This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
9.1488.26 1592.84 6091.52 4694.75 173.93 12588.57 2294.67 1975.57 2295.79 5486.77 3595.76 23
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8789.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 42
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5994.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8592.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 52
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15385.22 5491.90 9269.47 7496.42 3783.28 6295.94 1994.35 36
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 41
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 8991.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 31
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 9794.23 3572.13 4597.09 1684.83 4595.37 3293.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FOURS195.00 1072.39 3995.06 193.84 1574.49 11391.30 15
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7693.82 1673.07 14884.86 6292.89 7476.22 1796.33 3884.89 4495.13 3694.40 34
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5394.32 3171.76 4896.93 1985.53 3995.79 2294.32 38
CS-MVS-test86.29 4286.48 3785.71 6591.02 8367.21 15192.36 2993.78 1878.97 2883.51 8891.20 11170.65 6395.15 7981.96 7694.89 4194.77 22
3Dnovator+77.84 485.48 5484.47 6988.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19693.37 6260.40 18896.75 2677.20 11893.73 6395.29 5
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10792.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
EC-MVSNet86.01 4386.38 3884.91 9089.31 13266.27 16592.32 3093.63 2179.37 2084.17 7691.88 9369.04 8295.43 6783.93 5793.77 6293.01 101
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5693.59 2376.27 7988.14 2495.09 1571.06 5796.67 2987.67 2996.37 1494.09 46
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5793.56 2473.95 12383.16 9291.07 11675.94 1895.19 7779.94 9494.38 5593.55 76
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7893.50 2575.17 10086.34 4495.29 1270.86 5996.00 4988.78 1996.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FIs82.07 10382.42 9181.04 21988.80 15258.34 28888.26 13593.49 2676.93 6078.47 15591.04 11769.92 7092.34 20069.87 19084.97 16992.44 120
DELS-MVS85.41 5785.30 5885.77 6488.49 16367.93 13285.52 21993.44 2778.70 2983.63 8789.03 16474.57 2495.71 5780.26 9294.04 6093.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6393.99 4870.67 6296.82 2284.18 5695.01 3793.90 55
FC-MVSNet-test81.52 11782.02 10080.03 24088.42 16855.97 32687.95 14593.42 2977.10 5677.38 17890.98 12269.96 6891.79 21868.46 20584.50 17592.33 121
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 9989.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 27
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8283.81 8393.95 5169.77 7296.01 4885.15 4094.66 4794.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS86.69 3586.95 3185.90 6390.76 9167.57 13992.83 1793.30 3279.67 1784.57 6992.27 8671.47 5395.02 8884.24 5493.46 6495.13 6
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 5994.44 2870.78 6096.61 3284.53 4994.89 4193.66 65
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6694.52 2168.81 8496.65 3084.53 4994.90 4094.00 50
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13787.63 3094.27 5893.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMMPcopyleft85.89 4885.39 5487.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12393.82 5364.33 12596.29 3982.67 7390.69 9593.23 89
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7094.52 2169.09 7896.70 2784.37 5194.83 4594.03 49
DPM-MVS84.93 6384.29 7086.84 4790.20 10073.04 2387.12 16893.04 3869.80 20882.85 9691.22 11073.06 3896.02 4776.72 12694.63 4891.46 152
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7093.04 3875.53 9183.86 8194.42 2967.87 9296.64 3182.70 7294.57 5093.66 65
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6687.65 19967.22 15088.69 11993.04 3879.64 1885.33 5292.54 8373.30 3594.50 10883.49 5991.14 9095.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7084.22 7493.36 6371.44 5496.76 2580.82 8595.33 3494.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UniMVSNet (Re)81.60 11681.11 11183.09 16388.38 16964.41 20987.60 15593.02 4278.42 3278.56 15288.16 19069.78 7193.26 16069.58 19376.49 28091.60 142
canonicalmvs85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13281.50 7988.80 12194.77 22
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 37
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
No_MVS89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8594.17 3667.45 9596.60 3383.06 6394.50 5194.07 47
X-MVStestdata80.37 14677.83 18388.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8512.47 40367.45 9596.60 3383.06 6394.50 5194.07 47
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4573.54 13685.94 4594.51 2465.80 11595.61 5983.04 6592.51 7293.53 78
test_prior86.33 5492.61 6569.59 8892.97 5095.48 6493.91 53
IU-MVS95.30 271.25 5792.95 5166.81 25592.39 688.94 1696.63 494.85 19
baseline84.93 6384.98 6184.80 9487.30 21365.39 18887.30 16492.88 5277.62 3984.04 7992.26 8771.81 4793.96 12581.31 8090.30 10095.03 8
MSLP-MVS++85.43 5685.76 5084.45 10491.93 7270.24 7690.71 5892.86 5377.46 4784.22 7492.81 7867.16 9992.94 18180.36 9094.35 5690.16 197
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5480.26 1187.78 2994.27 3275.89 1996.81 2387.45 3296.44 993.05 98
casdiffmvspermissive85.11 6185.14 6085.01 8487.20 21565.77 18087.75 15292.83 5577.84 3784.36 7392.38 8572.15 4493.93 13181.27 8190.48 9795.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5573.01 15088.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 107
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5581.50 585.79 4893.47 6073.02 3997.00 1884.90 4294.94 3994.10 45
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5876.62 7083.68 8494.46 2567.93 9095.95 5284.20 5594.39 5493.23 89
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 5977.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 86
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
EIA-MVS83.31 8782.80 8984.82 9289.59 11665.59 18288.21 13692.68 6074.66 10978.96 14186.42 24169.06 8095.26 7575.54 13890.09 10493.62 72
ZD-MVS94.38 2572.22 4492.67 6170.98 18287.75 3194.07 4174.01 3296.70 2784.66 4794.84 44
nrg03083.88 7183.53 7584.96 8686.77 22369.28 9890.46 6592.67 6174.79 10682.95 9391.33 10872.70 4193.09 17580.79 8779.28 25192.50 116
WR-MVS_H78.51 19078.49 16678.56 26788.02 18356.38 32088.43 12692.67 6177.14 5473.89 25687.55 20566.25 10889.24 27858.92 28673.55 32490.06 207
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6477.57 4183.84 8294.40 3072.24 4396.28 4085.65 3895.30 3593.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ETV-MVS84.90 6584.67 6585.59 6789.39 12768.66 11688.74 11792.64 6579.97 1584.10 7785.71 25469.32 7695.38 7180.82 8591.37 8792.72 106
CANet86.45 3886.10 4587.51 3790.09 10270.94 6789.70 8292.59 6681.78 481.32 11491.43 10670.34 6497.23 1384.26 5293.36 6594.37 35
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 6774.50 11286.84 4294.65 2067.31 9795.77 5584.80 4692.85 6892.84 105
alignmvs85.48 5485.32 5785.96 6289.51 12069.47 9289.74 8092.47 6876.17 8087.73 3391.46 10570.32 6593.78 13781.51 7888.95 11894.63 26
原ACMM184.35 10893.01 5768.79 10692.44 6963.96 29781.09 11991.57 10166.06 11195.45 6567.19 21694.82 4688.81 252
HQP_MVS83.64 7783.14 8185.14 7890.08 10368.71 11291.25 5092.44 6979.12 2378.92 14391.00 12060.42 18695.38 7178.71 10386.32 15291.33 153
plane_prior592.44 6995.38 7178.71 10386.32 15291.33 153
CDPH-MVS85.76 5085.29 5987.17 4393.49 4771.08 6188.58 12392.42 7268.32 24484.61 6793.48 5872.32 4296.15 4579.00 9995.43 3194.28 40
UniMVSNet_NR-MVSNet81.88 10681.54 10682.92 17288.46 16563.46 22887.13 16792.37 7380.19 1278.38 15689.14 15971.66 5293.05 17770.05 18676.46 28192.25 125
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7474.62 11188.90 2093.85 5275.75 2096.00 4987.80 2894.63 4895.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CLD-MVS82.31 9981.65 10584.29 11188.47 16467.73 13685.81 21092.35 7475.78 8678.33 15886.58 23664.01 12894.35 11176.05 13187.48 13690.79 171
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SR-MVS-dyc-post85.77 4985.61 5286.23 5693.06 5570.63 7391.88 3992.27 7673.53 13785.69 4994.45 2665.00 12395.56 6082.75 6891.87 8092.50 116
RE-MVS-def85.48 5393.06 5570.63 7391.88 3992.27 7673.53 13785.69 4994.45 2663.87 12982.75 6891.87 8092.50 116
RPMNet73.51 26870.49 28882.58 18681.32 32865.19 19175.92 34492.27 7657.60 35272.73 26876.45 36552.30 24595.43 6748.14 35477.71 26587.11 290
test1192.23 79
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8076.87 6282.81 9894.25 3466.44 10596.24 4182.88 6794.28 5793.38 83
DP-MVS Recon83.11 9182.09 9886.15 5894.44 1970.92 6888.79 11392.20 8170.53 19279.17 13991.03 11964.12 12796.03 4668.39 20690.14 10391.50 148
HQP3-MVS92.19 8285.99 160
HQP-MVS82.61 9782.02 10084.37 10689.33 12966.98 15489.17 9892.19 8276.41 7277.23 18390.23 13360.17 18995.11 8277.47 11585.99 16091.03 164
3Dnovator76.31 583.38 8582.31 9586.59 5287.94 18572.94 2890.64 5992.14 8477.21 5275.47 22292.83 7658.56 19594.72 10173.24 15992.71 7092.13 132
MTGPAbinary92.02 85
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18692.02 8579.45 1985.88 4694.80 1768.07 8996.21 4286.69 3695.34 3393.23 89
MVS_Test83.15 8883.06 8383.41 15086.86 21963.21 23486.11 20092.00 8774.31 11682.87 9589.44 15670.03 6793.21 16477.39 11788.50 12793.81 60
PVSNet_BlendedMVS80.60 13980.02 13182.36 19088.85 14765.40 18686.16 19992.00 8769.34 21978.11 16486.09 24966.02 11294.27 11471.52 17182.06 21787.39 280
PVSNet_Blended80.98 12580.34 12682.90 17388.85 14765.40 18684.43 24292.00 8767.62 25078.11 16485.05 27366.02 11294.27 11471.52 17189.50 11289.01 242
QAPM80.88 12779.50 14385.03 8388.01 18468.97 10391.59 4392.00 8766.63 26475.15 23992.16 8857.70 20295.45 6563.52 24288.76 12290.66 177
LPG-MVS_test82.08 10281.27 10884.50 10189.23 13668.76 10890.22 7091.94 9175.37 9476.64 19791.51 10254.29 22894.91 9078.44 10583.78 18789.83 218
LGP-MVS_train84.50 10189.23 13668.76 10891.94 9175.37 9476.64 19791.51 10254.29 22894.91 9078.44 10583.78 18789.83 218
TEST993.26 5072.96 2588.75 11591.89 9368.44 24285.00 5793.10 6774.36 2895.41 69
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11591.89 9368.69 23785.00 5793.10 6774.43 2695.41 6984.97 4195.71 2593.02 100
dcpmvs_285.63 5286.15 4484.06 12691.71 7564.94 19786.47 18991.87 9573.63 13286.60 4393.02 7276.57 1591.87 21783.36 6092.15 7695.35 3
DU-MVS81.12 12480.52 12282.90 17387.80 19163.46 22887.02 17191.87 9579.01 2678.38 15689.07 16165.02 12193.05 17770.05 18676.46 28192.20 128
test_893.13 5272.57 3588.68 12091.84 9768.69 23784.87 6193.10 6774.43 2695.16 78
PAPM_NR83.02 9282.41 9284.82 9292.47 6766.37 16387.93 14791.80 9873.82 12777.32 18090.66 12567.90 9194.90 9370.37 18389.48 11393.19 93
test1286.80 4992.63 6470.70 7291.79 9982.71 9971.67 5196.16 4494.50 5193.54 77
agg_prior92.85 5971.94 5191.78 10084.41 7194.93 89
PAPR81.66 11480.89 11683.99 13490.27 9864.00 21586.76 18291.77 10168.84 23577.13 18989.50 14967.63 9394.88 9567.55 21188.52 12693.09 96
PVSNet_Blended_VisFu82.62 9681.83 10484.96 8690.80 8969.76 8788.74 11791.70 10269.39 21778.96 14188.46 18165.47 11794.87 9674.42 14588.57 12490.24 195
HPM-MVS_fast85.35 5884.95 6386.57 5393.69 4270.58 7592.15 3691.62 10373.89 12682.67 10094.09 4062.60 14495.54 6280.93 8392.93 6793.57 74
ACMM73.20 880.78 13579.84 13683.58 14489.31 13268.37 12189.99 7391.60 10470.28 19777.25 18189.66 14453.37 23893.53 15074.24 14882.85 20788.85 250
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPA-MVSNet80.60 13980.55 12180.76 22688.07 18160.80 26586.86 17691.58 10575.67 9080.24 12789.45 15563.34 13290.25 26070.51 18279.22 25291.23 157
OPM-MVS83.50 8182.95 8685.14 7888.79 15370.95 6689.13 10391.52 10677.55 4480.96 12191.75 9560.71 17994.50 10879.67 9786.51 15089.97 213
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Anonymous2023121178.97 18077.69 19182.81 17790.54 9464.29 21190.11 7291.51 10765.01 28276.16 21388.13 19550.56 27093.03 18069.68 19277.56 26891.11 160
PS-MVSNAJss82.07 10381.31 10784.34 10986.51 22867.27 14889.27 9691.51 10771.75 16279.37 13690.22 13463.15 13894.27 11477.69 11382.36 21491.49 149
TAPA-MVS73.13 979.15 17477.94 17982.79 18089.59 11662.99 24188.16 13991.51 10765.77 27377.14 18891.09 11560.91 17793.21 16450.26 34187.05 14192.17 130
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMP74.13 681.51 11980.57 12084.36 10789.42 12568.69 11589.97 7491.50 11074.46 11475.04 24390.41 13053.82 23394.54 10577.56 11482.91 20689.86 217
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PCF-MVS73.52 780.38 14478.84 16085.01 8487.71 19668.99 10283.65 25591.46 11163.00 30477.77 17290.28 13166.10 10995.09 8661.40 26688.22 13090.94 168
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TranMVSNet+NR-MVSNet80.84 12880.31 12782.42 18887.85 18862.33 24687.74 15391.33 11280.55 977.99 16889.86 13965.23 11992.62 18767.05 21875.24 30892.30 123
PS-CasMVS78.01 20478.09 17677.77 28187.71 19654.39 34488.02 14291.22 11377.50 4673.26 26288.64 17460.73 17888.41 29361.88 26173.88 32190.53 183
v7n78.97 18077.58 19483.14 16183.45 28365.51 18388.32 13391.21 11473.69 13172.41 27386.32 24457.93 19993.81 13669.18 19675.65 29490.11 201
PEN-MVS77.73 21077.69 19177.84 27987.07 21853.91 34787.91 14891.18 11577.56 4373.14 26488.82 16961.23 17189.17 27959.95 27672.37 33290.43 187
MM89.16 689.23 788.97 490.79 9073.65 1092.66 2391.17 11686.57 187.39 3594.97 1671.70 5097.68 192.19 195.63 2895.57 1
save fliter93.80 4072.35 4290.47 6491.17 11674.31 116
CP-MVSNet78.22 19578.34 17177.84 27987.83 19054.54 34287.94 14691.17 11677.65 3873.48 26088.49 18062.24 15388.43 29262.19 25774.07 31790.55 182
114514_t80.68 13779.51 14284.20 11694.09 3867.27 14889.64 8491.11 11958.75 34474.08 25590.72 12458.10 19895.04 8769.70 19189.42 11490.30 193
NR-MVSNet80.23 14979.38 14582.78 18187.80 19163.34 23186.31 19391.09 12079.01 2672.17 27689.07 16167.20 9892.81 18666.08 22575.65 29492.20 128
OpenMVScopyleft72.83 1079.77 15778.33 17284.09 12285.17 24769.91 8490.57 6090.97 12166.70 25872.17 27691.91 9154.70 22493.96 12561.81 26390.95 9288.41 263
MAR-MVS81.84 10780.70 11885.27 7491.32 7971.53 5489.82 7690.92 12269.77 21078.50 15386.21 24562.36 15094.52 10765.36 23092.05 7889.77 221
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
tt080578.73 18477.83 18381.43 20685.17 24760.30 27389.41 9290.90 12371.21 17677.17 18788.73 17046.38 30693.21 16472.57 16678.96 25490.79 171
Anonymous2024052980.19 15178.89 15984.10 11990.60 9264.75 20188.95 10790.90 12365.97 27280.59 12491.17 11349.97 27693.73 14369.16 19782.70 21193.81 60
OMC-MVS82.69 9581.97 10284.85 9188.75 15567.42 14287.98 14390.87 12574.92 10379.72 13291.65 9762.19 15493.96 12575.26 14086.42 15193.16 94
UA-Net85.08 6284.96 6285.45 7092.07 7068.07 12989.78 7990.86 12682.48 384.60 6893.20 6669.35 7595.22 7671.39 17490.88 9393.07 97
test_fmvsm_n_192085.29 5985.34 5585.13 8086.12 23369.93 8388.65 12190.78 12769.97 20488.27 2393.98 4971.39 5591.54 22988.49 2390.45 9893.91 53
EPP-MVSNet83.40 8483.02 8484.57 9890.13 10164.47 20792.32 3090.73 12874.45 11579.35 13791.10 11469.05 8195.12 8072.78 16387.22 13994.13 44
DTE-MVSNet76.99 22476.80 20977.54 28686.24 23053.06 35587.52 15790.66 12977.08 5772.50 27188.67 17360.48 18589.52 27357.33 30270.74 34390.05 208
v1079.74 15878.67 16282.97 17184.06 27164.95 19687.88 15090.62 13073.11 14775.11 24086.56 23761.46 16594.05 12473.68 15175.55 29689.90 215
test_fmvsmconf_n85.92 4686.04 4785.57 6885.03 25369.51 9089.62 8690.58 13173.42 13987.75 3194.02 4472.85 4093.24 16190.37 390.75 9493.96 51
v119279.59 16178.43 16983.07 16583.55 28164.52 20386.93 17490.58 13170.83 18377.78 17185.90 25059.15 19293.94 12873.96 15077.19 27190.76 173
v114480.03 15379.03 15683.01 16883.78 27764.51 20487.11 16990.57 13371.96 16178.08 16686.20 24661.41 16693.94 12874.93 14177.23 26990.60 180
XVG-OURS-SEG-HR80.81 13079.76 13783.96 13685.60 24068.78 10783.54 26090.50 13470.66 19076.71 19591.66 9660.69 18091.26 24076.94 12181.58 22291.83 138
MVS78.19 19876.99 20581.78 19885.66 23866.99 15384.66 23290.47 13555.08 36472.02 27885.27 26563.83 13094.11 12366.10 22489.80 11084.24 335
XVG-OURS80.41 14379.23 15183.97 13585.64 23969.02 10183.03 27190.39 13671.09 17977.63 17491.49 10454.62 22691.35 23875.71 13483.47 19991.54 145
MVSFormer82.85 9482.05 9985.24 7587.35 20770.21 7790.50 6290.38 13768.55 23981.32 11489.47 15161.68 15993.46 15478.98 10090.26 10192.05 134
test_djsdf80.30 14879.32 14883.27 15483.98 27365.37 18990.50 6290.38 13768.55 23976.19 20988.70 17156.44 21393.46 15478.98 10080.14 24190.97 167
CPTT-MVS83.73 7483.33 8084.92 8993.28 4970.86 6992.09 3790.38 13768.75 23679.57 13492.83 7660.60 18493.04 17980.92 8491.56 8590.86 170
v14419279.47 16478.37 17082.78 18183.35 28463.96 21686.96 17290.36 14069.99 20377.50 17585.67 25760.66 18193.77 13974.27 14776.58 27990.62 178
v192192079.22 17278.03 17782.80 17883.30 28663.94 21786.80 17890.33 14169.91 20677.48 17685.53 26058.44 19693.75 14173.60 15276.85 27690.71 176
MVS_111021_HR85.14 6084.75 6486.32 5591.65 7672.70 3085.98 20290.33 14176.11 8182.08 10391.61 10071.36 5694.17 12181.02 8292.58 7192.08 133
v124078.99 17977.78 18682.64 18483.21 28863.54 22586.62 18590.30 14369.74 21477.33 17985.68 25657.04 21093.76 14073.13 16076.92 27390.62 178
test_fmvsmconf0.1_n85.61 5385.65 5185.50 6982.99 29869.39 9689.65 8390.29 14473.31 14287.77 3094.15 3871.72 4993.23 16290.31 490.67 9693.89 56
v879.97 15679.02 15782.80 17884.09 27064.50 20687.96 14490.29 14474.13 12275.24 23686.81 22362.88 14393.89 13474.39 14675.40 30390.00 209
mvs_tets79.13 17577.77 18783.22 15884.70 25766.37 16389.17 9890.19 14669.38 21875.40 22789.46 15344.17 32693.15 17176.78 12580.70 23390.14 198
jajsoiax79.29 17177.96 17883.27 15484.68 25866.57 16189.25 9790.16 14769.20 22575.46 22489.49 15045.75 31793.13 17376.84 12280.80 23190.11 201
Vis-MVSNetpermissive83.46 8282.80 8985.43 7190.25 9968.74 11090.30 6990.13 14876.33 7880.87 12292.89 7461.00 17694.20 11972.45 16890.97 9193.35 85
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PS-MVSNAJ81.69 11181.02 11383.70 14289.51 12068.21 12684.28 24690.09 14970.79 18481.26 11885.62 25963.15 13894.29 11275.62 13688.87 12088.59 259
xiu_mvs_v2_base81.69 11181.05 11283.60 14389.15 13968.03 13184.46 24090.02 15070.67 18781.30 11786.53 23963.17 13794.19 12075.60 13788.54 12588.57 260
FA-MVS(test-final)80.96 12679.91 13484.10 11988.30 17265.01 19584.55 23790.01 15173.25 14579.61 13387.57 20358.35 19794.72 10171.29 17586.25 15492.56 113
v2v48280.23 14979.29 14983.05 16683.62 27964.14 21387.04 17089.97 15273.61 13378.18 16387.22 21461.10 17493.82 13576.11 12976.78 27891.18 158
test_yl81.17 12280.47 12383.24 15689.13 14063.62 22186.21 19689.95 15372.43 15681.78 11089.61 14657.50 20593.58 14570.75 17886.90 14392.52 114
DCV-MVSNet81.17 12280.47 12383.24 15689.13 14063.62 22186.21 19689.95 15372.43 15681.78 11089.61 14657.50 20593.58 14570.75 17886.90 14392.52 114
V4279.38 17078.24 17482.83 17581.10 33065.50 18485.55 21589.82 15571.57 16978.21 16186.12 24860.66 18193.18 17075.64 13575.46 30089.81 220
VNet82.21 10082.41 9281.62 20190.82 8860.93 26284.47 23889.78 15676.36 7784.07 7891.88 9364.71 12490.26 25970.68 18088.89 11993.66 65
diffmvspermissive82.10 10181.88 10382.76 18383.00 29663.78 22083.68 25489.76 15772.94 15182.02 10489.85 14065.96 11490.79 25382.38 7487.30 13893.71 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XVG-ACMP-BASELINE76.11 24074.27 24981.62 20183.20 28964.67 20283.60 25889.75 15869.75 21271.85 27987.09 21932.78 37292.11 20769.99 18880.43 23788.09 266
EI-MVSNet-Vis-set84.19 6883.81 7385.31 7388.18 17467.85 13387.66 15489.73 15980.05 1482.95 9389.59 14870.74 6194.82 9780.66 8984.72 17293.28 88
EI-MVSNet-UG-set83.81 7283.38 7885.09 8187.87 18767.53 14087.44 16089.66 16079.74 1682.23 10289.41 15770.24 6694.74 10079.95 9383.92 18692.99 102
test_fmvsmconf0.01_n84.73 6684.52 6885.34 7280.25 33869.03 9989.47 8889.65 16173.24 14686.98 4094.27 3266.62 10193.23 16290.26 589.95 10893.78 62
PAPM77.68 21476.40 22081.51 20487.29 21461.85 25383.78 25389.59 16264.74 28471.23 28488.70 17162.59 14593.66 14452.66 32687.03 14289.01 242
anonymousdsp78.60 18877.15 20182.98 17080.51 33667.08 15287.24 16689.53 16365.66 27575.16 23887.19 21652.52 24192.25 20377.17 11979.34 25089.61 225
MG-MVS83.41 8383.45 7683.28 15392.74 6262.28 24888.17 13889.50 16475.22 9681.49 11392.74 8266.75 10095.11 8272.85 16291.58 8492.45 119
PLCcopyleft70.83 1178.05 20276.37 22183.08 16491.88 7467.80 13488.19 13789.46 16564.33 29069.87 30188.38 18353.66 23493.58 14558.86 28782.73 20987.86 270
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SDMVSNet80.38 14480.18 13080.99 22089.03 14564.94 19780.45 30389.40 16675.19 9876.61 19989.98 13760.61 18387.69 30176.83 12483.55 19690.33 191
Fast-Effi-MVS+80.81 13079.92 13383.47 14688.85 14764.51 20485.53 21789.39 16770.79 18478.49 15485.06 27267.54 9493.58 14567.03 21986.58 14892.32 122
IterMVS-LS80.06 15279.38 14582.11 19285.89 23563.20 23586.79 17989.34 16874.19 11975.45 22586.72 22666.62 10192.39 19672.58 16576.86 27590.75 174
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
API-MVS81.99 10581.23 10984.26 11590.94 8570.18 8291.10 5389.32 16971.51 17178.66 14988.28 18665.26 11895.10 8564.74 23691.23 8987.51 278
GBi-Net78.40 19177.40 19681.40 20887.60 20163.01 23888.39 12889.28 17071.63 16475.34 22987.28 21054.80 22091.11 24362.72 24979.57 24590.09 203
test178.40 19177.40 19681.40 20887.60 20163.01 23888.39 12889.28 17071.63 16475.34 22987.28 21054.80 22091.11 24362.72 24979.57 24590.09 203
FMVSNet177.44 21776.12 22381.40 20886.81 22263.01 23888.39 12889.28 17070.49 19374.39 25287.28 21049.06 29091.11 24360.91 27078.52 25790.09 203
MVS_030488.08 1488.08 1788.08 1489.67 11472.04 4892.26 3389.26 17384.19 285.01 5595.18 1369.93 6997.20 1491.63 295.60 2994.99 9
cdsmvs_eth3d_5k19.96 37126.61 3730.00 3910.00 4140.00 4160.00 40289.26 1730.00 4090.00 41088.61 17561.62 1610.00 4100.00 4090.00 4080.00 406
ab-mvs79.51 16278.97 15881.14 21688.46 16560.91 26383.84 25289.24 17570.36 19479.03 14088.87 16863.23 13690.21 26165.12 23282.57 21292.28 124
cascas76.72 22974.64 24282.99 16985.78 23765.88 17582.33 27589.21 17660.85 32572.74 26781.02 32947.28 30093.75 14167.48 21285.02 16889.34 232
eth_miper_zixun_eth77.92 20676.69 21481.61 20383.00 29661.98 25183.15 26589.20 17769.52 21674.86 24684.35 28361.76 15892.56 19071.50 17372.89 33090.28 194
h-mvs3383.15 8882.19 9686.02 6190.56 9370.85 7088.15 14089.16 17876.02 8384.67 6491.39 10761.54 16295.50 6382.71 7075.48 29891.72 141
miper_ehance_all_eth78.59 18977.76 18881.08 21882.66 30561.56 25783.65 25589.15 17968.87 23475.55 22183.79 29566.49 10492.03 20973.25 15876.39 28389.64 224
Effi-MVS+83.62 7983.08 8285.24 7588.38 16967.45 14188.89 10989.15 17975.50 9282.27 10188.28 18669.61 7394.45 11077.81 11287.84 13193.84 59
c3_l78.75 18377.91 18081.26 21282.89 30061.56 25784.09 25089.13 18169.97 20475.56 22084.29 28466.36 10692.09 20873.47 15575.48 29890.12 200
LTVRE_ROB69.57 1376.25 23874.54 24581.41 20788.60 16064.38 21079.24 31789.12 18270.76 18669.79 30387.86 19749.09 28993.20 16756.21 31280.16 23986.65 300
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
F-COLMAP76.38 23774.33 24882.50 18789.28 13466.95 15788.41 12789.03 18364.05 29466.83 32988.61 17546.78 30492.89 18257.48 29978.55 25687.67 273
FMVSNet278.20 19777.21 20081.20 21487.60 20162.89 24287.47 15989.02 18471.63 16475.29 23587.28 21054.80 22091.10 24662.38 25479.38 24989.61 225
ACMH67.68 1675.89 24373.93 25281.77 19988.71 15766.61 16088.62 12289.01 18569.81 20766.78 33086.70 23041.95 34491.51 23255.64 31378.14 26387.17 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
miper_enhance_ethall77.87 20876.86 20780.92 22381.65 31961.38 25982.68 27288.98 18665.52 27775.47 22282.30 31865.76 11692.00 21172.95 16176.39 28389.39 230
无先验87.48 15888.98 18660.00 33194.12 12267.28 21488.97 245
AdaColmapbinary80.58 14179.42 14484.06 12693.09 5468.91 10489.36 9488.97 18869.27 22075.70 21889.69 14357.20 20995.77 5563.06 24788.41 12887.50 279
EI-MVSNet80.52 14279.98 13282.12 19184.28 26563.19 23686.41 19088.95 18974.18 12078.69 14787.54 20666.62 10192.43 19472.57 16680.57 23590.74 175
MVSTER79.01 17877.88 18282.38 18983.07 29364.80 20084.08 25188.95 18969.01 23278.69 14787.17 21754.70 22492.43 19474.69 14280.57 23589.89 216
RRT_MVS80.35 14779.22 15283.74 14187.63 20065.46 18591.08 5488.92 19173.82 12776.44 20490.03 13649.05 29194.25 11876.84 12279.20 25391.51 146
131476.53 23175.30 23780.21 23783.93 27462.32 24784.66 23288.81 19260.23 32970.16 29584.07 29055.30 21790.73 25567.37 21383.21 20387.59 277
UniMVSNet_ETH3D79.10 17678.24 17481.70 20086.85 22060.24 27487.28 16588.79 19374.25 11876.84 19090.53 12949.48 28291.56 22767.98 20782.15 21593.29 87
xiu_mvs_v1_base_debu80.80 13279.72 13884.03 13187.35 20770.19 7985.56 21288.77 19469.06 22981.83 10688.16 19050.91 26592.85 18378.29 10987.56 13389.06 237
xiu_mvs_v1_base80.80 13279.72 13884.03 13187.35 20770.19 7985.56 21288.77 19469.06 22981.83 10688.16 19050.91 26592.85 18378.29 10987.56 13389.06 237
xiu_mvs_v1_base_debi80.80 13279.72 13884.03 13187.35 20770.19 7985.56 21288.77 19469.06 22981.83 10688.16 19050.91 26592.85 18378.29 10987.56 13389.06 237
FMVSNet377.88 20776.85 20880.97 22286.84 22162.36 24586.52 18888.77 19471.13 17775.34 22986.66 23254.07 23191.10 24662.72 24979.57 24589.45 229
patch_mono-283.65 7684.54 6680.99 22090.06 10765.83 17684.21 24788.74 19871.60 16885.01 5592.44 8474.51 2583.50 33382.15 7592.15 7693.64 71
GeoE81.71 11081.01 11483.80 14089.51 12064.45 20888.97 10688.73 19971.27 17578.63 15089.76 14266.32 10793.20 16769.89 18986.02 15993.74 63
CANet_DTU80.61 13879.87 13582.83 17585.60 24063.17 23787.36 16188.65 20076.37 7675.88 21588.44 18253.51 23693.07 17673.30 15789.74 11192.25 125
HyFIR lowres test77.53 21675.40 23383.94 13789.59 11666.62 15980.36 30488.64 20156.29 36076.45 20185.17 26957.64 20393.28 15961.34 26883.10 20591.91 137
WR-MVS79.49 16379.22 15280.27 23688.79 15358.35 28785.06 22488.61 20278.56 3077.65 17388.34 18463.81 13190.66 25664.98 23477.22 27091.80 140
BH-untuned79.47 16478.60 16482.05 19389.19 13865.91 17486.07 20188.52 20372.18 15875.42 22687.69 20061.15 17393.54 14960.38 27386.83 14586.70 299
IS-MVSNet83.15 8882.81 8884.18 11789.94 11063.30 23291.59 4388.46 20479.04 2579.49 13592.16 8865.10 12094.28 11367.71 20991.86 8294.95 10
pm-mvs177.25 22276.68 21578.93 26184.22 26758.62 28686.41 19088.36 20571.37 17373.31 26188.01 19661.22 17289.15 28064.24 24073.01 32989.03 241
UGNet80.83 12979.59 14184.54 10088.04 18268.09 12889.42 9188.16 20676.95 5976.22 20889.46 15349.30 28693.94 12868.48 20490.31 9991.60 142
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VDD-MVS83.01 9382.36 9484.96 8691.02 8366.40 16288.91 10888.11 20777.57 4184.39 7293.29 6452.19 24793.91 13277.05 12088.70 12394.57 29
Effi-MVS+-dtu80.03 15378.57 16584.42 10585.13 25168.74 11088.77 11488.10 20874.99 10274.97 24483.49 30157.27 20893.36 15773.53 15380.88 22991.18 158
v14878.72 18577.80 18581.47 20582.73 30361.96 25286.30 19488.08 20973.26 14476.18 21085.47 26262.46 14892.36 19871.92 17073.82 32290.09 203
EG-PatchMatch MVS74.04 26271.82 27280.71 22784.92 25467.42 14285.86 20788.08 20966.04 27064.22 35183.85 29235.10 36992.56 19057.44 30080.83 23082.16 358
cl2278.07 20177.01 20381.23 21382.37 31261.83 25483.55 25987.98 21168.96 23375.06 24283.87 29161.40 16791.88 21673.53 15376.39 28389.98 212
test_fmvsmvis_n_192084.02 7083.87 7284.49 10384.12 26969.37 9788.15 14087.96 21270.01 20283.95 8093.23 6568.80 8591.51 23288.61 2089.96 10792.57 112
pmmvs674.69 25673.39 25878.61 26581.38 32557.48 30386.64 18487.95 21364.99 28370.18 29386.61 23350.43 27289.52 27362.12 25970.18 34588.83 251
MVP-Stereo76.12 23974.46 24781.13 21785.37 24569.79 8684.42 24387.95 21365.03 28167.46 32285.33 26453.28 23991.73 22258.01 29683.27 20281.85 359
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
cl____77.72 21176.76 21180.58 22982.49 30960.48 27083.09 26787.87 21569.22 22374.38 25385.22 26862.10 15591.53 23071.09 17675.41 30289.73 223
DIV-MVS_self_test77.72 21176.76 21180.58 22982.48 31060.48 27083.09 26787.86 21669.22 22374.38 25385.24 26662.10 15591.53 23071.09 17675.40 30389.74 222
BH-w/o78.21 19677.33 19980.84 22488.81 15165.13 19384.87 22887.85 21769.75 21274.52 25184.74 27761.34 16893.11 17458.24 29485.84 16284.27 334
FE-MVS77.78 20975.68 22684.08 12388.09 18066.00 17183.13 26687.79 21868.42 24378.01 16785.23 26745.50 31995.12 8059.11 28485.83 16391.11 160
HY-MVS69.67 1277.95 20577.15 20180.36 23387.57 20560.21 27583.37 26287.78 21966.11 26875.37 22887.06 22163.27 13490.48 25861.38 26782.43 21390.40 189
1112_ss77.40 21976.43 21980.32 23589.11 14460.41 27283.65 25587.72 22062.13 31773.05 26586.72 22662.58 14689.97 26562.11 26080.80 23190.59 181
mvs_anonymous79.42 16779.11 15580.34 23484.45 26457.97 29482.59 27387.62 22167.40 25476.17 21288.56 17868.47 8689.59 27270.65 18186.05 15893.47 79
ACMH+68.96 1476.01 24274.01 25082.03 19488.60 16065.31 19088.86 11087.55 22270.25 19967.75 31887.47 20841.27 34593.19 16958.37 29275.94 29187.60 275
tfpnnormal74.39 25773.16 26178.08 27686.10 23458.05 29184.65 23487.53 22370.32 19671.22 28585.63 25854.97 21889.86 26643.03 37375.02 31086.32 303
CHOSEN 1792x268877.63 21575.69 22583.44 14789.98 10968.58 11878.70 32587.50 22456.38 35975.80 21786.84 22258.67 19491.40 23761.58 26585.75 16490.34 190
ambc75.24 30773.16 38050.51 37063.05 39187.47 22564.28 35077.81 35917.80 39389.73 27057.88 29760.64 37385.49 318
Fast-Effi-MVS+-dtu78.02 20376.49 21782.62 18583.16 29266.96 15686.94 17387.45 22672.45 15371.49 28384.17 28854.79 22391.58 22567.61 21080.31 23889.30 233
D2MVS74.82 25573.21 26079.64 25079.81 34562.56 24480.34 30587.35 22764.37 28968.86 31082.66 31446.37 30790.10 26267.91 20881.24 22586.25 304
TSAR-MVS + GP.85.71 5185.33 5686.84 4791.34 7872.50 3689.07 10487.28 22876.41 7285.80 4790.22 13474.15 3195.37 7481.82 7791.88 7992.65 111
fmvsm_l_conf0.5_n84.47 6784.54 6684.27 11485.42 24368.81 10588.49 12587.26 22968.08 24688.03 2793.49 5772.04 4691.77 21988.90 1789.14 11792.24 127
hse-mvs281.72 10980.94 11584.07 12488.72 15667.68 13785.87 20687.26 22976.02 8384.67 6488.22 18961.54 16293.48 15282.71 7073.44 32691.06 162
AUN-MVS79.21 17377.60 19384.05 12988.71 15767.61 13885.84 20887.26 22969.08 22877.23 18388.14 19453.20 24093.47 15375.50 13973.45 32591.06 162
BH-RMVSNet79.61 15978.44 16883.14 16189.38 12865.93 17384.95 22787.15 23273.56 13578.19 16289.79 14156.67 21293.36 15759.53 28086.74 14690.13 199
Test_1112_low_res76.40 23675.44 23179.27 25589.28 13458.09 29081.69 28287.07 23359.53 33672.48 27286.67 23161.30 16989.33 27660.81 27280.15 24090.41 188
KD-MVS_self_test68.81 31167.59 31872.46 33274.29 37345.45 38177.93 33487.00 23463.12 30163.99 35378.99 35142.32 33984.77 32556.55 31064.09 36687.16 288
iter_conf05_1181.63 11580.44 12585.20 7789.46 12366.20 16686.21 19686.97 23571.53 17083.35 8988.53 17943.22 33395.94 5379.82 9594.85 4393.47 79
LS3D76.95 22674.82 24183.37 15190.45 9567.36 14589.15 10286.94 23661.87 31969.52 30490.61 12651.71 25994.53 10646.38 36286.71 14788.21 265
miper_lstm_enhance74.11 26173.11 26277.13 29180.11 34059.62 28072.23 36286.92 23766.76 25770.40 29082.92 30956.93 21182.92 33769.06 19872.63 33188.87 249
fmvsm_l_conf0.5_n_a84.13 6984.16 7184.06 12685.38 24468.40 12088.34 13286.85 23867.48 25387.48 3493.40 6170.89 5891.61 22388.38 2589.22 11692.16 131
jason81.39 12080.29 12884.70 9686.63 22769.90 8585.95 20386.77 23963.24 30081.07 12089.47 15161.08 17592.15 20678.33 10890.07 10692.05 134
jason: jason.
OurMVSNet-221017-074.26 25972.42 26879.80 24583.76 27859.59 28185.92 20586.64 24066.39 26666.96 32787.58 20239.46 35391.60 22465.76 22869.27 34888.22 264
VPNet78.69 18678.66 16378.76 26388.31 17155.72 32984.45 24186.63 24176.79 6478.26 15990.55 12859.30 19189.70 27166.63 22077.05 27290.88 169
USDC70.33 30068.37 30276.21 29780.60 33456.23 32379.19 31986.49 24260.89 32461.29 36285.47 26231.78 37589.47 27553.37 32376.21 28982.94 352
lupinMVS81.39 12080.27 12984.76 9587.35 20770.21 7785.55 21586.41 24362.85 30781.32 11488.61 17561.68 15992.24 20478.41 10790.26 10191.83 138
TR-MVS77.44 21776.18 22281.20 21488.24 17363.24 23384.61 23586.40 24467.55 25177.81 17086.48 24054.10 23093.15 17157.75 29882.72 21087.20 285
旧先验191.96 7165.79 17986.37 24593.08 7169.31 7792.74 6988.74 256
GA-MVS76.87 22775.17 23881.97 19682.75 30262.58 24381.44 28786.35 24672.16 16074.74 24782.89 31046.20 31192.02 21068.85 20181.09 22791.30 156
CDS-MVSNet79.07 17777.70 19083.17 16087.60 20168.23 12584.40 24486.20 24767.49 25276.36 20586.54 23861.54 16290.79 25361.86 26287.33 13790.49 185
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS_111021_LR82.61 9782.11 9784.11 11888.82 15071.58 5385.15 22286.16 24874.69 10880.47 12591.04 11762.29 15190.55 25780.33 9190.08 10590.20 196
MSDG73.36 27170.99 28380.49 23184.51 26365.80 17880.71 29886.13 24965.70 27465.46 34283.74 29644.60 32290.91 25151.13 33476.89 27484.74 330
TransMVSNet (Re)75.39 25274.56 24477.86 27885.50 24257.10 30886.78 18086.09 25072.17 15971.53 28287.34 20963.01 14289.31 27756.84 30761.83 36987.17 286
VDDNet81.52 11780.67 11984.05 12990.44 9664.13 21489.73 8185.91 25171.11 17883.18 9193.48 5850.54 27193.49 15173.40 15688.25 12994.54 30
mvsmamba81.69 11180.74 11784.56 9987.45 20666.72 15891.26 4885.89 25274.66 10978.23 16090.56 12754.33 22794.91 9080.73 8883.54 19892.04 136
sd_testset77.70 21377.40 19678.60 26689.03 14560.02 27679.00 32185.83 25375.19 9876.61 19989.98 13754.81 21985.46 31962.63 25383.55 19690.33 191
Baseline_NR-MVSNet78.15 19978.33 17277.61 28485.79 23656.21 32486.78 18085.76 25473.60 13477.93 16987.57 20365.02 12188.99 28267.14 21775.33 30587.63 274
Anonymous2024052168.80 31267.22 32173.55 32274.33 37254.11 34583.18 26485.61 25558.15 34761.68 36180.94 33130.71 37881.27 34657.00 30573.34 32885.28 321
test_vis1_n_192075.52 24875.78 22474.75 31379.84 34457.44 30483.26 26385.52 25662.83 30879.34 13886.17 24745.10 32179.71 35278.75 10281.21 22687.10 292
新几何183.42 14893.13 5270.71 7185.48 25757.43 35481.80 10991.98 9063.28 13392.27 20264.60 23792.99 6687.27 284
bld_raw_dy_0_6480.78 13579.36 14785.06 8289.46 12366.03 16889.63 8585.46 25869.76 21181.88 10589.06 16343.39 33195.70 5879.82 9585.74 16693.47 79
EPNet83.72 7582.92 8786.14 5984.22 26769.48 9191.05 5585.27 25981.30 676.83 19191.65 9766.09 11095.56 6076.00 13293.85 6193.38 83
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UnsupCasMVSNet_eth67.33 32365.99 32771.37 33873.48 37851.47 36575.16 35185.19 26065.20 27860.78 36480.93 33342.35 33877.20 36357.12 30353.69 38485.44 319
IB-MVS68.01 1575.85 24473.36 25983.31 15284.76 25666.03 16883.38 26185.06 26170.21 20069.40 30581.05 32845.76 31694.66 10365.10 23375.49 29789.25 234
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TAMVS78.89 18277.51 19583.03 16787.80 19167.79 13584.72 23185.05 26267.63 24976.75 19487.70 19962.25 15290.82 25258.53 29187.13 14090.49 185
CL-MVSNet_self_test72.37 28171.46 27675.09 30879.49 35153.53 34980.76 29685.01 26369.12 22770.51 28882.05 32257.92 20084.13 32852.27 32866.00 36187.60 275
iter_conf0580.00 15578.70 16183.91 13887.84 18965.83 17688.84 11284.92 26471.61 16778.70 14688.94 16543.88 32894.56 10479.28 9884.28 18291.33 153
testdata79.97 24190.90 8664.21 21284.71 26559.27 33885.40 5192.91 7362.02 15789.08 28168.95 19991.37 8786.63 301
MS-PatchMatch73.83 26572.67 26477.30 28983.87 27566.02 17081.82 27984.66 26661.37 32368.61 31382.82 31247.29 29988.21 29459.27 28184.32 18177.68 373
ET-MVSNet_ETH3D78.63 18776.63 21684.64 9786.73 22469.47 9285.01 22584.61 26769.54 21566.51 33786.59 23450.16 27491.75 22076.26 12884.24 18392.69 109
CNLPA78.08 20076.79 21081.97 19690.40 9771.07 6287.59 15684.55 26866.03 27172.38 27489.64 14557.56 20486.04 31259.61 27983.35 20188.79 253
MIMVSNet168.58 31466.78 32473.98 32080.07 34151.82 36180.77 29584.37 26964.40 28859.75 36982.16 32136.47 36583.63 33242.73 37470.33 34486.48 302
KD-MVS_2432*160066.22 33263.89 33473.21 32475.47 37053.42 35170.76 36884.35 27064.10 29266.52 33578.52 35334.55 37084.98 32250.40 33750.33 38881.23 362
miper_refine_blended66.22 33263.89 33473.21 32475.47 37053.42 35170.76 36884.35 27064.10 29266.52 33578.52 35334.55 37084.98 32250.40 33750.33 38881.23 362
test_040272.79 27870.44 28979.84 24488.13 17765.99 17285.93 20484.29 27265.57 27667.40 32485.49 26146.92 30392.61 18835.88 38574.38 31680.94 364
EU-MVSNet68.53 31667.61 31771.31 34178.51 35747.01 37984.47 23884.27 27342.27 38466.44 33884.79 27640.44 35083.76 33058.76 28968.54 35383.17 346
thisisatest053079.40 16877.76 18884.31 11087.69 19865.10 19487.36 16184.26 27470.04 20177.42 17788.26 18849.94 27794.79 9970.20 18484.70 17393.03 99
COLMAP_ROBcopyleft66.92 1773.01 27570.41 29080.81 22587.13 21765.63 18188.30 13484.19 27562.96 30563.80 35587.69 20038.04 36192.56 19046.66 35974.91 31184.24 335
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tttt051779.40 16877.91 18083.90 13988.10 17963.84 21888.37 13184.05 27671.45 17276.78 19389.12 16049.93 27994.89 9470.18 18583.18 20492.96 103
CMPMVSbinary51.72 2170.19 30268.16 30576.28 29673.15 38157.55 30279.47 31483.92 27748.02 37856.48 37984.81 27543.13 33486.42 30962.67 25281.81 22184.89 328
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous20240521178.25 19477.01 20381.99 19591.03 8260.67 26784.77 23083.90 27870.65 19180.00 13091.20 11141.08 34791.43 23665.21 23185.26 16793.85 57
XXY-MVS75.41 25175.56 22974.96 30983.59 28057.82 29880.59 30083.87 27966.54 26574.93 24588.31 18563.24 13580.09 35162.16 25876.85 27686.97 293
DP-MVS76.78 22874.57 24383.42 14893.29 4869.46 9488.55 12483.70 28063.98 29670.20 29288.89 16754.01 23294.80 9846.66 35981.88 22086.01 311
tfpn200view976.42 23575.37 23579.55 25389.13 14057.65 30085.17 22083.60 28173.41 14076.45 20186.39 24252.12 24891.95 21248.33 35083.75 19089.07 235
thres40076.50 23275.37 23579.86 24389.13 14057.65 30085.17 22083.60 28173.41 14076.45 20186.39 24252.12 24891.95 21248.33 35083.75 19090.00 209
SixPastTwentyTwo73.37 26971.26 28179.70 24785.08 25257.89 29685.57 21183.56 28371.03 18165.66 34185.88 25142.10 34292.57 18959.11 28463.34 36788.65 258
thres20075.55 24774.47 24678.82 26287.78 19457.85 29783.07 26983.51 28472.44 15575.84 21684.42 27952.08 25191.75 22047.41 35783.64 19586.86 295
IterMVS-SCA-FT75.43 25073.87 25480.11 23982.69 30464.85 19981.57 28483.47 28569.16 22670.49 28984.15 28951.95 25488.15 29569.23 19572.14 33587.34 282
CVMVSNet72.99 27672.58 26674.25 31784.28 26550.85 36886.41 19083.45 28644.56 38173.23 26387.54 20649.38 28485.70 31465.90 22678.44 25986.19 306
ITE_SJBPF78.22 27381.77 31860.57 26883.30 28769.25 22267.54 32087.20 21536.33 36687.28 30454.34 31874.62 31486.80 296
thisisatest051577.33 22075.38 23483.18 15985.27 24663.80 21982.11 27883.27 28865.06 28075.91 21483.84 29349.54 28194.27 11467.24 21586.19 15591.48 150
thres100view90076.50 23275.55 23079.33 25489.52 11956.99 30985.83 20983.23 28973.94 12476.32 20687.12 21851.89 25691.95 21248.33 35083.75 19089.07 235
thres600view776.50 23275.44 23179.68 24889.40 12657.16 30685.53 21783.23 28973.79 12976.26 20787.09 21951.89 25691.89 21548.05 35583.72 19390.00 209
test22291.50 7768.26 12484.16 24883.20 29154.63 36579.74 13191.63 9958.97 19391.42 8686.77 297
EPNet_dtu75.46 24974.86 24077.23 29082.57 30754.60 34186.89 17583.09 29271.64 16366.25 33985.86 25255.99 21488.04 29754.92 31586.55 14989.05 240
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_s_conf0.5_n83.80 7383.71 7484.07 12486.69 22567.31 14689.46 8983.07 29371.09 17986.96 4193.70 5569.02 8391.47 23488.79 1884.62 17493.44 82
fmvsm_s_conf0.1_n83.56 8083.38 7884.10 11984.86 25567.28 14789.40 9383.01 29470.67 18787.08 3893.96 5068.38 8791.45 23588.56 2284.50 17593.56 75
testing9176.54 23075.66 22879.18 25888.43 16755.89 32781.08 29083.00 29573.76 13075.34 22984.29 28446.20 31190.07 26364.33 23884.50 17591.58 144
TDRefinement67.49 32164.34 33176.92 29273.47 37961.07 26184.86 22982.98 29659.77 33358.30 37385.13 27026.06 38387.89 29847.92 35660.59 37481.81 360
OpenMVS_ROBcopyleft64.09 1970.56 29868.19 30477.65 28380.26 33759.41 28385.01 22582.96 29758.76 34365.43 34382.33 31737.63 36391.23 24245.34 36976.03 29082.32 355
fmvsm_s_conf0.5_n_a83.63 7883.41 7784.28 11286.14 23268.12 12789.43 9082.87 29870.27 19887.27 3793.80 5469.09 7891.58 22588.21 2683.65 19493.14 95
fmvsm_s_conf0.1_n_a83.32 8682.99 8584.28 11283.79 27668.07 12989.34 9582.85 29969.80 20887.36 3694.06 4268.34 8891.56 22787.95 2783.46 20093.21 92
RPSCF73.23 27371.46 27678.54 26882.50 30859.85 27782.18 27782.84 30058.96 34171.15 28689.41 15745.48 32084.77 32558.82 28871.83 33791.02 166
CostFormer75.24 25373.90 25379.27 25582.65 30658.27 28980.80 29382.73 30161.57 32075.33 23383.13 30655.52 21591.07 24964.98 23478.34 26288.45 261
IterMVS74.29 25872.94 26378.35 27281.53 32263.49 22781.58 28382.49 30268.06 24769.99 29883.69 29851.66 26085.54 31765.85 22771.64 33886.01 311
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_cas_vis1_n_192073.76 26673.74 25673.81 32175.90 36559.77 27880.51 30182.40 30358.30 34681.62 11285.69 25544.35 32576.41 37076.29 12778.61 25585.23 322
WTY-MVS75.65 24675.68 22675.57 30386.40 22956.82 31177.92 33582.40 30365.10 27976.18 21087.72 19863.13 14180.90 34860.31 27481.96 21889.00 244
pmmvs474.03 26471.91 27180.39 23281.96 31568.32 12281.45 28682.14 30559.32 33769.87 30185.13 27052.40 24488.13 29660.21 27574.74 31384.73 331
FMVSNet569.50 30767.96 30874.15 31882.97 29955.35 33480.01 30982.12 30662.56 31263.02 35681.53 32536.92 36481.92 34248.42 34974.06 31885.17 325
baseline176.98 22576.75 21377.66 28288.13 17755.66 33085.12 22381.89 30773.04 14976.79 19288.90 16662.43 14987.78 30063.30 24671.18 34189.55 227
UnsupCasMVSNet_bld63.70 34061.53 34670.21 34773.69 37651.39 36672.82 36081.89 30755.63 36257.81 37571.80 37938.67 35778.61 35649.26 34652.21 38680.63 365
LFMVS81.82 10881.23 10983.57 14591.89 7363.43 23089.84 7581.85 30977.04 5883.21 9093.10 6752.26 24693.43 15671.98 16989.95 10893.85 57
sss73.60 26773.64 25773.51 32382.80 30155.01 33876.12 34281.69 31062.47 31374.68 24885.85 25357.32 20778.11 35960.86 27180.93 22887.39 280
pmmvs-eth3d70.50 29967.83 31278.52 27077.37 36166.18 16781.82 27981.51 31158.90 34263.90 35480.42 33642.69 33786.28 31058.56 29065.30 36383.11 348
TinyColmap67.30 32464.81 32974.76 31281.92 31756.68 31580.29 30681.49 31260.33 32756.27 38083.22 30324.77 38587.66 30245.52 36769.47 34779.95 368
testing9976.09 24175.12 23979.00 25988.16 17555.50 33280.79 29481.40 31373.30 14375.17 23784.27 28644.48 32490.02 26464.28 23984.22 18491.48 150
tpmvs71.09 29169.29 29676.49 29582.04 31456.04 32578.92 32381.37 31464.05 29467.18 32678.28 35549.74 28089.77 26849.67 34472.37 33283.67 342
pmmvs571.55 28770.20 29375.61 30277.83 35856.39 31981.74 28180.89 31557.76 35067.46 32284.49 27849.26 28785.32 32157.08 30475.29 30685.11 326
ANet_high50.57 36046.10 36463.99 36348.67 40639.13 39770.99 36780.85 31661.39 32231.18 39557.70 39317.02 39473.65 38631.22 39015.89 40379.18 370
LCM-MVSNet54.25 35149.68 36167.97 35853.73 40345.28 38466.85 38280.78 31735.96 39239.45 39362.23 3888.70 40378.06 36048.24 35351.20 38780.57 366
PVSNet64.34 1872.08 28570.87 28575.69 30186.21 23156.44 31874.37 35680.73 31862.06 31870.17 29482.23 32042.86 33683.31 33554.77 31684.45 17987.32 283
baseline275.70 24573.83 25581.30 21183.26 28761.79 25582.57 27480.65 31966.81 25566.88 32883.42 30257.86 20192.19 20563.47 24379.57 24589.91 214
ppachtmachnet_test70.04 30367.34 32078.14 27579.80 34661.13 26079.19 31980.59 32059.16 33965.27 34479.29 34646.75 30587.29 30349.33 34566.72 35686.00 313
Gipumacopyleft45.18 36441.86 36755.16 37777.03 36351.52 36432.50 39980.52 32132.46 39527.12 39835.02 3999.52 40275.50 37622.31 39860.21 37538.45 398
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
Anonymous2023120668.60 31367.80 31371.02 34380.23 33950.75 36978.30 33180.47 32256.79 35766.11 34082.63 31546.35 30878.95 35543.62 37275.70 29383.36 345
LCM-MVSNet-Re77.05 22376.94 20677.36 28787.20 21551.60 36380.06 30780.46 32375.20 9767.69 31986.72 22662.48 14788.98 28363.44 24489.25 11591.51 146
testing1175.14 25474.01 25078.53 26988.16 17556.38 32080.74 29780.42 32470.67 18772.69 27083.72 29743.61 33089.86 26662.29 25683.76 18989.36 231
tpm273.26 27271.46 27678.63 26483.34 28556.71 31480.65 29980.40 32556.63 35873.55 25982.02 32351.80 25891.24 24156.35 31178.42 26087.95 267
CR-MVSNet73.37 26971.27 28079.67 24981.32 32865.19 19175.92 34480.30 32659.92 33272.73 26881.19 32652.50 24286.69 30659.84 27777.71 26587.11 290
Patchmtry70.74 29569.16 29875.49 30580.72 33254.07 34674.94 35580.30 32658.34 34570.01 29681.19 32652.50 24286.54 30753.37 32371.09 34285.87 315
tpm cat170.57 29768.31 30377.35 28882.41 31157.95 29578.08 33280.22 32852.04 37068.54 31477.66 36052.00 25387.84 29951.77 32972.07 33686.25 304
MDTV_nov1_ep1369.97 29483.18 29053.48 35077.10 34080.18 32960.45 32669.33 30780.44 33548.89 29486.90 30551.60 33178.51 258
AllTest70.96 29268.09 30779.58 25185.15 24963.62 22184.58 23679.83 33062.31 31460.32 36686.73 22432.02 37388.96 28550.28 33971.57 33986.15 307
TestCases79.58 25185.15 24963.62 22179.83 33062.31 31460.32 36686.73 22432.02 37388.96 28550.28 33971.57 33986.15 307
test_fmvs1_n70.86 29470.24 29272.73 33072.51 38555.28 33581.27 28979.71 33251.49 37478.73 14584.87 27427.54 38277.02 36476.06 13079.97 24385.88 314
Vis-MVSNet (Re-imp)78.36 19378.45 16778.07 27788.64 15951.78 36286.70 18379.63 33374.14 12175.11 24090.83 12361.29 17089.75 26958.10 29591.60 8392.69 109
MIMVSNet70.69 29669.30 29574.88 31084.52 26256.35 32275.87 34679.42 33464.59 28567.76 31782.41 31641.10 34681.54 34446.64 36181.34 22386.75 298
dmvs_re71.14 29070.58 28672.80 32981.96 31559.68 27975.60 34879.34 33568.55 23969.27 30880.72 33449.42 28376.54 36752.56 32777.79 26482.19 357
SCA74.22 26072.33 26979.91 24284.05 27262.17 24979.96 31079.29 33666.30 26772.38 27480.13 33851.95 25488.60 29059.25 28277.67 26788.96 246
testing22274.04 26272.66 26578.19 27487.89 18655.36 33381.06 29179.20 33771.30 17474.65 24983.57 30039.11 35688.67 28951.43 33385.75 16490.53 183
tpmrst72.39 27972.13 27073.18 32780.54 33549.91 37279.91 31179.08 33863.11 30271.69 28179.95 34055.32 21682.77 33865.66 22973.89 32086.87 294
test_fmvs170.93 29370.52 28772.16 33373.71 37555.05 33780.82 29278.77 33951.21 37578.58 15184.41 28031.20 37776.94 36575.88 13380.12 24284.47 333
PatchmatchNetpermissive73.12 27471.33 27978.49 27183.18 29060.85 26479.63 31278.57 34064.13 29171.73 28079.81 34351.20 26385.97 31357.40 30176.36 28888.66 257
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDA-MVSNet-bldmvs66.68 32763.66 33675.75 30079.28 35360.56 26973.92 35878.35 34164.43 28750.13 38779.87 34244.02 32783.67 33146.10 36456.86 37783.03 350
new-patchmatchnet61.73 34461.73 34561.70 36672.74 38324.50 40769.16 37578.03 34261.40 32156.72 37875.53 37138.42 35876.48 36945.95 36557.67 37684.13 337
our_test_369.14 30967.00 32275.57 30379.80 34658.80 28477.96 33377.81 34359.55 33562.90 35978.25 35647.43 29883.97 32951.71 33067.58 35583.93 340
test20.0367.45 32266.95 32368.94 35175.48 36944.84 38677.50 33677.67 34466.66 25963.01 35783.80 29447.02 30278.40 35742.53 37568.86 35283.58 343
WB-MVSnew71.96 28671.65 27472.89 32884.67 26151.88 36082.29 27677.57 34562.31 31473.67 25883.00 30753.49 23781.10 34745.75 36682.13 21685.70 316
test-LLR72.94 27772.43 26774.48 31481.35 32658.04 29278.38 32877.46 34666.66 25969.95 29979.00 34948.06 29679.24 35366.13 22284.83 17086.15 307
test-mter71.41 28870.39 29174.48 31481.35 32658.04 29278.38 32877.46 34660.32 32869.95 29979.00 34936.08 36779.24 35366.13 22284.83 17086.15 307
ECVR-MVScopyleft79.61 15979.26 15080.67 22890.08 10354.69 34087.89 14977.44 34874.88 10480.27 12692.79 7948.96 29392.45 19368.55 20392.50 7394.86 17
tpm72.37 28171.71 27374.35 31682.19 31352.00 35779.22 31877.29 34964.56 28672.95 26683.68 29951.35 26183.26 33658.33 29375.80 29287.81 271
LF4IMVS64.02 33962.19 34369.50 34970.90 38653.29 35476.13 34177.18 35052.65 36958.59 37180.98 33023.55 38776.52 36853.06 32566.66 35778.68 371
test111179.43 16679.18 15480.15 23889.99 10853.31 35387.33 16377.05 35175.04 10180.23 12892.77 8148.97 29292.33 20168.87 20092.40 7594.81 20
K. test v371.19 28968.51 30179.21 25783.04 29557.78 29984.35 24576.91 35272.90 15262.99 35882.86 31139.27 35491.09 24861.65 26452.66 38588.75 255
UWE-MVS72.13 28471.49 27574.03 31986.66 22647.70 37681.40 28876.89 35363.60 29975.59 21984.22 28739.94 35285.62 31648.98 34786.13 15788.77 254
testgi66.67 32866.53 32567.08 36075.62 36841.69 39575.93 34376.50 35466.11 26865.20 34786.59 23435.72 36874.71 38143.71 37173.38 32784.84 329
test_fmvs268.35 31867.48 31970.98 34469.50 38851.95 35880.05 30876.38 35549.33 37774.65 24984.38 28123.30 38875.40 37974.51 14475.17 30985.60 317
test_vis1_n69.85 30669.21 29771.77 33572.66 38455.27 33681.48 28576.21 35652.03 37175.30 23483.20 30528.97 38076.22 37274.60 14378.41 26183.81 341
PatchMatch-RL72.38 28070.90 28476.80 29488.60 16067.38 14479.53 31376.17 35762.75 31069.36 30682.00 32445.51 31884.89 32453.62 32180.58 23478.12 372
JIA-IIPM66.32 33162.82 34276.82 29377.09 36261.72 25665.34 38675.38 35858.04 34964.51 34962.32 38742.05 34386.51 30851.45 33269.22 34982.21 356
ADS-MVSNet266.20 33463.33 33774.82 31179.92 34258.75 28567.55 37975.19 35953.37 36765.25 34575.86 36842.32 33980.53 35041.57 37668.91 35085.18 323
ETVMVS72.25 28371.05 28275.84 29987.77 19551.91 35979.39 31574.98 36069.26 22173.71 25782.95 30840.82 34986.14 31146.17 36384.43 18089.47 228
PatchT68.46 31767.85 31070.29 34680.70 33343.93 38872.47 36174.88 36160.15 33070.55 28776.57 36449.94 27781.59 34350.58 33574.83 31285.34 320
dp66.80 32665.43 32870.90 34579.74 34848.82 37575.12 35374.77 36259.61 33464.08 35277.23 36142.89 33580.72 34948.86 34866.58 35883.16 347
MDA-MVSNet_test_wron65.03 33562.92 33971.37 33875.93 36456.73 31269.09 37774.73 36357.28 35554.03 38377.89 35745.88 31374.39 38349.89 34361.55 37082.99 351
TESTMET0.1,169.89 30569.00 29972.55 33179.27 35456.85 31078.38 32874.71 36457.64 35168.09 31677.19 36237.75 36276.70 36663.92 24184.09 18584.10 338
YYNet165.03 33562.91 34071.38 33775.85 36656.60 31669.12 37674.66 36557.28 35554.12 38277.87 35845.85 31474.48 38249.95 34261.52 37183.05 349
test_fmvs363.36 34161.82 34467.98 35762.51 39546.96 38077.37 33874.03 36645.24 38067.50 32178.79 35212.16 39972.98 38772.77 16466.02 36083.99 339
PMMVS69.34 30868.67 30071.35 34075.67 36762.03 25075.17 35073.46 36750.00 37668.68 31179.05 34752.07 25278.13 35861.16 26982.77 20873.90 379
PVSNet_057.27 2061.67 34559.27 34868.85 35379.61 34957.44 30468.01 37873.44 36855.93 36158.54 37270.41 38244.58 32377.55 36247.01 35835.91 39471.55 382
Syy-MVS68.05 31967.85 31068.67 35584.68 25840.97 39678.62 32673.08 36966.65 26266.74 33179.46 34452.11 25082.30 34032.89 38876.38 28682.75 353
myMVS_eth3d67.02 32566.29 32669.21 35084.68 25842.58 39178.62 32673.08 36966.65 26266.74 33179.46 34431.53 37682.30 34039.43 38176.38 28682.75 353
test0.0.03 168.00 32067.69 31568.90 35277.55 35947.43 37775.70 34772.95 37166.66 25966.56 33382.29 31948.06 29675.87 37444.97 37074.51 31583.41 344
testing368.56 31567.67 31671.22 34287.33 21242.87 39083.06 27071.54 37270.36 19469.08 30984.38 28130.33 37985.69 31537.50 38475.45 30185.09 327
ADS-MVSNet64.36 33862.88 34168.78 35479.92 34247.17 37867.55 37971.18 37353.37 36765.25 34575.86 36842.32 33973.99 38441.57 37668.91 35085.18 323
Patchmatch-RL test70.24 30167.78 31477.61 28477.43 36059.57 28271.16 36570.33 37462.94 30668.65 31272.77 37750.62 26985.49 31869.58 19366.58 35887.77 272
gg-mvs-nofinetune69.95 30467.96 30875.94 29883.07 29354.51 34377.23 33970.29 37563.11 30270.32 29162.33 38643.62 32988.69 28853.88 32087.76 13284.62 332
door-mid69.98 376
GG-mvs-BLEND75.38 30681.59 32155.80 32879.32 31669.63 37767.19 32573.67 37543.24 33288.90 28750.41 33684.50 17581.45 361
FPMVS53.68 35451.64 35659.81 36965.08 39351.03 36769.48 37369.58 37841.46 38540.67 39172.32 37816.46 39570.00 39124.24 39765.42 36258.40 393
door69.44 379
Patchmatch-test64.82 33763.24 33869.57 34879.42 35249.82 37363.49 39069.05 38051.98 37259.95 36880.13 33850.91 26570.98 38840.66 37873.57 32387.90 269
CHOSEN 280x42066.51 32964.71 33071.90 33481.45 32363.52 22657.98 39368.95 38153.57 36662.59 36076.70 36346.22 31075.29 38055.25 31479.68 24476.88 375
EGC-MVSNET52.07 35847.05 36267.14 35983.51 28260.71 26680.50 30267.75 3820.07 4060.43 40775.85 37024.26 38681.54 34428.82 39162.25 36859.16 391
EPMVS69.02 31068.16 30571.59 33679.61 34949.80 37477.40 33766.93 38362.82 30970.01 29679.05 34745.79 31577.86 36156.58 30975.26 30787.13 289
APD_test153.31 35549.93 36063.42 36565.68 39250.13 37171.59 36466.90 38434.43 39340.58 39271.56 3808.65 40476.27 37134.64 38755.36 38263.86 389
lessismore_v078.97 26081.01 33157.15 30765.99 38561.16 36382.82 31239.12 35591.34 23959.67 27846.92 39188.43 262
dmvs_testset62.63 34264.11 33358.19 37078.55 35624.76 40675.28 34965.94 38667.91 24860.34 36576.01 36753.56 23573.94 38531.79 38967.65 35475.88 377
pmmvs357.79 34854.26 35368.37 35664.02 39456.72 31375.12 35365.17 38740.20 38652.93 38469.86 38320.36 39075.48 37745.45 36855.25 38372.90 381
MVS-HIRNet59.14 34757.67 35063.57 36481.65 31943.50 38971.73 36365.06 38839.59 38851.43 38557.73 39238.34 35982.58 33939.53 37973.95 31964.62 388
PM-MVS66.41 33064.14 33273.20 32673.92 37456.45 31778.97 32264.96 38963.88 29864.72 34880.24 33719.84 39183.44 33466.24 22164.52 36579.71 369
PMVScopyleft37.38 2244.16 36540.28 36855.82 37540.82 40842.54 39365.12 38763.99 39034.43 39324.48 39957.12 3943.92 40976.17 37317.10 40155.52 38148.75 396
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test250677.30 22176.49 21779.74 24690.08 10352.02 35687.86 15163.10 39174.88 10480.16 12992.79 7938.29 36092.35 19968.74 20292.50 7394.86 17
test_method31.52 36829.28 37238.23 38327.03 4106.50 41320.94 40162.21 3924.05 40422.35 40252.50 39613.33 39647.58 40327.04 39434.04 39660.62 390
WB-MVS54.94 35054.72 35255.60 37673.50 37720.90 40874.27 35761.19 39359.16 33950.61 38674.15 37347.19 30175.78 37517.31 40035.07 39570.12 383
test_vis1_rt60.28 34658.42 34965.84 36167.25 39155.60 33170.44 37060.94 39444.33 38259.00 37066.64 38424.91 38468.67 39262.80 24869.48 34673.25 380
SSC-MVS53.88 35353.59 35454.75 37872.87 38219.59 40973.84 35960.53 39557.58 35349.18 38873.45 37646.34 30975.47 37816.20 40332.28 39769.20 384
testf145.72 36241.96 36557.00 37156.90 39745.32 38266.14 38459.26 39626.19 39730.89 39660.96 3904.14 40770.64 38926.39 39546.73 39255.04 394
APD_test245.72 36241.96 36557.00 37156.90 39745.32 38266.14 38459.26 39626.19 39730.89 39660.96 3904.14 40770.64 38926.39 39546.73 39255.04 394
test_f52.09 35750.82 35855.90 37453.82 40242.31 39459.42 39258.31 39836.45 39156.12 38170.96 38112.18 39857.79 39953.51 32256.57 37967.60 385
new_pmnet50.91 35950.29 35952.78 37968.58 38934.94 40163.71 38856.63 39939.73 38744.95 38965.47 38521.93 38958.48 39834.98 38656.62 37864.92 387
DSMNet-mixed57.77 34956.90 35160.38 36867.70 39035.61 39969.18 37453.97 40032.30 39657.49 37679.88 34140.39 35168.57 39338.78 38272.37 33276.97 374
PMMVS240.82 36638.86 36946.69 38153.84 40116.45 41048.61 39649.92 40137.49 38931.67 39460.97 3898.14 40556.42 40028.42 39230.72 39867.19 386
mvsany_test162.30 34361.26 34765.41 36269.52 38754.86 33966.86 38149.78 40246.65 37968.50 31583.21 30449.15 28866.28 39456.93 30660.77 37275.11 378
test_vis3_rt49.26 36147.02 36356.00 37354.30 40045.27 38566.76 38348.08 40336.83 39044.38 39053.20 3957.17 40664.07 39656.77 30855.66 38058.65 392
E-PMN31.77 36730.64 37035.15 38452.87 40427.67 40357.09 39447.86 40424.64 39916.40 40433.05 40011.23 40054.90 40114.46 40418.15 40122.87 400
EMVS30.81 36929.65 37134.27 38550.96 40525.95 40556.58 39546.80 40524.01 40015.53 40530.68 40112.47 39754.43 40212.81 40517.05 40222.43 401
mvsany_test353.99 35251.45 35761.61 36755.51 39944.74 38763.52 38945.41 40643.69 38358.11 37476.45 36517.99 39263.76 39754.77 31647.59 39076.34 376
MVEpermissive26.22 2330.37 37025.89 37443.81 38244.55 40735.46 40028.87 40039.07 40718.20 40118.58 40340.18 3982.68 41047.37 40417.07 40223.78 40048.60 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MTMP92.18 3532.83 408
tmp_tt18.61 37221.40 37510.23 3884.82 41110.11 41134.70 39830.74 4091.48 40523.91 40126.07 40228.42 38113.41 40727.12 39315.35 4047.17 402
DeepMVS_CXcopyleft27.40 38640.17 40926.90 40424.59 41017.44 40223.95 40048.61 3979.77 40126.48 40518.06 39924.47 39928.83 399
N_pmnet52.79 35653.26 35551.40 38078.99 3557.68 41269.52 3723.89 41151.63 37357.01 37774.98 37240.83 34865.96 39537.78 38364.67 36480.56 367
wuyk23d16.82 37315.94 37619.46 38758.74 39631.45 40239.22 3973.74 4126.84 4036.04 4062.70 4061.27 41124.29 40610.54 40614.40 4052.63 403
testmvs6.04 3768.02 3790.10 3900.08 4120.03 41569.74 3710.04 4130.05 4070.31 4081.68 4070.02 4130.04 4080.24 4070.02 4060.25 405
test1236.12 3758.11 3780.14 3890.06 4130.09 41471.05 3660.03 4140.04 4080.25 4091.30 4080.05 4120.03 4090.21 4080.01 4070.29 404
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas5.26 3777.02 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40963.15 1380.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
n20.00 415
nn0.00 415
ab-mvs-re7.23 3749.64 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41086.72 2260.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS42.58 39139.46 380
PC_three_145268.21 24592.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
eth-test20.00 414
eth-test0.00 414
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 24
GSMVS88.96 246
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26288.96 246
sam_mvs50.01 275
test_post178.90 3245.43 40548.81 29585.44 32059.25 282
test_post5.46 40450.36 27384.24 327
patchmatchnet-post74.00 37451.12 26488.60 290
gm-plane-assit81.40 32453.83 34862.72 31180.94 33192.39 19663.40 245
test9_res84.90 4295.70 2692.87 104
agg_prior282.91 6695.45 3092.70 107
test_prior472.60 3489.01 105
test_prior288.85 11175.41 9384.91 5993.54 5674.28 2983.31 6195.86 20
旧先验286.56 18758.10 34887.04 3988.98 28374.07 149
新几何286.29 195
原ACMM286.86 176
testdata291.01 25062.37 255
segment_acmp73.08 37
testdata184.14 24975.71 87
plane_prior790.08 10368.51 119
plane_prior689.84 11268.70 11460.42 186
plane_prior491.00 120
plane_prior368.60 11778.44 3178.92 143
plane_prior291.25 5079.12 23
plane_prior189.90 111
plane_prior68.71 11290.38 6777.62 3986.16 156
HQP5-MVS66.98 154
HQP-NCC89.33 12989.17 9876.41 7277.23 183
ACMP_Plane89.33 12989.17 9876.41 7277.23 183
BP-MVS77.47 115
HQP4-MVS77.24 18295.11 8291.03 164
HQP2-MVS60.17 189
NP-MVS89.62 11568.32 12290.24 132
MDTV_nov1_ep13_2view37.79 39875.16 35155.10 36366.53 33449.34 28553.98 31987.94 268
ACMMP++_ref81.95 219
ACMMP++81.25 224
Test By Simon64.33 125