This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 33
No_MVS89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 33
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
MM89.16 689.23 788.97 490.79 9073.65 1092.66 2391.17 11786.57 187.39 3694.97 1671.70 5197.68 192.19 195.63 2895.57 1
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5580.26 1187.78 3094.27 3275.89 1996.81 2387.45 3296.44 993.05 99
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10892.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
3Dnovator+77.84 485.48 5584.47 7088.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19793.37 6260.40 18996.75 2677.20 11993.73 6395.29 5
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 38
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5994.67 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5681.50 585.79 4993.47 6073.02 4097.00 1884.90 4294.94 3994.10 46
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5494.32 3171.76 4996.93 1985.53 3995.79 2294.32 39
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7194.52 2169.09 7996.70 2784.37 5194.83 4594.03 50
MVS_030488.08 1488.08 1788.08 1489.67 11572.04 4892.26 3389.26 17484.19 285.01 5695.18 1369.93 7097.20 1491.63 295.60 2994.99 9
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6794.52 2168.81 8596.65 3084.53 4994.90 4094.00 51
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8692.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 53
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 8694.17 3667.45 9696.60 3383.06 6394.50 5194.07 48
X-MVStestdata80.37 14777.83 18488.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 8612.47 40467.45 9696.60 3383.06 6394.50 5194.07 48
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5693.59 2376.27 8088.14 2495.09 1571.06 5896.67 2987.67 2996.37 1494.09 47
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 6094.44 2870.78 6196.61 3284.53 4994.89 4193.66 66
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6577.57 4183.84 8394.40 3072.24 4496.28 4085.65 3895.30 3593.62 73
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18792.02 8679.45 1985.88 4794.80 1768.07 9096.21 4286.69 3695.34 3393.23 90
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7193.04 3875.53 9283.86 8294.42 2967.87 9396.64 3182.70 7294.57 5093.66 66
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6493.99 4870.67 6396.82 2284.18 5695.01 3793.90 56
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7184.22 7593.36 6371.44 5596.76 2580.82 8695.33 3494.16 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9091.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 32
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7793.82 1673.07 14984.86 6392.89 7476.22 1796.33 3884.89 4495.13 3694.40 35
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7574.62 11288.90 2093.85 5275.75 2096.00 4987.80 2894.63 4895.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8176.87 6282.81 9994.25 3466.44 10696.24 4182.88 6794.28 5793.38 84
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 43
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6993.94 1477.12 5582.82 9894.23 3572.13 4697.09 1684.83 4595.37 3293.65 70
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5976.62 7183.68 8594.46 2567.93 9195.95 5284.20 5594.39 5493.23 90
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8889.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7993.50 2575.17 10186.34 4595.29 1270.86 6096.00 4988.78 1996.04 1694.58 28
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CANet86.45 3886.10 4587.51 3790.09 10270.94 6789.70 8392.59 6781.78 481.32 11591.43 10670.34 6597.23 1384.26 5293.36 6594.37 36
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8383.81 8493.95 5169.77 7396.01 4885.15 4094.66 4794.32 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft85.89 4985.39 5587.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12493.82 5364.33 12696.29 3982.67 7390.69 9593.23 90
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 6077.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 87
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15485.22 5591.90 9269.47 7596.42 3783.28 6295.94 1994.35 37
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5673.01 15188.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 108
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CDPH-MVS85.76 5185.29 6087.17 4393.49 4771.08 6188.58 12492.42 7368.32 24584.61 6893.48 5872.32 4396.15 4579.00 10095.43 3194.28 41
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11691.89 9468.69 23885.00 5893.10 6774.43 2695.41 6984.97 4195.71 2593.02 101
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5793.56 2473.95 12483.16 9391.07 11775.94 1895.19 7779.94 9594.38 5593.55 77
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 6874.50 11386.84 4394.65 2067.31 9895.77 5584.80 4692.85 6892.84 106
DPM-MVS84.93 6484.29 7186.84 4790.20 10073.04 2387.12 16993.04 3869.80 20982.85 9791.22 11173.06 3996.02 4776.72 12794.63 4891.46 153
TSAR-MVS + GP.85.71 5285.33 5786.84 4791.34 7872.50 3689.07 10587.28 22976.41 7385.80 4890.22 13574.15 3195.37 7481.82 7791.88 7992.65 112
test1286.80 4992.63 6470.70 7291.79 10082.71 10071.67 5296.16 4494.50 5193.54 78
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 10089.57 8893.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 28
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13887.63 3094.27 5893.65 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
3Dnovator76.31 583.38 8682.31 9686.59 5287.94 18672.94 2890.64 5992.14 8577.21 5275.47 22392.83 7658.56 19694.72 10173.24 16092.71 7092.13 133
HPM-MVS_fast85.35 5984.95 6486.57 5393.69 4270.58 7592.15 3691.62 10473.89 12782.67 10194.09 4062.60 14595.54 6280.93 8492.93 6793.57 75
test_prior86.33 5492.61 6569.59 8892.97 5195.48 6493.91 54
MVS_111021_HR85.14 6184.75 6586.32 5591.65 7672.70 3085.98 20390.33 14276.11 8282.08 10491.61 10071.36 5794.17 12181.02 8392.58 7192.08 134
SR-MVS-dyc-post85.77 5085.61 5386.23 5693.06 5570.63 7391.88 3992.27 7773.53 13885.69 5094.45 2665.00 12495.56 6082.75 6891.87 8092.50 117
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4673.54 13785.94 4694.51 2465.80 11695.61 5983.04 6592.51 7293.53 79
DP-MVS Recon83.11 9282.09 9986.15 5894.44 1970.92 6888.79 11492.20 8270.53 19379.17 14091.03 12064.12 12896.03 4668.39 20790.14 10391.50 149
EPNet83.72 7682.92 8886.14 5984.22 26869.48 9191.05 5585.27 26081.30 676.83 19291.65 9766.09 11195.56 6076.00 13393.85 6193.38 84
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
sasdasda85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13281.50 7988.80 12194.77 22
canonicalmvs85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13281.50 7988.80 12194.77 22
h-mvs3383.15 8982.19 9786.02 6290.56 9370.85 7088.15 14189.16 17976.02 8484.67 6591.39 10761.54 16395.50 6382.71 7075.48 29991.72 142
alignmvs85.48 5585.32 5885.96 6389.51 12169.47 9289.74 8192.47 6976.17 8187.73 3491.46 10570.32 6693.78 13881.51 7888.95 11894.63 27
CS-MVS86.69 3586.95 3185.90 6490.76 9167.57 14092.83 1793.30 3279.67 1784.57 7092.27 8671.47 5495.02 8884.24 5493.46 6495.13 6
DELS-MVS85.41 5885.30 5985.77 6588.49 16467.93 13385.52 22093.44 2778.70 2983.63 8889.03 16574.57 2495.71 5780.26 9394.04 6093.66 66
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CS-MVS-test86.29 4286.48 3785.71 6691.02 8367.21 15292.36 2993.78 1878.97 2883.51 8991.20 11270.65 6495.15 7981.96 7694.89 4194.77 22
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6787.65 20067.22 15188.69 12093.04 3879.64 1885.33 5392.54 8373.30 3594.50 10883.49 5991.14 9095.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ETV-MVS84.90 6684.67 6685.59 6889.39 12868.66 11788.74 11892.64 6679.97 1584.10 7885.71 25569.32 7795.38 7180.82 8691.37 8792.72 107
test_fmvsmconf_n85.92 4686.04 4785.57 6985.03 25469.51 9089.62 8790.58 13273.42 14087.75 3294.02 4472.85 4193.24 16290.37 390.75 9493.96 52
test_fmvsmconf0.1_n85.61 5485.65 5285.50 7082.99 29969.39 9789.65 8490.29 14573.31 14387.77 3194.15 3871.72 5093.23 16390.31 490.67 9693.89 57
UA-Net85.08 6384.96 6385.45 7192.07 7068.07 13089.78 8090.86 12782.48 384.60 6993.20 6669.35 7695.22 7671.39 17590.88 9393.07 98
Vis-MVSNetpermissive83.46 8382.80 9085.43 7290.25 9968.74 11190.30 7090.13 14976.33 7980.87 12392.89 7461.00 17794.20 11972.45 16990.97 9193.35 86
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvsmconf0.01_n84.73 6784.52 6985.34 7380.25 33969.03 10089.47 8989.65 16273.24 14786.98 4194.27 3266.62 10293.23 16390.26 589.95 10893.78 63
EI-MVSNet-Vis-set84.19 6983.81 7485.31 7488.18 17567.85 13487.66 15589.73 16080.05 1482.95 9489.59 14970.74 6294.82 9780.66 9084.72 17393.28 89
MAR-MVS81.84 10880.70 11985.27 7591.32 7971.53 5489.82 7790.92 12369.77 21178.50 15486.21 24662.36 15194.52 10765.36 23192.05 7889.77 222
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Effi-MVS+83.62 8083.08 8385.24 7688.38 17067.45 14288.89 11089.15 18075.50 9382.27 10288.28 18769.61 7494.45 11077.81 11387.84 13293.84 60
MVSFormer82.85 9582.05 10085.24 7687.35 20870.21 7790.50 6290.38 13868.55 24081.32 11589.47 15261.68 16093.46 15578.98 10190.26 10192.05 135
iter_conf05_1181.63 11680.44 12685.20 7889.46 12466.20 16786.21 19786.97 23671.53 17183.35 9088.53 18043.22 33495.94 5379.82 9694.85 4393.47 80
OPM-MVS83.50 8282.95 8785.14 7988.79 15470.95 6689.13 10491.52 10777.55 4480.96 12291.75 9560.71 18094.50 10879.67 9886.51 15189.97 214
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP_MVS83.64 7883.14 8285.14 7990.08 10368.71 11391.25 5092.44 7079.12 2378.92 14491.00 12160.42 18795.38 7178.71 10486.32 15391.33 154
test_fmvsm_n_192085.29 6085.34 5685.13 8186.12 23469.93 8388.65 12290.78 12869.97 20588.27 2393.98 4971.39 5691.54 23088.49 2390.45 9893.91 54
EI-MVSNet-UG-set83.81 7383.38 7985.09 8287.87 18867.53 14187.44 16189.66 16179.74 1682.23 10389.41 15870.24 6794.74 10079.95 9483.92 18792.99 103
bld_raw_dy_0_6480.78 13679.36 14885.06 8389.46 12466.03 16989.63 8685.46 25969.76 21281.88 10689.06 16443.39 33295.70 5879.82 9685.74 16793.47 80
QAPM80.88 12879.50 14485.03 8488.01 18568.97 10491.59 4392.00 8866.63 26575.15 24092.16 8857.70 20395.45 6563.52 24388.76 12390.66 178
casdiffmvspermissive85.11 6285.14 6185.01 8587.20 21665.77 18187.75 15392.83 5677.84 3784.36 7492.38 8572.15 4593.93 13181.27 8290.48 9795.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PCF-MVS73.52 780.38 14578.84 16185.01 8587.71 19768.99 10383.65 25691.46 11263.00 30577.77 17390.28 13266.10 11095.09 8661.40 26788.22 13190.94 169
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
nrg03083.88 7283.53 7684.96 8786.77 22469.28 9990.46 6592.67 6274.79 10782.95 9491.33 10872.70 4293.09 17680.79 8879.28 25292.50 117
VDD-MVS83.01 9482.36 9584.96 8791.02 8366.40 16388.91 10988.11 20877.57 4184.39 7393.29 6452.19 24893.91 13277.05 12188.70 12494.57 30
PVSNet_Blended_VisFu82.62 9781.83 10584.96 8790.80 8969.76 8788.74 11891.70 10369.39 21878.96 14288.46 18265.47 11894.87 9674.42 14688.57 12590.24 196
CPTT-MVS83.73 7583.33 8184.92 9093.28 4970.86 6992.09 3790.38 13868.75 23779.57 13592.83 7660.60 18593.04 18080.92 8591.56 8590.86 171
EC-MVSNet86.01 4386.38 3884.91 9189.31 13366.27 16692.32 3093.63 2179.37 2084.17 7791.88 9369.04 8395.43 6783.93 5793.77 6293.01 102
OMC-MVS82.69 9681.97 10384.85 9288.75 15667.42 14387.98 14490.87 12674.92 10479.72 13391.65 9762.19 15593.96 12575.26 14186.42 15293.16 95
EIA-MVS83.31 8882.80 9084.82 9389.59 11765.59 18388.21 13792.68 6174.66 11078.96 14286.42 24269.06 8195.26 7575.54 13990.09 10493.62 73
PAPM_NR83.02 9382.41 9384.82 9392.47 6766.37 16487.93 14891.80 9973.82 12877.32 18190.66 12667.90 9294.90 9370.37 18489.48 11393.19 94
baseline84.93 6484.98 6284.80 9587.30 21465.39 18987.30 16592.88 5377.62 3984.04 8092.26 8771.81 4893.96 12581.31 8190.30 10095.03 8
lupinMVS81.39 12180.27 13084.76 9687.35 20870.21 7785.55 21686.41 24462.85 30881.32 11588.61 17661.68 16092.24 20578.41 10890.26 10191.83 139
jason81.39 12180.29 12984.70 9786.63 22869.90 8585.95 20486.77 24063.24 30181.07 12189.47 15261.08 17692.15 20778.33 10990.07 10692.05 135
jason: jason.
ET-MVSNet_ETH3D78.63 18876.63 21784.64 9886.73 22569.47 9285.01 22684.61 26869.54 21666.51 33886.59 23550.16 27591.75 22176.26 12984.24 18492.69 110
EPP-MVSNet83.40 8583.02 8584.57 9990.13 10164.47 20892.32 3090.73 12974.45 11679.35 13891.10 11569.05 8295.12 8072.78 16487.22 14094.13 45
mvsmamba81.69 11280.74 11884.56 10087.45 20766.72 15991.26 4885.89 25374.66 11078.23 16190.56 12854.33 22894.91 9080.73 8983.54 19992.04 137
UGNet80.83 13079.59 14284.54 10188.04 18368.09 12989.42 9288.16 20776.95 5976.22 20989.46 15449.30 28793.94 12868.48 20590.31 9991.60 143
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LPG-MVS_test82.08 10381.27 10984.50 10289.23 13768.76 10990.22 7191.94 9275.37 9576.64 19891.51 10254.29 22994.91 9078.44 10683.78 18889.83 219
LGP-MVS_train84.50 10289.23 13768.76 10991.94 9275.37 9576.64 19891.51 10254.29 22994.91 9078.44 10683.78 18889.83 219
test_fmvsmvis_n_192084.02 7183.87 7384.49 10484.12 27069.37 9888.15 14187.96 21370.01 20383.95 8193.23 6568.80 8691.51 23388.61 2089.96 10792.57 113
MSLP-MVS++85.43 5785.76 5184.45 10591.93 7270.24 7690.71 5892.86 5477.46 4784.22 7592.81 7867.16 10092.94 18280.36 9194.35 5690.16 198
Effi-MVS+-dtu80.03 15478.57 16684.42 10685.13 25268.74 11188.77 11588.10 20974.99 10374.97 24583.49 30257.27 20993.36 15873.53 15480.88 23091.18 159
HQP-MVS82.61 9882.02 10184.37 10789.33 13066.98 15589.17 9992.19 8376.41 7377.23 18490.23 13460.17 19095.11 8277.47 11685.99 16191.03 165
ACMP74.13 681.51 12080.57 12184.36 10889.42 12668.69 11689.97 7591.50 11174.46 11575.04 24490.41 13153.82 23494.54 10577.56 11582.91 20789.86 218
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
原ACMM184.35 10993.01 5768.79 10792.44 7063.96 29881.09 12091.57 10166.06 11295.45 6567.19 21794.82 4688.81 253
PS-MVSNAJss82.07 10481.31 10884.34 11086.51 22967.27 14989.27 9791.51 10871.75 16379.37 13790.22 13563.15 13994.27 11477.69 11482.36 21591.49 150
thisisatest053079.40 16977.76 18984.31 11187.69 19965.10 19587.36 16284.26 27570.04 20277.42 17888.26 18949.94 27894.79 9970.20 18584.70 17493.03 100
CLD-MVS82.31 10081.65 10684.29 11288.47 16567.73 13785.81 21192.35 7575.78 8778.33 15986.58 23764.01 12994.35 11176.05 13287.48 13790.79 172
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
fmvsm_s_conf0.1_n_a83.32 8782.99 8684.28 11383.79 27768.07 13089.34 9682.85 30069.80 20987.36 3794.06 4268.34 8991.56 22887.95 2783.46 20193.21 93
fmvsm_s_conf0.5_n_a83.63 7983.41 7884.28 11386.14 23368.12 12889.43 9182.87 29970.27 19987.27 3893.80 5469.09 7991.58 22688.21 2683.65 19593.14 96
fmvsm_l_conf0.5_n84.47 6884.54 6784.27 11585.42 24468.81 10688.49 12687.26 23068.08 24788.03 2793.49 5772.04 4791.77 22088.90 1789.14 11792.24 128
API-MVS81.99 10681.23 11084.26 11690.94 8570.18 8291.10 5389.32 17071.51 17278.66 15088.28 18765.26 11995.10 8564.74 23791.23 8987.51 279
114514_t80.68 13879.51 14384.20 11794.09 3867.27 14989.64 8591.11 12058.75 34574.08 25690.72 12558.10 19995.04 8769.70 19289.42 11490.30 194
IS-MVSNet83.15 8982.81 8984.18 11889.94 11063.30 23391.59 4388.46 20579.04 2579.49 13692.16 8865.10 12194.28 11367.71 21091.86 8294.95 10
MVS_111021_LR82.61 9882.11 9884.11 11988.82 15171.58 5385.15 22386.16 24974.69 10980.47 12691.04 11862.29 15290.55 25880.33 9290.08 10590.20 197
fmvsm_s_conf0.1_n83.56 8183.38 7984.10 12084.86 25667.28 14889.40 9483.01 29570.67 18887.08 3993.96 5068.38 8891.45 23688.56 2284.50 17693.56 76
FA-MVS(test-final)80.96 12779.91 13584.10 12088.30 17365.01 19684.55 23890.01 15273.25 14679.61 13487.57 20458.35 19894.72 10171.29 17686.25 15592.56 114
Anonymous2024052980.19 15278.89 16084.10 12090.60 9264.75 20288.95 10890.90 12465.97 27380.59 12591.17 11449.97 27793.73 14469.16 19882.70 21293.81 61
OpenMVScopyleft72.83 1079.77 15878.33 17384.09 12385.17 24869.91 8490.57 6090.97 12266.70 25972.17 27791.91 9154.70 22593.96 12561.81 26490.95 9288.41 264
FE-MVS77.78 21075.68 22784.08 12488.09 18166.00 17283.13 26787.79 21968.42 24478.01 16885.23 26845.50 32095.12 8059.11 28585.83 16491.11 161
fmvsm_s_conf0.5_n83.80 7483.71 7584.07 12586.69 22667.31 14789.46 9083.07 29471.09 18086.96 4293.70 5569.02 8491.47 23588.79 1884.62 17593.44 83
hse-mvs281.72 11080.94 11684.07 12588.72 15767.68 13885.87 20787.26 23076.02 8484.67 6588.22 19061.54 16393.48 15382.71 7073.44 32791.06 163
fmvsm_l_conf0.5_n_a84.13 7084.16 7284.06 12785.38 24568.40 12188.34 13386.85 23967.48 25487.48 3593.40 6170.89 5991.61 22488.38 2589.22 11692.16 132
dcpmvs_285.63 5386.15 4484.06 12791.71 7564.94 19886.47 19091.87 9673.63 13386.60 4493.02 7276.57 1591.87 21883.36 6092.15 7695.35 3
AdaColmapbinary80.58 14279.42 14584.06 12793.09 5468.91 10589.36 9588.97 18969.27 22175.70 21989.69 14457.20 21095.77 5563.06 24888.41 12987.50 280
AUN-MVS79.21 17477.60 19484.05 13088.71 15867.61 13985.84 20987.26 23069.08 22977.23 18488.14 19553.20 24193.47 15475.50 14073.45 32691.06 163
VDDNet81.52 11880.67 12084.05 13090.44 9664.13 21589.73 8285.91 25271.11 17983.18 9293.48 5850.54 27293.49 15273.40 15788.25 13094.54 31
xiu_mvs_v1_base_debu80.80 13379.72 13984.03 13287.35 20870.19 7985.56 21388.77 19569.06 23081.83 10788.16 19150.91 26692.85 18478.29 11087.56 13489.06 238
xiu_mvs_v1_base80.80 13379.72 13984.03 13287.35 20870.19 7985.56 21388.77 19569.06 23081.83 10788.16 19150.91 26692.85 18478.29 11087.56 13489.06 238
xiu_mvs_v1_base_debi80.80 13379.72 13984.03 13287.35 20870.19 7985.56 21388.77 19569.06 23081.83 10788.16 19150.91 26692.85 18478.29 11087.56 13489.06 238
PAPR81.66 11580.89 11783.99 13590.27 9864.00 21686.76 18391.77 10268.84 23677.13 19089.50 15067.63 9494.88 9567.55 21288.52 12793.09 97
XVG-OURS80.41 14479.23 15283.97 13685.64 24069.02 10283.03 27290.39 13771.09 18077.63 17591.49 10454.62 22791.35 23975.71 13583.47 20091.54 146
XVG-OURS-SEG-HR80.81 13179.76 13883.96 13785.60 24168.78 10883.54 26190.50 13570.66 19176.71 19691.66 9660.69 18191.26 24176.94 12281.58 22391.83 139
HyFIR lowres test77.53 21775.40 23483.94 13889.59 11766.62 16080.36 30588.64 20256.29 36176.45 20285.17 27057.64 20493.28 16061.34 26983.10 20691.91 138
iter_conf0580.00 15678.70 16283.91 13987.84 19065.83 17788.84 11384.92 26571.61 16878.70 14788.94 16643.88 32994.56 10479.28 9984.28 18391.33 154
tttt051779.40 16977.91 18183.90 14088.10 18063.84 21988.37 13284.05 27771.45 17376.78 19489.12 16149.93 28094.89 9470.18 18683.18 20592.96 104
GeoE81.71 11181.01 11583.80 14189.51 12164.45 20988.97 10788.73 20071.27 17678.63 15189.76 14366.32 10893.20 16869.89 19086.02 16093.74 64
RRT_MVS80.35 14879.22 15383.74 14287.63 20165.46 18691.08 5488.92 19273.82 12876.44 20590.03 13749.05 29294.25 11876.84 12379.20 25491.51 147
PS-MVSNAJ81.69 11281.02 11483.70 14389.51 12168.21 12784.28 24790.09 15070.79 18581.26 11985.62 26063.15 13994.29 11275.62 13788.87 12088.59 260
xiu_mvs_v2_base81.69 11281.05 11383.60 14489.15 14068.03 13284.46 24190.02 15170.67 18881.30 11886.53 24063.17 13894.19 12075.60 13888.54 12688.57 261
ACMM73.20 880.78 13679.84 13783.58 14589.31 13368.37 12289.99 7491.60 10570.28 19877.25 18289.66 14553.37 23993.53 15174.24 14982.85 20888.85 251
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LFMVS81.82 10981.23 11083.57 14691.89 7363.43 23189.84 7681.85 31077.04 5883.21 9193.10 6752.26 24793.43 15771.98 17089.95 10893.85 58
Fast-Effi-MVS+80.81 13179.92 13483.47 14788.85 14864.51 20585.53 21889.39 16870.79 18578.49 15585.06 27367.54 9593.58 14667.03 22086.58 14992.32 123
CHOSEN 1792x268877.63 21675.69 22683.44 14889.98 10968.58 11978.70 32687.50 22556.38 36075.80 21886.84 22358.67 19591.40 23861.58 26685.75 16590.34 191
新几何183.42 14993.13 5270.71 7185.48 25857.43 35581.80 11091.98 9063.28 13492.27 20364.60 23892.99 6687.27 285
DP-MVS76.78 22974.57 24483.42 14993.29 4869.46 9488.55 12583.70 28163.98 29770.20 29388.89 16854.01 23394.80 9846.66 36081.88 22186.01 312
MVS_Test83.15 8983.06 8483.41 15186.86 22063.21 23586.11 20192.00 8874.31 11782.87 9689.44 15770.03 6893.21 16577.39 11888.50 12893.81 61
LS3D76.95 22774.82 24283.37 15290.45 9567.36 14689.15 10386.94 23761.87 32069.52 30590.61 12751.71 26094.53 10646.38 36386.71 14888.21 266
IB-MVS68.01 1575.85 24573.36 26083.31 15384.76 25766.03 16983.38 26285.06 26270.21 20169.40 30681.05 32945.76 31794.66 10365.10 23475.49 29889.25 235
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MG-MVS83.41 8483.45 7783.28 15492.74 6262.28 24988.17 13989.50 16575.22 9781.49 11492.74 8266.75 10195.11 8272.85 16391.58 8492.45 120
jajsoiax79.29 17277.96 17983.27 15584.68 25966.57 16289.25 9890.16 14869.20 22675.46 22589.49 15145.75 31893.13 17476.84 12380.80 23290.11 202
test_djsdf80.30 14979.32 14983.27 15583.98 27465.37 19090.50 6290.38 13868.55 24076.19 21088.70 17256.44 21493.46 15578.98 10180.14 24290.97 168
test_yl81.17 12380.47 12483.24 15789.13 14163.62 22286.21 19789.95 15472.43 15781.78 11189.61 14757.50 20693.58 14670.75 17986.90 14492.52 115
DCV-MVSNet81.17 12380.47 12483.24 15789.13 14163.62 22286.21 19789.95 15472.43 15781.78 11189.61 14757.50 20693.58 14670.75 17986.90 14492.52 115
mvs_tets79.13 17677.77 18883.22 15984.70 25866.37 16489.17 9990.19 14769.38 21975.40 22889.46 15444.17 32793.15 17276.78 12680.70 23490.14 199
thisisatest051577.33 22175.38 23583.18 16085.27 24763.80 22082.11 27983.27 28965.06 28175.91 21583.84 29449.54 28294.27 11467.24 21686.19 15691.48 151
CDS-MVSNet79.07 17877.70 19183.17 16187.60 20268.23 12684.40 24586.20 24867.49 25376.36 20686.54 23961.54 16390.79 25461.86 26387.33 13890.49 186
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v7n78.97 18177.58 19583.14 16283.45 28465.51 18488.32 13491.21 11573.69 13272.41 27486.32 24557.93 20093.81 13769.18 19775.65 29590.11 202
BH-RMVSNet79.61 16078.44 16983.14 16289.38 12965.93 17484.95 22887.15 23373.56 13678.19 16389.79 14256.67 21393.36 15859.53 28186.74 14790.13 200
UniMVSNet (Re)81.60 11781.11 11283.09 16488.38 17064.41 21087.60 15693.02 4278.42 3278.56 15388.16 19169.78 7293.26 16169.58 19476.49 28191.60 143
PLCcopyleft70.83 1178.05 20376.37 22283.08 16591.88 7467.80 13588.19 13889.46 16664.33 29169.87 30288.38 18453.66 23593.58 14658.86 28882.73 21087.86 271
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v119279.59 16278.43 17083.07 16683.55 28264.52 20486.93 17590.58 13270.83 18477.78 17285.90 25159.15 19393.94 12873.96 15177.19 27290.76 174
v2v48280.23 15079.29 15083.05 16783.62 28064.14 21487.04 17189.97 15373.61 13478.18 16487.22 21561.10 17593.82 13676.11 13076.78 27991.18 159
TAMVS78.89 18377.51 19683.03 16887.80 19267.79 13684.72 23285.05 26367.63 25076.75 19587.70 20062.25 15390.82 25358.53 29287.13 14190.49 186
v114480.03 15479.03 15783.01 16983.78 27864.51 20587.11 17090.57 13471.96 16278.08 16786.20 24761.41 16793.94 12874.93 14277.23 27090.60 181
cascas76.72 23074.64 24382.99 17085.78 23865.88 17682.33 27689.21 17760.85 32672.74 26881.02 33047.28 30193.75 14267.48 21385.02 16989.34 233
anonymousdsp78.60 18977.15 20282.98 17180.51 33767.08 15387.24 16789.53 16465.66 27675.16 23987.19 21752.52 24292.25 20477.17 12079.34 25189.61 226
v1079.74 15978.67 16382.97 17284.06 27264.95 19787.88 15190.62 13173.11 14875.11 24186.56 23861.46 16694.05 12473.68 15275.55 29789.90 216
UniMVSNet_NR-MVSNet81.88 10781.54 10782.92 17388.46 16663.46 22987.13 16892.37 7480.19 1278.38 15789.14 16071.66 5393.05 17870.05 18776.46 28292.25 126
DU-MVS81.12 12580.52 12382.90 17487.80 19263.46 22987.02 17291.87 9679.01 2678.38 15789.07 16265.02 12293.05 17870.05 18776.46 28292.20 129
PVSNet_Blended80.98 12680.34 12782.90 17488.85 14865.40 18784.43 24392.00 8867.62 25178.11 16585.05 27466.02 11394.27 11471.52 17289.50 11289.01 243
CANet_DTU80.61 13979.87 13682.83 17685.60 24163.17 23887.36 16288.65 20176.37 7775.88 21688.44 18353.51 23793.07 17773.30 15889.74 11192.25 126
V4279.38 17178.24 17582.83 17681.10 33165.50 18585.55 21689.82 15671.57 17078.21 16286.12 24960.66 18293.18 17175.64 13675.46 30189.81 221
Anonymous2023121178.97 18177.69 19282.81 17890.54 9464.29 21290.11 7391.51 10865.01 28376.16 21488.13 19650.56 27193.03 18169.68 19377.56 26991.11 161
v192192079.22 17378.03 17882.80 17983.30 28763.94 21886.80 17990.33 14269.91 20777.48 17785.53 26158.44 19793.75 14273.60 15376.85 27790.71 177
v879.97 15779.02 15882.80 17984.09 27164.50 20787.96 14590.29 14574.13 12375.24 23786.81 22462.88 14493.89 13574.39 14775.40 30490.00 210
TAPA-MVS73.13 979.15 17577.94 18082.79 18189.59 11762.99 24288.16 14091.51 10865.77 27477.14 18991.09 11660.91 17893.21 16550.26 34287.05 14292.17 131
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v14419279.47 16578.37 17182.78 18283.35 28563.96 21786.96 17390.36 14169.99 20477.50 17685.67 25860.66 18293.77 14074.27 14876.58 28090.62 179
NR-MVSNet80.23 15079.38 14682.78 18287.80 19263.34 23286.31 19491.09 12179.01 2672.17 27789.07 16267.20 9992.81 18766.08 22675.65 29592.20 129
diffmvspermissive82.10 10281.88 10482.76 18483.00 29763.78 22183.68 25589.76 15872.94 15282.02 10589.85 14165.96 11590.79 25482.38 7487.30 13993.71 65
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v124078.99 18077.78 18782.64 18583.21 28963.54 22686.62 18690.30 14469.74 21577.33 18085.68 25757.04 21193.76 14173.13 16176.92 27490.62 179
Fast-Effi-MVS+-dtu78.02 20476.49 21882.62 18683.16 29366.96 15786.94 17487.45 22772.45 15471.49 28484.17 28954.79 22491.58 22667.61 21180.31 23989.30 234
RPMNet73.51 26970.49 28982.58 18781.32 32965.19 19275.92 34592.27 7757.60 35372.73 26976.45 36652.30 24695.43 6748.14 35577.71 26687.11 291
F-COLMAP76.38 23874.33 24982.50 18889.28 13566.95 15888.41 12889.03 18464.05 29566.83 33088.61 17646.78 30592.89 18357.48 30078.55 25787.67 274
TranMVSNet+NR-MVSNet80.84 12980.31 12882.42 18987.85 18962.33 24787.74 15491.33 11380.55 977.99 16989.86 14065.23 12092.62 18867.05 21975.24 30992.30 124
MVSTER79.01 17977.88 18382.38 19083.07 29464.80 20184.08 25288.95 19069.01 23378.69 14887.17 21854.70 22592.43 19574.69 14380.57 23689.89 217
PVSNet_BlendedMVS80.60 14080.02 13282.36 19188.85 14865.40 18786.16 20092.00 8869.34 22078.11 16586.09 25066.02 11394.27 11471.52 17282.06 21887.39 281
EI-MVSNet80.52 14379.98 13382.12 19284.28 26663.19 23786.41 19188.95 19074.18 12178.69 14887.54 20766.62 10292.43 19572.57 16780.57 23690.74 176
IterMVS-LS80.06 15379.38 14682.11 19385.89 23663.20 23686.79 18089.34 16974.19 12075.45 22686.72 22766.62 10292.39 19772.58 16676.86 27690.75 175
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
BH-untuned79.47 16578.60 16582.05 19489.19 13965.91 17586.07 20288.52 20472.18 15975.42 22787.69 20161.15 17493.54 15060.38 27486.83 14686.70 300
ACMH+68.96 1476.01 24374.01 25182.03 19588.60 16165.31 19188.86 11187.55 22370.25 20067.75 31987.47 20941.27 34693.19 17058.37 29375.94 29287.60 276
Anonymous20240521178.25 19577.01 20481.99 19691.03 8260.67 26884.77 23183.90 27970.65 19280.00 13191.20 11241.08 34891.43 23765.21 23285.26 16893.85 58
GA-MVS76.87 22875.17 23981.97 19782.75 30362.58 24481.44 28886.35 24772.16 16174.74 24882.89 31146.20 31292.02 21168.85 20281.09 22891.30 157
CNLPA78.08 20176.79 21181.97 19790.40 9771.07 6287.59 15784.55 26966.03 27272.38 27589.64 14657.56 20586.04 31359.61 28083.35 20288.79 254
MVS78.19 19976.99 20681.78 19985.66 23966.99 15484.66 23390.47 13655.08 36572.02 27985.27 26663.83 13194.11 12366.10 22589.80 11084.24 336
ACMH67.68 1675.89 24473.93 25381.77 20088.71 15866.61 16188.62 12389.01 18669.81 20866.78 33186.70 23141.95 34591.51 23355.64 31478.14 26487.17 287
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D79.10 17778.24 17581.70 20186.85 22160.24 27587.28 16688.79 19474.25 11976.84 19190.53 13049.48 28391.56 22867.98 20882.15 21693.29 88
VNet82.21 10182.41 9381.62 20290.82 8860.93 26384.47 23989.78 15776.36 7884.07 7991.88 9364.71 12590.26 26070.68 18188.89 11993.66 66
XVG-ACMP-BASELINE76.11 24174.27 25081.62 20283.20 29064.67 20383.60 25989.75 15969.75 21371.85 28087.09 22032.78 37392.11 20869.99 18980.43 23888.09 267
eth_miper_zixun_eth77.92 20776.69 21581.61 20483.00 29761.98 25283.15 26689.20 17869.52 21774.86 24784.35 28461.76 15992.56 19171.50 17472.89 33190.28 195
PAPM77.68 21576.40 22181.51 20587.29 21561.85 25483.78 25489.59 16364.74 28571.23 28588.70 17262.59 14693.66 14552.66 32787.03 14389.01 243
v14878.72 18677.80 18681.47 20682.73 30461.96 25386.30 19588.08 21073.26 14576.18 21185.47 26362.46 14992.36 19971.92 17173.82 32390.09 204
tt080578.73 18577.83 18481.43 20785.17 24860.30 27489.41 9390.90 12471.21 17777.17 18888.73 17146.38 30793.21 16572.57 16778.96 25590.79 172
LTVRE_ROB69.57 1376.25 23974.54 24681.41 20888.60 16164.38 21179.24 31889.12 18370.76 18769.79 30487.86 19849.09 29093.20 16856.21 31380.16 24086.65 301
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
GBi-Net78.40 19277.40 19781.40 20987.60 20263.01 23988.39 12989.28 17171.63 16575.34 23087.28 21154.80 22191.11 24462.72 25079.57 24690.09 204
test178.40 19277.40 19781.40 20987.60 20263.01 23988.39 12989.28 17171.63 16575.34 23087.28 21154.80 22191.11 24462.72 25079.57 24690.09 204
FMVSNet177.44 21876.12 22481.40 20986.81 22363.01 23988.39 12989.28 17170.49 19474.39 25387.28 21149.06 29191.11 24460.91 27178.52 25890.09 204
baseline275.70 24673.83 25681.30 21283.26 28861.79 25682.57 27580.65 32066.81 25666.88 32983.42 30357.86 20292.19 20663.47 24479.57 24689.91 215
c3_l78.75 18477.91 18181.26 21382.89 30161.56 25884.09 25189.13 18269.97 20575.56 22184.29 28566.36 10792.09 20973.47 15675.48 29990.12 201
cl2278.07 20277.01 20481.23 21482.37 31361.83 25583.55 26087.98 21268.96 23475.06 24383.87 29261.40 16891.88 21773.53 15476.39 28489.98 213
FMVSNet278.20 19877.21 20181.20 21587.60 20262.89 24387.47 16089.02 18571.63 16575.29 23687.28 21154.80 22191.10 24762.38 25579.38 25089.61 226
TR-MVS77.44 21876.18 22381.20 21588.24 17463.24 23484.61 23686.40 24567.55 25277.81 17186.48 24154.10 23193.15 17257.75 29982.72 21187.20 286
ab-mvs79.51 16378.97 15981.14 21788.46 16660.91 26483.84 25389.24 17670.36 19579.03 14188.87 16963.23 13790.21 26265.12 23382.57 21392.28 125
MVP-Stereo76.12 24074.46 24881.13 21885.37 24669.79 8684.42 24487.95 21465.03 28267.46 32385.33 26553.28 24091.73 22358.01 29783.27 20381.85 360
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
miper_ehance_all_eth78.59 19077.76 18981.08 21982.66 30661.56 25883.65 25689.15 18068.87 23575.55 22283.79 29666.49 10592.03 21073.25 15976.39 28489.64 225
FIs82.07 10482.42 9281.04 22088.80 15358.34 28988.26 13693.49 2676.93 6078.47 15691.04 11869.92 7192.34 20169.87 19184.97 17092.44 121
SDMVSNet80.38 14580.18 13180.99 22189.03 14664.94 19880.45 30489.40 16775.19 9976.61 20089.98 13860.61 18487.69 30276.83 12583.55 19790.33 192
patch_mono-283.65 7784.54 6780.99 22190.06 10765.83 17784.21 24888.74 19971.60 16985.01 5692.44 8474.51 2583.50 33482.15 7592.15 7693.64 72
FMVSNet377.88 20876.85 20980.97 22386.84 22262.36 24686.52 18988.77 19571.13 17875.34 23086.66 23354.07 23291.10 24762.72 25079.57 24689.45 230
miper_enhance_ethall77.87 20976.86 20880.92 22481.65 32061.38 26082.68 27388.98 18765.52 27875.47 22382.30 31965.76 11792.00 21272.95 16276.39 28489.39 231
BH-w/o78.21 19777.33 20080.84 22588.81 15265.13 19484.87 22987.85 21869.75 21374.52 25284.74 27861.34 16993.11 17558.24 29585.84 16384.27 335
COLMAP_ROBcopyleft66.92 1773.01 27670.41 29180.81 22687.13 21865.63 18288.30 13584.19 27662.96 30663.80 35687.69 20138.04 36292.56 19146.66 36074.91 31284.24 336
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
VPA-MVSNet80.60 14080.55 12280.76 22788.07 18260.80 26686.86 17791.58 10675.67 9180.24 12889.45 15663.34 13390.25 26170.51 18379.22 25391.23 158
EG-PatchMatch MVS74.04 26371.82 27380.71 22884.92 25567.42 14385.86 20888.08 21066.04 27164.22 35283.85 29335.10 37092.56 19157.44 30180.83 23182.16 359
ECVR-MVScopyleft79.61 16079.26 15180.67 22990.08 10354.69 34187.89 15077.44 34974.88 10580.27 12792.79 7948.96 29492.45 19468.55 20492.50 7394.86 17
cl____77.72 21276.76 21280.58 23082.49 31060.48 27183.09 26887.87 21669.22 22474.38 25485.22 26962.10 15691.53 23171.09 17775.41 30389.73 224
DIV-MVS_self_test77.72 21276.76 21280.58 23082.48 31160.48 27183.09 26887.86 21769.22 22474.38 25485.24 26762.10 15691.53 23171.09 17775.40 30489.74 223
MSDG73.36 27270.99 28480.49 23284.51 26465.80 17980.71 29986.13 25065.70 27565.46 34383.74 29744.60 32390.91 25251.13 33576.89 27584.74 331
pmmvs474.03 26571.91 27280.39 23381.96 31668.32 12381.45 28782.14 30659.32 33869.87 30285.13 27152.40 24588.13 29760.21 27674.74 31484.73 332
HY-MVS69.67 1277.95 20677.15 20280.36 23487.57 20660.21 27683.37 26387.78 22066.11 26975.37 22987.06 22263.27 13590.48 25961.38 26882.43 21490.40 190
mvs_anonymous79.42 16879.11 15680.34 23584.45 26557.97 29582.59 27487.62 22267.40 25576.17 21388.56 17968.47 8789.59 27370.65 18286.05 15993.47 80
1112_ss77.40 22076.43 22080.32 23689.11 14560.41 27383.65 25687.72 22162.13 31873.05 26686.72 22762.58 14789.97 26662.11 26180.80 23290.59 182
WR-MVS79.49 16479.22 15380.27 23788.79 15458.35 28885.06 22588.61 20378.56 3077.65 17488.34 18563.81 13290.66 25764.98 23577.22 27191.80 141
131476.53 23275.30 23880.21 23883.93 27562.32 24884.66 23388.81 19360.23 33070.16 29684.07 29155.30 21890.73 25667.37 21483.21 20487.59 278
test111179.43 16779.18 15580.15 23989.99 10853.31 35487.33 16477.05 35275.04 10280.23 12992.77 8148.97 29392.33 20268.87 20192.40 7594.81 20
IterMVS-SCA-FT75.43 25173.87 25580.11 24082.69 30564.85 20081.57 28583.47 28669.16 22770.49 29084.15 29051.95 25588.15 29669.23 19672.14 33687.34 283
FC-MVSNet-test81.52 11882.02 10180.03 24188.42 16955.97 32787.95 14693.42 2977.10 5677.38 17990.98 12369.96 6991.79 21968.46 20684.50 17692.33 122
testdata79.97 24290.90 8664.21 21384.71 26659.27 33985.40 5292.91 7362.02 15889.08 28268.95 20091.37 8786.63 302
SCA74.22 26172.33 27079.91 24384.05 27362.17 25079.96 31179.29 33766.30 26872.38 27580.13 33951.95 25588.60 29159.25 28377.67 26888.96 247
thres40076.50 23375.37 23679.86 24489.13 14157.65 30185.17 22183.60 28273.41 14176.45 20286.39 24352.12 24991.95 21348.33 35183.75 19190.00 210
test_040272.79 27970.44 29079.84 24588.13 17865.99 17385.93 20584.29 27365.57 27767.40 32585.49 26246.92 30492.61 18935.88 38674.38 31780.94 365
OurMVSNet-221017-074.26 26072.42 26979.80 24683.76 27959.59 28285.92 20686.64 24166.39 26766.96 32887.58 20339.46 35491.60 22565.76 22969.27 34988.22 265
test250677.30 22276.49 21879.74 24790.08 10352.02 35787.86 15263.10 39274.88 10580.16 13092.79 7938.29 36192.35 20068.74 20392.50 7394.86 17
SixPastTwentyTwo73.37 27071.26 28279.70 24885.08 25357.89 29785.57 21283.56 28471.03 18265.66 34285.88 25242.10 34392.57 19059.11 28563.34 36888.65 259
thres600view776.50 23375.44 23279.68 24989.40 12757.16 30785.53 21883.23 29073.79 13076.26 20887.09 22051.89 25791.89 21648.05 35683.72 19490.00 210
CR-MVSNet73.37 27071.27 28179.67 25081.32 32965.19 19275.92 34580.30 32759.92 33372.73 26981.19 32752.50 24386.69 30759.84 27877.71 26687.11 291
D2MVS74.82 25673.21 26179.64 25179.81 34662.56 24580.34 30687.35 22864.37 29068.86 31182.66 31546.37 30890.10 26367.91 20981.24 22686.25 305
AllTest70.96 29368.09 30879.58 25285.15 25063.62 22284.58 23779.83 33162.31 31560.32 36786.73 22532.02 37488.96 28650.28 34071.57 34086.15 308
TestCases79.58 25285.15 25063.62 22279.83 33162.31 31560.32 36786.73 22532.02 37488.96 28650.28 34071.57 34086.15 308
tfpn200view976.42 23675.37 23679.55 25489.13 14157.65 30185.17 22183.60 28273.41 14176.45 20286.39 24352.12 24991.95 21348.33 35183.75 19189.07 236
thres100view90076.50 23375.55 23179.33 25589.52 12056.99 31085.83 21083.23 29073.94 12576.32 20787.12 21951.89 25791.95 21348.33 35183.75 19189.07 236
CostFormer75.24 25473.90 25479.27 25682.65 30758.27 29080.80 29482.73 30261.57 32175.33 23483.13 30755.52 21691.07 25064.98 23578.34 26388.45 262
Test_1112_low_res76.40 23775.44 23279.27 25689.28 13558.09 29181.69 28387.07 23459.53 33772.48 27386.67 23261.30 17089.33 27760.81 27380.15 24190.41 189
K. test v371.19 29068.51 30279.21 25883.04 29657.78 30084.35 24676.91 35372.90 15362.99 35982.86 31239.27 35591.09 24961.65 26552.66 38688.75 256
testing9176.54 23175.66 22979.18 25988.43 16855.89 32881.08 29183.00 29673.76 13175.34 23084.29 28546.20 31290.07 26464.33 23984.50 17691.58 145
testing9976.09 24275.12 24079.00 26088.16 17655.50 33380.79 29581.40 31473.30 14475.17 23884.27 28744.48 32590.02 26564.28 24084.22 18591.48 151
lessismore_v078.97 26181.01 33257.15 30865.99 38661.16 36482.82 31339.12 35691.34 24059.67 27946.92 39288.43 263
pm-mvs177.25 22376.68 21678.93 26284.22 26858.62 28786.41 19188.36 20671.37 17473.31 26288.01 19761.22 17389.15 28164.24 24173.01 33089.03 242
thres20075.55 24874.47 24778.82 26387.78 19557.85 29883.07 27083.51 28572.44 15675.84 21784.42 28052.08 25291.75 22147.41 35883.64 19686.86 296
VPNet78.69 18778.66 16478.76 26488.31 17255.72 33084.45 24286.63 24276.79 6478.26 16090.55 12959.30 19289.70 27266.63 22177.05 27390.88 170
tpm273.26 27371.46 27778.63 26583.34 28656.71 31580.65 30080.40 32656.63 35973.55 26082.02 32451.80 25991.24 24256.35 31278.42 26187.95 268
pmmvs674.69 25773.39 25978.61 26681.38 32657.48 30486.64 18587.95 21464.99 28470.18 29486.61 23450.43 27389.52 27462.12 26070.18 34688.83 252
sd_testset77.70 21477.40 19778.60 26789.03 14660.02 27779.00 32285.83 25475.19 9976.61 20089.98 13854.81 22085.46 32062.63 25483.55 19790.33 192
WR-MVS_H78.51 19178.49 16778.56 26888.02 18456.38 32188.43 12792.67 6277.14 5473.89 25787.55 20666.25 10989.24 27958.92 28773.55 32590.06 208
RPSCF73.23 27471.46 27778.54 26982.50 30959.85 27882.18 27882.84 30158.96 34271.15 28789.41 15845.48 32184.77 32658.82 28971.83 33891.02 167
testing1175.14 25574.01 25178.53 27088.16 17656.38 32180.74 29880.42 32570.67 18872.69 27183.72 29843.61 33189.86 26762.29 25783.76 19089.36 232
pmmvs-eth3d70.50 30067.83 31378.52 27177.37 36266.18 16881.82 28081.51 31258.90 34363.90 35580.42 33742.69 33886.28 31158.56 29165.30 36483.11 349
PatchmatchNetpermissive73.12 27571.33 28078.49 27283.18 29160.85 26579.63 31378.57 34164.13 29271.73 28179.81 34451.20 26485.97 31457.40 30276.36 28988.66 258
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
IterMVS74.29 25972.94 26478.35 27381.53 32363.49 22881.58 28482.49 30368.06 24869.99 29983.69 29951.66 26185.54 31865.85 22871.64 33986.01 312
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ITE_SJBPF78.22 27481.77 31960.57 26983.30 28869.25 22367.54 32187.20 21636.33 36787.28 30554.34 31974.62 31586.80 297
testing22274.04 26372.66 26678.19 27587.89 18755.36 33481.06 29279.20 33871.30 17574.65 25083.57 30139.11 35788.67 29051.43 33485.75 16590.53 184
ppachtmachnet_test70.04 30467.34 32178.14 27679.80 34761.13 26179.19 32080.59 32159.16 34065.27 34579.29 34746.75 30687.29 30449.33 34666.72 35786.00 314
tfpnnormal74.39 25873.16 26278.08 27786.10 23558.05 29284.65 23587.53 22470.32 19771.22 28685.63 25954.97 21989.86 26743.03 37475.02 31186.32 304
Vis-MVSNet (Re-imp)78.36 19478.45 16878.07 27888.64 16051.78 36386.70 18479.63 33474.14 12275.11 24190.83 12461.29 17189.75 27058.10 29691.60 8392.69 110
TransMVSNet (Re)75.39 25374.56 24577.86 27985.50 24357.10 30986.78 18186.09 25172.17 16071.53 28387.34 21063.01 14389.31 27856.84 30861.83 37087.17 287
PEN-MVS77.73 21177.69 19277.84 28087.07 21953.91 34887.91 14991.18 11677.56 4373.14 26588.82 17061.23 17289.17 28059.95 27772.37 33390.43 188
CP-MVSNet78.22 19678.34 17277.84 28087.83 19154.54 34387.94 14791.17 11777.65 3873.48 26188.49 18162.24 15488.43 29362.19 25874.07 31890.55 183
PS-CasMVS78.01 20578.09 17777.77 28287.71 19754.39 34588.02 14391.22 11477.50 4673.26 26388.64 17560.73 17988.41 29461.88 26273.88 32290.53 184
baseline176.98 22676.75 21477.66 28388.13 17855.66 33185.12 22481.89 30873.04 15076.79 19388.90 16762.43 15087.78 30163.30 24771.18 34289.55 228
OpenMVS_ROBcopyleft64.09 1970.56 29968.19 30577.65 28480.26 33859.41 28485.01 22682.96 29858.76 34465.43 34482.33 31837.63 36491.23 24345.34 37076.03 29182.32 356
Patchmatch-RL test70.24 30267.78 31577.61 28577.43 36159.57 28371.16 36670.33 37562.94 30768.65 31372.77 37850.62 27085.49 31969.58 19466.58 35987.77 273
Baseline_NR-MVSNet78.15 20078.33 17377.61 28585.79 23756.21 32586.78 18185.76 25573.60 13577.93 17087.57 20465.02 12288.99 28367.14 21875.33 30687.63 275
DTE-MVSNet76.99 22576.80 21077.54 28786.24 23153.06 35687.52 15890.66 13077.08 5772.50 27288.67 17460.48 18689.52 27457.33 30370.74 34490.05 209
LCM-MVSNet-Re77.05 22476.94 20777.36 28887.20 21651.60 36480.06 30880.46 32475.20 9867.69 32086.72 22762.48 14888.98 28463.44 24589.25 11591.51 147
tpm cat170.57 29868.31 30477.35 28982.41 31257.95 29678.08 33380.22 32952.04 37168.54 31577.66 36152.00 25487.84 30051.77 33072.07 33786.25 305
MS-PatchMatch73.83 26672.67 26577.30 29083.87 27666.02 17181.82 28084.66 26761.37 32468.61 31482.82 31347.29 30088.21 29559.27 28284.32 18277.68 374
EPNet_dtu75.46 25074.86 24177.23 29182.57 30854.60 34286.89 17683.09 29371.64 16466.25 34085.86 25355.99 21588.04 29854.92 31686.55 15089.05 241
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_lstm_enhance74.11 26273.11 26377.13 29280.11 34159.62 28172.23 36386.92 23866.76 25870.40 29182.92 31056.93 21282.92 33869.06 19972.63 33288.87 250
TDRefinement67.49 32264.34 33276.92 29373.47 38061.07 26284.86 23082.98 29759.77 33458.30 37485.13 27126.06 38487.89 29947.92 35760.59 37581.81 361
JIA-IIPM66.32 33262.82 34376.82 29477.09 36361.72 25765.34 38775.38 35958.04 35064.51 35062.32 38842.05 34486.51 30951.45 33369.22 35082.21 357
PatchMatch-RL72.38 28170.90 28576.80 29588.60 16167.38 14579.53 31476.17 35862.75 31169.36 30782.00 32545.51 31984.89 32553.62 32280.58 23578.12 373
tpmvs71.09 29269.29 29776.49 29682.04 31556.04 32678.92 32481.37 31564.05 29567.18 32778.28 35649.74 28189.77 26949.67 34572.37 33383.67 343
CMPMVSbinary51.72 2170.19 30368.16 30676.28 29773.15 38257.55 30379.47 31583.92 27848.02 37956.48 38084.81 27643.13 33586.42 31062.67 25381.81 22284.89 329
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
USDC70.33 30168.37 30376.21 29880.60 33556.23 32479.19 32086.49 24360.89 32561.29 36385.47 26331.78 37689.47 27653.37 32476.21 29082.94 353
gg-mvs-nofinetune69.95 30567.96 30975.94 29983.07 29454.51 34477.23 34070.29 37663.11 30370.32 29262.33 38743.62 33088.69 28953.88 32187.76 13384.62 333
ETVMVS72.25 28471.05 28375.84 30087.77 19651.91 36079.39 31674.98 36169.26 22273.71 25882.95 30940.82 35086.14 31246.17 36484.43 18189.47 229
MDA-MVSNet-bldmvs66.68 32863.66 33775.75 30179.28 35460.56 27073.92 35978.35 34264.43 28850.13 38879.87 34344.02 32883.67 33246.10 36556.86 37883.03 351
PVSNet64.34 1872.08 28670.87 28675.69 30286.21 23256.44 31974.37 35780.73 31962.06 31970.17 29582.23 32142.86 33783.31 33654.77 31784.45 18087.32 284
pmmvs571.55 28870.20 29475.61 30377.83 35956.39 32081.74 28280.89 31657.76 35167.46 32384.49 27949.26 28885.32 32257.08 30575.29 30785.11 327
our_test_369.14 31067.00 32375.57 30479.80 34758.80 28577.96 33477.81 34459.55 33662.90 36078.25 35747.43 29983.97 33051.71 33167.58 35683.93 341
WTY-MVS75.65 24775.68 22775.57 30486.40 23056.82 31277.92 33682.40 30465.10 28076.18 21187.72 19963.13 14280.90 34960.31 27581.96 21989.00 245
Patchmtry70.74 29669.16 29975.49 30680.72 33354.07 34774.94 35680.30 32758.34 34670.01 29781.19 32752.50 24386.54 30853.37 32471.09 34385.87 316
GG-mvs-BLEND75.38 30781.59 32255.80 32979.32 31769.63 37867.19 32673.67 37643.24 33388.90 28850.41 33784.50 17681.45 362
ambc75.24 30873.16 38150.51 37163.05 39287.47 22664.28 35177.81 36017.80 39489.73 27157.88 29860.64 37485.49 319
CL-MVSNet_self_test72.37 28271.46 27775.09 30979.49 35253.53 35080.76 29785.01 26469.12 22870.51 28982.05 32357.92 20184.13 32952.27 32966.00 36287.60 276
XXY-MVS75.41 25275.56 23074.96 31083.59 28157.82 29980.59 30183.87 28066.54 26674.93 24688.31 18663.24 13680.09 35262.16 25976.85 27786.97 294
MIMVSNet70.69 29769.30 29674.88 31184.52 26356.35 32375.87 34779.42 33564.59 28667.76 31882.41 31741.10 34781.54 34546.64 36281.34 22486.75 299
ADS-MVSNet266.20 33563.33 33874.82 31279.92 34358.75 28667.55 38075.19 36053.37 36865.25 34675.86 36942.32 34080.53 35141.57 37768.91 35185.18 324
TinyColmap67.30 32564.81 33074.76 31381.92 31856.68 31680.29 30781.49 31360.33 32856.27 38183.22 30424.77 38687.66 30345.52 36869.47 34879.95 369
test_vis1_n_192075.52 24975.78 22574.75 31479.84 34557.44 30583.26 26485.52 25762.83 30979.34 13986.17 24845.10 32279.71 35378.75 10381.21 22787.10 293
test-LLR72.94 27872.43 26874.48 31581.35 32758.04 29378.38 32977.46 34766.66 26069.95 30079.00 35048.06 29779.24 35466.13 22384.83 17186.15 308
test-mter71.41 28970.39 29274.48 31581.35 32758.04 29378.38 32977.46 34760.32 32969.95 30079.00 35036.08 36879.24 35466.13 22384.83 17186.15 308
tpm72.37 28271.71 27474.35 31782.19 31452.00 35879.22 31977.29 35064.56 28772.95 26783.68 30051.35 26283.26 33758.33 29475.80 29387.81 272
CVMVSNet72.99 27772.58 26774.25 31884.28 26650.85 36986.41 19183.45 28744.56 38273.23 26487.54 20749.38 28585.70 31565.90 22778.44 26086.19 307
FMVSNet569.50 30867.96 30974.15 31982.97 30055.35 33580.01 31082.12 30762.56 31363.02 35781.53 32636.92 36581.92 34348.42 35074.06 31985.17 326
UWE-MVS72.13 28571.49 27674.03 32086.66 22747.70 37781.40 28976.89 35463.60 30075.59 22084.22 28839.94 35385.62 31748.98 34886.13 15888.77 255
MIMVSNet168.58 31566.78 32573.98 32180.07 34251.82 36280.77 29684.37 27064.40 28959.75 37082.16 32236.47 36683.63 33342.73 37570.33 34586.48 303
test_cas_vis1_n_192073.76 26773.74 25773.81 32275.90 36659.77 27980.51 30282.40 30458.30 34781.62 11385.69 25644.35 32676.41 37176.29 12878.61 25685.23 323
Anonymous2024052168.80 31367.22 32273.55 32374.33 37354.11 34683.18 26585.61 25658.15 34861.68 36280.94 33230.71 37981.27 34757.00 30673.34 32985.28 322
sss73.60 26873.64 25873.51 32482.80 30255.01 33976.12 34381.69 31162.47 31474.68 24985.85 25457.32 20878.11 36060.86 27280.93 22987.39 281
KD-MVS_2432*160066.22 33363.89 33573.21 32575.47 37153.42 35270.76 36984.35 27164.10 29366.52 33678.52 35434.55 37184.98 32350.40 33850.33 38981.23 363
miper_refine_blended66.22 33363.89 33573.21 32575.47 37153.42 35270.76 36984.35 27164.10 29366.52 33678.52 35434.55 37184.98 32350.40 33850.33 38981.23 363
PM-MVS66.41 33164.14 33373.20 32773.92 37556.45 31878.97 32364.96 39063.88 29964.72 34980.24 33819.84 39283.44 33566.24 22264.52 36679.71 370
tpmrst72.39 28072.13 27173.18 32880.54 33649.91 37379.91 31279.08 33963.11 30371.69 28279.95 34155.32 21782.77 33965.66 23073.89 32186.87 295
WB-MVSnew71.96 28771.65 27572.89 32984.67 26251.88 36182.29 27777.57 34662.31 31573.67 25983.00 30853.49 23881.10 34845.75 36782.13 21785.70 317
dmvs_re71.14 29170.58 28772.80 33081.96 31659.68 28075.60 34979.34 33668.55 24069.27 30980.72 33549.42 28476.54 36852.56 32877.79 26582.19 358
test_fmvs1_n70.86 29570.24 29372.73 33172.51 38655.28 33681.27 29079.71 33351.49 37578.73 14684.87 27527.54 38377.02 36576.06 13179.97 24485.88 315
TESTMET0.1,169.89 30669.00 30072.55 33279.27 35556.85 31178.38 32974.71 36557.64 35268.09 31777.19 36337.75 36376.70 36763.92 24284.09 18684.10 339
KD-MVS_self_test68.81 31267.59 31972.46 33374.29 37445.45 38277.93 33587.00 23563.12 30263.99 35478.99 35242.32 34084.77 32656.55 31164.09 36787.16 289
test_fmvs170.93 29470.52 28872.16 33473.71 37655.05 33880.82 29378.77 34051.21 37678.58 15284.41 28131.20 37876.94 36675.88 13480.12 24384.47 334
CHOSEN 280x42066.51 33064.71 33171.90 33581.45 32463.52 22757.98 39468.95 38253.57 36762.59 36176.70 36446.22 31175.29 38155.25 31579.68 24576.88 376
test_vis1_n69.85 30769.21 29871.77 33672.66 38555.27 33781.48 28676.21 35752.03 37275.30 23583.20 30628.97 38176.22 37374.60 14478.41 26283.81 342
EPMVS69.02 31168.16 30671.59 33779.61 35049.80 37577.40 33866.93 38462.82 31070.01 29779.05 34845.79 31677.86 36256.58 31075.26 30887.13 290
YYNet165.03 33662.91 34171.38 33875.85 36756.60 31769.12 37774.66 36657.28 35654.12 38377.87 35945.85 31574.48 38349.95 34361.52 37283.05 350
MDA-MVSNet_test_wron65.03 33662.92 34071.37 33975.93 36556.73 31369.09 37874.73 36457.28 35654.03 38477.89 35845.88 31474.39 38449.89 34461.55 37182.99 352
UnsupCasMVSNet_eth67.33 32465.99 32871.37 33973.48 37951.47 36675.16 35285.19 26165.20 27960.78 36580.93 33442.35 33977.20 36457.12 30453.69 38585.44 320
PMMVS69.34 30968.67 30171.35 34175.67 36862.03 25175.17 35173.46 36850.00 37768.68 31279.05 34852.07 25378.13 35961.16 27082.77 20973.90 380
EU-MVSNet68.53 31767.61 31871.31 34278.51 35847.01 38084.47 23984.27 27442.27 38566.44 33984.79 27740.44 35183.76 33158.76 29068.54 35483.17 347
testing368.56 31667.67 31771.22 34387.33 21342.87 39183.06 27171.54 37370.36 19569.08 31084.38 28230.33 38085.69 31637.50 38575.45 30285.09 328
Anonymous2023120668.60 31467.80 31471.02 34480.23 34050.75 37078.30 33280.47 32356.79 35866.11 34182.63 31646.35 30978.95 35643.62 37375.70 29483.36 346
test_fmvs268.35 31967.48 32070.98 34569.50 38951.95 35980.05 30976.38 35649.33 37874.65 25084.38 28223.30 38975.40 38074.51 14575.17 31085.60 318
dp66.80 32765.43 32970.90 34679.74 34948.82 37675.12 35474.77 36359.61 33564.08 35377.23 36242.89 33680.72 35048.86 34966.58 35983.16 348
PatchT68.46 31867.85 31170.29 34780.70 33443.93 38972.47 36274.88 36260.15 33170.55 28876.57 36549.94 27881.59 34450.58 33674.83 31385.34 321
UnsupCasMVSNet_bld63.70 34161.53 34770.21 34873.69 37751.39 36772.82 36181.89 30855.63 36357.81 37671.80 38038.67 35878.61 35749.26 34752.21 38780.63 366
Patchmatch-test64.82 33863.24 33969.57 34979.42 35349.82 37463.49 39169.05 38151.98 37359.95 36980.13 33950.91 26670.98 38940.66 37973.57 32487.90 270
LF4IMVS64.02 34062.19 34469.50 35070.90 38753.29 35576.13 34277.18 35152.65 37058.59 37280.98 33123.55 38876.52 36953.06 32666.66 35878.68 372
myMVS_eth3d67.02 32666.29 32769.21 35184.68 25942.58 39278.62 32773.08 37066.65 26366.74 33279.46 34531.53 37782.30 34139.43 38276.38 28782.75 354
test20.0367.45 32366.95 32468.94 35275.48 37044.84 38777.50 33777.67 34566.66 26063.01 35883.80 29547.02 30378.40 35842.53 37668.86 35383.58 344
test0.0.03 168.00 32167.69 31668.90 35377.55 36047.43 37875.70 34872.95 37266.66 26066.56 33482.29 32048.06 29775.87 37544.97 37174.51 31683.41 345
PVSNet_057.27 2061.67 34659.27 34968.85 35479.61 35057.44 30568.01 37973.44 36955.93 36258.54 37370.41 38344.58 32477.55 36347.01 35935.91 39571.55 383
ADS-MVSNet64.36 33962.88 34268.78 35579.92 34347.17 37967.55 38071.18 37453.37 36865.25 34675.86 36942.32 34073.99 38541.57 37768.91 35185.18 324
Syy-MVS68.05 32067.85 31168.67 35684.68 25940.97 39778.62 32773.08 37066.65 26366.74 33279.46 34552.11 25182.30 34132.89 38976.38 28782.75 354
pmmvs357.79 34954.26 35468.37 35764.02 39556.72 31475.12 35465.17 38840.20 38752.93 38569.86 38420.36 39175.48 37845.45 36955.25 38472.90 382
test_fmvs363.36 34261.82 34567.98 35862.51 39646.96 38177.37 33974.03 36745.24 38167.50 32278.79 35312.16 40072.98 38872.77 16566.02 36183.99 340
LCM-MVSNet54.25 35249.68 36267.97 35953.73 40445.28 38566.85 38380.78 31835.96 39339.45 39462.23 3898.70 40478.06 36148.24 35451.20 38880.57 367
EGC-MVSNET52.07 35947.05 36367.14 36083.51 28360.71 26780.50 30367.75 3830.07 4070.43 40875.85 37124.26 38781.54 34528.82 39262.25 36959.16 392
testgi66.67 32966.53 32667.08 36175.62 36941.69 39675.93 34476.50 35566.11 26965.20 34886.59 23535.72 36974.71 38243.71 37273.38 32884.84 330
test_vis1_rt60.28 34758.42 35065.84 36267.25 39255.60 33270.44 37160.94 39544.33 38359.00 37166.64 38524.91 38568.67 39362.80 24969.48 34773.25 381
mvsany_test162.30 34461.26 34865.41 36369.52 38854.86 34066.86 38249.78 40346.65 38068.50 31683.21 30549.15 28966.28 39556.93 30760.77 37375.11 379
ANet_high50.57 36146.10 36563.99 36448.67 40739.13 39870.99 36880.85 31761.39 32331.18 39657.70 39417.02 39573.65 38731.22 39115.89 40479.18 371
MVS-HIRNet59.14 34857.67 35163.57 36581.65 32043.50 39071.73 36465.06 38939.59 38951.43 38657.73 39338.34 36082.58 34039.53 38073.95 32064.62 389
APD_test153.31 35649.93 36163.42 36665.68 39350.13 37271.59 36566.90 38534.43 39440.58 39371.56 3818.65 40576.27 37234.64 38855.36 38363.86 390
new-patchmatchnet61.73 34561.73 34661.70 36772.74 38424.50 40869.16 37678.03 34361.40 32256.72 37975.53 37238.42 35976.48 37045.95 36657.67 37784.13 338
mvsany_test353.99 35351.45 35861.61 36855.51 40044.74 38863.52 39045.41 40743.69 38458.11 37576.45 36617.99 39363.76 39854.77 31747.59 39176.34 377
DSMNet-mixed57.77 35056.90 35260.38 36967.70 39135.61 40069.18 37553.97 40132.30 39757.49 37779.88 34240.39 35268.57 39438.78 38372.37 33376.97 375
FPMVS53.68 35551.64 35759.81 37065.08 39451.03 36869.48 37469.58 37941.46 38640.67 39272.32 37916.46 39670.00 39224.24 39865.42 36358.40 394
dmvs_testset62.63 34364.11 33458.19 37178.55 35724.76 40775.28 35065.94 38767.91 24960.34 36676.01 36853.56 23673.94 38631.79 39067.65 35575.88 378
testf145.72 36341.96 36657.00 37256.90 39845.32 38366.14 38559.26 39726.19 39830.89 39760.96 3914.14 40870.64 39026.39 39646.73 39355.04 395
APD_test245.72 36341.96 36657.00 37256.90 39845.32 38366.14 38559.26 39726.19 39830.89 39760.96 3914.14 40870.64 39026.39 39646.73 39355.04 395
test_vis3_rt49.26 36247.02 36456.00 37454.30 40145.27 38666.76 38448.08 40436.83 39144.38 39153.20 3967.17 40764.07 39756.77 30955.66 38158.65 393
test_f52.09 35850.82 35955.90 37553.82 40342.31 39559.42 39358.31 39936.45 39256.12 38270.96 38212.18 39957.79 40053.51 32356.57 38067.60 386
PMVScopyleft37.38 2244.16 36640.28 36955.82 37640.82 40942.54 39465.12 38863.99 39134.43 39424.48 40057.12 3953.92 41076.17 37417.10 40255.52 38248.75 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
WB-MVS54.94 35154.72 35355.60 37773.50 37820.90 40974.27 35861.19 39459.16 34050.61 38774.15 37447.19 30275.78 37617.31 40135.07 39670.12 384
Gipumacopyleft45.18 36541.86 36855.16 37877.03 36451.52 36532.50 40080.52 32232.46 39627.12 39935.02 4009.52 40375.50 37722.31 39960.21 37638.45 399
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
SSC-MVS53.88 35453.59 35554.75 37972.87 38319.59 41073.84 36060.53 39657.58 35449.18 38973.45 37746.34 31075.47 37916.20 40432.28 39869.20 385
new_pmnet50.91 36050.29 36052.78 38068.58 39034.94 40263.71 38956.63 40039.73 38844.95 39065.47 38621.93 39058.48 39934.98 38756.62 37964.92 388
N_pmnet52.79 35753.26 35651.40 38178.99 3567.68 41369.52 3733.89 41251.63 37457.01 37874.98 37340.83 34965.96 39637.78 38464.67 36580.56 368
PMMVS240.82 36738.86 37046.69 38253.84 40216.45 41148.61 39749.92 40237.49 39031.67 39560.97 3908.14 40656.42 40128.42 39330.72 39967.19 387
MVEpermissive26.22 2330.37 37125.89 37543.81 38344.55 40835.46 40128.87 40139.07 40818.20 40218.58 40440.18 3992.68 41147.37 40517.07 40323.78 40148.60 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method31.52 36929.28 37338.23 38427.03 4116.50 41420.94 40262.21 3934.05 40522.35 40352.50 39713.33 39747.58 40427.04 39534.04 39760.62 391
E-PMN31.77 36830.64 37135.15 38552.87 40527.67 40457.09 39547.86 40524.64 40016.40 40533.05 40111.23 40154.90 40214.46 40518.15 40222.87 401
EMVS30.81 37029.65 37234.27 38650.96 40625.95 40656.58 39646.80 40624.01 40115.53 40630.68 40212.47 39854.43 40312.81 40617.05 40322.43 402
DeepMVS_CXcopyleft27.40 38740.17 41026.90 40524.59 41117.44 40323.95 40148.61 3989.77 40226.48 40618.06 40024.47 40028.83 400
wuyk23d16.82 37415.94 37719.46 38858.74 39731.45 40339.22 3983.74 4136.84 4046.04 4072.70 4071.27 41224.29 40710.54 40714.40 4062.63 404
tmp_tt18.61 37321.40 37610.23 3894.82 41210.11 41234.70 39930.74 4101.48 40623.91 40226.07 40328.42 38213.41 40827.12 39415.35 4057.17 403
test1236.12 3768.11 3790.14 3900.06 4140.09 41571.05 3670.03 4150.04 4090.25 4101.30 4090.05 4130.03 4100.21 4090.01 4080.29 405
testmvs6.04 3778.02 3800.10 3910.08 4130.03 41669.74 3720.04 4140.05 4080.31 4091.68 4080.02 4140.04 4090.24 4080.02 4070.25 406
test_blank0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
uanet_test0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
DCPMVS0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
cdsmvs_eth3d_5k19.96 37226.61 3740.00 3920.00 4150.00 4170.00 40389.26 1740.00 4100.00 41188.61 17661.62 1620.00 4110.00 4100.00 4090.00 407
pcd_1.5k_mvsjas5.26 3787.02 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 41063.15 1390.00 4110.00 4100.00 4090.00 407
sosnet-low-res0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
sosnet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
uncertanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
Regformer0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
ab-mvs-re7.23 3759.64 3780.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 41186.72 2270.00 4150.00 4110.00 4100.00 4090.00 407
uanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
WAC-MVS42.58 39239.46 381
FOURS195.00 1072.39 3995.06 193.84 1574.49 11491.30 15
PC_three_145268.21 24692.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 415
eth-test0.00 415
ZD-MVS94.38 2572.22 4492.67 6270.98 18387.75 3294.07 4174.01 3296.70 2784.66 4794.84 44
RE-MVS-def85.48 5493.06 5570.63 7391.88 3992.27 7773.53 13885.69 5094.45 2663.87 13082.75 6891.87 8092.50 117
IU-MVS95.30 271.25 5792.95 5266.81 25692.39 688.94 1696.63 494.85 19
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 42
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
9.1488.26 1592.84 6091.52 4694.75 173.93 12688.57 2294.67 1975.57 2295.79 5486.77 3595.76 23
save fliter93.80 4072.35 4290.47 6491.17 11774.31 117
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 25
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
GSMVS88.96 247
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26388.96 247
sam_mvs50.01 276
MTGPAbinary92.02 86
test_post178.90 3255.43 40648.81 29685.44 32159.25 283
test_post5.46 40550.36 27484.24 328
patchmatchnet-post74.00 37551.12 26588.60 291
MTMP92.18 3532.83 409
gm-plane-assit81.40 32553.83 34962.72 31280.94 33292.39 19763.40 246
test9_res84.90 4295.70 2692.87 105
TEST993.26 5072.96 2588.75 11691.89 9468.44 24385.00 5893.10 6774.36 2895.41 69
test_893.13 5272.57 3588.68 12191.84 9868.69 23884.87 6293.10 6774.43 2695.16 78
agg_prior282.91 6695.45 3092.70 108
agg_prior92.85 5971.94 5191.78 10184.41 7294.93 89
test_prior472.60 3489.01 106
test_prior288.85 11275.41 9484.91 6093.54 5674.28 2983.31 6195.86 20
旧先验286.56 18858.10 34987.04 4088.98 28474.07 150
新几何286.29 196
旧先验191.96 7165.79 18086.37 24693.08 7169.31 7892.74 6988.74 257
无先验87.48 15988.98 18760.00 33294.12 12267.28 21588.97 246
原ACMM286.86 177
test22291.50 7768.26 12584.16 24983.20 29254.63 36679.74 13291.63 9958.97 19491.42 8686.77 298
testdata291.01 25162.37 256
segment_acmp73.08 38
testdata184.14 25075.71 88
plane_prior790.08 10368.51 120
plane_prior689.84 11268.70 11560.42 187
plane_prior592.44 7095.38 7178.71 10486.32 15391.33 154
plane_prior491.00 121
plane_prior368.60 11878.44 3178.92 144
plane_prior291.25 5079.12 23
plane_prior189.90 111
plane_prior68.71 11390.38 6877.62 3986.16 157
n20.00 416
nn0.00 416
door-mid69.98 377
test1192.23 80
door69.44 380
HQP5-MVS66.98 155
HQP-NCC89.33 13089.17 9976.41 7377.23 184
ACMP_Plane89.33 13089.17 9976.41 7377.23 184
BP-MVS77.47 116
HQP4-MVS77.24 18395.11 8291.03 165
HQP3-MVS92.19 8385.99 161
HQP2-MVS60.17 190
NP-MVS89.62 11668.32 12390.24 133
MDTV_nov1_ep13_2view37.79 39975.16 35255.10 36466.53 33549.34 28653.98 32087.94 269
MDTV_nov1_ep1369.97 29583.18 29153.48 35177.10 34180.18 33060.45 32769.33 30880.44 33648.89 29586.90 30651.60 33278.51 259
ACMMP++_ref81.95 220
ACMMP++81.25 225
Test By Simon64.33 126