This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
MM89.16 689.23 788.97 490.79 9073.65 1092.66 2391.17 11786.57 187.39 3694.97 1671.70 5197.68 192.19 195.63 2895.57 1
MVS_030488.08 1488.08 1788.08 1489.67 11572.04 4892.26 3389.26 17484.19 285.01 5695.18 1369.93 7097.20 1491.63 295.60 2994.99 9
test_fmvsmconf_n85.92 4686.04 4785.57 6985.03 25469.51 9089.62 8790.58 13273.42 14087.75 3294.02 4472.85 4193.24 16290.37 390.75 9493.96 52
test_fmvsmconf0.1_n85.61 5485.65 5285.50 7082.99 29969.39 9789.65 8490.29 14573.31 14387.77 3194.15 3871.72 5093.23 16390.31 490.67 9693.89 57
test_fmvsmconf0.01_n84.73 6784.52 6985.34 7380.25 33969.03 10089.47 8989.65 16273.24 14786.98 4194.27 3266.62 10293.23 16390.26 589.95 10893.78 63
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 33
No_MVS89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 33
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5994.67 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 25
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9091.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 32
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 6077.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 87
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 43
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 42
IU-MVS95.30 271.25 5792.95 5266.81 25692.39 688.94 1696.63 494.85 19
fmvsm_l_conf0.5_n84.47 6884.54 6784.27 11585.42 24468.81 10688.49 12687.26 23068.08 24788.03 2793.49 5772.04 4791.77 22088.90 1789.14 11792.24 128
fmvsm_s_conf0.5_n83.80 7483.71 7584.07 12586.69 22667.31 14789.46 9083.07 29471.09 18086.96 4293.70 5569.02 8491.47 23588.79 1884.62 17593.44 83
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7993.50 2575.17 10186.34 4595.29 1270.86 6096.00 4988.78 1996.04 1694.58 28
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_fmvsmvis_n_192084.02 7183.87 7384.49 10484.12 27069.37 9888.15 14187.96 21370.01 20383.95 8193.23 6568.80 8691.51 23388.61 2089.96 10792.57 113
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10892.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
fmvsm_s_conf0.1_n83.56 8183.38 7984.10 12084.86 25667.28 14889.40 9483.01 29570.67 18887.08 3993.96 5068.38 8891.45 23688.56 2284.50 17693.56 76
test_fmvsm_n_192085.29 6085.34 5685.13 8186.12 23469.93 8388.65 12290.78 12869.97 20588.27 2393.98 4971.39 5691.54 23088.49 2390.45 9893.91 54
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 38
fmvsm_l_conf0.5_n_a84.13 7084.16 7284.06 12785.38 24568.40 12188.34 13386.85 23967.48 25487.48 3593.40 6170.89 5991.61 22488.38 2589.22 11692.16 132
fmvsm_s_conf0.5_n_a83.63 7983.41 7884.28 11386.14 23368.12 12889.43 9182.87 29970.27 19987.27 3893.80 5469.09 7991.58 22688.21 2683.65 19593.14 96
fmvsm_s_conf0.1_n_a83.32 8782.99 8684.28 11383.79 27768.07 13089.34 9682.85 30069.80 20987.36 3794.06 4268.34 8991.56 22887.95 2783.46 20193.21 93
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7574.62 11288.90 2093.85 5275.75 2096.00 4987.80 2894.63 4895.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5693.59 2376.27 8088.14 2495.09 1571.06 5896.67 2987.67 2996.37 1494.09 47
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13887.63 3094.27 5893.65 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5580.26 1187.78 3094.27 3275.89 1996.81 2387.45 3296.44 993.05 99
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8692.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 53
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8889.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
9.1488.26 1592.84 6091.52 4694.75 173.93 12688.57 2294.67 1975.57 2295.79 5486.77 3595.76 23
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18792.02 8679.45 1985.88 4794.80 1768.07 9096.21 4286.69 3695.34 3393.23 90
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 10089.57 8893.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 28
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6577.57 4183.84 8394.40 3072.24 4496.28 4085.65 3895.30 3593.62 73
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5494.32 3171.76 4996.93 1985.53 3995.79 2294.32 39
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8383.81 8493.95 5169.77 7396.01 4885.15 4094.66 4794.32 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11691.89 9468.69 23885.00 5893.10 6774.43 2695.41 6984.97 4195.71 2593.02 101
test9_res84.90 4295.70 2692.87 105
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5681.50 585.79 4993.47 6073.02 4097.00 1884.90 4294.94 3994.10 46
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7793.82 1673.07 14984.86 6392.89 7476.22 1796.33 3884.89 4495.13 3694.40 35
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6993.94 1477.12 5582.82 9894.23 3572.13 4697.09 1684.83 4595.37 3293.65 70
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 6874.50 11386.84 4394.65 2067.31 9895.77 5584.80 4692.85 6892.84 106
ZD-MVS94.38 2572.22 4492.67 6270.98 18387.75 3294.07 4174.01 3296.70 2784.66 4794.84 44
PC_three_145268.21 24692.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 6094.44 2870.78 6196.61 3284.53 4994.89 4193.66 66
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6794.52 2168.81 8596.65 3084.53 4994.90 4094.00 51
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7194.52 2169.09 7996.70 2784.37 5194.83 4594.03 50
CANet86.45 3886.10 4587.51 3790.09 10270.94 6789.70 8392.59 6781.78 481.32 11591.43 10670.34 6597.23 1384.26 5293.36 6594.37 36
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5673.01 15188.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 108
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CS-MVS86.69 3586.95 3185.90 6490.76 9167.57 14092.83 1793.30 3279.67 1784.57 7092.27 8671.47 5495.02 8884.24 5493.46 6495.13 6
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5976.62 7183.68 8594.46 2567.93 9195.95 5284.20 5594.39 5493.23 90
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6493.99 4870.67 6396.82 2284.18 5695.01 3793.90 56
EC-MVSNet86.01 4386.38 3884.91 9189.31 13366.27 16692.32 3093.63 2179.37 2084.17 7791.88 9369.04 8395.43 6783.93 5793.77 6293.01 102
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6787.65 20067.22 15188.69 12093.04 3879.64 1885.33 5392.54 8373.30 3594.50 10883.49 5991.14 9095.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
dcpmvs_285.63 5386.15 4484.06 12791.71 7564.94 19886.47 19091.87 9673.63 13386.60 4493.02 7276.57 1591.87 21883.36 6092.15 7695.35 3
test_prior288.85 11275.41 9484.91 6093.54 5674.28 2983.31 6195.86 20
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15485.22 5591.90 9269.47 7596.42 3783.28 6295.94 1994.35 37
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 8694.17 3667.45 9696.60 3383.06 6394.50 5194.07 48
X-MVStestdata80.37 14777.83 18488.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 8612.47 40467.45 9696.60 3383.06 6394.50 5194.07 48
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4673.54 13785.94 4694.51 2465.80 11695.61 5983.04 6592.51 7293.53 79
agg_prior282.91 6695.45 3092.70 108
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8176.87 6282.81 9994.25 3466.44 10696.24 4182.88 6794.28 5793.38 84
SR-MVS-dyc-post85.77 5085.61 5386.23 5693.06 5570.63 7391.88 3992.27 7773.53 13885.69 5094.45 2665.00 12495.56 6082.75 6891.87 8092.50 117
RE-MVS-def85.48 5493.06 5570.63 7391.88 3992.27 7773.53 13885.69 5094.45 2663.87 13082.75 6891.87 8092.50 117
h-mvs3383.15 8982.19 9786.02 6290.56 9370.85 7088.15 14189.16 17976.02 8484.67 6591.39 10761.54 16395.50 6382.71 7075.48 29991.72 142
hse-mvs281.72 11080.94 11684.07 12588.72 15767.68 13885.87 20787.26 23076.02 8484.67 6588.22 19061.54 16393.48 15382.71 7073.44 32791.06 163
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7193.04 3875.53 9283.86 8294.42 2967.87 9396.64 3182.70 7294.57 5093.66 66
ACMMPcopyleft85.89 4985.39 5587.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12493.82 5364.33 12696.29 3982.67 7390.69 9593.23 90
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
diffmvspermissive82.10 10281.88 10482.76 18483.00 29763.78 22183.68 25589.76 15872.94 15282.02 10589.85 14165.96 11590.79 25482.38 7487.30 13993.71 65
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
patch_mono-283.65 7784.54 6780.99 22190.06 10765.83 17784.21 24888.74 19971.60 16985.01 5692.44 8474.51 2583.50 33482.15 7592.15 7693.64 72
CS-MVS-test86.29 4286.48 3785.71 6691.02 8367.21 15292.36 2993.78 1878.97 2883.51 8991.20 11270.65 6495.15 7981.96 7694.89 4194.77 22
TSAR-MVS + GP.85.71 5285.33 5786.84 4791.34 7872.50 3689.07 10587.28 22976.41 7385.80 4890.22 13574.15 3195.37 7481.82 7791.88 7992.65 112
alignmvs85.48 5585.32 5885.96 6389.51 12169.47 9289.74 8192.47 6976.17 8187.73 3491.46 10570.32 6693.78 13881.51 7888.95 11894.63 27
sasdasda85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13281.50 7988.80 12194.77 22
canonicalmvs85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13281.50 7988.80 12194.77 22
baseline84.93 6484.98 6284.80 9587.30 21465.39 18987.30 16592.88 5377.62 3984.04 8092.26 8771.81 4893.96 12581.31 8190.30 10095.03 8
casdiffmvspermissive85.11 6285.14 6185.01 8587.20 21665.77 18187.75 15392.83 5677.84 3784.36 7492.38 8572.15 4593.93 13181.27 8290.48 9795.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_111021_HR85.14 6184.75 6586.32 5591.65 7672.70 3085.98 20390.33 14276.11 8282.08 10491.61 10071.36 5794.17 12181.02 8392.58 7192.08 134
HPM-MVS_fast85.35 5984.95 6486.57 5393.69 4270.58 7592.15 3691.62 10473.89 12782.67 10194.09 4062.60 14595.54 6280.93 8492.93 6793.57 75
CPTT-MVS83.73 7583.33 8184.92 9093.28 4970.86 6992.09 3790.38 13868.75 23779.57 13592.83 7660.60 18593.04 18080.92 8591.56 8590.86 171
ETV-MVS84.90 6684.67 6685.59 6889.39 12868.66 11788.74 11892.64 6679.97 1584.10 7885.71 25569.32 7795.38 7180.82 8691.37 8792.72 107
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7184.22 7593.36 6371.44 5596.76 2580.82 8695.33 3494.16 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
nrg03083.88 7283.53 7684.96 8786.77 22469.28 9990.46 6592.67 6274.79 10782.95 9491.33 10872.70 4293.09 17680.79 8879.28 25292.50 117
mvsmamba81.69 11280.74 11884.56 10087.45 20766.72 15991.26 4885.89 25374.66 11078.23 16190.56 12854.33 22894.91 9080.73 8983.54 19992.04 137
EI-MVSNet-Vis-set84.19 6983.81 7485.31 7488.18 17567.85 13487.66 15589.73 16080.05 1482.95 9489.59 14970.74 6294.82 9780.66 9084.72 17393.28 89
MSLP-MVS++85.43 5785.76 5184.45 10591.93 7270.24 7690.71 5892.86 5477.46 4784.22 7592.81 7867.16 10092.94 18280.36 9194.35 5690.16 198
MVS_111021_LR82.61 9882.11 9884.11 11988.82 15171.58 5385.15 22386.16 24974.69 10980.47 12691.04 11862.29 15290.55 25880.33 9290.08 10590.20 197
DELS-MVS85.41 5885.30 5985.77 6588.49 16467.93 13385.52 22093.44 2778.70 2983.63 8889.03 16574.57 2495.71 5780.26 9394.04 6093.66 66
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EI-MVSNet-UG-set83.81 7383.38 7985.09 8287.87 18867.53 14187.44 16189.66 16179.74 1682.23 10389.41 15870.24 6794.74 10079.95 9483.92 18792.99 103
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5793.56 2473.95 12483.16 9391.07 11775.94 1895.19 7779.94 9594.38 5593.55 77
iter_conf05_1181.63 11680.44 12685.20 7889.46 12466.20 16786.21 19786.97 23671.53 17183.35 9088.53 18043.22 33495.94 5379.82 9694.85 4393.47 80
bld_raw_dy_0_6480.78 13679.36 14885.06 8389.46 12466.03 16989.63 8685.46 25969.76 21281.88 10689.06 16443.39 33295.70 5879.82 9685.74 16793.47 80
OPM-MVS83.50 8282.95 8785.14 7988.79 15470.95 6689.13 10491.52 10777.55 4480.96 12291.75 9560.71 18094.50 10879.67 9886.51 15189.97 214
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
iter_conf0580.00 15678.70 16283.91 13987.84 19065.83 17788.84 11384.92 26571.61 16878.70 14788.94 16643.88 32994.56 10479.28 9984.28 18391.33 154
CDPH-MVS85.76 5185.29 6087.17 4393.49 4771.08 6188.58 12492.42 7368.32 24584.61 6893.48 5872.32 4396.15 4579.00 10095.43 3194.28 41
MVSFormer82.85 9582.05 10085.24 7687.35 20870.21 7790.50 6290.38 13868.55 24081.32 11589.47 15261.68 16093.46 15578.98 10190.26 10192.05 135
test_djsdf80.30 14979.32 14983.27 15583.98 27465.37 19090.50 6290.38 13868.55 24076.19 21088.70 17256.44 21493.46 15578.98 10180.14 24290.97 168
test_vis1_n_192075.52 24975.78 22574.75 31479.84 34557.44 30583.26 26485.52 25762.83 30979.34 13986.17 24845.10 32279.71 35378.75 10381.21 22787.10 293
HQP_MVS83.64 7883.14 8285.14 7990.08 10368.71 11391.25 5092.44 7079.12 2378.92 14491.00 12160.42 18795.38 7178.71 10486.32 15391.33 154
plane_prior592.44 7095.38 7178.71 10486.32 15391.33 154
LPG-MVS_test82.08 10381.27 10984.50 10289.23 13768.76 10990.22 7191.94 9275.37 9576.64 19891.51 10254.29 22994.91 9078.44 10683.78 18889.83 219
LGP-MVS_train84.50 10289.23 13768.76 10991.94 9275.37 9576.64 19891.51 10254.29 22994.91 9078.44 10683.78 18889.83 219
lupinMVS81.39 12180.27 13084.76 9687.35 20870.21 7785.55 21686.41 24462.85 30881.32 11588.61 17661.68 16092.24 20578.41 10890.26 10191.83 139
jason81.39 12180.29 12984.70 9786.63 22869.90 8585.95 20486.77 24063.24 30181.07 12189.47 15261.08 17692.15 20778.33 10990.07 10692.05 135
jason: jason.
xiu_mvs_v1_base_debu80.80 13379.72 13984.03 13287.35 20870.19 7985.56 21388.77 19569.06 23081.83 10788.16 19150.91 26692.85 18478.29 11087.56 13489.06 238
xiu_mvs_v1_base80.80 13379.72 13984.03 13287.35 20870.19 7985.56 21388.77 19569.06 23081.83 10788.16 19150.91 26692.85 18478.29 11087.56 13489.06 238
xiu_mvs_v1_base_debi80.80 13379.72 13984.03 13287.35 20870.19 7985.56 21388.77 19569.06 23081.83 10788.16 19150.91 26692.85 18478.29 11087.56 13489.06 238
Effi-MVS+83.62 8083.08 8385.24 7688.38 17067.45 14288.89 11089.15 18075.50 9382.27 10288.28 18769.61 7494.45 11077.81 11387.84 13293.84 60
PS-MVSNAJss82.07 10481.31 10884.34 11086.51 22967.27 14989.27 9791.51 10871.75 16379.37 13790.22 13563.15 13994.27 11477.69 11482.36 21591.49 150
ACMP74.13 681.51 12080.57 12184.36 10889.42 12668.69 11689.97 7591.50 11174.46 11575.04 24490.41 13153.82 23494.54 10577.56 11582.91 20789.86 218
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
BP-MVS77.47 116
HQP-MVS82.61 9882.02 10184.37 10789.33 13066.98 15589.17 9992.19 8376.41 7377.23 18490.23 13460.17 19095.11 8277.47 11685.99 16191.03 165
MVS_Test83.15 8983.06 8483.41 15186.86 22063.21 23586.11 20192.00 8874.31 11782.87 9689.44 15770.03 6893.21 16577.39 11888.50 12893.81 61
3Dnovator+77.84 485.48 5584.47 7088.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19793.37 6260.40 18996.75 2677.20 11993.73 6395.29 5
anonymousdsp78.60 18977.15 20282.98 17180.51 33767.08 15387.24 16789.53 16465.66 27675.16 23987.19 21752.52 24292.25 20477.17 12079.34 25189.61 226
VDD-MVS83.01 9482.36 9584.96 8791.02 8366.40 16388.91 10988.11 20877.57 4184.39 7393.29 6452.19 24893.91 13277.05 12188.70 12494.57 30
XVG-OURS-SEG-HR80.81 13179.76 13883.96 13785.60 24168.78 10883.54 26190.50 13570.66 19176.71 19691.66 9660.69 18191.26 24176.94 12281.58 22391.83 139
RRT_MVS80.35 14879.22 15383.74 14287.63 20165.46 18691.08 5488.92 19273.82 12876.44 20590.03 13749.05 29294.25 11876.84 12379.20 25491.51 147
jajsoiax79.29 17277.96 17983.27 15584.68 25966.57 16289.25 9890.16 14869.20 22675.46 22589.49 15145.75 31893.13 17476.84 12380.80 23290.11 202
SDMVSNet80.38 14580.18 13180.99 22189.03 14664.94 19880.45 30489.40 16775.19 9976.61 20089.98 13860.61 18487.69 30276.83 12583.55 19790.33 192
mvs_tets79.13 17677.77 18883.22 15984.70 25866.37 16489.17 9990.19 14769.38 21975.40 22889.46 15444.17 32793.15 17276.78 12680.70 23490.14 199
DPM-MVS84.93 6484.29 7186.84 4790.20 10073.04 2387.12 16993.04 3869.80 20982.85 9791.22 11173.06 3996.02 4776.72 12794.63 4891.46 153
test_cas_vis1_n_192073.76 26773.74 25773.81 32275.90 36659.77 27980.51 30282.40 30458.30 34781.62 11385.69 25644.35 32676.41 37176.29 12878.61 25685.23 323
ET-MVSNet_ETH3D78.63 18876.63 21784.64 9886.73 22569.47 9285.01 22684.61 26869.54 21666.51 33886.59 23550.16 27591.75 22176.26 12984.24 18492.69 110
v2v48280.23 15079.29 15083.05 16783.62 28064.14 21487.04 17189.97 15373.61 13478.18 16487.22 21561.10 17593.82 13676.11 13076.78 27991.18 159
test_fmvs1_n70.86 29570.24 29372.73 33172.51 38655.28 33681.27 29079.71 33351.49 37578.73 14684.87 27527.54 38377.02 36576.06 13179.97 24485.88 315
CLD-MVS82.31 10081.65 10684.29 11288.47 16567.73 13785.81 21192.35 7575.78 8778.33 15986.58 23764.01 12994.35 11176.05 13287.48 13790.79 172
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
EPNet83.72 7682.92 8886.14 5984.22 26869.48 9191.05 5585.27 26081.30 676.83 19291.65 9766.09 11195.56 6076.00 13393.85 6193.38 84
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvs170.93 29470.52 28872.16 33473.71 37655.05 33880.82 29378.77 34051.21 37678.58 15284.41 28131.20 37876.94 36675.88 13480.12 24384.47 334
XVG-OURS80.41 14479.23 15283.97 13685.64 24069.02 10283.03 27290.39 13771.09 18077.63 17591.49 10454.62 22791.35 23975.71 13583.47 20091.54 146
V4279.38 17178.24 17582.83 17681.10 33165.50 18585.55 21689.82 15671.57 17078.21 16286.12 24960.66 18293.18 17175.64 13675.46 30189.81 221
PS-MVSNAJ81.69 11281.02 11483.70 14389.51 12168.21 12784.28 24790.09 15070.79 18581.26 11985.62 26063.15 13994.29 11275.62 13788.87 12088.59 260
xiu_mvs_v2_base81.69 11281.05 11383.60 14489.15 14068.03 13284.46 24190.02 15170.67 18881.30 11886.53 24063.17 13894.19 12075.60 13888.54 12688.57 261
EIA-MVS83.31 8882.80 9084.82 9389.59 11765.59 18388.21 13792.68 6174.66 11078.96 14286.42 24269.06 8195.26 7575.54 13990.09 10493.62 73
AUN-MVS79.21 17477.60 19484.05 13088.71 15867.61 13985.84 20987.26 23069.08 22977.23 18488.14 19553.20 24193.47 15475.50 14073.45 32691.06 163
OMC-MVS82.69 9681.97 10384.85 9288.75 15667.42 14387.98 14490.87 12674.92 10479.72 13391.65 9762.19 15593.96 12575.26 14186.42 15293.16 95
v114480.03 15479.03 15783.01 16983.78 27864.51 20587.11 17090.57 13471.96 16278.08 16786.20 24761.41 16793.94 12874.93 14277.23 27090.60 181
MVSTER79.01 17977.88 18382.38 19083.07 29464.80 20184.08 25288.95 19069.01 23378.69 14887.17 21854.70 22592.43 19574.69 14380.57 23689.89 217
test_vis1_n69.85 30769.21 29871.77 33672.66 38555.27 33781.48 28676.21 35752.03 37275.30 23583.20 30628.97 38176.22 37374.60 14478.41 26283.81 342
test_fmvs268.35 31967.48 32070.98 34569.50 38951.95 35980.05 30976.38 35649.33 37874.65 25084.38 28223.30 38975.40 38074.51 14575.17 31085.60 318
PVSNet_Blended_VisFu82.62 9781.83 10584.96 8790.80 8969.76 8788.74 11891.70 10369.39 21878.96 14288.46 18265.47 11894.87 9674.42 14688.57 12590.24 196
v879.97 15779.02 15882.80 17984.09 27164.50 20787.96 14590.29 14574.13 12375.24 23786.81 22462.88 14493.89 13574.39 14775.40 30490.00 210
v14419279.47 16578.37 17182.78 18283.35 28563.96 21786.96 17390.36 14169.99 20477.50 17685.67 25860.66 18293.77 14074.27 14876.58 28090.62 179
ACMM73.20 880.78 13679.84 13783.58 14589.31 13368.37 12289.99 7491.60 10570.28 19877.25 18289.66 14553.37 23993.53 15174.24 14982.85 20888.85 251
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
旧先验286.56 18858.10 34987.04 4088.98 28474.07 150
v119279.59 16278.43 17083.07 16683.55 28264.52 20486.93 17590.58 13270.83 18477.78 17285.90 25159.15 19393.94 12873.96 15177.19 27290.76 174
v1079.74 15978.67 16382.97 17284.06 27264.95 19787.88 15190.62 13173.11 14875.11 24186.56 23861.46 16694.05 12473.68 15275.55 29789.90 216
v192192079.22 17378.03 17882.80 17983.30 28763.94 21886.80 17990.33 14269.91 20777.48 17785.53 26158.44 19793.75 14273.60 15376.85 27790.71 177
cl2278.07 20277.01 20481.23 21482.37 31361.83 25583.55 26087.98 21268.96 23475.06 24383.87 29261.40 16891.88 21773.53 15476.39 28489.98 213
Effi-MVS+-dtu80.03 15478.57 16684.42 10685.13 25268.74 11188.77 11588.10 20974.99 10374.97 24583.49 30257.27 20993.36 15873.53 15480.88 23091.18 159
c3_l78.75 18477.91 18181.26 21382.89 30161.56 25884.09 25189.13 18269.97 20575.56 22184.29 28566.36 10792.09 20973.47 15675.48 29990.12 201
VDDNet81.52 11880.67 12084.05 13090.44 9664.13 21589.73 8285.91 25271.11 17983.18 9293.48 5850.54 27293.49 15273.40 15788.25 13094.54 31
CANet_DTU80.61 13979.87 13682.83 17685.60 24163.17 23887.36 16288.65 20176.37 7775.88 21688.44 18353.51 23793.07 17773.30 15889.74 11192.25 126
miper_ehance_all_eth78.59 19077.76 18981.08 21982.66 30661.56 25883.65 25689.15 18068.87 23575.55 22283.79 29666.49 10592.03 21073.25 15976.39 28489.64 225
3Dnovator76.31 583.38 8682.31 9686.59 5287.94 18672.94 2890.64 5992.14 8577.21 5275.47 22392.83 7658.56 19694.72 10173.24 16092.71 7092.13 133
v124078.99 18077.78 18782.64 18583.21 28963.54 22686.62 18690.30 14469.74 21577.33 18085.68 25757.04 21193.76 14173.13 16176.92 27490.62 179
miper_enhance_ethall77.87 20976.86 20880.92 22481.65 32061.38 26082.68 27388.98 18765.52 27875.47 22382.30 31965.76 11792.00 21272.95 16276.39 28489.39 231
MG-MVS83.41 8483.45 7783.28 15492.74 6262.28 24988.17 13989.50 16575.22 9781.49 11492.74 8266.75 10195.11 8272.85 16391.58 8492.45 120
EPP-MVSNet83.40 8583.02 8584.57 9990.13 10164.47 20892.32 3090.73 12974.45 11679.35 13891.10 11569.05 8295.12 8072.78 16487.22 14094.13 45
test_fmvs363.36 34261.82 34567.98 35862.51 39646.96 38177.37 33974.03 36745.24 38167.50 32278.79 35312.16 40072.98 38872.77 16566.02 36183.99 340
IterMVS-LS80.06 15379.38 14682.11 19385.89 23663.20 23686.79 18089.34 16974.19 12075.45 22686.72 22766.62 10292.39 19772.58 16676.86 27690.75 175
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tt080578.73 18577.83 18481.43 20785.17 24860.30 27489.41 9390.90 12471.21 17777.17 18888.73 17146.38 30793.21 16572.57 16778.96 25590.79 172
EI-MVSNet80.52 14379.98 13382.12 19284.28 26663.19 23786.41 19188.95 19074.18 12178.69 14887.54 20766.62 10292.43 19572.57 16780.57 23690.74 176
Vis-MVSNetpermissive83.46 8382.80 9085.43 7290.25 9968.74 11190.30 7090.13 14976.33 7980.87 12392.89 7461.00 17794.20 11972.45 16990.97 9193.35 86
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
LFMVS81.82 10981.23 11083.57 14691.89 7363.43 23189.84 7681.85 31077.04 5883.21 9193.10 6752.26 24793.43 15771.98 17089.95 10893.85 58
v14878.72 18677.80 18681.47 20682.73 30461.96 25386.30 19588.08 21073.26 14576.18 21185.47 26362.46 14992.36 19971.92 17173.82 32390.09 204
PVSNet_BlendedMVS80.60 14080.02 13282.36 19188.85 14865.40 18786.16 20092.00 8869.34 22078.11 16586.09 25066.02 11394.27 11471.52 17282.06 21887.39 281
PVSNet_Blended80.98 12680.34 12782.90 17488.85 14865.40 18784.43 24392.00 8867.62 25178.11 16585.05 27466.02 11394.27 11471.52 17289.50 11289.01 243
eth_miper_zixun_eth77.92 20776.69 21581.61 20483.00 29761.98 25283.15 26689.20 17869.52 21774.86 24784.35 28461.76 15992.56 19171.50 17472.89 33190.28 195
UA-Net85.08 6384.96 6385.45 7192.07 7068.07 13089.78 8090.86 12782.48 384.60 6993.20 6669.35 7695.22 7671.39 17590.88 9393.07 98
FA-MVS(test-final)80.96 12779.91 13584.10 12088.30 17365.01 19684.55 23890.01 15273.25 14679.61 13487.57 20458.35 19894.72 10171.29 17686.25 15592.56 114
cl____77.72 21276.76 21280.58 23082.49 31060.48 27183.09 26887.87 21669.22 22474.38 25485.22 26962.10 15691.53 23171.09 17775.41 30389.73 224
DIV-MVS_self_test77.72 21276.76 21280.58 23082.48 31160.48 27183.09 26887.86 21769.22 22474.38 25485.24 26762.10 15691.53 23171.09 17775.40 30489.74 223
test_yl81.17 12380.47 12483.24 15789.13 14163.62 22286.21 19789.95 15472.43 15781.78 11189.61 14757.50 20693.58 14670.75 17986.90 14492.52 115
DCV-MVSNet81.17 12380.47 12483.24 15789.13 14163.62 22286.21 19789.95 15472.43 15781.78 11189.61 14757.50 20693.58 14670.75 17986.90 14492.52 115
VNet82.21 10182.41 9381.62 20290.82 8860.93 26384.47 23989.78 15776.36 7884.07 7991.88 9364.71 12590.26 26070.68 18188.89 11993.66 66
mvs_anonymous79.42 16879.11 15680.34 23584.45 26557.97 29582.59 27487.62 22267.40 25576.17 21388.56 17968.47 8789.59 27370.65 18286.05 15993.47 80
VPA-MVSNet80.60 14080.55 12280.76 22788.07 18260.80 26686.86 17791.58 10675.67 9180.24 12889.45 15663.34 13390.25 26170.51 18379.22 25391.23 158
PAPM_NR83.02 9382.41 9384.82 9392.47 6766.37 16487.93 14891.80 9973.82 12877.32 18190.66 12667.90 9294.90 9370.37 18489.48 11393.19 94
thisisatest053079.40 16977.76 18984.31 11187.69 19965.10 19587.36 16284.26 27570.04 20277.42 17888.26 18949.94 27894.79 9970.20 18584.70 17493.03 100
tttt051779.40 16977.91 18183.90 14088.10 18063.84 21988.37 13284.05 27771.45 17376.78 19489.12 16149.93 28094.89 9470.18 18683.18 20592.96 104
UniMVSNet_NR-MVSNet81.88 10781.54 10782.92 17388.46 16663.46 22987.13 16892.37 7480.19 1278.38 15789.14 16071.66 5393.05 17870.05 18776.46 28292.25 126
DU-MVS81.12 12580.52 12382.90 17487.80 19263.46 22987.02 17291.87 9679.01 2678.38 15789.07 16265.02 12293.05 17870.05 18776.46 28292.20 129
XVG-ACMP-BASELINE76.11 24174.27 25081.62 20283.20 29064.67 20383.60 25989.75 15969.75 21371.85 28087.09 22032.78 37392.11 20869.99 18980.43 23888.09 267
GeoE81.71 11181.01 11583.80 14189.51 12164.45 20988.97 10788.73 20071.27 17678.63 15189.76 14366.32 10893.20 16869.89 19086.02 16093.74 64
FIs82.07 10482.42 9281.04 22088.80 15358.34 28988.26 13693.49 2676.93 6078.47 15691.04 11869.92 7192.34 20169.87 19184.97 17092.44 121
114514_t80.68 13879.51 14384.20 11794.09 3867.27 14989.64 8591.11 12058.75 34574.08 25690.72 12558.10 19995.04 8769.70 19289.42 11490.30 194
Anonymous2023121178.97 18177.69 19282.81 17890.54 9464.29 21290.11 7391.51 10865.01 28376.16 21488.13 19650.56 27193.03 18169.68 19377.56 26991.11 161
Patchmatch-RL test70.24 30267.78 31577.61 28577.43 36159.57 28371.16 36670.33 37562.94 30768.65 31372.77 37850.62 27085.49 31969.58 19466.58 35987.77 273
UniMVSNet (Re)81.60 11781.11 11283.09 16488.38 17064.41 21087.60 15693.02 4278.42 3278.56 15388.16 19169.78 7293.26 16169.58 19476.49 28191.60 143
IterMVS-SCA-FT75.43 25173.87 25580.11 24082.69 30564.85 20081.57 28583.47 28669.16 22770.49 29084.15 29051.95 25588.15 29669.23 19672.14 33687.34 283
v7n78.97 18177.58 19583.14 16283.45 28465.51 18488.32 13491.21 11573.69 13272.41 27486.32 24557.93 20093.81 13769.18 19775.65 29590.11 202
Anonymous2024052980.19 15278.89 16084.10 12090.60 9264.75 20288.95 10890.90 12465.97 27380.59 12591.17 11449.97 27793.73 14469.16 19882.70 21293.81 61
miper_lstm_enhance74.11 26273.11 26377.13 29280.11 34159.62 28172.23 36386.92 23866.76 25870.40 29182.92 31056.93 21282.92 33869.06 19972.63 33288.87 250
testdata79.97 24290.90 8664.21 21384.71 26659.27 33985.40 5292.91 7362.02 15889.08 28268.95 20091.37 8786.63 302
test111179.43 16779.18 15580.15 23989.99 10853.31 35487.33 16477.05 35275.04 10280.23 12992.77 8148.97 29392.33 20268.87 20192.40 7594.81 20
GA-MVS76.87 22875.17 23981.97 19782.75 30362.58 24481.44 28886.35 24772.16 16174.74 24882.89 31146.20 31292.02 21168.85 20281.09 22891.30 157
test250677.30 22276.49 21879.74 24790.08 10352.02 35787.86 15263.10 39274.88 10580.16 13092.79 7938.29 36192.35 20068.74 20392.50 7394.86 17
ECVR-MVScopyleft79.61 16079.26 15180.67 22990.08 10354.69 34187.89 15077.44 34974.88 10580.27 12792.79 7948.96 29492.45 19468.55 20492.50 7394.86 17
UGNet80.83 13079.59 14284.54 10188.04 18368.09 12989.42 9288.16 20776.95 5976.22 20989.46 15449.30 28793.94 12868.48 20590.31 9991.60 143
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FC-MVSNet-test81.52 11882.02 10180.03 24188.42 16955.97 32787.95 14693.42 2977.10 5677.38 17990.98 12369.96 6991.79 21968.46 20684.50 17692.33 122
DP-MVS Recon83.11 9282.09 9986.15 5894.44 1970.92 6888.79 11492.20 8270.53 19379.17 14091.03 12064.12 12896.03 4668.39 20790.14 10391.50 149
UniMVSNet_ETH3D79.10 17778.24 17581.70 20186.85 22160.24 27587.28 16688.79 19474.25 11976.84 19190.53 13049.48 28391.56 22867.98 20882.15 21693.29 88
D2MVS74.82 25673.21 26179.64 25179.81 34662.56 24580.34 30687.35 22864.37 29068.86 31182.66 31546.37 30890.10 26367.91 20981.24 22686.25 305
IS-MVSNet83.15 8982.81 8984.18 11889.94 11063.30 23391.59 4388.46 20579.04 2579.49 13692.16 8865.10 12194.28 11367.71 21091.86 8294.95 10
Fast-Effi-MVS+-dtu78.02 20476.49 21882.62 18683.16 29366.96 15786.94 17487.45 22772.45 15471.49 28484.17 28954.79 22491.58 22667.61 21180.31 23989.30 234
PAPR81.66 11580.89 11783.99 13590.27 9864.00 21686.76 18391.77 10268.84 23677.13 19089.50 15067.63 9494.88 9567.55 21288.52 12793.09 97
cascas76.72 23074.64 24382.99 17085.78 23865.88 17682.33 27689.21 17760.85 32672.74 26881.02 33047.28 30193.75 14267.48 21385.02 16989.34 233
131476.53 23275.30 23880.21 23883.93 27562.32 24884.66 23388.81 19360.23 33070.16 29684.07 29155.30 21890.73 25667.37 21483.21 20487.59 278
无先验87.48 15988.98 18760.00 33294.12 12267.28 21588.97 246
thisisatest051577.33 22175.38 23583.18 16085.27 24763.80 22082.11 27983.27 28965.06 28175.91 21583.84 29449.54 28294.27 11467.24 21686.19 15691.48 151
原ACMM184.35 10993.01 5768.79 10792.44 7063.96 29881.09 12091.57 10166.06 11295.45 6567.19 21794.82 4688.81 253
Baseline_NR-MVSNet78.15 20078.33 17377.61 28585.79 23756.21 32586.78 18185.76 25573.60 13577.93 17087.57 20465.02 12288.99 28367.14 21875.33 30687.63 275
TranMVSNet+NR-MVSNet80.84 12980.31 12882.42 18987.85 18962.33 24787.74 15491.33 11380.55 977.99 16989.86 14065.23 12092.62 18867.05 21975.24 30992.30 124
Fast-Effi-MVS+80.81 13179.92 13483.47 14788.85 14864.51 20585.53 21889.39 16870.79 18578.49 15585.06 27367.54 9593.58 14667.03 22086.58 14992.32 123
VPNet78.69 18778.66 16478.76 26488.31 17255.72 33084.45 24286.63 24276.79 6478.26 16090.55 12959.30 19289.70 27266.63 22177.05 27390.88 170
PM-MVS66.41 33164.14 33373.20 32773.92 37556.45 31878.97 32364.96 39063.88 29964.72 34980.24 33819.84 39283.44 33566.24 22264.52 36679.71 370
test-LLR72.94 27872.43 26874.48 31581.35 32758.04 29378.38 32977.46 34766.66 26069.95 30079.00 35048.06 29779.24 35466.13 22384.83 17186.15 308
test-mter71.41 28970.39 29274.48 31581.35 32758.04 29378.38 32977.46 34760.32 32969.95 30079.00 35036.08 36879.24 35466.13 22384.83 17186.15 308
MVS78.19 19976.99 20681.78 19985.66 23966.99 15484.66 23390.47 13655.08 36572.02 27985.27 26663.83 13194.11 12366.10 22589.80 11084.24 336
NR-MVSNet80.23 15079.38 14682.78 18287.80 19263.34 23286.31 19491.09 12179.01 2672.17 27789.07 16267.20 9992.81 18766.08 22675.65 29592.20 129
CVMVSNet72.99 27772.58 26774.25 31884.28 26650.85 36986.41 19183.45 28744.56 38273.23 26487.54 20749.38 28585.70 31565.90 22778.44 26086.19 307
IterMVS74.29 25972.94 26478.35 27381.53 32363.49 22881.58 28482.49 30368.06 24869.99 29983.69 29951.66 26185.54 31865.85 22871.64 33986.01 312
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OurMVSNet-221017-074.26 26072.42 26979.80 24683.76 27959.59 28285.92 20686.64 24166.39 26766.96 32887.58 20339.46 35491.60 22565.76 22969.27 34988.22 265
tpmrst72.39 28072.13 27173.18 32880.54 33649.91 37379.91 31279.08 33963.11 30371.69 28279.95 34155.32 21782.77 33965.66 23073.89 32186.87 295
MAR-MVS81.84 10880.70 11985.27 7591.32 7971.53 5489.82 7790.92 12369.77 21178.50 15486.21 24662.36 15194.52 10765.36 23192.05 7889.77 222
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Anonymous20240521178.25 19577.01 20481.99 19691.03 8260.67 26884.77 23183.90 27970.65 19280.00 13191.20 11241.08 34891.43 23765.21 23285.26 16893.85 58
ab-mvs79.51 16378.97 15981.14 21788.46 16660.91 26483.84 25389.24 17670.36 19579.03 14188.87 16963.23 13790.21 26265.12 23382.57 21392.28 125
IB-MVS68.01 1575.85 24573.36 26083.31 15384.76 25766.03 16983.38 26285.06 26270.21 20169.40 30681.05 32945.76 31794.66 10365.10 23475.49 29889.25 235
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
WR-MVS79.49 16479.22 15380.27 23788.79 15458.35 28885.06 22588.61 20378.56 3077.65 17488.34 18563.81 13290.66 25764.98 23577.22 27191.80 141
CostFormer75.24 25473.90 25479.27 25682.65 30758.27 29080.80 29482.73 30261.57 32175.33 23483.13 30755.52 21691.07 25064.98 23578.34 26388.45 262
API-MVS81.99 10681.23 11084.26 11690.94 8570.18 8291.10 5389.32 17071.51 17278.66 15088.28 18765.26 11995.10 8564.74 23791.23 8987.51 279
新几何183.42 14993.13 5270.71 7185.48 25857.43 35581.80 11091.98 9063.28 13492.27 20364.60 23892.99 6687.27 285
testing9176.54 23175.66 22979.18 25988.43 16855.89 32881.08 29183.00 29673.76 13175.34 23084.29 28546.20 31290.07 26464.33 23984.50 17691.58 145
testing9976.09 24275.12 24079.00 26088.16 17655.50 33380.79 29581.40 31473.30 14475.17 23884.27 28744.48 32590.02 26564.28 24084.22 18591.48 151
pm-mvs177.25 22376.68 21678.93 26284.22 26858.62 28786.41 19188.36 20671.37 17473.31 26288.01 19761.22 17389.15 28164.24 24173.01 33089.03 242
TESTMET0.1,169.89 30669.00 30072.55 33279.27 35556.85 31178.38 32974.71 36557.64 35268.09 31777.19 36337.75 36376.70 36763.92 24284.09 18684.10 339
QAPM80.88 12879.50 14485.03 8488.01 18568.97 10491.59 4392.00 8866.63 26575.15 24092.16 8857.70 20395.45 6563.52 24388.76 12390.66 178
baseline275.70 24673.83 25681.30 21283.26 28861.79 25682.57 27580.65 32066.81 25666.88 32983.42 30357.86 20292.19 20663.47 24479.57 24689.91 215
LCM-MVSNet-Re77.05 22476.94 20777.36 28887.20 21651.60 36480.06 30880.46 32475.20 9867.69 32086.72 22762.48 14888.98 28463.44 24589.25 11591.51 147
gm-plane-assit81.40 32553.83 34962.72 31280.94 33292.39 19763.40 246
baseline176.98 22676.75 21477.66 28388.13 17855.66 33185.12 22481.89 30873.04 15076.79 19388.90 16762.43 15087.78 30163.30 24771.18 34289.55 228
AdaColmapbinary80.58 14279.42 14584.06 12793.09 5468.91 10589.36 9588.97 18969.27 22175.70 21989.69 14457.20 21095.77 5563.06 24888.41 12987.50 280
test_vis1_rt60.28 34758.42 35065.84 36267.25 39255.60 33270.44 37160.94 39544.33 38359.00 37166.64 38524.91 38568.67 39362.80 24969.48 34773.25 381
GBi-Net78.40 19277.40 19781.40 20987.60 20263.01 23988.39 12989.28 17171.63 16575.34 23087.28 21154.80 22191.11 24462.72 25079.57 24690.09 204
test178.40 19277.40 19781.40 20987.60 20263.01 23988.39 12989.28 17171.63 16575.34 23087.28 21154.80 22191.11 24462.72 25079.57 24690.09 204
FMVSNet377.88 20876.85 20980.97 22386.84 22262.36 24686.52 18988.77 19571.13 17875.34 23086.66 23354.07 23291.10 24762.72 25079.57 24689.45 230
CMPMVSbinary51.72 2170.19 30368.16 30676.28 29773.15 38257.55 30379.47 31583.92 27848.02 37956.48 38084.81 27643.13 33586.42 31062.67 25381.81 22284.89 329
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
sd_testset77.70 21477.40 19778.60 26789.03 14660.02 27779.00 32285.83 25475.19 9976.61 20089.98 13854.81 22085.46 32062.63 25483.55 19790.33 192
FMVSNet278.20 19877.21 20181.20 21587.60 20262.89 24387.47 16089.02 18571.63 16575.29 23687.28 21154.80 22191.10 24762.38 25579.38 25089.61 226
testdata291.01 25162.37 256
testing1175.14 25574.01 25178.53 27088.16 17656.38 32180.74 29880.42 32570.67 18872.69 27183.72 29843.61 33189.86 26762.29 25783.76 19089.36 232
CP-MVSNet78.22 19678.34 17277.84 28087.83 19154.54 34387.94 14791.17 11777.65 3873.48 26188.49 18162.24 15488.43 29362.19 25874.07 31890.55 183
XXY-MVS75.41 25275.56 23074.96 31083.59 28157.82 29980.59 30183.87 28066.54 26674.93 24688.31 18663.24 13680.09 35262.16 25976.85 27786.97 294
pmmvs674.69 25773.39 25978.61 26681.38 32657.48 30486.64 18587.95 21464.99 28470.18 29486.61 23450.43 27389.52 27462.12 26070.18 34688.83 252
1112_ss77.40 22076.43 22080.32 23689.11 14560.41 27383.65 25687.72 22162.13 31873.05 26686.72 22762.58 14789.97 26662.11 26180.80 23290.59 182
PS-CasMVS78.01 20578.09 17777.77 28287.71 19754.39 34588.02 14391.22 11477.50 4673.26 26388.64 17560.73 17988.41 29461.88 26273.88 32290.53 184
CDS-MVSNet79.07 17877.70 19183.17 16187.60 20268.23 12684.40 24586.20 24867.49 25376.36 20686.54 23961.54 16390.79 25461.86 26387.33 13890.49 186
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
OpenMVScopyleft72.83 1079.77 15878.33 17384.09 12385.17 24869.91 8490.57 6090.97 12266.70 25972.17 27791.91 9154.70 22593.96 12561.81 26490.95 9288.41 264
K. test v371.19 29068.51 30279.21 25883.04 29657.78 30084.35 24676.91 35372.90 15362.99 35982.86 31239.27 35591.09 24961.65 26552.66 38688.75 256
CHOSEN 1792x268877.63 21675.69 22683.44 14889.98 10968.58 11978.70 32687.50 22556.38 36075.80 21886.84 22358.67 19591.40 23861.58 26685.75 16590.34 191
PCF-MVS73.52 780.38 14578.84 16185.01 8587.71 19768.99 10383.65 25691.46 11263.00 30577.77 17390.28 13266.10 11095.09 8661.40 26788.22 13190.94 169
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HY-MVS69.67 1277.95 20677.15 20280.36 23487.57 20660.21 27683.37 26387.78 22066.11 26975.37 22987.06 22263.27 13590.48 25961.38 26882.43 21490.40 190
HyFIR lowres test77.53 21775.40 23483.94 13889.59 11766.62 16080.36 30588.64 20256.29 36176.45 20285.17 27057.64 20493.28 16061.34 26983.10 20691.91 138
PMMVS69.34 30968.67 30171.35 34175.67 36862.03 25175.17 35173.46 36850.00 37768.68 31279.05 34852.07 25378.13 35961.16 27082.77 20973.90 380
FMVSNet177.44 21876.12 22481.40 20986.81 22363.01 23988.39 12989.28 17170.49 19474.39 25387.28 21149.06 29191.11 24460.91 27178.52 25890.09 204
sss73.60 26873.64 25873.51 32482.80 30255.01 33976.12 34381.69 31162.47 31474.68 24985.85 25457.32 20878.11 36060.86 27280.93 22987.39 281
Test_1112_low_res76.40 23775.44 23279.27 25689.28 13558.09 29181.69 28387.07 23459.53 33772.48 27386.67 23261.30 17089.33 27760.81 27380.15 24190.41 189
BH-untuned79.47 16578.60 16582.05 19489.19 13965.91 17586.07 20288.52 20472.18 15975.42 22787.69 20161.15 17493.54 15060.38 27486.83 14686.70 300
WTY-MVS75.65 24775.68 22775.57 30486.40 23056.82 31277.92 33682.40 30465.10 28076.18 21187.72 19963.13 14280.90 34960.31 27581.96 21989.00 245
pmmvs474.03 26571.91 27280.39 23381.96 31668.32 12381.45 28782.14 30659.32 33869.87 30285.13 27152.40 24588.13 29760.21 27674.74 31484.73 332
PEN-MVS77.73 21177.69 19277.84 28087.07 21953.91 34887.91 14991.18 11677.56 4373.14 26588.82 17061.23 17289.17 28059.95 27772.37 33390.43 188
CR-MVSNet73.37 27071.27 28179.67 25081.32 32965.19 19275.92 34580.30 32759.92 33372.73 26981.19 32752.50 24386.69 30759.84 27877.71 26687.11 291
lessismore_v078.97 26181.01 33257.15 30865.99 38661.16 36482.82 31339.12 35691.34 24059.67 27946.92 39288.43 263
CNLPA78.08 20176.79 21181.97 19790.40 9771.07 6287.59 15784.55 26966.03 27272.38 27589.64 14657.56 20586.04 31359.61 28083.35 20288.79 254
BH-RMVSNet79.61 16078.44 16983.14 16289.38 12965.93 17484.95 22887.15 23373.56 13678.19 16389.79 14256.67 21393.36 15859.53 28186.74 14790.13 200
MS-PatchMatch73.83 26672.67 26577.30 29083.87 27666.02 17181.82 28084.66 26761.37 32468.61 31482.82 31347.29 30088.21 29559.27 28284.32 18277.68 374
test_post178.90 3255.43 40648.81 29685.44 32159.25 283
SCA74.22 26172.33 27079.91 24384.05 27362.17 25079.96 31179.29 33766.30 26872.38 27580.13 33951.95 25588.60 29159.25 28377.67 26888.96 247
FE-MVS77.78 21075.68 22784.08 12488.09 18166.00 17283.13 26787.79 21968.42 24478.01 16885.23 26845.50 32095.12 8059.11 28585.83 16491.11 161
SixPastTwentyTwo73.37 27071.26 28279.70 24885.08 25357.89 29785.57 21283.56 28471.03 18265.66 34285.88 25242.10 34392.57 19059.11 28563.34 36888.65 259
WR-MVS_H78.51 19178.49 16778.56 26888.02 18456.38 32188.43 12792.67 6277.14 5473.89 25787.55 20666.25 10989.24 27958.92 28773.55 32590.06 208
PLCcopyleft70.83 1178.05 20376.37 22283.08 16591.88 7467.80 13588.19 13889.46 16664.33 29169.87 30288.38 18453.66 23593.58 14658.86 28882.73 21087.86 271
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
RPSCF73.23 27471.46 27778.54 26982.50 30959.85 27882.18 27882.84 30158.96 34271.15 28789.41 15845.48 32184.77 32658.82 28971.83 33891.02 167
EU-MVSNet68.53 31767.61 31871.31 34278.51 35847.01 38084.47 23984.27 27442.27 38566.44 33984.79 27740.44 35183.76 33158.76 29068.54 35483.17 347
pmmvs-eth3d70.50 30067.83 31378.52 27177.37 36266.18 16881.82 28081.51 31258.90 34363.90 35580.42 33742.69 33886.28 31158.56 29165.30 36483.11 349
TAMVS78.89 18377.51 19683.03 16887.80 19267.79 13684.72 23285.05 26367.63 25076.75 19587.70 20062.25 15390.82 25358.53 29287.13 14190.49 186
ACMH+68.96 1476.01 24374.01 25182.03 19588.60 16165.31 19188.86 11187.55 22370.25 20067.75 31987.47 20941.27 34693.19 17058.37 29375.94 29287.60 276
tpm72.37 28271.71 27474.35 31782.19 31452.00 35879.22 31977.29 35064.56 28772.95 26783.68 30051.35 26283.26 33758.33 29475.80 29387.81 272
BH-w/o78.21 19777.33 20080.84 22588.81 15265.13 19484.87 22987.85 21869.75 21374.52 25284.74 27861.34 16993.11 17558.24 29585.84 16384.27 335
Vis-MVSNet (Re-imp)78.36 19478.45 16878.07 27888.64 16051.78 36386.70 18479.63 33474.14 12275.11 24190.83 12461.29 17189.75 27058.10 29691.60 8392.69 110
MVP-Stereo76.12 24074.46 24881.13 21885.37 24669.79 8684.42 24487.95 21465.03 28267.46 32385.33 26553.28 24091.73 22358.01 29783.27 20381.85 360
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ambc75.24 30873.16 38150.51 37163.05 39287.47 22664.28 35177.81 36017.80 39489.73 27157.88 29860.64 37485.49 319
TR-MVS77.44 21876.18 22381.20 21588.24 17463.24 23484.61 23686.40 24567.55 25277.81 17186.48 24154.10 23193.15 17257.75 29982.72 21187.20 286
F-COLMAP76.38 23874.33 24982.50 18889.28 13566.95 15888.41 12889.03 18464.05 29566.83 33088.61 17646.78 30592.89 18357.48 30078.55 25787.67 274
EG-PatchMatch MVS74.04 26371.82 27380.71 22884.92 25567.42 14385.86 20888.08 21066.04 27164.22 35283.85 29335.10 37092.56 19157.44 30180.83 23182.16 359
PatchmatchNetpermissive73.12 27571.33 28078.49 27283.18 29160.85 26579.63 31378.57 34164.13 29271.73 28179.81 34451.20 26485.97 31457.40 30276.36 28988.66 258
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
DTE-MVSNet76.99 22576.80 21077.54 28786.24 23153.06 35687.52 15890.66 13077.08 5772.50 27288.67 17460.48 18689.52 27457.33 30370.74 34490.05 209
UnsupCasMVSNet_eth67.33 32465.99 32871.37 33973.48 37951.47 36675.16 35285.19 26165.20 27960.78 36580.93 33442.35 33977.20 36457.12 30453.69 38585.44 320
pmmvs571.55 28870.20 29475.61 30377.83 35956.39 32081.74 28280.89 31657.76 35167.46 32384.49 27949.26 28885.32 32257.08 30575.29 30785.11 327
Anonymous2024052168.80 31367.22 32273.55 32374.33 37354.11 34683.18 26585.61 25658.15 34861.68 36280.94 33230.71 37981.27 34757.00 30673.34 32985.28 322
mvsany_test162.30 34461.26 34865.41 36369.52 38854.86 34066.86 38249.78 40346.65 38068.50 31683.21 30549.15 28966.28 39556.93 30760.77 37375.11 379
TransMVSNet (Re)75.39 25374.56 24577.86 27985.50 24357.10 30986.78 18186.09 25172.17 16071.53 28387.34 21063.01 14389.31 27856.84 30861.83 37087.17 287
test_vis3_rt49.26 36247.02 36456.00 37454.30 40145.27 38666.76 38448.08 40436.83 39144.38 39153.20 3967.17 40764.07 39756.77 30955.66 38158.65 393
EPMVS69.02 31168.16 30671.59 33779.61 35049.80 37577.40 33866.93 38462.82 31070.01 29779.05 34845.79 31677.86 36256.58 31075.26 30887.13 290
KD-MVS_self_test68.81 31267.59 31972.46 33374.29 37445.45 38277.93 33587.00 23563.12 30263.99 35478.99 35242.32 34084.77 32656.55 31164.09 36787.16 289
tpm273.26 27371.46 27778.63 26583.34 28656.71 31580.65 30080.40 32656.63 35973.55 26082.02 32451.80 25991.24 24256.35 31278.42 26187.95 268
LTVRE_ROB69.57 1376.25 23974.54 24681.41 20888.60 16164.38 21179.24 31889.12 18370.76 18769.79 30487.86 19849.09 29093.20 16856.21 31380.16 24086.65 301
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH67.68 1675.89 24473.93 25381.77 20088.71 15866.61 16188.62 12389.01 18669.81 20866.78 33186.70 23141.95 34591.51 23355.64 31478.14 26487.17 287
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CHOSEN 280x42066.51 33064.71 33171.90 33581.45 32463.52 22757.98 39468.95 38253.57 36762.59 36176.70 36446.22 31175.29 38155.25 31579.68 24576.88 376
EPNet_dtu75.46 25074.86 24177.23 29182.57 30854.60 34286.89 17683.09 29371.64 16466.25 34085.86 25355.99 21588.04 29854.92 31686.55 15089.05 241
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
mvsany_test353.99 35351.45 35861.61 36855.51 40044.74 38863.52 39045.41 40743.69 38458.11 37576.45 36617.99 39363.76 39854.77 31747.59 39176.34 377
PVSNet64.34 1872.08 28670.87 28675.69 30286.21 23256.44 31974.37 35780.73 31962.06 31970.17 29582.23 32142.86 33783.31 33654.77 31784.45 18087.32 284
ITE_SJBPF78.22 27481.77 31960.57 26983.30 28869.25 22367.54 32187.20 21636.33 36787.28 30554.34 31974.62 31586.80 297
MDTV_nov1_ep13_2view37.79 39975.16 35255.10 36466.53 33549.34 28653.98 32087.94 269
gg-mvs-nofinetune69.95 30567.96 30975.94 29983.07 29454.51 34477.23 34070.29 37663.11 30370.32 29262.33 38743.62 33088.69 28953.88 32187.76 13384.62 333
PatchMatch-RL72.38 28170.90 28576.80 29588.60 16167.38 14579.53 31476.17 35862.75 31169.36 30782.00 32545.51 31984.89 32553.62 32280.58 23578.12 373
test_f52.09 35850.82 35955.90 37553.82 40342.31 39559.42 39358.31 39936.45 39256.12 38270.96 38212.18 39957.79 40053.51 32356.57 38067.60 386
Patchmtry70.74 29669.16 29975.49 30680.72 33354.07 34774.94 35680.30 32758.34 34670.01 29781.19 32752.50 24386.54 30853.37 32471.09 34385.87 316
USDC70.33 30168.37 30376.21 29880.60 33556.23 32479.19 32086.49 24360.89 32561.29 36385.47 26331.78 37689.47 27653.37 32476.21 29082.94 353
LF4IMVS64.02 34062.19 34469.50 35070.90 38753.29 35576.13 34277.18 35152.65 37058.59 37280.98 33123.55 38876.52 36953.06 32666.66 35878.68 372
PAPM77.68 21576.40 22181.51 20587.29 21561.85 25483.78 25489.59 16364.74 28571.23 28588.70 17262.59 14693.66 14552.66 32787.03 14389.01 243
dmvs_re71.14 29170.58 28772.80 33081.96 31659.68 28075.60 34979.34 33668.55 24069.27 30980.72 33549.42 28476.54 36852.56 32877.79 26582.19 358
CL-MVSNet_self_test72.37 28271.46 27775.09 30979.49 35253.53 35080.76 29785.01 26469.12 22870.51 28982.05 32357.92 20184.13 32952.27 32966.00 36287.60 276
tpm cat170.57 29868.31 30477.35 28982.41 31257.95 29678.08 33380.22 32952.04 37168.54 31577.66 36152.00 25487.84 30051.77 33072.07 33786.25 305
our_test_369.14 31067.00 32375.57 30479.80 34758.80 28577.96 33477.81 34459.55 33662.90 36078.25 35747.43 29983.97 33051.71 33167.58 35683.93 341
MDTV_nov1_ep1369.97 29583.18 29153.48 35177.10 34180.18 33060.45 32769.33 30880.44 33648.89 29586.90 30651.60 33278.51 259
JIA-IIPM66.32 33262.82 34376.82 29477.09 36361.72 25765.34 38775.38 35958.04 35064.51 35062.32 38842.05 34486.51 30951.45 33369.22 35082.21 357
testing22274.04 26372.66 26678.19 27587.89 18755.36 33481.06 29279.20 33871.30 17574.65 25083.57 30139.11 35788.67 29051.43 33485.75 16590.53 184
MSDG73.36 27270.99 28480.49 23284.51 26465.80 17980.71 29986.13 25065.70 27565.46 34383.74 29744.60 32390.91 25251.13 33576.89 27584.74 331
PatchT68.46 31867.85 31170.29 34780.70 33443.93 38972.47 36274.88 36260.15 33170.55 28876.57 36549.94 27881.59 34450.58 33674.83 31385.34 321
GG-mvs-BLEND75.38 30781.59 32255.80 32979.32 31769.63 37867.19 32673.67 37643.24 33388.90 28850.41 33784.50 17681.45 362
KD-MVS_2432*160066.22 33363.89 33573.21 32575.47 37153.42 35270.76 36984.35 27164.10 29366.52 33678.52 35434.55 37184.98 32350.40 33850.33 38981.23 363
miper_refine_blended66.22 33363.89 33573.21 32575.47 37153.42 35270.76 36984.35 27164.10 29366.52 33678.52 35434.55 37184.98 32350.40 33850.33 38981.23 363
AllTest70.96 29368.09 30879.58 25285.15 25063.62 22284.58 23779.83 33162.31 31560.32 36786.73 22532.02 37488.96 28650.28 34071.57 34086.15 308
TestCases79.58 25285.15 25063.62 22279.83 33162.31 31560.32 36786.73 22532.02 37488.96 28650.28 34071.57 34086.15 308
TAPA-MVS73.13 979.15 17577.94 18082.79 18189.59 11762.99 24288.16 14091.51 10865.77 27477.14 18991.09 11660.91 17893.21 16550.26 34287.05 14292.17 131
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
YYNet165.03 33662.91 34171.38 33875.85 36756.60 31769.12 37774.66 36657.28 35654.12 38377.87 35945.85 31574.48 38349.95 34361.52 37283.05 350
MDA-MVSNet_test_wron65.03 33662.92 34071.37 33975.93 36556.73 31369.09 37874.73 36457.28 35654.03 38477.89 35845.88 31474.39 38449.89 34461.55 37182.99 352
tpmvs71.09 29269.29 29776.49 29682.04 31556.04 32678.92 32481.37 31564.05 29567.18 32778.28 35649.74 28189.77 26949.67 34572.37 33383.67 343
ppachtmachnet_test70.04 30467.34 32178.14 27679.80 34761.13 26179.19 32080.59 32159.16 34065.27 34579.29 34746.75 30687.29 30449.33 34666.72 35786.00 314
UnsupCasMVSNet_bld63.70 34161.53 34770.21 34873.69 37751.39 36772.82 36181.89 30855.63 36357.81 37671.80 38038.67 35878.61 35749.26 34752.21 38780.63 366
UWE-MVS72.13 28571.49 27674.03 32086.66 22747.70 37781.40 28976.89 35463.60 30075.59 22084.22 28839.94 35385.62 31748.98 34886.13 15888.77 255
dp66.80 32765.43 32970.90 34679.74 34948.82 37675.12 35474.77 36359.61 33564.08 35377.23 36242.89 33680.72 35048.86 34966.58 35983.16 348
FMVSNet569.50 30867.96 30974.15 31982.97 30055.35 33580.01 31082.12 30762.56 31363.02 35781.53 32636.92 36581.92 34348.42 35074.06 31985.17 326
thres100view90076.50 23375.55 23179.33 25589.52 12056.99 31085.83 21083.23 29073.94 12576.32 20787.12 21951.89 25791.95 21348.33 35183.75 19189.07 236
tfpn200view976.42 23675.37 23679.55 25489.13 14157.65 30185.17 22183.60 28273.41 14176.45 20286.39 24352.12 24991.95 21348.33 35183.75 19189.07 236
thres40076.50 23375.37 23679.86 24489.13 14157.65 30185.17 22183.60 28273.41 14176.45 20286.39 24352.12 24991.95 21348.33 35183.75 19190.00 210
LCM-MVSNet54.25 35249.68 36267.97 35953.73 40445.28 38566.85 38380.78 31835.96 39339.45 39462.23 3898.70 40478.06 36148.24 35451.20 38880.57 367
RPMNet73.51 26970.49 28982.58 18781.32 32965.19 19275.92 34592.27 7757.60 35372.73 26976.45 36652.30 24695.43 6748.14 35577.71 26687.11 291
thres600view776.50 23375.44 23279.68 24989.40 12757.16 30785.53 21883.23 29073.79 13076.26 20887.09 22051.89 25791.89 21648.05 35683.72 19490.00 210
TDRefinement67.49 32264.34 33276.92 29373.47 38061.07 26284.86 23082.98 29759.77 33458.30 37485.13 27126.06 38487.89 29947.92 35760.59 37581.81 361
thres20075.55 24874.47 24778.82 26387.78 19557.85 29883.07 27083.51 28572.44 15675.84 21784.42 28052.08 25291.75 22147.41 35883.64 19686.86 296
PVSNet_057.27 2061.67 34659.27 34968.85 35479.61 35057.44 30568.01 37973.44 36955.93 36258.54 37370.41 38344.58 32477.55 36347.01 35935.91 39571.55 383
DP-MVS76.78 22974.57 24483.42 14993.29 4869.46 9488.55 12583.70 28163.98 29770.20 29388.89 16854.01 23394.80 9846.66 36081.88 22186.01 312
COLMAP_ROBcopyleft66.92 1773.01 27670.41 29180.81 22687.13 21865.63 18288.30 13584.19 27662.96 30663.80 35687.69 20138.04 36292.56 19146.66 36074.91 31284.24 336
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet70.69 29769.30 29674.88 31184.52 26356.35 32375.87 34779.42 33564.59 28667.76 31882.41 31741.10 34781.54 34546.64 36281.34 22486.75 299
LS3D76.95 22774.82 24283.37 15290.45 9567.36 14689.15 10386.94 23761.87 32069.52 30590.61 12751.71 26094.53 10646.38 36386.71 14888.21 266
ETVMVS72.25 28471.05 28375.84 30087.77 19651.91 36079.39 31674.98 36169.26 22273.71 25882.95 30940.82 35086.14 31246.17 36484.43 18189.47 229
MDA-MVSNet-bldmvs66.68 32863.66 33775.75 30179.28 35460.56 27073.92 35978.35 34264.43 28850.13 38879.87 34344.02 32883.67 33246.10 36556.86 37883.03 351
new-patchmatchnet61.73 34561.73 34661.70 36772.74 38424.50 40869.16 37678.03 34361.40 32256.72 37975.53 37238.42 35976.48 37045.95 36657.67 37784.13 338
WB-MVSnew71.96 28771.65 27572.89 32984.67 26251.88 36182.29 27777.57 34662.31 31573.67 25983.00 30853.49 23881.10 34845.75 36782.13 21785.70 317
TinyColmap67.30 32564.81 33074.76 31381.92 31856.68 31680.29 30781.49 31360.33 32856.27 38183.22 30424.77 38687.66 30345.52 36869.47 34879.95 369
pmmvs357.79 34954.26 35468.37 35764.02 39556.72 31475.12 35465.17 38840.20 38752.93 38569.86 38420.36 39175.48 37845.45 36955.25 38472.90 382
OpenMVS_ROBcopyleft64.09 1970.56 29968.19 30577.65 28480.26 33859.41 28485.01 22682.96 29858.76 34465.43 34482.33 31837.63 36491.23 24345.34 37076.03 29182.32 356
test0.0.03 168.00 32167.69 31668.90 35377.55 36047.43 37875.70 34872.95 37266.66 26066.56 33482.29 32048.06 29775.87 37544.97 37174.51 31683.41 345
testgi66.67 32966.53 32667.08 36175.62 36941.69 39675.93 34476.50 35566.11 26965.20 34886.59 23535.72 36974.71 38243.71 37273.38 32884.84 330
Anonymous2023120668.60 31467.80 31471.02 34480.23 34050.75 37078.30 33280.47 32356.79 35866.11 34182.63 31646.35 30978.95 35643.62 37375.70 29483.36 346
tfpnnormal74.39 25873.16 26278.08 27786.10 23558.05 29284.65 23587.53 22470.32 19771.22 28685.63 25954.97 21989.86 26743.03 37475.02 31186.32 304
MIMVSNet168.58 31566.78 32573.98 32180.07 34251.82 36280.77 29684.37 27064.40 28959.75 37082.16 32236.47 36683.63 33342.73 37570.33 34586.48 303
test20.0367.45 32366.95 32468.94 35275.48 37044.84 38777.50 33777.67 34566.66 26063.01 35883.80 29547.02 30378.40 35842.53 37668.86 35383.58 344
ADS-MVSNet266.20 33563.33 33874.82 31279.92 34358.75 28667.55 38075.19 36053.37 36865.25 34675.86 36942.32 34080.53 35141.57 37768.91 35185.18 324
ADS-MVSNet64.36 33962.88 34268.78 35579.92 34347.17 37967.55 38071.18 37453.37 36865.25 34675.86 36942.32 34073.99 38541.57 37768.91 35185.18 324
Patchmatch-test64.82 33863.24 33969.57 34979.42 35349.82 37463.49 39169.05 38151.98 37359.95 36980.13 33950.91 26670.98 38940.66 37973.57 32487.90 270
MVS-HIRNet59.14 34857.67 35163.57 36581.65 32043.50 39071.73 36465.06 38939.59 38951.43 38657.73 39338.34 36082.58 34039.53 38073.95 32064.62 389
WAC-MVS42.58 39239.46 381
myMVS_eth3d67.02 32666.29 32769.21 35184.68 25942.58 39278.62 32773.08 37066.65 26366.74 33279.46 34531.53 37782.30 34139.43 38276.38 28782.75 354
DSMNet-mixed57.77 35056.90 35260.38 36967.70 39135.61 40069.18 37553.97 40132.30 39757.49 37779.88 34240.39 35268.57 39438.78 38372.37 33376.97 375
N_pmnet52.79 35753.26 35651.40 38178.99 3567.68 41369.52 3733.89 41251.63 37457.01 37874.98 37340.83 34965.96 39637.78 38464.67 36580.56 368
testing368.56 31667.67 31771.22 34387.33 21342.87 39183.06 27171.54 37370.36 19569.08 31084.38 28230.33 38085.69 31637.50 38575.45 30285.09 328
test_040272.79 27970.44 29079.84 24588.13 17865.99 17385.93 20584.29 27365.57 27767.40 32585.49 26246.92 30492.61 18935.88 38674.38 31780.94 365
new_pmnet50.91 36050.29 36052.78 38068.58 39034.94 40263.71 38956.63 40039.73 38844.95 39065.47 38621.93 39058.48 39934.98 38756.62 37964.92 388
APD_test153.31 35649.93 36163.42 36665.68 39350.13 37271.59 36566.90 38534.43 39440.58 39371.56 3818.65 40576.27 37234.64 38855.36 38363.86 390
Syy-MVS68.05 32067.85 31168.67 35684.68 25940.97 39778.62 32773.08 37066.65 26366.74 33279.46 34552.11 25182.30 34132.89 38976.38 28782.75 354
dmvs_testset62.63 34364.11 33458.19 37178.55 35724.76 40775.28 35065.94 38767.91 24960.34 36676.01 36853.56 23673.94 38631.79 39067.65 35575.88 378
ANet_high50.57 36146.10 36563.99 36448.67 40739.13 39870.99 36880.85 31761.39 32331.18 39657.70 39417.02 39573.65 38731.22 39115.89 40479.18 371
EGC-MVSNET52.07 35947.05 36367.14 36083.51 28360.71 26780.50 30367.75 3830.07 4070.43 40875.85 37124.26 38781.54 34528.82 39262.25 36959.16 392
PMMVS240.82 36738.86 37046.69 38253.84 40216.45 41148.61 39749.92 40237.49 39031.67 39560.97 3908.14 40656.42 40128.42 39330.72 39967.19 387
tmp_tt18.61 37321.40 37610.23 3894.82 41210.11 41234.70 39930.74 4101.48 40623.91 40226.07 40328.42 38213.41 40827.12 39415.35 4057.17 403
test_method31.52 36929.28 37338.23 38427.03 4116.50 41420.94 40262.21 3934.05 40522.35 40352.50 39713.33 39747.58 40427.04 39534.04 39760.62 391
testf145.72 36341.96 36657.00 37256.90 39845.32 38366.14 38559.26 39726.19 39830.89 39760.96 3914.14 40870.64 39026.39 39646.73 39355.04 395
APD_test245.72 36341.96 36657.00 37256.90 39845.32 38366.14 38559.26 39726.19 39830.89 39760.96 3914.14 40870.64 39026.39 39646.73 39355.04 395
FPMVS53.68 35551.64 35759.81 37065.08 39451.03 36869.48 37469.58 37941.46 38640.67 39272.32 37916.46 39670.00 39224.24 39865.42 36358.40 394
Gipumacopyleft45.18 36541.86 36855.16 37877.03 36451.52 36532.50 40080.52 32232.46 39627.12 39935.02 4009.52 40375.50 37722.31 39960.21 37638.45 399
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft27.40 38740.17 41026.90 40524.59 41117.44 40323.95 40148.61 3989.77 40226.48 40618.06 40024.47 40028.83 400
WB-MVS54.94 35154.72 35355.60 37773.50 37820.90 40974.27 35861.19 39459.16 34050.61 38774.15 37447.19 30275.78 37617.31 40135.07 39670.12 384
PMVScopyleft37.38 2244.16 36640.28 36955.82 37640.82 40942.54 39465.12 38863.99 39134.43 39424.48 40057.12 3953.92 41076.17 37417.10 40255.52 38248.75 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive26.22 2330.37 37125.89 37543.81 38344.55 40835.46 40128.87 40139.07 40818.20 40218.58 40440.18 3992.68 41147.37 40517.07 40323.78 40148.60 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
SSC-MVS53.88 35453.59 35554.75 37972.87 38319.59 41073.84 36060.53 39657.58 35449.18 38973.45 37746.34 31075.47 37916.20 40432.28 39869.20 385
E-PMN31.77 36830.64 37135.15 38552.87 40527.67 40457.09 39547.86 40524.64 40016.40 40533.05 40111.23 40154.90 40214.46 40518.15 40222.87 401
EMVS30.81 37029.65 37234.27 38650.96 40625.95 40656.58 39646.80 40624.01 40115.53 40630.68 40212.47 39854.43 40312.81 40617.05 40322.43 402
wuyk23d16.82 37415.94 37719.46 38858.74 39731.45 40339.22 3983.74 4136.84 4046.04 4072.70 4071.27 41224.29 40710.54 40714.40 4062.63 404
testmvs6.04 3778.02 3800.10 3910.08 4130.03 41669.74 3720.04 4140.05 4080.31 4091.68 4080.02 4140.04 4090.24 4080.02 4070.25 406
test1236.12 3768.11 3790.14 3900.06 4140.09 41571.05 3670.03 4150.04 4090.25 4101.30 4090.05 4130.03 4100.21 4090.01 4080.29 405
test_blank0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
uanet_test0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
DCPMVS0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
cdsmvs_eth3d_5k19.96 37226.61 3740.00 3920.00 4150.00 4170.00 40389.26 1740.00 4100.00 41188.61 17661.62 1620.00 4110.00 4100.00 4090.00 407
pcd_1.5k_mvsjas5.26 3787.02 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 41063.15 1390.00 4110.00 4100.00 4090.00 407
sosnet-low-res0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
sosnet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
uncertanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
Regformer0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
ab-mvs-re7.23 3759.64 3780.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 41186.72 2270.00 4150.00 4110.00 4100.00 4090.00 407
uanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
FOURS195.00 1072.39 3995.06 193.84 1574.49 11491.30 15
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 415
eth-test0.00 415
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
save fliter93.80 4072.35 4290.47 6491.17 11774.31 117
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
GSMVS88.96 247
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26388.96 247
sam_mvs50.01 276
MTGPAbinary92.02 86
test_post5.46 40550.36 27484.24 328
patchmatchnet-post74.00 37551.12 26588.60 291
MTMP92.18 3532.83 409
TEST993.26 5072.96 2588.75 11691.89 9468.44 24385.00 5893.10 6774.36 2895.41 69
test_893.13 5272.57 3588.68 12191.84 9868.69 23884.87 6293.10 6774.43 2695.16 78
agg_prior92.85 5971.94 5191.78 10184.41 7294.93 89
test_prior472.60 3489.01 106
test_prior86.33 5492.61 6569.59 8892.97 5195.48 6493.91 54
新几何286.29 196
旧先验191.96 7165.79 18086.37 24693.08 7169.31 7892.74 6988.74 257
原ACMM286.86 177
test22291.50 7768.26 12584.16 24983.20 29254.63 36679.74 13291.63 9958.97 19491.42 8686.77 298
segment_acmp73.08 38
testdata184.14 25075.71 88
test1286.80 4992.63 6470.70 7291.79 10082.71 10071.67 5296.16 4494.50 5193.54 78
plane_prior790.08 10368.51 120
plane_prior689.84 11268.70 11560.42 187
plane_prior491.00 121
plane_prior368.60 11878.44 3178.92 144
plane_prior291.25 5079.12 23
plane_prior189.90 111
plane_prior68.71 11390.38 6877.62 3986.16 157
n20.00 416
nn0.00 416
door-mid69.98 377
test1192.23 80
door69.44 380
HQP5-MVS66.98 155
HQP-NCC89.33 13089.17 9976.41 7377.23 184
ACMP_Plane89.33 13089.17 9976.41 7377.23 184
HQP4-MVS77.24 18395.11 8291.03 165
HQP3-MVS92.19 8385.99 161
HQP2-MVS60.17 190
NP-MVS89.62 11668.32 12390.24 133
ACMMP++_ref81.95 220
ACMMP++81.25 225
Test By Simon64.33 126