This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
HPM-MVS++copyleft89.02 889.15 888.63 595.01 976.03 192.38 2792.85 5480.26 1187.78 2894.27 3275.89 1996.81 2387.45 3096.44 993.05 96
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
No_MVS89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5696.48 894.88 14
MTAPA87.23 2787.00 2887.90 2294.18 3574.25 586.58 18592.02 8579.45 1985.88 4494.80 1768.07 8796.21 4286.69 3495.34 3393.23 87
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 6477.57 4183.84 8094.40 3072.24 4396.28 4085.65 3695.30 3593.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVS87.11 2986.92 3187.68 3494.20 3473.86 793.98 392.82 5876.62 7083.68 8294.46 2567.93 8895.95 5284.20 5394.39 5393.23 87
CNVR-MVS88.93 989.13 988.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2395.99 1894.34 37
SMA-MVScopyleft89.08 789.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10792.29 795.97 274.28 2997.24 1288.58 2096.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MM88.97 473.65 1092.66 2391.17 11686.57 187.39 3394.97 1671.70 4997.68 192.19 195.63 2895.57 1
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5292.83 5581.50 585.79 4693.47 5973.02 3997.00 1884.90 4094.94 3994.10 45
ACMMPR87.44 2287.23 2688.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6494.52 2168.81 8296.65 3084.53 4794.90 4094.00 50
region2R87.42 2487.20 2788.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 6894.52 2169.09 7696.70 2784.37 4994.83 4494.03 49
mPP-MVS86.67 3686.32 3887.72 3094.41 2273.55 1392.74 2092.22 8076.87 6282.81 9594.25 3466.44 10396.24 4182.88 6594.28 5693.38 81
HFP-MVS87.58 2187.47 2387.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 5794.44 2870.78 5896.61 3284.53 4794.89 4193.66 65
3Dnovator+77.84 485.48 5384.47 6788.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19393.37 6060.40 18696.75 2677.20 11593.73 6295.29 5
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5894.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PGM-MVS86.68 3586.27 3987.90 2294.22 3373.38 1890.22 7093.04 3875.53 9183.86 7994.42 2967.87 9096.64 3182.70 7094.57 4993.66 65
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5194.32 3171.76 4796.93 1985.53 3795.79 2294.32 38
XVS87.18 2886.91 3288.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8394.17 3667.45 9396.60 3383.06 6194.50 5094.07 47
X-MVStestdata80.37 14277.83 17988.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8312.47 39467.45 9396.60 3383.06 6194.50 5094.07 47
ACMMP_NAP88.05 1688.08 1687.94 1993.70 4173.05 2290.86 5693.59 2376.27 7988.14 2495.09 1571.06 5696.67 2987.67 2796.37 1494.09 46
DPM-MVS84.93 6284.29 6886.84 4790.20 9973.04 2387.12 16793.04 3869.80 20482.85 9391.22 10873.06 3896.02 4776.72 12494.63 4791.46 146
GST-MVS87.42 2487.26 2487.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6193.99 4870.67 6096.82 2284.18 5495.01 3793.90 55
TEST993.26 5072.96 2588.75 11591.89 9368.44 23785.00 5593.10 6574.36 2895.41 67
train_agg86.43 3886.20 4087.13 4493.26 5072.96 2588.75 11591.89 9368.69 23285.00 5593.10 6574.43 2695.41 6784.97 3995.71 2593.02 98
SteuartSystems-ACMMP88.72 1088.86 1088.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 2995.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator76.31 583.38 8282.31 9286.59 5287.94 18072.94 2890.64 5992.14 8477.21 5275.47 21892.83 7458.56 19394.72 9973.24 15792.71 6992.13 128
SD-MVS88.06 1488.50 1386.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13687.63 2894.27 5793.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_111021_HR85.14 5984.75 6386.32 5591.65 7672.70 3085.98 20090.33 14176.11 8182.08 10091.61 9871.36 5594.17 12081.02 8092.58 7092.08 129
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8592.29 795.66 1081.67 697.38 1087.44 3196.34 1593.95 52
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part295.06 872.65 3291.80 13
ACMMPcopyleft85.89 4785.39 5387.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 11993.82 5364.33 12396.29 3982.67 7190.69 9493.23 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_prior472.60 3489.01 105
test_893.13 5272.57 3588.68 12091.84 9768.69 23284.87 5993.10 6574.43 2695.16 76
TSAR-MVS + GP.85.71 5085.33 5586.84 4791.34 7872.50 3689.07 10487.28 22876.41 7285.80 4590.22 13274.15 3195.37 7281.82 7591.88 7892.65 109
CSCG86.41 4086.19 4187.07 4592.91 5872.48 3790.81 5793.56 2473.95 12383.16 8991.07 11475.94 1895.19 7579.94 9294.38 5493.55 76
MCST-MVS87.37 2687.25 2587.73 2894.53 1772.46 3889.82 7793.82 1673.07 14784.86 6092.89 7276.22 1796.33 3884.89 4295.13 3694.40 34
FOURS195.00 1072.39 3995.06 193.84 1574.49 11391.30 15
APD-MVScopyleft87.44 2287.52 2287.19 4294.24 3272.39 3991.86 4192.83 5573.01 14988.58 2194.52 2173.36 3496.49 3684.26 5095.01 3792.70 105
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast79.65 386.91 3286.62 3587.76 2793.52 4672.37 4191.26 4893.04 3876.62 7084.22 7293.36 6171.44 5396.76 2580.82 8395.33 3494.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
save fliter93.80 4072.35 4290.47 6491.17 11674.31 116
DeepC-MVS79.81 287.08 3186.88 3387.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 9494.23 3572.13 4597.09 1684.83 4395.37 3293.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ZD-MVS94.38 2572.22 4492.67 6170.98 17987.75 3094.07 4174.01 3296.70 2784.66 4594.84 43
HPM-MVScopyleft87.11 2986.98 2987.50 3893.88 3972.16 4592.19 3493.33 3176.07 8283.81 8193.95 5169.77 7096.01 4885.15 3894.66 4694.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TSAR-MVS + MP.88.02 1788.11 1587.72 3093.68 4372.13 4691.41 4792.35 7474.62 11188.90 2093.85 5275.75 2096.00 4987.80 2694.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SR-MVS86.73 3386.67 3486.91 4694.11 3772.11 4792.37 2892.56 6774.50 11286.84 4094.65 2067.31 9595.77 5484.80 4492.85 6792.84 103
MVS_030488.08 1388.08 1688.08 1489.67 11372.04 4892.26 3389.26 17384.19 285.01 5395.18 1369.93 6797.20 1491.63 295.60 2994.99 9
MP-MVS-pluss87.67 2087.72 2087.54 3693.64 4472.04 4889.80 7993.50 2575.17 10086.34 4295.29 1270.86 5796.00 4988.78 1896.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SF-MVS88.46 1188.74 1187.64 3592.78 6171.95 5092.40 2494.74 275.71 8789.16 1995.10 1475.65 2196.19 4387.07 3296.01 1794.79 21
agg_prior92.85 5971.94 5191.78 10084.41 6994.93 87
APDe-MVScopyleft89.15 689.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 8991.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 31
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MVS_111021_LR82.61 9482.11 9484.11 11688.82 14871.58 5385.15 22086.16 24574.69 10880.47 12191.04 11562.29 14990.55 25480.33 8990.08 10490.20 190
MAR-MVS81.84 10480.70 11585.27 7491.32 7971.53 5489.82 7790.92 12269.77 20678.50 14986.21 24362.36 14894.52 10665.36 22892.05 7789.77 215
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 42
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
IU-MVS95.30 271.25 5792.95 5166.81 24892.39 688.94 1696.63 494.85 19
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 5977.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
CDPH-MVS85.76 4985.29 5887.17 4393.49 4771.08 6188.58 12392.42 7268.32 23984.61 6593.48 5772.32 4296.15 4579.00 9695.43 3194.28 40
CNLPA78.08 19676.79 20681.97 19390.40 9671.07 6287.59 15584.55 26466.03 26472.38 26589.64 14357.56 20286.04 30559.61 27483.35 19288.79 246
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
PHI-MVS86.43 3886.17 4287.24 4190.88 8770.96 6592.27 3294.07 972.45 15285.22 5291.90 9069.47 7296.42 3783.28 6095.94 1994.35 36
OPM-MVS83.50 7882.95 8385.14 7788.79 15170.95 6689.13 10391.52 10677.55 4480.96 11791.75 9360.71 17794.50 10779.67 9386.51 14789.97 207
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CANet86.45 3786.10 4487.51 3790.09 10170.94 6789.70 8392.59 6681.78 481.32 11091.43 10470.34 6297.23 1384.26 5093.36 6494.37 35
DP-MVS Recon83.11 8882.09 9586.15 5894.44 1970.92 6888.79 11392.20 8170.53 18879.17 13591.03 11764.12 12596.03 4668.39 20490.14 10291.50 143
CPTT-MVS83.73 7183.33 7784.92 8793.28 4970.86 6992.09 3790.38 13768.75 23179.57 13092.83 7460.60 18293.04 17880.92 8291.56 8490.86 165
h-mvs3383.15 8582.19 9386.02 6190.56 9270.85 7088.15 13889.16 17876.02 8384.67 6291.39 10561.54 16095.50 6182.71 6875.48 28991.72 137
新几何183.42 14593.13 5270.71 7185.48 25457.43 34581.80 10591.98 8863.28 13192.27 20164.60 23592.99 6587.27 276
test1286.80 4992.63 6470.70 7291.79 9982.71 9671.67 5096.16 4494.50 5093.54 77
SR-MVS-dyc-post85.77 4885.61 5186.23 5693.06 5570.63 7391.88 3992.27 7673.53 13685.69 4794.45 2665.00 12195.56 5882.75 6691.87 7992.50 114
RE-MVS-def85.48 5293.06 5570.63 7391.88 3992.27 7673.53 13685.69 4794.45 2663.87 12782.75 6691.87 7992.50 114
HPM-MVS_fast85.35 5784.95 6286.57 5393.69 4270.58 7592.15 3691.62 10373.89 12682.67 9794.09 4062.60 14295.54 6080.93 8192.93 6693.57 74
MSLP-MVS++85.43 5585.76 4984.45 10391.93 7270.24 7690.71 5892.86 5377.46 4784.22 7292.81 7667.16 9792.94 18080.36 8894.35 5590.16 191
MVSFormer82.85 9182.05 9685.24 7587.35 20070.21 7790.50 6290.38 13768.55 23481.32 11089.47 14961.68 15793.46 15378.98 9790.26 10092.05 130
lupinMVS81.39 11680.27 12584.76 9387.35 20070.21 7785.55 21386.41 24062.85 29981.32 11088.61 17461.68 15792.24 20378.41 10490.26 10091.83 134
xiu_mvs_v1_base_debu80.80 12879.72 13484.03 12887.35 20070.19 7985.56 21088.77 19469.06 22481.83 10288.16 18850.91 26292.85 18278.29 10687.56 13089.06 230
xiu_mvs_v1_base80.80 12879.72 13484.03 12887.35 20070.19 7985.56 21088.77 19469.06 22481.83 10288.16 18850.91 26292.85 18278.29 10687.56 13089.06 230
xiu_mvs_v1_base_debi80.80 12879.72 13484.03 12887.35 20070.19 7985.56 21088.77 19469.06 22481.83 10288.16 18850.91 26292.85 18278.29 10687.56 13089.06 230
API-MVS81.99 10281.23 10684.26 11390.94 8570.18 8291.10 5389.32 16971.51 16978.66 14588.28 18465.26 11695.10 8364.74 23491.23 8887.51 270
test_fmvsm_n_192085.29 5885.34 5485.13 7986.12 22569.93 8388.65 12190.78 12769.97 20088.27 2393.98 4971.39 5491.54 22688.49 2290.45 9793.91 53
OpenMVScopyleft72.83 1079.77 15378.33 16884.09 12085.17 23769.91 8490.57 6090.97 12166.70 25172.17 26791.91 8954.70 22293.96 12461.81 25890.95 9188.41 255
jason81.39 11680.29 12484.70 9486.63 21969.90 8585.95 20186.77 23663.24 29281.07 11689.47 14961.08 17392.15 20578.33 10590.07 10592.05 130
jason: jason.
MVP-Stereo76.12 23574.46 24281.13 21585.37 23569.79 8684.42 24187.95 21365.03 27467.46 31385.33 26253.28 23691.73 22058.01 29183.27 19381.85 350
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PVSNet_Blended_VisFu82.62 9381.83 10184.96 8490.80 8969.76 8788.74 11791.70 10269.39 21278.96 13788.46 17965.47 11594.87 9474.42 14388.57 12190.24 189
test_prior86.33 5492.61 6569.59 8892.97 5095.48 6293.91 53
APD-MVS_3200maxsize85.97 4485.88 4786.22 5792.69 6369.53 8991.93 3892.99 4573.54 13585.94 4394.51 2465.80 11395.61 5783.04 6392.51 7193.53 78
test_fmvsmconf_n85.92 4586.04 4685.57 6885.03 24469.51 9089.62 8690.58 13173.42 13887.75 3094.02 4472.85 4093.24 16090.37 390.75 9393.96 51
EPNet83.72 7282.92 8486.14 5984.22 25769.48 9191.05 5585.27 25581.30 676.83 18891.65 9566.09 10895.56 5876.00 13093.85 6093.38 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ET-MVSNet_ETH3D78.63 18376.63 21284.64 9586.73 21769.47 9285.01 22384.61 26369.54 21066.51 32886.59 23250.16 27191.75 21876.26 12684.24 17692.69 107
alignmvs85.48 5385.32 5685.96 6289.51 11969.47 9289.74 8192.47 6876.17 8087.73 3291.46 10370.32 6393.78 13681.51 7688.95 11594.63 26
DP-MVS76.78 22574.57 23883.42 14593.29 4869.46 9488.55 12483.70 27763.98 28970.20 28388.89 16654.01 23094.80 9646.66 35281.88 21086.01 303
canonicalmvs85.91 4685.87 4886.04 6089.84 11169.44 9590.45 6693.00 4376.70 6988.01 2791.23 10773.28 3693.91 13181.50 7788.80 11894.77 22
test_fmvsmconf0.1_n85.61 5285.65 5085.50 6982.99 28869.39 9689.65 8490.29 14473.31 14187.77 2994.15 3871.72 4893.23 16190.31 490.67 9593.89 56
test_fmvsmvis_n_192084.02 6783.87 6984.49 10184.12 25969.37 9788.15 13887.96 21270.01 19883.95 7893.23 6368.80 8391.51 22988.61 1989.96 10692.57 110
nrg03083.88 6883.53 7284.96 8486.77 21669.28 9890.46 6592.67 6174.79 10682.95 9091.33 10672.70 4193.09 17480.79 8579.28 24292.50 114
test_fmvsmconf0.01_n84.73 6584.52 6685.34 7280.25 32869.03 9989.47 8889.65 16173.24 14486.98 3894.27 3266.62 9993.23 16190.26 589.95 10793.78 62
DeepPCF-MVS80.84 188.10 1288.56 1286.73 5092.24 6869.03 9989.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3595.72 2494.58 27
XVG-OURS80.41 13979.23 14783.97 13285.64 23169.02 10183.03 26990.39 13671.09 17677.63 17191.49 10254.62 22491.35 23575.71 13283.47 19091.54 140
PCF-MVS73.52 780.38 14078.84 15685.01 8287.71 18968.99 10283.65 25391.46 11163.00 29677.77 16990.28 12966.10 10795.09 8461.40 26188.22 12790.94 163
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
QAPM80.88 12379.50 13985.03 8188.01 17968.97 10391.59 4392.00 8766.63 25775.15 23392.16 8657.70 20095.45 6363.52 23888.76 11990.66 172
AdaColmapbinary80.58 13779.42 14084.06 12493.09 5468.91 10489.36 9488.97 18869.27 21575.70 21589.69 14157.20 20795.77 5463.06 24388.41 12587.50 271
原ACMM184.35 10793.01 5768.79 10592.44 6963.96 29081.09 11591.57 9966.06 10995.45 6367.19 21494.82 4588.81 245
XVG-OURS-SEG-HR80.81 12679.76 13383.96 13385.60 23268.78 10683.54 25890.50 13470.66 18676.71 19291.66 9460.69 17891.26 23776.94 11881.58 21391.83 134
LPG-MVS_test82.08 9981.27 10584.50 9989.23 13468.76 10790.22 7091.94 9175.37 9476.64 19491.51 10054.29 22694.91 8878.44 10283.78 17989.83 212
LGP-MVS_train84.50 9989.23 13468.76 10791.94 9175.37 9476.64 19491.51 10054.29 22694.91 8878.44 10283.78 17989.83 212
Effi-MVS+-dtu80.03 14978.57 16184.42 10485.13 24168.74 10988.77 11488.10 20874.99 10274.97 23883.49 29457.27 20693.36 15673.53 15180.88 22091.18 152
Vis-MVSNetpermissive83.46 7982.80 8685.43 7190.25 9868.74 10990.30 6990.13 14876.33 7880.87 11892.89 7261.00 17494.20 11872.45 16690.97 9093.35 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
HQP_MVS83.64 7483.14 7885.14 7790.08 10268.71 11191.25 5092.44 6979.12 2378.92 13991.00 11860.42 18495.38 6978.71 10086.32 14991.33 147
plane_prior68.71 11190.38 6777.62 3986.16 153
plane_prior689.84 11168.70 11360.42 184
ACMP74.13 681.51 11580.57 11784.36 10689.42 12268.69 11489.97 7491.50 11074.46 11475.04 23790.41 12853.82 23194.54 10477.56 11182.91 19789.86 211
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ETV-MVS84.90 6484.67 6485.59 6789.39 12468.66 11588.74 11792.64 6579.97 1584.10 7585.71 25269.32 7495.38 6980.82 8391.37 8692.72 104
plane_prior368.60 11678.44 3178.92 139
CHOSEN 1792x268877.63 21175.69 22283.44 14489.98 10868.58 11778.70 31687.50 22456.38 35075.80 21486.84 22058.67 19291.40 23461.58 26085.75 16090.34 184
plane_prior790.08 10268.51 118
ACMM73.20 880.78 13179.84 13283.58 14189.31 13068.37 11989.99 7391.60 10470.28 19377.25 17889.66 14253.37 23593.53 14974.24 14682.85 19888.85 243
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs474.03 25771.91 26480.39 23081.96 30568.32 12081.45 28382.14 30159.32 32869.87 29285.13 26852.40 24188.13 29060.21 27074.74 30484.73 322
NP-MVS89.62 11468.32 12090.24 130
test22291.50 7768.26 12284.16 24683.20 28854.63 35679.74 12791.63 9758.97 19191.42 8586.77 289
CDS-MVSNet79.07 17377.70 18683.17 15787.60 19468.23 12384.40 24286.20 24467.49 24676.36 20286.54 23661.54 16090.79 25061.86 25787.33 13490.49 179
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PS-MVSNAJ81.69 10881.02 11083.70 13989.51 11968.21 12484.28 24490.09 14970.79 18181.26 11485.62 25763.15 13694.29 11175.62 13488.87 11788.59 251
fmvsm_s_conf0.5_n_a83.63 7583.41 7484.28 11186.14 22468.12 12589.43 9082.87 29470.27 19487.27 3593.80 5469.09 7691.58 22288.21 2483.65 18593.14 93
UGNet80.83 12579.59 13784.54 9888.04 17768.09 12689.42 9188.16 20676.95 5976.22 20589.46 15149.30 28393.94 12768.48 20290.31 9891.60 138
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
fmvsm_s_conf0.1_n_a83.32 8382.99 8284.28 11183.79 26668.07 12789.34 9582.85 29569.80 20487.36 3494.06 4268.34 8691.56 22487.95 2583.46 19193.21 90
UA-Net85.08 6184.96 6185.45 7092.07 7068.07 12789.78 8090.86 12682.48 384.60 6693.20 6469.35 7395.22 7471.39 17290.88 9293.07 95
xiu_mvs_v2_base81.69 10881.05 10983.60 14089.15 13768.03 12984.46 23890.02 15070.67 18481.30 11386.53 23763.17 13594.19 11975.60 13588.54 12288.57 252
DELS-MVS85.41 5685.30 5785.77 6488.49 16167.93 13085.52 21793.44 2778.70 2983.63 8589.03 16274.57 2495.71 5680.26 9094.04 5993.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EI-MVSNet-Vis-set84.19 6683.81 7085.31 7388.18 17167.85 13187.66 15389.73 15980.05 1482.95 9089.59 14670.74 5994.82 9580.66 8784.72 16693.28 86
PLCcopyleft70.83 1178.05 19876.37 21783.08 16191.88 7467.80 13288.19 13589.46 16564.33 28369.87 29288.38 18153.66 23293.58 14458.86 28282.73 20087.86 262
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAMVS78.89 17877.51 19183.03 16487.80 18567.79 13384.72 22985.05 25867.63 24376.75 19187.70 19762.25 15090.82 24958.53 28687.13 13790.49 179
CLD-MVS82.31 9681.65 10284.29 11088.47 16267.73 13485.81 20892.35 7475.78 8678.33 15486.58 23464.01 12694.35 11076.05 12987.48 13390.79 166
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
iter_conf_final80.63 13379.35 14384.46 10289.36 12667.70 13589.85 7584.49 26573.19 14578.30 15588.94 16345.98 30994.56 10279.59 9484.48 17291.11 154
hse-mvs281.72 10680.94 11284.07 12288.72 15467.68 13685.87 20487.26 22976.02 8384.67 6288.22 18761.54 16093.48 15182.71 6873.44 31791.06 157
AUN-MVS79.21 16977.60 18984.05 12688.71 15567.61 13785.84 20687.26 22969.08 22377.23 18088.14 19253.20 23793.47 15275.50 13773.45 31691.06 157
CS-MVS86.69 3486.95 3085.90 6390.76 9067.57 13892.83 1793.30 3279.67 1784.57 6792.27 8471.47 5295.02 8684.24 5293.46 6395.13 6
EI-MVSNet-UG-set83.81 6983.38 7585.09 8087.87 18167.53 13987.44 15989.66 16079.74 1682.23 9989.41 15570.24 6494.74 9879.95 9183.92 17892.99 100
Effi-MVS+83.62 7683.08 7985.24 7588.38 16667.45 14088.89 10989.15 17975.50 9282.27 9888.28 18469.61 7194.45 10977.81 10987.84 12893.84 59
EG-PatchMatch MVS74.04 25671.82 26580.71 22584.92 24567.42 14185.86 20588.08 20966.04 26364.22 34283.85 28735.10 36092.56 18957.44 29580.83 22182.16 349
OMC-MVS82.69 9281.97 9984.85 8988.75 15367.42 14187.98 14290.87 12574.92 10379.72 12891.65 9562.19 15293.96 12475.26 13886.42 14893.16 92
PatchMatch-RL72.38 27370.90 27476.80 28888.60 15867.38 14379.53 30576.17 34962.75 30269.36 29782.00 31545.51 31584.89 31653.62 31680.58 22578.12 363
LS3D76.95 22374.82 23683.37 14890.45 9467.36 14489.15 10286.94 23461.87 31069.52 29590.61 12451.71 25694.53 10546.38 35586.71 14488.21 257
fmvsm_s_conf0.5_n83.80 7083.71 7184.07 12286.69 21867.31 14589.46 8983.07 29071.09 17686.96 3993.70 5569.02 8191.47 23188.79 1784.62 16893.44 80
fmvsm_s_conf0.1_n83.56 7783.38 7584.10 11784.86 24667.28 14689.40 9383.01 29170.67 18487.08 3693.96 5068.38 8591.45 23288.56 2184.50 16993.56 75
PS-MVSNAJss82.07 10081.31 10484.34 10886.51 22067.27 14789.27 9691.51 10771.75 16179.37 13290.22 13263.15 13694.27 11377.69 11082.36 20591.49 144
114514_t80.68 13279.51 13884.20 11494.09 3867.27 14789.64 8591.11 11958.75 33574.08 24890.72 12258.10 19695.04 8569.70 18989.42 11390.30 187
casdiffmvs_mvgpermissive85.99 4386.09 4585.70 6687.65 19267.22 14988.69 11993.04 3879.64 1885.33 5092.54 8173.30 3594.50 10783.49 5791.14 8995.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS-test86.29 4186.48 3685.71 6591.02 8367.21 15092.36 2993.78 1878.97 2883.51 8691.20 10970.65 6195.15 7781.96 7494.89 4194.77 22
anonymousdsp78.60 18477.15 19782.98 16780.51 32667.08 15187.24 16589.53 16365.66 26875.16 23287.19 21452.52 23892.25 20277.17 11679.34 24189.61 219
MVS78.19 19476.99 20181.78 19585.66 23066.99 15284.66 23090.47 13555.08 35572.02 26985.27 26363.83 12894.11 12266.10 22289.80 10984.24 326
HQP5-MVS66.98 153
HQP-MVS82.61 9482.02 9784.37 10589.33 12766.98 15389.17 9892.19 8276.41 7277.23 18090.23 13160.17 18795.11 8077.47 11285.99 15691.03 159
Fast-Effi-MVS+-dtu78.02 19976.49 21382.62 18283.16 28266.96 15586.94 17287.45 22672.45 15271.49 27484.17 28354.79 22191.58 22267.61 20880.31 22989.30 226
F-COLMAP76.38 23374.33 24382.50 18489.28 13266.95 15688.41 12689.03 18364.05 28766.83 32088.61 17446.78 30192.89 18157.48 29478.55 24787.67 265
mvsmamba81.69 10880.74 11484.56 9787.45 19966.72 15791.26 4885.89 24974.66 10978.23 15790.56 12554.33 22594.91 8880.73 8683.54 18992.04 132
HyFIR lowres test77.53 21275.40 22983.94 13489.59 11566.62 15880.36 29688.64 20156.29 35176.45 19885.17 26757.64 20193.28 15861.34 26383.10 19691.91 133
ACMH67.68 1675.89 23873.93 24681.77 19688.71 15566.61 15988.62 12289.01 18569.81 20366.78 32186.70 22841.95 33891.51 22955.64 30878.14 25487.17 278
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
jajsoiax79.29 16777.96 17483.27 15184.68 24966.57 16089.25 9790.16 14769.20 21975.46 22089.49 14845.75 31493.13 17276.84 11980.80 22290.11 195
VDD-MVS83.01 9082.36 9184.96 8491.02 8366.40 16188.91 10888.11 20777.57 4184.39 7093.29 6252.19 24493.91 13177.05 11788.70 12094.57 29
mvs_tets79.13 17177.77 18383.22 15584.70 24866.37 16289.17 9890.19 14669.38 21375.40 22389.46 15144.17 32293.15 17076.78 12280.70 22490.14 192
PAPM_NR83.02 8982.41 8984.82 9092.47 6766.37 16287.93 14691.80 9873.82 12777.32 17790.66 12367.90 8994.90 9170.37 18189.48 11293.19 91
EC-MVSNet86.01 4286.38 3784.91 8889.31 13066.27 16492.32 3093.63 2179.37 2084.17 7491.88 9169.04 8095.43 6583.93 5593.77 6193.01 99
pmmvs-eth3d70.50 28967.83 30278.52 26577.37 35166.18 16581.82 27681.51 30758.90 33363.90 34580.42 32742.69 33086.28 30458.56 28565.30 35483.11 339
IB-MVS68.01 1575.85 23973.36 25383.31 14984.76 24766.03 16683.38 25985.06 25770.21 19669.40 29681.05 31945.76 31394.66 10165.10 23175.49 28889.25 227
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MS-PatchMatch73.83 25872.67 25877.30 28383.87 26566.02 16781.82 27684.66 26261.37 31468.61 30482.82 30347.29 29688.21 28859.27 27684.32 17477.68 364
FE-MVS77.78 20575.68 22384.08 12188.09 17566.00 16883.13 26487.79 21868.42 23878.01 16485.23 26545.50 31695.12 7859.11 27985.83 15991.11 154
test_040272.79 27170.44 27979.84 24288.13 17265.99 16985.93 20284.29 26965.57 26967.40 31585.49 25946.92 30092.61 18735.88 37674.38 30780.94 355
BH-RMVSNet79.61 15578.44 16483.14 15889.38 12565.93 17084.95 22587.15 23173.56 13478.19 15989.79 13956.67 21093.36 15659.53 27586.74 14390.13 193
BH-untuned79.47 16078.60 16082.05 19089.19 13665.91 17186.07 19988.52 20372.18 15775.42 22287.69 19861.15 17193.54 14860.38 26886.83 14286.70 291
cascas76.72 22674.64 23782.99 16685.78 22965.88 17282.33 27389.21 17660.85 31672.74 25981.02 32047.28 29793.75 14067.48 21085.02 16289.34 224
patch_mono-283.65 7384.54 6580.99 21890.06 10665.83 17384.21 24588.74 19871.60 16785.01 5392.44 8274.51 2583.50 32582.15 7392.15 7593.64 71
iter_conf0580.00 15178.70 15783.91 13587.84 18365.83 17388.84 11284.92 26071.61 16678.70 14288.94 16343.88 32494.56 10279.28 9584.28 17591.33 147
MSDG73.36 26470.99 27380.49 22984.51 25365.80 17580.71 29086.13 24665.70 26765.46 33383.74 29144.60 31990.91 24851.13 32876.89 26584.74 321
旧先验191.96 7165.79 17686.37 24293.08 6969.31 7592.74 6888.74 248
casdiffmvspermissive85.11 6085.14 5985.01 8287.20 20865.77 17787.75 15192.83 5577.84 3784.36 7192.38 8372.15 4493.93 13081.27 7990.48 9695.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
COLMAP_ROBcopyleft66.92 1773.01 26870.41 28080.81 22387.13 21065.63 17888.30 13284.19 27262.96 29763.80 34687.69 19838.04 35292.56 18946.66 35274.91 30284.24 326
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EIA-MVS83.31 8482.80 8684.82 9089.59 11565.59 17988.21 13492.68 6074.66 10978.96 13786.42 23969.06 7895.26 7375.54 13690.09 10393.62 72
v7n78.97 17677.58 19083.14 15883.45 27365.51 18088.32 13191.21 11473.69 13072.41 26486.32 24257.93 19793.81 13569.18 19475.65 28590.11 195
V4279.38 16678.24 17082.83 17281.10 32065.50 18185.55 21389.82 15571.57 16878.21 15886.12 24660.66 17993.18 16975.64 13375.46 29189.81 214
bld_raw_dy_0_6477.29 21875.98 22081.22 21185.04 24365.47 18288.14 14077.56 33869.20 21973.77 25089.40 15742.24 33588.85 28276.78 12281.64 21289.33 225
RRT_MVS80.35 14379.22 14883.74 13887.63 19365.46 18391.08 5488.92 19173.82 12776.44 20190.03 13449.05 28894.25 11776.84 11979.20 24491.51 141
PVSNet_BlendedMVS80.60 13580.02 12782.36 18788.85 14565.40 18486.16 19792.00 8769.34 21478.11 16186.09 24766.02 11094.27 11371.52 16982.06 20787.39 272
PVSNet_Blended80.98 12180.34 12282.90 17088.85 14565.40 18484.43 24092.00 8767.62 24478.11 16185.05 27166.02 11094.27 11371.52 16989.50 11189.01 235
baseline84.93 6284.98 6084.80 9287.30 20665.39 18687.30 16392.88 5277.62 3984.04 7792.26 8571.81 4693.96 12481.31 7890.30 9995.03 8
test_djsdf80.30 14479.32 14483.27 15183.98 26365.37 18790.50 6290.38 13768.55 23476.19 20688.70 17056.44 21193.46 15378.98 9780.14 23290.97 162
ACMH+68.96 1476.01 23774.01 24582.03 19188.60 15865.31 18888.86 11087.55 22270.25 19567.75 30987.47 20641.27 33993.19 16858.37 28775.94 28287.60 267
CR-MVSNet73.37 26271.27 27179.67 24781.32 31865.19 18975.92 33580.30 32059.92 32372.73 26081.19 31752.50 23986.69 30059.84 27277.71 25687.11 282
RPMNet73.51 26170.49 27882.58 18381.32 31865.19 18975.92 33592.27 7657.60 34372.73 26076.45 35652.30 24295.43 6548.14 34777.71 25687.11 282
BH-w/o78.21 19277.33 19580.84 22288.81 14965.13 19184.87 22687.85 21769.75 20774.52 24484.74 27561.34 16693.11 17358.24 28985.84 15884.27 325
thisisatest053079.40 16477.76 18484.31 10987.69 19165.10 19287.36 16084.26 27170.04 19777.42 17488.26 18649.94 27494.79 9770.20 18284.70 16793.03 97
FA-MVS(test-final)80.96 12279.91 13084.10 11788.30 16965.01 19384.55 23590.01 15173.25 14379.61 12987.57 20158.35 19594.72 9971.29 17386.25 15192.56 111
v1079.74 15478.67 15882.97 16884.06 26164.95 19487.88 14990.62 13073.11 14675.11 23486.56 23561.46 16394.05 12373.68 14975.55 28789.90 209
SDMVSNet80.38 14080.18 12680.99 21889.03 14364.94 19580.45 29589.40 16675.19 9876.61 19689.98 13560.61 18187.69 29576.83 12183.55 18790.33 185
dcpmvs_285.63 5186.15 4384.06 12491.71 7564.94 19586.47 18891.87 9573.63 13186.60 4193.02 7076.57 1591.87 21683.36 5892.15 7595.35 3
IterMVS-SCA-FT75.43 24573.87 24880.11 23782.69 29464.85 19781.57 28183.47 28269.16 22170.49 28084.15 28451.95 25188.15 28969.23 19372.14 32687.34 274
MVSTER79.01 17477.88 17882.38 18683.07 28364.80 19884.08 24988.95 18969.01 22778.69 14387.17 21554.70 22292.43 19374.69 14080.57 22689.89 210
Anonymous2024052980.19 14778.89 15584.10 11790.60 9164.75 19988.95 10790.90 12365.97 26580.59 12091.17 11149.97 27393.73 14269.16 19582.70 20293.81 60
XVG-ACMP-BASELINE76.11 23674.27 24481.62 19883.20 27964.67 20083.60 25689.75 15869.75 20771.85 27087.09 21732.78 36392.11 20669.99 18680.43 22888.09 258
v119279.59 15778.43 16583.07 16283.55 27164.52 20186.93 17390.58 13170.83 18077.78 16885.90 24859.15 19093.94 12773.96 14877.19 26290.76 168
Fast-Effi-MVS+80.81 12679.92 12983.47 14388.85 14564.51 20285.53 21589.39 16770.79 18178.49 15085.06 27067.54 9293.58 14467.03 21786.58 14592.32 120
v114480.03 14979.03 15283.01 16583.78 26764.51 20287.11 16890.57 13371.96 16078.08 16386.20 24461.41 16493.94 12774.93 13977.23 26090.60 175
v879.97 15279.02 15382.80 17584.09 26064.50 20487.96 14390.29 14474.13 12275.24 23186.81 22162.88 14193.89 13374.39 14475.40 29490.00 203
EPP-MVSNet83.40 8183.02 8184.57 9690.13 10064.47 20592.32 3090.73 12874.45 11579.35 13391.10 11269.05 7995.12 7872.78 16187.22 13694.13 44
GeoE81.71 10781.01 11183.80 13789.51 11964.45 20688.97 10688.73 19971.27 17278.63 14689.76 14066.32 10593.20 16669.89 18786.02 15593.74 63
UniMVSNet (Re)81.60 11281.11 10883.09 16088.38 16664.41 20787.60 15493.02 4278.42 3278.56 14888.16 18869.78 6993.26 15969.58 19176.49 27191.60 138
LTVRE_ROB69.57 1376.25 23474.54 24081.41 20488.60 15864.38 20879.24 30889.12 18270.76 18369.79 29487.86 19549.09 28693.20 16656.21 30780.16 23086.65 292
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Anonymous2023121178.97 17677.69 18782.81 17490.54 9364.29 20990.11 7291.51 10765.01 27576.16 21088.13 19350.56 26793.03 17969.68 19077.56 25991.11 154
testdata79.97 23990.90 8664.21 21084.71 26159.27 32985.40 4992.91 7162.02 15589.08 27568.95 19791.37 8686.63 293
v2v48280.23 14579.29 14583.05 16383.62 26964.14 21187.04 16989.97 15273.61 13278.18 16087.22 21261.10 17293.82 13476.11 12776.78 26991.18 152
VDDNet81.52 11380.67 11684.05 12690.44 9564.13 21289.73 8285.91 24871.11 17583.18 8893.48 5750.54 26893.49 15073.40 15488.25 12694.54 30
PAPR81.66 11180.89 11383.99 13190.27 9764.00 21386.76 18191.77 10168.84 23077.13 18689.50 14767.63 9194.88 9367.55 20988.52 12393.09 94
v14419279.47 16078.37 16682.78 17883.35 27463.96 21486.96 17190.36 14069.99 19977.50 17285.67 25560.66 17993.77 13874.27 14576.58 27090.62 173
v192192079.22 16878.03 17382.80 17583.30 27663.94 21586.80 17790.33 14169.91 20277.48 17385.53 25858.44 19493.75 14073.60 15076.85 26790.71 171
tttt051779.40 16477.91 17683.90 13688.10 17463.84 21688.37 13084.05 27371.45 17076.78 19089.12 15949.93 27694.89 9270.18 18383.18 19592.96 101
thisisatest051577.33 21675.38 23083.18 15685.27 23663.80 21782.11 27583.27 28565.06 27375.91 21183.84 28849.54 27894.27 11367.24 21386.19 15291.48 145
diffmvspermissive82.10 9881.88 10082.76 18083.00 28663.78 21883.68 25289.76 15772.94 15082.02 10189.85 13865.96 11290.79 25082.38 7287.30 13593.71 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_yl81.17 11880.47 12083.24 15389.13 13863.62 21986.21 19589.95 15372.43 15581.78 10689.61 14457.50 20393.58 14470.75 17686.90 14092.52 112
DCV-MVSNet81.17 11880.47 12083.24 15389.13 13863.62 21986.21 19589.95 15372.43 15581.78 10689.61 14457.50 20393.58 14470.75 17686.90 14092.52 112
AllTest70.96 28268.09 29779.58 24985.15 23963.62 21984.58 23479.83 32462.31 30660.32 35786.73 22232.02 36488.96 27950.28 33371.57 33086.15 299
TestCases79.58 24985.15 23963.62 21979.83 32462.31 30660.32 35786.73 22232.02 36488.96 27950.28 33371.57 33086.15 299
v124078.99 17577.78 18282.64 18183.21 27863.54 22386.62 18490.30 14369.74 20977.33 17685.68 25457.04 20893.76 13973.13 15876.92 26490.62 173
CHOSEN 280x42066.51 31964.71 32071.90 32581.45 31363.52 22457.98 38468.95 37253.57 35762.59 35176.70 35446.22 30775.29 37155.25 30979.68 23576.88 366
IterMVS74.29 25272.94 25778.35 26781.53 31263.49 22581.58 28082.49 29868.06 24169.99 28983.69 29251.66 25785.54 30965.85 22571.64 32986.01 303
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_NR-MVSNet81.88 10381.54 10382.92 16988.46 16363.46 22687.13 16692.37 7380.19 1278.38 15289.14 15871.66 5193.05 17670.05 18476.46 27292.25 123
DU-MVS81.12 12080.52 11982.90 17087.80 18563.46 22687.02 17091.87 9579.01 2678.38 15289.07 16065.02 11993.05 17670.05 18476.46 27292.20 125
LFMVS81.82 10581.23 10683.57 14291.89 7363.43 22889.84 7681.85 30577.04 5883.21 8793.10 6552.26 24393.43 15571.98 16789.95 10793.85 57
NR-MVSNet80.23 14579.38 14182.78 17887.80 18563.34 22986.31 19291.09 12079.01 2672.17 26789.07 16067.20 9692.81 18566.08 22375.65 28592.20 125
IS-MVSNet83.15 8582.81 8584.18 11589.94 10963.30 23091.59 4388.46 20479.04 2579.49 13192.16 8665.10 11894.28 11267.71 20791.86 8194.95 10
TR-MVS77.44 21376.18 21881.20 21288.24 17063.24 23184.61 23386.40 24167.55 24577.81 16786.48 23854.10 22893.15 17057.75 29382.72 20187.20 277
MVS_Test83.15 8583.06 8083.41 14786.86 21263.21 23286.11 19892.00 8774.31 11682.87 9289.44 15470.03 6593.21 16377.39 11488.50 12493.81 60
IterMVS-LS80.06 14879.38 14182.11 18985.89 22763.20 23386.79 17889.34 16874.19 11975.45 22186.72 22466.62 9992.39 19572.58 16376.86 26690.75 169
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet80.52 13879.98 12882.12 18884.28 25563.19 23486.41 18988.95 18974.18 12078.69 14387.54 20466.62 9992.43 19372.57 16480.57 22690.74 170
CANet_DTU80.61 13479.87 13182.83 17285.60 23263.17 23587.36 16088.65 20076.37 7675.88 21288.44 18053.51 23493.07 17573.30 15589.74 11092.25 123
GBi-Net78.40 18777.40 19281.40 20587.60 19463.01 23688.39 12789.28 17071.63 16375.34 22587.28 20854.80 21891.11 24062.72 24579.57 23690.09 197
test178.40 18777.40 19281.40 20587.60 19463.01 23688.39 12789.28 17071.63 16375.34 22587.28 20854.80 21891.11 24062.72 24579.57 23690.09 197
FMVSNet177.44 21376.12 21981.40 20586.81 21563.01 23688.39 12789.28 17070.49 18974.39 24587.28 20849.06 28791.11 24060.91 26578.52 24890.09 197
TAPA-MVS73.13 979.15 17077.94 17582.79 17789.59 11562.99 23988.16 13791.51 10765.77 26677.14 18591.09 11360.91 17593.21 16350.26 33587.05 13892.17 127
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FMVSNet278.20 19377.21 19681.20 21287.60 19462.89 24087.47 15889.02 18471.63 16375.29 23087.28 20854.80 21891.10 24362.38 25079.38 24089.61 219
GA-MVS76.87 22475.17 23481.97 19382.75 29262.58 24181.44 28486.35 24372.16 15974.74 24182.89 30146.20 30892.02 20968.85 19981.09 21891.30 150
D2MVS74.82 24973.21 25479.64 24879.81 33562.56 24280.34 29787.35 22764.37 28268.86 30182.66 30546.37 30490.10 25967.91 20681.24 21686.25 296
FMVSNet377.88 20376.85 20480.97 22086.84 21462.36 24386.52 18788.77 19471.13 17475.34 22586.66 23054.07 22991.10 24362.72 24579.57 23689.45 222
TranMVSNet+NR-MVSNet80.84 12480.31 12382.42 18587.85 18262.33 24487.74 15291.33 11280.55 977.99 16589.86 13765.23 11792.62 18667.05 21675.24 29992.30 121
131476.53 22775.30 23380.21 23583.93 26462.32 24584.66 23088.81 19260.23 32070.16 28684.07 28555.30 21590.73 25267.37 21183.21 19487.59 269
MG-MVS83.41 8083.45 7383.28 15092.74 6262.28 24688.17 13689.50 16475.22 9681.49 10992.74 8066.75 9895.11 8072.85 16091.58 8392.45 117
SCA74.22 25472.33 26279.91 24084.05 26262.17 24779.96 30279.29 33066.30 26072.38 26580.13 32951.95 25188.60 28459.25 27777.67 25888.96 239
PMMVS69.34 29868.67 29071.35 33175.67 35762.03 24875.17 34173.46 35850.00 36768.68 30279.05 33852.07 24978.13 34961.16 26482.77 19973.90 370
eth_miper_zixun_eth77.92 20276.69 21081.61 20083.00 28661.98 24983.15 26389.20 17769.52 21174.86 24084.35 28161.76 15692.56 18971.50 17172.89 32190.28 188
v14878.72 18177.80 18181.47 20282.73 29361.96 25086.30 19388.08 20973.26 14276.18 20785.47 26062.46 14692.36 19771.92 16873.82 31390.09 197
PAPM77.68 21076.40 21681.51 20187.29 20761.85 25183.78 25189.59 16264.74 27771.23 27588.70 17062.59 14393.66 14352.66 32187.03 13989.01 235
cl2278.07 19777.01 19981.23 21082.37 30261.83 25283.55 25787.98 21168.96 22875.06 23683.87 28661.40 16591.88 21573.53 15176.39 27489.98 206
baseline275.70 24073.83 24981.30 20883.26 27761.79 25382.57 27280.65 31466.81 24866.88 31983.42 29557.86 19992.19 20463.47 23979.57 23689.91 208
JIA-IIPM66.32 32162.82 33276.82 28777.09 35261.72 25465.34 37775.38 35058.04 34064.51 34062.32 37842.05 33786.51 30251.45 32769.22 34082.21 347
miper_ehance_all_eth78.59 18577.76 18481.08 21682.66 29561.56 25583.65 25389.15 17968.87 22975.55 21783.79 29066.49 10292.03 20873.25 15676.39 27489.64 218
c3_l78.75 17977.91 17681.26 20982.89 29061.56 25584.09 24889.13 18169.97 20075.56 21684.29 28266.36 10492.09 20773.47 15375.48 28990.12 194
miper_enhance_ethall77.87 20476.86 20380.92 22181.65 30961.38 25782.68 27088.98 18665.52 27075.47 21882.30 30965.76 11492.00 21072.95 15976.39 27489.39 223
ppachtmachnet_test70.04 29367.34 31078.14 26979.80 33661.13 25879.19 31080.59 31559.16 33065.27 33579.29 33746.75 30287.29 29749.33 33966.72 34786.00 305
TDRefinement67.49 31164.34 32176.92 28673.47 36961.07 25984.86 22782.98 29259.77 32458.30 36485.13 26826.06 37487.89 29247.92 34960.59 36581.81 351
VNet82.21 9782.41 8981.62 19890.82 8860.93 26084.47 23689.78 15676.36 7784.07 7691.88 9164.71 12290.26 25670.68 17888.89 11693.66 65
ab-mvs79.51 15878.97 15481.14 21488.46 16360.91 26183.84 25089.24 17570.36 19079.03 13688.87 16763.23 13490.21 25865.12 23082.57 20392.28 122
PatchmatchNetpermissive73.12 26771.33 27078.49 26683.18 28060.85 26279.63 30478.57 33364.13 28471.73 27179.81 33451.20 26085.97 30657.40 29676.36 27988.66 249
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
VPA-MVSNet80.60 13580.55 11880.76 22488.07 17660.80 26386.86 17591.58 10575.67 9080.24 12389.45 15363.34 13090.25 25770.51 18079.22 24391.23 151
EGC-MVSNET52.07 34847.05 35267.14 35083.51 27260.71 26480.50 29467.75 3730.07 3970.43 39875.85 36124.26 37781.54 33628.82 38262.25 35959.16 382
Anonymous20240521178.25 19077.01 19981.99 19291.03 8260.67 26584.77 22883.90 27570.65 18780.00 12691.20 10941.08 34191.43 23365.21 22985.26 16193.85 57
ITE_SJBPF78.22 26881.77 30860.57 26683.30 28469.25 21667.54 31187.20 21336.33 35787.28 29854.34 31374.62 30586.80 288
MDA-MVSNet-bldmvs66.68 31763.66 32675.75 29379.28 34360.56 26773.92 34978.35 33464.43 28050.13 37879.87 33344.02 32383.67 32346.10 35656.86 36883.03 341
cl____77.72 20776.76 20780.58 22782.49 29960.48 26883.09 26587.87 21569.22 21774.38 24685.22 26662.10 15391.53 22771.09 17475.41 29389.73 217
DIV-MVS_self_test77.72 20776.76 20780.58 22782.48 30060.48 26883.09 26587.86 21669.22 21774.38 24685.24 26462.10 15391.53 22771.09 17475.40 29489.74 216
1112_ss77.40 21576.43 21580.32 23389.11 14260.41 27083.65 25387.72 22062.13 30873.05 25786.72 22462.58 14489.97 26062.11 25580.80 22290.59 176
tt080578.73 18077.83 17981.43 20385.17 23760.30 27189.41 9290.90 12371.21 17377.17 18488.73 16946.38 30393.21 16372.57 16478.96 24590.79 166
UniMVSNet_ETH3D79.10 17278.24 17081.70 19786.85 21360.24 27287.28 16488.79 19374.25 11876.84 18790.53 12749.48 27991.56 22467.98 20582.15 20693.29 85
HY-MVS69.67 1277.95 20177.15 19780.36 23187.57 19860.21 27383.37 26087.78 21966.11 26175.37 22487.06 21963.27 13290.48 25561.38 26282.43 20490.40 183
sd_testset77.70 20977.40 19278.60 26289.03 14360.02 27479.00 31285.83 25075.19 9876.61 19689.98 13554.81 21785.46 31162.63 24983.55 18790.33 185
RPSCF73.23 26671.46 26778.54 26482.50 29859.85 27582.18 27482.84 29658.96 33271.15 27789.41 15545.48 31784.77 31758.82 28371.83 32891.02 161
test_cas_vis1_n_192073.76 25973.74 25073.81 31375.90 35559.77 27680.51 29382.40 29958.30 33781.62 10885.69 25344.35 32176.41 36176.29 12578.61 24685.23 313
dmvs_re71.14 28070.58 27672.80 32081.96 30559.68 27775.60 33979.34 32968.55 23469.27 29980.72 32549.42 28076.54 35852.56 32277.79 25582.19 348
miper_lstm_enhance74.11 25573.11 25677.13 28580.11 33059.62 27872.23 35386.92 23566.76 25070.40 28182.92 30056.93 20982.92 32969.06 19672.63 32288.87 242
OurMVSNet-221017-074.26 25372.42 26179.80 24383.76 26859.59 27985.92 20386.64 23766.39 25966.96 31887.58 20039.46 34591.60 22165.76 22669.27 33988.22 256
Patchmatch-RL test70.24 29167.78 30477.61 27877.43 35059.57 28071.16 35670.33 36562.94 29868.65 30372.77 36850.62 26685.49 31069.58 19166.58 34987.77 264
OpenMVS_ROBcopyleft64.09 1970.56 28868.19 29477.65 27780.26 32759.41 28185.01 22382.96 29358.76 33465.43 33482.33 30837.63 35491.23 23945.34 36076.03 28182.32 346
our_test_369.14 29967.00 31275.57 29679.80 33658.80 28277.96 32477.81 33659.55 32662.90 35078.25 34747.43 29583.97 32151.71 32567.58 34683.93 331
ADS-MVSNet266.20 32463.33 32774.82 30479.92 33258.75 28367.55 37075.19 35153.37 35865.25 33675.86 35942.32 33280.53 34141.57 36768.91 34185.18 314
pm-mvs177.25 21976.68 21178.93 25784.22 25758.62 28486.41 18988.36 20571.37 17173.31 25388.01 19461.22 17089.15 27464.24 23673.01 32089.03 234
WR-MVS79.49 15979.22 14880.27 23488.79 15158.35 28585.06 22288.61 20278.56 3077.65 17088.34 18263.81 12990.66 25364.98 23277.22 26191.80 136
FIs82.07 10082.42 8881.04 21788.80 15058.34 28688.26 13393.49 2676.93 6078.47 15191.04 11569.92 6892.34 19969.87 18884.97 16392.44 118
CostFormer75.24 24873.90 24779.27 25382.65 29658.27 28780.80 28782.73 29761.57 31175.33 22883.13 29955.52 21391.07 24664.98 23278.34 25388.45 253
Test_1112_low_res76.40 23275.44 22779.27 25389.28 13258.09 28881.69 27987.07 23259.53 32772.48 26386.67 22961.30 16789.33 27060.81 26780.15 23190.41 182
tfpnnormal74.39 25173.16 25578.08 27086.10 22658.05 28984.65 23287.53 22370.32 19271.22 27685.63 25654.97 21689.86 26143.03 36475.02 30186.32 295
test-LLR72.94 27072.43 26074.48 30781.35 31658.04 29078.38 31977.46 33966.66 25269.95 29079.00 34048.06 29379.24 34466.13 22084.83 16486.15 299
test-mter71.41 27870.39 28174.48 30781.35 31658.04 29078.38 31977.46 33960.32 31969.95 29079.00 34036.08 35879.24 34466.13 22084.83 16486.15 299
mvs_anonymous79.42 16379.11 15180.34 23284.45 25457.97 29282.59 27187.62 22167.40 24776.17 20988.56 17768.47 8489.59 26670.65 17986.05 15493.47 79
tpm cat170.57 28768.31 29377.35 28282.41 30157.95 29378.08 32380.22 32252.04 36168.54 30577.66 35152.00 25087.84 29351.77 32472.07 32786.25 296
SixPastTwentyTwo73.37 26271.26 27279.70 24585.08 24257.89 29485.57 20983.56 28071.03 17865.66 33285.88 24942.10 33692.57 18859.11 27963.34 35888.65 250
thres20075.55 24274.47 24178.82 25887.78 18857.85 29583.07 26783.51 28172.44 15475.84 21384.42 27752.08 24891.75 21847.41 35083.64 18686.86 287
XXY-MVS75.41 24675.56 22574.96 30283.59 27057.82 29680.59 29283.87 27666.54 25874.93 23988.31 18363.24 13380.09 34262.16 25376.85 26786.97 285
K. test v371.19 27968.51 29179.21 25583.04 28557.78 29784.35 24376.91 34572.90 15162.99 34982.86 30239.27 34691.09 24561.65 25952.66 37688.75 247
tfpn200view976.42 23175.37 23179.55 25189.13 13857.65 29885.17 21883.60 27873.41 13976.45 19886.39 24052.12 24591.95 21148.33 34383.75 18189.07 228
thres40076.50 22875.37 23179.86 24189.13 13857.65 29885.17 21883.60 27873.41 13976.45 19886.39 24052.12 24591.95 21148.33 34383.75 18190.00 203
CMPMVSbinary51.72 2170.19 29268.16 29576.28 29073.15 37157.55 30079.47 30683.92 27448.02 36956.48 37084.81 27343.13 32786.42 30362.67 24881.81 21184.89 319
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs674.69 25073.39 25278.61 26181.38 31557.48 30186.64 18387.95 21364.99 27670.18 28486.61 23150.43 26989.52 26762.12 25470.18 33688.83 244
test_vis1_n_192075.52 24375.78 22174.75 30679.84 33457.44 30283.26 26185.52 25362.83 30079.34 13486.17 24545.10 31879.71 34378.75 9981.21 21787.10 284
PVSNet_057.27 2061.67 33559.27 33868.85 34479.61 33957.44 30268.01 36973.44 35955.93 35258.54 36370.41 37344.58 32077.55 35347.01 35135.91 38571.55 373
thres600view776.50 22875.44 22779.68 24689.40 12357.16 30485.53 21583.23 28673.79 12976.26 20487.09 21751.89 25391.89 21448.05 34883.72 18490.00 203
lessismore_v078.97 25681.01 32157.15 30565.99 37661.16 35482.82 30339.12 34791.34 23659.67 27346.92 38288.43 254
TransMVSNet (Re)75.39 24774.56 23977.86 27285.50 23457.10 30686.78 17986.09 24772.17 15871.53 27387.34 20763.01 14089.31 27156.84 30261.83 36087.17 278
thres100view90076.50 22875.55 22679.33 25289.52 11856.99 30785.83 20783.23 28673.94 12476.32 20387.12 21651.89 25391.95 21148.33 34383.75 18189.07 228
TESTMET0.1,169.89 29569.00 28972.55 32279.27 34456.85 30878.38 31974.71 35557.64 34268.09 30777.19 35337.75 35376.70 35763.92 23784.09 17784.10 329
WTY-MVS75.65 24175.68 22375.57 29686.40 22156.82 30977.92 32682.40 29965.10 27276.18 20787.72 19663.13 13980.90 33960.31 26981.96 20889.00 237
MDA-MVSNet_test_wron65.03 32562.92 32971.37 32975.93 35456.73 31069.09 36874.73 35457.28 34654.03 37477.89 34845.88 31074.39 37449.89 33761.55 36182.99 342
pmmvs357.79 33854.26 34368.37 34764.02 38456.72 31175.12 34465.17 37840.20 37752.93 37569.86 37420.36 38175.48 36845.45 35955.25 37472.90 372
tpm273.26 26571.46 26778.63 26083.34 27556.71 31280.65 29180.40 31956.63 34973.55 25182.02 31451.80 25591.24 23856.35 30678.42 25187.95 259
TinyColmap67.30 31464.81 31974.76 30581.92 30756.68 31380.29 29881.49 30860.33 31856.27 37183.22 29624.77 37687.66 29645.52 35869.47 33879.95 359
YYNet165.03 32562.91 33071.38 32875.85 35656.60 31469.12 36774.66 35657.28 34654.12 37377.87 34945.85 31174.48 37349.95 33661.52 36283.05 340
PM-MVS66.41 32064.14 32273.20 31873.92 36456.45 31578.97 31364.96 38063.88 29164.72 33980.24 32819.84 38283.44 32666.24 21964.52 35679.71 360
PVSNet64.34 1872.08 27670.87 27575.69 29486.21 22356.44 31674.37 34780.73 31362.06 30970.17 28582.23 31142.86 32983.31 32754.77 31184.45 17387.32 275
pmmvs571.55 27770.20 28375.61 29577.83 34856.39 31781.74 27880.89 31057.76 34167.46 31384.49 27649.26 28485.32 31357.08 29975.29 29785.11 317
WR-MVS_H78.51 18678.49 16278.56 26388.02 17856.38 31888.43 12592.67 6177.14 5473.89 24987.55 20366.25 10689.24 27258.92 28173.55 31590.06 201
MIMVSNet70.69 28669.30 28574.88 30384.52 25256.35 31975.87 33779.42 32864.59 27867.76 30882.41 30741.10 34081.54 33646.64 35481.34 21486.75 290
USDC70.33 29068.37 29276.21 29180.60 32456.23 32079.19 31086.49 23960.89 31561.29 35385.47 26031.78 36689.47 26953.37 31876.21 28082.94 343
Baseline_NR-MVSNet78.15 19578.33 16877.61 27885.79 22856.21 32186.78 17985.76 25173.60 13377.93 16687.57 20165.02 11988.99 27667.14 21575.33 29687.63 266
tpmvs71.09 28169.29 28676.49 28982.04 30456.04 32278.92 31481.37 30964.05 28767.18 31778.28 34649.74 27789.77 26249.67 33872.37 32383.67 333
FC-MVSNet-test81.52 11382.02 9780.03 23888.42 16555.97 32387.95 14493.42 2977.10 5677.38 17590.98 12069.96 6691.79 21768.46 20384.50 16992.33 119
GG-mvs-BLEND75.38 29981.59 31155.80 32479.32 30769.63 36867.19 31673.67 36643.24 32688.90 28150.41 33084.50 16981.45 352
VPNet78.69 18278.66 15978.76 25988.31 16855.72 32584.45 23986.63 23876.79 6478.26 15690.55 12659.30 18989.70 26566.63 21877.05 26390.88 164
baseline176.98 22276.75 20977.66 27688.13 17255.66 32685.12 22181.89 30373.04 14876.79 18988.90 16562.43 14787.78 29463.30 24271.18 33289.55 221
test_vis1_rt60.28 33658.42 33965.84 35267.25 38155.60 32770.44 36160.94 38544.33 37359.00 36166.64 37524.91 37568.67 38362.80 24469.48 33773.25 371
FMVSNet569.50 29767.96 29874.15 31182.97 28955.35 32880.01 30182.12 30262.56 30463.02 34781.53 31636.92 35581.92 33448.42 34274.06 30985.17 316
test_fmvs1_n70.86 28470.24 28272.73 32172.51 37555.28 32981.27 28579.71 32651.49 36578.73 14184.87 27227.54 37377.02 35576.06 12879.97 23485.88 306
test_vis1_n69.85 29669.21 28771.77 32672.66 37455.27 33081.48 28276.21 34852.03 36275.30 22983.20 29828.97 37176.22 36374.60 14178.41 25283.81 332
test_fmvs170.93 28370.52 27772.16 32473.71 36555.05 33180.82 28678.77 33251.21 36678.58 14784.41 27831.20 36876.94 35675.88 13180.12 23384.47 324
sss73.60 26073.64 25173.51 31582.80 29155.01 33276.12 33381.69 30662.47 30574.68 24285.85 25157.32 20578.11 35060.86 26680.93 21987.39 272
mvsany_test162.30 33361.26 33765.41 35369.52 37754.86 33366.86 37249.78 39346.65 37068.50 30683.21 29749.15 28566.28 38556.93 30160.77 36375.11 369
ECVR-MVScopyleft79.61 15579.26 14680.67 22690.08 10254.69 33487.89 14877.44 34174.88 10480.27 12292.79 7748.96 29092.45 19268.55 20192.50 7294.86 17
EPNet_dtu75.46 24474.86 23577.23 28482.57 29754.60 33586.89 17483.09 28971.64 16266.25 33085.86 25055.99 21288.04 29154.92 31086.55 14689.05 233
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CP-MVSNet78.22 19178.34 16777.84 27387.83 18454.54 33687.94 14591.17 11677.65 3873.48 25288.49 17862.24 15188.43 28662.19 25274.07 30890.55 177
gg-mvs-nofinetune69.95 29467.96 29875.94 29283.07 28354.51 33777.23 33070.29 36663.11 29470.32 28262.33 37743.62 32588.69 28353.88 31587.76 12984.62 323
PS-CasMVS78.01 20078.09 17277.77 27587.71 18954.39 33888.02 14191.22 11377.50 4673.26 25488.64 17360.73 17688.41 28761.88 25673.88 31290.53 178
Anonymous2024052168.80 30267.22 31173.55 31474.33 36254.11 33983.18 26285.61 25258.15 33861.68 35280.94 32230.71 36981.27 33857.00 30073.34 31985.28 312
Patchmtry70.74 28569.16 28875.49 29880.72 32254.07 34074.94 34680.30 32058.34 33670.01 28781.19 31752.50 23986.54 30153.37 31871.09 33385.87 307
PEN-MVS77.73 20677.69 18777.84 27387.07 21153.91 34187.91 14791.18 11577.56 4373.14 25688.82 16861.23 16989.17 27359.95 27172.37 32390.43 181
gm-plane-assit81.40 31453.83 34262.72 30380.94 32292.39 19563.40 241
CL-MVSNet_self_test72.37 27471.46 26775.09 30179.49 34153.53 34380.76 28985.01 25969.12 22270.51 27982.05 31357.92 19884.13 32052.27 32366.00 35287.60 267
MDTV_nov1_ep1369.97 28483.18 28053.48 34477.10 33180.18 32360.45 31769.33 29880.44 32648.89 29186.90 29951.60 32678.51 249
KD-MVS_2432*160066.22 32263.89 32473.21 31675.47 36053.42 34570.76 35984.35 26764.10 28566.52 32678.52 34434.55 36184.98 31450.40 33150.33 37981.23 353
miper_refine_blended66.22 32263.89 32473.21 31675.47 36053.42 34570.76 35984.35 26764.10 28566.52 32678.52 34434.55 36184.98 31450.40 33150.33 37981.23 353
test111179.43 16279.18 15080.15 23689.99 10753.31 34787.33 16277.05 34475.04 10180.23 12492.77 7948.97 28992.33 20068.87 19892.40 7494.81 20
LF4IMVS64.02 32962.19 33369.50 34070.90 37653.29 34876.13 33277.18 34352.65 36058.59 36280.98 32123.55 37876.52 35953.06 32066.66 34878.68 362
DTE-MVSNet76.99 22176.80 20577.54 28086.24 22253.06 34987.52 15690.66 12977.08 5772.50 26288.67 17260.48 18389.52 26757.33 29770.74 33490.05 202
test250677.30 21776.49 21379.74 24490.08 10252.02 35087.86 15063.10 38274.88 10480.16 12592.79 7738.29 35192.35 19868.74 20092.50 7294.86 17
tpm72.37 27471.71 26674.35 30982.19 30352.00 35179.22 30977.29 34264.56 27972.95 25883.68 29351.35 25883.26 32858.33 28875.80 28387.81 263
test_fmvs268.35 30867.48 30970.98 33569.50 37851.95 35280.05 30076.38 34749.33 36874.65 24384.38 27923.30 37975.40 37074.51 14275.17 30085.60 308
MIMVSNet168.58 30466.78 31473.98 31280.07 33151.82 35380.77 28884.37 26664.40 28159.75 36082.16 31236.47 35683.63 32442.73 36570.33 33586.48 294
Vis-MVSNet (Re-imp)78.36 18978.45 16378.07 27188.64 15751.78 35486.70 18279.63 32774.14 12175.11 23490.83 12161.29 16889.75 26358.10 29091.60 8292.69 107
LCM-MVSNet-Re77.05 22076.94 20277.36 28187.20 20851.60 35580.06 29980.46 31875.20 9767.69 31086.72 22462.48 14588.98 27763.44 24089.25 11491.51 141
Gipumacopyleft45.18 35441.86 35755.16 36877.03 35351.52 35632.50 39080.52 31632.46 38627.12 38935.02 3909.52 39375.50 36722.31 38960.21 36638.45 389
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
UnsupCasMVSNet_eth67.33 31365.99 31771.37 32973.48 36851.47 35775.16 34285.19 25665.20 27160.78 35580.93 32442.35 33177.20 35457.12 29853.69 37585.44 310
UnsupCasMVSNet_bld63.70 33061.53 33670.21 33873.69 36651.39 35872.82 35181.89 30355.63 35357.81 36671.80 37038.67 34878.61 34749.26 34052.21 37780.63 356
FPMVS53.68 34451.64 34659.81 36065.08 38351.03 35969.48 36469.58 36941.46 37640.67 38272.32 36916.46 38670.00 38224.24 38865.42 35358.40 384
CVMVSNet72.99 26972.58 25974.25 31084.28 25550.85 36086.41 18983.45 28344.56 37273.23 25587.54 20449.38 28185.70 30765.90 22478.44 25086.19 298
Anonymous2023120668.60 30367.80 30371.02 33480.23 32950.75 36178.30 32280.47 31756.79 34866.11 33182.63 30646.35 30578.95 34643.62 36375.70 28483.36 336
ambc75.24 30073.16 37050.51 36263.05 38287.47 22564.28 34177.81 35017.80 38489.73 26457.88 29260.64 36485.49 309
APD_test153.31 34549.93 35063.42 35665.68 38250.13 36371.59 35566.90 37534.43 38440.58 38371.56 3718.65 39576.27 36234.64 37855.36 37363.86 380
tpmrst72.39 27272.13 26373.18 31980.54 32549.91 36479.91 30379.08 33163.11 29471.69 27279.95 33155.32 21482.77 33065.66 22773.89 31186.87 286
Patchmatch-test64.82 32763.24 32869.57 33979.42 34249.82 36563.49 38169.05 37151.98 36359.95 35980.13 32950.91 26270.98 37940.66 36973.57 31487.90 261
EPMVS69.02 30068.16 29571.59 32779.61 33949.80 36677.40 32866.93 37462.82 30170.01 28779.05 33845.79 31277.86 35256.58 30475.26 29887.13 281
dp66.80 31665.43 31870.90 33679.74 33848.82 36775.12 34474.77 35359.61 32564.08 34377.23 35242.89 32880.72 34048.86 34166.58 34983.16 338
test0.0.03 168.00 31067.69 30568.90 34377.55 34947.43 36875.70 33872.95 36266.66 25266.56 32482.29 31048.06 29375.87 36544.97 36174.51 30683.41 335
ADS-MVSNet64.36 32862.88 33168.78 34579.92 33247.17 36967.55 37071.18 36453.37 35865.25 33675.86 35942.32 33273.99 37541.57 36768.91 34185.18 314
EU-MVSNet68.53 30667.61 30771.31 33278.51 34747.01 37084.47 23684.27 27042.27 37566.44 32984.79 27440.44 34383.76 32258.76 28468.54 34483.17 337
test_fmvs363.36 33161.82 33467.98 34862.51 38546.96 37177.37 32974.03 35745.24 37167.50 31278.79 34312.16 39072.98 37872.77 16266.02 35183.99 330
KD-MVS_self_test68.81 30167.59 30872.46 32374.29 36345.45 37277.93 32587.00 23363.12 29363.99 34478.99 34242.32 33284.77 31756.55 30564.09 35787.16 280
testf145.72 35241.96 35557.00 36256.90 38745.32 37366.14 37559.26 38726.19 38830.89 38760.96 3814.14 39870.64 38026.39 38646.73 38355.04 385
APD_test245.72 35241.96 35557.00 36256.90 38745.32 37366.14 37559.26 38726.19 38830.89 38760.96 3814.14 39870.64 38026.39 38646.73 38355.04 385
LCM-MVSNet54.25 34149.68 35167.97 34953.73 39345.28 37566.85 37380.78 31235.96 38339.45 38462.23 3798.70 39478.06 35148.24 34651.20 37880.57 357
test_vis3_rt49.26 35147.02 35356.00 36454.30 39045.27 37666.76 37448.08 39436.83 38144.38 38153.20 3867.17 39764.07 38756.77 30355.66 37158.65 383
test20.0367.45 31266.95 31368.94 34275.48 35944.84 37777.50 32777.67 33766.66 25263.01 34883.80 28947.02 29978.40 34842.53 36668.86 34383.58 334
mvsany_test353.99 34251.45 34761.61 35855.51 38944.74 37863.52 38045.41 39743.69 37458.11 36576.45 35617.99 38363.76 38854.77 31147.59 38176.34 367
PatchT68.46 30767.85 30070.29 33780.70 32343.93 37972.47 35274.88 35260.15 32170.55 27876.57 35549.94 27481.59 33550.58 32974.83 30385.34 311
MVS-HIRNet59.14 33757.67 34063.57 35581.65 30943.50 38071.73 35465.06 37939.59 37951.43 37657.73 38338.34 35082.58 33139.53 37073.95 31064.62 379
testing368.56 30567.67 30671.22 33387.33 20542.87 38183.06 26871.54 36370.36 19069.08 30084.38 27930.33 37085.69 30837.50 37575.45 29285.09 318
WAC-MVS42.58 38239.46 371
myMVS_eth3d67.02 31566.29 31669.21 34184.68 24942.58 38278.62 31773.08 36066.65 25566.74 32279.46 33531.53 36782.30 33239.43 37276.38 27782.75 344
PMVScopyleft37.38 2244.16 35540.28 35855.82 36640.82 39842.54 38465.12 37863.99 38134.43 38424.48 39057.12 3853.92 40076.17 36417.10 39255.52 37248.75 387
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_f52.09 34750.82 34855.90 36553.82 39242.31 38559.42 38358.31 38936.45 38256.12 37270.96 37212.18 38957.79 39053.51 31756.57 37067.60 376
testgi66.67 31866.53 31567.08 35175.62 35841.69 38675.93 33476.50 34666.11 26165.20 33886.59 23235.72 35974.71 37243.71 36273.38 31884.84 320
Syy-MVS68.05 30967.85 30068.67 34684.68 24940.97 38778.62 31773.08 36066.65 25566.74 32279.46 33552.11 24782.30 33232.89 37976.38 27782.75 344
ANet_high50.57 35046.10 35463.99 35448.67 39639.13 38870.99 35880.85 31161.39 31331.18 38657.70 38417.02 38573.65 37731.22 38115.89 39479.18 361
MDTV_nov1_ep13_2view37.79 38975.16 34255.10 35466.53 32549.34 28253.98 31487.94 260
DSMNet-mixed57.77 33956.90 34160.38 35967.70 38035.61 39069.18 36553.97 39132.30 38757.49 36779.88 33240.39 34468.57 38438.78 37372.37 32376.97 365
MVEpermissive26.22 2330.37 36025.89 36443.81 37344.55 39735.46 39128.87 39139.07 39818.20 39218.58 39440.18 3892.68 40147.37 39517.07 39323.78 39148.60 388
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
new_pmnet50.91 34950.29 34952.78 37068.58 37934.94 39263.71 37956.63 39039.73 37844.95 38065.47 37621.93 38058.48 38934.98 37756.62 36964.92 378
wuyk23d16.82 36315.94 36619.46 37858.74 38631.45 39339.22 3883.74 4036.84 3946.04 3972.70 3971.27 40224.29 39710.54 39714.40 3962.63 394
E-PMN31.77 35730.64 36035.15 37552.87 39427.67 39457.09 38547.86 39524.64 39016.40 39533.05 39111.23 39154.90 39214.46 39518.15 39222.87 391
DeepMVS_CXcopyleft27.40 37740.17 39926.90 39524.59 40117.44 39323.95 39148.61 3889.77 39226.48 39618.06 39024.47 39028.83 390
EMVS30.81 35929.65 36134.27 37650.96 39525.95 39656.58 38646.80 39624.01 39115.53 39630.68 39212.47 38854.43 39312.81 39617.05 39322.43 392
dmvs_testset62.63 33264.11 32358.19 36178.55 34624.76 39775.28 34065.94 37767.91 24260.34 35676.01 35853.56 23373.94 37631.79 38067.65 34575.88 368
new-patchmatchnet61.73 33461.73 33561.70 35772.74 37324.50 39869.16 36678.03 33561.40 31256.72 36975.53 36238.42 34976.48 36045.95 35757.67 36784.13 328
WB-MVS54.94 34054.72 34255.60 36773.50 36720.90 39974.27 34861.19 38459.16 33050.61 37774.15 36447.19 29875.78 36617.31 39135.07 38670.12 374
SSC-MVS53.88 34353.59 34454.75 36972.87 37219.59 40073.84 35060.53 38657.58 34449.18 37973.45 36746.34 30675.47 36916.20 39432.28 38869.20 375
PMMVS240.82 35638.86 35946.69 37253.84 39116.45 40148.61 38749.92 39237.49 38031.67 38560.97 3808.14 39656.42 39128.42 38330.72 38967.19 377
tmp_tt18.61 36221.40 36510.23 3794.82 40110.11 40234.70 38930.74 4001.48 39623.91 39226.07 39328.42 37213.41 39827.12 38415.35 3957.17 393
N_pmnet52.79 34653.26 34551.40 37178.99 3457.68 40369.52 3633.89 40251.63 36457.01 36874.98 36340.83 34265.96 38637.78 37464.67 35580.56 358
test_method31.52 35829.28 36238.23 37427.03 4006.50 40420.94 39262.21 3834.05 39522.35 39352.50 38713.33 38747.58 39427.04 38534.04 38760.62 381
test1236.12 3658.11 3680.14 3800.06 4030.09 40571.05 3570.03 4050.04 3990.25 4001.30 3990.05 4030.03 4000.21 3990.01 3980.29 395
testmvs6.04 3668.02 3690.10 3810.08 4020.03 40669.74 3620.04 4040.05 3980.31 3991.68 3980.02 4040.04 3990.24 3980.02 3970.25 396
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k19.96 36126.61 3630.00 3820.00 4040.00 4070.00 39389.26 1730.00 4000.00 40188.61 17461.62 1590.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas5.26 3677.02 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40063.15 1360.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re7.23 3649.64 3670.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40186.72 2240.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
PC_three_145268.21 24092.02 1294.00 4682.09 595.98 5184.58 4696.68 294.95 10
eth-test20.00 404
eth-test0.00 404
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 41
9.1488.26 1492.84 6091.52 4694.75 173.93 12588.57 2294.67 1975.57 2295.79 5386.77 3395.76 23
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 24
GSMVS88.96 239
sam_mvs151.32 25988.96 239
sam_mvs50.01 272
MTGPAbinary92.02 85
test_post178.90 3155.43 39648.81 29285.44 31259.25 277
test_post5.46 39550.36 27084.24 319
patchmatchnet-post74.00 36551.12 26188.60 284
MTMP92.18 3532.83 399
test9_res84.90 4095.70 2692.87 102
agg_prior282.91 6495.45 3092.70 105
test_prior288.85 11175.41 9384.91 5793.54 5674.28 2983.31 5995.86 20
旧先验286.56 18658.10 33987.04 3788.98 27774.07 147
新几何286.29 194
无先验87.48 15788.98 18660.00 32294.12 12167.28 21288.97 238
原ACMM286.86 175
testdata291.01 24762.37 251
segment_acmp73.08 37
testdata184.14 24775.71 87
plane_prior592.44 6995.38 6978.71 10086.32 14991.33 147
plane_prior491.00 118
plane_prior291.25 5079.12 23
plane_prior189.90 110
n20.00 406
nn0.00 406
door-mid69.98 367
test1192.23 79
door69.44 370
HQP-NCC89.33 12789.17 9876.41 7277.23 180
ACMP_Plane89.33 12789.17 9876.41 7277.23 180
BP-MVS77.47 112
HQP4-MVS77.24 17995.11 8091.03 159
HQP3-MVS92.19 8285.99 156
HQP2-MVS60.17 187
ACMMP++_ref81.95 209
ACMMP++81.25 215
Test By Simon64.33 123