| MM | | | | | 88.97 4 | | 73.65 10 | 92.66 23 | 91.17 116 | 86.57 1 | 87.39 33 | 94.97 16 | 71.70 49 | 97.68 1 | 92.19 1 | 95.63 28 | 95.57 1 |
|
| casdiffmvs_mvg |  | | 85.99 43 | 86.09 45 | 85.70 66 | 87.65 192 | 67.22 149 | 88.69 119 | 93.04 38 | 79.64 18 | 85.33 50 | 92.54 81 | 73.30 35 | 94.50 107 | 83.49 57 | 91.14 89 | 95.37 2 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| dcpmvs_2 | | | 85.63 51 | 86.15 43 | 84.06 124 | 91.71 75 | 64.94 195 | 86.47 188 | 91.87 95 | 73.63 131 | 86.60 41 | 93.02 70 | 76.57 15 | 91.87 216 | 83.36 58 | 92.15 75 | 95.35 3 |
|
| casdiffmvs |  | | 85.11 60 | 85.14 59 | 85.01 82 | 87.20 208 | 65.77 177 | 87.75 151 | 92.83 55 | 77.84 37 | 84.36 71 | 92.38 83 | 72.15 44 | 93.93 130 | 81.27 79 | 90.48 96 | 95.33 4 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| 3Dnovator+ | | 77.84 4 | 85.48 53 | 84.47 67 | 88.51 7 | 91.08 81 | 73.49 16 | 93.18 11 | 93.78 18 | 80.79 8 | 76.66 193 | 93.37 60 | 60.40 186 | 96.75 26 | 77.20 115 | 93.73 62 | 95.29 5 |
|
| CS-MVS | | | 86.69 34 | 86.95 30 | 85.90 63 | 90.76 90 | 67.57 138 | 92.83 17 | 93.30 32 | 79.67 17 | 84.57 67 | 92.27 84 | 71.47 52 | 95.02 86 | 84.24 52 | 93.46 63 | 95.13 6 |
|
| TSAR-MVS + MP. | | | 88.02 17 | 88.11 15 | 87.72 30 | 93.68 43 | 72.13 46 | 91.41 47 | 92.35 74 | 74.62 111 | 88.90 20 | 93.85 52 | 75.75 20 | 96.00 49 | 87.80 26 | 94.63 47 | 95.04 7 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| baseline | | | 84.93 62 | 84.98 60 | 84.80 92 | 87.30 206 | 65.39 186 | 87.30 163 | 92.88 52 | 77.62 39 | 84.04 77 | 92.26 85 | 71.81 46 | 93.96 124 | 81.31 78 | 90.30 99 | 95.03 8 |
|
| MVS_0304 | | | 88.08 13 | 88.08 16 | 88.08 14 | 89.67 113 | 72.04 48 | 92.26 33 | 89.26 173 | 84.19 2 | 85.01 53 | 95.18 13 | 69.93 67 | 97.20 14 | 91.63 2 | 95.60 29 | 94.99 9 |
|
| DVP-MVS++ | | | 90.23 1 | 91.01 1 | 87.89 24 | 94.34 27 | 71.25 57 | 95.06 1 | 94.23 3 | 78.38 33 | 92.78 4 | 95.74 6 | 82.45 3 | 97.49 4 | 89.42 9 | 96.68 2 | 94.95 10 |
|
| PC_three_1452 | | | | | | | | | | 68.21 240 | 92.02 12 | 94.00 46 | 82.09 5 | 95.98 51 | 84.58 46 | 96.68 2 | 94.95 10 |
|
| IS-MVSNet | | | 83.15 85 | 82.81 85 | 84.18 115 | 89.94 109 | 63.30 230 | 91.59 43 | 88.46 204 | 79.04 25 | 79.49 131 | 92.16 86 | 65.10 118 | 94.28 112 | 67.71 207 | 91.86 81 | 94.95 10 |
|
| SteuartSystems-ACMMP | | | 88.72 10 | 88.86 10 | 88.32 9 | 92.14 69 | 72.96 25 | 93.73 5 | 93.67 20 | 80.19 12 | 88.10 25 | 94.80 17 | 73.76 33 | 97.11 15 | 87.51 29 | 95.82 21 | 94.90 13 |
| Skip Steuart: Steuart Systems R&D Blog. |
| SED-MVS | | | 90.08 2 | 90.85 2 | 87.77 26 | 95.30 2 | 70.98 63 | 93.57 7 | 94.06 10 | 77.24 50 | 93.10 1 | 95.72 8 | 82.99 1 | 97.44 6 | 89.07 14 | 96.63 4 | 94.88 14 |
|
| OPU-MVS | | | | | 89.06 3 | 94.62 15 | 75.42 4 | 93.57 7 | | | | 94.02 44 | 82.45 3 | 96.87 20 | 83.77 56 | 96.48 8 | 94.88 14 |
|
| SMA-MVS |  | | 89.08 7 | 89.23 7 | 88.61 6 | 94.25 31 | 73.73 9 | 92.40 24 | 93.63 21 | 74.77 107 | 92.29 7 | 95.97 2 | 74.28 29 | 97.24 12 | 88.58 20 | 96.91 1 | 94.87 16 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| test2506 | | | 77.30 217 | 76.49 213 | 79.74 244 | 90.08 102 | 52.02 350 | 87.86 150 | 63.10 382 | 74.88 104 | 80.16 125 | 92.79 77 | 38.29 351 | 92.35 198 | 68.74 200 | 92.50 72 | 94.86 17 |
|
| ECVR-MVS |  | | 79.61 155 | 79.26 146 | 80.67 226 | 90.08 102 | 54.69 334 | 87.89 148 | 77.44 341 | 74.88 104 | 80.27 122 | 92.79 77 | 48.96 290 | 92.45 192 | 68.55 201 | 92.50 72 | 94.86 17 |
|
| IU-MVS | | | | | | 95.30 2 | 71.25 57 | | 92.95 51 | 66.81 248 | 92.39 6 | | | | 88.94 16 | 96.63 4 | 94.85 19 |
|
| test1111 | | | 79.43 162 | 79.18 150 | 80.15 236 | 89.99 107 | 53.31 347 | 87.33 162 | 77.05 344 | 75.04 101 | 80.23 124 | 92.77 79 | 48.97 289 | 92.33 200 | 68.87 198 | 92.40 74 | 94.81 20 |
|
| SF-MVS | | | 88.46 11 | 88.74 11 | 87.64 35 | 92.78 61 | 71.95 50 | 92.40 24 | 94.74 2 | 75.71 87 | 89.16 19 | 95.10 14 | 75.65 21 | 96.19 43 | 87.07 32 | 96.01 17 | 94.79 21 |
|
| CS-MVS-test | | | 86.29 41 | 86.48 36 | 85.71 65 | 91.02 83 | 67.21 150 | 92.36 29 | 93.78 18 | 78.97 28 | 83.51 86 | 91.20 109 | 70.65 61 | 95.15 77 | 81.96 74 | 94.89 41 | 94.77 22 |
|
| canonicalmvs | | | 85.91 46 | 85.87 48 | 86.04 60 | 89.84 111 | 69.44 95 | 90.45 66 | 93.00 43 | 76.70 69 | 88.01 27 | 91.23 107 | 73.28 36 | 93.91 131 | 81.50 77 | 88.80 118 | 94.77 22 |
|
| test_0728_THIRD | | | | | | | | | | 78.38 33 | 92.12 9 | 95.78 4 | 81.46 7 | 97.40 8 | 89.42 9 | 96.57 7 | 94.67 24 |
|
| MSP-MVS | | | 89.51 4 | 89.91 5 | 88.30 10 | 94.28 30 | 73.46 17 | 92.90 16 | 94.11 6 | 80.27 10 | 91.35 14 | 94.16 37 | 78.35 13 | 96.77 24 | 89.59 8 | 94.22 58 | 94.67 24 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| alignmvs | | | 85.48 53 | 85.32 56 | 85.96 62 | 89.51 119 | 69.47 92 | 89.74 81 | 92.47 68 | 76.17 80 | 87.73 32 | 91.46 103 | 70.32 63 | 93.78 136 | 81.51 76 | 88.95 115 | 94.63 26 |
|
| MP-MVS-pluss | | | 87.67 20 | 87.72 20 | 87.54 36 | 93.64 44 | 72.04 48 | 89.80 79 | 93.50 25 | 75.17 100 | 86.34 42 | 95.29 12 | 70.86 57 | 96.00 49 | 88.78 18 | 96.04 16 | 94.58 27 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| DeepPCF-MVS | | 80.84 1 | 88.10 12 | 88.56 12 | 86.73 50 | 92.24 68 | 69.03 99 | 89.57 87 | 93.39 30 | 77.53 45 | 89.79 18 | 94.12 39 | 78.98 12 | 96.58 35 | 85.66 35 | 95.72 24 | 94.58 27 |
|
| VDD-MVS | | | 83.01 90 | 82.36 91 | 84.96 84 | 91.02 83 | 66.40 161 | 88.91 108 | 88.11 207 | 77.57 41 | 84.39 70 | 93.29 62 | 52.19 244 | 93.91 131 | 77.05 117 | 88.70 120 | 94.57 29 |
|
| VDDNet | | | 81.52 113 | 80.67 116 | 84.05 126 | 90.44 95 | 64.13 212 | 89.73 82 | 85.91 248 | 71.11 175 | 83.18 88 | 93.48 57 | 50.54 268 | 93.49 150 | 73.40 154 | 88.25 126 | 94.54 30 |
|
| APDe-MVS |  | | 89.15 6 | 89.63 6 | 87.73 28 | 94.49 18 | 71.69 52 | 93.83 4 | 93.96 13 | 75.70 89 | 91.06 16 | 96.03 1 | 76.84 14 | 97.03 17 | 89.09 11 | 95.65 27 | 94.47 31 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| MSC_two_6792asdad | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 45 | | | | | 97.53 2 | 89.67 6 | 96.44 9 | 94.41 32 |
|
| No_MVS | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 45 | | | | | 97.53 2 | 89.67 6 | 96.44 9 | 94.41 32 |
|
| MCST-MVS | | | 87.37 26 | 87.25 25 | 87.73 28 | 94.53 17 | 72.46 38 | 89.82 77 | 93.82 16 | 73.07 147 | 84.86 60 | 92.89 72 | 76.22 17 | 96.33 38 | 84.89 42 | 95.13 36 | 94.40 34 |
|
| CANet | | | 86.45 37 | 86.10 44 | 87.51 37 | 90.09 101 | 70.94 67 | 89.70 83 | 92.59 66 | 81.78 4 | 81.32 110 | 91.43 104 | 70.34 62 | 97.23 13 | 84.26 50 | 93.36 64 | 94.37 35 |
|
| PHI-MVS | | | 86.43 38 | 86.17 42 | 87.24 41 | 90.88 87 | 70.96 65 | 92.27 32 | 94.07 9 | 72.45 152 | 85.22 52 | 91.90 90 | 69.47 72 | 96.42 37 | 83.28 60 | 95.94 19 | 94.35 36 |
|
| CNVR-MVS | | | 88.93 9 | 89.13 9 | 88.33 8 | 94.77 12 | 73.82 8 | 90.51 61 | 93.00 43 | 80.90 7 | 88.06 26 | 94.06 42 | 76.43 16 | 96.84 21 | 88.48 23 | 95.99 18 | 94.34 37 |
|
| ZNCC-MVS | | | 87.94 18 | 87.85 19 | 88.20 12 | 94.39 24 | 73.33 19 | 93.03 14 | 93.81 17 | 76.81 63 | 85.24 51 | 94.32 31 | 71.76 47 | 96.93 19 | 85.53 37 | 95.79 22 | 94.32 38 |
|
| HPM-MVS |  | | 87.11 29 | 86.98 29 | 87.50 38 | 93.88 39 | 72.16 45 | 92.19 34 | 93.33 31 | 76.07 82 | 83.81 81 | 93.95 51 | 69.77 70 | 96.01 48 | 85.15 38 | 94.66 46 | 94.32 38 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| CDPH-MVS | | | 85.76 49 | 85.29 58 | 87.17 43 | 93.49 47 | 71.08 61 | 88.58 123 | 92.42 72 | 68.32 239 | 84.61 65 | 93.48 57 | 72.32 42 | 96.15 45 | 79.00 96 | 95.43 31 | 94.28 40 |
|
| test_241102_TWO | | | | | | | | | 94.06 10 | 77.24 50 | 92.78 4 | 95.72 8 | 81.26 8 | 97.44 6 | 89.07 14 | 96.58 6 | 94.26 41 |
|
| test_0728_SECOND | | | | | 87.71 32 | 95.34 1 | 71.43 56 | 93.49 9 | 94.23 3 | | | | | 97.49 4 | 89.08 12 | 96.41 12 | 94.21 42 |
|
| DeepC-MVS_fast | | 79.65 3 | 86.91 32 | 86.62 35 | 87.76 27 | 93.52 46 | 72.37 41 | 91.26 48 | 93.04 38 | 76.62 70 | 84.22 72 | 93.36 61 | 71.44 53 | 96.76 25 | 80.82 83 | 95.33 34 | 94.16 43 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| EPP-MVSNet | | | 83.40 81 | 83.02 81 | 84.57 96 | 90.13 100 | 64.47 205 | 92.32 30 | 90.73 128 | 74.45 115 | 79.35 133 | 91.10 112 | 69.05 79 | 95.12 78 | 72.78 161 | 87.22 136 | 94.13 44 |
|
| NCCC | | | 88.06 14 | 88.01 18 | 88.24 11 | 94.41 22 | 73.62 11 | 91.22 52 | 92.83 55 | 81.50 5 | 85.79 46 | 93.47 59 | 73.02 39 | 97.00 18 | 84.90 40 | 94.94 39 | 94.10 45 |
|
| ACMMP_NAP | | | 88.05 16 | 88.08 16 | 87.94 19 | 93.70 41 | 73.05 22 | 90.86 56 | 93.59 23 | 76.27 79 | 88.14 24 | 95.09 15 | 71.06 56 | 96.67 29 | 87.67 27 | 96.37 14 | 94.09 46 |
|
| XVS | | | 87.18 28 | 86.91 32 | 88.00 17 | 94.42 20 | 73.33 19 | 92.78 18 | 92.99 45 | 79.14 21 | 83.67 83 | 94.17 36 | 67.45 93 | 96.60 33 | 83.06 61 | 94.50 50 | 94.07 47 |
|
| X-MVStestdata | | | 80.37 142 | 77.83 179 | 88.00 17 | 94.42 20 | 73.33 19 | 92.78 18 | 92.99 45 | 79.14 21 | 83.67 83 | 12.47 394 | 67.45 93 | 96.60 33 | 83.06 61 | 94.50 50 | 94.07 47 |
|
| region2R | | | 87.42 24 | 87.20 27 | 88.09 13 | 94.63 14 | 73.55 13 | 93.03 14 | 93.12 37 | 76.73 68 | 84.45 68 | 94.52 21 | 69.09 76 | 96.70 27 | 84.37 49 | 94.83 44 | 94.03 49 |
|
| ACMMPR | | | 87.44 22 | 87.23 26 | 88.08 14 | 94.64 13 | 73.59 12 | 93.04 12 | 93.20 34 | 76.78 65 | 84.66 64 | 94.52 21 | 68.81 82 | 96.65 30 | 84.53 47 | 94.90 40 | 94.00 50 |
|
| test_fmvsmconf_n | | | 85.92 45 | 86.04 46 | 85.57 68 | 85.03 244 | 69.51 90 | 89.62 86 | 90.58 131 | 73.42 138 | 87.75 30 | 94.02 44 | 72.85 40 | 93.24 160 | 90.37 3 | 90.75 93 | 93.96 51 |
|
| DPE-MVS |  | | 89.48 5 | 89.98 4 | 88.01 16 | 94.80 11 | 72.69 31 | 91.59 43 | 94.10 8 | 75.90 85 | 92.29 7 | 95.66 10 | 81.67 6 | 97.38 10 | 87.44 31 | 96.34 15 | 93.95 52 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| test_fmvsm_n_1920 | | | 85.29 58 | 85.34 54 | 85.13 79 | 86.12 225 | 69.93 83 | 88.65 121 | 90.78 127 | 69.97 200 | 88.27 23 | 93.98 49 | 71.39 54 | 91.54 226 | 88.49 22 | 90.45 97 | 93.91 53 |
|
| test_prior | | | | | 86.33 54 | 92.61 65 | 69.59 88 | | 92.97 50 | | | | | 95.48 62 | | | 93.91 53 |
|
| GST-MVS | | | 87.42 24 | 87.26 24 | 87.89 24 | 94.12 36 | 72.97 24 | 92.39 26 | 93.43 28 | 76.89 61 | 84.68 61 | 93.99 48 | 70.67 60 | 96.82 22 | 84.18 54 | 95.01 37 | 93.90 55 |
|
| test_fmvsmconf0.1_n | | | 85.61 52 | 85.65 50 | 85.50 69 | 82.99 288 | 69.39 96 | 89.65 84 | 90.29 144 | 73.31 141 | 87.77 29 | 94.15 38 | 71.72 48 | 93.23 161 | 90.31 4 | 90.67 95 | 93.89 56 |
|
| Anonymous202405211 | | | 78.25 190 | 77.01 199 | 81.99 192 | 91.03 82 | 60.67 265 | 84.77 228 | 83.90 275 | 70.65 187 | 80.00 126 | 91.20 109 | 41.08 341 | 91.43 233 | 65.21 229 | 85.26 161 | 93.85 57 |
|
| LFMVS | | | 81.82 105 | 81.23 106 | 83.57 142 | 91.89 73 | 63.43 228 | 89.84 76 | 81.85 305 | 77.04 58 | 83.21 87 | 93.10 65 | 52.26 243 | 93.43 155 | 71.98 167 | 89.95 107 | 93.85 57 |
|
| Effi-MVS+ | | | 83.62 76 | 83.08 79 | 85.24 75 | 88.38 166 | 67.45 140 | 88.89 109 | 89.15 179 | 75.50 92 | 82.27 98 | 88.28 184 | 69.61 71 | 94.45 109 | 77.81 109 | 87.84 128 | 93.84 59 |
|
| Anonymous20240529 | | | 80.19 147 | 78.89 155 | 84.10 117 | 90.60 91 | 64.75 199 | 88.95 107 | 90.90 123 | 65.97 265 | 80.59 120 | 91.17 111 | 49.97 273 | 93.73 142 | 69.16 195 | 82.70 202 | 93.81 60 |
|
| MVS_Test | | | 83.15 85 | 83.06 80 | 83.41 147 | 86.86 212 | 63.21 232 | 86.11 198 | 92.00 87 | 74.31 116 | 82.87 92 | 89.44 154 | 70.03 65 | 93.21 163 | 77.39 114 | 88.50 124 | 93.81 60 |
|
| test_fmvsmconf0.01_n | | | 84.73 65 | 84.52 66 | 85.34 72 | 80.25 328 | 69.03 99 | 89.47 88 | 89.65 161 | 73.24 144 | 86.98 38 | 94.27 32 | 66.62 99 | 93.23 161 | 90.26 5 | 89.95 107 | 93.78 62 |
|
| GeoE | | | 81.71 107 | 81.01 111 | 83.80 137 | 89.51 119 | 64.45 206 | 88.97 106 | 88.73 199 | 71.27 172 | 78.63 146 | 89.76 140 | 66.32 105 | 93.20 166 | 69.89 187 | 86.02 155 | 93.74 63 |
|
| diffmvs |  | | 82.10 98 | 81.88 100 | 82.76 180 | 83.00 286 | 63.78 218 | 83.68 252 | 89.76 157 | 72.94 150 | 82.02 101 | 89.85 138 | 65.96 112 | 90.79 250 | 82.38 72 | 87.30 135 | 93.71 64 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| HFP-MVS | | | 87.58 21 | 87.47 23 | 87.94 19 | 94.58 16 | 73.54 15 | 93.04 12 | 93.24 33 | 76.78 65 | 84.91 57 | 94.44 28 | 70.78 58 | 96.61 32 | 84.53 47 | 94.89 41 | 93.66 65 |
|
| VNet | | | 82.21 97 | 82.41 89 | 81.62 198 | 90.82 88 | 60.93 260 | 84.47 236 | 89.78 156 | 76.36 77 | 84.07 76 | 91.88 91 | 64.71 122 | 90.26 256 | 70.68 178 | 88.89 116 | 93.66 65 |
|
| PGM-MVS | | | 86.68 35 | 86.27 39 | 87.90 22 | 94.22 33 | 73.38 18 | 90.22 70 | 93.04 38 | 75.53 91 | 83.86 79 | 94.42 29 | 67.87 90 | 96.64 31 | 82.70 70 | 94.57 49 | 93.66 65 |
|
| DELS-MVS | | | 85.41 56 | 85.30 57 | 85.77 64 | 88.49 161 | 67.93 130 | 85.52 217 | 93.44 27 | 78.70 29 | 83.63 85 | 89.03 162 | 74.57 24 | 95.71 56 | 80.26 90 | 94.04 59 | 93.66 65 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| SD-MVS | | | 88.06 14 | 88.50 13 | 86.71 51 | 92.60 66 | 72.71 29 | 91.81 42 | 93.19 35 | 77.87 36 | 90.32 17 | 94.00 46 | 74.83 23 | 93.78 136 | 87.63 28 | 94.27 57 | 93.65 69 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| DeepC-MVS | | 79.81 2 | 87.08 31 | 86.88 33 | 87.69 33 | 91.16 80 | 72.32 43 | 90.31 68 | 93.94 14 | 77.12 55 | 82.82 94 | 94.23 35 | 72.13 45 | 97.09 16 | 84.83 43 | 95.37 32 | 93.65 69 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| patch_mono-2 | | | 83.65 73 | 84.54 65 | 80.99 218 | 90.06 106 | 65.83 173 | 84.21 245 | 88.74 198 | 71.60 167 | 85.01 53 | 92.44 82 | 74.51 25 | 83.50 325 | 82.15 73 | 92.15 75 | 93.64 71 |
|
| EIA-MVS | | | 83.31 84 | 82.80 86 | 84.82 90 | 89.59 115 | 65.59 179 | 88.21 134 | 92.68 60 | 74.66 109 | 78.96 137 | 86.42 239 | 69.06 78 | 95.26 73 | 75.54 136 | 90.09 103 | 93.62 72 |
|
| MP-MVS |  | | 87.71 19 | 87.64 21 | 87.93 21 | 94.36 26 | 73.88 6 | 92.71 22 | 92.65 64 | 77.57 41 | 83.84 80 | 94.40 30 | 72.24 43 | 96.28 40 | 85.65 36 | 95.30 35 | 93.62 72 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| HPM-MVS_fast | | | 85.35 57 | 84.95 62 | 86.57 53 | 93.69 42 | 70.58 75 | 92.15 36 | 91.62 103 | 73.89 126 | 82.67 97 | 94.09 40 | 62.60 142 | 95.54 60 | 80.93 81 | 92.93 66 | 93.57 74 |
|
| fmvsm_s_conf0.1_n | | | 83.56 77 | 83.38 75 | 84.10 117 | 84.86 246 | 67.28 146 | 89.40 93 | 83.01 291 | 70.67 184 | 87.08 36 | 93.96 50 | 68.38 85 | 91.45 232 | 88.56 21 | 84.50 169 | 93.56 75 |
|
| CSCG | | | 86.41 40 | 86.19 41 | 87.07 45 | 92.91 58 | 72.48 37 | 90.81 57 | 93.56 24 | 73.95 123 | 83.16 89 | 91.07 114 | 75.94 18 | 95.19 75 | 79.94 92 | 94.38 54 | 93.55 76 |
|
| test12 | | | | | 86.80 49 | 92.63 64 | 70.70 72 | | 91.79 99 | | 82.71 96 | | 71.67 50 | 96.16 44 | | 94.50 50 | 93.54 77 |
|
| APD-MVS_3200maxsize | | | 85.97 44 | 85.88 47 | 86.22 57 | 92.69 63 | 69.53 89 | 91.93 38 | 92.99 45 | 73.54 135 | 85.94 43 | 94.51 24 | 65.80 113 | 95.61 57 | 83.04 63 | 92.51 71 | 93.53 78 |
|
| mvs_anonymous | | | 79.42 163 | 79.11 151 | 80.34 232 | 84.45 254 | 57.97 292 | 82.59 271 | 87.62 221 | 67.40 247 | 76.17 209 | 88.56 177 | 68.47 84 | 89.59 266 | 70.65 179 | 86.05 154 | 93.47 79 |
|
| fmvsm_s_conf0.5_n | | | 83.80 70 | 83.71 71 | 84.07 122 | 86.69 218 | 67.31 145 | 89.46 89 | 83.07 290 | 71.09 176 | 86.96 39 | 93.70 55 | 69.02 81 | 91.47 231 | 88.79 17 | 84.62 168 | 93.44 80 |
|
| mPP-MVS | | | 86.67 36 | 86.32 38 | 87.72 30 | 94.41 22 | 73.55 13 | 92.74 20 | 92.22 80 | 76.87 62 | 82.81 95 | 94.25 34 | 66.44 103 | 96.24 41 | 82.88 65 | 94.28 56 | 93.38 81 |
|
| EPNet | | | 83.72 72 | 82.92 84 | 86.14 59 | 84.22 257 | 69.48 91 | 91.05 55 | 85.27 255 | 81.30 6 | 76.83 188 | 91.65 95 | 66.09 108 | 95.56 58 | 76.00 130 | 93.85 60 | 93.38 81 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| Vis-MVSNet |  | | 83.46 79 | 82.80 86 | 85.43 71 | 90.25 98 | 68.74 109 | 90.30 69 | 90.13 148 | 76.33 78 | 80.87 118 | 92.89 72 | 61.00 174 | 94.20 118 | 72.45 166 | 90.97 90 | 93.35 83 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| DVP-MVS |  | | 89.60 3 | 90.35 3 | 87.33 40 | 95.27 5 | 71.25 57 | 93.49 9 | 92.73 59 | 77.33 48 | 92.12 9 | 95.78 4 | 80.98 9 | 97.40 8 | 89.08 12 | 96.41 12 | 93.33 84 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| UniMVSNet_ETH3D | | | 79.10 172 | 78.24 170 | 81.70 197 | 86.85 213 | 60.24 272 | 87.28 164 | 88.79 193 | 74.25 118 | 76.84 187 | 90.53 127 | 49.48 279 | 91.56 224 | 67.98 205 | 82.15 206 | 93.29 85 |
|
| EI-MVSNet-Vis-set | | | 84.19 66 | 83.81 70 | 85.31 73 | 88.18 171 | 67.85 131 | 87.66 153 | 89.73 159 | 80.05 14 | 82.95 90 | 89.59 146 | 70.74 59 | 94.82 95 | 80.66 87 | 84.72 166 | 93.28 86 |
|
| MTAPA | | | 87.23 27 | 87.00 28 | 87.90 22 | 94.18 35 | 74.25 5 | 86.58 185 | 92.02 85 | 79.45 19 | 85.88 44 | 94.80 17 | 68.07 87 | 96.21 42 | 86.69 34 | 95.34 33 | 93.23 87 |
|
| CP-MVS | | | 87.11 29 | 86.92 31 | 87.68 34 | 94.20 34 | 73.86 7 | 93.98 3 | 92.82 58 | 76.62 70 | 83.68 82 | 94.46 25 | 67.93 88 | 95.95 52 | 84.20 53 | 94.39 53 | 93.23 87 |
|
| ACMMP |  | | 85.89 47 | 85.39 53 | 87.38 39 | 93.59 45 | 72.63 33 | 92.74 20 | 93.18 36 | 76.78 65 | 80.73 119 | 93.82 53 | 64.33 123 | 96.29 39 | 82.67 71 | 90.69 94 | 93.23 87 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| fmvsm_s_conf0.1_n_a | | | 83.32 83 | 82.99 82 | 84.28 111 | 83.79 266 | 68.07 127 | 89.34 95 | 82.85 295 | 69.80 204 | 87.36 34 | 94.06 42 | 68.34 86 | 91.56 224 | 87.95 25 | 83.46 191 | 93.21 90 |
|
| PAPM_NR | | | 83.02 89 | 82.41 89 | 84.82 90 | 92.47 67 | 66.37 162 | 87.93 146 | 91.80 98 | 73.82 127 | 77.32 177 | 90.66 123 | 67.90 89 | 94.90 91 | 70.37 181 | 89.48 112 | 93.19 91 |
|
| OMC-MVS | | | 82.69 92 | 81.97 99 | 84.85 89 | 88.75 153 | 67.42 141 | 87.98 142 | 90.87 125 | 74.92 103 | 79.72 128 | 91.65 95 | 62.19 152 | 93.96 124 | 75.26 138 | 86.42 148 | 93.16 92 |
|
| fmvsm_s_conf0.5_n_a | | | 83.63 75 | 83.41 74 | 84.28 111 | 86.14 224 | 68.12 125 | 89.43 90 | 82.87 294 | 70.27 194 | 87.27 35 | 93.80 54 | 69.09 76 | 91.58 222 | 88.21 24 | 83.65 185 | 93.14 93 |
|
| PAPR | | | 81.66 111 | 80.89 113 | 83.99 131 | 90.27 97 | 64.00 213 | 86.76 181 | 91.77 101 | 68.84 230 | 77.13 186 | 89.50 147 | 67.63 91 | 94.88 93 | 67.55 209 | 88.52 123 | 93.09 94 |
|
| UA-Net | | | 85.08 61 | 84.96 61 | 85.45 70 | 92.07 70 | 68.07 127 | 89.78 80 | 90.86 126 | 82.48 3 | 84.60 66 | 93.20 64 | 69.35 73 | 95.22 74 | 71.39 172 | 90.88 92 | 93.07 95 |
|
| HPM-MVS++ |  | | 89.02 8 | 89.15 8 | 88.63 5 | 95.01 9 | 76.03 1 | 92.38 27 | 92.85 54 | 80.26 11 | 87.78 28 | 94.27 32 | 75.89 19 | 96.81 23 | 87.45 30 | 96.44 9 | 93.05 96 |
|
| thisisatest0530 | | | 79.40 164 | 77.76 184 | 84.31 109 | 87.69 191 | 65.10 192 | 87.36 160 | 84.26 271 | 70.04 197 | 77.42 174 | 88.26 186 | 49.94 274 | 94.79 97 | 70.20 182 | 84.70 167 | 93.03 97 |
|
| train_agg | | | 86.43 38 | 86.20 40 | 87.13 44 | 93.26 50 | 72.96 25 | 88.75 115 | 91.89 93 | 68.69 232 | 85.00 55 | 93.10 65 | 74.43 26 | 95.41 67 | 84.97 39 | 95.71 25 | 93.02 98 |
|
| EC-MVSNet | | | 86.01 42 | 86.38 37 | 84.91 88 | 89.31 130 | 66.27 164 | 92.32 30 | 93.63 21 | 79.37 20 | 84.17 74 | 91.88 91 | 69.04 80 | 95.43 65 | 83.93 55 | 93.77 61 | 93.01 99 |
|
| EI-MVSNet-UG-set | | | 83.81 69 | 83.38 75 | 85.09 80 | 87.87 181 | 67.53 139 | 87.44 159 | 89.66 160 | 79.74 16 | 82.23 99 | 89.41 155 | 70.24 64 | 94.74 98 | 79.95 91 | 83.92 178 | 92.99 100 |
|
| tttt0517 | | | 79.40 164 | 77.91 176 | 83.90 136 | 88.10 174 | 63.84 216 | 88.37 130 | 84.05 273 | 71.45 170 | 76.78 190 | 89.12 159 | 49.93 276 | 94.89 92 | 70.18 183 | 83.18 195 | 92.96 101 |
|
| test9_res | | | | | | | | | | | | | | | 84.90 40 | 95.70 26 | 92.87 102 |
|
| SR-MVS | | | 86.73 33 | 86.67 34 | 86.91 46 | 94.11 37 | 72.11 47 | 92.37 28 | 92.56 67 | 74.50 112 | 86.84 40 | 94.65 20 | 67.31 95 | 95.77 54 | 84.80 44 | 92.85 67 | 92.84 103 |
|
| ETV-MVS | | | 84.90 64 | 84.67 64 | 85.59 67 | 89.39 124 | 68.66 115 | 88.74 117 | 92.64 65 | 79.97 15 | 84.10 75 | 85.71 252 | 69.32 74 | 95.38 69 | 80.82 83 | 91.37 86 | 92.72 104 |
|
| agg_prior2 | | | | | | | | | | | | | | | 82.91 64 | 95.45 30 | 92.70 105 |
|
| APD-MVS |  | | 87.44 22 | 87.52 22 | 87.19 42 | 94.24 32 | 72.39 39 | 91.86 41 | 92.83 55 | 73.01 149 | 88.58 21 | 94.52 21 | 73.36 34 | 96.49 36 | 84.26 50 | 95.01 37 | 92.70 105 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| ET-MVSNet_ETH3D | | | 78.63 183 | 76.63 212 | 84.64 95 | 86.73 217 | 69.47 92 | 85.01 223 | 84.61 263 | 69.54 210 | 66.51 328 | 86.59 232 | 50.16 271 | 91.75 218 | 76.26 126 | 84.24 176 | 92.69 107 |
|
| Vis-MVSNet (Re-imp) | | | 78.36 189 | 78.45 163 | 78.07 271 | 88.64 157 | 51.78 354 | 86.70 182 | 79.63 327 | 74.14 121 | 75.11 234 | 90.83 121 | 61.29 168 | 89.75 263 | 58.10 290 | 91.60 82 | 92.69 107 |
|
| TSAR-MVS + GP. | | | 85.71 50 | 85.33 55 | 86.84 47 | 91.34 78 | 72.50 36 | 89.07 104 | 87.28 228 | 76.41 72 | 85.80 45 | 90.22 132 | 74.15 31 | 95.37 72 | 81.82 75 | 91.88 78 | 92.65 109 |
|
| test_fmvsmvis_n_1920 | | | 84.02 67 | 83.87 69 | 84.49 101 | 84.12 259 | 69.37 97 | 88.15 138 | 87.96 212 | 70.01 198 | 83.95 78 | 93.23 63 | 68.80 83 | 91.51 229 | 88.61 19 | 89.96 106 | 92.57 110 |
|
| FA-MVS(test-final) | | | 80.96 122 | 79.91 130 | 84.10 117 | 88.30 169 | 65.01 193 | 84.55 235 | 90.01 151 | 73.25 143 | 79.61 129 | 87.57 201 | 58.35 195 | 94.72 99 | 71.29 173 | 86.25 151 | 92.56 111 |
|
| test_yl | | | 81.17 118 | 80.47 120 | 83.24 153 | 89.13 138 | 63.62 219 | 86.21 195 | 89.95 153 | 72.43 155 | 81.78 106 | 89.61 144 | 57.50 203 | 93.58 144 | 70.75 176 | 86.90 140 | 92.52 112 |
|
| DCV-MVSNet | | | 81.17 118 | 80.47 120 | 83.24 153 | 89.13 138 | 63.62 219 | 86.21 195 | 89.95 153 | 72.43 155 | 81.78 106 | 89.61 144 | 57.50 203 | 93.58 144 | 70.75 176 | 86.90 140 | 92.52 112 |
|
| SR-MVS-dyc-post | | | 85.77 48 | 85.61 51 | 86.23 56 | 93.06 55 | 70.63 73 | 91.88 39 | 92.27 76 | 73.53 136 | 85.69 47 | 94.45 26 | 65.00 121 | 95.56 58 | 82.75 66 | 91.87 79 | 92.50 114 |
|
| RE-MVS-def | | | | 85.48 52 | | 93.06 55 | 70.63 73 | 91.88 39 | 92.27 76 | 73.53 136 | 85.69 47 | 94.45 26 | 63.87 127 | | 82.75 66 | 91.87 79 | 92.50 114 |
|
| nrg030 | | | 83.88 68 | 83.53 72 | 84.96 84 | 86.77 216 | 69.28 98 | 90.46 65 | 92.67 61 | 74.79 106 | 82.95 90 | 91.33 106 | 72.70 41 | 93.09 174 | 80.79 85 | 79.28 242 | 92.50 114 |
|
| MG-MVS | | | 83.41 80 | 83.45 73 | 83.28 150 | 92.74 62 | 62.28 246 | 88.17 136 | 89.50 164 | 75.22 96 | 81.49 109 | 92.74 80 | 66.75 98 | 95.11 80 | 72.85 160 | 91.58 83 | 92.45 117 |
|
| FIs | | | 82.07 100 | 82.42 88 | 81.04 217 | 88.80 150 | 58.34 286 | 88.26 133 | 93.49 26 | 76.93 60 | 78.47 151 | 91.04 115 | 69.92 68 | 92.34 199 | 69.87 188 | 84.97 163 | 92.44 118 |
|
| FC-MVSNet-test | | | 81.52 113 | 82.02 97 | 80.03 238 | 88.42 165 | 55.97 323 | 87.95 144 | 93.42 29 | 77.10 56 | 77.38 175 | 90.98 120 | 69.96 66 | 91.79 217 | 68.46 203 | 84.50 169 | 92.33 119 |
|
| Fast-Effi-MVS+ | | | 80.81 126 | 79.92 129 | 83.47 143 | 88.85 145 | 64.51 202 | 85.53 215 | 89.39 167 | 70.79 181 | 78.49 150 | 85.06 270 | 67.54 92 | 93.58 144 | 67.03 217 | 86.58 145 | 92.32 120 |
|
| TranMVSNet+NR-MVSNet | | | 80.84 124 | 80.31 123 | 82.42 185 | 87.85 182 | 62.33 244 | 87.74 152 | 91.33 112 | 80.55 9 | 77.99 165 | 89.86 137 | 65.23 117 | 92.62 186 | 67.05 216 | 75.24 299 | 92.30 121 |
|
| ab-mvs | | | 79.51 158 | 78.97 154 | 81.14 214 | 88.46 163 | 60.91 261 | 83.84 250 | 89.24 175 | 70.36 190 | 79.03 136 | 88.87 167 | 63.23 134 | 90.21 258 | 65.12 230 | 82.57 203 | 92.28 122 |
|
| CANet_DTU | | | 80.61 134 | 79.87 131 | 82.83 172 | 85.60 232 | 63.17 235 | 87.36 160 | 88.65 200 | 76.37 76 | 75.88 212 | 88.44 180 | 53.51 234 | 93.07 175 | 73.30 155 | 89.74 110 | 92.25 123 |
|
| UniMVSNet_NR-MVSNet | | | 81.88 103 | 81.54 103 | 82.92 169 | 88.46 163 | 63.46 226 | 87.13 166 | 92.37 73 | 80.19 12 | 78.38 152 | 89.14 158 | 71.66 51 | 93.05 176 | 70.05 184 | 76.46 272 | 92.25 123 |
|
| DU-MVS | | | 81.12 120 | 80.52 119 | 82.90 170 | 87.80 185 | 63.46 226 | 87.02 170 | 91.87 95 | 79.01 26 | 78.38 152 | 89.07 160 | 65.02 119 | 93.05 176 | 70.05 184 | 76.46 272 | 92.20 125 |
|
| NR-MVSNet | | | 80.23 145 | 79.38 141 | 82.78 178 | 87.80 185 | 63.34 229 | 86.31 192 | 91.09 120 | 79.01 26 | 72.17 267 | 89.07 160 | 67.20 96 | 92.81 185 | 66.08 223 | 75.65 285 | 92.20 125 |
|
| TAPA-MVS | | 73.13 9 | 79.15 170 | 77.94 175 | 82.79 177 | 89.59 115 | 62.99 239 | 88.16 137 | 91.51 107 | 65.77 266 | 77.14 185 | 91.09 113 | 60.91 175 | 93.21 163 | 50.26 335 | 87.05 138 | 92.17 127 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| 3Dnovator | | 76.31 5 | 83.38 82 | 82.31 92 | 86.59 52 | 87.94 180 | 72.94 28 | 90.64 59 | 92.14 84 | 77.21 52 | 75.47 218 | 92.83 74 | 58.56 193 | 94.72 99 | 73.24 157 | 92.71 69 | 92.13 128 |
|
| MVS_111021_HR | | | 85.14 59 | 84.75 63 | 86.32 55 | 91.65 76 | 72.70 30 | 85.98 200 | 90.33 141 | 76.11 81 | 82.08 100 | 91.61 98 | 71.36 55 | 94.17 120 | 81.02 80 | 92.58 70 | 92.08 129 |
|
| MVSFormer | | | 82.85 91 | 82.05 96 | 85.24 75 | 87.35 200 | 70.21 77 | 90.50 62 | 90.38 137 | 68.55 234 | 81.32 110 | 89.47 149 | 61.68 157 | 93.46 153 | 78.98 97 | 90.26 100 | 92.05 130 |
|
| jason | | | 81.39 116 | 80.29 124 | 84.70 94 | 86.63 219 | 69.90 85 | 85.95 201 | 86.77 236 | 63.24 292 | 81.07 116 | 89.47 149 | 61.08 173 | 92.15 205 | 78.33 105 | 90.07 105 | 92.05 130 |
| jason: jason. |
| mvsmamba | | | 81.69 108 | 80.74 114 | 84.56 97 | 87.45 199 | 66.72 157 | 91.26 48 | 85.89 249 | 74.66 109 | 78.23 157 | 90.56 125 | 54.33 225 | 94.91 88 | 80.73 86 | 83.54 189 | 92.04 132 |
|
| HyFIR lowres test | | | 77.53 212 | 75.40 229 | 83.94 134 | 89.59 115 | 66.62 158 | 80.36 296 | 88.64 201 | 56.29 351 | 76.45 198 | 85.17 267 | 57.64 201 | 93.28 158 | 61.34 263 | 83.10 196 | 91.91 133 |
|
| XVG-OURS-SEG-HR | | | 80.81 126 | 79.76 133 | 83.96 133 | 85.60 232 | 68.78 106 | 83.54 258 | 90.50 134 | 70.66 186 | 76.71 192 | 91.66 94 | 60.69 178 | 91.26 237 | 76.94 118 | 81.58 213 | 91.83 134 |
|
| lupinMVS | | | 81.39 116 | 80.27 125 | 84.76 93 | 87.35 200 | 70.21 77 | 85.55 213 | 86.41 240 | 62.85 299 | 81.32 110 | 88.61 174 | 61.68 157 | 92.24 203 | 78.41 104 | 90.26 100 | 91.83 134 |
|
| WR-MVS | | | 79.49 159 | 79.22 148 | 80.27 234 | 88.79 151 | 58.35 285 | 85.06 222 | 88.61 202 | 78.56 30 | 77.65 170 | 88.34 182 | 63.81 129 | 90.66 253 | 64.98 232 | 77.22 261 | 91.80 136 |
|
| h-mvs33 | | | 83.15 85 | 82.19 93 | 86.02 61 | 90.56 92 | 70.85 70 | 88.15 138 | 89.16 178 | 76.02 83 | 84.67 62 | 91.39 105 | 61.54 160 | 95.50 61 | 82.71 68 | 75.48 289 | 91.72 137 |
|
| UniMVSNet (Re) | | | 81.60 112 | 81.11 108 | 83.09 160 | 88.38 166 | 64.41 207 | 87.60 154 | 93.02 42 | 78.42 32 | 78.56 148 | 88.16 188 | 69.78 69 | 93.26 159 | 69.58 191 | 76.49 271 | 91.60 138 |
|
| UGNet | | | 80.83 125 | 79.59 137 | 84.54 98 | 88.04 177 | 68.09 126 | 89.42 91 | 88.16 206 | 76.95 59 | 76.22 205 | 89.46 151 | 49.30 283 | 93.94 127 | 68.48 202 | 90.31 98 | 91.60 138 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| XVG-OURS | | | 80.41 139 | 79.23 147 | 83.97 132 | 85.64 231 | 69.02 101 | 83.03 269 | 90.39 136 | 71.09 176 | 77.63 171 | 91.49 102 | 54.62 224 | 91.35 235 | 75.71 132 | 83.47 190 | 91.54 140 |
|
| RRT_MVS | | | 80.35 143 | 79.22 148 | 83.74 138 | 87.63 193 | 65.46 183 | 91.08 54 | 88.92 191 | 73.82 127 | 76.44 201 | 90.03 134 | 49.05 288 | 94.25 117 | 76.84 119 | 79.20 244 | 91.51 141 |
|
| LCM-MVSNet-Re | | | 77.05 220 | 76.94 202 | 77.36 281 | 87.20 208 | 51.60 355 | 80.06 299 | 80.46 318 | 75.20 97 | 67.69 310 | 86.72 224 | 62.48 145 | 88.98 277 | 63.44 240 | 89.25 114 | 91.51 141 |
|
| DP-MVS Recon | | | 83.11 88 | 82.09 95 | 86.15 58 | 94.44 19 | 70.92 68 | 88.79 113 | 92.20 81 | 70.53 188 | 79.17 135 | 91.03 117 | 64.12 125 | 96.03 46 | 68.39 204 | 90.14 102 | 91.50 143 |
|
| PS-MVSNAJss | | | 82.07 100 | 81.31 104 | 84.34 108 | 86.51 220 | 67.27 147 | 89.27 96 | 91.51 107 | 71.75 161 | 79.37 132 | 90.22 132 | 63.15 136 | 94.27 113 | 77.69 110 | 82.36 205 | 91.49 144 |
|
| thisisatest0515 | | | 77.33 216 | 75.38 230 | 83.18 156 | 85.27 236 | 63.80 217 | 82.11 275 | 83.27 285 | 65.06 273 | 75.91 211 | 83.84 288 | 49.54 278 | 94.27 113 | 67.24 213 | 86.19 152 | 91.48 145 |
|
| DPM-MVS | | | 84.93 62 | 84.29 68 | 86.84 47 | 90.20 99 | 73.04 23 | 87.12 167 | 93.04 38 | 69.80 204 | 82.85 93 | 91.22 108 | 73.06 38 | 96.02 47 | 76.72 124 | 94.63 47 | 91.46 146 |
|
| iter_conf05 | | | 80.00 151 | 78.70 157 | 83.91 135 | 87.84 183 | 65.83 173 | 88.84 112 | 84.92 260 | 71.61 166 | 78.70 142 | 88.94 163 | 43.88 324 | 94.56 102 | 79.28 95 | 84.28 175 | 91.33 147 |
|
| HQP_MVS | | | 83.64 74 | 83.14 78 | 85.14 77 | 90.08 102 | 68.71 111 | 91.25 50 | 92.44 69 | 79.12 23 | 78.92 139 | 91.00 118 | 60.42 184 | 95.38 69 | 78.71 100 | 86.32 149 | 91.33 147 |
|
| plane_prior5 | | | | | | | | | 92.44 69 | | | | | 95.38 69 | 78.71 100 | 86.32 149 | 91.33 147 |
|
| GA-MVS | | | 76.87 224 | 75.17 234 | 81.97 193 | 82.75 292 | 62.58 241 | 81.44 284 | 86.35 243 | 72.16 159 | 74.74 241 | 82.89 301 | 46.20 308 | 92.02 209 | 68.85 199 | 81.09 218 | 91.30 150 |
|
| VPA-MVSNet | | | 80.60 135 | 80.55 118 | 80.76 224 | 88.07 176 | 60.80 263 | 86.86 175 | 91.58 105 | 75.67 90 | 80.24 123 | 89.45 153 | 63.34 130 | 90.25 257 | 70.51 180 | 79.22 243 | 91.23 151 |
|
| Effi-MVS+-dtu | | | 80.03 149 | 78.57 161 | 84.42 104 | 85.13 241 | 68.74 109 | 88.77 114 | 88.10 208 | 74.99 102 | 74.97 238 | 83.49 294 | 57.27 206 | 93.36 156 | 73.53 151 | 80.88 220 | 91.18 152 |
|
| v2v482 | | | 80.23 145 | 79.29 145 | 83.05 163 | 83.62 269 | 64.14 211 | 87.04 169 | 89.97 152 | 73.61 132 | 78.18 160 | 87.22 212 | 61.10 172 | 93.82 134 | 76.11 127 | 76.78 269 | 91.18 152 |
|
| FE-MVS | | | 77.78 205 | 75.68 223 | 84.08 121 | 88.09 175 | 66.00 168 | 83.13 264 | 87.79 218 | 68.42 238 | 78.01 164 | 85.23 265 | 45.50 316 | 95.12 78 | 59.11 279 | 85.83 159 | 91.11 154 |
|
| iter_conf_final | | | 80.63 133 | 79.35 143 | 84.46 102 | 89.36 126 | 67.70 135 | 89.85 75 | 84.49 265 | 73.19 145 | 78.30 155 | 88.94 163 | 45.98 309 | 94.56 102 | 79.59 94 | 84.48 172 | 91.11 154 |
|
| Anonymous20231211 | | | 78.97 176 | 77.69 187 | 82.81 174 | 90.54 93 | 64.29 209 | 90.11 72 | 91.51 107 | 65.01 275 | 76.16 210 | 88.13 193 | 50.56 267 | 93.03 179 | 69.68 190 | 77.56 259 | 91.11 154 |
|
| hse-mvs2 | | | 81.72 106 | 80.94 112 | 84.07 122 | 88.72 154 | 67.68 136 | 85.87 204 | 87.26 229 | 76.02 83 | 84.67 62 | 88.22 187 | 61.54 160 | 93.48 151 | 82.71 68 | 73.44 317 | 91.06 157 |
|
| AUN-MVS | | | 79.21 169 | 77.60 189 | 84.05 126 | 88.71 155 | 67.61 137 | 85.84 206 | 87.26 229 | 69.08 223 | 77.23 180 | 88.14 192 | 53.20 237 | 93.47 152 | 75.50 137 | 73.45 316 | 91.06 157 |
|
| HQP4-MVS | | | | | | | | | | | 77.24 179 | | | 95.11 80 | | | 91.03 159 |
|
| HQP-MVS | | | 82.61 94 | 82.02 97 | 84.37 105 | 89.33 127 | 66.98 153 | 89.17 98 | 92.19 82 | 76.41 72 | 77.23 180 | 90.23 131 | 60.17 187 | 95.11 80 | 77.47 112 | 85.99 156 | 91.03 159 |
|
| RPSCF | | | 73.23 266 | 71.46 267 | 78.54 264 | 82.50 298 | 59.85 275 | 82.18 274 | 82.84 296 | 58.96 332 | 71.15 277 | 89.41 155 | 45.48 317 | 84.77 317 | 58.82 283 | 71.83 328 | 91.02 161 |
|
| test_djsdf | | | 80.30 144 | 79.32 144 | 83.27 151 | 83.98 263 | 65.37 187 | 90.50 62 | 90.38 137 | 68.55 234 | 76.19 206 | 88.70 170 | 56.44 211 | 93.46 153 | 78.98 97 | 80.14 232 | 90.97 162 |
|
| PCF-MVS | | 73.52 7 | 80.38 140 | 78.84 156 | 85.01 82 | 87.71 189 | 68.99 102 | 83.65 253 | 91.46 111 | 63.00 296 | 77.77 169 | 90.28 129 | 66.10 107 | 95.09 84 | 61.40 261 | 88.22 127 | 90.94 163 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| VPNet | | | 78.69 182 | 78.66 159 | 78.76 259 | 88.31 168 | 55.72 325 | 84.45 239 | 86.63 238 | 76.79 64 | 78.26 156 | 90.55 126 | 59.30 189 | 89.70 265 | 66.63 218 | 77.05 263 | 90.88 164 |
|
| CPTT-MVS | | | 83.73 71 | 83.33 77 | 84.92 87 | 93.28 49 | 70.86 69 | 92.09 37 | 90.38 137 | 68.75 231 | 79.57 130 | 92.83 74 | 60.60 182 | 93.04 178 | 80.92 82 | 91.56 84 | 90.86 165 |
|
| tt0805 | | | 78.73 180 | 77.83 179 | 81.43 203 | 85.17 237 | 60.30 271 | 89.41 92 | 90.90 123 | 71.21 173 | 77.17 184 | 88.73 169 | 46.38 303 | 93.21 163 | 72.57 164 | 78.96 245 | 90.79 166 |
|
| CLD-MVS | | | 82.31 96 | 81.65 102 | 84.29 110 | 88.47 162 | 67.73 134 | 85.81 208 | 92.35 74 | 75.78 86 | 78.33 154 | 86.58 234 | 64.01 126 | 94.35 110 | 76.05 129 | 87.48 133 | 90.79 166 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| v1192 | | | 79.59 157 | 78.43 165 | 83.07 162 | 83.55 271 | 64.52 201 | 86.93 173 | 90.58 131 | 70.83 180 | 77.78 168 | 85.90 248 | 59.15 190 | 93.94 127 | 73.96 148 | 77.19 262 | 90.76 168 |
|
| IterMVS-LS | | | 80.06 148 | 79.38 141 | 82.11 189 | 85.89 227 | 63.20 233 | 86.79 178 | 89.34 168 | 74.19 119 | 75.45 221 | 86.72 224 | 66.62 99 | 92.39 195 | 72.58 163 | 76.86 266 | 90.75 169 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| EI-MVSNet | | | 80.52 138 | 79.98 128 | 82.12 188 | 84.28 255 | 63.19 234 | 86.41 189 | 88.95 189 | 74.18 120 | 78.69 143 | 87.54 204 | 66.62 99 | 92.43 193 | 72.57 164 | 80.57 226 | 90.74 170 |
|
| v1921920 | | | 79.22 168 | 78.03 173 | 82.80 175 | 83.30 276 | 63.94 215 | 86.80 177 | 90.33 141 | 69.91 202 | 77.48 173 | 85.53 258 | 58.44 194 | 93.75 140 | 73.60 150 | 76.85 267 | 90.71 171 |
|
| QAPM | | | 80.88 123 | 79.50 139 | 85.03 81 | 88.01 179 | 68.97 103 | 91.59 43 | 92.00 87 | 66.63 257 | 75.15 233 | 92.16 86 | 57.70 200 | 95.45 63 | 63.52 238 | 88.76 119 | 90.66 172 |
|
| v144192 | | | 79.47 160 | 78.37 166 | 82.78 178 | 83.35 274 | 63.96 214 | 86.96 171 | 90.36 140 | 69.99 199 | 77.50 172 | 85.67 255 | 60.66 179 | 93.77 138 | 74.27 145 | 76.58 270 | 90.62 173 |
|
| v1240 | | | 78.99 175 | 77.78 182 | 82.64 181 | 83.21 278 | 63.54 223 | 86.62 184 | 90.30 143 | 69.74 209 | 77.33 176 | 85.68 254 | 57.04 208 | 93.76 139 | 73.13 158 | 76.92 264 | 90.62 173 |
|
| v1144 | | | 80.03 149 | 79.03 152 | 83.01 165 | 83.78 267 | 64.51 202 | 87.11 168 | 90.57 133 | 71.96 160 | 78.08 163 | 86.20 244 | 61.41 164 | 93.94 127 | 74.93 139 | 77.23 260 | 90.60 175 |
|
| 1112_ss | | | 77.40 215 | 76.43 215 | 80.32 233 | 89.11 142 | 60.41 270 | 83.65 253 | 87.72 220 | 62.13 308 | 73.05 257 | 86.72 224 | 62.58 144 | 89.97 260 | 62.11 255 | 80.80 222 | 90.59 176 |
|
| CP-MVSNet | | | 78.22 191 | 78.34 167 | 77.84 273 | 87.83 184 | 54.54 336 | 87.94 145 | 91.17 116 | 77.65 38 | 73.48 252 | 88.49 178 | 62.24 151 | 88.43 286 | 62.19 252 | 74.07 308 | 90.55 177 |
|
| PS-CasMVS | | | 78.01 200 | 78.09 172 | 77.77 275 | 87.71 189 | 54.39 338 | 88.02 141 | 91.22 113 | 77.50 46 | 73.26 254 | 88.64 173 | 60.73 176 | 88.41 287 | 61.88 256 | 73.88 312 | 90.53 178 |
|
| CDS-MVSNet | | | 79.07 173 | 77.70 186 | 83.17 157 | 87.60 194 | 68.23 123 | 84.40 242 | 86.20 244 | 67.49 246 | 76.36 202 | 86.54 236 | 61.54 160 | 90.79 250 | 61.86 257 | 87.33 134 | 90.49 179 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| TAMVS | | | 78.89 178 | 77.51 191 | 83.03 164 | 87.80 185 | 67.79 133 | 84.72 229 | 85.05 258 | 67.63 243 | 76.75 191 | 87.70 197 | 62.25 150 | 90.82 249 | 58.53 286 | 87.13 137 | 90.49 179 |
|
| PEN-MVS | | | 77.73 206 | 77.69 187 | 77.84 273 | 87.07 211 | 53.91 341 | 87.91 147 | 91.18 115 | 77.56 43 | 73.14 256 | 88.82 168 | 61.23 169 | 89.17 273 | 59.95 271 | 72.37 323 | 90.43 181 |
|
| Test_1112_low_res | | | 76.40 232 | 75.44 227 | 79.27 253 | 89.28 132 | 58.09 288 | 81.69 279 | 87.07 232 | 59.53 327 | 72.48 263 | 86.67 229 | 61.30 167 | 89.33 270 | 60.81 267 | 80.15 231 | 90.41 182 |
|
| HY-MVS | | 69.67 12 | 77.95 201 | 77.15 197 | 80.36 231 | 87.57 198 | 60.21 273 | 83.37 260 | 87.78 219 | 66.11 261 | 75.37 224 | 87.06 219 | 63.27 132 | 90.48 255 | 61.38 262 | 82.43 204 | 90.40 183 |
|
| CHOSEN 1792x2688 | | | 77.63 211 | 75.69 222 | 83.44 144 | 89.98 108 | 68.58 117 | 78.70 316 | 87.50 224 | 56.38 350 | 75.80 214 | 86.84 220 | 58.67 192 | 91.40 234 | 61.58 260 | 85.75 160 | 90.34 184 |
|
| SDMVSNet | | | 80.38 140 | 80.18 126 | 80.99 218 | 89.03 143 | 64.94 195 | 80.45 295 | 89.40 166 | 75.19 98 | 76.61 196 | 89.98 135 | 60.61 181 | 87.69 295 | 76.83 121 | 83.55 187 | 90.33 185 |
|
| sd_testset | | | 77.70 209 | 77.40 192 | 78.60 262 | 89.03 143 | 60.02 274 | 79.00 312 | 85.83 250 | 75.19 98 | 76.61 196 | 89.98 135 | 54.81 217 | 85.46 311 | 62.63 249 | 83.55 187 | 90.33 185 |
|
| 114514_t | | | 80.68 132 | 79.51 138 | 84.20 114 | 94.09 38 | 67.27 147 | 89.64 85 | 91.11 119 | 58.75 335 | 74.08 248 | 90.72 122 | 58.10 196 | 95.04 85 | 69.70 189 | 89.42 113 | 90.30 187 |
|
| eth_miper_zixun_eth | | | 77.92 202 | 76.69 210 | 81.61 200 | 83.00 286 | 61.98 249 | 83.15 263 | 89.20 177 | 69.52 211 | 74.86 240 | 84.35 281 | 61.76 156 | 92.56 189 | 71.50 171 | 72.89 321 | 90.28 188 |
|
| PVSNet_Blended_VisFu | | | 82.62 93 | 81.83 101 | 84.96 84 | 90.80 89 | 69.76 87 | 88.74 117 | 91.70 102 | 69.39 212 | 78.96 137 | 88.46 179 | 65.47 115 | 94.87 94 | 74.42 143 | 88.57 121 | 90.24 189 |
|
| MVS_111021_LR | | | 82.61 94 | 82.11 94 | 84.11 116 | 88.82 148 | 71.58 53 | 85.15 220 | 86.16 245 | 74.69 108 | 80.47 121 | 91.04 115 | 62.29 149 | 90.55 254 | 80.33 89 | 90.08 104 | 90.20 190 |
|
| MSLP-MVS++ | | | 85.43 55 | 85.76 49 | 84.45 103 | 91.93 72 | 70.24 76 | 90.71 58 | 92.86 53 | 77.46 47 | 84.22 72 | 92.81 76 | 67.16 97 | 92.94 180 | 80.36 88 | 94.35 55 | 90.16 191 |
|
| mvs_tets | | | 79.13 171 | 77.77 183 | 83.22 155 | 84.70 248 | 66.37 162 | 89.17 98 | 90.19 146 | 69.38 213 | 75.40 223 | 89.46 151 | 44.17 322 | 93.15 170 | 76.78 122 | 80.70 224 | 90.14 192 |
|
| BH-RMVSNet | | | 79.61 155 | 78.44 164 | 83.14 158 | 89.38 125 | 65.93 170 | 84.95 225 | 87.15 231 | 73.56 134 | 78.19 159 | 89.79 139 | 56.67 210 | 93.36 156 | 59.53 275 | 86.74 143 | 90.13 193 |
|
| c3_l | | | 78.75 179 | 77.91 176 | 81.26 209 | 82.89 290 | 61.56 255 | 84.09 248 | 89.13 181 | 69.97 200 | 75.56 216 | 84.29 282 | 66.36 104 | 92.09 207 | 73.47 153 | 75.48 289 | 90.12 194 |
|
| v7n | | | 78.97 176 | 77.58 190 | 83.14 158 | 83.45 273 | 65.51 180 | 88.32 131 | 91.21 114 | 73.69 130 | 72.41 264 | 86.32 242 | 57.93 197 | 93.81 135 | 69.18 194 | 75.65 285 | 90.11 195 |
|
| jajsoiax | | | 79.29 167 | 77.96 174 | 83.27 151 | 84.68 249 | 66.57 160 | 89.25 97 | 90.16 147 | 69.20 219 | 75.46 220 | 89.49 148 | 45.75 314 | 93.13 172 | 76.84 119 | 80.80 222 | 90.11 195 |
|
| v148 | | | 78.72 181 | 77.80 181 | 81.47 202 | 82.73 293 | 61.96 250 | 86.30 193 | 88.08 209 | 73.26 142 | 76.18 207 | 85.47 260 | 62.46 146 | 92.36 197 | 71.92 168 | 73.82 313 | 90.09 197 |
|
| GBi-Net | | | 78.40 187 | 77.40 192 | 81.40 205 | 87.60 194 | 63.01 236 | 88.39 127 | 89.28 170 | 71.63 163 | 75.34 225 | 87.28 208 | 54.80 218 | 91.11 240 | 62.72 245 | 79.57 236 | 90.09 197 |
|
| test1 | | | 78.40 187 | 77.40 192 | 81.40 205 | 87.60 194 | 63.01 236 | 88.39 127 | 89.28 170 | 71.63 163 | 75.34 225 | 87.28 208 | 54.80 218 | 91.11 240 | 62.72 245 | 79.57 236 | 90.09 197 |
|
| FMVSNet1 | | | 77.44 213 | 76.12 219 | 81.40 205 | 86.81 215 | 63.01 236 | 88.39 127 | 89.28 170 | 70.49 189 | 74.39 245 | 87.28 208 | 49.06 287 | 91.11 240 | 60.91 265 | 78.52 248 | 90.09 197 |
|
| WR-MVS_H | | | 78.51 186 | 78.49 162 | 78.56 263 | 88.02 178 | 56.38 318 | 88.43 125 | 92.67 61 | 77.14 54 | 73.89 249 | 87.55 203 | 66.25 106 | 89.24 272 | 58.92 281 | 73.55 315 | 90.06 201 |
|
| DTE-MVSNet | | | 76.99 221 | 76.80 205 | 77.54 280 | 86.24 222 | 53.06 349 | 87.52 156 | 90.66 129 | 77.08 57 | 72.50 262 | 88.67 172 | 60.48 183 | 89.52 267 | 57.33 297 | 70.74 334 | 90.05 202 |
|
| v8 | | | 79.97 152 | 79.02 153 | 82.80 175 | 84.09 260 | 64.50 204 | 87.96 143 | 90.29 144 | 74.13 122 | 75.24 231 | 86.81 221 | 62.88 141 | 93.89 133 | 74.39 144 | 75.40 294 | 90.00 203 |
|
| thres600view7 | | | 76.50 228 | 75.44 227 | 79.68 246 | 89.40 123 | 57.16 304 | 85.53 215 | 83.23 286 | 73.79 129 | 76.26 204 | 87.09 217 | 51.89 253 | 91.89 214 | 48.05 348 | 83.72 184 | 90.00 203 |
|
| thres400 | | | 76.50 228 | 75.37 231 | 79.86 241 | 89.13 138 | 57.65 298 | 85.17 218 | 83.60 278 | 73.41 139 | 76.45 198 | 86.39 240 | 52.12 245 | 91.95 211 | 48.33 343 | 83.75 181 | 90.00 203 |
|
| cl22 | | | 78.07 197 | 77.01 199 | 81.23 210 | 82.37 302 | 61.83 252 | 83.55 257 | 87.98 211 | 68.96 228 | 75.06 236 | 83.87 286 | 61.40 165 | 91.88 215 | 73.53 151 | 76.39 274 | 89.98 206 |
|
| OPM-MVS | | | 83.50 78 | 82.95 83 | 85.14 77 | 88.79 151 | 70.95 66 | 89.13 103 | 91.52 106 | 77.55 44 | 80.96 117 | 91.75 93 | 60.71 177 | 94.50 107 | 79.67 93 | 86.51 147 | 89.97 207 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| baseline2 | | | 75.70 240 | 73.83 249 | 81.30 208 | 83.26 277 | 61.79 253 | 82.57 272 | 80.65 314 | 66.81 248 | 66.88 319 | 83.42 295 | 57.86 199 | 92.19 204 | 63.47 239 | 79.57 236 | 89.91 208 |
|
| v10 | | | 79.74 154 | 78.67 158 | 82.97 168 | 84.06 261 | 64.95 194 | 87.88 149 | 90.62 130 | 73.11 146 | 75.11 234 | 86.56 235 | 61.46 163 | 94.05 123 | 73.68 149 | 75.55 287 | 89.90 209 |
|
| MVSTER | | | 79.01 174 | 77.88 178 | 82.38 186 | 83.07 283 | 64.80 198 | 84.08 249 | 88.95 189 | 69.01 227 | 78.69 143 | 87.17 215 | 54.70 222 | 92.43 193 | 74.69 140 | 80.57 226 | 89.89 210 |
|
| ACMP | | 74.13 6 | 81.51 115 | 80.57 117 | 84.36 106 | 89.42 122 | 68.69 114 | 89.97 74 | 91.50 110 | 74.46 114 | 75.04 237 | 90.41 128 | 53.82 231 | 94.54 104 | 77.56 111 | 82.91 197 | 89.86 211 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| LPG-MVS_test | | | 82.08 99 | 81.27 105 | 84.50 99 | 89.23 134 | 68.76 107 | 90.22 70 | 91.94 91 | 75.37 94 | 76.64 194 | 91.51 100 | 54.29 226 | 94.91 88 | 78.44 102 | 83.78 179 | 89.83 212 |
|
| LGP-MVS_train | | | | | 84.50 99 | 89.23 134 | 68.76 107 | | 91.94 91 | 75.37 94 | 76.64 194 | 91.51 100 | 54.29 226 | 94.91 88 | 78.44 102 | 83.78 179 | 89.83 212 |
|
| V42 | | | 79.38 166 | 78.24 170 | 82.83 172 | 81.10 320 | 65.50 181 | 85.55 213 | 89.82 155 | 71.57 168 | 78.21 158 | 86.12 246 | 60.66 179 | 93.18 169 | 75.64 133 | 75.46 291 | 89.81 214 |
|
| MAR-MVS | | | 81.84 104 | 80.70 115 | 85.27 74 | 91.32 79 | 71.53 54 | 89.82 77 | 90.92 122 | 69.77 206 | 78.50 149 | 86.21 243 | 62.36 148 | 94.52 106 | 65.36 228 | 92.05 77 | 89.77 215 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| DIV-MVS_self_test | | | 77.72 207 | 76.76 207 | 80.58 227 | 82.48 300 | 60.48 268 | 83.09 265 | 87.86 216 | 69.22 217 | 74.38 246 | 85.24 264 | 62.10 153 | 91.53 227 | 71.09 174 | 75.40 294 | 89.74 216 |
|
| cl____ | | | 77.72 207 | 76.76 207 | 80.58 227 | 82.49 299 | 60.48 268 | 83.09 265 | 87.87 215 | 69.22 217 | 74.38 246 | 85.22 266 | 62.10 153 | 91.53 227 | 71.09 174 | 75.41 293 | 89.73 217 |
|
| miper_ehance_all_eth | | | 78.59 185 | 77.76 184 | 81.08 216 | 82.66 295 | 61.56 255 | 83.65 253 | 89.15 179 | 68.87 229 | 75.55 217 | 83.79 290 | 66.49 102 | 92.03 208 | 73.25 156 | 76.39 274 | 89.64 218 |
|
| anonymousdsp | | | 78.60 184 | 77.15 197 | 82.98 167 | 80.51 326 | 67.08 151 | 87.24 165 | 89.53 163 | 65.66 268 | 75.16 232 | 87.19 214 | 52.52 238 | 92.25 202 | 77.17 116 | 79.34 241 | 89.61 219 |
|
| FMVSNet2 | | | 78.20 193 | 77.21 196 | 81.20 212 | 87.60 194 | 62.89 240 | 87.47 158 | 89.02 184 | 71.63 163 | 75.29 230 | 87.28 208 | 54.80 218 | 91.10 243 | 62.38 250 | 79.38 240 | 89.61 219 |
|
| baseline1 | | | 76.98 222 | 76.75 209 | 77.66 276 | 88.13 172 | 55.66 326 | 85.12 221 | 81.89 303 | 73.04 148 | 76.79 189 | 88.90 165 | 62.43 147 | 87.78 294 | 63.30 242 | 71.18 332 | 89.55 221 |
|
| FMVSNet3 | | | 77.88 203 | 76.85 204 | 80.97 220 | 86.84 214 | 62.36 243 | 86.52 187 | 88.77 194 | 71.13 174 | 75.34 225 | 86.66 230 | 54.07 229 | 91.10 243 | 62.72 245 | 79.57 236 | 89.45 222 |
|
| miper_enhance_ethall | | | 77.87 204 | 76.86 203 | 80.92 221 | 81.65 309 | 61.38 257 | 82.68 270 | 88.98 186 | 65.52 270 | 75.47 218 | 82.30 309 | 65.76 114 | 92.00 210 | 72.95 159 | 76.39 274 | 89.39 223 |
|
| cascas | | | 76.72 226 | 74.64 237 | 82.99 166 | 85.78 229 | 65.88 172 | 82.33 273 | 89.21 176 | 60.85 316 | 72.74 259 | 81.02 320 | 47.28 297 | 93.75 140 | 67.48 210 | 85.02 162 | 89.34 224 |
|
| bld_raw_dy_0_64 | | | 77.29 218 | 75.98 220 | 81.22 211 | 85.04 243 | 65.47 182 | 88.14 140 | 77.56 338 | 69.20 219 | 73.77 250 | 89.40 157 | 42.24 335 | 88.85 282 | 76.78 122 | 81.64 212 | 89.33 225 |
|
| Fast-Effi-MVS+-dtu | | | 78.02 199 | 76.49 213 | 82.62 182 | 83.16 282 | 66.96 155 | 86.94 172 | 87.45 226 | 72.45 152 | 71.49 274 | 84.17 283 | 54.79 221 | 91.58 222 | 67.61 208 | 80.31 229 | 89.30 226 |
|
| IB-MVS | | 68.01 15 | 75.85 239 | 73.36 253 | 83.31 149 | 84.76 247 | 66.03 166 | 83.38 259 | 85.06 257 | 70.21 196 | 69.40 296 | 81.05 319 | 45.76 313 | 94.66 101 | 65.10 231 | 75.49 288 | 89.25 227 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| thres100view900 | | | 76.50 228 | 75.55 226 | 79.33 252 | 89.52 118 | 56.99 307 | 85.83 207 | 83.23 286 | 73.94 124 | 76.32 203 | 87.12 216 | 51.89 253 | 91.95 211 | 48.33 343 | 83.75 181 | 89.07 228 |
|
| tfpn200view9 | | | 76.42 231 | 75.37 231 | 79.55 251 | 89.13 138 | 57.65 298 | 85.17 218 | 83.60 278 | 73.41 139 | 76.45 198 | 86.39 240 | 52.12 245 | 91.95 211 | 48.33 343 | 83.75 181 | 89.07 228 |
|
| xiu_mvs_v1_base_debu | | | 80.80 128 | 79.72 134 | 84.03 128 | 87.35 200 | 70.19 79 | 85.56 210 | 88.77 194 | 69.06 224 | 81.83 102 | 88.16 188 | 50.91 262 | 92.85 182 | 78.29 106 | 87.56 130 | 89.06 230 |
|
| xiu_mvs_v1_base | | | 80.80 128 | 79.72 134 | 84.03 128 | 87.35 200 | 70.19 79 | 85.56 210 | 88.77 194 | 69.06 224 | 81.83 102 | 88.16 188 | 50.91 262 | 92.85 182 | 78.29 106 | 87.56 130 | 89.06 230 |
|
| xiu_mvs_v1_base_debi | | | 80.80 128 | 79.72 134 | 84.03 128 | 87.35 200 | 70.19 79 | 85.56 210 | 88.77 194 | 69.06 224 | 81.83 102 | 88.16 188 | 50.91 262 | 92.85 182 | 78.29 106 | 87.56 130 | 89.06 230 |
|
| EPNet_dtu | | | 75.46 244 | 74.86 235 | 77.23 284 | 82.57 297 | 54.60 335 | 86.89 174 | 83.09 289 | 71.64 162 | 66.25 330 | 85.86 250 | 55.99 212 | 88.04 291 | 54.92 310 | 86.55 146 | 89.05 233 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| pm-mvs1 | | | 77.25 219 | 76.68 211 | 78.93 257 | 84.22 257 | 58.62 284 | 86.41 189 | 88.36 205 | 71.37 171 | 73.31 253 | 88.01 194 | 61.22 170 | 89.15 274 | 64.24 236 | 73.01 320 | 89.03 234 |
|
| PVSNet_Blended | | | 80.98 121 | 80.34 122 | 82.90 170 | 88.85 145 | 65.40 184 | 84.43 240 | 92.00 87 | 67.62 244 | 78.11 161 | 85.05 271 | 66.02 110 | 94.27 113 | 71.52 169 | 89.50 111 | 89.01 235 |
|
| PAPM | | | 77.68 210 | 76.40 216 | 81.51 201 | 87.29 207 | 61.85 251 | 83.78 251 | 89.59 162 | 64.74 277 | 71.23 275 | 88.70 170 | 62.59 143 | 93.66 143 | 52.66 321 | 87.03 139 | 89.01 235 |
|
| WTY-MVS | | | 75.65 241 | 75.68 223 | 75.57 296 | 86.40 221 | 56.82 309 | 77.92 326 | 82.40 299 | 65.10 272 | 76.18 207 | 87.72 196 | 63.13 139 | 80.90 339 | 60.31 269 | 81.96 208 | 89.00 237 |
|
| æ— å…ˆéªŒ | | | | | | | | 87.48 157 | 88.98 186 | 60.00 322 | | | | 94.12 121 | 67.28 212 | | 88.97 238 |
|
| GSMVS | | | | | | | | | | | | | | | | | 88.96 239 |
|
| sam_mvs1 | | | | | | | | | | | | | 51.32 259 | | | | 88.96 239 |
|
| SCA | | | 74.22 254 | 72.33 262 | 79.91 240 | 84.05 262 | 62.17 247 | 79.96 302 | 79.29 330 | 66.30 260 | 72.38 265 | 80.13 329 | 51.95 251 | 88.60 284 | 59.25 277 | 77.67 258 | 88.96 239 |
|
| miper_lstm_enhance | | | 74.11 255 | 73.11 256 | 77.13 285 | 80.11 330 | 59.62 278 | 72.23 353 | 86.92 235 | 66.76 250 | 70.40 281 | 82.92 300 | 56.93 209 | 82.92 329 | 69.06 196 | 72.63 322 | 88.87 242 |
|
| ACMM | | 73.20 8 | 80.78 131 | 79.84 132 | 83.58 141 | 89.31 130 | 68.37 119 | 89.99 73 | 91.60 104 | 70.28 193 | 77.25 178 | 89.66 142 | 53.37 235 | 93.53 149 | 74.24 146 | 82.85 198 | 88.85 243 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| pmmvs6 | | | 74.69 250 | 73.39 252 | 78.61 261 | 81.38 315 | 57.48 301 | 86.64 183 | 87.95 213 | 64.99 276 | 70.18 284 | 86.61 231 | 50.43 269 | 89.52 267 | 62.12 254 | 70.18 336 | 88.83 244 |
|
| 原ACMM1 | | | | | 84.35 107 | 93.01 57 | 68.79 105 | | 92.44 69 | 63.96 290 | 81.09 115 | 91.57 99 | 66.06 109 | 95.45 63 | 67.19 214 | 94.82 45 | 88.81 245 |
|
| CNLPA | | | 78.08 196 | 76.79 206 | 81.97 193 | 90.40 96 | 71.07 62 | 87.59 155 | 84.55 264 | 66.03 264 | 72.38 265 | 89.64 143 | 57.56 202 | 86.04 305 | 59.61 274 | 83.35 192 | 88.79 246 |
|
| K. test v3 | | | 71.19 279 | 68.51 291 | 79.21 255 | 83.04 285 | 57.78 297 | 84.35 243 | 76.91 345 | 72.90 151 | 62.99 349 | 82.86 302 | 39.27 346 | 91.09 245 | 61.65 259 | 52.66 376 | 88.75 247 |
|
| 旧先验1 | | | | | | 91.96 71 | 65.79 176 | | 86.37 242 | | | 93.08 69 | 69.31 75 | | | 92.74 68 | 88.74 248 |
|
| PatchmatchNet |  | | 73.12 267 | 71.33 270 | 78.49 266 | 83.18 280 | 60.85 262 | 79.63 304 | 78.57 333 | 64.13 284 | 71.73 271 | 79.81 334 | 51.20 260 | 85.97 306 | 57.40 296 | 76.36 279 | 88.66 249 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| SixPastTwentyTwo | | | 73.37 262 | 71.26 272 | 79.70 245 | 85.08 242 | 57.89 294 | 85.57 209 | 83.56 280 | 71.03 178 | 65.66 332 | 85.88 249 | 42.10 336 | 92.57 188 | 59.11 279 | 63.34 358 | 88.65 250 |
|
| PS-MVSNAJ | | | 81.69 108 | 81.02 110 | 83.70 139 | 89.51 119 | 68.21 124 | 84.28 244 | 90.09 149 | 70.79 181 | 81.26 114 | 85.62 257 | 63.15 136 | 94.29 111 | 75.62 134 | 88.87 117 | 88.59 251 |
|
| xiu_mvs_v2_base | | | 81.69 108 | 81.05 109 | 83.60 140 | 89.15 137 | 68.03 129 | 84.46 238 | 90.02 150 | 70.67 184 | 81.30 113 | 86.53 237 | 63.17 135 | 94.19 119 | 75.60 135 | 88.54 122 | 88.57 252 |
|
| CostFormer | | | 75.24 248 | 73.90 247 | 79.27 253 | 82.65 296 | 58.27 287 | 80.80 287 | 82.73 297 | 61.57 311 | 75.33 228 | 83.13 299 | 55.52 213 | 91.07 246 | 64.98 232 | 78.34 253 | 88.45 253 |
|
| lessismore_v0 | | | | | 78.97 256 | 81.01 321 | 57.15 305 | | 65.99 376 | | 61.16 354 | 82.82 303 | 39.12 347 | 91.34 236 | 59.67 273 | 46.92 382 | 88.43 254 |
|
| OpenMVS |  | 72.83 10 | 79.77 153 | 78.33 168 | 84.09 120 | 85.17 237 | 69.91 84 | 90.57 60 | 90.97 121 | 66.70 251 | 72.17 267 | 91.91 89 | 54.70 222 | 93.96 124 | 61.81 258 | 90.95 91 | 88.41 255 |
|
| OurMVSNet-221017-0 | | | 74.26 253 | 72.42 261 | 79.80 243 | 83.76 268 | 59.59 279 | 85.92 203 | 86.64 237 | 66.39 259 | 66.96 318 | 87.58 200 | 39.46 345 | 91.60 221 | 65.76 226 | 69.27 339 | 88.22 256 |
|
| LS3D | | | 76.95 223 | 74.82 236 | 83.37 148 | 90.45 94 | 67.36 144 | 89.15 102 | 86.94 234 | 61.87 310 | 69.52 295 | 90.61 124 | 51.71 256 | 94.53 105 | 46.38 355 | 86.71 144 | 88.21 257 |
|
| XVG-ACMP-BASELINE | | | 76.11 236 | 74.27 244 | 81.62 198 | 83.20 279 | 64.67 200 | 83.60 256 | 89.75 158 | 69.75 207 | 71.85 270 | 87.09 217 | 32.78 363 | 92.11 206 | 69.99 186 | 80.43 228 | 88.09 258 |
|
| tpm2 | | | 73.26 265 | 71.46 267 | 78.63 260 | 83.34 275 | 56.71 312 | 80.65 291 | 80.40 319 | 56.63 349 | 73.55 251 | 82.02 314 | 51.80 255 | 91.24 238 | 56.35 306 | 78.42 251 | 87.95 259 |
|
| MDTV_nov1_ep13_2view | | | | | | | 37.79 389 | 75.16 342 | | 55.10 354 | 66.53 325 | | 49.34 282 | | 53.98 314 | | 87.94 260 |
|
| Patchmatch-test | | | 64.82 327 | 63.24 328 | 69.57 339 | 79.42 342 | 49.82 365 | 63.49 381 | 69.05 371 | 51.98 363 | 59.95 359 | 80.13 329 | 50.91 262 | 70.98 379 | 40.66 369 | 73.57 314 | 87.90 261 |
|
| PLC |  | 70.83 11 | 78.05 198 | 76.37 217 | 83.08 161 | 91.88 74 | 67.80 132 | 88.19 135 | 89.46 165 | 64.33 283 | 69.87 292 | 88.38 181 | 53.66 232 | 93.58 144 | 58.86 282 | 82.73 200 | 87.86 262 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| tpm | | | 72.37 274 | 71.71 266 | 74.35 309 | 82.19 303 | 52.00 351 | 79.22 309 | 77.29 342 | 64.56 279 | 72.95 258 | 83.68 293 | 51.35 258 | 83.26 328 | 58.33 288 | 75.80 283 | 87.81 263 |
|
| Patchmatch-RL test | | | 70.24 291 | 67.78 304 | 77.61 278 | 77.43 350 | 59.57 280 | 71.16 356 | 70.33 365 | 62.94 298 | 68.65 303 | 72.77 368 | 50.62 266 | 85.49 310 | 69.58 191 | 66.58 349 | 87.77 264 |
|
| F-COLMAP | | | 76.38 233 | 74.33 243 | 82.50 184 | 89.28 132 | 66.95 156 | 88.41 126 | 89.03 183 | 64.05 287 | 66.83 320 | 88.61 174 | 46.78 301 | 92.89 181 | 57.48 294 | 78.55 247 | 87.67 265 |
|
| Baseline_NR-MVSNet | | | 78.15 195 | 78.33 168 | 77.61 278 | 85.79 228 | 56.21 321 | 86.78 179 | 85.76 251 | 73.60 133 | 77.93 166 | 87.57 201 | 65.02 119 | 88.99 276 | 67.14 215 | 75.33 296 | 87.63 266 |
|
| CL-MVSNet_self_test | | | 72.37 274 | 71.46 267 | 75.09 301 | 79.49 341 | 53.53 343 | 80.76 289 | 85.01 259 | 69.12 222 | 70.51 279 | 82.05 313 | 57.92 198 | 84.13 320 | 52.27 323 | 66.00 352 | 87.60 267 |
|
| ACMH+ | | 68.96 14 | 76.01 237 | 74.01 245 | 82.03 191 | 88.60 158 | 65.31 188 | 88.86 110 | 87.55 222 | 70.25 195 | 67.75 309 | 87.47 206 | 41.27 339 | 93.19 168 | 58.37 287 | 75.94 282 | 87.60 267 |
|
| 1314 | | | 76.53 227 | 75.30 233 | 80.21 235 | 83.93 264 | 62.32 245 | 84.66 230 | 88.81 192 | 60.23 320 | 70.16 286 | 84.07 285 | 55.30 215 | 90.73 252 | 67.37 211 | 83.21 194 | 87.59 269 |
|
| API-MVS | | | 81.99 102 | 81.23 106 | 84.26 113 | 90.94 85 | 70.18 82 | 91.10 53 | 89.32 169 | 71.51 169 | 78.66 145 | 88.28 184 | 65.26 116 | 95.10 83 | 64.74 234 | 91.23 88 | 87.51 270 |
|
| AdaColmap |  | | 80.58 137 | 79.42 140 | 84.06 124 | 93.09 54 | 68.91 104 | 89.36 94 | 88.97 188 | 69.27 215 | 75.70 215 | 89.69 141 | 57.20 207 | 95.77 54 | 63.06 243 | 88.41 125 | 87.50 271 |
|
| PVSNet_BlendedMVS | | | 80.60 135 | 80.02 127 | 82.36 187 | 88.85 145 | 65.40 184 | 86.16 197 | 92.00 87 | 69.34 214 | 78.11 161 | 86.09 247 | 66.02 110 | 94.27 113 | 71.52 169 | 82.06 207 | 87.39 272 |
|
| sss | | | 73.60 260 | 73.64 251 | 73.51 315 | 82.80 291 | 55.01 332 | 76.12 333 | 81.69 306 | 62.47 305 | 74.68 242 | 85.85 251 | 57.32 205 | 78.11 350 | 60.86 266 | 80.93 219 | 87.39 272 |
|
| IterMVS-SCA-FT | | | 75.43 245 | 73.87 248 | 80.11 237 | 82.69 294 | 64.85 197 | 81.57 281 | 83.47 282 | 69.16 221 | 70.49 280 | 84.15 284 | 51.95 251 | 88.15 289 | 69.23 193 | 72.14 326 | 87.34 274 |
|
| PVSNet | | 64.34 18 | 72.08 276 | 70.87 275 | 75.69 294 | 86.21 223 | 56.44 316 | 74.37 347 | 80.73 313 | 62.06 309 | 70.17 285 | 82.23 311 | 42.86 329 | 83.31 327 | 54.77 311 | 84.45 173 | 87.32 275 |
|
| æ–°å‡ ä½•1 | | | | | 83.42 145 | 93.13 52 | 70.71 71 | | 85.48 254 | 57.43 345 | 81.80 105 | 91.98 88 | 63.28 131 | 92.27 201 | 64.60 235 | 92.99 65 | 87.27 276 |
|
| TR-MVS | | | 77.44 213 | 76.18 218 | 81.20 212 | 88.24 170 | 63.24 231 | 84.61 233 | 86.40 241 | 67.55 245 | 77.81 167 | 86.48 238 | 54.10 228 | 93.15 170 | 57.75 293 | 82.72 201 | 87.20 277 |
|
| TransMVSNet (Re) | | | 75.39 247 | 74.56 239 | 77.86 272 | 85.50 234 | 57.10 306 | 86.78 179 | 86.09 247 | 72.17 158 | 71.53 273 | 87.34 207 | 63.01 140 | 89.31 271 | 56.84 302 | 61.83 360 | 87.17 278 |
|
| ACMH | | 67.68 16 | 75.89 238 | 73.93 246 | 81.77 196 | 88.71 155 | 66.61 159 | 88.62 122 | 89.01 185 | 69.81 203 | 66.78 321 | 86.70 228 | 41.95 338 | 91.51 229 | 55.64 308 | 78.14 254 | 87.17 278 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| KD-MVS_self_test | | | 68.81 301 | 67.59 308 | 72.46 323 | 74.29 363 | 45.45 372 | 77.93 325 | 87.00 233 | 63.12 293 | 63.99 344 | 78.99 342 | 42.32 332 | 84.77 317 | 56.55 305 | 64.09 357 | 87.16 280 |
|
| EPMVS | | | 69.02 300 | 68.16 295 | 71.59 327 | 79.61 339 | 49.80 366 | 77.40 328 | 66.93 374 | 62.82 301 | 70.01 287 | 79.05 338 | 45.79 312 | 77.86 352 | 56.58 304 | 75.26 298 | 87.13 281 |
|
| CR-MVSNet | | | 73.37 262 | 71.27 271 | 79.67 247 | 81.32 318 | 65.19 189 | 75.92 335 | 80.30 320 | 59.92 323 | 72.73 260 | 81.19 317 | 52.50 239 | 86.69 300 | 59.84 272 | 77.71 256 | 87.11 282 |
|
| RPMNet | | | 73.51 261 | 70.49 278 | 82.58 183 | 81.32 318 | 65.19 189 | 75.92 335 | 92.27 76 | 57.60 343 | 72.73 260 | 76.45 356 | 52.30 242 | 95.43 65 | 48.14 347 | 77.71 256 | 87.11 282 |
|
| test_vis1_n_1920 | | | 75.52 243 | 75.78 221 | 74.75 306 | 79.84 334 | 57.44 302 | 83.26 261 | 85.52 253 | 62.83 300 | 79.34 134 | 86.17 245 | 45.10 318 | 79.71 343 | 78.75 99 | 81.21 217 | 87.10 284 |
|
| XXY-MVS | | | 75.41 246 | 75.56 225 | 74.96 302 | 83.59 270 | 57.82 296 | 80.59 292 | 83.87 276 | 66.54 258 | 74.93 239 | 88.31 183 | 63.24 133 | 80.09 342 | 62.16 253 | 76.85 267 | 86.97 285 |
|
| tpmrst | | | 72.39 272 | 72.13 263 | 73.18 319 | 80.54 325 | 49.91 364 | 79.91 303 | 79.08 331 | 63.11 294 | 71.69 272 | 79.95 331 | 55.32 214 | 82.77 330 | 65.66 227 | 73.89 311 | 86.87 286 |
|
| thres200 | | | 75.55 242 | 74.47 241 | 78.82 258 | 87.78 188 | 57.85 295 | 83.07 267 | 83.51 281 | 72.44 154 | 75.84 213 | 84.42 277 | 52.08 248 | 91.75 218 | 47.41 350 | 83.64 186 | 86.86 287 |
|
| ITE_SJBPF | | | | | 78.22 268 | 81.77 308 | 60.57 266 | | 83.30 284 | 69.25 216 | 67.54 311 | 87.20 213 | 36.33 357 | 87.28 298 | 54.34 313 | 74.62 305 | 86.80 288 |
|
| test222 | | | | | | 91.50 77 | 68.26 122 | 84.16 246 | 83.20 288 | 54.63 356 | 79.74 127 | 91.63 97 | 58.97 191 | | | 91.42 85 | 86.77 289 |
|
| MIMVSNet | | | 70.69 286 | 69.30 285 | 74.88 303 | 84.52 252 | 56.35 319 | 75.87 337 | 79.42 328 | 64.59 278 | 67.76 308 | 82.41 307 | 41.10 340 | 81.54 336 | 46.64 354 | 81.34 214 | 86.75 290 |
|
| BH-untuned | | | 79.47 160 | 78.60 160 | 82.05 190 | 89.19 136 | 65.91 171 | 86.07 199 | 88.52 203 | 72.18 157 | 75.42 222 | 87.69 198 | 61.15 171 | 93.54 148 | 60.38 268 | 86.83 142 | 86.70 291 |
|
| LTVRE_ROB | | 69.57 13 | 76.25 234 | 74.54 240 | 81.41 204 | 88.60 158 | 64.38 208 | 79.24 308 | 89.12 182 | 70.76 183 | 69.79 294 | 87.86 195 | 49.09 286 | 93.20 166 | 56.21 307 | 80.16 230 | 86.65 292 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| testdata | | | | | 79.97 239 | 90.90 86 | 64.21 210 | | 84.71 261 | 59.27 329 | 85.40 49 | 92.91 71 | 62.02 155 | 89.08 275 | 68.95 197 | 91.37 86 | 86.63 293 |
|
| MIMVSNet1 | | | 68.58 304 | 66.78 314 | 73.98 312 | 80.07 331 | 51.82 353 | 80.77 288 | 84.37 266 | 64.40 281 | 59.75 360 | 82.16 312 | 36.47 356 | 83.63 324 | 42.73 365 | 70.33 335 | 86.48 294 |
|
| tfpnnormal | | | 74.39 251 | 73.16 255 | 78.08 270 | 86.10 226 | 58.05 289 | 84.65 232 | 87.53 223 | 70.32 192 | 71.22 276 | 85.63 256 | 54.97 216 | 89.86 261 | 43.03 364 | 75.02 301 | 86.32 295 |
|
| D2MVS | | | 74.82 249 | 73.21 254 | 79.64 248 | 79.81 335 | 62.56 242 | 80.34 297 | 87.35 227 | 64.37 282 | 68.86 301 | 82.66 305 | 46.37 304 | 90.10 259 | 67.91 206 | 81.24 216 | 86.25 296 |
|
| tpm cat1 | | | 70.57 287 | 68.31 293 | 77.35 282 | 82.41 301 | 57.95 293 | 78.08 323 | 80.22 322 | 52.04 361 | 68.54 305 | 77.66 351 | 52.00 250 | 87.84 293 | 51.77 324 | 72.07 327 | 86.25 296 |
|
| CVMVSNet | | | 72.99 269 | 72.58 259 | 74.25 310 | 84.28 255 | 50.85 360 | 86.41 189 | 83.45 283 | 44.56 372 | 73.23 255 | 87.54 204 | 49.38 281 | 85.70 307 | 65.90 224 | 78.44 250 | 86.19 298 |
|
| AllTest | | | 70.96 282 | 68.09 297 | 79.58 249 | 85.15 239 | 63.62 219 | 84.58 234 | 79.83 324 | 62.31 306 | 60.32 357 | 86.73 222 | 32.02 364 | 88.96 279 | 50.28 333 | 71.57 330 | 86.15 299 |
|
| TestCases | | | | | 79.58 249 | 85.15 239 | 63.62 219 | | 79.83 324 | 62.31 306 | 60.32 357 | 86.73 222 | 32.02 364 | 88.96 279 | 50.28 333 | 71.57 330 | 86.15 299 |
|
| test-LLR | | | 72.94 270 | 72.43 260 | 74.48 307 | 81.35 316 | 58.04 290 | 78.38 319 | 77.46 339 | 66.66 252 | 69.95 290 | 79.00 340 | 48.06 293 | 79.24 344 | 66.13 220 | 84.83 164 | 86.15 299 |
|
| test-mter | | | 71.41 278 | 70.39 281 | 74.48 307 | 81.35 316 | 58.04 290 | 78.38 319 | 77.46 339 | 60.32 319 | 69.95 290 | 79.00 340 | 36.08 358 | 79.24 344 | 66.13 220 | 84.83 164 | 86.15 299 |
|
| IterMVS | | | 74.29 252 | 72.94 257 | 78.35 267 | 81.53 312 | 63.49 225 | 81.58 280 | 82.49 298 | 68.06 241 | 69.99 289 | 83.69 292 | 51.66 257 | 85.54 309 | 65.85 225 | 71.64 329 | 86.01 303 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| DP-MVS | | | 76.78 225 | 74.57 238 | 83.42 145 | 93.29 48 | 69.46 94 | 88.55 124 | 83.70 277 | 63.98 289 | 70.20 283 | 88.89 166 | 54.01 230 | 94.80 96 | 46.66 352 | 81.88 210 | 86.01 303 |
|
| ppachtmachnet_test | | | 70.04 293 | 67.34 310 | 78.14 269 | 79.80 336 | 61.13 258 | 79.19 310 | 80.59 315 | 59.16 330 | 65.27 335 | 79.29 337 | 46.75 302 | 87.29 297 | 49.33 339 | 66.72 347 | 86.00 305 |
|
| test_fmvs1_n | | | 70.86 284 | 70.24 282 | 72.73 321 | 72.51 375 | 55.28 329 | 81.27 285 | 79.71 326 | 51.49 365 | 78.73 141 | 84.87 272 | 27.54 373 | 77.02 355 | 76.06 128 | 79.97 234 | 85.88 306 |
|
| Patchmtry | | | 70.74 285 | 69.16 288 | 75.49 298 | 80.72 322 | 54.07 340 | 74.94 346 | 80.30 320 | 58.34 336 | 70.01 287 | 81.19 317 | 52.50 239 | 86.54 301 | 53.37 318 | 71.09 333 | 85.87 307 |
|
| test_fmvs2 | | | 68.35 308 | 67.48 309 | 70.98 335 | 69.50 378 | 51.95 352 | 80.05 300 | 76.38 347 | 49.33 368 | 74.65 243 | 84.38 279 | 23.30 379 | 75.40 370 | 74.51 142 | 75.17 300 | 85.60 308 |
|
| ambc | | | | | 75.24 300 | 73.16 370 | 50.51 362 | 63.05 382 | 87.47 225 | | 64.28 341 | 77.81 350 | 17.80 384 | 89.73 264 | 57.88 292 | 60.64 364 | 85.49 309 |
|
| UnsupCasMVSNet_eth | | | 67.33 313 | 65.99 317 | 71.37 329 | 73.48 368 | 51.47 357 | 75.16 342 | 85.19 256 | 65.20 271 | 60.78 355 | 80.93 324 | 42.35 331 | 77.20 354 | 57.12 298 | 53.69 375 | 85.44 310 |
|
| PatchT | | | 68.46 307 | 67.85 300 | 70.29 337 | 80.70 323 | 43.93 379 | 72.47 352 | 74.88 352 | 60.15 321 | 70.55 278 | 76.57 355 | 49.94 274 | 81.59 335 | 50.58 329 | 74.83 303 | 85.34 311 |
|
| Anonymous20240521 | | | 68.80 302 | 67.22 311 | 73.55 314 | 74.33 362 | 54.11 339 | 83.18 262 | 85.61 252 | 58.15 338 | 61.68 352 | 80.94 322 | 30.71 369 | 81.27 338 | 57.00 300 | 73.34 319 | 85.28 312 |
|
| test_cas_vis1_n_1920 | | | 73.76 259 | 73.74 250 | 73.81 313 | 75.90 355 | 59.77 276 | 80.51 293 | 82.40 299 | 58.30 337 | 81.62 108 | 85.69 253 | 44.35 321 | 76.41 361 | 76.29 125 | 78.61 246 | 85.23 313 |
|
| ADS-MVSNet2 | | | 66.20 324 | 63.33 327 | 74.82 304 | 79.92 332 | 58.75 283 | 67.55 370 | 75.19 351 | 53.37 358 | 65.25 336 | 75.86 359 | 42.32 332 | 80.53 341 | 41.57 367 | 68.91 341 | 85.18 314 |
|
| ADS-MVSNet | | | 64.36 328 | 62.88 331 | 68.78 345 | 79.92 332 | 47.17 369 | 67.55 370 | 71.18 364 | 53.37 358 | 65.25 336 | 75.86 359 | 42.32 332 | 73.99 375 | 41.57 367 | 68.91 341 | 85.18 314 |
|
| FMVSNet5 | | | 69.50 297 | 67.96 298 | 74.15 311 | 82.97 289 | 55.35 328 | 80.01 301 | 82.12 302 | 62.56 304 | 63.02 347 | 81.53 316 | 36.92 355 | 81.92 334 | 48.42 342 | 74.06 309 | 85.17 316 |
|
| pmmvs5 | | | 71.55 277 | 70.20 283 | 75.61 295 | 77.83 348 | 56.39 317 | 81.74 278 | 80.89 310 | 57.76 341 | 67.46 313 | 84.49 276 | 49.26 284 | 85.32 313 | 57.08 299 | 75.29 297 | 85.11 317 |
|
| testing3 | | | 68.56 305 | 67.67 306 | 71.22 333 | 87.33 205 | 42.87 381 | 83.06 268 | 71.54 363 | 70.36 190 | 69.08 300 | 84.38 279 | 30.33 370 | 85.69 308 | 37.50 375 | 75.45 292 | 85.09 318 |
|
| CMPMVS |  | 51.72 21 | 70.19 292 | 68.16 295 | 76.28 290 | 73.15 371 | 57.55 300 | 79.47 306 | 83.92 274 | 48.02 369 | 56.48 370 | 84.81 273 | 43.13 327 | 86.42 303 | 62.67 248 | 81.81 211 | 84.89 319 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| testgi | | | 66.67 318 | 66.53 315 | 67.08 351 | 75.62 358 | 41.69 386 | 75.93 334 | 76.50 346 | 66.11 261 | 65.20 338 | 86.59 232 | 35.72 359 | 74.71 372 | 43.71 362 | 73.38 318 | 84.84 320 |
|
| MSDG | | | 73.36 264 | 70.99 273 | 80.49 229 | 84.51 253 | 65.80 175 | 80.71 290 | 86.13 246 | 65.70 267 | 65.46 333 | 83.74 291 | 44.60 319 | 90.91 248 | 51.13 328 | 76.89 265 | 84.74 321 |
|
| pmmvs4 | | | 74.03 257 | 71.91 264 | 80.39 230 | 81.96 305 | 68.32 120 | 81.45 283 | 82.14 301 | 59.32 328 | 69.87 292 | 85.13 268 | 52.40 241 | 88.13 290 | 60.21 270 | 74.74 304 | 84.73 322 |
|
| gg-mvs-nofinetune | | | 69.95 294 | 67.96 298 | 75.94 292 | 83.07 283 | 54.51 337 | 77.23 330 | 70.29 366 | 63.11 294 | 70.32 282 | 62.33 377 | 43.62 325 | 88.69 283 | 53.88 315 | 87.76 129 | 84.62 323 |
|
| test_fmvs1 | | | 70.93 283 | 70.52 277 | 72.16 324 | 73.71 365 | 55.05 331 | 80.82 286 | 78.77 332 | 51.21 366 | 78.58 147 | 84.41 278 | 31.20 368 | 76.94 356 | 75.88 131 | 80.12 233 | 84.47 324 |
|
| BH-w/o | | | 78.21 192 | 77.33 195 | 80.84 222 | 88.81 149 | 65.13 191 | 84.87 226 | 87.85 217 | 69.75 207 | 74.52 244 | 84.74 275 | 61.34 166 | 93.11 173 | 58.24 289 | 85.84 158 | 84.27 325 |
|
| MVS | | | 78.19 194 | 76.99 201 | 81.78 195 | 85.66 230 | 66.99 152 | 84.66 230 | 90.47 135 | 55.08 355 | 72.02 269 | 85.27 263 | 63.83 128 | 94.11 122 | 66.10 222 | 89.80 109 | 84.24 326 |
|
| COLMAP_ROB |  | 66.92 17 | 73.01 268 | 70.41 280 | 80.81 223 | 87.13 210 | 65.63 178 | 88.30 132 | 84.19 272 | 62.96 297 | 63.80 346 | 87.69 198 | 38.04 352 | 92.56 189 | 46.66 352 | 74.91 302 | 84.24 326 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| new-patchmatchnet | | | 61.73 334 | 61.73 335 | 61.70 357 | 72.74 373 | 24.50 398 | 69.16 366 | 78.03 335 | 61.40 312 | 56.72 369 | 75.53 362 | 38.42 349 | 76.48 360 | 45.95 357 | 57.67 367 | 84.13 328 |
|
| TESTMET0.1,1 | | | 69.89 295 | 69.00 289 | 72.55 322 | 79.27 344 | 56.85 308 | 78.38 319 | 74.71 355 | 57.64 342 | 68.09 307 | 77.19 353 | 37.75 353 | 76.70 357 | 63.92 237 | 84.09 177 | 84.10 329 |
|
| test_fmvs3 | | | 63.36 331 | 61.82 334 | 67.98 348 | 62.51 385 | 46.96 371 | 77.37 329 | 74.03 357 | 45.24 371 | 67.50 312 | 78.79 343 | 12.16 390 | 72.98 378 | 72.77 162 | 66.02 351 | 83.99 330 |
|
| our_test_3 | | | 69.14 299 | 67.00 312 | 75.57 296 | 79.80 336 | 58.80 282 | 77.96 324 | 77.81 336 | 59.55 326 | 62.90 350 | 78.25 347 | 47.43 295 | 83.97 321 | 51.71 325 | 67.58 346 | 83.93 331 |
|
| test_vis1_n | | | 69.85 296 | 69.21 287 | 71.77 326 | 72.66 374 | 55.27 330 | 81.48 282 | 76.21 348 | 52.03 362 | 75.30 229 | 83.20 298 | 28.97 371 | 76.22 363 | 74.60 141 | 78.41 252 | 83.81 332 |
|
| tpmvs | | | 71.09 281 | 69.29 286 | 76.49 289 | 82.04 304 | 56.04 322 | 78.92 314 | 81.37 309 | 64.05 287 | 67.18 317 | 78.28 346 | 49.74 277 | 89.77 262 | 49.67 338 | 72.37 323 | 83.67 333 |
|
| test20.03 | | | 67.45 312 | 66.95 313 | 68.94 342 | 75.48 359 | 44.84 377 | 77.50 327 | 77.67 337 | 66.66 252 | 63.01 348 | 83.80 289 | 47.02 299 | 78.40 348 | 42.53 366 | 68.86 343 | 83.58 334 |
|
| test0.0.03 1 | | | 68.00 310 | 67.69 305 | 68.90 343 | 77.55 349 | 47.43 368 | 75.70 338 | 72.95 362 | 66.66 252 | 66.56 324 | 82.29 310 | 48.06 293 | 75.87 365 | 44.97 361 | 74.51 306 | 83.41 335 |
|
| Anonymous20231206 | | | 68.60 303 | 67.80 303 | 71.02 334 | 80.23 329 | 50.75 361 | 78.30 322 | 80.47 317 | 56.79 348 | 66.11 331 | 82.63 306 | 46.35 305 | 78.95 346 | 43.62 363 | 75.70 284 | 83.36 336 |
|
| EU-MVSNet | | | 68.53 306 | 67.61 307 | 71.31 332 | 78.51 347 | 47.01 370 | 84.47 236 | 84.27 270 | 42.27 375 | 66.44 329 | 84.79 274 | 40.44 343 | 83.76 322 | 58.76 284 | 68.54 344 | 83.17 337 |
|
| dp | | | 66.80 316 | 65.43 318 | 70.90 336 | 79.74 338 | 48.82 367 | 75.12 344 | 74.77 353 | 59.61 325 | 64.08 343 | 77.23 352 | 42.89 328 | 80.72 340 | 48.86 341 | 66.58 349 | 83.16 338 |
|
| pmmvs-eth3d | | | 70.50 289 | 67.83 302 | 78.52 265 | 77.37 351 | 66.18 165 | 81.82 276 | 81.51 307 | 58.90 333 | 63.90 345 | 80.42 327 | 42.69 330 | 86.28 304 | 58.56 285 | 65.30 354 | 83.11 339 |
|
| YYNet1 | | | 65.03 325 | 62.91 330 | 71.38 328 | 75.85 356 | 56.60 314 | 69.12 367 | 74.66 356 | 57.28 346 | 54.12 373 | 77.87 349 | 45.85 311 | 74.48 373 | 49.95 336 | 61.52 362 | 83.05 340 |
|
| MDA-MVSNet-bldmvs | | | 66.68 317 | 63.66 326 | 75.75 293 | 79.28 343 | 60.56 267 | 73.92 349 | 78.35 334 | 64.43 280 | 50.13 378 | 79.87 333 | 44.02 323 | 83.67 323 | 46.10 356 | 56.86 368 | 83.03 341 |
|
| MDA-MVSNet_test_wron | | | 65.03 325 | 62.92 329 | 71.37 329 | 75.93 354 | 56.73 310 | 69.09 368 | 74.73 354 | 57.28 346 | 54.03 374 | 77.89 348 | 45.88 310 | 74.39 374 | 49.89 337 | 61.55 361 | 82.99 342 |
|
| USDC | | | 70.33 290 | 68.37 292 | 76.21 291 | 80.60 324 | 56.23 320 | 79.19 310 | 86.49 239 | 60.89 315 | 61.29 353 | 85.47 260 | 31.78 366 | 89.47 269 | 53.37 318 | 76.21 280 | 82.94 343 |
|
| Syy-MVS | | | 68.05 309 | 67.85 300 | 68.67 346 | 84.68 249 | 40.97 387 | 78.62 317 | 73.08 360 | 66.65 255 | 66.74 322 | 79.46 335 | 52.11 247 | 82.30 332 | 32.89 379 | 76.38 277 | 82.75 344 |
|
| myMVS_eth3d | | | 67.02 315 | 66.29 316 | 69.21 341 | 84.68 249 | 42.58 382 | 78.62 317 | 73.08 360 | 66.65 255 | 66.74 322 | 79.46 335 | 31.53 367 | 82.30 332 | 39.43 372 | 76.38 277 | 82.75 344 |
|
| OpenMVS_ROB |  | 64.09 19 | 70.56 288 | 68.19 294 | 77.65 277 | 80.26 327 | 59.41 281 | 85.01 223 | 82.96 293 | 58.76 334 | 65.43 334 | 82.33 308 | 37.63 354 | 91.23 239 | 45.34 360 | 76.03 281 | 82.32 346 |
|
| JIA-IIPM | | | 66.32 321 | 62.82 332 | 76.82 287 | 77.09 352 | 61.72 254 | 65.34 377 | 75.38 350 | 58.04 340 | 64.51 340 | 62.32 378 | 42.05 337 | 86.51 302 | 51.45 327 | 69.22 340 | 82.21 347 |
|
| dmvs_re | | | 71.14 280 | 70.58 276 | 72.80 320 | 81.96 305 | 59.68 277 | 75.60 339 | 79.34 329 | 68.55 234 | 69.27 299 | 80.72 325 | 49.42 280 | 76.54 358 | 52.56 322 | 77.79 255 | 82.19 348 |
|
| EG-PatchMatch MVS | | | 74.04 256 | 71.82 265 | 80.71 225 | 84.92 245 | 67.42 141 | 85.86 205 | 88.08 209 | 66.04 263 | 64.22 342 | 83.85 287 | 35.10 360 | 92.56 189 | 57.44 295 | 80.83 221 | 82.16 349 |
|
| MVP-Stereo | | | 76.12 235 | 74.46 242 | 81.13 215 | 85.37 235 | 69.79 86 | 84.42 241 | 87.95 213 | 65.03 274 | 67.46 313 | 85.33 262 | 53.28 236 | 91.73 220 | 58.01 291 | 83.27 193 | 81.85 350 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| TDRefinement | | | 67.49 311 | 64.34 321 | 76.92 286 | 73.47 369 | 61.07 259 | 84.86 227 | 82.98 292 | 59.77 324 | 58.30 364 | 85.13 268 | 26.06 374 | 87.89 292 | 47.92 349 | 60.59 365 | 81.81 351 |
|
| GG-mvs-BLEND | | | | | 75.38 299 | 81.59 311 | 55.80 324 | 79.32 307 | 69.63 368 | | 67.19 316 | 73.67 366 | 43.24 326 | 88.90 281 | 50.41 330 | 84.50 169 | 81.45 352 |
|
| KD-MVS_2432*1600 | | | 66.22 322 | 63.89 324 | 73.21 316 | 75.47 360 | 53.42 345 | 70.76 359 | 84.35 267 | 64.10 285 | 66.52 326 | 78.52 344 | 34.55 361 | 84.98 314 | 50.40 331 | 50.33 379 | 81.23 353 |
|
| miper_refine_blended | | | 66.22 322 | 63.89 324 | 73.21 316 | 75.47 360 | 53.42 345 | 70.76 359 | 84.35 267 | 64.10 285 | 66.52 326 | 78.52 344 | 34.55 361 | 84.98 314 | 50.40 331 | 50.33 379 | 81.23 353 |
|
| test_0402 | | | 72.79 271 | 70.44 279 | 79.84 242 | 88.13 172 | 65.99 169 | 85.93 202 | 84.29 269 | 65.57 269 | 67.40 315 | 85.49 259 | 46.92 300 | 92.61 187 | 35.88 376 | 74.38 307 | 80.94 355 |
|
| UnsupCasMVSNet_bld | | | 63.70 330 | 61.53 336 | 70.21 338 | 73.69 366 | 51.39 358 | 72.82 351 | 81.89 303 | 55.63 353 | 57.81 366 | 71.80 370 | 38.67 348 | 78.61 347 | 49.26 340 | 52.21 377 | 80.63 356 |
|
| LCM-MVSNet | | | 54.25 341 | 49.68 351 | 67.97 349 | 53.73 393 | 45.28 375 | 66.85 373 | 80.78 312 | 35.96 383 | 39.45 384 | 62.23 379 | 8.70 394 | 78.06 351 | 48.24 346 | 51.20 378 | 80.57 357 |
|
| N_pmnet | | | 52.79 346 | 53.26 345 | 51.40 371 | 78.99 345 | 7.68 403 | 69.52 363 | 3.89 402 | 51.63 364 | 57.01 368 | 74.98 363 | 40.83 342 | 65.96 386 | 37.78 374 | 64.67 355 | 80.56 358 |
|
| TinyColmap | | | 67.30 314 | 64.81 319 | 74.76 305 | 81.92 307 | 56.68 313 | 80.29 298 | 81.49 308 | 60.33 318 | 56.27 371 | 83.22 296 | 24.77 376 | 87.66 296 | 45.52 358 | 69.47 338 | 79.95 359 |
|
| PM-MVS | | | 66.41 320 | 64.14 322 | 73.20 318 | 73.92 364 | 56.45 315 | 78.97 313 | 64.96 380 | 63.88 291 | 64.72 339 | 80.24 328 | 19.84 382 | 83.44 326 | 66.24 219 | 64.52 356 | 79.71 360 |
|
| ANet_high | | | 50.57 350 | 46.10 354 | 63.99 354 | 48.67 396 | 39.13 388 | 70.99 358 | 80.85 311 | 61.39 313 | 31.18 386 | 57.70 384 | 17.02 385 | 73.65 377 | 31.22 381 | 15.89 394 | 79.18 361 |
|
| LF4IMVS | | | 64.02 329 | 62.19 333 | 69.50 340 | 70.90 376 | 53.29 348 | 76.13 332 | 77.18 343 | 52.65 360 | 58.59 362 | 80.98 321 | 23.55 378 | 76.52 359 | 53.06 320 | 66.66 348 | 78.68 362 |
|
| PatchMatch-RL | | | 72.38 273 | 70.90 274 | 76.80 288 | 88.60 158 | 67.38 143 | 79.53 305 | 76.17 349 | 62.75 302 | 69.36 297 | 82.00 315 | 45.51 315 | 84.89 316 | 53.62 316 | 80.58 225 | 78.12 363 |
|
| MS-PatchMatch | | | 73.83 258 | 72.67 258 | 77.30 283 | 83.87 265 | 66.02 167 | 81.82 276 | 84.66 262 | 61.37 314 | 68.61 304 | 82.82 303 | 47.29 296 | 88.21 288 | 59.27 276 | 84.32 174 | 77.68 364 |
|
| DSMNet-mixed | | | 57.77 339 | 56.90 341 | 60.38 359 | 67.70 380 | 35.61 390 | 69.18 365 | 53.97 391 | 32.30 387 | 57.49 367 | 79.88 332 | 40.39 344 | 68.57 384 | 38.78 373 | 72.37 323 | 76.97 365 |
|
| CHOSEN 280x420 | | | 66.51 319 | 64.71 320 | 71.90 325 | 81.45 313 | 63.52 224 | 57.98 384 | 68.95 372 | 53.57 357 | 62.59 351 | 76.70 354 | 46.22 307 | 75.29 371 | 55.25 309 | 79.68 235 | 76.88 366 |
|
| mvsany_test3 | | | 53.99 342 | 51.45 347 | 61.61 358 | 55.51 389 | 44.74 378 | 63.52 380 | 45.41 397 | 43.69 374 | 58.11 365 | 76.45 356 | 17.99 383 | 63.76 388 | 54.77 311 | 47.59 381 | 76.34 367 |
|
| dmvs_testset | | | 62.63 332 | 64.11 323 | 58.19 361 | 78.55 346 | 24.76 397 | 75.28 340 | 65.94 377 | 67.91 242 | 60.34 356 | 76.01 358 | 53.56 233 | 73.94 376 | 31.79 380 | 67.65 345 | 75.88 368 |
|
| mvsany_test1 | | | 62.30 333 | 61.26 337 | 65.41 353 | 69.52 377 | 54.86 333 | 66.86 372 | 49.78 393 | 46.65 370 | 68.50 306 | 83.21 297 | 49.15 285 | 66.28 385 | 56.93 301 | 60.77 363 | 75.11 369 |
|
| PMMVS | | | 69.34 298 | 68.67 290 | 71.35 331 | 75.67 357 | 62.03 248 | 75.17 341 | 73.46 358 | 50.00 367 | 68.68 302 | 79.05 338 | 52.07 249 | 78.13 349 | 61.16 264 | 82.77 199 | 73.90 370 |
|
| test_vis1_rt | | | 60.28 336 | 58.42 339 | 65.84 352 | 67.25 381 | 55.60 327 | 70.44 361 | 60.94 385 | 44.33 373 | 59.00 361 | 66.64 375 | 24.91 375 | 68.67 383 | 62.80 244 | 69.48 337 | 73.25 371 |
|
| pmmvs3 | | | 57.79 338 | 54.26 343 | 68.37 347 | 64.02 384 | 56.72 311 | 75.12 344 | 65.17 378 | 40.20 377 | 52.93 375 | 69.86 374 | 20.36 381 | 75.48 368 | 45.45 359 | 55.25 374 | 72.90 372 |
|
| PVSNet_0 | | 57.27 20 | 61.67 335 | 59.27 338 | 68.85 344 | 79.61 339 | 57.44 302 | 68.01 369 | 73.44 359 | 55.93 352 | 58.54 363 | 70.41 373 | 44.58 320 | 77.55 353 | 47.01 351 | 35.91 385 | 71.55 373 |
|
| WB-MVS | | | 54.94 340 | 54.72 342 | 55.60 367 | 73.50 367 | 20.90 399 | 74.27 348 | 61.19 384 | 59.16 330 | 50.61 377 | 74.15 364 | 47.19 298 | 75.78 366 | 17.31 391 | 35.07 386 | 70.12 374 |
|
| SSC-MVS | | | 53.88 343 | 53.59 344 | 54.75 369 | 72.87 372 | 19.59 400 | 73.84 350 | 60.53 386 | 57.58 344 | 49.18 379 | 73.45 367 | 46.34 306 | 75.47 369 | 16.20 394 | 32.28 388 | 69.20 375 |
|
| test_f | | | 52.09 347 | 50.82 348 | 55.90 365 | 53.82 392 | 42.31 385 | 59.42 383 | 58.31 389 | 36.45 382 | 56.12 372 | 70.96 372 | 12.18 389 | 57.79 390 | 53.51 317 | 56.57 370 | 67.60 376 |
|
| PMMVS2 | | | 40.82 356 | 38.86 359 | 46.69 372 | 53.84 391 | 16.45 401 | 48.61 387 | 49.92 392 | 37.49 380 | 31.67 385 | 60.97 380 | 8.14 396 | 56.42 391 | 28.42 383 | 30.72 389 | 67.19 377 |
|
| new_pmnet | | | 50.91 349 | 50.29 349 | 52.78 370 | 68.58 379 | 34.94 392 | 63.71 379 | 56.63 390 | 39.73 378 | 44.95 380 | 65.47 376 | 21.93 380 | 58.48 389 | 34.98 377 | 56.62 369 | 64.92 378 |
|
| MVS-HIRNet | | | 59.14 337 | 57.67 340 | 63.57 355 | 81.65 309 | 43.50 380 | 71.73 354 | 65.06 379 | 39.59 379 | 51.43 376 | 57.73 383 | 38.34 350 | 82.58 331 | 39.53 370 | 73.95 310 | 64.62 379 |
|
| APD_test1 | | | 53.31 345 | 49.93 350 | 63.42 356 | 65.68 382 | 50.13 363 | 71.59 355 | 66.90 375 | 34.43 384 | 40.58 383 | 71.56 371 | 8.65 395 | 76.27 362 | 34.64 378 | 55.36 373 | 63.86 380 |
|
| test_method | | | 31.52 358 | 29.28 362 | 38.23 374 | 27.03 400 | 6.50 404 | 20.94 392 | 62.21 383 | 4.05 395 | 22.35 393 | 52.50 387 | 13.33 387 | 47.58 394 | 27.04 385 | 34.04 387 | 60.62 381 |
|
| EGC-MVSNET | | | 52.07 348 | 47.05 352 | 67.14 350 | 83.51 272 | 60.71 264 | 80.50 294 | 67.75 373 | 0.07 397 | 0.43 398 | 75.85 361 | 24.26 377 | 81.54 336 | 28.82 382 | 62.25 359 | 59.16 382 |
|
| test_vis3_rt | | | 49.26 351 | 47.02 353 | 56.00 364 | 54.30 390 | 45.27 376 | 66.76 374 | 48.08 394 | 36.83 381 | 44.38 381 | 53.20 386 | 7.17 397 | 64.07 387 | 56.77 303 | 55.66 371 | 58.65 383 |
|
| FPMVS | | | 53.68 344 | 51.64 346 | 59.81 360 | 65.08 383 | 51.03 359 | 69.48 364 | 69.58 369 | 41.46 376 | 40.67 382 | 72.32 369 | 16.46 386 | 70.00 382 | 24.24 388 | 65.42 353 | 58.40 384 |
|
| testf1 | | | 45.72 352 | 41.96 355 | 57.00 362 | 56.90 387 | 45.32 373 | 66.14 375 | 59.26 387 | 26.19 388 | 30.89 387 | 60.96 381 | 4.14 398 | 70.64 380 | 26.39 386 | 46.73 383 | 55.04 385 |
|
| APD_test2 | | | 45.72 352 | 41.96 355 | 57.00 362 | 56.90 387 | 45.32 373 | 66.14 375 | 59.26 387 | 26.19 388 | 30.89 387 | 60.96 381 | 4.14 398 | 70.64 380 | 26.39 386 | 46.73 383 | 55.04 385 |
|
| PMVS |  | 37.38 22 | 44.16 355 | 40.28 358 | 55.82 366 | 40.82 398 | 42.54 384 | 65.12 378 | 63.99 381 | 34.43 384 | 24.48 390 | 57.12 385 | 3.92 400 | 76.17 364 | 17.10 392 | 55.52 372 | 48.75 387 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| MVE |  | 26.22 23 | 30.37 360 | 25.89 364 | 43.81 373 | 44.55 397 | 35.46 391 | 28.87 391 | 39.07 398 | 18.20 392 | 18.58 394 | 40.18 389 | 2.68 401 | 47.37 395 | 17.07 393 | 23.78 391 | 48.60 388 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| Gipuma |  | | 45.18 354 | 41.86 357 | 55.16 368 | 77.03 353 | 51.52 356 | 32.50 390 | 80.52 316 | 32.46 386 | 27.12 389 | 35.02 390 | 9.52 393 | 75.50 367 | 22.31 389 | 60.21 366 | 38.45 389 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| DeepMVS_CX |  | | | | 27.40 377 | 40.17 399 | 26.90 395 | | 24.59 401 | 17.44 393 | 23.95 391 | 48.61 388 | 9.77 392 | 26.48 396 | 18.06 390 | 24.47 390 | 28.83 390 |
|
| E-PMN | | | 31.77 357 | 30.64 360 | 35.15 375 | 52.87 394 | 27.67 394 | 57.09 385 | 47.86 395 | 24.64 390 | 16.40 395 | 33.05 391 | 11.23 391 | 54.90 392 | 14.46 395 | 18.15 392 | 22.87 391 |
|
| EMVS | | | 30.81 359 | 29.65 361 | 34.27 376 | 50.96 395 | 25.95 396 | 56.58 386 | 46.80 396 | 24.01 391 | 15.53 396 | 30.68 392 | 12.47 388 | 54.43 393 | 12.81 396 | 17.05 393 | 22.43 392 |
|
| tmp_tt | | | 18.61 362 | 21.40 365 | 10.23 379 | 4.82 401 | 10.11 402 | 34.70 389 | 30.74 400 | 1.48 396 | 23.91 392 | 26.07 393 | 28.42 372 | 13.41 398 | 27.12 384 | 15.35 395 | 7.17 393 |
|
| wuyk23d | | | 16.82 363 | 15.94 366 | 19.46 378 | 58.74 386 | 31.45 393 | 39.22 388 | 3.74 403 | 6.84 394 | 6.04 397 | 2.70 397 | 1.27 402 | 24.29 397 | 10.54 397 | 14.40 396 | 2.63 394 |
|
| test123 | | | 6.12 365 | 8.11 368 | 0.14 380 | 0.06 403 | 0.09 405 | 71.05 357 | 0.03 405 | 0.04 399 | 0.25 400 | 1.30 399 | 0.05 403 | 0.03 400 | 0.21 399 | 0.01 398 | 0.29 395 |
|
| testmvs | | | 6.04 366 | 8.02 369 | 0.10 381 | 0.08 402 | 0.03 406 | 69.74 362 | 0.04 404 | 0.05 398 | 0.31 399 | 1.68 398 | 0.02 404 | 0.04 399 | 0.24 398 | 0.02 397 | 0.25 396 |
|
| test_blank | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| uanet_test | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| DCPMVS | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| cdsmvs_eth3d_5k | | | 19.96 361 | 26.61 363 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 89.26 173 | 0.00 400 | 0.00 401 | 88.61 174 | 61.62 159 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| pcd_1.5k_mvsjas | | | 5.26 367 | 7.02 370 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 63.15 136 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| sosnet-low-res | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| sosnet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| uncertanet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| Regformer | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| ab-mvs-re | | | 7.23 364 | 9.64 367 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 86.72 224 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| uanet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| WAC-MVS | | | | | | | 42.58 382 | | | | | | | | 39.46 371 | | |
|
| FOURS1 | | | | | | 95.00 10 | 72.39 39 | 95.06 1 | 93.84 15 | 74.49 113 | 91.30 15 | | | | | | |
|
| test_one_0601 | | | | | | 95.07 7 | 71.46 55 | | 94.14 5 | 78.27 35 | 92.05 11 | 95.74 6 | 80.83 11 | | | | |
|
| eth-test2 | | | | | | 0.00 404 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 404 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 94.38 25 | 72.22 44 | | 92.67 61 | 70.98 179 | 87.75 30 | 94.07 41 | 74.01 32 | 96.70 27 | 84.66 45 | 94.84 43 | |
|
| test_241102_ONE | | | | | | 95.30 2 | 70.98 63 | | 94.06 10 | 77.17 53 | 93.10 1 | 95.39 11 | 82.99 1 | 97.27 11 | | | |
|
| 9.14 | | | | 88.26 14 | | 92.84 60 | | 91.52 46 | 94.75 1 | 73.93 125 | 88.57 22 | 94.67 19 | 75.57 22 | 95.79 53 | 86.77 33 | 95.76 23 | |
|
| save fliter | | | | | | 93.80 40 | 72.35 42 | 90.47 64 | 91.17 116 | 74.31 116 | | | | | | | |
|
| test0726 | | | | | | 95.27 5 | 71.25 57 | 93.60 6 | 94.11 6 | 77.33 48 | 92.81 3 | 95.79 3 | 80.98 9 | | | | |
|
| test_part2 | | | | | | 95.06 8 | 72.65 32 | | | | 91.80 13 | | | | | | |
|
| sam_mvs | | | | | | | | | | | | | 50.01 272 | | | | |
|
| MTGPA |  | | | | | | | | 92.02 85 | | | | | | | | |
|
| test_post1 | | | | | | | | 78.90 315 | | | | 5.43 396 | 48.81 292 | 85.44 312 | 59.25 277 | | |
|
| test_post | | | | | | | | | | | | 5.46 395 | 50.36 270 | 84.24 319 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 74.00 365 | 51.12 261 | 88.60 284 | | | |
|
| MTMP | | | | | | | | 92.18 35 | 32.83 399 | | | | | | | | |
|
| gm-plane-assit | | | | | | 81.40 314 | 53.83 342 | | | 62.72 303 | | 80.94 322 | | 92.39 195 | 63.40 241 | | |
|
| TEST9 | | | | | | 93.26 50 | 72.96 25 | 88.75 115 | 91.89 93 | 68.44 237 | 85.00 55 | 93.10 65 | 74.36 28 | 95.41 67 | | | |
|
| test_8 | | | | | | 93.13 52 | 72.57 35 | 88.68 120 | 91.84 97 | 68.69 232 | 84.87 59 | 93.10 65 | 74.43 26 | 95.16 76 | | | |
|
| agg_prior | | | | | | 92.85 59 | 71.94 51 | | 91.78 100 | | 84.41 69 | | | 94.93 87 | | | |
|
| test_prior4 | | | | | | | 72.60 34 | 89.01 105 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 88.85 111 | | 75.41 93 | 84.91 57 | 93.54 56 | 74.28 29 | | 83.31 59 | 95.86 20 | |
|
| 旧先验2 | | | | | | | | 86.56 186 | | 58.10 339 | 87.04 37 | | | 88.98 277 | 74.07 147 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 86.29 194 | | | | | | | | | |
|
| 原ACMM2 | | | | | | | | 86.86 175 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 91.01 247 | 62.37 251 | | |
|
| segment_acmp | | | | | | | | | | | | | 73.08 37 | | | | |
|
| testdata1 | | | | | | | | 84.14 247 | | 75.71 87 | | | | | | | |
|
| plane_prior7 | | | | | | 90.08 102 | 68.51 118 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 89.84 111 | 68.70 113 | | | | | | 60.42 184 | | | | |
|
| plane_prior4 | | | | | | | | | | | | 91.00 118 | | | | | |
|
| plane_prior3 | | | | | | | 68.60 116 | | | 78.44 31 | 78.92 139 | | | | | | |
|
| plane_prior2 | | | | | | | | 91.25 50 | | 79.12 23 | | | | | | | |
|
| plane_prior1 | | | | | | 89.90 110 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 68.71 111 | 90.38 67 | | 77.62 39 | | | | | | 86.16 153 | |
|
| n2 | | | | | | | | | 0.00 406 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 406 | | | | | | | | |
|
| door-mid | | | | | | | | | 69.98 367 | | | | | | | | |
|
| test11 | | | | | | | | | 92.23 79 | | | | | | | | |
|
| door | | | | | | | | | 69.44 370 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 66.98 153 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 89.33 127 | | 89.17 98 | | 76.41 72 | 77.23 180 | | | | | | |
|
| ACMP_Plane | | | | | | 89.33 127 | | 89.17 98 | | 76.41 72 | 77.23 180 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.47 112 | | |
|
| HQP3-MVS | | | | | | | | | 92.19 82 | | | | | | | 85.99 156 | |
|
| HQP2-MVS | | | | | | | | | | | | | 60.17 187 | | | | |
|
| NP-MVS | | | | | | 89.62 114 | 68.32 120 | | | | | 90.24 130 | | | | | |
|
| MDTV_nov1_ep13 | | | | 69.97 284 | | 83.18 280 | 53.48 344 | 77.10 331 | 80.18 323 | 60.45 317 | 69.33 298 | 80.44 326 | 48.89 291 | 86.90 299 | 51.60 326 | 78.51 249 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 81.95 209 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 81.25 215 | |
|
| Test By Simon | | | | | | | | | | | | | 64.33 123 | | | | |
|