36 33681.06 29479.20 34071.30 17874.65 25283.57 30339.11 35988.67 29251.43 33685.75 16990.53 186
PS-CasMVS78.01 20778.09 17977.77 28487.71 19954.39 34788.02 14591.22 12077.50 4673.26 26588.64 17860.73 18588.41 29661.88 26473.88 32490.53 186
CDS-MVSNet79.07 18077.70 19383.17 16387.60 20368.23 12684.40 24786.20 25267.49 25576.36 20886.54 24161.54 16990.79 25661.86 26587.33 14290.49 188
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS78.89 18577.51 19883.03 17087.80 19467.79 13684.72 23485.05 26667.63 25276.75 19887.70 20262.25 15990.82 25558.53 29487.13 14590.49 188
PEN-MVS77.73 21377.69 19477.84 28287.07 22153.91 35087.91 15191.18 12277.56 4373.14 26788.82 17361.23 17889.17 28259.95 27972.37 33590.43 190
Test_1112_low_res76.40 23975.44 23479.27 25889.28 13858.09 29381.69 28587.07 23959.53 33972.48 27586.67 23461.30 17689.33 27960.81 27580.15 24490.41 191
HY-MVS69.67 1277.95 20877.15 20480.36 23687.57 20860.21 27883.37 26587.78 22566.11 27175.37 23187.06 22463.27 14190.48 26161.38 27082.43 21790.40 192
CHOSEN 1792x268877.63 21875.69 22883.44 15089.98 11068.58 11978.70 32887.50 23056.38 36275.80 22086.84 22558.67 20191.40 24061.58 26885.75 16990.34 193
SDMVSNet80.38 14980.18 13680.99 22389.03 14964.94 19880.45 30689.40 17375.19 10076.61 20389.98 14260.61 19087.69 30476.83 12783.55 20090.33 194
sd_testset77.70 21677.40 19978.60 26989.03 14960.02 27979.00 32485.83 25875.19 10076.61 20389.98 14254.81 22685.46 32262.63 25683.55 20090.33 194
114514_t80.68 14279.51 14884.20 11994.09 3867.27 15189.64 8491.11 12658.75 34774.08 25890.72 12758.10 20595.04 8969.70 19489.42 11790.30 196
eth_miper_zixun_eth77.92 20976.69 21781.61 20683.00 29961.98 25483.15 26889.20 18469.52 21974.86 24984.35 28661.76 16592.56 19371.50 17672.89 33390.28 197
PVSNet_Blended_VisFu82.62 10381.83 11184.96 8890.80 9069.76 8788.74 11791.70 10869.39 22078.96 14688.46 18465.47 12494.87 9874.42 14888.57 12990.24 198
MVS_111021_LR82.61 10482.11 10484.11 12188.82 15471.58 5385.15 22586.16 25374.69 11080.47 13091.04 11962.29 15890.55 26080.33 9690.08 10890.20 199
MSLP-MVS++85.43 5785.76 5184.45 10791.93 7270.24 7690.71 5792.86 5477.46 4784.22 7992.81 7867.16 10692.94 18480.36 9594.35 5790.16 200
mvs_tets79.13 17877.77 19083.22 16184.70 26066.37 16789.17 9990.19 15369.38 22175.40 23089.46 15944.17 33293.15 17476.78 12880.70 23790.14 201
BH-RMVSNet79.61 16278.44 17183.14 16489.38 13265.93 17584.95 23087.15 23873.56 13678.19 16689.79 14656.67 21993.36 16059.53 28386.74 15190.13 202
c3_l78.75 18677.91 18381.26 21582.89 30361.56 26084.09 25389.13 18869.97 20875.56 22384.29 28766.36 11392.09 21173.47 15875.48 30190.12 203
v7n78.97 18377.58 19783.14 16483.45 28665.51 18488.32 13591.21 12173.69 13272.41 27686.32 24757.93 20693.81 13869.18 19975.65 29790.11 204
jajsoiax79.29 17477.96 18183.27 15784.68 26166.57 16589.25 9890.16 15469.20 22875.46 22789.49 15645.75 32393.13 17676.84 12680.80 23590.11 204
v14878.72 18877.80 18881.47 20882.73 30661.96 25586.30 19888.08 21573.26 14576.18 21385.47 26562.46 15592.36 20171.92 17373.82 32590.09 206
GBi-Net78.40 19477.40 19981.40 21187.60 20363.01 24088.39 12989.28 17771.63 16975.34 23287.28 21354.80 22791.11 24662.72 25279.57 24990.09 206
test178.40 19477.40 19981.40 21187.60 20363.01 24088.39 12989.28 17771.63 16975.34 23287.28 21354.80 22791.11 24662.72 25279.57 24990.09 206
FMVSNet177.44 22076.12 22681.40 21186.81 22563.01 24088.39 12989.28 17770.49 19774.39 25587.28 21349.06 29791.11 24660.91 27378.52 26090.09 206
WR-MVS_H78.51 19378.49 16978.56 27088.02 18756.38 32388.43 12792.67 6277.14 5473.89 25987.55 20866.25 11589.24 28158.92 28973.55 32790.06 210
DTE-MVSNet76.99 22776.80 21277.54 28986.24 23353.06 35887.52 16090.66 13677.08 5772.50 27488.67 17760.48 19289.52 27657.33 30570.74 34690.05 211
v879.97 15979.02 16182.80 18184.09 27364.50 20787.96 14790.29 15174.13 12475.24 23986.81 22662.88 15093.89 13674.39 14975.40 30690.00 212
thres600view776.50 23575.44 23479.68 25189.40 13057.16 30985.53 22083.23 29273.79 13076.26 21087.09 22251.89 26391.89 21848.05 35883.72 19790.00 212
thres40076.50 23575.37 23879.86 24689.13 14457.65 30385.17 22383.60 28473.41 14176.45 20586.39 24552.12 25591.95 21548.33 35383.75 19490.00 212
cl2278.07 20477.01 20681.23 21682.37 31561.83 25783.55 26287.98 21768.96 23675.06 24583.87 29461.40 17491.88 21973.53 15676.39 28689.98 215
OPM-MVS83.50 8782.95 9285.14 8188.79 15770.95 6689.13 10491.52 11277.55 4480.96 12691.75 9560.71 18694.50 11079.67 10186.51 15589.97 216
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
baseline275.70 24873.83 25881.30 21483.26 29061.79 25882.57 27780.65 32266.81 25866.88 33183.42 30557.86 20892.19 20863.47 24679.57 24989.91 217
v1079.74 16178.67 16582.97 17484.06 27464.95 19787.88 15390.62 13773.11 14875.11 24386.56 24061.46 17294.05 12573.68 15475.55 29989.90 218
MVSTER79.01 18177.88 18582.38 19283.07 29664.80 20184.08 25488.95 19669.01 23578.69 15187.17 22054.70 23192.43 19774.69 14580.57 23989.89 219
ACMP74.13 681.51 12580.57 12784.36 11089.42 12868.69 11689.97 7491.50 11774.46 11675.04 24690.41 13353.82 24094.54 10777.56 11882.91 21089.86 220
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LPG-MVS_test82.08 10981.27 11584.50 10389.23 14068.76 10990.22 7091.94 9775.37 9676.64 20191.51 10254.29 23594.91 9278.44 10983.78 19189.83 221
LGP-MVS_train84.50 10389.23 14068.76 10991.94 9775.37 9676.64 20191.51 10254.29 23594.91 9278.44 10983.78 19189.83 221
V4279.38 17378.24 17782.83 17881.10 33365.50 18585.55 21889.82 16271.57 17378.21 16586.12 25160.66 18893.18 17375.64 13875.46 30389.81 223
MAR-MVS81.84 11480.70 12585.27 7891.32 7971.53 5489.82 7690.92 12969.77 21478.50 15786.21 24862.36 15794.52 10965.36 23392.05 8189.77 224
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DIV-MVS_self_test77.72 21476.76 21480.58 23282.48 31360.48 27383.09 27087.86 22269.22 22674.38 25685.24 26962.10 16291.53 23371.09 17975.40 30689.74 225
cl____77.72 21476.76 21480.58 23282.49 31260.48 27383.09 27087.87 22169.22 22674.38 25685.22 27162.10 16291.53 23371.09 17975.41 30589.73 226
miper_ehance_all_eth78.59 19277.76 19181.08 22182.66 30861.56 26083.65 25889.15 18668.87 23775.55 22483.79 29866.49 11192.03 21273.25 16176.39 28689.64 227
anonymousdsp78.60 19177.15 20482.98 17380.51 33967.08 15687.24 16989.53 17065.66 27875.16 24187.19 21952.52 24892.25 20677.17 12379.34 25489.61 228
FMVSNet278.20 20077.21 20381.20 21787.60 20362.89 24587.47 16289.02 19171.63 16975.29 23887.28 21354.80 22791.10 24962.38 25779.38 25389.61 228
baseline176.98 22876.75 21677.66 28588.13 18155.66 33385.12 22681.89 31073.04 15076.79 19688.90 17062.43 15687.78 30363.30 24971.18 34489.55 230
ETVMVS72.25 28671.05 28575.84 30287.77 19851.91 36279.39 31874.98 36369.26 22473.71 26082.95 31140.82 35286.14 31446.17 36684.43 18589.47 231
FMVSNet377.88 21076.85 21180.97 22586.84 22462.36 24886.52 19288.77 20071.13 18175.34 23286.66 23554.07 23891.10 24962.72 25279.57 24989.45 232
miper_enhance_ethall77.87 21176.86 21080.92 22681.65 32261.38 26282.68 27588.98 19365.52 28075.47 22582.30 32165.76 12392.00 21472.95 16476.39 28689.39 233
testing1175.14 25774.01 25378.53 27288.16 17956.38 32380.74 30080.42 32770.67 19172.69 27383.72 30043.61 33589.86 26962.29 25983.76 19389.36 234
cascas76.72 23274.64 24582.99 17285.78 24065.88 17782.33 27889.21 18360.85 32872.74 27081.02 33247.28 30693.75 14367.48 21585.02 17389.34 235
Fast-Effi-MVS+-dtu78.02 20676.49 22082.62 18883.16 29566.96 16086.94 17687.45 23272.45 15471.49 28684.17 29154.79 23091.58 22867.61 21380.31 24289.30 236
IB-MVS68.01 1575.85 24773.36 26283.31 15584.76 25966.03 17183.38 26485.06 26570.21 20469.40 30881.05 33145.76 32294.66 10665.10 23675.49 30089.25 237
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres100view90076.50 23575.55 23379.33 25789.52 12256.99 31285.83 21283.23 29273.94 12676.32 20987.12 22151.89 26391.95 21548.33 35383.75 19489.07 238
tfpn200view976.42 23875.37 23879.55 25689.13 14457.65 30385.17 22383.60 28473.41 14176.45 20586.39 24552.12 25591.95 21548.33 35383.75 19489.07 238
xiu_mvs_v1_base_debu80.80 13879.72 14484.03 13487.35 21070.19 7985.56 21588.77 20069.06 23281.83 11088.16 19350.91 27292.85 18678.29 11387.56 13889.06 240
xiu_mvs_v1_base80.80 13879.72 14484.03 13487.35 21070.19 7985.56 21588.77 20069.06 23281.83 11088.16 19350.91 27292.85 18678.29 11387.56 13889.06 240
xiu_mvs_v1_base_debi80.80 13879.72 14484.03 13487.35 21070.19 7985.56 21588.77 20069.06 23281.83 11088.16 19350.91 27292.85 18678.29 11387.56 13889.06 240
EPNet_dtu75.46 25274.86 24377.23 29382.57 31054.60 34486.89 17883.09 29571.64 16866.25 34285.86 25555.99 22188.04 30054.92 31886.55 15489.05 243
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pm-mvs177.25 22576.68 21878.93 26484.22 27058.62 28986.41 19488.36 21171.37 17773.31 26488.01 19961.22 17989.15 28364.24 24373.01 33289.03 244
PVSNet_Blended80.98 13180.34 13282.90 17688.85 15165.40 18684.43 24592.00 9367.62 25378.11 16885.05 27666.02 11994.27 11671.52 17489.50 11589.01 245
PAPM77.68 21776.40 22381.51 20787.29 21761.85 25683.78 25689.59 16964.74 28771.23 28788.70 17562.59 15293.66 14652.66 32987.03 14789.01 245
WTY-MVS75.65 24975.68 22975.57 30686.40 23256.82 31477.92 33882.40 30665.10 28276.18 21387.72 20163.13 14880.90 35160.31 27781.96 22289.00 247
无先验87.48 16188.98 19360.00 33494.12 12367.28 21788.97 248
GSMVS88.96 249
sam_mvs151.32 26988.96 249
SCA74.22 26372.33 27279.91 24584.05 27562.17 25279.96 31379.29 33966.30 27072.38 27780.13 34151.95 26188.60 29359.25 28577.67 27088.96 249
miper_lstm_enhance74.11 26473.11 26577.13 29480.11 34359.62 28372.23 36586.92 24266.76 26070.40 29382.92 31256.93 21882.92 34069.06 20172.63 33488.87 252
ACMM73.20 880.78 14179.84 14283.58 14789.31 13668.37 12289.99 7391.60 11070.28 20177.25 18589.66 15053.37 24593.53 15274.24 15182.85 21188.85 253
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs674.69 25973.39 26178.61 26881.38 32857.48 30686.64 18887.95 21964.99 28670.18 29686.61 23650.43 27989.52 27662.12 26270.18 34888.83 254
原ACMM184.35 11193.01 5768.79 10792.44 7463.96 30081.09 12491.57 10166.06 11895.45 6567.19 21994.82 4588.81 255
CNLPA78.08 20376.79 21381.97 19990.40 9871.07 6287.59 15984.55 27166.03 27472.38 27789.64 15157.56 21186.04 31559.61 28283.35 20588.79 256
UWE-MVS72.13 28771.49 27874.03 32286.66 22947.70 37981.40 29176.89 35663.60 30275.59 22284.22 29039.94 35585.62 31948.98 35086.13 16288.77 257
K. test v371.19 29268.51 30479.21 26083.04 29857.78 30284.35 24876.91 35572.90 15362.99 36182.86 31439.27 35791.09 25161.65 26752.66 38888.75 258
旧先验191.96 7165.79 18086.37 25093.08 7169.31 7992.74 7288.74 259
PatchmatchNetpermissive73.12 27771.33 28278.49 27483.18 29360.85 26779.63 31578.57 34364.13 29471.73 28379.81 34651.20 27085.97 31657.40 30476.36 29188.66 260
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SixPastTwentyTwo73.37 27271.26 28479.70 25085.08 25557.89 29985.57 21483.56 28671.03 18565.66 34485.88 25442.10 34592.57 19259.11 28763.34 37088.65 261
PS-MVSNAJ81.69 11881.02 12083.70 14489.51 12368.21 12784.28 24990.09 15670.79 18881.26 12385.62 26263.15 14594.29 11475.62 13988.87 12388.59 262
xiu_mvs_v2_base81.69 11881.05 11983.60 14689.15 14368.03 13284.46 24390.02 15770.67 19181.30 12286.53 24263.17 14494.19 12175.60 14088.54 13088.57 263
CostFormer75.24 25673.90 25679.27 25882.65 30958.27 29280.80 29682.73 30461.57 32375.33 23683.13 30955.52 22291.07 25264.98 23778.34 26588.45 264
lessismore_v078.97 26381.01 33457.15 31065.99 38861.16 36682.82 31539.12 35891.34 24259.67 28146.92 39488.43 265
OpenMVScopyleft72.83 1079.77 16078.33 17584.09 12585.17 25069.91 8490.57 5990.97 12866.70 26172.17 27991.91 9154.70 23193.96 12661.81 26690.95 9588.41 266
OurMVSNet-221017-074.26 26272.42 27179.80 24883.76 28159.59 28485.92 20886.64 24566.39 26966.96 33087.58 20539.46 35691.60 22765.76 23169.27 35188.22 267
LS3D76.95 22974.82 24483.37 15490.45 9667.36 14889.15 10386.94 24161.87 32269.52 30790.61 12951.71 26694.53 10846.38 36586.71 15288.21 268
XVG-ACMP-BASELINE76.11 24374.27 25281.62 20483.20 29264.67 20383.60 26189.75 16569.75 21571.85 28287.09 22232.78 37592.11 21069.99 19180.43 24188.09 269
tpm273.26 27571.46 27978.63 26783.34 28856.71 31780.65 30280.40 32856.63 36173.55 26282.02 32651.80 26591.24 24456.35 31478.42 26387.95 270
MDTV_nov1_ep13_2view37.79 40175.16 35455.10 36666.53 33749.34 29253.98 32287.94 271
Patchmatch-test64.82 34063.24 34169.57 35179.42 35549.82 37663.49 39569.05 38351.98 37659.95 37180.13 34150.91 27270.98 39140.66 38173.57 32687.90 272
PLCcopyleft70.83 1178.05 20576.37 22483.08 16791.88 7467.80 13588.19 14089.46 17264.33 29369.87 30488.38 18653.66 24193.58 14758.86 29082.73 21387.86 273
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpm72.37 28471.71 27674.35 31982.19 31652.00 36079.22 32177.29 35264.56 28972.95 26983.68 30251.35 26883.26 33958.33 29675.80 29587.81 274
Patchmatch-RL test70.24 30467.78 31777.61 28777.43 36359.57 28571.16 36870.33 37762.94 30968.65 31572.77 38050.62 27685.49 32169.58 19666.58 36187.77 275
F-COLMAP76.38 24074.33 25182.50 19089.28 13866.95 16188.41 12889.03 19064.05 29766.83 33288.61 17946.78 31092.89 18557.48 30278.55 25987.67 276
Baseline_NR-MVSNet78.15 20278.33 17577.61 28785.79 23956.21 32786.78 18385.76 25973.60 13577.93 17387.57 20665.02 12888.99 28567.14 22075.33 30887.63 277
CL-MVSNet_self_test72.37 28471.46 27975.09 31179.49 35453.53 35280.76 29985.01 26769.12 23070.51 29182.05 32557.92 20784.13 33152.27 33166.00 36487.60 278
ACMH+68.96 1476.01 24574.01 25382.03 19788.60 16465.31 19088.86 11187.55 22870.25 20367.75 32187.47 21141.27 34893.19 17258.37 29575.94 29487.60 278
131476.53 23475.30 24080.21 24083.93 27762.32 25084.66 23588.81 19860.23 33270.16 29884.07 29355.30 22490.73 25867.37 21683.21 20787.59 280
API-MVS81.99 11281.23 11684.26 11890.94 8570.18 8291.10 5389.32 17671.51 17478.66 15388.28 18965.26 12595.10 8664.74 23991.23 9287.51 281
AdaColmapbinary80.58 14679.42 15084.06 12993.09 5468.91 10589.36 9588.97 19569.27 22375.70 22189.69 14957.20 21695.77 5563.06 25088.41 13387.50 282
PVSNet_BlendedMVS80.60 14480.02 13782.36 19388.85 15165.40 18686.16 20292.00 9369.34 22278.11 16886.09 25266.02 11994.27 11671.52 17482.06 22187.39 283
sss73.60 27073.64 26073.51 32682.80 30455.01 34176.12 34581.69 31362.47 31674.68 25185.85 25657.32 21478.11 36260.86 27480.93 23287.39 283
IterMVS-SCA-FT75.43 25373.87 25780.11 24282.69 30764.85 20081.57 28783.47 28869.16 22970.49 29284.15 29251.95 26188.15 29869.23 19872.14 33887.34 285
PVSNet64.34 1872.08 28870.87 28875.69 30486.21 23456.44 32174.37 35980.73 32162.06 32170.17 29782.23 32342.86 33983.31 33854.77 31984.45 18487.32 286
新几何183.42 15193.13 5270.71 7185.48 26257.43 35781.80 11391.98 9063.28 14092.27 20564.60 24092.99 6987.27 287
TR-MVS77.44 22076.18 22581.20 21788.24 17763.24 23584.61 23886.40 24967.55 25477.81 17486.48 24354.10 23793.15 17457.75 30182.72 21487.20 288
TransMVSNet (Re)75.39 25574.56 24777.86 28185.50 24557.10 31186.78 18386.09 25572.17 16271.53 28587.34 21263.01 14989.31 28056.84 31061.83 37287.17 289
ACMH67.68 1675.89 24673.93 25581.77 20288.71 16166.61 16488.62 12289.01 19269.81 21166.78 33386.70 23341.95 34791.51 23555.64 31678.14 26687.17 289
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
KD-MVS_self_test68.81 31467.59 32172.46 33574.29 37645.45 38477.93 33787.00 24063.12 30463.99 35678.99 35442.32 34284.77 32856.55 31364.09 36987.16 291
EPMVS69.02 31368.16 30871.59 33979.61 35249.80 37777.40 34066.93 38662.82 31270.01 29979.05 35045.79 32177.86 36456.58 31275.26 31087.13 292
CR-MVSNet73.37 27271.27 28379.67 25281.32 33165.19 19175.92 34780.30 32959.92 33572.73 27181.19 32952.50 24986.69 30959.84 28077.71 26887.11 293
RPMNet73.51 27170.49 29182.58 18981.32 33165.19 19175.92 34792.27 8157.60 35572.73 27176.45 36852.30 25295.43 6748.14 35777.71 26887.11 293
test_vis1_n_192075.52 25175.78 22774.75 31679.84 34757.44 30783.26 26685.52 26162.83 31179.34 14386.17 25045.10 32779.71 35578.75 10581.21 23087.10 295
XXY-MVS75.41 25475.56 23274.96 31283.59 28357.82 30180.59 30383.87 28266.54 26874.93 24888.31 18863.24 14280.09 35462.16 26176.85 27986.97 296
tpmrst72.39 28272.13 27373.18 33080.54 33849.91 37579.91 31479.08 34163.11 30571.69 28479.95 34355.32 22382.77 34165.66 23273.89 32386.87 297
thres20075.55 25074.47 24978.82 26587.78 19757.85 30083.07 27283.51 28772.44 15675.84 21984.42 28252.08 25891.75 22347.41 36083.64 19986.86 298
ITE_SJBPF78.22 27681.77 32160.57 27183.30 29069.25 22567.54 32387.20 21836.33 36987.28 30754.34 32174.62 31786.80 299
test22291.50 7768.26 12584.16 25183.20 29454.63 36879.74 13691.63 9958.97 20091.42 8986.77 300
MIMVSNet70.69 29969.30 29874.88 31384.52 26556.35 32575.87 34979.42 33764.59 28867.76 32082.41 31941.10 34981.54 34746.64 36481.34 22786.75 301
BH-untuned79.47 16778.60 16782.05 19689.19 14265.91 17686.07 20488.52 20972.18 16175.42 22987.69 20361.15 18093.54 15160.38 27686.83 15086.70 302
LTVRE_ROB69.57 1376.25 24174.54 24881.41 21088.60 16464.38 21279.24 32089.12 18970.76 19069.79 30687.86 20049.09 29693.20 17056.21 31580.16 24386.65 303
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
testdata79.97 24490.90 8664.21 21484.71 26859.27 34185.40 5392.91 7362.02 16489.08 28468.95 20291.37 9086.63 304
MIMVSNet168.58 31766.78 32773.98 32380.07 34451.82 36480.77 29884.37 27264.40 29159.75 37282.16 32436.47 36883.63 33542.73 37770.33 34786.48 305
tfpnnormal74.39 26073.16 26478.08 27986.10 23758.05 29484.65 23787.53 22970.32 20071.22 28885.63 26154.97 22589.86 26943.03 37675.02 31386.32 306
D2MVS74.82 25873.21 26379.64 25379.81 34862.56 24780.34 30887.35 23364.37 29268.86 31382.66 31746.37 31390.10 26567.91 21181.24 22986.25 307
tpm cat170.57 30068.31 30677.35 29182.41 31457.95 29878.08 33580.22 33152.04 37468.54 31777.66 36352.00 26087.84 30251.77 33272.07 33986.25 307
CVMVSNet72.99 27972.58 26974.25 32084.28 26850.85 37186.41 19483.45 28944.56 38673.23 26687.54 20949.38 29185.70 31765.90 22978.44 26286.19 309
AllTest70.96 29568.09 31079.58 25485.15 25263.62 22384.58 23979.83 33362.31 31760.32 36986.73 22732.02 37688.96 28850.28 34271.57 34286.15 310
TestCases79.58 25485.15 25263.62 22379.83 33362.31 31760.32 36986.73 22732.02 37688.96 28850.28 34271.57 34286.15 310
test-LLR72.94 28072.43 27074.48 31781.35 32958.04 29578.38 33177.46 34966.66 26269.95 30279.00 35248.06 30279.24 35666.13 22584.83 17586.15 310
test-mter71.41 29170.39 29474.48 31781.35 32958.04 29578.38 33177.46 34960.32 33169.95 30279.00 35236.08 37079.24 35666.13 22584.83 17586.15 310
IterMVS74.29 26172.94 26678.35 27581.53 32563.49 22981.58 28682.49 30568.06 25069.99 30183.69 30151.66 26785.54 32065.85 23071.64 34186.01 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS76.78 23174.57 24683.42 15193.29 4869.46 9488.55 12483.70 28363.98 29970.20 29588.89 17154.01 23994.80 10146.66 36281.88 22486.01 314
ppachtmachnet_test70.04 30667.34 32378.14 27879.80 34961.13 26379.19 32280.59 32359.16 34265.27 34779.29 34946.75 31187.29 30649.33 34866.72 35986.00 316
test_fmvs1_n70.86 29770.24 29572.73 33372.51 38955.28 33881.27 29279.71 33551.49 37878.73 15084.87 27727.54 38577.02 36776.06 13379.97 24785.88 317
Patchmtry70.74 29869.16 30175.49 30880.72 33554.07 34974.94 35880.30 32958.34 34870.01 29981.19 32952.50 24986.54 31053.37 32671.09 34585.87 318
WB-MVSnew71.96 28971.65 27772.89 33184.67 26451.88 36382.29 27977.57 34862.31 31773.67 26183.00 31053.49 24481.10 35045.75 36982.13 22085.70 319
test_fmvs268.35 32167.48 32270.98 34769.50 39251.95 36180.05 31176.38 35849.33 38174.65 25284.38 28423.30 39375.40 38274.51 14775.17 31285.60 320
ambc75.24 31073.16 38450.51 37363.05 39687.47 23164.28 35377.81 36217.80 39889.73 27357.88 30060.64 37685.49 321
UnsupCasMVSNet_eth67.33 32665.99 33071.37 34173.48 38151.47 36875.16 35485.19 26465.20 28160.78 36780.93 33642.35 34177.20 36657.12 30653.69 38785.44 322
PatchT68.46 32067.85 31370.29 34980.70 33643.93 39172.47 36474.88 36460.15 33370.55 29076.57 36749.94 28481.59 34650.58 33874.83 31585.34 323
Anonymous2024052168.80 31567.22 32473.55 32574.33 37554.11 34883.18 26785.61 26058.15 35061.68 36480.94 33430.71 38181.27 34957.00 30873.34 33185.28 324
test_cas_vis1_n_192073.76 26973.74 25973.81 32475.90 36859.77 28180.51 30482.40 30658.30 34981.62 11685.69 25844.35 33176.41 37376.29 13078.61 25885.23 325
ADS-MVSNet266.20 33763.33 34074.82 31479.92 34558.75 28867.55 38375.19 36253.37 37165.25 34875.86 37142.32 34280.53 35341.57 37968.91 35385.18 326
ADS-MVSNet64.36 34162.88 34468.78 35779.92 34547.17 38167.55 38371.18 37653.37 37165.25 34875.86 37142.32 34273.99 38741.57 37968.91 35385.18 326
FMVSNet569.50 31067.96 31174.15 32182.97 30255.35 33780.01 31282.12 30962.56 31563.02 35981.53 32836.92 36781.92 34548.42 35274.06 32185.17 328
pmmvs571.55 29070.20 29675.61 30577.83 36156.39 32281.74 28480.89 31857.76 35367.46 32584.49 28149.26 29485.32 32457.08 30775.29 30985.11 329
testing368.56 31867.67 31971.22 34587.33 21542.87 39383.06 27371.54 37570.36 19869.08 31284.38 28430.33 38285.69 31837.50 38775.45 30485.09 330
CMPMVSbinary51.72 2170.19 30568.16 30876.28 29973.15 38557.55 30579.47 31783.92 28048.02 38256.48 38284.81 27843.13 33786.42 31262.67 25581.81 22584.89 331
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testgi66.67 33166.53 32867.08 36375.62 37141.69 39875.93 34676.50 35766.11 27165.20 35086.59 23735.72 37174.71 38443.71 37473.38 33084.84 332
MSDG73.36 27470.99 28680.49 23484.51 26665.80 17980.71 30186.13 25465.70 27765.46 34583.74 29944.60 32890.91 25451.13 33776.89 27784.74 333
pmmvs474.03 26771.91 27480.39 23581.96 31868.32 12381.45 28982.14 30859.32 34069.87 30485.13 27352.40 25188.13 29960.21 27874.74 31684.73 334
gg-mvs-nofinetune69.95 30767.96 31175.94 30183.07 29654.51 34677.23 34270.29 37863.11 30570.32 29462.33 38943.62 33488.69 29153.88 32387.76 13784.62 335
test_fmvs170.93 29670.52 29072.16 33673.71 37855.05 34080.82 29578.77 34251.21 37978.58 15584.41 28331.20 38076.94 36875.88 13680.12 24684.47 336
BH-w/o78.21 19977.33 20280.84 22788.81 15565.13 19384.87 23187.85 22369.75 21574.52 25484.74 28061.34 17593.11 17758.24 29785.84 16784.27 337
MVS78.19 20176.99 20881.78 20185.66 24166.99 15784.66 23590.47 14255.08 36772.02 28185.27 26863.83 13794.11 12466.10 22789.80 11384.24 338
COLMAP_ROBcopyleft66.92 1773.01 27870.41 29380.81 22887.13 22065.63 18288.30 13684.19 27862.96 30863.80 35887.69 20338.04 36492.56 19346.66 36274.91 31484.24 338
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
new-patchmatchnet61.73 34761.73 34861.70 36972.74 38724.50 41269.16 37878.03 34561.40 32456.72 38175.53 37438.42 36176.48 37245.95 36857.67 37984.13 340
TESTMET0.1,169.89 30869.00 30272.55 33479.27 35756.85 31378.38 33174.71 36757.64 35468.09 31977.19 36537.75 36576.70 36963.92 24484.09 18984.10 341
test_fmvs363.36 34461.82 34767.98 36062.51 40046.96 38377.37 34174.03 36945.24 38567.50 32478.79 35512.16 40472.98 39072.77 16766.02 36383.99 342
our_test_369.14 31267.00 32575.57 30679.80 34958.80 28777.96 33677.81 34659.55 33862.90 36278.25 35947.43 30483.97 33251.71 33367.58 35883.93 343
test_vis1_n69.85 30969.21 30071.77 33872.66 38855.27 33981.48 28876.21 35952.03 37575.30 23783.20 30828.97 38376.22 37574.60 14678.41 26483.81 344
tpmvs71.09 29469.29 29976.49 29882.04 31756.04 32878.92 32681.37 31764.05 29767.18 32978.28 35849.74 28789.77 27149.67 34772.37 33583.67 345
test20.0367.45 32566.95 32668.94 35475.48 37244.84 38977.50 33977.67 34766.66 26263.01 36083.80 29747.02 30878.40 36042.53 37868.86 35583.58 346
test0.0.03 168.00 32367.69 31868.90 35577.55 36247.43 38075.70 35072.95 37466.66 26266.56 33682.29 32248.06 30275.87 37744.97 37374.51 31883.41 347
Anonymous2023120668.60 31667.80 31671.02 34680.23 34250.75 37278.30 33480.47 32556.79 36066.11 34382.63 31846.35 31478.95 35843.62 37575.70 29683.36 348
EU-MVSNet68.53 31967.61 32071.31 34478.51 36047.01 38284.47 24184.27 27642.27 38966.44 34184.79 27940.44 35383.76 33358.76 29268.54 35683.17 349
dp66.80 32965.43 33170.90 34879.74 35148.82 37875.12 35674.77 36559.61 33764.08 35577.23 36442.89 33880.72 35248.86 35166.58 36183.16 350
pmmvs-eth3d70.50 30267.83 31578.52 27377.37 36466.18 17081.82 28281.51 31458.90 34563.90 35780.42 33942.69 34086.28 31358.56 29365.30 36683.11 351
YYNet165.03 33862.91 34371.38 34075.85 36956.60 31969.12 37974.66 36857.28 35854.12 38577.87 36145.85 32074.48 38549.95 34561.52 37483.05 352
MDA-MVSNet-bldmvs66.68 33063.66 33975.75 30379.28 35660.56 27273.92 36178.35 34464.43 29050.13 39079.87 34544.02 33383.67 33446.10 36756.86 38083.03 353
MDA-MVSNet_test_wron65.03 33862.92 34271.37 34175.93 36756.73 31569.09 38074.73 36657.28 35854.03 38677.89 36045.88 31974.39 38649.89 34661.55 37382.99 354
USDC70.33 30368.37 30576.21 30080.60 33756.23 32679.19 32286.49 24760.89 32761.29 36585.47 26531.78 37889.47 27853.37 32676.21 29282.94 355
Syy-MVS68.05 32267.85 31368.67 35884.68 26140.97 39978.62 32973.08 37266.65 26566.74 33479.46 34752.11 25782.30 34332.89 39176.38 28982.75 356
myMVS_eth3d67.02 32866.29 32969.21 35384.68 26142.58 39478.62 32973.08 37266.65 26566.74 33479.46 34731.53 37982.30 34339.43 38476.38 28982.75 356
OpenMVS_ROBcopyleft64.09 1970.56 30168.19 30777.65 28680.26 34059.41 28685.01 22882.96 30058.76 34665.43 34682.33 32037.63 36691.23 24545.34 37276.03 29382.32 358
JIA-IIPM66.32 33462.82 34576.82 29677.09 36561.72 25965.34 39175.38 36158.04 35264.51 35262.32 39042.05 34686.51 31151.45 33569.22 35282.21 359
dmvs_re71.14 29370.58 28972.80 33281.96 31859.68 28275.60 35179.34 33868.55 24269.27 31180.72 33749.42 29076.54 37052.56 33077.79 26782.19 360
EG-PatchMatch MVS74.04 26571.82 27580.71 23084.92 25767.42 14585.86 21088.08 21566.04 27364.22 35483.85 29535.10 37292.56 19357.44 30380.83 23482.16 361
MVP-Stereo76.12 24274.46 25081.13 22085.37 24869.79 8684.42 24687.95 21965.03 28467.46 32585.33 26753.28 24691.73 22558.01 29983.27 20681.85 362
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TDRefinement67.49 32464.34 33476.92 29573.47 38261.07 26484.86 23282.98 29959.77 33658.30 37685.13 27326.06 38687.89 30147.92 35960.59 37781.81 363
GG-mvs-BLEND75.38 30981.59 32455.80 33179.32 31969.63 38067.19 32873.67 37843.24 33688.90 29050.41 33984.50 18081.45 364
KD-MVS_2432*160066.22 33563.89 33773.21 32775.47 37353.42 35470.76 37184.35 27364.10 29566.52 33878.52 35634.55 37384.98 32550.40 34050.33 39181.23 365
miper_refine_blended66.22 33563.89 33773.21 32775.47 37353.42 35470.76 37184.35 27364.10 29566.52 33878.52 35634.55 37384.98 32550.40 34050.33 39181.23 365
test_040272.79 28170.44 29279.84 24788.13 18165.99 17485.93 20784.29 27565.57 27967.40 32785.49 26446.92 30992.61 19135.88 38874.38 31980.94 367
UnsupCasMVSNet_bld63.70 34361.53 34970.21 35073.69 37951.39 36972.82 36381.89 31055.63 36557.81 37871.80 38238.67 36078.61 35949.26 34952.21 38980.63 368
LCM-MVSNet54.25 35449.68 36467.97 36153.73 40845.28 38766.85 38680.78 32035.96 39739.45 39862.23 3918.70 40878.06 36348.24 35651.20 39080.57 369
N_pmnet52.79 35953.26 35851.40 38378.99 3587.68 41769.52 3753.89 41651.63 37757.01 38074.98 37540.83 35165.96 39837.78 38664.67 36780.56 370
TinyColmap67.30 32764.81 33274.76 31581.92 32056.68 31880.29 30981.49 31560.33 33056.27 38383.22 30624.77 38987.66 30545.52 37069.47 35079.95 371
PM-MVS66.41 33364.14 33573.20 32973.92 37756.45 32078.97 32564.96 39263.88 30164.72 35180.24 34019.84 39683.44 33766.24 22464.52 36879.71 372
ANet_high50.57 36346.10 36763.99 36648.67 41139.13 40070.99 37080.85 31961.39 32531.18 40057.70 39617.02 39973.65 38931.22 39315.89 40879.18 373
LF4IMVS64.02 34262.19 34669.50 35270.90 39053.29 35776.13 34477.18 35352.65 37358.59 37480.98 33323.55 39276.52 37153.06 32866.66 36078.68 374
PatchMatch-RL72.38 28370.90 28776.80 29788.60 16467.38 14779.53 31676.17 36062.75 31369.36 30982.00 32745.51 32484.89 32753.62 32480.58 23878.12 375
MS-PatchMatch73.83 26872.67 26777.30 29283.87 27866.02 17281.82 28284.66 26961.37 32668.61 31682.82 31547.29 30588.21 29759.27 28484.32 18677.68 376
DSMNet-mixed57.77 35256.90 35460.38 37167.70 39435.61 40269.18 37753.97 40332.30 40157.49 37979.88 34440.39 35468.57 39638.78 38572.37 33576.97 377
CHOSEN 280x42066.51 33264.71 33371.90 33781.45 32663.52 22857.98 39868.95 38453.57 37062.59 36376.70 36646.22 31675.29 38355.25 31779.68 24876.88 378
mvsany_test353.99 35551.45 36061.61 37055.51 40444.74 39063.52 39445.41 40943.69 38858.11 37776.45 36817.99 39763.76 40054.77 31947.59 39376.34 379
dmvs_testset62.63 34564.11 33658.19 37378.55 35924.76 41175.28 35265.94 38967.91 25160.34 36876.01 37053.56 24273.94 38831.79 39267.65 35775.88 380
mvsany_test162.30 34661.26 35065.41 36569.52 39154.86 34266.86 38549.78 40546.65 38368.50 31883.21 30749.15 29566.28 39756.93 30960.77 37575.11 381
PMMVS69.34 31168.67 30371.35 34375.67 37062.03 25375.17 35373.46 37050.00 38068.68 31479.05 35052.07 25978.13 36161.16 27282.77 21273.90 382
test_vis1_rt60.28 34958.42 35265.84 36467.25 39555.60 33470.44 37360.94 39744.33 38759.00 37366.64 38724.91 38868.67 39562.80 25169.48 34973.25 383
pmmvs357.79 35154.26 35668.37 35964.02 39956.72 31675.12 35665.17 39040.20 39152.93 38769.86 38620.36 39575.48 38045.45 37155.25 38672.90 384
PVSNet_057.27 2061.67 34859.27 35168.85 35679.61 35257.44 30768.01 38173.44 37155.93 36458.54 37570.41 38544.58 32977.55 36547.01 36135.91 39771.55 385
WB-MVS54.94 35354.72 35555.60 37973.50 38020.90 41374.27 36061.19 39659.16 34250.61 38974.15 37647.19 30775.78 37817.31 40435.07 39870.12 386
SSC-MVS53.88 35653.59 35754.75 38172.87 38619.59 41473.84 36260.53 39857.58 35649.18 39273.45 37946.34 31575.47 38116.20 40732.28 40069.20 387
test_f52.09 36050.82 36155.90 37753.82 40742.31 39759.42 39758.31 40136.45 39656.12 38470.96 38412.18 40357.79 40353.51 32556.57 38267.60 388
PMMVS240.82 37038.86 37446.69 38453.84 40616.45 41548.61 40149.92 40437.49 39431.67 39960.97 3928.14 41056.42 40428.42 39530.72 40167.19 389
new_pmnet50.91 36250.29 36252.78 38268.58 39334.94 40463.71 39356.63 40239.73 39244.95 39365.47 38821.93 39458.48 40234.98 38956.62 38164.92 390
MVS-HIRNet59.14 35057.67 35363.57 36781.65 32243.50 39271.73 36665.06 39139.59 39351.43 38857.73 39538.34 36282.58 34239.53 38273.95 32264.62 391
APD_test153.31 35849.93 36363.42 36865.68 39650.13 37471.59 36766.90 38734.43 39840.58 39771.56 3838.65 40976.27 37434.64 39055.36 38563.86 392
test_method31.52 37329.28 37738.23 38727.03 4156.50 41820.94 40662.21 3954.05 40922.35 40752.50 40013.33 40147.58 40727.04 39734.04 39960.62 393
EGC-MVSNET52.07 36147.05 36567.14 36283.51 28560.71 26980.50 30567.75 3850.07 4110.43 41275.85 37324.26 39081.54 34728.82 39462.25 37159.16 394
test_vis3_rt49.26 36447.02 36656.00 37654.30 40545.27 38866.76 38748.08 40636.83 39544.38 39453.20 3997.17 41164.07 39956.77 31155.66 38358.65 395
FPMVS53.68 35751.64 35959.81 37265.08 39751.03 37069.48 37669.58 38141.46 39040.67 39672.32 38116.46 40070.00 39424.24 40065.42 36558.40 396
testf145.72 36541.96 36957.00 37456.90 40245.32 38566.14 38859.26 39926.19 40230.89 40160.96 3934.14 41270.64 39226.39 39846.73 39555.04 397
APD_test245.72 36541.96 36957.00 37456.90 40245.32 38566.14 38859.26 39926.19 40230.89 40160.96 3934.14 41270.64 39226.39 39846.73 39555.04 397
PMVScopyleft37.38 2244.16 36940.28 37355.82 37840.82 41342.54 39665.12 39263.99 39334.43 39824.48 40457.12 3973.92 41476.17 37617.10 40555.52 38448.75 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive26.22 2330.37 37525.89 37943.81 38644.55 41235.46 40328.87 40539.07 41018.20 40618.58 40840.18 4032.68 41547.37 40817.07 40623.78 40548.60 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dongtai45.42 36745.38 36845.55 38573.36 38326.85 40967.72 38234.19 41154.15 36949.65 39156.41 39825.43 38762.94 40119.45 40228.09 40246.86 401
kuosan39.70 37140.40 37237.58 38864.52 39826.98 40765.62 39033.02 41246.12 38442.79 39548.99 40124.10 39146.56 40912.16 41026.30 40339.20 402
Gipumacopyleft45.18 36841.86 37155.16 38077.03 36651.52 36732.50 40480.52 32432.46 40027.12 40335.02 4049.52 40775.50 37922.31 40160.21 37838.45 403
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft27.40 39140.17 41426.90 40824.59 41517.44 40723.95 40548.61 4029.77 40626.48 41018.06 40324.47 40428.83 404
E-PMN31.77 37230.64 37535.15 38952.87 40927.67 40657.09 39947.86 40724.64 40416.40 40933.05 40511.23 40554.90 40514.46 40818.15 40622.87 405
EMVS30.81 37429.65 37634.27 39050.96 41025.95 41056.58 40046.80 40824.01 40515.53 41030.68 40612.47 40254.43 40612.81 40917.05 40722.43 406
tmp_tt18.61 37721.40 38010.23 3934.82 41610.11 41634.70 40330.74 4141.48 41023.91 40626.07 40728.42 38413.41 41227.12 39615.35 4097.17 407
wuyk23d16.82 37815.94 38119.46 39258.74 40131.45 40539.22 4023.74 4176.84 4086.04 4112.70 4111.27 41624.29 41110.54 41114.40 4102.63 408
test1236.12 3808.11 3830.14 3940.06 4180.09 41971.05 3690.03 4190.04 4130.25 4141.30 4130.05 4170.03 4140.21 4130.01 4120.29 409
testmvs6.04 3818.02 3840.10 3950.08 4170.03 42069.74 3740.04 4180.05 4120.31 4131.68 4120.02 4180.04 4130.24 4120.02 4110.25 410
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k19.96 37626.61 3780.00 3960.00 4190.00 4210.00 40789.26 1800.00 4140.00 41588.61 17961.62 1680.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas5.26 3827.02 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41463.15 1450.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re7.23 3799.64 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41586.72 2290.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS42.58 39439.46 383
FOURS195.00 1072.39 3995.06 193.84 1574.49 11591.30 15
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 419
eth-test0.00 419
ZD-MVS94.38 2572.22 4492.67 6270.98 18687.75 3294.07 4174.01 3296.70 2784.66 4794.84 43
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
9.1488.26 1592.84 6091.52 4694.75 173.93 12788.57 2294.67 1975.57 2295.79 5486.77 3595.76 23
save fliter93.80 4072.35 4290.47 6391.17 12374.31 118
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
test_part295.06 872.65 3291.80 13
sam_mvs50.01 282
MTGPAbinary92.02 91
test_post178.90 3275.43 41048.81 30185.44 32359.25 285
test_post5.46 40950.36 28084.24 330
patchmatchnet-post74.00 37751.12 27188.60 293
MTMP92.18 3532.83 413
gm-plane-assit81.40 32753.83 35162.72 31480.94 33492.39 19963.40 248
TEST993.26 5072.96 2588.75 11591.89 9968.44 24585.00 5993.10 6774.36 2895.41 69
test_893.13 5272.57 3588.68 12091.84 10368.69 24084.87 6393.10 6774.43 2695.16 79
agg_prior92.85 5971.94 5191.78 10684.41 7694.93 91
test_prior472.60 3489.01 106
test_prior288.85 11275.41 9584.91 6193.54 5674.28 2983.31 6195.86 20
旧先验286.56 19158.10 35187.04 4188.98 28674.07 152
新几何286.29 199
原ACMM286.86 179
testdata291.01 25362.37 258
segment_acmp73.08 38
testdata184.14 25275.71 89
plane_prior790.08 10468.51 120
plane_prior689.84 11468.70 11560.42 193
plane_prior491.00 122
plane_prior368.60 11878.44 3178.92 148
plane_prior291.25 5079.12 23
plane_prior189.90 112
plane_prior68.71 11390.38 6777.62 3986.16 161
n20.00 420
nn0.00 420
door-mid69.98 379
test1192.23 84
door69.44 382
HQP5-MVS66.98 158
HQP-NCC89.33 13389.17 9976.41 7477.23 187
ACMP_Plane89.33 13389.17 9976.41 7477.23 187
BP-MVS77.47 119
HQP3-MVS92.19 8785.99 165
HQP2-MVS60.17 196
NP-MVS89.62 11868.32 12390.24 137
MDTV_nov1_ep1369.97 29783.18 29353.48 35377.10 34380.18 33260.45 32969.33 31080.44 33848.89 30086.90 30851.60 33478.51 261
ACMMP++_ref81.95 223
ACMMP++81.25 228
Test By Simon64.33 132