This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10792.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
PC_three_145268.21 24592.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
IU-MVS95.30 271.25 5792.95 5166.81 25592.39 688.94 1696.63 494.85 19
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 41
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 24
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
No_MVS89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5480.26 1187.78 2994.27 3275.89 1996.81 2387.45 3296.44 993.05 96
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 5977.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 42
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5693.59 2376.27 7988.14 2495.09 1571.06 5796.67 2987.67 2996.37 1494.09 46
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8592.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 52
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7993.50 2575.17 10086.34 4495.29 1270.86 5996.00 4988.78 1996.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8789.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 37
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15485.22 5491.90 9269.47 7496.42 3783.28 6295.94 1994.35 36
test_prior288.85 11175.41 9384.91 5993.54 5674.28 2983.31 6195.86 20
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5394.32 3171.76 4896.93 1985.53 3995.79 2294.32 38
9.1488.26 1592.84 6091.52 4694.75 173.93 12588.57 2294.67 1975.57 2295.79 5386.77 3595.76 23
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 9989.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 27
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11591.89 9368.69 23785.00 5793.10 6774.43 2695.41 6784.97 4195.71 2593.02 98
test9_res84.90 4295.70 2692.87 102
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 8991.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 31
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MM89.16 689.23 788.97 490.79 9073.65 1092.66 2391.17 11686.57 187.39 3594.97 1671.70 5097.68 192.19 195.63 2895.57 1
MVS_030488.08 1488.08 1788.08 1489.67 11472.04 4892.26 3389.26 17384.19 285.01 5595.18 1369.93 6997.20 1491.63 295.60 2994.99 9
agg_prior282.91 6695.45 3092.70 105
CDPH-MVS85.76 5085.29 5987.17 4393.49 4771.08 6188.58 12392.42 7268.32 24484.61 6793.48 5872.32 4296.15 4579.00 9895.43 3194.28 40
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 9694.23 3572.13 4597.09 1684.83 4595.37 3293.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18792.02 8579.45 1985.88 4694.80 1768.07 8996.21 4286.69 3695.34 3393.23 87
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7084.22 7493.36 6371.44 5496.76 2580.82 8595.33 3494.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6477.57 4183.84 8294.40 3072.24 4396.28 4085.65 3895.30 3593.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7793.82 1673.07 14984.86 6292.89 7476.22 1796.33 3884.89 4495.13 3694.40 34
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6393.99 4870.67 6296.82 2284.18 5695.01 3793.90 55
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5573.01 15188.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 105
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5581.50 585.79 4893.47 6073.02 3997.00 1884.90 4294.94 3994.10 45
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6694.52 2168.81 8496.65 3084.53 4994.90 4094.00 50
CS-MVS-test86.29 4286.48 3785.71 6591.02 8367.21 15292.36 2993.78 1878.97 2883.51 8891.20 11170.65 6395.15 7781.96 7694.89 4194.77 22
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 5994.44 2870.78 6096.61 3284.53 4994.89 4193.66 65
ZD-MVS94.38 2572.22 4492.67 6170.98 18287.75 3194.07 4174.01 3296.70 2784.66 4794.84 43
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7094.52 2169.09 7896.70 2784.37 5194.83 4494.03 49
原ACMM184.35 10793.01 5768.79 10692.44 6963.96 29781.09 11791.57 10166.06 11195.45 6367.19 21694.82 4588.81 252
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8283.81 8393.95 5169.77 7296.01 4885.15 4094.66 4694.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DPM-MVS84.93 6384.29 7086.84 4790.20 10073.04 2387.12 16993.04 3869.80 20882.85 9591.22 11073.06 3896.02 4776.72 12694.63 4791.46 150
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7474.62 11188.90 2093.85 5275.75 2096.00 4987.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7093.04 3875.53 9183.86 8194.42 2967.87 9296.64 3182.70 7294.57 4993.66 65
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8594.17 3667.45 9596.60 3383.06 6394.50 5094.07 47
X-MVStestdata80.37 14577.83 18288.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8512.47 40367.45 9596.60 3383.06 6394.50 5094.07 47
test1286.80 4992.63 6470.70 7291.79 9982.71 9871.67 5196.16 4494.50 5093.54 77
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5876.62 7083.68 8494.46 2567.93 9095.95 5284.20 5594.39 5393.23 87
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5793.56 2473.95 12383.16 9191.07 11675.94 1895.19 7579.94 9494.38 5493.55 76
MSLP-MVS++85.43 5685.76 5084.45 10391.93 7270.24 7690.71 5892.86 5377.46 4784.22 7492.81 7867.16 9992.94 18080.36 9094.35 5590.16 196
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8076.87 6282.81 9794.25 3466.44 10596.24 4182.88 6794.28 5693.38 81
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13687.63 3094.27 5793.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5894.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DELS-MVS85.41 5785.30 5885.77 6488.49 16267.93 13285.52 21993.44 2778.70 2983.63 8789.03 16474.57 2495.71 5680.26 9294.04 5993.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EPNet83.72 7582.92 8786.14 5984.22 26769.48 9191.05 5585.27 25781.30 676.83 19091.65 9766.09 11095.56 5876.00 13293.85 6093.38 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EC-MVSNet86.01 4386.38 3884.91 8889.31 13166.27 16692.32 3093.63 2179.37 2084.17 7691.88 9369.04 8295.43 6583.93 5793.77 6193.01 99
3Dnovator+77.84 485.48 5484.47 6988.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19593.37 6260.40 18896.75 2677.20 11793.73 6295.29 5
CS-MVS86.69 3586.95 3185.90 6390.76 9167.57 14092.83 1793.30 3279.67 1784.57 6992.27 8671.47 5395.02 8684.24 5493.46 6395.13 6
CANet86.45 3886.10 4587.51 3790.09 10270.94 6789.70 8392.59 6681.78 481.32 11291.43 10670.34 6497.23 1384.26 5293.36 6494.37 35
新几何183.42 14793.13 5270.71 7185.48 25657.43 35481.80 10791.98 9063.28 13392.27 20164.60 23792.99 6587.27 284
HPM-MVS_fast85.35 5884.95 6386.57 5393.69 4270.58 7592.15 3691.62 10373.89 12682.67 9994.09 4062.60 14495.54 6080.93 8392.93 6693.57 74
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 6774.50 11286.84 4294.65 2067.31 9795.77 5484.80 4692.85 6792.84 103
旧先验191.96 7165.79 17886.37 24493.08 7169.31 7792.74 6888.74 256
3Dnovator76.31 583.38 8582.31 9586.59 5287.94 18472.94 2890.64 5992.14 8477.21 5275.47 22192.83 7658.56 19594.72 9973.24 15992.71 6992.13 130
MVS_111021_HR85.14 6084.75 6486.32 5591.65 7672.70 3085.98 20290.33 14176.11 8182.08 10291.61 10071.36 5694.17 12081.02 8292.58 7092.08 131
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4573.54 13685.94 4594.51 2465.80 11595.61 5783.04 6592.51 7193.53 78
test250677.30 22076.49 21679.74 24690.08 10352.02 35687.86 15263.10 39174.88 10480.16 12792.79 7938.29 36092.35 19868.74 20292.50 7294.86 17
ECVR-MVScopyleft79.61 15879.26 14980.67 22890.08 10354.69 34087.89 15077.44 34874.88 10480.27 12492.79 7948.96 29392.45 19268.55 20392.50 7294.86 17
test111179.43 16579.18 15380.15 23889.99 10853.31 35387.33 16477.05 35175.04 10180.23 12692.77 8148.97 29292.33 20068.87 20092.40 7494.81 20
patch_mono-283.65 7684.54 6680.99 22090.06 10765.83 17584.21 24788.74 19871.60 16985.01 5592.44 8474.51 2583.50 33382.15 7592.15 7593.64 71
dcpmvs_285.63 5286.15 4484.06 12591.71 7564.94 19786.47 19091.87 9573.63 13286.60 4393.02 7276.57 1591.87 21683.36 6092.15 7595.35 3
MAR-MVS81.84 10780.70 11885.27 7491.32 7971.53 5489.82 7790.92 12269.77 21078.50 15186.21 24562.36 15094.52 10665.36 23092.05 7789.77 220
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
TSAR-MVS + GP.85.71 5185.33 5686.84 4791.34 7872.50 3689.07 10487.28 22876.41 7285.80 4790.22 13474.15 3195.37 7281.82 7791.88 7892.65 109
SR-MVS-dyc-post85.77 4985.61 5286.23 5693.06 5570.63 7391.88 3992.27 7673.53 13785.69 4994.45 2665.00 12395.56 5882.75 6891.87 7992.50 114
RE-MVS-def85.48 5393.06 5570.63 7391.88 3992.27 7673.53 13785.69 4994.45 2663.87 12982.75 6891.87 7992.50 114
IS-MVSNet83.15 8882.81 8884.18 11689.94 11063.30 23291.59 4388.46 20479.04 2579.49 13392.16 8865.10 12094.28 11267.71 20991.86 8194.95 10
Vis-MVSNet (Re-imp)78.36 19278.45 16678.07 27788.64 15851.78 36286.70 18479.63 33274.14 12175.11 23990.83 12361.29 17089.75 26858.10 29591.60 8292.69 107
MG-MVS83.41 8383.45 7683.28 15292.74 6262.28 24888.17 13889.50 16475.22 9681.49 11192.74 8266.75 10095.11 8072.85 16291.58 8392.45 117
CPTT-MVS83.73 7483.33 8084.92 8793.28 4970.86 6992.09 3790.38 13768.75 23679.57 13292.83 7660.60 18493.04 17880.92 8491.56 8490.86 169
test22291.50 7768.26 12484.16 24883.20 29054.63 36579.74 12991.63 9958.97 19391.42 8586.77 297
ETV-MVS84.90 6584.67 6585.59 6789.39 12568.66 11688.74 11792.64 6579.97 1584.10 7785.71 25469.32 7695.38 6980.82 8591.37 8692.72 104
testdata79.97 24190.90 8664.21 21284.71 26359.27 33885.40 5192.91 7362.02 15789.08 28068.95 19991.37 8686.63 301
API-MVS81.99 10581.23 10984.26 11490.94 8570.18 8291.10 5389.32 16971.51 17178.66 14788.28 18665.26 11895.10 8364.74 23691.23 8887.51 278
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6687.65 19867.22 15188.69 11993.04 3879.64 1885.33 5292.54 8373.30 3594.50 10783.49 5991.14 8995.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive83.46 8282.80 8985.43 7190.25 9968.74 11090.30 6990.13 14876.33 7880.87 12092.89 7461.00 17694.20 11872.45 16890.97 9093.35 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OpenMVScopyleft72.83 1079.77 15678.33 17184.09 12185.17 24669.91 8490.57 6090.97 12166.70 25872.17 27691.91 9154.70 22493.96 12461.81 26390.95 9188.41 263
UA-Net85.08 6284.96 6285.45 7092.07 7068.07 12989.78 8090.86 12682.48 384.60 6893.20 6669.35 7595.22 7471.39 17490.88 9293.07 95
test_fmvsmconf_n85.92 4686.04 4785.57 6885.03 25369.51 9089.62 8690.58 13173.42 13987.75 3194.02 4472.85 4093.24 16090.37 390.75 9393.96 51
ACMMPcopyleft85.89 4885.39 5487.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12193.82 5364.33 12596.29 3982.67 7390.69 9493.23 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsmconf0.1_n85.61 5385.65 5185.50 6982.99 29869.39 9689.65 8490.29 14473.31 14287.77 3094.15 3871.72 4993.23 16190.31 490.67 9593.89 56
casdiffmvspermissive85.11 6185.14 6085.01 8287.20 21465.77 17987.75 15392.83 5577.84 3784.36 7392.38 8572.15 4493.93 13081.27 8190.48 9695.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsm_n_192085.29 5985.34 5585.13 7986.12 23269.93 8388.65 12190.78 12769.97 20488.27 2393.98 4971.39 5591.54 22888.49 2390.45 9793.91 53
UGNet80.83 12879.59 14084.54 9888.04 18168.09 12889.42 9188.16 20676.95 5976.22 20789.46 15349.30 28693.94 12768.48 20490.31 9891.60 140
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
baseline84.93 6384.98 6184.80 9287.30 21265.39 18887.30 16592.88 5277.62 3984.04 7992.26 8771.81 4793.96 12481.31 8090.30 9995.03 8
MVSFormer82.85 9482.05 9985.24 7587.35 20670.21 7790.50 6290.38 13768.55 23981.32 11289.47 15161.68 15993.46 15378.98 9990.26 10092.05 132
lupinMVS81.39 11980.27 12884.76 9387.35 20670.21 7785.55 21586.41 24262.85 30781.32 11288.61 17661.68 15992.24 20378.41 10690.26 10091.83 136
DP-MVS Recon83.11 9182.09 9886.15 5894.44 1970.92 6888.79 11392.20 8170.53 19279.17 13791.03 11964.12 12796.03 4668.39 20690.14 10291.50 146
EIA-MVS83.31 8782.80 8984.82 9089.59 11665.59 18188.21 13692.68 6074.66 10978.96 13986.42 24169.06 8095.26 7375.54 13890.09 10393.62 72
MVS_111021_LR82.61 9782.11 9784.11 11788.82 14971.58 5385.15 22286.16 24774.69 10880.47 12391.04 11762.29 15190.55 25680.33 9190.08 10490.20 195
jason81.39 11980.29 12784.70 9486.63 22669.90 8585.95 20386.77 23863.24 30081.07 11889.47 15161.08 17592.15 20578.33 10790.07 10592.05 132
jason: jason.
test_fmvsmvis_n_192084.02 7083.87 7284.49 10184.12 26969.37 9788.15 14087.96 21270.01 20283.95 8093.23 6568.80 8591.51 23188.61 2089.96 10692.57 110
test_fmvsmconf0.01_n84.73 6684.52 6885.34 7280.25 33869.03 9989.47 8889.65 16173.24 14686.98 4094.27 3266.62 10193.23 16190.26 589.95 10793.78 62
LFMVS81.82 10881.23 10983.57 14491.89 7363.43 23089.84 7681.85 30877.04 5883.21 8993.10 6752.26 24693.43 15571.98 16989.95 10793.85 57
MVS78.19 19776.99 20481.78 19785.66 23766.99 15484.66 23290.47 13555.08 36472.02 27885.27 26563.83 13094.11 12266.10 22489.80 10984.24 335
CANet_DTU80.61 13779.87 13482.83 17485.60 23963.17 23787.36 16288.65 20076.37 7675.88 21488.44 18253.51 23693.07 17573.30 15789.74 11092.25 123
PVSNet_Blended80.98 12480.34 12582.90 17288.85 14665.40 18684.43 24292.00 8767.62 25078.11 16385.05 27366.02 11294.27 11371.52 17189.50 11189.01 242
PAPM_NR83.02 9282.41 9284.82 9092.47 6766.37 16487.93 14891.80 9873.82 12777.32 17990.66 12567.90 9194.90 9170.37 18389.48 11293.19 91
114514_t80.68 13579.51 14184.20 11594.09 3867.27 14989.64 8591.11 11958.75 34474.08 25490.72 12458.10 19895.04 8569.70 19189.42 11390.30 192
LCM-MVSNet-Re77.05 22376.94 20577.36 28787.20 21451.60 36380.06 30780.46 32275.20 9767.69 31986.72 22662.48 14788.98 28263.44 24489.25 11491.51 144
fmvsm_l_conf0.5_n_a84.13 6984.16 7184.06 12585.38 24368.40 12088.34 13286.85 23767.48 25387.48 3493.40 6170.89 5891.61 22288.38 2589.22 11592.16 129
fmvsm_l_conf0.5_n84.47 6784.54 6684.27 11385.42 24268.81 10588.49 12587.26 22968.08 24688.03 2793.49 5772.04 4691.77 21888.90 1789.14 11692.24 125
alignmvs85.48 5485.32 5785.96 6289.51 12069.47 9289.74 8192.47 6876.17 8087.73 3391.46 10570.32 6593.78 13681.51 7888.95 11794.63 26
VNet82.21 10082.41 9281.62 20090.82 8860.93 26284.47 23889.78 15676.36 7784.07 7891.88 9364.71 12490.26 25870.68 18088.89 11893.66 65
PS-MVSNAJ81.69 11181.02 11383.70 14189.51 12068.21 12684.28 24690.09 14970.79 18481.26 11685.62 25963.15 13894.29 11175.62 13688.87 11988.59 259
canonicalmvs85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13181.50 7988.80 12094.77 22
QAPM80.88 12679.50 14285.03 8188.01 18368.97 10391.59 4392.00 8766.63 26475.15 23892.16 8857.70 20295.45 6363.52 24288.76 12190.66 176
VDD-MVS83.01 9382.36 9484.96 8491.02 8366.40 16388.91 10888.11 20777.57 4184.39 7293.29 6452.19 24793.91 13177.05 11988.70 12294.57 29
PVSNet_Blended_VisFu82.62 9681.83 10484.96 8490.80 8969.76 8788.74 11791.70 10269.39 21678.96 13988.46 18165.47 11794.87 9474.42 14588.57 12390.24 194
xiu_mvs_v2_base81.69 11181.05 11283.60 14289.15 13868.03 13184.46 24090.02 15070.67 18781.30 11586.53 23963.17 13794.19 11975.60 13788.54 12488.57 260
PAPR81.66 11480.89 11683.99 13390.27 9864.00 21586.76 18391.77 10168.84 23577.13 18889.50 14967.63 9394.88 9367.55 21188.52 12593.09 94
MVS_Test83.15 8883.06 8383.41 14986.86 21863.21 23486.11 20092.00 8774.31 11682.87 9489.44 15670.03 6793.21 16377.39 11688.50 12693.81 60
AdaColmapbinary80.58 14079.42 14384.06 12593.09 5468.91 10489.36 9488.97 18869.27 21975.70 21789.69 14357.20 20995.77 5463.06 24788.41 12787.50 279
VDDNet81.52 11680.67 11984.05 12890.44 9664.13 21489.73 8285.91 25071.11 17883.18 9093.48 5850.54 27193.49 15073.40 15688.25 12894.54 30
PCF-MVS73.52 780.38 14378.84 15985.01 8287.71 19568.99 10283.65 25591.46 11163.00 30477.77 17190.28 13166.10 10995.09 8461.40 26688.22 12990.94 167
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Effi-MVS+83.62 7983.08 8285.24 7588.38 16867.45 14288.89 10989.15 17975.50 9282.27 10088.28 18669.61 7394.45 10977.81 11187.84 13093.84 59
gg-mvs-nofinetune69.95 30467.96 30875.94 29883.07 29354.51 34377.23 33970.29 37563.11 30270.32 29162.33 38643.62 33088.69 28853.88 32087.76 13184.62 332
xiu_mvs_v1_base_debu80.80 13179.72 13784.03 13087.35 20670.19 7985.56 21288.77 19469.06 22981.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 237
xiu_mvs_v1_base80.80 13179.72 13784.03 13087.35 20670.19 7985.56 21288.77 19469.06 22981.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 237
xiu_mvs_v1_base_debi80.80 13179.72 13784.03 13087.35 20670.19 7985.56 21288.77 19469.06 22981.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 237
CLD-MVS82.31 9981.65 10584.29 11088.47 16367.73 13685.81 21092.35 7475.78 8678.33 15686.58 23664.01 12894.35 11076.05 13187.48 13590.79 170
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CDS-MVSNet79.07 17677.70 18983.17 15987.60 20068.23 12584.40 24486.20 24667.49 25276.36 20486.54 23861.54 16290.79 25261.86 26287.33 13690.49 184
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
diffmvspermissive82.10 10181.88 10382.76 18283.00 29663.78 22083.68 25489.76 15772.94 15282.02 10389.85 14065.96 11490.79 25282.38 7487.30 13793.71 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPP-MVSNet83.40 8483.02 8484.57 9690.13 10164.47 20792.32 3090.73 12874.45 11579.35 13591.10 11469.05 8195.12 7872.78 16387.22 13894.13 44
TAMVS78.89 18177.51 19483.03 16687.80 19067.79 13584.72 23185.05 26067.63 24976.75 19387.70 19962.25 15290.82 25158.53 29187.13 13990.49 184
TAPA-MVS73.13 979.15 17377.94 17882.79 17989.59 11662.99 24188.16 13991.51 10765.77 27377.14 18791.09 11560.91 17793.21 16350.26 34187.05 14092.17 128
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PAPM77.68 21376.40 21981.51 20387.29 21361.85 25383.78 25389.59 16264.74 28471.23 28488.70 17262.59 14593.66 14352.66 32687.03 14189.01 242
test_yl81.17 12180.47 12383.24 15589.13 13963.62 22186.21 19789.95 15372.43 15781.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
DCV-MVSNet81.17 12180.47 12383.24 15589.13 13963.62 22186.21 19789.95 15372.43 15781.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
BH-untuned79.47 16378.60 16382.05 19289.19 13765.91 17386.07 20188.52 20372.18 15975.42 22587.69 20061.15 17393.54 14860.38 27386.83 14486.70 299
BH-RMVSNet79.61 15878.44 16783.14 16089.38 12665.93 17284.95 22787.15 23273.56 13578.19 16189.79 14156.67 21293.36 15659.53 28086.74 14590.13 198
LS3D76.95 22674.82 24183.37 15090.45 9567.36 14689.15 10286.94 23561.87 31969.52 30490.61 12651.71 25994.53 10546.38 36286.71 14688.21 265
Fast-Effi-MVS+80.81 12979.92 13283.47 14588.85 14664.51 20485.53 21789.39 16770.79 18478.49 15285.06 27267.54 9493.58 14467.03 21986.58 14792.32 120
EPNet_dtu75.46 24974.86 24077.23 29082.57 30754.60 34186.89 17683.09 29171.64 16466.25 33985.86 25255.99 21488.04 29754.92 31586.55 14889.05 240
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OPM-MVS83.50 8182.95 8685.14 7788.79 15270.95 6689.13 10391.52 10677.55 4480.96 11991.75 9560.71 17994.50 10779.67 9586.51 14989.97 212
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
OMC-MVS82.69 9581.97 10284.85 8988.75 15467.42 14387.98 14490.87 12574.92 10379.72 13091.65 9762.19 15493.96 12475.26 14086.42 15093.16 92
HQP_MVS83.64 7783.14 8185.14 7790.08 10368.71 11291.25 5092.44 6979.12 2378.92 14191.00 12060.42 18695.38 6978.71 10286.32 15191.33 151
plane_prior592.44 6995.38 6978.71 10286.32 15191.33 151
FA-MVS(test-final)80.96 12579.91 13384.10 11888.30 17165.01 19584.55 23790.01 15173.25 14579.61 13187.57 20358.35 19794.72 9971.29 17586.25 15392.56 111
thisisatest051577.33 21975.38 23483.18 15885.27 24563.80 21982.11 27883.27 28765.06 28075.91 21383.84 29349.54 28194.27 11367.24 21586.19 15491.48 148
plane_prior68.71 11290.38 6777.62 3986.16 155
UWE-MVS72.13 28471.49 27574.03 31986.66 22547.70 37681.40 28876.89 35363.60 29975.59 21884.22 28739.94 35285.62 31648.98 34786.13 15688.77 254
mvs_anonymous79.42 16679.11 15480.34 23484.45 26457.97 29482.59 27387.62 22167.40 25476.17 21188.56 17968.47 8689.59 27170.65 18186.05 15793.47 79
GeoE81.71 11081.01 11483.80 13989.51 12064.45 20888.97 10688.73 19971.27 17578.63 14889.76 14266.32 10793.20 16669.89 18986.02 15893.74 63
HQP3-MVS92.19 8285.99 159
HQP-MVS82.61 9782.02 10084.37 10589.33 12866.98 15589.17 9892.19 8276.41 7277.23 18290.23 13360.17 18995.11 8077.47 11485.99 15991.03 163
BH-w/o78.21 19577.33 19880.84 22488.81 15065.13 19384.87 22887.85 21769.75 21174.52 25084.74 27761.34 16893.11 17358.24 29485.84 16184.27 334
FE-MVS77.78 20875.68 22684.08 12288.09 17966.00 17083.13 26687.79 21868.42 24378.01 16685.23 26745.50 32095.12 7859.11 28485.83 16291.11 158
testing22274.04 26272.66 26578.19 27487.89 18555.36 33381.06 29179.20 33671.30 17474.65 24883.57 30039.11 35688.67 28951.43 33385.75 16390.53 182
CHOSEN 1792x268877.63 21475.69 22583.44 14689.98 10968.58 11878.70 32587.50 22456.38 35975.80 21686.84 22258.67 19491.40 23661.58 26585.75 16390.34 189
Anonymous20240521178.25 19377.01 20281.99 19491.03 8260.67 26784.77 23083.90 27770.65 19180.00 12891.20 11141.08 34791.43 23565.21 23185.26 16593.85 57
cascas76.72 22974.64 24282.99 16885.78 23665.88 17482.33 27589.21 17660.85 32572.74 26781.02 32947.28 30093.75 14067.48 21285.02 16689.34 231
FIs82.07 10382.42 9181.04 21988.80 15158.34 28888.26 13593.49 2676.93 6078.47 15391.04 11769.92 7092.34 19969.87 19084.97 16792.44 118
test-LLR72.94 27772.43 26774.48 31481.35 32658.04 29278.38 32877.46 34666.66 25969.95 29979.00 34948.06 29679.24 35366.13 22284.83 16886.15 307
test-mter71.41 28870.39 29174.48 31481.35 32658.04 29278.38 32877.46 34660.32 32869.95 29979.00 34936.08 36779.24 35366.13 22284.83 16886.15 307
EI-MVSNet-Vis-set84.19 6883.81 7385.31 7388.18 17367.85 13387.66 15589.73 15980.05 1482.95 9289.59 14870.74 6194.82 9580.66 8984.72 17093.28 86
thisisatest053079.40 16777.76 18784.31 10987.69 19765.10 19487.36 16284.26 27370.04 20177.42 17688.26 18849.94 27794.79 9770.20 18484.70 17193.03 97
fmvsm_s_conf0.5_n83.80 7383.71 7484.07 12386.69 22467.31 14789.46 8983.07 29271.09 17986.96 4193.70 5569.02 8391.47 23388.79 1884.62 17293.44 80
testing9176.54 23075.66 22879.18 25888.43 16655.89 32781.08 29083.00 29473.76 13075.34 22884.29 28446.20 31190.07 26264.33 23884.50 17391.58 142
fmvsm_s_conf0.1_n83.56 8083.38 7884.10 11884.86 25567.28 14889.40 9383.01 29370.67 18787.08 3893.96 5068.38 8791.45 23488.56 2284.50 17393.56 75
GG-mvs-BLEND75.38 30681.59 32155.80 32879.32 31669.63 37767.19 32573.67 37543.24 33288.90 28650.41 33684.50 17381.45 361
FC-MVSNet-test81.52 11682.02 10080.03 24088.42 16755.97 32687.95 14693.42 2977.10 5677.38 17790.98 12269.96 6891.79 21768.46 20584.50 17392.33 119
iter_conf_final80.63 13679.35 14684.46 10289.36 12767.70 13789.85 7584.49 26773.19 14778.30 15788.94 16545.98 31394.56 10279.59 9684.48 17791.11 158
PVSNet64.34 1872.08 28570.87 28575.69 30186.21 23056.44 31874.37 35680.73 31762.06 31870.17 29482.23 32042.86 33583.31 33554.77 31684.45 17887.32 283
ETVMVS72.25 28371.05 28275.84 29987.77 19451.91 35979.39 31574.98 36069.26 22073.71 25782.95 30840.82 34986.14 31146.17 36384.43 17989.47 227
MS-PatchMatch73.83 26572.67 26477.30 28983.87 27566.02 16981.82 27984.66 26461.37 32368.61 31382.82 31247.29 29988.21 29459.27 28184.32 18077.68 373
iter_conf0580.00 15478.70 16083.91 13787.84 18865.83 17588.84 11284.92 26271.61 16878.70 14488.94 16543.88 32994.56 10279.28 9784.28 18191.33 151
ET-MVSNet_ETH3D78.63 18676.63 21584.64 9586.73 22369.47 9285.01 22584.61 26569.54 21466.51 33786.59 23450.16 27491.75 21976.26 12884.24 18292.69 107
testing9976.09 24175.12 23979.00 25988.16 17455.50 33280.79 29481.40 31273.30 14375.17 23684.27 28644.48 32590.02 26364.28 23984.22 18391.48 148
TESTMET0.1,169.89 30569.00 29972.55 33179.27 35456.85 31078.38 32874.71 36457.64 35168.09 31677.19 36237.75 36276.70 36663.92 24184.09 18484.10 338
EI-MVSNet-UG-set83.81 7283.38 7885.09 8087.87 18667.53 14187.44 16189.66 16079.74 1682.23 10189.41 15770.24 6694.74 9879.95 9383.92 18592.99 100
LPG-MVS_test82.08 10281.27 10884.50 9989.23 13568.76 10890.22 7091.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18689.83 217
LGP-MVS_train84.50 9989.23 13568.76 10891.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18689.83 217
testing1175.14 25474.01 25078.53 26988.16 17456.38 32080.74 29780.42 32370.67 18772.69 27083.72 29743.61 33189.86 26562.29 25683.76 18889.36 230
thres100view90076.50 23275.55 23079.33 25489.52 11956.99 30985.83 20983.23 28873.94 12476.32 20587.12 21851.89 25691.95 21148.33 35083.75 18989.07 235
tfpn200view976.42 23575.37 23579.55 25389.13 13957.65 30085.17 22083.60 28073.41 14076.45 20086.39 24252.12 24891.95 21148.33 35083.75 18989.07 235
thres40076.50 23275.37 23579.86 24389.13 13957.65 30085.17 22083.60 28073.41 14076.45 20086.39 24252.12 24891.95 21148.33 35083.75 18990.00 208
thres600view776.50 23275.44 23179.68 24889.40 12457.16 30685.53 21783.23 28873.79 12976.26 20687.09 21951.89 25691.89 21448.05 35583.72 19290.00 208
fmvsm_s_conf0.5_n_a83.63 7883.41 7784.28 11186.14 23168.12 12789.43 9082.87 29770.27 19887.27 3793.80 5469.09 7891.58 22488.21 2683.65 19393.14 93
thres20075.55 24774.47 24678.82 26287.78 19357.85 29783.07 26983.51 28372.44 15675.84 21584.42 27952.08 25191.75 21947.41 35783.64 19486.86 295
SDMVSNet80.38 14380.18 12980.99 22089.03 14464.94 19780.45 30389.40 16675.19 9876.61 19889.98 13760.61 18387.69 30176.83 12383.55 19590.33 190
sd_testset77.70 21277.40 19578.60 26689.03 14460.02 27679.00 32185.83 25275.19 9876.61 19889.98 13754.81 21985.46 31962.63 25383.55 19590.33 190
mvsmamba81.69 11180.74 11784.56 9787.45 20566.72 15991.26 4885.89 25174.66 10978.23 15990.56 12754.33 22794.91 8880.73 8883.54 19792.04 134
XVG-OURS80.41 14279.23 15083.97 13485.64 23869.02 10183.03 27190.39 13671.09 17977.63 17391.49 10454.62 22691.35 23775.71 13483.47 19891.54 143
fmvsm_s_conf0.1_n_a83.32 8682.99 8584.28 11183.79 27668.07 12989.34 9582.85 29869.80 20887.36 3694.06 4268.34 8891.56 22687.95 2783.46 19993.21 90
CNLPA78.08 19976.79 20981.97 19590.40 9771.07 6287.59 15784.55 26666.03 27172.38 27489.64 14557.56 20486.04 31259.61 27983.35 20088.79 253
MVP-Stereo76.12 23974.46 24781.13 21785.37 24469.79 8684.42 24387.95 21365.03 28167.46 32285.33 26453.28 23991.73 22158.01 29683.27 20181.85 359
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
131476.53 23175.30 23780.21 23783.93 27462.32 24784.66 23288.81 19260.23 32970.16 29584.07 29055.30 21790.73 25467.37 21383.21 20287.59 277
tttt051779.40 16777.91 17983.90 13888.10 17863.84 21888.37 13184.05 27571.45 17276.78 19289.12 16149.93 27994.89 9270.18 18583.18 20392.96 101
HyFIR lowres test77.53 21575.40 23383.94 13689.59 11666.62 16080.36 30488.64 20156.29 36076.45 20085.17 26957.64 20393.28 15861.34 26883.10 20491.91 135
ACMP74.13 681.51 11880.57 12084.36 10689.42 12368.69 11589.97 7491.50 11074.46 11475.04 24290.41 13053.82 23394.54 10477.56 11382.91 20589.86 216
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM73.20 880.78 13479.84 13583.58 14389.31 13168.37 12189.99 7391.60 10470.28 19777.25 18089.66 14453.37 23893.53 14974.24 14882.85 20688.85 250
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PMMVS69.34 30868.67 30071.35 34075.67 36762.03 25075.17 35073.46 36750.00 37668.68 31179.05 34752.07 25278.13 35861.16 26982.77 20773.90 379
PLCcopyleft70.83 1178.05 20176.37 22083.08 16391.88 7467.80 13488.19 13789.46 16564.33 29069.87 30188.38 18353.66 23493.58 14458.86 28782.73 20887.86 270
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TR-MVS77.44 21676.18 22181.20 21488.24 17263.24 23384.61 23586.40 24367.55 25177.81 16986.48 24054.10 23093.15 17057.75 29882.72 20987.20 285
Anonymous2024052980.19 15078.89 15884.10 11890.60 9264.75 20188.95 10790.90 12365.97 27280.59 12291.17 11349.97 27693.73 14269.16 19782.70 21093.81 60
ab-mvs79.51 16178.97 15781.14 21688.46 16460.91 26383.84 25289.24 17570.36 19479.03 13888.87 16963.23 13690.21 26065.12 23282.57 21192.28 122
HY-MVS69.67 1277.95 20477.15 20080.36 23387.57 20460.21 27583.37 26287.78 21966.11 26875.37 22787.06 22163.27 13490.48 25761.38 26782.43 21290.40 188
PS-MVSNAJss82.07 10381.31 10784.34 10886.51 22767.27 14989.27 9691.51 10771.75 16379.37 13490.22 13463.15 13894.27 11377.69 11282.36 21391.49 147
UniMVSNet_ETH3D79.10 17578.24 17381.70 19986.85 21960.24 27487.28 16688.79 19374.25 11876.84 18990.53 12949.48 28291.56 22667.98 20782.15 21493.29 85
WB-MVSnew71.96 28671.65 27472.89 32884.67 26151.88 36082.29 27677.57 34462.31 31473.67 25883.00 30753.49 23781.10 34745.75 36682.13 21585.70 316
PVSNet_BlendedMVS80.60 13880.02 13082.36 18988.85 14665.40 18686.16 19992.00 8769.34 21878.11 16386.09 24966.02 11294.27 11371.52 17182.06 21687.39 280
WTY-MVS75.65 24675.68 22675.57 30386.40 22856.82 31177.92 33582.40 30265.10 27976.18 20987.72 19863.13 14180.90 34860.31 27481.96 21789.00 244
ACMMP++_ref81.95 218
DP-MVS76.78 22874.57 24383.42 14793.29 4869.46 9488.55 12483.70 27963.98 29670.20 29288.89 16854.01 23294.80 9646.66 35981.88 21986.01 311
CMPMVSbinary51.72 2170.19 30268.16 30576.28 29673.15 38157.55 30279.47 31483.92 27648.02 37856.48 37984.81 27543.13 33386.42 30962.67 25281.81 22084.89 328
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
bld_raw_dy_0_6477.29 22175.98 22381.22 21385.04 25265.47 18488.14 14277.56 34569.20 22473.77 25689.40 15942.24 34188.85 28776.78 12481.64 22189.33 232
XVG-OURS-SEG-HR80.81 12979.76 13683.96 13585.60 23968.78 10783.54 26090.50 13470.66 19076.71 19491.66 9660.69 18091.26 23976.94 12081.58 22291.83 136
MIMVSNet70.69 29669.30 29574.88 31084.52 26256.35 32275.87 34679.42 33364.59 28567.76 31782.41 31641.10 34681.54 34446.64 36181.34 22386.75 298
ACMMP++81.25 224
D2MVS74.82 25573.21 26079.64 25079.81 34562.56 24480.34 30587.35 22764.37 28968.86 31082.66 31446.37 30790.10 26167.91 20881.24 22586.25 304
test_vis1_n_192075.52 24875.78 22474.75 31379.84 34457.44 30483.26 26385.52 25562.83 30879.34 13686.17 24745.10 32279.71 35278.75 10181.21 22687.10 292
GA-MVS76.87 22775.17 23881.97 19582.75 30262.58 24381.44 28786.35 24572.16 16174.74 24682.89 31046.20 31192.02 20968.85 20181.09 22791.30 154
sss73.60 26773.64 25773.51 32382.80 30155.01 33876.12 34281.69 30962.47 31374.68 24785.85 25357.32 20778.11 35960.86 27180.93 22887.39 280
Effi-MVS+-dtu80.03 15278.57 16484.42 10485.13 25068.74 11088.77 11488.10 20874.99 10274.97 24383.49 30157.27 20893.36 15673.53 15380.88 22991.18 156
EG-PatchMatch MVS74.04 26271.82 27280.71 22784.92 25467.42 14385.86 20788.08 20966.04 27064.22 35183.85 29235.10 36992.56 18957.44 30080.83 23082.16 358
jajsoiax79.29 17077.96 17783.27 15384.68 25866.57 16289.25 9790.16 14769.20 22475.46 22389.49 15045.75 31893.13 17276.84 12180.80 23190.11 200
1112_ss77.40 21876.43 21880.32 23589.11 14360.41 27283.65 25587.72 22062.13 31773.05 26586.72 22662.58 14689.97 26462.11 26080.80 23190.59 180
mvs_tets79.13 17477.77 18683.22 15784.70 25766.37 16489.17 9890.19 14669.38 21775.40 22689.46 15344.17 32793.15 17076.78 12480.70 23390.14 197
PatchMatch-RL72.38 28070.90 28476.80 29488.60 15967.38 14579.53 31376.17 35762.75 31069.36 30682.00 32445.51 31984.89 32453.62 32180.58 23478.12 372
EI-MVSNet80.52 14179.98 13182.12 19084.28 26563.19 23686.41 19188.95 18974.18 12078.69 14587.54 20666.62 10192.43 19372.57 16680.57 23590.74 174
MVSTER79.01 17777.88 18182.38 18883.07 29364.80 20084.08 25188.95 18969.01 23278.69 14587.17 21754.70 22492.43 19374.69 14280.57 23589.89 215
XVG-ACMP-BASELINE76.11 24074.27 24981.62 20083.20 28964.67 20283.60 25889.75 15869.75 21171.85 27987.09 21932.78 37292.11 20669.99 18880.43 23788.09 266
Fast-Effi-MVS+-dtu78.02 20276.49 21682.62 18483.16 29266.96 15786.94 17487.45 22672.45 15471.49 28384.17 28854.79 22391.58 22467.61 21080.31 23889.30 233
LTVRE_ROB69.57 1376.25 23874.54 24581.41 20688.60 15964.38 21079.24 31789.12 18270.76 18669.79 30387.86 19749.09 28993.20 16656.21 31280.16 23986.65 300
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Test_1112_low_res76.40 23675.44 23179.27 25589.28 13358.09 29081.69 28287.07 23359.53 33672.48 27286.67 23161.30 16989.33 27560.81 27280.15 24090.41 187
test_djsdf80.30 14779.32 14783.27 15383.98 27365.37 18990.50 6290.38 13768.55 23976.19 20888.70 17256.44 21393.46 15378.98 9980.14 24190.97 166
test_fmvs170.93 29370.52 28772.16 33373.71 37555.05 33780.82 29278.77 33851.21 37578.58 14984.41 28031.20 37776.94 36575.88 13380.12 24284.47 333
test_fmvs1_n70.86 29470.24 29272.73 33072.51 38555.28 33581.27 28979.71 33151.49 37478.73 14384.87 27427.54 38277.02 36476.06 13079.97 24385.88 314
CHOSEN 280x42066.51 32964.71 33071.90 33481.45 32363.52 22657.98 39368.95 38153.57 36662.59 36076.70 36346.22 31075.29 38055.25 31479.68 24476.88 375
baseline275.70 24573.83 25581.30 21083.26 28761.79 25582.57 27480.65 31866.81 25566.88 32883.42 30257.86 20192.19 20463.47 24379.57 24589.91 213
GBi-Net78.40 19077.40 19581.40 20787.60 20063.01 23888.39 12889.28 17071.63 16575.34 22887.28 21054.80 22091.11 24262.72 24979.57 24590.09 202
test178.40 19077.40 19581.40 20787.60 20063.01 23888.39 12889.28 17071.63 16575.34 22887.28 21054.80 22091.11 24262.72 24979.57 24590.09 202
FMVSNet377.88 20676.85 20780.97 22286.84 22062.36 24586.52 18988.77 19471.13 17775.34 22886.66 23254.07 23191.10 24562.72 24979.57 24589.45 228
FMVSNet278.20 19677.21 19981.20 21487.60 20062.89 24287.47 16089.02 18471.63 16575.29 23487.28 21054.80 22091.10 24562.38 25479.38 24989.61 224
anonymousdsp78.60 18777.15 20082.98 16980.51 33667.08 15387.24 16789.53 16365.66 27575.16 23787.19 21652.52 24192.25 20277.17 11879.34 25089.61 224
nrg03083.88 7183.53 7584.96 8486.77 22269.28 9890.46 6592.67 6174.79 10682.95 9291.33 10872.70 4193.09 17480.79 8779.28 25192.50 114
VPA-MVSNet80.60 13880.55 12180.76 22688.07 18060.80 26586.86 17791.58 10575.67 9080.24 12589.45 15563.34 13290.25 25970.51 18279.22 25291.23 155
RRT_MVS80.35 14679.22 15183.74 14087.63 19965.46 18591.08 5488.92 19173.82 12776.44 20390.03 13649.05 29194.25 11776.84 12179.20 25391.51 144
tt080578.73 18377.83 18281.43 20585.17 24660.30 27389.41 9290.90 12371.21 17677.17 18688.73 17146.38 30693.21 16372.57 16678.96 25490.79 170
test_cas_vis1_n_192073.76 26673.74 25673.81 32175.90 36559.77 27880.51 30182.40 30258.30 34681.62 11085.69 25544.35 32676.41 37076.29 12778.61 25585.23 322
F-COLMAP76.38 23774.33 24882.50 18689.28 13366.95 15888.41 12789.03 18364.05 29466.83 32988.61 17646.78 30492.89 18157.48 29978.55 25687.67 273
FMVSNet177.44 21676.12 22281.40 20786.81 22163.01 23888.39 12889.28 17070.49 19374.39 25187.28 21049.06 29091.11 24260.91 27078.52 25790.09 202
MDTV_nov1_ep1369.97 29483.18 29053.48 35077.10 34080.18 32860.45 32669.33 30780.44 33548.89 29486.90 30551.60 33178.51 258
CVMVSNet72.99 27672.58 26674.25 31784.28 26550.85 36886.41 19183.45 28544.56 38173.23 26387.54 20649.38 28485.70 31465.90 22678.44 25986.19 306
tpm273.26 27271.46 27678.63 26483.34 28556.71 31480.65 29980.40 32456.63 35873.55 25982.02 32351.80 25891.24 24056.35 31178.42 26087.95 267
test_vis1_n69.85 30669.21 29771.77 33572.66 38455.27 33681.48 28576.21 35652.03 37175.30 23383.20 30528.97 38076.22 37274.60 14378.41 26183.81 341
CostFormer75.24 25373.90 25379.27 25582.65 30658.27 28980.80 29382.73 30061.57 32075.33 23283.13 30655.52 21591.07 24864.98 23478.34 26288.45 261
ACMH67.68 1675.89 24373.93 25281.77 19888.71 15666.61 16188.62 12289.01 18569.81 20766.78 33086.70 23041.95 34491.51 23155.64 31378.14 26387.17 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
dmvs_re71.14 29070.58 28672.80 32981.96 31559.68 27975.60 34879.34 33468.55 23969.27 30880.72 33449.42 28376.54 36752.56 32777.79 26482.19 357
CR-MVSNet73.37 26971.27 28079.67 24981.32 32865.19 19175.92 34480.30 32559.92 33272.73 26881.19 32652.50 24286.69 30659.84 27777.71 26587.11 290
RPMNet73.51 26870.49 28882.58 18581.32 32865.19 19175.92 34492.27 7657.60 35272.73 26876.45 36552.30 24595.43 6548.14 35477.71 26587.11 290
SCA74.22 26072.33 26979.91 24284.05 27262.17 24979.96 31079.29 33566.30 26772.38 27480.13 33851.95 25488.60 29059.25 28277.67 26788.96 246
Anonymous2023121178.97 17977.69 19082.81 17690.54 9464.29 21190.11 7291.51 10765.01 28276.16 21288.13 19550.56 27093.03 17969.68 19277.56 26891.11 158
v114480.03 15279.03 15583.01 16783.78 27764.51 20487.11 17090.57 13371.96 16278.08 16586.20 24661.41 16693.94 12774.93 14177.23 26990.60 179
WR-MVS79.49 16279.22 15180.27 23688.79 15258.35 28785.06 22488.61 20278.56 3077.65 17288.34 18463.81 13190.66 25564.98 23477.22 27091.80 138
v119279.59 16078.43 16883.07 16483.55 28164.52 20386.93 17590.58 13170.83 18377.78 17085.90 25059.15 19293.94 12773.96 15077.19 27190.76 172
VPNet78.69 18578.66 16278.76 26388.31 17055.72 32984.45 24186.63 24076.79 6478.26 15890.55 12859.30 19189.70 27066.63 22077.05 27290.88 168
v124078.99 17877.78 18582.64 18383.21 28863.54 22586.62 18690.30 14369.74 21377.33 17885.68 25657.04 21093.76 13973.13 16076.92 27390.62 177
MSDG73.36 27170.99 28380.49 23184.51 26365.80 17780.71 29886.13 24865.70 27465.46 34283.74 29644.60 32390.91 25051.13 33476.89 27484.74 330
IterMVS-LS80.06 15179.38 14482.11 19185.89 23463.20 23586.79 18089.34 16874.19 11975.45 22486.72 22666.62 10192.39 19572.58 16576.86 27590.75 173
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192079.22 17178.03 17682.80 17783.30 28663.94 21786.80 17990.33 14169.91 20677.48 17585.53 26058.44 19693.75 14073.60 15276.85 27690.71 175
XXY-MVS75.41 25175.56 22974.96 30983.59 28057.82 29880.59 30083.87 27866.54 26574.93 24488.31 18563.24 13580.09 35162.16 25876.85 27686.97 293
v2v48280.23 14879.29 14883.05 16583.62 27964.14 21387.04 17189.97 15273.61 13378.18 16287.22 21461.10 17493.82 13476.11 12976.78 27891.18 156
v14419279.47 16378.37 16982.78 18083.35 28463.96 21686.96 17390.36 14069.99 20377.50 17485.67 25760.66 18193.77 13874.27 14776.58 27990.62 177
UniMVSNet (Re)81.60 11581.11 11183.09 16288.38 16864.41 20987.60 15693.02 4278.42 3278.56 15088.16 19069.78 7193.26 15969.58 19376.49 28091.60 140
UniMVSNet_NR-MVSNet81.88 10681.54 10682.92 17188.46 16463.46 22887.13 16892.37 7380.19 1278.38 15489.14 16071.66 5293.05 17670.05 18676.46 28192.25 123
DU-MVS81.12 12380.52 12282.90 17287.80 19063.46 22887.02 17291.87 9579.01 2678.38 15489.07 16265.02 12193.05 17670.05 18676.46 28192.20 126
cl2278.07 20077.01 20281.23 21282.37 31261.83 25483.55 25987.98 21168.96 23375.06 24183.87 29161.40 16791.88 21573.53 15376.39 28389.98 211
miper_ehance_all_eth78.59 18877.76 18781.08 21882.66 30561.56 25783.65 25589.15 17968.87 23475.55 22083.79 29566.49 10492.03 20873.25 15876.39 28389.64 223
miper_enhance_ethall77.87 20776.86 20680.92 22381.65 31961.38 25982.68 27288.98 18665.52 27775.47 22182.30 31865.76 11692.00 21072.95 16176.39 28389.39 229
Syy-MVS68.05 31967.85 31068.67 35584.68 25840.97 39678.62 32673.08 36966.65 26266.74 33179.46 34452.11 25082.30 34032.89 38876.38 28682.75 353
myMVS_eth3d67.02 32566.29 32669.21 35084.68 25842.58 39178.62 32673.08 36966.65 26266.74 33179.46 34431.53 37682.30 34039.43 38176.38 28682.75 353
PatchmatchNetpermissive73.12 27471.33 27978.49 27183.18 29060.85 26479.63 31278.57 33964.13 29171.73 28079.81 34351.20 26385.97 31357.40 30176.36 28888.66 257
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
USDC70.33 30068.37 30276.21 29780.60 33456.23 32379.19 31986.49 24160.89 32461.29 36285.47 26231.78 37589.47 27453.37 32376.21 28982.94 352
OpenMVS_ROBcopyleft64.09 1970.56 29868.19 30477.65 28380.26 33759.41 28385.01 22582.96 29658.76 34365.43 34382.33 31737.63 36391.23 24145.34 36976.03 29082.32 355
ACMH+68.96 1476.01 24274.01 25082.03 19388.60 15965.31 19088.86 11087.55 22270.25 19967.75 31887.47 20841.27 34593.19 16858.37 29275.94 29187.60 275
tpm72.37 28171.71 27374.35 31682.19 31352.00 35779.22 31877.29 34964.56 28672.95 26683.68 29951.35 26183.26 33658.33 29375.80 29287.81 271
Anonymous2023120668.60 31367.80 31371.02 34380.23 33950.75 36978.30 33180.47 32156.79 35766.11 34082.63 31546.35 30878.95 35543.62 37275.70 29383.36 345
v7n78.97 17977.58 19383.14 16083.45 28365.51 18288.32 13391.21 11473.69 13172.41 27386.32 24457.93 19993.81 13569.18 19675.65 29490.11 200
NR-MVSNet80.23 14879.38 14482.78 18087.80 19063.34 23186.31 19491.09 12079.01 2672.17 27689.07 16267.20 9892.81 18566.08 22575.65 29492.20 126
v1079.74 15778.67 16182.97 17084.06 27164.95 19687.88 15190.62 13073.11 14875.11 23986.56 23761.46 16594.05 12373.68 15175.55 29689.90 214
IB-MVS68.01 1575.85 24473.36 25983.31 15184.76 25666.03 16883.38 26185.06 25970.21 20069.40 30581.05 32845.76 31794.66 10165.10 23375.49 29789.25 234
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
h-mvs3383.15 8882.19 9686.02 6190.56 9370.85 7088.15 14089.16 17876.02 8384.67 6491.39 10761.54 16295.50 6182.71 7075.48 29891.72 139
c3_l78.75 18277.91 17981.26 21182.89 30061.56 25784.09 25089.13 18169.97 20475.56 21984.29 28466.36 10692.09 20773.47 15575.48 29890.12 199
V4279.38 16978.24 17382.83 17481.10 33065.50 18385.55 21589.82 15571.57 17078.21 16086.12 24860.66 18193.18 16975.64 13575.46 30089.81 219
testing368.56 31567.67 31671.22 34287.33 21142.87 39083.06 27071.54 37270.36 19469.08 30984.38 28130.33 37985.69 31537.50 38475.45 30185.09 327
cl____77.72 21076.76 21080.58 22982.49 30960.48 27083.09 26787.87 21569.22 22274.38 25285.22 26862.10 15591.53 22971.09 17675.41 30289.73 222
DIV-MVS_self_test77.72 21076.76 21080.58 22982.48 31060.48 27083.09 26787.86 21669.22 22274.38 25285.24 26662.10 15591.53 22971.09 17675.40 30389.74 221
v879.97 15579.02 15682.80 17784.09 27064.50 20687.96 14590.29 14474.13 12275.24 23586.81 22362.88 14393.89 13374.39 14675.40 30390.00 208
Baseline_NR-MVSNet78.15 19878.33 17177.61 28485.79 23556.21 32486.78 18185.76 25373.60 13477.93 16887.57 20365.02 12188.99 28167.14 21775.33 30587.63 274
pmmvs571.55 28770.20 29375.61 30277.83 35856.39 31981.74 28180.89 31457.76 35067.46 32284.49 27849.26 28785.32 32157.08 30475.29 30685.11 326
EPMVS69.02 31068.16 30571.59 33679.61 34949.80 37477.40 33766.93 38362.82 30970.01 29679.05 34745.79 31677.86 36156.58 30975.26 30787.13 289
TranMVSNet+NR-MVSNet80.84 12780.31 12682.42 18787.85 18762.33 24687.74 15491.33 11280.55 977.99 16789.86 13965.23 11992.62 18667.05 21875.24 30892.30 121
test_fmvs268.35 31867.48 31970.98 34469.50 38851.95 35880.05 30876.38 35549.33 37774.65 24884.38 28123.30 38875.40 37974.51 14475.17 30985.60 317
tfpnnormal74.39 25773.16 26178.08 27686.10 23358.05 29184.65 23487.53 22370.32 19671.22 28585.63 25854.97 21889.86 26543.03 37375.02 31086.32 303
COLMAP_ROBcopyleft66.92 1773.01 27570.41 29080.81 22587.13 21665.63 18088.30 13484.19 27462.96 30563.80 35587.69 20038.04 36192.56 18946.66 35974.91 31184.24 335
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PatchT68.46 31767.85 31070.29 34680.70 33343.93 38872.47 36174.88 36160.15 33070.55 28776.57 36449.94 27781.59 34350.58 33574.83 31285.34 320
pmmvs474.03 26471.91 27180.39 23281.96 31568.32 12281.45 28682.14 30459.32 33769.87 30185.13 27052.40 24488.13 29660.21 27574.74 31384.73 331
ITE_SJBPF78.22 27381.77 31860.57 26883.30 28669.25 22167.54 32087.20 21536.33 36687.28 30454.34 31874.62 31486.80 296
test0.0.03 168.00 32067.69 31568.90 35277.55 35947.43 37775.70 34772.95 37166.66 25966.56 33382.29 31948.06 29675.87 37444.97 37074.51 31583.41 344
test_040272.79 27870.44 28979.84 24488.13 17665.99 17185.93 20484.29 27165.57 27667.40 32485.49 26146.92 30392.61 18735.88 38574.38 31680.94 364
CP-MVSNet78.22 19478.34 17077.84 27987.83 18954.54 34287.94 14791.17 11677.65 3873.48 26088.49 18062.24 15388.43 29262.19 25774.07 31790.55 181
FMVSNet569.50 30767.96 30874.15 31882.97 29955.35 33480.01 30982.12 30562.56 31263.02 35681.53 32536.92 36481.92 34248.42 34974.06 31885.17 325
MVS-HIRNet59.14 34757.67 35063.57 36481.65 31943.50 38971.73 36365.06 38839.59 38851.43 38557.73 39238.34 35982.58 33939.53 37973.95 31964.62 388
tpmrst72.39 27972.13 27073.18 32780.54 33549.91 37279.91 31179.08 33763.11 30271.69 28179.95 34055.32 21682.77 33865.66 22973.89 32086.87 294
PS-CasMVS78.01 20378.09 17577.77 28187.71 19554.39 34488.02 14391.22 11377.50 4673.26 26288.64 17560.73 17888.41 29361.88 26173.88 32190.53 182
v14878.72 18477.80 18481.47 20482.73 30361.96 25286.30 19588.08 20973.26 14476.18 20985.47 26262.46 14892.36 19771.92 17073.82 32290.09 202
Patchmatch-test64.82 33763.24 33869.57 34879.42 35249.82 37363.49 39069.05 38051.98 37259.95 36880.13 33850.91 26570.98 38840.66 37873.57 32387.90 269
WR-MVS_H78.51 18978.49 16578.56 26788.02 18256.38 32088.43 12692.67 6177.14 5473.89 25587.55 20566.25 10889.24 27758.92 28673.55 32490.06 206
AUN-MVS79.21 17277.60 19284.05 12888.71 15667.61 13985.84 20887.26 22969.08 22877.23 18288.14 19453.20 24093.47 15275.50 13973.45 32591.06 161
hse-mvs281.72 10980.94 11584.07 12388.72 15567.68 13885.87 20687.26 22976.02 8384.67 6488.22 18961.54 16293.48 15182.71 7073.44 32691.06 161
testgi66.67 32866.53 32567.08 36075.62 36841.69 39575.93 34376.50 35466.11 26865.20 34786.59 23435.72 36874.71 38143.71 37173.38 32784.84 329
Anonymous2024052168.80 31267.22 32173.55 32274.33 37254.11 34583.18 26485.61 25458.15 34761.68 36180.94 33130.71 37881.27 34657.00 30573.34 32885.28 321
pm-mvs177.25 22276.68 21478.93 26184.22 26758.62 28686.41 19188.36 20571.37 17373.31 26188.01 19661.22 17289.15 27964.24 24073.01 32989.03 241
eth_miper_zixun_eth77.92 20576.69 21381.61 20283.00 29661.98 25183.15 26589.20 17769.52 21574.86 24584.35 28361.76 15892.56 18971.50 17372.89 33090.28 193
miper_lstm_enhance74.11 26173.11 26277.13 29180.11 34059.62 28072.23 36286.92 23666.76 25770.40 29082.92 30956.93 21182.92 33769.06 19872.63 33188.87 249
tpmvs71.09 29169.29 29676.49 29582.04 31456.04 32578.92 32381.37 31364.05 29467.18 32678.28 35549.74 28089.77 26749.67 34472.37 33283.67 342
PEN-MVS77.73 20977.69 19077.84 27987.07 21753.91 34787.91 14991.18 11577.56 4373.14 26488.82 17061.23 17189.17 27859.95 27672.37 33290.43 186
DSMNet-mixed57.77 34956.90 35160.38 36867.70 39035.61 39969.18 37453.97 40032.30 39657.49 37679.88 34140.39 35168.57 39338.78 38272.37 33276.97 374
IterMVS-SCA-FT75.43 25073.87 25480.11 23982.69 30464.85 19981.57 28483.47 28469.16 22670.49 28984.15 28951.95 25488.15 29569.23 19572.14 33587.34 282
tpm cat170.57 29768.31 30377.35 28882.41 31157.95 29578.08 33280.22 32752.04 37068.54 31477.66 36052.00 25387.84 29951.77 32972.07 33686.25 304
RPSCF73.23 27371.46 27678.54 26882.50 30859.85 27782.18 27782.84 29958.96 34171.15 28689.41 15745.48 32184.77 32558.82 28871.83 33791.02 165
IterMVS74.29 25872.94 26378.35 27281.53 32263.49 22781.58 28382.49 30168.06 24769.99 29883.69 29851.66 26085.54 31765.85 22771.64 33886.01 311
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AllTest70.96 29268.09 30779.58 25185.15 24863.62 22184.58 23679.83 32962.31 31460.32 36686.73 22432.02 37388.96 28450.28 33971.57 33986.15 307
TestCases79.58 25185.15 24863.62 22179.83 32962.31 31460.32 36686.73 22432.02 37388.96 28450.28 33971.57 33986.15 307
baseline176.98 22576.75 21277.66 28288.13 17655.66 33085.12 22381.89 30673.04 15076.79 19188.90 16762.43 14987.78 30063.30 24671.18 34189.55 226
Patchmtry70.74 29569.16 29875.49 30580.72 33254.07 34674.94 35580.30 32558.34 34570.01 29681.19 32652.50 24286.54 30753.37 32371.09 34285.87 315
DTE-MVSNet76.99 22476.80 20877.54 28686.24 22953.06 35587.52 15890.66 12977.08 5772.50 27188.67 17460.48 18589.52 27257.33 30270.74 34390.05 207
MIMVSNet168.58 31466.78 32473.98 32080.07 34151.82 36180.77 29584.37 26864.40 28859.75 36982.16 32136.47 36583.63 33242.73 37470.33 34486.48 302
pmmvs674.69 25673.39 25878.61 26581.38 32557.48 30386.64 18587.95 21364.99 28370.18 29386.61 23350.43 27289.52 27262.12 25970.18 34588.83 251
test_vis1_rt60.28 34658.42 34965.84 36167.25 39155.60 33170.44 37060.94 39444.33 38259.00 37066.64 38424.91 38468.67 39262.80 24869.48 34673.25 380
TinyColmap67.30 32464.81 32974.76 31281.92 31756.68 31580.29 30681.49 31160.33 32756.27 38083.22 30324.77 38587.66 30245.52 36769.47 34779.95 368
OurMVSNet-221017-074.26 25972.42 26879.80 24583.76 27859.59 28185.92 20586.64 23966.39 26666.96 32787.58 20239.46 35391.60 22365.76 22869.27 34888.22 264
JIA-IIPM66.32 33162.82 34276.82 29377.09 36261.72 25665.34 38675.38 35858.04 34964.51 34962.32 38742.05 34386.51 30851.45 33269.22 34982.21 356
ADS-MVSNet266.20 33463.33 33774.82 31179.92 34258.75 28567.55 37975.19 35953.37 36765.25 34575.86 36842.32 33880.53 35041.57 37668.91 35085.18 323
ADS-MVSNet64.36 33862.88 34168.78 35479.92 34247.17 37867.55 37971.18 37353.37 36765.25 34575.86 36842.32 33873.99 38441.57 37668.91 35085.18 323
test20.0367.45 32266.95 32368.94 35175.48 36944.84 38677.50 33677.67 34366.66 25963.01 35783.80 29447.02 30278.40 35742.53 37568.86 35283.58 343
EU-MVSNet68.53 31667.61 31771.31 34178.51 35747.01 37984.47 23884.27 27242.27 38466.44 33884.79 27640.44 35083.76 33058.76 28968.54 35383.17 346
dmvs_testset62.63 34264.11 33358.19 37078.55 35624.76 40675.28 34965.94 38667.91 24860.34 36576.01 36753.56 23573.94 38531.79 38967.65 35475.88 377
our_test_369.14 30967.00 32275.57 30379.80 34658.80 28477.96 33377.81 34259.55 33562.90 35978.25 35647.43 29883.97 32951.71 33067.58 35583.93 340
ppachtmachnet_test70.04 30367.34 32078.14 27579.80 34661.13 26079.19 31980.59 31959.16 33965.27 34479.29 34646.75 30587.29 30349.33 34566.72 35686.00 313
LF4IMVS64.02 33962.19 34369.50 34970.90 38653.29 35476.13 34177.18 35052.65 36958.59 37180.98 33023.55 38776.52 36853.06 32566.66 35778.68 371
Patchmatch-RL test70.24 30167.78 31477.61 28477.43 36059.57 28271.16 36570.33 37462.94 30668.65 31272.77 37750.62 26985.49 31869.58 19366.58 35887.77 272
dp66.80 32665.43 32870.90 34579.74 34848.82 37575.12 35374.77 36259.61 33464.08 35277.23 36142.89 33480.72 34948.86 34866.58 35883.16 347
test_fmvs363.36 34161.82 34467.98 35762.51 39546.96 38077.37 33874.03 36645.24 38067.50 32178.79 35212.16 39972.98 38772.77 16466.02 36083.99 339
CL-MVSNet_self_test72.37 28171.46 27675.09 30879.49 35153.53 34980.76 29685.01 26169.12 22770.51 28882.05 32257.92 20084.13 32852.27 32866.00 36187.60 275
FPMVS53.68 35451.64 35659.81 36965.08 39351.03 36769.48 37369.58 37841.46 38540.67 39172.32 37816.46 39570.00 39124.24 39765.42 36258.40 393
pmmvs-eth3d70.50 29967.83 31278.52 27077.37 36166.18 16781.82 27981.51 31058.90 34263.90 35480.42 33642.69 33686.28 31058.56 29065.30 36383.11 348
N_pmnet52.79 35653.26 35551.40 38078.99 3557.68 41269.52 3723.89 41151.63 37357.01 37774.98 37240.83 34865.96 39537.78 38364.67 36480.56 367
PM-MVS66.41 33064.14 33273.20 32673.92 37456.45 31778.97 32264.96 38963.88 29864.72 34880.24 33719.84 39183.44 33466.24 22164.52 36579.71 369
KD-MVS_self_test68.81 31167.59 31872.46 33274.29 37345.45 38177.93 33487.00 23463.12 30163.99 35378.99 35142.32 33884.77 32556.55 31064.09 36687.16 288
SixPastTwentyTwo73.37 26971.26 28179.70 24785.08 25157.89 29685.57 21183.56 28271.03 18165.66 34185.88 25142.10 34292.57 18859.11 28463.34 36788.65 258
EGC-MVSNET52.07 35847.05 36267.14 35983.51 28260.71 26680.50 30267.75 3820.07 4060.43 40775.85 37024.26 38681.54 34428.82 39162.25 36859.16 391
TransMVSNet (Re)75.39 25274.56 24477.86 27885.50 24157.10 30886.78 18186.09 24972.17 16071.53 28287.34 20963.01 14289.31 27656.84 30761.83 36987.17 286
MDA-MVSNet_test_wron65.03 33562.92 33971.37 33875.93 36456.73 31269.09 37774.73 36357.28 35554.03 38377.89 35745.88 31474.39 38349.89 34361.55 37082.99 351
YYNet165.03 33562.91 34071.38 33775.85 36656.60 31669.12 37674.66 36557.28 35554.12 38277.87 35845.85 31574.48 38249.95 34261.52 37183.05 349
mvsany_test162.30 34361.26 34765.41 36269.52 38754.86 33966.86 38149.78 40246.65 37968.50 31583.21 30449.15 28866.28 39456.93 30660.77 37275.11 378
ambc75.24 30773.16 38050.51 37063.05 39187.47 22564.28 35077.81 35917.80 39389.73 26957.88 29760.64 37385.49 318
TDRefinement67.49 32164.34 33176.92 29273.47 37961.07 26184.86 22982.98 29559.77 33358.30 37385.13 27026.06 38387.89 29847.92 35660.59 37481.81 360
Gipumacopyleft45.18 36441.86 36755.16 37777.03 36351.52 36432.50 39980.52 32032.46 39527.12 39835.02 3999.52 40275.50 37622.31 39860.21 37538.45 398
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
new-patchmatchnet61.73 34461.73 34561.70 36672.74 38324.50 40769.16 37578.03 34161.40 32156.72 37875.53 37138.42 35876.48 36945.95 36557.67 37684.13 337
MDA-MVSNet-bldmvs66.68 32763.66 33675.75 30079.28 35360.56 26973.92 35878.35 34064.43 28750.13 38779.87 34244.02 32883.67 33146.10 36456.86 37783.03 350
new_pmnet50.91 35950.29 35952.78 37968.58 38934.94 40163.71 38856.63 39939.73 38744.95 38965.47 38521.93 38958.48 39834.98 38656.62 37864.92 387
test_f52.09 35750.82 35855.90 37453.82 40242.31 39459.42 39258.31 39836.45 39156.12 38170.96 38112.18 39857.79 39953.51 32256.57 37967.60 385
test_vis3_rt49.26 36147.02 36356.00 37354.30 40045.27 38566.76 38348.08 40336.83 39044.38 39053.20 3957.17 40664.07 39656.77 30855.66 38058.65 392
PMVScopyleft37.38 2244.16 36540.28 36855.82 37540.82 40842.54 39365.12 38763.99 39034.43 39324.48 39957.12 3943.92 40976.17 37317.10 40155.52 38148.75 396
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
APD_test153.31 35549.93 36063.42 36565.68 39250.13 37171.59 36466.90 38434.43 39340.58 39271.56 3808.65 40476.27 37134.64 38755.36 38263.86 389
pmmvs357.79 34854.26 35368.37 35664.02 39456.72 31375.12 35365.17 38740.20 38652.93 38469.86 38320.36 39075.48 37745.45 36855.25 38372.90 381
UnsupCasMVSNet_eth67.33 32365.99 32771.37 33873.48 37851.47 36575.16 35185.19 25865.20 27860.78 36480.93 33342.35 33777.20 36357.12 30353.69 38485.44 319
K. test v371.19 28968.51 30179.21 25783.04 29557.78 29984.35 24576.91 35272.90 15362.99 35882.86 31139.27 35491.09 24761.65 26452.66 38588.75 255
UnsupCasMVSNet_bld63.70 34061.53 34670.21 34773.69 37651.39 36672.82 36081.89 30655.63 36257.81 37571.80 37938.67 35778.61 35649.26 34652.21 38680.63 365
LCM-MVSNet54.25 35149.68 36167.97 35853.73 40345.28 38466.85 38280.78 31635.96 39239.45 39362.23 3888.70 40378.06 36048.24 35351.20 38780.57 366
KD-MVS_2432*160066.22 33263.89 33473.21 32475.47 37053.42 35170.76 36884.35 26964.10 29266.52 33578.52 35334.55 37084.98 32250.40 33750.33 38881.23 362
miper_refine_blended66.22 33263.89 33473.21 32475.47 37053.42 35170.76 36884.35 26964.10 29266.52 33578.52 35334.55 37084.98 32250.40 33750.33 38881.23 362
mvsany_test353.99 35251.45 35761.61 36755.51 39944.74 38763.52 38945.41 40643.69 38358.11 37476.45 36517.99 39263.76 39754.77 31647.59 39076.34 376
lessismore_v078.97 26081.01 33157.15 30765.99 38561.16 36382.82 31239.12 35591.34 23859.67 27846.92 39188.43 262
testf145.72 36241.96 36557.00 37156.90 39745.32 38266.14 38459.26 39626.19 39730.89 39660.96 3904.14 40770.64 38926.39 39546.73 39255.04 394
APD_test245.72 36241.96 36557.00 37156.90 39745.32 38266.14 38459.26 39626.19 39730.89 39660.96 3904.14 40770.64 38926.39 39546.73 39255.04 394
PVSNet_057.27 2061.67 34559.27 34868.85 35379.61 34957.44 30468.01 37873.44 36855.93 36158.54 37270.41 38244.58 32477.55 36247.01 35835.91 39471.55 382
WB-MVS54.94 35054.72 35255.60 37673.50 37720.90 40874.27 35761.19 39359.16 33950.61 38674.15 37347.19 30175.78 37517.31 40035.07 39570.12 383
test_method31.52 36829.28 37238.23 38327.03 4106.50 41320.94 40162.21 3924.05 40422.35 40252.50 39613.33 39647.58 40327.04 39434.04 39660.62 390
SSC-MVS53.88 35353.59 35454.75 37872.87 38219.59 40973.84 35960.53 39557.58 35349.18 38873.45 37646.34 30975.47 37816.20 40332.28 39769.20 384
PMMVS240.82 36638.86 36946.69 38153.84 40116.45 41048.61 39649.92 40137.49 38931.67 39460.97 3898.14 40556.42 40028.42 39230.72 39867.19 386
DeepMVS_CXcopyleft27.40 38640.17 40926.90 40424.59 41017.44 40223.95 40048.61 3979.77 40126.48 40518.06 39924.47 39928.83 399
MVEpermissive26.22 2330.37 37025.89 37443.81 38244.55 40735.46 40028.87 40039.07 40718.20 40118.58 40340.18 3982.68 41047.37 40417.07 40223.78 40048.60 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN31.77 36730.64 37035.15 38452.87 40427.67 40357.09 39447.86 40424.64 39916.40 40433.05 40011.23 40054.90 40114.46 40418.15 40122.87 400
EMVS30.81 36929.65 37134.27 38550.96 40525.95 40556.58 39546.80 40524.01 40015.53 40530.68 40112.47 39754.43 40212.81 40517.05 40222.43 401
ANet_high50.57 36046.10 36463.99 36348.67 40639.13 39770.99 36780.85 31561.39 32231.18 39557.70 39317.02 39473.65 38631.22 39015.89 40379.18 370
tmp_tt18.61 37221.40 37510.23 3884.82 41110.11 41134.70 39830.74 4091.48 40523.91 40126.07 40228.42 38113.41 40727.12 39315.35 4047.17 402
wuyk23d16.82 37315.94 37619.46 38758.74 39631.45 40239.22 3973.74 4126.84 4036.04 4062.70 4061.27 41124.29 40610.54 40614.40 4052.63 403
testmvs6.04 3768.02 3790.10 3900.08 4120.03 41569.74 3710.04 4130.05 4070.31 4081.68 4070.02 4130.04 4080.24 4070.02 4060.25 405
test1236.12 3758.11 3780.14 3890.06 4130.09 41471.05 3660.03 4140.04 4080.25 4091.30 4080.05 4120.03 4090.21 4080.01 4070.29 404
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k19.96 37126.61 3730.00 3910.00 4140.00 4160.00 40289.26 1730.00 4090.00 41088.61 17661.62 1610.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas5.26 3777.02 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40963.15 1380.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re7.23 3749.64 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41086.72 2260.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS42.58 39139.46 380
FOURS195.00 1072.39 3995.06 193.84 1574.49 11391.30 15
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 414
eth-test0.00 414
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
save fliter93.80 4072.35 4290.47 6491.17 11674.31 116
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
GSMVS88.96 246
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26288.96 246
sam_mvs50.01 275
MTGPAbinary92.02 85
test_post178.90 3245.43 40548.81 29585.44 32059.25 282
test_post5.46 40450.36 27384.24 327
patchmatchnet-post74.00 37451.12 26488.60 290
MTMP92.18 3532.83 408
gm-plane-assit81.40 32453.83 34862.72 31180.94 33192.39 19563.40 245
TEST993.26 5072.96 2588.75 11591.89 9368.44 24285.00 5793.10 6774.36 2895.41 67
test_893.13 5272.57 3588.68 12091.84 9768.69 23784.87 6193.10 6774.43 2695.16 76
agg_prior92.85 5971.94 5191.78 10084.41 7194.93 87
test_prior472.60 3489.01 105
test_prior86.33 5492.61 6569.59 8892.97 5095.48 6293.91 53
旧先验286.56 18858.10 34887.04 3988.98 28274.07 149
新几何286.29 196
无先验87.48 15988.98 18660.00 33194.12 12167.28 21488.97 245
原ACMM286.86 177
testdata291.01 24962.37 255
segment_acmp73.08 37
testdata184.14 24975.71 87
plane_prior790.08 10368.51 119
plane_prior689.84 11268.70 11460.42 186
plane_prior491.00 120
plane_prior368.60 11778.44 3178.92 141
plane_prior291.25 5079.12 23
plane_prior189.90 111
n20.00 415
nn0.00 415
door-mid69.98 376
test1192.23 79
door69.44 379
HQP5-MVS66.98 155
HQP-NCC89.33 12889.17 9876.41 7277.23 182
ACMP_Plane89.33 12889.17 9876.41 7277.23 182
BP-MVS77.47 114
HQP4-MVS77.24 18195.11 8091.03 163
HQP2-MVS60.17 189
NP-MVS89.62 11568.32 12290.24 132
MDTV_nov1_ep13_2view37.79 39875.16 35155.10 36366.53 33449.34 28553.98 31987.94 268
Test By Simon64.33 125