This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
MM88.97 473.65 1092.66 2391.17 11686.57 187.39 3394.97 1671.70 4997.68 192.19 195.63 2895.57 1
casdiffmvs_mvgpermissive85.99 4386.09 4585.70 6687.65 19267.22 14988.69 11993.04 3879.64 1885.33 5092.54 8173.30 3594.50 10783.49 5791.14 8995.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
dcpmvs_285.63 5186.15 4384.06 12491.71 7564.94 19586.47 18891.87 9573.63 13186.60 4193.02 7076.57 1591.87 21683.36 5892.15 7595.35 3
casdiffmvspermissive85.11 6085.14 5985.01 8287.20 20865.77 17787.75 15192.83 5577.84 3784.36 7192.38 8372.15 4493.93 13081.27 7990.48 9695.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
3Dnovator+77.84 485.48 5384.47 6788.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19393.37 6060.40 18696.75 2677.20 11593.73 6295.29 5
CS-MVS86.69 3486.95 3085.90 6390.76 9067.57 13892.83 1793.30 3279.67 1784.57 6792.27 8471.47 5295.02 8684.24 5293.46 6395.13 6
TSAR-MVS + MP.88.02 1788.11 1587.72 3093.68 4372.13 4691.41 4792.35 7474.62 11188.90 2093.85 5275.75 2096.00 4987.80 2694.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
baseline84.93 6284.98 6084.80 9287.30 20665.39 18687.30 16392.88 5277.62 3984.04 7792.26 8571.81 4693.96 12481.31 7890.30 9995.03 8
MVS_030488.08 1388.08 1688.08 1489.67 11372.04 4892.26 3389.26 17384.19 285.01 5395.18 1369.93 6797.20 1491.63 295.60 2994.99 9
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
PC_three_145268.21 24092.02 1294.00 4682.09 595.98 5184.58 4696.68 294.95 10
IS-MVSNet83.15 8582.81 8584.18 11589.94 10963.30 23091.59 4388.46 20479.04 2579.49 13192.16 8665.10 11894.28 11267.71 20791.86 8194.95 10
SteuartSystems-ACMMP88.72 1088.86 1088.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 2995.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5696.48 894.88 14
SMA-MVScopyleft89.08 789.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10792.29 795.97 274.28 2997.24 1288.58 2096.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test250677.30 21776.49 21379.74 24490.08 10252.02 35087.86 15063.10 38274.88 10480.16 12592.79 7738.29 35192.35 19868.74 20092.50 7294.86 17
ECVR-MVScopyleft79.61 15579.26 14680.67 22690.08 10254.69 33487.89 14877.44 34174.88 10480.27 12292.79 7748.96 29092.45 19268.55 20192.50 7294.86 17
IU-MVS95.30 271.25 5792.95 5166.81 24892.39 688.94 1696.63 494.85 19
test111179.43 16279.18 15080.15 23689.99 10753.31 34787.33 16277.05 34475.04 10180.23 12492.77 7948.97 28992.33 20068.87 19892.40 7494.81 20
SF-MVS88.46 1188.74 1187.64 3592.78 6171.95 5092.40 2494.74 275.71 8789.16 1995.10 1475.65 2196.19 4387.07 3296.01 1794.79 21
CS-MVS-test86.29 4186.48 3685.71 6591.02 8367.21 15092.36 2993.78 1878.97 2883.51 8691.20 10970.65 6195.15 7781.96 7494.89 4194.77 22
canonicalmvs85.91 4685.87 4886.04 6089.84 11169.44 9590.45 6693.00 4376.70 6988.01 2791.23 10773.28 3693.91 13181.50 7788.80 11894.77 22
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 24
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5894.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
alignmvs85.48 5385.32 5685.96 6289.51 11969.47 9289.74 8192.47 6876.17 8087.73 3291.46 10370.32 6393.78 13681.51 7688.95 11594.63 26
MP-MVS-pluss87.67 2087.72 2087.54 3693.64 4472.04 4889.80 7993.50 2575.17 10086.34 4295.29 1270.86 5796.00 4988.78 1896.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DeepPCF-MVS80.84 188.10 1288.56 1286.73 5092.24 6869.03 9989.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3595.72 2494.58 27
VDD-MVS83.01 9082.36 9184.96 8491.02 8366.40 16188.91 10888.11 20777.57 4184.39 7093.29 6252.19 24493.91 13177.05 11788.70 12094.57 29
VDDNet81.52 11380.67 11684.05 12690.44 9564.13 21289.73 8285.91 24871.11 17583.18 8893.48 5750.54 26893.49 15073.40 15488.25 12694.54 30
APDe-MVScopyleft89.15 689.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 8991.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 31
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
No_MVS89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
MCST-MVS87.37 2687.25 2587.73 2894.53 1772.46 3889.82 7793.82 1673.07 14784.86 6092.89 7276.22 1796.33 3884.89 4295.13 3694.40 34
CANet86.45 3786.10 4487.51 3790.09 10170.94 6789.70 8392.59 6681.78 481.32 11091.43 10470.34 6297.23 1384.26 5093.36 6494.37 35
PHI-MVS86.43 3886.17 4287.24 4190.88 8770.96 6592.27 3294.07 972.45 15285.22 5291.90 9069.47 7296.42 3783.28 6095.94 1994.35 36
CNVR-MVS88.93 989.13 988.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2395.99 1894.34 37
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5194.32 3171.76 4796.93 1985.53 3795.79 2294.32 38
HPM-MVScopyleft87.11 2986.98 2987.50 3893.88 3972.16 4592.19 3493.33 3176.07 8283.81 8193.95 5169.77 7096.01 4885.15 3894.66 4694.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CDPH-MVS85.76 4985.29 5887.17 4393.49 4771.08 6188.58 12392.42 7268.32 23984.61 6593.48 5772.32 4296.15 4579.00 9695.43 3194.28 40
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 41
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 42
DeepC-MVS_fast79.65 386.91 3286.62 3587.76 2793.52 4672.37 4191.26 4893.04 3876.62 7084.22 7293.36 6171.44 5396.76 2580.82 8395.33 3494.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EPP-MVSNet83.40 8183.02 8184.57 9690.13 10064.47 20592.32 3090.73 12874.45 11579.35 13391.10 11269.05 7995.12 7872.78 16187.22 13694.13 44
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5292.83 5581.50 585.79 4693.47 5973.02 3997.00 1884.90 4094.94 3994.10 45
ACMMP_NAP88.05 1688.08 1687.94 1993.70 4173.05 2290.86 5693.59 2376.27 7988.14 2495.09 1571.06 5696.67 2987.67 2796.37 1494.09 46
XVS87.18 2886.91 3288.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8394.17 3667.45 9396.60 3383.06 6194.50 5094.07 47
X-MVStestdata80.37 14277.83 17988.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8312.47 39467.45 9396.60 3383.06 6194.50 5094.07 47
region2R87.42 2487.20 2788.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 6894.52 2169.09 7696.70 2784.37 4994.83 4494.03 49
ACMMPR87.44 2287.23 2688.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6494.52 2168.81 8296.65 3084.53 4794.90 4094.00 50
test_fmvsmconf_n85.92 4586.04 4685.57 6885.03 24469.51 9089.62 8690.58 13173.42 13887.75 3094.02 4472.85 4093.24 16090.37 390.75 9393.96 51
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8592.29 795.66 1081.67 697.38 1087.44 3196.34 1593.95 52
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_fmvsm_n_192085.29 5885.34 5485.13 7986.12 22569.93 8388.65 12190.78 12769.97 20088.27 2393.98 4971.39 5491.54 22688.49 2290.45 9793.91 53
test_prior86.33 5492.61 6569.59 8892.97 5095.48 6293.91 53
GST-MVS87.42 2487.26 2487.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6193.99 4870.67 6096.82 2284.18 5495.01 3793.90 55
test_fmvsmconf0.1_n85.61 5285.65 5085.50 6982.99 28869.39 9689.65 8490.29 14473.31 14187.77 2994.15 3871.72 4893.23 16190.31 490.67 9593.89 56
Anonymous20240521178.25 19077.01 19981.99 19291.03 8260.67 26584.77 22883.90 27570.65 18780.00 12691.20 10941.08 34191.43 23365.21 22985.26 16193.85 57
LFMVS81.82 10581.23 10683.57 14291.89 7363.43 22889.84 7681.85 30577.04 5883.21 8793.10 6552.26 24393.43 15571.98 16789.95 10793.85 57
Effi-MVS+83.62 7683.08 7985.24 7588.38 16667.45 14088.89 10989.15 17975.50 9282.27 9888.28 18469.61 7194.45 10977.81 10987.84 12893.84 59
Anonymous2024052980.19 14778.89 15584.10 11790.60 9164.75 19988.95 10790.90 12365.97 26580.59 12091.17 11149.97 27393.73 14269.16 19582.70 20293.81 60
MVS_Test83.15 8583.06 8083.41 14786.86 21263.21 23286.11 19892.00 8774.31 11682.87 9289.44 15470.03 6593.21 16377.39 11488.50 12493.81 60
test_fmvsmconf0.01_n84.73 6584.52 6685.34 7280.25 32869.03 9989.47 8889.65 16173.24 14486.98 3894.27 3266.62 9993.23 16190.26 589.95 10793.78 62
GeoE81.71 10781.01 11183.80 13789.51 11964.45 20688.97 10688.73 19971.27 17278.63 14689.76 14066.32 10593.20 16669.89 18786.02 15593.74 63
diffmvspermissive82.10 9881.88 10082.76 18083.00 28663.78 21883.68 25289.76 15772.94 15082.02 10189.85 13865.96 11290.79 25082.38 7287.30 13593.71 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HFP-MVS87.58 2187.47 2387.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 5794.44 2870.78 5896.61 3284.53 4794.89 4193.66 65
VNet82.21 9782.41 8981.62 19890.82 8860.93 26084.47 23689.78 15676.36 7784.07 7691.88 9164.71 12290.26 25670.68 17888.89 11693.66 65
PGM-MVS86.68 3586.27 3987.90 2294.22 3373.38 1890.22 7093.04 3875.53 9183.86 7994.42 2967.87 9096.64 3182.70 7094.57 4993.66 65
DELS-MVS85.41 5685.30 5785.77 6488.49 16167.93 13085.52 21793.44 2778.70 2983.63 8589.03 16274.57 2495.71 5680.26 9094.04 5993.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SD-MVS88.06 1488.50 1386.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13687.63 2894.27 5793.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepC-MVS79.81 287.08 3186.88 3387.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 9494.23 3572.13 4597.09 1684.83 4395.37 3293.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
patch_mono-283.65 7384.54 6580.99 21890.06 10665.83 17384.21 24588.74 19871.60 16785.01 5392.44 8274.51 2583.50 32582.15 7392.15 7593.64 71
EIA-MVS83.31 8482.80 8684.82 9089.59 11565.59 17988.21 13492.68 6074.66 10978.96 13786.42 23969.06 7895.26 7375.54 13690.09 10393.62 72
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 6477.57 4183.84 8094.40 3072.24 4396.28 4085.65 3695.30 3593.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVS_fast85.35 5784.95 6286.57 5393.69 4270.58 7592.15 3691.62 10373.89 12682.67 9794.09 4062.60 14295.54 6080.93 8192.93 6693.57 74
fmvsm_s_conf0.1_n83.56 7783.38 7584.10 11784.86 24667.28 14689.40 9383.01 29170.67 18487.08 3693.96 5068.38 8591.45 23288.56 2184.50 16993.56 75
CSCG86.41 4086.19 4187.07 4592.91 5872.48 3790.81 5793.56 2473.95 12383.16 8991.07 11475.94 1895.19 7579.94 9294.38 5493.55 76
test1286.80 4992.63 6470.70 7291.79 9982.71 9671.67 5096.16 4494.50 5093.54 77
APD-MVS_3200maxsize85.97 4485.88 4786.22 5792.69 6369.53 8991.93 3892.99 4573.54 13585.94 4394.51 2465.80 11395.61 5783.04 6392.51 7193.53 78
mvs_anonymous79.42 16379.11 15180.34 23284.45 25457.97 29282.59 27187.62 22167.40 24776.17 20988.56 17768.47 8489.59 26670.65 17986.05 15493.47 79
fmvsm_s_conf0.5_n83.80 7083.71 7184.07 12286.69 21867.31 14589.46 8983.07 29071.09 17686.96 3993.70 5569.02 8191.47 23188.79 1784.62 16893.44 80
mPP-MVS86.67 3686.32 3887.72 3094.41 2273.55 1392.74 2092.22 8076.87 6282.81 9594.25 3466.44 10396.24 4182.88 6594.28 5693.38 81
EPNet83.72 7282.92 8486.14 5984.22 25769.48 9191.05 5585.27 25581.30 676.83 18891.65 9566.09 10895.56 5876.00 13093.85 6093.38 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Vis-MVSNetpermissive83.46 7982.80 8685.43 7190.25 9868.74 10990.30 6990.13 14876.33 7880.87 11892.89 7261.00 17494.20 11872.45 16690.97 9093.35 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 5977.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
UniMVSNet_ETH3D79.10 17278.24 17081.70 19786.85 21360.24 27287.28 16488.79 19374.25 11876.84 18790.53 12749.48 27991.56 22467.98 20582.15 20693.29 85
EI-MVSNet-Vis-set84.19 6683.81 7085.31 7388.18 17167.85 13187.66 15389.73 15980.05 1482.95 9089.59 14670.74 5994.82 9580.66 8784.72 16693.28 86
MTAPA87.23 2787.00 2887.90 2294.18 3574.25 586.58 18592.02 8579.45 1985.88 4494.80 1768.07 8796.21 4286.69 3495.34 3393.23 87
CP-MVS87.11 2986.92 3187.68 3494.20 3473.86 793.98 392.82 5876.62 7083.68 8294.46 2567.93 8895.95 5284.20 5394.39 5393.23 87
ACMMPcopyleft85.89 4785.39 5387.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 11993.82 5364.33 12396.29 3982.67 7190.69 9493.23 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_s_conf0.1_n_a83.32 8382.99 8284.28 11183.79 26668.07 12789.34 9582.85 29569.80 20487.36 3494.06 4268.34 8691.56 22487.95 2583.46 19193.21 90
PAPM_NR83.02 8982.41 8984.82 9092.47 6766.37 16287.93 14691.80 9873.82 12777.32 17790.66 12367.90 8994.90 9170.37 18189.48 11293.19 91
OMC-MVS82.69 9281.97 9984.85 8988.75 15367.42 14187.98 14290.87 12574.92 10379.72 12891.65 9562.19 15293.96 12475.26 13886.42 14893.16 92
fmvsm_s_conf0.5_n_a83.63 7583.41 7484.28 11186.14 22468.12 12589.43 9082.87 29470.27 19487.27 3593.80 5469.09 7691.58 22288.21 2483.65 18593.14 93
PAPR81.66 11180.89 11383.99 13190.27 9764.00 21386.76 18191.77 10168.84 23077.13 18689.50 14767.63 9194.88 9367.55 20988.52 12393.09 94
UA-Net85.08 6184.96 6185.45 7092.07 7068.07 12789.78 8090.86 12682.48 384.60 6693.20 6469.35 7395.22 7471.39 17290.88 9293.07 95
HPM-MVS++copyleft89.02 889.15 888.63 595.01 976.03 192.38 2792.85 5480.26 1187.78 2894.27 3275.89 1996.81 2387.45 3096.44 993.05 96
thisisatest053079.40 16477.76 18484.31 10987.69 19165.10 19287.36 16084.26 27170.04 19777.42 17488.26 18649.94 27494.79 9770.20 18284.70 16793.03 97
train_agg86.43 3886.20 4087.13 4493.26 5072.96 2588.75 11591.89 9368.69 23285.00 5593.10 6574.43 2695.41 6784.97 3995.71 2593.02 98
EC-MVSNet86.01 4286.38 3784.91 8889.31 13066.27 16492.32 3093.63 2179.37 2084.17 7491.88 9169.04 8095.43 6583.93 5593.77 6193.01 99
EI-MVSNet-UG-set83.81 6983.38 7585.09 8087.87 18167.53 13987.44 15989.66 16079.74 1682.23 9989.41 15570.24 6494.74 9879.95 9183.92 17892.99 100
tttt051779.40 16477.91 17683.90 13688.10 17463.84 21688.37 13084.05 27371.45 17076.78 19089.12 15949.93 27694.89 9270.18 18383.18 19592.96 101
test9_res84.90 4095.70 2692.87 102
SR-MVS86.73 3386.67 3486.91 4694.11 3772.11 4792.37 2892.56 6774.50 11286.84 4094.65 2067.31 9595.77 5484.80 4492.85 6792.84 103
ETV-MVS84.90 6484.67 6485.59 6789.39 12468.66 11588.74 11792.64 6579.97 1584.10 7585.71 25269.32 7495.38 6980.82 8391.37 8692.72 104
agg_prior282.91 6495.45 3092.70 105
APD-MVScopyleft87.44 2287.52 2287.19 4294.24 3272.39 3991.86 4192.83 5573.01 14988.58 2194.52 2173.36 3496.49 3684.26 5095.01 3792.70 105
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ET-MVSNet_ETH3D78.63 18376.63 21284.64 9586.73 21769.47 9285.01 22384.61 26369.54 21066.51 32886.59 23250.16 27191.75 21876.26 12684.24 17692.69 107
Vis-MVSNet (Re-imp)78.36 18978.45 16378.07 27188.64 15751.78 35486.70 18279.63 32774.14 12175.11 23490.83 12161.29 16889.75 26358.10 29091.60 8292.69 107
TSAR-MVS + GP.85.71 5085.33 5586.84 4791.34 7872.50 3689.07 10487.28 22876.41 7285.80 4590.22 13274.15 3195.37 7281.82 7591.88 7892.65 109
test_fmvsmvis_n_192084.02 6783.87 6984.49 10184.12 25969.37 9788.15 13887.96 21270.01 19883.95 7893.23 6368.80 8391.51 22988.61 1989.96 10692.57 110
FA-MVS(test-final)80.96 12279.91 13084.10 11788.30 16965.01 19384.55 23590.01 15173.25 14379.61 12987.57 20158.35 19594.72 9971.29 17386.25 15192.56 111
test_yl81.17 11880.47 12083.24 15389.13 13863.62 21986.21 19589.95 15372.43 15581.78 10689.61 14457.50 20393.58 14470.75 17686.90 14092.52 112
DCV-MVSNet81.17 11880.47 12083.24 15389.13 13863.62 21986.21 19589.95 15372.43 15581.78 10689.61 14457.50 20393.58 14470.75 17686.90 14092.52 112
SR-MVS-dyc-post85.77 4885.61 5186.23 5693.06 5570.63 7391.88 3992.27 7673.53 13685.69 4794.45 2665.00 12195.56 5882.75 6691.87 7992.50 114
RE-MVS-def85.48 5293.06 5570.63 7391.88 3992.27 7673.53 13685.69 4794.45 2663.87 12782.75 6691.87 7992.50 114
nrg03083.88 6883.53 7284.96 8486.77 21669.28 9890.46 6592.67 6174.79 10682.95 9091.33 10672.70 4193.09 17480.79 8579.28 24292.50 114
MG-MVS83.41 8083.45 7383.28 15092.74 6262.28 24688.17 13689.50 16475.22 9681.49 10992.74 8066.75 9895.11 8072.85 16091.58 8392.45 117
FIs82.07 10082.42 8881.04 21788.80 15058.34 28688.26 13393.49 2676.93 6078.47 15191.04 11569.92 6892.34 19969.87 18884.97 16392.44 118
FC-MVSNet-test81.52 11382.02 9780.03 23888.42 16555.97 32387.95 14493.42 2977.10 5677.38 17590.98 12069.96 6691.79 21768.46 20384.50 16992.33 119
Fast-Effi-MVS+80.81 12679.92 12983.47 14388.85 14564.51 20285.53 21589.39 16770.79 18178.49 15085.06 27067.54 9293.58 14467.03 21786.58 14592.32 120
TranMVSNet+NR-MVSNet80.84 12480.31 12382.42 18587.85 18262.33 24487.74 15291.33 11280.55 977.99 16589.86 13765.23 11792.62 18667.05 21675.24 29992.30 121
ab-mvs79.51 15878.97 15481.14 21488.46 16360.91 26183.84 25089.24 17570.36 19079.03 13688.87 16763.23 13490.21 25865.12 23082.57 20392.28 122
CANet_DTU80.61 13479.87 13182.83 17285.60 23263.17 23587.36 16088.65 20076.37 7675.88 21288.44 18053.51 23493.07 17573.30 15589.74 11092.25 123
UniMVSNet_NR-MVSNet81.88 10381.54 10382.92 16988.46 16363.46 22687.13 16692.37 7380.19 1278.38 15289.14 15871.66 5193.05 17670.05 18476.46 27292.25 123
DU-MVS81.12 12080.52 11982.90 17087.80 18563.46 22687.02 17091.87 9579.01 2678.38 15289.07 16065.02 11993.05 17670.05 18476.46 27292.20 125
NR-MVSNet80.23 14579.38 14182.78 17887.80 18563.34 22986.31 19291.09 12079.01 2672.17 26789.07 16067.20 9692.81 18566.08 22375.65 28592.20 125
TAPA-MVS73.13 979.15 17077.94 17582.79 17789.59 11562.99 23988.16 13791.51 10765.77 26677.14 18591.09 11360.91 17593.21 16350.26 33587.05 13892.17 127
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
3Dnovator76.31 583.38 8282.31 9286.59 5287.94 18072.94 2890.64 5992.14 8477.21 5275.47 21892.83 7458.56 19394.72 9973.24 15792.71 6992.13 128
MVS_111021_HR85.14 5984.75 6386.32 5591.65 7672.70 3085.98 20090.33 14176.11 8182.08 10091.61 9871.36 5594.17 12081.02 8092.58 7092.08 129
MVSFormer82.85 9182.05 9685.24 7587.35 20070.21 7790.50 6290.38 13768.55 23481.32 11089.47 14961.68 15793.46 15378.98 9790.26 10092.05 130
jason81.39 11680.29 12484.70 9486.63 21969.90 8585.95 20186.77 23663.24 29281.07 11689.47 14961.08 17392.15 20578.33 10590.07 10592.05 130
jason: jason.
mvsmamba81.69 10880.74 11484.56 9787.45 19966.72 15791.26 4885.89 24974.66 10978.23 15790.56 12554.33 22594.91 8880.73 8683.54 18992.04 132
HyFIR lowres test77.53 21275.40 22983.94 13489.59 11566.62 15880.36 29688.64 20156.29 35176.45 19885.17 26757.64 20193.28 15861.34 26383.10 19691.91 133
XVG-OURS-SEG-HR80.81 12679.76 13383.96 13385.60 23268.78 10683.54 25890.50 13470.66 18676.71 19291.66 9460.69 17891.26 23776.94 11881.58 21391.83 134
lupinMVS81.39 11680.27 12584.76 9387.35 20070.21 7785.55 21386.41 24062.85 29981.32 11088.61 17461.68 15792.24 20378.41 10490.26 10091.83 134
WR-MVS79.49 15979.22 14880.27 23488.79 15158.35 28585.06 22288.61 20278.56 3077.65 17088.34 18263.81 12990.66 25364.98 23277.22 26191.80 136
h-mvs3383.15 8582.19 9386.02 6190.56 9270.85 7088.15 13889.16 17876.02 8384.67 6291.39 10561.54 16095.50 6182.71 6875.48 28991.72 137
UniMVSNet (Re)81.60 11281.11 10883.09 16088.38 16664.41 20787.60 15493.02 4278.42 3278.56 14888.16 18869.78 6993.26 15969.58 19176.49 27191.60 138
UGNet80.83 12579.59 13784.54 9888.04 17768.09 12689.42 9188.16 20676.95 5976.22 20589.46 15149.30 28393.94 12768.48 20290.31 9891.60 138
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XVG-OURS80.41 13979.23 14783.97 13285.64 23169.02 10183.03 26990.39 13671.09 17677.63 17191.49 10254.62 22491.35 23575.71 13283.47 19091.54 140
RRT_MVS80.35 14379.22 14883.74 13887.63 19365.46 18391.08 5488.92 19173.82 12776.44 20190.03 13449.05 28894.25 11776.84 11979.20 24491.51 141
LCM-MVSNet-Re77.05 22076.94 20277.36 28187.20 20851.60 35580.06 29980.46 31875.20 9767.69 31086.72 22462.48 14588.98 27763.44 24089.25 11491.51 141
DP-MVS Recon83.11 8882.09 9586.15 5894.44 1970.92 6888.79 11392.20 8170.53 18879.17 13591.03 11764.12 12596.03 4668.39 20490.14 10291.50 143
PS-MVSNAJss82.07 10081.31 10484.34 10886.51 22067.27 14789.27 9691.51 10771.75 16179.37 13290.22 13263.15 13694.27 11377.69 11082.36 20591.49 144
thisisatest051577.33 21675.38 23083.18 15685.27 23663.80 21782.11 27583.27 28565.06 27375.91 21183.84 28849.54 27894.27 11367.24 21386.19 15291.48 145
DPM-MVS84.93 6284.29 6886.84 4790.20 9973.04 2387.12 16793.04 3869.80 20482.85 9391.22 10873.06 3896.02 4776.72 12494.63 4791.46 146
iter_conf0580.00 15178.70 15783.91 13587.84 18365.83 17388.84 11284.92 26071.61 16678.70 14288.94 16343.88 32494.56 10279.28 9584.28 17591.33 147
HQP_MVS83.64 7483.14 7885.14 7790.08 10268.71 11191.25 5092.44 6979.12 2378.92 13991.00 11860.42 18495.38 6978.71 10086.32 14991.33 147
plane_prior592.44 6995.38 6978.71 10086.32 14991.33 147
GA-MVS76.87 22475.17 23481.97 19382.75 29262.58 24181.44 28486.35 24372.16 15974.74 24182.89 30146.20 30892.02 20968.85 19981.09 21891.30 150
VPA-MVSNet80.60 13580.55 11880.76 22488.07 17660.80 26386.86 17591.58 10575.67 9080.24 12389.45 15363.34 13090.25 25770.51 18079.22 24391.23 151
Effi-MVS+-dtu80.03 14978.57 16184.42 10485.13 24168.74 10988.77 11488.10 20874.99 10274.97 23883.49 29457.27 20693.36 15673.53 15180.88 22091.18 152
v2v48280.23 14579.29 14583.05 16383.62 26964.14 21187.04 16989.97 15273.61 13278.18 16087.22 21261.10 17293.82 13476.11 12776.78 26991.18 152
FE-MVS77.78 20575.68 22384.08 12188.09 17566.00 16883.13 26487.79 21868.42 23878.01 16485.23 26545.50 31695.12 7859.11 27985.83 15991.11 154
iter_conf_final80.63 13379.35 14384.46 10289.36 12667.70 13589.85 7584.49 26573.19 14578.30 15588.94 16345.98 30994.56 10279.59 9484.48 17291.11 154
Anonymous2023121178.97 17677.69 18782.81 17490.54 9364.29 20990.11 7291.51 10765.01 27576.16 21088.13 19350.56 26793.03 17969.68 19077.56 25991.11 154
hse-mvs281.72 10680.94 11284.07 12288.72 15467.68 13685.87 20487.26 22976.02 8384.67 6288.22 18761.54 16093.48 15182.71 6873.44 31791.06 157
AUN-MVS79.21 16977.60 18984.05 12688.71 15567.61 13785.84 20687.26 22969.08 22377.23 18088.14 19253.20 23793.47 15275.50 13773.45 31691.06 157
HQP4-MVS77.24 17995.11 8091.03 159
HQP-MVS82.61 9482.02 9784.37 10589.33 12766.98 15389.17 9892.19 8276.41 7277.23 18090.23 13160.17 18795.11 8077.47 11285.99 15691.03 159
RPSCF73.23 26671.46 26778.54 26482.50 29859.85 27582.18 27482.84 29658.96 33271.15 27789.41 15545.48 31784.77 31758.82 28371.83 32891.02 161
test_djsdf80.30 14479.32 14483.27 15183.98 26365.37 18790.50 6290.38 13768.55 23476.19 20688.70 17056.44 21193.46 15378.98 9780.14 23290.97 162
PCF-MVS73.52 780.38 14078.84 15685.01 8287.71 18968.99 10283.65 25391.46 11163.00 29677.77 16990.28 12966.10 10795.09 8461.40 26188.22 12790.94 163
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VPNet78.69 18278.66 15978.76 25988.31 16855.72 32584.45 23986.63 23876.79 6478.26 15690.55 12659.30 18989.70 26566.63 21877.05 26390.88 164
CPTT-MVS83.73 7183.33 7784.92 8793.28 4970.86 6992.09 3790.38 13768.75 23179.57 13092.83 7460.60 18293.04 17880.92 8291.56 8490.86 165
tt080578.73 18077.83 17981.43 20385.17 23760.30 27189.41 9290.90 12371.21 17377.17 18488.73 16946.38 30393.21 16372.57 16478.96 24590.79 166
CLD-MVS82.31 9681.65 10284.29 11088.47 16267.73 13485.81 20892.35 7475.78 8678.33 15486.58 23464.01 12694.35 11076.05 12987.48 13390.79 166
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
v119279.59 15778.43 16583.07 16283.55 27164.52 20186.93 17390.58 13170.83 18077.78 16885.90 24859.15 19093.94 12773.96 14877.19 26290.76 168
IterMVS-LS80.06 14879.38 14182.11 18985.89 22763.20 23386.79 17889.34 16874.19 11975.45 22186.72 22466.62 9992.39 19572.58 16376.86 26690.75 169
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet80.52 13879.98 12882.12 18884.28 25563.19 23486.41 18988.95 18974.18 12078.69 14387.54 20466.62 9992.43 19372.57 16480.57 22690.74 170
v192192079.22 16878.03 17382.80 17583.30 27663.94 21586.80 17790.33 14169.91 20277.48 17385.53 25858.44 19493.75 14073.60 15076.85 26790.71 171
QAPM80.88 12379.50 13985.03 8188.01 17968.97 10391.59 4392.00 8766.63 25775.15 23392.16 8657.70 20095.45 6363.52 23888.76 11990.66 172
v14419279.47 16078.37 16682.78 17883.35 27463.96 21486.96 17190.36 14069.99 19977.50 17285.67 25560.66 17993.77 13874.27 14576.58 27090.62 173
v124078.99 17577.78 18282.64 18183.21 27863.54 22386.62 18490.30 14369.74 20977.33 17685.68 25457.04 20893.76 13973.13 15876.92 26490.62 173
v114480.03 14979.03 15283.01 16583.78 26764.51 20287.11 16890.57 13371.96 16078.08 16386.20 24461.41 16493.94 12774.93 13977.23 26090.60 175
1112_ss77.40 21576.43 21580.32 23389.11 14260.41 27083.65 25387.72 22062.13 30873.05 25786.72 22462.58 14489.97 26062.11 25580.80 22290.59 176
CP-MVSNet78.22 19178.34 16777.84 27387.83 18454.54 33687.94 14591.17 11677.65 3873.48 25288.49 17862.24 15188.43 28662.19 25274.07 30890.55 177
PS-CasMVS78.01 20078.09 17277.77 27587.71 18954.39 33888.02 14191.22 11377.50 4673.26 25488.64 17360.73 17688.41 28761.88 25673.88 31290.53 178
CDS-MVSNet79.07 17377.70 18683.17 15787.60 19468.23 12384.40 24286.20 24467.49 24676.36 20286.54 23661.54 16090.79 25061.86 25787.33 13490.49 179
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS78.89 17877.51 19183.03 16487.80 18567.79 13384.72 22985.05 25867.63 24376.75 19187.70 19762.25 15090.82 24958.53 28687.13 13790.49 179
PEN-MVS77.73 20677.69 18777.84 27387.07 21153.91 34187.91 14791.18 11577.56 4373.14 25688.82 16861.23 16989.17 27359.95 27172.37 32390.43 181
Test_1112_low_res76.40 23275.44 22779.27 25389.28 13258.09 28881.69 27987.07 23259.53 32772.48 26386.67 22961.30 16789.33 27060.81 26780.15 23190.41 182
HY-MVS69.67 1277.95 20177.15 19780.36 23187.57 19860.21 27383.37 26087.78 21966.11 26175.37 22487.06 21963.27 13290.48 25561.38 26282.43 20490.40 183
CHOSEN 1792x268877.63 21175.69 22283.44 14489.98 10868.58 11778.70 31687.50 22456.38 35075.80 21486.84 22058.67 19291.40 23461.58 26085.75 16090.34 184
SDMVSNet80.38 14080.18 12680.99 21889.03 14364.94 19580.45 29589.40 16675.19 9876.61 19689.98 13560.61 18187.69 29576.83 12183.55 18790.33 185
sd_testset77.70 20977.40 19278.60 26289.03 14360.02 27479.00 31285.83 25075.19 9876.61 19689.98 13554.81 21785.46 31162.63 24983.55 18790.33 185
114514_t80.68 13279.51 13884.20 11494.09 3867.27 14789.64 8591.11 11958.75 33574.08 24890.72 12258.10 19695.04 8569.70 18989.42 11390.30 187
eth_miper_zixun_eth77.92 20276.69 21081.61 20083.00 28661.98 24983.15 26389.20 17769.52 21174.86 24084.35 28161.76 15692.56 18971.50 17172.89 32190.28 188
PVSNet_Blended_VisFu82.62 9381.83 10184.96 8490.80 8969.76 8788.74 11791.70 10269.39 21278.96 13788.46 17965.47 11594.87 9474.42 14388.57 12190.24 189
MVS_111021_LR82.61 9482.11 9484.11 11688.82 14871.58 5385.15 22086.16 24574.69 10880.47 12191.04 11562.29 14990.55 25480.33 8990.08 10490.20 190
MSLP-MVS++85.43 5585.76 4984.45 10391.93 7270.24 7690.71 5892.86 5377.46 4784.22 7292.81 7667.16 9792.94 18080.36 8894.35 5590.16 191
mvs_tets79.13 17177.77 18383.22 15584.70 24866.37 16289.17 9890.19 14669.38 21375.40 22389.46 15144.17 32293.15 17076.78 12280.70 22490.14 192
BH-RMVSNet79.61 15578.44 16483.14 15889.38 12565.93 17084.95 22587.15 23173.56 13478.19 15989.79 13956.67 21093.36 15659.53 27586.74 14390.13 193
c3_l78.75 17977.91 17681.26 20982.89 29061.56 25584.09 24889.13 18169.97 20075.56 21684.29 28266.36 10492.09 20773.47 15375.48 28990.12 194
v7n78.97 17677.58 19083.14 15883.45 27365.51 18088.32 13191.21 11473.69 13072.41 26486.32 24257.93 19793.81 13569.18 19475.65 28590.11 195
jajsoiax79.29 16777.96 17483.27 15184.68 24966.57 16089.25 9790.16 14769.20 21975.46 22089.49 14845.75 31493.13 17276.84 11980.80 22290.11 195
v14878.72 18177.80 18181.47 20282.73 29361.96 25086.30 19388.08 20973.26 14276.18 20785.47 26062.46 14692.36 19771.92 16873.82 31390.09 197
GBi-Net78.40 18777.40 19281.40 20587.60 19463.01 23688.39 12789.28 17071.63 16375.34 22587.28 20854.80 21891.11 24062.72 24579.57 23690.09 197
test178.40 18777.40 19281.40 20587.60 19463.01 23688.39 12789.28 17071.63 16375.34 22587.28 20854.80 21891.11 24062.72 24579.57 23690.09 197
FMVSNet177.44 21376.12 21981.40 20586.81 21563.01 23688.39 12789.28 17070.49 18974.39 24587.28 20849.06 28791.11 24060.91 26578.52 24890.09 197
WR-MVS_H78.51 18678.49 16278.56 26388.02 17856.38 31888.43 12592.67 6177.14 5473.89 24987.55 20366.25 10689.24 27258.92 28173.55 31590.06 201
DTE-MVSNet76.99 22176.80 20577.54 28086.24 22253.06 34987.52 15690.66 12977.08 5772.50 26288.67 17260.48 18389.52 26757.33 29770.74 33490.05 202
v879.97 15279.02 15382.80 17584.09 26064.50 20487.96 14390.29 14474.13 12275.24 23186.81 22162.88 14193.89 13374.39 14475.40 29490.00 203
thres600view776.50 22875.44 22779.68 24689.40 12357.16 30485.53 21583.23 28673.79 12976.26 20487.09 21751.89 25391.89 21448.05 34883.72 18490.00 203
thres40076.50 22875.37 23179.86 24189.13 13857.65 29885.17 21883.60 27873.41 13976.45 19886.39 24052.12 24591.95 21148.33 34383.75 18190.00 203
cl2278.07 19777.01 19981.23 21082.37 30261.83 25283.55 25787.98 21168.96 22875.06 23683.87 28661.40 16591.88 21573.53 15176.39 27489.98 206
OPM-MVS83.50 7882.95 8385.14 7788.79 15170.95 6689.13 10391.52 10677.55 4480.96 11791.75 9360.71 17794.50 10779.67 9386.51 14789.97 207
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
baseline275.70 24073.83 24981.30 20883.26 27761.79 25382.57 27280.65 31466.81 24866.88 31983.42 29557.86 19992.19 20463.47 23979.57 23689.91 208
v1079.74 15478.67 15882.97 16884.06 26164.95 19487.88 14990.62 13073.11 14675.11 23486.56 23561.46 16394.05 12373.68 14975.55 28789.90 209
MVSTER79.01 17477.88 17882.38 18683.07 28364.80 19884.08 24988.95 18969.01 22778.69 14387.17 21554.70 22292.43 19374.69 14080.57 22689.89 210
ACMP74.13 681.51 11580.57 11784.36 10689.42 12268.69 11489.97 7491.50 11074.46 11475.04 23790.41 12853.82 23194.54 10477.56 11182.91 19789.86 211
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LPG-MVS_test82.08 9981.27 10584.50 9989.23 13468.76 10790.22 7091.94 9175.37 9476.64 19491.51 10054.29 22694.91 8878.44 10283.78 17989.83 212
LGP-MVS_train84.50 9989.23 13468.76 10791.94 9175.37 9476.64 19491.51 10054.29 22694.91 8878.44 10283.78 17989.83 212
V4279.38 16678.24 17082.83 17281.10 32065.50 18185.55 21389.82 15571.57 16878.21 15886.12 24660.66 17993.18 16975.64 13375.46 29189.81 214
MAR-MVS81.84 10480.70 11585.27 7491.32 7971.53 5489.82 7790.92 12269.77 20678.50 14986.21 24362.36 14894.52 10665.36 22892.05 7789.77 215
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DIV-MVS_self_test77.72 20776.76 20780.58 22782.48 30060.48 26883.09 26587.86 21669.22 21774.38 24685.24 26462.10 15391.53 22771.09 17475.40 29489.74 216
cl____77.72 20776.76 20780.58 22782.49 29960.48 26883.09 26587.87 21569.22 21774.38 24685.22 26662.10 15391.53 22771.09 17475.41 29389.73 217
miper_ehance_all_eth78.59 18577.76 18481.08 21682.66 29561.56 25583.65 25389.15 17968.87 22975.55 21783.79 29066.49 10292.03 20873.25 15676.39 27489.64 218
anonymousdsp78.60 18477.15 19782.98 16780.51 32667.08 15187.24 16589.53 16365.66 26875.16 23287.19 21452.52 23892.25 20277.17 11679.34 24189.61 219
FMVSNet278.20 19377.21 19681.20 21287.60 19462.89 24087.47 15889.02 18471.63 16375.29 23087.28 20854.80 21891.10 24362.38 25079.38 24089.61 219
baseline176.98 22276.75 20977.66 27688.13 17255.66 32685.12 22181.89 30373.04 14876.79 18988.90 16562.43 14787.78 29463.30 24271.18 33289.55 221
FMVSNet377.88 20376.85 20480.97 22086.84 21462.36 24386.52 18788.77 19471.13 17475.34 22586.66 23054.07 22991.10 24362.72 24579.57 23689.45 222
miper_enhance_ethall77.87 20476.86 20380.92 22181.65 30961.38 25782.68 27088.98 18665.52 27075.47 21882.30 30965.76 11492.00 21072.95 15976.39 27489.39 223
cascas76.72 22674.64 23782.99 16685.78 22965.88 17282.33 27389.21 17660.85 31672.74 25981.02 32047.28 29793.75 14067.48 21085.02 16289.34 224
bld_raw_dy_0_6477.29 21875.98 22081.22 21185.04 24365.47 18288.14 14077.56 33869.20 21973.77 25089.40 15742.24 33588.85 28276.78 12281.64 21289.33 225
Fast-Effi-MVS+-dtu78.02 19976.49 21382.62 18283.16 28266.96 15586.94 17287.45 22672.45 15271.49 27484.17 28354.79 22191.58 22267.61 20880.31 22989.30 226
IB-MVS68.01 1575.85 23973.36 25383.31 14984.76 24766.03 16683.38 25985.06 25770.21 19669.40 29681.05 31945.76 31394.66 10165.10 23175.49 28889.25 227
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres100view90076.50 22875.55 22679.33 25289.52 11856.99 30785.83 20783.23 28673.94 12476.32 20387.12 21651.89 25391.95 21148.33 34383.75 18189.07 228
tfpn200view976.42 23175.37 23179.55 25189.13 13857.65 29885.17 21883.60 27873.41 13976.45 19886.39 24052.12 24591.95 21148.33 34383.75 18189.07 228
xiu_mvs_v1_base_debu80.80 12879.72 13484.03 12887.35 20070.19 7985.56 21088.77 19469.06 22481.83 10288.16 18850.91 26292.85 18278.29 10687.56 13089.06 230
xiu_mvs_v1_base80.80 12879.72 13484.03 12887.35 20070.19 7985.56 21088.77 19469.06 22481.83 10288.16 18850.91 26292.85 18278.29 10687.56 13089.06 230
xiu_mvs_v1_base_debi80.80 12879.72 13484.03 12887.35 20070.19 7985.56 21088.77 19469.06 22481.83 10288.16 18850.91 26292.85 18278.29 10687.56 13089.06 230
EPNet_dtu75.46 24474.86 23577.23 28482.57 29754.60 33586.89 17483.09 28971.64 16266.25 33085.86 25055.99 21288.04 29154.92 31086.55 14689.05 233
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pm-mvs177.25 21976.68 21178.93 25784.22 25758.62 28486.41 18988.36 20571.37 17173.31 25388.01 19461.22 17089.15 27464.24 23673.01 32089.03 234
PVSNet_Blended80.98 12180.34 12282.90 17088.85 14565.40 18484.43 24092.00 8767.62 24478.11 16185.05 27166.02 11094.27 11371.52 16989.50 11189.01 235
PAPM77.68 21076.40 21681.51 20187.29 20761.85 25183.78 25189.59 16264.74 27771.23 27588.70 17062.59 14393.66 14352.66 32187.03 13989.01 235
WTY-MVS75.65 24175.68 22375.57 29686.40 22156.82 30977.92 32682.40 29965.10 27276.18 20787.72 19663.13 13980.90 33960.31 26981.96 20889.00 237
无先验87.48 15788.98 18660.00 32294.12 12167.28 21288.97 238
GSMVS88.96 239
sam_mvs151.32 25988.96 239
SCA74.22 25472.33 26279.91 24084.05 26262.17 24779.96 30279.29 33066.30 26072.38 26580.13 32951.95 25188.60 28459.25 27777.67 25888.96 239
miper_lstm_enhance74.11 25573.11 25677.13 28580.11 33059.62 27872.23 35386.92 23566.76 25070.40 28182.92 30056.93 20982.92 32969.06 19672.63 32288.87 242
ACMM73.20 880.78 13179.84 13283.58 14189.31 13068.37 11989.99 7391.60 10470.28 19377.25 17889.66 14253.37 23593.53 14974.24 14682.85 19888.85 243
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs674.69 25073.39 25278.61 26181.38 31557.48 30186.64 18387.95 21364.99 27670.18 28486.61 23150.43 26989.52 26762.12 25470.18 33688.83 244
原ACMM184.35 10793.01 5768.79 10592.44 6963.96 29081.09 11591.57 9966.06 10995.45 6367.19 21494.82 4588.81 245
CNLPA78.08 19676.79 20681.97 19390.40 9671.07 6287.59 15584.55 26466.03 26472.38 26589.64 14357.56 20286.04 30559.61 27483.35 19288.79 246
K. test v371.19 27968.51 29179.21 25583.04 28557.78 29784.35 24376.91 34572.90 15162.99 34982.86 30239.27 34691.09 24561.65 25952.66 37688.75 247
旧先验191.96 7165.79 17686.37 24293.08 6969.31 7592.74 6888.74 248
PatchmatchNetpermissive73.12 26771.33 27078.49 26683.18 28060.85 26279.63 30478.57 33364.13 28471.73 27179.81 33451.20 26085.97 30657.40 29676.36 27988.66 249
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SixPastTwentyTwo73.37 26271.26 27279.70 24585.08 24257.89 29485.57 20983.56 28071.03 17865.66 33285.88 24942.10 33692.57 18859.11 27963.34 35888.65 250
PS-MVSNAJ81.69 10881.02 11083.70 13989.51 11968.21 12484.28 24490.09 14970.79 18181.26 11485.62 25763.15 13694.29 11175.62 13488.87 11788.59 251
xiu_mvs_v2_base81.69 10881.05 10983.60 14089.15 13768.03 12984.46 23890.02 15070.67 18481.30 11386.53 23763.17 13594.19 11975.60 13588.54 12288.57 252
CostFormer75.24 24873.90 24779.27 25382.65 29658.27 28780.80 28782.73 29761.57 31175.33 22883.13 29955.52 21391.07 24664.98 23278.34 25388.45 253
lessismore_v078.97 25681.01 32157.15 30565.99 37661.16 35482.82 30339.12 34791.34 23659.67 27346.92 38288.43 254
OpenMVScopyleft72.83 1079.77 15378.33 16884.09 12085.17 23769.91 8490.57 6090.97 12166.70 25172.17 26791.91 8954.70 22293.96 12461.81 25890.95 9188.41 255
OurMVSNet-221017-074.26 25372.42 26179.80 24383.76 26859.59 27985.92 20386.64 23766.39 25966.96 31887.58 20039.46 34591.60 22165.76 22669.27 33988.22 256
LS3D76.95 22374.82 23683.37 14890.45 9467.36 14489.15 10286.94 23461.87 31069.52 29590.61 12451.71 25694.53 10546.38 35586.71 14488.21 257
XVG-ACMP-BASELINE76.11 23674.27 24481.62 19883.20 27964.67 20083.60 25689.75 15869.75 20771.85 27087.09 21732.78 36392.11 20669.99 18680.43 22888.09 258
tpm273.26 26571.46 26778.63 26083.34 27556.71 31280.65 29180.40 31956.63 34973.55 25182.02 31451.80 25591.24 23856.35 30678.42 25187.95 259
MDTV_nov1_ep13_2view37.79 38975.16 34255.10 35466.53 32549.34 28253.98 31487.94 260
Patchmatch-test64.82 32763.24 32869.57 33979.42 34249.82 36563.49 38169.05 37151.98 36359.95 35980.13 32950.91 26270.98 37940.66 36973.57 31487.90 261
PLCcopyleft70.83 1178.05 19876.37 21783.08 16191.88 7467.80 13288.19 13589.46 16564.33 28369.87 29288.38 18153.66 23293.58 14458.86 28282.73 20087.86 262
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpm72.37 27471.71 26674.35 30982.19 30352.00 35179.22 30977.29 34264.56 27972.95 25883.68 29351.35 25883.26 32858.33 28875.80 28387.81 263
Patchmatch-RL test70.24 29167.78 30477.61 27877.43 35059.57 28071.16 35670.33 36562.94 29868.65 30372.77 36850.62 26685.49 31069.58 19166.58 34987.77 264
F-COLMAP76.38 23374.33 24382.50 18489.28 13266.95 15688.41 12689.03 18364.05 28766.83 32088.61 17446.78 30192.89 18157.48 29478.55 24787.67 265
Baseline_NR-MVSNet78.15 19578.33 16877.61 27885.79 22856.21 32186.78 17985.76 25173.60 13377.93 16687.57 20165.02 11988.99 27667.14 21575.33 29687.63 266
CL-MVSNet_self_test72.37 27471.46 26775.09 30179.49 34153.53 34380.76 28985.01 25969.12 22270.51 27982.05 31357.92 19884.13 32052.27 32366.00 35287.60 267
ACMH+68.96 1476.01 23774.01 24582.03 19188.60 15865.31 18888.86 11087.55 22270.25 19567.75 30987.47 20641.27 33993.19 16858.37 28775.94 28287.60 267
131476.53 22775.30 23380.21 23583.93 26462.32 24584.66 23088.81 19260.23 32070.16 28684.07 28555.30 21590.73 25267.37 21183.21 19487.59 269
API-MVS81.99 10281.23 10684.26 11390.94 8570.18 8291.10 5389.32 16971.51 16978.66 14588.28 18465.26 11695.10 8364.74 23491.23 8887.51 270
AdaColmapbinary80.58 13779.42 14084.06 12493.09 5468.91 10489.36 9488.97 18869.27 21575.70 21589.69 14157.20 20795.77 5463.06 24388.41 12587.50 271
PVSNet_BlendedMVS80.60 13580.02 12782.36 18788.85 14565.40 18486.16 19792.00 8769.34 21478.11 16186.09 24766.02 11094.27 11371.52 16982.06 20787.39 272
sss73.60 26073.64 25173.51 31582.80 29155.01 33276.12 33381.69 30662.47 30574.68 24285.85 25157.32 20578.11 35060.86 26680.93 21987.39 272
IterMVS-SCA-FT75.43 24573.87 24880.11 23782.69 29464.85 19781.57 28183.47 28269.16 22170.49 28084.15 28451.95 25188.15 28969.23 19372.14 32687.34 274
PVSNet64.34 1872.08 27670.87 27575.69 29486.21 22356.44 31674.37 34780.73 31362.06 30970.17 28582.23 31142.86 32983.31 32754.77 31184.45 17387.32 275
新几何183.42 14593.13 5270.71 7185.48 25457.43 34581.80 10591.98 8863.28 13192.27 20164.60 23592.99 6587.27 276
TR-MVS77.44 21376.18 21881.20 21288.24 17063.24 23184.61 23386.40 24167.55 24577.81 16786.48 23854.10 22893.15 17057.75 29382.72 20187.20 277
TransMVSNet (Re)75.39 24774.56 23977.86 27285.50 23457.10 30686.78 17986.09 24772.17 15871.53 27387.34 20763.01 14089.31 27156.84 30261.83 36087.17 278
ACMH67.68 1675.89 23873.93 24681.77 19688.71 15566.61 15988.62 12289.01 18569.81 20366.78 32186.70 22841.95 33891.51 22955.64 30878.14 25487.17 278
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
KD-MVS_self_test68.81 30167.59 30872.46 32374.29 36345.45 37277.93 32587.00 23363.12 29363.99 34478.99 34242.32 33284.77 31756.55 30564.09 35787.16 280
EPMVS69.02 30068.16 29571.59 32779.61 33949.80 36677.40 32866.93 37462.82 30170.01 28779.05 33845.79 31277.86 35256.58 30475.26 29887.13 281
CR-MVSNet73.37 26271.27 27179.67 24781.32 31865.19 18975.92 33580.30 32059.92 32372.73 26081.19 31752.50 23986.69 30059.84 27277.71 25687.11 282
RPMNet73.51 26170.49 27882.58 18381.32 31865.19 18975.92 33592.27 7657.60 34372.73 26076.45 35652.30 24295.43 6548.14 34777.71 25687.11 282
test_vis1_n_192075.52 24375.78 22174.75 30679.84 33457.44 30283.26 26185.52 25362.83 30079.34 13486.17 24545.10 31879.71 34378.75 9981.21 21787.10 284
XXY-MVS75.41 24675.56 22574.96 30283.59 27057.82 29680.59 29283.87 27666.54 25874.93 23988.31 18363.24 13380.09 34262.16 25376.85 26786.97 285
tpmrst72.39 27272.13 26373.18 31980.54 32549.91 36479.91 30379.08 33163.11 29471.69 27279.95 33155.32 21482.77 33065.66 22773.89 31186.87 286
thres20075.55 24274.47 24178.82 25887.78 18857.85 29583.07 26783.51 28172.44 15475.84 21384.42 27752.08 24891.75 21847.41 35083.64 18686.86 287
ITE_SJBPF78.22 26881.77 30860.57 26683.30 28469.25 21667.54 31187.20 21336.33 35787.28 29854.34 31374.62 30586.80 288
test22291.50 7768.26 12284.16 24683.20 28854.63 35679.74 12791.63 9758.97 19191.42 8586.77 289
MIMVSNet70.69 28669.30 28574.88 30384.52 25256.35 31975.87 33779.42 32864.59 27867.76 30882.41 30741.10 34081.54 33646.64 35481.34 21486.75 290
BH-untuned79.47 16078.60 16082.05 19089.19 13665.91 17186.07 19988.52 20372.18 15775.42 22287.69 19861.15 17193.54 14860.38 26886.83 14286.70 291
LTVRE_ROB69.57 1376.25 23474.54 24081.41 20488.60 15864.38 20879.24 30889.12 18270.76 18369.79 29487.86 19549.09 28693.20 16656.21 30780.16 23086.65 292
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
testdata79.97 23990.90 8664.21 21084.71 26159.27 32985.40 4992.91 7162.02 15589.08 27568.95 19791.37 8686.63 293
MIMVSNet168.58 30466.78 31473.98 31280.07 33151.82 35380.77 28884.37 26664.40 28159.75 36082.16 31236.47 35683.63 32442.73 36570.33 33586.48 294
tfpnnormal74.39 25173.16 25578.08 27086.10 22658.05 28984.65 23287.53 22370.32 19271.22 27685.63 25654.97 21689.86 26143.03 36475.02 30186.32 295
D2MVS74.82 24973.21 25479.64 24879.81 33562.56 24280.34 29787.35 22764.37 28268.86 30182.66 30546.37 30490.10 25967.91 20681.24 21686.25 296
tpm cat170.57 28768.31 29377.35 28282.41 30157.95 29378.08 32380.22 32252.04 36168.54 30577.66 35152.00 25087.84 29351.77 32472.07 32786.25 296
CVMVSNet72.99 26972.58 25974.25 31084.28 25550.85 36086.41 18983.45 28344.56 37273.23 25587.54 20449.38 28185.70 30765.90 22478.44 25086.19 298
AllTest70.96 28268.09 29779.58 24985.15 23963.62 21984.58 23479.83 32462.31 30660.32 35786.73 22232.02 36488.96 27950.28 33371.57 33086.15 299
TestCases79.58 24985.15 23963.62 21979.83 32462.31 30660.32 35786.73 22232.02 36488.96 27950.28 33371.57 33086.15 299
test-LLR72.94 27072.43 26074.48 30781.35 31658.04 29078.38 31977.46 33966.66 25269.95 29079.00 34048.06 29379.24 34466.13 22084.83 16486.15 299
test-mter71.41 27870.39 28174.48 30781.35 31658.04 29078.38 31977.46 33960.32 31969.95 29079.00 34036.08 35879.24 34466.13 22084.83 16486.15 299
IterMVS74.29 25272.94 25778.35 26781.53 31263.49 22581.58 28082.49 29868.06 24169.99 28983.69 29251.66 25785.54 30965.85 22571.64 32986.01 303
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS76.78 22574.57 23883.42 14593.29 4869.46 9488.55 12483.70 27763.98 28970.20 28388.89 16654.01 23094.80 9646.66 35281.88 21086.01 303
ppachtmachnet_test70.04 29367.34 31078.14 26979.80 33661.13 25879.19 31080.59 31559.16 33065.27 33579.29 33746.75 30287.29 29749.33 33966.72 34786.00 305
test_fmvs1_n70.86 28470.24 28272.73 32172.51 37555.28 32981.27 28579.71 32651.49 36578.73 14184.87 27227.54 37377.02 35576.06 12879.97 23485.88 306
Patchmtry70.74 28569.16 28875.49 29880.72 32254.07 34074.94 34680.30 32058.34 33670.01 28781.19 31752.50 23986.54 30153.37 31871.09 33385.87 307
test_fmvs268.35 30867.48 30970.98 33569.50 37851.95 35280.05 30076.38 34749.33 36874.65 24384.38 27923.30 37975.40 37074.51 14275.17 30085.60 308
ambc75.24 30073.16 37050.51 36263.05 38287.47 22564.28 34177.81 35017.80 38489.73 26457.88 29260.64 36485.49 309
UnsupCasMVSNet_eth67.33 31365.99 31771.37 32973.48 36851.47 35775.16 34285.19 25665.20 27160.78 35580.93 32442.35 33177.20 35457.12 29853.69 37585.44 310
PatchT68.46 30767.85 30070.29 33780.70 32343.93 37972.47 35274.88 35260.15 32170.55 27876.57 35549.94 27481.59 33550.58 32974.83 30385.34 311
Anonymous2024052168.80 30267.22 31173.55 31474.33 36254.11 33983.18 26285.61 25258.15 33861.68 35280.94 32230.71 36981.27 33857.00 30073.34 31985.28 312
test_cas_vis1_n_192073.76 25973.74 25073.81 31375.90 35559.77 27680.51 29382.40 29958.30 33781.62 10885.69 25344.35 32176.41 36176.29 12578.61 24685.23 313
ADS-MVSNet266.20 32463.33 32774.82 30479.92 33258.75 28367.55 37075.19 35153.37 35865.25 33675.86 35942.32 33280.53 34141.57 36768.91 34185.18 314
ADS-MVSNet64.36 32862.88 33168.78 34579.92 33247.17 36967.55 37071.18 36453.37 35865.25 33675.86 35942.32 33273.99 37541.57 36768.91 34185.18 314
FMVSNet569.50 29767.96 29874.15 31182.97 28955.35 32880.01 30182.12 30262.56 30463.02 34781.53 31636.92 35581.92 33448.42 34274.06 30985.17 316
pmmvs571.55 27770.20 28375.61 29577.83 34856.39 31781.74 27880.89 31057.76 34167.46 31384.49 27649.26 28485.32 31357.08 29975.29 29785.11 317
testing368.56 30567.67 30671.22 33387.33 20542.87 38183.06 26871.54 36370.36 19069.08 30084.38 27930.33 37085.69 30837.50 37575.45 29285.09 318
CMPMVSbinary51.72 2170.19 29268.16 29576.28 29073.15 37157.55 30079.47 30683.92 27448.02 36956.48 37084.81 27343.13 32786.42 30362.67 24881.81 21184.89 319
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testgi66.67 31866.53 31567.08 35175.62 35841.69 38675.93 33476.50 34666.11 26165.20 33886.59 23235.72 35974.71 37243.71 36273.38 31884.84 320
MSDG73.36 26470.99 27380.49 22984.51 25365.80 17580.71 29086.13 24665.70 26765.46 33383.74 29144.60 31990.91 24851.13 32876.89 26584.74 321
pmmvs474.03 25771.91 26480.39 23081.96 30568.32 12081.45 28382.14 30159.32 32869.87 29285.13 26852.40 24188.13 29060.21 27074.74 30484.73 322
gg-mvs-nofinetune69.95 29467.96 29875.94 29283.07 28354.51 33777.23 33070.29 36663.11 29470.32 28262.33 37743.62 32588.69 28353.88 31587.76 12984.62 323
test_fmvs170.93 28370.52 27772.16 32473.71 36555.05 33180.82 28678.77 33251.21 36678.58 14784.41 27831.20 36876.94 35675.88 13180.12 23384.47 324
BH-w/o78.21 19277.33 19580.84 22288.81 14965.13 19184.87 22687.85 21769.75 20774.52 24484.74 27561.34 16693.11 17358.24 28985.84 15884.27 325
MVS78.19 19476.99 20181.78 19585.66 23066.99 15284.66 23090.47 13555.08 35572.02 26985.27 26363.83 12894.11 12266.10 22289.80 10984.24 326
COLMAP_ROBcopyleft66.92 1773.01 26870.41 28080.81 22387.13 21065.63 17888.30 13284.19 27262.96 29763.80 34687.69 19838.04 35292.56 18946.66 35274.91 30284.24 326
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
new-patchmatchnet61.73 33461.73 33561.70 35772.74 37324.50 39869.16 36678.03 33561.40 31256.72 36975.53 36238.42 34976.48 36045.95 35757.67 36784.13 328
TESTMET0.1,169.89 29569.00 28972.55 32279.27 34456.85 30878.38 31974.71 35557.64 34268.09 30777.19 35337.75 35376.70 35763.92 23784.09 17784.10 329
test_fmvs363.36 33161.82 33467.98 34862.51 38546.96 37177.37 32974.03 35745.24 37167.50 31278.79 34312.16 39072.98 37872.77 16266.02 35183.99 330
our_test_369.14 29967.00 31275.57 29679.80 33658.80 28277.96 32477.81 33659.55 32662.90 35078.25 34747.43 29583.97 32151.71 32567.58 34683.93 331
test_vis1_n69.85 29669.21 28771.77 32672.66 37455.27 33081.48 28276.21 34852.03 36275.30 22983.20 29828.97 37176.22 36374.60 14178.41 25283.81 332
tpmvs71.09 28169.29 28676.49 28982.04 30456.04 32278.92 31481.37 30964.05 28767.18 31778.28 34649.74 27789.77 26249.67 33872.37 32383.67 333
test20.0367.45 31266.95 31368.94 34275.48 35944.84 37777.50 32777.67 33766.66 25263.01 34883.80 28947.02 29978.40 34842.53 36668.86 34383.58 334
test0.0.03 168.00 31067.69 30568.90 34377.55 34947.43 36875.70 33872.95 36266.66 25266.56 32482.29 31048.06 29375.87 36544.97 36174.51 30683.41 335
Anonymous2023120668.60 30367.80 30371.02 33480.23 32950.75 36178.30 32280.47 31756.79 34866.11 33182.63 30646.35 30578.95 34643.62 36375.70 28483.36 336
EU-MVSNet68.53 30667.61 30771.31 33278.51 34747.01 37084.47 23684.27 27042.27 37566.44 32984.79 27440.44 34383.76 32258.76 28468.54 34483.17 337
dp66.80 31665.43 31870.90 33679.74 33848.82 36775.12 34474.77 35359.61 32564.08 34377.23 35242.89 32880.72 34048.86 34166.58 34983.16 338
pmmvs-eth3d70.50 28967.83 30278.52 26577.37 35166.18 16581.82 27681.51 30758.90 33363.90 34580.42 32742.69 33086.28 30458.56 28565.30 35483.11 339
YYNet165.03 32562.91 33071.38 32875.85 35656.60 31469.12 36774.66 35657.28 34654.12 37377.87 34945.85 31174.48 37349.95 33661.52 36283.05 340
MDA-MVSNet-bldmvs66.68 31763.66 32675.75 29379.28 34360.56 26773.92 34978.35 33464.43 28050.13 37879.87 33344.02 32383.67 32346.10 35656.86 36883.03 341
MDA-MVSNet_test_wron65.03 32562.92 32971.37 32975.93 35456.73 31069.09 36874.73 35457.28 34654.03 37477.89 34845.88 31074.39 37449.89 33761.55 36182.99 342
USDC70.33 29068.37 29276.21 29180.60 32456.23 32079.19 31086.49 23960.89 31561.29 35385.47 26031.78 36689.47 26953.37 31876.21 28082.94 343
Syy-MVS68.05 30967.85 30068.67 34684.68 24940.97 38778.62 31773.08 36066.65 25566.74 32279.46 33552.11 24782.30 33232.89 37976.38 27782.75 344
myMVS_eth3d67.02 31566.29 31669.21 34184.68 24942.58 38278.62 31773.08 36066.65 25566.74 32279.46 33531.53 36782.30 33239.43 37276.38 27782.75 344
OpenMVS_ROBcopyleft64.09 1970.56 28868.19 29477.65 27780.26 32759.41 28185.01 22382.96 29358.76 33465.43 33482.33 30837.63 35491.23 23945.34 36076.03 28182.32 346
JIA-IIPM66.32 32162.82 33276.82 28777.09 35261.72 25465.34 37775.38 35058.04 34064.51 34062.32 37842.05 33786.51 30251.45 32769.22 34082.21 347
dmvs_re71.14 28070.58 27672.80 32081.96 30559.68 27775.60 33979.34 32968.55 23469.27 29980.72 32549.42 28076.54 35852.56 32277.79 25582.19 348
EG-PatchMatch MVS74.04 25671.82 26580.71 22584.92 24567.42 14185.86 20588.08 20966.04 26364.22 34283.85 28735.10 36092.56 18957.44 29580.83 22182.16 349
MVP-Stereo76.12 23574.46 24281.13 21585.37 23569.79 8684.42 24187.95 21365.03 27467.46 31385.33 26253.28 23691.73 22058.01 29183.27 19381.85 350
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TDRefinement67.49 31164.34 32176.92 28673.47 36961.07 25984.86 22782.98 29259.77 32458.30 36485.13 26826.06 37487.89 29247.92 34960.59 36581.81 351
GG-mvs-BLEND75.38 29981.59 31155.80 32479.32 30769.63 36867.19 31673.67 36643.24 32688.90 28150.41 33084.50 16981.45 352
KD-MVS_2432*160066.22 32263.89 32473.21 31675.47 36053.42 34570.76 35984.35 26764.10 28566.52 32678.52 34434.55 36184.98 31450.40 33150.33 37981.23 353
miper_refine_blended66.22 32263.89 32473.21 31675.47 36053.42 34570.76 35984.35 26764.10 28566.52 32678.52 34434.55 36184.98 31450.40 33150.33 37981.23 353
test_040272.79 27170.44 27979.84 24288.13 17265.99 16985.93 20284.29 26965.57 26967.40 31585.49 25946.92 30092.61 18735.88 37674.38 30780.94 355
UnsupCasMVSNet_bld63.70 33061.53 33670.21 33873.69 36651.39 35872.82 35181.89 30355.63 35357.81 36671.80 37038.67 34878.61 34749.26 34052.21 37780.63 356
LCM-MVSNet54.25 34149.68 35167.97 34953.73 39345.28 37566.85 37380.78 31235.96 38339.45 38462.23 3798.70 39478.06 35148.24 34651.20 37880.57 357
N_pmnet52.79 34653.26 34551.40 37178.99 3457.68 40369.52 3633.89 40251.63 36457.01 36874.98 36340.83 34265.96 38637.78 37464.67 35580.56 358
TinyColmap67.30 31464.81 31974.76 30581.92 30756.68 31380.29 29881.49 30860.33 31856.27 37183.22 29624.77 37687.66 29645.52 35869.47 33879.95 359
PM-MVS66.41 32064.14 32273.20 31873.92 36456.45 31578.97 31364.96 38063.88 29164.72 33980.24 32819.84 38283.44 32666.24 21964.52 35679.71 360
ANet_high50.57 35046.10 35463.99 35448.67 39639.13 38870.99 35880.85 31161.39 31331.18 38657.70 38417.02 38573.65 37731.22 38115.89 39479.18 361
LF4IMVS64.02 32962.19 33369.50 34070.90 37653.29 34876.13 33277.18 34352.65 36058.59 36280.98 32123.55 37876.52 35953.06 32066.66 34878.68 362
PatchMatch-RL72.38 27370.90 27476.80 28888.60 15867.38 14379.53 30576.17 34962.75 30269.36 29782.00 31545.51 31584.89 31653.62 31680.58 22578.12 363
MS-PatchMatch73.83 25872.67 25877.30 28383.87 26566.02 16781.82 27684.66 26261.37 31468.61 30482.82 30347.29 29688.21 28859.27 27684.32 17477.68 364
DSMNet-mixed57.77 33956.90 34160.38 35967.70 38035.61 39069.18 36553.97 39132.30 38757.49 36779.88 33240.39 34468.57 38438.78 37372.37 32376.97 365
CHOSEN 280x42066.51 31964.71 32071.90 32581.45 31363.52 22457.98 38468.95 37253.57 35762.59 35176.70 35446.22 30775.29 37155.25 30979.68 23576.88 366
mvsany_test353.99 34251.45 34761.61 35855.51 38944.74 37863.52 38045.41 39743.69 37458.11 36576.45 35617.99 38363.76 38854.77 31147.59 38176.34 367
dmvs_testset62.63 33264.11 32358.19 36178.55 34624.76 39775.28 34065.94 37767.91 24260.34 35676.01 35853.56 23373.94 37631.79 38067.65 34575.88 368
mvsany_test162.30 33361.26 33765.41 35369.52 37754.86 33366.86 37249.78 39346.65 37068.50 30683.21 29749.15 28566.28 38556.93 30160.77 36375.11 369
PMMVS69.34 29868.67 29071.35 33175.67 35762.03 24875.17 34173.46 35850.00 36768.68 30279.05 33852.07 24978.13 34961.16 26482.77 19973.90 370
test_vis1_rt60.28 33658.42 33965.84 35267.25 38155.60 32770.44 36160.94 38544.33 37359.00 36166.64 37524.91 37568.67 38362.80 24469.48 33773.25 371
pmmvs357.79 33854.26 34368.37 34764.02 38456.72 31175.12 34465.17 37840.20 37752.93 37569.86 37420.36 38175.48 36845.45 35955.25 37472.90 372
PVSNet_057.27 2061.67 33559.27 33868.85 34479.61 33957.44 30268.01 36973.44 35955.93 35258.54 36370.41 37344.58 32077.55 35347.01 35135.91 38571.55 373
WB-MVS54.94 34054.72 34255.60 36773.50 36720.90 39974.27 34861.19 38459.16 33050.61 37774.15 36447.19 29875.78 36617.31 39135.07 38670.12 374
SSC-MVS53.88 34353.59 34454.75 36972.87 37219.59 40073.84 35060.53 38657.58 34449.18 37973.45 36746.34 30675.47 36916.20 39432.28 38869.20 375
test_f52.09 34750.82 34855.90 36553.82 39242.31 38559.42 38358.31 38936.45 38256.12 37270.96 37212.18 38957.79 39053.51 31756.57 37067.60 376
PMMVS240.82 35638.86 35946.69 37253.84 39116.45 40148.61 38749.92 39237.49 38031.67 38560.97 3808.14 39656.42 39128.42 38330.72 38967.19 377
new_pmnet50.91 34950.29 34952.78 37068.58 37934.94 39263.71 37956.63 39039.73 37844.95 38065.47 37621.93 38058.48 38934.98 37756.62 36964.92 378
MVS-HIRNet59.14 33757.67 34063.57 35581.65 30943.50 38071.73 35465.06 37939.59 37951.43 37657.73 38338.34 35082.58 33139.53 37073.95 31064.62 379
APD_test153.31 34549.93 35063.42 35665.68 38250.13 36371.59 35566.90 37534.43 38440.58 38371.56 3718.65 39576.27 36234.64 37855.36 37363.86 380
test_method31.52 35829.28 36238.23 37427.03 4006.50 40420.94 39262.21 3834.05 39522.35 39352.50 38713.33 38747.58 39427.04 38534.04 38760.62 381
EGC-MVSNET52.07 34847.05 35267.14 35083.51 27260.71 26480.50 29467.75 3730.07 3970.43 39875.85 36124.26 37781.54 33628.82 38262.25 35959.16 382
test_vis3_rt49.26 35147.02 35356.00 36454.30 39045.27 37666.76 37448.08 39436.83 38144.38 38153.20 3867.17 39764.07 38756.77 30355.66 37158.65 383
FPMVS53.68 34451.64 34659.81 36065.08 38351.03 35969.48 36469.58 36941.46 37640.67 38272.32 36916.46 38670.00 38224.24 38865.42 35358.40 384
testf145.72 35241.96 35557.00 36256.90 38745.32 37366.14 37559.26 38726.19 38830.89 38760.96 3814.14 39870.64 38026.39 38646.73 38355.04 385
APD_test245.72 35241.96 35557.00 36256.90 38745.32 37366.14 37559.26 38726.19 38830.89 38760.96 3814.14 39870.64 38026.39 38646.73 38355.04 385
PMVScopyleft37.38 2244.16 35540.28 35855.82 36640.82 39842.54 38465.12 37863.99 38134.43 38424.48 39057.12 3853.92 40076.17 36417.10 39255.52 37248.75 387
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive26.22 2330.37 36025.89 36443.81 37344.55 39735.46 39128.87 39139.07 39818.20 39218.58 39440.18 3892.68 40147.37 39517.07 39323.78 39148.60 388
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft45.18 35441.86 35755.16 36877.03 35351.52 35632.50 39080.52 31632.46 38627.12 38935.02 3909.52 39375.50 36722.31 38960.21 36638.45 389
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft27.40 37740.17 39926.90 39524.59 40117.44 39323.95 39148.61 3889.77 39226.48 39618.06 39024.47 39028.83 390
E-PMN31.77 35730.64 36035.15 37552.87 39427.67 39457.09 38547.86 39524.64 39016.40 39533.05 39111.23 39154.90 39214.46 39518.15 39222.87 391
EMVS30.81 35929.65 36134.27 37650.96 39525.95 39656.58 38646.80 39624.01 39115.53 39630.68 39212.47 38854.43 39312.81 39617.05 39322.43 392
tmp_tt18.61 36221.40 36510.23 3794.82 40110.11 40234.70 38930.74 4001.48 39623.91 39226.07 39328.42 37213.41 39827.12 38415.35 3957.17 393
wuyk23d16.82 36315.94 36619.46 37858.74 38631.45 39339.22 3883.74 4036.84 3946.04 3972.70 3971.27 40224.29 39710.54 39714.40 3962.63 394
test1236.12 3658.11 3680.14 3800.06 4030.09 40571.05 3570.03 4050.04 3990.25 4001.30 3990.05 4030.03 4000.21 3990.01 3980.29 395
testmvs6.04 3668.02 3690.10 3810.08 4020.03 40669.74 3620.04 4040.05 3980.31 3991.68 3980.02 4040.04 3990.24 3980.02 3970.25 396
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k19.96 36126.61 3630.00 3820.00 4040.00 4070.00 39389.26 1730.00 4000.00 40188.61 17461.62 1590.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas5.26 3677.02 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40063.15 1360.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re7.23 3649.64 3670.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40186.72 2240.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
WAC-MVS42.58 38239.46 371
FOURS195.00 1072.39 3995.06 193.84 1574.49 11391.30 15
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 404
eth-test0.00 404
ZD-MVS94.38 2572.22 4492.67 6170.98 17987.75 3094.07 4174.01 3296.70 2784.66 4594.84 43
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
9.1488.26 1492.84 6091.52 4694.75 173.93 12588.57 2294.67 1975.57 2295.79 5386.77 3395.76 23
save fliter93.80 4072.35 4290.47 6491.17 11674.31 116
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
test_part295.06 872.65 3291.80 13
sam_mvs50.01 272
MTGPAbinary92.02 85
test_post178.90 3155.43 39648.81 29285.44 31259.25 277
test_post5.46 39550.36 27084.24 319
patchmatchnet-post74.00 36551.12 26188.60 284
MTMP92.18 3532.83 399
gm-plane-assit81.40 31453.83 34262.72 30380.94 32292.39 19563.40 241
TEST993.26 5072.96 2588.75 11591.89 9368.44 23785.00 5593.10 6574.36 2895.41 67
test_893.13 5272.57 3588.68 12091.84 9768.69 23284.87 5993.10 6574.43 2695.16 76
agg_prior92.85 5971.94 5191.78 10084.41 6994.93 87
test_prior472.60 3489.01 105
test_prior288.85 11175.41 9384.91 5793.54 5674.28 2983.31 5995.86 20
旧先验286.56 18658.10 33987.04 3788.98 27774.07 147
新几何286.29 194
原ACMM286.86 175
testdata291.01 24762.37 251
segment_acmp73.08 37
testdata184.14 24775.71 87
plane_prior790.08 10268.51 118
plane_prior689.84 11168.70 11360.42 184
plane_prior491.00 118
plane_prior368.60 11678.44 3178.92 139
plane_prior291.25 5079.12 23
plane_prior189.90 110
plane_prior68.71 11190.38 6777.62 3986.16 153
n20.00 406
nn0.00 406
door-mid69.98 367
test1192.23 79
door69.44 370
HQP5-MVS66.98 153
HQP-NCC89.33 12789.17 9876.41 7277.23 180
ACMP_Plane89.33 12789.17 9876.41 7277.23 180
BP-MVS77.47 112
HQP3-MVS92.19 8285.99 156
HQP2-MVS60.17 187
NP-MVS89.62 11468.32 12090.24 130
MDTV_nov1_ep1369.97 28483.18 28053.48 34477.10 33180.18 32360.45 31769.33 29880.44 32648.89 29186.90 29951.60 32678.51 249
ACMMP++_ref81.95 209
ACMMP++81.25 215
Test By Simon64.33 123