| 9.14 | | | | 88.26 15 | | 92.84 63 | | 91.52 48 | 94.75 1 | 73.93 136 | 88.57 26 | 94.67 22 | 75.57 22 | 95.79 58 | 86.77 38 | 95.76 23 | |
|
| SF-MVS | | | 88.46 12 | 88.74 12 | 87.64 35 | 92.78 64 | 71.95 49 | 92.40 24 | 94.74 2 | 75.71 93 | 89.16 20 | 95.10 16 | 75.65 21 | 96.19 46 | 87.07 37 | 96.01 17 | 94.79 22 |
|
| DVP-MVS++ | | | 90.23 1 | 91.01 1 | 87.89 24 | 94.34 27 | 71.25 59 | 95.06 1 | 94.23 3 | 78.38 34 | 92.78 4 | 95.74 6 | 82.45 3 | 97.49 4 | 89.42 12 | 96.68 2 | 94.95 11 |
|
| test_0728_SECOND | | | | | 87.71 32 | 95.34 1 | 71.43 58 | 93.49 9 | 94.23 3 | | | | | 97.49 4 | 89.08 15 | 96.41 12 | 94.21 49 |
|
| test_one_0601 | | | | | | 95.07 7 | 71.46 57 | | 94.14 5 | 78.27 36 | 92.05 11 | 95.74 6 | 80.83 11 | | | | |
|
| test0726 | | | | | | 95.27 5 | 71.25 59 | 93.60 6 | 94.11 6 | 77.33 51 | 92.81 3 | 95.79 3 | 80.98 9 | | | | |
|
| MSP-MVS | | | 89.51 4 | 89.91 5 | 88.30 10 | 94.28 30 | 73.46 17 | 92.90 16 | 94.11 6 | 80.27 10 | 91.35 14 | 94.16 43 | 78.35 13 | 96.77 24 | 89.59 11 | 94.22 60 | 94.67 28 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| DPE-MVS |  | | 89.48 5 | 89.98 4 | 88.01 16 | 94.80 11 | 72.69 31 | 91.59 43 | 94.10 8 | 75.90 91 | 92.29 7 | 95.66 10 | 81.67 6 | 97.38 11 | 87.44 36 | 96.34 15 | 93.95 60 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| PHI-MVS | | | 86.43 43 | 86.17 48 | 87.24 41 | 90.88 92 | 70.96 68 | 92.27 32 | 94.07 9 | 72.45 166 | 85.22 64 | 91.90 99 | 69.47 81 | 96.42 40 | 83.28 71 | 95.94 19 | 94.35 43 |
|
| SED-MVS | | | 90.08 2 | 90.85 2 | 87.77 26 | 95.30 2 | 70.98 66 | 93.57 7 | 94.06 10 | 77.24 54 | 93.10 1 | 95.72 8 | 82.99 1 | 97.44 7 | 89.07 17 | 96.63 4 | 94.88 15 |
|
| test_241102_TWO | | | | | | | | | 94.06 10 | 77.24 54 | 92.78 4 | 95.72 8 | 81.26 8 | 97.44 7 | 89.07 17 | 96.58 6 | 94.26 48 |
|
| test_241102_ONE | | | | | | 95.30 2 | 70.98 66 | | 94.06 10 | 77.17 57 | 93.10 1 | 95.39 14 | 82.99 1 | 97.27 12 | | | |
|
| APDe-MVS |  | | 89.15 7 | 89.63 6 | 87.73 28 | 94.49 18 | 71.69 52 | 93.83 4 | 93.96 13 | 75.70 95 | 91.06 16 | 96.03 1 | 76.84 14 | 97.03 17 | 89.09 14 | 95.65 27 | 94.47 38 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| DeepC-MVS | | 79.81 2 | 87.08 35 | 86.88 39 | 87.69 33 | 91.16 84 | 72.32 43 | 90.31 71 | 93.94 14 | 77.12 59 | 82.82 108 | 94.23 40 | 72.13 48 | 97.09 16 | 84.83 52 | 95.37 31 | 93.65 78 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| FOURS1 | | | | | | 95.00 10 | 72.39 39 | 95.06 1 | 93.84 15 | 74.49 122 | 91.30 15 | | | | | | |
|
| MCST-MVS | | | 87.37 29 | 87.25 30 | 87.73 28 | 94.53 17 | 72.46 38 | 89.82 79 | 93.82 16 | 73.07 159 | 84.86 71 | 92.89 80 | 76.22 17 | 96.33 41 | 84.89 51 | 95.13 36 | 94.40 41 |
|
| ZNCC-MVS | | | 87.94 18 | 87.85 19 | 88.20 12 | 94.39 24 | 73.33 19 | 93.03 14 | 93.81 17 | 76.81 67 | 85.24 63 | 94.32 35 | 71.76 52 | 96.93 19 | 85.53 46 | 95.79 22 | 94.32 45 |
|
| SPE-MVS-test | | | 86.29 47 | 86.48 42 | 85.71 73 | 91.02 88 | 67.21 160 | 92.36 29 | 93.78 18 | 78.97 29 | 83.51 100 | 91.20 123 | 70.65 70 | 95.15 84 | 81.96 86 | 94.89 42 | 94.77 24 |
|
| 3Dnovator+ | | 77.84 4 | 85.48 61 | 84.47 77 | 88.51 7 | 91.08 86 | 73.49 16 | 93.18 11 | 93.78 18 | 80.79 8 | 76.66 206 | 93.37 68 | 60.40 199 | 96.75 26 | 77.20 128 | 93.73 64 | 95.29 5 |
|
| SteuartSystems-ACMMP | | | 88.72 11 | 88.86 11 | 88.32 9 | 92.14 72 | 72.96 25 | 93.73 5 | 93.67 20 | 80.19 12 | 88.10 30 | 94.80 20 | 73.76 33 | 97.11 15 | 87.51 34 | 95.82 21 | 94.90 14 |
| Skip Steuart: Steuart Systems R&D Blog. |
| SMA-MVS |  | | 89.08 8 | 89.23 7 | 88.61 6 | 94.25 31 | 73.73 9 | 92.40 24 | 93.63 21 | 74.77 116 | 92.29 7 | 95.97 2 | 74.28 29 | 97.24 13 | 88.58 24 | 96.91 1 | 94.87 17 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| EC-MVSNet | | | 86.01 48 | 86.38 43 | 84.91 96 | 89.31 138 | 66.27 173 | 92.32 30 | 93.63 21 | 79.37 21 | 84.17 86 | 91.88 100 | 69.04 89 | 95.43 70 | 83.93 66 | 93.77 63 | 93.01 111 |
|
| ACMMP_NAP | | | 88.05 16 | 88.08 17 | 87.94 19 | 93.70 41 | 73.05 22 | 90.86 57 | 93.59 23 | 76.27 85 | 88.14 29 | 95.09 17 | 71.06 64 | 96.67 29 | 87.67 32 | 96.37 14 | 94.09 53 |
|
| CSCG | | | 86.41 45 | 86.19 47 | 87.07 45 | 92.91 61 | 72.48 37 | 90.81 58 | 93.56 24 | 73.95 134 | 83.16 103 | 91.07 128 | 75.94 18 | 95.19 82 | 79.94 106 | 94.38 56 | 93.55 85 |
|
| MP-MVS-pluss | | | 87.67 21 | 87.72 20 | 87.54 36 | 93.64 44 | 72.04 48 | 89.80 81 | 93.50 25 | 75.17 106 | 86.34 54 | 95.29 15 | 70.86 66 | 96.00 54 | 88.78 22 | 96.04 16 | 94.58 33 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| FIs | | | 82.07 116 | 82.42 103 | 81.04 228 | 88.80 158 | 58.34 300 | 88.26 141 | 93.49 26 | 76.93 64 | 78.47 165 | 91.04 129 | 69.92 77 | 92.34 208 | 69.87 203 | 84.97 181 | 92.44 131 |
|
| DELS-MVS | | | 85.41 64 | 85.30 66 | 85.77 72 | 88.49 169 | 67.93 137 | 85.52 229 | 93.44 27 | 78.70 30 | 83.63 99 | 89.03 175 | 74.57 24 | 95.71 61 | 80.26 103 | 94.04 61 | 93.66 74 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| GST-MVS | | | 87.42 27 | 87.26 29 | 87.89 24 | 94.12 36 | 72.97 24 | 92.39 26 | 93.43 28 | 76.89 65 | 84.68 72 | 93.99 54 | 70.67 69 | 96.82 22 | 84.18 64 | 95.01 37 | 93.90 63 |
|
| FC-MVSNet-test | | | 81.52 128 | 82.02 113 | 80.03 249 | 88.42 174 | 55.97 339 | 87.95 151 | 93.42 29 | 77.10 60 | 77.38 187 | 90.98 135 | 69.96 76 | 91.79 226 | 68.46 218 | 84.50 187 | 92.33 133 |
|
| DeepPCF-MVS | | 80.84 1 | 88.10 13 | 88.56 13 | 86.73 53 | 92.24 71 | 69.03 103 | 89.57 90 | 93.39 30 | 77.53 47 | 89.79 19 | 94.12 45 | 78.98 12 | 96.58 35 | 85.66 43 | 95.72 24 | 94.58 33 |
|
| HPM-MVS |  | | 87.11 33 | 86.98 35 | 87.50 38 | 93.88 39 | 72.16 45 | 92.19 33 | 93.33 31 | 76.07 88 | 83.81 94 | 93.95 57 | 69.77 79 | 96.01 53 | 85.15 47 | 94.66 47 | 94.32 45 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| CS-MVS | | | 86.69 39 | 86.95 36 | 85.90 71 | 90.76 96 | 67.57 147 | 92.83 17 | 93.30 32 | 79.67 17 | 84.57 79 | 92.27 92 | 71.47 57 | 95.02 93 | 84.24 62 | 93.46 67 | 95.13 8 |
|
| HFP-MVS | | | 87.58 22 | 87.47 26 | 87.94 19 | 94.58 16 | 73.54 15 | 93.04 12 | 93.24 33 | 76.78 69 | 84.91 68 | 94.44 31 | 70.78 67 | 96.61 32 | 84.53 57 | 94.89 42 | 93.66 74 |
|
| ACMMPR | | | 87.44 25 | 87.23 31 | 88.08 15 | 94.64 13 | 73.59 12 | 93.04 12 | 93.20 34 | 76.78 69 | 84.66 75 | 94.52 24 | 68.81 91 | 96.65 30 | 84.53 57 | 94.90 41 | 94.00 57 |
|
| reproduce_model | | | 87.28 30 | 87.39 28 | 86.95 48 | 93.10 56 | 71.24 63 | 91.60 42 | 93.19 35 | 74.69 117 | 88.80 24 | 95.61 11 | 70.29 73 | 96.44 39 | 86.20 42 | 93.08 69 | 93.16 101 |
|
| reproduce-ours | | | 87.47 23 | 87.61 22 | 87.07 45 | 93.27 50 | 71.60 53 | 91.56 46 | 93.19 35 | 74.98 109 | 88.96 21 | 95.54 12 | 71.20 62 | 96.54 36 | 86.28 40 | 93.49 65 | 93.06 106 |
|
| our_new_method | | | 87.47 23 | 87.61 22 | 87.07 45 | 93.27 50 | 71.60 53 | 91.56 46 | 93.19 35 | 74.98 109 | 88.96 21 | 95.54 12 | 71.20 62 | 96.54 36 | 86.28 40 | 93.49 65 | 93.06 106 |
|
| SD-MVS | | | 88.06 14 | 88.50 14 | 86.71 54 | 92.60 69 | 72.71 29 | 91.81 41 | 93.19 35 | 77.87 37 | 90.32 17 | 94.00 52 | 74.83 23 | 93.78 141 | 87.63 33 | 94.27 59 | 93.65 78 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| ACMMP |  | | 85.89 55 | 85.39 62 | 87.38 39 | 93.59 45 | 72.63 33 | 92.74 20 | 93.18 39 | 76.78 69 | 80.73 133 | 93.82 59 | 64.33 134 | 96.29 42 | 82.67 83 | 90.69 101 | 93.23 96 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| region2R | | | 87.42 27 | 87.20 32 | 88.09 14 | 94.63 14 | 73.55 13 | 93.03 14 | 93.12 40 | 76.73 72 | 84.45 80 | 94.52 24 | 69.09 85 | 96.70 27 | 84.37 59 | 94.83 45 | 94.03 56 |
|
| DPM-MVS | | | 84.93 71 | 84.29 78 | 86.84 50 | 90.20 105 | 73.04 23 | 87.12 176 | 93.04 41 | 69.80 221 | 82.85 107 | 91.22 122 | 73.06 40 | 96.02 52 | 76.72 136 | 94.63 48 | 91.46 162 |
|
| PGM-MVS | | | 86.68 40 | 86.27 45 | 87.90 22 | 94.22 33 | 73.38 18 | 90.22 73 | 93.04 41 | 75.53 97 | 83.86 92 | 94.42 32 | 67.87 101 | 96.64 31 | 82.70 82 | 94.57 50 | 93.66 74 |
|
| casdiffmvs_mvg |  | | 85.99 49 | 86.09 51 | 85.70 74 | 87.65 209 | 67.22 159 | 88.69 125 | 93.04 41 | 79.64 19 | 85.33 62 | 92.54 89 | 73.30 35 | 94.50 112 | 83.49 68 | 91.14 96 | 95.37 2 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| DeepC-MVS_fast | | 79.65 3 | 86.91 36 | 86.62 41 | 87.76 27 | 93.52 46 | 72.37 41 | 91.26 51 | 93.04 41 | 76.62 75 | 84.22 84 | 93.36 69 | 71.44 58 | 96.76 25 | 80.82 97 | 95.33 33 | 94.16 50 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| UniMVSNet (Re) | | | 81.60 127 | 81.11 124 | 83.09 171 | 88.38 175 | 64.41 217 | 87.60 161 | 93.02 45 | 78.42 33 | 78.56 162 | 88.16 200 | 69.78 78 | 93.26 165 | 69.58 206 | 76.49 292 | 91.60 153 |
|
| sasdasda | | | 85.91 53 | 85.87 55 | 86.04 67 | 89.84 117 | 69.44 98 | 90.45 68 | 93.00 46 | 76.70 73 | 88.01 33 | 91.23 120 | 73.28 36 | 93.91 135 | 81.50 89 | 88.80 129 | 94.77 24 |
|
| canonicalmvs | | | 85.91 53 | 85.87 55 | 86.04 67 | 89.84 117 | 69.44 98 | 90.45 68 | 93.00 46 | 76.70 73 | 88.01 33 | 91.23 120 | 73.28 36 | 93.91 135 | 81.50 89 | 88.80 129 | 94.77 24 |
|
| CNVR-MVS | | | 88.93 10 | 89.13 10 | 88.33 8 | 94.77 12 | 73.82 8 | 90.51 62 | 93.00 46 | 80.90 7 | 88.06 31 | 94.06 48 | 76.43 16 | 96.84 21 | 88.48 27 | 95.99 18 | 94.34 44 |
|
| MSC_two_6792asdad | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 49 | | | | | 97.53 2 | 89.67 9 | 96.44 9 | 94.41 39 |
|
| No_MVS | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 49 | | | | | 97.53 2 | 89.67 9 | 96.44 9 | 94.41 39 |
|
| XVS | | | 87.18 32 | 86.91 38 | 88.00 17 | 94.42 20 | 73.33 19 | 92.78 18 | 92.99 49 | 79.14 22 | 83.67 97 | 94.17 42 | 67.45 104 | 96.60 33 | 83.06 72 | 94.50 51 | 94.07 54 |
|
| X-MVStestdata | | | 80.37 157 | 77.83 193 | 88.00 17 | 94.42 20 | 73.33 19 | 92.78 18 | 92.99 49 | 79.14 22 | 83.67 97 | 12.47 423 | 67.45 104 | 96.60 33 | 83.06 72 | 94.50 51 | 94.07 54 |
|
| APD-MVS_3200maxsize | | | 85.97 51 | 85.88 54 | 86.22 60 | 92.69 66 | 69.53 92 | 91.93 37 | 92.99 49 | 73.54 146 | 85.94 55 | 94.51 27 | 65.80 124 | 95.61 62 | 83.04 74 | 92.51 76 | 93.53 87 |
|
| test_prior | | | | | 86.33 57 | 92.61 68 | 69.59 91 | | 92.97 54 | | | | | 95.48 67 | | | 93.91 61 |
|
| IU-MVS | | | | | | 95.30 2 | 71.25 59 | | 92.95 55 | 66.81 268 | 92.39 6 | | | | 88.94 19 | 96.63 4 | 94.85 20 |
|
| balanced_conf03 | | | 86.78 37 | 86.99 34 | 86.15 63 | 91.24 83 | 67.61 145 | 90.51 62 | 92.90 56 | 77.26 53 | 87.44 43 | 91.63 108 | 71.27 61 | 96.06 49 | 85.62 45 | 95.01 37 | 94.78 23 |
|
| baseline | | | 84.93 71 | 84.98 69 | 84.80 100 | 87.30 221 | 65.39 193 | 87.30 172 | 92.88 57 | 77.62 41 | 84.04 89 | 92.26 93 | 71.81 51 | 93.96 128 | 81.31 91 | 90.30 106 | 95.03 10 |
|
| MSLP-MVS++ | | | 85.43 63 | 85.76 57 | 84.45 109 | 91.93 75 | 70.24 79 | 90.71 59 | 92.86 58 | 77.46 49 | 84.22 84 | 92.81 84 | 67.16 108 | 92.94 186 | 80.36 101 | 94.35 57 | 90.16 206 |
|
| HPM-MVS++ |  | | 89.02 9 | 89.15 9 | 88.63 5 | 95.01 9 | 76.03 1 | 92.38 27 | 92.85 59 | 80.26 11 | 87.78 36 | 94.27 37 | 75.89 19 | 96.81 23 | 87.45 35 | 96.44 9 | 93.05 108 |
|
| casdiffmvs |  | | 85.11 68 | 85.14 68 | 85.01 90 | 87.20 223 | 65.77 185 | 87.75 158 | 92.83 60 | 77.84 38 | 84.36 83 | 92.38 91 | 72.15 47 | 93.93 134 | 81.27 93 | 90.48 103 | 95.33 4 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| APD-MVS |  | | 87.44 25 | 87.52 25 | 87.19 42 | 94.24 32 | 72.39 39 | 91.86 40 | 92.83 60 | 73.01 161 | 88.58 25 | 94.52 24 | 73.36 34 | 96.49 38 | 84.26 60 | 95.01 37 | 92.70 118 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| NCCC | | | 88.06 14 | 88.01 18 | 88.24 11 | 94.41 22 | 73.62 11 | 91.22 54 | 92.83 60 | 81.50 5 | 85.79 58 | 93.47 66 | 73.02 41 | 97.00 18 | 84.90 49 | 94.94 40 | 94.10 52 |
|
| CP-MVS | | | 87.11 33 | 86.92 37 | 87.68 34 | 94.20 34 | 73.86 7 | 93.98 3 | 92.82 63 | 76.62 75 | 83.68 96 | 94.46 28 | 67.93 99 | 95.95 57 | 84.20 63 | 94.39 55 | 93.23 96 |
|
| DVP-MVS |  | | 89.60 3 | 90.35 3 | 87.33 40 | 95.27 5 | 71.25 59 | 93.49 9 | 92.73 64 | 77.33 51 | 92.12 9 | 95.78 4 | 80.98 9 | 97.40 9 | 89.08 15 | 96.41 12 | 93.33 93 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| GDP-MVS | | | 83.52 92 | 82.64 102 | 86.16 62 | 88.14 183 | 68.45 124 | 89.13 108 | 92.69 65 | 72.82 165 | 83.71 95 | 91.86 102 | 55.69 228 | 95.35 79 | 80.03 104 | 89.74 117 | 94.69 27 |
|
| EIA-MVS | | | 83.31 99 | 82.80 100 | 84.82 98 | 89.59 122 | 65.59 188 | 88.21 142 | 92.68 66 | 74.66 119 | 78.96 152 | 86.42 251 | 69.06 87 | 95.26 80 | 75.54 148 | 90.09 110 | 93.62 81 |
|
| ZD-MVS | | | | | | 94.38 25 | 72.22 44 | | 92.67 67 | 70.98 194 | 87.75 38 | 94.07 47 | 74.01 32 | 96.70 27 | 84.66 55 | 94.84 44 | |
|
| nrg030 | | | 83.88 81 | 83.53 86 | 84.96 92 | 86.77 232 | 69.28 102 | 90.46 67 | 92.67 67 | 74.79 115 | 82.95 104 | 91.33 119 | 72.70 44 | 93.09 180 | 80.79 99 | 79.28 262 | 92.50 127 |
|
| WR-MVS_H | | | 78.51 199 | 78.49 175 | 78.56 277 | 88.02 190 | 56.38 333 | 88.43 132 | 92.67 67 | 77.14 58 | 73.89 268 | 87.55 215 | 66.25 117 | 89.24 288 | 58.92 300 | 73.55 336 | 90.06 216 |
|
| MVSMamba_PlusPlus | | | 85.99 49 | 85.96 53 | 86.05 66 | 91.09 85 | 67.64 144 | 89.63 88 | 92.65 70 | 72.89 164 | 84.64 76 | 91.71 104 | 71.85 50 | 96.03 50 | 84.77 54 | 94.45 54 | 94.49 37 |
|
| MP-MVS |  | | 87.71 19 | 87.64 21 | 87.93 21 | 94.36 26 | 73.88 6 | 92.71 22 | 92.65 70 | 77.57 43 | 83.84 93 | 94.40 33 | 72.24 46 | 96.28 43 | 85.65 44 | 95.30 35 | 93.62 81 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| ETV-MVS | | | 84.90 73 | 84.67 73 | 85.59 75 | 89.39 133 | 68.66 120 | 88.74 123 | 92.64 72 | 79.97 15 | 84.10 87 | 85.71 264 | 69.32 83 | 95.38 75 | 80.82 97 | 91.37 93 | 92.72 117 |
|
| MGCFI-Net | | | 85.06 70 | 85.51 60 | 83.70 149 | 89.42 130 | 63.01 246 | 89.43 93 | 92.62 73 | 76.43 77 | 87.53 41 | 91.34 118 | 72.82 43 | 93.42 161 | 81.28 92 | 88.74 132 | 94.66 31 |
|
| CANet | | | 86.45 42 | 86.10 50 | 87.51 37 | 90.09 107 | 70.94 70 | 89.70 85 | 92.59 74 | 81.78 4 | 81.32 124 | 91.43 116 | 70.34 71 | 97.23 14 | 84.26 60 | 93.36 68 | 94.37 42 |
|
| SR-MVS | | | 86.73 38 | 86.67 40 | 86.91 49 | 94.11 37 | 72.11 47 | 92.37 28 | 92.56 75 | 74.50 121 | 86.84 51 | 94.65 23 | 67.31 106 | 95.77 59 | 84.80 53 | 92.85 72 | 92.84 116 |
|
| alignmvs | | | 85.48 61 | 85.32 65 | 85.96 70 | 89.51 126 | 69.47 95 | 89.74 83 | 92.47 76 | 76.17 86 | 87.73 40 | 91.46 115 | 70.32 72 | 93.78 141 | 81.51 88 | 88.95 126 | 94.63 32 |
|
| 原ACMM1 | | | | | 84.35 113 | 93.01 60 | 68.79 110 | | 92.44 77 | 63.96 313 | 81.09 129 | 91.57 111 | 66.06 120 | 95.45 68 | 67.19 229 | 94.82 46 | 88.81 261 |
|
| HQP_MVS | | | 83.64 88 | 83.14 92 | 85.14 85 | 90.08 108 | 68.71 116 | 91.25 52 | 92.44 77 | 79.12 24 | 78.92 154 | 91.00 133 | 60.42 197 | 95.38 75 | 78.71 113 | 86.32 165 | 91.33 163 |
|
| plane_prior5 | | | | | | | | | 92.44 77 | | | | | 95.38 75 | 78.71 113 | 86.32 165 | 91.33 163 |
|
| CDPH-MVS | | | 85.76 57 | 85.29 67 | 87.17 43 | 93.49 47 | 71.08 64 | 88.58 129 | 92.42 80 | 68.32 256 | 84.61 77 | 93.48 64 | 72.32 45 | 96.15 48 | 79.00 109 | 95.43 30 | 94.28 47 |
|
| UniMVSNet_NR-MVSNet | | | 81.88 119 | 81.54 119 | 82.92 181 | 88.46 171 | 63.46 236 | 87.13 175 | 92.37 81 | 80.19 12 | 78.38 166 | 89.14 171 | 71.66 56 | 93.05 182 | 70.05 199 | 76.46 293 | 92.25 137 |
|
| TSAR-MVS + MP. | | | 88.02 17 | 88.11 16 | 87.72 30 | 93.68 43 | 72.13 46 | 91.41 50 | 92.35 82 | 74.62 120 | 88.90 23 | 93.85 58 | 75.75 20 | 96.00 54 | 87.80 31 | 94.63 48 | 95.04 9 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| CLD-MVS | | | 82.31 112 | 81.65 118 | 84.29 116 | 88.47 170 | 67.73 142 | 85.81 220 | 92.35 82 | 75.78 92 | 78.33 168 | 86.58 246 | 64.01 137 | 94.35 115 | 76.05 141 | 87.48 149 | 90.79 180 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| SR-MVS-dyc-post | | | 85.77 56 | 85.61 59 | 86.23 59 | 93.06 58 | 70.63 76 | 91.88 38 | 92.27 84 | 73.53 147 | 85.69 59 | 94.45 29 | 65.00 132 | 95.56 63 | 82.75 78 | 91.87 84 | 92.50 127 |
|
| RE-MVS-def | | | | 85.48 61 | | 93.06 58 | 70.63 76 | 91.88 38 | 92.27 84 | 73.53 147 | 85.69 59 | 94.45 29 | 63.87 138 | | 82.75 78 | 91.87 84 | 92.50 127 |
|
| RPMNet | | | 73.51 281 | 70.49 303 | 82.58 195 | 81.32 343 | 65.19 197 | 75.92 360 | 92.27 84 | 57.60 368 | 72.73 282 | 76.45 383 | 52.30 258 | 95.43 70 | 48.14 370 | 77.71 277 | 87.11 303 |
|
| test11 | | | | | | | | | 92.23 87 | | | | | | | | |
|
| mPP-MVS | | | 86.67 41 | 86.32 44 | 87.72 30 | 94.41 22 | 73.55 13 | 92.74 20 | 92.22 88 | 76.87 66 | 82.81 109 | 94.25 39 | 66.44 114 | 96.24 44 | 82.88 77 | 94.28 58 | 93.38 90 |
|
| DP-MVS Recon | | | 83.11 103 | 82.09 111 | 86.15 63 | 94.44 19 | 70.92 71 | 88.79 119 | 92.20 89 | 70.53 204 | 79.17 150 | 91.03 131 | 64.12 136 | 96.03 50 | 68.39 219 | 90.14 109 | 91.50 158 |
|
| HQP3-MVS | | | | | | | | | 92.19 90 | | | | | | | 85.99 173 | |
|
| HQP-MVS | | | 82.61 109 | 82.02 113 | 84.37 111 | 89.33 135 | 66.98 163 | 89.17 103 | 92.19 90 | 76.41 78 | 77.23 192 | 90.23 146 | 60.17 200 | 95.11 87 | 77.47 125 | 85.99 173 | 91.03 173 |
|
| 3Dnovator | | 76.31 5 | 83.38 97 | 82.31 107 | 86.59 55 | 87.94 194 | 72.94 28 | 90.64 60 | 92.14 92 | 77.21 56 | 75.47 231 | 92.83 82 | 58.56 206 | 94.72 105 | 73.24 171 | 92.71 74 | 92.13 144 |
|
| MTGPA |  | | | | | | | | 92.02 93 | | | | | | | | |
|
| MTAPA | | | 87.23 31 | 87.00 33 | 87.90 22 | 94.18 35 | 74.25 5 | 86.58 196 | 92.02 93 | 79.45 20 | 85.88 56 | 94.80 20 | 68.07 97 | 96.21 45 | 86.69 39 | 95.34 32 | 93.23 96 |
|
| MVS_Test | | | 83.15 100 | 83.06 94 | 83.41 158 | 86.86 228 | 63.21 242 | 86.11 210 | 92.00 95 | 74.31 127 | 82.87 106 | 89.44 168 | 70.03 75 | 93.21 169 | 77.39 127 | 88.50 137 | 93.81 69 |
|
| PVSNet_BlendedMVS | | | 80.60 149 | 80.02 142 | 82.36 199 | 88.85 153 | 65.40 191 | 86.16 209 | 92.00 95 | 69.34 231 | 78.11 173 | 86.09 259 | 66.02 121 | 94.27 118 | 71.52 183 | 82.06 228 | 87.39 293 |
|
| PVSNet_Blended | | | 80.98 136 | 80.34 137 | 82.90 182 | 88.85 153 | 65.40 191 | 84.43 253 | 92.00 95 | 67.62 262 | 78.11 173 | 85.05 283 | 66.02 121 | 94.27 118 | 71.52 183 | 89.50 119 | 89.01 251 |
|
| QAPM | | | 80.88 138 | 79.50 154 | 85.03 89 | 88.01 192 | 68.97 107 | 91.59 43 | 92.00 95 | 66.63 277 | 75.15 249 | 92.16 94 | 57.70 213 | 95.45 68 | 63.52 255 | 88.76 131 | 90.66 186 |
|
| LPG-MVS_test | | | 82.08 115 | 81.27 121 | 84.50 106 | 89.23 142 | 68.76 112 | 90.22 73 | 91.94 99 | 75.37 100 | 76.64 207 | 91.51 112 | 54.29 241 | 94.91 95 | 78.44 115 | 83.78 199 | 89.83 227 |
|
| LGP-MVS_train | | | | | 84.50 106 | 89.23 142 | 68.76 112 | | 91.94 99 | 75.37 100 | 76.64 207 | 91.51 112 | 54.29 241 | 94.91 95 | 78.44 115 | 83.78 199 | 89.83 227 |
|
| TEST9 | | | | | | 93.26 52 | 72.96 25 | 88.75 121 | 91.89 101 | 68.44 254 | 85.00 66 | 93.10 73 | 74.36 28 | 95.41 73 | | | |
|
| train_agg | | | 86.43 43 | 86.20 46 | 87.13 44 | 93.26 52 | 72.96 25 | 88.75 121 | 91.89 101 | 68.69 249 | 85.00 66 | 93.10 73 | 74.43 26 | 95.41 73 | 84.97 48 | 95.71 25 | 93.02 110 |
|
| dcpmvs_2 | | | 85.63 59 | 86.15 49 | 84.06 133 | 91.71 78 | 64.94 204 | 86.47 199 | 91.87 103 | 73.63 142 | 86.60 53 | 93.02 78 | 76.57 15 | 91.87 225 | 83.36 69 | 92.15 80 | 95.35 3 |
|
| DU-MVS | | | 81.12 135 | 80.52 134 | 82.90 182 | 87.80 201 | 63.46 236 | 87.02 180 | 91.87 103 | 79.01 27 | 78.38 166 | 89.07 173 | 65.02 130 | 93.05 182 | 70.05 199 | 76.46 293 | 92.20 140 |
|
| test_8 | | | | | | 93.13 54 | 72.57 35 | 88.68 126 | 91.84 105 | 68.69 249 | 84.87 70 | 93.10 73 | 74.43 26 | 95.16 83 | | | |
|
| PAPM_NR | | | 83.02 104 | 82.41 104 | 84.82 98 | 92.47 70 | 66.37 171 | 87.93 153 | 91.80 106 | 73.82 138 | 77.32 189 | 90.66 138 | 67.90 100 | 94.90 97 | 70.37 196 | 89.48 120 | 93.19 100 |
|
| test12 | | | | | 86.80 52 | 92.63 67 | 70.70 75 | | 91.79 107 | | 82.71 110 | | 71.67 55 | 96.16 47 | | 94.50 51 | 93.54 86 |
|
| agg_prior | | | | | | 92.85 62 | 71.94 50 | | 91.78 108 | | 84.41 81 | | | 94.93 94 | | | |
|
| PAPR | | | 81.66 126 | 80.89 129 | 83.99 141 | 90.27 103 | 64.00 223 | 86.76 192 | 91.77 109 | 68.84 247 | 77.13 199 | 89.50 161 | 67.63 102 | 94.88 99 | 67.55 224 | 88.52 136 | 93.09 104 |
|
| PVSNet_Blended_VisFu | | | 82.62 108 | 81.83 117 | 84.96 92 | 90.80 94 | 69.76 90 | 88.74 123 | 91.70 110 | 69.39 229 | 78.96 152 | 88.46 191 | 65.47 126 | 94.87 100 | 74.42 157 | 88.57 134 | 90.24 204 |
|
| HPM-MVS_fast | | | 85.35 65 | 84.95 71 | 86.57 56 | 93.69 42 | 70.58 78 | 92.15 35 | 91.62 111 | 73.89 137 | 82.67 111 | 94.09 46 | 62.60 153 | 95.54 65 | 80.93 95 | 92.93 71 | 93.57 83 |
|
| ACMM | | 73.20 8 | 80.78 146 | 79.84 147 | 83.58 152 | 89.31 138 | 68.37 126 | 89.99 76 | 91.60 112 | 70.28 209 | 77.25 190 | 89.66 156 | 53.37 251 | 93.53 154 | 74.24 160 | 82.85 218 | 88.85 259 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| VPA-MVSNet | | | 80.60 149 | 80.55 133 | 80.76 235 | 88.07 188 | 60.80 276 | 86.86 186 | 91.58 113 | 75.67 96 | 80.24 137 | 89.45 167 | 63.34 141 | 90.25 269 | 70.51 195 | 79.22 263 | 91.23 166 |
|
| OPM-MVS | | | 83.50 93 | 82.95 97 | 85.14 85 | 88.79 159 | 70.95 69 | 89.13 108 | 91.52 114 | 77.55 46 | 80.96 131 | 91.75 103 | 60.71 189 | 94.50 112 | 79.67 108 | 86.51 163 | 89.97 222 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| Anonymous20231211 | | | 78.97 189 | 77.69 201 | 82.81 186 | 90.54 99 | 64.29 219 | 90.11 75 | 91.51 115 | 65.01 297 | 76.16 222 | 88.13 205 | 50.56 285 | 93.03 185 | 69.68 205 | 77.56 280 | 91.11 169 |
|
| PS-MVSNAJss | | | 82.07 116 | 81.31 120 | 84.34 114 | 86.51 237 | 67.27 156 | 89.27 101 | 91.51 115 | 71.75 176 | 79.37 147 | 90.22 147 | 63.15 147 | 94.27 118 | 77.69 123 | 82.36 225 | 91.49 159 |
|
| TAPA-MVS | | 73.13 9 | 79.15 183 | 77.94 189 | 82.79 189 | 89.59 122 | 62.99 250 | 88.16 145 | 91.51 115 | 65.77 286 | 77.14 198 | 91.09 127 | 60.91 187 | 93.21 169 | 50.26 357 | 87.05 154 | 92.17 142 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| ACMP | | 74.13 6 | 81.51 130 | 80.57 132 | 84.36 112 | 89.42 130 | 68.69 119 | 89.97 77 | 91.50 118 | 74.46 123 | 75.04 253 | 90.41 142 | 53.82 246 | 94.54 109 | 77.56 124 | 82.91 217 | 89.86 226 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| PCF-MVS | | 73.52 7 | 80.38 155 | 78.84 170 | 85.01 90 | 87.71 206 | 68.99 106 | 83.65 267 | 91.46 119 | 63.00 320 | 77.77 181 | 90.28 143 | 66.10 118 | 95.09 91 | 61.40 279 | 88.22 140 | 90.94 177 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| TranMVSNet+NR-MVSNet | | | 80.84 139 | 80.31 138 | 82.42 197 | 87.85 198 | 62.33 256 | 87.74 159 | 91.33 120 | 80.55 9 | 77.99 177 | 89.86 151 | 65.23 128 | 92.62 192 | 67.05 231 | 75.24 320 | 92.30 135 |
|
| RRT-MVS | | | 82.60 111 | 82.10 110 | 84.10 125 | 87.98 193 | 62.94 251 | 87.45 167 | 91.27 121 | 77.42 50 | 79.85 141 | 90.28 143 | 56.62 225 | 94.70 107 | 79.87 107 | 88.15 141 | 94.67 28 |
|
| PS-CasMVS | | | 78.01 213 | 78.09 186 | 77.77 292 | 87.71 206 | 54.39 358 | 88.02 148 | 91.22 122 | 77.50 48 | 73.26 275 | 88.64 185 | 60.73 188 | 88.41 304 | 61.88 274 | 73.88 333 | 90.53 192 |
|
| v7n | | | 78.97 189 | 77.58 204 | 83.14 169 | 83.45 297 | 65.51 189 | 88.32 139 | 91.21 123 | 73.69 141 | 72.41 287 | 86.32 254 | 57.93 210 | 93.81 140 | 69.18 209 | 75.65 306 | 90.11 210 |
|
| PEN-MVS | | | 77.73 219 | 77.69 201 | 77.84 290 | 87.07 227 | 53.91 361 | 87.91 154 | 91.18 124 | 77.56 45 | 73.14 277 | 88.82 180 | 61.23 181 | 89.17 289 | 59.95 289 | 72.37 344 | 90.43 196 |
|
| MM | | | 89.16 6 | 89.23 7 | 88.97 4 | 90.79 95 | 73.65 10 | 92.66 23 | 91.17 125 | 86.57 1 | 87.39 44 | 94.97 19 | 71.70 54 | 97.68 1 | 92.19 1 | 95.63 28 | 95.57 1 |
|
| save fliter | | | | | | 93.80 40 | 72.35 42 | 90.47 66 | 91.17 125 | 74.31 127 | | | | | | | |
|
| CP-MVSNet | | | 78.22 204 | 78.34 180 | 77.84 290 | 87.83 200 | 54.54 356 | 87.94 152 | 91.17 125 | 77.65 40 | 73.48 273 | 88.49 190 | 62.24 162 | 88.43 303 | 62.19 270 | 74.07 329 | 90.55 191 |
|
| 114514_t | | | 80.68 147 | 79.51 153 | 84.20 122 | 94.09 38 | 67.27 156 | 89.64 87 | 91.11 128 | 58.75 360 | 74.08 267 | 90.72 137 | 58.10 209 | 95.04 92 | 69.70 204 | 89.42 121 | 90.30 202 |
|
| NR-MVSNet | | | 80.23 159 | 79.38 156 | 82.78 190 | 87.80 201 | 63.34 239 | 86.31 204 | 91.09 129 | 79.01 27 | 72.17 291 | 89.07 173 | 67.20 107 | 92.81 191 | 66.08 238 | 75.65 306 | 92.20 140 |
|
| OpenMVS |  | 72.83 10 | 79.77 166 | 78.33 181 | 84.09 129 | 85.17 259 | 69.91 87 | 90.57 61 | 90.97 130 | 66.70 271 | 72.17 291 | 91.91 98 | 54.70 238 | 93.96 128 | 61.81 276 | 90.95 98 | 88.41 274 |
|
| MAR-MVS | | | 81.84 120 | 80.70 130 | 85.27 82 | 91.32 82 | 71.53 56 | 89.82 79 | 90.92 131 | 69.77 223 | 78.50 163 | 86.21 255 | 62.36 159 | 94.52 111 | 65.36 243 | 92.05 82 | 89.77 230 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| tt0805 | | | 78.73 193 | 77.83 193 | 81.43 215 | 85.17 259 | 60.30 284 | 89.41 96 | 90.90 132 | 71.21 188 | 77.17 197 | 88.73 181 | 46.38 321 | 93.21 169 | 72.57 178 | 78.96 264 | 90.79 180 |
|
| Anonymous20240529 | | | 80.19 161 | 78.89 169 | 84.10 125 | 90.60 97 | 64.75 209 | 88.95 114 | 90.90 132 | 65.97 285 | 80.59 134 | 91.17 125 | 49.97 291 | 93.73 147 | 69.16 210 | 82.70 222 | 93.81 69 |
|
| OMC-MVS | | | 82.69 107 | 81.97 115 | 84.85 97 | 88.75 161 | 67.42 150 | 87.98 149 | 90.87 134 | 74.92 111 | 79.72 143 | 91.65 106 | 62.19 163 | 93.96 128 | 75.26 152 | 86.42 164 | 93.16 101 |
|
| UA-Net | | | 85.08 69 | 84.96 70 | 85.45 78 | 92.07 73 | 68.07 134 | 89.78 82 | 90.86 135 | 82.48 2 | 84.60 78 | 93.20 72 | 69.35 82 | 95.22 81 | 71.39 186 | 90.88 99 | 93.07 105 |
|
| test_fmvsm_n_1920 | | | 85.29 66 | 85.34 63 | 85.13 87 | 86.12 243 | 69.93 86 | 88.65 127 | 90.78 136 | 69.97 217 | 88.27 27 | 93.98 55 | 71.39 59 | 91.54 238 | 88.49 26 | 90.45 104 | 93.91 61 |
|
| EPP-MVSNet | | | 83.40 96 | 83.02 95 | 84.57 104 | 90.13 106 | 64.47 215 | 92.32 30 | 90.73 137 | 74.45 124 | 79.35 148 | 91.10 126 | 69.05 88 | 95.12 85 | 72.78 175 | 87.22 152 | 94.13 51 |
|
| DTE-MVSNet | | | 76.99 233 | 76.80 219 | 77.54 298 | 86.24 239 | 53.06 370 | 87.52 163 | 90.66 138 | 77.08 61 | 72.50 285 | 88.67 184 | 60.48 196 | 89.52 282 | 57.33 317 | 70.74 356 | 90.05 217 |
|
| v10 | | | 79.74 167 | 78.67 171 | 82.97 180 | 84.06 283 | 64.95 203 | 87.88 156 | 90.62 139 | 73.11 158 | 75.11 250 | 86.56 247 | 61.46 175 | 94.05 127 | 73.68 163 | 75.55 308 | 89.90 224 |
|
| test_fmvsmconf_n | | | 85.92 52 | 86.04 52 | 85.57 76 | 85.03 265 | 69.51 93 | 89.62 89 | 90.58 140 | 73.42 150 | 87.75 38 | 94.02 50 | 72.85 42 | 93.24 166 | 90.37 4 | 90.75 100 | 93.96 58 |
|
| v1192 | | | 79.59 170 | 78.43 178 | 83.07 174 | 83.55 295 | 64.52 211 | 86.93 184 | 90.58 140 | 70.83 195 | 77.78 180 | 85.90 260 | 59.15 203 | 93.94 131 | 73.96 162 | 77.19 283 | 90.76 182 |
|
| v1144 | | | 80.03 163 | 79.03 166 | 83.01 177 | 83.78 290 | 64.51 212 | 87.11 177 | 90.57 142 | 71.96 175 | 78.08 175 | 86.20 256 | 61.41 176 | 93.94 131 | 74.93 153 | 77.23 281 | 90.60 189 |
|
| XVG-OURS-SEG-HR | | | 80.81 141 | 79.76 148 | 83.96 143 | 85.60 252 | 68.78 111 | 83.54 272 | 90.50 143 | 70.66 202 | 76.71 205 | 91.66 105 | 60.69 190 | 91.26 249 | 76.94 132 | 81.58 233 | 91.83 149 |
|
| MVS | | | 78.19 207 | 76.99 215 | 81.78 207 | 85.66 249 | 66.99 162 | 84.66 243 | 90.47 144 | 55.08 380 | 72.02 293 | 85.27 275 | 63.83 139 | 94.11 126 | 66.10 237 | 89.80 116 | 84.24 350 |
|
| XVG-OURS | | | 80.41 154 | 79.23 162 | 83.97 142 | 85.64 250 | 69.02 105 | 83.03 283 | 90.39 145 | 71.09 191 | 77.63 183 | 91.49 114 | 54.62 240 | 91.35 247 | 75.71 144 | 83.47 210 | 91.54 156 |
|
| MVSFormer | | | 82.85 106 | 82.05 112 | 85.24 83 | 87.35 215 | 70.21 80 | 90.50 64 | 90.38 146 | 68.55 251 | 81.32 124 | 89.47 163 | 61.68 169 | 93.46 158 | 78.98 110 | 90.26 107 | 92.05 146 |
|
| test_djsdf | | | 80.30 158 | 79.32 159 | 83.27 162 | 83.98 285 | 65.37 194 | 90.50 64 | 90.38 146 | 68.55 251 | 76.19 218 | 88.70 182 | 56.44 226 | 93.46 158 | 78.98 110 | 80.14 252 | 90.97 176 |
|
| CPTT-MVS | | | 83.73 85 | 83.33 91 | 84.92 95 | 93.28 49 | 70.86 72 | 92.09 36 | 90.38 146 | 68.75 248 | 79.57 145 | 92.83 82 | 60.60 195 | 93.04 184 | 80.92 96 | 91.56 91 | 90.86 179 |
|
| v144192 | | | 79.47 173 | 78.37 179 | 82.78 190 | 83.35 298 | 63.96 224 | 86.96 181 | 90.36 149 | 69.99 216 | 77.50 184 | 85.67 267 | 60.66 192 | 93.77 143 | 74.27 159 | 76.58 291 | 90.62 187 |
|
| v1921920 | | | 79.22 181 | 78.03 187 | 82.80 187 | 83.30 300 | 63.94 225 | 86.80 188 | 90.33 150 | 69.91 219 | 77.48 185 | 85.53 270 | 58.44 207 | 93.75 145 | 73.60 164 | 76.85 288 | 90.71 185 |
|
| MVS_111021_HR | | | 85.14 67 | 84.75 72 | 86.32 58 | 91.65 79 | 72.70 30 | 85.98 212 | 90.33 150 | 76.11 87 | 82.08 114 | 91.61 110 | 71.36 60 | 94.17 124 | 81.02 94 | 92.58 75 | 92.08 145 |
|
| v1240 | | | 78.99 188 | 77.78 196 | 82.64 193 | 83.21 302 | 63.54 233 | 86.62 195 | 90.30 152 | 69.74 226 | 77.33 188 | 85.68 266 | 57.04 221 | 93.76 144 | 73.13 172 | 76.92 285 | 90.62 187 |
|
| test_fmvsmconf0.1_n | | | 85.61 60 | 85.65 58 | 85.50 77 | 82.99 312 | 69.39 100 | 89.65 86 | 90.29 153 | 73.31 153 | 87.77 37 | 94.15 44 | 71.72 53 | 93.23 167 | 90.31 5 | 90.67 102 | 93.89 64 |
|
| v8 | | | 79.97 165 | 79.02 167 | 82.80 187 | 84.09 282 | 64.50 214 | 87.96 150 | 90.29 153 | 74.13 133 | 75.24 246 | 86.81 233 | 62.88 152 | 93.89 138 | 74.39 158 | 75.40 315 | 90.00 218 |
|
| fmvsm_s_conf0.5_n_3 | | | 86.36 46 | 87.46 27 | 83.09 171 | 87.08 226 | 65.21 196 | 89.09 110 | 90.21 155 | 79.67 17 | 89.98 18 | 95.02 18 | 73.17 38 | 91.71 231 | 91.30 2 | 91.60 88 | 92.34 132 |
|
| mvs_tets | | | 79.13 184 | 77.77 197 | 83.22 166 | 84.70 269 | 66.37 171 | 89.17 103 | 90.19 156 | 69.38 230 | 75.40 236 | 89.46 165 | 44.17 342 | 93.15 176 | 76.78 135 | 80.70 244 | 90.14 207 |
|
| jajsoiax | | | 79.29 180 | 77.96 188 | 83.27 162 | 84.68 270 | 66.57 169 | 89.25 102 | 90.16 157 | 69.20 237 | 75.46 233 | 89.49 162 | 45.75 332 | 93.13 178 | 76.84 133 | 80.80 242 | 90.11 210 |
|
| Vis-MVSNet |  | | 83.46 94 | 82.80 100 | 85.43 79 | 90.25 104 | 68.74 114 | 90.30 72 | 90.13 158 | 76.33 84 | 80.87 132 | 92.89 80 | 61.00 186 | 94.20 122 | 72.45 180 | 90.97 97 | 93.35 92 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| PS-MVSNAJ | | | 81.69 124 | 81.02 126 | 83.70 149 | 89.51 126 | 68.21 131 | 84.28 257 | 90.09 159 | 70.79 196 | 81.26 128 | 85.62 269 | 63.15 147 | 94.29 116 | 75.62 146 | 88.87 128 | 88.59 269 |
|
| xiu_mvs_v2_base | | | 81.69 124 | 81.05 125 | 83.60 151 | 89.15 145 | 68.03 136 | 84.46 251 | 90.02 160 | 70.67 199 | 81.30 127 | 86.53 249 | 63.17 146 | 94.19 123 | 75.60 147 | 88.54 135 | 88.57 270 |
|
| FA-MVS(test-final) | | | 80.96 137 | 79.91 145 | 84.10 125 | 88.30 178 | 65.01 201 | 84.55 248 | 90.01 161 | 73.25 156 | 79.61 144 | 87.57 213 | 58.35 208 | 94.72 105 | 71.29 187 | 86.25 167 | 92.56 124 |
|
| v2v482 | | | 80.23 159 | 79.29 160 | 83.05 175 | 83.62 293 | 64.14 221 | 87.04 178 | 89.97 162 | 73.61 143 | 78.18 172 | 87.22 224 | 61.10 184 | 93.82 139 | 76.11 139 | 76.78 290 | 91.18 167 |
|
| test_yl | | | 81.17 133 | 80.47 135 | 83.24 164 | 89.13 146 | 63.62 229 | 86.21 207 | 89.95 163 | 72.43 169 | 81.78 120 | 89.61 158 | 57.50 216 | 93.58 149 | 70.75 191 | 86.90 156 | 92.52 125 |
|
| DCV-MVSNet | | | 81.17 133 | 80.47 135 | 83.24 164 | 89.13 146 | 63.62 229 | 86.21 207 | 89.95 163 | 72.43 169 | 81.78 120 | 89.61 158 | 57.50 216 | 93.58 149 | 70.75 191 | 86.90 156 | 92.52 125 |
|
| V42 | | | 79.38 179 | 78.24 183 | 82.83 184 | 81.10 345 | 65.50 190 | 85.55 225 | 89.82 165 | 71.57 182 | 78.21 170 | 86.12 258 | 60.66 192 | 93.18 175 | 75.64 145 | 75.46 312 | 89.81 229 |
|
| VNet | | | 82.21 113 | 82.41 104 | 81.62 210 | 90.82 93 | 60.93 273 | 84.47 249 | 89.78 166 | 76.36 83 | 84.07 88 | 91.88 100 | 64.71 133 | 90.26 268 | 70.68 193 | 88.89 127 | 93.66 74 |
|
| diffmvs |  | | 82.10 114 | 81.88 116 | 82.76 192 | 83.00 310 | 63.78 228 | 83.68 266 | 89.76 167 | 72.94 162 | 82.02 115 | 89.85 152 | 65.96 123 | 90.79 262 | 82.38 84 | 87.30 151 | 93.71 73 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| XVG-ACMP-BASELINE | | | 76.11 251 | 74.27 261 | 81.62 210 | 83.20 303 | 64.67 210 | 83.60 270 | 89.75 168 | 69.75 224 | 71.85 294 | 87.09 229 | 32.78 388 | 92.11 215 | 69.99 201 | 80.43 248 | 88.09 279 |
|
| EI-MVSNet-Vis-set | | | 84.19 77 | 83.81 82 | 85.31 81 | 88.18 180 | 67.85 138 | 87.66 160 | 89.73 169 | 80.05 14 | 82.95 104 | 89.59 160 | 70.74 68 | 94.82 101 | 80.66 100 | 84.72 184 | 93.28 95 |
|
| EI-MVSNet-UG-set | | | 83.81 82 | 83.38 89 | 85.09 88 | 87.87 197 | 67.53 148 | 87.44 168 | 89.66 170 | 79.74 16 | 82.23 113 | 89.41 169 | 70.24 74 | 94.74 104 | 79.95 105 | 83.92 198 | 92.99 113 |
|
| test_fmvsmconf0.01_n | | | 84.73 74 | 84.52 76 | 85.34 80 | 80.25 353 | 69.03 103 | 89.47 91 | 89.65 171 | 73.24 157 | 86.98 49 | 94.27 37 | 66.62 110 | 93.23 167 | 90.26 6 | 89.95 114 | 93.78 71 |
|
| BP-MVS1 | | | 84.32 76 | 83.71 84 | 86.17 61 | 87.84 199 | 67.85 138 | 89.38 98 | 89.64 172 | 77.73 39 | 83.98 90 | 92.12 96 | 56.89 223 | 95.43 70 | 84.03 65 | 91.75 87 | 95.24 6 |
|
| PAPM | | | 77.68 223 | 76.40 230 | 81.51 213 | 87.29 222 | 61.85 263 | 83.78 264 | 89.59 173 | 64.74 299 | 71.23 300 | 88.70 182 | 62.59 154 | 93.66 148 | 52.66 342 | 87.03 155 | 89.01 251 |
|
| MVS_0304 | | | 87.69 20 | 87.55 24 | 88.12 13 | 89.45 129 | 71.76 51 | 91.47 49 | 89.54 174 | 82.14 3 | 86.65 52 | 94.28 36 | 68.28 96 | 97.46 6 | 90.81 3 | 95.31 34 | 95.15 7 |
|
| anonymousdsp | | | 78.60 197 | 77.15 211 | 82.98 179 | 80.51 351 | 67.08 161 | 87.24 174 | 89.53 175 | 65.66 288 | 75.16 248 | 87.19 226 | 52.52 254 | 92.25 211 | 77.17 129 | 79.34 261 | 89.61 234 |
|
| MG-MVS | | | 83.41 95 | 83.45 87 | 83.28 161 | 92.74 65 | 62.28 258 | 88.17 144 | 89.50 176 | 75.22 102 | 81.49 123 | 92.74 88 | 66.75 109 | 95.11 87 | 72.85 174 | 91.58 90 | 92.45 130 |
|
| PLC |  | 70.83 11 | 78.05 211 | 76.37 231 | 83.08 173 | 91.88 77 | 67.80 140 | 88.19 143 | 89.46 177 | 64.33 305 | 69.87 317 | 88.38 193 | 53.66 247 | 93.58 149 | 58.86 301 | 82.73 220 | 87.86 283 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| SDMVSNet | | | 80.38 155 | 80.18 141 | 80.99 229 | 89.03 151 | 64.94 204 | 80.45 315 | 89.40 178 | 75.19 104 | 76.61 209 | 89.98 149 | 60.61 194 | 87.69 312 | 76.83 134 | 83.55 208 | 90.33 200 |
|
| Fast-Effi-MVS+ | | | 80.81 141 | 79.92 144 | 83.47 154 | 88.85 153 | 64.51 212 | 85.53 227 | 89.39 179 | 70.79 196 | 78.49 164 | 85.06 282 | 67.54 103 | 93.58 149 | 67.03 232 | 86.58 161 | 92.32 134 |
|
| IterMVS-LS | | | 80.06 162 | 79.38 156 | 82.11 201 | 85.89 246 | 63.20 243 | 86.79 189 | 89.34 180 | 74.19 130 | 75.45 234 | 86.72 236 | 66.62 110 | 92.39 204 | 72.58 177 | 76.86 287 | 90.75 183 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| API-MVS | | | 81.99 118 | 81.23 122 | 84.26 121 | 90.94 90 | 70.18 85 | 91.10 55 | 89.32 181 | 71.51 183 | 78.66 159 | 88.28 196 | 65.26 127 | 95.10 90 | 64.74 249 | 91.23 95 | 87.51 291 |
|
| GBi-Net | | | 78.40 200 | 77.40 206 | 81.40 217 | 87.60 210 | 63.01 246 | 88.39 134 | 89.28 182 | 71.63 178 | 75.34 239 | 87.28 220 | 54.80 234 | 91.11 252 | 62.72 262 | 79.57 256 | 90.09 212 |
|
| test1 | | | 78.40 200 | 77.40 206 | 81.40 217 | 87.60 210 | 63.01 246 | 88.39 134 | 89.28 182 | 71.63 178 | 75.34 239 | 87.28 220 | 54.80 234 | 91.11 252 | 62.72 262 | 79.57 256 | 90.09 212 |
|
| FMVSNet1 | | | 77.44 226 | 76.12 233 | 81.40 217 | 86.81 231 | 63.01 246 | 88.39 134 | 89.28 182 | 70.49 205 | 74.39 264 | 87.28 220 | 49.06 305 | 91.11 252 | 60.91 283 | 78.52 267 | 90.09 212 |
|
| cdsmvs_eth3d_5k | | | 19.96 391 | 26.61 393 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 89.26 185 | 0.00 429 | 0.00 430 | 88.61 186 | 61.62 171 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| ab-mvs | | | 79.51 171 | 78.97 168 | 81.14 225 | 88.46 171 | 60.91 274 | 83.84 263 | 89.24 186 | 70.36 206 | 79.03 151 | 88.87 179 | 63.23 145 | 90.21 270 | 65.12 245 | 82.57 223 | 92.28 136 |
|
| cascas | | | 76.72 239 | 74.64 253 | 82.99 178 | 85.78 248 | 65.88 181 | 82.33 287 | 89.21 187 | 60.85 341 | 72.74 281 | 81.02 346 | 47.28 314 | 93.75 145 | 67.48 225 | 85.02 180 | 89.34 241 |
|
| eth_miper_zixun_eth | | | 77.92 215 | 76.69 224 | 81.61 212 | 83.00 310 | 61.98 261 | 83.15 277 | 89.20 188 | 69.52 228 | 74.86 256 | 84.35 296 | 61.76 168 | 92.56 197 | 71.50 185 | 72.89 342 | 90.28 203 |
|
| h-mvs33 | | | 83.15 100 | 82.19 108 | 86.02 69 | 90.56 98 | 70.85 73 | 88.15 146 | 89.16 189 | 76.02 89 | 84.67 73 | 91.39 117 | 61.54 172 | 95.50 66 | 82.71 80 | 75.48 310 | 91.72 152 |
|
| miper_ehance_all_eth | | | 78.59 198 | 77.76 198 | 81.08 227 | 82.66 319 | 61.56 267 | 83.65 267 | 89.15 190 | 68.87 246 | 75.55 230 | 83.79 308 | 66.49 113 | 92.03 217 | 73.25 170 | 76.39 295 | 89.64 233 |
|
| Effi-MVS+ | | | 83.62 90 | 83.08 93 | 85.24 83 | 88.38 175 | 67.45 149 | 88.89 116 | 89.15 190 | 75.50 98 | 82.27 112 | 88.28 196 | 69.61 80 | 94.45 114 | 77.81 122 | 87.84 143 | 93.84 67 |
|
| c3_l | | | 78.75 192 | 77.91 190 | 81.26 221 | 82.89 314 | 61.56 267 | 84.09 261 | 89.13 192 | 69.97 217 | 75.56 229 | 84.29 297 | 66.36 115 | 92.09 216 | 73.47 167 | 75.48 310 | 90.12 209 |
|
| LTVRE_ROB | | 69.57 13 | 76.25 249 | 74.54 256 | 81.41 216 | 88.60 166 | 64.38 218 | 79.24 329 | 89.12 193 | 70.76 198 | 69.79 319 | 87.86 207 | 49.09 304 | 93.20 172 | 56.21 327 | 80.16 250 | 86.65 313 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| F-COLMAP | | | 76.38 248 | 74.33 260 | 82.50 196 | 89.28 140 | 66.95 166 | 88.41 133 | 89.03 194 | 64.05 310 | 66.83 345 | 88.61 186 | 46.78 318 | 92.89 187 | 57.48 314 | 78.55 266 | 87.67 286 |
|
| FMVSNet2 | | | 78.20 206 | 77.21 210 | 81.20 223 | 87.60 210 | 62.89 252 | 87.47 165 | 89.02 195 | 71.63 178 | 75.29 245 | 87.28 220 | 54.80 234 | 91.10 255 | 62.38 267 | 79.38 260 | 89.61 234 |
|
| ACMH | | 67.68 16 | 75.89 254 | 73.93 264 | 81.77 208 | 88.71 163 | 66.61 168 | 88.62 128 | 89.01 196 | 69.81 220 | 66.78 346 | 86.70 240 | 41.95 358 | 91.51 241 | 55.64 328 | 78.14 273 | 87.17 299 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| miper_enhance_ethall | | | 77.87 217 | 76.86 217 | 80.92 232 | 81.65 333 | 61.38 269 | 82.68 284 | 88.98 197 | 65.52 290 | 75.47 231 | 82.30 335 | 65.76 125 | 92.00 219 | 72.95 173 | 76.39 295 | 89.39 239 |
|
| 无先验 | | | | | | | | 87.48 164 | 88.98 197 | 60.00 347 | | | | 94.12 125 | 67.28 227 | | 88.97 254 |
|
| AdaColmap |  | | 80.58 152 | 79.42 155 | 84.06 133 | 93.09 57 | 68.91 108 | 89.36 99 | 88.97 199 | 69.27 232 | 75.70 227 | 89.69 155 | 57.20 220 | 95.77 59 | 63.06 260 | 88.41 138 | 87.50 292 |
|
| EI-MVSNet | | | 80.52 153 | 79.98 143 | 82.12 200 | 84.28 277 | 63.19 244 | 86.41 200 | 88.95 200 | 74.18 131 | 78.69 157 | 87.54 216 | 66.62 110 | 92.43 202 | 72.57 178 | 80.57 246 | 90.74 184 |
|
| MVSTER | | | 79.01 187 | 77.88 192 | 82.38 198 | 83.07 307 | 64.80 208 | 84.08 262 | 88.95 200 | 69.01 244 | 78.69 157 | 87.17 227 | 54.70 238 | 92.43 202 | 74.69 154 | 80.57 246 | 89.89 225 |
|
| 1314 | | | 76.53 241 | 75.30 248 | 80.21 246 | 83.93 286 | 62.32 257 | 84.66 243 | 88.81 202 | 60.23 345 | 70.16 311 | 84.07 303 | 55.30 231 | 90.73 264 | 67.37 226 | 83.21 214 | 87.59 290 |
|
| UniMVSNet_ETH3D | | | 79.10 185 | 78.24 183 | 81.70 209 | 86.85 229 | 60.24 285 | 87.28 173 | 88.79 203 | 74.25 129 | 76.84 200 | 90.53 141 | 49.48 297 | 91.56 236 | 67.98 220 | 82.15 226 | 93.29 94 |
|
| xiu_mvs_v1_base_debu | | | 80.80 143 | 79.72 149 | 84.03 138 | 87.35 215 | 70.19 82 | 85.56 222 | 88.77 204 | 69.06 241 | 81.83 116 | 88.16 200 | 50.91 280 | 92.85 188 | 78.29 119 | 87.56 146 | 89.06 246 |
|
| xiu_mvs_v1_base | | | 80.80 143 | 79.72 149 | 84.03 138 | 87.35 215 | 70.19 82 | 85.56 222 | 88.77 204 | 69.06 241 | 81.83 116 | 88.16 200 | 50.91 280 | 92.85 188 | 78.29 119 | 87.56 146 | 89.06 246 |
|
| xiu_mvs_v1_base_debi | | | 80.80 143 | 79.72 149 | 84.03 138 | 87.35 215 | 70.19 82 | 85.56 222 | 88.77 204 | 69.06 241 | 81.83 116 | 88.16 200 | 50.91 280 | 92.85 188 | 78.29 119 | 87.56 146 | 89.06 246 |
|
| FMVSNet3 | | | 77.88 216 | 76.85 218 | 80.97 231 | 86.84 230 | 62.36 255 | 86.52 198 | 88.77 204 | 71.13 189 | 75.34 239 | 86.66 242 | 54.07 244 | 91.10 255 | 62.72 262 | 79.57 256 | 89.45 238 |
|
| patch_mono-2 | | | 83.65 87 | 84.54 74 | 80.99 229 | 90.06 112 | 65.83 182 | 84.21 258 | 88.74 208 | 71.60 181 | 85.01 65 | 92.44 90 | 74.51 25 | 83.50 348 | 82.15 85 | 92.15 80 | 93.64 80 |
|
| GeoE | | | 81.71 123 | 81.01 127 | 83.80 148 | 89.51 126 | 64.45 216 | 88.97 113 | 88.73 209 | 71.27 187 | 78.63 160 | 89.76 154 | 66.32 116 | 93.20 172 | 69.89 202 | 86.02 172 | 93.74 72 |
|
| CANet_DTU | | | 80.61 148 | 79.87 146 | 82.83 184 | 85.60 252 | 63.17 245 | 87.36 169 | 88.65 210 | 76.37 82 | 75.88 224 | 88.44 192 | 53.51 249 | 93.07 181 | 73.30 169 | 89.74 117 | 92.25 137 |
|
| HyFIR lowres test | | | 77.53 225 | 75.40 244 | 83.94 144 | 89.59 122 | 66.62 167 | 80.36 316 | 88.64 211 | 56.29 376 | 76.45 211 | 85.17 279 | 57.64 214 | 93.28 164 | 61.34 281 | 83.10 216 | 91.91 148 |
|
| WR-MVS | | | 79.49 172 | 79.22 163 | 80.27 245 | 88.79 159 | 58.35 299 | 85.06 235 | 88.61 212 | 78.56 31 | 77.65 182 | 88.34 194 | 63.81 140 | 90.66 265 | 64.98 247 | 77.22 282 | 91.80 151 |
|
| BH-untuned | | | 79.47 173 | 78.60 173 | 82.05 202 | 89.19 144 | 65.91 180 | 86.07 211 | 88.52 213 | 72.18 171 | 75.42 235 | 87.69 210 | 61.15 183 | 93.54 153 | 60.38 286 | 86.83 158 | 86.70 312 |
|
| IS-MVSNet | | | 83.15 100 | 82.81 99 | 84.18 123 | 89.94 115 | 63.30 240 | 91.59 43 | 88.46 214 | 79.04 26 | 79.49 146 | 92.16 94 | 65.10 129 | 94.28 117 | 67.71 222 | 91.86 86 | 94.95 11 |
|
| pm-mvs1 | | | 77.25 231 | 76.68 225 | 78.93 270 | 84.22 279 | 58.62 297 | 86.41 200 | 88.36 215 | 71.37 185 | 73.31 274 | 88.01 206 | 61.22 182 | 89.15 290 | 64.24 253 | 73.01 341 | 89.03 250 |
|
| UGNet | | | 80.83 140 | 79.59 152 | 84.54 105 | 88.04 189 | 68.09 133 | 89.42 95 | 88.16 216 | 76.95 63 | 76.22 217 | 89.46 165 | 49.30 301 | 93.94 131 | 68.48 217 | 90.31 105 | 91.60 153 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| VDD-MVS | | | 83.01 105 | 82.36 106 | 84.96 92 | 91.02 88 | 66.40 170 | 88.91 115 | 88.11 217 | 77.57 43 | 84.39 82 | 93.29 70 | 52.19 260 | 93.91 135 | 77.05 131 | 88.70 133 | 94.57 35 |
|
| Effi-MVS+-dtu | | | 80.03 163 | 78.57 174 | 84.42 110 | 85.13 263 | 68.74 114 | 88.77 120 | 88.10 218 | 74.99 108 | 74.97 254 | 83.49 315 | 57.27 219 | 93.36 162 | 73.53 165 | 80.88 240 | 91.18 167 |
|
| v148 | | | 78.72 194 | 77.80 195 | 81.47 214 | 82.73 317 | 61.96 262 | 86.30 205 | 88.08 219 | 73.26 155 | 76.18 219 | 85.47 272 | 62.46 157 | 92.36 206 | 71.92 182 | 73.82 334 | 90.09 212 |
|
| EG-PatchMatch MVS | | | 74.04 275 | 71.82 287 | 80.71 236 | 84.92 266 | 67.42 150 | 85.86 217 | 88.08 219 | 66.04 283 | 64.22 367 | 83.85 305 | 35.10 384 | 92.56 197 | 57.44 315 | 80.83 241 | 82.16 375 |
|
| cl22 | | | 78.07 210 | 77.01 213 | 81.23 222 | 82.37 326 | 61.83 264 | 83.55 271 | 87.98 221 | 68.96 245 | 75.06 252 | 83.87 304 | 61.40 177 | 91.88 224 | 73.53 165 | 76.39 295 | 89.98 221 |
|
| test_fmvsmvis_n_1920 | | | 84.02 80 | 83.87 81 | 84.49 108 | 84.12 281 | 69.37 101 | 88.15 146 | 87.96 222 | 70.01 215 | 83.95 91 | 93.23 71 | 68.80 92 | 91.51 241 | 88.61 23 | 89.96 113 | 92.57 123 |
|
| pmmvs6 | | | 74.69 268 | 73.39 270 | 78.61 274 | 81.38 340 | 57.48 316 | 86.64 194 | 87.95 223 | 64.99 298 | 70.18 309 | 86.61 243 | 50.43 287 | 89.52 282 | 62.12 272 | 70.18 359 | 88.83 260 |
|
| MVP-Stereo | | | 76.12 250 | 74.46 258 | 81.13 226 | 85.37 257 | 69.79 89 | 84.42 254 | 87.95 223 | 65.03 296 | 67.46 338 | 85.33 274 | 53.28 252 | 91.73 230 | 58.01 311 | 83.27 213 | 81.85 376 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| cl____ | | | 77.72 220 | 76.76 221 | 80.58 238 | 82.49 323 | 60.48 281 | 83.09 279 | 87.87 225 | 69.22 235 | 74.38 265 | 85.22 278 | 62.10 164 | 91.53 239 | 71.09 188 | 75.41 314 | 89.73 232 |
|
| DIV-MVS_self_test | | | 77.72 220 | 76.76 221 | 80.58 238 | 82.48 324 | 60.48 281 | 83.09 279 | 87.86 226 | 69.22 235 | 74.38 265 | 85.24 276 | 62.10 164 | 91.53 239 | 71.09 188 | 75.40 315 | 89.74 231 |
|
| BH-w/o | | | 78.21 205 | 77.33 209 | 80.84 233 | 88.81 157 | 65.13 199 | 84.87 239 | 87.85 227 | 69.75 224 | 74.52 262 | 84.74 289 | 61.34 178 | 93.11 179 | 58.24 309 | 85.84 175 | 84.27 349 |
|
| FE-MVS | | | 77.78 218 | 75.68 237 | 84.08 130 | 88.09 187 | 66.00 177 | 83.13 278 | 87.79 228 | 68.42 255 | 78.01 176 | 85.23 277 | 45.50 335 | 95.12 85 | 59.11 298 | 85.83 176 | 91.11 169 |
|
| HY-MVS | | 69.67 12 | 77.95 214 | 77.15 211 | 80.36 242 | 87.57 214 | 60.21 286 | 83.37 274 | 87.78 229 | 66.11 281 | 75.37 238 | 87.06 231 | 63.27 143 | 90.48 267 | 61.38 280 | 82.43 224 | 90.40 198 |
|
| 1112_ss | | | 77.40 228 | 76.43 229 | 80.32 244 | 89.11 150 | 60.41 283 | 83.65 267 | 87.72 230 | 62.13 333 | 73.05 278 | 86.72 236 | 62.58 155 | 89.97 274 | 62.11 273 | 80.80 242 | 90.59 190 |
|
| mvs_anonymous | | | 79.42 176 | 79.11 165 | 80.34 243 | 84.45 276 | 57.97 306 | 82.59 285 | 87.62 231 | 67.40 266 | 76.17 221 | 88.56 189 | 68.47 93 | 89.59 281 | 70.65 194 | 86.05 171 | 93.47 88 |
|
| ACMH+ | | 68.96 14 | 76.01 253 | 74.01 262 | 82.03 203 | 88.60 166 | 65.31 195 | 88.86 117 | 87.55 232 | 70.25 211 | 67.75 334 | 87.47 218 | 41.27 359 | 93.19 174 | 58.37 307 | 75.94 303 | 87.60 288 |
|
| tfpnnormal | | | 74.39 269 | 73.16 273 | 78.08 287 | 86.10 245 | 58.05 303 | 84.65 245 | 87.53 233 | 70.32 208 | 71.22 301 | 85.63 268 | 54.97 232 | 89.86 275 | 43.03 389 | 75.02 322 | 86.32 316 |
|
| CHOSEN 1792x2688 | | | 77.63 224 | 75.69 236 | 83.44 155 | 89.98 114 | 68.58 122 | 78.70 339 | 87.50 234 | 56.38 375 | 75.80 226 | 86.84 232 | 58.67 205 | 91.40 246 | 61.58 278 | 85.75 177 | 90.34 199 |
|
| ambc | | | | | 75.24 322 | 73.16 397 | 50.51 387 | 63.05 411 | 87.47 235 | | 64.28 366 | 77.81 377 | 17.80 413 | 89.73 279 | 57.88 312 | 60.64 387 | 85.49 332 |
|
| Fast-Effi-MVS+-dtu | | | 78.02 212 | 76.49 227 | 82.62 194 | 83.16 306 | 66.96 165 | 86.94 183 | 87.45 236 | 72.45 166 | 71.49 299 | 84.17 301 | 54.79 237 | 91.58 234 | 67.61 223 | 80.31 249 | 89.30 242 |
|
| D2MVS | | | 74.82 267 | 73.21 272 | 79.64 259 | 79.81 360 | 62.56 254 | 80.34 317 | 87.35 237 | 64.37 304 | 68.86 326 | 82.66 330 | 46.37 322 | 90.10 271 | 67.91 221 | 81.24 236 | 86.25 317 |
|
| fmvsm_s_conf0.5_n_2 | | | 84.04 79 | 84.11 80 | 83.81 147 | 86.17 241 | 65.00 202 | 86.96 181 | 87.28 238 | 74.35 125 | 88.25 28 | 94.23 40 | 61.82 167 | 92.60 194 | 89.85 7 | 88.09 142 | 93.84 67 |
|
| TSAR-MVS + GP. | | | 85.71 58 | 85.33 64 | 86.84 50 | 91.34 81 | 72.50 36 | 89.07 111 | 87.28 238 | 76.41 78 | 85.80 57 | 90.22 147 | 74.15 31 | 95.37 78 | 81.82 87 | 91.88 83 | 92.65 122 |
|
| fmvsm_l_conf0.5_n | | | 84.47 75 | 84.54 74 | 84.27 119 | 85.42 255 | 68.81 109 | 88.49 131 | 87.26 240 | 68.08 258 | 88.03 32 | 93.49 63 | 72.04 49 | 91.77 227 | 88.90 20 | 89.14 125 | 92.24 139 |
|
| hse-mvs2 | | | 81.72 122 | 80.94 128 | 84.07 131 | 88.72 162 | 67.68 143 | 85.87 216 | 87.26 240 | 76.02 89 | 84.67 73 | 88.22 199 | 61.54 172 | 93.48 156 | 82.71 80 | 73.44 338 | 91.06 171 |
|
| AUN-MVS | | | 79.21 182 | 77.60 203 | 84.05 136 | 88.71 163 | 67.61 145 | 85.84 218 | 87.26 240 | 69.08 240 | 77.23 192 | 88.14 204 | 53.20 253 | 93.47 157 | 75.50 149 | 73.45 337 | 91.06 171 |
|
| BH-RMVSNet | | | 79.61 168 | 78.44 177 | 83.14 169 | 89.38 134 | 65.93 179 | 84.95 238 | 87.15 243 | 73.56 145 | 78.19 171 | 89.79 153 | 56.67 224 | 93.36 162 | 59.53 294 | 86.74 159 | 90.13 208 |
|
| Test_1112_low_res | | | 76.40 247 | 75.44 242 | 79.27 264 | 89.28 140 | 58.09 302 | 81.69 294 | 87.07 244 | 59.53 352 | 72.48 286 | 86.67 241 | 61.30 179 | 89.33 285 | 60.81 285 | 80.15 251 | 90.41 197 |
|
| KD-MVS_self_test | | | 68.81 327 | 67.59 333 | 72.46 348 | 74.29 388 | 45.45 399 | 77.93 350 | 87.00 245 | 63.12 317 | 63.99 369 | 78.99 369 | 42.32 353 | 84.77 340 | 56.55 325 | 64.09 380 | 87.16 301 |
|
| mvsmamba | | | 80.60 149 | 79.38 156 | 84.27 119 | 89.74 120 | 67.24 158 | 87.47 165 | 86.95 246 | 70.02 214 | 75.38 237 | 88.93 176 | 51.24 277 | 92.56 197 | 75.47 150 | 89.22 123 | 93.00 112 |
|
| reproduce_monomvs | | | 75.40 263 | 74.38 259 | 78.46 282 | 83.92 287 | 57.80 311 | 83.78 264 | 86.94 247 | 73.47 149 | 72.25 290 | 84.47 291 | 38.74 371 | 89.27 287 | 75.32 151 | 70.53 357 | 88.31 275 |
|
| LS3D | | | 76.95 235 | 74.82 252 | 83.37 159 | 90.45 100 | 67.36 153 | 89.15 107 | 86.94 247 | 61.87 335 | 69.52 320 | 90.61 139 | 51.71 273 | 94.53 110 | 46.38 378 | 86.71 160 | 88.21 277 |
|
| miper_lstm_enhance | | | 74.11 274 | 73.11 274 | 77.13 303 | 80.11 355 | 59.62 291 | 72.23 379 | 86.92 249 | 66.76 270 | 70.40 306 | 82.92 325 | 56.93 222 | 82.92 352 | 69.06 211 | 72.63 343 | 88.87 258 |
|
| fmvsm_l_conf0.5_n_a | | | 84.13 78 | 84.16 79 | 84.06 133 | 85.38 256 | 68.40 125 | 88.34 138 | 86.85 250 | 67.48 265 | 87.48 42 | 93.40 67 | 70.89 65 | 91.61 232 | 88.38 28 | 89.22 123 | 92.16 143 |
|
| jason | | | 81.39 131 | 80.29 139 | 84.70 102 | 86.63 236 | 69.90 88 | 85.95 213 | 86.77 251 | 63.24 316 | 81.07 130 | 89.47 163 | 61.08 185 | 92.15 214 | 78.33 118 | 90.07 112 | 92.05 146 |
| jason: jason. |
| OurMVSNet-221017-0 | | | 74.26 271 | 72.42 282 | 79.80 254 | 83.76 291 | 59.59 292 | 85.92 215 | 86.64 252 | 66.39 279 | 66.96 343 | 87.58 212 | 39.46 367 | 91.60 233 | 65.76 241 | 69.27 362 | 88.22 276 |
|
| VPNet | | | 78.69 195 | 78.66 172 | 78.76 272 | 88.31 177 | 55.72 343 | 84.45 252 | 86.63 253 | 76.79 68 | 78.26 169 | 90.55 140 | 59.30 202 | 89.70 280 | 66.63 233 | 77.05 284 | 90.88 178 |
|
| fmvsm_s_conf0.1_n_2 | | | 83.80 83 | 83.79 83 | 83.83 146 | 85.62 251 | 64.94 204 | 87.03 179 | 86.62 254 | 74.32 126 | 87.97 35 | 94.33 34 | 60.67 191 | 92.60 194 | 89.72 8 | 87.79 144 | 93.96 58 |
|
| USDC | | | 70.33 315 | 68.37 317 | 76.21 309 | 80.60 349 | 56.23 336 | 79.19 331 | 86.49 255 | 60.89 340 | 61.29 379 | 85.47 272 | 31.78 391 | 89.47 284 | 53.37 339 | 76.21 301 | 82.94 368 |
|
| lupinMVS | | | 81.39 131 | 80.27 140 | 84.76 101 | 87.35 215 | 70.21 80 | 85.55 225 | 86.41 256 | 62.85 323 | 81.32 124 | 88.61 186 | 61.68 169 | 92.24 212 | 78.41 117 | 90.26 107 | 91.83 149 |
|
| TR-MVS | | | 77.44 226 | 76.18 232 | 81.20 223 | 88.24 179 | 63.24 241 | 84.61 246 | 86.40 257 | 67.55 263 | 77.81 179 | 86.48 250 | 54.10 243 | 93.15 176 | 57.75 313 | 82.72 221 | 87.20 298 |
|
| 旧先验1 | | | | | | 91.96 74 | 65.79 184 | | 86.37 258 | | | 93.08 77 | 69.31 84 | | | 92.74 73 | 88.74 266 |
|
| GA-MVS | | | 76.87 236 | 75.17 249 | 81.97 205 | 82.75 316 | 62.58 253 | 81.44 299 | 86.35 259 | 72.16 173 | 74.74 257 | 82.89 326 | 46.20 326 | 92.02 218 | 68.85 214 | 81.09 238 | 91.30 165 |
|
| MonoMVSNet | | | 76.49 245 | 75.80 234 | 78.58 276 | 81.55 336 | 58.45 298 | 86.36 203 | 86.22 260 | 74.87 114 | 74.73 258 | 83.73 310 | 51.79 272 | 88.73 298 | 70.78 190 | 72.15 347 | 88.55 271 |
|
| CDS-MVSNet | | | 79.07 186 | 77.70 200 | 83.17 168 | 87.60 210 | 68.23 130 | 84.40 255 | 86.20 261 | 67.49 264 | 76.36 214 | 86.54 248 | 61.54 172 | 90.79 262 | 61.86 275 | 87.33 150 | 90.49 194 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| MVS_111021_LR | | | 82.61 109 | 82.11 109 | 84.11 124 | 88.82 156 | 71.58 55 | 85.15 232 | 86.16 262 | 74.69 117 | 80.47 135 | 91.04 129 | 62.29 160 | 90.55 266 | 80.33 102 | 90.08 111 | 90.20 205 |
|
| MSDG | | | 73.36 285 | 70.99 298 | 80.49 240 | 84.51 275 | 65.80 183 | 80.71 310 | 86.13 263 | 65.70 287 | 65.46 358 | 83.74 309 | 44.60 338 | 90.91 260 | 51.13 350 | 76.89 286 | 84.74 345 |
|
| TransMVSNet (Re) | | | 75.39 264 | 74.56 255 | 77.86 289 | 85.50 254 | 57.10 321 | 86.78 190 | 86.09 264 | 72.17 172 | 71.53 298 | 87.34 219 | 63.01 151 | 89.31 286 | 56.84 322 | 61.83 383 | 87.17 299 |
|
| VDDNet | | | 81.52 128 | 80.67 131 | 84.05 136 | 90.44 101 | 64.13 222 | 89.73 84 | 85.91 265 | 71.11 190 | 83.18 102 | 93.48 64 | 50.54 286 | 93.49 155 | 73.40 168 | 88.25 139 | 94.54 36 |
|
| sd_testset | | | 77.70 222 | 77.40 206 | 78.60 275 | 89.03 151 | 60.02 287 | 79.00 334 | 85.83 266 | 75.19 104 | 76.61 209 | 89.98 149 | 54.81 233 | 85.46 333 | 62.63 266 | 83.55 208 | 90.33 200 |
|
| Baseline_NR-MVSNet | | | 78.15 208 | 78.33 181 | 77.61 295 | 85.79 247 | 56.21 337 | 86.78 190 | 85.76 267 | 73.60 144 | 77.93 178 | 87.57 213 | 65.02 130 | 88.99 292 | 67.14 230 | 75.33 317 | 87.63 287 |
|
| Anonymous20240521 | | | 68.80 328 | 67.22 337 | 73.55 337 | 74.33 387 | 54.11 359 | 83.18 276 | 85.61 268 | 58.15 363 | 61.68 378 | 80.94 348 | 30.71 394 | 81.27 361 | 57.00 320 | 73.34 340 | 85.28 336 |
|
| test_vis1_n_1920 | | | 75.52 259 | 75.78 235 | 74.75 328 | 79.84 359 | 57.44 317 | 83.26 275 | 85.52 269 | 62.83 324 | 79.34 149 | 86.17 257 | 45.10 337 | 79.71 367 | 78.75 112 | 81.21 237 | 87.10 305 |
|
| 新几何1 | | | | | 83.42 156 | 93.13 54 | 70.71 74 | | 85.48 270 | 57.43 370 | 81.80 119 | 91.98 97 | 63.28 142 | 92.27 210 | 64.60 250 | 92.99 70 | 87.27 297 |
|
| EPNet | | | 83.72 86 | 82.92 98 | 86.14 65 | 84.22 279 | 69.48 94 | 91.05 56 | 85.27 271 | 81.30 6 | 76.83 201 | 91.65 106 | 66.09 119 | 95.56 63 | 76.00 142 | 93.85 62 | 93.38 90 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| UnsupCasMVSNet_eth | | | 67.33 339 | 65.99 343 | 71.37 354 | 73.48 394 | 51.47 380 | 75.16 367 | 85.19 272 | 65.20 293 | 60.78 381 | 80.93 350 | 42.35 352 | 77.20 378 | 57.12 318 | 53.69 399 | 85.44 334 |
|
| mmtdpeth | | | 74.16 273 | 73.01 275 | 77.60 297 | 83.72 292 | 61.13 270 | 85.10 234 | 85.10 273 | 72.06 174 | 77.21 196 | 80.33 354 | 43.84 344 | 85.75 327 | 77.14 130 | 52.61 401 | 85.91 327 |
|
| IB-MVS | | 68.01 15 | 75.85 255 | 73.36 271 | 83.31 160 | 84.76 268 | 66.03 175 | 83.38 273 | 85.06 274 | 70.21 212 | 69.40 321 | 81.05 345 | 45.76 331 | 94.66 108 | 65.10 246 | 75.49 309 | 89.25 243 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| TAMVS | | | 78.89 191 | 77.51 205 | 83.03 176 | 87.80 201 | 67.79 141 | 84.72 242 | 85.05 275 | 67.63 261 | 76.75 204 | 87.70 209 | 62.25 161 | 90.82 261 | 58.53 305 | 87.13 153 | 90.49 194 |
|
| CL-MVSNet_self_test | | | 72.37 296 | 71.46 291 | 75.09 323 | 79.49 366 | 53.53 363 | 80.76 308 | 85.01 276 | 69.12 239 | 70.51 304 | 82.05 339 | 57.92 211 | 84.13 343 | 52.27 344 | 66.00 375 | 87.60 288 |
|
| testdata | | | | | 79.97 250 | 90.90 91 | 64.21 220 | | 84.71 277 | 59.27 354 | 85.40 61 | 92.91 79 | 62.02 166 | 89.08 291 | 68.95 212 | 91.37 93 | 86.63 314 |
|
| MS-PatchMatch | | | 73.83 278 | 72.67 278 | 77.30 301 | 83.87 288 | 66.02 176 | 81.82 291 | 84.66 278 | 61.37 339 | 68.61 329 | 82.82 328 | 47.29 313 | 88.21 305 | 59.27 295 | 84.32 194 | 77.68 391 |
|
| ET-MVSNet_ETH3D | | | 78.63 196 | 76.63 226 | 84.64 103 | 86.73 233 | 69.47 95 | 85.01 236 | 84.61 279 | 69.54 227 | 66.51 353 | 86.59 244 | 50.16 289 | 91.75 228 | 76.26 138 | 84.24 195 | 92.69 120 |
|
| CNLPA | | | 78.08 209 | 76.79 220 | 81.97 205 | 90.40 102 | 71.07 65 | 87.59 162 | 84.55 280 | 66.03 284 | 72.38 288 | 89.64 157 | 57.56 215 | 86.04 325 | 59.61 293 | 83.35 212 | 88.79 262 |
|
| MIMVSNet1 | | | 68.58 330 | 66.78 340 | 73.98 335 | 80.07 356 | 51.82 376 | 80.77 307 | 84.37 281 | 64.40 303 | 59.75 386 | 82.16 338 | 36.47 380 | 83.63 347 | 42.73 390 | 70.33 358 | 86.48 315 |
|
| KD-MVS_2432*1600 | | | 66.22 348 | 63.89 350 | 73.21 339 | 75.47 385 | 53.42 365 | 70.76 386 | 84.35 282 | 64.10 308 | 66.52 351 | 78.52 371 | 34.55 385 | 84.98 337 | 50.40 353 | 50.33 404 | 81.23 379 |
|
| miper_refine_blended | | | 66.22 348 | 63.89 350 | 73.21 339 | 75.47 385 | 53.42 365 | 70.76 386 | 84.35 282 | 64.10 308 | 66.52 351 | 78.52 371 | 34.55 385 | 84.98 337 | 50.40 353 | 50.33 404 | 81.23 379 |
|
| test_0402 | | | 72.79 293 | 70.44 304 | 79.84 253 | 88.13 184 | 65.99 178 | 85.93 214 | 84.29 284 | 65.57 289 | 67.40 340 | 85.49 271 | 46.92 317 | 92.61 193 | 35.88 403 | 74.38 328 | 80.94 381 |
|
| EU-MVSNet | | | 68.53 332 | 67.61 332 | 71.31 357 | 78.51 372 | 47.01 396 | 84.47 249 | 84.27 285 | 42.27 403 | 66.44 354 | 84.79 288 | 40.44 364 | 83.76 345 | 58.76 303 | 68.54 367 | 83.17 362 |
|
| thisisatest0530 | | | 79.40 177 | 77.76 198 | 84.31 115 | 87.69 208 | 65.10 200 | 87.36 169 | 84.26 286 | 70.04 213 | 77.42 186 | 88.26 198 | 49.94 292 | 94.79 103 | 70.20 197 | 84.70 185 | 93.03 109 |
|
| COLMAP_ROB |  | 66.92 17 | 73.01 290 | 70.41 305 | 80.81 234 | 87.13 225 | 65.63 187 | 88.30 140 | 84.19 287 | 62.96 321 | 63.80 371 | 87.69 210 | 38.04 376 | 92.56 197 | 46.66 375 | 74.91 323 | 84.24 350 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| tttt0517 | | | 79.40 177 | 77.91 190 | 83.90 145 | 88.10 186 | 63.84 226 | 88.37 137 | 84.05 288 | 71.45 184 | 76.78 203 | 89.12 172 | 49.93 294 | 94.89 98 | 70.18 198 | 83.18 215 | 92.96 114 |
|
| CMPMVS |  | 51.72 21 | 70.19 317 | 68.16 320 | 76.28 308 | 73.15 398 | 57.55 315 | 79.47 326 | 83.92 289 | 48.02 396 | 56.48 396 | 84.81 287 | 43.13 348 | 86.42 322 | 62.67 265 | 81.81 232 | 84.89 343 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| Anonymous202405211 | | | 78.25 203 | 77.01 213 | 81.99 204 | 91.03 87 | 60.67 278 | 84.77 241 | 83.90 290 | 70.65 203 | 80.00 140 | 91.20 123 | 41.08 361 | 91.43 245 | 65.21 244 | 85.26 179 | 93.85 65 |
|
| XXY-MVS | | | 75.41 262 | 75.56 240 | 74.96 324 | 83.59 294 | 57.82 310 | 80.59 312 | 83.87 291 | 66.54 278 | 74.93 255 | 88.31 195 | 63.24 144 | 80.09 366 | 62.16 271 | 76.85 288 | 86.97 306 |
|
| DP-MVS | | | 76.78 238 | 74.57 254 | 83.42 156 | 93.29 48 | 69.46 97 | 88.55 130 | 83.70 292 | 63.98 312 | 70.20 308 | 88.89 178 | 54.01 245 | 94.80 102 | 46.66 375 | 81.88 231 | 86.01 324 |
|
| tfpn200view9 | | | 76.42 246 | 75.37 246 | 79.55 262 | 89.13 146 | 57.65 313 | 85.17 230 | 83.60 293 | 73.41 151 | 76.45 211 | 86.39 252 | 52.12 261 | 91.95 220 | 48.33 366 | 83.75 202 | 89.07 244 |
|
| thres400 | | | 76.50 242 | 75.37 246 | 79.86 252 | 89.13 146 | 57.65 313 | 85.17 230 | 83.60 293 | 73.41 151 | 76.45 211 | 86.39 252 | 52.12 261 | 91.95 220 | 48.33 366 | 83.75 202 | 90.00 218 |
|
| SixPastTwentyTwo | | | 73.37 283 | 71.26 296 | 79.70 256 | 85.08 264 | 57.89 308 | 85.57 221 | 83.56 295 | 71.03 193 | 65.66 357 | 85.88 261 | 42.10 356 | 92.57 196 | 59.11 298 | 63.34 381 | 88.65 268 |
|
| thres200 | | | 75.55 258 | 74.47 257 | 78.82 271 | 87.78 204 | 57.85 309 | 83.07 281 | 83.51 296 | 72.44 168 | 75.84 225 | 84.42 292 | 52.08 264 | 91.75 228 | 47.41 373 | 83.64 207 | 86.86 308 |
|
| IterMVS-SCA-FT | | | 75.43 261 | 73.87 266 | 80.11 248 | 82.69 318 | 64.85 207 | 81.57 296 | 83.47 297 | 69.16 238 | 70.49 305 | 84.15 302 | 51.95 267 | 88.15 306 | 69.23 208 | 72.14 348 | 87.34 295 |
|
| CVMVSNet | | | 72.99 291 | 72.58 280 | 74.25 332 | 84.28 277 | 50.85 385 | 86.41 200 | 83.45 298 | 44.56 400 | 73.23 276 | 87.54 216 | 49.38 299 | 85.70 328 | 65.90 239 | 78.44 269 | 86.19 319 |
|
| ITE_SJBPF | | | | | 78.22 284 | 81.77 332 | 60.57 279 | | 83.30 299 | 69.25 234 | 67.54 336 | 87.20 225 | 36.33 381 | 87.28 315 | 54.34 334 | 74.62 326 | 86.80 309 |
|
| thisisatest0515 | | | 77.33 229 | 75.38 245 | 83.18 167 | 85.27 258 | 63.80 227 | 82.11 290 | 83.27 300 | 65.06 295 | 75.91 223 | 83.84 306 | 49.54 296 | 94.27 118 | 67.24 228 | 86.19 168 | 91.48 160 |
|
| mvs5depth | | | 69.45 323 | 67.45 335 | 75.46 319 | 73.93 389 | 55.83 341 | 79.19 331 | 83.23 301 | 66.89 267 | 71.63 297 | 83.32 317 | 33.69 387 | 85.09 336 | 59.81 291 | 55.34 397 | 85.46 333 |
|
| thres100view900 | | | 76.50 242 | 75.55 241 | 79.33 263 | 89.52 125 | 56.99 322 | 85.83 219 | 83.23 301 | 73.94 135 | 76.32 215 | 87.12 228 | 51.89 269 | 91.95 220 | 48.33 366 | 83.75 202 | 89.07 244 |
|
| thres600view7 | | | 76.50 242 | 75.44 242 | 79.68 257 | 89.40 132 | 57.16 319 | 85.53 227 | 83.23 301 | 73.79 139 | 76.26 216 | 87.09 229 | 51.89 269 | 91.89 223 | 48.05 371 | 83.72 205 | 90.00 218 |
|
| test222 | | | | | | 91.50 80 | 68.26 129 | 84.16 259 | 83.20 304 | 54.63 381 | 79.74 142 | 91.63 108 | 58.97 204 | | | 91.42 92 | 86.77 310 |
|
| EPNet_dtu | | | 75.46 260 | 74.86 251 | 77.23 302 | 82.57 321 | 54.60 355 | 86.89 185 | 83.09 305 | 71.64 177 | 66.25 355 | 85.86 262 | 55.99 227 | 88.04 308 | 54.92 331 | 86.55 162 | 89.05 249 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| fmvsm_s_conf0.5_n | | | 83.80 83 | 83.71 84 | 84.07 131 | 86.69 234 | 67.31 154 | 89.46 92 | 83.07 306 | 71.09 191 | 86.96 50 | 93.70 61 | 69.02 90 | 91.47 243 | 88.79 21 | 84.62 186 | 93.44 89 |
|
| fmvsm_s_conf0.1_n | | | 83.56 91 | 83.38 89 | 84.10 125 | 84.86 267 | 67.28 155 | 89.40 97 | 83.01 307 | 70.67 199 | 87.08 47 | 93.96 56 | 68.38 94 | 91.45 244 | 88.56 25 | 84.50 187 | 93.56 84 |
|
| testing91 | | | 76.54 240 | 75.66 239 | 79.18 267 | 88.43 173 | 55.89 340 | 81.08 302 | 83.00 308 | 73.76 140 | 75.34 239 | 84.29 297 | 46.20 326 | 90.07 272 | 64.33 251 | 84.50 187 | 91.58 155 |
|
| TDRefinement | | | 67.49 337 | 64.34 347 | 76.92 304 | 73.47 395 | 61.07 272 | 84.86 240 | 82.98 309 | 59.77 349 | 58.30 390 | 85.13 280 | 26.06 399 | 87.89 309 | 47.92 372 | 60.59 388 | 81.81 377 |
|
| OpenMVS_ROB |  | 64.09 19 | 70.56 313 | 68.19 319 | 77.65 294 | 80.26 352 | 59.41 294 | 85.01 236 | 82.96 310 | 58.76 359 | 65.43 359 | 82.33 334 | 37.63 378 | 91.23 251 | 45.34 385 | 76.03 302 | 82.32 372 |
|
| fmvsm_s_conf0.5_n_a | | | 83.63 89 | 83.41 88 | 84.28 117 | 86.14 242 | 68.12 132 | 89.43 93 | 82.87 311 | 70.27 210 | 87.27 46 | 93.80 60 | 69.09 85 | 91.58 234 | 88.21 29 | 83.65 206 | 93.14 103 |
|
| fmvsm_s_conf0.1_n_a | | | 83.32 98 | 82.99 96 | 84.28 117 | 83.79 289 | 68.07 134 | 89.34 100 | 82.85 312 | 69.80 221 | 87.36 45 | 94.06 48 | 68.34 95 | 91.56 236 | 87.95 30 | 83.46 211 | 93.21 99 |
|
| RPSCF | | | 73.23 287 | 71.46 291 | 78.54 278 | 82.50 322 | 59.85 288 | 82.18 289 | 82.84 313 | 58.96 357 | 71.15 302 | 89.41 169 | 45.48 336 | 84.77 340 | 58.82 302 | 71.83 350 | 91.02 175 |
|
| CostFormer | | | 75.24 265 | 73.90 265 | 79.27 264 | 82.65 320 | 58.27 301 | 80.80 305 | 82.73 314 | 61.57 336 | 75.33 243 | 83.13 321 | 55.52 229 | 91.07 258 | 64.98 247 | 78.34 272 | 88.45 272 |
|
| IterMVS | | | 74.29 270 | 72.94 276 | 78.35 283 | 81.53 337 | 63.49 235 | 81.58 295 | 82.49 315 | 68.06 259 | 69.99 314 | 83.69 312 | 51.66 274 | 85.54 331 | 65.85 240 | 71.64 351 | 86.01 324 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| test_cas_vis1_n_1920 | | | 73.76 279 | 73.74 268 | 73.81 336 | 75.90 380 | 59.77 289 | 80.51 313 | 82.40 316 | 58.30 362 | 81.62 122 | 85.69 265 | 44.35 341 | 76.41 385 | 76.29 137 | 78.61 265 | 85.23 337 |
|
| WTY-MVS | | | 75.65 257 | 75.68 237 | 75.57 315 | 86.40 238 | 56.82 324 | 77.92 351 | 82.40 316 | 65.10 294 | 76.18 219 | 87.72 208 | 63.13 150 | 80.90 363 | 60.31 287 | 81.96 229 | 89.00 253 |
|
| pmmvs4 | | | 74.03 277 | 71.91 286 | 80.39 241 | 81.96 329 | 68.32 127 | 81.45 298 | 82.14 318 | 59.32 353 | 69.87 317 | 85.13 280 | 52.40 257 | 88.13 307 | 60.21 288 | 74.74 325 | 84.73 346 |
|
| FMVSNet5 | | | 69.50 322 | 67.96 323 | 74.15 333 | 82.97 313 | 55.35 348 | 80.01 321 | 82.12 319 | 62.56 328 | 63.02 372 | 81.53 342 | 36.92 379 | 81.92 357 | 48.42 365 | 74.06 330 | 85.17 340 |
|
| mamv4 | | | 76.81 237 | 78.23 185 | 72.54 347 | 86.12 243 | 65.75 186 | 78.76 338 | 82.07 320 | 64.12 307 | 72.97 279 | 91.02 132 | 67.97 98 | 68.08 411 | 83.04 74 | 78.02 274 | 83.80 357 |
|
| baseline1 | | | 76.98 234 | 76.75 223 | 77.66 293 | 88.13 184 | 55.66 344 | 85.12 233 | 81.89 321 | 73.04 160 | 76.79 202 | 88.90 177 | 62.43 158 | 87.78 311 | 63.30 259 | 71.18 354 | 89.55 236 |
|
| UnsupCasMVSNet_bld | | | 63.70 356 | 61.53 362 | 70.21 363 | 73.69 392 | 51.39 381 | 72.82 377 | 81.89 321 | 55.63 378 | 57.81 392 | 71.80 397 | 38.67 372 | 78.61 371 | 49.26 362 | 52.21 402 | 80.63 383 |
|
| LFMVS | | | 81.82 121 | 81.23 122 | 83.57 153 | 91.89 76 | 63.43 238 | 89.84 78 | 81.85 323 | 77.04 62 | 83.21 101 | 93.10 73 | 52.26 259 | 93.43 160 | 71.98 181 | 89.95 114 | 93.85 65 |
|
| sss | | | 73.60 280 | 73.64 269 | 73.51 338 | 82.80 315 | 55.01 352 | 76.12 358 | 81.69 324 | 62.47 329 | 74.68 259 | 85.85 263 | 57.32 218 | 78.11 374 | 60.86 284 | 80.93 239 | 87.39 293 |
|
| pmmvs-eth3d | | | 70.50 314 | 67.83 327 | 78.52 280 | 77.37 376 | 66.18 174 | 81.82 291 | 81.51 325 | 58.90 358 | 63.90 370 | 80.42 353 | 42.69 351 | 86.28 323 | 58.56 304 | 65.30 377 | 83.11 364 |
|
| TinyColmap | | | 67.30 340 | 64.81 345 | 74.76 327 | 81.92 331 | 56.68 328 | 80.29 318 | 81.49 326 | 60.33 343 | 56.27 397 | 83.22 318 | 24.77 403 | 87.66 313 | 45.52 383 | 69.47 361 | 79.95 386 |
|
| testing99 | | | 76.09 252 | 75.12 250 | 79.00 268 | 88.16 181 | 55.50 346 | 80.79 306 | 81.40 327 | 73.30 154 | 75.17 247 | 84.27 299 | 44.48 340 | 90.02 273 | 64.28 252 | 84.22 196 | 91.48 160 |
|
| tpmvs | | | 71.09 306 | 69.29 311 | 76.49 307 | 82.04 328 | 56.04 338 | 78.92 336 | 81.37 328 | 64.05 310 | 67.18 342 | 78.28 373 | 49.74 295 | 89.77 277 | 49.67 360 | 72.37 344 | 83.67 358 |
|
| WBMVS | | | 73.43 282 | 72.81 277 | 75.28 321 | 87.91 195 | 50.99 384 | 78.59 342 | 81.31 329 | 65.51 292 | 74.47 263 | 84.83 286 | 46.39 320 | 86.68 318 | 58.41 306 | 77.86 275 | 88.17 278 |
|
| pmmvs5 | | | 71.55 302 | 70.20 308 | 75.61 314 | 77.83 373 | 56.39 332 | 81.74 293 | 80.89 330 | 57.76 366 | 67.46 338 | 84.49 290 | 49.26 302 | 85.32 335 | 57.08 319 | 75.29 318 | 85.11 341 |
|
| ANet_high | | | 50.57 378 | 46.10 382 | 63.99 381 | 48.67 426 | 39.13 415 | 70.99 385 | 80.85 331 | 61.39 338 | 31.18 415 | 57.70 411 | 17.02 414 | 73.65 402 | 31.22 408 | 15.89 423 | 79.18 388 |
|
| LCM-MVSNet | | | 54.25 369 | 49.68 379 | 67.97 376 | 53.73 423 | 45.28 402 | 66.85 401 | 80.78 332 | 35.96 412 | 39.45 413 | 62.23 406 | 8.70 423 | 78.06 375 | 48.24 369 | 51.20 403 | 80.57 384 |
|
| PVSNet | | 64.34 18 | 72.08 300 | 70.87 300 | 75.69 313 | 86.21 240 | 56.44 331 | 74.37 373 | 80.73 333 | 62.06 334 | 70.17 310 | 82.23 337 | 42.86 350 | 83.31 350 | 54.77 332 | 84.45 191 | 87.32 296 |
|
| baseline2 | | | 75.70 256 | 73.83 267 | 81.30 220 | 83.26 301 | 61.79 265 | 82.57 286 | 80.65 334 | 66.81 268 | 66.88 344 | 83.42 316 | 57.86 212 | 92.19 213 | 63.47 256 | 79.57 256 | 89.91 223 |
|
| ppachtmachnet_test | | | 70.04 318 | 67.34 336 | 78.14 286 | 79.80 361 | 61.13 270 | 79.19 331 | 80.59 335 | 59.16 355 | 65.27 360 | 79.29 364 | 46.75 319 | 87.29 314 | 49.33 361 | 66.72 370 | 86.00 326 |
|
| Gipuma |  | | 45.18 383 | 41.86 386 | 55.16 395 | 77.03 378 | 51.52 379 | 32.50 419 | 80.52 336 | 32.46 415 | 27.12 418 | 35.02 419 | 9.52 422 | 75.50 392 | 22.31 416 | 60.21 389 | 38.45 418 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| Anonymous20231206 | | | 68.60 329 | 67.80 328 | 71.02 359 | 80.23 354 | 50.75 386 | 78.30 347 | 80.47 337 | 56.79 373 | 66.11 356 | 82.63 331 | 46.35 323 | 78.95 370 | 43.62 388 | 75.70 305 | 83.36 361 |
|
| LCM-MVSNet-Re | | | 77.05 232 | 76.94 216 | 77.36 299 | 87.20 223 | 51.60 378 | 80.06 319 | 80.46 338 | 75.20 103 | 67.69 335 | 86.72 236 | 62.48 156 | 88.98 293 | 63.44 257 | 89.25 122 | 91.51 157 |
|
| testing11 | | | 75.14 266 | 74.01 262 | 78.53 279 | 88.16 181 | 56.38 333 | 80.74 309 | 80.42 339 | 70.67 199 | 72.69 284 | 83.72 311 | 43.61 346 | 89.86 275 | 62.29 269 | 83.76 201 | 89.36 240 |
|
| tpm2 | | | 73.26 286 | 71.46 291 | 78.63 273 | 83.34 299 | 56.71 327 | 80.65 311 | 80.40 340 | 56.63 374 | 73.55 272 | 82.02 340 | 51.80 271 | 91.24 250 | 56.35 326 | 78.42 270 | 87.95 280 |
|
| CR-MVSNet | | | 73.37 283 | 71.27 295 | 79.67 258 | 81.32 343 | 65.19 197 | 75.92 360 | 80.30 341 | 59.92 348 | 72.73 282 | 81.19 343 | 52.50 255 | 86.69 317 | 59.84 290 | 77.71 277 | 87.11 303 |
|
| Patchmtry | | | 70.74 310 | 69.16 313 | 75.49 318 | 80.72 347 | 54.07 360 | 74.94 371 | 80.30 341 | 58.34 361 | 70.01 312 | 81.19 343 | 52.50 255 | 86.54 319 | 53.37 339 | 71.09 355 | 85.87 329 |
|
| tpm cat1 | | | 70.57 312 | 68.31 318 | 77.35 300 | 82.41 325 | 57.95 307 | 78.08 348 | 80.22 343 | 52.04 387 | 68.54 330 | 77.66 378 | 52.00 266 | 87.84 310 | 51.77 345 | 72.07 349 | 86.25 317 |
|
| MDTV_nov1_ep13 | | | | 69.97 309 | | 83.18 304 | 53.48 364 | 77.10 356 | 80.18 344 | 60.45 342 | 69.33 323 | 80.44 352 | 48.89 308 | 86.90 316 | 51.60 347 | 78.51 268 | |
|
| AllTest | | | 70.96 307 | 68.09 322 | 79.58 260 | 85.15 261 | 63.62 229 | 84.58 247 | 79.83 345 | 62.31 330 | 60.32 383 | 86.73 234 | 32.02 389 | 88.96 295 | 50.28 355 | 71.57 352 | 86.15 320 |
|
| TestCases | | | | | 79.58 260 | 85.15 261 | 63.62 229 | | 79.83 345 | 62.31 330 | 60.32 383 | 86.73 234 | 32.02 389 | 88.96 295 | 50.28 355 | 71.57 352 | 86.15 320 |
|
| test_fmvs1_n | | | 70.86 309 | 70.24 307 | 72.73 345 | 72.51 402 | 55.28 349 | 81.27 301 | 79.71 347 | 51.49 391 | 78.73 156 | 84.87 285 | 27.54 398 | 77.02 379 | 76.06 140 | 79.97 254 | 85.88 328 |
|
| Vis-MVSNet (Re-imp) | | | 78.36 202 | 78.45 176 | 78.07 288 | 88.64 165 | 51.78 377 | 86.70 193 | 79.63 348 | 74.14 132 | 75.11 250 | 90.83 136 | 61.29 180 | 89.75 278 | 58.10 310 | 91.60 88 | 92.69 120 |
|
| MIMVSNet | | | 70.69 311 | 69.30 310 | 74.88 325 | 84.52 274 | 56.35 335 | 75.87 362 | 79.42 349 | 64.59 300 | 67.76 333 | 82.41 332 | 41.10 360 | 81.54 359 | 46.64 377 | 81.34 234 | 86.75 311 |
|
| dmvs_re | | | 71.14 305 | 70.58 301 | 72.80 344 | 81.96 329 | 59.68 290 | 75.60 364 | 79.34 350 | 68.55 251 | 69.27 324 | 80.72 351 | 49.42 298 | 76.54 382 | 52.56 343 | 77.79 276 | 82.19 374 |
|
| SCA | | | 74.22 272 | 72.33 283 | 79.91 251 | 84.05 284 | 62.17 259 | 79.96 322 | 79.29 351 | 66.30 280 | 72.38 288 | 80.13 356 | 51.95 267 | 88.60 301 | 59.25 296 | 77.67 279 | 88.96 255 |
|
| testing222 | | | 74.04 275 | 72.66 279 | 78.19 285 | 87.89 196 | 55.36 347 | 81.06 303 | 79.20 352 | 71.30 186 | 74.65 260 | 83.57 314 | 39.11 370 | 88.67 300 | 51.43 349 | 85.75 177 | 90.53 192 |
|
| tpmrst | | | 72.39 294 | 72.13 285 | 73.18 342 | 80.54 350 | 49.91 389 | 79.91 323 | 79.08 353 | 63.11 318 | 71.69 296 | 79.95 358 | 55.32 230 | 82.77 353 | 65.66 242 | 73.89 332 | 86.87 307 |
|
| test_fmvs1 | | | 70.93 308 | 70.52 302 | 72.16 349 | 73.71 391 | 55.05 351 | 80.82 304 | 78.77 354 | 51.21 392 | 78.58 161 | 84.41 293 | 31.20 393 | 76.94 380 | 75.88 143 | 80.12 253 | 84.47 348 |
|
| PatchmatchNet |  | | 73.12 288 | 71.33 294 | 78.49 281 | 83.18 304 | 60.85 275 | 79.63 324 | 78.57 355 | 64.13 306 | 71.73 295 | 79.81 361 | 51.20 278 | 85.97 326 | 57.40 316 | 76.36 300 | 88.66 267 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| MDA-MVSNet-bldmvs | | | 66.68 343 | 63.66 352 | 75.75 312 | 79.28 368 | 60.56 280 | 73.92 375 | 78.35 356 | 64.43 302 | 50.13 405 | 79.87 360 | 44.02 343 | 83.67 346 | 46.10 380 | 56.86 391 | 83.03 366 |
|
| new-patchmatchnet | | | 61.73 360 | 61.73 361 | 61.70 384 | 72.74 400 | 24.50 427 | 69.16 393 | 78.03 357 | 61.40 337 | 56.72 395 | 75.53 389 | 38.42 373 | 76.48 384 | 45.95 381 | 57.67 390 | 84.13 352 |
|
| our_test_3 | | | 69.14 325 | 67.00 338 | 75.57 315 | 79.80 361 | 58.80 295 | 77.96 349 | 77.81 358 | 59.55 351 | 62.90 375 | 78.25 374 | 47.43 312 | 83.97 344 | 51.71 346 | 67.58 369 | 83.93 355 |
|
| test20.03 | | | 67.45 338 | 66.95 339 | 68.94 367 | 75.48 384 | 44.84 404 | 77.50 352 | 77.67 359 | 66.66 272 | 63.01 373 | 83.80 307 | 47.02 316 | 78.40 372 | 42.53 392 | 68.86 366 | 83.58 359 |
|
| WB-MVSnew | | | 71.96 301 | 71.65 289 | 72.89 343 | 84.67 273 | 51.88 375 | 82.29 288 | 77.57 360 | 62.31 330 | 73.67 271 | 83.00 323 | 53.49 250 | 81.10 362 | 45.75 382 | 82.13 227 | 85.70 330 |
|
| test-LLR | | | 72.94 292 | 72.43 281 | 74.48 329 | 81.35 341 | 58.04 304 | 78.38 343 | 77.46 361 | 66.66 272 | 69.95 315 | 79.00 367 | 48.06 310 | 79.24 368 | 66.13 235 | 84.83 182 | 86.15 320 |
|
| test-mter | | | 71.41 303 | 70.39 306 | 74.48 329 | 81.35 341 | 58.04 304 | 78.38 343 | 77.46 361 | 60.32 344 | 69.95 315 | 79.00 367 | 36.08 382 | 79.24 368 | 66.13 235 | 84.83 182 | 86.15 320 |
|
| ECVR-MVS |  | | 79.61 168 | 79.26 161 | 80.67 237 | 90.08 108 | 54.69 354 | 87.89 155 | 77.44 363 | 74.88 112 | 80.27 136 | 92.79 85 | 48.96 307 | 92.45 201 | 68.55 216 | 92.50 77 | 94.86 18 |
|
| UBG | | | 73.08 289 | 72.27 284 | 75.51 317 | 88.02 190 | 51.29 382 | 78.35 346 | 77.38 364 | 65.52 290 | 73.87 269 | 82.36 333 | 45.55 333 | 86.48 321 | 55.02 330 | 84.39 193 | 88.75 264 |
|
| tpm | | | 72.37 296 | 71.71 288 | 74.35 331 | 82.19 327 | 52.00 372 | 79.22 330 | 77.29 365 | 64.56 301 | 72.95 280 | 83.68 313 | 51.35 275 | 83.26 351 | 58.33 308 | 75.80 304 | 87.81 284 |
|
| LF4IMVS | | | 64.02 355 | 62.19 359 | 69.50 365 | 70.90 403 | 53.29 368 | 76.13 357 | 77.18 366 | 52.65 386 | 58.59 388 | 80.98 347 | 23.55 406 | 76.52 383 | 53.06 341 | 66.66 371 | 78.68 389 |
|
| test1111 | | | 79.43 175 | 79.18 164 | 80.15 247 | 89.99 113 | 53.31 367 | 87.33 171 | 77.05 367 | 75.04 107 | 80.23 138 | 92.77 87 | 48.97 306 | 92.33 209 | 68.87 213 | 92.40 79 | 94.81 21 |
|
| K. test v3 | | | 71.19 304 | 68.51 316 | 79.21 266 | 83.04 309 | 57.78 312 | 84.35 256 | 76.91 368 | 72.90 163 | 62.99 374 | 82.86 327 | 39.27 368 | 91.09 257 | 61.65 277 | 52.66 400 | 88.75 264 |
|
| UWE-MVS | | | 72.13 299 | 71.49 290 | 74.03 334 | 86.66 235 | 47.70 393 | 81.40 300 | 76.89 369 | 63.60 315 | 75.59 228 | 84.22 300 | 39.94 366 | 85.62 330 | 48.98 363 | 86.13 170 | 88.77 263 |
|
| testgi | | | 66.67 344 | 66.53 341 | 67.08 378 | 75.62 383 | 41.69 413 | 75.93 359 | 76.50 370 | 66.11 281 | 65.20 363 | 86.59 244 | 35.72 383 | 74.71 397 | 43.71 387 | 73.38 339 | 84.84 344 |
|
| test_fmvs2 | | | 68.35 334 | 67.48 334 | 70.98 360 | 69.50 405 | 51.95 373 | 80.05 320 | 76.38 371 | 49.33 394 | 74.65 260 | 84.38 294 | 23.30 407 | 75.40 395 | 74.51 156 | 75.17 321 | 85.60 331 |
|
| test_vis1_n | | | 69.85 321 | 69.21 312 | 71.77 351 | 72.66 401 | 55.27 350 | 81.48 297 | 76.21 372 | 52.03 388 | 75.30 244 | 83.20 320 | 28.97 396 | 76.22 387 | 74.60 155 | 78.41 271 | 83.81 356 |
|
| PatchMatch-RL | | | 72.38 295 | 70.90 299 | 76.80 306 | 88.60 166 | 67.38 152 | 79.53 325 | 76.17 373 | 62.75 326 | 69.36 322 | 82.00 341 | 45.51 334 | 84.89 339 | 53.62 337 | 80.58 245 | 78.12 390 |
|
| JIA-IIPM | | | 66.32 347 | 62.82 358 | 76.82 305 | 77.09 377 | 61.72 266 | 65.34 406 | 75.38 374 | 58.04 365 | 64.51 365 | 62.32 405 | 42.05 357 | 86.51 320 | 51.45 348 | 69.22 363 | 82.21 373 |
|
| ADS-MVSNet2 | | | 66.20 350 | 63.33 353 | 74.82 326 | 79.92 357 | 58.75 296 | 67.55 398 | 75.19 375 | 53.37 384 | 65.25 361 | 75.86 386 | 42.32 353 | 80.53 365 | 41.57 393 | 68.91 364 | 85.18 338 |
|
| ETVMVS | | | 72.25 298 | 71.05 297 | 75.84 311 | 87.77 205 | 51.91 374 | 79.39 327 | 74.98 376 | 69.26 233 | 73.71 270 | 82.95 324 | 40.82 363 | 86.14 324 | 46.17 379 | 84.43 192 | 89.47 237 |
|
| PatchT | | | 68.46 333 | 67.85 325 | 70.29 362 | 80.70 348 | 43.93 406 | 72.47 378 | 74.88 377 | 60.15 346 | 70.55 303 | 76.57 382 | 49.94 292 | 81.59 358 | 50.58 351 | 74.83 324 | 85.34 335 |
|
| dp | | | 66.80 342 | 65.43 344 | 70.90 361 | 79.74 363 | 48.82 392 | 75.12 369 | 74.77 378 | 59.61 350 | 64.08 368 | 77.23 379 | 42.89 349 | 80.72 364 | 48.86 364 | 66.58 372 | 83.16 363 |
|
| MDA-MVSNet_test_wron | | | 65.03 351 | 62.92 355 | 71.37 354 | 75.93 379 | 56.73 325 | 69.09 395 | 74.73 379 | 57.28 371 | 54.03 400 | 77.89 375 | 45.88 328 | 74.39 399 | 49.89 359 | 61.55 384 | 82.99 367 |
|
| TESTMET0.1,1 | | | 69.89 320 | 69.00 314 | 72.55 346 | 79.27 369 | 56.85 323 | 78.38 343 | 74.71 380 | 57.64 367 | 68.09 332 | 77.19 380 | 37.75 377 | 76.70 381 | 63.92 254 | 84.09 197 | 84.10 353 |
|
| YYNet1 | | | 65.03 351 | 62.91 356 | 71.38 353 | 75.85 381 | 56.60 329 | 69.12 394 | 74.66 381 | 57.28 371 | 54.12 399 | 77.87 376 | 45.85 329 | 74.48 398 | 49.95 358 | 61.52 385 | 83.05 365 |
|
| test_fmvs3 | | | 63.36 357 | 61.82 360 | 67.98 375 | 62.51 414 | 46.96 397 | 77.37 354 | 74.03 382 | 45.24 399 | 67.50 337 | 78.79 370 | 12.16 419 | 72.98 403 | 72.77 176 | 66.02 374 | 83.99 354 |
|
| PMMVS | | | 69.34 324 | 68.67 315 | 71.35 356 | 75.67 382 | 62.03 260 | 75.17 366 | 73.46 383 | 50.00 393 | 68.68 327 | 79.05 365 | 52.07 265 | 78.13 373 | 61.16 282 | 82.77 219 | 73.90 397 |
|
| PVSNet_0 | | 57.27 20 | 61.67 361 | 59.27 364 | 68.85 369 | 79.61 364 | 57.44 317 | 68.01 396 | 73.44 384 | 55.93 377 | 58.54 389 | 70.41 400 | 44.58 339 | 77.55 377 | 47.01 374 | 35.91 412 | 71.55 400 |
|
| Syy-MVS | | | 68.05 335 | 67.85 325 | 68.67 371 | 84.68 270 | 40.97 414 | 78.62 340 | 73.08 385 | 66.65 275 | 66.74 347 | 79.46 362 | 52.11 263 | 82.30 355 | 32.89 406 | 76.38 298 | 82.75 369 |
|
| myMVS_eth3d | | | 67.02 341 | 66.29 342 | 69.21 366 | 84.68 270 | 42.58 409 | 78.62 340 | 73.08 385 | 66.65 275 | 66.74 347 | 79.46 362 | 31.53 392 | 82.30 355 | 39.43 398 | 76.38 298 | 82.75 369 |
|
| test0.0.03 1 | | | 68.00 336 | 67.69 330 | 68.90 368 | 77.55 374 | 47.43 394 | 75.70 363 | 72.95 387 | 66.66 272 | 66.56 349 | 82.29 336 | 48.06 310 | 75.87 390 | 44.97 386 | 74.51 327 | 83.41 360 |
|
| testing3 | | | 68.56 331 | 67.67 331 | 71.22 358 | 87.33 220 | 42.87 408 | 83.06 282 | 71.54 388 | 70.36 206 | 69.08 325 | 84.38 294 | 30.33 395 | 85.69 329 | 37.50 401 | 75.45 313 | 85.09 342 |
|
| ADS-MVSNet | | | 64.36 354 | 62.88 357 | 68.78 370 | 79.92 357 | 47.17 395 | 67.55 398 | 71.18 389 | 53.37 384 | 65.25 361 | 75.86 386 | 42.32 353 | 73.99 400 | 41.57 393 | 68.91 364 | 85.18 338 |
|
| Patchmatch-RL test | | | 70.24 316 | 67.78 329 | 77.61 295 | 77.43 375 | 59.57 293 | 71.16 383 | 70.33 390 | 62.94 322 | 68.65 328 | 72.77 395 | 50.62 284 | 85.49 332 | 69.58 206 | 66.58 372 | 87.77 285 |
|
| gg-mvs-nofinetune | | | 69.95 319 | 67.96 323 | 75.94 310 | 83.07 307 | 54.51 357 | 77.23 355 | 70.29 391 | 63.11 318 | 70.32 307 | 62.33 404 | 43.62 345 | 88.69 299 | 53.88 336 | 87.76 145 | 84.62 347 |
|
| door-mid | | | | | | | | | 69.98 392 | | | | | | | | |
|
| GG-mvs-BLEND | | | | | 75.38 320 | 81.59 335 | 55.80 342 | 79.32 328 | 69.63 393 | | 67.19 341 | 73.67 393 | 43.24 347 | 88.90 297 | 50.41 352 | 84.50 187 | 81.45 378 |
|
| FPMVS | | | 53.68 372 | 51.64 374 | 59.81 387 | 65.08 411 | 51.03 383 | 69.48 391 | 69.58 394 | 41.46 404 | 40.67 411 | 72.32 396 | 16.46 415 | 70.00 408 | 24.24 415 | 65.42 376 | 58.40 411 |
|
| door | | | | | | | | | 69.44 395 | | | | | | | | |
|
| Patchmatch-test | | | 64.82 353 | 63.24 354 | 69.57 364 | 79.42 367 | 49.82 390 | 63.49 410 | 69.05 396 | 51.98 389 | 59.95 385 | 80.13 356 | 50.91 280 | 70.98 404 | 40.66 395 | 73.57 335 | 87.90 282 |
|
| CHOSEN 280x420 | | | 66.51 345 | 64.71 346 | 71.90 350 | 81.45 338 | 63.52 234 | 57.98 413 | 68.95 397 | 53.57 383 | 62.59 376 | 76.70 381 | 46.22 325 | 75.29 396 | 55.25 329 | 79.68 255 | 76.88 393 |
|
| MVStest1 | | | 56.63 367 | 52.76 373 | 68.25 374 | 61.67 415 | 53.25 369 | 71.67 381 | 68.90 398 | 38.59 408 | 50.59 404 | 83.05 322 | 25.08 401 | 70.66 405 | 36.76 402 | 38.56 411 | 80.83 382 |
|
| EGC-MVSNET | | | 52.07 376 | 47.05 380 | 67.14 377 | 83.51 296 | 60.71 277 | 80.50 314 | 67.75 399 | 0.07 426 | 0.43 427 | 75.85 388 | 24.26 404 | 81.54 359 | 28.82 409 | 62.25 382 | 59.16 409 |
|
| ttmdpeth | | | 59.91 363 | 57.10 367 | 68.34 373 | 67.13 409 | 46.65 398 | 74.64 372 | 67.41 400 | 48.30 395 | 62.52 377 | 85.04 284 | 20.40 409 | 75.93 389 | 42.55 391 | 45.90 410 | 82.44 371 |
|
| EPMVS | | | 69.02 326 | 68.16 320 | 71.59 352 | 79.61 364 | 49.80 391 | 77.40 353 | 66.93 401 | 62.82 325 | 70.01 312 | 79.05 365 | 45.79 330 | 77.86 376 | 56.58 324 | 75.26 319 | 87.13 302 |
|
| APD_test1 | | | 53.31 373 | 49.93 378 | 63.42 383 | 65.68 410 | 50.13 388 | 71.59 382 | 66.90 402 | 34.43 413 | 40.58 412 | 71.56 398 | 8.65 424 | 76.27 386 | 34.64 405 | 55.36 396 | 63.86 407 |
|
| lessismore_v0 | | | | | 78.97 269 | 81.01 346 | 57.15 320 | | 65.99 403 | | 61.16 380 | 82.82 328 | 39.12 369 | 91.34 248 | 59.67 292 | 46.92 407 | 88.43 273 |
|
| dmvs_testset | | | 62.63 358 | 64.11 349 | 58.19 388 | 78.55 371 | 24.76 426 | 75.28 365 | 65.94 404 | 67.91 260 | 60.34 382 | 76.01 385 | 53.56 248 | 73.94 401 | 31.79 407 | 67.65 368 | 75.88 395 |
|
| pmmvs3 | | | 57.79 365 | 54.26 370 | 68.37 372 | 64.02 413 | 56.72 326 | 75.12 369 | 65.17 405 | 40.20 405 | 52.93 401 | 69.86 401 | 20.36 410 | 75.48 393 | 45.45 384 | 55.25 398 | 72.90 399 |
|
| MVS-HIRNet | | | 59.14 364 | 57.67 366 | 63.57 382 | 81.65 333 | 43.50 407 | 71.73 380 | 65.06 406 | 39.59 407 | 51.43 402 | 57.73 410 | 38.34 374 | 82.58 354 | 39.53 396 | 73.95 331 | 64.62 406 |
|
| PM-MVS | | | 66.41 346 | 64.14 348 | 73.20 341 | 73.92 390 | 56.45 330 | 78.97 335 | 64.96 407 | 63.88 314 | 64.72 364 | 80.24 355 | 19.84 411 | 83.44 349 | 66.24 234 | 64.52 379 | 79.71 387 |
|
| PMVS |  | 37.38 22 | 44.16 384 | 40.28 388 | 55.82 393 | 40.82 428 | 42.54 411 | 65.12 407 | 63.99 408 | 34.43 413 | 24.48 419 | 57.12 412 | 3.92 429 | 76.17 388 | 17.10 420 | 55.52 395 | 48.75 414 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| test2506 | | | 77.30 230 | 76.49 227 | 79.74 255 | 90.08 108 | 52.02 371 | 87.86 157 | 63.10 409 | 74.88 112 | 80.16 139 | 92.79 85 | 38.29 375 | 92.35 207 | 68.74 215 | 92.50 77 | 94.86 18 |
|
| test_method | | | 31.52 388 | 29.28 392 | 38.23 402 | 27.03 430 | 6.50 433 | 20.94 421 | 62.21 410 | 4.05 424 | 22.35 422 | 52.50 415 | 13.33 416 | 47.58 422 | 27.04 412 | 34.04 414 | 60.62 408 |
|
| WB-MVS | | | 54.94 368 | 54.72 369 | 55.60 394 | 73.50 393 | 20.90 428 | 74.27 374 | 61.19 411 | 59.16 355 | 50.61 403 | 74.15 391 | 47.19 315 | 75.78 391 | 17.31 419 | 35.07 413 | 70.12 401 |
|
| test_vis1_rt | | | 60.28 362 | 58.42 365 | 65.84 379 | 67.25 408 | 55.60 345 | 70.44 388 | 60.94 412 | 44.33 401 | 59.00 387 | 66.64 402 | 24.91 402 | 68.67 409 | 62.80 261 | 69.48 360 | 73.25 398 |
|
| SSC-MVS | | | 53.88 371 | 53.59 371 | 54.75 396 | 72.87 399 | 19.59 429 | 73.84 376 | 60.53 413 | 57.58 369 | 49.18 407 | 73.45 394 | 46.34 324 | 75.47 394 | 16.20 422 | 32.28 415 | 69.20 402 |
|
| testf1 | | | 45.72 380 | 41.96 384 | 57.00 389 | 56.90 417 | 45.32 400 | 66.14 403 | 59.26 414 | 26.19 417 | 30.89 416 | 60.96 408 | 4.14 427 | 70.64 406 | 26.39 413 | 46.73 408 | 55.04 412 |
|
| APD_test2 | | | 45.72 380 | 41.96 384 | 57.00 389 | 56.90 417 | 45.32 400 | 66.14 403 | 59.26 414 | 26.19 417 | 30.89 416 | 60.96 408 | 4.14 427 | 70.64 406 | 26.39 413 | 46.73 408 | 55.04 412 |
|
| test_f | | | 52.09 375 | 50.82 376 | 55.90 392 | 53.82 422 | 42.31 412 | 59.42 412 | 58.31 416 | 36.45 411 | 56.12 398 | 70.96 399 | 12.18 418 | 57.79 418 | 53.51 338 | 56.57 393 | 67.60 403 |
|
| new_pmnet | | | 50.91 377 | 50.29 377 | 52.78 397 | 68.58 406 | 34.94 419 | 63.71 408 | 56.63 417 | 39.73 406 | 44.95 408 | 65.47 403 | 21.93 408 | 58.48 417 | 34.98 404 | 56.62 392 | 64.92 405 |
|
| DSMNet-mixed | | | 57.77 366 | 56.90 368 | 60.38 386 | 67.70 407 | 35.61 417 | 69.18 392 | 53.97 418 | 32.30 416 | 57.49 393 | 79.88 359 | 40.39 365 | 68.57 410 | 38.78 399 | 72.37 344 | 76.97 392 |
|
| PMMVS2 | | | 40.82 385 | 38.86 389 | 46.69 399 | 53.84 421 | 16.45 430 | 48.61 416 | 49.92 419 | 37.49 409 | 31.67 414 | 60.97 407 | 8.14 425 | 56.42 419 | 28.42 410 | 30.72 416 | 67.19 404 |
|
| mvsany_test1 | | | 62.30 359 | 61.26 363 | 65.41 380 | 69.52 404 | 54.86 353 | 66.86 400 | 49.78 420 | 46.65 397 | 68.50 331 | 83.21 319 | 49.15 303 | 66.28 412 | 56.93 321 | 60.77 386 | 75.11 396 |
|
| test_vis3_rt | | | 49.26 379 | 47.02 381 | 56.00 391 | 54.30 420 | 45.27 403 | 66.76 402 | 48.08 421 | 36.83 410 | 44.38 409 | 53.20 414 | 7.17 426 | 64.07 414 | 56.77 323 | 55.66 394 | 58.65 410 |
|
| E-PMN | | | 31.77 387 | 30.64 390 | 35.15 404 | 52.87 424 | 27.67 421 | 57.09 414 | 47.86 422 | 24.64 419 | 16.40 424 | 33.05 420 | 11.23 420 | 54.90 420 | 14.46 423 | 18.15 421 | 22.87 420 |
|
| EMVS | | | 30.81 389 | 29.65 391 | 34.27 405 | 50.96 425 | 25.95 425 | 56.58 415 | 46.80 423 | 24.01 420 | 15.53 425 | 30.68 421 | 12.47 417 | 54.43 421 | 12.81 424 | 17.05 422 | 22.43 421 |
|
| mvsany_test3 | | | 53.99 370 | 51.45 375 | 61.61 385 | 55.51 419 | 44.74 405 | 63.52 409 | 45.41 424 | 43.69 402 | 58.11 391 | 76.45 383 | 17.99 412 | 63.76 415 | 54.77 332 | 47.59 406 | 76.34 394 |
|
| MVE |  | 26.22 23 | 30.37 390 | 25.89 394 | 43.81 401 | 44.55 427 | 35.46 418 | 28.87 420 | 39.07 425 | 18.20 421 | 18.58 423 | 40.18 418 | 2.68 430 | 47.37 423 | 17.07 421 | 23.78 420 | 48.60 415 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| dongtai | | | 45.42 382 | 45.38 383 | 45.55 400 | 73.36 396 | 26.85 424 | 67.72 397 | 34.19 426 | 54.15 382 | 49.65 406 | 56.41 413 | 25.43 400 | 62.94 416 | 19.45 417 | 28.09 417 | 46.86 416 |
|
| kuosan | | | 39.70 386 | 40.40 387 | 37.58 403 | 64.52 412 | 26.98 422 | 65.62 405 | 33.02 427 | 46.12 398 | 42.79 410 | 48.99 416 | 24.10 405 | 46.56 424 | 12.16 425 | 26.30 418 | 39.20 417 |
|
| MTMP | | | | | | | | 92.18 34 | 32.83 428 | | | | | | | | |
|
| tmp_tt | | | 18.61 392 | 21.40 395 | 10.23 408 | 4.82 431 | 10.11 431 | 34.70 418 | 30.74 429 | 1.48 425 | 23.91 421 | 26.07 422 | 28.42 397 | 13.41 427 | 27.12 411 | 15.35 424 | 7.17 422 |
|
| DeepMVS_CX |  | | | | 27.40 406 | 40.17 429 | 26.90 423 | | 24.59 430 | 17.44 422 | 23.95 420 | 48.61 417 | 9.77 421 | 26.48 425 | 18.06 418 | 24.47 419 | 28.83 419 |
|
| N_pmnet | | | 52.79 374 | 53.26 372 | 51.40 398 | 78.99 370 | 7.68 432 | 69.52 390 | 3.89 431 | 51.63 390 | 57.01 394 | 74.98 390 | 40.83 362 | 65.96 413 | 37.78 400 | 64.67 378 | 80.56 385 |
|
| wuyk23d | | | 16.82 393 | 15.94 396 | 19.46 407 | 58.74 416 | 31.45 420 | 39.22 417 | 3.74 432 | 6.84 423 | 6.04 426 | 2.70 426 | 1.27 431 | 24.29 426 | 10.54 426 | 14.40 425 | 2.63 423 |
|
| testmvs | | | 6.04 396 | 8.02 399 | 0.10 410 | 0.08 432 | 0.03 435 | 69.74 389 | 0.04 433 | 0.05 427 | 0.31 428 | 1.68 427 | 0.02 433 | 0.04 428 | 0.24 427 | 0.02 426 | 0.25 425 |
|
| test123 | | | 6.12 395 | 8.11 398 | 0.14 409 | 0.06 433 | 0.09 434 | 71.05 384 | 0.03 434 | 0.04 428 | 0.25 429 | 1.30 428 | 0.05 432 | 0.03 429 | 0.21 428 | 0.01 427 | 0.29 424 |
|
| mmdepth | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| monomultidepth | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| test_blank | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| uanet_test | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| DCPMVS | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| pcd_1.5k_mvsjas | | | 5.26 397 | 7.02 400 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 63.15 147 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| sosnet-low-res | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| sosnet | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| uncertanet | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| Regformer | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| n2 | | | | | | | | | 0.00 435 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 435 | | | | | | | | |
|
| ab-mvs-re | | | 7.23 394 | 9.64 397 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 86.72 236 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| uanet | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| WAC-MVS | | | | | | | 42.58 409 | | | | | | | | 39.46 397 | | |
|
| PC_three_1452 | | | | | | | | | | 68.21 257 | 92.02 12 | 94.00 52 | 82.09 5 | 95.98 56 | 84.58 56 | 96.68 2 | 94.95 11 |
|
| eth-test2 | | | | | | 0.00 434 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 434 | | | | | | | | | | | |
|
| OPU-MVS | | | | | 89.06 3 | 94.62 15 | 75.42 4 | 93.57 7 | | | | 94.02 50 | 82.45 3 | 96.87 20 | 83.77 67 | 96.48 8 | 94.88 15 |
|
| test_0728_THIRD | | | | | | | | | | 78.38 34 | 92.12 9 | 95.78 4 | 81.46 7 | 97.40 9 | 89.42 12 | 96.57 7 | 94.67 28 |
|
| GSMVS | | | | | | | | | | | | | | | | | 88.96 255 |
|
| test_part2 | | | | | | 95.06 8 | 72.65 32 | | | | 91.80 13 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 51.32 276 | | | | 88.96 255 |
|
| sam_mvs | | | | | | | | | | | | | 50.01 290 | | | | |
|
| test_post1 | | | | | | | | 78.90 337 | | | | 5.43 425 | 48.81 309 | 85.44 334 | 59.25 296 | | |
|
| test_post | | | | | | | | | | | | 5.46 424 | 50.36 288 | 84.24 342 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 74.00 392 | 51.12 279 | 88.60 301 | | | |
|
| gm-plane-assit | | | | | | 81.40 339 | 53.83 362 | | | 62.72 327 | | 80.94 348 | | 92.39 204 | 63.40 258 | | |
|
| test9_res | | | | | | | | | | | | | | | 84.90 49 | 95.70 26 | 92.87 115 |
|
| agg_prior2 | | | | | | | | | | | | | | | 82.91 76 | 95.45 29 | 92.70 118 |
|
| test_prior4 | | | | | | | 72.60 34 | 89.01 112 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 88.85 118 | | 75.41 99 | 84.91 68 | 93.54 62 | 74.28 29 | | 83.31 70 | 95.86 20 | |
|
| 旧先验2 | | | | | | | | 86.56 197 | | 58.10 364 | 87.04 48 | | | 88.98 293 | 74.07 161 | | |
|
| 新几何2 | | | | | | | | 86.29 206 | | | | | | | | | |
|
| 原ACMM2 | | | | | | | | 86.86 186 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 91.01 259 | 62.37 268 | | |
|
| segment_acmp | | | | | | | | | | | | | 73.08 39 | | | | |
|
| testdata1 | | | | | | | | 84.14 260 | | 75.71 93 | | | | | | | |
|
| plane_prior7 | | | | | | 90.08 108 | 68.51 123 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 89.84 117 | 68.70 118 | | | | | | 60.42 197 | | | | |
|
| plane_prior4 | | | | | | | | | | | | 91.00 133 | | | | | |
|
| plane_prior3 | | | | | | | 68.60 121 | | | 78.44 32 | 78.92 154 | | | | | | |
|
| plane_prior2 | | | | | | | | 91.25 52 | | 79.12 24 | | | | | | | |
|
| plane_prior1 | | | | | | 89.90 116 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 68.71 116 | 90.38 70 | | 77.62 41 | | | | | | 86.16 169 | |
|
| HQP5-MVS | | | | | | | 66.98 163 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 89.33 135 | | 89.17 103 | | 76.41 78 | 77.23 192 | | | | | | |
|
| ACMP_Plane | | | | | | 89.33 135 | | 89.17 103 | | 76.41 78 | 77.23 192 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.47 125 | | |
|
| HQP4-MVS | | | | | | | | | | | 77.24 191 | | | 95.11 87 | | | 91.03 173 |
|
| HQP2-MVS | | | | | | | | | | | | | 60.17 200 | | | | |
|
| NP-MVS | | | | | | 89.62 121 | 68.32 127 | | | | | 90.24 145 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 37.79 416 | 75.16 367 | | 55.10 379 | 66.53 350 | | 49.34 300 | | 53.98 335 | | 87.94 281 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 81.95 230 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 81.25 235 | |
|
| Test By Simon | | | | | | | | | | | | | 64.33 134 | | | | |
|