This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 38
No_MVS89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 38
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 6196.48 894.88 14
MM89.16 689.23 788.97 490.79 9473.65 1092.66 2391.17 12286.57 187.39 3894.97 1571.70 5497.68 192.19 195.63 2895.57 1
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5680.26 1187.78 3094.27 3275.89 1996.81 2387.45 3296.44 993.05 102
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 11092.29 795.97 274.28 2997.24 1388.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
3Dnovator+77.84 485.48 5884.47 7588.51 791.08 8473.49 1693.18 1193.78 1880.79 876.66 19893.37 6260.40 19596.75 2677.20 12193.73 6695.29 5
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 5993.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 43
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1673.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 6294.67 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5192.83 5781.50 585.79 5293.47 6073.02 4097.00 1884.90 4394.94 4094.10 51
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6485.24 5794.32 3071.76 5296.93 1985.53 4095.79 2294.32 44
MVS_030487.69 2087.55 2288.12 1389.45 12871.76 5191.47 4689.54 16982.14 386.65 4694.28 3168.28 9497.46 690.81 295.31 3495.15 6
region2R87.42 2587.20 2888.09 1494.63 1473.55 1393.03 1493.12 3776.73 6984.45 7594.52 2069.09 8296.70 2784.37 5494.83 4594.03 55
ACMMPR87.44 2387.23 2788.08 1594.64 1373.59 1293.04 1293.20 3476.78 6684.66 6994.52 2068.81 8896.65 3084.53 5294.90 4194.00 56
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4294.10 875.90 8892.29 795.66 1081.67 697.38 1187.44 3396.34 1593.95 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
XVS87.18 2986.91 3488.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 9094.17 3667.45 10296.60 3383.06 6694.50 5194.07 53
X-MVStestdata80.37 15077.83 18688.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 9012.47 40867.45 10296.60 3383.06 6694.50 5194.07 53
ACMMP_NAP88.05 1688.08 1787.94 1993.70 4173.05 2290.86 5493.59 2376.27 8288.14 2495.09 1471.06 6296.67 2987.67 2996.37 1494.09 52
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6684.91 6294.44 2770.78 6596.61 3284.53 5294.89 4293.66 71
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 6677.57 4183.84 8794.40 2972.24 4596.28 4085.65 3895.30 3593.62 78
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18992.02 9179.45 1985.88 5094.80 1668.07 9596.21 4286.69 3695.34 3293.23 93
PGM-MVS86.68 3786.27 4187.90 2294.22 3373.38 1890.22 7093.04 3875.53 9483.86 8694.42 2867.87 9996.64 3182.70 7694.57 5093.66 71
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6284.68 6693.99 4870.67 6796.82 2284.18 5995.01 3793.90 61
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5193.10 195.72 882.99 197.44 789.07 1496.63 494.88 14
DeepC-MVS_fast79.65 386.91 3386.62 3787.76 2793.52 4672.37 4191.26 4893.04 3876.62 7284.22 7993.36 6371.44 5896.76 2580.82 9295.33 3394.16 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9291.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 36
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7693.82 1673.07 14984.86 6592.89 7476.22 1796.33 3884.89 4595.13 3694.40 40
TSAR-MVS + MP.88.02 1788.11 1687.72 3093.68 4372.13 4691.41 4792.35 7974.62 11388.90 2093.85 5275.75 2096.00 5387.80 2894.63 4895.04 8
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
mPP-MVS86.67 3886.32 4087.72 3094.41 2273.55 1392.74 2092.22 8576.87 6382.81 10394.25 3466.44 11296.24 4182.88 7194.28 6093.38 87
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 48
DeepC-MVS79.81 287.08 3286.88 3587.69 3391.16 8172.32 4390.31 6893.94 1477.12 5682.82 10294.23 3572.13 4797.09 1684.83 4695.37 3193.65 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CP-MVS87.11 3086.92 3387.68 3494.20 3473.86 793.98 392.82 6076.62 7283.68 8994.46 2467.93 9795.95 5684.20 5894.39 5693.23 93
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 4992.40 2494.74 275.71 9089.16 1995.10 1375.65 2196.19 4387.07 3496.01 1794.79 21
MP-MVS-pluss87.67 2187.72 2087.54 3693.64 4472.04 4889.80 7893.50 2575.17 10386.34 4895.29 1270.86 6496.00 5388.78 1996.04 1694.58 30
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CANet86.45 3986.10 4687.51 3790.09 10670.94 6789.70 8292.59 7181.78 481.32 11891.43 10970.34 6997.23 1484.26 5593.36 6894.37 41
HPM-MVScopyleft87.11 3086.98 3187.50 3893.88 3972.16 4592.19 3393.33 3176.07 8583.81 8893.95 5169.77 7696.01 5285.15 4194.66 4794.32 44
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft85.89 5185.39 5987.38 3993.59 4572.63 3392.74 2093.18 3676.78 6680.73 12793.82 5364.33 13296.29 3982.67 7790.69 9893.23 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 6177.33 4892.12 995.78 480.98 997.40 989.08 1296.41 1293.33 90
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
PHI-MVS86.43 4086.17 4487.24 4190.88 9070.96 6592.27 3294.07 972.45 15685.22 5891.90 9269.47 7896.42 3783.28 6595.94 1994.35 42
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4092.83 5773.01 15188.58 2194.52 2073.36 3496.49 3684.26 5595.01 3792.70 112
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CDPH-MVS85.76 5385.29 6487.17 4393.49 4771.08 6188.58 12492.42 7768.32 24684.61 7293.48 5872.32 4496.15 4579.00 10295.43 3094.28 46
train_agg86.43 4086.20 4287.13 4493.26 5072.96 2588.75 11691.89 9968.69 23985.00 6093.10 6774.43 2695.41 7184.97 4295.71 2593.02 104
CSCG86.41 4286.19 4387.07 4592.91 5872.48 3790.81 5593.56 2473.95 12583.16 9691.07 12175.94 1895.19 7979.94 10094.38 5893.55 82
SR-MVS86.73 3586.67 3686.91 4694.11 3772.11 4792.37 2892.56 7274.50 11486.84 4594.65 1967.31 10495.77 5884.80 4792.85 7192.84 110
DPM-MVS84.93 6984.29 7686.84 4790.20 10473.04 2387.12 17193.04 3869.80 21182.85 10191.22 11573.06 3996.02 5176.72 12894.63 4891.46 155
TSAR-MVS + GP.85.71 5485.33 6186.84 4791.34 7872.50 3689.07 10687.28 23376.41 7585.80 5190.22 14074.15 3195.37 7681.82 8191.88 8292.65 116
test1286.80 4992.63 6470.70 7291.79 10582.71 10471.67 5596.16 4494.50 5193.54 83
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 10089.57 8893.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 30
SD-MVS88.06 1488.50 1486.71 5192.60 6672.71 2991.81 4193.19 3577.87 3690.32 1794.00 4674.83 2393.78 13787.63 3094.27 6193.65 75
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
3Dnovator76.31 583.38 9182.31 10186.59 5287.94 19072.94 2890.64 5792.14 8977.21 5375.47 22392.83 7658.56 20294.72 10273.24 16292.71 7392.13 137
HPM-MVS_fast85.35 6284.95 6986.57 5393.69 4270.58 7592.15 3591.62 10973.89 12882.67 10594.09 4062.60 15195.54 6480.93 9092.93 7093.57 80
test_prior86.33 5492.61 6569.59 8892.97 5195.48 6693.91 59
MVS_111021_HR85.14 6584.75 7086.32 5591.65 7672.70 3085.98 20490.33 14776.11 8482.08 10891.61 10371.36 6094.17 12081.02 8992.58 7492.08 138
SR-MVS-dyc-post85.77 5285.61 5586.23 5693.06 5570.63 7391.88 3892.27 8173.53 13885.69 5394.45 2565.00 13095.56 6282.75 7291.87 8392.50 121
APD-MVS_3200maxsize85.97 4785.88 5086.22 5792.69 6369.53 8991.93 3792.99 4673.54 13785.94 4994.51 2365.80 12295.61 6183.04 6892.51 7593.53 84
balanced_conf0386.78 3486.99 3086.15 5891.24 8067.61 14190.51 5992.90 5377.26 5087.44 3791.63 10171.27 6196.06 4785.62 3995.01 3794.78 22
DP-MVS Recon83.11 9782.09 10486.15 5894.44 1970.92 6888.79 11492.20 8670.53 19479.17 14391.03 12464.12 13496.03 4868.39 20990.14 10691.50 151
EPNet83.72 8182.92 9386.14 6084.22 27069.48 9191.05 5385.27 26281.30 676.83 19391.65 9966.09 11795.56 6276.00 13493.85 6493.38 87
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
bld_raw_conf0385.32 6385.07 6686.07 6190.86 9167.64 13989.63 8592.65 6672.35 16184.64 7090.81 13068.76 9096.09 4681.45 8594.45 5494.49 34
MVSMamba_PlusPlus85.99 4585.96 4986.05 6291.09 8267.64 13989.63 8592.65 6672.89 15484.64 7091.71 9671.85 4996.03 4884.77 4894.45 5494.49 34
sasdasda85.91 4985.87 5186.04 6389.84 11669.44 9590.45 6593.00 4376.70 7088.01 2891.23 11373.28 3693.91 13181.50 8388.80 12594.77 23
canonicalmvs85.91 4985.87 5186.04 6389.84 11669.44 9590.45 6593.00 4376.70 7088.01 2891.23 11373.28 3693.91 13181.50 8388.80 12594.77 23
h-mvs3383.15 9482.19 10286.02 6590.56 9770.85 7088.15 14189.16 18476.02 8684.67 6791.39 11061.54 16995.50 6582.71 7475.48 30191.72 145
alignmvs85.48 5885.32 6285.96 6689.51 12569.47 9289.74 8092.47 7376.17 8387.73 3491.46 10870.32 7093.78 13781.51 8288.95 12294.63 29
CS-MVS86.69 3686.95 3285.90 6790.76 9567.57 14392.83 1793.30 3279.67 1784.57 7492.27 8671.47 5795.02 9084.24 5793.46 6795.13 7
DELS-MVS85.41 6185.30 6385.77 6888.49 16867.93 13385.52 22193.44 2778.70 2983.63 9289.03 16874.57 2495.71 6080.26 9894.04 6393.66 71
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CS-MVS-test86.29 4386.48 3885.71 6991.02 8667.21 15692.36 2993.78 1878.97 2883.51 9391.20 11670.65 6895.15 8181.96 8094.89 4294.77 23
casdiffmvs_mvgpermissive85.99 4586.09 4785.70 7087.65 20367.22 15588.69 12093.04 3879.64 1885.33 5692.54 8373.30 3594.50 10883.49 6291.14 9395.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
iter_conf0585.49 5785.43 5885.67 7191.09 8266.55 16687.18 16992.08 9072.89 15482.90 9991.71 9671.85 4996.03 4884.77 4894.39 5694.42 37
ETV-MVS84.90 7184.67 7185.59 7289.39 13268.66 11788.74 11892.64 6979.97 1584.10 8285.71 25769.32 8095.38 7380.82 9291.37 9092.72 111
test_fmvsmconf_n85.92 4886.04 4885.57 7385.03 25669.51 9089.62 8790.58 13773.42 14087.75 3294.02 4472.85 4193.24 16290.37 390.75 9793.96 57
test_fmvsmconf0.1_n85.61 5685.65 5485.50 7482.99 30169.39 9789.65 8390.29 15073.31 14387.77 3194.15 3871.72 5393.23 16390.31 490.67 9993.89 62
UA-Net85.08 6784.96 6885.45 7592.07 7068.07 13089.78 7990.86 13282.48 284.60 7393.20 6669.35 7995.22 7871.39 17790.88 9693.07 101
Vis-MVSNetpermissive83.46 8882.80 9585.43 7690.25 10368.74 11190.30 6990.13 15476.33 8180.87 12692.89 7461.00 18394.20 11872.45 17190.97 9493.35 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvsmconf0.01_n84.73 7284.52 7485.34 7780.25 34169.03 10089.47 8989.65 16773.24 14786.98 4394.27 3266.62 10893.23 16390.26 589.95 11193.78 68
EI-MVSNet-Vis-set84.19 7483.81 7985.31 7888.18 17967.85 13487.66 15589.73 16580.05 1482.95 9789.59 15370.74 6694.82 9880.66 9584.72 17793.28 92
MAR-MVS81.84 11380.70 12385.27 7991.32 7971.53 5489.82 7690.92 12869.77 21378.50 15686.21 24862.36 15794.52 10765.36 23392.05 8189.77 223
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Effi-MVS+83.62 8583.08 8885.24 8088.38 17467.45 14588.89 11189.15 18575.50 9582.27 10688.28 18969.61 7794.45 11077.81 11587.84 13793.84 65
MVSFormer82.85 10082.05 10585.24 8087.35 20970.21 7790.50 6190.38 14368.55 24181.32 11889.47 15661.68 16693.46 15478.98 10390.26 10492.05 139
OPM-MVS83.50 8782.95 9285.14 8288.79 15870.95 6689.13 10591.52 11277.55 4480.96 12591.75 9560.71 18694.50 10879.67 10186.51 15689.97 215
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP_MVS83.64 8383.14 8785.14 8290.08 10768.71 11391.25 4992.44 7479.12 2378.92 14791.00 12660.42 19395.38 7378.71 10686.32 15891.33 156
test_fmvsm_n_192085.29 6485.34 6085.13 8486.12 23569.93 8388.65 12290.78 13369.97 20788.27 2393.98 4971.39 5991.54 23188.49 2390.45 10193.91 59
EI-MVSNet-UG-set83.81 7883.38 8485.09 8587.87 19267.53 14487.44 16289.66 16679.74 1682.23 10789.41 16270.24 7194.74 10179.95 9983.92 19092.99 107
QAPM80.88 13179.50 14785.03 8688.01 18968.97 10491.59 4292.00 9366.63 26675.15 24192.16 8857.70 20995.45 6763.52 24588.76 12790.66 179
casdiffmvspermissive85.11 6685.14 6585.01 8787.20 21765.77 18287.75 15392.83 5777.84 3784.36 7892.38 8572.15 4693.93 13081.27 8890.48 10095.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PCF-MVS73.52 780.38 14878.84 16385.01 8787.71 20068.99 10383.65 25791.46 11763.00 30777.77 17490.28 13766.10 11695.09 8861.40 26988.22 13690.94 170
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
nrg03083.88 7783.53 8184.96 8986.77 22569.28 9990.46 6492.67 6374.79 10982.95 9791.33 11272.70 4393.09 17680.79 9479.28 25492.50 121
VDD-MVS83.01 9982.36 10084.96 8991.02 8666.40 16788.91 11088.11 21277.57 4184.39 7793.29 6452.19 25393.91 13177.05 12388.70 12994.57 32
PVSNet_Blended_VisFu82.62 10281.83 11084.96 8990.80 9369.76 8788.74 11891.70 10869.39 21978.96 14588.46 18465.47 12494.87 9774.42 14888.57 13090.24 197
CPTT-MVS83.73 8083.33 8684.92 9293.28 4970.86 6992.09 3690.38 14368.75 23879.57 13892.83 7660.60 19193.04 18080.92 9191.56 8890.86 172
EC-MVSNet86.01 4486.38 3984.91 9389.31 13766.27 17092.32 3093.63 2179.37 2084.17 8191.88 9369.04 8695.43 6983.93 6093.77 6593.01 105
OMC-MVS82.69 10181.97 10884.85 9488.75 16067.42 14687.98 14490.87 13174.92 10679.72 13691.65 9962.19 16193.96 12475.26 14386.42 15793.16 98
EIA-MVS83.31 9382.80 9584.82 9589.59 12165.59 18588.21 13792.68 6274.66 11278.96 14586.42 24469.06 8495.26 7775.54 14090.09 10793.62 78
PAPM_NR83.02 9882.41 9884.82 9592.47 6766.37 16887.93 14891.80 10473.82 12977.32 18290.66 13267.90 9894.90 9470.37 18689.48 11693.19 97
baseline84.93 6984.98 6784.80 9787.30 21565.39 19087.30 16692.88 5477.62 3984.04 8492.26 8771.81 5193.96 12481.31 8690.30 10395.03 9
lupinMVS81.39 12480.27 13384.76 9887.35 20970.21 7785.55 21786.41 24862.85 31081.32 11888.61 17961.68 16692.24 20678.41 11090.26 10491.83 142
jason81.39 12480.29 13284.70 9986.63 22969.90 8585.95 20586.77 24463.24 30381.07 12489.47 15661.08 18292.15 20878.33 11190.07 10992.05 139
jason: jason.
ET-MVSNet_ETH3D78.63 18976.63 21984.64 10086.73 22669.47 9285.01 22784.61 26969.54 21766.51 34086.59 23750.16 28191.75 22276.26 13084.24 18792.69 114
EPP-MVSNet83.40 9083.02 9084.57 10190.13 10564.47 20992.32 3090.73 13474.45 11779.35 14191.10 11969.05 8595.12 8272.78 16687.22 14594.13 50
UGNet80.83 13379.59 14584.54 10288.04 18768.09 12989.42 9388.16 21176.95 6076.22 20989.46 15849.30 29393.94 12768.48 20790.31 10291.60 146
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LPG-MVS_test82.08 10881.27 11484.50 10389.23 14168.76 10990.22 7091.94 9775.37 9776.64 19991.51 10554.29 23494.91 9278.44 10883.78 19189.83 220
LGP-MVS_train84.50 10389.23 14168.76 10991.94 9775.37 9776.64 19991.51 10554.29 23494.91 9278.44 10883.78 19189.83 220
test_fmvsmvis_n_192084.02 7683.87 7884.49 10584.12 27269.37 9888.15 14187.96 21770.01 20583.95 8593.23 6568.80 8991.51 23488.61 2089.96 11092.57 117
MSLP-MVS++85.43 6085.76 5384.45 10691.93 7270.24 7690.71 5692.86 5577.46 4784.22 7992.81 7867.16 10692.94 18280.36 9694.35 5990.16 199
Effi-MVS+-dtu80.03 15678.57 16784.42 10785.13 25468.74 11188.77 11588.10 21374.99 10574.97 24683.49 30457.27 21593.36 15873.53 15680.88 23291.18 160
HQP-MVS82.61 10382.02 10684.37 10889.33 13466.98 15989.17 10092.19 8776.41 7577.23 18590.23 13960.17 19695.11 8477.47 11885.99 16691.03 166
ACMP74.13 681.51 12380.57 12584.36 10989.42 12968.69 11689.97 7491.50 11674.46 11675.04 24590.41 13653.82 23994.54 10577.56 11782.91 20989.86 219
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
原ACMM184.35 11093.01 5768.79 10792.44 7463.96 30081.09 12391.57 10466.06 11895.45 6767.19 21994.82 4688.81 254
PS-MVSNAJss82.07 10981.31 11384.34 11186.51 23067.27 15289.27 9891.51 11371.75 16679.37 14090.22 14063.15 14594.27 11477.69 11682.36 21791.49 152
thisisatest053079.40 17077.76 19184.31 11287.69 20265.10 19687.36 16384.26 27670.04 20377.42 17988.26 19149.94 28494.79 10070.20 18784.70 17893.03 103
CLD-MVS82.31 10581.65 11184.29 11388.47 16967.73 13785.81 21292.35 7975.78 8978.33 16186.58 23964.01 13594.35 11176.05 13387.48 14290.79 173
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
fmvsm_s_conf0.1_n_a83.32 9282.99 9184.28 11483.79 27968.07 13089.34 9782.85 30169.80 21187.36 3994.06 4268.34 9391.56 22987.95 2783.46 20393.21 96
fmvsm_s_conf0.5_n_a83.63 8483.41 8384.28 11486.14 23468.12 12889.43 9182.87 30070.27 20087.27 4093.80 5469.09 8291.58 22788.21 2683.65 19893.14 99
fmvsm_l_conf0.5_n84.47 7384.54 7284.27 11685.42 24668.81 10688.49 12687.26 23468.08 24888.03 2793.49 5772.04 4891.77 22188.90 1789.14 12192.24 132
mvsmamba80.60 14279.38 14984.27 11689.74 11967.24 15487.47 16086.95 24070.02 20475.38 22988.93 16951.24 26992.56 19175.47 14289.22 11993.00 106
API-MVS81.99 11181.23 11584.26 11890.94 8870.18 8291.10 5289.32 17671.51 17378.66 15288.28 18965.26 12595.10 8764.74 23991.23 9287.51 280
114514_t80.68 14079.51 14684.20 11994.09 3867.27 15289.64 8491.11 12558.75 34774.08 25790.72 13158.10 20595.04 8969.70 19489.42 11790.30 195
IS-MVSNet83.15 9482.81 9484.18 12089.94 11463.30 23491.59 4288.46 20979.04 2579.49 13992.16 8865.10 12794.28 11367.71 21291.86 8594.95 10
MVS_111021_LR82.61 10382.11 10384.11 12188.82 15571.58 5385.15 22486.16 25374.69 11180.47 12991.04 12262.29 15890.55 25980.33 9790.08 10890.20 198
fmvsm_s_conf0.1_n83.56 8683.38 8484.10 12284.86 25867.28 15189.40 9583.01 29670.67 18987.08 4193.96 5068.38 9291.45 23788.56 2284.50 18093.56 81
FA-MVS(test-final)80.96 13079.91 13884.10 12288.30 17765.01 19784.55 23990.01 15773.25 14679.61 13787.57 20658.35 20494.72 10271.29 17886.25 16092.56 118
Anonymous2024052980.19 15478.89 16284.10 12290.60 9664.75 20388.95 10990.90 12965.97 27480.59 12891.17 11849.97 28393.73 14369.16 20082.70 21493.81 66
OpenMVScopyleft72.83 1079.77 15978.33 17484.09 12585.17 25069.91 8490.57 5890.97 12766.70 26072.17 27991.91 9154.70 23193.96 12461.81 26690.95 9588.41 265
FE-MVS77.78 21175.68 22984.08 12688.09 18566.00 17483.13 26887.79 22368.42 24578.01 16985.23 27045.50 32595.12 8259.11 28785.83 16991.11 162
fmvsm_s_conf0.5_n83.80 7983.71 8084.07 12786.69 22767.31 15089.46 9083.07 29571.09 18186.96 4493.70 5569.02 8791.47 23688.79 1884.62 17993.44 86
hse-mvs281.72 11580.94 12184.07 12788.72 16167.68 13885.87 20887.26 23476.02 8684.67 6788.22 19261.54 16993.48 15282.71 7473.44 32991.06 164
fmvsm_l_conf0.5_n_a84.13 7584.16 7784.06 12985.38 24768.40 12188.34 13386.85 24367.48 25587.48 3693.40 6170.89 6391.61 22588.38 2589.22 11992.16 136
dcpmvs_285.63 5586.15 4584.06 12991.71 7564.94 19986.47 19291.87 10173.63 13386.60 4793.02 7276.57 1591.87 21983.36 6392.15 7995.35 3
AdaColmapbinary80.58 14579.42 14884.06 12993.09 5468.91 10589.36 9688.97 19469.27 22275.70 21989.69 14857.20 21695.77 5863.06 25088.41 13487.50 281
AUN-MVS79.21 17577.60 19684.05 13288.71 16267.61 14185.84 21087.26 23469.08 23077.23 18588.14 19753.20 24693.47 15375.50 14173.45 32891.06 164
VDDNet81.52 12180.67 12484.05 13290.44 10064.13 21689.73 8185.91 25671.11 18083.18 9593.48 5850.54 27893.49 15173.40 15988.25 13594.54 33
xiu_mvs_v1_base_debu80.80 13679.72 14284.03 13487.35 20970.19 7985.56 21488.77 19969.06 23181.83 11088.16 19350.91 27292.85 18478.29 11287.56 13989.06 239
xiu_mvs_v1_base80.80 13679.72 14284.03 13487.35 20970.19 7985.56 21488.77 19969.06 23181.83 11088.16 19350.91 27292.85 18478.29 11287.56 13989.06 239
xiu_mvs_v1_base_debi80.80 13679.72 14284.03 13487.35 20970.19 7985.56 21488.77 19969.06 23181.83 11088.16 19350.91 27292.85 18478.29 11287.56 13989.06 239
PAPR81.66 11980.89 12283.99 13790.27 10264.00 21786.76 18591.77 10768.84 23777.13 19189.50 15467.63 10094.88 9667.55 21488.52 13293.09 100
XVG-OURS80.41 14779.23 15583.97 13885.64 24269.02 10283.03 27390.39 14271.09 18177.63 17691.49 10754.62 23391.35 24075.71 13683.47 20291.54 149
XVG-OURS-SEG-HR80.81 13479.76 14183.96 13985.60 24368.78 10883.54 26290.50 14070.66 19276.71 19791.66 9860.69 18791.26 24276.94 12481.58 22591.83 142
HyFIR lowres test77.53 21875.40 23683.94 14089.59 12166.62 16380.36 30688.64 20656.29 36376.45 20385.17 27257.64 21093.28 16061.34 27183.10 20891.91 141
tttt051779.40 17077.91 18383.90 14188.10 18463.84 22088.37 13284.05 27871.45 17476.78 19589.12 16549.93 28694.89 9570.18 18883.18 20792.96 108
GeoE81.71 11681.01 12083.80 14289.51 12564.45 21088.97 10888.73 20471.27 17778.63 15389.76 14766.32 11493.20 16869.89 19286.02 16593.74 69
MGCFI-Net85.06 6885.51 5683.70 14389.42 12963.01 24089.43 9192.62 7076.43 7487.53 3591.34 11172.82 4293.42 15781.28 8788.74 12894.66 28
PS-MVSNAJ81.69 11781.02 11983.70 14389.51 12568.21 12784.28 24890.09 15570.79 18681.26 12285.62 26263.15 14594.29 11275.62 13888.87 12488.59 261
xiu_mvs_v2_base81.69 11781.05 11883.60 14589.15 14468.03 13284.46 24290.02 15670.67 18981.30 12186.53 24263.17 14494.19 11975.60 13988.54 13188.57 262
ACMM73.20 880.78 13979.84 14083.58 14689.31 13768.37 12289.99 7391.60 11070.28 19977.25 18389.66 14953.37 24493.53 15074.24 15182.85 21088.85 252
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LFMVS81.82 11481.23 11583.57 14791.89 7363.43 23289.84 7581.85 31277.04 5983.21 9493.10 6752.26 25293.43 15671.98 17289.95 11193.85 63
Fast-Effi-MVS+80.81 13479.92 13783.47 14888.85 15264.51 20685.53 21989.39 17470.79 18678.49 15785.06 27567.54 10193.58 14567.03 22286.58 15492.32 127
CHOSEN 1792x268877.63 21775.69 22883.44 14989.98 11368.58 11978.70 32887.50 22956.38 36275.80 21886.84 22558.67 20191.40 23961.58 26885.75 17090.34 192
新几何183.42 15093.13 5270.71 7185.48 26157.43 35781.80 11391.98 9063.28 14092.27 20464.60 24092.99 6987.27 286
DP-MVS76.78 23174.57 24683.42 15093.29 4869.46 9488.55 12583.70 28263.98 29970.20 29588.89 17154.01 23894.80 9946.66 36281.88 22386.01 313
MVS_Test83.15 9483.06 8983.41 15286.86 22163.21 23686.11 20292.00 9374.31 11882.87 10089.44 16170.03 7293.21 16577.39 12088.50 13393.81 66
LS3D76.95 22874.82 24483.37 15390.45 9967.36 14989.15 10486.94 24161.87 32269.52 30790.61 13351.71 26594.53 10646.38 36586.71 15388.21 267
IB-MVS68.01 1575.85 24773.36 26283.31 15484.76 25966.03 17283.38 26385.06 26470.21 20269.40 30881.05 33145.76 32294.66 10465.10 23675.49 30089.25 236
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MG-MVS83.41 8983.45 8283.28 15592.74 6262.28 25188.17 13989.50 17175.22 9981.49 11792.74 8266.75 10795.11 8472.85 16591.58 8792.45 124
jajsoiax79.29 17377.96 18183.27 15684.68 26166.57 16589.25 9990.16 15369.20 22775.46 22589.49 15545.75 32393.13 17476.84 12580.80 23490.11 203
test_djsdf80.30 15179.32 15283.27 15683.98 27665.37 19190.50 6190.38 14368.55 24176.19 21088.70 17556.44 22093.46 15478.98 10380.14 24490.97 169
test_yl81.17 12680.47 12883.24 15889.13 14563.62 22386.21 19989.95 15972.43 15981.78 11489.61 15157.50 21293.58 14570.75 18186.90 14992.52 119
DCV-MVSNet81.17 12680.47 12883.24 15889.13 14563.62 22386.21 19989.95 15972.43 15981.78 11489.61 15157.50 21293.58 14570.75 18186.90 14992.52 119
mvs_tets79.13 17777.77 19083.22 16084.70 26066.37 16889.17 10090.19 15269.38 22075.40 22889.46 15844.17 33293.15 17276.78 12780.70 23690.14 200
thisisatest051577.33 22275.38 23783.18 16185.27 24963.80 22182.11 28083.27 29065.06 28275.91 21583.84 29649.54 28894.27 11467.24 21886.19 16191.48 153
CDS-MVSNet79.07 17977.70 19383.17 16287.60 20468.23 12684.40 24686.20 25267.49 25476.36 20686.54 24161.54 16990.79 25561.86 26587.33 14390.49 187
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v7n78.97 18277.58 19783.14 16383.45 28665.51 18688.32 13491.21 12073.69 13272.41 27686.32 24757.93 20693.81 13669.18 19975.65 29790.11 203
BH-RMVSNet79.61 16178.44 17083.14 16389.38 13365.93 17684.95 22987.15 23773.56 13678.19 16489.79 14656.67 21993.36 15859.53 28386.74 15290.13 201
UniMVSNet (Re)81.60 12081.11 11783.09 16588.38 17464.41 21187.60 15693.02 4278.42 3278.56 15588.16 19369.78 7593.26 16169.58 19676.49 28391.60 146
PLCcopyleft70.83 1178.05 20476.37 22483.08 16691.88 7467.80 13588.19 13889.46 17264.33 29269.87 30488.38 18653.66 24093.58 14558.86 29082.73 21287.86 272
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v119279.59 16378.43 17183.07 16783.55 28464.52 20586.93 17790.58 13770.83 18577.78 17385.90 25359.15 19993.94 12773.96 15377.19 27490.76 175
v2v48280.23 15279.29 15383.05 16883.62 28264.14 21587.04 17389.97 15873.61 13478.18 16587.22 21761.10 18193.82 13576.11 13176.78 28191.18 160
TAMVS78.89 18477.51 19883.03 16987.80 19567.79 13684.72 23385.05 26567.63 25176.75 19687.70 20262.25 15990.82 25458.53 29487.13 14690.49 187
v114480.03 15679.03 15983.01 17083.78 28064.51 20687.11 17290.57 13971.96 16578.08 16886.20 24961.41 17393.94 12774.93 14477.23 27290.60 182
cascas76.72 23274.64 24582.99 17185.78 24065.88 17882.33 27789.21 18260.85 32872.74 27081.02 33247.28 30693.75 14167.48 21585.02 17389.34 234
anonymousdsp78.60 19077.15 20482.98 17280.51 33967.08 15787.24 16889.53 17065.66 27775.16 24087.19 21952.52 24792.25 20577.17 12279.34 25389.61 227
v1079.74 16078.67 16482.97 17384.06 27464.95 19887.88 15190.62 13673.11 14875.11 24286.56 24061.46 17294.05 12373.68 15475.55 29989.90 217
UniMVSNet_NR-MVSNet81.88 11281.54 11282.92 17488.46 17063.46 23087.13 17092.37 7880.19 1278.38 15989.14 16471.66 5693.05 17870.05 18976.46 28492.25 130
DU-MVS81.12 12880.52 12782.90 17587.80 19563.46 23087.02 17491.87 10179.01 2678.38 15989.07 16665.02 12893.05 17870.05 18976.46 28492.20 133
PVSNet_Blended80.98 12980.34 13082.90 17588.85 15265.40 18884.43 24492.00 9367.62 25278.11 16685.05 27666.02 11994.27 11471.52 17489.50 11589.01 244
CANet_DTU80.61 14179.87 13982.83 17785.60 24363.17 23987.36 16388.65 20576.37 7975.88 21688.44 18553.51 24293.07 17773.30 16089.74 11492.25 130
V4279.38 17278.24 17682.83 17781.10 33365.50 18785.55 21789.82 16171.57 17278.21 16386.12 25160.66 18893.18 17175.64 13775.46 30389.81 222
Anonymous2023121178.97 18277.69 19482.81 17990.54 9864.29 21390.11 7291.51 11365.01 28476.16 21488.13 19850.56 27793.03 18169.68 19577.56 27191.11 162
v192192079.22 17478.03 18082.80 18083.30 28963.94 21986.80 18190.33 14769.91 20977.48 17885.53 26358.44 20393.75 14173.60 15576.85 27990.71 178
v879.97 15879.02 16082.80 18084.09 27364.50 20887.96 14590.29 15074.13 12475.24 23886.81 22662.88 15093.89 13474.39 14975.40 30690.00 211
TAPA-MVS73.13 979.15 17677.94 18282.79 18289.59 12162.99 24488.16 14091.51 11365.77 27577.14 19091.09 12060.91 18493.21 16550.26 34487.05 14792.17 135
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v14419279.47 16678.37 17282.78 18383.35 28763.96 21886.96 17590.36 14669.99 20677.50 17785.67 26060.66 18893.77 13974.27 15076.58 28290.62 180
NR-MVSNet80.23 15279.38 14982.78 18387.80 19563.34 23386.31 19691.09 12679.01 2672.17 27989.07 16667.20 10592.81 18766.08 22875.65 29792.20 133
diffmvspermissive82.10 10781.88 10982.76 18583.00 29963.78 22283.68 25689.76 16372.94 15282.02 10989.85 14565.96 12190.79 25582.38 7887.30 14493.71 70
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v124078.99 18177.78 18982.64 18683.21 29163.54 22786.62 18890.30 14969.74 21677.33 18185.68 25957.04 21793.76 14073.13 16376.92 27690.62 180
Fast-Effi-MVS+-dtu78.02 20576.49 22082.62 18783.16 29566.96 16186.94 17687.45 23172.45 15671.49 28684.17 29154.79 23091.58 22767.61 21380.31 24189.30 235
RPMNet73.51 27170.49 29182.58 18881.32 33165.19 19375.92 34792.27 8157.60 35572.73 27176.45 36852.30 25195.43 6948.14 35777.71 26887.11 292
F-COLMAP76.38 24074.33 25182.50 18989.28 13966.95 16288.41 12889.03 18964.05 29766.83 33288.61 17946.78 31092.89 18357.48 30278.55 25887.67 275
TranMVSNet+NR-MVSNet80.84 13280.31 13182.42 19087.85 19362.33 24987.74 15491.33 11880.55 977.99 17089.86 14465.23 12692.62 18867.05 22175.24 31192.30 128
MVSTER79.01 18077.88 18582.38 19183.07 29664.80 20284.08 25388.95 19569.01 23478.69 15087.17 22054.70 23192.43 19674.69 14580.57 23889.89 218
PVSNet_BlendedMVS80.60 14280.02 13582.36 19288.85 15265.40 18886.16 20192.00 9369.34 22178.11 16686.09 25266.02 11994.27 11471.52 17482.06 22087.39 282
EI-MVSNet80.52 14679.98 13682.12 19384.28 26863.19 23886.41 19388.95 19574.18 12278.69 15087.54 20966.62 10892.43 19672.57 16980.57 23890.74 177
IterMVS-LS80.06 15579.38 14982.11 19485.89 23863.20 23786.79 18289.34 17574.19 12175.45 22686.72 22966.62 10892.39 19872.58 16876.86 27890.75 176
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
BH-untuned79.47 16678.60 16682.05 19589.19 14365.91 17786.07 20388.52 20872.18 16275.42 22787.69 20361.15 18093.54 14960.38 27686.83 15186.70 301
ACMH+68.96 1476.01 24574.01 25382.03 19688.60 16565.31 19288.86 11287.55 22770.25 20167.75 32187.47 21141.27 34893.19 17058.37 29575.94 29487.60 277
Anonymous20240521178.25 19677.01 20681.99 19791.03 8560.67 27084.77 23283.90 28070.65 19380.00 13491.20 11641.08 35091.43 23865.21 23485.26 17293.85 63
GA-MVS76.87 22975.17 24181.97 19882.75 30562.58 24681.44 28986.35 25172.16 16474.74 24982.89 31346.20 31792.02 21268.85 20481.09 23091.30 158
CNLPA78.08 20276.79 21381.97 19890.40 10171.07 6287.59 15784.55 27066.03 27372.38 27789.64 15057.56 21186.04 31459.61 28283.35 20488.79 255
MVS78.19 20076.99 20881.78 20085.66 24166.99 15884.66 23490.47 14155.08 36772.02 28185.27 26863.83 13794.11 12266.10 22789.80 11384.24 337
ACMH67.68 1675.89 24673.93 25581.77 20188.71 16266.61 16488.62 12389.01 19169.81 21066.78 33386.70 23341.95 34791.51 23455.64 31678.14 26587.17 288
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D79.10 17878.24 17681.70 20286.85 22260.24 27787.28 16788.79 19874.25 12076.84 19290.53 13549.48 28991.56 22967.98 21082.15 21893.29 91
VNet82.21 10682.41 9881.62 20390.82 9260.93 26584.47 24089.78 16276.36 8084.07 8391.88 9364.71 13190.26 26170.68 18388.89 12393.66 71
XVG-ACMP-BASELINE76.11 24374.27 25281.62 20383.20 29264.67 20483.60 26089.75 16469.75 21471.85 28287.09 22232.78 37592.11 20969.99 19180.43 24088.09 268
eth_miper_zixun_eth77.92 20876.69 21781.61 20583.00 29961.98 25483.15 26789.20 18369.52 21874.86 24884.35 28661.76 16592.56 19171.50 17672.89 33390.28 196
PAPM77.68 21676.40 22381.51 20687.29 21661.85 25683.78 25589.59 16864.74 28671.23 28788.70 17562.59 15293.66 14452.66 32987.03 14889.01 244
v14878.72 18777.80 18881.47 20782.73 30661.96 25586.30 19788.08 21473.26 14576.18 21185.47 26562.46 15592.36 20071.92 17373.82 32590.09 205
tt080578.73 18677.83 18681.43 20885.17 25060.30 27689.41 9490.90 12971.21 17877.17 18988.73 17446.38 31293.21 16572.57 16978.96 25690.79 173
LTVRE_ROB69.57 1376.25 24174.54 24881.41 20988.60 16564.38 21279.24 31989.12 18870.76 18869.79 30687.86 20049.09 29693.20 16856.21 31580.16 24286.65 302
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
GBi-Net78.40 19377.40 19981.40 21087.60 20463.01 24088.39 12989.28 17771.63 16875.34 23187.28 21354.80 22791.11 24562.72 25279.57 24890.09 205
test178.40 19377.40 19981.40 21087.60 20463.01 24088.39 12989.28 17771.63 16875.34 23187.28 21354.80 22791.11 24562.72 25279.57 24890.09 205
FMVSNet177.44 21976.12 22681.40 21086.81 22463.01 24088.39 12989.28 17770.49 19574.39 25487.28 21349.06 29791.11 24560.91 27378.52 25990.09 205
baseline275.70 24873.83 25881.30 21383.26 29061.79 25882.57 27680.65 32266.81 25766.88 33183.42 30557.86 20892.19 20763.47 24679.57 24889.91 216
c3_l78.75 18577.91 18381.26 21482.89 30361.56 26084.09 25289.13 18769.97 20775.56 22184.29 28766.36 11392.09 21073.47 15875.48 30190.12 202
cl2278.07 20377.01 20681.23 21582.37 31561.83 25783.55 26187.98 21668.96 23575.06 24483.87 29461.40 17491.88 21873.53 15676.39 28689.98 214
FMVSNet278.20 19977.21 20381.20 21687.60 20462.89 24587.47 16089.02 19071.63 16875.29 23787.28 21354.80 22791.10 24862.38 25779.38 25289.61 227
TR-MVS77.44 21976.18 22581.20 21688.24 17863.24 23584.61 23786.40 24967.55 25377.81 17286.48 24354.10 23693.15 17257.75 30182.72 21387.20 287
ab-mvs79.51 16478.97 16181.14 21888.46 17060.91 26683.84 25489.24 18170.36 19679.03 14488.87 17263.23 14390.21 26365.12 23582.57 21592.28 129
MVP-Stereo76.12 24274.46 25081.13 21985.37 24869.79 8684.42 24587.95 21865.03 28367.46 32585.33 26753.28 24591.73 22458.01 29983.27 20581.85 362
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
miper_ehance_all_eth78.59 19177.76 19181.08 22082.66 30861.56 26083.65 25789.15 18568.87 23675.55 22283.79 29866.49 11192.03 21173.25 16176.39 28689.64 226
FIs82.07 10982.42 9781.04 22188.80 15758.34 29188.26 13693.49 2676.93 6178.47 15891.04 12269.92 7492.34 20269.87 19384.97 17492.44 125
SDMVSNet80.38 14880.18 13480.99 22289.03 15064.94 19980.45 30589.40 17375.19 10176.61 20189.98 14260.61 19087.69 30376.83 12683.55 20090.33 193
patch_mono-283.65 8284.54 7280.99 22290.06 11165.83 17984.21 24988.74 20371.60 17185.01 5992.44 8474.51 2583.50 33582.15 7992.15 7993.64 77
FMVSNet377.88 20976.85 21180.97 22486.84 22362.36 24886.52 19188.77 19971.13 17975.34 23186.66 23554.07 23791.10 24862.72 25279.57 24889.45 231
miper_enhance_ethall77.87 21076.86 21080.92 22581.65 32261.38 26282.68 27488.98 19265.52 27975.47 22382.30 32165.76 12392.00 21372.95 16476.39 28689.39 232
BH-w/o78.21 19877.33 20280.84 22688.81 15665.13 19584.87 23087.85 22269.75 21474.52 25384.74 28061.34 17593.11 17558.24 29785.84 16884.27 336
COLMAP_ROBcopyleft66.92 1773.01 27870.41 29380.81 22787.13 21965.63 18488.30 13584.19 27762.96 30863.80 35887.69 20338.04 36492.56 19146.66 36274.91 31484.24 337
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
VPA-MVSNet80.60 14280.55 12680.76 22888.07 18660.80 26886.86 17991.58 11175.67 9380.24 13189.45 16063.34 13990.25 26270.51 18579.22 25591.23 159
EG-PatchMatch MVS74.04 26571.82 27580.71 22984.92 25767.42 14685.86 20988.08 21466.04 27264.22 35483.85 29535.10 37292.56 19157.44 30380.83 23382.16 361
ECVR-MVScopyleft79.61 16179.26 15480.67 23090.08 10754.69 34387.89 15077.44 35174.88 10780.27 13092.79 7948.96 29992.45 19568.55 20692.50 7694.86 17
cl____77.72 21376.76 21480.58 23182.49 31260.48 27383.09 26987.87 22069.22 22574.38 25585.22 27162.10 16291.53 23271.09 17975.41 30589.73 225
DIV-MVS_self_test77.72 21376.76 21480.58 23182.48 31360.48 27383.09 26987.86 22169.22 22574.38 25585.24 26962.10 16291.53 23271.09 17975.40 30689.74 224
MSDG73.36 27470.99 28680.49 23384.51 26665.80 18080.71 30086.13 25465.70 27665.46 34583.74 29944.60 32890.91 25351.13 33776.89 27784.74 332
pmmvs474.03 26771.91 27480.39 23481.96 31868.32 12381.45 28882.14 30759.32 34069.87 30485.13 27352.40 25088.13 29860.21 27874.74 31684.73 333
HY-MVS69.67 1277.95 20777.15 20480.36 23587.57 20860.21 27883.37 26487.78 22466.11 27075.37 23087.06 22463.27 14190.48 26061.38 27082.43 21690.40 191
mvs_anonymous79.42 16979.11 15880.34 23684.45 26757.97 29782.59 27587.62 22667.40 25676.17 21388.56 18268.47 9189.59 27470.65 18486.05 16493.47 85
1112_ss77.40 22176.43 22280.32 23789.11 14960.41 27583.65 25787.72 22562.13 32073.05 26786.72 22962.58 15389.97 26762.11 26380.80 23490.59 183
WR-MVS79.49 16579.22 15680.27 23888.79 15858.35 29085.06 22688.61 20778.56 3077.65 17588.34 18763.81 13890.66 25864.98 23777.22 27391.80 144
131476.53 23475.30 24080.21 23983.93 27762.32 25084.66 23488.81 19760.23 33270.16 29884.07 29355.30 22490.73 25767.37 21683.21 20687.59 279
test111179.43 16879.18 15780.15 24089.99 11253.31 35687.33 16577.05 35475.04 10480.23 13292.77 8148.97 29892.33 20368.87 20392.40 7894.81 20
IterMVS-SCA-FT75.43 25373.87 25780.11 24182.69 30764.85 20181.57 28683.47 28769.16 22870.49 29284.15 29251.95 26088.15 29769.23 19872.14 33887.34 284
FC-MVSNet-test81.52 12182.02 10680.03 24288.42 17355.97 32987.95 14693.42 2977.10 5777.38 18090.98 12869.96 7391.79 22068.46 20884.50 18092.33 126
testdata79.97 24390.90 8964.21 21484.71 26759.27 34185.40 5592.91 7362.02 16489.08 28368.95 20291.37 9086.63 303
SCA74.22 26372.33 27279.91 24484.05 27562.17 25279.96 31279.29 33966.30 26972.38 27780.13 34151.95 26088.60 29259.25 28577.67 27088.96 248
thres40076.50 23575.37 23879.86 24589.13 14557.65 30385.17 22283.60 28373.41 14176.45 20386.39 24552.12 25491.95 21448.33 35383.75 19490.00 211
test_040272.79 28170.44 29279.84 24688.13 18265.99 17585.93 20684.29 27465.57 27867.40 32785.49 26446.92 30992.61 18935.88 38874.38 31980.94 367
OurMVSNet-221017-074.26 26272.42 27179.80 24783.76 28159.59 28485.92 20786.64 24566.39 26866.96 33087.58 20539.46 35691.60 22665.76 23169.27 35188.22 266
test250677.30 22376.49 22079.74 24890.08 10752.02 35987.86 15263.10 39474.88 10780.16 13392.79 7938.29 36392.35 20168.74 20592.50 7694.86 17
SixPastTwentyTwo73.37 27271.26 28479.70 24985.08 25557.89 29985.57 21383.56 28571.03 18365.66 34485.88 25442.10 34592.57 19059.11 28763.34 37088.65 260
thres600view776.50 23575.44 23479.68 25089.40 13157.16 30985.53 21983.23 29173.79 13076.26 20887.09 22251.89 26291.89 21748.05 35883.72 19790.00 211
CR-MVSNet73.37 27271.27 28379.67 25181.32 33165.19 19375.92 34780.30 32959.92 33572.73 27181.19 32952.50 24886.69 30859.84 28077.71 26887.11 292
D2MVS74.82 25873.21 26379.64 25279.81 34862.56 24780.34 30787.35 23264.37 29168.86 31382.66 31746.37 31390.10 26467.91 21181.24 22886.25 306
AllTest70.96 29568.09 31079.58 25385.15 25263.62 22384.58 23879.83 33362.31 31760.32 36986.73 22732.02 37688.96 28750.28 34271.57 34286.15 309
TestCases79.58 25385.15 25263.62 22379.83 33362.31 31760.32 36986.73 22732.02 37688.96 28750.28 34271.57 34286.15 309
tfpn200view976.42 23875.37 23879.55 25589.13 14557.65 30385.17 22283.60 28373.41 14176.45 20386.39 24552.12 25491.95 21448.33 35383.75 19489.07 237
thres100view90076.50 23575.55 23379.33 25689.52 12456.99 31285.83 21183.23 29173.94 12676.32 20787.12 22151.89 26291.95 21448.33 35383.75 19489.07 237
CostFormer75.24 25673.90 25679.27 25782.65 30958.27 29280.80 29582.73 30361.57 32375.33 23583.13 30955.52 22291.07 25164.98 23778.34 26488.45 263
Test_1112_low_res76.40 23975.44 23479.27 25789.28 13958.09 29381.69 28487.07 23859.53 33972.48 27586.67 23461.30 17689.33 27860.81 27580.15 24390.41 190
K. test v371.19 29268.51 30479.21 25983.04 29857.78 30284.35 24776.91 35572.90 15362.99 36182.86 31439.27 35791.09 25061.65 26752.66 38888.75 257
testing9176.54 23375.66 23179.18 26088.43 17255.89 33081.08 29283.00 29773.76 13175.34 23184.29 28746.20 31790.07 26564.33 24184.50 18091.58 148
testing9976.09 24475.12 24279.00 26188.16 18055.50 33580.79 29681.40 31673.30 14475.17 23984.27 28944.48 33090.02 26664.28 24284.22 18891.48 153
lessismore_v078.97 26281.01 33457.15 31065.99 38861.16 36682.82 31539.12 35891.34 24159.67 28146.92 39488.43 264
pm-mvs177.25 22476.68 21878.93 26384.22 27058.62 28986.41 19388.36 21071.37 17573.31 26388.01 19961.22 17989.15 28264.24 24373.01 33289.03 243
thres20075.55 25074.47 24978.82 26487.78 19857.85 30083.07 27183.51 28672.44 15875.84 21784.42 28252.08 25791.75 22247.41 36083.64 19986.86 297
VPNet78.69 18878.66 16578.76 26588.31 17655.72 33284.45 24386.63 24676.79 6578.26 16290.55 13459.30 19889.70 27366.63 22377.05 27590.88 171
tpm273.26 27571.46 27978.63 26683.34 28856.71 31780.65 30180.40 32856.63 36173.55 26182.02 32651.80 26491.24 24356.35 31478.42 26287.95 269
pmmvs674.69 25973.39 26178.61 26781.38 32857.48 30686.64 18787.95 21864.99 28570.18 29686.61 23650.43 27989.52 27562.12 26270.18 34888.83 253
sd_testset77.70 21577.40 19978.60 26889.03 15060.02 27979.00 32385.83 25775.19 10176.61 20189.98 14254.81 22685.46 32162.63 25683.55 20090.33 193
WR-MVS_H78.51 19278.49 16878.56 26988.02 18856.38 32388.43 12792.67 6377.14 5573.89 25887.55 20866.25 11589.24 28058.92 28973.55 32790.06 209
RPSCF73.23 27671.46 27978.54 27082.50 31159.85 28082.18 27982.84 30258.96 34471.15 28989.41 16245.48 32684.77 32758.82 29171.83 34091.02 168
testing1175.14 25774.01 25378.53 27188.16 18056.38 32380.74 29980.42 32770.67 18972.69 27383.72 30043.61 33589.86 26862.29 25983.76 19389.36 233
pmmvs-eth3d70.50 30267.83 31578.52 27277.37 36466.18 17181.82 28181.51 31458.90 34563.90 35780.42 33942.69 34086.28 31258.56 29365.30 36683.11 351
PatchmatchNetpermissive73.12 27771.33 28278.49 27383.18 29360.85 26779.63 31478.57 34364.13 29371.73 28379.81 34651.20 27085.97 31557.40 30476.36 29188.66 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
IterMVS74.29 26172.94 26678.35 27481.53 32563.49 22981.58 28582.49 30468.06 24969.99 30183.69 30151.66 26685.54 31965.85 23071.64 34186.01 313
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ITE_SJBPF78.22 27581.77 32160.57 27183.30 28969.25 22467.54 32387.20 21836.33 36987.28 30654.34 32174.62 31786.80 298
testing22274.04 26572.66 26878.19 27687.89 19155.36 33681.06 29379.20 34071.30 17674.65 25183.57 30339.11 35988.67 29151.43 33685.75 17090.53 185
ppachtmachnet_test70.04 30667.34 32378.14 27779.80 34961.13 26379.19 32180.59 32359.16 34265.27 34779.29 34946.75 31187.29 30549.33 34866.72 35986.00 315
tfpnnormal74.39 26073.16 26478.08 27886.10 23758.05 29484.65 23687.53 22870.32 19871.22 28885.63 26154.97 22589.86 26843.03 37675.02 31386.32 305
Vis-MVSNet (Re-imp)78.36 19578.45 16978.07 27988.64 16451.78 36586.70 18679.63 33674.14 12375.11 24290.83 12961.29 17789.75 27158.10 29891.60 8692.69 114
TransMVSNet (Re)75.39 25574.56 24777.86 28085.50 24557.10 31186.78 18386.09 25572.17 16371.53 28587.34 21263.01 14989.31 27956.84 31061.83 37287.17 288
PEN-MVS77.73 21277.69 19477.84 28187.07 22053.91 35087.91 14991.18 12177.56 4373.14 26688.82 17361.23 17889.17 28159.95 27972.37 33590.43 189
CP-MVSNet78.22 19778.34 17377.84 28187.83 19454.54 34587.94 14791.17 12277.65 3873.48 26288.49 18362.24 16088.43 29462.19 26074.07 32090.55 184
PS-CasMVS78.01 20678.09 17977.77 28387.71 20054.39 34788.02 14391.22 11977.50 4673.26 26488.64 17860.73 18588.41 29561.88 26473.88 32490.53 185
baseline176.98 22776.75 21677.66 28488.13 18255.66 33385.12 22581.89 31073.04 15076.79 19488.90 17062.43 15687.78 30263.30 24971.18 34489.55 229
OpenMVS_ROBcopyleft64.09 1970.56 30168.19 30777.65 28580.26 34059.41 28685.01 22782.96 29958.76 34665.43 34682.33 32037.63 36691.23 24445.34 37276.03 29382.32 358
Patchmatch-RL test70.24 30467.78 31777.61 28677.43 36359.57 28571.16 36870.33 37762.94 30968.65 31572.77 38050.62 27685.49 32069.58 19666.58 36187.77 274
Baseline_NR-MVSNet78.15 20178.33 17477.61 28685.79 23956.21 32786.78 18385.76 25873.60 13577.93 17187.57 20665.02 12888.99 28467.14 22075.33 30887.63 276
DTE-MVSNet76.99 22676.80 21277.54 28886.24 23253.06 35887.52 15890.66 13577.08 5872.50 27488.67 17760.48 19289.52 27557.33 30570.74 34690.05 210
LCM-MVSNet-Re77.05 22576.94 20977.36 28987.20 21751.60 36680.06 30980.46 32675.20 10067.69 32286.72 22962.48 15488.98 28563.44 24789.25 11891.51 150
tpm cat170.57 30068.31 30677.35 29082.41 31457.95 29878.08 33580.22 33152.04 37468.54 31777.66 36352.00 25987.84 30151.77 33272.07 33986.25 306
MS-PatchMatch73.83 26872.67 26777.30 29183.87 27866.02 17381.82 28184.66 26861.37 32668.61 31682.82 31547.29 30588.21 29659.27 28484.32 18677.68 376
EPNet_dtu75.46 25274.86 24377.23 29282.57 31054.60 34486.89 17883.09 29471.64 16766.25 34285.86 25555.99 22188.04 29954.92 31886.55 15589.05 242
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_lstm_enhance74.11 26473.11 26577.13 29380.11 34359.62 28372.23 36586.92 24266.76 25970.40 29382.92 31256.93 21882.92 33969.06 20172.63 33488.87 251
TDRefinement67.49 32464.34 33476.92 29473.47 38261.07 26484.86 23182.98 29859.77 33658.30 37685.13 27326.06 38687.89 30047.92 35960.59 37781.81 363
JIA-IIPM66.32 33462.82 34576.82 29577.09 36561.72 25965.34 39175.38 36158.04 35264.51 35262.32 39042.05 34686.51 31051.45 33569.22 35282.21 359
PatchMatch-RL72.38 28370.90 28776.80 29688.60 16567.38 14879.53 31576.17 36062.75 31369.36 30982.00 32745.51 32484.89 32653.62 32480.58 23778.12 375
tpmvs71.09 29469.29 29976.49 29782.04 31756.04 32878.92 32581.37 31764.05 29767.18 32978.28 35849.74 28789.77 27049.67 34772.37 33583.67 345
CMPMVSbinary51.72 2170.19 30568.16 30876.28 29873.15 38557.55 30579.47 31683.92 27948.02 38256.48 38284.81 27843.13 33786.42 31162.67 25581.81 22484.89 330
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
USDC70.33 30368.37 30576.21 29980.60 33756.23 32679.19 32186.49 24760.89 32761.29 36585.47 26531.78 37889.47 27753.37 32676.21 29282.94 355
gg-mvs-nofinetune69.95 30767.96 31175.94 30083.07 29654.51 34677.23 34270.29 37863.11 30570.32 29462.33 38943.62 33488.69 29053.88 32387.76 13884.62 334
ETVMVS72.25 28671.05 28575.84 30187.77 19951.91 36279.39 31774.98 36369.26 22373.71 25982.95 31140.82 35286.14 31346.17 36684.43 18589.47 230
MDA-MVSNet-bldmvs66.68 33063.66 33975.75 30279.28 35660.56 27273.92 36178.35 34464.43 28950.13 39079.87 34544.02 33383.67 33346.10 36756.86 38083.03 353
PVSNet64.34 1872.08 28870.87 28875.69 30386.21 23356.44 32174.37 35980.73 32162.06 32170.17 29782.23 32342.86 33983.31 33754.77 31984.45 18487.32 285
pmmvs571.55 29070.20 29675.61 30477.83 36156.39 32281.74 28380.89 31857.76 35367.46 32584.49 28149.26 29485.32 32357.08 30775.29 30985.11 328
our_test_369.14 31267.00 32575.57 30579.80 34958.80 28777.96 33677.81 34659.55 33862.90 36278.25 35947.43 30483.97 33151.71 33367.58 35883.93 342
WTY-MVS75.65 24975.68 22975.57 30586.40 23156.82 31477.92 33882.40 30565.10 28176.18 21187.72 20163.13 14880.90 35060.31 27781.96 22189.00 246
Patchmtry70.74 29869.16 30175.49 30780.72 33554.07 34974.94 35880.30 32958.34 34870.01 29981.19 32952.50 24886.54 30953.37 32671.09 34585.87 317
GG-mvs-BLEND75.38 30881.59 32455.80 33179.32 31869.63 38067.19 32873.67 37843.24 33688.90 28950.41 33984.50 18081.45 364
ambc75.24 30973.16 38450.51 37363.05 39687.47 23064.28 35377.81 36217.80 39889.73 27257.88 30060.64 37685.49 320
CL-MVSNet_self_test72.37 28471.46 27975.09 31079.49 35453.53 35280.76 29885.01 26669.12 22970.51 29182.05 32557.92 20784.13 33052.27 33166.00 36487.60 277
XXY-MVS75.41 25475.56 23274.96 31183.59 28357.82 30180.59 30283.87 28166.54 26774.93 24788.31 18863.24 14280.09 35362.16 26176.85 27986.97 295
MIMVSNet70.69 29969.30 29874.88 31284.52 26556.35 32575.87 34979.42 33764.59 28767.76 32082.41 31941.10 34981.54 34646.64 36481.34 22686.75 300
ADS-MVSNet266.20 33763.33 34074.82 31379.92 34558.75 28867.55 38375.19 36253.37 37165.25 34875.86 37142.32 34280.53 35241.57 37968.91 35385.18 325
TinyColmap67.30 32764.81 33274.76 31481.92 32056.68 31880.29 30881.49 31560.33 33056.27 38383.22 30624.77 38987.66 30445.52 37069.47 35079.95 371
test_vis1_n_192075.52 25175.78 22774.75 31579.84 34757.44 30783.26 26585.52 26062.83 31179.34 14286.17 25045.10 32779.71 35478.75 10581.21 22987.10 294
test-LLR72.94 28072.43 27074.48 31681.35 32958.04 29578.38 33177.46 34966.66 26169.95 30279.00 35248.06 30279.24 35566.13 22584.83 17586.15 309
test-mter71.41 29170.39 29474.48 31681.35 32958.04 29578.38 33177.46 34960.32 33169.95 30279.00 35236.08 37079.24 35566.13 22584.83 17586.15 309
tpm72.37 28471.71 27674.35 31882.19 31652.00 36079.22 32077.29 35264.56 28872.95 26983.68 30251.35 26783.26 33858.33 29675.80 29587.81 273
CVMVSNet72.99 27972.58 26974.25 31984.28 26850.85 37186.41 19383.45 28844.56 38673.23 26587.54 20949.38 29185.70 31665.90 22978.44 26186.19 308
FMVSNet569.50 31067.96 31174.15 32082.97 30255.35 33780.01 31182.12 30862.56 31563.02 35981.53 32836.92 36781.92 34448.42 35274.06 32185.17 327
UWE-MVS72.13 28771.49 27874.03 32186.66 22847.70 37981.40 29076.89 35663.60 30275.59 22084.22 29039.94 35585.62 31848.98 35086.13 16388.77 256
MIMVSNet168.58 31766.78 32773.98 32280.07 34451.82 36480.77 29784.37 27164.40 29059.75 37282.16 32436.47 36883.63 33442.73 37770.33 34786.48 304
test_cas_vis1_n_192073.76 26973.74 25973.81 32375.90 36859.77 28180.51 30382.40 30558.30 34981.62 11685.69 25844.35 33176.41 37276.29 12978.61 25785.23 324
Anonymous2024052168.80 31567.22 32473.55 32474.33 37554.11 34883.18 26685.61 25958.15 35061.68 36480.94 33430.71 38181.27 34857.00 30873.34 33185.28 323
sss73.60 27073.64 26073.51 32582.80 30455.01 34176.12 34581.69 31362.47 31674.68 25085.85 25657.32 21478.11 36160.86 27480.93 23187.39 282
KD-MVS_2432*160066.22 33563.89 33773.21 32675.47 37353.42 35470.76 37184.35 27264.10 29566.52 33878.52 35634.55 37384.98 32450.40 34050.33 39181.23 365
miper_refine_blended66.22 33563.89 33773.21 32675.47 37353.42 35470.76 37184.35 27264.10 29566.52 33878.52 35634.55 37384.98 32450.40 34050.33 39181.23 365
PM-MVS66.41 33364.14 33573.20 32873.92 37756.45 32078.97 32464.96 39263.88 30164.72 35180.24 34019.84 39683.44 33666.24 22464.52 36879.71 372
tpmrst72.39 28272.13 27373.18 32980.54 33849.91 37579.91 31379.08 34163.11 30571.69 28479.95 34355.32 22382.77 34065.66 23273.89 32386.87 296
WB-MVSnew71.96 28971.65 27772.89 33084.67 26451.88 36382.29 27877.57 34862.31 31773.67 26083.00 31053.49 24381.10 34945.75 36982.13 21985.70 318
dmvs_re71.14 29370.58 28972.80 33181.96 31859.68 28275.60 35179.34 33868.55 24169.27 31180.72 33749.42 29076.54 36952.56 33077.79 26782.19 360
test_fmvs1_n70.86 29770.24 29572.73 33272.51 38955.28 33881.27 29179.71 33551.49 37878.73 14984.87 27727.54 38577.02 36676.06 13279.97 24685.88 316
TESTMET0.1,169.89 30869.00 30272.55 33379.27 35756.85 31378.38 33174.71 36757.64 35468.09 31977.19 36537.75 36576.70 36863.92 24484.09 18984.10 340
mamv476.81 23078.23 17872.54 33486.12 23565.75 18378.76 32782.07 30964.12 29472.97 26891.02 12567.97 9668.08 39683.04 6878.02 26683.80 344
KD-MVS_self_test68.81 31467.59 32172.46 33574.29 37645.45 38477.93 33787.00 23963.12 30463.99 35678.99 35442.32 34284.77 32756.55 31364.09 36987.16 290
test_fmvs170.93 29670.52 29072.16 33673.71 37855.05 34080.82 29478.77 34251.21 37978.58 15484.41 28331.20 38076.94 36775.88 13580.12 24584.47 335
CHOSEN 280x42066.51 33264.71 33371.90 33781.45 32663.52 22857.98 39868.95 38453.57 37062.59 36376.70 36646.22 31675.29 38255.25 31779.68 24776.88 378
test_vis1_n69.85 30969.21 30071.77 33872.66 38855.27 33981.48 28776.21 35952.03 37575.30 23683.20 30828.97 38376.22 37474.60 14678.41 26383.81 343
EPMVS69.02 31368.16 30871.59 33979.61 35249.80 37777.40 34066.93 38662.82 31270.01 29979.05 35045.79 32177.86 36356.58 31275.26 31087.13 291
YYNet165.03 33862.91 34371.38 34075.85 36956.60 31969.12 37974.66 36857.28 35854.12 38577.87 36145.85 32074.48 38449.95 34561.52 37483.05 352
MDA-MVSNet_test_wron65.03 33862.92 34271.37 34175.93 36756.73 31569.09 38074.73 36657.28 35854.03 38677.89 36045.88 31974.39 38549.89 34661.55 37382.99 354
UnsupCasMVSNet_eth67.33 32665.99 33071.37 34173.48 38151.47 36875.16 35485.19 26365.20 28060.78 36780.93 33642.35 34177.20 36557.12 30653.69 38785.44 321
PMMVS69.34 31168.67 30371.35 34375.67 37062.03 25375.17 35373.46 37050.00 38068.68 31479.05 35052.07 25878.13 36061.16 27282.77 21173.90 382
EU-MVSNet68.53 31967.61 32071.31 34478.51 36047.01 38284.47 24084.27 27542.27 38966.44 34184.79 27940.44 35383.76 33258.76 29268.54 35683.17 349
testing368.56 31867.67 31971.22 34587.33 21442.87 39383.06 27271.54 37570.36 19669.08 31284.38 28430.33 38285.69 31737.50 38775.45 30485.09 329
Anonymous2023120668.60 31667.80 31671.02 34680.23 34250.75 37278.30 33480.47 32556.79 36066.11 34382.63 31846.35 31478.95 35743.62 37575.70 29683.36 348
test_fmvs268.35 32167.48 32270.98 34769.50 39251.95 36180.05 31076.38 35849.33 38174.65 25184.38 28423.30 39375.40 38174.51 14775.17 31285.60 319
dp66.80 32965.43 33170.90 34879.74 35148.82 37875.12 35674.77 36559.61 33764.08 35577.23 36442.89 33880.72 35148.86 35166.58 36183.16 350
PatchT68.46 32067.85 31370.29 34980.70 33643.93 39172.47 36474.88 36460.15 33370.55 29076.57 36749.94 28481.59 34550.58 33874.83 31585.34 322
UnsupCasMVSNet_bld63.70 34361.53 34970.21 35073.69 37951.39 36972.82 36381.89 31055.63 36557.81 37871.80 38238.67 36078.61 35849.26 34952.21 38980.63 368
Patchmatch-test64.82 34063.24 34169.57 35179.42 35549.82 37663.49 39569.05 38351.98 37659.95 37180.13 34150.91 27270.98 39040.66 38173.57 32687.90 271
LF4IMVS64.02 34262.19 34669.50 35270.90 39053.29 35776.13 34477.18 35352.65 37358.59 37480.98 33323.55 39276.52 37053.06 32866.66 36078.68 374
myMVS_eth3d67.02 32866.29 32969.21 35384.68 26142.58 39478.62 32973.08 37266.65 26466.74 33479.46 34731.53 37982.30 34239.43 38476.38 28982.75 356
test20.0367.45 32566.95 32668.94 35475.48 37244.84 38977.50 33977.67 34766.66 26163.01 36083.80 29747.02 30878.40 35942.53 37868.86 35583.58 346
test0.0.03 168.00 32367.69 31868.90 35577.55 36247.43 38075.70 35072.95 37466.66 26166.56 33682.29 32248.06 30275.87 37644.97 37374.51 31883.41 347
PVSNet_057.27 2061.67 34859.27 35168.85 35679.61 35257.44 30768.01 38173.44 37155.93 36458.54 37570.41 38544.58 32977.55 36447.01 36135.91 39771.55 385
ADS-MVSNet64.36 34162.88 34468.78 35779.92 34547.17 38167.55 38371.18 37653.37 37165.25 34875.86 37142.32 34273.99 38641.57 37968.91 35385.18 325
Syy-MVS68.05 32267.85 31368.67 35884.68 26140.97 39978.62 32973.08 37266.65 26466.74 33479.46 34752.11 25682.30 34232.89 39176.38 28982.75 356
pmmvs357.79 35154.26 35668.37 35964.02 39956.72 31675.12 35665.17 39040.20 39152.93 38769.86 38620.36 39575.48 37945.45 37155.25 38672.90 384
test_fmvs363.36 34461.82 34767.98 36062.51 40046.96 38377.37 34174.03 36945.24 38567.50 32478.79 35512.16 40472.98 38972.77 16766.02 36383.99 341
LCM-MVSNet54.25 35449.68 36467.97 36153.73 40845.28 38766.85 38680.78 32035.96 39739.45 39862.23 3918.70 40878.06 36248.24 35651.20 39080.57 369
EGC-MVSNET52.07 36147.05 36567.14 36283.51 28560.71 26980.50 30467.75 3850.07 4110.43 41275.85 37324.26 39081.54 34628.82 39462.25 37159.16 394
testgi66.67 33166.53 32867.08 36375.62 37141.69 39875.93 34676.50 35766.11 27065.20 35086.59 23735.72 37174.71 38343.71 37473.38 33084.84 331
test_vis1_rt60.28 34958.42 35265.84 36467.25 39555.60 33470.44 37360.94 39744.33 38759.00 37366.64 38724.91 38868.67 39462.80 25169.48 34973.25 383
mvsany_test162.30 34661.26 35065.41 36569.52 39154.86 34266.86 38549.78 40546.65 38368.50 31883.21 30749.15 29566.28 39756.93 30960.77 37575.11 381
ANet_high50.57 36346.10 36763.99 36648.67 41139.13 40070.99 37080.85 31961.39 32531.18 40057.70 39617.02 39973.65 38831.22 39315.89 40879.18 373
MVS-HIRNet59.14 35057.67 35363.57 36781.65 32243.50 39271.73 36665.06 39139.59 39351.43 38857.73 39538.34 36282.58 34139.53 38273.95 32264.62 391
APD_test153.31 35849.93 36363.42 36865.68 39650.13 37471.59 36766.90 38734.43 39840.58 39771.56 3838.65 40976.27 37334.64 39055.36 38563.86 392
new-patchmatchnet61.73 34761.73 34861.70 36972.74 38724.50 41269.16 37878.03 34561.40 32456.72 38175.53 37438.42 36176.48 37145.95 36857.67 37984.13 339
mvsany_test353.99 35551.45 36061.61 37055.51 40444.74 39063.52 39445.41 40943.69 38858.11 37776.45 36817.99 39763.76 40054.77 31947.59 39376.34 379
DSMNet-mixed57.77 35256.90 35460.38 37167.70 39435.61 40269.18 37753.97 40332.30 40157.49 37979.88 34440.39 35468.57 39538.78 38572.37 33576.97 377
FPMVS53.68 35751.64 35959.81 37265.08 39751.03 37069.48 37669.58 38141.46 39040.67 39672.32 38116.46 40070.00 39324.24 40065.42 36558.40 396
dmvs_testset62.63 34564.11 33658.19 37378.55 35924.76 41175.28 35265.94 38967.91 25060.34 36876.01 37053.56 24173.94 38731.79 39267.65 35775.88 380
testf145.72 36541.96 36957.00 37456.90 40245.32 38566.14 38859.26 39926.19 40230.89 40160.96 3934.14 41270.64 39126.39 39846.73 39555.04 397
APD_test245.72 36541.96 36957.00 37456.90 40245.32 38566.14 38859.26 39926.19 40230.89 40160.96 3934.14 41270.64 39126.39 39846.73 39555.04 397
test_vis3_rt49.26 36447.02 36656.00 37654.30 40545.27 38866.76 38748.08 40636.83 39544.38 39453.20 3997.17 41164.07 39956.77 31155.66 38358.65 395
test_f52.09 36050.82 36155.90 37753.82 40742.31 39759.42 39758.31 40136.45 39656.12 38470.96 38412.18 40357.79 40353.51 32556.57 38267.60 388
PMVScopyleft37.38 2244.16 36940.28 37355.82 37840.82 41342.54 39665.12 39263.99 39334.43 39824.48 40457.12 3973.92 41476.17 37517.10 40555.52 38448.75 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
WB-MVS54.94 35354.72 35555.60 37973.50 38020.90 41374.27 36061.19 39659.16 34250.61 38974.15 37647.19 30775.78 37717.31 40435.07 39870.12 386
Gipumacopyleft45.18 36841.86 37155.16 38077.03 36651.52 36732.50 40480.52 32432.46 40027.12 40335.02 4049.52 40775.50 37822.31 40160.21 37838.45 403
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
SSC-MVS53.88 35653.59 35754.75 38172.87 38619.59 41473.84 36260.53 39857.58 35649.18 39273.45 37946.34 31575.47 38016.20 40732.28 40069.20 387
new_pmnet50.91 36250.29 36252.78 38268.58 39334.94 40463.71 39356.63 40239.73 39244.95 39365.47 38821.93 39458.48 40234.98 38956.62 38164.92 390
N_pmnet52.79 35953.26 35851.40 38378.99 3587.68 41769.52 3753.89 41651.63 37757.01 38074.98 37540.83 35165.96 39837.78 38664.67 36780.56 370
PMMVS240.82 37038.86 37446.69 38453.84 40616.45 41548.61 40149.92 40437.49 39431.67 39960.97 3928.14 41056.42 40428.42 39530.72 40167.19 389
dongtai45.42 36745.38 36845.55 38573.36 38326.85 40967.72 38234.19 41154.15 36949.65 39156.41 39825.43 38762.94 40119.45 40228.09 40246.86 401
MVEpermissive26.22 2330.37 37525.89 37943.81 38644.55 41235.46 40328.87 40539.07 41018.20 40618.58 40840.18 4032.68 41547.37 40817.07 40623.78 40548.60 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method31.52 37329.28 37738.23 38727.03 4156.50 41820.94 40662.21 3954.05 40922.35 40752.50 40013.33 40147.58 40727.04 39734.04 39960.62 393
kuosan39.70 37140.40 37237.58 38864.52 39826.98 40765.62 39033.02 41246.12 38442.79 39548.99 40124.10 39146.56 40912.16 41026.30 40339.20 402
E-PMN31.77 37230.64 37535.15 38952.87 40927.67 40657.09 39947.86 40724.64 40416.40 40933.05 40511.23 40554.90 40514.46 40818.15 40622.87 405
EMVS30.81 37429.65 37634.27 39050.96 41025.95 41056.58 40046.80 40824.01 40515.53 41030.68 40612.47 40254.43 40612.81 40917.05 40722.43 406
DeepMVS_CXcopyleft27.40 39140.17 41426.90 40824.59 41517.44 40723.95 40548.61 4029.77 40626.48 41018.06 40324.47 40428.83 404
wuyk23d16.82 37815.94 38119.46 39258.74 40131.45 40539.22 4023.74 4176.84 4086.04 4112.70 4111.27 41624.29 41110.54 41114.40 4102.63 408
tmp_tt18.61 37721.40 38010.23 3934.82 41610.11 41634.70 40330.74 4141.48 41023.91 40626.07 40728.42 38413.41 41227.12 39615.35 4097.17 407
test1236.12 3808.11 3830.14 3940.06 4180.09 41971.05 3690.03 4190.04 4130.25 4141.30 4130.05 4170.03 4140.21 4130.01 4120.29 409
testmvs6.04 3818.02 3840.10 3950.08 4170.03 42069.74 3740.04 4180.05 4120.31 4131.68 4120.02 4180.04 4130.24 4120.02 4110.25 410
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k19.96 37626.61 3780.00 3960.00 4190.00 4210.00 40789.26 1800.00 4140.00 41588.61 17961.62 1680.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas5.26 3827.02 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41463.15 1450.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re7.23 3799.64 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41586.72 2290.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS42.58 39439.46 383
FOURS195.00 1072.39 3995.06 193.84 1574.49 11591.30 15
PC_three_145268.21 24792.02 1294.00 4682.09 595.98 5584.58 5196.68 294.95 10
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 419
eth-test0.00 419
ZD-MVS94.38 2572.22 4492.67 6370.98 18487.75 3294.07 4174.01 3296.70 2784.66 5094.84 44
RE-MVS-def85.48 5793.06 5570.63 7391.88 3892.27 8173.53 13885.69 5394.45 2563.87 13682.75 7291.87 8392.50 121
IU-MVS95.30 271.25 5792.95 5266.81 25792.39 688.94 1696.63 494.85 19
test_241102_TWO94.06 1077.24 5192.78 495.72 881.26 897.44 789.07 1496.58 694.26 47
test_241102_ONE95.30 270.98 6394.06 1077.17 5493.10 195.39 1182.99 197.27 12
9.1488.26 1592.84 6091.52 4594.75 173.93 12788.57 2294.67 1875.57 2295.79 5786.77 3595.76 23
save fliter93.80 4072.35 4290.47 6391.17 12274.31 118
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 989.42 996.57 794.67 26
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
GSMVS88.96 248
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26888.96 248
sam_mvs50.01 282
MTGPAbinary92.02 91
test_post178.90 3265.43 41048.81 30185.44 32259.25 285
test_post5.46 40950.36 28084.24 329
patchmatchnet-post74.00 37751.12 27188.60 292
MTMP92.18 3432.83 413
gm-plane-assit81.40 32753.83 35162.72 31480.94 33492.39 19863.40 248
test9_res84.90 4395.70 2692.87 109
TEST993.26 5072.96 2588.75 11691.89 9968.44 24485.00 6093.10 6774.36 2895.41 71
test_893.13 5272.57 3588.68 12191.84 10368.69 23984.87 6493.10 6774.43 2695.16 80
agg_prior282.91 7095.45 2992.70 112
agg_prior92.85 5971.94 5091.78 10684.41 7694.93 91
test_prior472.60 3489.01 107
test_prior288.85 11375.41 9684.91 6293.54 5674.28 2983.31 6495.86 20
旧先验286.56 19058.10 35187.04 4288.98 28574.07 152
新几何286.29 198
旧先验191.96 7165.79 18186.37 25093.08 7169.31 8192.74 7288.74 258
无先验87.48 15988.98 19260.00 33494.12 12167.28 21788.97 247
原ACMM286.86 179
test22291.50 7768.26 12584.16 25083.20 29354.63 36879.74 13591.63 10158.97 20091.42 8986.77 299
testdata291.01 25262.37 258
segment_acmp73.08 38
testdata184.14 25175.71 90
plane_prior790.08 10768.51 120
plane_prior689.84 11668.70 11560.42 193
plane_prior592.44 7495.38 7378.71 10686.32 15891.33 156
plane_prior491.00 126
plane_prior368.60 11878.44 3178.92 147
plane_prior291.25 4979.12 23
plane_prior189.90 115
plane_prior68.71 11390.38 6777.62 3986.16 162
n20.00 420
nn0.00 420
door-mid69.98 379
test1192.23 84
door69.44 382
HQP5-MVS66.98 159
HQP-NCC89.33 13489.17 10076.41 7577.23 185
ACMP_Plane89.33 13489.17 10076.41 7577.23 185
BP-MVS77.47 118
HQP4-MVS77.24 18495.11 8491.03 166
HQP3-MVS92.19 8785.99 166
HQP2-MVS60.17 196
NP-MVS89.62 12068.32 12390.24 138
MDTV_nov1_ep13_2view37.79 40175.16 35455.10 36666.53 33749.34 29253.98 32287.94 270
MDTV_nov1_ep1369.97 29783.18 29353.48 35377.10 34380.18 33260.45 32969.33 31080.44 33848.89 30086.90 30751.60 33478.51 260
ACMMP++_ref81.95 222
ACMMP++81.25 227
Test By Simon64.33 132