This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 41
IU-MVS95.30 271.25 5792.95 5166.81 25192.39 688.94 1696.63 494.85 19
SMA-MVScopyleft89.08 789.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10792.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8592.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 52
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 5977.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 24
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
PC_three_145268.21 24192.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
test_part295.06 872.65 3291.80 13
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5894.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
FOURS195.00 1072.39 3995.06 193.84 1574.49 11391.30 15
APDe-MVScopyleft89.15 689.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 8991.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 31
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SD-MVS88.06 1488.50 1386.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13687.63 3094.27 5793.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepPCF-MVS80.84 188.10 1288.56 1286.73 5092.24 6869.03 9989.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 27
SF-MVS88.46 1188.74 1187.64 3592.78 6171.95 5092.40 2494.74 275.71 8789.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
TSAR-MVS + MP.88.02 1788.11 1587.72 3093.68 4372.13 4691.41 4792.35 7474.62 11188.90 2093.85 5275.75 2096.00 4987.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APD-MVScopyleft87.44 2287.52 2287.19 4294.24 3272.39 3991.86 4192.83 5573.01 14988.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 105
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
9.1488.26 1492.84 6091.52 4694.75 173.93 12588.57 2294.67 1975.57 2295.79 5386.77 3595.76 23
test_fmvsm_n_192085.29 5885.34 5485.13 7986.12 22669.93 8388.65 12190.78 12769.97 20188.27 2393.98 4971.39 5591.54 22888.49 2390.45 9793.91 53
ACMMP_NAP88.05 1688.08 1687.94 1993.70 4173.05 2290.86 5693.59 2376.27 7988.14 2495.09 1571.06 5796.67 2987.67 2996.37 1494.09 46
SteuartSystems-ACMMP88.72 1088.86 1088.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS88.93 989.13 988.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 37
fmvsm_l_conf0.5_n84.47 6684.54 6584.27 11385.42 23668.81 10588.49 12587.26 22968.08 24288.03 2793.49 5772.04 4691.77 21888.90 1789.14 11692.24 125
canonicalmvs85.91 4685.87 4886.04 6089.84 11169.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13181.50 7988.80 12094.77 22
HPM-MVS++copyleft89.02 889.15 888.63 595.01 976.03 192.38 2792.85 5480.26 1187.78 2994.27 3275.89 1996.81 2387.45 3296.44 993.05 96
test_fmvsmconf0.1_n85.61 5285.65 5085.50 6982.99 29269.39 9689.65 8490.29 14473.31 14187.77 3094.15 3871.72 4993.23 16190.31 490.67 9593.89 56
test_fmvsmconf_n85.92 4586.04 4685.57 6885.03 24769.51 9089.62 8690.58 13173.42 13887.75 3194.02 4472.85 4093.24 16090.37 390.75 9393.96 51
ZD-MVS94.38 2572.22 4492.67 6170.98 18087.75 3194.07 4174.01 3296.70 2784.66 4794.84 43
alignmvs85.48 5385.32 5685.96 6289.51 11969.47 9289.74 8192.47 6876.17 8087.73 3391.46 10570.32 6593.78 13681.51 7888.95 11794.63 26
fmvsm_l_conf0.5_n_a84.13 6884.16 7084.06 12585.38 23768.40 12088.34 13286.85 23767.48 24987.48 3493.40 6170.89 5891.61 22288.38 2589.22 11592.16 129
MM88.97 473.65 1092.66 2391.17 11686.57 187.39 3594.97 1671.70 5097.68 192.19 195.63 2895.57 1
fmvsm_s_conf0.1_n_a83.32 8582.99 8484.28 11183.79 27068.07 12989.34 9582.85 29769.80 20587.36 3694.06 4268.34 8891.56 22687.95 2783.46 19493.21 90
fmvsm_s_conf0.5_n_a83.63 7783.41 7684.28 11186.14 22568.12 12789.43 9082.87 29670.27 19587.27 3793.80 5469.09 7891.58 22488.21 2683.65 18893.14 93
fmvsm_s_conf0.1_n83.56 7983.38 7784.10 11884.86 24967.28 14889.40 9383.01 29370.67 18587.08 3893.96 5068.38 8791.45 23488.56 2284.50 17293.56 75
旧先验286.56 18858.10 34387.04 3988.98 27974.07 149
test_fmvsmconf0.01_n84.73 6584.52 6785.34 7280.25 33269.03 9989.47 8889.65 16173.24 14486.98 4094.27 3266.62 10193.23 16190.26 589.95 10793.78 62
fmvsm_s_conf0.5_n83.80 7283.71 7384.07 12386.69 21967.31 14789.46 8983.07 29271.09 17786.96 4193.70 5569.02 8391.47 23388.79 1884.62 17193.44 80
SR-MVS86.73 3386.67 3486.91 4694.11 3772.11 4792.37 2892.56 6774.50 11286.84 4294.65 2067.31 9795.77 5484.80 4692.85 6792.84 103
dcpmvs_285.63 5186.15 4384.06 12591.71 7564.94 19786.47 19091.87 9573.63 13186.60 4393.02 7276.57 1591.87 21683.36 6092.15 7595.35 3
MP-MVS-pluss87.67 2087.72 2087.54 3693.64 4472.04 4889.80 7993.50 2575.17 10086.34 4495.29 1270.86 5996.00 4988.78 1996.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
APD-MVS_3200maxsize85.97 4485.88 4786.22 5792.69 6369.53 8991.93 3892.99 4573.54 13585.94 4594.51 2465.80 11595.61 5783.04 6592.51 7193.53 78
MTAPA87.23 2787.00 2887.90 2294.18 3574.25 586.58 18792.02 8579.45 1985.88 4694.80 1768.07 8996.21 4286.69 3695.34 3393.23 87
TSAR-MVS + GP.85.71 5085.33 5586.84 4791.34 7872.50 3689.07 10487.28 22876.41 7285.80 4790.22 13474.15 3195.37 7281.82 7791.88 7892.65 109
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5292.83 5581.50 585.79 4893.47 6073.02 3997.00 1884.90 4294.94 3994.10 45
SR-MVS-dyc-post85.77 4885.61 5186.23 5693.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2665.00 12395.56 5882.75 6891.87 7992.50 114
RE-MVS-def85.48 5293.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2663.87 12982.75 6891.87 7992.50 114
testdata79.97 24190.90 8664.21 21284.71 26359.27 33385.40 5192.91 7362.02 15789.08 27768.95 19991.37 8686.63 296
casdiffmvs_mvgpermissive85.99 4386.09 4585.70 6687.65 19367.22 15188.69 11993.04 3879.64 1885.33 5292.54 8373.30 3594.50 10783.49 5991.14 8995.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5394.32 3171.76 4896.93 1985.53 3995.79 2294.32 38
PHI-MVS86.43 3886.17 4287.24 4190.88 8770.96 6592.27 3294.07 972.45 15285.22 5491.90 9269.47 7496.42 3783.28 6295.94 1994.35 36
patch_mono-283.65 7584.54 6580.99 22090.06 10665.83 17584.21 24788.74 19871.60 16785.01 5592.44 8474.51 2583.50 32882.15 7592.15 7593.64 71
MVS_030488.08 1388.08 1688.08 1489.67 11372.04 4892.26 3389.26 17384.19 285.01 5595.18 1369.93 6997.20 1491.63 295.60 2994.99 9
TEST993.26 5072.96 2588.75 11591.89 9368.44 23885.00 5793.10 6774.36 2895.41 67
train_agg86.43 3886.20 4087.13 4493.26 5072.96 2588.75 11591.89 9368.69 23385.00 5793.10 6774.43 2695.41 6784.97 4195.71 2593.02 98
HFP-MVS87.58 2187.47 2387.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 5994.44 2870.78 6096.61 3284.53 4994.89 4193.66 65
test_prior288.85 11175.41 9384.91 5993.54 5674.28 2983.31 6195.86 20
test_893.13 5272.57 3588.68 12091.84 9768.69 23384.87 6193.10 6774.43 2695.16 76
MCST-MVS87.37 2687.25 2587.73 2894.53 1772.46 3889.82 7793.82 1673.07 14784.86 6292.89 7476.22 1796.33 3884.89 4495.13 3694.40 34
GST-MVS87.42 2487.26 2487.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6393.99 4870.67 6296.82 2284.18 5695.01 3793.90 55
h-mvs3383.15 8782.19 9586.02 6190.56 9270.85 7088.15 14089.16 17876.02 8384.67 6491.39 10761.54 16295.50 6182.71 7075.48 29391.72 139
hse-mvs281.72 10880.94 11484.07 12388.72 15467.68 13885.87 20687.26 22976.02 8384.67 6488.22 18961.54 16293.48 15182.71 7073.44 32191.06 159
ACMMPR87.44 2287.23 2688.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6694.52 2168.81 8496.65 3084.53 4994.90 4094.00 50
CDPH-MVS85.76 4985.29 5887.17 4393.49 4771.08 6188.58 12392.42 7268.32 24084.61 6793.48 5872.32 4296.15 4579.00 9895.43 3194.28 40
UA-Net85.08 6184.96 6185.45 7092.07 7068.07 12989.78 8090.86 12682.48 384.60 6893.20 6669.35 7595.22 7471.39 17490.88 9293.07 95
CS-MVS86.69 3486.95 3085.90 6390.76 9067.57 14092.83 1793.30 3279.67 1784.57 6992.27 8671.47 5395.02 8684.24 5493.46 6395.13 6
region2R87.42 2487.20 2788.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7094.52 2169.09 7896.70 2784.37 5194.83 4494.03 49
agg_prior92.85 5971.94 5191.78 10084.41 7194.93 87
VDD-MVS83.01 9282.36 9384.96 8491.02 8366.40 16388.91 10888.11 20777.57 4184.39 7293.29 6452.19 24793.91 13177.05 11988.70 12294.57 29
casdiffmvspermissive85.11 6085.14 5985.01 8287.20 20965.77 17987.75 15392.83 5577.84 3784.36 7392.38 8572.15 4493.93 13081.27 8190.48 9695.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MSLP-MVS++85.43 5585.76 4984.45 10391.93 7270.24 7690.71 5892.86 5377.46 4784.22 7492.81 7867.16 9992.94 18080.36 9094.35 5590.16 194
DeepC-MVS_fast79.65 386.91 3286.62 3587.76 2793.52 4672.37 4191.26 4893.04 3876.62 7084.22 7493.36 6371.44 5496.76 2580.82 8595.33 3494.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EC-MVSNet86.01 4286.38 3784.91 8889.31 13066.27 16692.32 3093.63 2179.37 2084.17 7691.88 9369.04 8295.43 6583.93 5793.77 6193.01 99
ETV-MVS84.90 6484.67 6485.59 6789.39 12468.66 11688.74 11792.64 6579.97 1584.10 7785.71 25469.32 7695.38 6980.82 8591.37 8692.72 104
VNet82.21 9982.41 9181.62 20090.82 8860.93 26284.47 23889.78 15676.36 7784.07 7891.88 9364.71 12490.26 25870.68 18088.89 11893.66 65
baseline84.93 6284.98 6084.80 9287.30 20765.39 18887.30 16592.88 5277.62 3984.04 7992.26 8771.81 4793.96 12481.31 8090.30 9995.03 8
test_fmvsmvis_n_192084.02 6983.87 7184.49 10184.12 26369.37 9788.15 14087.96 21270.01 19983.95 8093.23 6568.80 8591.51 23188.61 2089.96 10692.57 110
PGM-MVS86.68 3586.27 3987.90 2294.22 3373.38 1890.22 7093.04 3875.53 9183.86 8194.42 2967.87 9296.64 3182.70 7294.57 4993.66 65
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 6477.57 4183.84 8294.40 3072.24 4396.28 4085.65 3895.30 3593.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVScopyleft87.11 2986.98 2987.50 3893.88 3972.16 4592.19 3493.33 3176.07 8283.81 8393.95 5169.77 7296.01 4885.15 4094.66 4694.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS87.11 2986.92 3187.68 3494.20 3473.86 793.98 392.82 5876.62 7083.68 8494.46 2567.93 9095.95 5284.20 5594.39 5393.23 87
XVS87.18 2886.91 3288.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8594.17 3667.45 9596.60 3383.06 6394.50 5094.07 47
X-MVStestdata80.37 14477.83 18188.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8512.47 39867.45 9596.60 3383.06 6394.50 5094.07 47
DELS-MVS85.41 5685.30 5785.77 6488.49 16167.93 13285.52 21993.44 2778.70 2983.63 8789.03 16474.57 2495.71 5680.26 9294.04 5993.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CS-MVS-test86.29 4186.48 3685.71 6591.02 8367.21 15292.36 2993.78 1878.97 2883.51 8891.20 11170.65 6395.15 7781.96 7694.89 4194.77 22
LFMVS81.82 10781.23 10883.57 14491.89 7363.43 23089.84 7681.85 30777.04 5883.21 8993.10 6752.26 24693.43 15571.98 16989.95 10793.85 57
VDDNet81.52 11580.67 11884.05 12890.44 9564.13 21489.73 8285.91 25071.11 17683.18 9093.48 5850.54 27193.49 15073.40 15688.25 12894.54 30
CSCG86.41 4086.19 4187.07 4592.91 5872.48 3790.81 5793.56 2473.95 12383.16 9191.07 11675.94 1895.19 7579.94 9494.38 5493.55 76
nrg03083.88 7083.53 7484.96 8486.77 21769.28 9890.46 6592.67 6174.79 10682.95 9291.33 10872.70 4193.09 17480.79 8779.28 24692.50 114
EI-MVSNet-Vis-set84.19 6783.81 7285.31 7388.18 17167.85 13387.66 15589.73 15980.05 1482.95 9289.59 14870.74 6194.82 9580.66 8984.72 16993.28 86
MVS_Test83.15 8783.06 8283.41 14986.86 21363.21 23486.11 20092.00 8774.31 11682.87 9489.44 15670.03 6793.21 16377.39 11688.50 12693.81 60
DPM-MVS84.93 6284.29 6986.84 4790.20 9973.04 2387.12 16993.04 3869.80 20582.85 9591.22 11073.06 3896.02 4776.72 12694.63 4791.46 148
DeepC-MVS79.81 287.08 3186.88 3387.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 9694.23 3572.13 4597.09 1684.83 4595.37 3293.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mPP-MVS86.67 3686.32 3887.72 3094.41 2273.55 1392.74 2092.22 8076.87 6282.81 9794.25 3466.44 10596.24 4182.88 6794.28 5693.38 81
test1286.80 4992.63 6470.70 7291.79 9982.71 9871.67 5196.16 4494.50 5093.54 77
HPM-MVS_fast85.35 5784.95 6286.57 5393.69 4270.58 7592.15 3691.62 10373.89 12682.67 9994.09 4062.60 14495.54 6080.93 8392.93 6693.57 74
Effi-MVS+83.62 7883.08 8185.24 7588.38 16667.45 14288.89 10989.15 17975.50 9282.27 10088.28 18669.61 7394.45 10977.81 11187.84 13093.84 59
EI-MVSNet-UG-set83.81 7183.38 7785.09 8087.87 18267.53 14187.44 16189.66 16079.74 1682.23 10189.41 15770.24 6694.74 9879.95 9383.92 18192.99 100
MVS_111021_HR85.14 5984.75 6386.32 5591.65 7672.70 3085.98 20290.33 14176.11 8182.08 10291.61 10071.36 5694.17 12081.02 8292.58 7092.08 131
diffmvspermissive82.10 10081.88 10282.76 18283.00 29063.78 22083.68 25489.76 15772.94 15082.02 10389.85 14065.96 11490.79 25282.38 7487.30 13793.71 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
xiu_mvs_v1_base_debu80.80 13079.72 13684.03 13087.35 20170.19 7985.56 21288.77 19469.06 22581.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 233
xiu_mvs_v1_base80.80 13079.72 13684.03 13087.35 20170.19 7985.56 21288.77 19469.06 22581.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 233
xiu_mvs_v1_base_debi80.80 13079.72 13684.03 13087.35 20170.19 7985.56 21288.77 19469.06 22581.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 233
新几何183.42 14793.13 5270.71 7185.48 25657.43 34981.80 10791.98 9063.28 13392.27 20164.60 23792.99 6587.27 279
test_yl81.17 12080.47 12283.24 15589.13 13863.62 22186.21 19789.95 15372.43 15581.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
DCV-MVSNet81.17 12080.47 12283.24 15589.13 13863.62 22186.21 19789.95 15372.43 15581.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
test_cas_vis1_n_192073.76 26273.74 25273.81 31675.90 35959.77 27880.51 29782.40 30158.30 34181.62 11085.69 25544.35 32476.41 36576.29 12778.61 25085.23 317
MG-MVS83.41 8283.45 7583.28 15292.74 6262.28 24888.17 13889.50 16475.22 9681.49 11192.74 8266.75 10095.11 8072.85 16291.58 8392.45 117
CANet86.45 3786.10 4487.51 3790.09 10170.94 6789.70 8392.59 6681.78 481.32 11291.43 10670.34 6497.23 1384.26 5293.36 6494.37 35
MVSFormer82.85 9382.05 9885.24 7587.35 20170.21 7790.50 6290.38 13768.55 23581.32 11289.47 15161.68 15993.46 15378.98 9990.26 10092.05 132
lupinMVS81.39 11880.27 12784.76 9387.35 20170.21 7785.55 21586.41 24262.85 30281.32 11288.61 17661.68 15992.24 20378.41 10690.26 10091.83 136
xiu_mvs_v2_base81.69 11081.05 11183.60 14289.15 13768.03 13184.46 24090.02 15070.67 18581.30 11586.53 23963.17 13794.19 11975.60 13788.54 12488.57 255
PS-MVSNAJ81.69 11081.02 11283.70 14189.51 11968.21 12684.28 24690.09 14970.79 18281.26 11685.62 25963.15 13894.29 11175.62 13688.87 11988.59 254
原ACMM184.35 10793.01 5768.79 10692.44 6963.96 29381.09 11791.57 10166.06 11195.45 6367.19 21694.82 4588.81 248
jason81.39 11880.29 12684.70 9486.63 22069.90 8585.95 20386.77 23863.24 29581.07 11889.47 15161.08 17592.15 20578.33 10790.07 10592.05 132
jason: jason.
OPM-MVS83.50 8082.95 8585.14 7788.79 15170.95 6689.13 10391.52 10677.55 4480.96 11991.75 9560.71 17994.50 10779.67 9586.51 14989.97 210
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNetpermissive83.46 8182.80 8885.43 7190.25 9868.74 11090.30 6990.13 14876.33 7880.87 12092.89 7461.00 17694.20 11872.45 16890.97 9093.35 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMMPcopyleft85.89 4785.39 5387.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12193.82 5364.33 12596.29 3982.67 7390.69 9493.23 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Anonymous2024052980.19 14978.89 15784.10 11890.60 9164.75 20188.95 10790.90 12365.97 26880.59 12291.17 11349.97 27693.73 14269.16 19782.70 20593.81 60
MVS_111021_LR82.61 9682.11 9684.11 11788.82 14871.58 5385.15 22286.16 24774.69 10880.47 12391.04 11762.29 15190.55 25680.33 9190.08 10490.20 193
ECVR-MVScopyleft79.61 15779.26 14880.67 22890.08 10254.69 33787.89 15077.44 34574.88 10480.27 12492.79 7948.96 29392.45 19268.55 20392.50 7294.86 17
VPA-MVSNet80.60 13780.55 12080.76 22688.07 17660.80 26586.86 17791.58 10575.67 9080.24 12589.45 15563.34 13290.25 25970.51 18279.22 24791.23 153
test111179.43 16479.18 15280.15 23889.99 10753.31 35087.33 16477.05 34875.04 10180.23 12692.77 8148.97 29292.33 20068.87 20092.40 7494.81 20
test250677.30 21976.49 21579.74 24690.08 10252.02 35387.86 15263.10 38674.88 10480.16 12792.79 7938.29 35592.35 19868.74 20292.50 7294.86 17
Anonymous20240521178.25 19277.01 20181.99 19491.03 8260.67 26784.77 23083.90 27770.65 18880.00 12891.20 11141.08 34491.43 23565.21 23185.26 16493.85 57
test22291.50 7768.26 12484.16 24883.20 29054.63 36079.74 12991.63 9958.97 19391.42 8586.77 292
OMC-MVS82.69 9481.97 10184.85 8988.75 15367.42 14387.98 14490.87 12574.92 10379.72 13091.65 9762.19 15493.96 12475.26 14086.42 15093.16 92
FA-MVS(test-final)80.96 12479.91 13284.10 11888.30 16965.01 19584.55 23790.01 15173.25 14379.61 13187.57 20358.35 19794.72 9971.29 17586.25 15392.56 111
CPTT-MVS83.73 7383.33 7984.92 8793.28 4970.86 6992.09 3790.38 13768.75 23279.57 13292.83 7660.60 18493.04 17880.92 8491.56 8490.86 167
IS-MVSNet83.15 8782.81 8784.18 11689.94 10963.30 23291.59 4388.46 20479.04 2579.49 13392.16 8865.10 12094.28 11267.71 20991.86 8194.95 10
PS-MVSNAJss82.07 10281.31 10684.34 10886.51 22167.27 14989.27 9691.51 10771.75 16179.37 13490.22 13463.15 13894.27 11377.69 11282.36 20891.49 146
EPP-MVSNet83.40 8383.02 8384.57 9690.13 10064.47 20792.32 3090.73 12874.45 11579.35 13591.10 11469.05 8195.12 7872.78 16387.22 13894.13 44
test_vis1_n_192075.52 24575.78 22374.75 30979.84 33857.44 30483.26 26385.52 25562.83 30379.34 13686.17 24745.10 32179.71 34778.75 10181.21 22187.10 287
DP-MVS Recon83.11 9082.09 9786.15 5894.44 1970.92 6888.79 11392.20 8170.53 18979.17 13791.03 11964.12 12796.03 4668.39 20690.14 10291.50 145
ab-mvs79.51 16078.97 15681.14 21688.46 16360.91 26383.84 25289.24 17570.36 19179.03 13888.87 16963.23 13690.21 26065.12 23282.57 20692.28 122
EIA-MVS83.31 8682.80 8884.82 9089.59 11565.59 18188.21 13692.68 6074.66 10978.96 13986.42 24169.06 8095.26 7375.54 13890.09 10393.62 72
PVSNet_Blended_VisFu82.62 9581.83 10384.96 8490.80 8969.76 8788.74 11791.70 10269.39 21378.96 13988.46 18165.47 11794.87 9474.42 14588.57 12390.24 192
HQP_MVS83.64 7683.14 8085.14 7790.08 10268.71 11291.25 5092.44 6979.12 2378.92 14191.00 12060.42 18695.38 6978.71 10286.32 15191.33 149
plane_prior368.60 11778.44 3178.92 141
test_fmvs1_n70.86 28870.24 28672.73 32572.51 37955.28 33281.27 28879.71 32851.49 36978.73 14384.87 27427.54 37777.02 35976.06 13079.97 23885.88 309
iter_conf0580.00 15378.70 15983.91 13787.84 18465.83 17588.84 11284.92 26271.61 16678.70 14488.94 16543.88 32794.56 10279.28 9784.28 17891.33 149
EI-MVSNet80.52 14079.98 13082.12 19084.28 25963.19 23686.41 19188.95 18974.18 12078.69 14587.54 20666.62 10192.43 19372.57 16680.57 23090.74 172
MVSTER79.01 17677.88 18082.38 18883.07 28764.80 20084.08 25188.95 18969.01 22878.69 14587.17 21754.70 22492.43 19374.69 14280.57 23089.89 213
API-MVS81.99 10481.23 10884.26 11490.94 8570.18 8291.10 5389.32 16971.51 16978.66 14788.28 18665.26 11895.10 8364.74 23691.23 8887.51 273
GeoE81.71 10981.01 11383.80 13989.51 11964.45 20888.97 10688.73 19971.27 17378.63 14889.76 14266.32 10793.20 16669.89 18986.02 15793.74 63
test_fmvs170.93 28770.52 28172.16 32873.71 36955.05 33480.82 29078.77 33551.21 37078.58 14984.41 28031.20 37276.94 36075.88 13380.12 23784.47 328
UniMVSNet (Re)81.60 11481.11 11083.09 16288.38 16664.41 20987.60 15693.02 4278.42 3278.56 15088.16 19069.78 7193.26 15969.58 19376.49 27591.60 140
MAR-MVS81.84 10680.70 11785.27 7491.32 7971.53 5489.82 7790.92 12269.77 20778.50 15186.21 24562.36 15094.52 10665.36 23092.05 7789.77 218
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Fast-Effi-MVS+80.81 12879.92 13183.47 14588.85 14564.51 20485.53 21789.39 16770.79 18278.49 15285.06 27267.54 9493.58 14467.03 21986.58 14792.32 120
FIs82.07 10282.42 9081.04 21988.80 15058.34 28888.26 13593.49 2676.93 6078.47 15391.04 11769.92 7092.34 19969.87 19084.97 16692.44 118
UniMVSNet_NR-MVSNet81.88 10581.54 10582.92 17188.46 16363.46 22887.13 16892.37 7380.19 1278.38 15489.14 16071.66 5293.05 17670.05 18676.46 27692.25 123
DU-MVS81.12 12280.52 12182.90 17287.80 18663.46 22887.02 17291.87 9579.01 2678.38 15489.07 16265.02 12193.05 17670.05 18676.46 27692.20 126
CLD-MVS82.31 9881.65 10484.29 11088.47 16267.73 13685.81 21092.35 7475.78 8678.33 15686.58 23664.01 12894.35 11076.05 13187.48 13590.79 168
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
iter_conf_final80.63 13579.35 14584.46 10289.36 12667.70 13789.85 7584.49 26773.19 14578.30 15788.94 16545.98 31294.56 10279.59 9684.48 17591.11 156
VPNet78.69 18478.66 16178.76 26188.31 16855.72 32784.45 24186.63 24076.79 6478.26 15890.55 12859.30 19189.70 26766.63 22077.05 26790.88 166
mvsmamba81.69 11080.74 11684.56 9787.45 20066.72 15991.26 4885.89 25174.66 10978.23 15990.56 12754.33 22794.91 8880.73 8883.54 19292.04 134
V4279.38 16878.24 17282.83 17481.10 32465.50 18385.55 21589.82 15571.57 16878.21 16086.12 24860.66 18193.18 16975.64 13575.46 29589.81 217
BH-RMVSNet79.61 15778.44 16683.14 16089.38 12565.93 17284.95 22787.15 23273.56 13478.19 16189.79 14156.67 21293.36 15659.53 27786.74 14590.13 196
v2v48280.23 14779.29 14783.05 16583.62 27364.14 21387.04 17189.97 15273.61 13278.18 16287.22 21461.10 17493.82 13476.11 12976.78 27391.18 154
PVSNet_BlendedMVS80.60 13780.02 12982.36 18988.85 14565.40 18686.16 19992.00 8769.34 21578.11 16386.09 24966.02 11294.27 11371.52 17182.06 21187.39 275
PVSNet_Blended80.98 12380.34 12482.90 17288.85 14565.40 18684.43 24292.00 8767.62 24678.11 16385.05 27366.02 11294.27 11371.52 17189.50 11189.01 238
v114480.03 15179.03 15483.01 16783.78 27164.51 20487.11 17090.57 13371.96 16078.08 16586.20 24661.41 16693.94 12774.93 14177.23 26490.60 177
FE-MVS77.78 20775.68 22584.08 12288.09 17566.00 17083.13 26687.79 21868.42 23978.01 16685.23 26745.50 31995.12 7859.11 28185.83 16191.11 156
TranMVSNet+NR-MVSNet80.84 12680.31 12582.42 18787.85 18362.33 24687.74 15491.33 11280.55 977.99 16789.86 13965.23 11992.62 18667.05 21875.24 30392.30 121
Baseline_NR-MVSNet78.15 19778.33 17077.61 28185.79 22956.21 32386.78 18185.76 25373.60 13377.93 16887.57 20365.02 12188.99 27867.14 21775.33 30087.63 269
TR-MVS77.44 21576.18 22081.20 21488.24 17063.24 23384.61 23586.40 24367.55 24777.81 16986.48 24054.10 23093.15 17057.75 29582.72 20487.20 280
v119279.59 15978.43 16783.07 16483.55 27564.52 20386.93 17590.58 13170.83 18177.78 17085.90 25059.15 19293.94 12773.96 15077.19 26690.76 170
PCF-MVS73.52 780.38 14278.84 15885.01 8287.71 19068.99 10283.65 25591.46 11163.00 29977.77 17190.28 13166.10 10995.09 8461.40 26388.22 12990.94 165
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
WR-MVS79.49 16179.22 15080.27 23688.79 15158.35 28785.06 22488.61 20278.56 3077.65 17288.34 18463.81 13190.66 25564.98 23477.22 26591.80 138
XVG-OURS80.41 14179.23 14983.97 13485.64 23269.02 10183.03 27190.39 13671.09 17777.63 17391.49 10454.62 22691.35 23775.71 13483.47 19391.54 142
v14419279.47 16278.37 16882.78 18083.35 27863.96 21686.96 17390.36 14069.99 20077.50 17485.67 25760.66 18193.77 13874.27 14776.58 27490.62 175
v192192079.22 17078.03 17582.80 17783.30 28063.94 21786.80 17990.33 14169.91 20377.48 17585.53 26058.44 19693.75 14073.60 15276.85 27190.71 173
thisisatest053079.40 16677.76 18684.31 10987.69 19265.10 19487.36 16284.26 27370.04 19877.42 17688.26 18849.94 27794.79 9770.20 18484.70 17093.03 97
FC-MVSNet-test81.52 11582.02 9980.03 24088.42 16555.97 32587.95 14693.42 2977.10 5677.38 17790.98 12269.96 6891.79 21768.46 20584.50 17292.33 119
v124078.99 17777.78 18482.64 18383.21 28263.54 22586.62 18690.30 14369.74 21077.33 17885.68 25657.04 21093.76 13973.13 16076.92 26890.62 175
PAPM_NR83.02 9182.41 9184.82 9092.47 6766.37 16487.93 14891.80 9873.82 12777.32 17990.66 12567.90 9194.90 9170.37 18389.48 11293.19 91
ACMM73.20 880.78 13379.84 13483.58 14389.31 13068.37 12189.99 7391.60 10470.28 19477.25 18089.66 14453.37 23893.53 14974.24 14882.85 20188.85 246
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP4-MVS77.24 18195.11 8091.03 161
AUN-MVS79.21 17177.60 19184.05 12888.71 15567.61 13985.84 20887.26 22969.08 22477.23 18288.14 19453.20 24093.47 15275.50 13973.45 32091.06 159
HQP-NCC89.33 12789.17 9876.41 7277.23 182
ACMP_Plane89.33 12789.17 9876.41 7277.23 182
HQP-MVS82.61 9682.02 9984.37 10589.33 12766.98 15589.17 9892.19 8276.41 7277.23 18290.23 13360.17 18995.11 8077.47 11485.99 15891.03 161
tt080578.73 18277.83 18181.43 20585.17 24060.30 27389.41 9290.90 12371.21 17477.17 18688.73 17146.38 30693.21 16372.57 16678.96 24990.79 168
TAPA-MVS73.13 979.15 17277.94 17782.79 17989.59 11562.99 24188.16 13991.51 10765.77 26977.14 18791.09 11560.91 17793.21 16350.26 33887.05 14092.17 128
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PAPR81.66 11380.89 11583.99 13390.27 9764.00 21586.76 18391.77 10168.84 23177.13 18889.50 14967.63 9394.88 9367.55 21188.52 12593.09 94
UniMVSNet_ETH3D79.10 17478.24 17281.70 19986.85 21460.24 27487.28 16688.79 19374.25 11876.84 18990.53 12949.48 28291.56 22667.98 20782.15 20993.29 85
EPNet83.72 7482.92 8686.14 5984.22 26169.48 9191.05 5585.27 25781.30 676.83 19091.65 9766.09 11095.56 5876.00 13293.85 6093.38 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline176.98 22476.75 21177.66 27988.13 17255.66 32885.12 22381.89 30573.04 14876.79 19188.90 16762.43 14987.78 29763.30 24471.18 33689.55 224
tttt051779.40 16677.91 17883.90 13888.10 17463.84 21888.37 13184.05 27571.45 17076.78 19289.12 16149.93 27994.89 9270.18 18583.18 19892.96 101
TAMVS78.89 18077.51 19383.03 16687.80 18667.79 13584.72 23185.05 26067.63 24576.75 19387.70 19962.25 15290.82 25158.53 28887.13 13990.49 182
XVG-OURS-SEG-HR80.81 12879.76 13583.96 13585.60 23368.78 10783.54 26090.50 13470.66 18776.71 19491.66 9660.69 18091.26 23976.94 12081.58 21791.83 136
3Dnovator+77.84 485.48 5384.47 6888.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19593.37 6260.40 18896.75 2677.20 11793.73 6295.29 5
LPG-MVS_test82.08 10181.27 10784.50 9989.23 13468.76 10890.22 7091.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18289.83 215
LGP-MVS_train84.50 9989.23 13468.76 10891.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18289.83 215
SDMVSNet80.38 14280.18 12880.99 22089.03 14364.94 19780.45 29989.40 16675.19 9876.61 19889.98 13760.61 18387.69 29876.83 12383.55 19090.33 188
sd_testset77.70 21177.40 19478.60 26489.03 14360.02 27679.00 31685.83 25275.19 9876.61 19889.98 13754.81 21985.46 31462.63 25183.55 19090.33 188
tfpn200view976.42 23375.37 23379.55 25389.13 13857.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24891.95 21148.33 34683.75 18489.07 231
thres40076.50 23075.37 23379.86 24389.13 13857.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24891.95 21148.33 34683.75 18490.00 206
HyFIR lowres test77.53 21475.40 23183.94 13689.59 11566.62 16080.36 30088.64 20156.29 35576.45 20085.17 26957.64 20393.28 15861.34 26583.10 19991.91 135
RRT_MVS80.35 14579.22 15083.74 14087.63 19465.46 18591.08 5488.92 19173.82 12776.44 20390.03 13649.05 29194.25 11776.84 12179.20 24891.51 143
CDS-MVSNet79.07 17577.70 18883.17 15987.60 19568.23 12584.40 24486.20 24667.49 24876.36 20486.54 23861.54 16290.79 25261.86 25987.33 13690.49 182
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
thres100view90076.50 23075.55 22879.33 25489.52 11856.99 30985.83 20983.23 28873.94 12476.32 20587.12 21851.89 25691.95 21148.33 34683.75 18489.07 231
thres600view776.50 23075.44 22979.68 24889.40 12357.16 30685.53 21783.23 28873.79 12976.26 20687.09 21951.89 25691.89 21448.05 35183.72 18790.00 206
UGNet80.83 12779.59 13984.54 9888.04 17768.09 12889.42 9188.16 20676.95 5976.22 20789.46 15349.30 28693.94 12768.48 20490.31 9891.60 140
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test_djsdf80.30 14679.32 14683.27 15383.98 26765.37 18990.50 6290.38 13768.55 23576.19 20888.70 17256.44 21393.46 15378.98 9980.14 23690.97 164
v14878.72 18377.80 18381.47 20482.73 29761.96 25286.30 19588.08 20973.26 14276.18 20985.47 26262.46 14892.36 19771.92 17073.82 31790.09 200
WTY-MVS75.65 24375.68 22575.57 29986.40 22256.82 31177.92 33082.40 30165.10 27576.18 20987.72 19863.13 14180.90 34360.31 27181.96 21289.00 240
mvs_anonymous79.42 16579.11 15380.34 23484.45 25857.97 29482.59 27387.62 22167.40 25076.17 21188.56 17968.47 8689.59 26870.65 18186.05 15693.47 79
Anonymous2023121178.97 17877.69 18982.81 17690.54 9364.29 21190.11 7291.51 10765.01 27876.16 21288.13 19550.56 27093.03 17969.68 19277.56 26391.11 156
thisisatest051577.33 21875.38 23283.18 15885.27 23963.80 21982.11 27883.27 28765.06 27675.91 21383.84 29049.54 28194.27 11367.24 21586.19 15491.48 147
CANet_DTU80.61 13679.87 13382.83 17485.60 23363.17 23787.36 16288.65 20076.37 7675.88 21488.44 18253.51 23693.07 17573.30 15789.74 11092.25 123
thres20075.55 24474.47 24378.82 26087.78 18957.85 29783.07 26983.51 28372.44 15475.84 21584.42 27952.08 25191.75 21947.41 35383.64 18986.86 290
CHOSEN 1792x268877.63 21375.69 22483.44 14689.98 10868.58 11878.70 32087.50 22456.38 35475.80 21686.84 22258.67 19491.40 23661.58 26285.75 16290.34 187
AdaColmapbinary80.58 13979.42 14284.06 12593.09 5468.91 10489.36 9488.97 18869.27 21675.70 21789.69 14357.20 20995.77 5463.06 24588.41 12787.50 274
c3_l78.75 18177.91 17881.26 21182.89 29461.56 25784.09 25089.13 18169.97 20175.56 21884.29 28466.36 10692.09 20773.47 15575.48 29390.12 197
miper_ehance_all_eth78.59 18777.76 18681.08 21882.66 29961.56 25783.65 25589.15 17968.87 23075.55 21983.79 29266.49 10492.03 20873.25 15876.39 27889.64 221
miper_enhance_ethall77.87 20676.86 20580.92 22381.65 31361.38 25982.68 27288.98 18665.52 27375.47 22082.30 31365.76 11692.00 21072.95 16176.39 27889.39 226
3Dnovator76.31 583.38 8482.31 9486.59 5287.94 18072.94 2890.64 5992.14 8477.21 5275.47 22092.83 7658.56 19594.72 9973.24 15992.71 6992.13 130
jajsoiax79.29 16977.96 17683.27 15384.68 25266.57 16289.25 9790.16 14769.20 22075.46 22289.49 15045.75 31793.13 17276.84 12180.80 22690.11 198
IterMVS-LS80.06 15079.38 14382.11 19185.89 22863.20 23586.79 18089.34 16874.19 11975.45 22386.72 22666.62 10192.39 19572.58 16576.86 27090.75 171
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
BH-untuned79.47 16278.60 16282.05 19289.19 13665.91 17386.07 20188.52 20372.18 15775.42 22487.69 20061.15 17393.54 14860.38 27086.83 14486.70 294
mvs_tets79.13 17377.77 18583.22 15784.70 25166.37 16489.17 9890.19 14669.38 21475.40 22589.46 15344.17 32593.15 17076.78 12480.70 22890.14 195
HY-MVS69.67 1277.95 20377.15 19980.36 23387.57 19960.21 27583.37 26287.78 21966.11 26475.37 22687.06 22163.27 13490.48 25761.38 26482.43 20790.40 186
GBi-Net78.40 18977.40 19481.40 20787.60 19563.01 23888.39 12889.28 17071.63 16375.34 22787.28 21054.80 22091.11 24262.72 24779.57 24090.09 200
test178.40 18977.40 19481.40 20787.60 19563.01 23888.39 12889.28 17071.63 16375.34 22787.28 21054.80 22091.11 24262.72 24779.57 24090.09 200
FMVSNet377.88 20576.85 20680.97 22286.84 21562.36 24586.52 18988.77 19471.13 17575.34 22786.66 23254.07 23191.10 24562.72 24779.57 24089.45 225
CostFormer75.24 25073.90 24979.27 25582.65 30058.27 28980.80 29182.73 29961.57 31575.33 23083.13 30255.52 21591.07 24864.98 23478.34 25788.45 256
test_vis1_n69.85 30069.21 29171.77 33072.66 37855.27 33381.48 28576.21 35252.03 36675.30 23183.20 30128.97 37576.22 36774.60 14378.41 25683.81 336
FMVSNet278.20 19577.21 19881.20 21487.60 19562.89 24287.47 16089.02 18471.63 16375.29 23287.28 21054.80 22091.10 24562.38 25279.38 24489.61 222
v879.97 15479.02 15582.80 17784.09 26464.50 20687.96 14590.29 14474.13 12275.24 23386.81 22362.88 14393.89 13374.39 14675.40 29890.00 206
anonymousdsp78.60 18677.15 19982.98 16980.51 33067.08 15387.24 16789.53 16365.66 27175.16 23487.19 21652.52 24192.25 20277.17 11879.34 24589.61 222
QAPM80.88 12579.50 14185.03 8188.01 17968.97 10391.59 4392.00 8766.63 26075.15 23592.16 8857.70 20295.45 6363.52 24088.76 12190.66 174
v1079.74 15678.67 16082.97 17084.06 26564.95 19687.88 15190.62 13073.11 14675.11 23686.56 23761.46 16594.05 12373.68 15175.55 29189.90 212
Vis-MVSNet (Re-imp)78.36 19178.45 16578.07 27488.64 15751.78 35886.70 18479.63 32974.14 12175.11 23690.83 12361.29 17089.75 26558.10 29291.60 8292.69 107
cl2278.07 19977.01 20181.23 21282.37 30661.83 25483.55 25987.98 21168.96 22975.06 23883.87 28861.40 16791.88 21573.53 15376.39 27889.98 209
ACMP74.13 681.51 11780.57 11984.36 10689.42 12268.69 11589.97 7491.50 11074.46 11475.04 23990.41 13053.82 23394.54 10477.56 11382.91 20089.86 214
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Effi-MVS+-dtu80.03 15178.57 16384.42 10485.13 24468.74 11088.77 11488.10 20874.99 10274.97 24083.49 29757.27 20893.36 15673.53 15380.88 22491.18 154
XXY-MVS75.41 24875.56 22774.96 30583.59 27457.82 29880.59 29683.87 27866.54 26174.93 24188.31 18563.24 13580.09 34662.16 25576.85 27186.97 288
eth_miper_zixun_eth77.92 20476.69 21281.61 20283.00 29061.98 25183.15 26589.20 17769.52 21274.86 24284.35 28361.76 15892.56 18971.50 17372.89 32590.28 191
GA-MVS76.87 22675.17 23681.97 19582.75 29662.58 24381.44 28786.35 24572.16 15974.74 24382.89 30546.20 31192.02 20968.85 20181.09 22291.30 152
sss73.60 26373.64 25373.51 31882.80 29555.01 33576.12 33781.69 30862.47 30874.68 24485.85 25357.32 20778.11 35460.86 26880.93 22387.39 275
testing22274.04 25872.66 26178.19 27187.89 18155.36 33081.06 28979.20 33371.30 17274.65 24583.57 29639.11 35188.67 28651.43 33085.75 16290.53 180
test_fmvs268.35 31267.48 31370.98 33969.50 38251.95 35580.05 30476.38 35149.33 37274.65 24584.38 28123.30 38375.40 37474.51 14475.17 30485.60 312
BH-w/o78.21 19477.33 19780.84 22488.81 14965.13 19384.87 22887.85 21769.75 20874.52 24784.74 27761.34 16893.11 17358.24 29185.84 16084.27 329
FMVSNet177.44 21576.12 22181.40 20786.81 21663.01 23888.39 12889.28 17070.49 19074.39 24887.28 21049.06 29091.11 24260.91 26778.52 25290.09 200
cl____77.72 20976.76 20980.58 22982.49 30360.48 27083.09 26787.87 21569.22 21874.38 24985.22 26862.10 15591.53 22971.09 17675.41 29789.73 220
DIV-MVS_self_test77.72 20976.76 20980.58 22982.48 30460.48 27083.09 26787.86 21669.22 21874.38 24985.24 26662.10 15591.53 22971.09 17675.40 29889.74 219
114514_t80.68 13479.51 14084.20 11594.09 3867.27 14989.64 8591.11 11958.75 33974.08 25190.72 12458.10 19895.04 8569.70 19189.42 11390.30 190
WR-MVS_H78.51 18878.49 16478.56 26588.02 17856.38 32088.43 12692.67 6177.14 5473.89 25287.55 20566.25 10889.24 27458.92 28373.55 31990.06 204
bld_raw_dy_0_6477.29 22075.98 22281.22 21385.04 24665.47 18488.14 14277.56 34269.20 22073.77 25389.40 15942.24 33888.85 28476.78 12481.64 21689.33 228
WB-MVSnew71.96 28071.65 27072.89 32384.67 25551.88 35682.29 27677.57 34162.31 30973.67 25483.00 30353.49 23781.10 34245.75 36182.13 21085.70 311
tpm273.26 26871.46 27178.63 26283.34 27956.71 31480.65 29580.40 32156.63 35373.55 25582.02 31851.80 25891.24 24056.35 30878.42 25587.95 262
CP-MVSNet78.22 19378.34 16977.84 27687.83 18554.54 33987.94 14791.17 11677.65 3873.48 25688.49 18062.24 15388.43 28962.19 25474.07 31290.55 179
pm-mvs177.25 22176.68 21378.93 25984.22 26158.62 28686.41 19188.36 20571.37 17173.31 25788.01 19661.22 17289.15 27664.24 23873.01 32489.03 237
PS-CasMVS78.01 20278.09 17477.77 27887.71 19054.39 34188.02 14391.22 11377.50 4673.26 25888.64 17560.73 17888.41 29061.88 25873.88 31690.53 180
CVMVSNet72.99 27272.58 26274.25 31384.28 25950.85 36486.41 19183.45 28544.56 37673.23 25987.54 20649.38 28485.70 31065.90 22678.44 25486.19 301
PEN-MVS77.73 20877.69 18977.84 27687.07 21253.91 34487.91 14991.18 11577.56 4373.14 26088.82 17061.23 17189.17 27559.95 27372.37 32790.43 184
1112_ss77.40 21776.43 21780.32 23589.11 14260.41 27283.65 25587.72 22062.13 31273.05 26186.72 22662.58 14689.97 26262.11 25780.80 22690.59 178
tpm72.37 27771.71 26974.35 31282.19 30752.00 35479.22 31377.29 34664.56 28272.95 26283.68 29551.35 26183.26 33158.33 29075.80 28787.81 266
cascas76.72 22874.64 23982.99 16885.78 23065.88 17482.33 27589.21 17660.85 32072.74 26381.02 32447.28 30093.75 14067.48 21285.02 16589.34 227
CR-MVSNet73.37 26571.27 27579.67 24981.32 32265.19 19175.92 33980.30 32259.92 32772.73 26481.19 32152.50 24286.69 30359.84 27477.71 26087.11 285
RPMNet73.51 26470.49 28282.58 18581.32 32265.19 19175.92 33992.27 7657.60 34772.73 26476.45 36052.30 24595.43 6548.14 35077.71 26087.11 285
DTE-MVSNet76.99 22376.80 20777.54 28386.24 22353.06 35287.52 15890.66 12977.08 5772.50 26688.67 17460.48 18589.52 26957.33 29970.74 33890.05 205
Test_1112_low_res76.40 23475.44 22979.27 25589.28 13258.09 29081.69 28287.07 23359.53 33172.48 26786.67 23161.30 16989.33 27260.81 26980.15 23590.41 185
v7n78.97 17877.58 19283.14 16083.45 27765.51 18288.32 13391.21 11473.69 13072.41 26886.32 24457.93 19993.81 13569.18 19675.65 28990.11 198
SCA74.22 25672.33 26579.91 24284.05 26662.17 24979.96 30679.29 33266.30 26372.38 26980.13 33351.95 25488.60 28759.25 27977.67 26288.96 242
CNLPA78.08 19876.79 20881.97 19590.40 9671.07 6287.59 15784.55 26666.03 26772.38 26989.64 14557.56 20486.04 30859.61 27683.35 19588.79 249
NR-MVSNet80.23 14779.38 14382.78 18087.80 18663.34 23186.31 19491.09 12079.01 2672.17 27189.07 16267.20 9892.81 18566.08 22575.65 28992.20 126
OpenMVScopyleft72.83 1079.77 15578.33 17084.09 12185.17 24069.91 8490.57 6090.97 12166.70 25472.17 27191.91 9154.70 22493.96 12461.81 26090.95 9188.41 258
MVS78.19 19676.99 20381.78 19785.66 23166.99 15484.66 23290.47 13555.08 35972.02 27385.27 26563.83 13094.11 12266.10 22489.80 10984.24 330
XVG-ACMP-BASELINE76.11 23874.27 24681.62 20083.20 28364.67 20283.60 25889.75 15869.75 20871.85 27487.09 21932.78 36792.11 20669.99 18880.43 23288.09 261
PatchmatchNetpermissive73.12 27071.33 27478.49 26883.18 28460.85 26479.63 30878.57 33664.13 28771.73 27579.81 33851.20 26385.97 30957.40 29876.36 28388.66 252
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst72.39 27572.13 26673.18 32280.54 32949.91 36879.91 30779.08 33463.11 29771.69 27679.95 33555.32 21682.77 33365.66 22973.89 31586.87 289
TransMVSNet (Re)75.39 24974.56 24177.86 27585.50 23557.10 30886.78 18186.09 24972.17 15871.53 27787.34 20963.01 14289.31 27356.84 30461.83 36487.17 281
Fast-Effi-MVS+-dtu78.02 20176.49 21582.62 18483.16 28666.96 15786.94 17487.45 22672.45 15271.49 27884.17 28554.79 22391.58 22467.61 21080.31 23389.30 229
PAPM77.68 21276.40 21881.51 20387.29 20861.85 25383.78 25389.59 16264.74 28071.23 27988.70 17262.59 14593.66 14352.66 32387.03 14189.01 238
tfpnnormal74.39 25373.16 25778.08 27386.10 22758.05 29184.65 23487.53 22370.32 19371.22 28085.63 25854.97 21889.86 26343.03 36875.02 30586.32 298
RPSCF73.23 26971.46 27178.54 26682.50 30259.85 27782.18 27782.84 29858.96 33671.15 28189.41 15745.48 32084.77 32058.82 28571.83 33291.02 163
PatchT68.46 31167.85 30470.29 34180.70 32743.93 38372.47 35674.88 35660.15 32570.55 28276.57 35949.94 27781.59 33850.58 33274.83 30785.34 315
CL-MVSNet_self_test72.37 27771.46 27175.09 30479.49 34553.53 34680.76 29385.01 26169.12 22370.51 28382.05 31757.92 20084.13 32352.27 32566.00 35687.60 270
IterMVS-SCA-FT75.43 24773.87 25080.11 23982.69 29864.85 19981.57 28483.47 28469.16 22270.49 28484.15 28651.95 25488.15 29269.23 19572.14 33087.34 277
miper_lstm_enhance74.11 25773.11 25877.13 28880.11 33459.62 28072.23 35786.92 23666.76 25370.40 28582.92 30456.93 21182.92 33269.06 19872.63 32688.87 245
gg-mvs-nofinetune69.95 29867.96 30275.94 29583.07 28754.51 34077.23 33470.29 37063.11 29770.32 28662.33 38143.62 32888.69 28553.88 31787.76 13184.62 327
DP-MVS76.78 22774.57 24083.42 14793.29 4869.46 9488.55 12483.70 27963.98 29270.20 28788.89 16854.01 23294.80 9646.66 35581.88 21486.01 306
pmmvs674.69 25273.39 25478.61 26381.38 31957.48 30386.64 18587.95 21364.99 27970.18 28886.61 23350.43 27289.52 26962.12 25670.18 34088.83 247
PVSNet64.34 1872.08 27970.87 27975.69 29786.21 22456.44 31874.37 35180.73 31562.06 31370.17 28982.23 31542.86 33283.31 33054.77 31384.45 17687.32 278
131476.53 22975.30 23580.21 23783.93 26862.32 24784.66 23288.81 19260.23 32470.16 29084.07 28755.30 21790.73 25467.37 21383.21 19787.59 272
Patchmtry70.74 28969.16 29275.49 30180.72 32654.07 34374.94 35080.30 32258.34 34070.01 29181.19 32152.50 24286.54 30453.37 32071.09 33785.87 310
EPMVS69.02 30468.16 29971.59 33179.61 34349.80 37077.40 33266.93 37862.82 30470.01 29179.05 34245.79 31577.86 35656.58 30675.26 30287.13 284
IterMVS74.29 25472.94 25978.35 26981.53 31663.49 22781.58 28382.49 30068.06 24369.99 29383.69 29451.66 26085.54 31265.85 22771.64 33386.01 306
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test-LLR72.94 27372.43 26374.48 31081.35 32058.04 29278.38 32377.46 34366.66 25569.95 29479.00 34448.06 29679.24 34866.13 22284.83 16786.15 302
test-mter71.41 28270.39 28574.48 31081.35 32058.04 29278.38 32377.46 34360.32 32369.95 29479.00 34436.08 36279.24 34866.13 22284.83 16786.15 302
pmmvs474.03 26071.91 26780.39 23281.96 30968.32 12281.45 28682.14 30359.32 33269.87 29685.13 27052.40 24488.13 29360.21 27274.74 30884.73 326
PLCcopyleft70.83 1178.05 20076.37 21983.08 16391.88 7467.80 13488.19 13789.46 16564.33 28669.87 29688.38 18353.66 23493.58 14458.86 28482.73 20387.86 265
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LTVRE_ROB69.57 1376.25 23674.54 24281.41 20688.60 15864.38 21079.24 31289.12 18270.76 18469.79 29887.86 19749.09 28993.20 16656.21 30980.16 23486.65 295
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LS3D76.95 22574.82 23883.37 15090.45 9467.36 14689.15 10286.94 23561.87 31469.52 29990.61 12651.71 25994.53 10546.38 35886.71 14688.21 260
IB-MVS68.01 1575.85 24173.36 25583.31 15184.76 25066.03 16883.38 26185.06 25970.21 19769.40 30081.05 32345.76 31694.66 10165.10 23375.49 29289.25 230
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PatchMatch-RL72.38 27670.90 27876.80 29188.60 15867.38 14579.53 30976.17 35362.75 30569.36 30182.00 31945.51 31884.89 31953.62 31880.58 22978.12 367
MDTV_nov1_ep1369.97 28883.18 28453.48 34777.10 33580.18 32560.45 32169.33 30280.44 33048.89 29486.90 30251.60 32878.51 253
dmvs_re71.14 28470.58 28072.80 32481.96 30959.68 27975.60 34379.34 33168.55 23569.27 30380.72 32949.42 28376.54 36252.56 32477.79 25982.19 352
testing368.56 30967.67 31071.22 33787.33 20642.87 38583.06 27071.54 36770.36 19169.08 30484.38 28130.33 37485.69 31137.50 37975.45 29685.09 322
D2MVS74.82 25173.21 25679.64 25079.81 33962.56 24480.34 30187.35 22764.37 28568.86 30582.66 30946.37 30790.10 26167.91 20881.24 22086.25 299
PMMVS69.34 30268.67 29471.35 33575.67 36162.03 25075.17 34573.46 36250.00 37168.68 30679.05 34252.07 25278.13 35361.16 26682.77 20273.90 374
Patchmatch-RL test70.24 29567.78 30877.61 28177.43 35459.57 28271.16 36070.33 36962.94 30168.65 30772.77 37250.62 26985.49 31369.58 19366.58 35387.77 267
MS-PatchMatch73.83 26172.67 26077.30 28683.87 26966.02 16981.82 27984.66 26461.37 31868.61 30882.82 30747.29 29988.21 29159.27 27884.32 17777.68 368
tpm cat170.57 29168.31 29777.35 28582.41 30557.95 29578.08 32780.22 32452.04 36568.54 30977.66 35552.00 25387.84 29651.77 32672.07 33186.25 299
mvsany_test162.30 33761.26 34165.41 35769.52 38154.86 33666.86 37649.78 39746.65 37468.50 31083.21 30049.15 28866.28 38956.93 30360.77 36775.11 373
TESTMET0.1,169.89 29969.00 29372.55 32679.27 34856.85 31078.38 32374.71 35957.64 34668.09 31177.19 35737.75 35776.70 36163.92 23984.09 18084.10 333
MIMVSNet70.69 29069.30 28974.88 30684.52 25656.35 32175.87 34179.42 33064.59 28167.76 31282.41 31141.10 34381.54 33946.64 35781.34 21886.75 293
ACMH+68.96 1476.01 23974.01 24782.03 19388.60 15865.31 19088.86 11087.55 22270.25 19667.75 31387.47 20841.27 34293.19 16858.37 28975.94 28687.60 270
LCM-MVSNet-Re77.05 22276.94 20477.36 28487.20 20951.60 35980.06 30380.46 32075.20 9767.69 31486.72 22662.48 14788.98 27963.44 24289.25 11491.51 143
ITE_SJBPF78.22 27081.77 31260.57 26883.30 28669.25 21767.54 31587.20 21536.33 36187.28 30154.34 31574.62 30986.80 291
test_fmvs363.36 33561.82 33867.98 35262.51 38946.96 37577.37 33374.03 36145.24 37567.50 31678.79 34712.16 39472.98 38272.77 16466.02 35583.99 334
pmmvs571.55 28170.20 28775.61 29877.83 35256.39 31981.74 28180.89 31257.76 34567.46 31784.49 27849.26 28785.32 31657.08 30175.29 30185.11 321
MVP-Stereo76.12 23774.46 24481.13 21785.37 23869.79 8684.42 24387.95 21365.03 27767.46 31785.33 26453.28 23991.73 22158.01 29383.27 19681.85 354
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_040272.79 27470.44 28379.84 24488.13 17265.99 17185.93 20484.29 27165.57 27267.40 31985.49 26146.92 30392.61 18735.88 38074.38 31180.94 359
GG-mvs-BLEND75.38 30281.59 31555.80 32679.32 31169.63 37267.19 32073.67 37043.24 32988.90 28350.41 33384.50 17281.45 356
tpmvs71.09 28569.29 29076.49 29282.04 30856.04 32478.92 31881.37 31164.05 29067.18 32178.28 35049.74 28089.77 26449.67 34172.37 32783.67 337
OurMVSNet-221017-074.26 25572.42 26479.80 24583.76 27259.59 28185.92 20586.64 23966.39 26266.96 32287.58 20239.46 34891.60 22365.76 22869.27 34388.22 259
baseline275.70 24273.83 25181.30 21083.26 28161.79 25582.57 27480.65 31666.81 25166.88 32383.42 29857.86 20192.19 20463.47 24179.57 24089.91 211
F-COLMAP76.38 23574.33 24582.50 18689.28 13266.95 15888.41 12789.03 18364.05 29066.83 32488.61 17646.78 30492.89 18157.48 29678.55 25187.67 268
ACMH67.68 1675.89 24073.93 24881.77 19888.71 15566.61 16188.62 12289.01 18569.81 20466.78 32586.70 23041.95 34191.51 23155.64 31078.14 25887.17 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Syy-MVS68.05 31367.85 30468.67 35084.68 25240.97 39178.62 32173.08 36466.65 25866.74 32679.46 33952.11 25082.30 33532.89 38376.38 28182.75 348
myMVS_eth3d67.02 31966.29 32069.21 34584.68 25242.58 38678.62 32173.08 36466.65 25866.74 32679.46 33931.53 37182.30 33539.43 37676.38 28182.75 348
test0.0.03 168.00 31467.69 30968.90 34777.55 35347.43 37275.70 34272.95 36666.66 25566.56 32882.29 31448.06 29675.87 36944.97 36574.51 31083.41 339
MDTV_nov1_ep13_2view37.79 39375.16 34655.10 35866.53 32949.34 28553.98 31687.94 263
KD-MVS_2432*160066.22 32663.89 32873.21 31975.47 36453.42 34870.76 36384.35 26964.10 28866.52 33078.52 34834.55 36584.98 31750.40 33450.33 38381.23 357
miper_refine_blended66.22 32663.89 32873.21 31975.47 36453.42 34870.76 36384.35 26964.10 28866.52 33078.52 34834.55 36584.98 31750.40 33450.33 38381.23 357
ET-MVSNet_ETH3D78.63 18576.63 21484.64 9586.73 21869.47 9285.01 22584.61 26569.54 21166.51 33286.59 23450.16 27491.75 21976.26 12884.24 17992.69 107
EU-MVSNet68.53 31067.61 31171.31 33678.51 35147.01 37484.47 23884.27 27242.27 37966.44 33384.79 27640.44 34683.76 32558.76 28668.54 34883.17 341
EPNet_dtu75.46 24674.86 23777.23 28782.57 30154.60 33886.89 17683.09 29171.64 16266.25 33485.86 25255.99 21488.04 29454.92 31286.55 14889.05 236
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2023120668.60 30767.80 30771.02 33880.23 33350.75 36578.30 32680.47 31956.79 35266.11 33582.63 31046.35 30878.95 35043.62 36775.70 28883.36 340
SixPastTwentyTwo73.37 26571.26 27679.70 24785.08 24557.89 29685.57 21183.56 28271.03 17965.66 33685.88 25142.10 33992.57 18859.11 28163.34 36288.65 253
MSDG73.36 26770.99 27780.49 23184.51 25765.80 17780.71 29486.13 24865.70 27065.46 33783.74 29344.60 32290.91 25051.13 33176.89 26984.74 325
OpenMVS_ROBcopyleft64.09 1970.56 29268.19 29877.65 28080.26 33159.41 28385.01 22582.96 29558.76 33865.43 33882.33 31237.63 35891.23 24145.34 36476.03 28582.32 350
ppachtmachnet_test70.04 29767.34 31478.14 27279.80 34061.13 26079.19 31480.59 31759.16 33465.27 33979.29 34146.75 30587.29 30049.33 34266.72 35186.00 308
ADS-MVSNet266.20 32863.33 33174.82 30779.92 33658.75 28567.55 37475.19 35553.37 36265.25 34075.86 36342.32 33580.53 34541.57 37168.91 34585.18 318
ADS-MVSNet64.36 33262.88 33568.78 34979.92 33647.17 37367.55 37471.18 36853.37 36265.25 34075.86 36342.32 33573.99 37941.57 37168.91 34585.18 318
testgi66.67 32266.53 31967.08 35575.62 36241.69 39075.93 33876.50 35066.11 26465.20 34286.59 23435.72 36374.71 37643.71 36673.38 32284.84 324
PM-MVS66.41 32464.14 32673.20 32173.92 36856.45 31778.97 31764.96 38463.88 29464.72 34380.24 33219.84 38683.44 32966.24 22164.52 36079.71 364
JIA-IIPM66.32 32562.82 33676.82 29077.09 35661.72 25665.34 38175.38 35458.04 34464.51 34462.32 38242.05 34086.51 30551.45 32969.22 34482.21 351
ambc75.24 30373.16 37450.51 36663.05 38687.47 22564.28 34577.81 35417.80 38889.73 26657.88 29460.64 36885.49 313
EG-PatchMatch MVS74.04 25871.82 26880.71 22784.92 24867.42 14385.86 20788.08 20966.04 26664.22 34683.85 28935.10 36492.56 18957.44 29780.83 22582.16 353
dp66.80 32065.43 32270.90 34079.74 34248.82 37175.12 34874.77 35759.61 32964.08 34777.23 35642.89 33180.72 34448.86 34466.58 35383.16 342
KD-MVS_self_test68.81 30567.59 31272.46 32774.29 36745.45 37677.93 32987.00 23463.12 29663.99 34878.99 34642.32 33584.77 32056.55 30764.09 36187.16 283
pmmvs-eth3d70.50 29367.83 30678.52 26777.37 35566.18 16781.82 27981.51 30958.90 33763.90 34980.42 33142.69 33386.28 30758.56 28765.30 35883.11 343
COLMAP_ROBcopyleft66.92 1773.01 27170.41 28480.81 22587.13 21165.63 18088.30 13484.19 27462.96 30063.80 35087.69 20038.04 35692.56 18946.66 35574.91 30684.24 330
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet569.50 30167.96 30274.15 31482.97 29355.35 33180.01 30582.12 30462.56 30763.02 35181.53 32036.92 35981.92 33748.42 34574.06 31385.17 320
test20.0367.45 31666.95 31768.94 34675.48 36344.84 38177.50 33177.67 34066.66 25563.01 35283.80 29147.02 30278.40 35242.53 37068.86 34783.58 338
K. test v371.19 28368.51 29579.21 25783.04 28957.78 29984.35 24576.91 34972.90 15162.99 35382.86 30639.27 34991.09 24761.65 26152.66 38088.75 250
our_test_369.14 30367.00 31675.57 29979.80 34058.80 28477.96 32877.81 33959.55 33062.90 35478.25 35147.43 29883.97 32451.71 32767.58 35083.93 335
CHOSEN 280x42066.51 32364.71 32471.90 32981.45 31763.52 22657.98 38868.95 37653.57 36162.59 35576.70 35846.22 31075.29 37555.25 31179.68 23976.88 370
Anonymous2024052168.80 30667.22 31573.55 31774.33 36654.11 34283.18 26485.61 25458.15 34261.68 35680.94 32630.71 37381.27 34157.00 30273.34 32385.28 316
USDC70.33 29468.37 29676.21 29480.60 32856.23 32279.19 31486.49 24160.89 31961.29 35785.47 26231.78 37089.47 27153.37 32076.21 28482.94 347
lessismore_v078.97 25881.01 32557.15 30765.99 38061.16 35882.82 30739.12 35091.34 23859.67 27546.92 38688.43 257
UnsupCasMVSNet_eth67.33 31765.99 32171.37 33373.48 37251.47 36175.16 34685.19 25865.20 27460.78 35980.93 32842.35 33477.20 35857.12 30053.69 37985.44 314
dmvs_testset62.63 33664.11 32758.19 36578.55 35024.76 40175.28 34465.94 38167.91 24460.34 36076.01 36253.56 23573.94 38031.79 38467.65 34975.88 372
AllTest70.96 28668.09 30179.58 25185.15 24263.62 22184.58 23679.83 32662.31 30960.32 36186.73 22432.02 36888.96 28150.28 33671.57 33486.15 302
TestCases79.58 25185.15 24263.62 22179.83 32662.31 30960.32 36186.73 22432.02 36888.96 28150.28 33671.57 33486.15 302
Patchmatch-test64.82 33163.24 33269.57 34379.42 34649.82 36963.49 38569.05 37551.98 36759.95 36380.13 33350.91 26570.98 38340.66 37373.57 31887.90 264
MIMVSNet168.58 30866.78 31873.98 31580.07 33551.82 35780.77 29284.37 26864.40 28459.75 36482.16 31636.47 36083.63 32742.73 36970.33 33986.48 297
test_vis1_rt60.28 34058.42 34365.84 35667.25 38555.60 32970.44 36560.94 38944.33 37759.00 36566.64 37924.91 37968.67 38762.80 24669.48 34173.25 375
LF4IMVS64.02 33362.19 33769.50 34470.90 38053.29 35176.13 33677.18 34752.65 36458.59 36680.98 32523.55 38276.52 36353.06 32266.66 35278.68 366
PVSNet_057.27 2061.67 33959.27 34268.85 34879.61 34357.44 30468.01 37373.44 36355.93 35658.54 36770.41 37744.58 32377.55 35747.01 35435.91 38971.55 377
TDRefinement67.49 31564.34 32576.92 28973.47 37361.07 26184.86 22982.98 29459.77 32858.30 36885.13 27026.06 37887.89 29547.92 35260.59 36981.81 355
mvsany_test353.99 34651.45 35161.61 36255.51 39344.74 38263.52 38445.41 40143.69 37858.11 36976.45 36017.99 38763.76 39254.77 31347.59 38576.34 371
UnsupCasMVSNet_bld63.70 33461.53 34070.21 34273.69 37051.39 36272.82 35581.89 30555.63 35757.81 37071.80 37438.67 35278.61 35149.26 34352.21 38180.63 360
DSMNet-mixed57.77 34356.90 34560.38 36367.70 38435.61 39469.18 36953.97 39532.30 39157.49 37179.88 33640.39 34768.57 38838.78 37772.37 32776.97 369
N_pmnet52.79 35053.26 34951.40 37578.99 3497.68 40769.52 3673.89 40651.63 36857.01 37274.98 36740.83 34565.96 39037.78 37864.67 35980.56 362
new-patchmatchnet61.73 33861.73 33961.70 36172.74 37724.50 40269.16 37078.03 33861.40 31656.72 37375.53 36638.42 35376.48 36445.95 36057.67 37184.13 332
CMPMVSbinary51.72 2170.19 29668.16 29976.28 29373.15 37557.55 30279.47 31083.92 27648.02 37356.48 37484.81 27543.13 33086.42 30662.67 25081.81 21584.89 323
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TinyColmap67.30 31864.81 32374.76 30881.92 31156.68 31580.29 30281.49 31060.33 32256.27 37583.22 29924.77 38087.66 29945.52 36269.47 34279.95 363
test_f52.09 35150.82 35255.90 36953.82 39642.31 38959.42 38758.31 39336.45 38656.12 37670.96 37612.18 39357.79 39453.51 31956.57 37467.60 380
YYNet165.03 32962.91 33471.38 33275.85 36056.60 31669.12 37174.66 36057.28 35054.12 37777.87 35345.85 31474.48 37749.95 33961.52 36683.05 344
MDA-MVSNet_test_wron65.03 32962.92 33371.37 33375.93 35856.73 31269.09 37274.73 35857.28 35054.03 37877.89 35245.88 31374.39 37849.89 34061.55 36582.99 346
pmmvs357.79 34254.26 34768.37 35164.02 38856.72 31375.12 34865.17 38240.20 38152.93 37969.86 37820.36 38575.48 37245.45 36355.25 37872.90 376
MVS-HIRNet59.14 34157.67 34463.57 35981.65 31343.50 38471.73 35865.06 38339.59 38351.43 38057.73 38738.34 35482.58 33439.53 37473.95 31464.62 383
WB-MVS54.94 34454.72 34655.60 37173.50 37120.90 40374.27 35261.19 38859.16 33450.61 38174.15 36847.19 30175.78 37017.31 39535.07 39070.12 378
MDA-MVSNet-bldmvs66.68 32163.66 33075.75 29679.28 34760.56 26973.92 35378.35 33764.43 28350.13 38279.87 33744.02 32683.67 32646.10 35956.86 37283.03 345
SSC-MVS53.88 34753.59 34854.75 37372.87 37619.59 40473.84 35460.53 39057.58 34849.18 38373.45 37146.34 30975.47 37316.20 39832.28 39269.20 379
new_pmnet50.91 35350.29 35352.78 37468.58 38334.94 39663.71 38356.63 39439.73 38244.95 38465.47 38021.93 38458.48 39334.98 38156.62 37364.92 382
test_vis3_rt49.26 35547.02 35756.00 36854.30 39445.27 38066.76 37848.08 39836.83 38544.38 38553.20 3907.17 40164.07 39156.77 30555.66 37558.65 387
FPMVS53.68 34851.64 35059.81 36465.08 38751.03 36369.48 36869.58 37341.46 38040.67 38672.32 37316.46 39070.00 38624.24 39265.42 35758.40 388
APD_test153.31 34949.93 35463.42 36065.68 38650.13 36771.59 35966.90 37934.43 38840.58 38771.56 3758.65 39976.27 36634.64 38255.36 37763.86 384
LCM-MVSNet54.25 34549.68 35567.97 35353.73 39745.28 37966.85 37780.78 31435.96 38739.45 38862.23 3838.70 39878.06 35548.24 34951.20 38280.57 361
PMMVS240.82 36038.86 36346.69 37653.84 39516.45 40548.61 39149.92 39637.49 38431.67 38960.97 3848.14 40056.42 39528.42 38730.72 39367.19 381
ANet_high50.57 35446.10 35863.99 35848.67 40039.13 39270.99 36280.85 31361.39 31731.18 39057.70 38817.02 38973.65 38131.22 38515.89 39879.18 365
testf145.72 35641.96 35957.00 36656.90 39145.32 37766.14 37959.26 39126.19 39230.89 39160.96 3854.14 40270.64 38426.39 39046.73 38755.04 389
APD_test245.72 35641.96 35957.00 36656.90 39145.32 37766.14 37959.26 39126.19 39230.89 39160.96 3854.14 40270.64 38426.39 39046.73 38755.04 389
Gipumacopyleft45.18 35841.86 36155.16 37277.03 35751.52 36032.50 39480.52 31832.46 39027.12 39335.02 3949.52 39775.50 37122.31 39360.21 37038.45 393
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft37.38 2244.16 35940.28 36255.82 37040.82 40242.54 38865.12 38263.99 38534.43 38824.48 39457.12 3893.92 40476.17 36817.10 39655.52 37648.75 391
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepMVS_CXcopyleft27.40 38140.17 40326.90 39924.59 40517.44 39723.95 39548.61 3929.77 39626.48 40018.06 39424.47 39428.83 394
tmp_tt18.61 36621.40 36910.23 3834.82 40510.11 40634.70 39330.74 4041.48 40023.91 39626.07 39728.42 37613.41 40227.12 38815.35 3997.17 397
test_method31.52 36229.28 36638.23 37827.03 4046.50 40820.94 39662.21 3874.05 39922.35 39752.50 39113.33 39147.58 39827.04 38934.04 39160.62 385
MVEpermissive26.22 2330.37 36425.89 36843.81 37744.55 40135.46 39528.87 39539.07 40218.20 39618.58 39840.18 3932.68 40547.37 39917.07 39723.78 39548.60 392
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN31.77 36130.64 36435.15 37952.87 39827.67 39857.09 38947.86 39924.64 39416.40 39933.05 39511.23 39554.90 39614.46 39918.15 39622.87 395
EMVS30.81 36329.65 36534.27 38050.96 39925.95 40056.58 39046.80 40024.01 39515.53 40030.68 39612.47 39254.43 39712.81 40017.05 39722.43 396
wuyk23d16.82 36715.94 37019.46 38258.74 39031.45 39739.22 3923.74 4076.84 3986.04 4012.70 4011.27 40624.29 40110.54 40114.40 4002.63 398
EGC-MVSNET52.07 35247.05 35667.14 35483.51 27660.71 26680.50 29867.75 3770.07 4010.43 40275.85 36524.26 38181.54 33928.82 38662.25 36359.16 386
testmvs6.04 3708.02 3730.10 3850.08 4060.03 41069.74 3660.04 4080.05 4020.31 4031.68 4020.02 4080.04 4030.24 4020.02 4010.25 400
test1236.12 3698.11 3720.14 3840.06 4070.09 40971.05 3610.03 4090.04 4030.25 4041.30 4030.05 4070.03 4040.21 4030.01 4020.29 399
test_blank0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
uanet_test0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
DCPMVS0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
cdsmvs_eth3d_5k19.96 36526.61 3670.00 3860.00 4080.00 4110.00 39789.26 1730.00 4040.00 40588.61 17661.62 1610.00 4050.00 4040.00 4030.00 401
pcd_1.5k_mvsjas5.26 3717.02 3740.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 40463.15 1380.00 4050.00 4040.00 4030.00 401
sosnet-low-res0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
sosnet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
uncertanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
Regformer0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
ab-mvs-re7.23 3689.64 3710.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 40586.72 2260.00 4090.00 4050.00 4040.00 4030.00 401
uanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
WAC-MVS42.58 38639.46 375
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
No_MVS89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
eth-test20.00 408
eth-test0.00 408
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
save fliter93.80 4072.35 4290.47 6491.17 11674.31 116
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 42
GSMVS88.96 242
sam_mvs151.32 26288.96 242
sam_mvs50.01 275
MTGPAbinary92.02 85
test_post178.90 3195.43 40048.81 29585.44 31559.25 279
test_post5.46 39950.36 27384.24 322
patchmatchnet-post74.00 36951.12 26488.60 287
MTMP92.18 3532.83 403
gm-plane-assit81.40 31853.83 34562.72 30680.94 32692.39 19563.40 243
test9_res84.90 4295.70 2692.87 102
agg_prior282.91 6695.45 3092.70 105
test_prior472.60 3489.01 105
test_prior86.33 5492.61 6569.59 8892.97 5095.48 6293.91 53
新几何286.29 196
旧先验191.96 7165.79 17886.37 24493.08 7169.31 7792.74 6888.74 251
无先验87.48 15988.98 18660.00 32694.12 12167.28 21488.97 241
原ACMM286.86 177
testdata291.01 24962.37 253
segment_acmp73.08 37
testdata184.14 24975.71 87
plane_prior790.08 10268.51 119
plane_prior689.84 11168.70 11460.42 186
plane_prior592.44 6995.38 6978.71 10286.32 15191.33 149
plane_prior491.00 120
plane_prior291.25 5079.12 23
plane_prior189.90 110
plane_prior68.71 11290.38 6777.62 3986.16 155
n20.00 410
nn0.00 410
door-mid69.98 371
test1192.23 79
door69.44 374
HQP5-MVS66.98 155
BP-MVS77.47 114
HQP3-MVS92.19 8285.99 158
HQP2-MVS60.17 189
NP-MVS89.62 11468.32 12290.24 132
ACMMP++_ref81.95 213
ACMMP++81.25 219
Test By Simon64.33 125