This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
9.1488.26 1592.84 6391.52 4894.75 173.93 13588.57 2594.67 2175.57 2295.79 5886.77 3795.76 23
SF-MVS88.46 1288.74 1287.64 3592.78 6471.95 4992.40 2494.74 275.71 9289.16 1995.10 1675.65 2196.19 4687.07 3696.01 1794.79 22
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5995.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 1196.68 294.95 11
test_0728_SECOND87.71 3295.34 171.43 5893.49 994.23 397.49 489.08 1496.41 1294.21 49
test_one_060195.07 771.46 5794.14 578.27 3592.05 1195.74 680.83 11
test072695.27 571.25 5993.60 694.11 677.33 5092.81 395.79 380.98 9
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 4278.35 1396.77 2489.59 1094.22 6094.67 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 9092.29 795.66 1081.67 697.38 1187.44 3596.34 1593.95 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PHI-MVS86.43 4386.17 4787.24 4190.88 9270.96 6892.27 3294.07 972.45 16585.22 6391.90 9869.47 8096.42 4083.28 7095.94 1994.35 43
SED-MVS90.08 290.85 287.77 2695.30 270.98 6693.57 794.06 1077.24 5393.10 195.72 882.99 197.44 789.07 1696.63 494.88 15
test_241102_TWO94.06 1077.24 5392.78 495.72 881.26 897.44 789.07 1696.58 694.26 48
test_241102_ONE95.30 270.98 6694.06 1077.17 5693.10 195.39 1482.99 197.27 12
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9491.06 1696.03 176.84 1497.03 1789.09 1395.65 2794.47 38
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DeepC-MVS79.81 287.08 3586.88 3887.69 3391.16 8472.32 4390.31 7193.94 1477.12 5882.82 10794.23 3972.13 4797.09 1684.83 5195.37 3193.65 78
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FOURS195.00 1072.39 3995.06 193.84 1574.49 12191.30 15
MCST-MVS87.37 2987.25 2987.73 2894.53 1772.46 3889.82 7993.82 1673.07 15884.86 7092.89 7976.22 1796.33 4184.89 5095.13 3694.40 41
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6685.24 6294.32 3471.76 5196.93 1985.53 4595.79 2294.32 45
SPE-MVS-test86.29 4686.48 4185.71 7391.02 8867.21 16092.36 2993.78 1878.97 2883.51 9991.20 12270.65 6995.15 8481.96 8594.89 4294.77 24
3Dnovator+77.84 485.48 6084.47 7688.51 791.08 8673.49 1693.18 1193.78 1880.79 876.66 20593.37 6760.40 19896.75 2677.20 12793.73 6495.29 5
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 7272.96 2593.73 593.67 2080.19 1288.10 2994.80 1973.76 3397.11 1587.51 3395.82 2194.90 14
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 11592.29 795.97 274.28 2997.24 1388.58 2396.91 194.87 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
EC-MVSNet86.01 4786.38 4284.91 9689.31 13866.27 17392.32 3093.63 2179.37 2084.17 8591.88 9969.04 8895.43 7083.93 6593.77 6393.01 111
ACMMP_NAP88.05 1688.08 1787.94 1993.70 4173.05 2290.86 5793.59 2376.27 8488.14 2895.09 1771.06 6396.67 2987.67 3196.37 1494.09 53
CSCG86.41 4586.19 4687.07 4592.91 6172.48 3790.81 5893.56 2473.95 13383.16 10291.07 12775.94 1895.19 8279.94 10594.38 5693.55 85
MP-MVS-pluss87.67 2187.72 2087.54 3693.64 4472.04 4889.80 8193.50 2575.17 10586.34 5395.29 1570.86 6596.00 5488.78 2196.04 1694.58 33
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FIs82.07 11582.42 10281.04 22788.80 15858.34 29988.26 14093.49 2676.93 6378.47 16491.04 12869.92 7692.34 20869.87 20284.97 18092.44 131
DELS-MVS85.41 6385.30 6585.77 7288.49 16967.93 13785.52 22893.44 2778.70 2983.63 9889.03 17474.57 2495.71 6180.26 10294.04 6193.66 74
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
GST-MVS87.42 2787.26 2887.89 2494.12 3672.97 2492.39 2693.43 2876.89 6484.68 7193.99 5370.67 6896.82 2284.18 6395.01 3793.90 63
FC-MVSNet-test81.52 12782.02 11280.03 24888.42 17455.97 33887.95 15093.42 2977.10 5977.38 18690.98 13469.96 7591.79 22668.46 21784.50 18692.33 132
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5392.24 7169.03 10389.57 9093.39 3077.53 4689.79 1894.12 4478.98 1296.58 3585.66 4295.72 2494.58 33
HPM-MVScopyleft87.11 3386.98 3487.50 3893.88 3972.16 4592.19 3393.33 3176.07 8783.81 9393.95 5669.77 7896.01 5385.15 4694.66 4794.32 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS86.69 3986.95 3585.90 7190.76 9667.57 14792.83 1793.30 3279.67 1784.57 7892.27 9171.47 5695.02 9384.24 6193.46 6795.13 8
HFP-MVS87.58 2287.47 2687.94 1994.58 1673.54 1593.04 1293.24 3376.78 6884.91 6794.44 3070.78 6696.61 3284.53 5694.89 4293.66 74
ACMMPR87.44 2587.23 3088.08 1594.64 1373.59 1293.04 1293.20 3476.78 6884.66 7494.52 2368.81 9096.65 3084.53 5694.90 4194.00 57
reproduce_model87.28 3087.39 2786.95 4893.10 5671.24 6391.60 4293.19 3574.69 11688.80 2395.61 1170.29 7296.44 3986.20 4193.08 6993.16 101
reproduce-ours87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10888.96 2095.54 1271.20 6196.54 3686.28 3993.49 6593.06 106
our_new_method87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10888.96 2095.54 1271.20 6196.54 3686.28 3993.49 6593.06 106
SD-MVS88.06 1488.50 1486.71 5492.60 6972.71 2991.81 4193.19 3577.87 3690.32 1794.00 5174.83 2393.78 14187.63 3294.27 5993.65 78
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMMPcopyleft85.89 5485.39 6187.38 3993.59 4572.63 3392.74 2093.18 3976.78 6880.73 13293.82 5864.33 13396.29 4282.67 8290.69 10093.23 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
region2R87.42 2787.20 3188.09 1494.63 1473.55 1393.03 1493.12 4076.73 7184.45 7994.52 2369.09 8496.70 2784.37 5894.83 4594.03 56
DPM-MVS84.93 7084.29 7786.84 5090.20 10573.04 2387.12 17593.04 4169.80 22082.85 10691.22 12173.06 3996.02 5276.72 13594.63 4891.46 161
PGM-MVS86.68 4086.27 4487.90 2294.22 3373.38 1890.22 7393.04 4175.53 9683.86 9194.42 3167.87 10096.64 3182.70 8194.57 5093.66 74
casdiffmvs_mvgpermissive85.99 4886.09 5085.70 7487.65 20967.22 15988.69 12493.04 4179.64 1885.33 6192.54 8873.30 3594.50 11283.49 6791.14 9595.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepC-MVS_fast79.65 386.91 3686.62 4087.76 2793.52 4672.37 4191.26 5193.04 4176.62 7484.22 8393.36 6871.44 5796.76 2580.82 9695.33 3394.16 50
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UniMVSNet (Re)81.60 12681.11 12383.09 17188.38 17564.41 21687.60 16093.02 4578.42 3278.56 16188.16 19969.78 7793.26 16569.58 20576.49 29191.60 152
sasdasda85.91 5285.87 5486.04 6789.84 11769.44 9890.45 6893.00 4676.70 7288.01 3291.23 11973.28 3693.91 13581.50 8888.80 12894.77 24
canonicalmvs85.91 5285.87 5486.04 6789.84 11769.44 9890.45 6893.00 4676.70 7288.01 3291.23 11973.28 3693.91 13581.50 8888.80 12894.77 24
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6293.00 4680.90 788.06 3094.06 4776.43 1696.84 2188.48 2695.99 1894.34 44
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4997.53 289.67 896.44 994.41 39
No_MVS89.16 194.34 2775.53 292.99 4997.53 289.67 896.44 994.41 39
XVS87.18 3286.91 3788.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9694.17 4167.45 10396.60 3383.06 7194.50 5194.07 54
X-MVStestdata80.37 15677.83 19288.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9612.47 42267.45 10396.60 3383.06 7194.50 5194.07 54
APD-MVS_3200maxsize85.97 5085.88 5386.22 6092.69 6669.53 9291.93 3792.99 4973.54 14585.94 5494.51 2665.80 12395.61 6283.04 7392.51 7693.53 87
test_prior86.33 5792.61 6869.59 9192.97 5495.48 6793.91 61
IU-MVS95.30 271.25 5992.95 5566.81 26792.39 688.94 1896.63 494.85 20
balanced_conf0386.78 3786.99 3386.15 6391.24 8367.61 14590.51 6292.90 5677.26 5287.44 4291.63 10771.27 6096.06 4985.62 4495.01 3794.78 23
baseline84.93 7084.98 6884.80 10087.30 22165.39 19387.30 17192.88 5777.62 4084.04 8892.26 9271.81 5093.96 12881.31 9090.30 10595.03 10
MSLP-MVS++85.43 6285.76 5684.45 10991.93 7570.24 7990.71 5992.86 5877.46 4884.22 8392.81 8367.16 10792.94 18680.36 10094.35 5790.16 205
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5980.26 1187.78 3594.27 3675.89 1996.81 2387.45 3496.44 993.05 108
casdiffmvspermissive85.11 6785.14 6785.01 9087.20 22365.77 18587.75 15792.83 6077.84 3784.36 8292.38 9072.15 4693.93 13481.27 9290.48 10295.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVScopyleft87.44 2587.52 2587.19 4294.24 3272.39 3991.86 4092.83 6073.01 16088.58 2494.52 2373.36 3496.49 3884.26 5995.01 3792.70 118
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5492.83 6081.50 585.79 5793.47 6573.02 4097.00 1884.90 4894.94 4094.10 52
CP-MVS87.11 3386.92 3687.68 3494.20 3473.86 793.98 392.82 6376.62 7483.68 9594.46 2767.93 9895.95 5784.20 6294.39 5593.23 96
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5993.49 992.73 6477.33 5092.12 995.78 480.98 997.40 989.08 1496.41 1293.33 93
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
GDP-MVS83.52 9182.64 10186.16 6288.14 18368.45 12489.13 10892.69 6572.82 16483.71 9491.86 10155.69 22795.35 7980.03 10389.74 11694.69 27
EIA-MVS83.31 9882.80 9984.82 9889.59 12265.59 18888.21 14192.68 6674.66 11878.96 15186.42 25069.06 8695.26 8075.54 14790.09 10993.62 81
ZD-MVS94.38 2572.22 4492.67 6770.98 19387.75 3794.07 4674.01 3296.70 2784.66 5494.84 44
nrg03083.88 8083.53 8584.96 9286.77 23169.28 10290.46 6792.67 6774.79 11482.95 10391.33 11872.70 4393.09 18080.79 9879.28 26192.50 127
WR-MVS_H78.51 19878.49 17478.56 27688.02 19056.38 33288.43 13192.67 6777.14 5773.89 26787.55 21466.25 11689.24 28758.92 29973.55 33590.06 215
MVSMamba_PlusPlus85.99 4885.96 5286.05 6691.09 8567.64 14489.63 8892.65 7072.89 16384.64 7591.71 10371.85 4996.03 5084.77 5394.45 5494.49 37
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 7077.57 4283.84 9294.40 3272.24 4596.28 4385.65 4395.30 3593.62 81
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ETV-MVS84.90 7284.67 7285.59 7589.39 13368.66 12088.74 12292.64 7279.97 1584.10 8685.71 26369.32 8295.38 7580.82 9691.37 9292.72 117
MGCFI-Net85.06 6985.51 5983.70 14989.42 13063.01 24589.43 9392.62 7376.43 7687.53 4091.34 11772.82 4293.42 16181.28 9188.74 13194.66 31
CANet86.45 4286.10 4987.51 3790.09 10770.94 7089.70 8592.59 7481.78 481.32 12391.43 11570.34 7097.23 1484.26 5993.36 6894.37 42
SR-MVS86.73 3886.67 3986.91 4994.11 3772.11 4792.37 2892.56 7574.50 12086.84 5094.65 2267.31 10595.77 5984.80 5292.85 7292.84 116
alignmvs85.48 6085.32 6485.96 7089.51 12669.47 9589.74 8392.47 7676.17 8587.73 3991.46 11470.32 7193.78 14181.51 8788.95 12594.63 32
原ACMM184.35 11393.01 6068.79 11092.44 7763.96 31281.09 12891.57 11066.06 11995.45 6867.19 22894.82 4688.81 260
HQP_MVS83.64 8783.14 9185.14 8590.08 10868.71 11691.25 5292.44 7779.12 2378.92 15391.00 13260.42 19695.38 7578.71 11286.32 16491.33 162
plane_prior592.44 7795.38 7578.71 11286.32 16491.33 162
CDPH-MVS85.76 5685.29 6687.17 4393.49 4771.08 6488.58 12892.42 8068.32 25584.61 7693.48 6372.32 4496.15 4879.00 10895.43 3094.28 47
UniMVSNet_NR-MVSNet81.88 11881.54 11882.92 18088.46 17163.46 23587.13 17492.37 8180.19 1278.38 16589.14 17071.66 5593.05 18270.05 19876.46 29292.25 136
TSAR-MVS + MP.88.02 1788.11 1687.72 3093.68 4372.13 4691.41 5092.35 8274.62 11988.90 2293.85 5775.75 2096.00 5487.80 3094.63 4895.04 9
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CLD-MVS82.31 11181.65 11784.29 11688.47 17067.73 14285.81 21992.35 8275.78 9178.33 16786.58 24564.01 13694.35 11576.05 14087.48 14890.79 179
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SR-MVS-dyc-post85.77 5585.61 5886.23 5993.06 5870.63 7691.88 3892.27 8473.53 14685.69 5894.45 2865.00 13195.56 6382.75 7791.87 8492.50 127
RE-MVS-def85.48 6093.06 5870.63 7691.88 3892.27 8473.53 14685.69 5894.45 2863.87 13782.75 7791.87 8492.50 127
RPMNet73.51 28070.49 30282.58 19481.32 34265.19 19675.92 35992.27 8457.60 36772.73 28176.45 38252.30 25795.43 7048.14 36977.71 27687.11 302
test1192.23 87
mPP-MVS86.67 4186.32 4387.72 3094.41 2273.55 1392.74 2092.22 8876.87 6582.81 10894.25 3866.44 11396.24 4482.88 7694.28 5893.38 90
DP-MVS Recon83.11 10282.09 11086.15 6394.44 1970.92 7188.79 11892.20 8970.53 20379.17 14991.03 13064.12 13596.03 5068.39 21890.14 10891.50 157
HQP3-MVS92.19 9085.99 172
HQP-MVS82.61 10882.02 11284.37 11189.33 13566.98 16389.17 10392.19 9076.41 7777.23 19190.23 14560.17 19995.11 8777.47 12485.99 17291.03 172
3Dnovator76.31 583.38 9682.31 10686.59 5587.94 19472.94 2890.64 6092.14 9277.21 5575.47 23092.83 8158.56 20594.72 10573.24 17092.71 7492.13 143
MTGPAbinary92.02 93
MTAPA87.23 3187.00 3287.90 2294.18 3574.25 586.58 19592.02 9379.45 1985.88 5594.80 1968.07 9696.21 4586.69 3895.34 3293.23 96
MVS_Test83.15 9983.06 9383.41 15886.86 22763.21 24186.11 20992.00 9574.31 12682.87 10589.44 16770.03 7493.21 16977.39 12688.50 13693.81 69
PVSNet_BlendedMVS80.60 14880.02 14182.36 19888.85 15365.40 19186.16 20892.00 9569.34 23078.11 17286.09 25866.02 12094.27 11871.52 18282.06 22787.39 292
PVSNet_Blended80.98 13580.34 13682.90 18188.85 15365.40 19184.43 25292.00 9567.62 26178.11 17285.05 28266.02 12094.27 11871.52 18289.50 11889.01 250
QAPM80.88 13779.50 15385.03 8988.01 19268.97 10791.59 4392.00 9566.63 27675.15 24892.16 9357.70 21295.45 6863.52 25488.76 13090.66 185
LPG-MVS_test82.08 11481.27 12084.50 10689.23 14268.76 11290.22 7391.94 9975.37 9976.64 20691.51 11154.29 24094.91 9578.44 11483.78 19889.83 226
LGP-MVS_train84.50 10689.23 14268.76 11291.94 9975.37 9976.64 20691.51 11154.29 24094.91 9578.44 11483.78 19889.83 226
TEST993.26 5272.96 2588.75 12091.89 10168.44 25385.00 6593.10 7274.36 2895.41 73
train_agg86.43 4386.20 4587.13 4493.26 5272.96 2588.75 12091.89 10168.69 24885.00 6593.10 7274.43 2695.41 7384.97 4795.71 2593.02 110
dcpmvs_285.63 5886.15 4884.06 13391.71 7864.94 20386.47 19891.87 10373.63 14186.60 5293.02 7776.57 1591.87 22583.36 6892.15 8095.35 3
DU-MVS81.12 13480.52 13382.90 18187.80 20163.46 23587.02 17991.87 10379.01 2678.38 16589.07 17265.02 12993.05 18270.05 19876.46 29292.20 139
test_893.13 5472.57 3588.68 12591.84 10568.69 24884.87 6993.10 7274.43 2695.16 83
PAPM_NR83.02 10382.41 10384.82 9892.47 7066.37 17187.93 15291.80 10673.82 13777.32 18890.66 13767.90 9994.90 9770.37 19589.48 11993.19 100
test1286.80 5292.63 6770.70 7591.79 10782.71 10971.67 5496.16 4794.50 5193.54 86
agg_prior92.85 6271.94 5091.78 10884.41 8094.93 94
PAPR81.66 12580.89 12883.99 14190.27 10364.00 22286.76 19191.77 10968.84 24677.13 19889.50 16067.63 10194.88 9967.55 22388.52 13593.09 104
PVSNet_Blended_VisFu82.62 10781.83 11684.96 9290.80 9469.76 9088.74 12291.70 11069.39 22878.96 15188.46 19065.47 12594.87 10074.42 15688.57 13390.24 203
HPM-MVS_fast85.35 6484.95 7086.57 5693.69 4270.58 7892.15 3591.62 11173.89 13682.67 11094.09 4562.60 15295.54 6580.93 9492.93 7193.57 83
ACMM73.20 880.78 14579.84 14683.58 15289.31 13868.37 12689.99 7691.60 11270.28 20877.25 18989.66 15553.37 25093.53 15474.24 15982.85 21788.85 258
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPA-MVSNet80.60 14880.55 13280.76 23488.07 18860.80 27586.86 18591.58 11375.67 9580.24 13689.45 16663.34 14090.25 26870.51 19479.22 26291.23 165
OPM-MVS83.50 9282.95 9685.14 8588.79 15970.95 6989.13 10891.52 11477.55 4580.96 13091.75 10260.71 18894.50 11279.67 10786.51 16289.97 221
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Anonymous2023121178.97 18877.69 20082.81 18590.54 9964.29 21890.11 7591.51 11565.01 29676.16 22188.13 20450.56 28493.03 18569.68 20477.56 27991.11 168
PS-MVSNAJss82.07 11581.31 11984.34 11486.51 23667.27 15689.27 10191.51 11571.75 17579.37 14690.22 14663.15 14694.27 11877.69 12282.36 22491.49 158
TAPA-MVS73.13 979.15 18277.94 18882.79 18889.59 12262.99 24988.16 14491.51 11565.77 28577.14 19791.09 12660.91 18693.21 16950.26 35687.05 15392.17 141
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMP74.13 681.51 12980.57 13184.36 11289.42 13068.69 11989.97 7791.50 11874.46 12275.04 25290.41 14153.82 24594.54 10977.56 12382.91 21689.86 225
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PCF-MVS73.52 780.38 15478.84 16985.01 9087.71 20668.99 10683.65 26691.46 11963.00 31977.77 18090.28 14266.10 11795.09 9161.40 27888.22 13990.94 176
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TranMVSNet+NR-MVSNet80.84 13880.31 13782.42 19687.85 19862.33 25587.74 15891.33 12080.55 977.99 17689.86 15065.23 12792.62 19267.05 23075.24 31992.30 134
RRT-MVS82.60 11082.10 10984.10 12587.98 19362.94 25087.45 16691.27 12177.42 4979.85 14090.28 14256.62 22494.70 10779.87 10688.15 14094.67 28
PS-CasMVS78.01 21278.09 18577.77 29187.71 20654.39 35788.02 14791.22 12277.50 4773.26 27488.64 18460.73 18788.41 30361.88 27373.88 33290.53 191
v7n78.97 18877.58 20383.14 16983.45 29665.51 18988.32 13891.21 12373.69 14072.41 28686.32 25357.93 20993.81 14069.18 20875.65 30590.11 209
PEN-MVS77.73 21877.69 20077.84 28987.07 22653.91 36087.91 15391.18 12477.56 4473.14 27688.82 17961.23 18089.17 28859.95 28872.37 34390.43 195
MM89.16 689.23 788.97 490.79 9573.65 1092.66 2391.17 12586.57 187.39 4394.97 1871.70 5397.68 192.19 195.63 2895.57 1
save fliter93.80 4072.35 4290.47 6691.17 12574.31 126
CP-MVSNet78.22 20378.34 17977.84 28987.83 20054.54 35587.94 15191.17 12577.65 3973.48 27288.49 18962.24 16188.43 30262.19 26974.07 32890.55 190
114514_t80.68 14679.51 15284.20 12294.09 3867.27 15689.64 8791.11 12858.75 35974.08 26690.72 13658.10 20895.04 9269.70 20389.42 12090.30 201
NR-MVSNet80.23 15879.38 15582.78 18987.80 20163.34 23886.31 20391.09 12979.01 2672.17 29089.07 17267.20 10692.81 19166.08 23775.65 30592.20 139
OpenMVScopyleft72.83 1079.77 16578.33 18084.09 12985.17 25869.91 8790.57 6190.97 13066.70 27072.17 29091.91 9754.70 23793.96 12861.81 27590.95 9788.41 273
MAR-MVS81.84 11980.70 12985.27 8291.32 8271.53 5689.82 7990.92 13169.77 22278.50 16286.21 25462.36 15894.52 11165.36 24292.05 8289.77 229
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
tt080578.73 19277.83 19281.43 21485.17 25860.30 28389.41 9690.90 13271.21 18777.17 19688.73 18046.38 32093.21 16972.57 17778.96 26390.79 179
Anonymous2024052980.19 16078.89 16884.10 12590.60 9764.75 20888.95 11390.90 13265.97 28480.59 13391.17 12449.97 29093.73 14769.16 20982.70 22193.81 69
OMC-MVS82.69 10681.97 11484.85 9788.75 16167.42 15087.98 14890.87 13474.92 11079.72 14291.65 10562.19 16293.96 12875.26 15186.42 16393.16 101
UA-Net85.08 6884.96 6985.45 7892.07 7368.07 13489.78 8290.86 13582.48 284.60 7793.20 7169.35 8195.22 8171.39 18590.88 9893.07 105
test_fmvsm_n_192085.29 6585.34 6285.13 8786.12 24269.93 8688.65 12690.78 13669.97 21688.27 2693.98 5471.39 5891.54 23788.49 2590.45 10393.91 61
EPP-MVSNet83.40 9583.02 9484.57 10490.13 10664.47 21492.32 3090.73 13774.45 12379.35 14791.10 12569.05 8795.12 8572.78 17487.22 15194.13 51
DTE-MVSNet76.99 23276.80 21877.54 29786.24 23853.06 36987.52 16290.66 13877.08 6072.50 28488.67 18360.48 19589.52 28157.33 31670.74 35590.05 216
v1079.74 16678.67 17082.97 17984.06 28264.95 20287.88 15590.62 13973.11 15775.11 24986.56 24661.46 17494.05 12773.68 16275.55 30789.90 223
test_fmvsmconf_n85.92 5186.04 5185.57 7685.03 26469.51 9389.62 8990.58 14073.42 14987.75 3794.02 4972.85 4193.24 16690.37 390.75 9993.96 58
v119279.59 16978.43 17783.07 17383.55 29464.52 21086.93 18390.58 14070.83 19477.78 17985.90 25959.15 20293.94 13173.96 16177.19 28290.76 181
v114480.03 16279.03 16583.01 17683.78 28964.51 21187.11 17690.57 14271.96 17478.08 17486.20 25561.41 17593.94 13174.93 15277.23 28090.60 188
XVG-OURS-SEG-HR80.81 14079.76 14783.96 14385.60 25168.78 11183.54 27190.50 14370.66 20176.71 20491.66 10460.69 18991.26 24876.94 13181.58 23291.83 148
MVS78.19 20676.99 21481.78 20685.66 24866.99 16284.66 24290.47 14455.08 37972.02 29285.27 27463.83 13894.11 12666.10 23689.80 11584.24 349
XVG-OURS80.41 15379.23 16183.97 14285.64 24969.02 10583.03 28290.39 14571.09 19077.63 18291.49 11354.62 23991.35 24675.71 14383.47 20991.54 155
MVSFormer82.85 10582.05 11185.24 8387.35 21570.21 8090.50 6490.38 14668.55 25081.32 12389.47 16261.68 16893.46 15878.98 10990.26 10692.05 145
test_djsdf80.30 15779.32 15883.27 16283.98 28465.37 19490.50 6490.38 14668.55 25076.19 21788.70 18156.44 22593.46 15878.98 10980.14 25190.97 175
CPTT-MVS83.73 8483.33 9084.92 9593.28 4970.86 7292.09 3690.38 14668.75 24779.57 14492.83 8160.60 19493.04 18480.92 9591.56 9090.86 178
v14419279.47 17278.37 17882.78 18983.35 29763.96 22386.96 18090.36 14969.99 21577.50 18385.67 26660.66 19193.77 14374.27 15876.58 29090.62 186
v192192079.22 18078.03 18682.80 18683.30 29963.94 22486.80 18790.33 15069.91 21877.48 18485.53 26958.44 20693.75 14573.60 16376.85 28790.71 184
MVS_111021_HR85.14 6684.75 7186.32 5891.65 7972.70 3085.98 21190.33 15076.11 8682.08 11391.61 10971.36 5994.17 12481.02 9392.58 7592.08 144
v124078.99 18777.78 19582.64 19283.21 30163.54 23286.62 19490.30 15269.74 22577.33 18785.68 26557.04 22093.76 14473.13 17176.92 28490.62 186
test_fmvsmconf0.1_n85.61 5985.65 5785.50 7782.99 31169.39 10089.65 8690.29 15373.31 15287.77 3694.15 4371.72 5293.23 16790.31 490.67 10193.89 64
v879.97 16479.02 16682.80 18684.09 28164.50 21387.96 14990.29 15374.13 13275.24 24586.81 23262.88 15193.89 13874.39 15775.40 31490.00 217
mvs_tets79.13 18377.77 19683.22 16684.70 26866.37 17189.17 10390.19 15569.38 22975.40 23589.46 16444.17 34193.15 17676.78 13480.70 24390.14 206
jajsoiax79.29 17977.96 18783.27 16284.68 26966.57 16989.25 10290.16 15669.20 23675.46 23289.49 16145.75 33193.13 17876.84 13280.80 24190.11 209
Vis-MVSNetpermissive83.46 9382.80 9985.43 7990.25 10468.74 11490.30 7290.13 15776.33 8380.87 13192.89 7961.00 18594.20 12272.45 17990.97 9693.35 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PS-MVSNAJ81.69 12381.02 12583.70 14989.51 12668.21 13184.28 25690.09 15870.79 19581.26 12785.62 26863.15 14694.29 11675.62 14588.87 12788.59 268
xiu_mvs_v2_base81.69 12381.05 12483.60 15189.15 14568.03 13684.46 25090.02 15970.67 19881.30 12686.53 24863.17 14594.19 12375.60 14688.54 13488.57 269
FA-MVS(test-final)80.96 13679.91 14484.10 12588.30 17865.01 20084.55 24790.01 16073.25 15579.61 14387.57 21258.35 20794.72 10571.29 18686.25 16692.56 124
v2v48280.23 15879.29 15983.05 17483.62 29264.14 22087.04 17789.97 16173.61 14278.18 17187.22 22361.10 18393.82 13976.11 13876.78 28991.18 166
test_yl81.17 13280.47 13483.24 16489.13 14663.62 22886.21 20689.95 16272.43 16881.78 11989.61 15757.50 21593.58 14970.75 19086.90 15592.52 125
DCV-MVSNet81.17 13280.47 13483.24 16489.13 14663.62 22886.21 20689.95 16272.43 16881.78 11989.61 15757.50 21593.58 14970.75 19086.90 15592.52 125
V4279.38 17878.24 18282.83 18381.10 34465.50 19085.55 22489.82 16471.57 18178.21 16986.12 25760.66 19193.18 17575.64 14475.46 31189.81 228
VNet82.21 11282.41 10381.62 20990.82 9360.93 27284.47 24889.78 16576.36 8284.07 8791.88 9964.71 13290.26 26770.68 19288.89 12693.66 74
diffmvspermissive82.10 11381.88 11582.76 19183.00 30963.78 22783.68 26589.76 16672.94 16182.02 11489.85 15165.96 12290.79 26182.38 8387.30 15093.71 73
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XVG-ACMP-BASELINE76.11 25074.27 26081.62 20983.20 30264.67 20983.60 26989.75 16769.75 22371.85 29387.09 22832.78 38792.11 21569.99 20080.43 24788.09 278
EI-MVSNet-Vis-set84.19 7683.81 8185.31 8188.18 18067.85 13887.66 15989.73 16880.05 1482.95 10389.59 15970.74 6794.82 10180.66 9984.72 18393.28 95
EI-MVSNet-UG-set83.81 8183.38 8885.09 8887.87 19767.53 14887.44 16789.66 16979.74 1682.23 11289.41 16870.24 7394.74 10479.95 10483.92 19792.99 113
test_fmvsmconf0.01_n84.73 7384.52 7585.34 8080.25 35269.03 10389.47 9189.65 17073.24 15686.98 4894.27 3666.62 10993.23 16790.26 589.95 11393.78 71
BP-MVS184.32 7583.71 8386.17 6187.84 19967.85 13889.38 9889.64 17177.73 3883.98 8992.12 9556.89 22295.43 7084.03 6491.75 8795.24 6
PAPM77.68 22276.40 22981.51 21287.29 22261.85 26283.78 26389.59 17264.74 29871.23 29988.70 18162.59 15393.66 14852.66 34187.03 15489.01 250
MVS_030487.69 2087.55 2488.12 1389.45 12971.76 5191.47 4989.54 17382.14 386.65 5194.28 3568.28 9597.46 690.81 295.31 3495.15 7
anonymousdsp78.60 19677.15 21082.98 17880.51 35067.08 16187.24 17389.53 17465.66 28775.16 24787.19 22552.52 25392.25 21177.17 12879.34 26089.61 233
MG-MVS83.41 9483.45 8683.28 16192.74 6562.28 25788.17 14389.50 17575.22 10181.49 12292.74 8766.75 10895.11 8772.85 17391.58 8992.45 130
PLCcopyleft70.83 1178.05 21076.37 23083.08 17291.88 7767.80 14088.19 14289.46 17664.33 30469.87 31688.38 19253.66 24693.58 14958.86 30082.73 21987.86 282
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SDMVSNet80.38 15480.18 14080.99 22889.03 15164.94 20380.45 31489.40 17775.19 10376.61 20889.98 14860.61 19387.69 31176.83 13383.55 20790.33 199
Fast-Effi-MVS+80.81 14079.92 14383.47 15488.85 15364.51 21185.53 22689.39 17870.79 19578.49 16385.06 28167.54 10293.58 14967.03 23186.58 16092.32 133
IterMVS-LS80.06 16179.38 15582.11 20085.89 24563.20 24286.79 18889.34 17974.19 12975.45 23386.72 23566.62 10992.39 20472.58 17676.86 28690.75 182
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
API-MVS81.99 11781.23 12184.26 12190.94 9070.18 8591.10 5589.32 18071.51 18278.66 15888.28 19565.26 12695.10 9064.74 24891.23 9487.51 290
GBi-Net78.40 19977.40 20581.40 21687.60 21063.01 24588.39 13389.28 18171.63 17775.34 23887.28 21954.80 23391.11 25162.72 26179.57 25590.09 211
test178.40 19977.40 20581.40 21687.60 21063.01 24588.39 13389.28 18171.63 17775.34 23887.28 21954.80 23391.11 25162.72 26179.57 25590.09 211
FMVSNet177.44 22576.12 23281.40 21686.81 23063.01 24588.39 13389.28 18170.49 20474.39 26387.28 21949.06 30491.11 25160.91 28278.52 26690.09 211
cdsmvs_eth3d_5k19.96 39026.61 3920.00 4100.00 4330.00 4350.00 42189.26 1840.00 4280.00 42988.61 18561.62 1700.00 4290.00 4280.00 4270.00 425
ab-mvs79.51 17078.97 16781.14 22488.46 17160.91 27383.84 26289.24 18570.36 20579.03 15088.87 17863.23 14490.21 26965.12 24482.57 22292.28 135
cascas76.72 23874.64 25282.99 17785.78 24765.88 18182.33 28689.21 18660.85 34072.74 28081.02 34547.28 31393.75 14567.48 22485.02 17989.34 240
eth_miper_zixun_eth77.92 21476.69 22381.61 21183.00 30961.98 26083.15 27689.20 18769.52 22774.86 25584.35 29561.76 16792.56 19771.50 18472.89 34190.28 202
h-mvs3383.15 9982.19 10786.02 6990.56 9870.85 7388.15 14589.16 18876.02 8884.67 7291.39 11661.54 17195.50 6682.71 7975.48 30991.72 151
miper_ehance_all_eth78.59 19777.76 19781.08 22682.66 31861.56 26683.65 26689.15 18968.87 24575.55 22983.79 30766.49 11292.03 21773.25 16976.39 29489.64 232
Effi-MVS+83.62 8983.08 9285.24 8388.38 17567.45 14988.89 11589.15 18975.50 9782.27 11188.28 19569.61 7994.45 11477.81 12187.84 14293.84 67
c3_l78.75 19177.91 18981.26 22082.89 31361.56 26684.09 26089.13 19169.97 21675.56 22884.29 29666.36 11492.09 21673.47 16675.48 30990.12 208
LTVRE_ROB69.57 1376.25 24874.54 25581.41 21588.60 16664.38 21779.24 32889.12 19270.76 19769.79 31887.86 20649.09 30393.20 17256.21 32680.16 24986.65 312
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
F-COLMAP76.38 24774.33 25982.50 19589.28 14066.95 16688.41 13289.03 19364.05 30966.83 34488.61 18546.78 31792.89 18757.48 31378.55 26587.67 285
FMVSNet278.20 20577.21 20981.20 22287.60 21062.89 25187.47 16489.02 19471.63 17775.29 24487.28 21954.80 23391.10 25462.38 26679.38 25989.61 233
ACMH67.68 1675.89 25373.93 26381.77 20788.71 16366.61 16888.62 12789.01 19569.81 21966.78 34586.70 23941.95 35791.51 24055.64 32778.14 27287.17 298
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
miper_enhance_ethall77.87 21676.86 21680.92 23181.65 33261.38 26882.68 28388.98 19665.52 28975.47 23082.30 33465.76 12492.00 21972.95 17276.39 29489.39 238
无先验87.48 16388.98 19660.00 34694.12 12567.28 22688.97 253
AdaColmapbinary80.58 15179.42 15484.06 13393.09 5768.91 10889.36 9988.97 19869.27 23175.70 22689.69 15457.20 21995.77 5963.06 25988.41 13787.50 291
EI-MVSNet80.52 15279.98 14282.12 19984.28 27663.19 24386.41 19988.95 19974.18 13078.69 15687.54 21566.62 10992.43 20272.57 17780.57 24590.74 183
MVSTER79.01 18677.88 19182.38 19783.07 30664.80 20784.08 26188.95 19969.01 24378.69 15687.17 22654.70 23792.43 20274.69 15380.57 24589.89 224
131476.53 24075.30 24780.21 24583.93 28562.32 25684.66 24288.81 20160.23 34470.16 31084.07 30255.30 23090.73 26367.37 22583.21 21387.59 289
UniMVSNet_ETH3D79.10 18478.24 18281.70 20886.85 22860.24 28487.28 17288.79 20274.25 12876.84 19990.53 14049.48 29691.56 23567.98 21982.15 22593.29 94
xiu_mvs_v1_base_debu80.80 14279.72 14884.03 13887.35 21570.19 8285.56 22188.77 20369.06 24081.83 11588.16 19950.91 27992.85 18878.29 11887.56 14589.06 245
xiu_mvs_v1_base80.80 14279.72 14884.03 13887.35 21570.19 8285.56 22188.77 20369.06 24081.83 11588.16 19950.91 27992.85 18878.29 11887.56 14589.06 245
xiu_mvs_v1_base_debi80.80 14279.72 14884.03 13887.35 21570.19 8285.56 22188.77 20369.06 24081.83 11588.16 19950.91 27992.85 18878.29 11887.56 14589.06 245
FMVSNet377.88 21576.85 21780.97 23086.84 22962.36 25486.52 19788.77 20371.13 18875.34 23886.66 24154.07 24391.10 25462.72 26179.57 25589.45 237
patch_mono-283.65 8684.54 7380.99 22890.06 11265.83 18284.21 25788.74 20771.60 18085.01 6492.44 8974.51 2583.50 34782.15 8492.15 8093.64 80
GeoE81.71 12281.01 12683.80 14889.51 12664.45 21588.97 11288.73 20871.27 18678.63 15989.76 15366.32 11593.20 17269.89 20186.02 17193.74 72
CANet_DTU80.61 14779.87 14582.83 18385.60 25163.17 24487.36 16888.65 20976.37 8175.88 22388.44 19153.51 24893.07 18173.30 16889.74 11692.25 136
HyFIR lowres test77.53 22475.40 24383.94 14489.59 12266.62 16780.36 31588.64 21056.29 37576.45 21085.17 27857.64 21393.28 16461.34 28083.10 21591.91 147
WR-MVS79.49 17179.22 16280.27 24488.79 15958.35 29885.06 23488.61 21178.56 3077.65 18188.34 19363.81 13990.66 26464.98 24677.22 28191.80 150
BH-untuned79.47 17278.60 17282.05 20189.19 14465.91 18086.07 21088.52 21272.18 17075.42 23487.69 20961.15 18293.54 15360.38 28586.83 15786.70 311
IS-MVSNet83.15 9982.81 9884.18 12389.94 11563.30 23991.59 4388.46 21379.04 2579.49 14592.16 9365.10 12894.28 11767.71 22191.86 8694.95 11
pm-mvs177.25 23076.68 22478.93 26984.22 27858.62 29686.41 19988.36 21471.37 18473.31 27388.01 20561.22 18189.15 28964.24 25273.01 34089.03 249
UGNet80.83 13979.59 15184.54 10588.04 18968.09 13389.42 9588.16 21576.95 6276.22 21689.46 16449.30 30093.94 13168.48 21690.31 10491.60 152
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VDD-MVS83.01 10482.36 10584.96 9291.02 8866.40 17088.91 11488.11 21677.57 4284.39 8193.29 6952.19 25993.91 13577.05 13088.70 13294.57 35
Effi-MVS+-dtu80.03 16278.57 17384.42 11085.13 26268.74 11488.77 11988.10 21774.99 10774.97 25383.49 31457.27 21893.36 16273.53 16480.88 23991.18 166
v14878.72 19377.80 19481.47 21382.73 31661.96 26186.30 20488.08 21873.26 15476.18 21885.47 27162.46 15692.36 20671.92 18173.82 33390.09 211
EG-PatchMatch MVS74.04 27471.82 28680.71 23584.92 26567.42 15085.86 21688.08 21866.04 28264.22 36683.85 30435.10 38392.56 19757.44 31480.83 24082.16 374
cl2278.07 20977.01 21281.23 22182.37 32561.83 26383.55 27087.98 22068.96 24475.06 25183.87 30361.40 17691.88 22473.53 16476.39 29489.98 220
test_fmvsmvis_n_192084.02 7983.87 8084.49 10884.12 28069.37 10188.15 14587.96 22170.01 21483.95 9093.23 7068.80 9191.51 24088.61 2289.96 11292.57 123
pmmvs674.69 26773.39 26978.61 27381.38 33957.48 31586.64 19387.95 22264.99 29770.18 30886.61 24250.43 28689.52 28162.12 27170.18 35888.83 259
MVP-Stereo76.12 24974.46 25781.13 22585.37 25669.79 8984.42 25387.95 22265.03 29567.46 33785.33 27353.28 25191.73 23058.01 31083.27 21281.85 375
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
cl____77.72 21976.76 22080.58 23782.49 32260.48 28083.09 27887.87 22469.22 23474.38 26485.22 27762.10 16391.53 23871.09 18775.41 31389.73 231
DIV-MVS_self_test77.72 21976.76 22080.58 23782.48 32360.48 28083.09 27887.86 22569.22 23474.38 26485.24 27562.10 16391.53 23871.09 18775.40 31489.74 230
BH-w/o78.21 20477.33 20880.84 23288.81 15765.13 19884.87 23887.85 22669.75 22374.52 26184.74 28861.34 17793.11 17958.24 30885.84 17484.27 348
FE-MVS77.78 21775.68 23684.08 13088.09 18766.00 17783.13 27787.79 22768.42 25478.01 17585.23 27645.50 33495.12 8559.11 29785.83 17591.11 168
HY-MVS69.67 1277.95 21377.15 21080.36 24187.57 21460.21 28583.37 27387.78 22866.11 28075.37 23787.06 23063.27 14290.48 26661.38 27982.43 22390.40 197
1112_ss77.40 22776.43 22880.32 24389.11 15060.41 28283.65 26687.72 22962.13 33273.05 27786.72 23562.58 15489.97 27362.11 27280.80 24190.59 189
mvs_anonymous79.42 17579.11 16480.34 24284.45 27557.97 30582.59 28487.62 23067.40 26576.17 22088.56 18868.47 9289.59 28070.65 19386.05 17093.47 88
ACMH+68.96 1476.01 25274.01 26182.03 20288.60 16665.31 19588.86 11687.55 23170.25 21067.75 33387.47 21741.27 35893.19 17458.37 30675.94 30287.60 287
tfpnnormal74.39 26873.16 27278.08 28686.10 24458.05 30284.65 24487.53 23270.32 20771.22 30085.63 26754.97 23189.86 27443.03 38875.02 32186.32 315
CHOSEN 1792x268877.63 22375.69 23583.44 15589.98 11468.58 12278.70 33887.50 23356.38 37475.80 22586.84 23158.67 20491.40 24561.58 27785.75 17690.34 198
ambc75.24 32173.16 39650.51 38663.05 41087.47 23464.28 36577.81 37617.80 41289.73 27857.88 31160.64 38685.49 331
Fast-Effi-MVS+-dtu78.02 21176.49 22682.62 19383.16 30566.96 16586.94 18287.45 23572.45 16571.49 29884.17 30054.79 23691.58 23367.61 22280.31 24889.30 241
D2MVS74.82 26673.21 27179.64 25879.81 35962.56 25380.34 31687.35 23664.37 30368.86 32582.66 32946.37 32190.10 27067.91 22081.24 23586.25 316
fmvsm_s_conf0.5_n_284.04 7884.11 7983.81 14786.17 24065.00 20186.96 18087.28 23774.35 12488.25 2794.23 3961.82 16692.60 19489.85 688.09 14193.84 67
TSAR-MVS + GP.85.71 5785.33 6386.84 5091.34 8172.50 3689.07 11087.28 23776.41 7785.80 5690.22 14674.15 3195.37 7881.82 8691.88 8392.65 122
fmvsm_l_conf0.5_n84.47 7484.54 7384.27 11985.42 25468.81 10988.49 13087.26 23968.08 25788.03 3193.49 6272.04 4891.77 22788.90 1989.14 12492.24 138
hse-mvs281.72 12180.94 12784.07 13188.72 16267.68 14385.87 21587.26 23976.02 8884.67 7288.22 19861.54 17193.48 15682.71 7973.44 33791.06 170
AUN-MVS79.21 18177.60 20284.05 13688.71 16367.61 14585.84 21787.26 23969.08 23977.23 19188.14 20353.20 25293.47 15775.50 14873.45 33691.06 170
BH-RMVSNet79.61 16778.44 17683.14 16989.38 13465.93 17984.95 23787.15 24273.56 14478.19 17089.79 15256.67 22393.36 16259.53 29386.74 15890.13 207
Test_1112_low_res76.40 24675.44 24179.27 26389.28 14058.09 30181.69 29387.07 24359.53 35172.48 28586.67 24061.30 17889.33 28460.81 28480.15 25090.41 196
KD-MVS_self_test68.81 32667.59 33272.46 34774.29 38745.45 39877.93 34987.00 24463.12 31663.99 36878.99 36842.32 35284.77 33956.55 32464.09 37987.16 300
mvsmamba80.60 14879.38 15584.27 11989.74 12067.24 15887.47 16486.95 24570.02 21375.38 23688.93 17551.24 27692.56 19775.47 14989.22 12293.00 112
reproduce_monomvs75.40 26274.38 25878.46 28183.92 28657.80 31083.78 26386.94 24673.47 14872.25 28984.47 29038.74 37089.27 28675.32 15070.53 35688.31 274
LS3D76.95 23474.82 25183.37 15990.45 10067.36 15389.15 10786.94 24661.87 33469.52 31990.61 13851.71 27294.53 11046.38 37786.71 15988.21 276
miper_lstm_enhance74.11 27373.11 27377.13 30280.11 35459.62 29072.23 37886.92 24866.76 26970.40 30582.92 32456.93 22182.92 35169.06 21072.63 34288.87 257
fmvsm_l_conf0.5_n_a84.13 7784.16 7884.06 13385.38 25568.40 12588.34 13786.85 24967.48 26487.48 4193.40 6670.89 6491.61 23188.38 2789.22 12292.16 142
jason81.39 13080.29 13884.70 10286.63 23569.90 8885.95 21286.77 25063.24 31581.07 12989.47 16261.08 18492.15 21478.33 11790.07 11192.05 145
jason: jason.
OurMVSNet-221017-074.26 27072.42 28179.80 25383.76 29059.59 29185.92 21486.64 25166.39 27866.96 34287.58 21139.46 36691.60 23265.76 24069.27 36188.22 275
VPNet78.69 19478.66 17178.76 27188.31 17755.72 34284.45 25186.63 25276.79 6778.26 16890.55 13959.30 20189.70 27966.63 23277.05 28390.88 177
fmvsm_s_conf0.1_n_283.80 8283.79 8283.83 14685.62 25064.94 20387.03 17886.62 25374.32 12587.97 3494.33 3360.67 19092.60 19489.72 787.79 14393.96 58
USDC70.33 31468.37 31676.21 30880.60 34856.23 33579.19 33086.49 25460.89 33961.29 37885.47 27131.78 39089.47 28353.37 33876.21 30082.94 367
lupinMVS81.39 13080.27 13984.76 10187.35 21570.21 8085.55 22486.41 25562.85 32281.32 12388.61 18561.68 16892.24 21278.41 11690.26 10691.83 148
TR-MVS77.44 22576.18 23181.20 22288.24 17963.24 24084.61 24586.40 25667.55 26277.81 17886.48 24954.10 24293.15 17657.75 31282.72 22087.20 297
旧先验191.96 7465.79 18486.37 25793.08 7669.31 8392.74 7388.74 265
GA-MVS76.87 23575.17 24881.97 20482.75 31562.58 25281.44 29886.35 25872.16 17274.74 25682.89 32546.20 32592.02 21868.85 21381.09 23791.30 164
MonoMVSNet76.49 24475.80 23378.58 27581.55 33558.45 29786.36 20286.22 25974.87 11374.73 25783.73 30951.79 27188.73 29770.78 18972.15 34688.55 270
CDS-MVSNet79.07 18577.70 19983.17 16887.60 21068.23 13084.40 25486.20 26067.49 26376.36 21386.54 24761.54 17190.79 26161.86 27487.33 14990.49 193
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS_111021_LR82.61 10882.11 10884.11 12488.82 15671.58 5585.15 23186.16 26174.69 11680.47 13491.04 12862.29 15990.55 26580.33 10190.08 11090.20 204
MSDG73.36 28470.99 29780.49 23984.51 27465.80 18380.71 30986.13 26265.70 28665.46 35783.74 30844.60 33790.91 25951.13 34976.89 28584.74 344
TransMVSNet (Re)75.39 26374.56 25477.86 28885.50 25357.10 32086.78 18986.09 26372.17 17171.53 29787.34 21863.01 15089.31 28556.84 32161.83 38287.17 298
VDDNet81.52 12780.67 13084.05 13690.44 10164.13 22189.73 8485.91 26471.11 18983.18 10193.48 6350.54 28593.49 15573.40 16788.25 13894.54 36
sd_testset77.70 22177.40 20578.60 27489.03 15160.02 28679.00 33385.83 26575.19 10376.61 20889.98 14854.81 23285.46 33262.63 26583.55 20790.33 199
Baseline_NR-MVSNet78.15 20778.33 18077.61 29485.79 24656.21 33686.78 18985.76 26673.60 14377.93 17787.57 21265.02 12988.99 29167.14 22975.33 31687.63 286
Anonymous2024052168.80 32767.22 33673.55 33674.33 38654.11 35883.18 27585.61 26758.15 36261.68 37780.94 34730.71 39381.27 36057.00 31973.34 33985.28 335
test_vis1_n_192075.52 25875.78 23474.75 32779.84 35857.44 31683.26 27485.52 26862.83 32379.34 14886.17 25645.10 33679.71 36678.75 11181.21 23687.10 304
新几何183.42 15693.13 5470.71 7485.48 26957.43 36981.80 11891.98 9663.28 14192.27 21064.60 24992.99 7087.27 296
EPNet83.72 8582.92 9786.14 6584.22 27869.48 9491.05 5685.27 27081.30 676.83 20091.65 10566.09 11895.56 6376.00 14193.85 6293.38 90
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UnsupCasMVSNet_eth67.33 33865.99 34271.37 35373.48 39351.47 37975.16 36685.19 27165.20 29260.78 38080.93 34942.35 35177.20 37757.12 31753.69 39885.44 333
mmtdpeth74.16 27273.01 27477.60 29683.72 29161.13 26985.10 23385.10 27272.06 17377.21 19580.33 35343.84 34385.75 32677.14 12952.61 40085.91 326
IB-MVS68.01 1575.85 25473.36 27083.31 16084.76 26766.03 17583.38 27285.06 27370.21 21169.40 32081.05 34445.76 33094.66 10865.10 24575.49 30889.25 242
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TAMVS78.89 19077.51 20483.03 17587.80 20167.79 14184.72 24185.05 27467.63 26076.75 20387.70 20862.25 16090.82 26058.53 30487.13 15290.49 193
CL-MVSNet_self_test72.37 29571.46 29075.09 32279.49 36553.53 36280.76 30785.01 27569.12 23870.51 30382.05 33857.92 21084.13 34252.27 34366.00 37487.60 287
testdata79.97 24990.90 9164.21 21984.71 27659.27 35385.40 6092.91 7862.02 16589.08 29068.95 21191.37 9286.63 313
MS-PatchMatch73.83 27772.67 27777.30 30083.87 28766.02 17681.82 29084.66 27761.37 33868.61 32882.82 32747.29 31288.21 30459.27 29484.32 19377.68 390
ET-MVSNet_ETH3D78.63 19576.63 22584.64 10386.73 23269.47 9585.01 23584.61 27869.54 22666.51 35286.59 24350.16 28891.75 22876.26 13784.24 19492.69 120
CNLPA78.08 20876.79 21981.97 20490.40 10271.07 6587.59 16184.55 27966.03 28372.38 28789.64 15657.56 21486.04 32459.61 29283.35 21188.79 261
MIMVSNet168.58 32966.78 33973.98 33480.07 35551.82 37580.77 30684.37 28064.40 30259.75 38582.16 33736.47 37983.63 34642.73 38970.33 35786.48 314
KD-MVS_2432*160066.22 34763.89 34973.21 33875.47 38453.42 36470.76 38584.35 28164.10 30766.52 35078.52 37034.55 38484.98 33650.40 35250.33 40381.23 378
miper_refine_blended66.22 34763.89 34973.21 33875.47 38453.42 36470.76 38584.35 28164.10 30766.52 35078.52 37034.55 38484.98 33650.40 35250.33 40381.23 378
test_040272.79 29270.44 30379.84 25288.13 18465.99 17885.93 21384.29 28365.57 28867.40 33985.49 27046.92 31692.61 19335.88 40274.38 32780.94 380
EU-MVSNet68.53 33167.61 33171.31 35678.51 37147.01 39584.47 24884.27 28442.27 40266.44 35384.79 28740.44 36383.76 34458.76 30268.54 36683.17 361
thisisatest053079.40 17677.76 19784.31 11587.69 20865.10 19987.36 16884.26 28570.04 21277.42 18588.26 19749.94 29194.79 10370.20 19684.70 18493.03 109
COLMAP_ROBcopyleft66.92 1773.01 28970.41 30480.81 23387.13 22565.63 18788.30 13984.19 28662.96 32063.80 37087.69 20938.04 37592.56 19746.66 37474.91 32284.24 349
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tttt051779.40 17677.91 18983.90 14588.10 18663.84 22588.37 13684.05 28771.45 18376.78 20289.12 17149.93 29394.89 9870.18 19783.18 21492.96 114
CMPMVSbinary51.72 2170.19 31668.16 31976.28 30773.15 39757.55 31479.47 32583.92 28848.02 39556.48 39584.81 28643.13 34786.42 32162.67 26481.81 23184.89 342
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous20240521178.25 20277.01 21281.99 20391.03 8760.67 27784.77 24083.90 28970.65 20280.00 13991.20 12241.08 36091.43 24465.21 24385.26 17893.85 65
XXY-MVS75.41 26175.56 23974.96 32383.59 29357.82 30980.59 31183.87 29066.54 27774.93 25488.31 19463.24 14380.09 36562.16 27076.85 28786.97 305
DP-MVS76.78 23774.57 25383.42 15693.29 4869.46 9788.55 12983.70 29163.98 31170.20 30788.89 17754.01 24494.80 10246.66 37481.88 23086.01 323
tfpn200view976.42 24575.37 24579.55 26189.13 14657.65 31285.17 22983.60 29273.41 15076.45 21086.39 25152.12 26091.95 22048.33 36583.75 20189.07 243
thres40076.50 24175.37 24579.86 25189.13 14657.65 31285.17 22983.60 29273.41 15076.45 21086.39 25152.12 26091.95 22048.33 36583.75 20190.00 217
SixPastTwentyTwo73.37 28271.26 29579.70 25585.08 26357.89 30785.57 22083.56 29471.03 19265.66 35685.88 26042.10 35592.57 19659.11 29763.34 38088.65 267
thres20075.55 25774.47 25678.82 27087.78 20457.85 30883.07 28083.51 29572.44 16775.84 22484.42 29152.08 26391.75 22847.41 37283.64 20686.86 307
IterMVS-SCA-FT75.43 26073.87 26580.11 24782.69 31764.85 20681.57 29583.47 29669.16 23770.49 30484.15 30151.95 26688.15 30569.23 20772.14 34787.34 294
CVMVSNet72.99 29072.58 27974.25 33184.28 27650.85 38486.41 19983.45 29744.56 39973.23 27587.54 21549.38 29885.70 32765.90 23878.44 26886.19 318
ITE_SJBPF78.22 28381.77 33160.57 27883.30 29869.25 23367.54 33587.20 22436.33 38087.28 31454.34 33374.62 32586.80 308
thisisatest051577.33 22875.38 24483.18 16785.27 25763.80 22682.11 28983.27 29965.06 29475.91 22283.84 30549.54 29594.27 11867.24 22786.19 16791.48 159
mvs5depth69.45 32267.45 33475.46 31873.93 38855.83 34079.19 33083.23 30066.89 26671.63 29683.32 31633.69 38685.09 33559.81 29055.34 39685.46 332
thres100view90076.50 24175.55 24079.33 26289.52 12556.99 32185.83 21883.23 30073.94 13476.32 21487.12 22751.89 26891.95 22048.33 36583.75 20189.07 243
thres600view776.50 24175.44 24179.68 25689.40 13257.16 31885.53 22683.23 30073.79 13876.26 21587.09 22851.89 26891.89 22348.05 37083.72 20490.00 217
test22291.50 8068.26 12984.16 25883.20 30354.63 38079.74 14191.63 10758.97 20391.42 9186.77 309
EPNet_dtu75.46 25974.86 25077.23 30182.57 32054.60 35486.89 18483.09 30471.64 17666.25 35485.86 26155.99 22688.04 30754.92 33086.55 16189.05 248
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_s_conf0.5_n83.80 8283.71 8384.07 13186.69 23367.31 15489.46 9283.07 30571.09 19086.96 4993.70 6069.02 8991.47 24288.79 2084.62 18593.44 89
fmvsm_s_conf0.1_n83.56 9083.38 8884.10 12584.86 26667.28 15589.40 9783.01 30670.67 19887.08 4693.96 5568.38 9391.45 24388.56 2484.50 18693.56 84
testing9176.54 23975.66 23879.18 26688.43 17355.89 33981.08 30183.00 30773.76 13975.34 23884.29 29646.20 32590.07 27164.33 25084.50 18691.58 154
TDRefinement67.49 33664.34 34676.92 30373.47 39461.07 27184.86 23982.98 30859.77 34858.30 38985.13 27926.06 39887.89 30847.92 37160.59 38781.81 376
OpenMVS_ROBcopyleft64.09 1970.56 31268.19 31877.65 29380.26 35159.41 29385.01 23582.96 30958.76 35865.43 35882.33 33337.63 37791.23 25045.34 38476.03 30182.32 371
fmvsm_s_conf0.5_n_a83.63 8883.41 8784.28 11786.14 24168.12 13289.43 9382.87 31070.27 20987.27 4593.80 5969.09 8491.58 23388.21 2883.65 20593.14 103
fmvsm_s_conf0.1_n_a83.32 9782.99 9584.28 11783.79 28868.07 13489.34 10082.85 31169.80 22087.36 4494.06 4768.34 9491.56 23587.95 2983.46 21093.21 99
RPSCF73.23 28671.46 29078.54 27782.50 32159.85 28782.18 28882.84 31258.96 35671.15 30189.41 16845.48 33584.77 33958.82 30171.83 34991.02 174
CostFormer75.24 26473.90 26479.27 26382.65 31958.27 30080.80 30482.73 31361.57 33575.33 24283.13 32055.52 22891.07 25764.98 24678.34 27188.45 271
IterMVS74.29 26972.94 27578.35 28281.53 33663.49 23481.58 29482.49 31468.06 25869.99 31383.69 31151.66 27385.54 33065.85 23971.64 35086.01 323
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_cas_vis1_n_192073.76 27873.74 26773.81 33575.90 37959.77 28880.51 31282.40 31558.30 36181.62 12185.69 26444.35 34076.41 38476.29 13678.61 26485.23 336
WTY-MVS75.65 25675.68 23675.57 31486.40 23756.82 32377.92 35082.40 31565.10 29376.18 21887.72 20763.13 14980.90 36260.31 28681.96 22889.00 252
pmmvs474.03 27671.91 28580.39 24081.96 32868.32 12781.45 29782.14 31759.32 35269.87 31685.13 27952.40 25688.13 30660.21 28774.74 32484.73 345
FMVSNet569.50 32167.96 32274.15 33282.97 31255.35 34780.01 32082.12 31862.56 32763.02 37181.53 34136.92 37881.92 35648.42 36474.06 32985.17 339
mamv476.81 23678.23 18472.54 34686.12 24265.75 18678.76 33782.07 31964.12 30672.97 27891.02 13167.97 9768.08 41083.04 7378.02 27383.80 356
baseline176.98 23376.75 22277.66 29288.13 18455.66 34385.12 23281.89 32073.04 15976.79 20188.90 17662.43 15787.78 31063.30 25871.18 35389.55 235
UnsupCasMVSNet_bld63.70 35561.53 36170.21 36273.69 39151.39 38072.82 37681.89 32055.63 37757.81 39171.80 39638.67 37178.61 37049.26 36152.21 40180.63 382
LFMVS81.82 12081.23 12183.57 15391.89 7663.43 23789.84 7881.85 32277.04 6183.21 10093.10 7252.26 25893.43 16071.98 18089.95 11393.85 65
sss73.60 27973.64 26873.51 33782.80 31455.01 35176.12 35781.69 32362.47 32874.68 25885.85 26257.32 21778.11 37360.86 28380.93 23887.39 292
pmmvs-eth3d70.50 31367.83 32678.52 27977.37 37566.18 17481.82 29081.51 32458.90 35763.90 36980.42 35242.69 35086.28 32258.56 30365.30 37683.11 363
TinyColmap67.30 33964.81 34474.76 32681.92 33056.68 32780.29 31781.49 32560.33 34256.27 39683.22 31724.77 40287.66 31245.52 38269.47 36079.95 385
testing9976.09 25175.12 24979.00 26788.16 18155.50 34580.79 30581.40 32673.30 15375.17 24684.27 29844.48 33990.02 27264.28 25184.22 19591.48 159
tpmvs71.09 30569.29 31076.49 30682.04 32756.04 33778.92 33581.37 32764.05 30967.18 34178.28 37249.74 29489.77 27649.67 35972.37 34383.67 357
WBMVS73.43 28172.81 27675.28 32087.91 19550.99 38378.59 34181.31 32865.51 29174.47 26284.83 28546.39 31986.68 31758.41 30577.86 27488.17 277
pmmvs571.55 30170.20 30775.61 31377.83 37256.39 33181.74 29280.89 32957.76 36567.46 33784.49 28949.26 30185.32 33457.08 31875.29 31785.11 340
ANet_high50.57 37746.10 38163.99 38048.67 42539.13 41470.99 38480.85 33061.39 33731.18 41457.70 41017.02 41373.65 40131.22 40715.89 42279.18 387
LCM-MVSNet54.25 36849.68 37867.97 37553.73 42245.28 40166.85 40080.78 33135.96 41139.45 41262.23 4058.70 42278.06 37448.24 36851.20 40280.57 383
PVSNet64.34 1872.08 29970.87 29975.69 31286.21 23956.44 33074.37 37280.73 33262.06 33370.17 30982.23 33642.86 34983.31 34954.77 33184.45 19087.32 295
baseline275.70 25573.83 26681.30 21983.26 30061.79 26482.57 28580.65 33366.81 26766.88 34383.42 31557.86 21192.19 21363.47 25579.57 25589.91 222
ppachtmachnet_test70.04 31767.34 33578.14 28579.80 36061.13 26979.19 33080.59 33459.16 35465.27 35979.29 36346.75 31887.29 31349.33 36066.72 36986.00 325
Gipumacopyleft45.18 38241.86 38555.16 39477.03 37751.52 37832.50 41880.52 33532.46 41427.12 41735.02 4189.52 42175.50 39122.31 41560.21 38838.45 417
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
Anonymous2023120668.60 32867.80 32771.02 35880.23 35350.75 38578.30 34680.47 33656.79 37266.11 35582.63 33046.35 32278.95 36943.62 38775.70 30483.36 360
LCM-MVSNet-Re77.05 23176.94 21577.36 29887.20 22351.60 37780.06 31880.46 33775.20 10267.69 33486.72 23562.48 15588.98 29263.44 25689.25 12191.51 156
testing1175.14 26574.01 26178.53 27888.16 18156.38 33280.74 30880.42 33870.67 19872.69 28383.72 31043.61 34589.86 27462.29 26883.76 20089.36 239
tpm273.26 28571.46 29078.63 27283.34 29856.71 32680.65 31080.40 33956.63 37373.55 27182.02 33951.80 27091.24 24956.35 32578.42 26987.95 279
CR-MVSNet73.37 28271.27 29479.67 25781.32 34265.19 19675.92 35980.30 34059.92 34772.73 28181.19 34252.50 25486.69 31659.84 28977.71 27687.11 302
Patchmtry70.74 30969.16 31275.49 31780.72 34654.07 35974.94 37080.30 34058.34 36070.01 31181.19 34252.50 25486.54 31853.37 33871.09 35485.87 328
tpm cat170.57 31168.31 31777.35 29982.41 32457.95 30678.08 34780.22 34252.04 38668.54 32977.66 37752.00 26587.84 30951.77 34472.07 34886.25 316
MDTV_nov1_ep1369.97 30883.18 30353.48 36377.10 35580.18 34360.45 34169.33 32280.44 35148.89 30786.90 31551.60 34678.51 267
AllTest70.96 30668.09 32179.58 25985.15 26063.62 22884.58 24679.83 34462.31 32960.32 38286.73 23332.02 38888.96 29450.28 35471.57 35186.15 319
TestCases79.58 25985.15 26063.62 22879.83 34462.31 32960.32 38286.73 23332.02 38888.96 29450.28 35471.57 35186.15 319
test_fmvs1_n70.86 30870.24 30672.73 34472.51 40155.28 34881.27 30079.71 34651.49 39078.73 15584.87 28427.54 39777.02 37876.06 13979.97 25385.88 327
Vis-MVSNet (Re-imp)78.36 20178.45 17578.07 28788.64 16551.78 37686.70 19279.63 34774.14 13175.11 24990.83 13561.29 17989.75 27758.10 30991.60 8892.69 120
MIMVSNet70.69 31069.30 30974.88 32484.52 27356.35 33475.87 36179.42 34864.59 29967.76 33282.41 33141.10 35981.54 35846.64 37681.34 23386.75 310
dmvs_re71.14 30470.58 30072.80 34381.96 32859.68 28975.60 36379.34 34968.55 25069.27 32380.72 35049.42 29776.54 38152.56 34277.79 27582.19 373
SCA74.22 27172.33 28279.91 25084.05 28362.17 25879.96 32179.29 35066.30 27972.38 28780.13 35551.95 26688.60 30059.25 29577.67 27888.96 254
testing22274.04 27472.66 27878.19 28487.89 19655.36 34681.06 30279.20 35171.30 18574.65 25983.57 31339.11 36988.67 29951.43 34885.75 17690.53 191
tpmrst72.39 29372.13 28473.18 34180.54 34949.91 38879.91 32279.08 35263.11 31771.69 29579.95 35755.32 22982.77 35265.66 24173.89 33186.87 306
test_fmvs170.93 30770.52 30172.16 34873.71 39055.05 35080.82 30378.77 35351.21 39178.58 16084.41 29231.20 39276.94 37975.88 14280.12 25284.47 347
PatchmatchNetpermissive73.12 28771.33 29378.49 28083.18 30360.85 27479.63 32378.57 35464.13 30571.73 29479.81 36051.20 27785.97 32557.40 31576.36 29988.66 266
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDA-MVSNet-bldmvs66.68 34263.66 35175.75 31179.28 36760.56 27973.92 37478.35 35564.43 30150.13 40479.87 35944.02 34283.67 34546.10 37956.86 39083.03 365
new-patchmatchnet61.73 35961.73 36061.70 38372.74 39924.50 42669.16 39278.03 35661.40 33656.72 39475.53 38838.42 37276.48 38345.95 38057.67 38984.13 351
our_test_369.14 32467.00 33775.57 31479.80 36058.80 29477.96 34877.81 35759.55 35062.90 37478.25 37347.43 31183.97 34351.71 34567.58 36883.93 354
test20.0367.45 33766.95 33868.94 36675.48 38344.84 40377.50 35177.67 35866.66 27163.01 37283.80 30647.02 31578.40 37142.53 39168.86 36583.58 358
WB-MVSnew71.96 30071.65 28872.89 34284.67 27251.88 37482.29 28777.57 35962.31 32973.67 27083.00 32253.49 24981.10 36145.75 38182.13 22685.70 329
test-LLR72.94 29172.43 28074.48 32881.35 34058.04 30378.38 34277.46 36066.66 27169.95 31479.00 36648.06 30979.24 36766.13 23484.83 18186.15 319
test-mter71.41 30270.39 30574.48 32881.35 34058.04 30378.38 34277.46 36060.32 34369.95 31479.00 36636.08 38179.24 36766.13 23484.83 18186.15 319
ECVR-MVScopyleft79.61 16779.26 16080.67 23690.08 10854.69 35387.89 15477.44 36274.88 11180.27 13592.79 8448.96 30692.45 20168.55 21592.50 7794.86 18
UBG73.08 28872.27 28375.51 31688.02 19051.29 38178.35 34577.38 36365.52 28973.87 26882.36 33245.55 33286.48 32055.02 32984.39 19288.75 263
tpm72.37 29571.71 28774.35 33082.19 32652.00 37179.22 32977.29 36464.56 30072.95 27983.68 31251.35 27483.26 35058.33 30775.80 30387.81 283
LF4IMVS64.02 35462.19 35869.50 36470.90 40253.29 36776.13 35677.18 36552.65 38558.59 38780.98 34623.55 40576.52 38253.06 34066.66 37078.68 388
test111179.43 17479.18 16380.15 24689.99 11353.31 36687.33 17077.05 36675.04 10680.23 13792.77 8648.97 30592.33 20968.87 21292.40 7994.81 21
K. test v371.19 30368.51 31579.21 26583.04 30857.78 31184.35 25576.91 36772.90 16262.99 37382.86 32639.27 36791.09 25661.65 27652.66 39988.75 263
UWE-MVS72.13 29871.49 28974.03 33386.66 23447.70 39281.40 29976.89 36863.60 31475.59 22784.22 29939.94 36585.62 32948.98 36286.13 16988.77 262
testgi66.67 34366.53 34067.08 37775.62 38241.69 41275.93 35876.50 36966.11 28065.20 36286.59 24335.72 38274.71 39643.71 38673.38 33884.84 343
test_fmvs268.35 33367.48 33370.98 35969.50 40451.95 37280.05 31976.38 37049.33 39374.65 25984.38 29323.30 40675.40 39474.51 15575.17 32085.60 330
test_vis1_n69.85 32069.21 31171.77 35072.66 40055.27 34981.48 29676.21 37152.03 38775.30 24383.20 31928.97 39576.22 38674.60 15478.41 27083.81 355
PatchMatch-RL72.38 29470.90 29876.80 30588.60 16667.38 15279.53 32476.17 37262.75 32569.36 32182.00 34045.51 33384.89 33853.62 33680.58 24478.12 389
JIA-IIPM66.32 34662.82 35776.82 30477.09 37661.72 26565.34 40575.38 37358.04 36464.51 36462.32 40442.05 35686.51 31951.45 34769.22 36282.21 372
ADS-MVSNet266.20 34963.33 35274.82 32579.92 35658.75 29567.55 39775.19 37453.37 38365.25 36075.86 38542.32 35280.53 36441.57 39268.91 36385.18 337
ETVMVS72.25 29771.05 29675.84 31087.77 20551.91 37379.39 32674.98 37569.26 23273.71 26982.95 32340.82 36286.14 32346.17 37884.43 19189.47 236
PatchT68.46 33267.85 32470.29 36180.70 34743.93 40572.47 37774.88 37660.15 34570.55 30276.57 38149.94 29181.59 35750.58 35074.83 32385.34 334
dp66.80 34165.43 34370.90 36079.74 36248.82 39175.12 36874.77 37759.61 34964.08 36777.23 37842.89 34880.72 36348.86 36366.58 37183.16 362
MDA-MVSNet_test_wron65.03 35062.92 35471.37 35375.93 37856.73 32469.09 39474.73 37857.28 37054.03 39977.89 37445.88 32774.39 39849.89 35861.55 38382.99 366
TESTMET0.1,169.89 31969.00 31372.55 34579.27 36856.85 32278.38 34274.71 37957.64 36668.09 33177.19 37937.75 37676.70 38063.92 25384.09 19684.10 352
YYNet165.03 35062.91 35571.38 35275.85 38056.60 32869.12 39374.66 38057.28 37054.12 39877.87 37545.85 32874.48 39749.95 35761.52 38483.05 364
test_fmvs363.36 35661.82 35967.98 37462.51 41346.96 39677.37 35374.03 38145.24 39867.50 33678.79 36912.16 41872.98 40272.77 17566.02 37383.99 353
PMMVS69.34 32368.67 31471.35 35575.67 38162.03 25975.17 36573.46 38250.00 39268.68 32679.05 36452.07 26478.13 37261.16 28182.77 21873.90 396
PVSNet_057.27 2061.67 36059.27 36368.85 36879.61 36357.44 31668.01 39573.44 38355.93 37658.54 38870.41 39944.58 33877.55 37647.01 37335.91 41171.55 399
Syy-MVS68.05 33467.85 32468.67 37084.68 26940.97 41378.62 33973.08 38466.65 27466.74 34679.46 36152.11 26282.30 35432.89 40576.38 29782.75 368
myMVS_eth3d67.02 34066.29 34169.21 36584.68 26942.58 40878.62 33973.08 38466.65 27466.74 34679.46 36131.53 39182.30 35439.43 39776.38 29782.75 368
test0.0.03 168.00 33567.69 32968.90 36777.55 37347.43 39375.70 36272.95 38666.66 27166.56 34882.29 33548.06 30975.87 38944.97 38574.51 32683.41 359
testing368.56 33067.67 33071.22 35787.33 22042.87 40783.06 28171.54 38770.36 20569.08 32484.38 29330.33 39485.69 32837.50 40075.45 31285.09 341
ADS-MVSNet64.36 35362.88 35668.78 36979.92 35647.17 39467.55 39771.18 38853.37 38365.25 36075.86 38542.32 35273.99 39941.57 39268.91 36385.18 337
Patchmatch-RL test70.24 31567.78 32877.61 29477.43 37459.57 29271.16 38270.33 38962.94 32168.65 32772.77 39450.62 28385.49 33169.58 20566.58 37187.77 284
gg-mvs-nofinetune69.95 31867.96 32275.94 30983.07 30654.51 35677.23 35470.29 39063.11 31770.32 30662.33 40343.62 34488.69 29853.88 33587.76 14484.62 346
door-mid69.98 391
GG-mvs-BLEND75.38 31981.59 33455.80 34179.32 32769.63 39267.19 34073.67 39243.24 34688.90 29650.41 35184.50 18681.45 377
FPMVS53.68 37151.64 37359.81 38665.08 41051.03 38269.48 39069.58 39341.46 40340.67 41072.32 39516.46 41470.00 40724.24 41465.42 37558.40 410
door69.44 394
Patchmatch-test64.82 35263.24 35369.57 36379.42 36649.82 38963.49 40969.05 39551.98 38859.95 38480.13 35550.91 27970.98 40340.66 39473.57 33487.90 281
CHOSEN 280x42066.51 34464.71 34571.90 34981.45 33763.52 23357.98 41268.95 39653.57 38262.59 37576.70 38046.22 32475.29 39555.25 32879.68 25476.88 392
MVStest156.63 36652.76 37268.25 37361.67 41453.25 36871.67 38068.90 39738.59 40750.59 40383.05 32125.08 40070.66 40436.76 40138.56 41080.83 381
EGC-MVSNET52.07 37547.05 37967.14 37683.51 29560.71 27680.50 31367.75 3980.07 4250.43 42675.85 38724.26 40381.54 35828.82 40862.25 38159.16 408
ttmdpeth59.91 36257.10 36668.34 37267.13 40846.65 39774.64 37167.41 39948.30 39462.52 37685.04 28320.40 40875.93 38842.55 39045.90 40982.44 370
EPMVS69.02 32568.16 31971.59 35179.61 36349.80 39077.40 35266.93 40062.82 32470.01 31179.05 36445.79 32977.86 37556.58 32375.26 31887.13 301
APD_test153.31 37249.93 37763.42 38265.68 40950.13 38771.59 38166.90 40134.43 41240.58 41171.56 3978.65 42376.27 38534.64 40455.36 39563.86 406
lessismore_v078.97 26881.01 34557.15 31965.99 40261.16 37982.82 32739.12 36891.34 24759.67 29146.92 40688.43 272
dmvs_testset62.63 35764.11 34858.19 38778.55 37024.76 42575.28 36465.94 40367.91 25960.34 38176.01 38453.56 24773.94 40031.79 40667.65 36775.88 394
pmmvs357.79 36454.26 36968.37 37164.02 41256.72 32575.12 36865.17 40440.20 40452.93 40069.86 40020.36 40975.48 39245.45 38355.25 39772.90 398
MVS-HIRNet59.14 36357.67 36563.57 38181.65 33243.50 40671.73 37965.06 40539.59 40651.43 40157.73 40938.34 37382.58 35339.53 39573.95 33064.62 405
PM-MVS66.41 34564.14 34773.20 34073.92 38956.45 32978.97 33464.96 40663.88 31364.72 36380.24 35419.84 41083.44 34866.24 23364.52 37879.71 386
PMVScopyleft37.38 2244.16 38340.28 38755.82 39240.82 42742.54 41065.12 40663.99 40734.43 41224.48 41857.12 4113.92 42876.17 38717.10 41955.52 39448.75 413
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test250677.30 22976.49 22679.74 25490.08 10852.02 37087.86 15663.10 40874.88 11180.16 13892.79 8438.29 37492.35 20768.74 21492.50 7794.86 18
test_method31.52 38729.28 39138.23 40127.03 4296.50 43220.94 42062.21 4094.05 42322.35 42152.50 41413.33 41547.58 42127.04 41134.04 41360.62 407
WB-MVS54.94 36754.72 36855.60 39373.50 39220.90 42774.27 37361.19 41059.16 35450.61 40274.15 39047.19 31475.78 39017.31 41835.07 41270.12 400
test_vis1_rt60.28 36158.42 36465.84 37867.25 40755.60 34470.44 38760.94 41144.33 40059.00 38666.64 40124.91 40168.67 40862.80 26069.48 35973.25 397
SSC-MVS53.88 37053.59 37054.75 39572.87 39819.59 42873.84 37560.53 41257.58 36849.18 40673.45 39346.34 32375.47 39316.20 42132.28 41469.20 401
testf145.72 37941.96 38357.00 38856.90 41645.32 39966.14 40259.26 41326.19 41630.89 41560.96 4074.14 42670.64 40526.39 41246.73 40755.04 411
APD_test245.72 37941.96 38357.00 38856.90 41645.32 39966.14 40259.26 41326.19 41630.89 41560.96 4074.14 42670.64 40526.39 41246.73 40755.04 411
test_f52.09 37450.82 37555.90 39153.82 42142.31 41159.42 41158.31 41536.45 41056.12 39770.96 39812.18 41757.79 41753.51 33756.57 39267.60 402
new_pmnet50.91 37650.29 37652.78 39668.58 40534.94 41863.71 40756.63 41639.73 40544.95 40765.47 40221.93 40758.48 41634.98 40356.62 39164.92 404
DSMNet-mixed57.77 36556.90 36760.38 38567.70 40635.61 41669.18 39153.97 41732.30 41557.49 39279.88 35840.39 36468.57 40938.78 39872.37 34376.97 391
PMMVS240.82 38438.86 38846.69 39853.84 42016.45 42948.61 41549.92 41837.49 40831.67 41360.97 4068.14 42456.42 41828.42 40930.72 41567.19 403
mvsany_test162.30 35861.26 36265.41 37969.52 40354.86 35266.86 39949.78 41946.65 39668.50 33083.21 31849.15 30266.28 41156.93 32060.77 38575.11 395
test_vis3_rt49.26 37847.02 38056.00 39054.30 41945.27 40266.76 40148.08 42036.83 40944.38 40853.20 4137.17 42564.07 41356.77 32255.66 39358.65 409
E-PMN31.77 38630.64 38935.15 40352.87 42327.67 42057.09 41347.86 42124.64 41816.40 42333.05 41911.23 41954.90 41914.46 42218.15 42022.87 419
EMVS30.81 38829.65 39034.27 40450.96 42425.95 42456.58 41446.80 42224.01 41915.53 42430.68 42012.47 41654.43 42012.81 42317.05 42122.43 420
mvsany_test353.99 36951.45 37461.61 38455.51 41844.74 40463.52 40845.41 42343.69 40158.11 39076.45 38217.99 41163.76 41454.77 33147.59 40576.34 393
MVEpermissive26.22 2330.37 38925.89 39343.81 40044.55 42635.46 41728.87 41939.07 42418.20 42018.58 42240.18 4172.68 42947.37 42217.07 42023.78 41948.60 414
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dongtai45.42 38145.38 38245.55 39973.36 39526.85 42367.72 39634.19 42554.15 38149.65 40556.41 41225.43 39962.94 41519.45 41628.09 41646.86 415
kuosan39.70 38540.40 38637.58 40264.52 41126.98 42165.62 40433.02 42646.12 39742.79 40948.99 41524.10 40446.56 42312.16 42426.30 41739.20 416
MTMP92.18 3432.83 427
tmp_tt18.61 39121.40 39410.23 4074.82 43010.11 43034.70 41730.74 4281.48 42423.91 42026.07 42128.42 39613.41 42627.12 41015.35 4237.17 421
DeepMVS_CXcopyleft27.40 40540.17 42826.90 42224.59 42917.44 42123.95 41948.61 4169.77 42026.48 42418.06 41724.47 41828.83 418
N_pmnet52.79 37353.26 37151.40 39778.99 3697.68 43169.52 3893.89 43051.63 38957.01 39374.98 38940.83 36165.96 41237.78 39964.67 37780.56 384
wuyk23d16.82 39215.94 39519.46 40658.74 41531.45 41939.22 4163.74 4316.84 4226.04 4252.70 4251.27 43024.29 42510.54 42514.40 4242.63 422
testmvs6.04 3958.02 3980.10 4090.08 4310.03 43469.74 3880.04 4320.05 4260.31 4271.68 4260.02 4320.04 4270.24 4260.02 4250.25 424
test1236.12 3948.11 3970.14 4080.06 4320.09 43371.05 3830.03 4330.04 4270.25 4281.30 4270.05 4310.03 4280.21 4270.01 4260.29 423
mmdepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
monomultidepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
test_blank0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uanet_test0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
DCPMVS0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
pcd_1.5k_mvsjas5.26 3967.02 3990.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 42863.15 1460.00 4290.00 4280.00 4270.00 425
sosnet-low-res0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
sosnet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uncertanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
Regformer0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
n20.00 434
nn0.00 434
ab-mvs-re7.23 3939.64 3960.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 42986.72 2350.00 4330.00 4290.00 4280.00 4270.00 425
uanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
WAC-MVS42.58 40839.46 396
PC_three_145268.21 25692.02 1294.00 5182.09 595.98 5684.58 5596.68 294.95 11
eth-test20.00 433
eth-test0.00 433
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4982.45 396.87 2083.77 6696.48 894.88 15
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 989.42 1196.57 794.67 28
GSMVS88.96 254
test_part295.06 872.65 3291.80 13
sam_mvs151.32 27588.96 254
sam_mvs50.01 289
test_post178.90 3365.43 42448.81 30885.44 33359.25 295
test_post5.46 42350.36 28784.24 341
patchmatchnet-post74.00 39151.12 27888.60 300
gm-plane-assit81.40 33853.83 36162.72 32680.94 34792.39 20463.40 257
test9_res84.90 4895.70 2692.87 115
agg_prior282.91 7595.45 2992.70 118
test_prior472.60 3489.01 111
test_prior288.85 11775.41 9884.91 6793.54 6174.28 2983.31 6995.86 20
旧先验286.56 19658.10 36387.04 4788.98 29274.07 160
新几何286.29 205
原ACMM286.86 185
testdata291.01 25862.37 267
segment_acmp73.08 38
testdata184.14 25975.71 92
plane_prior790.08 10868.51 123
plane_prior689.84 11768.70 11860.42 196
plane_prior491.00 132
plane_prior368.60 12178.44 3178.92 153
plane_prior291.25 5279.12 23
plane_prior189.90 116
plane_prior68.71 11690.38 7077.62 4086.16 168
HQP5-MVS66.98 163
HQP-NCC89.33 13589.17 10376.41 7777.23 191
ACMP_Plane89.33 13589.17 10376.41 7777.23 191
BP-MVS77.47 124
HQP4-MVS77.24 19095.11 8791.03 172
HQP2-MVS60.17 199
NP-MVS89.62 12168.32 12790.24 144
MDTV_nov1_ep13_2view37.79 41575.16 36655.10 37866.53 34949.34 29953.98 33487.94 280
ACMMP++_ref81.95 229
ACMMP++81.25 234
Test By Simon64.33 133