This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 11692.29 795.97 274.28 2997.24 1388.58 2496.91 194.87 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5995.06 194.23 378.38 3492.78 495.74 682.45 397.49 489.42 1296.68 294.95 11
PC_three_145268.21 25792.02 1294.00 5282.09 595.98 5684.58 5696.68 294.95 11
SED-MVS90.08 290.85 287.77 2695.30 270.98 6693.57 794.06 1077.24 5493.10 195.72 882.99 197.44 789.07 1796.63 494.88 15
IU-MVS95.30 271.25 5992.95 5566.81 26892.39 688.94 1996.63 494.85 20
test_241102_TWO94.06 1077.24 5492.78 495.72 881.26 897.44 789.07 1796.58 694.26 48
test_0728_THIRD78.38 3492.12 995.78 481.46 797.40 989.42 1296.57 794.67 28
OPU-MVS89.06 394.62 1575.42 493.57 794.02 5082.45 396.87 2083.77 6796.48 894.88 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4997.53 289.67 996.44 994.41 39
No_MVS89.16 194.34 2775.53 292.99 4997.53 289.67 996.44 994.41 39
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5980.26 1187.78 3694.27 3775.89 1996.81 2387.45 3596.44 993.05 108
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5993.49 992.73 6477.33 5192.12 995.78 480.98 997.40 989.08 1596.41 1293.33 93
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND87.71 3295.34 171.43 5893.49 994.23 397.49 489.08 1596.41 1294.21 49
ACMMP_NAP88.05 1688.08 1787.94 1993.70 4173.05 2290.86 5793.59 2376.27 8588.14 2995.09 1771.06 6496.67 2987.67 3296.37 1494.09 53
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 9192.29 795.66 1081.67 697.38 1187.44 3696.34 1593.95 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss87.67 2187.72 2087.54 3693.64 4472.04 4889.80 8193.50 2575.17 10686.34 5495.29 1570.86 6696.00 5488.78 2296.04 1694.58 33
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SF-MVS88.46 1288.74 1287.64 3592.78 6471.95 4992.40 2494.74 275.71 9389.16 2095.10 1675.65 2196.19 4687.07 3796.01 1794.79 22
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6293.00 4680.90 788.06 3194.06 4876.43 1696.84 2188.48 2795.99 1894.34 44
PHI-MVS86.43 4386.17 4887.24 4190.88 9270.96 6892.27 3294.07 972.45 16685.22 6491.90 9969.47 8196.42 4083.28 7195.94 1994.35 43
test_prior288.85 11875.41 9984.91 6893.54 6274.28 2983.31 7095.86 20
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 7272.96 2593.73 593.67 2080.19 1288.10 3094.80 2073.76 3397.11 1587.51 3495.82 2194.90 14
Skip Steuart: Steuart Systems R&D Blog.
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6785.24 6394.32 3571.76 5296.93 1985.53 4695.79 2294.32 45
9.1488.26 1592.84 6391.52 4894.75 173.93 13688.57 2694.67 2275.57 2295.79 5886.77 3895.76 23
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5392.24 7169.03 10389.57 9093.39 3077.53 4789.79 1994.12 4578.98 1296.58 3585.66 4395.72 2494.58 33
train_agg86.43 4386.20 4687.13 4493.26 5272.96 2588.75 12191.89 10168.69 24985.00 6693.10 7374.43 2695.41 7384.97 4895.71 2593.02 110
test9_res84.90 4995.70 2692.87 115
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9591.06 1696.03 176.84 1497.03 1789.09 1495.65 2794.47 38
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MM89.16 689.23 788.97 490.79 9573.65 1092.66 2391.17 12586.57 187.39 4494.97 1971.70 5497.68 192.19 195.63 2895.57 1
agg_prior282.91 7695.45 2992.70 118
CDPH-MVS85.76 5785.29 6787.17 4393.49 4771.08 6488.58 12992.42 8068.32 25684.61 7793.48 6472.32 4596.15 4879.00 10995.43 3094.28 47
DeepC-MVS79.81 287.08 3586.88 3987.69 3391.16 8472.32 4390.31 7193.94 1477.12 5982.82 10894.23 4072.13 4897.09 1684.83 5295.37 3193.65 78
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MTAPA87.23 3187.00 3387.90 2294.18 3574.25 586.58 19692.02 9379.45 2085.88 5694.80 2068.07 9796.21 4586.69 3995.34 3293.23 96
DeepC-MVS_fast79.65 386.91 3686.62 4187.76 2793.52 4672.37 4191.26 5193.04 4176.62 7584.22 8493.36 6971.44 5896.76 2580.82 9795.33 3394.16 50
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_030487.69 2087.55 2488.12 1389.45 12971.76 5191.47 4989.54 17482.14 386.65 5294.28 3668.28 9697.46 690.81 395.31 3495.15 7
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 7077.57 4383.84 9394.40 3372.24 4696.28 4385.65 4495.30 3593.62 81
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MCST-MVS87.37 2987.25 3087.73 2894.53 1772.46 3889.82 7993.82 1673.07 15984.86 7192.89 8076.22 1796.33 4184.89 5195.13 3694.40 41
balanced_conf0386.78 3786.99 3486.15 6391.24 8367.61 14590.51 6292.90 5677.26 5387.44 4391.63 10871.27 6196.06 4985.62 4595.01 3794.78 23
GST-MVS87.42 2787.26 2987.89 2494.12 3672.97 2492.39 2693.43 2876.89 6584.68 7293.99 5470.67 6996.82 2284.18 6495.01 3793.90 63
APD-MVScopyleft87.44 2587.52 2587.19 4294.24 3272.39 3991.86 4092.83 6073.01 16188.58 2594.52 2473.36 3496.49 3884.26 6095.01 3792.70 118
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5492.83 6081.50 585.79 5893.47 6673.02 4197.00 1884.90 4994.94 4094.10 52
ACMMPR87.44 2587.23 3188.08 1594.64 1373.59 1293.04 1293.20 3476.78 6984.66 7594.52 2468.81 9196.65 3084.53 5794.90 4194.00 57
SPE-MVS-test86.29 4786.48 4285.71 7391.02 8867.21 16092.36 2993.78 1878.97 2983.51 10091.20 12370.65 7095.15 8481.96 8694.89 4294.77 24
HFP-MVS87.58 2287.47 2687.94 1994.58 1673.54 1593.04 1293.24 3376.78 6984.91 6894.44 3170.78 6796.61 3284.53 5794.89 4293.66 74
ZD-MVS94.38 2572.22 4492.67 6770.98 19487.75 3894.07 4774.01 3296.70 2784.66 5594.84 44
region2R87.42 2787.20 3288.09 1494.63 1473.55 1393.03 1493.12 4076.73 7284.45 8094.52 2469.09 8596.70 2784.37 5994.83 4594.03 56
原ACMM184.35 11393.01 6068.79 11092.44 7763.96 31381.09 12991.57 11166.06 12095.45 6867.19 22994.82 4688.81 261
HPM-MVScopyleft87.11 3386.98 3587.50 3893.88 3972.16 4592.19 3393.33 3176.07 8883.81 9493.95 5769.77 7996.01 5385.15 4794.66 4794.32 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DPM-MVS84.93 7184.29 7886.84 5090.20 10573.04 2387.12 17693.04 4169.80 22182.85 10791.22 12273.06 4096.02 5276.72 13694.63 4891.46 162
TSAR-MVS + MP.88.02 1788.11 1687.72 3093.68 4372.13 4691.41 5092.35 8274.62 12088.90 2393.85 5875.75 2096.00 5487.80 3194.63 4895.04 9
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PGM-MVS86.68 4086.27 4587.90 2294.22 3373.38 1890.22 7393.04 4175.53 9783.86 9294.42 3267.87 10196.64 3182.70 8294.57 5093.66 74
XVS87.18 3286.91 3888.00 1794.42 2073.33 1992.78 1892.99 4979.14 2283.67 9794.17 4267.45 10496.60 3383.06 7294.50 5194.07 54
X-MVStestdata80.37 15777.83 19388.00 1794.42 2073.33 1992.78 1892.99 4979.14 2283.67 9712.47 42367.45 10496.60 3383.06 7294.50 5194.07 54
test1286.80 5292.63 6770.70 7591.79 10782.71 11071.67 5596.16 4794.50 5193.54 86
MVSMamba_PlusPlus85.99 4985.96 5386.05 6691.09 8567.64 14489.63 8892.65 7072.89 16484.64 7691.71 10471.85 5096.03 5084.77 5494.45 5494.49 37
CP-MVS87.11 3386.92 3787.68 3494.20 3473.86 793.98 392.82 6376.62 7583.68 9694.46 2867.93 9995.95 5784.20 6394.39 5593.23 96
CSCG86.41 4586.19 4787.07 4592.91 6172.48 3790.81 5893.56 2473.95 13483.16 10391.07 12875.94 1895.19 8279.94 10694.38 5693.55 85
MSLP-MVS++85.43 6385.76 5784.45 10991.93 7570.24 7990.71 5992.86 5877.46 4984.22 8492.81 8467.16 10892.94 18680.36 10194.35 5790.16 206
mPP-MVS86.67 4186.32 4487.72 3094.41 2273.55 1392.74 2092.22 8876.87 6682.81 10994.25 3966.44 11496.24 4482.88 7794.28 5893.38 90
SD-MVS88.06 1488.50 1486.71 5492.60 6972.71 2991.81 4193.19 3577.87 3790.32 1794.00 5274.83 2393.78 14187.63 3394.27 5993.65 78
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 4378.35 1396.77 2489.59 1194.22 6094.67 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DELS-MVS85.41 6485.30 6685.77 7288.49 16967.93 13785.52 22993.44 2778.70 3083.63 9989.03 17574.57 2495.71 6180.26 10394.04 6193.66 74
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EPNet83.72 8682.92 9886.14 6584.22 27969.48 9491.05 5685.27 27181.30 676.83 20191.65 10666.09 11995.56 6376.00 14293.85 6293.38 90
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EC-MVSNet86.01 4886.38 4384.91 9689.31 13866.27 17392.32 3093.63 2179.37 2184.17 8691.88 10069.04 8995.43 7083.93 6693.77 6393.01 111
3Dnovator+77.84 485.48 6184.47 7788.51 791.08 8673.49 1693.18 1193.78 1880.79 876.66 20693.37 6860.40 19996.75 2677.20 12893.73 6495.29 5
reproduce-ours87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10988.96 2195.54 1271.20 6296.54 3686.28 4093.49 6593.06 106
our_new_method87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10988.96 2195.54 1271.20 6296.54 3686.28 4093.49 6593.06 106
CS-MVS86.69 3986.95 3685.90 7190.76 9667.57 14792.83 1793.30 3279.67 1784.57 7992.27 9271.47 5795.02 9384.24 6293.46 6795.13 8
CANet86.45 4286.10 5087.51 3790.09 10770.94 7089.70 8592.59 7481.78 481.32 12491.43 11670.34 7197.23 1484.26 6093.36 6894.37 42
reproduce_model87.28 3087.39 2886.95 4893.10 5671.24 6391.60 4293.19 3574.69 11788.80 2495.61 1170.29 7396.44 3986.20 4293.08 6993.16 101
新几何183.42 15693.13 5470.71 7485.48 27057.43 37081.80 11991.98 9763.28 14292.27 21064.60 25092.99 7087.27 297
HPM-MVS_fast85.35 6584.95 7186.57 5693.69 4270.58 7892.15 3591.62 11173.89 13782.67 11194.09 4662.60 15395.54 6580.93 9592.93 7193.57 83
SR-MVS86.73 3886.67 4086.91 4994.11 3772.11 4792.37 2892.56 7574.50 12186.84 5194.65 2367.31 10695.77 5984.80 5392.85 7292.84 116
旧先验191.96 7465.79 18486.37 25893.08 7769.31 8492.74 7388.74 266
3Dnovator76.31 583.38 9782.31 10786.59 5587.94 19472.94 2890.64 6092.14 9277.21 5675.47 23192.83 8258.56 20694.72 10573.24 17192.71 7492.13 144
MVS_111021_HR85.14 6784.75 7286.32 5891.65 7972.70 3085.98 21290.33 15076.11 8782.08 11491.61 11071.36 6094.17 12481.02 9492.58 7592.08 145
APD-MVS_3200maxsize85.97 5185.88 5486.22 6092.69 6669.53 9291.93 3792.99 4973.54 14685.94 5594.51 2765.80 12495.61 6283.04 7492.51 7693.53 87
test250677.30 23076.49 22779.74 25590.08 10852.02 37187.86 15763.10 40974.88 11280.16 13992.79 8538.29 37592.35 20768.74 21592.50 7794.86 18
ECVR-MVScopyleft79.61 16879.26 16180.67 23790.08 10854.69 35487.89 15577.44 36374.88 11280.27 13692.79 8548.96 30792.45 20168.55 21692.50 7794.86 18
test111179.43 17579.18 16480.15 24789.99 11353.31 36787.33 17177.05 36775.04 10780.23 13892.77 8748.97 30692.33 20968.87 21392.40 7994.81 21
patch_mono-283.65 8784.54 7480.99 22990.06 11265.83 18284.21 25888.74 20871.60 18185.01 6592.44 9074.51 2583.50 34882.15 8592.15 8093.64 80
dcpmvs_285.63 5986.15 4984.06 13391.71 7864.94 20486.47 19991.87 10373.63 14286.60 5393.02 7876.57 1591.87 22583.36 6992.15 8095.35 3
MAR-MVS81.84 12080.70 13085.27 8291.32 8271.53 5689.82 7990.92 13169.77 22378.50 16386.21 25562.36 15994.52 11165.36 24392.05 8289.77 230
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
TSAR-MVS + GP.85.71 5885.33 6486.84 5091.34 8172.50 3689.07 11187.28 23876.41 7885.80 5790.22 14774.15 3195.37 7881.82 8791.88 8392.65 122
SR-MVS-dyc-post85.77 5685.61 5986.23 5993.06 5870.63 7691.88 3892.27 8473.53 14785.69 5994.45 2965.00 13295.56 6382.75 7891.87 8492.50 127
RE-MVS-def85.48 6193.06 5870.63 7691.88 3892.27 8473.53 14785.69 5994.45 2963.87 13882.75 7891.87 8492.50 127
IS-MVSNet83.15 10082.81 9984.18 12389.94 11563.30 24091.59 4388.46 21479.04 2679.49 14692.16 9465.10 12994.28 11767.71 22291.86 8694.95 11
BP-MVS184.32 7683.71 8486.17 6187.84 19967.85 13889.38 9889.64 17277.73 3983.98 9092.12 9656.89 22395.43 7084.03 6591.75 8795.24 6
fmvsm_s_conf0.5_n_386.36 4687.46 2783.09 17187.08 22665.21 19689.09 11090.21 15579.67 1789.98 1895.02 1873.17 3891.71 23191.30 291.60 8892.34 132
Vis-MVSNet (Re-imp)78.36 20278.45 17678.07 28888.64 16551.78 37786.70 19379.63 34874.14 13275.11 25090.83 13661.29 18089.75 27858.10 31091.60 8892.69 120
MG-MVS83.41 9583.45 8783.28 16192.74 6562.28 25888.17 14489.50 17675.22 10281.49 12392.74 8866.75 10995.11 8772.85 17491.58 9092.45 130
CPTT-MVS83.73 8583.33 9184.92 9593.28 4970.86 7292.09 3690.38 14668.75 24879.57 14592.83 8260.60 19593.04 18480.92 9691.56 9190.86 179
test22291.50 8068.26 12984.16 25983.20 30454.63 38179.74 14291.63 10858.97 20491.42 9286.77 310
ETV-MVS84.90 7384.67 7385.59 7589.39 13368.66 12088.74 12392.64 7279.97 1584.10 8785.71 26469.32 8395.38 7580.82 9791.37 9392.72 117
testdata79.97 25090.90 9164.21 22084.71 27759.27 35485.40 6192.91 7962.02 16689.08 29168.95 21291.37 9386.63 314
API-MVS81.99 11881.23 12284.26 12190.94 9070.18 8591.10 5589.32 18171.51 18378.66 15988.28 19665.26 12795.10 9064.74 24991.23 9587.51 291
casdiffmvs_mvgpermissive85.99 4986.09 5185.70 7487.65 20967.22 15988.69 12593.04 4179.64 1985.33 6292.54 8973.30 3594.50 11283.49 6891.14 9695.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive83.46 9482.80 10085.43 7990.25 10468.74 11490.30 7290.13 15876.33 8480.87 13292.89 8061.00 18694.20 12272.45 18090.97 9793.35 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OpenMVScopyleft72.83 1079.77 16678.33 18184.09 12985.17 25969.91 8790.57 6190.97 13066.70 27172.17 29191.91 9854.70 23893.96 12861.81 27690.95 9888.41 274
UA-Net85.08 6984.96 7085.45 7892.07 7368.07 13489.78 8290.86 13582.48 284.60 7893.20 7269.35 8295.22 8171.39 18690.88 9993.07 105
test_fmvsmconf_n85.92 5286.04 5285.57 7685.03 26569.51 9389.62 8990.58 14073.42 15087.75 3894.02 5072.85 4293.24 16690.37 490.75 10093.96 58
ACMMPcopyleft85.89 5585.39 6287.38 3993.59 4572.63 3392.74 2093.18 3976.78 6980.73 13393.82 5964.33 13496.29 4282.67 8390.69 10193.23 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsmconf0.1_n85.61 6085.65 5885.50 7782.99 31269.39 10089.65 8690.29 15373.31 15387.77 3794.15 4471.72 5393.23 16790.31 590.67 10293.89 64
casdiffmvspermissive85.11 6885.14 6885.01 9087.20 22365.77 18587.75 15892.83 6077.84 3884.36 8392.38 9172.15 4793.93 13481.27 9390.48 10395.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsm_n_192085.29 6685.34 6385.13 8786.12 24369.93 8688.65 12790.78 13669.97 21788.27 2793.98 5571.39 5991.54 23888.49 2690.45 10493.91 61
UGNet80.83 14079.59 15284.54 10588.04 18968.09 13389.42 9588.16 21676.95 6376.22 21789.46 16549.30 30193.94 13168.48 21790.31 10591.60 153
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
baseline84.93 7184.98 6984.80 10087.30 22165.39 19387.30 17292.88 5777.62 4184.04 8992.26 9371.81 5193.96 12881.31 9190.30 10695.03 10
MVSFormer82.85 10682.05 11285.24 8387.35 21570.21 8090.50 6490.38 14668.55 25181.32 12489.47 16361.68 16993.46 15878.98 11090.26 10792.05 146
lupinMVS81.39 13180.27 14084.76 10187.35 21570.21 8085.55 22586.41 25662.85 32381.32 12488.61 18661.68 16992.24 21278.41 11790.26 10791.83 149
DP-MVS Recon83.11 10382.09 11186.15 6394.44 1970.92 7188.79 11992.20 8970.53 20479.17 15091.03 13164.12 13696.03 5068.39 21990.14 10991.50 158
EIA-MVS83.31 9982.80 10084.82 9889.59 12265.59 18888.21 14292.68 6674.66 11978.96 15286.42 25169.06 8795.26 8075.54 14890.09 11093.62 81
MVS_111021_LR82.61 10982.11 10984.11 12488.82 15671.58 5585.15 23286.16 26274.69 11780.47 13591.04 12962.29 16090.55 26680.33 10290.08 11190.20 205
jason81.39 13180.29 13984.70 10286.63 23669.90 8885.95 21386.77 25163.24 31681.07 13089.47 16361.08 18592.15 21478.33 11890.07 11292.05 146
jason: jason.
test_fmvsmvis_n_192084.02 8083.87 8184.49 10884.12 28169.37 10188.15 14687.96 22270.01 21583.95 9193.23 7168.80 9291.51 24188.61 2389.96 11392.57 123
test_fmvsmconf0.01_n84.73 7484.52 7685.34 8080.25 35369.03 10389.47 9189.65 17173.24 15786.98 4994.27 3766.62 11093.23 16790.26 689.95 11493.78 71
LFMVS81.82 12181.23 12283.57 15391.89 7663.43 23889.84 7881.85 32377.04 6283.21 10193.10 7352.26 25993.43 16071.98 18189.95 11493.85 65
MVS78.19 20776.99 21581.78 20785.66 24966.99 16284.66 24390.47 14455.08 38072.02 29385.27 27563.83 13994.11 12666.10 23789.80 11684.24 350
GDP-MVS83.52 9282.64 10286.16 6288.14 18368.45 12489.13 10892.69 6572.82 16583.71 9591.86 10255.69 22895.35 7980.03 10489.74 11794.69 27
CANet_DTU80.61 14879.87 14682.83 18485.60 25263.17 24587.36 16988.65 21076.37 8275.88 22488.44 19253.51 24993.07 18173.30 16989.74 11792.25 137
PVSNet_Blended80.98 13680.34 13782.90 18288.85 15365.40 19184.43 25392.00 9567.62 26278.11 17385.05 28366.02 12194.27 11871.52 18389.50 11989.01 251
PAPM_NR83.02 10482.41 10484.82 9892.47 7066.37 17187.93 15391.80 10673.82 13877.32 18990.66 13867.90 10094.90 9770.37 19689.48 12093.19 100
114514_t80.68 14779.51 15384.20 12294.09 3867.27 15689.64 8791.11 12858.75 36074.08 26790.72 13758.10 20995.04 9269.70 20489.42 12190.30 202
LCM-MVSNet-Re77.05 23276.94 21677.36 29987.20 22351.60 37880.06 31980.46 33875.20 10367.69 33586.72 23662.48 15688.98 29363.44 25789.25 12291.51 157
fmvsm_l_conf0.5_n_a84.13 7884.16 7984.06 13385.38 25668.40 12588.34 13886.85 25067.48 26587.48 4293.40 6770.89 6591.61 23288.38 2889.22 12392.16 143
mvsmamba80.60 14979.38 15684.27 11989.74 12067.24 15887.47 16586.95 24670.02 21475.38 23788.93 17651.24 27792.56 19775.47 15089.22 12393.00 112
fmvsm_l_conf0.5_n84.47 7584.54 7484.27 11985.42 25568.81 10988.49 13187.26 24068.08 25888.03 3293.49 6372.04 4991.77 22788.90 2089.14 12592.24 139
alignmvs85.48 6185.32 6585.96 7089.51 12669.47 9589.74 8392.47 7676.17 8687.73 4091.46 11570.32 7293.78 14181.51 8888.95 12694.63 32
VNet82.21 11382.41 10481.62 21090.82 9360.93 27384.47 24989.78 16676.36 8384.07 8891.88 10064.71 13390.26 26870.68 19388.89 12793.66 74
PS-MVSNAJ81.69 12481.02 12683.70 14989.51 12668.21 13184.28 25790.09 15970.79 19681.26 12885.62 26963.15 14794.29 11675.62 14688.87 12888.59 269
sasdasda85.91 5385.87 5586.04 6789.84 11769.44 9890.45 6893.00 4676.70 7388.01 3391.23 12073.28 3693.91 13581.50 8988.80 12994.77 24
canonicalmvs85.91 5385.87 5586.04 6789.84 11769.44 9890.45 6893.00 4676.70 7388.01 3391.23 12073.28 3693.91 13581.50 8988.80 12994.77 24
QAPM80.88 13879.50 15485.03 8988.01 19268.97 10791.59 4392.00 9566.63 27775.15 24992.16 9457.70 21395.45 6863.52 25588.76 13190.66 186
MGCFI-Net85.06 7085.51 6083.70 14989.42 13063.01 24689.43 9392.62 7376.43 7787.53 4191.34 11872.82 4393.42 16181.28 9288.74 13294.66 31
VDD-MVS83.01 10582.36 10684.96 9291.02 8866.40 17088.91 11588.11 21777.57 4384.39 8293.29 7052.19 26093.91 13577.05 13188.70 13394.57 35
PVSNet_Blended_VisFu82.62 10881.83 11784.96 9290.80 9469.76 9088.74 12391.70 11069.39 22978.96 15288.46 19165.47 12694.87 10074.42 15788.57 13490.24 204
xiu_mvs_v2_base81.69 12481.05 12583.60 15189.15 14568.03 13684.46 25190.02 16070.67 19981.30 12786.53 24963.17 14694.19 12375.60 14788.54 13588.57 270
PAPR81.66 12680.89 12983.99 14190.27 10364.00 22386.76 19291.77 10968.84 24777.13 19989.50 16167.63 10294.88 9967.55 22488.52 13693.09 104
MVS_Test83.15 10083.06 9483.41 15886.86 22863.21 24286.11 21092.00 9574.31 12782.87 10689.44 16870.03 7593.21 16977.39 12788.50 13793.81 69
AdaColmapbinary80.58 15279.42 15584.06 13393.09 5768.91 10889.36 9988.97 19969.27 23275.70 22789.69 15557.20 22095.77 5963.06 26088.41 13887.50 292
VDDNet81.52 12880.67 13184.05 13690.44 10164.13 22289.73 8485.91 26571.11 19083.18 10293.48 6450.54 28693.49 15573.40 16888.25 13994.54 36
PCF-MVS73.52 780.38 15578.84 17085.01 9087.71 20668.99 10683.65 26791.46 11963.00 32077.77 18190.28 14366.10 11895.09 9161.40 27988.22 14090.94 177
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
RRT-MVS82.60 11182.10 11084.10 12587.98 19362.94 25187.45 16791.27 12177.42 5079.85 14190.28 14356.62 22594.70 10779.87 10788.15 14194.67 28
fmvsm_s_conf0.5_n_284.04 7984.11 8083.81 14786.17 24165.00 20286.96 18187.28 23874.35 12588.25 2894.23 4061.82 16792.60 19489.85 788.09 14293.84 67
Effi-MVS+83.62 9083.08 9385.24 8388.38 17567.45 14988.89 11689.15 19075.50 9882.27 11288.28 19669.61 8094.45 11477.81 12287.84 14393.84 67
fmvsm_s_conf0.1_n_283.80 8383.79 8383.83 14685.62 25164.94 20487.03 17986.62 25474.32 12687.97 3594.33 3460.67 19192.60 19489.72 887.79 14493.96 58
gg-mvs-nofinetune69.95 31967.96 32375.94 31083.07 30754.51 35777.23 35570.29 39163.11 31870.32 30762.33 40443.62 34588.69 29953.88 33687.76 14584.62 347
xiu_mvs_v1_base_debu80.80 14379.72 14984.03 13887.35 21570.19 8285.56 22288.77 20469.06 24181.83 11688.16 20050.91 28092.85 18878.29 11987.56 14689.06 246
xiu_mvs_v1_base80.80 14379.72 14984.03 13887.35 21570.19 8285.56 22288.77 20469.06 24181.83 11688.16 20050.91 28092.85 18878.29 11987.56 14689.06 246
xiu_mvs_v1_base_debi80.80 14379.72 14984.03 13887.35 21570.19 8285.56 22288.77 20469.06 24181.83 11688.16 20050.91 28092.85 18878.29 11987.56 14689.06 246
CLD-MVS82.31 11281.65 11884.29 11688.47 17067.73 14285.81 22092.35 8275.78 9278.33 16886.58 24664.01 13794.35 11576.05 14187.48 14990.79 180
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CDS-MVSNet79.07 18677.70 20083.17 16887.60 21068.23 13084.40 25586.20 26167.49 26476.36 21486.54 24861.54 17290.79 26261.86 27587.33 15090.49 194
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
diffmvspermissive82.10 11481.88 11682.76 19283.00 31063.78 22883.68 26689.76 16772.94 16282.02 11589.85 15265.96 12390.79 26282.38 8487.30 15193.71 73
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPP-MVSNet83.40 9683.02 9584.57 10490.13 10664.47 21592.32 3090.73 13774.45 12479.35 14891.10 12669.05 8895.12 8572.78 17587.22 15294.13 51
TAMVS78.89 19177.51 20583.03 17687.80 20167.79 14184.72 24285.05 27567.63 26176.75 20487.70 20962.25 16190.82 26158.53 30587.13 15390.49 194
TAPA-MVS73.13 979.15 18377.94 18982.79 18989.59 12262.99 25088.16 14591.51 11565.77 28677.14 19891.09 12760.91 18793.21 16950.26 35787.05 15492.17 142
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PAPM77.68 22376.40 23081.51 21387.29 22261.85 26383.78 26489.59 17364.74 29971.23 30088.70 18262.59 15493.66 14852.66 34287.03 15589.01 251
test_yl81.17 13380.47 13583.24 16489.13 14663.62 22986.21 20789.95 16372.43 16981.78 12089.61 15857.50 21693.58 14970.75 19186.90 15692.52 125
DCV-MVSNet81.17 13380.47 13583.24 16489.13 14663.62 22986.21 20789.95 16372.43 16981.78 12089.61 15857.50 21693.58 14970.75 19186.90 15692.52 125
BH-untuned79.47 17378.60 17382.05 20289.19 14465.91 18086.07 21188.52 21372.18 17175.42 23587.69 21061.15 18393.54 15360.38 28686.83 15886.70 312
BH-RMVSNet79.61 16878.44 17783.14 16989.38 13465.93 17984.95 23887.15 24373.56 14578.19 17189.79 15356.67 22493.36 16259.53 29486.74 15990.13 208
LS3D76.95 23574.82 25283.37 15990.45 10067.36 15389.15 10786.94 24761.87 33569.52 32090.61 13951.71 27394.53 11046.38 37886.71 16088.21 277
Fast-Effi-MVS+80.81 14179.92 14483.47 15488.85 15364.51 21285.53 22789.39 17970.79 19678.49 16485.06 28267.54 10393.58 14967.03 23286.58 16192.32 134
EPNet_dtu75.46 26074.86 25177.23 30282.57 32154.60 35586.89 18583.09 30571.64 17766.25 35585.86 26255.99 22788.04 30854.92 33186.55 16289.05 249
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OPM-MVS83.50 9382.95 9785.14 8588.79 15970.95 6989.13 10891.52 11477.55 4680.96 13191.75 10360.71 18994.50 11279.67 10886.51 16389.97 222
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
OMC-MVS82.69 10781.97 11584.85 9788.75 16167.42 15087.98 14990.87 13474.92 11179.72 14391.65 10662.19 16393.96 12875.26 15286.42 16493.16 101
HQP_MVS83.64 8883.14 9285.14 8590.08 10868.71 11691.25 5292.44 7779.12 2478.92 15491.00 13360.42 19795.38 7578.71 11386.32 16591.33 163
plane_prior592.44 7795.38 7578.71 11386.32 16591.33 163
FA-MVS(test-final)80.96 13779.91 14584.10 12588.30 17865.01 20184.55 24890.01 16173.25 15679.61 14487.57 21358.35 20894.72 10571.29 18786.25 16792.56 124
thisisatest051577.33 22975.38 24583.18 16785.27 25863.80 22782.11 29083.27 30065.06 29575.91 22383.84 30649.54 29694.27 11867.24 22886.19 16891.48 160
plane_prior68.71 11690.38 7077.62 4186.16 169
UWE-MVS72.13 29971.49 29074.03 33486.66 23547.70 39381.40 30076.89 36963.60 31575.59 22884.22 30039.94 36685.62 33048.98 36386.13 17088.77 263
mvs_anonymous79.42 17679.11 16580.34 24384.45 27657.97 30682.59 28587.62 23167.40 26676.17 22188.56 18968.47 9389.59 28170.65 19486.05 17193.47 88
GeoE81.71 12381.01 12783.80 14889.51 12664.45 21688.97 11388.73 20971.27 18778.63 16089.76 15466.32 11693.20 17269.89 20286.02 17293.74 72
HQP3-MVS92.19 9085.99 173
HQP-MVS82.61 10982.02 11384.37 11189.33 13566.98 16389.17 10392.19 9076.41 7877.23 19290.23 14660.17 20095.11 8777.47 12585.99 17391.03 173
BH-w/o78.21 20577.33 20980.84 23388.81 15765.13 19984.87 23987.85 22769.75 22474.52 26284.74 28961.34 17893.11 17958.24 30985.84 17584.27 349
FE-MVS77.78 21875.68 23784.08 13088.09 18766.00 17783.13 27887.79 22868.42 25578.01 17685.23 27745.50 33595.12 8559.11 29885.83 17691.11 169
testing22274.04 27572.66 27978.19 28587.89 19655.36 34781.06 30379.20 35271.30 18674.65 26083.57 31439.11 37088.67 30051.43 34985.75 17790.53 192
CHOSEN 1792x268877.63 22475.69 23683.44 15589.98 11468.58 12278.70 33987.50 23456.38 37575.80 22686.84 23258.67 20591.40 24661.58 27885.75 17790.34 199
Anonymous20240521178.25 20377.01 21381.99 20491.03 8760.67 27884.77 24183.90 29070.65 20380.00 14091.20 12341.08 36191.43 24565.21 24485.26 17993.85 65
cascas76.72 23974.64 25382.99 17885.78 24865.88 18182.33 28789.21 18760.85 34172.74 28181.02 34647.28 31493.75 14567.48 22585.02 18089.34 241
FIs82.07 11682.42 10381.04 22888.80 15858.34 30088.26 14193.49 2676.93 6478.47 16591.04 12969.92 7792.34 20869.87 20384.97 18192.44 131
test-LLR72.94 29272.43 28174.48 32981.35 34158.04 30478.38 34377.46 36166.66 27269.95 31579.00 36748.06 31079.24 36866.13 23584.83 18286.15 320
test-mter71.41 30370.39 30674.48 32981.35 34158.04 30478.38 34377.46 36160.32 34469.95 31579.00 36736.08 38279.24 36866.13 23584.83 18286.15 320
EI-MVSNet-Vis-set84.19 7783.81 8285.31 8188.18 18067.85 13887.66 16089.73 16980.05 1482.95 10489.59 16070.74 6894.82 10180.66 10084.72 18493.28 95
thisisatest053079.40 17777.76 19884.31 11587.69 20865.10 20087.36 16984.26 28670.04 21377.42 18688.26 19849.94 29294.79 10370.20 19784.70 18593.03 109
fmvsm_s_conf0.5_n83.80 8383.71 8484.07 13186.69 23467.31 15489.46 9283.07 30671.09 19186.96 5093.70 6169.02 9091.47 24388.79 2184.62 18693.44 89
testing9176.54 24075.66 23979.18 26788.43 17355.89 34081.08 30283.00 30873.76 14075.34 23984.29 29746.20 32690.07 27264.33 25184.50 18791.58 155
fmvsm_s_conf0.1_n83.56 9183.38 8984.10 12584.86 26767.28 15589.40 9783.01 30770.67 19987.08 4793.96 5668.38 9491.45 24488.56 2584.50 18793.56 84
GG-mvs-BLEND75.38 32081.59 33555.80 34279.32 32869.63 39367.19 34173.67 39343.24 34788.90 29750.41 35284.50 18781.45 378
FC-MVSNet-test81.52 12882.02 11380.03 24988.42 17455.97 33987.95 15193.42 2977.10 6077.38 18790.98 13569.96 7691.79 22668.46 21884.50 18792.33 133
PVSNet64.34 1872.08 30070.87 30075.69 31386.21 24056.44 33174.37 37380.73 33362.06 33470.17 31082.23 33742.86 35083.31 35054.77 33284.45 19187.32 296
ETVMVS72.25 29871.05 29775.84 31187.77 20551.91 37479.39 32774.98 37669.26 23373.71 27082.95 32440.82 36386.14 32446.17 37984.43 19289.47 237
UBG73.08 28972.27 28475.51 31788.02 19051.29 38278.35 34677.38 36465.52 29073.87 26982.36 33345.55 33386.48 32155.02 33084.39 19388.75 264
MS-PatchMatch73.83 27872.67 27877.30 30183.87 28866.02 17681.82 29184.66 27861.37 33968.61 32982.82 32847.29 31388.21 30559.27 29584.32 19477.68 391
ET-MVSNet_ETH3D78.63 19676.63 22684.64 10386.73 23369.47 9585.01 23684.61 27969.54 22766.51 35386.59 24450.16 28991.75 22876.26 13884.24 19592.69 120
testing9976.09 25275.12 25079.00 26888.16 18155.50 34680.79 30681.40 32773.30 15475.17 24784.27 29944.48 34090.02 27364.28 25284.22 19691.48 160
TESTMET0.1,169.89 32069.00 31472.55 34679.27 36956.85 32378.38 34374.71 38057.64 36768.09 33277.19 38037.75 37776.70 38163.92 25484.09 19784.10 353
EI-MVSNet-UG-set83.81 8283.38 8985.09 8887.87 19767.53 14887.44 16889.66 17079.74 1682.23 11389.41 16970.24 7494.74 10479.95 10583.92 19892.99 113
LPG-MVS_test82.08 11581.27 12184.50 10689.23 14268.76 11290.22 7391.94 9975.37 10076.64 20791.51 11254.29 24194.91 9578.44 11583.78 19989.83 227
LGP-MVS_train84.50 10689.23 14268.76 11291.94 9975.37 10076.64 20791.51 11254.29 24194.91 9578.44 11583.78 19989.83 227
testing1175.14 26674.01 26278.53 27988.16 18156.38 33380.74 30980.42 33970.67 19972.69 28483.72 31143.61 34689.86 27562.29 26983.76 20189.36 240
thres100view90076.50 24275.55 24179.33 26389.52 12556.99 32285.83 21983.23 30173.94 13576.32 21587.12 22851.89 26991.95 22048.33 36683.75 20289.07 244
tfpn200view976.42 24675.37 24679.55 26289.13 14657.65 31385.17 23083.60 29373.41 15176.45 21186.39 25252.12 26191.95 22048.33 36683.75 20289.07 244
thres40076.50 24275.37 24679.86 25289.13 14657.65 31385.17 23083.60 29373.41 15176.45 21186.39 25252.12 26191.95 22048.33 36683.75 20290.00 218
thres600view776.50 24275.44 24279.68 25789.40 13257.16 31985.53 22783.23 30173.79 13976.26 21687.09 22951.89 26991.89 22348.05 37183.72 20590.00 218
fmvsm_s_conf0.5_n_a83.63 8983.41 8884.28 11786.14 24268.12 13289.43 9382.87 31170.27 21087.27 4693.80 6069.09 8591.58 23488.21 2983.65 20693.14 103
thres20075.55 25874.47 25778.82 27187.78 20457.85 30983.07 28183.51 29672.44 16875.84 22584.42 29252.08 26491.75 22847.41 37383.64 20786.86 308
SDMVSNet80.38 15580.18 14180.99 22989.03 15164.94 20480.45 31589.40 17875.19 10476.61 20989.98 14960.61 19487.69 31276.83 13483.55 20890.33 200
sd_testset77.70 22277.40 20678.60 27589.03 15160.02 28779.00 33485.83 26675.19 10476.61 20989.98 14954.81 23385.46 33362.63 26683.55 20890.33 200
XVG-OURS80.41 15479.23 16283.97 14285.64 25069.02 10583.03 28390.39 14571.09 19177.63 18391.49 11454.62 24091.35 24775.71 14483.47 21091.54 156
fmvsm_s_conf0.1_n_a83.32 9882.99 9684.28 11783.79 28968.07 13489.34 10082.85 31269.80 22187.36 4594.06 4868.34 9591.56 23687.95 3083.46 21193.21 99
CNLPA78.08 20976.79 22081.97 20590.40 10271.07 6587.59 16284.55 28066.03 28472.38 28889.64 15757.56 21586.04 32559.61 29383.35 21288.79 262
MVP-Stereo76.12 25074.46 25881.13 22685.37 25769.79 8984.42 25487.95 22365.03 29667.46 33885.33 27453.28 25291.73 23058.01 31183.27 21381.85 376
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
131476.53 24175.30 24880.21 24683.93 28662.32 25784.66 24388.81 20260.23 34570.16 31184.07 30355.30 23190.73 26467.37 22683.21 21487.59 290
tttt051779.40 17777.91 19083.90 14588.10 18663.84 22688.37 13784.05 28871.45 18476.78 20389.12 17249.93 29494.89 9870.18 19883.18 21592.96 114
HyFIR lowres test77.53 22575.40 24483.94 14489.59 12266.62 16780.36 31688.64 21156.29 37676.45 21185.17 27957.64 21493.28 16461.34 28183.10 21691.91 148
ACMP74.13 681.51 13080.57 13284.36 11289.42 13068.69 11989.97 7791.50 11874.46 12375.04 25390.41 14253.82 24694.54 10977.56 12482.91 21789.86 226
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM73.20 880.78 14679.84 14783.58 15289.31 13868.37 12689.99 7691.60 11270.28 20977.25 19089.66 15653.37 25193.53 15474.24 16082.85 21888.85 259
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PMMVS69.34 32468.67 31571.35 35675.67 38262.03 26075.17 36673.46 38350.00 39368.68 32779.05 36552.07 26578.13 37361.16 28282.77 21973.90 397
PLCcopyleft70.83 1178.05 21176.37 23183.08 17391.88 7767.80 14088.19 14389.46 17764.33 30569.87 31788.38 19353.66 24793.58 14958.86 30182.73 22087.86 283
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TR-MVS77.44 22676.18 23281.20 22388.24 17963.24 24184.61 24686.40 25767.55 26377.81 17986.48 25054.10 24393.15 17657.75 31382.72 22187.20 298
Anonymous2024052980.19 16178.89 16984.10 12590.60 9764.75 20988.95 11490.90 13265.97 28580.59 13491.17 12549.97 29193.73 14769.16 21082.70 22293.81 69
ab-mvs79.51 17178.97 16881.14 22588.46 17160.91 27483.84 26389.24 18670.36 20679.03 15188.87 17963.23 14590.21 27065.12 24582.57 22392.28 136
HY-MVS69.67 1277.95 21477.15 21180.36 24287.57 21460.21 28683.37 27487.78 22966.11 28175.37 23887.06 23163.27 14390.48 26761.38 28082.43 22490.40 198
PS-MVSNAJss82.07 11681.31 12084.34 11486.51 23767.27 15689.27 10191.51 11571.75 17679.37 14790.22 14763.15 14794.27 11877.69 12382.36 22591.49 159
UniMVSNet_ETH3D79.10 18578.24 18381.70 20986.85 22960.24 28587.28 17388.79 20374.25 12976.84 20090.53 14149.48 29791.56 23667.98 22082.15 22693.29 94
WB-MVSnew71.96 30171.65 28972.89 34384.67 27351.88 37582.29 28877.57 36062.31 33073.67 27183.00 32353.49 25081.10 36245.75 38282.13 22785.70 330
PVSNet_BlendedMVS80.60 14980.02 14282.36 19988.85 15365.40 19186.16 20992.00 9569.34 23178.11 17386.09 25966.02 12194.27 11871.52 18382.06 22887.39 293
WTY-MVS75.65 25775.68 23775.57 31586.40 23856.82 32477.92 35182.40 31665.10 29476.18 21987.72 20863.13 15080.90 36360.31 28781.96 22989.00 253
ACMMP++_ref81.95 230
DP-MVS76.78 23874.57 25483.42 15693.29 4869.46 9788.55 13083.70 29263.98 31270.20 30888.89 17854.01 24594.80 10246.66 37581.88 23186.01 324
CMPMVSbinary51.72 2170.19 31768.16 32076.28 30873.15 39857.55 31579.47 32683.92 28948.02 39656.48 39684.81 28743.13 34886.42 32262.67 26581.81 23284.89 343
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
XVG-OURS-SEG-HR80.81 14179.76 14883.96 14385.60 25268.78 11183.54 27290.50 14370.66 20276.71 20591.66 10560.69 19091.26 24976.94 13281.58 23391.83 149
MIMVSNet70.69 31169.30 31074.88 32584.52 27456.35 33575.87 36279.42 34964.59 30067.76 33382.41 33241.10 36081.54 35946.64 37781.34 23486.75 311
ACMMP++81.25 235
D2MVS74.82 26773.21 27279.64 25979.81 36062.56 25480.34 31787.35 23764.37 30468.86 32682.66 33046.37 32290.10 27167.91 22181.24 23686.25 317
test_vis1_n_192075.52 25975.78 23574.75 32879.84 35957.44 31783.26 27585.52 26962.83 32479.34 14986.17 25745.10 33779.71 36778.75 11281.21 23787.10 305
GA-MVS76.87 23675.17 24981.97 20582.75 31662.58 25381.44 29986.35 25972.16 17374.74 25782.89 32646.20 32692.02 21868.85 21481.09 23891.30 165
sss73.60 28073.64 26973.51 33882.80 31555.01 35276.12 35881.69 32462.47 32974.68 25985.85 26357.32 21878.11 37460.86 28480.93 23987.39 293
Effi-MVS+-dtu80.03 16378.57 17484.42 11085.13 26368.74 11488.77 12088.10 21874.99 10874.97 25483.49 31557.27 21993.36 16273.53 16580.88 24091.18 167
EG-PatchMatch MVS74.04 27571.82 28780.71 23684.92 26667.42 15085.86 21788.08 21966.04 28364.22 36783.85 30535.10 38492.56 19757.44 31580.83 24182.16 375
jajsoiax79.29 18077.96 18883.27 16284.68 27066.57 16989.25 10290.16 15769.20 23775.46 23389.49 16245.75 33293.13 17876.84 13380.80 24290.11 210
1112_ss77.40 22876.43 22980.32 24489.11 15060.41 28383.65 26787.72 23062.13 33373.05 27886.72 23662.58 15589.97 27462.11 27380.80 24290.59 190
mvs_tets79.13 18477.77 19783.22 16684.70 26966.37 17189.17 10390.19 15669.38 23075.40 23689.46 16544.17 34293.15 17676.78 13580.70 24490.14 207
PatchMatch-RL72.38 29570.90 29976.80 30688.60 16667.38 15279.53 32576.17 37362.75 32669.36 32282.00 34145.51 33484.89 33953.62 33780.58 24578.12 390
EI-MVSNet80.52 15379.98 14382.12 20084.28 27763.19 24486.41 20088.95 20074.18 13178.69 15787.54 21666.62 11092.43 20272.57 17880.57 24690.74 184
MVSTER79.01 18777.88 19282.38 19883.07 30764.80 20884.08 26288.95 20069.01 24478.69 15787.17 22754.70 23892.43 20274.69 15480.57 24689.89 225
XVG-ACMP-BASELINE76.11 25174.27 26181.62 21083.20 30364.67 21083.60 27089.75 16869.75 22471.85 29487.09 22932.78 38892.11 21569.99 20180.43 24888.09 279
Fast-Effi-MVS+-dtu78.02 21276.49 22782.62 19483.16 30666.96 16586.94 18387.45 23672.45 16671.49 29984.17 30154.79 23791.58 23467.61 22380.31 24989.30 242
LTVRE_ROB69.57 1376.25 24974.54 25681.41 21688.60 16664.38 21879.24 32989.12 19370.76 19869.79 31987.86 20749.09 30493.20 17256.21 32780.16 25086.65 313
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Test_1112_low_res76.40 24775.44 24279.27 26489.28 14058.09 30281.69 29487.07 24459.53 35272.48 28686.67 24161.30 17989.33 28560.81 28580.15 25190.41 197
test_djsdf80.30 15879.32 15983.27 16283.98 28565.37 19490.50 6490.38 14668.55 25176.19 21888.70 18256.44 22693.46 15878.98 11080.14 25290.97 176
test_fmvs170.93 30870.52 30272.16 34973.71 39155.05 35180.82 30478.77 35451.21 39278.58 16184.41 29331.20 39376.94 38075.88 14380.12 25384.47 348
test_fmvs1_n70.86 30970.24 30772.73 34572.51 40255.28 34981.27 30179.71 34751.49 39178.73 15684.87 28527.54 39877.02 37976.06 14079.97 25485.88 328
CHOSEN 280x42066.51 34564.71 34671.90 35081.45 33863.52 23457.98 41368.95 39753.57 38362.59 37676.70 38146.22 32575.29 39655.25 32979.68 25576.88 393
baseline275.70 25673.83 26781.30 22083.26 30161.79 26582.57 28680.65 33466.81 26866.88 34483.42 31657.86 21292.19 21363.47 25679.57 25689.91 223
GBi-Net78.40 20077.40 20681.40 21787.60 21063.01 24688.39 13489.28 18271.63 17875.34 23987.28 22054.80 23491.11 25262.72 26279.57 25690.09 212
test178.40 20077.40 20681.40 21787.60 21063.01 24688.39 13489.28 18271.63 17875.34 23987.28 22054.80 23491.11 25262.72 26279.57 25690.09 212
FMVSNet377.88 21676.85 21880.97 23186.84 23062.36 25586.52 19888.77 20471.13 18975.34 23986.66 24254.07 24491.10 25562.72 26279.57 25689.45 238
FMVSNet278.20 20677.21 21081.20 22387.60 21062.89 25287.47 16589.02 19571.63 17875.29 24587.28 22054.80 23491.10 25562.38 26779.38 26089.61 234
anonymousdsp78.60 19777.15 21182.98 17980.51 35167.08 16187.24 17489.53 17565.66 28875.16 24887.19 22652.52 25492.25 21177.17 12979.34 26189.61 234
nrg03083.88 8183.53 8684.96 9286.77 23269.28 10290.46 6792.67 6774.79 11582.95 10491.33 11972.70 4493.09 18080.79 9979.28 26292.50 127
VPA-MVSNet80.60 14980.55 13380.76 23588.07 18860.80 27686.86 18691.58 11375.67 9680.24 13789.45 16763.34 14190.25 26970.51 19579.22 26391.23 166
tt080578.73 19377.83 19381.43 21585.17 25960.30 28489.41 9690.90 13271.21 18877.17 19788.73 18146.38 32193.21 16972.57 17878.96 26490.79 180
test_cas_vis1_n_192073.76 27973.74 26873.81 33675.90 38059.77 28980.51 31382.40 31658.30 36281.62 12285.69 26544.35 34176.41 38576.29 13778.61 26585.23 337
F-COLMAP76.38 24874.33 26082.50 19689.28 14066.95 16688.41 13389.03 19464.05 31066.83 34588.61 18646.78 31892.89 18757.48 31478.55 26687.67 286
FMVSNet177.44 22676.12 23381.40 21786.81 23163.01 24688.39 13489.28 18270.49 20574.39 26487.28 22049.06 30591.11 25260.91 28378.52 26790.09 212
MDTV_nov1_ep1369.97 30983.18 30453.48 36477.10 35680.18 34460.45 34269.33 32380.44 35248.89 30886.90 31651.60 34778.51 268
CVMVSNet72.99 29172.58 28074.25 33284.28 27750.85 38586.41 20083.45 29844.56 40073.23 27687.54 21649.38 29985.70 32865.90 23978.44 26986.19 319
tpm273.26 28671.46 29178.63 27383.34 29956.71 32780.65 31180.40 34056.63 37473.55 27282.02 34051.80 27191.24 25056.35 32678.42 27087.95 280
test_vis1_n69.85 32169.21 31271.77 35172.66 40155.27 35081.48 29776.21 37252.03 38875.30 24483.20 32028.97 39676.22 38774.60 15578.41 27183.81 356
CostFormer75.24 26573.90 26579.27 26482.65 32058.27 30180.80 30582.73 31461.57 33675.33 24383.13 32155.52 22991.07 25864.98 24778.34 27288.45 272
ACMH67.68 1675.89 25473.93 26481.77 20888.71 16366.61 16888.62 12889.01 19669.81 22066.78 34686.70 24041.95 35891.51 24155.64 32878.14 27387.17 299
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mamv476.81 23778.23 18572.54 34786.12 24365.75 18678.76 33882.07 32064.12 30772.97 27991.02 13267.97 9868.08 41183.04 7478.02 27483.80 357
WBMVS73.43 28272.81 27775.28 32187.91 19550.99 38478.59 34281.31 32965.51 29274.47 26384.83 28646.39 32086.68 31858.41 30677.86 27588.17 278
dmvs_re71.14 30570.58 30172.80 34481.96 32959.68 29075.60 36479.34 35068.55 25169.27 32480.72 35149.42 29876.54 38252.56 34377.79 27682.19 374
CR-MVSNet73.37 28371.27 29579.67 25881.32 34365.19 19775.92 36080.30 34159.92 34872.73 28281.19 34352.50 25586.69 31759.84 29077.71 27787.11 303
RPMNet73.51 28170.49 30382.58 19581.32 34365.19 19775.92 36092.27 8457.60 36872.73 28276.45 38352.30 25895.43 7048.14 37077.71 27787.11 303
SCA74.22 27272.33 28379.91 25184.05 28462.17 25979.96 32279.29 35166.30 28072.38 28880.13 35651.95 26788.60 30159.25 29677.67 27988.96 255
Anonymous2023121178.97 18977.69 20182.81 18690.54 9964.29 21990.11 7591.51 11565.01 29776.16 22288.13 20550.56 28593.03 18569.68 20577.56 28091.11 169
v114480.03 16379.03 16683.01 17783.78 29064.51 21287.11 17790.57 14271.96 17578.08 17586.20 25661.41 17693.94 13174.93 15377.23 28190.60 189
WR-MVS79.49 17279.22 16380.27 24588.79 15958.35 29985.06 23588.61 21278.56 3177.65 18288.34 19463.81 14090.66 26564.98 24777.22 28291.80 151
v119279.59 17078.43 17883.07 17483.55 29564.52 21186.93 18490.58 14070.83 19577.78 18085.90 26059.15 20393.94 13173.96 16277.19 28390.76 182
VPNet78.69 19578.66 17278.76 27288.31 17755.72 34384.45 25286.63 25376.79 6878.26 16990.55 14059.30 20289.70 28066.63 23377.05 28490.88 178
v124078.99 18877.78 19682.64 19383.21 30263.54 23386.62 19590.30 15269.74 22677.33 18885.68 26657.04 22193.76 14473.13 17276.92 28590.62 187
MSDG73.36 28570.99 29880.49 24084.51 27565.80 18380.71 31086.13 26365.70 28765.46 35883.74 30944.60 33890.91 26051.13 35076.89 28684.74 345
IterMVS-LS80.06 16279.38 15682.11 20185.89 24663.20 24386.79 18989.34 18074.19 13075.45 23486.72 23666.62 11092.39 20472.58 17776.86 28790.75 183
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192079.22 18178.03 18782.80 18783.30 30063.94 22586.80 18890.33 15069.91 21977.48 18585.53 27058.44 20793.75 14573.60 16476.85 28890.71 185
XXY-MVS75.41 26275.56 24074.96 32483.59 29457.82 31080.59 31283.87 29166.54 27874.93 25588.31 19563.24 14480.09 36662.16 27176.85 28886.97 306
v2v48280.23 15979.29 16083.05 17583.62 29364.14 22187.04 17889.97 16273.61 14378.18 17287.22 22461.10 18493.82 13976.11 13976.78 29091.18 167
v14419279.47 17378.37 17982.78 19083.35 29863.96 22486.96 18190.36 14969.99 21677.50 18485.67 26760.66 19293.77 14374.27 15976.58 29190.62 187
UniMVSNet (Re)81.60 12781.11 12483.09 17188.38 17564.41 21787.60 16193.02 4578.42 3378.56 16288.16 20069.78 7893.26 16569.58 20676.49 29291.60 153
UniMVSNet_NR-MVSNet81.88 11981.54 11982.92 18188.46 17163.46 23687.13 17592.37 8180.19 1278.38 16689.14 17171.66 5693.05 18270.05 19976.46 29392.25 137
DU-MVS81.12 13580.52 13482.90 18287.80 20163.46 23687.02 18091.87 10379.01 2778.38 16689.07 17365.02 13093.05 18270.05 19976.46 29392.20 140
cl2278.07 21077.01 21381.23 22282.37 32661.83 26483.55 27187.98 22168.96 24575.06 25283.87 30461.40 17791.88 22473.53 16576.39 29589.98 221
miper_ehance_all_eth78.59 19877.76 19881.08 22782.66 31961.56 26783.65 26789.15 19068.87 24675.55 23083.79 30866.49 11392.03 21773.25 17076.39 29589.64 233
miper_enhance_ethall77.87 21776.86 21780.92 23281.65 33361.38 26982.68 28488.98 19765.52 29075.47 23182.30 33565.76 12592.00 21972.95 17376.39 29589.39 239
Syy-MVS68.05 33567.85 32568.67 37184.68 27040.97 41478.62 34073.08 38566.65 27566.74 34779.46 36252.11 26382.30 35532.89 40676.38 29882.75 369
myMVS_eth3d67.02 34166.29 34269.21 36684.68 27042.58 40978.62 34073.08 38566.65 27566.74 34779.46 36231.53 39282.30 35539.43 39876.38 29882.75 369
PatchmatchNetpermissive73.12 28871.33 29478.49 28183.18 30460.85 27579.63 32478.57 35564.13 30671.73 29579.81 36151.20 27885.97 32657.40 31676.36 30088.66 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
USDC70.33 31568.37 31776.21 30980.60 34956.23 33679.19 33186.49 25560.89 34061.29 37985.47 27231.78 39189.47 28453.37 33976.21 30182.94 368
OpenMVS_ROBcopyleft64.09 1970.56 31368.19 31977.65 29480.26 35259.41 29485.01 23682.96 31058.76 35965.43 35982.33 33437.63 37891.23 25145.34 38576.03 30282.32 372
ACMH+68.96 1476.01 25374.01 26282.03 20388.60 16665.31 19588.86 11787.55 23270.25 21167.75 33487.47 21841.27 35993.19 17458.37 30775.94 30387.60 288
tpm72.37 29671.71 28874.35 33182.19 32752.00 37279.22 33077.29 36564.56 30172.95 28083.68 31351.35 27583.26 35158.33 30875.80 30487.81 284
Anonymous2023120668.60 32967.80 32871.02 35980.23 35450.75 38678.30 34780.47 33756.79 37366.11 35682.63 33146.35 32378.95 37043.62 38875.70 30583.36 361
v7n78.97 18977.58 20483.14 16983.45 29765.51 18988.32 13991.21 12373.69 14172.41 28786.32 25457.93 21093.81 14069.18 20975.65 30690.11 210
NR-MVSNet80.23 15979.38 15682.78 19087.80 20163.34 23986.31 20491.09 12979.01 2772.17 29189.07 17367.20 10792.81 19166.08 23875.65 30692.20 140
v1079.74 16778.67 17182.97 18084.06 28364.95 20387.88 15690.62 13973.11 15875.11 25086.56 24761.46 17594.05 12773.68 16375.55 30889.90 224
IB-MVS68.01 1575.85 25573.36 27183.31 16084.76 26866.03 17583.38 27385.06 27470.21 21269.40 32181.05 34545.76 33194.66 10865.10 24675.49 30989.25 243
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
h-mvs3383.15 10082.19 10886.02 6990.56 9870.85 7388.15 14689.16 18976.02 8984.67 7391.39 11761.54 17295.50 6682.71 8075.48 31091.72 152
c3_l78.75 19277.91 19081.26 22182.89 31461.56 26784.09 26189.13 19269.97 21775.56 22984.29 29766.36 11592.09 21673.47 16775.48 31090.12 209
V4279.38 17978.24 18382.83 18481.10 34565.50 19085.55 22589.82 16571.57 18278.21 17086.12 25860.66 19293.18 17575.64 14575.46 31289.81 229
testing368.56 33167.67 33171.22 35887.33 22042.87 40883.06 28271.54 38870.36 20669.08 32584.38 29430.33 39585.69 32937.50 40175.45 31385.09 342
cl____77.72 22076.76 22180.58 23882.49 32360.48 28183.09 27987.87 22569.22 23574.38 26585.22 27862.10 16491.53 23971.09 18875.41 31489.73 232
DIV-MVS_self_test77.72 22076.76 22180.58 23882.48 32460.48 28183.09 27987.86 22669.22 23574.38 26585.24 27662.10 16491.53 23971.09 18875.40 31589.74 231
v879.97 16579.02 16782.80 18784.09 28264.50 21487.96 15090.29 15374.13 13375.24 24686.81 23362.88 15293.89 13874.39 15875.40 31590.00 218
Baseline_NR-MVSNet78.15 20878.33 18177.61 29585.79 24756.21 33786.78 19085.76 26773.60 14477.93 17887.57 21365.02 13088.99 29267.14 23075.33 31787.63 287
pmmvs571.55 30270.20 30875.61 31477.83 37356.39 33281.74 29380.89 33057.76 36667.46 33884.49 29049.26 30285.32 33557.08 31975.29 31885.11 341
EPMVS69.02 32668.16 32071.59 35279.61 36449.80 39177.40 35366.93 40162.82 32570.01 31279.05 36545.79 33077.86 37656.58 32475.26 31987.13 302
TranMVSNet+NR-MVSNet80.84 13980.31 13882.42 19787.85 19862.33 25687.74 15991.33 12080.55 977.99 17789.86 15165.23 12892.62 19267.05 23175.24 32092.30 135
test_fmvs268.35 33467.48 33470.98 36069.50 40551.95 37380.05 32076.38 37149.33 39474.65 26084.38 29423.30 40775.40 39574.51 15675.17 32185.60 331
tfpnnormal74.39 26973.16 27378.08 28786.10 24558.05 30384.65 24587.53 23370.32 20871.22 30185.63 26854.97 23289.86 27543.03 38975.02 32286.32 316
COLMAP_ROBcopyleft66.92 1773.01 29070.41 30580.81 23487.13 22565.63 18788.30 14084.19 28762.96 32163.80 37187.69 21038.04 37692.56 19746.66 37574.91 32384.24 350
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PatchT68.46 33367.85 32570.29 36280.70 34843.93 40672.47 37874.88 37760.15 34670.55 30376.57 38249.94 29281.59 35850.58 35174.83 32485.34 335
pmmvs474.03 27771.91 28680.39 24181.96 32968.32 12781.45 29882.14 31859.32 35369.87 31785.13 28052.40 25788.13 30760.21 28874.74 32584.73 346
ITE_SJBPF78.22 28481.77 33260.57 27983.30 29969.25 23467.54 33687.20 22536.33 38187.28 31554.34 33474.62 32686.80 309
test0.0.03 168.00 33667.69 33068.90 36877.55 37447.43 39475.70 36372.95 38766.66 27266.56 34982.29 33648.06 31075.87 39044.97 38674.51 32783.41 360
test_040272.79 29370.44 30479.84 25388.13 18465.99 17885.93 21484.29 28465.57 28967.40 34085.49 27146.92 31792.61 19335.88 40374.38 32880.94 381
CP-MVSNet78.22 20478.34 18077.84 29087.83 20054.54 35687.94 15291.17 12577.65 4073.48 27388.49 19062.24 16288.43 30362.19 27074.07 32990.55 191
FMVSNet569.50 32267.96 32374.15 33382.97 31355.35 34880.01 32182.12 31962.56 32863.02 37281.53 34236.92 37981.92 35748.42 36574.06 33085.17 340
MVS-HIRNet59.14 36457.67 36663.57 38281.65 33343.50 40771.73 38065.06 40639.59 40751.43 40257.73 41038.34 37482.58 35439.53 39673.95 33164.62 406
tpmrst72.39 29472.13 28573.18 34280.54 35049.91 38979.91 32379.08 35363.11 31871.69 29679.95 35855.32 23082.77 35365.66 24273.89 33286.87 307
PS-CasMVS78.01 21378.09 18677.77 29287.71 20654.39 35888.02 14891.22 12277.50 4873.26 27588.64 18560.73 18888.41 30461.88 27473.88 33390.53 192
v14878.72 19477.80 19581.47 21482.73 31761.96 26286.30 20588.08 21973.26 15576.18 21985.47 27262.46 15792.36 20671.92 18273.82 33490.09 212
Patchmatch-test64.82 35363.24 35469.57 36479.42 36749.82 39063.49 41069.05 39651.98 38959.95 38580.13 35650.91 28070.98 40440.66 39573.57 33587.90 282
WR-MVS_H78.51 19978.49 17578.56 27788.02 19056.38 33388.43 13292.67 6777.14 5873.89 26887.55 21566.25 11789.24 28858.92 30073.55 33690.06 216
AUN-MVS79.21 18277.60 20384.05 13688.71 16367.61 14585.84 21887.26 24069.08 24077.23 19288.14 20453.20 25393.47 15775.50 14973.45 33791.06 171
hse-mvs281.72 12280.94 12884.07 13188.72 16267.68 14385.87 21687.26 24076.02 8984.67 7388.22 19961.54 17293.48 15682.71 8073.44 33891.06 171
testgi66.67 34466.53 34167.08 37875.62 38341.69 41375.93 35976.50 37066.11 28165.20 36386.59 24435.72 38374.71 39743.71 38773.38 33984.84 344
Anonymous2024052168.80 32867.22 33773.55 33774.33 38754.11 35983.18 27685.61 26858.15 36361.68 37880.94 34830.71 39481.27 36157.00 32073.34 34085.28 336
pm-mvs177.25 23176.68 22578.93 27084.22 27958.62 29786.41 20088.36 21571.37 18573.31 27488.01 20661.22 18289.15 29064.24 25373.01 34189.03 250
eth_miper_zixun_eth77.92 21576.69 22481.61 21283.00 31061.98 26183.15 27789.20 18869.52 22874.86 25684.35 29661.76 16892.56 19771.50 18572.89 34290.28 203
miper_lstm_enhance74.11 27473.11 27477.13 30380.11 35559.62 29172.23 37986.92 24966.76 27070.40 30682.92 32556.93 22282.92 35269.06 21172.63 34388.87 258
tpmvs71.09 30669.29 31176.49 30782.04 32856.04 33878.92 33681.37 32864.05 31067.18 34278.28 37349.74 29589.77 27749.67 36072.37 34483.67 358
PEN-MVS77.73 21977.69 20177.84 29087.07 22753.91 36187.91 15491.18 12477.56 4573.14 27788.82 18061.23 18189.17 28959.95 28972.37 34490.43 196
DSMNet-mixed57.77 36656.90 36860.38 38667.70 40735.61 41769.18 39253.97 41832.30 41657.49 39379.88 35940.39 36568.57 41038.78 39972.37 34476.97 392
MonoMVSNet76.49 24575.80 23478.58 27681.55 33658.45 29886.36 20386.22 26074.87 11474.73 25883.73 31051.79 27288.73 29870.78 19072.15 34788.55 271
IterMVS-SCA-FT75.43 26173.87 26680.11 24882.69 31864.85 20781.57 29683.47 29769.16 23870.49 30584.15 30251.95 26788.15 30669.23 20872.14 34887.34 295
tpm cat170.57 31268.31 31877.35 30082.41 32557.95 30778.08 34880.22 34352.04 38768.54 33077.66 37852.00 26687.84 31051.77 34572.07 34986.25 317
RPSCF73.23 28771.46 29178.54 27882.50 32259.85 28882.18 28982.84 31358.96 35771.15 30289.41 16945.48 33684.77 34058.82 30271.83 35091.02 175
IterMVS74.29 27072.94 27678.35 28381.53 33763.49 23581.58 29582.49 31568.06 25969.99 31483.69 31251.66 27485.54 33165.85 24071.64 35186.01 324
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AllTest70.96 30768.09 32279.58 26085.15 26163.62 22984.58 24779.83 34562.31 33060.32 38386.73 23432.02 38988.96 29550.28 35571.57 35286.15 320
TestCases79.58 26085.15 26163.62 22979.83 34562.31 33060.32 38386.73 23432.02 38988.96 29550.28 35571.57 35286.15 320
baseline176.98 23476.75 22377.66 29388.13 18455.66 34485.12 23381.89 32173.04 16076.79 20288.90 17762.43 15887.78 31163.30 25971.18 35489.55 236
Patchmtry70.74 31069.16 31375.49 31880.72 34754.07 36074.94 37180.30 34158.34 36170.01 31281.19 34352.50 25586.54 31953.37 33971.09 35585.87 329
DTE-MVSNet76.99 23376.80 21977.54 29886.24 23953.06 37087.52 16390.66 13877.08 6172.50 28588.67 18460.48 19689.52 28257.33 31770.74 35690.05 217
reproduce_monomvs75.40 26374.38 25978.46 28283.92 28757.80 31183.78 26486.94 24773.47 14972.25 29084.47 29138.74 37189.27 28775.32 15170.53 35788.31 275
MIMVSNet168.58 33066.78 34073.98 33580.07 35651.82 37680.77 30784.37 28164.40 30359.75 38682.16 33836.47 38083.63 34742.73 39070.33 35886.48 315
pmmvs674.69 26873.39 27078.61 27481.38 34057.48 31686.64 19487.95 22364.99 29870.18 30986.61 24350.43 28789.52 28262.12 27270.18 35988.83 260
test_vis1_rt60.28 36258.42 36565.84 37967.25 40855.60 34570.44 38860.94 41244.33 40159.00 38766.64 40224.91 40268.67 40962.80 26169.48 36073.25 398
TinyColmap67.30 34064.81 34574.76 32781.92 33156.68 32880.29 31881.49 32660.33 34356.27 39783.22 31824.77 40387.66 31345.52 38369.47 36179.95 386
OurMVSNet-221017-074.26 27172.42 28279.80 25483.76 29159.59 29285.92 21586.64 25266.39 27966.96 34387.58 21239.46 36791.60 23365.76 24169.27 36288.22 276
JIA-IIPM66.32 34762.82 35876.82 30577.09 37761.72 26665.34 40675.38 37458.04 36564.51 36562.32 40542.05 35786.51 32051.45 34869.22 36382.21 373
ADS-MVSNet266.20 35063.33 35374.82 32679.92 35758.75 29667.55 39875.19 37553.37 38465.25 36175.86 38642.32 35380.53 36541.57 39368.91 36485.18 338
ADS-MVSNet64.36 35462.88 35768.78 37079.92 35747.17 39567.55 39871.18 38953.37 38465.25 36175.86 38642.32 35373.99 40041.57 39368.91 36485.18 338
test20.0367.45 33866.95 33968.94 36775.48 38444.84 40477.50 35277.67 35966.66 27263.01 37383.80 30747.02 31678.40 37242.53 39268.86 36683.58 359
EU-MVSNet68.53 33267.61 33271.31 35778.51 37247.01 39684.47 24984.27 28542.27 40366.44 35484.79 28840.44 36483.76 34558.76 30368.54 36783.17 362
dmvs_testset62.63 35864.11 34958.19 38878.55 37124.76 42675.28 36565.94 40467.91 26060.34 38276.01 38553.56 24873.94 40131.79 40767.65 36875.88 395
our_test_369.14 32567.00 33875.57 31579.80 36158.80 29577.96 34977.81 35859.55 35162.90 37578.25 37447.43 31283.97 34451.71 34667.58 36983.93 355
ppachtmachnet_test70.04 31867.34 33678.14 28679.80 36161.13 27079.19 33180.59 33559.16 35565.27 36079.29 36446.75 31987.29 31449.33 36166.72 37086.00 326
LF4IMVS64.02 35562.19 35969.50 36570.90 40353.29 36876.13 35777.18 36652.65 38658.59 38880.98 34723.55 40676.52 38353.06 34166.66 37178.68 389
Patchmatch-RL test70.24 31667.78 32977.61 29577.43 37559.57 29371.16 38370.33 39062.94 32268.65 32872.77 39550.62 28485.49 33269.58 20666.58 37287.77 285
dp66.80 34265.43 34470.90 36179.74 36348.82 39275.12 36974.77 37859.61 35064.08 36877.23 37942.89 34980.72 36448.86 36466.58 37283.16 363
test_fmvs363.36 35761.82 36067.98 37562.51 41446.96 39777.37 35474.03 38245.24 39967.50 33778.79 37012.16 41972.98 40372.77 17666.02 37483.99 354
CL-MVSNet_self_test72.37 29671.46 29175.09 32379.49 36653.53 36380.76 30885.01 27669.12 23970.51 30482.05 33957.92 21184.13 34352.27 34466.00 37587.60 288
FPMVS53.68 37251.64 37459.81 38765.08 41151.03 38369.48 39169.58 39441.46 40440.67 41172.32 39616.46 41570.00 40824.24 41565.42 37658.40 411
pmmvs-eth3d70.50 31467.83 32778.52 28077.37 37666.18 17481.82 29181.51 32558.90 35863.90 37080.42 35342.69 35186.28 32358.56 30465.30 37783.11 364
N_pmnet52.79 37453.26 37251.40 39878.99 3707.68 43269.52 3903.89 43151.63 39057.01 39474.98 39040.83 36265.96 41337.78 40064.67 37880.56 385
PM-MVS66.41 34664.14 34873.20 34173.92 39056.45 33078.97 33564.96 40763.88 31464.72 36480.24 35519.84 41183.44 34966.24 23464.52 37979.71 387
KD-MVS_self_test68.81 32767.59 33372.46 34874.29 38845.45 39977.93 35087.00 24563.12 31763.99 36978.99 36942.32 35384.77 34056.55 32564.09 38087.16 301
SixPastTwentyTwo73.37 28371.26 29679.70 25685.08 26457.89 30885.57 22183.56 29571.03 19365.66 35785.88 26142.10 35692.57 19659.11 29863.34 38188.65 268
EGC-MVSNET52.07 37647.05 38067.14 37783.51 29660.71 27780.50 31467.75 3990.07 4260.43 42775.85 38824.26 40481.54 35928.82 40962.25 38259.16 409
TransMVSNet (Re)75.39 26474.56 25577.86 28985.50 25457.10 32186.78 19086.09 26472.17 17271.53 29887.34 21963.01 15189.31 28656.84 32261.83 38387.17 299
MDA-MVSNet_test_wron65.03 35162.92 35571.37 35475.93 37956.73 32569.09 39574.73 37957.28 37154.03 40077.89 37545.88 32874.39 39949.89 35961.55 38482.99 367
YYNet165.03 35162.91 35671.38 35375.85 38156.60 32969.12 39474.66 38157.28 37154.12 39977.87 37645.85 32974.48 39849.95 35861.52 38583.05 365
mvsany_test162.30 35961.26 36365.41 38069.52 40454.86 35366.86 40049.78 42046.65 39768.50 33183.21 31949.15 30366.28 41256.93 32160.77 38675.11 396
ambc75.24 32273.16 39750.51 38763.05 41187.47 23564.28 36677.81 37717.80 41389.73 27957.88 31260.64 38785.49 332
TDRefinement67.49 33764.34 34776.92 30473.47 39561.07 27284.86 24082.98 30959.77 34958.30 39085.13 28026.06 39987.89 30947.92 37260.59 38881.81 377
Gipumacopyleft45.18 38341.86 38655.16 39577.03 37851.52 37932.50 41980.52 33632.46 41527.12 41835.02 4199.52 42275.50 39222.31 41660.21 38938.45 418
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
new-patchmatchnet61.73 36061.73 36161.70 38472.74 40024.50 42769.16 39378.03 35761.40 33756.72 39575.53 38938.42 37376.48 38445.95 38157.67 39084.13 352
MDA-MVSNet-bldmvs66.68 34363.66 35275.75 31279.28 36860.56 28073.92 37578.35 35664.43 30250.13 40579.87 36044.02 34383.67 34646.10 38056.86 39183.03 366
new_pmnet50.91 37750.29 37752.78 39768.58 40634.94 41963.71 40856.63 41739.73 40644.95 40865.47 40321.93 40858.48 41734.98 40456.62 39264.92 405
test_f52.09 37550.82 37655.90 39253.82 42242.31 41259.42 41258.31 41636.45 41156.12 39870.96 39912.18 41857.79 41853.51 33856.57 39367.60 403
test_vis3_rt49.26 37947.02 38156.00 39154.30 42045.27 40366.76 40248.08 42136.83 41044.38 40953.20 4147.17 42664.07 41456.77 32355.66 39458.65 410
PMVScopyleft37.38 2244.16 38440.28 38855.82 39340.82 42842.54 41165.12 40763.99 40834.43 41324.48 41957.12 4123.92 42976.17 38817.10 42055.52 39548.75 414
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
APD_test153.31 37349.93 37863.42 38365.68 41050.13 38871.59 38266.90 40234.43 41340.58 41271.56 3988.65 42476.27 38634.64 40555.36 39663.86 407
mvs5depth69.45 32367.45 33575.46 31973.93 38955.83 34179.19 33183.23 30166.89 26771.63 29783.32 31733.69 38785.09 33659.81 29155.34 39785.46 333
pmmvs357.79 36554.26 37068.37 37264.02 41356.72 32675.12 36965.17 40540.20 40552.93 40169.86 40120.36 41075.48 39345.45 38455.25 39872.90 399
UnsupCasMVSNet_eth67.33 33965.99 34371.37 35473.48 39451.47 38075.16 36785.19 27265.20 29360.78 38180.93 35042.35 35277.20 37857.12 31853.69 39985.44 334
K. test v371.19 30468.51 31679.21 26683.04 30957.78 31284.35 25676.91 36872.90 16362.99 37482.86 32739.27 36891.09 25761.65 27752.66 40088.75 264
mmtdpeth74.16 27373.01 27577.60 29783.72 29261.13 27085.10 23485.10 27372.06 17477.21 19680.33 35443.84 34485.75 32777.14 13052.61 40185.91 327
UnsupCasMVSNet_bld63.70 35661.53 36270.21 36373.69 39251.39 38172.82 37781.89 32155.63 37857.81 39271.80 39738.67 37278.61 37149.26 36252.21 40280.63 383
LCM-MVSNet54.25 36949.68 37967.97 37653.73 42345.28 40266.85 40180.78 33235.96 41239.45 41362.23 4068.70 42378.06 37548.24 36951.20 40380.57 384
KD-MVS_2432*160066.22 34863.89 35073.21 33975.47 38553.42 36570.76 38684.35 28264.10 30866.52 35178.52 37134.55 38584.98 33750.40 35350.33 40481.23 379
miper_refine_blended66.22 34863.89 35073.21 33975.47 38553.42 36570.76 38684.35 28264.10 30866.52 35178.52 37134.55 38584.98 33750.40 35350.33 40481.23 379
mvsany_test353.99 37051.45 37561.61 38555.51 41944.74 40563.52 40945.41 42443.69 40258.11 39176.45 38317.99 41263.76 41554.77 33247.59 40676.34 394
lessismore_v078.97 26981.01 34657.15 32065.99 40361.16 38082.82 32839.12 36991.34 24859.67 29246.92 40788.43 273
testf145.72 38041.96 38457.00 38956.90 41745.32 40066.14 40359.26 41426.19 41730.89 41660.96 4084.14 42770.64 40626.39 41346.73 40855.04 412
APD_test245.72 38041.96 38457.00 38956.90 41745.32 40066.14 40359.26 41426.19 41730.89 41660.96 4084.14 42770.64 40626.39 41346.73 40855.04 412
ttmdpeth59.91 36357.10 36768.34 37367.13 40946.65 39874.64 37267.41 40048.30 39562.52 37785.04 28420.40 40975.93 38942.55 39145.90 41082.44 371
MVStest156.63 36752.76 37368.25 37461.67 41553.25 36971.67 38168.90 39838.59 40850.59 40483.05 32225.08 40170.66 40536.76 40238.56 41180.83 382
PVSNet_057.27 2061.67 36159.27 36468.85 36979.61 36457.44 31768.01 39673.44 38455.93 37758.54 38970.41 40044.58 33977.55 37747.01 37435.91 41271.55 400
WB-MVS54.94 36854.72 36955.60 39473.50 39320.90 42874.27 37461.19 41159.16 35550.61 40374.15 39147.19 31575.78 39117.31 41935.07 41370.12 401
test_method31.52 38829.28 39238.23 40227.03 4306.50 43320.94 42162.21 4104.05 42422.35 42252.50 41513.33 41647.58 42227.04 41234.04 41460.62 408
SSC-MVS53.88 37153.59 37154.75 39672.87 39919.59 42973.84 37660.53 41357.58 36949.18 40773.45 39446.34 32475.47 39416.20 42232.28 41569.20 402
PMMVS240.82 38538.86 38946.69 39953.84 42116.45 43048.61 41649.92 41937.49 40931.67 41460.97 4078.14 42556.42 41928.42 41030.72 41667.19 404
dongtai45.42 38245.38 38345.55 40073.36 39626.85 42467.72 39734.19 42654.15 38249.65 40656.41 41325.43 40062.94 41619.45 41728.09 41746.86 416
kuosan39.70 38640.40 38737.58 40364.52 41226.98 42265.62 40533.02 42746.12 39842.79 41048.99 41624.10 40546.56 42412.16 42526.30 41839.20 417
DeepMVS_CXcopyleft27.40 40640.17 42926.90 42324.59 43017.44 42223.95 42048.61 4179.77 42126.48 42518.06 41824.47 41928.83 419
MVEpermissive26.22 2330.37 39025.89 39443.81 40144.55 42735.46 41828.87 42039.07 42518.20 42118.58 42340.18 4182.68 43047.37 42317.07 42123.78 42048.60 415
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN31.77 38730.64 39035.15 40452.87 42427.67 42157.09 41447.86 42224.64 41916.40 42433.05 42011.23 42054.90 42014.46 42318.15 42122.87 420
EMVS30.81 38929.65 39134.27 40550.96 42525.95 42556.58 41546.80 42324.01 42015.53 42530.68 42112.47 41754.43 42112.81 42417.05 42222.43 421
ANet_high50.57 37846.10 38263.99 38148.67 42639.13 41570.99 38580.85 33161.39 33831.18 41557.70 41117.02 41473.65 40231.22 40815.89 42379.18 388
tmp_tt18.61 39221.40 39510.23 4084.82 43110.11 43134.70 41830.74 4291.48 42523.91 42126.07 42228.42 39713.41 42727.12 41115.35 4247.17 422
wuyk23d16.82 39315.94 39619.46 40758.74 41631.45 42039.22 4173.74 4326.84 4236.04 4262.70 4261.27 43124.29 42610.54 42614.40 4252.63 423
testmvs6.04 3968.02 3990.10 4100.08 4320.03 43569.74 3890.04 4330.05 4270.31 4281.68 4270.02 4330.04 4280.24 4270.02 4260.25 425
test1236.12 3958.11 3980.14 4090.06 4330.09 43471.05 3840.03 4340.04 4280.25 4291.30 4280.05 4320.03 4290.21 4280.01 4270.29 424
mmdepth0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
monomultidepth0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
test_blank0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
uanet_test0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
DCPMVS0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
cdsmvs_eth3d_5k19.96 39126.61 3930.00 4110.00 4340.00 4360.00 42289.26 1850.00 4290.00 43088.61 18661.62 1710.00 4300.00 4290.00 4280.00 426
pcd_1.5k_mvsjas5.26 3977.02 4000.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 42963.15 1470.00 4300.00 4290.00 4280.00 426
sosnet-low-res0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
sosnet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
uncertanet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
Regformer0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
ab-mvs-re7.23 3949.64 3970.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 43086.72 2360.00 4340.00 4300.00 4290.00 4280.00 426
uanet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
WAC-MVS42.58 40939.46 397
FOURS195.00 1072.39 3995.06 193.84 1574.49 12291.30 15
test_one_060195.07 771.46 5794.14 578.27 3692.05 1195.74 680.83 11
eth-test20.00 434
eth-test0.00 434
test_241102_ONE95.30 270.98 6694.06 1077.17 5793.10 195.39 1482.99 197.27 12
save fliter93.80 4072.35 4290.47 6691.17 12574.31 127
test072695.27 571.25 5993.60 694.11 677.33 5192.81 395.79 380.98 9
GSMVS88.96 255
test_part295.06 872.65 3291.80 13
sam_mvs151.32 27688.96 255
sam_mvs50.01 290
MTGPAbinary92.02 93
test_post178.90 3375.43 42548.81 30985.44 33459.25 296
test_post5.46 42450.36 28884.24 342
patchmatchnet-post74.00 39251.12 27988.60 301
MTMP92.18 3432.83 428
gm-plane-assit81.40 33953.83 36262.72 32780.94 34892.39 20463.40 258
TEST993.26 5272.96 2588.75 12191.89 10168.44 25485.00 6693.10 7374.36 2895.41 73
test_893.13 5472.57 3588.68 12691.84 10568.69 24984.87 7093.10 7374.43 2695.16 83
agg_prior92.85 6271.94 5091.78 10884.41 8194.93 94
test_prior472.60 3489.01 112
test_prior86.33 5792.61 6869.59 9192.97 5495.48 6793.91 61
旧先验286.56 19758.10 36487.04 4888.98 29374.07 161
新几何286.29 206
无先验87.48 16488.98 19760.00 34794.12 12567.28 22788.97 254
原ACMM286.86 186
testdata291.01 25962.37 268
segment_acmp73.08 39
testdata184.14 26075.71 93
plane_prior790.08 10868.51 123
plane_prior689.84 11768.70 11860.42 197
plane_prior491.00 133
plane_prior368.60 12178.44 3278.92 154
plane_prior291.25 5279.12 24
plane_prior189.90 116
n20.00 435
nn0.00 435
door-mid69.98 392
test1192.23 87
door69.44 395
HQP5-MVS66.98 163
HQP-NCC89.33 13589.17 10376.41 7877.23 192
ACMP_Plane89.33 13589.17 10376.41 7877.23 192
BP-MVS77.47 125
HQP4-MVS77.24 19195.11 8791.03 173
HQP2-MVS60.17 200
NP-MVS89.62 12168.32 12790.24 145
MDTV_nov1_ep13_2view37.79 41675.16 36755.10 37966.53 35049.34 30053.98 33587.94 281
Test By Simon64.33 134