This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 45
IU-MVS95.30 271.25 5792.95 5266.81 25892.39 688.94 1696.63 494.85 19
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10992.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8792.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 56
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 6077.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 89
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 25
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
PC_three_145268.21 24892.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
test_part295.06 872.65 3291.80 13
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 6294.67 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
FOURS195.00 1072.39 3995.06 193.84 1574.49 11591.30 15
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9191.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 34
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13987.63 3094.27 6193.65 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 10089.57 8693.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 29
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8989.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7974.62 11388.90 2093.85 5275.75 2096.00 4987.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5673.01 15188.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 110
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
9.1488.26 1592.84 6091.52 4694.75 173.93 12788.57 2294.67 1975.57 2295.79 5386.77 3595.76 23
test_fmvsm_n_192085.29 6085.34 5785.13 8286.12 23669.93 8388.65 12090.78 13469.97 20888.27 2393.98 4971.39 5791.54 23288.49 2390.45 10193.91 57
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5593.59 2376.27 8188.14 2495.09 1571.06 5996.67 2987.67 2996.37 1494.09 50
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6093.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 41
fmvsm_l_conf0.5_n84.47 7184.54 7084.27 11785.42 24668.81 10688.49 12487.26 23568.08 24988.03 2793.49 5772.04 4891.77 22288.90 1789.14 12092.24 131
sasdasda85.91 4785.87 4986.04 6089.84 11369.44 9590.45 6593.00 4376.70 6988.01 2891.23 11073.28 3693.91 13381.50 7988.80 12494.77 22
canonicalmvs85.91 4785.87 4986.04 6089.84 11369.44 9590.45 6593.00 4376.70 6988.01 2891.23 11073.28 3693.91 13381.50 7988.80 12494.77 22
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5580.26 1187.78 3094.27 3275.89 1996.81 2387.45 3296.44 993.05 101
test_fmvsmconf0.1_n85.61 5485.65 5285.50 7282.99 30169.39 9789.65 8390.29 15173.31 14387.77 3194.15 3871.72 5193.23 16590.31 490.67 9993.89 60
test_fmvsmconf_n85.92 4686.04 4785.57 7185.03 25669.51 9089.62 8590.58 13873.42 14087.75 3294.02 4472.85 4193.24 16490.37 390.75 9793.96 55
ZD-MVS94.38 2572.22 4492.67 6270.98 18587.75 3294.07 4174.01 3296.70 2784.66 4794.84 43
alignmvs85.48 5585.32 5985.96 6389.51 12269.47 9289.74 8092.47 7376.17 8287.73 3491.46 10570.32 6793.78 13981.51 7888.95 12194.63 28
MGCFI-Net85.06 6485.51 5483.70 14489.42 12763.01 24089.43 8992.62 6976.43 7387.53 3591.34 10872.82 4293.42 15981.28 8388.74 12794.66 27
fmvsm_l_conf0.5_n_a84.13 7484.16 7684.06 12985.38 24768.40 12188.34 13386.85 24367.48 25687.48 3693.40 6170.89 6091.61 22688.38 2589.22 11992.16 135
MM89.16 689.23 788.97 490.79 9073.65 1092.66 2391.17 12386.57 187.39 3794.97 1671.70 5297.68 192.19 195.63 2895.57 1
fmvsm_s_conf0.1_n_a83.32 9282.99 9184.28 11583.79 27968.07 13089.34 9582.85 30269.80 21287.36 3894.06 4268.34 9591.56 23087.95 2783.46 20493.21 95
fmvsm_s_conf0.5_n_a83.63 8483.41 8384.28 11586.14 23568.12 12889.43 8982.87 30170.27 20187.27 3993.80 5469.09 8091.58 22888.21 2683.65 19893.14 98
fmvsm_s_conf0.1_n83.56 8683.38 8484.10 12284.86 25867.28 15089.40 9383.01 29770.67 19087.08 4093.96 5068.38 9491.45 23888.56 2284.50 18093.56 80
旧先验286.56 19058.10 35187.04 4188.98 28674.07 152
test_fmvsmconf0.01_n84.73 7084.52 7285.34 7580.25 34169.03 10089.47 8789.65 16873.24 14786.98 4294.27 3266.62 10893.23 16590.26 589.95 11193.78 67
fmvsm_s_conf0.5_n83.80 7983.71 7984.07 12786.69 22867.31 14989.46 8883.07 29671.09 18286.96 4393.70 5569.02 8591.47 23788.79 1884.62 17993.44 85
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 7174.50 11486.84 4494.65 2067.31 10495.77 5484.80 4692.85 7192.84 108
dcpmvs_285.63 5386.15 4484.06 12991.71 7564.94 19886.47 19291.87 10173.63 13386.60 4593.02 7276.57 1591.87 22083.36 6092.15 7995.35 3
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7893.50 2575.17 10286.34 4695.29 1270.86 6196.00 4988.78 1996.04 1694.58 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4673.54 13785.94 4794.51 2465.80 12295.61 5883.04 6592.51 7593.53 83
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18992.02 9179.45 1985.88 4894.80 1768.07 9696.21 4286.69 3695.34 3393.23 92
TSAR-MVS + GP.85.71 5285.33 5886.84 4791.34 7872.50 3689.07 10487.28 23476.41 7485.80 4990.22 13874.15 3195.37 7481.82 7791.88 8292.65 114
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5681.50 585.79 5093.47 6073.02 4097.00 1884.90 4294.94 3994.10 49
SR-MVS-dyc-post85.77 5085.61 5386.23 5693.06 5570.63 7391.88 3992.27 8173.53 13885.69 5194.45 2665.00 13095.56 6082.75 6891.87 8392.50 120
RE-MVS-def85.48 5593.06 5570.63 7391.88 3992.27 8173.53 13885.69 5194.45 2663.87 13682.75 6891.87 8392.50 120
testdata79.97 24490.90 8664.21 21484.71 26859.27 34185.40 5392.91 7362.02 16489.08 28468.95 20291.37 9086.63 304
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6987.65 20267.22 15388.69 11893.04 3879.64 1885.33 5492.54 8373.30 3594.50 11083.49 5991.14 9395.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5594.32 3171.76 5096.93 1985.53 3995.79 2294.32 42
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15485.22 5691.90 9269.47 7696.42 3783.28 6295.94 1994.35 40
patch_mono-283.65 8284.54 7080.99 22390.06 10765.83 17884.21 25088.74 20471.60 17285.01 5792.44 8474.51 2583.50 33682.15 7592.15 7993.64 76
MVS_030488.08 1488.08 1788.08 1489.67 11672.04 4892.26 3389.26 18084.19 285.01 5795.18 1369.93 7197.20 1491.63 295.60 2994.99 9
TEST993.26 5072.96 2588.75 11491.89 9968.44 24585.00 5993.10 6774.36 2895.41 69
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11491.89 9968.69 24085.00 5993.10 6774.43 2695.41 6984.97 4195.71 2593.02 103
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 6194.44 2870.78 6296.61 3284.53 4994.89 4193.66 70
test_prior288.85 11175.41 9584.91 6193.54 5674.28 2983.31 6195.86 20
test_893.13 5272.57 3588.68 11991.84 10368.69 24084.87 6393.10 6774.43 2695.16 79
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7693.82 1673.07 14984.86 6492.89 7476.22 1796.33 3884.89 4495.13 3694.40 38
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6593.99 4870.67 6496.82 2284.18 5695.01 3793.90 59
h-mvs3383.15 9582.19 10386.02 6290.56 9370.85 7088.15 14289.16 18576.02 8584.67 6691.39 10761.54 16995.50 6382.71 7075.48 30191.72 146
hse-mvs281.72 11680.94 12284.07 12788.72 16067.68 13885.87 20987.26 23576.02 8584.67 6688.22 19261.54 16993.48 15482.71 7073.44 32991.06 165
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6894.52 2168.81 8996.65 3084.53 4994.90 4094.00 54
CDPH-MVS85.76 5185.29 6187.17 4393.49 4771.08 6188.58 12292.42 7768.32 24784.61 6993.48 5872.32 4496.15 4579.00 10395.43 3194.28 44
UA-Net85.08 6384.96 6485.45 7392.07 7068.07 13089.78 7990.86 13382.48 384.60 7093.20 6669.35 7795.22 7771.39 17790.88 9693.07 100
CS-MVS86.69 3586.95 3185.90 6590.76 9167.57 14292.83 1793.30 3279.67 1784.57 7192.27 8671.47 5595.02 9084.24 5493.46 6795.13 6
MVSMamba_pp84.98 6684.70 6785.80 6689.43 12667.63 14088.44 12592.64 6772.17 16284.54 7290.39 13368.88 8895.28 7581.45 8194.39 5594.49 33
mamv485.00 6584.68 6885.93 6489.51 12267.64 13988.38 13192.65 6572.35 15984.47 7390.26 13568.98 8795.69 5781.09 8594.45 5394.47 34
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7494.52 2169.09 8096.70 2784.37 5194.83 4494.03 53
agg_prior92.85 5971.94 5191.78 10684.41 7594.93 91
VDD-MVS83.01 10082.36 10184.96 8891.02 8366.40 16688.91 10888.11 21377.57 4184.39 7693.29 6452.19 25493.91 13377.05 12488.70 12894.57 31
casdiffmvspermissive85.11 6285.14 6285.01 8587.20 21865.77 18187.75 15492.83 5677.84 3784.36 7792.38 8572.15 4693.93 13281.27 8490.48 10095.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MSLP-MVS++85.43 5785.76 5184.45 10791.93 7270.24 7690.71 5792.86 5477.46 4784.22 7892.81 7867.16 10692.94 18480.36 9594.35 5890.16 200
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7184.22 7893.36 6371.44 5696.76 2580.82 9095.33 3494.16 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EC-MVSNet86.01 4386.38 3884.91 9289.31 13666.27 16992.32 3093.63 2179.37 2084.17 8091.88 9369.04 8495.43 6783.93 5793.77 6593.01 104
bld_raw_dy_0_6484.37 7284.35 7484.46 10689.86 11264.47 20886.68 18692.49 7272.08 16584.16 8189.77 14668.76 9195.08 8880.97 8794.34 5993.82 64
ETV-MVS84.90 6984.67 6985.59 7089.39 13068.66 11788.74 11692.64 6779.97 1584.10 8285.71 25769.32 7895.38 7180.82 9091.37 9092.72 109
VNet82.21 10782.41 9981.62 20490.82 8860.93 26584.47 24189.78 16376.36 7984.07 8391.88 9364.71 13190.26 26270.68 18388.89 12293.66 70
baseline84.93 6784.98 6384.80 9687.30 21665.39 18887.30 16692.88 5377.62 3984.04 8492.26 8771.81 4993.96 12681.31 8290.30 10395.03 8
test_fmvsmvis_n_192084.02 7583.87 7784.49 10584.12 27269.37 9888.15 14287.96 21870.01 20683.95 8593.23 6568.80 9091.51 23588.61 2089.96 11092.57 116
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7093.04 3875.53 9383.86 8694.42 2967.87 9996.64 3182.70 7294.57 4993.66 70
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6577.57 4183.84 8794.40 3072.24 4596.28 4085.65 3895.30 3593.62 77
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8483.81 8893.95 5169.77 7496.01 4885.15 4094.66 4694.32 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5976.62 7183.68 8994.46 2567.93 9795.95 5284.20 5594.39 5593.23 92
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 9094.17 3667.45 10296.60 3383.06 6394.50 5094.07 51
X-MVStestdata80.37 15177.83 18688.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 9012.47 40867.45 10296.60 3383.06 6394.50 5094.07 51
DELS-MVS85.41 5885.30 6085.77 6788.49 16767.93 13385.52 22293.44 2778.70 2983.63 9289.03 16874.57 2495.71 5680.26 9894.04 6393.66 70
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CS-MVS-test86.29 4286.48 3785.71 6891.02 8367.21 15492.36 2993.78 1878.97 2883.51 9391.20 11370.65 6595.15 8081.96 7694.89 4194.77 22
LFMVS81.82 11581.23 11683.57 14891.89 7363.43 23289.84 7581.85 31277.04 5883.21 9493.10 6752.26 25393.43 15871.98 17289.95 11193.85 61
VDDNet81.52 12380.67 12684.05 13290.44 9664.13 21689.73 8185.91 25671.11 18183.18 9593.48 5850.54 27893.49 15373.40 15988.25 13494.54 32
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5693.56 2473.95 12583.16 9691.07 11875.94 1895.19 7879.94 10094.38 5793.55 81
nrg03083.88 7783.53 8184.96 8886.77 22669.28 9990.46 6492.67 6274.79 10882.95 9791.33 10972.70 4393.09 17880.79 9279.28 25592.50 120
EI-MVSNet-Vis-set84.19 7383.81 7885.31 7688.18 17867.85 13487.66 15689.73 16680.05 1482.95 9789.59 15370.74 6394.82 10080.66 9484.72 17793.28 91
MVS_Test83.15 9583.06 8983.41 15386.86 22263.21 23686.11 20292.00 9374.31 11882.87 9989.44 16170.03 6993.21 16777.39 12188.50 13293.81 65
DPM-MVS84.93 6784.29 7586.84 4790.20 10073.04 2387.12 17093.04 3869.80 21282.85 10091.22 11273.06 3996.02 4776.72 12994.63 4791.46 156
iter_conf05_1183.91 7683.56 8084.97 8789.34 13266.68 16286.01 20492.25 8470.16 20482.83 10188.56 18169.00 8695.60 5979.43 10294.43 5492.63 115
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 10294.23 3572.13 4797.09 1684.83 4595.37 3293.65 74
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8676.87 6282.81 10394.25 3466.44 11296.24 4182.88 6794.28 6093.38 86
test1286.80 4992.63 6470.70 7291.79 10582.71 10471.67 5396.16 4494.50 5093.54 82
HPM-MVS_fast85.35 5984.95 6586.57 5393.69 4270.58 7592.15 3691.62 10973.89 12882.67 10594.09 4062.60 15195.54 6280.93 8892.93 7093.57 79
Effi-MVS+83.62 8583.08 8885.24 7888.38 17367.45 14488.89 10989.15 18675.50 9482.27 10688.28 18969.61 7594.45 11277.81 11687.84 13693.84 63
EI-MVSNet-UG-set83.81 7883.38 8485.09 8387.87 19167.53 14387.44 16289.66 16779.74 1682.23 10789.41 16270.24 6894.74 10379.95 9983.92 19092.99 105
MVS_111021_HR85.14 6184.75 6686.32 5591.65 7672.70 3085.98 20590.33 14876.11 8382.08 10891.61 10071.36 5894.17 12281.02 8692.58 7492.08 137
diffmvspermissive82.10 10881.88 11082.76 18683.00 29963.78 22283.68 25789.76 16472.94 15282.02 10989.85 14465.96 12190.79 25682.38 7487.30 14393.71 69
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
xiu_mvs_v1_base_debu80.80 13879.72 14484.03 13487.35 21070.19 7985.56 21588.77 20069.06 23281.83 11088.16 19350.91 27292.85 18678.29 11387.56 13889.06 240
xiu_mvs_v1_base80.80 13879.72 14484.03 13487.35 21070.19 7985.56 21588.77 20069.06 23281.83 11088.16 19350.91 27292.85 18678.29 11387.56 13889.06 240
xiu_mvs_v1_base_debi80.80 13879.72 14484.03 13487.35 21070.19 7985.56 21588.77 20069.06 23281.83 11088.16 19350.91 27292.85 18678.29 11387.56 13889.06 240
新几何183.42 15193.13 5270.71 7185.48 26257.43 35781.80 11391.98 9063.28 14092.27 20564.60 24092.99 6987.27 287
test_yl81.17 12880.47 13083.24 15989.13 14463.62 22386.21 19989.95 16072.43 15781.78 11489.61 15157.50 21293.58 14770.75 18186.90 14892.52 118
DCV-MVSNet81.17 12880.47 13083.24 15989.13 14463.62 22386.21 19989.95 16072.43 15781.78 11489.61 15157.50 21293.58 14770.75 18186.90 14892.52 118
test_cas_vis1_n_192073.76 26973.74 25973.81 32475.90 36859.77 28180.51 30482.40 30658.30 34981.62 11685.69 25844.35 33176.41 37376.29 13078.61 25885.23 325
MG-MVS83.41 8983.45 8283.28 15692.74 6262.28 25188.17 14089.50 17175.22 9881.49 11792.74 8266.75 10795.11 8372.85 16591.58 8792.45 123
iter_conf0583.17 9482.90 9483.97 13887.59 20765.09 19588.29 13691.52 11272.35 15981.39 11890.13 14068.76 9194.84 9980.30 9785.75 16991.98 141
CANet86.45 3886.10 4587.51 3790.09 10270.94 6789.70 8292.59 7081.78 481.32 11991.43 10670.34 6697.23 1384.26 5293.36 6894.37 39
MVSFormer82.85 10182.05 10685.24 7887.35 21070.21 7790.50 6190.38 14468.55 24281.32 11989.47 15661.68 16693.46 15678.98 10490.26 10492.05 138
lupinMVS81.39 12680.27 13584.76 9787.35 21070.21 7785.55 21886.41 24862.85 31081.32 11988.61 17861.68 16692.24 20778.41 11190.26 10491.83 143
xiu_mvs_v2_base81.69 11881.05 11983.60 14689.15 14368.03 13284.46 24390.02 15770.67 19081.30 12286.53 24263.17 14494.19 12175.60 14088.54 13088.57 263
PS-MVSNAJ81.69 11881.02 12083.70 14489.51 12268.21 12784.28 24990.09 15670.79 18781.26 12385.62 26263.15 14594.29 11475.62 13988.87 12388.59 262
原ACMM184.35 11193.01 5768.79 10792.44 7463.96 30081.09 12491.57 10166.06 11895.45 6567.19 21994.82 4588.81 255
jason81.39 12680.29 13484.70 9886.63 23069.90 8585.95 20686.77 24463.24 30381.07 12589.47 15661.08 18292.15 20978.33 11290.07 10992.05 138
jason: jason.
OPM-MVS83.50 8782.95 9285.14 8088.79 15770.95 6689.13 10391.52 11277.55 4480.96 12691.75 9560.71 18694.50 11079.67 10186.51 15589.97 216
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNetpermissive83.46 8882.80 9685.43 7490.25 9968.74 11190.30 6990.13 15576.33 8080.87 12792.89 7461.00 18394.20 12072.45 17190.97 9493.35 88
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMMPcopyleft85.89 4985.39 5687.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12893.82 5364.33 13296.29 3982.67 7390.69 9893.23 92
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Anonymous2024052980.19 15578.89 16384.10 12290.60 9264.75 20288.95 10790.90 13065.97 27580.59 12991.17 11549.97 28393.73 14569.16 20082.70 21593.81 65
MVS_111021_LR82.61 10482.11 10484.11 12188.82 15471.58 5385.15 22586.16 25374.69 11080.47 13091.04 11962.29 15890.55 26080.33 9690.08 10890.20 199
ECVR-MVScopyleft79.61 16279.26 15580.67 23190.08 10354.69 34387.89 15177.44 35174.88 10680.27 13192.79 7948.96 29992.45 19668.55 20692.50 7694.86 17
VPA-MVSNet80.60 14480.55 12880.76 22988.07 18560.80 26886.86 17891.58 11175.67 9280.24 13289.45 16063.34 13990.25 26370.51 18579.22 25691.23 160
test111179.43 16979.18 15880.15 24189.99 10853.31 35687.33 16577.05 35475.04 10380.23 13392.77 8148.97 29892.33 20468.87 20392.40 7894.81 20
test250677.30 22476.49 22079.74 24990.08 10352.02 35987.86 15363.10 39474.88 10680.16 13492.79 7938.29 36392.35 20268.74 20592.50 7694.86 17
Anonymous20240521178.25 19777.01 20681.99 19891.03 8260.67 27084.77 23383.90 28170.65 19480.00 13591.20 11341.08 35091.43 23965.21 23485.26 17293.85 61
test22291.50 7768.26 12584.16 25183.20 29454.63 36879.74 13691.63 9958.97 20091.42 8986.77 300
OMC-MVS82.69 10281.97 10984.85 9388.75 15967.42 14587.98 14590.87 13274.92 10579.72 13791.65 9762.19 16193.96 12675.26 14386.42 15693.16 97
FA-MVS(test-final)80.96 13279.91 14084.10 12288.30 17665.01 19684.55 24090.01 15873.25 14679.61 13887.57 20658.35 20494.72 10471.29 17886.25 15992.56 117
CPTT-MVS83.73 8083.33 8684.92 9193.28 4970.86 6992.09 3790.38 14468.75 23979.57 13992.83 7660.60 19193.04 18280.92 8991.56 8890.86 173
IS-MVSNet83.15 9582.81 9584.18 12089.94 11063.30 23491.59 4388.46 21079.04 2579.49 14092.16 8865.10 12794.28 11567.71 21291.86 8594.95 10
PS-MVSNAJss82.07 11081.31 11484.34 11286.51 23167.27 15189.27 9691.51 11471.75 16779.37 14190.22 13863.15 14594.27 11677.69 11782.36 21891.49 153
EPP-MVSNet83.40 9083.02 9084.57 10090.13 10164.47 20892.32 3090.73 13574.45 11779.35 14291.10 11669.05 8395.12 8172.78 16687.22 14494.13 48
test_vis1_n_192075.52 25175.78 22774.75 31679.84 34757.44 30783.26 26685.52 26162.83 31179.34 14386.17 25045.10 32779.71 35578.75 10681.21 23087.10 295
DP-MVS Recon83.11 9882.09 10586.15 5894.44 1970.92 6888.79 11292.20 8770.53 19579.17 14491.03 12164.12 13496.03 4668.39 20990.14 10691.50 152
ab-mvs79.51 16578.97 16281.14 21988.46 16960.91 26683.84 25589.24 18270.36 19779.03 14588.87 17163.23 14390.21 26465.12 23582.57 21692.28 128
EIA-MVS83.31 9382.80 9684.82 9489.59 11865.59 18388.21 13892.68 6174.66 11178.96 14686.42 24469.06 8295.26 7675.54 14190.09 10793.62 77
PVSNet_Blended_VisFu82.62 10381.83 11184.96 8890.80 8969.76 8788.74 11691.70 10869.39 22078.96 14688.46 18465.47 12494.87 9874.42 14888.57 12990.24 198
HQP_MVS83.64 8383.14 8785.14 8090.08 10368.71 11391.25 5092.44 7479.12 2378.92 14891.00 12260.42 19395.38 7178.71 10786.32 15791.33 157
plane_prior368.60 11878.44 3178.92 148
test_fmvs1_n70.86 29770.24 29572.73 33372.51 38955.28 33881.27 29279.71 33551.49 37878.73 15084.87 27727.54 38577.02 36776.06 13379.97 24785.88 317
EI-MVSNet80.52 14779.98 13882.12 19484.28 26863.19 23886.41 19388.95 19674.18 12278.69 15187.54 20966.62 10892.43 19772.57 16980.57 23990.74 178
MVSTER79.01 18177.88 18582.38 19283.07 29664.80 20184.08 25488.95 19669.01 23578.69 15187.17 22054.70 23192.43 19774.69 14580.57 23989.89 219
API-MVS81.99 11281.23 11684.26 11890.94 8570.18 8291.10 5389.32 17671.51 17478.66 15388.28 18965.26 12595.10 8664.74 23991.23 9287.51 281
GeoE81.71 11781.01 12183.80 14389.51 12264.45 21088.97 10688.73 20571.27 17878.63 15489.76 14766.32 11493.20 17069.89 19286.02 16493.74 68
test_fmvs170.93 29670.52 29072.16 33673.71 37855.05 34080.82 29578.77 34251.21 37978.58 15584.41 28331.20 38076.94 36875.88 13680.12 24684.47 336
UniMVSNet (Re)81.60 12281.11 11883.09 16688.38 17364.41 21187.60 15793.02 4278.42 3278.56 15688.16 19369.78 7393.26 16369.58 19676.49 28391.60 147
MAR-MVS81.84 11480.70 12585.27 7791.32 7971.53 5489.82 7690.92 12969.77 21478.50 15786.21 24862.36 15794.52 10965.36 23392.05 8189.77 224
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Fast-Effi-MVS+80.81 13679.92 13983.47 14988.85 15164.51 20585.53 22089.39 17470.79 18778.49 15885.06 27567.54 10193.58 14767.03 22286.58 15392.32 126
FIs82.07 11082.42 9881.04 22288.80 15658.34 29188.26 13793.49 2676.93 6078.47 15991.04 11969.92 7292.34 20369.87 19384.97 17492.44 124
UniMVSNet_NR-MVSNet81.88 11381.54 11382.92 17588.46 16963.46 23087.13 16992.37 7880.19 1278.38 16089.14 16471.66 5493.05 18070.05 18976.46 28492.25 129
DU-MVS81.12 13080.52 12982.90 17687.80 19463.46 23087.02 17391.87 10179.01 2678.38 16089.07 16665.02 12893.05 18070.05 18976.46 28492.20 132
CLD-MVS82.31 10681.65 11284.29 11488.47 16867.73 13785.81 21392.35 7975.78 8878.33 16286.58 23964.01 13594.35 11376.05 13487.48 14190.79 174
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
VPNet78.69 18978.66 16678.76 26688.31 17555.72 33284.45 24486.63 24676.79 6478.26 16390.55 13059.30 19889.70 27466.63 22377.05 27590.88 172
mvsmamba81.69 11880.74 12484.56 10187.45 20966.72 16191.26 4885.89 25774.66 11178.23 16490.56 12954.33 23494.91 9280.73 9383.54 20292.04 140
V4279.38 17378.24 17782.83 17881.10 33365.50 18585.55 21889.82 16271.57 17378.21 16586.12 25160.66 18893.18 17375.64 13875.46 30389.81 223
BH-RMVSNet79.61 16278.44 17183.14 16489.38 13165.93 17584.95 23087.15 23873.56 13678.19 16689.79 14556.67 21993.36 16059.53 28386.74 15190.13 202
v2v48280.23 15379.29 15483.05 16983.62 28264.14 21587.04 17289.97 15973.61 13478.18 16787.22 21761.10 18193.82 13776.11 13276.78 28191.18 161
PVSNet_BlendedMVS80.60 14480.02 13782.36 19388.85 15165.40 18686.16 20192.00 9369.34 22278.11 16886.09 25266.02 11994.27 11671.52 17482.06 22187.39 283
PVSNet_Blended80.98 13180.34 13282.90 17688.85 15165.40 18684.43 24592.00 9367.62 25378.11 16885.05 27666.02 11994.27 11671.52 17489.50 11589.01 245
v114480.03 15779.03 16083.01 17183.78 28064.51 20587.11 17190.57 14071.96 16678.08 17086.20 24961.41 17393.94 12974.93 14477.23 27290.60 183
FE-MVS77.78 21275.68 22984.08 12688.09 18466.00 17383.13 26987.79 22468.42 24678.01 17185.23 27045.50 32595.12 8159.11 28785.83 16891.11 163
TranMVSNet+NR-MVSNet80.84 13480.31 13382.42 19187.85 19262.33 24987.74 15591.33 11980.55 977.99 17289.86 14365.23 12692.62 19067.05 22175.24 31192.30 127
Baseline_NR-MVSNet78.15 20278.33 17577.61 28785.79 23956.21 32786.78 18285.76 25973.60 13577.93 17387.57 20665.02 12888.99 28567.14 22075.33 30887.63 277
TR-MVS77.44 22076.18 22581.20 21788.24 17763.24 23584.61 23886.40 24967.55 25477.81 17486.48 24354.10 23793.15 17457.75 30182.72 21487.20 288
v119279.59 16478.43 17283.07 16883.55 28464.52 20486.93 17690.58 13870.83 18677.78 17585.90 25359.15 19993.94 12973.96 15377.19 27490.76 176
PCF-MVS73.52 780.38 14978.84 16485.01 8587.71 19968.99 10383.65 25891.46 11863.00 30777.77 17690.28 13466.10 11695.09 8761.40 26988.22 13590.94 171
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
WR-MVS79.49 16679.22 15780.27 23988.79 15758.35 29085.06 22788.61 20878.56 3077.65 17788.34 18763.81 13890.66 25964.98 23777.22 27391.80 145
XVG-OURS80.41 14879.23 15683.97 13885.64 24269.02 10283.03 27490.39 14371.09 18277.63 17891.49 10454.62 23391.35 24175.71 13783.47 20391.54 150
v14419279.47 16778.37 17382.78 18483.35 28763.96 21886.96 17490.36 14769.99 20777.50 17985.67 26060.66 18893.77 14174.27 15076.58 28290.62 181
v192192079.22 17578.03 18082.80 18183.30 28963.94 21986.80 18090.33 14869.91 21077.48 18085.53 26358.44 20393.75 14373.60 15576.85 27990.71 179
thisisatest053079.40 17177.76 19184.31 11387.69 20165.10 19487.36 16384.26 27770.04 20577.42 18188.26 19149.94 28494.79 10270.20 18784.70 17893.03 102
FC-MVSNet-test81.52 12382.02 10780.03 24388.42 17255.97 32987.95 14793.42 2977.10 5677.38 18290.98 12469.96 7091.79 22168.46 20884.50 18092.33 125
v124078.99 18277.78 18982.64 18783.21 29163.54 22786.62 18890.30 15069.74 21777.33 18385.68 25957.04 21793.76 14273.13 16376.92 27690.62 181
PAPM_NR83.02 9982.41 9984.82 9492.47 6766.37 16787.93 14991.80 10473.82 12977.32 18490.66 12767.90 9894.90 9570.37 18689.48 11693.19 96
ACMM73.20 880.78 14179.84 14283.58 14789.31 13668.37 12289.99 7391.60 11070.28 20077.25 18589.66 14953.37 24593.53 15274.24 15182.85 21188.85 253
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP4-MVS77.24 18695.11 8391.03 167
AUN-MVS79.21 17677.60 19684.05 13288.71 16167.61 14185.84 21187.26 23569.08 23177.23 18788.14 19753.20 24793.47 15575.50 14273.45 32891.06 165
HQP-NCC89.33 13389.17 9876.41 7477.23 187
ACMP_Plane89.33 13389.17 9876.41 7477.23 187
HQP-MVS82.61 10482.02 10784.37 10989.33 13366.98 15789.17 9892.19 8876.41 7477.23 18790.23 13760.17 19695.11 8377.47 11985.99 16591.03 167
tt080578.73 18777.83 18681.43 20985.17 25060.30 27689.41 9290.90 13071.21 17977.17 19188.73 17346.38 31293.21 16772.57 16978.96 25790.79 174
TAPA-MVS73.13 979.15 17777.94 18282.79 18389.59 11862.99 24488.16 14191.51 11465.77 27677.14 19291.09 11760.91 18493.21 16750.26 34487.05 14692.17 134
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PAPR81.66 12180.89 12383.99 13790.27 9864.00 21786.76 18491.77 10768.84 23877.13 19389.50 15467.63 10094.88 9767.55 21488.52 13193.09 99
UniMVSNet_ETH3D79.10 17978.24 17781.70 20386.85 22360.24 27787.28 16788.79 19974.25 12076.84 19490.53 13149.48 28991.56 23067.98 21082.15 21993.29 90
EPNet83.72 8182.92 9386.14 5984.22 27069.48 9191.05 5485.27 26381.30 676.83 19591.65 9766.09 11795.56 6076.00 13593.85 6493.38 86
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline176.98 22876.75 21677.66 28588.13 18155.66 33385.12 22681.89 31073.04 15076.79 19688.90 16962.43 15687.78 30363.30 24971.18 34489.55 230
tttt051779.40 17177.91 18383.90 14288.10 18363.84 22088.37 13284.05 27971.45 17576.78 19789.12 16549.93 28694.89 9670.18 18883.18 20892.96 106
TAMVS78.89 18577.51 19883.03 17087.80 19467.79 13684.72 23485.05 26667.63 25276.75 19887.70 20262.25 15990.82 25558.53 29487.13 14590.49 188
XVG-OURS-SEG-HR80.81 13679.76 14383.96 14085.60 24368.78 10883.54 26390.50 14170.66 19376.71 19991.66 9660.69 18791.26 24376.94 12581.58 22691.83 143
3Dnovator+77.84 485.48 5584.47 7388.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 20093.37 6260.40 19596.75 2677.20 12293.73 6695.29 5
LPG-MVS_test82.08 10981.27 11584.50 10389.23 14068.76 10990.22 7091.94 9775.37 9676.64 20191.51 10254.29 23594.91 9278.44 10983.78 19189.83 221
LGP-MVS_train84.50 10389.23 14068.76 10991.94 9775.37 9676.64 20191.51 10254.29 23594.91 9278.44 10983.78 19189.83 221
SDMVSNet80.38 14980.18 13680.99 22389.03 14964.94 19880.45 30689.40 17375.19 10076.61 20389.98 14160.61 19087.69 30476.83 12783.55 20090.33 194
sd_testset77.70 21677.40 19978.60 26989.03 14960.02 27979.00 32485.83 25875.19 10076.61 20389.98 14154.81 22685.46 32262.63 25683.55 20090.33 194
tfpn200view976.42 23875.37 23879.55 25689.13 14457.65 30385.17 22383.60 28473.41 14176.45 20586.39 24552.12 25591.95 21548.33 35383.75 19489.07 238
thres40076.50 23575.37 23879.86 24689.13 14457.65 30385.17 22383.60 28473.41 14176.45 20586.39 24552.12 25591.95 21548.33 35383.75 19490.00 212
HyFIR lowres test77.53 21975.40 23683.94 14189.59 11866.62 16380.36 30788.64 20756.29 36376.45 20585.17 27257.64 21093.28 16261.34 27183.10 20991.91 142
CDS-MVSNet79.07 18077.70 19383.17 16387.60 20368.23 12684.40 24786.20 25267.49 25576.36 20886.54 24161.54 16990.79 25661.86 26587.33 14290.49 188
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
thres100view90076.50 23575.55 23379.33 25789.52 12156.99 31285.83 21283.23 29273.94 12676.32 20987.12 22151.89 26391.95 21548.33 35383.75 19489.07 238
thres600view776.50 23575.44 23479.68 25189.40 12957.16 30985.53 22083.23 29273.79 13076.26 21087.09 22251.89 26391.89 21848.05 35883.72 19790.00 212
UGNet80.83 13579.59 14784.54 10288.04 18668.09 12989.42 9188.16 21276.95 5976.22 21189.46 15849.30 29393.94 12968.48 20790.31 10291.60 147
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test_djsdf80.30 15279.32 15383.27 15783.98 27665.37 18990.50 6190.38 14468.55 24276.19 21288.70 17456.44 22093.46 15678.98 10480.14 24590.97 170
v14878.72 18877.80 18881.47 20882.73 30661.96 25586.30 19788.08 21573.26 14576.18 21385.47 26562.46 15592.36 20171.92 17373.82 32590.09 206
WTY-MVS75.65 24975.68 22975.57 30686.40 23256.82 31477.92 33882.40 30665.10 28276.18 21387.72 20163.13 14880.90 35160.31 27781.96 22289.00 247
mvs_anonymous79.42 17079.11 15980.34 23784.45 26757.97 29782.59 27687.62 22767.40 25776.17 21588.56 18168.47 9389.59 27570.65 18486.05 16393.47 84
Anonymous2023121178.97 18377.69 19482.81 18090.54 9464.29 21390.11 7291.51 11465.01 28576.16 21688.13 19850.56 27793.03 18369.68 19577.56 27191.11 163
thisisatest051577.33 22375.38 23783.18 16285.27 24963.80 22182.11 28183.27 29165.06 28375.91 21783.84 29649.54 28894.27 11667.24 21886.19 16091.48 154
CANet_DTU80.61 14379.87 14182.83 17885.60 24363.17 23987.36 16388.65 20676.37 7875.88 21888.44 18553.51 24393.07 17973.30 16089.74 11492.25 129
thres20075.55 25074.47 24978.82 26587.78 19757.85 30083.07 27283.51 28772.44 15675.84 21984.42 28252.08 25891.75 22347.41 36083.64 19986.86 298
CHOSEN 1792x268877.63 21875.69 22883.44 15089.98 10968.58 11978.70 32887.50 23056.38 36275.80 22086.84 22558.67 20191.40 24061.58 26885.75 16990.34 193
AdaColmapbinary80.58 14679.42 15084.06 12993.09 5468.91 10589.36 9488.97 19569.27 22375.70 22189.69 14857.20 21695.77 5463.06 25088.41 13387.50 282
UWE-MVS72.13 28771.49 27874.03 32286.66 22947.70 37981.40 29176.89 35663.60 30275.59 22284.22 29039.94 35585.62 31948.98 35086.13 16288.77 257
c3_l78.75 18677.91 18381.26 21582.89 30361.56 26084.09 25389.13 18869.97 20875.56 22384.29 28766.36 11392.09 21173.47 15875.48 30190.12 203
miper_ehance_all_eth78.59 19277.76 19181.08 22182.66 30861.56 26083.65 25889.15 18668.87 23775.55 22483.79 29866.49 11192.03 21273.25 16176.39 28689.64 227
miper_enhance_ethall77.87 21176.86 21080.92 22681.65 32261.38 26282.68 27588.98 19365.52 28075.47 22582.30 32165.76 12392.00 21472.95 16476.39 28689.39 233
3Dnovator76.31 583.38 9182.31 10286.59 5287.94 18972.94 2890.64 5892.14 9077.21 5275.47 22592.83 7658.56 20294.72 10473.24 16292.71 7392.13 136
jajsoiax79.29 17477.96 18183.27 15784.68 26166.57 16589.25 9790.16 15469.20 22875.46 22789.49 15545.75 32393.13 17676.84 12680.80 23590.11 204
IterMVS-LS80.06 15679.38 15182.11 19585.89 23863.20 23786.79 18189.34 17574.19 12175.45 22886.72 22966.62 10892.39 19972.58 16876.86 27890.75 177
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
BH-untuned79.47 16778.60 16782.05 19689.19 14265.91 17686.07 20388.52 20972.18 16175.42 22987.69 20361.15 18093.54 15160.38 27686.83 15086.70 302
mvs_tets79.13 17877.77 19083.22 16184.70 26066.37 16789.17 9890.19 15369.38 22175.40 23089.46 15844.17 33293.15 17476.78 12880.70 23790.14 201
HY-MVS69.67 1277.95 20877.15 20480.36 23687.57 20860.21 27883.37 26587.78 22566.11 27175.37 23187.06 22463.27 14190.48 26161.38 27082.43 21790.40 192
testing9176.54 23375.66 23179.18 26188.43 17155.89 33081.08 29383.00 29873.76 13175.34 23284.29 28746.20 31790.07 26664.33 24184.50 18091.58 149
GBi-Net78.40 19477.40 19981.40 21187.60 20363.01 24088.39 12889.28 17771.63 16975.34 23287.28 21354.80 22791.11 24662.72 25279.57 24990.09 206
test178.40 19477.40 19981.40 21187.60 20363.01 24088.39 12889.28 17771.63 16975.34 23287.28 21354.80 22791.11 24662.72 25279.57 24990.09 206
FMVSNet377.88 21076.85 21180.97 22586.84 22462.36 24886.52 19188.77 20071.13 18075.34 23286.66 23554.07 23891.10 24962.72 25279.57 24989.45 232
CostFormer75.24 25673.90 25679.27 25882.65 30958.27 29280.80 29682.73 30461.57 32375.33 23683.13 30955.52 22291.07 25264.98 23778.34 26588.45 264
test_vis1_n69.85 30969.21 30071.77 33872.66 38855.27 33981.48 28876.21 35952.03 37575.30 23783.20 30828.97 38376.22 37574.60 14678.41 26483.81 344
FMVSNet278.20 20077.21 20381.20 21787.60 20362.89 24587.47 16189.02 19171.63 16975.29 23887.28 21354.80 22791.10 24962.38 25779.38 25389.61 228
v879.97 15979.02 16182.80 18184.09 27364.50 20787.96 14690.29 15174.13 12475.24 23986.81 22662.88 15093.89 13674.39 14975.40 30690.00 212
testing9976.09 24475.12 24279.00 26288.16 17955.50 33580.79 29781.40 31673.30 14475.17 24084.27 28944.48 33090.02 26764.28 24284.22 18891.48 154
anonymousdsp78.60 19177.15 20482.98 17380.51 33967.08 15587.24 16889.53 17065.66 27875.16 24187.19 21952.52 24892.25 20677.17 12379.34 25489.61 228
QAPM80.88 13379.50 14985.03 8488.01 18868.97 10491.59 4392.00 9366.63 26775.15 24292.16 8857.70 20995.45 6563.52 24588.76 12690.66 180
v1079.74 16178.67 16582.97 17484.06 27464.95 19787.88 15290.62 13773.11 14875.11 24386.56 24061.46 17294.05 12573.68 15475.55 29989.90 218
Vis-MVSNet (Re-imp)78.36 19678.45 17078.07 28088.64 16351.78 36586.70 18579.63 33674.14 12375.11 24390.83 12561.29 17789.75 27258.10 29891.60 8692.69 112
cl2278.07 20477.01 20681.23 21682.37 31561.83 25783.55 26287.98 21768.96 23675.06 24583.87 29461.40 17491.88 21973.53 15676.39 28689.98 215
ACMP74.13 681.51 12580.57 12784.36 11089.42 12768.69 11689.97 7491.50 11774.46 11675.04 24690.41 13253.82 24094.54 10777.56 11882.91 21089.86 220
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Effi-MVS+-dtu80.03 15778.57 16884.42 10885.13 25468.74 11188.77 11388.10 21474.99 10474.97 24783.49 30457.27 21593.36 16073.53 15680.88 23391.18 161
XXY-MVS75.41 25475.56 23274.96 31283.59 28357.82 30180.59 30383.87 28266.54 26874.93 24888.31 18863.24 14280.09 35462.16 26176.85 27986.97 296
eth_miper_zixun_eth77.92 20976.69 21781.61 20683.00 29961.98 25483.15 26889.20 18469.52 21974.86 24984.35 28661.76 16592.56 19371.50 17672.89 33390.28 197
GA-MVS76.87 23075.17 24181.97 19982.75 30562.58 24681.44 29086.35 25172.16 16474.74 25082.89 31346.20 31792.02 21368.85 20481.09 23191.30 159
sss73.60 27073.64 26073.51 32682.80 30455.01 34176.12 34581.69 31362.47 31674.68 25185.85 25657.32 21478.11 36260.86 27480.93 23287.39 283
testing22274.04 26572.66 26878.19 27787.89 19055.36 33681.06 29479.20 34071.30 17774.65 25283.57 30339.11 35988.67 29251.43 33685.75 16990.53 186
test_fmvs268.35 32167.48 32270.98 34769.50 39251.95 36180.05 31176.38 35849.33 38174.65 25284.38 28423.30 39375.40 38274.51 14775.17 31285.60 320
BH-w/o78.21 19977.33 20280.84 22788.81 15565.13 19384.87 23187.85 22369.75 21574.52 25484.74 28061.34 17593.11 17758.24 29785.84 16784.27 337
FMVSNet177.44 22076.12 22681.40 21186.81 22563.01 24088.39 12889.28 17770.49 19674.39 25587.28 21349.06 29791.11 24660.91 27378.52 26090.09 206
cl____77.72 21476.76 21480.58 23282.49 31260.48 27383.09 27087.87 22169.22 22674.38 25685.22 27162.10 16291.53 23371.09 17975.41 30589.73 226
DIV-MVS_self_test77.72 21476.76 21480.58 23282.48 31360.48 27383.09 27087.86 22269.22 22674.38 25685.24 26962.10 16291.53 23371.09 17975.40 30689.74 225
114514_t80.68 14279.51 14884.20 11994.09 3867.27 15189.64 8491.11 12658.75 34774.08 25890.72 12658.10 20595.04 8969.70 19489.42 11790.30 196
WR-MVS_H78.51 19378.49 16978.56 27088.02 18756.38 32388.43 12692.67 6277.14 5473.89 25987.55 20866.25 11589.24 28158.92 28973.55 32790.06 210
ETVMVS72.25 28671.05 28575.84 30287.77 19851.91 36279.39 31874.98 36369.26 22473.71 26082.95 31140.82 35286.14 31446.17 36684.43 18589.47 231
WB-MVSnew71.96 28971.65 27772.89 33184.67 26451.88 36382.29 27977.57 34862.31 31773.67 26183.00 31053.49 24481.10 35045.75 36982.13 22085.70 319
tpm273.26 27571.46 27978.63 26783.34 28856.71 31780.65 30280.40 32856.63 36173.55 26282.02 32651.80 26591.24 24456.35 31478.42 26387.95 270
CP-MVSNet78.22 19878.34 17477.84 28287.83 19354.54 34587.94 14891.17 12377.65 3873.48 26388.49 18362.24 16088.43 29562.19 26074.07 32090.55 185
pm-mvs177.25 22576.68 21878.93 26484.22 27058.62 28986.41 19388.36 21171.37 17673.31 26488.01 19961.22 17989.15 28364.24 24373.01 33289.03 244
PS-CasMVS78.01 20778.09 17977.77 28487.71 19954.39 34788.02 14491.22 12077.50 4673.26 26588.64 17760.73 18588.41 29661.88 26473.88 32490.53 186
CVMVSNet72.99 27972.58 26974.25 32084.28 26850.85 37186.41 19383.45 28944.56 38673.23 26687.54 20949.38 29185.70 31765.90 22978.44 26286.19 309
PEN-MVS77.73 21377.69 19477.84 28287.07 22153.91 35087.91 15091.18 12277.56 4373.14 26788.82 17261.23 17889.17 28259.95 27972.37 33590.43 190
1112_ss77.40 22276.43 22280.32 23889.11 14860.41 27583.65 25887.72 22662.13 32073.05 26886.72 22962.58 15389.97 26862.11 26380.80 23590.59 184
tpm72.37 28471.71 27674.35 31982.19 31652.00 36079.22 32177.29 35264.56 28972.95 26983.68 30251.35 26883.26 33958.33 29675.80 29587.81 274
cascas76.72 23274.64 24582.99 17285.78 24065.88 17782.33 27889.21 18360.85 32872.74 27081.02 33247.28 30693.75 14367.48 21585.02 17389.34 235
CR-MVSNet73.37 27271.27 28379.67 25281.32 33165.19 19175.92 34780.30 32959.92 33572.73 27181.19 32952.50 24986.69 30959.84 28077.71 26887.11 293
RPMNet73.51 27170.49 29182.58 18981.32 33165.19 19175.92 34792.27 8157.60 35572.73 27176.45 36852.30 25295.43 6748.14 35777.71 26887.11 293
testing1175.14 25774.01 25378.53 27288.16 17956.38 32380.74 30080.42 32770.67 19072.69 27383.72 30043.61 33589.86 26962.29 25983.76 19389.36 234
DTE-MVSNet76.99 22776.80 21277.54 28986.24 23353.06 35887.52 15990.66 13677.08 5772.50 27488.67 17660.48 19289.52 27657.33 30570.74 34690.05 211
Test_1112_low_res76.40 23975.44 23479.27 25889.28 13858.09 29381.69 28587.07 23959.53 33972.48 27586.67 23461.30 17689.33 27960.81 27580.15 24490.41 191
v7n78.97 18377.58 19783.14 16483.45 28665.51 18488.32 13491.21 12173.69 13272.41 27686.32 24757.93 20693.81 13869.18 19975.65 29790.11 204
SCA74.22 26372.33 27279.91 24584.05 27562.17 25279.96 31379.29 33966.30 27072.38 27780.13 34151.95 26188.60 29359.25 28577.67 27088.96 249
CNLPA78.08 20376.79 21381.97 19990.40 9771.07 6287.59 15884.55 27166.03 27472.38 27789.64 15057.56 21186.04 31559.61 28283.35 20588.79 256
NR-MVSNet80.23 15379.38 15182.78 18487.80 19463.34 23386.31 19691.09 12779.01 2672.17 27989.07 16667.20 10592.81 18966.08 22875.65 29792.20 132
OpenMVScopyleft72.83 1079.77 16078.33 17584.09 12585.17 25069.91 8490.57 5990.97 12866.70 26172.17 27991.91 9154.70 23193.96 12661.81 26690.95 9588.41 266
MVS78.19 20176.99 20881.78 20185.66 24166.99 15684.66 23590.47 14255.08 36772.02 28185.27 26863.83 13794.11 12466.10 22789.80 11384.24 338
XVG-ACMP-BASELINE76.11 24374.27 25281.62 20483.20 29264.67 20383.60 26189.75 16569.75 21571.85 28287.09 22232.78 37592.11 21069.99 19180.43 24188.09 269
PatchmatchNetpermissive73.12 27771.33 28278.49 27483.18 29360.85 26779.63 31578.57 34364.13 29471.73 28379.81 34651.20 27085.97 31657.40 30476.36 29188.66 260
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst72.39 28272.13 27373.18 33080.54 33849.91 37579.91 31479.08 34163.11 30571.69 28479.95 34355.32 22382.77 34165.66 23273.89 32386.87 297
TransMVSNet (Re)75.39 25574.56 24777.86 28185.50 24557.10 31186.78 18286.09 25572.17 16271.53 28587.34 21263.01 14989.31 28056.84 31061.83 37287.17 289
Fast-Effi-MVS+-dtu78.02 20676.49 22082.62 18883.16 29566.96 15986.94 17587.45 23272.45 15471.49 28684.17 29154.79 23091.58 22867.61 21380.31 24289.30 236
PAPM77.68 21776.40 22381.51 20787.29 21761.85 25683.78 25689.59 16964.74 28771.23 28788.70 17462.59 15293.66 14652.66 32987.03 14789.01 245
tfpnnormal74.39 26073.16 26478.08 27986.10 23758.05 29484.65 23787.53 22970.32 19971.22 28885.63 26154.97 22589.86 26943.03 37675.02 31386.32 306
RPSCF73.23 27671.46 27978.54 27182.50 31159.85 28082.18 28082.84 30358.96 34471.15 28989.41 16245.48 32684.77 32858.82 29171.83 34091.02 169
PatchT68.46 32067.85 31370.29 34980.70 33643.93 39172.47 36474.88 36460.15 33370.55 29076.57 36749.94 28481.59 34650.58 33874.83 31585.34 323
CL-MVSNet_self_test72.37 28471.46 27975.09 31179.49 35453.53 35280.76 29985.01 26769.12 23070.51 29182.05 32557.92 20784.13 33152.27 33166.00 36487.60 278
IterMVS-SCA-FT75.43 25373.87 25780.11 24282.69 30764.85 20081.57 28783.47 28869.16 22970.49 29284.15 29251.95 26188.15 29869.23 19872.14 33887.34 285
miper_lstm_enhance74.11 26473.11 26577.13 29480.11 34359.62 28372.23 36586.92 24266.76 26070.40 29382.92 31256.93 21882.92 34069.06 20172.63 33488.87 252
gg-mvs-nofinetune69.95 30767.96 31175.94 30183.07 29654.51 34677.23 34270.29 37863.11 30570.32 29462.33 38943.62 33488.69 29153.88 32387.76 13784.62 335
DP-MVS76.78 23174.57 24683.42 15193.29 4869.46 9488.55 12383.70 28363.98 29970.20 29588.89 17054.01 23994.80 10146.66 36281.88 22486.01 314
pmmvs674.69 25973.39 26178.61 26881.38 32857.48 30686.64 18787.95 21964.99 28670.18 29686.61 23650.43 27989.52 27662.12 26270.18 34888.83 254
PVSNet64.34 1872.08 28870.87 28875.69 30486.21 23456.44 32174.37 35980.73 32162.06 32170.17 29782.23 32342.86 33983.31 33854.77 31984.45 18487.32 286
131476.53 23475.30 24080.21 24083.93 27762.32 25084.66 23588.81 19860.23 33270.16 29884.07 29355.30 22490.73 25867.37 21683.21 20787.59 280
Patchmtry70.74 29869.16 30175.49 30880.72 33554.07 34974.94 35880.30 32958.34 34870.01 29981.19 32952.50 24986.54 31053.37 32671.09 34585.87 318
EPMVS69.02 31368.16 30871.59 33979.61 35249.80 37777.40 34066.93 38662.82 31270.01 29979.05 35045.79 32177.86 36456.58 31275.26 31087.13 292
IterMVS74.29 26172.94 26678.35 27581.53 32563.49 22981.58 28682.49 30568.06 25069.99 30183.69 30151.66 26785.54 32065.85 23071.64 34186.01 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test-LLR72.94 28072.43 27074.48 31781.35 32958.04 29578.38 33177.46 34966.66 26269.95 30279.00 35248.06 30279.24 35666.13 22584.83 17586.15 310
test-mter71.41 29170.39 29474.48 31781.35 32958.04 29578.38 33177.46 34960.32 33169.95 30279.00 35236.08 37079.24 35666.13 22584.83 17586.15 310
pmmvs474.03 26771.91 27480.39 23581.96 31868.32 12381.45 28982.14 30859.32 34069.87 30485.13 27352.40 25188.13 29960.21 27874.74 31684.73 334
PLCcopyleft70.83 1178.05 20576.37 22483.08 16791.88 7467.80 13588.19 13989.46 17264.33 29369.87 30488.38 18653.66 24193.58 14758.86 29082.73 21387.86 273
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LTVRE_ROB69.57 1376.25 24174.54 24881.41 21088.60 16464.38 21279.24 32089.12 18970.76 18969.79 30687.86 20049.09 29693.20 17056.21 31580.16 24386.65 303
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LS3D76.95 22974.82 24483.37 15490.45 9567.36 14889.15 10286.94 24161.87 32269.52 30790.61 12851.71 26694.53 10846.38 36586.71 15288.21 268
IB-MVS68.01 1575.85 24773.36 26283.31 15584.76 25966.03 17183.38 26485.06 26570.21 20369.40 30881.05 33145.76 32294.66 10665.10 23675.49 30089.25 237
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PatchMatch-RL72.38 28370.90 28776.80 29788.60 16467.38 14779.53 31676.17 36062.75 31369.36 30982.00 32745.51 32484.89 32753.62 32480.58 23878.12 375
MDTV_nov1_ep1369.97 29783.18 29353.48 35377.10 34380.18 33260.45 32969.33 31080.44 33848.89 30086.90 30851.60 33478.51 261
dmvs_re71.14 29370.58 28972.80 33281.96 31859.68 28275.60 35179.34 33868.55 24269.27 31180.72 33749.42 29076.54 37052.56 33077.79 26782.19 360
testing368.56 31867.67 31971.22 34587.33 21542.87 39383.06 27371.54 37570.36 19769.08 31284.38 28430.33 38285.69 31837.50 38775.45 30485.09 330
D2MVS74.82 25873.21 26379.64 25379.81 34862.56 24780.34 30887.35 23364.37 29268.86 31382.66 31746.37 31390.10 26567.91 21181.24 22986.25 307
PMMVS69.34 31168.67 30371.35 34375.67 37062.03 25375.17 35373.46 37050.00 38068.68 31479.05 35052.07 25978.13 36161.16 27282.77 21273.90 382
Patchmatch-RL test70.24 30467.78 31777.61 28777.43 36359.57 28571.16 36870.33 37762.94 30968.65 31572.77 38050.62 27685.49 32169.58 19666.58 36187.77 275
MS-PatchMatch73.83 26872.67 26777.30 29283.87 27866.02 17281.82 28284.66 26961.37 32668.61 31682.82 31547.29 30588.21 29759.27 28484.32 18677.68 376
tpm cat170.57 30068.31 30677.35 29182.41 31457.95 29878.08 33580.22 33152.04 37468.54 31777.66 36352.00 26087.84 30251.77 33272.07 33986.25 307
mvsany_test162.30 34661.26 35065.41 36569.52 39154.86 34266.86 38549.78 40546.65 38368.50 31883.21 30749.15 29566.28 39756.93 30960.77 37575.11 381
TESTMET0.1,169.89 30869.00 30272.55 33479.27 35756.85 31378.38 33174.71 36757.64 35468.09 31977.19 36537.75 36576.70 36963.92 24484.09 18984.10 341
MIMVSNet70.69 29969.30 29874.88 31384.52 26556.35 32575.87 34979.42 33764.59 28867.76 32082.41 31941.10 34981.54 34746.64 36481.34 22786.75 301
ACMH+68.96 1476.01 24574.01 25382.03 19788.60 16465.31 19088.86 11087.55 22870.25 20267.75 32187.47 21141.27 34893.19 17258.37 29575.94 29487.60 278
LCM-MVSNet-Re77.05 22676.94 20977.36 29087.20 21851.60 36680.06 31080.46 32675.20 9967.69 32286.72 22962.48 15488.98 28663.44 24789.25 11891.51 151
ITE_SJBPF78.22 27681.77 32160.57 27183.30 29069.25 22567.54 32387.20 21836.33 36987.28 30754.34 32174.62 31786.80 299
test_fmvs363.36 34461.82 34767.98 36062.51 40046.96 38377.37 34174.03 36945.24 38567.50 32478.79 35512.16 40472.98 39072.77 16766.02 36383.99 342
pmmvs571.55 29070.20 29675.61 30577.83 36156.39 32281.74 28480.89 31857.76 35367.46 32584.49 28149.26 29485.32 32457.08 30775.29 30985.11 329
MVP-Stereo76.12 24274.46 25081.13 22085.37 24869.79 8684.42 24687.95 21965.03 28467.46 32585.33 26753.28 24691.73 22558.01 29983.27 20681.85 362
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_040272.79 28170.44 29279.84 24788.13 18165.99 17485.93 20784.29 27565.57 27967.40 32785.49 26446.92 30992.61 19135.88 38874.38 31980.94 367
GG-mvs-BLEND75.38 30981.59 32455.80 33179.32 31969.63 38067.19 32873.67 37843.24 33688.90 29050.41 33984.50 18081.45 364
tpmvs71.09 29469.29 29976.49 29882.04 31756.04 32878.92 32681.37 31764.05 29767.18 32978.28 35849.74 28789.77 27149.67 34772.37 33583.67 345
OurMVSNet-221017-074.26 26272.42 27179.80 24883.76 28159.59 28485.92 20886.64 24566.39 26966.96 33087.58 20539.46 35691.60 22765.76 23169.27 35188.22 267
baseline275.70 24873.83 25881.30 21483.26 29061.79 25882.57 27780.65 32266.81 25866.88 33183.42 30557.86 20892.19 20863.47 24679.57 24989.91 217
F-COLMAP76.38 24074.33 25182.50 19089.28 13866.95 16088.41 12789.03 19064.05 29766.83 33288.61 17846.78 31092.89 18557.48 30278.55 25987.67 276
ACMH67.68 1675.89 24673.93 25581.77 20288.71 16166.61 16488.62 12189.01 19269.81 21166.78 33386.70 23341.95 34791.51 23555.64 31678.14 26687.17 289
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Syy-MVS68.05 32267.85 31368.67 35884.68 26140.97 39978.62 32973.08 37266.65 26566.74 33479.46 34752.11 25782.30 34332.89 39176.38 28982.75 356
myMVS_eth3d67.02 32866.29 32969.21 35384.68 26142.58 39478.62 32973.08 37266.65 26566.74 33479.46 34731.53 37982.30 34339.43 38476.38 28982.75 356
test0.0.03 168.00 32367.69 31868.90 35577.55 36247.43 38075.70 35072.95 37466.66 26266.56 33682.29 32248.06 30275.87 37744.97 37374.51 31883.41 347
MDTV_nov1_ep13_2view37.79 40175.16 35455.10 36666.53 33749.34 29253.98 32287.94 271
KD-MVS_2432*160066.22 33563.89 33773.21 32775.47 37353.42 35470.76 37184.35 27364.10 29566.52 33878.52 35634.55 37384.98 32550.40 34050.33 39181.23 365
miper_refine_blended66.22 33563.89 33773.21 32775.47 37353.42 35470.76 37184.35 27364.10 29566.52 33878.52 35634.55 37384.98 32550.40 34050.33 39181.23 365
ET-MVSNet_ETH3D78.63 19076.63 21984.64 9986.73 22769.47 9285.01 22884.61 27069.54 21866.51 34086.59 23750.16 28191.75 22376.26 13184.24 18792.69 112
EU-MVSNet68.53 31967.61 32071.31 34478.51 36047.01 38284.47 24184.27 27642.27 38966.44 34184.79 27940.44 35383.76 33358.76 29268.54 35683.17 349
EPNet_dtu75.46 25274.86 24377.23 29382.57 31054.60 34486.89 17783.09 29571.64 16866.25 34285.86 25555.99 22188.04 30054.92 31886.55 15489.05 243
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2023120668.60 31667.80 31671.02 34680.23 34250.75 37278.30 33480.47 32556.79 36066.11 34382.63 31846.35 31478.95 35843.62 37575.70 29683.36 348
SixPastTwentyTwo73.37 27271.26 28479.70 25085.08 25557.89 29985.57 21483.56 28671.03 18465.66 34485.88 25442.10 34592.57 19259.11 28763.34 37088.65 261
MSDG73.36 27470.99 28680.49 23484.51 26665.80 17980.71 30186.13 25465.70 27765.46 34583.74 29944.60 32890.91 25451.13 33776.89 27784.74 333
OpenMVS_ROBcopyleft64.09 1970.56 30168.19 30777.65 28680.26 34059.41 28685.01 22882.96 30058.76 34665.43 34682.33 32037.63 36691.23 24545.34 37276.03 29382.32 358
ppachtmachnet_test70.04 30667.34 32378.14 27879.80 34961.13 26379.19 32280.59 32359.16 34265.27 34779.29 34946.75 31187.29 30649.33 34866.72 35986.00 316
ADS-MVSNet266.20 33763.33 34074.82 31479.92 34558.75 28867.55 38375.19 36253.37 37165.25 34875.86 37142.32 34280.53 35341.57 37968.91 35385.18 326
ADS-MVSNet64.36 34162.88 34468.78 35779.92 34547.17 38167.55 38371.18 37653.37 37165.25 34875.86 37142.32 34273.99 38741.57 37968.91 35385.18 326
testgi66.67 33166.53 32867.08 36375.62 37141.69 39875.93 34676.50 35766.11 27165.20 35086.59 23735.72 37174.71 38443.71 37473.38 33084.84 332
PM-MVS66.41 33364.14 33573.20 32973.92 37756.45 32078.97 32564.96 39263.88 30164.72 35180.24 34019.84 39683.44 33766.24 22464.52 36879.71 372
JIA-IIPM66.32 33462.82 34576.82 29677.09 36561.72 25965.34 39175.38 36158.04 35264.51 35262.32 39042.05 34686.51 31151.45 33569.22 35282.21 359
ambc75.24 31073.16 38450.51 37363.05 39687.47 23164.28 35377.81 36217.80 39889.73 27357.88 30060.64 37685.49 321
EG-PatchMatch MVS74.04 26571.82 27580.71 23084.92 25767.42 14585.86 21088.08 21566.04 27364.22 35483.85 29535.10 37292.56 19357.44 30380.83 23482.16 361
dp66.80 32965.43 33170.90 34879.74 35148.82 37875.12 35674.77 36559.61 33764.08 35577.23 36442.89 33880.72 35248.86 35166.58 36183.16 350
KD-MVS_self_test68.81 31467.59 32172.46 33574.29 37645.45 38477.93 33787.00 24063.12 30463.99 35678.99 35442.32 34284.77 32856.55 31364.09 36987.16 291
pmmvs-eth3d70.50 30267.83 31578.52 27377.37 36466.18 17081.82 28281.51 31458.90 34563.90 35780.42 33942.69 34086.28 31358.56 29365.30 36683.11 351
COLMAP_ROBcopyleft66.92 1773.01 27870.41 29380.81 22887.13 22065.63 18288.30 13584.19 27862.96 30863.80 35887.69 20338.04 36492.56 19346.66 36274.91 31484.24 338
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet569.50 31067.96 31174.15 32182.97 30255.35 33780.01 31282.12 30962.56 31563.02 35981.53 32836.92 36781.92 34548.42 35274.06 32185.17 328
test20.0367.45 32566.95 32668.94 35475.48 37244.84 38977.50 33977.67 34766.66 26263.01 36083.80 29747.02 30878.40 36042.53 37868.86 35583.58 346
K. test v371.19 29268.51 30479.21 26083.04 29857.78 30284.35 24876.91 35572.90 15362.99 36182.86 31439.27 35791.09 25161.65 26752.66 38888.75 258
our_test_369.14 31267.00 32575.57 30679.80 34958.80 28777.96 33677.81 34659.55 33862.90 36278.25 35947.43 30483.97 33251.71 33367.58 35883.93 343
CHOSEN 280x42066.51 33264.71 33371.90 33781.45 32663.52 22857.98 39868.95 38453.57 37062.59 36376.70 36646.22 31675.29 38355.25 31779.68 24876.88 378
Anonymous2024052168.80 31567.22 32473.55 32574.33 37554.11 34883.18 26785.61 26058.15 35061.68 36480.94 33430.71 38181.27 34957.00 30873.34 33185.28 324
USDC70.33 30368.37 30576.21 30080.60 33756.23 32679.19 32286.49 24760.89 32761.29 36585.47 26531.78 37889.47 27853.37 32676.21 29282.94 355
lessismore_v078.97 26381.01 33457.15 31065.99 38861.16 36682.82 31539.12 35891.34 24259.67 28146.92 39488.43 265
UnsupCasMVSNet_eth67.33 32665.99 33071.37 34173.48 38151.47 36875.16 35485.19 26465.20 28160.78 36780.93 33642.35 34177.20 36657.12 30653.69 38785.44 322
dmvs_testset62.63 34564.11 33658.19 37378.55 35924.76 41175.28 35265.94 38967.91 25160.34 36876.01 37053.56 24273.94 38831.79 39267.65 35775.88 380
AllTest70.96 29568.09 31079.58 25485.15 25263.62 22384.58 23979.83 33362.31 31760.32 36986.73 22732.02 37688.96 28850.28 34271.57 34286.15 310
TestCases79.58 25485.15 25263.62 22379.83 33362.31 31760.32 36986.73 22732.02 37688.96 28850.28 34271.57 34286.15 310
Patchmatch-test64.82 34063.24 34169.57 35179.42 35549.82 37663.49 39569.05 38351.98 37659.95 37180.13 34150.91 27270.98 39140.66 38173.57 32687.90 272
MIMVSNet168.58 31766.78 32773.98 32380.07 34451.82 36480.77 29884.37 27264.40 29159.75 37282.16 32436.47 36883.63 33542.73 37770.33 34786.48 305
test_vis1_rt60.28 34958.42 35265.84 36467.25 39555.60 33470.44 37360.94 39744.33 38759.00 37366.64 38724.91 38868.67 39562.80 25169.48 34973.25 383
LF4IMVS64.02 34262.19 34669.50 35270.90 39053.29 35776.13 34477.18 35352.65 37358.59 37480.98 33323.55 39276.52 37153.06 32866.66 36078.68 374
PVSNet_057.27 2061.67 34859.27 35168.85 35679.61 35257.44 30768.01 38173.44 37155.93 36458.54 37570.41 38544.58 32977.55 36547.01 36135.91 39771.55 385
TDRefinement67.49 32464.34 33476.92 29573.47 38261.07 26484.86 23282.98 29959.77 33658.30 37685.13 27326.06 38687.89 30147.92 35960.59 37781.81 363
mvsany_test353.99 35551.45 36061.61 37055.51 40444.74 39063.52 39445.41 40943.69 38858.11 37776.45 36817.99 39763.76 40054.77 31947.59 39376.34 379
UnsupCasMVSNet_bld63.70 34361.53 34970.21 35073.69 37951.39 36972.82 36381.89 31055.63 36557.81 37871.80 38238.67 36078.61 35949.26 34952.21 38980.63 368
DSMNet-mixed57.77 35256.90 35460.38 37167.70 39435.61 40269.18 37753.97 40332.30 40157.49 37979.88 34440.39 35468.57 39638.78 38572.37 33576.97 377
N_pmnet52.79 35953.26 35851.40 38378.99 3587.68 41769.52 3753.89 41651.63 37757.01 38074.98 37540.83 35165.96 39837.78 38664.67 36780.56 370
new-patchmatchnet61.73 34761.73 34861.70 36972.74 38724.50 41269.16 37878.03 34561.40 32456.72 38175.53 37438.42 36176.48 37245.95 36857.67 37984.13 340
CMPMVSbinary51.72 2170.19 30568.16 30876.28 29973.15 38557.55 30579.47 31783.92 28048.02 38256.48 38284.81 27843.13 33786.42 31262.67 25581.81 22584.89 331
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TinyColmap67.30 32764.81 33274.76 31581.92 32056.68 31880.29 30981.49 31560.33 33056.27 38383.22 30624.77 38987.66 30545.52 37069.47 35079.95 371
test_f52.09 36050.82 36155.90 37753.82 40742.31 39759.42 39758.31 40136.45 39656.12 38470.96 38412.18 40357.79 40353.51 32556.57 38267.60 388
YYNet165.03 33862.91 34371.38 34075.85 36956.60 31969.12 37974.66 36857.28 35854.12 38577.87 36145.85 32074.48 38549.95 34561.52 37483.05 352
MDA-MVSNet_test_wron65.03 33862.92 34271.37 34175.93 36756.73 31569.09 38074.73 36657.28 35854.03 38677.89 36045.88 31974.39 38649.89 34661.55 37382.99 354
pmmvs357.79 35154.26 35668.37 35964.02 39956.72 31675.12 35665.17 39040.20 39152.93 38769.86 38620.36 39575.48 38045.45 37155.25 38672.90 384
MVS-HIRNet59.14 35057.67 35363.57 36781.65 32243.50 39271.73 36665.06 39139.59 39351.43 38857.73 39538.34 36282.58 34239.53 38273.95 32264.62 391
WB-MVS54.94 35354.72 35555.60 37973.50 38020.90 41374.27 36061.19 39659.16 34250.61 38974.15 37647.19 30775.78 37817.31 40435.07 39870.12 386
MDA-MVSNet-bldmvs66.68 33063.66 33975.75 30379.28 35660.56 27273.92 36178.35 34464.43 29050.13 39079.87 34544.02 33383.67 33446.10 36756.86 38083.03 353
dongtai45.42 36745.38 36845.55 38573.36 38326.85 40967.72 38234.19 41154.15 36949.65 39156.41 39825.43 38762.94 40119.45 40228.09 40246.86 401
SSC-MVS53.88 35653.59 35754.75 38172.87 38619.59 41473.84 36260.53 39857.58 35649.18 39273.45 37946.34 31575.47 38116.20 40732.28 40069.20 387
new_pmnet50.91 36250.29 36252.78 38268.58 39334.94 40463.71 39356.63 40239.73 39244.95 39365.47 38821.93 39458.48 40234.98 38956.62 38164.92 390
test_vis3_rt49.26 36447.02 36656.00 37654.30 40545.27 38866.76 38748.08 40636.83 39544.38 39453.20 3997.17 41164.07 39956.77 31155.66 38358.65 395
kuosan39.70 37140.40 37237.58 38864.52 39826.98 40765.62 39033.02 41246.12 38442.79 39548.99 40124.10 39146.56 40912.16 41026.30 40339.20 402
FPMVS53.68 35751.64 35959.81 37265.08 39751.03 37069.48 37669.58 38141.46 39040.67 39672.32 38116.46 40070.00 39424.24 40065.42 36558.40 396
APD_test153.31 35849.93 36363.42 36865.68 39650.13 37471.59 36766.90 38734.43 39840.58 39771.56 3838.65 40976.27 37434.64 39055.36 38563.86 392
LCM-MVSNet54.25 35449.68 36467.97 36153.73 40845.28 38766.85 38680.78 32035.96 39739.45 39862.23 3918.70 40878.06 36348.24 35651.20 39080.57 369
PMMVS240.82 37038.86 37446.69 38453.84 40616.45 41548.61 40149.92 40437.49 39431.67 39960.97 3928.14 41056.42 40428.42 39530.72 40167.19 389
ANet_high50.57 36346.10 36763.99 36648.67 41139.13 40070.99 37080.85 31961.39 32531.18 40057.70 39617.02 39973.65 38931.22 39315.89 40879.18 373
testf145.72 36541.96 36957.00 37456.90 40245.32 38566.14 38859.26 39926.19 40230.89 40160.96 3934.14 41270.64 39226.39 39846.73 39555.04 397
APD_test245.72 36541.96 36957.00 37456.90 40245.32 38566.14 38859.26 39926.19 40230.89 40160.96 3934.14 41270.64 39226.39 39846.73 39555.04 397
Gipumacopyleft45.18 36841.86 37155.16 38077.03 36651.52 36732.50 40480.52 32432.46 40027.12 40335.02 4049.52 40775.50 37922.31 40160.21 37838.45 403
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft37.38 2244.16 36940.28 37355.82 37840.82 41342.54 39665.12 39263.99 39334.43 39824.48 40457.12 3973.92 41476.17 37617.10 40555.52 38448.75 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepMVS_CXcopyleft27.40 39140.17 41426.90 40824.59 41517.44 40723.95 40548.61 4029.77 40626.48 41018.06 40324.47 40428.83 404
tmp_tt18.61 37721.40 38010.23 3934.82 41610.11 41634.70 40330.74 4141.48 41023.91 40626.07 40728.42 38413.41 41227.12 39615.35 4097.17 407
test_method31.52 37329.28 37738.23 38727.03 4156.50 41820.94 40662.21 3954.05 40922.35 40752.50 40013.33 40147.58 40727.04 39734.04 39960.62 393
MVEpermissive26.22 2330.37 37525.89 37943.81 38644.55 41235.46 40328.87 40539.07 41018.20 40618.58 40840.18 4032.68 41547.37 40817.07 40623.78 40548.60 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN31.77 37230.64 37535.15 38952.87 40927.67 40657.09 39947.86 40724.64 40416.40 40933.05 40511.23 40554.90 40514.46 40818.15 40622.87 405
EMVS30.81 37429.65 37634.27 39050.96 41025.95 41056.58 40046.80 40824.01 40515.53 41030.68 40612.47 40254.43 40612.81 40917.05 40722.43 406
wuyk23d16.82 37815.94 38119.46 39258.74 40131.45 40539.22 4023.74 4176.84 4086.04 4112.70 4111.27 41624.29 41110.54 41114.40 4102.63 408
EGC-MVSNET52.07 36147.05 36567.14 36283.51 28560.71 26980.50 30567.75 3850.07 4110.43 41275.85 37324.26 39081.54 34728.82 39462.25 37159.16 394
testmvs6.04 3818.02 3840.10 3950.08 4170.03 42069.74 3740.04 4180.05 4120.31 4131.68 4120.02 4180.04 4130.24 4120.02 4110.25 410
test1236.12 3808.11 3830.14 3940.06 4180.09 41971.05 3690.03 4190.04 4130.25 4141.30 4130.05 4170.03 4140.21 4130.01 4120.29 409
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k19.96 37626.61 3780.00 3960.00 4190.00 4210.00 40789.26 1800.00 4140.00 41588.61 17861.62 1680.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas5.26 3827.02 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41463.15 1450.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re7.23 3799.64 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41586.72 2290.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS42.58 39439.46 383
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 36
No_MVS89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 36
eth-test20.00 419
eth-test0.00 419
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
save fliter93.80 4072.35 4290.47 6391.17 12374.31 118
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 46
GSMVS88.96 249
sam_mvs151.32 26988.96 249
sam_mvs50.01 282
MTGPAbinary92.02 91
test_post178.90 3275.43 41048.81 30185.44 32359.25 285
test_post5.46 40950.36 28084.24 330
patchmatchnet-post74.00 37751.12 27188.60 293
MTMP92.18 3532.83 413
gm-plane-assit81.40 32753.83 35162.72 31480.94 33492.39 19963.40 248
test9_res84.90 4295.70 2692.87 107
agg_prior282.91 6695.45 3092.70 110
test_prior472.60 3489.01 105
test_prior86.33 5492.61 6569.59 8892.97 5195.48 6493.91 57
新几何286.29 198
旧先验191.96 7165.79 18086.37 25093.08 7169.31 7992.74 7288.74 259
无先验87.48 16088.98 19360.00 33494.12 12367.28 21788.97 248
原ACMM286.86 178
testdata291.01 25362.37 258
segment_acmp73.08 38
testdata184.14 25275.71 89
plane_prior790.08 10368.51 120
plane_prior689.84 11368.70 11560.42 193
plane_prior592.44 7495.38 7178.71 10786.32 15791.33 157
plane_prior491.00 122
plane_prior291.25 5079.12 23
plane_prior189.90 111
plane_prior68.71 11390.38 6777.62 3986.16 161
n20.00 420
nn0.00 420
door-mid69.98 379
test1192.23 85
door69.44 382
HQP5-MVS66.98 157
BP-MVS77.47 119
HQP3-MVS92.19 8885.99 165
HQP2-MVS60.17 196
NP-MVS89.62 11768.32 12390.24 136
ACMMP++_ref81.95 223
ACMMP++81.25 228
Test By Simon64.33 132