This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5980.26 1187.78 3594.27 3675.89 1996.81 2387.45 3496.44 993.05 108
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4997.53 289.67 896.44 994.41 39
No_MVS89.16 194.34 2775.53 292.99 4997.53 289.67 896.44 994.41 39
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4982.45 396.87 2083.77 6696.48 894.88 15
MTAPA87.23 3187.00 3287.90 2294.18 3574.25 586.58 19592.02 9379.45 1985.88 5594.80 1968.07 9696.21 4586.69 3895.34 3293.23 96
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 7077.57 4283.84 9294.40 3272.24 4596.28 4385.65 4395.30 3593.62 81
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVS87.11 3386.92 3687.68 3494.20 3473.86 793.98 392.82 6376.62 7483.68 9594.46 2767.93 9895.95 5784.20 6294.39 5593.23 96
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6293.00 4680.90 788.06 3094.06 4776.43 1696.84 2188.48 2695.99 1894.34 44
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 11592.29 795.97 274.28 2997.24 1388.58 2396.91 194.87 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MM89.16 689.23 788.97 490.79 9573.65 1092.66 2391.17 12586.57 187.39 4394.97 1871.70 5397.68 192.19 195.63 2895.57 1
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5492.83 6081.50 585.79 5793.47 6573.02 4097.00 1884.90 4894.94 4094.10 52
ACMMPR87.44 2587.23 3088.08 1594.64 1373.59 1293.04 1293.20 3476.78 6884.66 7494.52 2368.81 9096.65 3084.53 5694.90 4194.00 57
region2R87.42 2787.20 3188.09 1494.63 1473.55 1393.03 1493.12 4076.73 7184.45 7994.52 2369.09 8496.70 2784.37 5894.83 4594.03 56
mPP-MVS86.67 4186.32 4387.72 3094.41 2273.55 1392.74 2092.22 8876.87 6582.81 10894.25 3866.44 11396.24 4482.88 7694.28 5893.38 90
HFP-MVS87.58 2287.47 2687.94 1994.58 1673.54 1593.04 1293.24 3376.78 6884.91 6794.44 3070.78 6696.61 3284.53 5694.89 4293.66 74
3Dnovator+77.84 485.48 6084.47 7688.51 791.08 8673.49 1693.18 1193.78 1880.79 876.66 20593.37 6760.40 19896.75 2677.20 12793.73 6495.29 5
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 4278.35 1396.77 2489.59 1094.22 6094.67 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PGM-MVS86.68 4086.27 4487.90 2294.22 3373.38 1890.22 7393.04 4175.53 9683.86 9194.42 3167.87 10096.64 3182.70 8194.57 5093.66 74
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6685.24 6294.32 3471.76 5196.93 1985.53 4595.79 2294.32 45
XVS87.18 3286.91 3788.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9694.17 4167.45 10396.60 3383.06 7194.50 5194.07 54
X-MVStestdata80.37 15677.83 19288.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9612.47 42267.45 10396.60 3383.06 7194.50 5194.07 54
ACMMP_NAP88.05 1688.08 1787.94 1993.70 4173.05 2290.86 5793.59 2376.27 8488.14 2895.09 1771.06 6396.67 2987.67 3196.37 1494.09 53
DPM-MVS84.93 7084.29 7786.84 5090.20 10573.04 2387.12 17593.04 4169.80 22082.85 10691.22 12173.06 3996.02 5276.72 13594.63 4891.46 161
GST-MVS87.42 2787.26 2887.89 2494.12 3672.97 2492.39 2693.43 2876.89 6484.68 7193.99 5370.67 6896.82 2284.18 6395.01 3793.90 63
TEST993.26 5272.96 2588.75 12091.89 10168.44 25385.00 6593.10 7274.36 2895.41 73
train_agg86.43 4386.20 4587.13 4493.26 5272.96 2588.75 12091.89 10168.69 24885.00 6593.10 7274.43 2695.41 7384.97 4795.71 2593.02 110
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 7272.96 2593.73 593.67 2080.19 1288.10 2994.80 1973.76 3397.11 1587.51 3395.82 2194.90 14
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator76.31 583.38 9682.31 10686.59 5587.94 19472.94 2890.64 6092.14 9277.21 5575.47 23092.83 8158.56 20594.72 10573.24 17092.71 7492.13 143
SD-MVS88.06 1488.50 1486.71 5492.60 6972.71 2991.81 4193.19 3577.87 3690.32 1794.00 5174.83 2393.78 14187.63 3294.27 5993.65 78
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_111021_HR85.14 6684.75 7186.32 5891.65 7972.70 3085.98 21190.33 15076.11 8682.08 11391.61 10971.36 5994.17 12481.02 9392.58 7592.08 144
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 9092.29 795.66 1081.67 697.38 1187.44 3596.34 1593.95 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part295.06 872.65 3291.80 13
ACMMPcopyleft85.89 5485.39 6187.38 3993.59 4572.63 3392.74 2093.18 3976.78 6880.73 13293.82 5864.33 13396.29 4282.67 8290.69 10093.23 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_prior472.60 3489.01 111
test_893.13 5472.57 3588.68 12591.84 10568.69 24884.87 6993.10 7274.43 2695.16 83
TSAR-MVS + GP.85.71 5785.33 6386.84 5091.34 8172.50 3689.07 11087.28 23776.41 7785.80 5690.22 14674.15 3195.37 7881.82 8691.88 8392.65 122
CSCG86.41 4586.19 4687.07 4592.91 6172.48 3790.81 5893.56 2473.95 13383.16 10291.07 12775.94 1895.19 8279.94 10594.38 5693.55 85
MCST-MVS87.37 2987.25 2987.73 2894.53 1772.46 3889.82 7993.82 1673.07 15884.86 7092.89 7976.22 1796.33 4184.89 5095.13 3694.40 41
FOURS195.00 1072.39 3995.06 193.84 1574.49 12191.30 15
APD-MVScopyleft87.44 2587.52 2587.19 4294.24 3272.39 3991.86 4092.83 6073.01 16088.58 2494.52 2373.36 3496.49 3884.26 5995.01 3792.70 118
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast79.65 386.91 3686.62 4087.76 2793.52 4672.37 4191.26 5193.04 4176.62 7484.22 8393.36 6871.44 5796.76 2580.82 9695.33 3394.16 50
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
save fliter93.80 4072.35 4290.47 6691.17 12574.31 126
DeepC-MVS79.81 287.08 3586.88 3887.69 3391.16 8472.32 4390.31 7193.94 1477.12 5882.82 10794.23 3972.13 4797.09 1684.83 5195.37 3193.65 78
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ZD-MVS94.38 2572.22 4492.67 6770.98 19387.75 3794.07 4674.01 3296.70 2784.66 5494.84 44
HPM-MVScopyleft87.11 3386.98 3487.50 3893.88 3972.16 4592.19 3393.33 3176.07 8783.81 9393.95 5669.77 7896.01 5385.15 4694.66 4794.32 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TSAR-MVS + MP.88.02 1788.11 1687.72 3093.68 4372.13 4691.41 5092.35 8274.62 11988.90 2293.85 5775.75 2096.00 5487.80 3094.63 4895.04 9
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SR-MVS86.73 3886.67 3986.91 4994.11 3772.11 4792.37 2892.56 7574.50 12086.84 5094.65 2267.31 10595.77 5984.80 5292.85 7292.84 116
MP-MVS-pluss87.67 2187.72 2087.54 3693.64 4472.04 4889.80 8193.50 2575.17 10586.34 5395.29 1570.86 6596.00 5488.78 2196.04 1694.58 33
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SF-MVS88.46 1288.74 1287.64 3592.78 6471.95 4992.40 2494.74 275.71 9289.16 1995.10 1675.65 2196.19 4687.07 3696.01 1794.79 22
agg_prior92.85 6271.94 5091.78 10884.41 8094.93 94
MVS_030487.69 2087.55 2488.12 1389.45 12971.76 5191.47 4989.54 17382.14 386.65 5194.28 3568.28 9597.46 690.81 295.31 3495.15 7
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9491.06 1696.03 176.84 1497.03 1789.09 1395.65 2794.47 38
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
reproduce-ours87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10888.96 2095.54 1271.20 6196.54 3686.28 3993.49 6593.06 106
our_new_method87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10888.96 2095.54 1271.20 6196.54 3686.28 3993.49 6593.06 106
MVS_111021_LR82.61 10882.11 10884.11 12488.82 15671.58 5585.15 23186.16 26174.69 11680.47 13491.04 12862.29 15990.55 26580.33 10190.08 11090.20 204
MAR-MVS81.84 11980.70 12985.27 8291.32 8271.53 5689.82 7990.92 13169.77 22278.50 16286.21 25462.36 15894.52 11165.36 24292.05 8289.77 229
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_one_060195.07 771.46 5794.14 578.27 3592.05 1195.74 680.83 11
test_0728_SECOND87.71 3295.34 171.43 5893.49 994.23 397.49 489.08 1496.41 1294.21 49
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5995.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 1196.68 294.95 11
IU-MVS95.30 271.25 5992.95 5566.81 26792.39 688.94 1896.63 494.85 20
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5993.49 992.73 6477.33 5092.12 995.78 480.98 997.40 989.08 1496.41 1293.33 93
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072695.27 571.25 5993.60 694.11 677.33 5092.81 395.79 380.98 9
reproduce_model87.28 3087.39 2786.95 4893.10 5671.24 6391.60 4293.19 3574.69 11688.80 2395.61 1170.29 7296.44 3986.20 4193.08 6993.16 101
CDPH-MVS85.76 5685.29 6687.17 4393.49 4771.08 6488.58 12892.42 8068.32 25584.61 7693.48 6372.32 4496.15 4879.00 10895.43 3094.28 47
CNLPA78.08 20876.79 21981.97 20490.40 10271.07 6587.59 16184.55 27966.03 28372.38 28789.64 15657.56 21486.04 32459.61 29283.35 21188.79 261
SED-MVS90.08 290.85 287.77 2695.30 270.98 6693.57 794.06 1077.24 5393.10 195.72 882.99 197.44 789.07 1696.63 494.88 15
test_241102_ONE95.30 270.98 6694.06 1077.17 5693.10 195.39 1482.99 197.27 12
PHI-MVS86.43 4386.17 4787.24 4190.88 9270.96 6892.27 3294.07 972.45 16585.22 6391.90 9869.47 8096.42 4083.28 7095.94 1994.35 43
OPM-MVS83.50 9282.95 9685.14 8588.79 15970.95 6989.13 10891.52 11477.55 4580.96 13091.75 10260.71 18894.50 11279.67 10786.51 16289.97 221
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CANet86.45 4286.10 4987.51 3790.09 10770.94 7089.70 8592.59 7481.78 481.32 12391.43 11570.34 7097.23 1484.26 5993.36 6894.37 42
DP-MVS Recon83.11 10282.09 11086.15 6394.44 1970.92 7188.79 11892.20 8970.53 20379.17 14991.03 13064.12 13596.03 5068.39 21890.14 10891.50 157
CPTT-MVS83.73 8483.33 9084.92 9593.28 4970.86 7292.09 3690.38 14668.75 24779.57 14492.83 8160.60 19493.04 18480.92 9591.56 9090.86 178
h-mvs3383.15 9982.19 10786.02 6990.56 9870.85 7388.15 14589.16 18876.02 8884.67 7291.39 11661.54 17195.50 6682.71 7975.48 30991.72 151
新几何183.42 15693.13 5470.71 7485.48 26957.43 36981.80 11891.98 9663.28 14192.27 21064.60 24992.99 7087.27 296
test1286.80 5292.63 6770.70 7591.79 10782.71 10971.67 5496.16 4794.50 5193.54 86
SR-MVS-dyc-post85.77 5585.61 5886.23 5993.06 5870.63 7691.88 3892.27 8473.53 14685.69 5894.45 2865.00 13195.56 6382.75 7791.87 8492.50 127
RE-MVS-def85.48 6093.06 5870.63 7691.88 3892.27 8473.53 14685.69 5894.45 2863.87 13782.75 7791.87 8492.50 127
HPM-MVS_fast85.35 6484.95 7086.57 5693.69 4270.58 7892.15 3591.62 11173.89 13682.67 11094.09 4562.60 15295.54 6580.93 9492.93 7193.57 83
MSLP-MVS++85.43 6285.76 5684.45 10991.93 7570.24 7990.71 5992.86 5877.46 4884.22 8392.81 8367.16 10792.94 18680.36 10094.35 5790.16 205
MVSFormer82.85 10582.05 11185.24 8387.35 21570.21 8090.50 6490.38 14668.55 25081.32 12389.47 16261.68 16893.46 15878.98 10990.26 10692.05 145
lupinMVS81.39 13080.27 13984.76 10187.35 21570.21 8085.55 22486.41 25562.85 32281.32 12388.61 18561.68 16892.24 21278.41 11690.26 10691.83 148
xiu_mvs_v1_base_debu80.80 14279.72 14884.03 13887.35 21570.19 8285.56 22188.77 20369.06 24081.83 11588.16 19950.91 27992.85 18878.29 11887.56 14589.06 245
xiu_mvs_v1_base80.80 14279.72 14884.03 13887.35 21570.19 8285.56 22188.77 20369.06 24081.83 11588.16 19950.91 27992.85 18878.29 11887.56 14589.06 245
xiu_mvs_v1_base_debi80.80 14279.72 14884.03 13887.35 21570.19 8285.56 22188.77 20369.06 24081.83 11588.16 19950.91 27992.85 18878.29 11887.56 14589.06 245
API-MVS81.99 11781.23 12184.26 12190.94 9070.18 8591.10 5589.32 18071.51 18278.66 15888.28 19565.26 12695.10 9064.74 24891.23 9487.51 290
test_fmvsm_n_192085.29 6585.34 6285.13 8786.12 24269.93 8688.65 12690.78 13669.97 21688.27 2693.98 5471.39 5891.54 23788.49 2590.45 10393.91 61
OpenMVScopyleft72.83 1079.77 16578.33 18084.09 12985.17 25869.91 8790.57 6190.97 13066.70 27072.17 29091.91 9754.70 23793.96 12861.81 27590.95 9788.41 273
jason81.39 13080.29 13884.70 10286.63 23569.90 8885.95 21286.77 25063.24 31581.07 12989.47 16261.08 18492.15 21478.33 11790.07 11192.05 145
jason: jason.
MVP-Stereo76.12 24974.46 25781.13 22585.37 25669.79 8984.42 25387.95 22265.03 29567.46 33785.33 27353.28 25191.73 23058.01 31083.27 21281.85 375
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PVSNet_Blended_VisFu82.62 10781.83 11684.96 9290.80 9469.76 9088.74 12291.70 11069.39 22878.96 15188.46 19065.47 12594.87 10074.42 15688.57 13390.24 203
test_prior86.33 5792.61 6869.59 9192.97 5495.48 6793.91 61
APD-MVS_3200maxsize85.97 5085.88 5386.22 6092.69 6669.53 9291.93 3792.99 4973.54 14585.94 5494.51 2665.80 12395.61 6283.04 7392.51 7693.53 87
test_fmvsmconf_n85.92 5186.04 5185.57 7685.03 26469.51 9389.62 8990.58 14073.42 14987.75 3794.02 4972.85 4193.24 16690.37 390.75 9993.96 58
EPNet83.72 8582.92 9786.14 6584.22 27869.48 9491.05 5685.27 27081.30 676.83 20091.65 10566.09 11895.56 6376.00 14193.85 6293.38 90
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ET-MVSNet_ETH3D78.63 19576.63 22584.64 10386.73 23269.47 9585.01 23584.61 27869.54 22666.51 35286.59 24350.16 28891.75 22876.26 13784.24 19492.69 120
alignmvs85.48 6085.32 6485.96 7089.51 12669.47 9589.74 8392.47 7676.17 8587.73 3991.46 11470.32 7193.78 14181.51 8788.95 12594.63 32
DP-MVS76.78 23774.57 25383.42 15693.29 4869.46 9788.55 12983.70 29163.98 31170.20 30788.89 17754.01 24494.80 10246.66 37481.88 23086.01 323
sasdasda85.91 5285.87 5486.04 6789.84 11769.44 9890.45 6893.00 4676.70 7288.01 3291.23 11973.28 3693.91 13581.50 8888.80 12894.77 24
canonicalmvs85.91 5285.87 5486.04 6789.84 11769.44 9890.45 6893.00 4676.70 7288.01 3291.23 11973.28 3693.91 13581.50 8888.80 12894.77 24
test_fmvsmconf0.1_n85.61 5985.65 5785.50 7782.99 31169.39 10089.65 8690.29 15373.31 15287.77 3694.15 4371.72 5293.23 16790.31 490.67 10193.89 64
test_fmvsmvis_n_192084.02 7983.87 8084.49 10884.12 28069.37 10188.15 14587.96 22170.01 21483.95 9093.23 7068.80 9191.51 24088.61 2289.96 11292.57 123
nrg03083.88 8083.53 8584.96 9286.77 23169.28 10290.46 6792.67 6774.79 11482.95 10391.33 11872.70 4393.09 18080.79 9879.28 26192.50 127
test_fmvsmconf0.01_n84.73 7384.52 7585.34 8080.25 35269.03 10389.47 9189.65 17073.24 15686.98 4894.27 3666.62 10993.23 16790.26 589.95 11393.78 71
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5392.24 7169.03 10389.57 9093.39 3077.53 4689.79 1894.12 4478.98 1296.58 3585.66 4295.72 2494.58 33
XVG-OURS80.41 15379.23 16183.97 14285.64 24969.02 10583.03 28290.39 14571.09 19077.63 18291.49 11354.62 23991.35 24675.71 14383.47 20991.54 155
PCF-MVS73.52 780.38 15478.84 16985.01 9087.71 20668.99 10683.65 26691.46 11963.00 31977.77 18090.28 14266.10 11795.09 9161.40 27888.22 13990.94 176
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
QAPM80.88 13779.50 15385.03 8988.01 19268.97 10791.59 4392.00 9566.63 27675.15 24892.16 9357.70 21295.45 6863.52 25488.76 13090.66 185
AdaColmapbinary80.58 15179.42 15484.06 13393.09 5768.91 10889.36 9988.97 19869.27 23175.70 22689.69 15457.20 21995.77 5963.06 25988.41 13787.50 291
fmvsm_l_conf0.5_n84.47 7484.54 7384.27 11985.42 25468.81 10988.49 13087.26 23968.08 25788.03 3193.49 6272.04 4891.77 22788.90 1989.14 12492.24 138
原ACMM184.35 11393.01 6068.79 11092.44 7763.96 31281.09 12891.57 11066.06 11995.45 6867.19 22894.82 4688.81 260
XVG-OURS-SEG-HR80.81 14079.76 14783.96 14385.60 25168.78 11183.54 27190.50 14370.66 20176.71 20491.66 10460.69 18991.26 24876.94 13181.58 23291.83 148
LPG-MVS_test82.08 11481.27 12084.50 10689.23 14268.76 11290.22 7391.94 9975.37 9976.64 20691.51 11154.29 24094.91 9578.44 11483.78 19889.83 226
LGP-MVS_train84.50 10689.23 14268.76 11291.94 9975.37 9976.64 20691.51 11154.29 24094.91 9578.44 11483.78 19889.83 226
Effi-MVS+-dtu80.03 16278.57 17384.42 11085.13 26268.74 11488.77 11988.10 21774.99 10774.97 25383.49 31457.27 21893.36 16273.53 16480.88 23991.18 166
Vis-MVSNetpermissive83.46 9382.80 9985.43 7990.25 10468.74 11490.30 7290.13 15776.33 8380.87 13192.89 7961.00 18594.20 12272.45 17990.97 9693.35 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
HQP_MVS83.64 8783.14 9185.14 8590.08 10868.71 11691.25 5292.44 7779.12 2378.92 15391.00 13260.42 19695.38 7578.71 11286.32 16491.33 162
plane_prior68.71 11690.38 7077.62 4086.16 168
plane_prior689.84 11768.70 11860.42 196
ACMP74.13 681.51 12980.57 13184.36 11289.42 13068.69 11989.97 7791.50 11874.46 12275.04 25290.41 14153.82 24594.54 10977.56 12382.91 21689.86 225
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ETV-MVS84.90 7284.67 7285.59 7589.39 13368.66 12088.74 12292.64 7279.97 1584.10 8685.71 26369.32 8295.38 7580.82 9691.37 9292.72 117
plane_prior368.60 12178.44 3178.92 153
CHOSEN 1792x268877.63 22375.69 23583.44 15589.98 11468.58 12278.70 33887.50 23356.38 37475.80 22586.84 23158.67 20491.40 24561.58 27785.75 17690.34 198
plane_prior790.08 10868.51 123
GDP-MVS83.52 9182.64 10186.16 6288.14 18368.45 12489.13 10892.69 6572.82 16483.71 9491.86 10155.69 22795.35 7980.03 10389.74 11694.69 27
fmvsm_l_conf0.5_n_a84.13 7784.16 7884.06 13385.38 25568.40 12588.34 13786.85 24967.48 26487.48 4193.40 6670.89 6491.61 23188.38 2789.22 12292.16 142
ACMM73.20 880.78 14579.84 14683.58 15289.31 13868.37 12689.99 7691.60 11270.28 20877.25 18989.66 15553.37 25093.53 15474.24 15982.85 21788.85 258
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs474.03 27671.91 28580.39 24081.96 32868.32 12781.45 29782.14 31759.32 35269.87 31685.13 27952.40 25688.13 30660.21 28774.74 32484.73 345
NP-MVS89.62 12168.32 12790.24 144
test22291.50 8068.26 12984.16 25883.20 30354.63 38079.74 14191.63 10758.97 20391.42 9186.77 309
CDS-MVSNet79.07 18577.70 19983.17 16887.60 21068.23 13084.40 25486.20 26067.49 26376.36 21386.54 24761.54 17190.79 26161.86 27487.33 14990.49 193
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PS-MVSNAJ81.69 12381.02 12583.70 14989.51 12668.21 13184.28 25690.09 15870.79 19581.26 12785.62 26863.15 14694.29 11675.62 14588.87 12788.59 268
fmvsm_s_conf0.5_n_a83.63 8883.41 8784.28 11786.14 24168.12 13289.43 9382.87 31070.27 20987.27 4593.80 5969.09 8491.58 23388.21 2883.65 20593.14 103
UGNet80.83 13979.59 15184.54 10588.04 18968.09 13389.42 9588.16 21576.95 6276.22 21689.46 16449.30 30093.94 13168.48 21690.31 10491.60 152
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
fmvsm_s_conf0.1_n_a83.32 9782.99 9584.28 11783.79 28868.07 13489.34 10082.85 31169.80 22087.36 4494.06 4768.34 9491.56 23587.95 2983.46 21093.21 99
UA-Net85.08 6884.96 6985.45 7892.07 7368.07 13489.78 8290.86 13582.48 284.60 7793.20 7169.35 8195.22 8171.39 18590.88 9893.07 105
xiu_mvs_v2_base81.69 12381.05 12483.60 15189.15 14568.03 13684.46 25090.02 15970.67 19881.30 12686.53 24863.17 14594.19 12375.60 14688.54 13488.57 269
DELS-MVS85.41 6385.30 6585.77 7288.49 16967.93 13785.52 22893.44 2778.70 2983.63 9889.03 17474.57 2495.71 6180.26 10294.04 6193.66 74
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BP-MVS184.32 7583.71 8386.17 6187.84 19967.85 13889.38 9889.64 17177.73 3883.98 8992.12 9556.89 22295.43 7084.03 6491.75 8795.24 6
EI-MVSNet-Vis-set84.19 7683.81 8185.31 8188.18 18067.85 13887.66 15989.73 16880.05 1482.95 10389.59 15970.74 6794.82 10180.66 9984.72 18393.28 95
PLCcopyleft70.83 1178.05 21076.37 23083.08 17291.88 7767.80 14088.19 14289.46 17664.33 30469.87 31688.38 19253.66 24693.58 14958.86 30082.73 21987.86 282
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAMVS78.89 19077.51 20483.03 17587.80 20167.79 14184.72 24185.05 27467.63 26076.75 20387.70 20862.25 16090.82 26058.53 30487.13 15290.49 193
CLD-MVS82.31 11181.65 11784.29 11688.47 17067.73 14285.81 21992.35 8275.78 9178.33 16786.58 24564.01 13694.35 11576.05 14087.48 14890.79 179
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
hse-mvs281.72 12180.94 12784.07 13188.72 16267.68 14385.87 21587.26 23976.02 8884.67 7288.22 19861.54 17193.48 15682.71 7973.44 33791.06 170
MVSMamba_PlusPlus85.99 4885.96 5286.05 6691.09 8567.64 14489.63 8892.65 7072.89 16384.64 7591.71 10371.85 4996.03 5084.77 5394.45 5494.49 37
balanced_conf0386.78 3786.99 3386.15 6391.24 8367.61 14590.51 6292.90 5677.26 5287.44 4291.63 10771.27 6096.06 4985.62 4495.01 3794.78 23
AUN-MVS79.21 18177.60 20284.05 13688.71 16367.61 14585.84 21787.26 23969.08 23977.23 19188.14 20353.20 25293.47 15775.50 14873.45 33691.06 170
CS-MVS86.69 3986.95 3585.90 7190.76 9667.57 14792.83 1793.30 3279.67 1784.57 7892.27 9171.47 5695.02 9384.24 6193.46 6795.13 8
EI-MVSNet-UG-set83.81 8183.38 8885.09 8887.87 19767.53 14887.44 16789.66 16979.74 1682.23 11289.41 16870.24 7394.74 10479.95 10483.92 19792.99 113
Effi-MVS+83.62 8983.08 9285.24 8388.38 17567.45 14988.89 11589.15 18975.50 9782.27 11188.28 19569.61 7994.45 11477.81 12187.84 14293.84 67
EG-PatchMatch MVS74.04 27471.82 28680.71 23584.92 26567.42 15085.86 21688.08 21866.04 28264.22 36683.85 30435.10 38392.56 19757.44 31480.83 24082.16 374
OMC-MVS82.69 10681.97 11484.85 9788.75 16167.42 15087.98 14890.87 13474.92 11079.72 14291.65 10562.19 16293.96 12875.26 15186.42 16393.16 101
PatchMatch-RL72.38 29470.90 29876.80 30588.60 16667.38 15279.53 32476.17 37262.75 32569.36 32182.00 34045.51 33384.89 33853.62 33680.58 24478.12 389
LS3D76.95 23474.82 25183.37 15990.45 10067.36 15389.15 10786.94 24661.87 33469.52 31990.61 13851.71 27294.53 11046.38 37786.71 15988.21 276
fmvsm_s_conf0.5_n83.80 8283.71 8384.07 13186.69 23367.31 15489.46 9283.07 30571.09 19086.96 4993.70 6069.02 8991.47 24288.79 2084.62 18593.44 89
fmvsm_s_conf0.1_n83.56 9083.38 8884.10 12584.86 26667.28 15589.40 9783.01 30670.67 19887.08 4693.96 5568.38 9391.45 24388.56 2484.50 18693.56 84
PS-MVSNAJss82.07 11581.31 11984.34 11486.51 23667.27 15689.27 10191.51 11571.75 17579.37 14690.22 14663.15 14694.27 11877.69 12282.36 22491.49 158
114514_t80.68 14679.51 15284.20 12294.09 3867.27 15689.64 8791.11 12858.75 35974.08 26690.72 13658.10 20895.04 9269.70 20389.42 12090.30 201
mvsmamba80.60 14879.38 15584.27 11989.74 12067.24 15887.47 16486.95 24570.02 21375.38 23688.93 17551.24 27692.56 19775.47 14989.22 12293.00 112
casdiffmvs_mvgpermissive85.99 4886.09 5085.70 7487.65 20967.22 15988.69 12493.04 4179.64 1885.33 6192.54 8873.30 3594.50 11283.49 6791.14 9595.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SPE-MVS-test86.29 4686.48 4185.71 7391.02 8867.21 16092.36 2993.78 1878.97 2883.51 9991.20 12270.65 6995.15 8481.96 8594.89 4294.77 24
anonymousdsp78.60 19677.15 21082.98 17880.51 35067.08 16187.24 17389.53 17465.66 28775.16 24787.19 22552.52 25392.25 21177.17 12879.34 26089.61 233
MVS78.19 20676.99 21481.78 20685.66 24866.99 16284.66 24290.47 14455.08 37972.02 29285.27 27463.83 13894.11 12666.10 23689.80 11584.24 349
HQP5-MVS66.98 163
HQP-MVS82.61 10882.02 11284.37 11189.33 13566.98 16389.17 10392.19 9076.41 7777.23 19190.23 14560.17 19995.11 8777.47 12485.99 17291.03 172
Fast-Effi-MVS+-dtu78.02 21176.49 22682.62 19383.16 30566.96 16586.94 18287.45 23572.45 16571.49 29884.17 30054.79 23691.58 23367.61 22280.31 24889.30 241
F-COLMAP76.38 24774.33 25982.50 19589.28 14066.95 16688.41 13289.03 19364.05 30966.83 34488.61 18546.78 31792.89 18757.48 31378.55 26587.67 285
HyFIR lowres test77.53 22475.40 24383.94 14489.59 12266.62 16780.36 31588.64 21056.29 37576.45 21085.17 27857.64 21393.28 16461.34 28083.10 21591.91 147
ACMH67.68 1675.89 25373.93 26381.77 20788.71 16366.61 16888.62 12789.01 19569.81 21966.78 34586.70 23941.95 35791.51 24055.64 32778.14 27287.17 298
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
jajsoiax79.29 17977.96 18783.27 16284.68 26966.57 16989.25 10290.16 15669.20 23675.46 23289.49 16145.75 33193.13 17876.84 13280.80 24190.11 209
VDD-MVS83.01 10482.36 10584.96 9291.02 8866.40 17088.91 11488.11 21677.57 4284.39 8193.29 6952.19 25993.91 13577.05 13088.70 13294.57 35
mvs_tets79.13 18377.77 19683.22 16684.70 26866.37 17189.17 10390.19 15569.38 22975.40 23589.46 16444.17 34193.15 17676.78 13480.70 24390.14 206
PAPM_NR83.02 10382.41 10384.82 9892.47 7066.37 17187.93 15291.80 10673.82 13777.32 18890.66 13767.90 9994.90 9770.37 19589.48 11993.19 100
EC-MVSNet86.01 4786.38 4284.91 9689.31 13866.27 17392.32 3093.63 2179.37 2084.17 8591.88 9969.04 8895.43 7083.93 6593.77 6393.01 111
pmmvs-eth3d70.50 31367.83 32678.52 27977.37 37566.18 17481.82 29081.51 32458.90 35763.90 36980.42 35242.69 35086.28 32258.56 30365.30 37683.11 363
IB-MVS68.01 1575.85 25473.36 27083.31 16084.76 26766.03 17583.38 27285.06 27370.21 21169.40 32081.05 34445.76 33094.66 10865.10 24575.49 30889.25 242
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MS-PatchMatch73.83 27772.67 27777.30 30083.87 28766.02 17681.82 29084.66 27761.37 33868.61 32882.82 32747.29 31288.21 30459.27 29484.32 19377.68 390
FE-MVS77.78 21775.68 23684.08 13088.09 18766.00 17783.13 27787.79 22768.42 25478.01 17585.23 27645.50 33495.12 8559.11 29785.83 17591.11 168
test_040272.79 29270.44 30379.84 25288.13 18465.99 17885.93 21384.29 28365.57 28867.40 33985.49 27046.92 31692.61 19335.88 40274.38 32780.94 380
BH-RMVSNet79.61 16778.44 17683.14 16989.38 13465.93 17984.95 23787.15 24273.56 14478.19 17089.79 15256.67 22393.36 16259.53 29386.74 15890.13 207
BH-untuned79.47 17278.60 17282.05 20189.19 14465.91 18086.07 21088.52 21272.18 17075.42 23487.69 20961.15 18293.54 15360.38 28586.83 15786.70 311
cascas76.72 23874.64 25282.99 17785.78 24765.88 18182.33 28689.21 18660.85 34072.74 28081.02 34547.28 31393.75 14567.48 22485.02 17989.34 240
patch_mono-283.65 8684.54 7380.99 22890.06 11265.83 18284.21 25788.74 20771.60 18085.01 6492.44 8974.51 2583.50 34782.15 8492.15 8093.64 80
MSDG73.36 28470.99 29780.49 23984.51 27465.80 18380.71 30986.13 26265.70 28665.46 35783.74 30844.60 33790.91 25951.13 34976.89 28584.74 344
旧先验191.96 7465.79 18486.37 25793.08 7669.31 8392.74 7388.74 265
casdiffmvspermissive85.11 6785.14 6785.01 9087.20 22365.77 18587.75 15792.83 6077.84 3784.36 8292.38 9072.15 4693.93 13481.27 9290.48 10295.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
mamv476.81 23678.23 18472.54 34686.12 24265.75 18678.76 33782.07 31964.12 30672.97 27891.02 13167.97 9768.08 41083.04 7378.02 27383.80 356
COLMAP_ROBcopyleft66.92 1773.01 28970.41 30480.81 23387.13 22565.63 18788.30 13984.19 28662.96 32063.80 37087.69 20938.04 37592.56 19746.66 37474.91 32284.24 349
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EIA-MVS83.31 9882.80 9984.82 9889.59 12265.59 18888.21 14192.68 6674.66 11878.96 15186.42 25069.06 8695.26 8075.54 14790.09 10993.62 81
v7n78.97 18877.58 20383.14 16983.45 29665.51 18988.32 13891.21 12373.69 14072.41 28686.32 25357.93 20993.81 14069.18 20875.65 30590.11 209
V4279.38 17878.24 18282.83 18381.10 34465.50 19085.55 22489.82 16471.57 18178.21 16986.12 25760.66 19193.18 17575.64 14475.46 31189.81 228
PVSNet_BlendedMVS80.60 14880.02 14182.36 19888.85 15365.40 19186.16 20892.00 9569.34 23078.11 17286.09 25866.02 12094.27 11871.52 18282.06 22787.39 292
PVSNet_Blended80.98 13580.34 13682.90 18188.85 15365.40 19184.43 25292.00 9567.62 26178.11 17285.05 28266.02 12094.27 11871.52 18289.50 11889.01 250
baseline84.93 7084.98 6884.80 10087.30 22165.39 19387.30 17192.88 5777.62 4084.04 8892.26 9271.81 5093.96 12881.31 9090.30 10595.03 10
test_djsdf80.30 15779.32 15883.27 16283.98 28465.37 19490.50 6490.38 14668.55 25076.19 21788.70 18156.44 22593.46 15878.98 10980.14 25190.97 175
ACMH+68.96 1476.01 25274.01 26182.03 20288.60 16665.31 19588.86 11687.55 23170.25 21067.75 33387.47 21741.27 35893.19 17458.37 30675.94 30287.60 287
CR-MVSNet73.37 28271.27 29479.67 25781.32 34265.19 19675.92 35980.30 34059.92 34772.73 28181.19 34252.50 25486.69 31659.84 28977.71 27687.11 302
RPMNet73.51 28070.49 30282.58 19481.32 34265.19 19675.92 35992.27 8457.60 36772.73 28176.45 38252.30 25795.43 7048.14 36977.71 27687.11 302
BH-w/o78.21 20477.33 20880.84 23288.81 15765.13 19884.87 23887.85 22669.75 22374.52 26184.74 28861.34 17793.11 17958.24 30885.84 17484.27 348
thisisatest053079.40 17677.76 19784.31 11587.69 20865.10 19987.36 16884.26 28570.04 21277.42 18588.26 19749.94 29194.79 10370.20 19684.70 18493.03 109
FA-MVS(test-final)80.96 13679.91 14484.10 12588.30 17865.01 20084.55 24790.01 16073.25 15579.61 14387.57 21258.35 20794.72 10571.29 18686.25 16692.56 124
fmvsm_s_conf0.5_n_284.04 7884.11 7983.81 14786.17 24065.00 20186.96 18087.28 23774.35 12488.25 2794.23 3961.82 16692.60 19489.85 688.09 14193.84 67
v1079.74 16678.67 17082.97 17984.06 28264.95 20287.88 15590.62 13973.11 15775.11 24986.56 24661.46 17494.05 12773.68 16275.55 30789.90 223
fmvsm_s_conf0.1_n_283.80 8283.79 8283.83 14685.62 25064.94 20387.03 17886.62 25374.32 12587.97 3494.33 3360.67 19092.60 19489.72 787.79 14393.96 58
SDMVSNet80.38 15480.18 14080.99 22889.03 15164.94 20380.45 31489.40 17775.19 10376.61 20889.98 14860.61 19387.69 31176.83 13383.55 20790.33 199
dcpmvs_285.63 5886.15 4884.06 13391.71 7864.94 20386.47 19891.87 10373.63 14186.60 5293.02 7776.57 1591.87 22583.36 6892.15 8095.35 3
IterMVS-SCA-FT75.43 26073.87 26580.11 24782.69 31764.85 20681.57 29583.47 29669.16 23770.49 30484.15 30151.95 26688.15 30569.23 20772.14 34787.34 294
MVSTER79.01 18677.88 19182.38 19783.07 30664.80 20784.08 26188.95 19969.01 24378.69 15687.17 22654.70 23792.43 20274.69 15380.57 24589.89 224
Anonymous2024052980.19 16078.89 16884.10 12590.60 9764.75 20888.95 11390.90 13265.97 28480.59 13391.17 12449.97 29093.73 14769.16 20982.70 22193.81 69
XVG-ACMP-BASELINE76.11 25074.27 26081.62 20983.20 30264.67 20983.60 26989.75 16769.75 22371.85 29387.09 22832.78 38792.11 21569.99 20080.43 24788.09 278
v119279.59 16978.43 17783.07 17383.55 29464.52 21086.93 18390.58 14070.83 19477.78 17985.90 25959.15 20293.94 13173.96 16177.19 28290.76 181
Fast-Effi-MVS+80.81 14079.92 14383.47 15488.85 15364.51 21185.53 22689.39 17870.79 19578.49 16385.06 28167.54 10293.58 14967.03 23186.58 16092.32 133
v114480.03 16279.03 16583.01 17683.78 28964.51 21187.11 17690.57 14271.96 17478.08 17486.20 25561.41 17593.94 13174.93 15277.23 28090.60 188
v879.97 16479.02 16682.80 18684.09 28164.50 21387.96 14990.29 15374.13 13275.24 24586.81 23262.88 15193.89 13874.39 15775.40 31490.00 217
EPP-MVSNet83.40 9583.02 9484.57 10490.13 10664.47 21492.32 3090.73 13774.45 12379.35 14791.10 12569.05 8795.12 8572.78 17487.22 15194.13 51
GeoE81.71 12281.01 12683.80 14889.51 12664.45 21588.97 11288.73 20871.27 18678.63 15989.76 15366.32 11593.20 17269.89 20186.02 17193.74 72
UniMVSNet (Re)81.60 12681.11 12383.09 17188.38 17564.41 21687.60 16093.02 4578.42 3278.56 16188.16 19969.78 7793.26 16569.58 20576.49 29191.60 152
LTVRE_ROB69.57 1376.25 24874.54 25581.41 21588.60 16664.38 21779.24 32889.12 19270.76 19769.79 31887.86 20649.09 30393.20 17256.21 32680.16 24986.65 312
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Anonymous2023121178.97 18877.69 20082.81 18590.54 9964.29 21890.11 7591.51 11565.01 29676.16 22188.13 20450.56 28493.03 18569.68 20477.56 27991.11 168
testdata79.97 24990.90 9164.21 21984.71 27659.27 35385.40 6092.91 7862.02 16589.08 29068.95 21191.37 9286.63 313
v2v48280.23 15879.29 15983.05 17483.62 29264.14 22087.04 17789.97 16173.61 14278.18 17187.22 22361.10 18393.82 13976.11 13876.78 28991.18 166
VDDNet81.52 12780.67 13084.05 13690.44 10164.13 22189.73 8485.91 26471.11 18983.18 10193.48 6350.54 28593.49 15573.40 16788.25 13894.54 36
PAPR81.66 12580.89 12883.99 14190.27 10364.00 22286.76 19191.77 10968.84 24677.13 19889.50 16067.63 10194.88 9967.55 22388.52 13593.09 104
v14419279.47 17278.37 17882.78 18983.35 29763.96 22386.96 18090.36 14969.99 21577.50 18385.67 26660.66 19193.77 14374.27 15876.58 29090.62 186
v192192079.22 18078.03 18682.80 18683.30 29963.94 22486.80 18790.33 15069.91 21877.48 18485.53 26958.44 20693.75 14573.60 16376.85 28790.71 184
tttt051779.40 17677.91 18983.90 14588.10 18663.84 22588.37 13684.05 28771.45 18376.78 20289.12 17149.93 29394.89 9870.18 19783.18 21492.96 114
thisisatest051577.33 22875.38 24483.18 16785.27 25763.80 22682.11 28983.27 29965.06 29475.91 22283.84 30549.54 29594.27 11867.24 22786.19 16791.48 159
diffmvspermissive82.10 11381.88 11582.76 19183.00 30963.78 22783.68 26589.76 16672.94 16182.02 11489.85 15165.96 12290.79 26182.38 8387.30 15093.71 73
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_yl81.17 13280.47 13483.24 16489.13 14663.62 22886.21 20689.95 16272.43 16881.78 11989.61 15757.50 21593.58 14970.75 19086.90 15592.52 125
DCV-MVSNet81.17 13280.47 13483.24 16489.13 14663.62 22886.21 20689.95 16272.43 16881.78 11989.61 15757.50 21593.58 14970.75 19086.90 15592.52 125
AllTest70.96 30668.09 32179.58 25985.15 26063.62 22884.58 24679.83 34462.31 32960.32 38286.73 23332.02 38888.96 29450.28 35471.57 35186.15 319
TestCases79.58 25985.15 26063.62 22879.83 34462.31 32960.32 38286.73 23332.02 38888.96 29450.28 35471.57 35186.15 319
v124078.99 18777.78 19582.64 19283.21 30163.54 23286.62 19490.30 15269.74 22577.33 18785.68 26557.04 22093.76 14473.13 17176.92 28490.62 186
CHOSEN 280x42066.51 34464.71 34571.90 34981.45 33763.52 23357.98 41268.95 39653.57 38262.59 37576.70 38046.22 32475.29 39555.25 32879.68 25476.88 392
IterMVS74.29 26972.94 27578.35 28281.53 33663.49 23481.58 29482.49 31468.06 25869.99 31383.69 31151.66 27385.54 33065.85 23971.64 35086.01 323
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_NR-MVSNet81.88 11881.54 11882.92 18088.46 17163.46 23587.13 17492.37 8180.19 1278.38 16589.14 17071.66 5593.05 18270.05 19876.46 29292.25 136
DU-MVS81.12 13480.52 13382.90 18187.80 20163.46 23587.02 17991.87 10379.01 2678.38 16589.07 17265.02 12993.05 18270.05 19876.46 29292.20 139
LFMVS81.82 12081.23 12183.57 15391.89 7663.43 23789.84 7881.85 32277.04 6183.21 10093.10 7252.26 25893.43 16071.98 18089.95 11393.85 65
NR-MVSNet80.23 15879.38 15582.78 18987.80 20163.34 23886.31 20391.09 12979.01 2672.17 29089.07 17267.20 10692.81 19166.08 23775.65 30592.20 139
IS-MVSNet83.15 9982.81 9884.18 12389.94 11563.30 23991.59 4388.46 21379.04 2579.49 14592.16 9365.10 12894.28 11767.71 22191.86 8694.95 11
TR-MVS77.44 22576.18 23181.20 22288.24 17963.24 24084.61 24586.40 25667.55 26277.81 17886.48 24954.10 24293.15 17657.75 31282.72 22087.20 297
MVS_Test83.15 9983.06 9383.41 15886.86 22763.21 24186.11 20992.00 9574.31 12682.87 10589.44 16770.03 7493.21 16977.39 12688.50 13693.81 69
IterMVS-LS80.06 16179.38 15582.11 20085.89 24563.20 24286.79 18889.34 17974.19 12975.45 23386.72 23566.62 10992.39 20472.58 17676.86 28690.75 182
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet80.52 15279.98 14282.12 19984.28 27663.19 24386.41 19988.95 19974.18 13078.69 15687.54 21566.62 10992.43 20272.57 17780.57 24590.74 183
CANet_DTU80.61 14779.87 14582.83 18385.60 25163.17 24487.36 16888.65 20976.37 8175.88 22388.44 19153.51 24893.07 18173.30 16889.74 11692.25 136
MGCFI-Net85.06 6985.51 5983.70 14989.42 13063.01 24589.43 9392.62 7376.43 7687.53 4091.34 11772.82 4293.42 16181.28 9188.74 13194.66 31
GBi-Net78.40 19977.40 20581.40 21687.60 21063.01 24588.39 13389.28 18171.63 17775.34 23887.28 21954.80 23391.11 25162.72 26179.57 25590.09 211
test178.40 19977.40 20581.40 21687.60 21063.01 24588.39 13389.28 18171.63 17775.34 23887.28 21954.80 23391.11 25162.72 26179.57 25590.09 211
FMVSNet177.44 22576.12 23281.40 21686.81 23063.01 24588.39 13389.28 18170.49 20474.39 26387.28 21949.06 30491.11 25160.91 28278.52 26690.09 211
TAPA-MVS73.13 979.15 18277.94 18882.79 18889.59 12262.99 24988.16 14491.51 11565.77 28577.14 19791.09 12660.91 18693.21 16950.26 35687.05 15392.17 141
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
RRT-MVS82.60 11082.10 10984.10 12587.98 19362.94 25087.45 16691.27 12177.42 4979.85 14090.28 14256.62 22494.70 10779.87 10688.15 14094.67 28
FMVSNet278.20 20577.21 20981.20 22287.60 21062.89 25187.47 16489.02 19471.63 17775.29 24487.28 21954.80 23391.10 25462.38 26679.38 25989.61 233
GA-MVS76.87 23575.17 24881.97 20482.75 31562.58 25281.44 29886.35 25872.16 17274.74 25682.89 32546.20 32592.02 21868.85 21381.09 23791.30 164
D2MVS74.82 26673.21 27179.64 25879.81 35962.56 25380.34 31687.35 23664.37 30368.86 32582.66 32946.37 32190.10 27067.91 22081.24 23586.25 316
FMVSNet377.88 21576.85 21780.97 23086.84 22962.36 25486.52 19788.77 20371.13 18875.34 23886.66 24154.07 24391.10 25462.72 26179.57 25589.45 237
TranMVSNet+NR-MVSNet80.84 13880.31 13782.42 19687.85 19862.33 25587.74 15891.33 12080.55 977.99 17689.86 15065.23 12792.62 19267.05 23075.24 31992.30 134
131476.53 24075.30 24780.21 24583.93 28562.32 25684.66 24288.81 20160.23 34470.16 31084.07 30255.30 23090.73 26367.37 22583.21 21387.59 289
MG-MVS83.41 9483.45 8683.28 16192.74 6562.28 25788.17 14389.50 17575.22 10181.49 12292.74 8766.75 10895.11 8772.85 17391.58 8992.45 130
SCA74.22 27172.33 28279.91 25084.05 28362.17 25879.96 32179.29 35066.30 27972.38 28780.13 35551.95 26688.60 30059.25 29577.67 27888.96 254
PMMVS69.34 32368.67 31471.35 35575.67 38162.03 25975.17 36573.46 38250.00 39268.68 32679.05 36452.07 26478.13 37261.16 28182.77 21873.90 396
eth_miper_zixun_eth77.92 21476.69 22381.61 21183.00 30961.98 26083.15 27689.20 18769.52 22774.86 25584.35 29561.76 16792.56 19771.50 18472.89 34190.28 202
v14878.72 19377.80 19481.47 21382.73 31661.96 26186.30 20488.08 21873.26 15476.18 21885.47 27162.46 15692.36 20671.92 18173.82 33390.09 211
PAPM77.68 22276.40 22981.51 21287.29 22261.85 26283.78 26389.59 17264.74 29871.23 29988.70 18162.59 15393.66 14852.66 34187.03 15489.01 250
cl2278.07 20977.01 21281.23 22182.37 32561.83 26383.55 27087.98 22068.96 24475.06 25183.87 30361.40 17691.88 22473.53 16476.39 29489.98 220
baseline275.70 25573.83 26681.30 21983.26 30061.79 26482.57 28580.65 33366.81 26766.88 34383.42 31557.86 21192.19 21363.47 25579.57 25589.91 222
JIA-IIPM66.32 34662.82 35776.82 30477.09 37661.72 26565.34 40575.38 37358.04 36464.51 36462.32 40442.05 35686.51 31951.45 34769.22 36282.21 372
miper_ehance_all_eth78.59 19777.76 19781.08 22682.66 31861.56 26683.65 26689.15 18968.87 24575.55 22983.79 30766.49 11292.03 21773.25 16976.39 29489.64 232
c3_l78.75 19177.91 18981.26 22082.89 31361.56 26684.09 26089.13 19169.97 21675.56 22884.29 29666.36 11492.09 21673.47 16675.48 30990.12 208
miper_enhance_ethall77.87 21676.86 21680.92 23181.65 33261.38 26882.68 28388.98 19665.52 28975.47 23082.30 33465.76 12492.00 21972.95 17276.39 29489.39 238
mmtdpeth74.16 27273.01 27477.60 29683.72 29161.13 26985.10 23385.10 27272.06 17377.21 19580.33 35343.84 34385.75 32677.14 12952.61 40085.91 326
ppachtmachnet_test70.04 31767.34 33578.14 28579.80 36061.13 26979.19 33080.59 33459.16 35465.27 35979.29 36346.75 31887.29 31349.33 36066.72 36986.00 325
TDRefinement67.49 33664.34 34676.92 30373.47 39461.07 27184.86 23982.98 30859.77 34858.30 38985.13 27926.06 39887.89 30847.92 37160.59 38781.81 376
VNet82.21 11282.41 10381.62 20990.82 9360.93 27284.47 24889.78 16576.36 8284.07 8791.88 9964.71 13290.26 26770.68 19288.89 12693.66 74
ab-mvs79.51 17078.97 16781.14 22488.46 17160.91 27383.84 26289.24 18570.36 20579.03 15088.87 17863.23 14490.21 26965.12 24482.57 22292.28 135
PatchmatchNetpermissive73.12 28771.33 29378.49 28083.18 30360.85 27479.63 32378.57 35464.13 30571.73 29479.81 36051.20 27785.97 32557.40 31576.36 29988.66 266
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
VPA-MVSNet80.60 14880.55 13280.76 23488.07 18860.80 27586.86 18591.58 11375.67 9580.24 13689.45 16663.34 14090.25 26870.51 19479.22 26291.23 165
EGC-MVSNET52.07 37547.05 37967.14 37683.51 29560.71 27680.50 31367.75 3980.07 4250.43 42675.85 38724.26 40381.54 35828.82 40862.25 38159.16 408
Anonymous20240521178.25 20277.01 21281.99 20391.03 8760.67 27784.77 24083.90 28970.65 20280.00 13991.20 12241.08 36091.43 24465.21 24385.26 17893.85 65
ITE_SJBPF78.22 28381.77 33160.57 27883.30 29869.25 23367.54 33587.20 22436.33 38087.28 31454.34 33374.62 32586.80 308
MDA-MVSNet-bldmvs66.68 34263.66 35175.75 31179.28 36760.56 27973.92 37478.35 35564.43 30150.13 40479.87 35944.02 34283.67 34546.10 37956.86 39083.03 365
cl____77.72 21976.76 22080.58 23782.49 32260.48 28083.09 27887.87 22469.22 23474.38 26485.22 27762.10 16391.53 23871.09 18775.41 31389.73 231
DIV-MVS_self_test77.72 21976.76 22080.58 23782.48 32360.48 28083.09 27887.86 22569.22 23474.38 26485.24 27562.10 16391.53 23871.09 18775.40 31489.74 230
1112_ss77.40 22776.43 22880.32 24389.11 15060.41 28283.65 26687.72 22962.13 33273.05 27786.72 23562.58 15489.97 27362.11 27280.80 24190.59 189
tt080578.73 19277.83 19281.43 21485.17 25860.30 28389.41 9690.90 13271.21 18777.17 19688.73 18046.38 32093.21 16972.57 17778.96 26390.79 179
UniMVSNet_ETH3D79.10 18478.24 18281.70 20886.85 22860.24 28487.28 17288.79 20274.25 12876.84 19990.53 14049.48 29691.56 23567.98 21982.15 22593.29 94
HY-MVS69.67 1277.95 21377.15 21080.36 24187.57 21460.21 28583.37 27387.78 22866.11 28075.37 23787.06 23063.27 14290.48 26661.38 27982.43 22390.40 197
sd_testset77.70 22177.40 20578.60 27489.03 15160.02 28679.00 33385.83 26575.19 10376.61 20889.98 14854.81 23285.46 33262.63 26583.55 20790.33 199
RPSCF73.23 28671.46 29078.54 27782.50 32159.85 28782.18 28882.84 31258.96 35671.15 30189.41 16845.48 33584.77 33958.82 30171.83 34991.02 174
test_cas_vis1_n_192073.76 27873.74 26773.81 33575.90 37959.77 28880.51 31282.40 31558.30 36181.62 12185.69 26444.35 34076.41 38476.29 13678.61 26485.23 336
dmvs_re71.14 30470.58 30072.80 34381.96 32859.68 28975.60 36379.34 34968.55 25069.27 32380.72 35049.42 29776.54 38152.56 34277.79 27582.19 373
miper_lstm_enhance74.11 27373.11 27377.13 30280.11 35459.62 29072.23 37886.92 24866.76 26970.40 30582.92 32456.93 22182.92 35169.06 21072.63 34288.87 257
OurMVSNet-221017-074.26 27072.42 28179.80 25383.76 29059.59 29185.92 21486.64 25166.39 27866.96 34287.58 21139.46 36691.60 23265.76 24069.27 36188.22 275
Patchmatch-RL test70.24 31567.78 32877.61 29477.43 37459.57 29271.16 38270.33 38962.94 32168.65 32772.77 39450.62 28385.49 33169.58 20566.58 37187.77 284
OpenMVS_ROBcopyleft64.09 1970.56 31268.19 31877.65 29380.26 35159.41 29385.01 23582.96 30958.76 35865.43 35882.33 33337.63 37791.23 25045.34 38476.03 30182.32 371
our_test_369.14 32467.00 33775.57 31479.80 36058.80 29477.96 34877.81 35759.55 35062.90 37478.25 37347.43 31183.97 34351.71 34567.58 36883.93 354
ADS-MVSNet266.20 34963.33 35274.82 32579.92 35658.75 29567.55 39775.19 37453.37 38365.25 36075.86 38542.32 35280.53 36441.57 39268.91 36385.18 337
pm-mvs177.25 23076.68 22478.93 26984.22 27858.62 29686.41 19988.36 21471.37 18473.31 27388.01 20561.22 18189.15 28964.24 25273.01 34089.03 249
MonoMVSNet76.49 24475.80 23378.58 27581.55 33558.45 29786.36 20286.22 25974.87 11374.73 25783.73 30951.79 27188.73 29770.78 18972.15 34688.55 270
WR-MVS79.49 17179.22 16280.27 24488.79 15958.35 29885.06 23488.61 21178.56 3077.65 18188.34 19363.81 13990.66 26464.98 24677.22 28191.80 150
FIs82.07 11582.42 10281.04 22788.80 15858.34 29988.26 14093.49 2676.93 6378.47 16491.04 12869.92 7692.34 20869.87 20284.97 18092.44 131
CostFormer75.24 26473.90 26479.27 26382.65 31958.27 30080.80 30482.73 31361.57 33575.33 24283.13 32055.52 22891.07 25764.98 24678.34 27188.45 271
Test_1112_low_res76.40 24675.44 24179.27 26389.28 14058.09 30181.69 29387.07 24359.53 35172.48 28586.67 24061.30 17889.33 28460.81 28480.15 25090.41 196
tfpnnormal74.39 26873.16 27278.08 28686.10 24458.05 30284.65 24487.53 23270.32 20771.22 30085.63 26754.97 23189.86 27443.03 38875.02 32186.32 315
test-LLR72.94 29172.43 28074.48 32881.35 34058.04 30378.38 34277.46 36066.66 27169.95 31479.00 36648.06 30979.24 36766.13 23484.83 18186.15 319
test-mter71.41 30270.39 30574.48 32881.35 34058.04 30378.38 34277.46 36060.32 34369.95 31479.00 36636.08 38179.24 36766.13 23484.83 18186.15 319
mvs_anonymous79.42 17579.11 16480.34 24284.45 27557.97 30582.59 28487.62 23067.40 26576.17 22088.56 18868.47 9289.59 28070.65 19386.05 17093.47 88
tpm cat170.57 31168.31 31777.35 29982.41 32457.95 30678.08 34780.22 34252.04 38668.54 32977.66 37752.00 26587.84 30951.77 34472.07 34886.25 316
SixPastTwentyTwo73.37 28271.26 29579.70 25585.08 26357.89 30785.57 22083.56 29471.03 19265.66 35685.88 26042.10 35592.57 19659.11 29763.34 38088.65 267
thres20075.55 25774.47 25678.82 27087.78 20457.85 30883.07 28083.51 29572.44 16775.84 22484.42 29152.08 26391.75 22847.41 37283.64 20686.86 307
XXY-MVS75.41 26175.56 23974.96 32383.59 29357.82 30980.59 31183.87 29066.54 27774.93 25488.31 19463.24 14380.09 36562.16 27076.85 28786.97 305
reproduce_monomvs75.40 26274.38 25878.46 28183.92 28657.80 31083.78 26386.94 24673.47 14872.25 28984.47 29038.74 37089.27 28675.32 15070.53 35688.31 274
K. test v371.19 30368.51 31579.21 26583.04 30857.78 31184.35 25576.91 36772.90 16262.99 37382.86 32639.27 36791.09 25661.65 27652.66 39988.75 263
tfpn200view976.42 24575.37 24579.55 26189.13 14657.65 31285.17 22983.60 29273.41 15076.45 21086.39 25152.12 26091.95 22048.33 36583.75 20189.07 243
thres40076.50 24175.37 24579.86 25189.13 14657.65 31285.17 22983.60 29273.41 15076.45 21086.39 25152.12 26091.95 22048.33 36583.75 20190.00 217
CMPMVSbinary51.72 2170.19 31668.16 31976.28 30773.15 39757.55 31479.47 32583.92 28848.02 39556.48 39584.81 28643.13 34786.42 32162.67 26481.81 23184.89 342
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs674.69 26773.39 26978.61 27381.38 33957.48 31586.64 19387.95 22264.99 29770.18 30886.61 24250.43 28689.52 28162.12 27170.18 35888.83 259
test_vis1_n_192075.52 25875.78 23474.75 32779.84 35857.44 31683.26 27485.52 26862.83 32379.34 14886.17 25645.10 33679.71 36678.75 11181.21 23687.10 304
PVSNet_057.27 2061.67 36059.27 36368.85 36879.61 36357.44 31668.01 39573.44 38355.93 37658.54 38870.41 39944.58 33877.55 37647.01 37335.91 41171.55 399
thres600view776.50 24175.44 24179.68 25689.40 13257.16 31885.53 22683.23 30073.79 13876.26 21587.09 22851.89 26891.89 22348.05 37083.72 20490.00 217
lessismore_v078.97 26881.01 34557.15 31965.99 40261.16 37982.82 32739.12 36891.34 24759.67 29146.92 40688.43 272
TransMVSNet (Re)75.39 26374.56 25477.86 28885.50 25357.10 32086.78 18986.09 26372.17 17171.53 29787.34 21863.01 15089.31 28556.84 32161.83 38287.17 298
thres100view90076.50 24175.55 24079.33 26289.52 12556.99 32185.83 21883.23 30073.94 13476.32 21487.12 22751.89 26891.95 22048.33 36583.75 20189.07 243
TESTMET0.1,169.89 31969.00 31372.55 34579.27 36856.85 32278.38 34274.71 37957.64 36668.09 33177.19 37937.75 37676.70 38063.92 25384.09 19684.10 352
WTY-MVS75.65 25675.68 23675.57 31486.40 23756.82 32377.92 35082.40 31565.10 29376.18 21887.72 20763.13 14980.90 36260.31 28681.96 22889.00 252
MDA-MVSNet_test_wron65.03 35062.92 35471.37 35375.93 37856.73 32469.09 39474.73 37857.28 37054.03 39977.89 37445.88 32774.39 39849.89 35861.55 38382.99 366
pmmvs357.79 36454.26 36968.37 37164.02 41256.72 32575.12 36865.17 40440.20 40452.93 40069.86 40020.36 40975.48 39245.45 38355.25 39772.90 398
tpm273.26 28571.46 29078.63 27283.34 29856.71 32680.65 31080.40 33956.63 37373.55 27182.02 33951.80 27091.24 24956.35 32578.42 26987.95 279
TinyColmap67.30 33964.81 34474.76 32681.92 33056.68 32780.29 31781.49 32560.33 34256.27 39683.22 31724.77 40287.66 31245.52 38269.47 36079.95 385
YYNet165.03 35062.91 35571.38 35275.85 38056.60 32869.12 39374.66 38057.28 37054.12 39877.87 37545.85 32874.48 39749.95 35761.52 38483.05 364
PM-MVS66.41 34564.14 34773.20 34073.92 38956.45 32978.97 33464.96 40663.88 31364.72 36380.24 35419.84 41083.44 34866.24 23364.52 37879.71 386
PVSNet64.34 1872.08 29970.87 29975.69 31286.21 23956.44 33074.37 37280.73 33262.06 33370.17 30982.23 33642.86 34983.31 34954.77 33184.45 19087.32 295
pmmvs571.55 30170.20 30775.61 31377.83 37256.39 33181.74 29280.89 32957.76 36567.46 33784.49 28949.26 30185.32 33457.08 31875.29 31785.11 340
testing1175.14 26574.01 26178.53 27888.16 18156.38 33280.74 30880.42 33870.67 19872.69 28383.72 31043.61 34589.86 27462.29 26883.76 20089.36 239
WR-MVS_H78.51 19878.49 17478.56 27688.02 19056.38 33288.43 13192.67 6777.14 5773.89 26787.55 21466.25 11689.24 28758.92 29973.55 33590.06 215
MIMVSNet70.69 31069.30 30974.88 32484.52 27356.35 33475.87 36179.42 34864.59 29967.76 33282.41 33141.10 35981.54 35846.64 37681.34 23386.75 310
USDC70.33 31468.37 31676.21 30880.60 34856.23 33579.19 33086.49 25460.89 33961.29 37885.47 27131.78 39089.47 28353.37 33876.21 30082.94 367
Baseline_NR-MVSNet78.15 20778.33 18077.61 29485.79 24656.21 33686.78 18985.76 26673.60 14377.93 17787.57 21265.02 12988.99 29167.14 22975.33 31687.63 286
tpmvs71.09 30569.29 31076.49 30682.04 32756.04 33778.92 33581.37 32764.05 30967.18 34178.28 37249.74 29489.77 27649.67 35972.37 34383.67 357
FC-MVSNet-test81.52 12782.02 11280.03 24888.42 17455.97 33887.95 15093.42 2977.10 5977.38 18690.98 13469.96 7591.79 22668.46 21784.50 18692.33 132
testing9176.54 23975.66 23879.18 26688.43 17355.89 33981.08 30183.00 30773.76 13975.34 23884.29 29646.20 32590.07 27164.33 25084.50 18691.58 154
mvs5depth69.45 32267.45 33475.46 31873.93 38855.83 34079.19 33083.23 30066.89 26671.63 29683.32 31633.69 38685.09 33559.81 29055.34 39685.46 332
GG-mvs-BLEND75.38 31981.59 33455.80 34179.32 32769.63 39267.19 34073.67 39243.24 34688.90 29650.41 35184.50 18681.45 377
VPNet78.69 19478.66 17178.76 27188.31 17755.72 34284.45 25186.63 25276.79 6778.26 16890.55 13959.30 20189.70 27966.63 23277.05 28390.88 177
baseline176.98 23376.75 22277.66 29288.13 18455.66 34385.12 23281.89 32073.04 15976.79 20188.90 17662.43 15787.78 31063.30 25871.18 35389.55 235
test_vis1_rt60.28 36158.42 36465.84 37867.25 40755.60 34470.44 38760.94 41144.33 40059.00 38666.64 40124.91 40168.67 40862.80 26069.48 35973.25 397
testing9976.09 25175.12 24979.00 26788.16 18155.50 34580.79 30581.40 32673.30 15375.17 24684.27 29844.48 33990.02 27264.28 25184.22 19591.48 159
testing22274.04 27472.66 27878.19 28487.89 19655.36 34681.06 30279.20 35171.30 18574.65 25983.57 31339.11 36988.67 29951.43 34885.75 17690.53 191
FMVSNet569.50 32167.96 32274.15 33282.97 31255.35 34780.01 32082.12 31862.56 32763.02 37181.53 34136.92 37881.92 35648.42 36474.06 32985.17 339
test_fmvs1_n70.86 30870.24 30672.73 34472.51 40155.28 34881.27 30079.71 34651.49 39078.73 15584.87 28427.54 39777.02 37876.06 13979.97 25385.88 327
test_vis1_n69.85 32069.21 31171.77 35072.66 40055.27 34981.48 29676.21 37152.03 38775.30 24383.20 31928.97 39576.22 38674.60 15478.41 27083.81 355
test_fmvs170.93 30770.52 30172.16 34873.71 39055.05 35080.82 30378.77 35351.21 39178.58 16084.41 29231.20 39276.94 37975.88 14280.12 25284.47 347
sss73.60 27973.64 26873.51 33782.80 31455.01 35176.12 35781.69 32362.47 32874.68 25885.85 26257.32 21778.11 37360.86 28380.93 23887.39 292
mvsany_test162.30 35861.26 36265.41 37969.52 40354.86 35266.86 39949.78 41946.65 39668.50 33083.21 31849.15 30266.28 41156.93 32060.77 38575.11 395
ECVR-MVScopyleft79.61 16779.26 16080.67 23690.08 10854.69 35387.89 15477.44 36274.88 11180.27 13592.79 8448.96 30692.45 20168.55 21592.50 7794.86 18
EPNet_dtu75.46 25974.86 25077.23 30182.57 32054.60 35486.89 18483.09 30471.64 17666.25 35485.86 26155.99 22688.04 30754.92 33086.55 16189.05 248
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CP-MVSNet78.22 20378.34 17977.84 28987.83 20054.54 35587.94 15191.17 12577.65 3973.48 27288.49 18962.24 16188.43 30262.19 26974.07 32890.55 190
gg-mvs-nofinetune69.95 31867.96 32275.94 30983.07 30654.51 35677.23 35470.29 39063.11 31770.32 30662.33 40343.62 34488.69 29853.88 33587.76 14484.62 346
PS-CasMVS78.01 21278.09 18577.77 29187.71 20654.39 35788.02 14791.22 12277.50 4773.26 27488.64 18460.73 18788.41 30361.88 27373.88 33290.53 191
Anonymous2024052168.80 32767.22 33673.55 33674.33 38654.11 35883.18 27585.61 26758.15 36261.68 37780.94 34730.71 39381.27 36057.00 31973.34 33985.28 335
Patchmtry70.74 30969.16 31275.49 31780.72 34654.07 35974.94 37080.30 34058.34 36070.01 31181.19 34252.50 25486.54 31853.37 33871.09 35485.87 328
PEN-MVS77.73 21877.69 20077.84 28987.07 22653.91 36087.91 15391.18 12477.56 4473.14 27688.82 17961.23 18089.17 28859.95 28872.37 34390.43 195
gm-plane-assit81.40 33853.83 36162.72 32680.94 34792.39 20463.40 257
CL-MVSNet_self_test72.37 29571.46 29075.09 32279.49 36553.53 36280.76 30785.01 27569.12 23870.51 30382.05 33857.92 21084.13 34252.27 34366.00 37487.60 287
MDTV_nov1_ep1369.97 30883.18 30353.48 36377.10 35580.18 34360.45 34169.33 32280.44 35148.89 30786.90 31551.60 34678.51 267
KD-MVS_2432*160066.22 34763.89 34973.21 33875.47 38453.42 36470.76 38584.35 28164.10 30766.52 35078.52 37034.55 38484.98 33650.40 35250.33 40381.23 378
miper_refine_blended66.22 34763.89 34973.21 33875.47 38453.42 36470.76 38584.35 28164.10 30766.52 35078.52 37034.55 38484.98 33650.40 35250.33 40381.23 378
test111179.43 17479.18 16380.15 24689.99 11353.31 36687.33 17077.05 36675.04 10680.23 13792.77 8648.97 30592.33 20968.87 21292.40 7994.81 21
LF4IMVS64.02 35462.19 35869.50 36470.90 40253.29 36776.13 35677.18 36552.65 38558.59 38780.98 34623.55 40576.52 38253.06 34066.66 37078.68 388
MVStest156.63 36652.76 37268.25 37361.67 41453.25 36871.67 38068.90 39738.59 40750.59 40383.05 32125.08 40070.66 40436.76 40138.56 41080.83 381
DTE-MVSNet76.99 23276.80 21877.54 29786.24 23853.06 36987.52 16290.66 13877.08 6072.50 28488.67 18360.48 19589.52 28157.33 31670.74 35590.05 216
test250677.30 22976.49 22679.74 25490.08 10852.02 37087.86 15663.10 40874.88 11180.16 13892.79 8438.29 37492.35 20768.74 21492.50 7794.86 18
tpm72.37 29571.71 28774.35 33082.19 32652.00 37179.22 32977.29 36464.56 30072.95 27983.68 31251.35 27483.26 35058.33 30775.80 30387.81 283
test_fmvs268.35 33367.48 33370.98 35969.50 40451.95 37280.05 31976.38 37049.33 39374.65 25984.38 29323.30 40675.40 39474.51 15575.17 32085.60 330
ETVMVS72.25 29771.05 29675.84 31087.77 20551.91 37379.39 32674.98 37569.26 23273.71 26982.95 32340.82 36286.14 32346.17 37884.43 19189.47 236
WB-MVSnew71.96 30071.65 28872.89 34284.67 27251.88 37482.29 28777.57 35962.31 32973.67 27083.00 32253.49 24981.10 36145.75 38182.13 22685.70 329
MIMVSNet168.58 32966.78 33973.98 33480.07 35551.82 37580.77 30684.37 28064.40 30259.75 38582.16 33736.47 37983.63 34642.73 38970.33 35786.48 314
Vis-MVSNet (Re-imp)78.36 20178.45 17578.07 28788.64 16551.78 37686.70 19279.63 34774.14 13175.11 24990.83 13561.29 17989.75 27758.10 30991.60 8892.69 120
LCM-MVSNet-Re77.05 23176.94 21577.36 29887.20 22351.60 37780.06 31880.46 33775.20 10267.69 33486.72 23562.48 15588.98 29263.44 25689.25 12191.51 156
Gipumacopyleft45.18 38241.86 38555.16 39477.03 37751.52 37832.50 41880.52 33532.46 41427.12 41735.02 4189.52 42175.50 39122.31 41560.21 38838.45 417
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
UnsupCasMVSNet_eth67.33 33865.99 34271.37 35373.48 39351.47 37975.16 36685.19 27165.20 29260.78 38080.93 34942.35 35177.20 37757.12 31753.69 39885.44 333
UnsupCasMVSNet_bld63.70 35561.53 36170.21 36273.69 39151.39 38072.82 37681.89 32055.63 37757.81 39171.80 39638.67 37178.61 37049.26 36152.21 40180.63 382
UBG73.08 28872.27 28375.51 31688.02 19051.29 38178.35 34577.38 36365.52 28973.87 26882.36 33245.55 33286.48 32055.02 32984.39 19288.75 263
FPMVS53.68 37151.64 37359.81 38665.08 41051.03 38269.48 39069.58 39341.46 40340.67 41072.32 39516.46 41470.00 40724.24 41465.42 37558.40 410
WBMVS73.43 28172.81 27675.28 32087.91 19550.99 38378.59 34181.31 32865.51 29174.47 26284.83 28546.39 31986.68 31758.41 30577.86 27488.17 277
CVMVSNet72.99 29072.58 27974.25 33184.28 27650.85 38486.41 19983.45 29744.56 39973.23 27587.54 21549.38 29885.70 32765.90 23878.44 26886.19 318
Anonymous2023120668.60 32867.80 32771.02 35880.23 35350.75 38578.30 34680.47 33656.79 37266.11 35582.63 33046.35 32278.95 36943.62 38775.70 30483.36 360
ambc75.24 32173.16 39650.51 38663.05 41087.47 23464.28 36577.81 37617.80 41289.73 27857.88 31160.64 38685.49 331
APD_test153.31 37249.93 37763.42 38265.68 40950.13 38771.59 38166.90 40134.43 41240.58 41171.56 3978.65 42376.27 38534.64 40455.36 39563.86 406
tpmrst72.39 29372.13 28473.18 34180.54 34949.91 38879.91 32279.08 35263.11 31771.69 29579.95 35755.32 22982.77 35265.66 24173.89 33186.87 306
Patchmatch-test64.82 35263.24 35369.57 36379.42 36649.82 38963.49 40969.05 39551.98 38859.95 38480.13 35550.91 27970.98 40340.66 39473.57 33487.90 281
EPMVS69.02 32568.16 31971.59 35179.61 36349.80 39077.40 35266.93 40062.82 32470.01 31179.05 36445.79 32977.86 37556.58 32375.26 31887.13 301
dp66.80 34165.43 34370.90 36079.74 36248.82 39175.12 36874.77 37759.61 34964.08 36777.23 37842.89 34880.72 36348.86 36366.58 37183.16 362
UWE-MVS72.13 29871.49 28974.03 33386.66 23447.70 39281.40 29976.89 36863.60 31475.59 22784.22 29939.94 36585.62 32948.98 36286.13 16988.77 262
test0.0.03 168.00 33567.69 32968.90 36777.55 37347.43 39375.70 36272.95 38666.66 27166.56 34882.29 33548.06 30975.87 38944.97 38574.51 32683.41 359
ADS-MVSNet64.36 35362.88 35668.78 36979.92 35647.17 39467.55 39771.18 38853.37 38365.25 36075.86 38542.32 35273.99 39941.57 39268.91 36385.18 337
EU-MVSNet68.53 33167.61 33171.31 35678.51 37147.01 39584.47 24884.27 28442.27 40266.44 35384.79 28740.44 36383.76 34458.76 30268.54 36683.17 361
test_fmvs363.36 35661.82 35967.98 37462.51 41346.96 39677.37 35374.03 38145.24 39867.50 33678.79 36912.16 41872.98 40272.77 17566.02 37383.99 353
ttmdpeth59.91 36257.10 36668.34 37267.13 40846.65 39774.64 37167.41 39948.30 39462.52 37685.04 28320.40 40875.93 38842.55 39045.90 40982.44 370
KD-MVS_self_test68.81 32667.59 33272.46 34774.29 38745.45 39877.93 34987.00 24463.12 31663.99 36878.99 36842.32 35284.77 33956.55 32464.09 37987.16 300
testf145.72 37941.96 38357.00 38856.90 41645.32 39966.14 40259.26 41326.19 41630.89 41560.96 4074.14 42670.64 40526.39 41246.73 40755.04 411
APD_test245.72 37941.96 38357.00 38856.90 41645.32 39966.14 40259.26 41326.19 41630.89 41560.96 4074.14 42670.64 40526.39 41246.73 40755.04 411
LCM-MVSNet54.25 36849.68 37867.97 37553.73 42245.28 40166.85 40080.78 33135.96 41139.45 41262.23 4058.70 42278.06 37448.24 36851.20 40280.57 383
test_vis3_rt49.26 37847.02 38056.00 39054.30 41945.27 40266.76 40148.08 42036.83 40944.38 40853.20 4137.17 42564.07 41356.77 32255.66 39358.65 409
test20.0367.45 33766.95 33868.94 36675.48 38344.84 40377.50 35177.67 35866.66 27163.01 37283.80 30647.02 31578.40 37142.53 39168.86 36583.58 358
mvsany_test353.99 36951.45 37461.61 38455.51 41844.74 40463.52 40845.41 42343.69 40158.11 39076.45 38217.99 41163.76 41454.77 33147.59 40576.34 393
PatchT68.46 33267.85 32470.29 36180.70 34743.93 40572.47 37774.88 37660.15 34570.55 30276.57 38149.94 29181.59 35750.58 35074.83 32385.34 334
MVS-HIRNet59.14 36357.67 36563.57 38181.65 33243.50 40671.73 37965.06 40539.59 40651.43 40157.73 40938.34 37382.58 35339.53 39573.95 33064.62 405
testing368.56 33067.67 33071.22 35787.33 22042.87 40783.06 28171.54 38770.36 20569.08 32484.38 29330.33 39485.69 32837.50 40075.45 31285.09 341
WAC-MVS42.58 40839.46 396
myMVS_eth3d67.02 34066.29 34169.21 36584.68 26942.58 40878.62 33973.08 38466.65 27466.74 34679.46 36131.53 39182.30 35439.43 39776.38 29782.75 368
PMVScopyleft37.38 2244.16 38340.28 38755.82 39240.82 42742.54 41065.12 40663.99 40734.43 41224.48 41857.12 4113.92 42876.17 38717.10 41955.52 39448.75 413
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_f52.09 37450.82 37555.90 39153.82 42142.31 41159.42 41158.31 41536.45 41056.12 39770.96 39812.18 41757.79 41753.51 33756.57 39267.60 402
testgi66.67 34366.53 34067.08 37775.62 38241.69 41275.93 35876.50 36966.11 28065.20 36286.59 24335.72 38274.71 39643.71 38673.38 33884.84 343
Syy-MVS68.05 33467.85 32468.67 37084.68 26940.97 41378.62 33973.08 38466.65 27466.74 34679.46 36152.11 26282.30 35432.89 40576.38 29782.75 368
ANet_high50.57 37746.10 38163.99 38048.67 42539.13 41470.99 38480.85 33061.39 33731.18 41457.70 41017.02 41373.65 40131.22 40715.89 42279.18 387
MDTV_nov1_ep13_2view37.79 41575.16 36655.10 37866.53 34949.34 29953.98 33487.94 280
DSMNet-mixed57.77 36556.90 36760.38 38567.70 40635.61 41669.18 39153.97 41732.30 41557.49 39279.88 35840.39 36468.57 40938.78 39872.37 34376.97 391
MVEpermissive26.22 2330.37 38925.89 39343.81 40044.55 42635.46 41728.87 41939.07 42418.20 42018.58 42240.18 4172.68 42947.37 42217.07 42023.78 41948.60 414
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
new_pmnet50.91 37650.29 37652.78 39668.58 40534.94 41863.71 40756.63 41639.73 40544.95 40765.47 40221.93 40758.48 41634.98 40356.62 39164.92 404
wuyk23d16.82 39215.94 39519.46 40658.74 41531.45 41939.22 4163.74 4316.84 4226.04 4252.70 4251.27 43024.29 42510.54 42514.40 4242.63 422
E-PMN31.77 38630.64 38935.15 40352.87 42327.67 42057.09 41347.86 42124.64 41816.40 42333.05 41911.23 41954.90 41914.46 42218.15 42022.87 419
kuosan39.70 38540.40 38637.58 40264.52 41126.98 42165.62 40433.02 42646.12 39742.79 40948.99 41524.10 40446.56 42312.16 42426.30 41739.20 416
DeepMVS_CXcopyleft27.40 40540.17 42826.90 42224.59 42917.44 42123.95 41948.61 4169.77 42026.48 42418.06 41724.47 41828.83 418
dongtai45.42 38145.38 38245.55 39973.36 39526.85 42367.72 39634.19 42554.15 38149.65 40556.41 41225.43 39962.94 41519.45 41628.09 41646.86 415
EMVS30.81 38829.65 39034.27 40450.96 42425.95 42456.58 41446.80 42224.01 41915.53 42430.68 42012.47 41654.43 42012.81 42317.05 42122.43 420
dmvs_testset62.63 35764.11 34858.19 38778.55 37024.76 42575.28 36465.94 40367.91 25960.34 38176.01 38453.56 24773.94 40031.79 40667.65 36775.88 394
new-patchmatchnet61.73 35961.73 36061.70 38372.74 39924.50 42669.16 39278.03 35661.40 33656.72 39475.53 38838.42 37276.48 38345.95 38057.67 38984.13 351
WB-MVS54.94 36754.72 36855.60 39373.50 39220.90 42774.27 37361.19 41059.16 35450.61 40274.15 39047.19 31475.78 39017.31 41835.07 41270.12 400
SSC-MVS53.88 37053.59 37054.75 39572.87 39819.59 42873.84 37560.53 41257.58 36849.18 40673.45 39346.34 32375.47 39316.20 42132.28 41469.20 401
PMMVS240.82 38438.86 38846.69 39853.84 42016.45 42948.61 41549.92 41837.49 40831.67 41360.97 4068.14 42456.42 41828.42 40930.72 41567.19 403
tmp_tt18.61 39121.40 39410.23 4074.82 43010.11 43034.70 41730.74 4281.48 42423.91 42026.07 42128.42 39613.41 42627.12 41015.35 4237.17 421
N_pmnet52.79 37353.26 37151.40 39778.99 3697.68 43169.52 3893.89 43051.63 38957.01 39374.98 38940.83 36165.96 41237.78 39964.67 37780.56 384
test_method31.52 38729.28 39138.23 40127.03 4296.50 43220.94 42062.21 4094.05 42322.35 42152.50 41413.33 41547.58 42127.04 41134.04 41360.62 407
test1236.12 3948.11 3970.14 4080.06 4320.09 43371.05 3830.03 4330.04 4270.25 4281.30 4270.05 4310.03 4280.21 4270.01 4260.29 423
testmvs6.04 3958.02 3980.10 4090.08 4310.03 43469.74 3880.04 4320.05 4260.31 4271.68 4260.02 4320.04 4270.24 4260.02 4250.25 424
mmdepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
monomultidepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
test_blank0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uanet_test0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
DCPMVS0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
cdsmvs_eth3d_5k19.96 39026.61 3920.00 4100.00 4330.00 4350.00 42189.26 1840.00 4280.00 42988.61 18561.62 1700.00 4290.00 4280.00 4270.00 425
pcd_1.5k_mvsjas5.26 3967.02 3990.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 42863.15 1460.00 4290.00 4280.00 4270.00 425
sosnet-low-res0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
sosnet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uncertanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
Regformer0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
ab-mvs-re7.23 3939.64 3960.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 42986.72 2350.00 4330.00 4290.00 4280.00 4270.00 425
uanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
PC_three_145268.21 25692.02 1294.00 5182.09 595.98 5684.58 5596.68 294.95 11
eth-test20.00 433
eth-test0.00 433
test_241102_TWO94.06 1077.24 5392.78 495.72 881.26 897.44 789.07 1696.58 694.26 48
9.1488.26 1592.84 6391.52 4894.75 173.93 13588.57 2594.67 2175.57 2295.79 5886.77 3795.76 23
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 989.42 1196.57 794.67 28
GSMVS88.96 254
sam_mvs151.32 27588.96 254
sam_mvs50.01 289
MTGPAbinary92.02 93
test_post178.90 3365.43 42448.81 30885.44 33359.25 295
test_post5.46 42350.36 28784.24 341
patchmatchnet-post74.00 39151.12 27888.60 300
MTMP92.18 3432.83 427
test9_res84.90 4895.70 2692.87 115
agg_prior282.91 7595.45 2992.70 118
test_prior288.85 11775.41 9884.91 6793.54 6174.28 2983.31 6995.86 20
旧先验286.56 19658.10 36387.04 4788.98 29274.07 160
新几何286.29 205
无先验87.48 16388.98 19660.00 34694.12 12567.28 22688.97 253
原ACMM286.86 185
testdata291.01 25862.37 267
segment_acmp73.08 38
testdata184.14 25975.71 92
plane_prior592.44 7795.38 7578.71 11286.32 16491.33 162
plane_prior491.00 132
plane_prior291.25 5279.12 23
plane_prior189.90 116
n20.00 434
nn0.00 434
door-mid69.98 391
test1192.23 87
door69.44 394
HQP-NCC89.33 13589.17 10376.41 7777.23 191
ACMP_Plane89.33 13589.17 10376.41 7777.23 191
BP-MVS77.47 124
HQP4-MVS77.24 19095.11 8791.03 172
HQP3-MVS92.19 9085.99 172
HQP2-MVS60.17 199
ACMMP++_ref81.95 229
ACMMP++81.25 234
Test By Simon64.33 133