This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
MM89.16 689.23 788.97 490.79 9573.65 1092.66 2391.17 12586.57 187.39 4394.97 1871.70 5397.68 192.19 195.63 2895.57 1
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4997.53 289.67 896.44 994.41 39
No_MVS89.16 194.34 2775.53 292.99 4997.53 289.67 896.44 994.41 39
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5995.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 1196.68 294.95 11
test_0728_SECOND87.71 3295.34 171.43 5893.49 994.23 397.49 489.08 1496.41 1294.21 49
MVS_030487.69 2087.55 2488.12 1389.45 12971.76 5191.47 4989.54 17382.14 386.65 5194.28 3568.28 9597.46 690.81 295.31 3495.15 7
SED-MVS90.08 290.85 287.77 2695.30 270.98 6693.57 794.06 1077.24 5393.10 195.72 882.99 197.44 789.07 1696.63 494.88 15
test_241102_TWO94.06 1077.24 5392.78 495.72 881.26 897.44 789.07 1696.58 694.26 48
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5993.49 992.73 6477.33 5092.12 995.78 480.98 997.40 989.08 1496.41 1293.33 93
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 989.42 1196.57 794.67 28
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 9092.29 795.66 1081.67 697.38 1187.44 3596.34 1593.95 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_241102_ONE95.30 270.98 6694.06 1077.17 5693.10 195.39 1482.99 197.27 12
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 11592.29 795.97 274.28 2997.24 1388.58 2396.91 194.87 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CANet86.45 4286.10 4987.51 3790.09 10770.94 7089.70 8592.59 7481.78 481.32 12391.43 11570.34 7097.23 1484.26 5993.36 6894.37 42
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 7272.96 2593.73 593.67 2080.19 1288.10 2994.80 1973.76 3397.11 1587.51 3395.82 2194.90 14
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS79.81 287.08 3586.88 3887.69 3391.16 8472.32 4390.31 7193.94 1477.12 5882.82 10794.23 3972.13 4797.09 1684.83 5195.37 3193.65 78
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9491.06 1696.03 176.84 1497.03 1789.09 1395.65 2794.47 38
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5492.83 6081.50 585.79 5793.47 6573.02 4097.00 1884.90 4894.94 4094.10 52
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6685.24 6294.32 3471.76 5196.93 1985.53 4595.79 2294.32 45
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4982.45 396.87 2083.77 6696.48 894.88 15
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6293.00 4680.90 788.06 3094.06 4776.43 1696.84 2188.48 2695.99 1894.34 44
GST-MVS87.42 2787.26 2887.89 2494.12 3672.97 2492.39 2693.43 2876.89 6484.68 7193.99 5370.67 6896.82 2284.18 6395.01 3793.90 63
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5980.26 1187.78 3594.27 3675.89 1996.81 2387.45 3496.44 993.05 108
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 4278.35 1396.77 2489.59 1094.22 6094.67 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepC-MVS_fast79.65 386.91 3686.62 4087.76 2793.52 4672.37 4191.26 5193.04 4176.62 7484.22 8393.36 6871.44 5796.76 2580.82 9695.33 3394.16 50
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+77.84 485.48 6084.47 7688.51 791.08 8673.49 1693.18 1193.78 1880.79 876.66 20593.37 6760.40 19896.75 2677.20 12793.73 6495.29 5
ZD-MVS94.38 2572.22 4492.67 6770.98 19387.75 3794.07 4674.01 3296.70 2784.66 5494.84 44
region2R87.42 2787.20 3188.09 1494.63 1473.55 1393.03 1493.12 4076.73 7184.45 7994.52 2369.09 8496.70 2784.37 5894.83 4594.03 56
ACMMP_NAP88.05 1688.08 1787.94 1993.70 4173.05 2290.86 5793.59 2376.27 8488.14 2895.09 1771.06 6396.67 2987.67 3196.37 1494.09 53
ACMMPR87.44 2587.23 3088.08 1594.64 1373.59 1293.04 1293.20 3476.78 6884.66 7494.52 2368.81 9096.65 3084.53 5694.90 4194.00 57
PGM-MVS86.68 4086.27 4487.90 2294.22 3373.38 1890.22 7393.04 4175.53 9683.86 9194.42 3167.87 10096.64 3182.70 8194.57 5093.66 74
HFP-MVS87.58 2287.47 2687.94 1994.58 1673.54 1593.04 1293.24 3376.78 6884.91 6794.44 3070.78 6696.61 3284.53 5694.89 4293.66 74
XVS87.18 3286.91 3788.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9694.17 4167.45 10396.60 3383.06 7194.50 5194.07 54
X-MVStestdata80.37 15677.83 19288.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9612.47 42267.45 10396.60 3383.06 7194.50 5194.07 54
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5392.24 7169.03 10389.57 9093.39 3077.53 4689.79 1894.12 4478.98 1296.58 3585.66 4295.72 2494.58 33
reproduce-ours87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10888.96 2095.54 1271.20 6196.54 3686.28 3993.49 6593.06 106
our_new_method87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10888.96 2095.54 1271.20 6196.54 3686.28 3993.49 6593.06 106
APD-MVScopyleft87.44 2587.52 2587.19 4294.24 3272.39 3991.86 4092.83 6073.01 16088.58 2494.52 2373.36 3496.49 3884.26 5995.01 3792.70 118
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
reproduce_model87.28 3087.39 2786.95 4893.10 5671.24 6391.60 4293.19 3574.69 11688.80 2395.61 1170.29 7296.44 3986.20 4193.08 6993.16 101
PHI-MVS86.43 4386.17 4787.24 4190.88 9270.96 6892.27 3294.07 972.45 16585.22 6391.90 9869.47 8096.42 4083.28 7095.94 1994.35 43
MCST-MVS87.37 2987.25 2987.73 2894.53 1772.46 3889.82 7993.82 1673.07 15884.86 7092.89 7976.22 1796.33 4184.89 5095.13 3694.40 41
ACMMPcopyleft85.89 5485.39 6187.38 3993.59 4572.63 3392.74 2093.18 3976.78 6880.73 13293.82 5864.33 13396.29 4282.67 8290.69 10093.23 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 7077.57 4283.84 9294.40 3272.24 4596.28 4385.65 4395.30 3593.62 81
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS86.67 4186.32 4387.72 3094.41 2273.55 1392.74 2092.22 8876.87 6582.81 10894.25 3866.44 11396.24 4482.88 7694.28 5893.38 90
MTAPA87.23 3187.00 3287.90 2294.18 3574.25 586.58 19592.02 9379.45 1985.88 5594.80 1968.07 9696.21 4586.69 3895.34 3293.23 96
SF-MVS88.46 1288.74 1287.64 3592.78 6471.95 4992.40 2494.74 275.71 9289.16 1995.10 1675.65 2196.19 4687.07 3696.01 1794.79 22
test1286.80 5292.63 6770.70 7591.79 10782.71 10971.67 5496.16 4794.50 5193.54 86
CDPH-MVS85.76 5685.29 6687.17 4393.49 4771.08 6488.58 12892.42 8068.32 25584.61 7693.48 6372.32 4496.15 4879.00 10895.43 3094.28 47
balanced_conf0386.78 3786.99 3386.15 6391.24 8367.61 14590.51 6292.90 5677.26 5287.44 4291.63 10771.27 6096.06 4985.62 4495.01 3794.78 23
MVSMamba_PlusPlus85.99 4885.96 5286.05 6691.09 8567.64 14489.63 8892.65 7072.89 16384.64 7591.71 10371.85 4996.03 5084.77 5394.45 5494.49 37
DP-MVS Recon83.11 10282.09 11086.15 6394.44 1970.92 7188.79 11892.20 8970.53 20379.17 14991.03 13064.12 13596.03 5068.39 21890.14 10891.50 157
DPM-MVS84.93 7084.29 7786.84 5090.20 10573.04 2387.12 17593.04 4169.80 22082.85 10691.22 12173.06 3996.02 5276.72 13594.63 4891.46 161
HPM-MVScopyleft87.11 3386.98 3487.50 3893.88 3972.16 4592.19 3393.33 3176.07 8783.81 9393.95 5669.77 7896.01 5385.15 4694.66 4794.32 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MP-MVS-pluss87.67 2187.72 2087.54 3693.64 4472.04 4889.80 8193.50 2575.17 10586.34 5395.29 1570.86 6596.00 5488.78 2196.04 1694.58 33
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + MP.88.02 1788.11 1687.72 3093.68 4372.13 4691.41 5092.35 8274.62 11988.90 2293.85 5775.75 2096.00 5487.80 3094.63 4895.04 9
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PC_three_145268.21 25692.02 1294.00 5182.09 595.98 5684.58 5596.68 294.95 11
CP-MVS87.11 3386.92 3687.68 3494.20 3473.86 793.98 392.82 6376.62 7483.68 9594.46 2767.93 9895.95 5784.20 6294.39 5593.23 96
9.1488.26 1592.84 6391.52 4894.75 173.93 13588.57 2594.67 2175.57 2295.79 5886.77 3795.76 23
SR-MVS86.73 3886.67 3986.91 4994.11 3772.11 4792.37 2892.56 7574.50 12086.84 5094.65 2267.31 10595.77 5984.80 5292.85 7292.84 116
AdaColmapbinary80.58 15179.42 15484.06 13393.09 5768.91 10889.36 9988.97 19869.27 23175.70 22689.69 15457.20 21995.77 5963.06 25988.41 13787.50 291
DELS-MVS85.41 6385.30 6585.77 7288.49 16967.93 13785.52 22893.44 2778.70 2983.63 9889.03 17474.57 2495.71 6180.26 10294.04 6193.66 74
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
APD-MVS_3200maxsize85.97 5085.88 5386.22 6092.69 6669.53 9291.93 3792.99 4973.54 14585.94 5494.51 2665.80 12395.61 6283.04 7392.51 7693.53 87
SR-MVS-dyc-post85.77 5585.61 5886.23 5993.06 5870.63 7691.88 3892.27 8473.53 14685.69 5894.45 2865.00 13195.56 6382.75 7791.87 8492.50 127
EPNet83.72 8582.92 9786.14 6584.22 27869.48 9491.05 5685.27 27081.30 676.83 20091.65 10566.09 11895.56 6376.00 14193.85 6293.38 90
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HPM-MVS_fast85.35 6484.95 7086.57 5693.69 4270.58 7892.15 3591.62 11173.89 13682.67 11094.09 4562.60 15295.54 6580.93 9492.93 7193.57 83
h-mvs3383.15 9982.19 10786.02 6990.56 9870.85 7388.15 14589.16 18876.02 8884.67 7291.39 11661.54 17195.50 6682.71 7975.48 30991.72 151
test_prior86.33 5792.61 6869.59 9192.97 5495.48 6793.91 61
原ACMM184.35 11393.01 6068.79 11092.44 7763.96 31281.09 12891.57 11066.06 11995.45 6867.19 22894.82 4688.81 260
QAPM80.88 13779.50 15385.03 8988.01 19268.97 10791.59 4392.00 9566.63 27675.15 24892.16 9357.70 21295.45 6863.52 25488.76 13090.66 185
BP-MVS184.32 7583.71 8386.17 6187.84 19967.85 13889.38 9889.64 17177.73 3883.98 8992.12 9556.89 22295.43 7084.03 6491.75 8795.24 6
RPMNet73.51 28070.49 30282.58 19481.32 34265.19 19675.92 35992.27 8457.60 36772.73 28176.45 38252.30 25795.43 7048.14 36977.71 27687.11 302
EC-MVSNet86.01 4786.38 4284.91 9689.31 13866.27 17392.32 3093.63 2179.37 2084.17 8591.88 9969.04 8895.43 7083.93 6593.77 6393.01 111
TEST993.26 5272.96 2588.75 12091.89 10168.44 25385.00 6593.10 7274.36 2895.41 73
train_agg86.43 4386.20 4587.13 4493.26 5272.96 2588.75 12091.89 10168.69 24885.00 6593.10 7274.43 2695.41 7384.97 4795.71 2593.02 110
ETV-MVS84.90 7284.67 7285.59 7589.39 13368.66 12088.74 12292.64 7279.97 1584.10 8685.71 26369.32 8295.38 7580.82 9691.37 9292.72 117
HQP_MVS83.64 8783.14 9185.14 8590.08 10868.71 11691.25 5292.44 7779.12 2378.92 15391.00 13260.42 19695.38 7578.71 11286.32 16491.33 162
plane_prior592.44 7795.38 7578.71 11286.32 16491.33 162
TSAR-MVS + GP.85.71 5785.33 6386.84 5091.34 8172.50 3689.07 11087.28 23776.41 7785.80 5690.22 14674.15 3195.37 7881.82 8691.88 8392.65 122
GDP-MVS83.52 9182.64 10186.16 6288.14 18368.45 12489.13 10892.69 6572.82 16483.71 9491.86 10155.69 22795.35 7980.03 10389.74 11694.69 27
EIA-MVS83.31 9882.80 9984.82 9889.59 12265.59 18888.21 14192.68 6674.66 11878.96 15186.42 25069.06 8695.26 8075.54 14790.09 10993.62 81
UA-Net85.08 6884.96 6985.45 7892.07 7368.07 13489.78 8290.86 13582.48 284.60 7793.20 7169.35 8195.22 8171.39 18590.88 9893.07 105
CSCG86.41 4586.19 4687.07 4592.91 6172.48 3790.81 5893.56 2473.95 13383.16 10291.07 12775.94 1895.19 8279.94 10594.38 5693.55 85
test_893.13 5472.57 3588.68 12591.84 10568.69 24884.87 6993.10 7274.43 2695.16 83
SPE-MVS-test86.29 4686.48 4185.71 7391.02 8867.21 16092.36 2993.78 1878.97 2883.51 9991.20 12270.65 6995.15 8481.96 8594.89 4294.77 24
FE-MVS77.78 21775.68 23684.08 13088.09 18766.00 17783.13 27787.79 22768.42 25478.01 17585.23 27645.50 33495.12 8559.11 29785.83 17591.11 168
EPP-MVSNet83.40 9583.02 9484.57 10490.13 10664.47 21492.32 3090.73 13774.45 12379.35 14791.10 12569.05 8795.12 8572.78 17487.22 15194.13 51
HQP4-MVS77.24 19095.11 8791.03 172
HQP-MVS82.61 10882.02 11284.37 11189.33 13566.98 16389.17 10392.19 9076.41 7777.23 19190.23 14560.17 19995.11 8777.47 12485.99 17291.03 172
MG-MVS83.41 9483.45 8683.28 16192.74 6562.28 25788.17 14389.50 17575.22 10181.49 12292.74 8766.75 10895.11 8772.85 17391.58 8992.45 130
API-MVS81.99 11781.23 12184.26 12190.94 9070.18 8591.10 5589.32 18071.51 18278.66 15888.28 19565.26 12695.10 9064.74 24891.23 9487.51 290
PCF-MVS73.52 780.38 15478.84 16985.01 9087.71 20668.99 10683.65 26691.46 11963.00 31977.77 18090.28 14266.10 11795.09 9161.40 27888.22 13990.94 176
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
114514_t80.68 14679.51 15284.20 12294.09 3867.27 15689.64 8791.11 12858.75 35974.08 26690.72 13658.10 20895.04 9269.70 20389.42 12090.30 201
CS-MVS86.69 3986.95 3585.90 7190.76 9667.57 14792.83 1793.30 3279.67 1784.57 7892.27 9171.47 5695.02 9384.24 6193.46 6795.13 8
agg_prior92.85 6271.94 5091.78 10884.41 8094.93 94
LPG-MVS_test82.08 11481.27 12084.50 10689.23 14268.76 11290.22 7391.94 9975.37 9976.64 20691.51 11154.29 24094.91 9578.44 11483.78 19889.83 226
LGP-MVS_train84.50 10689.23 14268.76 11291.94 9975.37 9976.64 20691.51 11154.29 24094.91 9578.44 11483.78 19889.83 226
PAPM_NR83.02 10382.41 10384.82 9892.47 7066.37 17187.93 15291.80 10673.82 13777.32 18890.66 13767.90 9994.90 9770.37 19589.48 11993.19 100
tttt051779.40 17677.91 18983.90 14588.10 18663.84 22588.37 13684.05 28771.45 18376.78 20289.12 17149.93 29394.89 9870.18 19783.18 21492.96 114
PAPR81.66 12580.89 12883.99 14190.27 10364.00 22286.76 19191.77 10968.84 24677.13 19889.50 16067.63 10194.88 9967.55 22388.52 13593.09 104
PVSNet_Blended_VisFu82.62 10781.83 11684.96 9290.80 9469.76 9088.74 12291.70 11069.39 22878.96 15188.46 19065.47 12594.87 10074.42 15688.57 13390.24 203
EI-MVSNet-Vis-set84.19 7683.81 8185.31 8188.18 18067.85 13887.66 15989.73 16880.05 1482.95 10389.59 15970.74 6794.82 10180.66 9984.72 18393.28 95
DP-MVS76.78 23774.57 25383.42 15693.29 4869.46 9788.55 12983.70 29163.98 31170.20 30788.89 17754.01 24494.80 10246.66 37481.88 23086.01 323
thisisatest053079.40 17677.76 19784.31 11587.69 20865.10 19987.36 16884.26 28570.04 21277.42 18588.26 19749.94 29194.79 10370.20 19684.70 18493.03 109
EI-MVSNet-UG-set83.81 8183.38 8885.09 8887.87 19767.53 14887.44 16789.66 16979.74 1682.23 11289.41 16870.24 7394.74 10479.95 10483.92 19792.99 113
FA-MVS(test-final)80.96 13679.91 14484.10 12588.30 17865.01 20084.55 24790.01 16073.25 15579.61 14387.57 21258.35 20794.72 10571.29 18686.25 16692.56 124
3Dnovator76.31 583.38 9682.31 10686.59 5587.94 19472.94 2890.64 6092.14 9277.21 5575.47 23092.83 8158.56 20594.72 10573.24 17092.71 7492.13 143
RRT-MVS82.60 11082.10 10984.10 12587.98 19362.94 25087.45 16691.27 12177.42 4979.85 14090.28 14256.62 22494.70 10779.87 10688.15 14094.67 28
IB-MVS68.01 1575.85 25473.36 27083.31 16084.76 26766.03 17583.38 27285.06 27370.21 21169.40 32081.05 34445.76 33094.66 10865.10 24575.49 30889.25 242
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ACMP74.13 681.51 12980.57 13184.36 11289.42 13068.69 11989.97 7791.50 11874.46 12275.04 25290.41 14153.82 24594.54 10977.56 12382.91 21689.86 225
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LS3D76.95 23474.82 25183.37 15990.45 10067.36 15389.15 10786.94 24661.87 33469.52 31990.61 13851.71 27294.53 11046.38 37786.71 15988.21 276
MAR-MVS81.84 11980.70 12985.27 8291.32 8271.53 5689.82 7990.92 13169.77 22278.50 16286.21 25462.36 15894.52 11165.36 24292.05 8289.77 229
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OPM-MVS83.50 9282.95 9685.14 8588.79 15970.95 6989.13 10891.52 11477.55 4580.96 13091.75 10260.71 18894.50 11279.67 10786.51 16289.97 221
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
casdiffmvs_mvgpermissive85.99 4886.09 5085.70 7487.65 20967.22 15988.69 12493.04 4179.64 1885.33 6192.54 8873.30 3594.50 11283.49 6791.14 9595.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Effi-MVS+83.62 8983.08 9285.24 8388.38 17567.45 14988.89 11589.15 18975.50 9782.27 11188.28 19569.61 7994.45 11477.81 12187.84 14293.84 67
CLD-MVS82.31 11181.65 11784.29 11688.47 17067.73 14285.81 21992.35 8275.78 9178.33 16786.58 24564.01 13694.35 11576.05 14087.48 14890.79 179
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PS-MVSNAJ81.69 12381.02 12583.70 14989.51 12668.21 13184.28 25690.09 15870.79 19581.26 12785.62 26863.15 14694.29 11675.62 14588.87 12788.59 268
IS-MVSNet83.15 9982.81 9884.18 12389.94 11563.30 23991.59 4388.46 21379.04 2579.49 14592.16 9365.10 12894.28 11767.71 22191.86 8694.95 11
thisisatest051577.33 22875.38 24483.18 16785.27 25763.80 22682.11 28983.27 29965.06 29475.91 22283.84 30549.54 29594.27 11867.24 22786.19 16791.48 159
PS-MVSNAJss82.07 11581.31 11984.34 11486.51 23667.27 15689.27 10191.51 11571.75 17579.37 14690.22 14663.15 14694.27 11877.69 12282.36 22491.49 158
PVSNet_BlendedMVS80.60 14880.02 14182.36 19888.85 15365.40 19186.16 20892.00 9569.34 23078.11 17286.09 25866.02 12094.27 11871.52 18282.06 22787.39 292
PVSNet_Blended80.98 13580.34 13682.90 18188.85 15365.40 19184.43 25292.00 9567.62 26178.11 17285.05 28266.02 12094.27 11871.52 18289.50 11889.01 250
Vis-MVSNetpermissive83.46 9382.80 9985.43 7990.25 10468.74 11490.30 7290.13 15776.33 8380.87 13192.89 7961.00 18594.20 12272.45 17990.97 9693.35 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
xiu_mvs_v2_base81.69 12381.05 12483.60 15189.15 14568.03 13684.46 25090.02 15970.67 19881.30 12686.53 24863.17 14594.19 12375.60 14688.54 13488.57 269
MVS_111021_HR85.14 6684.75 7186.32 5891.65 7972.70 3085.98 21190.33 15076.11 8682.08 11391.61 10971.36 5994.17 12481.02 9392.58 7592.08 144
无先验87.48 16388.98 19660.00 34694.12 12567.28 22688.97 253
MVS78.19 20676.99 21481.78 20685.66 24866.99 16284.66 24290.47 14455.08 37972.02 29285.27 27463.83 13894.11 12666.10 23689.80 11584.24 349
v1079.74 16678.67 17082.97 17984.06 28264.95 20287.88 15590.62 13973.11 15775.11 24986.56 24661.46 17494.05 12773.68 16275.55 30789.90 223
baseline84.93 7084.98 6884.80 10087.30 22165.39 19387.30 17192.88 5777.62 4084.04 8892.26 9271.81 5093.96 12881.31 9090.30 10595.03 10
OMC-MVS82.69 10681.97 11484.85 9788.75 16167.42 15087.98 14890.87 13474.92 11079.72 14291.65 10562.19 16293.96 12875.26 15186.42 16393.16 101
OpenMVScopyleft72.83 1079.77 16578.33 18084.09 12985.17 25869.91 8790.57 6190.97 13066.70 27072.17 29091.91 9754.70 23793.96 12861.81 27590.95 9788.41 273
v119279.59 16978.43 17783.07 17383.55 29464.52 21086.93 18390.58 14070.83 19477.78 17985.90 25959.15 20293.94 13173.96 16177.19 28290.76 181
v114480.03 16279.03 16583.01 17683.78 28964.51 21187.11 17690.57 14271.96 17478.08 17486.20 25561.41 17593.94 13174.93 15277.23 28090.60 188
UGNet80.83 13979.59 15184.54 10588.04 18968.09 13389.42 9588.16 21576.95 6276.22 21689.46 16449.30 30093.94 13168.48 21690.31 10491.60 152
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
casdiffmvspermissive85.11 6785.14 6785.01 9087.20 22365.77 18587.75 15792.83 6077.84 3784.36 8292.38 9072.15 4693.93 13481.27 9290.48 10295.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
sasdasda85.91 5285.87 5486.04 6789.84 11769.44 9890.45 6893.00 4676.70 7288.01 3291.23 11973.28 3693.91 13581.50 8888.80 12894.77 24
canonicalmvs85.91 5285.87 5486.04 6789.84 11769.44 9890.45 6893.00 4676.70 7288.01 3291.23 11973.28 3693.91 13581.50 8888.80 12894.77 24
VDD-MVS83.01 10482.36 10584.96 9291.02 8866.40 17088.91 11488.11 21677.57 4284.39 8193.29 6952.19 25993.91 13577.05 13088.70 13294.57 35
v879.97 16479.02 16682.80 18684.09 28164.50 21387.96 14990.29 15374.13 13275.24 24586.81 23262.88 15193.89 13874.39 15775.40 31490.00 217
v2v48280.23 15879.29 15983.05 17483.62 29264.14 22087.04 17789.97 16173.61 14278.18 17187.22 22361.10 18393.82 13976.11 13876.78 28991.18 166
v7n78.97 18877.58 20383.14 16983.45 29665.51 18988.32 13891.21 12373.69 14072.41 28686.32 25357.93 20993.81 14069.18 20875.65 30590.11 209
alignmvs85.48 6085.32 6485.96 7089.51 12669.47 9589.74 8392.47 7676.17 8587.73 3991.46 11470.32 7193.78 14181.51 8788.95 12594.63 32
SD-MVS88.06 1488.50 1486.71 5492.60 6972.71 2991.81 4193.19 3577.87 3690.32 1794.00 5174.83 2393.78 14187.63 3294.27 5993.65 78
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
v14419279.47 17278.37 17882.78 18983.35 29763.96 22386.96 18090.36 14969.99 21577.50 18385.67 26660.66 19193.77 14374.27 15876.58 29090.62 186
v124078.99 18777.78 19582.64 19283.21 30163.54 23286.62 19490.30 15269.74 22577.33 18785.68 26557.04 22093.76 14473.13 17176.92 28490.62 186
v192192079.22 18078.03 18682.80 18683.30 29963.94 22486.80 18790.33 15069.91 21877.48 18485.53 26958.44 20693.75 14573.60 16376.85 28790.71 184
cascas76.72 23874.64 25282.99 17785.78 24765.88 18182.33 28689.21 18660.85 34072.74 28081.02 34547.28 31393.75 14567.48 22485.02 17989.34 240
Anonymous2024052980.19 16078.89 16884.10 12590.60 9764.75 20888.95 11390.90 13265.97 28480.59 13391.17 12449.97 29093.73 14769.16 20982.70 22193.81 69
PAPM77.68 22276.40 22981.51 21287.29 22261.85 26283.78 26389.59 17264.74 29871.23 29988.70 18162.59 15393.66 14852.66 34187.03 15489.01 250
test_yl81.17 13280.47 13483.24 16489.13 14663.62 22886.21 20689.95 16272.43 16881.78 11989.61 15757.50 21593.58 14970.75 19086.90 15592.52 125
DCV-MVSNet81.17 13280.47 13483.24 16489.13 14663.62 22886.21 20689.95 16272.43 16881.78 11989.61 15757.50 21593.58 14970.75 19086.90 15592.52 125
Fast-Effi-MVS+80.81 14079.92 14383.47 15488.85 15364.51 21185.53 22689.39 17870.79 19578.49 16385.06 28167.54 10293.58 14967.03 23186.58 16092.32 133
PLCcopyleft70.83 1178.05 21076.37 23083.08 17291.88 7767.80 14088.19 14289.46 17664.33 30469.87 31688.38 19253.66 24693.58 14958.86 30082.73 21987.86 282
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
BH-untuned79.47 17278.60 17282.05 20189.19 14465.91 18086.07 21088.52 21272.18 17075.42 23487.69 20961.15 18293.54 15360.38 28586.83 15786.70 311
ACMM73.20 880.78 14579.84 14683.58 15289.31 13868.37 12689.99 7691.60 11270.28 20877.25 18989.66 15553.37 25093.53 15474.24 15982.85 21788.85 258
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VDDNet81.52 12780.67 13084.05 13690.44 10164.13 22189.73 8485.91 26471.11 18983.18 10193.48 6350.54 28593.49 15573.40 16788.25 13894.54 36
hse-mvs281.72 12180.94 12784.07 13188.72 16267.68 14385.87 21587.26 23976.02 8884.67 7288.22 19861.54 17193.48 15682.71 7973.44 33791.06 170
AUN-MVS79.21 18177.60 20284.05 13688.71 16367.61 14585.84 21787.26 23969.08 23977.23 19188.14 20353.20 25293.47 15775.50 14873.45 33691.06 170
MVSFormer82.85 10582.05 11185.24 8387.35 21570.21 8090.50 6490.38 14668.55 25081.32 12389.47 16261.68 16893.46 15878.98 10990.26 10692.05 145
test_djsdf80.30 15779.32 15883.27 16283.98 28465.37 19490.50 6490.38 14668.55 25076.19 21788.70 18156.44 22593.46 15878.98 10980.14 25190.97 175
LFMVS81.82 12081.23 12183.57 15391.89 7663.43 23789.84 7881.85 32277.04 6183.21 10093.10 7252.26 25893.43 16071.98 18089.95 11393.85 65
MGCFI-Net85.06 6985.51 5983.70 14989.42 13063.01 24589.43 9392.62 7376.43 7687.53 4091.34 11772.82 4293.42 16181.28 9188.74 13194.66 31
Effi-MVS+-dtu80.03 16278.57 17384.42 11085.13 26268.74 11488.77 11988.10 21774.99 10774.97 25383.49 31457.27 21893.36 16273.53 16480.88 23991.18 166
BH-RMVSNet79.61 16778.44 17683.14 16989.38 13465.93 17984.95 23787.15 24273.56 14478.19 17089.79 15256.67 22393.36 16259.53 29386.74 15890.13 207
HyFIR lowres test77.53 22475.40 24383.94 14489.59 12266.62 16780.36 31588.64 21056.29 37576.45 21085.17 27857.64 21393.28 16461.34 28083.10 21591.91 147
UniMVSNet (Re)81.60 12681.11 12383.09 17188.38 17564.41 21687.60 16093.02 4578.42 3278.56 16188.16 19969.78 7793.26 16569.58 20576.49 29191.60 152
test_fmvsmconf_n85.92 5186.04 5185.57 7685.03 26469.51 9389.62 8990.58 14073.42 14987.75 3794.02 4972.85 4193.24 16690.37 390.75 9993.96 58
test_fmvsmconf0.1_n85.61 5985.65 5785.50 7782.99 31169.39 10089.65 8690.29 15373.31 15287.77 3694.15 4371.72 5293.23 16790.31 490.67 10193.89 64
test_fmvsmconf0.01_n84.73 7384.52 7585.34 8080.25 35269.03 10389.47 9189.65 17073.24 15686.98 4894.27 3666.62 10993.23 16790.26 589.95 11393.78 71
tt080578.73 19277.83 19281.43 21485.17 25860.30 28389.41 9690.90 13271.21 18777.17 19688.73 18046.38 32093.21 16972.57 17778.96 26390.79 179
MVS_Test83.15 9983.06 9383.41 15886.86 22763.21 24186.11 20992.00 9574.31 12682.87 10589.44 16770.03 7493.21 16977.39 12688.50 13693.81 69
TAPA-MVS73.13 979.15 18277.94 18882.79 18889.59 12262.99 24988.16 14491.51 11565.77 28577.14 19791.09 12660.91 18693.21 16950.26 35687.05 15392.17 141
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
GeoE81.71 12281.01 12683.80 14889.51 12664.45 21588.97 11288.73 20871.27 18678.63 15989.76 15366.32 11593.20 17269.89 20186.02 17193.74 72
LTVRE_ROB69.57 1376.25 24874.54 25581.41 21588.60 16664.38 21779.24 32889.12 19270.76 19769.79 31887.86 20649.09 30393.20 17256.21 32680.16 24986.65 312
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH+68.96 1476.01 25274.01 26182.03 20288.60 16665.31 19588.86 11687.55 23170.25 21067.75 33387.47 21741.27 35893.19 17458.37 30675.94 30287.60 287
V4279.38 17878.24 18282.83 18381.10 34465.50 19085.55 22489.82 16471.57 18178.21 16986.12 25760.66 19193.18 17575.64 14475.46 31189.81 228
mvs_tets79.13 18377.77 19683.22 16684.70 26866.37 17189.17 10390.19 15569.38 22975.40 23589.46 16444.17 34193.15 17676.78 13480.70 24390.14 206
TR-MVS77.44 22576.18 23181.20 22288.24 17963.24 24084.61 24586.40 25667.55 26277.81 17886.48 24954.10 24293.15 17657.75 31282.72 22087.20 297
jajsoiax79.29 17977.96 18783.27 16284.68 26966.57 16989.25 10290.16 15669.20 23675.46 23289.49 16145.75 33193.13 17876.84 13280.80 24190.11 209
BH-w/o78.21 20477.33 20880.84 23288.81 15765.13 19884.87 23887.85 22669.75 22374.52 26184.74 28861.34 17793.11 17958.24 30885.84 17484.27 348
nrg03083.88 8083.53 8584.96 9286.77 23169.28 10290.46 6792.67 6774.79 11482.95 10391.33 11872.70 4393.09 18080.79 9879.28 26192.50 127
CANet_DTU80.61 14779.87 14582.83 18385.60 25163.17 24487.36 16888.65 20976.37 8175.88 22388.44 19153.51 24893.07 18173.30 16889.74 11692.25 136
UniMVSNet_NR-MVSNet81.88 11881.54 11882.92 18088.46 17163.46 23587.13 17492.37 8180.19 1278.38 16589.14 17071.66 5593.05 18270.05 19876.46 29292.25 136
DU-MVS81.12 13480.52 13382.90 18187.80 20163.46 23587.02 17991.87 10379.01 2678.38 16589.07 17265.02 12993.05 18270.05 19876.46 29292.20 139
CPTT-MVS83.73 8483.33 9084.92 9593.28 4970.86 7292.09 3690.38 14668.75 24779.57 14492.83 8160.60 19493.04 18480.92 9591.56 9090.86 178
Anonymous2023121178.97 18877.69 20082.81 18590.54 9964.29 21890.11 7591.51 11565.01 29676.16 22188.13 20450.56 28493.03 18569.68 20477.56 27991.11 168
MSLP-MVS++85.43 6285.76 5684.45 10991.93 7570.24 7990.71 5992.86 5877.46 4884.22 8392.81 8367.16 10792.94 18680.36 10094.35 5790.16 205
F-COLMAP76.38 24774.33 25982.50 19589.28 14066.95 16688.41 13289.03 19364.05 30966.83 34488.61 18546.78 31792.89 18757.48 31378.55 26587.67 285
xiu_mvs_v1_base_debu80.80 14279.72 14884.03 13887.35 21570.19 8285.56 22188.77 20369.06 24081.83 11588.16 19950.91 27992.85 18878.29 11887.56 14589.06 245
xiu_mvs_v1_base80.80 14279.72 14884.03 13887.35 21570.19 8285.56 22188.77 20369.06 24081.83 11588.16 19950.91 27992.85 18878.29 11887.56 14589.06 245
xiu_mvs_v1_base_debi80.80 14279.72 14884.03 13887.35 21570.19 8285.56 22188.77 20369.06 24081.83 11588.16 19950.91 27992.85 18878.29 11887.56 14589.06 245
NR-MVSNet80.23 15879.38 15582.78 18987.80 20163.34 23886.31 20391.09 12979.01 2672.17 29089.07 17267.20 10692.81 19166.08 23775.65 30592.20 139
TranMVSNet+NR-MVSNet80.84 13880.31 13782.42 19687.85 19862.33 25587.74 15891.33 12080.55 977.99 17689.86 15065.23 12792.62 19267.05 23075.24 31992.30 134
test_040272.79 29270.44 30379.84 25288.13 18465.99 17885.93 21384.29 28365.57 28867.40 33985.49 27046.92 31692.61 19335.88 40274.38 32780.94 380
fmvsm_s_conf0.5_n_284.04 7884.11 7983.81 14786.17 24065.00 20186.96 18087.28 23774.35 12488.25 2794.23 3961.82 16692.60 19489.85 688.09 14193.84 67
fmvsm_s_conf0.1_n_283.80 8283.79 8283.83 14685.62 25064.94 20387.03 17886.62 25374.32 12587.97 3494.33 3360.67 19092.60 19489.72 787.79 14393.96 58
SixPastTwentyTwo73.37 28271.26 29579.70 25585.08 26357.89 30785.57 22083.56 29471.03 19265.66 35685.88 26042.10 35592.57 19659.11 29763.34 38088.65 267
eth_miper_zixun_eth77.92 21476.69 22381.61 21183.00 30961.98 26083.15 27689.20 18769.52 22774.86 25584.35 29561.76 16792.56 19771.50 18472.89 34190.28 202
mvsmamba80.60 14879.38 15584.27 11989.74 12067.24 15887.47 16486.95 24570.02 21375.38 23688.93 17551.24 27692.56 19775.47 14989.22 12293.00 112
EG-PatchMatch MVS74.04 27471.82 28680.71 23584.92 26567.42 15085.86 21688.08 21866.04 28264.22 36683.85 30435.10 38392.56 19757.44 31480.83 24082.16 374
COLMAP_ROBcopyleft66.92 1773.01 28970.41 30480.81 23387.13 22565.63 18788.30 13984.19 28662.96 32063.80 37087.69 20938.04 37592.56 19746.66 37474.91 32284.24 349
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ECVR-MVScopyleft79.61 16779.26 16080.67 23690.08 10854.69 35387.89 15477.44 36274.88 11180.27 13592.79 8448.96 30692.45 20168.55 21592.50 7794.86 18
EI-MVSNet80.52 15279.98 14282.12 19984.28 27663.19 24386.41 19988.95 19974.18 13078.69 15687.54 21566.62 10992.43 20272.57 17780.57 24590.74 183
MVSTER79.01 18677.88 19182.38 19783.07 30664.80 20784.08 26188.95 19969.01 24378.69 15687.17 22654.70 23792.43 20274.69 15380.57 24589.89 224
gm-plane-assit81.40 33853.83 36162.72 32680.94 34792.39 20463.40 257
IterMVS-LS80.06 16179.38 15582.11 20085.89 24563.20 24286.79 18889.34 17974.19 12975.45 23386.72 23566.62 10992.39 20472.58 17676.86 28690.75 182
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14878.72 19377.80 19481.47 21382.73 31661.96 26186.30 20488.08 21873.26 15476.18 21885.47 27162.46 15692.36 20671.92 18173.82 33390.09 211
test250677.30 22976.49 22679.74 25490.08 10852.02 37087.86 15663.10 40874.88 11180.16 13892.79 8438.29 37492.35 20768.74 21492.50 7794.86 18
FIs82.07 11582.42 10281.04 22788.80 15858.34 29988.26 14093.49 2676.93 6378.47 16491.04 12869.92 7692.34 20869.87 20284.97 18092.44 131
test111179.43 17479.18 16380.15 24689.99 11353.31 36687.33 17077.05 36675.04 10680.23 13792.77 8648.97 30592.33 20968.87 21292.40 7994.81 21
新几何183.42 15693.13 5470.71 7485.48 26957.43 36981.80 11891.98 9663.28 14192.27 21064.60 24992.99 7087.27 296
anonymousdsp78.60 19677.15 21082.98 17880.51 35067.08 16187.24 17389.53 17465.66 28775.16 24787.19 22552.52 25392.25 21177.17 12879.34 26089.61 233
lupinMVS81.39 13080.27 13984.76 10187.35 21570.21 8085.55 22486.41 25562.85 32281.32 12388.61 18561.68 16892.24 21278.41 11690.26 10691.83 148
baseline275.70 25573.83 26681.30 21983.26 30061.79 26482.57 28580.65 33366.81 26766.88 34383.42 31557.86 21192.19 21363.47 25579.57 25589.91 222
jason81.39 13080.29 13884.70 10286.63 23569.90 8885.95 21286.77 25063.24 31581.07 12989.47 16261.08 18492.15 21478.33 11790.07 11192.05 145
jason: jason.
XVG-ACMP-BASELINE76.11 25074.27 26081.62 20983.20 30264.67 20983.60 26989.75 16769.75 22371.85 29387.09 22832.78 38792.11 21569.99 20080.43 24788.09 278
c3_l78.75 19177.91 18981.26 22082.89 31361.56 26684.09 26089.13 19169.97 21675.56 22884.29 29666.36 11492.09 21673.47 16675.48 30990.12 208
miper_ehance_all_eth78.59 19777.76 19781.08 22682.66 31861.56 26683.65 26689.15 18968.87 24575.55 22983.79 30766.49 11292.03 21773.25 16976.39 29489.64 232
GA-MVS76.87 23575.17 24881.97 20482.75 31562.58 25281.44 29886.35 25872.16 17274.74 25682.89 32546.20 32592.02 21868.85 21381.09 23791.30 164
miper_enhance_ethall77.87 21676.86 21680.92 23181.65 33261.38 26882.68 28388.98 19665.52 28975.47 23082.30 33465.76 12492.00 21972.95 17276.39 29489.39 238
thres100view90076.50 24175.55 24079.33 26289.52 12556.99 32185.83 21883.23 30073.94 13476.32 21487.12 22751.89 26891.95 22048.33 36583.75 20189.07 243
tfpn200view976.42 24575.37 24579.55 26189.13 14657.65 31285.17 22983.60 29273.41 15076.45 21086.39 25152.12 26091.95 22048.33 36583.75 20189.07 243
thres40076.50 24175.37 24579.86 25189.13 14657.65 31285.17 22983.60 29273.41 15076.45 21086.39 25152.12 26091.95 22048.33 36583.75 20190.00 217
thres600view776.50 24175.44 24179.68 25689.40 13257.16 31885.53 22683.23 30073.79 13876.26 21587.09 22851.89 26891.89 22348.05 37083.72 20490.00 217
cl2278.07 20977.01 21281.23 22182.37 32561.83 26383.55 27087.98 22068.96 24475.06 25183.87 30361.40 17691.88 22473.53 16476.39 29489.98 220
dcpmvs_285.63 5886.15 4884.06 13391.71 7864.94 20386.47 19891.87 10373.63 14186.60 5293.02 7776.57 1591.87 22583.36 6892.15 8095.35 3
FC-MVSNet-test81.52 12782.02 11280.03 24888.42 17455.97 33887.95 15093.42 2977.10 5977.38 18690.98 13469.96 7591.79 22668.46 21784.50 18692.33 132
fmvsm_l_conf0.5_n84.47 7484.54 7384.27 11985.42 25468.81 10988.49 13087.26 23968.08 25788.03 3193.49 6272.04 4891.77 22788.90 1989.14 12492.24 138
ET-MVSNet_ETH3D78.63 19576.63 22584.64 10386.73 23269.47 9585.01 23584.61 27869.54 22666.51 35286.59 24350.16 28891.75 22876.26 13784.24 19492.69 120
thres20075.55 25774.47 25678.82 27087.78 20457.85 30883.07 28083.51 29572.44 16775.84 22484.42 29152.08 26391.75 22847.41 37283.64 20686.86 307
MVP-Stereo76.12 24974.46 25781.13 22585.37 25669.79 8984.42 25387.95 22265.03 29567.46 33785.33 27353.28 25191.73 23058.01 31083.27 21281.85 375
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
fmvsm_l_conf0.5_n_a84.13 7784.16 7884.06 13385.38 25568.40 12588.34 13786.85 24967.48 26487.48 4193.40 6670.89 6491.61 23188.38 2789.22 12292.16 142
OurMVSNet-221017-074.26 27072.42 28179.80 25383.76 29059.59 29185.92 21486.64 25166.39 27866.96 34287.58 21139.46 36691.60 23265.76 24069.27 36188.22 275
fmvsm_s_conf0.5_n_a83.63 8883.41 8784.28 11786.14 24168.12 13289.43 9382.87 31070.27 20987.27 4593.80 5969.09 8491.58 23388.21 2883.65 20593.14 103
Fast-Effi-MVS+-dtu78.02 21176.49 22682.62 19383.16 30566.96 16586.94 18287.45 23572.45 16571.49 29884.17 30054.79 23691.58 23367.61 22280.31 24889.30 241
fmvsm_s_conf0.1_n_a83.32 9782.99 9584.28 11783.79 28868.07 13489.34 10082.85 31169.80 22087.36 4494.06 4768.34 9491.56 23587.95 2983.46 21093.21 99
UniMVSNet_ETH3D79.10 18478.24 18281.70 20886.85 22860.24 28487.28 17288.79 20274.25 12876.84 19990.53 14049.48 29691.56 23567.98 21982.15 22593.29 94
test_fmvsm_n_192085.29 6585.34 6285.13 8786.12 24269.93 8688.65 12690.78 13669.97 21688.27 2693.98 5471.39 5891.54 23788.49 2590.45 10393.91 61
cl____77.72 21976.76 22080.58 23782.49 32260.48 28083.09 27887.87 22469.22 23474.38 26485.22 27762.10 16391.53 23871.09 18775.41 31389.73 231
DIV-MVS_self_test77.72 21976.76 22080.58 23782.48 32360.48 28083.09 27887.86 22569.22 23474.38 26485.24 27562.10 16391.53 23871.09 18775.40 31489.74 230
test_fmvsmvis_n_192084.02 7983.87 8084.49 10884.12 28069.37 10188.15 14587.96 22170.01 21483.95 9093.23 7068.80 9191.51 24088.61 2289.96 11292.57 123
ACMH67.68 1675.89 25373.93 26381.77 20788.71 16366.61 16888.62 12789.01 19569.81 21966.78 34586.70 23941.95 35791.51 24055.64 32778.14 27287.17 298
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.5_n83.80 8283.71 8384.07 13186.69 23367.31 15489.46 9283.07 30571.09 19086.96 4993.70 6069.02 8991.47 24288.79 2084.62 18593.44 89
fmvsm_s_conf0.1_n83.56 9083.38 8884.10 12584.86 26667.28 15589.40 9783.01 30670.67 19887.08 4693.96 5568.38 9391.45 24388.56 2484.50 18693.56 84
Anonymous20240521178.25 20277.01 21281.99 20391.03 8760.67 27784.77 24083.90 28970.65 20280.00 13991.20 12241.08 36091.43 24465.21 24385.26 17893.85 65
CHOSEN 1792x268877.63 22375.69 23583.44 15589.98 11468.58 12278.70 33887.50 23356.38 37475.80 22586.84 23158.67 20491.40 24561.58 27785.75 17690.34 198
XVG-OURS80.41 15379.23 16183.97 14285.64 24969.02 10583.03 28290.39 14571.09 19077.63 18291.49 11354.62 23991.35 24675.71 14383.47 20991.54 155
lessismore_v078.97 26881.01 34557.15 31965.99 40261.16 37982.82 32739.12 36891.34 24759.67 29146.92 40688.43 272
XVG-OURS-SEG-HR80.81 14079.76 14783.96 14385.60 25168.78 11183.54 27190.50 14370.66 20176.71 20491.66 10460.69 18991.26 24876.94 13181.58 23291.83 148
tpm273.26 28571.46 29078.63 27283.34 29856.71 32680.65 31080.40 33956.63 37373.55 27182.02 33951.80 27091.24 24956.35 32578.42 26987.95 279
OpenMVS_ROBcopyleft64.09 1970.56 31268.19 31877.65 29380.26 35159.41 29385.01 23582.96 30958.76 35865.43 35882.33 33337.63 37791.23 25045.34 38476.03 30182.32 371
GBi-Net78.40 19977.40 20581.40 21687.60 21063.01 24588.39 13389.28 18171.63 17775.34 23887.28 21954.80 23391.11 25162.72 26179.57 25590.09 211
test178.40 19977.40 20581.40 21687.60 21063.01 24588.39 13389.28 18171.63 17775.34 23887.28 21954.80 23391.11 25162.72 26179.57 25590.09 211
FMVSNet177.44 22576.12 23281.40 21686.81 23063.01 24588.39 13389.28 18170.49 20474.39 26387.28 21949.06 30491.11 25160.91 28278.52 26690.09 211
FMVSNet377.88 21576.85 21780.97 23086.84 22962.36 25486.52 19788.77 20371.13 18875.34 23886.66 24154.07 24391.10 25462.72 26179.57 25589.45 237
FMVSNet278.20 20577.21 20981.20 22287.60 21062.89 25187.47 16489.02 19471.63 17775.29 24487.28 21954.80 23391.10 25462.38 26679.38 25989.61 233
K. test v371.19 30368.51 31579.21 26583.04 30857.78 31184.35 25576.91 36772.90 16262.99 37382.86 32639.27 36791.09 25661.65 27652.66 39988.75 263
CostFormer75.24 26473.90 26479.27 26382.65 31958.27 30080.80 30482.73 31361.57 33575.33 24283.13 32055.52 22891.07 25764.98 24678.34 27188.45 271
testdata291.01 25862.37 267
MSDG73.36 28470.99 29780.49 23984.51 27465.80 18380.71 30986.13 26265.70 28665.46 35783.74 30844.60 33790.91 25951.13 34976.89 28584.74 344
TAMVS78.89 19077.51 20483.03 17587.80 20167.79 14184.72 24185.05 27467.63 26076.75 20387.70 20862.25 16090.82 26058.53 30487.13 15290.49 193
diffmvspermissive82.10 11381.88 11582.76 19183.00 30963.78 22783.68 26589.76 16672.94 16182.02 11489.85 15165.96 12290.79 26182.38 8387.30 15093.71 73
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CDS-MVSNet79.07 18577.70 19983.17 16887.60 21068.23 13084.40 25486.20 26067.49 26376.36 21386.54 24761.54 17190.79 26161.86 27487.33 14990.49 193
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
131476.53 24075.30 24780.21 24583.93 28562.32 25684.66 24288.81 20160.23 34470.16 31084.07 30255.30 23090.73 26367.37 22583.21 21387.59 289
WR-MVS79.49 17179.22 16280.27 24488.79 15958.35 29885.06 23488.61 21178.56 3077.65 18188.34 19363.81 13990.66 26464.98 24677.22 28191.80 150
MVS_111021_LR82.61 10882.11 10884.11 12488.82 15671.58 5585.15 23186.16 26174.69 11680.47 13491.04 12862.29 15990.55 26580.33 10190.08 11090.20 204
HY-MVS69.67 1277.95 21377.15 21080.36 24187.57 21460.21 28583.37 27387.78 22866.11 28075.37 23787.06 23063.27 14290.48 26661.38 27982.43 22390.40 197
VNet82.21 11282.41 10381.62 20990.82 9360.93 27284.47 24889.78 16576.36 8284.07 8791.88 9964.71 13290.26 26770.68 19288.89 12693.66 74
VPA-MVSNet80.60 14880.55 13280.76 23488.07 18860.80 27586.86 18591.58 11375.67 9580.24 13689.45 16663.34 14090.25 26870.51 19479.22 26291.23 165
ab-mvs79.51 17078.97 16781.14 22488.46 17160.91 27383.84 26289.24 18570.36 20579.03 15088.87 17863.23 14490.21 26965.12 24482.57 22292.28 135
D2MVS74.82 26673.21 27179.64 25879.81 35962.56 25380.34 31687.35 23664.37 30368.86 32582.66 32946.37 32190.10 27067.91 22081.24 23586.25 316
testing9176.54 23975.66 23879.18 26688.43 17355.89 33981.08 30183.00 30773.76 13975.34 23884.29 29646.20 32590.07 27164.33 25084.50 18691.58 154
testing9976.09 25175.12 24979.00 26788.16 18155.50 34580.79 30581.40 32673.30 15375.17 24684.27 29844.48 33990.02 27264.28 25184.22 19591.48 159
1112_ss77.40 22776.43 22880.32 24389.11 15060.41 28283.65 26687.72 22962.13 33273.05 27786.72 23562.58 15489.97 27362.11 27280.80 24190.59 189
testing1175.14 26574.01 26178.53 27888.16 18156.38 33280.74 30880.42 33870.67 19872.69 28383.72 31043.61 34589.86 27462.29 26883.76 20089.36 239
tfpnnormal74.39 26873.16 27278.08 28686.10 24458.05 30284.65 24487.53 23270.32 20771.22 30085.63 26754.97 23189.86 27443.03 38875.02 32186.32 315
tpmvs71.09 30569.29 31076.49 30682.04 32756.04 33778.92 33581.37 32764.05 30967.18 34178.28 37249.74 29489.77 27649.67 35972.37 34383.67 357
Vis-MVSNet (Re-imp)78.36 20178.45 17578.07 28788.64 16551.78 37686.70 19279.63 34774.14 13175.11 24990.83 13561.29 17989.75 27758.10 30991.60 8892.69 120
ambc75.24 32173.16 39650.51 38663.05 41087.47 23464.28 36577.81 37617.80 41289.73 27857.88 31160.64 38685.49 331
VPNet78.69 19478.66 17178.76 27188.31 17755.72 34284.45 25186.63 25276.79 6778.26 16890.55 13959.30 20189.70 27966.63 23277.05 28390.88 177
mvs_anonymous79.42 17579.11 16480.34 24284.45 27557.97 30582.59 28487.62 23067.40 26576.17 22088.56 18868.47 9289.59 28070.65 19386.05 17093.47 88
pmmvs674.69 26773.39 26978.61 27381.38 33957.48 31586.64 19387.95 22264.99 29770.18 30886.61 24250.43 28689.52 28162.12 27170.18 35888.83 259
DTE-MVSNet76.99 23276.80 21877.54 29786.24 23853.06 36987.52 16290.66 13877.08 6072.50 28488.67 18360.48 19589.52 28157.33 31670.74 35590.05 216
USDC70.33 31468.37 31676.21 30880.60 34856.23 33579.19 33086.49 25460.89 33961.29 37885.47 27131.78 39089.47 28353.37 33876.21 30082.94 367
Test_1112_low_res76.40 24675.44 24179.27 26389.28 14058.09 30181.69 29387.07 24359.53 35172.48 28586.67 24061.30 17889.33 28460.81 28480.15 25090.41 196
TransMVSNet (Re)75.39 26374.56 25477.86 28885.50 25357.10 32086.78 18986.09 26372.17 17171.53 29787.34 21863.01 15089.31 28556.84 32161.83 38287.17 298
reproduce_monomvs75.40 26274.38 25878.46 28183.92 28657.80 31083.78 26386.94 24673.47 14872.25 28984.47 29038.74 37089.27 28675.32 15070.53 35688.31 274
WR-MVS_H78.51 19878.49 17478.56 27688.02 19056.38 33288.43 13192.67 6777.14 5773.89 26787.55 21466.25 11689.24 28758.92 29973.55 33590.06 215
PEN-MVS77.73 21877.69 20077.84 28987.07 22653.91 36087.91 15391.18 12477.56 4473.14 27688.82 17961.23 18089.17 28859.95 28872.37 34390.43 195
pm-mvs177.25 23076.68 22478.93 26984.22 27858.62 29686.41 19988.36 21471.37 18473.31 27388.01 20561.22 18189.15 28964.24 25273.01 34089.03 249
testdata79.97 24990.90 9164.21 21984.71 27659.27 35385.40 6092.91 7862.02 16589.08 29068.95 21191.37 9286.63 313
Baseline_NR-MVSNet78.15 20778.33 18077.61 29485.79 24656.21 33686.78 18985.76 26673.60 14377.93 17787.57 21265.02 12988.99 29167.14 22975.33 31687.63 286
旧先验286.56 19658.10 36387.04 4788.98 29274.07 160
LCM-MVSNet-Re77.05 23176.94 21577.36 29887.20 22351.60 37780.06 31880.46 33775.20 10267.69 33486.72 23562.48 15588.98 29263.44 25689.25 12191.51 156
AllTest70.96 30668.09 32179.58 25985.15 26063.62 22884.58 24679.83 34462.31 32960.32 38286.73 23332.02 38888.96 29450.28 35471.57 35186.15 319
TestCases79.58 25985.15 26063.62 22879.83 34462.31 32960.32 38286.73 23332.02 38888.96 29450.28 35471.57 35186.15 319
GG-mvs-BLEND75.38 31981.59 33455.80 34179.32 32769.63 39267.19 34073.67 39243.24 34688.90 29650.41 35184.50 18681.45 377
MonoMVSNet76.49 24475.80 23378.58 27581.55 33558.45 29786.36 20286.22 25974.87 11374.73 25783.73 30951.79 27188.73 29770.78 18972.15 34688.55 270
gg-mvs-nofinetune69.95 31867.96 32275.94 30983.07 30654.51 35677.23 35470.29 39063.11 31770.32 30662.33 40343.62 34488.69 29853.88 33587.76 14484.62 346
testing22274.04 27472.66 27878.19 28487.89 19655.36 34681.06 30279.20 35171.30 18574.65 25983.57 31339.11 36988.67 29951.43 34885.75 17690.53 191
patchmatchnet-post74.00 39151.12 27888.60 300
SCA74.22 27172.33 28279.91 25084.05 28362.17 25879.96 32179.29 35066.30 27972.38 28780.13 35551.95 26688.60 30059.25 29577.67 27888.96 254
CP-MVSNet78.22 20378.34 17977.84 28987.83 20054.54 35587.94 15191.17 12577.65 3973.48 27288.49 18962.24 16188.43 30262.19 26974.07 32890.55 190
PS-CasMVS78.01 21278.09 18577.77 29187.71 20654.39 35788.02 14791.22 12277.50 4773.26 27488.64 18460.73 18788.41 30361.88 27373.88 33290.53 191
MS-PatchMatch73.83 27772.67 27777.30 30083.87 28766.02 17681.82 29084.66 27761.37 33868.61 32882.82 32747.29 31288.21 30459.27 29484.32 19377.68 390
IterMVS-SCA-FT75.43 26073.87 26580.11 24782.69 31764.85 20681.57 29583.47 29669.16 23770.49 30484.15 30151.95 26688.15 30569.23 20772.14 34787.34 294
pmmvs474.03 27671.91 28580.39 24081.96 32868.32 12781.45 29782.14 31759.32 35269.87 31685.13 27952.40 25688.13 30660.21 28774.74 32484.73 345
EPNet_dtu75.46 25974.86 25077.23 30182.57 32054.60 35486.89 18483.09 30471.64 17666.25 35485.86 26155.99 22688.04 30754.92 33086.55 16189.05 248
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TDRefinement67.49 33664.34 34676.92 30373.47 39461.07 27184.86 23982.98 30859.77 34858.30 38985.13 27926.06 39887.89 30847.92 37160.59 38781.81 376
tpm cat170.57 31168.31 31777.35 29982.41 32457.95 30678.08 34780.22 34252.04 38668.54 32977.66 37752.00 26587.84 30951.77 34472.07 34886.25 316
baseline176.98 23376.75 22277.66 29288.13 18455.66 34385.12 23281.89 32073.04 15976.79 20188.90 17662.43 15787.78 31063.30 25871.18 35389.55 235
SDMVSNet80.38 15480.18 14080.99 22889.03 15164.94 20380.45 31489.40 17775.19 10376.61 20889.98 14860.61 19387.69 31176.83 13383.55 20790.33 199
TinyColmap67.30 33964.81 34474.76 32681.92 33056.68 32780.29 31781.49 32560.33 34256.27 39683.22 31724.77 40287.66 31245.52 38269.47 36079.95 385
ppachtmachnet_test70.04 31767.34 33578.14 28579.80 36061.13 26979.19 33080.59 33459.16 35465.27 35979.29 36346.75 31887.29 31349.33 36066.72 36986.00 325
ITE_SJBPF78.22 28381.77 33160.57 27883.30 29869.25 23367.54 33587.20 22436.33 38087.28 31454.34 33374.62 32586.80 308
MDTV_nov1_ep1369.97 30883.18 30353.48 36377.10 35580.18 34360.45 34169.33 32280.44 35148.89 30786.90 31551.60 34678.51 267
CR-MVSNet73.37 28271.27 29479.67 25781.32 34265.19 19675.92 35980.30 34059.92 34772.73 28181.19 34252.50 25486.69 31659.84 28977.71 27687.11 302
WBMVS73.43 28172.81 27675.28 32087.91 19550.99 38378.59 34181.31 32865.51 29174.47 26284.83 28546.39 31986.68 31758.41 30577.86 27488.17 277
Patchmtry70.74 30969.16 31275.49 31780.72 34654.07 35974.94 37080.30 34058.34 36070.01 31181.19 34252.50 25486.54 31853.37 33871.09 35485.87 328
JIA-IIPM66.32 34662.82 35776.82 30477.09 37661.72 26565.34 40575.38 37358.04 36464.51 36462.32 40442.05 35686.51 31951.45 34769.22 36282.21 372
UBG73.08 28872.27 28375.51 31688.02 19051.29 38178.35 34577.38 36365.52 28973.87 26882.36 33245.55 33286.48 32055.02 32984.39 19288.75 263
CMPMVSbinary51.72 2170.19 31668.16 31976.28 30773.15 39757.55 31479.47 32583.92 28848.02 39556.48 39584.81 28643.13 34786.42 32162.67 26481.81 23184.89 342
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs-eth3d70.50 31367.83 32678.52 27977.37 37566.18 17481.82 29081.51 32458.90 35763.90 36980.42 35242.69 35086.28 32258.56 30365.30 37683.11 363
ETVMVS72.25 29771.05 29675.84 31087.77 20551.91 37379.39 32674.98 37569.26 23273.71 26982.95 32340.82 36286.14 32346.17 37884.43 19189.47 236
CNLPA78.08 20876.79 21981.97 20490.40 10271.07 6587.59 16184.55 27966.03 28372.38 28789.64 15657.56 21486.04 32459.61 29283.35 21188.79 261
PatchmatchNetpermissive73.12 28771.33 29378.49 28083.18 30360.85 27479.63 32378.57 35464.13 30571.73 29479.81 36051.20 27785.97 32557.40 31576.36 29988.66 266
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
mmtdpeth74.16 27273.01 27477.60 29683.72 29161.13 26985.10 23385.10 27272.06 17377.21 19580.33 35343.84 34385.75 32677.14 12952.61 40085.91 326
CVMVSNet72.99 29072.58 27974.25 33184.28 27650.85 38486.41 19983.45 29744.56 39973.23 27587.54 21549.38 29885.70 32765.90 23878.44 26886.19 318
testing368.56 33067.67 33071.22 35787.33 22042.87 40783.06 28171.54 38770.36 20569.08 32484.38 29330.33 39485.69 32837.50 40075.45 31285.09 341
UWE-MVS72.13 29871.49 28974.03 33386.66 23447.70 39281.40 29976.89 36863.60 31475.59 22784.22 29939.94 36585.62 32948.98 36286.13 16988.77 262
IterMVS74.29 26972.94 27578.35 28281.53 33663.49 23481.58 29482.49 31468.06 25869.99 31383.69 31151.66 27385.54 33065.85 23971.64 35086.01 323
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmatch-RL test70.24 31567.78 32877.61 29477.43 37459.57 29271.16 38270.33 38962.94 32168.65 32772.77 39450.62 28385.49 33169.58 20566.58 37187.77 284
sd_testset77.70 22177.40 20578.60 27489.03 15160.02 28679.00 33385.83 26575.19 10376.61 20889.98 14854.81 23285.46 33262.63 26583.55 20790.33 199
test_post178.90 3365.43 42448.81 30885.44 33359.25 295
pmmvs571.55 30170.20 30775.61 31377.83 37256.39 33181.74 29280.89 32957.76 36567.46 33784.49 28949.26 30185.32 33457.08 31875.29 31785.11 340
mvs5depth69.45 32267.45 33475.46 31873.93 38855.83 34079.19 33083.23 30066.89 26671.63 29683.32 31633.69 38685.09 33559.81 29055.34 39685.46 332
KD-MVS_2432*160066.22 34763.89 34973.21 33875.47 38453.42 36470.76 38584.35 28164.10 30766.52 35078.52 37034.55 38484.98 33650.40 35250.33 40381.23 378
miper_refine_blended66.22 34763.89 34973.21 33875.47 38453.42 36470.76 38584.35 28164.10 30766.52 35078.52 37034.55 38484.98 33650.40 35250.33 40381.23 378
PatchMatch-RL72.38 29470.90 29876.80 30588.60 16667.38 15279.53 32476.17 37262.75 32569.36 32182.00 34045.51 33384.89 33853.62 33680.58 24478.12 389
KD-MVS_self_test68.81 32667.59 33272.46 34774.29 38745.45 39877.93 34987.00 24463.12 31663.99 36878.99 36842.32 35284.77 33956.55 32464.09 37987.16 300
RPSCF73.23 28671.46 29078.54 27782.50 32159.85 28782.18 28882.84 31258.96 35671.15 30189.41 16845.48 33584.77 33958.82 30171.83 34991.02 174
test_post5.46 42350.36 28784.24 341
CL-MVSNet_self_test72.37 29571.46 29075.09 32279.49 36553.53 36280.76 30785.01 27569.12 23870.51 30382.05 33857.92 21084.13 34252.27 34366.00 37487.60 287
our_test_369.14 32467.00 33775.57 31479.80 36058.80 29477.96 34877.81 35759.55 35062.90 37478.25 37347.43 31183.97 34351.71 34567.58 36883.93 354
EU-MVSNet68.53 33167.61 33171.31 35678.51 37147.01 39584.47 24884.27 28442.27 40266.44 35384.79 28740.44 36383.76 34458.76 30268.54 36683.17 361
MDA-MVSNet-bldmvs66.68 34263.66 35175.75 31179.28 36760.56 27973.92 37478.35 35564.43 30150.13 40479.87 35944.02 34283.67 34546.10 37956.86 39083.03 365
MIMVSNet168.58 32966.78 33973.98 33480.07 35551.82 37580.77 30684.37 28064.40 30259.75 38582.16 33736.47 37983.63 34642.73 38970.33 35786.48 314
patch_mono-283.65 8684.54 7380.99 22890.06 11265.83 18284.21 25788.74 20771.60 18085.01 6492.44 8974.51 2583.50 34782.15 8492.15 8093.64 80
PM-MVS66.41 34564.14 34773.20 34073.92 38956.45 32978.97 33464.96 40663.88 31364.72 36380.24 35419.84 41083.44 34866.24 23364.52 37879.71 386
PVSNet64.34 1872.08 29970.87 29975.69 31286.21 23956.44 33074.37 37280.73 33262.06 33370.17 30982.23 33642.86 34983.31 34954.77 33184.45 19087.32 295
tpm72.37 29571.71 28774.35 33082.19 32652.00 37179.22 32977.29 36464.56 30072.95 27983.68 31251.35 27483.26 35058.33 30775.80 30387.81 283
miper_lstm_enhance74.11 27373.11 27377.13 30280.11 35459.62 29072.23 37886.92 24866.76 26970.40 30582.92 32456.93 22182.92 35169.06 21072.63 34288.87 257
tpmrst72.39 29372.13 28473.18 34180.54 34949.91 38879.91 32279.08 35263.11 31771.69 29579.95 35755.32 22982.77 35265.66 24173.89 33186.87 306
MVS-HIRNet59.14 36357.67 36563.57 38181.65 33243.50 40671.73 37965.06 40539.59 40651.43 40157.73 40938.34 37382.58 35339.53 39573.95 33064.62 405
Syy-MVS68.05 33467.85 32468.67 37084.68 26940.97 41378.62 33973.08 38466.65 27466.74 34679.46 36152.11 26282.30 35432.89 40576.38 29782.75 368
myMVS_eth3d67.02 34066.29 34169.21 36584.68 26942.58 40878.62 33973.08 38466.65 27466.74 34679.46 36131.53 39182.30 35439.43 39776.38 29782.75 368
FMVSNet569.50 32167.96 32274.15 33282.97 31255.35 34780.01 32082.12 31862.56 32763.02 37181.53 34136.92 37881.92 35648.42 36474.06 32985.17 339
PatchT68.46 33267.85 32470.29 36180.70 34743.93 40572.47 37774.88 37660.15 34570.55 30276.57 38149.94 29181.59 35750.58 35074.83 32385.34 334
EGC-MVSNET52.07 37547.05 37967.14 37683.51 29560.71 27680.50 31367.75 3980.07 4250.43 42675.85 38724.26 40381.54 35828.82 40862.25 38159.16 408
MIMVSNet70.69 31069.30 30974.88 32484.52 27356.35 33475.87 36179.42 34864.59 29967.76 33282.41 33141.10 35981.54 35846.64 37681.34 23386.75 310
Anonymous2024052168.80 32767.22 33673.55 33674.33 38654.11 35883.18 27585.61 26758.15 36261.68 37780.94 34730.71 39381.27 36057.00 31973.34 33985.28 335
WB-MVSnew71.96 30071.65 28872.89 34284.67 27251.88 37482.29 28777.57 35962.31 32973.67 27083.00 32253.49 24981.10 36145.75 38182.13 22685.70 329
WTY-MVS75.65 25675.68 23675.57 31486.40 23756.82 32377.92 35082.40 31565.10 29376.18 21887.72 20763.13 14980.90 36260.31 28681.96 22889.00 252
dp66.80 34165.43 34370.90 36079.74 36248.82 39175.12 36874.77 37759.61 34964.08 36777.23 37842.89 34880.72 36348.86 36366.58 37183.16 362
ADS-MVSNet266.20 34963.33 35274.82 32579.92 35658.75 29567.55 39775.19 37453.37 38365.25 36075.86 38542.32 35280.53 36441.57 39268.91 36385.18 337
XXY-MVS75.41 26175.56 23974.96 32383.59 29357.82 30980.59 31183.87 29066.54 27774.93 25488.31 19463.24 14380.09 36562.16 27076.85 28786.97 305
test_vis1_n_192075.52 25875.78 23474.75 32779.84 35857.44 31683.26 27485.52 26862.83 32379.34 14886.17 25645.10 33679.71 36678.75 11181.21 23687.10 304
test-LLR72.94 29172.43 28074.48 32881.35 34058.04 30378.38 34277.46 36066.66 27169.95 31479.00 36648.06 30979.24 36766.13 23484.83 18186.15 319
test-mter71.41 30270.39 30574.48 32881.35 34058.04 30378.38 34277.46 36060.32 34369.95 31479.00 36636.08 38179.24 36766.13 23484.83 18186.15 319
Anonymous2023120668.60 32867.80 32771.02 35880.23 35350.75 38578.30 34680.47 33656.79 37266.11 35582.63 33046.35 32278.95 36943.62 38775.70 30483.36 360
UnsupCasMVSNet_bld63.70 35561.53 36170.21 36273.69 39151.39 38072.82 37681.89 32055.63 37757.81 39171.80 39638.67 37178.61 37049.26 36152.21 40180.63 382
test20.0367.45 33766.95 33868.94 36675.48 38344.84 40377.50 35177.67 35866.66 27163.01 37283.80 30647.02 31578.40 37142.53 39168.86 36583.58 358
PMMVS69.34 32368.67 31471.35 35575.67 38162.03 25975.17 36573.46 38250.00 39268.68 32679.05 36452.07 26478.13 37261.16 28182.77 21873.90 396
sss73.60 27973.64 26873.51 33782.80 31455.01 35176.12 35781.69 32362.47 32874.68 25885.85 26257.32 21778.11 37360.86 28380.93 23887.39 292
LCM-MVSNet54.25 36849.68 37867.97 37553.73 42245.28 40166.85 40080.78 33135.96 41139.45 41262.23 4058.70 42278.06 37448.24 36851.20 40280.57 383
EPMVS69.02 32568.16 31971.59 35179.61 36349.80 39077.40 35266.93 40062.82 32470.01 31179.05 36445.79 32977.86 37556.58 32375.26 31887.13 301
PVSNet_057.27 2061.67 36059.27 36368.85 36879.61 36357.44 31668.01 39573.44 38355.93 37658.54 38870.41 39944.58 33877.55 37647.01 37335.91 41171.55 399
UnsupCasMVSNet_eth67.33 33865.99 34271.37 35373.48 39351.47 37975.16 36685.19 27165.20 29260.78 38080.93 34942.35 35177.20 37757.12 31753.69 39885.44 333
test_fmvs1_n70.86 30870.24 30672.73 34472.51 40155.28 34881.27 30079.71 34651.49 39078.73 15584.87 28427.54 39777.02 37876.06 13979.97 25385.88 327
test_fmvs170.93 30770.52 30172.16 34873.71 39055.05 35080.82 30378.77 35351.21 39178.58 16084.41 29231.20 39276.94 37975.88 14280.12 25284.47 347
TESTMET0.1,169.89 31969.00 31372.55 34579.27 36856.85 32278.38 34274.71 37957.64 36668.09 33177.19 37937.75 37676.70 38063.92 25384.09 19684.10 352
dmvs_re71.14 30470.58 30072.80 34381.96 32859.68 28975.60 36379.34 34968.55 25069.27 32380.72 35049.42 29776.54 38152.56 34277.79 27582.19 373
LF4IMVS64.02 35462.19 35869.50 36470.90 40253.29 36776.13 35677.18 36552.65 38558.59 38780.98 34623.55 40576.52 38253.06 34066.66 37078.68 388
new-patchmatchnet61.73 35961.73 36061.70 38372.74 39924.50 42669.16 39278.03 35661.40 33656.72 39475.53 38838.42 37276.48 38345.95 38057.67 38984.13 351
test_cas_vis1_n_192073.76 27873.74 26773.81 33575.90 37959.77 28880.51 31282.40 31558.30 36181.62 12185.69 26444.35 34076.41 38476.29 13678.61 26485.23 336
APD_test153.31 37249.93 37763.42 38265.68 40950.13 38771.59 38166.90 40134.43 41240.58 41171.56 3978.65 42376.27 38534.64 40455.36 39563.86 406
test_vis1_n69.85 32069.21 31171.77 35072.66 40055.27 34981.48 29676.21 37152.03 38775.30 24383.20 31928.97 39576.22 38674.60 15478.41 27083.81 355
PMVScopyleft37.38 2244.16 38340.28 38755.82 39240.82 42742.54 41065.12 40663.99 40734.43 41224.48 41857.12 4113.92 42876.17 38717.10 41955.52 39448.75 413
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ttmdpeth59.91 36257.10 36668.34 37267.13 40846.65 39774.64 37167.41 39948.30 39462.52 37685.04 28320.40 40875.93 38842.55 39045.90 40982.44 370
test0.0.03 168.00 33567.69 32968.90 36777.55 37347.43 39375.70 36272.95 38666.66 27166.56 34882.29 33548.06 30975.87 38944.97 38574.51 32683.41 359
WB-MVS54.94 36754.72 36855.60 39373.50 39220.90 42774.27 37361.19 41059.16 35450.61 40274.15 39047.19 31475.78 39017.31 41835.07 41270.12 400
Gipumacopyleft45.18 38241.86 38555.16 39477.03 37751.52 37832.50 41880.52 33532.46 41427.12 41735.02 4189.52 42175.50 39122.31 41560.21 38838.45 417
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmmvs357.79 36454.26 36968.37 37164.02 41256.72 32575.12 36865.17 40440.20 40452.93 40069.86 40020.36 40975.48 39245.45 38355.25 39772.90 398
SSC-MVS53.88 37053.59 37054.75 39572.87 39819.59 42873.84 37560.53 41257.58 36849.18 40673.45 39346.34 32375.47 39316.20 42132.28 41469.20 401
test_fmvs268.35 33367.48 33370.98 35969.50 40451.95 37280.05 31976.38 37049.33 39374.65 25984.38 29323.30 40675.40 39474.51 15575.17 32085.60 330
CHOSEN 280x42066.51 34464.71 34571.90 34981.45 33763.52 23357.98 41268.95 39653.57 38262.59 37576.70 38046.22 32475.29 39555.25 32879.68 25476.88 392
testgi66.67 34366.53 34067.08 37775.62 38241.69 41275.93 35876.50 36966.11 28065.20 36286.59 24335.72 38274.71 39643.71 38673.38 33884.84 343
YYNet165.03 35062.91 35571.38 35275.85 38056.60 32869.12 39374.66 38057.28 37054.12 39877.87 37545.85 32874.48 39749.95 35761.52 38483.05 364
MDA-MVSNet_test_wron65.03 35062.92 35471.37 35375.93 37856.73 32469.09 39474.73 37857.28 37054.03 39977.89 37445.88 32774.39 39849.89 35861.55 38382.99 366
ADS-MVSNet64.36 35362.88 35668.78 36979.92 35647.17 39467.55 39771.18 38853.37 38365.25 36075.86 38542.32 35273.99 39941.57 39268.91 36385.18 337
dmvs_testset62.63 35764.11 34858.19 38778.55 37024.76 42575.28 36465.94 40367.91 25960.34 38176.01 38453.56 24773.94 40031.79 40667.65 36775.88 394
ANet_high50.57 37746.10 38163.99 38048.67 42539.13 41470.99 38480.85 33061.39 33731.18 41457.70 41017.02 41373.65 40131.22 40715.89 42279.18 387
test_fmvs363.36 35661.82 35967.98 37462.51 41346.96 39677.37 35374.03 38145.24 39867.50 33678.79 36912.16 41872.98 40272.77 17566.02 37383.99 353
Patchmatch-test64.82 35263.24 35369.57 36379.42 36649.82 38963.49 40969.05 39551.98 38859.95 38480.13 35550.91 27970.98 40340.66 39473.57 33487.90 281
MVStest156.63 36652.76 37268.25 37361.67 41453.25 36871.67 38068.90 39738.59 40750.59 40383.05 32125.08 40070.66 40436.76 40138.56 41080.83 381
testf145.72 37941.96 38357.00 38856.90 41645.32 39966.14 40259.26 41326.19 41630.89 41560.96 4074.14 42670.64 40526.39 41246.73 40755.04 411
APD_test245.72 37941.96 38357.00 38856.90 41645.32 39966.14 40259.26 41326.19 41630.89 41560.96 4074.14 42670.64 40526.39 41246.73 40755.04 411
FPMVS53.68 37151.64 37359.81 38665.08 41051.03 38269.48 39069.58 39341.46 40340.67 41072.32 39516.46 41470.00 40724.24 41465.42 37558.40 410
test_vis1_rt60.28 36158.42 36465.84 37867.25 40755.60 34470.44 38760.94 41144.33 40059.00 38666.64 40124.91 40168.67 40862.80 26069.48 35973.25 397
DSMNet-mixed57.77 36556.90 36760.38 38567.70 40635.61 41669.18 39153.97 41732.30 41557.49 39279.88 35840.39 36468.57 40938.78 39872.37 34376.97 391
mamv476.81 23678.23 18472.54 34686.12 24265.75 18678.76 33782.07 31964.12 30672.97 27891.02 13167.97 9768.08 41083.04 7378.02 27383.80 356
mvsany_test162.30 35861.26 36265.41 37969.52 40354.86 35266.86 39949.78 41946.65 39668.50 33083.21 31849.15 30266.28 41156.93 32060.77 38575.11 395
N_pmnet52.79 37353.26 37151.40 39778.99 3697.68 43169.52 3893.89 43051.63 38957.01 39374.98 38940.83 36165.96 41237.78 39964.67 37780.56 384
test_vis3_rt49.26 37847.02 38056.00 39054.30 41945.27 40266.76 40148.08 42036.83 40944.38 40853.20 4137.17 42564.07 41356.77 32255.66 39358.65 409
mvsany_test353.99 36951.45 37461.61 38455.51 41844.74 40463.52 40845.41 42343.69 40158.11 39076.45 38217.99 41163.76 41454.77 33147.59 40576.34 393
dongtai45.42 38145.38 38245.55 39973.36 39526.85 42367.72 39634.19 42554.15 38149.65 40556.41 41225.43 39962.94 41519.45 41628.09 41646.86 415
new_pmnet50.91 37650.29 37652.78 39668.58 40534.94 41863.71 40756.63 41639.73 40544.95 40765.47 40221.93 40758.48 41634.98 40356.62 39164.92 404
test_f52.09 37450.82 37555.90 39153.82 42142.31 41159.42 41158.31 41536.45 41056.12 39770.96 39812.18 41757.79 41753.51 33756.57 39267.60 402
PMMVS240.82 38438.86 38846.69 39853.84 42016.45 42948.61 41549.92 41837.49 40831.67 41360.97 4068.14 42456.42 41828.42 40930.72 41567.19 403
E-PMN31.77 38630.64 38935.15 40352.87 42327.67 42057.09 41347.86 42124.64 41816.40 42333.05 41911.23 41954.90 41914.46 42218.15 42022.87 419
EMVS30.81 38829.65 39034.27 40450.96 42425.95 42456.58 41446.80 42224.01 41915.53 42430.68 42012.47 41654.43 42012.81 42317.05 42122.43 420
test_method31.52 38729.28 39138.23 40127.03 4296.50 43220.94 42062.21 4094.05 42322.35 42152.50 41413.33 41547.58 42127.04 41134.04 41360.62 407
MVEpermissive26.22 2330.37 38925.89 39343.81 40044.55 42635.46 41728.87 41939.07 42418.20 42018.58 42240.18 4172.68 42947.37 42217.07 42023.78 41948.60 414
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
kuosan39.70 38540.40 38637.58 40264.52 41126.98 42165.62 40433.02 42646.12 39742.79 40948.99 41524.10 40446.56 42312.16 42426.30 41739.20 416
DeepMVS_CXcopyleft27.40 40540.17 42826.90 42224.59 42917.44 42123.95 41948.61 4169.77 42026.48 42418.06 41724.47 41828.83 418
wuyk23d16.82 39215.94 39519.46 40658.74 41531.45 41939.22 4163.74 4316.84 4226.04 4252.70 4251.27 43024.29 42510.54 42514.40 4242.63 422
tmp_tt18.61 39121.40 39410.23 4074.82 43010.11 43034.70 41730.74 4281.48 42423.91 42026.07 42128.42 39613.41 42627.12 41015.35 4237.17 421
testmvs6.04 3958.02 3980.10 4090.08 4310.03 43469.74 3880.04 4320.05 4260.31 4271.68 4260.02 4320.04 4270.24 4260.02 4250.25 424
test1236.12 3948.11 3970.14 4080.06 4320.09 43371.05 3830.03 4330.04 4270.25 4281.30 4270.05 4310.03 4280.21 4270.01 4260.29 423
mmdepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
monomultidepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
test_blank0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uanet_test0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
DCPMVS0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
cdsmvs_eth3d_5k19.96 39026.61 3920.00 4100.00 4330.00 4350.00 42189.26 1840.00 4280.00 42988.61 18561.62 1700.00 4290.00 4280.00 4270.00 425
pcd_1.5k_mvsjas5.26 3967.02 3990.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 42863.15 1460.00 4290.00 4280.00 4270.00 425
sosnet-low-res0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
sosnet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uncertanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
Regformer0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
ab-mvs-re7.23 3939.64 3960.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 42986.72 2350.00 4330.00 4290.00 4280.00 4270.00 425
uanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
WAC-MVS42.58 40839.46 396
FOURS195.00 1072.39 3995.06 193.84 1574.49 12191.30 15
test_one_060195.07 771.46 5794.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 433
eth-test0.00 433
RE-MVS-def85.48 6093.06 5870.63 7691.88 3892.27 8473.53 14685.69 5894.45 2863.87 13782.75 7791.87 8492.50 127
IU-MVS95.30 271.25 5992.95 5566.81 26792.39 688.94 1896.63 494.85 20
save fliter93.80 4072.35 4290.47 6691.17 12574.31 126
test072695.27 571.25 5993.60 694.11 677.33 5092.81 395.79 380.98 9
GSMVS88.96 254
test_part295.06 872.65 3291.80 13
sam_mvs151.32 27588.96 254
sam_mvs50.01 289
MTGPAbinary92.02 93
MTMP92.18 3432.83 427
test9_res84.90 4895.70 2692.87 115
agg_prior282.91 7595.45 2992.70 118
test_prior472.60 3489.01 111
test_prior288.85 11775.41 9884.91 6793.54 6174.28 2983.31 6995.86 20
新几何286.29 205
旧先验191.96 7465.79 18486.37 25793.08 7669.31 8392.74 7388.74 265
原ACMM286.86 185
test22291.50 8068.26 12984.16 25883.20 30354.63 38079.74 14191.63 10758.97 20391.42 9186.77 309
segment_acmp73.08 38
testdata184.14 25975.71 92
plane_prior790.08 10868.51 123
plane_prior689.84 11768.70 11860.42 196
plane_prior491.00 132
plane_prior368.60 12178.44 3178.92 153
plane_prior291.25 5279.12 23
plane_prior189.90 116
plane_prior68.71 11690.38 7077.62 4086.16 168
n20.00 434
nn0.00 434
door-mid69.98 391
test1192.23 87
door69.44 394
HQP5-MVS66.98 163
HQP-NCC89.33 13589.17 10376.41 7777.23 191
ACMP_Plane89.33 13589.17 10376.41 7777.23 191
BP-MVS77.47 124
HQP3-MVS92.19 9085.99 172
HQP2-MVS60.17 199
NP-MVS89.62 12168.32 12790.24 144
MDTV_nov1_ep13_2view37.79 41575.16 36655.10 37866.53 34949.34 29953.98 33487.94 280
ACMMP++_ref81.95 229
ACMMP++81.25 234
Test By Simon64.33 133