3Dnovator+ | | 77.84 4 | 85.48 35 | 84.47 42 | 88.51 2 | 91.08 55 | 73.49 11 | 93.18 4 | 93.78 5 | 80.79 9 | 76.66 125 | 93.37 27 | 60.40 146 | 96.75 8 | 77.20 64 | 93.73 38 | 95.29 1 |
|
IS-MVSNet | | | 83.15 53 | 82.81 52 | 84.18 76 | 89.94 70 | 63.30 172 | 91.59 23 | 88.46 161 | 79.04 20 | 79.49 72 | 92.16 44 | 65.10 72 | 94.28 72 | 67.71 141 | 91.86 48 | 94.95 2 |
|
SteuartSystems-ACMMP | | | 88.72 4 | 88.86 4 | 88.32 4 | 92.14 44 | 72.96 15 | 93.73 3 | 93.67 6 | 80.19 12 | 88.10 5 | 94.80 2 | 73.76 17 | 97.11 1 | 87.51 4 | 95.82 6 | 94.90 3 |
Skip Steuart: Steuart Systems R&D Blog. |
canonicalmvs | | | 85.91 30 | 85.87 29 | 86.04 43 | 89.84 72 | 69.44 62 | 90.45 39 | 93.00 22 | 76.70 50 | 88.01 7 | 91.23 62 | 73.28 19 | 93.91 89 | 81.50 38 | 88.80 77 | 94.77 4 |
|
alignmvs | | | 85.48 35 | 85.32 35 | 85.96 44 | 89.51 76 | 69.47 60 | 89.74 51 | 92.47 37 | 76.17 59 | 87.73 9 | 91.46 60 | 70.32 36 | 93.78 98 | 81.51 37 | 88.95 74 | 94.63 5 |
|
DeepPCF-MVS | | 80.84 1 | 88.10 5 | 88.56 5 | 86.73 30 | 92.24 43 | 69.03 64 | 89.57 54 | 93.39 11 | 77.53 33 | 89.79 3 | 94.12 16 | 78.98 1 | 96.58 16 | 85.66 6 | 95.72 7 | 94.58 6 |
|
VDD-MVS | | | 83.01 57 | 82.36 57 | 84.96 56 | 91.02 56 | 66.40 106 | 88.91 66 | 88.11 163 | 77.57 30 | 84.39 33 | 93.29 29 | 52.19 193 | 93.91 89 | 77.05 66 | 88.70 79 | 94.57 7 |
|
VDDNet | | | 81.52 75 | 80.67 76 | 84.05 80 | 90.44 63 | 64.13 157 | 89.73 52 | 85.91 189 | 71.11 129 | 83.18 46 | 93.48 24 | 50.54 202 | 93.49 112 | 73.40 99 | 88.25 87 | 94.54 8 |
|
APDe-MVS | | | 89.15 1 | 89.63 1 | 87.73 15 | 94.49 8 | 71.69 33 | 93.83 2 | 93.96 2 | 75.70 64 | 91.06 1 | 96.03 1 | 76.84 2 | 97.03 3 | 89.09 1 | 95.65 11 | 94.47 9 |
|
MCST-MVS | | | 87.37 13 | 87.25 11 | 87.73 15 | 94.53 7 | 72.46 26 | 89.82 48 | 93.82 4 | 73.07 101 | 84.86 26 | 92.89 37 | 76.22 4 | 96.33 19 | 84.89 13 | 95.13 18 | 94.40 10 |
|
PHI-MVS | | | 86.43 24 | 86.17 26 | 87.24 22 | 90.88 59 | 70.96 39 | 92.27 16 | 94.07 1 | 72.45 113 | 85.22 18 | 91.90 49 | 69.47 43 | 96.42 18 | 83.28 26 | 95.94 3 | 94.35 11 |
|
CNVR-MVS | | | 88.93 3 | 89.13 3 | 88.33 3 | 94.77 2 | 73.82 4 | 90.51 35 | 93.00 22 | 80.90 8 | 88.06 6 | 94.06 18 | 76.43 3 | 96.84 5 | 88.48 2 | 95.99 2 | 94.34 12 |
|
HPM-MVS | | | 87.11 16 | 86.98 15 | 87.50 20 | 93.88 19 | 72.16 30 | 92.19 17 | 93.33 12 | 76.07 61 | 83.81 40 | 93.95 20 | 69.77 42 | 96.01 26 | 85.15 8 | 94.66 26 | 94.32 13 |
|
CDPH-MVS | | | 85.76 32 | 85.29 37 | 87.17 24 | 93.49 23 | 71.08 37 | 88.58 77 | 92.42 41 | 68.32 167 | 84.61 28 | 93.48 24 | 72.32 26 | 96.15 24 | 79.00 50 | 95.43 13 | 94.28 14 |
|
DeepC-MVS_fast | | 79.65 3 | 86.91 19 | 86.62 20 | 87.76 14 | 93.52 22 | 72.37 28 | 91.26 25 | 93.04 19 | 76.62 51 | 84.22 35 | 93.36 28 | 71.44 31 | 96.76 7 | 80.82 42 | 95.33 15 | 94.16 15 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
EPP-MVSNet | | | 83.40 51 | 83.02 50 | 84.57 64 | 90.13 67 | 64.47 151 | 92.32 15 | 90.73 88 | 74.45 78 | 79.35 74 | 91.10 63 | 69.05 47 | 95.12 47 | 72.78 103 | 87.22 94 | 94.13 16 |
|
NCCC | | | 88.06 6 | 88.01 7 | 88.24 5 | 94.41 12 | 73.62 5 | 91.22 28 | 92.83 31 | 81.50 5 | 85.79 15 | 93.47 26 | 73.02 21 | 97.00 4 | 84.90 11 | 94.94 20 | 94.10 17 |
|
XVS | | | 87.18 15 | 86.91 17 | 88.00 8 | 94.42 10 | 73.33 13 | 92.78 8 | 92.99 24 | 79.14 16 | 83.67 42 | 94.17 15 | 67.45 54 | 96.60 14 | 83.06 28 | 94.50 28 | 94.07 18 |
|
X-MVStestdata | | | 80.37 98 | 77.83 131 | 88.00 8 | 94.42 10 | 73.33 13 | 92.78 8 | 92.99 24 | 79.14 16 | 83.67 42 | 12.47 294 | 67.45 54 | 96.60 14 | 83.06 28 | 94.50 28 | 94.07 18 |
|
region2R | | | 87.42 12 | 87.20 13 | 88.09 6 | 94.63 4 | 73.55 7 | 93.03 7 | 93.12 18 | 76.73 49 | 84.45 30 | 94.52 3 | 69.09 46 | 96.70 9 | 84.37 19 | 94.83 24 | 94.03 20 |
|
Regformer-4 | | | 85.68 34 | 85.45 32 | 86.35 36 | 88.95 92 | 69.67 55 | 88.29 88 | 91.29 77 | 81.73 4 | 85.36 17 | 90.01 85 | 72.62 24 | 95.35 43 | 83.28 26 | 87.57 90 | 94.03 20 |
|
Regformer-2 | | | 86.63 23 | 86.53 21 | 86.95 27 | 89.33 80 | 71.24 36 | 88.43 79 | 92.05 50 | 82.50 1 | 86.88 11 | 90.09 83 | 74.45 10 | 95.61 30 | 84.38 18 | 90.63 59 | 94.01 22 |
|
ACMMPR | | | 87.44 10 | 87.23 12 | 88.08 7 | 94.64 3 | 73.59 6 | 93.04 5 | 93.20 15 | 76.78 46 | 84.66 27 | 94.52 3 | 68.81 48 | 96.65 10 | 84.53 16 | 94.90 21 | 94.00 23 |
|
Regformer-1 | | | 86.41 25 | 86.33 22 | 86.64 32 | 89.33 80 | 70.93 40 | 88.43 79 | 91.39 75 | 82.14 3 | 86.65 12 | 90.09 83 | 74.39 12 | 95.01 54 | 83.97 22 | 90.63 59 | 93.97 24 |
|
test_prior3 | | | 86.73 20 | 86.86 19 | 86.33 37 | 92.61 39 | 69.59 56 | 88.85 68 | 92.97 27 | 75.41 67 | 84.91 21 | 93.54 22 | 74.28 14 | 95.48 34 | 83.31 24 | 95.86 4 | 93.91 25 |
|
test_prior | | | | | 86.33 37 | 92.61 39 | 69.59 56 | | 92.97 27 | | | | | 95.48 34 | | | 93.91 25 |
|
Regformer-3 | | | 85.23 40 | 85.07 38 | 85.70 46 | 88.95 92 | 69.01 66 | 88.29 88 | 89.91 121 | 80.95 7 | 85.01 19 | 90.01 85 | 72.45 25 | 94.19 77 | 82.50 35 | 87.57 90 | 93.90 27 |
|
LFMVS | | | 81.82 71 | 81.23 70 | 83.57 90 | 91.89 48 | 63.43 170 | 89.84 47 | 81.85 224 | 77.04 41 | 83.21 45 | 93.10 32 | 52.26 192 | 93.43 117 | 71.98 115 | 89.95 67 | 93.85 28 |
|
MVS_Test | | | 83.15 53 | 83.06 49 | 83.41 93 | 86.86 142 | 63.21 175 | 86.11 154 | 92.00 51 | 74.31 79 | 82.87 50 | 89.44 101 | 70.03 38 | 93.21 120 | 77.39 63 | 88.50 85 | 93.81 29 |
|
HFP-MVS | | | 87.58 9 | 87.47 10 | 87.94 10 | 94.58 5 | 73.54 9 | 93.04 5 | 93.24 13 | 76.78 46 | 84.91 21 | 94.44 8 | 70.78 33 | 96.61 12 | 84.53 16 | 94.89 22 | 93.66 30 |
|
#test# | | | 87.33 14 | 87.13 14 | 87.94 10 | 94.58 5 | 73.54 9 | 92.34 14 | 93.24 13 | 75.23 71 | 84.91 21 | 94.44 8 | 70.78 33 | 96.61 12 | 83.75 23 | 94.89 22 | 93.66 30 |
|
VNet | | | 82.21 64 | 82.41 55 | 81.62 153 | 90.82 60 | 60.93 194 | 84.47 180 | 89.78 123 | 76.36 57 | 84.07 37 | 91.88 50 | 64.71 75 | 90.26 189 | 70.68 122 | 88.89 75 | 93.66 30 |
|
PGM-MVS | | | 86.68 21 | 86.27 24 | 87.90 13 | 94.22 16 | 73.38 12 | 90.22 43 | 93.04 19 | 75.53 66 | 83.86 38 | 94.42 10 | 67.87 52 | 96.64 11 | 82.70 33 | 94.57 27 | 93.66 30 |
|
DELS-MVS | | | 85.41 38 | 85.30 36 | 85.77 45 | 88.49 106 | 67.93 88 | 85.52 166 | 93.44 9 | 78.70 23 | 83.63 44 | 89.03 107 | 74.57 9 | 95.71 29 | 80.26 47 | 94.04 36 | 93.66 30 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
SD-MVS | | | 88.06 6 | 88.50 6 | 86.71 31 | 92.60 41 | 72.71 19 | 91.81 22 | 93.19 16 | 77.87 27 | 90.32 2 | 94.00 19 | 74.83 8 | 93.78 98 | 87.63 3 | 94.27 35 | 93.65 35 |
|
DeepC-MVS | | 79.81 2 | 87.08 18 | 86.88 18 | 87.69 18 | 91.16 54 | 72.32 29 | 90.31 41 | 93.94 3 | 77.12 38 | 82.82 51 | 94.23 14 | 72.13 28 | 97.09 2 | 84.83 14 | 95.37 14 | 93.65 35 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MP-MVS |  | | 87.71 8 | 87.64 8 | 87.93 12 | 94.36 14 | 73.88 2 | 92.71 12 | 92.65 36 | 77.57 30 | 83.84 39 | 94.40 11 | 72.24 27 | 96.28 21 | 85.65 7 | 95.30 17 | 93.62 37 |
|
HPM-MVS_fast | | | 85.35 39 | 84.95 40 | 86.57 35 | 93.69 20 | 70.58 46 | 92.15 18 | 91.62 67 | 73.89 85 | 82.67 54 | 94.09 17 | 62.60 107 | 95.54 33 | 80.93 40 | 92.93 40 | 93.57 38 |
|
CSCG | | | 86.41 25 | 86.19 25 | 87.07 26 | 92.91 33 | 72.48 25 | 90.81 31 | 93.56 7 | 73.95 84 | 83.16 47 | 91.07 65 | 75.94 5 | 95.19 45 | 79.94 49 | 94.38 32 | 93.55 39 |
|
test12 | | | | | 86.80 29 | 92.63 38 | 70.70 45 | | 91.79 61 | | 82.71 53 | | 71.67 29 | 96.16 23 | | 94.50 28 | 93.54 40 |
|
APD-MVS_3200maxsize | | | 85.97 29 | 85.88 28 | 86.22 40 | 92.69 37 | 69.53 58 | 91.93 20 | 92.99 24 | 73.54 91 | 85.94 13 | 94.51 6 | 65.80 68 | 95.61 30 | 83.04 30 | 92.51 45 | 93.53 41 |
|
mvs_anonymous | | | 79.42 120 | 79.11 106 | 80.34 174 | 84.45 169 | 57.97 220 | 82.59 202 | 87.62 171 | 67.40 176 | 76.17 134 | 88.56 118 | 68.47 49 | 89.59 197 | 70.65 123 | 86.05 106 | 93.47 42 |
|
mPP-MVS | | | 86.67 22 | 86.32 23 | 87.72 17 | 94.41 12 | 73.55 7 | 92.74 10 | 92.22 45 | 76.87 44 | 82.81 52 | 94.25 13 | 66.44 61 | 96.24 22 | 82.88 32 | 94.28 34 | 93.38 43 |
|
EPNet | | | 83.72 47 | 82.92 51 | 86.14 42 | 84.22 173 | 69.48 59 | 91.05 30 | 85.27 193 | 81.30 6 | 76.83 122 | 91.65 52 | 66.09 64 | 95.56 32 | 76.00 74 | 93.85 37 | 93.38 43 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Vis-MVSNet |  | | 83.46 49 | 82.80 53 | 85.43 48 | 90.25 66 | 68.74 74 | 90.30 42 | 90.13 113 | 76.33 58 | 80.87 65 | 92.89 37 | 61.00 136 | 94.20 76 | 72.45 109 | 90.97 55 | 93.35 45 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
EI-MVSNet-Vis-set | | | 84.19 43 | 83.81 43 | 85.31 49 | 88.18 114 | 67.85 89 | 87.66 103 | 89.73 125 | 80.05 14 | 82.95 48 | 89.59 92 | 70.74 35 | 94.82 62 | 80.66 44 | 84.72 115 | 93.28 46 |
|
CP-MVS | | | 87.11 16 | 86.92 16 | 87.68 19 | 94.20 17 | 73.86 3 | 93.98 1 | 92.82 33 | 76.62 51 | 83.68 41 | 94.46 7 | 67.93 50 | 95.95 27 | 84.20 21 | 94.39 31 | 93.23 47 |
|
ACMMP |  | | 85.89 31 | 85.39 33 | 87.38 21 | 93.59 21 | 72.63 21 | 92.74 10 | 93.18 17 | 76.78 46 | 80.73 66 | 93.82 21 | 64.33 76 | 96.29 20 | 82.67 34 | 90.69 58 | 93.23 47 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
PAPM_NR | | | 83.02 56 | 82.41 55 | 84.82 61 | 92.47 42 | 66.37 107 | 87.93 99 | 91.80 60 | 73.82 86 | 77.32 114 | 90.66 74 | 67.90 51 | 94.90 59 | 70.37 125 | 89.48 70 | 93.19 49 |
|
OMC-MVS | | | 82.69 59 | 81.97 64 | 84.85 60 | 88.75 100 | 67.42 94 | 87.98 95 | 90.87 86 | 74.92 74 | 79.72 70 | 91.65 52 | 62.19 119 | 93.96 84 | 75.26 85 | 86.42 102 | 93.16 50 |
|
PAPR | | | 81.66 73 | 80.89 74 | 83.99 82 | 90.27 65 | 64.00 161 | 86.76 140 | 91.77 64 | 68.84 161 | 77.13 121 | 89.50 93 | 67.63 53 | 94.88 60 | 67.55 142 | 88.52 84 | 93.09 51 |
|
UA-Net | | | 85.08 42 | 84.96 39 | 85.45 47 | 92.07 45 | 68.07 87 | 89.78 50 | 90.86 87 | 82.48 2 | 84.60 29 | 93.20 30 | 69.35 44 | 95.22 44 | 71.39 121 | 90.88 57 | 93.07 52 |
|
HPM-MVS++ | | | 89.02 2 | 89.15 2 | 88.63 1 | 95.01 1 | 76.03 1 | 92.38 13 | 92.85 30 | 80.26 11 | 87.78 8 | 94.27 12 | 75.89 6 | 96.81 6 | 87.45 5 | 96.44 1 | 93.05 53 |
|
train_agg | | | | | | | | | | | | | | | 84.97 9 | 95.71 8 | 93.02 54 |
|
agg_prior3 | | | 86.16 28 | 85.85 30 | 87.10 25 | 93.31 24 | 72.86 18 | 88.77 71 | 91.68 66 | 68.29 168 | 84.26 34 | 92.83 39 | 72.83 22 | 95.42 38 | 84.97 9 | 95.71 8 | 93.02 54 |
|
agg_prior1 | | | 86.22 27 | 86.09 27 | 86.62 33 | 92.85 34 | 71.94 31 | 88.59 76 | 91.78 62 | 68.96 160 | 84.41 31 | 93.18 31 | 74.94 7 | 94.93 55 | 84.75 15 | 95.33 15 | 93.01 56 |
|
EI-MVSNet-UG-set | | | 83.81 45 | 83.38 46 | 85.09 53 | 87.87 122 | 67.53 93 | 87.44 114 | 89.66 126 | 79.74 15 | 82.23 55 | 89.41 102 | 70.24 37 | 94.74 64 | 79.95 48 | 83.92 120 | 92.99 57 |
|
diffmvs | | | 79.51 115 | 78.59 114 | 82.25 135 | 83.31 203 | 62.66 183 | 84.17 188 | 88.11 163 | 67.64 170 | 76.09 135 | 87.47 136 | 64.01 79 | 91.15 173 | 71.71 118 | 84.82 114 | 92.94 58 |
|
test9_res | | | | | | | | | | | | | | | 84.90 11 | 95.70 10 | 92.87 59 |
|
agg_prior2 | | | | | | | | | | | | | | | 82.91 31 | 95.45 12 | 92.70 60 |
|
APD-MVS |  | | 87.44 10 | 87.52 9 | 87.19 23 | 94.24 15 | 72.39 27 | 91.86 21 | 92.83 31 | 73.01 102 | 88.58 4 | 94.52 3 | 73.36 18 | 96.49 17 | 84.26 20 | 95.01 19 | 92.70 60 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
Vis-MVSNet (Re-imp) | | | 78.36 136 | 78.45 117 | 78.07 202 | 88.64 102 | 51.78 258 | 86.70 141 | 79.63 240 | 74.14 82 | 75.11 150 | 90.83 72 | 61.29 131 | 89.75 195 | 58.10 210 | 91.60 49 | 92.69 62 |
|
TSAR-MVS | | | 85.71 33 | 85.33 34 | 86.84 28 | 91.34 52 | 72.50 24 | 89.07 64 | 87.28 173 | 76.41 53 | 85.80 14 | 90.22 81 | 74.15 16 | 95.37 42 | 81.82 36 | 91.88 47 | 92.65 63 |
|
Test4 | | | 77.83 150 | 75.90 167 | 83.62 88 | 80.24 242 | 65.25 128 | 85.27 167 | 90.67 89 | 69.03 158 | 66.48 235 | 83.75 201 | 43.07 234 | 93.00 133 | 75.93 75 | 88.66 80 | 92.62 64 |
|
DI_MVS_test_normal | | | 79.81 110 | 78.45 117 | 83.89 85 | 82.70 219 | 65.40 122 | 85.82 161 | 89.48 130 | 69.39 150 | 70.12 195 | 85.66 182 | 57.15 162 | 93.71 107 | 77.08 65 | 88.62 81 | 92.56 65 |
|
nrg030 | | | 83.88 44 | 83.53 44 | 84.96 56 | 86.77 145 | 69.28 63 | 90.46 38 | 92.67 34 | 74.79 75 | 82.95 48 | 91.33 61 | 72.70 23 | 93.09 129 | 80.79 43 | 79.28 162 | 92.50 66 |
|
MG-MVS | | | 83.41 50 | 83.45 45 | 83.28 96 | 92.74 36 | 62.28 188 | 88.17 92 | 89.50 129 | 75.22 72 | 81.49 59 | 92.74 43 | 66.75 58 | 95.11 48 | 72.85 102 | 91.58 50 | 92.45 67 |
|
FIs | | | 82.07 66 | 82.42 54 | 81.04 166 | 88.80 98 | 58.34 214 | 88.26 90 | 93.49 8 | 76.93 43 | 78.47 85 | 91.04 66 | 69.92 40 | 92.34 148 | 69.87 129 | 84.97 111 | 92.44 68 |
|
DI_MVS_test_dynamic | | | 79.89 109 | 78.58 115 | 83.85 86 | 82.89 215 | 65.32 126 | 86.12 153 | 89.55 128 | 69.64 149 | 70.55 188 | 85.82 179 | 57.24 160 | 93.81 96 | 76.85 68 | 88.55 83 | 92.41 69 |
|
FC-MVSNet-test | | | 81.52 75 | 82.02 62 | 80.03 179 | 88.42 110 | 55.97 243 | 87.95 97 | 93.42 10 | 77.10 39 | 77.38 112 | 90.98 71 | 69.96 39 | 91.79 155 | 68.46 139 | 84.50 116 | 92.33 70 |
|
TranMVSNet+NR-MVSNet | | | 80.84 83 | 80.31 81 | 82.42 132 | 87.85 123 | 62.33 186 | 87.74 102 | 91.33 76 | 80.55 10 | 77.99 103 | 89.86 87 | 65.23 71 | 92.62 139 | 67.05 149 | 75.24 210 | 92.30 71 |
|
ab-mvs | | | 79.51 115 | 78.97 109 | 81.14 164 | 88.46 108 | 60.91 195 | 83.84 193 | 89.24 138 | 70.36 138 | 79.03 76 | 88.87 109 | 63.23 88 | 90.21 191 | 65.12 161 | 82.57 133 | 92.28 72 |
|
UniMVSNet_NR-MVSNet | | | 81.88 69 | 81.54 67 | 82.92 115 | 88.46 108 | 63.46 168 | 87.13 125 | 92.37 42 | 80.19 12 | 78.38 89 | 89.14 104 | 71.66 30 | 93.05 130 | 70.05 126 | 76.46 194 | 92.25 73 |
|
DU-MVS | | | 81.12 80 | 80.52 79 | 82.90 116 | 87.80 125 | 63.46 168 | 87.02 130 | 91.87 58 | 79.01 21 | 78.38 89 | 89.07 105 | 65.02 73 | 93.05 130 | 70.05 126 | 76.46 194 | 92.20 74 |
|
NR-MVSNet | | | 80.23 101 | 79.38 96 | 82.78 126 | 87.80 125 | 63.34 171 | 86.31 149 | 91.09 83 | 79.01 21 | 72.17 174 | 89.07 105 | 67.20 56 | 92.81 137 | 66.08 155 | 75.65 202 | 92.20 74 |
|
TAPA-MVS | | 73.13 9 | 79.15 124 | 77.94 129 | 82.79 125 | 89.59 75 | 62.99 181 | 88.16 93 | 91.51 71 | 65.77 188 | 77.14 120 | 91.09 64 | 60.91 137 | 93.21 120 | 50.26 242 | 87.05 96 | 92.17 76 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
3Dnovator | | 76.31 5 | 83.38 52 | 82.31 58 | 86.59 34 | 87.94 121 | 72.94 17 | 90.64 33 | 92.14 49 | 77.21 36 | 75.47 137 | 92.83 39 | 58.56 152 | 94.72 65 | 73.24 100 | 92.71 43 | 92.13 77 |
|
MVS_111021_HR | | | 85.14 41 | 84.75 41 | 86.32 39 | 91.65 50 | 72.70 20 | 85.98 156 | 90.33 104 | 76.11 60 | 82.08 56 | 91.61 55 | 71.36 32 | 94.17 78 | 81.02 39 | 92.58 44 | 92.08 78 |
|
MVSFormer | | | 82.85 58 | 82.05 61 | 85.24 51 | 87.35 135 | 70.21 48 | 90.50 36 | 90.38 99 | 68.55 164 | 81.32 60 | 89.47 96 | 61.68 122 | 93.46 113 | 78.98 51 | 90.26 62 | 92.05 79 |
|
jason | | | 81.39 78 | 80.29 82 | 84.70 63 | 86.63 146 | 69.90 52 | 85.95 157 | 86.77 177 | 63.24 207 | 81.07 64 | 89.47 96 | 61.08 135 | 92.15 151 | 78.33 58 | 90.07 66 | 92.05 79 |
jason: jason. |
XVG-OURS-SEG-HR | | | 80.81 86 | 79.76 88 | 83.96 84 | 85.60 156 | 68.78 71 | 83.54 198 | 90.50 96 | 70.66 135 | 76.71 124 | 91.66 51 | 60.69 139 | 91.26 170 | 76.94 67 | 81.58 141 | 91.83 81 |
|
lupinMVS | | | 81.39 78 | 80.27 83 | 84.76 62 | 87.35 135 | 70.21 48 | 85.55 164 | 86.41 181 | 62.85 213 | 81.32 60 | 88.61 115 | 61.68 122 | 92.24 150 | 78.41 57 | 90.26 62 | 91.83 81 |
|
abl_6 | | | | | | | | | | | | | | | | | 91.81 83 |
|
WR-MVS | | | 79.49 117 | 79.22 105 | 80.27 177 | 88.79 99 | 58.35 213 | 85.06 169 | 88.61 159 | 78.56 24 | 77.65 108 | 88.34 122 | 63.81 82 | 90.66 186 | 64.98 164 | 77.22 177 | 91.80 84 |
|
UniMVSNet (Re) | | | 81.60 74 | 81.11 72 | 83.09 104 | 88.38 111 | 64.41 153 | 87.60 104 | 93.02 21 | 78.42 26 | 78.56 83 | 88.16 125 | 69.78 41 | 93.26 119 | 69.58 131 | 76.49 193 | 91.60 85 |
|
UGNet | | | 80.83 85 | 79.59 89 | 84.54 65 | 88.04 118 | 68.09 86 | 89.42 55 | 88.16 162 | 76.95 42 | 76.22 130 | 89.46 98 | 49.30 207 | 93.94 86 | 68.48 138 | 90.31 61 | 91.60 85 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
XVG-OURS | | | 80.41 93 | 79.23 104 | 83.97 83 | 85.64 155 | 69.02 65 | 83.03 201 | 90.39 98 | 71.09 130 | 77.63 109 | 91.49 59 | 54.62 178 | 91.35 168 | 75.71 79 | 83.47 123 | 91.54 87 |
|
LCM-MVSNet-Re | | | 77.05 166 | 76.94 146 | 77.36 210 | 87.20 138 | 51.60 259 | 80.06 219 | 80.46 232 | 75.20 73 | 67.69 224 | 86.72 151 | 62.48 112 | 88.98 206 | 63.44 170 | 89.25 72 | 91.51 88 |
|
DP-MVS Recon | | | 83.11 55 | 82.09 60 | 86.15 41 | 94.44 9 | 70.92 41 | 88.79 70 | 92.20 46 | 70.53 136 | 79.17 75 | 91.03 68 | 64.12 78 | 96.03 25 | 68.39 140 | 90.14 64 | 91.50 89 |
|
pcd1.5k->3k | | | 34.07 271 | 35.26 271 | 30.50 283 | 86.92 141 | 0.00 304 | 0.00 295 | 91.58 69 | 0.00 299 | 0.00 300 | 0.00 298 | 56.23 166 | 0.00 297 | 0.00 297 | 82.60 132 | 91.49 90 |
|
PS-MVSNAJss | | | 82.07 66 | 81.31 68 | 84.34 72 | 86.51 147 | 67.27 98 | 89.27 57 | 91.51 71 | 71.75 121 | 79.37 73 | 90.22 81 | 63.15 89 | 94.27 73 | 77.69 59 | 82.36 135 | 91.49 90 |
|
HQP_MVS | | | 83.64 48 | 83.14 48 | 85.14 52 | 90.08 68 | 68.71 75 | 91.25 26 | 92.44 38 | 79.12 18 | 78.92 78 | 91.00 69 | 60.42 144 | 95.38 40 | 78.71 53 | 86.32 103 | 91.33 92 |
|
plane_prior5 | | | | | | | | | 92.44 38 | | | | | 95.38 40 | 78.71 53 | 86.32 103 | 91.33 92 |
|
GA-MVS | | | 76.87 169 | 75.17 172 | 81.97 140 | 82.75 217 | 62.58 184 | 81.44 211 | 86.35 184 | 72.16 119 | 74.74 154 | 82.89 208 | 46.20 219 | 92.02 153 | 68.85 135 | 81.09 144 | 91.30 94 |
|
VPA-MVSNet | | | 80.60 89 | 80.55 78 | 80.76 170 | 88.07 117 | 60.80 197 | 86.86 134 | 91.58 69 | 75.67 65 | 80.24 68 | 89.45 100 | 63.34 84 | 90.25 190 | 70.51 124 | 79.22 163 | 91.23 95 |
|
v2v482 | | | 80.23 101 | 79.29 102 | 83.05 107 | 83.62 196 | 64.14 156 | 87.04 129 | 89.97 118 | 73.61 88 | 78.18 99 | 87.22 143 | 61.10 134 | 93.82 95 | 76.11 72 | 76.78 191 | 91.18 96 |
|
HQP4-MVS | | | | | | | | | | | 77.24 116 | | | 95.11 48 | | | 91.03 97 |
|
HQP-MVS | | | 82.61 61 | 82.02 62 | 84.37 69 | 89.33 80 | 66.98 101 | 89.17 59 | 92.19 47 | 76.41 53 | 77.23 117 | 90.23 80 | 60.17 147 | 95.11 48 | 77.47 61 | 85.99 107 | 91.03 97 |
|
RPSCF | | | 73.23 199 | 71.46 198 | 78.54 197 | 82.50 222 | 59.85 202 | 82.18 205 | 82.84 215 | 58.96 240 | 71.15 185 | 89.41 102 | 45.48 226 | 84.77 234 | 58.82 204 | 71.83 232 | 91.02 99 |
|
test_djsdf | | | 80.30 99 | 79.32 98 | 83.27 97 | 83.98 188 | 65.37 125 | 90.50 36 | 90.38 99 | 68.55 164 | 76.19 131 | 88.70 111 | 56.44 165 | 93.46 113 | 78.98 51 | 80.14 157 | 90.97 100 |
|
PCF-MVS | | 73.52 7 | 80.38 97 | 78.84 110 | 85.01 55 | 87.71 128 | 68.99 67 | 83.65 195 | 91.46 74 | 63.00 210 | 77.77 107 | 90.28 78 | 66.10 63 | 95.09 52 | 61.40 186 | 88.22 88 | 90.94 101 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
VPNet | | | 78.69 132 | 78.66 112 | 78.76 194 | 88.31 112 | 55.72 244 | 84.45 182 | 86.63 179 | 76.79 45 | 78.26 96 | 90.55 76 | 59.30 149 | 89.70 196 | 66.63 150 | 77.05 179 | 90.88 102 |
|
CPTT-MVS | | | 83.73 46 | 83.33 47 | 84.92 59 | 93.28 26 | 70.86 42 | 92.09 19 | 90.38 99 | 68.75 162 | 79.57 71 | 92.83 39 | 60.60 142 | 93.04 132 | 80.92 41 | 91.56 51 | 90.86 103 |
|
CLD-MVS | | | 82.31 63 | 81.65 66 | 84.29 73 | 88.47 107 | 67.73 92 | 85.81 162 | 92.35 43 | 75.78 62 | 78.33 91 | 86.58 162 | 64.01 79 | 94.35 70 | 76.05 73 | 87.48 92 | 90.79 104 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
v1192 | | | 79.59 114 | 78.43 120 | 83.07 106 | 83.55 198 | 64.52 144 | 86.93 132 | 90.58 93 | 70.83 132 | 77.78 106 | 85.90 175 | 59.15 150 | 93.94 86 | 73.96 94 | 77.19 178 | 90.76 105 |
|
IterMVS-LS | | | 80.06 106 | 79.38 96 | 82.11 137 | 85.89 151 | 63.20 176 | 86.79 137 | 89.34 132 | 74.19 80 | 75.45 139 | 86.72 151 | 66.62 59 | 92.39 146 | 72.58 107 | 76.86 185 | 90.75 106 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EI-MVSNet | | | 80.52 92 | 79.98 85 | 82.12 136 | 84.28 170 | 63.19 177 | 86.41 147 | 88.95 151 | 74.18 81 | 78.69 80 | 87.54 134 | 66.62 59 | 92.43 144 | 72.57 108 | 80.57 151 | 90.74 107 |
|
v1921920 | | | 79.22 123 | 78.03 127 | 82.80 123 | 83.30 204 | 63.94 163 | 86.80 136 | 90.33 104 | 69.91 143 | 77.48 111 | 85.53 185 | 58.44 153 | 93.75 102 | 73.60 98 | 76.85 186 | 90.71 108 |
|
v1141 | | | 80.19 103 | 79.31 99 | 82.85 119 | 83.84 191 | 64.12 158 | 87.14 122 | 90.08 115 | 73.13 97 | 78.27 93 | 86.39 167 | 62.67 105 | 93.75 102 | 75.40 83 | 76.83 188 | 90.68 109 |
|
divwei89l23v2f112 | | | 80.19 103 | 79.31 99 | 82.85 119 | 83.84 191 | 64.11 160 | 87.13 125 | 90.08 115 | 73.13 97 | 78.27 93 | 86.39 167 | 62.69 103 | 93.75 102 | 75.40 83 | 76.82 189 | 90.68 109 |
|
v1 | | | 80.19 103 | 79.31 99 | 82.85 119 | 83.83 193 | 64.12 158 | 87.14 122 | 90.07 117 | 73.13 97 | 78.27 93 | 86.38 169 | 62.72 102 | 93.75 102 | 75.41 82 | 76.82 189 | 90.68 109 |
|
QAPM | | | 80.88 82 | 79.50 94 | 85.03 54 | 88.01 120 | 68.97 68 | 91.59 23 | 92.00 51 | 66.63 181 | 75.15 149 | 92.16 44 | 57.70 157 | 95.45 36 | 63.52 169 | 88.76 78 | 90.66 112 |
|
v144192 | | | 79.47 118 | 78.37 121 | 82.78 126 | 83.35 201 | 63.96 162 | 86.96 131 | 90.36 102 | 69.99 142 | 77.50 110 | 85.67 181 | 60.66 140 | 93.77 100 | 74.27 91 | 76.58 192 | 90.62 113 |
|
v1240 | | | 78.99 128 | 77.78 133 | 82.64 130 | 83.21 205 | 63.54 166 | 86.62 142 | 90.30 106 | 69.74 148 | 77.33 113 | 85.68 180 | 57.04 163 | 93.76 101 | 73.13 101 | 76.92 183 | 90.62 113 |
|
v1144 | | | 80.03 107 | 79.03 107 | 83.01 109 | 83.78 194 | 64.51 146 | 87.11 127 | 90.57 94 | 71.96 120 | 78.08 102 | 86.20 172 | 61.41 128 | 93.94 86 | 74.93 87 | 77.23 176 | 90.60 115 |
|
testing_2 | | | 75.73 181 | 73.34 187 | 82.89 118 | 77.37 259 | 65.22 129 | 84.10 191 | 90.54 95 | 69.09 157 | 60.46 255 | 81.15 233 | 40.48 246 | 92.84 136 | 76.36 71 | 80.54 153 | 90.60 115 |
|
1112_ss | | | 77.40 165 | 76.43 151 | 80.32 175 | 89.11 91 | 60.41 200 | 83.65 195 | 87.72 170 | 62.13 220 | 73.05 165 | 86.72 151 | 62.58 109 | 89.97 193 | 62.11 181 | 80.80 147 | 90.59 117 |
|
v1neww | | | 80.40 94 | 79.54 90 | 82.98 111 | 84.10 180 | 64.51 146 | 87.57 106 | 90.22 108 | 73.25 94 | 78.47 85 | 86.65 158 | 62.83 97 | 93.86 92 | 75.72 77 | 77.02 180 | 90.58 118 |
|
v7new | | | 80.40 94 | 79.54 90 | 82.98 111 | 84.10 180 | 64.51 146 | 87.57 106 | 90.22 108 | 73.25 94 | 78.47 85 | 86.65 158 | 62.83 97 | 93.86 92 | 75.72 77 | 77.02 180 | 90.58 118 |
|
v6 | | | 80.40 94 | 79.54 90 | 82.98 111 | 84.09 182 | 64.50 149 | 87.57 106 | 90.22 108 | 73.25 94 | 78.47 85 | 86.63 160 | 62.84 96 | 93.86 92 | 75.73 76 | 77.02 180 | 90.58 118 |
|
CP-MVSNet | | | 78.22 137 | 78.34 122 | 77.84 204 | 87.83 124 | 54.54 248 | 87.94 98 | 91.17 81 | 77.65 28 | 73.48 161 | 88.49 119 | 62.24 118 | 88.43 212 | 62.19 179 | 74.07 217 | 90.55 121 |
|
PS-CasMVS | | | 78.01 144 | 78.09 126 | 77.77 206 | 87.71 128 | 54.39 250 | 88.02 94 | 91.22 78 | 77.50 34 | 73.26 162 | 88.64 114 | 60.73 138 | 88.41 213 | 61.88 182 | 73.88 221 | 90.53 122 |
|
v7 | | | 80.24 100 | 79.26 103 | 83.15 101 | 84.07 186 | 64.94 136 | 87.56 109 | 90.67 89 | 72.26 116 | 78.28 92 | 86.51 165 | 61.45 127 | 94.03 83 | 75.14 86 | 77.41 174 | 90.49 123 |
|
CDS-MVSNet | | | 79.07 126 | 77.70 135 | 83.17 100 | 87.60 130 | 68.23 84 | 84.40 185 | 86.20 185 | 67.49 174 | 76.36 128 | 86.54 164 | 61.54 125 | 90.79 184 | 61.86 183 | 87.33 93 | 90.49 123 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
TAMVS | | | 78.89 130 | 77.51 138 | 83.03 108 | 87.80 125 | 67.79 91 | 84.72 174 | 85.05 196 | 67.63 171 | 76.75 123 | 87.70 128 | 62.25 117 | 90.82 183 | 58.53 206 | 87.13 95 | 90.49 123 |
|
PEN-MVS | | | 77.73 151 | 77.69 136 | 77.84 204 | 87.07 140 | 53.91 252 | 87.91 100 | 91.18 80 | 77.56 32 | 73.14 164 | 88.82 110 | 61.23 132 | 89.17 203 | 59.95 194 | 72.37 228 | 90.43 126 |
|
Test_1112_low_res | | | 76.40 173 | 75.44 170 | 79.27 188 | 89.28 86 | 58.09 216 | 81.69 208 | 87.07 175 | 59.53 238 | 72.48 171 | 86.67 156 | 61.30 130 | 89.33 200 | 60.81 191 | 80.15 156 | 90.41 127 |
|
HY-MVS | | 69.67 12 | 77.95 146 | 77.15 144 | 80.36 173 | 87.57 134 | 60.21 201 | 83.37 200 | 87.78 169 | 66.11 184 | 75.37 142 | 87.06 147 | 63.27 86 | 90.48 188 | 61.38 187 | 82.43 134 | 90.40 128 |
|
114514_t | | | 80.68 88 | 79.51 93 | 84.20 75 | 94.09 18 | 67.27 98 | 89.64 53 | 91.11 82 | 58.75 242 | 74.08 158 | 90.72 73 | 58.10 155 | 95.04 53 | 69.70 130 | 89.42 71 | 90.30 129 |
|
PVSNet_Blended_VisFu | | | 82.62 60 | 81.83 65 | 84.96 56 | 90.80 61 | 69.76 54 | 88.74 73 | 91.70 65 | 69.39 150 | 78.96 77 | 88.46 120 | 65.47 69 | 94.87 61 | 74.42 89 | 88.57 82 | 90.24 130 |
|
MVS_111021_LR | | | 82.61 61 | 82.11 59 | 84.11 77 | 88.82 96 | 71.58 34 | 85.15 168 | 86.16 186 | 74.69 76 | 80.47 67 | 91.04 66 | 62.29 116 | 90.55 187 | 80.33 46 | 90.08 65 | 90.20 131 |
|
MSLP-MVS | | | 85.43 37 | 85.76 31 | 84.45 68 | 91.93 47 | 70.24 47 | 90.71 32 | 92.86 29 | 77.46 35 | 84.22 35 | 92.81 42 | 67.16 57 | 92.94 134 | 80.36 45 | 94.35 33 | 90.16 132 |
|
mvs_tets | | | 79.13 125 | 77.77 134 | 83.22 99 | 84.70 165 | 66.37 107 | 89.17 59 | 90.19 111 | 69.38 152 | 75.40 141 | 89.46 98 | 44.17 230 | 93.15 125 | 76.78 70 | 80.70 149 | 90.14 133 |
|
BH-RMVSNet | | | 79.61 113 | 78.44 119 | 83.14 102 | 89.38 79 | 65.93 112 | 84.95 171 | 87.15 174 | 73.56 90 | 78.19 98 | 89.79 88 | 56.67 164 | 93.36 118 | 59.53 199 | 86.74 99 | 90.13 134 |
|
v7n | | | 78.97 129 | 77.58 137 | 83.14 102 | 83.45 200 | 65.51 120 | 88.32 86 | 91.21 79 | 73.69 87 | 72.41 172 | 86.32 170 | 57.93 156 | 93.81 96 | 69.18 133 | 75.65 202 | 90.11 135 |
|
jajsoiax | | | 79.29 122 | 77.96 128 | 83.27 97 | 84.68 166 | 66.57 105 | 89.25 58 | 90.16 112 | 69.20 156 | 75.46 138 | 89.49 94 | 45.75 224 | 93.13 127 | 76.84 69 | 80.80 147 | 90.11 135 |
|
v148 | | | 78.72 131 | 77.80 132 | 81.47 157 | 82.73 218 | 61.96 190 | 86.30 150 | 88.08 165 | 73.26 93 | 76.18 132 | 85.47 187 | 62.46 113 | 92.36 147 | 71.92 117 | 73.82 222 | 90.09 137 |
|
GBi-Net | | | 78.40 134 | 77.40 139 | 81.40 159 | 87.60 130 | 63.01 178 | 88.39 83 | 89.28 134 | 71.63 123 | 75.34 143 | 87.28 139 | 54.80 173 | 91.11 174 | 62.72 173 | 79.57 158 | 90.09 137 |
|
test1 | | | 78.40 134 | 77.40 139 | 81.40 159 | 87.60 130 | 63.01 178 | 88.39 83 | 89.28 134 | 71.63 123 | 75.34 143 | 87.28 139 | 54.80 173 | 91.11 174 | 62.72 173 | 79.57 158 | 90.09 137 |
|
FMVSNet1 | | | 77.44 163 | 76.12 160 | 81.40 159 | 86.81 144 | 63.01 178 | 88.39 83 | 89.28 134 | 70.49 137 | 74.39 157 | 87.28 139 | 49.06 209 | 91.11 174 | 60.91 189 | 78.52 165 | 90.09 137 |
|
WR-MVS_H | | | 78.51 133 | 78.49 116 | 78.56 196 | 88.02 119 | 56.38 238 | 88.43 79 | 92.67 34 | 77.14 37 | 73.89 159 | 87.55 133 | 66.25 62 | 89.24 202 | 58.92 202 | 73.55 223 | 90.06 141 |
|
DTE-MVSNet | | | 76.99 167 | 76.80 148 | 77.54 209 | 86.24 149 | 53.06 255 | 87.52 111 | 90.66 91 | 77.08 40 | 72.50 170 | 88.67 113 | 60.48 143 | 89.52 198 | 57.33 216 | 70.74 238 | 90.05 142 |
|
v8 | | | 79.97 108 | 79.02 108 | 82.80 123 | 84.09 182 | 64.50 149 | 87.96 96 | 90.29 107 | 74.13 83 | 75.24 148 | 86.81 148 | 62.88 94 | 93.89 91 | 74.39 90 | 75.40 207 | 90.00 143 |
|
v10 | | | 79.74 112 | 78.67 111 | 82.97 114 | 84.06 187 | 64.95 135 | 87.88 101 | 90.62 92 | 73.11 100 | 75.11 150 | 86.56 163 | 61.46 126 | 94.05 82 | 73.68 95 | 75.55 204 | 89.90 144 |
|
MVSTER | | | 79.01 127 | 77.88 130 | 82.38 133 | 83.07 209 | 64.80 138 | 84.08 192 | 88.95 151 | 69.01 159 | 78.69 80 | 87.17 145 | 54.70 176 | 92.43 144 | 74.69 88 | 80.57 151 | 89.89 145 |
|
ACMP | | 74.13 6 | 81.51 77 | 80.57 77 | 84.36 70 | 89.42 78 | 68.69 78 | 89.97 46 | 91.50 73 | 74.46 77 | 75.04 152 | 90.41 77 | 53.82 184 | 94.54 67 | 77.56 60 | 82.91 127 | 89.86 146 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
LPG-MVS_test | | | 82.08 65 | 81.27 69 | 84.50 66 | 89.23 88 | 68.76 72 | 90.22 43 | 91.94 55 | 75.37 69 | 76.64 126 | 91.51 57 | 54.29 179 | 94.91 57 | 78.44 55 | 83.78 121 | 89.83 147 |
|
LGP-MVS_train | | | | | 84.50 66 | 89.23 88 | 68.76 72 | | 91.94 55 | 75.37 69 | 76.64 126 | 91.51 57 | 54.29 179 | 94.91 57 | 78.44 55 | 83.78 121 | 89.83 147 |
|
V42 | | | 79.38 121 | 78.24 125 | 82.83 122 | 81.10 235 | 65.50 121 | 85.55 164 | 89.82 122 | 71.57 126 | 78.21 97 | 86.12 173 | 60.66 140 | 93.18 124 | 75.64 80 | 75.46 206 | 89.81 149 |
|
MAR-MVS | | | 81.84 70 | 80.70 75 | 85.27 50 | 91.32 53 | 71.53 35 | 89.82 48 | 90.92 85 | 69.77 145 | 78.50 84 | 86.21 171 | 62.36 115 | 94.52 69 | 65.36 160 | 92.05 46 | 89.77 150 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
tpmp4_e23 | | | 73.45 194 | 71.17 203 | 80.31 176 | 83.55 198 | 59.56 205 | 81.88 206 | 82.33 219 | 57.94 247 | 70.51 190 | 81.62 229 | 51.19 201 | 91.63 165 | 53.96 227 | 77.51 173 | 89.75 151 |
|
v748 | | | 77.97 145 | 76.65 150 | 81.92 142 | 82.29 224 | 63.28 173 | 87.53 110 | 90.35 103 | 73.50 92 | 70.76 187 | 85.55 184 | 58.28 154 | 92.81 137 | 68.81 136 | 72.76 227 | 89.67 152 |
|
FMVSNet2 | | | 78.20 139 | 77.21 142 | 81.20 162 | 87.60 130 | 62.89 182 | 87.47 113 | 89.02 142 | 71.63 123 | 75.29 147 | 87.28 139 | 54.80 173 | 91.10 177 | 62.38 177 | 79.38 161 | 89.61 153 |
|
HyFIR | | | 77.49 161 | 77.16 143 | 78.47 199 | 88.18 114 | 58.04 217 | 75.75 245 | 84.17 204 | 60.53 228 | 76.25 129 | 89.49 94 | 62.42 114 | 87.81 218 | 68.64 137 | 89.00 73 | 89.56 154 |
|
FMVSNet3 | | | 77.88 149 | 76.85 147 | 80.97 167 | 86.84 143 | 62.36 185 | 86.52 144 | 88.77 158 | 71.13 128 | 75.34 143 | 86.66 157 | 54.07 182 | 91.10 177 | 62.72 173 | 79.57 158 | 89.45 155 |
|
cascas | | | 76.72 171 | 74.64 175 | 82.99 110 | 85.78 153 | 65.88 114 | 82.33 204 | 89.21 139 | 60.85 227 | 72.74 167 | 81.02 235 | 47.28 215 | 93.75 102 | 67.48 143 | 85.02 110 | 89.34 156 |
|
IB-MVS | | 68.01 15 | 75.85 180 | 73.36 186 | 83.31 95 | 84.76 164 | 66.03 109 | 83.38 199 | 85.06 195 | 70.21 141 | 69.40 205 | 81.05 234 | 45.76 223 | 94.66 66 | 65.10 162 | 75.49 205 | 89.25 157 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
v52 | | | 77.94 148 | 76.37 153 | 82.67 128 | 79.39 251 | 65.52 118 | 86.43 145 | 89.94 119 | 72.28 114 | 72.15 176 | 84.94 194 | 55.70 169 | 93.44 115 | 73.64 96 | 72.84 226 | 89.06 158 |
|
V4 | | | 77.95 146 | 76.37 153 | 82.67 128 | 79.40 250 | 65.52 118 | 86.43 145 | 89.94 119 | 72.28 114 | 72.14 177 | 84.95 193 | 55.72 168 | 93.44 115 | 73.64 96 | 72.86 225 | 89.05 159 |
|
EPNet_dtu | | | 75.46 183 | 74.86 173 | 77.23 213 | 82.57 221 | 54.60 247 | 86.89 133 | 83.09 212 | 71.64 122 | 66.25 237 | 85.86 177 | 55.99 167 | 88.04 215 | 54.92 223 | 86.55 101 | 89.05 159 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
PVSNet_Blended | | | 80.98 81 | 80.34 80 | 82.90 116 | 88.85 94 | 65.40 122 | 84.43 183 | 92.00 51 | 67.62 172 | 78.11 100 | 85.05 192 | 66.02 66 | 94.27 73 | 71.52 119 | 89.50 69 | 89.01 161 |
|
PAPM | | | 77.68 153 | 76.40 152 | 81.51 156 | 87.29 137 | 61.85 191 | 83.78 194 | 89.59 127 | 64.74 195 | 71.23 184 | 88.70 111 | 62.59 108 | 93.66 108 | 52.66 234 | 87.03 97 | 89.01 161 |
|
WTY-MVS | | | 75.65 182 | 75.68 168 | 75.57 224 | 86.40 148 | 56.82 230 | 77.92 234 | 82.40 218 | 65.10 193 | 76.18 132 | 87.72 127 | 63.13 92 | 80.90 246 | 60.31 193 | 81.96 137 | 89.00 163 |
|
无先验 | | | | | | | | 87.48 112 | 88.98 148 | 60.00 234 | | | | 94.12 79 | 67.28 145 | | 88.97 164 |
|
ACMM | | 73.20 8 | 80.78 87 | 79.84 86 | 83.58 89 | 89.31 85 | 68.37 81 | 89.99 45 | 91.60 68 | 70.28 139 | 77.25 115 | 89.66 90 | 53.37 186 | 93.53 111 | 74.24 92 | 82.85 128 | 88.85 165 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
原ACMM1 | | | | | 84.35 71 | 93.01 32 | 68.79 70 | | 92.44 38 | 63.96 205 | 81.09 63 | 91.57 56 | 66.06 65 | 95.45 36 | 67.19 147 | 94.82 25 | 88.81 166 |
|
CNLPA | | | 78.08 142 | 76.79 149 | 81.97 140 | 90.40 64 | 71.07 38 | 87.59 105 | 84.55 199 | 66.03 187 | 72.38 173 | 89.64 91 | 57.56 158 | 86.04 227 | 59.61 197 | 83.35 124 | 88.79 167 |
|
K. test v3 | | | 71.19 211 | 68.51 218 | 79.21 190 | 83.04 211 | 57.78 224 | 84.35 186 | 76.91 252 | 72.90 105 | 62.99 251 | 82.86 209 | 39.27 250 | 91.09 179 | 61.65 185 | 52.66 280 | 88.75 168 |
|
旧先验1 | | | | | | 91.96 46 | 65.79 116 | | 86.37 183 | | | 93.08 35 | 69.31 45 | | | 92.74 42 | 88.74 169 |
|
PatchmatchNet |  | | 73.12 200 | 71.33 200 | 78.49 198 | 83.18 207 | 60.85 196 | 79.63 222 | 78.57 244 | 64.13 201 | 71.73 180 | 79.81 244 | 51.20 200 | 85.97 228 | 57.40 215 | 76.36 196 | 88.66 170 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
SixPastTwentyTwo | | | 73.37 195 | 71.26 202 | 79.70 183 | 85.08 162 | 57.89 222 | 85.57 163 | 83.56 208 | 71.03 131 | 65.66 238 | 85.88 176 | 42.10 240 | 92.57 141 | 59.11 201 | 63.34 265 | 88.65 171 |
|
v18 | | | 77.67 155 | 76.35 157 | 81.64 152 | 84.09 182 | 64.47 151 | 87.27 119 | 89.01 144 | 72.59 112 | 69.39 206 | 82.04 219 | 62.85 95 | 91.80 154 | 72.72 104 | 67.20 249 | 88.63 172 |
|
v17 | | | 77.68 153 | 76.35 157 | 81.69 149 | 84.15 177 | 64.65 141 | 87.33 116 | 88.99 146 | 72.70 110 | 69.25 210 | 82.07 218 | 62.82 99 | 91.79 155 | 72.69 106 | 67.15 250 | 88.63 172 |
|
v16 | | | 77.69 152 | 76.36 156 | 81.68 150 | 84.15 177 | 64.63 143 | 87.33 116 | 88.99 146 | 72.69 111 | 69.31 209 | 82.08 217 | 62.80 100 | 91.79 155 | 72.70 105 | 67.23 248 | 88.63 172 |
|
v15 | | | 77.51 158 | 76.12 160 | 81.66 151 | 84.09 182 | 64.65 141 | 87.14 122 | 88.96 150 | 72.76 108 | 68.90 211 | 81.91 226 | 62.74 101 | 91.73 158 | 72.32 110 | 66.29 255 | 88.61 175 |
|
V14 | | | 77.52 156 | 76.12 160 | 81.70 148 | 84.15 177 | 64.77 139 | 87.21 121 | 88.95 151 | 72.80 107 | 68.79 212 | 81.94 225 | 62.69 103 | 91.72 160 | 72.31 111 | 66.27 256 | 88.60 176 |
|
V9 | | | 77.52 156 | 76.11 163 | 81.73 147 | 84.19 176 | 64.89 137 | 87.26 120 | 88.94 154 | 72.87 106 | 68.65 215 | 81.96 224 | 62.65 106 | 91.72 160 | 72.27 112 | 66.24 257 | 88.60 176 |
|
PS-MVSNAJ | | | 81.69 72 | 81.02 73 | 83.70 87 | 89.51 76 | 68.21 85 | 84.28 187 | 90.09 114 | 70.79 133 | 81.26 62 | 85.62 183 | 63.15 89 | 94.29 71 | 75.62 81 | 88.87 76 | 88.59 178 |
|
v12 | | | 77.51 158 | 76.09 164 | 81.76 146 | 84.22 173 | 64.99 134 | 87.30 118 | 88.93 155 | 72.92 103 | 68.48 219 | 81.97 222 | 62.54 110 | 91.70 163 | 72.24 113 | 66.21 259 | 88.58 179 |
|
v13 | | | 77.50 160 | 76.07 165 | 81.77 144 | 84.23 172 | 65.07 133 | 87.34 115 | 88.91 156 | 72.92 103 | 68.35 220 | 81.97 222 | 62.53 111 | 91.69 164 | 72.20 114 | 66.22 258 | 88.56 180 |
|
v11 | | | 77.45 162 | 76.06 166 | 81.59 155 | 84.22 173 | 64.52 144 | 87.11 127 | 89.02 142 | 72.76 108 | 68.76 213 | 81.90 227 | 62.09 120 | 91.71 162 | 71.98 115 | 66.73 251 | 88.56 180 |
|
DWT-MVSNet_test | | | 73.70 192 | 71.86 195 | 79.21 190 | 82.91 214 | 58.94 208 | 82.34 203 | 82.17 221 | 65.21 191 | 71.05 186 | 78.31 249 | 44.21 229 | 90.17 192 | 63.29 171 | 77.28 175 | 88.53 182 |
|
CostFormer | | | 75.24 186 | 73.90 184 | 79.27 188 | 82.65 220 | 58.27 215 | 80.80 212 | 82.73 216 | 61.57 223 | 75.33 146 | 83.13 207 | 55.52 170 | 91.07 180 | 64.98 164 | 78.34 169 | 88.45 183 |
|
lessismore_v0 | | | | | 78.97 192 | 81.01 236 | 57.15 227 | | 65.99 284 | | 61.16 253 | 82.82 210 | 39.12 251 | 91.34 169 | 59.67 196 | 46.92 284 | 88.43 184 |
|
OpenMVS |  | 72.83 10 | 79.77 111 | 78.33 123 | 84.09 78 | 85.17 159 | 69.91 51 | 90.57 34 | 90.97 84 | 66.70 177 | 72.17 174 | 91.91 48 | 54.70 176 | 93.96 84 | 61.81 184 | 90.95 56 | 88.41 185 |
|
OurMVSNet-221017-0 | | | 74.26 189 | 72.42 193 | 79.80 182 | 83.76 195 | 59.59 203 | 85.92 159 | 86.64 178 | 66.39 183 | 66.96 230 | 87.58 131 | 39.46 249 | 91.60 166 | 65.76 158 | 69.27 241 | 88.22 186 |
|
LS3D | | | 76.95 168 | 74.82 174 | 83.37 94 | 90.45 62 | 67.36 97 | 89.15 63 | 86.94 176 | 61.87 222 | 69.52 204 | 90.61 75 | 51.71 197 | 94.53 68 | 46.38 256 | 86.71 100 | 88.21 187 |
|
PatchFormer-LS_test | | | 74.50 187 | 73.05 188 | 78.86 193 | 82.95 213 | 59.55 206 | 81.65 209 | 82.30 220 | 67.44 175 | 71.62 182 | 78.15 251 | 52.34 190 | 88.92 210 | 65.05 163 | 75.90 200 | 88.12 188 |
|
XVG-ACMP-BASELINE | | | 76.11 177 | 74.27 181 | 81.62 153 | 83.20 206 | 64.67 140 | 83.60 197 | 89.75 124 | 69.75 146 | 71.85 179 | 87.09 146 | 32.78 265 | 92.11 152 | 69.99 128 | 80.43 154 | 88.09 189 |
|
tpm2 | | | 73.26 198 | 71.46 198 | 78.63 195 | 83.34 202 | 56.71 233 | 80.65 215 | 80.40 233 | 56.63 254 | 73.55 160 | 82.02 220 | 51.80 196 | 91.24 171 | 56.35 220 | 78.42 168 | 87.95 190 |
|
MDTV_nov1_ep13_2view | | | | | | | 37.79 286 | 75.16 248 | | 55.10 258 | 66.53 234 | | 49.34 206 | | 53.98 226 | | 87.94 191 |
|
PLC |  | 70.83 11 | 78.05 143 | 76.37 153 | 83.08 105 | 91.88 49 | 67.80 90 | 88.19 91 | 89.46 131 | 64.33 200 | 69.87 202 | 88.38 121 | 53.66 185 | 93.58 109 | 58.86 203 | 82.73 130 | 87.86 192 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
tpm | | | 72.37 207 | 71.71 197 | 74.35 233 | 82.19 225 | 52.00 256 | 79.22 226 | 77.29 250 | 64.56 197 | 72.95 166 | 83.68 204 | 51.35 199 | 83.26 240 | 58.33 208 | 75.80 201 | 87.81 193 |
|
F-COLMAP | | | 76.38 174 | 74.33 180 | 82.50 131 | 89.28 86 | 66.95 103 | 88.41 82 | 89.03 141 | 64.05 202 | 66.83 231 | 88.61 115 | 46.78 218 | 92.89 135 | 57.48 213 | 78.55 164 | 87.67 194 |
|
Baseline_NR-MVSNet | | | 78.15 141 | 78.33 123 | 77.61 208 | 85.79 152 | 56.21 241 | 86.78 138 | 85.76 190 | 73.60 89 | 77.93 104 | 87.57 132 | 65.02 73 | 88.99 205 | 67.14 148 | 75.33 208 | 87.63 195 |
|
ACMH+ | | 68.96 14 | 76.01 178 | 74.01 182 | 82.03 139 | 88.60 103 | 65.31 127 | 88.86 67 | 87.55 172 | 70.25 140 | 67.75 223 | 87.47 136 | 41.27 243 | 93.19 123 | 58.37 207 | 75.94 199 | 87.60 196 |
|
liao1 | | | 76.53 172 | 75.30 171 | 80.21 178 | 83.93 189 | 62.32 187 | 84.66 175 | 88.81 157 | 60.23 232 | 70.16 194 | 84.07 198 | 55.30 172 | 90.73 185 | 67.37 144 | 83.21 126 | 87.59 197 |
|
API-MVS | | | 81.99 68 | 81.23 70 | 84.26 74 | 90.94 57 | 70.18 50 | 91.10 29 | 89.32 133 | 71.51 127 | 78.66 82 | 88.28 124 | 65.26 70 | 95.10 51 | 64.74 166 | 91.23 54 | 87.51 198 |
|
AdaColmap |  | | 80.58 91 | 79.42 95 | 84.06 79 | 93.09 31 | 68.91 69 | 89.36 56 | 88.97 149 | 69.27 154 | 75.70 136 | 89.69 89 | 57.20 161 | 95.77 28 | 63.06 172 | 88.41 86 | 87.50 199 |
|
PVSNet_BlendedMVS | | | 80.60 89 | 80.02 84 | 82.36 134 | 88.85 94 | 65.40 122 | 86.16 152 | 92.00 51 | 69.34 153 | 78.11 100 | 86.09 174 | 66.02 66 | 94.27 73 | 71.52 119 | 82.06 136 | 87.39 200 |
|
sss | | | 73.60 193 | 73.64 185 | 73.51 237 | 82.80 216 | 55.01 246 | 76.12 240 | 81.69 225 | 62.47 217 | 74.68 155 | 85.85 178 | 57.32 159 | 78.11 257 | 60.86 190 | 80.93 145 | 87.39 200 |
|
PVSNet | | 64.34 18 | 72.08 208 | 70.87 206 | 75.69 223 | 86.21 150 | 56.44 237 | 74.37 253 | 80.73 230 | 62.06 221 | 70.17 193 | 82.23 215 | 42.86 236 | 83.31 239 | 54.77 224 | 84.45 117 | 87.32 202 |
|
新几何1 | | | | | 83.42 91 | 93.13 28 | 70.71 44 | | 85.48 191 | 57.43 250 | 81.80 57 | 91.98 47 | 63.28 85 | 92.27 149 | 64.60 167 | 92.99 39 | 87.27 203 |
|
liao | | | 80.84 83 | 79.77 87 | 84.05 80 | 93.11 30 | 70.78 43 | 84.66 175 | 85.42 192 | 57.37 251 | 81.76 58 | 92.02 46 | 63.41 83 | 94.12 79 | 67.28 145 | 92.93 40 | 87.26 204 |
|
TR-MVS | | | 77.44 163 | 76.18 159 | 81.20 162 | 88.24 113 | 63.24 174 | 84.61 178 | 86.40 182 | 67.55 173 | 77.81 105 | 86.48 166 | 54.10 181 | 93.15 125 | 57.75 212 | 82.72 131 | 87.20 205 |
|
TransMVSNet (Re) | | | 75.39 185 | 74.56 177 | 77.86 203 | 85.50 157 | 57.10 228 | 86.78 138 | 86.09 188 | 72.17 118 | 71.53 183 | 87.34 138 | 63.01 93 | 89.31 201 | 56.84 218 | 61.83 268 | 87.17 206 |
|
ACMH | | 67.68 16 | 75.89 179 | 73.93 183 | 81.77 144 | 88.71 101 | 66.61 104 | 88.62 75 | 89.01 144 | 69.81 144 | 66.78 232 | 86.70 155 | 41.95 242 | 91.51 167 | 55.64 222 | 78.14 170 | 87.17 206 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
EPMVS | | | 69.02 225 | 68.16 222 | 71.59 242 | 79.61 247 | 49.80 267 | 77.40 236 | 66.93 283 | 62.82 214 | 70.01 196 | 79.05 245 | 45.79 222 | 77.86 259 | 56.58 219 | 75.26 209 | 87.13 208 |
|
CR-MVSNet | | | 73.37 195 | 71.27 201 | 79.67 184 | 81.32 233 | 65.19 130 | 75.92 242 | 80.30 234 | 59.92 235 | 72.73 168 | 81.19 231 | 52.50 188 | 86.69 222 | 59.84 195 | 77.71 171 | 87.11 209 |
|
RPMNet | | | 71.62 209 | 68.94 216 | 79.67 184 | 81.32 233 | 65.19 130 | 75.92 242 | 78.30 246 | 57.60 249 | 72.73 168 | 76.45 258 | 52.30 191 | 86.69 222 | 48.14 250 | 77.71 171 | 87.11 209 |
|
XXY-MVS | | | 75.41 184 | 75.56 169 | 74.96 227 | 83.59 197 | 57.82 223 | 80.59 217 | 83.87 206 | 66.54 182 | 74.93 153 | 88.31 123 | 63.24 87 | 80.09 250 | 62.16 180 | 76.85 186 | 86.97 211 |
|
tpmrst | | | 72.39 205 | 72.13 194 | 73.18 239 | 80.54 240 | 49.91 266 | 79.91 221 | 79.08 242 | 63.11 208 | 71.69 181 | 79.95 241 | 55.32 171 | 82.77 241 | 65.66 159 | 73.89 220 | 86.87 212 |
|
ITE_SJBPF | | | | | 78.22 201 | 81.77 228 | 60.57 198 | | 83.30 210 | 69.25 155 | 67.54 225 | 87.20 144 | 36.33 260 | 87.28 220 | 54.34 225 | 74.62 213 | 86.80 213 |
|
test222 | | | | | | 91.50 51 | 68.26 83 | 84.16 189 | 83.20 211 | 54.63 260 | 79.74 69 | 91.63 54 | 58.97 151 | | | 91.42 52 | 86.77 214 |
|
MIMVSNet | | | 70.69 216 | 69.30 211 | 74.88 228 | 84.52 167 | 56.35 239 | 75.87 244 | 79.42 241 | 64.59 196 | 67.76 222 | 82.41 212 | 41.10 244 | 81.54 245 | 46.64 255 | 81.34 142 | 86.75 215 |
|
BH-untuned | | | 79.47 118 | 78.60 113 | 82.05 138 | 89.19 90 | 65.91 113 | 86.07 155 | 88.52 160 | 72.18 117 | 75.42 140 | 87.69 129 | 61.15 133 | 93.54 110 | 60.38 192 | 86.83 98 | 86.70 216 |
|
LTVRE_ROB | | 69.57 13 | 76.25 175 | 74.54 178 | 81.41 158 | 88.60 103 | 64.38 154 | 79.24 225 | 89.12 140 | 70.76 134 | 69.79 203 | 87.86 126 | 49.09 208 | 93.20 122 | 56.21 221 | 80.16 155 | 86.65 217 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
testdata | | | | | 79.97 180 | 90.90 58 | 64.21 155 | | 84.71 197 | 59.27 239 | 85.40 16 | 92.91 36 | 62.02 121 | 89.08 204 | 68.95 134 | 91.37 53 | 86.63 218 |
|
MIMVSNet1 | | | 68.58 227 | 66.78 231 | 73.98 236 | 80.07 243 | 51.82 257 | 80.77 213 | 84.37 200 | 64.40 199 | 59.75 258 | 82.16 216 | 36.47 259 | 83.63 237 | 42.73 263 | 70.33 239 | 86.48 219 |
|
tpm cat1 | | | 70.57 217 | 68.31 220 | 77.35 211 | 82.41 223 | 57.95 221 | 78.08 233 | 80.22 236 | 52.04 269 | 68.54 218 | 77.66 254 | 52.00 195 | 87.84 217 | 51.77 235 | 72.07 231 | 86.25 220 |
|
CVMVSNet | | | 72.99 202 | 72.58 191 | 74.25 234 | 84.28 170 | 50.85 264 | 86.41 147 | 83.45 209 | 44.56 277 | 73.23 163 | 87.54 134 | 49.38 205 | 85.70 229 | 65.90 156 | 78.44 167 | 86.19 221 |
|
AllTest | | | 70.96 213 | 68.09 224 | 79.58 186 | 85.15 160 | 63.62 164 | 84.58 179 | 79.83 238 | 62.31 218 | 60.32 256 | 86.73 149 | 32.02 266 | 88.96 208 | 50.28 240 | 71.57 234 | 86.15 222 |
|
TestCases | | | | | 79.58 186 | 85.15 160 | 63.62 164 | | 79.83 238 | 62.31 218 | 60.32 256 | 86.73 149 | 32.02 266 | 88.96 208 | 50.28 240 | 71.57 234 | 86.15 222 |
|
test-LLR | | | 72.94 203 | 72.43 192 | 74.48 231 | 81.35 231 | 58.04 217 | 78.38 230 | 77.46 248 | 66.66 178 | 69.95 200 | 79.00 247 | 48.06 212 | 79.24 252 | 66.13 152 | 84.83 112 | 86.15 222 |
|
test-mter | | | 71.41 210 | 70.39 209 | 74.48 231 | 81.35 231 | 58.04 217 | 78.38 230 | 77.46 248 | 60.32 231 | 69.95 200 | 79.00 247 | 36.08 261 | 79.24 252 | 66.13 152 | 84.83 112 | 86.15 222 |
|
IterMVS | | | 74.29 188 | 72.94 189 | 78.35 200 | 81.53 230 | 63.49 167 | 81.58 210 | 82.49 217 | 68.06 169 | 69.99 199 | 83.69 203 | 51.66 198 | 85.54 230 | 65.85 157 | 71.64 233 | 86.01 226 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
DP-MVS | | | 76.78 170 | 74.57 176 | 83.42 91 | 93.29 25 | 69.46 61 | 88.55 78 | 83.70 207 | 63.98 204 | 70.20 192 | 88.89 108 | 54.01 183 | 94.80 63 | 46.66 253 | 81.88 139 | 86.01 226 |
|
Patchmtry | | | 70.74 215 | 69.16 213 | 75.49 225 | 80.72 237 | 54.07 251 | 74.94 252 | 80.30 234 | 58.34 243 | 70.01 196 | 81.19 231 | 52.50 188 | 86.54 224 | 53.37 230 | 71.09 236 | 85.87 228 |
|
UnsupCasMVSNet_eth | | | 67.33 233 | 65.99 234 | 71.37 244 | 73.48 271 | 51.47 261 | 75.16 248 | 85.19 194 | 65.20 192 | 60.78 254 | 80.93 237 | 42.35 237 | 77.20 261 | 57.12 217 | 53.69 279 | 85.44 229 |
|
PatchT | | | 68.46 229 | 67.85 227 | 70.29 249 | 80.70 238 | 43.93 276 | 72.47 256 | 74.88 260 | 60.15 233 | 70.55 188 | 76.57 257 | 49.94 203 | 81.59 244 | 50.58 239 | 74.83 212 | 85.34 230 |
|
ADS-MVSNet2 | | | 66.20 240 | 63.33 240 | 74.82 229 | 79.92 244 | 58.75 210 | 67.55 274 | 75.19 258 | 53.37 265 | 65.25 241 | 75.86 259 | 42.32 238 | 80.53 248 | 41.57 265 | 68.91 243 | 85.18 231 |
|
ADS-MVSNet | | | 64.36 243 | 62.88 243 | 68.78 255 | 79.92 244 | 47.17 271 | 67.55 274 | 71.18 275 | 53.37 265 | 65.25 241 | 75.86 259 | 42.32 238 | 73.99 272 | 41.57 265 | 68.91 243 | 85.18 231 |
|
FMVSNet5 | | | 69.50 223 | 67.96 225 | 74.15 235 | 82.97 212 | 55.35 245 | 80.01 220 | 82.12 222 | 62.56 216 | 63.02 249 | 81.53 230 | 36.92 258 | 81.92 243 | 48.42 248 | 74.06 218 | 85.17 233 |
|
pm-mvs1 | | | 70.87 214 | 69.03 214 | 76.39 218 | 79.41 249 | 58.92 209 | 80.64 216 | 78.89 243 | 55.71 256 | 67.14 229 | 83.58 205 | 48.48 211 | 85.25 232 | 52.94 233 | 74.48 215 | 84.99 234 |
|
CMPMVS |  | 51.72 21 | 70.19 220 | 68.16 222 | 76.28 219 | 73.15 273 | 57.55 225 | 79.47 224 | 83.92 205 | 48.02 275 | 56.48 267 | 84.81 195 | 43.13 233 | 86.42 226 | 62.67 176 | 81.81 140 | 84.89 235 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
testgi | | | 66.67 237 | 66.53 233 | 67.08 258 | 75.62 266 | 41.69 281 | 75.93 241 | 76.50 253 | 66.11 184 | 65.20 243 | 86.59 161 | 35.72 262 | 74.71 268 | 43.71 262 | 73.38 224 | 84.84 236 |
|
MSDG | | | 73.36 197 | 70.99 204 | 80.49 172 | 84.51 168 | 65.80 115 | 80.71 214 | 86.13 187 | 65.70 189 | 65.46 239 | 83.74 202 | 44.60 227 | 90.91 182 | 51.13 238 | 76.89 184 | 84.74 237 |
|
gg-mvs-nofinetune | | | 69.95 221 | 67.96 225 | 75.94 221 | 83.07 209 | 54.51 249 | 77.23 237 | 70.29 277 | 63.11 208 | 70.32 191 | 62.33 278 | 43.62 232 | 88.69 211 | 53.88 228 | 87.76 89 | 84.62 238 |
|
BH-w/o | | | 78.21 138 | 77.33 141 | 80.84 168 | 88.81 97 | 65.13 132 | 84.87 172 | 87.85 168 | 69.75 146 | 74.52 156 | 84.74 197 | 61.34 129 | 93.11 128 | 58.24 209 | 85.84 109 | 84.27 239 |
|
HC-MVS | | | 78.19 140 | 76.99 145 | 81.78 143 | 85.66 154 | 66.99 100 | 84.66 175 | 90.47 97 | 55.08 259 | 72.02 178 | 85.27 190 | 63.83 81 | 94.11 81 | 66.10 154 | 89.80 68 | 84.24 240 |
|
COLMAP_ROB |  | 66.92 17 | 73.01 201 | 70.41 208 | 80.81 169 | 87.13 139 | 65.63 117 | 88.30 87 | 84.19 203 | 62.96 211 | 63.80 248 | 87.69 129 | 38.04 254 | 92.56 142 | 46.66 253 | 74.91 211 | 84.24 240 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
TESTMET0.1,1 | | | 69.89 222 | 69.00 215 | 72.55 240 | 79.27 253 | 56.85 229 | 78.38 230 | 74.71 264 | 57.64 248 | 68.09 221 | 77.19 256 | 37.75 255 | 76.70 262 | 63.92 168 | 84.09 119 | 84.10 242 |
|
tpmvs | | | 71.09 212 | 69.29 212 | 76.49 217 | 82.04 226 | 56.04 242 | 78.92 229 | 81.37 227 | 64.05 202 | 67.18 228 | 78.28 250 | 49.74 204 | 89.77 194 | 49.67 245 | 72.37 228 | 83.67 243 |
|
test20.03 | | | 67.45 232 | 66.95 230 | 68.94 252 | 75.48 268 | 44.84 274 | 77.50 235 | 77.67 247 | 66.66 178 | 63.01 250 | 83.80 200 | 47.02 216 | 78.40 255 | 42.53 264 | 68.86 245 | 83.58 244 |
|
test0.0.03 1 | | | 68.00 230 | 67.69 228 | 68.90 253 | 77.55 257 | 47.43 270 | 75.70 246 | 72.95 272 | 66.66 178 | 66.56 233 | 82.29 214 | 48.06 212 | 75.87 265 | 44.97 261 | 74.51 214 | 83.41 245 |
|
EU-MVSNet | | | 68.53 228 | 67.61 229 | 71.31 247 | 78.51 256 | 47.01 272 | 84.47 180 | 84.27 202 | 42.27 278 | 66.44 236 | 84.79 196 | 40.44 247 | 83.76 235 | 58.76 205 | 68.54 247 | 83.17 246 |
|
dp | | | 66.80 235 | 65.43 235 | 70.90 248 | 79.74 246 | 48.82 269 | 75.12 250 | 74.77 262 | 59.61 237 | 64.08 247 | 77.23 255 | 42.89 235 | 80.72 247 | 48.86 247 | 66.58 253 | 83.16 247 |
|
YYNet1 | | | 65.03 241 | 62.91 242 | 71.38 243 | 75.85 263 | 56.60 235 | 69.12 268 | 74.66 266 | 57.28 252 | 54.12 270 | 77.87 253 | 45.85 221 | 74.48 269 | 49.95 243 | 61.52 270 | 83.05 248 |
|
MDA-MVSNet-bldmvs | | | 66.68 236 | 63.66 239 | 75.75 222 | 79.28 252 | 60.56 199 | 73.92 254 | 78.35 245 | 64.43 198 | 50.13 278 | 79.87 243 | 44.02 231 | 83.67 236 | 46.10 257 | 56.86 274 | 83.03 249 |
|
MDA-MVSNet_test_wron | | | 65.03 241 | 62.92 241 | 71.37 244 | 75.93 262 | 56.73 231 | 69.09 269 | 74.73 263 | 57.28 252 | 54.03 271 | 77.89 252 | 45.88 220 | 74.39 270 | 49.89 244 | 61.55 269 | 82.99 250 |
|
USDC | | | 70.33 219 | 68.37 219 | 76.21 220 | 80.60 239 | 56.23 240 | 79.19 227 | 86.49 180 | 60.89 226 | 61.29 252 | 85.47 187 | 31.78 268 | 89.47 199 | 53.37 230 | 76.21 197 | 82.94 251 |
|
OpenMVS_ROB |  | 64.09 19 | 70.56 218 | 68.19 221 | 77.65 207 | 80.26 241 | 59.41 207 | 85.01 170 | 82.96 214 | 58.76 241 | 65.43 240 | 82.33 213 | 37.63 257 | 91.23 172 | 45.34 260 | 76.03 198 | 82.32 252 |
|
JIA-IIPM | | | 66.32 239 | 62.82 244 | 76.82 215 | 77.09 260 | 61.72 192 | 65.34 278 | 75.38 256 | 58.04 246 | 64.51 245 | 62.32 279 | 42.05 241 | 86.51 225 | 51.45 237 | 69.22 242 | 82.21 253 |
|
EG-PatchMatch MVS | | | 74.04 190 | 71.82 196 | 80.71 171 | 84.92 163 | 67.42 94 | 85.86 160 | 88.08 165 | 66.04 186 | 64.22 246 | 83.85 199 | 35.10 263 | 92.56 142 | 57.44 214 | 80.83 146 | 82.16 254 |
|
MV-PatchMatch | | | 76.12 176 | 74.46 179 | 81.13 165 | 85.37 158 | 69.79 53 | 84.42 184 | 87.95 167 | 65.03 194 | 67.46 226 | 85.33 189 | 53.28 187 | 91.73 158 | 58.01 211 | 83.27 125 | 81.85 255 |
|
TDRefinement | | | 67.49 231 | 64.34 237 | 76.92 214 | 73.47 272 | 61.07 193 | 84.86 173 | 82.98 213 | 59.77 236 | 58.30 261 | 85.13 191 | 26.06 273 | 87.89 216 | 47.92 251 | 60.59 272 | 81.81 256 |
|
Patchmatch-RL test | | | 68.82 226 | 66.60 232 | 75.47 226 | 77.43 258 | 59.57 204 | 71.16 258 | 70.33 276 | 62.94 212 | 68.65 215 | 81.66 228 | 31.06 269 | 85.49 231 | 69.58 131 | 66.58 253 | 81.34 257 |
|
test_0402 | | | 72.79 204 | 70.44 207 | 79.84 181 | 88.13 116 | 65.99 111 | 85.93 158 | 84.29 201 | 65.57 190 | 67.40 227 | 85.49 186 | 46.92 217 | 92.61 140 | 35.88 272 | 74.38 216 | 80.94 258 |
|
UnsupCasMVSNet_bld | | | 63.70 245 | 61.53 246 | 70.21 250 | 73.69 270 | 51.39 262 | 72.82 255 | 81.89 223 | 55.63 257 | 57.81 262 | 71.80 267 | 38.67 252 | 78.61 254 | 49.26 246 | 52.21 281 | 80.63 259 |
|
LCM-MVSNet | | | 54.25 256 | 49.68 263 | 67.97 257 | 53.73 292 | 45.28 273 | 66.85 277 | 80.78 229 | 35.96 284 | 39.45 284 | 62.23 280 | 8.70 293 | 78.06 258 | 48.24 249 | 51.20 282 | 80.57 260 |
|
N_pmnet | | | 52.79 259 | 53.26 257 | 51.40 276 | 78.99 254 | 7.68 301 | 69.52 265 | 3.89 299 | 51.63 271 | 57.01 266 | 74.98 261 | 40.83 245 | 65.96 285 | 37.78 270 | 64.67 262 | 80.56 261 |
|
TinyColmap | | | 67.30 234 | 64.81 236 | 74.76 230 | 81.92 227 | 56.68 234 | 80.29 218 | 81.49 226 | 60.33 230 | 56.27 268 | 83.22 206 | 24.77 275 | 87.66 219 | 45.52 258 | 69.47 240 | 79.95 262 |
|
PM-MVS | | | 66.41 238 | 64.14 238 | 73.20 238 | 73.92 269 | 56.45 236 | 78.97 228 | 64.96 287 | 63.88 206 | 64.72 244 | 80.24 239 | 19.84 282 | 83.44 238 | 66.24 151 | 64.52 263 | 79.71 263 |
|
ANet_high | | | 50.57 263 | 46.10 265 | 63.99 261 | 48.67 295 | 39.13 283 | 70.99 261 | 80.85 228 | 61.39 224 | 31.18 287 | 57.70 283 | 17.02 285 | 73.65 273 | 31.22 281 | 15.89 295 | 79.18 264 |
|
LF4IMVS | | | 64.02 244 | 62.19 245 | 69.50 251 | 70.90 277 | 53.29 254 | 76.13 239 | 77.18 251 | 52.65 268 | 58.59 259 | 80.98 236 | 23.55 276 | 76.52 263 | 53.06 232 | 66.66 252 | 78.68 265 |
|
PatchMatch-RL | | | 72.38 206 | 70.90 205 | 76.80 216 | 88.60 103 | 67.38 96 | 79.53 223 | 76.17 254 | 62.75 215 | 69.36 207 | 82.00 221 | 45.51 225 | 84.89 233 | 53.62 229 | 80.58 150 | 78.12 266 |
|
1111 | | | 57.11 254 | 56.82 255 | 57.97 269 | 69.10 279 | 28.28 293 | 68.90 270 | 74.54 267 | 54.01 262 | 53.71 272 | 74.51 262 | 23.09 277 | 67.90 283 | 32.28 277 | 61.26 271 | 77.73 267 |
|
MS-PatchMatch | | | 73.83 191 | 72.67 190 | 77.30 212 | 83.87 190 | 66.02 110 | 81.82 207 | 84.66 198 | 61.37 225 | 68.61 217 | 82.82 210 | 47.29 214 | 88.21 214 | 59.27 200 | 84.32 118 | 77.68 268 |
|
testus | | | 59.00 250 | 57.91 249 | 62.25 265 | 72.25 274 | 39.09 284 | 69.74 263 | 75.02 259 | 53.04 267 | 57.21 265 | 73.72 264 | 18.76 284 | 70.33 279 | 32.86 275 | 68.57 246 | 77.35 269 |
|
LP | | | 61.36 247 | 57.78 250 | 72.09 241 | 75.54 267 | 58.53 212 | 67.16 276 | 75.22 257 | 51.90 270 | 54.13 269 | 69.97 271 | 37.73 256 | 80.45 249 | 32.74 276 | 55.63 276 | 77.29 270 |
|
DSMNet-mixed | | | 57.77 253 | 56.90 253 | 60.38 266 | 67.70 283 | 35.61 288 | 69.18 267 | 53.97 290 | 32.30 289 | 57.49 264 | 79.88 242 | 40.39 248 | 68.57 282 | 38.78 269 | 72.37 228 | 76.97 271 |
|
test2356 | | | 59.50 248 | 58.08 248 | 63.74 262 | 71.23 276 | 41.88 279 | 67.59 273 | 72.42 274 | 53.72 264 | 57.65 263 | 70.74 269 | 26.31 272 | 72.40 275 | 32.03 279 | 71.06 237 | 76.93 272 |
|
test1235678 | | | 58.74 251 | 56.89 254 | 64.30 260 | 69.70 278 | 41.87 280 | 71.05 259 | 74.87 261 | 54.06 261 | 50.63 277 | 71.53 268 | 25.30 274 | 74.10 271 | 31.80 280 | 63.10 266 | 76.93 272 |
|
testmv | | | 53.85 257 | 51.03 259 | 62.31 264 | 61.46 287 | 38.88 285 | 70.95 262 | 74.69 265 | 51.11 272 | 41.26 281 | 66.85 274 | 14.28 287 | 72.13 276 | 29.19 282 | 49.51 283 | 75.93 274 |
|
PMMVS | | | 69.34 224 | 68.67 217 | 71.35 246 | 75.67 265 | 62.03 189 | 75.17 247 | 73.46 270 | 50.00 273 | 68.68 214 | 79.05 245 | 52.07 194 | 78.13 256 | 61.16 188 | 82.77 129 | 73.90 275 |
|
pmmvs3 | | | 57.79 252 | 54.26 256 | 68.37 256 | 64.02 285 | 56.72 232 | 75.12 250 | 65.17 285 | 40.20 280 | 52.93 274 | 69.86 272 | 20.36 280 | 75.48 267 | 45.45 259 | 55.25 278 | 72.90 276 |
|
PVSNet_0 | | 57.27 20 | 61.67 246 | 59.27 247 | 68.85 254 | 79.61 247 | 57.44 226 | 68.01 272 | 73.44 271 | 55.93 255 | 58.54 260 | 70.41 270 | 44.58 228 | 77.55 260 | 47.01 252 | 35.91 286 | 71.55 277 |
|
no-one | | | 51.08 261 | 45.79 266 | 66.95 259 | 57.92 290 | 50.49 265 | 59.63 285 | 76.04 255 | 48.04 274 | 31.85 285 | 56.10 285 | 19.12 283 | 80.08 251 | 36.89 271 | 26.52 288 | 70.29 278 |
|
PMMVS2 | | | 40.82 268 | 38.86 269 | 46.69 278 | 53.84 291 | 16.45 299 | 48.61 289 | 49.92 293 | 37.49 283 | 31.67 286 | 60.97 281 | 8.14 294 | 56.42 288 | 28.42 283 | 30.72 287 | 67.19 279 |
|
test12356 | | | 49.28 264 | 48.51 264 | 51.59 275 | 62.06 286 | 19.11 298 | 60.40 283 | 72.45 273 | 47.60 276 | 40.64 283 | 65.68 275 | 13.84 288 | 68.72 281 | 27.29 284 | 46.67 285 | 66.94 280 |
|
new_pmnet | | | 50.91 262 | 50.29 260 | 52.78 274 | 68.58 282 | 34.94 291 | 63.71 281 | 56.63 289 | 39.73 281 | 44.95 279 | 65.47 276 | 21.93 279 | 58.48 287 | 34.98 273 | 56.62 275 | 64.92 281 |
|
MVS-HIRNet | | | 59.14 249 | 57.67 251 | 63.57 263 | 81.65 229 | 43.50 277 | 71.73 257 | 65.06 286 | 39.59 282 | 51.43 276 | 57.73 282 | 38.34 253 | 82.58 242 | 39.53 268 | 73.95 219 | 64.62 282 |
|
wuykxyi23d | | | 39.76 269 | 33.18 272 | 59.51 268 | 46.98 296 | 44.01 275 | 57.70 286 | 67.74 282 | 24.13 291 | 13.98 296 | 34.33 290 | 1.27 298 | 71.33 278 | 34.23 274 | 18.23 291 | 63.18 283 |
|
FPMVS | | | 53.68 258 | 51.64 258 | 59.81 267 | 65.08 284 | 51.03 263 | 69.48 266 | 69.58 279 | 41.46 279 | 40.67 282 | 72.32 266 | 16.46 286 | 70.00 280 | 24.24 287 | 65.42 261 | 58.40 284 |
|
HyFIR lowres test | | | 51.79 260 | 50.01 262 | 57.11 270 | 68.82 281 | 49.21 268 | 60.50 282 | 53.26 291 | 34.52 285 | 43.77 280 | 64.94 277 | 20.34 281 | 71.75 277 | 39.87 267 | 64.06 264 | 50.39 285 |
|
PMVS |  | 37.38 22 | 44.16 267 | 40.28 268 | 55.82 271 | 40.82 298 | 42.54 278 | 65.12 279 | 63.99 288 | 34.43 286 | 24.48 289 | 57.12 284 | 3.92 295 | 76.17 264 | 17.10 290 | 55.52 277 | 48.75 286 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVE |  | 26.22 23 | 30.37 274 | 25.89 276 | 43.81 279 | 44.55 297 | 35.46 290 | 28.87 294 | 39.07 296 | 18.20 293 | 18.58 293 | 40.18 288 | 2.68 296 | 47.37 291 | 17.07 291 | 23.78 290 | 48.60 287 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
testpf | | | 56.51 255 | 57.58 252 | 53.30 273 | 71.99 275 | 41.19 282 | 46.89 290 | 69.32 281 | 58.06 245 | 52.87 275 | 69.45 273 | 27.99 271 | 72.73 274 | 59.59 198 | 62.07 267 | 45.98 288 |
|
PNet_i23d | | | 38.26 270 | 35.42 270 | 46.79 277 | 58.74 288 | 35.48 289 | 59.65 284 | 51.25 292 | 32.45 288 | 23.44 292 | 47.53 287 | 2.04 297 | 58.96 286 | 25.60 286 | 18.09 293 | 45.92 289 |
|
Gipuma |  | | 45.18 266 | 41.86 267 | 55.16 272 | 77.03 261 | 51.52 260 | 32.50 293 | 80.52 231 | 32.46 287 | 27.12 288 | 35.02 289 | 9.52 292 | 75.50 266 | 22.31 288 | 60.21 273 | 38.45 290 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
DeepMVS_CX |  | | | | 27.40 284 | 40.17 299 | 26.90 296 | | 24.59 298 | 17.44 294 | 23.95 290 | 48.61 286 | 9.77 291 | 26.48 292 | 18.06 289 | 24.47 289 | 28.83 291 |
|
E-PMN | | | 31.77 272 | 30.64 273 | 35.15 280 | 52.87 293 | 27.67 295 | 57.09 287 | 47.86 294 | 24.64 290 | 16.40 294 | 33.05 291 | 11.23 290 | 54.90 289 | 14.46 292 | 18.15 292 | 22.87 292 |
|
EMVS | | | 30.81 273 | 29.65 274 | 34.27 281 | 50.96 294 | 25.95 297 | 56.58 288 | 46.80 295 | 24.01 292 | 15.53 295 | 30.68 292 | 12.47 289 | 54.43 290 | 12.81 293 | 17.05 294 | 22.43 293 |
|
DUST3R | | | 18.61 276 | 21.40 277 | 10.23 286 | 4.82 300 | 10.11 300 | 34.70 292 | 30.74 297 | 1.48 296 | 23.91 291 | 26.07 293 | 28.42 270 | 13.41 294 | 27.12 285 | 15.35 296 | 7.17 294 |
|
wuyk23d | | | 16.82 277 | 15.94 278 | 19.46 285 | 58.74 288 | 31.45 292 | 39.22 291 | 3.74 300 | 6.84 295 | 6.04 297 | 2.70 295 | 1.27 298 | 24.29 293 | 10.54 294 | 14.40 297 | 2.63 295 |
|
test123 | | | 6.12 279 | 8.11 280 | 0.14 287 | 0.06 302 | 0.09 302 | 71.05 259 | 0.03 302 | 0.04 298 | 0.25 299 | 1.30 297 | 0.05 300 | 0.03 296 | 0.21 296 | 0.01 300 | 0.29 296 |
|
.test1245 | | | 45.55 265 | 50.02 261 | 32.14 282 | 69.10 279 | 28.28 293 | 68.90 270 | 74.54 267 | 54.01 262 | 53.71 272 | 74.51 262 | 23.09 277 | 67.90 283 | 32.28 277 | 0.02 298 | 0.25 297 |
|
testmvs | | | 6.04 280 | 8.02 281 | 0.10 288 | 0.08 301 | 0.03 303 | 69.74 263 | 0.04 301 | 0.05 297 | 0.31 298 | 1.68 296 | 0.02 301 | 0.04 295 | 0.24 295 | 0.02 298 | 0.25 297 |
|
cdsmvs_eth3d_5k | | | 19.96 275 | 26.61 275 | 0.00 289 | 0.00 303 | 0.00 304 | 0.00 295 | 89.26 137 | 0.00 299 | 0.00 300 | 88.61 115 | 61.62 124 | 0.00 297 | 0.00 297 | 0.00 301 | 0.00 299 |
|
pcd_1.5k_mvsjas | | | 5.26 281 | 7.02 282 | 0.00 289 | 0.00 303 | 0.00 304 | 0.00 295 | 0.00 303 | 0.00 299 | 0.00 300 | 0.00 298 | 63.15 89 | 0.00 297 | 0.00 297 | 0.00 301 | 0.00 299 |
|
sosnet-low-res | | | 0.00 282 | 0.00 283 | 0.00 289 | 0.00 303 | 0.00 304 | 0.00 295 | 0.00 303 | 0.00 299 | 0.00 300 | 0.00 298 | 0.00 302 | 0.00 297 | 0.00 297 | 0.00 301 | 0.00 299 |
|
sosnet | | | 0.00 282 | 0.00 283 | 0.00 289 | 0.00 303 | 0.00 304 | 0.00 295 | 0.00 303 | 0.00 299 | 0.00 300 | 0.00 298 | 0.00 302 | 0.00 297 | 0.00 297 | 0.00 301 | 0.00 299 |
|
uncertanet | | | 0.00 282 | 0.00 283 | 0.00 289 | 0.00 303 | 0.00 304 | 0.00 295 | 0.00 303 | 0.00 299 | 0.00 300 | 0.00 298 | 0.00 302 | 0.00 297 | 0.00 297 | 0.00 301 | 0.00 299 |
|
Regformer | | | 0.00 282 | 0.00 283 | 0.00 289 | 0.00 303 | 0.00 304 | 0.00 295 | 0.00 303 | 0.00 299 | 0.00 300 | 0.00 298 | 0.00 302 | 0.00 297 | 0.00 297 | 0.00 301 | 0.00 299 |
|
ab-mvs-re | | | 7.23 278 | 9.64 279 | 0.00 289 | 0.00 303 | 0.00 304 | 0.00 295 | 0.00 303 | 0.00 299 | 0.00 300 | 86.72 151 | 0.00 302 | 0.00 297 | 0.00 297 | 0.00 301 | 0.00 299 |
|
uanet | | | 0.00 282 | 0.00 283 | 0.00 289 | 0.00 303 | 0.00 304 | 0.00 295 | 0.00 303 | 0.00 299 | 0.00 300 | 0.00 298 | 0.00 302 | 0.00 297 | 0.00 297 | 0.00 301 | 0.00 299 |
|
TEST9 | | | | | | 93.26 27 | 72.96 15 | 88.75 72 | 91.89 57 | 68.44 166 | 85.00 20 | 93.10 32 | 74.36 13 | 95.41 39 | | | |
|
Patchmatch-test1 | | | | | | 78.56 255 | 58.71 211 | 64.97 280 | 73.71 269 | | 70.00 198 | 80.13 240 | 33.36 264 | | | 65.60 260 | |
|
Patchmatch-test | | | | | | 75.77 264 | 36.09 287 | | | | | 72.86 265 | | | | | |
|
test_8 | | | | | | 93.13 28 | 72.57 23 | 88.68 74 | 91.84 59 | 68.69 163 | 84.87 25 | 93.10 32 | 74.43 11 | 95.16 46 | | | |
|
agg_prior | | | | | | 92.85 34 | 71.94 31 | | 91.78 62 | | 84.41 31 | | | 94.93 55 | | | |
|
test_prior4 | | | | | | | 72.60 22 | 89.01 65 | | | | | | | | | |
|
test_prior2 | | | | | | | | 88.85 68 | | 75.41 67 | 84.91 21 | 93.54 22 | 74.28 14 | | 83.31 24 | 95.86 4 | |
|
旧先验2 | | | | | | | | 86.56 143 | | 58.10 244 | 87.04 10 | | | 88.98 206 | 74.07 93 | | |
|
新几何2 | | | | | | | | 86.29 151 | | | | | | | | | |
|
原ACMM2 | | | | | | | | 86.86 134 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 91.01 181 | 62.37 178 | | |
|
segment_acmp | | | | | | | | | | | | | 73.08 20 | | | | |
|
testdata1 | | | | | | | | 84.14 190 | | 75.71 63 | | | | | | | |
|
plane_prior7 | | | | | | 90.08 68 | 68.51 80 | | | | | | | | | | |
|
plane_prior6 | | | | | | 89.84 72 | 68.70 77 | | | | | | 60.42 144 | | | | |
|
plane_prior4 | | | | | | | | | | | | 91.00 69 | | | | | |
|
plane_prior3 | | | | | | | 68.60 79 | | | 78.44 25 | 78.92 78 | | | | | | |
|
plane_prior2 | | | | | | | | 91.25 26 | | 79.12 18 | | | | | | | |
|
plane_prior1 | | | | | | 89.90 71 | | | | | | | | | | | |
|
plane_prior | | | | | | | 68.71 75 | 90.38 40 | | 77.62 29 | | | | | | 86.16 105 | |
|
n2 | | | | | | | | | 0.00 303 | | | | | | | | |
|
nn | | | | | | | | | 0.00 303 | | | | | | | | |
|
door-mid | | | | | | | | | 69.98 278 | | | | | | | | |
|
test11 | | | | | | | | | 92.23 44 | | | | | | | | |
|
door | | | | | | | | | 69.44 280 | | | | | | | | |
|
HQP5-MVS | | | | | | | 66.98 101 | | | | | | | | | | |
|
HQP-NCC | | | | | | 89.33 80 | | 89.17 59 | | 76.41 53 | 77.23 117 | | | | | | |
|
ACMP_Plane | | | | | | 89.33 80 | | 89.17 59 | | 76.41 53 | 77.23 117 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.47 61 | |