This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3694.78 4198.93 998.87 1596.04 299.86 897.45 2699.58 2499.59 22
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3995.13 2399.19 498.89 1395.54 599.85 1897.52 2299.66 1199.56 29
test_fmvsm_n_192097.55 1197.89 396.53 8198.41 7491.73 11198.01 5999.02 196.37 499.30 198.92 1092.39 3799.79 3399.16 599.46 4298.08 172
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4397.85 11694.92 3298.73 1898.87 1595.08 899.84 2397.52 2299.67 699.48 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 5998.25 8692.59 8497.81 8998.68 1394.93 3099.24 398.87 1593.52 2099.79 3399.32 399.21 7299.40 54
fmvsm_l_conf0.5_n97.65 797.75 697.34 5298.21 9292.75 7897.83 8598.73 995.04 2899.30 198.84 2093.34 2299.78 3599.32 399.13 8099.50 40
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2898.81 798.30 3294.76 4398.30 2698.90 1293.77 1799.68 5497.93 1499.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 16198.35 2795.16 2298.71 2098.80 2295.05 1099.89 396.70 4199.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_fmvsmconf_n97.49 1297.56 997.29 5597.44 14492.37 9097.91 7698.88 495.83 898.92 1299.05 591.45 5399.80 3099.12 699.46 4299.69 12
MSP-MVS97.59 1097.54 1097.73 3799.40 1193.77 5698.53 1598.29 3495.55 1398.56 2297.81 9993.90 1599.65 5896.62 4299.21 7299.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS97.41 1497.53 1197.06 6898.57 6994.46 3397.92 7598.14 6494.82 3899.01 698.55 3394.18 1497.41 32896.94 3499.64 1499.32 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 7794.25 4098.43 2398.27 3995.34 1798.11 2898.56 3194.53 1299.71 4696.57 4599.62 1899.65 15
Skip Steuart: Steuart Systems R&D Blog.
patch_mono-296.83 4197.44 1395.01 17799.05 3985.39 30596.98 17898.77 794.70 4597.99 3298.66 2793.61 1999.91 197.67 1899.50 3699.72 11
CNVR-MVS97.68 697.44 1398.37 798.90 5095.86 697.27 15298.08 7495.81 997.87 3698.31 6094.26 1399.68 5497.02 3399.49 3999.57 26
TSAR-MVS + MP.97.42 1397.33 1597.69 4199.25 2794.24 4198.07 5497.85 11693.72 7798.57 2198.35 5193.69 1899.40 11097.06 3299.46 4299.44 49
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
fmvsm_s_conf0.5_n96.85 3997.13 1696.04 12498.07 10590.28 17397.97 6998.76 894.93 3098.84 1699.06 488.80 9399.65 5899.06 798.63 10398.18 161
SF-MVS97.39 1597.13 1698.17 1599.02 4295.28 1998.23 4098.27 3992.37 12998.27 2798.65 2993.33 2399.72 4596.49 4899.52 3199.51 37
DeepPCF-MVS93.97 196.61 5297.09 1895.15 16998.09 10186.63 28296.00 25598.15 6295.43 1497.95 3398.56 3193.40 2199.36 11496.77 3899.48 4099.45 47
test_fmvsmconf0.1_n97.09 2497.06 1997.19 6495.67 24392.21 9697.95 7298.27 3995.78 1098.40 2599.00 689.99 7899.78 3599.06 799.41 5299.59 22
CS-MVS96.86 3797.06 1996.26 11098.16 9891.16 14399.09 397.87 11195.30 1897.06 5798.03 8091.72 4698.71 19197.10 3199.17 7698.90 104
MSLP-MVS++96.94 3397.06 1996.59 7998.72 5591.86 10897.67 10398.49 1994.66 4897.24 5098.41 4792.31 4098.94 16596.61 4399.46 4298.96 94
dcpmvs_296.37 6097.05 2294.31 21998.96 4684.11 32397.56 11897.51 15893.92 7197.43 4598.52 3592.75 2999.32 11797.32 3099.50 3699.51 37
CS-MVS-test96.89 3597.04 2396.45 9498.29 8291.66 11799.03 497.85 11695.84 796.90 6097.97 8691.24 5998.75 18596.92 3599.33 6198.94 97
SMA-MVScopyleft97.35 1697.03 2498.30 899.06 3895.42 1097.94 7398.18 5790.57 19698.85 1598.94 993.33 2399.83 2696.72 4099.68 499.63 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
NCCC97.30 1897.03 2498.11 1798.77 5395.06 2597.34 14398.04 8995.96 697.09 5697.88 9293.18 2599.71 4695.84 7799.17 7699.56 29
MM97.29 1996.98 2698.23 1198.01 10795.03 2698.07 5495.76 28797.78 197.52 4098.80 2288.09 10799.86 899.44 199.37 5999.80 1
HPM-MVS++copyleft97.34 1796.97 2798.47 599.08 3696.16 497.55 12197.97 10195.59 1196.61 7497.89 9092.57 3499.84 2395.95 7299.51 3499.40 54
XVS97.18 2196.96 2897.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7698.29 6391.70 4899.80 3095.66 8199.40 5399.62 18
fmvsm_s_conf0.5_n_a96.75 4696.93 2996.20 11697.64 12990.72 16198.00 6198.73 994.55 5098.91 1399.08 388.22 10699.63 6798.91 998.37 11598.25 156
HFP-MVS97.14 2396.92 3097.83 2699.42 794.12 4698.52 1698.32 3093.21 9797.18 5198.29 6392.08 4299.83 2695.63 8699.59 2099.54 33
SR-MVS97.01 3096.86 3197.47 4899.09 3493.27 6897.98 6398.07 7993.75 7697.45 4298.48 4191.43 5599.59 7496.22 5799.27 6599.54 33
ACMMP_NAP97.20 2096.86 3198.23 1199.09 3495.16 2297.60 11598.19 5592.82 11897.93 3498.74 2691.60 5199.86 896.26 5499.52 3199.67 13
test_fmvsmvis_n_192096.70 4796.84 3396.31 10496.62 18891.73 11197.98 6398.30 3296.19 596.10 9898.95 889.42 8399.76 3898.90 1099.08 8497.43 204
region2R97.07 2696.84 3397.77 3399.46 293.79 5498.52 1698.24 4793.19 10097.14 5398.34 5491.59 5299.87 795.46 9399.59 2099.64 16
ACMMPR97.07 2696.84 3397.79 3099.44 693.88 5298.52 1698.31 3193.21 9797.15 5298.33 5791.35 5799.86 895.63 8699.59 2099.62 18
MCST-MVS97.18 2196.84 3398.20 1499.30 2495.35 1597.12 16898.07 7993.54 8596.08 9997.69 10693.86 1699.71 4696.50 4799.39 5599.55 32
CP-MVS97.02 2996.81 3797.64 4499.33 2193.54 5998.80 898.28 3692.99 10896.45 8598.30 6291.90 4599.85 1895.61 8899.68 499.54 33
SR-MVS-dyc-post96.88 3696.80 3897.11 6799.02 4292.34 9197.98 6398.03 9193.52 8797.43 4598.51 3691.40 5699.56 8596.05 6799.26 6799.43 51
MTAPA97.08 2596.78 3997.97 2299.37 1694.42 3597.24 15598.08 7495.07 2796.11 9798.59 3090.88 6899.90 296.18 6599.50 3699.58 25
fmvsm_s_conf0.1_n96.58 5496.77 4096.01 12896.67 18790.25 17497.91 7698.38 2394.48 5498.84 1699.14 188.06 10899.62 6898.82 1198.60 10598.15 165
9.1496.75 4198.93 4797.73 9698.23 5091.28 16597.88 3598.44 4493.00 2699.65 5895.76 7999.47 41
MVS_030497.04 2896.73 4297.96 2397.60 13594.36 3698.01 5994.09 35197.33 296.29 8998.79 2489.73 8299.86 899.36 299.42 4999.67 13
RE-MVS-def96.72 4399.02 4292.34 9197.98 6398.03 9193.52 8797.43 4598.51 3690.71 7096.05 6799.26 6799.43 51
APD-MVS_3200maxsize96.81 4296.71 4497.12 6699.01 4592.31 9397.98 6398.06 8293.11 10597.44 4398.55 3390.93 6699.55 8796.06 6699.25 6999.51 37
ZNCC-MVS96.96 3196.67 4597.85 2599.37 1694.12 4698.49 2098.18 5792.64 12496.39 8798.18 7091.61 5099.88 495.59 9199.55 2799.57 26
DeepC-MVS_fast93.89 296.93 3496.64 4697.78 3198.64 6494.30 3797.41 13398.04 8994.81 3996.59 7698.37 4991.24 5999.64 6695.16 9799.52 3199.42 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mPP-MVS96.86 3796.60 4797.64 4499.40 1193.44 6198.50 1998.09 7393.27 9695.95 10598.33 5791.04 6499.88 495.20 9699.57 2699.60 21
APD-MVScopyleft96.95 3296.60 4798.01 1999.03 4194.93 2797.72 9998.10 7291.50 15598.01 3198.32 5992.33 3899.58 7794.85 10599.51 3499.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR96.68 5196.58 4996.99 7098.46 7092.31 9396.20 24698.90 394.30 6295.86 10797.74 10492.33 3899.38 11396.04 6999.42 4999.28 65
PGM-MVS96.81 4296.53 5097.65 4299.35 2093.53 6097.65 10698.98 292.22 13397.14 5398.44 4491.17 6299.85 1894.35 11899.46 4299.57 26
GST-MVS96.85 3996.52 5197.82 2799.36 1894.14 4598.29 3098.13 6592.72 12196.70 6898.06 7791.35 5799.86 894.83 10699.28 6499.47 46
TSAR-MVS + GP.96.69 4996.49 5297.27 5898.31 8193.39 6296.79 19296.72 24094.17 6497.44 4397.66 11092.76 2899.33 11596.86 3797.76 13599.08 83
fmvsm_s_conf0.1_n_a96.40 5896.47 5396.16 11895.48 25190.69 16297.91 7698.33 2994.07 6698.93 999.14 187.44 12499.61 6998.63 1398.32 11798.18 161
EI-MVSNet-Vis-set96.51 5596.47 5396.63 7698.24 8791.20 13896.89 18497.73 12994.74 4496.49 8198.49 3890.88 6899.58 7796.44 4998.32 11799.13 77
EC-MVSNet96.42 5796.47 5396.26 11097.01 16691.52 12398.89 597.75 12694.42 5696.64 7397.68 10789.32 8498.60 20197.45 2699.11 8398.67 124
PHI-MVS96.77 4496.46 5697.71 4098.40 7594.07 4898.21 4398.45 2289.86 20997.11 5598.01 8392.52 3599.69 5296.03 7099.53 3099.36 60
MP-MVScopyleft96.77 4496.45 5797.72 3899.39 1393.80 5398.41 2498.06 8293.37 9295.54 12098.34 5490.59 7299.88 494.83 10699.54 2999.49 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVScopyleft96.69 4996.45 5797.40 5099.36 1893.11 7198.87 698.06 8291.17 17096.40 8697.99 8490.99 6599.58 7795.61 8899.61 1999.49 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DELS-MVS96.61 5296.38 5997.30 5497.79 12093.19 6995.96 25798.18 5795.23 1995.87 10697.65 11191.45 5399.70 5195.87 7399.44 4899.00 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EI-MVSNet-UG-set96.34 6196.30 6096.47 9198.20 9390.93 15196.86 18697.72 13194.67 4796.16 9698.46 4290.43 7399.58 7796.23 5697.96 12998.90 104
MP-MVS-pluss96.70 4796.27 6197.98 2199.23 3094.71 2996.96 18098.06 8290.67 18795.55 11898.78 2591.07 6399.86 896.58 4499.55 2799.38 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HPM-MVS_fast96.51 5596.27 6197.22 6199.32 2292.74 7998.74 998.06 8290.57 19696.77 6598.35 5190.21 7599.53 9194.80 10999.63 1799.38 58
MVS_111021_LR96.24 6496.19 6396.39 9998.23 9191.35 13196.24 24498.79 693.99 6995.80 10997.65 11189.92 8099.24 12495.87 7399.20 7498.58 127
iter_conf05_1196.17 6596.16 6496.21 11497.48 14390.74 16098.14 4997.80 12292.80 11997.34 4897.29 13188.54 10099.10 14196.40 5099.64 1498.80 115
CANet96.39 5996.02 6597.50 4797.62 13293.38 6397.02 17397.96 10295.42 1594.86 13097.81 9987.38 12699.82 2896.88 3699.20 7499.29 63
ACMMPcopyleft96.27 6395.93 6697.28 5799.24 2892.62 8298.25 3698.81 592.99 10894.56 13698.39 4888.96 9099.85 1894.57 11797.63 13699.36 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVSMamba_pp96.06 6795.92 6796.50 8997.00 16791.81 11097.33 14697.77 12492.49 12696.78 6497.19 13988.50 10399.07 15196.54 4699.67 698.60 126
CSCG96.05 6995.91 6896.46 9399.24 2890.47 16898.30 2998.57 1889.01 23693.97 15097.57 11992.62 3399.76 3894.66 11299.27 6599.15 75
ETV-MVS96.02 7095.89 6996.40 9797.16 15292.44 8897.47 13097.77 12494.55 5096.48 8294.51 27891.23 6198.92 16795.65 8498.19 12297.82 186
test_fmvsmconf0.01_n96.15 6695.85 7097.03 6992.66 36091.83 10997.97 6997.84 12095.57 1297.53 3999.00 684.20 16899.76 3898.82 1199.08 8499.48 44
mamv496.02 7095.84 7196.53 8197.05 16291.97 10597.30 14997.79 12392.32 13096.58 7997.14 14488.51 10299.06 15496.27 5299.64 1498.57 128
train_agg96.30 6295.83 7297.72 3898.70 5694.19 4296.41 22598.02 9488.58 25396.03 10097.56 12192.73 3199.59 7495.04 10099.37 5999.39 56
DeepC-MVS93.07 396.06 6795.66 7397.29 5597.96 10993.17 7097.30 14998.06 8293.92 7193.38 16398.66 2786.83 13299.73 4295.60 9099.22 7198.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
casdiffmvs_mvgpermissive95.81 7995.57 7496.51 8696.87 17291.49 12497.50 12497.56 15493.99 6995.13 12797.92 8987.89 11298.78 18095.97 7197.33 14799.26 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net95.95 7595.53 7597.20 6397.67 12592.98 7497.65 10698.13 6594.81 3996.61 7498.35 5188.87 9199.51 9690.36 19497.35 14699.11 81
casdiffmvspermissive95.64 8295.49 7696.08 12096.76 18590.45 16997.29 15197.44 17694.00 6895.46 12297.98 8587.52 12298.73 18795.64 8597.33 14799.08 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EIA-MVS95.53 8695.47 7795.71 14397.06 16089.63 18997.82 8797.87 11193.57 8193.92 15195.04 25390.61 7198.95 16494.62 11498.68 10198.54 130
sasdasda96.02 7095.45 7897.75 3597.59 13695.15 2398.28 3197.60 14594.52 5296.27 9196.12 20287.65 11699.18 13096.20 6294.82 19898.91 101
canonicalmvs96.02 7095.45 7897.75 3597.59 13695.15 2398.28 3197.60 14594.52 5296.27 9196.12 20287.65 11699.18 13096.20 6294.82 19898.91 101
VNet95.89 7795.45 7897.21 6298.07 10592.94 7597.50 12498.15 6293.87 7397.52 4097.61 11785.29 15299.53 9195.81 7895.27 19099.16 73
baseline95.58 8495.42 8196.08 12096.78 18090.41 17197.16 16597.45 17293.69 8095.65 11697.85 9687.29 12798.68 19395.66 8197.25 15199.13 77
MGCFI-Net95.94 7695.40 8297.56 4697.59 13694.62 3098.21 4397.57 15094.41 5796.17 9596.16 20087.54 12099.17 13296.19 6494.73 20398.91 101
CDPH-MVS95.97 7495.38 8397.77 3398.93 4794.44 3496.35 23397.88 10986.98 29896.65 7297.89 9091.99 4499.47 10292.26 15299.46 4299.39 56
MG-MVS95.61 8395.38 8396.31 10498.42 7390.53 16696.04 25297.48 16193.47 8995.67 11598.10 7389.17 8699.25 12391.27 17998.77 9899.13 77
PS-MVSNAJ95.37 8895.33 8595.49 15797.35 14690.66 16495.31 29097.48 16193.85 7496.51 8095.70 22788.65 9699.65 5894.80 10998.27 11996.17 243
xiu_mvs_v2_base95.32 9095.29 8695.40 16297.22 14890.50 16795.44 28497.44 17693.70 7996.46 8496.18 19788.59 9999.53 9194.79 11197.81 13296.17 243
alignmvs95.87 7895.23 8797.78 3197.56 14195.19 2197.86 8097.17 19994.39 5996.47 8396.40 18885.89 14599.20 12796.21 6195.11 19498.95 96
CPTT-MVS95.57 8595.19 8896.70 7399.27 2691.48 12598.33 2798.11 7087.79 27995.17 12698.03 8087.09 13099.61 6993.51 13399.42 4999.02 86
MVSFormer95.37 8895.16 8995.99 12996.34 21391.21 13698.22 4197.57 15091.42 15996.22 9397.32 12986.20 14297.92 28294.07 12199.05 8698.85 110
diffmvspermissive95.25 9295.13 9095.63 14696.43 20989.34 20595.99 25697.35 18892.83 11796.31 8897.37 12886.44 13798.67 19496.26 5497.19 15398.87 109
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DP-MVS Recon95.68 8195.12 9197.37 5199.19 3194.19 4297.03 17198.08 7488.35 26295.09 12897.65 11189.97 7999.48 10192.08 16198.59 10698.44 145
EPP-MVSNet95.22 9495.04 9295.76 13697.49 14289.56 19398.67 1097.00 21890.69 18594.24 14297.62 11689.79 8198.81 17893.39 13896.49 16898.92 100
DPM-MVS95.69 8094.92 9398.01 1998.08 10495.71 995.27 29397.62 14490.43 19995.55 11897.07 14891.72 4699.50 9989.62 21098.94 9398.82 113
PVSNet_Blended_VisFu95.27 9194.91 9496.38 10098.20 9390.86 15397.27 15298.25 4590.21 20194.18 14497.27 13487.48 12399.73 4293.53 13297.77 13498.55 129
Vis-MVSNetpermissive95.23 9394.81 9596.51 8697.18 15191.58 12198.26 3598.12 6794.38 6094.90 12998.15 7282.28 20898.92 16791.45 17698.58 10799.01 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
xiu_mvs_v1_base_debu95.01 9894.76 9695.75 13896.58 19291.71 11396.25 24197.35 18892.99 10896.70 6896.63 17582.67 19899.44 10696.22 5797.46 13996.11 248
xiu_mvs_v1_base95.01 9894.76 9695.75 13896.58 19291.71 11396.25 24197.35 18892.99 10896.70 6896.63 17582.67 19899.44 10696.22 5797.46 13996.11 248
xiu_mvs_v1_base_debi95.01 9894.76 9695.75 13896.58 19291.71 11396.25 24197.35 18892.99 10896.70 6896.63 17582.67 19899.44 10696.22 5797.46 13996.11 248
OMC-MVS95.09 9794.70 9996.25 11398.46 7091.28 13296.43 22397.57 15092.04 14294.77 13297.96 8787.01 13199.09 14591.31 17896.77 16098.36 152
MVS_Test94.89 10594.62 10095.68 14496.83 17689.55 19496.70 20197.17 19991.17 17095.60 11796.11 20687.87 11398.76 18493.01 14897.17 15498.72 119
PAPM_NR95.01 9894.59 10196.26 11098.89 5190.68 16397.24 15597.73 12991.80 14792.93 17696.62 17889.13 8799.14 13789.21 22297.78 13398.97 93
test_vis1_n_192094.17 12094.58 10292.91 28397.42 14582.02 34497.83 8597.85 11694.68 4698.10 2998.49 3870.15 34099.32 11797.91 1598.82 9697.40 206
lupinMVS94.99 10294.56 10396.29 10896.34 21391.21 13695.83 26496.27 26788.93 24196.22 9396.88 15886.20 14298.85 17495.27 9599.05 8698.82 113
EPNet95.20 9594.56 10397.14 6592.80 35792.68 8197.85 8394.87 33496.64 392.46 17997.80 10186.23 13999.65 5893.72 13198.62 10499.10 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended94.87 10694.56 10395.81 13598.27 8389.46 20095.47 28398.36 2488.84 24494.36 13996.09 20788.02 10999.58 7793.44 13598.18 12398.40 148
test_cas_vis1_n_192094.48 11394.55 10694.28 22196.78 18086.45 28697.63 11297.64 14193.32 9597.68 3898.36 5073.75 32099.08 14796.73 3999.05 8697.31 211
IS-MVSNet94.90 10494.52 10796.05 12397.67 12590.56 16598.44 2296.22 27093.21 9793.99 14897.74 10485.55 15098.45 21389.98 19997.86 13099.14 76
API-MVS94.84 10794.49 10895.90 13197.90 11592.00 10497.80 9097.48 16189.19 23094.81 13196.71 16488.84 9299.17 13288.91 22998.76 9996.53 232
3Dnovator+91.43 495.40 8794.48 10998.16 1696.90 17195.34 1698.48 2197.87 11194.65 4988.53 28998.02 8283.69 17499.71 4693.18 14098.96 9299.44 49
Effi-MVS+94.93 10394.45 11096.36 10296.61 18991.47 12696.41 22597.41 18191.02 17694.50 13795.92 21187.53 12198.78 18093.89 12796.81 15998.84 112
3Dnovator91.36 595.19 9694.44 11197.44 4996.56 19593.36 6598.65 1198.36 2494.12 6589.25 27498.06 7782.20 21099.77 3793.41 13799.32 6299.18 72
jason94.84 10794.39 11296.18 11795.52 24990.93 15196.09 25096.52 25689.28 22796.01 10397.32 12984.70 15998.77 18395.15 9898.91 9598.85 110
jason: jason.
test_yl94.78 10994.23 11396.43 9597.74 12291.22 13496.85 18797.10 20491.23 16795.71 11296.93 15384.30 16599.31 11993.10 14195.12 19298.75 116
DCV-MVSNet94.78 10994.23 11396.43 9597.74 12291.22 13496.85 18797.10 20491.23 16795.71 11296.93 15384.30 16599.31 11993.10 14195.12 19298.75 116
WTY-MVS94.71 11194.02 11596.79 7297.71 12492.05 10296.59 21697.35 18890.61 19394.64 13496.93 15386.41 13899.39 11191.20 18194.71 20498.94 97
iter_conf0594.01 13194.00 11694.04 23195.06 28388.46 23497.27 15296.57 25592.32 13092.26 18897.10 14688.54 10098.10 24695.10 9991.82 25295.57 272
mvsany_test193.93 13593.98 11793.78 24994.94 29086.80 27594.62 30992.55 37388.77 25096.85 6198.49 3888.98 8998.08 25195.03 10195.62 18496.46 237
PVSNet_BlendedMVS94.06 12893.92 11894.47 20898.27 8389.46 20096.73 19798.36 2490.17 20294.36 13995.24 24788.02 10999.58 7793.44 13590.72 27294.36 339
bld_raw_dy_0_6494.33 11693.90 11995.62 14897.64 12990.95 14995.17 29897.47 16482.34 35991.28 21996.84 16089.10 8899.04 15996.27 5299.00 9096.85 225
Vis-MVSNet (Re-imp)94.15 12293.88 12094.95 18397.61 13387.92 25098.10 5195.80 28692.22 13393.02 17097.45 12484.53 16297.91 28588.24 23797.97 12899.02 86
sss94.51 11293.80 12196.64 7497.07 15791.97 10596.32 23698.06 8288.94 24094.50 13796.78 16184.60 16099.27 12291.90 16296.02 17398.68 123
mvs_anonymous93.82 14093.74 12294.06 22996.44 20885.41 30395.81 26597.05 21289.85 21190.09 24696.36 19087.44 12497.75 29893.97 12396.69 16499.02 86
FIs94.09 12793.70 12395.27 16595.70 24192.03 10398.10 5198.68 1393.36 9490.39 23396.70 16687.63 11897.94 27992.25 15490.50 27695.84 256
AdaColmapbinary94.34 11593.68 12496.31 10498.59 6691.68 11696.59 21697.81 12189.87 20892.15 19197.06 14983.62 17799.54 8989.34 21698.07 12697.70 191
CANet_DTU94.37 11493.65 12596.55 8096.46 20792.13 10096.21 24596.67 24794.38 6093.53 15997.03 15079.34 25799.71 4690.76 18798.45 11397.82 186
SDMVSNet94.17 12093.61 12695.86 13398.09 10191.37 13097.35 14298.20 5293.18 10191.79 20197.28 13279.13 26098.93 16694.61 11592.84 23397.28 212
FC-MVSNet-test93.94 13493.57 12795.04 17595.48 25191.45 12898.12 5098.71 1193.37 9290.23 23696.70 16687.66 11597.85 28891.49 17490.39 27795.83 257
XVG-OURS-SEG-HR93.86 13893.55 12894.81 19097.06 16088.53 23195.28 29197.45 17291.68 15194.08 14797.68 10782.41 20698.90 17093.84 12992.47 23996.98 219
CDS-MVSNet94.14 12593.54 12995.93 13096.18 22091.46 12796.33 23597.04 21488.97 23993.56 15696.51 18287.55 11997.89 28689.80 20495.95 17598.44 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test_fmvs193.21 15993.53 13092.25 30296.55 19781.20 35197.40 13796.96 22090.68 18696.80 6298.04 7969.25 34598.40 21697.58 2198.50 10897.16 216
CNLPA94.28 11793.53 13096.52 8398.38 7892.55 8596.59 21696.88 23190.13 20591.91 19797.24 13685.21 15399.09 14587.64 25397.83 13197.92 178
h-mvs3394.15 12293.52 13296.04 12497.81 11990.22 17597.62 11497.58 14995.19 2096.74 6697.45 12483.67 17599.61 6995.85 7579.73 36898.29 155
PS-MVSNAJss93.74 14393.51 13394.44 21093.91 32989.28 21097.75 9397.56 15492.50 12589.94 24996.54 18188.65 9698.18 23793.83 13090.90 27095.86 253
CHOSEN 1792x268894.15 12293.51 13396.06 12298.27 8389.38 20395.18 29798.48 2185.60 32093.76 15497.11 14583.15 18599.61 6991.33 17798.72 10099.19 71
mvsmamba93.83 13993.46 13594.93 18694.88 29590.85 15498.55 1495.49 30294.24 6391.29 21896.97 15283.04 18998.14 24095.56 9291.17 26395.78 261
TAMVS94.01 13193.46 13595.64 14596.16 22290.45 16996.71 20096.89 23089.27 22893.46 16196.92 15687.29 12797.94 27988.70 23395.74 18098.53 131
MAR-MVS94.22 11893.46 13596.51 8698.00 10892.19 9997.67 10397.47 16488.13 26993.00 17195.84 21584.86 15899.51 9687.99 24098.17 12497.83 185
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HQP_MVS93.78 14293.43 13894.82 18896.21 21789.99 18097.74 9497.51 15894.85 3491.34 21296.64 17181.32 22498.60 20193.02 14692.23 24295.86 253
PLCcopyleft91.00 694.11 12693.43 13896.13 11998.58 6891.15 14496.69 20397.39 18287.29 29391.37 21196.71 16488.39 10499.52 9587.33 26097.13 15597.73 189
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PAPR94.18 11993.42 14096.48 9097.64 12991.42 12995.55 27897.71 13588.99 23792.34 18695.82 21789.19 8599.11 14086.14 27997.38 14498.90 104
XVG-OURS93.72 14493.35 14194.80 19397.07 15788.61 22694.79 30697.46 16791.97 14593.99 14897.86 9581.74 21998.88 17192.64 15192.67 23896.92 223
nrg03094.05 12993.31 14296.27 10995.22 27394.59 3198.34 2697.46 16792.93 11591.21 22396.64 17187.23 12998.22 23294.99 10385.80 31795.98 252
GeoE93.89 13693.28 14395.72 14296.96 17089.75 18898.24 3996.92 22789.47 22292.12 19397.21 13884.42 16398.39 22087.71 24796.50 16799.01 89
UGNet94.04 13093.28 14396.31 10496.85 17391.19 13997.88 7997.68 13694.40 5893.00 17196.18 19773.39 32299.61 6991.72 16898.46 11298.13 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Effi-MVS+-dtu93.08 16693.21 14592.68 29396.02 23183.25 33397.14 16796.72 24093.85 7491.20 22493.44 32983.08 18798.30 22791.69 17195.73 18196.50 234
VDD-MVS93.82 14093.08 14696.02 12697.88 11689.96 18497.72 9995.85 28492.43 12795.86 10798.44 4468.42 35399.39 11196.31 5194.85 19698.71 121
114514_t93.95 13393.06 14796.63 7699.07 3791.61 11897.46 13297.96 10277.99 38393.00 17197.57 11986.14 14499.33 11589.22 22199.15 7898.94 97
hse-mvs293.45 15292.99 14894.81 19097.02 16588.59 22796.69 20396.47 25995.19 2096.74 6696.16 20083.67 17598.48 21295.85 7579.13 37297.35 209
F-COLMAP93.58 14792.98 14995.37 16398.40 7588.98 21997.18 16397.29 19387.75 28290.49 23197.10 14685.21 15399.50 9986.70 27096.72 16397.63 193
HY-MVS89.66 993.87 13792.95 15096.63 7697.10 15692.49 8795.64 27696.64 24889.05 23593.00 17195.79 22185.77 14899.45 10589.16 22594.35 20697.96 176
FA-MVS(test-final)93.52 15092.92 15195.31 16496.77 18288.54 23094.82 30596.21 27289.61 21794.20 14395.25 24683.24 18299.14 13790.01 19896.16 17298.25 156
HyFIR lowres test93.66 14592.92 15195.87 13298.24 8789.88 18594.58 31198.49 1985.06 33093.78 15395.78 22282.86 19498.67 19491.77 16795.71 18299.07 85
test_fmvs1_n92.73 18492.88 15392.29 30096.08 23081.05 35297.98 6397.08 20790.72 18496.79 6398.18 7063.07 37698.45 21397.62 2098.42 11497.36 207
EI-MVSNet93.03 16992.88 15393.48 26395.77 23986.98 27296.44 22197.12 20290.66 18991.30 21597.64 11486.56 13498.05 25889.91 20190.55 27495.41 279
test111193.19 16192.82 15594.30 22097.58 14084.56 31898.21 4389.02 39293.53 8694.58 13598.21 6772.69 32399.05 15693.06 14498.48 11199.28 65
MVSTER93.20 16092.81 15694.37 21396.56 19589.59 19297.06 17097.12 20291.24 16691.30 21595.96 20982.02 21398.05 25893.48 13490.55 27495.47 276
OPM-MVS93.28 15792.76 15794.82 18894.63 30790.77 15896.65 20797.18 19793.72 7791.68 20597.26 13579.33 25898.63 19892.13 15892.28 24195.07 302
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test_djsdf93.07 16792.76 15794.00 23493.49 34388.70 22598.22 4197.57 15091.42 15990.08 24795.55 23582.85 19597.92 28294.07 12191.58 25595.40 282
Fast-Effi-MVS+93.46 15192.75 15995.59 15096.77 18290.03 17796.81 19197.13 20188.19 26591.30 21594.27 29486.21 14198.63 19887.66 25296.46 17098.12 167
HQP-MVS93.19 16192.74 16094.54 20695.86 23489.33 20696.65 20797.39 18293.55 8290.14 23795.87 21380.95 22798.50 20992.13 15892.10 24795.78 261
ECVR-MVScopyleft93.19 16192.73 16194.57 20597.66 12785.41 30398.21 4388.23 39493.43 9094.70 13398.21 6772.57 32499.07 15193.05 14598.49 10999.25 68
CHOSEN 280x42093.12 16492.72 16294.34 21696.71 18687.27 26390.29 38297.72 13186.61 30591.34 21295.29 24384.29 16798.41 21593.25 13998.94 9397.35 209
UniMVSNet_NR-MVSNet93.37 15492.67 16395.47 16095.34 26292.83 7697.17 16498.58 1792.98 11390.13 24195.80 21888.37 10597.85 28891.71 16983.93 34595.73 268
LFMVS93.60 14692.63 16496.52 8398.13 10091.27 13397.94 7393.39 36490.57 19696.29 8998.31 6069.00 34699.16 13494.18 12095.87 17799.12 80
BH-untuned92.94 17492.62 16593.92 24397.22 14886.16 29496.40 22996.25 26990.06 20689.79 25496.17 19983.19 18398.35 22387.19 26397.27 15097.24 214
LS3D93.57 14892.61 16696.47 9197.59 13691.61 11897.67 10397.72 13185.17 32890.29 23598.34 5484.60 16099.73 4283.85 31398.27 11998.06 173
LPG-MVS_test92.94 17492.56 16794.10 22796.16 22288.26 23997.65 10697.46 16791.29 16290.12 24397.16 14179.05 26298.73 18792.25 15491.89 25095.31 289
UniMVSNet (Re)93.31 15692.55 16895.61 14995.39 25693.34 6697.39 13898.71 1193.14 10490.10 24594.83 26387.71 11498.03 26291.67 17283.99 34495.46 277
ab-mvs93.57 14892.55 16896.64 7497.28 14791.96 10795.40 28597.45 17289.81 21393.22 16996.28 19379.62 25499.46 10390.74 18893.11 23098.50 135
CLD-MVS92.98 17192.53 17094.32 21796.12 22789.20 21395.28 29197.47 16492.66 12289.90 25095.62 23180.58 23498.40 21692.73 15092.40 24095.38 284
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LCM-MVSNet-Re92.50 18792.52 17192.44 29596.82 17881.89 34596.92 18293.71 36192.41 12884.30 34894.60 27485.08 15597.03 34191.51 17397.36 14598.40 148
ACMM89.79 892.96 17292.50 17294.35 21496.30 21588.71 22497.58 11697.36 18791.40 16190.53 23096.65 17079.77 25098.75 18591.24 18091.64 25395.59 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPA-MVSNet93.24 15892.48 17395.51 15595.70 24192.39 8997.86 8098.66 1692.30 13292.09 19595.37 24180.49 23698.40 21693.95 12485.86 31695.75 266
sd_testset93.10 16592.45 17495.05 17498.09 10189.21 21296.89 18497.64 14193.18 10191.79 20197.28 13275.35 30698.65 19688.99 22792.84 23397.28 212
1112_ss93.37 15492.42 17596.21 11497.05 16290.99 14696.31 23796.72 24086.87 30189.83 25396.69 16886.51 13699.14 13788.12 23893.67 22498.50 135
PMMVS92.86 17892.34 17694.42 21294.92 29186.73 27894.53 31396.38 26384.78 33594.27 14195.12 25283.13 18698.40 21691.47 17596.49 16898.12 167
tttt051792.96 17292.33 17794.87 18797.11 15587.16 26997.97 6992.09 37690.63 19193.88 15297.01 15176.50 29499.06 15490.29 19695.45 18798.38 150
QAPM93.45 15292.27 17896.98 7196.77 18292.62 8298.39 2598.12 6784.50 33888.27 29697.77 10282.39 20799.81 2985.40 29298.81 9798.51 134
test_vis1_n92.37 19492.26 17992.72 29094.75 30182.64 33698.02 5896.80 23791.18 16997.77 3797.93 8858.02 38498.29 22897.63 1998.21 12197.23 215
thisisatest053093.03 16992.21 18095.49 15797.07 15789.11 21797.49 12992.19 37590.16 20394.09 14696.41 18776.43 29799.05 15690.38 19395.68 18398.31 154
ACMP89.59 1092.62 18692.14 18194.05 23096.40 21088.20 24297.36 14197.25 19691.52 15488.30 29496.64 17178.46 27498.72 19091.86 16591.48 25795.23 296
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
VDDNet93.05 16892.07 18296.02 12696.84 17490.39 17298.08 5395.85 28486.22 31295.79 11098.46 4267.59 35699.19 12894.92 10494.85 19698.47 140
DU-MVS92.90 17692.04 18395.49 15794.95 28892.83 7697.16 16598.24 4793.02 10790.13 24195.71 22583.47 17897.85 28891.71 16983.93 34595.78 261
131492.81 18292.03 18495.14 17095.33 26589.52 19796.04 25297.44 17687.72 28386.25 33295.33 24283.84 17298.79 17989.26 21997.05 15697.11 217
PatchMatch-RL92.90 17692.02 18595.56 15198.19 9590.80 15695.27 29397.18 19787.96 27191.86 20095.68 22880.44 23798.99 16284.01 30897.54 13896.89 224
Fast-Effi-MVS+-dtu92.29 19991.99 18693.21 27495.27 26985.52 30197.03 17196.63 25192.09 14089.11 27795.14 25080.33 24098.08 25187.54 25694.74 20296.03 251
BH-RMVSNet92.72 18591.97 18794.97 18197.16 15287.99 24896.15 24895.60 29790.62 19291.87 19997.15 14378.41 27598.57 20583.16 31597.60 13798.36 152
IterMVS-LS92.29 19991.94 18893.34 26896.25 21686.97 27396.57 21997.05 21290.67 18789.50 26594.80 26586.59 13397.64 30689.91 20186.11 31595.40 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
baseline192.82 18191.90 18995.55 15397.20 15090.77 15897.19 16294.58 34092.20 13592.36 18396.34 19184.16 16998.21 23389.20 22383.90 34897.68 192
jajsoiax92.42 19191.89 19094.03 23393.33 34988.50 23297.73 9697.53 15692.00 14488.85 28196.50 18375.62 30498.11 24593.88 12891.56 25695.48 274
Test_1112_low_res92.84 18091.84 19195.85 13497.04 16489.97 18395.53 28096.64 24885.38 32389.65 25995.18 24885.86 14699.10 14187.70 24893.58 22998.49 137
mvs_tets92.31 19791.76 19293.94 24193.41 34688.29 23797.63 11297.53 15692.04 14288.76 28496.45 18574.62 31298.09 25093.91 12691.48 25795.45 278
CVMVSNet91.23 24691.75 19389.67 35095.77 23974.69 38596.44 22194.88 33185.81 31792.18 19097.64 11479.07 26195.58 36988.06 23995.86 17898.74 118
BH-w/o92.14 20791.75 19393.31 26996.99 16985.73 29895.67 27295.69 29288.73 25189.26 27394.82 26482.97 19298.07 25585.26 29496.32 17196.13 247
PVSNet86.66 1892.24 20291.74 19593.73 25097.77 12183.69 33092.88 36396.72 24087.91 27393.00 17194.86 26178.51 27399.05 15686.53 27197.45 14398.47 140
OpenMVScopyleft89.19 1292.86 17891.68 19696.40 9795.34 26292.73 8098.27 3398.12 6784.86 33385.78 33597.75 10378.89 26999.74 4187.50 25798.65 10296.73 229
TranMVSNet+NR-MVSNet92.50 18791.63 19795.14 17094.76 30092.07 10197.53 12298.11 7092.90 11689.56 26296.12 20283.16 18497.60 31189.30 21783.20 35495.75 266
thres600view792.49 18991.60 19895.18 16897.91 11489.47 19897.65 10694.66 33792.18 13993.33 16494.91 25878.06 28299.10 14181.61 32994.06 21996.98 219
thres100view90092.43 19091.58 19994.98 18097.92 11389.37 20497.71 10194.66 33792.20 13593.31 16594.90 25978.06 28299.08 14781.40 33294.08 21596.48 235
anonymousdsp92.16 20591.55 20093.97 23792.58 36289.55 19497.51 12397.42 18089.42 22488.40 29194.84 26280.66 23397.88 28791.87 16491.28 26194.48 334
WR-MVS92.34 19591.53 20194.77 19595.13 28090.83 15596.40 22997.98 10091.88 14689.29 27195.54 23682.50 20397.80 29389.79 20585.27 32595.69 269
tfpn200view992.38 19391.52 20294.95 18397.85 11789.29 20897.41 13394.88 33192.19 13793.27 16794.46 28378.17 27899.08 14781.40 33294.08 21596.48 235
thres40092.42 19191.52 20295.12 17297.85 11789.29 20897.41 13394.88 33192.19 13793.27 16794.46 28378.17 27899.08 14781.40 33294.08 21596.98 219
DP-MVS92.76 18391.51 20496.52 8398.77 5390.99 14697.38 14096.08 27682.38 35889.29 27197.87 9383.77 17399.69 5281.37 33596.69 16498.89 107
thres20092.23 20391.39 20594.75 19797.61 13389.03 21896.60 21595.09 32192.08 14193.28 16694.00 30778.39 27699.04 15981.26 33794.18 21196.19 242
WR-MVS_H92.00 21091.35 20693.95 23995.09 28289.47 19898.04 5798.68 1391.46 15788.34 29294.68 27085.86 14697.56 31385.77 28784.24 34294.82 319
PatchmatchNetpermissive91.91 21291.35 20693.59 25895.38 25784.11 32393.15 35895.39 30489.54 21992.10 19493.68 31982.82 19698.13 24184.81 29895.32 18998.52 132
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst91.44 23491.32 20891.79 31495.15 27879.20 37493.42 35395.37 30688.55 25693.49 16093.67 32082.49 20498.27 22990.41 19289.34 28697.90 179
VPNet92.23 20391.31 20994.99 17895.56 24790.96 14897.22 16097.86 11592.96 11490.96 22596.62 17875.06 30798.20 23491.90 16283.65 35095.80 259
thisisatest051592.29 19991.30 21095.25 16696.60 19088.90 22194.36 32192.32 37487.92 27293.43 16294.57 27577.28 28999.00 16189.42 21495.86 17897.86 182
EPNet_dtu91.71 21891.28 21192.99 28093.76 33483.71 32996.69 20395.28 31193.15 10387.02 32295.95 21083.37 18197.38 33079.46 34896.84 15897.88 181
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
NR-MVSNet92.34 19591.27 21295.53 15494.95 28893.05 7297.39 13898.07 7992.65 12384.46 34695.71 22585.00 15697.77 29789.71 20683.52 35195.78 261
CP-MVSNet91.89 21491.24 21393.82 24695.05 28488.57 22897.82 8798.19 5591.70 15088.21 29895.76 22381.96 21497.52 31987.86 24284.65 33495.37 285
XXY-MVS92.16 20591.23 21494.95 18394.75 30190.94 15097.47 13097.43 17989.14 23188.90 27896.43 18679.71 25198.24 23089.56 21187.68 30095.67 270
TAPA-MVS90.10 792.30 19891.22 21595.56 15198.33 8089.60 19196.79 19297.65 13981.83 36391.52 20797.23 13787.94 11198.91 16971.31 38498.37 11598.17 164
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test-LLR91.42 23591.19 21692.12 30494.59 30880.66 35594.29 32692.98 36691.11 17290.76 22892.37 34679.02 26498.07 25588.81 23096.74 16197.63 193
SCA91.84 21591.18 21793.83 24595.59 24584.95 31494.72 30795.58 29990.82 17992.25 18993.69 31775.80 30198.10 24686.20 27795.98 17498.45 142
miper_ehance_all_eth91.59 22591.13 21892.97 28195.55 24886.57 28394.47 31596.88 23187.77 28088.88 28094.01 30686.22 14097.54 31589.49 21286.93 30794.79 324
FE-MVS92.05 20991.05 21995.08 17396.83 17687.93 24993.91 33995.70 29086.30 30994.15 14594.97 25476.59 29399.21 12684.10 30696.86 15798.09 171
testing9191.90 21391.02 22094.53 20796.54 19886.55 28595.86 26295.64 29691.77 14891.89 19893.47 32869.94 34298.86 17290.23 19793.86 22298.18 161
miper_enhance_ethall91.54 23091.01 22193.15 27595.35 26187.07 27193.97 33496.90 22886.79 30289.17 27593.43 33286.55 13597.64 30689.97 20086.93 30794.74 328
D2MVS91.30 24490.95 22292.35 29794.71 30485.52 30196.18 24798.21 5188.89 24286.60 32993.82 31379.92 24897.95 27889.29 21890.95 26993.56 352
c3_l91.38 23790.89 22392.88 28595.58 24686.30 28994.68 30896.84 23588.17 26688.83 28394.23 29785.65 14997.47 32289.36 21584.63 33594.89 314
V4291.58 22790.87 22493.73 25094.05 32688.50 23297.32 14796.97 21988.80 24989.71 25594.33 28982.54 20298.05 25889.01 22685.07 32994.64 332
baseline291.63 22290.86 22593.94 24194.33 31886.32 28895.92 25991.64 38089.37 22586.94 32594.69 26981.62 22198.69 19288.64 23494.57 20596.81 227
RPSCF90.75 26690.86 22590.42 34296.84 17476.29 38395.61 27796.34 26483.89 34491.38 21097.87 9376.45 29598.78 18087.16 26592.23 24296.20 241
v2v48291.59 22590.85 22793.80 24793.87 33188.17 24496.94 18196.88 23189.54 21989.53 26394.90 25981.70 22098.02 26389.25 22085.04 33195.20 297
PS-CasMVS91.55 22990.84 22893.69 25494.96 28788.28 23897.84 8498.24 4791.46 15788.04 30295.80 21879.67 25297.48 32187.02 26784.54 33995.31 289
Anonymous20240521192.07 20890.83 22995.76 13698.19 9588.75 22397.58 11695.00 32486.00 31593.64 15597.45 12466.24 36799.53 9190.68 19092.71 23699.01 89
test250691.60 22490.78 23094.04 23197.66 12783.81 32698.27 3375.53 40993.43 9095.23 12498.21 6767.21 35999.07 15193.01 14898.49 10999.25 68
MDTV_nov1_ep1390.76 23195.22 27380.33 36193.03 36195.28 31188.14 26892.84 17793.83 31181.34 22398.08 25182.86 31894.34 207
testing1191.68 22190.75 23294.47 20896.53 20086.56 28495.76 26994.51 34291.10 17491.24 22293.59 32368.59 35098.86 17291.10 18294.29 20898.00 175
AUN-MVS91.76 21790.75 23294.81 19097.00 16788.57 22896.65 20796.49 25889.63 21692.15 19196.12 20278.66 27198.50 20990.83 18579.18 37197.36 207
Anonymous2024052991.98 21190.73 23495.73 14198.14 9989.40 20297.99 6297.72 13179.63 37793.54 15897.41 12769.94 34299.56 8591.04 18491.11 26598.22 158
testing9991.62 22390.72 23594.32 21796.48 20586.11 29595.81 26594.76 33591.55 15391.75 20393.44 32968.55 35198.82 17690.43 19193.69 22398.04 174
CostFormer91.18 25190.70 23692.62 29494.84 29781.76 34694.09 33294.43 34384.15 34192.72 17893.77 31579.43 25698.20 23490.70 18992.18 24597.90 179
FMVSNet391.78 21690.69 23795.03 17696.53 20092.27 9597.02 17396.93 22389.79 21489.35 26894.65 27277.01 29097.47 32286.12 28088.82 28995.35 286
Baseline_NR-MVSNet91.20 24890.62 23892.95 28293.83 33288.03 24797.01 17695.12 32088.42 26089.70 25695.13 25183.47 17897.44 32589.66 20983.24 35393.37 356
v114491.37 23990.60 23993.68 25593.89 33088.23 24196.84 18997.03 21688.37 26189.69 25794.39 28582.04 21297.98 26787.80 24485.37 32294.84 316
eth_miper_zixun_eth91.02 25690.59 24092.34 29995.33 26584.35 31994.10 33196.90 22888.56 25588.84 28294.33 28984.08 17097.60 31188.77 23284.37 34195.06 303
TR-MVS91.48 23390.59 24094.16 22596.40 21087.33 26095.67 27295.34 31087.68 28491.46 20995.52 23776.77 29298.35 22382.85 32093.61 22796.79 228
cl2291.21 24790.56 24293.14 27696.09 22986.80 27594.41 31996.58 25487.80 27888.58 28893.99 30880.85 23297.62 30989.87 20386.93 30794.99 305
v891.29 24590.53 24393.57 26094.15 32288.12 24697.34 14397.06 21188.99 23788.32 29394.26 29683.08 18798.01 26487.62 25483.92 34794.57 333
MVS91.71 21890.44 24495.51 15595.20 27591.59 12096.04 25297.45 17273.44 39287.36 31595.60 23285.42 15199.10 14185.97 28497.46 13995.83 257
PEN-MVS91.20 24890.44 24493.48 26394.49 31287.91 25297.76 9298.18 5791.29 16287.78 30695.74 22480.35 23997.33 33285.46 29182.96 35595.19 300
v14890.99 25790.38 24692.81 28893.83 33285.80 29796.78 19496.68 24589.45 22388.75 28593.93 31082.96 19397.82 29287.83 24383.25 35294.80 322
DIV-MVS_self_test90.97 25990.33 24792.88 28595.36 26086.19 29394.46 31796.63 25187.82 27688.18 29994.23 29782.99 19097.53 31787.72 24585.57 31994.93 310
cl____90.96 26090.32 24892.89 28495.37 25986.21 29294.46 31796.64 24887.82 27688.15 30094.18 30082.98 19197.54 31587.70 24885.59 31894.92 312
GA-MVS91.38 23790.31 24994.59 20094.65 30687.62 25894.34 32296.19 27390.73 18390.35 23493.83 31171.84 32797.96 27487.22 26293.61 22798.21 159
PAPM91.52 23190.30 25095.20 16795.30 26889.83 18693.38 35496.85 23486.26 31188.59 28795.80 21884.88 15798.15 23975.67 36795.93 17697.63 193
v14419291.06 25490.28 25193.39 26693.66 33887.23 26696.83 19097.07 20987.43 28989.69 25794.28 29381.48 22298.00 26587.18 26484.92 33394.93 310
GBi-Net91.35 24090.27 25294.59 20096.51 20291.18 14097.50 12496.93 22388.82 24689.35 26894.51 27873.87 31697.29 33486.12 28088.82 28995.31 289
test191.35 24090.27 25294.59 20096.51 20291.18 14097.50 12496.93 22388.82 24689.35 26894.51 27873.87 31697.29 33486.12 28088.82 28995.31 289
MSDG91.42 23590.24 25494.96 18297.15 15488.91 22093.69 34696.32 26585.72 31986.93 32696.47 18480.24 24198.98 16380.57 33995.05 19596.98 219
v119291.07 25390.23 25593.58 25993.70 33587.82 25596.73 19797.07 20987.77 28089.58 26094.32 29180.90 23197.97 27086.52 27285.48 32094.95 306
v1091.04 25590.23 25593.49 26294.12 32388.16 24597.32 14797.08 20788.26 26488.29 29594.22 29982.17 21197.97 27086.45 27484.12 34394.33 340
UniMVSNet_ETH3D91.34 24290.22 25794.68 19894.86 29687.86 25397.23 15997.46 16787.99 27089.90 25096.92 15666.35 36598.23 23190.30 19590.99 26897.96 176
XVG-ACMP-BASELINE90.93 26190.21 25893.09 27794.31 32085.89 29695.33 28897.26 19491.06 17589.38 26795.44 24068.61 34998.60 20189.46 21391.05 26694.79 324
OurMVSNet-221017-090.51 27590.19 25991.44 32393.41 34681.25 34996.98 17896.28 26691.68 15186.55 33096.30 19274.20 31597.98 26788.96 22887.40 30595.09 301
ET-MVSNet_ETH3D91.49 23290.11 26095.63 14696.40 21091.57 12295.34 28793.48 36390.60 19575.58 38595.49 23880.08 24496.79 35094.25 11989.76 28298.52 132
MVP-Stereo90.74 26790.08 26192.71 29193.19 35188.20 24295.86 26296.27 26786.07 31484.86 34494.76 26677.84 28597.75 29883.88 31298.01 12792.17 374
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
FMVSNet291.31 24390.08 26194.99 17896.51 20292.21 9697.41 13396.95 22188.82 24688.62 28694.75 26773.87 31697.42 32785.20 29588.55 29495.35 286
cascas91.20 24890.08 26194.58 20494.97 28689.16 21693.65 34897.59 14879.90 37689.40 26692.92 33775.36 30598.36 22292.14 15794.75 20196.23 239
tt080591.09 25290.07 26494.16 22595.61 24488.31 23697.56 11896.51 25789.56 21889.17 27595.64 23067.08 36398.38 22191.07 18388.44 29595.80 259
miper_lstm_enhance90.50 27690.06 26591.83 31195.33 26583.74 32793.86 34096.70 24487.56 28787.79 30593.81 31483.45 18096.92 34687.39 25884.62 33694.82 319
v192192090.85 26390.03 26693.29 27093.55 33986.96 27496.74 19697.04 21487.36 29189.52 26494.34 28880.23 24297.97 27086.27 27585.21 32694.94 308
PCF-MVS89.48 1191.56 22889.95 26796.36 10296.60 19092.52 8692.51 36897.26 19479.41 37888.90 27896.56 18084.04 17199.55 8777.01 36297.30 14997.01 218
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_fmvs289.77 29689.93 26889.31 35493.68 33776.37 38297.64 11095.90 28189.84 21291.49 20896.26 19558.77 38397.10 33894.65 11391.13 26494.46 335
LTVRE_ROB88.41 1390.99 25789.92 26994.19 22396.18 22089.55 19496.31 23797.09 20687.88 27485.67 33695.91 21278.79 27098.57 20581.50 33089.98 27994.44 337
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v7n90.76 26589.86 27093.45 26593.54 34087.60 25997.70 10297.37 18588.85 24387.65 30894.08 30581.08 22698.10 24684.68 30083.79 34994.66 331
v124090.70 26989.85 27193.23 27293.51 34286.80 27596.61 21397.02 21787.16 29689.58 26094.31 29279.55 25597.98 26785.52 29085.44 32194.90 313
pmmvs490.93 26189.85 27194.17 22493.34 34890.79 15794.60 31096.02 27784.62 33687.45 31195.15 24981.88 21797.45 32487.70 24887.87 29994.27 344
IterMVS-SCA-FT90.31 27889.81 27391.82 31295.52 24984.20 32294.30 32596.15 27490.61 19387.39 31494.27 29475.80 30196.44 35387.34 25986.88 31194.82 319
EPMVS90.70 26989.81 27393.37 26794.73 30384.21 32193.67 34788.02 39589.50 22192.38 18293.49 32677.82 28697.78 29586.03 28392.68 23798.11 170
MS-PatchMatch90.27 28089.77 27591.78 31594.33 31884.72 31795.55 27896.73 23986.17 31386.36 33195.28 24571.28 33197.80 29384.09 30798.14 12592.81 362
CR-MVSNet90.82 26489.77 27593.95 23994.45 31487.19 26790.23 38395.68 29486.89 30092.40 18092.36 34980.91 22997.05 34081.09 33893.95 22097.60 198
DTE-MVSNet90.56 27289.75 27793.01 27993.95 32787.25 26497.64 11097.65 13990.74 18287.12 31895.68 22879.97 24797.00 34483.33 31481.66 36194.78 326
tpm90.25 28189.74 27891.76 31793.92 32879.73 36893.98 33393.54 36288.28 26391.99 19693.25 33377.51 28897.44 32587.30 26187.94 29898.12 167
X-MVStestdata91.71 21889.67 27997.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7632.69 40891.70 4899.80 3095.66 8199.40 5399.62 18
IterMVS90.15 28689.67 27991.61 31995.48 25183.72 32894.33 32396.12 27589.99 20787.31 31794.15 30275.78 30396.27 35686.97 26886.89 31094.83 317
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pm-mvs190.72 26889.65 28193.96 23894.29 32189.63 18997.79 9196.82 23689.07 23386.12 33495.48 23978.61 27297.78 29586.97 26881.67 36094.46 335
WB-MVSnew89.88 29289.56 28290.82 33494.57 31183.06 33495.65 27592.85 36887.86 27590.83 22794.10 30379.66 25396.88 34776.34 36394.19 21092.54 367
test-mter90.19 28589.54 28392.12 30494.59 30880.66 35594.29 32692.98 36687.68 28490.76 22892.37 34667.67 35598.07 25588.81 23096.74 16197.63 193
dmvs_re90.21 28389.50 28492.35 29795.47 25485.15 30995.70 27194.37 34690.94 17888.42 29093.57 32474.63 31195.67 36682.80 32189.57 28496.22 240
UWE-MVS89.91 28989.48 28591.21 32795.88 23378.23 37994.91 30490.26 38889.11 23292.35 18594.52 27768.76 34897.96 27483.95 31095.59 18597.42 205
Anonymous2023121190.63 27189.42 28694.27 22298.24 8789.19 21598.05 5697.89 10779.95 37588.25 29794.96 25572.56 32598.13 24189.70 20785.14 32795.49 273
TESTMET0.1,190.06 28789.42 28691.97 30794.41 31680.62 35794.29 32691.97 37887.28 29490.44 23292.47 34568.79 34797.67 30388.50 23696.60 16697.61 197
ACMH87.59 1690.53 27389.42 28693.87 24496.21 21787.92 25097.24 15596.94 22288.45 25983.91 35696.27 19471.92 32698.62 20084.43 30389.43 28595.05 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft87.81 1590.40 27789.28 28993.79 24897.95 11087.13 27096.92 18295.89 28382.83 35586.88 32897.18 14073.77 31999.29 12178.44 35393.62 22694.95 306
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tpm289.96 28889.21 29092.23 30394.91 29381.25 34993.78 34294.42 34480.62 37391.56 20693.44 32976.44 29697.94 27985.60 28992.08 24997.49 202
ACMH+87.92 1490.20 28489.18 29193.25 27196.48 20586.45 28696.99 17796.68 24588.83 24584.79 34596.22 19670.16 33998.53 20784.42 30488.04 29794.77 327
tpmvs89.83 29589.15 29291.89 30994.92 29180.30 36293.11 35995.46 30386.28 31088.08 30192.65 33980.44 23798.52 20881.47 33189.92 28096.84 226
ETVMVS90.52 27489.14 29394.67 19996.81 17987.85 25495.91 26093.97 35589.71 21592.34 18692.48 34465.41 37197.96 27481.37 33594.27 20998.21 159
AllTest90.23 28288.98 29493.98 23597.94 11186.64 27996.51 22095.54 30085.38 32385.49 33896.77 16270.28 33799.15 13580.02 34392.87 23196.15 245
testing22290.31 27888.96 29594.35 21496.54 19887.29 26195.50 28193.84 35990.97 17791.75 20392.96 33662.18 38098.00 26582.86 31894.08 21597.76 188
EU-MVSNet88.72 30888.90 29688.20 35893.15 35274.21 38696.63 21294.22 35085.18 32787.32 31695.97 20876.16 29894.98 37485.27 29386.17 31395.41 279
pmmvs589.86 29488.87 29792.82 28792.86 35586.23 29196.26 24095.39 30484.24 34087.12 31894.51 27874.27 31497.36 33187.61 25587.57 30194.86 315
test0.0.03 189.37 30088.70 29891.41 32492.47 36485.63 29995.22 29692.70 37191.11 17286.91 32793.65 32179.02 26493.19 38978.00 35589.18 28795.41 279
ADS-MVSNet89.89 29188.68 29993.53 26195.86 23484.89 31590.93 37895.07 32283.23 35391.28 21991.81 35879.01 26697.85 28879.52 34591.39 25997.84 183
ADS-MVSNet289.45 29888.59 30092.03 30695.86 23482.26 34290.93 37894.32 34983.23 35391.28 21991.81 35879.01 26695.99 35879.52 34591.39 25997.84 183
SixPastTwentyTwo89.15 30188.54 30190.98 33193.49 34380.28 36396.70 20194.70 33690.78 18084.15 35195.57 23371.78 32897.71 30184.63 30185.07 32994.94 308
tfpnnormal89.70 29788.40 30293.60 25795.15 27890.10 17697.56 11898.16 6187.28 29486.16 33394.63 27377.57 28798.05 25874.48 37184.59 33792.65 365
FMVSNet189.88 29288.31 30394.59 20095.41 25591.18 14097.50 12496.93 22386.62 30487.41 31394.51 27865.94 36997.29 33483.04 31787.43 30395.31 289
IB-MVS87.33 1789.91 28988.28 30494.79 19495.26 27287.70 25795.12 30093.95 35689.35 22687.03 32192.49 34370.74 33599.19 12889.18 22481.37 36297.49 202
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
dp88.90 30588.26 30590.81 33594.58 31076.62 38192.85 36494.93 32885.12 32990.07 24893.07 33475.81 30098.12 24480.53 34087.42 30497.71 190
Patchmatch-test89.42 29987.99 30693.70 25395.27 26985.11 31088.98 39094.37 34681.11 36787.10 32093.69 31782.28 20897.50 32074.37 37394.76 20098.48 139
our_test_388.78 30787.98 30791.20 32992.45 36582.53 33893.61 35095.69 29285.77 31884.88 34393.71 31679.99 24696.78 35179.47 34786.24 31294.28 343
USDC88.94 30387.83 30892.27 30194.66 30584.96 31393.86 34095.90 28187.34 29283.40 35895.56 23467.43 35798.19 23682.64 32589.67 28393.66 351
TransMVSNet (Re)88.94 30387.56 30993.08 27894.35 31788.45 23597.73 9695.23 31587.47 28884.26 34995.29 24379.86 24997.33 33279.44 34974.44 38393.45 355
PatchT88.87 30687.42 31093.22 27394.08 32585.10 31189.51 38894.64 33981.92 36292.36 18388.15 38480.05 24597.01 34372.43 38093.65 22597.54 201
ppachtmachnet_test88.35 31287.29 31191.53 32092.45 36583.57 33193.75 34395.97 27884.28 33985.32 34194.18 30079.00 26896.93 34575.71 36684.99 33294.10 345
Patchmtry88.64 30987.25 31292.78 28994.09 32486.64 27989.82 38795.68 29480.81 37187.63 30992.36 34980.91 22997.03 34178.86 35185.12 32894.67 330
LF4IMVS87.94 31587.25 31289.98 34792.38 36780.05 36694.38 32095.25 31487.59 28684.34 34794.74 26864.31 37397.66 30584.83 29787.45 30292.23 371
testgi87.97 31487.21 31490.24 34492.86 35580.76 35396.67 20694.97 32691.74 14985.52 33795.83 21662.66 37894.47 37876.25 36488.36 29695.48 274
tpm cat188.36 31187.21 31491.81 31395.13 28080.55 35892.58 36795.70 29074.97 38987.45 31191.96 35678.01 28498.17 23880.39 34188.74 29296.72 230
RPMNet88.98 30287.05 31694.77 19594.45 31487.19 26790.23 38398.03 9177.87 38592.40 18087.55 38880.17 24399.51 9668.84 38993.95 22097.60 198
JIA-IIPM88.26 31387.04 31791.91 30893.52 34181.42 34889.38 38994.38 34580.84 37090.93 22680.74 39679.22 25997.92 28282.76 32291.62 25496.38 238
Syy-MVS87.13 32387.02 31887.47 36195.16 27673.21 38995.00 30193.93 35788.55 25686.96 32391.99 35475.90 29994.00 38261.59 39594.11 21295.20 297
testing387.67 31886.88 31990.05 34696.14 22580.71 35497.10 16992.85 36890.15 20487.54 31094.55 27655.70 38994.10 38173.77 37694.10 21495.35 286
MIMVSNet88.50 31086.76 32093.72 25294.84 29787.77 25691.39 37394.05 35286.41 30887.99 30392.59 34263.27 37595.82 36377.44 35692.84 23397.57 200
K. test v387.64 31986.75 32190.32 34393.02 35479.48 37296.61 21392.08 37790.66 18980.25 37494.09 30467.21 35996.65 35285.96 28580.83 36494.83 317
myMVS_eth3d87.18 32286.38 32289.58 35195.16 27679.53 36995.00 30193.93 35788.55 25686.96 32391.99 35456.23 38894.00 38275.47 36994.11 21295.20 297
Patchmatch-RL test87.38 32086.24 32390.81 33588.74 38978.40 37888.12 39593.17 36587.11 29782.17 36589.29 37681.95 21595.60 36888.64 23477.02 37698.41 147
pmmvs687.81 31786.19 32492.69 29291.32 37286.30 28997.34 14396.41 26280.59 37484.05 35594.37 28767.37 35897.67 30384.75 29979.51 37094.09 347
Anonymous2023120687.09 32486.14 32589.93 34891.22 37380.35 36096.11 24995.35 30783.57 35084.16 35093.02 33573.54 32195.61 36772.16 38186.14 31493.84 350
DSMNet-mixed86.34 33086.12 32687.00 36589.88 38170.43 39194.93 30390.08 38977.97 38485.42 34092.78 33874.44 31393.96 38474.43 37295.14 19196.62 231
FMVSNet587.29 32185.79 32791.78 31594.80 29987.28 26295.49 28295.28 31184.09 34283.85 35791.82 35762.95 37794.17 38078.48 35285.34 32493.91 349
gg-mvs-nofinetune87.82 31685.61 32894.44 21094.46 31389.27 21191.21 37784.61 40380.88 36989.89 25274.98 39971.50 32997.53 31785.75 28897.21 15296.51 233
Anonymous2024052186.42 32985.44 32989.34 35390.33 37779.79 36796.73 19795.92 27983.71 34883.25 35991.36 36263.92 37496.01 35778.39 35485.36 32392.22 372
EG-PatchMatch MVS87.02 32585.44 32991.76 31792.67 35985.00 31296.08 25196.45 26083.41 35279.52 37693.49 32657.10 38697.72 30079.34 35090.87 27192.56 366
test20.0386.14 33485.40 33188.35 35690.12 37880.06 36595.90 26195.20 31688.59 25281.29 36793.62 32271.43 33092.65 39071.26 38581.17 36392.34 370
TinyColmap86.82 32685.35 33291.21 32794.91 29382.99 33593.94 33694.02 35483.58 34981.56 36694.68 27062.34 37998.13 24175.78 36587.35 30692.52 368
CL-MVSNet_self_test86.31 33185.15 33389.80 34988.83 38781.74 34793.93 33796.22 27086.67 30385.03 34290.80 36578.09 28194.50 37674.92 37071.86 38893.15 358
test_vis1_rt86.16 33385.06 33489.46 35293.47 34580.46 35996.41 22586.61 40085.22 32679.15 37888.64 37952.41 39297.06 33993.08 14390.57 27390.87 383
KD-MVS_self_test85.95 33684.95 33588.96 35589.55 38479.11 37595.13 29996.42 26185.91 31684.07 35490.48 36670.03 34194.82 37580.04 34272.94 38692.94 360
CMPMVSbinary62.92 2185.62 33984.92 33687.74 36089.14 38573.12 39094.17 32996.80 23773.98 39073.65 38994.93 25766.36 36497.61 31083.95 31091.28 26192.48 369
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_040286.46 32884.79 33791.45 32295.02 28585.55 30096.29 23994.89 33080.90 36882.21 36493.97 30968.21 35497.29 33462.98 39388.68 29391.51 378
TDRefinement86.53 32784.76 33891.85 31082.23 40284.25 32096.38 23195.35 30784.97 33284.09 35394.94 25665.76 37098.34 22684.60 30274.52 38292.97 359
pmmvs-eth3d86.22 33284.45 33991.53 32088.34 39087.25 26494.47 31595.01 32383.47 35179.51 37789.61 37469.75 34495.71 36483.13 31676.73 37991.64 375
UnsupCasMVSNet_eth85.99 33584.45 33990.62 33989.97 38082.40 34193.62 34997.37 18589.86 20978.59 38092.37 34665.25 37295.35 37382.27 32770.75 38994.10 345
YYNet185.87 33784.23 34190.78 33892.38 36782.46 34093.17 35695.14 31982.12 36167.69 39292.36 34978.16 28095.50 37177.31 35879.73 36894.39 338
MDA-MVSNet_test_wron85.87 33784.23 34190.80 33792.38 36782.57 33793.17 35695.15 31882.15 36067.65 39492.33 35278.20 27795.51 37077.33 35779.74 36794.31 342
PVSNet_082.17 1985.46 34083.64 34390.92 33295.27 26979.49 37190.55 38195.60 29783.76 34783.00 36289.95 37171.09 33297.97 27082.75 32360.79 40195.31 289
MIMVSNet184.93 34283.05 34490.56 34089.56 38384.84 31695.40 28595.35 30783.91 34380.38 37292.21 35357.23 38593.34 38870.69 38782.75 35893.50 353
test_fmvs383.21 34883.02 34583.78 37086.77 39468.34 39696.76 19594.91 32986.49 30684.14 35289.48 37536.04 40291.73 39291.86 16580.77 36591.26 382
MDA-MVSNet-bldmvs85.00 34182.95 34691.17 33093.13 35383.33 33294.56 31295.00 32484.57 33765.13 39892.65 33970.45 33695.85 36173.57 37777.49 37594.33 340
KD-MVS_2432*160084.81 34382.64 34791.31 32591.07 37485.34 30791.22 37595.75 28885.56 32183.09 36090.21 36967.21 35995.89 35977.18 36062.48 39992.69 363
miper_refine_blended84.81 34382.64 34791.31 32591.07 37485.34 30791.22 37595.75 28885.56 32183.09 36090.21 36967.21 35995.89 35977.18 36062.48 39992.69 363
dmvs_testset81.38 35382.60 34977.73 37691.74 37151.49 41193.03 36184.21 40489.07 23378.28 38191.25 36376.97 29188.53 39956.57 39982.24 35993.16 357
mvsany_test383.59 34682.44 35087.03 36483.80 39773.82 38793.70 34490.92 38686.42 30782.51 36390.26 36846.76 39795.71 36490.82 18676.76 37891.57 377
OpenMVS_ROBcopyleft81.14 2084.42 34582.28 35190.83 33390.06 37984.05 32595.73 27094.04 35373.89 39180.17 37591.53 36159.15 38297.64 30666.92 39189.05 28890.80 384
new-patchmatchnet83.18 34981.87 35287.11 36386.88 39375.99 38493.70 34495.18 31785.02 33177.30 38388.40 38165.99 36893.88 38574.19 37570.18 39091.47 380
PM-MVS83.48 34781.86 35388.31 35787.83 39277.59 38093.43 35291.75 37986.91 29980.63 37089.91 37244.42 39895.84 36285.17 29676.73 37991.50 379
MVS-HIRNet82.47 35181.21 35486.26 36795.38 25769.21 39488.96 39189.49 39066.28 39680.79 36974.08 40168.48 35297.39 32971.93 38295.47 18692.18 373
new_pmnet82.89 35081.12 35588.18 35989.63 38280.18 36491.77 37292.57 37276.79 38775.56 38688.23 38361.22 38194.48 37771.43 38382.92 35689.87 387
test_f80.57 35479.62 35683.41 37183.38 40067.80 39893.57 35193.72 36080.80 37277.91 38287.63 38733.40 40392.08 39187.14 26679.04 37390.34 386
UnsupCasMVSNet_bld82.13 35279.46 35790.14 34588.00 39182.47 33990.89 38096.62 25378.94 38075.61 38484.40 39456.63 38796.31 35577.30 35966.77 39691.63 376
N_pmnet78.73 35778.71 35878.79 37592.80 35746.50 41494.14 33043.71 41678.61 38180.83 36891.66 36074.94 30996.36 35467.24 39084.45 34093.50 353
APD_test179.31 35677.70 35984.14 36989.11 38669.07 39592.36 37191.50 38169.07 39473.87 38892.63 34139.93 40094.32 37970.54 38880.25 36689.02 389
pmmvs379.97 35577.50 36087.39 36282.80 40179.38 37392.70 36690.75 38770.69 39378.66 37987.47 38951.34 39393.40 38773.39 37869.65 39189.38 388
WB-MVS76.77 35876.63 36177.18 37785.32 39556.82 40994.53 31389.39 39182.66 35771.35 39089.18 37775.03 30888.88 39735.42 40666.79 39585.84 391
SSC-MVS76.05 35975.83 36276.72 38184.77 39656.22 41094.32 32488.96 39381.82 36470.52 39188.91 37874.79 31088.71 39833.69 40764.71 39785.23 392
test_vis3_rt72.73 36070.55 36379.27 37480.02 40368.13 39793.92 33874.30 41176.90 38658.99 40273.58 40220.29 41195.37 37284.16 30572.80 38774.31 399
FPMVS71.27 36269.85 36475.50 38274.64 40759.03 40791.30 37491.50 38158.80 39957.92 40388.28 38229.98 40685.53 40253.43 40082.84 35781.95 395
LCM-MVSNet72.55 36169.39 36582.03 37270.81 41265.42 40190.12 38594.36 34855.02 40265.88 39681.72 39524.16 41089.96 39374.32 37468.10 39490.71 385
dongtai69.99 36469.33 36671.98 38588.78 38861.64 40589.86 38659.93 41575.67 38874.96 38785.45 39150.19 39481.66 40443.86 40355.27 40272.63 400
PMMVS270.19 36366.92 36780.01 37376.35 40665.67 40086.22 39687.58 39764.83 39862.38 39980.29 39826.78 40888.49 40063.79 39254.07 40385.88 390
testf169.31 36566.76 36876.94 37978.61 40461.93 40388.27 39386.11 40155.62 40059.69 40085.31 39220.19 41289.32 39457.62 39669.44 39279.58 396
APD_test269.31 36566.76 36876.94 37978.61 40461.93 40388.27 39386.11 40155.62 40059.69 40085.31 39220.19 41289.32 39457.62 39669.44 39279.58 396
Gipumacopyleft67.86 36865.41 37075.18 38392.66 36073.45 38866.50 40494.52 34153.33 40357.80 40466.07 40430.81 40489.20 39648.15 40278.88 37462.90 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method66.11 36964.89 37169.79 38672.62 41035.23 41865.19 40592.83 37020.35 40865.20 39788.08 38543.14 39982.70 40373.12 37963.46 39891.45 381
kuosan65.27 37064.66 37267.11 38883.80 39761.32 40688.53 39260.77 41468.22 39567.67 39380.52 39749.12 39570.76 41029.67 40953.64 40469.26 402
EGC-MVSNET68.77 36763.01 37386.07 36892.49 36382.24 34393.96 33590.96 3850.71 4132.62 41490.89 36453.66 39093.46 38657.25 39884.55 33882.51 394
ANet_high63.94 37159.58 37477.02 37861.24 41466.06 39985.66 39887.93 39678.53 38242.94 40671.04 40325.42 40980.71 40552.60 40130.83 40784.28 393
PMVScopyleft53.92 2258.58 37255.40 37568.12 38751.00 41548.64 41278.86 40187.10 39946.77 40435.84 41074.28 4008.76 41486.34 40142.07 40473.91 38469.38 401
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt51.94 37653.82 37646.29 39233.73 41645.30 41678.32 40267.24 41318.02 40950.93 40587.05 39052.99 39153.11 41170.76 38625.29 40940.46 407
E-PMN53.28 37352.56 37755.43 39074.43 40847.13 41383.63 40076.30 40842.23 40542.59 40762.22 40628.57 40774.40 40731.53 40831.51 40644.78 405
EMVS52.08 37551.31 37854.39 39172.62 41045.39 41583.84 39975.51 41041.13 40640.77 40859.65 40730.08 40573.60 40828.31 41029.90 40844.18 406
MVEpermissive50.73 2353.25 37448.81 37966.58 38965.34 41357.50 40872.49 40370.94 41240.15 40739.28 40963.51 4056.89 41673.48 40938.29 40542.38 40568.76 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k23.24 37830.99 3800.00 3960.00 4190.00 4210.00 40797.63 1430.00 4140.00 41596.88 15884.38 1640.00 4150.00 4140.00 4130.00 411
wuyk23d25.11 37724.57 38126.74 39373.98 40939.89 41757.88 4069.80 41712.27 41010.39 4116.97 4137.03 41536.44 41225.43 41117.39 4103.89 410
testmvs13.36 37916.33 3824.48 3955.04 4172.26 42093.18 3553.28 4182.70 4118.24 41221.66 4092.29 4182.19 4137.58 4122.96 4119.00 409
test12313.04 38015.66 3835.18 3944.51 4183.45 41992.50 3691.81 4192.50 4127.58 41320.15 4103.67 4172.18 4147.13 4131.07 4129.90 408
ab-mvs-re8.06 38110.74 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41596.69 1680.00 4190.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.39 3829.85 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41488.65 960.00 4150.00 4140.00 4130.00 411
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS79.53 36975.56 368
FOURS199.55 193.34 6699.29 198.35 2794.98 2998.49 23
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
PC_three_145290.77 18198.89 1498.28 6596.24 198.35 22395.76 7999.58 2499.59 22
No_MVS98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
test_one_060199.32 2295.20 2098.25 4595.13 2398.48 2498.87 1595.16 7
eth-test20.00 419
eth-test0.00 419
ZD-MVS99.05 3994.59 3198.08 7489.22 22997.03 5898.10 7392.52 3599.65 5894.58 11699.31 63
IU-MVS99.42 795.39 1197.94 10490.40 20098.94 897.41 2999.66 1199.74 8
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 6696.04 299.24 12495.36 9499.59 2099.56 29
test_241102_TWO98.27 3995.13 2398.93 998.89 1394.99 1199.85 1897.52 2299.65 1399.74 8
test_241102_ONE99.42 795.30 1798.27 3995.09 2699.19 498.81 2195.54 599.65 58
save fliter98.91 4994.28 3897.02 17398.02 9495.35 16
test_0728_THIRD94.78 4198.73 1898.87 1595.87 499.84 2397.45 2699.72 299.77 2
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 3699.86 897.52 2299.67 699.75 6
test072699.45 395.36 1398.31 2898.29 3494.92 3298.99 798.92 1095.08 8
GSMVS98.45 142
test_part299.28 2595.74 898.10 29
sam_mvs182.76 19798.45 142
sam_mvs81.94 216
ambc86.56 36683.60 39970.00 39385.69 39794.97 32680.60 37188.45 38037.42 40196.84 34982.69 32475.44 38192.86 361
MTGPAbinary98.08 74
test_post192.81 36516.58 41280.53 23597.68 30286.20 277
test_post17.58 41181.76 21898.08 251
patchmatchnet-post90.45 36782.65 20198.10 246
GG-mvs-BLEND93.62 25693.69 33689.20 21392.39 37083.33 40587.98 30489.84 37371.00 33396.87 34882.08 32895.40 18894.80 322
MTMP97.86 8082.03 406
gm-plane-assit93.22 35078.89 37784.82 33493.52 32598.64 19787.72 245
test9_res94.81 10899.38 5699.45 47
TEST998.70 5694.19 4296.41 22598.02 9488.17 26696.03 10097.56 12192.74 3099.59 74
test_898.67 5894.06 4996.37 23298.01 9788.58 25395.98 10497.55 12392.73 3199.58 77
agg_prior293.94 12599.38 5699.50 40
agg_prior98.67 5893.79 5498.00 9895.68 11499.57 84
TestCases93.98 23597.94 11186.64 27995.54 30085.38 32385.49 33896.77 16270.28 33799.15 13580.02 34392.87 23196.15 245
test_prior493.66 5796.42 224
test_prior296.35 23392.80 11996.03 10097.59 11892.01 4395.01 10299.38 56
test_prior97.23 6098.67 5892.99 7398.00 9899.41 10999.29 63
旧先验295.94 25881.66 36597.34 4898.82 17692.26 152
新几何295.79 267
新几何197.32 5398.60 6593.59 5897.75 12681.58 36695.75 11197.85 9690.04 7799.67 5686.50 27399.13 8098.69 122
旧先验198.38 7893.38 6397.75 12698.09 7592.30 4199.01 8999.16 73
无先验95.79 26797.87 11183.87 34699.65 5887.68 25198.89 107
原ACMM295.67 272
原ACMM196.38 10098.59 6691.09 14597.89 10787.41 29095.22 12597.68 10790.25 7499.54 8987.95 24199.12 8298.49 137
test22298.24 8792.21 9695.33 28897.60 14579.22 37995.25 12397.84 9888.80 9399.15 7898.72 119
testdata299.67 5685.96 285
segment_acmp92.89 27
testdata95.46 16198.18 9788.90 22197.66 13782.73 35697.03 5898.07 7690.06 7698.85 17489.67 20898.98 9198.64 125
testdata195.26 29593.10 106
test1297.65 4298.46 7094.26 3997.66 13795.52 12190.89 6799.46 10399.25 6999.22 70
plane_prior796.21 21789.98 182
plane_prior696.10 22890.00 17881.32 224
plane_prior597.51 15898.60 20193.02 14692.23 24295.86 253
plane_prior496.64 171
plane_prior390.00 17894.46 5591.34 212
plane_prior297.74 9494.85 34
plane_prior196.14 225
plane_prior89.99 18097.24 15594.06 6792.16 246
n20.00 420
nn0.00 420
door-mid91.06 384
lessismore_v090.45 34191.96 37079.09 37687.19 39880.32 37394.39 28566.31 36697.55 31484.00 30976.84 37794.70 329
LGP-MVS_train94.10 22796.16 22288.26 23997.46 16791.29 16290.12 24397.16 14179.05 26298.73 18792.25 15491.89 25095.31 289
test1197.88 109
door91.13 383
HQP5-MVS89.33 206
HQP-NCC95.86 23496.65 20793.55 8290.14 237
ACMP_Plane95.86 23496.65 20793.55 8290.14 237
BP-MVS92.13 158
HQP4-MVS90.14 23798.50 20995.78 261
HQP3-MVS97.39 18292.10 247
HQP2-MVS80.95 227
NP-MVS95.99 23289.81 18795.87 213
MDTV_nov1_ep13_2view70.35 39293.10 36083.88 34593.55 15782.47 20586.25 27698.38 150
ACMMP++_ref90.30 278
ACMMP++91.02 267
Test By Simon88.73 95
ITE_SJBPF92.43 29695.34 26285.37 30695.92 27991.47 15687.75 30796.39 18971.00 33397.96 27482.36 32689.86 28193.97 348
DeepMVS_CXcopyleft74.68 38490.84 37664.34 40281.61 40765.34 39767.47 39588.01 38648.60 39680.13 40662.33 39473.68 38579.58 396