This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 189.67 296.44 994.41 31
No_MVS89.16 194.34 2775.53 292.99 4597.53 189.67 296.44 994.41 31
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4082.45 396.87 1983.77 4896.48 894.88 13
HPM-MVS++copyleft89.02 889.15 888.63 495.01 976.03 192.38 2692.85 5480.26 1087.78 2894.27 3175.89 1996.81 2287.45 2296.44 993.05 88
SMA-MVScopyleft89.08 789.23 788.61 594.25 3173.73 992.40 2393.63 2174.77 10692.29 795.97 274.28 2997.24 1188.58 1596.91 194.87 15
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
3Dnovator+77.84 485.48 5184.47 6488.51 691.08 8173.49 1593.18 1193.78 1880.79 776.66 18593.37 5260.40 17896.75 2577.20 10793.73 6195.29 4
CNVR-MVS88.93 989.13 988.33 794.77 1273.82 890.51 6093.00 4380.90 688.06 2694.06 3976.43 1696.84 2088.48 1795.99 1894.34 36
SteuartSystems-ACMMP88.72 1088.86 1088.32 892.14 6972.96 2493.73 593.67 2080.19 1188.10 2594.80 1673.76 3397.11 1487.51 2195.82 2194.90 12
Skip Steuart: Steuart Systems R&D Blog.
MSP-MVS89.51 489.91 588.30 994.28 3073.46 1692.90 1694.11 680.27 991.35 1494.16 3578.35 1396.77 2389.59 494.22 5794.67 23
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
NCCC88.06 1488.01 1888.24 1094.41 2273.62 1091.22 5192.83 5581.50 485.79 3893.47 5173.02 3997.00 1784.90 3294.94 3894.10 44
ZNCC-MVS87.94 1887.85 1988.20 1194.39 2473.33 1893.03 1493.81 1776.81 6285.24 4394.32 3071.76 4696.93 1885.53 2995.79 2294.32 37
region2R87.42 2487.20 2788.09 1294.63 1473.55 1293.03 1493.12 3776.73 6784.45 6094.52 2069.09 7396.70 2684.37 4194.83 4394.03 48
MVS_030488.08 1388.08 1688.08 1389.67 11372.04 4792.26 3289.26 16984.19 185.01 4595.18 1369.93 6497.20 1391.63 195.60 2894.99 8
ACMMPR87.44 2287.23 2688.08 1394.64 1373.59 1193.04 1293.20 3476.78 6484.66 5694.52 2068.81 7796.65 2984.53 3994.90 3994.00 49
DPE-MVScopyleft89.48 589.98 488.01 1594.80 1172.69 3091.59 4294.10 875.90 8492.29 795.66 1081.67 697.38 987.44 2396.34 1593.95 50
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
XVS87.18 2886.91 3288.00 1694.42 2073.33 1892.78 1892.99 4579.14 2083.67 7594.17 3467.45 8696.60 3283.06 5394.50 4994.07 46
X-MVStestdata80.37 13577.83 17288.00 1694.42 2073.33 1892.78 1892.99 4579.14 2083.67 7512.47 38167.45 8696.60 3283.06 5394.50 4994.07 46
ACMMP_NAP88.05 1688.08 1687.94 1893.70 4173.05 2190.86 5593.59 2376.27 7888.14 2495.09 1571.06 5396.67 2887.67 1996.37 1494.09 45
HFP-MVS87.58 2187.47 2387.94 1894.58 1673.54 1493.04 1293.24 3376.78 6484.91 4994.44 2770.78 5596.61 3184.53 3994.89 4093.66 61
MP-MVScopyleft87.71 1987.64 2187.93 2094.36 2673.88 692.71 2292.65 6477.57 4083.84 7294.40 2972.24 4296.28 3985.65 2895.30 3493.62 68
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTAPA87.23 2787.00 2887.90 2194.18 3574.25 586.58 17792.02 8579.45 1885.88 3694.80 1668.07 8096.21 4186.69 2695.34 3293.23 81
PGM-MVS86.68 3586.27 3987.90 2194.22 3373.38 1790.22 6993.04 3875.53 9083.86 7194.42 2867.87 8396.64 3082.70 6294.57 4893.66 61
DVP-MVS++90.23 191.01 187.89 2394.34 2771.25 5695.06 194.23 378.38 3292.78 495.74 682.45 397.49 389.42 596.68 294.95 9
GST-MVS87.42 2487.26 2487.89 2394.12 3672.97 2392.39 2593.43 2876.89 6084.68 5393.99 4370.67 5796.82 2184.18 4695.01 3693.90 53
SED-MVS90.08 290.85 287.77 2595.30 270.98 6293.57 794.06 1077.24 4993.10 195.72 882.99 197.44 589.07 1096.63 494.88 13
DeepC-MVS_fast79.65 386.91 3286.62 3587.76 2693.52 4672.37 4091.26 4793.04 3876.62 6984.22 6493.36 5371.44 5096.76 2480.82 7595.33 3394.16 42
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVS89.15 689.63 687.73 2794.49 1871.69 5193.83 493.96 1375.70 8891.06 1696.03 176.84 1497.03 1689.09 795.65 2794.47 30
MCST-MVS87.37 2687.25 2587.73 2794.53 1772.46 3789.82 7693.82 1673.07 14384.86 5292.89 6476.22 1796.33 3784.89 3495.13 3594.40 33
TSAR-MVS + MP.88.02 1788.11 1587.72 2993.68 4372.13 4591.41 4692.35 7474.62 11088.90 2093.85 4675.75 2096.00 4887.80 1894.63 4695.04 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
mPP-MVS86.67 3686.32 3887.72 2994.41 2273.55 1292.74 2092.22 8076.87 6182.81 8794.25 3266.44 9596.24 4082.88 5794.28 5593.38 75
test_0728_SECOND87.71 3195.34 171.43 5593.49 994.23 397.49 389.08 896.41 1294.21 41
DeepC-MVS79.81 287.08 3186.88 3387.69 3291.16 8072.32 4290.31 6793.94 1477.12 5482.82 8694.23 3372.13 4497.09 1584.83 3595.37 3193.65 65
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CP-MVS87.11 2986.92 3187.68 3394.20 3473.86 793.98 392.82 5876.62 6983.68 7494.46 2467.93 8195.95 5184.20 4594.39 5293.23 81
SF-MVS88.46 1188.74 1187.64 3492.78 6171.95 4992.40 2394.74 275.71 8689.16 1995.10 1475.65 2196.19 4287.07 2496.01 1794.79 20
MP-MVS-pluss87.67 2087.72 2087.54 3593.64 4472.04 4789.80 7893.50 2575.17 9986.34 3495.29 1270.86 5496.00 4888.78 1396.04 1694.58 26
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CANet86.45 3786.10 4487.51 3690.09 10170.94 6689.70 8292.59 6681.78 381.32 10291.43 9670.34 5997.23 1284.26 4293.36 6394.37 34
HPM-MVScopyleft87.11 2986.98 2987.50 3793.88 3972.16 4492.19 3393.33 3176.07 8183.81 7393.95 4569.77 6796.01 4785.15 3094.66 4594.32 37
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft85.89 4685.39 5187.38 3893.59 4572.63 3292.74 2093.18 3676.78 6480.73 11193.82 4764.33 11596.29 3882.67 6390.69 9293.23 81
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVScopyleft89.60 390.35 387.33 3995.27 571.25 5693.49 992.73 5977.33 4792.12 995.78 480.98 997.40 789.08 896.41 1293.33 78
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
PHI-MVS86.43 3886.17 4287.24 4090.88 8770.96 6492.27 3194.07 972.45 14885.22 4491.90 8269.47 6996.42 3683.28 5295.94 1994.35 35
APD-MVScopyleft87.44 2287.52 2287.19 4194.24 3272.39 3891.86 4092.83 5573.01 14588.58 2194.52 2073.36 3496.49 3584.26 4295.01 3692.70 97
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CDPH-MVS85.76 4885.29 5687.17 4293.49 4771.08 6088.58 11592.42 7268.32 23084.61 5793.48 4972.32 4196.15 4479.00 8895.43 3094.28 39
train_agg86.43 3886.20 4087.13 4393.26 5072.96 2488.75 10791.89 9368.69 22385.00 4793.10 5774.43 2695.41 6684.97 3195.71 2593.02 90
CSCG86.41 4086.19 4187.07 4492.91 5872.48 3690.81 5693.56 2473.95 12283.16 8191.07 10675.94 1895.19 7479.94 8494.38 5393.55 71
SR-MVS86.73 3386.67 3486.91 4594.11 3772.11 4692.37 2792.56 6774.50 11186.84 3294.65 1967.31 8895.77 5384.80 3692.85 6692.84 95
DPM-MVS84.93 6084.29 6586.84 4690.20 9973.04 2287.12 15993.04 3869.80 19682.85 8591.22 10073.06 3896.02 4676.72 11694.63 4691.46 138
TSAR-MVS + GP.85.71 4985.33 5386.84 4691.34 7872.50 3589.07 9687.28 22476.41 7185.80 3790.22 12474.15 3195.37 7181.82 6791.88 7792.65 101
test1286.80 4892.63 6470.70 7191.79 9982.71 8871.67 4796.16 4394.50 4993.54 72
DeepPCF-MVS80.84 188.10 1288.56 1286.73 4992.24 6869.03 9689.57 8493.39 3077.53 4489.79 1894.12 3678.98 1296.58 3485.66 2795.72 2494.58 26
SD-MVS88.06 1488.50 1386.71 5092.60 6672.71 2891.81 4193.19 3577.87 3590.32 1794.00 4174.83 2393.78 13587.63 2094.27 5693.65 65
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
3Dnovator76.31 583.38 7682.31 8586.59 5187.94 18072.94 2790.64 5892.14 8477.21 5175.47 21092.83 6658.56 18594.72 9873.24 14992.71 6892.13 120
HPM-MVS_fast85.35 5584.95 6086.57 5293.69 4270.58 7492.15 3591.62 10373.89 12582.67 8994.09 3762.60 13495.54 5980.93 7392.93 6593.57 70
test_prior86.33 5392.61 6569.59 8792.97 5095.48 6193.91 51
MVS_111021_HR85.14 5784.75 6186.32 5491.65 7672.70 2985.98 19290.33 13976.11 8082.08 9291.61 9071.36 5294.17 11981.02 7292.58 6992.08 121
SR-MVS-dyc-post85.77 4785.61 4986.23 5593.06 5570.63 7291.88 3892.27 7673.53 13585.69 3994.45 2565.00 11395.56 5782.75 5891.87 7892.50 106
APD-MVS_3200maxsize85.97 4485.88 4686.22 5692.69 6369.53 8891.93 3792.99 4573.54 13485.94 3594.51 2365.80 10595.61 5683.04 5592.51 7093.53 73
DP-MVS Recon83.11 8182.09 8886.15 5794.44 1970.92 6788.79 10592.20 8170.53 18279.17 12791.03 10964.12 11796.03 4568.39 19690.14 9991.50 135
EPNet83.72 6882.92 7786.14 5884.22 25069.48 8991.05 5485.27 25181.30 576.83 18091.65 8766.09 10095.56 5776.00 12293.85 5993.38 75
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
canonicalmvs85.91 4585.87 4786.04 5989.84 11169.44 9390.45 6593.00 4376.70 6888.01 2791.23 9973.28 3693.91 13081.50 6988.80 11494.77 21
h-mvs3383.15 7882.19 8686.02 6090.56 9270.85 6988.15 13089.16 17476.02 8284.67 5491.39 9761.54 15295.50 6082.71 6075.48 27991.72 129
alignmvs85.48 5185.32 5485.96 6189.51 11969.47 9089.74 8092.47 6876.17 7987.73 3091.46 9570.32 6093.78 13581.51 6888.95 11194.63 25
CS-MVS86.69 3486.95 3085.90 6290.76 9067.57 13292.83 1793.30 3279.67 1684.57 5992.27 7671.47 4995.02 8584.24 4493.46 6295.13 5
DELS-MVS85.41 5485.30 5585.77 6388.49 16167.93 12485.52 20993.44 2778.70 2883.63 7789.03 15474.57 2495.71 5580.26 8294.04 5893.66 61
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CS-MVS-test86.29 4186.48 3685.71 6491.02 8367.21 14292.36 2893.78 1878.97 2783.51 7891.20 10170.65 5895.15 7681.96 6694.89 4094.77 21
casdiffmvs_mvgpermissive85.99 4386.09 4585.70 6587.65 19267.22 14188.69 11193.04 3879.64 1785.33 4292.54 7373.30 3594.50 10683.49 4991.14 8895.37 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ETV-MVS84.90 6284.67 6285.59 6689.39 12468.66 11188.74 10992.64 6579.97 1484.10 6785.71 24469.32 7195.38 6880.82 7591.37 8592.72 96
UA-Net85.08 5984.96 5985.45 6792.07 7068.07 12289.78 7990.86 12582.48 284.60 5893.20 5669.35 7095.22 7371.39 16490.88 9193.07 87
Vis-MVSNetpermissive83.46 7382.80 7985.43 6890.25 9868.74 10590.30 6890.13 14576.33 7780.87 11092.89 6461.00 16694.20 11772.45 15890.97 8993.35 77
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EI-MVSNet-Vis-set84.19 6383.81 6785.31 6988.18 17167.85 12587.66 14589.73 15680.05 1382.95 8289.59 13870.74 5694.82 9480.66 7984.72 16293.28 80
MAR-MVS81.84 9780.70 10885.27 7091.32 7971.53 5389.82 7690.92 12169.77 19778.50 14186.21 23562.36 14094.52 10565.36 22092.05 7689.77 207
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Effi-MVS+83.62 7183.08 7385.24 7188.38 16667.45 13488.89 10189.15 17575.50 9182.27 9088.28 17669.61 6894.45 10877.81 10187.84 12493.84 56
MVSFormer82.85 8482.05 8985.24 7187.35 20070.21 7690.50 6190.38 13568.55 22581.32 10289.47 14161.68 14993.46 15278.98 8990.26 9792.05 122
OPM-MVS83.50 7282.95 7685.14 7388.79 15170.95 6589.13 9591.52 10677.55 4380.96 10991.75 8560.71 16994.50 10679.67 8586.51 14389.97 199
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP_MVS83.64 7083.14 7285.14 7390.08 10268.71 10791.25 4992.44 6979.12 2278.92 13191.00 11060.42 17695.38 6878.71 9286.32 14591.33 139
test_fmvsm_n_192085.29 5685.34 5285.13 7586.12 22269.93 8288.65 11390.78 12669.97 19288.27 2393.98 4471.39 5191.54 22088.49 1690.45 9493.91 51
EI-MVSNet-UG-set83.81 6683.38 7085.09 7687.87 18167.53 13387.44 15189.66 15779.74 1582.23 9189.41 14770.24 6194.74 9779.95 8383.92 17292.99 92
QAPM80.88 11679.50 13285.03 7788.01 17968.97 9991.59 4292.00 8766.63 24675.15 22592.16 7857.70 19295.45 6263.52 23088.76 11590.66 164
casdiffmvspermissive85.11 5885.14 5785.01 7887.20 20765.77 16987.75 14392.83 5577.84 3684.36 6392.38 7572.15 4393.93 12981.27 7190.48 9395.33 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PCF-MVS73.52 780.38 13378.84 14985.01 7887.71 18968.99 9883.65 24591.46 11163.00 28577.77 16190.28 12166.10 9995.09 8361.40 25388.22 12390.94 155
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
nrg03083.88 6583.53 6884.96 8086.77 21569.28 9590.46 6492.67 6174.79 10582.95 8291.33 9872.70 4093.09 17080.79 7779.28 23492.50 106
VDD-MVS83.01 8382.36 8484.96 8091.02 8366.40 15388.91 10088.11 20377.57 4084.39 6293.29 5452.19 23693.91 13077.05 10988.70 11694.57 28
PVSNet_Blended_VisFu82.62 8681.83 9484.96 8090.80 8969.76 8688.74 10991.70 10269.39 20378.96 12988.46 17165.47 10794.87 9374.42 13588.57 11790.24 181
CPTT-MVS83.73 6783.33 7184.92 8393.28 4970.86 6892.09 3690.38 13568.75 22279.57 12292.83 6660.60 17493.04 17480.92 7491.56 8390.86 157
EC-MVSNet86.01 4286.38 3784.91 8489.31 13066.27 15692.32 2993.63 2179.37 1984.17 6691.88 8369.04 7695.43 6483.93 4793.77 6093.01 91
OMC-MVS82.69 8581.97 9284.85 8588.75 15367.42 13587.98 13490.87 12474.92 10279.72 12091.65 8762.19 14493.96 12375.26 13086.42 14493.16 85
EIA-MVS83.31 7782.80 7984.82 8689.59 11565.59 17188.21 12692.68 6074.66 10878.96 12986.42 23169.06 7495.26 7275.54 12890.09 10093.62 68
PAPM_NR83.02 8282.41 8284.82 8692.47 6766.37 15487.93 13891.80 9873.82 12677.32 16990.66 11567.90 8294.90 9070.37 17389.48 10893.19 84
baseline84.93 6084.98 5884.80 8887.30 20565.39 17887.30 15592.88 5277.62 3884.04 6992.26 7771.81 4593.96 12381.31 7090.30 9695.03 7
lupinMVS81.39 10980.27 11884.76 8987.35 20070.21 7685.55 20586.41 23662.85 28881.32 10288.61 16661.68 14992.24 19978.41 9690.26 9791.83 126
jason81.39 10980.29 11784.70 9086.63 21769.90 8485.95 19386.77 23263.24 28181.07 10889.47 14161.08 16592.15 20178.33 9790.07 10292.05 122
jason: jason.
ET-MVSNet_ETH3D78.63 17676.63 20584.64 9186.73 21669.47 9085.01 21584.61 25969.54 20166.51 31786.59 22450.16 26291.75 21476.26 11884.24 17092.69 99
EPP-MVSNet83.40 7583.02 7584.57 9290.13 10064.47 19792.32 2990.73 12774.45 11479.35 12591.10 10469.05 7595.12 7772.78 15387.22 13294.13 43
mvsmamba81.69 10180.74 10784.56 9387.45 19966.72 14991.26 4785.89 24574.66 10878.23 14990.56 11754.33 21794.91 8780.73 7883.54 18292.04 124
UGNet80.83 11879.59 13084.54 9488.04 17768.09 12189.42 8588.16 20276.95 5876.22 19789.46 14349.30 27493.94 12668.48 19490.31 9591.60 130
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LPG-MVS_test82.08 9281.27 9884.50 9589.23 13468.76 10390.22 6991.94 9175.37 9376.64 18691.51 9254.29 21894.91 8778.44 9483.78 17389.83 204
LGP-MVS_train84.50 9589.23 13468.76 10391.94 9175.37 9376.64 18691.51 9254.29 21894.91 8778.44 9483.78 17389.83 204
test_fmvsmvis_n_192084.02 6483.87 6684.49 9784.12 25269.37 9488.15 13087.96 20870.01 19083.95 7093.23 5568.80 7891.51 22388.61 1489.96 10392.57 102
iter_conf_final80.63 12679.35 13684.46 9889.36 12667.70 12989.85 7484.49 26173.19 14178.30 14788.94 15545.98 29894.56 10179.59 8684.48 16691.11 146
MSLP-MVS++85.43 5385.76 4884.45 9991.93 7270.24 7590.71 5792.86 5377.46 4684.22 6492.81 6867.16 9092.94 17680.36 8094.35 5490.16 183
Effi-MVS+-dtu80.03 14278.57 15484.42 10085.13 23868.74 10588.77 10688.10 20474.99 10174.97 23083.49 28557.27 19893.36 15573.53 14380.88 21291.18 144
HQP-MVS82.61 8782.02 9084.37 10189.33 12766.98 14589.17 9092.19 8276.41 7177.23 17290.23 12360.17 17995.11 7977.47 10485.99 15291.03 151
ACMP74.13 681.51 10880.57 11084.36 10289.42 12268.69 11089.97 7391.50 11074.46 11375.04 22990.41 12053.82 22394.54 10377.56 10382.91 18989.86 203
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
原ACMM184.35 10393.01 5768.79 10192.44 6963.96 27981.09 10791.57 9166.06 10195.45 6267.19 20694.82 4488.81 237
PS-MVSNAJss82.07 9381.31 9784.34 10486.51 21867.27 13989.27 8891.51 10771.75 15779.37 12490.22 12463.15 12894.27 11277.69 10282.36 19791.49 136
thisisatest053079.40 15777.76 17784.31 10587.69 19165.10 18487.36 15284.26 26770.04 18977.42 16688.26 17849.94 26594.79 9670.20 17484.70 16393.03 89
CLD-MVS82.31 8981.65 9584.29 10688.47 16267.73 12885.81 20092.35 7475.78 8578.33 14686.58 22664.01 11894.35 10976.05 12187.48 12990.79 158
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
API-MVS81.99 9581.23 9984.26 10790.94 8570.18 8191.10 5289.32 16571.51 16578.66 13788.28 17665.26 10895.10 8264.74 22691.23 8787.51 262
114514_t80.68 12579.51 13184.20 10894.09 3867.27 13989.64 8391.11 11858.75 32374.08 24090.72 11458.10 18895.04 8469.70 18189.42 10990.30 179
IS-MVSNet83.15 7882.81 7884.18 10989.94 10963.30 22291.59 4288.46 20079.04 2479.49 12392.16 7865.10 11094.28 11167.71 19991.86 8094.95 9
MVS_111021_LR82.61 8782.11 8784.11 11088.82 14871.58 5285.15 21286.16 24174.69 10780.47 11391.04 10762.29 14190.55 24680.33 8190.08 10190.20 182
FA-MVS(test-final)80.96 11579.91 12384.10 11188.30 16965.01 18584.55 22790.01 14873.25 14079.61 12187.57 19358.35 18794.72 9871.29 16586.25 14792.56 103
Anonymous2024052980.19 14078.89 14884.10 11190.60 9164.75 19188.95 9990.90 12265.97 25480.59 11291.17 10349.97 26493.73 14169.16 18782.70 19493.81 57
OpenMVScopyleft72.83 1079.77 14678.33 16184.09 11385.17 23469.91 8390.57 5990.97 12066.70 24272.17 25991.91 8154.70 21493.96 12361.81 25090.95 9088.41 247
FE-MVS77.78 19875.68 21684.08 11488.09 17566.00 16083.13 25687.79 21468.42 22978.01 15685.23 25745.50 30595.12 7759.11 27185.83 15591.11 146
hse-mvs281.72 9980.94 10584.07 11588.72 15467.68 13085.87 19687.26 22576.02 8284.67 5488.22 17961.54 15293.48 15082.71 6073.44 30691.06 149
dcpmvs_285.63 5086.15 4384.06 11691.71 7564.94 18786.47 18091.87 9573.63 13086.60 3393.02 6276.57 1591.87 21283.36 5092.15 7495.35 2
AdaColmapbinary80.58 13079.42 13384.06 11693.09 5468.91 10089.36 8788.97 18469.27 20675.70 20789.69 13357.20 19995.77 5363.06 23588.41 12187.50 263
AUN-MVS79.21 16277.60 18284.05 11888.71 15567.61 13185.84 19887.26 22569.08 21477.23 17288.14 18453.20 22993.47 15175.50 12973.45 30591.06 149
VDDNet81.52 10680.67 10984.05 11890.44 9564.13 20489.73 8185.91 24471.11 17183.18 8093.48 4950.54 25993.49 14973.40 14688.25 12294.54 29
xiu_mvs_v1_base_debu80.80 12179.72 12784.03 12087.35 20070.19 7885.56 20288.77 19069.06 21581.83 9488.16 18050.91 25392.85 17878.29 9887.56 12689.06 222
xiu_mvs_v1_base80.80 12179.72 12784.03 12087.35 20070.19 7885.56 20288.77 19069.06 21581.83 9488.16 18050.91 25392.85 17878.29 9887.56 12689.06 222
xiu_mvs_v1_base_debi80.80 12179.72 12784.03 12087.35 20070.19 7885.56 20288.77 19069.06 21581.83 9488.16 18050.91 25392.85 17878.29 9887.56 12689.06 222
PAPR81.66 10480.89 10683.99 12390.27 9764.00 20586.76 17391.77 10168.84 22177.13 17889.50 13967.63 8494.88 9267.55 20188.52 11993.09 86
XVG-OURS80.41 13279.23 14083.97 12485.64 22869.02 9783.03 26090.39 13471.09 17277.63 16391.49 9454.62 21691.35 22775.71 12483.47 18391.54 132
XVG-OURS-SEG-HR80.81 11979.76 12683.96 12585.60 22968.78 10283.54 25090.50 13270.66 18076.71 18491.66 8660.69 17091.26 22976.94 11081.58 20591.83 126
HyFIR lowres test77.53 20575.40 22283.94 12689.59 11566.62 15080.36 28788.64 19756.29 33876.45 19085.17 25957.64 19393.28 15761.34 25583.10 18891.91 125
iter_conf0580.00 14478.70 15083.91 12787.84 18365.83 16588.84 10484.92 25671.61 16278.70 13488.94 15543.88 31394.56 10179.28 8784.28 16991.33 139
tttt051779.40 15777.91 16983.90 12888.10 17463.84 20888.37 12284.05 26971.45 16676.78 18289.12 15149.93 26794.89 9170.18 17583.18 18792.96 93
GeoE81.71 10081.01 10483.80 12989.51 11964.45 19888.97 9888.73 19571.27 16878.63 13889.76 13266.32 9793.20 16269.89 17986.02 15193.74 59
RRT_MVS80.35 13679.22 14183.74 13087.63 19365.46 17591.08 5388.92 18773.82 12676.44 19390.03 12649.05 27994.25 11676.84 11179.20 23691.51 133
PS-MVSNAJ81.69 10181.02 10383.70 13189.51 11968.21 12084.28 23690.09 14670.79 17681.26 10685.62 24963.15 12894.29 11075.62 12688.87 11388.59 243
xiu_mvs_v2_base81.69 10181.05 10283.60 13289.15 13768.03 12384.46 23090.02 14770.67 17981.30 10586.53 22963.17 12794.19 11875.60 12788.54 11888.57 244
ACMM73.20 880.78 12479.84 12583.58 13389.31 13068.37 11589.99 7291.60 10470.28 18677.25 17089.66 13453.37 22793.53 14874.24 13882.85 19088.85 235
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LFMVS81.82 9881.23 9983.57 13491.89 7363.43 22089.84 7581.85 29777.04 5783.21 7993.10 5752.26 23593.43 15471.98 15989.95 10493.85 54
Fast-Effi-MVS+80.81 11979.92 12283.47 13588.85 14564.51 19485.53 20789.39 16370.79 17678.49 14285.06 26267.54 8593.58 14367.03 20986.58 14192.32 112
CHOSEN 1792x268877.63 20475.69 21583.44 13689.98 10868.58 11378.70 30787.50 22056.38 33775.80 20686.84 21258.67 18491.40 22661.58 25285.75 15690.34 176
新几何183.42 13793.13 5270.71 7085.48 25057.43 33281.80 9791.98 8063.28 12392.27 19764.60 22792.99 6487.27 268
DP-MVS76.78 21874.57 23183.42 13793.29 4869.46 9288.55 11683.70 27363.98 27870.20 27588.89 15854.01 22294.80 9546.66 34481.88 20286.01 295
MVS_Test83.15 7883.06 7483.41 13986.86 21163.21 22486.11 19092.00 8774.31 11582.87 8489.44 14670.03 6293.21 15977.39 10688.50 12093.81 57
LS3D76.95 21674.82 22983.37 14090.45 9467.36 13889.15 9486.94 23061.87 29969.52 28790.61 11651.71 24794.53 10446.38 34786.71 14088.21 249
IB-MVS68.01 1575.85 23273.36 24683.31 14184.76 24266.03 15883.38 25185.06 25370.21 18869.40 28881.05 31045.76 30294.66 10065.10 22375.49 27889.25 219
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MG-MVS83.41 7483.45 6983.28 14292.74 6262.28 23888.17 12889.50 16075.22 9581.49 10192.74 7266.75 9195.11 7972.85 15291.58 8292.45 109
jajsoiax79.29 16077.96 16783.27 14384.68 24466.57 15289.25 8990.16 14469.20 21075.46 21289.49 14045.75 30393.13 16876.84 11180.80 21490.11 187
test_djsdf80.30 13779.32 13783.27 14383.98 25665.37 17990.50 6190.38 13568.55 22576.19 19888.70 16256.44 20393.46 15278.98 8980.14 22490.97 154
test_yl81.17 11180.47 11383.24 14589.13 13863.62 21186.21 18789.95 15072.43 15181.78 9889.61 13657.50 19593.58 14370.75 16886.90 13692.52 104
DCV-MVSNet81.17 11180.47 11383.24 14589.13 13863.62 21186.21 18789.95 15072.43 15181.78 9889.61 13657.50 19593.58 14370.75 16886.90 13692.52 104
mvs_tets79.13 16477.77 17683.22 14784.70 24366.37 15489.17 9090.19 14369.38 20475.40 21589.46 14344.17 31193.15 16676.78 11480.70 21690.14 184
thisisatest051577.33 20975.38 22383.18 14885.27 23363.80 20982.11 26683.27 28165.06 26275.91 20383.84 27949.54 26994.27 11267.24 20586.19 14891.48 137
CDS-MVSNet79.07 16677.70 17983.17 14987.60 19468.23 11984.40 23486.20 24067.49 23776.36 19486.54 22861.54 15290.79 24261.86 24987.33 13090.49 171
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v7n78.97 16977.58 18383.14 15083.45 26565.51 17288.32 12391.21 11473.69 12972.41 25686.32 23457.93 18993.81 13469.18 18675.65 27590.11 187
BH-RMVSNet79.61 14878.44 15783.14 15089.38 12565.93 16284.95 21787.15 22773.56 13378.19 15189.79 13156.67 20293.36 15559.53 26786.74 13990.13 185
UniMVSNet (Re)81.60 10581.11 10183.09 15288.38 16664.41 19987.60 14693.02 4278.42 3178.56 14088.16 18069.78 6693.26 15869.58 18376.49 26391.60 130
PLCcopyleft70.83 1178.05 19176.37 21083.08 15391.88 7467.80 12688.19 12789.46 16164.33 27269.87 28488.38 17353.66 22493.58 14358.86 27482.73 19287.86 254
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v119279.59 15078.43 15883.07 15483.55 26364.52 19386.93 16590.58 13070.83 17577.78 16085.90 24059.15 18293.94 12673.96 14077.19 25490.76 160
v2v48280.23 13879.29 13883.05 15583.62 26164.14 20387.04 16189.97 14973.61 13178.18 15287.22 20461.10 16493.82 13376.11 11976.78 26191.18 144
TAMVS78.89 17177.51 18483.03 15687.80 18567.79 12784.72 22185.05 25467.63 23476.75 18387.70 18962.25 14290.82 24158.53 27887.13 13390.49 171
v114480.03 14279.03 14583.01 15783.78 25964.51 19487.11 16090.57 13171.96 15678.08 15586.20 23661.41 15693.94 12674.93 13177.23 25290.60 167
cascas76.72 21974.64 23082.99 15885.78 22665.88 16482.33 26489.21 17260.85 30572.74 25181.02 31147.28 28893.75 13967.48 20285.02 15889.34 216
anonymousdsp78.60 17777.15 19082.98 15980.51 31767.08 14387.24 15789.53 15965.66 25775.16 22487.19 20652.52 23092.25 19877.17 10879.34 23389.61 211
v1079.74 14778.67 15182.97 16084.06 25464.95 18687.88 14190.62 12973.11 14275.11 22686.56 22761.46 15594.05 12273.68 14175.55 27789.90 201
UniMVSNet_NR-MVSNet81.88 9681.54 9682.92 16188.46 16363.46 21887.13 15892.37 7380.19 1178.38 14489.14 15071.66 4893.05 17270.05 17676.46 26492.25 115
DU-MVS81.12 11380.52 11282.90 16287.80 18563.46 21887.02 16291.87 9579.01 2578.38 14489.07 15265.02 11193.05 17270.05 17676.46 26492.20 117
PVSNet_Blended80.98 11480.34 11582.90 16288.85 14565.40 17684.43 23292.00 8767.62 23578.11 15385.05 26366.02 10294.27 11271.52 16189.50 10789.01 227
CANet_DTU80.61 12779.87 12482.83 16485.60 22963.17 22787.36 15288.65 19676.37 7575.88 20488.44 17253.51 22693.07 17173.30 14789.74 10692.25 115
V4279.38 15978.24 16382.83 16481.10 31165.50 17385.55 20589.82 15271.57 16478.21 15086.12 23860.66 17193.18 16575.64 12575.46 28189.81 206
Anonymous2023121178.97 16977.69 18082.81 16690.54 9364.29 20190.11 7191.51 10765.01 26476.16 20288.13 18550.56 25893.03 17569.68 18277.56 25191.11 146
v192192079.22 16178.03 16682.80 16783.30 26863.94 20786.80 16990.33 13969.91 19477.48 16585.53 25058.44 18693.75 13973.60 14276.85 25990.71 163
v879.97 14579.02 14682.80 16784.09 25364.50 19687.96 13590.29 14274.13 12175.24 22386.81 21362.88 13393.89 13274.39 13675.40 28390.00 195
TAPA-MVS73.13 979.15 16377.94 16882.79 16989.59 11562.99 23188.16 12991.51 10765.77 25577.14 17791.09 10560.91 16793.21 15950.26 32787.05 13492.17 119
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v14419279.47 15378.37 15982.78 17083.35 26663.96 20686.96 16390.36 13869.99 19177.50 16485.67 24760.66 17193.77 13774.27 13776.58 26290.62 165
NR-MVSNet80.23 13879.38 13482.78 17087.80 18563.34 22186.31 18491.09 11979.01 2572.17 25989.07 15267.20 8992.81 18166.08 21575.65 27592.20 117
diffmvspermissive82.10 9181.88 9382.76 17283.00 27863.78 21083.68 24489.76 15472.94 14682.02 9389.85 13065.96 10490.79 24282.38 6487.30 13193.71 60
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v124078.99 16877.78 17582.64 17383.21 27063.54 21586.62 17690.30 14169.74 20077.33 16885.68 24657.04 20093.76 13873.13 15076.92 25690.62 165
Fast-Effi-MVS+-dtu78.02 19276.49 20682.62 17483.16 27466.96 14786.94 16487.45 22272.45 14871.49 26684.17 27454.79 21391.58 21867.61 20080.31 22189.30 218
RPMNet73.51 25470.49 27182.58 17581.32 30965.19 18175.92 32492.27 7657.60 33172.73 25276.45 34552.30 23495.43 6448.14 33977.71 24887.11 274
F-COLMAP76.38 22674.33 23682.50 17689.28 13266.95 14888.41 11889.03 17964.05 27666.83 31188.61 16646.78 29192.89 17757.48 28678.55 23987.67 257
TranMVSNet+NR-MVSNet80.84 11780.31 11682.42 17787.85 18262.33 23687.74 14491.33 11280.55 877.99 15789.86 12965.23 10992.62 18267.05 20875.24 28892.30 113
MVSTER79.01 16777.88 17182.38 17883.07 27564.80 19084.08 24188.95 18569.01 21878.69 13587.17 20754.70 21492.43 18974.69 13280.57 21889.89 202
PVSNet_BlendedMVS80.60 12880.02 12082.36 17988.85 14565.40 17686.16 18992.00 8769.34 20578.11 15386.09 23966.02 10294.27 11271.52 16182.06 19987.39 264
EI-MVSNet80.52 13179.98 12182.12 18084.28 24863.19 22686.41 18188.95 18574.18 11978.69 13587.54 19666.62 9292.43 18972.57 15680.57 21890.74 162
IterMVS-LS80.06 14179.38 13482.11 18185.89 22463.20 22586.79 17089.34 16474.19 11875.45 21386.72 21666.62 9292.39 19172.58 15576.86 25890.75 161
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
BH-untuned79.47 15378.60 15382.05 18289.19 13665.91 16386.07 19188.52 19972.18 15375.42 21487.69 19061.15 16393.54 14760.38 26086.83 13886.70 283
ACMH+68.96 1476.01 23074.01 23882.03 18388.60 15865.31 18088.86 10287.55 21870.25 18767.75 30087.47 19841.27 32893.19 16458.37 27975.94 27287.60 259
Anonymous20240521178.25 18377.01 19281.99 18491.03 8260.67 25784.77 22083.90 27170.65 18180.00 11891.20 10141.08 33091.43 22565.21 22185.26 15793.85 54
GA-MVS76.87 21775.17 22781.97 18582.75 28362.58 23381.44 27586.35 23972.16 15574.74 23382.89 29246.20 29792.02 20568.85 19181.09 21091.30 142
CNLPA78.08 18976.79 19981.97 18590.40 9671.07 6187.59 14784.55 26066.03 25372.38 25789.64 13557.56 19486.04 29759.61 26683.35 18488.79 238
MVS78.19 18776.99 19481.78 18785.66 22766.99 14484.66 22290.47 13355.08 34272.02 26185.27 25563.83 12094.11 12166.10 21489.80 10584.24 317
ACMH67.68 1675.89 23173.93 23981.77 18888.71 15566.61 15188.62 11489.01 18169.81 19566.78 31286.70 22041.95 32791.51 22355.64 30078.14 24687.17 270
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D79.10 16578.24 16381.70 18986.85 21260.24 26487.28 15688.79 18974.25 11776.84 17990.53 11949.48 27091.56 21967.98 19782.15 19893.29 79
VNet82.21 9082.41 8281.62 19090.82 8860.93 25284.47 22889.78 15376.36 7684.07 6891.88 8364.71 11490.26 24870.68 17088.89 11293.66 61
XVG-ACMP-BASELINE76.11 22974.27 23781.62 19083.20 27164.67 19283.60 24889.75 15569.75 19871.85 26287.09 20932.78 35292.11 20269.99 17880.43 22088.09 250
eth_miper_zixun_eth77.92 19576.69 20381.61 19283.00 27861.98 24183.15 25589.20 17369.52 20274.86 23284.35 27261.76 14892.56 18571.50 16372.89 31090.28 180
PAPM77.68 20376.40 20981.51 19387.29 20661.85 24383.78 24389.59 15864.74 26671.23 26788.70 16262.59 13593.66 14252.66 31387.03 13589.01 227
v14878.72 17477.80 17481.47 19482.73 28461.96 24286.30 18588.08 20573.26 13976.18 19985.47 25262.46 13892.36 19371.92 16073.82 30290.09 189
tt080578.73 17377.83 17281.43 19585.17 23460.30 26389.41 8690.90 12271.21 16977.17 17688.73 16146.38 29393.21 15972.57 15678.96 23790.79 158
LTVRE_ROB69.57 1376.25 22774.54 23381.41 19688.60 15864.38 20079.24 29989.12 17870.76 17869.79 28687.86 18749.09 27793.20 16256.21 29980.16 22286.65 284
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
GBi-Net78.40 18077.40 18581.40 19787.60 19463.01 22888.39 11989.28 16671.63 15975.34 21787.28 20054.80 21091.11 23262.72 23779.57 22890.09 189
test178.40 18077.40 18581.40 19787.60 19463.01 22888.39 11989.28 16671.63 15975.34 21787.28 20054.80 21091.11 23262.72 23779.57 22890.09 189
FMVSNet177.44 20676.12 21281.40 19786.81 21463.01 22888.39 11989.28 16670.49 18374.39 23787.28 20049.06 27891.11 23260.91 25778.52 24090.09 189
baseline275.70 23373.83 24281.30 20083.26 26961.79 24582.57 26380.65 30666.81 23966.88 31083.42 28657.86 19192.19 20063.47 23179.57 22889.91 200
c3_l78.75 17277.91 16981.26 20182.89 28161.56 24784.09 24089.13 17769.97 19275.56 20884.29 27366.36 9692.09 20373.47 14575.48 27990.12 186
cl2278.07 19077.01 19281.23 20282.37 29361.83 24483.55 24987.98 20768.96 21975.06 22883.87 27761.40 15791.88 21173.53 14376.39 26689.98 198
bld_raw_dy_0_6477.29 21175.98 21381.22 20385.04 24065.47 17488.14 13277.56 33069.20 21073.77 24289.40 14942.24 32488.85 27476.78 11481.64 20489.33 217
FMVSNet278.20 18677.21 18981.20 20487.60 19462.89 23287.47 15089.02 18071.63 15975.29 22287.28 20054.80 21091.10 23562.38 24279.38 23289.61 211
TR-MVS77.44 20676.18 21181.20 20488.24 17063.24 22384.61 22586.40 23767.55 23677.81 15986.48 23054.10 22093.15 16657.75 28582.72 19387.20 269
ab-mvs79.51 15178.97 14781.14 20688.46 16360.91 25383.84 24289.24 17170.36 18479.03 12888.87 15963.23 12690.21 25065.12 22282.57 19592.28 114
MVP-Stereo76.12 22874.46 23581.13 20785.37 23269.79 8584.42 23387.95 20965.03 26367.46 30485.33 25453.28 22891.73 21658.01 28383.27 18581.85 339
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
miper_ehance_all_eth78.59 17877.76 17781.08 20882.66 28661.56 24783.65 24589.15 17568.87 22075.55 20983.79 28166.49 9492.03 20473.25 14876.39 26689.64 210
FIs82.07 9382.42 8181.04 20988.80 15058.34 27888.26 12593.49 2676.93 5978.47 14391.04 10769.92 6592.34 19569.87 18084.97 15992.44 110
SDMVSNet80.38 13380.18 11980.99 21089.03 14364.94 18780.45 28689.40 16275.19 9776.61 18889.98 12760.61 17387.69 28776.83 11383.55 18090.33 177
patch_mono-283.65 6984.54 6380.99 21090.06 10665.83 16584.21 23788.74 19471.60 16385.01 4592.44 7474.51 2583.50 31682.15 6592.15 7493.64 67
FMVSNet377.88 19676.85 19780.97 21286.84 21362.36 23586.52 17988.77 19071.13 17075.34 21786.66 22254.07 22191.10 23562.72 23779.57 22889.45 214
miper_enhance_ethall77.87 19776.86 19680.92 21381.65 30061.38 24982.68 26188.98 18265.52 25975.47 21082.30 30065.76 10692.00 20672.95 15176.39 26689.39 215
BH-w/o78.21 18577.33 18880.84 21488.81 14965.13 18384.87 21887.85 21369.75 19874.52 23684.74 26761.34 15893.11 16958.24 28185.84 15484.27 316
COLMAP_ROBcopyleft66.92 1773.01 26170.41 27380.81 21587.13 20965.63 17088.30 12484.19 26862.96 28663.80 33587.69 19038.04 34192.56 18546.66 34474.91 29184.24 317
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
VPA-MVSNet80.60 12880.55 11180.76 21688.07 17660.80 25586.86 16791.58 10575.67 8980.24 11589.45 14563.34 12290.25 24970.51 17279.22 23591.23 143
EG-PatchMatch MVS74.04 24971.82 25880.71 21784.92 24167.42 13585.86 19788.08 20566.04 25264.22 33183.85 27835.10 34992.56 18557.44 28780.83 21382.16 338
ECVR-MVScopyleft79.61 14879.26 13980.67 21890.08 10254.69 32687.89 14077.44 33374.88 10380.27 11492.79 6948.96 28192.45 18868.55 19392.50 7194.86 16
cl____77.72 20076.76 20080.58 21982.49 29060.48 26083.09 25787.87 21169.22 20874.38 23885.22 25862.10 14591.53 22171.09 16675.41 28289.73 209
DIV-MVS_self_test77.72 20076.76 20080.58 21982.48 29160.48 26083.09 25787.86 21269.22 20874.38 23885.24 25662.10 14591.53 22171.09 16675.40 28389.74 208
MSDG73.36 25770.99 26680.49 22184.51 24665.80 16780.71 28186.13 24265.70 25665.46 32283.74 28244.60 30890.91 24051.13 32076.89 25784.74 312
pmmvs474.03 25071.91 25780.39 22281.96 29668.32 11681.45 27482.14 29359.32 31769.87 28485.13 26052.40 23388.13 28260.21 26274.74 29384.73 313
HY-MVS69.67 1277.95 19477.15 19080.36 22387.57 19860.21 26583.37 25287.78 21566.11 25075.37 21687.06 21163.27 12490.48 24761.38 25482.43 19690.40 175
mvs_anonymous79.42 15679.11 14480.34 22484.45 24757.97 28482.59 26287.62 21767.40 23876.17 20188.56 16968.47 7989.59 25870.65 17186.05 15093.47 74
1112_ss77.40 20876.43 20880.32 22589.11 14260.41 26283.65 24587.72 21662.13 29773.05 24986.72 21662.58 13689.97 25262.11 24780.80 21490.59 168
WR-MVS79.49 15279.22 14180.27 22688.79 15158.35 27785.06 21488.61 19878.56 2977.65 16288.34 17463.81 12190.66 24564.98 22477.22 25391.80 128
131476.53 22075.30 22680.21 22783.93 25762.32 23784.66 22288.81 18860.23 30970.16 27884.07 27655.30 20790.73 24467.37 20383.21 18687.59 261
test111179.43 15579.18 14380.15 22889.99 10753.31 33987.33 15477.05 33675.04 10080.23 11692.77 7148.97 28092.33 19668.87 19092.40 7394.81 19
IterMVS-SCA-FT75.43 23873.87 24180.11 22982.69 28564.85 18981.57 27283.47 27869.16 21270.49 27284.15 27551.95 24288.15 28169.23 18572.14 31587.34 266
FC-MVSNet-test81.52 10682.02 9080.03 23088.42 16555.97 31587.95 13693.42 2977.10 5577.38 16790.98 11269.96 6391.79 21368.46 19584.50 16492.33 111
testdata79.97 23190.90 8664.21 20284.71 25759.27 31885.40 4192.91 6362.02 14789.08 26768.95 18991.37 8586.63 285
SCA74.22 24772.33 25579.91 23284.05 25562.17 23979.96 29379.29 32266.30 24972.38 25780.13 32051.95 24288.60 27659.25 26977.67 25088.96 231
thres40076.50 22175.37 22479.86 23389.13 13857.65 29085.17 21083.60 27473.41 13776.45 19086.39 23252.12 23791.95 20748.33 33583.75 17590.00 195
test_040272.79 26470.44 27279.84 23488.13 17265.99 16185.93 19484.29 26565.57 25867.40 30685.49 25146.92 29092.61 18335.88 36574.38 29680.94 344
OurMVSNet-221017-074.26 24672.42 25479.80 23583.76 26059.59 27185.92 19586.64 23366.39 24866.96 30987.58 19239.46 33491.60 21765.76 21869.27 32888.22 248
test250677.30 21076.49 20679.74 23690.08 10252.02 34287.86 14263.10 37174.88 10380.16 11792.79 6938.29 34092.35 19468.74 19292.50 7194.86 16
SixPastTwentyTwo73.37 25571.26 26579.70 23785.08 23957.89 28685.57 20183.56 27671.03 17365.66 32185.88 24142.10 32592.57 18459.11 27163.34 34788.65 242
thres600view776.50 22175.44 22079.68 23889.40 12357.16 29685.53 20783.23 28273.79 12876.26 19687.09 20951.89 24491.89 21048.05 34083.72 17890.00 195
CR-MVSNet73.37 25571.27 26479.67 23981.32 30965.19 18175.92 32480.30 31259.92 31272.73 25281.19 30852.50 23186.69 29259.84 26477.71 24887.11 274
D2MVS74.82 24273.21 24779.64 24079.81 32562.56 23480.34 28887.35 22364.37 27168.86 29282.66 29646.37 29490.10 25167.91 19881.24 20886.25 288
AllTest70.96 27568.09 29079.58 24185.15 23663.62 21184.58 22679.83 31662.31 29560.32 34686.73 21432.02 35388.96 27150.28 32571.57 31986.15 291
TestCases79.58 24185.15 23663.62 21179.83 31662.31 29560.32 34686.73 21432.02 35388.96 27150.28 32571.57 31986.15 291
tfpn200view976.42 22475.37 22479.55 24389.13 13857.65 29085.17 21083.60 27473.41 13776.45 19086.39 23252.12 23791.95 20748.33 33583.75 17589.07 220
thres100view90076.50 22175.55 21979.33 24489.52 11856.99 29985.83 19983.23 28273.94 12376.32 19587.12 20851.89 24491.95 20748.33 33583.75 17589.07 220
CostFormer75.24 24173.90 24079.27 24582.65 28758.27 27980.80 27882.73 28961.57 30075.33 22083.13 29055.52 20591.07 23864.98 22478.34 24588.45 245
Test_1112_low_res76.40 22575.44 22079.27 24589.28 13258.09 28081.69 27087.07 22859.53 31672.48 25586.67 22161.30 15989.33 26260.81 25980.15 22390.41 174
K. test v371.19 27268.51 28479.21 24783.04 27757.78 28984.35 23576.91 33772.90 14762.99 33882.86 29339.27 33591.09 23761.65 25152.66 36588.75 239
lessismore_v078.97 24881.01 31257.15 29765.99 36561.16 34382.82 29439.12 33691.34 22859.67 26546.92 37188.43 246
pm-mvs177.25 21276.68 20478.93 24984.22 25058.62 27686.41 18188.36 20171.37 16773.31 24588.01 18661.22 16289.15 26664.24 22873.01 30989.03 226
thres20075.55 23574.47 23478.82 25087.78 18857.85 28783.07 25983.51 27772.44 15075.84 20584.42 26952.08 23991.75 21447.41 34283.64 17986.86 279
VPNet78.69 17578.66 15278.76 25188.31 16855.72 31784.45 23186.63 23476.79 6378.26 14890.55 11859.30 18189.70 25766.63 21077.05 25590.88 156
tpm273.26 25871.46 26078.63 25283.34 26756.71 30480.65 28280.40 31156.63 33673.55 24382.02 30551.80 24691.24 23056.35 29878.42 24387.95 251
pmmvs674.69 24373.39 24578.61 25381.38 30657.48 29386.64 17587.95 20964.99 26570.18 27686.61 22350.43 26089.52 25962.12 24670.18 32588.83 236
sd_testset77.70 20277.40 18578.60 25489.03 14360.02 26679.00 30385.83 24675.19 9776.61 18889.98 12754.81 20985.46 30262.63 24183.55 18090.33 177
WR-MVS_H78.51 17978.49 15578.56 25588.02 17856.38 31088.43 11792.67 6177.14 5373.89 24187.55 19566.25 9889.24 26458.92 27373.55 30490.06 193
RPSCF73.23 25971.46 26078.54 25682.50 28959.85 26782.18 26582.84 28858.96 32071.15 26989.41 14745.48 30684.77 30858.82 27571.83 31791.02 153
pmmvs-eth3d70.50 28267.83 29478.52 25777.37 34166.18 15781.82 26781.51 29958.90 32163.90 33480.42 31842.69 31986.28 29658.56 27765.30 34383.11 330
PatchmatchNetpermissive73.12 26071.33 26378.49 25883.18 27260.85 25479.63 29578.57 32564.13 27371.73 26379.81 32551.20 25185.97 29857.40 28876.36 26988.66 241
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
IterMVS74.29 24572.94 25078.35 25981.53 30363.49 21781.58 27182.49 29068.06 23269.99 28183.69 28351.66 24885.54 30065.85 21771.64 31886.01 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ITE_SJBPF78.22 26081.77 29960.57 25883.30 28069.25 20767.54 30287.20 20536.33 34687.28 29054.34 30574.62 29486.80 280
ppachtmachnet_test70.04 28667.34 30178.14 26179.80 32661.13 25079.19 30180.59 30759.16 31965.27 32479.29 32646.75 29287.29 28949.33 33166.72 33686.00 297
tfpnnormal74.39 24473.16 24878.08 26286.10 22358.05 28184.65 22487.53 21970.32 18571.22 26885.63 24854.97 20889.86 25343.03 35675.02 29086.32 287
Vis-MVSNet (Re-imp)78.36 18278.45 15678.07 26388.64 15751.78 34686.70 17479.63 31974.14 12075.11 22690.83 11361.29 16089.75 25558.10 28291.60 8192.69 99
TransMVSNet (Re)75.39 24074.56 23277.86 26485.50 23157.10 29886.78 17186.09 24372.17 15471.53 26587.34 19963.01 13289.31 26356.84 29461.83 34987.17 270
PEN-MVS77.73 19977.69 18077.84 26587.07 21053.91 33387.91 13991.18 11577.56 4273.14 24888.82 16061.23 16189.17 26559.95 26372.37 31290.43 173
CP-MVSNet78.22 18478.34 16077.84 26587.83 18454.54 32887.94 13791.17 11677.65 3773.48 24488.49 17062.24 14388.43 27862.19 24474.07 29790.55 169
PS-CasMVS78.01 19378.09 16577.77 26787.71 18954.39 33088.02 13391.22 11377.50 4573.26 24688.64 16560.73 16888.41 27961.88 24873.88 30190.53 170
baseline176.98 21576.75 20277.66 26888.13 17255.66 31885.12 21381.89 29573.04 14476.79 18188.90 15762.43 13987.78 28663.30 23471.18 32189.55 213
OpenMVS_ROBcopyleft64.09 1970.56 28168.19 28777.65 26980.26 31859.41 27385.01 21582.96 28758.76 32265.43 32382.33 29937.63 34391.23 23145.34 35276.03 27182.32 335
Patchmatch-RL test70.24 28467.78 29677.61 27077.43 34059.57 27271.16 34370.33 35462.94 28768.65 29472.77 35550.62 25785.49 30169.58 18366.58 33887.77 256
Baseline_NR-MVSNet78.15 18878.33 16177.61 27085.79 22556.21 31386.78 17185.76 24773.60 13277.93 15887.57 19365.02 11188.99 26867.14 20775.33 28587.63 258
DTE-MVSNet76.99 21476.80 19877.54 27286.24 22053.06 34187.52 14890.66 12877.08 5672.50 25488.67 16460.48 17589.52 25957.33 28970.74 32390.05 194
LCM-MVSNet-Re77.05 21376.94 19577.36 27387.20 20751.60 34780.06 29080.46 31075.20 9667.69 30186.72 21662.48 13788.98 26963.44 23289.25 11091.51 133
tpm cat170.57 28068.31 28677.35 27482.41 29257.95 28578.08 31280.22 31452.04 34868.54 29677.66 34052.00 24187.84 28551.77 31672.07 31686.25 288
MS-PatchMatch73.83 25172.67 25177.30 27583.87 25866.02 15981.82 26784.66 25861.37 30368.61 29582.82 29447.29 28788.21 28059.27 26884.32 16877.68 353
EPNet_dtu75.46 23774.86 22877.23 27682.57 28854.60 32786.89 16683.09 28571.64 15866.25 31985.86 24255.99 20488.04 28354.92 30286.55 14289.05 225
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_lstm_enhance74.11 24873.11 24977.13 27780.11 32059.62 27072.23 34086.92 23166.76 24170.40 27382.92 29156.93 20182.92 32069.06 18872.63 31188.87 234
TDRefinement67.49 30264.34 31176.92 27873.47 35861.07 25184.86 21982.98 28659.77 31358.30 35385.13 26026.06 36187.89 28447.92 34160.59 35481.81 340
JIA-IIPM66.32 31162.82 32276.82 27977.09 34261.72 24665.34 36475.38 34258.04 32864.51 32962.32 36542.05 32686.51 29451.45 31969.22 32982.21 336
PatchMatch-RL72.38 26670.90 26776.80 28088.60 15867.38 13779.53 29676.17 34162.75 29169.36 28982.00 30645.51 30484.89 30753.62 30880.58 21778.12 352
tpmvs71.09 27469.29 27976.49 28182.04 29556.04 31478.92 30581.37 30164.05 27667.18 30878.28 33549.74 26889.77 25449.67 33072.37 31283.67 324
CMPMVSbinary51.72 2170.19 28568.16 28876.28 28273.15 36057.55 29279.47 29783.92 27048.02 35656.48 35984.81 26543.13 31686.42 29562.67 24081.81 20384.89 310
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
USDC70.33 28368.37 28576.21 28380.60 31556.23 31279.19 30186.49 23560.89 30461.29 34285.47 25231.78 35589.47 26153.37 31076.21 27082.94 334
gg-mvs-nofinetune69.95 28767.96 29175.94 28483.07 27554.51 32977.23 31970.29 35563.11 28370.32 27462.33 36443.62 31488.69 27553.88 30787.76 12584.62 314
MDA-MVSNet-bldmvs66.68 30763.66 31675.75 28579.28 33360.56 25973.92 33778.35 32664.43 26950.13 36679.87 32444.02 31283.67 31446.10 34856.86 35783.03 332
PVSNet64.34 1872.08 26970.87 26875.69 28686.21 22156.44 30874.37 33680.73 30562.06 29870.17 27782.23 30242.86 31883.31 31854.77 30384.45 16787.32 267
pmmvs571.55 27070.20 27675.61 28777.83 33856.39 30981.74 26980.89 30257.76 32967.46 30484.49 26849.26 27585.32 30457.08 29175.29 28685.11 309
our_test_369.14 29267.00 30375.57 28879.80 32658.80 27477.96 31377.81 32859.55 31562.90 33978.25 33647.43 28683.97 31251.71 31767.58 33583.93 322
WTY-MVS75.65 23475.68 21675.57 28886.40 21956.82 30177.92 31582.40 29165.10 26176.18 19987.72 18863.13 13180.90 32860.31 26181.96 20089.00 229
Patchmtry70.74 27869.16 28175.49 29080.72 31354.07 33274.94 33580.30 31258.34 32470.01 27981.19 30852.50 23186.54 29353.37 31071.09 32285.87 299
GG-mvs-BLEND75.38 29181.59 30255.80 31679.32 29869.63 35767.19 30773.67 35443.24 31588.90 27350.41 32284.50 16481.45 341
ambc75.24 29273.16 35950.51 35463.05 36987.47 22164.28 33077.81 33917.80 37189.73 25657.88 28460.64 35385.49 301
CL-MVSNet_self_test72.37 26771.46 26075.09 29379.49 33153.53 33580.76 28085.01 25569.12 21370.51 27182.05 30457.92 19084.13 31152.27 31566.00 34187.60 259
XXY-MVS75.41 23975.56 21874.96 29483.59 26257.82 28880.59 28383.87 27266.54 24774.93 23188.31 17563.24 12580.09 33162.16 24576.85 25986.97 277
MIMVSNet70.69 27969.30 27874.88 29584.52 24556.35 31175.87 32679.42 32064.59 26767.76 29982.41 29841.10 32981.54 32546.64 34681.34 20686.75 282
ADS-MVSNet266.20 31463.33 31774.82 29679.92 32258.75 27567.55 35775.19 34353.37 34565.25 32575.86 34842.32 32180.53 33041.57 35968.91 33085.18 306
TinyColmap67.30 30564.81 30974.76 29781.92 29856.68 30580.29 28981.49 30060.33 30756.27 36083.22 28724.77 36387.66 28845.52 35069.47 32779.95 348
test_vis1_n_192075.52 23675.78 21474.75 29879.84 32457.44 29483.26 25385.52 24962.83 28979.34 12686.17 23745.10 30779.71 33278.75 9181.21 20987.10 276
test-LLR72.94 26372.43 25374.48 29981.35 30758.04 28278.38 30877.46 33166.66 24369.95 28279.00 32948.06 28479.24 33366.13 21284.83 16086.15 291
test-mter71.41 27170.39 27474.48 29981.35 30758.04 28278.38 30877.46 33160.32 30869.95 28279.00 32936.08 34779.24 33366.13 21284.83 16086.15 291
tpm72.37 26771.71 25974.35 30182.19 29452.00 34379.22 30077.29 33464.56 26872.95 25083.68 28451.35 24983.26 31958.33 28075.80 27387.81 255
CVMVSNet72.99 26272.58 25274.25 30284.28 24850.85 35286.41 18183.45 27944.56 35973.23 24787.54 19649.38 27285.70 29965.90 21678.44 24286.19 290
FMVSNet569.50 29067.96 29174.15 30382.97 28055.35 32080.01 29282.12 29462.56 29363.02 33681.53 30736.92 34481.92 32348.42 33474.06 29885.17 308
MIMVSNet168.58 29766.78 30573.98 30480.07 32151.82 34580.77 27984.37 26264.40 27059.75 34982.16 30336.47 34583.63 31542.73 35770.33 32486.48 286
test_cas_vis1_n_192073.76 25273.74 24373.81 30575.90 34559.77 26880.51 28482.40 29158.30 32581.62 10085.69 24544.35 31076.41 35076.29 11778.61 23885.23 305
Anonymous2024052168.80 29567.22 30273.55 30674.33 35254.11 33183.18 25485.61 24858.15 32661.68 34180.94 31330.71 35781.27 32757.00 29273.34 30885.28 304
sss73.60 25373.64 24473.51 30782.80 28255.01 32476.12 32281.69 29862.47 29474.68 23485.85 24357.32 19778.11 33960.86 25880.93 21187.39 264
KD-MVS_2432*160066.22 31263.89 31473.21 30875.47 35053.42 33770.76 34684.35 26364.10 27466.52 31578.52 33334.55 35084.98 30550.40 32350.33 36881.23 342
miper_refine_blended66.22 31263.89 31473.21 30875.47 35053.42 33770.76 34684.35 26364.10 27466.52 31578.52 33334.55 35084.98 30550.40 32350.33 36881.23 342
PM-MVS66.41 31064.14 31273.20 31073.92 35456.45 30778.97 30464.96 36963.88 28064.72 32880.24 31919.84 36983.44 31766.24 21164.52 34579.71 349
tpmrst72.39 26572.13 25673.18 31180.54 31649.91 35679.91 29479.08 32363.11 28371.69 26479.95 32255.32 20682.77 32165.66 21973.89 30086.87 278
dmvs_re71.14 27370.58 26972.80 31281.96 29659.68 26975.60 32879.34 32168.55 22569.27 29180.72 31649.42 27176.54 34752.56 31477.79 24782.19 337
test_fmvs1_n70.86 27770.24 27572.73 31372.51 36355.28 32181.27 27679.71 31851.49 35278.73 13384.87 26427.54 36077.02 34476.06 12079.97 22685.88 298
TESTMET0.1,169.89 28869.00 28272.55 31479.27 33456.85 30078.38 30874.71 34757.64 33068.09 29877.19 34237.75 34276.70 34663.92 22984.09 17184.10 320
KD-MVS_self_test68.81 29467.59 29972.46 31574.29 35345.45 36477.93 31487.00 22963.12 28263.99 33378.99 33142.32 32184.77 30856.55 29764.09 34687.16 272
test_fmvs170.93 27670.52 27072.16 31673.71 35555.05 32380.82 27778.77 32451.21 35378.58 13984.41 27031.20 35676.94 34575.88 12380.12 22584.47 315
CHOSEN 280x42066.51 30964.71 31071.90 31781.45 30463.52 21657.98 37168.95 36153.57 34462.59 34076.70 34346.22 29675.29 35855.25 30179.68 22776.88 355
test_vis1_n69.85 28969.21 28071.77 31872.66 36255.27 32281.48 27376.21 34052.03 34975.30 22183.20 28928.97 35876.22 35274.60 13378.41 24483.81 323
EPMVS69.02 29368.16 28871.59 31979.61 32949.80 35877.40 31766.93 36362.82 29070.01 27979.05 32745.79 30177.86 34156.58 29675.26 28787.13 273
YYNet165.03 31562.91 32071.38 32075.85 34656.60 30669.12 35474.66 34857.28 33354.12 36277.87 33845.85 30074.48 36049.95 32861.52 35183.05 331
MDA-MVSNet_test_wron65.03 31562.92 31971.37 32175.93 34456.73 30269.09 35574.73 34657.28 33354.03 36377.89 33745.88 29974.39 36149.89 32961.55 35082.99 333
UnsupCasMVSNet_eth67.33 30465.99 30771.37 32173.48 35751.47 34975.16 33185.19 25265.20 26060.78 34480.93 31542.35 32077.20 34357.12 29053.69 36485.44 302
PMMVS69.34 29168.67 28371.35 32375.67 34762.03 24075.17 33073.46 35050.00 35468.68 29379.05 32752.07 24078.13 33861.16 25682.77 19173.90 359
EU-MVSNet68.53 29867.61 29871.31 32478.51 33747.01 36284.47 22884.27 26642.27 36266.44 31884.79 26640.44 33283.76 31358.76 27668.54 33383.17 328
Anonymous2023120668.60 29667.80 29571.02 32580.23 31950.75 35378.30 31180.47 30956.79 33566.11 32082.63 29746.35 29578.95 33543.62 35575.70 27483.36 327
test_fmvs268.35 30067.48 30070.98 32669.50 36651.95 34480.05 29176.38 33949.33 35574.65 23584.38 27123.30 36675.40 35774.51 13475.17 28985.60 300
dp66.80 30665.43 30870.90 32779.74 32848.82 35975.12 33374.77 34559.61 31464.08 33277.23 34142.89 31780.72 32948.86 33366.58 33883.16 329
PatchT68.46 29967.85 29370.29 32880.70 31443.93 37172.47 33974.88 34460.15 31070.55 27076.57 34449.94 26581.59 32450.58 32174.83 29285.34 303
UnsupCasMVSNet_bld63.70 32061.53 32670.21 32973.69 35651.39 35072.82 33881.89 29555.63 34057.81 35571.80 35738.67 33778.61 33649.26 33252.21 36680.63 345
Patchmatch-test64.82 31763.24 31869.57 33079.42 33249.82 35763.49 36869.05 36051.98 35059.95 34880.13 32050.91 25370.98 36640.66 36173.57 30387.90 253
LF4IMVS64.02 31962.19 32369.50 33170.90 36453.29 34076.13 32177.18 33552.65 34758.59 35180.98 31223.55 36576.52 34853.06 31266.66 33778.68 351
test20.0367.45 30366.95 30468.94 33275.48 34944.84 36977.50 31677.67 32966.66 24363.01 33783.80 28047.02 28978.40 33742.53 35868.86 33283.58 325
test0.0.03 168.00 30167.69 29768.90 33377.55 33947.43 36075.70 32772.95 35266.66 24366.56 31382.29 30148.06 28475.87 35444.97 35374.51 29583.41 326
PVSNet_057.27 2061.67 32559.27 32868.85 33479.61 32957.44 29468.01 35673.44 35155.93 33958.54 35270.41 36044.58 30977.55 34247.01 34335.91 37471.55 362
ADS-MVSNet64.36 31862.88 32168.78 33579.92 32247.17 36167.55 35771.18 35353.37 34565.25 32575.86 34842.32 32173.99 36241.57 35968.91 33085.18 306
pmmvs357.79 32854.26 33268.37 33664.02 37256.72 30375.12 33365.17 36740.20 36452.93 36469.86 36120.36 36875.48 35645.45 35155.25 36372.90 361
test_fmvs363.36 32161.82 32467.98 33762.51 37346.96 36377.37 31874.03 34945.24 35867.50 30378.79 33212.16 37772.98 36572.77 15466.02 34083.99 321
LCM-MVSNet54.25 33049.68 33967.97 33853.73 38145.28 36766.85 36080.78 30435.96 37039.45 37162.23 3668.70 38178.06 34048.24 33851.20 36780.57 346
EGC-MVSNET52.07 33647.05 34067.14 33983.51 26460.71 25680.50 28567.75 3620.07 3840.43 38575.85 35024.26 36481.54 32528.82 37062.25 34859.16 369
testgi66.67 30866.53 30667.08 34075.62 34841.69 37575.93 32376.50 33866.11 25065.20 32786.59 22435.72 34874.71 35943.71 35473.38 30784.84 311
test_vis1_rt60.28 32658.42 32965.84 34167.25 36955.60 31970.44 34860.94 37344.33 36059.00 35066.64 36224.91 36268.67 37062.80 23669.48 32673.25 360
mvsany_test162.30 32361.26 32765.41 34269.52 36554.86 32566.86 35949.78 38046.65 35768.50 29783.21 28849.15 27666.28 37256.93 29360.77 35275.11 358
ANet_high50.57 33846.10 34263.99 34348.67 38439.13 37670.99 34580.85 30361.39 30231.18 37357.70 37117.02 37273.65 36431.22 36915.89 38179.18 350
MVS-HIRNet59.14 32757.67 33063.57 34481.65 30043.50 37271.73 34165.06 36839.59 36651.43 36557.73 37038.34 33982.58 32239.53 36273.95 29964.62 366
APD_test153.31 33349.93 33863.42 34565.68 37050.13 35571.59 34266.90 36434.43 37140.58 37071.56 3588.65 38276.27 35134.64 36755.36 36263.86 367
new-patchmatchnet61.73 32461.73 32561.70 34672.74 36124.50 38669.16 35378.03 32761.40 30156.72 35875.53 35138.42 33876.48 34945.95 34957.67 35684.13 319
mvsany_test353.99 33151.45 33561.61 34755.51 37744.74 37063.52 36745.41 38443.69 36158.11 35476.45 34517.99 37063.76 37554.77 30347.59 37076.34 356
DSMNet-mixed57.77 32956.90 33160.38 34867.70 36835.61 37869.18 35253.97 37832.30 37457.49 35679.88 32340.39 33368.57 37138.78 36372.37 31276.97 354
FPMVS53.68 33251.64 33459.81 34965.08 37151.03 35169.48 35169.58 35841.46 36340.67 36972.32 35616.46 37370.00 36924.24 37665.42 34258.40 371
dmvs_testset62.63 32264.11 31358.19 35078.55 33624.76 38575.28 32965.94 36667.91 23360.34 34576.01 34753.56 22573.94 36331.79 36867.65 33475.88 357
testf145.72 34041.96 34357.00 35156.90 37545.32 36566.14 36259.26 37426.19 37530.89 37460.96 3684.14 38570.64 36726.39 37446.73 37255.04 372
APD_test245.72 34041.96 34357.00 35156.90 37545.32 36566.14 36259.26 37426.19 37530.89 37460.96 3684.14 38570.64 36726.39 37446.73 37255.04 372
test_vis3_rt49.26 33947.02 34156.00 35354.30 37845.27 36866.76 36148.08 38136.83 36844.38 36853.20 3737.17 38464.07 37456.77 29555.66 36058.65 370
test_f52.09 33550.82 33655.90 35453.82 38042.31 37459.42 37058.31 37636.45 36956.12 36170.96 35912.18 37657.79 37753.51 30956.57 35967.60 363
PMVScopyleft37.38 2244.16 34340.28 34655.82 35540.82 38642.54 37365.12 36563.99 37034.43 37124.48 37757.12 3723.92 38776.17 35317.10 37955.52 36148.75 374
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft45.18 34241.86 34555.16 35677.03 34351.52 34832.50 37780.52 30832.46 37327.12 37635.02 3779.52 38075.50 35522.31 37760.21 35538.45 376
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
new_pmnet50.91 33750.29 33752.78 35768.58 36734.94 38063.71 36656.63 37739.73 36544.95 36765.47 36321.93 36758.48 37634.98 36656.62 35864.92 365
N_pmnet52.79 33453.26 33351.40 35878.99 3357.68 38969.52 3503.89 38951.63 35157.01 35774.98 35240.83 33165.96 37337.78 36464.67 34480.56 347
PMMVS240.82 34438.86 34746.69 35953.84 37916.45 38748.61 37449.92 37937.49 36731.67 37260.97 3678.14 38356.42 37828.42 37130.72 37667.19 364
MVEpermissive26.22 2330.37 34825.89 35243.81 36044.55 38535.46 37928.87 37839.07 38518.20 37918.58 38140.18 3762.68 38847.37 38217.07 38023.78 37848.60 375
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method31.52 34629.28 35038.23 36127.03 3886.50 39020.94 37962.21 3724.05 38222.35 38052.50 37413.33 37447.58 38127.04 37334.04 37560.62 368
E-PMN31.77 34530.64 34835.15 36252.87 38227.67 38257.09 37247.86 38224.64 37716.40 38233.05 37811.23 37854.90 37914.46 38118.15 37922.87 378
EMVS30.81 34729.65 34934.27 36350.96 38325.95 38456.58 37346.80 38324.01 37815.53 38330.68 37912.47 37554.43 38012.81 38217.05 38022.43 379
DeepMVS_CXcopyleft27.40 36440.17 38726.90 38324.59 38817.44 38023.95 37848.61 3759.77 37926.48 38318.06 37824.47 37728.83 377
wuyk23d16.82 35115.94 35419.46 36558.74 37431.45 38139.22 3753.74 3906.84 3816.04 3842.70 3841.27 38924.29 38410.54 38314.40 3832.63 381
tmp_tt18.61 35021.40 35310.23 3664.82 38910.11 38834.70 37630.74 3871.48 38323.91 37926.07 38028.42 35913.41 38527.12 37215.35 3827.17 380
test1236.12 3538.11 3560.14 3670.06 3910.09 39171.05 3440.03 3920.04 3860.25 3871.30 3860.05 3900.03 3870.21 3850.01 3850.29 382
testmvs6.04 3548.02 3570.10 3680.08 3900.03 39269.74 3490.04 3910.05 3850.31 3861.68 3850.02 3910.04 3860.24 3840.02 3840.25 383
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k19.96 34926.61 3510.00 3690.00 3920.00 3930.00 38089.26 1690.00 3870.00 38888.61 16661.62 1510.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas5.26 3557.02 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38763.15 1280.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re7.23 3529.64 3550.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38886.72 2160.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
FOURS195.00 1072.39 3895.06 193.84 1574.49 11291.30 15
PC_three_145268.21 23192.02 1294.00 4182.09 595.98 5084.58 3896.68 294.95 9
test_one_060195.07 771.46 5494.14 578.27 3492.05 1195.74 680.83 11
eth-test20.00 392
eth-test0.00 392
ZD-MVS94.38 2572.22 4392.67 6170.98 17487.75 2994.07 3874.01 3296.70 2684.66 3794.84 42
RE-MVS-def85.48 5093.06 5570.63 7291.88 3892.27 7673.53 13585.69 3994.45 2563.87 11982.75 5891.87 7892.50 106
IU-MVS95.30 271.25 5692.95 5166.81 23992.39 688.94 1296.63 494.85 18
test_241102_TWO94.06 1077.24 4992.78 495.72 881.26 897.44 589.07 1096.58 694.26 40
test_241102_ONE95.30 270.98 6294.06 1077.17 5293.10 195.39 1182.99 197.27 10
9.1488.26 1492.84 6091.52 4594.75 173.93 12488.57 2294.67 1875.57 2295.79 5286.77 2595.76 23
save fliter93.80 4072.35 4190.47 6391.17 11674.31 115
test_0728_THIRD78.38 3292.12 995.78 481.46 797.40 789.42 596.57 794.67 23
test072695.27 571.25 5693.60 694.11 677.33 4792.81 395.79 380.98 9
GSMVS88.96 231
test_part295.06 872.65 3191.80 13
sam_mvs151.32 25088.96 231
sam_mvs50.01 263
MTGPAbinary92.02 85
test_post178.90 3065.43 38348.81 28385.44 30359.25 269
test_post5.46 38250.36 26184.24 310
patchmatchnet-post74.00 35351.12 25288.60 276
MTMP92.18 3432.83 386
gm-plane-assit81.40 30553.83 33462.72 29280.94 31392.39 19163.40 233
test9_res84.90 3295.70 2692.87 94
TEST993.26 5072.96 2488.75 10791.89 9368.44 22885.00 4793.10 5774.36 2895.41 66
test_893.13 5272.57 3488.68 11291.84 9768.69 22384.87 5193.10 5774.43 2695.16 75
agg_prior282.91 5695.45 2992.70 97
agg_prior92.85 5971.94 5091.78 10084.41 6194.93 86
test_prior472.60 3389.01 97
test_prior288.85 10375.41 9284.91 4993.54 4874.28 2983.31 5195.86 20
旧先验286.56 17858.10 32787.04 3188.98 26974.07 139
新几何286.29 186
旧先验191.96 7165.79 16886.37 23893.08 6169.31 7292.74 6788.74 240
无先验87.48 14988.98 18260.00 31194.12 12067.28 20488.97 230
原ACMM286.86 167
test22291.50 7768.26 11884.16 23883.20 28454.63 34379.74 11991.63 8958.97 18391.42 8486.77 281
testdata291.01 23962.37 243
segment_acmp73.08 37
testdata184.14 23975.71 86
plane_prior790.08 10268.51 114
plane_prior689.84 11168.70 10960.42 176
plane_prior592.44 6995.38 6878.71 9286.32 14591.33 139
plane_prior491.00 110
plane_prior368.60 11278.44 3078.92 131
plane_prior291.25 4979.12 22
plane_prior189.90 110
plane_prior68.71 10790.38 6677.62 3886.16 149
n20.00 393
nn0.00 393
door-mid69.98 356
test1192.23 79
door69.44 359
HQP5-MVS66.98 145
HQP-NCC89.33 12789.17 9076.41 7177.23 172
ACMP_Plane89.33 12789.17 9076.41 7177.23 172
BP-MVS77.47 104
HQP4-MVS77.24 17195.11 7991.03 151
HQP3-MVS92.19 8285.99 152
HQP2-MVS60.17 179
NP-MVS89.62 11468.32 11690.24 122
MDTV_nov1_ep13_2view37.79 37775.16 33155.10 34166.53 31449.34 27353.98 30687.94 252
MDTV_nov1_ep1369.97 27783.18 27253.48 33677.10 32080.18 31560.45 30669.33 29080.44 31748.89 28286.90 29151.60 31878.51 241
ACMMP++_ref81.95 201
ACMMP++81.25 207
Test By Simon64.33 115