This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10792.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
PC_three_145268.21 24292.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
IU-MVS95.30 271.25 5792.95 5166.81 25292.39 688.94 1696.63 494.85 19
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 41
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 24
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
No_MVS89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5480.26 1187.78 2994.27 3275.89 1996.81 2387.45 3296.44 993.05 96
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 5977.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 42
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5693.59 2376.27 7988.14 2495.09 1571.06 5796.67 2987.67 2996.37 1494.09 46
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8592.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 52
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7993.50 2575.17 10086.34 4495.29 1270.86 5996.00 4988.78 1996.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8789.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 37
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15285.22 5491.90 9269.47 7496.42 3783.28 6295.94 1994.35 36
test_prior288.85 11175.41 9384.91 5993.54 5674.28 2983.31 6195.86 20
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5394.32 3171.76 4896.93 1985.53 3995.79 2294.32 38
9.1488.26 1592.84 6091.52 4694.75 173.93 12588.57 2294.67 1975.57 2295.79 5386.77 3595.76 23
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 9989.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 27
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11591.89 9368.69 23485.00 5793.10 6774.43 2695.41 6784.97 4195.71 2593.02 98
test9_res84.90 4295.70 2692.87 102
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 8991.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 31
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MM89.16 689.23 788.97 490.79 9073.65 1092.66 2391.17 11686.57 187.39 3594.97 1671.70 5097.68 192.19 195.63 2895.57 1
MVS_030488.08 1488.08 1788.08 1489.67 11472.04 4892.26 3389.26 17384.19 285.01 5595.18 1369.93 6997.20 1491.63 295.60 2994.99 9
agg_prior282.91 6695.45 3092.70 105
CDPH-MVS85.76 5085.29 5987.17 4393.49 4771.08 6188.58 12392.42 7268.32 24184.61 6793.48 5872.32 4296.15 4579.00 9895.43 3194.28 40
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 9694.23 3572.13 4597.09 1684.83 4595.37 3293.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18792.02 8579.45 1985.88 4694.80 1768.07 8996.21 4286.69 3695.34 3393.23 87
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7084.22 7493.36 6371.44 5496.76 2580.82 8595.33 3494.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6477.57 4183.84 8294.40 3072.24 4396.28 4085.65 3895.30 3593.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7793.82 1673.07 14784.86 6292.89 7476.22 1796.33 3884.89 4495.13 3694.40 34
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6393.99 4870.67 6296.82 2284.18 5695.01 3793.90 55
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5573.01 14988.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 105
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5581.50 585.79 4893.47 6073.02 3997.00 1884.90 4294.94 3994.10 45
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6694.52 2168.81 8496.65 3084.53 4994.90 4094.00 50
CS-MVS-test86.29 4286.48 3785.71 6591.02 8367.21 15292.36 2993.78 1878.97 2883.51 8891.20 11170.65 6395.15 7781.96 7694.89 4194.77 22
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 5994.44 2870.78 6096.61 3284.53 4994.89 4193.66 65
ZD-MVS94.38 2572.22 4492.67 6170.98 18087.75 3194.07 4174.01 3296.70 2784.66 4794.84 43
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7094.52 2169.09 7896.70 2784.37 5194.83 4494.03 49
原ACMM184.35 10793.01 5768.79 10692.44 6963.96 29481.09 11791.57 10166.06 11195.45 6367.19 21694.82 4588.81 249
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8283.81 8393.95 5169.77 7296.01 4885.15 4094.66 4694.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DPM-MVS84.93 6384.29 7086.84 4790.20 10073.04 2387.12 16993.04 3869.80 20582.85 9591.22 11073.06 3896.02 4776.72 12694.63 4791.46 148
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7474.62 11188.90 2093.85 5275.75 2096.00 4987.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7093.04 3875.53 9183.86 8194.42 2967.87 9296.64 3182.70 7294.57 4993.66 65
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8594.17 3667.45 9596.60 3383.06 6394.50 5094.07 47
X-MVStestdata80.37 14577.83 18288.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8512.47 39967.45 9596.60 3383.06 6394.50 5094.07 47
test1286.80 4992.63 6470.70 7291.79 9982.71 9871.67 5196.16 4494.50 5093.54 77
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5876.62 7083.68 8494.46 2567.93 9095.95 5284.20 5594.39 5393.23 87
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5793.56 2473.95 12383.16 9191.07 11675.94 1895.19 7579.94 9494.38 5493.55 76
MSLP-MVS++85.43 5685.76 5084.45 10391.93 7270.24 7690.71 5892.86 5377.46 4784.22 7492.81 7867.16 9992.94 18080.36 9094.35 5590.16 194
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8076.87 6282.81 9794.25 3466.44 10596.24 4182.88 6794.28 5693.38 81
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13687.63 3094.27 5793.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5894.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DELS-MVS85.41 5785.30 5885.77 6488.49 16267.93 13285.52 21993.44 2778.70 2983.63 8789.03 16474.57 2495.71 5680.26 9294.04 5993.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EPNet83.72 7582.92 8786.14 5984.22 26369.48 9191.05 5585.27 25781.30 676.83 19091.65 9766.09 11095.56 5876.00 13293.85 6093.38 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EC-MVSNet86.01 4386.38 3884.91 8889.31 13166.27 16692.32 3093.63 2179.37 2084.17 7691.88 9369.04 8295.43 6583.93 5793.77 6193.01 99
3Dnovator+77.84 485.48 5484.47 6988.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19593.37 6260.40 18896.75 2677.20 11793.73 6295.29 5
CS-MVS86.69 3586.95 3185.90 6390.76 9167.57 14092.83 1793.30 3279.67 1784.57 6992.27 8671.47 5395.02 8684.24 5493.46 6395.13 6
CANet86.45 3886.10 4587.51 3790.09 10270.94 6789.70 8392.59 6681.78 481.32 11291.43 10670.34 6497.23 1384.26 5293.36 6494.37 35
新几何183.42 14793.13 5270.71 7185.48 25657.43 35081.80 10791.98 9063.28 13392.27 20164.60 23792.99 6587.27 280
HPM-MVS_fast85.35 5884.95 6386.57 5393.69 4270.58 7592.15 3691.62 10373.89 12682.67 9994.09 4062.60 14495.54 6080.93 8392.93 6693.57 74
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 6774.50 11286.84 4294.65 2067.31 9795.77 5484.80 4692.85 6792.84 103
旧先验191.96 7165.79 17886.37 24493.08 7169.31 7792.74 6888.74 252
3Dnovator76.31 583.38 8582.31 9586.59 5287.94 18172.94 2890.64 5992.14 8477.21 5275.47 22092.83 7658.56 19594.72 9973.24 15992.71 6992.13 130
MVS_111021_HR85.14 6084.75 6486.32 5591.65 7672.70 3085.98 20290.33 14176.11 8182.08 10291.61 10071.36 5694.17 12081.02 8292.58 7092.08 131
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4573.54 13585.94 4594.51 2465.80 11595.61 5783.04 6592.51 7193.53 78
test250677.30 22076.49 21679.74 24690.08 10352.02 35387.86 15263.10 38774.88 10480.16 12792.79 7938.29 35692.35 19868.74 20292.50 7294.86 17
ECVR-MVScopyleft79.61 15879.26 14980.67 22890.08 10354.69 33787.89 15077.44 34574.88 10480.27 12492.79 7948.96 29392.45 19268.55 20392.50 7294.86 17
test111179.43 16579.18 15380.15 23889.99 10853.31 35087.33 16477.05 34875.04 10180.23 12692.77 8148.97 29292.33 20068.87 20092.40 7494.81 20
patch_mono-283.65 7684.54 6680.99 22090.06 10765.83 17584.21 24788.74 19871.60 16785.01 5592.44 8474.51 2583.50 32982.15 7592.15 7593.64 71
dcpmvs_285.63 5286.15 4484.06 12591.71 7564.94 19786.47 19091.87 9573.63 13186.60 4393.02 7276.57 1591.87 21683.36 6092.15 7595.35 3
MAR-MVS81.84 10780.70 11885.27 7491.32 7971.53 5489.82 7790.92 12269.77 20778.50 15186.21 24562.36 15094.52 10665.36 23092.05 7789.77 218
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
TSAR-MVS + GP.85.71 5185.33 5686.84 4791.34 7872.50 3689.07 10487.28 22876.41 7285.80 4790.22 13474.15 3195.37 7281.82 7791.88 7892.65 109
SR-MVS-dyc-post85.77 4985.61 5286.23 5693.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2665.00 12395.56 5882.75 6891.87 7992.50 114
RE-MVS-def85.48 5393.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2663.87 12982.75 6891.87 7992.50 114
IS-MVSNet83.15 8882.81 8884.18 11689.94 11063.30 23291.59 4388.46 20479.04 2579.49 13392.16 8865.10 12094.28 11267.71 20991.86 8194.95 10
Vis-MVSNet (Re-imp)78.36 19278.45 16678.07 27488.64 15851.78 35986.70 18479.63 32974.14 12175.11 23690.83 12361.29 17089.75 26558.10 29291.60 8292.69 107
MG-MVS83.41 8383.45 7683.28 15292.74 6262.28 24888.17 13889.50 16475.22 9681.49 11192.74 8266.75 10095.11 8072.85 16291.58 8392.45 117
CPTT-MVS83.73 7483.33 8084.92 8793.28 4970.86 6992.09 3790.38 13768.75 23379.57 13292.83 7660.60 18493.04 17880.92 8491.56 8490.86 167
test22291.50 7768.26 12484.16 24883.20 29054.63 36179.74 12991.63 9958.97 19391.42 8586.77 293
ETV-MVS84.90 6584.67 6585.59 6789.39 12568.66 11688.74 11792.64 6579.97 1584.10 7785.71 25469.32 7695.38 6980.82 8591.37 8692.72 104
testdata79.97 24190.90 8664.21 21284.71 26359.27 33485.40 5192.91 7362.02 15789.08 27768.95 19991.37 8686.63 297
API-MVS81.99 10581.23 10984.26 11490.94 8570.18 8291.10 5389.32 16971.51 16978.66 14788.28 18665.26 11895.10 8364.74 23691.23 8887.51 274
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6687.65 19567.22 15188.69 11993.04 3879.64 1885.33 5292.54 8373.30 3594.50 10783.49 5991.14 8995.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive83.46 8282.80 8985.43 7190.25 9968.74 11090.30 6990.13 14876.33 7880.87 12092.89 7461.00 17694.20 11872.45 16890.97 9093.35 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OpenMVScopyleft72.83 1079.77 15678.33 17184.09 12185.17 24269.91 8490.57 6090.97 12166.70 25572.17 27291.91 9154.70 22493.96 12461.81 26090.95 9188.41 259
UA-Net85.08 6284.96 6285.45 7092.07 7068.07 12989.78 8090.86 12682.48 384.60 6893.20 6669.35 7595.22 7471.39 17490.88 9293.07 95
test_fmvsmconf_n85.92 4686.04 4785.57 6885.03 24969.51 9089.62 8690.58 13173.42 13887.75 3194.02 4472.85 4093.24 16090.37 390.75 9393.96 51
ACMMPcopyleft85.89 4885.39 5487.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12193.82 5364.33 12596.29 3982.67 7390.69 9493.23 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsmconf0.1_n85.61 5385.65 5185.50 6982.99 29469.39 9689.65 8490.29 14473.31 14187.77 3094.15 3871.72 4993.23 16190.31 490.67 9593.89 56
casdiffmvspermissive85.11 6185.14 6085.01 8287.20 21165.77 17987.75 15392.83 5577.84 3784.36 7392.38 8572.15 4493.93 13081.27 8190.48 9695.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsm_n_192085.29 5985.34 5585.13 7986.12 22869.93 8388.65 12190.78 12769.97 20188.27 2393.98 4971.39 5591.54 22888.49 2390.45 9793.91 53
UGNet80.83 12879.59 14084.54 9888.04 17868.09 12889.42 9188.16 20676.95 5976.22 20789.46 15349.30 28693.94 12768.48 20490.31 9891.60 140
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
baseline84.93 6384.98 6184.80 9287.30 20965.39 18887.30 16592.88 5277.62 3984.04 7992.26 8771.81 4793.96 12481.31 8090.30 9995.03 8
MVSFormer82.85 9482.05 9985.24 7587.35 20370.21 7790.50 6290.38 13768.55 23681.32 11289.47 15161.68 15993.46 15378.98 9990.26 10092.05 132
lupinMVS81.39 11980.27 12884.76 9387.35 20370.21 7785.55 21586.41 24262.85 30381.32 11288.61 17661.68 15992.24 20378.41 10690.26 10091.83 136
DP-MVS Recon83.11 9182.09 9886.15 5894.44 1970.92 6888.79 11392.20 8170.53 18979.17 13791.03 11964.12 12796.03 4668.39 20690.14 10291.50 145
EIA-MVS83.31 8782.80 8984.82 9089.59 11665.59 18188.21 13692.68 6074.66 10978.96 13986.42 24169.06 8095.26 7375.54 13890.09 10393.62 72
MVS_111021_LR82.61 9782.11 9784.11 11788.82 14971.58 5385.15 22286.16 24774.69 10880.47 12391.04 11762.29 15190.55 25680.33 9190.08 10490.20 193
jason81.39 11980.29 12784.70 9486.63 22269.90 8585.95 20386.77 23863.24 29681.07 11889.47 15161.08 17592.15 20578.33 10790.07 10592.05 132
jason: jason.
test_fmvsmvis_n_192084.02 7083.87 7284.49 10184.12 26569.37 9788.15 14087.96 21270.01 19983.95 8093.23 6568.80 8591.51 23188.61 2089.96 10692.57 110
test_fmvsmconf0.01_n84.73 6684.52 6885.34 7280.25 33469.03 9989.47 8889.65 16173.24 14486.98 4094.27 3266.62 10193.23 16190.26 589.95 10793.78 62
LFMVS81.82 10881.23 10983.57 14491.89 7363.43 23089.84 7681.85 30777.04 5883.21 8993.10 6752.26 24693.43 15571.98 16989.95 10793.85 57
MVS78.19 19776.99 20481.78 19785.66 23366.99 15484.66 23290.47 13555.08 36072.02 27485.27 26563.83 13094.11 12266.10 22489.80 10984.24 331
CANet_DTU80.61 13779.87 13482.83 17485.60 23563.17 23787.36 16288.65 20076.37 7675.88 21488.44 18253.51 23693.07 17573.30 15789.74 11092.25 123
PVSNet_Blended80.98 12480.34 12582.90 17288.85 14665.40 18684.43 24292.00 8767.62 24778.11 16385.05 27366.02 11294.27 11371.52 17189.50 11189.01 239
PAPM_NR83.02 9282.41 9284.82 9092.47 6766.37 16487.93 14891.80 9873.82 12777.32 17990.66 12567.90 9194.90 9170.37 18389.48 11293.19 91
114514_t80.68 13579.51 14184.20 11594.09 3867.27 14989.64 8591.11 11958.75 34074.08 25190.72 12458.10 19895.04 8569.70 19189.42 11390.30 190
LCM-MVSNet-Re77.05 22376.94 20577.36 28487.20 21151.60 36080.06 30380.46 32075.20 9767.69 31586.72 22662.48 14788.98 27963.44 24289.25 11491.51 143
fmvsm_l_conf0.5_n_a84.13 6984.16 7184.06 12585.38 23968.40 12088.34 13286.85 23767.48 25087.48 3493.40 6170.89 5891.61 22288.38 2589.22 11592.16 129
fmvsm_l_conf0.5_n84.47 6784.54 6684.27 11385.42 23868.81 10588.49 12587.26 22968.08 24388.03 2793.49 5772.04 4691.77 21888.90 1789.14 11692.24 125
alignmvs85.48 5485.32 5785.96 6289.51 12069.47 9289.74 8192.47 6876.17 8087.73 3391.46 10570.32 6593.78 13681.51 7888.95 11794.63 26
VNet82.21 10082.41 9281.62 20090.82 8860.93 26284.47 23889.78 15676.36 7784.07 7891.88 9364.71 12490.26 25870.68 18088.89 11893.66 65
PS-MVSNAJ81.69 11181.02 11383.70 14189.51 12068.21 12684.28 24690.09 14970.79 18281.26 11685.62 25963.15 13894.29 11175.62 13688.87 11988.59 255
canonicalmvs85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13181.50 7988.80 12094.77 22
QAPM80.88 12679.50 14285.03 8188.01 18068.97 10391.59 4392.00 8766.63 26175.15 23592.16 8857.70 20295.45 6363.52 24088.76 12190.66 174
VDD-MVS83.01 9382.36 9484.96 8491.02 8366.40 16388.91 10888.11 20777.57 4184.39 7293.29 6452.19 24793.91 13177.05 11988.70 12294.57 29
PVSNet_Blended_VisFu82.62 9681.83 10484.96 8490.80 8969.76 8788.74 11791.70 10269.39 21378.96 13988.46 18165.47 11794.87 9474.42 14588.57 12390.24 192
xiu_mvs_v2_base81.69 11181.05 11283.60 14289.15 13868.03 13184.46 24090.02 15070.67 18581.30 11586.53 23963.17 13794.19 11975.60 13788.54 12488.57 256
PAPR81.66 11480.89 11683.99 13390.27 9864.00 21586.76 18391.77 10168.84 23277.13 18889.50 14967.63 9394.88 9367.55 21188.52 12593.09 94
MVS_Test83.15 8883.06 8383.41 14986.86 21563.21 23486.11 20092.00 8774.31 11682.87 9489.44 15670.03 6793.21 16377.39 11688.50 12693.81 60
AdaColmapbinary80.58 14079.42 14384.06 12593.09 5468.91 10489.36 9488.97 18869.27 21675.70 21789.69 14357.20 20995.77 5463.06 24588.41 12787.50 275
VDDNet81.52 11680.67 11984.05 12890.44 9664.13 21489.73 8285.91 25071.11 17683.18 9093.48 5850.54 27193.49 15073.40 15688.25 12894.54 30
PCF-MVS73.52 780.38 14378.84 15985.01 8287.71 19268.99 10283.65 25591.46 11163.00 30077.77 17190.28 13166.10 10995.09 8461.40 26388.22 12990.94 165
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Effi-MVS+83.62 7983.08 8285.24 7588.38 16767.45 14288.89 10989.15 17975.50 9282.27 10088.28 18669.61 7394.45 10977.81 11187.84 13093.84 59
gg-mvs-nofinetune69.95 30067.96 30475.94 29583.07 28954.51 34077.23 33570.29 37163.11 29870.32 28762.33 38243.62 32888.69 28553.88 31787.76 13184.62 328
xiu_mvs_v1_base_debu80.80 13179.72 13784.03 13087.35 20370.19 7985.56 21288.77 19469.06 22681.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 234
xiu_mvs_v1_base80.80 13179.72 13784.03 13087.35 20370.19 7985.56 21288.77 19469.06 22681.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 234
xiu_mvs_v1_base_debi80.80 13179.72 13784.03 13087.35 20370.19 7985.56 21288.77 19469.06 22681.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 234
CLD-MVS82.31 9981.65 10584.29 11088.47 16367.73 13685.81 21092.35 7475.78 8678.33 15686.58 23664.01 12894.35 11076.05 13187.48 13590.79 168
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CDS-MVSNet79.07 17677.70 18983.17 15987.60 19768.23 12584.40 24486.20 24667.49 24976.36 20486.54 23861.54 16290.79 25261.86 25987.33 13690.49 182
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
diffmvspermissive82.10 10181.88 10382.76 18283.00 29263.78 22083.68 25489.76 15772.94 15082.02 10389.85 14065.96 11490.79 25282.38 7487.30 13793.71 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPP-MVSNet83.40 8483.02 8484.57 9690.13 10164.47 20792.32 3090.73 12874.45 11579.35 13591.10 11469.05 8195.12 7872.78 16387.22 13894.13 44
TAMVS78.89 18177.51 19483.03 16687.80 18767.79 13584.72 23185.05 26067.63 24676.75 19387.70 19962.25 15290.82 25158.53 28887.13 13990.49 182
TAPA-MVS73.13 979.15 17377.94 17882.79 17989.59 11662.99 24188.16 13991.51 10765.77 27077.14 18791.09 11560.91 17793.21 16350.26 33887.05 14092.17 128
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PAPM77.68 21376.40 21981.51 20387.29 21061.85 25383.78 25389.59 16264.74 28171.23 28088.70 17262.59 14593.66 14352.66 32387.03 14189.01 239
test_yl81.17 12180.47 12383.24 15589.13 13963.62 22186.21 19789.95 15372.43 15581.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
DCV-MVSNet81.17 12180.47 12383.24 15589.13 13963.62 22186.21 19789.95 15372.43 15581.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
BH-untuned79.47 16378.60 16382.05 19289.19 13765.91 17386.07 20188.52 20372.18 15775.42 22487.69 20061.15 17393.54 14860.38 27086.83 14486.70 295
BH-RMVSNet79.61 15878.44 16783.14 16089.38 12665.93 17284.95 22787.15 23273.56 13478.19 16189.79 14156.67 21293.36 15659.53 27786.74 14590.13 196
LS3D76.95 22674.82 23983.37 15090.45 9567.36 14689.15 10286.94 23561.87 31569.52 30090.61 12651.71 25994.53 10546.38 35886.71 14688.21 261
Fast-Effi-MVS+80.81 12979.92 13283.47 14588.85 14664.51 20485.53 21789.39 16770.79 18278.49 15285.06 27267.54 9493.58 14467.03 21986.58 14792.32 120
EPNet_dtu75.46 24774.86 23877.23 28782.57 30354.60 33886.89 17683.09 29171.64 16266.25 33585.86 25255.99 21488.04 29454.92 31286.55 14889.05 237
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OPM-MVS83.50 8182.95 8685.14 7788.79 15270.95 6689.13 10391.52 10677.55 4480.96 11991.75 9560.71 17994.50 10779.67 9586.51 14989.97 210
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
OMC-MVS82.69 9581.97 10284.85 8988.75 15467.42 14387.98 14490.87 12574.92 10379.72 13091.65 9762.19 15493.96 12475.26 14086.42 15093.16 92
HQP_MVS83.64 7783.14 8185.14 7790.08 10368.71 11291.25 5092.44 6979.12 2378.92 14191.00 12060.42 18695.38 6978.71 10286.32 15191.33 149
plane_prior592.44 6995.38 6978.71 10286.32 15191.33 149
FA-MVS(test-final)80.96 12579.91 13384.10 11888.30 17065.01 19584.55 23790.01 15173.25 14379.61 13187.57 20358.35 19794.72 9971.29 17586.25 15392.56 111
thisisatest051577.33 21975.38 23383.18 15885.27 24163.80 21982.11 27883.27 28765.06 27775.91 21383.84 29049.54 28194.27 11367.24 21586.19 15491.48 147
plane_prior68.71 11290.38 6777.62 3986.16 155
mvs_anonymous79.42 16679.11 15480.34 23484.45 26057.97 29482.59 27387.62 22167.40 25176.17 21188.56 17968.47 8689.59 26870.65 18186.05 15693.47 79
GeoE81.71 11081.01 11483.80 13989.51 12064.45 20888.97 10688.73 19971.27 17378.63 14889.76 14266.32 10793.20 16669.89 18986.02 15793.74 63
HQP3-MVS92.19 8285.99 158
HQP-MVS82.61 9782.02 10084.37 10589.33 12866.98 15589.17 9892.19 8276.41 7277.23 18290.23 13360.17 18995.11 8077.47 11485.99 15891.03 161
BH-w/o78.21 19577.33 19880.84 22488.81 15065.13 19384.87 22887.85 21769.75 20874.52 24784.74 27761.34 16893.11 17358.24 29185.84 16084.27 330
FE-MVS77.78 20875.68 22684.08 12288.09 17666.00 17083.13 26687.79 21868.42 24078.01 16685.23 26745.50 31995.12 7859.11 28185.83 16191.11 156
testing22274.04 25972.66 26278.19 27187.89 18255.36 33081.06 28979.20 33371.30 17274.65 24583.57 29639.11 35288.67 28651.43 33085.75 16290.53 180
CHOSEN 1792x268877.63 21475.69 22583.44 14689.98 10968.58 11878.70 32187.50 22456.38 35575.80 21686.84 22258.67 19491.40 23661.58 26285.75 16290.34 187
Anonymous20240521178.25 19377.01 20281.99 19491.03 8260.67 26784.77 23083.90 27770.65 18880.00 12891.20 11141.08 34491.43 23565.21 23185.26 16493.85 57
cascas76.72 22974.64 24082.99 16885.78 23265.88 17482.33 27589.21 17660.85 32172.74 26481.02 32547.28 30093.75 14067.48 21285.02 16589.34 228
FIs82.07 10382.42 9181.04 21988.80 15158.34 28888.26 13593.49 2676.93 6078.47 15391.04 11769.92 7092.34 19969.87 19084.97 16692.44 118
test-LLR72.94 27472.43 26474.48 31181.35 32258.04 29278.38 32477.46 34366.66 25669.95 29579.00 34548.06 29679.24 34966.13 22284.83 16786.15 303
test-mter71.41 28470.39 28774.48 31181.35 32258.04 29278.38 32477.46 34360.32 32469.95 29579.00 34536.08 36379.24 34966.13 22284.83 16786.15 303
EI-MVSNet-Vis-set84.19 6883.81 7385.31 7388.18 17267.85 13387.66 15589.73 15980.05 1482.95 9289.59 14870.74 6194.82 9580.66 8984.72 16993.28 86
thisisatest053079.40 16777.76 18784.31 10987.69 19465.10 19487.36 16284.26 27370.04 19877.42 17688.26 18849.94 27794.79 9770.20 18484.70 17093.03 97
fmvsm_s_conf0.5_n83.80 7383.71 7484.07 12386.69 22167.31 14789.46 8983.07 29271.09 17786.96 4193.70 5569.02 8391.47 23388.79 1884.62 17193.44 80
fmvsm_s_conf0.1_n83.56 8083.38 7884.10 11884.86 25167.28 14889.40 9383.01 29370.67 18587.08 3893.96 5068.38 8791.45 23488.56 2284.50 17293.56 75
GG-mvs-BLEND75.38 30381.59 31755.80 32679.32 31269.63 37367.19 32173.67 37143.24 32988.90 28350.41 33384.50 17281.45 357
FC-MVSNet-test81.52 11682.02 10080.03 24088.42 16655.97 32587.95 14693.42 2977.10 5677.38 17790.98 12269.96 6891.79 21768.46 20584.50 17292.33 119
iter_conf_final80.63 13679.35 14684.46 10289.36 12767.70 13789.85 7584.49 26773.19 14578.30 15788.94 16545.98 31294.56 10279.59 9684.48 17591.11 156
PVSNet64.34 1872.08 28170.87 28175.69 29886.21 22656.44 31874.37 35280.73 31562.06 31470.17 29082.23 31642.86 33283.31 33154.77 31384.45 17687.32 279
ETVMVS72.25 28071.05 27875.84 29687.77 19151.91 35679.39 31174.98 35669.26 21773.71 25482.95 30440.82 34686.14 30846.17 35984.43 17789.47 225
MS-PatchMatch73.83 26272.67 26177.30 28683.87 27166.02 16981.82 27984.66 26461.37 31968.61 30982.82 30847.29 29988.21 29159.27 27884.32 17877.68 369
iter_conf0580.00 15478.70 16083.91 13787.84 18565.83 17588.84 11284.92 26271.61 16678.70 14488.94 16543.88 32794.56 10279.28 9784.28 17991.33 149
ET-MVSNet_ETH3D78.63 18676.63 21584.64 9586.73 22069.47 9285.01 22584.61 26569.54 21166.51 33386.59 23450.16 27491.75 21976.26 12884.24 18092.69 107
TESTMET0.1,169.89 30169.00 29572.55 32779.27 35056.85 31078.38 32474.71 36057.64 34768.09 31277.19 35837.75 35876.70 36263.92 23984.09 18184.10 334
EI-MVSNet-UG-set83.81 7283.38 7885.09 8087.87 18367.53 14187.44 16189.66 16079.74 1682.23 10189.41 15770.24 6694.74 9879.95 9383.92 18292.99 100
LPG-MVS_test82.08 10281.27 10884.50 9989.23 13568.76 10890.22 7091.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18389.83 215
LGP-MVS_train84.50 9989.23 13568.76 10891.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18389.83 215
thres100view90076.50 23175.55 22979.33 25489.52 11956.99 30985.83 20983.23 28873.94 12476.32 20587.12 21851.89 25691.95 21148.33 34683.75 18589.07 232
tfpn200view976.42 23475.37 23479.55 25389.13 13957.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24891.95 21148.33 34683.75 18589.07 232
thres40076.50 23175.37 23479.86 24389.13 13957.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24891.95 21148.33 34683.75 18590.00 206
thres600view776.50 23175.44 23079.68 24889.40 12457.16 30685.53 21783.23 28873.79 12976.26 20687.09 21951.89 25691.89 21448.05 35183.72 18890.00 206
fmvsm_s_conf0.5_n_a83.63 7883.41 7784.28 11186.14 22768.12 12789.43 9082.87 29670.27 19587.27 3793.80 5469.09 7891.58 22488.21 2683.65 18993.14 93
thres20075.55 24574.47 24478.82 26087.78 19057.85 29783.07 26983.51 28372.44 15475.84 21584.42 27952.08 25191.75 21947.41 35383.64 19086.86 291
SDMVSNet80.38 14380.18 12980.99 22089.03 14464.94 19780.45 29989.40 16675.19 9876.61 19889.98 13760.61 18387.69 29876.83 12383.55 19190.33 188
sd_testset77.70 21277.40 19578.60 26489.03 14460.02 27679.00 31785.83 25275.19 9876.61 19889.98 13754.81 21985.46 31562.63 25183.55 19190.33 188
mvsmamba81.69 11180.74 11784.56 9787.45 20266.72 15991.26 4885.89 25174.66 10978.23 15990.56 12754.33 22794.91 8880.73 8883.54 19392.04 134
XVG-OURS80.41 14279.23 15083.97 13485.64 23469.02 10183.03 27190.39 13671.09 17777.63 17391.49 10454.62 22691.35 23775.71 13483.47 19491.54 142
fmvsm_s_conf0.1_n_a83.32 8682.99 8584.28 11183.79 27268.07 12989.34 9582.85 29769.80 20587.36 3694.06 4268.34 8891.56 22687.95 2783.46 19593.21 90
CNLPA78.08 19976.79 20981.97 19590.40 9771.07 6287.59 15784.55 26666.03 26872.38 27089.64 14557.56 20486.04 30959.61 27683.35 19688.79 250
MVP-Stereo76.12 23874.46 24581.13 21785.37 24069.79 8684.42 24387.95 21365.03 27867.46 31885.33 26453.28 23991.73 22158.01 29383.27 19781.85 355
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
131476.53 23075.30 23680.21 23783.93 27062.32 24784.66 23288.81 19260.23 32570.16 29184.07 28755.30 21790.73 25467.37 21383.21 19887.59 273
tttt051779.40 16777.91 17983.90 13888.10 17563.84 21888.37 13184.05 27571.45 17076.78 19289.12 16149.93 27994.89 9270.18 18583.18 19992.96 101
HyFIR lowres test77.53 21575.40 23283.94 13689.59 11666.62 16080.36 30088.64 20156.29 35676.45 20085.17 26957.64 20393.28 15861.34 26583.10 20091.91 135
ACMP74.13 681.51 11880.57 12084.36 10689.42 12368.69 11589.97 7491.50 11074.46 11475.04 23990.41 13053.82 23394.54 10477.56 11382.91 20189.86 214
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM73.20 880.78 13479.84 13583.58 14389.31 13168.37 12189.99 7391.60 10470.28 19477.25 18089.66 14453.37 23893.53 14974.24 14882.85 20288.85 247
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PMMVS69.34 30468.67 29671.35 33675.67 36362.03 25075.17 34673.46 36350.00 37268.68 30779.05 34352.07 25278.13 35461.16 26682.77 20373.90 375
PLCcopyleft70.83 1178.05 20176.37 22083.08 16391.88 7467.80 13488.19 13789.46 16564.33 28769.87 29788.38 18353.66 23493.58 14458.86 28482.73 20487.86 266
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TR-MVS77.44 21676.18 22181.20 21488.24 17163.24 23384.61 23586.40 24367.55 24877.81 16986.48 24054.10 23093.15 17057.75 29582.72 20587.20 281
Anonymous2024052980.19 15078.89 15884.10 11890.60 9264.75 20188.95 10790.90 12365.97 26980.59 12291.17 11349.97 27693.73 14269.16 19782.70 20693.81 60
ab-mvs79.51 16178.97 15781.14 21688.46 16460.91 26383.84 25289.24 17570.36 19179.03 13888.87 16963.23 13690.21 26065.12 23282.57 20792.28 122
HY-MVS69.67 1277.95 20477.15 20080.36 23387.57 20160.21 27583.37 26287.78 21966.11 26575.37 22687.06 22163.27 13490.48 25761.38 26482.43 20890.40 186
PS-MVSNAJss82.07 10381.31 10784.34 10886.51 22367.27 14989.27 9691.51 10771.75 16179.37 13490.22 13463.15 13894.27 11377.69 11282.36 20991.49 146
UniMVSNet_ETH3D79.10 17578.24 17381.70 19986.85 21660.24 27487.28 16688.79 19374.25 11876.84 18990.53 12949.48 28291.56 22667.98 20782.15 21093.29 85
WB-MVSnew71.96 28271.65 27172.89 32484.67 25751.88 35782.29 27677.57 34162.31 31073.67 25583.00 30353.49 23781.10 34345.75 36282.13 21185.70 312
PVSNet_BlendedMVS80.60 13880.02 13082.36 18988.85 14665.40 18686.16 19992.00 8769.34 21578.11 16386.09 24966.02 11294.27 11371.52 17182.06 21287.39 276
WTY-MVS75.65 24475.68 22675.57 30086.40 22456.82 31177.92 33182.40 30165.10 27676.18 20987.72 19863.13 14180.90 34460.31 27181.96 21389.00 241
ACMMP++_ref81.95 214
DP-MVS76.78 22874.57 24183.42 14793.29 4869.46 9488.55 12483.70 27963.98 29370.20 28888.89 16854.01 23294.80 9646.66 35581.88 21586.01 307
CMPMVSbinary51.72 2170.19 29868.16 30176.28 29373.15 37757.55 30279.47 31083.92 27648.02 37456.48 37584.81 27543.13 33086.42 30662.67 25081.81 21684.89 324
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
bld_raw_dy_0_6477.29 22175.98 22381.22 21385.04 24865.47 18488.14 14277.56 34269.20 22173.77 25389.40 15942.24 33888.85 28476.78 12481.64 21789.33 229
XVG-OURS-SEG-HR80.81 12979.76 13683.96 13585.60 23568.78 10783.54 26090.50 13470.66 18776.71 19491.66 9660.69 18091.26 23976.94 12081.58 21891.83 136
MIMVSNet70.69 29269.30 29174.88 30784.52 25856.35 32175.87 34279.42 33064.59 28267.76 31382.41 31241.10 34381.54 34046.64 35781.34 21986.75 294
ACMMP++81.25 220
D2MVS74.82 25273.21 25779.64 25079.81 34162.56 24480.34 30187.35 22764.37 28668.86 30682.66 31046.37 30790.10 26167.91 20881.24 22186.25 300
test_vis1_n_192075.52 24675.78 22474.75 31079.84 34057.44 30483.26 26385.52 25562.83 30479.34 13686.17 24745.10 32179.71 34878.75 10181.21 22287.10 288
GA-MVS76.87 22775.17 23781.97 19582.75 29862.58 24381.44 28786.35 24572.16 15974.74 24382.89 30646.20 31192.02 20968.85 20181.09 22391.30 152
sss73.60 26473.64 25473.51 31982.80 29755.01 33576.12 33881.69 30862.47 30974.68 24485.85 25357.32 20778.11 35560.86 26880.93 22487.39 276
Effi-MVS+-dtu80.03 15278.57 16484.42 10485.13 24668.74 11088.77 11488.10 20874.99 10274.97 24083.49 29757.27 20893.36 15673.53 15380.88 22591.18 154
EG-PatchMatch MVS74.04 25971.82 26980.71 22784.92 25067.42 14385.86 20788.08 20966.04 26764.22 34783.85 28935.10 36592.56 18957.44 29780.83 22682.16 354
jajsoiax79.29 17077.96 17783.27 15384.68 25466.57 16289.25 9790.16 14769.20 22175.46 22289.49 15045.75 31793.13 17276.84 12180.80 22790.11 198
1112_ss77.40 21876.43 21880.32 23589.11 14360.41 27283.65 25587.72 22062.13 31373.05 26286.72 22662.58 14689.97 26262.11 25780.80 22790.59 178
mvs_tets79.13 17477.77 18683.22 15784.70 25366.37 16489.17 9890.19 14669.38 21475.40 22589.46 15344.17 32593.15 17076.78 12480.70 22990.14 195
PatchMatch-RL72.38 27770.90 28076.80 29188.60 15967.38 14579.53 30976.17 35362.75 30669.36 30282.00 32045.51 31884.89 32053.62 31880.58 23078.12 368
EI-MVSNet80.52 14179.98 13182.12 19084.28 26163.19 23686.41 19188.95 18974.18 12078.69 14587.54 20666.62 10192.43 19372.57 16680.57 23190.74 172
MVSTER79.01 17777.88 18182.38 18883.07 28964.80 20084.08 25188.95 18969.01 22978.69 14587.17 21754.70 22492.43 19374.69 14280.57 23189.89 213
XVG-ACMP-BASELINE76.11 23974.27 24781.62 20083.20 28564.67 20283.60 25889.75 15869.75 20871.85 27587.09 21932.78 36892.11 20669.99 18880.43 23388.09 262
Fast-Effi-MVS+-dtu78.02 20276.49 21682.62 18483.16 28866.96 15786.94 17487.45 22672.45 15271.49 27984.17 28554.79 22391.58 22467.61 21080.31 23489.30 230
LTVRE_ROB69.57 1376.25 23774.54 24381.41 20688.60 15964.38 21079.24 31389.12 18270.76 18469.79 29987.86 19749.09 28993.20 16656.21 30980.16 23586.65 296
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Test_1112_low_res76.40 23575.44 23079.27 25589.28 13358.09 29081.69 28287.07 23359.53 33272.48 26886.67 23161.30 16989.33 27260.81 26980.15 23690.41 185
test_djsdf80.30 14779.32 14783.27 15383.98 26965.37 18990.50 6290.38 13768.55 23676.19 20888.70 17256.44 21393.46 15378.98 9980.14 23790.97 164
test_fmvs170.93 28970.52 28372.16 32973.71 37155.05 33480.82 29078.77 33551.21 37178.58 14984.41 28031.20 37376.94 36175.88 13380.12 23884.47 329
test_fmvs1_n70.86 29070.24 28872.73 32672.51 38155.28 33281.27 28879.71 32851.49 37078.73 14384.87 27427.54 37877.02 36076.06 13079.97 23985.88 310
CHOSEN 280x42066.51 32564.71 32671.90 33081.45 31963.52 22657.98 38968.95 37753.57 36262.59 35676.70 35946.22 31075.29 37655.25 31179.68 24076.88 371
baseline275.70 24373.83 25281.30 21083.26 28361.79 25582.57 27480.65 31666.81 25266.88 32483.42 29857.86 20192.19 20463.47 24179.57 24189.91 211
GBi-Net78.40 19077.40 19581.40 20787.60 19763.01 23888.39 12889.28 17071.63 16375.34 22787.28 21054.80 22091.11 24262.72 24779.57 24190.09 200
test178.40 19077.40 19581.40 20787.60 19763.01 23888.39 12889.28 17071.63 16375.34 22787.28 21054.80 22091.11 24262.72 24779.57 24190.09 200
FMVSNet377.88 20676.85 20780.97 22286.84 21762.36 24586.52 18988.77 19471.13 17575.34 22786.66 23254.07 23191.10 24562.72 24779.57 24189.45 226
FMVSNet278.20 19677.21 19981.20 21487.60 19762.89 24287.47 16089.02 18471.63 16375.29 23287.28 21054.80 22091.10 24562.38 25279.38 24589.61 222
anonymousdsp78.60 18777.15 20082.98 16980.51 33267.08 15387.24 16789.53 16365.66 27275.16 23487.19 21652.52 24192.25 20277.17 11879.34 24689.61 222
nrg03083.88 7183.53 7584.96 8486.77 21969.28 9890.46 6592.67 6174.79 10682.95 9291.33 10872.70 4193.09 17480.79 8779.28 24792.50 114
VPA-MVSNet80.60 13880.55 12180.76 22688.07 17760.80 26586.86 17791.58 10575.67 9080.24 12589.45 15563.34 13290.25 25970.51 18279.22 24891.23 153
RRT_MVS80.35 14679.22 15183.74 14087.63 19665.46 18591.08 5488.92 19173.82 12776.44 20390.03 13649.05 29194.25 11776.84 12179.20 24991.51 143
tt080578.73 18377.83 18281.43 20585.17 24260.30 27389.41 9290.90 12371.21 17477.17 18688.73 17146.38 30693.21 16372.57 16678.96 25090.79 168
test_cas_vis1_n_192073.76 26373.74 25373.81 31775.90 36159.77 27880.51 29782.40 30158.30 34281.62 11085.69 25544.35 32476.41 36676.29 12778.61 25185.23 318
F-COLMAP76.38 23674.33 24682.50 18689.28 13366.95 15888.41 12789.03 18364.05 29166.83 32588.61 17646.78 30492.89 18157.48 29678.55 25287.67 269
FMVSNet177.44 21676.12 22281.40 20786.81 21863.01 23888.39 12889.28 17070.49 19074.39 24887.28 21049.06 29091.11 24260.91 26778.52 25390.09 200
MDTV_nov1_ep1369.97 29083.18 28653.48 34777.10 33680.18 32560.45 32269.33 30380.44 33148.89 29486.90 30251.60 32878.51 254
CVMVSNet72.99 27372.58 26374.25 31484.28 26150.85 36586.41 19183.45 28544.56 37773.23 26087.54 20649.38 28485.70 31165.90 22678.44 25586.19 302
tpm273.26 26971.46 27278.63 26283.34 28156.71 31480.65 29580.40 32156.63 35473.55 25682.02 31951.80 25891.24 24056.35 30878.42 25687.95 263
test_vis1_n69.85 30269.21 29371.77 33172.66 38055.27 33381.48 28576.21 35252.03 36775.30 23183.20 30128.97 37676.22 36874.60 14378.41 25783.81 337
CostFormer75.24 25173.90 25079.27 25582.65 30258.27 28980.80 29182.73 29961.57 31675.33 23083.13 30255.52 21591.07 24864.98 23478.34 25888.45 257
ACMH67.68 1675.89 24173.93 24981.77 19888.71 15666.61 16188.62 12289.01 18569.81 20466.78 32686.70 23041.95 34191.51 23155.64 31078.14 25987.17 282
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
dmvs_re71.14 28670.58 28272.80 32581.96 31159.68 27975.60 34479.34 33168.55 23669.27 30480.72 33049.42 28376.54 36352.56 32477.79 26082.19 353
CR-MVSNet73.37 26671.27 27679.67 24981.32 32465.19 19175.92 34080.30 32259.92 32872.73 26581.19 32252.50 24286.69 30359.84 27477.71 26187.11 286
RPMNet73.51 26570.49 28482.58 18581.32 32465.19 19175.92 34092.27 7657.60 34872.73 26576.45 36152.30 24595.43 6548.14 35077.71 26187.11 286
SCA74.22 25772.33 26679.91 24284.05 26862.17 24979.96 30679.29 33266.30 26472.38 27080.13 33451.95 25488.60 28759.25 27977.67 26388.96 243
Anonymous2023121178.97 17977.69 19082.81 17690.54 9464.29 21190.11 7291.51 10765.01 27976.16 21288.13 19550.56 27093.03 17969.68 19277.56 26491.11 156
v114480.03 15279.03 15583.01 16783.78 27364.51 20487.11 17090.57 13371.96 16078.08 16586.20 24661.41 16693.94 12774.93 14177.23 26590.60 177
WR-MVS79.49 16279.22 15180.27 23688.79 15258.35 28785.06 22488.61 20278.56 3077.65 17288.34 18463.81 13190.66 25564.98 23477.22 26691.80 138
v119279.59 16078.43 16883.07 16483.55 27764.52 20386.93 17590.58 13170.83 18177.78 17085.90 25059.15 19293.94 12773.96 15077.19 26790.76 170
VPNet78.69 18578.66 16278.76 26188.31 16955.72 32784.45 24186.63 24076.79 6478.26 15890.55 12859.30 19189.70 26766.63 22077.05 26890.88 166
v124078.99 17877.78 18582.64 18383.21 28463.54 22586.62 18690.30 14369.74 21077.33 17885.68 25657.04 21093.76 13973.13 16076.92 26990.62 175
MSDG73.36 26870.99 27980.49 23184.51 25965.80 17780.71 29486.13 24865.70 27165.46 33883.74 29344.60 32290.91 25051.13 33176.89 27084.74 326
IterMVS-LS80.06 15179.38 14482.11 19185.89 23063.20 23586.79 18089.34 16874.19 11975.45 22386.72 22666.62 10192.39 19572.58 16576.86 27190.75 171
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192079.22 17178.03 17682.80 17783.30 28263.94 21786.80 17990.33 14169.91 20377.48 17585.53 26058.44 19693.75 14073.60 15276.85 27290.71 173
XXY-MVS75.41 24975.56 22874.96 30683.59 27657.82 29880.59 29683.87 27866.54 26274.93 24188.31 18563.24 13580.09 34762.16 25576.85 27286.97 289
v2v48280.23 14879.29 14883.05 16583.62 27564.14 21387.04 17189.97 15273.61 13278.18 16287.22 21461.10 17493.82 13476.11 12976.78 27491.18 154
v14419279.47 16378.37 16982.78 18083.35 28063.96 21686.96 17390.36 14069.99 20077.50 17485.67 25760.66 18193.77 13874.27 14776.58 27590.62 175
UniMVSNet (Re)81.60 11581.11 11183.09 16288.38 16764.41 20987.60 15693.02 4278.42 3278.56 15088.16 19069.78 7193.26 15969.58 19376.49 27691.60 140
UniMVSNet_NR-MVSNet81.88 10681.54 10682.92 17188.46 16463.46 22887.13 16892.37 7380.19 1278.38 15489.14 16071.66 5293.05 17670.05 18676.46 27792.25 123
DU-MVS81.12 12380.52 12282.90 17287.80 18763.46 22887.02 17291.87 9579.01 2678.38 15489.07 16265.02 12193.05 17670.05 18676.46 27792.20 126
cl2278.07 20077.01 20281.23 21282.37 30861.83 25483.55 25987.98 21168.96 23075.06 23883.87 28861.40 16791.88 21573.53 15376.39 27989.98 209
miper_ehance_all_eth78.59 18877.76 18781.08 21882.66 30161.56 25783.65 25589.15 17968.87 23175.55 21983.79 29266.49 10492.03 20873.25 15876.39 27989.64 221
miper_enhance_ethall77.87 20776.86 20680.92 22381.65 31561.38 25982.68 27288.98 18665.52 27475.47 22082.30 31465.76 11692.00 21072.95 16176.39 27989.39 227
Syy-MVS68.05 31567.85 30668.67 35184.68 25440.97 39278.62 32273.08 36566.65 25966.74 32779.46 34052.11 25082.30 33632.89 38476.38 28282.75 349
myMVS_eth3d67.02 32166.29 32269.21 34684.68 25442.58 38778.62 32273.08 36566.65 25966.74 32779.46 34031.53 37282.30 33639.43 37776.38 28282.75 349
PatchmatchNetpermissive73.12 27171.33 27578.49 26883.18 28660.85 26479.63 30878.57 33664.13 28871.73 27679.81 33951.20 26385.97 31057.40 29876.36 28488.66 253
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
USDC70.33 29668.37 29876.21 29480.60 33056.23 32279.19 31586.49 24160.89 32061.29 35885.47 26231.78 37189.47 27153.37 32076.21 28582.94 348
OpenMVS_ROBcopyleft64.09 1970.56 29468.19 30077.65 28080.26 33359.41 28385.01 22582.96 29558.76 33965.43 33982.33 31337.63 35991.23 24145.34 36576.03 28682.32 351
ACMH+68.96 1476.01 24074.01 24882.03 19388.60 15965.31 19088.86 11087.55 22270.25 19667.75 31487.47 20841.27 34293.19 16858.37 28975.94 28787.60 271
tpm72.37 27871.71 27074.35 31382.19 30952.00 35479.22 31477.29 34664.56 28372.95 26383.68 29551.35 26183.26 33258.33 29075.80 28887.81 267
Anonymous2023120668.60 30967.80 30971.02 33980.23 33550.75 36678.30 32780.47 31956.79 35366.11 33682.63 31146.35 30878.95 35143.62 36875.70 28983.36 341
v7n78.97 17977.58 19383.14 16083.45 27965.51 18288.32 13391.21 11473.69 13072.41 26986.32 24457.93 19993.81 13569.18 19675.65 29090.11 198
NR-MVSNet80.23 14879.38 14482.78 18087.80 18763.34 23186.31 19491.09 12079.01 2672.17 27289.07 16267.20 9892.81 18566.08 22575.65 29092.20 126
v1079.74 15778.67 16182.97 17084.06 26764.95 19687.88 15190.62 13073.11 14675.11 23686.56 23761.46 16594.05 12373.68 15175.55 29289.90 212
IB-MVS68.01 1575.85 24273.36 25683.31 15184.76 25266.03 16883.38 26185.06 25970.21 19769.40 30181.05 32445.76 31694.66 10165.10 23375.49 29389.25 231
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
h-mvs3383.15 8882.19 9686.02 6190.56 9370.85 7088.15 14089.16 17876.02 8384.67 6491.39 10761.54 16295.50 6182.71 7075.48 29491.72 139
c3_l78.75 18277.91 17981.26 21182.89 29661.56 25784.09 25089.13 18169.97 20175.56 21884.29 28466.36 10692.09 20773.47 15575.48 29490.12 197
V4279.38 16978.24 17382.83 17481.10 32665.50 18385.55 21589.82 15571.57 16878.21 16086.12 24860.66 18193.18 16975.64 13575.46 29689.81 217
testing368.56 31167.67 31271.22 33887.33 20842.87 38683.06 27071.54 36870.36 19169.08 30584.38 28130.33 37585.69 31237.50 38075.45 29785.09 323
cl____77.72 21076.76 21080.58 22982.49 30560.48 27083.09 26787.87 21569.22 21974.38 24985.22 26862.10 15591.53 22971.09 17675.41 29889.73 220
DIV-MVS_self_test77.72 21076.76 21080.58 22982.48 30660.48 27083.09 26787.86 21669.22 21974.38 24985.24 26662.10 15591.53 22971.09 17675.40 29989.74 219
v879.97 15579.02 15682.80 17784.09 26664.50 20687.96 14590.29 14474.13 12275.24 23386.81 22362.88 14393.89 13374.39 14675.40 29990.00 206
Baseline_NR-MVSNet78.15 19878.33 17177.61 28185.79 23156.21 32386.78 18185.76 25373.60 13377.93 16887.57 20365.02 12188.99 27867.14 21775.33 30187.63 270
pmmvs571.55 28370.20 28975.61 29977.83 35456.39 31981.74 28180.89 31257.76 34667.46 31884.49 27849.26 28785.32 31757.08 30175.29 30285.11 322
EPMVS69.02 30668.16 30171.59 33279.61 34549.80 37177.40 33366.93 37962.82 30570.01 29279.05 34345.79 31577.86 35756.58 30675.26 30387.13 285
TranMVSNet+NR-MVSNet80.84 12780.31 12682.42 18787.85 18462.33 24687.74 15491.33 11280.55 977.99 16789.86 13965.23 11992.62 18667.05 21875.24 30492.30 121
test_fmvs268.35 31467.48 31570.98 34069.50 38451.95 35580.05 30476.38 35149.33 37374.65 24584.38 28123.30 38475.40 37574.51 14475.17 30585.60 313
tfpnnormal74.39 25473.16 25878.08 27386.10 22958.05 29184.65 23487.53 22370.32 19371.22 28185.63 25854.97 21889.86 26343.03 36975.02 30686.32 299
COLMAP_ROBcopyleft66.92 1773.01 27270.41 28680.81 22587.13 21365.63 18088.30 13484.19 27462.96 30163.80 35187.69 20038.04 35792.56 18946.66 35574.91 30784.24 331
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PatchT68.46 31367.85 30670.29 34280.70 32943.93 38472.47 35774.88 35760.15 32670.55 28376.57 36049.94 27781.59 33950.58 33274.83 30885.34 316
pmmvs474.03 26171.91 26880.39 23281.96 31168.32 12281.45 28682.14 30359.32 33369.87 29785.13 27052.40 24488.13 29360.21 27274.74 30984.73 327
ITE_SJBPF78.22 27081.77 31460.57 26883.30 28669.25 21867.54 31687.20 21536.33 36287.28 30154.34 31574.62 31086.80 292
test0.0.03 168.00 31667.69 31168.90 34877.55 35547.43 37375.70 34372.95 36766.66 25666.56 32982.29 31548.06 29675.87 37044.97 36674.51 31183.41 340
test_040272.79 27570.44 28579.84 24488.13 17365.99 17185.93 20484.29 27165.57 27367.40 32085.49 26146.92 30392.61 18735.88 38174.38 31280.94 360
CP-MVSNet78.22 19478.34 17077.84 27687.83 18654.54 33987.94 14791.17 11677.65 3873.48 25788.49 18062.24 15388.43 28962.19 25474.07 31390.55 179
FMVSNet569.50 30367.96 30474.15 31582.97 29555.35 33180.01 30582.12 30462.56 30863.02 35281.53 32136.92 36081.92 33848.42 34574.06 31485.17 321
MVS-HIRNet59.14 34357.67 34663.57 36081.65 31543.50 38571.73 35965.06 38439.59 38451.43 38157.73 38838.34 35582.58 33539.53 37573.95 31564.62 384
tpmrst72.39 27672.13 26773.18 32380.54 33149.91 36979.91 30779.08 33463.11 29871.69 27779.95 33655.32 21682.77 33465.66 22973.89 31686.87 290
PS-CasMVS78.01 20378.09 17577.77 27887.71 19254.39 34188.02 14391.22 11377.50 4673.26 25988.64 17560.73 17888.41 29061.88 25873.88 31790.53 180
v14878.72 18477.80 18481.47 20482.73 29961.96 25286.30 19588.08 20973.26 14276.18 20985.47 26262.46 14892.36 19771.92 17073.82 31890.09 200
Patchmatch-test64.82 33363.24 33469.57 34479.42 34849.82 37063.49 38669.05 37651.98 36859.95 36480.13 33450.91 26570.98 38440.66 37473.57 31987.90 265
WR-MVS_H78.51 18978.49 16578.56 26588.02 17956.38 32088.43 12692.67 6177.14 5473.89 25287.55 20566.25 10889.24 27458.92 28373.55 32090.06 204
AUN-MVS79.21 17277.60 19284.05 12888.71 15667.61 13985.84 20887.26 22969.08 22577.23 18288.14 19453.20 24093.47 15275.50 13973.45 32191.06 159
hse-mvs281.72 10980.94 11584.07 12388.72 15567.68 13885.87 20687.26 22976.02 8384.67 6488.22 18961.54 16293.48 15182.71 7073.44 32291.06 159
testgi66.67 32466.53 32167.08 35675.62 36441.69 39175.93 33976.50 35066.11 26565.20 34386.59 23435.72 36474.71 37743.71 36773.38 32384.84 325
Anonymous2024052168.80 30867.22 31773.55 31874.33 36854.11 34283.18 26485.61 25458.15 34361.68 35780.94 32730.71 37481.27 34257.00 30273.34 32485.28 317
pm-mvs177.25 22276.68 21478.93 25984.22 26358.62 28686.41 19188.36 20571.37 17173.31 25888.01 19661.22 17289.15 27664.24 23873.01 32589.03 238
eth_miper_zixun_eth77.92 20576.69 21381.61 20283.00 29261.98 25183.15 26589.20 17769.52 21274.86 24284.35 28361.76 15892.56 18971.50 17372.89 32690.28 191
miper_lstm_enhance74.11 25873.11 25977.13 28880.11 33659.62 28072.23 35886.92 23666.76 25470.40 28682.92 30556.93 21182.92 33369.06 19872.63 32788.87 246
tpmvs71.09 28769.29 29276.49 29282.04 31056.04 32478.92 31981.37 31164.05 29167.18 32278.28 35149.74 28089.77 26449.67 34172.37 32883.67 338
PEN-MVS77.73 20977.69 19077.84 27687.07 21453.91 34487.91 14991.18 11577.56 4373.14 26188.82 17061.23 17189.17 27559.95 27372.37 32890.43 184
DSMNet-mixed57.77 34556.90 34760.38 36467.70 38635.61 39569.18 37053.97 39632.30 39257.49 37279.88 33740.39 34868.57 38938.78 37872.37 32876.97 370
IterMVS-SCA-FT75.43 24873.87 25180.11 23982.69 30064.85 19981.57 28483.47 28469.16 22370.49 28584.15 28651.95 25488.15 29269.23 19572.14 33187.34 278
tpm cat170.57 29368.31 29977.35 28582.41 30757.95 29578.08 32880.22 32452.04 36668.54 31077.66 35652.00 25387.84 29651.77 32672.07 33286.25 300
RPSCF73.23 27071.46 27278.54 26682.50 30459.85 27782.18 27782.84 29858.96 33771.15 28289.41 15745.48 32084.77 32158.82 28571.83 33391.02 163
IterMVS74.29 25572.94 26078.35 26981.53 31863.49 22781.58 28382.49 30068.06 24469.99 29483.69 29451.66 26085.54 31365.85 22771.64 33486.01 307
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AllTest70.96 28868.09 30379.58 25185.15 24463.62 22184.58 23679.83 32662.31 31060.32 36286.73 22432.02 36988.96 28150.28 33671.57 33586.15 303
TestCases79.58 25185.15 24463.62 22179.83 32662.31 31060.32 36286.73 22432.02 36988.96 28150.28 33671.57 33586.15 303
baseline176.98 22576.75 21277.66 27988.13 17355.66 32885.12 22381.89 30573.04 14876.79 19188.90 16762.43 14987.78 29763.30 24471.18 33789.55 224
Patchmtry70.74 29169.16 29475.49 30280.72 32854.07 34374.94 35180.30 32258.34 34170.01 29281.19 32252.50 24286.54 30453.37 32071.09 33885.87 311
DTE-MVSNet76.99 22476.80 20877.54 28386.24 22553.06 35287.52 15890.66 12977.08 5772.50 26788.67 17460.48 18589.52 26957.33 29970.74 33990.05 205
MIMVSNet168.58 31066.78 32073.98 31680.07 33751.82 35880.77 29284.37 26864.40 28559.75 36582.16 31736.47 36183.63 32842.73 37070.33 34086.48 298
pmmvs674.69 25373.39 25578.61 26381.38 32157.48 30386.64 18587.95 21364.99 28070.18 28986.61 23350.43 27289.52 26962.12 25670.18 34188.83 248
test_vis1_rt60.28 34258.42 34565.84 35767.25 38755.60 32970.44 36660.94 39044.33 37859.00 36666.64 38024.91 38068.67 38862.80 24669.48 34273.25 376
TinyColmap67.30 32064.81 32574.76 30981.92 31356.68 31580.29 30281.49 31060.33 32356.27 37683.22 29924.77 38187.66 29945.52 36369.47 34379.95 364
OurMVSNet-221017-074.26 25672.42 26579.80 24583.76 27459.59 28185.92 20586.64 23966.39 26366.96 32387.58 20239.46 34991.60 22365.76 22869.27 34488.22 260
JIA-IIPM66.32 32762.82 33876.82 29077.09 35861.72 25665.34 38275.38 35458.04 34564.51 34562.32 38342.05 34086.51 30551.45 32969.22 34582.21 352
ADS-MVSNet266.20 33063.33 33374.82 30879.92 33858.75 28567.55 37575.19 35553.37 36365.25 34175.86 36442.32 33580.53 34641.57 37268.91 34685.18 319
ADS-MVSNet64.36 33462.88 33768.78 35079.92 33847.17 37467.55 37571.18 36953.37 36365.25 34175.86 36442.32 33573.99 38041.57 37268.91 34685.18 319
test20.0367.45 31866.95 31968.94 34775.48 36544.84 38277.50 33277.67 34066.66 25663.01 35383.80 29147.02 30278.40 35342.53 37168.86 34883.58 339
EU-MVSNet68.53 31267.61 31371.31 33778.51 35347.01 37584.47 23884.27 27242.27 38066.44 33484.79 27640.44 34783.76 32658.76 28668.54 34983.17 342
dmvs_testset62.63 33864.11 32958.19 36678.55 35224.76 40275.28 34565.94 38267.91 24560.34 36176.01 36353.56 23573.94 38131.79 38567.65 35075.88 373
our_test_369.14 30567.00 31875.57 30079.80 34258.80 28477.96 32977.81 33959.55 33162.90 35578.25 35247.43 29883.97 32551.71 32767.58 35183.93 336
ppachtmachnet_test70.04 29967.34 31678.14 27279.80 34261.13 26079.19 31580.59 31759.16 33565.27 34079.29 34246.75 30587.29 30049.33 34266.72 35286.00 309
LF4IMVS64.02 33562.19 33969.50 34570.90 38253.29 35176.13 33777.18 34752.65 36558.59 36780.98 32623.55 38376.52 36453.06 32266.66 35378.68 367
Patchmatch-RL test70.24 29767.78 31077.61 28177.43 35659.57 28271.16 36170.33 37062.94 30268.65 30872.77 37350.62 26985.49 31469.58 19366.58 35487.77 268
dp66.80 32265.43 32470.90 34179.74 34448.82 37275.12 34974.77 35859.61 33064.08 34877.23 35742.89 33180.72 34548.86 34466.58 35483.16 343
test_fmvs363.36 33761.82 34067.98 35362.51 39146.96 37677.37 33474.03 36245.24 37667.50 31778.79 34812.16 39572.98 38372.77 16466.02 35683.99 335
CL-MVSNet_self_test72.37 27871.46 27275.09 30579.49 34753.53 34680.76 29385.01 26169.12 22470.51 28482.05 31857.92 20084.13 32452.27 32566.00 35787.60 271
FPMVS53.68 35051.64 35259.81 36565.08 38951.03 36469.48 36969.58 37441.46 38140.67 38772.32 37416.46 39170.00 38724.24 39365.42 35858.40 389
pmmvs-eth3d70.50 29567.83 30878.52 26777.37 35766.18 16781.82 27981.51 30958.90 33863.90 35080.42 33242.69 33386.28 30758.56 28765.30 35983.11 344
N_pmnet52.79 35253.26 35151.40 37678.99 3517.68 40869.52 3683.89 40751.63 36957.01 37374.98 36840.83 34565.96 39137.78 37964.67 36080.56 363
PM-MVS66.41 32664.14 32873.20 32273.92 37056.45 31778.97 31864.96 38563.88 29564.72 34480.24 33319.84 38783.44 33066.24 22164.52 36179.71 365
KD-MVS_self_test68.81 30767.59 31472.46 32874.29 36945.45 37777.93 33087.00 23463.12 29763.99 34978.99 34742.32 33584.77 32156.55 30764.09 36287.16 284
SixPastTwentyTwo73.37 26671.26 27779.70 24785.08 24757.89 29685.57 21183.56 28271.03 17965.66 33785.88 25142.10 33992.57 18859.11 28163.34 36388.65 254
EGC-MVSNET52.07 35447.05 35867.14 35583.51 27860.71 26680.50 29867.75 3780.07 4020.43 40375.85 36624.26 38281.54 34028.82 38762.25 36459.16 387
TransMVSNet (Re)75.39 25074.56 24277.86 27585.50 23757.10 30886.78 18186.09 24972.17 15871.53 27887.34 20963.01 14289.31 27356.84 30461.83 36587.17 282
MDA-MVSNet_test_wron65.03 33162.92 33571.37 33475.93 36056.73 31269.09 37374.73 35957.28 35154.03 37977.89 35345.88 31374.39 37949.89 34061.55 36682.99 347
YYNet165.03 33162.91 33671.38 33375.85 36256.60 31669.12 37274.66 36157.28 35154.12 37877.87 35445.85 31474.48 37849.95 33961.52 36783.05 345
mvsany_test162.30 33961.26 34365.41 35869.52 38354.86 33666.86 37749.78 39846.65 37568.50 31183.21 30049.15 28866.28 39056.93 30360.77 36875.11 374
ambc75.24 30473.16 37650.51 36763.05 38787.47 22564.28 34677.81 35517.80 38989.73 26657.88 29460.64 36985.49 314
TDRefinement67.49 31764.34 32776.92 28973.47 37561.07 26184.86 22982.98 29459.77 32958.30 36985.13 27026.06 37987.89 29547.92 35260.59 37081.81 356
Gipumacopyleft45.18 36041.86 36355.16 37377.03 35951.52 36132.50 39580.52 31832.46 39127.12 39435.02 3959.52 39875.50 37222.31 39460.21 37138.45 394
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
new-patchmatchnet61.73 34061.73 34161.70 36272.74 37924.50 40369.16 37178.03 33861.40 31756.72 37475.53 36738.42 35476.48 36545.95 36157.67 37284.13 333
MDA-MVSNet-bldmvs66.68 32363.66 33275.75 29779.28 34960.56 26973.92 35478.35 33764.43 28450.13 38379.87 33844.02 32683.67 32746.10 36056.86 37383.03 346
new_pmnet50.91 35550.29 35552.78 37568.58 38534.94 39763.71 38456.63 39539.73 38344.95 38565.47 38121.93 38558.48 39434.98 38256.62 37464.92 383
test_f52.09 35350.82 35455.90 37053.82 39842.31 39059.42 38858.31 39436.45 38756.12 37770.96 37712.18 39457.79 39553.51 31956.57 37567.60 381
test_vis3_rt49.26 35747.02 35956.00 36954.30 39645.27 38166.76 37948.08 39936.83 38644.38 38653.20 3917.17 40264.07 39256.77 30555.66 37658.65 388
PMVScopyleft37.38 2244.16 36140.28 36455.82 37140.82 40442.54 38965.12 38363.99 38634.43 38924.48 39557.12 3903.92 40576.17 36917.10 39755.52 37748.75 392
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
APD_test153.31 35149.93 35663.42 36165.68 38850.13 36871.59 36066.90 38034.43 38940.58 38871.56 3768.65 40076.27 36734.64 38355.36 37863.86 385
pmmvs357.79 34454.26 34968.37 35264.02 39056.72 31375.12 34965.17 38340.20 38252.93 38069.86 37920.36 38675.48 37345.45 36455.25 37972.90 377
UnsupCasMVSNet_eth67.33 31965.99 32371.37 33473.48 37451.47 36275.16 34785.19 25865.20 27560.78 36080.93 32942.35 33477.20 35957.12 30053.69 38085.44 315
K. test v371.19 28568.51 29779.21 25783.04 29157.78 29984.35 24576.91 34972.90 15162.99 35482.86 30739.27 35091.09 24761.65 26152.66 38188.75 251
UnsupCasMVSNet_bld63.70 33661.53 34270.21 34373.69 37251.39 36372.82 35681.89 30555.63 35857.81 37171.80 37538.67 35378.61 35249.26 34352.21 38280.63 361
LCM-MVSNet54.25 34749.68 35767.97 35453.73 39945.28 38066.85 37880.78 31435.96 38839.45 38962.23 3848.70 39978.06 35648.24 34951.20 38380.57 362
KD-MVS_2432*160066.22 32863.89 33073.21 32075.47 36653.42 34870.76 36484.35 26964.10 28966.52 33178.52 34934.55 36684.98 31850.40 33450.33 38481.23 358
miper_refine_blended66.22 32863.89 33073.21 32075.47 36653.42 34870.76 36484.35 26964.10 28966.52 33178.52 34934.55 36684.98 31850.40 33450.33 38481.23 358
mvsany_test353.99 34851.45 35361.61 36355.51 39544.74 38363.52 38545.41 40243.69 37958.11 37076.45 36117.99 38863.76 39354.77 31347.59 38676.34 372
lessismore_v078.97 25881.01 32757.15 30765.99 38161.16 35982.82 30839.12 35191.34 23859.67 27546.92 38788.43 258
testf145.72 35841.96 36157.00 36756.90 39345.32 37866.14 38059.26 39226.19 39330.89 39260.96 3864.14 40370.64 38526.39 39146.73 38855.04 390
APD_test245.72 35841.96 36157.00 36756.90 39345.32 37866.14 38059.26 39226.19 39330.89 39260.96 3864.14 40370.64 38526.39 39146.73 38855.04 390
PVSNet_057.27 2061.67 34159.27 34468.85 34979.61 34557.44 30468.01 37473.44 36455.93 35758.54 36870.41 37844.58 32377.55 35847.01 35435.91 39071.55 378
WB-MVS54.94 34654.72 34855.60 37273.50 37320.90 40474.27 35361.19 38959.16 33550.61 38274.15 36947.19 30175.78 37117.31 39635.07 39170.12 379
test_method31.52 36429.28 36838.23 37927.03 4066.50 40920.94 39762.21 3884.05 40022.35 39852.50 39213.33 39247.58 39927.04 39034.04 39260.62 386
SSC-MVS53.88 34953.59 35054.75 37472.87 37819.59 40573.84 35560.53 39157.58 34949.18 38473.45 37246.34 30975.47 37416.20 39932.28 39369.20 380
PMMVS240.82 36238.86 36546.69 37753.84 39716.45 40648.61 39249.92 39737.49 38531.67 39060.97 3858.14 40156.42 39628.42 38830.72 39467.19 382
DeepMVS_CXcopyleft27.40 38240.17 40526.90 40024.59 40617.44 39823.95 39648.61 3939.77 39726.48 40118.06 39524.47 39528.83 395
MVEpermissive26.22 2330.37 36625.89 37043.81 37844.55 40335.46 39628.87 39639.07 40318.20 39718.58 39940.18 3942.68 40647.37 40017.07 39823.78 39648.60 393
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN31.77 36330.64 36635.15 38052.87 40027.67 39957.09 39047.86 40024.64 39516.40 40033.05 39611.23 39654.90 39714.46 40018.15 39722.87 396
EMVS30.81 36529.65 36734.27 38150.96 40125.95 40156.58 39146.80 40124.01 39615.53 40130.68 39712.47 39354.43 39812.81 40117.05 39822.43 397
ANet_high50.57 35646.10 36063.99 35948.67 40239.13 39370.99 36380.85 31361.39 31831.18 39157.70 38917.02 39073.65 38231.22 38615.89 39979.18 366
tmp_tt18.61 36821.40 37110.23 3844.82 40710.11 40734.70 39430.74 4051.48 40123.91 39726.07 39828.42 37713.41 40327.12 38915.35 4007.17 398
wuyk23d16.82 36915.94 37219.46 38358.74 39231.45 39839.22 3933.74 4086.84 3996.04 4022.70 4021.27 40724.29 40210.54 40214.40 4012.63 399
testmvs6.04 3728.02 3750.10 3860.08 4080.03 41169.74 3670.04 4090.05 4030.31 4041.68 4030.02 4090.04 4040.24 4030.02 4020.25 401
test1236.12 3718.11 3740.14 3850.06 4090.09 41071.05 3620.03 4100.04 4040.25 4051.30 4040.05 4080.03 4050.21 4040.01 4030.29 400
test_blank0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
uanet_test0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
DCPMVS0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
cdsmvs_eth3d_5k19.96 36726.61 3690.00 3870.00 4100.00 4120.00 39889.26 1730.00 4050.00 40688.61 17661.62 1610.00 4060.00 4050.00 4040.00 402
pcd_1.5k_mvsjas5.26 3737.02 3760.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 40563.15 1380.00 4060.00 4050.00 4040.00 402
sosnet-low-res0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
sosnet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
uncertanet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
Regformer0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
ab-mvs-re7.23 3709.64 3730.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 40686.72 2260.00 4100.00 4060.00 4050.00 4040.00 402
uanet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
WAC-MVS42.58 38739.46 376
FOURS195.00 1072.39 3995.06 193.84 1574.49 11391.30 15
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 410
eth-test0.00 410
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
save fliter93.80 4072.35 4290.47 6491.17 11674.31 116
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
GSMVS88.96 243
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26288.96 243
sam_mvs50.01 275
MTGPAbinary92.02 85
test_post178.90 3205.43 40148.81 29585.44 31659.25 279
test_post5.46 40050.36 27384.24 323
patchmatchnet-post74.00 37051.12 26488.60 287
MTMP92.18 3532.83 404
gm-plane-assit81.40 32053.83 34562.72 30780.94 32792.39 19563.40 243
TEST993.26 5072.96 2588.75 11591.89 9368.44 23985.00 5793.10 6774.36 2895.41 67
test_893.13 5272.57 3588.68 12091.84 9768.69 23484.87 6193.10 6774.43 2695.16 76
agg_prior92.85 5971.94 5191.78 10084.41 7194.93 87
test_prior472.60 3489.01 105
test_prior86.33 5492.61 6569.59 8892.97 5095.48 6293.91 53
旧先验286.56 18858.10 34487.04 3988.98 27974.07 149
新几何286.29 196
无先验87.48 15988.98 18660.00 32794.12 12167.28 21488.97 242
原ACMM286.86 177
testdata291.01 24962.37 253
segment_acmp73.08 37
testdata184.14 24975.71 87
plane_prior790.08 10368.51 119
plane_prior689.84 11268.70 11460.42 186
plane_prior491.00 120
plane_prior368.60 11778.44 3178.92 141
plane_prior291.25 5079.12 23
plane_prior189.90 111
n20.00 411
nn0.00 411
door-mid69.98 372
test1192.23 79
door69.44 375
HQP5-MVS66.98 155
HQP-NCC89.33 12889.17 9876.41 7277.23 182
ACMP_Plane89.33 12889.17 9876.41 7277.23 182
BP-MVS77.47 114
HQP4-MVS77.24 18195.11 8091.03 161
HQP2-MVS60.17 189
NP-MVS89.62 11568.32 12290.24 132
MDTV_nov1_ep13_2view37.79 39475.16 34755.10 35966.53 33049.34 28553.98 31687.94 264
Test By Simon64.33 125