This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 189.67 196.44 994.41 30
No_MVS89.16 194.34 2775.53 292.99 4597.53 189.67 196.44 994.41 30
OPU-MVS89.06 394.62 1575.42 493.57 794.02 3982.45 396.87 1883.77 4596.48 894.88 12
HPM-MVS++copyleft89.02 889.15 888.63 495.01 976.03 192.38 2692.85 5480.26 987.78 2794.27 3075.89 1996.81 2187.45 1996.44 993.05 86
SMA-MVScopyleft89.08 789.23 788.61 594.25 3173.73 992.40 2393.63 2174.77 10392.29 795.97 274.28 2997.24 1188.58 1396.91 194.87 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
3Dnovator+77.84 485.48 5084.47 6288.51 691.08 8173.49 1593.18 1193.78 1880.79 676.66 18093.37 5060.40 17496.75 2477.20 10393.73 6095.29 4
CNVR-MVS88.93 989.13 988.33 794.77 1273.82 890.51 5993.00 4380.90 588.06 2594.06 3876.43 1696.84 1988.48 1495.99 1894.34 35
SteuartSystems-ACMMP88.72 1088.86 1088.32 892.14 6972.96 2493.73 593.67 2080.19 1088.10 2494.80 1573.76 3397.11 1387.51 1895.82 2194.90 11
Skip Steuart: Steuart Systems R&D Blog.
MSP-MVS89.51 489.91 588.30 994.28 3073.46 1692.90 1694.11 680.27 891.35 1494.16 3478.35 1396.77 2289.59 394.22 5694.67 22
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
NCCC88.06 1388.01 1788.24 1094.41 2273.62 1091.22 5092.83 5581.50 385.79 3793.47 4973.02 3997.00 1684.90 2994.94 3794.10 43
ZNCC-MVS87.94 1787.85 1888.20 1194.39 2473.33 1893.03 1493.81 1776.81 6185.24 4294.32 2971.76 4696.93 1785.53 2695.79 2294.32 36
region2R87.42 2387.20 2688.09 1294.63 1473.55 1293.03 1493.12 3776.73 6684.45 5894.52 1969.09 7196.70 2584.37 3894.83 4294.03 47
ACMMPR87.44 2187.23 2588.08 1394.64 1373.59 1193.04 1293.20 3476.78 6384.66 5494.52 1968.81 7596.65 2884.53 3694.90 3894.00 48
DPE-MVScopyleft89.48 589.98 488.01 1494.80 1172.69 3091.59 4194.10 875.90 8392.29 795.66 1081.67 697.38 987.44 2096.34 1593.95 49
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
XVS87.18 2786.91 3188.00 1594.42 2073.33 1892.78 1892.99 4579.14 1983.67 7294.17 3367.45 8396.60 3183.06 5094.50 4894.07 45
X-MVStestdata80.37 13177.83 16888.00 1594.42 2073.33 1892.78 1892.99 4579.14 1983.67 7212.47 37367.45 8396.60 3183.06 5094.50 4894.07 45
ACMMP_NAP88.05 1588.08 1687.94 1793.70 4173.05 2190.86 5493.59 2376.27 7788.14 2395.09 1471.06 5296.67 2787.67 1696.37 1494.09 44
HFP-MVS87.58 2087.47 2287.94 1794.58 1673.54 1493.04 1293.24 3376.78 6384.91 4794.44 2670.78 5496.61 3084.53 3694.89 3993.66 59
MP-MVScopyleft87.71 1887.64 2087.93 1994.36 2673.88 692.71 2292.65 6477.57 3983.84 6994.40 2872.24 4296.28 3885.65 2595.30 3393.62 66
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTAPA87.23 2687.00 2787.90 2094.18 3574.25 586.58 17492.02 8579.45 1785.88 3594.80 1568.07 7796.21 4086.69 2395.34 3193.23 79
PGM-MVS86.68 3486.27 3887.90 2094.22 3373.38 1790.22 6893.04 3875.53 8983.86 6894.42 2767.87 8096.64 2982.70 5994.57 4793.66 59
DVP-MVS++90.23 191.01 187.89 2294.34 2771.25 5595.06 194.23 378.38 3192.78 495.74 682.45 397.49 389.42 496.68 294.95 8
GST-MVS87.42 2387.26 2387.89 2294.12 3672.97 2392.39 2593.43 2876.89 5984.68 5193.99 4270.67 5696.82 2084.18 4395.01 3593.90 51
SED-MVS90.08 290.85 287.77 2495.30 270.98 6193.57 794.06 1077.24 4893.10 195.72 882.99 197.44 589.07 996.63 494.88 12
DeepC-MVS_fast79.65 386.91 3186.62 3487.76 2593.52 4672.37 4091.26 4693.04 3876.62 6884.22 6293.36 5171.44 5096.76 2380.82 7295.33 3294.16 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVS89.15 689.63 687.73 2694.49 1871.69 5093.83 493.96 1375.70 8791.06 1696.03 176.84 1497.03 1589.09 695.65 2794.47 29
MCST-MVS87.37 2587.25 2487.73 2694.53 1772.46 3789.82 7593.82 1673.07 14084.86 5092.89 6176.22 1796.33 3684.89 3195.13 3494.40 32
TSAR-MVS + MP.88.02 1688.11 1587.72 2893.68 4372.13 4591.41 4592.35 7474.62 10788.90 2093.85 4475.75 2096.00 4787.80 1594.63 4595.04 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
mPP-MVS86.67 3586.32 3787.72 2894.41 2273.55 1292.74 2092.22 8076.87 6082.81 8494.25 3166.44 9296.24 3982.88 5494.28 5493.38 73
test_0728_SECOND87.71 3095.34 171.43 5493.49 994.23 397.49 389.08 796.41 1294.21 40
DeepC-MVS79.81 287.08 3086.88 3287.69 3191.16 8072.32 4290.31 6693.94 1477.12 5382.82 8394.23 3272.13 4497.09 1484.83 3295.37 3093.65 63
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CP-MVS87.11 2886.92 3087.68 3294.20 3473.86 793.98 392.82 5876.62 6883.68 7194.46 2367.93 7895.95 5084.20 4294.39 5193.23 79
SF-MVS88.46 1188.74 1187.64 3392.78 6171.95 4892.40 2394.74 275.71 8589.16 1995.10 1375.65 2196.19 4187.07 2196.01 1794.79 19
MP-MVS-pluss87.67 1987.72 1987.54 3493.64 4472.04 4789.80 7793.50 2575.17 9686.34 3395.29 1270.86 5396.00 4788.78 1296.04 1694.58 25
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CANet86.45 3686.10 4387.51 3590.09 10170.94 6589.70 8192.59 6681.78 281.32 9891.43 9370.34 5897.23 1284.26 3993.36 6294.37 33
HPM-MVScopyleft87.11 2886.98 2887.50 3693.88 3972.16 4492.19 3293.33 3176.07 8083.81 7093.95 4369.77 6596.01 4685.15 2794.66 4494.32 36
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft85.89 4585.39 5087.38 3793.59 4572.63 3292.74 2093.18 3676.78 6380.73 10793.82 4564.33 11296.29 3782.67 6090.69 9193.23 79
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVScopyleft89.60 390.35 387.33 3895.27 571.25 5593.49 992.73 5977.33 4692.12 995.78 480.98 997.40 789.08 796.41 1293.33 76
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
PHI-MVS86.43 3786.17 4187.24 3990.88 8770.96 6392.27 3194.07 972.45 14585.22 4391.90 7969.47 6796.42 3583.28 4995.94 1994.35 34
APD-MVScopyleft87.44 2187.52 2187.19 4094.24 3272.39 3891.86 3992.83 5573.01 14288.58 2194.52 1973.36 3496.49 3484.26 3995.01 3592.70 95
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CDPH-MVS85.76 4785.29 5487.17 4193.49 4771.08 5988.58 11392.42 7268.32 22484.61 5593.48 4772.32 4196.15 4379.00 8595.43 2994.28 38
train_agg86.43 3786.20 3987.13 4293.26 5072.96 2488.75 10691.89 9368.69 21885.00 4593.10 5474.43 2695.41 6584.97 2895.71 2593.02 88
CSCG86.41 3986.19 4087.07 4392.91 5872.48 3690.81 5593.56 2473.95 11983.16 7891.07 10375.94 1895.19 7379.94 8194.38 5293.55 69
SR-MVS86.73 3286.67 3386.91 4494.11 3772.11 4692.37 2792.56 6774.50 10886.84 3194.65 1867.31 8595.77 5284.80 3392.85 6592.84 93
DPM-MVS84.93 5884.29 6386.84 4590.20 9973.04 2287.12 15693.04 3869.80 19182.85 8291.22 9773.06 3896.02 4576.72 11194.63 4591.46 135
TSAR-MVS + GP.85.71 4885.33 5186.84 4591.34 7872.50 3589.07 9587.28 22076.41 7085.80 3690.22 12174.15 3195.37 7081.82 6491.88 7692.65 99
test1286.80 4792.63 6470.70 7091.79 9982.71 8571.67 4796.16 4294.50 4893.54 70
DeepPCF-MVS80.84 188.10 1288.56 1286.73 4892.24 6869.03 9389.57 8393.39 3077.53 4389.79 1894.12 3578.98 1296.58 3385.66 2495.72 2494.58 25
SD-MVS88.06 1388.50 1386.71 4992.60 6672.71 2891.81 4093.19 3577.87 3490.32 1794.00 4074.83 2393.78 13487.63 1794.27 5593.65 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
3Dnovator76.31 583.38 7382.31 8286.59 5087.94 17772.94 2790.64 5792.14 8477.21 5075.47 20392.83 6358.56 18194.72 9773.24 14392.71 6792.13 117
HPM-MVS_fast85.35 5484.95 5886.57 5193.69 4270.58 7392.15 3491.62 10373.89 12282.67 8694.09 3662.60 13195.54 5880.93 7092.93 6493.57 68
test_prior86.33 5292.61 6569.59 8592.97 5095.48 6093.91 50
MVS_111021_HR85.14 5584.75 5986.32 5391.65 7672.70 2985.98 18990.33 13876.11 7982.08 8991.61 8771.36 5194.17 11881.02 6992.58 6892.08 118
SR-MVS-dyc-post85.77 4685.61 4886.23 5493.06 5570.63 7191.88 3792.27 7673.53 13285.69 3894.45 2465.00 11095.56 5682.75 5591.87 7792.50 103
APD-MVS_3200maxsize85.97 4385.88 4586.22 5592.69 6369.53 8691.93 3692.99 4573.54 13185.94 3494.51 2265.80 10295.61 5583.04 5292.51 6993.53 71
DP-MVS Recon83.11 7882.09 8586.15 5694.44 1970.92 6688.79 10492.20 8170.53 17979.17 12291.03 10664.12 11496.03 4468.39 19090.14 9791.50 132
EPNet83.72 6582.92 7486.14 5784.22 24669.48 8791.05 5385.27 24581.30 476.83 17591.65 8466.09 9795.56 5676.00 11693.85 5893.38 73
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
canonicalmvs85.91 4485.87 4686.04 5889.84 11169.44 9190.45 6493.00 4376.70 6788.01 2691.23 9673.28 3693.91 12981.50 6688.80 11194.77 20
h-mvs3383.15 7582.19 8386.02 5990.56 9270.85 6888.15 12889.16 17176.02 8184.67 5291.39 9461.54 14995.50 5982.71 5775.48 27291.72 126
alignmvs85.48 5085.32 5285.96 6089.51 11869.47 8889.74 7992.47 6876.17 7887.73 2991.46 9270.32 5993.78 13481.51 6588.95 10894.63 24
CS-MVS86.69 3386.95 2985.90 6190.76 9067.57 12992.83 1793.30 3279.67 1584.57 5792.27 7371.47 4995.02 8484.24 4193.46 6195.13 5
DELS-MVS85.41 5385.30 5385.77 6288.49 15867.93 12185.52 20693.44 2778.70 2783.63 7489.03 14974.57 2495.71 5480.26 7994.04 5793.66 59
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CS-MVS-test86.29 4086.48 3585.71 6391.02 8367.21 13992.36 2893.78 1878.97 2683.51 7591.20 9870.65 5795.15 7581.96 6394.89 3994.77 20
casdiffmvs_mvgpermissive85.99 4286.09 4485.70 6487.65 18967.22 13888.69 11093.04 3879.64 1685.33 4192.54 7073.30 3594.50 10583.49 4691.14 8795.37 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ETV-MVS84.90 6084.67 6085.59 6589.39 12368.66 10888.74 10892.64 6579.97 1384.10 6585.71 23869.32 6995.38 6780.82 7291.37 8492.72 94
UA-Net85.08 5784.96 5785.45 6692.07 7068.07 11989.78 7890.86 12582.48 184.60 5693.20 5369.35 6895.22 7271.39 15890.88 9093.07 85
Vis-MVSNetpermissive83.46 7082.80 7685.43 6790.25 9868.74 10290.30 6790.13 14476.33 7680.87 10692.89 6161.00 16394.20 11672.45 15290.97 8893.35 75
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EI-MVSNet-Vis-set84.19 6183.81 6485.31 6888.18 16867.85 12287.66 14289.73 15580.05 1282.95 7989.59 13370.74 5594.82 9380.66 7684.72 15993.28 78
MAR-MVS81.84 9480.70 10585.27 6991.32 7971.53 5289.82 7590.92 12169.77 19278.50 13686.21 23062.36 13794.52 10465.36 21492.05 7589.77 202
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Effi-MVS+83.62 6883.08 7085.24 7088.38 16367.45 13188.89 10089.15 17275.50 9082.27 8788.28 17169.61 6694.45 10777.81 9787.84 12193.84 54
MVSFormer82.85 8182.05 8685.24 7087.35 19770.21 7590.50 6090.38 13468.55 22081.32 9889.47 13661.68 14693.46 15178.98 8690.26 9592.05 119
OPM-MVS83.50 6982.95 7385.14 7288.79 14870.95 6489.13 9491.52 10677.55 4280.96 10591.75 8260.71 16694.50 10579.67 8286.51 14089.97 194
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP_MVS83.64 6783.14 6985.14 7290.08 10268.71 10491.25 4892.44 6979.12 2178.92 12691.00 10760.42 17295.38 6778.71 8886.32 14291.33 136
EI-MVSNet-UG-set83.81 6383.38 6785.09 7487.87 17867.53 13087.44 14889.66 15679.74 1482.23 8889.41 14270.24 6094.74 9679.95 8083.92 16992.99 90
QAPM80.88 11379.50 12885.03 7588.01 17668.97 9691.59 4192.00 8766.63 24075.15 21892.16 7557.70 18895.45 6163.52 22488.76 11290.66 161
casdiffmvspermissive85.11 5685.14 5585.01 7687.20 20465.77 16687.75 14092.83 5577.84 3584.36 6192.38 7272.15 4393.93 12881.27 6890.48 9295.33 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PCF-MVS73.52 780.38 13078.84 14585.01 7687.71 18668.99 9583.65 24391.46 11163.00 27977.77 15690.28 11866.10 9695.09 8261.40 24688.22 12090.94 152
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
nrg03083.88 6283.53 6584.96 7886.77 21269.28 9290.46 6392.67 6174.79 10282.95 7991.33 9572.70 4093.09 16980.79 7479.28 22992.50 103
VDD-MVS83.01 8082.36 8184.96 7891.02 8366.40 15088.91 9988.11 20077.57 3984.39 6093.29 5252.19 23093.91 12977.05 10588.70 11394.57 27
PVSNet_Blended_VisFu82.62 8381.83 9184.96 7890.80 8969.76 8488.74 10891.70 10269.39 19878.96 12488.46 16665.47 10494.87 9274.42 12988.57 11490.24 176
CPTT-MVS83.73 6483.33 6884.92 8193.28 4970.86 6792.09 3590.38 13468.75 21779.57 11892.83 6360.60 17093.04 17380.92 7191.56 8290.86 154
DROMVSNet86.01 4186.38 3684.91 8289.31 12966.27 15392.32 2993.63 2179.37 1884.17 6491.88 8069.04 7495.43 6383.93 4493.77 5993.01 89
OMC-MVS82.69 8281.97 8984.85 8388.75 15067.42 13287.98 13190.87 12474.92 9979.72 11691.65 8462.19 14193.96 12275.26 12486.42 14193.16 83
EIA-MVS83.31 7482.80 7684.82 8489.59 11465.59 16888.21 12492.68 6074.66 10578.96 12486.42 22669.06 7295.26 7175.54 12290.09 9893.62 66
PAPM_NR83.02 7982.41 7984.82 8492.47 6766.37 15187.93 13591.80 9873.82 12377.32 16490.66 11267.90 7994.90 8970.37 16789.48 10593.19 82
baseline84.93 5884.98 5684.80 8687.30 20265.39 17587.30 15292.88 5277.62 3784.04 6792.26 7471.81 4593.96 12281.31 6790.30 9495.03 7
lupinMVS81.39 10680.27 11584.76 8787.35 19770.21 7585.55 20286.41 23262.85 28281.32 9888.61 16161.68 14692.24 19878.41 9290.26 9591.83 123
jason81.39 10680.29 11484.70 8886.63 21469.90 8285.95 19086.77 22863.24 27581.07 10489.47 13661.08 16292.15 20078.33 9390.07 10092.05 119
jason: jason.
ET-MVSNet_ETH3D78.63 17276.63 20084.64 8986.73 21369.47 8885.01 21284.61 25369.54 19666.51 31086.59 21950.16 25691.75 21376.26 11284.24 16792.69 97
EPP-MVSNet83.40 7283.02 7284.57 9090.13 10064.47 19392.32 2990.73 12674.45 11179.35 12191.10 10169.05 7395.12 7672.78 14787.22 12994.13 42
mvsmamba81.69 9880.74 10484.56 9187.45 19666.72 14691.26 4685.89 24174.66 10578.23 14490.56 11454.33 21294.91 8680.73 7583.54 17792.04 121
UGNet80.83 11579.59 12684.54 9288.04 17468.09 11889.42 8488.16 19976.95 5776.22 19089.46 13849.30 26793.94 12568.48 18890.31 9391.60 127
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LPG-MVS_test82.08 8981.27 9584.50 9389.23 13368.76 10090.22 6891.94 9175.37 9276.64 18191.51 8954.29 21394.91 8678.44 9083.78 17089.83 199
LGP-MVS_train84.50 9389.23 13368.76 10091.94 9175.37 9276.64 18191.51 8954.29 21394.91 8678.44 9083.78 17089.83 199
iter_conf_final80.63 12379.35 13284.46 9589.36 12567.70 12689.85 7384.49 25573.19 13878.30 14288.94 15045.98 29194.56 10079.59 8384.48 16391.11 143
MSLP-MVS++85.43 5285.76 4784.45 9691.93 7270.24 7490.71 5692.86 5377.46 4584.22 6292.81 6567.16 8792.94 17580.36 7794.35 5390.16 178
Effi-MVS+-dtu80.03 13878.57 15084.42 9785.13 23468.74 10288.77 10588.10 20174.99 9874.97 22383.49 27857.27 19493.36 15473.53 13780.88 20691.18 141
HQP-MVS82.61 8482.02 8784.37 9889.33 12666.98 14289.17 8992.19 8276.41 7077.23 16790.23 12060.17 17595.11 7877.47 10085.99 14991.03 148
ACMP74.13 681.51 10580.57 10784.36 9989.42 12168.69 10789.97 7291.50 11074.46 11075.04 22290.41 11753.82 21894.54 10277.56 9982.91 18489.86 198
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
原ACMM184.35 10093.01 5768.79 9892.44 6963.96 27381.09 10391.57 8866.06 9895.45 6167.19 20094.82 4388.81 232
PS-MVSNAJss82.07 9081.31 9484.34 10186.51 21567.27 13689.27 8791.51 10771.75 15479.37 12090.22 12163.15 12594.27 11177.69 9882.36 19291.49 133
thisisatest053079.40 15377.76 17384.31 10287.69 18865.10 18187.36 14984.26 26170.04 18677.42 16188.26 17349.94 25994.79 9570.20 16884.70 16093.03 87
CLD-MVS82.31 8681.65 9284.29 10388.47 15967.73 12585.81 19792.35 7475.78 8478.33 14186.58 22164.01 11594.35 10876.05 11587.48 12690.79 155
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
API-MVS81.99 9281.23 9684.26 10490.94 8570.18 8091.10 5189.32 16371.51 16278.66 13288.28 17165.26 10595.10 8164.74 22091.23 8687.51 257
114514_t80.68 12279.51 12784.20 10594.09 3867.27 13689.64 8291.11 11858.75 31674.08 23390.72 11158.10 18495.04 8369.70 17589.42 10690.30 174
IS-MVSNet83.15 7582.81 7584.18 10689.94 10963.30 21891.59 4188.46 19779.04 2379.49 11992.16 7565.10 10794.28 11067.71 19391.86 7994.95 8
MVS_111021_LR82.61 8482.11 8484.11 10788.82 14571.58 5185.15 20986.16 23774.69 10480.47 10991.04 10462.29 13890.55 24380.33 7890.08 9990.20 177
FA-MVS(test-final)80.96 11279.91 11984.10 10888.30 16665.01 18284.55 22490.01 14773.25 13779.61 11787.57 18858.35 18394.72 9771.29 15986.25 14492.56 100
Anonymous2024052980.19 13678.89 14484.10 10890.60 9164.75 18788.95 9890.90 12265.97 24880.59 10891.17 10049.97 25893.73 14069.16 18182.70 18993.81 55
OpenMVScopyleft72.83 1079.77 14278.33 15784.09 11085.17 23069.91 8190.57 5890.97 12066.70 23672.17 25291.91 7854.70 20993.96 12261.81 24390.95 8988.41 242
FE-MVS77.78 19475.68 21084.08 11188.09 17266.00 15783.13 25387.79 21068.42 22378.01 15185.23 25045.50 29895.12 7659.11 26485.83 15291.11 143
hse-mvs281.72 9680.94 10284.07 11288.72 15167.68 12785.87 19387.26 22176.02 8184.67 5288.22 17461.54 14993.48 14982.71 5773.44 29991.06 146
dcpmvs_285.63 4986.15 4284.06 11391.71 7564.94 18486.47 17791.87 9573.63 12786.60 3293.02 5976.57 1591.87 21183.36 4792.15 7395.35 2
AdaColmapbinary80.58 12779.42 12984.06 11393.09 5468.91 9789.36 8688.97 18169.27 20175.70 20089.69 12857.20 19595.77 5263.06 22988.41 11887.50 258
AUN-MVS79.21 15877.60 17884.05 11588.71 15267.61 12885.84 19587.26 22169.08 20977.23 16788.14 17953.20 22393.47 15075.50 12373.45 29891.06 146
VDDNet81.52 10380.67 10684.05 11590.44 9564.13 20089.73 8085.91 24071.11 16883.18 7793.48 4750.54 25393.49 14873.40 14088.25 11994.54 28
xiu_mvs_v1_base_debu80.80 11879.72 12384.03 11787.35 19770.19 7785.56 19988.77 18769.06 21081.83 9188.16 17550.91 24792.85 17778.29 9487.56 12389.06 217
xiu_mvs_v1_base80.80 11879.72 12384.03 11787.35 19770.19 7785.56 19988.77 18769.06 21081.83 9188.16 17550.91 24792.85 17778.29 9487.56 12389.06 217
xiu_mvs_v1_base_debi80.80 11879.72 12384.03 11787.35 19770.19 7785.56 19988.77 18769.06 21081.83 9188.16 17550.91 24792.85 17778.29 9487.56 12389.06 217
PAPR81.66 10180.89 10383.99 12090.27 9764.00 20186.76 17091.77 10168.84 21677.13 17389.50 13467.63 8194.88 9167.55 19588.52 11693.09 84
XVG-OURS80.41 12979.23 13683.97 12185.64 22469.02 9483.03 25790.39 13371.09 16977.63 15891.49 9154.62 21191.35 22475.71 11883.47 17891.54 129
XVG-OURS-SEG-HR80.81 11679.76 12283.96 12285.60 22568.78 9983.54 24890.50 13170.66 17776.71 17991.66 8360.69 16791.26 22676.94 10681.58 20091.83 123
HyFIR lowres test77.53 20075.40 21683.94 12389.59 11466.62 14780.36 28288.64 19456.29 33076.45 18385.17 25257.64 18993.28 15661.34 24883.10 18391.91 122
iter_conf0580.00 14078.70 14683.91 12487.84 18065.83 16288.84 10384.92 25071.61 15978.70 12988.94 15043.88 30494.56 10079.28 8484.28 16691.33 136
tttt051779.40 15377.91 16583.90 12588.10 17163.84 20488.37 12084.05 26371.45 16376.78 17789.12 14649.93 26194.89 9070.18 16983.18 18292.96 91
GeoE81.71 9781.01 10183.80 12689.51 11864.45 19488.97 9788.73 19271.27 16578.63 13389.76 12766.32 9493.20 16169.89 17386.02 14893.74 57
RRT_MVS80.35 13279.22 13783.74 12787.63 19065.46 17291.08 5288.92 18473.82 12376.44 18690.03 12349.05 27294.25 11576.84 10779.20 23191.51 130
PS-MVSNAJ81.69 9881.02 10083.70 12889.51 11868.21 11784.28 23390.09 14570.79 17381.26 10285.62 24263.15 12594.29 10975.62 12088.87 11088.59 238
xiu_mvs_v2_base81.69 9881.05 9983.60 12989.15 13668.03 12084.46 22790.02 14670.67 17681.30 10186.53 22463.17 12494.19 11775.60 12188.54 11588.57 239
ACMM73.20 880.78 12179.84 12183.58 13089.31 12968.37 11289.99 7191.60 10470.28 18377.25 16589.66 12953.37 22193.53 14774.24 13282.85 18588.85 230
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LFMVS81.82 9581.23 9683.57 13191.89 7363.43 21689.84 7481.85 29177.04 5683.21 7693.10 5452.26 22993.43 15371.98 15389.95 10193.85 52
Fast-Effi-MVS+80.81 11679.92 11883.47 13288.85 14264.51 19085.53 20489.39 16170.79 17378.49 13785.06 25567.54 8293.58 14267.03 20386.58 13892.32 109
CHOSEN 1792x268877.63 19975.69 20983.44 13389.98 10868.58 11078.70 30187.50 21656.38 32975.80 19986.84 20758.67 18091.40 22361.58 24585.75 15390.34 173
新几何183.42 13493.13 5270.71 6985.48 24457.43 32481.80 9491.98 7763.28 12092.27 19664.60 22192.99 6387.27 263
DP-MVS76.78 21374.57 22583.42 13493.29 4869.46 9088.55 11483.70 26763.98 27270.20 26888.89 15354.01 21794.80 9446.66 33781.88 19786.01 289
MVS_Test83.15 7583.06 7183.41 13686.86 20863.21 22086.11 18792.00 8774.31 11282.87 8189.44 14170.03 6193.21 15877.39 10288.50 11793.81 55
LS3D76.95 21174.82 22383.37 13790.45 9467.36 13589.15 9386.94 22661.87 29269.52 28090.61 11351.71 24194.53 10346.38 34086.71 13788.21 244
IB-MVS68.01 1575.85 22773.36 23983.31 13884.76 23866.03 15583.38 24985.06 24770.21 18569.40 28181.05 30345.76 29594.66 9965.10 21775.49 27189.25 214
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MG-MVS83.41 7183.45 6683.28 13992.74 6262.28 23488.17 12689.50 15975.22 9481.49 9792.74 6966.75 8895.11 7872.85 14691.58 8192.45 106
jajsoiax79.29 15677.96 16383.27 14084.68 24066.57 14989.25 8890.16 14369.20 20575.46 20589.49 13545.75 29693.13 16776.84 10780.80 20890.11 182
test_djsdf80.30 13379.32 13383.27 14083.98 25165.37 17690.50 6090.38 13468.55 22076.19 19188.70 15756.44 19993.46 15178.98 8680.14 21890.97 151
test_yl81.17 10880.47 11083.24 14289.13 13763.62 20786.21 18489.95 14972.43 14881.78 9589.61 13157.50 19193.58 14270.75 16286.90 13392.52 101
DCV-MVSNet81.17 10880.47 11083.24 14289.13 13763.62 20786.21 18489.95 14972.43 14881.78 9589.61 13157.50 19193.58 14270.75 16286.90 13392.52 101
mvs_tets79.13 16077.77 17283.22 14484.70 23966.37 15189.17 8990.19 14269.38 19975.40 20889.46 13844.17 30293.15 16576.78 10980.70 21090.14 179
thisisatest051577.33 20475.38 21783.18 14585.27 22963.80 20582.11 26383.27 27665.06 25675.91 19683.84 27249.54 26394.27 11167.24 19986.19 14591.48 134
CDS-MVSNet79.07 16277.70 17583.17 14687.60 19168.23 11684.40 23186.20 23667.49 23076.36 18786.54 22361.54 14990.79 23961.86 24287.33 12790.49 168
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v7n78.97 16577.58 17983.14 14783.45 26065.51 16988.32 12191.21 11473.69 12672.41 24986.32 22957.93 18593.81 13369.18 18075.65 26890.11 182
BH-RMVSNet79.61 14478.44 15383.14 14789.38 12465.93 15984.95 21487.15 22373.56 13078.19 14689.79 12656.67 19893.36 15459.53 26086.74 13690.13 180
UniMVSNet (Re)81.60 10281.11 9883.09 14988.38 16364.41 19587.60 14393.02 4278.42 3078.56 13588.16 17569.78 6493.26 15769.58 17776.49 25691.60 127
PLCcopyleft70.83 1178.05 18776.37 20583.08 15091.88 7467.80 12388.19 12589.46 16064.33 26669.87 27788.38 16853.66 21993.58 14258.86 26882.73 18787.86 249
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v119279.59 14678.43 15483.07 15183.55 25864.52 18986.93 16290.58 12970.83 17277.78 15585.90 23459.15 17893.94 12573.96 13477.19 24790.76 157
v2v48280.23 13479.29 13483.05 15283.62 25664.14 19987.04 15889.97 14873.61 12878.18 14787.22 19961.10 16193.82 13276.11 11376.78 25491.18 141
TAMVS78.89 16777.51 18083.03 15387.80 18267.79 12484.72 21885.05 24867.63 22776.75 17887.70 18462.25 13990.82 23858.53 27287.13 13090.49 168
v114480.03 13879.03 14183.01 15483.78 25464.51 19087.11 15790.57 13071.96 15378.08 15086.20 23161.41 15393.94 12574.93 12577.23 24590.60 164
cascas76.72 21474.64 22482.99 15585.78 22265.88 16182.33 26189.21 16960.85 29872.74 24481.02 30447.28 28193.75 13867.48 19685.02 15589.34 211
anonymousdsp78.60 17377.15 18582.98 15680.51 31267.08 14087.24 15489.53 15865.66 25175.16 21787.19 20152.52 22492.25 19777.17 10479.34 22889.61 206
v1079.74 14378.67 14782.97 15784.06 24964.95 18387.88 13890.62 12873.11 13975.11 21986.56 22261.46 15294.05 12173.68 13575.55 27089.90 196
UniMVSNet_NR-MVSNet81.88 9381.54 9382.92 15888.46 16063.46 21487.13 15592.37 7380.19 1078.38 13989.14 14571.66 4893.05 17170.05 17076.46 25792.25 112
DU-MVS81.12 11080.52 10982.90 15987.80 18263.46 21487.02 15991.87 9579.01 2478.38 13989.07 14765.02 10893.05 17170.05 17076.46 25792.20 114
PVSNet_Blended80.98 11180.34 11282.90 15988.85 14265.40 17384.43 22992.00 8767.62 22878.11 14885.05 25666.02 9994.27 11171.52 15589.50 10489.01 222
CANet_DTU80.61 12479.87 12082.83 16185.60 22563.17 22387.36 14988.65 19376.37 7475.88 19788.44 16753.51 22093.07 17073.30 14189.74 10392.25 112
V4279.38 15578.24 15982.83 16181.10 30665.50 17085.55 20289.82 15171.57 16178.21 14586.12 23260.66 16893.18 16475.64 11975.46 27489.81 201
Anonymous2023121178.97 16577.69 17682.81 16390.54 9364.29 19790.11 7091.51 10765.01 25876.16 19588.13 18050.56 25293.03 17469.68 17677.56 24491.11 143
v192192079.22 15778.03 16282.80 16483.30 26363.94 20386.80 16690.33 13869.91 18977.48 16085.53 24358.44 18293.75 13873.60 13676.85 25290.71 160
v879.97 14179.02 14282.80 16484.09 24864.50 19287.96 13290.29 14174.13 11875.24 21686.81 20862.88 13093.89 13174.39 13075.40 27690.00 190
TAPA-MVS73.13 979.15 15977.94 16482.79 16689.59 11462.99 22788.16 12791.51 10765.77 24977.14 17291.09 10260.91 16493.21 15850.26 32087.05 13192.17 116
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v14419279.47 14978.37 15582.78 16783.35 26163.96 20286.96 16090.36 13769.99 18777.50 15985.67 24060.66 16893.77 13674.27 13176.58 25590.62 162
NR-MVSNet80.23 13479.38 13082.78 16787.80 18263.34 21786.31 18191.09 11979.01 2472.17 25289.07 14767.20 8692.81 18066.08 20975.65 26892.20 114
diffmvspermissive82.10 8881.88 9082.76 16983.00 27363.78 20683.68 24289.76 15372.94 14382.02 9089.85 12565.96 10190.79 23982.38 6187.30 12893.71 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v124078.99 16477.78 17182.64 17083.21 26563.54 21186.62 17390.30 14069.74 19577.33 16385.68 23957.04 19693.76 13773.13 14476.92 24990.62 162
Fast-Effi-MVS+-dtu78.02 18876.49 20182.62 17183.16 26966.96 14486.94 16187.45 21872.45 14571.49 25984.17 26754.79 20891.58 21767.61 19480.31 21589.30 213
RPMNet73.51 24770.49 26482.58 17281.32 30465.19 17875.92 31892.27 7657.60 32372.73 24576.45 33852.30 22895.43 6348.14 33277.71 24187.11 269
F-COLMAP76.38 22174.33 23082.50 17389.28 13166.95 14588.41 11689.03 17664.05 27066.83 30488.61 16146.78 28492.89 17657.48 28078.55 23387.67 252
TranMVSNet+NR-MVSNet80.84 11480.31 11382.42 17487.85 17962.33 23287.74 14191.33 11280.55 777.99 15289.86 12465.23 10692.62 18167.05 20275.24 28192.30 110
MVSTER79.01 16377.88 16782.38 17583.07 27064.80 18684.08 23988.95 18269.01 21378.69 13087.17 20254.70 20992.43 18874.69 12680.57 21289.89 197
PVSNet_BlendedMVS80.60 12580.02 11682.36 17688.85 14265.40 17386.16 18692.00 8769.34 20078.11 14886.09 23366.02 9994.27 11171.52 15582.06 19487.39 259
EI-MVSNet80.52 12879.98 11782.12 17784.28 24463.19 22286.41 17888.95 18274.18 11678.69 13087.54 19166.62 8992.43 18872.57 15080.57 21290.74 159
IterMVS-LS80.06 13779.38 13082.11 17885.89 22063.20 22186.79 16789.34 16274.19 11575.45 20686.72 21166.62 8992.39 19072.58 14976.86 25190.75 158
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
BH-untuned79.47 14978.60 14982.05 17989.19 13565.91 16086.07 18888.52 19672.18 15075.42 20787.69 18561.15 16093.54 14660.38 25386.83 13586.70 277
ACMH+68.96 1476.01 22574.01 23282.03 18088.60 15565.31 17788.86 10187.55 21470.25 18467.75 29287.47 19341.27 31993.19 16358.37 27375.94 26587.60 254
Anonymous20240521178.25 17977.01 18781.99 18191.03 8260.67 25384.77 21783.90 26570.65 17880.00 11491.20 9841.08 32191.43 22265.21 21585.26 15493.85 52
GA-MVS76.87 21275.17 22181.97 18282.75 27862.58 22981.44 27286.35 23572.16 15274.74 22682.89 28546.20 29092.02 20468.85 18581.09 20491.30 139
CNLPA78.08 18576.79 19481.97 18290.40 9671.07 6087.59 14484.55 25466.03 24772.38 25089.64 13057.56 19086.04 29459.61 25983.35 17988.79 233
MVS78.19 18376.99 18981.78 18485.66 22366.99 14184.66 21990.47 13255.08 33472.02 25485.27 24863.83 11794.11 12066.10 20889.80 10284.24 311
ACMH67.68 1675.89 22673.93 23381.77 18588.71 15266.61 14888.62 11289.01 17869.81 19066.78 30586.70 21541.95 31891.51 22155.64 29478.14 24087.17 265
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D79.10 16178.24 15981.70 18686.85 20960.24 26087.28 15388.79 18674.25 11476.84 17490.53 11649.48 26491.56 21867.98 19182.15 19393.29 77
VNet82.21 8782.41 7981.62 18790.82 8860.93 24884.47 22589.78 15276.36 7584.07 6691.88 8064.71 11190.26 24570.68 16488.89 10993.66 59
XVG-ACMP-BASELINE76.11 22474.27 23181.62 18783.20 26664.67 18883.60 24689.75 15469.75 19371.85 25587.09 20432.78 34492.11 20169.99 17280.43 21488.09 245
eth_miper_zixun_eth77.92 19176.69 19881.61 18983.00 27361.98 23783.15 25289.20 17069.52 19774.86 22584.35 26561.76 14592.56 18471.50 15772.89 30390.28 175
PAPM77.68 19876.40 20481.51 19087.29 20361.85 23983.78 24189.59 15764.74 26071.23 26088.70 15762.59 13293.66 14152.66 30787.03 13289.01 222
v14878.72 17077.80 17081.47 19182.73 27961.96 23886.30 18288.08 20273.26 13676.18 19285.47 24562.46 13592.36 19271.92 15473.82 29590.09 184
tt080578.73 16977.83 16881.43 19285.17 23060.30 25989.41 8590.90 12271.21 16677.17 17188.73 15646.38 28693.21 15872.57 15078.96 23290.79 155
LTVRE_ROB69.57 1376.25 22274.54 22781.41 19388.60 15564.38 19679.24 29489.12 17570.76 17569.79 27987.86 18249.09 27093.20 16156.21 29380.16 21686.65 278
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
GBi-Net78.40 17677.40 18181.40 19487.60 19163.01 22488.39 11789.28 16471.63 15675.34 21087.28 19554.80 20591.11 22962.72 23179.57 22390.09 184
test178.40 17677.40 18181.40 19487.60 19163.01 22488.39 11789.28 16471.63 15675.34 21087.28 19554.80 20591.11 22962.72 23179.57 22390.09 184
FMVSNet177.44 20176.12 20781.40 19486.81 21163.01 22488.39 11789.28 16470.49 18074.39 23087.28 19549.06 27191.11 22960.91 25078.52 23490.09 184
baseline275.70 22873.83 23681.30 19783.26 26461.79 24182.57 26080.65 30066.81 23366.88 30283.42 27957.86 18792.19 19963.47 22579.57 22389.91 195
c3_l78.75 16877.91 16581.26 19882.89 27661.56 24384.09 23889.13 17469.97 18875.56 20184.29 26666.36 9392.09 20273.47 13975.48 27290.12 181
cl2278.07 18677.01 18781.23 19982.37 28861.83 24083.55 24787.98 20468.96 21475.06 22183.87 27061.40 15491.88 21073.53 13776.39 25989.98 193
bld_raw_dy_0_6477.29 20675.98 20881.22 20085.04 23665.47 17188.14 12977.56 32369.20 20573.77 23589.40 14442.24 31588.85 27176.78 10981.64 19989.33 212
FMVSNet278.20 18277.21 18481.20 20187.60 19162.89 22887.47 14789.02 17771.63 15675.29 21587.28 19554.80 20591.10 23262.38 23579.38 22789.61 206
TR-MVS77.44 20176.18 20681.20 20188.24 16763.24 21984.61 22286.40 23367.55 22977.81 15486.48 22554.10 21593.15 16557.75 27982.72 18887.20 264
ab-mvs79.51 14778.97 14381.14 20388.46 16060.91 24983.84 24089.24 16870.36 18179.03 12388.87 15463.23 12390.21 24765.12 21682.57 19092.28 111
MVP-Stereo76.12 22374.46 22981.13 20485.37 22869.79 8384.42 23087.95 20565.03 25767.46 29685.33 24753.28 22291.73 21558.01 27783.27 18081.85 332
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
miper_ehance_all_eth78.59 17477.76 17381.08 20582.66 28161.56 24383.65 24389.15 17268.87 21575.55 20283.79 27466.49 9192.03 20373.25 14276.39 25989.64 205
FIs82.07 9082.42 7881.04 20688.80 14758.34 27288.26 12393.49 2676.93 5878.47 13891.04 10469.92 6392.34 19469.87 17484.97 15692.44 107
patch_mono-283.65 6684.54 6180.99 20790.06 10665.83 16284.21 23488.74 19171.60 16085.01 4492.44 7174.51 2583.50 31282.15 6292.15 7393.64 65
FMVSNet377.88 19276.85 19280.97 20886.84 21062.36 23186.52 17688.77 18771.13 16775.34 21086.66 21754.07 21691.10 23262.72 23179.57 22389.45 209
miper_enhance_ethall77.87 19376.86 19180.92 20981.65 29561.38 24582.68 25888.98 17965.52 25375.47 20382.30 29365.76 10392.00 20572.95 14576.39 25989.39 210
BH-w/o78.21 18177.33 18380.84 21088.81 14665.13 18084.87 21587.85 20969.75 19374.52 22984.74 26061.34 15593.11 16858.24 27585.84 15184.27 310
COLMAP_ROBcopyleft66.92 1773.01 25470.41 26680.81 21187.13 20665.63 16788.30 12284.19 26262.96 28063.80 32887.69 18538.04 33292.56 18446.66 33774.91 28484.24 311
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
VPA-MVSNet80.60 12580.55 10880.76 21288.07 17360.80 25186.86 16491.58 10575.67 8880.24 11189.45 14063.34 11990.25 24670.51 16679.22 23091.23 140
EG-PatchMatch MVS74.04 24371.82 25180.71 21384.92 23767.42 13285.86 19488.08 20266.04 24664.22 32483.85 27135.10 34092.56 18457.44 28180.83 20782.16 331
ECVR-MVScopyleft79.61 14479.26 13580.67 21490.08 10254.69 31987.89 13777.44 32674.88 10080.27 11092.79 6648.96 27492.45 18768.55 18792.50 7094.86 15
cl____77.72 19676.76 19580.58 21582.49 28560.48 25683.09 25487.87 20769.22 20374.38 23185.22 25162.10 14291.53 21971.09 16075.41 27589.73 204
DIV-MVS_self_test77.72 19676.76 19580.58 21582.48 28660.48 25683.09 25487.86 20869.22 20374.38 23185.24 24962.10 14291.53 21971.09 16075.40 27689.74 203
MSDG73.36 25070.99 25980.49 21784.51 24265.80 16480.71 27886.13 23865.70 25065.46 31583.74 27544.60 30090.91 23751.13 31376.89 25084.74 305
pmmvs474.03 24471.91 25080.39 21881.96 29268.32 11381.45 27182.14 28759.32 31069.87 27785.13 25352.40 22788.13 27960.21 25574.74 28684.73 306
HY-MVS69.67 1277.95 19077.15 18580.36 21987.57 19560.21 26183.37 25087.78 21166.11 24475.37 20987.06 20663.27 12190.48 24461.38 24782.43 19190.40 172
mvs_anonymous79.42 15279.11 14080.34 22084.45 24357.97 27882.59 25987.62 21367.40 23176.17 19488.56 16468.47 7689.59 25570.65 16586.05 14793.47 72
1112_ss77.40 20376.43 20380.32 22189.11 14160.41 25883.65 24387.72 21262.13 29073.05 24286.72 21162.58 13389.97 24962.11 24080.80 20890.59 165
WR-MVS79.49 14879.22 13780.27 22288.79 14858.35 27185.06 21188.61 19578.56 2877.65 15788.34 16963.81 11890.66 24264.98 21877.22 24691.80 125
131476.53 21575.30 22080.21 22383.93 25262.32 23384.66 21988.81 18560.23 30270.16 27184.07 26955.30 20390.73 24167.37 19783.21 18187.59 256
test111179.43 15179.18 13980.15 22489.99 10753.31 33287.33 15177.05 32975.04 9780.23 11292.77 6848.97 27392.33 19568.87 18492.40 7294.81 18
IterMVS-SCA-FT75.43 23273.87 23580.11 22582.69 28064.85 18581.57 26983.47 27369.16 20770.49 26584.15 26851.95 23688.15 27869.23 17972.14 30887.34 261
FC-MVSNet-test81.52 10382.02 8780.03 22688.42 16255.97 30887.95 13393.42 2977.10 5477.38 16290.98 10969.96 6291.79 21268.46 18984.50 16192.33 108
testdata79.97 22790.90 8664.21 19884.71 25159.27 31185.40 4092.91 6062.02 14489.08 26468.95 18391.37 8486.63 279
SCA74.22 24172.33 24879.91 22884.05 25062.17 23579.96 28879.29 31566.30 24372.38 25080.13 31351.95 23688.60 27359.25 26277.67 24388.96 226
thres40076.50 21675.37 21879.86 22989.13 13757.65 28485.17 20783.60 26873.41 13476.45 18386.39 22752.12 23191.95 20648.33 32883.75 17290.00 190
test_040272.79 25770.44 26579.84 23088.13 16965.99 15885.93 19184.29 25965.57 25267.40 29885.49 24446.92 28392.61 18235.88 35874.38 28980.94 337
OurMVSNet-221017-074.26 24072.42 24779.80 23183.76 25559.59 26585.92 19286.64 22966.39 24266.96 30187.58 18739.46 32591.60 21665.76 21269.27 32188.22 243
test250677.30 20576.49 20179.74 23290.08 10252.02 33587.86 13963.10 36374.88 10080.16 11392.79 6638.29 33192.35 19368.74 18692.50 7094.86 15
SixPastTwentyTwo73.37 24871.26 25879.70 23385.08 23557.89 28085.57 19883.56 27071.03 17065.66 31485.88 23542.10 31692.57 18359.11 26463.34 33988.65 237
thres600view776.50 21675.44 21479.68 23489.40 12257.16 28985.53 20483.23 27773.79 12576.26 18987.09 20451.89 23891.89 20948.05 33383.72 17590.00 190
CR-MVSNet73.37 24871.27 25779.67 23581.32 30465.19 17875.92 31880.30 30659.92 30572.73 24581.19 30152.50 22586.69 28959.84 25777.71 24187.11 269
D2MVS74.82 23673.21 24079.64 23679.81 31962.56 23080.34 28387.35 21964.37 26568.86 28482.66 28946.37 28790.10 24867.91 19281.24 20386.25 282
AllTest70.96 26868.09 28379.58 23785.15 23263.62 20784.58 22379.83 31062.31 28860.32 33886.73 20932.02 34588.96 26850.28 31871.57 31286.15 285
TestCases79.58 23785.15 23263.62 20779.83 31062.31 28860.32 33886.73 20932.02 34588.96 26850.28 31871.57 31286.15 285
tfpn200view976.42 21975.37 21879.55 23989.13 13757.65 28485.17 20783.60 26873.41 13476.45 18386.39 22752.12 23191.95 20648.33 32883.75 17289.07 215
thres100view90076.50 21675.55 21379.33 24089.52 11756.99 29285.83 19683.23 27773.94 12076.32 18887.12 20351.89 23891.95 20648.33 32883.75 17289.07 215
CostFormer75.24 23573.90 23479.27 24182.65 28258.27 27380.80 27582.73 28461.57 29375.33 21383.13 28355.52 20191.07 23564.98 21878.34 23988.45 240
Test_1112_low_res76.40 22075.44 21479.27 24189.28 13158.09 27481.69 26787.07 22459.53 30972.48 24886.67 21661.30 15689.33 25960.81 25280.15 21790.41 171
K. test v371.19 26668.51 27779.21 24383.04 27257.78 28384.35 23276.91 33072.90 14462.99 33182.86 28639.27 32691.09 23461.65 24452.66 35788.75 234
lessismore_v078.97 24481.01 30757.15 29065.99 35861.16 33682.82 28739.12 32791.34 22559.67 25846.92 36388.43 241
pm-mvs177.25 20776.68 19978.93 24584.22 24658.62 27086.41 17888.36 19871.37 16473.31 23888.01 18161.22 15989.15 26364.24 22273.01 30289.03 221
thres20075.55 23074.47 22878.82 24687.78 18557.85 28183.07 25683.51 27172.44 14775.84 19884.42 26252.08 23391.75 21347.41 33583.64 17686.86 273
VPNet78.69 17178.66 14878.76 24788.31 16555.72 31084.45 22886.63 23076.79 6278.26 14390.55 11559.30 17789.70 25466.63 20477.05 24890.88 153
tpm273.26 25171.46 25378.63 24883.34 26256.71 29780.65 27980.40 30556.63 32873.55 23682.02 29851.80 24091.24 22756.35 29278.42 23787.95 246
pmmvs674.69 23773.39 23878.61 24981.38 30157.48 28786.64 17287.95 20564.99 25970.18 26986.61 21850.43 25489.52 25662.12 23970.18 31888.83 231
WR-MVS_H78.51 17578.49 15178.56 25088.02 17556.38 30388.43 11592.67 6177.14 5273.89 23487.55 19066.25 9589.24 26158.92 26773.55 29790.06 188
RPSCF73.23 25271.46 25378.54 25182.50 28459.85 26282.18 26282.84 28358.96 31371.15 26289.41 14245.48 29984.77 30458.82 26971.83 31091.02 150
pmmvs-eth3d70.50 27567.83 28778.52 25277.37 33466.18 15481.82 26481.51 29358.90 31463.90 32780.42 31142.69 31086.28 29358.56 27165.30 33583.11 324
PatchmatchNetpermissive73.12 25371.33 25678.49 25383.18 26760.85 25079.63 29078.57 31864.13 26771.73 25679.81 31851.20 24585.97 29557.40 28276.36 26288.66 236
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
IterMVS74.29 23972.94 24378.35 25481.53 29863.49 21381.58 26882.49 28568.06 22669.99 27483.69 27651.66 24285.54 29765.85 21171.64 31186.01 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ITE_SJBPF78.22 25581.77 29460.57 25483.30 27569.25 20267.54 29487.20 20036.33 33787.28 28754.34 29974.62 28786.80 274
ppachtmachnet_test70.04 27967.34 29478.14 25679.80 32061.13 24679.19 29680.59 30159.16 31265.27 31779.29 31946.75 28587.29 28649.33 32466.72 32886.00 291
tfpnnormal74.39 23873.16 24178.08 25786.10 21958.05 27584.65 22187.53 21570.32 18271.22 26185.63 24154.97 20489.86 25043.03 34975.02 28386.32 281
Vis-MVSNet (Re-imp)78.36 17878.45 15278.07 25888.64 15451.78 33986.70 17179.63 31374.14 11775.11 21990.83 11061.29 15789.75 25258.10 27691.60 8092.69 97
TransMVSNet (Re)75.39 23474.56 22677.86 25985.50 22757.10 29186.78 16886.09 23972.17 15171.53 25887.34 19463.01 12989.31 26056.84 28861.83 34187.17 265
PEN-MVS77.73 19577.69 17677.84 26087.07 20753.91 32687.91 13691.18 11577.56 4173.14 24188.82 15561.23 15889.17 26259.95 25672.37 30590.43 170
CP-MVSNet78.22 18078.34 15677.84 26087.83 18154.54 32187.94 13491.17 11677.65 3673.48 23788.49 16562.24 14088.43 27562.19 23774.07 29090.55 166
PS-CasMVS78.01 18978.09 16177.77 26287.71 18654.39 32388.02 13091.22 11377.50 4473.26 23988.64 16060.73 16588.41 27661.88 24173.88 29490.53 167
baseline176.98 21076.75 19777.66 26388.13 16955.66 31185.12 21081.89 28973.04 14176.79 17688.90 15262.43 13687.78 28363.30 22871.18 31489.55 208
OpenMVS_ROBcopyleft64.09 1970.56 27468.19 28077.65 26480.26 31359.41 26785.01 21282.96 28258.76 31565.43 31682.33 29237.63 33491.23 22845.34 34576.03 26482.32 329
Patchmatch-RL test70.24 27767.78 28977.61 26577.43 33359.57 26671.16 33570.33 34762.94 28168.65 28672.77 34750.62 25185.49 29869.58 17766.58 33087.77 251
Baseline_NR-MVSNet78.15 18478.33 15777.61 26585.79 22156.21 30686.78 16885.76 24273.60 12977.93 15387.57 18865.02 10888.99 26567.14 20175.33 27887.63 253
DTE-MVSNet76.99 20976.80 19377.54 26786.24 21753.06 33487.52 14590.66 12777.08 5572.50 24788.67 15960.48 17189.52 25657.33 28370.74 31690.05 189
LCM-MVSNet-Re77.05 20876.94 19077.36 26887.20 20451.60 34080.06 28580.46 30475.20 9567.69 29386.72 21162.48 13488.98 26663.44 22689.25 10791.51 130
tpm cat170.57 27368.31 27977.35 26982.41 28757.95 27978.08 30680.22 30852.04 34068.54 28877.66 33352.00 23587.84 28251.77 30972.07 30986.25 282
MS-PatchMatch73.83 24572.67 24477.30 27083.87 25366.02 15681.82 26484.66 25261.37 29668.61 28782.82 28747.29 28088.21 27759.27 26184.32 16577.68 346
MVS_030472.48 25870.89 26177.24 27182.20 28959.68 26384.11 23783.49 27267.10 23266.87 30380.59 30935.00 34187.40 28559.07 26679.58 22284.63 307
EPNet_dtu75.46 23174.86 22277.23 27282.57 28354.60 32086.89 16383.09 28071.64 15566.25 31285.86 23655.99 20088.04 28054.92 29686.55 13989.05 220
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_lstm_enhance74.11 24273.11 24277.13 27380.11 31559.62 26472.23 33286.92 22766.76 23570.40 26682.92 28456.93 19782.92 31669.06 18272.63 30488.87 229
TDRefinement67.49 29564.34 30476.92 27473.47 35061.07 24784.86 21682.98 28159.77 30658.30 34585.13 25326.06 35387.89 28147.92 33460.59 34681.81 333
JIA-IIPM66.32 30462.82 31476.82 27577.09 33561.72 24265.34 35675.38 33558.04 32064.51 32262.32 35742.05 31786.51 29151.45 31269.22 32282.21 330
PatchMatch-RL72.38 26070.90 26076.80 27688.60 15567.38 13479.53 29176.17 33462.75 28469.36 28282.00 29945.51 29784.89 30353.62 30280.58 21178.12 345
tpmvs71.09 26769.29 27276.49 27782.04 29156.04 30778.92 29981.37 29564.05 27067.18 30078.28 32849.74 26289.77 25149.67 32372.37 30583.67 318
CMPMVSbinary51.72 2170.19 27868.16 28176.28 27873.15 35257.55 28679.47 29283.92 26448.02 34856.48 35184.81 25843.13 30786.42 29262.67 23481.81 19884.89 303
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
USDC70.33 27668.37 27876.21 27980.60 31056.23 30579.19 29686.49 23160.89 29761.29 33585.47 24531.78 34789.47 25853.37 30476.21 26382.94 328
gg-mvs-nofinetune69.95 28067.96 28475.94 28083.07 27054.51 32277.23 31370.29 34863.11 27770.32 26762.33 35643.62 30588.69 27253.88 30187.76 12284.62 308
MDA-MVSNet-bldmvs66.68 30063.66 30875.75 28179.28 32760.56 25573.92 32978.35 31964.43 26350.13 35879.87 31744.02 30383.67 31046.10 34156.86 34983.03 326
PVSNet64.34 1872.08 26370.87 26275.69 28286.21 21856.44 30174.37 32880.73 29962.06 29170.17 27082.23 29542.86 30983.31 31454.77 29784.45 16487.32 262
pmmvs571.55 26470.20 26975.61 28377.83 33156.39 30281.74 26680.89 29657.76 32167.46 29684.49 26149.26 26885.32 30057.08 28575.29 27985.11 302
our_test_369.14 28567.00 29675.57 28479.80 32058.80 26877.96 30777.81 32159.55 30862.90 33278.25 32947.43 27983.97 30851.71 31067.58 32783.93 316
WTY-MVS75.65 22975.68 21075.57 28486.40 21656.82 29477.92 30982.40 28665.10 25576.18 19287.72 18363.13 12880.90 32460.31 25481.96 19589.00 224
Patchmtry70.74 27169.16 27475.49 28680.72 30854.07 32574.94 32780.30 30658.34 31770.01 27281.19 30152.50 22586.54 29053.37 30471.09 31585.87 293
GG-mvs-BLEND75.38 28781.59 29755.80 30979.32 29369.63 35067.19 29973.67 34643.24 30688.90 27050.41 31584.50 16181.45 334
ambc75.24 28873.16 35150.51 34763.05 36187.47 21764.28 32377.81 33217.80 36389.73 25357.88 27860.64 34585.49 295
CL-MVSNet_self_test72.37 26171.46 25375.09 28979.49 32553.53 32880.76 27785.01 24969.12 20870.51 26482.05 29757.92 18684.13 30752.27 30866.00 33387.60 254
XXY-MVS75.41 23375.56 21274.96 29083.59 25757.82 28280.59 28083.87 26666.54 24174.93 22488.31 17063.24 12280.09 32762.16 23876.85 25286.97 271
MIMVSNet70.69 27269.30 27174.88 29184.52 24156.35 30475.87 32079.42 31464.59 26167.76 29182.41 29141.10 32081.54 32146.64 33981.34 20186.75 276
ADS-MVSNet266.20 30763.33 30974.82 29279.92 31758.75 26967.55 34975.19 33653.37 33765.25 31875.86 34042.32 31280.53 32641.57 35268.91 32385.18 299
TinyColmap67.30 29864.81 30274.76 29381.92 29356.68 29880.29 28481.49 29460.33 30056.27 35283.22 28024.77 35587.66 28445.52 34369.47 32079.95 341
test-LLR72.94 25672.43 24674.48 29481.35 30258.04 27678.38 30277.46 32466.66 23769.95 27579.00 32248.06 27779.24 32866.13 20684.83 15786.15 285
test-mter71.41 26570.39 26774.48 29481.35 30258.04 27678.38 30277.46 32460.32 30169.95 27579.00 32236.08 33879.24 32866.13 20684.83 15786.15 285
tpm72.37 26171.71 25274.35 29682.19 29052.00 33679.22 29577.29 32764.56 26272.95 24383.68 27751.35 24383.26 31558.33 27475.80 26687.81 250
CVMVSNet72.99 25572.58 24574.25 29784.28 24450.85 34586.41 17883.45 27444.56 35173.23 24087.54 19149.38 26585.70 29665.90 21078.44 23686.19 284
FMVSNet569.50 28367.96 28474.15 29882.97 27555.35 31380.01 28782.12 28862.56 28663.02 32981.53 30036.92 33581.92 31948.42 32774.06 29185.17 301
MIMVSNet168.58 29066.78 29873.98 29980.07 31651.82 33880.77 27684.37 25664.40 26459.75 34182.16 29636.47 33683.63 31142.73 35070.33 31786.48 280
Anonymous2024052168.80 28867.22 29573.55 30074.33 34454.11 32483.18 25185.61 24358.15 31861.68 33480.94 30630.71 34981.27 32357.00 28673.34 30185.28 298
sss73.60 24673.64 23773.51 30182.80 27755.01 31776.12 31681.69 29262.47 28774.68 22785.85 23757.32 19378.11 33460.86 25180.93 20587.39 259
KD-MVS_2432*160066.22 30563.89 30673.21 30275.47 34253.42 33070.76 33884.35 25764.10 26866.52 30878.52 32634.55 34284.98 30150.40 31650.33 36081.23 335
miper_refine_blended66.22 30563.89 30673.21 30275.47 34253.42 33070.76 33884.35 25764.10 26866.52 30878.52 32634.55 34284.98 30150.40 31650.33 36081.23 335
PM-MVS66.41 30364.14 30573.20 30473.92 34656.45 30078.97 29864.96 36163.88 27464.72 32180.24 31219.84 36183.44 31366.24 20564.52 33779.71 342
tpmrst72.39 25972.13 24973.18 30580.54 31149.91 34979.91 28979.08 31663.11 27771.69 25779.95 31555.32 20282.77 31765.66 21373.89 29386.87 272
test_fmvs1_n70.86 27070.24 26872.73 30672.51 35555.28 31481.27 27379.71 31251.49 34478.73 12884.87 25727.54 35277.02 33976.06 11479.97 22085.88 292
TESTMET0.1,169.89 28169.00 27572.55 30779.27 32856.85 29378.38 30274.71 34057.64 32268.09 29077.19 33537.75 33376.70 34163.92 22384.09 16884.10 314
KD-MVS_self_test68.81 28767.59 29272.46 30874.29 34545.45 35777.93 30887.00 22563.12 27663.99 32678.99 32442.32 31284.77 30456.55 29164.09 33887.16 267
test_fmvs170.93 26970.52 26372.16 30973.71 34755.05 31680.82 27478.77 31751.21 34578.58 13484.41 26331.20 34876.94 34075.88 11780.12 21984.47 309
CHOSEN 280x42066.51 30264.71 30371.90 31081.45 29963.52 21257.98 36368.95 35453.57 33662.59 33376.70 33646.22 28975.29 35155.25 29579.68 22176.88 348
test_vis1_n69.85 28269.21 27371.77 31172.66 35455.27 31581.48 27076.21 33352.03 34175.30 21483.20 28228.97 35076.22 34574.60 12778.41 23883.81 317
EPMVS69.02 28668.16 28171.59 31279.61 32349.80 35177.40 31166.93 35662.82 28370.01 27279.05 32045.79 29477.86 33656.58 29075.26 28087.13 268
YYNet165.03 30862.91 31271.38 31375.85 33856.60 29969.12 34674.66 34157.28 32554.12 35477.87 33145.85 29374.48 35349.95 32161.52 34383.05 325
MDA-MVSNet_test_wron65.03 30862.92 31171.37 31475.93 33756.73 29569.09 34774.73 33957.28 32554.03 35577.89 33045.88 29274.39 35449.89 32261.55 34282.99 327
UnsupCasMVSNet_eth67.33 29765.99 30071.37 31473.48 34951.47 34275.16 32385.19 24665.20 25460.78 33780.93 30842.35 31177.20 33857.12 28453.69 35685.44 296
PMMVS69.34 28468.67 27671.35 31675.67 33962.03 23675.17 32273.46 34350.00 34668.68 28579.05 32052.07 23478.13 33361.16 24982.77 18673.90 351
EU-MVSNet68.53 29167.61 29171.31 31778.51 33047.01 35584.47 22584.27 26042.27 35466.44 31184.79 25940.44 32383.76 30958.76 27068.54 32683.17 322
Anonymous2023120668.60 28967.80 28871.02 31880.23 31450.75 34678.30 30580.47 30356.79 32766.11 31382.63 29046.35 28878.95 33043.62 34875.70 26783.36 321
test_fmvs268.35 29367.48 29370.98 31969.50 35851.95 33780.05 28676.38 33249.33 34774.65 22884.38 26423.30 35875.40 35074.51 12875.17 28285.60 294
dp66.80 29965.43 30170.90 32079.74 32248.82 35275.12 32574.77 33859.61 30764.08 32577.23 33442.89 30880.72 32548.86 32666.58 33083.16 323
PatchT68.46 29267.85 28670.29 32180.70 30943.93 36472.47 33174.88 33760.15 30370.55 26376.57 33749.94 25981.59 32050.58 31474.83 28585.34 297
UnsupCasMVSNet_bld63.70 31361.53 31870.21 32273.69 34851.39 34372.82 33081.89 28955.63 33257.81 34771.80 34938.67 32878.61 33149.26 32552.21 35880.63 338
Patchmatch-test64.82 31063.24 31069.57 32379.42 32649.82 35063.49 36069.05 35351.98 34259.95 34080.13 31350.91 24770.98 35840.66 35473.57 29687.90 248
LF4IMVS64.02 31262.19 31569.50 32470.90 35653.29 33376.13 31577.18 32852.65 33958.59 34380.98 30523.55 35776.52 34253.06 30666.66 32978.68 344
test20.0367.45 29666.95 29768.94 32575.48 34144.84 36277.50 31077.67 32266.66 23763.01 33083.80 27347.02 28278.40 33242.53 35168.86 32583.58 319
test0.0.03 168.00 29467.69 29068.90 32677.55 33247.43 35375.70 32172.95 34566.66 23766.56 30682.29 29448.06 27775.87 34744.97 34674.51 28883.41 320
PVSNet_057.27 2061.67 31759.27 32068.85 32779.61 32357.44 28868.01 34873.44 34455.93 33158.54 34470.41 35244.58 30177.55 33747.01 33635.91 36671.55 354
ADS-MVSNet64.36 31162.88 31368.78 32879.92 31747.17 35467.55 34971.18 34653.37 33765.25 31875.86 34042.32 31273.99 35541.57 35268.91 32385.18 299
pmmvs357.79 32054.26 32468.37 32964.02 36456.72 29675.12 32565.17 35940.20 35652.93 35669.86 35320.36 36075.48 34945.45 34455.25 35572.90 353
test_fmvs363.36 31461.82 31667.98 33062.51 36546.96 35677.37 31274.03 34245.24 35067.50 29578.79 32512.16 36972.98 35772.77 14866.02 33283.99 315
LCM-MVSNet54.25 32249.68 33167.97 33153.73 37345.28 36066.85 35280.78 29835.96 36239.45 36362.23 3588.70 37378.06 33548.24 33151.20 35980.57 339
EGC-MVSNET52.07 32847.05 33267.14 33283.51 25960.71 25280.50 28167.75 3550.07 3760.43 37775.85 34224.26 35681.54 32128.82 36262.25 34059.16 361
testgi66.67 30166.53 29967.08 33375.62 34041.69 36875.93 31776.50 33166.11 24465.20 32086.59 21935.72 33974.71 35243.71 34773.38 30084.84 304
test_vis1_rt60.28 31858.42 32165.84 33467.25 36155.60 31270.44 34060.94 36544.33 35259.00 34266.64 35424.91 35468.67 36262.80 23069.48 31973.25 352
mvsany_test162.30 31561.26 31965.41 33569.52 35754.86 31866.86 35149.78 37246.65 34968.50 28983.21 28149.15 26966.28 36456.93 28760.77 34475.11 350
ANet_high50.57 33046.10 33463.99 33648.67 37639.13 36970.99 33780.85 29761.39 29531.18 36557.70 36317.02 36473.65 35631.22 36115.89 37379.18 343
MVS-HIRNet59.14 31957.67 32263.57 33781.65 29543.50 36571.73 33365.06 36039.59 35851.43 35757.73 36238.34 33082.58 31839.53 35573.95 29264.62 358
APD_test153.31 32549.93 33063.42 33865.68 36250.13 34871.59 33466.90 35734.43 36340.58 36271.56 3508.65 37476.27 34434.64 36055.36 35463.86 359
new-patchmatchnet61.73 31661.73 31761.70 33972.74 35324.50 37869.16 34578.03 32061.40 29456.72 35075.53 34338.42 32976.48 34345.95 34257.67 34884.13 313
mvsany_test353.99 32351.45 32761.61 34055.51 36944.74 36363.52 35945.41 37643.69 35358.11 34676.45 33817.99 36263.76 36754.77 29747.59 36276.34 349
DSMNet-mixed57.77 32156.90 32360.38 34167.70 36035.61 37169.18 34453.97 37032.30 36657.49 34879.88 31640.39 32468.57 36338.78 35672.37 30576.97 347
FPMVS53.68 32451.64 32659.81 34265.08 36351.03 34469.48 34369.58 35141.46 35540.67 36172.32 34816.46 36570.00 36124.24 36865.42 33458.40 363
testf145.72 33241.96 33557.00 34356.90 36745.32 35866.14 35459.26 36626.19 36730.89 36660.96 3604.14 37770.64 35926.39 36646.73 36455.04 364
APD_test245.72 33241.96 33557.00 34356.90 36745.32 35866.14 35459.26 36626.19 36730.89 36660.96 3604.14 37770.64 35926.39 36646.73 36455.04 364
test_vis3_rt49.26 33147.02 33356.00 34554.30 37045.27 36166.76 35348.08 37336.83 36044.38 36053.20 3657.17 37664.07 36656.77 28955.66 35258.65 362
test_f52.09 32750.82 32855.90 34653.82 37242.31 36759.42 36258.31 36836.45 36156.12 35370.96 35112.18 36857.79 36953.51 30356.57 35167.60 355
PMVScopyleft37.38 2244.16 33540.28 33855.82 34740.82 37842.54 36665.12 35763.99 36234.43 36324.48 36957.12 3643.92 37976.17 34617.10 37155.52 35348.75 366
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft45.18 33441.86 33755.16 34877.03 33651.52 34132.50 36980.52 30232.46 36527.12 36835.02 3699.52 37275.50 34822.31 36960.21 34738.45 368
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
new_pmnet50.91 32950.29 32952.78 34968.58 35934.94 37363.71 35856.63 36939.73 35744.95 35965.47 35521.93 35958.48 36834.98 35956.62 35064.92 357
N_pmnet52.79 32653.26 32551.40 35078.99 3297.68 38169.52 3423.89 38151.63 34357.01 34974.98 34440.83 32265.96 36537.78 35764.67 33680.56 340
PMMVS240.82 33638.86 33946.69 35153.84 37116.45 37948.61 36649.92 37137.49 35931.67 36460.97 3598.14 37556.42 37028.42 36330.72 36867.19 356
MVEpermissive26.22 2330.37 34025.89 34443.81 35244.55 37735.46 37228.87 37039.07 37718.20 37118.58 37340.18 3682.68 38047.37 37417.07 37223.78 37048.60 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method31.52 33829.28 34238.23 35327.03 3806.50 38220.94 37162.21 3644.05 37422.35 37252.50 36613.33 36647.58 37327.04 36534.04 36760.62 360
E-PMN31.77 33730.64 34035.15 35452.87 37427.67 37557.09 36447.86 37424.64 36916.40 37433.05 37011.23 37054.90 37114.46 37318.15 37122.87 370
EMVS30.81 33929.65 34134.27 35550.96 37525.95 37756.58 36546.80 37524.01 37015.53 37530.68 37112.47 36754.43 37212.81 37417.05 37222.43 371
DeepMVS_CXcopyleft27.40 35640.17 37926.90 37624.59 38017.44 37223.95 37048.61 3679.77 37126.48 37518.06 37024.47 36928.83 369
wuyk23d16.82 34315.94 34619.46 35758.74 36631.45 37439.22 3673.74 3826.84 3736.04 3762.70 3761.27 38124.29 37610.54 37514.40 3752.63 373
tmp_tt18.61 34221.40 34510.23 3584.82 38110.11 38034.70 36830.74 3791.48 37523.91 37126.07 37228.42 35113.41 37727.12 36415.35 3747.17 372
test1236.12 3458.11 3480.14 3590.06 3830.09 38371.05 3360.03 3840.04 3780.25 3791.30 3780.05 3820.03 3790.21 3770.01 3770.29 374
testmvs6.04 3468.02 3490.10 3600.08 3820.03 38469.74 3410.04 3830.05 3770.31 3781.68 3770.02 3830.04 3780.24 3760.02 3760.25 375
test_blank0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet_test0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
cdsmvs_eth3d_5k19.96 34126.61 3430.00 3610.00 3840.00 3850.00 37289.26 1670.00 3790.00 38088.61 16161.62 1480.00 3800.00 3780.00 3780.00 376
pcd_1.5k_mvsjas5.26 3477.02 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 37963.15 1250.00 3800.00 3780.00 3780.00 376
sosnet-low-res0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
sosnet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
Regformer0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
ab-mvs-re7.23 3449.64 3470.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38086.72 2110.00 3840.00 3800.00 3780.00 3780.00 376
uanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
FOURS195.00 1072.39 3895.06 193.84 1574.49 10991.30 15
PC_three_145268.21 22592.02 1294.00 4082.09 595.98 4984.58 3596.68 294.95 8
test_one_060195.07 771.46 5394.14 578.27 3392.05 1195.74 680.83 11
eth-test20.00 384
eth-test0.00 384
ZD-MVS94.38 2572.22 4392.67 6170.98 17187.75 2894.07 3774.01 3296.70 2584.66 3494.84 41
RE-MVS-def85.48 4993.06 5570.63 7191.88 3792.27 7673.53 13285.69 3894.45 2463.87 11682.75 5591.87 7792.50 103
IU-MVS95.30 271.25 5592.95 5166.81 23392.39 688.94 1196.63 494.85 17
test_241102_TWO94.06 1077.24 4892.78 495.72 881.26 897.44 589.07 996.58 694.26 39
test_241102_ONE95.30 270.98 6194.06 1077.17 5193.10 195.39 1182.99 197.27 10
9.1488.26 1492.84 6091.52 4494.75 173.93 12188.57 2294.67 1775.57 2295.79 5186.77 2295.76 23
save fliter93.80 4072.35 4190.47 6291.17 11674.31 112
test_0728_THIRD78.38 3192.12 995.78 481.46 797.40 789.42 496.57 794.67 22
test072695.27 571.25 5593.60 694.11 677.33 4692.81 395.79 380.98 9
GSMVS88.96 226
test_part295.06 872.65 3191.80 13
sam_mvs151.32 24488.96 226
sam_mvs50.01 257
MTGPAbinary92.02 85
test_post178.90 3005.43 37548.81 27685.44 29959.25 262
test_post5.46 37450.36 25584.24 306
patchmatchnet-post74.00 34551.12 24688.60 273
MTMP92.18 3332.83 378
gm-plane-assit81.40 30053.83 32762.72 28580.94 30692.39 19063.40 227
test9_res84.90 2995.70 2692.87 92
TEST993.26 5072.96 2488.75 10691.89 9368.44 22285.00 4593.10 5474.36 2895.41 65
test_893.13 5272.57 3488.68 11191.84 9768.69 21884.87 4993.10 5474.43 2695.16 74
agg_prior282.91 5395.45 2892.70 95
agg_prior92.85 5971.94 4991.78 10084.41 5994.93 85
test_prior472.60 3389.01 96
test_prior288.85 10275.41 9184.91 4793.54 4674.28 2983.31 4895.86 20
旧先验286.56 17558.10 31987.04 3088.98 26674.07 133
新几何286.29 183
旧先验191.96 7165.79 16586.37 23493.08 5869.31 7092.74 6688.74 235
无先验87.48 14688.98 17960.00 30494.12 11967.28 19888.97 225
原ACMM286.86 164
test22291.50 7768.26 11584.16 23583.20 27954.63 33579.74 11591.63 8658.97 17991.42 8386.77 275
testdata291.01 23662.37 236
segment_acmp73.08 37
testdata184.14 23675.71 85
plane_prior790.08 10268.51 111
plane_prior689.84 11168.70 10660.42 172
plane_prior592.44 6995.38 6778.71 8886.32 14291.33 136
plane_prior491.00 107
plane_prior368.60 10978.44 2978.92 126
plane_prior291.25 4879.12 21
plane_prior189.90 110
plane_prior68.71 10490.38 6577.62 3786.16 146
n20.00 385
nn0.00 385
door-mid69.98 349
test1192.23 79
door69.44 352
HQP5-MVS66.98 142
HQP-NCC89.33 12689.17 8976.41 7077.23 167
ACMP_Plane89.33 12689.17 8976.41 7077.23 167
BP-MVS77.47 100
HQP4-MVS77.24 16695.11 7891.03 148
HQP3-MVS92.19 8285.99 149
HQP2-MVS60.17 175
NP-MVS89.62 11368.32 11390.24 119
MDTV_nov1_ep13_2view37.79 37075.16 32355.10 33366.53 30749.34 26653.98 30087.94 247
MDTV_nov1_ep1369.97 27083.18 26753.48 32977.10 31480.18 30960.45 29969.33 28380.44 31048.89 27586.90 28851.60 31178.51 235
ACMMP++_ref81.95 196
ACMMP++81.25 202
Test By Simon64.33 112