This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12399.63 3999.48 399.98 699.83 7098.75 5599.99 499.97 199.96 1499.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12399.63 3999.47 499.98 699.82 7998.75 5599.99 499.97 199.97 899.94 11
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9799.58 11099.69 1899.43 799.98 699.91 2298.62 70100.00 199.97 199.95 2099.90 17
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17999.64 3699.45 599.92 1799.92 1598.62 7099.99 499.96 799.99 199.96 7
patch_mono-299.26 7399.62 598.16 29999.81 4694.59 36299.52 14899.64 3699.33 1399.73 6699.90 2999.00 2299.99 499.69 2099.98 499.89 20
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 22099.37 10399.58 11099.62 4199.41 999.87 2799.92 1598.81 44100.00 199.97 199.93 2799.94 11
dcpmvs_299.23 7999.58 798.16 29999.83 3994.68 36099.76 3699.52 10499.07 3599.98 699.88 3898.56 7499.93 8799.67 2299.98 499.87 31
EI-MVSNet-UG-set99.58 999.57 899.64 7999.78 5699.14 13699.60 9699.45 19999.01 4099.90 2099.83 7098.98 2399.93 8799.59 2899.95 2099.86 33
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4099.56 7199.02 3899.88 2299.85 5599.18 1099.96 3099.22 7299.92 2999.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
EI-MVSNet-Vis-set99.58 999.56 1099.64 7999.78 5699.15 13599.61 9599.45 19999.01 4099.89 2199.82 7999.01 1899.92 9899.56 3299.95 2099.85 36
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9699.48 15999.08 3399.91 1899.81 9399.20 799.96 3098.91 10299.85 7499.79 74
SD-MVS99.41 4999.52 1199.05 18799.74 8099.68 4899.46 18899.52 10499.11 2699.88 2299.91 2299.43 197.70 38898.72 13399.93 2799.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DVP-MVS++99.59 899.50 1399.88 599.51 17599.88 899.87 799.51 11998.99 4599.88 2299.81 9399.27 599.96 3098.85 11599.80 10299.81 61
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8499.39 22698.91 5899.78 5199.85 5599.36 299.94 6998.84 11899.88 5699.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CS-MVS99.50 2099.48 1599.54 10199.76 6599.42 9999.90 199.55 7998.56 8999.78 5199.70 15998.65 6899.79 19399.65 2499.78 10999.41 204
CS-MVS-test99.49 2299.48 1599.54 10199.78 5699.30 11499.89 299.58 6298.56 8999.73 6699.69 16998.55 7599.82 17999.69 2099.85 7499.48 184
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14899.65 3399.10 2799.98 699.92 1597.35 12599.96 3099.94 1099.92 2999.95 9
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11799.37 24299.10 2799.81 4199.80 10698.94 2999.96 3098.93 9999.86 6799.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSLP-MVS++99.46 3299.47 1799.44 13399.60 15099.16 13199.41 21099.71 1398.98 4899.45 14099.78 12499.19 999.54 26499.28 6699.84 8299.63 140
mvsany_test199.50 2099.46 2099.62 8699.61 14599.09 14198.94 34199.48 15999.10 2799.96 1499.91 2298.85 3999.96 3099.72 1899.58 14399.82 54
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 20299.65 5799.50 16399.61 4899.45 599.87 2799.92 1597.31 12699.97 2199.95 899.99 199.97 4
mamv499.33 6199.42 2299.07 18399.67 11497.73 25899.42 20699.60 5498.15 13599.94 1699.91 2298.42 8599.94 6999.72 1899.96 1499.54 164
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5799.68 2098.98 4899.37 16499.74 14498.81 4499.94 6998.79 12699.86 6799.84 40
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10299.51 11998.62 8499.79 4699.83 7099.28 499.97 2198.48 16899.90 4499.84 40
Skip Steuart: Steuart Systems R&D Blog.
DELS-MVS99.48 2699.42 2299.65 7499.72 9299.40 10299.05 31399.66 2899.14 2199.57 11999.80 10698.46 8199.94 6999.57 3199.84 8299.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVSMamba_PlusPlus99.46 3299.41 2699.64 7999.68 11199.50 8899.75 4099.50 13898.27 11799.87 2799.92 1598.09 10199.94 6999.65 2499.95 2099.47 190
fmvsm_s_conf0.5_n99.51 1899.40 2799.85 2899.84 3299.65 5799.51 15699.67 2399.13 2299.98 699.92 1596.60 15199.96 3099.95 899.96 1499.95 9
iter_conf0599.48 2699.40 2799.71 6799.68 11199.61 6799.49 17499.58 6298.27 11799.95 1599.92 1598.09 10199.94 6999.65 2499.96 1499.58 154
HPM-MVS_fast99.51 1899.40 2799.85 2899.91 199.79 3099.76 3699.56 7197.72 18999.76 6099.75 13999.13 1299.92 9899.07 8699.92 2999.85 36
MTAPA99.52 1799.39 3099.89 499.90 499.86 1399.66 7199.47 17998.79 7099.68 7899.81 9398.43 8399.97 2198.88 10599.90 4499.83 49
EC-MVSNet99.44 3999.39 3099.58 9499.56 16099.49 8999.88 399.58 6298.38 10499.73 6699.69 16998.20 9699.70 23199.64 2799.82 9599.54 164
DeepC-MVS_fast98.69 199.49 2299.39 3099.77 5599.63 13599.59 7199.36 23399.46 18899.07 3599.79 4699.82 7998.85 3999.92 9898.68 14099.87 5999.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HFP-MVS99.49 2299.37 3399.86 2199.87 1599.80 2799.66 7199.67 2398.15 13599.68 7899.69 16999.06 1699.96 3098.69 13899.87 5999.84 40
DeepPCF-MVS98.18 398.81 14699.37 3397.12 34699.60 15091.75 38698.61 37199.44 20799.35 1299.83 3899.85 5598.70 6399.81 18499.02 9099.91 3699.81 61
ACMMPR99.49 2299.36 3599.86 2199.87 1599.79 3099.66 7199.67 2398.15 13599.67 8299.69 16998.95 2799.96 3098.69 13899.87 5999.84 40
TSAR-MVS + GP.99.36 5899.36 3599.36 14199.67 11498.61 20399.07 30899.33 26099.00 4399.82 3999.81 9399.06 1699.84 15999.09 8499.42 15399.65 129
region2R99.48 2699.35 3799.87 1199.88 1199.80 2799.65 7799.66 2898.13 13999.66 8799.68 17598.96 2499.96 3098.62 14699.87 5999.84 40
APD-MVS_3200maxsize99.48 2699.35 3799.85 2899.76 6599.83 1699.63 8499.54 8898.36 10899.79 4699.82 7998.86 3899.95 5998.62 14699.81 9899.78 80
RE-MVS-def99.34 3999.76 6599.82 2299.63 8499.52 10498.38 10499.76 6099.82 7998.75 5598.61 14999.81 9899.77 82
ACMMP_NAP99.47 3099.34 3999.88 599.87 1599.86 1399.47 18599.48 15998.05 15699.76 6099.86 5098.82 4399.93 8798.82 12599.91 3699.84 40
ZNCC-MVS99.47 3099.33 4199.87 1199.87 1599.81 2599.64 8099.67 2398.08 15099.55 12499.64 19398.91 3499.96 3098.72 13399.90 4499.82 54
MVS_111021_LR99.41 4999.33 4199.65 7499.77 6299.51 8798.94 34199.85 698.82 6599.65 9399.74 14498.51 7899.80 19098.83 12199.89 5399.64 136
iter_conf05_1199.40 5299.32 4399.63 8599.53 16799.47 9399.75 4099.52 10498.11 14299.87 2799.85 5597.72 11599.89 13299.56 3299.97 899.53 170
DPE-MVScopyleft99.46 3299.32 4399.91 299.78 5699.88 899.36 23399.51 11998.73 7699.88 2299.84 6698.72 6199.96 3098.16 19699.87 5999.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS_030499.42 4499.32 4399.72 6599.70 10299.27 11899.52 14897.57 39099.51 299.82 3999.78 12498.09 10199.96 3099.97 199.97 899.94 11
PS-MVSNAJ99.32 6399.32 4399.30 15599.57 15698.94 16898.97 33599.46 18898.92 5799.71 7299.24 31399.01 1899.98 1399.35 5599.66 13398.97 252
CP-MVS99.45 3599.32 4399.85 2899.83 3999.75 3999.69 5799.52 10498.07 15199.53 12799.63 19998.93 3399.97 2198.74 13099.91 3699.83 49
MVS_111021_HR99.41 4999.32 4399.66 7099.72 9299.47 9398.95 33999.85 698.82 6599.54 12599.73 15098.51 7899.74 20998.91 10299.88 5699.77 82
CSCG99.32 6399.32 4399.32 14999.85 2698.29 22799.71 5299.66 2898.11 14299.41 15399.80 10698.37 8999.96 3098.99 9299.96 1499.72 103
ACMMPcopyleft99.45 3599.32 4399.82 4199.89 899.67 5199.62 8999.69 1898.12 14099.63 10199.84 6698.73 6099.96 3098.55 16499.83 9199.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post99.45 3599.31 5199.85 2899.76 6599.82 2299.63 8499.52 10498.38 10499.76 6099.82 7998.53 7699.95 5998.61 14999.81 9899.77 82
PGM-MVS99.45 3599.31 5199.86 2199.87 1599.78 3699.58 11099.65 3397.84 17599.71 7299.80 10699.12 1399.97 2198.33 18399.87 5999.83 49
SMA-MVScopyleft99.44 3999.30 5399.85 2899.73 8899.83 1699.56 12399.47 17997.45 22299.78 5199.82 7999.18 1099.91 11098.79 12699.89 5399.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MCST-MVS99.43 4299.30 5399.82 4199.79 5499.74 4199.29 25499.40 22398.79 7099.52 12999.62 20498.91 3499.90 12198.64 14499.75 11799.82 54
mPP-MVS99.44 3999.30 5399.86 2199.88 1199.79 3099.69 5799.48 15998.12 14099.50 13299.75 13998.78 4899.97 2198.57 15899.89 5399.83 49
CNVR-MVS99.42 4499.30 5399.78 5299.62 14199.71 4499.26 27399.52 10498.82 6599.39 16099.71 15598.96 2499.85 15298.59 15499.80 10299.77 82
SR-MVS99.43 4299.29 5799.86 2199.75 7399.83 1699.59 10299.62 4198.21 12899.73 6699.79 11898.68 6499.96 3098.44 17499.77 11299.79 74
UA-Net99.42 4499.29 5799.80 4699.62 14199.55 7899.50 16399.70 1598.79 7099.77 5599.96 197.45 12099.96 3098.92 10199.90 4499.89 20
MM99.40 5299.28 5999.74 6199.67 11499.31 11199.52 14898.87 34499.55 199.74 6499.80 10696.47 15799.98 1399.97 199.97 899.94 11
HPM-MVScopyleft99.42 4499.28 5999.83 4099.90 499.72 4299.81 1999.54 8897.59 20399.68 7899.63 19998.91 3499.94 6998.58 15599.91 3699.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet_Blended_VisFu99.36 5899.28 5999.61 8799.86 2099.07 14699.47 18599.93 297.66 19899.71 7299.86 5097.73 11499.96 3099.47 4899.82 9599.79 74
MSP-MVS99.42 4499.27 6299.88 599.89 899.80 2799.67 6699.50 13898.70 7899.77 5599.49 24898.21 9599.95 5998.46 17299.77 11299.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
xiu_mvs_v1_base_debu99.29 6799.27 6299.34 14399.63 13598.97 15899.12 29899.51 11998.86 6099.84 3399.47 25698.18 9799.99 499.50 4199.31 16399.08 237
xiu_mvs_v1_base99.29 6799.27 6299.34 14399.63 13598.97 15899.12 29899.51 11998.86 6099.84 3399.47 25698.18 9799.99 499.50 4199.31 16399.08 237
xiu_mvs_v1_base_debi99.29 6799.27 6299.34 14399.63 13598.97 15899.12 29899.51 11998.86 6099.84 3399.47 25698.18 9799.99 499.50 4199.31 16399.08 237
xiu_mvs_v2_base99.26 7399.25 6699.29 15899.53 16798.91 17299.02 32199.45 19998.80 6999.71 7299.26 31198.94 2999.98 1399.34 5999.23 16798.98 251
SF-MVS99.38 5699.24 6799.79 4999.79 5499.68 4899.57 11799.54 8897.82 18099.71 7299.80 10698.95 2799.93 8798.19 19299.84 8299.74 92
GST-MVS99.40 5299.24 6799.85 2899.86 2099.79 3099.60 9699.67 2397.97 16299.63 10199.68 17598.52 7799.95 5998.38 17799.86 6799.81 61
HPM-MVS++copyleft99.39 5599.23 6999.87 1199.75 7399.84 1599.43 19999.51 11998.68 8199.27 18899.53 23698.64 6999.96 3098.44 17499.80 10299.79 74
ETV-MVS99.26 7399.21 7099.40 13699.46 19699.30 11499.56 12399.52 10498.52 9399.44 14599.27 30998.41 8799.86 14699.10 8399.59 14299.04 244
MP-MVS-pluss99.37 5799.20 7199.88 599.90 499.87 1299.30 24999.52 10497.18 24799.60 11199.79 11898.79 4799.95 5998.83 12199.91 3699.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
NCCC99.34 6099.19 7299.79 4999.61 14599.65 5799.30 24999.48 15998.86 6099.21 20299.63 19998.72 6199.90 12198.25 18899.63 13899.80 70
DeepC-MVS98.35 299.30 6599.19 7299.64 7999.82 4299.23 12499.62 8999.55 7998.94 5499.63 10199.95 395.82 18299.94 6999.37 5499.97 899.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PHI-MVS99.30 6599.17 7499.70 6899.56 16099.52 8699.58 11099.80 897.12 25399.62 10599.73 15098.58 7299.90 12198.61 14999.91 3699.68 119
MP-MVScopyleft99.33 6199.15 7599.87 1199.88 1199.82 2299.66 7199.46 18898.09 14699.48 13699.74 14498.29 9299.96 3097.93 21499.87 5999.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CANet99.25 7799.14 7699.59 9199.41 21099.16 13199.35 23899.57 6698.82 6599.51 13199.61 20896.46 15899.95 5999.59 2899.98 499.65 129
CHOSEN 280x42099.12 10099.13 7799.08 18299.66 12497.89 25198.43 38199.71 1398.88 5999.62 10599.76 13696.63 15099.70 23199.46 4999.99 199.66 125
MVSFormer99.17 8699.12 7899.29 15899.51 17598.94 16899.88 399.46 18897.55 20999.80 4499.65 18797.39 12199.28 30299.03 8899.85 7499.65 129
LS3D99.27 7199.12 7899.74 6199.18 27099.75 3999.56 12399.57 6698.45 9899.49 13599.85 5597.77 11399.94 6998.33 18399.84 8299.52 172
fmvsm_s_conf0.1_n99.29 6799.10 8099.86 2199.70 10299.65 5799.53 14799.62 4198.74 7599.99 299.95 394.53 23999.94 6999.89 1399.96 1499.97 4
9.1499.10 8099.72 9299.40 21899.51 11997.53 21399.64 9899.78 12498.84 4199.91 11097.63 24499.82 95
CHOSEN 1792x268899.19 8299.10 8099.45 12999.89 898.52 21299.39 22299.94 198.73 7699.11 22199.89 3395.50 19299.94 6999.50 4199.97 899.89 20
bld_raw_dy_0_6499.22 8099.09 8399.60 9099.74 8099.31 11199.42 20699.55 7996.02 33999.59 11499.94 698.03 10699.92 9899.58 3099.98 499.56 160
EIA-MVS99.18 8499.09 8399.45 12999.49 18699.18 12899.67 6699.53 9997.66 19899.40 15899.44 26298.10 10099.81 18498.94 9799.62 13999.35 213
APD-MVScopyleft99.27 7199.08 8599.84 3999.75 7399.79 3099.50 16399.50 13897.16 24999.77 5599.82 7998.78 4899.94 6997.56 25399.86 6799.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TAMVS99.12 10099.08 8599.24 16799.46 19698.55 20699.51 15699.46 18898.09 14699.45 14099.82 7998.34 9099.51 26598.70 13598.93 19299.67 122
fmvsm_s_conf0.1_n_a99.26 7399.06 8799.85 2899.52 17299.62 6599.54 13999.62 4198.69 7999.99 299.96 194.47 24199.94 6999.88 1499.92 2999.98 2
sss99.17 8699.05 8899.53 10999.62 14198.97 15899.36 23399.62 4197.83 17699.67 8299.65 18797.37 12499.95 5999.19 7499.19 17099.68 119
3Dnovator97.25 999.24 7899.05 8899.81 4499.12 28699.66 5399.84 1199.74 1099.09 3298.92 25499.90 2995.94 17699.98 1398.95 9699.92 2999.79 74
F-COLMAP99.19 8299.04 9099.64 7999.78 5699.27 11899.42 20699.54 8897.29 23899.41 15399.59 21398.42 8599.93 8798.19 19299.69 12899.73 97
OMC-MVS99.08 11099.04 9099.20 17199.67 11498.22 23199.28 25999.52 10498.07 15199.66 8799.81 9397.79 11299.78 19897.79 22799.81 9899.60 146
test_fmvsmconf0.01_n99.22 8099.03 9299.79 4998.42 36899.48 9199.55 13599.51 11999.39 1099.78 5199.93 1094.80 21799.95 5999.93 1199.95 2099.94 11
jason99.13 9499.03 9299.45 12999.46 19698.87 17599.12 29899.26 28798.03 15999.79 4699.65 18797.02 13899.85 15299.02 9099.90 4499.65 129
jason: jason.
CDS-MVSNet99.09 10999.03 9299.25 16599.42 20598.73 19199.45 18999.46 18898.11 14299.46 13999.77 13298.01 10799.37 28598.70 13598.92 19499.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
API-MVS99.04 11599.03 9299.06 18599.40 21599.31 11199.55 13599.56 7198.54 9199.33 17499.39 27798.76 5299.78 19896.98 29299.78 10998.07 366
diffmvspermissive99.14 9299.02 9699.51 11799.61 14598.96 16299.28 25999.49 14798.46 9799.72 7199.71 15596.50 15699.88 13899.31 6299.11 17799.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive99.15 9099.02 9699.55 10099.66 12499.09 14199.64 8099.56 7198.26 12099.45 14099.87 4696.03 17199.81 18499.54 3599.15 17499.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.15 9099.02 9699.53 10999.66 12499.14 13699.72 5099.48 15998.35 10999.42 14999.84 6696.07 16999.79 19399.51 4099.14 17599.67 122
MG-MVS99.13 9499.02 9699.45 12999.57 15698.63 20099.07 30899.34 25398.99 4599.61 10899.82 7997.98 10899.87 14397.00 29099.80 10299.85 36
test_cas_vis1_n_192099.16 8899.01 10099.61 8799.81 4698.86 17899.65 7799.64 3699.39 1099.97 1399.94 693.20 27699.98 1399.55 3499.91 3699.99 1
lupinMVS99.13 9499.01 10099.46 12899.51 17598.94 16899.05 31399.16 30397.86 17099.80 4499.56 22497.39 12199.86 14698.94 9799.85 7499.58 154
mvs_anonymous99.03 11798.99 10299.16 17599.38 22098.52 21299.51 15699.38 23497.79 18199.38 16299.81 9397.30 12799.45 26999.35 5598.99 18999.51 178
EPP-MVSNet99.13 9498.99 10299.53 10999.65 13099.06 14799.81 1999.33 26097.43 22599.60 11199.88 3897.14 13199.84 15999.13 8098.94 19199.69 115
CNLPA99.14 9298.99 10299.59 9199.58 15499.41 10199.16 28999.44 20798.45 9899.19 20899.49 24898.08 10499.89 13297.73 23699.75 11799.48 184
casdiffmvspermissive99.13 9498.98 10599.56 9899.65 13099.16 13199.56 12399.50 13898.33 11299.41 15399.86 5095.92 17799.83 17299.45 5099.16 17199.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test99.10 10898.97 10699.48 12399.49 18699.14 13699.67 6699.34 25397.31 23699.58 11699.76 13697.65 11799.82 17998.87 10899.07 18399.46 195
PVSNet_Blended99.08 11098.97 10699.42 13499.76 6598.79 18798.78 35799.91 396.74 28299.67 8299.49 24897.53 11899.88 13898.98 9399.85 7499.60 146
Vis-MVSNetpermissive99.12 10098.97 10699.56 9899.78 5699.10 14099.68 6399.66 2898.49 9599.86 3199.87 4694.77 22299.84 15999.19 7499.41 15499.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator+97.12 1399.18 8498.97 10699.82 4199.17 27899.68 4899.81 1999.51 11999.20 1898.72 28099.89 3395.68 18799.97 2198.86 11399.86 6799.81 61
mvsmamba99.06 11298.96 11099.36 14199.47 19498.64 19999.70 5399.05 31897.61 20299.65 9399.83 7096.54 15499.92 9899.19 7499.62 13999.51 178
DP-MVS Recon99.12 10098.95 11199.65 7499.74 8099.70 4699.27 26499.57 6696.40 31299.42 14999.68 17598.75 5599.80 19097.98 21199.72 12399.44 200
DP-MVS99.16 8898.95 11199.78 5299.77 6299.53 8399.41 21099.50 13897.03 26599.04 23799.88 3897.39 12199.92 9898.66 14299.90 4499.87 31
PS-MVSNAJss98.92 12998.92 11398.90 21198.78 33798.53 20899.78 3199.54 8898.07 15199.00 24499.76 13699.01 1899.37 28599.13 8097.23 29198.81 261
HyFIR lowres test99.11 10498.92 11399.65 7499.90 499.37 10399.02 32199.91 397.67 19799.59 11499.75 13995.90 17999.73 21599.53 3799.02 18899.86 33
CDPH-MVS99.13 9498.91 11599.80 4699.75 7399.71 4499.15 29299.41 21796.60 29699.60 11199.55 22798.83 4299.90 12197.48 26099.83 9199.78 80
SDMVSNet99.11 10498.90 11699.75 5899.81 4699.59 7199.81 1999.65 3398.78 7399.64 9899.88 3894.56 23599.93 8799.67 2298.26 23299.72 103
VNet99.11 10498.90 11699.73 6499.52 17299.56 7699.41 21099.39 22699.01 4099.74 6499.78 12495.56 19099.92 9899.52 3998.18 23999.72 103
CPTT-MVS99.11 10498.90 11699.74 6199.80 5299.46 9599.59 10299.49 14797.03 26599.63 10199.69 16997.27 12999.96 3097.82 22599.84 8299.81 61
Effi-MVS+-dtu98.78 15098.89 11998.47 27099.33 23296.91 30299.57 11799.30 27898.47 9699.41 15398.99 34096.78 14599.74 20998.73 13299.38 15598.74 273
WTY-MVS99.06 11298.88 12099.61 8799.62 14199.16 13199.37 22999.56 7198.04 15799.53 12799.62 20496.84 14399.94 6998.85 11598.49 22199.72 103
CANet_DTU98.97 12698.87 12199.25 16599.33 23298.42 22499.08 30799.30 27899.16 1999.43 14699.75 13995.27 20099.97 2198.56 16199.95 2099.36 212
IS-MVSNet99.05 11498.87 12199.57 9699.73 8899.32 10799.75 4099.20 29898.02 16099.56 12099.86 5096.54 15499.67 23998.09 19999.13 17699.73 97
sasdasda99.02 11898.86 12399.51 11799.42 20599.32 10799.80 2499.48 15998.63 8299.31 17698.81 35597.09 13399.75 20799.27 6897.90 25099.47 190
canonicalmvs99.02 11898.86 12399.51 11799.42 20599.32 10799.80 2499.48 15998.63 8299.31 17698.81 35597.09 13399.75 20799.27 6897.90 25099.47 190
MGCFI-Net99.01 12298.85 12599.50 12299.42 20599.26 12099.82 1599.48 15998.60 8699.28 18398.81 35597.04 13799.76 20499.29 6597.87 25399.47 190
PLCcopyleft97.94 499.02 11898.85 12599.53 10999.66 12499.01 15399.24 27799.52 10496.85 27799.27 18899.48 25398.25 9499.91 11097.76 23299.62 13999.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PAPM_NR99.04 11598.84 12799.66 7099.74 8099.44 9799.39 22299.38 23497.70 19399.28 18399.28 30698.34 9099.85 15296.96 29499.45 15199.69 115
PVSNet96.02 1798.85 14298.84 12798.89 21499.73 8897.28 27398.32 38799.60 5497.86 17099.50 13299.57 22196.75 14799.86 14698.56 16199.70 12799.54 164
Fast-Effi-MVS+-dtu98.77 15298.83 12998.60 24999.41 21096.99 29699.52 14899.49 14798.11 14299.24 19499.34 29296.96 14199.79 19397.95 21399.45 15199.02 247
PVSNet_BlendedMVS98.86 13598.80 13099.03 18999.76 6598.79 18799.28 25999.91 397.42 22799.67 8299.37 28297.53 11899.88 13898.98 9397.29 28998.42 347
AdaColmapbinary99.01 12298.80 13099.66 7099.56 16099.54 8099.18 28799.70 1598.18 13399.35 17099.63 19996.32 16399.90 12197.48 26099.77 11299.55 162
MSDG98.98 12498.80 13099.53 10999.76 6599.19 12698.75 36099.55 7997.25 24199.47 13799.77 13297.82 11199.87 14396.93 29799.90 4499.54 164
test_fmvs198.88 13198.79 13399.16 17599.69 10797.61 26699.55 13599.49 14799.32 1499.98 699.91 2291.41 32399.96 3099.82 1699.92 2999.90 17
train_agg99.02 11898.77 13499.77 5599.67 11499.65 5799.05 31399.41 21796.28 31698.95 25099.49 24898.76 5299.91 11097.63 24499.72 12399.75 88
1112_ss98.98 12498.77 13499.59 9199.68 11199.02 15199.25 27599.48 15997.23 24499.13 21799.58 21796.93 14299.90 12198.87 10898.78 20599.84 40
COLMAP_ROBcopyleft97.56 698.86 13598.75 13699.17 17499.88 1198.53 20899.34 24199.59 5897.55 20998.70 28799.89 3395.83 18199.90 12198.10 19899.90 4499.08 237
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AllTest98.87 13298.72 13799.31 15099.86 2098.48 21899.56 12399.61 4897.85 17399.36 16799.85 5595.95 17499.85 15296.66 31099.83 9199.59 150
Vis-MVSNet (Re-imp)98.87 13298.72 13799.31 15099.71 9798.88 17499.80 2499.44 20797.91 16799.36 16799.78 12495.49 19399.43 27897.91 21599.11 17799.62 142
DPM-MVS98.95 12798.71 13999.66 7099.63 13599.55 7898.64 37099.10 30997.93 16599.42 14999.55 22798.67 6699.80 19095.80 32899.68 13199.61 144
EPNet98.86 13598.71 13999.30 15597.20 38898.18 23299.62 8998.91 33799.28 1698.63 29899.81 9395.96 17399.99 499.24 7199.72 12399.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UGNet98.87 13298.69 14199.40 13699.22 26198.72 19299.44 19599.68 2099.24 1799.18 21299.42 26692.74 28699.96 3099.34 5999.94 2699.53 170
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XVG-OURS98.73 15698.68 14298.88 21699.70 10297.73 25898.92 34399.55 7998.52 9399.45 14099.84 6695.27 20099.91 11098.08 20398.84 20099.00 248
EI-MVSNet98.67 16098.67 14398.68 24599.35 22797.97 24499.50 16399.38 23496.93 27499.20 20599.83 7097.87 10999.36 28998.38 17797.56 26998.71 277
CVMVSNet98.57 16698.67 14398.30 28999.35 22795.59 34099.50 16399.55 7998.60 8699.39 16099.83 7094.48 24099.45 26998.75 12998.56 21699.85 36
114514_t98.93 12898.67 14399.72 6599.85 2699.53 8399.62 8999.59 5892.65 38199.71 7299.78 12498.06 10599.90 12198.84 11899.91 3699.74 92
Test_1112_low_res98.89 13098.66 14699.57 9699.69 10798.95 16599.03 31899.47 17996.98 26799.15 21599.23 31496.77 14699.89 13298.83 12198.78 20599.86 33
HY-MVS97.30 798.85 14298.64 14799.47 12699.42 20599.08 14499.62 8999.36 24397.39 23099.28 18399.68 17596.44 16099.92 9898.37 17998.22 23499.40 206
test_yl98.86 13598.63 14899.54 10199.49 18699.18 12899.50 16399.07 31598.22 12699.61 10899.51 24295.37 19699.84 15998.60 15298.33 22699.59 150
DCV-MVSNet98.86 13598.63 14899.54 10199.49 18699.18 12899.50 16399.07 31598.22 12699.61 10899.51 24295.37 19699.84 15998.60 15298.33 22699.59 150
FIs98.78 15098.63 14899.23 16999.18 27099.54 8099.83 1499.59 5898.28 11598.79 27499.81 9396.75 14799.37 28599.08 8596.38 30798.78 263
ab-mvs98.86 13598.63 14899.54 10199.64 13299.19 12699.44 19599.54 8897.77 18499.30 17999.81 9394.20 24999.93 8799.17 7898.82 20299.49 183
MAR-MVS98.86 13598.63 14899.54 10199.37 22399.66 5399.45 18999.54 8896.61 29499.01 24099.40 27397.09 13399.86 14697.68 24399.53 14799.10 232
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
GeoE98.85 14298.62 15399.53 10999.61 14599.08 14499.80 2499.51 11997.10 25799.31 17699.78 12495.23 20499.77 20098.21 19099.03 18699.75 88
FC-MVSNet-test98.75 15398.62 15399.15 17999.08 29799.45 9699.86 1099.60 5498.23 12598.70 28799.82 7996.80 14499.22 31399.07 8696.38 30798.79 262
XVG-OURS-SEG-HR98.69 15898.62 15398.89 21499.71 9797.74 25799.12 29899.54 8898.44 10199.42 14999.71 15594.20 24999.92 9898.54 16598.90 19699.00 248
RPSCF98.22 18998.62 15396.99 34899.82 4291.58 38799.72 5099.44 20796.61 29499.66 8799.89 3395.92 17799.82 17997.46 26399.10 18099.57 158
PatchMatch-RL98.84 14598.62 15399.52 11599.71 9799.28 11699.06 31199.77 997.74 18899.50 13299.53 23695.41 19499.84 15997.17 28499.64 13699.44 200
PMMVS98.80 14998.62 15399.34 14399.27 24998.70 19398.76 35999.31 27497.34 23399.21 20299.07 33097.20 13099.82 17998.56 16198.87 19799.52 172
Effi-MVS+98.81 14698.59 15999.48 12399.46 19699.12 13998.08 39499.50 13897.50 21799.38 16299.41 27096.37 16299.81 18499.11 8298.54 21899.51 178
sd_testset98.75 15398.57 16099.29 15899.81 4698.26 22999.56 12399.62 4198.78 7399.64 9899.88 3892.02 30799.88 13899.54 3598.26 23299.72 103
test_djsdf98.67 16098.57 16098.98 19598.70 35098.91 17299.88 399.46 18897.55 20999.22 19999.88 3895.73 18599.28 30299.03 8897.62 26498.75 270
alignmvs98.81 14698.56 16299.58 9499.43 20399.42 9999.51 15698.96 32898.61 8599.35 17098.92 35094.78 21999.77 20099.35 5598.11 24499.54 164
131498.68 15998.54 16399.11 18198.89 32298.65 19799.27 26499.49 14796.89 27597.99 33799.56 22497.72 11599.83 17297.74 23599.27 16698.84 260
FA-MVS(test-final)98.75 15398.53 16499.41 13599.55 16499.05 14999.80 2499.01 32296.59 29899.58 11699.59 21395.39 19599.90 12197.78 22899.49 14999.28 221
D2MVS98.41 17598.50 16598.15 30299.26 25196.62 31599.40 21899.61 4897.71 19098.98 24699.36 28596.04 17099.67 23998.70 13597.41 28598.15 363
tpmrst98.33 18298.48 16697.90 31799.16 28094.78 35899.31 24799.11 30897.27 23999.45 14099.59 21395.33 19899.84 15998.48 16898.61 21099.09 236
Fast-Effi-MVS+98.70 15798.43 16799.51 11799.51 17599.28 11699.52 14899.47 17996.11 33299.01 24099.34 29296.20 16799.84 15997.88 21798.82 20299.39 207
nrg03098.64 16398.42 16899.28 16299.05 30399.69 4799.81 1999.46 18898.04 15799.01 24099.82 7996.69 14999.38 28299.34 5994.59 34898.78 263
IterMVS-LS98.46 17098.42 16898.58 25399.59 15298.00 24299.37 22999.43 21396.94 27399.07 22999.59 21397.87 10999.03 34198.32 18595.62 32798.71 277
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_vis1_n_192098.63 16498.40 17099.31 15099.86 2097.94 25099.67 6699.62 4199.43 799.99 299.91 2287.29 368100.00 199.92 1299.92 2999.98 2
BH-untuned98.42 17398.36 17198.59 25099.49 18696.70 31099.27 26499.13 30797.24 24398.80 27299.38 27995.75 18499.74 20997.07 28899.16 17199.33 217
PatchmatchNetpermissive98.31 18398.36 17198.19 29799.16 28095.32 34999.27 26498.92 33397.37 23199.37 16499.58 21794.90 21299.70 23197.43 26699.21 16899.54 164
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PAPR98.63 16498.34 17399.51 11799.40 21599.03 15098.80 35599.36 24396.33 31399.00 24499.12 32898.46 8199.84 15995.23 34399.37 16299.66 125
ACMM97.58 598.37 18098.34 17398.48 26599.41 21097.10 28399.56 12399.45 19998.53 9299.04 23799.85 5593.00 27899.71 22598.74 13097.45 28098.64 309
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVSTER98.49 16798.32 17599.00 19399.35 22799.02 15199.54 13999.38 23497.41 22899.20 20599.73 15093.86 26399.36 28998.87 10897.56 26998.62 318
MDTV_nov1_ep1398.32 17599.11 28894.44 36499.27 26498.74 35897.51 21699.40 15899.62 20494.78 21999.76 20497.59 24798.81 204
QAPM98.67 16098.30 17799.80 4699.20 26499.67 5199.77 3399.72 1194.74 36098.73 27999.90 2995.78 18399.98 1396.96 29499.88 5699.76 87
anonymousdsp98.44 17198.28 17898.94 20198.50 36598.96 16299.77 3399.50 13897.07 25998.87 26399.77 13294.76 22399.28 30298.66 14297.60 26598.57 333
jajsoiax98.43 17298.28 17898.88 21698.60 36098.43 22299.82 1599.53 9998.19 13098.63 29899.80 10693.22 27599.44 27499.22 7297.50 27598.77 266
mvs_tets98.40 17898.23 18098.91 20998.67 35398.51 21499.66 7199.53 9998.19 13098.65 29699.81 9392.75 28499.44 27499.31 6297.48 27998.77 266
HQP_MVS98.27 18898.22 18198.44 27599.29 24496.97 29899.39 22299.47 17998.97 5199.11 22199.61 20892.71 28999.69 23697.78 22897.63 26298.67 297
FE-MVS98.48 16898.17 18299.40 13699.54 16698.96 16299.68 6398.81 35195.54 34499.62 10599.70 15993.82 26499.93 8797.35 27199.46 15099.32 218
dmvs_re98.08 20698.16 18397.85 31999.55 16494.67 36199.70 5398.92 33398.15 13599.06 23499.35 28893.67 26999.25 30797.77 23197.25 29099.64 136
SCA98.19 19398.16 18398.27 29499.30 24095.55 34199.07 30898.97 32697.57 20699.43 14699.57 22192.72 28799.74 20997.58 24899.20 16999.52 172
LCM-MVSNet-Re97.83 24898.15 18596.87 35499.30 24092.25 38499.59 10298.26 37697.43 22596.20 37199.13 32596.27 16598.73 36798.17 19598.99 18999.64 136
test_fmvs1_n98.41 17598.14 18699.21 17099.82 4297.71 26399.74 4599.49 14799.32 1499.99 299.95 385.32 37799.97 2199.82 1699.84 8299.96 7
tttt051798.42 17398.14 18699.28 16299.66 12498.38 22599.74 4596.85 39497.68 19599.79 4699.74 14491.39 32499.89 13298.83 12199.56 14499.57 158
LPG-MVS_test98.22 18998.13 18898.49 26399.33 23297.05 28999.58 11099.55 7997.46 21999.24 19499.83 7092.58 29499.72 21998.09 19997.51 27398.68 290
OpenMVScopyleft96.50 1698.47 16998.12 18999.52 11599.04 30499.53 8399.82 1599.72 1194.56 36398.08 33299.88 3894.73 22599.98 1397.47 26299.76 11599.06 243
test111198.04 21498.11 19097.83 32299.74 8093.82 37099.58 11095.40 40399.12 2599.65 9399.93 1090.73 33299.84 15999.43 5199.38 15599.82 54
miper_ehance_all_eth98.18 19598.10 19198.41 27899.23 25797.72 26098.72 36399.31 27496.60 29698.88 26099.29 30497.29 12899.13 32797.60 24695.99 31698.38 352
OPM-MVS98.19 19398.10 19198.45 27298.88 32397.07 28799.28 25999.38 23498.57 8899.22 19999.81 9392.12 30599.66 24298.08 20397.54 27198.61 327
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CLD-MVS98.16 19798.10 19198.33 28599.29 24496.82 30798.75 36099.44 20797.83 17699.13 21799.55 22792.92 28099.67 23998.32 18597.69 26098.48 339
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XXY-MVS98.38 17998.09 19499.24 16799.26 25199.32 10799.56 12399.55 7997.45 22298.71 28199.83 7093.23 27399.63 25598.88 10596.32 30998.76 268
miper_enhance_ethall98.16 19798.08 19598.41 27898.96 31797.72 26098.45 38099.32 27096.95 27198.97 24899.17 32097.06 13699.22 31397.86 22095.99 31698.29 356
ADS-MVSNet98.20 19298.08 19598.56 25799.33 23296.48 32099.23 27899.15 30496.24 32099.10 22499.67 18194.11 25399.71 22596.81 30299.05 18499.48 184
BH-RMVSNet98.41 17598.08 19599.40 13699.41 21098.83 18399.30 24998.77 35497.70 19398.94 25299.65 18792.91 28299.74 20996.52 31399.55 14699.64 136
ADS-MVSNet298.02 21898.07 19897.87 31899.33 23295.19 35299.23 27899.08 31296.24 32099.10 22499.67 18194.11 25398.93 35896.81 30299.05 18499.48 184
ECVR-MVScopyleft98.04 21498.05 19998.00 31199.74 8094.37 36599.59 10294.98 40499.13 2299.66 8799.93 1090.67 33399.84 15999.40 5299.38 15599.80 70
c3_l98.12 20298.04 20098.38 28299.30 24097.69 26498.81 35499.33 26096.67 28798.83 26899.34 29297.11 13298.99 34797.58 24895.34 33398.48 339
thisisatest053098.35 18198.03 20199.31 15099.63 13598.56 20599.54 13996.75 39697.53 21399.73 6699.65 18791.25 32799.89 13298.62 14699.56 14499.48 184
EU-MVSNet97.98 22598.03 20197.81 32598.72 34796.65 31499.66 7199.66 2898.09 14698.35 31799.82 7995.25 20398.01 38197.41 26795.30 33498.78 263
tpmvs97.98 22598.02 20397.84 32199.04 30494.73 35999.31 24799.20 29896.10 33698.76 27799.42 26694.94 20899.81 18496.97 29398.45 22298.97 252
UniMVSNet (Re)98.29 18698.00 20499.13 18099.00 30899.36 10599.49 17499.51 11997.95 16398.97 24899.13 32596.30 16499.38 28298.36 18193.34 36598.66 305
ACMH97.28 898.10 20397.99 20598.44 27599.41 21096.96 30099.60 9699.56 7198.09 14698.15 33099.91 2290.87 33199.70 23198.88 10597.45 28098.67 297
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous20240521198.30 18597.98 20699.26 16499.57 15698.16 23399.41 21098.55 37196.03 33799.19 20899.74 14491.87 31099.92 9899.16 7998.29 23199.70 113
UniMVSNet_NR-MVSNet98.22 18997.97 20798.96 19898.92 32098.98 15599.48 17999.53 9997.76 18598.71 28199.46 26096.43 16199.22 31398.57 15892.87 37298.69 285
eth_miper_zixun_eth98.05 21397.96 20898.33 28599.26 25197.38 27198.56 37699.31 27496.65 28998.88 26099.52 23996.58 15299.12 33197.39 26895.53 33098.47 341
EPNet_dtu98.03 21697.96 20898.23 29598.27 37095.54 34399.23 27898.75 35599.02 3897.82 34499.71 15596.11 16899.48 26693.04 36999.65 13599.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
VPA-MVSNet98.29 18697.95 21099.30 15599.16 28099.54 8099.50 16399.58 6298.27 11799.35 17099.37 28292.53 29699.65 24799.35 5594.46 34998.72 275
baseline198.31 18397.95 21099.38 14099.50 18498.74 19099.59 10298.93 33098.41 10299.14 21699.60 21194.59 23399.79 19398.48 16893.29 36699.61 144
ACMP97.20 1198.06 20897.94 21298.45 27299.37 22397.01 29499.44 19599.49 14797.54 21298.45 31299.79 11891.95 30999.72 21997.91 21597.49 27898.62 318
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CR-MVSNet98.17 19697.93 21398.87 22099.18 27098.49 21699.22 28299.33 26096.96 26999.56 12099.38 27994.33 24599.00 34694.83 34998.58 21399.14 229
miper_lstm_enhance98.00 22397.91 21498.28 29399.34 23197.43 27098.88 34799.36 24396.48 30598.80 27299.55 22795.98 17298.91 35997.27 27495.50 33198.51 337
pmmvs498.13 20097.90 21598.81 23298.61 35998.87 17598.99 32999.21 29796.44 30899.06 23499.58 21795.90 17999.11 33297.18 28396.11 31398.46 344
test-LLR98.06 20897.90 21598.55 25998.79 33497.10 28398.67 36697.75 38697.34 23398.61 30198.85 35294.45 24299.45 26997.25 27599.38 15599.10 232
HQP-MVS98.02 21897.90 21598.37 28399.19 26796.83 30598.98 33299.39 22698.24 12298.66 29099.40 27392.47 29899.64 25097.19 28197.58 26798.64 309
LTVRE_ROB97.16 1298.02 21897.90 21598.40 28099.23 25796.80 30899.70 5399.60 5497.12 25398.18 32999.70 15991.73 31599.72 21998.39 17697.45 28098.68 290
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
BH-w/o98.00 22397.89 21998.32 28799.35 22796.20 33099.01 32698.90 33996.42 31098.38 31599.00 33995.26 20299.72 21996.06 32198.61 21099.03 245
WR-MVS_H98.13 20097.87 22098.90 21199.02 30698.84 18099.70 5399.59 5897.27 23998.40 31499.19 31995.53 19199.23 31098.34 18293.78 36298.61 327
DIV-MVS_self_test98.01 22197.85 22198.48 26599.24 25697.95 24898.71 36499.35 24996.50 30198.60 30399.54 23295.72 18699.03 34197.21 27795.77 32298.46 344
cl____98.01 22197.84 22298.55 25999.25 25597.97 24498.71 36499.34 25396.47 30798.59 30499.54 23295.65 18899.21 31897.21 27795.77 32298.46 344
dp97.75 26297.80 22397.59 33499.10 29193.71 37399.32 24498.88 34296.48 30599.08 22899.55 22792.67 29299.82 17996.52 31398.58 21399.24 225
thisisatest051598.14 19997.79 22499.19 17299.50 18498.50 21598.61 37196.82 39596.95 27199.54 12599.43 26491.66 31999.86 14698.08 20399.51 14899.22 226
V4298.06 20897.79 22498.86 22398.98 31498.84 18099.69 5799.34 25396.53 30099.30 17999.37 28294.67 23099.32 29797.57 25294.66 34698.42 347
DU-MVS98.08 20697.79 22498.96 19898.87 32698.98 15599.41 21099.45 19997.87 16998.71 28199.50 24594.82 21599.22 31398.57 15892.87 37298.68 290
CP-MVSNet98.09 20497.78 22799.01 19198.97 31699.24 12399.67 6699.46 18897.25 24198.48 31199.64 19393.79 26599.06 33798.63 14594.10 35698.74 273
ACMH+97.24 1097.92 23497.78 22798.32 28799.46 19696.68 31399.56 12399.54 8898.41 10297.79 34699.87 4690.18 34099.66 24298.05 20797.18 29498.62 318
tt080597.97 22897.77 22998.57 25499.59 15296.61 31699.45 18999.08 31298.21 12898.88 26099.80 10688.66 35499.70 23198.58 15597.72 25999.39 207
v2v48298.06 20897.77 22998.92 20598.90 32198.82 18499.57 11799.36 24396.65 28999.19 20899.35 28894.20 24999.25 30797.72 23894.97 34198.69 285
OurMVSNet-221017-097.88 23897.77 22998.19 29798.71 34996.53 31899.88 399.00 32397.79 18198.78 27599.94 691.68 31699.35 29297.21 27796.99 29898.69 285
IterMVS97.83 24897.77 22998.02 30899.58 15496.27 32799.02 32199.48 15997.22 24598.71 28199.70 15992.75 28499.13 32797.46 26396.00 31598.67 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet398.03 21697.76 23398.84 22799.39 21898.98 15599.40 21899.38 23496.67 28799.07 22999.28 30692.93 27998.98 34897.10 28596.65 30098.56 334
IterMVS-SCA-FT97.82 25197.75 23498.06 30599.57 15696.36 32499.02 32199.49 14797.18 24798.71 28199.72 15492.72 28799.14 32497.44 26595.86 32198.67 297
MVP-Stereo97.81 25397.75 23497.99 31297.53 38196.60 31798.96 33698.85 34697.22 24597.23 35799.36 28595.28 19999.46 26895.51 33599.78 10997.92 378
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
WR-MVS98.06 20897.73 23699.06 18598.86 32999.25 12299.19 28599.35 24997.30 23798.66 29099.43 26493.94 25999.21 31898.58 15594.28 35398.71 277
CostFormer97.72 26797.73 23697.71 32999.15 28494.02 36999.54 13999.02 32194.67 36199.04 23799.35 28892.35 30499.77 20098.50 16797.94 24999.34 216
XVG-ACMP-BASELINE97.83 24897.71 23898.20 29699.11 28896.33 32599.41 21099.52 10498.06 15599.05 23699.50 24589.64 34599.73 21597.73 23697.38 28798.53 335
v114497.98 22597.69 23998.85 22698.87 32698.66 19699.54 13999.35 24996.27 31899.23 19899.35 28894.67 23099.23 31096.73 30595.16 33798.68 290
Anonymous2024052998.09 20497.68 24099.34 14399.66 12498.44 22199.40 21899.43 21393.67 37099.22 19999.89 3390.23 33999.93 8799.26 7098.33 22699.66 125
our_test_397.65 27997.68 24097.55 33598.62 35794.97 35698.84 35199.30 27896.83 28098.19 32899.34 29297.01 13999.02 34395.00 34796.01 31498.64 309
TranMVSNet+NR-MVSNet97.93 23197.66 24298.76 23898.78 33798.62 20199.65 7799.49 14797.76 18598.49 31099.60 21194.23 24898.97 35598.00 21092.90 37098.70 281
WB-MVSnew97.65 27997.65 24397.63 33198.78 33797.62 26599.13 29598.33 37597.36 23299.07 22998.94 34695.64 18999.15 32392.95 37098.68 20996.12 397
Patchmatch-test97.93 23197.65 24398.77 23799.18 27097.07 28799.03 31899.14 30696.16 32798.74 27899.57 22194.56 23599.72 21993.36 36599.11 17799.52 172
EPMVS97.82 25197.65 24398.35 28498.88 32395.98 33399.49 17494.71 40697.57 20699.26 19299.48 25392.46 30199.71 22597.87 21999.08 18299.35 213
cl2297.85 24397.64 24698.48 26599.09 29497.87 25298.60 37399.33 26097.11 25698.87 26399.22 31592.38 30399.17 32298.21 19095.99 31698.42 347
v897.95 23097.63 24798.93 20398.95 31898.81 18699.80 2499.41 21796.03 33799.10 22499.42 26694.92 21199.30 30096.94 29694.08 35798.66 305
NR-MVSNet97.97 22897.61 24899.02 19098.87 32699.26 12099.47 18599.42 21597.63 20097.08 36299.50 24595.07 20799.13 32797.86 22093.59 36398.68 290
v14419297.92 23497.60 24998.87 22098.83 33298.65 19799.55 13599.34 25396.20 32399.32 17599.40 27394.36 24499.26 30696.37 31895.03 34098.70 281
PS-CasMVS97.93 23197.59 25098.95 20098.99 31199.06 14799.68 6399.52 10497.13 25198.31 31999.68 17592.44 30299.05 33898.51 16694.08 35798.75 270
v14897.79 25697.55 25198.50 26298.74 34497.72 26099.54 13999.33 26096.26 31998.90 25799.51 24294.68 22999.14 32497.83 22493.15 36998.63 316
baseline297.87 24097.55 25198.82 22999.18 27098.02 24199.41 21096.58 40096.97 26896.51 36899.17 32093.43 27099.57 26097.71 23999.03 18698.86 258
tpm97.67 27797.55 25198.03 30699.02 30695.01 35599.43 19998.54 37296.44 30899.12 21999.34 29291.83 31299.60 25897.75 23496.46 30599.48 184
Anonymous2023121197.88 23897.54 25498.90 21199.71 9798.53 20899.48 17999.57 6694.16 36698.81 27099.68 17593.23 27399.42 27998.84 11894.42 35198.76 268
v7n97.87 24097.52 25598.92 20598.76 34398.58 20499.84 1199.46 18896.20 32398.91 25599.70 15994.89 21399.44 27496.03 32293.89 36098.75 270
v1097.85 24397.52 25598.86 22398.99 31198.67 19599.75 4099.41 21795.70 34298.98 24699.41 27094.75 22499.23 31096.01 32494.63 34798.67 297
thres600view797.86 24297.51 25798.92 20599.72 9297.95 24899.59 10298.74 35897.94 16499.27 18898.62 36391.75 31399.86 14693.73 36198.19 23898.96 254
testgi97.65 27997.50 25898.13 30399.36 22696.45 32199.42 20699.48 15997.76 18597.87 34299.45 26191.09 32898.81 36394.53 35198.52 21999.13 231
GBi-Net97.68 27497.48 25998.29 29099.51 17597.26 27699.43 19999.48 15996.49 30299.07 22999.32 29990.26 33698.98 34897.10 28596.65 30098.62 318
test197.68 27497.48 25998.29 29099.51 17597.26 27699.43 19999.48 15996.49 30299.07 22999.32 29990.26 33698.98 34897.10 28596.65 30098.62 318
tfpnnormal97.84 24697.47 26198.98 19599.20 26499.22 12599.64 8099.61 4896.32 31498.27 32399.70 15993.35 27299.44 27495.69 33195.40 33298.27 357
GA-MVS97.85 24397.47 26199.00 19399.38 22097.99 24398.57 37499.15 30497.04 26498.90 25799.30 30289.83 34299.38 28296.70 30798.33 22699.62 142
LF4IMVS97.52 28797.46 26397.70 33098.98 31495.55 34199.29 25498.82 34998.07 15198.66 29099.64 19389.97 34199.61 25797.01 28996.68 29997.94 376
ppachtmachnet_test97.49 29597.45 26497.61 33398.62 35795.24 35098.80 35599.46 18896.11 33298.22 32699.62 20496.45 15998.97 35593.77 36095.97 31998.61 327
thres100view90097.76 25897.45 26498.69 24499.72 9297.86 25499.59 10298.74 35897.93 16599.26 19298.62 36391.75 31399.83 17293.22 36698.18 23998.37 353
v192192097.80 25597.45 26498.84 22798.80 33398.53 20899.52 14899.34 25396.15 32999.24 19499.47 25693.98 25899.29 30195.40 33995.13 33898.69 285
Baseline_NR-MVSNet97.76 25897.45 26498.68 24599.09 29498.29 22799.41 21098.85 34695.65 34398.63 29899.67 18194.82 21599.10 33498.07 20692.89 37198.64 309
MIMVSNet97.73 26597.45 26498.57 25499.45 20197.50 26899.02 32198.98 32596.11 33299.41 15399.14 32490.28 33598.74 36695.74 32998.93 19299.47 190
test_vis1_n97.92 23497.44 26999.34 14399.53 16798.08 23899.74 4599.49 14799.15 20100.00 199.94 679.51 39699.98 1399.88 1499.76 11599.97 4
v119297.81 25397.44 26998.91 20998.88 32398.68 19499.51 15699.34 25396.18 32599.20 20599.34 29294.03 25699.36 28995.32 34195.18 33698.69 285
VPNet97.84 24697.44 26999.01 19199.21 26298.94 16899.48 17999.57 6698.38 10499.28 18399.73 15088.89 35099.39 28199.19 7493.27 36798.71 277
PEN-MVS97.76 25897.44 26998.72 24098.77 34298.54 20799.78 3199.51 11997.06 26198.29 32299.64 19392.63 29398.89 36198.09 19993.16 36898.72 275
cascas97.69 27297.43 27398.48 26598.60 36097.30 27298.18 39299.39 22692.96 37898.41 31398.78 35993.77 26699.27 30598.16 19698.61 21098.86 258
test0.0.03 197.71 27097.42 27498.56 25798.41 36997.82 25598.78 35798.63 36897.34 23398.05 33698.98 34294.45 24298.98 34895.04 34697.15 29598.89 257
TR-MVS97.76 25897.41 27598.82 22999.06 30097.87 25298.87 34998.56 37096.63 29398.68 28999.22 31592.49 29799.65 24795.40 33997.79 25798.95 256
Patchmtry97.75 26297.40 27698.81 23299.10 29198.87 17599.11 30499.33 26094.83 35898.81 27099.38 27994.33 24599.02 34396.10 32095.57 32898.53 335
tfpn200view997.72 26797.38 27798.72 24099.69 10797.96 24699.50 16398.73 36397.83 17699.17 21398.45 36891.67 31799.83 17293.22 36698.18 23998.37 353
thres40097.77 25797.38 27798.92 20599.69 10797.96 24699.50 16398.73 36397.83 17699.17 21398.45 36891.67 31799.83 17293.22 36698.18 23998.96 254
tpm cat197.39 29997.36 27997.50 33799.17 27893.73 37299.43 19999.31 27491.27 38598.71 28199.08 32994.31 24799.77 20096.41 31798.50 22099.00 248
FMVSNet297.72 26797.36 27998.80 23499.51 17598.84 18099.45 18999.42 21596.49 30298.86 26799.29 30490.26 33698.98 34896.44 31596.56 30398.58 332
LFMVS97.90 23797.35 28199.54 10199.52 17299.01 15399.39 22298.24 37897.10 25799.65 9399.79 11884.79 38099.91 11099.28 6698.38 22399.69 115
VDD-MVS97.73 26597.35 28198.88 21699.47 19497.12 28299.34 24198.85 34698.19 13099.67 8299.85 5582.98 38799.92 9899.49 4598.32 23099.60 146
DSMNet-mixed97.25 30597.35 28196.95 35197.84 37693.61 37699.57 11796.63 39896.13 33198.87 26398.61 36594.59 23397.70 38895.08 34598.86 19899.55 162
tpm297.44 29797.34 28497.74 32899.15 28494.36 36699.45 18998.94 32993.45 37598.90 25799.44 26291.35 32599.59 25997.31 27298.07 24599.29 220
TAPA-MVS97.07 1597.74 26497.34 28498.94 20199.70 10297.53 26799.25 27599.51 11991.90 38399.30 17999.63 19998.78 4899.64 25088.09 39299.87 5999.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SixPastTwentyTwo97.50 29097.33 28698.03 30698.65 35496.23 32999.77 3398.68 36697.14 25097.90 34099.93 1090.45 33499.18 32197.00 29096.43 30698.67 297
MS-PatchMatch97.24 30797.32 28796.99 34898.45 36793.51 37798.82 35399.32 27097.41 22898.13 33199.30 30288.99 34999.56 26195.68 33299.80 10297.90 379
v124097.69 27297.32 28798.79 23598.85 33098.43 22299.48 17999.36 24396.11 33299.27 18899.36 28593.76 26799.24 30994.46 35295.23 33598.70 281
test_fmvs297.25 30597.30 28997.09 34799.43 20393.31 37899.73 4898.87 34498.83 6499.28 18399.80 10684.45 38299.66 24297.88 21797.45 28098.30 355
pmmvs597.52 28797.30 28998.16 29998.57 36296.73 30999.27 26498.90 33996.14 33098.37 31699.53 23691.54 32299.14 32497.51 25795.87 32098.63 316
UWE-MVS97.58 28497.29 29198.48 26599.09 29496.25 32899.01 32696.61 39997.86 17099.19 20899.01 33888.72 35199.90 12197.38 26998.69 20899.28 221
h-mvs3397.70 27197.28 29298.97 19799.70 10297.27 27499.36 23399.45 19998.94 5499.66 8799.64 19394.93 20999.99 499.48 4684.36 39599.65 129
pm-mvs197.68 27497.28 29298.88 21699.06 30098.62 20199.50 16399.45 19996.32 31497.87 34299.79 11892.47 29899.35 29297.54 25593.54 36498.67 297
thres20097.61 28297.28 29298.62 24899.64 13298.03 24099.26 27398.74 35897.68 19599.09 22798.32 37491.66 31999.81 18492.88 37198.22 23498.03 369
TESTMET0.1,197.55 28597.27 29598.40 28098.93 31996.53 31898.67 36697.61 38996.96 26998.64 29799.28 30688.63 35699.45 26997.30 27399.38 15599.21 227
USDC97.34 30197.20 29697.75 32799.07 29895.20 35198.51 37899.04 31997.99 16198.31 31999.86 5089.02 34899.55 26395.67 33397.36 28898.49 338
DTE-MVSNet97.51 28997.19 29798.46 27198.63 35698.13 23699.84 1199.48 15996.68 28697.97 33999.67 18192.92 28098.56 37096.88 30192.60 37598.70 281
Syy-MVS97.09 31297.14 29896.95 35199.00 30892.73 38299.29 25499.39 22697.06 26197.41 35198.15 37893.92 26198.68 36891.71 37898.34 22499.45 198
hse-mvs297.50 29097.14 29898.59 25099.49 18697.05 28999.28 25999.22 29498.94 5499.66 8799.42 26694.93 20999.65 24799.48 4683.80 39799.08 237
test-mter97.49 29597.13 30098.55 25998.79 33497.10 28398.67 36697.75 38696.65 28998.61 30198.85 35288.23 36099.45 26997.25 27599.38 15599.10 232
testing1197.50 29097.10 30198.71 24299.20 26496.91 30299.29 25498.82 34997.89 16898.21 32798.40 37085.63 37499.83 17298.45 17398.04 24699.37 211
PAPM97.59 28397.09 30299.07 18399.06 30098.26 22998.30 38899.10 30994.88 35698.08 33299.34 29296.27 16599.64 25089.87 38598.92 19499.31 219
PCF-MVS97.08 1497.66 27897.06 30399.47 12699.61 14599.09 14198.04 39599.25 28991.24 38698.51 30899.70 15994.55 23799.91 11092.76 37499.85 7499.42 202
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
testing9197.44 29797.02 30498.71 24299.18 27096.89 30499.19 28599.04 31997.78 18398.31 31998.29 37585.41 37699.85 15298.01 20997.95 24899.39 207
VDDNet97.55 28597.02 30499.16 17599.49 18698.12 23799.38 22799.30 27895.35 34699.68 7899.90 2982.62 38999.93 8799.31 6298.13 24399.42 202
JIA-IIPM97.50 29097.02 30498.93 20398.73 34597.80 25699.30 24998.97 32691.73 38498.91 25594.86 39995.10 20699.71 22597.58 24897.98 24799.28 221
testing9997.36 30096.94 30798.63 24799.18 27096.70 31099.30 24998.93 33097.71 19098.23 32498.26 37684.92 37999.84 15998.04 20897.85 25599.35 213
ETVMVS97.50 29096.90 30899.29 15899.23 25798.78 18999.32 24498.90 33997.52 21598.56 30598.09 38384.72 38199.69 23697.86 22097.88 25299.39 207
TinyColmap97.12 31096.89 30997.83 32299.07 29895.52 34498.57 37498.74 35897.58 20597.81 34599.79 11888.16 36199.56 26195.10 34497.21 29298.39 351
UniMVSNet_ETH3D97.32 30296.81 31098.87 22099.40 21597.46 26999.51 15699.53 9995.86 34198.54 30799.77 13282.44 39099.66 24298.68 14097.52 27299.50 182
K. test v397.10 31196.79 31198.01 30998.72 34796.33 32599.87 797.05 39397.59 20396.16 37299.80 10688.71 35299.04 33996.69 30896.55 30498.65 307
testing397.28 30396.76 31298.82 22999.37 22398.07 23999.45 18999.36 24397.56 20897.89 34198.95 34583.70 38598.82 36296.03 32298.56 21699.58 154
test250696.81 31796.65 31397.29 34299.74 8092.21 38599.60 9685.06 41699.13 2299.77 5599.93 1087.82 36699.85 15299.38 5399.38 15599.80 70
TransMVSNet (Re)97.15 30996.58 31498.86 22399.12 28698.85 17999.49 17498.91 33795.48 34597.16 36099.80 10693.38 27199.11 33294.16 35891.73 37798.62 318
MVS97.28 30396.55 31599.48 12398.78 33798.95 16599.27 26499.39 22683.53 39998.08 33299.54 23296.97 14099.87 14394.23 35699.16 17199.63 140
testing22297.16 30896.50 31699.16 17599.16 28098.47 22099.27 26498.66 36797.71 19098.23 32498.15 37882.28 39299.84 15997.36 27097.66 26199.18 228
APD_test195.87 33396.49 31794.00 36899.53 16784.01 39799.54 13999.32 27095.91 34097.99 33799.85 5585.49 37599.88 13891.96 37798.84 20098.12 364
PatchT97.03 31396.44 31898.79 23598.99 31198.34 22699.16 28999.07 31592.13 38299.52 12997.31 39294.54 23898.98 34888.54 39098.73 20799.03 245
myMVS_eth3d96.89 31496.37 31998.43 27799.00 30897.16 28099.29 25499.39 22697.06 26197.41 35198.15 37883.46 38698.68 36895.27 34298.34 22499.45 198
FMVSNet196.84 31696.36 32098.29 29099.32 23897.26 27699.43 19999.48 15995.11 35098.55 30699.32 29983.95 38498.98 34895.81 32796.26 31098.62 318
AUN-MVS96.88 31596.31 32198.59 25099.48 19397.04 29299.27 26499.22 29497.44 22498.51 30899.41 27091.97 30899.66 24297.71 23983.83 39699.07 242
test_040296.64 31996.24 32297.85 31998.85 33096.43 32299.44 19599.26 28793.52 37296.98 36499.52 23988.52 35799.20 32092.58 37697.50 27597.93 377
FMVSNet596.43 32496.19 32397.15 34399.11 28895.89 33599.32 24499.52 10494.47 36598.34 31899.07 33087.54 36797.07 39392.61 37595.72 32598.47 341
dmvs_testset95.02 34296.12 32491.72 37799.10 29180.43 40599.58 11097.87 38597.47 21895.22 37898.82 35493.99 25795.18 40288.09 39294.91 34499.56 160
UnsupCasMVSNet_eth96.44 32396.12 32497.40 33998.65 35495.65 33899.36 23399.51 11997.13 25196.04 37498.99 34088.40 35898.17 37796.71 30690.27 38598.40 350
pmmvs696.53 32196.09 32697.82 32498.69 35195.47 34599.37 22999.47 17993.46 37497.41 35199.78 12487.06 36999.33 29596.92 29992.70 37498.65 307
Anonymous2023120696.22 32696.03 32796.79 35697.31 38694.14 36899.63 8499.08 31296.17 32697.04 36399.06 33293.94 25997.76 38786.96 39695.06 33998.47 341
new_pmnet96.38 32596.03 32797.41 33898.13 37395.16 35499.05 31399.20 29893.94 36797.39 35498.79 35891.61 32199.04 33990.43 38395.77 32298.05 368
test20.0396.12 33095.96 32996.63 35797.44 38295.45 34699.51 15699.38 23496.55 29996.16 37299.25 31293.76 26796.17 39887.35 39594.22 35498.27 357
RPMNet96.72 31895.90 33099.19 17299.18 27098.49 21699.22 28299.52 10488.72 39599.56 12097.38 38994.08 25599.95 5986.87 39798.58 21399.14 229
Anonymous2024052196.20 32895.89 33197.13 34597.72 38094.96 35799.79 3099.29 28293.01 37797.20 35999.03 33589.69 34498.36 37491.16 38196.13 31298.07 366
N_pmnet94.95 34595.83 33292.31 37598.47 36679.33 40799.12 29892.81 41393.87 36897.68 34799.13 32593.87 26299.01 34591.38 38096.19 31198.59 331
Patchmatch-RL test95.84 33495.81 33395.95 36395.61 39690.57 38998.24 38998.39 37495.10 35295.20 37998.67 36294.78 21997.77 38696.28 31990.02 38699.51 178
EG-PatchMatch MVS95.97 33295.69 33496.81 35597.78 37792.79 38199.16 28998.93 33096.16 32794.08 38599.22 31582.72 38899.47 26795.67 33397.50 27598.17 362
test_vis1_rt95.81 33595.65 33596.32 36199.67 11491.35 38899.49 17496.74 39798.25 12195.24 37798.10 38274.96 39799.90 12199.53 3798.85 19997.70 382
ET-MVSNet_ETH3D96.49 32295.64 33699.05 18799.53 16798.82 18498.84 35197.51 39197.63 20084.77 39999.21 31892.09 30698.91 35998.98 9392.21 37699.41 204
PVSNet_094.43 1996.09 33195.47 33797.94 31499.31 23994.34 36797.81 39699.70 1597.12 25397.46 35098.75 36089.71 34399.79 19397.69 24281.69 39999.68 119
X-MVStestdata96.55 32095.45 33899.87 1199.85 2699.83 1699.69 5799.68 2098.98 4899.37 16464.01 41298.81 4499.94 6998.79 12699.86 6799.84 40
IB-MVS95.67 1896.22 32695.44 33998.57 25499.21 26296.70 31098.65 36997.74 38896.71 28497.27 35698.54 36686.03 37199.92 9898.47 17186.30 39399.10 232
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune96.17 32995.32 34098.73 23998.79 33498.14 23599.38 22794.09 40791.07 38898.07 33591.04 40589.62 34699.35 29296.75 30499.09 18198.68 290
MVS-HIRNet95.75 33695.16 34197.51 33699.30 24093.69 37498.88 34795.78 40185.09 39898.78 27592.65 40191.29 32699.37 28594.85 34899.85 7499.46 195
MIMVSNet195.51 33795.04 34296.92 35397.38 38395.60 33999.52 14899.50 13893.65 37196.97 36599.17 32085.28 37896.56 39788.36 39195.55 32998.60 330
CMPMVSbinary69.68 2394.13 35194.90 34391.84 37697.24 38780.01 40698.52 37799.48 15989.01 39391.99 39499.67 18185.67 37399.13 32795.44 33797.03 29796.39 394
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs-eth3d95.34 34194.73 34497.15 34395.53 39895.94 33499.35 23899.10 30995.13 34893.55 38797.54 38788.15 36297.91 38394.58 35089.69 38897.61 383
MDA-MVSNet_test_wron95.45 33894.60 34598.01 30998.16 37297.21 27999.11 30499.24 29193.49 37380.73 40598.98 34293.02 27798.18 37694.22 35794.45 35098.64 309
TDRefinement95.42 33994.57 34697.97 31389.83 40996.11 33299.48 17998.75 35596.74 28296.68 36799.88 3888.65 35599.71 22598.37 17982.74 39898.09 365
YYNet195.36 34094.51 34797.92 31597.89 37597.10 28399.10 30699.23 29293.26 37680.77 40499.04 33492.81 28398.02 38094.30 35394.18 35598.64 309
KD-MVS_self_test95.00 34394.34 34896.96 35097.07 39195.39 34899.56 12399.44 20795.11 35097.13 36197.32 39191.86 31197.27 39290.35 38481.23 40098.23 361
WB-MVS93.10 35694.10 34990.12 38295.51 40081.88 40299.73 4899.27 28695.05 35393.09 39098.91 35194.70 22891.89 40676.62 40494.02 35996.58 392
new-patchmatchnet94.48 34994.08 35095.67 36495.08 40192.41 38399.18 28799.28 28494.55 36493.49 38897.37 39087.86 36597.01 39491.57 37988.36 38997.61 383
MDA-MVSNet-bldmvs94.96 34493.98 35197.92 31598.24 37197.27 27499.15 29299.33 26093.80 36980.09 40699.03 33588.31 35997.86 38593.49 36494.36 35298.62 318
CL-MVSNet_self_test94.49 34893.97 35296.08 36296.16 39393.67 37598.33 38699.38 23495.13 34897.33 35598.15 37892.69 29196.57 39688.67 38979.87 40197.99 373
SSC-MVS92.73 35893.73 35389.72 38395.02 40281.38 40399.76 3699.23 29294.87 35792.80 39198.93 34794.71 22791.37 40774.49 40693.80 36196.42 393
KD-MVS_2432*160094.62 34693.72 35497.31 34097.19 38995.82 33698.34 38499.20 29895.00 35497.57 34898.35 37287.95 36398.10 37892.87 37277.00 40398.01 370
miper_refine_blended94.62 34693.72 35497.31 34097.19 38995.82 33698.34 38499.20 29895.00 35497.57 34898.35 37287.95 36398.10 37892.87 37277.00 40398.01 370
OpenMVS_ROBcopyleft92.34 2094.38 35093.70 35696.41 36097.38 38393.17 37999.06 31198.75 35586.58 39694.84 38398.26 37681.53 39399.32 29789.01 38897.87 25396.76 390
mvsany_test393.77 35393.45 35794.74 36695.78 39588.01 39299.64 8098.25 37798.28 11594.31 38497.97 38568.89 40098.51 37297.50 25890.37 38497.71 380
pmmvs394.09 35293.25 35896.60 35894.76 40394.49 36398.92 34398.18 38189.66 38996.48 36998.06 38486.28 37097.33 39189.68 38687.20 39297.97 375
dongtai93.26 35592.93 35994.25 36799.39 21885.68 39597.68 39893.27 40992.87 37996.85 36699.39 27782.33 39197.48 39076.78 40397.80 25699.58 154
UnsupCasMVSNet_bld93.53 35492.51 36096.58 35997.38 38393.82 37098.24 38999.48 15991.10 38793.10 38996.66 39474.89 39898.37 37394.03 35987.71 39197.56 385
PM-MVS92.96 35792.23 36195.14 36595.61 39689.98 39199.37 22998.21 37994.80 35995.04 38297.69 38665.06 40197.90 38494.30 35389.98 38797.54 386
test_fmvs392.10 35991.77 36293.08 37396.19 39286.25 39399.82 1598.62 36996.65 28995.19 38096.90 39355.05 40895.93 40096.63 31290.92 38397.06 389
test_method91.10 36191.36 36390.31 38195.85 39473.72 41494.89 40299.25 28968.39 40595.82 37599.02 33780.50 39598.95 35793.64 36294.89 34598.25 359
test_f91.90 36091.26 36493.84 36995.52 39985.92 39499.69 5798.53 37395.31 34793.87 38696.37 39655.33 40798.27 37595.70 33090.98 38297.32 388
testf190.42 36490.68 36589.65 38497.78 37773.97 41299.13 29598.81 35189.62 39091.80 39598.93 34762.23 40498.80 36486.61 39891.17 37996.19 395
APD_test290.42 36490.68 36589.65 38497.78 37773.97 41299.13 29598.81 35189.62 39091.80 39598.93 34762.23 40498.80 36486.61 39891.17 37996.19 395
Gipumacopyleft90.99 36290.15 36793.51 37098.73 34590.12 39093.98 40399.45 19979.32 40192.28 39294.91 39869.61 39997.98 38287.42 39495.67 32692.45 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
kuosan90.92 36390.11 36893.34 37198.78 33785.59 39698.15 39393.16 41189.37 39292.07 39398.38 37181.48 39495.19 40162.54 41097.04 29699.25 224
test_vis3_rt87.04 36685.81 36990.73 38093.99 40481.96 40199.76 3690.23 41592.81 38081.35 40391.56 40340.06 41299.07 33694.27 35588.23 39091.15 403
FPMVS84.93 36985.65 37082.75 39086.77 41163.39 41698.35 38398.92 33374.11 40283.39 40198.98 34250.85 40992.40 40584.54 40194.97 34192.46 400
PMMVS286.87 36785.37 37191.35 37990.21 40883.80 39898.89 34697.45 39283.13 40091.67 39795.03 39748.49 41094.70 40385.86 40077.62 40295.54 398
LCM-MVSNet86.80 36885.22 37291.53 37887.81 41080.96 40498.23 39198.99 32471.05 40390.13 39896.51 39548.45 41196.88 39590.51 38285.30 39496.76 390
tmp_tt82.80 37081.52 37386.66 38666.61 41668.44 41592.79 40597.92 38368.96 40480.04 40799.85 5585.77 37296.15 39997.86 22043.89 40995.39 399
E-PMN80.61 37279.88 37482.81 38990.75 40776.38 41097.69 39795.76 40266.44 40783.52 40092.25 40262.54 40387.16 40968.53 40861.40 40684.89 407
EMVS80.02 37379.22 37582.43 39191.19 40676.40 40997.55 40092.49 41466.36 40883.01 40291.27 40464.63 40285.79 41065.82 40960.65 40785.08 406
EGC-MVSNET82.80 37077.86 37697.62 33297.91 37496.12 33199.33 24399.28 2848.40 41325.05 41499.27 30984.11 38399.33 29589.20 38798.22 23497.42 387
PMVScopyleft70.75 2275.98 37674.97 37779.01 39270.98 41555.18 41793.37 40498.21 37965.08 40961.78 41093.83 40021.74 41792.53 40478.59 40291.12 38189.34 405
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ANet_high77.30 37474.86 37884.62 38875.88 41477.61 40897.63 39993.15 41288.81 39464.27 40989.29 40636.51 41383.93 41175.89 40552.31 40892.33 402
MVEpermissive76.82 2176.91 37574.31 37984.70 38785.38 41376.05 41196.88 40193.17 41067.39 40671.28 40889.01 40721.66 41887.69 40871.74 40772.29 40590.35 404
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs39.17 37843.78 38025.37 39536.04 41816.84 42098.36 38226.56 41720.06 41138.51 41267.32 40829.64 41515.30 41437.59 41239.90 41043.98 409
test12339.01 37942.50 38128.53 39439.17 41720.91 41998.75 36019.17 41919.83 41238.57 41166.67 40933.16 41415.42 41337.50 41329.66 41149.26 408
wuyk23d40.18 37741.29 38236.84 39386.18 41249.12 41879.73 40622.81 41827.64 41025.46 41328.45 41321.98 41648.89 41255.80 41123.56 41212.51 410
cdsmvs_eth3d_5k24.64 38032.85 3830.00 3960.00 4190.00 4210.00 40799.51 1190.00 4140.00 41599.56 22496.58 1520.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.30 38111.06 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41599.58 2170.00 4190.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas8.27 38211.03 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 41599.01 180.00 4150.00 4140.00 4130.00 411
test_blank0.13 3830.17 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4151.57 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS97.16 28095.47 336
FOURS199.91 199.93 199.87 799.56 7199.10 2799.81 41
MSC_two_6792asdad99.87 1199.51 17599.76 3799.33 26099.96 3098.87 10899.84 8299.89 20
PC_three_145298.18 13399.84 3399.70 15999.31 398.52 37198.30 18799.80 10299.81 61
No_MVS99.87 1199.51 17599.76 3799.33 26099.96 3098.87 10899.84 8299.89 20
test_one_060199.81 4699.88 899.49 14798.97 5199.65 9399.81 9399.09 14
eth-test20.00 419
eth-test0.00 419
ZD-MVS99.71 9799.79 3099.61 4896.84 27899.56 12099.54 23298.58 7299.96 3096.93 29799.75 117
IU-MVS99.84 3299.88 899.32 27098.30 11499.84 3398.86 11399.85 7499.89 20
OPU-MVS99.64 7999.56 16099.72 4299.60 9699.70 15999.27 599.42 27998.24 18999.80 10299.79 74
test_241102_TWO99.48 15999.08 3399.88 2299.81 9398.94 2999.96 3098.91 10299.84 8299.88 26
test_241102_ONE99.84 3299.90 299.48 15999.07 3599.91 1899.74 14499.20 799.76 204
save fliter99.76 6599.59 7199.14 29499.40 22399.00 43
test_0728_THIRD98.99 4599.81 4199.80 10699.09 1499.96 3098.85 11599.90 4499.88 26
test_0728_SECOND99.91 299.84 3299.89 499.57 11799.51 11999.96 3098.93 9999.86 6799.88 26
test072699.85 2699.89 499.62 8999.50 13899.10 2799.86 3199.82 7998.94 29
GSMVS99.52 172
test_part299.81 4699.83 1699.77 55
sam_mvs194.86 21499.52 172
sam_mvs94.72 226
ambc93.06 37492.68 40582.36 39998.47 37998.73 36395.09 38197.41 38855.55 40699.10 33496.42 31691.32 37897.71 380
MTGPAbinary99.47 179
test_post199.23 27865.14 41194.18 25299.71 22597.58 248
test_post65.99 41094.65 23299.73 215
patchmatchnet-post98.70 36194.79 21899.74 209
GG-mvs-BLEND98.45 27298.55 36398.16 23399.43 19993.68 40897.23 35798.46 36789.30 34799.22 31395.43 33898.22 23497.98 374
MTMP99.54 13998.88 342
gm-plane-assit98.54 36492.96 38094.65 36299.15 32399.64 25097.56 253
test9_res97.49 25999.72 12399.75 88
TEST999.67 11499.65 5799.05 31399.41 21796.22 32298.95 25099.49 24898.77 5199.91 110
test_899.67 11499.61 6799.03 31899.41 21796.28 31698.93 25399.48 25398.76 5299.91 110
agg_prior297.21 27799.73 12299.75 88
agg_prior99.67 11499.62 6599.40 22398.87 26399.91 110
TestCases99.31 15099.86 2098.48 21899.61 4897.85 17399.36 16799.85 5595.95 17499.85 15296.66 31099.83 9199.59 150
test_prior499.56 7698.99 329
test_prior298.96 33698.34 11099.01 24099.52 23998.68 6497.96 21299.74 120
test_prior99.68 6999.67 11499.48 9199.56 7199.83 17299.74 92
旧先验298.96 33696.70 28599.47 13799.94 6998.19 192
新几何299.01 326
新几何199.75 5899.75 7399.59 7199.54 8896.76 28199.29 18299.64 19398.43 8399.94 6996.92 29999.66 13399.72 103
旧先验199.74 8099.59 7199.54 8899.69 16998.47 8099.68 13199.73 97
无先验98.99 32999.51 11996.89 27599.93 8797.53 25699.72 103
原ACMM298.95 339
原ACMM199.65 7499.73 8899.33 10699.47 17997.46 21999.12 21999.66 18698.67 6699.91 11097.70 24199.69 12899.71 112
test22299.75 7399.49 8998.91 34599.49 14796.42 31099.34 17399.65 18798.28 9399.69 12899.72 103
testdata299.95 5996.67 309
segment_acmp98.96 24
testdata99.54 10199.75 7398.95 16599.51 11997.07 25999.43 14699.70 15998.87 3799.94 6997.76 23299.64 13699.72 103
testdata198.85 35098.32 113
test1299.75 5899.64 13299.61 6799.29 28299.21 20298.38 8899.89 13299.74 12099.74 92
plane_prior799.29 24497.03 293
plane_prior699.27 24996.98 29792.71 289
plane_prior599.47 17999.69 23697.78 22897.63 26298.67 297
plane_prior499.61 208
plane_prior397.00 29598.69 7999.11 221
plane_prior299.39 22298.97 51
plane_prior199.26 251
plane_prior96.97 29899.21 28498.45 9897.60 265
n20.00 420
nn0.00 420
door-mid98.05 382
lessismore_v097.79 32698.69 35195.44 34794.75 40595.71 37699.87 4688.69 35399.32 29795.89 32594.93 34398.62 318
LGP-MVS_train98.49 26399.33 23297.05 28999.55 7997.46 21999.24 19499.83 7092.58 29499.72 21998.09 19997.51 27398.68 290
test1199.35 249
door97.92 383
HQP5-MVS96.83 305
HQP-NCC99.19 26798.98 33298.24 12298.66 290
ACMP_Plane99.19 26798.98 33298.24 12298.66 290
BP-MVS97.19 281
HQP4-MVS98.66 29099.64 25098.64 309
HQP3-MVS99.39 22697.58 267
HQP2-MVS92.47 298
NP-MVS99.23 25796.92 30199.40 273
MDTV_nov1_ep13_2view95.18 35399.35 23896.84 27899.58 11695.19 20597.82 22599.46 195
ACMMP++_ref97.19 293
ACMMP++97.43 284
Test By Simon98.75 55
ITE_SJBPF98.08 30499.29 24496.37 32398.92 33398.34 11098.83 26899.75 13991.09 32899.62 25695.82 32697.40 28698.25 359
DeepMVS_CXcopyleft93.34 37199.29 24482.27 40099.22 29485.15 39796.33 37099.05 33390.97 33099.73 21593.57 36397.77 25898.01 370