This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 42
IU-MVS95.30 271.25 5792.95 5266.81 25692.39 688.94 1696.63 494.85 19
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10892.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8692.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 53
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 6077.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 87
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 25
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
PC_three_145268.21 24692.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
test_part295.06 872.65 3291.80 13
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5994.67 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
FOURS195.00 1072.39 3995.06 193.84 1574.49 11491.30 15
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9091.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 32
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13887.63 3094.27 5893.65 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 10089.57 8893.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 28
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8889.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7574.62 11288.90 2093.85 5275.75 2096.00 4987.80 2894.63 4895.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5673.01 15188.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 108
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
9.1488.26 1592.84 6091.52 4694.75 173.93 12688.57 2294.67 1975.57 2295.79 5486.77 3595.76 23
test_fmvsm_n_192085.29 6085.34 5685.13 8186.12 23469.93 8388.65 12290.78 12869.97 20588.27 2393.98 4971.39 5691.54 23088.49 2390.45 9893.91 54
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5693.59 2376.27 8088.14 2495.09 1571.06 5896.67 2987.67 2996.37 1494.09 47
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 38
fmvsm_l_conf0.5_n84.47 6884.54 6784.27 11585.42 24468.81 10688.49 12687.26 23068.08 24788.03 2793.49 5772.04 4791.77 22088.90 1789.14 11792.24 128
sasdasda85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13281.50 7988.80 12194.77 22
canonicalmvs85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13281.50 7988.80 12194.77 22
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5580.26 1187.78 3094.27 3275.89 1996.81 2387.45 3296.44 993.05 99
test_fmvsmconf0.1_n85.61 5485.65 5285.50 7082.99 29969.39 9789.65 8490.29 14573.31 14387.77 3194.15 3871.72 5093.23 16390.31 490.67 9693.89 57
test_fmvsmconf_n85.92 4686.04 4785.57 6985.03 25469.51 9089.62 8790.58 13273.42 14087.75 3294.02 4472.85 4193.24 16290.37 390.75 9493.96 52
ZD-MVS94.38 2572.22 4492.67 6270.98 18387.75 3294.07 4174.01 3296.70 2784.66 4794.84 44
alignmvs85.48 5585.32 5885.96 6389.51 12169.47 9289.74 8192.47 6976.17 8187.73 3491.46 10570.32 6693.78 13881.51 7888.95 11894.63 27
fmvsm_l_conf0.5_n_a84.13 7084.16 7284.06 12785.38 24568.40 12188.34 13386.85 23967.48 25487.48 3593.40 6170.89 5991.61 22488.38 2589.22 11692.16 132
MM89.16 689.23 788.97 490.79 9073.65 1092.66 2391.17 11786.57 187.39 3694.97 1671.70 5197.68 192.19 195.63 2895.57 1
fmvsm_s_conf0.1_n_a83.32 8782.99 8684.28 11383.79 27768.07 13089.34 9682.85 30069.80 20987.36 3794.06 4268.34 8991.56 22887.95 2783.46 20193.21 93
fmvsm_s_conf0.5_n_a83.63 7983.41 7884.28 11386.14 23368.12 12889.43 9182.87 29970.27 19987.27 3893.80 5469.09 7991.58 22688.21 2683.65 19593.14 96
fmvsm_s_conf0.1_n83.56 8183.38 7984.10 12084.86 25667.28 14889.40 9483.01 29570.67 18887.08 3993.96 5068.38 8891.45 23688.56 2284.50 17693.56 76
旧先验286.56 18858.10 34987.04 4088.98 28474.07 150
test_fmvsmconf0.01_n84.73 6784.52 6985.34 7380.25 33969.03 10089.47 8989.65 16273.24 14786.98 4194.27 3266.62 10293.23 16390.26 589.95 10893.78 63
fmvsm_s_conf0.5_n83.80 7483.71 7584.07 12586.69 22667.31 14789.46 9083.07 29471.09 18086.96 4293.70 5569.02 8491.47 23588.79 1884.62 17593.44 83
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 6874.50 11386.84 4394.65 2067.31 9895.77 5584.80 4692.85 6892.84 106
dcpmvs_285.63 5386.15 4484.06 12791.71 7564.94 19886.47 19091.87 9673.63 13386.60 4493.02 7276.57 1591.87 21883.36 6092.15 7695.35 3
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7993.50 2575.17 10186.34 4595.29 1270.86 6096.00 4988.78 1996.04 1694.58 28
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4673.54 13785.94 4694.51 2465.80 11695.61 5983.04 6592.51 7293.53 79
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18792.02 8679.45 1985.88 4794.80 1768.07 9096.21 4286.69 3695.34 3393.23 90
TSAR-MVS + GP.85.71 5285.33 5786.84 4791.34 7872.50 3689.07 10587.28 22976.41 7385.80 4890.22 13574.15 3195.37 7481.82 7791.88 7992.65 112
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5681.50 585.79 4993.47 6073.02 4097.00 1884.90 4294.94 3994.10 46
SR-MVS-dyc-post85.77 5085.61 5386.23 5693.06 5570.63 7391.88 3992.27 7773.53 13885.69 5094.45 2665.00 12495.56 6082.75 6891.87 8092.50 117
RE-MVS-def85.48 5493.06 5570.63 7391.88 3992.27 7773.53 13885.69 5094.45 2663.87 13082.75 6891.87 8092.50 117
testdata79.97 24290.90 8664.21 21384.71 26659.27 33985.40 5292.91 7362.02 15889.08 28268.95 20091.37 8786.63 302
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6787.65 20067.22 15188.69 12093.04 3879.64 1885.33 5392.54 8373.30 3594.50 10883.49 5991.14 9095.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5494.32 3171.76 4996.93 1985.53 3995.79 2294.32 39
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15485.22 5591.90 9269.47 7596.42 3783.28 6295.94 1994.35 37
patch_mono-283.65 7784.54 6780.99 22190.06 10765.83 17784.21 24888.74 19971.60 16985.01 5692.44 8474.51 2583.50 33482.15 7592.15 7693.64 72
MVS_030488.08 1488.08 1788.08 1489.67 11572.04 4892.26 3389.26 17484.19 285.01 5695.18 1369.93 7097.20 1491.63 295.60 2994.99 9
TEST993.26 5072.96 2588.75 11691.89 9468.44 24385.00 5893.10 6774.36 2895.41 69
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11691.89 9468.69 23885.00 5893.10 6774.43 2695.41 6984.97 4195.71 2593.02 101
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 6094.44 2870.78 6196.61 3284.53 4994.89 4193.66 66
test_prior288.85 11275.41 9484.91 6093.54 5674.28 2983.31 6195.86 20
test_893.13 5272.57 3588.68 12191.84 9868.69 23884.87 6293.10 6774.43 2695.16 78
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7793.82 1673.07 14984.86 6392.89 7476.22 1796.33 3884.89 4495.13 3694.40 35
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6493.99 4870.67 6396.82 2284.18 5695.01 3793.90 56
h-mvs3383.15 8982.19 9786.02 6290.56 9370.85 7088.15 14189.16 17976.02 8484.67 6591.39 10761.54 16395.50 6382.71 7075.48 29991.72 142
hse-mvs281.72 11080.94 11684.07 12588.72 15767.68 13885.87 20787.26 23076.02 8484.67 6588.22 19061.54 16393.48 15382.71 7073.44 32791.06 163
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6794.52 2168.81 8596.65 3084.53 4994.90 4094.00 51
CDPH-MVS85.76 5185.29 6087.17 4393.49 4771.08 6188.58 12492.42 7368.32 24584.61 6893.48 5872.32 4396.15 4579.00 10095.43 3194.28 41
UA-Net85.08 6384.96 6385.45 7192.07 7068.07 13089.78 8090.86 12782.48 384.60 6993.20 6669.35 7695.22 7671.39 17590.88 9393.07 98
CS-MVS86.69 3586.95 3185.90 6490.76 9167.57 14092.83 1793.30 3279.67 1784.57 7092.27 8671.47 5495.02 8884.24 5493.46 6495.13 6
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7194.52 2169.09 7996.70 2784.37 5194.83 4594.03 50
agg_prior92.85 5971.94 5191.78 10184.41 7294.93 89
VDD-MVS83.01 9482.36 9584.96 8791.02 8366.40 16388.91 10988.11 20877.57 4184.39 7393.29 6452.19 24893.91 13277.05 12188.70 12494.57 30
casdiffmvspermissive85.11 6285.14 6185.01 8587.20 21665.77 18187.75 15392.83 5677.84 3784.36 7492.38 8572.15 4593.93 13181.27 8290.48 9795.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MSLP-MVS++85.43 5785.76 5184.45 10591.93 7270.24 7690.71 5892.86 5477.46 4784.22 7592.81 7867.16 10092.94 18280.36 9194.35 5690.16 198
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7184.22 7593.36 6371.44 5596.76 2580.82 8695.33 3494.16 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EC-MVSNet86.01 4386.38 3884.91 9189.31 13366.27 16692.32 3093.63 2179.37 2084.17 7791.88 9369.04 8395.43 6783.93 5793.77 6293.01 102
ETV-MVS84.90 6684.67 6685.59 6889.39 12868.66 11788.74 11892.64 6679.97 1584.10 7885.71 25569.32 7795.38 7180.82 8691.37 8792.72 107
VNet82.21 10182.41 9381.62 20290.82 8860.93 26384.47 23989.78 15776.36 7884.07 7991.88 9364.71 12590.26 26070.68 18188.89 11993.66 66
baseline84.93 6484.98 6284.80 9587.30 21465.39 18987.30 16592.88 5377.62 3984.04 8092.26 8771.81 4893.96 12581.31 8190.30 10095.03 8
test_fmvsmvis_n_192084.02 7183.87 7384.49 10484.12 27069.37 9888.15 14187.96 21370.01 20383.95 8193.23 6568.80 8691.51 23388.61 2089.96 10792.57 113
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7193.04 3875.53 9283.86 8294.42 2967.87 9396.64 3182.70 7294.57 5093.66 66
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6577.57 4183.84 8394.40 3072.24 4496.28 4085.65 3895.30 3593.62 73
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8383.81 8493.95 5169.77 7396.01 4885.15 4094.66 4794.32 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5976.62 7183.68 8594.46 2567.93 9195.95 5284.20 5594.39 5493.23 90
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 8694.17 3667.45 9696.60 3383.06 6394.50 5194.07 48
X-MVStestdata80.37 14777.83 18488.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 8612.47 40467.45 9696.60 3383.06 6394.50 5194.07 48
DELS-MVS85.41 5885.30 5985.77 6588.49 16467.93 13385.52 22093.44 2778.70 2983.63 8889.03 16574.57 2495.71 5780.26 9394.04 6093.66 66
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CS-MVS-test86.29 4286.48 3785.71 6691.02 8367.21 15292.36 2993.78 1878.97 2883.51 8991.20 11270.65 6495.15 7981.96 7694.89 4194.77 22
iter_conf05_1181.63 11680.44 12685.20 7889.46 12466.20 16786.21 19786.97 23671.53 17183.35 9088.53 18043.22 33495.94 5379.82 9694.85 4393.47 80
LFMVS81.82 10981.23 11083.57 14691.89 7363.43 23189.84 7681.85 31077.04 5883.21 9193.10 6752.26 24793.43 15771.98 17089.95 10893.85 58
VDDNet81.52 11880.67 12084.05 13090.44 9664.13 21589.73 8285.91 25271.11 17983.18 9293.48 5850.54 27293.49 15273.40 15788.25 13094.54 31
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5793.56 2473.95 12483.16 9391.07 11775.94 1895.19 7779.94 9594.38 5593.55 77
nrg03083.88 7283.53 7684.96 8786.77 22469.28 9990.46 6592.67 6274.79 10782.95 9491.33 10872.70 4293.09 17680.79 8879.28 25292.50 117
EI-MVSNet-Vis-set84.19 6983.81 7485.31 7488.18 17567.85 13487.66 15589.73 16080.05 1482.95 9489.59 14970.74 6294.82 9780.66 9084.72 17393.28 89
MVS_Test83.15 8983.06 8483.41 15186.86 22063.21 23586.11 20192.00 8874.31 11782.87 9689.44 15770.03 6893.21 16577.39 11888.50 12893.81 61
DPM-MVS84.93 6484.29 7186.84 4790.20 10073.04 2387.12 16993.04 3869.80 20982.85 9791.22 11173.06 3996.02 4776.72 12794.63 4891.46 153
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6993.94 1477.12 5582.82 9894.23 3572.13 4697.09 1684.83 4595.37 3293.65 70
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8176.87 6282.81 9994.25 3466.44 10696.24 4182.88 6794.28 5793.38 84
test1286.80 4992.63 6470.70 7291.79 10082.71 10071.67 5296.16 4494.50 5193.54 78
HPM-MVS_fast85.35 5984.95 6486.57 5393.69 4270.58 7592.15 3691.62 10473.89 12782.67 10194.09 4062.60 14595.54 6280.93 8492.93 6793.57 75
Effi-MVS+83.62 8083.08 8385.24 7688.38 17067.45 14288.89 11089.15 18075.50 9382.27 10288.28 18769.61 7494.45 11077.81 11387.84 13293.84 60
EI-MVSNet-UG-set83.81 7383.38 7985.09 8287.87 18867.53 14187.44 16189.66 16179.74 1682.23 10389.41 15870.24 6794.74 10079.95 9483.92 18792.99 103
MVS_111021_HR85.14 6184.75 6586.32 5591.65 7672.70 3085.98 20390.33 14276.11 8282.08 10491.61 10071.36 5794.17 12181.02 8392.58 7192.08 134
diffmvspermissive82.10 10281.88 10482.76 18483.00 29763.78 22183.68 25589.76 15872.94 15282.02 10589.85 14165.96 11590.79 25482.38 7487.30 13993.71 65
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
bld_raw_dy_0_6480.78 13679.36 14885.06 8389.46 12466.03 16989.63 8685.46 25969.76 21281.88 10689.06 16443.39 33295.70 5879.82 9685.74 16793.47 80
xiu_mvs_v1_base_debu80.80 13379.72 13984.03 13287.35 20870.19 7985.56 21388.77 19569.06 23081.83 10788.16 19150.91 26692.85 18478.29 11087.56 13489.06 238
xiu_mvs_v1_base80.80 13379.72 13984.03 13287.35 20870.19 7985.56 21388.77 19569.06 23081.83 10788.16 19150.91 26692.85 18478.29 11087.56 13489.06 238
xiu_mvs_v1_base_debi80.80 13379.72 13984.03 13287.35 20870.19 7985.56 21388.77 19569.06 23081.83 10788.16 19150.91 26692.85 18478.29 11087.56 13489.06 238
新几何183.42 14993.13 5270.71 7185.48 25857.43 35581.80 11091.98 9063.28 13492.27 20364.60 23892.99 6687.27 285
test_yl81.17 12380.47 12483.24 15789.13 14163.62 22286.21 19789.95 15472.43 15781.78 11189.61 14757.50 20693.58 14670.75 17986.90 14492.52 115
DCV-MVSNet81.17 12380.47 12483.24 15789.13 14163.62 22286.21 19789.95 15472.43 15781.78 11189.61 14757.50 20693.58 14670.75 17986.90 14492.52 115
test_cas_vis1_n_192073.76 26773.74 25773.81 32275.90 36659.77 27980.51 30282.40 30458.30 34781.62 11385.69 25644.35 32676.41 37176.29 12878.61 25685.23 323
MG-MVS83.41 8483.45 7783.28 15492.74 6262.28 24988.17 13989.50 16575.22 9781.49 11492.74 8266.75 10195.11 8272.85 16391.58 8492.45 120
CANet86.45 3886.10 4587.51 3790.09 10270.94 6789.70 8392.59 6781.78 481.32 11591.43 10670.34 6597.23 1384.26 5293.36 6594.37 36
MVSFormer82.85 9582.05 10085.24 7687.35 20870.21 7790.50 6290.38 13868.55 24081.32 11589.47 15261.68 16093.46 15578.98 10190.26 10192.05 135
lupinMVS81.39 12180.27 13084.76 9687.35 20870.21 7785.55 21686.41 24462.85 30881.32 11588.61 17661.68 16092.24 20578.41 10890.26 10191.83 139
xiu_mvs_v2_base81.69 11281.05 11383.60 14489.15 14068.03 13284.46 24190.02 15170.67 18881.30 11886.53 24063.17 13894.19 12075.60 13888.54 12688.57 261
PS-MVSNAJ81.69 11281.02 11483.70 14389.51 12168.21 12784.28 24790.09 15070.79 18581.26 11985.62 26063.15 13994.29 11275.62 13788.87 12088.59 260
原ACMM184.35 10993.01 5768.79 10792.44 7063.96 29881.09 12091.57 10166.06 11295.45 6567.19 21794.82 4688.81 253
jason81.39 12180.29 12984.70 9786.63 22869.90 8585.95 20486.77 24063.24 30181.07 12189.47 15261.08 17692.15 20778.33 10990.07 10692.05 135
jason: jason.
OPM-MVS83.50 8282.95 8785.14 7988.79 15470.95 6689.13 10491.52 10777.55 4480.96 12291.75 9560.71 18094.50 10879.67 9886.51 15189.97 214
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNetpermissive83.46 8382.80 9085.43 7290.25 9968.74 11190.30 7090.13 14976.33 7980.87 12392.89 7461.00 17794.20 11972.45 16990.97 9193.35 86
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMMPcopyleft85.89 4985.39 5587.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12493.82 5364.33 12696.29 3982.67 7390.69 9593.23 90
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Anonymous2024052980.19 15278.89 16084.10 12090.60 9264.75 20288.95 10890.90 12465.97 27380.59 12591.17 11449.97 27793.73 14469.16 19882.70 21293.81 61
MVS_111021_LR82.61 9882.11 9884.11 11988.82 15171.58 5385.15 22386.16 24974.69 10980.47 12691.04 11862.29 15290.55 25880.33 9290.08 10590.20 197
ECVR-MVScopyleft79.61 16079.26 15180.67 22990.08 10354.69 34187.89 15077.44 34974.88 10580.27 12792.79 7948.96 29492.45 19468.55 20492.50 7394.86 17
VPA-MVSNet80.60 14080.55 12280.76 22788.07 18260.80 26686.86 17791.58 10675.67 9180.24 12889.45 15663.34 13390.25 26170.51 18379.22 25391.23 158
test111179.43 16779.18 15580.15 23989.99 10853.31 35487.33 16477.05 35275.04 10280.23 12992.77 8148.97 29392.33 20268.87 20192.40 7594.81 20
test250677.30 22276.49 21879.74 24790.08 10352.02 35787.86 15263.10 39274.88 10580.16 13092.79 7938.29 36192.35 20068.74 20392.50 7394.86 17
Anonymous20240521178.25 19577.01 20481.99 19691.03 8260.67 26884.77 23183.90 27970.65 19280.00 13191.20 11241.08 34891.43 23765.21 23285.26 16893.85 58
test22291.50 7768.26 12584.16 24983.20 29254.63 36679.74 13291.63 9958.97 19491.42 8686.77 298
OMC-MVS82.69 9681.97 10384.85 9288.75 15667.42 14387.98 14490.87 12674.92 10479.72 13391.65 9762.19 15593.96 12575.26 14186.42 15293.16 95
FA-MVS(test-final)80.96 12779.91 13584.10 12088.30 17365.01 19684.55 23890.01 15273.25 14679.61 13487.57 20458.35 19894.72 10171.29 17686.25 15592.56 114
CPTT-MVS83.73 7583.33 8184.92 9093.28 4970.86 6992.09 3790.38 13868.75 23779.57 13592.83 7660.60 18593.04 18080.92 8591.56 8590.86 171
IS-MVSNet83.15 8982.81 8984.18 11889.94 11063.30 23391.59 4388.46 20579.04 2579.49 13692.16 8865.10 12194.28 11367.71 21091.86 8294.95 10
PS-MVSNAJss82.07 10481.31 10884.34 11086.51 22967.27 14989.27 9791.51 10871.75 16379.37 13790.22 13563.15 13994.27 11477.69 11482.36 21591.49 150
EPP-MVSNet83.40 8583.02 8584.57 9990.13 10164.47 20892.32 3090.73 12974.45 11679.35 13891.10 11569.05 8295.12 8072.78 16487.22 14094.13 45
test_vis1_n_192075.52 24975.78 22574.75 31479.84 34557.44 30583.26 26485.52 25762.83 30979.34 13986.17 24845.10 32279.71 35378.75 10381.21 22787.10 293
DP-MVS Recon83.11 9282.09 9986.15 5894.44 1970.92 6888.79 11492.20 8270.53 19379.17 14091.03 12064.12 12896.03 4668.39 20790.14 10391.50 149
ab-mvs79.51 16378.97 15981.14 21788.46 16660.91 26483.84 25389.24 17670.36 19579.03 14188.87 16963.23 13790.21 26265.12 23382.57 21392.28 125
EIA-MVS83.31 8882.80 9084.82 9389.59 11765.59 18388.21 13792.68 6174.66 11078.96 14286.42 24269.06 8195.26 7575.54 13990.09 10493.62 73
PVSNet_Blended_VisFu82.62 9781.83 10584.96 8790.80 8969.76 8788.74 11891.70 10369.39 21878.96 14288.46 18265.47 11894.87 9674.42 14688.57 12590.24 196
HQP_MVS83.64 7883.14 8285.14 7990.08 10368.71 11391.25 5092.44 7079.12 2378.92 14491.00 12160.42 18795.38 7178.71 10486.32 15391.33 154
plane_prior368.60 11878.44 3178.92 144
test_fmvs1_n70.86 29570.24 29372.73 33172.51 38655.28 33681.27 29079.71 33351.49 37578.73 14684.87 27527.54 38377.02 36576.06 13179.97 24485.88 315
iter_conf0580.00 15678.70 16283.91 13987.84 19065.83 17788.84 11384.92 26571.61 16878.70 14788.94 16643.88 32994.56 10479.28 9984.28 18391.33 154
EI-MVSNet80.52 14379.98 13382.12 19284.28 26663.19 23786.41 19188.95 19074.18 12178.69 14887.54 20766.62 10292.43 19572.57 16780.57 23690.74 176
MVSTER79.01 17977.88 18382.38 19083.07 29464.80 20184.08 25288.95 19069.01 23378.69 14887.17 21854.70 22592.43 19574.69 14380.57 23689.89 217
API-MVS81.99 10681.23 11084.26 11690.94 8570.18 8291.10 5389.32 17071.51 17278.66 15088.28 18765.26 11995.10 8564.74 23791.23 8987.51 279
GeoE81.71 11181.01 11583.80 14189.51 12164.45 20988.97 10788.73 20071.27 17678.63 15189.76 14366.32 10893.20 16869.89 19086.02 16093.74 64
test_fmvs170.93 29470.52 28872.16 33473.71 37655.05 33880.82 29378.77 34051.21 37678.58 15284.41 28131.20 37876.94 36675.88 13480.12 24384.47 334
UniMVSNet (Re)81.60 11781.11 11283.09 16488.38 17064.41 21087.60 15693.02 4278.42 3278.56 15388.16 19169.78 7293.26 16169.58 19476.49 28191.60 143
MAR-MVS81.84 10880.70 11985.27 7591.32 7971.53 5489.82 7790.92 12369.77 21178.50 15486.21 24662.36 15194.52 10765.36 23192.05 7889.77 222
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Fast-Effi-MVS+80.81 13179.92 13483.47 14788.85 14864.51 20585.53 21889.39 16870.79 18578.49 15585.06 27367.54 9593.58 14667.03 22086.58 14992.32 123
FIs82.07 10482.42 9281.04 22088.80 15358.34 28988.26 13693.49 2676.93 6078.47 15691.04 11869.92 7192.34 20169.87 19184.97 17092.44 121
UniMVSNet_NR-MVSNet81.88 10781.54 10782.92 17388.46 16663.46 22987.13 16892.37 7480.19 1278.38 15789.14 16071.66 5393.05 17870.05 18776.46 28292.25 126
DU-MVS81.12 12580.52 12382.90 17487.80 19263.46 22987.02 17291.87 9679.01 2678.38 15789.07 16265.02 12293.05 17870.05 18776.46 28292.20 129
CLD-MVS82.31 10081.65 10684.29 11288.47 16567.73 13785.81 21192.35 7575.78 8778.33 15986.58 23764.01 12994.35 11176.05 13287.48 13790.79 172
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
VPNet78.69 18778.66 16478.76 26488.31 17255.72 33084.45 24286.63 24276.79 6478.26 16090.55 12959.30 19289.70 27266.63 22177.05 27390.88 170
mvsmamba81.69 11280.74 11884.56 10087.45 20766.72 15991.26 4885.89 25374.66 11078.23 16190.56 12854.33 22894.91 9080.73 8983.54 19992.04 137
V4279.38 17178.24 17582.83 17681.10 33165.50 18585.55 21689.82 15671.57 17078.21 16286.12 24960.66 18293.18 17175.64 13675.46 30189.81 221
BH-RMVSNet79.61 16078.44 16983.14 16289.38 12965.93 17484.95 22887.15 23373.56 13678.19 16389.79 14256.67 21393.36 15859.53 28186.74 14790.13 200
v2v48280.23 15079.29 15083.05 16783.62 28064.14 21487.04 17189.97 15373.61 13478.18 16487.22 21561.10 17593.82 13676.11 13076.78 27991.18 159
PVSNet_BlendedMVS80.60 14080.02 13282.36 19188.85 14865.40 18786.16 20092.00 8869.34 22078.11 16586.09 25066.02 11394.27 11471.52 17282.06 21887.39 281
PVSNet_Blended80.98 12680.34 12782.90 17488.85 14865.40 18784.43 24392.00 8867.62 25178.11 16585.05 27466.02 11394.27 11471.52 17289.50 11289.01 243
v114480.03 15479.03 15783.01 16983.78 27864.51 20587.11 17090.57 13471.96 16278.08 16786.20 24761.41 16793.94 12874.93 14277.23 27090.60 181
FE-MVS77.78 21075.68 22784.08 12488.09 18166.00 17283.13 26787.79 21968.42 24478.01 16885.23 26845.50 32095.12 8059.11 28585.83 16491.11 161
TranMVSNet+NR-MVSNet80.84 12980.31 12882.42 18987.85 18962.33 24787.74 15491.33 11380.55 977.99 16989.86 14065.23 12092.62 18867.05 21975.24 30992.30 124
Baseline_NR-MVSNet78.15 20078.33 17377.61 28585.79 23756.21 32586.78 18185.76 25573.60 13577.93 17087.57 20465.02 12288.99 28367.14 21875.33 30687.63 275
TR-MVS77.44 21876.18 22381.20 21588.24 17463.24 23484.61 23686.40 24567.55 25277.81 17186.48 24154.10 23193.15 17257.75 29982.72 21187.20 286
v119279.59 16278.43 17083.07 16683.55 28264.52 20486.93 17590.58 13270.83 18477.78 17285.90 25159.15 19393.94 12873.96 15177.19 27290.76 174
PCF-MVS73.52 780.38 14578.84 16185.01 8587.71 19768.99 10383.65 25691.46 11263.00 30577.77 17390.28 13266.10 11095.09 8661.40 26788.22 13190.94 169
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
WR-MVS79.49 16479.22 15380.27 23788.79 15458.35 28885.06 22588.61 20378.56 3077.65 17488.34 18563.81 13290.66 25764.98 23577.22 27191.80 141
XVG-OURS80.41 14479.23 15283.97 13685.64 24069.02 10283.03 27290.39 13771.09 18077.63 17591.49 10454.62 22791.35 23975.71 13583.47 20091.54 146
v14419279.47 16578.37 17182.78 18283.35 28563.96 21786.96 17390.36 14169.99 20477.50 17685.67 25860.66 18293.77 14074.27 14876.58 28090.62 179
v192192079.22 17378.03 17882.80 17983.30 28763.94 21886.80 17990.33 14269.91 20777.48 17785.53 26158.44 19793.75 14273.60 15376.85 27790.71 177
thisisatest053079.40 16977.76 18984.31 11187.69 19965.10 19587.36 16284.26 27570.04 20277.42 17888.26 18949.94 27894.79 9970.20 18584.70 17493.03 100
FC-MVSNet-test81.52 11882.02 10180.03 24188.42 16955.97 32787.95 14693.42 2977.10 5677.38 17990.98 12369.96 6991.79 21968.46 20684.50 17692.33 122
v124078.99 18077.78 18782.64 18583.21 28963.54 22686.62 18690.30 14469.74 21577.33 18085.68 25757.04 21193.76 14173.13 16176.92 27490.62 179
PAPM_NR83.02 9382.41 9384.82 9392.47 6766.37 16487.93 14891.80 9973.82 12877.32 18190.66 12667.90 9294.90 9370.37 18489.48 11393.19 94
ACMM73.20 880.78 13679.84 13783.58 14589.31 13368.37 12289.99 7491.60 10570.28 19877.25 18289.66 14553.37 23993.53 15174.24 14982.85 20888.85 251
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP4-MVS77.24 18395.11 8291.03 165
AUN-MVS79.21 17477.60 19484.05 13088.71 15867.61 13985.84 20987.26 23069.08 22977.23 18488.14 19553.20 24193.47 15475.50 14073.45 32691.06 163
HQP-NCC89.33 13089.17 9976.41 7377.23 184
ACMP_Plane89.33 13089.17 9976.41 7377.23 184
HQP-MVS82.61 9882.02 10184.37 10789.33 13066.98 15589.17 9992.19 8376.41 7377.23 18490.23 13460.17 19095.11 8277.47 11685.99 16191.03 165
tt080578.73 18577.83 18481.43 20785.17 24860.30 27489.41 9390.90 12471.21 17777.17 18888.73 17146.38 30793.21 16572.57 16778.96 25590.79 172
TAPA-MVS73.13 979.15 17577.94 18082.79 18189.59 11762.99 24288.16 14091.51 10865.77 27477.14 18991.09 11660.91 17893.21 16550.26 34287.05 14292.17 131
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PAPR81.66 11580.89 11783.99 13590.27 9864.00 21686.76 18391.77 10268.84 23677.13 19089.50 15067.63 9494.88 9567.55 21288.52 12793.09 97
UniMVSNet_ETH3D79.10 17778.24 17581.70 20186.85 22160.24 27587.28 16688.79 19474.25 11976.84 19190.53 13049.48 28391.56 22867.98 20882.15 21693.29 88
EPNet83.72 7682.92 8886.14 5984.22 26869.48 9191.05 5585.27 26081.30 676.83 19291.65 9766.09 11195.56 6076.00 13393.85 6193.38 84
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline176.98 22676.75 21477.66 28388.13 17855.66 33185.12 22481.89 30873.04 15076.79 19388.90 16762.43 15087.78 30163.30 24771.18 34289.55 228
tttt051779.40 16977.91 18183.90 14088.10 18063.84 21988.37 13284.05 27771.45 17376.78 19489.12 16149.93 28094.89 9470.18 18683.18 20592.96 104
TAMVS78.89 18377.51 19683.03 16887.80 19267.79 13684.72 23285.05 26367.63 25076.75 19587.70 20062.25 15390.82 25358.53 29287.13 14190.49 186
XVG-OURS-SEG-HR80.81 13179.76 13883.96 13785.60 24168.78 10883.54 26190.50 13570.66 19176.71 19691.66 9660.69 18191.26 24176.94 12281.58 22391.83 139
3Dnovator+77.84 485.48 5584.47 7088.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19793.37 6260.40 18996.75 2677.20 11993.73 6395.29 5
LPG-MVS_test82.08 10381.27 10984.50 10289.23 13768.76 10990.22 7191.94 9275.37 9576.64 19891.51 10254.29 22994.91 9078.44 10683.78 18889.83 219
LGP-MVS_train84.50 10289.23 13768.76 10991.94 9275.37 9576.64 19891.51 10254.29 22994.91 9078.44 10683.78 18889.83 219
SDMVSNet80.38 14580.18 13180.99 22189.03 14664.94 19880.45 30489.40 16775.19 9976.61 20089.98 13860.61 18487.69 30276.83 12583.55 19790.33 192
sd_testset77.70 21477.40 19778.60 26789.03 14660.02 27779.00 32285.83 25475.19 9976.61 20089.98 13854.81 22085.46 32062.63 25483.55 19790.33 192
tfpn200view976.42 23675.37 23679.55 25489.13 14157.65 30185.17 22183.60 28273.41 14176.45 20286.39 24352.12 24991.95 21348.33 35183.75 19189.07 236
thres40076.50 23375.37 23679.86 24489.13 14157.65 30185.17 22183.60 28273.41 14176.45 20286.39 24352.12 24991.95 21348.33 35183.75 19190.00 210
HyFIR lowres test77.53 21775.40 23483.94 13889.59 11766.62 16080.36 30588.64 20256.29 36176.45 20285.17 27057.64 20493.28 16061.34 26983.10 20691.91 138
RRT_MVS80.35 14879.22 15383.74 14287.63 20165.46 18691.08 5488.92 19273.82 12876.44 20590.03 13749.05 29294.25 11876.84 12379.20 25491.51 147
CDS-MVSNet79.07 17877.70 19183.17 16187.60 20268.23 12684.40 24586.20 24867.49 25376.36 20686.54 23961.54 16390.79 25461.86 26387.33 13890.49 186
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
thres100view90076.50 23375.55 23179.33 25589.52 12056.99 31085.83 21083.23 29073.94 12576.32 20787.12 21951.89 25791.95 21348.33 35183.75 19189.07 236
thres600view776.50 23375.44 23279.68 24989.40 12757.16 30785.53 21883.23 29073.79 13076.26 20887.09 22051.89 25791.89 21648.05 35683.72 19490.00 210
UGNet80.83 13079.59 14284.54 10188.04 18368.09 12989.42 9288.16 20776.95 5976.22 20989.46 15449.30 28793.94 12868.48 20590.31 9991.60 143
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test_djsdf80.30 14979.32 14983.27 15583.98 27465.37 19090.50 6290.38 13868.55 24076.19 21088.70 17256.44 21493.46 15578.98 10180.14 24290.97 168
v14878.72 18677.80 18681.47 20682.73 30461.96 25386.30 19588.08 21073.26 14576.18 21185.47 26362.46 14992.36 19971.92 17173.82 32390.09 204
WTY-MVS75.65 24775.68 22775.57 30486.40 23056.82 31277.92 33682.40 30465.10 28076.18 21187.72 19963.13 14280.90 34960.31 27581.96 21989.00 245
mvs_anonymous79.42 16879.11 15680.34 23584.45 26557.97 29582.59 27487.62 22267.40 25576.17 21388.56 17968.47 8789.59 27370.65 18286.05 15993.47 80
Anonymous2023121178.97 18177.69 19282.81 17890.54 9464.29 21290.11 7391.51 10865.01 28376.16 21488.13 19650.56 27193.03 18169.68 19377.56 26991.11 161
thisisatest051577.33 22175.38 23583.18 16085.27 24763.80 22082.11 27983.27 28965.06 28175.91 21583.84 29449.54 28294.27 11467.24 21686.19 15691.48 151
CANet_DTU80.61 13979.87 13682.83 17685.60 24163.17 23887.36 16288.65 20176.37 7775.88 21688.44 18353.51 23793.07 17773.30 15889.74 11192.25 126
thres20075.55 24874.47 24778.82 26387.78 19557.85 29883.07 27083.51 28572.44 15675.84 21784.42 28052.08 25291.75 22147.41 35883.64 19686.86 296
CHOSEN 1792x268877.63 21675.69 22683.44 14889.98 10968.58 11978.70 32687.50 22556.38 36075.80 21886.84 22358.67 19591.40 23861.58 26685.75 16590.34 191
AdaColmapbinary80.58 14279.42 14584.06 12793.09 5468.91 10589.36 9588.97 18969.27 22175.70 21989.69 14457.20 21095.77 5563.06 24888.41 12987.50 280
UWE-MVS72.13 28571.49 27674.03 32086.66 22747.70 37781.40 28976.89 35463.60 30075.59 22084.22 28839.94 35385.62 31748.98 34886.13 15888.77 255
c3_l78.75 18477.91 18181.26 21382.89 30161.56 25884.09 25189.13 18269.97 20575.56 22184.29 28566.36 10792.09 20973.47 15675.48 29990.12 201
miper_ehance_all_eth78.59 19077.76 18981.08 21982.66 30661.56 25883.65 25689.15 18068.87 23575.55 22283.79 29666.49 10592.03 21073.25 15976.39 28489.64 225
miper_enhance_ethall77.87 20976.86 20880.92 22481.65 32061.38 26082.68 27388.98 18765.52 27875.47 22382.30 31965.76 11792.00 21272.95 16276.39 28489.39 231
3Dnovator76.31 583.38 8682.31 9686.59 5287.94 18672.94 2890.64 5992.14 8577.21 5275.47 22392.83 7658.56 19694.72 10173.24 16092.71 7092.13 133
jajsoiax79.29 17277.96 17983.27 15584.68 25966.57 16289.25 9890.16 14869.20 22675.46 22589.49 15145.75 31893.13 17476.84 12380.80 23290.11 202
IterMVS-LS80.06 15379.38 14682.11 19385.89 23663.20 23686.79 18089.34 16974.19 12075.45 22686.72 22766.62 10292.39 19772.58 16676.86 27690.75 175
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
BH-untuned79.47 16578.60 16582.05 19489.19 13965.91 17586.07 20288.52 20472.18 15975.42 22787.69 20161.15 17493.54 15060.38 27486.83 14686.70 300
mvs_tets79.13 17677.77 18883.22 15984.70 25866.37 16489.17 9990.19 14769.38 21975.40 22889.46 15444.17 32793.15 17276.78 12680.70 23490.14 199
HY-MVS69.67 1277.95 20677.15 20280.36 23487.57 20660.21 27683.37 26387.78 22066.11 26975.37 22987.06 22263.27 13590.48 25961.38 26882.43 21490.40 190
testing9176.54 23175.66 22979.18 25988.43 16855.89 32881.08 29183.00 29673.76 13175.34 23084.29 28546.20 31290.07 26464.33 23984.50 17691.58 145
GBi-Net78.40 19277.40 19781.40 20987.60 20263.01 23988.39 12989.28 17171.63 16575.34 23087.28 21154.80 22191.11 24462.72 25079.57 24690.09 204
test178.40 19277.40 19781.40 20987.60 20263.01 23988.39 12989.28 17171.63 16575.34 23087.28 21154.80 22191.11 24462.72 25079.57 24690.09 204
FMVSNet377.88 20876.85 20980.97 22386.84 22262.36 24686.52 18988.77 19571.13 17875.34 23086.66 23354.07 23291.10 24762.72 25079.57 24689.45 230
CostFormer75.24 25473.90 25479.27 25682.65 30758.27 29080.80 29482.73 30261.57 32175.33 23483.13 30755.52 21691.07 25064.98 23578.34 26388.45 262
test_vis1_n69.85 30769.21 29871.77 33672.66 38555.27 33781.48 28676.21 35752.03 37275.30 23583.20 30628.97 38176.22 37374.60 14478.41 26283.81 342
FMVSNet278.20 19877.21 20181.20 21587.60 20262.89 24387.47 16089.02 18571.63 16575.29 23687.28 21154.80 22191.10 24762.38 25579.38 25089.61 226
v879.97 15779.02 15882.80 17984.09 27164.50 20787.96 14590.29 14574.13 12375.24 23786.81 22462.88 14493.89 13574.39 14775.40 30490.00 210
testing9976.09 24275.12 24079.00 26088.16 17655.50 33380.79 29581.40 31473.30 14475.17 23884.27 28744.48 32590.02 26564.28 24084.22 18591.48 151
anonymousdsp78.60 18977.15 20282.98 17180.51 33767.08 15387.24 16789.53 16465.66 27675.16 23987.19 21752.52 24292.25 20477.17 12079.34 25189.61 226
QAPM80.88 12879.50 14485.03 8488.01 18568.97 10491.59 4392.00 8866.63 26575.15 24092.16 8857.70 20395.45 6563.52 24388.76 12390.66 178
v1079.74 15978.67 16382.97 17284.06 27264.95 19787.88 15190.62 13173.11 14875.11 24186.56 23861.46 16694.05 12473.68 15275.55 29789.90 216
Vis-MVSNet (Re-imp)78.36 19478.45 16878.07 27888.64 16051.78 36386.70 18479.63 33474.14 12275.11 24190.83 12461.29 17189.75 27058.10 29691.60 8392.69 110
cl2278.07 20277.01 20481.23 21482.37 31361.83 25583.55 26087.98 21268.96 23475.06 24383.87 29261.40 16891.88 21773.53 15476.39 28489.98 213
ACMP74.13 681.51 12080.57 12184.36 10889.42 12668.69 11689.97 7591.50 11174.46 11575.04 24490.41 13153.82 23494.54 10577.56 11582.91 20789.86 218
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Effi-MVS+-dtu80.03 15478.57 16684.42 10685.13 25268.74 11188.77 11588.10 20974.99 10374.97 24583.49 30257.27 20993.36 15873.53 15480.88 23091.18 159
XXY-MVS75.41 25275.56 23074.96 31083.59 28157.82 29980.59 30183.87 28066.54 26674.93 24688.31 18663.24 13680.09 35262.16 25976.85 27786.97 294
eth_miper_zixun_eth77.92 20776.69 21581.61 20483.00 29761.98 25283.15 26689.20 17869.52 21774.86 24784.35 28461.76 15992.56 19171.50 17472.89 33190.28 195
GA-MVS76.87 22875.17 23981.97 19782.75 30362.58 24481.44 28886.35 24772.16 16174.74 24882.89 31146.20 31292.02 21168.85 20281.09 22891.30 157
sss73.60 26873.64 25873.51 32482.80 30255.01 33976.12 34381.69 31162.47 31474.68 24985.85 25457.32 20878.11 36060.86 27280.93 22987.39 281
testing22274.04 26372.66 26678.19 27587.89 18755.36 33481.06 29279.20 33871.30 17574.65 25083.57 30139.11 35788.67 29051.43 33485.75 16590.53 184
test_fmvs268.35 31967.48 32070.98 34569.50 38951.95 35980.05 30976.38 35649.33 37874.65 25084.38 28223.30 38975.40 38074.51 14575.17 31085.60 318
BH-w/o78.21 19777.33 20080.84 22588.81 15265.13 19484.87 22987.85 21869.75 21374.52 25284.74 27861.34 16993.11 17558.24 29585.84 16384.27 335
FMVSNet177.44 21876.12 22481.40 20986.81 22363.01 23988.39 12989.28 17170.49 19474.39 25387.28 21149.06 29191.11 24460.91 27178.52 25890.09 204
cl____77.72 21276.76 21280.58 23082.49 31060.48 27183.09 26887.87 21669.22 22474.38 25485.22 26962.10 15691.53 23171.09 17775.41 30389.73 224
DIV-MVS_self_test77.72 21276.76 21280.58 23082.48 31160.48 27183.09 26887.86 21769.22 22474.38 25485.24 26762.10 15691.53 23171.09 17775.40 30489.74 223
114514_t80.68 13879.51 14384.20 11794.09 3867.27 14989.64 8591.11 12058.75 34574.08 25690.72 12558.10 19995.04 8769.70 19289.42 11490.30 194
WR-MVS_H78.51 19178.49 16778.56 26888.02 18456.38 32188.43 12792.67 6277.14 5473.89 25787.55 20666.25 10989.24 27958.92 28773.55 32590.06 208
ETVMVS72.25 28471.05 28375.84 30087.77 19651.91 36079.39 31674.98 36169.26 22273.71 25882.95 30940.82 35086.14 31246.17 36484.43 18189.47 229
WB-MVSnew71.96 28771.65 27572.89 32984.67 26251.88 36182.29 27777.57 34662.31 31573.67 25983.00 30853.49 23881.10 34845.75 36782.13 21785.70 317
tpm273.26 27371.46 27778.63 26583.34 28656.71 31580.65 30080.40 32656.63 35973.55 26082.02 32451.80 25991.24 24256.35 31278.42 26187.95 268
CP-MVSNet78.22 19678.34 17277.84 28087.83 19154.54 34387.94 14791.17 11777.65 3873.48 26188.49 18162.24 15488.43 29362.19 25874.07 31890.55 183
pm-mvs177.25 22376.68 21678.93 26284.22 26858.62 28786.41 19188.36 20671.37 17473.31 26288.01 19761.22 17389.15 28164.24 24173.01 33089.03 242
PS-CasMVS78.01 20578.09 17777.77 28287.71 19754.39 34588.02 14391.22 11477.50 4673.26 26388.64 17560.73 17988.41 29461.88 26273.88 32290.53 184
CVMVSNet72.99 27772.58 26774.25 31884.28 26650.85 36986.41 19183.45 28744.56 38273.23 26487.54 20749.38 28585.70 31565.90 22778.44 26086.19 307
PEN-MVS77.73 21177.69 19277.84 28087.07 21953.91 34887.91 14991.18 11677.56 4373.14 26588.82 17061.23 17289.17 28059.95 27772.37 33390.43 188
1112_ss77.40 22076.43 22080.32 23689.11 14560.41 27383.65 25687.72 22162.13 31873.05 26686.72 22762.58 14789.97 26662.11 26180.80 23290.59 182
tpm72.37 28271.71 27474.35 31782.19 31452.00 35879.22 31977.29 35064.56 28772.95 26783.68 30051.35 26283.26 33758.33 29475.80 29387.81 272
cascas76.72 23074.64 24382.99 17085.78 23865.88 17682.33 27689.21 17760.85 32672.74 26881.02 33047.28 30193.75 14267.48 21385.02 16989.34 233
CR-MVSNet73.37 27071.27 28179.67 25081.32 32965.19 19275.92 34580.30 32759.92 33372.73 26981.19 32752.50 24386.69 30759.84 27877.71 26687.11 291
RPMNet73.51 26970.49 28982.58 18781.32 32965.19 19275.92 34592.27 7757.60 35372.73 26976.45 36652.30 24695.43 6748.14 35577.71 26687.11 291
testing1175.14 25574.01 25178.53 27088.16 17656.38 32180.74 29880.42 32570.67 18872.69 27183.72 29843.61 33189.86 26762.29 25783.76 19089.36 232
DTE-MVSNet76.99 22576.80 21077.54 28786.24 23153.06 35687.52 15890.66 13077.08 5772.50 27288.67 17460.48 18689.52 27457.33 30370.74 34490.05 209
Test_1112_low_res76.40 23775.44 23279.27 25689.28 13558.09 29181.69 28387.07 23459.53 33772.48 27386.67 23261.30 17089.33 27760.81 27380.15 24190.41 189
v7n78.97 18177.58 19583.14 16283.45 28465.51 18488.32 13491.21 11573.69 13272.41 27486.32 24557.93 20093.81 13769.18 19775.65 29590.11 202
SCA74.22 26172.33 27079.91 24384.05 27362.17 25079.96 31179.29 33766.30 26872.38 27580.13 33951.95 25588.60 29159.25 28377.67 26888.96 247
CNLPA78.08 20176.79 21181.97 19790.40 9771.07 6287.59 15784.55 26966.03 27272.38 27589.64 14657.56 20586.04 31359.61 28083.35 20288.79 254
NR-MVSNet80.23 15079.38 14682.78 18287.80 19263.34 23286.31 19491.09 12179.01 2672.17 27789.07 16267.20 9992.81 18766.08 22675.65 29592.20 129
OpenMVScopyleft72.83 1079.77 15878.33 17384.09 12385.17 24869.91 8490.57 6090.97 12266.70 25972.17 27791.91 9154.70 22593.96 12561.81 26490.95 9288.41 264
MVS78.19 19976.99 20681.78 19985.66 23966.99 15484.66 23390.47 13655.08 36572.02 27985.27 26663.83 13194.11 12366.10 22589.80 11084.24 336
XVG-ACMP-BASELINE76.11 24174.27 25081.62 20283.20 29064.67 20383.60 25989.75 15969.75 21371.85 28087.09 22032.78 37392.11 20869.99 18980.43 23888.09 267
PatchmatchNetpermissive73.12 27571.33 28078.49 27283.18 29160.85 26579.63 31378.57 34164.13 29271.73 28179.81 34451.20 26485.97 31457.40 30276.36 28988.66 258
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst72.39 28072.13 27173.18 32880.54 33649.91 37379.91 31279.08 33963.11 30371.69 28279.95 34155.32 21782.77 33965.66 23073.89 32186.87 295
TransMVSNet (Re)75.39 25374.56 24577.86 27985.50 24357.10 30986.78 18186.09 25172.17 16071.53 28387.34 21063.01 14389.31 27856.84 30861.83 37087.17 287
Fast-Effi-MVS+-dtu78.02 20476.49 21882.62 18683.16 29366.96 15786.94 17487.45 22772.45 15471.49 28484.17 28954.79 22491.58 22667.61 21180.31 23989.30 234
PAPM77.68 21576.40 22181.51 20587.29 21561.85 25483.78 25489.59 16364.74 28571.23 28588.70 17262.59 14693.66 14552.66 32787.03 14389.01 243
tfpnnormal74.39 25873.16 26278.08 27786.10 23558.05 29284.65 23587.53 22470.32 19771.22 28685.63 25954.97 21989.86 26743.03 37475.02 31186.32 304
RPSCF73.23 27471.46 27778.54 26982.50 30959.85 27882.18 27882.84 30158.96 34271.15 28789.41 15845.48 32184.77 32658.82 28971.83 33891.02 167
PatchT68.46 31867.85 31170.29 34780.70 33443.93 38972.47 36274.88 36260.15 33170.55 28876.57 36549.94 27881.59 34450.58 33674.83 31385.34 321
CL-MVSNet_self_test72.37 28271.46 27775.09 30979.49 35253.53 35080.76 29785.01 26469.12 22870.51 28982.05 32357.92 20184.13 32952.27 32966.00 36287.60 276
IterMVS-SCA-FT75.43 25173.87 25580.11 24082.69 30564.85 20081.57 28583.47 28669.16 22770.49 29084.15 29051.95 25588.15 29669.23 19672.14 33687.34 283
miper_lstm_enhance74.11 26273.11 26377.13 29280.11 34159.62 28172.23 36386.92 23866.76 25870.40 29182.92 31056.93 21282.92 33869.06 19972.63 33288.87 250
gg-mvs-nofinetune69.95 30567.96 30975.94 29983.07 29454.51 34477.23 34070.29 37663.11 30370.32 29262.33 38743.62 33088.69 28953.88 32187.76 13384.62 333
DP-MVS76.78 22974.57 24483.42 14993.29 4869.46 9488.55 12583.70 28163.98 29770.20 29388.89 16854.01 23394.80 9846.66 36081.88 22186.01 312
pmmvs674.69 25773.39 25978.61 26681.38 32657.48 30486.64 18587.95 21464.99 28470.18 29486.61 23450.43 27389.52 27462.12 26070.18 34688.83 252
PVSNet64.34 1872.08 28670.87 28675.69 30286.21 23256.44 31974.37 35780.73 31962.06 31970.17 29582.23 32142.86 33783.31 33654.77 31784.45 18087.32 284
131476.53 23275.30 23880.21 23883.93 27562.32 24884.66 23388.81 19360.23 33070.16 29684.07 29155.30 21890.73 25667.37 21483.21 20487.59 278
Patchmtry70.74 29669.16 29975.49 30680.72 33354.07 34774.94 35680.30 32758.34 34670.01 29781.19 32752.50 24386.54 30853.37 32471.09 34385.87 316
EPMVS69.02 31168.16 30671.59 33779.61 35049.80 37577.40 33866.93 38462.82 31070.01 29779.05 34845.79 31677.86 36256.58 31075.26 30887.13 290
IterMVS74.29 25972.94 26478.35 27381.53 32363.49 22881.58 28482.49 30368.06 24869.99 29983.69 29951.66 26185.54 31865.85 22871.64 33986.01 312
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test-LLR72.94 27872.43 26874.48 31581.35 32758.04 29378.38 32977.46 34766.66 26069.95 30079.00 35048.06 29779.24 35466.13 22384.83 17186.15 308
test-mter71.41 28970.39 29274.48 31581.35 32758.04 29378.38 32977.46 34760.32 32969.95 30079.00 35036.08 36879.24 35466.13 22384.83 17186.15 308
pmmvs474.03 26571.91 27280.39 23381.96 31668.32 12381.45 28782.14 30659.32 33869.87 30285.13 27152.40 24588.13 29760.21 27674.74 31484.73 332
PLCcopyleft70.83 1178.05 20376.37 22283.08 16591.88 7467.80 13588.19 13889.46 16664.33 29169.87 30288.38 18453.66 23593.58 14658.86 28882.73 21087.86 271
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LTVRE_ROB69.57 1376.25 23974.54 24681.41 20888.60 16164.38 21179.24 31889.12 18370.76 18769.79 30487.86 19849.09 29093.20 16856.21 31380.16 24086.65 301
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LS3D76.95 22774.82 24283.37 15290.45 9567.36 14689.15 10386.94 23761.87 32069.52 30590.61 12751.71 26094.53 10646.38 36386.71 14888.21 266
IB-MVS68.01 1575.85 24573.36 26083.31 15384.76 25766.03 16983.38 26285.06 26270.21 20169.40 30681.05 32945.76 31794.66 10365.10 23475.49 29889.25 235
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PatchMatch-RL72.38 28170.90 28576.80 29588.60 16167.38 14579.53 31476.17 35862.75 31169.36 30782.00 32545.51 31984.89 32553.62 32280.58 23578.12 373
MDTV_nov1_ep1369.97 29583.18 29153.48 35177.10 34180.18 33060.45 32769.33 30880.44 33648.89 29586.90 30651.60 33278.51 259
dmvs_re71.14 29170.58 28772.80 33081.96 31659.68 28075.60 34979.34 33668.55 24069.27 30980.72 33549.42 28476.54 36852.56 32877.79 26582.19 358
testing368.56 31667.67 31771.22 34387.33 21342.87 39183.06 27171.54 37370.36 19569.08 31084.38 28230.33 38085.69 31637.50 38575.45 30285.09 328
D2MVS74.82 25673.21 26179.64 25179.81 34662.56 24580.34 30687.35 22864.37 29068.86 31182.66 31546.37 30890.10 26367.91 20981.24 22686.25 305
PMMVS69.34 30968.67 30171.35 34175.67 36862.03 25175.17 35173.46 36850.00 37768.68 31279.05 34852.07 25378.13 35961.16 27082.77 20973.90 380
Patchmatch-RL test70.24 30267.78 31577.61 28577.43 36159.57 28371.16 36670.33 37562.94 30768.65 31372.77 37850.62 27085.49 31969.58 19466.58 35987.77 273
MS-PatchMatch73.83 26672.67 26577.30 29083.87 27666.02 17181.82 28084.66 26761.37 32468.61 31482.82 31347.29 30088.21 29559.27 28284.32 18277.68 374
tpm cat170.57 29868.31 30477.35 28982.41 31257.95 29678.08 33380.22 32952.04 37168.54 31577.66 36152.00 25487.84 30051.77 33072.07 33786.25 305
mvsany_test162.30 34461.26 34865.41 36369.52 38854.86 34066.86 38249.78 40346.65 38068.50 31683.21 30549.15 28966.28 39556.93 30760.77 37375.11 379
TESTMET0.1,169.89 30669.00 30072.55 33279.27 35556.85 31178.38 32974.71 36557.64 35268.09 31777.19 36337.75 36376.70 36763.92 24284.09 18684.10 339
MIMVSNet70.69 29769.30 29674.88 31184.52 26356.35 32375.87 34779.42 33564.59 28667.76 31882.41 31741.10 34781.54 34546.64 36281.34 22486.75 299
ACMH+68.96 1476.01 24374.01 25182.03 19588.60 16165.31 19188.86 11187.55 22370.25 20067.75 31987.47 20941.27 34693.19 17058.37 29375.94 29287.60 276
LCM-MVSNet-Re77.05 22476.94 20777.36 28887.20 21651.60 36480.06 30880.46 32475.20 9867.69 32086.72 22762.48 14888.98 28463.44 24589.25 11591.51 147
ITE_SJBPF78.22 27481.77 31960.57 26983.30 28869.25 22367.54 32187.20 21636.33 36787.28 30554.34 31974.62 31586.80 297
test_fmvs363.36 34261.82 34567.98 35862.51 39646.96 38177.37 33974.03 36745.24 38167.50 32278.79 35312.16 40072.98 38872.77 16566.02 36183.99 340
pmmvs571.55 28870.20 29475.61 30377.83 35956.39 32081.74 28280.89 31657.76 35167.46 32384.49 27949.26 28885.32 32257.08 30575.29 30785.11 327
MVP-Stereo76.12 24074.46 24881.13 21885.37 24669.79 8684.42 24487.95 21465.03 28267.46 32385.33 26553.28 24091.73 22358.01 29783.27 20381.85 360
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_040272.79 27970.44 29079.84 24588.13 17865.99 17385.93 20584.29 27365.57 27767.40 32585.49 26246.92 30492.61 18935.88 38674.38 31780.94 365
GG-mvs-BLEND75.38 30781.59 32255.80 32979.32 31769.63 37867.19 32673.67 37643.24 33388.90 28850.41 33784.50 17681.45 362
tpmvs71.09 29269.29 29776.49 29682.04 31556.04 32678.92 32481.37 31564.05 29567.18 32778.28 35649.74 28189.77 26949.67 34572.37 33383.67 343
OurMVSNet-221017-074.26 26072.42 26979.80 24683.76 27959.59 28285.92 20686.64 24166.39 26766.96 32887.58 20339.46 35491.60 22565.76 22969.27 34988.22 265
baseline275.70 24673.83 25681.30 21283.26 28861.79 25682.57 27580.65 32066.81 25666.88 32983.42 30357.86 20292.19 20663.47 24479.57 24689.91 215
F-COLMAP76.38 23874.33 24982.50 18889.28 13566.95 15888.41 12889.03 18464.05 29566.83 33088.61 17646.78 30592.89 18357.48 30078.55 25787.67 274
ACMH67.68 1675.89 24473.93 25381.77 20088.71 15866.61 16188.62 12389.01 18669.81 20866.78 33186.70 23141.95 34591.51 23355.64 31478.14 26487.17 287
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Syy-MVS68.05 32067.85 31168.67 35684.68 25940.97 39778.62 32773.08 37066.65 26366.74 33279.46 34552.11 25182.30 34132.89 38976.38 28782.75 354
myMVS_eth3d67.02 32666.29 32769.21 35184.68 25942.58 39278.62 32773.08 37066.65 26366.74 33279.46 34531.53 37782.30 34139.43 38276.38 28782.75 354
test0.0.03 168.00 32167.69 31668.90 35377.55 36047.43 37875.70 34872.95 37266.66 26066.56 33482.29 32048.06 29775.87 37544.97 37174.51 31683.41 345
MDTV_nov1_ep13_2view37.79 39975.16 35255.10 36466.53 33549.34 28653.98 32087.94 269
KD-MVS_2432*160066.22 33363.89 33573.21 32575.47 37153.42 35270.76 36984.35 27164.10 29366.52 33678.52 35434.55 37184.98 32350.40 33850.33 38981.23 363
miper_refine_blended66.22 33363.89 33573.21 32575.47 37153.42 35270.76 36984.35 27164.10 29366.52 33678.52 35434.55 37184.98 32350.40 33850.33 38981.23 363
ET-MVSNet_ETH3D78.63 18876.63 21784.64 9886.73 22569.47 9285.01 22684.61 26869.54 21666.51 33886.59 23550.16 27591.75 22176.26 12984.24 18492.69 110
EU-MVSNet68.53 31767.61 31871.31 34278.51 35847.01 38084.47 23984.27 27442.27 38566.44 33984.79 27740.44 35183.76 33158.76 29068.54 35483.17 347
EPNet_dtu75.46 25074.86 24177.23 29182.57 30854.60 34286.89 17683.09 29371.64 16466.25 34085.86 25355.99 21588.04 29854.92 31686.55 15089.05 241
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2023120668.60 31467.80 31471.02 34480.23 34050.75 37078.30 33280.47 32356.79 35866.11 34182.63 31646.35 30978.95 35643.62 37375.70 29483.36 346
SixPastTwentyTwo73.37 27071.26 28279.70 24885.08 25357.89 29785.57 21283.56 28471.03 18265.66 34285.88 25242.10 34392.57 19059.11 28563.34 36888.65 259
MSDG73.36 27270.99 28480.49 23284.51 26465.80 17980.71 29986.13 25065.70 27565.46 34383.74 29744.60 32390.91 25251.13 33576.89 27584.74 331
OpenMVS_ROBcopyleft64.09 1970.56 29968.19 30577.65 28480.26 33859.41 28485.01 22682.96 29858.76 34465.43 34482.33 31837.63 36491.23 24345.34 37076.03 29182.32 356
ppachtmachnet_test70.04 30467.34 32178.14 27679.80 34761.13 26179.19 32080.59 32159.16 34065.27 34579.29 34746.75 30687.29 30449.33 34666.72 35786.00 314
ADS-MVSNet266.20 33563.33 33874.82 31279.92 34358.75 28667.55 38075.19 36053.37 36865.25 34675.86 36942.32 34080.53 35141.57 37768.91 35185.18 324
ADS-MVSNet64.36 33962.88 34268.78 35579.92 34347.17 37967.55 38071.18 37453.37 36865.25 34675.86 36942.32 34073.99 38541.57 37768.91 35185.18 324
testgi66.67 32966.53 32667.08 36175.62 36941.69 39675.93 34476.50 35566.11 26965.20 34886.59 23535.72 36974.71 38243.71 37273.38 32884.84 330
PM-MVS66.41 33164.14 33373.20 32773.92 37556.45 31878.97 32364.96 39063.88 29964.72 34980.24 33819.84 39283.44 33566.24 22264.52 36679.71 370
JIA-IIPM66.32 33262.82 34376.82 29477.09 36361.72 25765.34 38775.38 35958.04 35064.51 35062.32 38842.05 34486.51 30951.45 33369.22 35082.21 357
ambc75.24 30873.16 38150.51 37163.05 39287.47 22664.28 35177.81 36017.80 39489.73 27157.88 29860.64 37485.49 319
EG-PatchMatch MVS74.04 26371.82 27380.71 22884.92 25567.42 14385.86 20888.08 21066.04 27164.22 35283.85 29335.10 37092.56 19157.44 30180.83 23182.16 359
dp66.80 32765.43 32970.90 34679.74 34948.82 37675.12 35474.77 36359.61 33564.08 35377.23 36242.89 33680.72 35048.86 34966.58 35983.16 348
KD-MVS_self_test68.81 31267.59 31972.46 33374.29 37445.45 38277.93 33587.00 23563.12 30263.99 35478.99 35242.32 34084.77 32656.55 31164.09 36787.16 289
pmmvs-eth3d70.50 30067.83 31378.52 27177.37 36266.18 16881.82 28081.51 31258.90 34363.90 35580.42 33742.69 33886.28 31158.56 29165.30 36483.11 349
COLMAP_ROBcopyleft66.92 1773.01 27670.41 29180.81 22687.13 21865.63 18288.30 13584.19 27662.96 30663.80 35687.69 20138.04 36292.56 19146.66 36074.91 31284.24 336
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet569.50 30867.96 30974.15 31982.97 30055.35 33580.01 31082.12 30762.56 31363.02 35781.53 32636.92 36581.92 34348.42 35074.06 31985.17 326
test20.0367.45 32366.95 32468.94 35275.48 37044.84 38777.50 33777.67 34566.66 26063.01 35883.80 29547.02 30378.40 35842.53 37668.86 35383.58 344
K. test v371.19 29068.51 30279.21 25883.04 29657.78 30084.35 24676.91 35372.90 15362.99 35982.86 31239.27 35591.09 24961.65 26552.66 38688.75 256
our_test_369.14 31067.00 32375.57 30479.80 34758.80 28577.96 33477.81 34459.55 33662.90 36078.25 35747.43 29983.97 33051.71 33167.58 35683.93 341
CHOSEN 280x42066.51 33064.71 33171.90 33581.45 32463.52 22757.98 39468.95 38253.57 36762.59 36176.70 36446.22 31175.29 38155.25 31579.68 24576.88 376
Anonymous2024052168.80 31367.22 32273.55 32374.33 37354.11 34683.18 26585.61 25658.15 34861.68 36280.94 33230.71 37981.27 34757.00 30673.34 32985.28 322
USDC70.33 30168.37 30376.21 29880.60 33556.23 32479.19 32086.49 24360.89 32561.29 36385.47 26331.78 37689.47 27653.37 32476.21 29082.94 353
lessismore_v078.97 26181.01 33257.15 30865.99 38661.16 36482.82 31339.12 35691.34 24059.67 27946.92 39288.43 263
UnsupCasMVSNet_eth67.33 32465.99 32871.37 33973.48 37951.47 36675.16 35285.19 26165.20 27960.78 36580.93 33442.35 33977.20 36457.12 30453.69 38585.44 320
dmvs_testset62.63 34364.11 33458.19 37178.55 35724.76 40775.28 35065.94 38767.91 24960.34 36676.01 36853.56 23673.94 38631.79 39067.65 35575.88 378
AllTest70.96 29368.09 30879.58 25285.15 25063.62 22284.58 23779.83 33162.31 31560.32 36786.73 22532.02 37488.96 28650.28 34071.57 34086.15 308
TestCases79.58 25285.15 25063.62 22279.83 33162.31 31560.32 36786.73 22532.02 37488.96 28650.28 34071.57 34086.15 308
Patchmatch-test64.82 33863.24 33969.57 34979.42 35349.82 37463.49 39169.05 38151.98 37359.95 36980.13 33950.91 26670.98 38940.66 37973.57 32487.90 270
MIMVSNet168.58 31566.78 32573.98 32180.07 34251.82 36280.77 29684.37 27064.40 28959.75 37082.16 32236.47 36683.63 33342.73 37570.33 34586.48 303
test_vis1_rt60.28 34758.42 35065.84 36267.25 39255.60 33270.44 37160.94 39544.33 38359.00 37166.64 38524.91 38568.67 39362.80 24969.48 34773.25 381
LF4IMVS64.02 34062.19 34469.50 35070.90 38753.29 35576.13 34277.18 35152.65 37058.59 37280.98 33123.55 38876.52 36953.06 32666.66 35878.68 372
PVSNet_057.27 2061.67 34659.27 34968.85 35479.61 35057.44 30568.01 37973.44 36955.93 36258.54 37370.41 38344.58 32477.55 36347.01 35935.91 39571.55 383
TDRefinement67.49 32264.34 33276.92 29373.47 38061.07 26284.86 23082.98 29759.77 33458.30 37485.13 27126.06 38487.89 29947.92 35760.59 37581.81 361
mvsany_test353.99 35351.45 35861.61 36855.51 40044.74 38863.52 39045.41 40743.69 38458.11 37576.45 36617.99 39363.76 39854.77 31747.59 39176.34 377
UnsupCasMVSNet_bld63.70 34161.53 34770.21 34873.69 37751.39 36772.82 36181.89 30855.63 36357.81 37671.80 38038.67 35878.61 35749.26 34752.21 38780.63 366
DSMNet-mixed57.77 35056.90 35260.38 36967.70 39135.61 40069.18 37553.97 40132.30 39757.49 37779.88 34240.39 35268.57 39438.78 38372.37 33376.97 375
N_pmnet52.79 35753.26 35651.40 38178.99 3567.68 41369.52 3733.89 41251.63 37457.01 37874.98 37340.83 34965.96 39637.78 38464.67 36580.56 368
new-patchmatchnet61.73 34561.73 34661.70 36772.74 38424.50 40869.16 37678.03 34361.40 32256.72 37975.53 37238.42 35976.48 37045.95 36657.67 37784.13 338
CMPMVSbinary51.72 2170.19 30368.16 30676.28 29773.15 38257.55 30379.47 31583.92 27848.02 37956.48 38084.81 27643.13 33586.42 31062.67 25381.81 22284.89 329
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TinyColmap67.30 32564.81 33074.76 31381.92 31856.68 31680.29 30781.49 31360.33 32856.27 38183.22 30424.77 38687.66 30345.52 36869.47 34879.95 369
test_f52.09 35850.82 35955.90 37553.82 40342.31 39559.42 39358.31 39936.45 39256.12 38270.96 38212.18 39957.79 40053.51 32356.57 38067.60 386
YYNet165.03 33662.91 34171.38 33875.85 36756.60 31769.12 37774.66 36657.28 35654.12 38377.87 35945.85 31574.48 38349.95 34361.52 37283.05 350
MDA-MVSNet_test_wron65.03 33662.92 34071.37 33975.93 36556.73 31369.09 37874.73 36457.28 35654.03 38477.89 35845.88 31474.39 38449.89 34461.55 37182.99 352
pmmvs357.79 34954.26 35468.37 35764.02 39556.72 31475.12 35465.17 38840.20 38752.93 38569.86 38420.36 39175.48 37845.45 36955.25 38472.90 382
MVS-HIRNet59.14 34857.67 35163.57 36581.65 32043.50 39071.73 36465.06 38939.59 38951.43 38657.73 39338.34 36082.58 34039.53 38073.95 32064.62 389
WB-MVS54.94 35154.72 35355.60 37773.50 37820.90 40974.27 35861.19 39459.16 34050.61 38774.15 37447.19 30275.78 37617.31 40135.07 39670.12 384
MDA-MVSNet-bldmvs66.68 32863.66 33775.75 30179.28 35460.56 27073.92 35978.35 34264.43 28850.13 38879.87 34344.02 32883.67 33246.10 36556.86 37883.03 351
SSC-MVS53.88 35453.59 35554.75 37972.87 38319.59 41073.84 36060.53 39657.58 35449.18 38973.45 37746.34 31075.47 37916.20 40432.28 39869.20 385
new_pmnet50.91 36050.29 36052.78 38068.58 39034.94 40263.71 38956.63 40039.73 38844.95 39065.47 38621.93 39058.48 39934.98 38756.62 37964.92 388
test_vis3_rt49.26 36247.02 36456.00 37454.30 40145.27 38666.76 38448.08 40436.83 39144.38 39153.20 3967.17 40764.07 39756.77 30955.66 38158.65 393
FPMVS53.68 35551.64 35759.81 37065.08 39451.03 36869.48 37469.58 37941.46 38640.67 39272.32 37916.46 39670.00 39224.24 39865.42 36358.40 394
APD_test153.31 35649.93 36163.42 36665.68 39350.13 37271.59 36566.90 38534.43 39440.58 39371.56 3818.65 40576.27 37234.64 38855.36 38363.86 390
LCM-MVSNet54.25 35249.68 36267.97 35953.73 40445.28 38566.85 38380.78 31835.96 39339.45 39462.23 3898.70 40478.06 36148.24 35451.20 38880.57 367
PMMVS240.82 36738.86 37046.69 38253.84 40216.45 41148.61 39749.92 40237.49 39031.67 39560.97 3908.14 40656.42 40128.42 39330.72 39967.19 387
ANet_high50.57 36146.10 36563.99 36448.67 40739.13 39870.99 36880.85 31761.39 32331.18 39657.70 39417.02 39573.65 38731.22 39115.89 40479.18 371
testf145.72 36341.96 36657.00 37256.90 39845.32 38366.14 38559.26 39726.19 39830.89 39760.96 3914.14 40870.64 39026.39 39646.73 39355.04 395
APD_test245.72 36341.96 36657.00 37256.90 39845.32 38366.14 38559.26 39726.19 39830.89 39760.96 3914.14 40870.64 39026.39 39646.73 39355.04 395
Gipumacopyleft45.18 36541.86 36855.16 37877.03 36451.52 36532.50 40080.52 32232.46 39627.12 39935.02 4009.52 40375.50 37722.31 39960.21 37638.45 399
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft37.38 2244.16 36640.28 36955.82 37640.82 40942.54 39465.12 38863.99 39134.43 39424.48 40057.12 3953.92 41076.17 37417.10 40255.52 38248.75 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepMVS_CXcopyleft27.40 38740.17 41026.90 40524.59 41117.44 40323.95 40148.61 3989.77 40226.48 40618.06 40024.47 40028.83 400
tmp_tt18.61 37321.40 37610.23 3894.82 41210.11 41234.70 39930.74 4101.48 40623.91 40226.07 40328.42 38213.41 40827.12 39415.35 4057.17 403
test_method31.52 36929.28 37338.23 38427.03 4116.50 41420.94 40262.21 3934.05 40522.35 40352.50 39713.33 39747.58 40427.04 39534.04 39760.62 391
MVEpermissive26.22 2330.37 37125.89 37543.81 38344.55 40835.46 40128.87 40139.07 40818.20 40218.58 40440.18 3992.68 41147.37 40517.07 40323.78 40148.60 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN31.77 36830.64 37135.15 38552.87 40527.67 40457.09 39547.86 40524.64 40016.40 40533.05 40111.23 40154.90 40214.46 40518.15 40222.87 401
EMVS30.81 37029.65 37234.27 38650.96 40625.95 40656.58 39646.80 40624.01 40115.53 40630.68 40212.47 39854.43 40312.81 40617.05 40322.43 402
wuyk23d16.82 37415.94 37719.46 38858.74 39731.45 40339.22 3983.74 4136.84 4046.04 4072.70 4071.27 41224.29 40710.54 40714.40 4062.63 404
EGC-MVSNET52.07 35947.05 36367.14 36083.51 28360.71 26780.50 30367.75 3830.07 4070.43 40875.85 37124.26 38781.54 34528.82 39262.25 36959.16 392
testmvs6.04 3778.02 3800.10 3910.08 4130.03 41669.74 3720.04 4140.05 4080.31 4091.68 4080.02 4140.04 4090.24 4080.02 4070.25 406
test1236.12 3768.11 3790.14 3900.06 4140.09 41571.05 3670.03 4150.04 4090.25 4101.30 4090.05 4130.03 4100.21 4090.01 4080.29 405
test_blank0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
uanet_test0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
DCPMVS0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
cdsmvs_eth3d_5k19.96 37226.61 3740.00 3920.00 4150.00 4170.00 40389.26 1740.00 4100.00 41188.61 17661.62 1620.00 4110.00 4100.00 4090.00 407
pcd_1.5k_mvsjas5.26 3787.02 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 41063.15 1390.00 4110.00 4100.00 4090.00 407
sosnet-low-res0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
sosnet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
uncertanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
Regformer0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
ab-mvs-re7.23 3759.64 3780.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 41186.72 2270.00 4150.00 4110.00 4100.00 4090.00 407
uanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
WAC-MVS42.58 39239.46 381
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 33
No_MVS89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 33
eth-test20.00 415
eth-test0.00 415
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
save fliter93.80 4072.35 4290.47 6491.17 11774.31 117
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 43
GSMVS88.96 247
sam_mvs151.32 26388.96 247
sam_mvs50.01 276
MTGPAbinary92.02 86
test_post178.90 3255.43 40648.81 29685.44 32159.25 283
test_post5.46 40550.36 27484.24 328
patchmatchnet-post74.00 37551.12 26588.60 291
MTMP92.18 3532.83 409
gm-plane-assit81.40 32553.83 34962.72 31280.94 33292.39 19763.40 246
test9_res84.90 4295.70 2692.87 105
agg_prior282.91 6695.45 3092.70 108
test_prior472.60 3489.01 106
test_prior86.33 5492.61 6569.59 8892.97 5195.48 6493.91 54
新几何286.29 196
旧先验191.96 7165.79 18086.37 24693.08 7169.31 7892.74 6988.74 257
无先验87.48 15988.98 18760.00 33294.12 12267.28 21588.97 246
原ACMM286.86 177
testdata291.01 25162.37 256
segment_acmp73.08 38
testdata184.14 25075.71 88
plane_prior790.08 10368.51 120
plane_prior689.84 11268.70 11560.42 187
plane_prior592.44 7095.38 7178.71 10486.32 15391.33 154
plane_prior491.00 121
plane_prior291.25 5079.12 23
plane_prior189.90 111
plane_prior68.71 11390.38 6877.62 3986.16 157
n20.00 416
nn0.00 416
door-mid69.98 377
test1192.23 80
door69.44 380
HQP5-MVS66.98 155
BP-MVS77.47 116
HQP3-MVS92.19 8385.99 161
HQP2-MVS60.17 190
NP-MVS89.62 11668.32 12390.24 133
ACMMP++_ref81.95 220
ACMMP++81.25 225
Test By Simon64.33 126