This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5480.26 1187.78 2994.27 3275.89 1996.81 2387.45 3296.44 993.05 96
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
No_MVS89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18792.02 8579.45 1985.88 4694.80 1768.07 8996.21 4286.69 3695.34 3393.23 87
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6477.57 4183.84 8294.40 3072.24 4396.28 4085.65 3895.30 3593.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5876.62 7083.68 8494.46 2567.93 9095.95 5284.20 5594.39 5393.23 87
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 37
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10792.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MM89.16 689.23 788.97 490.79 9073.65 1092.66 2391.17 11686.57 187.39 3594.97 1671.70 5097.68 192.19 195.63 2895.57 1
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5581.50 585.79 4893.47 6073.02 3997.00 1884.90 4294.94 3994.10 45
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6694.52 2168.81 8496.65 3084.53 4994.90 4094.00 50
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7094.52 2169.09 7896.70 2784.37 5194.83 4494.03 49
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8076.87 6282.81 9794.25 3466.44 10596.24 4182.88 6794.28 5693.38 81
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 5994.44 2870.78 6096.61 3284.53 4994.89 4193.66 65
3Dnovator+77.84 485.48 5484.47 6988.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19593.37 6260.40 18896.75 2677.20 11793.73 6295.29 5
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5894.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7093.04 3875.53 9183.86 8194.42 2967.87 9296.64 3182.70 7294.57 4993.66 65
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5394.32 3171.76 4896.93 1985.53 3995.79 2294.32 38
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8594.17 3667.45 9596.60 3383.06 6394.50 5094.07 47
X-MVStestdata80.37 14577.83 18288.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8512.47 40367.45 9596.60 3383.06 6394.50 5094.07 47
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5693.59 2376.27 7988.14 2495.09 1571.06 5796.67 2987.67 2996.37 1494.09 46
DPM-MVS84.93 6384.29 7086.84 4790.20 10073.04 2387.12 16993.04 3869.80 20882.85 9591.22 11073.06 3896.02 4776.72 12694.63 4791.46 150
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6393.99 4870.67 6296.82 2284.18 5695.01 3793.90 55
TEST993.26 5072.96 2588.75 11591.89 9368.44 24285.00 5793.10 6774.36 2895.41 67
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11591.89 9368.69 23785.00 5793.10 6774.43 2695.41 6784.97 4195.71 2593.02 98
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator76.31 583.38 8582.31 9586.59 5287.94 18472.94 2890.64 5992.14 8477.21 5275.47 22192.83 7658.56 19594.72 9973.24 15992.71 6992.13 130
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13687.63 3094.27 5793.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_111021_HR85.14 6084.75 6486.32 5591.65 7672.70 3085.98 20290.33 14176.11 8182.08 10291.61 10071.36 5694.17 12081.02 8292.58 7092.08 131
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8592.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 52
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part295.06 872.65 3291.80 13
ACMMPcopyleft85.89 4885.39 5487.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12193.82 5364.33 12596.29 3982.67 7390.69 9493.23 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_prior472.60 3489.01 105
test_893.13 5272.57 3588.68 12091.84 9768.69 23784.87 6193.10 6774.43 2695.16 76
TSAR-MVS + GP.85.71 5185.33 5686.84 4791.34 7872.50 3689.07 10487.28 22876.41 7285.80 4790.22 13474.15 3195.37 7281.82 7791.88 7892.65 109
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5793.56 2473.95 12383.16 9191.07 11675.94 1895.19 7579.94 9494.38 5493.55 76
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7793.82 1673.07 14984.86 6292.89 7476.22 1796.33 3884.89 4495.13 3694.40 34
FOURS195.00 1072.39 3995.06 193.84 1574.49 11391.30 15
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5573.01 15188.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 105
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7084.22 7493.36 6371.44 5496.76 2580.82 8595.33 3494.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
save fliter93.80 4072.35 4290.47 6491.17 11674.31 116
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 9694.23 3572.13 4597.09 1684.83 4595.37 3293.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ZD-MVS94.38 2572.22 4492.67 6170.98 18287.75 3194.07 4174.01 3296.70 2784.66 4794.84 43
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8283.81 8393.95 5169.77 7296.01 4885.15 4094.66 4694.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7474.62 11188.90 2093.85 5275.75 2096.00 4987.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 6774.50 11286.84 4294.65 2067.31 9795.77 5484.80 4692.85 6792.84 103
MVS_030488.08 1488.08 1788.08 1489.67 11472.04 4892.26 3389.26 17384.19 285.01 5595.18 1369.93 6997.20 1491.63 295.60 2994.99 9
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7993.50 2575.17 10086.34 4495.29 1270.86 5996.00 4988.78 1996.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8789.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
agg_prior92.85 5971.94 5191.78 10084.41 7194.93 87
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 8991.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 31
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MVS_111021_LR82.61 9782.11 9784.11 11788.82 14971.58 5385.15 22286.16 24774.69 10880.47 12391.04 11762.29 15190.55 25680.33 9190.08 10490.20 195
MAR-MVS81.84 10780.70 11885.27 7491.32 7971.53 5489.82 7790.92 12269.77 21078.50 15186.21 24562.36 15094.52 10665.36 23092.05 7789.77 220
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 42
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
IU-MVS95.30 271.25 5792.95 5166.81 25592.39 688.94 1696.63 494.85 19
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 5977.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
CDPH-MVS85.76 5085.29 5987.17 4393.49 4771.08 6188.58 12392.42 7268.32 24484.61 6793.48 5872.32 4296.15 4579.00 9895.43 3194.28 40
CNLPA78.08 19976.79 20981.97 19590.40 9771.07 6287.59 15784.55 26666.03 27172.38 27489.64 14557.56 20486.04 31259.61 27983.35 20088.79 253
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15485.22 5491.90 9269.47 7496.42 3783.28 6295.94 1994.35 36
OPM-MVS83.50 8182.95 8685.14 7788.79 15270.95 6689.13 10391.52 10677.55 4480.96 11991.75 9560.71 17994.50 10779.67 9586.51 14989.97 212
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CANet86.45 3886.10 4587.51 3790.09 10270.94 6789.70 8392.59 6681.78 481.32 11291.43 10670.34 6497.23 1384.26 5293.36 6494.37 35
DP-MVS Recon83.11 9182.09 9886.15 5894.44 1970.92 6888.79 11392.20 8170.53 19279.17 13791.03 11964.12 12796.03 4668.39 20690.14 10291.50 146
CPTT-MVS83.73 7483.33 8084.92 8793.28 4970.86 6992.09 3790.38 13768.75 23679.57 13292.83 7660.60 18493.04 17880.92 8491.56 8490.86 169
h-mvs3383.15 8882.19 9686.02 6190.56 9370.85 7088.15 14089.16 17876.02 8384.67 6491.39 10761.54 16295.50 6182.71 7075.48 29891.72 139
新几何183.42 14793.13 5270.71 7185.48 25657.43 35481.80 10791.98 9063.28 13392.27 20164.60 23792.99 6587.27 284
test1286.80 4992.63 6470.70 7291.79 9982.71 9871.67 5196.16 4494.50 5093.54 77
SR-MVS-dyc-post85.77 4985.61 5286.23 5693.06 5570.63 7391.88 3992.27 7673.53 13785.69 4994.45 2665.00 12395.56 5882.75 6891.87 7992.50 114
RE-MVS-def85.48 5393.06 5570.63 7391.88 3992.27 7673.53 13785.69 4994.45 2663.87 12982.75 6891.87 7992.50 114
HPM-MVS_fast85.35 5884.95 6386.57 5393.69 4270.58 7592.15 3691.62 10373.89 12682.67 9994.09 4062.60 14495.54 6080.93 8392.93 6693.57 74
MSLP-MVS++85.43 5685.76 5084.45 10391.93 7270.24 7690.71 5892.86 5377.46 4784.22 7492.81 7867.16 9992.94 18080.36 9094.35 5590.16 196
MVSFormer82.85 9482.05 9985.24 7587.35 20670.21 7790.50 6290.38 13768.55 23981.32 11289.47 15161.68 15993.46 15378.98 9990.26 10092.05 132
lupinMVS81.39 11980.27 12884.76 9387.35 20670.21 7785.55 21586.41 24262.85 30781.32 11288.61 17661.68 15992.24 20378.41 10690.26 10091.83 136
xiu_mvs_v1_base_debu80.80 13179.72 13784.03 13087.35 20670.19 7985.56 21288.77 19469.06 22981.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 237
xiu_mvs_v1_base80.80 13179.72 13784.03 13087.35 20670.19 7985.56 21288.77 19469.06 22981.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 237
xiu_mvs_v1_base_debi80.80 13179.72 13784.03 13087.35 20670.19 7985.56 21288.77 19469.06 22981.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 237
API-MVS81.99 10581.23 10984.26 11490.94 8570.18 8291.10 5389.32 16971.51 17178.66 14788.28 18665.26 11895.10 8364.74 23691.23 8887.51 278
test_fmvsm_n_192085.29 5985.34 5585.13 7986.12 23269.93 8388.65 12190.78 12769.97 20488.27 2393.98 4971.39 5591.54 22888.49 2390.45 9793.91 53
OpenMVScopyleft72.83 1079.77 15678.33 17184.09 12185.17 24669.91 8490.57 6090.97 12166.70 25872.17 27691.91 9154.70 22493.96 12461.81 26390.95 9188.41 263
jason81.39 11980.29 12784.70 9486.63 22669.90 8585.95 20386.77 23863.24 30081.07 11889.47 15161.08 17592.15 20578.33 10790.07 10592.05 132
jason: jason.
MVP-Stereo76.12 23974.46 24781.13 21785.37 24469.79 8684.42 24387.95 21365.03 28167.46 32285.33 26453.28 23991.73 22158.01 29683.27 20181.85 359
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PVSNet_Blended_VisFu82.62 9681.83 10484.96 8490.80 8969.76 8788.74 11791.70 10269.39 21678.96 13988.46 18165.47 11794.87 9474.42 14588.57 12390.24 194
test_prior86.33 5492.61 6569.59 8892.97 5095.48 6293.91 53
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4573.54 13685.94 4594.51 2465.80 11595.61 5783.04 6592.51 7193.53 78
test_fmvsmconf_n85.92 4686.04 4785.57 6885.03 25369.51 9089.62 8690.58 13173.42 13987.75 3194.02 4472.85 4093.24 16090.37 390.75 9393.96 51
EPNet83.72 7582.92 8786.14 5984.22 26769.48 9191.05 5585.27 25781.30 676.83 19091.65 9766.09 11095.56 5876.00 13293.85 6093.38 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ET-MVSNet_ETH3D78.63 18676.63 21584.64 9586.73 22369.47 9285.01 22584.61 26569.54 21466.51 33786.59 23450.16 27491.75 21976.26 12884.24 18292.69 107
alignmvs85.48 5485.32 5785.96 6289.51 12069.47 9289.74 8192.47 6876.17 8087.73 3391.46 10570.32 6593.78 13681.51 7888.95 11794.63 26
DP-MVS76.78 22874.57 24383.42 14793.29 4869.46 9488.55 12483.70 27963.98 29670.20 29288.89 16854.01 23294.80 9646.66 35981.88 21986.01 311
canonicalmvs85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13181.50 7988.80 12094.77 22
test_fmvsmconf0.1_n85.61 5385.65 5185.50 6982.99 29869.39 9689.65 8490.29 14473.31 14287.77 3094.15 3871.72 4993.23 16190.31 490.67 9593.89 56
test_fmvsmvis_n_192084.02 7083.87 7284.49 10184.12 26969.37 9788.15 14087.96 21270.01 20283.95 8093.23 6568.80 8591.51 23188.61 2089.96 10692.57 110
nrg03083.88 7183.53 7584.96 8486.77 22269.28 9890.46 6592.67 6174.79 10682.95 9291.33 10872.70 4193.09 17480.79 8779.28 25192.50 114
test_fmvsmconf0.01_n84.73 6684.52 6885.34 7280.25 33869.03 9989.47 8889.65 16173.24 14686.98 4094.27 3266.62 10193.23 16190.26 589.95 10793.78 62
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 9989.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 27
XVG-OURS80.41 14279.23 15083.97 13485.64 23869.02 10183.03 27190.39 13671.09 17977.63 17391.49 10454.62 22691.35 23775.71 13483.47 19891.54 143
PCF-MVS73.52 780.38 14378.84 15985.01 8287.71 19568.99 10283.65 25591.46 11163.00 30477.77 17190.28 13166.10 10995.09 8461.40 26688.22 12990.94 167
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
QAPM80.88 12679.50 14285.03 8188.01 18368.97 10391.59 4392.00 8766.63 26475.15 23892.16 8857.70 20295.45 6363.52 24288.76 12190.66 176
AdaColmapbinary80.58 14079.42 14384.06 12593.09 5468.91 10489.36 9488.97 18869.27 21975.70 21789.69 14357.20 20995.77 5463.06 24788.41 12787.50 279
fmvsm_l_conf0.5_n84.47 6784.54 6684.27 11385.42 24268.81 10588.49 12587.26 22968.08 24688.03 2793.49 5772.04 4691.77 21888.90 1789.14 11692.24 125
原ACMM184.35 10793.01 5768.79 10692.44 6963.96 29781.09 11791.57 10166.06 11195.45 6367.19 21694.82 4588.81 252
XVG-OURS-SEG-HR80.81 12979.76 13683.96 13585.60 23968.78 10783.54 26090.50 13470.66 19076.71 19491.66 9660.69 18091.26 23976.94 12081.58 22291.83 136
LPG-MVS_test82.08 10281.27 10884.50 9989.23 13568.76 10890.22 7091.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18689.83 217
LGP-MVS_train84.50 9989.23 13568.76 10891.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18689.83 217
Effi-MVS+-dtu80.03 15278.57 16484.42 10485.13 25068.74 11088.77 11488.10 20874.99 10274.97 24383.49 30157.27 20893.36 15673.53 15380.88 22991.18 156
Vis-MVSNetpermissive83.46 8282.80 8985.43 7190.25 9968.74 11090.30 6990.13 14876.33 7880.87 12092.89 7461.00 17694.20 11872.45 16890.97 9093.35 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
HQP_MVS83.64 7783.14 8185.14 7790.08 10368.71 11291.25 5092.44 6979.12 2378.92 14191.00 12060.42 18695.38 6978.71 10286.32 15191.33 151
plane_prior68.71 11290.38 6777.62 3986.16 155
plane_prior689.84 11268.70 11460.42 186
ACMP74.13 681.51 11880.57 12084.36 10689.42 12368.69 11589.97 7491.50 11074.46 11475.04 24290.41 13053.82 23394.54 10477.56 11382.91 20589.86 216
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ETV-MVS84.90 6584.67 6585.59 6789.39 12568.66 11688.74 11792.64 6579.97 1584.10 7785.71 25469.32 7695.38 6980.82 8591.37 8692.72 104
plane_prior368.60 11778.44 3178.92 141
CHOSEN 1792x268877.63 21475.69 22583.44 14689.98 10968.58 11878.70 32587.50 22456.38 35975.80 21686.84 22258.67 19491.40 23661.58 26585.75 16390.34 189
plane_prior790.08 10368.51 119
fmvsm_l_conf0.5_n_a84.13 6984.16 7184.06 12585.38 24368.40 12088.34 13286.85 23767.48 25387.48 3493.40 6170.89 5891.61 22288.38 2589.22 11592.16 129
ACMM73.20 880.78 13479.84 13583.58 14389.31 13168.37 12189.99 7391.60 10470.28 19777.25 18089.66 14453.37 23893.53 14974.24 14882.85 20688.85 250
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs474.03 26471.91 27180.39 23281.96 31568.32 12281.45 28682.14 30459.32 33769.87 30185.13 27052.40 24488.13 29660.21 27574.74 31384.73 331
NP-MVS89.62 11568.32 12290.24 132
test22291.50 7768.26 12484.16 24883.20 29054.63 36579.74 12991.63 9958.97 19391.42 8586.77 297
CDS-MVSNet79.07 17677.70 18983.17 15987.60 20068.23 12584.40 24486.20 24667.49 25276.36 20486.54 23861.54 16290.79 25261.86 26287.33 13690.49 184
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PS-MVSNAJ81.69 11181.02 11383.70 14189.51 12068.21 12684.28 24690.09 14970.79 18481.26 11685.62 25963.15 13894.29 11175.62 13688.87 11988.59 259
fmvsm_s_conf0.5_n_a83.63 7883.41 7784.28 11186.14 23168.12 12789.43 9082.87 29770.27 19887.27 3793.80 5469.09 7891.58 22488.21 2683.65 19393.14 93
UGNet80.83 12879.59 14084.54 9888.04 18168.09 12889.42 9188.16 20676.95 5976.22 20789.46 15349.30 28693.94 12768.48 20490.31 9891.60 140
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
fmvsm_s_conf0.1_n_a83.32 8682.99 8584.28 11183.79 27668.07 12989.34 9582.85 29869.80 20887.36 3694.06 4268.34 8891.56 22687.95 2783.46 19993.21 90
UA-Net85.08 6284.96 6285.45 7092.07 7068.07 12989.78 8090.86 12682.48 384.60 6893.20 6669.35 7595.22 7471.39 17490.88 9293.07 95
xiu_mvs_v2_base81.69 11181.05 11283.60 14289.15 13868.03 13184.46 24090.02 15070.67 18781.30 11586.53 23963.17 13794.19 11975.60 13788.54 12488.57 260
DELS-MVS85.41 5785.30 5885.77 6488.49 16267.93 13285.52 21993.44 2778.70 2983.63 8789.03 16474.57 2495.71 5680.26 9294.04 5993.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EI-MVSNet-Vis-set84.19 6883.81 7385.31 7388.18 17367.85 13387.66 15589.73 15980.05 1482.95 9289.59 14870.74 6194.82 9580.66 8984.72 17093.28 86
PLCcopyleft70.83 1178.05 20176.37 22083.08 16391.88 7467.80 13488.19 13789.46 16564.33 29069.87 30188.38 18353.66 23493.58 14458.86 28782.73 20887.86 270
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAMVS78.89 18177.51 19483.03 16687.80 19067.79 13584.72 23185.05 26067.63 24976.75 19387.70 19962.25 15290.82 25158.53 29187.13 13990.49 184
CLD-MVS82.31 9981.65 10584.29 11088.47 16367.73 13685.81 21092.35 7475.78 8678.33 15686.58 23664.01 12894.35 11076.05 13187.48 13590.79 170
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
iter_conf_final80.63 13679.35 14684.46 10289.36 12767.70 13789.85 7584.49 26773.19 14778.30 15788.94 16545.98 31394.56 10279.59 9684.48 17791.11 158
hse-mvs281.72 10980.94 11584.07 12388.72 15567.68 13885.87 20687.26 22976.02 8384.67 6488.22 18961.54 16293.48 15182.71 7073.44 32691.06 161
AUN-MVS79.21 17277.60 19284.05 12888.71 15667.61 13985.84 20887.26 22969.08 22877.23 18288.14 19453.20 24093.47 15275.50 13973.45 32591.06 161
CS-MVS86.69 3586.95 3185.90 6390.76 9167.57 14092.83 1793.30 3279.67 1784.57 6992.27 8671.47 5395.02 8684.24 5493.46 6395.13 6
EI-MVSNet-UG-set83.81 7283.38 7885.09 8087.87 18667.53 14187.44 16189.66 16079.74 1682.23 10189.41 15770.24 6694.74 9879.95 9383.92 18592.99 100
Effi-MVS+83.62 7983.08 8285.24 7588.38 16867.45 14288.89 10989.15 17975.50 9282.27 10088.28 18669.61 7394.45 10977.81 11187.84 13093.84 59
EG-PatchMatch MVS74.04 26271.82 27280.71 22784.92 25467.42 14385.86 20788.08 20966.04 27064.22 35183.85 29235.10 36992.56 18957.44 30080.83 23082.16 358
OMC-MVS82.69 9581.97 10284.85 8988.75 15467.42 14387.98 14490.87 12574.92 10379.72 13091.65 9762.19 15493.96 12475.26 14086.42 15093.16 92
PatchMatch-RL72.38 28070.90 28476.80 29488.60 15967.38 14579.53 31376.17 35762.75 31069.36 30682.00 32445.51 31984.89 32453.62 32180.58 23478.12 372
LS3D76.95 22674.82 24183.37 15090.45 9567.36 14689.15 10286.94 23561.87 31969.52 30490.61 12651.71 25994.53 10546.38 36286.71 14688.21 265
fmvsm_s_conf0.5_n83.80 7383.71 7484.07 12386.69 22467.31 14789.46 8983.07 29271.09 17986.96 4193.70 5569.02 8391.47 23388.79 1884.62 17293.44 80
fmvsm_s_conf0.1_n83.56 8083.38 7884.10 11884.86 25567.28 14889.40 9383.01 29370.67 18787.08 3893.96 5068.38 8791.45 23488.56 2284.50 17393.56 75
PS-MVSNAJss82.07 10381.31 10784.34 10886.51 22767.27 14989.27 9691.51 10771.75 16379.37 13490.22 13463.15 13894.27 11377.69 11282.36 21391.49 147
114514_t80.68 13579.51 14184.20 11594.09 3867.27 14989.64 8591.11 11958.75 34474.08 25490.72 12458.10 19895.04 8569.70 19189.42 11390.30 192
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6687.65 19867.22 15188.69 11993.04 3879.64 1885.33 5292.54 8373.30 3594.50 10783.49 5991.14 8995.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS-test86.29 4286.48 3785.71 6591.02 8367.21 15292.36 2993.78 1878.97 2883.51 8891.20 11170.65 6395.15 7781.96 7694.89 4194.77 22
anonymousdsp78.60 18777.15 20082.98 16980.51 33667.08 15387.24 16789.53 16365.66 27575.16 23787.19 21652.52 24192.25 20277.17 11879.34 25089.61 224
MVS78.19 19776.99 20481.78 19785.66 23766.99 15484.66 23290.47 13555.08 36472.02 27885.27 26563.83 13094.11 12266.10 22489.80 10984.24 335
HQP5-MVS66.98 155
HQP-MVS82.61 9782.02 10084.37 10589.33 12866.98 15589.17 9892.19 8276.41 7277.23 18290.23 13360.17 18995.11 8077.47 11485.99 15991.03 163
Fast-Effi-MVS+-dtu78.02 20276.49 21682.62 18483.16 29266.96 15786.94 17487.45 22672.45 15471.49 28384.17 28854.79 22391.58 22467.61 21080.31 23889.30 233
F-COLMAP76.38 23774.33 24882.50 18689.28 13366.95 15888.41 12789.03 18364.05 29466.83 32988.61 17646.78 30492.89 18157.48 29978.55 25687.67 273
mvsmamba81.69 11180.74 11784.56 9787.45 20566.72 15991.26 4885.89 25174.66 10978.23 15990.56 12754.33 22794.91 8880.73 8883.54 19792.04 134
HyFIR lowres test77.53 21575.40 23383.94 13689.59 11666.62 16080.36 30488.64 20156.29 36076.45 20085.17 26957.64 20393.28 15861.34 26883.10 20491.91 135
ACMH67.68 1675.89 24373.93 25281.77 19888.71 15666.61 16188.62 12289.01 18569.81 20766.78 33086.70 23041.95 34491.51 23155.64 31378.14 26387.17 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
jajsoiax79.29 17077.96 17783.27 15384.68 25866.57 16289.25 9790.16 14769.20 22475.46 22389.49 15045.75 31893.13 17276.84 12180.80 23190.11 200
VDD-MVS83.01 9382.36 9484.96 8491.02 8366.40 16388.91 10888.11 20777.57 4184.39 7293.29 6452.19 24793.91 13177.05 11988.70 12294.57 29
mvs_tets79.13 17477.77 18683.22 15784.70 25766.37 16489.17 9890.19 14669.38 21775.40 22689.46 15344.17 32793.15 17076.78 12480.70 23390.14 197
PAPM_NR83.02 9282.41 9284.82 9092.47 6766.37 16487.93 14891.80 9873.82 12777.32 17990.66 12567.90 9194.90 9170.37 18389.48 11293.19 91
EC-MVSNet86.01 4386.38 3884.91 8889.31 13166.27 16692.32 3093.63 2179.37 2084.17 7691.88 9369.04 8295.43 6583.93 5793.77 6193.01 99
pmmvs-eth3d70.50 29967.83 31278.52 27077.37 36166.18 16781.82 27981.51 31058.90 34263.90 35480.42 33642.69 33686.28 31058.56 29065.30 36383.11 348
IB-MVS68.01 1575.85 24473.36 25983.31 15184.76 25666.03 16883.38 26185.06 25970.21 20069.40 30581.05 32845.76 31794.66 10165.10 23375.49 29789.25 234
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MS-PatchMatch73.83 26572.67 26477.30 28983.87 27566.02 16981.82 27984.66 26461.37 32368.61 31382.82 31247.29 29988.21 29459.27 28184.32 18077.68 373
FE-MVS77.78 20875.68 22684.08 12288.09 17966.00 17083.13 26687.79 21868.42 24378.01 16685.23 26745.50 32095.12 7859.11 28485.83 16291.11 158
test_040272.79 27870.44 28979.84 24488.13 17665.99 17185.93 20484.29 27165.57 27667.40 32485.49 26146.92 30392.61 18735.88 38574.38 31680.94 364
BH-RMVSNet79.61 15878.44 16783.14 16089.38 12665.93 17284.95 22787.15 23273.56 13578.19 16189.79 14156.67 21293.36 15659.53 28086.74 14590.13 198
BH-untuned79.47 16378.60 16382.05 19289.19 13765.91 17386.07 20188.52 20372.18 15975.42 22587.69 20061.15 17393.54 14860.38 27386.83 14486.70 299
cascas76.72 22974.64 24282.99 16885.78 23665.88 17482.33 27589.21 17660.85 32572.74 26781.02 32947.28 30093.75 14067.48 21285.02 16689.34 231
patch_mono-283.65 7684.54 6680.99 22090.06 10765.83 17584.21 24788.74 19871.60 16985.01 5592.44 8474.51 2583.50 33382.15 7592.15 7593.64 71
iter_conf0580.00 15478.70 16083.91 13787.84 18865.83 17588.84 11284.92 26271.61 16878.70 14488.94 16543.88 32994.56 10279.28 9784.28 18191.33 151
MSDG73.36 27170.99 28380.49 23184.51 26365.80 17780.71 29886.13 24865.70 27465.46 34283.74 29644.60 32390.91 25051.13 33476.89 27484.74 330
旧先验191.96 7165.79 17886.37 24493.08 7169.31 7792.74 6888.74 256
casdiffmvspermissive85.11 6185.14 6085.01 8287.20 21465.77 17987.75 15392.83 5577.84 3784.36 7392.38 8572.15 4493.93 13081.27 8190.48 9695.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
COLMAP_ROBcopyleft66.92 1773.01 27570.41 29080.81 22587.13 21665.63 18088.30 13484.19 27462.96 30563.80 35587.69 20038.04 36192.56 18946.66 35974.91 31184.24 335
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EIA-MVS83.31 8782.80 8984.82 9089.59 11665.59 18188.21 13692.68 6074.66 10978.96 13986.42 24169.06 8095.26 7375.54 13890.09 10393.62 72
v7n78.97 17977.58 19383.14 16083.45 28365.51 18288.32 13391.21 11473.69 13172.41 27386.32 24457.93 19993.81 13569.18 19675.65 29490.11 200
V4279.38 16978.24 17382.83 17481.10 33065.50 18385.55 21589.82 15571.57 17078.21 16086.12 24860.66 18193.18 16975.64 13575.46 30089.81 219
bld_raw_dy_0_6477.29 22175.98 22381.22 21385.04 25265.47 18488.14 14277.56 34569.20 22473.77 25689.40 15942.24 34188.85 28776.78 12481.64 22189.33 232
RRT_MVS80.35 14679.22 15183.74 14087.63 19965.46 18591.08 5488.92 19173.82 12776.44 20390.03 13649.05 29194.25 11776.84 12179.20 25391.51 144
PVSNet_BlendedMVS80.60 13880.02 13082.36 18988.85 14665.40 18686.16 19992.00 8769.34 21878.11 16386.09 24966.02 11294.27 11371.52 17182.06 21687.39 280
PVSNet_Blended80.98 12480.34 12582.90 17288.85 14665.40 18684.43 24292.00 8767.62 25078.11 16385.05 27366.02 11294.27 11371.52 17189.50 11189.01 242
baseline84.93 6384.98 6184.80 9287.30 21265.39 18887.30 16592.88 5277.62 3984.04 7992.26 8771.81 4793.96 12481.31 8090.30 9995.03 8
test_djsdf80.30 14779.32 14783.27 15383.98 27365.37 18990.50 6290.38 13768.55 23976.19 20888.70 17256.44 21393.46 15378.98 9980.14 24190.97 166
ACMH+68.96 1476.01 24274.01 25082.03 19388.60 15965.31 19088.86 11087.55 22270.25 19967.75 31887.47 20841.27 34593.19 16858.37 29275.94 29187.60 275
CR-MVSNet73.37 26971.27 28079.67 24981.32 32865.19 19175.92 34480.30 32559.92 33272.73 26881.19 32652.50 24286.69 30659.84 27777.71 26587.11 290
RPMNet73.51 26870.49 28882.58 18581.32 32865.19 19175.92 34492.27 7657.60 35272.73 26876.45 36552.30 24595.43 6548.14 35477.71 26587.11 290
BH-w/o78.21 19577.33 19880.84 22488.81 15065.13 19384.87 22887.85 21769.75 21174.52 25084.74 27761.34 16893.11 17358.24 29485.84 16184.27 334
thisisatest053079.40 16777.76 18784.31 10987.69 19765.10 19487.36 16284.26 27370.04 20177.42 17688.26 18849.94 27794.79 9770.20 18484.70 17193.03 97
FA-MVS(test-final)80.96 12579.91 13384.10 11888.30 17165.01 19584.55 23790.01 15173.25 14579.61 13187.57 20358.35 19794.72 9971.29 17586.25 15392.56 111
v1079.74 15778.67 16182.97 17084.06 27164.95 19687.88 15190.62 13073.11 14875.11 23986.56 23761.46 16594.05 12373.68 15175.55 29689.90 214
SDMVSNet80.38 14380.18 12980.99 22089.03 14464.94 19780.45 30389.40 16675.19 9876.61 19889.98 13760.61 18387.69 30176.83 12383.55 19590.33 190
dcpmvs_285.63 5286.15 4484.06 12591.71 7564.94 19786.47 19091.87 9573.63 13286.60 4393.02 7276.57 1591.87 21683.36 6092.15 7595.35 3
IterMVS-SCA-FT75.43 25073.87 25480.11 23982.69 30464.85 19981.57 28483.47 28469.16 22670.49 28984.15 28951.95 25488.15 29569.23 19572.14 33587.34 282
MVSTER79.01 17777.88 18182.38 18883.07 29364.80 20084.08 25188.95 18969.01 23278.69 14587.17 21754.70 22492.43 19374.69 14280.57 23589.89 215
Anonymous2024052980.19 15078.89 15884.10 11890.60 9264.75 20188.95 10790.90 12365.97 27280.59 12291.17 11349.97 27693.73 14269.16 19782.70 21093.81 60
XVG-ACMP-BASELINE76.11 24074.27 24981.62 20083.20 28964.67 20283.60 25889.75 15869.75 21171.85 27987.09 21932.78 37292.11 20669.99 18880.43 23788.09 266
v119279.59 16078.43 16883.07 16483.55 28164.52 20386.93 17590.58 13170.83 18377.78 17085.90 25059.15 19293.94 12773.96 15077.19 27190.76 172
Fast-Effi-MVS+80.81 12979.92 13283.47 14588.85 14664.51 20485.53 21789.39 16770.79 18478.49 15285.06 27267.54 9493.58 14467.03 21986.58 14792.32 120
v114480.03 15279.03 15583.01 16783.78 27764.51 20487.11 17090.57 13371.96 16278.08 16586.20 24661.41 16693.94 12774.93 14177.23 26990.60 179
v879.97 15579.02 15682.80 17784.09 27064.50 20687.96 14590.29 14474.13 12275.24 23586.81 22362.88 14393.89 13374.39 14675.40 30390.00 208
EPP-MVSNet83.40 8483.02 8484.57 9690.13 10164.47 20792.32 3090.73 12874.45 11579.35 13591.10 11469.05 8195.12 7872.78 16387.22 13894.13 44
GeoE81.71 11081.01 11483.80 13989.51 12064.45 20888.97 10688.73 19971.27 17578.63 14889.76 14266.32 10793.20 16669.89 18986.02 15893.74 63
UniMVSNet (Re)81.60 11581.11 11183.09 16288.38 16864.41 20987.60 15693.02 4278.42 3278.56 15088.16 19069.78 7193.26 15969.58 19376.49 28091.60 140
LTVRE_ROB69.57 1376.25 23874.54 24581.41 20688.60 15964.38 21079.24 31789.12 18270.76 18669.79 30387.86 19749.09 28993.20 16656.21 31280.16 23986.65 300
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Anonymous2023121178.97 17977.69 19082.81 17690.54 9464.29 21190.11 7291.51 10765.01 28276.16 21288.13 19550.56 27093.03 17969.68 19277.56 26891.11 158
testdata79.97 24190.90 8664.21 21284.71 26359.27 33885.40 5192.91 7362.02 15789.08 28068.95 19991.37 8686.63 301
v2v48280.23 14879.29 14883.05 16583.62 27964.14 21387.04 17189.97 15273.61 13378.18 16287.22 21461.10 17493.82 13476.11 12976.78 27891.18 156
VDDNet81.52 11680.67 11984.05 12890.44 9664.13 21489.73 8285.91 25071.11 17883.18 9093.48 5850.54 27193.49 15073.40 15688.25 12894.54 30
PAPR81.66 11480.89 11683.99 13390.27 9864.00 21586.76 18391.77 10168.84 23577.13 18889.50 14967.63 9394.88 9367.55 21188.52 12593.09 94
v14419279.47 16378.37 16982.78 18083.35 28463.96 21686.96 17390.36 14069.99 20377.50 17485.67 25760.66 18193.77 13874.27 14776.58 27990.62 177
v192192079.22 17178.03 17682.80 17783.30 28663.94 21786.80 17990.33 14169.91 20677.48 17585.53 26058.44 19693.75 14073.60 15276.85 27690.71 175
tttt051779.40 16777.91 17983.90 13888.10 17863.84 21888.37 13184.05 27571.45 17276.78 19289.12 16149.93 27994.89 9270.18 18583.18 20392.96 101
thisisatest051577.33 21975.38 23483.18 15885.27 24563.80 21982.11 27883.27 28765.06 28075.91 21383.84 29349.54 28194.27 11367.24 21586.19 15491.48 148
diffmvspermissive82.10 10181.88 10382.76 18283.00 29663.78 22083.68 25489.76 15772.94 15282.02 10389.85 14065.96 11490.79 25282.38 7487.30 13793.71 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_yl81.17 12180.47 12383.24 15589.13 13963.62 22186.21 19789.95 15372.43 15781.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
DCV-MVSNet81.17 12180.47 12383.24 15589.13 13963.62 22186.21 19789.95 15372.43 15781.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
AllTest70.96 29268.09 30779.58 25185.15 24863.62 22184.58 23679.83 32962.31 31460.32 36686.73 22432.02 37388.96 28450.28 33971.57 33986.15 307
TestCases79.58 25185.15 24863.62 22179.83 32962.31 31460.32 36686.73 22432.02 37388.96 28450.28 33971.57 33986.15 307
v124078.99 17877.78 18582.64 18383.21 28863.54 22586.62 18690.30 14369.74 21377.33 17885.68 25657.04 21093.76 13973.13 16076.92 27390.62 177
CHOSEN 280x42066.51 32964.71 33071.90 33481.45 32363.52 22657.98 39368.95 38153.57 36662.59 36076.70 36346.22 31075.29 38055.25 31479.68 24476.88 375
IterMVS74.29 25872.94 26378.35 27281.53 32263.49 22781.58 28382.49 30168.06 24769.99 29883.69 29851.66 26085.54 31765.85 22771.64 33886.01 311
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_NR-MVSNet81.88 10681.54 10682.92 17188.46 16463.46 22887.13 16892.37 7380.19 1278.38 15489.14 16071.66 5293.05 17670.05 18676.46 28192.25 123
DU-MVS81.12 12380.52 12282.90 17287.80 19063.46 22887.02 17291.87 9579.01 2678.38 15489.07 16265.02 12193.05 17670.05 18676.46 28192.20 126
LFMVS81.82 10881.23 10983.57 14491.89 7363.43 23089.84 7681.85 30877.04 5883.21 8993.10 6752.26 24693.43 15571.98 16989.95 10793.85 57
NR-MVSNet80.23 14879.38 14482.78 18087.80 19063.34 23186.31 19491.09 12079.01 2672.17 27689.07 16267.20 9892.81 18566.08 22575.65 29492.20 126
IS-MVSNet83.15 8882.81 8884.18 11689.94 11063.30 23291.59 4388.46 20479.04 2579.49 13392.16 8865.10 12094.28 11267.71 20991.86 8194.95 10
TR-MVS77.44 21676.18 22181.20 21488.24 17263.24 23384.61 23586.40 24367.55 25177.81 16986.48 24054.10 23093.15 17057.75 29882.72 20987.20 285
MVS_Test83.15 8883.06 8383.41 14986.86 21863.21 23486.11 20092.00 8774.31 11682.87 9489.44 15670.03 6793.21 16377.39 11688.50 12693.81 60
IterMVS-LS80.06 15179.38 14482.11 19185.89 23463.20 23586.79 18089.34 16874.19 11975.45 22486.72 22666.62 10192.39 19572.58 16576.86 27590.75 173
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet80.52 14179.98 13182.12 19084.28 26563.19 23686.41 19188.95 18974.18 12078.69 14587.54 20666.62 10192.43 19372.57 16680.57 23590.74 174
CANet_DTU80.61 13779.87 13482.83 17485.60 23963.17 23787.36 16288.65 20076.37 7675.88 21488.44 18253.51 23693.07 17573.30 15789.74 11092.25 123
GBi-Net78.40 19077.40 19581.40 20787.60 20063.01 23888.39 12889.28 17071.63 16575.34 22887.28 21054.80 22091.11 24262.72 24979.57 24590.09 202
test178.40 19077.40 19581.40 20787.60 20063.01 23888.39 12889.28 17071.63 16575.34 22887.28 21054.80 22091.11 24262.72 24979.57 24590.09 202
FMVSNet177.44 21676.12 22281.40 20786.81 22163.01 23888.39 12889.28 17070.49 19374.39 25187.28 21049.06 29091.11 24260.91 27078.52 25790.09 202
TAPA-MVS73.13 979.15 17377.94 17882.79 17989.59 11662.99 24188.16 13991.51 10765.77 27377.14 18791.09 11560.91 17793.21 16350.26 34187.05 14092.17 128
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FMVSNet278.20 19677.21 19981.20 21487.60 20062.89 24287.47 16089.02 18471.63 16575.29 23487.28 21054.80 22091.10 24562.38 25479.38 24989.61 224
GA-MVS76.87 22775.17 23881.97 19582.75 30262.58 24381.44 28786.35 24572.16 16174.74 24682.89 31046.20 31192.02 20968.85 20181.09 22791.30 154
D2MVS74.82 25573.21 26079.64 25079.81 34562.56 24480.34 30587.35 22764.37 28968.86 31082.66 31446.37 30790.10 26167.91 20881.24 22586.25 304
FMVSNet377.88 20676.85 20780.97 22286.84 22062.36 24586.52 18988.77 19471.13 17775.34 22886.66 23254.07 23191.10 24562.72 24979.57 24589.45 228
TranMVSNet+NR-MVSNet80.84 12780.31 12682.42 18787.85 18762.33 24687.74 15491.33 11280.55 977.99 16789.86 13965.23 11992.62 18667.05 21875.24 30892.30 121
131476.53 23175.30 23780.21 23783.93 27462.32 24784.66 23288.81 19260.23 32970.16 29584.07 29055.30 21790.73 25467.37 21383.21 20287.59 277
MG-MVS83.41 8383.45 7683.28 15292.74 6262.28 24888.17 13889.50 16475.22 9681.49 11192.74 8266.75 10095.11 8072.85 16291.58 8392.45 117
SCA74.22 26072.33 26979.91 24284.05 27262.17 24979.96 31079.29 33566.30 26772.38 27480.13 33851.95 25488.60 29059.25 28277.67 26788.96 246
PMMVS69.34 30868.67 30071.35 34075.67 36762.03 25075.17 35073.46 36750.00 37668.68 31179.05 34752.07 25278.13 35861.16 26982.77 20773.90 379
eth_miper_zixun_eth77.92 20576.69 21381.61 20283.00 29661.98 25183.15 26589.20 17769.52 21574.86 24584.35 28361.76 15892.56 18971.50 17372.89 33090.28 193
v14878.72 18477.80 18481.47 20482.73 30361.96 25286.30 19588.08 20973.26 14476.18 20985.47 26262.46 14892.36 19771.92 17073.82 32290.09 202
PAPM77.68 21376.40 21981.51 20387.29 21361.85 25383.78 25389.59 16264.74 28471.23 28488.70 17262.59 14593.66 14352.66 32687.03 14189.01 242
cl2278.07 20077.01 20281.23 21282.37 31261.83 25483.55 25987.98 21168.96 23375.06 24183.87 29161.40 16791.88 21573.53 15376.39 28389.98 211
baseline275.70 24573.83 25581.30 21083.26 28761.79 25582.57 27480.65 31866.81 25566.88 32883.42 30257.86 20192.19 20463.47 24379.57 24589.91 213
JIA-IIPM66.32 33162.82 34276.82 29377.09 36261.72 25665.34 38675.38 35858.04 34964.51 34962.32 38742.05 34386.51 30851.45 33269.22 34982.21 356
miper_ehance_all_eth78.59 18877.76 18781.08 21882.66 30561.56 25783.65 25589.15 17968.87 23475.55 22083.79 29566.49 10492.03 20873.25 15876.39 28389.64 223
c3_l78.75 18277.91 17981.26 21182.89 30061.56 25784.09 25089.13 18169.97 20475.56 21984.29 28466.36 10692.09 20773.47 15575.48 29890.12 199
miper_enhance_ethall77.87 20776.86 20680.92 22381.65 31961.38 25982.68 27288.98 18665.52 27775.47 22182.30 31865.76 11692.00 21072.95 16176.39 28389.39 229
ppachtmachnet_test70.04 30367.34 32078.14 27579.80 34661.13 26079.19 31980.59 31959.16 33965.27 34479.29 34646.75 30587.29 30349.33 34566.72 35686.00 313
TDRefinement67.49 32164.34 33176.92 29273.47 37961.07 26184.86 22982.98 29559.77 33358.30 37385.13 27026.06 38387.89 29847.92 35660.59 37481.81 360
VNet82.21 10082.41 9281.62 20090.82 8860.93 26284.47 23889.78 15676.36 7784.07 7891.88 9364.71 12490.26 25870.68 18088.89 11893.66 65
ab-mvs79.51 16178.97 15781.14 21688.46 16460.91 26383.84 25289.24 17570.36 19479.03 13888.87 16963.23 13690.21 26065.12 23282.57 21192.28 122
PatchmatchNetpermissive73.12 27471.33 27978.49 27183.18 29060.85 26479.63 31278.57 33964.13 29171.73 28079.81 34351.20 26385.97 31357.40 30176.36 28888.66 257
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
VPA-MVSNet80.60 13880.55 12180.76 22688.07 18060.80 26586.86 17791.58 10575.67 9080.24 12589.45 15563.34 13290.25 25970.51 18279.22 25291.23 155
EGC-MVSNET52.07 35847.05 36267.14 35983.51 28260.71 26680.50 30267.75 3820.07 4060.43 40775.85 37024.26 38681.54 34428.82 39162.25 36859.16 391
Anonymous20240521178.25 19377.01 20281.99 19491.03 8260.67 26784.77 23083.90 27770.65 19180.00 12891.20 11141.08 34791.43 23565.21 23185.26 16593.85 57
ITE_SJBPF78.22 27381.77 31860.57 26883.30 28669.25 22167.54 32087.20 21536.33 36687.28 30454.34 31874.62 31486.80 296
MDA-MVSNet-bldmvs66.68 32763.66 33675.75 30079.28 35360.56 26973.92 35878.35 34064.43 28750.13 38779.87 34244.02 32883.67 33146.10 36456.86 37783.03 350
cl____77.72 21076.76 21080.58 22982.49 30960.48 27083.09 26787.87 21569.22 22274.38 25285.22 26862.10 15591.53 22971.09 17675.41 30289.73 222
DIV-MVS_self_test77.72 21076.76 21080.58 22982.48 31060.48 27083.09 26787.86 21669.22 22274.38 25285.24 26662.10 15591.53 22971.09 17675.40 30389.74 221
1112_ss77.40 21876.43 21880.32 23589.11 14360.41 27283.65 25587.72 22062.13 31773.05 26586.72 22662.58 14689.97 26462.11 26080.80 23190.59 180
tt080578.73 18377.83 18281.43 20585.17 24660.30 27389.41 9290.90 12371.21 17677.17 18688.73 17146.38 30693.21 16372.57 16678.96 25490.79 170
UniMVSNet_ETH3D79.10 17578.24 17381.70 19986.85 21960.24 27487.28 16688.79 19374.25 11876.84 18990.53 12949.48 28291.56 22667.98 20782.15 21493.29 85
HY-MVS69.67 1277.95 20477.15 20080.36 23387.57 20460.21 27583.37 26287.78 21966.11 26875.37 22787.06 22163.27 13490.48 25761.38 26782.43 21290.40 188
sd_testset77.70 21277.40 19578.60 26689.03 14460.02 27679.00 32185.83 25275.19 9876.61 19889.98 13754.81 21985.46 31962.63 25383.55 19590.33 190
RPSCF73.23 27371.46 27678.54 26882.50 30859.85 27782.18 27782.84 29958.96 34171.15 28689.41 15745.48 32184.77 32558.82 28871.83 33791.02 165
test_cas_vis1_n_192073.76 26673.74 25673.81 32175.90 36559.77 27880.51 30182.40 30258.30 34681.62 11085.69 25544.35 32676.41 37076.29 12778.61 25585.23 322
dmvs_re71.14 29070.58 28672.80 32981.96 31559.68 27975.60 34879.34 33468.55 23969.27 30880.72 33449.42 28376.54 36752.56 32777.79 26482.19 357
miper_lstm_enhance74.11 26173.11 26277.13 29180.11 34059.62 28072.23 36286.92 23666.76 25770.40 29082.92 30956.93 21182.92 33769.06 19872.63 33188.87 249
OurMVSNet-221017-074.26 25972.42 26879.80 24583.76 27859.59 28185.92 20586.64 23966.39 26666.96 32787.58 20239.46 35391.60 22365.76 22869.27 34888.22 264
Patchmatch-RL test70.24 30167.78 31477.61 28477.43 36059.57 28271.16 36570.33 37462.94 30668.65 31272.77 37750.62 26985.49 31869.58 19366.58 35887.77 272
OpenMVS_ROBcopyleft64.09 1970.56 29868.19 30477.65 28380.26 33759.41 28385.01 22582.96 29658.76 34365.43 34382.33 31737.63 36391.23 24145.34 36976.03 29082.32 355
our_test_369.14 30967.00 32275.57 30379.80 34658.80 28477.96 33377.81 34259.55 33562.90 35978.25 35647.43 29883.97 32951.71 33067.58 35583.93 340
ADS-MVSNet266.20 33463.33 33774.82 31179.92 34258.75 28567.55 37975.19 35953.37 36765.25 34575.86 36842.32 33880.53 35041.57 37668.91 35085.18 323
pm-mvs177.25 22276.68 21478.93 26184.22 26758.62 28686.41 19188.36 20571.37 17373.31 26188.01 19661.22 17289.15 27964.24 24073.01 32989.03 241
WR-MVS79.49 16279.22 15180.27 23688.79 15258.35 28785.06 22488.61 20278.56 3077.65 17288.34 18463.81 13190.66 25564.98 23477.22 27091.80 138
FIs82.07 10382.42 9181.04 21988.80 15158.34 28888.26 13593.49 2676.93 6078.47 15391.04 11769.92 7092.34 19969.87 19084.97 16792.44 118
CostFormer75.24 25373.90 25379.27 25582.65 30658.27 28980.80 29382.73 30061.57 32075.33 23283.13 30655.52 21591.07 24864.98 23478.34 26288.45 261
Test_1112_low_res76.40 23675.44 23179.27 25589.28 13358.09 29081.69 28287.07 23359.53 33672.48 27286.67 23161.30 16989.33 27560.81 27280.15 24090.41 187
tfpnnormal74.39 25773.16 26178.08 27686.10 23358.05 29184.65 23487.53 22370.32 19671.22 28585.63 25854.97 21889.86 26543.03 37375.02 31086.32 303
test-LLR72.94 27772.43 26774.48 31481.35 32658.04 29278.38 32877.46 34666.66 25969.95 29979.00 34948.06 29679.24 35366.13 22284.83 16886.15 307
test-mter71.41 28870.39 29174.48 31481.35 32658.04 29278.38 32877.46 34660.32 32869.95 29979.00 34936.08 36779.24 35366.13 22284.83 16886.15 307
mvs_anonymous79.42 16679.11 15480.34 23484.45 26457.97 29482.59 27387.62 22167.40 25476.17 21188.56 17968.47 8689.59 27170.65 18186.05 15793.47 79
tpm cat170.57 29768.31 30377.35 28882.41 31157.95 29578.08 33280.22 32752.04 37068.54 31477.66 36052.00 25387.84 29951.77 32972.07 33686.25 304
SixPastTwentyTwo73.37 26971.26 28179.70 24785.08 25157.89 29685.57 21183.56 28271.03 18165.66 34185.88 25142.10 34292.57 18859.11 28463.34 36788.65 258
thres20075.55 24774.47 24678.82 26287.78 19357.85 29783.07 26983.51 28372.44 15675.84 21584.42 27952.08 25191.75 21947.41 35783.64 19486.86 295
XXY-MVS75.41 25175.56 22974.96 30983.59 28057.82 29880.59 30083.87 27866.54 26574.93 24488.31 18563.24 13580.09 35162.16 25876.85 27686.97 293
K. test v371.19 28968.51 30179.21 25783.04 29557.78 29984.35 24576.91 35272.90 15362.99 35882.86 31139.27 35491.09 24761.65 26452.66 38588.75 255
tfpn200view976.42 23575.37 23579.55 25389.13 13957.65 30085.17 22083.60 28073.41 14076.45 20086.39 24252.12 24891.95 21148.33 35083.75 18989.07 235
thres40076.50 23275.37 23579.86 24389.13 13957.65 30085.17 22083.60 28073.41 14076.45 20086.39 24252.12 24891.95 21148.33 35083.75 18990.00 208
CMPMVSbinary51.72 2170.19 30268.16 30576.28 29673.15 38157.55 30279.47 31483.92 27648.02 37856.48 37984.81 27543.13 33386.42 30962.67 25281.81 22084.89 328
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs674.69 25673.39 25878.61 26581.38 32557.48 30386.64 18587.95 21364.99 28370.18 29386.61 23350.43 27289.52 27262.12 25970.18 34588.83 251
test_vis1_n_192075.52 24875.78 22474.75 31379.84 34457.44 30483.26 26385.52 25562.83 30879.34 13686.17 24745.10 32279.71 35278.75 10181.21 22687.10 292
PVSNet_057.27 2061.67 34559.27 34868.85 35379.61 34957.44 30468.01 37873.44 36855.93 36158.54 37270.41 38244.58 32477.55 36247.01 35835.91 39471.55 382
thres600view776.50 23275.44 23179.68 24889.40 12457.16 30685.53 21783.23 28873.79 12976.26 20687.09 21951.89 25691.89 21448.05 35583.72 19290.00 208
lessismore_v078.97 26081.01 33157.15 30765.99 38561.16 36382.82 31239.12 35591.34 23859.67 27846.92 39188.43 262
TransMVSNet (Re)75.39 25274.56 24477.86 27885.50 24157.10 30886.78 18186.09 24972.17 16071.53 28287.34 20963.01 14289.31 27656.84 30761.83 36987.17 286
thres100view90076.50 23275.55 23079.33 25489.52 11956.99 30985.83 20983.23 28873.94 12476.32 20587.12 21851.89 25691.95 21148.33 35083.75 18989.07 235
TESTMET0.1,169.89 30569.00 29972.55 33179.27 35456.85 31078.38 32874.71 36457.64 35168.09 31677.19 36237.75 36276.70 36663.92 24184.09 18484.10 338
WTY-MVS75.65 24675.68 22675.57 30386.40 22856.82 31177.92 33582.40 30265.10 27976.18 20987.72 19863.13 14180.90 34860.31 27481.96 21789.00 244
MDA-MVSNet_test_wron65.03 33562.92 33971.37 33875.93 36456.73 31269.09 37774.73 36357.28 35554.03 38377.89 35745.88 31474.39 38349.89 34361.55 37082.99 351
pmmvs357.79 34854.26 35368.37 35664.02 39456.72 31375.12 35365.17 38740.20 38652.93 38469.86 38320.36 39075.48 37745.45 36855.25 38372.90 381
tpm273.26 27271.46 27678.63 26483.34 28556.71 31480.65 29980.40 32456.63 35873.55 25982.02 32351.80 25891.24 24056.35 31178.42 26087.95 267
TinyColmap67.30 32464.81 32974.76 31281.92 31756.68 31580.29 30681.49 31160.33 32756.27 38083.22 30324.77 38587.66 30245.52 36769.47 34779.95 368
YYNet165.03 33562.91 34071.38 33775.85 36656.60 31669.12 37674.66 36557.28 35554.12 38277.87 35845.85 31574.48 38249.95 34261.52 37183.05 349
PM-MVS66.41 33064.14 33273.20 32673.92 37456.45 31778.97 32264.96 38963.88 29864.72 34880.24 33719.84 39183.44 33466.24 22164.52 36579.71 369
PVSNet64.34 1872.08 28570.87 28575.69 30186.21 23056.44 31874.37 35680.73 31762.06 31870.17 29482.23 32042.86 33583.31 33554.77 31684.45 17887.32 283
pmmvs571.55 28770.20 29375.61 30277.83 35856.39 31981.74 28180.89 31457.76 35067.46 32284.49 27849.26 28785.32 32157.08 30475.29 30685.11 326
testing1175.14 25474.01 25078.53 26988.16 17456.38 32080.74 29780.42 32370.67 18772.69 27083.72 29743.61 33189.86 26562.29 25683.76 18889.36 230
WR-MVS_H78.51 18978.49 16578.56 26788.02 18256.38 32088.43 12692.67 6177.14 5473.89 25587.55 20566.25 10889.24 27758.92 28673.55 32490.06 206
MIMVSNet70.69 29669.30 29574.88 31084.52 26256.35 32275.87 34679.42 33364.59 28567.76 31782.41 31641.10 34681.54 34446.64 36181.34 22386.75 298
USDC70.33 30068.37 30276.21 29780.60 33456.23 32379.19 31986.49 24160.89 32461.29 36285.47 26231.78 37589.47 27453.37 32376.21 28982.94 352
Baseline_NR-MVSNet78.15 19878.33 17177.61 28485.79 23556.21 32486.78 18185.76 25373.60 13477.93 16887.57 20365.02 12188.99 28167.14 21775.33 30587.63 274
tpmvs71.09 29169.29 29676.49 29582.04 31456.04 32578.92 32381.37 31364.05 29467.18 32678.28 35549.74 28089.77 26749.67 34472.37 33283.67 342
FC-MVSNet-test81.52 11682.02 10080.03 24088.42 16755.97 32687.95 14693.42 2977.10 5677.38 17790.98 12269.96 6891.79 21768.46 20584.50 17392.33 119
testing9176.54 23075.66 22879.18 25888.43 16655.89 32781.08 29083.00 29473.76 13075.34 22884.29 28446.20 31190.07 26264.33 23884.50 17391.58 142
GG-mvs-BLEND75.38 30681.59 32155.80 32879.32 31669.63 37767.19 32573.67 37543.24 33288.90 28650.41 33684.50 17381.45 361
VPNet78.69 18578.66 16278.76 26388.31 17055.72 32984.45 24186.63 24076.79 6478.26 15890.55 12859.30 19189.70 27066.63 22077.05 27290.88 168
baseline176.98 22576.75 21277.66 28288.13 17655.66 33085.12 22381.89 30673.04 15076.79 19188.90 16762.43 14987.78 30063.30 24671.18 34189.55 226
test_vis1_rt60.28 34658.42 34965.84 36167.25 39155.60 33170.44 37060.94 39444.33 38259.00 37066.64 38424.91 38468.67 39262.80 24869.48 34673.25 380
testing9976.09 24175.12 23979.00 25988.16 17455.50 33280.79 29481.40 31273.30 14375.17 23684.27 28644.48 32590.02 26364.28 23984.22 18391.48 148
testing22274.04 26272.66 26578.19 27487.89 18555.36 33381.06 29179.20 33671.30 17474.65 24883.57 30039.11 35688.67 28951.43 33385.75 16390.53 182
FMVSNet569.50 30767.96 30874.15 31882.97 29955.35 33480.01 30982.12 30562.56 31263.02 35681.53 32536.92 36481.92 34248.42 34974.06 31885.17 325
test_fmvs1_n70.86 29470.24 29272.73 33072.51 38555.28 33581.27 28979.71 33151.49 37478.73 14384.87 27427.54 38277.02 36476.06 13079.97 24385.88 314
test_vis1_n69.85 30669.21 29771.77 33572.66 38455.27 33681.48 28576.21 35652.03 37175.30 23383.20 30528.97 38076.22 37274.60 14378.41 26183.81 341
test_fmvs170.93 29370.52 28772.16 33373.71 37555.05 33780.82 29278.77 33851.21 37578.58 14984.41 28031.20 37776.94 36575.88 13380.12 24284.47 333
sss73.60 26773.64 25773.51 32382.80 30155.01 33876.12 34281.69 30962.47 31374.68 24785.85 25357.32 20778.11 35960.86 27180.93 22887.39 280
mvsany_test162.30 34361.26 34765.41 36269.52 38754.86 33966.86 38149.78 40246.65 37968.50 31583.21 30449.15 28866.28 39456.93 30660.77 37275.11 378
ECVR-MVScopyleft79.61 15879.26 14980.67 22890.08 10354.69 34087.89 15077.44 34874.88 10480.27 12492.79 7948.96 29392.45 19268.55 20392.50 7294.86 17
EPNet_dtu75.46 24974.86 24077.23 29082.57 30754.60 34186.89 17683.09 29171.64 16466.25 33985.86 25255.99 21488.04 29754.92 31586.55 14889.05 240
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CP-MVSNet78.22 19478.34 17077.84 27987.83 18954.54 34287.94 14791.17 11677.65 3873.48 26088.49 18062.24 15388.43 29262.19 25774.07 31790.55 181
gg-mvs-nofinetune69.95 30467.96 30875.94 29883.07 29354.51 34377.23 33970.29 37563.11 30270.32 29162.33 38643.62 33088.69 28853.88 32087.76 13184.62 332
PS-CasMVS78.01 20378.09 17577.77 28187.71 19554.39 34488.02 14391.22 11377.50 4673.26 26288.64 17560.73 17888.41 29361.88 26173.88 32190.53 182
Anonymous2024052168.80 31267.22 32173.55 32274.33 37254.11 34583.18 26485.61 25458.15 34761.68 36180.94 33130.71 37881.27 34657.00 30573.34 32885.28 321
Patchmtry70.74 29569.16 29875.49 30580.72 33254.07 34674.94 35580.30 32558.34 34570.01 29681.19 32652.50 24286.54 30753.37 32371.09 34285.87 315
PEN-MVS77.73 20977.69 19077.84 27987.07 21753.91 34787.91 14991.18 11577.56 4373.14 26488.82 17061.23 17189.17 27859.95 27672.37 33290.43 186
gm-plane-assit81.40 32453.83 34862.72 31180.94 33192.39 19563.40 245
CL-MVSNet_self_test72.37 28171.46 27675.09 30879.49 35153.53 34980.76 29685.01 26169.12 22770.51 28882.05 32257.92 20084.13 32852.27 32866.00 36187.60 275
MDTV_nov1_ep1369.97 29483.18 29053.48 35077.10 34080.18 32860.45 32669.33 30780.44 33548.89 29486.90 30551.60 33178.51 258
KD-MVS_2432*160066.22 33263.89 33473.21 32475.47 37053.42 35170.76 36884.35 26964.10 29266.52 33578.52 35334.55 37084.98 32250.40 33750.33 38881.23 362
miper_refine_blended66.22 33263.89 33473.21 32475.47 37053.42 35170.76 36884.35 26964.10 29266.52 33578.52 35334.55 37084.98 32250.40 33750.33 38881.23 362
test111179.43 16579.18 15380.15 23889.99 10853.31 35387.33 16477.05 35175.04 10180.23 12692.77 8148.97 29292.33 20068.87 20092.40 7494.81 20
LF4IMVS64.02 33962.19 34369.50 34970.90 38653.29 35476.13 34177.18 35052.65 36958.59 37180.98 33023.55 38776.52 36853.06 32566.66 35778.68 371
DTE-MVSNet76.99 22476.80 20877.54 28686.24 22953.06 35587.52 15890.66 12977.08 5772.50 27188.67 17460.48 18589.52 27257.33 30270.74 34390.05 207
test250677.30 22076.49 21679.74 24690.08 10352.02 35687.86 15263.10 39174.88 10480.16 12792.79 7938.29 36092.35 19868.74 20292.50 7294.86 17
tpm72.37 28171.71 27374.35 31682.19 31352.00 35779.22 31877.29 34964.56 28672.95 26683.68 29951.35 26183.26 33658.33 29375.80 29287.81 271
test_fmvs268.35 31867.48 31970.98 34469.50 38851.95 35880.05 30876.38 35549.33 37774.65 24884.38 28123.30 38875.40 37974.51 14475.17 30985.60 317
ETVMVS72.25 28371.05 28275.84 29987.77 19451.91 35979.39 31574.98 36069.26 22073.71 25782.95 30840.82 34986.14 31146.17 36384.43 17989.47 227
WB-MVSnew71.96 28671.65 27472.89 32884.67 26151.88 36082.29 27677.57 34462.31 31473.67 25883.00 30753.49 23781.10 34745.75 36682.13 21585.70 316
MIMVSNet168.58 31466.78 32473.98 32080.07 34151.82 36180.77 29584.37 26864.40 28859.75 36982.16 32136.47 36583.63 33242.73 37470.33 34486.48 302
Vis-MVSNet (Re-imp)78.36 19278.45 16678.07 27788.64 15851.78 36286.70 18479.63 33274.14 12175.11 23990.83 12361.29 17089.75 26858.10 29591.60 8292.69 107
LCM-MVSNet-Re77.05 22376.94 20577.36 28787.20 21451.60 36380.06 30780.46 32275.20 9767.69 31986.72 22662.48 14788.98 28263.44 24489.25 11491.51 144
Gipumacopyleft45.18 36441.86 36755.16 37777.03 36351.52 36432.50 39980.52 32032.46 39527.12 39835.02 3999.52 40275.50 37622.31 39860.21 37538.45 398
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
UnsupCasMVSNet_eth67.33 32365.99 32771.37 33873.48 37851.47 36575.16 35185.19 25865.20 27860.78 36480.93 33342.35 33777.20 36357.12 30353.69 38485.44 319
UnsupCasMVSNet_bld63.70 34061.53 34670.21 34773.69 37651.39 36672.82 36081.89 30655.63 36257.81 37571.80 37938.67 35778.61 35649.26 34652.21 38680.63 365
FPMVS53.68 35451.64 35659.81 36965.08 39351.03 36769.48 37369.58 37841.46 38540.67 39172.32 37816.46 39570.00 39124.24 39765.42 36258.40 393
CVMVSNet72.99 27672.58 26674.25 31784.28 26550.85 36886.41 19183.45 28544.56 38173.23 26387.54 20649.38 28485.70 31465.90 22678.44 25986.19 306
Anonymous2023120668.60 31367.80 31371.02 34380.23 33950.75 36978.30 33180.47 32156.79 35766.11 34082.63 31546.35 30878.95 35543.62 37275.70 29383.36 345
ambc75.24 30773.16 38050.51 37063.05 39187.47 22564.28 35077.81 35917.80 39389.73 26957.88 29760.64 37385.49 318
APD_test153.31 35549.93 36063.42 36565.68 39250.13 37171.59 36466.90 38434.43 39340.58 39271.56 3808.65 40476.27 37134.64 38755.36 38263.86 389
tpmrst72.39 27972.13 27073.18 32780.54 33549.91 37279.91 31179.08 33763.11 30271.69 28179.95 34055.32 21682.77 33865.66 22973.89 32086.87 294
Patchmatch-test64.82 33763.24 33869.57 34879.42 35249.82 37363.49 39069.05 38051.98 37259.95 36880.13 33850.91 26570.98 38840.66 37873.57 32387.90 269
EPMVS69.02 31068.16 30571.59 33679.61 34949.80 37477.40 33766.93 38362.82 30970.01 29679.05 34745.79 31677.86 36156.58 30975.26 30787.13 289
dp66.80 32665.43 32870.90 34579.74 34848.82 37575.12 35374.77 36259.61 33464.08 35277.23 36142.89 33480.72 34948.86 34866.58 35883.16 347
UWE-MVS72.13 28471.49 27574.03 31986.66 22547.70 37681.40 28876.89 35363.60 29975.59 21884.22 28739.94 35285.62 31648.98 34786.13 15688.77 254
test0.0.03 168.00 32067.69 31568.90 35277.55 35947.43 37775.70 34772.95 37166.66 25966.56 33382.29 31948.06 29675.87 37444.97 37074.51 31583.41 344
ADS-MVSNet64.36 33862.88 34168.78 35479.92 34247.17 37867.55 37971.18 37353.37 36765.25 34575.86 36842.32 33873.99 38441.57 37668.91 35085.18 323
EU-MVSNet68.53 31667.61 31771.31 34178.51 35747.01 37984.47 23884.27 27242.27 38466.44 33884.79 27640.44 35083.76 33058.76 28968.54 35383.17 346
test_fmvs363.36 34161.82 34467.98 35762.51 39546.96 38077.37 33874.03 36645.24 38067.50 32178.79 35212.16 39972.98 38772.77 16466.02 36083.99 339
KD-MVS_self_test68.81 31167.59 31872.46 33274.29 37345.45 38177.93 33487.00 23463.12 30163.99 35378.99 35142.32 33884.77 32556.55 31064.09 36687.16 288
testf145.72 36241.96 36557.00 37156.90 39745.32 38266.14 38459.26 39626.19 39730.89 39660.96 3904.14 40770.64 38926.39 39546.73 39255.04 394
APD_test245.72 36241.96 36557.00 37156.90 39745.32 38266.14 38459.26 39626.19 39730.89 39660.96 3904.14 40770.64 38926.39 39546.73 39255.04 394
LCM-MVSNet54.25 35149.68 36167.97 35853.73 40345.28 38466.85 38280.78 31635.96 39239.45 39362.23 3888.70 40378.06 36048.24 35351.20 38780.57 366
test_vis3_rt49.26 36147.02 36356.00 37354.30 40045.27 38566.76 38348.08 40336.83 39044.38 39053.20 3957.17 40664.07 39656.77 30855.66 38058.65 392
test20.0367.45 32266.95 32368.94 35175.48 36944.84 38677.50 33677.67 34366.66 25963.01 35783.80 29447.02 30278.40 35742.53 37568.86 35283.58 343
mvsany_test353.99 35251.45 35761.61 36755.51 39944.74 38763.52 38945.41 40643.69 38358.11 37476.45 36517.99 39263.76 39754.77 31647.59 39076.34 376
PatchT68.46 31767.85 31070.29 34680.70 33343.93 38872.47 36174.88 36160.15 33070.55 28776.57 36449.94 27781.59 34350.58 33574.83 31285.34 320
MVS-HIRNet59.14 34757.67 35063.57 36481.65 31943.50 38971.73 36365.06 38839.59 38851.43 38557.73 39238.34 35982.58 33939.53 37973.95 31964.62 388
testing368.56 31567.67 31671.22 34287.33 21142.87 39083.06 27071.54 37270.36 19469.08 30984.38 28130.33 37985.69 31537.50 38475.45 30185.09 327
WAC-MVS42.58 39139.46 380
myMVS_eth3d67.02 32566.29 32669.21 35084.68 25842.58 39178.62 32673.08 36966.65 26266.74 33179.46 34431.53 37682.30 34039.43 38176.38 28682.75 353
PMVScopyleft37.38 2244.16 36540.28 36855.82 37540.82 40842.54 39365.12 38763.99 39034.43 39324.48 39957.12 3943.92 40976.17 37317.10 40155.52 38148.75 396
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_f52.09 35750.82 35855.90 37453.82 40242.31 39459.42 39258.31 39836.45 39156.12 38170.96 38112.18 39857.79 39953.51 32256.57 37967.60 385
testgi66.67 32866.53 32567.08 36075.62 36841.69 39575.93 34376.50 35466.11 26865.20 34786.59 23435.72 36874.71 38143.71 37173.38 32784.84 329
Syy-MVS68.05 31967.85 31068.67 35584.68 25840.97 39678.62 32673.08 36966.65 26266.74 33179.46 34452.11 25082.30 34032.89 38876.38 28682.75 353
ANet_high50.57 36046.10 36463.99 36348.67 40639.13 39770.99 36780.85 31561.39 32231.18 39557.70 39317.02 39473.65 38631.22 39015.89 40379.18 370
MDTV_nov1_ep13_2view37.79 39875.16 35155.10 36366.53 33449.34 28553.98 31987.94 268
DSMNet-mixed57.77 34956.90 35160.38 36867.70 39035.61 39969.18 37453.97 40032.30 39657.49 37679.88 34140.39 35168.57 39338.78 38272.37 33276.97 374
MVEpermissive26.22 2330.37 37025.89 37443.81 38244.55 40735.46 40028.87 40039.07 40718.20 40118.58 40340.18 3982.68 41047.37 40417.07 40223.78 40048.60 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
new_pmnet50.91 35950.29 35952.78 37968.58 38934.94 40163.71 38856.63 39939.73 38744.95 38965.47 38521.93 38958.48 39834.98 38656.62 37864.92 387
wuyk23d16.82 37315.94 37619.46 38758.74 39631.45 40239.22 3973.74 4126.84 4036.04 4062.70 4061.27 41124.29 40610.54 40614.40 4052.63 403
E-PMN31.77 36730.64 37035.15 38452.87 40427.67 40357.09 39447.86 40424.64 39916.40 40433.05 40011.23 40054.90 40114.46 40418.15 40122.87 400
DeepMVS_CXcopyleft27.40 38640.17 40926.90 40424.59 41017.44 40223.95 40048.61 3979.77 40126.48 40518.06 39924.47 39928.83 399
EMVS30.81 36929.65 37134.27 38550.96 40525.95 40556.58 39546.80 40524.01 40015.53 40530.68 40112.47 39754.43 40212.81 40517.05 40222.43 401
dmvs_testset62.63 34264.11 33358.19 37078.55 35624.76 40675.28 34965.94 38667.91 24860.34 36576.01 36753.56 23573.94 38531.79 38967.65 35475.88 377
new-patchmatchnet61.73 34461.73 34561.70 36672.74 38324.50 40769.16 37578.03 34161.40 32156.72 37875.53 37138.42 35876.48 36945.95 36557.67 37684.13 337
WB-MVS54.94 35054.72 35255.60 37673.50 37720.90 40874.27 35761.19 39359.16 33950.61 38674.15 37347.19 30175.78 37517.31 40035.07 39570.12 383
SSC-MVS53.88 35353.59 35454.75 37872.87 38219.59 40973.84 35960.53 39557.58 35349.18 38873.45 37646.34 30975.47 37816.20 40332.28 39769.20 384
PMMVS240.82 36638.86 36946.69 38153.84 40116.45 41048.61 39649.92 40137.49 38931.67 39460.97 3898.14 40556.42 40028.42 39230.72 39867.19 386
tmp_tt18.61 37221.40 37510.23 3884.82 41110.11 41134.70 39830.74 4091.48 40523.91 40126.07 40228.42 38113.41 40727.12 39315.35 4047.17 402
N_pmnet52.79 35653.26 35551.40 38078.99 3557.68 41269.52 3723.89 41151.63 37357.01 37774.98 37240.83 34865.96 39537.78 38364.67 36480.56 367
test_method31.52 36829.28 37238.23 38327.03 4106.50 41320.94 40162.21 3924.05 40422.35 40252.50 39613.33 39647.58 40327.04 39434.04 39660.62 390
test1236.12 3758.11 3780.14 3890.06 4130.09 41471.05 3660.03 4140.04 4080.25 4091.30 4080.05 4120.03 4090.21 4080.01 4070.29 404
testmvs6.04 3768.02 3790.10 3900.08 4120.03 41569.74 3710.04 4130.05 4070.31 4081.68 4070.02 4130.04 4080.24 4070.02 4060.25 405
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k19.96 37126.61 3730.00 3910.00 4140.00 4160.00 40289.26 1730.00 4090.00 41088.61 17661.62 1610.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas5.26 3777.02 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40963.15 1380.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re7.23 3749.64 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41086.72 2260.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
PC_three_145268.21 24592.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
eth-test20.00 414
eth-test0.00 414
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 41
9.1488.26 1592.84 6091.52 4694.75 173.93 12588.57 2294.67 1975.57 2295.79 5386.77 3595.76 23
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 24
GSMVS88.96 246
sam_mvs151.32 26288.96 246
sam_mvs50.01 275
MTGPAbinary92.02 85
test_post178.90 3245.43 40548.81 29585.44 32059.25 282
test_post5.46 40450.36 27384.24 327
patchmatchnet-post74.00 37451.12 26488.60 290
MTMP92.18 3532.83 408
test9_res84.90 4295.70 2692.87 102
agg_prior282.91 6695.45 3092.70 105
test_prior288.85 11175.41 9384.91 5993.54 5674.28 2983.31 6195.86 20
旧先验286.56 18858.10 34887.04 3988.98 28274.07 149
新几何286.29 196
无先验87.48 15988.98 18660.00 33194.12 12167.28 21488.97 245
原ACMM286.86 177
testdata291.01 24962.37 255
segment_acmp73.08 37
testdata184.14 24975.71 87
plane_prior592.44 6995.38 6978.71 10286.32 15191.33 151
plane_prior491.00 120
plane_prior291.25 5079.12 23
plane_prior189.90 111
n20.00 415
nn0.00 415
door-mid69.98 376
test1192.23 79
door69.44 379
HQP-NCC89.33 12889.17 9876.41 7277.23 182
ACMP_Plane89.33 12889.17 9876.41 7277.23 182
BP-MVS77.47 114
HQP4-MVS77.24 18195.11 8091.03 163
HQP3-MVS92.19 8285.99 159
HQP2-MVS60.17 189
ACMMP++_ref81.95 218
ACMMP++81.25 224
Test By Simon64.33 125