This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 41
IU-MVS95.30 271.25 5792.95 5166.81 25592.39 688.94 1696.63 494.85 19
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10792.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8592.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 52
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 5977.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 86
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 24
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
PC_three_145268.21 24592.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
test_part295.06 872.65 3291.80 13
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5994.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
FOURS195.00 1072.39 3995.06 193.84 1574.49 11391.30 15
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 8991.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 31
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13787.63 3094.27 5893.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 9989.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 27
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8789.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7474.62 11188.90 2093.85 5275.75 2096.00 4987.80 2894.63 4895.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5573.01 15088.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 107
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
9.1488.26 1592.84 6091.52 4694.75 173.93 12588.57 2294.67 1975.57 2295.79 5486.77 3595.76 23
test_fmvsm_n_192085.29 5985.34 5585.13 8086.12 23369.93 8388.65 12190.78 12769.97 20488.27 2393.98 4971.39 5591.54 22988.49 2390.45 9893.91 53
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5693.59 2376.27 7988.14 2495.09 1571.06 5796.67 2987.67 2996.37 1494.09 46
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 37
fmvsm_l_conf0.5_n84.47 6784.54 6684.27 11485.42 24368.81 10588.49 12587.26 22968.08 24688.03 2793.49 5772.04 4691.77 21988.90 1789.14 11792.24 127
canonicalmvs85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13281.50 7988.80 12194.77 22
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5480.26 1187.78 2994.27 3275.89 1996.81 2387.45 3296.44 993.05 98
test_fmvsmconf0.1_n85.61 5385.65 5185.50 6982.99 29869.39 9689.65 8390.29 14473.31 14287.77 3094.15 3871.72 4993.23 16290.31 490.67 9693.89 56
test_fmvsmconf_n85.92 4686.04 4785.57 6885.03 25369.51 9089.62 8690.58 13173.42 13987.75 3194.02 4472.85 4093.24 16190.37 390.75 9493.96 51
ZD-MVS94.38 2572.22 4492.67 6170.98 18287.75 3194.07 4174.01 3296.70 2784.66 4794.84 44
alignmvs85.48 5485.32 5785.96 6289.51 12069.47 9289.74 8092.47 6876.17 8087.73 3391.46 10570.32 6593.78 13781.51 7888.95 11894.63 26
fmvsm_l_conf0.5_n_a84.13 6984.16 7184.06 12685.38 24468.40 12088.34 13286.85 23867.48 25387.48 3493.40 6170.89 5891.61 22388.38 2589.22 11692.16 131
MM89.16 689.23 788.97 490.79 9073.65 1092.66 2391.17 11686.57 187.39 3594.97 1671.70 5097.68 192.19 195.63 2895.57 1
fmvsm_s_conf0.1_n_a83.32 8682.99 8584.28 11283.79 27668.07 12989.34 9582.85 29969.80 20887.36 3694.06 4268.34 8891.56 22787.95 2783.46 20093.21 92
fmvsm_s_conf0.5_n_a83.63 7883.41 7784.28 11286.14 23268.12 12789.43 9082.87 29870.27 19887.27 3793.80 5469.09 7891.58 22588.21 2683.65 19493.14 95
fmvsm_s_conf0.1_n83.56 8083.38 7884.10 11984.86 25567.28 14789.40 9383.01 29470.67 18787.08 3893.96 5068.38 8791.45 23588.56 2284.50 17593.56 75
旧先验286.56 18758.10 34887.04 3988.98 28374.07 149
test_fmvsmconf0.01_n84.73 6684.52 6885.34 7280.25 33869.03 9989.47 8889.65 16173.24 14686.98 4094.27 3266.62 10193.23 16290.26 589.95 10893.78 62
fmvsm_s_conf0.5_n83.80 7383.71 7484.07 12486.69 22567.31 14689.46 8983.07 29371.09 17986.96 4193.70 5569.02 8391.47 23488.79 1884.62 17493.44 82
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 6774.50 11286.84 4294.65 2067.31 9795.77 5584.80 4692.85 6892.84 105
dcpmvs_285.63 5286.15 4484.06 12691.71 7564.94 19786.47 18991.87 9573.63 13286.60 4393.02 7276.57 1591.87 21783.36 6092.15 7695.35 3
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7893.50 2575.17 10086.34 4495.29 1270.86 5996.00 4988.78 1996.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4573.54 13685.94 4594.51 2465.80 11595.61 5983.04 6592.51 7293.53 78
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18692.02 8579.45 1985.88 4694.80 1768.07 8996.21 4286.69 3695.34 3393.23 89
TSAR-MVS + GP.85.71 5185.33 5686.84 4791.34 7872.50 3689.07 10487.28 22876.41 7285.80 4790.22 13474.15 3195.37 7481.82 7791.88 7992.65 111
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5581.50 585.79 4893.47 6073.02 3997.00 1884.90 4294.94 3994.10 45
SR-MVS-dyc-post85.77 4985.61 5286.23 5693.06 5570.63 7391.88 3992.27 7673.53 13785.69 4994.45 2665.00 12395.56 6082.75 6891.87 8092.50 116
RE-MVS-def85.48 5393.06 5570.63 7391.88 3992.27 7673.53 13785.69 4994.45 2663.87 12982.75 6891.87 8092.50 116
testdata79.97 24190.90 8664.21 21284.71 26559.27 33885.40 5192.91 7362.02 15789.08 28168.95 19991.37 8786.63 301
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6687.65 19967.22 15088.69 11993.04 3879.64 1885.33 5292.54 8373.30 3594.50 10883.49 5991.14 9095.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5394.32 3171.76 4896.93 1985.53 3995.79 2294.32 38
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15385.22 5491.90 9269.47 7496.42 3783.28 6295.94 1994.35 36
patch_mono-283.65 7684.54 6680.99 22090.06 10765.83 17684.21 24788.74 19871.60 16885.01 5592.44 8474.51 2583.50 33382.15 7592.15 7693.64 71
MVS_030488.08 1488.08 1788.08 1489.67 11472.04 4892.26 3389.26 17384.19 285.01 5595.18 1369.93 6997.20 1491.63 295.60 2994.99 9
TEST993.26 5072.96 2588.75 11591.89 9368.44 24285.00 5793.10 6774.36 2895.41 69
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11591.89 9368.69 23785.00 5793.10 6774.43 2695.41 6984.97 4195.71 2593.02 100
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 5994.44 2870.78 6096.61 3284.53 4994.89 4193.66 65
test_prior288.85 11175.41 9384.91 5993.54 5674.28 2983.31 6195.86 20
test_893.13 5272.57 3588.68 12091.84 9768.69 23784.87 6193.10 6774.43 2695.16 78
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7693.82 1673.07 14884.86 6292.89 7476.22 1796.33 3884.89 4495.13 3694.40 34
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6393.99 4870.67 6296.82 2284.18 5695.01 3793.90 55
h-mvs3383.15 8882.19 9686.02 6190.56 9370.85 7088.15 14089.16 17876.02 8384.67 6491.39 10761.54 16295.50 6382.71 7075.48 29891.72 141
hse-mvs281.72 10980.94 11584.07 12488.72 15667.68 13785.87 20687.26 22976.02 8384.67 6488.22 18961.54 16293.48 15282.71 7073.44 32691.06 162
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6694.52 2168.81 8496.65 3084.53 4994.90 4094.00 50
CDPH-MVS85.76 5085.29 5987.17 4393.49 4771.08 6188.58 12392.42 7268.32 24484.61 6793.48 5872.32 4296.15 4579.00 9995.43 3194.28 40
UA-Net85.08 6284.96 6285.45 7092.07 7068.07 12989.78 7990.86 12682.48 384.60 6893.20 6669.35 7595.22 7671.39 17490.88 9393.07 97
CS-MVS86.69 3586.95 3185.90 6390.76 9167.57 13992.83 1793.30 3279.67 1784.57 6992.27 8671.47 5395.02 8884.24 5493.46 6495.13 6
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7094.52 2169.09 7896.70 2784.37 5194.83 4594.03 49
agg_prior92.85 5971.94 5191.78 10084.41 7194.93 89
VDD-MVS83.01 9382.36 9484.96 8691.02 8366.40 16288.91 10888.11 20777.57 4184.39 7293.29 6452.19 24793.91 13277.05 12088.70 12394.57 29
casdiffmvspermissive85.11 6185.14 6085.01 8487.20 21565.77 18087.75 15292.83 5577.84 3784.36 7392.38 8572.15 4493.93 13181.27 8190.48 9795.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MSLP-MVS++85.43 5685.76 5084.45 10491.93 7270.24 7690.71 5892.86 5377.46 4784.22 7492.81 7867.16 9992.94 18180.36 9094.35 5690.16 197
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7084.22 7493.36 6371.44 5496.76 2580.82 8595.33 3494.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EC-MVSNet86.01 4386.38 3884.91 9089.31 13266.27 16592.32 3093.63 2179.37 2084.17 7691.88 9369.04 8295.43 6783.93 5793.77 6293.01 101
ETV-MVS84.90 6584.67 6585.59 6789.39 12768.66 11688.74 11792.64 6579.97 1584.10 7785.71 25469.32 7695.38 7180.82 8591.37 8792.72 106
VNet82.21 10082.41 9281.62 20190.82 8860.93 26284.47 23889.78 15676.36 7784.07 7891.88 9364.71 12490.26 25970.68 18088.89 11993.66 65
baseline84.93 6384.98 6184.80 9487.30 21365.39 18887.30 16492.88 5277.62 3984.04 7992.26 8771.81 4793.96 12581.31 8090.30 10095.03 8
test_fmvsmvis_n_192084.02 7083.87 7284.49 10384.12 26969.37 9788.15 14087.96 21270.01 20283.95 8093.23 6568.80 8591.51 23288.61 2089.96 10792.57 112
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7093.04 3875.53 9183.86 8194.42 2967.87 9296.64 3182.70 7294.57 5093.66 65
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6477.57 4183.84 8294.40 3072.24 4396.28 4085.65 3895.30 3593.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8283.81 8393.95 5169.77 7296.01 4885.15 4094.66 4794.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5876.62 7083.68 8494.46 2567.93 9095.95 5284.20 5594.39 5493.23 89
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8594.17 3667.45 9596.60 3383.06 6394.50 5194.07 47
X-MVStestdata80.37 14677.83 18388.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8512.47 40367.45 9596.60 3383.06 6394.50 5194.07 47
DELS-MVS85.41 5785.30 5885.77 6488.49 16367.93 13285.52 21993.44 2778.70 2983.63 8789.03 16474.57 2495.71 5780.26 9294.04 6093.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CS-MVS-test86.29 4286.48 3785.71 6591.02 8367.21 15192.36 2993.78 1878.97 2883.51 8891.20 11170.65 6395.15 7981.96 7694.89 4194.77 22
iter_conf05_1181.63 11580.44 12585.20 7789.46 12366.20 16686.21 19686.97 23571.53 17083.35 8988.53 17943.22 33395.94 5379.82 9594.85 4393.47 79
LFMVS81.82 10881.23 10983.57 14591.89 7363.43 23089.84 7581.85 30977.04 5883.21 9093.10 6752.26 24693.43 15671.98 16989.95 10893.85 57
VDDNet81.52 11780.67 11984.05 12990.44 9664.13 21489.73 8185.91 25171.11 17883.18 9193.48 5850.54 27193.49 15173.40 15688.25 12994.54 30
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5793.56 2473.95 12383.16 9291.07 11675.94 1895.19 7779.94 9494.38 5593.55 76
nrg03083.88 7183.53 7584.96 8686.77 22369.28 9890.46 6592.67 6174.79 10682.95 9391.33 10872.70 4193.09 17580.79 8779.28 25192.50 116
EI-MVSNet-Vis-set84.19 6883.81 7385.31 7388.18 17467.85 13387.66 15489.73 15980.05 1482.95 9389.59 14870.74 6194.82 9780.66 8984.72 17293.28 88
MVS_Test83.15 8883.06 8383.41 15086.86 21963.21 23486.11 20092.00 8774.31 11682.87 9589.44 15670.03 6793.21 16477.39 11788.50 12793.81 60
DPM-MVS84.93 6384.29 7086.84 4790.20 10073.04 2387.12 16893.04 3869.80 20882.85 9691.22 11073.06 3896.02 4776.72 12694.63 4891.46 152
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 9794.23 3572.13 4597.09 1684.83 4595.37 3293.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8076.87 6282.81 9894.25 3466.44 10596.24 4182.88 6794.28 5793.38 83
test1286.80 4992.63 6470.70 7291.79 9982.71 9971.67 5196.16 4494.50 5193.54 77
HPM-MVS_fast85.35 5884.95 6386.57 5393.69 4270.58 7592.15 3691.62 10373.89 12682.67 10094.09 4062.60 14495.54 6280.93 8392.93 6793.57 74
Effi-MVS+83.62 7983.08 8285.24 7588.38 16967.45 14188.89 10989.15 17975.50 9282.27 10188.28 18669.61 7394.45 11077.81 11287.84 13193.84 59
EI-MVSNet-UG-set83.81 7283.38 7885.09 8187.87 18767.53 14087.44 16089.66 16079.74 1682.23 10289.41 15770.24 6694.74 10079.95 9383.92 18692.99 102
MVS_111021_HR85.14 6084.75 6486.32 5591.65 7672.70 3085.98 20290.33 14176.11 8182.08 10391.61 10071.36 5694.17 12181.02 8292.58 7192.08 133
diffmvspermissive82.10 10181.88 10382.76 18383.00 29663.78 22083.68 25489.76 15772.94 15182.02 10489.85 14065.96 11490.79 25382.38 7487.30 13893.71 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
bld_raw_dy_0_6480.78 13579.36 14785.06 8289.46 12366.03 16889.63 8585.46 25869.76 21181.88 10589.06 16343.39 33195.70 5879.82 9585.74 16693.47 79
xiu_mvs_v1_base_debu80.80 13279.72 13884.03 13187.35 20770.19 7985.56 21288.77 19469.06 22981.83 10688.16 19050.91 26592.85 18378.29 10987.56 13389.06 237
xiu_mvs_v1_base80.80 13279.72 13884.03 13187.35 20770.19 7985.56 21288.77 19469.06 22981.83 10688.16 19050.91 26592.85 18378.29 10987.56 13389.06 237
xiu_mvs_v1_base_debi80.80 13279.72 13884.03 13187.35 20770.19 7985.56 21288.77 19469.06 22981.83 10688.16 19050.91 26592.85 18378.29 10987.56 13389.06 237
新几何183.42 14893.13 5270.71 7185.48 25757.43 35481.80 10991.98 9063.28 13392.27 20264.60 23792.99 6687.27 284
test_yl81.17 12280.47 12383.24 15689.13 14063.62 22186.21 19689.95 15372.43 15681.78 11089.61 14657.50 20593.58 14570.75 17886.90 14392.52 114
DCV-MVSNet81.17 12280.47 12383.24 15689.13 14063.62 22186.21 19689.95 15372.43 15681.78 11089.61 14657.50 20593.58 14570.75 17886.90 14392.52 114
test_cas_vis1_n_192073.76 26673.74 25673.81 32175.90 36559.77 27880.51 30182.40 30358.30 34681.62 11285.69 25544.35 32576.41 37076.29 12778.61 25585.23 322
MG-MVS83.41 8383.45 7683.28 15392.74 6262.28 24888.17 13889.50 16475.22 9681.49 11392.74 8266.75 10095.11 8272.85 16291.58 8492.45 119
CANet86.45 3886.10 4587.51 3790.09 10270.94 6789.70 8292.59 6681.78 481.32 11491.43 10670.34 6497.23 1384.26 5293.36 6594.37 35
MVSFormer82.85 9482.05 9985.24 7587.35 20770.21 7790.50 6290.38 13768.55 23981.32 11489.47 15161.68 15993.46 15478.98 10090.26 10192.05 134
lupinMVS81.39 12080.27 12984.76 9587.35 20770.21 7785.55 21586.41 24362.85 30781.32 11488.61 17561.68 15992.24 20478.41 10790.26 10191.83 138
xiu_mvs_v2_base81.69 11181.05 11283.60 14389.15 13968.03 13184.46 24090.02 15070.67 18781.30 11786.53 23963.17 13794.19 12075.60 13788.54 12588.57 260
PS-MVSNAJ81.69 11181.02 11383.70 14289.51 12068.21 12684.28 24690.09 14970.79 18481.26 11885.62 25963.15 13894.29 11275.62 13688.87 12088.59 259
原ACMM184.35 10893.01 5768.79 10692.44 6963.96 29781.09 11991.57 10166.06 11195.45 6567.19 21694.82 4688.81 252
jason81.39 12080.29 12884.70 9686.63 22769.90 8585.95 20386.77 23963.24 30081.07 12089.47 15161.08 17592.15 20678.33 10890.07 10692.05 134
jason: jason.
OPM-MVS83.50 8182.95 8685.14 7888.79 15370.95 6689.13 10391.52 10677.55 4480.96 12191.75 9560.71 17994.50 10879.67 9786.51 15089.97 213
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNetpermissive83.46 8282.80 8985.43 7190.25 9968.74 11090.30 6990.13 14876.33 7880.87 12292.89 7461.00 17694.20 11972.45 16890.97 9193.35 85
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMMPcopyleft85.89 4885.39 5487.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12393.82 5364.33 12596.29 3982.67 7390.69 9593.23 89
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Anonymous2024052980.19 15178.89 15984.10 11990.60 9264.75 20188.95 10790.90 12365.97 27280.59 12491.17 11349.97 27693.73 14369.16 19782.70 21193.81 60
MVS_111021_LR82.61 9782.11 9784.11 11888.82 15071.58 5385.15 22286.16 24874.69 10880.47 12591.04 11762.29 15190.55 25780.33 9190.08 10590.20 196
ECVR-MVScopyleft79.61 15979.26 15080.67 22890.08 10354.69 34087.89 14977.44 34874.88 10480.27 12692.79 7948.96 29392.45 19368.55 20392.50 7394.86 17
VPA-MVSNet80.60 13980.55 12180.76 22688.07 18160.80 26586.86 17691.58 10575.67 9080.24 12789.45 15563.34 13290.25 26070.51 18279.22 25291.23 157
test111179.43 16679.18 15480.15 23889.99 10853.31 35387.33 16377.05 35175.04 10180.23 12892.77 8148.97 29292.33 20168.87 20092.40 7594.81 20
test250677.30 22176.49 21779.74 24690.08 10352.02 35687.86 15163.10 39174.88 10480.16 12992.79 7938.29 36092.35 19968.74 20292.50 7394.86 17
Anonymous20240521178.25 19477.01 20381.99 19591.03 8260.67 26784.77 23083.90 27870.65 19180.00 13091.20 11141.08 34791.43 23665.21 23185.26 16793.85 57
test22291.50 7768.26 12484.16 24883.20 29154.63 36579.74 13191.63 9958.97 19391.42 8686.77 297
OMC-MVS82.69 9581.97 10284.85 9188.75 15567.42 14287.98 14390.87 12574.92 10379.72 13291.65 9762.19 15493.96 12575.26 14086.42 15193.16 94
FA-MVS(test-final)80.96 12679.91 13484.10 11988.30 17265.01 19584.55 23790.01 15173.25 14579.61 13387.57 20358.35 19794.72 10171.29 17586.25 15492.56 113
CPTT-MVS83.73 7483.33 8084.92 8993.28 4970.86 6992.09 3790.38 13768.75 23679.57 13492.83 7660.60 18493.04 17980.92 8491.56 8590.86 170
IS-MVSNet83.15 8882.81 8884.18 11789.94 11063.30 23291.59 4388.46 20479.04 2579.49 13592.16 8865.10 12094.28 11367.71 20991.86 8294.95 10
PS-MVSNAJss82.07 10381.31 10784.34 10986.51 22867.27 14889.27 9691.51 10771.75 16279.37 13690.22 13463.15 13894.27 11477.69 11382.36 21491.49 149
EPP-MVSNet83.40 8483.02 8484.57 9890.13 10164.47 20792.32 3090.73 12874.45 11579.35 13791.10 11469.05 8195.12 8072.78 16387.22 13994.13 44
test_vis1_n_192075.52 24875.78 22474.75 31379.84 34457.44 30483.26 26385.52 25662.83 30879.34 13886.17 24745.10 32179.71 35278.75 10281.21 22687.10 292
DP-MVS Recon83.11 9182.09 9886.15 5894.44 1970.92 6888.79 11392.20 8170.53 19279.17 13991.03 11964.12 12796.03 4668.39 20690.14 10391.50 148
ab-mvs79.51 16278.97 15881.14 21688.46 16560.91 26383.84 25289.24 17570.36 19479.03 14088.87 16863.23 13690.21 26165.12 23282.57 21292.28 124
EIA-MVS83.31 8782.80 8984.82 9289.59 11665.59 18288.21 13692.68 6074.66 10978.96 14186.42 24169.06 8095.26 7575.54 13890.09 10493.62 72
PVSNet_Blended_VisFu82.62 9681.83 10484.96 8690.80 8969.76 8788.74 11791.70 10269.39 21778.96 14188.46 18165.47 11794.87 9674.42 14588.57 12490.24 195
HQP_MVS83.64 7783.14 8185.14 7890.08 10368.71 11291.25 5092.44 6979.12 2378.92 14391.00 12060.42 18695.38 7178.71 10386.32 15291.33 153
plane_prior368.60 11778.44 3178.92 143
test_fmvs1_n70.86 29470.24 29272.73 33072.51 38555.28 33581.27 28979.71 33251.49 37478.73 14584.87 27427.54 38277.02 36476.06 13079.97 24385.88 314
iter_conf0580.00 15578.70 16183.91 13887.84 18965.83 17688.84 11284.92 26471.61 16778.70 14688.94 16543.88 32894.56 10479.28 9884.28 18291.33 153
EI-MVSNet80.52 14279.98 13282.12 19184.28 26563.19 23686.41 19088.95 18974.18 12078.69 14787.54 20666.62 10192.43 19472.57 16680.57 23590.74 175
MVSTER79.01 17877.88 18282.38 18983.07 29364.80 20084.08 25188.95 18969.01 23278.69 14787.17 21754.70 22492.43 19474.69 14280.57 23589.89 216
API-MVS81.99 10581.23 10984.26 11590.94 8570.18 8291.10 5389.32 16971.51 17178.66 14988.28 18665.26 11895.10 8564.74 23691.23 8987.51 278
GeoE81.71 11081.01 11483.80 14089.51 12064.45 20888.97 10688.73 19971.27 17578.63 15089.76 14266.32 10793.20 16769.89 18986.02 15993.74 63
test_fmvs170.93 29370.52 28772.16 33373.71 37555.05 33780.82 29278.77 33951.21 37578.58 15184.41 28031.20 37776.94 36575.88 13380.12 24284.47 333
UniMVSNet (Re)81.60 11681.11 11183.09 16388.38 16964.41 20987.60 15593.02 4278.42 3278.56 15288.16 19069.78 7193.26 16069.58 19376.49 28091.60 142
MAR-MVS81.84 10780.70 11885.27 7491.32 7971.53 5489.82 7690.92 12269.77 21078.50 15386.21 24562.36 15094.52 10765.36 23092.05 7889.77 221
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Fast-Effi-MVS+80.81 13079.92 13383.47 14688.85 14764.51 20485.53 21789.39 16770.79 18478.49 15485.06 27267.54 9493.58 14567.03 21986.58 14892.32 122
FIs82.07 10382.42 9181.04 21988.80 15258.34 28888.26 13593.49 2676.93 6078.47 15591.04 11769.92 7092.34 20069.87 19084.97 16992.44 120
UniMVSNet_NR-MVSNet81.88 10681.54 10682.92 17288.46 16563.46 22887.13 16792.37 7380.19 1278.38 15689.14 15971.66 5293.05 17770.05 18676.46 28192.25 125
DU-MVS81.12 12480.52 12282.90 17387.80 19163.46 22887.02 17191.87 9579.01 2678.38 15689.07 16165.02 12193.05 17770.05 18676.46 28192.20 128
CLD-MVS82.31 9981.65 10584.29 11188.47 16467.73 13685.81 21092.35 7475.78 8678.33 15886.58 23664.01 12894.35 11176.05 13187.48 13690.79 171
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
VPNet78.69 18678.66 16378.76 26388.31 17155.72 32984.45 24186.63 24176.79 6478.26 15990.55 12859.30 19189.70 27166.63 22077.05 27290.88 169
mvsmamba81.69 11180.74 11784.56 9987.45 20666.72 15891.26 4885.89 25274.66 10978.23 16090.56 12754.33 22794.91 9080.73 8883.54 19892.04 136
V4279.38 17078.24 17482.83 17581.10 33065.50 18485.55 21589.82 15571.57 16978.21 16186.12 24860.66 18193.18 17075.64 13575.46 30089.81 220
BH-RMVSNet79.61 15978.44 16883.14 16189.38 12865.93 17384.95 22787.15 23273.56 13578.19 16289.79 14156.67 21293.36 15759.53 28086.74 14690.13 199
v2v48280.23 14979.29 14983.05 16683.62 27964.14 21387.04 17089.97 15273.61 13378.18 16387.22 21461.10 17493.82 13576.11 12976.78 27891.18 158
PVSNet_BlendedMVS80.60 13980.02 13182.36 19088.85 14765.40 18686.16 19992.00 8769.34 21978.11 16486.09 24966.02 11294.27 11471.52 17182.06 21787.39 280
PVSNet_Blended80.98 12580.34 12682.90 17388.85 14765.40 18684.43 24292.00 8767.62 25078.11 16485.05 27366.02 11294.27 11471.52 17189.50 11289.01 242
v114480.03 15379.03 15683.01 16883.78 27764.51 20487.11 16990.57 13371.96 16178.08 16686.20 24661.41 16693.94 12874.93 14177.23 26990.60 180
FE-MVS77.78 20975.68 22684.08 12388.09 18066.00 17183.13 26687.79 21868.42 24378.01 16785.23 26745.50 31995.12 8059.11 28485.83 16391.11 160
TranMVSNet+NR-MVSNet80.84 12880.31 12782.42 18887.85 18862.33 24687.74 15391.33 11280.55 977.99 16889.86 13965.23 11992.62 18767.05 21875.24 30892.30 123
Baseline_NR-MVSNet78.15 19978.33 17277.61 28485.79 23656.21 32486.78 18085.76 25473.60 13477.93 16987.57 20365.02 12188.99 28267.14 21775.33 30587.63 274
TR-MVS77.44 21776.18 22281.20 21488.24 17363.24 23384.61 23586.40 24467.55 25177.81 17086.48 24054.10 23093.15 17157.75 29882.72 21087.20 285
v119279.59 16178.43 16983.07 16583.55 28164.52 20386.93 17490.58 13170.83 18377.78 17185.90 25059.15 19293.94 12873.96 15077.19 27190.76 173
PCF-MVS73.52 780.38 14478.84 16085.01 8487.71 19668.99 10283.65 25591.46 11163.00 30477.77 17290.28 13166.10 10995.09 8661.40 26688.22 13090.94 168
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
WR-MVS79.49 16379.22 15280.27 23688.79 15358.35 28785.06 22488.61 20278.56 3077.65 17388.34 18463.81 13190.66 25664.98 23477.22 27091.80 140
XVG-OURS80.41 14379.23 15183.97 13585.64 23969.02 10183.03 27190.39 13671.09 17977.63 17491.49 10454.62 22691.35 23875.71 13483.47 19991.54 145
v14419279.47 16478.37 17082.78 18183.35 28463.96 21686.96 17290.36 14069.99 20377.50 17585.67 25760.66 18193.77 13974.27 14776.58 27990.62 178
v192192079.22 17278.03 17782.80 17883.30 28663.94 21786.80 17890.33 14169.91 20677.48 17685.53 26058.44 19693.75 14173.60 15276.85 27690.71 176
thisisatest053079.40 16877.76 18884.31 11087.69 19865.10 19487.36 16184.26 27470.04 20177.42 17788.26 18849.94 27794.79 9970.20 18484.70 17393.03 99
FC-MVSNet-test81.52 11782.02 10080.03 24088.42 16855.97 32687.95 14593.42 2977.10 5677.38 17890.98 12269.96 6891.79 21868.46 20584.50 17592.33 121
v124078.99 17977.78 18682.64 18483.21 28863.54 22586.62 18590.30 14369.74 21477.33 17985.68 25657.04 21093.76 14073.13 16076.92 27390.62 178
PAPM_NR83.02 9282.41 9284.82 9292.47 6766.37 16387.93 14791.80 9873.82 12777.32 18090.66 12567.90 9194.90 9370.37 18389.48 11393.19 93
ACMM73.20 880.78 13579.84 13683.58 14489.31 13268.37 12189.99 7391.60 10470.28 19777.25 18189.66 14453.37 23893.53 15074.24 14882.85 20788.85 250
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP4-MVS77.24 18295.11 8291.03 164
AUN-MVS79.21 17377.60 19384.05 12988.71 15767.61 13885.84 20887.26 22969.08 22877.23 18388.14 19453.20 24093.47 15375.50 13973.45 32591.06 162
HQP-NCC89.33 12989.17 9876.41 7277.23 183
ACMP_Plane89.33 12989.17 9876.41 7277.23 183
HQP-MVS82.61 9782.02 10084.37 10689.33 12966.98 15489.17 9892.19 8276.41 7277.23 18390.23 13360.17 18995.11 8277.47 11585.99 16091.03 164
tt080578.73 18477.83 18381.43 20685.17 24760.30 27389.41 9290.90 12371.21 17677.17 18788.73 17046.38 30693.21 16472.57 16678.96 25490.79 171
TAPA-MVS73.13 979.15 17477.94 17982.79 18089.59 11662.99 24188.16 13991.51 10765.77 27377.14 18891.09 11560.91 17793.21 16450.26 34187.05 14192.17 130
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PAPR81.66 11480.89 11683.99 13490.27 9864.00 21586.76 18291.77 10168.84 23577.13 18989.50 14967.63 9394.88 9567.55 21188.52 12693.09 96
UniMVSNet_ETH3D79.10 17678.24 17481.70 20086.85 22060.24 27487.28 16588.79 19374.25 11876.84 19090.53 12949.48 28291.56 22767.98 20782.15 21593.29 87
EPNet83.72 7582.92 8786.14 5984.22 26769.48 9191.05 5585.27 25981.30 676.83 19191.65 9766.09 11095.56 6076.00 13293.85 6193.38 83
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline176.98 22576.75 21377.66 28288.13 17755.66 33085.12 22381.89 30773.04 14976.79 19288.90 16662.43 14987.78 30063.30 24671.18 34189.55 227
tttt051779.40 16877.91 18083.90 13988.10 17963.84 21888.37 13184.05 27671.45 17276.78 19389.12 16049.93 27994.89 9470.18 18583.18 20492.96 103
TAMVS78.89 18277.51 19583.03 16787.80 19167.79 13584.72 23185.05 26267.63 24976.75 19487.70 19962.25 15290.82 25258.53 29187.13 14090.49 185
XVG-OURS-SEG-HR80.81 13079.76 13783.96 13685.60 24068.78 10783.54 26090.50 13470.66 19076.71 19591.66 9660.69 18091.26 24076.94 12181.58 22291.83 138
3Dnovator+77.84 485.48 5484.47 6988.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19693.37 6260.40 18896.75 2677.20 11893.73 6395.29 5
LPG-MVS_test82.08 10281.27 10884.50 10189.23 13668.76 10890.22 7091.94 9175.37 9476.64 19791.51 10254.29 22894.91 9078.44 10583.78 18789.83 218
LGP-MVS_train84.50 10189.23 13668.76 10891.94 9175.37 9476.64 19791.51 10254.29 22894.91 9078.44 10583.78 18789.83 218
SDMVSNet80.38 14480.18 13080.99 22089.03 14564.94 19780.45 30389.40 16675.19 9876.61 19989.98 13760.61 18387.69 30176.83 12483.55 19690.33 191
sd_testset77.70 21377.40 19678.60 26689.03 14560.02 27679.00 32185.83 25375.19 9876.61 19989.98 13754.81 21985.46 31962.63 25383.55 19690.33 191
tfpn200view976.42 23575.37 23579.55 25389.13 14057.65 30085.17 22083.60 28173.41 14076.45 20186.39 24252.12 24891.95 21248.33 35083.75 19089.07 235
thres40076.50 23275.37 23579.86 24389.13 14057.65 30085.17 22083.60 28173.41 14076.45 20186.39 24252.12 24891.95 21248.33 35083.75 19090.00 209
HyFIR lowres test77.53 21675.40 23383.94 13789.59 11666.62 15980.36 30488.64 20156.29 36076.45 20185.17 26957.64 20393.28 15961.34 26883.10 20591.91 137
RRT_MVS80.35 14779.22 15283.74 14187.63 20065.46 18591.08 5488.92 19173.82 12776.44 20490.03 13649.05 29194.25 11876.84 12279.20 25391.51 146
CDS-MVSNet79.07 17777.70 19083.17 16087.60 20168.23 12584.40 24486.20 24767.49 25276.36 20586.54 23861.54 16290.79 25361.86 26287.33 13790.49 185
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
thres100view90076.50 23275.55 23079.33 25489.52 11956.99 30985.83 20983.23 28973.94 12476.32 20687.12 21851.89 25691.95 21248.33 35083.75 19089.07 235
thres600view776.50 23275.44 23179.68 24889.40 12657.16 30685.53 21783.23 28973.79 12976.26 20787.09 21951.89 25691.89 21548.05 35583.72 19390.00 209
UGNet80.83 12979.59 14184.54 10088.04 18268.09 12889.42 9188.16 20676.95 5976.22 20889.46 15349.30 28693.94 12868.48 20490.31 9991.60 142
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test_djsdf80.30 14879.32 14883.27 15483.98 27365.37 18990.50 6290.38 13768.55 23976.19 20988.70 17156.44 21393.46 15478.98 10080.14 24190.97 167
v14878.72 18577.80 18581.47 20582.73 30361.96 25286.30 19488.08 20973.26 14476.18 21085.47 26262.46 14892.36 19871.92 17073.82 32290.09 203
WTY-MVS75.65 24675.68 22675.57 30386.40 22956.82 31177.92 33582.40 30365.10 27976.18 21087.72 19863.13 14180.90 34860.31 27481.96 21889.00 244
mvs_anonymous79.42 16779.11 15580.34 23484.45 26457.97 29482.59 27387.62 22167.40 25476.17 21288.56 17868.47 8689.59 27270.65 18186.05 15893.47 79
Anonymous2023121178.97 18077.69 19182.81 17790.54 9464.29 21190.11 7291.51 10765.01 28276.16 21388.13 19550.56 27093.03 18069.68 19277.56 26891.11 160
thisisatest051577.33 22075.38 23483.18 15985.27 24663.80 21982.11 27883.27 28865.06 28075.91 21483.84 29349.54 28194.27 11467.24 21586.19 15591.48 150
CANet_DTU80.61 13879.87 13582.83 17585.60 24063.17 23787.36 16188.65 20076.37 7675.88 21588.44 18253.51 23693.07 17673.30 15789.74 11192.25 125
thres20075.55 24774.47 24678.82 26287.78 19457.85 29783.07 26983.51 28472.44 15575.84 21684.42 27952.08 25191.75 22047.41 35783.64 19586.86 295
CHOSEN 1792x268877.63 21575.69 22583.44 14789.98 10968.58 11878.70 32587.50 22456.38 35975.80 21786.84 22258.67 19491.40 23761.58 26585.75 16490.34 190
AdaColmapbinary80.58 14179.42 14484.06 12693.09 5468.91 10489.36 9488.97 18869.27 22075.70 21889.69 14357.20 20995.77 5563.06 24788.41 12887.50 279
UWE-MVS72.13 28471.49 27574.03 31986.66 22647.70 37681.40 28876.89 35363.60 29975.59 21984.22 28739.94 35285.62 31648.98 34786.13 15788.77 254
c3_l78.75 18377.91 18081.26 21282.89 30061.56 25784.09 25089.13 18169.97 20475.56 22084.29 28466.36 10692.09 20873.47 15575.48 29890.12 200
miper_ehance_all_eth78.59 18977.76 18881.08 21882.66 30561.56 25783.65 25589.15 17968.87 23475.55 22183.79 29566.49 10492.03 20973.25 15876.39 28389.64 224
miper_enhance_ethall77.87 20876.86 20780.92 22381.65 31961.38 25982.68 27288.98 18665.52 27775.47 22282.30 31865.76 11692.00 21172.95 16176.39 28389.39 230
3Dnovator76.31 583.38 8582.31 9586.59 5287.94 18572.94 2890.64 5992.14 8477.21 5275.47 22292.83 7658.56 19594.72 10173.24 15992.71 7092.13 132
jajsoiax79.29 17177.96 17883.27 15484.68 25866.57 16189.25 9790.16 14769.20 22575.46 22489.49 15045.75 31793.13 17376.84 12280.80 23190.11 201
IterMVS-LS80.06 15279.38 14582.11 19285.89 23563.20 23586.79 17989.34 16874.19 11975.45 22586.72 22666.62 10192.39 19672.58 16576.86 27590.75 174
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
BH-untuned79.47 16478.60 16482.05 19389.19 13865.91 17486.07 20188.52 20372.18 15875.42 22687.69 20061.15 17393.54 14960.38 27386.83 14586.70 299
mvs_tets79.13 17577.77 18783.22 15884.70 25766.37 16389.17 9890.19 14669.38 21875.40 22789.46 15344.17 32693.15 17176.78 12580.70 23390.14 198
HY-MVS69.67 1277.95 20577.15 20180.36 23387.57 20560.21 27583.37 26287.78 21966.11 26875.37 22887.06 22163.27 13490.48 25861.38 26782.43 21390.40 189
testing9176.54 23075.66 22879.18 25888.43 16755.89 32781.08 29083.00 29573.76 13075.34 22984.29 28446.20 31190.07 26364.33 23884.50 17591.58 144
GBi-Net78.40 19177.40 19681.40 20887.60 20163.01 23888.39 12889.28 17071.63 16475.34 22987.28 21054.80 22091.11 24362.72 24979.57 24590.09 203
test178.40 19177.40 19681.40 20887.60 20163.01 23888.39 12889.28 17071.63 16475.34 22987.28 21054.80 22091.11 24362.72 24979.57 24590.09 203
FMVSNet377.88 20776.85 20880.97 22286.84 22162.36 24586.52 18888.77 19471.13 17775.34 22986.66 23254.07 23191.10 24662.72 24979.57 24589.45 229
CostFormer75.24 25373.90 25379.27 25582.65 30658.27 28980.80 29382.73 30161.57 32075.33 23383.13 30655.52 21591.07 24964.98 23478.34 26288.45 261
test_vis1_n69.85 30669.21 29771.77 33572.66 38455.27 33681.48 28576.21 35652.03 37175.30 23483.20 30528.97 38076.22 37274.60 14378.41 26183.81 341
FMVSNet278.20 19777.21 20081.20 21487.60 20162.89 24287.47 15989.02 18471.63 16475.29 23587.28 21054.80 22091.10 24662.38 25479.38 24989.61 225
v879.97 15679.02 15782.80 17884.09 27064.50 20687.96 14490.29 14474.13 12275.24 23686.81 22362.88 14393.89 13474.39 14675.40 30390.00 209
testing9976.09 24175.12 23979.00 25988.16 17555.50 33280.79 29481.40 31373.30 14375.17 23784.27 28644.48 32490.02 26464.28 23984.22 18491.48 150
anonymousdsp78.60 18877.15 20182.98 17080.51 33667.08 15287.24 16689.53 16365.66 27575.16 23887.19 21652.52 24192.25 20377.17 11979.34 25089.61 225
QAPM80.88 12779.50 14385.03 8388.01 18468.97 10391.59 4392.00 8766.63 26475.15 23992.16 8857.70 20295.45 6563.52 24288.76 12290.66 177
v1079.74 15878.67 16282.97 17184.06 27164.95 19687.88 15090.62 13073.11 14775.11 24086.56 23761.46 16594.05 12473.68 15175.55 29689.90 215
Vis-MVSNet (Re-imp)78.36 19378.45 16778.07 27788.64 15951.78 36286.70 18379.63 33374.14 12175.11 24090.83 12361.29 17089.75 26958.10 29591.60 8392.69 109
cl2278.07 20177.01 20381.23 21382.37 31261.83 25483.55 25987.98 21168.96 23375.06 24283.87 29161.40 16791.88 21673.53 15376.39 28389.98 212
ACMP74.13 681.51 11980.57 12084.36 10789.42 12568.69 11589.97 7491.50 11074.46 11475.04 24390.41 13053.82 23394.54 10577.56 11482.91 20689.86 217
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Effi-MVS+-dtu80.03 15378.57 16584.42 10585.13 25168.74 11088.77 11488.10 20874.99 10274.97 24483.49 30157.27 20893.36 15773.53 15380.88 22991.18 158
XXY-MVS75.41 25175.56 22974.96 30983.59 28057.82 29880.59 30083.87 27966.54 26574.93 24588.31 18563.24 13580.09 35162.16 25876.85 27686.97 293
eth_miper_zixun_eth77.92 20676.69 21481.61 20383.00 29661.98 25183.15 26589.20 17769.52 21674.86 24684.35 28361.76 15892.56 19071.50 17372.89 33090.28 194
GA-MVS76.87 22775.17 23881.97 19682.75 30262.58 24381.44 28786.35 24672.16 16074.74 24782.89 31046.20 31192.02 21068.85 20181.09 22791.30 156
sss73.60 26773.64 25773.51 32382.80 30155.01 33876.12 34281.69 31062.47 31374.68 24885.85 25357.32 20778.11 35960.86 27180.93 22887.39 280
testing22274.04 26272.66 26578.19 27487.89 18655.36 33381.06 29179.20 33771.30 17474.65 24983.57 30039.11 35688.67 28951.43 33385.75 16490.53 183
test_fmvs268.35 31867.48 31970.98 34469.50 38851.95 35880.05 30876.38 35549.33 37774.65 24984.38 28123.30 38875.40 37974.51 14475.17 30985.60 317
BH-w/o78.21 19677.33 19980.84 22488.81 15165.13 19384.87 22887.85 21769.75 21274.52 25184.74 27761.34 16893.11 17458.24 29485.84 16284.27 334
FMVSNet177.44 21776.12 22381.40 20886.81 22263.01 23888.39 12889.28 17070.49 19374.39 25287.28 21049.06 29091.11 24360.91 27078.52 25790.09 203
cl____77.72 21176.76 21180.58 22982.49 30960.48 27083.09 26787.87 21569.22 22374.38 25385.22 26862.10 15591.53 23071.09 17675.41 30289.73 223
DIV-MVS_self_test77.72 21176.76 21180.58 22982.48 31060.48 27083.09 26787.86 21669.22 22374.38 25385.24 26662.10 15591.53 23071.09 17675.40 30389.74 222
114514_t80.68 13779.51 14284.20 11694.09 3867.27 14889.64 8491.11 11958.75 34474.08 25590.72 12458.10 19895.04 8769.70 19189.42 11490.30 193
WR-MVS_H78.51 19078.49 16678.56 26788.02 18356.38 32088.43 12692.67 6177.14 5473.89 25687.55 20566.25 10889.24 27858.92 28673.55 32490.06 207
ETVMVS72.25 28371.05 28275.84 29987.77 19551.91 35979.39 31574.98 36069.26 22173.71 25782.95 30840.82 34986.14 31146.17 36384.43 18089.47 228
WB-MVSnew71.96 28671.65 27472.89 32884.67 26151.88 36082.29 27677.57 34562.31 31473.67 25883.00 30753.49 23781.10 34745.75 36682.13 21685.70 316
tpm273.26 27271.46 27678.63 26483.34 28556.71 31480.65 29980.40 32556.63 35873.55 25982.02 32351.80 25891.24 24156.35 31178.42 26087.95 267
CP-MVSNet78.22 19578.34 17177.84 27987.83 19054.54 34287.94 14691.17 11677.65 3873.48 26088.49 18062.24 15388.43 29262.19 25774.07 31790.55 182
pm-mvs177.25 22276.68 21578.93 26184.22 26758.62 28686.41 19088.36 20571.37 17373.31 26188.01 19661.22 17289.15 28064.24 24073.01 32989.03 241
PS-CasMVS78.01 20478.09 17677.77 28187.71 19654.39 34488.02 14291.22 11377.50 4673.26 26288.64 17460.73 17888.41 29361.88 26173.88 32190.53 183
CVMVSNet72.99 27672.58 26674.25 31784.28 26550.85 36886.41 19083.45 28644.56 38173.23 26387.54 20649.38 28485.70 31465.90 22678.44 25986.19 306
PEN-MVS77.73 21077.69 19177.84 27987.07 21853.91 34787.91 14891.18 11577.56 4373.14 26488.82 16961.23 17189.17 27959.95 27672.37 33290.43 187
1112_ss77.40 21976.43 21980.32 23589.11 14460.41 27283.65 25587.72 22062.13 31773.05 26586.72 22662.58 14689.97 26562.11 26080.80 23190.59 181
tpm72.37 28171.71 27374.35 31682.19 31352.00 35779.22 31877.29 34964.56 28672.95 26683.68 29951.35 26183.26 33658.33 29375.80 29287.81 271
cascas76.72 22974.64 24282.99 16985.78 23765.88 17582.33 27589.21 17660.85 32572.74 26781.02 32947.28 30093.75 14167.48 21285.02 16889.34 232
CR-MVSNet73.37 26971.27 28079.67 24981.32 32865.19 19175.92 34480.30 32659.92 33272.73 26881.19 32652.50 24286.69 30659.84 27777.71 26587.11 290
RPMNet73.51 26870.49 28882.58 18681.32 32865.19 19175.92 34492.27 7657.60 35272.73 26876.45 36552.30 24595.43 6748.14 35477.71 26587.11 290
testing1175.14 25474.01 25078.53 26988.16 17556.38 32080.74 29780.42 32470.67 18772.69 27083.72 29743.61 33089.86 26662.29 25683.76 18989.36 231
DTE-MVSNet76.99 22476.80 20977.54 28686.24 23053.06 35587.52 15790.66 12977.08 5772.50 27188.67 17360.48 18589.52 27357.33 30270.74 34390.05 208
Test_1112_low_res76.40 23675.44 23179.27 25589.28 13458.09 29081.69 28287.07 23359.53 33672.48 27286.67 23161.30 16989.33 27660.81 27280.15 24090.41 188
v7n78.97 18077.58 19483.14 16183.45 28365.51 18388.32 13391.21 11473.69 13172.41 27386.32 24457.93 19993.81 13669.18 19675.65 29490.11 201
SCA74.22 26072.33 26979.91 24284.05 27262.17 24979.96 31079.29 33666.30 26772.38 27480.13 33851.95 25488.60 29059.25 28277.67 26788.96 246
CNLPA78.08 20076.79 21081.97 19690.40 9771.07 6287.59 15684.55 26866.03 27172.38 27489.64 14557.56 20486.04 31259.61 27983.35 20188.79 253
NR-MVSNet80.23 14979.38 14582.78 18187.80 19163.34 23186.31 19391.09 12079.01 2672.17 27689.07 16167.20 9892.81 18666.08 22575.65 29492.20 128
OpenMVScopyleft72.83 1079.77 15778.33 17284.09 12285.17 24769.91 8490.57 6090.97 12166.70 25872.17 27691.91 9154.70 22493.96 12561.81 26390.95 9288.41 263
MVS78.19 19876.99 20581.78 19885.66 23866.99 15384.66 23290.47 13555.08 36472.02 27885.27 26563.83 13094.11 12366.10 22489.80 11084.24 335
XVG-ACMP-BASELINE76.11 24074.27 24981.62 20183.20 28964.67 20283.60 25889.75 15869.75 21271.85 27987.09 21932.78 37292.11 20769.99 18880.43 23788.09 266
PatchmatchNetpermissive73.12 27471.33 27978.49 27183.18 29060.85 26479.63 31278.57 34064.13 29171.73 28079.81 34351.20 26385.97 31357.40 30176.36 28888.66 257
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst72.39 27972.13 27073.18 32780.54 33549.91 37279.91 31179.08 33863.11 30271.69 28179.95 34055.32 21682.77 33865.66 22973.89 32086.87 294
TransMVSNet (Re)75.39 25274.56 24477.86 27885.50 24257.10 30886.78 18086.09 25072.17 15971.53 28287.34 20963.01 14289.31 27756.84 30761.83 36987.17 286
Fast-Effi-MVS+-dtu78.02 20376.49 21782.62 18583.16 29266.96 15686.94 17387.45 22672.45 15371.49 28384.17 28854.79 22391.58 22567.61 21080.31 23889.30 233
PAPM77.68 21476.40 22081.51 20487.29 21461.85 25383.78 25389.59 16264.74 28471.23 28488.70 17162.59 14593.66 14452.66 32687.03 14289.01 242
tfpnnormal74.39 25773.16 26178.08 27686.10 23458.05 29184.65 23487.53 22370.32 19671.22 28585.63 25854.97 21889.86 26643.03 37375.02 31086.32 303
RPSCF73.23 27371.46 27678.54 26882.50 30859.85 27782.18 27782.84 30058.96 34171.15 28689.41 15745.48 32084.77 32558.82 28871.83 33791.02 166
PatchT68.46 31767.85 31070.29 34680.70 33343.93 38872.47 36174.88 36160.15 33070.55 28776.57 36449.94 27781.59 34350.58 33574.83 31285.34 320
CL-MVSNet_self_test72.37 28171.46 27675.09 30879.49 35153.53 34980.76 29685.01 26369.12 22770.51 28882.05 32257.92 20084.13 32852.27 32866.00 36187.60 275
IterMVS-SCA-FT75.43 25073.87 25480.11 23982.69 30464.85 19981.57 28483.47 28569.16 22670.49 28984.15 28951.95 25488.15 29569.23 19572.14 33587.34 282
miper_lstm_enhance74.11 26173.11 26277.13 29180.11 34059.62 28072.23 36286.92 23766.76 25770.40 29082.92 30956.93 21182.92 33769.06 19872.63 33188.87 249
gg-mvs-nofinetune69.95 30467.96 30875.94 29883.07 29354.51 34377.23 33970.29 37563.11 30270.32 29162.33 38643.62 32988.69 28853.88 32087.76 13284.62 332
DP-MVS76.78 22874.57 24383.42 14893.29 4869.46 9488.55 12483.70 28063.98 29670.20 29288.89 16754.01 23294.80 9846.66 35981.88 22086.01 311
pmmvs674.69 25673.39 25878.61 26581.38 32557.48 30386.64 18487.95 21364.99 28370.18 29386.61 23350.43 27289.52 27362.12 25970.18 34588.83 251
PVSNet64.34 1872.08 28570.87 28575.69 30186.21 23156.44 31874.37 35680.73 31862.06 31870.17 29482.23 32042.86 33683.31 33554.77 31684.45 17987.32 283
131476.53 23175.30 23780.21 23783.93 27462.32 24784.66 23288.81 19260.23 32970.16 29584.07 29055.30 21790.73 25567.37 21383.21 20387.59 277
Patchmtry70.74 29569.16 29875.49 30580.72 33254.07 34674.94 35580.30 32658.34 34570.01 29681.19 32652.50 24286.54 30753.37 32371.09 34285.87 315
EPMVS69.02 31068.16 30571.59 33679.61 34949.80 37477.40 33766.93 38362.82 30970.01 29679.05 34745.79 31577.86 36156.58 30975.26 30787.13 289
IterMVS74.29 25872.94 26378.35 27281.53 32263.49 22781.58 28382.49 30268.06 24769.99 29883.69 29851.66 26085.54 31765.85 22771.64 33886.01 311
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test-LLR72.94 27772.43 26774.48 31481.35 32658.04 29278.38 32877.46 34666.66 25969.95 29979.00 34948.06 29679.24 35366.13 22284.83 17086.15 307
test-mter71.41 28870.39 29174.48 31481.35 32658.04 29278.38 32877.46 34660.32 32869.95 29979.00 34936.08 36779.24 35366.13 22284.83 17086.15 307
pmmvs474.03 26471.91 27180.39 23281.96 31568.32 12281.45 28682.14 30559.32 33769.87 30185.13 27052.40 24488.13 29660.21 27574.74 31384.73 331
PLCcopyleft70.83 1178.05 20276.37 22183.08 16491.88 7467.80 13488.19 13789.46 16564.33 29069.87 30188.38 18353.66 23493.58 14558.86 28782.73 20987.86 270
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LTVRE_ROB69.57 1376.25 23874.54 24581.41 20788.60 16064.38 21079.24 31789.12 18270.76 18669.79 30387.86 19749.09 28993.20 16756.21 31280.16 23986.65 300
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LS3D76.95 22674.82 24183.37 15190.45 9567.36 14589.15 10286.94 23661.87 31969.52 30490.61 12651.71 25994.53 10646.38 36286.71 14788.21 265
IB-MVS68.01 1575.85 24473.36 25983.31 15284.76 25666.03 16883.38 26185.06 26170.21 20069.40 30581.05 32845.76 31694.66 10365.10 23375.49 29789.25 234
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PatchMatch-RL72.38 28070.90 28476.80 29488.60 16067.38 14479.53 31376.17 35762.75 31069.36 30682.00 32445.51 31884.89 32453.62 32180.58 23478.12 372
MDTV_nov1_ep1369.97 29483.18 29053.48 35077.10 34080.18 32960.45 32669.33 30780.44 33548.89 29486.90 30551.60 33178.51 258
dmvs_re71.14 29070.58 28672.80 32981.96 31559.68 27975.60 34879.34 33568.55 23969.27 30880.72 33449.42 28376.54 36752.56 32777.79 26482.19 357
testing368.56 31567.67 31671.22 34287.33 21242.87 39083.06 27071.54 37270.36 19469.08 30984.38 28130.33 37985.69 31537.50 38475.45 30185.09 327
D2MVS74.82 25573.21 26079.64 25079.81 34562.56 24480.34 30587.35 22764.37 28968.86 31082.66 31446.37 30790.10 26267.91 20881.24 22586.25 304
PMMVS69.34 30868.67 30071.35 34075.67 36762.03 25075.17 35073.46 36750.00 37668.68 31179.05 34752.07 25278.13 35861.16 26982.77 20873.90 379
Patchmatch-RL test70.24 30167.78 31477.61 28477.43 36059.57 28271.16 36570.33 37462.94 30668.65 31272.77 37750.62 26985.49 31869.58 19366.58 35887.77 272
MS-PatchMatch73.83 26572.67 26477.30 28983.87 27566.02 17081.82 27984.66 26661.37 32368.61 31382.82 31247.29 29988.21 29459.27 28184.32 18177.68 373
tpm cat170.57 29768.31 30377.35 28882.41 31157.95 29578.08 33280.22 32852.04 37068.54 31477.66 36052.00 25387.84 29951.77 32972.07 33686.25 304
mvsany_test162.30 34361.26 34765.41 36269.52 38754.86 33966.86 38149.78 40246.65 37968.50 31583.21 30449.15 28866.28 39456.93 30660.77 37275.11 378
TESTMET0.1,169.89 30569.00 29972.55 33179.27 35456.85 31078.38 32874.71 36457.64 35168.09 31677.19 36237.75 36276.70 36663.92 24184.09 18584.10 338
MIMVSNet70.69 29669.30 29574.88 31084.52 26256.35 32275.87 34679.42 33464.59 28567.76 31782.41 31641.10 34681.54 34446.64 36181.34 22386.75 298
ACMH+68.96 1476.01 24274.01 25082.03 19488.60 16065.31 19088.86 11087.55 22270.25 19967.75 31887.47 20841.27 34593.19 16958.37 29275.94 29187.60 275
LCM-MVSNet-Re77.05 22376.94 20677.36 28787.20 21551.60 36380.06 30780.46 32375.20 9767.69 31986.72 22662.48 14788.98 28363.44 24489.25 11591.51 146
ITE_SJBPF78.22 27381.77 31860.57 26883.30 28769.25 22267.54 32087.20 21536.33 36687.28 30454.34 31874.62 31486.80 296
test_fmvs363.36 34161.82 34467.98 35762.51 39546.96 38077.37 33874.03 36645.24 38067.50 32178.79 35212.16 39972.98 38772.77 16466.02 36083.99 339
pmmvs571.55 28770.20 29375.61 30277.83 35856.39 31981.74 28180.89 31557.76 35067.46 32284.49 27849.26 28785.32 32157.08 30475.29 30685.11 326
MVP-Stereo76.12 23974.46 24781.13 21785.37 24569.79 8684.42 24387.95 21365.03 28167.46 32285.33 26453.28 23991.73 22258.01 29683.27 20281.85 359
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_040272.79 27870.44 28979.84 24488.13 17765.99 17285.93 20484.29 27265.57 27667.40 32485.49 26146.92 30392.61 18835.88 38574.38 31680.94 364
GG-mvs-BLEND75.38 30681.59 32155.80 32879.32 31669.63 37767.19 32573.67 37543.24 33288.90 28750.41 33684.50 17581.45 361
tpmvs71.09 29169.29 29676.49 29582.04 31456.04 32578.92 32381.37 31464.05 29467.18 32678.28 35549.74 28089.77 26849.67 34472.37 33283.67 342
OurMVSNet-221017-074.26 25972.42 26879.80 24583.76 27859.59 28185.92 20586.64 24066.39 26666.96 32787.58 20239.46 35391.60 22465.76 22869.27 34888.22 264
baseline275.70 24573.83 25581.30 21183.26 28761.79 25582.57 27480.65 31966.81 25566.88 32883.42 30257.86 20192.19 20563.47 24379.57 24589.91 214
F-COLMAP76.38 23774.33 24882.50 18789.28 13466.95 15788.41 12789.03 18364.05 29466.83 32988.61 17546.78 30492.89 18257.48 29978.55 25687.67 273
ACMH67.68 1675.89 24373.93 25281.77 19988.71 15766.61 16088.62 12289.01 18569.81 20766.78 33086.70 23041.95 34491.51 23255.64 31378.14 26387.17 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Syy-MVS68.05 31967.85 31068.67 35584.68 25840.97 39678.62 32673.08 36966.65 26266.74 33179.46 34452.11 25082.30 34032.89 38876.38 28682.75 353
myMVS_eth3d67.02 32566.29 32669.21 35084.68 25842.58 39178.62 32673.08 36966.65 26266.74 33179.46 34431.53 37682.30 34039.43 38176.38 28682.75 353
test0.0.03 168.00 32067.69 31568.90 35277.55 35947.43 37775.70 34772.95 37166.66 25966.56 33382.29 31948.06 29675.87 37444.97 37074.51 31583.41 344
MDTV_nov1_ep13_2view37.79 39875.16 35155.10 36366.53 33449.34 28553.98 31987.94 268
KD-MVS_2432*160066.22 33263.89 33473.21 32475.47 37053.42 35170.76 36884.35 27064.10 29266.52 33578.52 35334.55 37084.98 32250.40 33750.33 38881.23 362
miper_refine_blended66.22 33263.89 33473.21 32475.47 37053.42 35170.76 36884.35 27064.10 29266.52 33578.52 35334.55 37084.98 32250.40 33750.33 38881.23 362
ET-MVSNet_ETH3D78.63 18776.63 21684.64 9786.73 22469.47 9285.01 22584.61 26769.54 21566.51 33786.59 23450.16 27491.75 22076.26 12884.24 18392.69 109
EU-MVSNet68.53 31667.61 31771.31 34178.51 35747.01 37984.47 23884.27 27342.27 38466.44 33884.79 27640.44 35083.76 33058.76 28968.54 35383.17 346
EPNet_dtu75.46 24974.86 24077.23 29082.57 30754.60 34186.89 17583.09 29271.64 16366.25 33985.86 25255.99 21488.04 29754.92 31586.55 14989.05 240
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2023120668.60 31367.80 31371.02 34380.23 33950.75 36978.30 33180.47 32256.79 35766.11 34082.63 31546.35 30878.95 35543.62 37275.70 29383.36 345
SixPastTwentyTwo73.37 26971.26 28179.70 24785.08 25257.89 29685.57 21183.56 28371.03 18165.66 34185.88 25142.10 34292.57 18959.11 28463.34 36788.65 258
MSDG73.36 27170.99 28380.49 23184.51 26365.80 17880.71 29886.13 24965.70 27465.46 34283.74 29644.60 32290.91 25151.13 33476.89 27484.74 330
OpenMVS_ROBcopyleft64.09 1970.56 29868.19 30477.65 28380.26 33759.41 28385.01 22582.96 29758.76 34365.43 34382.33 31737.63 36391.23 24245.34 36976.03 29082.32 355
ppachtmachnet_test70.04 30367.34 32078.14 27579.80 34661.13 26079.19 31980.59 32059.16 33965.27 34479.29 34646.75 30587.29 30349.33 34566.72 35686.00 313
ADS-MVSNet266.20 33463.33 33774.82 31179.92 34258.75 28567.55 37975.19 35953.37 36765.25 34575.86 36842.32 33980.53 35041.57 37668.91 35085.18 323
ADS-MVSNet64.36 33862.88 34168.78 35479.92 34247.17 37867.55 37971.18 37353.37 36765.25 34575.86 36842.32 33973.99 38441.57 37668.91 35085.18 323
testgi66.67 32866.53 32567.08 36075.62 36841.69 39575.93 34376.50 35466.11 26865.20 34786.59 23435.72 36874.71 38143.71 37173.38 32784.84 329
PM-MVS66.41 33064.14 33273.20 32673.92 37456.45 31778.97 32264.96 38963.88 29864.72 34880.24 33719.84 39183.44 33466.24 22164.52 36579.71 369
JIA-IIPM66.32 33162.82 34276.82 29377.09 36261.72 25665.34 38675.38 35858.04 34964.51 34962.32 38742.05 34386.51 30851.45 33269.22 34982.21 356
ambc75.24 30773.16 38050.51 37063.05 39187.47 22564.28 35077.81 35917.80 39389.73 27057.88 29760.64 37385.49 318
EG-PatchMatch MVS74.04 26271.82 27280.71 22784.92 25467.42 14285.86 20788.08 20966.04 27064.22 35183.85 29235.10 36992.56 19057.44 30080.83 23082.16 358
dp66.80 32665.43 32870.90 34579.74 34848.82 37575.12 35374.77 36259.61 33464.08 35277.23 36142.89 33580.72 34948.86 34866.58 35883.16 347
KD-MVS_self_test68.81 31167.59 31872.46 33274.29 37345.45 38177.93 33487.00 23463.12 30163.99 35378.99 35142.32 33984.77 32556.55 31064.09 36687.16 288
pmmvs-eth3d70.50 29967.83 31278.52 27077.37 36166.18 16781.82 27981.51 31158.90 34263.90 35480.42 33642.69 33786.28 31058.56 29065.30 36383.11 348
COLMAP_ROBcopyleft66.92 1773.01 27570.41 29080.81 22587.13 21765.63 18188.30 13484.19 27562.96 30563.80 35587.69 20038.04 36192.56 19046.66 35974.91 31184.24 335
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet569.50 30767.96 30874.15 31882.97 29955.35 33480.01 30982.12 30662.56 31263.02 35681.53 32536.92 36481.92 34248.42 34974.06 31885.17 325
test20.0367.45 32266.95 32368.94 35175.48 36944.84 38677.50 33677.67 34466.66 25963.01 35783.80 29447.02 30278.40 35742.53 37568.86 35283.58 343
K. test v371.19 28968.51 30179.21 25783.04 29557.78 29984.35 24576.91 35272.90 15262.99 35882.86 31139.27 35491.09 24861.65 26452.66 38588.75 255
our_test_369.14 30967.00 32275.57 30379.80 34658.80 28477.96 33377.81 34359.55 33562.90 35978.25 35647.43 29883.97 32951.71 33067.58 35583.93 340
CHOSEN 280x42066.51 32964.71 33071.90 33481.45 32363.52 22657.98 39368.95 38153.57 36662.59 36076.70 36346.22 31075.29 38055.25 31479.68 24476.88 375
Anonymous2024052168.80 31267.22 32173.55 32274.33 37254.11 34583.18 26485.61 25558.15 34761.68 36180.94 33130.71 37881.27 34657.00 30573.34 32885.28 321
USDC70.33 30068.37 30276.21 29780.60 33456.23 32379.19 31986.49 24260.89 32461.29 36285.47 26231.78 37589.47 27553.37 32376.21 28982.94 352
lessismore_v078.97 26081.01 33157.15 30765.99 38561.16 36382.82 31239.12 35591.34 23959.67 27846.92 39188.43 262
UnsupCasMVSNet_eth67.33 32365.99 32771.37 33873.48 37851.47 36575.16 35185.19 26065.20 27860.78 36480.93 33342.35 33877.20 36357.12 30353.69 38485.44 319
dmvs_testset62.63 34264.11 33358.19 37078.55 35624.76 40675.28 34965.94 38667.91 24860.34 36576.01 36753.56 23573.94 38531.79 38967.65 35475.88 377
AllTest70.96 29268.09 30779.58 25185.15 24963.62 22184.58 23679.83 33062.31 31460.32 36686.73 22432.02 37388.96 28550.28 33971.57 33986.15 307
TestCases79.58 25185.15 24963.62 22179.83 33062.31 31460.32 36686.73 22432.02 37388.96 28550.28 33971.57 33986.15 307
Patchmatch-test64.82 33763.24 33869.57 34879.42 35249.82 37363.49 39069.05 38051.98 37259.95 36880.13 33850.91 26570.98 38840.66 37873.57 32387.90 269
MIMVSNet168.58 31466.78 32473.98 32080.07 34151.82 36180.77 29584.37 26964.40 28859.75 36982.16 32136.47 36583.63 33242.73 37470.33 34486.48 302
test_vis1_rt60.28 34658.42 34965.84 36167.25 39155.60 33170.44 37060.94 39444.33 38259.00 37066.64 38424.91 38468.67 39262.80 24869.48 34673.25 380
LF4IMVS64.02 33962.19 34369.50 34970.90 38653.29 35476.13 34177.18 35052.65 36958.59 37180.98 33023.55 38776.52 36853.06 32566.66 35778.68 371
PVSNet_057.27 2061.67 34559.27 34868.85 35379.61 34957.44 30468.01 37873.44 36855.93 36158.54 37270.41 38244.58 32377.55 36247.01 35835.91 39471.55 382
TDRefinement67.49 32164.34 33176.92 29273.47 37961.07 26184.86 22982.98 29659.77 33358.30 37385.13 27026.06 38387.89 29847.92 35660.59 37481.81 360
mvsany_test353.99 35251.45 35761.61 36755.51 39944.74 38763.52 38945.41 40643.69 38358.11 37476.45 36517.99 39263.76 39754.77 31647.59 39076.34 376
UnsupCasMVSNet_bld63.70 34061.53 34670.21 34773.69 37651.39 36672.82 36081.89 30755.63 36257.81 37571.80 37938.67 35778.61 35649.26 34652.21 38680.63 365
DSMNet-mixed57.77 34956.90 35160.38 36867.70 39035.61 39969.18 37453.97 40032.30 39657.49 37679.88 34140.39 35168.57 39338.78 38272.37 33276.97 374
N_pmnet52.79 35653.26 35551.40 38078.99 3557.68 41269.52 3723.89 41151.63 37357.01 37774.98 37240.83 34865.96 39537.78 38364.67 36480.56 367
new-patchmatchnet61.73 34461.73 34561.70 36672.74 38324.50 40769.16 37578.03 34261.40 32156.72 37875.53 37138.42 35876.48 36945.95 36557.67 37684.13 337
CMPMVSbinary51.72 2170.19 30268.16 30576.28 29673.15 38157.55 30279.47 31483.92 27748.02 37856.48 37984.81 27543.13 33486.42 30962.67 25281.81 22184.89 328
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TinyColmap67.30 32464.81 32974.76 31281.92 31756.68 31580.29 30681.49 31260.33 32756.27 38083.22 30324.77 38587.66 30245.52 36769.47 34779.95 368
test_f52.09 35750.82 35855.90 37453.82 40242.31 39459.42 39258.31 39836.45 39156.12 38170.96 38112.18 39857.79 39953.51 32256.57 37967.60 385
YYNet165.03 33562.91 34071.38 33775.85 36656.60 31669.12 37674.66 36557.28 35554.12 38277.87 35845.85 31474.48 38249.95 34261.52 37183.05 349
MDA-MVSNet_test_wron65.03 33562.92 33971.37 33875.93 36456.73 31269.09 37774.73 36357.28 35554.03 38377.89 35745.88 31374.39 38349.89 34361.55 37082.99 351
pmmvs357.79 34854.26 35368.37 35664.02 39456.72 31375.12 35365.17 38740.20 38652.93 38469.86 38320.36 39075.48 37745.45 36855.25 38372.90 381
MVS-HIRNet59.14 34757.67 35063.57 36481.65 31943.50 38971.73 36365.06 38839.59 38851.43 38557.73 39238.34 35982.58 33939.53 37973.95 31964.62 388
WB-MVS54.94 35054.72 35255.60 37673.50 37720.90 40874.27 35761.19 39359.16 33950.61 38674.15 37347.19 30175.78 37517.31 40035.07 39570.12 383
MDA-MVSNet-bldmvs66.68 32763.66 33675.75 30079.28 35360.56 26973.92 35878.35 34164.43 28750.13 38779.87 34244.02 32783.67 33146.10 36456.86 37783.03 350
SSC-MVS53.88 35353.59 35454.75 37872.87 38219.59 40973.84 35960.53 39557.58 35349.18 38873.45 37646.34 30975.47 37816.20 40332.28 39769.20 384
new_pmnet50.91 35950.29 35952.78 37968.58 38934.94 40163.71 38856.63 39939.73 38744.95 38965.47 38521.93 38958.48 39834.98 38656.62 37864.92 387
test_vis3_rt49.26 36147.02 36356.00 37354.30 40045.27 38566.76 38348.08 40336.83 39044.38 39053.20 3957.17 40664.07 39656.77 30855.66 38058.65 392
FPMVS53.68 35451.64 35659.81 36965.08 39351.03 36769.48 37369.58 37841.46 38540.67 39172.32 37816.46 39570.00 39124.24 39765.42 36258.40 393
APD_test153.31 35549.93 36063.42 36565.68 39250.13 37171.59 36466.90 38434.43 39340.58 39271.56 3808.65 40476.27 37134.64 38755.36 38263.86 389
LCM-MVSNet54.25 35149.68 36167.97 35853.73 40345.28 38466.85 38280.78 31735.96 39239.45 39362.23 3888.70 40378.06 36048.24 35351.20 38780.57 366
PMMVS240.82 36638.86 36946.69 38153.84 40116.45 41048.61 39649.92 40137.49 38931.67 39460.97 3898.14 40556.42 40028.42 39230.72 39867.19 386
ANet_high50.57 36046.10 36463.99 36348.67 40639.13 39770.99 36780.85 31661.39 32231.18 39557.70 39317.02 39473.65 38631.22 39015.89 40379.18 370
testf145.72 36241.96 36557.00 37156.90 39745.32 38266.14 38459.26 39626.19 39730.89 39660.96 3904.14 40770.64 38926.39 39546.73 39255.04 394
APD_test245.72 36241.96 36557.00 37156.90 39745.32 38266.14 38459.26 39626.19 39730.89 39660.96 3904.14 40770.64 38926.39 39546.73 39255.04 394
Gipumacopyleft45.18 36441.86 36755.16 37777.03 36351.52 36432.50 39980.52 32132.46 39527.12 39835.02 3999.52 40275.50 37622.31 39860.21 37538.45 398
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft37.38 2244.16 36540.28 36855.82 37540.82 40842.54 39365.12 38763.99 39034.43 39324.48 39957.12 3943.92 40976.17 37317.10 40155.52 38148.75 396
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepMVS_CXcopyleft27.40 38640.17 40926.90 40424.59 41017.44 40223.95 40048.61 3979.77 40126.48 40518.06 39924.47 39928.83 399
tmp_tt18.61 37221.40 37510.23 3884.82 41110.11 41134.70 39830.74 4091.48 40523.91 40126.07 40228.42 38113.41 40727.12 39315.35 4047.17 402
test_method31.52 36829.28 37238.23 38327.03 4106.50 41320.94 40162.21 3924.05 40422.35 40252.50 39613.33 39647.58 40327.04 39434.04 39660.62 390
MVEpermissive26.22 2330.37 37025.89 37443.81 38244.55 40735.46 40028.87 40039.07 40718.20 40118.58 40340.18 3982.68 41047.37 40417.07 40223.78 40048.60 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN31.77 36730.64 37035.15 38452.87 40427.67 40357.09 39447.86 40424.64 39916.40 40433.05 40011.23 40054.90 40114.46 40418.15 40122.87 400
EMVS30.81 36929.65 37134.27 38550.96 40525.95 40556.58 39546.80 40524.01 40015.53 40530.68 40112.47 39754.43 40212.81 40517.05 40222.43 401
wuyk23d16.82 37315.94 37619.46 38758.74 39631.45 40239.22 3973.74 4126.84 4036.04 4062.70 4061.27 41124.29 40610.54 40614.40 4052.63 403
EGC-MVSNET52.07 35847.05 36267.14 35983.51 28260.71 26680.50 30267.75 3820.07 4060.43 40775.85 37024.26 38681.54 34428.82 39162.25 36859.16 391
testmvs6.04 3768.02 3790.10 3900.08 4120.03 41569.74 3710.04 4130.05 4070.31 4081.68 4070.02 4130.04 4080.24 4070.02 4060.25 405
test1236.12 3758.11 3780.14 3890.06 4130.09 41471.05 3660.03 4140.04 4080.25 4091.30 4080.05 4120.03 4090.21 4080.01 4070.29 404
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k19.96 37126.61 3730.00 3910.00 4140.00 4160.00 40289.26 1730.00 4090.00 41088.61 17561.62 1610.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas5.26 3777.02 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40963.15 1380.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re7.23 3749.64 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41086.72 2260.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS42.58 39139.46 380
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
No_MVS89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
eth-test20.00 414
eth-test0.00 414
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
save fliter93.80 4072.35 4290.47 6491.17 11674.31 116
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 42
GSMVS88.96 246
sam_mvs151.32 26288.96 246
sam_mvs50.01 275
MTGPAbinary92.02 85
test_post178.90 3245.43 40548.81 29585.44 32059.25 282
test_post5.46 40450.36 27384.24 327
patchmatchnet-post74.00 37451.12 26488.60 290
MTMP92.18 3532.83 408
gm-plane-assit81.40 32453.83 34862.72 31180.94 33192.39 19663.40 245
test9_res84.90 4295.70 2692.87 104
agg_prior282.91 6695.45 3092.70 107
test_prior472.60 3489.01 105
test_prior86.33 5492.61 6569.59 8892.97 5095.48 6493.91 53
新几何286.29 195
旧先验191.96 7165.79 17986.37 24593.08 7169.31 7792.74 6988.74 256
无先验87.48 15888.98 18660.00 33194.12 12267.28 21488.97 245
原ACMM286.86 176
testdata291.01 25062.37 255
segment_acmp73.08 37
testdata184.14 24975.71 87
plane_prior790.08 10368.51 119
plane_prior689.84 11268.70 11460.42 186
plane_prior592.44 6995.38 7178.71 10386.32 15291.33 153
plane_prior491.00 120
plane_prior291.25 5079.12 23
plane_prior189.90 111
plane_prior68.71 11290.38 6777.62 3986.16 156
n20.00 415
nn0.00 415
door-mid69.98 376
test1192.23 79
door69.44 379
HQP5-MVS66.98 154
BP-MVS77.47 115
HQP3-MVS92.19 8285.99 160
HQP2-MVS60.17 189
NP-MVS89.62 11568.32 12290.24 132
ACMMP++_ref81.95 219
ACMMP++81.25 224
Test By Simon64.33 125