This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
No_MVS89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
MM89.16 689.23 788.97 490.79 9073.65 1092.66 2391.17 11686.57 187.39 3594.97 1671.70 5097.68 192.19 195.63 2895.57 1
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5480.26 1187.78 2994.27 3275.89 1996.81 2387.45 3296.44 993.05 96
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10792.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
3Dnovator+77.84 485.48 5484.47 6988.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19593.37 6260.40 18896.75 2677.20 11793.73 6295.29 5
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 37
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5894.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5581.50 585.79 4893.47 6073.02 3997.00 1884.90 4294.94 3994.10 45
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5394.32 3171.76 4896.93 1985.53 3995.79 2294.32 38
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7094.52 2169.09 7896.70 2784.37 5194.83 4494.03 49
MVS_030488.08 1488.08 1788.08 1489.67 11472.04 4892.26 3389.26 17384.19 285.01 5595.18 1369.93 6997.20 1491.63 295.60 2994.99 9
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6694.52 2168.81 8496.65 3084.53 4994.90 4094.00 50
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8592.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 52
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8594.17 3667.45 9596.60 3383.06 6394.50 5094.07 47
X-MVStestdata80.37 14577.83 18288.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8512.47 39967.45 9596.60 3383.06 6394.50 5094.07 47
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5693.59 2376.27 7988.14 2495.09 1571.06 5796.67 2987.67 2996.37 1494.09 46
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 5994.44 2870.78 6096.61 3284.53 4994.89 4193.66 65
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6477.57 4183.84 8294.40 3072.24 4396.28 4085.65 3895.30 3593.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18792.02 8579.45 1985.88 4694.80 1768.07 8996.21 4286.69 3695.34 3393.23 87
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7093.04 3875.53 9183.86 8194.42 2967.87 9296.64 3182.70 7294.57 4993.66 65
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6393.99 4870.67 6296.82 2284.18 5695.01 3793.90 55
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7084.22 7493.36 6371.44 5496.76 2580.82 8595.33 3494.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 8991.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 31
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7793.82 1673.07 14784.86 6292.89 7476.22 1796.33 3884.89 4495.13 3694.40 34
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7474.62 11188.90 2093.85 5275.75 2096.00 4987.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8076.87 6282.81 9794.25 3466.44 10596.24 4182.88 6794.28 5693.38 81
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 42
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 9694.23 3572.13 4597.09 1684.83 4595.37 3293.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5876.62 7083.68 8494.46 2567.93 9095.95 5284.20 5594.39 5393.23 87
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8789.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7993.50 2575.17 10086.34 4495.29 1270.86 5996.00 4988.78 1996.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CANet86.45 3886.10 4587.51 3790.09 10270.94 6789.70 8392.59 6681.78 481.32 11291.43 10670.34 6497.23 1384.26 5293.36 6494.37 35
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8283.81 8393.95 5169.77 7296.01 4885.15 4094.66 4694.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft85.89 4885.39 5487.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12193.82 5364.33 12596.29 3982.67 7390.69 9493.23 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 5977.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15285.22 5491.90 9269.47 7496.42 3783.28 6295.94 1994.35 36
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5573.01 14988.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 105
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CDPH-MVS85.76 5085.29 5987.17 4393.49 4771.08 6188.58 12392.42 7268.32 24184.61 6793.48 5872.32 4296.15 4579.00 9895.43 3194.28 40
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11591.89 9368.69 23485.00 5793.10 6774.43 2695.41 6784.97 4195.71 2593.02 98
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5793.56 2473.95 12383.16 9191.07 11675.94 1895.19 7579.94 9494.38 5493.55 76
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 6774.50 11286.84 4294.65 2067.31 9795.77 5484.80 4692.85 6792.84 103
DPM-MVS84.93 6384.29 7086.84 4790.20 10073.04 2387.12 16993.04 3869.80 20582.85 9591.22 11073.06 3896.02 4776.72 12694.63 4791.46 148
TSAR-MVS + GP.85.71 5185.33 5686.84 4791.34 7872.50 3689.07 10487.28 22876.41 7285.80 4790.22 13474.15 3195.37 7281.82 7791.88 7892.65 109
test1286.80 4992.63 6470.70 7291.79 9982.71 9871.67 5196.16 4494.50 5093.54 77
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 9989.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 27
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13687.63 3094.27 5793.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
3Dnovator76.31 583.38 8582.31 9586.59 5287.94 18172.94 2890.64 5992.14 8477.21 5275.47 22092.83 7658.56 19594.72 9973.24 15992.71 6992.13 130
HPM-MVS_fast85.35 5884.95 6386.57 5393.69 4270.58 7592.15 3691.62 10373.89 12682.67 9994.09 4062.60 14495.54 6080.93 8392.93 6693.57 74
test_prior86.33 5492.61 6569.59 8892.97 5095.48 6293.91 53
MVS_111021_HR85.14 6084.75 6486.32 5591.65 7672.70 3085.98 20290.33 14176.11 8182.08 10291.61 10071.36 5694.17 12081.02 8292.58 7092.08 131
SR-MVS-dyc-post85.77 4985.61 5286.23 5693.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2665.00 12395.56 5882.75 6891.87 7992.50 114
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4573.54 13585.94 4594.51 2465.80 11595.61 5783.04 6592.51 7193.53 78
DP-MVS Recon83.11 9182.09 9886.15 5894.44 1970.92 6888.79 11392.20 8170.53 18979.17 13791.03 11964.12 12796.03 4668.39 20690.14 10291.50 145
EPNet83.72 7582.92 8786.14 5984.22 26369.48 9191.05 5585.27 25781.30 676.83 19091.65 9766.09 11095.56 5876.00 13293.85 6093.38 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
canonicalmvs85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13181.50 7988.80 12094.77 22
h-mvs3383.15 8882.19 9686.02 6190.56 9370.85 7088.15 14089.16 17876.02 8384.67 6491.39 10761.54 16295.50 6182.71 7075.48 29491.72 139
alignmvs85.48 5485.32 5785.96 6289.51 12069.47 9289.74 8192.47 6876.17 8087.73 3391.46 10570.32 6593.78 13681.51 7888.95 11794.63 26
CS-MVS86.69 3586.95 3185.90 6390.76 9167.57 14092.83 1793.30 3279.67 1784.57 6992.27 8671.47 5395.02 8684.24 5493.46 6395.13 6
DELS-MVS85.41 5785.30 5885.77 6488.49 16267.93 13285.52 21993.44 2778.70 2983.63 8789.03 16474.57 2495.71 5680.26 9294.04 5993.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CS-MVS-test86.29 4286.48 3785.71 6591.02 8367.21 15292.36 2993.78 1878.97 2883.51 8891.20 11170.65 6395.15 7781.96 7694.89 4194.77 22
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6687.65 19567.22 15188.69 11993.04 3879.64 1885.33 5292.54 8373.30 3594.50 10783.49 5991.14 8995.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ETV-MVS84.90 6584.67 6585.59 6789.39 12568.66 11688.74 11792.64 6579.97 1584.10 7785.71 25469.32 7695.38 6980.82 8591.37 8692.72 104
test_fmvsmconf_n85.92 4686.04 4785.57 6885.03 24969.51 9089.62 8690.58 13173.42 13887.75 3194.02 4472.85 4093.24 16090.37 390.75 9393.96 51
test_fmvsmconf0.1_n85.61 5385.65 5185.50 6982.99 29469.39 9689.65 8490.29 14473.31 14187.77 3094.15 3871.72 4993.23 16190.31 490.67 9593.89 56
UA-Net85.08 6284.96 6285.45 7092.07 7068.07 12989.78 8090.86 12682.48 384.60 6893.20 6669.35 7595.22 7471.39 17490.88 9293.07 95
Vis-MVSNetpermissive83.46 8282.80 8985.43 7190.25 9968.74 11090.30 6990.13 14876.33 7880.87 12092.89 7461.00 17694.20 11872.45 16890.97 9093.35 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvsmconf0.01_n84.73 6684.52 6885.34 7280.25 33469.03 9989.47 8889.65 16173.24 14486.98 4094.27 3266.62 10193.23 16190.26 589.95 10793.78 62
EI-MVSNet-Vis-set84.19 6883.81 7385.31 7388.18 17267.85 13387.66 15589.73 15980.05 1482.95 9289.59 14870.74 6194.82 9580.66 8984.72 16993.28 86
MAR-MVS81.84 10780.70 11885.27 7491.32 7971.53 5489.82 7790.92 12269.77 20778.50 15186.21 24562.36 15094.52 10665.36 23092.05 7789.77 218
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Effi-MVS+83.62 7983.08 8285.24 7588.38 16767.45 14288.89 10989.15 17975.50 9282.27 10088.28 18669.61 7394.45 10977.81 11187.84 13093.84 59
MVSFormer82.85 9482.05 9985.24 7587.35 20370.21 7790.50 6290.38 13768.55 23681.32 11289.47 15161.68 15993.46 15378.98 9990.26 10092.05 132
OPM-MVS83.50 8182.95 8685.14 7788.79 15270.95 6689.13 10391.52 10677.55 4480.96 11991.75 9560.71 17994.50 10779.67 9586.51 14989.97 210
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP_MVS83.64 7783.14 8185.14 7790.08 10368.71 11291.25 5092.44 6979.12 2378.92 14191.00 12060.42 18695.38 6978.71 10286.32 15191.33 149
test_fmvsm_n_192085.29 5985.34 5585.13 7986.12 22869.93 8388.65 12190.78 12769.97 20188.27 2393.98 4971.39 5591.54 22888.49 2390.45 9793.91 53
EI-MVSNet-UG-set83.81 7283.38 7885.09 8087.87 18367.53 14187.44 16189.66 16079.74 1682.23 10189.41 15770.24 6694.74 9879.95 9383.92 18292.99 100
QAPM80.88 12679.50 14285.03 8188.01 18068.97 10391.59 4392.00 8766.63 26175.15 23592.16 8857.70 20295.45 6363.52 24088.76 12190.66 174
casdiffmvspermissive85.11 6185.14 6085.01 8287.20 21165.77 17987.75 15392.83 5577.84 3784.36 7392.38 8572.15 4493.93 13081.27 8190.48 9695.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PCF-MVS73.52 780.38 14378.84 15985.01 8287.71 19268.99 10283.65 25591.46 11163.00 30077.77 17190.28 13166.10 10995.09 8461.40 26388.22 12990.94 165
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
nrg03083.88 7183.53 7584.96 8486.77 21969.28 9890.46 6592.67 6174.79 10682.95 9291.33 10872.70 4193.09 17480.79 8779.28 24792.50 114
VDD-MVS83.01 9382.36 9484.96 8491.02 8366.40 16388.91 10888.11 20777.57 4184.39 7293.29 6452.19 24793.91 13177.05 11988.70 12294.57 29
PVSNet_Blended_VisFu82.62 9681.83 10484.96 8490.80 8969.76 8788.74 11791.70 10269.39 21378.96 13988.46 18165.47 11794.87 9474.42 14588.57 12390.24 192
CPTT-MVS83.73 7483.33 8084.92 8793.28 4970.86 6992.09 3790.38 13768.75 23379.57 13292.83 7660.60 18493.04 17880.92 8491.56 8490.86 167
EC-MVSNet86.01 4386.38 3884.91 8889.31 13166.27 16692.32 3093.63 2179.37 2084.17 7691.88 9369.04 8295.43 6583.93 5793.77 6193.01 99
OMC-MVS82.69 9581.97 10284.85 8988.75 15467.42 14387.98 14490.87 12574.92 10379.72 13091.65 9762.19 15493.96 12475.26 14086.42 15093.16 92
EIA-MVS83.31 8782.80 8984.82 9089.59 11665.59 18188.21 13692.68 6074.66 10978.96 13986.42 24169.06 8095.26 7375.54 13890.09 10393.62 72
PAPM_NR83.02 9282.41 9284.82 9092.47 6766.37 16487.93 14891.80 9873.82 12777.32 17990.66 12567.90 9194.90 9170.37 18389.48 11293.19 91
baseline84.93 6384.98 6184.80 9287.30 20965.39 18887.30 16592.88 5277.62 3984.04 7992.26 8771.81 4793.96 12481.31 8090.30 9995.03 8
lupinMVS81.39 11980.27 12884.76 9387.35 20370.21 7785.55 21586.41 24262.85 30381.32 11288.61 17661.68 15992.24 20378.41 10690.26 10091.83 136
jason81.39 11980.29 12784.70 9486.63 22269.90 8585.95 20386.77 23863.24 29681.07 11889.47 15161.08 17592.15 20578.33 10790.07 10592.05 132
jason: jason.
ET-MVSNet_ETH3D78.63 18676.63 21584.64 9586.73 22069.47 9285.01 22584.61 26569.54 21166.51 33386.59 23450.16 27491.75 21976.26 12884.24 18092.69 107
EPP-MVSNet83.40 8483.02 8484.57 9690.13 10164.47 20792.32 3090.73 12874.45 11579.35 13591.10 11469.05 8195.12 7872.78 16387.22 13894.13 44
mvsmamba81.69 11180.74 11784.56 9787.45 20266.72 15991.26 4885.89 25174.66 10978.23 15990.56 12754.33 22794.91 8880.73 8883.54 19392.04 134
UGNet80.83 12879.59 14084.54 9888.04 17868.09 12889.42 9188.16 20676.95 5976.22 20789.46 15349.30 28693.94 12768.48 20490.31 9891.60 140
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LPG-MVS_test82.08 10281.27 10884.50 9989.23 13568.76 10890.22 7091.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18389.83 215
LGP-MVS_train84.50 9989.23 13568.76 10891.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18389.83 215
test_fmvsmvis_n_192084.02 7083.87 7284.49 10184.12 26569.37 9788.15 14087.96 21270.01 19983.95 8093.23 6568.80 8591.51 23188.61 2089.96 10692.57 110
iter_conf_final80.63 13679.35 14684.46 10289.36 12767.70 13789.85 7584.49 26773.19 14578.30 15788.94 16545.98 31294.56 10279.59 9684.48 17591.11 156
MSLP-MVS++85.43 5685.76 5084.45 10391.93 7270.24 7690.71 5892.86 5377.46 4784.22 7492.81 7867.16 9992.94 18080.36 9094.35 5590.16 194
Effi-MVS+-dtu80.03 15278.57 16484.42 10485.13 24668.74 11088.77 11488.10 20874.99 10274.97 24083.49 29757.27 20893.36 15673.53 15380.88 22591.18 154
HQP-MVS82.61 9782.02 10084.37 10589.33 12866.98 15589.17 9892.19 8276.41 7277.23 18290.23 13360.17 18995.11 8077.47 11485.99 15891.03 161
ACMP74.13 681.51 11880.57 12084.36 10689.42 12368.69 11589.97 7491.50 11074.46 11475.04 23990.41 13053.82 23394.54 10477.56 11382.91 20189.86 214
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
原ACMM184.35 10793.01 5768.79 10692.44 6963.96 29481.09 11791.57 10166.06 11195.45 6367.19 21694.82 4588.81 249
PS-MVSNAJss82.07 10381.31 10784.34 10886.51 22367.27 14989.27 9691.51 10771.75 16179.37 13490.22 13463.15 13894.27 11377.69 11282.36 20991.49 146
thisisatest053079.40 16777.76 18784.31 10987.69 19465.10 19487.36 16284.26 27370.04 19877.42 17688.26 18849.94 27794.79 9770.20 18484.70 17093.03 97
CLD-MVS82.31 9981.65 10584.29 11088.47 16367.73 13685.81 21092.35 7475.78 8678.33 15686.58 23664.01 12894.35 11076.05 13187.48 13590.79 168
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
fmvsm_s_conf0.1_n_a83.32 8682.99 8584.28 11183.79 27268.07 12989.34 9582.85 29769.80 20587.36 3694.06 4268.34 8891.56 22687.95 2783.46 19593.21 90
fmvsm_s_conf0.5_n_a83.63 7883.41 7784.28 11186.14 22768.12 12789.43 9082.87 29670.27 19587.27 3793.80 5469.09 7891.58 22488.21 2683.65 18993.14 93
fmvsm_l_conf0.5_n84.47 6784.54 6684.27 11385.42 23868.81 10588.49 12587.26 22968.08 24388.03 2793.49 5772.04 4691.77 21888.90 1789.14 11692.24 125
API-MVS81.99 10581.23 10984.26 11490.94 8570.18 8291.10 5389.32 16971.51 16978.66 14788.28 18665.26 11895.10 8364.74 23691.23 8887.51 274
114514_t80.68 13579.51 14184.20 11594.09 3867.27 14989.64 8591.11 11958.75 34074.08 25190.72 12458.10 19895.04 8569.70 19189.42 11390.30 190
IS-MVSNet83.15 8882.81 8884.18 11689.94 11063.30 23291.59 4388.46 20479.04 2579.49 13392.16 8865.10 12094.28 11267.71 20991.86 8194.95 10
MVS_111021_LR82.61 9782.11 9784.11 11788.82 14971.58 5385.15 22286.16 24774.69 10880.47 12391.04 11762.29 15190.55 25680.33 9190.08 10490.20 193
fmvsm_s_conf0.1_n83.56 8083.38 7884.10 11884.86 25167.28 14889.40 9383.01 29370.67 18587.08 3893.96 5068.38 8791.45 23488.56 2284.50 17293.56 75
FA-MVS(test-final)80.96 12579.91 13384.10 11888.30 17065.01 19584.55 23790.01 15173.25 14379.61 13187.57 20358.35 19794.72 9971.29 17586.25 15392.56 111
Anonymous2024052980.19 15078.89 15884.10 11890.60 9264.75 20188.95 10790.90 12365.97 26980.59 12291.17 11349.97 27693.73 14269.16 19782.70 20693.81 60
OpenMVScopyleft72.83 1079.77 15678.33 17184.09 12185.17 24269.91 8490.57 6090.97 12166.70 25572.17 27291.91 9154.70 22493.96 12461.81 26090.95 9188.41 259
FE-MVS77.78 20875.68 22684.08 12288.09 17666.00 17083.13 26687.79 21868.42 24078.01 16685.23 26745.50 31995.12 7859.11 28185.83 16191.11 156
fmvsm_s_conf0.5_n83.80 7383.71 7484.07 12386.69 22167.31 14789.46 8983.07 29271.09 17786.96 4193.70 5569.02 8391.47 23388.79 1884.62 17193.44 80
hse-mvs281.72 10980.94 11584.07 12388.72 15567.68 13885.87 20687.26 22976.02 8384.67 6488.22 18961.54 16293.48 15182.71 7073.44 32291.06 159
fmvsm_l_conf0.5_n_a84.13 6984.16 7184.06 12585.38 23968.40 12088.34 13286.85 23767.48 25087.48 3493.40 6170.89 5891.61 22288.38 2589.22 11592.16 129
dcpmvs_285.63 5286.15 4484.06 12591.71 7564.94 19786.47 19091.87 9573.63 13186.60 4393.02 7276.57 1591.87 21683.36 6092.15 7595.35 3
AdaColmapbinary80.58 14079.42 14384.06 12593.09 5468.91 10489.36 9488.97 18869.27 21675.70 21789.69 14357.20 20995.77 5463.06 24588.41 12787.50 275
AUN-MVS79.21 17277.60 19284.05 12888.71 15667.61 13985.84 20887.26 22969.08 22577.23 18288.14 19453.20 24093.47 15275.50 13973.45 32191.06 159
VDDNet81.52 11680.67 11984.05 12890.44 9664.13 21489.73 8285.91 25071.11 17683.18 9093.48 5850.54 27193.49 15073.40 15688.25 12894.54 30
xiu_mvs_v1_base_debu80.80 13179.72 13784.03 13087.35 20370.19 7985.56 21288.77 19469.06 22681.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 234
xiu_mvs_v1_base80.80 13179.72 13784.03 13087.35 20370.19 7985.56 21288.77 19469.06 22681.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 234
xiu_mvs_v1_base_debi80.80 13179.72 13784.03 13087.35 20370.19 7985.56 21288.77 19469.06 22681.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 234
PAPR81.66 11480.89 11683.99 13390.27 9864.00 21586.76 18391.77 10168.84 23277.13 18889.50 14967.63 9394.88 9367.55 21188.52 12593.09 94
XVG-OURS80.41 14279.23 15083.97 13485.64 23469.02 10183.03 27190.39 13671.09 17777.63 17391.49 10454.62 22691.35 23775.71 13483.47 19491.54 142
XVG-OURS-SEG-HR80.81 12979.76 13683.96 13585.60 23568.78 10783.54 26090.50 13470.66 18776.71 19491.66 9660.69 18091.26 23976.94 12081.58 21891.83 136
HyFIR lowres test77.53 21575.40 23283.94 13689.59 11666.62 16080.36 30088.64 20156.29 35676.45 20085.17 26957.64 20393.28 15861.34 26583.10 20091.91 135
iter_conf0580.00 15478.70 16083.91 13787.84 18565.83 17588.84 11284.92 26271.61 16678.70 14488.94 16543.88 32794.56 10279.28 9784.28 17991.33 149
tttt051779.40 16777.91 17983.90 13888.10 17563.84 21888.37 13184.05 27571.45 17076.78 19289.12 16149.93 27994.89 9270.18 18583.18 19992.96 101
GeoE81.71 11081.01 11483.80 13989.51 12064.45 20888.97 10688.73 19971.27 17378.63 14889.76 14266.32 10793.20 16669.89 18986.02 15793.74 63
RRT_MVS80.35 14679.22 15183.74 14087.63 19665.46 18591.08 5488.92 19173.82 12776.44 20390.03 13649.05 29194.25 11776.84 12179.20 24991.51 143
PS-MVSNAJ81.69 11181.02 11383.70 14189.51 12068.21 12684.28 24690.09 14970.79 18281.26 11685.62 25963.15 13894.29 11175.62 13688.87 11988.59 255
xiu_mvs_v2_base81.69 11181.05 11283.60 14289.15 13868.03 13184.46 24090.02 15070.67 18581.30 11586.53 23963.17 13794.19 11975.60 13788.54 12488.57 256
ACMM73.20 880.78 13479.84 13583.58 14389.31 13168.37 12189.99 7391.60 10470.28 19477.25 18089.66 14453.37 23893.53 14974.24 14882.85 20288.85 247
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LFMVS81.82 10881.23 10983.57 14491.89 7363.43 23089.84 7681.85 30777.04 5883.21 8993.10 6752.26 24693.43 15571.98 16989.95 10793.85 57
Fast-Effi-MVS+80.81 12979.92 13283.47 14588.85 14664.51 20485.53 21789.39 16770.79 18278.49 15285.06 27267.54 9493.58 14467.03 21986.58 14792.32 120
CHOSEN 1792x268877.63 21475.69 22583.44 14689.98 10968.58 11878.70 32187.50 22456.38 35575.80 21686.84 22258.67 19491.40 23661.58 26285.75 16290.34 187
新几何183.42 14793.13 5270.71 7185.48 25657.43 35081.80 10791.98 9063.28 13392.27 20164.60 23792.99 6587.27 280
DP-MVS76.78 22874.57 24183.42 14793.29 4869.46 9488.55 12483.70 27963.98 29370.20 28888.89 16854.01 23294.80 9646.66 35581.88 21586.01 307
MVS_Test83.15 8883.06 8383.41 14986.86 21563.21 23486.11 20092.00 8774.31 11682.87 9489.44 15670.03 6793.21 16377.39 11688.50 12693.81 60
LS3D76.95 22674.82 23983.37 15090.45 9567.36 14689.15 10286.94 23561.87 31569.52 30090.61 12651.71 25994.53 10546.38 35886.71 14688.21 261
IB-MVS68.01 1575.85 24273.36 25683.31 15184.76 25266.03 16883.38 26185.06 25970.21 19769.40 30181.05 32445.76 31694.66 10165.10 23375.49 29389.25 231
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MG-MVS83.41 8383.45 7683.28 15292.74 6262.28 24888.17 13889.50 16475.22 9681.49 11192.74 8266.75 10095.11 8072.85 16291.58 8392.45 117
jajsoiax79.29 17077.96 17783.27 15384.68 25466.57 16289.25 9790.16 14769.20 22175.46 22289.49 15045.75 31793.13 17276.84 12180.80 22790.11 198
test_djsdf80.30 14779.32 14783.27 15383.98 26965.37 18990.50 6290.38 13768.55 23676.19 20888.70 17256.44 21393.46 15378.98 9980.14 23790.97 164
test_yl81.17 12180.47 12383.24 15589.13 13963.62 22186.21 19789.95 15372.43 15581.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
DCV-MVSNet81.17 12180.47 12383.24 15589.13 13963.62 22186.21 19789.95 15372.43 15581.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
mvs_tets79.13 17477.77 18683.22 15784.70 25366.37 16489.17 9890.19 14669.38 21475.40 22589.46 15344.17 32593.15 17076.78 12480.70 22990.14 195
thisisatest051577.33 21975.38 23383.18 15885.27 24163.80 21982.11 27883.27 28765.06 27775.91 21383.84 29049.54 28194.27 11367.24 21586.19 15491.48 147
CDS-MVSNet79.07 17677.70 18983.17 15987.60 19768.23 12584.40 24486.20 24667.49 24976.36 20486.54 23861.54 16290.79 25261.86 25987.33 13690.49 182
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v7n78.97 17977.58 19383.14 16083.45 27965.51 18288.32 13391.21 11473.69 13072.41 26986.32 24457.93 19993.81 13569.18 19675.65 29090.11 198
BH-RMVSNet79.61 15878.44 16783.14 16089.38 12665.93 17284.95 22787.15 23273.56 13478.19 16189.79 14156.67 21293.36 15659.53 27786.74 14590.13 196
UniMVSNet (Re)81.60 11581.11 11183.09 16288.38 16764.41 20987.60 15693.02 4278.42 3278.56 15088.16 19069.78 7193.26 15969.58 19376.49 27691.60 140
PLCcopyleft70.83 1178.05 20176.37 22083.08 16391.88 7467.80 13488.19 13789.46 16564.33 28769.87 29788.38 18353.66 23493.58 14458.86 28482.73 20487.86 266
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v119279.59 16078.43 16883.07 16483.55 27764.52 20386.93 17590.58 13170.83 18177.78 17085.90 25059.15 19293.94 12773.96 15077.19 26790.76 170
v2v48280.23 14879.29 14883.05 16583.62 27564.14 21387.04 17189.97 15273.61 13278.18 16287.22 21461.10 17493.82 13476.11 12976.78 27491.18 154
TAMVS78.89 18177.51 19483.03 16687.80 18767.79 13584.72 23185.05 26067.63 24676.75 19387.70 19962.25 15290.82 25158.53 28887.13 13990.49 182
v114480.03 15279.03 15583.01 16783.78 27364.51 20487.11 17090.57 13371.96 16078.08 16586.20 24661.41 16693.94 12774.93 14177.23 26590.60 177
cascas76.72 22974.64 24082.99 16885.78 23265.88 17482.33 27589.21 17660.85 32172.74 26481.02 32547.28 30093.75 14067.48 21285.02 16589.34 228
anonymousdsp78.60 18777.15 20082.98 16980.51 33267.08 15387.24 16789.53 16365.66 27275.16 23487.19 21652.52 24192.25 20277.17 11879.34 24689.61 222
v1079.74 15778.67 16182.97 17084.06 26764.95 19687.88 15190.62 13073.11 14675.11 23686.56 23761.46 16594.05 12373.68 15175.55 29289.90 212
UniMVSNet_NR-MVSNet81.88 10681.54 10682.92 17188.46 16463.46 22887.13 16892.37 7380.19 1278.38 15489.14 16071.66 5293.05 17670.05 18676.46 27792.25 123
DU-MVS81.12 12380.52 12282.90 17287.80 18763.46 22887.02 17291.87 9579.01 2678.38 15489.07 16265.02 12193.05 17670.05 18676.46 27792.20 126
PVSNet_Blended80.98 12480.34 12582.90 17288.85 14665.40 18684.43 24292.00 8767.62 24778.11 16385.05 27366.02 11294.27 11371.52 17189.50 11189.01 239
CANet_DTU80.61 13779.87 13482.83 17485.60 23563.17 23787.36 16288.65 20076.37 7675.88 21488.44 18253.51 23693.07 17573.30 15789.74 11092.25 123
V4279.38 16978.24 17382.83 17481.10 32665.50 18385.55 21589.82 15571.57 16878.21 16086.12 24860.66 18193.18 16975.64 13575.46 29689.81 217
Anonymous2023121178.97 17977.69 19082.81 17690.54 9464.29 21190.11 7291.51 10765.01 27976.16 21288.13 19550.56 27093.03 17969.68 19277.56 26491.11 156
v192192079.22 17178.03 17682.80 17783.30 28263.94 21786.80 17990.33 14169.91 20377.48 17585.53 26058.44 19693.75 14073.60 15276.85 27290.71 173
v879.97 15579.02 15682.80 17784.09 26664.50 20687.96 14590.29 14474.13 12275.24 23386.81 22362.88 14393.89 13374.39 14675.40 29990.00 206
TAPA-MVS73.13 979.15 17377.94 17882.79 17989.59 11662.99 24188.16 13991.51 10765.77 27077.14 18791.09 11560.91 17793.21 16350.26 33887.05 14092.17 128
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v14419279.47 16378.37 16982.78 18083.35 28063.96 21686.96 17390.36 14069.99 20077.50 17485.67 25760.66 18193.77 13874.27 14776.58 27590.62 175
NR-MVSNet80.23 14879.38 14482.78 18087.80 18763.34 23186.31 19491.09 12079.01 2672.17 27289.07 16267.20 9892.81 18566.08 22575.65 29092.20 126
diffmvspermissive82.10 10181.88 10382.76 18283.00 29263.78 22083.68 25489.76 15772.94 15082.02 10389.85 14065.96 11490.79 25282.38 7487.30 13793.71 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v124078.99 17877.78 18582.64 18383.21 28463.54 22586.62 18690.30 14369.74 21077.33 17885.68 25657.04 21093.76 13973.13 16076.92 26990.62 175
Fast-Effi-MVS+-dtu78.02 20276.49 21682.62 18483.16 28866.96 15786.94 17487.45 22672.45 15271.49 27984.17 28554.79 22391.58 22467.61 21080.31 23489.30 230
RPMNet73.51 26570.49 28482.58 18581.32 32465.19 19175.92 34092.27 7657.60 34872.73 26576.45 36152.30 24595.43 6548.14 35077.71 26187.11 286
F-COLMAP76.38 23674.33 24682.50 18689.28 13366.95 15888.41 12789.03 18364.05 29166.83 32588.61 17646.78 30492.89 18157.48 29678.55 25287.67 269
TranMVSNet+NR-MVSNet80.84 12780.31 12682.42 18787.85 18462.33 24687.74 15491.33 11280.55 977.99 16789.86 13965.23 11992.62 18667.05 21875.24 30492.30 121
MVSTER79.01 17777.88 18182.38 18883.07 28964.80 20084.08 25188.95 18969.01 22978.69 14587.17 21754.70 22492.43 19374.69 14280.57 23189.89 213
PVSNet_BlendedMVS80.60 13880.02 13082.36 18988.85 14665.40 18686.16 19992.00 8769.34 21578.11 16386.09 24966.02 11294.27 11371.52 17182.06 21287.39 276
EI-MVSNet80.52 14179.98 13182.12 19084.28 26163.19 23686.41 19188.95 18974.18 12078.69 14587.54 20666.62 10192.43 19372.57 16680.57 23190.74 172
IterMVS-LS80.06 15179.38 14482.11 19185.89 23063.20 23586.79 18089.34 16874.19 11975.45 22386.72 22666.62 10192.39 19572.58 16576.86 27190.75 171
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
BH-untuned79.47 16378.60 16382.05 19289.19 13765.91 17386.07 20188.52 20372.18 15775.42 22487.69 20061.15 17393.54 14860.38 27086.83 14486.70 295
ACMH+68.96 1476.01 24074.01 24882.03 19388.60 15965.31 19088.86 11087.55 22270.25 19667.75 31487.47 20841.27 34293.19 16858.37 28975.94 28787.60 271
Anonymous20240521178.25 19377.01 20281.99 19491.03 8260.67 26784.77 23083.90 27770.65 18880.00 12891.20 11141.08 34491.43 23565.21 23185.26 16493.85 57
GA-MVS76.87 22775.17 23781.97 19582.75 29862.58 24381.44 28786.35 24572.16 15974.74 24382.89 30646.20 31192.02 20968.85 20181.09 22391.30 152
CNLPA78.08 19976.79 20981.97 19590.40 9771.07 6287.59 15784.55 26666.03 26872.38 27089.64 14557.56 20486.04 30959.61 27683.35 19688.79 250
MVS78.19 19776.99 20481.78 19785.66 23366.99 15484.66 23290.47 13555.08 36072.02 27485.27 26563.83 13094.11 12266.10 22489.80 10984.24 331
ACMH67.68 1675.89 24173.93 24981.77 19888.71 15666.61 16188.62 12289.01 18569.81 20466.78 32686.70 23041.95 34191.51 23155.64 31078.14 25987.17 282
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D79.10 17578.24 17381.70 19986.85 21660.24 27487.28 16688.79 19374.25 11876.84 18990.53 12949.48 28291.56 22667.98 20782.15 21093.29 85
VNet82.21 10082.41 9281.62 20090.82 8860.93 26284.47 23889.78 15676.36 7784.07 7891.88 9364.71 12490.26 25870.68 18088.89 11893.66 65
XVG-ACMP-BASELINE76.11 23974.27 24781.62 20083.20 28564.67 20283.60 25889.75 15869.75 20871.85 27587.09 21932.78 36892.11 20669.99 18880.43 23388.09 262
eth_miper_zixun_eth77.92 20576.69 21381.61 20283.00 29261.98 25183.15 26589.20 17769.52 21274.86 24284.35 28361.76 15892.56 18971.50 17372.89 32690.28 191
PAPM77.68 21376.40 21981.51 20387.29 21061.85 25383.78 25389.59 16264.74 28171.23 28088.70 17262.59 14593.66 14352.66 32387.03 14189.01 239
v14878.72 18477.80 18481.47 20482.73 29961.96 25286.30 19588.08 20973.26 14276.18 20985.47 26262.46 14892.36 19771.92 17073.82 31890.09 200
tt080578.73 18377.83 18281.43 20585.17 24260.30 27389.41 9290.90 12371.21 17477.17 18688.73 17146.38 30693.21 16372.57 16678.96 25090.79 168
LTVRE_ROB69.57 1376.25 23774.54 24381.41 20688.60 15964.38 21079.24 31389.12 18270.76 18469.79 29987.86 19749.09 28993.20 16656.21 30980.16 23586.65 296
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
GBi-Net78.40 19077.40 19581.40 20787.60 19763.01 23888.39 12889.28 17071.63 16375.34 22787.28 21054.80 22091.11 24262.72 24779.57 24190.09 200
test178.40 19077.40 19581.40 20787.60 19763.01 23888.39 12889.28 17071.63 16375.34 22787.28 21054.80 22091.11 24262.72 24779.57 24190.09 200
FMVSNet177.44 21676.12 22281.40 20786.81 21863.01 23888.39 12889.28 17070.49 19074.39 24887.28 21049.06 29091.11 24260.91 26778.52 25390.09 200
baseline275.70 24373.83 25281.30 21083.26 28361.79 25582.57 27480.65 31666.81 25266.88 32483.42 29857.86 20192.19 20463.47 24179.57 24189.91 211
c3_l78.75 18277.91 17981.26 21182.89 29661.56 25784.09 25089.13 18169.97 20175.56 21884.29 28466.36 10692.09 20773.47 15575.48 29490.12 197
cl2278.07 20077.01 20281.23 21282.37 30861.83 25483.55 25987.98 21168.96 23075.06 23883.87 28861.40 16791.88 21573.53 15376.39 27989.98 209
bld_raw_dy_0_6477.29 22175.98 22381.22 21385.04 24865.47 18488.14 14277.56 34269.20 22173.77 25389.40 15942.24 33888.85 28476.78 12481.64 21789.33 229
FMVSNet278.20 19677.21 19981.20 21487.60 19762.89 24287.47 16089.02 18471.63 16375.29 23287.28 21054.80 22091.10 24562.38 25279.38 24589.61 222
TR-MVS77.44 21676.18 22181.20 21488.24 17163.24 23384.61 23586.40 24367.55 24877.81 16986.48 24054.10 23093.15 17057.75 29582.72 20587.20 281
ab-mvs79.51 16178.97 15781.14 21688.46 16460.91 26383.84 25289.24 17570.36 19179.03 13888.87 16963.23 13690.21 26065.12 23282.57 20792.28 122
MVP-Stereo76.12 23874.46 24581.13 21785.37 24069.79 8684.42 24387.95 21365.03 27867.46 31885.33 26453.28 23991.73 22158.01 29383.27 19781.85 355
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
miper_ehance_all_eth78.59 18877.76 18781.08 21882.66 30161.56 25783.65 25589.15 17968.87 23175.55 21983.79 29266.49 10492.03 20873.25 15876.39 27989.64 221
FIs82.07 10382.42 9181.04 21988.80 15158.34 28888.26 13593.49 2676.93 6078.47 15391.04 11769.92 7092.34 19969.87 19084.97 16692.44 118
SDMVSNet80.38 14380.18 12980.99 22089.03 14464.94 19780.45 29989.40 16675.19 9876.61 19889.98 13760.61 18387.69 29876.83 12383.55 19190.33 188
patch_mono-283.65 7684.54 6680.99 22090.06 10765.83 17584.21 24788.74 19871.60 16785.01 5592.44 8474.51 2583.50 32982.15 7592.15 7593.64 71
FMVSNet377.88 20676.85 20780.97 22286.84 21762.36 24586.52 18988.77 19471.13 17575.34 22786.66 23254.07 23191.10 24562.72 24779.57 24189.45 226
miper_enhance_ethall77.87 20776.86 20680.92 22381.65 31561.38 25982.68 27288.98 18665.52 27475.47 22082.30 31465.76 11692.00 21072.95 16176.39 27989.39 227
BH-w/o78.21 19577.33 19880.84 22488.81 15065.13 19384.87 22887.85 21769.75 20874.52 24784.74 27761.34 16893.11 17358.24 29185.84 16084.27 330
COLMAP_ROBcopyleft66.92 1773.01 27270.41 28680.81 22587.13 21365.63 18088.30 13484.19 27462.96 30163.80 35187.69 20038.04 35792.56 18946.66 35574.91 30784.24 331
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
VPA-MVSNet80.60 13880.55 12180.76 22688.07 17760.80 26586.86 17791.58 10575.67 9080.24 12589.45 15563.34 13290.25 25970.51 18279.22 24891.23 153
EG-PatchMatch MVS74.04 25971.82 26980.71 22784.92 25067.42 14385.86 20788.08 20966.04 26764.22 34783.85 28935.10 36592.56 18957.44 29780.83 22682.16 354
ECVR-MVScopyleft79.61 15879.26 14980.67 22890.08 10354.69 33787.89 15077.44 34574.88 10480.27 12492.79 7948.96 29392.45 19268.55 20392.50 7294.86 17
cl____77.72 21076.76 21080.58 22982.49 30560.48 27083.09 26787.87 21569.22 21974.38 24985.22 26862.10 15591.53 22971.09 17675.41 29889.73 220
DIV-MVS_self_test77.72 21076.76 21080.58 22982.48 30660.48 27083.09 26787.86 21669.22 21974.38 24985.24 26662.10 15591.53 22971.09 17675.40 29989.74 219
MSDG73.36 26870.99 27980.49 23184.51 25965.80 17780.71 29486.13 24865.70 27165.46 33883.74 29344.60 32290.91 25051.13 33176.89 27084.74 326
pmmvs474.03 26171.91 26880.39 23281.96 31168.32 12281.45 28682.14 30359.32 33369.87 29785.13 27052.40 24488.13 29360.21 27274.74 30984.73 327
HY-MVS69.67 1277.95 20477.15 20080.36 23387.57 20160.21 27583.37 26287.78 21966.11 26575.37 22687.06 22163.27 13490.48 25761.38 26482.43 20890.40 186
mvs_anonymous79.42 16679.11 15480.34 23484.45 26057.97 29482.59 27387.62 22167.40 25176.17 21188.56 17968.47 8689.59 26870.65 18186.05 15693.47 79
1112_ss77.40 21876.43 21880.32 23589.11 14360.41 27283.65 25587.72 22062.13 31373.05 26286.72 22662.58 14689.97 26262.11 25780.80 22790.59 178
WR-MVS79.49 16279.22 15180.27 23688.79 15258.35 28785.06 22488.61 20278.56 3077.65 17288.34 18463.81 13190.66 25564.98 23477.22 26691.80 138
131476.53 23075.30 23680.21 23783.93 27062.32 24784.66 23288.81 19260.23 32570.16 29184.07 28755.30 21790.73 25467.37 21383.21 19887.59 273
test111179.43 16579.18 15380.15 23889.99 10853.31 35087.33 16477.05 34875.04 10180.23 12692.77 8148.97 29292.33 20068.87 20092.40 7494.81 20
IterMVS-SCA-FT75.43 24873.87 25180.11 23982.69 30064.85 19981.57 28483.47 28469.16 22370.49 28584.15 28651.95 25488.15 29269.23 19572.14 33187.34 278
FC-MVSNet-test81.52 11682.02 10080.03 24088.42 16655.97 32587.95 14693.42 2977.10 5677.38 17790.98 12269.96 6891.79 21768.46 20584.50 17292.33 119
testdata79.97 24190.90 8664.21 21284.71 26359.27 33485.40 5192.91 7362.02 15789.08 27768.95 19991.37 8686.63 297
SCA74.22 25772.33 26679.91 24284.05 26862.17 24979.96 30679.29 33266.30 26472.38 27080.13 33451.95 25488.60 28759.25 27977.67 26388.96 243
thres40076.50 23175.37 23479.86 24389.13 13957.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24891.95 21148.33 34683.75 18590.00 206
test_040272.79 27570.44 28579.84 24488.13 17365.99 17185.93 20484.29 27165.57 27367.40 32085.49 26146.92 30392.61 18735.88 38174.38 31280.94 360
OurMVSNet-221017-074.26 25672.42 26579.80 24583.76 27459.59 28185.92 20586.64 23966.39 26366.96 32387.58 20239.46 34991.60 22365.76 22869.27 34488.22 260
test250677.30 22076.49 21679.74 24690.08 10352.02 35387.86 15263.10 38774.88 10480.16 12792.79 7938.29 35692.35 19868.74 20292.50 7294.86 17
SixPastTwentyTwo73.37 26671.26 27779.70 24785.08 24757.89 29685.57 21183.56 28271.03 17965.66 33785.88 25142.10 33992.57 18859.11 28163.34 36388.65 254
thres600view776.50 23175.44 23079.68 24889.40 12457.16 30685.53 21783.23 28873.79 12976.26 20687.09 21951.89 25691.89 21448.05 35183.72 18890.00 206
CR-MVSNet73.37 26671.27 27679.67 24981.32 32465.19 19175.92 34080.30 32259.92 32872.73 26581.19 32252.50 24286.69 30359.84 27477.71 26187.11 286
D2MVS74.82 25273.21 25779.64 25079.81 34162.56 24480.34 30187.35 22764.37 28668.86 30682.66 31046.37 30790.10 26167.91 20881.24 22186.25 300
AllTest70.96 28868.09 30379.58 25185.15 24463.62 22184.58 23679.83 32662.31 31060.32 36286.73 22432.02 36988.96 28150.28 33671.57 33586.15 303
TestCases79.58 25185.15 24463.62 22179.83 32662.31 31060.32 36286.73 22432.02 36988.96 28150.28 33671.57 33586.15 303
tfpn200view976.42 23475.37 23479.55 25389.13 13957.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24891.95 21148.33 34683.75 18589.07 232
thres100view90076.50 23175.55 22979.33 25489.52 11956.99 30985.83 20983.23 28873.94 12476.32 20587.12 21851.89 25691.95 21148.33 34683.75 18589.07 232
CostFormer75.24 25173.90 25079.27 25582.65 30258.27 28980.80 29182.73 29961.57 31675.33 23083.13 30255.52 21591.07 24864.98 23478.34 25888.45 257
Test_1112_low_res76.40 23575.44 23079.27 25589.28 13358.09 29081.69 28287.07 23359.53 33272.48 26886.67 23161.30 16989.33 27260.81 26980.15 23690.41 185
K. test v371.19 28568.51 29779.21 25783.04 29157.78 29984.35 24576.91 34972.90 15162.99 35482.86 30739.27 35091.09 24761.65 26152.66 38188.75 251
lessismore_v078.97 25881.01 32757.15 30765.99 38161.16 35982.82 30839.12 35191.34 23859.67 27546.92 38788.43 258
pm-mvs177.25 22276.68 21478.93 25984.22 26358.62 28686.41 19188.36 20571.37 17173.31 25888.01 19661.22 17289.15 27664.24 23873.01 32589.03 238
thres20075.55 24574.47 24478.82 26087.78 19057.85 29783.07 26983.51 28372.44 15475.84 21584.42 27952.08 25191.75 21947.41 35383.64 19086.86 291
VPNet78.69 18578.66 16278.76 26188.31 16955.72 32784.45 24186.63 24076.79 6478.26 15890.55 12859.30 19189.70 26766.63 22077.05 26890.88 166
tpm273.26 26971.46 27278.63 26283.34 28156.71 31480.65 29580.40 32156.63 35473.55 25682.02 31951.80 25891.24 24056.35 30878.42 25687.95 263
pmmvs674.69 25373.39 25578.61 26381.38 32157.48 30386.64 18587.95 21364.99 28070.18 28986.61 23350.43 27289.52 26962.12 25670.18 34188.83 248
sd_testset77.70 21277.40 19578.60 26489.03 14460.02 27679.00 31785.83 25275.19 9876.61 19889.98 13754.81 21985.46 31562.63 25183.55 19190.33 188
WR-MVS_H78.51 18978.49 16578.56 26588.02 17956.38 32088.43 12692.67 6177.14 5473.89 25287.55 20566.25 10889.24 27458.92 28373.55 32090.06 204
RPSCF73.23 27071.46 27278.54 26682.50 30459.85 27782.18 27782.84 29858.96 33771.15 28289.41 15745.48 32084.77 32158.82 28571.83 33391.02 163
pmmvs-eth3d70.50 29567.83 30878.52 26777.37 35766.18 16781.82 27981.51 30958.90 33863.90 35080.42 33242.69 33386.28 30758.56 28765.30 35983.11 344
PatchmatchNetpermissive73.12 27171.33 27578.49 26883.18 28660.85 26479.63 30878.57 33664.13 28871.73 27679.81 33951.20 26385.97 31057.40 29876.36 28488.66 253
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
IterMVS74.29 25572.94 26078.35 26981.53 31863.49 22781.58 28382.49 30068.06 24469.99 29483.69 29451.66 26085.54 31365.85 22771.64 33486.01 307
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ITE_SJBPF78.22 27081.77 31460.57 26883.30 28669.25 21867.54 31687.20 21536.33 36287.28 30154.34 31574.62 31086.80 292
testing22274.04 25972.66 26278.19 27187.89 18255.36 33081.06 28979.20 33371.30 17274.65 24583.57 29639.11 35288.67 28651.43 33085.75 16290.53 180
ppachtmachnet_test70.04 29967.34 31678.14 27279.80 34261.13 26079.19 31580.59 31759.16 33565.27 34079.29 34246.75 30587.29 30049.33 34266.72 35286.00 309
tfpnnormal74.39 25473.16 25878.08 27386.10 22958.05 29184.65 23487.53 22370.32 19371.22 28185.63 25854.97 21889.86 26343.03 36975.02 30686.32 299
Vis-MVSNet (Re-imp)78.36 19278.45 16678.07 27488.64 15851.78 35986.70 18479.63 32974.14 12175.11 23690.83 12361.29 17089.75 26558.10 29291.60 8292.69 107
TransMVSNet (Re)75.39 25074.56 24277.86 27585.50 23757.10 30886.78 18186.09 24972.17 15871.53 27887.34 20963.01 14289.31 27356.84 30461.83 36587.17 282
PEN-MVS77.73 20977.69 19077.84 27687.07 21453.91 34487.91 14991.18 11577.56 4373.14 26188.82 17061.23 17189.17 27559.95 27372.37 32890.43 184
CP-MVSNet78.22 19478.34 17077.84 27687.83 18654.54 33987.94 14791.17 11677.65 3873.48 25788.49 18062.24 15388.43 28962.19 25474.07 31390.55 179
PS-CasMVS78.01 20378.09 17577.77 27887.71 19254.39 34188.02 14391.22 11377.50 4673.26 25988.64 17560.73 17888.41 29061.88 25873.88 31790.53 180
baseline176.98 22576.75 21277.66 27988.13 17355.66 32885.12 22381.89 30573.04 14876.79 19188.90 16762.43 14987.78 29763.30 24471.18 33789.55 224
OpenMVS_ROBcopyleft64.09 1970.56 29468.19 30077.65 28080.26 33359.41 28385.01 22582.96 29558.76 33965.43 33982.33 31337.63 35991.23 24145.34 36576.03 28682.32 351
Patchmatch-RL test70.24 29767.78 31077.61 28177.43 35659.57 28271.16 36170.33 37062.94 30268.65 30872.77 37350.62 26985.49 31469.58 19366.58 35487.77 268
Baseline_NR-MVSNet78.15 19878.33 17177.61 28185.79 23156.21 32386.78 18185.76 25373.60 13377.93 16887.57 20365.02 12188.99 27867.14 21775.33 30187.63 270
DTE-MVSNet76.99 22476.80 20877.54 28386.24 22553.06 35287.52 15890.66 12977.08 5772.50 26788.67 17460.48 18589.52 26957.33 29970.74 33990.05 205
LCM-MVSNet-Re77.05 22376.94 20577.36 28487.20 21151.60 36080.06 30380.46 32075.20 9767.69 31586.72 22662.48 14788.98 27963.44 24289.25 11491.51 143
tpm cat170.57 29368.31 29977.35 28582.41 30757.95 29578.08 32880.22 32452.04 36668.54 31077.66 35652.00 25387.84 29651.77 32672.07 33286.25 300
MS-PatchMatch73.83 26272.67 26177.30 28683.87 27166.02 16981.82 27984.66 26461.37 31968.61 30982.82 30847.29 29988.21 29159.27 27884.32 17877.68 369
EPNet_dtu75.46 24774.86 23877.23 28782.57 30354.60 33886.89 17683.09 29171.64 16266.25 33585.86 25255.99 21488.04 29454.92 31286.55 14889.05 237
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_lstm_enhance74.11 25873.11 25977.13 28880.11 33659.62 28072.23 35886.92 23666.76 25470.40 28682.92 30556.93 21182.92 33369.06 19872.63 32788.87 246
TDRefinement67.49 31764.34 32776.92 28973.47 37561.07 26184.86 22982.98 29459.77 32958.30 36985.13 27026.06 37987.89 29547.92 35260.59 37081.81 356
JIA-IIPM66.32 32762.82 33876.82 29077.09 35861.72 25665.34 38275.38 35458.04 34564.51 34562.32 38342.05 34086.51 30551.45 32969.22 34582.21 352
PatchMatch-RL72.38 27770.90 28076.80 29188.60 15967.38 14579.53 30976.17 35362.75 30669.36 30282.00 32045.51 31884.89 32053.62 31880.58 23078.12 368
tpmvs71.09 28769.29 29276.49 29282.04 31056.04 32478.92 31981.37 31164.05 29167.18 32278.28 35149.74 28089.77 26449.67 34172.37 32883.67 338
CMPMVSbinary51.72 2170.19 29868.16 30176.28 29373.15 37757.55 30279.47 31083.92 27648.02 37456.48 37584.81 27543.13 33086.42 30662.67 25081.81 21684.89 324
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
USDC70.33 29668.37 29876.21 29480.60 33056.23 32279.19 31586.49 24160.89 32061.29 35885.47 26231.78 37189.47 27153.37 32076.21 28582.94 348
gg-mvs-nofinetune69.95 30067.96 30475.94 29583.07 28954.51 34077.23 33570.29 37163.11 29870.32 28762.33 38243.62 32888.69 28553.88 31787.76 13184.62 328
ETVMVS72.25 28071.05 27875.84 29687.77 19151.91 35679.39 31174.98 35669.26 21773.71 25482.95 30440.82 34686.14 30846.17 35984.43 17789.47 225
MDA-MVSNet-bldmvs66.68 32363.66 33275.75 29779.28 34960.56 26973.92 35478.35 33764.43 28450.13 38379.87 33844.02 32683.67 32746.10 36056.86 37383.03 346
PVSNet64.34 1872.08 28170.87 28175.69 29886.21 22656.44 31874.37 35280.73 31562.06 31470.17 29082.23 31642.86 33283.31 33154.77 31384.45 17687.32 279
pmmvs571.55 28370.20 28975.61 29977.83 35456.39 31981.74 28180.89 31257.76 34667.46 31884.49 27849.26 28785.32 31757.08 30175.29 30285.11 322
our_test_369.14 30567.00 31875.57 30079.80 34258.80 28477.96 32977.81 33959.55 33162.90 35578.25 35247.43 29883.97 32551.71 32767.58 35183.93 336
WTY-MVS75.65 24475.68 22675.57 30086.40 22456.82 31177.92 33182.40 30165.10 27676.18 20987.72 19863.13 14180.90 34460.31 27181.96 21389.00 241
Patchmtry70.74 29169.16 29475.49 30280.72 32854.07 34374.94 35180.30 32258.34 34170.01 29281.19 32252.50 24286.54 30453.37 32071.09 33885.87 311
GG-mvs-BLEND75.38 30381.59 31755.80 32679.32 31269.63 37367.19 32173.67 37143.24 32988.90 28350.41 33384.50 17281.45 357
ambc75.24 30473.16 37650.51 36763.05 38787.47 22564.28 34677.81 35517.80 38989.73 26657.88 29460.64 36985.49 314
CL-MVSNet_self_test72.37 27871.46 27275.09 30579.49 34753.53 34680.76 29385.01 26169.12 22470.51 28482.05 31857.92 20084.13 32452.27 32566.00 35787.60 271
XXY-MVS75.41 24975.56 22874.96 30683.59 27657.82 29880.59 29683.87 27866.54 26274.93 24188.31 18563.24 13580.09 34762.16 25576.85 27286.97 289
MIMVSNet70.69 29269.30 29174.88 30784.52 25856.35 32175.87 34279.42 33064.59 28267.76 31382.41 31241.10 34381.54 34046.64 35781.34 21986.75 294
ADS-MVSNet266.20 33063.33 33374.82 30879.92 33858.75 28567.55 37575.19 35553.37 36365.25 34175.86 36442.32 33580.53 34641.57 37268.91 34685.18 319
TinyColmap67.30 32064.81 32574.76 30981.92 31356.68 31580.29 30281.49 31060.33 32356.27 37683.22 29924.77 38187.66 29945.52 36369.47 34379.95 364
test_vis1_n_192075.52 24675.78 22474.75 31079.84 34057.44 30483.26 26385.52 25562.83 30479.34 13686.17 24745.10 32179.71 34878.75 10181.21 22287.10 288
test-LLR72.94 27472.43 26474.48 31181.35 32258.04 29278.38 32477.46 34366.66 25669.95 29579.00 34548.06 29679.24 34966.13 22284.83 16786.15 303
test-mter71.41 28470.39 28774.48 31181.35 32258.04 29278.38 32477.46 34360.32 32469.95 29579.00 34536.08 36379.24 34966.13 22284.83 16786.15 303
tpm72.37 27871.71 27074.35 31382.19 30952.00 35479.22 31477.29 34664.56 28372.95 26383.68 29551.35 26183.26 33258.33 29075.80 28887.81 267
CVMVSNet72.99 27372.58 26374.25 31484.28 26150.85 36586.41 19183.45 28544.56 37773.23 26087.54 20649.38 28485.70 31165.90 22678.44 25586.19 302
FMVSNet569.50 30367.96 30474.15 31582.97 29555.35 33180.01 30582.12 30462.56 30863.02 35281.53 32136.92 36081.92 33848.42 34574.06 31485.17 321
MIMVSNet168.58 31066.78 32073.98 31680.07 33751.82 35880.77 29284.37 26864.40 28559.75 36582.16 31736.47 36183.63 32842.73 37070.33 34086.48 298
test_cas_vis1_n_192073.76 26373.74 25373.81 31775.90 36159.77 27880.51 29782.40 30158.30 34281.62 11085.69 25544.35 32476.41 36676.29 12778.61 25185.23 318
Anonymous2024052168.80 30867.22 31773.55 31874.33 36854.11 34283.18 26485.61 25458.15 34361.68 35780.94 32730.71 37481.27 34257.00 30273.34 32485.28 317
sss73.60 26473.64 25473.51 31982.80 29755.01 33576.12 33881.69 30862.47 30974.68 24485.85 25357.32 20778.11 35560.86 26880.93 22487.39 276
KD-MVS_2432*160066.22 32863.89 33073.21 32075.47 36653.42 34870.76 36484.35 26964.10 28966.52 33178.52 34934.55 36684.98 31850.40 33450.33 38481.23 358
miper_refine_blended66.22 32863.89 33073.21 32075.47 36653.42 34870.76 36484.35 26964.10 28966.52 33178.52 34934.55 36684.98 31850.40 33450.33 38481.23 358
PM-MVS66.41 32664.14 32873.20 32273.92 37056.45 31778.97 31864.96 38563.88 29564.72 34480.24 33319.84 38783.44 33066.24 22164.52 36179.71 365
tpmrst72.39 27672.13 26773.18 32380.54 33149.91 36979.91 30779.08 33463.11 29871.69 27779.95 33655.32 21682.77 33465.66 22973.89 31686.87 290
WB-MVSnew71.96 28271.65 27172.89 32484.67 25751.88 35782.29 27677.57 34162.31 31073.67 25583.00 30353.49 23781.10 34345.75 36282.13 21185.70 312
dmvs_re71.14 28670.58 28272.80 32581.96 31159.68 27975.60 34479.34 33168.55 23669.27 30480.72 33049.42 28376.54 36352.56 32477.79 26082.19 353
test_fmvs1_n70.86 29070.24 28872.73 32672.51 38155.28 33281.27 28879.71 32851.49 37078.73 14384.87 27427.54 37877.02 36076.06 13079.97 23985.88 310
TESTMET0.1,169.89 30169.00 29572.55 32779.27 35056.85 31078.38 32474.71 36057.64 34768.09 31277.19 35837.75 35876.70 36263.92 23984.09 18184.10 334
KD-MVS_self_test68.81 30767.59 31472.46 32874.29 36945.45 37777.93 33087.00 23463.12 29763.99 34978.99 34742.32 33584.77 32156.55 30764.09 36287.16 284
test_fmvs170.93 28970.52 28372.16 32973.71 37155.05 33480.82 29078.77 33551.21 37178.58 14984.41 28031.20 37376.94 36175.88 13380.12 23884.47 329
CHOSEN 280x42066.51 32564.71 32671.90 33081.45 31963.52 22657.98 38968.95 37753.57 36262.59 35676.70 35946.22 31075.29 37655.25 31179.68 24076.88 371
test_vis1_n69.85 30269.21 29371.77 33172.66 38055.27 33381.48 28576.21 35252.03 36775.30 23183.20 30128.97 37676.22 36874.60 14378.41 25783.81 337
EPMVS69.02 30668.16 30171.59 33279.61 34549.80 37177.40 33366.93 37962.82 30570.01 29279.05 34345.79 31577.86 35756.58 30675.26 30387.13 285
YYNet165.03 33162.91 33671.38 33375.85 36256.60 31669.12 37274.66 36157.28 35154.12 37877.87 35445.85 31474.48 37849.95 33961.52 36783.05 345
MDA-MVSNet_test_wron65.03 33162.92 33571.37 33475.93 36056.73 31269.09 37374.73 35957.28 35154.03 37977.89 35345.88 31374.39 37949.89 34061.55 36682.99 347
UnsupCasMVSNet_eth67.33 31965.99 32371.37 33473.48 37451.47 36275.16 34785.19 25865.20 27560.78 36080.93 32942.35 33477.20 35957.12 30053.69 38085.44 315
PMMVS69.34 30468.67 29671.35 33675.67 36362.03 25075.17 34673.46 36350.00 37268.68 30779.05 34352.07 25278.13 35461.16 26682.77 20373.90 375
EU-MVSNet68.53 31267.61 31371.31 33778.51 35347.01 37584.47 23884.27 27242.27 38066.44 33484.79 27640.44 34783.76 32658.76 28668.54 34983.17 342
testing368.56 31167.67 31271.22 33887.33 20842.87 38683.06 27071.54 36870.36 19169.08 30584.38 28130.33 37585.69 31237.50 38075.45 29785.09 323
Anonymous2023120668.60 30967.80 30971.02 33980.23 33550.75 36678.30 32780.47 31956.79 35366.11 33682.63 31146.35 30878.95 35143.62 36875.70 28983.36 341
test_fmvs268.35 31467.48 31570.98 34069.50 38451.95 35580.05 30476.38 35149.33 37374.65 24584.38 28123.30 38475.40 37574.51 14475.17 30585.60 313
dp66.80 32265.43 32470.90 34179.74 34448.82 37275.12 34974.77 35859.61 33064.08 34877.23 35742.89 33180.72 34548.86 34466.58 35483.16 343
PatchT68.46 31367.85 30670.29 34280.70 32943.93 38472.47 35774.88 35760.15 32670.55 28376.57 36049.94 27781.59 33950.58 33274.83 30885.34 316
UnsupCasMVSNet_bld63.70 33661.53 34270.21 34373.69 37251.39 36372.82 35681.89 30555.63 35857.81 37171.80 37538.67 35378.61 35249.26 34352.21 38280.63 361
Patchmatch-test64.82 33363.24 33469.57 34479.42 34849.82 37063.49 38669.05 37651.98 36859.95 36480.13 33450.91 26570.98 38440.66 37473.57 31987.90 265
LF4IMVS64.02 33562.19 33969.50 34570.90 38253.29 35176.13 33777.18 34752.65 36558.59 36780.98 32623.55 38376.52 36453.06 32266.66 35378.68 367
myMVS_eth3d67.02 32166.29 32269.21 34684.68 25442.58 38778.62 32273.08 36566.65 25966.74 32779.46 34031.53 37282.30 33639.43 37776.38 28282.75 349
test20.0367.45 31866.95 31968.94 34775.48 36544.84 38277.50 33277.67 34066.66 25663.01 35383.80 29147.02 30278.40 35342.53 37168.86 34883.58 339
test0.0.03 168.00 31667.69 31168.90 34877.55 35547.43 37375.70 34372.95 36766.66 25666.56 32982.29 31548.06 29675.87 37044.97 36674.51 31183.41 340
PVSNet_057.27 2061.67 34159.27 34468.85 34979.61 34557.44 30468.01 37473.44 36455.93 35758.54 36870.41 37844.58 32377.55 35847.01 35435.91 39071.55 378
ADS-MVSNet64.36 33462.88 33768.78 35079.92 33847.17 37467.55 37571.18 36953.37 36365.25 34175.86 36442.32 33573.99 38041.57 37268.91 34685.18 319
Syy-MVS68.05 31567.85 30668.67 35184.68 25440.97 39278.62 32273.08 36566.65 25966.74 32779.46 34052.11 25082.30 33632.89 38476.38 28282.75 349
pmmvs357.79 34454.26 34968.37 35264.02 39056.72 31375.12 34965.17 38340.20 38252.93 38069.86 37920.36 38675.48 37345.45 36455.25 37972.90 377
test_fmvs363.36 33761.82 34067.98 35362.51 39146.96 37677.37 33474.03 36245.24 37667.50 31778.79 34812.16 39572.98 38372.77 16466.02 35683.99 335
LCM-MVSNet54.25 34749.68 35767.97 35453.73 39945.28 38066.85 37880.78 31435.96 38839.45 38962.23 3848.70 39978.06 35648.24 34951.20 38380.57 362
EGC-MVSNET52.07 35447.05 35867.14 35583.51 27860.71 26680.50 29867.75 3780.07 4020.43 40375.85 36624.26 38281.54 34028.82 38762.25 36459.16 387
testgi66.67 32466.53 32167.08 35675.62 36441.69 39175.93 33976.50 35066.11 26565.20 34386.59 23435.72 36474.71 37743.71 36773.38 32384.84 325
test_vis1_rt60.28 34258.42 34565.84 35767.25 38755.60 32970.44 36660.94 39044.33 37859.00 36666.64 38024.91 38068.67 38862.80 24669.48 34273.25 376
mvsany_test162.30 33961.26 34365.41 35869.52 38354.86 33666.86 37749.78 39846.65 37568.50 31183.21 30049.15 28866.28 39056.93 30360.77 36875.11 374
ANet_high50.57 35646.10 36063.99 35948.67 40239.13 39370.99 36380.85 31361.39 31831.18 39157.70 38917.02 39073.65 38231.22 38615.89 39979.18 366
MVS-HIRNet59.14 34357.67 34663.57 36081.65 31543.50 38571.73 35965.06 38439.59 38451.43 38157.73 38838.34 35582.58 33539.53 37573.95 31564.62 384
APD_test153.31 35149.93 35663.42 36165.68 38850.13 36871.59 36066.90 38034.43 38940.58 38871.56 3768.65 40076.27 36734.64 38355.36 37863.86 385
new-patchmatchnet61.73 34061.73 34161.70 36272.74 37924.50 40369.16 37178.03 33861.40 31756.72 37475.53 36738.42 35476.48 36545.95 36157.67 37284.13 333
mvsany_test353.99 34851.45 35361.61 36355.51 39544.74 38363.52 38545.41 40243.69 37958.11 37076.45 36117.99 38863.76 39354.77 31347.59 38676.34 372
DSMNet-mixed57.77 34556.90 34760.38 36467.70 38635.61 39569.18 37053.97 39632.30 39257.49 37279.88 33740.39 34868.57 38938.78 37872.37 32876.97 370
FPMVS53.68 35051.64 35259.81 36565.08 38951.03 36469.48 36969.58 37441.46 38140.67 38772.32 37416.46 39170.00 38724.24 39365.42 35858.40 389
dmvs_testset62.63 33864.11 32958.19 36678.55 35224.76 40275.28 34565.94 38267.91 24560.34 36176.01 36353.56 23573.94 38131.79 38567.65 35075.88 373
testf145.72 35841.96 36157.00 36756.90 39345.32 37866.14 38059.26 39226.19 39330.89 39260.96 3864.14 40370.64 38526.39 39146.73 38855.04 390
APD_test245.72 35841.96 36157.00 36756.90 39345.32 37866.14 38059.26 39226.19 39330.89 39260.96 3864.14 40370.64 38526.39 39146.73 38855.04 390
test_vis3_rt49.26 35747.02 35956.00 36954.30 39645.27 38166.76 37948.08 39936.83 38644.38 38653.20 3917.17 40264.07 39256.77 30555.66 37658.65 388
test_f52.09 35350.82 35455.90 37053.82 39842.31 39059.42 38858.31 39436.45 38756.12 37770.96 37712.18 39457.79 39553.51 31956.57 37567.60 381
PMVScopyleft37.38 2244.16 36140.28 36455.82 37140.82 40442.54 38965.12 38363.99 38634.43 38924.48 39557.12 3903.92 40576.17 36917.10 39755.52 37748.75 392
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
WB-MVS54.94 34654.72 34855.60 37273.50 37320.90 40474.27 35361.19 38959.16 33550.61 38274.15 36947.19 30175.78 37117.31 39635.07 39170.12 379
Gipumacopyleft45.18 36041.86 36355.16 37377.03 35951.52 36132.50 39580.52 31832.46 39127.12 39435.02 3959.52 39875.50 37222.31 39460.21 37138.45 394
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
SSC-MVS53.88 34953.59 35054.75 37472.87 37819.59 40573.84 35560.53 39157.58 34949.18 38473.45 37246.34 30975.47 37416.20 39932.28 39369.20 380
new_pmnet50.91 35550.29 35552.78 37568.58 38534.94 39763.71 38456.63 39539.73 38344.95 38565.47 38121.93 38558.48 39434.98 38256.62 37464.92 383
N_pmnet52.79 35253.26 35151.40 37678.99 3517.68 40869.52 3683.89 40751.63 36957.01 37374.98 36840.83 34565.96 39137.78 37964.67 36080.56 363
PMMVS240.82 36238.86 36546.69 37753.84 39716.45 40648.61 39249.92 39737.49 38531.67 39060.97 3858.14 40156.42 39628.42 38830.72 39467.19 382
MVEpermissive26.22 2330.37 36625.89 37043.81 37844.55 40335.46 39628.87 39639.07 40318.20 39718.58 39940.18 3942.68 40647.37 40017.07 39823.78 39648.60 393
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method31.52 36429.28 36838.23 37927.03 4066.50 40920.94 39762.21 3884.05 40022.35 39852.50 39213.33 39247.58 39927.04 39034.04 39260.62 386
E-PMN31.77 36330.64 36635.15 38052.87 40027.67 39957.09 39047.86 40024.64 39516.40 40033.05 39611.23 39654.90 39714.46 40018.15 39722.87 396
EMVS30.81 36529.65 36734.27 38150.96 40125.95 40156.58 39146.80 40124.01 39615.53 40130.68 39712.47 39354.43 39812.81 40117.05 39822.43 397
DeepMVS_CXcopyleft27.40 38240.17 40526.90 40024.59 40617.44 39823.95 39648.61 3939.77 39726.48 40118.06 39524.47 39528.83 395
wuyk23d16.82 36915.94 37219.46 38358.74 39231.45 39839.22 3933.74 4086.84 3996.04 4022.70 4021.27 40724.29 40210.54 40214.40 4012.63 399
tmp_tt18.61 36821.40 37110.23 3844.82 40710.11 40734.70 39430.74 4051.48 40123.91 39726.07 39828.42 37713.41 40327.12 38915.35 4007.17 398
test1236.12 3718.11 3740.14 3850.06 4090.09 41071.05 3620.03 4100.04 4040.25 4051.30 4040.05 4080.03 4050.21 4040.01 4030.29 400
testmvs6.04 3728.02 3750.10 3860.08 4080.03 41169.74 3670.04 4090.05 4030.31 4041.68 4030.02 4090.04 4040.24 4030.02 4020.25 401
test_blank0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
uanet_test0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
DCPMVS0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
cdsmvs_eth3d_5k19.96 36726.61 3690.00 3870.00 4100.00 4120.00 39889.26 1730.00 4050.00 40688.61 17661.62 1610.00 4060.00 4050.00 4040.00 402
pcd_1.5k_mvsjas5.26 3737.02 3760.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 40563.15 1380.00 4060.00 4050.00 4040.00 402
sosnet-low-res0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
sosnet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
uncertanet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
Regformer0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
ab-mvs-re7.23 3709.64 3730.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 40686.72 2260.00 4100.00 4060.00 4050.00 4040.00 402
uanet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
WAC-MVS42.58 38739.46 376
FOURS195.00 1072.39 3995.06 193.84 1574.49 11391.30 15
PC_three_145268.21 24292.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 410
eth-test0.00 410
ZD-MVS94.38 2572.22 4492.67 6170.98 18087.75 3194.07 4174.01 3296.70 2784.66 4794.84 43
RE-MVS-def85.48 5393.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2663.87 12982.75 6891.87 7992.50 114
IU-MVS95.30 271.25 5792.95 5166.81 25292.39 688.94 1696.63 494.85 19
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 41
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
9.1488.26 1592.84 6091.52 4694.75 173.93 12588.57 2294.67 1975.57 2295.79 5386.77 3595.76 23
save fliter93.80 4072.35 4290.47 6491.17 11674.31 116
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 24
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
GSMVS88.96 243
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26288.96 243
sam_mvs50.01 275
MTGPAbinary92.02 85
test_post178.90 3205.43 40148.81 29585.44 31659.25 279
test_post5.46 40050.36 27384.24 323
patchmatchnet-post74.00 37051.12 26488.60 287
MTMP92.18 3532.83 404
gm-plane-assit81.40 32053.83 34562.72 30780.94 32792.39 19563.40 243
test9_res84.90 4295.70 2692.87 102
TEST993.26 5072.96 2588.75 11591.89 9368.44 23985.00 5793.10 6774.36 2895.41 67
test_893.13 5272.57 3588.68 12091.84 9768.69 23484.87 6193.10 6774.43 2695.16 76
agg_prior282.91 6695.45 3092.70 105
agg_prior92.85 5971.94 5191.78 10084.41 7194.93 87
test_prior472.60 3489.01 105
test_prior288.85 11175.41 9384.91 5993.54 5674.28 2983.31 6195.86 20
旧先验286.56 18858.10 34487.04 3988.98 27974.07 149
新几何286.29 196
旧先验191.96 7165.79 17886.37 24493.08 7169.31 7792.74 6888.74 252
无先验87.48 15988.98 18660.00 32794.12 12167.28 21488.97 242
原ACMM286.86 177
test22291.50 7768.26 12484.16 24883.20 29054.63 36179.74 12991.63 9958.97 19391.42 8586.77 293
testdata291.01 24962.37 253
segment_acmp73.08 37
testdata184.14 24975.71 87
plane_prior790.08 10368.51 119
plane_prior689.84 11268.70 11460.42 186
plane_prior592.44 6995.38 6978.71 10286.32 15191.33 149
plane_prior491.00 120
plane_prior368.60 11778.44 3178.92 141
plane_prior291.25 5079.12 23
plane_prior189.90 111
plane_prior68.71 11290.38 6777.62 3986.16 155
n20.00 411
nn0.00 411
door-mid69.98 372
test1192.23 79
door69.44 375
HQP5-MVS66.98 155
HQP-NCC89.33 12889.17 9876.41 7277.23 182
ACMP_Plane89.33 12889.17 9876.41 7277.23 182
BP-MVS77.47 114
HQP4-MVS77.24 18195.11 8091.03 161
HQP3-MVS92.19 8285.99 158
HQP2-MVS60.17 189
NP-MVS89.62 11568.32 12290.24 132
MDTV_nov1_ep13_2view37.79 39475.16 34755.10 35966.53 33049.34 28553.98 31687.94 264
MDTV_nov1_ep1369.97 29083.18 28653.48 34777.10 33680.18 32560.45 32269.33 30380.44 33148.89 29486.90 30251.60 32878.51 254
ACMMP++_ref81.95 214
ACMMP++81.25 220
Test By Simon64.33 125