SMA-MVS |  | | 89.08 7 | 89.23 7 | 88.61 5 | 94.25 33 | 73.73 10 | 92.40 23 | 93.63 23 | 74.77 112 | 92.29 7 | 95.97 2 | 74.28 35 | 97.24 11 | 88.58 13 | 96.91 1 | 94.87 13 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
DVP-MVS++ | | | 90.23 1 | 91.01 1 | 87.89 24 | 94.34 29 | 71.25 63 | 95.06 1 | 94.23 5 | 78.38 35 | 92.78 4 | 95.74 6 | 82.45 3 | 97.49 3 | 89.42 4 | 96.68 2 | 94.95 7 |
|
PC_three_1452 | | | | | | | | | | 68.21 235 | 92.02 12 | 94.00 48 | 82.09 5 | 95.98 55 | 84.58 40 | 96.68 2 | 94.95 7 |
|
SED-MVS | | | 90.08 2 | 90.85 2 | 87.77 26 | 95.30 2 | 70.98 70 | 93.57 7 | 94.06 12 | 77.24 52 | 93.10 1 | 95.72 8 | 82.99 1 | 97.44 5 | 89.07 9 | 96.63 4 | 94.88 11 |
|
IU-MVS | | | | | | 95.30 2 | 71.25 63 | | 92.95 56 | 66.81 243 | 92.39 6 | | | | 88.94 11 | 96.63 4 | 94.85 16 |
|
test_241102_TWO | | | | | | | | | 94.06 12 | 77.24 52 | 92.78 4 | 95.72 8 | 81.26 8 | 97.44 5 | 89.07 9 | 96.58 6 | 94.26 40 |
|
test_0728_THIRD | | | | | | | | | | 78.38 35 | 92.12 9 | 95.78 4 | 81.46 7 | 97.40 7 | 89.42 4 | 96.57 7 | 94.67 23 |
|
OPU-MVS | | | | | 89.06 3 | 94.62 15 | 75.42 4 | 93.57 7 | | | | 94.02 47 | 82.45 3 | 96.87 19 | 83.77 55 | 96.48 8 | 94.88 11 |
|
MSC_two_6792asdad | | | | | 89.16 1 | 94.34 29 | 75.53 2 | | 92.99 49 | | | | | 97.53 1 | 89.67 1 | 96.44 9 | 94.41 31 |
|
No_MVS | | | | | 89.16 1 | 94.34 29 | 75.53 2 | | 92.99 49 | | | | | 97.53 1 | 89.67 1 | 96.44 9 | 94.41 31 |
|
HPM-MVS++ |  | | 89.02 8 | 89.15 8 | 88.63 4 | 95.01 9 | 76.03 1 | 92.38 26 | 92.85 60 | 80.26 13 | 87.78 30 | 94.27 36 | 75.89 19 | 96.81 22 | 87.45 19 | 96.44 9 | 93.05 96 |
|
DVP-MVS |  | | 89.60 3 | 90.35 3 | 87.33 45 | 95.27 5 | 71.25 63 | 93.49 9 | 92.73 65 | 77.33 50 | 92.12 9 | 95.78 4 | 80.98 9 | 97.40 7 | 89.08 7 | 96.41 12 | 93.33 85 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 87.71 34 | 95.34 1 | 71.43 62 | 93.49 9 | 94.23 5 | | | | | 97.49 3 | 89.08 7 | 96.41 12 | 94.21 41 |
|
ACMMP_NAP | | | 88.05 16 | 88.08 17 | 87.94 17 | 93.70 47 | 73.05 23 | 90.86 57 | 93.59 25 | 76.27 82 | 88.14 26 | 95.09 15 | 71.06 61 | 96.67 28 | 87.67 16 | 96.37 14 | 94.09 45 |
|
DPE-MVS |  | | 89.48 5 | 89.98 4 | 88.01 14 | 94.80 11 | 72.69 32 | 91.59 43 | 94.10 10 | 75.90 88 | 92.29 7 | 95.66 10 | 81.67 6 | 97.38 9 | 87.44 20 | 96.34 15 | 93.95 53 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MP-MVS-pluss | | | 87.67 22 | 87.72 22 | 87.54 39 | 93.64 50 | 72.04 52 | 89.80 84 | 93.50 28 | 75.17 103 | 86.34 40 | 95.29 12 | 70.86 62 | 96.00 53 | 88.78 12 | 96.04 16 | 94.58 26 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
xxxxxxxxxxxxxcwj | | | 87.88 19 | 87.92 19 | 87.77 26 | 93.80 44 | 72.35 45 | 90.47 67 | 89.69 168 | 74.31 122 | 89.16 19 | 95.10 13 | 75.65 21 | 96.19 45 | 87.07 21 | 96.01 17 | 94.79 18 |
|
SF-MVS | | | 88.46 11 | 88.74 11 | 87.64 38 | 92.78 69 | 71.95 53 | 92.40 23 | 94.74 2 | 75.71 90 | 89.16 19 | 95.10 13 | 75.65 21 | 96.19 45 | 87.07 21 | 96.01 17 | 94.79 18 |
|
CNVR-MVS | | | 88.93 9 | 89.13 9 | 88.33 7 | 94.77 12 | 73.82 9 | 90.51 64 | 93.00 47 | 80.90 9 | 88.06 28 | 94.06 46 | 76.43 16 | 96.84 20 | 88.48 14 | 95.99 19 | 94.34 36 |
|
PHI-MVS | | | 86.43 46 | 86.17 52 | 87.24 46 | 90.88 97 | 70.96 72 | 92.27 31 | 94.07 11 | 72.45 153 | 85.22 52 | 91.90 89 | 69.47 77 | 96.42 38 | 83.28 60 | 95.94 20 | 94.35 35 |
|
ETH3D-3000-0.1 | | | 88.09 13 | 88.29 14 | 87.50 41 | 92.76 70 | 71.89 56 | 91.43 47 | 94.70 3 | 74.47 119 | 88.86 22 | 94.61 21 | 75.23 24 | 95.84 58 | 86.62 26 | 95.92 21 | 94.78 20 |
|
test_prior3 | | | 86.73 39 | 86.86 40 | 86.33 63 | 92.61 74 | 69.59 101 | 88.85 109 | 92.97 54 | 75.41 96 | 84.91 57 | 93.54 54 | 74.28 35 | 95.48 70 | 83.31 57 | 95.86 22 | 93.91 54 |
|
test_prior2 | | | | | | | | 88.85 109 | | 75.41 96 | 84.91 57 | 93.54 54 | 74.28 35 | | 83.31 57 | 95.86 22 | |
|
SteuartSystems-ACMMP | | | 88.72 10 | 88.86 10 | 88.32 8 | 92.14 80 | 72.96 26 | 93.73 5 | 93.67 22 | 80.19 14 | 88.10 27 | 94.80 16 | 73.76 40 | 97.11 13 | 87.51 18 | 95.82 24 | 94.90 10 |
Skip Steuart: Steuart Systems R&D Blog. |
ZNCC-MVS | | | 87.94 18 | 87.85 20 | 88.20 11 | 94.39 26 | 73.33 20 | 93.03 14 | 93.81 20 | 76.81 66 | 85.24 51 | 94.32 35 | 71.76 55 | 96.93 18 | 85.53 29 | 95.79 25 | 94.32 37 |
|
ETH3D cwj APD-0.16 | | | 87.31 32 | 87.27 28 | 87.44 43 | 91.60 87 | 72.45 41 | 90.02 78 | 94.37 4 | 71.76 164 | 87.28 34 | 94.27 36 | 75.18 25 | 96.08 49 | 85.16 30 | 95.77 26 | 93.80 64 |
|
ETH3 D test6400 | | | 87.50 25 | 87.44 26 | 87.70 35 | 93.71 46 | 71.75 57 | 90.62 62 | 94.05 15 | 70.80 182 | 87.59 33 | 93.51 56 | 77.57 14 | 96.63 31 | 83.31 57 | 95.77 26 | 94.72 22 |
|
9.14 | | | | 88.26 15 | | 92.84 68 | | 91.52 46 | 94.75 1 | 73.93 132 | 88.57 24 | 94.67 19 | 75.57 23 | 95.79 59 | 86.77 23 | 95.76 28 | |
|
DeepPCF-MVS | | 80.84 1 | 88.10 12 | 88.56 12 | 86.73 56 | 92.24 78 | 69.03 110 | 89.57 90 | 93.39 34 | 77.53 47 | 89.79 18 | 94.12 43 | 78.98 12 | 96.58 36 | 85.66 27 | 95.72 29 | 94.58 26 |
|
train_agg | | | 86.43 46 | 86.20 50 | 87.13 49 | 93.26 56 | 72.96 26 | 88.75 113 | 91.89 103 | 68.69 229 | 85.00 55 | 93.10 65 | 74.43 31 | 95.41 76 | 84.97 32 | 95.71 30 | 93.02 98 |
|
test9_res | | | | | | | | | | | | | | | 84.90 33 | 95.70 31 | 92.87 104 |
|
APDe-MVS | | | 89.15 6 | 89.63 6 | 87.73 30 | 94.49 20 | 71.69 58 | 93.83 4 | 93.96 16 | 75.70 92 | 91.06 16 | 96.03 1 | 76.84 15 | 97.03 15 | 89.09 6 | 95.65 32 | 94.47 30 |
|
agg_prior2 | | | | | | | | | | | | | | | 82.91 65 | 95.45 33 | 92.70 107 |
|
CDPH-MVS | | | 85.76 58 | 85.29 65 | 87.17 48 | 93.49 53 | 71.08 68 | 88.58 121 | 92.42 78 | 68.32 234 | 84.61 67 | 93.48 57 | 72.32 50 | 96.15 48 | 79.00 95 | 95.43 34 | 94.28 39 |
|
DeepC-MVS | | 79.81 2 | 87.08 37 | 86.88 39 | 87.69 36 | 91.16 91 | 72.32 47 | 90.31 72 | 93.94 17 | 77.12 58 | 82.82 96 | 94.23 39 | 72.13 53 | 97.09 14 | 84.83 36 | 95.37 35 | 93.65 72 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
zzz-MVS | | | 87.53 24 | 87.41 27 | 87.90 21 | 94.18 37 | 74.25 5 | 90.23 74 | 92.02 94 | 79.45 21 | 85.88 42 | 94.80 16 | 68.07 87 | 96.21 43 | 86.69 24 | 95.34 36 | 93.23 88 |
|
MTAPA | | | 87.23 33 | 87.00 34 | 87.90 21 | 94.18 37 | 74.25 5 | 86.58 185 | 92.02 94 | 79.45 21 | 85.88 42 | 94.80 16 | 68.07 87 | 96.21 43 | 86.69 24 | 95.34 36 | 93.23 88 |
|
agg_prior1 | | | 86.22 51 | 86.09 54 | 86.62 59 | 92.85 66 | 71.94 54 | 88.59 120 | 91.78 109 | 68.96 224 | 84.41 72 | 93.18 64 | 74.94 26 | 94.93 98 | 84.75 38 | 95.33 38 | 93.01 99 |
|
DeepC-MVS_fast | | 79.65 3 | 86.91 38 | 86.62 42 | 87.76 29 | 93.52 52 | 72.37 44 | 91.26 49 | 93.04 43 | 76.62 73 | 84.22 76 | 93.36 61 | 71.44 59 | 96.76 24 | 80.82 85 | 95.33 38 | 94.16 42 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MP-MVS |  | | 87.71 21 | 87.64 23 | 87.93 20 | 94.36 28 | 73.88 7 | 92.71 22 | 92.65 70 | 77.57 43 | 83.84 83 | 94.40 34 | 72.24 51 | 96.28 41 | 85.65 28 | 95.30 40 | 93.62 75 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
MCST-MVS | | | 87.37 30 | 87.25 30 | 87.73 30 | 94.53 19 | 72.46 40 | 89.82 82 | 93.82 19 | 73.07 148 | 84.86 62 | 92.89 71 | 76.22 17 | 96.33 39 | 84.89 35 | 95.13 41 | 94.40 33 |
|
GST-MVS | | | 87.42 28 | 87.26 29 | 87.89 24 | 94.12 39 | 72.97 25 | 92.39 25 | 93.43 32 | 76.89 64 | 84.68 63 | 93.99 50 | 70.67 66 | 96.82 21 | 84.18 51 | 95.01 42 | 93.90 56 |
|
APD-MVS |  | | 87.44 26 | 87.52 24 | 87.19 47 | 94.24 34 | 72.39 42 | 91.86 40 | 92.83 61 | 73.01 150 | 88.58 23 | 94.52 23 | 73.36 41 | 96.49 37 | 84.26 47 | 95.01 42 | 92.70 107 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
NCCC | | | 88.06 14 | 88.01 18 | 88.24 10 | 94.41 24 | 73.62 11 | 91.22 52 | 92.83 61 | 81.50 6 | 85.79 45 | 93.47 59 | 73.02 46 | 97.00 17 | 84.90 33 | 94.94 44 | 94.10 44 |
|
ACMMPR | | | 87.44 26 | 87.23 31 | 88.08 13 | 94.64 13 | 73.59 12 | 93.04 12 | 93.20 39 | 76.78 68 | 84.66 66 | 94.52 23 | 68.81 85 | 96.65 29 | 84.53 41 | 94.90 45 | 94.00 51 |
|
HFP-MVS | | | 87.58 23 | 87.47 25 | 87.94 17 | 94.58 16 | 73.54 15 | 93.04 12 | 93.24 37 | 76.78 68 | 84.91 57 | 94.44 30 | 70.78 63 | 96.61 32 | 84.53 41 | 94.89 46 | 93.66 67 |
|
#test# | | | 87.33 31 | 87.13 33 | 87.94 17 | 94.58 16 | 73.54 15 | 92.34 28 | 93.24 37 | 75.23 100 | 84.91 57 | 94.44 30 | 70.78 63 | 96.61 32 | 83.75 56 | 94.89 46 | 93.66 67 |
|
ZD-MVS | | | | | | 94.38 27 | 72.22 48 | | 92.67 67 | 70.98 180 | 87.75 31 | 94.07 45 | 74.01 39 | 96.70 26 | 84.66 39 | 94.84 48 | |
|
testtj | | | 87.78 20 | 87.78 21 | 87.77 26 | 94.55 18 | 72.47 39 | 92.23 32 | 93.49 29 | 74.75 113 | 88.33 25 | 94.43 32 | 73.27 43 | 97.02 16 | 84.18 51 | 94.84 48 | 93.82 61 |
|
region2R | | | 87.42 28 | 87.20 32 | 88.09 12 | 94.63 14 | 73.55 13 | 93.03 14 | 93.12 42 | 76.73 71 | 84.45 71 | 94.52 23 | 69.09 81 | 96.70 26 | 84.37 44 | 94.83 50 | 94.03 48 |
|
原ACMM1 | | | | | 84.35 115 | 93.01 64 | 68.79 116 | | 92.44 75 | 63.96 284 | 81.09 117 | 91.57 98 | 66.06 109 | 95.45 72 | 67.19 207 | 94.82 51 | 88.81 241 |
|
HPM-MVS |  | | 87.11 35 | 86.98 35 | 87.50 41 | 93.88 43 | 72.16 49 | 92.19 33 | 93.33 35 | 76.07 85 | 83.81 84 | 93.95 51 | 69.77 75 | 96.01 52 | 85.15 31 | 94.66 52 | 94.32 37 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
DPM-MVS | | | 84.93 71 | 84.29 76 | 86.84 53 | 90.20 111 | 73.04 24 | 87.12 167 | 93.04 43 | 69.80 202 | 82.85 95 | 91.22 107 | 73.06 45 | 96.02 51 | 76.72 122 | 94.63 53 | 91.46 147 |
|
TSAR-MVS + MP. | | | 88.02 17 | 88.11 16 | 87.72 32 | 93.68 49 | 72.13 50 | 91.41 48 | 92.35 80 | 74.62 116 | 88.90 21 | 93.85 52 | 75.75 20 | 96.00 53 | 87.80 15 | 94.63 53 | 95.04 5 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
PGM-MVS | | | 86.68 41 | 86.27 48 | 87.90 21 | 94.22 35 | 73.38 19 | 90.22 75 | 93.04 43 | 75.53 94 | 83.86 82 | 94.42 33 | 67.87 91 | 96.64 30 | 82.70 71 | 94.57 55 | 93.66 67 |
|
XVS | | | 87.18 34 | 86.91 38 | 88.00 15 | 94.42 22 | 73.33 20 | 92.78 18 | 92.99 49 | 79.14 24 | 83.67 86 | 94.17 40 | 67.45 94 | 96.60 34 | 83.06 62 | 94.50 56 | 94.07 46 |
|
X-MVStestdata | | | 80.37 144 | 77.83 180 | 88.00 15 | 94.42 22 | 73.33 20 | 92.78 18 | 92.99 49 | 79.14 24 | 83.67 86 | 12.47 372 | 67.45 94 | 96.60 34 | 83.06 62 | 94.50 56 | 94.07 46 |
|
test12 | | | | | 86.80 55 | 92.63 73 | 70.70 81 | | 91.79 108 | | 82.71 98 | | 71.67 56 | 96.16 47 | | 94.50 56 | 93.54 79 |
|
CP-MVS | | | 87.11 35 | 86.92 37 | 87.68 37 | 94.20 36 | 73.86 8 | 93.98 3 | 92.82 64 | 76.62 73 | 83.68 85 | 94.46 27 | 67.93 89 | 95.95 56 | 84.20 50 | 94.39 59 | 93.23 88 |
|
CSCG | | | 86.41 48 | 86.19 51 | 87.07 50 | 92.91 65 | 72.48 38 | 90.81 58 | 93.56 26 | 73.95 130 | 83.16 91 | 91.07 112 | 75.94 18 | 95.19 86 | 79.94 93 | 94.38 60 | 93.55 78 |
|
MSLP-MVS++ | | | 85.43 63 | 85.76 57 | 84.45 110 | 91.93 83 | 70.24 87 | 90.71 60 | 92.86 59 | 77.46 49 | 84.22 76 | 92.81 75 | 67.16 98 | 92.94 186 | 80.36 89 | 94.35 61 | 90.16 188 |
|
mPP-MVS | | | 86.67 42 | 86.32 47 | 87.72 32 | 94.41 24 | 73.55 13 | 92.74 20 | 92.22 87 | 76.87 65 | 82.81 97 | 94.25 38 | 66.44 103 | 96.24 42 | 82.88 66 | 94.28 62 | 93.38 82 |
|
SD-MVS | | | 88.06 14 | 88.50 13 | 86.71 57 | 92.60 76 | 72.71 30 | 91.81 41 | 93.19 40 | 77.87 38 | 90.32 17 | 94.00 48 | 74.83 27 | 93.78 145 | 87.63 17 | 94.27 63 | 93.65 72 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
MSP-MVS | | | 89.51 4 | 89.91 5 | 88.30 9 | 94.28 32 | 73.46 18 | 92.90 16 | 94.11 8 | 80.27 12 | 91.35 14 | 94.16 41 | 78.35 13 | 96.77 23 | 89.59 3 | 94.22 64 | 94.67 23 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DELS-MVS | | | 85.41 64 | 85.30 64 | 85.77 75 | 88.49 173 | 67.93 139 | 85.52 217 | 93.44 31 | 78.70 31 | 83.63 88 | 89.03 162 | 74.57 28 | 95.71 62 | 80.26 91 | 94.04 65 | 93.66 67 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
EPNet | | | 83.72 78 | 82.92 87 | 86.14 69 | 84.22 256 | 69.48 104 | 91.05 55 | 85.27 258 | 81.30 7 | 76.83 183 | 91.65 94 | 66.09 108 | 95.56 65 | 76.00 127 | 93.85 66 | 93.38 82 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DROMVSNet | | | 86.01 53 | 86.38 45 | 84.91 97 | 89.31 142 | 66.27 169 | 92.32 29 | 93.63 23 | 79.37 23 | 84.17 78 | 91.88 90 | 69.04 84 | 95.43 74 | 83.93 54 | 93.77 67 | 93.01 99 |
|
3Dnovator+ | | 77.84 4 | 85.48 61 | 84.47 75 | 88.51 6 | 91.08 92 | 73.49 17 | 93.18 11 | 93.78 21 | 80.79 10 | 76.66 188 | 93.37 60 | 60.40 189 | 96.75 25 | 77.20 115 | 93.73 68 | 95.29 2 |
|
CS-MVS | | | 86.61 44 | 86.96 36 | 85.56 79 | 90.78 101 | 66.54 165 | 92.84 17 | 93.30 36 | 79.67 20 | 84.55 70 | 92.25 83 | 71.46 58 | 95.00 97 | 84.25 49 | 93.48 69 | 95.15 4 |
|
CS-MVS-test | | | 86.26 50 | 86.48 44 | 85.60 77 | 90.84 98 | 66.60 163 | 91.16 53 | 93.56 26 | 79.82 18 | 84.57 69 | 89.89 136 | 70.67 66 | 95.04 94 | 84.30 46 | 93.48 69 | 95.16 3 |
|
CANet | | | 86.45 45 | 86.10 53 | 87.51 40 | 90.09 113 | 70.94 74 | 89.70 88 | 92.59 72 | 81.78 4 | 81.32 112 | 91.43 103 | 70.34 68 | 97.23 12 | 84.26 47 | 93.36 71 | 94.37 34 |
|
新几何1 | | | | | 83.42 145 | 93.13 58 | 70.71 80 | | 85.48 256 | 57.43 335 | 81.80 107 | 91.98 87 | 63.28 134 | 92.27 207 | 64.60 228 | 92.99 72 | 87.27 274 |
|
1121 | | | 80.84 127 | 79.77 134 | 84.05 127 | 93.11 60 | 70.78 79 | 84.66 230 | 85.42 257 | 57.37 336 | 81.76 110 | 92.02 86 | 63.41 132 | 94.12 129 | 67.28 204 | 92.93 73 | 87.26 275 |
|
HPM-MVS_fast | | | 85.35 65 | 84.95 70 | 86.57 61 | 93.69 48 | 70.58 85 | 92.15 35 | 91.62 113 | 73.89 133 | 82.67 99 | 94.09 44 | 62.60 146 | 95.54 68 | 80.93 83 | 92.93 73 | 93.57 77 |
|
SR-MVS | | | 86.73 39 | 86.67 41 | 86.91 52 | 94.11 40 | 72.11 51 | 92.37 27 | 92.56 73 | 74.50 117 | 86.84 37 | 94.65 20 | 67.31 96 | 95.77 60 | 84.80 37 | 92.85 75 | 92.84 105 |
|
旧先验1 | | | | | | 91.96 82 | 65.79 180 | | 86.37 247 | | | 93.08 69 | 69.31 80 | | | 92.74 76 | 88.74 244 |
|
3Dnovator | | 76.31 5 | 83.38 86 | 82.31 95 | 86.59 60 | 87.94 190 | 72.94 29 | 90.64 61 | 92.14 91 | 77.21 54 | 75.47 213 | 92.83 73 | 58.56 196 | 94.72 110 | 73.24 152 | 92.71 77 | 92.13 129 |
|
test1172 | | | 86.20 52 | 86.22 49 | 86.12 70 | 93.95 42 | 69.89 96 | 91.79 42 | 92.28 82 | 75.07 104 | 86.40 39 | 94.58 22 | 65.00 121 | 95.56 65 | 84.34 45 | 92.60 78 | 92.90 103 |
|
MVS_111021_HR | | | 85.14 68 | 84.75 72 | 86.32 65 | 91.65 86 | 72.70 31 | 85.98 200 | 90.33 150 | 76.11 84 | 82.08 102 | 91.61 97 | 71.36 60 | 94.17 128 | 81.02 82 | 92.58 79 | 92.08 130 |
|
APD-MVS_3200maxsize | | | 85.97 54 | 85.88 55 | 86.22 67 | 92.69 72 | 69.53 103 | 91.93 37 | 92.99 49 | 73.54 140 | 85.94 41 | 94.51 26 | 65.80 113 | 95.61 63 | 83.04 64 | 92.51 80 | 93.53 80 |
|
test2506 | | | 77.30 216 | 76.49 213 | 79.74 243 | 90.08 114 | 52.02 342 | 87.86 150 | 63.10 369 | 74.88 109 | 80.16 128 | 92.79 76 | 38.29 342 | 92.35 204 | 68.74 192 | 92.50 81 | 94.86 14 |
|
ECVR-MVS |  | | 79.61 156 | 79.26 148 | 80.67 225 | 90.08 114 | 54.69 326 | 87.89 148 | 77.44 336 | 74.88 109 | 80.27 125 | 92.79 76 | 48.96 286 | 92.45 198 | 68.55 193 | 92.50 81 | 94.86 14 |
|
test1111 | | | 79.43 163 | 79.18 151 | 80.15 235 | 89.99 119 | 53.31 339 | 87.33 162 | 77.05 339 | 75.04 105 | 80.23 127 | 92.77 78 | 48.97 285 | 92.33 206 | 68.87 190 | 92.40 83 | 94.81 17 |
|
patch_mono-2 | | | 83.65 79 | 84.54 74 | 80.99 218 | 90.06 118 | 65.83 178 | 84.21 245 | 88.74 204 | 71.60 170 | 85.01 53 | 92.44 80 | 74.51 29 | 83.50 324 | 82.15 76 | 92.15 84 | 93.64 74 |
|
MAR-MVS | | | 81.84 108 | 80.70 118 | 85.27 84 | 91.32 90 | 71.53 60 | 89.82 82 | 90.92 134 | 69.77 203 | 78.50 148 | 86.21 241 | 62.36 152 | 94.52 114 | 65.36 221 | 92.05 85 | 89.77 212 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
TSAR-MVS + GP. | | | 85.71 59 | 85.33 62 | 86.84 53 | 91.34 89 | 72.50 37 | 89.07 102 | 87.28 233 | 76.41 75 | 85.80 44 | 90.22 129 | 74.15 38 | 95.37 82 | 81.82 77 | 91.88 86 | 92.65 111 |
|
SR-MVS-dyc-post | | | 85.77 57 | 85.61 58 | 86.23 66 | 93.06 62 | 70.63 82 | 91.88 38 | 92.27 83 | 73.53 141 | 85.69 46 | 94.45 28 | 65.00 121 | 95.56 65 | 82.75 67 | 91.87 87 | 92.50 114 |
|
RE-MVS-def | | | | 85.48 59 | | 93.06 62 | 70.63 82 | 91.88 38 | 92.27 83 | 73.53 141 | 85.69 46 | 94.45 28 | 63.87 128 | | 82.75 67 | 91.87 87 | 92.50 114 |
|
IS-MVSNet | | | 83.15 88 | 82.81 88 | 84.18 121 | 89.94 121 | 63.30 229 | 91.59 43 | 88.46 210 | 79.04 28 | 79.49 133 | 92.16 84 | 65.10 118 | 94.28 119 | 67.71 199 | 91.86 89 | 94.95 7 |
|
Vis-MVSNet (Re-imp) | | | 78.36 190 | 78.45 163 | 78.07 270 | 88.64 169 | 51.78 345 | 86.70 182 | 79.63 325 | 74.14 128 | 75.11 228 | 90.83 119 | 61.29 172 | 89.75 265 | 58.10 282 | 91.60 90 | 92.69 109 |
|
MG-MVS | | | 83.41 84 | 83.45 79 | 83.28 150 | 92.74 71 | 62.28 245 | 88.17 138 | 89.50 172 | 75.22 101 | 81.49 111 | 92.74 79 | 66.75 99 | 95.11 89 | 72.85 155 | 91.58 91 | 92.45 117 |
|
CPTT-MVS | | | 83.73 77 | 83.33 81 | 84.92 96 | 93.28 55 | 70.86 77 | 92.09 36 | 90.38 146 | 68.75 228 | 79.57 132 | 92.83 73 | 60.60 185 | 93.04 184 | 80.92 84 | 91.56 92 | 90.86 164 |
|
test222 | | | | | | 91.50 88 | 68.26 133 | 84.16 246 | 83.20 290 | 54.63 347 | 79.74 130 | 91.63 96 | 58.97 194 | | | 91.42 93 | 86.77 287 |
|
ETV-MVS | | | 84.90 73 | 84.67 73 | 85.59 78 | 89.39 135 | 68.66 126 | 88.74 115 | 92.64 71 | 79.97 17 | 84.10 79 | 85.71 249 | 69.32 79 | 95.38 79 | 80.82 85 | 91.37 94 | 92.72 106 |
|
testdata | | | | | 79.97 238 | 90.90 96 | 64.21 209 | | 84.71 263 | 59.27 322 | 85.40 48 | 92.91 70 | 62.02 159 | 89.08 277 | 68.95 189 | 91.37 94 | 86.63 291 |
|
abl_6 | | | 85.23 66 | 84.95 70 | 86.07 71 | 92.23 79 | 70.48 86 | 90.80 59 | 92.08 92 | 73.51 143 | 85.26 50 | 94.16 41 | 62.75 145 | 95.92 57 | 82.46 74 | 91.30 96 | 91.81 137 |
|
API-MVS | | | 81.99 106 | 81.23 110 | 84.26 119 | 90.94 95 | 70.18 93 | 91.10 54 | 89.32 176 | 71.51 172 | 78.66 145 | 88.28 181 | 65.26 116 | 95.10 92 | 64.74 227 | 91.23 97 | 87.51 268 |
|
Vis-MVSNet |  | | 83.46 83 | 82.80 89 | 85.43 81 | 90.25 110 | 68.74 120 | 90.30 73 | 90.13 156 | 76.33 81 | 80.87 120 | 92.89 71 | 61.00 178 | 94.20 125 | 72.45 159 | 90.97 98 | 93.35 84 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
OpenMVS |  | 72.83 10 | 79.77 154 | 78.33 169 | 84.09 124 | 85.17 241 | 69.91 94 | 90.57 63 | 90.97 133 | 66.70 246 | 72.17 259 | 91.91 88 | 54.70 224 | 93.96 133 | 61.81 250 | 90.95 99 | 88.41 252 |
|
UA-Net | | | 85.08 70 | 84.96 69 | 85.45 80 | 92.07 81 | 68.07 137 | 89.78 85 | 90.86 137 | 82.48 2 | 84.60 68 | 93.20 63 | 69.35 78 | 95.22 85 | 71.39 165 | 90.88 100 | 93.07 95 |
|
ACMMP |  | | 85.89 56 | 85.39 61 | 87.38 44 | 93.59 51 | 72.63 34 | 92.74 20 | 93.18 41 | 76.78 68 | 80.73 121 | 93.82 53 | 64.33 124 | 96.29 40 | 82.67 72 | 90.69 101 | 93.23 88 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
Regformer-1 | | | 86.41 48 | 86.33 46 | 86.64 58 | 89.33 137 | 70.93 75 | 88.43 123 | 91.39 122 | 82.14 3 | 86.65 38 | 90.09 131 | 74.39 33 | 95.01 96 | 83.97 53 | 90.63 102 | 93.97 52 |
|
Regformer-2 | | | 86.63 43 | 86.53 43 | 86.95 51 | 89.33 137 | 71.24 67 | 88.43 123 | 92.05 93 | 82.50 1 | 86.88 36 | 90.09 131 | 74.45 30 | 95.61 63 | 84.38 43 | 90.63 102 | 94.01 50 |
|
casdiffmvs | | | 85.11 69 | 85.14 66 | 85.01 91 | 87.20 213 | 65.77 181 | 87.75 151 | 92.83 61 | 77.84 39 | 84.36 75 | 92.38 81 | 72.15 52 | 93.93 139 | 81.27 81 | 90.48 104 | 95.33 1 |
|
UGNet | | | 80.83 129 | 79.59 139 | 84.54 107 | 88.04 187 | 68.09 136 | 89.42 91 | 88.16 212 | 76.95 62 | 76.22 198 | 89.46 151 | 49.30 281 | 93.94 136 | 68.48 194 | 90.31 105 | 91.60 140 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
baseline | | | 84.93 71 | 84.98 68 | 84.80 102 | 87.30 211 | 65.39 188 | 87.30 163 | 92.88 58 | 77.62 41 | 84.04 81 | 92.26 82 | 71.81 54 | 93.96 133 | 81.31 80 | 90.30 106 | 95.03 6 |
|
MVSFormer | | | 82.85 94 | 82.05 100 | 85.24 85 | 87.35 206 | 70.21 88 | 90.50 65 | 90.38 146 | 68.55 231 | 81.32 112 | 89.47 149 | 61.68 161 | 93.46 163 | 78.98 96 | 90.26 107 | 92.05 131 |
|
lupinMVS | | | 81.39 119 | 80.27 128 | 84.76 103 | 87.35 206 | 70.21 88 | 85.55 213 | 86.41 245 | 62.85 293 | 81.32 112 | 88.61 171 | 61.68 161 | 92.24 210 | 78.41 104 | 90.26 107 | 91.83 135 |
|
DP-MVS Recon | | | 83.11 91 | 82.09 98 | 86.15 68 | 94.44 21 | 70.92 76 | 88.79 111 | 92.20 88 | 70.53 189 | 79.17 136 | 91.03 115 | 64.12 126 | 96.03 50 | 68.39 196 | 90.14 109 | 91.50 144 |
|
EIA-MVS | | | 83.31 87 | 82.80 89 | 84.82 100 | 89.59 126 | 65.59 183 | 88.21 136 | 92.68 66 | 74.66 115 | 78.96 138 | 86.42 237 | 69.06 82 | 95.26 84 | 75.54 132 | 90.09 110 | 93.62 75 |
|
MVS_111021_LR | | | 82.61 98 | 82.11 97 | 84.11 122 | 88.82 160 | 71.58 59 | 85.15 220 | 86.16 250 | 74.69 114 | 80.47 124 | 91.04 113 | 62.29 153 | 90.55 255 | 80.33 90 | 90.08 111 | 90.20 187 |
|
jason | | | 81.39 119 | 80.29 127 | 84.70 104 | 86.63 223 | 69.90 95 | 85.95 201 | 86.77 241 | 63.24 286 | 81.07 118 | 89.47 149 | 61.08 177 | 92.15 213 | 78.33 105 | 90.07 112 | 92.05 131 |
jason: jason. |
LFMVS | | | 81.82 109 | 81.23 110 | 83.57 142 | 91.89 84 | 63.43 227 | 89.84 81 | 81.85 304 | 77.04 61 | 83.21 89 | 93.10 65 | 52.26 243 | 93.43 165 | 71.98 160 | 89.95 113 | 93.85 58 |
|
MVS | | | 78.19 195 | 76.99 201 | 81.78 196 | 85.66 233 | 66.99 155 | 84.66 230 | 90.47 144 | 55.08 346 | 72.02 261 | 85.27 259 | 63.83 129 | 94.11 131 | 66.10 215 | 89.80 114 | 84.24 320 |
|
CANet_DTU | | | 80.61 137 | 79.87 132 | 82.83 172 | 85.60 235 | 63.17 234 | 87.36 160 | 88.65 206 | 76.37 79 | 75.88 207 | 88.44 177 | 53.51 234 | 93.07 181 | 73.30 150 | 89.74 115 | 92.25 124 |
|
PVSNet_Blended | | | 80.98 124 | 80.34 125 | 82.90 170 | 88.85 157 | 65.40 186 | 84.43 240 | 92.00 97 | 67.62 238 | 78.11 158 | 85.05 266 | 66.02 110 | 94.27 120 | 71.52 162 | 89.50 116 | 89.01 231 |
|
PAPM_NR | | | 83.02 92 | 82.41 92 | 84.82 100 | 92.47 77 | 66.37 167 | 87.93 146 | 91.80 107 | 73.82 134 | 77.32 173 | 90.66 121 | 67.90 90 | 94.90 102 | 70.37 173 | 89.48 117 | 93.19 92 |
|
114514_t | | | 80.68 136 | 79.51 140 | 84.20 120 | 94.09 41 | 67.27 152 | 89.64 89 | 91.11 131 | 58.75 327 | 74.08 241 | 90.72 120 | 58.10 198 | 95.04 94 | 69.70 181 | 89.42 118 | 90.30 184 |
|
LCM-MVSNet-Re | | | 77.05 219 | 76.94 202 | 77.36 280 | 87.20 213 | 51.60 346 | 80.06 294 | 80.46 317 | 75.20 102 | 67.69 300 | 86.72 221 | 62.48 149 | 88.98 279 | 63.44 233 | 89.25 119 | 91.51 143 |
|
alignmvs | | | 85.48 61 | 85.32 63 | 85.96 74 | 89.51 130 | 69.47 105 | 89.74 86 | 92.47 74 | 76.17 83 | 87.73 32 | 91.46 102 | 70.32 69 | 93.78 145 | 81.51 78 | 88.95 120 | 94.63 25 |
|
VNet | | | 82.21 101 | 82.41 92 | 81.62 199 | 90.82 99 | 60.93 259 | 84.47 236 | 89.78 164 | 76.36 80 | 84.07 80 | 91.88 90 | 64.71 123 | 90.26 257 | 70.68 170 | 88.89 121 | 93.66 67 |
|
PS-MVSNAJ | | | 81.69 112 | 81.02 114 | 83.70 139 | 89.51 130 | 68.21 135 | 84.28 244 | 90.09 157 | 70.79 183 | 81.26 116 | 85.62 253 | 63.15 139 | 94.29 118 | 75.62 130 | 88.87 122 | 88.59 247 |
|
canonicalmvs | | | 85.91 55 | 85.87 56 | 86.04 72 | 89.84 123 | 69.44 108 | 90.45 70 | 93.00 47 | 76.70 72 | 88.01 29 | 91.23 106 | 73.28 42 | 93.91 140 | 81.50 79 | 88.80 123 | 94.77 21 |
|
QAPM | | | 80.88 125 | 79.50 141 | 85.03 90 | 88.01 189 | 68.97 114 | 91.59 43 | 92.00 97 | 66.63 250 | 75.15 227 | 92.16 84 | 57.70 202 | 95.45 72 | 63.52 231 | 88.76 124 | 90.66 170 |
|
VDD-MVS | | | 83.01 93 | 82.36 94 | 84.96 93 | 91.02 94 | 66.40 166 | 88.91 106 | 88.11 213 | 77.57 43 | 84.39 74 | 93.29 62 | 52.19 244 | 93.91 140 | 77.05 117 | 88.70 125 | 94.57 28 |
|
PVSNet_Blended_VisFu | | | 82.62 97 | 81.83 105 | 84.96 93 | 90.80 100 | 69.76 98 | 88.74 115 | 91.70 112 | 69.39 209 | 78.96 138 | 88.46 176 | 65.47 115 | 94.87 105 | 74.42 137 | 88.57 126 | 90.24 186 |
|
xiu_mvs_v2_base | | | 81.69 112 | 81.05 113 | 83.60 140 | 89.15 149 | 68.03 138 | 84.46 238 | 90.02 158 | 70.67 186 | 81.30 115 | 86.53 235 | 63.17 138 | 94.19 126 | 75.60 131 | 88.54 127 | 88.57 248 |
|
PAPR | | | 81.66 114 | 80.89 117 | 83.99 133 | 90.27 109 | 64.00 212 | 86.76 181 | 91.77 111 | 68.84 227 | 77.13 181 | 89.50 147 | 67.63 92 | 94.88 104 | 67.55 201 | 88.52 128 | 93.09 94 |
|
MVS_Test | | | 83.15 88 | 83.06 84 | 83.41 147 | 86.86 217 | 63.21 231 | 86.11 198 | 92.00 97 | 74.31 122 | 82.87 94 | 89.44 154 | 70.03 71 | 93.21 170 | 77.39 114 | 88.50 129 | 93.81 62 |
|
AdaColmap |  | | 80.58 140 | 79.42 142 | 84.06 126 | 93.09 61 | 68.91 115 | 89.36 92 | 88.97 194 | 69.27 212 | 75.70 210 | 89.69 141 | 57.20 210 | 95.77 60 | 63.06 237 | 88.41 130 | 87.50 269 |
|
VDDNet | | | 81.52 116 | 80.67 119 | 84.05 127 | 90.44 107 | 64.13 211 | 89.73 87 | 85.91 253 | 71.11 177 | 83.18 90 | 93.48 57 | 50.54 267 | 93.49 160 | 73.40 149 | 88.25 131 | 94.54 29 |
|
PCF-MVS | | 73.52 7 | 80.38 143 | 78.84 157 | 85.01 91 | 87.71 198 | 68.99 113 | 83.65 254 | 91.46 121 | 63.00 290 | 77.77 165 | 90.28 126 | 66.10 107 | 95.09 93 | 61.40 253 | 88.22 132 | 90.94 162 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
Effi-MVS+ | | | 83.62 81 | 83.08 83 | 85.24 85 | 88.38 178 | 67.45 147 | 88.89 107 | 89.15 185 | 75.50 95 | 82.27 100 | 88.28 181 | 69.61 76 | 94.45 116 | 77.81 109 | 87.84 133 | 93.84 60 |
|
gg-mvs-nofinetune | | | 69.95 290 | 67.96 293 | 75.94 292 | 83.07 280 | 54.51 329 | 77.23 320 | 70.29 355 | 63.11 288 | 70.32 275 | 62.33 358 | 43.62 317 | 88.69 284 | 53.88 304 | 87.76 134 | 84.62 318 |
|
Regformer-3 | | | 85.23 66 | 85.07 67 | 85.70 76 | 88.95 155 | 69.01 112 | 88.29 133 | 89.91 162 | 80.95 8 | 85.01 53 | 90.01 134 | 72.45 49 | 94.19 126 | 82.50 73 | 87.57 135 | 93.90 56 |
|
Regformer-4 | | | 85.68 60 | 85.45 60 | 86.35 62 | 88.95 155 | 69.67 100 | 88.29 133 | 91.29 124 | 81.73 5 | 85.36 49 | 90.01 134 | 72.62 48 | 95.35 83 | 83.28 60 | 87.57 135 | 94.03 48 |
|
xiu_mvs_v1_base_debu | | | 80.80 132 | 79.72 136 | 84.03 130 | 87.35 206 | 70.19 90 | 85.56 210 | 88.77 199 | 69.06 220 | 81.83 104 | 88.16 185 | 50.91 261 | 92.85 188 | 78.29 106 | 87.56 137 | 89.06 226 |
|
xiu_mvs_v1_base | | | 80.80 132 | 79.72 136 | 84.03 130 | 87.35 206 | 70.19 90 | 85.56 210 | 88.77 199 | 69.06 220 | 81.83 104 | 88.16 185 | 50.91 261 | 92.85 188 | 78.29 106 | 87.56 137 | 89.06 226 |
|
xiu_mvs_v1_base_debi | | | 80.80 132 | 79.72 136 | 84.03 130 | 87.35 206 | 70.19 90 | 85.56 210 | 88.77 199 | 69.06 220 | 81.83 104 | 88.16 185 | 50.91 261 | 92.85 188 | 78.29 106 | 87.56 137 | 89.06 226 |
|
CLD-MVS | | | 82.31 100 | 81.65 106 | 84.29 118 | 88.47 174 | 67.73 143 | 85.81 208 | 92.35 80 | 75.78 89 | 78.33 153 | 86.58 232 | 64.01 127 | 94.35 117 | 76.05 125 | 87.48 140 | 90.79 165 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
CDS-MVSNet | | | 79.07 174 | 77.70 186 | 83.17 157 | 87.60 201 | 68.23 134 | 84.40 242 | 86.20 249 | 67.49 240 | 76.36 195 | 86.54 234 | 61.54 164 | 90.79 251 | 61.86 249 | 87.33 141 | 90.49 177 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
diffmvs | | | 82.10 102 | 81.88 104 | 82.76 180 | 83.00 283 | 63.78 217 | 83.68 253 | 89.76 165 | 72.94 151 | 82.02 103 | 89.85 138 | 65.96 112 | 90.79 251 | 82.38 75 | 87.30 142 | 93.71 66 |
|
EPP-MVSNet | | | 83.40 85 | 83.02 85 | 84.57 106 | 90.13 112 | 64.47 204 | 92.32 29 | 90.73 138 | 74.45 121 | 79.35 135 | 91.10 110 | 69.05 83 | 95.12 88 | 72.78 156 | 87.22 143 | 94.13 43 |
|
TAMVS | | | 78.89 179 | 77.51 191 | 83.03 164 | 87.80 194 | 67.79 142 | 84.72 229 | 85.05 261 | 67.63 237 | 76.75 186 | 87.70 194 | 62.25 154 | 90.82 250 | 58.53 278 | 87.13 144 | 90.49 177 |
|
TAPA-MVS | | 73.13 9 | 79.15 171 | 77.94 176 | 82.79 177 | 89.59 126 | 62.99 238 | 88.16 139 | 91.51 117 | 65.77 259 | 77.14 180 | 91.09 111 | 60.91 179 | 93.21 170 | 50.26 322 | 87.05 145 | 92.17 128 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PAPM | | | 77.68 209 | 76.40 216 | 81.51 202 | 87.29 212 | 61.85 250 | 83.78 252 | 89.59 170 | 64.74 271 | 71.23 267 | 88.70 167 | 62.59 147 | 93.66 153 | 52.66 309 | 87.03 146 | 89.01 231 |
|
test_yl | | | 81.17 121 | 80.47 123 | 83.24 153 | 89.13 150 | 63.62 218 | 86.21 195 | 89.95 160 | 72.43 156 | 81.78 108 | 89.61 144 | 57.50 205 | 93.58 154 | 70.75 168 | 86.90 147 | 92.52 112 |
|
DCV-MVSNet | | | 81.17 121 | 80.47 123 | 83.24 153 | 89.13 150 | 63.62 218 | 86.21 195 | 89.95 160 | 72.43 156 | 81.78 108 | 89.61 144 | 57.50 205 | 93.58 154 | 70.75 168 | 86.90 147 | 92.52 112 |
|
BH-untuned | | | 79.47 161 | 78.60 160 | 82.05 191 | 89.19 148 | 65.91 176 | 86.07 199 | 88.52 209 | 72.18 159 | 75.42 217 | 87.69 195 | 61.15 175 | 93.54 158 | 60.38 260 | 86.83 149 | 86.70 289 |
|
BH-RMVSNet | | | 79.61 156 | 78.44 164 | 83.14 158 | 89.38 136 | 65.93 175 | 84.95 225 | 87.15 236 | 73.56 139 | 78.19 156 | 89.79 139 | 56.67 213 | 93.36 166 | 59.53 267 | 86.74 150 | 90.13 190 |
|
LS3D | | | 76.95 222 | 74.82 234 | 83.37 148 | 90.45 106 | 67.36 151 | 89.15 100 | 86.94 239 | 61.87 303 | 69.52 288 | 90.61 122 | 51.71 255 | 94.53 113 | 46.38 342 | 86.71 151 | 88.21 254 |
|
Fast-Effi-MVS+ | | | 80.81 130 | 79.92 131 | 83.47 143 | 88.85 157 | 64.51 201 | 85.53 215 | 89.39 174 | 70.79 183 | 78.49 149 | 85.06 265 | 67.54 93 | 93.58 154 | 67.03 210 | 86.58 152 | 92.32 120 |
|
EPNet_dtu | | | 75.46 242 | 74.86 233 | 77.23 284 | 82.57 294 | 54.60 327 | 86.89 174 | 83.09 292 | 71.64 166 | 66.25 318 | 85.86 247 | 55.99 215 | 88.04 292 | 54.92 300 | 86.55 153 | 89.05 229 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
OPM-MVS | | | 83.50 82 | 82.95 86 | 85.14 87 | 88.79 163 | 70.95 73 | 89.13 101 | 91.52 116 | 77.55 46 | 80.96 119 | 91.75 92 | 60.71 181 | 94.50 115 | 79.67 94 | 86.51 154 | 89.97 204 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
OMC-MVS | | | 82.69 96 | 81.97 103 | 84.85 99 | 88.75 165 | 67.42 148 | 87.98 142 | 90.87 136 | 74.92 108 | 79.72 131 | 91.65 94 | 62.19 156 | 93.96 133 | 75.26 134 | 86.42 155 | 93.16 93 |
|
HQP_MVS | | | 83.64 80 | 83.14 82 | 85.14 87 | 90.08 114 | 68.71 122 | 91.25 50 | 92.44 75 | 79.12 26 | 78.92 140 | 91.00 116 | 60.42 187 | 95.38 79 | 78.71 98 | 86.32 156 | 91.33 149 |
|
plane_prior5 | | | | | | | | | 92.44 75 | | | | | 95.38 79 | 78.71 98 | 86.32 156 | 91.33 149 |
|
thisisatest0515 | | | 77.33 215 | 75.38 228 | 83.18 156 | 85.27 240 | 63.80 216 | 82.11 274 | 83.27 287 | 65.06 267 | 75.91 205 | 83.84 279 | 49.54 277 | 94.27 120 | 67.24 206 | 86.19 158 | 91.48 146 |
|
plane_prior | | | | | | | 68.71 122 | 90.38 71 | | 77.62 41 | | | | | | 86.16 159 | |
|
mvs_anonymous | | | 79.42 164 | 79.11 152 | 80.34 231 | 84.45 253 | 57.97 290 | 82.59 269 | 87.62 226 | 67.40 241 | 76.17 202 | 88.56 174 | 68.47 86 | 89.59 268 | 70.65 171 | 86.05 160 | 93.47 81 |
|
GeoE | | | 81.71 111 | 81.01 115 | 83.80 138 | 89.51 130 | 64.45 205 | 88.97 104 | 88.73 205 | 71.27 175 | 78.63 146 | 89.76 140 | 66.32 105 | 93.20 172 | 69.89 179 | 86.02 161 | 93.74 65 |
|
HQP3-MVS | | | | | | | | | 92.19 89 | | | | | | | 85.99 162 | |
|
HQP-MVS | | | 82.61 98 | 82.02 101 | 84.37 113 | 89.33 137 | 66.98 156 | 89.17 96 | 92.19 89 | 76.41 75 | 77.23 176 | 90.23 128 | 60.17 190 | 95.11 89 | 77.47 112 | 85.99 162 | 91.03 158 |
|
BH-w/o | | | 78.21 193 | 77.33 195 | 80.84 221 | 88.81 161 | 65.13 193 | 84.87 226 | 87.85 223 | 69.75 204 | 74.52 237 | 84.74 269 | 61.34 170 | 93.11 179 | 58.24 281 | 85.84 164 | 84.27 319 |
|
CHOSEN 1792x2688 | | | 77.63 210 | 75.69 220 | 83.44 144 | 89.98 120 | 68.58 128 | 78.70 309 | 87.50 229 | 56.38 341 | 75.80 209 | 86.84 217 | 58.67 195 | 91.40 235 | 61.58 252 | 85.75 165 | 90.34 183 |
|
Anonymous202405211 | | | 78.25 191 | 77.01 199 | 81.99 193 | 91.03 93 | 60.67 264 | 84.77 228 | 83.90 276 | 70.65 188 | 80.00 129 | 91.20 108 | 41.08 332 | 91.43 234 | 65.21 222 | 85.26 166 | 93.85 58 |
|
cascas | | | 76.72 225 | 74.64 235 | 82.99 166 | 85.78 232 | 65.88 177 | 82.33 272 | 89.21 182 | 60.85 309 | 72.74 251 | 81.02 310 | 47.28 294 | 93.75 149 | 67.48 202 | 85.02 167 | 89.34 221 |
|
FIs | | | 82.07 104 | 82.42 91 | 81.04 217 | 88.80 162 | 58.34 284 | 88.26 135 | 93.49 29 | 76.93 63 | 78.47 150 | 91.04 113 | 69.92 73 | 92.34 205 | 69.87 180 | 84.97 168 | 92.44 118 |
|
test-LLR | | | 72.94 268 | 72.43 257 | 74.48 306 | 81.35 313 | 58.04 288 | 78.38 310 | 77.46 334 | 66.66 247 | 69.95 283 | 79.00 328 | 48.06 289 | 79.24 340 | 66.13 213 | 84.83 169 | 86.15 297 |
|
test-mter | | | 71.41 277 | 70.39 278 | 74.48 306 | 81.35 313 | 58.04 288 | 78.38 310 | 77.46 334 | 60.32 312 | 69.95 283 | 79.00 328 | 36.08 349 | 79.24 340 | 66.13 213 | 84.83 169 | 86.15 297 |
|
EI-MVSNet-Vis-set | | | 84.19 74 | 83.81 77 | 85.31 82 | 88.18 182 | 67.85 140 | 87.66 153 | 89.73 167 | 80.05 16 | 82.95 92 | 89.59 146 | 70.74 65 | 94.82 106 | 80.66 88 | 84.72 171 | 93.28 87 |
|
thisisatest0530 | | | 79.40 165 | 77.76 184 | 84.31 117 | 87.69 200 | 65.10 194 | 87.36 160 | 84.26 272 | 70.04 196 | 77.42 170 | 88.26 183 | 49.94 273 | 94.79 108 | 70.20 174 | 84.70 172 | 93.03 97 |
|
GG-mvs-BLEND | | | | | 75.38 299 | 81.59 308 | 55.80 321 | 79.32 301 | 69.63 357 | | 67.19 305 | 73.67 351 | 43.24 318 | 88.90 283 | 50.41 317 | 84.50 173 | 81.45 341 |
|
FC-MVSNet-test | | | 81.52 116 | 82.02 101 | 80.03 237 | 88.42 177 | 55.97 320 | 87.95 144 | 93.42 33 | 77.10 59 | 77.38 171 | 90.98 118 | 69.96 72 | 91.79 224 | 68.46 195 | 84.50 173 | 92.33 119 |
|
PVSNet | | 64.34 18 | 72.08 275 | 70.87 274 | 75.69 294 | 86.21 227 | 56.44 313 | 74.37 335 | 80.73 312 | 62.06 302 | 70.17 278 | 82.23 301 | 42.86 321 | 83.31 326 | 54.77 301 | 84.45 175 | 87.32 273 |
|
MS-PatchMatch | | | 73.83 256 | 72.67 255 | 77.30 282 | 83.87 263 | 66.02 172 | 81.82 275 | 84.66 264 | 61.37 307 | 68.61 295 | 82.82 293 | 47.29 293 | 88.21 289 | 59.27 268 | 84.32 176 | 77.68 353 |
|
ET-MVSNet_ETH3D | | | 78.63 183 | 76.63 212 | 84.64 105 | 86.73 222 | 69.47 105 | 85.01 223 | 84.61 265 | 69.54 207 | 66.51 316 | 86.59 230 | 50.16 270 | 91.75 225 | 76.26 123 | 84.24 177 | 92.69 109 |
|
TESTMET0.1,1 | | | 69.89 291 | 69.00 284 | 72.55 318 | 79.27 340 | 56.85 305 | 78.38 310 | 74.71 348 | 57.64 333 | 68.09 297 | 77.19 341 | 37.75 344 | 76.70 351 | 63.92 230 | 84.09 178 | 84.10 323 |
|
EI-MVSNet-UG-set | | | 83.81 76 | 83.38 80 | 85.09 89 | 87.87 191 | 67.53 146 | 87.44 159 | 89.66 169 | 79.74 19 | 82.23 101 | 89.41 155 | 70.24 70 | 94.74 109 | 79.95 92 | 83.92 179 | 92.99 101 |
|
LPG-MVS_test | | | 82.08 103 | 81.27 109 | 84.50 108 | 89.23 146 | 68.76 118 | 90.22 75 | 91.94 101 | 75.37 98 | 76.64 189 | 91.51 99 | 54.29 227 | 94.91 100 | 78.44 102 | 83.78 180 | 89.83 209 |
|
LGP-MVS_train | | | | | 84.50 108 | 89.23 146 | 68.76 118 | | 91.94 101 | 75.37 98 | 76.64 189 | 91.51 99 | 54.29 227 | 94.91 100 | 78.44 102 | 83.78 180 | 89.83 209 |
|
thres100view900 | | | 76.50 227 | 75.55 223 | 79.33 251 | 89.52 129 | 56.99 304 | 85.83 207 | 83.23 288 | 73.94 131 | 76.32 196 | 87.12 213 | 51.89 252 | 91.95 219 | 48.33 330 | 83.75 182 | 89.07 224 |
|
tfpn200view9 | | | 76.42 230 | 75.37 229 | 79.55 250 | 89.13 150 | 57.65 296 | 85.17 218 | 83.60 279 | 73.41 144 | 76.45 191 | 86.39 238 | 52.12 245 | 91.95 219 | 48.33 330 | 83.75 182 | 89.07 224 |
|
thres400 | | | 76.50 227 | 75.37 229 | 79.86 240 | 89.13 150 | 57.65 296 | 85.17 218 | 83.60 279 | 73.41 144 | 76.45 191 | 86.39 238 | 52.12 245 | 91.95 219 | 48.33 330 | 83.75 182 | 90.00 200 |
|
thres600view7 | | | 76.50 227 | 75.44 225 | 79.68 245 | 89.40 134 | 57.16 301 | 85.53 215 | 83.23 288 | 73.79 135 | 76.26 197 | 87.09 214 | 51.89 252 | 91.89 222 | 48.05 335 | 83.72 185 | 90.00 200 |
|
thres200 | | | 75.55 241 | 74.47 239 | 78.82 258 | 87.78 197 | 57.85 293 | 83.07 266 | 83.51 282 | 72.44 155 | 75.84 208 | 84.42 271 | 52.08 247 | 91.75 225 | 47.41 337 | 83.64 186 | 86.86 285 |
|
XVG-OURS | | | 80.41 142 | 79.23 149 | 83.97 134 | 85.64 234 | 69.02 111 | 83.03 267 | 90.39 145 | 71.09 178 | 77.63 167 | 91.49 101 | 54.62 226 | 91.35 236 | 75.71 128 | 83.47 187 | 91.54 142 |
|
CNLPA | | | 78.08 197 | 76.79 206 | 81.97 194 | 90.40 108 | 71.07 69 | 87.59 155 | 84.55 266 | 66.03 257 | 72.38 257 | 89.64 143 | 57.56 204 | 86.04 306 | 59.61 266 | 83.35 188 | 88.79 242 |
|
MVP-Stereo | | | 76.12 234 | 74.46 240 | 81.13 215 | 85.37 239 | 69.79 97 | 84.42 241 | 87.95 219 | 65.03 268 | 67.46 302 | 85.33 258 | 53.28 236 | 91.73 227 | 58.01 283 | 83.27 189 | 81.85 339 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
1314 | | | 76.53 226 | 75.30 231 | 80.21 234 | 83.93 262 | 62.32 244 | 84.66 230 | 88.81 197 | 60.23 313 | 70.16 279 | 84.07 276 | 55.30 218 | 90.73 253 | 67.37 203 | 83.21 190 | 87.59 267 |
|
tttt0517 | | | 79.40 165 | 77.91 177 | 83.90 137 | 88.10 185 | 63.84 215 | 88.37 130 | 84.05 274 | 71.45 173 | 76.78 185 | 89.12 159 | 49.93 275 | 94.89 103 | 70.18 175 | 83.18 191 | 92.96 102 |
|
mvs-test1 | | | 80.88 125 | 79.40 143 | 85.29 83 | 85.13 244 | 69.75 99 | 89.28 93 | 88.10 214 | 74.99 106 | 76.44 194 | 86.72 221 | 57.27 208 | 94.26 124 | 73.53 145 | 83.18 191 | 91.87 134 |
|
HyFIR lowres test | | | 77.53 211 | 75.40 227 | 83.94 136 | 89.59 126 | 66.62 161 | 80.36 291 | 88.64 207 | 56.29 342 | 76.45 191 | 85.17 262 | 57.64 203 | 93.28 168 | 61.34 255 | 83.10 193 | 91.91 133 |
|
ACMP | | 74.13 6 | 81.51 118 | 80.57 120 | 84.36 114 | 89.42 133 | 68.69 125 | 89.97 80 | 91.50 120 | 74.46 120 | 75.04 231 | 90.41 125 | 53.82 232 | 94.54 112 | 77.56 111 | 82.91 194 | 89.86 208 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
ACMM | | 73.20 8 | 80.78 135 | 79.84 133 | 83.58 141 | 89.31 142 | 68.37 130 | 89.99 79 | 91.60 114 | 70.28 193 | 77.25 174 | 89.66 142 | 53.37 235 | 93.53 159 | 74.24 140 | 82.85 195 | 88.85 239 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
PMMVS | | | 69.34 293 | 68.67 285 | 71.35 325 | 75.67 351 | 62.03 247 | 75.17 329 | 73.46 350 | 50.00 355 | 68.68 293 | 79.05 326 | 52.07 248 | 78.13 345 | 61.16 256 | 82.77 196 | 73.90 356 |
|
PLC |  | 70.83 11 | 78.05 199 | 76.37 217 | 83.08 161 | 91.88 85 | 67.80 141 | 88.19 137 | 89.46 173 | 64.33 277 | 69.87 285 | 88.38 178 | 53.66 233 | 93.58 154 | 58.86 274 | 82.73 197 | 87.86 260 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
TR-MVS | | | 77.44 212 | 76.18 218 | 81.20 212 | 88.24 181 | 63.24 230 | 84.61 234 | 86.40 246 | 67.55 239 | 77.81 163 | 86.48 236 | 54.10 229 | 93.15 176 | 57.75 285 | 82.72 198 | 87.20 276 |
|
Anonymous20240529 | | | 80.19 148 | 78.89 156 | 84.10 123 | 90.60 103 | 64.75 198 | 88.95 105 | 90.90 135 | 65.97 258 | 80.59 122 | 91.17 109 | 49.97 272 | 93.73 151 | 69.16 187 | 82.70 199 | 93.81 62 |
|
ab-mvs | | | 79.51 159 | 78.97 155 | 81.14 214 | 88.46 175 | 60.91 260 | 83.84 251 | 89.24 181 | 70.36 191 | 79.03 137 | 88.87 165 | 63.23 137 | 90.21 259 | 65.12 223 | 82.57 200 | 92.28 123 |
|
HY-MVS | | 69.67 12 | 77.95 202 | 77.15 197 | 80.36 230 | 87.57 205 | 60.21 271 | 83.37 261 | 87.78 224 | 66.11 254 | 75.37 219 | 87.06 216 | 63.27 135 | 90.48 256 | 61.38 254 | 82.43 201 | 90.40 181 |
|
PS-MVSNAJss | | | 82.07 104 | 81.31 108 | 84.34 116 | 86.51 224 | 67.27 152 | 89.27 94 | 91.51 117 | 71.75 165 | 79.37 134 | 90.22 129 | 63.15 139 | 94.27 120 | 77.69 110 | 82.36 202 | 91.49 145 |
|
UniMVSNet_ETH3D | | | 79.10 173 | 78.24 171 | 81.70 198 | 86.85 218 | 60.24 270 | 87.28 164 | 88.79 198 | 74.25 125 | 76.84 182 | 90.53 124 | 49.48 278 | 91.56 230 | 67.98 197 | 82.15 203 | 93.29 86 |
|
PVSNet_BlendedMVS | | | 80.60 138 | 80.02 129 | 82.36 187 | 88.85 157 | 65.40 186 | 86.16 197 | 92.00 97 | 69.34 211 | 78.11 158 | 86.09 244 | 66.02 110 | 94.27 120 | 71.52 162 | 82.06 204 | 87.39 270 |
|
WTY-MVS | | | 75.65 240 | 75.68 221 | 75.57 296 | 86.40 225 | 56.82 306 | 77.92 317 | 82.40 298 | 65.10 266 | 76.18 200 | 87.72 193 | 63.13 142 | 80.90 336 | 60.31 261 | 81.96 205 | 89.00 233 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 81.95 206 | |
|
DP-MVS | | | 76.78 224 | 74.57 236 | 83.42 145 | 93.29 54 | 69.46 107 | 88.55 122 | 83.70 278 | 63.98 283 | 70.20 276 | 88.89 164 | 54.01 231 | 94.80 107 | 46.66 339 | 81.88 207 | 86.01 301 |
|
CMPMVS |  | 51.72 21 | 70.19 288 | 68.16 290 | 76.28 290 | 73.15 363 | 57.55 298 | 79.47 300 | 83.92 275 | 48.02 356 | 56.48 355 | 84.81 267 | 43.13 319 | 86.42 304 | 62.67 241 | 81.81 208 | 84.89 313 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
XVG-OURS-SEG-HR | | | 80.81 130 | 79.76 135 | 83.96 135 | 85.60 235 | 68.78 117 | 83.54 259 | 90.50 143 | 70.66 187 | 76.71 187 | 91.66 93 | 60.69 182 | 91.26 238 | 76.94 119 | 81.58 209 | 91.83 135 |
|
MIMVSNet | | | 70.69 282 | 69.30 281 | 74.88 303 | 84.52 251 | 56.35 316 | 75.87 327 | 79.42 326 | 64.59 272 | 67.76 298 | 82.41 297 | 41.10 331 | 81.54 333 | 46.64 341 | 81.34 210 | 86.75 288 |
|
ACMMP++ | | | | | | | | | | | | | | | | 81.25 211 | |
|
D2MVS | | | 74.82 247 | 73.21 251 | 79.64 247 | 79.81 331 | 62.56 241 | 80.34 292 | 87.35 232 | 64.37 276 | 68.86 292 | 82.66 295 | 46.37 299 | 90.10 261 | 67.91 198 | 81.24 212 | 86.25 294 |
|
GA-MVS | | | 76.87 223 | 75.17 232 | 81.97 194 | 82.75 289 | 62.58 240 | 81.44 282 | 86.35 248 | 72.16 161 | 74.74 235 | 82.89 291 | 46.20 302 | 92.02 217 | 68.85 191 | 81.09 213 | 91.30 151 |
|
sss | | | 73.60 258 | 73.64 248 | 73.51 313 | 82.80 288 | 55.01 325 | 76.12 323 | 81.69 305 | 62.47 298 | 74.68 236 | 85.85 248 | 57.32 207 | 78.11 346 | 60.86 258 | 80.93 214 | 87.39 270 |
|
Effi-MVS+-dtu | | | 80.03 150 | 78.57 161 | 84.42 111 | 85.13 244 | 68.74 120 | 88.77 112 | 88.10 214 | 74.99 106 | 74.97 232 | 83.49 285 | 57.27 208 | 93.36 166 | 73.53 145 | 80.88 215 | 91.18 153 |
|
EG-PatchMatch MVS | | | 74.04 254 | 71.82 263 | 80.71 224 | 84.92 247 | 67.42 148 | 85.86 205 | 88.08 216 | 66.04 256 | 64.22 330 | 83.85 278 | 35.10 351 | 92.56 195 | 57.44 287 | 80.83 216 | 82.16 338 |
|
jajsoiax | | | 79.29 168 | 77.96 175 | 83.27 151 | 84.68 250 | 66.57 164 | 89.25 95 | 90.16 155 | 69.20 216 | 75.46 215 | 89.49 148 | 45.75 307 | 93.13 178 | 76.84 120 | 80.80 217 | 90.11 192 |
|
1112_ss | | | 77.40 214 | 76.43 215 | 80.32 232 | 89.11 154 | 60.41 269 | 83.65 254 | 87.72 225 | 62.13 301 | 73.05 249 | 86.72 221 | 62.58 148 | 89.97 262 | 62.11 247 | 80.80 217 | 90.59 174 |
|
mvs_tets | | | 79.13 172 | 77.77 183 | 83.22 155 | 84.70 249 | 66.37 167 | 89.17 96 | 90.19 154 | 69.38 210 | 75.40 218 | 89.46 151 | 44.17 315 | 93.15 176 | 76.78 121 | 80.70 219 | 90.14 189 |
|
PatchMatch-RL | | | 72.38 272 | 70.90 272 | 76.80 288 | 88.60 170 | 67.38 150 | 79.53 299 | 76.17 342 | 62.75 295 | 69.36 290 | 82.00 305 | 45.51 308 | 84.89 315 | 53.62 305 | 80.58 220 | 78.12 352 |
|
EI-MVSNet | | | 80.52 141 | 79.98 130 | 82.12 188 | 84.28 254 | 63.19 233 | 86.41 189 | 88.95 195 | 74.18 127 | 78.69 143 | 87.54 200 | 66.62 100 | 92.43 199 | 72.57 158 | 80.57 221 | 90.74 168 |
|
MVSTER | | | 79.01 175 | 77.88 179 | 82.38 186 | 83.07 280 | 64.80 197 | 84.08 250 | 88.95 195 | 69.01 223 | 78.69 143 | 87.17 212 | 54.70 224 | 92.43 199 | 74.69 136 | 80.57 221 | 89.89 207 |
|
XVG-ACMP-BASELINE | | | 76.11 235 | 74.27 242 | 81.62 199 | 83.20 276 | 64.67 199 | 83.60 257 | 89.75 166 | 69.75 204 | 71.85 262 | 87.09 214 | 32.78 355 | 92.11 214 | 69.99 178 | 80.43 223 | 88.09 255 |
|
Fast-Effi-MVS+-dtu | | | 78.02 200 | 76.49 213 | 82.62 182 | 83.16 279 | 66.96 159 | 86.94 172 | 87.45 231 | 72.45 153 | 71.49 266 | 84.17 274 | 54.79 223 | 91.58 229 | 67.61 200 | 80.31 224 | 89.30 222 |
|
LTVRE_ROB | | 69.57 13 | 76.25 233 | 74.54 238 | 81.41 204 | 88.60 170 | 64.38 207 | 79.24 302 | 89.12 188 | 70.76 185 | 69.79 287 | 87.86 192 | 49.09 283 | 93.20 172 | 56.21 297 | 80.16 225 | 86.65 290 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
Test_1112_low_res | | | 76.40 231 | 75.44 225 | 79.27 252 | 89.28 144 | 58.09 286 | 81.69 278 | 87.07 237 | 59.53 320 | 72.48 255 | 86.67 227 | 61.30 171 | 89.33 272 | 60.81 259 | 80.15 226 | 90.41 180 |
|
test_djsdf | | | 80.30 145 | 79.32 146 | 83.27 151 | 83.98 261 | 65.37 189 | 90.50 65 | 90.38 146 | 68.55 231 | 76.19 199 | 88.70 167 | 56.44 214 | 93.46 163 | 78.98 96 | 80.14 227 | 90.97 161 |
|
CHOSEN 280x420 | | | 66.51 310 | 64.71 311 | 71.90 320 | 81.45 310 | 63.52 223 | 57.98 362 | 68.95 361 | 53.57 348 | 62.59 339 | 76.70 342 | 46.22 301 | 75.29 358 | 55.25 299 | 79.68 228 | 76.88 355 |
|
MVS_0304 | | | 72.48 270 | 70.89 273 | 77.24 283 | 82.20 300 | 59.68 273 | 84.11 248 | 83.49 283 | 67.10 242 | 66.87 309 | 80.59 315 | 35.00 352 | 87.40 297 | 59.07 272 | 79.58 229 | 84.63 317 |
|
baseline2 | | | 75.70 239 | 73.83 247 | 81.30 209 | 83.26 274 | 61.79 252 | 82.57 270 | 80.65 313 | 66.81 243 | 66.88 308 | 83.42 286 | 57.86 201 | 92.19 211 | 63.47 232 | 79.57 230 | 89.91 205 |
|
GBi-Net | | | 78.40 187 | 77.40 192 | 81.40 205 | 87.60 201 | 63.01 235 | 88.39 127 | 89.28 177 | 71.63 167 | 75.34 220 | 87.28 205 | 54.80 220 | 91.11 241 | 62.72 238 | 79.57 230 | 90.09 194 |
|
test1 | | | 78.40 187 | 77.40 192 | 81.40 205 | 87.60 201 | 63.01 235 | 88.39 127 | 89.28 177 | 71.63 167 | 75.34 220 | 87.28 205 | 54.80 220 | 91.11 241 | 62.72 238 | 79.57 230 | 90.09 194 |
|
FMVSNet3 | | | 77.88 204 | 76.85 204 | 80.97 219 | 86.84 219 | 62.36 242 | 86.52 188 | 88.77 199 | 71.13 176 | 75.34 220 | 86.66 228 | 54.07 230 | 91.10 244 | 62.72 238 | 79.57 230 | 89.45 219 |
|
FMVSNet2 | | | 78.20 194 | 77.21 196 | 81.20 212 | 87.60 201 | 62.89 239 | 87.47 158 | 89.02 190 | 71.63 167 | 75.29 224 | 87.28 205 | 54.80 220 | 91.10 244 | 62.38 242 | 79.38 234 | 89.61 216 |
|
anonymousdsp | | | 78.60 184 | 77.15 197 | 82.98 167 | 80.51 324 | 67.08 154 | 87.24 165 | 89.53 171 | 65.66 261 | 75.16 226 | 87.19 211 | 52.52 238 | 92.25 209 | 77.17 116 | 79.34 235 | 89.61 216 |
|
RRT_MVS | | | 79.88 153 | 78.38 166 | 84.38 112 | 85.42 238 | 70.60 84 | 88.71 117 | 88.75 203 | 72.30 158 | 78.83 142 | 89.14 157 | 44.44 313 | 92.18 212 | 78.50 101 | 79.33 236 | 90.35 182 |
|
nrg030 | | | 83.88 75 | 83.53 78 | 84.96 93 | 86.77 221 | 69.28 109 | 90.46 69 | 92.67 67 | 74.79 111 | 82.95 92 | 91.33 105 | 72.70 47 | 93.09 180 | 80.79 87 | 79.28 237 | 92.50 114 |
|
VPA-MVSNet | | | 80.60 138 | 80.55 121 | 80.76 223 | 88.07 186 | 60.80 262 | 86.86 175 | 91.58 115 | 75.67 93 | 80.24 126 | 89.45 153 | 63.34 133 | 90.25 258 | 70.51 172 | 79.22 238 | 91.23 152 |
|
F-COLMAP | | | 76.38 232 | 74.33 241 | 82.50 184 | 89.28 144 | 66.95 160 | 88.41 126 | 89.03 189 | 64.05 281 | 66.83 310 | 88.61 171 | 46.78 297 | 92.89 187 | 57.48 286 | 78.55 239 | 87.67 263 |
|
FMVSNet1 | | | 77.44 212 | 76.12 219 | 81.40 205 | 86.81 220 | 63.01 235 | 88.39 127 | 89.28 177 | 70.49 190 | 74.39 238 | 87.28 205 | 49.06 284 | 91.11 241 | 60.91 257 | 78.52 240 | 90.09 194 |
|
MDTV_nov1_ep13 | | | | 69.97 280 | | 83.18 277 | 53.48 336 | 77.10 321 | 80.18 322 | 60.45 310 | 69.33 291 | 80.44 316 | 48.89 287 | 86.90 300 | 51.60 313 | 78.51 241 | |
|
CVMVSNet | | | 72.99 267 | 72.58 256 | 74.25 309 | 84.28 254 | 50.85 351 | 86.41 189 | 83.45 285 | 44.56 357 | 73.23 247 | 87.54 200 | 49.38 279 | 85.70 308 | 65.90 217 | 78.44 242 | 86.19 296 |
|
tpm2 | | | 73.26 263 | 71.46 265 | 78.63 260 | 83.34 272 | 56.71 309 | 80.65 288 | 80.40 318 | 56.63 340 | 73.55 243 | 82.02 304 | 51.80 254 | 91.24 239 | 56.35 296 | 78.42 243 | 87.95 256 |
|
CostFormer | | | 75.24 246 | 73.90 245 | 79.27 252 | 82.65 293 | 58.27 285 | 80.80 284 | 82.73 296 | 61.57 304 | 75.33 223 | 83.13 289 | 55.52 216 | 91.07 247 | 64.98 225 | 78.34 244 | 88.45 250 |
|
ACMH | | 67.68 16 | 75.89 237 | 73.93 244 | 81.77 197 | 88.71 167 | 66.61 162 | 88.62 119 | 89.01 191 | 69.81 201 | 66.78 311 | 86.70 226 | 41.95 329 | 91.51 233 | 55.64 298 | 78.14 245 | 87.17 277 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
bset_n11_16_dypcd | | | 77.12 218 | 75.47 224 | 82.06 190 | 81.12 317 | 65.99 173 | 81.37 283 | 83.20 290 | 69.94 199 | 76.09 204 | 83.38 287 | 47.75 291 | 92.26 208 | 78.51 100 | 77.91 246 | 87.95 256 |
|
CR-MVSNet | | | 73.37 260 | 71.27 269 | 79.67 246 | 81.32 315 | 65.19 191 | 75.92 325 | 80.30 319 | 59.92 316 | 72.73 252 | 81.19 307 | 52.50 239 | 86.69 301 | 59.84 264 | 77.71 247 | 87.11 281 |
|
RPMNet | | | 73.51 259 | 70.49 275 | 82.58 183 | 81.32 315 | 65.19 191 | 75.92 325 | 92.27 83 | 57.60 334 | 72.73 252 | 76.45 344 | 52.30 242 | 95.43 74 | 48.14 334 | 77.71 247 | 87.11 281 |
|
SCA | | | 74.22 252 | 72.33 259 | 79.91 239 | 84.05 260 | 62.17 246 | 79.96 296 | 79.29 327 | 66.30 253 | 72.38 257 | 80.13 319 | 51.95 250 | 88.60 285 | 59.25 269 | 77.67 249 | 88.96 235 |
|
Anonymous20231211 | | | 78.97 177 | 77.69 187 | 82.81 174 | 90.54 105 | 64.29 208 | 90.11 77 | 91.51 117 | 65.01 269 | 76.16 203 | 88.13 190 | 50.56 266 | 93.03 185 | 69.68 182 | 77.56 250 | 91.11 155 |
|
DWT-MVSNet_test | | | 73.70 257 | 71.86 262 | 79.21 254 | 82.91 286 | 58.94 278 | 82.34 271 | 82.17 299 | 65.21 264 | 71.05 270 | 78.31 333 | 44.21 314 | 90.17 260 | 63.29 236 | 77.28 251 | 88.53 249 |
|
v1144 | | | 80.03 150 | 79.03 153 | 83.01 165 | 83.78 264 | 64.51 201 | 87.11 168 | 90.57 142 | 71.96 163 | 78.08 160 | 86.20 242 | 61.41 168 | 93.94 136 | 74.93 135 | 77.23 252 | 90.60 173 |
|
WR-MVS | | | 79.49 160 | 79.22 150 | 80.27 233 | 88.79 163 | 58.35 283 | 85.06 222 | 88.61 208 | 78.56 32 | 77.65 166 | 88.34 179 | 63.81 130 | 90.66 254 | 64.98 225 | 77.22 253 | 91.80 138 |
|
v1192 | | | 79.59 158 | 78.43 165 | 83.07 162 | 83.55 268 | 64.52 200 | 86.93 173 | 90.58 141 | 70.83 181 | 77.78 164 | 85.90 245 | 59.15 193 | 93.94 136 | 73.96 142 | 77.19 254 | 90.76 166 |
|
VPNet | | | 78.69 182 | 78.66 159 | 78.76 259 | 88.31 180 | 55.72 322 | 84.45 239 | 86.63 243 | 76.79 67 | 78.26 154 | 90.55 123 | 59.30 192 | 89.70 267 | 66.63 211 | 77.05 255 | 90.88 163 |
|
v1240 | | | 78.99 176 | 77.78 182 | 82.64 181 | 83.21 275 | 63.54 222 | 86.62 184 | 90.30 152 | 69.74 206 | 77.33 172 | 85.68 250 | 57.04 211 | 93.76 148 | 73.13 153 | 76.92 256 | 90.62 171 |
|
test_part1 | | | 82.78 95 | 82.08 99 | 84.89 98 | 90.66 102 | 66.97 158 | 90.96 56 | 92.93 57 | 77.19 55 | 80.53 123 | 90.04 133 | 63.44 131 | 95.39 78 | 76.04 126 | 76.90 257 | 92.31 121 |
|
MSDG | | | 73.36 262 | 70.99 271 | 80.49 228 | 84.51 252 | 65.80 179 | 80.71 287 | 86.13 251 | 65.70 260 | 65.46 321 | 83.74 282 | 44.60 311 | 90.91 249 | 51.13 315 | 76.89 258 | 84.74 315 |
|
IterMVS-LS | | | 80.06 149 | 79.38 144 | 82.11 189 | 85.89 230 | 63.20 232 | 86.79 178 | 89.34 175 | 74.19 126 | 75.45 216 | 86.72 221 | 66.62 100 | 92.39 201 | 72.58 157 | 76.86 259 | 90.75 167 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
v1921920 | | | 79.22 169 | 78.03 174 | 82.80 175 | 83.30 273 | 63.94 214 | 86.80 177 | 90.33 150 | 69.91 200 | 77.48 169 | 85.53 254 | 58.44 197 | 93.75 149 | 73.60 144 | 76.85 260 | 90.71 169 |
|
XXY-MVS | | | 75.41 244 | 75.56 222 | 74.96 302 | 83.59 267 | 57.82 294 | 80.59 289 | 83.87 277 | 66.54 251 | 74.93 233 | 88.31 180 | 63.24 136 | 80.09 339 | 62.16 245 | 76.85 260 | 86.97 283 |
|
v2v482 | | | 80.23 146 | 79.29 147 | 83.05 163 | 83.62 266 | 64.14 210 | 87.04 169 | 89.97 159 | 73.61 137 | 78.18 157 | 87.22 209 | 61.10 176 | 93.82 143 | 76.11 124 | 76.78 262 | 91.18 153 |
|
v144192 | | | 79.47 161 | 78.37 167 | 82.78 178 | 83.35 271 | 63.96 213 | 86.96 171 | 90.36 149 | 69.99 197 | 77.50 168 | 85.67 251 | 60.66 183 | 93.77 147 | 74.27 139 | 76.58 263 | 90.62 171 |
|
UniMVSNet (Re) | | | 81.60 115 | 81.11 112 | 83.09 160 | 88.38 178 | 64.41 206 | 87.60 154 | 93.02 46 | 78.42 34 | 78.56 147 | 88.16 185 | 69.78 74 | 93.26 169 | 69.58 183 | 76.49 264 | 91.60 140 |
|
UniMVSNet_NR-MVSNet | | | 81.88 107 | 81.54 107 | 82.92 169 | 88.46 175 | 63.46 225 | 87.13 166 | 92.37 79 | 80.19 14 | 78.38 151 | 89.14 157 | 71.66 57 | 93.05 182 | 70.05 176 | 76.46 265 | 92.25 124 |
|
DU-MVS | | | 81.12 123 | 80.52 122 | 82.90 170 | 87.80 194 | 63.46 225 | 87.02 170 | 91.87 105 | 79.01 29 | 78.38 151 | 89.07 160 | 65.02 119 | 93.05 182 | 70.05 176 | 76.46 265 | 92.20 126 |
|
cl22 | | | 78.07 198 | 77.01 199 | 81.23 211 | 82.37 299 | 61.83 251 | 83.55 258 | 87.98 218 | 68.96 224 | 75.06 230 | 83.87 277 | 61.40 169 | 91.88 223 | 73.53 145 | 76.39 267 | 89.98 203 |
|
miper_ehance_all_eth | | | 78.59 185 | 77.76 184 | 81.08 216 | 82.66 292 | 61.56 254 | 83.65 254 | 89.15 185 | 68.87 226 | 75.55 212 | 83.79 281 | 66.49 102 | 92.03 216 | 73.25 151 | 76.39 267 | 89.64 215 |
|
miper_enhance_ethall | | | 77.87 205 | 76.86 203 | 80.92 220 | 81.65 306 | 61.38 256 | 82.68 268 | 88.98 192 | 65.52 263 | 75.47 213 | 82.30 299 | 65.76 114 | 92.00 218 | 72.95 154 | 76.39 267 | 89.39 220 |
|
PatchmatchNet |  | | 73.12 265 | 71.33 268 | 78.49 265 | 83.18 277 | 60.85 261 | 79.63 298 | 78.57 329 | 64.13 278 | 71.73 263 | 79.81 324 | 51.20 259 | 85.97 307 | 57.40 288 | 76.36 270 | 88.66 245 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
USDC | | | 70.33 286 | 68.37 287 | 76.21 291 | 80.60 322 | 56.23 317 | 79.19 304 | 86.49 244 | 60.89 308 | 61.29 341 | 85.47 256 | 31.78 358 | 89.47 271 | 53.37 306 | 76.21 271 | 82.94 335 |
|
OpenMVS_ROB |  | 64.09 19 | 70.56 284 | 68.19 289 | 77.65 276 | 80.26 325 | 59.41 277 | 85.01 223 | 82.96 294 | 58.76 326 | 65.43 322 | 82.33 298 | 37.63 345 | 91.23 240 | 45.34 347 | 76.03 272 | 82.32 336 |
|
ACMH+ | | 68.96 14 | 76.01 236 | 74.01 243 | 82.03 192 | 88.60 170 | 65.31 190 | 88.86 108 | 87.55 227 | 70.25 194 | 67.75 299 | 87.47 202 | 41.27 330 | 93.19 174 | 58.37 279 | 75.94 273 | 87.60 265 |
|
tpm | | | 72.37 273 | 71.71 264 | 74.35 308 | 82.19 301 | 52.00 343 | 79.22 303 | 77.29 337 | 64.56 273 | 72.95 250 | 83.68 284 | 51.35 257 | 83.26 327 | 58.33 280 | 75.80 274 | 87.81 261 |
|
Anonymous20231206 | | | 68.60 298 | 67.80 297 | 71.02 327 | 80.23 326 | 50.75 352 | 78.30 313 | 80.47 316 | 56.79 339 | 66.11 319 | 82.63 296 | 46.35 300 | 78.95 342 | 43.62 350 | 75.70 275 | 83.36 328 |
|
v7n | | | 78.97 177 | 77.58 190 | 83.14 158 | 83.45 270 | 65.51 184 | 88.32 131 | 91.21 127 | 73.69 136 | 72.41 256 | 86.32 240 | 57.93 199 | 93.81 144 | 69.18 186 | 75.65 276 | 90.11 192 |
|
NR-MVSNet | | | 80.23 146 | 79.38 144 | 82.78 178 | 87.80 194 | 63.34 228 | 86.31 192 | 91.09 132 | 79.01 29 | 72.17 259 | 89.07 160 | 67.20 97 | 92.81 191 | 66.08 216 | 75.65 276 | 92.20 126 |
|
v10 | | | 79.74 155 | 78.67 158 | 82.97 168 | 84.06 259 | 64.95 195 | 87.88 149 | 90.62 140 | 73.11 147 | 75.11 228 | 86.56 233 | 61.46 167 | 94.05 132 | 73.68 143 | 75.55 278 | 89.90 206 |
|
IB-MVS | | 68.01 15 | 75.85 238 | 73.36 250 | 83.31 149 | 84.76 248 | 66.03 171 | 83.38 260 | 85.06 260 | 70.21 195 | 69.40 289 | 81.05 309 | 45.76 306 | 94.66 111 | 65.10 224 | 75.49 279 | 89.25 223 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
h-mvs33 | | | 83.15 88 | 82.19 96 | 86.02 73 | 90.56 104 | 70.85 78 | 88.15 140 | 89.16 184 | 76.02 86 | 84.67 64 | 91.39 104 | 61.54 164 | 95.50 69 | 82.71 69 | 75.48 280 | 91.72 139 |
|
c3_l | | | 78.75 180 | 77.91 177 | 81.26 210 | 82.89 287 | 61.56 254 | 84.09 249 | 89.13 187 | 69.97 198 | 75.56 211 | 84.29 273 | 66.36 104 | 92.09 215 | 73.47 148 | 75.48 280 | 90.12 191 |
|
V42 | | | 79.38 167 | 78.24 171 | 82.83 172 | 81.10 318 | 65.50 185 | 85.55 213 | 89.82 163 | 71.57 171 | 78.21 155 | 86.12 243 | 60.66 183 | 93.18 175 | 75.64 129 | 75.46 282 | 89.81 211 |
|
cl____ | | | 77.72 207 | 76.76 207 | 80.58 226 | 82.49 296 | 60.48 267 | 83.09 264 | 87.87 221 | 69.22 214 | 74.38 239 | 85.22 261 | 62.10 157 | 91.53 231 | 71.09 166 | 75.41 283 | 89.73 214 |
|
DIV-MVS_self_test | | | 77.72 207 | 76.76 207 | 80.58 226 | 82.48 297 | 60.48 267 | 83.09 264 | 87.86 222 | 69.22 214 | 74.38 239 | 85.24 260 | 62.10 157 | 91.53 231 | 71.09 166 | 75.40 284 | 89.74 213 |
|
v8 | | | 79.97 152 | 79.02 154 | 82.80 175 | 84.09 258 | 64.50 203 | 87.96 143 | 90.29 153 | 74.13 129 | 75.24 225 | 86.81 218 | 62.88 144 | 93.89 142 | 74.39 138 | 75.40 284 | 90.00 200 |
|
Baseline_NR-MVSNet | | | 78.15 196 | 78.33 169 | 77.61 277 | 85.79 231 | 56.21 318 | 86.78 179 | 85.76 254 | 73.60 138 | 77.93 162 | 87.57 198 | 65.02 119 | 88.99 278 | 67.14 208 | 75.33 286 | 87.63 264 |
|
RRT_test8_iter05 | | | 78.38 189 | 77.40 192 | 81.34 208 | 86.00 229 | 58.86 279 | 86.55 187 | 91.26 125 | 72.13 162 | 75.91 205 | 87.42 203 | 44.97 310 | 93.73 151 | 77.02 118 | 75.30 287 | 91.45 148 |
|
pmmvs5 | | | 71.55 276 | 70.20 279 | 75.61 295 | 77.83 343 | 56.39 314 | 81.74 277 | 80.89 309 | 57.76 332 | 67.46 302 | 84.49 270 | 49.26 282 | 85.32 312 | 57.08 291 | 75.29 288 | 85.11 312 |
|
EPMVS | | | 69.02 295 | 68.16 290 | 71.59 321 | 79.61 335 | 49.80 356 | 77.40 319 | 66.93 363 | 62.82 294 | 70.01 280 | 79.05 326 | 45.79 305 | 77.86 348 | 56.58 294 | 75.26 289 | 87.13 280 |
|
TranMVSNet+NR-MVSNet | | | 80.84 127 | 80.31 126 | 82.42 185 | 87.85 192 | 62.33 243 | 87.74 152 | 91.33 123 | 80.55 11 | 77.99 161 | 89.86 137 | 65.23 117 | 92.62 192 | 67.05 209 | 75.24 290 | 92.30 122 |
|
tfpnnormal | | | 74.39 249 | 73.16 252 | 78.08 269 | 86.10 228 | 58.05 287 | 84.65 233 | 87.53 228 | 70.32 192 | 71.22 268 | 85.63 252 | 54.97 219 | 89.86 263 | 43.03 351 | 75.02 291 | 86.32 293 |
|
COLMAP_ROB |  | 66.92 17 | 73.01 266 | 70.41 277 | 80.81 222 | 87.13 215 | 65.63 182 | 88.30 132 | 84.19 273 | 62.96 291 | 63.80 334 | 87.69 195 | 38.04 343 | 92.56 195 | 46.66 339 | 74.91 292 | 84.24 320 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
PatchT | | | 68.46 301 | 67.85 295 | 70.29 329 | 80.70 321 | 43.93 364 | 72.47 338 | 74.88 345 | 60.15 314 | 70.55 271 | 76.57 343 | 49.94 273 | 81.59 332 | 50.58 316 | 74.83 293 | 85.34 307 |
|
pmmvs4 | | | 74.03 255 | 71.91 261 | 80.39 229 | 81.96 303 | 68.32 131 | 81.45 281 | 82.14 300 | 59.32 321 | 69.87 285 | 85.13 263 | 52.40 241 | 88.13 291 | 60.21 262 | 74.74 294 | 84.73 316 |
|
ITE_SJBPF | | | | | 78.22 267 | 81.77 305 | 60.57 265 | | 83.30 286 | 69.25 213 | 67.54 301 | 87.20 210 | 36.33 348 | 87.28 299 | 54.34 302 | 74.62 295 | 86.80 286 |
|
test0.0.03 1 | | | 68.00 302 | 67.69 299 | 68.90 334 | 77.55 344 | 47.43 358 | 75.70 328 | 72.95 352 | 66.66 247 | 66.56 312 | 82.29 300 | 48.06 289 | 75.87 355 | 44.97 348 | 74.51 296 | 83.41 327 |
|
test_0402 | | | 72.79 269 | 70.44 276 | 79.84 241 | 88.13 183 | 65.99 173 | 85.93 202 | 84.29 270 | 65.57 262 | 67.40 304 | 85.49 255 | 46.92 296 | 92.61 193 | 35.88 360 | 74.38 297 | 80.94 344 |
|
CP-MVSNet | | | 78.22 192 | 78.34 168 | 77.84 272 | 87.83 193 | 54.54 328 | 87.94 145 | 91.17 129 | 77.65 40 | 73.48 244 | 88.49 175 | 62.24 155 | 88.43 287 | 62.19 244 | 74.07 298 | 90.55 175 |
|
FMVSNet5 | | | 69.50 292 | 67.96 293 | 74.15 310 | 82.97 285 | 55.35 324 | 80.01 295 | 82.12 301 | 62.56 297 | 63.02 335 | 81.53 306 | 36.92 346 | 81.92 331 | 48.42 329 | 74.06 299 | 85.17 311 |
|
MVS-HIRNet | | | 59.14 324 | 57.67 327 | 63.57 342 | 81.65 306 | 43.50 365 | 71.73 340 | 65.06 366 | 39.59 362 | 51.43 360 | 57.73 362 | 38.34 341 | 82.58 330 | 39.53 357 | 73.95 300 | 64.62 361 |
|
tpmrst | | | 72.39 271 | 72.13 260 | 73.18 317 | 80.54 323 | 49.91 354 | 79.91 297 | 79.08 328 | 63.11 288 | 71.69 264 | 79.95 321 | 55.32 217 | 82.77 329 | 65.66 220 | 73.89 301 | 86.87 284 |
|
PS-CasMVS | | | 78.01 201 | 78.09 173 | 77.77 274 | 87.71 198 | 54.39 330 | 88.02 141 | 91.22 126 | 77.50 48 | 73.26 246 | 88.64 170 | 60.73 180 | 88.41 288 | 61.88 248 | 73.88 302 | 90.53 176 |
|
v148 | | | 78.72 181 | 77.80 181 | 81.47 203 | 82.73 290 | 61.96 249 | 86.30 193 | 88.08 216 | 73.26 146 | 76.18 200 | 85.47 256 | 62.46 150 | 92.36 203 | 71.92 161 | 73.82 303 | 90.09 194 |
|
Patchmatch-test | | | 64.82 318 | 63.24 318 | 69.57 331 | 79.42 338 | 49.82 355 | 63.49 360 | 69.05 360 | 51.98 353 | 59.95 346 | 80.13 319 | 50.91 261 | 70.98 364 | 40.66 356 | 73.57 304 | 87.90 259 |
|
WR-MVS_H | | | 78.51 186 | 78.49 162 | 78.56 262 | 88.02 188 | 56.38 315 | 88.43 123 | 92.67 67 | 77.14 57 | 73.89 242 | 87.55 199 | 66.25 106 | 89.24 274 | 58.92 273 | 73.55 305 | 90.06 198 |
|
AUN-MVS | | | 79.21 170 | 77.60 189 | 84.05 127 | 88.71 167 | 67.61 145 | 85.84 206 | 87.26 234 | 69.08 219 | 77.23 176 | 88.14 189 | 53.20 237 | 93.47 162 | 75.50 133 | 73.45 306 | 91.06 156 |
|
hse-mvs2 | | | 81.72 110 | 80.94 116 | 84.07 125 | 88.72 166 | 67.68 144 | 85.87 204 | 87.26 234 | 76.02 86 | 84.67 64 | 88.22 184 | 61.54 164 | 93.48 161 | 82.71 69 | 73.44 307 | 91.06 156 |
|
testgi | | | 66.67 309 | 66.53 307 | 67.08 340 | 75.62 352 | 41.69 367 | 75.93 324 | 76.50 341 | 66.11 254 | 65.20 326 | 86.59 230 | 35.72 350 | 74.71 359 | 43.71 349 | 73.38 308 | 84.84 314 |
|
Anonymous20240521 | | | 68.80 297 | 67.22 303 | 73.55 312 | 74.33 356 | 54.11 331 | 83.18 262 | 85.61 255 | 58.15 329 | 61.68 340 | 80.94 312 | 30.71 359 | 81.27 335 | 57.00 292 | 73.34 309 | 85.28 308 |
|
pm-mvs1 | | | 77.25 217 | 76.68 211 | 78.93 257 | 84.22 256 | 58.62 282 | 86.41 189 | 88.36 211 | 71.37 174 | 73.31 245 | 88.01 191 | 61.22 174 | 89.15 276 | 64.24 229 | 73.01 310 | 89.03 230 |
|
eth_miper_zixun_eth | | | 77.92 203 | 76.69 210 | 81.61 201 | 83.00 283 | 61.98 248 | 83.15 263 | 89.20 183 | 69.52 208 | 74.86 234 | 84.35 272 | 61.76 160 | 92.56 195 | 71.50 164 | 72.89 311 | 90.28 185 |
|
miper_lstm_enhance | | | 74.11 253 | 73.11 253 | 77.13 285 | 80.11 327 | 59.62 274 | 72.23 339 | 86.92 240 | 66.76 245 | 70.40 274 | 82.92 290 | 56.93 212 | 82.92 328 | 69.06 188 | 72.63 312 | 88.87 238 |
|
tpmvs | | | 71.09 279 | 69.29 282 | 76.49 289 | 82.04 302 | 56.04 319 | 78.92 307 | 81.37 308 | 64.05 281 | 67.18 306 | 78.28 334 | 49.74 276 | 89.77 264 | 49.67 325 | 72.37 313 | 83.67 325 |
|
PEN-MVS | | | 77.73 206 | 77.69 187 | 77.84 272 | 87.07 216 | 53.91 333 | 87.91 147 | 91.18 128 | 77.56 45 | 73.14 248 | 88.82 166 | 61.23 173 | 89.17 275 | 59.95 263 | 72.37 313 | 90.43 179 |
|
DSMNet-mixed | | | 57.77 326 | 56.90 328 | 60.38 344 | 67.70 367 | 35.61 370 | 69.18 349 | 53.97 372 | 32.30 367 | 57.49 352 | 79.88 322 | 40.39 335 | 68.57 366 | 38.78 358 | 72.37 313 | 76.97 354 |
|
IterMVS-SCA-FT | | | 75.43 243 | 73.87 246 | 80.11 236 | 82.69 291 | 64.85 196 | 81.57 280 | 83.47 284 | 69.16 217 | 70.49 273 | 84.15 275 | 51.95 250 | 88.15 290 | 69.23 185 | 72.14 316 | 87.34 272 |
|
tpm cat1 | | | 70.57 283 | 68.31 288 | 77.35 281 | 82.41 298 | 57.95 291 | 78.08 314 | 80.22 321 | 52.04 352 | 68.54 296 | 77.66 339 | 52.00 249 | 87.84 294 | 51.77 311 | 72.07 317 | 86.25 294 |
|
RPSCF | | | 73.23 264 | 71.46 265 | 78.54 263 | 82.50 295 | 59.85 272 | 82.18 273 | 82.84 295 | 58.96 324 | 71.15 269 | 89.41 155 | 45.48 309 | 84.77 316 | 58.82 275 | 71.83 318 | 91.02 160 |
|
IterMVS | | | 74.29 250 | 72.94 254 | 78.35 266 | 81.53 309 | 63.49 224 | 81.58 279 | 82.49 297 | 68.06 236 | 69.99 282 | 83.69 283 | 51.66 256 | 85.54 309 | 65.85 218 | 71.64 319 | 86.01 301 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
AllTest | | | 70.96 280 | 68.09 292 | 79.58 248 | 85.15 242 | 63.62 218 | 84.58 235 | 79.83 323 | 62.31 299 | 60.32 344 | 86.73 219 | 32.02 356 | 88.96 281 | 50.28 320 | 71.57 320 | 86.15 297 |
|
TestCases | | | | | 79.58 248 | 85.15 242 | 63.62 218 | | 79.83 323 | 62.31 299 | 60.32 344 | 86.73 219 | 32.02 356 | 88.96 281 | 50.28 320 | 71.57 320 | 86.15 297 |
|
baseline1 | | | 76.98 221 | 76.75 209 | 77.66 275 | 88.13 183 | 55.66 323 | 85.12 221 | 81.89 302 | 73.04 149 | 76.79 184 | 88.90 163 | 62.43 151 | 87.78 295 | 63.30 235 | 71.18 322 | 89.55 218 |
|
Patchmtry | | | 70.74 281 | 69.16 283 | 75.49 298 | 80.72 320 | 54.07 332 | 74.94 334 | 80.30 319 | 58.34 328 | 70.01 280 | 81.19 307 | 52.50 239 | 86.54 302 | 53.37 306 | 71.09 323 | 85.87 304 |
|
DTE-MVSNet | | | 76.99 220 | 76.80 205 | 77.54 279 | 86.24 226 | 53.06 341 | 87.52 156 | 90.66 139 | 77.08 60 | 72.50 254 | 88.67 169 | 60.48 186 | 89.52 269 | 57.33 289 | 70.74 324 | 90.05 199 |
|
MIMVSNet1 | | | 68.58 299 | 66.78 306 | 73.98 311 | 80.07 328 | 51.82 344 | 80.77 285 | 84.37 267 | 64.40 275 | 59.75 347 | 82.16 302 | 36.47 347 | 83.63 323 | 42.73 352 | 70.33 325 | 86.48 292 |
|
pmmvs6 | | | 74.69 248 | 73.39 249 | 78.61 261 | 81.38 312 | 57.48 299 | 86.64 183 | 87.95 219 | 64.99 270 | 70.18 277 | 86.61 229 | 50.43 268 | 89.52 269 | 62.12 246 | 70.18 326 | 88.83 240 |
|
TinyColmap | | | 67.30 306 | 64.81 310 | 74.76 305 | 81.92 304 | 56.68 310 | 80.29 293 | 81.49 307 | 60.33 311 | 56.27 356 | 83.22 288 | 24.77 362 | 87.66 296 | 45.52 345 | 69.47 327 | 79.95 348 |
|
OurMVSNet-221017-0 | | | 74.26 251 | 72.42 258 | 79.80 242 | 83.76 265 | 59.59 275 | 85.92 203 | 86.64 242 | 66.39 252 | 66.96 307 | 87.58 197 | 39.46 336 | 91.60 228 | 65.76 219 | 69.27 328 | 88.22 253 |
|
JIA-IIPM | | | 66.32 312 | 62.82 322 | 76.82 287 | 77.09 347 | 61.72 253 | 65.34 357 | 75.38 343 | 58.04 331 | 64.51 328 | 62.32 359 | 42.05 328 | 86.51 303 | 51.45 314 | 69.22 329 | 82.21 337 |
|
ADS-MVSNet2 | | | 66.20 315 | 63.33 317 | 74.82 304 | 79.92 329 | 58.75 281 | 67.55 354 | 75.19 344 | 53.37 349 | 65.25 324 | 75.86 345 | 42.32 324 | 80.53 338 | 41.57 354 | 68.91 330 | 85.18 309 |
|
ADS-MVSNet | | | 64.36 319 | 62.88 321 | 68.78 336 | 79.92 329 | 47.17 359 | 67.55 354 | 71.18 353 | 53.37 349 | 65.25 324 | 75.86 345 | 42.32 324 | 73.99 362 | 41.57 354 | 68.91 330 | 85.18 309 |
|
test20.03 | | | 67.45 304 | 66.95 305 | 68.94 333 | 75.48 353 | 44.84 363 | 77.50 318 | 77.67 333 | 66.66 247 | 63.01 336 | 83.80 280 | 47.02 295 | 78.40 344 | 42.53 353 | 68.86 332 | 83.58 326 |
|
EU-MVSNet | | | 68.53 300 | 67.61 300 | 71.31 326 | 78.51 342 | 47.01 360 | 84.47 236 | 84.27 271 | 42.27 358 | 66.44 317 | 84.79 268 | 40.44 334 | 83.76 321 | 58.76 276 | 68.54 333 | 83.17 329 |
|
our_test_3 | | | 69.14 294 | 67.00 304 | 75.57 296 | 79.80 332 | 58.80 280 | 77.96 315 | 77.81 332 | 59.55 319 | 62.90 338 | 78.25 335 | 47.43 292 | 83.97 320 | 51.71 312 | 67.58 334 | 83.93 324 |
|
ppachtmachnet_test | | | 70.04 289 | 67.34 302 | 78.14 268 | 79.80 332 | 61.13 257 | 79.19 304 | 80.59 314 | 59.16 323 | 65.27 323 | 79.29 325 | 46.75 298 | 87.29 298 | 49.33 326 | 66.72 335 | 86.00 303 |
|
LF4IMVS | | | 64.02 320 | 62.19 323 | 69.50 332 | 70.90 365 | 53.29 340 | 76.13 322 | 77.18 338 | 52.65 351 | 58.59 348 | 80.98 311 | 23.55 364 | 76.52 352 | 53.06 308 | 66.66 336 | 78.68 351 |
|
Patchmatch-RL test | | | 70.24 287 | 67.78 298 | 77.61 277 | 77.43 345 | 59.57 276 | 71.16 341 | 70.33 354 | 62.94 292 | 68.65 294 | 72.77 352 | 50.62 265 | 85.49 310 | 69.58 183 | 66.58 337 | 87.77 262 |
|
dp | | | 66.80 307 | 65.43 309 | 70.90 328 | 79.74 334 | 48.82 357 | 75.12 332 | 74.77 346 | 59.61 318 | 64.08 331 | 77.23 340 | 42.89 320 | 80.72 337 | 48.86 328 | 66.58 337 | 83.16 330 |
|
CL-MVSNet_self_test | | | 72.37 273 | 71.46 265 | 75.09 301 | 79.49 337 | 53.53 335 | 80.76 286 | 85.01 262 | 69.12 218 | 70.51 272 | 82.05 303 | 57.92 200 | 84.13 319 | 52.27 310 | 66.00 339 | 87.60 265 |
|
FPMVS | | | 53.68 328 | 51.64 331 | 59.81 345 | 65.08 368 | 51.03 350 | 69.48 348 | 69.58 358 | 41.46 359 | 40.67 363 | 72.32 353 | 16.46 370 | 70.00 365 | 24.24 367 | 65.42 340 | 58.40 364 |
|
pmmvs-eth3d | | | 70.50 285 | 67.83 296 | 78.52 264 | 77.37 346 | 66.18 170 | 81.82 275 | 81.51 306 | 58.90 325 | 63.90 333 | 80.42 317 | 42.69 322 | 86.28 305 | 58.56 277 | 65.30 341 | 83.11 331 |
|
N_pmnet | | | 52.79 329 | 53.26 330 | 51.40 349 | 78.99 341 | 7.68 380 | 69.52 347 | 3.89 380 | 51.63 354 | 57.01 353 | 74.98 349 | 40.83 333 | 65.96 367 | 37.78 359 | 64.67 342 | 80.56 347 |
|
PM-MVS | | | 66.41 311 | 64.14 313 | 73.20 316 | 73.92 358 | 56.45 312 | 78.97 306 | 64.96 367 | 63.88 285 | 64.72 327 | 80.24 318 | 19.84 367 | 83.44 325 | 66.24 212 | 64.52 343 | 79.71 349 |
|
KD-MVS_self_test | | | 68.81 296 | 67.59 301 | 72.46 319 | 74.29 357 | 45.45 361 | 77.93 316 | 87.00 238 | 63.12 287 | 63.99 332 | 78.99 330 | 42.32 324 | 84.77 316 | 56.55 295 | 64.09 344 | 87.16 279 |
|
SixPastTwentyTwo | | | 73.37 260 | 71.26 270 | 79.70 244 | 85.08 246 | 57.89 292 | 85.57 209 | 83.56 281 | 71.03 179 | 65.66 320 | 85.88 246 | 42.10 327 | 92.57 194 | 59.11 271 | 63.34 345 | 88.65 246 |
|
EGC-MVSNET | | | 52.07 330 | 47.05 334 | 67.14 339 | 83.51 269 | 60.71 263 | 80.50 290 | 67.75 362 | 0.07 375 | 0.43 376 | 75.85 347 | 24.26 363 | 81.54 333 | 28.82 363 | 62.25 346 | 59.16 363 |
|
TransMVSNet (Re) | | | 75.39 245 | 74.56 237 | 77.86 271 | 85.50 237 | 57.10 303 | 86.78 179 | 86.09 252 | 72.17 160 | 71.53 265 | 87.34 204 | 63.01 143 | 89.31 273 | 56.84 293 | 61.83 347 | 87.17 277 |
|
MDA-MVSNet_test_wron | | | 65.03 316 | 62.92 319 | 71.37 323 | 75.93 349 | 56.73 307 | 69.09 352 | 74.73 347 | 57.28 337 | 54.03 358 | 77.89 336 | 45.88 303 | 74.39 361 | 49.89 324 | 61.55 348 | 82.99 334 |
|
YYNet1 | | | 65.03 316 | 62.91 320 | 71.38 322 | 75.85 350 | 56.60 311 | 69.12 351 | 74.66 349 | 57.28 337 | 54.12 357 | 77.87 337 | 45.85 304 | 74.48 360 | 49.95 323 | 61.52 349 | 83.05 332 |
|
ambc | | | | | 75.24 300 | 73.16 362 | 50.51 353 | 63.05 361 | 87.47 230 | | 64.28 329 | 77.81 338 | 17.80 368 | 89.73 266 | 57.88 284 | 60.64 350 | 85.49 305 |
|
TDRefinement | | | 67.49 303 | 64.34 312 | 76.92 286 | 73.47 361 | 61.07 258 | 84.86 227 | 82.98 293 | 59.77 317 | 58.30 350 | 85.13 263 | 26.06 361 | 87.89 293 | 47.92 336 | 60.59 351 | 81.81 340 |
|
Gipuma |  | | 45.18 333 | 41.86 336 | 55.16 347 | 77.03 348 | 51.52 347 | 32.50 368 | 80.52 315 | 32.46 366 | 27.12 367 | 35.02 368 | 9.52 375 | 75.50 356 | 22.31 368 | 60.21 352 | 38.45 367 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
new-patchmatchnet | | | 61.73 322 | 61.73 324 | 61.70 343 | 72.74 364 | 24.50 377 | 69.16 350 | 78.03 331 | 61.40 305 | 56.72 354 | 75.53 348 | 38.42 340 | 76.48 353 | 45.95 344 | 57.67 353 | 84.13 322 |
|
MDA-MVSNet-bldmvs | | | 66.68 308 | 63.66 316 | 75.75 293 | 79.28 339 | 60.56 266 | 73.92 336 | 78.35 330 | 64.43 274 | 50.13 361 | 79.87 323 | 44.02 316 | 83.67 322 | 46.10 343 | 56.86 354 | 83.03 333 |
|
new_pmnet | | | 50.91 331 | 50.29 332 | 52.78 348 | 68.58 366 | 34.94 372 | 63.71 359 | 56.63 371 | 39.73 361 | 44.95 362 | 65.47 357 | 21.93 365 | 58.48 368 | 34.98 361 | 56.62 355 | 64.92 360 |
|
PMVS |  | 37.38 22 | 44.16 334 | 40.28 337 | 55.82 346 | 40.82 377 | 42.54 366 | 65.12 358 | 63.99 368 | 34.43 365 | 24.48 368 | 57.12 364 | 3.92 378 | 76.17 354 | 17.10 370 | 55.52 356 | 48.75 365 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
pmmvs3 | | | 57.79 325 | 54.26 329 | 68.37 337 | 64.02 369 | 56.72 308 | 75.12 332 | 65.17 365 | 40.20 360 | 52.93 359 | 69.86 356 | 20.36 366 | 75.48 357 | 45.45 346 | 55.25 357 | 72.90 357 |
|
UnsupCasMVSNet_eth | | | 67.33 305 | 65.99 308 | 71.37 323 | 73.48 360 | 51.47 348 | 75.16 330 | 85.19 259 | 65.20 265 | 60.78 343 | 80.93 314 | 42.35 323 | 77.20 350 | 57.12 290 | 53.69 358 | 85.44 306 |
|
K. test v3 | | | 71.19 278 | 68.51 286 | 79.21 254 | 83.04 282 | 57.78 295 | 84.35 243 | 76.91 340 | 72.90 152 | 62.99 337 | 82.86 292 | 39.27 337 | 91.09 246 | 61.65 251 | 52.66 359 | 88.75 243 |
|
UnsupCasMVSNet_bld | | | 63.70 321 | 61.53 325 | 70.21 330 | 73.69 359 | 51.39 349 | 72.82 337 | 81.89 302 | 55.63 344 | 57.81 351 | 71.80 354 | 38.67 339 | 78.61 343 | 49.26 327 | 52.21 360 | 80.63 345 |
|
LCM-MVSNet | | | 54.25 327 | 49.68 333 | 67.97 338 | 53.73 372 | 45.28 362 | 66.85 356 | 80.78 311 | 35.96 364 | 39.45 364 | 62.23 360 | 8.70 376 | 78.06 347 | 48.24 333 | 51.20 361 | 80.57 346 |
|
KD-MVS_2432*1600 | | | 66.22 313 | 63.89 314 | 73.21 314 | 75.47 354 | 53.42 337 | 70.76 344 | 84.35 268 | 64.10 279 | 66.52 314 | 78.52 331 | 34.55 353 | 84.98 313 | 50.40 318 | 50.33 362 | 81.23 342 |
|
miper_refine_blended | | | 66.22 313 | 63.89 314 | 73.21 314 | 75.47 354 | 53.42 337 | 70.76 344 | 84.35 268 | 64.10 279 | 66.52 314 | 78.52 331 | 34.55 353 | 84.98 313 | 50.40 318 | 50.33 362 | 81.23 342 |
|
lessismore_v0 | | | | | 78.97 256 | 81.01 319 | 57.15 302 | | 65.99 364 | | 61.16 342 | 82.82 293 | 39.12 338 | 91.34 237 | 59.67 265 | 46.92 364 | 88.43 251 |
|
PVSNet_0 | | 57.27 20 | 61.67 323 | 59.27 326 | 68.85 335 | 79.61 335 | 57.44 300 | 68.01 353 | 73.44 351 | 55.93 343 | 58.54 349 | 70.41 355 | 44.58 312 | 77.55 349 | 47.01 338 | 35.91 365 | 71.55 358 |
|
test_method | | | 31.52 337 | 29.28 341 | 38.23 352 | 27.03 379 | 6.50 381 | 20.94 370 | 62.21 370 | 4.05 373 | 22.35 371 | 52.50 365 | 13.33 371 | 47.58 372 | 27.04 366 | 34.04 366 | 60.62 362 |
|
PMMVS2 | | | 40.82 335 | 38.86 338 | 46.69 350 | 53.84 371 | 16.45 378 | 48.61 365 | 49.92 373 | 37.49 363 | 31.67 365 | 60.97 361 | 8.14 377 | 56.42 369 | 28.42 364 | 30.72 367 | 67.19 359 |
|
DeepMVS_CX |  | | | | 27.40 355 | 40.17 378 | 26.90 375 | | 24.59 379 | 17.44 371 | 23.95 369 | 48.61 366 | 9.77 374 | 26.48 374 | 18.06 369 | 24.47 368 | 28.83 368 |
|
MVE |  | 26.22 23 | 30.37 339 | 25.89 343 | 43.81 351 | 44.55 376 | 35.46 371 | 28.87 369 | 39.07 376 | 18.20 370 | 18.58 372 | 40.18 367 | 2.68 379 | 47.37 373 | 17.07 371 | 23.78 369 | 48.60 366 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 31.77 336 | 30.64 339 | 35.15 353 | 52.87 373 | 27.67 374 | 57.09 363 | 47.86 374 | 24.64 368 | 16.40 373 | 33.05 369 | 11.23 373 | 54.90 370 | 14.46 372 | 18.15 370 | 22.87 369 |
|
EMVS | | | 30.81 338 | 29.65 340 | 34.27 354 | 50.96 374 | 25.95 376 | 56.58 364 | 46.80 375 | 24.01 369 | 15.53 374 | 30.68 370 | 12.47 372 | 54.43 371 | 12.81 373 | 17.05 371 | 22.43 370 |
|
ANet_high | | | 50.57 332 | 46.10 335 | 63.99 341 | 48.67 375 | 39.13 368 | 70.99 343 | 80.85 310 | 61.39 306 | 31.18 366 | 57.70 363 | 17.02 369 | 73.65 363 | 31.22 362 | 15.89 372 | 79.18 350 |
|
tmp_tt | | | 18.61 341 | 21.40 344 | 10.23 357 | 4.82 380 | 10.11 379 | 34.70 367 | 30.74 378 | 1.48 374 | 23.91 370 | 26.07 371 | 28.42 360 | 13.41 376 | 27.12 365 | 15.35 373 | 7.17 371 |
|
wuyk23d | | | 16.82 342 | 15.94 345 | 19.46 356 | 58.74 370 | 31.45 373 | 39.22 366 | 3.74 381 | 6.84 372 | 6.04 375 | 2.70 375 | 1.27 380 | 24.29 375 | 10.54 374 | 14.40 374 | 2.63 372 |
|
testmvs | | | 6.04 345 | 8.02 348 | 0.10 359 | 0.08 381 | 0.03 383 | 69.74 346 | 0.04 382 | 0.05 376 | 0.31 377 | 1.68 376 | 0.02 382 | 0.04 377 | 0.24 375 | 0.02 375 | 0.25 374 |
|
test123 | | | 6.12 344 | 8.11 347 | 0.14 358 | 0.06 382 | 0.09 382 | 71.05 342 | 0.03 383 | 0.04 377 | 0.25 378 | 1.30 377 | 0.05 381 | 0.03 378 | 0.21 376 | 0.01 376 | 0.29 373 |
|
test_blank | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 0.00 378 | 0.00 383 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
uanet_test | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 0.00 378 | 0.00 383 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
cdsmvs_eth3d_5k | | | 19.96 340 | 26.61 342 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 89.26 180 | 0.00 378 | 0.00 379 | 88.61 171 | 61.62 163 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
pcd_1.5k_mvsjas | | | 5.26 346 | 7.02 349 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 0.00 378 | 63.15 139 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
sosnet-low-res | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 0.00 378 | 0.00 383 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
sosnet | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 0.00 378 | 0.00 383 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
uncertanet | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 0.00 378 | 0.00 383 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
Regformer | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 0.00 378 | 0.00 383 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
ab-mvs-re | | | 7.23 343 | 9.64 346 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 86.72 221 | 0.00 383 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
uanet | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 0.00 378 | 0.00 383 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
FOURS1 | | | | | | 95.00 10 | 72.39 42 | 95.06 1 | 93.84 18 | 74.49 118 | 91.30 15 | | | | | | |
|
test_one_0601 | | | | | | 95.07 7 | 71.46 61 | | 94.14 7 | 78.27 37 | 92.05 11 | 95.74 6 | 80.83 11 | | | | |
|
eth-test2 | | | | | | 0.00 383 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 383 | | | | | | | | | | | |
|
test_241102_ONE | | | | | | 95.30 2 | 70.98 70 | | 94.06 12 | 77.17 56 | 93.10 1 | 95.39 11 | 82.99 1 | 97.27 10 | | | |
|
save fliter | | | | | | 93.80 44 | 72.35 45 | 90.47 67 | 91.17 129 | 74.31 122 | | | | | | | |
|
test0726 | | | | | | 95.27 5 | 71.25 63 | 93.60 6 | 94.11 8 | 77.33 50 | 92.81 3 | 95.79 3 | 80.98 9 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 88.96 235 |
|
test_part2 | | | | | | 95.06 8 | 72.65 33 | | | | 91.80 13 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 51.32 258 | | | | 88.96 235 |
|
sam_mvs | | | | | | | | | | | | | 50.01 271 | | | | |
|
MTGPA |  | | | | | | | | 92.02 94 | | | | | | | | |
|
test_post1 | | | | | | | | 78.90 308 | | | | 5.43 374 | 48.81 288 | 85.44 311 | 59.25 269 | | |
|
test_post | | | | | | | | | | | | 5.46 373 | 50.36 269 | 84.24 318 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 74.00 350 | 51.12 260 | 88.60 285 | | | |
|
MTMP | | | | | | | | 92.18 34 | 32.83 377 | | | | | | | | |
|
gm-plane-assit | | | | | | 81.40 311 | 53.83 334 | | | 62.72 296 | | 80.94 312 | | 92.39 201 | 63.40 234 | | |
|
TEST9 | | | | | | 93.26 56 | 72.96 26 | 88.75 113 | 91.89 103 | 68.44 233 | 85.00 55 | 93.10 65 | 74.36 34 | 95.41 76 | | | |
|
test_8 | | | | | | 93.13 58 | 72.57 36 | 88.68 118 | 91.84 106 | 68.69 229 | 84.87 61 | 93.10 65 | 74.43 31 | 95.16 87 | | | |
|
agg_prior | | | | | | 92.85 66 | 71.94 54 | | 91.78 109 | | 84.41 72 | | | 94.93 98 | | | |
|
test_prior4 | | | | | | | 72.60 35 | 89.01 103 | | | | | | | | | |
|
test_prior | | | | | 86.33 63 | 92.61 74 | 69.59 101 | | 92.97 54 | | | | | 95.48 70 | | | 93.91 54 |
|
旧先验2 | | | | | | | | 86.56 186 | | 58.10 330 | 87.04 35 | | | 88.98 279 | 74.07 141 | | |
|
新几何2 | | | | | | | | 86.29 194 | | | | | | | | | |
|
无先验 | | | | | | | | 87.48 157 | 88.98 192 | 60.00 315 | | | | 94.12 129 | 67.28 204 | | 88.97 234 |
|
原ACMM2 | | | | | | | | 86.86 175 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 91.01 248 | 62.37 243 | | |
|
segment_acmp | | | | | | | | | | | | | 73.08 44 | | | | |
|
testdata1 | | | | | | | | 84.14 247 | | 75.71 90 | | | | | | | |
|
plane_prior7 | | | | | | 90.08 114 | 68.51 129 | | | | | | | | | | |
|
plane_prior6 | | | | | | 89.84 123 | 68.70 124 | | | | | | 60.42 187 | | | | |
|
plane_prior4 | | | | | | | | | | | | 91.00 116 | | | | | |
|
plane_prior3 | | | | | | | 68.60 127 | | | 78.44 33 | 78.92 140 | | | | | | |
|
plane_prior2 | | | | | | | | 91.25 50 | | 79.12 26 | | | | | | | |
|
plane_prior1 | | | | | | 89.90 122 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 384 | | | | | | | | |
|
nn | | | | | | | | | 0.00 384 | | | | | | | | |
|
door-mid | | | | | | | | | 69.98 356 | | | | | | | | |
|
test11 | | | | | | | | | 92.23 86 | | | | | | | | |
|
door | | | | | | | | | 69.44 359 | | | | | | | | |
|
HQP5-MVS | | | | | | | 66.98 156 | | | | | | | | | | |
|
HQP-NCC | | | | | | 89.33 137 | | 89.17 96 | | 76.41 75 | 77.23 176 | | | | | | |
|
ACMP_Plane | | | | | | 89.33 137 | | 89.17 96 | | 76.41 75 | 77.23 176 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.47 112 | | |
|
HQP4-MVS | | | | | | | | | | | 77.24 175 | | | 95.11 89 | | | 91.03 158 |
|
HQP2-MVS | | | | | | | | | | | | | 60.17 190 | | | | |
|
NP-MVS | | | | | | 89.62 125 | 68.32 131 | | | | | 90.24 127 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 37.79 369 | 75.16 330 | | 55.10 345 | 66.53 313 | | 49.34 280 | | 53.98 303 | | 87.94 258 |
|
Test By Simon | | | | | | | | | | | | | 64.33 124 | | | | |
|