This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
MM89.16 689.23 788.97 490.79 9573.65 1092.66 2391.17 12486.57 187.39 4194.97 1871.70 5397.68 192.19 195.63 2895.57 1
MVS_030487.69 2087.55 2488.12 1389.45 12971.76 5191.47 4989.54 17182.14 386.65 4994.28 3468.28 9597.46 690.81 295.31 3495.15 6
test_fmvsmconf_n85.92 5186.04 5185.57 7485.03 26069.51 9389.62 8990.58 13973.42 14687.75 3594.02 4772.85 4193.24 16490.37 390.75 9893.96 56
test_fmvsmconf0.1_n85.61 5985.65 5785.50 7582.99 30769.39 10089.65 8690.29 15273.31 14987.77 3494.15 4171.72 5293.23 16590.31 490.67 10093.89 61
test_fmvsmconf0.01_n84.73 7384.52 7585.34 7880.25 34869.03 10389.47 9189.65 16973.24 15386.98 4694.27 3566.62 10993.23 16590.26 589.95 11293.78 67
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4997.53 289.67 696.44 994.41 37
No_MVS89.16 194.34 2775.53 292.99 4997.53 289.67 696.44 994.41 37
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 4078.35 1396.77 2489.59 894.22 6094.67 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5995.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 989.42 996.57 794.67 26
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9391.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 36
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5993.49 992.73 6477.33 4992.12 995.78 480.98 997.40 989.08 1296.41 1293.33 89
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND87.71 3295.34 171.43 5893.49 994.23 397.49 489.08 1296.41 1294.21 47
SED-MVS90.08 290.85 287.77 2695.30 270.98 6693.57 794.06 1077.24 5293.10 195.72 882.99 197.44 789.07 1496.63 494.88 14
test_241102_TWO94.06 1077.24 5292.78 495.72 881.26 897.44 789.07 1496.58 694.26 46
IU-MVS95.30 271.25 5992.95 5566.81 26392.39 688.94 1696.63 494.85 19
fmvsm_l_conf0.5_n84.47 7484.54 7384.27 11785.42 25068.81 10988.49 12887.26 23668.08 25388.03 3093.49 6072.04 4891.77 22388.90 1789.14 12292.24 134
fmvsm_s_conf0.5_n83.80 8083.71 8184.07 12986.69 23167.31 15289.46 9283.07 30171.09 18686.96 4793.70 5869.02 8991.47 23888.79 1884.62 18193.44 85
MP-MVS-pluss87.67 2187.72 2087.54 3693.64 4472.04 4889.80 8193.50 2575.17 10486.34 5195.29 1570.86 6596.00 5488.78 1996.04 1694.58 31
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_fmvsmvis_n_192084.02 7783.87 7984.49 10684.12 27669.37 10188.15 14387.96 21970.01 21083.95 8793.23 6868.80 9191.51 23688.61 2089.96 11192.57 119
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 11492.29 795.97 274.28 2997.24 1388.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
fmvsm_s_conf0.1_n83.56 8783.38 8584.10 12384.86 26267.28 15389.40 9783.01 30270.67 19487.08 4493.96 5368.38 9391.45 23988.56 2284.50 18293.56 80
test_fmvsm_n_192085.29 6585.34 6285.13 8586.12 23969.93 8688.65 12490.78 13569.97 21288.27 2693.98 5271.39 5891.54 23388.49 2390.45 10293.91 58
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6293.00 4680.90 788.06 2994.06 4576.43 1696.84 2188.48 2495.99 1894.34 42
fmvsm_l_conf0.5_n_a84.13 7684.16 7884.06 13185.38 25168.40 12488.34 13586.85 24667.48 26087.48 3993.40 6470.89 6491.61 22788.38 2589.22 12092.16 138
fmvsm_s_conf0.5_n_a83.63 8583.41 8484.28 11586.14 23868.12 13189.43 9382.87 30670.27 20587.27 4393.80 5769.09 8491.58 22988.21 2683.65 20193.14 99
fmvsm_s_conf0.1_n_a83.32 9382.99 9284.28 11583.79 28468.07 13389.34 9982.85 30769.80 21687.36 4294.06 4568.34 9491.56 23187.95 2783.46 20693.21 95
TSAR-MVS + MP.88.02 1788.11 1687.72 3093.68 4372.13 4691.41 5092.35 8174.62 11888.90 2293.85 5575.75 2096.00 5487.80 2894.63 4895.04 8
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMP_NAP88.05 1688.08 1787.94 1993.70 4173.05 2290.86 5793.59 2376.27 8388.14 2795.09 1771.06 6396.67 2987.67 2996.37 1494.09 51
SD-MVS88.06 1488.50 1486.71 5492.60 6972.71 2991.81 4193.19 3577.87 3690.32 1794.00 4974.83 2393.78 13987.63 3094.27 5993.65 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 7272.96 2593.73 593.67 2080.19 1288.10 2894.80 1973.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5980.26 1187.78 3394.27 3575.89 1996.81 2387.45 3296.44 993.05 104
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8992.29 795.66 1081.67 697.38 1187.44 3396.34 1593.95 57
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SF-MVS88.46 1288.74 1287.64 3592.78 6471.95 4992.40 2494.74 275.71 9189.16 1995.10 1675.65 2196.19 4687.07 3496.01 1794.79 21
9.1488.26 1592.84 6391.52 4894.75 173.93 13288.57 2594.67 2175.57 2295.79 5886.77 3595.76 23
MTAPA87.23 3187.00 3287.90 2294.18 3574.25 586.58 19192.02 9279.45 1985.88 5394.80 1968.07 9696.21 4586.69 3695.34 3293.23 92
reproduce-ours87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10788.96 2095.54 1271.20 6196.54 3686.28 3793.49 6593.06 102
our_new_method87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10788.96 2095.54 1271.20 6196.54 3686.28 3793.49 6593.06 102
reproduce_model87.28 3087.39 2786.95 4893.10 5671.24 6391.60 4293.19 3574.69 11588.80 2395.61 1170.29 7296.44 3986.20 3993.08 6993.16 97
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5392.24 7169.03 10389.57 9093.39 3077.53 4589.79 1894.12 4278.98 1296.58 3585.66 4095.72 2494.58 31
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 6977.57 4183.84 8994.40 3272.24 4596.28 4385.65 4195.30 3593.62 77
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
balanced_conf0386.78 3786.99 3386.15 6191.24 8367.61 14390.51 6292.90 5677.26 5187.44 4091.63 10371.27 6096.06 4985.62 4295.01 3794.78 22
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6585.24 6094.32 3371.76 5196.93 1985.53 4395.79 2294.32 43
HPM-MVScopyleft87.11 3386.98 3487.50 3893.88 3972.16 4592.19 3393.33 3176.07 8683.81 9093.95 5469.77 7896.01 5385.15 4494.66 4794.32 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
train_agg86.43 4386.20 4587.13 4493.26 5272.96 2588.75 11891.89 10068.69 24485.00 6393.10 7074.43 2695.41 7284.97 4595.71 2593.02 106
test9_res84.90 4695.70 2692.87 111
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5492.83 6081.50 585.79 5593.47 6373.02 4097.00 1884.90 4694.94 4094.10 50
MCST-MVS87.37 2987.25 2987.73 2894.53 1772.46 3889.82 7993.82 1673.07 15584.86 6892.89 7776.22 1796.33 4184.89 4895.13 3694.40 39
DeepC-MVS79.81 287.08 3586.88 3887.69 3391.16 8472.32 4390.31 7193.94 1477.12 5782.82 10394.23 3872.13 4797.09 1684.83 4995.37 3193.65 74
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS86.73 3886.67 3986.91 4994.11 3772.11 4792.37 2892.56 7474.50 11986.84 4894.65 2267.31 10595.77 5984.80 5092.85 7292.84 112
MVSMamba_PlusPlus85.99 4885.96 5286.05 6491.09 8567.64 14289.63 8892.65 6972.89 16084.64 7391.71 9971.85 4996.03 5084.77 5194.45 5494.49 35
ZD-MVS94.38 2572.22 4492.67 6670.98 18987.75 3594.07 4474.01 3296.70 2784.66 5294.84 44
PC_three_145268.21 25292.02 1294.00 4982.09 595.98 5684.58 5396.68 294.95 10
HFP-MVS87.58 2287.47 2687.94 1994.58 1673.54 1593.04 1293.24 3376.78 6784.91 6594.44 3070.78 6696.61 3284.53 5494.89 4293.66 70
ACMMPR87.44 2587.23 3088.08 1594.64 1373.59 1293.04 1293.20 3476.78 6784.66 7294.52 2368.81 9096.65 3084.53 5494.90 4194.00 55
region2R87.42 2787.20 3188.09 1494.63 1473.55 1393.03 1493.12 4076.73 7084.45 7794.52 2369.09 8496.70 2784.37 5694.83 4594.03 54
CANet86.45 4286.10 4987.51 3790.09 10770.94 7089.70 8592.59 7381.78 481.32 11991.43 11170.34 7097.23 1484.26 5793.36 6894.37 40
APD-MVScopyleft87.44 2587.52 2587.19 4294.24 3272.39 3991.86 4092.83 6073.01 15788.58 2494.52 2373.36 3496.49 3884.26 5795.01 3792.70 114
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CS-MVS86.69 3986.95 3585.90 6990.76 9667.57 14592.83 1793.30 3279.67 1784.57 7692.27 8971.47 5695.02 9184.24 5993.46 6795.13 7
CP-MVS87.11 3386.92 3687.68 3494.20 3473.86 793.98 392.82 6376.62 7383.68 9194.46 2767.93 9895.95 5784.20 6094.39 5593.23 92
GST-MVS87.42 2787.26 2887.89 2494.12 3672.97 2492.39 2693.43 2876.89 6384.68 6993.99 5170.67 6896.82 2284.18 6195.01 3793.90 60
EC-MVSNet86.01 4786.38 4284.91 9489.31 13866.27 17192.32 3093.63 2179.37 2084.17 8391.88 9669.04 8895.43 7083.93 6293.77 6393.01 107
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4782.45 396.87 2083.77 6396.48 894.88 14
casdiffmvs_mvgpermissive85.99 4886.09 5085.70 7287.65 20767.22 15788.69 12293.04 4179.64 1885.33 5992.54 8673.30 3594.50 11083.49 6491.14 9495.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
dcpmvs_285.63 5886.15 4884.06 13191.71 7864.94 20086.47 19491.87 10273.63 13886.60 5093.02 7576.57 1591.87 22183.36 6592.15 8095.35 3
test_prior288.85 11575.41 9784.91 6593.54 5974.28 2983.31 6695.86 20
PHI-MVS86.43 4386.17 4787.24 4190.88 9270.96 6892.27 3294.07 972.45 16185.22 6191.90 9569.47 8096.42 4083.28 6795.94 1994.35 41
XVS87.18 3286.91 3788.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9294.17 3967.45 10396.60 3383.06 6894.50 5194.07 52
X-MVStestdata80.37 15277.83 18888.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9212.47 41867.45 10396.60 3383.06 6894.50 5194.07 52
mamv476.81 23278.23 18072.54 34286.12 23965.75 18478.76 33382.07 31564.12 30272.97 27491.02 12767.97 9768.08 40683.04 7078.02 26983.80 352
APD-MVS_3200maxsize85.97 5085.88 5386.22 6092.69 6669.53 9291.93 3792.99 4973.54 14285.94 5294.51 2665.80 12395.61 6283.04 7092.51 7693.53 83
agg_prior282.91 7295.45 2992.70 114
mPP-MVS86.67 4186.32 4387.72 3094.41 2273.55 1392.74 2092.22 8776.87 6482.81 10494.25 3766.44 11396.24 4482.88 7394.28 5893.38 86
SR-MVS-dyc-post85.77 5585.61 5886.23 5993.06 5870.63 7691.88 3892.27 8373.53 14385.69 5694.45 2865.00 13195.56 6382.75 7491.87 8492.50 123
RE-MVS-def85.48 6093.06 5870.63 7691.88 3892.27 8373.53 14385.69 5694.45 2863.87 13782.75 7491.87 8492.50 123
h-mvs3383.15 9582.19 10386.02 6790.56 9870.85 7388.15 14389.16 18676.02 8784.67 7091.39 11261.54 17095.50 6682.71 7675.48 30591.72 147
hse-mvs281.72 11780.94 12384.07 12988.72 16267.68 14185.87 21187.26 23676.02 8784.67 7088.22 19461.54 17093.48 15482.71 7673.44 33391.06 166
PGM-MVS86.68 4086.27 4487.90 2294.22 3373.38 1890.22 7393.04 4175.53 9583.86 8894.42 3167.87 10096.64 3182.70 7894.57 5093.66 70
ACMMPcopyleft85.89 5485.39 6187.38 3993.59 4572.63 3392.74 2093.18 3976.78 6780.73 12893.82 5664.33 13396.29 4282.67 7990.69 9993.23 92
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
diffmvspermissive82.10 10981.88 11182.76 18783.00 30563.78 22383.68 26189.76 16572.94 15882.02 11089.85 14765.96 12290.79 25782.38 8087.30 14693.71 69
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
patch_mono-283.65 8384.54 7380.99 22490.06 11265.83 18084.21 25388.74 20571.60 17685.01 6292.44 8774.51 2583.50 34382.15 8192.15 8093.64 76
SPE-MVS-test86.29 4686.48 4185.71 7191.02 8867.21 15892.36 2993.78 1878.97 2883.51 9591.20 11870.65 6995.15 8281.96 8294.89 4294.77 23
TSAR-MVS + GP.85.71 5785.33 6386.84 5091.34 8172.50 3689.07 10887.28 23576.41 7685.80 5490.22 14274.15 3195.37 7781.82 8391.88 8392.65 118
alignmvs85.48 6085.32 6485.96 6889.51 12669.47 9589.74 8392.47 7576.17 8487.73 3791.46 11070.32 7193.78 13981.51 8488.95 12394.63 30
sasdasda85.91 5285.87 5486.04 6589.84 11769.44 9890.45 6893.00 4676.70 7188.01 3191.23 11573.28 3693.91 13381.50 8588.80 12694.77 23
canonicalmvs85.91 5285.87 5486.04 6589.84 11769.44 9890.45 6893.00 4676.70 7188.01 3191.23 11573.28 3693.91 13381.50 8588.80 12694.77 23
baseline84.93 7084.98 6884.80 9887.30 21965.39 19187.30 16992.88 5777.62 3984.04 8692.26 9071.81 5093.96 12681.31 8790.30 10495.03 9
MGCFI-Net85.06 6985.51 5983.70 14589.42 13063.01 24189.43 9392.62 7276.43 7587.53 3891.34 11372.82 4293.42 15981.28 8888.74 12994.66 29
casdiffmvspermissive85.11 6785.14 6785.01 8887.20 22165.77 18387.75 15592.83 6077.84 3784.36 8092.38 8872.15 4693.93 13281.27 8990.48 10195.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_111021_HR85.14 6684.75 7186.32 5891.65 7972.70 3085.98 20790.33 14976.11 8582.08 10991.61 10571.36 5994.17 12281.02 9092.58 7592.08 140
HPM-MVS_fast85.35 6484.95 7086.57 5693.69 4270.58 7892.15 3591.62 11073.89 13382.67 10694.09 4362.60 15295.54 6580.93 9192.93 7193.57 79
CPTT-MVS83.73 8183.33 8784.92 9393.28 4970.86 7292.09 3690.38 14568.75 24379.57 14092.83 7960.60 19293.04 18280.92 9291.56 8990.86 174
ETV-MVS84.90 7284.67 7285.59 7389.39 13368.66 12088.74 12092.64 7179.97 1584.10 8485.71 25969.32 8295.38 7480.82 9391.37 9192.72 113
DeepC-MVS_fast79.65 386.91 3686.62 4087.76 2793.52 4672.37 4191.26 5193.04 4176.62 7384.22 8193.36 6671.44 5796.76 2580.82 9395.33 3394.16 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
nrg03083.88 7883.53 8284.96 9086.77 22969.28 10290.46 6792.67 6674.79 11382.95 9991.33 11472.70 4393.09 17880.79 9579.28 25792.50 123
EI-MVSNet-Vis-set84.19 7583.81 8085.31 7988.18 18067.85 13787.66 15789.73 16780.05 1482.95 9989.59 15570.74 6794.82 9980.66 9684.72 17993.28 91
MSLP-MVS++85.43 6285.76 5684.45 10791.93 7570.24 7990.71 5992.86 5877.46 4784.22 8192.81 8167.16 10792.94 18480.36 9794.35 5790.16 201
MVS_111021_LR82.61 10482.11 10484.11 12288.82 15671.58 5585.15 22786.16 25774.69 11580.47 13091.04 12462.29 15990.55 26180.33 9890.08 10990.20 200
DELS-MVS85.41 6385.30 6585.77 7088.49 16967.93 13685.52 22493.44 2778.70 2983.63 9489.03 17074.57 2495.71 6180.26 9994.04 6193.66 70
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EI-MVSNet-UG-set83.81 7983.38 8585.09 8687.87 19667.53 14687.44 16589.66 16879.74 1682.23 10889.41 16470.24 7394.74 10279.95 10083.92 19392.99 109
CSCG86.41 4586.19 4687.07 4592.91 6172.48 3790.81 5893.56 2473.95 13083.16 9891.07 12375.94 1895.19 8079.94 10194.38 5693.55 81
RRT-MVS82.60 10682.10 10584.10 12387.98 19262.94 24687.45 16491.27 12077.42 4879.85 13690.28 13856.62 22194.70 10579.87 10288.15 13894.67 26
OPM-MVS83.50 8882.95 9385.14 8388.79 15970.95 6989.13 10791.52 11377.55 4480.96 12691.75 9860.71 18794.50 11079.67 10386.51 15889.97 217
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CDPH-MVS85.76 5685.29 6687.17 4393.49 4771.08 6488.58 12692.42 7968.32 25184.61 7493.48 6172.32 4496.15 4879.00 10495.43 3094.28 45
MVSFormer82.85 10182.05 10785.24 8187.35 21370.21 8090.50 6490.38 14568.55 24681.32 11989.47 15861.68 16793.46 15678.98 10590.26 10592.05 141
test_djsdf80.30 15379.32 15483.27 15883.98 28065.37 19290.50 6490.38 14568.55 24676.19 21388.70 17756.44 22293.46 15678.98 10580.14 24790.97 171
test_vis1_n_192075.52 25475.78 23074.75 32379.84 35457.44 31283.26 27085.52 26462.83 31979.34 14486.17 25245.10 33279.71 36278.75 10781.21 23287.10 300
HQP_MVS83.64 8483.14 8885.14 8390.08 10868.71 11691.25 5292.44 7679.12 2378.92 14991.00 12860.42 19495.38 7478.71 10886.32 16091.33 158
plane_prior592.44 7695.38 7478.71 10886.32 16091.33 158
LPG-MVS_test82.08 11081.27 11684.50 10489.23 14268.76 11290.22 7391.94 9875.37 9876.64 20291.51 10754.29 23694.91 9378.44 11083.78 19489.83 222
LGP-MVS_train84.50 10489.23 14268.76 11291.94 9875.37 9876.64 20291.51 10754.29 23694.91 9378.44 11083.78 19489.83 222
lupinMVS81.39 12680.27 13584.76 9987.35 21370.21 8085.55 22086.41 25162.85 31881.32 11988.61 18161.68 16792.24 20878.41 11290.26 10591.83 144
jason81.39 12680.29 13484.70 10086.63 23369.90 8885.95 20886.77 24763.24 31181.07 12589.47 15861.08 18392.15 21078.33 11390.07 11092.05 141
jason: jason.
xiu_mvs_v1_base_debu80.80 13879.72 14484.03 13687.35 21370.19 8285.56 21788.77 20169.06 23681.83 11188.16 19550.91 27592.85 18678.29 11487.56 14189.06 241
xiu_mvs_v1_base80.80 13879.72 14484.03 13687.35 21370.19 8285.56 21788.77 20169.06 23681.83 11188.16 19550.91 27592.85 18678.29 11487.56 14189.06 241
xiu_mvs_v1_base_debi80.80 13879.72 14484.03 13687.35 21370.19 8285.56 21788.77 20169.06 23681.83 11188.16 19550.91 27592.85 18678.29 11487.56 14189.06 241
Effi-MVS+83.62 8683.08 8985.24 8188.38 17567.45 14788.89 11389.15 18775.50 9682.27 10788.28 19169.61 7994.45 11277.81 11787.84 13993.84 64
PS-MVSNAJss82.07 11181.31 11584.34 11286.51 23467.27 15489.27 10091.51 11471.75 17179.37 14290.22 14263.15 14694.27 11677.69 11882.36 22091.49 154
ACMP74.13 681.51 12580.57 12784.36 11089.42 13068.69 11989.97 7791.50 11774.46 12175.04 24890.41 13753.82 24194.54 10777.56 11982.91 21289.86 221
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
BP-MVS77.47 120
HQP-MVS82.61 10482.02 10884.37 10989.33 13566.98 16189.17 10292.19 8976.41 7677.23 18790.23 14160.17 19795.11 8577.47 12085.99 16891.03 168
MVS_Test83.15 9583.06 9083.41 15486.86 22563.21 23786.11 20592.00 9474.31 12382.87 10189.44 16370.03 7493.21 16777.39 12288.50 13493.81 65
3Dnovator+77.84 485.48 6084.47 7688.51 791.08 8673.49 1693.18 1193.78 1880.79 876.66 20193.37 6560.40 19696.75 2677.20 12393.73 6495.29 5
anonymousdsp78.60 19277.15 20682.98 17480.51 34667.08 15987.24 17189.53 17265.66 28375.16 24387.19 22152.52 24992.25 20777.17 12479.34 25689.61 229
mmtdpeth74.16 26873.01 27077.60 29283.72 28761.13 26585.10 22985.10 26872.06 16977.21 19180.33 34943.84 33985.75 32277.14 12552.61 39685.91 322
VDD-MVS83.01 10082.36 10184.96 9091.02 8866.40 16888.91 11288.11 21477.57 4184.39 7993.29 6752.19 25593.91 13377.05 12688.70 13094.57 33
XVG-OURS-SEG-HR80.81 13679.76 14383.96 14185.60 24768.78 11183.54 26790.50 14270.66 19776.71 20091.66 10060.69 18891.26 24476.94 12781.58 22891.83 144
jajsoiax79.29 17577.96 18383.27 15884.68 26566.57 16789.25 10190.16 15569.20 23275.46 22889.49 15745.75 32793.13 17676.84 12880.80 23790.11 205
SDMVSNet80.38 15080.18 13680.99 22489.03 15164.94 20080.45 31089.40 17575.19 10276.61 20489.98 14460.61 19187.69 30776.83 12983.55 20390.33 195
mvs_tets79.13 17977.77 19283.22 16284.70 26466.37 16989.17 10290.19 15469.38 22575.40 23189.46 16044.17 33793.15 17476.78 13080.70 23990.14 202
DPM-MVS84.93 7084.29 7786.84 5090.20 10573.04 2387.12 17393.04 4169.80 21682.85 10291.22 11773.06 3996.02 5276.72 13194.63 4891.46 157
test_cas_vis1_n_192073.76 27473.74 26373.81 33175.90 37559.77 28480.51 30882.40 31158.30 35781.62 11785.69 26044.35 33676.41 38076.29 13278.61 26085.23 332
ET-MVSNet_ETH3D78.63 19176.63 22184.64 10186.73 23069.47 9585.01 23184.61 27469.54 22266.51 34886.59 23950.16 28491.75 22476.26 13384.24 19092.69 116
v2v48280.23 15479.29 15583.05 17083.62 28864.14 21687.04 17589.97 16073.61 13978.18 16787.22 21961.10 18293.82 13776.11 13476.78 28591.18 162
test_fmvs1_n70.86 30470.24 30272.73 34072.51 39755.28 34481.27 29679.71 34251.49 38678.73 15184.87 28027.54 39377.02 37476.06 13579.97 24985.88 323
CLD-MVS82.31 10781.65 11384.29 11488.47 17067.73 14085.81 21592.35 8175.78 9078.33 16386.58 24164.01 13694.35 11376.05 13687.48 14490.79 175
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
EPNet83.72 8282.92 9486.14 6384.22 27469.48 9491.05 5685.27 26681.30 676.83 19691.65 10166.09 11895.56 6376.00 13793.85 6293.38 86
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvs170.93 30370.52 29772.16 34473.71 38655.05 34680.82 29978.77 34951.21 38778.58 15684.41 28831.20 38876.94 37575.88 13880.12 24884.47 343
XVG-OURS80.41 14979.23 15783.97 14085.64 24669.02 10583.03 27890.39 14471.09 18677.63 17891.49 10954.62 23591.35 24275.71 13983.47 20591.54 151
V4279.38 17478.24 17882.83 17981.10 34065.50 18885.55 22089.82 16371.57 17778.21 16586.12 25360.66 18993.18 17375.64 14075.46 30789.81 224
PS-MVSNAJ81.69 11981.02 12183.70 14589.51 12668.21 13084.28 25290.09 15770.79 19181.26 12385.62 26463.15 14694.29 11475.62 14188.87 12588.59 264
xiu_mvs_v2_base81.69 11981.05 12083.60 14789.15 14568.03 13584.46 24690.02 15870.67 19481.30 12286.53 24463.17 14594.19 12175.60 14288.54 13288.57 265
EIA-MVS83.31 9482.80 9684.82 9689.59 12265.59 18688.21 13992.68 6574.66 11778.96 14786.42 24669.06 8695.26 7875.54 14390.09 10893.62 77
AUN-MVS79.21 17777.60 19884.05 13488.71 16367.61 14385.84 21387.26 23669.08 23577.23 18788.14 19953.20 24893.47 15575.50 14473.45 33291.06 166
mvsmamba80.60 14479.38 15184.27 11789.74 12067.24 15687.47 16286.95 24270.02 20975.38 23288.93 17151.24 27292.56 19375.47 14589.22 12093.00 108
reproduce_monomvs75.40 25874.38 25478.46 27783.92 28257.80 30683.78 25986.94 24373.47 14572.25 28584.47 28638.74 36689.27 28275.32 14670.53 35288.31 270
OMC-MVS82.69 10281.97 11084.85 9588.75 16167.42 14887.98 14690.87 13374.92 10979.72 13891.65 10162.19 16293.96 12675.26 14786.42 15993.16 97
v114480.03 15879.03 16183.01 17283.78 28564.51 20787.11 17490.57 14171.96 17078.08 17086.20 25161.41 17493.94 12974.93 14877.23 27690.60 184
MVSTER79.01 18277.88 18782.38 19383.07 30264.80 20384.08 25788.95 19769.01 23978.69 15287.17 22254.70 23392.43 19874.69 14980.57 24189.89 220
test_vis1_n69.85 31669.21 30771.77 34672.66 39655.27 34581.48 29276.21 36752.03 38375.30 23983.20 31528.97 39176.22 38274.60 15078.41 26683.81 351
test_fmvs268.35 32967.48 32970.98 35569.50 40051.95 36880.05 31576.38 36649.33 38974.65 25584.38 28923.30 40275.40 39074.51 15175.17 31685.60 326
PVSNet_Blended_VisFu82.62 10381.83 11284.96 9090.80 9469.76 9088.74 12091.70 10969.39 22478.96 14788.46 18665.47 12594.87 9874.42 15288.57 13190.24 199
v879.97 16079.02 16282.80 18284.09 27764.50 20987.96 14790.29 15274.13 12975.24 24186.81 22862.88 15193.89 13674.39 15375.40 31090.00 213
v14419279.47 16878.37 17482.78 18583.35 29363.96 21986.96 17790.36 14869.99 21177.50 17985.67 26260.66 18993.77 14174.27 15476.58 28690.62 182
ACMM73.20 880.78 14179.84 14283.58 14889.31 13868.37 12589.99 7691.60 11170.28 20477.25 18589.66 15153.37 24693.53 15274.24 15582.85 21388.85 254
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
旧先验286.56 19258.10 35987.04 4588.98 28874.07 156
v119279.59 16578.43 17383.07 16983.55 29064.52 20686.93 17990.58 13970.83 19077.78 17585.90 25559.15 20093.94 12973.96 15777.19 27890.76 177
v1079.74 16278.67 16682.97 17584.06 27864.95 19987.88 15390.62 13873.11 15475.11 24586.56 24261.46 17394.05 12573.68 15875.55 30389.90 219
v192192079.22 17678.03 18282.80 18283.30 29563.94 22086.80 18390.33 14969.91 21477.48 18085.53 26558.44 20493.75 14373.60 15976.85 28390.71 180
cl2278.07 20577.01 20881.23 21782.37 32161.83 25983.55 26687.98 21868.96 24075.06 24783.87 29961.40 17591.88 22073.53 16076.39 29089.98 216
Effi-MVS+-dtu80.03 15878.57 16984.42 10885.13 25868.74 11488.77 11788.10 21574.99 10674.97 24983.49 31057.27 21693.36 16073.53 16080.88 23591.18 162
c3_l78.75 18777.91 18581.26 21682.89 30961.56 26284.09 25689.13 18969.97 21275.56 22484.29 29266.36 11492.09 21273.47 16275.48 30590.12 204
VDDNet81.52 12380.67 12684.05 13490.44 10164.13 21789.73 8485.91 26071.11 18583.18 9793.48 6150.54 28193.49 15373.40 16388.25 13694.54 34
CANet_DTU80.61 14379.87 14182.83 17985.60 24763.17 24087.36 16688.65 20776.37 8075.88 21988.44 18753.51 24493.07 17973.30 16489.74 11592.25 132
miper_ehance_all_eth78.59 19377.76 19381.08 22282.66 31461.56 26283.65 26289.15 18768.87 24175.55 22583.79 30366.49 11292.03 21373.25 16576.39 29089.64 228
3Dnovator76.31 583.38 9282.31 10286.59 5587.94 19372.94 2890.64 6092.14 9177.21 5475.47 22692.83 7958.56 20394.72 10373.24 16692.71 7492.13 139
v124078.99 18377.78 19182.64 18883.21 29763.54 22886.62 19090.30 15169.74 22177.33 18385.68 26157.04 21893.76 14273.13 16776.92 28090.62 182
miper_enhance_ethall77.87 21276.86 21280.92 22781.65 32861.38 26482.68 27988.98 19465.52 28575.47 22682.30 33065.76 12492.00 21572.95 16876.39 29089.39 234
MG-MVS83.41 9083.45 8383.28 15792.74 6562.28 25388.17 14189.50 17375.22 10081.49 11892.74 8566.75 10895.11 8572.85 16991.58 8892.45 126
EPP-MVSNet83.40 9183.02 9184.57 10290.13 10664.47 21092.32 3090.73 13674.45 12279.35 14391.10 12169.05 8795.12 8372.78 17087.22 14794.13 49
test_fmvs363.36 35261.82 35567.98 37062.51 40946.96 39277.37 34974.03 37745.24 39467.50 33278.79 36512.16 41472.98 39872.77 17166.02 36983.99 349
IterMVS-LS80.06 15779.38 15182.11 19685.89 24263.20 23886.79 18489.34 17774.19 12675.45 22986.72 23166.62 10992.39 20072.58 17276.86 28290.75 178
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tt080578.73 18877.83 18881.43 21085.17 25460.30 27989.41 9690.90 13171.21 18377.17 19288.73 17646.38 31693.21 16772.57 17378.96 25990.79 175
EI-MVSNet80.52 14879.98 13882.12 19584.28 27263.19 23986.41 19588.95 19774.18 12778.69 15287.54 21166.62 10992.43 19872.57 17380.57 24190.74 179
Vis-MVSNetpermissive83.46 8982.80 9685.43 7790.25 10468.74 11490.30 7290.13 15676.33 8280.87 12792.89 7761.00 18494.20 12072.45 17590.97 9593.35 88
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
LFMVS81.82 11681.23 11783.57 14991.89 7663.43 23389.84 7881.85 31877.04 6083.21 9693.10 7052.26 25493.43 15871.98 17689.95 11293.85 62
v14878.72 18977.80 19081.47 20982.73 31261.96 25786.30 20088.08 21673.26 15176.18 21485.47 26762.46 15692.36 20271.92 17773.82 32990.09 207
PVSNet_BlendedMVS80.60 14480.02 13782.36 19488.85 15365.40 18986.16 20492.00 9469.34 22678.11 16886.09 25466.02 12094.27 11671.52 17882.06 22387.39 288
PVSNet_Blended80.98 13180.34 13282.90 17788.85 15365.40 18984.43 24892.00 9467.62 25778.11 16885.05 27866.02 12094.27 11671.52 17889.50 11689.01 246
eth_miper_zixun_eth77.92 21076.69 21981.61 20783.00 30561.98 25683.15 27289.20 18569.52 22374.86 25184.35 29161.76 16692.56 19371.50 18072.89 33790.28 198
UA-Net85.08 6884.96 6985.45 7692.07 7368.07 13389.78 8290.86 13482.48 284.60 7593.20 6969.35 8195.22 7971.39 18190.88 9793.07 101
FA-MVS(test-final)80.96 13279.91 14084.10 12388.30 17865.01 19884.55 24390.01 15973.25 15279.61 13987.57 20858.35 20594.72 10371.29 18286.25 16292.56 120
cl____77.72 21576.76 21680.58 23382.49 31860.48 27683.09 27487.87 22269.22 23074.38 26085.22 27362.10 16391.53 23471.09 18375.41 30989.73 227
DIV-MVS_self_test77.72 21576.76 21680.58 23382.48 31960.48 27683.09 27487.86 22369.22 23074.38 26085.24 27162.10 16391.53 23471.09 18375.40 31089.74 226
MonoMVSNet76.49 24075.80 22978.58 27181.55 33158.45 29386.36 19886.22 25574.87 11274.73 25383.73 30551.79 26788.73 29370.78 18572.15 34288.55 266
test_yl81.17 12880.47 13083.24 16089.13 14663.62 22486.21 20289.95 16172.43 16481.78 11589.61 15357.50 21393.58 14770.75 18686.90 15192.52 121
DCV-MVSNet81.17 12880.47 13083.24 16089.13 14663.62 22486.21 20289.95 16172.43 16481.78 11589.61 15357.50 21393.58 14770.75 18686.90 15192.52 121
VNet82.21 10882.41 9981.62 20590.82 9360.93 26884.47 24489.78 16476.36 8184.07 8591.88 9664.71 13290.26 26370.68 18888.89 12493.66 70
mvs_anonymous79.42 17179.11 16080.34 23884.45 27157.97 30182.59 28087.62 22867.40 26176.17 21688.56 18468.47 9289.59 27670.65 18986.05 16693.47 84
VPA-MVSNet80.60 14480.55 12880.76 23088.07 18760.80 27186.86 18191.58 11275.67 9480.24 13289.45 16263.34 14090.25 26470.51 19079.22 25891.23 161
PAPM_NR83.02 9982.41 9984.82 9692.47 7066.37 16987.93 15091.80 10573.82 13477.32 18490.66 13367.90 9994.90 9570.37 19189.48 11793.19 96
thisisatest053079.40 17277.76 19384.31 11387.69 20665.10 19787.36 16684.26 28170.04 20877.42 18188.26 19349.94 28794.79 10170.20 19284.70 18093.03 105
tttt051779.40 17277.91 18583.90 14388.10 18563.84 22188.37 13484.05 28371.45 17976.78 19889.12 16749.93 28994.89 9670.18 19383.18 21092.96 110
UniMVSNet_NR-MVSNet81.88 11481.54 11482.92 17688.46 17163.46 23187.13 17292.37 8080.19 1278.38 16189.14 16671.66 5593.05 18070.05 19476.46 28892.25 132
DU-MVS81.12 13080.52 12982.90 17787.80 19963.46 23187.02 17691.87 10279.01 2678.38 16189.07 16865.02 12993.05 18070.05 19476.46 28892.20 135
XVG-ACMP-BASELINE76.11 24674.27 25681.62 20583.20 29864.67 20583.60 26589.75 16669.75 21971.85 28987.09 22432.78 38392.11 21169.99 19680.43 24388.09 274
GeoE81.71 11881.01 12283.80 14489.51 12664.45 21188.97 11088.73 20671.27 18278.63 15589.76 14966.32 11593.20 17069.89 19786.02 16793.74 68
FIs82.07 11182.42 9881.04 22388.80 15858.34 29588.26 13893.49 2676.93 6278.47 16091.04 12469.92 7692.34 20469.87 19884.97 17692.44 127
114514_t80.68 14279.51 14884.20 12094.09 3867.27 15489.64 8791.11 12758.75 35574.08 26290.72 13258.10 20695.04 9069.70 19989.42 11890.30 197
Anonymous2023121178.97 18477.69 19682.81 18190.54 9964.29 21490.11 7591.51 11465.01 29276.16 21788.13 20050.56 28093.03 18369.68 20077.56 27591.11 164
Patchmatch-RL test70.24 31167.78 32477.61 29077.43 37059.57 28871.16 37870.33 38562.94 31768.65 32372.77 39050.62 27985.49 32769.58 20166.58 36787.77 280
UniMVSNet (Re)81.60 12281.11 11983.09 16788.38 17564.41 21287.60 15893.02 4578.42 3278.56 15788.16 19569.78 7793.26 16369.58 20176.49 28791.60 148
IterMVS-SCA-FT75.43 25673.87 26180.11 24382.69 31364.85 20281.57 29183.47 29269.16 23370.49 30084.15 29751.95 26288.15 30169.23 20372.14 34387.34 290
v7n78.97 18477.58 19983.14 16583.45 29265.51 18788.32 13691.21 12273.69 13772.41 28286.32 24957.93 20793.81 13869.18 20475.65 30190.11 205
Anonymous2024052980.19 15678.89 16484.10 12390.60 9764.75 20488.95 11190.90 13165.97 28080.59 12991.17 12049.97 28693.73 14569.16 20582.70 21793.81 65
miper_lstm_enhance74.11 26973.11 26977.13 29880.11 35059.62 28672.23 37486.92 24566.76 26570.40 30182.92 32056.93 21982.92 34769.06 20672.63 33888.87 253
testdata79.97 24590.90 9164.21 21584.71 27259.27 34985.40 5892.91 7662.02 16589.08 28668.95 20791.37 9186.63 309
test111179.43 17079.18 15980.15 24289.99 11353.31 36287.33 16877.05 36275.04 10580.23 13392.77 8448.97 30192.33 20568.87 20892.40 7994.81 20
GA-MVS76.87 23175.17 24481.97 20082.75 31162.58 24881.44 29486.35 25472.16 16874.74 25282.89 32146.20 32192.02 21468.85 20981.09 23391.30 160
test250677.30 22576.49 22279.74 25090.08 10852.02 36687.86 15463.10 40474.88 11080.16 13492.79 8238.29 37092.35 20368.74 21092.50 7794.86 17
ECVR-MVScopyleft79.61 16379.26 15680.67 23290.08 10854.69 34987.89 15277.44 35874.88 11080.27 13192.79 8248.96 30292.45 19768.55 21192.50 7794.86 17
UGNet80.83 13579.59 14784.54 10388.04 18868.09 13289.42 9588.16 21376.95 6176.22 21289.46 16049.30 29693.94 12968.48 21290.31 10391.60 148
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FC-MVSNet-test81.52 12382.02 10880.03 24488.42 17455.97 33487.95 14893.42 2977.10 5877.38 18290.98 13069.96 7591.79 22268.46 21384.50 18292.33 128
DP-MVS Recon83.11 9882.09 10686.15 6194.44 1970.92 7188.79 11692.20 8870.53 19979.17 14591.03 12664.12 13596.03 5068.39 21490.14 10791.50 153
UniMVSNet_ETH3D79.10 18078.24 17881.70 20486.85 22660.24 28087.28 17088.79 20074.25 12576.84 19590.53 13649.48 29291.56 23167.98 21582.15 22193.29 90
D2MVS74.82 26273.21 26779.64 25479.81 35562.56 24980.34 31287.35 23464.37 29968.86 32182.66 32546.37 31790.10 26667.91 21681.24 23186.25 312
IS-MVSNet83.15 9582.81 9584.18 12189.94 11563.30 23591.59 4388.46 21179.04 2579.49 14192.16 9165.10 12894.28 11567.71 21791.86 8694.95 10
Fast-Effi-MVS+-dtu78.02 20776.49 22282.62 18983.16 30166.96 16386.94 17887.45 23372.45 16171.49 29484.17 29654.79 23291.58 22967.61 21880.31 24489.30 237
PAPR81.66 12180.89 12483.99 13990.27 10364.00 21886.76 18791.77 10868.84 24277.13 19489.50 15667.63 10194.88 9767.55 21988.52 13393.09 100
cascas76.72 23474.64 24882.99 17385.78 24465.88 17982.33 28289.21 18460.85 33672.74 27681.02 34147.28 30993.75 14367.48 22085.02 17589.34 236
131476.53 23675.30 24380.21 24183.93 28162.32 25284.66 23888.81 19960.23 34070.16 30684.07 29855.30 22690.73 25967.37 22183.21 20987.59 285
无先验87.48 16188.98 19460.00 34294.12 12367.28 22288.97 249
thisisatest051577.33 22475.38 24083.18 16385.27 25363.80 22282.11 28583.27 29565.06 29075.91 21883.84 30149.54 29194.27 11667.24 22386.19 16391.48 155
原ACMM184.35 11193.01 6068.79 11092.44 7663.96 30881.09 12491.57 10666.06 11995.45 6867.19 22494.82 4688.81 256
Baseline_NR-MVSNet78.15 20378.33 17677.61 29085.79 24356.21 33286.78 18585.76 26273.60 14077.93 17387.57 20865.02 12988.99 28767.14 22575.33 31287.63 282
TranMVSNet+NR-MVSNet80.84 13480.31 13382.42 19287.85 19762.33 25187.74 15691.33 11980.55 977.99 17289.86 14665.23 12792.62 19067.05 22675.24 31592.30 130
Fast-Effi-MVS+80.81 13679.92 13983.47 15088.85 15364.51 20785.53 22289.39 17670.79 19178.49 15985.06 27767.54 10293.58 14767.03 22786.58 15692.32 129
VPNet78.69 19078.66 16778.76 26788.31 17755.72 33884.45 24786.63 24976.79 6678.26 16490.55 13559.30 19989.70 27566.63 22877.05 27990.88 173
PM-MVS66.41 34164.14 34373.20 33673.92 38556.45 32578.97 33064.96 40263.88 30964.72 35980.24 35019.84 40683.44 34466.24 22964.52 37479.71 382
test-LLR72.94 28772.43 27674.48 32481.35 33658.04 29978.38 33877.46 35666.66 26769.95 31079.00 36248.06 30579.24 36366.13 23084.83 17786.15 315
test-mter71.41 29870.39 30174.48 32481.35 33658.04 29978.38 33877.46 35660.32 33969.95 31079.00 36236.08 37779.24 36366.13 23084.83 17786.15 315
MVS78.19 20276.99 21081.78 20285.66 24566.99 16084.66 23890.47 14355.08 37572.02 28885.27 27063.83 13894.11 12466.10 23289.80 11484.24 345
NR-MVSNet80.23 15479.38 15182.78 18587.80 19963.34 23486.31 19991.09 12879.01 2672.17 28689.07 16867.20 10692.81 18966.08 23375.65 30192.20 135
CVMVSNet72.99 28672.58 27574.25 32784.28 27250.85 38086.41 19583.45 29344.56 39573.23 27187.54 21149.38 29485.70 32365.90 23478.44 26486.19 314
IterMVS74.29 26572.94 27178.35 27881.53 33263.49 23081.58 29082.49 31068.06 25469.99 30983.69 30751.66 26985.54 32665.85 23571.64 34686.01 319
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OurMVSNet-221017-074.26 26672.42 27779.80 24983.76 28659.59 28785.92 21086.64 24866.39 27466.96 33887.58 20739.46 36291.60 22865.76 23669.27 35788.22 271
tpmrst72.39 28972.13 28073.18 33780.54 34549.91 38479.91 31879.08 34863.11 31371.69 29179.95 35355.32 22582.77 34865.66 23773.89 32786.87 302
MAR-MVS81.84 11580.70 12585.27 8091.32 8271.53 5689.82 7990.92 13069.77 21878.50 15886.21 25062.36 15894.52 10965.36 23892.05 8289.77 225
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Anonymous20240521178.25 19877.01 20881.99 19991.03 8760.67 27384.77 23683.90 28570.65 19880.00 13591.20 11841.08 35691.43 24065.21 23985.26 17493.85 62
ab-mvs79.51 16678.97 16381.14 22088.46 17160.91 26983.84 25889.24 18370.36 20179.03 14688.87 17463.23 14490.21 26565.12 24082.57 21892.28 131
IB-MVS68.01 1575.85 25073.36 26683.31 15684.76 26366.03 17383.38 26885.06 26970.21 20769.40 31681.05 34045.76 32694.66 10665.10 24175.49 30489.25 238
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
WR-MVS79.49 16779.22 15880.27 24088.79 15958.35 29485.06 23088.61 20978.56 3077.65 17788.34 18963.81 13990.66 26064.98 24277.22 27791.80 146
CostFormer75.24 26073.90 26079.27 25982.65 31558.27 29680.80 30082.73 30961.57 33175.33 23883.13 31655.52 22491.07 25364.98 24278.34 26788.45 267
API-MVS81.99 11381.23 11784.26 11990.94 9070.18 8591.10 5589.32 17871.51 17878.66 15488.28 19165.26 12695.10 8864.74 24491.23 9387.51 286
新几何183.42 15293.13 5470.71 7485.48 26557.43 36581.80 11491.98 9363.28 14192.27 20664.60 24592.99 7087.27 292
testing9176.54 23575.66 23479.18 26288.43 17355.89 33581.08 29783.00 30373.76 13675.34 23484.29 29246.20 32190.07 26764.33 24684.50 18291.58 150
testing9976.09 24775.12 24579.00 26388.16 18155.50 34180.79 30181.40 32273.30 15075.17 24284.27 29444.48 33590.02 26864.28 24784.22 19191.48 155
pm-mvs177.25 22676.68 22078.93 26584.22 27458.62 29286.41 19588.36 21271.37 18073.31 26988.01 20161.22 18089.15 28564.24 24873.01 33689.03 245
TESTMET0.1,169.89 31569.00 30972.55 34179.27 36456.85 31878.38 33874.71 37557.64 36268.09 32777.19 37537.75 37276.70 37663.92 24984.09 19284.10 348
QAPM80.88 13379.50 14985.03 8788.01 19168.97 10791.59 4392.00 9466.63 27275.15 24492.16 9157.70 21095.45 6863.52 25088.76 12890.66 181
baseline275.70 25173.83 26281.30 21583.26 29661.79 26082.57 28180.65 32966.81 26366.88 33983.42 31157.86 20992.19 20963.47 25179.57 25189.91 218
LCM-MVSNet-Re77.05 22776.94 21177.36 29487.20 22151.60 37380.06 31480.46 33375.20 10167.69 33086.72 23162.48 15588.98 28863.44 25289.25 11991.51 152
gm-plane-assit81.40 33453.83 35762.72 32280.94 34392.39 20063.40 253
baseline176.98 22976.75 21877.66 28888.13 18355.66 33985.12 22881.89 31673.04 15676.79 19788.90 17262.43 15787.78 30663.30 25471.18 34989.55 231
AdaColmapbinary80.58 14779.42 15084.06 13193.09 5768.91 10889.36 9888.97 19669.27 22775.70 22289.69 15057.20 21795.77 5963.06 25588.41 13587.50 287
test_vis1_rt60.28 35758.42 36065.84 37467.25 40355.60 34070.44 38360.94 40744.33 39659.00 38266.64 39724.91 39768.67 40462.80 25669.48 35573.25 393
GBi-Net78.40 19577.40 20181.40 21287.60 20863.01 24188.39 13189.28 17971.63 17375.34 23487.28 21554.80 22991.11 24762.72 25779.57 25190.09 207
test178.40 19577.40 20181.40 21287.60 20863.01 24188.39 13189.28 17971.63 17375.34 23487.28 21554.80 22991.11 24762.72 25779.57 25190.09 207
FMVSNet377.88 21176.85 21380.97 22686.84 22762.36 25086.52 19388.77 20171.13 18475.34 23486.66 23754.07 23991.10 25062.72 25779.57 25189.45 233
CMPMVSbinary51.72 2170.19 31268.16 31576.28 30373.15 39357.55 31079.47 32183.92 28448.02 39156.48 39184.81 28243.13 34386.42 31762.67 26081.81 22784.89 338
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
sd_testset77.70 21777.40 20178.60 27089.03 15160.02 28279.00 32985.83 26175.19 10276.61 20489.98 14454.81 22885.46 32862.63 26183.55 20390.33 195
FMVSNet278.20 20177.21 20581.20 21887.60 20862.89 24787.47 16289.02 19271.63 17375.29 24087.28 21554.80 22991.10 25062.38 26279.38 25589.61 229
testdata291.01 25462.37 263
testing1175.14 26174.01 25778.53 27488.16 18156.38 32880.74 30480.42 33470.67 19472.69 27983.72 30643.61 34189.86 27062.29 26483.76 19689.36 235
CP-MVSNet78.22 19978.34 17577.84 28587.83 19854.54 35187.94 14991.17 12477.65 3873.48 26888.49 18562.24 16188.43 29862.19 26574.07 32490.55 186
XXY-MVS75.41 25775.56 23574.96 31983.59 28957.82 30580.59 30783.87 28666.54 27374.93 25088.31 19063.24 14380.09 36162.16 26676.85 28386.97 301
pmmvs674.69 26373.39 26578.61 26981.38 33557.48 31186.64 18987.95 22064.99 29370.18 30486.61 23850.43 28289.52 27762.12 26770.18 35488.83 255
1112_ss77.40 22376.43 22480.32 23989.11 15060.41 27883.65 26287.72 22762.13 32873.05 27386.72 23162.58 15489.97 26962.11 26880.80 23790.59 185
PS-CasMVS78.01 20878.09 18177.77 28787.71 20454.39 35388.02 14591.22 12177.50 4673.26 27088.64 18060.73 18688.41 29961.88 26973.88 32890.53 187
CDS-MVSNet79.07 18177.70 19583.17 16487.60 20868.23 12984.40 25086.20 25667.49 25976.36 20986.54 24361.54 17090.79 25761.86 27087.33 14590.49 189
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
OpenMVScopyleft72.83 1079.77 16178.33 17684.09 12785.17 25469.91 8790.57 6190.97 12966.70 26672.17 28691.91 9454.70 23393.96 12661.81 27190.95 9688.41 269
K. test v371.19 29968.51 31179.21 26183.04 30457.78 30784.35 25176.91 36372.90 15962.99 36982.86 32239.27 36391.09 25261.65 27252.66 39588.75 259
CHOSEN 1792x268877.63 21975.69 23183.44 15189.98 11468.58 12278.70 33487.50 23156.38 37075.80 22186.84 22758.67 20291.40 24161.58 27385.75 17290.34 194
PCF-MVS73.52 780.38 15078.84 16585.01 8887.71 20468.99 10683.65 26291.46 11863.00 31577.77 17690.28 13866.10 11795.09 8961.40 27488.22 13790.94 172
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HY-MVS69.67 1277.95 20977.15 20680.36 23787.57 21260.21 28183.37 26987.78 22666.11 27675.37 23387.06 22663.27 14290.48 26261.38 27582.43 21990.40 193
HyFIR lowres test77.53 22075.40 23983.94 14289.59 12266.62 16580.36 31188.64 20856.29 37176.45 20685.17 27457.64 21193.28 16261.34 27683.10 21191.91 143
PMMVS69.34 31968.67 31071.35 35175.67 37762.03 25575.17 36173.46 37850.00 38868.68 32279.05 36052.07 26078.13 36861.16 27782.77 21473.90 392
FMVSNet177.44 22176.12 22881.40 21286.81 22863.01 24188.39 13189.28 17970.49 20074.39 25987.28 21549.06 30091.11 24760.91 27878.52 26290.09 207
sss73.60 27573.64 26473.51 33382.80 31055.01 34776.12 35381.69 31962.47 32474.68 25485.85 25857.32 21578.11 36960.86 27980.93 23487.39 288
Test_1112_low_res76.40 24275.44 23779.27 25989.28 14058.09 29781.69 28987.07 24059.53 34772.48 28186.67 23661.30 17789.33 28060.81 28080.15 24690.41 192
BH-untuned79.47 16878.60 16882.05 19789.19 14465.91 17886.07 20688.52 21072.18 16675.42 23087.69 20561.15 18193.54 15160.38 28186.83 15386.70 307
WTY-MVS75.65 25275.68 23275.57 31086.40 23556.82 31977.92 34682.40 31165.10 28976.18 21487.72 20363.13 14980.90 35860.31 28281.96 22489.00 248
pmmvs474.03 27271.91 28180.39 23681.96 32468.32 12681.45 29382.14 31359.32 34869.87 31285.13 27552.40 25288.13 30260.21 28374.74 32084.73 341
PEN-MVS77.73 21477.69 19677.84 28587.07 22453.91 35687.91 15191.18 12377.56 4373.14 27288.82 17561.23 17989.17 28459.95 28472.37 33990.43 191
CR-MVSNet73.37 27871.27 29079.67 25381.32 33865.19 19475.92 35580.30 33659.92 34372.73 27781.19 33852.50 25086.69 31259.84 28577.71 27287.11 298
mvs5depth69.45 31867.45 33075.46 31473.93 38455.83 33679.19 32683.23 29666.89 26271.63 29283.32 31233.69 38285.09 33159.81 28655.34 39285.46 328
lessismore_v078.97 26481.01 34157.15 31565.99 39861.16 37582.82 32339.12 36491.34 24359.67 28746.92 40288.43 268
CNLPA78.08 20476.79 21581.97 20090.40 10271.07 6587.59 15984.55 27566.03 27972.38 28389.64 15257.56 21286.04 32059.61 28883.35 20788.79 257
BH-RMVSNet79.61 16378.44 17283.14 16589.38 13465.93 17784.95 23387.15 23973.56 14178.19 16689.79 14856.67 22093.36 16059.53 28986.74 15490.13 203
MS-PatchMatch73.83 27372.67 27377.30 29683.87 28366.02 17481.82 28684.66 27361.37 33468.61 32482.82 32347.29 30888.21 30059.27 29084.32 18977.68 386
test_post178.90 3325.43 42048.81 30485.44 32959.25 291
SCA74.22 26772.33 27879.91 24684.05 27962.17 25479.96 31779.29 34666.30 27572.38 28380.13 35151.95 26288.60 29659.25 29177.67 27488.96 250
FE-MVS77.78 21375.68 23284.08 12888.09 18666.00 17583.13 27387.79 22568.42 25078.01 17185.23 27245.50 33095.12 8359.11 29385.83 17191.11 164
SixPastTwentyTwo73.37 27871.26 29179.70 25185.08 25957.89 30385.57 21683.56 29071.03 18865.66 35285.88 25642.10 35192.57 19259.11 29363.34 37688.65 263
WR-MVS_H78.51 19478.49 17078.56 27288.02 18956.38 32888.43 12992.67 6677.14 5673.89 26387.55 21066.25 11689.24 28358.92 29573.55 33190.06 211
PLCcopyleft70.83 1178.05 20676.37 22683.08 16891.88 7767.80 13888.19 14089.46 17464.33 30069.87 31288.38 18853.66 24293.58 14758.86 29682.73 21587.86 278
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
RPSCF73.23 28271.46 28678.54 27382.50 31759.85 28382.18 28482.84 30858.96 35271.15 29789.41 16445.48 33184.77 33558.82 29771.83 34591.02 170
EU-MVSNet68.53 32767.61 32771.31 35278.51 36747.01 39184.47 24484.27 28042.27 39866.44 34984.79 28340.44 35983.76 34058.76 29868.54 36283.17 357
pmmvs-eth3d70.50 30967.83 32278.52 27577.37 37166.18 17281.82 28681.51 32058.90 35363.90 36580.42 34842.69 34686.28 31858.56 29965.30 37283.11 359
TAMVS78.89 18677.51 20083.03 17187.80 19967.79 13984.72 23785.05 27067.63 25676.75 19987.70 20462.25 16090.82 25658.53 30087.13 14890.49 189
WBMVS73.43 27772.81 27275.28 31687.91 19450.99 37978.59 33781.31 32465.51 28774.47 25884.83 28146.39 31586.68 31358.41 30177.86 27088.17 273
ACMH+68.96 1476.01 24874.01 25782.03 19888.60 16665.31 19388.86 11487.55 22970.25 20667.75 32987.47 21341.27 35493.19 17258.37 30275.94 29887.60 283
tpm72.37 29171.71 28374.35 32682.19 32252.00 36779.22 32577.29 36064.56 29672.95 27583.68 30851.35 27083.26 34658.33 30375.80 29987.81 279
BH-w/o78.21 20077.33 20480.84 22888.81 15765.13 19684.87 23487.85 22469.75 21974.52 25784.74 28461.34 17693.11 17758.24 30485.84 17084.27 344
Vis-MVSNet (Re-imp)78.36 19778.45 17178.07 28388.64 16551.78 37286.70 18879.63 34374.14 12875.11 24590.83 13161.29 17889.75 27358.10 30591.60 8792.69 116
MVP-Stereo76.12 24574.46 25381.13 22185.37 25269.79 8984.42 24987.95 22065.03 29167.46 33385.33 26953.28 24791.73 22658.01 30683.27 20881.85 371
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ambc75.24 31773.16 39250.51 38263.05 40687.47 23264.28 36177.81 37217.80 40889.73 27457.88 30760.64 38285.49 327
TR-MVS77.44 22176.18 22781.20 21888.24 17963.24 23684.61 24186.40 25267.55 25877.81 17486.48 24554.10 23893.15 17457.75 30882.72 21687.20 293
F-COLMAP76.38 24374.33 25582.50 19189.28 14066.95 16488.41 13089.03 19164.05 30566.83 34088.61 18146.78 31392.89 18557.48 30978.55 26187.67 281
EG-PatchMatch MVS74.04 27071.82 28280.71 23184.92 26167.42 14885.86 21288.08 21666.04 27864.22 36283.85 30035.10 37992.56 19357.44 31080.83 23682.16 370
PatchmatchNetpermissive73.12 28371.33 28978.49 27683.18 29960.85 27079.63 31978.57 35064.13 30171.73 29079.81 35651.20 27385.97 32157.40 31176.36 29588.66 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
DTE-MVSNet76.99 22876.80 21477.54 29386.24 23653.06 36587.52 16090.66 13777.08 5972.50 28088.67 17960.48 19389.52 27757.33 31270.74 35190.05 212
UnsupCasMVSNet_eth67.33 33465.99 33871.37 34973.48 38951.47 37575.16 36285.19 26765.20 28860.78 37680.93 34542.35 34777.20 37357.12 31353.69 39485.44 329
pmmvs571.55 29770.20 30375.61 30977.83 36856.39 32781.74 28880.89 32557.76 36167.46 33384.49 28549.26 29785.32 33057.08 31475.29 31385.11 336
Anonymous2024052168.80 32367.22 33273.55 33274.33 38254.11 35483.18 27185.61 26358.15 35861.68 37380.94 34330.71 38981.27 35657.00 31573.34 33585.28 331
mvsany_test162.30 35461.26 35865.41 37569.52 39954.86 34866.86 39549.78 41546.65 39268.50 32683.21 31449.15 29866.28 40756.93 31660.77 38175.11 391
TransMVSNet (Re)75.39 25974.56 25077.86 28485.50 24957.10 31686.78 18586.09 25972.17 16771.53 29387.34 21463.01 15089.31 28156.84 31761.83 37887.17 294
test_vis3_rt49.26 37447.02 37656.00 38654.30 41545.27 39866.76 39748.08 41636.83 40544.38 40453.20 4097.17 42164.07 40956.77 31855.66 38958.65 405
EPMVS69.02 32168.16 31571.59 34779.61 35949.80 38677.40 34866.93 39662.82 32070.01 30779.05 36045.79 32577.86 37156.58 31975.26 31487.13 297
KD-MVS_self_test68.81 32267.59 32872.46 34374.29 38345.45 39477.93 34587.00 24163.12 31263.99 36478.99 36442.32 34884.77 33556.55 32064.09 37587.16 296
tpm273.26 28171.46 28678.63 26883.34 29456.71 32280.65 30680.40 33556.63 36973.55 26782.02 33551.80 26691.24 24556.35 32178.42 26587.95 275
LTVRE_ROB69.57 1376.25 24474.54 25181.41 21188.60 16664.38 21379.24 32489.12 19070.76 19369.79 31487.86 20249.09 29993.20 17056.21 32280.16 24586.65 308
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH67.68 1675.89 24973.93 25981.77 20388.71 16366.61 16688.62 12589.01 19369.81 21566.78 34186.70 23541.95 35391.51 23655.64 32378.14 26887.17 294
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CHOSEN 280x42066.51 34064.71 34171.90 34581.45 33363.52 22957.98 40868.95 39253.57 37862.59 37176.70 37646.22 32075.29 39155.25 32479.68 25076.88 388
UBG73.08 28472.27 27975.51 31288.02 18951.29 37778.35 34177.38 35965.52 28573.87 26482.36 32845.55 32886.48 31655.02 32584.39 18888.75 259
EPNet_dtu75.46 25574.86 24677.23 29782.57 31654.60 35086.89 18083.09 30071.64 17266.25 35085.86 25755.99 22388.04 30354.92 32686.55 15789.05 244
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
mvsany_test353.99 36551.45 37061.61 38055.51 41444.74 40063.52 40445.41 41943.69 39758.11 38676.45 37817.99 40763.76 41054.77 32747.59 40176.34 389
PVSNet64.34 1872.08 29570.87 29575.69 30886.21 23756.44 32674.37 36880.73 32862.06 32970.17 30582.23 33242.86 34583.31 34554.77 32784.45 18687.32 291
ITE_SJBPF78.22 27981.77 32760.57 27483.30 29469.25 22967.54 33187.20 22036.33 37687.28 31054.34 32974.62 32186.80 304
MDTV_nov1_ep13_2view37.79 41175.16 36255.10 37466.53 34549.34 29553.98 33087.94 276
gg-mvs-nofinetune69.95 31467.96 31875.94 30583.07 30254.51 35277.23 35070.29 38663.11 31370.32 30262.33 39943.62 34088.69 29453.88 33187.76 14084.62 342
PatchMatch-RL72.38 29070.90 29476.80 30188.60 16667.38 15079.53 32076.17 36862.75 32169.36 31782.00 33645.51 32984.89 33453.62 33280.58 24078.12 385
test_f52.09 37050.82 37155.90 38753.82 41742.31 40759.42 40758.31 41136.45 40656.12 39370.96 39412.18 41357.79 41353.51 33356.57 38867.60 398
Patchmtry70.74 30569.16 30875.49 31380.72 34254.07 35574.94 36680.30 33658.34 35670.01 30781.19 33852.50 25086.54 31453.37 33471.09 35085.87 324
USDC70.33 31068.37 31276.21 30480.60 34456.23 33179.19 32686.49 25060.89 33561.29 37485.47 26731.78 38689.47 27953.37 33476.21 29682.94 363
LF4IMVS64.02 35062.19 35469.50 36070.90 39853.29 36376.13 35277.18 36152.65 38158.59 38380.98 34223.55 40176.52 37853.06 33666.66 36678.68 384
PAPM77.68 21876.40 22581.51 20887.29 22061.85 25883.78 25989.59 17064.74 29471.23 29588.70 17762.59 15393.66 14652.66 33787.03 15089.01 246
dmvs_re71.14 30070.58 29672.80 33981.96 32459.68 28575.60 35979.34 34568.55 24669.27 31980.72 34649.42 29376.54 37752.56 33877.79 27182.19 369
CL-MVSNet_self_test72.37 29171.46 28675.09 31879.49 36153.53 35880.76 30385.01 27169.12 23470.51 29982.05 33457.92 20884.13 33852.27 33966.00 37087.60 283
tpm cat170.57 30768.31 31377.35 29582.41 32057.95 30278.08 34380.22 33852.04 38268.54 32577.66 37352.00 26187.84 30551.77 34072.07 34486.25 312
our_test_369.14 32067.00 33375.57 31079.80 35658.80 29077.96 34477.81 35359.55 34662.90 37078.25 36947.43 30783.97 33951.71 34167.58 36483.93 350
MDTV_nov1_ep1369.97 30483.18 29953.48 35977.10 35180.18 33960.45 33769.33 31880.44 34748.89 30386.90 31151.60 34278.51 263
JIA-IIPM66.32 34262.82 35376.82 30077.09 37261.72 26165.34 40175.38 36958.04 36064.51 36062.32 40042.05 35286.51 31551.45 34369.22 35882.21 368
testing22274.04 27072.66 27478.19 28087.89 19555.36 34281.06 29879.20 34771.30 18174.65 25583.57 30939.11 36588.67 29551.43 34485.75 17290.53 187
MSDG73.36 28070.99 29380.49 23584.51 27065.80 18180.71 30586.13 25865.70 28265.46 35383.74 30444.60 33390.91 25551.13 34576.89 28184.74 340
PatchT68.46 32867.85 32070.29 35780.70 34343.93 40172.47 37374.88 37260.15 34170.55 29876.57 37749.94 28781.59 35350.58 34674.83 31985.34 330
GG-mvs-BLEND75.38 31581.59 33055.80 33779.32 32369.63 38867.19 33673.67 38843.24 34288.90 29250.41 34784.50 18281.45 373
KD-MVS_2432*160066.22 34363.89 34573.21 33475.47 38053.42 36070.76 38184.35 27764.10 30366.52 34678.52 36634.55 38084.98 33250.40 34850.33 39981.23 374
miper_refine_blended66.22 34363.89 34573.21 33475.47 38053.42 36070.76 38184.35 27764.10 30366.52 34678.52 36634.55 38084.98 33250.40 34850.33 39981.23 374
AllTest70.96 30268.09 31779.58 25585.15 25663.62 22484.58 24279.83 34062.31 32560.32 37886.73 22932.02 38488.96 29050.28 35071.57 34786.15 315
TestCases79.58 25585.15 25663.62 22479.83 34062.31 32560.32 37886.73 22932.02 38488.96 29050.28 35071.57 34786.15 315
TAPA-MVS73.13 979.15 17877.94 18482.79 18489.59 12262.99 24588.16 14291.51 11465.77 28177.14 19391.09 12260.91 18593.21 16750.26 35287.05 14992.17 137
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
YYNet165.03 34662.91 35171.38 34875.85 37656.60 32469.12 38974.66 37657.28 36654.12 39477.87 37145.85 32474.48 39349.95 35361.52 38083.05 360
MDA-MVSNet_test_wron65.03 34662.92 35071.37 34975.93 37456.73 32069.09 39074.73 37457.28 36654.03 39577.89 37045.88 32374.39 39449.89 35461.55 37982.99 362
tpmvs71.09 30169.29 30676.49 30282.04 32356.04 33378.92 33181.37 32364.05 30567.18 33778.28 36849.74 29089.77 27249.67 35572.37 33983.67 353
ppachtmachnet_test70.04 31367.34 33178.14 28179.80 35661.13 26579.19 32680.59 33059.16 35065.27 35579.29 35946.75 31487.29 30949.33 35666.72 36586.00 321
UnsupCasMVSNet_bld63.70 35161.53 35770.21 35873.69 38751.39 37672.82 37281.89 31655.63 37357.81 38771.80 39238.67 36778.61 36649.26 35752.21 39780.63 378
UWE-MVS72.13 29471.49 28574.03 32986.66 23247.70 38881.40 29576.89 36463.60 31075.59 22384.22 29539.94 36185.62 32548.98 35886.13 16588.77 258
dp66.80 33765.43 33970.90 35679.74 35848.82 38775.12 36474.77 37359.61 34564.08 36377.23 37442.89 34480.72 35948.86 35966.58 36783.16 358
FMVSNet569.50 31767.96 31874.15 32882.97 30855.35 34380.01 31682.12 31462.56 32363.02 36781.53 33736.92 37481.92 35248.42 36074.06 32585.17 335
thres100view90076.50 23775.55 23679.33 25889.52 12556.99 31785.83 21483.23 29673.94 13176.32 21087.12 22351.89 26491.95 21648.33 36183.75 19789.07 239
tfpn200view976.42 24175.37 24179.55 25789.13 14657.65 30885.17 22583.60 28873.41 14776.45 20686.39 24752.12 25691.95 21648.33 36183.75 19789.07 239
thres40076.50 23775.37 24179.86 24789.13 14657.65 30885.17 22583.60 28873.41 14776.45 20686.39 24752.12 25691.95 21648.33 36183.75 19790.00 213
LCM-MVSNet54.25 36449.68 37467.97 37153.73 41845.28 39766.85 39680.78 32735.96 40739.45 40862.23 4018.70 41878.06 37048.24 36451.20 39880.57 379
RPMNet73.51 27670.49 29882.58 19081.32 33865.19 19475.92 35592.27 8357.60 36372.73 27776.45 37852.30 25395.43 7048.14 36577.71 27287.11 298
thres600view776.50 23775.44 23779.68 25289.40 13257.16 31485.53 22283.23 29673.79 13576.26 21187.09 22451.89 26491.89 21948.05 36683.72 20090.00 213
TDRefinement67.49 33264.34 34276.92 29973.47 39061.07 26784.86 23582.98 30459.77 34458.30 38585.13 27526.06 39487.89 30447.92 36760.59 38381.81 372
thres20075.55 25374.47 25278.82 26687.78 20257.85 30483.07 27683.51 29172.44 16375.84 22084.42 28752.08 25991.75 22447.41 36883.64 20286.86 303
PVSNet_057.27 2061.67 35659.27 35968.85 36479.61 35957.44 31268.01 39173.44 37955.93 37258.54 38470.41 39544.58 33477.55 37247.01 36935.91 40771.55 395
DP-MVS76.78 23374.57 24983.42 15293.29 4869.46 9788.55 12783.70 28763.98 30770.20 30388.89 17354.01 24094.80 10046.66 37081.88 22686.01 319
COLMAP_ROBcopyleft66.92 1773.01 28570.41 30080.81 22987.13 22365.63 18588.30 13784.19 28262.96 31663.80 36687.69 20538.04 37192.56 19346.66 37074.91 31884.24 345
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet70.69 30669.30 30574.88 32084.52 26956.35 33075.87 35779.42 34464.59 29567.76 32882.41 32741.10 35581.54 35446.64 37281.34 22986.75 306
LS3D76.95 23074.82 24783.37 15590.45 10067.36 15189.15 10686.94 24361.87 33069.52 31590.61 13451.71 26894.53 10846.38 37386.71 15588.21 272
ETVMVS72.25 29371.05 29275.84 30687.77 20351.91 36979.39 32274.98 37169.26 22873.71 26582.95 31940.82 35886.14 31946.17 37484.43 18789.47 232
MDA-MVSNet-bldmvs66.68 33863.66 34775.75 30779.28 36360.56 27573.92 37078.35 35164.43 29750.13 40079.87 35544.02 33883.67 34146.10 37556.86 38683.03 361
new-patchmatchnet61.73 35561.73 35661.70 37972.74 39524.50 42269.16 38878.03 35261.40 33256.72 39075.53 38438.42 36876.48 37945.95 37657.67 38584.13 347
WB-MVSnew71.96 29671.65 28472.89 33884.67 26851.88 37082.29 28377.57 35562.31 32573.67 26683.00 31853.49 24581.10 35745.75 37782.13 22285.70 325
TinyColmap67.30 33564.81 34074.76 32281.92 32656.68 32380.29 31381.49 32160.33 33856.27 39283.22 31324.77 39887.66 30845.52 37869.47 35679.95 381
pmmvs357.79 36054.26 36568.37 36764.02 40856.72 32175.12 36465.17 40040.20 40052.93 39669.86 39620.36 40575.48 38845.45 37955.25 39372.90 394
OpenMVS_ROBcopyleft64.09 1970.56 30868.19 31477.65 28980.26 34759.41 28985.01 23182.96 30558.76 35465.43 35482.33 32937.63 37391.23 24645.34 38076.03 29782.32 367
test0.0.03 168.00 33167.69 32568.90 36377.55 36947.43 38975.70 35872.95 38266.66 26766.56 34482.29 33148.06 30575.87 38544.97 38174.51 32283.41 355
testgi66.67 33966.53 33667.08 37375.62 37841.69 40875.93 35476.50 36566.11 27665.20 35886.59 23935.72 37874.71 39243.71 38273.38 33484.84 339
Anonymous2023120668.60 32467.80 32371.02 35480.23 34950.75 38178.30 34280.47 33256.79 36866.11 35182.63 32646.35 31878.95 36543.62 38375.70 30083.36 356
tfpnnormal74.39 26473.16 26878.08 28286.10 24158.05 29884.65 24087.53 23070.32 20371.22 29685.63 26354.97 22789.86 27043.03 38475.02 31786.32 311
MIMVSNet168.58 32566.78 33573.98 33080.07 35151.82 37180.77 30284.37 27664.40 29859.75 38182.16 33336.47 37583.63 34242.73 38570.33 35386.48 310
ttmdpeth59.91 35857.10 36268.34 36867.13 40446.65 39374.64 36767.41 39548.30 39062.52 37285.04 27920.40 40475.93 38442.55 38645.90 40582.44 366
test20.0367.45 33366.95 33468.94 36275.48 37944.84 39977.50 34777.67 35466.66 26763.01 36883.80 30247.02 31178.40 36742.53 38768.86 36183.58 354
ADS-MVSNet266.20 34563.33 34874.82 32179.92 35258.75 29167.55 39375.19 37053.37 37965.25 35675.86 38142.32 34880.53 36041.57 38868.91 35985.18 333
ADS-MVSNet64.36 34962.88 35268.78 36579.92 35247.17 39067.55 39371.18 38453.37 37965.25 35675.86 38142.32 34873.99 39541.57 38868.91 35985.18 333
Patchmatch-test64.82 34863.24 34969.57 35979.42 36249.82 38563.49 40569.05 39151.98 38459.95 38080.13 35150.91 27570.98 39940.66 39073.57 33087.90 277
MVS-HIRNet59.14 35957.67 36163.57 37781.65 32843.50 40271.73 37565.06 40139.59 40251.43 39757.73 40538.34 36982.58 34939.53 39173.95 32664.62 401
WAC-MVS42.58 40439.46 392
myMVS_eth3d67.02 33666.29 33769.21 36184.68 26542.58 40478.62 33573.08 38066.65 27066.74 34279.46 35731.53 38782.30 35039.43 39376.38 29382.75 364
DSMNet-mixed57.77 36156.90 36360.38 38167.70 40235.61 41269.18 38753.97 41332.30 41157.49 38879.88 35440.39 36068.57 40538.78 39472.37 33976.97 387
N_pmnet52.79 36953.26 36751.40 39378.99 3657.68 42769.52 3853.89 42651.63 38557.01 38974.98 38540.83 35765.96 40837.78 39564.67 37380.56 380
testing368.56 32667.67 32671.22 35387.33 21842.87 40383.06 27771.54 38370.36 20169.08 32084.38 28930.33 39085.69 32437.50 39675.45 30885.09 337
MVStest156.63 36252.76 36868.25 36961.67 41053.25 36471.67 37668.90 39338.59 40350.59 39983.05 31725.08 39670.66 40036.76 39738.56 40680.83 377
test_040272.79 28870.44 29979.84 24888.13 18365.99 17685.93 20984.29 27965.57 28467.40 33585.49 26646.92 31292.61 19135.88 39874.38 32380.94 376
new_pmnet50.91 37250.29 37252.78 39268.58 40134.94 41463.71 40356.63 41239.73 40144.95 40365.47 39821.93 40358.48 41234.98 39956.62 38764.92 400
APD_test153.31 36849.93 37363.42 37865.68 40550.13 38371.59 37766.90 39734.43 40840.58 40771.56 3938.65 41976.27 38134.64 40055.36 39163.86 402
Syy-MVS68.05 33067.85 32068.67 36684.68 26540.97 40978.62 33573.08 38066.65 27066.74 34279.46 35752.11 25882.30 35032.89 40176.38 29382.75 364
dmvs_testset62.63 35364.11 34458.19 38378.55 36624.76 42175.28 36065.94 39967.91 25560.34 37776.01 38053.56 24373.94 39631.79 40267.65 36375.88 390
ANet_high50.57 37346.10 37763.99 37648.67 42139.13 41070.99 38080.85 32661.39 33331.18 41057.70 40617.02 40973.65 39731.22 40315.89 41879.18 383
EGC-MVSNET52.07 37147.05 37567.14 37283.51 29160.71 27280.50 30967.75 3940.07 4210.43 42275.85 38324.26 39981.54 35428.82 40462.25 37759.16 404
PMMVS240.82 38038.86 38446.69 39453.84 41616.45 42548.61 41149.92 41437.49 40431.67 40960.97 4028.14 42056.42 41428.42 40530.72 41167.19 399
tmp_tt18.61 38721.40 39010.23 4034.82 42610.11 42634.70 41330.74 4241.48 42023.91 41626.07 41728.42 39213.41 42227.12 40615.35 4197.17 417
test_method31.52 38329.28 38738.23 39727.03 4256.50 42820.94 41662.21 4054.05 41922.35 41752.50 41013.33 41147.58 41727.04 40734.04 40960.62 403
testf145.72 37541.96 37957.00 38456.90 41245.32 39566.14 39859.26 40926.19 41230.89 41160.96 4034.14 42270.64 40126.39 40846.73 40355.04 407
APD_test245.72 37541.96 37957.00 38456.90 41245.32 39566.14 39859.26 40926.19 41230.89 41160.96 4034.14 42270.64 40126.39 40846.73 40355.04 407
FPMVS53.68 36751.64 36959.81 38265.08 40651.03 37869.48 38669.58 38941.46 39940.67 40672.32 39116.46 41070.00 40324.24 41065.42 37158.40 406
Gipumacopyleft45.18 37841.86 38155.16 39077.03 37351.52 37432.50 41480.52 33132.46 41027.12 41335.02 4149.52 41775.50 38722.31 41160.21 38438.45 413
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
dongtai45.42 37745.38 37845.55 39573.36 39126.85 41967.72 39234.19 42154.15 37749.65 40156.41 40825.43 39562.94 41119.45 41228.09 41246.86 411
DeepMVS_CXcopyleft27.40 40140.17 42426.90 41824.59 42517.44 41723.95 41548.61 4129.77 41626.48 42018.06 41324.47 41428.83 414
WB-MVS54.94 36354.72 36455.60 38973.50 38820.90 42374.27 36961.19 40659.16 35050.61 39874.15 38647.19 31075.78 38617.31 41435.07 40870.12 396
PMVScopyleft37.38 2244.16 37940.28 38355.82 38840.82 42342.54 40665.12 40263.99 40334.43 40824.48 41457.12 4073.92 42476.17 38317.10 41555.52 39048.75 409
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive26.22 2330.37 38525.89 38943.81 39644.55 42235.46 41328.87 41539.07 42018.20 41618.58 41840.18 4132.68 42547.37 41817.07 41623.78 41548.60 410
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
SSC-MVS53.88 36653.59 36654.75 39172.87 39419.59 42473.84 37160.53 40857.58 36449.18 40273.45 38946.34 31975.47 38916.20 41732.28 41069.20 397
E-PMN31.77 38230.64 38535.15 39952.87 41927.67 41657.09 40947.86 41724.64 41416.40 41933.05 41511.23 41554.90 41514.46 41818.15 41622.87 415
EMVS30.81 38429.65 38634.27 40050.96 42025.95 42056.58 41046.80 41824.01 41515.53 42030.68 41612.47 41254.43 41612.81 41917.05 41722.43 416
kuosan39.70 38140.40 38237.58 39864.52 40726.98 41765.62 40033.02 42246.12 39342.79 40548.99 41124.10 40046.56 41912.16 42026.30 41339.20 412
wuyk23d16.82 38815.94 39119.46 40258.74 41131.45 41539.22 4123.74 4276.84 4186.04 4212.70 4211.27 42624.29 42110.54 42114.40 4202.63 418
testmvs6.04 3918.02 3940.10 4050.08 4270.03 43069.74 3840.04 4280.05 4220.31 4231.68 4220.02 4280.04 4230.24 4220.02 4210.25 420
test1236.12 3908.11 3930.14 4040.06 4280.09 42971.05 3790.03 4290.04 4230.25 4241.30 4230.05 4270.03 4240.21 4230.01 4220.29 419
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k19.96 38626.61 3880.00 4060.00 4290.00 4310.00 41789.26 1820.00 4240.00 42588.61 18161.62 1690.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas5.26 3927.02 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42463.15 1460.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re7.23 3899.64 3920.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42586.72 2310.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
FOURS195.00 1072.39 3995.06 193.84 1574.49 12091.30 15
test_one_060195.07 771.46 5794.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 429
eth-test0.00 429
test_241102_ONE95.30 270.98 6694.06 1077.17 5593.10 195.39 1482.99 197.27 12
save fliter93.80 4072.35 4290.47 6691.17 12474.31 123
test072695.27 571.25 5993.60 694.11 677.33 4992.81 395.79 380.98 9
GSMVS88.96 250
test_part295.06 872.65 3291.80 13
sam_mvs151.32 27188.96 250
sam_mvs50.01 285
MTGPAbinary92.02 92
test_post5.46 41950.36 28384.24 337
patchmatchnet-post74.00 38751.12 27488.60 296
MTMP92.18 3432.83 423
TEST993.26 5272.96 2588.75 11891.89 10068.44 24985.00 6393.10 7074.36 2895.41 72
test_893.13 5472.57 3588.68 12391.84 10468.69 24484.87 6793.10 7074.43 2695.16 81
agg_prior92.85 6271.94 5091.78 10784.41 7894.93 92
test_prior472.60 3489.01 109
test_prior86.33 5792.61 6869.59 9192.97 5495.48 6793.91 58
新几何286.29 201
旧先验191.96 7465.79 18286.37 25393.08 7469.31 8392.74 7388.74 261
原ACMM286.86 181
test22291.50 8068.26 12884.16 25483.20 29954.63 37679.74 13791.63 10358.97 20191.42 9086.77 305
segment_acmp73.08 38
testdata184.14 25575.71 91
test1286.80 5292.63 6770.70 7591.79 10682.71 10571.67 5496.16 4794.50 5193.54 82
plane_prior790.08 10868.51 123
plane_prior689.84 11768.70 11860.42 194
plane_prior491.00 128
plane_prior368.60 12178.44 3178.92 149
plane_prior291.25 5279.12 23
plane_prior189.90 116
plane_prior68.71 11690.38 7077.62 3986.16 164
n20.00 430
nn0.00 430
door-mid69.98 387
test1192.23 86
door69.44 390
HQP5-MVS66.98 161
HQP-NCC89.33 13589.17 10276.41 7677.23 187
ACMP_Plane89.33 13589.17 10276.41 7677.23 187
HQP4-MVS77.24 18695.11 8591.03 168
HQP3-MVS92.19 8985.99 168
HQP2-MVS60.17 197
NP-MVS89.62 12168.32 12690.24 140
ACMMP++_ref81.95 225
ACMMP++81.25 230
Test By Simon64.33 133