This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 11092.29 795.97 274.28 2997.24 1388.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
PC_three_145268.21 24792.02 1294.00 4682.09 595.98 5584.58 5196.68 294.95 10
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5193.10 195.72 882.99 197.44 789.07 1496.63 494.88 14
IU-MVS95.30 271.25 5792.95 5266.81 25792.39 688.94 1696.63 494.85 19
test_241102_TWO94.06 1077.24 5192.78 495.72 881.26 897.44 789.07 1496.58 694.26 47
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 989.42 996.57 794.67 26
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 6196.48 894.88 14
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 38
No_MVS89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 38
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5680.26 1187.78 3094.27 3275.89 1996.81 2387.45 3296.44 993.05 102
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 6177.33 4892.12 995.78 480.98 997.40 989.08 1296.41 1293.33 90
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 48
ACMMP_NAP88.05 1688.08 1787.94 1993.70 4173.05 2290.86 5493.59 2376.27 8288.14 2495.09 1471.06 6296.67 2987.67 2996.37 1494.09 52
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4294.10 875.90 8892.29 795.66 1081.67 697.38 1187.44 3396.34 1593.95 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss87.67 2187.72 2087.54 3693.64 4472.04 4889.80 7893.50 2575.17 10386.34 4895.29 1270.86 6496.00 5388.78 1996.04 1694.58 30
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 4992.40 2494.74 275.71 9089.16 1995.10 1375.65 2196.19 4387.07 3496.01 1794.79 21
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 5993.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 43
PHI-MVS86.43 4086.17 4487.24 4190.88 9070.96 6592.27 3294.07 972.45 15685.22 5891.90 9269.47 7896.42 3783.28 6595.94 1994.35 42
test_prior288.85 11375.41 9684.91 6293.54 5674.28 2983.31 6495.86 20
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1673.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6485.24 5794.32 3071.76 5296.93 1985.53 4095.79 2294.32 44
9.1488.26 1592.84 6091.52 4594.75 173.93 12788.57 2294.67 1875.57 2295.79 5786.77 3595.76 23
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 10089.57 8893.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 30
train_agg86.43 4086.20 4287.13 4493.26 5072.96 2588.75 11691.89 9968.69 23985.00 6093.10 6774.43 2695.41 7184.97 4295.71 2593.02 104
test9_res84.90 4395.70 2692.87 109
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9291.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 36
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MM89.16 689.23 788.97 490.79 9473.65 1092.66 2391.17 12286.57 187.39 3894.97 1571.70 5497.68 192.19 195.63 2895.57 1
agg_prior282.91 7095.45 2992.70 112
CDPH-MVS85.76 5385.29 6487.17 4393.49 4771.08 6188.58 12492.42 7768.32 24684.61 7293.48 5872.32 4496.15 4579.00 10295.43 3094.28 46
DeepC-MVS79.81 287.08 3286.88 3587.69 3391.16 8172.32 4390.31 6893.94 1477.12 5682.82 10294.23 3572.13 4797.09 1684.83 4695.37 3193.65 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18992.02 9179.45 1985.88 5094.80 1668.07 9596.21 4286.69 3695.34 3293.23 93
DeepC-MVS_fast79.65 386.91 3386.62 3787.76 2793.52 4672.37 4191.26 4893.04 3876.62 7284.22 7993.36 6371.44 5896.76 2580.82 9295.33 3394.16 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_030487.69 2087.55 2288.12 1389.45 12871.76 5191.47 4689.54 16982.14 386.65 4694.28 3168.28 9497.46 690.81 295.31 3495.15 6
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 6677.57 4183.84 8794.40 2972.24 4596.28 4085.65 3895.30 3593.62 78
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7693.82 1673.07 14984.86 6592.89 7476.22 1796.33 3884.89 4595.13 3694.40 40
balanced_conf0386.78 3486.99 3086.15 5891.24 8067.61 14190.51 5992.90 5377.26 5087.44 3791.63 10171.27 6196.06 4785.62 3995.01 3794.78 22
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6284.68 6693.99 4870.67 6796.82 2284.18 5995.01 3793.90 61
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4092.83 5773.01 15188.58 2194.52 2073.36 3496.49 3684.26 5595.01 3792.70 112
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5192.83 5781.50 585.79 5293.47 6073.02 4097.00 1884.90 4394.94 4094.10 51
ACMMPR87.44 2387.23 2788.08 1594.64 1373.59 1293.04 1293.20 3476.78 6684.66 6994.52 2068.81 8896.65 3084.53 5294.90 4194.00 56
CS-MVS-test86.29 4386.48 3885.71 6991.02 8667.21 15692.36 2993.78 1878.97 2883.51 9391.20 11670.65 6895.15 8181.96 8094.89 4294.77 23
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6684.91 6294.44 2770.78 6596.61 3284.53 5294.89 4293.66 71
ZD-MVS94.38 2572.22 4492.67 6370.98 18487.75 3294.07 4174.01 3296.70 2784.66 5094.84 44
region2R87.42 2587.20 2888.09 1494.63 1473.55 1393.03 1493.12 3776.73 6984.45 7594.52 2069.09 8296.70 2784.37 5494.83 4594.03 55
原ACMM184.35 11093.01 5768.79 10792.44 7463.96 30281.09 12391.57 10466.06 11895.45 6767.19 21994.82 4688.81 254
HPM-MVScopyleft87.11 3086.98 3187.50 3893.88 3972.16 4592.19 3393.33 3176.07 8583.81 8893.95 5169.77 7696.01 5285.15 4194.66 4794.32 44
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DPM-MVS84.93 6984.29 7686.84 4790.20 10473.04 2387.12 17193.04 3869.80 21182.85 10191.22 11573.06 3996.02 5176.72 12894.63 4891.46 155
TSAR-MVS + MP.88.02 1788.11 1687.72 3093.68 4372.13 4691.41 4792.35 7974.62 11388.90 2093.85 5275.75 2096.00 5387.80 2894.63 4895.04 8
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PGM-MVS86.68 3786.27 4187.90 2294.22 3373.38 1890.22 7093.04 3875.53 9483.86 8694.42 2867.87 9996.64 3182.70 7694.57 5093.66 71
XVS87.18 2986.91 3488.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 9094.17 3667.45 10296.60 3383.06 6694.50 5194.07 53
X-MVStestdata80.37 15077.83 18688.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 9012.47 41167.45 10296.60 3383.06 6694.50 5194.07 53
test1286.80 4992.63 6470.70 7291.79 10582.71 10471.67 5596.16 4494.50 5193.54 83
MVSMamba_PlusPlus85.99 4585.96 4986.05 6291.09 8267.64 13989.63 8592.65 6672.89 15484.64 7091.71 9671.85 4996.03 4884.77 4894.45 5494.49 34
bld_raw_conf0385.32 6385.07 6686.07 6190.86 9167.64 13989.63 8592.65 6672.35 16184.64 7090.81 13068.76 9096.09 4681.45 8594.45 5494.49 34
iter_conf0585.49 5785.43 5885.67 7191.09 8266.55 16687.18 16992.08 9072.89 15482.90 9991.71 9671.85 4996.03 4884.77 4894.39 5694.42 37
CP-MVS87.11 3086.92 3387.68 3494.20 3473.86 793.98 392.82 6076.62 7283.68 8994.46 2467.93 9795.95 5684.20 5894.39 5693.23 93
CSCG86.41 4286.19 4387.07 4592.91 5872.48 3790.81 5593.56 2473.95 12583.16 9691.07 12175.94 1895.19 7979.94 10094.38 5893.55 82
MSLP-MVS++85.43 6085.76 5384.45 10691.93 7270.24 7690.71 5692.86 5577.46 4784.22 7992.81 7867.16 10692.94 18280.36 9694.35 5990.16 199
mPP-MVS86.67 3886.32 4087.72 3094.41 2273.55 1392.74 2092.22 8576.87 6382.81 10394.25 3466.44 11296.24 4182.88 7194.28 6093.38 87
SD-MVS88.06 1488.50 1486.71 5192.60 6672.71 2991.81 4193.19 3577.87 3690.32 1794.00 4674.83 2393.78 13787.63 3094.27 6193.65 75
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 6294.67 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DELS-MVS85.41 6185.30 6385.77 6888.49 16867.93 13385.52 22193.44 2778.70 2983.63 9289.03 16874.57 2495.71 6080.26 9894.04 6393.66 71
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EPNet83.72 8182.92 9386.14 6084.22 27269.48 9191.05 5385.27 26281.30 676.83 19391.65 9966.09 11795.56 6276.00 13493.85 6493.38 87
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EC-MVSNet86.01 4486.38 3984.91 9389.31 13766.27 17092.32 3093.63 2179.37 2084.17 8191.88 9369.04 8695.43 6983.93 6093.77 6593.01 105
3Dnovator+77.84 485.48 5884.47 7588.51 791.08 8473.49 1693.18 1193.78 1880.79 876.66 19893.37 6260.40 19596.75 2677.20 12193.73 6695.29 5
CS-MVS86.69 3686.95 3285.90 6790.76 9567.57 14392.83 1793.30 3279.67 1784.57 7492.27 8671.47 5795.02 9084.24 5793.46 6795.13 7
CANet86.45 3986.10 4687.51 3790.09 10670.94 6789.70 8292.59 7181.78 481.32 11891.43 10970.34 6997.23 1484.26 5593.36 6894.37 41
新几何183.42 15093.13 5270.71 7185.48 26157.43 35981.80 11391.98 9063.28 14092.27 20464.60 24092.99 6987.27 288
HPM-MVS_fast85.35 6284.95 6986.57 5393.69 4270.58 7592.15 3591.62 10973.89 12882.67 10594.09 4062.60 15195.54 6480.93 9092.93 7093.57 80
SR-MVS86.73 3586.67 3686.91 4694.11 3772.11 4792.37 2892.56 7274.50 11486.84 4594.65 1967.31 10495.77 5884.80 4792.85 7192.84 110
旧先验191.96 7165.79 18186.37 25093.08 7169.31 8192.74 7288.74 259
3Dnovator76.31 583.38 9182.31 10186.59 5287.94 19172.94 2890.64 5792.14 8977.21 5375.47 22392.83 7658.56 20294.72 10273.24 16292.71 7392.13 137
MVS_111021_HR85.14 6584.75 7086.32 5591.65 7672.70 3085.98 20490.33 14776.11 8482.08 10891.61 10371.36 6094.17 12081.02 8992.58 7492.08 138
APD-MVS_3200maxsize85.97 4785.88 5086.22 5792.69 6369.53 8991.93 3792.99 4673.54 13785.94 4994.51 2365.80 12295.61 6183.04 6892.51 7593.53 84
test250677.30 22376.49 22079.74 24890.08 10752.02 35987.86 15263.10 39774.88 10780.16 13392.79 7938.29 36592.35 20168.74 20592.50 7694.86 17
ECVR-MVScopyleft79.61 16179.26 15480.67 23090.08 10754.69 34387.89 15077.44 35274.88 10780.27 13092.79 7948.96 29992.45 19568.55 20692.50 7694.86 17
test111179.43 16879.18 15780.15 24089.99 11253.31 35687.33 16577.05 35675.04 10480.23 13292.77 8148.97 29892.33 20368.87 20392.40 7894.81 20
patch_mono-283.65 8284.54 7280.99 22290.06 11165.83 17984.21 24988.74 20371.60 17185.01 5992.44 8474.51 2583.50 33782.15 7992.15 7993.64 77
dcpmvs_285.63 5586.15 4584.06 12991.71 7564.94 19986.47 19291.87 10173.63 13386.60 4793.02 7276.57 1591.87 21983.36 6392.15 7995.35 3
MAR-MVS81.84 11380.70 12385.27 7991.32 7971.53 5489.82 7690.92 12869.77 21378.50 15686.21 24862.36 15794.52 10765.36 23392.05 8189.77 223
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
TSAR-MVS + GP.85.71 5485.33 6186.84 4791.34 7872.50 3689.07 10687.28 23376.41 7585.80 5190.22 14074.15 3195.37 7681.82 8191.88 8292.65 116
SR-MVS-dyc-post85.77 5285.61 5586.23 5693.06 5570.63 7391.88 3892.27 8173.53 13885.69 5394.45 2565.00 13095.56 6282.75 7291.87 8392.50 121
RE-MVS-def85.48 5793.06 5570.63 7391.88 3892.27 8173.53 13885.69 5394.45 2563.87 13682.75 7291.87 8392.50 121
IS-MVSNet83.15 9482.81 9484.18 12089.94 11463.30 23491.59 4288.46 20979.04 2579.49 13992.16 8865.10 12794.28 11367.71 21291.86 8594.95 10
Vis-MVSNet (Re-imp)78.36 19578.45 16978.07 27988.64 16451.78 36586.70 18679.63 33774.14 12375.11 24290.83 12961.29 17789.75 27158.10 29991.60 8692.69 114
MG-MVS83.41 8983.45 8283.28 15592.74 6262.28 25188.17 13989.50 17175.22 9981.49 11792.74 8266.75 10795.11 8472.85 16591.58 8792.45 124
CPTT-MVS83.73 8083.33 8684.92 9293.28 4970.86 6992.09 3690.38 14368.75 23879.57 13892.83 7660.60 19193.04 18080.92 9191.56 8890.86 172
test22291.50 7768.26 12584.16 25083.20 29354.63 37079.74 13591.63 10158.97 20091.42 8986.77 301
ETV-MVS84.90 7184.67 7185.59 7289.39 13268.66 11788.74 11892.64 6979.97 1584.10 8285.71 25769.32 8095.38 7380.82 9291.37 9092.72 111
testdata79.97 24390.90 8964.21 21484.71 26759.27 34385.40 5592.91 7362.02 16489.08 28368.95 20291.37 9086.63 305
API-MVS81.99 11181.23 11584.26 11890.94 8870.18 8291.10 5289.32 17671.51 17378.66 15288.28 18965.26 12595.10 8764.74 23991.23 9287.51 282
casdiffmvs_mvgpermissive85.99 4586.09 4785.70 7087.65 20567.22 15588.69 12093.04 3879.64 1885.33 5692.54 8373.30 3594.50 10883.49 6291.14 9395.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive83.46 8882.80 9585.43 7690.25 10368.74 11190.30 6990.13 15476.33 8180.87 12692.89 7461.00 18394.20 11872.45 17190.97 9493.35 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OpenMVScopyleft72.83 1079.77 15978.33 17484.09 12585.17 25269.91 8490.57 5890.97 12766.70 26072.17 28191.91 9154.70 23193.96 12461.81 26690.95 9588.41 266
UA-Net85.08 6784.96 6885.45 7592.07 7068.07 13089.78 7990.86 13282.48 284.60 7393.20 6669.35 7995.22 7871.39 17790.88 9693.07 101
test_fmvsmconf_n85.92 4886.04 4885.57 7385.03 25869.51 9089.62 8790.58 13773.42 14087.75 3294.02 4472.85 4193.24 16290.37 390.75 9793.96 57
ACMMPcopyleft85.89 5185.39 5987.38 3993.59 4572.63 3392.74 2093.18 3676.78 6680.73 12793.82 5364.33 13296.29 3982.67 7790.69 9893.23 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsmconf0.1_n85.61 5685.65 5485.50 7482.99 30369.39 9789.65 8390.29 15073.31 14387.77 3194.15 3871.72 5393.23 16390.31 490.67 9993.89 62
casdiffmvspermissive85.11 6685.14 6585.01 8787.20 21965.77 18287.75 15392.83 5777.84 3784.36 7892.38 8572.15 4693.93 13081.27 8890.48 10095.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsm_n_192085.29 6485.34 6085.13 8486.12 23769.93 8388.65 12290.78 13369.97 20788.27 2393.98 4971.39 5991.54 23188.49 2390.45 10193.91 59
UGNet80.83 13379.59 14584.54 10288.04 18768.09 12989.42 9388.16 21176.95 6076.22 20989.46 15849.30 29393.94 12768.48 20790.31 10291.60 146
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
baseline84.93 6984.98 6784.80 9787.30 21765.39 19087.30 16692.88 5477.62 3984.04 8492.26 8771.81 5193.96 12481.31 8690.30 10395.03 9
MVSFormer82.85 10082.05 10585.24 8087.35 21170.21 7790.50 6190.38 14368.55 24181.32 11889.47 15661.68 16693.46 15478.98 10390.26 10492.05 139
lupinMVS81.39 12480.27 13384.76 9887.35 21170.21 7785.55 21786.41 24862.85 31281.32 11888.61 17961.68 16692.24 20678.41 11090.26 10491.83 142
DP-MVS Recon83.11 9782.09 10486.15 5894.44 1970.92 6888.79 11492.20 8670.53 19479.17 14391.03 12464.12 13496.03 4868.39 20990.14 10691.50 151
EIA-MVS83.31 9382.80 9584.82 9589.59 12165.59 18588.21 13792.68 6274.66 11278.96 14586.42 24469.06 8495.26 7775.54 14090.09 10793.62 78
MVS_111021_LR82.61 10382.11 10384.11 12188.82 15571.58 5385.15 22486.16 25374.69 11180.47 12991.04 12262.29 15890.55 25980.33 9790.08 10890.20 198
jason81.39 12480.29 13284.70 9986.63 23169.90 8585.95 20586.77 24463.24 30581.07 12489.47 15661.08 18292.15 20878.33 11190.07 10992.05 139
jason: jason.
test_fmvsmvis_n_192084.02 7683.87 7884.49 10584.12 27469.37 9888.15 14187.96 21770.01 20583.95 8593.23 6568.80 8991.51 23488.61 2089.96 11092.57 117
test_fmvsmconf0.01_n84.73 7284.52 7485.34 7780.25 34369.03 10089.47 8989.65 16773.24 14786.98 4394.27 3266.62 10893.23 16390.26 589.95 11193.78 68
LFMVS81.82 11481.23 11583.57 14791.89 7363.43 23289.84 7581.85 31277.04 5983.21 9493.10 6752.26 25293.43 15671.98 17289.95 11193.85 63
MVS78.19 20076.99 20881.78 20085.66 24366.99 15884.66 23490.47 14155.08 36972.02 28385.27 26863.83 13794.11 12266.10 22789.80 11384.24 339
CANet_DTU80.61 14179.87 13982.83 17785.60 24563.17 23987.36 16388.65 20576.37 7975.88 21688.44 18553.51 24293.07 17773.30 16089.74 11492.25 130
PVSNet_Blended80.98 12980.34 13082.90 17588.85 15265.40 18884.43 24492.00 9367.62 25278.11 16685.05 27666.02 11994.27 11471.52 17489.50 11589.01 244
PAPM_NR83.02 9882.41 9884.82 9592.47 6766.37 16887.93 14891.80 10473.82 12977.32 18290.66 13267.90 9894.90 9470.37 18689.48 11693.19 97
114514_t80.68 14079.51 14684.20 11994.09 3867.27 15289.64 8491.11 12558.75 34974.08 25890.72 13158.10 20595.04 8969.70 19489.42 11790.30 195
LCM-MVSNet-Re77.05 22576.94 20977.36 28987.20 21951.60 36680.06 30980.46 32775.20 10067.69 32486.72 22962.48 15488.98 28563.44 24789.25 11891.51 150
fmvsm_l_conf0.5_n_a84.13 7584.16 7784.06 12985.38 24968.40 12188.34 13386.85 24367.48 25587.48 3693.40 6170.89 6391.61 22588.38 2589.22 11992.16 136
mvsmamba80.60 14279.38 14984.27 11689.74 11967.24 15487.47 16086.95 24070.02 20475.38 22988.93 16951.24 26992.56 19175.47 14289.22 11993.00 106
fmvsm_l_conf0.5_n84.47 7384.54 7284.27 11685.42 24868.81 10688.49 12687.26 23468.08 24888.03 2793.49 5772.04 4891.77 22188.90 1789.14 12192.24 132
alignmvs85.48 5885.32 6285.96 6689.51 12569.47 9289.74 8092.47 7376.17 8387.73 3491.46 10870.32 7093.78 13781.51 8288.95 12294.63 29
VNet82.21 10682.41 9881.62 20390.82 9260.93 26584.47 24089.78 16276.36 8084.07 8391.88 9364.71 13190.26 26170.68 18388.89 12393.66 71
PS-MVSNAJ81.69 11781.02 11983.70 14389.51 12568.21 12784.28 24890.09 15570.79 18681.26 12285.62 26263.15 14594.29 11275.62 13888.87 12488.59 262
sasdasda85.91 4985.87 5186.04 6389.84 11669.44 9590.45 6593.00 4376.70 7088.01 2891.23 11373.28 3693.91 13181.50 8388.80 12594.77 23
canonicalmvs85.91 4985.87 5186.04 6389.84 11669.44 9590.45 6593.00 4376.70 7088.01 2891.23 11373.28 3693.91 13181.50 8388.80 12594.77 23
QAPM80.88 13179.50 14785.03 8688.01 19068.97 10491.59 4292.00 9366.63 26675.15 24192.16 8857.70 20995.45 6763.52 24588.76 12790.66 179
MGCFI-Net85.06 6885.51 5683.70 14389.42 12963.01 24089.43 9192.62 7076.43 7487.53 3591.34 11172.82 4293.42 15781.28 8788.74 12894.66 28
VDD-MVS83.01 9982.36 10084.96 8991.02 8666.40 16788.91 11088.11 21277.57 4184.39 7793.29 6452.19 25393.91 13177.05 12388.70 12994.57 32
PVSNet_Blended_VisFu82.62 10281.83 11084.96 8990.80 9369.76 8788.74 11891.70 10869.39 21978.96 14588.46 18465.47 12494.87 9774.42 14888.57 13090.24 197
xiu_mvs_v2_base81.69 11781.05 11883.60 14589.15 14468.03 13284.46 24290.02 15670.67 18981.30 12186.53 24263.17 14494.19 11975.60 13988.54 13188.57 263
PAPR81.66 11980.89 12283.99 13790.27 10264.00 21786.76 18591.77 10768.84 23777.13 19189.50 15467.63 10094.88 9667.55 21488.52 13293.09 100
MVS_Test83.15 9483.06 8983.41 15286.86 22363.21 23686.11 20292.00 9374.31 11882.87 10089.44 16170.03 7293.21 16577.39 12088.50 13393.81 66
AdaColmapbinary80.58 14579.42 14884.06 12993.09 5468.91 10589.36 9688.97 19469.27 22275.70 21989.69 14857.20 21695.77 5863.06 25088.41 13487.50 283
VDDNet81.52 12180.67 12484.05 13290.44 10064.13 21689.73 8185.91 25671.11 18083.18 9593.48 5850.54 27893.49 15173.40 15988.25 13594.54 33
PCF-MVS73.52 780.38 14878.84 16385.01 8787.71 20268.99 10383.65 25791.46 11763.00 30977.77 17490.28 13766.10 11695.09 8861.40 26988.22 13690.94 170
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Effi-MVS+83.62 8583.08 8885.24 8088.38 17467.45 14588.89 11189.15 18575.50 9582.27 10688.28 18969.61 7794.45 11077.81 11587.84 13793.84 65
gg-mvs-nofinetune69.95 30967.96 31375.94 30083.07 29854.51 34677.23 34470.29 38063.11 30770.32 29662.33 39243.62 33688.69 29053.88 32587.76 13884.62 336
xiu_mvs_v1_base_debu80.80 13679.72 14284.03 13487.35 21170.19 7985.56 21488.77 19969.06 23181.83 11088.16 19350.91 27292.85 18478.29 11287.56 13989.06 239
xiu_mvs_v1_base80.80 13679.72 14284.03 13487.35 21170.19 7985.56 21488.77 19969.06 23181.83 11088.16 19350.91 27292.85 18478.29 11287.56 13989.06 239
xiu_mvs_v1_base_debi80.80 13679.72 14284.03 13487.35 21170.19 7985.56 21488.77 19969.06 23181.83 11088.16 19350.91 27292.85 18478.29 11287.56 13989.06 239
CLD-MVS82.31 10581.65 11184.29 11388.47 16967.73 13785.81 21292.35 7975.78 8978.33 16186.58 23964.01 13594.35 11176.05 13387.48 14290.79 173
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CDS-MVSNet79.07 17977.70 19383.17 16287.60 20668.23 12684.40 24686.20 25267.49 25476.36 20686.54 24161.54 16990.79 25561.86 26587.33 14390.49 187
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
diffmvspermissive82.10 10781.88 10982.76 18583.00 30163.78 22283.68 25689.76 16372.94 15282.02 10989.85 14565.96 12190.79 25582.38 7887.30 14493.71 70
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPP-MVSNet83.40 9083.02 9084.57 10190.13 10564.47 20992.32 3090.73 13474.45 11779.35 14191.10 11969.05 8595.12 8272.78 16687.22 14594.13 50
TAMVS78.89 18477.51 19883.03 16987.80 19767.79 13684.72 23385.05 26567.63 25176.75 19687.70 20262.25 15990.82 25458.53 29487.13 14690.49 187
TAPA-MVS73.13 979.15 17677.94 18282.79 18289.59 12162.99 24488.16 14091.51 11365.77 27577.14 19091.09 12060.91 18493.21 16550.26 34687.05 14792.17 135
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PAPM77.68 21676.40 22381.51 20687.29 21861.85 25683.78 25589.59 16864.74 28871.23 28988.70 17562.59 15293.66 14452.66 33187.03 14889.01 244
test_yl81.17 12680.47 12883.24 15889.13 14563.62 22386.21 19989.95 15972.43 15981.78 11489.61 15157.50 21293.58 14570.75 18186.90 14992.52 119
DCV-MVSNet81.17 12680.47 12883.24 15889.13 14563.62 22386.21 19989.95 15972.43 15981.78 11489.61 15157.50 21293.58 14570.75 18186.90 14992.52 119
BH-untuned79.47 16678.60 16682.05 19589.19 14365.91 17786.07 20388.52 20872.18 16275.42 22787.69 20361.15 18093.54 14960.38 27686.83 15186.70 303
BH-RMVSNet79.61 16178.44 17083.14 16389.38 13365.93 17684.95 22987.15 23773.56 13678.19 16489.79 14656.67 21993.36 15859.53 28386.74 15290.13 201
LS3D76.95 22874.82 24483.37 15390.45 9967.36 14989.15 10486.94 24161.87 32469.52 30990.61 13351.71 26594.53 10646.38 36786.71 15388.21 268
Fast-Effi-MVS+80.81 13479.92 13783.47 14888.85 15264.51 20685.53 21989.39 17470.79 18678.49 15785.06 27567.54 10193.58 14567.03 22286.58 15492.32 127
EPNet_dtu75.46 25274.86 24377.23 29282.57 31254.60 34486.89 17883.09 29471.64 16766.25 34485.86 25555.99 22188.04 29954.92 32086.55 15589.05 242
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OPM-MVS83.50 8782.95 9285.14 8288.79 15870.95 6689.13 10591.52 11277.55 4480.96 12591.75 9560.71 18694.50 10879.67 10186.51 15689.97 215
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
OMC-MVS82.69 10181.97 10884.85 9488.75 16067.42 14687.98 14490.87 13174.92 10679.72 13691.65 9962.19 16193.96 12475.26 14386.42 15793.16 98
HQP_MVS83.64 8383.14 8785.14 8290.08 10768.71 11391.25 4992.44 7479.12 2378.92 14791.00 12660.42 19395.38 7378.71 10686.32 15891.33 156
plane_prior592.44 7495.38 7378.71 10686.32 15891.33 156
FA-MVS(test-final)80.96 13079.91 13884.10 12288.30 17765.01 19784.55 23990.01 15773.25 14679.61 13787.57 20658.35 20494.72 10271.29 17886.25 16092.56 118
thisisatest051577.33 22275.38 23783.18 16185.27 25163.80 22182.11 28083.27 29065.06 28475.91 21583.84 29849.54 28894.27 11467.24 21886.19 16191.48 153
plane_prior68.71 11390.38 6777.62 3986.16 162
UWE-MVS72.13 28971.49 28074.03 32386.66 23047.70 38181.40 29076.89 35863.60 30475.59 22084.22 29239.94 35785.62 32048.98 35286.13 16388.77 256
mvs_anonymous79.42 16979.11 15880.34 23684.45 26957.97 29782.59 27587.62 22667.40 25676.17 21388.56 18268.47 9189.59 27470.65 18486.05 16493.47 85
GeoE81.71 11681.01 12083.80 14289.51 12564.45 21088.97 10888.73 20471.27 17778.63 15389.76 14766.32 11493.20 16869.89 19286.02 16593.74 69
HQP3-MVS92.19 8785.99 166
HQP-MVS82.61 10382.02 10684.37 10889.33 13466.98 15989.17 10092.19 8776.41 7577.23 18590.23 13960.17 19695.11 8477.47 11885.99 16691.03 166
BH-w/o78.21 19877.33 20280.84 22688.81 15665.13 19584.87 23087.85 22269.75 21474.52 25384.74 28261.34 17593.11 17558.24 29885.84 16884.27 338
FE-MVS77.78 21175.68 22984.08 12688.09 18566.00 17483.13 26887.79 22368.42 24578.01 16985.23 27045.50 32795.12 8259.11 28785.83 16991.11 162
testing22274.04 26572.66 26978.19 27687.89 19355.36 33681.06 29379.20 34171.30 17674.65 25183.57 30539.11 36188.67 29151.43 33885.75 17090.53 185
CHOSEN 1792x268877.63 21775.69 22883.44 14989.98 11368.58 11978.70 32887.50 22956.38 36475.80 21886.84 22558.67 20191.40 23961.58 26885.75 17090.34 192
Anonymous20240521178.25 19677.01 20681.99 19791.03 8560.67 27084.77 23283.90 28070.65 19380.00 13491.20 11641.08 35291.43 23865.21 23485.26 17293.85 63
cascas76.72 23274.64 24582.99 17185.78 24265.88 17882.33 27789.21 18260.85 33072.74 27281.02 33547.28 30693.75 14167.48 21585.02 17389.34 234
FIs82.07 10982.42 9781.04 22188.80 15758.34 29188.26 13693.49 2676.93 6178.47 15891.04 12269.92 7492.34 20269.87 19384.97 17492.44 125
test-LLR72.94 28272.43 27174.48 31881.35 33158.04 29578.38 33277.46 35066.66 26169.95 30479.00 35548.06 30279.24 35766.13 22584.83 17586.15 311
test-mter71.41 29370.39 29674.48 31881.35 33158.04 29578.38 33277.46 35060.32 33369.95 30479.00 35536.08 37279.24 35766.13 22584.83 17586.15 311
EI-MVSNet-Vis-set84.19 7483.81 7985.31 7888.18 17967.85 13487.66 15589.73 16580.05 1482.95 9789.59 15370.74 6694.82 9880.66 9584.72 17793.28 92
thisisatest053079.40 17077.76 19184.31 11287.69 20465.10 19687.36 16384.26 27670.04 20377.42 17988.26 19149.94 28494.79 10070.20 18784.70 17893.03 103
fmvsm_s_conf0.5_n83.80 7983.71 8084.07 12786.69 22967.31 15089.46 9083.07 29571.09 18186.96 4493.70 5569.02 8791.47 23688.79 1884.62 17993.44 86
testing9176.54 23375.66 23179.18 26088.43 17255.89 33081.08 29283.00 29773.76 13175.34 23184.29 28946.20 31890.07 26564.33 24184.50 18091.58 148
fmvsm_s_conf0.1_n83.56 8683.38 8484.10 12284.86 26067.28 15189.40 9583.01 29670.67 18987.08 4193.96 5068.38 9291.45 23788.56 2284.50 18093.56 81
GG-mvs-BLEND75.38 30981.59 32655.80 33179.32 31869.63 38267.19 33073.67 38143.24 33888.90 28950.41 34184.50 18081.45 367
FC-MVSNet-test81.52 12182.02 10680.03 24288.42 17355.97 32987.95 14693.42 2977.10 5777.38 18090.98 12869.96 7391.79 22068.46 20884.50 18092.33 126
PVSNet64.34 1872.08 29070.87 29075.69 30386.21 23556.44 32174.37 36280.73 32262.06 32370.17 29982.23 32642.86 34183.31 33954.77 32184.45 18487.32 287
ETVMVS72.25 28871.05 28775.84 30187.77 20151.91 36279.39 31774.98 36569.26 22373.71 26182.95 31340.82 35486.14 31546.17 36884.43 18589.47 230
UBG73.08 27972.27 27475.51 30788.02 18851.29 37078.35 33577.38 35365.52 27973.87 26082.36 32245.55 32586.48 31255.02 31984.39 18688.75 257
MS-PatchMatch73.83 26872.67 26877.30 29183.87 28066.02 17381.82 28184.66 26861.37 32868.61 31882.82 31747.29 30588.21 29659.27 28484.32 18777.68 379
ET-MVSNet_ETH3D78.63 18976.63 21984.64 10086.73 22869.47 9285.01 22784.61 26969.54 21766.51 34286.59 23750.16 28191.75 22276.26 13084.24 18892.69 114
testing9976.09 24475.12 24279.00 26188.16 18055.50 33580.79 29681.40 31673.30 14475.17 23984.27 29144.48 33290.02 26664.28 24284.22 18991.48 153
TESTMET0.1,169.89 31069.00 30472.55 33579.27 35956.85 31378.38 33274.71 36957.64 35668.09 32177.19 36837.75 36776.70 37063.92 24484.09 19084.10 342
EI-MVSNet-UG-set83.81 7883.38 8485.09 8587.87 19467.53 14487.44 16289.66 16679.74 1682.23 10789.41 16270.24 7194.74 10179.95 9983.92 19192.99 107
LPG-MVS_test82.08 10881.27 11484.50 10389.23 14168.76 10990.22 7091.94 9775.37 9776.64 19991.51 10554.29 23494.91 9278.44 10883.78 19289.83 220
LGP-MVS_train84.50 10389.23 14168.76 10991.94 9775.37 9776.64 19991.51 10554.29 23494.91 9278.44 10883.78 19289.83 220
testing1175.14 25774.01 25378.53 27188.16 18056.38 32380.74 29980.42 32870.67 18972.69 27583.72 30243.61 33789.86 26862.29 25983.76 19489.36 233
thres100view90076.50 23575.55 23379.33 25689.52 12456.99 31285.83 21183.23 29173.94 12676.32 20787.12 22151.89 26291.95 21448.33 35583.75 19589.07 237
tfpn200view976.42 23875.37 23879.55 25589.13 14557.65 30385.17 22283.60 28373.41 14176.45 20386.39 24552.12 25491.95 21448.33 35583.75 19589.07 237
thres40076.50 23575.37 23879.86 24589.13 14557.65 30385.17 22283.60 28373.41 14176.45 20386.39 24552.12 25491.95 21448.33 35583.75 19590.00 211
thres600view776.50 23575.44 23479.68 25089.40 13157.16 30985.53 21983.23 29173.79 13076.26 20887.09 22251.89 26291.89 21748.05 36083.72 19890.00 211
fmvsm_s_conf0.5_n_a83.63 8483.41 8384.28 11486.14 23668.12 12889.43 9182.87 30070.27 20087.27 4093.80 5469.09 8291.58 22788.21 2683.65 19993.14 99
thres20075.55 25074.47 24978.82 26487.78 20057.85 30083.07 27183.51 28672.44 15875.84 21784.42 28452.08 25791.75 22247.41 36283.64 20086.86 299
SDMVSNet80.38 14880.18 13480.99 22289.03 15064.94 19980.45 30589.40 17375.19 10176.61 20189.98 14260.61 19087.69 30376.83 12683.55 20190.33 193
sd_testset77.70 21577.40 19978.60 26889.03 15060.02 27979.00 32385.83 25775.19 10176.61 20189.98 14254.81 22685.46 32362.63 25683.55 20190.33 193
XVG-OURS80.41 14779.23 15583.97 13885.64 24469.02 10283.03 27390.39 14271.09 18177.63 17691.49 10754.62 23391.35 24075.71 13683.47 20391.54 149
fmvsm_s_conf0.1_n_a83.32 9282.99 9184.28 11483.79 28168.07 13089.34 9782.85 30169.80 21187.36 3994.06 4268.34 9391.56 22987.95 2783.46 20493.21 96
CNLPA78.08 20276.79 21381.97 19890.40 10171.07 6287.59 15784.55 27066.03 27372.38 27989.64 15057.56 21186.04 31659.61 28283.35 20588.79 255
MVP-Stereo76.12 24274.46 25081.13 21985.37 25069.79 8684.42 24587.95 21865.03 28567.46 32785.33 26753.28 24591.73 22458.01 30083.27 20681.85 365
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
131476.53 23475.30 24080.21 23983.93 27962.32 25084.66 23488.81 19760.23 33470.16 30084.07 29555.30 22490.73 25767.37 21683.21 20787.59 281
tttt051779.40 17077.91 18383.90 14188.10 18463.84 22088.37 13284.05 27871.45 17476.78 19589.12 16549.93 28694.89 9570.18 18883.18 20892.96 108
HyFIR lowres test77.53 21875.40 23683.94 14089.59 12166.62 16380.36 30688.64 20656.29 36576.45 20385.17 27257.64 21093.28 16061.34 27183.10 20991.91 141
ACMP74.13 681.51 12380.57 12584.36 10989.42 12968.69 11689.97 7491.50 11674.46 11675.04 24590.41 13653.82 23994.54 10577.56 11782.91 21089.86 219
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM73.20 880.78 13979.84 14083.58 14689.31 13768.37 12289.99 7391.60 11070.28 19977.25 18389.66 14953.37 24493.53 15074.24 15182.85 21188.85 252
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PMMVS69.34 31368.67 30571.35 34575.67 37262.03 25375.17 35573.46 37250.00 38268.68 31679.05 35352.07 25878.13 36261.16 27282.77 21273.90 385
PLCcopyleft70.83 1178.05 20476.37 22483.08 16691.88 7467.80 13588.19 13889.46 17264.33 29469.87 30688.38 18653.66 24093.58 14558.86 29082.73 21387.86 274
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TR-MVS77.44 21976.18 22581.20 21688.24 17863.24 23584.61 23786.40 24967.55 25377.81 17286.48 24354.10 23693.15 17257.75 30282.72 21487.20 289
Anonymous2024052980.19 15478.89 16284.10 12290.60 9664.75 20388.95 10990.90 12965.97 27480.59 12891.17 11849.97 28393.73 14369.16 20082.70 21593.81 66
ab-mvs79.51 16478.97 16181.14 21888.46 17060.91 26683.84 25489.24 18170.36 19679.03 14488.87 17263.23 14390.21 26365.12 23582.57 21692.28 129
HY-MVS69.67 1277.95 20777.15 20480.36 23587.57 21060.21 27883.37 26487.78 22466.11 27075.37 23087.06 22463.27 14190.48 26061.38 27082.43 21790.40 191
PS-MVSNAJss82.07 10981.31 11384.34 11186.51 23267.27 15289.27 9891.51 11371.75 16679.37 14090.22 14063.15 14594.27 11477.69 11682.36 21891.49 152
UniMVSNet_ETH3D79.10 17878.24 17681.70 20286.85 22460.24 27787.28 16788.79 19874.25 12076.84 19290.53 13549.48 28991.56 22967.98 21082.15 21993.29 91
WB-MVSnew71.96 29171.65 27972.89 33284.67 26651.88 36382.29 27877.57 34962.31 31973.67 26283.00 31253.49 24381.10 35145.75 37182.13 22085.70 320
PVSNet_BlendedMVS80.60 14280.02 13582.36 19288.85 15265.40 18886.16 20192.00 9369.34 22178.11 16686.09 25266.02 11994.27 11471.52 17482.06 22187.39 284
WTY-MVS75.65 24975.68 22975.57 30586.40 23356.82 31477.92 34082.40 30565.10 28376.18 21187.72 20163.13 14880.90 35260.31 27781.96 22289.00 246
ACMMP++_ref81.95 223
DP-MVS76.78 23174.57 24683.42 15093.29 4869.46 9488.55 12583.70 28263.98 30170.20 29788.89 17154.01 23894.80 9946.66 36481.88 22486.01 315
CMPMVSbinary51.72 2170.19 30768.16 31076.28 29873.15 38757.55 30579.47 31683.92 27948.02 38556.48 38584.81 28043.13 33986.42 31362.67 25581.81 22584.89 332
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
XVG-OURS-SEG-HR80.81 13479.76 14183.96 13985.60 24568.78 10883.54 26290.50 14070.66 19276.71 19791.66 9860.69 18791.26 24276.94 12481.58 22691.83 142
MIMVSNet70.69 30169.30 30074.88 31484.52 26756.35 32575.87 35179.42 33864.59 28967.76 32282.41 32141.10 35181.54 34846.64 36681.34 22786.75 302
ACMMP++81.25 228
D2MVS74.82 25873.21 26379.64 25279.81 35062.56 24780.34 30787.35 23264.37 29368.86 31582.66 31946.37 31490.10 26467.91 21181.24 22986.25 308
test_vis1_n_192075.52 25175.78 22774.75 31779.84 34957.44 30783.26 26585.52 26062.83 31379.34 14286.17 25045.10 32979.71 35678.75 10581.21 23087.10 296
GA-MVS76.87 22975.17 24181.97 19882.75 30762.58 24681.44 28986.35 25172.16 16474.74 24982.89 31546.20 31892.02 21268.85 20481.09 23191.30 158
sss73.60 27073.64 26073.51 32782.80 30655.01 34176.12 34781.69 31362.47 31874.68 25085.85 25657.32 21478.11 36360.86 27480.93 23287.39 284
Effi-MVS+-dtu80.03 15678.57 16784.42 10785.13 25668.74 11188.77 11588.10 21374.99 10574.97 24683.49 30657.27 21593.36 15873.53 15680.88 23391.18 160
EG-PatchMatch MVS74.04 26571.82 27780.71 22984.92 25967.42 14685.86 20988.08 21466.04 27264.22 35683.85 29735.10 37492.56 19157.44 30480.83 23482.16 364
jajsoiax79.29 17377.96 18183.27 15684.68 26366.57 16589.25 9990.16 15369.20 22775.46 22589.49 15545.75 32493.13 17476.84 12580.80 23590.11 203
1112_ss77.40 22176.43 22280.32 23789.11 14960.41 27583.65 25787.72 22562.13 32273.05 26986.72 22962.58 15389.97 26762.11 26380.80 23590.59 183
mvs_tets79.13 17777.77 19083.22 16084.70 26266.37 16889.17 10090.19 15269.38 22075.40 22889.46 15844.17 33493.15 17276.78 12780.70 23790.14 200
PatchMatch-RL72.38 28570.90 28976.80 29688.60 16567.38 14879.53 31576.17 36262.75 31569.36 31182.00 33045.51 32684.89 32853.62 32680.58 23878.12 378
EI-MVSNet80.52 14679.98 13682.12 19384.28 27063.19 23886.41 19388.95 19574.18 12278.69 15087.54 20966.62 10892.43 19672.57 16980.57 23990.74 177
MVSTER79.01 18077.88 18582.38 19183.07 29864.80 20284.08 25388.95 19569.01 23478.69 15087.17 22054.70 23192.43 19674.69 14580.57 23989.89 218
XVG-ACMP-BASELINE76.11 24374.27 25281.62 20383.20 29464.67 20483.60 26089.75 16469.75 21471.85 28487.09 22232.78 37792.11 20969.99 19180.43 24188.09 270
Fast-Effi-MVS+-dtu78.02 20576.49 22082.62 18783.16 29766.96 16186.94 17687.45 23172.45 15671.49 28884.17 29354.79 23091.58 22767.61 21380.31 24289.30 235
LTVRE_ROB69.57 1376.25 24174.54 24881.41 20988.60 16564.38 21279.24 31989.12 18870.76 18869.79 30887.86 20049.09 29693.20 16856.21 31680.16 24386.65 304
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Test_1112_low_res76.40 23975.44 23479.27 25789.28 13958.09 29381.69 28487.07 23859.53 34172.48 27786.67 23461.30 17689.33 27860.81 27580.15 24490.41 190
test_djsdf80.30 15179.32 15283.27 15683.98 27865.37 19190.50 6190.38 14368.55 24176.19 21088.70 17556.44 22093.46 15478.98 10380.14 24590.97 169
test_fmvs170.93 29870.52 29272.16 33873.71 38055.05 34080.82 29478.77 34351.21 38178.58 15484.41 28531.20 38276.94 36975.88 13580.12 24684.47 337
test_fmvs1_n70.86 29970.24 29772.73 33472.51 39155.28 33881.27 29179.71 33651.49 38078.73 14984.87 27827.54 38777.02 36876.06 13279.97 24785.88 318
CHOSEN 280x42066.51 33464.71 33571.90 33981.45 32863.52 22857.98 40168.95 38653.57 37262.59 36576.70 36946.22 31775.29 38555.25 31879.68 24876.88 381
baseline275.70 24873.83 25881.30 21383.26 29261.79 25882.57 27680.65 32366.81 25766.88 33383.42 30757.86 20892.19 20763.47 24679.57 24989.91 216
GBi-Net78.40 19377.40 19981.40 21087.60 20663.01 24088.39 12989.28 17771.63 16875.34 23187.28 21354.80 22791.11 24562.72 25279.57 24990.09 205
test178.40 19377.40 19981.40 21087.60 20663.01 24088.39 12989.28 17771.63 16875.34 23187.28 21354.80 22791.11 24562.72 25279.57 24990.09 205
FMVSNet377.88 20976.85 21180.97 22486.84 22562.36 24886.52 19188.77 19971.13 17975.34 23186.66 23554.07 23791.10 24862.72 25279.57 24989.45 231
FMVSNet278.20 19977.21 20381.20 21687.60 20662.89 24587.47 16089.02 19071.63 16875.29 23787.28 21354.80 22791.10 24862.38 25779.38 25389.61 227
anonymousdsp78.60 19077.15 20482.98 17280.51 34167.08 15787.24 16889.53 17065.66 27775.16 24087.19 21952.52 24792.25 20577.17 12279.34 25489.61 227
nrg03083.88 7783.53 8184.96 8986.77 22769.28 9990.46 6492.67 6374.79 10982.95 9791.33 11272.70 4393.09 17680.79 9479.28 25592.50 121
VPA-MVSNet80.60 14280.55 12680.76 22888.07 18660.80 26886.86 17991.58 11175.67 9380.24 13189.45 16063.34 13990.25 26270.51 18579.22 25691.23 159
tt080578.73 18677.83 18681.43 20885.17 25260.30 27689.41 9490.90 12971.21 17877.17 18988.73 17446.38 31393.21 16572.57 16978.96 25790.79 173
test_cas_vis1_n_192073.76 26973.74 25973.81 32575.90 37059.77 28180.51 30382.40 30558.30 35181.62 11685.69 25844.35 33376.41 37476.29 12978.61 25885.23 326
F-COLMAP76.38 24074.33 25182.50 18989.28 13966.95 16288.41 12889.03 18964.05 29966.83 33488.61 17946.78 31092.89 18357.48 30378.55 25987.67 277
FMVSNet177.44 21976.12 22681.40 21086.81 22663.01 24088.39 12989.28 17770.49 19574.39 25587.28 21349.06 29791.11 24560.91 27378.52 26090.09 205
MDTV_nov1_ep1369.97 29983.18 29553.48 35377.10 34580.18 33360.45 33169.33 31280.44 34148.89 30086.90 30751.60 33678.51 261
CVMVSNet72.99 28172.58 27074.25 32184.28 27050.85 37386.41 19383.45 28844.56 38973.23 26787.54 20949.38 29185.70 31865.90 22978.44 26286.19 310
tpm273.26 27671.46 28178.63 26683.34 29056.71 31780.65 30180.40 32956.63 36373.55 26382.02 32951.80 26491.24 24356.35 31578.42 26387.95 271
test_vis1_n69.85 31169.21 30271.77 34072.66 39055.27 33981.48 28776.21 36152.03 37775.30 23683.20 31028.97 38576.22 37674.60 14678.41 26483.81 345
CostFormer75.24 25673.90 25679.27 25782.65 31158.27 29280.80 29582.73 30361.57 32575.33 23583.13 31155.52 22291.07 25164.98 23778.34 26588.45 264
ACMH67.68 1675.89 24673.93 25581.77 20188.71 16266.61 16488.62 12389.01 19169.81 21066.78 33586.70 23341.95 34991.51 23455.64 31778.14 26687.17 290
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mamv476.81 23078.23 17872.54 33686.12 23765.75 18378.76 32782.07 30964.12 29672.97 27091.02 12567.97 9668.08 39983.04 6878.02 26783.80 346
WBMVS73.43 27272.81 26775.28 31087.91 19250.99 37278.59 33181.31 31865.51 28174.47 25484.83 27946.39 31286.68 30958.41 29577.86 26888.17 269
dmvs_re71.14 29570.58 29172.80 33381.96 32059.68 28275.60 35379.34 33968.55 24169.27 31380.72 34049.42 29076.54 37152.56 33277.79 26982.19 363
CR-MVSNet73.37 27371.27 28579.67 25181.32 33365.19 19375.92 34980.30 33059.92 33772.73 27381.19 33252.50 24886.69 30859.84 28077.71 27087.11 294
RPMNet73.51 27170.49 29382.58 18881.32 33365.19 19375.92 34992.27 8157.60 35772.73 27376.45 37152.30 25195.43 6948.14 35977.71 27087.11 294
SCA74.22 26372.33 27379.91 24484.05 27762.17 25279.96 31279.29 34066.30 26972.38 27980.13 34451.95 26088.60 29259.25 28577.67 27288.96 248
Anonymous2023121178.97 18277.69 19482.81 17990.54 9864.29 21390.11 7291.51 11365.01 28676.16 21488.13 19850.56 27793.03 18169.68 19577.56 27391.11 162
v114480.03 15679.03 15983.01 17083.78 28264.51 20687.11 17290.57 13971.96 16578.08 16886.20 24961.41 17393.94 12774.93 14477.23 27490.60 182
WR-MVS79.49 16579.22 15680.27 23888.79 15858.35 29085.06 22688.61 20778.56 3077.65 17588.34 18763.81 13890.66 25864.98 23777.22 27591.80 144
v119279.59 16378.43 17183.07 16783.55 28664.52 20586.93 17790.58 13770.83 18577.78 17385.90 25359.15 19993.94 12773.96 15377.19 27690.76 175
VPNet78.69 18878.66 16578.76 26588.31 17655.72 33284.45 24386.63 24676.79 6578.26 16290.55 13459.30 19889.70 27366.63 22377.05 27790.88 171
v124078.99 18177.78 18982.64 18683.21 29363.54 22786.62 18890.30 14969.74 21677.33 18185.68 25957.04 21793.76 14073.13 16376.92 27890.62 180
MSDG73.36 27570.99 28880.49 23384.51 26865.80 18080.71 30086.13 25465.70 27665.46 34783.74 30144.60 33090.91 25351.13 33976.89 27984.74 334
IterMVS-LS80.06 15579.38 14982.11 19485.89 24063.20 23786.79 18289.34 17574.19 12175.45 22686.72 22966.62 10892.39 19872.58 16876.86 28090.75 176
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192079.22 17478.03 18082.80 18083.30 29163.94 21986.80 18190.33 14769.91 20977.48 17885.53 26358.44 20393.75 14173.60 15576.85 28190.71 178
XXY-MVS75.41 25475.56 23274.96 31383.59 28557.82 30180.59 30283.87 28166.54 26774.93 24788.31 18863.24 14280.09 35562.16 26176.85 28186.97 297
v2v48280.23 15279.29 15383.05 16883.62 28464.14 21587.04 17389.97 15873.61 13478.18 16587.22 21761.10 18193.82 13576.11 13176.78 28391.18 160
v14419279.47 16678.37 17282.78 18383.35 28963.96 21886.96 17590.36 14669.99 20677.50 17785.67 26060.66 18893.77 13974.27 15076.58 28490.62 180
UniMVSNet (Re)81.60 12081.11 11783.09 16588.38 17464.41 21187.60 15693.02 4278.42 3278.56 15588.16 19369.78 7593.26 16169.58 19676.49 28591.60 146
UniMVSNet_NR-MVSNet81.88 11281.54 11282.92 17488.46 17063.46 23087.13 17092.37 7880.19 1278.38 15989.14 16471.66 5693.05 17870.05 18976.46 28692.25 130
DU-MVS81.12 12880.52 12782.90 17587.80 19763.46 23087.02 17491.87 10179.01 2678.38 15989.07 16665.02 12893.05 17870.05 18976.46 28692.20 133
cl2278.07 20377.01 20681.23 21582.37 31761.83 25783.55 26187.98 21668.96 23575.06 24483.87 29661.40 17491.88 21873.53 15676.39 28889.98 214
miper_ehance_all_eth78.59 19177.76 19181.08 22082.66 31061.56 26083.65 25789.15 18568.87 23675.55 22283.79 30066.49 11192.03 21173.25 16176.39 28889.64 226
miper_enhance_ethall77.87 21076.86 21080.92 22581.65 32461.38 26282.68 27488.98 19265.52 27975.47 22382.30 32465.76 12392.00 21372.95 16476.39 28889.39 232
Syy-MVS68.05 32467.85 31568.67 36084.68 26340.97 40278.62 32973.08 37466.65 26466.74 33679.46 35052.11 25682.30 34432.89 39476.38 29182.75 358
myMVS_eth3d67.02 33066.29 33169.21 35584.68 26342.58 39778.62 32973.08 37466.65 26466.74 33679.46 35031.53 38182.30 34439.43 38776.38 29182.75 358
PatchmatchNetpermissive73.12 27871.33 28478.49 27383.18 29560.85 26779.63 31478.57 34464.13 29571.73 28579.81 34951.20 27085.97 31757.40 30576.36 29388.66 260
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
USDC70.33 30568.37 30776.21 29980.60 33956.23 32679.19 32186.49 24760.89 32961.29 36885.47 26531.78 38089.47 27753.37 32876.21 29482.94 357
OpenMVS_ROBcopyleft64.09 1970.56 30368.19 30977.65 28580.26 34259.41 28685.01 22782.96 29958.76 34865.43 34882.33 32337.63 36891.23 24445.34 37476.03 29582.32 361
ACMH+68.96 1476.01 24574.01 25382.03 19688.60 16565.31 19288.86 11287.55 22770.25 20167.75 32387.47 21141.27 35093.19 17058.37 29675.94 29687.60 279
tpm72.37 28671.71 27874.35 32082.19 31852.00 36079.22 32077.29 35464.56 29072.95 27183.68 30451.35 26783.26 34058.33 29775.80 29787.81 275
Anonymous2023120668.60 31867.80 31871.02 34880.23 34450.75 37478.30 33680.47 32656.79 36266.11 34582.63 32046.35 31578.95 35943.62 37775.70 29883.36 350
v7n78.97 18277.58 19783.14 16383.45 28865.51 18688.32 13491.21 12073.69 13272.41 27886.32 24757.93 20693.81 13669.18 19975.65 29990.11 203
NR-MVSNet80.23 15279.38 14982.78 18387.80 19763.34 23386.31 19691.09 12679.01 2672.17 28189.07 16667.20 10592.81 18766.08 22875.65 29992.20 133
v1079.74 16078.67 16482.97 17384.06 27664.95 19887.88 15190.62 13673.11 14875.11 24286.56 24061.46 17294.05 12373.68 15475.55 30189.90 217
IB-MVS68.01 1575.85 24773.36 26283.31 15484.76 26166.03 17283.38 26385.06 26470.21 20269.40 31081.05 33445.76 32394.66 10465.10 23675.49 30289.25 236
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
h-mvs3383.15 9482.19 10286.02 6590.56 9770.85 7088.15 14189.16 18476.02 8684.67 6791.39 11061.54 16995.50 6582.71 7475.48 30391.72 145
c3_l78.75 18577.91 18381.26 21482.89 30561.56 26084.09 25289.13 18769.97 20775.56 22184.29 28966.36 11392.09 21073.47 15875.48 30390.12 202
V4279.38 17278.24 17682.83 17781.10 33565.50 18785.55 21789.82 16171.57 17278.21 16386.12 25160.66 18893.18 17175.64 13775.46 30589.81 222
testing368.56 32067.67 32171.22 34787.33 21642.87 39683.06 27271.54 37770.36 19669.08 31484.38 28630.33 38485.69 31937.50 39075.45 30685.09 331
cl____77.72 21376.76 21480.58 23182.49 31460.48 27383.09 26987.87 22069.22 22574.38 25685.22 27162.10 16291.53 23271.09 17975.41 30789.73 225
DIV-MVS_self_test77.72 21376.76 21480.58 23182.48 31560.48 27383.09 26987.86 22169.22 22574.38 25685.24 26962.10 16291.53 23271.09 17975.40 30889.74 224
v879.97 15879.02 16082.80 18084.09 27564.50 20887.96 14590.29 15074.13 12475.24 23886.81 22662.88 15093.89 13474.39 14975.40 30890.00 211
Baseline_NR-MVSNet78.15 20178.33 17477.61 28685.79 24156.21 32786.78 18385.76 25873.60 13577.93 17187.57 20665.02 12888.99 28467.14 22075.33 31087.63 278
pmmvs571.55 29270.20 29875.61 30477.83 36356.39 32281.74 28380.89 31957.76 35567.46 32784.49 28349.26 29485.32 32557.08 30875.29 31185.11 330
EPMVS69.02 31568.16 31071.59 34179.61 35449.80 37977.40 34266.93 38962.82 31470.01 30179.05 35345.79 32277.86 36556.58 31375.26 31287.13 293
TranMVSNet+NR-MVSNet80.84 13280.31 13182.42 19087.85 19562.33 24987.74 15491.33 11880.55 977.99 17089.86 14465.23 12692.62 18867.05 22175.24 31392.30 128
test_fmvs268.35 32367.48 32470.98 34969.50 39451.95 36180.05 31076.38 36049.33 38374.65 25184.38 28623.30 39575.40 38474.51 14775.17 31485.60 321
tfpnnormal74.39 26073.16 26478.08 27886.10 23958.05 29484.65 23687.53 22870.32 19871.22 29085.63 26154.97 22589.86 26843.03 37875.02 31586.32 307
COLMAP_ROBcopyleft66.92 1773.01 28070.41 29580.81 22787.13 22165.63 18488.30 13584.19 27762.96 31063.80 36087.69 20338.04 36692.56 19146.66 36474.91 31684.24 339
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PatchT68.46 32267.85 31570.29 35180.70 33843.93 39472.47 36774.88 36660.15 33570.55 29276.57 37049.94 28481.59 34750.58 34074.83 31785.34 324
pmmvs474.03 26771.91 27680.39 23481.96 32068.32 12381.45 28882.14 30759.32 34269.87 30685.13 27352.40 25088.13 29860.21 27874.74 31884.73 335
ITE_SJBPF78.22 27581.77 32360.57 27183.30 28969.25 22467.54 32587.20 21836.33 37187.28 30654.34 32374.62 31986.80 300
test0.0.03 168.00 32567.69 32068.90 35777.55 36447.43 38275.70 35272.95 37666.66 26166.56 33882.29 32548.06 30275.87 37944.97 37574.51 32083.41 349
test_040272.79 28370.44 29479.84 24688.13 18265.99 17585.93 20684.29 27465.57 27867.40 32985.49 26446.92 30992.61 18935.88 39174.38 32180.94 370
CP-MVSNet78.22 19778.34 17377.84 28187.83 19654.54 34587.94 14791.17 12277.65 3873.48 26488.49 18362.24 16088.43 29462.19 26074.07 32290.55 184
FMVSNet569.50 31267.96 31374.15 32282.97 30455.35 33780.01 31182.12 30862.56 31763.02 36181.53 33136.92 36981.92 34648.42 35474.06 32385.17 329
MVS-HIRNet59.14 35357.67 35563.57 37081.65 32443.50 39571.73 36965.06 39439.59 39651.43 39157.73 39838.34 36482.58 34339.53 38573.95 32464.62 394
tpmrst72.39 28472.13 27573.18 33180.54 34049.91 37779.91 31379.08 34263.11 30771.69 28679.95 34655.32 22382.77 34265.66 23273.89 32586.87 298
PS-CasMVS78.01 20678.09 17977.77 28387.71 20254.39 34788.02 14391.22 11977.50 4673.26 26688.64 17860.73 18588.41 29561.88 26473.88 32690.53 185
v14878.72 18777.80 18881.47 20782.73 30861.96 25586.30 19788.08 21473.26 14576.18 21185.47 26562.46 15592.36 20071.92 17373.82 32790.09 205
Patchmatch-test64.82 34263.24 34369.57 35379.42 35749.82 37863.49 39869.05 38551.98 37859.95 37480.13 34450.91 27270.98 39340.66 38473.57 32887.90 273
WR-MVS_H78.51 19278.49 16878.56 26988.02 18856.38 32388.43 12792.67 6377.14 5573.89 25987.55 20866.25 11589.24 28058.92 28973.55 32990.06 209
AUN-MVS79.21 17577.60 19684.05 13288.71 16267.61 14185.84 21087.26 23469.08 23077.23 18588.14 19753.20 24693.47 15375.50 14173.45 33091.06 164
hse-mvs281.72 11580.94 12184.07 12788.72 16167.68 13885.87 20887.26 23476.02 8684.67 6788.22 19261.54 16993.48 15282.71 7473.44 33191.06 164
testgi66.67 33366.53 33067.08 36675.62 37341.69 40175.93 34876.50 35966.11 27065.20 35286.59 23735.72 37374.71 38643.71 37673.38 33284.84 333
Anonymous2024052168.80 31767.22 32673.55 32674.33 37754.11 34883.18 26685.61 25958.15 35261.68 36780.94 33730.71 38381.27 35057.00 30973.34 33385.28 325
pm-mvs177.25 22476.68 21878.93 26384.22 27258.62 28986.41 19388.36 21071.37 17573.31 26588.01 19961.22 17989.15 28264.24 24373.01 33489.03 243
eth_miper_zixun_eth77.92 20876.69 21781.61 20583.00 30161.98 25483.15 26789.20 18369.52 21874.86 24884.35 28861.76 16592.56 19171.50 17672.89 33590.28 196
miper_lstm_enhance74.11 26473.11 26577.13 29380.11 34559.62 28372.23 36886.92 24266.76 25970.40 29582.92 31456.93 21882.92 34169.06 20172.63 33688.87 251
tpmvs71.09 29669.29 30176.49 29782.04 31956.04 32878.92 32581.37 31764.05 29967.18 33178.28 36149.74 28789.77 27049.67 34972.37 33783.67 347
PEN-MVS77.73 21277.69 19477.84 28187.07 22253.91 35087.91 14991.18 12177.56 4373.14 26888.82 17361.23 17889.17 28159.95 27972.37 33790.43 189
DSMNet-mixed57.77 35556.90 35760.38 37467.70 39635.61 40569.18 38053.97 40632.30 40457.49 38279.88 34740.39 35668.57 39838.78 38872.37 33776.97 380
IterMVS-SCA-FT75.43 25373.87 25780.11 24182.69 30964.85 20181.57 28683.47 28769.16 22870.49 29484.15 29451.95 26088.15 29769.23 19872.14 34087.34 286
tpm cat170.57 30268.31 30877.35 29082.41 31657.95 29878.08 33780.22 33252.04 37668.54 31977.66 36652.00 25987.84 30151.77 33472.07 34186.25 308
RPSCF73.23 27771.46 28178.54 27082.50 31359.85 28082.18 27982.84 30258.96 34671.15 29189.41 16245.48 32884.77 32958.82 29171.83 34291.02 168
IterMVS74.29 26172.94 26678.35 27481.53 32763.49 22981.58 28582.49 30468.06 24969.99 30383.69 30351.66 26685.54 32165.85 23071.64 34386.01 315
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AllTest70.96 29768.09 31279.58 25385.15 25463.62 22384.58 23879.83 33462.31 31960.32 37286.73 22732.02 37888.96 28750.28 34471.57 34486.15 311
TestCases79.58 25385.15 25463.62 22379.83 33462.31 31960.32 37286.73 22732.02 37888.96 28750.28 34471.57 34486.15 311
baseline176.98 22776.75 21677.66 28488.13 18255.66 33385.12 22581.89 31073.04 15076.79 19488.90 17062.43 15687.78 30263.30 24971.18 34689.55 229
Patchmtry70.74 30069.16 30375.49 30880.72 33754.07 34974.94 36080.30 33058.34 35070.01 30181.19 33252.50 24886.54 31053.37 32871.09 34785.87 319
DTE-MVSNet76.99 22676.80 21277.54 28886.24 23453.06 35887.52 15890.66 13577.08 5872.50 27688.67 17760.48 19289.52 27557.33 30670.74 34890.05 210
MIMVSNet168.58 31966.78 32973.98 32480.07 34651.82 36480.77 29784.37 27164.40 29259.75 37582.16 32736.47 37083.63 33642.73 37970.33 34986.48 306
pmmvs674.69 25973.39 26178.61 26781.38 33057.48 30686.64 18787.95 21864.99 28770.18 29886.61 23650.43 27989.52 27562.12 26270.18 35088.83 253
test_vis1_rt60.28 35158.42 35465.84 36767.25 39755.60 33470.44 37660.94 40044.33 39059.00 37666.64 39024.91 39068.67 39762.80 25169.48 35173.25 386
TinyColmap67.30 32964.81 33474.76 31681.92 32256.68 31880.29 30881.49 31560.33 33256.27 38683.22 30824.77 39187.66 30445.52 37269.47 35279.95 374
OurMVSNet-221017-074.26 26272.42 27279.80 24783.76 28359.59 28485.92 20786.64 24566.39 26866.96 33287.58 20539.46 35891.60 22665.76 23169.27 35388.22 267
JIA-IIPM66.32 33662.82 34776.82 29577.09 36761.72 25965.34 39475.38 36358.04 35464.51 35462.32 39342.05 34886.51 31151.45 33769.22 35482.21 362
ADS-MVSNet266.20 33963.33 34274.82 31579.92 34758.75 28867.55 38675.19 36453.37 37365.25 35075.86 37442.32 34480.53 35441.57 38268.91 35585.18 327
ADS-MVSNet64.36 34362.88 34668.78 35979.92 34747.17 38367.55 38671.18 37853.37 37365.25 35075.86 37442.32 34473.99 38941.57 38268.91 35585.18 327
test20.0367.45 32766.95 32868.94 35675.48 37444.84 39277.50 34177.67 34866.66 26163.01 36283.80 29947.02 30878.40 36142.53 38168.86 35783.58 348
EU-MVSNet68.53 32167.61 32271.31 34678.51 36247.01 38484.47 24084.27 27542.27 39266.44 34384.79 28140.44 35583.76 33458.76 29268.54 35883.17 351
dmvs_testset62.63 34764.11 33858.19 37678.55 36124.76 41475.28 35465.94 39267.91 25060.34 37176.01 37353.56 24173.94 39031.79 39567.65 35975.88 383
our_test_369.14 31467.00 32775.57 30579.80 35158.80 28777.96 33877.81 34759.55 34062.90 36478.25 36247.43 30483.97 33351.71 33567.58 36083.93 344
ppachtmachnet_test70.04 30867.34 32578.14 27779.80 35161.13 26379.19 32180.59 32459.16 34465.27 34979.29 35246.75 31187.29 30549.33 35066.72 36186.00 317
LF4IMVS64.02 34462.19 34869.50 35470.90 39253.29 35776.13 34677.18 35552.65 37558.59 37780.98 33623.55 39476.52 37253.06 33066.66 36278.68 377
Patchmatch-RL test70.24 30667.78 31977.61 28677.43 36559.57 28571.16 37170.33 37962.94 31168.65 31772.77 38350.62 27685.49 32269.58 19666.58 36387.77 276
dp66.80 33165.43 33370.90 35079.74 35348.82 38075.12 35874.77 36759.61 33964.08 35777.23 36742.89 34080.72 35348.86 35366.58 36383.16 352
test_fmvs363.36 34661.82 34967.98 36362.51 40346.96 38577.37 34374.03 37145.24 38867.50 32678.79 35812.16 40772.98 39272.77 16766.02 36583.99 343
CL-MVSNet_self_test72.37 28671.46 28175.09 31279.49 35653.53 35280.76 29885.01 26669.12 22970.51 29382.05 32857.92 20784.13 33252.27 33366.00 36687.60 279
FPMVS53.68 36051.64 36259.81 37565.08 40051.03 37169.48 37969.58 38341.46 39340.67 39972.32 38416.46 40370.00 39624.24 40365.42 36758.40 399
pmmvs-eth3d70.50 30467.83 31778.52 27277.37 36666.18 17181.82 28181.51 31458.90 34763.90 35980.42 34242.69 34286.28 31458.56 29365.30 36883.11 353
N_pmnet52.79 36253.26 36151.40 38678.99 3607.68 42069.52 3783.89 41951.63 37957.01 38374.98 37840.83 35365.96 40137.78 38964.67 36980.56 373
PM-MVS66.41 33564.14 33773.20 33073.92 37956.45 32078.97 32464.96 39563.88 30364.72 35380.24 34319.84 39983.44 33866.24 22464.52 37079.71 375
KD-MVS_self_test68.81 31667.59 32372.46 33774.29 37845.45 38777.93 33987.00 23963.12 30663.99 35878.99 35742.32 34484.77 32956.55 31464.09 37187.16 292
SixPastTwentyTwo73.37 27371.26 28679.70 24985.08 25757.89 29985.57 21383.56 28571.03 18365.66 34685.88 25442.10 34792.57 19059.11 28763.34 37288.65 261
EGC-MVSNET52.07 36447.05 36867.14 36583.51 28760.71 26980.50 30467.75 3870.07 4140.43 41575.85 37624.26 39281.54 34828.82 39762.25 37359.16 397
TransMVSNet (Re)75.39 25574.56 24777.86 28085.50 24757.10 31186.78 18386.09 25572.17 16371.53 28787.34 21263.01 14989.31 27956.84 31161.83 37487.17 290
MDA-MVSNet_test_wron65.03 34062.92 34471.37 34375.93 36956.73 31569.09 38374.73 36857.28 36054.03 38977.89 36345.88 32074.39 38849.89 34861.55 37582.99 356
YYNet165.03 34062.91 34571.38 34275.85 37156.60 31969.12 38274.66 37057.28 36054.12 38877.87 36445.85 32174.48 38749.95 34761.52 37683.05 354
mvsany_test162.30 34861.26 35265.41 36869.52 39354.86 34266.86 38849.78 40846.65 38668.50 32083.21 30949.15 29566.28 40056.93 31060.77 37775.11 384
ambc75.24 31173.16 38650.51 37563.05 39987.47 23064.28 35577.81 36517.80 40189.73 27257.88 30160.64 37885.49 322
TDRefinement67.49 32664.34 33676.92 29473.47 38461.07 26484.86 23182.98 29859.77 33858.30 37985.13 27326.06 38887.89 30047.92 36160.59 37981.81 366
Gipumacopyleft45.18 37141.86 37455.16 38377.03 36851.52 36732.50 40780.52 32532.46 40327.12 40635.02 4079.52 41075.50 38122.31 40460.21 38038.45 406
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
new-patchmatchnet61.73 34961.73 35061.70 37272.74 38924.50 41569.16 38178.03 34661.40 32656.72 38475.53 37738.42 36376.48 37345.95 37057.67 38184.13 341
MDA-MVSNet-bldmvs66.68 33263.66 34175.75 30279.28 35860.56 27273.92 36478.35 34564.43 29150.13 39379.87 34844.02 33583.67 33546.10 36956.86 38283.03 355
new_pmnet50.91 36550.29 36552.78 38568.58 39534.94 40763.71 39656.63 40539.73 39544.95 39665.47 39121.93 39658.48 40534.98 39256.62 38364.92 393
test_f52.09 36350.82 36455.90 38053.82 41042.31 40059.42 40058.31 40436.45 39956.12 38770.96 38712.18 40657.79 40653.51 32756.57 38467.60 391
test_vis3_rt49.26 36747.02 36956.00 37954.30 40845.27 39166.76 39048.08 40936.83 39844.38 39753.20 4027.17 41464.07 40256.77 31255.66 38558.65 398
PMVScopyleft37.38 2244.16 37240.28 37655.82 38140.82 41642.54 39965.12 39563.99 39634.43 40124.48 40757.12 4003.92 41776.17 37717.10 40855.52 38648.75 402
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
APD_test153.31 36149.93 36663.42 37165.68 39950.13 37671.59 37066.90 39034.43 40140.58 40071.56 3868.65 41276.27 37534.64 39355.36 38763.86 395
pmmvs357.79 35454.26 35968.37 36164.02 40256.72 31675.12 35865.17 39340.20 39452.93 39069.86 38920.36 39875.48 38245.45 37355.25 38872.90 387
UnsupCasMVSNet_eth67.33 32865.99 33271.37 34373.48 38351.47 36875.16 35685.19 26365.20 28260.78 37080.93 33942.35 34377.20 36757.12 30753.69 38985.44 323
K. test v371.19 29468.51 30679.21 25983.04 30057.78 30284.35 24776.91 35772.90 15362.99 36382.86 31639.27 35991.09 25061.65 26752.66 39088.75 257
UnsupCasMVSNet_bld63.70 34561.53 35170.21 35273.69 38151.39 36972.82 36681.89 31055.63 36757.81 38171.80 38538.67 36278.61 36049.26 35152.21 39180.63 371
LCM-MVSNet54.25 35749.68 36767.97 36453.73 41145.28 39066.85 38980.78 32135.96 40039.45 40162.23 3948.70 41178.06 36448.24 35851.20 39280.57 372
KD-MVS_2432*160066.22 33763.89 33973.21 32875.47 37553.42 35470.76 37484.35 27264.10 29766.52 34078.52 35934.55 37584.98 32650.40 34250.33 39381.23 368
miper_refine_blended66.22 33763.89 33973.21 32875.47 37553.42 35470.76 37484.35 27264.10 29766.52 34078.52 35934.55 37584.98 32650.40 34250.33 39381.23 368
mvsany_test353.99 35851.45 36361.61 37355.51 40744.74 39363.52 39745.41 41243.69 39158.11 38076.45 37117.99 40063.76 40354.77 32147.59 39576.34 382
lessismore_v078.97 26281.01 33657.15 31065.99 39161.16 36982.82 31739.12 36091.34 24159.67 28146.92 39688.43 265
testf145.72 36841.96 37257.00 37756.90 40545.32 38866.14 39159.26 40226.19 40530.89 40460.96 3964.14 41570.64 39426.39 40146.73 39755.04 400
APD_test245.72 36841.96 37257.00 37756.90 40545.32 38866.14 39159.26 40226.19 40530.89 40460.96 3964.14 41570.64 39426.39 40146.73 39755.04 400
m2depth59.91 35257.10 35668.34 36267.13 39846.65 38674.64 36167.41 38848.30 38462.52 36685.04 27720.40 39775.93 37842.55 38045.90 39982.44 360
PVSNet_057.27 2061.67 35059.27 35368.85 35879.61 35457.44 30768.01 38473.44 37355.93 36658.54 37870.41 38844.58 33177.55 36647.01 36335.91 40071.55 388
WB-MVS54.94 35654.72 35855.60 38273.50 38220.90 41674.27 36361.19 39959.16 34450.61 39274.15 37947.19 30775.78 38017.31 40735.07 40170.12 389
test_method31.52 37629.28 38038.23 39027.03 4186.50 42120.94 40962.21 3984.05 41222.35 41052.50 40313.33 40447.58 41027.04 40034.04 40260.62 396
SSC-MVS53.88 35953.59 36054.75 38472.87 38819.59 41773.84 36560.53 40157.58 35849.18 39573.45 38246.34 31675.47 38316.20 41032.28 40369.20 390
PMMVS240.82 37338.86 37746.69 38753.84 40916.45 41848.61 40449.92 40737.49 39731.67 40260.97 3958.14 41356.42 40728.42 39830.72 40467.19 392
dongtai45.42 37045.38 37145.55 38873.36 38526.85 41267.72 38534.19 41454.15 37149.65 39456.41 40125.43 38962.94 40419.45 40528.09 40546.86 404
kuosan39.70 37440.40 37537.58 39164.52 40126.98 41065.62 39333.02 41546.12 38742.79 39848.99 40424.10 39346.56 41212.16 41326.30 40639.20 405
DeepMVS_CXcopyleft27.40 39440.17 41726.90 41124.59 41817.44 41023.95 40848.61 4059.77 40926.48 41318.06 40624.47 40728.83 407
MVEpermissive26.22 2330.37 37825.89 38243.81 38944.55 41535.46 40628.87 40839.07 41318.20 40918.58 41140.18 4062.68 41847.37 41117.07 40923.78 40848.60 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN31.77 37530.64 37835.15 39252.87 41227.67 40957.09 40247.86 41024.64 40716.40 41233.05 40811.23 40854.90 40814.46 41118.15 40922.87 408
EMVS30.81 37729.65 37934.27 39350.96 41325.95 41356.58 40346.80 41124.01 40815.53 41330.68 40912.47 40554.43 40912.81 41217.05 41022.43 409
ANet_high50.57 36646.10 37063.99 36948.67 41439.13 40370.99 37380.85 32061.39 32731.18 40357.70 39917.02 40273.65 39131.22 39615.89 41179.18 376
tmp_tt18.61 38021.40 38310.23 3964.82 41910.11 41934.70 40630.74 4171.48 41323.91 40926.07 41028.42 38613.41 41527.12 39915.35 4127.17 410
wuyk23d16.82 38115.94 38419.46 39558.74 40431.45 40839.22 4053.74 4206.84 4116.04 4142.70 4141.27 41924.29 41410.54 41414.40 4132.63 411
testmvs6.04 3848.02 3870.10 3980.08 4200.03 42369.74 3770.04 4210.05 4150.31 4161.68 4150.02 4210.04 4160.24 4150.02 4140.25 413
test1236.12 3838.11 3860.14 3970.06 4210.09 42271.05 3720.03 4220.04 4160.25 4171.30 4160.05 4200.03 4170.21 4160.01 4150.29 412
test_blank0.00 3860.00 3890.00 3990.00 4220.00 4240.00 4100.00 4230.00 4170.00 4180.00 4170.00 4220.00 4180.00 4170.00 4160.00 414
uanet_test0.00 3860.00 3890.00 3990.00 4220.00 4240.00 4100.00 4230.00 4170.00 4180.00 4170.00 4220.00 4180.00 4170.00 4160.00 414
DCPMVS0.00 3860.00 3890.00 3990.00 4220.00 4240.00 4100.00 4230.00 4170.00 4180.00 4170.00 4220.00 4180.00 4170.00 4160.00 414
cdsmvs_eth3d_5k19.96 37926.61 3810.00 3990.00 4220.00 4240.00 41089.26 1800.00 4170.00 41888.61 17961.62 1680.00 4180.00 4170.00 4160.00 414
pcd_1.5k_mvsjas5.26 3857.02 3880.00 3990.00 4220.00 4240.00 4100.00 4230.00 4170.00 4180.00 41763.15 1450.00 4180.00 4170.00 4160.00 414
sosnet-low-res0.00 3860.00 3890.00 3990.00 4220.00 4240.00 4100.00 4230.00 4170.00 4180.00 4170.00 4220.00 4180.00 4170.00 4160.00 414
sosnet0.00 3860.00 3890.00 3990.00 4220.00 4240.00 4100.00 4230.00 4170.00 4180.00 4170.00 4220.00 4180.00 4170.00 4160.00 414
uncertanet0.00 3860.00 3890.00 3990.00 4220.00 4240.00 4100.00 4230.00 4170.00 4180.00 4170.00 4220.00 4180.00 4170.00 4160.00 414
Regformer0.00 3860.00 3890.00 3990.00 4220.00 4240.00 4100.00 4230.00 4170.00 4180.00 4170.00 4220.00 4180.00 4170.00 4160.00 414
ab-mvs-re7.23 3829.64 3850.00 3990.00 4220.00 4240.00 4100.00 4230.00 4170.00 41886.72 2290.00 4220.00 4180.00 4170.00 4160.00 414
uanet0.00 3860.00 3890.00 3990.00 4220.00 4240.00 4100.00 4230.00 4170.00 4180.00 4170.00 4220.00 4180.00 4170.00 4160.00 414
WAC-MVS42.58 39739.46 386
FOURS195.00 1072.39 3995.06 193.84 1574.49 11591.30 15
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 422
eth-test0.00 422
test_241102_ONE95.30 270.98 6394.06 1077.17 5493.10 195.39 1182.99 197.27 12
save fliter93.80 4072.35 4290.47 6391.17 12274.31 118
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
GSMVS88.96 248
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26888.96 248
sam_mvs50.01 282
MTGPAbinary92.02 91
test_post178.90 3265.43 41348.81 30185.44 32459.25 285
test_post5.46 41250.36 28084.24 331
patchmatchnet-post74.00 38051.12 27188.60 292
MTMP92.18 3432.83 416
gm-plane-assit81.40 32953.83 35162.72 31680.94 33792.39 19863.40 248
TEST993.26 5072.96 2588.75 11691.89 9968.44 24485.00 6093.10 6774.36 2895.41 71
test_893.13 5272.57 3588.68 12191.84 10368.69 23984.87 6493.10 6774.43 2695.16 80
agg_prior92.85 5971.94 5091.78 10684.41 7694.93 91
test_prior472.60 3489.01 107
test_prior86.33 5492.61 6569.59 8892.97 5195.48 6693.91 59
旧先验286.56 19058.10 35387.04 4288.98 28574.07 152
新几何286.29 198
无先验87.48 15988.98 19260.00 33694.12 12167.28 21788.97 247
原ACMM286.86 179
testdata291.01 25262.37 258
segment_acmp73.08 38
testdata184.14 25175.71 90
plane_prior790.08 10768.51 120
plane_prior689.84 11668.70 11560.42 193
plane_prior491.00 126
plane_prior368.60 11878.44 3178.92 147
plane_prior291.25 4979.12 23
plane_prior189.90 115
n20.00 423
nn0.00 423
door-mid69.98 381
test1192.23 84
door69.44 384
HQP5-MVS66.98 159
HQP-NCC89.33 13489.17 10076.41 7577.23 185
ACMP_Plane89.33 13489.17 10076.41 7577.23 185
BP-MVS77.47 118
HQP4-MVS77.24 18495.11 8491.03 166
HQP2-MVS60.17 196
NP-MVS89.62 12068.32 12390.24 138
MDTV_nov1_ep13_2view37.79 40475.16 35655.10 36866.53 33949.34 29253.98 32487.94 272
Test By Simon64.33 132