This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
MM89.16 689.23 788.97 490.79 9173.65 1092.66 2391.17 12386.57 187.39 3794.97 1671.70 5297.68 192.19 195.63 2895.57 1
MVS_030488.08 1488.08 1788.08 1489.67 11672.04 4892.26 3389.26 18084.19 285.01 5795.18 1369.93 7197.20 1491.63 295.60 2994.99 9
test_fmvsmconf_n85.92 4686.04 4785.57 7285.03 25669.51 9089.62 8690.58 13873.42 14087.75 3294.02 4472.85 4193.24 16490.37 390.75 9793.96 56
test_fmvsmconf0.1_n85.61 5485.65 5285.50 7382.99 30169.39 9789.65 8390.29 15173.31 14387.77 3194.15 3871.72 5193.23 16590.31 490.67 9993.89 61
test_fmvsmconf0.01_n84.73 7184.52 7285.34 7680.25 34169.03 10089.47 8889.65 16873.24 14786.98 4294.27 3266.62 10893.23 16590.26 589.95 11193.78 67
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 37
No_MVS89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 37
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 6094.67 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 25
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9191.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 34
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 6077.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 89
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 47
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 46
IU-MVS95.30 271.25 5792.95 5266.81 25792.39 688.94 1696.63 494.85 19
fmvsm_l_conf0.5_n84.47 7284.54 7084.27 11785.42 24668.81 10688.49 12587.26 23568.08 24888.03 2793.49 5772.04 4891.77 22288.90 1789.14 12092.24 130
fmvsm_s_conf0.5_n83.80 7883.71 7984.07 12786.69 22867.31 14989.46 8983.07 29671.09 18286.96 4393.70 5569.02 8691.47 23788.79 1884.62 17993.44 85
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7893.50 2575.17 10286.34 4695.29 1270.86 6196.00 4988.78 1996.04 1694.58 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_fmvsmvis_n_192084.02 7583.87 7784.49 10584.12 27269.37 9888.15 14387.96 21870.01 20583.95 8593.23 6568.80 9191.51 23588.61 2089.96 11092.57 115
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10992.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
fmvsm_s_conf0.1_n83.56 8583.38 8384.10 12284.86 25867.28 15089.40 9483.01 29770.67 19087.08 4093.96 5068.38 9491.45 23888.56 2284.50 18093.56 80
test_fmvsm_n_192085.29 6085.34 5785.13 8386.12 23669.93 8388.65 12190.78 13469.97 20788.27 2393.98 4971.39 5791.54 23288.49 2390.45 10193.91 58
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6093.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 42
fmvsm_l_conf0.5_n_a84.13 7484.16 7684.06 12985.38 24768.40 12188.34 13486.85 24367.48 25587.48 3693.40 6170.89 6091.61 22688.38 2589.22 11992.16 134
fmvsm_s_conf0.5_n_a83.63 8383.41 8284.28 11586.14 23568.12 12889.43 9082.87 30170.27 20187.27 3993.80 5469.09 8191.58 22888.21 2683.65 19893.14 98
fmvsm_s_conf0.1_n_a83.32 9182.99 9084.28 11583.79 27968.07 13089.34 9682.85 30269.80 21187.36 3894.06 4268.34 9591.56 23087.95 2783.46 20493.21 95
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7874.62 11388.90 2093.85 5275.75 2096.00 4987.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5593.59 2376.27 8188.14 2495.09 1571.06 5996.67 2987.67 2996.37 1494.09 51
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13987.63 3094.27 5993.65 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5580.26 1187.78 3094.27 3275.89 1996.81 2387.45 3296.44 993.05 101
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8792.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 57
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8989.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
9.1488.26 1592.84 6091.52 4694.75 173.93 12788.57 2294.67 1975.57 2295.79 5486.77 3595.76 23
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18992.02 9079.45 1985.88 4894.80 1768.07 9696.21 4286.69 3695.34 3393.23 92
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 10089.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 29
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6577.57 4183.84 8794.40 3072.24 4596.28 4085.65 3895.30 3593.62 77
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5594.32 3171.76 5096.93 1985.53 3995.79 2294.32 43
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8483.81 8893.95 5169.77 7496.01 4885.15 4094.66 4694.32 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11591.89 9968.69 23985.00 5993.10 6774.43 2695.41 7084.97 4195.71 2593.02 103
test9_res84.90 4295.70 2692.87 107
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5681.50 585.79 5093.47 6073.02 4097.00 1884.90 4294.94 3994.10 50
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7693.82 1673.07 14984.86 6492.89 7476.22 1796.33 3884.89 4495.13 3694.40 39
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 10194.23 3572.13 4797.09 1684.83 4595.37 3293.65 74
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 7174.50 11486.84 4494.65 2067.31 10495.77 5584.80 4692.85 7092.84 108
ZD-MVS94.38 2572.22 4492.67 6270.98 18587.75 3294.07 4174.01 3296.70 2784.66 4794.84 43
PC_three_145268.21 24792.02 1294.00 4682.09 595.98 5284.58 4896.68 294.95 10
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 6194.44 2870.78 6296.61 3284.53 4994.89 4193.66 70
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6894.52 2168.81 9096.65 3084.53 4994.90 4094.00 55
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7594.52 2169.09 8196.70 2784.37 5194.83 4494.03 54
CANet86.45 3886.10 4587.51 3790.09 10370.94 6789.70 8292.59 7081.78 481.32 11891.43 10670.34 6697.23 1384.26 5293.36 6794.37 40
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5673.01 15188.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 110
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CS-MVS86.69 3586.95 3185.90 6590.76 9267.57 14292.83 1793.30 3279.67 1784.57 7292.27 8671.47 5595.02 9084.24 5493.46 6695.13 6
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5976.62 7183.68 8994.46 2567.93 9795.95 5384.20 5594.39 5493.23 92
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6593.99 4870.67 6496.82 2284.18 5695.01 3793.90 60
EC-MVSNet86.01 4386.38 3884.91 9289.31 13566.27 17092.32 3093.63 2179.37 2084.17 8191.88 9369.04 8595.43 6883.93 5793.77 6493.01 104
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 7087.65 20267.22 15388.69 11993.04 3879.64 1885.33 5492.54 8373.30 3594.50 11083.49 5991.14 9395.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
dcpmvs_285.63 5386.15 4484.06 12991.71 7564.94 19986.47 19291.87 10173.63 13386.60 4593.02 7276.57 1591.87 22083.36 6092.15 7895.35 3
test_prior288.85 11275.41 9584.91 6193.54 5674.28 2983.31 6195.86 20
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15485.22 5691.90 9269.47 7696.42 3783.28 6295.94 1994.35 41
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 9094.17 3667.45 10296.60 3383.06 6394.50 5094.07 52
X-MVStestdata80.37 15177.83 18688.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 9012.47 40867.45 10296.60 3383.06 6394.50 5094.07 52
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4673.54 13785.94 4794.51 2465.80 12295.61 6083.04 6592.51 7493.53 83
agg_prior282.91 6695.45 3092.70 110
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8476.87 6282.81 10294.25 3466.44 11296.24 4182.88 6794.28 5893.38 86
SR-MVS-dyc-post85.77 5085.61 5386.23 5693.06 5570.63 7391.88 3992.27 8073.53 13885.69 5194.45 2665.00 13095.56 6182.75 6891.87 8392.50 119
RE-MVS-def85.48 5593.06 5570.63 7391.88 3992.27 8073.53 13885.69 5194.45 2663.87 13682.75 6891.87 8392.50 119
h-mvs3383.15 9482.19 10286.02 6290.56 9470.85 7088.15 14389.16 18576.02 8584.67 6691.39 10761.54 16995.50 6482.71 7075.48 30191.72 145
hse-mvs281.72 11680.94 12284.07 12788.72 16067.68 13885.87 20887.26 23576.02 8584.67 6688.22 19261.54 16993.48 15482.71 7073.44 32991.06 164
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7093.04 3875.53 9383.86 8694.42 2967.87 9996.64 3182.70 7294.57 4993.66 70
ACMMPcopyleft85.89 4985.39 5687.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12793.82 5364.33 13296.29 3982.67 7390.69 9893.23 92
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
diffmvspermissive82.10 10781.88 10982.76 18683.00 29963.78 22283.68 25689.76 16472.94 15282.02 10889.85 14665.96 12190.79 25682.38 7487.30 14393.71 69
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
patch_mono-283.65 8184.54 7080.99 22390.06 10865.83 17984.21 24988.74 20471.60 17185.01 5792.44 8474.51 2583.50 33682.15 7592.15 7893.64 76
CS-MVS-test86.29 4286.48 3785.71 6991.02 8367.21 15492.36 2993.78 1878.97 2883.51 9391.20 11370.65 6595.15 8181.96 7694.89 4194.77 22
TSAR-MVS + GP.85.71 5285.33 5886.84 4791.34 7872.50 3689.07 10587.28 23476.41 7485.80 4990.22 13974.15 3195.37 7581.82 7791.88 8292.65 114
alignmvs85.48 5585.32 5985.96 6389.51 12269.47 9289.74 8092.47 7276.17 8287.73 3491.46 10570.32 6793.78 13981.51 7888.95 12194.63 28
sasdasda85.91 4785.87 4986.04 6089.84 11369.44 9590.45 6593.00 4376.70 6988.01 2891.23 11073.28 3693.91 13381.50 7988.80 12494.77 22
canonicalmvs85.91 4785.87 4986.04 6089.84 11369.44 9590.45 6593.00 4376.70 6988.01 2891.23 11073.28 3693.91 13381.50 7988.80 12494.77 22
MVSMamba_pp84.98 6684.70 6785.80 6789.43 12667.63 14088.44 12692.64 6772.17 16284.54 7390.39 13468.88 8895.28 7681.45 8194.39 5494.49 33
baseline84.93 6784.98 6384.80 9687.30 21665.39 18987.30 16792.88 5377.62 3984.04 8492.26 8771.81 4993.96 12681.31 8290.30 10395.03 8
MGCFI-Net85.06 6485.51 5483.70 14489.42 12763.01 24089.43 9092.62 6976.43 7387.53 3591.34 10872.82 4293.42 15981.28 8388.74 12794.66 27
casdiffmvspermissive85.11 6285.14 6285.01 8687.20 21865.77 18287.75 15592.83 5677.84 3784.36 7892.38 8572.15 4693.93 13281.27 8490.48 10095.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
mamv485.00 6584.68 6885.93 6489.51 12267.64 13988.38 13292.65 6572.35 15984.47 7490.26 13668.98 8795.69 5981.09 8594.45 5394.47 34
MVS_111021_HR85.14 6184.75 6686.32 5591.65 7672.70 3085.98 20490.33 14876.11 8382.08 10791.61 10071.36 5894.17 12281.02 8692.58 7392.08 136
HPM-MVS_fast85.35 5984.95 6586.57 5393.69 4270.58 7592.15 3691.62 10973.89 12882.67 10494.09 4062.60 15195.54 6380.93 8792.93 6993.57 79
CPTT-MVS83.73 7983.33 8584.92 9193.28 4970.86 6992.09 3790.38 14468.75 23879.57 13892.83 7660.60 19193.04 18280.92 8891.56 8890.86 172
ETV-MVS84.90 6984.67 6985.59 7189.39 13068.66 11788.74 11792.64 6779.97 1584.10 8285.71 25769.32 7995.38 7280.82 8991.37 9092.72 109
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7184.22 7993.36 6371.44 5696.76 2580.82 8995.33 3494.16 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
nrg03083.88 7683.53 8084.96 8886.77 22669.28 9990.46 6492.67 6274.79 10882.95 9791.33 10972.70 4393.09 17880.79 9179.28 25592.50 119
mvsmamba81.69 11880.74 12484.56 10187.45 20966.72 16291.26 4885.89 25774.66 11178.23 16390.56 13054.33 23494.91 9280.73 9283.54 20292.04 139
EI-MVSNet-Vis-set84.19 7383.81 7885.31 7788.18 17867.85 13487.66 15789.73 16680.05 1482.95 9789.59 15470.74 6394.82 10080.66 9384.72 17793.28 91
MSLP-MVS++85.43 5785.76 5184.45 10691.93 7270.24 7690.71 5792.86 5477.46 4784.22 7992.81 7867.16 10692.94 18480.36 9494.35 5790.16 200
MVS_111021_LR82.61 10382.11 10384.11 12188.82 15371.58 5385.15 22486.16 25374.69 11080.47 12991.04 11962.29 15890.55 26080.33 9590.08 10890.20 199
iter_conf0583.17 9382.90 9383.97 13887.59 20765.09 19688.29 13791.52 11272.35 15981.39 11790.13 14268.76 9294.84 9980.30 9685.75 16991.98 140
DELS-MVS85.41 5885.30 6085.77 6888.49 16767.93 13385.52 22193.44 2778.70 2983.63 9289.03 16974.57 2495.71 5880.26 9794.04 6193.66 70
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EI-MVSNet-UG-set83.81 7783.38 8385.09 8487.87 19167.53 14387.44 16389.66 16779.74 1682.23 10689.41 16370.24 6894.74 10379.95 9883.92 19092.99 105
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5693.56 2473.95 12583.16 9691.07 11875.94 1895.19 7979.94 9994.38 5693.55 81
OPM-MVS83.50 8682.95 9185.14 8188.79 15670.95 6689.13 10491.52 11277.55 4480.96 12591.75 9560.71 18694.50 11079.67 10086.51 15589.97 216
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CDPH-MVS85.76 5185.29 6187.17 4393.49 4771.08 6188.58 12392.42 7668.32 24684.61 7093.48 5872.32 4496.15 4579.00 10195.43 3194.28 45
MVSFormer82.85 10082.05 10585.24 7987.35 21070.21 7790.50 6190.38 14468.55 24181.32 11889.47 15761.68 16693.46 15678.98 10290.26 10492.05 137
test_djsdf80.30 15279.32 15383.27 15783.98 27665.37 19090.50 6190.38 14468.55 24176.19 21188.70 17556.44 22093.46 15678.98 10280.14 24590.97 169
test_vis1_n_192075.52 25175.78 22774.75 31679.84 34757.44 30783.26 26585.52 26162.83 31179.34 14286.17 25045.10 32779.71 35578.75 10481.21 23087.10 295
HQP_MVS83.64 8283.14 8685.14 8190.08 10468.71 11391.25 5092.44 7379.12 2378.92 14791.00 12260.42 19395.38 7278.71 10586.32 15791.33 156
plane_prior592.44 7395.38 7278.71 10586.32 15791.33 156
iter_conf05_1184.86 7084.52 7285.87 6690.86 8867.18 15589.63 8592.15 8871.48 17484.64 6990.81 12668.82 8996.00 4978.50 10793.84 6394.43 36
LPG-MVS_test82.08 10881.27 11484.50 10389.23 13968.76 10990.22 7091.94 9675.37 9676.64 20091.51 10254.29 23594.91 9278.44 10883.78 19189.83 221
LGP-MVS_train84.50 10389.23 13968.76 10991.94 9675.37 9676.64 20091.51 10254.29 23594.91 9278.44 10883.78 19189.83 221
lupinMVS81.39 12680.27 13584.76 9787.35 21070.21 7785.55 21786.41 24862.85 31081.32 11888.61 17961.68 16692.24 20778.41 11090.26 10491.83 142
jason81.39 12680.29 13484.70 9886.63 23069.90 8585.95 20586.77 24463.24 30381.07 12489.47 15761.08 18292.15 20978.33 11190.07 10992.05 137
jason: jason.
xiu_mvs_v1_base_debu80.80 13879.72 14484.03 13487.35 21070.19 7985.56 21488.77 20069.06 23181.83 10988.16 19350.91 27292.85 18678.29 11287.56 13889.06 240
xiu_mvs_v1_base80.80 13879.72 14484.03 13487.35 21070.19 7985.56 21488.77 20069.06 23181.83 10988.16 19350.91 27292.85 18678.29 11287.56 13889.06 240
xiu_mvs_v1_base_debi80.80 13879.72 14484.03 13487.35 21070.19 7985.56 21488.77 20069.06 23181.83 10988.16 19350.91 27292.85 18678.29 11287.56 13889.06 240
Effi-MVS+83.62 8483.08 8785.24 7988.38 17367.45 14488.89 11089.15 18675.50 9482.27 10588.28 18969.61 7594.45 11277.81 11587.84 13693.84 64
PS-MVSNAJss82.07 10981.31 11384.34 11186.51 23167.27 15189.27 9791.51 11471.75 16679.37 14090.22 13963.15 14594.27 11677.69 11682.36 21891.49 152
bld_raw_dy_0_6482.00 11181.23 11584.34 11188.75 15866.52 16681.95 28191.90 9863.91 30075.26 23890.15 14169.37 7795.74 5777.66 11792.08 8090.76 175
ACMP74.13 681.51 12580.57 12784.36 10989.42 12768.69 11689.97 7491.50 11774.46 11675.04 24690.41 13353.82 24094.54 10777.56 11882.91 21089.86 220
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
BP-MVS77.47 119
HQP-MVS82.61 10382.02 10684.37 10889.33 13266.98 15889.17 9992.19 8676.41 7477.23 18690.23 13860.17 19695.11 8477.47 11985.99 16591.03 166
MVS_Test83.15 9483.06 8883.41 15386.86 22263.21 23686.11 20292.00 9274.31 11882.87 9989.44 16270.03 6993.21 16777.39 12188.50 13293.81 65
3Dnovator+77.84 485.48 5584.47 7488.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19993.37 6260.40 19596.75 2677.20 12293.73 6595.29 5
anonymousdsp78.60 19177.15 20482.98 17380.51 33967.08 15687.24 16989.53 17065.66 27775.16 24187.19 21952.52 24892.25 20677.17 12379.34 25489.61 228
VDD-MVS83.01 9982.36 10084.96 8891.02 8366.40 16788.91 10988.11 21377.57 4184.39 7793.29 6452.19 25493.91 13377.05 12488.70 12894.57 31
XVG-OURS-SEG-HR80.81 13679.76 14383.96 14085.60 24368.78 10883.54 26290.50 14170.66 19376.71 19891.66 9660.69 18791.26 24376.94 12581.58 22691.83 142
jajsoiax79.29 17477.96 18183.27 15784.68 26166.57 16589.25 9890.16 15469.20 22775.46 22689.49 15645.75 32393.13 17676.84 12680.80 23590.11 204
SDMVSNet80.38 14980.18 13680.99 22389.03 14864.94 19980.45 30689.40 17375.19 10076.61 20289.98 14360.61 19087.69 30476.83 12783.55 20090.33 194
mvs_tets79.13 17877.77 19083.22 16184.70 26066.37 16889.17 9990.19 15369.38 22075.40 22989.46 15944.17 33293.15 17476.78 12880.70 23790.14 201
DPM-MVS84.93 6784.29 7586.84 4790.20 10173.04 2387.12 17193.04 3869.80 21182.85 10091.22 11273.06 3996.02 4776.72 12994.63 4791.46 155
test_cas_vis1_n_192073.76 26973.74 25973.81 32475.90 36859.77 28180.51 30482.40 30658.30 34981.62 11585.69 25844.35 33176.41 37376.29 13078.61 25885.23 325
ET-MVSNet_ETH3D78.63 19076.63 21984.64 9986.73 22769.47 9285.01 22784.61 27069.54 21766.51 34086.59 23750.16 28191.75 22376.26 13184.24 18792.69 112
v2v48280.23 15379.29 15483.05 16983.62 28264.14 21587.04 17389.97 15973.61 13478.18 16687.22 21761.10 18193.82 13776.11 13276.78 28191.18 160
test_fmvs1_n70.86 29770.24 29572.73 33372.51 38955.28 33881.27 29279.71 33551.49 37878.73 14984.87 27727.54 38577.02 36776.06 13379.97 24785.88 317
CLD-MVS82.31 10581.65 11184.29 11488.47 16867.73 13785.81 21292.35 7875.78 8878.33 16186.58 23964.01 13594.35 11376.05 13487.48 14190.79 173
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
EPNet83.72 8082.92 9286.14 5984.22 27069.48 9191.05 5485.27 26381.30 676.83 19491.65 9766.09 11795.56 6176.00 13593.85 6293.38 86
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvs170.93 29670.52 29072.16 33673.71 37855.05 34080.82 29578.77 34251.21 37978.58 15484.41 28331.20 38076.94 36875.88 13680.12 24684.47 336
XVG-OURS80.41 14879.23 15683.97 13885.64 24269.02 10283.03 27390.39 14371.09 18277.63 17791.49 10454.62 23391.35 24175.71 13783.47 20391.54 149
V4279.38 17378.24 17782.83 17881.10 33365.50 18685.55 21789.82 16271.57 17278.21 16486.12 25160.66 18893.18 17375.64 13875.46 30389.81 223
PS-MVSNAJ81.69 11881.02 12083.70 14489.51 12268.21 12784.28 24890.09 15670.79 18781.26 12285.62 26263.15 14594.29 11475.62 13988.87 12388.59 262
xiu_mvs_v2_base81.69 11881.05 11983.60 14689.15 14268.03 13284.46 24290.02 15770.67 19081.30 12186.53 24263.17 14494.19 12175.60 14088.54 13088.57 263
EIA-MVS83.31 9282.80 9584.82 9489.59 11865.59 18488.21 13992.68 6174.66 11178.96 14586.42 24469.06 8395.26 7775.54 14190.09 10793.62 77
AUN-MVS79.21 17677.60 19684.05 13288.71 16167.61 14185.84 21087.26 23569.08 23077.23 18688.14 19753.20 24793.47 15575.50 14273.45 32891.06 164
OMC-MVS82.69 10181.97 10884.85 9388.75 15867.42 14587.98 14690.87 13274.92 10579.72 13691.65 9762.19 16193.96 12675.26 14386.42 15693.16 97
v114480.03 15779.03 16083.01 17183.78 28064.51 20687.11 17290.57 14071.96 16578.08 16986.20 24961.41 17393.94 12974.93 14477.23 27290.60 183
MVSTER79.01 18177.88 18582.38 19283.07 29664.80 20284.08 25388.95 19669.01 23478.69 15087.17 22054.70 23192.43 19774.69 14580.57 23989.89 219
test_vis1_n69.85 30969.21 30071.77 33872.66 38855.27 33981.48 28876.21 35952.03 37575.30 23683.20 30828.97 38376.22 37574.60 14678.41 26483.81 344
test_fmvs268.35 32167.48 32270.98 34769.50 39251.95 36180.05 31176.38 35849.33 38174.65 25284.38 28423.30 39375.40 38274.51 14775.17 31285.60 320
PVSNet_Blended_VisFu82.62 10281.83 11084.96 8890.80 9069.76 8788.74 11791.70 10869.39 21978.96 14588.46 18465.47 12494.87 9874.42 14888.57 12990.24 198
v879.97 15979.02 16182.80 18184.09 27364.50 20887.96 14790.29 15174.13 12475.24 23986.81 22662.88 15093.89 13674.39 14975.40 30690.00 212
v14419279.47 16778.37 17382.78 18483.35 28763.96 21886.96 17590.36 14769.99 20677.50 17885.67 26060.66 18893.77 14174.27 15076.58 28290.62 181
ACMM73.20 880.78 14179.84 14283.58 14789.31 13568.37 12289.99 7391.60 11070.28 20077.25 18489.66 15053.37 24593.53 15274.24 15182.85 21188.85 253
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
旧先验286.56 19058.10 35187.04 4188.98 28674.07 152
v119279.59 16478.43 17283.07 16883.55 28464.52 20586.93 17790.58 13870.83 18677.78 17485.90 25359.15 19993.94 12973.96 15377.19 27490.76 175
v1079.74 16178.67 16582.97 17484.06 27464.95 19887.88 15390.62 13773.11 14875.11 24386.56 24061.46 17294.05 12573.68 15475.55 29989.90 218
v192192079.22 17578.03 18082.80 18183.30 28963.94 21986.80 18190.33 14869.91 20977.48 17985.53 26358.44 20393.75 14373.60 15576.85 27990.71 179
cl2278.07 20477.01 20681.23 21682.37 31561.83 25783.55 26187.98 21768.96 23575.06 24583.87 29461.40 17491.88 21973.53 15676.39 28689.98 215
Effi-MVS+-dtu80.03 15778.57 16884.42 10785.13 25468.74 11188.77 11488.10 21474.99 10474.97 24783.49 30457.27 21593.36 16073.53 15680.88 23391.18 160
c3_l78.75 18677.91 18381.26 21582.89 30361.56 26084.09 25289.13 18869.97 20775.56 22284.29 28766.36 11392.09 21173.47 15875.48 30190.12 203
VDDNet81.52 12380.67 12684.05 13290.44 9764.13 21689.73 8185.91 25671.11 18183.18 9593.48 5850.54 27893.49 15373.40 15988.25 13494.54 32
CANet_DTU80.61 14379.87 14182.83 17885.60 24363.17 23987.36 16488.65 20676.37 7875.88 21788.44 18553.51 24393.07 17973.30 16089.74 11492.25 128
miper_ehance_all_eth78.59 19277.76 19181.08 22182.66 30861.56 26083.65 25789.15 18668.87 23675.55 22383.79 29866.49 11192.03 21273.25 16176.39 28689.64 227
3Dnovator76.31 583.38 9082.31 10186.59 5287.94 18972.94 2890.64 5892.14 8977.21 5275.47 22492.83 7658.56 20294.72 10473.24 16292.71 7292.13 135
v124078.99 18277.78 18982.64 18783.21 29163.54 22786.62 18890.30 15069.74 21677.33 18285.68 25957.04 21793.76 14273.13 16376.92 27690.62 181
miper_enhance_ethall77.87 21176.86 21080.92 22681.65 32261.38 26282.68 27488.98 19365.52 27975.47 22482.30 32165.76 12392.00 21472.95 16476.39 28689.39 233
MG-MVS83.41 8883.45 8183.28 15692.74 6262.28 25188.17 14189.50 17175.22 9881.49 11692.74 8266.75 10795.11 8472.85 16591.58 8792.45 122
EPP-MVSNet83.40 8983.02 8984.57 10090.13 10264.47 20992.32 3090.73 13574.45 11779.35 14191.10 11669.05 8495.12 8272.78 16687.22 14494.13 49
test_fmvs363.36 34461.82 34767.98 36062.51 40046.96 38377.37 34174.03 36945.24 38567.50 32478.79 35512.16 40472.98 39072.77 16766.02 36383.99 342
IterMVS-LS80.06 15679.38 15182.11 19585.89 23863.20 23786.79 18289.34 17574.19 12175.45 22786.72 22966.62 10892.39 19972.58 16876.86 27890.75 177
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tt080578.73 18777.83 18681.43 20985.17 25060.30 27689.41 9390.90 13071.21 17977.17 19088.73 17446.38 31293.21 16772.57 16978.96 25790.79 173
EI-MVSNet80.52 14779.98 13882.12 19484.28 26863.19 23886.41 19388.95 19674.18 12278.69 15087.54 20966.62 10892.43 19772.57 16980.57 23990.74 178
Vis-MVSNetpermissive83.46 8782.80 9585.43 7590.25 10068.74 11190.30 6990.13 15576.33 8080.87 12692.89 7461.00 18394.20 12072.45 17190.97 9493.35 88
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
LFMVS81.82 11581.23 11583.57 14891.89 7363.43 23289.84 7581.85 31277.04 5883.21 9493.10 6752.26 25393.43 15871.98 17289.95 11193.85 62
v14878.72 18877.80 18881.47 20882.73 30661.96 25586.30 19788.08 21573.26 14576.18 21285.47 26562.46 15592.36 20171.92 17373.82 32590.09 206
PVSNet_BlendedMVS80.60 14480.02 13782.36 19388.85 15065.40 18786.16 20192.00 9269.34 22178.11 16786.09 25266.02 11994.27 11671.52 17482.06 22187.39 283
PVSNet_Blended80.98 13180.34 13282.90 17688.85 15065.40 18784.43 24492.00 9267.62 25278.11 16785.05 27666.02 11994.27 11671.52 17489.50 11589.01 245
eth_miper_zixun_eth77.92 20976.69 21781.61 20683.00 29961.98 25483.15 26789.20 18469.52 21874.86 24984.35 28661.76 16592.56 19371.50 17672.89 33390.28 197
UA-Net85.08 6384.96 6485.45 7492.07 7068.07 13089.78 7990.86 13382.48 384.60 7193.20 6669.35 7895.22 7871.39 17790.88 9693.07 100
FA-MVS(test-final)80.96 13279.91 14084.10 12288.30 17665.01 19784.55 23990.01 15873.25 14679.61 13787.57 20658.35 20494.72 10471.29 17886.25 15992.56 116
cl____77.72 21476.76 21480.58 23282.49 31260.48 27383.09 26987.87 22169.22 22574.38 25685.22 27162.10 16291.53 23371.09 17975.41 30589.73 226
DIV-MVS_self_test77.72 21476.76 21480.58 23282.48 31360.48 27383.09 26987.86 22269.22 22574.38 25685.24 26962.10 16291.53 23371.09 17975.40 30689.74 225
test_yl81.17 12880.47 13083.24 15989.13 14363.62 22386.21 19989.95 16072.43 15781.78 11389.61 15257.50 21293.58 14770.75 18186.90 14892.52 117
DCV-MVSNet81.17 12880.47 13083.24 15989.13 14363.62 22386.21 19989.95 16072.43 15781.78 11389.61 15257.50 21293.58 14770.75 18186.90 14892.52 117
VNet82.21 10682.41 9881.62 20490.82 8960.93 26584.47 24089.78 16376.36 7984.07 8391.88 9364.71 13190.26 26270.68 18388.89 12293.66 70
mvs_anonymous79.42 17079.11 15980.34 23784.45 26757.97 29782.59 27587.62 22767.40 25676.17 21488.56 18268.47 9389.59 27570.65 18486.05 16393.47 84
VPA-MVSNet80.60 14480.55 12880.76 22988.07 18560.80 26886.86 17991.58 11175.67 9280.24 13189.45 16163.34 13990.25 26370.51 18579.22 25691.23 159
PAPM_NR83.02 9882.41 9884.82 9492.47 6766.37 16887.93 15091.80 10473.82 12977.32 18390.66 12867.90 9894.90 9570.37 18689.48 11693.19 96
thisisatest053079.40 17177.76 19184.31 11387.69 20165.10 19587.36 16484.26 27770.04 20477.42 18088.26 19149.94 28494.79 10270.20 18784.70 17893.03 102
tttt051779.40 17177.91 18383.90 14288.10 18363.84 22088.37 13384.05 27971.45 17576.78 19689.12 16649.93 28694.89 9670.18 18883.18 20892.96 106
UniMVSNet_NR-MVSNet81.88 11381.54 11282.92 17588.46 16963.46 23087.13 17092.37 7780.19 1278.38 15989.14 16571.66 5493.05 18070.05 18976.46 28492.25 128
DU-MVS81.12 13080.52 12982.90 17687.80 19463.46 23087.02 17491.87 10179.01 2678.38 15989.07 16765.02 12893.05 18070.05 18976.46 28492.20 131
XVG-ACMP-BASELINE76.11 24374.27 25281.62 20483.20 29264.67 20483.60 26089.75 16569.75 21471.85 28287.09 22232.78 37592.11 21069.99 19180.43 24188.09 269
GeoE81.71 11781.01 12183.80 14389.51 12264.45 21088.97 10788.73 20571.27 17878.63 15389.76 14866.32 11493.20 17069.89 19286.02 16493.74 68
FIs82.07 10982.42 9781.04 22288.80 15558.34 29188.26 13893.49 2676.93 6078.47 15891.04 11969.92 7292.34 20369.87 19384.97 17492.44 123
114514_t80.68 14279.51 14884.20 11994.09 3867.27 15189.64 8491.11 12658.75 34774.08 25890.72 12758.10 20595.04 8969.70 19489.42 11790.30 196
Anonymous2023121178.97 18377.69 19482.81 18090.54 9564.29 21390.11 7291.51 11465.01 28476.16 21588.13 19850.56 27793.03 18369.68 19577.56 27191.11 162
Patchmatch-RL test70.24 30467.78 31777.61 28777.43 36359.57 28571.16 36870.33 37762.94 30968.65 31572.77 38050.62 27685.49 32169.58 19666.58 36187.77 275
UniMVSNet (Re)81.60 12281.11 11883.09 16688.38 17364.41 21187.60 15893.02 4278.42 3278.56 15588.16 19369.78 7393.26 16369.58 19676.49 28391.60 146
IterMVS-SCA-FT75.43 25373.87 25780.11 24282.69 30764.85 20181.57 28783.47 28869.16 22870.49 29284.15 29251.95 26188.15 29869.23 19872.14 33887.34 285
v7n78.97 18377.58 19783.14 16483.45 28665.51 18588.32 13591.21 12173.69 13272.41 27686.32 24757.93 20693.81 13869.18 19975.65 29790.11 204
Anonymous2024052980.19 15578.89 16384.10 12290.60 9364.75 20388.95 10890.90 13065.97 27480.59 12891.17 11549.97 28393.73 14569.16 20082.70 21593.81 65
miper_lstm_enhance74.11 26473.11 26577.13 29480.11 34359.62 28372.23 36586.92 24266.76 25970.40 29382.92 31256.93 21882.92 34069.06 20172.63 33488.87 252
testdata79.97 24490.90 8664.21 21484.71 26859.27 34185.40 5392.91 7362.02 16489.08 28468.95 20291.37 9086.63 304
test111179.43 16979.18 15880.15 24189.99 10953.31 35687.33 16677.05 35475.04 10380.23 13292.77 8148.97 29892.33 20468.87 20392.40 7794.81 20
GA-MVS76.87 23075.17 24181.97 19982.75 30562.58 24681.44 29086.35 25172.16 16474.74 25082.89 31346.20 31792.02 21368.85 20481.09 23191.30 158
test250677.30 22476.49 22079.74 24990.08 10452.02 35987.86 15463.10 39474.88 10680.16 13392.79 7938.29 36392.35 20268.74 20592.50 7594.86 17
ECVR-MVScopyleft79.61 16279.26 15580.67 23190.08 10454.69 34387.89 15277.44 35174.88 10680.27 13092.79 7948.96 29992.45 19668.55 20692.50 7594.86 17
UGNet80.83 13579.59 14784.54 10288.04 18668.09 12989.42 9288.16 21276.95 5976.22 21089.46 15949.30 29393.94 12968.48 20790.31 10291.60 146
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FC-MVSNet-test81.52 12382.02 10680.03 24388.42 17255.97 32987.95 14893.42 2977.10 5677.38 18190.98 12469.96 7091.79 22168.46 20884.50 18092.33 124
DP-MVS Recon83.11 9782.09 10486.15 5894.44 1970.92 6888.79 11392.20 8570.53 19579.17 14391.03 12164.12 13496.03 4668.39 20990.14 10691.50 151
UniMVSNet_ETH3D79.10 17978.24 17781.70 20386.85 22360.24 27787.28 16888.79 19974.25 12076.84 19390.53 13249.48 28991.56 23067.98 21082.15 21993.29 90
D2MVS74.82 25873.21 26379.64 25379.81 34862.56 24780.34 30887.35 23364.37 29168.86 31382.66 31746.37 31390.10 26567.91 21181.24 22986.25 307
IS-MVSNet83.15 9482.81 9484.18 12089.94 11163.30 23491.59 4388.46 21079.04 2579.49 13992.16 8865.10 12794.28 11567.71 21291.86 8594.95 10
Fast-Effi-MVS+-dtu78.02 20676.49 22082.62 18883.16 29566.96 16086.94 17687.45 23272.45 15471.49 28684.17 29154.79 23091.58 22867.61 21380.31 24289.30 236
PAPR81.66 12180.89 12383.99 13790.27 9964.00 21786.76 18591.77 10768.84 23777.13 19289.50 15567.63 10094.88 9767.55 21488.52 13193.09 99
cascas76.72 23274.64 24582.99 17285.78 24065.88 17882.33 27789.21 18360.85 32872.74 27081.02 33247.28 30693.75 14367.48 21585.02 17389.34 235
131476.53 23475.30 24080.21 24083.93 27762.32 25084.66 23488.81 19860.23 33270.16 29884.07 29355.30 22490.73 25867.37 21683.21 20787.59 280
无先验87.48 16188.98 19360.00 33494.12 12367.28 21788.97 248
thisisatest051577.33 22375.38 23783.18 16285.27 24963.80 22182.11 28083.27 29165.06 28275.91 21683.84 29649.54 28894.27 11667.24 21886.19 16091.48 153
原ACMM184.35 11093.01 5768.79 10792.44 7363.96 29981.09 12391.57 10166.06 11895.45 6667.19 21994.82 4588.81 255
Baseline_NR-MVSNet78.15 20278.33 17577.61 28785.79 23956.21 32786.78 18385.76 25973.60 13577.93 17287.57 20665.02 12888.99 28567.14 22075.33 30887.63 277
TranMVSNet+NR-MVSNet80.84 13480.31 13382.42 19187.85 19262.33 24987.74 15691.33 11980.55 977.99 17189.86 14565.23 12692.62 19067.05 22175.24 31192.30 126
Fast-Effi-MVS+80.81 13679.92 13983.47 14988.85 15064.51 20685.53 21989.39 17470.79 18778.49 15785.06 27567.54 10193.58 14767.03 22286.58 15392.32 125
VPNet78.69 18978.66 16678.76 26688.31 17555.72 33284.45 24386.63 24676.79 6478.26 16290.55 13159.30 19889.70 27466.63 22377.05 27590.88 171
PM-MVS66.41 33364.14 33573.20 32973.92 37756.45 32078.97 32564.96 39263.88 30164.72 35180.24 34019.84 39683.44 33766.24 22464.52 36879.71 372
test-LLR72.94 28072.43 27074.48 31781.35 32958.04 29578.38 33177.46 34966.66 26169.95 30279.00 35248.06 30279.24 35666.13 22584.83 17586.15 310
test-mter71.41 29170.39 29474.48 31781.35 32958.04 29578.38 33177.46 34960.32 33169.95 30279.00 35236.08 37079.24 35666.13 22584.83 17586.15 310
MVS78.19 20176.99 20881.78 20185.66 24166.99 15784.66 23490.47 14255.08 36772.02 28185.27 26863.83 13794.11 12466.10 22789.80 11384.24 338
NR-MVSNet80.23 15379.38 15182.78 18487.80 19463.34 23386.31 19691.09 12779.01 2672.17 27989.07 16767.20 10592.81 18966.08 22875.65 29792.20 131
CVMVSNet72.99 27972.58 26974.25 32084.28 26850.85 37186.41 19383.45 28944.56 38673.23 26687.54 20949.38 29185.70 31765.90 22978.44 26286.19 309
IterMVS74.29 26172.94 26678.35 27581.53 32563.49 22981.58 28682.49 30568.06 24969.99 30183.69 30151.66 26785.54 32065.85 23071.64 34186.01 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OurMVSNet-221017-074.26 26272.42 27179.80 24883.76 28159.59 28485.92 20786.64 24566.39 26866.96 33087.58 20539.46 35691.60 22765.76 23169.27 35188.22 267
tpmrst72.39 28272.13 27373.18 33080.54 33849.91 37579.91 31479.08 34163.11 30571.69 28479.95 34355.32 22382.77 34165.66 23273.89 32386.87 297
MAR-MVS81.84 11480.70 12585.27 7891.32 7971.53 5489.82 7690.92 12969.77 21378.50 15686.21 24862.36 15794.52 10965.36 23392.05 8189.77 224
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Anonymous20240521178.25 19777.01 20681.99 19891.03 8260.67 27084.77 23283.90 28170.65 19480.00 13491.20 11341.08 35091.43 23965.21 23485.26 17293.85 62
ab-mvs79.51 16578.97 16281.14 21988.46 16960.91 26683.84 25489.24 18270.36 19779.03 14488.87 17263.23 14390.21 26465.12 23582.57 21692.28 127
IB-MVS68.01 1575.85 24773.36 26283.31 15584.76 25966.03 17283.38 26385.06 26570.21 20369.40 30881.05 33145.76 32294.66 10665.10 23675.49 30089.25 237
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
WR-MVS79.49 16679.22 15780.27 23988.79 15658.35 29085.06 22688.61 20878.56 3077.65 17688.34 18763.81 13890.66 25964.98 23777.22 27391.80 144
CostFormer75.24 25673.90 25679.27 25882.65 30958.27 29280.80 29682.73 30461.57 32375.33 23583.13 30955.52 22291.07 25264.98 23778.34 26588.45 264
API-MVS81.99 11281.23 11584.26 11890.94 8570.18 8291.10 5389.32 17671.51 17378.66 15288.28 18965.26 12595.10 8764.74 23991.23 9287.51 281
新几何183.42 15193.13 5270.71 7185.48 26257.43 35781.80 11291.98 9063.28 14092.27 20564.60 24092.99 6887.27 287
testing9176.54 23375.66 23179.18 26188.43 17155.89 33081.08 29383.00 29873.76 13175.34 23184.29 28746.20 31790.07 26664.33 24184.50 18091.58 148
testing9976.09 24475.12 24279.00 26288.16 17955.50 33580.79 29781.40 31673.30 14475.17 24084.27 28944.48 33090.02 26764.28 24284.22 18891.48 153
pm-mvs177.25 22576.68 21878.93 26484.22 27058.62 28986.41 19388.36 21171.37 17673.31 26488.01 19961.22 17989.15 28364.24 24373.01 33289.03 244
TESTMET0.1,169.89 30869.00 30272.55 33479.27 35756.85 31378.38 33174.71 36757.64 35468.09 31977.19 36537.75 36576.70 36963.92 24484.09 18984.10 341
QAPM80.88 13379.50 14985.03 8588.01 18868.97 10491.59 4392.00 9266.63 26675.15 24292.16 8857.70 20995.45 6663.52 24588.76 12690.66 180
baseline275.70 24873.83 25881.30 21483.26 29061.79 25882.57 27680.65 32266.81 25766.88 33183.42 30557.86 20892.19 20863.47 24679.57 24989.91 217
LCM-MVSNet-Re77.05 22676.94 20977.36 29087.20 21851.60 36680.06 31080.46 32675.20 9967.69 32286.72 22962.48 15488.98 28663.44 24789.25 11891.51 150
gm-plane-assit81.40 32753.83 35162.72 31480.94 33492.39 19963.40 248
baseline176.98 22876.75 21677.66 28588.13 18155.66 33385.12 22581.89 31073.04 15076.79 19588.90 17062.43 15687.78 30363.30 24971.18 34489.55 230
AdaColmapbinary80.58 14679.42 15084.06 12993.09 5468.91 10589.36 9588.97 19569.27 22275.70 22089.69 14957.20 21695.77 5563.06 25088.41 13387.50 282
test_vis1_rt60.28 34958.42 35265.84 36467.25 39555.60 33470.44 37360.94 39744.33 38759.00 37366.64 38724.91 38868.67 39562.80 25169.48 34973.25 383
GBi-Net78.40 19477.40 19981.40 21187.60 20363.01 24088.39 12989.28 17771.63 16875.34 23187.28 21354.80 22791.11 24662.72 25279.57 24990.09 206
test178.40 19477.40 19981.40 21187.60 20363.01 24088.39 12989.28 17771.63 16875.34 23187.28 21354.80 22791.11 24662.72 25279.57 24990.09 206
FMVSNet377.88 21076.85 21180.97 22586.84 22462.36 24886.52 19188.77 20071.13 18075.34 23186.66 23554.07 23891.10 24962.72 25279.57 24989.45 232
CMPMVSbinary51.72 2170.19 30568.16 30876.28 29973.15 38557.55 30579.47 31783.92 28048.02 38256.48 38284.81 27843.13 33786.42 31262.67 25581.81 22584.89 331
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
sd_testset77.70 21677.40 19978.60 26989.03 14860.02 27979.00 32485.83 25875.19 10076.61 20289.98 14354.81 22685.46 32262.63 25683.55 20090.33 194
FMVSNet278.20 20077.21 20381.20 21787.60 20362.89 24587.47 16289.02 19171.63 16875.29 23787.28 21354.80 22791.10 24962.38 25779.38 25389.61 228
testdata291.01 25362.37 258
testing1175.14 25774.01 25378.53 27288.16 17956.38 32380.74 30080.42 32770.67 19072.69 27383.72 30043.61 33589.86 26962.29 25983.76 19389.36 234
CP-MVSNet78.22 19878.34 17477.84 28287.83 19354.54 34587.94 14991.17 12377.65 3873.48 26388.49 18362.24 16088.43 29562.19 26074.07 32090.55 185
XXY-MVS75.41 25475.56 23274.96 31283.59 28357.82 30180.59 30383.87 28266.54 26774.93 24888.31 18863.24 14280.09 35462.16 26176.85 27986.97 296
pmmvs674.69 25973.39 26178.61 26881.38 32857.48 30686.64 18787.95 21964.99 28570.18 29686.61 23650.43 27989.52 27662.12 26270.18 34888.83 254
1112_ss77.40 22276.43 22280.32 23889.11 14760.41 27583.65 25787.72 22662.13 32073.05 26886.72 22962.58 15389.97 26862.11 26380.80 23590.59 184
PS-CasMVS78.01 20778.09 17977.77 28487.71 19954.39 34788.02 14591.22 12077.50 4673.26 26588.64 17860.73 18588.41 29661.88 26473.88 32490.53 186
CDS-MVSNet79.07 18077.70 19383.17 16387.60 20368.23 12684.40 24686.20 25267.49 25476.36 20786.54 24161.54 16990.79 25661.86 26587.33 14290.49 188
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
OpenMVScopyleft72.83 1079.77 16078.33 17584.09 12585.17 25069.91 8490.57 5990.97 12866.70 26072.17 27991.91 9154.70 23193.96 12661.81 26690.95 9588.41 266
K. test v371.19 29268.51 30479.21 26083.04 29857.78 30284.35 24776.91 35572.90 15362.99 36182.86 31439.27 35791.09 25161.65 26752.66 38888.75 258
CHOSEN 1792x268877.63 21875.69 22883.44 15089.98 11068.58 11978.70 32887.50 23056.38 36275.80 21986.84 22558.67 20191.40 24061.58 26885.75 16990.34 193
PCF-MVS73.52 780.38 14978.84 16485.01 8687.71 19968.99 10383.65 25791.46 11863.00 30777.77 17590.28 13566.10 11695.09 8861.40 26988.22 13590.94 170
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HY-MVS69.67 1277.95 20877.15 20480.36 23687.57 20860.21 27883.37 26487.78 22566.11 27075.37 23087.06 22463.27 14190.48 26161.38 27082.43 21790.40 192
HyFIR lowres test77.53 21975.40 23683.94 14189.59 11866.62 16380.36 30788.64 20756.29 36376.45 20485.17 27257.64 21093.28 16261.34 27183.10 20991.91 141
PMMVS69.34 31168.67 30371.35 34375.67 37062.03 25375.17 35373.46 37050.00 38068.68 31479.05 35052.07 25978.13 36161.16 27282.77 21273.90 382
FMVSNet177.44 22076.12 22681.40 21186.81 22563.01 24088.39 12989.28 17770.49 19674.39 25587.28 21349.06 29791.11 24660.91 27378.52 26090.09 206
sss73.60 27073.64 26073.51 32682.80 30455.01 34176.12 34581.69 31362.47 31674.68 25185.85 25657.32 21478.11 36260.86 27480.93 23287.39 283
Test_1112_low_res76.40 23975.44 23479.27 25889.28 13758.09 29381.69 28587.07 23959.53 33972.48 27586.67 23461.30 17689.33 27960.81 27580.15 24490.41 191
BH-untuned79.47 16778.60 16782.05 19689.19 14165.91 17786.07 20388.52 20972.18 16175.42 22887.69 20361.15 18093.54 15160.38 27686.83 15086.70 302
WTY-MVS75.65 24975.68 22975.57 30686.40 23256.82 31477.92 33882.40 30665.10 28176.18 21287.72 20163.13 14880.90 35160.31 27781.96 22289.00 247
pmmvs474.03 26771.91 27480.39 23581.96 31868.32 12381.45 28982.14 30859.32 34069.87 30485.13 27352.40 25188.13 29960.21 27874.74 31684.73 334
PEN-MVS77.73 21377.69 19477.84 28287.07 22153.91 35087.91 15191.18 12277.56 4373.14 26788.82 17361.23 17889.17 28259.95 27972.37 33590.43 190
CR-MVSNet73.37 27271.27 28379.67 25281.32 33165.19 19275.92 34780.30 32959.92 33572.73 27181.19 32952.50 24986.69 30959.84 28077.71 26887.11 293
lessismore_v078.97 26381.01 33457.15 31065.99 38861.16 36682.82 31539.12 35891.34 24259.67 28146.92 39488.43 265
CNLPA78.08 20376.79 21381.97 19990.40 9871.07 6287.59 15984.55 27166.03 27372.38 27789.64 15157.56 21186.04 31559.61 28283.35 20588.79 256
BH-RMVSNet79.61 16278.44 17183.14 16489.38 13165.93 17684.95 22987.15 23873.56 13678.19 16589.79 14756.67 21993.36 16059.53 28386.74 15190.13 202
MS-PatchMatch73.83 26872.67 26777.30 29283.87 27866.02 17381.82 28284.66 26961.37 32668.61 31682.82 31547.29 30588.21 29759.27 28484.32 18677.68 376
test_post178.90 3275.43 41048.81 30185.44 32359.25 285
SCA74.22 26372.33 27279.91 24584.05 27562.17 25279.96 31379.29 33966.30 26972.38 27780.13 34151.95 26188.60 29359.25 28577.67 27088.96 249
FE-MVS77.78 21275.68 22984.08 12688.09 18466.00 17483.13 26887.79 22468.42 24578.01 17085.23 27045.50 32595.12 8259.11 28785.83 16891.11 162
SixPastTwentyTwo73.37 27271.26 28479.70 25085.08 25557.89 29985.57 21383.56 28671.03 18465.66 34485.88 25442.10 34592.57 19259.11 28763.34 37088.65 261
WR-MVS_H78.51 19378.49 16978.56 27088.02 18756.38 32388.43 12792.67 6277.14 5473.89 25987.55 20866.25 11589.24 28158.92 28973.55 32790.06 210
PLCcopyleft70.83 1178.05 20576.37 22483.08 16791.88 7467.80 13588.19 14089.46 17264.33 29269.87 30488.38 18653.66 24193.58 14758.86 29082.73 21387.86 273
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
RPSCF73.23 27671.46 27978.54 27182.50 31159.85 28082.18 27982.84 30358.96 34471.15 28989.41 16345.48 32684.77 32858.82 29171.83 34091.02 168
EU-MVSNet68.53 31967.61 32071.31 34478.51 36047.01 38284.47 24084.27 27642.27 38966.44 34184.79 27940.44 35383.76 33358.76 29268.54 35683.17 349
pmmvs-eth3d70.50 30267.83 31578.52 27377.37 36466.18 17181.82 28281.51 31458.90 34563.90 35780.42 33942.69 34086.28 31358.56 29365.30 36683.11 351
TAMVS78.89 18577.51 19883.03 17087.80 19467.79 13684.72 23385.05 26667.63 25176.75 19787.70 20262.25 15990.82 25558.53 29487.13 14590.49 188
ACMH+68.96 1476.01 24574.01 25382.03 19788.60 16465.31 19188.86 11187.55 22870.25 20267.75 32187.47 21141.27 34893.19 17258.37 29575.94 29487.60 278
tpm72.37 28471.71 27674.35 31982.19 31652.00 36079.22 32177.29 35264.56 28872.95 26983.68 30251.35 26883.26 33958.33 29675.80 29587.81 274
BH-w/o78.21 19977.33 20280.84 22788.81 15465.13 19484.87 23087.85 22369.75 21474.52 25484.74 28061.34 17593.11 17758.24 29785.84 16784.27 337
Vis-MVSNet (Re-imp)78.36 19678.45 17078.07 28088.64 16351.78 36586.70 18679.63 33674.14 12375.11 24390.83 12561.29 17789.75 27258.10 29891.60 8692.69 112
MVP-Stereo76.12 24274.46 25081.13 22085.37 24869.79 8684.42 24587.95 21965.03 28367.46 32585.33 26753.28 24691.73 22558.01 29983.27 20681.85 362
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ambc75.24 31073.16 38450.51 37363.05 39687.47 23164.28 35377.81 36217.80 39889.73 27357.88 30060.64 37685.49 321
TR-MVS77.44 22076.18 22581.20 21788.24 17763.24 23584.61 23786.40 24967.55 25377.81 17386.48 24354.10 23793.15 17457.75 30182.72 21487.20 288
F-COLMAP76.38 24074.33 25182.50 19089.28 13766.95 16188.41 12889.03 19064.05 29666.83 33288.61 17946.78 31092.89 18557.48 30278.55 25987.67 276
EG-PatchMatch MVS74.04 26571.82 27580.71 23084.92 25767.42 14585.86 20988.08 21566.04 27264.22 35483.85 29535.10 37292.56 19357.44 30380.83 23482.16 361
PatchmatchNetpermissive73.12 27771.33 28278.49 27483.18 29360.85 26779.63 31578.57 34364.13 29371.73 28379.81 34651.20 27085.97 31657.40 30476.36 29188.66 260
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
DTE-MVSNet76.99 22776.80 21277.54 28986.24 23353.06 35887.52 16090.66 13677.08 5772.50 27488.67 17760.48 19289.52 27657.33 30570.74 34690.05 211
UnsupCasMVSNet_eth67.33 32665.99 33071.37 34173.48 38151.47 36875.16 35485.19 26465.20 28060.78 36780.93 33642.35 34177.20 36657.12 30653.69 38785.44 322
pmmvs571.55 29070.20 29675.61 30577.83 36156.39 32281.74 28480.89 31857.76 35367.46 32584.49 28149.26 29485.32 32457.08 30775.29 30985.11 329
Anonymous2024052168.80 31567.22 32473.55 32574.33 37554.11 34883.18 26685.61 26058.15 35061.68 36480.94 33430.71 38181.27 34957.00 30873.34 33185.28 324
mvsany_test162.30 34661.26 35065.41 36569.52 39154.86 34266.86 38549.78 40546.65 38368.50 31883.21 30749.15 29566.28 39756.93 30960.77 37575.11 381
TransMVSNet (Re)75.39 25574.56 24777.86 28185.50 24557.10 31186.78 18386.09 25572.17 16271.53 28587.34 21263.01 14989.31 28056.84 31061.83 37287.17 289
test_vis3_rt49.26 36447.02 36656.00 37654.30 40545.27 38866.76 38748.08 40636.83 39544.38 39453.20 3997.17 41164.07 39956.77 31155.66 38358.65 395
EPMVS69.02 31368.16 30871.59 33979.61 35249.80 37777.40 34066.93 38662.82 31270.01 29979.05 35045.79 32177.86 36456.58 31275.26 31087.13 292
KD-MVS_self_test68.81 31467.59 32172.46 33574.29 37645.45 38477.93 33787.00 24063.12 30463.99 35678.99 35442.32 34284.77 32856.55 31364.09 36987.16 291
tpm273.26 27571.46 27978.63 26783.34 28856.71 31780.65 30280.40 32856.63 36173.55 26282.02 32651.80 26591.24 24456.35 31478.42 26387.95 270
LTVRE_ROB69.57 1376.25 24174.54 24881.41 21088.60 16464.38 21279.24 32089.12 18970.76 18969.79 30687.86 20049.09 29693.20 17056.21 31580.16 24386.65 303
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH67.68 1675.89 24673.93 25581.77 20288.71 16166.61 16488.62 12289.01 19269.81 21066.78 33386.70 23341.95 34791.51 23555.64 31678.14 26687.17 289
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CHOSEN 280x42066.51 33264.71 33371.90 33781.45 32663.52 22857.98 39868.95 38453.57 37062.59 36376.70 36646.22 31675.29 38355.25 31779.68 24876.88 378
EPNet_dtu75.46 25274.86 24377.23 29382.57 31054.60 34486.89 17883.09 29571.64 16766.25 34285.86 25555.99 22188.04 30054.92 31886.55 15489.05 243
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
mvsany_test353.99 35551.45 36061.61 37055.51 40444.74 39063.52 39445.41 40943.69 38858.11 37776.45 36817.99 39763.76 40054.77 31947.59 39376.34 379
PVSNet64.34 1872.08 28870.87 28875.69 30486.21 23456.44 32174.37 35980.73 32162.06 32170.17 29782.23 32342.86 33983.31 33854.77 31984.45 18487.32 286
ITE_SJBPF78.22 27681.77 32160.57 27183.30 29069.25 22467.54 32387.20 21836.33 36987.28 30754.34 32174.62 31786.80 299
MDTV_nov1_ep13_2view37.79 40175.16 35455.10 36666.53 33749.34 29253.98 32287.94 271
gg-mvs-nofinetune69.95 30767.96 31175.94 30183.07 29654.51 34677.23 34270.29 37863.11 30570.32 29462.33 38943.62 33488.69 29153.88 32387.76 13784.62 335
PatchMatch-RL72.38 28370.90 28776.80 29788.60 16467.38 14779.53 31676.17 36062.75 31369.36 30982.00 32745.51 32484.89 32753.62 32480.58 23878.12 375
test_f52.09 36050.82 36155.90 37753.82 40742.31 39759.42 39758.31 40136.45 39656.12 38470.96 38412.18 40357.79 40353.51 32556.57 38267.60 388
Patchmtry70.74 29869.16 30175.49 30880.72 33554.07 34974.94 35880.30 32958.34 34870.01 29981.19 32952.50 24986.54 31053.37 32671.09 34585.87 318
USDC70.33 30368.37 30576.21 30080.60 33756.23 32679.19 32286.49 24760.89 32761.29 36585.47 26531.78 37889.47 27853.37 32676.21 29282.94 355
LF4IMVS64.02 34262.19 34669.50 35270.90 39053.29 35776.13 34477.18 35352.65 37358.59 37480.98 33323.55 39276.52 37153.06 32866.66 36078.68 374
PAPM77.68 21776.40 22381.51 20787.29 21761.85 25683.78 25589.59 16964.74 28671.23 28788.70 17562.59 15293.66 14652.66 32987.03 14789.01 245
dmvs_re71.14 29370.58 28972.80 33281.96 31859.68 28275.60 35179.34 33868.55 24169.27 31180.72 33749.42 29076.54 37052.56 33077.79 26782.19 360
CL-MVSNet_self_test72.37 28471.46 27975.09 31179.49 35453.53 35280.76 29985.01 26769.12 22970.51 29182.05 32557.92 20784.13 33152.27 33166.00 36487.60 278
tpm cat170.57 30068.31 30677.35 29182.41 31457.95 29878.08 33580.22 33152.04 37468.54 31777.66 36352.00 26087.84 30251.77 33272.07 33986.25 307
our_test_369.14 31267.00 32575.57 30679.80 34958.80 28777.96 33677.81 34659.55 33862.90 36278.25 35947.43 30483.97 33251.71 33367.58 35883.93 343
MDTV_nov1_ep1369.97 29783.18 29353.48 35377.10 34380.18 33260.45 32969.33 31080.44 33848.89 30086.90 30851.60 33478.51 261
JIA-IIPM66.32 33462.82 34576.82 29677.09 36561.72 25965.34 39175.38 36158.04 35264.51 35262.32 39042.05 34686.51 31151.45 33569.22 35282.21 359
testing22274.04 26572.66 26878.19 27787.89 19055.36 33681.06 29479.20 34071.30 17774.65 25283.57 30339.11 35988.67 29251.43 33685.75 16990.53 186
MSDG73.36 27470.99 28680.49 23484.51 26665.80 18080.71 30186.13 25465.70 27665.46 34583.74 29944.60 32890.91 25451.13 33776.89 27784.74 333
PatchT68.46 32067.85 31370.29 34980.70 33643.93 39172.47 36474.88 36460.15 33370.55 29076.57 36749.94 28481.59 34650.58 33874.83 31585.34 323
GG-mvs-BLEND75.38 30981.59 32455.80 33179.32 31969.63 38067.19 32873.67 37843.24 33688.90 29050.41 33984.50 18081.45 364
KD-MVS_2432*160066.22 33563.89 33773.21 32775.47 37353.42 35470.76 37184.35 27364.10 29466.52 33878.52 35634.55 37384.98 32550.40 34050.33 39181.23 365
miper_refine_blended66.22 33563.89 33773.21 32775.47 37353.42 35470.76 37184.35 27364.10 29466.52 33878.52 35634.55 37384.98 32550.40 34050.33 39181.23 365
AllTest70.96 29568.09 31079.58 25485.15 25263.62 22384.58 23879.83 33362.31 31760.32 36986.73 22732.02 37688.96 28850.28 34271.57 34286.15 310
TestCases79.58 25485.15 25263.62 22379.83 33362.31 31760.32 36986.73 22732.02 37688.96 28850.28 34271.57 34286.15 310
TAPA-MVS73.13 979.15 17777.94 18282.79 18389.59 11862.99 24488.16 14291.51 11465.77 27577.14 19191.09 11760.91 18493.21 16750.26 34487.05 14692.17 133
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
YYNet165.03 33862.91 34371.38 34075.85 36956.60 31969.12 37974.66 36857.28 35854.12 38577.87 36145.85 32074.48 38549.95 34561.52 37483.05 352
MDA-MVSNet_test_wron65.03 33862.92 34271.37 34175.93 36756.73 31569.09 38074.73 36657.28 35854.03 38677.89 36045.88 31974.39 38649.89 34661.55 37382.99 354
tpmvs71.09 29469.29 29976.49 29882.04 31756.04 32878.92 32681.37 31764.05 29667.18 32978.28 35849.74 28789.77 27149.67 34772.37 33583.67 345
ppachtmachnet_test70.04 30667.34 32378.14 27879.80 34961.13 26379.19 32280.59 32359.16 34265.27 34779.29 34946.75 31187.29 30649.33 34866.72 35986.00 316
UnsupCasMVSNet_bld63.70 34361.53 34970.21 35073.69 37951.39 36972.82 36381.89 31055.63 36557.81 37871.80 38238.67 36078.61 35949.26 34952.21 38980.63 368
UWE-MVS72.13 28771.49 27874.03 32286.66 22947.70 37981.40 29176.89 35663.60 30275.59 22184.22 29039.94 35585.62 31948.98 35086.13 16288.77 257
dp66.80 32965.43 33170.90 34879.74 35148.82 37875.12 35674.77 36559.61 33764.08 35577.23 36442.89 33880.72 35248.86 35166.58 36183.16 350
FMVSNet569.50 31067.96 31174.15 32182.97 30255.35 33780.01 31282.12 30962.56 31563.02 35981.53 32836.92 36781.92 34548.42 35274.06 32185.17 328
thres100view90076.50 23575.55 23379.33 25789.52 12156.99 31285.83 21183.23 29273.94 12676.32 20887.12 22151.89 26391.95 21548.33 35383.75 19489.07 238
tfpn200view976.42 23875.37 23879.55 25689.13 14357.65 30385.17 22283.60 28473.41 14176.45 20486.39 24552.12 25591.95 21548.33 35383.75 19489.07 238
thres40076.50 23575.37 23879.86 24689.13 14357.65 30385.17 22283.60 28473.41 14176.45 20486.39 24552.12 25591.95 21548.33 35383.75 19490.00 212
LCM-MVSNet54.25 35449.68 36467.97 36153.73 40845.28 38766.85 38680.78 32035.96 39739.45 39862.23 3918.70 40878.06 36348.24 35651.20 39080.57 369
RPMNet73.51 27170.49 29182.58 18981.32 33165.19 19275.92 34792.27 8057.60 35572.73 27176.45 36852.30 25295.43 6848.14 35777.71 26887.11 293
thres600view776.50 23575.44 23479.68 25189.40 12957.16 30985.53 21983.23 29273.79 13076.26 20987.09 22251.89 26391.89 21848.05 35883.72 19790.00 212
TDRefinement67.49 32464.34 33476.92 29573.47 38261.07 26484.86 23182.98 29959.77 33658.30 37685.13 27326.06 38687.89 30147.92 35960.59 37781.81 363
thres20075.55 25074.47 24978.82 26587.78 19757.85 30083.07 27183.51 28772.44 15675.84 21884.42 28252.08 25891.75 22347.41 36083.64 19986.86 298
PVSNet_057.27 2061.67 34859.27 35168.85 35679.61 35257.44 30768.01 38173.44 37155.93 36458.54 37570.41 38544.58 32977.55 36547.01 36135.91 39771.55 385
DP-MVS76.78 23174.57 24683.42 15193.29 4869.46 9488.55 12483.70 28363.98 29870.20 29588.89 17154.01 23994.80 10146.66 36281.88 22486.01 314
COLMAP_ROBcopyleft66.92 1773.01 27870.41 29380.81 22887.13 22065.63 18388.30 13684.19 27862.96 30863.80 35887.69 20338.04 36492.56 19346.66 36274.91 31484.24 338
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet70.69 29969.30 29874.88 31384.52 26556.35 32575.87 34979.42 33764.59 28767.76 32082.41 31941.10 34981.54 34746.64 36481.34 22786.75 301
LS3D76.95 22974.82 24483.37 15490.45 9667.36 14889.15 10386.94 24161.87 32269.52 30790.61 12951.71 26694.53 10846.38 36586.71 15288.21 268
ETVMVS72.25 28671.05 28575.84 30287.77 19851.91 36279.39 31874.98 36369.26 22373.71 26082.95 31140.82 35286.14 31446.17 36684.43 18589.47 231
MDA-MVSNet-bldmvs66.68 33063.66 33975.75 30379.28 35660.56 27273.92 36178.35 34464.43 28950.13 39079.87 34544.02 33383.67 33446.10 36756.86 38083.03 353
new-patchmatchnet61.73 34761.73 34861.70 36972.74 38724.50 41269.16 37878.03 34561.40 32456.72 38175.53 37438.42 36176.48 37245.95 36857.67 37984.13 340
WB-MVSnew71.96 28971.65 27772.89 33184.67 26451.88 36382.29 27877.57 34862.31 31773.67 26183.00 31053.49 24481.10 35045.75 36982.13 22085.70 319
TinyColmap67.30 32764.81 33274.76 31581.92 32056.68 31880.29 30981.49 31560.33 33056.27 38383.22 30624.77 38987.66 30545.52 37069.47 35079.95 371
pmmvs357.79 35154.26 35668.37 35964.02 39956.72 31675.12 35665.17 39040.20 39152.93 38769.86 38620.36 39575.48 38045.45 37155.25 38672.90 384
OpenMVS_ROBcopyleft64.09 1970.56 30168.19 30777.65 28680.26 34059.41 28685.01 22782.96 30058.76 34665.43 34682.33 32037.63 36691.23 24545.34 37276.03 29382.32 358
test0.0.03 168.00 32367.69 31868.90 35577.55 36247.43 38075.70 35072.95 37466.66 26166.56 33682.29 32248.06 30275.87 37744.97 37374.51 31883.41 347
testgi66.67 33166.53 32867.08 36375.62 37141.69 39875.93 34676.50 35766.11 27065.20 35086.59 23735.72 37174.71 38443.71 37473.38 33084.84 332
Anonymous2023120668.60 31667.80 31671.02 34680.23 34250.75 37278.30 33480.47 32556.79 36066.11 34382.63 31846.35 31478.95 35843.62 37575.70 29683.36 348
tfpnnormal74.39 26073.16 26478.08 27986.10 23758.05 29484.65 23687.53 22970.32 19971.22 28885.63 26154.97 22589.86 26943.03 37675.02 31386.32 306
MIMVSNet168.58 31766.78 32773.98 32380.07 34451.82 36480.77 29884.37 27264.40 29059.75 37282.16 32436.47 36883.63 33542.73 37770.33 34786.48 305
test20.0367.45 32566.95 32668.94 35475.48 37244.84 38977.50 33977.67 34766.66 26163.01 36083.80 29747.02 30878.40 36042.53 37868.86 35583.58 346
ADS-MVSNet266.20 33763.33 34074.82 31479.92 34558.75 28867.55 38375.19 36253.37 37165.25 34875.86 37142.32 34280.53 35341.57 37968.91 35385.18 326
ADS-MVSNet64.36 34162.88 34468.78 35779.92 34547.17 38167.55 38371.18 37653.37 37165.25 34875.86 37142.32 34273.99 38741.57 37968.91 35385.18 326
Patchmatch-test64.82 34063.24 34169.57 35179.42 35549.82 37663.49 39569.05 38351.98 37659.95 37180.13 34150.91 27270.98 39140.66 38173.57 32687.90 272
MVS-HIRNet59.14 35057.67 35363.57 36781.65 32243.50 39271.73 36665.06 39139.59 39351.43 38857.73 39538.34 36282.58 34239.53 38273.95 32264.62 391
WAC-MVS42.58 39439.46 383
myMVS_eth3d67.02 32866.29 32969.21 35384.68 26142.58 39478.62 32973.08 37266.65 26466.74 33479.46 34731.53 37982.30 34339.43 38476.38 28982.75 356
DSMNet-mixed57.77 35256.90 35460.38 37167.70 39435.61 40269.18 37753.97 40332.30 40157.49 37979.88 34440.39 35468.57 39638.78 38572.37 33576.97 377
N_pmnet52.79 35953.26 35851.40 38378.99 3587.68 41769.52 3753.89 41651.63 37757.01 38074.98 37540.83 35165.96 39837.78 38664.67 36780.56 370
testing368.56 31867.67 31971.22 34587.33 21542.87 39383.06 27271.54 37570.36 19769.08 31284.38 28430.33 38285.69 31837.50 38775.45 30485.09 330
test_040272.79 28170.44 29279.84 24788.13 18165.99 17585.93 20684.29 27565.57 27867.40 32785.49 26446.92 30992.61 19135.88 38874.38 31980.94 367
new_pmnet50.91 36250.29 36252.78 38268.58 39334.94 40463.71 39356.63 40239.73 39244.95 39365.47 38821.93 39458.48 40234.98 38956.62 38164.92 390
APD_test153.31 35849.93 36363.42 36865.68 39650.13 37471.59 36766.90 38734.43 39840.58 39771.56 3838.65 40976.27 37434.64 39055.36 38563.86 392
Syy-MVS68.05 32267.85 31368.67 35884.68 26140.97 39978.62 32973.08 37266.65 26466.74 33479.46 34752.11 25782.30 34332.89 39176.38 28982.75 356
dmvs_testset62.63 34564.11 33658.19 37378.55 35924.76 41175.28 35265.94 38967.91 25060.34 36876.01 37053.56 24273.94 38831.79 39267.65 35775.88 380
ANet_high50.57 36346.10 36763.99 36648.67 41139.13 40070.99 37080.85 31961.39 32531.18 40057.70 39617.02 39973.65 38931.22 39315.89 40879.18 373
EGC-MVSNET52.07 36147.05 36567.14 36283.51 28560.71 26980.50 30567.75 3850.07 4110.43 41275.85 37324.26 39081.54 34728.82 39462.25 37159.16 394
PMMVS240.82 37038.86 37446.69 38453.84 40616.45 41548.61 40149.92 40437.49 39431.67 39960.97 3928.14 41056.42 40428.42 39530.72 40167.19 389
tmp_tt18.61 37721.40 38010.23 3934.82 41610.11 41634.70 40330.74 4141.48 41023.91 40626.07 40728.42 38413.41 41227.12 39615.35 4097.17 407
test_method31.52 37329.28 37738.23 38727.03 4156.50 41820.94 40662.21 3954.05 40922.35 40752.50 40013.33 40147.58 40727.04 39734.04 39960.62 393
testf145.72 36541.96 36957.00 37456.90 40245.32 38566.14 38859.26 39926.19 40230.89 40160.96 3934.14 41270.64 39226.39 39846.73 39555.04 397
APD_test245.72 36541.96 36957.00 37456.90 40245.32 38566.14 38859.26 39926.19 40230.89 40160.96 3934.14 41270.64 39226.39 39846.73 39555.04 397
FPMVS53.68 35751.64 35959.81 37265.08 39751.03 37069.48 37669.58 38141.46 39040.67 39672.32 38116.46 40070.00 39424.24 40065.42 36558.40 396
Gipumacopyleft45.18 36841.86 37155.16 38077.03 36651.52 36732.50 40480.52 32432.46 40027.12 40335.02 4049.52 40775.50 37922.31 40160.21 37838.45 403
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
dongtai45.42 36745.38 36845.55 38573.36 38326.85 40967.72 38234.19 41154.15 36949.65 39156.41 39825.43 38762.94 40119.45 40228.09 40246.86 401
DeepMVS_CXcopyleft27.40 39140.17 41426.90 40824.59 41517.44 40723.95 40548.61 4029.77 40626.48 41018.06 40324.47 40428.83 404
WB-MVS54.94 35354.72 35555.60 37973.50 38020.90 41374.27 36061.19 39659.16 34250.61 38974.15 37647.19 30775.78 37817.31 40435.07 39870.12 386
PMVScopyleft37.38 2244.16 36940.28 37355.82 37840.82 41342.54 39665.12 39263.99 39334.43 39824.48 40457.12 3973.92 41476.17 37617.10 40555.52 38448.75 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive26.22 2330.37 37525.89 37943.81 38644.55 41235.46 40328.87 40539.07 41018.20 40618.58 40840.18 4032.68 41547.37 40817.07 40623.78 40548.60 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
SSC-MVS53.88 35653.59 35754.75 38172.87 38619.59 41473.84 36260.53 39857.58 35649.18 39273.45 37946.34 31575.47 38116.20 40732.28 40069.20 387
E-PMN31.77 37230.64 37535.15 38952.87 40927.67 40657.09 39947.86 40724.64 40416.40 40933.05 40511.23 40554.90 40514.46 40818.15 40622.87 405
EMVS30.81 37429.65 37634.27 39050.96 41025.95 41056.58 40046.80 40824.01 40515.53 41030.68 40612.47 40254.43 40612.81 40917.05 40722.43 406
kuosan39.70 37140.40 37237.58 38864.52 39826.98 40765.62 39033.02 41246.12 38442.79 39548.99 40124.10 39146.56 40912.16 41026.30 40339.20 402
wuyk23d16.82 37815.94 38119.46 39258.74 40131.45 40539.22 4023.74 4176.84 4086.04 4112.70 4111.27 41624.29 41110.54 41114.40 4102.63 408
testmvs6.04 3818.02 3840.10 3950.08 4170.03 42069.74 3740.04 4180.05 4120.31 4131.68 4120.02 4180.04 4130.24 4120.02 4110.25 410
test1236.12 3808.11 3830.14 3940.06 4180.09 41971.05 3690.03 4190.04 4130.25 4141.30 4130.05 4170.03 4140.21 4130.01 4120.29 409
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k19.96 37626.61 3780.00 3960.00 4190.00 4210.00 40789.26 1800.00 4140.00 41588.61 17961.62 1680.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas5.26 3827.02 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41463.15 1450.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re7.23 3799.64 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41586.72 2290.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
FOURS195.00 1072.39 3995.06 193.84 1574.49 11591.30 15
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 419
eth-test0.00 419
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
save fliter93.80 4072.35 4290.47 6391.17 12374.31 118
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
GSMVS88.96 249
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26988.96 249
sam_mvs50.01 282
MTGPAbinary92.02 90
test_post5.46 40950.36 28084.24 330
patchmatchnet-post74.00 37751.12 27188.60 293
MTMP92.18 3532.83 413
TEST993.26 5072.96 2588.75 11591.89 9968.44 24485.00 5993.10 6774.36 2895.41 70
test_893.13 5272.57 3588.68 12091.84 10368.69 23984.87 6393.10 6774.43 2695.16 80
agg_prior92.85 5971.94 5191.78 10684.41 7694.93 91
test_prior472.60 3489.01 106
test_prior86.33 5492.61 6569.59 8892.97 5195.48 6593.91 58
新几何286.29 198
旧先验191.96 7165.79 18186.37 25093.08 7169.31 8092.74 7188.74 259
原ACMM286.86 179
test22291.50 7768.26 12584.16 25083.20 29454.63 36879.74 13591.63 9958.97 20091.42 8986.77 300
segment_acmp73.08 38
testdata184.14 25175.71 89
test1286.80 4992.63 6470.70 7291.79 10582.71 10371.67 5396.16 4494.50 5093.54 82
plane_prior790.08 10468.51 120
plane_prior689.84 11368.70 11560.42 193
plane_prior491.00 122
plane_prior368.60 11878.44 3178.92 147
plane_prior291.25 5079.12 23
plane_prior189.90 112
plane_prior68.71 11390.38 6777.62 3986.16 161
n20.00 420
nn0.00 420
door-mid69.98 379
test1192.23 83
door69.44 382
HQP5-MVS66.98 158
HQP-NCC89.33 13289.17 9976.41 7477.23 186
ACMP_Plane89.33 13289.17 9976.41 7477.23 186
HQP4-MVS77.24 18595.11 8491.03 166
HQP3-MVS92.19 8685.99 165
HQP2-MVS60.17 196
NP-MVS89.62 11768.32 12390.24 137
ACMMP++_ref81.95 223
ACMMP++81.25 228
Test By Simon64.33 132