This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
MM89.16 689.23 788.97 490.79 9573.65 1092.66 2391.17 12486.57 187.39 4194.97 1871.70 5397.68 192.19 195.63 2895.57 1
casdiffmvs_mvgpermissive85.99 4886.09 5085.70 7387.65 20867.22 15888.69 12393.04 4179.64 1885.33 5992.54 8673.30 3594.50 11183.49 6591.14 9595.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
dcpmvs_285.63 5886.15 4884.06 13291.71 7864.94 20186.47 19591.87 10273.63 13986.60 5093.02 7576.57 1591.87 22283.36 6692.15 8095.35 3
casdiffmvspermissive85.11 6785.14 6785.01 8987.20 22265.77 18487.75 15692.83 6077.84 3784.36 8092.38 8872.15 4693.93 13381.27 9090.48 10295.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
3Dnovator+77.84 485.48 6084.47 7688.51 791.08 8673.49 1693.18 1193.78 1880.79 876.66 20293.37 6560.40 19696.75 2677.20 12493.73 6495.29 5
BP-MVS184.32 7583.71 8186.17 6187.84 19867.85 13789.38 9889.64 17077.73 3883.98 8792.12 9356.89 22095.43 7084.03 6291.75 8795.24 6
MVS_030487.69 2087.55 2488.12 1389.45 12971.76 5191.47 4989.54 17282.14 386.65 4994.28 3468.28 9597.46 690.81 295.31 3495.15 7
CS-MVS86.69 3986.95 3585.90 7090.76 9667.57 14692.83 1793.30 3279.67 1784.57 7692.27 8971.47 5695.02 9284.24 5993.46 6795.13 8
TSAR-MVS + MP.88.02 1788.11 1687.72 3093.68 4372.13 4691.41 5092.35 8174.62 11988.90 2293.85 5575.75 2096.00 5487.80 2894.63 4895.04 9
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
baseline84.93 7084.98 6884.80 9987.30 22065.39 19287.30 17092.88 5777.62 4084.04 8692.26 9071.81 5093.96 12781.31 8890.30 10595.03 10
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5995.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 11
PC_three_145268.21 25392.02 1294.00 4982.09 595.98 5684.58 5396.68 294.95 11
IS-MVSNet83.15 9682.81 9684.18 12289.94 11563.30 23691.59 4388.46 21279.04 2579.49 14292.16 9165.10 12894.28 11667.71 21891.86 8694.95 11
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 7272.96 2593.73 593.67 2080.19 1288.10 2894.80 1973.76 3397.11 1587.51 3195.82 2194.90 14
Skip Steuart: Steuart Systems R&D Blog.
SED-MVS90.08 290.85 287.77 2695.30 270.98 6693.57 794.06 1077.24 5393.10 195.72 882.99 197.44 789.07 1496.63 494.88 15
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4782.45 396.87 2083.77 6496.48 894.88 15
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 11592.29 795.97 274.28 2997.24 1388.58 2196.91 194.87 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test250677.30 22676.49 22379.74 25190.08 10852.02 36787.86 15563.10 40574.88 11180.16 13592.79 8238.29 37192.35 20468.74 21192.50 7794.86 18
ECVR-MVScopyleft79.61 16479.26 15780.67 23390.08 10854.69 35087.89 15377.44 35974.88 11180.27 13292.79 8248.96 30392.45 19868.55 21292.50 7794.86 18
IU-MVS95.30 271.25 5992.95 5566.81 26492.39 688.94 1696.63 494.85 20
test111179.43 17179.18 16080.15 24389.99 11353.31 36387.33 16977.05 36375.04 10680.23 13492.77 8448.97 30292.33 20668.87 20992.40 7994.81 21
SF-MVS88.46 1288.74 1287.64 3592.78 6471.95 4992.40 2494.74 275.71 9289.16 1995.10 1675.65 2196.19 4687.07 3496.01 1794.79 22
balanced_conf0386.78 3786.99 3386.15 6291.24 8367.61 14490.51 6292.90 5677.26 5287.44 4091.63 10471.27 6096.06 4985.62 4295.01 3794.78 23
sasdasda85.91 5285.87 5486.04 6689.84 11769.44 9890.45 6893.00 4676.70 7288.01 3191.23 11673.28 3693.91 13481.50 8688.80 12794.77 24
SPE-MVS-test86.29 4686.48 4185.71 7291.02 8867.21 15992.36 2993.78 1878.97 2883.51 9691.20 11970.65 6995.15 8381.96 8394.89 4294.77 24
canonicalmvs85.91 5285.87 5486.04 6689.84 11769.44 9890.45 6893.00 4676.70 7288.01 3191.23 11673.28 3693.91 13481.50 8688.80 12794.77 24
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 989.42 996.57 794.67 27
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 4078.35 1396.77 2489.59 894.22 6094.67 27
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
RRT-MVS82.60 10782.10 10684.10 12487.98 19262.94 24787.45 16591.27 12077.42 4979.85 13790.28 13956.62 22294.70 10679.87 10388.15 13994.67 27
MGCFI-Net85.06 6985.51 5983.70 14689.42 13063.01 24289.43 9392.62 7276.43 7687.53 3891.34 11472.82 4293.42 16081.28 8988.74 13094.66 30
alignmvs85.48 6085.32 6485.96 6989.51 12669.47 9589.74 8392.47 7576.17 8587.73 3791.46 11170.32 7193.78 14081.51 8588.95 12494.63 31
MP-MVS-pluss87.67 2187.72 2087.54 3693.64 4472.04 4889.80 8193.50 2575.17 10586.34 5195.29 1570.86 6596.00 5488.78 1996.04 1694.58 32
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5392.24 7169.03 10389.57 9093.39 3077.53 4689.79 1894.12 4278.98 1296.58 3585.66 4095.72 2494.58 32
VDD-MVS83.01 10182.36 10284.96 9191.02 8866.40 16988.91 11388.11 21577.57 4284.39 7993.29 6752.19 25693.91 13477.05 12788.70 13194.57 34
VDDNet81.52 12480.67 12784.05 13590.44 10164.13 21889.73 8485.91 26171.11 18683.18 9893.48 6150.54 28293.49 15473.40 16488.25 13794.54 35
MVSMamba_PlusPlus85.99 4885.96 5286.05 6591.09 8567.64 14389.63 8892.65 6972.89 16184.64 7391.71 10071.85 4996.03 5084.77 5194.45 5494.49 36
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9491.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 37
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4997.53 289.67 696.44 994.41 38
No_MVS89.16 194.34 2775.53 292.99 4997.53 289.67 696.44 994.41 38
MCST-MVS87.37 2987.25 2987.73 2894.53 1772.46 3889.82 7993.82 1673.07 15684.86 6892.89 7776.22 1796.33 4184.89 4895.13 3694.40 40
CANet86.45 4286.10 4987.51 3790.09 10770.94 7089.70 8592.59 7381.78 481.32 12091.43 11270.34 7097.23 1484.26 5793.36 6894.37 41
PHI-MVS86.43 4386.17 4787.24 4190.88 9270.96 6892.27 3294.07 972.45 16285.22 6191.90 9669.47 8096.42 4083.28 6895.94 1994.35 42
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6293.00 4680.90 788.06 2994.06 4576.43 1696.84 2188.48 2495.99 1894.34 43
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6685.24 6094.32 3371.76 5196.93 1985.53 4395.79 2294.32 44
HPM-MVScopyleft87.11 3386.98 3487.50 3893.88 3972.16 4592.19 3393.33 3176.07 8783.81 9193.95 5469.77 7896.01 5385.15 4494.66 4794.32 44
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CDPH-MVS85.76 5685.29 6687.17 4393.49 4771.08 6488.58 12792.42 7968.32 25284.61 7493.48 6172.32 4496.15 4879.00 10595.43 3094.28 46
test_241102_TWO94.06 1077.24 5392.78 495.72 881.26 897.44 789.07 1496.58 694.26 47
test_0728_SECOND87.71 3295.34 171.43 5893.49 994.23 397.49 489.08 1296.41 1294.21 48
DeepC-MVS_fast79.65 386.91 3686.62 4087.76 2793.52 4672.37 4191.26 5193.04 4176.62 7484.22 8193.36 6671.44 5796.76 2580.82 9495.33 3394.16 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EPP-MVSNet83.40 9283.02 9284.57 10390.13 10664.47 21192.32 3090.73 13674.45 12379.35 14491.10 12269.05 8795.12 8472.78 17187.22 14894.13 50
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5492.83 6081.50 585.79 5593.47 6373.02 4097.00 1884.90 4694.94 4094.10 51
ACMMP_NAP88.05 1688.08 1787.94 1993.70 4173.05 2290.86 5793.59 2376.27 8488.14 2795.09 1771.06 6396.67 2987.67 2996.37 1494.09 52
XVS87.18 3286.91 3788.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9394.17 3967.45 10396.60 3383.06 6994.50 5194.07 53
X-MVStestdata80.37 15377.83 18988.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9312.47 41967.45 10396.60 3383.06 6994.50 5194.07 53
region2R87.42 2787.20 3188.09 1494.63 1473.55 1393.03 1493.12 4076.73 7184.45 7794.52 2369.09 8496.70 2784.37 5694.83 4594.03 55
ACMMPR87.44 2587.23 3088.08 1594.64 1373.59 1293.04 1293.20 3476.78 6884.66 7294.52 2368.81 9096.65 3084.53 5494.90 4194.00 56
test_fmvsmconf_n85.92 5186.04 5185.57 7585.03 26169.51 9389.62 8990.58 13973.42 14787.75 3594.02 4772.85 4193.24 16590.37 390.75 9993.96 57
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 9092.29 795.66 1081.67 697.38 1187.44 3396.34 1593.95 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_fmvsm_n_192085.29 6585.34 6285.13 8686.12 24069.93 8688.65 12590.78 13569.97 21388.27 2693.98 5271.39 5891.54 23488.49 2390.45 10393.91 59
test_prior86.33 5792.61 6869.59 9192.97 5495.48 6793.91 59
GST-MVS87.42 2787.26 2887.89 2494.12 3672.97 2492.39 2693.43 2876.89 6484.68 6993.99 5170.67 6896.82 2284.18 6195.01 3793.90 61
test_fmvsmconf0.1_n85.61 5985.65 5785.50 7682.99 30869.39 10089.65 8690.29 15273.31 15087.77 3494.15 4171.72 5293.23 16690.31 490.67 10193.89 62
Anonymous20240521178.25 19977.01 20981.99 20091.03 8760.67 27484.77 23783.90 28670.65 19980.00 13691.20 11941.08 35791.43 24165.21 24085.26 17593.85 63
LFMVS81.82 11781.23 11883.57 15091.89 7663.43 23489.84 7881.85 31977.04 6183.21 9793.10 7052.26 25593.43 15971.98 17789.95 11393.85 63
Effi-MVS+83.62 8783.08 9085.24 8288.38 17567.45 14888.89 11489.15 18875.50 9782.27 10888.28 19269.61 7994.45 11377.81 11887.84 14093.84 65
Anonymous2024052980.19 15778.89 16584.10 12490.60 9764.75 20588.95 11290.90 13165.97 28180.59 13091.17 12149.97 28793.73 14669.16 20682.70 21893.81 66
MVS_Test83.15 9683.06 9183.41 15586.86 22663.21 23886.11 20692.00 9474.31 12482.87 10289.44 16470.03 7493.21 16877.39 12388.50 13593.81 66
test_fmvsmconf0.01_n84.73 7384.52 7585.34 7980.25 34969.03 10389.47 9189.65 16973.24 15486.98 4694.27 3566.62 10993.23 16690.26 589.95 11393.78 68
GeoE81.71 11981.01 12383.80 14589.51 12664.45 21288.97 11188.73 20771.27 18378.63 15689.76 15066.32 11593.20 17169.89 19886.02 16893.74 69
diffmvspermissive82.10 11081.88 11282.76 18883.00 30663.78 22483.68 26289.76 16572.94 15982.02 11189.85 14865.96 12290.79 25882.38 8187.30 14793.71 70
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HFP-MVS87.58 2287.47 2687.94 1994.58 1673.54 1593.04 1293.24 3376.78 6884.91 6594.44 3070.78 6696.61 3284.53 5494.89 4293.66 71
VNet82.21 10982.41 10081.62 20690.82 9360.93 26984.47 24589.78 16476.36 8284.07 8591.88 9764.71 13290.26 26470.68 18988.89 12593.66 71
PGM-MVS86.68 4086.27 4487.90 2294.22 3373.38 1890.22 7393.04 4175.53 9683.86 8994.42 3167.87 10096.64 3182.70 7994.57 5093.66 71
DELS-MVS85.41 6385.30 6585.77 7188.49 16967.93 13685.52 22593.44 2778.70 2983.63 9589.03 17174.57 2495.71 6180.26 10094.04 6193.66 71
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SD-MVS88.06 1488.50 1486.71 5492.60 6972.71 2991.81 4193.19 3577.87 3690.32 1794.00 4974.83 2393.78 14087.63 3094.27 5993.65 75
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepC-MVS79.81 287.08 3586.88 3887.69 3391.16 8472.32 4390.31 7193.94 1477.12 5882.82 10494.23 3872.13 4797.09 1684.83 4995.37 3193.65 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
patch_mono-283.65 8484.54 7380.99 22590.06 11265.83 18184.21 25488.74 20671.60 17785.01 6292.44 8774.51 2583.50 34482.15 8292.15 8093.64 77
EIA-MVS83.31 9582.80 9784.82 9789.59 12265.59 18788.21 14092.68 6574.66 11878.96 14886.42 24769.06 8695.26 7975.54 14490.09 10993.62 78
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 6977.57 4283.84 9094.40 3272.24 4596.28 4385.65 4195.30 3593.62 78
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVS_fast85.35 6484.95 7086.57 5693.69 4270.58 7892.15 3591.62 11073.89 13482.67 10794.09 4362.60 15295.54 6580.93 9292.93 7193.57 80
fmvsm_s_conf0.1_n83.56 8883.38 8684.10 12484.86 26367.28 15489.40 9783.01 30370.67 19587.08 4493.96 5368.38 9391.45 24088.56 2284.50 18393.56 81
CSCG86.41 4586.19 4687.07 4592.91 6172.48 3790.81 5893.56 2473.95 13183.16 9991.07 12475.94 1895.19 8179.94 10294.38 5693.55 82
test1286.80 5292.63 6770.70 7591.79 10682.71 10671.67 5496.16 4794.50 5193.54 83
APD-MVS_3200maxsize85.97 5085.88 5386.22 6092.69 6669.53 9291.93 3792.99 4973.54 14385.94 5294.51 2665.80 12395.61 6283.04 7192.51 7693.53 84
mvs_anonymous79.42 17279.11 16180.34 23984.45 27257.97 30282.59 28187.62 22967.40 26276.17 21788.56 18568.47 9289.59 27770.65 19086.05 16793.47 85
fmvsm_s_conf0.5_n83.80 8183.71 8184.07 13086.69 23267.31 15389.46 9283.07 30271.09 18786.96 4793.70 5869.02 8991.47 23988.79 1884.62 18293.44 86
mPP-MVS86.67 4186.32 4387.72 3094.41 2273.55 1392.74 2092.22 8776.87 6582.81 10594.25 3766.44 11396.24 4482.88 7494.28 5893.38 87
EPNet83.72 8382.92 9586.14 6484.22 27569.48 9491.05 5685.27 26781.30 676.83 19791.65 10266.09 11895.56 6376.00 13893.85 6293.38 87
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Vis-MVSNetpermissive83.46 9082.80 9785.43 7890.25 10468.74 11490.30 7290.13 15676.33 8380.87 12892.89 7761.00 18494.20 12172.45 17690.97 9693.35 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5993.49 992.73 6477.33 5092.12 995.78 480.98 997.40 989.08 1296.41 1293.33 90
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
UniMVSNet_ETH3D79.10 18178.24 17981.70 20586.85 22760.24 28187.28 17188.79 20174.25 12676.84 19690.53 13749.48 29391.56 23267.98 21682.15 22293.29 91
EI-MVSNet-Vis-set84.19 7683.81 8085.31 8088.18 18067.85 13787.66 15889.73 16780.05 1482.95 10089.59 15670.74 6794.82 10080.66 9784.72 18093.28 92
MTAPA87.23 3187.00 3287.90 2294.18 3574.25 586.58 19292.02 9279.45 1985.88 5394.80 1968.07 9696.21 4586.69 3695.34 3293.23 93
CP-MVS87.11 3386.92 3687.68 3494.20 3473.86 793.98 392.82 6376.62 7483.68 9294.46 2767.93 9895.95 5784.20 6094.39 5593.23 93
ACMMPcopyleft85.89 5485.39 6187.38 3993.59 4572.63 3392.74 2093.18 3976.78 6880.73 12993.82 5664.33 13396.29 4282.67 8090.69 10093.23 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_s_conf0.1_n_a83.32 9482.99 9384.28 11683.79 28568.07 13389.34 10082.85 30869.80 21787.36 4294.06 4568.34 9491.56 23287.95 2783.46 20793.21 96
PAPM_NR83.02 10082.41 10084.82 9792.47 7066.37 17087.93 15191.80 10573.82 13577.32 18590.66 13467.90 9994.90 9670.37 19289.48 11893.19 97
reproduce_model87.28 3087.39 2786.95 4893.10 5671.24 6391.60 4293.19 3574.69 11688.80 2395.61 1170.29 7296.44 3986.20 3993.08 6993.16 98
OMC-MVS82.69 10381.97 11184.85 9688.75 16167.42 14987.98 14790.87 13374.92 11079.72 13991.65 10262.19 16293.96 12775.26 14886.42 16093.16 98
fmvsm_s_conf0.5_n_a83.63 8683.41 8584.28 11686.14 23968.12 13189.43 9382.87 30770.27 20687.27 4393.80 5769.09 8491.58 23088.21 2683.65 20293.14 100
PAPR81.66 12280.89 12583.99 14090.27 10364.00 21986.76 18891.77 10868.84 24377.13 19589.50 15767.63 10194.88 9867.55 22088.52 13493.09 101
UA-Net85.08 6884.96 6985.45 7792.07 7368.07 13389.78 8290.86 13482.48 284.60 7593.20 6969.35 8195.22 8071.39 18290.88 9893.07 102
reproduce-ours87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10888.96 2095.54 1271.20 6196.54 3686.28 3793.49 6593.06 103
our_new_method87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10888.96 2095.54 1271.20 6196.54 3686.28 3793.49 6593.06 103
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5980.26 1187.78 3394.27 3575.89 1996.81 2387.45 3296.44 993.05 105
thisisatest053079.40 17377.76 19484.31 11487.69 20765.10 19887.36 16784.26 28270.04 20977.42 18288.26 19449.94 28894.79 10270.20 19384.70 18193.03 106
train_agg86.43 4386.20 4587.13 4493.26 5272.96 2588.75 11991.89 10068.69 24585.00 6393.10 7074.43 2695.41 7384.97 4595.71 2593.02 107
EC-MVSNet86.01 4786.38 4284.91 9589.31 13866.27 17292.32 3093.63 2179.37 2084.17 8391.88 9769.04 8895.43 7083.93 6393.77 6393.01 108
mvsmamba80.60 14579.38 15284.27 11889.74 12067.24 15787.47 16386.95 24370.02 21075.38 23388.93 17251.24 27392.56 19475.47 14689.22 12193.00 109
EI-MVSNet-UG-set83.81 8083.38 8685.09 8787.87 19667.53 14787.44 16689.66 16879.74 1682.23 10989.41 16570.24 7394.74 10379.95 10183.92 19492.99 110
tttt051779.40 17377.91 18683.90 14488.10 18563.84 22288.37 13584.05 28471.45 18076.78 19989.12 16849.93 29094.89 9770.18 19483.18 21192.96 111
test9_res84.90 4695.70 2692.87 112
SR-MVS86.73 3886.67 3986.91 4994.11 3772.11 4792.37 2892.56 7474.50 12086.84 4894.65 2267.31 10595.77 5984.80 5092.85 7292.84 113
ETV-MVS84.90 7284.67 7285.59 7489.39 13368.66 12088.74 12192.64 7179.97 1584.10 8485.71 26069.32 8295.38 7580.82 9491.37 9292.72 114
agg_prior282.91 7395.45 2992.70 115
APD-MVScopyleft87.44 2587.52 2587.19 4294.24 3272.39 3991.86 4092.83 6073.01 15888.58 2494.52 2373.36 3496.49 3884.26 5795.01 3792.70 115
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ET-MVSNet_ETH3D78.63 19276.63 22284.64 10286.73 23169.47 9585.01 23284.61 27569.54 22366.51 34986.59 24050.16 28591.75 22576.26 13484.24 19192.69 117
Vis-MVSNet (Re-imp)78.36 19878.45 17278.07 28488.64 16551.78 37386.70 18979.63 34474.14 12975.11 24690.83 13261.29 17889.75 27458.10 30691.60 8892.69 117
TSAR-MVS + GP.85.71 5785.33 6386.84 5091.34 8172.50 3689.07 10987.28 23676.41 7785.80 5490.22 14374.15 3195.37 7881.82 8491.88 8392.65 119
test_fmvsmvis_n_192084.02 7883.87 7984.49 10784.12 27769.37 10188.15 14487.96 22070.01 21183.95 8893.23 6868.80 9191.51 23788.61 2089.96 11292.57 120
FA-MVS(test-final)80.96 13379.91 14184.10 12488.30 17865.01 19984.55 24490.01 15973.25 15379.61 14087.57 20958.35 20594.72 10471.29 18386.25 16392.56 121
test_yl81.17 12980.47 13183.24 16189.13 14663.62 22586.21 20389.95 16172.43 16581.78 11689.61 15457.50 21393.58 14870.75 18786.90 15292.52 122
DCV-MVSNet81.17 12980.47 13183.24 16189.13 14663.62 22586.21 20389.95 16172.43 16581.78 11689.61 15457.50 21393.58 14870.75 18786.90 15292.52 122
SR-MVS-dyc-post85.77 5585.61 5886.23 5993.06 5870.63 7691.88 3892.27 8373.53 14485.69 5694.45 2865.00 13195.56 6382.75 7591.87 8492.50 124
RE-MVS-def85.48 6093.06 5870.63 7691.88 3892.27 8373.53 14485.69 5694.45 2863.87 13782.75 7591.87 8492.50 124
nrg03083.88 7983.53 8384.96 9186.77 23069.28 10290.46 6792.67 6674.79 11482.95 10091.33 11572.70 4393.09 17980.79 9679.28 25892.50 124
MG-MVS83.41 9183.45 8483.28 15892.74 6562.28 25488.17 14289.50 17475.22 10181.49 11992.74 8566.75 10895.11 8672.85 17091.58 8992.45 127
FIs82.07 11282.42 9981.04 22488.80 15858.34 29688.26 13993.49 2676.93 6378.47 16191.04 12569.92 7692.34 20569.87 19984.97 17792.44 128
FC-MVSNet-test81.52 12482.02 10980.03 24588.42 17455.97 33587.95 14993.42 2977.10 5977.38 18390.98 13169.96 7591.79 22368.46 21484.50 18392.33 129
Fast-Effi-MVS+80.81 13779.92 14083.47 15188.85 15364.51 20885.53 22389.39 17770.79 19278.49 16085.06 27867.54 10293.58 14867.03 22886.58 15792.32 130
TranMVSNet+NR-MVSNet80.84 13580.31 13482.42 19387.85 19762.33 25287.74 15791.33 11980.55 977.99 17389.86 14765.23 12792.62 19167.05 22775.24 31692.30 131
ab-mvs79.51 16778.97 16481.14 22188.46 17160.91 27083.84 25989.24 18470.36 20279.03 14788.87 17563.23 14490.21 26665.12 24182.57 21992.28 132
CANet_DTU80.61 14479.87 14282.83 18085.60 24863.17 24187.36 16788.65 20876.37 8175.88 22088.44 18853.51 24593.07 18073.30 16589.74 11692.25 133
UniMVSNet_NR-MVSNet81.88 11581.54 11582.92 17788.46 17163.46 23287.13 17392.37 8080.19 1278.38 16289.14 16771.66 5593.05 18170.05 19576.46 28992.25 133
fmvsm_l_conf0.5_n84.47 7484.54 7384.27 11885.42 25168.81 10988.49 12987.26 23768.08 25488.03 3093.49 6072.04 4891.77 22488.90 1789.14 12392.24 135
DU-MVS81.12 13180.52 13082.90 17887.80 20063.46 23287.02 17791.87 10279.01 2678.38 16289.07 16965.02 12993.05 18170.05 19576.46 28992.20 136
NR-MVSNet80.23 15579.38 15282.78 18687.80 20063.34 23586.31 20091.09 12879.01 2672.17 28789.07 16967.20 10692.81 19066.08 23475.65 30292.20 136
TAPA-MVS73.13 979.15 17977.94 18582.79 18589.59 12262.99 24688.16 14391.51 11465.77 28277.14 19491.09 12360.91 18593.21 16850.26 35387.05 15092.17 138
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
fmvsm_l_conf0.5_n_a84.13 7784.16 7884.06 13285.38 25268.40 12488.34 13686.85 24767.48 26187.48 3993.40 6470.89 6491.61 22888.38 2589.22 12192.16 139
3Dnovator76.31 583.38 9382.31 10386.59 5587.94 19372.94 2890.64 6092.14 9177.21 5575.47 22792.83 7958.56 20394.72 10473.24 16792.71 7492.13 140
MVS_111021_HR85.14 6684.75 7186.32 5891.65 7972.70 3085.98 20890.33 14976.11 8682.08 11091.61 10671.36 5994.17 12381.02 9192.58 7592.08 141
MVSFormer82.85 10282.05 10885.24 8287.35 21470.21 8090.50 6490.38 14568.55 24781.32 12089.47 15961.68 16793.46 15778.98 10690.26 10692.05 142
jason81.39 12780.29 13584.70 10186.63 23469.90 8885.95 20986.77 24863.24 31281.07 12689.47 15961.08 18392.15 21178.33 11490.07 11192.05 142
jason: jason.
HyFIR lowres test77.53 22175.40 24083.94 14389.59 12266.62 16680.36 31288.64 20956.29 37276.45 20785.17 27557.64 21193.28 16361.34 27783.10 21291.91 144
XVG-OURS-SEG-HR80.81 13779.76 14483.96 14285.60 24868.78 11183.54 26890.50 14270.66 19876.71 20191.66 10160.69 18891.26 24576.94 12881.58 22991.83 145
lupinMVS81.39 12780.27 13684.76 10087.35 21470.21 8085.55 22186.41 25262.85 31981.32 12088.61 18261.68 16792.24 20978.41 11390.26 10691.83 145
WR-MVS79.49 16879.22 15980.27 24188.79 15958.35 29585.06 23188.61 21078.56 3077.65 17888.34 19063.81 13990.66 26164.98 24377.22 27891.80 147
h-mvs3383.15 9682.19 10486.02 6890.56 9870.85 7388.15 14489.16 18776.02 8884.67 7091.39 11361.54 17095.50 6682.71 7775.48 30691.72 148
UniMVSNet (Re)81.60 12381.11 12083.09 16888.38 17564.41 21387.60 15993.02 4578.42 3278.56 15888.16 19669.78 7793.26 16469.58 20276.49 28891.60 149
UGNet80.83 13679.59 14884.54 10488.04 18868.09 13289.42 9588.16 21476.95 6276.22 21389.46 16149.30 29793.94 13068.48 21390.31 10491.60 149
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
testing9176.54 23675.66 23579.18 26388.43 17355.89 33681.08 29883.00 30473.76 13775.34 23584.29 29346.20 32290.07 26864.33 24784.50 18391.58 151
XVG-OURS80.41 15079.23 15883.97 14185.64 24769.02 10583.03 27990.39 14471.09 18777.63 17991.49 11054.62 23691.35 24375.71 14083.47 20691.54 152
LCM-MVSNet-Re77.05 22876.94 21277.36 29587.20 22251.60 37480.06 31580.46 33475.20 10267.69 33186.72 23262.48 15588.98 28963.44 25389.25 12091.51 153
DP-MVS Recon83.11 9982.09 10786.15 6294.44 1970.92 7188.79 11792.20 8870.53 20079.17 14691.03 12764.12 13596.03 5068.39 21590.14 10891.50 154
PS-MVSNAJss82.07 11281.31 11684.34 11386.51 23567.27 15589.27 10191.51 11471.75 17279.37 14390.22 14363.15 14694.27 11777.69 11982.36 22191.49 155
testing9976.09 24875.12 24679.00 26488.16 18155.50 34280.79 30281.40 32373.30 15175.17 24384.27 29544.48 33690.02 26964.28 24884.22 19291.48 156
thisisatest051577.33 22575.38 24183.18 16485.27 25463.80 22382.11 28683.27 29665.06 29175.91 21983.84 30249.54 29294.27 11767.24 22486.19 16491.48 156
DPM-MVS84.93 7084.29 7786.84 5090.20 10573.04 2387.12 17493.04 4169.80 21782.85 10391.22 11873.06 3996.02 5276.72 13294.63 4891.46 158
HQP_MVS83.64 8583.14 8985.14 8490.08 10868.71 11691.25 5292.44 7679.12 2378.92 15091.00 12960.42 19495.38 7578.71 10986.32 16191.33 159
plane_prior592.44 7695.38 7578.71 10986.32 16191.33 159
GA-MVS76.87 23275.17 24581.97 20182.75 31262.58 24981.44 29586.35 25572.16 16974.74 25382.89 32246.20 32292.02 21568.85 21081.09 23491.30 161
VPA-MVSNet80.60 14580.55 12980.76 23188.07 18760.80 27286.86 18291.58 11275.67 9580.24 13389.45 16363.34 14090.25 26570.51 19179.22 25991.23 162
Effi-MVS+-dtu80.03 15978.57 17084.42 10985.13 25968.74 11488.77 11888.10 21674.99 10774.97 25083.49 31157.27 21693.36 16173.53 16180.88 23691.18 163
v2v48280.23 15579.29 15683.05 17183.62 28964.14 21787.04 17689.97 16073.61 14078.18 16887.22 22061.10 18293.82 13876.11 13576.78 28691.18 163
FE-MVS77.78 21475.68 23384.08 12988.09 18666.00 17683.13 27487.79 22668.42 25178.01 17285.23 27345.50 33195.12 8459.11 29485.83 17291.11 165
Anonymous2023121178.97 18577.69 19782.81 18290.54 9964.29 21590.11 7591.51 11465.01 29376.16 21888.13 20150.56 28193.03 18469.68 20177.56 27691.11 165
hse-mvs281.72 11880.94 12484.07 13088.72 16267.68 14285.87 21287.26 23776.02 8884.67 7088.22 19561.54 17093.48 15582.71 7773.44 33491.06 167
AUN-MVS79.21 17877.60 19984.05 13588.71 16367.61 14485.84 21487.26 23769.08 23677.23 18888.14 20053.20 24993.47 15675.50 14573.45 33391.06 167
HQP4-MVS77.24 18795.11 8691.03 169
HQP-MVS82.61 10582.02 10984.37 11089.33 13566.98 16289.17 10392.19 8976.41 7777.23 18890.23 14260.17 19795.11 8677.47 12185.99 16991.03 169
RPSCF73.23 28371.46 28778.54 27482.50 31859.85 28482.18 28582.84 30958.96 35371.15 29889.41 16545.48 33284.77 33658.82 29871.83 34691.02 171
test_djsdf80.30 15479.32 15583.27 15983.98 28165.37 19390.50 6490.38 14568.55 24776.19 21488.70 17856.44 22393.46 15778.98 10680.14 24890.97 172
PCF-MVS73.52 780.38 15178.84 16685.01 8987.71 20568.99 10683.65 26391.46 11863.00 31677.77 17790.28 13966.10 11795.09 9061.40 27588.22 13890.94 173
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VPNet78.69 19178.66 16878.76 26888.31 17755.72 33984.45 24886.63 25076.79 6778.26 16590.55 13659.30 19989.70 27666.63 22977.05 28090.88 174
CPTT-MVS83.73 8283.33 8884.92 9493.28 4970.86 7292.09 3690.38 14568.75 24479.57 14192.83 7960.60 19293.04 18380.92 9391.56 9090.86 175
tt080578.73 18977.83 18981.43 21185.17 25560.30 28089.41 9690.90 13171.21 18477.17 19388.73 17746.38 31793.21 16872.57 17478.96 26090.79 176
CLD-MVS82.31 10881.65 11484.29 11588.47 17067.73 14185.81 21692.35 8175.78 9178.33 16486.58 24264.01 13694.35 11476.05 13787.48 14590.79 176
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
v119279.59 16678.43 17483.07 17083.55 29164.52 20786.93 18090.58 13970.83 19177.78 17685.90 25659.15 20093.94 13073.96 15877.19 27990.76 178
IterMVS-LS80.06 15879.38 15282.11 19785.89 24363.20 23986.79 18589.34 17874.19 12775.45 23086.72 23266.62 10992.39 20172.58 17376.86 28390.75 179
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet80.52 14979.98 13982.12 19684.28 27363.19 24086.41 19688.95 19874.18 12878.69 15387.54 21266.62 10992.43 19972.57 17480.57 24290.74 180
v192192079.22 17778.03 18382.80 18383.30 29663.94 22186.80 18490.33 14969.91 21577.48 18185.53 26658.44 20493.75 14473.60 16076.85 28490.71 181
QAPM80.88 13479.50 15085.03 8888.01 19168.97 10791.59 4392.00 9466.63 27375.15 24592.16 9157.70 21095.45 6863.52 25188.76 12990.66 182
v14419279.47 16978.37 17582.78 18683.35 29463.96 22086.96 17890.36 14869.99 21277.50 18085.67 26360.66 18993.77 14274.27 15576.58 28790.62 183
v124078.99 18477.78 19282.64 18983.21 29863.54 22986.62 19190.30 15169.74 22277.33 18485.68 26257.04 21893.76 14373.13 16876.92 28190.62 183
v114480.03 15979.03 16283.01 17383.78 28664.51 20887.11 17590.57 14171.96 17178.08 17186.20 25261.41 17493.94 13074.93 14977.23 27790.60 185
1112_ss77.40 22476.43 22580.32 24089.11 15060.41 27983.65 26387.72 22862.13 32973.05 27486.72 23262.58 15489.97 27062.11 26980.80 23890.59 186
CP-MVSNet78.22 20078.34 17677.84 28687.83 19954.54 35287.94 15091.17 12477.65 3973.48 26988.49 18662.24 16188.43 29962.19 26674.07 32590.55 187
testing22274.04 27172.66 27578.19 28187.89 19555.36 34381.06 29979.20 34871.30 18274.65 25683.57 31039.11 36688.67 29651.43 34585.75 17390.53 188
PS-CasMVS78.01 20978.09 18277.77 28887.71 20554.39 35488.02 14691.22 12177.50 4773.26 27188.64 18160.73 18688.41 30061.88 27073.88 32990.53 188
CDS-MVSNet79.07 18277.70 19683.17 16587.60 20968.23 12984.40 25186.20 25767.49 26076.36 21086.54 24461.54 17090.79 25861.86 27187.33 14690.49 190
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS78.89 18777.51 20183.03 17287.80 20067.79 14084.72 23885.05 27167.63 25776.75 20087.70 20562.25 16090.82 25758.53 30187.13 14990.49 190
PEN-MVS77.73 21577.69 19777.84 28687.07 22553.91 35787.91 15291.18 12377.56 4473.14 27388.82 17661.23 17989.17 28559.95 28572.37 34090.43 192
Test_1112_low_res76.40 24375.44 23879.27 26089.28 14058.09 29881.69 29087.07 24159.53 34872.48 28286.67 23761.30 17789.33 28160.81 28180.15 24790.41 193
HY-MVS69.67 1277.95 21077.15 20780.36 23887.57 21360.21 28283.37 27087.78 22766.11 27775.37 23487.06 22763.27 14290.48 26361.38 27682.43 22090.40 194
CHOSEN 1792x268877.63 22075.69 23283.44 15289.98 11468.58 12278.70 33587.50 23256.38 37175.80 22286.84 22858.67 20291.40 24261.58 27485.75 17390.34 195
SDMVSNet80.38 15180.18 13780.99 22589.03 15164.94 20180.45 31189.40 17675.19 10376.61 20589.98 14560.61 19187.69 30876.83 13083.55 20490.33 196
sd_testset77.70 21877.40 20278.60 27189.03 15160.02 28379.00 33085.83 26275.19 10376.61 20589.98 14554.81 22985.46 32962.63 26283.55 20490.33 196
114514_t80.68 14379.51 14984.20 12194.09 3867.27 15589.64 8791.11 12758.75 35674.08 26390.72 13358.10 20695.04 9169.70 20089.42 11990.30 198
eth_miper_zixun_eth77.92 21176.69 22081.61 20883.00 30661.98 25783.15 27389.20 18669.52 22474.86 25284.35 29261.76 16692.56 19471.50 18172.89 33890.28 199
PVSNet_Blended_VisFu82.62 10481.83 11384.96 9190.80 9469.76 9088.74 12191.70 10969.39 22578.96 14888.46 18765.47 12594.87 9974.42 15388.57 13290.24 200
MVS_111021_LR82.61 10582.11 10584.11 12388.82 15671.58 5585.15 22886.16 25874.69 11680.47 13191.04 12562.29 15990.55 26280.33 9990.08 11090.20 201
MSLP-MVS++85.43 6285.76 5684.45 10891.93 7570.24 7990.71 5992.86 5877.46 4884.22 8192.81 8167.16 10792.94 18580.36 9894.35 5790.16 202
mvs_tets79.13 18077.77 19383.22 16384.70 26566.37 17089.17 10390.19 15469.38 22675.40 23289.46 16144.17 33893.15 17576.78 13180.70 24090.14 203
BH-RMVSNet79.61 16478.44 17383.14 16689.38 13465.93 17884.95 23487.15 24073.56 14278.19 16789.79 14956.67 22193.36 16159.53 29086.74 15590.13 204
c3_l78.75 18877.91 18681.26 21782.89 31061.56 26384.09 25789.13 19069.97 21375.56 22584.29 29366.36 11492.09 21373.47 16375.48 30690.12 205
v7n78.97 18577.58 20083.14 16683.45 29365.51 18888.32 13791.21 12273.69 13872.41 28386.32 25057.93 20793.81 13969.18 20575.65 30290.11 206
jajsoiax79.29 17677.96 18483.27 15984.68 26666.57 16889.25 10290.16 15569.20 23375.46 22989.49 15845.75 32893.13 17776.84 12980.80 23890.11 206
v14878.72 19077.80 19181.47 21082.73 31361.96 25886.30 20188.08 21773.26 15276.18 21585.47 26862.46 15692.36 20371.92 17873.82 33090.09 208
GBi-Net78.40 19677.40 20281.40 21387.60 20963.01 24288.39 13289.28 18071.63 17475.34 23587.28 21654.80 23091.11 24862.72 25879.57 25290.09 208
test178.40 19677.40 20281.40 21387.60 20963.01 24288.39 13289.28 18071.63 17475.34 23587.28 21654.80 23091.11 24862.72 25879.57 25290.09 208
FMVSNet177.44 22276.12 22981.40 21386.81 22963.01 24288.39 13289.28 18070.49 20174.39 26087.28 21649.06 30191.11 24860.91 27978.52 26390.09 208
WR-MVS_H78.51 19578.49 17178.56 27388.02 18956.38 32988.43 13092.67 6677.14 5773.89 26487.55 21166.25 11689.24 28458.92 29673.55 33290.06 212
DTE-MVSNet76.99 22976.80 21577.54 29486.24 23753.06 36687.52 16190.66 13777.08 6072.50 28188.67 18060.48 19389.52 27857.33 31370.74 35290.05 213
v879.97 16179.02 16382.80 18384.09 27864.50 21087.96 14890.29 15274.13 13075.24 24286.81 22962.88 15193.89 13774.39 15475.40 31190.00 214
thres600view776.50 23875.44 23879.68 25389.40 13257.16 31585.53 22383.23 29773.79 13676.26 21287.09 22551.89 26591.89 22048.05 36783.72 20190.00 214
thres40076.50 23875.37 24279.86 24889.13 14657.65 30985.17 22683.60 28973.41 14876.45 20786.39 24852.12 25791.95 21748.33 36283.75 19890.00 214
cl2278.07 20677.01 20981.23 21882.37 32261.83 26083.55 26787.98 21968.96 24175.06 24883.87 30061.40 17591.88 22173.53 16176.39 29189.98 217
OPM-MVS83.50 8982.95 9485.14 8488.79 15970.95 6989.13 10891.52 11377.55 4580.96 12791.75 9960.71 18794.50 11179.67 10486.51 15989.97 218
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
baseline275.70 25273.83 26381.30 21683.26 29761.79 26182.57 28280.65 33066.81 26466.88 34083.42 31257.86 20992.19 21063.47 25279.57 25289.91 219
v1079.74 16378.67 16782.97 17684.06 27964.95 20087.88 15490.62 13873.11 15575.11 24686.56 24361.46 17394.05 12673.68 15975.55 30489.90 220
MVSTER79.01 18377.88 18882.38 19483.07 30364.80 20484.08 25888.95 19869.01 24078.69 15387.17 22354.70 23492.43 19974.69 15080.57 24289.89 221
ACMP74.13 681.51 12680.57 12884.36 11189.42 13068.69 11989.97 7791.50 11774.46 12275.04 24990.41 13853.82 24294.54 10877.56 12082.91 21389.86 222
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LPG-MVS_test82.08 11181.27 11784.50 10589.23 14268.76 11290.22 7391.94 9875.37 9976.64 20391.51 10854.29 23794.91 9478.44 11183.78 19589.83 223
LGP-MVS_train84.50 10589.23 14268.76 11291.94 9875.37 9976.64 20391.51 10854.29 23794.91 9478.44 11183.78 19589.83 223
V4279.38 17578.24 17982.83 18081.10 34165.50 18985.55 22189.82 16371.57 17878.21 16686.12 25460.66 18993.18 17475.64 14175.46 30889.81 225
MAR-MVS81.84 11680.70 12685.27 8191.32 8271.53 5689.82 7990.92 13069.77 21978.50 15986.21 25162.36 15894.52 11065.36 23992.05 8289.77 226
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DIV-MVS_self_test77.72 21676.76 21780.58 23482.48 32060.48 27783.09 27587.86 22469.22 23174.38 26185.24 27262.10 16391.53 23571.09 18475.40 31189.74 227
cl____77.72 21676.76 21780.58 23482.49 31960.48 27783.09 27587.87 22369.22 23174.38 26185.22 27462.10 16391.53 23571.09 18475.41 31089.73 228
miper_ehance_all_eth78.59 19477.76 19481.08 22382.66 31561.56 26383.65 26389.15 18868.87 24275.55 22683.79 30466.49 11292.03 21473.25 16676.39 29189.64 229
anonymousdsp78.60 19377.15 20782.98 17580.51 34767.08 16087.24 17289.53 17365.66 28475.16 24487.19 22252.52 25092.25 20877.17 12579.34 25789.61 230
FMVSNet278.20 20277.21 20681.20 21987.60 20962.89 24887.47 16389.02 19371.63 17475.29 24187.28 21654.80 23091.10 25162.38 26379.38 25689.61 230
baseline176.98 23076.75 21977.66 28988.13 18355.66 34085.12 22981.89 31773.04 15776.79 19888.90 17362.43 15787.78 30763.30 25571.18 35089.55 232
ETVMVS72.25 29471.05 29375.84 30787.77 20451.91 37079.39 32374.98 37269.26 22973.71 26682.95 32040.82 35986.14 32046.17 37584.43 18889.47 233
FMVSNet377.88 21276.85 21480.97 22786.84 22862.36 25186.52 19488.77 20271.13 18575.34 23586.66 23854.07 24091.10 25162.72 25879.57 25289.45 234
miper_enhance_ethall77.87 21376.86 21380.92 22881.65 32961.38 26582.68 28088.98 19565.52 28675.47 22782.30 33165.76 12492.00 21672.95 16976.39 29189.39 235
testing1175.14 26274.01 25878.53 27588.16 18156.38 32980.74 30580.42 33570.67 19572.69 28083.72 30743.61 34289.86 27162.29 26583.76 19789.36 236
cascas76.72 23574.64 24982.99 17485.78 24565.88 18082.33 28389.21 18560.85 33772.74 27781.02 34247.28 31093.75 14467.48 22185.02 17689.34 237
Fast-Effi-MVS+-dtu78.02 20876.49 22382.62 19083.16 30266.96 16486.94 17987.45 23472.45 16271.49 29584.17 29754.79 23391.58 23067.61 21980.31 24589.30 238
IB-MVS68.01 1575.85 25173.36 26783.31 15784.76 26466.03 17483.38 26985.06 27070.21 20869.40 31781.05 34145.76 32794.66 10765.10 24275.49 30589.25 239
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres100view90076.50 23875.55 23779.33 25989.52 12556.99 31885.83 21583.23 29773.94 13276.32 21187.12 22451.89 26591.95 21748.33 36283.75 19889.07 240
tfpn200view976.42 24275.37 24279.55 25889.13 14657.65 30985.17 22683.60 28973.41 14876.45 20786.39 24852.12 25791.95 21748.33 36283.75 19889.07 240
xiu_mvs_v1_base_debu80.80 13979.72 14584.03 13787.35 21470.19 8285.56 21888.77 20269.06 23781.83 11288.16 19650.91 27692.85 18778.29 11587.56 14289.06 242
xiu_mvs_v1_base80.80 13979.72 14584.03 13787.35 21470.19 8285.56 21888.77 20269.06 23781.83 11288.16 19650.91 27692.85 18778.29 11587.56 14289.06 242
xiu_mvs_v1_base_debi80.80 13979.72 14584.03 13787.35 21470.19 8285.56 21888.77 20269.06 23781.83 11288.16 19650.91 27692.85 18778.29 11587.56 14289.06 242
EPNet_dtu75.46 25674.86 24777.23 29882.57 31754.60 35186.89 18183.09 30171.64 17366.25 35185.86 25855.99 22488.04 30454.92 32786.55 15889.05 245
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pm-mvs177.25 22776.68 22178.93 26684.22 27558.62 29386.41 19688.36 21371.37 18173.31 27088.01 20261.22 18089.15 28664.24 24973.01 33789.03 246
PVSNet_Blended80.98 13280.34 13382.90 17888.85 15365.40 19084.43 24992.00 9467.62 25878.11 16985.05 27966.02 12094.27 11771.52 17989.50 11789.01 247
PAPM77.68 21976.40 22681.51 20987.29 22161.85 25983.78 26089.59 17164.74 29571.23 29688.70 17862.59 15393.66 14752.66 33887.03 15189.01 247
WTY-MVS75.65 25375.68 23375.57 31186.40 23656.82 32077.92 34782.40 31265.10 29076.18 21587.72 20463.13 14980.90 35960.31 28381.96 22589.00 249
无先验87.48 16288.98 19560.00 34394.12 12467.28 22388.97 250
GSMVS88.96 251
sam_mvs151.32 27288.96 251
SCA74.22 26872.33 27979.91 24784.05 28062.17 25579.96 31879.29 34766.30 27672.38 28480.13 35251.95 26388.60 29759.25 29277.67 27588.96 251
miper_lstm_enhance74.11 27073.11 27077.13 29980.11 35159.62 28772.23 37586.92 24666.76 26670.40 30282.92 32156.93 21982.92 34869.06 20772.63 33988.87 254
ACMM73.20 880.78 14279.84 14383.58 14989.31 13868.37 12589.99 7691.60 11170.28 20577.25 18689.66 15253.37 24793.53 15374.24 15682.85 21488.85 255
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs674.69 26473.39 26678.61 27081.38 33657.48 31286.64 19087.95 22164.99 29470.18 30586.61 23950.43 28389.52 27862.12 26870.18 35588.83 256
原ACMM184.35 11293.01 6068.79 11092.44 7663.96 30981.09 12591.57 10766.06 11995.45 6867.19 22594.82 4688.81 257
CNLPA78.08 20576.79 21681.97 20190.40 10271.07 6587.59 16084.55 27666.03 28072.38 28489.64 15357.56 21286.04 32159.61 28983.35 20888.79 258
UWE-MVS72.13 29571.49 28674.03 33086.66 23347.70 38981.40 29676.89 36563.60 31175.59 22484.22 29639.94 36285.62 32648.98 35986.13 16688.77 259
UBG73.08 28572.27 28075.51 31388.02 18951.29 37878.35 34277.38 36065.52 28673.87 26582.36 32945.55 32986.48 31755.02 32684.39 18988.75 260
K. test v371.19 30068.51 31279.21 26283.04 30557.78 30884.35 25276.91 36472.90 16062.99 37082.86 32339.27 36491.09 25361.65 27352.66 39688.75 260
旧先验191.96 7465.79 18386.37 25493.08 7469.31 8392.74 7388.74 262
PatchmatchNetpermissive73.12 28471.33 29078.49 27783.18 30060.85 27179.63 32078.57 35164.13 30271.73 29179.81 35751.20 27485.97 32257.40 31276.36 29688.66 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SixPastTwentyTwo73.37 27971.26 29279.70 25285.08 26057.89 30485.57 21783.56 29171.03 18965.66 35385.88 25742.10 35292.57 19359.11 29463.34 37788.65 264
PS-MVSNAJ81.69 12081.02 12283.70 14689.51 12668.21 13084.28 25390.09 15770.79 19281.26 12485.62 26563.15 14694.29 11575.62 14288.87 12688.59 265
xiu_mvs_v2_base81.69 12081.05 12183.60 14889.15 14568.03 13584.46 24790.02 15870.67 19581.30 12386.53 24563.17 14594.19 12275.60 14388.54 13388.57 266
MonoMVSNet76.49 24175.80 23078.58 27281.55 33258.45 29486.36 19986.22 25674.87 11374.73 25483.73 30651.79 26888.73 29470.78 18672.15 34388.55 267
CostFormer75.24 26173.90 26179.27 26082.65 31658.27 29780.80 30182.73 31061.57 33275.33 23983.13 31755.52 22591.07 25464.98 24378.34 26888.45 268
lessismore_v078.97 26581.01 34257.15 31665.99 39961.16 37682.82 32439.12 36591.34 24459.67 28846.92 40388.43 269
OpenMVScopyleft72.83 1079.77 16278.33 17784.09 12885.17 25569.91 8790.57 6190.97 12966.70 26772.17 28791.91 9554.70 23493.96 12761.81 27290.95 9788.41 270
reproduce_monomvs75.40 25974.38 25578.46 27883.92 28357.80 30783.78 26086.94 24473.47 14672.25 28684.47 28738.74 36789.27 28375.32 14770.53 35388.31 271
OurMVSNet-221017-074.26 26772.42 27879.80 25083.76 28759.59 28885.92 21186.64 24966.39 27566.96 33987.58 20839.46 36391.60 22965.76 23769.27 35888.22 272
LS3D76.95 23174.82 24883.37 15690.45 10067.36 15289.15 10786.94 24461.87 33169.52 31690.61 13551.71 26994.53 10946.38 37486.71 15688.21 273
WBMVS73.43 27872.81 27375.28 31787.91 19450.99 38078.59 33881.31 32565.51 28874.47 25984.83 28246.39 31686.68 31458.41 30277.86 27188.17 274
XVG-ACMP-BASELINE76.11 24774.27 25781.62 20683.20 29964.67 20683.60 26689.75 16669.75 22071.85 29087.09 22532.78 38492.11 21269.99 19780.43 24488.09 275
tpm273.26 28271.46 28778.63 26983.34 29556.71 32380.65 30780.40 33656.63 37073.55 26882.02 33651.80 26791.24 24656.35 32278.42 26687.95 276
MDTV_nov1_ep13_2view37.79 41275.16 36355.10 37566.53 34649.34 29653.98 33187.94 277
Patchmatch-test64.82 34963.24 35069.57 36079.42 36349.82 38663.49 40669.05 39251.98 38559.95 38180.13 35250.91 27670.98 40040.66 39173.57 33187.90 278
PLCcopyleft70.83 1178.05 20776.37 22783.08 16991.88 7767.80 13988.19 14189.46 17564.33 30169.87 31388.38 18953.66 24393.58 14858.86 29782.73 21687.86 279
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpm72.37 29271.71 28474.35 32782.19 32352.00 36879.22 32677.29 36164.56 29772.95 27683.68 30951.35 27183.26 34758.33 30475.80 30087.81 280
Patchmatch-RL test70.24 31267.78 32577.61 29177.43 37159.57 28971.16 37970.33 38662.94 31868.65 32472.77 39150.62 28085.49 32869.58 20266.58 36887.77 281
F-COLMAP76.38 24474.33 25682.50 19289.28 14066.95 16588.41 13189.03 19264.05 30666.83 34188.61 18246.78 31492.89 18657.48 31078.55 26287.67 282
Baseline_NR-MVSNet78.15 20478.33 17777.61 29185.79 24456.21 33386.78 18685.76 26373.60 14177.93 17487.57 20965.02 12988.99 28867.14 22675.33 31387.63 283
CL-MVSNet_self_test72.37 29271.46 28775.09 31979.49 36253.53 35980.76 30485.01 27269.12 23570.51 30082.05 33557.92 20884.13 33952.27 34066.00 37187.60 284
ACMH+68.96 1476.01 24974.01 25882.03 19988.60 16665.31 19488.86 11587.55 23070.25 20767.75 33087.47 21441.27 35593.19 17358.37 30375.94 29987.60 284
131476.53 23775.30 24480.21 24283.93 28262.32 25384.66 23988.81 20060.23 34170.16 30784.07 29955.30 22790.73 26067.37 22283.21 21087.59 286
API-MVS81.99 11481.23 11884.26 12090.94 9070.18 8591.10 5589.32 17971.51 17978.66 15588.28 19265.26 12695.10 8964.74 24591.23 9487.51 287
AdaColmapbinary80.58 14879.42 15184.06 13293.09 5768.91 10889.36 9988.97 19769.27 22875.70 22389.69 15157.20 21795.77 5963.06 25688.41 13687.50 288
PVSNet_BlendedMVS80.60 14580.02 13882.36 19588.85 15365.40 19086.16 20592.00 9469.34 22778.11 16986.09 25566.02 12094.27 11771.52 17982.06 22487.39 289
sss73.60 27673.64 26573.51 33482.80 31155.01 34876.12 35481.69 32062.47 32574.68 25585.85 25957.32 21578.11 37060.86 28080.93 23587.39 289
IterMVS-SCA-FT75.43 25773.87 26280.11 24482.69 31464.85 20381.57 29283.47 29369.16 23470.49 30184.15 29851.95 26388.15 30269.23 20472.14 34487.34 291
PVSNet64.34 1872.08 29670.87 29675.69 30986.21 23856.44 32774.37 36980.73 32962.06 33070.17 30682.23 33342.86 34683.31 34654.77 32884.45 18787.32 292
新几何183.42 15393.13 5470.71 7485.48 26657.43 36681.80 11591.98 9463.28 14192.27 20764.60 24692.99 7087.27 293
TR-MVS77.44 22276.18 22881.20 21988.24 17963.24 23784.61 24286.40 25367.55 25977.81 17586.48 24654.10 23993.15 17557.75 30982.72 21787.20 294
TransMVSNet (Re)75.39 26074.56 25177.86 28585.50 25057.10 31786.78 18686.09 26072.17 16871.53 29487.34 21563.01 15089.31 28256.84 31861.83 37987.17 295
ACMH67.68 1675.89 25073.93 26081.77 20488.71 16366.61 16788.62 12689.01 19469.81 21666.78 34286.70 23641.95 35491.51 23755.64 32478.14 26987.17 295
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
KD-MVS_self_test68.81 32367.59 32972.46 34474.29 38445.45 39577.93 34687.00 24263.12 31363.99 36578.99 36542.32 34984.77 33656.55 32164.09 37687.16 297
EPMVS69.02 32268.16 31671.59 34879.61 36049.80 38777.40 34966.93 39762.82 32170.01 30879.05 36145.79 32677.86 37256.58 32075.26 31587.13 298
CR-MVSNet73.37 27971.27 29179.67 25481.32 33965.19 19575.92 35680.30 33759.92 34472.73 27881.19 33952.50 25186.69 31359.84 28677.71 27387.11 299
RPMNet73.51 27770.49 29982.58 19181.32 33965.19 19575.92 35692.27 8357.60 36472.73 27876.45 37952.30 25495.43 7048.14 36677.71 27387.11 299
test_vis1_n_192075.52 25575.78 23174.75 32479.84 35557.44 31383.26 27185.52 26562.83 32079.34 14586.17 25345.10 33379.71 36378.75 10881.21 23387.10 301
XXY-MVS75.41 25875.56 23674.96 32083.59 29057.82 30680.59 30883.87 28766.54 27474.93 25188.31 19163.24 14380.09 36262.16 26776.85 28486.97 302
tpmrst72.39 29072.13 28173.18 33880.54 34649.91 38579.91 31979.08 34963.11 31471.69 29279.95 35455.32 22682.77 34965.66 23873.89 32886.87 303
thres20075.55 25474.47 25378.82 26787.78 20357.85 30583.07 27783.51 29272.44 16475.84 22184.42 28852.08 26091.75 22547.41 36983.64 20386.86 304
ITE_SJBPF78.22 28081.77 32860.57 27583.30 29569.25 23067.54 33287.20 22136.33 37787.28 31154.34 33074.62 32286.80 305
test22291.50 8068.26 12884.16 25583.20 30054.63 37779.74 13891.63 10458.97 20191.42 9186.77 306
MIMVSNet70.69 30769.30 30674.88 32184.52 27056.35 33175.87 35879.42 34564.59 29667.76 32982.41 32841.10 35681.54 35546.64 37381.34 23086.75 307
BH-untuned79.47 16978.60 16982.05 19889.19 14465.91 17986.07 20788.52 21172.18 16775.42 23187.69 20661.15 18193.54 15260.38 28286.83 15486.70 308
LTVRE_ROB69.57 1376.25 24574.54 25281.41 21288.60 16664.38 21479.24 32589.12 19170.76 19469.79 31587.86 20349.09 30093.20 17156.21 32380.16 24686.65 309
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
testdata79.97 24690.90 9164.21 21684.71 27359.27 35085.40 5892.91 7662.02 16589.08 28768.95 20891.37 9286.63 310
MIMVSNet168.58 32666.78 33673.98 33180.07 35251.82 37280.77 30384.37 27764.40 29959.75 38282.16 33436.47 37683.63 34342.73 38670.33 35486.48 311
tfpnnormal74.39 26573.16 26978.08 28386.10 24258.05 29984.65 24187.53 23170.32 20471.22 29785.63 26454.97 22889.86 27143.03 38575.02 31886.32 312
D2MVS74.82 26373.21 26879.64 25579.81 35662.56 25080.34 31387.35 23564.37 30068.86 32282.66 32646.37 31890.10 26767.91 21781.24 23286.25 313
tpm cat170.57 30868.31 31477.35 29682.41 32157.95 30378.08 34480.22 33952.04 38368.54 32677.66 37452.00 26287.84 30651.77 34172.07 34586.25 313
CVMVSNet72.99 28772.58 27674.25 32884.28 27350.85 38186.41 19683.45 29444.56 39673.23 27287.54 21249.38 29585.70 32465.90 23578.44 26586.19 315
AllTest70.96 30368.09 31879.58 25685.15 25763.62 22584.58 24379.83 34162.31 32660.32 37986.73 23032.02 38588.96 29150.28 35171.57 34886.15 316
TestCases79.58 25685.15 25763.62 22579.83 34162.31 32660.32 37986.73 23032.02 38588.96 29150.28 35171.57 34886.15 316
test-LLR72.94 28872.43 27774.48 32581.35 33758.04 30078.38 33977.46 35766.66 26869.95 31179.00 36348.06 30679.24 36466.13 23184.83 17886.15 316
test-mter71.41 29970.39 30274.48 32581.35 33758.04 30078.38 33977.46 35760.32 34069.95 31179.00 36336.08 37879.24 36466.13 23184.83 17886.15 316
IterMVS74.29 26672.94 27278.35 27981.53 33363.49 23181.58 29182.49 31168.06 25569.99 31083.69 30851.66 27085.54 32765.85 23671.64 34786.01 320
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS76.78 23474.57 25083.42 15393.29 4869.46 9788.55 12883.70 28863.98 30870.20 30488.89 17454.01 24194.80 10146.66 37181.88 22786.01 320
ppachtmachnet_test70.04 31467.34 33278.14 28279.80 35761.13 26679.19 32780.59 33159.16 35165.27 35679.29 36046.75 31587.29 31049.33 35766.72 36686.00 322
mmtdpeth74.16 26973.01 27177.60 29383.72 28861.13 26685.10 23085.10 26972.06 17077.21 19280.33 35043.84 34085.75 32377.14 12652.61 39785.91 323
test_fmvs1_n70.86 30570.24 30372.73 34172.51 39855.28 34581.27 29779.71 34351.49 38778.73 15284.87 28127.54 39477.02 37576.06 13679.97 25085.88 324
Patchmtry70.74 30669.16 30975.49 31480.72 34354.07 35674.94 36780.30 33758.34 35770.01 30881.19 33952.50 25186.54 31553.37 33571.09 35185.87 325
WB-MVSnew71.96 29771.65 28572.89 33984.67 26951.88 37182.29 28477.57 35662.31 32673.67 26783.00 31953.49 24681.10 35845.75 37882.13 22385.70 326
test_fmvs268.35 33067.48 33070.98 35669.50 40151.95 36980.05 31676.38 36749.33 39074.65 25684.38 29023.30 40375.40 39174.51 15275.17 31785.60 327
ambc75.24 31873.16 39350.51 38363.05 40787.47 23364.28 36277.81 37317.80 40989.73 27557.88 30860.64 38385.49 328
mvs5depth69.45 31967.45 33175.46 31573.93 38555.83 33779.19 32783.23 29766.89 26371.63 29383.32 31333.69 38385.09 33259.81 28755.34 39385.46 329
UnsupCasMVSNet_eth67.33 33565.99 33971.37 35073.48 39051.47 37675.16 36385.19 26865.20 28960.78 37780.93 34642.35 34877.20 37457.12 31453.69 39585.44 330
PatchT68.46 32967.85 32170.29 35880.70 34443.93 40272.47 37474.88 37360.15 34270.55 29976.57 37849.94 28881.59 35450.58 34774.83 32085.34 331
Anonymous2024052168.80 32467.22 33373.55 33374.33 38354.11 35583.18 27285.61 26458.15 35961.68 37480.94 34430.71 39081.27 35757.00 31673.34 33685.28 332
test_cas_vis1_n_192073.76 27573.74 26473.81 33275.90 37659.77 28580.51 30982.40 31258.30 35881.62 11885.69 26144.35 33776.41 38176.29 13378.61 26185.23 333
ADS-MVSNet266.20 34663.33 34974.82 32279.92 35358.75 29267.55 39475.19 37153.37 38065.25 35775.86 38242.32 34980.53 36141.57 38968.91 36085.18 334
ADS-MVSNet64.36 35062.88 35368.78 36679.92 35347.17 39167.55 39471.18 38553.37 38065.25 35775.86 38242.32 34973.99 39641.57 38968.91 36085.18 334
FMVSNet569.50 31867.96 31974.15 32982.97 30955.35 34480.01 31782.12 31562.56 32463.02 36881.53 33836.92 37581.92 35348.42 36174.06 32685.17 336
pmmvs571.55 29870.20 30475.61 31077.83 36956.39 32881.74 28980.89 32657.76 36267.46 33484.49 28649.26 29885.32 33157.08 31575.29 31485.11 337
testing368.56 32767.67 32771.22 35487.33 21942.87 40483.06 27871.54 38470.36 20269.08 32184.38 29030.33 39185.69 32537.50 39775.45 30985.09 338
CMPMVSbinary51.72 2170.19 31368.16 31676.28 30473.15 39457.55 31179.47 32283.92 28548.02 39256.48 39284.81 28343.13 34486.42 31862.67 26181.81 22884.89 339
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testgi66.67 34066.53 33767.08 37475.62 37941.69 40975.93 35576.50 36666.11 27765.20 35986.59 24035.72 37974.71 39343.71 38373.38 33584.84 340
MSDG73.36 28170.99 29480.49 23684.51 27165.80 18280.71 30686.13 25965.70 28365.46 35483.74 30544.60 33490.91 25651.13 34676.89 28284.74 341
pmmvs474.03 27371.91 28280.39 23781.96 32568.32 12681.45 29482.14 31459.32 34969.87 31385.13 27652.40 25388.13 30360.21 28474.74 32184.73 342
gg-mvs-nofinetune69.95 31567.96 31975.94 30683.07 30354.51 35377.23 35170.29 38763.11 31470.32 30362.33 40043.62 34188.69 29553.88 33287.76 14184.62 343
test_fmvs170.93 30470.52 29872.16 34573.71 38755.05 34780.82 30078.77 35051.21 38878.58 15784.41 28931.20 38976.94 37675.88 13980.12 24984.47 344
BH-w/o78.21 20177.33 20580.84 22988.81 15765.13 19784.87 23587.85 22569.75 22074.52 25884.74 28561.34 17693.11 17858.24 30585.84 17184.27 345
MVS78.19 20376.99 21181.78 20385.66 24666.99 16184.66 23990.47 14355.08 37672.02 28985.27 27163.83 13894.11 12566.10 23389.80 11584.24 346
COLMAP_ROBcopyleft66.92 1773.01 28670.41 30180.81 23087.13 22465.63 18688.30 13884.19 28362.96 31763.80 36787.69 20638.04 37292.56 19446.66 37174.91 31984.24 346
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
new-patchmatchnet61.73 35661.73 35761.70 38072.74 39624.50 42369.16 38978.03 35361.40 33356.72 39175.53 38538.42 36976.48 38045.95 37757.67 38684.13 348
TESTMET0.1,169.89 31669.00 31072.55 34279.27 36556.85 31978.38 33974.71 37657.64 36368.09 32877.19 37637.75 37376.70 37763.92 25084.09 19384.10 349
test_fmvs363.36 35361.82 35667.98 37162.51 41046.96 39377.37 35074.03 37845.24 39567.50 33378.79 36612.16 41572.98 39972.77 17266.02 37083.99 350
our_test_369.14 32167.00 33475.57 31179.80 35758.80 29177.96 34577.81 35459.55 34762.90 37178.25 37047.43 30883.97 34051.71 34267.58 36583.93 351
test_vis1_n69.85 31769.21 30871.77 34772.66 39755.27 34681.48 29376.21 36852.03 38475.30 24083.20 31628.97 39276.22 38374.60 15178.41 26783.81 352
mamv476.81 23378.23 18172.54 34386.12 24065.75 18578.76 33482.07 31664.12 30372.97 27591.02 12867.97 9768.08 40783.04 7178.02 27083.80 353
tpmvs71.09 30269.29 30776.49 30382.04 32456.04 33478.92 33281.37 32464.05 30667.18 33878.28 36949.74 29189.77 27349.67 35672.37 34083.67 354
test20.0367.45 33466.95 33568.94 36375.48 38044.84 40077.50 34877.67 35566.66 26863.01 36983.80 30347.02 31278.40 36842.53 38868.86 36283.58 355
test0.0.03 168.00 33267.69 32668.90 36477.55 37047.43 39075.70 35972.95 38366.66 26866.56 34582.29 33248.06 30675.87 38644.97 38274.51 32383.41 356
Anonymous2023120668.60 32567.80 32471.02 35580.23 35050.75 38278.30 34380.47 33356.79 36966.11 35282.63 32746.35 31978.95 36643.62 38475.70 30183.36 357
EU-MVSNet68.53 32867.61 32871.31 35378.51 36847.01 39284.47 24584.27 28142.27 39966.44 35084.79 28440.44 36083.76 34158.76 29968.54 36383.17 358
dp66.80 33865.43 34070.90 35779.74 35948.82 38875.12 36574.77 37459.61 34664.08 36477.23 37542.89 34580.72 36048.86 36066.58 36883.16 359
pmmvs-eth3d70.50 31067.83 32378.52 27677.37 37266.18 17381.82 28781.51 32158.90 35463.90 36680.42 34942.69 34786.28 31958.56 30065.30 37383.11 360
YYNet165.03 34762.91 35271.38 34975.85 37756.60 32569.12 39074.66 37757.28 36754.12 39577.87 37245.85 32574.48 39449.95 35461.52 38183.05 361
MDA-MVSNet-bldmvs66.68 33963.66 34875.75 30879.28 36460.56 27673.92 37178.35 35264.43 29850.13 40179.87 35644.02 33983.67 34246.10 37656.86 38783.03 362
MDA-MVSNet_test_wron65.03 34762.92 35171.37 35075.93 37556.73 32169.09 39174.73 37557.28 36754.03 39677.89 37145.88 32474.39 39549.89 35561.55 38082.99 363
USDC70.33 31168.37 31376.21 30580.60 34556.23 33279.19 32786.49 25160.89 33661.29 37585.47 26831.78 38789.47 28053.37 33576.21 29782.94 364
Syy-MVS68.05 33167.85 32168.67 36784.68 26640.97 41078.62 33673.08 38166.65 27166.74 34379.46 35852.11 25982.30 35132.89 40276.38 29482.75 365
myMVS_eth3d67.02 33766.29 33869.21 36284.68 26642.58 40578.62 33673.08 38166.65 27166.74 34379.46 35831.53 38882.30 35139.43 39476.38 29482.75 365
ttmdpeth59.91 35957.10 36368.34 36967.13 40546.65 39474.64 36867.41 39648.30 39162.52 37385.04 28020.40 40575.93 38542.55 38745.90 40682.44 367
OpenMVS_ROBcopyleft64.09 1970.56 30968.19 31577.65 29080.26 34859.41 29085.01 23282.96 30658.76 35565.43 35582.33 33037.63 37491.23 24745.34 38176.03 29882.32 368
JIA-IIPM66.32 34362.82 35476.82 30177.09 37361.72 26265.34 40275.38 37058.04 36164.51 36162.32 40142.05 35386.51 31651.45 34469.22 35982.21 369
dmvs_re71.14 30170.58 29772.80 34081.96 32559.68 28675.60 36079.34 34668.55 24769.27 32080.72 34749.42 29476.54 37852.56 33977.79 27282.19 370
EG-PatchMatch MVS74.04 27171.82 28380.71 23284.92 26267.42 14985.86 21388.08 21766.04 27964.22 36383.85 30135.10 38092.56 19457.44 31180.83 23782.16 371
MVP-Stereo76.12 24674.46 25481.13 22285.37 25369.79 8984.42 25087.95 22165.03 29267.46 33485.33 27053.28 24891.73 22758.01 30783.27 20981.85 372
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TDRefinement67.49 33364.34 34376.92 30073.47 39161.07 26884.86 23682.98 30559.77 34558.30 38685.13 27626.06 39587.89 30547.92 36860.59 38481.81 373
GG-mvs-BLEND75.38 31681.59 33155.80 33879.32 32469.63 38967.19 33773.67 38943.24 34388.90 29350.41 34884.50 18381.45 374
KD-MVS_2432*160066.22 34463.89 34673.21 33575.47 38153.42 36170.76 38284.35 27864.10 30466.52 34778.52 36734.55 38184.98 33350.40 34950.33 40081.23 375
miper_refine_blended66.22 34463.89 34673.21 33575.47 38153.42 36170.76 38284.35 27864.10 30466.52 34778.52 36734.55 38184.98 33350.40 34950.33 40081.23 375
test_040272.79 28970.44 30079.84 24988.13 18365.99 17785.93 21084.29 28065.57 28567.40 33685.49 26746.92 31392.61 19235.88 39974.38 32480.94 377
MVStest156.63 36352.76 36968.25 37061.67 41153.25 36571.67 37768.90 39438.59 40450.59 40083.05 31825.08 39770.66 40136.76 39838.56 40780.83 378
UnsupCasMVSNet_bld63.70 35261.53 35870.21 35973.69 38851.39 37772.82 37381.89 31755.63 37457.81 38871.80 39338.67 36878.61 36749.26 35852.21 39880.63 379
LCM-MVSNet54.25 36549.68 37567.97 37253.73 41945.28 39866.85 39780.78 32835.96 40839.45 40962.23 4028.70 41978.06 37148.24 36551.20 39980.57 380
N_pmnet52.79 37053.26 36851.40 39478.99 3667.68 42869.52 3863.89 42751.63 38657.01 39074.98 38640.83 35865.96 40937.78 39664.67 37480.56 381
TinyColmap67.30 33664.81 34174.76 32381.92 32756.68 32480.29 31481.49 32260.33 33956.27 39383.22 31424.77 39987.66 30945.52 37969.47 35779.95 382
PM-MVS66.41 34264.14 34473.20 33773.92 38656.45 32678.97 33164.96 40363.88 31064.72 36080.24 35119.84 40783.44 34566.24 23064.52 37579.71 383
ANet_high50.57 37446.10 37863.99 37748.67 42239.13 41170.99 38180.85 32761.39 33431.18 41157.70 40717.02 41073.65 39831.22 40415.89 41979.18 384
LF4IMVS64.02 35162.19 35569.50 36170.90 39953.29 36476.13 35377.18 36252.65 38258.59 38480.98 34323.55 40276.52 37953.06 33766.66 36778.68 385
PatchMatch-RL72.38 29170.90 29576.80 30288.60 16667.38 15179.53 32176.17 36962.75 32269.36 31882.00 33745.51 33084.89 33553.62 33380.58 24178.12 386
MS-PatchMatch73.83 27472.67 27477.30 29783.87 28466.02 17581.82 28784.66 27461.37 33568.61 32582.82 32447.29 30988.21 30159.27 29184.32 19077.68 387
DSMNet-mixed57.77 36256.90 36460.38 38267.70 40335.61 41369.18 38853.97 41432.30 41257.49 38979.88 35540.39 36168.57 40638.78 39572.37 34076.97 388
CHOSEN 280x42066.51 34164.71 34271.90 34681.45 33463.52 23057.98 40968.95 39353.57 37962.59 37276.70 37746.22 32175.29 39255.25 32579.68 25176.88 389
mvsany_test353.99 36651.45 37161.61 38155.51 41544.74 40163.52 40545.41 42043.69 39858.11 38776.45 37917.99 40863.76 41154.77 32847.59 40276.34 390
dmvs_testset62.63 35464.11 34558.19 38478.55 36724.76 42275.28 36165.94 40067.91 25660.34 37876.01 38153.56 24473.94 39731.79 40367.65 36475.88 391
mvsany_test162.30 35561.26 35965.41 37669.52 40054.86 34966.86 39649.78 41646.65 39368.50 32783.21 31549.15 29966.28 40856.93 31760.77 38275.11 392
PMMVS69.34 32068.67 31171.35 35275.67 37862.03 25675.17 36273.46 37950.00 38968.68 32379.05 36152.07 26178.13 36961.16 27882.77 21573.90 393
test_vis1_rt60.28 35858.42 36165.84 37567.25 40455.60 34170.44 38460.94 40844.33 39759.00 38366.64 39824.91 39868.67 40562.80 25769.48 35673.25 394
pmmvs357.79 36154.26 36668.37 36864.02 40956.72 32275.12 36565.17 40140.20 40152.93 39769.86 39720.36 40675.48 38945.45 38055.25 39472.90 395
PVSNet_057.27 2061.67 35759.27 36068.85 36579.61 36057.44 31368.01 39273.44 38055.93 37358.54 38570.41 39644.58 33577.55 37347.01 37035.91 40871.55 396
WB-MVS54.94 36454.72 36555.60 39073.50 38920.90 42474.27 37061.19 40759.16 35150.61 39974.15 38747.19 31175.78 38717.31 41535.07 40970.12 397
SSC-MVS53.88 36753.59 36754.75 39272.87 39519.59 42573.84 37260.53 40957.58 36549.18 40373.45 39046.34 32075.47 39016.20 41832.28 41169.20 398
test_f52.09 37150.82 37255.90 38853.82 41842.31 40859.42 40858.31 41236.45 40756.12 39470.96 39512.18 41457.79 41453.51 33456.57 38967.60 399
PMMVS240.82 38138.86 38546.69 39553.84 41716.45 42648.61 41249.92 41537.49 40531.67 41060.97 4038.14 42156.42 41528.42 40630.72 41267.19 400
new_pmnet50.91 37350.29 37352.78 39368.58 40234.94 41563.71 40456.63 41339.73 40244.95 40465.47 39921.93 40458.48 41334.98 40056.62 38864.92 401
MVS-HIRNet59.14 36057.67 36263.57 37881.65 32943.50 40371.73 37665.06 40239.59 40351.43 39857.73 40638.34 37082.58 35039.53 39273.95 32764.62 402
APD_test153.31 36949.93 37463.42 37965.68 40650.13 38471.59 37866.90 39834.43 40940.58 40871.56 3948.65 42076.27 38234.64 40155.36 39263.86 403
test_method31.52 38429.28 38838.23 39827.03 4266.50 42920.94 41762.21 4064.05 42022.35 41852.50 41113.33 41247.58 41827.04 40834.04 41060.62 404
EGC-MVSNET52.07 37247.05 37667.14 37383.51 29260.71 27380.50 31067.75 3950.07 4220.43 42375.85 38424.26 40081.54 35528.82 40562.25 37859.16 405
test_vis3_rt49.26 37547.02 37756.00 38754.30 41645.27 39966.76 39848.08 41736.83 40644.38 40553.20 4107.17 42264.07 41056.77 31955.66 39058.65 406
FPMVS53.68 36851.64 37059.81 38365.08 40751.03 37969.48 38769.58 39041.46 40040.67 40772.32 39216.46 41170.00 40424.24 41165.42 37258.40 407
testf145.72 37641.96 38057.00 38556.90 41345.32 39666.14 39959.26 41026.19 41330.89 41260.96 4044.14 42370.64 40226.39 40946.73 40455.04 408
APD_test245.72 37641.96 38057.00 38556.90 41345.32 39666.14 39959.26 41026.19 41330.89 41260.96 4044.14 42370.64 40226.39 40946.73 40455.04 408
PMVScopyleft37.38 2244.16 38040.28 38455.82 38940.82 42442.54 40765.12 40363.99 40434.43 40924.48 41557.12 4083.92 42576.17 38417.10 41655.52 39148.75 410
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive26.22 2330.37 38625.89 39043.81 39744.55 42335.46 41428.87 41639.07 42118.20 41718.58 41940.18 4142.68 42647.37 41917.07 41723.78 41648.60 411
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dongtai45.42 37845.38 37945.55 39673.36 39226.85 42067.72 39334.19 42254.15 37849.65 40256.41 40925.43 39662.94 41219.45 41328.09 41346.86 412
kuosan39.70 38240.40 38337.58 39964.52 40826.98 41865.62 40133.02 42346.12 39442.79 40648.99 41224.10 40146.56 42012.16 42126.30 41439.20 413
Gipumacopyleft45.18 37941.86 38255.16 39177.03 37451.52 37532.50 41580.52 33232.46 41127.12 41435.02 4159.52 41875.50 38822.31 41260.21 38538.45 414
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft27.40 40240.17 42526.90 41924.59 42617.44 41823.95 41648.61 4139.77 41726.48 42118.06 41424.47 41528.83 415
E-PMN31.77 38330.64 38635.15 40052.87 42027.67 41757.09 41047.86 41824.64 41516.40 42033.05 41611.23 41654.90 41614.46 41918.15 41722.87 416
EMVS30.81 38529.65 38734.27 40150.96 42125.95 42156.58 41146.80 41924.01 41615.53 42130.68 41712.47 41354.43 41712.81 42017.05 41822.43 417
tmp_tt18.61 38821.40 39110.23 4044.82 42710.11 42734.70 41430.74 4251.48 42123.91 41726.07 41828.42 39313.41 42327.12 40715.35 4207.17 418
wuyk23d16.82 38915.94 39219.46 40358.74 41231.45 41639.22 4133.74 4286.84 4196.04 4222.70 4221.27 42724.29 42210.54 42214.40 4212.63 419
test1236.12 3918.11 3940.14 4050.06 4290.09 43071.05 3800.03 4300.04 4240.25 4251.30 4240.05 4280.03 4250.21 4240.01 4230.29 420
testmvs6.04 3928.02 3950.10 4060.08 4280.03 43169.74 3850.04 4290.05 4230.31 4241.68 4230.02 4290.04 4240.24 4230.02 4220.25 421
mmdepth0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
monomultidepth0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
test_blank0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
uanet_test0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
DCPMVS0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
cdsmvs_eth3d_5k19.96 38726.61 3890.00 4070.00 4300.00 4320.00 41889.26 1830.00 4250.00 42688.61 18261.62 1690.00 4260.00 4250.00 4240.00 422
pcd_1.5k_mvsjas5.26 3937.02 3960.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 42563.15 1460.00 4260.00 4250.00 4240.00 422
sosnet-low-res0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
sosnet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
uncertanet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
Regformer0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
ab-mvs-re7.23 3909.64 3930.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 42686.72 2320.00 4300.00 4260.00 4250.00 4240.00 422
uanet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
WAC-MVS42.58 40539.46 393
FOURS195.00 1072.39 3995.06 193.84 1574.49 12191.30 15
test_one_060195.07 771.46 5794.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 430
eth-test0.00 430
ZD-MVS94.38 2572.22 4492.67 6670.98 19087.75 3594.07 4474.01 3296.70 2784.66 5294.84 44
test_241102_ONE95.30 270.98 6694.06 1077.17 5693.10 195.39 1482.99 197.27 12
9.1488.26 1592.84 6391.52 4894.75 173.93 13388.57 2594.67 2175.57 2295.79 5886.77 3595.76 23
save fliter93.80 4072.35 4290.47 6691.17 12474.31 124
test072695.27 571.25 5993.60 694.11 677.33 5092.81 395.79 380.98 9
test_part295.06 872.65 3291.80 13
sam_mvs50.01 286
MTGPAbinary92.02 92
test_post178.90 3335.43 42148.81 30585.44 33059.25 292
test_post5.46 42050.36 28484.24 338
patchmatchnet-post74.00 38851.12 27588.60 297
MTMP92.18 3432.83 424
gm-plane-assit81.40 33553.83 35862.72 32380.94 34492.39 20163.40 254
TEST993.26 5272.96 2588.75 11991.89 10068.44 25085.00 6393.10 7074.36 2895.41 73
test_893.13 5472.57 3588.68 12491.84 10468.69 24584.87 6793.10 7074.43 2695.16 82
agg_prior92.85 6271.94 5091.78 10784.41 7894.93 93
test_prior472.60 3489.01 110
test_prior288.85 11675.41 9884.91 6593.54 5974.28 2983.31 6795.86 20
旧先验286.56 19358.10 36087.04 4588.98 28974.07 157
新几何286.29 202
原ACMM286.86 182
testdata291.01 25562.37 264
segment_acmp73.08 38
testdata184.14 25675.71 92
plane_prior790.08 10868.51 123
plane_prior689.84 11768.70 11860.42 194
plane_prior491.00 129
plane_prior368.60 12178.44 3178.92 150
plane_prior291.25 5279.12 23
plane_prior189.90 116
plane_prior68.71 11690.38 7077.62 4086.16 165
n20.00 431
nn0.00 431
door-mid69.98 388
test1192.23 86
door69.44 391
HQP5-MVS66.98 162
HQP-NCC89.33 13589.17 10376.41 7777.23 188
ACMP_Plane89.33 13589.17 10376.41 7777.23 188
BP-MVS77.47 121
HQP3-MVS92.19 8985.99 169
HQP2-MVS60.17 197
NP-MVS89.62 12168.32 12690.24 141
MDTV_nov1_ep1369.97 30583.18 30053.48 36077.10 35280.18 34060.45 33869.33 31980.44 34848.89 30486.90 31251.60 34378.51 264
ACMMP++_ref81.95 226
ACMMP++81.25 231
Test By Simon64.33 133