This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 41
IU-MVS95.30 271.25 5792.95 5166.81 25392.39 688.94 1696.63 494.85 19
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10792.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8592.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 52
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 5977.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 24
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
PC_three_145268.21 24392.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
test_part295.06 872.65 3291.80 13
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5894.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
FOURS195.00 1072.39 3995.06 193.84 1574.49 11391.30 15
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 8991.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 31
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13687.63 3094.27 5793.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 9989.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 27
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8789.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7474.62 11188.90 2093.85 5275.75 2096.00 4987.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5573.01 15088.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 105
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
9.1488.26 1592.84 6091.52 4694.75 173.93 12588.57 2294.67 1975.57 2295.79 5386.77 3595.76 23
test_fmvsm_n_192085.29 5985.34 5585.13 7986.12 23069.93 8388.65 12190.78 12769.97 20288.27 2393.98 4971.39 5591.54 22888.49 2390.45 9793.91 53
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5693.59 2376.27 7988.14 2495.09 1571.06 5796.67 2987.67 2996.37 1494.09 46
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 37
fmvsm_l_conf0.5_n84.47 6784.54 6684.27 11385.42 24068.81 10588.49 12587.26 22968.08 24488.03 2793.49 5772.04 4691.77 21888.90 1789.14 11692.24 125
canonicalmvs85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13181.50 7988.80 12094.77 22
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5480.26 1187.78 2994.27 3275.89 1996.81 2387.45 3296.44 993.05 96
test_fmvsmconf0.1_n85.61 5385.65 5185.50 6982.99 29669.39 9689.65 8490.29 14473.31 14187.77 3094.15 3871.72 4993.23 16190.31 490.67 9593.89 56
test_fmvsmconf_n85.92 4686.04 4785.57 6885.03 25169.51 9089.62 8690.58 13173.42 13887.75 3194.02 4472.85 4093.24 16090.37 390.75 9393.96 51
ZD-MVS94.38 2572.22 4492.67 6170.98 18187.75 3194.07 4174.01 3296.70 2784.66 4794.84 43
alignmvs85.48 5485.32 5785.96 6289.51 12069.47 9289.74 8192.47 6876.17 8087.73 3391.46 10570.32 6593.78 13681.51 7888.95 11794.63 26
fmvsm_l_conf0.5_n_a84.13 6984.16 7184.06 12585.38 24168.40 12088.34 13286.85 23767.48 25187.48 3493.40 6170.89 5891.61 22288.38 2589.22 11592.16 129
MM89.16 689.23 788.97 490.79 9073.65 1092.66 2391.17 11686.57 187.39 3594.97 1671.70 5097.68 192.19 195.63 2895.57 1
fmvsm_s_conf0.1_n_a83.32 8682.99 8584.28 11183.79 27468.07 12989.34 9582.85 29769.80 20687.36 3694.06 4268.34 8891.56 22687.95 2783.46 19793.21 90
fmvsm_s_conf0.5_n_a83.63 7883.41 7784.28 11186.14 22968.12 12789.43 9082.87 29670.27 19687.27 3793.80 5469.09 7891.58 22488.21 2683.65 19193.14 93
fmvsm_s_conf0.1_n83.56 8083.38 7884.10 11884.86 25367.28 14889.40 9383.01 29370.67 18687.08 3893.96 5068.38 8791.45 23488.56 2284.50 17393.56 75
旧先验286.56 18858.10 34687.04 3988.98 28074.07 149
test_fmvsmconf0.01_n84.73 6684.52 6885.34 7280.25 33669.03 9989.47 8889.65 16173.24 14586.98 4094.27 3266.62 10193.23 16190.26 589.95 10793.78 62
fmvsm_s_conf0.5_n83.80 7383.71 7484.07 12386.69 22267.31 14789.46 8983.07 29271.09 17886.96 4193.70 5569.02 8391.47 23388.79 1884.62 17293.44 80
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 6774.50 11286.84 4294.65 2067.31 9795.77 5484.80 4692.85 6792.84 103
dcpmvs_285.63 5286.15 4484.06 12591.71 7564.94 19786.47 19091.87 9573.63 13186.60 4393.02 7276.57 1591.87 21683.36 6092.15 7595.35 3
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7993.50 2575.17 10086.34 4495.29 1270.86 5996.00 4988.78 1996.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4573.54 13585.94 4594.51 2465.80 11595.61 5783.04 6592.51 7193.53 78
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18792.02 8579.45 1985.88 4694.80 1768.07 8996.21 4286.69 3695.34 3393.23 87
TSAR-MVS + GP.85.71 5185.33 5686.84 4791.34 7872.50 3689.07 10487.28 22876.41 7285.80 4790.22 13474.15 3195.37 7281.82 7791.88 7892.65 109
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5581.50 585.79 4893.47 6073.02 3997.00 1884.90 4294.94 3994.10 45
SR-MVS-dyc-post85.77 4985.61 5286.23 5693.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2665.00 12395.56 5882.75 6891.87 7992.50 114
RE-MVS-def85.48 5393.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2663.87 12982.75 6891.87 7992.50 114
testdata79.97 24190.90 8664.21 21284.71 26359.27 33685.40 5192.91 7362.02 15789.08 27868.95 19991.37 8686.63 299
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6687.65 19667.22 15188.69 11993.04 3879.64 1885.33 5292.54 8373.30 3594.50 10783.49 5991.14 8995.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5394.32 3171.76 4896.93 1985.53 3995.79 2294.32 38
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15385.22 5491.90 9269.47 7496.42 3783.28 6295.94 1994.35 36
patch_mono-283.65 7684.54 6680.99 22090.06 10765.83 17584.21 24788.74 19871.60 16885.01 5592.44 8474.51 2583.50 33182.15 7592.15 7593.64 71
MVS_030488.08 1488.08 1788.08 1489.67 11472.04 4892.26 3389.26 17384.19 285.01 5595.18 1369.93 6997.20 1491.63 295.60 2994.99 9
TEST993.26 5072.96 2588.75 11591.89 9368.44 24085.00 5793.10 6774.36 2895.41 67
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11591.89 9368.69 23585.00 5793.10 6774.43 2695.41 6784.97 4195.71 2593.02 98
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 5994.44 2870.78 6096.61 3284.53 4994.89 4193.66 65
test_prior288.85 11175.41 9384.91 5993.54 5674.28 2983.31 6195.86 20
test_893.13 5272.57 3588.68 12091.84 9768.69 23584.87 6193.10 6774.43 2695.16 76
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7793.82 1673.07 14884.86 6292.89 7476.22 1796.33 3884.89 4495.13 3694.40 34
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6393.99 4870.67 6296.82 2284.18 5695.01 3793.90 55
h-mvs3383.15 8882.19 9686.02 6190.56 9370.85 7088.15 14089.16 17876.02 8384.67 6491.39 10761.54 16295.50 6182.71 7075.48 29691.72 139
hse-mvs281.72 10980.94 11584.07 12388.72 15567.68 13885.87 20687.26 22976.02 8384.67 6488.22 18961.54 16293.48 15182.71 7073.44 32491.06 160
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6694.52 2168.81 8496.65 3084.53 4994.90 4094.00 50
CDPH-MVS85.76 5085.29 5987.17 4393.49 4771.08 6188.58 12392.42 7268.32 24284.61 6793.48 5872.32 4296.15 4579.00 9895.43 3194.28 40
UA-Net85.08 6284.96 6285.45 7092.07 7068.07 12989.78 8090.86 12682.48 384.60 6893.20 6669.35 7595.22 7471.39 17490.88 9293.07 95
CS-MVS86.69 3586.95 3185.90 6390.76 9167.57 14092.83 1793.30 3279.67 1784.57 6992.27 8671.47 5395.02 8684.24 5493.46 6395.13 6
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7094.52 2169.09 7896.70 2784.37 5194.83 4494.03 49
agg_prior92.85 5971.94 5191.78 10084.41 7194.93 87
VDD-MVS83.01 9382.36 9484.96 8491.02 8366.40 16388.91 10888.11 20777.57 4184.39 7293.29 6452.19 24793.91 13177.05 11988.70 12294.57 29
casdiffmvspermissive85.11 6185.14 6085.01 8287.20 21265.77 17987.75 15392.83 5577.84 3784.36 7392.38 8572.15 4493.93 13081.27 8190.48 9695.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MSLP-MVS++85.43 5685.76 5084.45 10391.93 7270.24 7690.71 5892.86 5377.46 4784.22 7492.81 7867.16 9992.94 18080.36 9094.35 5590.16 195
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7084.22 7493.36 6371.44 5496.76 2580.82 8595.33 3494.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EC-MVSNet86.01 4386.38 3884.91 8889.31 13166.27 16692.32 3093.63 2179.37 2084.17 7691.88 9369.04 8295.43 6583.93 5793.77 6193.01 99
ETV-MVS84.90 6584.67 6585.59 6789.39 12568.66 11688.74 11792.64 6579.97 1584.10 7785.71 25469.32 7695.38 6980.82 8591.37 8692.72 104
VNet82.21 10082.41 9281.62 20090.82 8860.93 26284.47 23889.78 15676.36 7784.07 7891.88 9364.71 12490.26 25870.68 18088.89 11893.66 65
baseline84.93 6384.98 6184.80 9287.30 21065.39 18887.30 16592.88 5277.62 3984.04 7992.26 8771.81 4793.96 12481.31 8090.30 9995.03 8
test_fmvsmvis_n_192084.02 7083.87 7284.49 10184.12 26769.37 9788.15 14087.96 21270.01 20083.95 8093.23 6568.80 8591.51 23188.61 2089.96 10692.57 110
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7093.04 3875.53 9183.86 8194.42 2967.87 9296.64 3182.70 7294.57 4993.66 65
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6477.57 4183.84 8294.40 3072.24 4396.28 4085.65 3895.30 3593.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8283.81 8393.95 5169.77 7296.01 4885.15 4094.66 4694.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5876.62 7083.68 8494.46 2567.93 9095.95 5284.20 5594.39 5393.23 87
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8594.17 3667.45 9596.60 3383.06 6394.50 5094.07 47
X-MVStestdata80.37 14577.83 18288.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8512.47 40167.45 9596.60 3383.06 6394.50 5094.07 47
DELS-MVS85.41 5785.30 5885.77 6488.49 16267.93 13285.52 21993.44 2778.70 2983.63 8789.03 16474.57 2495.71 5680.26 9294.04 5993.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CS-MVS-test86.29 4286.48 3785.71 6591.02 8367.21 15292.36 2993.78 1878.97 2883.51 8891.20 11170.65 6395.15 7781.96 7694.89 4194.77 22
LFMVS81.82 10881.23 10983.57 14491.89 7363.43 23089.84 7681.85 30777.04 5883.21 8993.10 6752.26 24693.43 15571.98 16989.95 10793.85 57
VDDNet81.52 11680.67 11984.05 12890.44 9664.13 21489.73 8285.91 25071.11 17783.18 9093.48 5850.54 27193.49 15073.40 15688.25 12894.54 30
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5793.56 2473.95 12383.16 9191.07 11675.94 1895.19 7579.94 9494.38 5493.55 76
nrg03083.88 7183.53 7584.96 8486.77 22069.28 9890.46 6592.67 6174.79 10682.95 9291.33 10872.70 4193.09 17480.79 8779.28 24992.50 114
EI-MVSNet-Vis-set84.19 6883.81 7385.31 7388.18 17267.85 13387.66 15589.73 15980.05 1482.95 9289.59 14870.74 6194.82 9580.66 8984.72 17093.28 86
MVS_Test83.15 8883.06 8383.41 14986.86 21663.21 23486.11 20092.00 8774.31 11682.87 9489.44 15670.03 6793.21 16377.39 11688.50 12693.81 60
DPM-MVS84.93 6384.29 7086.84 4790.20 10073.04 2387.12 16993.04 3869.80 20682.85 9591.22 11073.06 3896.02 4776.72 12694.63 4791.46 149
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 9694.23 3572.13 4597.09 1684.83 4595.37 3293.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8076.87 6282.81 9794.25 3466.44 10596.24 4182.88 6794.28 5693.38 81
test1286.80 4992.63 6470.70 7291.79 9982.71 9871.67 5196.16 4494.50 5093.54 77
HPM-MVS_fast85.35 5884.95 6386.57 5393.69 4270.58 7592.15 3691.62 10373.89 12682.67 9994.09 4062.60 14495.54 6080.93 8392.93 6693.57 74
Effi-MVS+83.62 7983.08 8285.24 7588.38 16767.45 14288.89 10989.15 17975.50 9282.27 10088.28 18669.61 7394.45 10977.81 11187.84 13093.84 59
EI-MVSNet-UG-set83.81 7283.38 7885.09 8087.87 18467.53 14187.44 16189.66 16079.74 1682.23 10189.41 15770.24 6694.74 9879.95 9383.92 18492.99 100
MVS_111021_HR85.14 6084.75 6486.32 5591.65 7672.70 3085.98 20290.33 14176.11 8182.08 10291.61 10071.36 5694.17 12081.02 8292.58 7092.08 131
diffmvspermissive82.10 10181.88 10382.76 18283.00 29463.78 22083.68 25489.76 15772.94 15182.02 10389.85 14065.96 11490.79 25282.38 7487.30 13793.71 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
xiu_mvs_v1_base_debu80.80 13179.72 13784.03 13087.35 20470.19 7985.56 21288.77 19469.06 22781.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 235
xiu_mvs_v1_base80.80 13179.72 13784.03 13087.35 20470.19 7985.56 21288.77 19469.06 22781.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 235
xiu_mvs_v1_base_debi80.80 13179.72 13784.03 13087.35 20470.19 7985.56 21288.77 19469.06 22781.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 235
新几何183.42 14793.13 5270.71 7185.48 25657.43 35281.80 10791.98 9063.28 13392.27 20164.60 23792.99 6587.27 282
test_yl81.17 12180.47 12383.24 15589.13 13963.62 22186.21 19789.95 15372.43 15681.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
DCV-MVSNet81.17 12180.47 12383.24 15589.13 13963.62 22186.21 19789.95 15372.43 15681.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
test_cas_vis1_n_192073.76 26473.74 25473.81 31975.90 36359.77 27880.51 29982.40 30158.30 34481.62 11085.69 25544.35 32576.41 36876.29 12778.61 25385.23 320
MG-MVS83.41 8383.45 7683.28 15292.74 6262.28 24888.17 13889.50 16475.22 9681.49 11192.74 8266.75 10095.11 8072.85 16291.58 8392.45 117
CANet86.45 3886.10 4587.51 3790.09 10270.94 6789.70 8392.59 6681.78 481.32 11291.43 10670.34 6497.23 1384.26 5293.36 6494.37 35
MVSFormer82.85 9482.05 9985.24 7587.35 20470.21 7790.50 6290.38 13768.55 23781.32 11289.47 15161.68 15993.46 15378.98 9990.26 10092.05 132
lupinMVS81.39 11980.27 12884.76 9387.35 20470.21 7785.55 21586.41 24262.85 30581.32 11288.61 17661.68 15992.24 20378.41 10690.26 10091.83 136
xiu_mvs_v2_base81.69 11181.05 11283.60 14289.15 13868.03 13184.46 24090.02 15070.67 18681.30 11586.53 23963.17 13794.19 11975.60 13788.54 12488.57 258
PS-MVSNAJ81.69 11181.02 11383.70 14189.51 12068.21 12684.28 24690.09 14970.79 18381.26 11685.62 25963.15 13894.29 11175.62 13688.87 11988.59 257
原ACMM184.35 10793.01 5768.79 10692.44 6963.96 29581.09 11791.57 10166.06 11195.45 6367.19 21694.82 4588.81 250
jason81.39 11980.29 12784.70 9486.63 22469.90 8585.95 20386.77 23863.24 29881.07 11889.47 15161.08 17592.15 20578.33 10790.07 10592.05 132
jason: jason.
OPM-MVS83.50 8182.95 8685.14 7788.79 15270.95 6689.13 10391.52 10677.55 4480.96 11991.75 9560.71 17994.50 10779.67 9586.51 14989.97 211
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNetpermissive83.46 8282.80 8985.43 7190.25 9968.74 11090.30 6990.13 14876.33 7880.87 12092.89 7461.00 17694.20 11872.45 16890.97 9093.35 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMMPcopyleft85.89 4885.39 5487.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12193.82 5364.33 12596.29 3982.67 7390.69 9493.23 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Anonymous2024052980.19 15078.89 15884.10 11890.60 9264.75 20188.95 10790.90 12365.97 27080.59 12291.17 11349.97 27693.73 14269.16 19782.70 20893.81 60
MVS_111021_LR82.61 9782.11 9784.11 11788.82 14971.58 5385.15 22286.16 24774.69 10880.47 12391.04 11762.29 15190.55 25680.33 9190.08 10490.20 194
ECVR-MVScopyleft79.61 15879.26 14980.67 22890.08 10354.69 33887.89 15077.44 34674.88 10480.27 12492.79 7948.96 29392.45 19268.55 20392.50 7294.86 17
VPA-MVSNet80.60 13880.55 12180.76 22688.07 17860.80 26586.86 17791.58 10575.67 9080.24 12589.45 15563.34 13290.25 25970.51 18279.22 25091.23 154
test111179.43 16579.18 15380.15 23889.99 10853.31 35187.33 16477.05 34975.04 10180.23 12692.77 8148.97 29292.33 20068.87 20092.40 7494.81 20
test250677.30 22076.49 21679.74 24690.08 10352.02 35487.86 15263.10 38974.88 10480.16 12792.79 7938.29 35892.35 19868.74 20292.50 7294.86 17
Anonymous20240521178.25 19377.01 20281.99 19491.03 8260.67 26784.77 23083.90 27770.65 18980.00 12891.20 11141.08 34591.43 23565.21 23185.26 16593.85 57
test22291.50 7768.26 12484.16 24883.20 29054.63 36379.74 12991.63 9958.97 19391.42 8586.77 295
OMC-MVS82.69 9581.97 10284.85 8988.75 15467.42 14387.98 14490.87 12574.92 10379.72 13091.65 9762.19 15493.96 12475.26 14086.42 15093.16 92
FA-MVS(test-final)80.96 12579.91 13384.10 11888.30 17065.01 19584.55 23790.01 15173.25 14479.61 13187.57 20358.35 19794.72 9971.29 17586.25 15392.56 111
CPTT-MVS83.73 7483.33 8084.92 8793.28 4970.86 6992.09 3790.38 13768.75 23479.57 13292.83 7660.60 18493.04 17880.92 8491.56 8490.86 168
IS-MVSNet83.15 8882.81 8884.18 11689.94 11063.30 23291.59 4388.46 20479.04 2579.49 13392.16 8865.10 12094.28 11267.71 20991.86 8194.95 10
PS-MVSNAJss82.07 10381.31 10784.34 10886.51 22567.27 14989.27 9691.51 10771.75 16279.37 13490.22 13463.15 13894.27 11377.69 11282.36 21191.49 146
EPP-MVSNet83.40 8483.02 8484.57 9690.13 10164.47 20792.32 3090.73 12874.45 11579.35 13591.10 11469.05 8195.12 7872.78 16387.22 13894.13 44
test_vis1_n_192075.52 24775.78 22474.75 31179.84 34257.44 30483.26 26385.52 25562.83 30679.34 13686.17 24745.10 32179.71 35078.75 10181.21 22487.10 290
DP-MVS Recon83.11 9182.09 9886.15 5894.44 1970.92 6888.79 11392.20 8170.53 19079.17 13791.03 11964.12 12796.03 4668.39 20690.14 10291.50 145
ab-mvs79.51 16178.97 15781.14 21688.46 16460.91 26383.84 25289.24 17570.36 19279.03 13888.87 16963.23 13690.21 26065.12 23282.57 20992.28 122
EIA-MVS83.31 8782.80 8984.82 9089.59 11665.59 18188.21 13692.68 6074.66 10978.96 13986.42 24169.06 8095.26 7375.54 13890.09 10393.62 72
PVSNet_Blended_VisFu82.62 9681.83 10484.96 8490.80 8969.76 8788.74 11791.70 10269.39 21478.96 13988.46 18165.47 11794.87 9474.42 14588.57 12390.24 193
HQP_MVS83.64 7783.14 8185.14 7790.08 10368.71 11291.25 5092.44 6979.12 2378.92 14191.00 12060.42 18695.38 6978.71 10286.32 15191.33 150
plane_prior368.60 11778.44 3178.92 141
test_fmvs1_n70.86 29270.24 29072.73 32872.51 38355.28 33381.27 28979.71 32951.49 37278.73 14384.87 27427.54 38077.02 36276.06 13079.97 24185.88 312
iter_conf0580.00 15478.70 16083.91 13787.84 18665.83 17588.84 11284.92 26271.61 16778.70 14488.94 16543.88 32894.56 10279.28 9784.28 18091.33 150
EI-MVSNet80.52 14179.98 13182.12 19084.28 26363.19 23686.41 19188.95 18974.18 12078.69 14587.54 20666.62 10192.43 19372.57 16680.57 23390.74 173
MVSTER79.01 17777.88 18182.38 18883.07 29164.80 20084.08 25188.95 18969.01 23078.69 14587.17 21754.70 22492.43 19374.69 14280.57 23389.89 214
API-MVS81.99 10581.23 10984.26 11490.94 8570.18 8291.10 5389.32 16971.51 17078.66 14788.28 18665.26 11895.10 8364.74 23691.23 8887.51 276
GeoE81.71 11081.01 11483.80 13989.51 12064.45 20888.97 10688.73 19971.27 17478.63 14889.76 14266.32 10793.20 16669.89 18986.02 15893.74 63
test_fmvs170.93 29170.52 28572.16 33173.71 37355.05 33580.82 29178.77 33651.21 37378.58 14984.41 28031.20 37576.94 36375.88 13380.12 24084.47 331
UniMVSNet (Re)81.60 11581.11 11183.09 16288.38 16764.41 20987.60 15693.02 4278.42 3278.56 15088.16 19069.78 7193.26 15969.58 19376.49 27891.60 140
MAR-MVS81.84 10780.70 11885.27 7491.32 7971.53 5489.82 7790.92 12269.77 20878.50 15186.21 24562.36 15094.52 10665.36 23092.05 7789.77 219
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Fast-Effi-MVS+80.81 12979.92 13283.47 14588.85 14664.51 20485.53 21789.39 16770.79 18378.49 15285.06 27267.54 9493.58 14467.03 21986.58 14792.32 120
FIs82.07 10382.42 9181.04 21988.80 15158.34 28888.26 13593.49 2676.93 6078.47 15391.04 11769.92 7092.34 19969.87 19084.97 16792.44 118
UniMVSNet_NR-MVSNet81.88 10681.54 10682.92 17188.46 16463.46 22887.13 16892.37 7380.19 1278.38 15489.14 16071.66 5293.05 17670.05 18676.46 27992.25 123
DU-MVS81.12 12380.52 12282.90 17287.80 18863.46 22887.02 17291.87 9579.01 2678.38 15489.07 16265.02 12193.05 17670.05 18676.46 27992.20 126
CLD-MVS82.31 9981.65 10584.29 11088.47 16367.73 13685.81 21092.35 7475.78 8678.33 15686.58 23664.01 12894.35 11076.05 13187.48 13590.79 169
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
iter_conf_final80.63 13679.35 14684.46 10289.36 12767.70 13789.85 7584.49 26773.19 14678.30 15788.94 16545.98 31294.56 10279.59 9684.48 17691.11 157
VPNet78.69 18578.66 16278.76 26288.31 16955.72 32784.45 24186.63 24076.79 6478.26 15890.55 12859.30 19189.70 26866.63 22077.05 27090.88 167
mvsmamba81.69 11180.74 11784.56 9787.45 20366.72 15991.26 4885.89 25174.66 10978.23 15990.56 12754.33 22794.91 8880.73 8883.54 19592.04 134
V4279.38 16978.24 17382.83 17481.10 32865.50 18385.55 21589.82 15571.57 16978.21 16086.12 24860.66 18193.18 16975.64 13575.46 29889.81 218
BH-RMVSNet79.61 15878.44 16783.14 16089.38 12665.93 17284.95 22787.15 23273.56 13478.19 16189.79 14156.67 21293.36 15659.53 27886.74 14590.13 197
v2v48280.23 14879.29 14883.05 16583.62 27764.14 21387.04 17189.97 15273.61 13278.18 16287.22 21461.10 17493.82 13476.11 12976.78 27691.18 155
PVSNet_BlendedMVS80.60 13880.02 13082.36 18988.85 14665.40 18686.16 19992.00 8769.34 21678.11 16386.09 24966.02 11294.27 11371.52 17182.06 21487.39 278
PVSNet_Blended80.98 12480.34 12582.90 17288.85 14665.40 18684.43 24292.00 8767.62 24878.11 16385.05 27366.02 11294.27 11371.52 17189.50 11189.01 240
v114480.03 15279.03 15583.01 16783.78 27564.51 20487.11 17090.57 13371.96 16178.08 16586.20 24661.41 16693.94 12774.93 14177.23 26790.60 178
FE-MVS77.78 20875.68 22684.08 12288.09 17766.00 17083.13 26687.79 21868.42 24178.01 16685.23 26745.50 31995.12 7859.11 28285.83 16291.11 157
TranMVSNet+NR-MVSNet80.84 12780.31 12682.42 18787.85 18562.33 24687.74 15491.33 11280.55 977.99 16789.86 13965.23 11992.62 18667.05 21875.24 30692.30 121
Baseline_NR-MVSNet78.15 19878.33 17177.61 28285.79 23356.21 32386.78 18185.76 25373.60 13377.93 16887.57 20365.02 12188.99 27967.14 21775.33 30387.63 272
TR-MVS77.44 21676.18 22181.20 21488.24 17163.24 23384.61 23586.40 24367.55 24977.81 16986.48 24054.10 23093.15 17057.75 29682.72 20787.20 283
v119279.59 16078.43 16883.07 16483.55 27964.52 20386.93 17590.58 13170.83 18277.78 17085.90 25059.15 19293.94 12773.96 15077.19 26990.76 171
PCF-MVS73.52 780.38 14378.84 15985.01 8287.71 19368.99 10283.65 25591.46 11163.00 30277.77 17190.28 13166.10 10995.09 8461.40 26488.22 12990.94 166
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
WR-MVS79.49 16279.22 15180.27 23688.79 15258.35 28785.06 22488.61 20278.56 3077.65 17288.34 18463.81 13190.66 25564.98 23477.22 26891.80 138
XVG-OURS80.41 14279.23 15083.97 13485.64 23669.02 10183.03 27190.39 13671.09 17877.63 17391.49 10454.62 22691.35 23775.71 13483.47 19691.54 142
v14419279.47 16378.37 16982.78 18083.35 28263.96 21686.96 17390.36 14069.99 20177.50 17485.67 25760.66 18193.77 13874.27 14776.58 27790.62 176
v192192079.22 17178.03 17682.80 17783.30 28463.94 21786.80 17990.33 14169.91 20477.48 17585.53 26058.44 19693.75 14073.60 15276.85 27490.71 174
thisisatest053079.40 16777.76 18784.31 10987.69 19565.10 19487.36 16284.26 27370.04 19977.42 17688.26 18849.94 27794.79 9770.20 18484.70 17193.03 97
FC-MVSNet-test81.52 11682.02 10080.03 24088.42 16655.97 32587.95 14693.42 2977.10 5677.38 17790.98 12269.96 6891.79 21768.46 20584.50 17392.33 119
v124078.99 17877.78 18582.64 18383.21 28663.54 22586.62 18690.30 14369.74 21177.33 17885.68 25657.04 21093.76 13973.13 16076.92 27190.62 176
PAPM_NR83.02 9282.41 9284.82 9092.47 6766.37 16487.93 14891.80 9873.82 12777.32 17990.66 12567.90 9194.90 9170.37 18389.48 11293.19 91
ACMM73.20 880.78 13479.84 13583.58 14389.31 13168.37 12189.99 7391.60 10470.28 19577.25 18089.66 14453.37 23893.53 14974.24 14882.85 20488.85 248
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP4-MVS77.24 18195.11 8091.03 162
AUN-MVS79.21 17277.60 19284.05 12888.71 15667.61 13985.84 20887.26 22969.08 22677.23 18288.14 19453.20 24093.47 15275.50 13973.45 32391.06 160
HQP-NCC89.33 12889.17 9876.41 7277.23 182
ACMP_Plane89.33 12889.17 9876.41 7277.23 182
HQP-MVS82.61 9782.02 10084.37 10589.33 12866.98 15589.17 9892.19 8276.41 7277.23 18290.23 13360.17 18995.11 8077.47 11485.99 15991.03 162
tt080578.73 18377.83 18281.43 20585.17 24460.30 27389.41 9290.90 12371.21 17577.17 18688.73 17146.38 30693.21 16372.57 16678.96 25290.79 169
TAPA-MVS73.13 979.15 17377.94 17882.79 17989.59 11662.99 24188.16 13991.51 10765.77 27177.14 18791.09 11560.91 17793.21 16350.26 33987.05 14092.17 128
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PAPR81.66 11480.89 11683.99 13390.27 9864.00 21586.76 18391.77 10168.84 23377.13 18889.50 14967.63 9394.88 9367.55 21188.52 12593.09 94
UniMVSNet_ETH3D79.10 17578.24 17381.70 19986.85 21760.24 27487.28 16688.79 19374.25 11876.84 18990.53 12949.48 28291.56 22667.98 20782.15 21293.29 85
EPNet83.72 7582.92 8786.14 5984.22 26569.48 9191.05 5585.27 25781.30 676.83 19091.65 9766.09 11095.56 5876.00 13293.85 6093.38 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline176.98 22576.75 21277.66 28088.13 17455.66 32885.12 22381.89 30573.04 14976.79 19188.90 16762.43 14987.78 29863.30 24571.18 33989.55 225
tttt051779.40 16777.91 17983.90 13888.10 17663.84 21888.37 13184.05 27571.45 17176.78 19289.12 16149.93 27994.89 9270.18 18583.18 20192.96 101
TAMVS78.89 18177.51 19483.03 16687.80 18867.79 13584.72 23185.05 26067.63 24776.75 19387.70 19962.25 15290.82 25158.53 28987.13 13990.49 183
XVG-OURS-SEG-HR80.81 12979.76 13683.96 13585.60 23768.78 10783.54 26090.50 13470.66 18876.71 19491.66 9660.69 18091.26 23976.94 12081.58 22091.83 136
3Dnovator+77.84 485.48 5484.47 6988.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19593.37 6260.40 18896.75 2677.20 11793.73 6295.29 5
LPG-MVS_test82.08 10281.27 10884.50 9989.23 13568.76 10890.22 7091.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18589.83 216
LGP-MVS_train84.50 9989.23 13568.76 10891.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18589.83 216
SDMVSNet80.38 14380.18 12980.99 22089.03 14464.94 19780.45 30189.40 16675.19 9876.61 19889.98 13760.61 18387.69 29976.83 12383.55 19390.33 189
sd_testset77.70 21277.40 19578.60 26589.03 14460.02 27679.00 31985.83 25275.19 9876.61 19889.98 13754.81 21985.46 31762.63 25283.55 19390.33 189
tfpn200view976.42 23475.37 23479.55 25389.13 13957.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24891.95 21148.33 34883.75 18789.07 233
thres40076.50 23175.37 23479.86 24389.13 13957.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24891.95 21148.33 34883.75 18790.00 207
HyFIR lowres test77.53 21575.40 23283.94 13689.59 11666.62 16080.36 30288.64 20156.29 35876.45 20085.17 26957.64 20393.28 15861.34 26683.10 20291.91 135
RRT_MVS80.35 14679.22 15183.74 14087.63 19765.46 18591.08 5488.92 19173.82 12776.44 20390.03 13649.05 29194.25 11776.84 12179.20 25191.51 143
CDS-MVSNet79.07 17677.70 18983.17 15987.60 19868.23 12584.40 24486.20 24667.49 25076.36 20486.54 23861.54 16290.79 25261.86 26087.33 13690.49 183
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
thres100view90076.50 23175.55 22979.33 25489.52 11956.99 30985.83 20983.23 28873.94 12476.32 20587.12 21851.89 25691.95 21148.33 34883.75 18789.07 233
thres600view776.50 23175.44 23079.68 24889.40 12457.16 30685.53 21783.23 28873.79 12976.26 20687.09 21951.89 25691.89 21448.05 35383.72 19090.00 207
UGNet80.83 12879.59 14084.54 9888.04 17968.09 12889.42 9188.16 20676.95 5976.22 20789.46 15349.30 28693.94 12768.48 20490.31 9891.60 140
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test_djsdf80.30 14779.32 14783.27 15383.98 27165.37 18990.50 6290.38 13768.55 23776.19 20888.70 17256.44 21393.46 15378.98 9980.14 23990.97 165
v14878.72 18477.80 18481.47 20482.73 30161.96 25286.30 19588.08 20973.26 14376.18 20985.47 26262.46 14892.36 19771.92 17073.82 32090.09 201
WTY-MVS75.65 24575.68 22675.57 30186.40 22656.82 31177.92 33382.40 30165.10 27776.18 20987.72 19863.13 14180.90 34660.31 27281.96 21589.00 242
mvs_anonymous79.42 16679.11 15480.34 23484.45 26257.97 29482.59 27387.62 22167.40 25276.17 21188.56 17968.47 8689.59 26970.65 18186.05 15793.47 79
Anonymous2023121178.97 17977.69 19082.81 17690.54 9464.29 21190.11 7291.51 10765.01 28076.16 21288.13 19550.56 27093.03 17969.68 19277.56 26691.11 157
thisisatest051577.33 21975.38 23383.18 15885.27 24363.80 21982.11 27883.27 28765.06 27875.91 21383.84 29249.54 28194.27 11367.24 21586.19 15491.48 147
CANet_DTU80.61 13779.87 13482.83 17485.60 23763.17 23787.36 16288.65 20076.37 7675.88 21488.44 18253.51 23693.07 17573.30 15789.74 11092.25 123
thres20075.55 24674.47 24578.82 26187.78 19157.85 29783.07 26983.51 28372.44 15575.84 21584.42 27952.08 25191.75 21947.41 35583.64 19286.86 293
CHOSEN 1792x268877.63 21475.69 22583.44 14689.98 10968.58 11878.70 32387.50 22456.38 35775.80 21686.84 22258.67 19491.40 23661.58 26385.75 16390.34 188
AdaColmapbinary80.58 14079.42 14384.06 12593.09 5468.91 10489.36 9488.97 18869.27 21775.70 21789.69 14357.20 20995.77 5463.06 24688.41 12787.50 277
UWE-MVS72.13 28271.49 27374.03 31786.66 22347.70 37481.40 28876.89 35163.60 29775.59 21884.22 28639.94 35085.62 31448.98 34586.13 15688.77 252
c3_l78.75 18277.91 17981.26 21182.89 29861.56 25784.09 25089.13 18169.97 20275.56 21984.29 28466.36 10692.09 20773.47 15575.48 29690.12 198
miper_ehance_all_eth78.59 18877.76 18781.08 21882.66 30361.56 25783.65 25589.15 17968.87 23275.55 22083.79 29466.49 10492.03 20873.25 15876.39 28189.64 222
miper_enhance_ethall77.87 20776.86 20680.92 22381.65 31761.38 25982.68 27288.98 18665.52 27575.47 22182.30 31665.76 11692.00 21072.95 16176.39 28189.39 228
3Dnovator76.31 583.38 8582.31 9586.59 5287.94 18272.94 2890.64 5992.14 8477.21 5275.47 22192.83 7658.56 19594.72 9973.24 15992.71 6992.13 130
jajsoiax79.29 17077.96 17783.27 15384.68 25666.57 16289.25 9790.16 14769.20 22275.46 22389.49 15045.75 31793.13 17276.84 12180.80 22990.11 199
IterMVS-LS80.06 15179.38 14482.11 19185.89 23263.20 23586.79 18089.34 16874.19 11975.45 22486.72 22666.62 10192.39 19572.58 16576.86 27390.75 172
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
BH-untuned79.47 16378.60 16382.05 19289.19 13765.91 17386.07 20188.52 20372.18 15875.42 22587.69 20061.15 17393.54 14860.38 27186.83 14486.70 297
mvs_tets79.13 17477.77 18683.22 15784.70 25566.37 16489.17 9890.19 14669.38 21575.40 22689.46 15344.17 32693.15 17076.78 12480.70 23190.14 196
HY-MVS69.67 1277.95 20477.15 20080.36 23387.57 20260.21 27583.37 26287.78 21966.11 26675.37 22787.06 22163.27 13490.48 25761.38 26582.43 21090.40 187
GBi-Net78.40 19077.40 19581.40 20787.60 19863.01 23888.39 12889.28 17071.63 16475.34 22887.28 21054.80 22091.11 24262.72 24879.57 24390.09 201
test178.40 19077.40 19581.40 20787.60 19863.01 23888.39 12889.28 17071.63 16475.34 22887.28 21054.80 22091.11 24262.72 24879.57 24390.09 201
FMVSNet377.88 20676.85 20780.97 22286.84 21862.36 24586.52 18988.77 19471.13 17675.34 22886.66 23254.07 23191.10 24562.72 24879.57 24389.45 227
CostFormer75.24 25273.90 25179.27 25582.65 30458.27 28980.80 29282.73 29961.57 31875.33 23183.13 30455.52 21591.07 24864.98 23478.34 26088.45 259
test_vis1_n69.85 30469.21 29571.77 33372.66 38255.27 33481.48 28576.21 35452.03 36975.30 23283.20 30328.97 37876.22 37074.60 14378.41 25983.81 339
FMVSNet278.20 19677.21 19981.20 21487.60 19862.89 24287.47 16089.02 18471.63 16475.29 23387.28 21054.80 22091.10 24562.38 25379.38 24789.61 223
v879.97 15579.02 15682.80 17784.09 26864.50 20687.96 14590.29 14474.13 12275.24 23486.81 22362.88 14393.89 13374.39 14675.40 30190.00 207
testing9976.09 24075.12 23879.00 25888.16 17355.50 33080.79 29381.40 31173.30 14275.17 23584.27 28544.48 32490.02 26264.28 23884.22 18291.48 147
anonymousdsp78.60 18777.15 20082.98 16980.51 33467.08 15387.24 16789.53 16365.66 27375.16 23687.19 21652.52 24192.25 20277.17 11879.34 24889.61 223
QAPM80.88 12679.50 14285.03 8188.01 18168.97 10391.59 4392.00 8766.63 26275.15 23792.16 8857.70 20295.45 6363.52 24188.76 12190.66 175
v1079.74 15778.67 16182.97 17084.06 26964.95 19687.88 15190.62 13073.11 14775.11 23886.56 23761.46 16594.05 12373.68 15175.55 29489.90 213
Vis-MVSNet (Re-imp)78.36 19278.45 16678.07 27588.64 15851.78 36086.70 18479.63 33074.14 12175.11 23890.83 12361.29 17089.75 26658.10 29391.60 8292.69 107
cl2278.07 20077.01 20281.23 21282.37 31061.83 25483.55 25987.98 21168.96 23175.06 24083.87 29061.40 16791.88 21573.53 15376.39 28189.98 210
ACMP74.13 681.51 11880.57 12084.36 10689.42 12368.69 11589.97 7491.50 11074.46 11475.04 24190.41 13053.82 23394.54 10477.56 11382.91 20389.86 215
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Effi-MVS+-dtu80.03 15278.57 16484.42 10485.13 24868.74 11088.77 11488.10 20874.99 10274.97 24283.49 29957.27 20893.36 15673.53 15380.88 22791.18 155
XXY-MVS75.41 25075.56 22874.96 30783.59 27857.82 29880.59 29883.87 27866.54 26374.93 24388.31 18563.24 13580.09 34962.16 25676.85 27486.97 291
eth_miper_zixun_eth77.92 20576.69 21381.61 20283.00 29461.98 25183.15 26589.20 17769.52 21374.86 24484.35 28361.76 15892.56 18971.50 17372.89 32890.28 192
GA-MVS76.87 22775.17 23781.97 19582.75 30062.58 24381.44 28786.35 24572.16 16074.74 24582.89 30846.20 31192.02 20968.85 20181.09 22591.30 153
sss73.60 26573.64 25573.51 32182.80 29955.01 33676.12 34081.69 30862.47 31174.68 24685.85 25357.32 20778.11 35760.86 26980.93 22687.39 278
testing22274.04 26072.66 26378.19 27287.89 18355.36 33181.06 29079.20 33471.30 17374.65 24783.57 29839.11 35488.67 28751.43 33185.75 16390.53 181
test_fmvs268.35 31667.48 31770.98 34269.50 38651.95 35680.05 30676.38 35349.33 37574.65 24784.38 28123.30 38675.40 37774.51 14475.17 30785.60 315
BH-w/o78.21 19577.33 19880.84 22488.81 15065.13 19384.87 22887.85 21769.75 20974.52 24984.74 27761.34 16893.11 17358.24 29285.84 16184.27 332
FMVSNet177.44 21676.12 22281.40 20786.81 21963.01 23888.39 12889.28 17070.49 19174.39 25087.28 21049.06 29091.11 24260.91 26878.52 25590.09 201
cl____77.72 21076.76 21080.58 22982.49 30760.48 27083.09 26787.87 21569.22 22074.38 25185.22 26862.10 15591.53 22971.09 17675.41 30089.73 221
DIV-MVS_self_test77.72 21076.76 21080.58 22982.48 30860.48 27083.09 26787.86 21669.22 22074.38 25185.24 26662.10 15591.53 22971.09 17675.40 30189.74 220
114514_t80.68 13579.51 14184.20 11594.09 3867.27 14989.64 8591.11 11958.75 34274.08 25390.72 12458.10 19895.04 8569.70 19189.42 11390.30 191
WR-MVS_H78.51 18978.49 16578.56 26688.02 18056.38 32088.43 12692.67 6177.14 5473.89 25487.55 20566.25 10889.24 27558.92 28473.55 32290.06 205
bld_raw_dy_0_6477.29 22175.98 22381.22 21385.04 25065.47 18488.14 14277.56 34369.20 22273.77 25589.40 15942.24 33988.85 28576.78 12481.64 21989.33 230
ETVMVS72.25 28171.05 28075.84 29787.77 19251.91 35779.39 31374.98 35869.26 21873.71 25682.95 30640.82 34786.14 30946.17 36184.43 17889.47 226
WB-MVSnew71.96 28471.65 27272.89 32684.67 25951.88 35882.29 27677.57 34262.31 31273.67 25783.00 30553.49 23781.10 34545.75 36482.13 21385.70 314
tpm273.26 27071.46 27478.63 26383.34 28356.71 31480.65 29780.40 32256.63 35673.55 25882.02 32151.80 25891.24 24056.35 30978.42 25887.95 265
CP-MVSNet78.22 19478.34 17077.84 27787.83 18754.54 34087.94 14791.17 11677.65 3873.48 25988.49 18062.24 15388.43 29062.19 25574.07 31590.55 180
pm-mvs177.25 22276.68 21478.93 26084.22 26558.62 28686.41 19188.36 20571.37 17273.31 26088.01 19661.22 17289.15 27764.24 23973.01 32789.03 239
PS-CasMVS78.01 20378.09 17577.77 27987.71 19354.39 34288.02 14391.22 11377.50 4673.26 26188.64 17560.73 17888.41 29161.88 25973.88 31990.53 181
CVMVSNet72.99 27472.58 26474.25 31584.28 26350.85 36686.41 19183.45 28544.56 37973.23 26287.54 20649.38 28485.70 31265.90 22678.44 25786.19 304
PEN-MVS77.73 20977.69 19077.84 27787.07 21553.91 34587.91 14991.18 11577.56 4373.14 26388.82 17061.23 17189.17 27659.95 27472.37 33090.43 185
1112_ss77.40 21876.43 21880.32 23589.11 14360.41 27283.65 25587.72 22062.13 31573.05 26486.72 22662.58 14689.97 26362.11 25880.80 22990.59 179
tpm72.37 27971.71 27174.35 31482.19 31152.00 35579.22 31677.29 34764.56 28472.95 26583.68 29751.35 26183.26 33458.33 29175.80 29087.81 269
cascas76.72 22974.64 24182.99 16885.78 23465.88 17482.33 27589.21 17660.85 32372.74 26681.02 32747.28 30093.75 14067.48 21285.02 16689.34 229
CR-MVSNet73.37 26771.27 27879.67 24981.32 32665.19 19175.92 34280.30 32359.92 33072.73 26781.19 32452.50 24286.69 30459.84 27577.71 26387.11 288
RPMNet73.51 26670.49 28682.58 18581.32 32665.19 19175.92 34292.27 7657.60 35072.73 26776.45 36352.30 24595.43 6548.14 35277.71 26387.11 288
DTE-MVSNet76.99 22476.80 20877.54 28486.24 22753.06 35387.52 15890.66 12977.08 5772.50 26988.67 17460.48 18589.52 27057.33 30070.74 34190.05 206
Test_1112_low_res76.40 23575.44 23079.27 25589.28 13358.09 29081.69 28287.07 23359.53 33472.48 27086.67 23161.30 16989.33 27360.81 27080.15 23890.41 186
v7n78.97 17977.58 19383.14 16083.45 28165.51 18288.32 13391.21 11473.69 13072.41 27186.32 24457.93 19993.81 13569.18 19675.65 29290.11 199
SCA74.22 25872.33 26779.91 24284.05 27062.17 24979.96 30879.29 33366.30 26572.38 27280.13 33651.95 25488.60 28859.25 28077.67 26588.96 244
CNLPA78.08 19976.79 20981.97 19590.40 9771.07 6287.59 15784.55 26666.03 26972.38 27289.64 14557.56 20486.04 31059.61 27783.35 19888.79 251
NR-MVSNet80.23 14879.38 14482.78 18087.80 18863.34 23186.31 19491.09 12079.01 2672.17 27489.07 16267.20 9892.81 18566.08 22575.65 29292.20 126
OpenMVScopyleft72.83 1079.77 15678.33 17184.09 12185.17 24469.91 8490.57 6090.97 12166.70 25672.17 27491.91 9154.70 22493.96 12461.81 26190.95 9188.41 261
MVS78.19 19776.99 20481.78 19785.66 23566.99 15484.66 23290.47 13555.08 36272.02 27685.27 26563.83 13094.11 12266.10 22489.80 10984.24 333
XVG-ACMP-BASELINE76.11 23974.27 24881.62 20083.20 28764.67 20283.60 25889.75 15869.75 20971.85 27787.09 21932.78 37092.11 20669.99 18880.43 23588.09 264
PatchmatchNetpermissive73.12 27271.33 27778.49 26983.18 28860.85 26479.63 31078.57 33764.13 28971.73 27879.81 34151.20 26385.97 31157.40 29976.36 28688.66 255
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst72.39 27772.13 26873.18 32580.54 33349.91 37079.91 30979.08 33563.11 30071.69 27979.95 33855.32 21682.77 33665.66 22973.89 31886.87 292
TransMVSNet (Re)75.39 25174.56 24377.86 27685.50 23957.10 30886.78 18186.09 24972.17 15971.53 28087.34 20963.01 14289.31 27456.84 30561.83 36787.17 284
Fast-Effi-MVS+-dtu78.02 20276.49 21682.62 18483.16 29066.96 15786.94 17487.45 22672.45 15371.49 28184.17 28754.79 22391.58 22467.61 21080.31 23689.30 231
PAPM77.68 21376.40 21981.51 20387.29 21161.85 25383.78 25389.59 16264.74 28271.23 28288.70 17262.59 14593.66 14352.66 32487.03 14189.01 240
tfpnnormal74.39 25573.16 25978.08 27486.10 23158.05 29184.65 23487.53 22370.32 19471.22 28385.63 25854.97 21889.86 26443.03 37175.02 30886.32 301
RPSCF73.23 27171.46 27478.54 26782.50 30659.85 27782.18 27782.84 29858.96 33971.15 28489.41 15745.48 32084.77 32358.82 28671.83 33591.02 164
PatchT68.46 31567.85 30870.29 34480.70 33143.93 38672.47 35974.88 35960.15 32870.55 28576.57 36249.94 27781.59 34150.58 33374.83 31085.34 318
CL-MVSNet_self_test72.37 27971.46 27475.09 30679.49 34953.53 34780.76 29585.01 26169.12 22570.51 28682.05 32057.92 20084.13 32652.27 32666.00 35987.60 273
IterMVS-SCA-FT75.43 24973.87 25280.11 23982.69 30264.85 19981.57 28483.47 28469.16 22470.49 28784.15 28851.95 25488.15 29369.23 19572.14 33387.34 280
miper_lstm_enhance74.11 25973.11 26077.13 28980.11 33859.62 28072.23 36086.92 23666.76 25570.40 28882.92 30756.93 21182.92 33569.06 19872.63 32988.87 247
gg-mvs-nofinetune69.95 30267.96 30675.94 29683.07 29154.51 34177.23 33770.29 37363.11 30070.32 28962.33 38443.62 32988.69 28653.88 31887.76 13184.62 330
DP-MVS76.78 22874.57 24283.42 14793.29 4869.46 9488.55 12483.70 27963.98 29470.20 29088.89 16854.01 23294.80 9646.66 35781.88 21786.01 309
pmmvs674.69 25473.39 25678.61 26481.38 32357.48 30386.64 18587.95 21364.99 28170.18 29186.61 23350.43 27289.52 27062.12 25770.18 34388.83 249
PVSNet64.34 1872.08 28370.87 28375.69 29986.21 22856.44 31874.37 35480.73 31662.06 31670.17 29282.23 31842.86 33383.31 33354.77 31484.45 17787.32 281
131476.53 23075.30 23680.21 23783.93 27262.32 24784.66 23288.81 19260.23 32770.16 29384.07 28955.30 21790.73 25467.37 21383.21 20087.59 275
Patchmtry70.74 29369.16 29675.49 30380.72 33054.07 34474.94 35380.30 32358.34 34370.01 29481.19 32452.50 24286.54 30553.37 32171.09 34085.87 313
EPMVS69.02 30868.16 30371.59 33479.61 34749.80 37277.40 33566.93 38162.82 30770.01 29479.05 34545.79 31577.86 35956.58 30775.26 30587.13 287
IterMVS74.29 25672.94 26178.35 27081.53 32063.49 22781.58 28382.49 30068.06 24569.99 29683.69 29651.66 26085.54 31565.85 22771.64 33686.01 309
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test-LLR72.94 27572.43 26574.48 31281.35 32458.04 29278.38 32677.46 34466.66 25769.95 29779.00 34748.06 29679.24 35166.13 22284.83 16886.15 305
test-mter71.41 28670.39 28974.48 31281.35 32458.04 29278.38 32677.46 34460.32 32669.95 29779.00 34736.08 36579.24 35166.13 22284.83 16886.15 305
pmmvs474.03 26271.91 26980.39 23281.96 31368.32 12281.45 28682.14 30359.32 33569.87 29985.13 27052.40 24488.13 29460.21 27374.74 31184.73 329
PLCcopyleft70.83 1178.05 20176.37 22083.08 16391.88 7467.80 13488.19 13789.46 16564.33 28869.87 29988.38 18353.66 23493.58 14458.86 28582.73 20687.86 268
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LTVRE_ROB69.57 1376.25 23774.54 24481.41 20688.60 15964.38 21079.24 31589.12 18270.76 18569.79 30187.86 19749.09 28993.20 16656.21 31080.16 23786.65 298
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LS3D76.95 22674.82 24083.37 15090.45 9567.36 14689.15 10286.94 23561.87 31769.52 30290.61 12651.71 25994.53 10546.38 36086.71 14688.21 263
IB-MVS68.01 1575.85 24373.36 25783.31 15184.76 25466.03 16883.38 26185.06 25970.21 19869.40 30381.05 32645.76 31694.66 10165.10 23375.49 29589.25 232
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PatchMatch-RL72.38 27870.90 28276.80 29288.60 15967.38 14579.53 31176.17 35562.75 30869.36 30482.00 32245.51 31884.89 32253.62 31980.58 23278.12 370
MDTV_nov1_ep1369.97 29283.18 28853.48 34877.10 33880.18 32660.45 32469.33 30580.44 33348.89 29486.90 30351.60 32978.51 256
dmvs_re71.14 28870.58 28472.80 32781.96 31359.68 27975.60 34679.34 33268.55 23769.27 30680.72 33249.42 28376.54 36552.56 32577.79 26282.19 355
testing368.56 31367.67 31471.22 34087.33 20942.87 38883.06 27071.54 37070.36 19269.08 30784.38 28130.33 37785.69 31337.50 38275.45 29985.09 325
D2MVS74.82 25373.21 25879.64 25079.81 34362.56 24480.34 30387.35 22764.37 28768.86 30882.66 31246.37 30790.10 26167.91 20881.24 22386.25 302
PMMVS69.34 30668.67 29871.35 33875.67 36562.03 25075.17 34873.46 36550.00 37468.68 30979.05 34552.07 25278.13 35661.16 26782.77 20573.90 377
Patchmatch-RL test70.24 29967.78 31277.61 28277.43 35859.57 28271.16 36370.33 37262.94 30468.65 31072.77 37550.62 26985.49 31669.58 19366.58 35687.77 270
MS-PatchMatch73.83 26372.67 26277.30 28783.87 27366.02 16981.82 27984.66 26461.37 32168.61 31182.82 31047.29 29988.21 29259.27 27984.32 17977.68 371
tpm cat170.57 29568.31 30177.35 28682.41 30957.95 29578.08 33080.22 32552.04 36868.54 31277.66 35852.00 25387.84 29751.77 32772.07 33486.25 302
mvsany_test162.30 34161.26 34565.41 36069.52 38554.86 33766.86 37949.78 40046.65 37768.50 31383.21 30249.15 28866.28 39256.93 30460.77 37075.11 376
TESTMET0.1,169.89 30369.00 29772.55 32979.27 35256.85 31078.38 32674.71 36257.64 34968.09 31477.19 36037.75 36076.70 36463.92 24084.09 18384.10 336
MIMVSNet70.69 29469.30 29374.88 30884.52 26056.35 32175.87 34479.42 33164.59 28367.76 31582.41 31441.10 34481.54 34246.64 35981.34 22186.75 296
ACMH+68.96 1476.01 24174.01 24982.03 19388.60 15965.31 19088.86 11087.55 22270.25 19767.75 31687.47 20841.27 34393.19 16858.37 29075.94 28987.60 273
LCM-MVSNet-Re77.05 22376.94 20577.36 28587.20 21251.60 36180.06 30580.46 32175.20 9767.69 31786.72 22662.48 14788.98 28063.44 24389.25 11491.51 143
ITE_SJBPF78.22 27181.77 31660.57 26883.30 28669.25 21967.54 31887.20 21536.33 36487.28 30254.34 31674.62 31286.80 294
test_fmvs363.36 33961.82 34267.98 35562.51 39346.96 37877.37 33674.03 36445.24 37867.50 31978.79 35012.16 39772.98 38572.77 16466.02 35883.99 337
pmmvs571.55 28570.20 29175.61 30077.83 35656.39 31981.74 28180.89 31357.76 34867.46 32084.49 27849.26 28785.32 31957.08 30275.29 30485.11 324
MVP-Stereo76.12 23874.46 24681.13 21785.37 24269.79 8684.42 24387.95 21365.03 27967.46 32085.33 26453.28 23991.73 22158.01 29483.27 19981.85 357
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_040272.79 27670.44 28779.84 24488.13 17465.99 17185.93 20484.29 27165.57 27467.40 32285.49 26146.92 30392.61 18735.88 38374.38 31480.94 362
GG-mvs-BLEND75.38 30481.59 31955.80 32679.32 31469.63 37567.19 32373.67 37343.24 33088.90 28450.41 33484.50 17381.45 359
tpmvs71.09 28969.29 29476.49 29382.04 31256.04 32478.92 32181.37 31264.05 29267.18 32478.28 35349.74 28089.77 26549.67 34272.37 33083.67 340
OurMVSNet-221017-074.26 25772.42 26679.80 24583.76 27659.59 28185.92 20586.64 23966.39 26466.96 32587.58 20239.46 35191.60 22365.76 22869.27 34688.22 262
baseline275.70 24473.83 25381.30 21083.26 28561.79 25582.57 27480.65 31766.81 25366.88 32683.42 30057.86 20192.19 20463.47 24279.57 24389.91 212
F-COLMAP76.38 23674.33 24782.50 18689.28 13366.95 15888.41 12789.03 18364.05 29266.83 32788.61 17646.78 30492.89 18157.48 29778.55 25487.67 271
ACMH67.68 1675.89 24273.93 25081.77 19888.71 15666.61 16188.62 12289.01 18569.81 20566.78 32886.70 23041.95 34291.51 23155.64 31178.14 26187.17 284
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Syy-MVS68.05 31767.85 30868.67 35384.68 25640.97 39478.62 32473.08 36766.65 26066.74 32979.46 34252.11 25082.30 33832.89 38676.38 28482.75 351
myMVS_eth3d67.02 32366.29 32469.21 34884.68 25642.58 38978.62 32473.08 36766.65 26066.74 32979.46 34231.53 37482.30 33839.43 37976.38 28482.75 351
test0.0.03 168.00 31867.69 31368.90 35077.55 35747.43 37575.70 34572.95 36966.66 25766.56 33182.29 31748.06 29675.87 37244.97 36874.51 31383.41 342
MDTV_nov1_ep13_2view37.79 39675.16 34955.10 36166.53 33249.34 28553.98 31787.94 266
KD-MVS_2432*160066.22 33063.89 33273.21 32275.47 36853.42 34970.76 36684.35 26964.10 29066.52 33378.52 35134.55 36884.98 32050.40 33550.33 38681.23 360
miper_refine_blended66.22 33063.89 33273.21 32275.47 36853.42 34970.76 36684.35 26964.10 29066.52 33378.52 35134.55 36884.98 32050.40 33550.33 38681.23 360
ET-MVSNet_ETH3D78.63 18676.63 21584.64 9586.73 22169.47 9285.01 22584.61 26569.54 21266.51 33586.59 23450.16 27491.75 21976.26 12884.24 18192.69 107
EU-MVSNet68.53 31467.61 31571.31 33978.51 35547.01 37784.47 23884.27 27242.27 38266.44 33684.79 27640.44 34883.76 32858.76 28768.54 35183.17 344
EPNet_dtu75.46 24874.86 23977.23 28882.57 30554.60 33986.89 17683.09 29171.64 16366.25 33785.86 25255.99 21488.04 29554.92 31386.55 14889.05 238
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2023120668.60 31167.80 31171.02 34180.23 33750.75 36778.30 32980.47 32056.79 35566.11 33882.63 31346.35 30878.95 35343.62 37075.70 29183.36 343
SixPastTwentyTwo73.37 26771.26 27979.70 24785.08 24957.89 29685.57 21183.56 28271.03 18065.66 33985.88 25142.10 34092.57 18859.11 28263.34 36588.65 256
MSDG73.36 26970.99 28180.49 23184.51 26165.80 17780.71 29686.13 24865.70 27265.46 34083.74 29544.60 32290.91 25051.13 33276.89 27284.74 328
OpenMVS_ROBcopyleft64.09 1970.56 29668.19 30277.65 28180.26 33559.41 28385.01 22582.96 29558.76 34165.43 34182.33 31537.63 36191.23 24145.34 36776.03 28882.32 353
ppachtmachnet_test70.04 30167.34 31878.14 27379.80 34461.13 26079.19 31780.59 31859.16 33765.27 34279.29 34446.75 30587.29 30149.33 34366.72 35486.00 311
ADS-MVSNet266.20 33263.33 33574.82 30979.92 34058.75 28567.55 37775.19 35753.37 36565.25 34375.86 36642.32 33680.53 34841.57 37468.91 34885.18 321
ADS-MVSNet64.36 33662.88 33968.78 35279.92 34047.17 37667.55 37771.18 37153.37 36565.25 34375.86 36642.32 33673.99 38241.57 37468.91 34885.18 321
testgi66.67 32666.53 32367.08 35875.62 36641.69 39375.93 34176.50 35266.11 26665.20 34586.59 23435.72 36674.71 37943.71 36973.38 32584.84 327
PM-MVS66.41 32864.14 33073.20 32473.92 37256.45 31778.97 32064.96 38763.88 29664.72 34680.24 33519.84 38983.44 33266.24 22164.52 36379.71 367
JIA-IIPM66.32 32962.82 34076.82 29177.09 36061.72 25665.34 38475.38 35658.04 34764.51 34762.32 38542.05 34186.51 30651.45 33069.22 34782.21 354
ambc75.24 30573.16 37850.51 36863.05 38987.47 22564.28 34877.81 35717.80 39189.73 26757.88 29560.64 37185.49 316
EG-PatchMatch MVS74.04 26071.82 27080.71 22784.92 25267.42 14385.86 20788.08 20966.04 26864.22 34983.85 29135.10 36792.56 18957.44 29880.83 22882.16 356
dp66.80 32465.43 32670.90 34379.74 34648.82 37375.12 35174.77 36059.61 33264.08 35077.23 35942.89 33280.72 34748.86 34666.58 35683.16 345
KD-MVS_self_test68.81 30967.59 31672.46 33074.29 37145.45 37977.93 33287.00 23463.12 29963.99 35178.99 34942.32 33684.77 32356.55 30864.09 36487.16 286
pmmvs-eth3d70.50 29767.83 31078.52 26877.37 35966.18 16781.82 27981.51 30958.90 34063.90 35280.42 33442.69 33486.28 30858.56 28865.30 36183.11 346
COLMAP_ROBcopyleft66.92 1773.01 27370.41 28880.81 22587.13 21465.63 18088.30 13484.19 27462.96 30363.80 35387.69 20038.04 35992.56 18946.66 35774.91 30984.24 333
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet569.50 30567.96 30674.15 31682.97 29755.35 33280.01 30782.12 30462.56 31063.02 35481.53 32336.92 36281.92 34048.42 34774.06 31685.17 323
test20.0367.45 32066.95 32168.94 34975.48 36744.84 38477.50 33477.67 34166.66 25763.01 35583.80 29347.02 30278.40 35542.53 37368.86 35083.58 341
K. test v371.19 28768.51 29979.21 25783.04 29357.78 29984.35 24576.91 35072.90 15262.99 35682.86 30939.27 35291.09 24761.65 26252.66 38388.75 253
our_test_369.14 30767.00 32075.57 30179.80 34458.80 28477.96 33177.81 34059.55 33362.90 35778.25 35447.43 29883.97 32751.71 32867.58 35383.93 338
CHOSEN 280x42066.51 32764.71 32871.90 33281.45 32163.52 22657.98 39168.95 37953.57 36462.59 35876.70 36146.22 31075.29 37855.25 31279.68 24276.88 373
Anonymous2024052168.80 31067.22 31973.55 32074.33 37054.11 34383.18 26485.61 25458.15 34561.68 35980.94 32930.71 37681.27 34457.00 30373.34 32685.28 319
USDC70.33 29868.37 30076.21 29580.60 33256.23 32279.19 31786.49 24160.89 32261.29 36085.47 26231.78 37389.47 27253.37 32176.21 28782.94 350
lessismore_v078.97 25981.01 32957.15 30765.99 38361.16 36182.82 31039.12 35391.34 23859.67 27646.92 38988.43 260
UnsupCasMVSNet_eth67.33 32165.99 32571.37 33673.48 37651.47 36375.16 34985.19 25865.20 27660.78 36280.93 33142.35 33577.20 36157.12 30153.69 38285.44 317
dmvs_testset62.63 34064.11 33158.19 36878.55 35424.76 40475.28 34765.94 38467.91 24660.34 36376.01 36553.56 23573.94 38331.79 38767.65 35275.88 375
AllTest70.96 29068.09 30579.58 25185.15 24663.62 22184.58 23679.83 32762.31 31260.32 36486.73 22432.02 37188.96 28250.28 33771.57 33786.15 305
TestCases79.58 25185.15 24663.62 22179.83 32762.31 31260.32 36486.73 22432.02 37188.96 28250.28 33771.57 33786.15 305
Patchmatch-test64.82 33563.24 33669.57 34679.42 35049.82 37163.49 38869.05 37851.98 37059.95 36680.13 33650.91 26570.98 38640.66 37673.57 32187.90 267
MIMVSNet168.58 31266.78 32273.98 31880.07 33951.82 35980.77 29484.37 26864.40 28659.75 36782.16 31936.47 36383.63 33042.73 37270.33 34286.48 300
test_vis1_rt60.28 34458.42 34765.84 35967.25 38955.60 32970.44 36860.94 39244.33 38059.00 36866.64 38224.91 38268.67 39062.80 24769.48 34473.25 378
LF4IMVS64.02 33762.19 34169.50 34770.90 38453.29 35276.13 33977.18 34852.65 36758.59 36980.98 32823.55 38576.52 36653.06 32366.66 35578.68 369
PVSNet_057.27 2061.67 34359.27 34668.85 35179.61 34757.44 30468.01 37673.44 36655.93 35958.54 37070.41 38044.58 32377.55 36047.01 35635.91 39271.55 380
TDRefinement67.49 31964.34 32976.92 29073.47 37761.07 26184.86 22982.98 29459.77 33158.30 37185.13 27026.06 38187.89 29647.92 35460.59 37281.81 358
mvsany_test353.99 35051.45 35561.61 36555.51 39744.74 38563.52 38745.41 40443.69 38158.11 37276.45 36317.99 39063.76 39554.77 31447.59 38876.34 374
UnsupCasMVSNet_bld63.70 33861.53 34470.21 34573.69 37451.39 36472.82 35881.89 30555.63 36057.81 37371.80 37738.67 35578.61 35449.26 34452.21 38480.63 363
DSMNet-mixed57.77 34756.90 34960.38 36667.70 38835.61 39769.18 37253.97 39832.30 39457.49 37479.88 33940.39 34968.57 39138.78 38072.37 33076.97 372
N_pmnet52.79 35453.26 35351.40 37878.99 3537.68 41069.52 3703.89 40951.63 37157.01 37574.98 37040.83 34665.96 39337.78 38164.67 36280.56 365
new-patchmatchnet61.73 34261.73 34361.70 36472.74 38124.50 40569.16 37378.03 33961.40 31956.72 37675.53 36938.42 35676.48 36745.95 36357.67 37484.13 335
CMPMVSbinary51.72 2170.19 30068.16 30376.28 29473.15 37957.55 30279.47 31283.92 27648.02 37656.48 37784.81 27543.13 33186.42 30762.67 25181.81 21884.89 326
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TinyColmap67.30 32264.81 32774.76 31081.92 31556.68 31580.29 30481.49 31060.33 32556.27 37883.22 30124.77 38387.66 30045.52 36569.47 34579.95 366
test_f52.09 35550.82 35655.90 37253.82 40042.31 39259.42 39058.31 39636.45 38956.12 37970.96 37912.18 39657.79 39753.51 32056.57 37767.60 383
YYNet165.03 33362.91 33871.38 33575.85 36456.60 31669.12 37474.66 36357.28 35354.12 38077.87 35645.85 31474.48 38049.95 34061.52 36983.05 347
MDA-MVSNet_test_wron65.03 33362.92 33771.37 33675.93 36256.73 31269.09 37574.73 36157.28 35354.03 38177.89 35545.88 31374.39 38149.89 34161.55 36882.99 349
pmmvs357.79 34654.26 35168.37 35464.02 39256.72 31375.12 35165.17 38540.20 38452.93 38269.86 38120.36 38875.48 37545.45 36655.25 38172.90 379
MVS-HIRNet59.14 34557.67 34863.57 36281.65 31743.50 38771.73 36165.06 38639.59 38651.43 38357.73 39038.34 35782.58 33739.53 37773.95 31764.62 386
WB-MVS54.94 34854.72 35055.60 37473.50 37520.90 40674.27 35561.19 39159.16 33750.61 38474.15 37147.19 30175.78 37317.31 39835.07 39370.12 381
MDA-MVSNet-bldmvs66.68 32563.66 33475.75 29879.28 35160.56 26973.92 35678.35 33864.43 28550.13 38579.87 34044.02 32783.67 32946.10 36256.86 37583.03 348
SSC-MVS53.88 35153.59 35254.75 37672.87 38019.59 40773.84 35760.53 39357.58 35149.18 38673.45 37446.34 30975.47 37616.20 40132.28 39569.20 382
new_pmnet50.91 35750.29 35752.78 37768.58 38734.94 39963.71 38656.63 39739.73 38544.95 38765.47 38321.93 38758.48 39634.98 38456.62 37664.92 385
test_vis3_rt49.26 35947.02 36156.00 37154.30 39845.27 38366.76 38148.08 40136.83 38844.38 38853.20 3937.17 40464.07 39456.77 30655.66 37858.65 390
FPMVS53.68 35251.64 35459.81 36765.08 39151.03 36569.48 37169.58 37641.46 38340.67 38972.32 37616.46 39370.00 38924.24 39565.42 36058.40 391
APD_test153.31 35349.93 35863.42 36365.68 39050.13 36971.59 36266.90 38234.43 39140.58 39071.56 3788.65 40276.27 36934.64 38555.36 38063.86 387
LCM-MVSNet54.25 34949.68 35967.97 35653.73 40145.28 38266.85 38080.78 31535.96 39039.45 39162.23 3868.70 40178.06 35848.24 35151.20 38580.57 364
PMMVS240.82 36438.86 36746.69 37953.84 39916.45 40848.61 39449.92 39937.49 38731.67 39260.97 3878.14 40356.42 39828.42 39030.72 39667.19 384
ANet_high50.57 35846.10 36263.99 36148.67 40439.13 39570.99 36580.85 31461.39 32031.18 39357.70 39117.02 39273.65 38431.22 38815.89 40179.18 368
testf145.72 36041.96 36357.00 36956.90 39545.32 38066.14 38259.26 39426.19 39530.89 39460.96 3884.14 40570.64 38726.39 39346.73 39055.04 392
APD_test245.72 36041.96 36357.00 36956.90 39545.32 38066.14 38259.26 39426.19 39530.89 39460.96 3884.14 40570.64 38726.39 39346.73 39055.04 392
Gipumacopyleft45.18 36241.86 36555.16 37577.03 36151.52 36232.50 39780.52 31932.46 39327.12 39635.02 3979.52 40075.50 37422.31 39660.21 37338.45 396
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft37.38 2244.16 36340.28 36655.82 37340.82 40642.54 39165.12 38563.99 38834.43 39124.48 39757.12 3923.92 40776.17 37117.10 39955.52 37948.75 394
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepMVS_CXcopyleft27.40 38440.17 40726.90 40224.59 40817.44 40023.95 39848.61 3959.77 39926.48 40318.06 39724.47 39728.83 397
tmp_tt18.61 37021.40 37310.23 3864.82 40910.11 40934.70 39630.74 4071.48 40323.91 39926.07 40028.42 37913.41 40527.12 39115.35 4027.17 400
test_method31.52 36629.28 37038.23 38127.03 4086.50 41120.94 39962.21 3904.05 40222.35 40052.50 39413.33 39447.58 40127.04 39234.04 39460.62 388
MVEpermissive26.22 2330.37 36825.89 37243.81 38044.55 40535.46 39828.87 39839.07 40518.20 39918.58 40140.18 3962.68 40847.37 40217.07 40023.78 39848.60 395
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN31.77 36530.64 36835.15 38252.87 40227.67 40157.09 39247.86 40224.64 39716.40 40233.05 39811.23 39854.90 39914.46 40218.15 39922.87 398
EMVS30.81 36729.65 36934.27 38350.96 40325.95 40356.58 39346.80 40324.01 39815.53 40330.68 39912.47 39554.43 40012.81 40317.05 40022.43 399
wuyk23d16.82 37115.94 37419.46 38558.74 39431.45 40039.22 3953.74 4106.84 4016.04 4042.70 4041.27 40924.29 40410.54 40414.40 4032.63 401
EGC-MVSNET52.07 35647.05 36067.14 35783.51 28060.71 26680.50 30067.75 3800.07 4040.43 40575.85 36824.26 38481.54 34228.82 38962.25 36659.16 389
testmvs6.04 3748.02 3770.10 3880.08 4100.03 41369.74 3690.04 4110.05 4050.31 4061.68 4050.02 4110.04 4060.24 4050.02 4040.25 403
test1236.12 3738.11 3760.14 3870.06 4110.09 41271.05 3640.03 4120.04 4060.25 4071.30 4060.05 4100.03 4070.21 4060.01 4050.29 402
test_blank0.00 3760.00 3790.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4080.00 4070.00 4120.00 4080.00 4070.00 4060.00 404
uanet_test0.00 3760.00 3790.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4080.00 4070.00 4120.00 4080.00 4070.00 4060.00 404
DCPMVS0.00 3760.00 3790.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4080.00 4070.00 4120.00 4080.00 4070.00 4060.00 404
cdsmvs_eth3d_5k19.96 36926.61 3710.00 3890.00 4120.00 4140.00 40089.26 1730.00 4070.00 40888.61 17661.62 1610.00 4080.00 4070.00 4060.00 404
pcd_1.5k_mvsjas5.26 3757.02 3780.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4080.00 40763.15 1380.00 4080.00 4070.00 4060.00 404
sosnet-low-res0.00 3760.00 3790.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4080.00 4070.00 4120.00 4080.00 4070.00 4060.00 404
sosnet0.00 3760.00 3790.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4080.00 4070.00 4120.00 4080.00 4070.00 4060.00 404
uncertanet0.00 3760.00 3790.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4080.00 4070.00 4120.00 4080.00 4070.00 4060.00 404
Regformer0.00 3760.00 3790.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4080.00 4070.00 4120.00 4080.00 4070.00 4060.00 404
ab-mvs-re7.23 3729.64 3750.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 40886.72 2260.00 4120.00 4080.00 4070.00 4060.00 404
uanet0.00 3760.00 3790.00 3890.00 4120.00 4140.00 4000.00 4130.00 4070.00 4080.00 4070.00 4120.00 4080.00 4070.00 4060.00 404
WAC-MVS42.58 38939.46 378
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
No_MVS89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
eth-test20.00 412
eth-test0.00 412
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
save fliter93.80 4072.35 4290.47 6491.17 11674.31 116
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 42
GSMVS88.96 244
sam_mvs151.32 26288.96 244
sam_mvs50.01 275
MTGPAbinary92.02 85
test_post178.90 3225.43 40348.81 29585.44 31859.25 280
test_post5.46 40250.36 27384.24 325
patchmatchnet-post74.00 37251.12 26488.60 288
MTMP92.18 3532.83 406
gm-plane-assit81.40 32253.83 34662.72 30980.94 32992.39 19563.40 244
test9_res84.90 4295.70 2692.87 102
agg_prior282.91 6695.45 3092.70 105
test_prior472.60 3489.01 105
test_prior86.33 5492.61 6569.59 8892.97 5095.48 6293.91 53
新几何286.29 196
旧先验191.96 7165.79 17886.37 24493.08 7169.31 7792.74 6888.74 254
无先验87.48 15988.98 18660.00 32994.12 12167.28 21488.97 243
原ACMM286.86 177
testdata291.01 24962.37 254
segment_acmp73.08 37
testdata184.14 24975.71 87
plane_prior790.08 10368.51 119
plane_prior689.84 11268.70 11460.42 186
plane_prior592.44 6995.38 6978.71 10286.32 15191.33 150
plane_prior491.00 120
plane_prior291.25 5079.12 23
plane_prior189.90 111
plane_prior68.71 11290.38 6777.62 3986.16 155
n20.00 413
nn0.00 413
door-mid69.98 374
test1192.23 79
door69.44 377
HQP5-MVS66.98 155
BP-MVS77.47 114
HQP3-MVS92.19 8285.99 159
HQP2-MVS60.17 189
NP-MVS89.62 11568.32 12290.24 132
ACMMP++_ref81.95 216
ACMMP++81.25 222
Test By Simon64.33 125