This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
9.1488.26 1592.84 6091.52 4594.75 173.93 12788.57 2294.67 1875.57 2295.79 5786.77 3595.76 23
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 4992.40 2494.74 275.71 9089.16 1995.10 1375.65 2196.19 4387.07 3496.01 1794.79 21
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 48
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 6294.67 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4294.10 875.90 8892.29 795.66 1081.67 697.38 1187.44 3396.34 1593.95 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PHI-MVS86.43 4086.17 4487.24 4190.88 9070.96 6592.27 3294.07 972.45 15685.22 5891.90 9269.47 7896.42 3783.28 6595.94 1994.35 42
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5193.10 195.72 882.99 197.44 789.07 1496.63 494.88 14
test_241102_TWO94.06 1077.24 5192.78 495.72 881.26 897.44 789.07 1496.58 694.26 47
test_241102_ONE95.30 270.98 6394.06 1077.17 5493.10 195.39 1182.99 197.27 12
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9291.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 36
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DeepC-MVS79.81 287.08 3286.88 3587.69 3391.16 8172.32 4390.31 6893.94 1477.12 5682.82 10294.23 3572.13 4797.09 1684.83 4695.37 3193.65 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FOURS195.00 1072.39 3995.06 193.84 1574.49 11591.30 15
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7693.82 1673.07 14984.86 6592.89 7476.22 1796.33 3884.89 4595.13 3694.40 40
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6485.24 5794.32 3071.76 5296.93 1985.53 4095.79 2294.32 44
CS-MVS-test86.29 4386.48 3885.71 6991.02 8667.21 15692.36 2993.78 1878.97 2883.51 9391.20 11670.65 6895.15 8181.96 8094.89 4294.77 23
3Dnovator+77.84 485.48 5884.47 7588.51 791.08 8473.49 1693.18 1193.78 1880.79 876.66 19893.37 6260.40 19596.75 2677.20 12193.73 6695.29 5
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1673.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 11092.29 795.97 274.28 2997.24 1388.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
EC-MVSNet86.01 4486.38 3984.91 9389.31 13766.27 17092.32 3093.63 2179.37 2084.17 8191.88 9369.04 8695.43 6983.93 6093.77 6593.01 105
ACMMP_NAP88.05 1688.08 1787.94 1993.70 4173.05 2290.86 5493.59 2376.27 8288.14 2495.09 1471.06 6296.67 2987.67 2996.37 1494.09 52
CSCG86.41 4286.19 4387.07 4592.91 5872.48 3790.81 5593.56 2473.95 12583.16 9691.07 12175.94 1895.19 7979.94 10094.38 5893.55 82
MP-MVS-pluss87.67 2187.72 2087.54 3693.64 4472.04 4889.80 7893.50 2575.17 10386.34 4895.29 1270.86 6496.00 5388.78 1996.04 1694.58 30
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FIs82.07 10982.42 9781.04 22188.80 15758.34 29188.26 13693.49 2676.93 6178.47 15891.04 12269.92 7492.34 20269.87 19384.97 17492.44 125
DELS-MVS85.41 6185.30 6385.77 6888.49 16867.93 13385.52 22193.44 2778.70 2983.63 9289.03 16874.57 2495.71 6080.26 9894.04 6393.66 71
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6284.68 6693.99 4870.67 6796.82 2284.18 5995.01 3793.90 61
FC-MVSNet-test81.52 12182.02 10680.03 24288.42 17355.97 32987.95 14693.42 2977.10 5777.38 18090.98 12869.96 7391.79 22068.46 20884.50 18092.33 126
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 10089.57 8893.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 30
HPM-MVScopyleft87.11 3086.98 3187.50 3893.88 3972.16 4592.19 3393.33 3176.07 8583.81 8893.95 5169.77 7696.01 5285.15 4194.66 4794.32 44
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS86.69 3686.95 3285.90 6790.76 9567.57 14392.83 1793.30 3279.67 1784.57 7492.27 8671.47 5795.02 9084.24 5793.46 6795.13 7
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6684.91 6294.44 2770.78 6596.61 3284.53 5294.89 4293.66 71
ACMMPR87.44 2387.23 2788.08 1594.64 1373.59 1293.04 1293.20 3476.78 6684.66 6994.52 2068.81 8896.65 3084.53 5294.90 4194.00 56
SD-MVS88.06 1488.50 1486.71 5192.60 6672.71 2991.81 4193.19 3577.87 3690.32 1794.00 4674.83 2393.78 13787.63 3094.27 6193.65 75
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMMPcopyleft85.89 5185.39 5987.38 3993.59 4572.63 3392.74 2093.18 3676.78 6680.73 12793.82 5364.33 13296.29 3982.67 7790.69 9893.23 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
region2R87.42 2587.20 2888.09 1494.63 1473.55 1393.03 1493.12 3776.73 6984.45 7594.52 2069.09 8296.70 2784.37 5494.83 4594.03 55
DPM-MVS84.93 6984.29 7686.84 4790.20 10473.04 2387.12 17193.04 3869.80 21182.85 10191.22 11573.06 3996.02 5176.72 12894.63 4891.46 155
PGM-MVS86.68 3786.27 4187.90 2294.22 3373.38 1890.22 7093.04 3875.53 9483.86 8694.42 2867.87 9996.64 3182.70 7694.57 5093.66 71
casdiffmvs_mvgpermissive85.99 4586.09 4785.70 7087.65 20567.22 15588.69 12093.04 3879.64 1885.33 5692.54 8373.30 3594.50 10883.49 6291.14 9395.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepC-MVS_fast79.65 386.91 3386.62 3787.76 2793.52 4672.37 4191.26 4893.04 3876.62 7284.22 7993.36 6371.44 5896.76 2580.82 9295.33 3394.16 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UniMVSNet (Re)81.60 12081.11 11783.09 16588.38 17464.41 21187.60 15693.02 4278.42 3278.56 15588.16 19369.78 7593.26 16169.58 19676.49 28591.60 146
sasdasda85.91 4985.87 5186.04 6389.84 11669.44 9590.45 6593.00 4376.70 7088.01 2891.23 11373.28 3693.91 13181.50 8388.80 12594.77 23
canonicalmvs85.91 4985.87 5186.04 6389.84 11669.44 9590.45 6593.00 4376.70 7088.01 2891.23 11373.28 3693.91 13181.50 8388.80 12594.77 23
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 5993.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 43
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 38
No_MVS89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 38
XVS87.18 2986.91 3488.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 9094.17 3667.45 10296.60 3383.06 6694.50 5194.07 53
X-MVStestdata80.37 15077.83 18688.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 9012.47 41267.45 10296.60 3383.06 6694.50 5194.07 53
APD-MVS_3200maxsize85.97 4785.88 5086.22 5792.69 6369.53 8991.93 3792.99 4673.54 13785.94 4994.51 2365.80 12295.61 6183.04 6892.51 7593.53 84
test_prior86.33 5492.61 6569.59 8892.97 5195.48 6693.91 59
IU-MVS95.30 271.25 5792.95 5266.81 25792.39 688.94 1696.63 494.85 19
balanced_conf0386.78 3486.99 3086.15 5891.24 8067.61 14190.51 5992.90 5377.26 5087.44 3791.63 10171.27 6196.06 4785.62 3995.01 3794.78 22
baseline84.93 6984.98 6784.80 9787.30 21765.39 19087.30 16692.88 5477.62 3984.04 8492.26 8771.81 5193.96 12481.31 8690.30 10395.03 9
MSLP-MVS++85.43 6085.76 5384.45 10691.93 7270.24 7690.71 5692.86 5577.46 4784.22 7992.81 7867.16 10692.94 18280.36 9694.35 5990.16 199
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5680.26 1187.78 3094.27 3275.89 1996.81 2387.45 3296.44 993.05 102
casdiffmvspermissive85.11 6685.14 6585.01 8787.20 21965.77 18287.75 15392.83 5777.84 3784.36 7892.38 8572.15 4693.93 13081.27 8890.48 10095.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4092.83 5773.01 15188.58 2194.52 2073.36 3496.49 3684.26 5595.01 3792.70 112
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5192.83 5781.50 585.79 5293.47 6073.02 4097.00 1884.90 4394.94 4094.10 51
CP-MVS87.11 3086.92 3387.68 3494.20 3473.86 793.98 392.82 6076.62 7283.68 8994.46 2467.93 9795.95 5684.20 5894.39 5693.23 93
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 6177.33 4892.12 995.78 480.98 997.40 989.08 1296.41 1293.33 90
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
EIA-MVS83.31 9382.80 9584.82 9589.59 12165.59 18588.21 13792.68 6274.66 11278.96 14586.42 24469.06 8495.26 7775.54 14090.09 10793.62 78
ZD-MVS94.38 2572.22 4492.67 6370.98 18487.75 3294.07 4174.01 3296.70 2784.66 5094.84 44
nrg03083.88 7783.53 8184.96 8986.77 22769.28 9990.46 6492.67 6374.79 10982.95 9791.33 11272.70 4393.09 17680.79 9479.28 25592.50 121
WR-MVS_H78.51 19278.49 16878.56 26988.02 18856.38 32388.43 12792.67 6377.14 5573.89 25987.55 20866.25 11589.24 28058.92 28973.55 32990.06 209
MVSMamba_PlusPlus85.99 4585.96 4986.05 6291.09 8267.64 13989.63 8592.65 6672.89 15484.64 7091.71 9671.85 4996.03 4884.77 4894.45 5494.49 34
MonoMVSNet85.32 6385.07 6686.07 6190.86 9167.64 13989.63 8592.65 6672.35 16184.64 7090.81 13068.76 9096.09 4681.45 8594.45 5494.49 34
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 6677.57 4183.84 8794.40 2972.24 4596.28 4085.65 3895.30 3593.62 78
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ETV-MVS84.90 7184.67 7185.59 7289.39 13268.66 11788.74 11892.64 6979.97 1584.10 8285.71 25769.32 8095.38 7380.82 9291.37 9092.72 111
MGCFI-Net85.06 6885.51 5683.70 14389.42 12963.01 24089.43 9192.62 7076.43 7487.53 3591.34 11172.82 4293.42 15781.28 8788.74 12894.66 28
CANet86.45 3986.10 4687.51 3790.09 10670.94 6789.70 8292.59 7181.78 481.32 11891.43 10970.34 6997.23 1484.26 5593.36 6894.37 41
SR-MVS86.73 3586.67 3686.91 4694.11 3772.11 4792.37 2892.56 7274.50 11486.84 4594.65 1967.31 10495.77 5884.80 4792.85 7192.84 110
alignmvs85.48 5885.32 6285.96 6689.51 12569.47 9289.74 8092.47 7376.17 8387.73 3491.46 10870.32 7093.78 13781.51 8288.95 12294.63 29
原ACMM184.35 11093.01 5768.79 10792.44 7463.96 30281.09 12391.57 10466.06 11895.45 6767.19 21994.82 4688.81 254
HQP_MVS83.64 8383.14 8785.14 8290.08 10768.71 11391.25 4992.44 7479.12 2378.92 14791.00 12660.42 19395.38 7378.71 10686.32 15891.33 156
plane_prior592.44 7495.38 7378.71 10686.32 15891.33 156
CDPH-MVS85.76 5385.29 6487.17 4393.49 4771.08 6188.58 12492.42 7768.32 24684.61 7293.48 5872.32 4496.15 4579.00 10295.43 3094.28 46
UniMVSNet_NR-MVSNet81.88 11281.54 11282.92 17488.46 17063.46 23087.13 17092.37 7880.19 1278.38 15989.14 16471.66 5693.05 17870.05 18976.46 28692.25 130
TSAR-MVS + MP.88.02 1788.11 1687.72 3093.68 4372.13 4691.41 4792.35 7974.62 11388.90 2093.85 5275.75 2096.00 5387.80 2894.63 4895.04 8
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CLD-MVS82.31 10581.65 11184.29 11388.47 16967.73 13785.81 21292.35 7975.78 8978.33 16186.58 23964.01 13594.35 11176.05 13387.48 14290.79 173
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SR-MVS-dyc-post85.77 5285.61 5586.23 5693.06 5570.63 7391.88 3892.27 8173.53 13885.69 5394.45 2565.00 13095.56 6282.75 7291.87 8392.50 121
RE-MVS-def85.48 5793.06 5570.63 7391.88 3892.27 8173.53 13885.69 5394.45 2563.87 13682.75 7291.87 8392.50 121
RPMNet73.51 27170.49 29382.58 18881.32 33365.19 19375.92 34992.27 8157.60 35772.73 27376.45 37252.30 25195.43 6948.14 35977.71 27087.11 294
test1192.23 84
mPP-MVS86.67 3886.32 4087.72 3094.41 2273.55 1392.74 2092.22 8576.87 6382.81 10394.25 3466.44 11296.24 4182.88 7194.28 6093.38 87
DP-MVS Recon83.11 9782.09 10486.15 5894.44 1970.92 6888.79 11492.20 8670.53 19479.17 14391.03 12464.12 13496.03 4868.39 20990.14 10691.50 151
HQP3-MVS92.19 8785.99 166
HQP-MVS82.61 10382.02 10684.37 10889.33 13466.98 15989.17 10092.19 8776.41 7577.23 18590.23 13960.17 19695.11 8477.47 11885.99 16691.03 166
3Dnovator76.31 583.38 9182.31 10186.59 5287.94 19172.94 2890.64 5792.14 8977.21 5375.47 22392.83 7658.56 20294.72 10273.24 16292.71 7392.13 137
iter_conf0585.49 5785.43 5885.67 7191.09 8266.55 16687.18 16992.08 9072.89 15482.90 9991.71 9671.85 4996.03 4884.77 4894.39 5694.42 37
MTGPAbinary92.02 91
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18992.02 9179.45 1985.88 5094.80 1668.07 9596.21 4286.69 3695.34 3293.23 93
MVS_Test83.15 9483.06 8983.41 15286.86 22363.21 23686.11 20292.00 9374.31 11882.87 10089.44 16170.03 7293.21 16577.39 12088.50 13393.81 66
PVSNet_BlendedMVS80.60 14280.02 13582.36 19288.85 15265.40 18886.16 20192.00 9369.34 22178.11 16686.09 25266.02 11994.27 11471.52 17482.06 22187.39 284
PVSNet_Blended80.98 12980.34 13082.90 17588.85 15265.40 18884.43 24492.00 9367.62 25278.11 16685.05 27666.02 11994.27 11471.52 17489.50 11589.01 244
QAPM80.88 13179.50 14785.03 8688.01 19068.97 10491.59 4292.00 9366.63 26675.15 24192.16 8857.70 20995.45 6763.52 24588.76 12790.66 179
LPG-MVS_test82.08 10881.27 11484.50 10389.23 14168.76 10990.22 7091.94 9775.37 9776.64 19991.51 10554.29 23494.91 9278.44 10883.78 19289.83 220
LGP-MVS_train84.50 10389.23 14168.76 10991.94 9775.37 9776.64 19991.51 10554.29 23494.91 9278.44 10883.78 19289.83 220
TEST993.26 5072.96 2588.75 11691.89 9968.44 24485.00 6093.10 6774.36 2895.41 71
train_agg86.43 4086.20 4287.13 4493.26 5072.96 2588.75 11691.89 9968.69 23985.00 6093.10 6774.43 2695.41 7184.97 4295.71 2593.02 104
dcpmvs_285.63 5586.15 4584.06 12991.71 7564.94 19986.47 19291.87 10173.63 13386.60 4793.02 7276.57 1591.87 21983.36 6392.15 7995.35 3
DU-MVS81.12 12880.52 12782.90 17587.80 19763.46 23087.02 17491.87 10179.01 2678.38 15989.07 16665.02 12893.05 17870.05 18976.46 28692.20 133
test_893.13 5272.57 3588.68 12191.84 10368.69 23984.87 6493.10 6774.43 2695.16 80
PAPM_NR83.02 9882.41 9884.82 9592.47 6766.37 16887.93 14891.80 10473.82 12977.32 18290.66 13267.90 9894.90 9470.37 18689.48 11693.19 97
test1286.80 4992.63 6470.70 7291.79 10582.71 10471.67 5596.16 4494.50 5193.54 83
agg_prior92.85 5971.94 5091.78 10684.41 7694.93 91
PAPR81.66 11980.89 12283.99 13790.27 10264.00 21786.76 18591.77 10768.84 23777.13 19189.50 15467.63 10094.88 9667.55 21488.52 13293.09 100
PVSNet_Blended_VisFu82.62 10281.83 11084.96 8990.80 9369.76 8788.74 11891.70 10869.39 21978.96 14588.46 18465.47 12494.87 9774.42 14888.57 13090.24 197
HPM-MVS_fast85.35 6284.95 6986.57 5393.69 4270.58 7592.15 3591.62 10973.89 12882.67 10594.09 4062.60 15195.54 6480.93 9092.93 7093.57 80
ACMM73.20 880.78 13979.84 14083.58 14689.31 13768.37 12289.99 7391.60 11070.28 19977.25 18389.66 14953.37 24493.53 15074.24 15182.85 21188.85 252
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPA-MVSNet80.60 14280.55 12680.76 22888.07 18660.80 26886.86 17991.58 11175.67 9380.24 13189.45 16063.34 13990.25 26270.51 18579.22 25691.23 159
OPM-MVS83.50 8782.95 9285.14 8288.79 15870.95 6689.13 10591.52 11277.55 4480.96 12591.75 9560.71 18694.50 10879.67 10186.51 15689.97 215
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Anonymous2023121178.97 18277.69 19482.81 17990.54 9864.29 21390.11 7291.51 11365.01 28676.16 21488.13 19850.56 27793.03 18169.68 19577.56 27391.11 162
PS-MVSNAJss82.07 10981.31 11384.34 11186.51 23267.27 15289.27 9891.51 11371.75 16679.37 14090.22 14063.15 14594.27 11477.69 11682.36 21891.49 152
TAPA-MVS73.13 979.15 17677.94 18282.79 18289.59 12162.99 24488.16 14091.51 11365.77 27577.14 19091.09 12060.91 18493.21 16550.26 34687.05 14792.17 135
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMP74.13 681.51 12380.57 12584.36 10989.42 12968.69 11689.97 7491.50 11674.46 11675.04 24590.41 13653.82 23994.54 10577.56 11782.91 21089.86 219
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PCF-MVS73.52 780.38 14878.84 16385.01 8787.71 20268.99 10383.65 25791.46 11763.00 30977.77 17490.28 13766.10 11695.09 8861.40 26988.22 13690.94 170
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TranMVSNet+NR-MVSNet80.84 13280.31 13182.42 19087.85 19562.33 24987.74 15491.33 11880.55 977.99 17089.86 14465.23 12692.62 18867.05 22175.24 31392.30 128
PS-CasMVS78.01 20678.09 17977.77 28387.71 20254.39 34788.02 14391.22 11977.50 4673.26 26688.64 17860.73 18588.41 29561.88 26473.88 32690.53 185
v7n78.97 18277.58 19783.14 16383.45 28865.51 18688.32 13491.21 12073.69 13272.41 27886.32 24757.93 20693.81 13669.18 19975.65 29990.11 203
PEN-MVS77.73 21277.69 19477.84 28187.07 22253.91 35087.91 14991.18 12177.56 4373.14 26888.82 17361.23 17889.17 28159.95 27972.37 33790.43 189
MM89.16 689.23 788.97 490.79 9473.65 1092.66 2391.17 12286.57 187.39 3894.97 1571.70 5497.68 192.19 195.63 2895.57 1
save fliter93.80 4072.35 4290.47 6391.17 12274.31 118
CP-MVSNet78.22 19778.34 17377.84 28187.83 19654.54 34587.94 14791.17 12277.65 3873.48 26488.49 18362.24 16088.43 29462.19 26074.07 32290.55 184
114514_t80.68 14079.51 14684.20 11994.09 3867.27 15289.64 8491.11 12558.75 34974.08 25890.72 13158.10 20595.04 8969.70 19489.42 11790.30 195
NR-MVSNet80.23 15279.38 14982.78 18387.80 19763.34 23386.31 19691.09 12679.01 2672.17 28189.07 16667.20 10592.81 18766.08 22875.65 29992.20 133
OpenMVScopyleft72.83 1079.77 15978.33 17484.09 12585.17 25269.91 8490.57 5890.97 12766.70 26072.17 28191.91 9154.70 23193.96 12461.81 26690.95 9588.41 266
MAR-MVS81.84 11380.70 12385.27 7991.32 7971.53 5489.82 7690.92 12869.77 21378.50 15686.21 24862.36 15794.52 10765.36 23392.05 8189.77 223
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
tt080578.73 18677.83 18681.43 20885.17 25260.30 27689.41 9490.90 12971.21 17877.17 18988.73 17446.38 31393.21 16572.57 16978.96 25790.79 173
Anonymous2024052980.19 15478.89 16284.10 12290.60 9664.75 20388.95 10990.90 12965.97 27480.59 12891.17 11849.97 28393.73 14369.16 20082.70 21593.81 66
OMC-MVS82.69 10181.97 10884.85 9488.75 16067.42 14687.98 14490.87 13174.92 10679.72 13691.65 9962.19 16193.96 12475.26 14386.42 15793.16 98
UA-Net85.08 6784.96 6885.45 7592.07 7068.07 13089.78 7990.86 13282.48 284.60 7393.20 6669.35 7995.22 7871.39 17790.88 9693.07 101
test_fmvsm_n_192085.29 6485.34 6085.13 8486.12 23769.93 8388.65 12290.78 13369.97 20788.27 2393.98 4971.39 5991.54 23188.49 2390.45 10193.91 59
EPP-MVSNet83.40 9083.02 9084.57 10190.13 10564.47 20992.32 3090.73 13474.45 11779.35 14191.10 11969.05 8595.12 8272.78 16687.22 14594.13 50
DTE-MVSNet76.99 22676.80 21277.54 28886.24 23453.06 35987.52 15890.66 13577.08 5872.50 27688.67 17760.48 19289.52 27557.33 30670.74 34890.05 210
v1079.74 16078.67 16482.97 17384.06 27664.95 19887.88 15190.62 13673.11 14875.11 24286.56 24061.46 17294.05 12373.68 15475.55 30189.90 217
test_fmvsmconf_n85.92 4886.04 4885.57 7385.03 25869.51 9089.62 8790.58 13773.42 14087.75 3294.02 4472.85 4193.24 16290.37 390.75 9793.96 57
v119279.59 16378.43 17183.07 16783.55 28664.52 20586.93 17790.58 13770.83 18577.78 17385.90 25359.15 19993.94 12773.96 15377.19 27690.76 175
v114480.03 15679.03 15983.01 17083.78 28264.51 20687.11 17290.57 13971.96 16578.08 16886.20 24961.41 17393.94 12774.93 14477.23 27490.60 182
XVG-OURS-SEG-HR80.81 13479.76 14183.96 13985.60 24568.78 10883.54 26290.50 14070.66 19276.71 19791.66 9860.69 18791.26 24276.94 12481.58 22691.83 142
MVS78.19 20076.99 20881.78 20085.66 24366.99 15884.66 23490.47 14155.08 36972.02 28385.27 26863.83 13794.11 12266.10 22789.80 11384.24 339
XVG-OURS80.41 14779.23 15583.97 13885.64 24469.02 10283.03 27390.39 14271.09 18177.63 17691.49 10754.62 23391.35 24075.71 13683.47 20391.54 149
MVSFormer82.85 10082.05 10585.24 8087.35 21170.21 7790.50 6190.38 14368.55 24181.32 11889.47 15661.68 16693.46 15478.98 10390.26 10492.05 139
test_djsdf80.30 15179.32 15283.27 15683.98 27865.37 19190.50 6190.38 14368.55 24176.19 21088.70 17556.44 22093.46 15478.98 10380.14 24590.97 169
CPTT-MVS83.73 8083.33 8684.92 9293.28 4970.86 6992.09 3690.38 14368.75 23879.57 13892.83 7660.60 19193.04 18080.92 9191.56 8890.86 172
v14419279.47 16678.37 17282.78 18383.35 28963.96 21886.96 17590.36 14669.99 20677.50 17785.67 26060.66 18893.77 13974.27 15076.58 28490.62 180
v192192079.22 17478.03 18082.80 18083.30 29163.94 21986.80 18190.33 14769.91 20977.48 17885.53 26358.44 20393.75 14173.60 15576.85 28190.71 178
MVS_111021_HR85.14 6584.75 7086.32 5591.65 7672.70 3085.98 20490.33 14776.11 8482.08 10891.61 10371.36 6094.17 12081.02 8992.58 7492.08 138
v124078.99 18177.78 18982.64 18683.21 29363.54 22786.62 18890.30 14969.74 21677.33 18185.68 25957.04 21793.76 14073.13 16376.92 27890.62 180
test_fmvsmconf0.1_n85.61 5685.65 5485.50 7482.99 30369.39 9789.65 8390.29 15073.31 14387.77 3194.15 3871.72 5393.23 16390.31 490.67 9993.89 62
v879.97 15879.02 16082.80 18084.09 27564.50 20887.96 14590.29 15074.13 12475.24 23886.81 22662.88 15093.89 13474.39 14975.40 30890.00 211
mvs_tets79.13 17777.77 19083.22 16084.70 26266.37 16889.17 10090.19 15269.38 22075.40 22889.46 15844.17 33493.15 17276.78 12780.70 23790.14 200
jajsoiax79.29 17377.96 18183.27 15684.68 26366.57 16589.25 9990.16 15369.20 22775.46 22589.49 15545.75 32493.13 17476.84 12580.80 23590.11 203
Vis-MVSNetpermissive83.46 8882.80 9585.43 7690.25 10368.74 11190.30 6990.13 15476.33 8180.87 12692.89 7461.00 18394.20 11872.45 17190.97 9493.35 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PS-MVSNAJ81.69 11781.02 11983.70 14389.51 12568.21 12784.28 24890.09 15570.79 18681.26 12285.62 26263.15 14594.29 11275.62 13888.87 12488.59 262
xiu_mvs_v2_base81.69 11781.05 11883.60 14589.15 14468.03 13284.46 24290.02 15670.67 18981.30 12186.53 24263.17 14494.19 11975.60 13988.54 13188.57 263
FA-MVS(test-final)80.96 13079.91 13884.10 12288.30 17765.01 19784.55 23990.01 15773.25 14679.61 13787.57 20658.35 20494.72 10271.29 17886.25 16092.56 118
v2v48280.23 15279.29 15383.05 16883.62 28464.14 21587.04 17389.97 15873.61 13478.18 16587.22 21761.10 18193.82 13576.11 13176.78 28391.18 160
test_yl81.17 12680.47 12883.24 15889.13 14563.62 22386.21 19989.95 15972.43 15981.78 11489.61 15157.50 21293.58 14570.75 18186.90 14992.52 119
DCV-MVSNet81.17 12680.47 12883.24 15889.13 14563.62 22386.21 19989.95 15972.43 15981.78 11489.61 15157.50 21293.58 14570.75 18186.90 14992.52 119
V4279.38 17278.24 17682.83 17781.10 33565.50 18785.55 21789.82 16171.57 17278.21 16386.12 25160.66 18893.18 17175.64 13775.46 30589.81 222
VNet82.21 10682.41 9881.62 20390.82 9260.93 26584.47 24089.78 16276.36 8084.07 8391.88 9364.71 13190.26 26170.68 18388.89 12393.66 71
diffmvspermissive82.10 10781.88 10982.76 18583.00 30163.78 22283.68 25689.76 16372.94 15282.02 10989.85 14565.96 12190.79 25582.38 7887.30 14493.71 70
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XVG-ACMP-BASELINE76.11 24374.27 25281.62 20383.20 29464.67 20483.60 26089.75 16469.75 21471.85 28487.09 22232.78 37792.11 20969.99 19180.43 24188.09 270
EI-MVSNet-Vis-set84.19 7483.81 7985.31 7888.18 17967.85 13487.66 15589.73 16580.05 1482.95 9789.59 15370.74 6694.82 9880.66 9584.72 17793.28 92
EI-MVSNet-UG-set83.81 7883.38 8485.09 8587.87 19467.53 14487.44 16289.66 16679.74 1682.23 10789.41 16270.24 7194.74 10179.95 9983.92 19192.99 107
test_fmvsmconf0.01_n84.73 7284.52 7485.34 7780.25 34369.03 10089.47 8989.65 16773.24 14786.98 4394.27 3266.62 10893.23 16390.26 589.95 11193.78 68
PAPM77.68 21676.40 22381.51 20687.29 21861.85 25683.78 25589.59 16864.74 28871.23 28988.70 17562.59 15293.66 14452.66 33187.03 14889.01 244
MVS_030487.69 2087.55 2288.12 1389.45 12871.76 5191.47 4689.54 16982.14 386.65 4694.28 3168.28 9497.46 690.81 295.31 3495.15 6
anonymousdsp78.60 19077.15 20482.98 17280.51 34167.08 15787.24 16889.53 17065.66 27775.16 24087.19 21952.52 24792.25 20577.17 12279.34 25489.61 227
MG-MVS83.41 8983.45 8283.28 15592.74 6262.28 25188.17 13989.50 17175.22 9981.49 11792.74 8266.75 10795.11 8472.85 16591.58 8792.45 124
PLCcopyleft70.83 1178.05 20476.37 22483.08 16691.88 7467.80 13588.19 13889.46 17264.33 29469.87 30688.38 18653.66 24093.58 14558.86 29082.73 21387.86 274
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SDMVSNet80.38 14880.18 13480.99 22289.03 15064.94 19980.45 30589.40 17375.19 10176.61 20189.98 14260.61 19087.69 30376.83 12683.55 20190.33 193
Fast-Effi-MVS+80.81 13479.92 13783.47 14888.85 15264.51 20685.53 21989.39 17470.79 18678.49 15785.06 27567.54 10193.58 14567.03 22286.58 15492.32 127
IterMVS-LS80.06 15579.38 14982.11 19485.89 24063.20 23786.79 18289.34 17574.19 12175.45 22686.72 22966.62 10892.39 19872.58 16876.86 28090.75 176
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
API-MVS81.99 11181.23 11584.26 11890.94 8870.18 8291.10 5289.32 17671.51 17378.66 15288.28 18965.26 12595.10 8764.74 23991.23 9287.51 282
GBi-Net78.40 19377.40 19981.40 21087.60 20663.01 24088.39 12989.28 17771.63 16875.34 23187.28 21354.80 22791.11 24562.72 25279.57 24990.09 205
test178.40 19377.40 19981.40 21087.60 20663.01 24088.39 12989.28 17771.63 16875.34 23187.28 21354.80 22791.11 24562.72 25279.57 24990.09 205
FMVSNet177.44 21976.12 22681.40 21086.81 22663.01 24088.39 12989.28 17770.49 19574.39 25587.28 21349.06 29791.11 24560.91 27378.52 26090.09 205
cdsmvs_eth3d_5k19.96 38026.61 3820.00 4000.00 4230.00 4250.00 41189.26 1800.00 4180.00 41988.61 17961.62 1680.00 4190.00 4180.00 4170.00 415
ab-mvs79.51 16478.97 16181.14 21888.46 17060.91 26683.84 25489.24 18170.36 19679.03 14488.87 17263.23 14390.21 26365.12 23582.57 21692.28 129
cascas76.72 23274.64 24582.99 17185.78 24265.88 17882.33 27789.21 18260.85 33072.74 27281.02 33647.28 30693.75 14167.48 21585.02 17389.34 234
eth_miper_zixun_eth77.92 20876.69 21781.61 20583.00 30161.98 25483.15 26789.20 18369.52 21874.86 24884.35 28861.76 16592.56 19171.50 17672.89 33590.28 196
h-mvs3383.15 9482.19 10286.02 6590.56 9770.85 7088.15 14189.16 18476.02 8684.67 6791.39 11061.54 16995.50 6582.71 7475.48 30391.72 145
miper_ehance_all_eth78.59 19177.76 19181.08 22082.66 31061.56 26083.65 25789.15 18568.87 23675.55 22283.79 30066.49 11192.03 21173.25 16176.39 28889.64 226
Effi-MVS+83.62 8583.08 8885.24 8088.38 17467.45 14588.89 11189.15 18575.50 9582.27 10688.28 18969.61 7794.45 11077.81 11587.84 13793.84 65
c3_l78.75 18577.91 18381.26 21482.89 30561.56 26084.09 25289.13 18769.97 20775.56 22184.29 28966.36 11392.09 21073.47 15875.48 30390.12 202
LTVRE_ROB69.57 1376.25 24174.54 24881.41 20988.60 16564.38 21279.24 31989.12 18870.76 18869.79 30887.86 20049.09 29693.20 16856.21 31680.16 24386.65 304
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
F-COLMAP76.38 24074.33 25182.50 18989.28 13966.95 16288.41 12889.03 18964.05 29966.83 33488.61 17946.78 31092.89 18357.48 30378.55 25987.67 277
FMVSNet278.20 19977.21 20381.20 21687.60 20662.89 24587.47 16089.02 19071.63 16875.29 23787.28 21354.80 22791.10 24862.38 25779.38 25389.61 227
ACMH67.68 1675.89 24673.93 25581.77 20188.71 16266.61 16488.62 12389.01 19169.81 21066.78 33586.70 23341.95 34991.51 23455.64 31778.14 26687.17 290
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
miper_enhance_ethall77.87 21076.86 21080.92 22581.65 32461.38 26282.68 27488.98 19265.52 27975.47 22382.30 32565.76 12392.00 21372.95 16476.39 28889.39 232
无先验87.48 15988.98 19260.00 33694.12 12167.28 21788.97 247
AdaColmapbinary80.58 14579.42 14884.06 12993.09 5468.91 10589.36 9688.97 19469.27 22275.70 21989.69 14857.20 21695.77 5863.06 25088.41 13487.50 283
EI-MVSNet80.52 14679.98 13682.12 19384.28 27063.19 23886.41 19388.95 19574.18 12278.69 15087.54 20966.62 10892.43 19672.57 16980.57 23990.74 177
MVSTER79.01 18077.88 18582.38 19183.07 29864.80 20284.08 25388.95 19569.01 23478.69 15087.17 22054.70 23192.43 19674.69 14580.57 23989.89 218
131476.53 23475.30 24080.21 23983.93 27962.32 25084.66 23488.81 19760.23 33470.16 30084.07 29555.30 22490.73 25767.37 21683.21 20787.59 281
UniMVSNet_ETH3D79.10 17878.24 17681.70 20286.85 22460.24 27787.28 16788.79 19874.25 12076.84 19290.53 13549.48 28991.56 22967.98 21082.15 21993.29 91
xiu_mvs_v1_base_debu80.80 13679.72 14284.03 13487.35 21170.19 7985.56 21488.77 19969.06 23181.83 11088.16 19350.91 27292.85 18478.29 11287.56 13989.06 239
xiu_mvs_v1_base80.80 13679.72 14284.03 13487.35 21170.19 7985.56 21488.77 19969.06 23181.83 11088.16 19350.91 27292.85 18478.29 11287.56 13989.06 239
xiu_mvs_v1_base_debi80.80 13679.72 14284.03 13487.35 21170.19 7985.56 21488.77 19969.06 23181.83 11088.16 19350.91 27292.85 18478.29 11287.56 13989.06 239
FMVSNet377.88 20976.85 21180.97 22486.84 22562.36 24886.52 19188.77 19971.13 17975.34 23186.66 23554.07 23791.10 24862.72 25279.57 24989.45 231
patch_mono-283.65 8284.54 7280.99 22290.06 11165.83 17984.21 24988.74 20371.60 17185.01 5992.44 8474.51 2583.50 33782.15 7992.15 7993.64 77
GeoE81.71 11681.01 12083.80 14289.51 12564.45 21088.97 10888.73 20471.27 17778.63 15389.76 14766.32 11493.20 16869.89 19286.02 16593.74 69
CANet_DTU80.61 14179.87 13982.83 17785.60 24563.17 23987.36 16388.65 20576.37 7975.88 21688.44 18553.51 24293.07 17773.30 16089.74 11492.25 130
HyFIR lowres test77.53 21875.40 23683.94 14089.59 12166.62 16380.36 30688.64 20656.29 36576.45 20385.17 27257.64 21093.28 16061.34 27183.10 20991.91 141
WR-MVS79.49 16579.22 15680.27 23888.79 15858.35 29085.06 22688.61 20778.56 3077.65 17588.34 18763.81 13890.66 25864.98 23777.22 27591.80 144
BH-untuned79.47 16678.60 16682.05 19589.19 14365.91 17786.07 20388.52 20872.18 16275.42 22787.69 20361.15 18093.54 14960.38 27686.83 15186.70 303
IS-MVSNet83.15 9482.81 9484.18 12089.94 11463.30 23491.59 4288.46 20979.04 2579.49 13992.16 8865.10 12794.28 11367.71 21291.86 8594.95 10
pm-mvs177.25 22476.68 21878.93 26384.22 27258.62 28986.41 19388.36 21071.37 17573.31 26588.01 19961.22 17989.15 28264.24 24373.01 33489.03 243
UGNet80.83 13379.59 14584.54 10288.04 18768.09 12989.42 9388.16 21176.95 6076.22 20989.46 15849.30 29393.94 12768.48 20790.31 10291.60 146
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VDD-MVS83.01 9982.36 10084.96 8991.02 8666.40 16788.91 11088.11 21277.57 4184.39 7793.29 6452.19 25393.91 13177.05 12388.70 12994.57 32
Effi-MVS+-dtu80.03 15678.57 16784.42 10785.13 25668.74 11188.77 11588.10 21374.99 10574.97 24683.49 30657.27 21593.36 15873.53 15680.88 23391.18 160
v14878.72 18777.80 18881.47 20782.73 30861.96 25586.30 19788.08 21473.26 14576.18 21185.47 26562.46 15592.36 20071.92 17373.82 32790.09 205
EG-PatchMatch MVS74.04 26571.82 27780.71 22984.92 25967.42 14685.86 20988.08 21466.04 27264.22 35683.85 29735.10 37492.56 19157.44 30480.83 23482.16 364
cl2278.07 20377.01 20681.23 21582.37 31761.83 25783.55 26187.98 21668.96 23575.06 24483.87 29661.40 17491.88 21873.53 15676.39 28889.98 214
test_fmvsmvis_n_192084.02 7683.87 7884.49 10584.12 27469.37 9888.15 14187.96 21770.01 20583.95 8593.23 6568.80 8991.51 23488.61 2089.96 11092.57 117
pmmvs674.69 25973.39 26178.61 26781.38 33057.48 30686.64 18787.95 21864.99 28770.18 29886.61 23650.43 27989.52 27562.12 26270.18 35088.83 253
MVP-Stereo76.12 24274.46 25081.13 21985.37 25069.79 8684.42 24587.95 21865.03 28567.46 32785.33 26753.28 24591.73 22458.01 30083.27 20681.85 365
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
cl____77.72 21376.76 21480.58 23182.49 31460.48 27383.09 26987.87 22069.22 22574.38 25685.22 27162.10 16291.53 23271.09 17975.41 30789.73 225
DIV-MVS_self_test77.72 21376.76 21480.58 23182.48 31560.48 27383.09 26987.86 22169.22 22574.38 25685.24 26962.10 16291.53 23271.09 17975.40 30889.74 224
BH-w/o78.21 19877.33 20280.84 22688.81 15665.13 19584.87 23087.85 22269.75 21474.52 25384.74 28261.34 17593.11 17558.24 29885.84 16884.27 338
FE-MVS77.78 21175.68 22984.08 12688.09 18566.00 17483.13 26887.79 22368.42 24578.01 16985.23 27045.50 32795.12 8259.11 28785.83 16991.11 162
HY-MVS69.67 1277.95 20777.15 20480.36 23587.57 21060.21 27883.37 26487.78 22466.11 27075.37 23087.06 22463.27 14190.48 26061.38 27082.43 21790.40 191
1112_ss77.40 22176.43 22280.32 23789.11 14960.41 27583.65 25787.72 22562.13 32273.05 26986.72 22962.58 15389.97 26762.11 26380.80 23590.59 183
mvs_anonymous79.42 16979.11 15880.34 23684.45 26957.97 29782.59 27587.62 22667.40 25676.17 21388.56 18268.47 9189.59 27470.65 18486.05 16493.47 85
ACMH+68.96 1476.01 24574.01 25382.03 19688.60 16565.31 19288.86 11287.55 22770.25 20167.75 32387.47 21141.27 35093.19 17058.37 29675.94 29687.60 279
tfpnnormal74.39 26073.16 26478.08 27886.10 23958.05 29484.65 23687.53 22870.32 19871.22 29085.63 26154.97 22589.86 26843.03 37875.02 31586.32 307
CHOSEN 1792x268877.63 21775.69 22883.44 14989.98 11368.58 11978.70 32887.50 22956.38 36475.80 21886.84 22558.67 20191.40 23961.58 26885.75 17090.34 192
ambc75.24 31173.16 38650.51 37663.05 40087.47 23064.28 35577.81 36617.80 40289.73 27257.88 30160.64 37885.49 322
Fast-Effi-MVS+-dtu78.02 20576.49 22082.62 18783.16 29766.96 16186.94 17687.45 23172.45 15671.49 28884.17 29354.79 23091.58 22767.61 21380.31 24289.30 235
D2MVS74.82 25873.21 26379.64 25279.81 35062.56 24780.34 30787.35 23264.37 29368.86 31582.66 32046.37 31490.10 26467.91 21181.24 22986.25 308
TSAR-MVS + GP.85.71 5485.33 6186.84 4791.34 7872.50 3689.07 10687.28 23376.41 7585.80 5190.22 14074.15 3195.37 7681.82 8191.88 8292.65 116
fmvsm_l_conf0.5_n84.47 7384.54 7284.27 11685.42 24868.81 10688.49 12687.26 23468.08 24888.03 2793.49 5772.04 4891.77 22188.90 1789.14 12192.24 132
hse-mvs281.72 11580.94 12184.07 12788.72 16167.68 13885.87 20887.26 23476.02 8684.67 6788.22 19261.54 16993.48 15282.71 7473.44 33191.06 164
AUN-MVS79.21 17577.60 19684.05 13288.71 16267.61 14185.84 21087.26 23469.08 23077.23 18588.14 19753.20 24693.47 15375.50 14173.45 33091.06 164
BH-RMVSNet79.61 16178.44 17083.14 16389.38 13365.93 17684.95 22987.15 23773.56 13678.19 16489.79 14656.67 21993.36 15859.53 28386.74 15290.13 201
Test_1112_low_res76.40 23975.44 23479.27 25789.28 13958.09 29381.69 28487.07 23859.53 34172.48 27786.67 23461.30 17689.33 27860.81 27580.15 24490.41 190
KD-MVS_self_test68.81 31667.59 32372.46 33774.29 37845.45 38877.93 33987.00 23963.12 30663.99 35878.99 35842.32 34484.77 32956.55 31464.09 37187.16 292
mvsmamba80.60 14279.38 14984.27 11689.74 11967.24 15487.47 16086.95 24070.02 20475.38 22988.93 16951.24 26992.56 19175.47 14289.22 11993.00 106
LS3D76.95 22874.82 24483.37 15390.45 9967.36 14989.15 10486.94 24161.87 32469.52 30990.61 13351.71 26594.53 10646.38 36786.71 15388.21 268
miper_lstm_enhance74.11 26473.11 26577.13 29380.11 34559.62 28372.23 36886.92 24266.76 25970.40 29582.92 31556.93 21882.92 34169.06 20172.63 33688.87 251
fmvsm_l_conf0.5_n_a84.13 7584.16 7784.06 12985.38 24968.40 12188.34 13386.85 24367.48 25587.48 3693.40 6170.89 6391.61 22588.38 2589.22 11992.16 136
jason81.39 12480.29 13284.70 9986.63 23169.90 8585.95 20586.77 24463.24 30581.07 12489.47 15661.08 18292.15 20878.33 11190.07 10992.05 139
jason: jason.
OurMVSNet-221017-074.26 26272.42 27279.80 24783.76 28359.59 28485.92 20786.64 24566.39 26866.96 33287.58 20539.46 35891.60 22665.76 23169.27 35388.22 267
VPNet78.69 18878.66 16578.76 26588.31 17655.72 33284.45 24386.63 24676.79 6578.26 16290.55 13459.30 19889.70 27366.63 22377.05 27790.88 171
USDC70.33 30568.37 30776.21 29980.60 33956.23 32679.19 32186.49 24760.89 32961.29 36885.47 26531.78 38089.47 27753.37 32876.21 29482.94 357
lupinMVS81.39 12480.27 13384.76 9887.35 21170.21 7785.55 21786.41 24862.85 31281.32 11888.61 17961.68 16692.24 20678.41 11090.26 10491.83 142
TR-MVS77.44 21976.18 22581.20 21688.24 17863.24 23584.61 23786.40 24967.55 25377.81 17286.48 24354.10 23693.15 17257.75 30282.72 21487.20 289
旧先验191.96 7165.79 18186.37 25093.08 7169.31 8192.74 7288.74 259
GA-MVS76.87 22975.17 24181.97 19882.75 30762.58 24681.44 28986.35 25172.16 16474.74 24982.89 31646.20 31892.02 21268.85 20481.09 23191.30 158
CDS-MVSNet79.07 17977.70 19383.17 16287.60 20668.23 12684.40 24686.20 25267.49 25476.36 20686.54 24161.54 16990.79 25561.86 26587.33 14390.49 187
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS_111021_LR82.61 10382.11 10384.11 12188.82 15571.58 5385.15 22486.16 25374.69 11180.47 12991.04 12262.29 15890.55 25980.33 9790.08 10890.20 198
MSDG73.36 27570.99 28880.49 23384.51 26865.80 18080.71 30086.13 25465.70 27665.46 34783.74 30144.60 33090.91 25351.13 33976.89 27984.74 334
TransMVSNet (Re)75.39 25574.56 24777.86 28085.50 24757.10 31186.78 18386.09 25572.17 16371.53 28787.34 21263.01 14989.31 27956.84 31161.83 37487.17 290
VDDNet81.52 12180.67 12484.05 13290.44 10064.13 21689.73 8185.91 25671.11 18083.18 9593.48 5850.54 27893.49 15173.40 15988.25 13594.54 33
sd_testset77.70 21577.40 19978.60 26889.03 15060.02 27979.00 32385.83 25775.19 10176.61 20189.98 14254.81 22685.46 32362.63 25683.55 20190.33 193
Baseline_NR-MVSNet78.15 20178.33 17477.61 28685.79 24156.21 32786.78 18385.76 25873.60 13577.93 17187.57 20665.02 12888.99 28467.14 22075.33 31087.63 278
Anonymous2024052168.80 31767.22 32673.55 32674.33 37754.11 34883.18 26685.61 25958.15 35261.68 36780.94 33830.71 38381.27 35057.00 30973.34 33385.28 325
test_vis1_n_192075.52 25175.78 22774.75 31779.84 34957.44 30783.26 26585.52 26062.83 31379.34 14286.17 25045.10 32979.71 35678.75 10581.21 23087.10 296
新几何183.42 15093.13 5270.71 7185.48 26157.43 35981.80 11391.98 9063.28 14092.27 20464.60 24092.99 6987.27 288
EPNet83.72 8182.92 9386.14 6084.22 27269.48 9191.05 5385.27 26281.30 676.83 19391.65 9966.09 11795.56 6276.00 13493.85 6493.38 87
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UnsupCasMVSNet_eth67.33 32865.99 33271.37 34373.48 38351.47 36975.16 35685.19 26365.20 28260.78 37080.93 34042.35 34377.20 36757.12 30753.69 38985.44 323
IB-MVS68.01 1575.85 24773.36 26283.31 15484.76 26166.03 17283.38 26385.06 26470.21 20269.40 31081.05 33545.76 32394.66 10465.10 23675.49 30289.25 236
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TAMVS78.89 18477.51 19883.03 16987.80 19767.79 13684.72 23385.05 26567.63 25176.75 19687.70 20262.25 15990.82 25458.53 29487.13 14690.49 187
CL-MVSNet_self_test72.37 28671.46 28175.09 31279.49 35653.53 35280.76 29885.01 26669.12 22970.51 29382.05 32957.92 20784.13 33252.27 33366.00 36687.60 279
testdata79.97 24390.90 8964.21 21484.71 26759.27 34385.40 5592.91 7362.02 16489.08 28368.95 20291.37 9086.63 305
MS-PatchMatch73.83 26872.67 26877.30 29183.87 28066.02 17381.82 28184.66 26861.37 32868.61 31882.82 31847.29 30588.21 29659.27 28484.32 18777.68 380
ET-MVSNet_ETH3D78.63 18976.63 21984.64 10086.73 22869.47 9285.01 22784.61 26969.54 21766.51 34286.59 23750.16 28191.75 22276.26 13084.24 18892.69 114
CNLPA78.08 20276.79 21381.97 19890.40 10171.07 6287.59 15784.55 27066.03 27372.38 27989.64 15057.56 21186.04 31659.61 28283.35 20588.79 255
MIMVSNet168.58 31966.78 32973.98 32480.07 34651.82 36580.77 29784.37 27164.40 29259.75 37582.16 32836.47 37083.63 33642.73 37970.33 34986.48 306
KD-MVS_2432*160066.22 33763.89 33973.21 32875.47 37553.42 35470.76 37584.35 27264.10 29766.52 34078.52 36034.55 37584.98 32650.40 34250.33 39381.23 368
miper_refine_blended66.22 33763.89 33973.21 32875.47 37553.42 35470.76 37584.35 27264.10 29766.52 34078.52 36034.55 37584.98 32650.40 34250.33 39381.23 368
test_040272.79 28370.44 29479.84 24688.13 18265.99 17585.93 20684.29 27465.57 27867.40 32985.49 26446.92 30992.61 18935.88 39274.38 32180.94 370
EU-MVSNet68.53 32167.61 32271.31 34678.51 36247.01 38584.47 24084.27 27542.27 39266.44 34384.79 28140.44 35583.76 33458.76 29268.54 35883.17 351
thisisatest053079.40 17077.76 19184.31 11287.69 20465.10 19687.36 16384.26 27670.04 20377.42 17988.26 19149.94 28494.79 10070.20 18784.70 17893.03 103
COLMAP_ROBcopyleft66.92 1773.01 28070.41 29580.81 22787.13 22165.63 18488.30 13584.19 27762.96 31063.80 36087.69 20338.04 36692.56 19146.66 36474.91 31684.24 339
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tttt051779.40 17077.91 18383.90 14188.10 18463.84 22088.37 13284.05 27871.45 17476.78 19589.12 16549.93 28694.89 9570.18 18883.18 20892.96 108
CMPMVSbinary51.72 2170.19 30768.16 31076.28 29873.15 38757.55 30579.47 31683.92 27948.02 38556.48 38584.81 28043.13 33986.42 31362.67 25581.81 22584.89 332
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous20240521178.25 19677.01 20681.99 19791.03 8560.67 27084.77 23283.90 28070.65 19380.00 13491.20 11641.08 35291.43 23865.21 23485.26 17293.85 63
XXY-MVS75.41 25475.56 23274.96 31383.59 28557.82 30180.59 30283.87 28166.54 26774.93 24788.31 18863.24 14280.09 35562.16 26176.85 28186.97 297
DP-MVS76.78 23174.57 24683.42 15093.29 4869.46 9488.55 12583.70 28263.98 30170.20 29788.89 17154.01 23894.80 9946.66 36481.88 22486.01 315
tfpn200view976.42 23875.37 23879.55 25589.13 14557.65 30385.17 22283.60 28373.41 14176.45 20386.39 24552.12 25491.95 21448.33 35583.75 19589.07 237
thres40076.50 23575.37 23879.86 24589.13 14557.65 30385.17 22283.60 28373.41 14176.45 20386.39 24552.12 25491.95 21448.33 35583.75 19590.00 211
SixPastTwentyTwo73.37 27371.26 28679.70 24985.08 25757.89 29985.57 21383.56 28571.03 18365.66 34685.88 25442.10 34792.57 19059.11 28763.34 37288.65 261
thres20075.55 25074.47 24978.82 26487.78 20057.85 30083.07 27183.51 28672.44 15875.84 21784.42 28452.08 25791.75 22247.41 36283.64 20086.86 299
IterMVS-SCA-FT75.43 25373.87 25780.11 24182.69 30964.85 20181.57 28683.47 28769.16 22870.49 29484.15 29451.95 26088.15 29769.23 19872.14 34087.34 286
CVMVSNet72.99 28172.58 27074.25 32184.28 27050.85 37486.41 19383.45 28844.56 38973.23 26787.54 20949.38 29185.70 31865.90 22978.44 26286.19 310
ITE_SJBPF78.22 27581.77 32360.57 27183.30 28969.25 22467.54 32587.20 21836.33 37187.28 30654.34 32374.62 31986.80 300
thisisatest051577.33 22275.38 23783.18 16185.27 25163.80 22182.11 28083.27 29065.06 28475.91 21583.84 29849.54 28894.27 11467.24 21886.19 16191.48 153
thres100view90076.50 23575.55 23379.33 25689.52 12456.99 31285.83 21183.23 29173.94 12676.32 20787.12 22151.89 26291.95 21448.33 35583.75 19589.07 237
thres600view776.50 23575.44 23479.68 25089.40 13157.16 30985.53 21983.23 29173.79 13076.26 20887.09 22251.89 26291.89 21748.05 36083.72 19890.00 211
test22291.50 7768.26 12584.16 25083.20 29354.63 37079.74 13591.63 10158.97 20091.42 8986.77 301
EPNet_dtu75.46 25274.86 24377.23 29282.57 31254.60 34486.89 17883.09 29471.64 16766.25 34485.86 25555.99 22188.04 29954.92 32086.55 15589.05 242
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_s_conf0.5_n83.80 7983.71 8084.07 12786.69 22967.31 15089.46 9083.07 29571.09 18186.96 4493.70 5569.02 8791.47 23688.79 1884.62 17993.44 86
fmvsm_s_conf0.1_n83.56 8683.38 8484.10 12284.86 26067.28 15189.40 9583.01 29670.67 18987.08 4193.96 5068.38 9291.45 23788.56 2284.50 18093.56 81
testing9176.54 23375.66 23179.18 26088.43 17255.89 33081.08 29283.00 29773.76 13175.34 23184.29 28946.20 31890.07 26564.33 24184.50 18091.58 148
TDRefinement67.49 32664.34 33676.92 29473.47 38461.07 26484.86 23182.98 29859.77 33858.30 37985.13 27326.06 38887.89 30047.92 36160.59 37981.81 366
OpenMVS_ROBcopyleft64.09 1970.56 30368.19 30977.65 28580.26 34259.41 28685.01 22782.96 29958.76 34865.43 34882.33 32437.63 36891.23 24445.34 37476.03 29582.32 361
fmvsm_s_conf0.5_n_a83.63 8483.41 8384.28 11486.14 23668.12 12889.43 9182.87 30070.27 20087.27 4093.80 5469.09 8291.58 22788.21 2683.65 19993.14 99
fmvsm_s_conf0.1_n_a83.32 9282.99 9184.28 11483.79 28168.07 13089.34 9782.85 30169.80 21187.36 3994.06 4268.34 9391.56 22987.95 2783.46 20493.21 96
RPSCF73.23 27771.46 28178.54 27082.50 31359.85 28082.18 27982.84 30258.96 34671.15 29189.41 16245.48 32884.77 32958.82 29171.83 34291.02 168
CostFormer75.24 25673.90 25679.27 25782.65 31158.27 29280.80 29582.73 30361.57 32575.33 23583.13 31155.52 22291.07 25164.98 23778.34 26588.45 264
IterMVS74.29 26172.94 26678.35 27481.53 32763.49 22981.58 28582.49 30468.06 24969.99 30383.69 30351.66 26685.54 32165.85 23071.64 34386.01 315
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_cas_vis1_n_192073.76 26973.74 25973.81 32575.90 37059.77 28180.51 30382.40 30558.30 35181.62 11685.69 25844.35 33376.41 37476.29 12978.61 25885.23 326
WTY-MVS75.65 24975.68 22975.57 30586.40 23356.82 31477.92 34082.40 30565.10 28376.18 21187.72 20163.13 14880.90 35260.31 27781.96 22289.00 246
pmmvs474.03 26771.91 27680.39 23481.96 32068.32 12381.45 28882.14 30759.32 34269.87 30685.13 27352.40 25088.13 29860.21 27874.74 31884.73 335
FMVSNet569.50 31267.96 31374.15 32282.97 30455.35 33780.01 31182.12 30862.56 31763.02 36181.53 33236.92 36981.92 34648.42 35474.06 32385.17 329
mamv476.81 23078.23 17872.54 33686.12 23765.75 18378.76 32782.07 30964.12 29672.97 27091.02 12567.97 9668.08 40083.04 6878.02 26783.80 346
baseline176.98 22776.75 21677.66 28488.13 18255.66 33385.12 22581.89 31073.04 15076.79 19488.90 17062.43 15687.78 30263.30 24971.18 34689.55 229
UnsupCasMVSNet_bld63.70 34561.53 35170.21 35273.69 38151.39 37072.82 36681.89 31055.63 36757.81 38171.80 38638.67 36278.61 36049.26 35152.21 39180.63 372
LFMVS81.82 11481.23 11583.57 14791.89 7363.43 23289.84 7581.85 31277.04 5983.21 9493.10 6752.26 25293.43 15671.98 17289.95 11193.85 63
sss73.60 27073.64 26073.51 32782.80 30655.01 34176.12 34781.69 31362.47 31874.68 25085.85 25657.32 21478.11 36360.86 27480.93 23287.39 284
pmmvs-eth3d70.50 30467.83 31778.52 27277.37 36666.18 17181.82 28181.51 31458.90 34763.90 35980.42 34342.69 34286.28 31458.56 29365.30 36883.11 353
TinyColmap67.30 32964.81 33474.76 31681.92 32256.68 31880.29 30881.49 31560.33 33256.27 38683.22 30824.77 39287.66 30445.52 37269.47 35279.95 375
testing9976.09 24475.12 24279.00 26188.16 18055.50 33580.79 29681.40 31673.30 14475.17 23984.27 29144.48 33290.02 26664.28 24284.22 18991.48 153
tpmvs71.09 29669.29 30176.49 29782.04 31956.04 32878.92 32581.37 31764.05 29967.18 33178.28 36249.74 28789.77 27049.67 34972.37 33783.67 347
WBMVS73.43 27272.81 26775.28 31087.91 19250.99 37378.59 33181.31 31865.51 28174.47 25484.83 27946.39 31286.68 30958.41 29577.86 26888.17 269
pmmvs571.55 29270.20 29875.61 30477.83 36356.39 32281.74 28380.89 31957.76 35567.46 32784.49 28349.26 29485.32 32557.08 30875.29 31185.11 330
ANet_high50.57 36746.10 37163.99 37048.67 41539.13 40470.99 37480.85 32061.39 32731.18 40457.70 40017.02 40373.65 39131.22 39715.89 41279.18 377
LCM-MVSNet54.25 35849.68 36867.97 36553.73 41245.28 39166.85 39080.78 32135.96 40139.45 40262.23 3958.70 41278.06 36448.24 35851.20 39280.57 373
PVSNet64.34 1872.08 29070.87 29075.69 30386.21 23556.44 32174.37 36280.73 32262.06 32370.17 29982.23 32742.86 34183.31 33954.77 32184.45 18487.32 287
baseline275.70 24873.83 25881.30 21383.26 29261.79 25882.57 27680.65 32366.81 25766.88 33383.42 30757.86 20892.19 20763.47 24679.57 24989.91 216
ppachtmachnet_test70.04 30867.34 32578.14 27779.80 35161.13 26379.19 32180.59 32459.16 34465.27 34979.29 35346.75 31187.29 30549.33 35066.72 36186.00 317
Gipumacopyleft45.18 37241.86 37555.16 38477.03 36851.52 36832.50 40880.52 32532.46 40427.12 40735.02 4089.52 41175.50 38122.31 40560.21 38038.45 407
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
Anonymous2023120668.60 31867.80 31871.02 34880.23 34450.75 37578.30 33680.47 32656.79 36266.11 34582.63 32146.35 31578.95 35943.62 37775.70 29883.36 350
LCM-MVSNet-Re77.05 22576.94 20977.36 28987.20 21951.60 36780.06 30980.46 32775.20 10067.69 32486.72 22962.48 15488.98 28563.44 24789.25 11891.51 150
testing1175.14 25774.01 25378.53 27188.16 18056.38 32380.74 29980.42 32870.67 18972.69 27583.72 30243.61 33789.86 26862.29 25983.76 19489.36 233
tpm273.26 27671.46 28178.63 26683.34 29056.71 31780.65 30180.40 32956.63 36373.55 26382.02 33051.80 26491.24 24356.35 31578.42 26387.95 271
CR-MVSNet73.37 27371.27 28579.67 25181.32 33365.19 19375.92 34980.30 33059.92 33772.73 27381.19 33352.50 24886.69 30859.84 28077.71 27087.11 294
Patchmtry70.74 30069.16 30375.49 30880.72 33754.07 34974.94 36080.30 33058.34 35070.01 30181.19 33352.50 24886.54 31053.37 32871.09 34785.87 319
tpm cat170.57 30268.31 30877.35 29082.41 31657.95 29878.08 33780.22 33252.04 37668.54 31977.66 36752.00 25987.84 30151.77 33472.07 34186.25 308
MDTV_nov1_ep1369.97 29983.18 29553.48 35377.10 34580.18 33360.45 33169.33 31280.44 34248.89 30086.90 30751.60 33678.51 261
AllTest70.96 29768.09 31279.58 25385.15 25463.62 22384.58 23879.83 33462.31 31960.32 37286.73 22732.02 37888.96 28750.28 34471.57 34486.15 311
TestCases79.58 25385.15 25463.62 22379.83 33462.31 31960.32 37286.73 22732.02 37888.96 28750.28 34471.57 34486.15 311
test_fmvs1_n70.86 29970.24 29772.73 33472.51 39155.28 33881.27 29179.71 33651.49 38078.73 14984.87 27827.54 38777.02 36876.06 13279.97 24785.88 318
Vis-MVSNet (Re-imp)78.36 19578.45 16978.07 27988.64 16451.78 36686.70 18679.63 33774.14 12375.11 24290.83 12961.29 17789.75 27158.10 29991.60 8692.69 114
MIMVSNet70.69 30169.30 30074.88 31484.52 26756.35 32575.87 35179.42 33864.59 28967.76 32282.41 32241.10 35181.54 34846.64 36681.34 22786.75 302
dmvs_re71.14 29570.58 29172.80 33381.96 32059.68 28275.60 35379.34 33968.55 24169.27 31380.72 34149.42 29076.54 37152.56 33277.79 26982.19 363
SCA74.22 26372.33 27379.91 24484.05 27762.17 25279.96 31279.29 34066.30 26972.38 27980.13 34551.95 26088.60 29259.25 28577.67 27288.96 248
testing22274.04 26572.66 26978.19 27687.89 19355.36 33681.06 29379.20 34171.30 17674.65 25183.57 30539.11 36188.67 29151.43 33885.75 17090.53 185
tpmrst72.39 28472.13 27573.18 33180.54 34049.91 37879.91 31379.08 34263.11 30771.69 28679.95 34755.32 22382.77 34265.66 23273.89 32586.87 298
test_fmvs170.93 29870.52 29272.16 33873.71 38055.05 34080.82 29478.77 34351.21 38178.58 15484.41 28531.20 38276.94 36975.88 13580.12 24684.47 337
PatchmatchNetpermissive73.12 27871.33 28478.49 27383.18 29560.85 26779.63 31478.57 34464.13 29571.73 28579.81 35051.20 27085.97 31757.40 30576.36 29388.66 260
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDA-MVSNet-bldmvs66.68 33263.66 34175.75 30279.28 35860.56 27273.92 36478.35 34564.43 29150.13 39479.87 34944.02 33583.67 33546.10 36956.86 38283.03 355
new-patchmatchnet61.73 34961.73 35061.70 37372.74 38924.50 41669.16 38278.03 34661.40 32656.72 38475.53 37838.42 36376.48 37345.95 37057.67 38184.13 341
our_test_369.14 31467.00 32775.57 30579.80 35158.80 28777.96 33877.81 34759.55 34062.90 36478.25 36347.43 30483.97 33351.71 33567.58 36083.93 344
test20.0367.45 32766.95 32868.94 35675.48 37444.84 39377.50 34177.67 34866.66 26163.01 36283.80 29947.02 30878.40 36142.53 38168.86 35783.58 348
WB-MVSnew71.96 29171.65 27972.89 33284.67 26651.88 36482.29 27877.57 34962.31 31973.67 26283.00 31353.49 24381.10 35145.75 37182.13 22085.70 320
test-LLR72.94 28272.43 27174.48 31881.35 33158.04 29578.38 33277.46 35066.66 26169.95 30479.00 35648.06 30279.24 35766.13 22584.83 17586.15 311
test-mter71.41 29370.39 29674.48 31881.35 33158.04 29578.38 33277.46 35060.32 33369.95 30479.00 35636.08 37279.24 35766.13 22584.83 17586.15 311
ECVR-MVScopyleft79.61 16179.26 15480.67 23090.08 10754.69 34387.89 15077.44 35274.88 10780.27 13092.79 7948.96 29992.45 19568.55 20692.50 7694.86 17
UBG73.08 27972.27 27475.51 30788.02 18851.29 37178.35 33577.38 35365.52 27973.87 26082.36 32345.55 32586.48 31255.02 31984.39 18688.75 257
tpm72.37 28671.71 27874.35 32082.19 31852.00 36179.22 32077.29 35464.56 29072.95 27183.68 30451.35 26783.26 34058.33 29775.80 29787.81 275
LF4IMVS64.02 34462.19 34869.50 35470.90 39253.29 35776.13 34677.18 35552.65 37558.59 37780.98 33723.55 39576.52 37253.06 33066.66 36278.68 378
test111179.43 16879.18 15780.15 24089.99 11253.31 35687.33 16577.05 35675.04 10480.23 13292.77 8148.97 29892.33 20368.87 20392.40 7894.81 20
K. test v371.19 29468.51 30679.21 25983.04 30057.78 30284.35 24776.91 35772.90 15362.99 36382.86 31739.27 35991.09 25061.65 26752.66 39088.75 257
UWE-MVS72.13 28971.49 28074.03 32386.66 23047.70 38281.40 29076.89 35863.60 30475.59 22084.22 29239.94 35785.62 32048.98 35286.13 16388.77 256
testgi66.67 33366.53 33067.08 36775.62 37341.69 40275.93 34876.50 35966.11 27065.20 35286.59 23735.72 37374.71 38643.71 37673.38 33284.84 333
test_fmvs268.35 32367.48 32470.98 34969.50 39451.95 36280.05 31076.38 36049.33 38374.65 25184.38 28623.30 39675.40 38474.51 14775.17 31485.60 321
test_vis1_n69.85 31169.21 30271.77 34072.66 39055.27 33981.48 28776.21 36152.03 37775.30 23683.20 31028.97 38576.22 37674.60 14678.41 26483.81 345
PatchMatch-RL72.38 28570.90 28976.80 29688.60 16567.38 14879.53 31576.17 36262.75 31569.36 31182.00 33145.51 32684.89 32853.62 32680.58 23878.12 379
JIA-IIPM66.32 33662.82 34776.82 29577.09 36761.72 25965.34 39575.38 36358.04 35464.51 35462.32 39442.05 34886.51 31151.45 33769.22 35482.21 362
ADS-MVSNet266.20 33963.33 34274.82 31579.92 34758.75 28867.55 38775.19 36453.37 37365.25 35075.86 37542.32 34480.53 35441.57 38268.91 35585.18 327
ETVMVS72.25 28871.05 28775.84 30187.77 20151.91 36379.39 31774.98 36569.26 22373.71 26182.95 31440.82 35486.14 31546.17 36884.43 18589.47 230
PatchT68.46 32267.85 31570.29 35180.70 33843.93 39572.47 36774.88 36660.15 33570.55 29276.57 37149.94 28481.59 34750.58 34074.83 31785.34 324
dp66.80 33165.43 33370.90 35079.74 35348.82 38175.12 35874.77 36759.61 33964.08 35777.23 36842.89 34080.72 35348.86 35366.58 36383.16 352
MDA-MVSNet_test_wron65.03 34062.92 34471.37 34375.93 36956.73 31569.09 38474.73 36857.28 36054.03 38977.89 36445.88 32074.39 38849.89 34861.55 37582.99 356
TESTMET0.1,169.89 31069.00 30472.55 33579.27 35956.85 31378.38 33274.71 36957.64 35668.09 32177.19 36937.75 36776.70 37063.92 24484.09 19084.10 342
YYNet165.03 34062.91 34571.38 34275.85 37156.60 31969.12 38374.66 37057.28 36054.12 38877.87 36545.85 32174.48 38749.95 34761.52 37683.05 354
test_fmvs363.36 34661.82 34967.98 36462.51 40346.96 38677.37 34374.03 37145.24 38867.50 32678.79 35912.16 40872.98 39272.77 16766.02 36583.99 343
PMMVS69.34 31368.67 30571.35 34575.67 37262.03 25375.17 35573.46 37250.00 38268.68 31679.05 35452.07 25878.13 36261.16 27282.77 21273.90 386
PVSNet_057.27 2061.67 35059.27 35368.85 35879.61 35457.44 30768.01 38573.44 37355.93 36658.54 37870.41 38944.58 33177.55 36647.01 36335.91 40171.55 389
Syy-MVS68.05 32467.85 31568.67 36084.68 26340.97 40378.62 32973.08 37466.65 26466.74 33679.46 35152.11 25682.30 34432.89 39576.38 29182.75 358
myMVS_eth3d67.02 33066.29 33169.21 35584.68 26342.58 39878.62 32973.08 37466.65 26466.74 33679.46 35131.53 38182.30 34439.43 38776.38 29182.75 358
test0.0.03 168.00 32567.69 32068.90 35777.55 36447.43 38375.70 35272.95 37666.66 26166.56 33882.29 32648.06 30275.87 37944.97 37574.51 32083.41 349
testing368.56 32067.67 32171.22 34787.33 21642.87 39783.06 27271.54 37770.36 19669.08 31484.38 28630.33 38485.69 31937.50 39075.45 30685.09 331
ADS-MVSNet64.36 34362.88 34668.78 35979.92 34747.17 38467.55 38771.18 37853.37 37365.25 35075.86 37542.32 34473.99 38941.57 38268.91 35585.18 327
Patchmatch-RL test70.24 30667.78 31977.61 28677.43 36559.57 28571.16 37270.33 37962.94 31168.65 31772.77 38450.62 27685.49 32269.58 19666.58 36387.77 276
gg-mvs-nofinetune69.95 30967.96 31375.94 30083.07 29854.51 34677.23 34470.29 38063.11 30770.32 29662.33 39343.62 33688.69 29053.88 32587.76 13884.62 336
door-mid69.98 381
GG-mvs-BLEND75.38 30981.59 32655.80 33179.32 31869.63 38267.19 33073.67 38243.24 33888.90 28950.41 34184.50 18081.45 367
FPMVS53.68 36151.64 36359.81 37665.08 40051.03 37269.48 38069.58 38341.46 39340.67 40072.32 38516.46 40470.00 39724.24 40465.42 36758.40 400
door69.44 384
Patchmatch-test64.82 34263.24 34369.57 35379.42 35749.82 37963.49 39969.05 38551.98 37859.95 37480.13 34550.91 27270.98 39340.66 38473.57 32887.90 273
CHOSEN 280x42066.51 33464.71 33571.90 33981.45 32863.52 22857.98 40268.95 38653.57 37262.59 36576.70 37046.22 31775.29 38555.25 31879.68 24876.88 382
MVStest156.63 35652.76 36268.25 36361.67 40453.25 35871.67 37068.90 38738.59 39750.59 39383.05 31225.08 39070.66 39436.76 39138.56 40080.83 371
EGC-MVSNET52.07 36547.05 36967.14 36683.51 28760.71 26980.50 30467.75 3880.07 4150.43 41675.85 37724.26 39381.54 34828.82 39862.25 37359.16 398
m2depth59.91 35257.10 35668.34 36267.13 39846.65 38774.64 36167.41 38948.30 38462.52 36685.04 27720.40 39875.93 37842.55 38045.90 39982.44 360
EPMVS69.02 31568.16 31071.59 34179.61 35449.80 38077.40 34266.93 39062.82 31470.01 30179.05 35445.79 32277.86 36556.58 31375.26 31287.13 293
APD_test153.31 36249.93 36763.42 37265.68 39950.13 37771.59 37166.90 39134.43 40240.58 40171.56 3878.65 41376.27 37534.64 39455.36 38763.86 396
lessismore_v078.97 26281.01 33657.15 31065.99 39261.16 36982.82 31839.12 36091.34 24159.67 28146.92 39688.43 265
dmvs_testset62.63 34764.11 33858.19 37778.55 36124.76 41575.28 35465.94 39367.91 25060.34 37176.01 37453.56 24173.94 39031.79 39667.65 35975.88 384
pmmvs357.79 35454.26 35968.37 36164.02 40256.72 31675.12 35865.17 39440.20 39452.93 39069.86 39020.36 39975.48 38245.45 37355.25 38872.90 388
MVS-HIRNet59.14 35357.67 35563.57 37181.65 32443.50 39671.73 36965.06 39539.59 39651.43 39157.73 39938.34 36482.58 34339.53 38573.95 32464.62 395
PM-MVS66.41 33564.14 33773.20 33073.92 37956.45 32078.97 32464.96 39663.88 30364.72 35380.24 34419.84 40083.44 33866.24 22464.52 37079.71 376
PMVScopyleft37.38 2244.16 37340.28 37755.82 38240.82 41742.54 40065.12 39663.99 39734.43 40224.48 40857.12 4013.92 41876.17 37717.10 40955.52 38648.75 403
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test250677.30 22376.49 22079.74 24890.08 10752.02 36087.86 15263.10 39874.88 10780.16 13392.79 7938.29 36592.35 20168.74 20592.50 7694.86 17
test_method31.52 37729.28 38138.23 39127.03 4196.50 42220.94 41062.21 3994.05 41322.35 41152.50 40413.33 40547.58 41127.04 40134.04 40360.62 397
WB-MVS54.94 35754.72 35855.60 38373.50 38220.90 41774.27 36361.19 40059.16 34450.61 39274.15 38047.19 30775.78 38017.31 40835.07 40270.12 390
test_vis1_rt60.28 35158.42 35465.84 36867.25 39755.60 33470.44 37760.94 40144.33 39059.00 37666.64 39124.91 39168.67 39862.80 25169.48 35173.25 387
SSC-MVS53.88 36053.59 36054.75 38572.87 38819.59 41873.84 36560.53 40257.58 35849.18 39673.45 38346.34 31675.47 38316.20 41132.28 40469.20 391
testf145.72 36941.96 37357.00 37856.90 40645.32 38966.14 39259.26 40326.19 40630.89 40560.96 3974.14 41670.64 39526.39 40246.73 39755.04 401
APD_test245.72 36941.96 37357.00 37856.90 40645.32 38966.14 39259.26 40326.19 40630.89 40560.96 3974.14 41670.64 39526.39 40246.73 39755.04 401
test_f52.09 36450.82 36555.90 38153.82 41142.31 40159.42 40158.31 40536.45 40056.12 38770.96 38812.18 40757.79 40753.51 32756.57 38467.60 392
new_pmnet50.91 36650.29 36652.78 38668.58 39534.94 40863.71 39756.63 40639.73 39544.95 39765.47 39221.93 39758.48 40634.98 39356.62 38364.92 394
DSMNet-mixed57.77 35556.90 35760.38 37567.70 39635.61 40669.18 38153.97 40732.30 40557.49 38279.88 34840.39 35668.57 39938.78 38872.37 33776.97 381
PMMVS240.82 37438.86 37846.69 38853.84 41016.45 41948.61 40549.92 40837.49 39831.67 40360.97 3968.14 41456.42 40828.42 39930.72 40567.19 393
mvsany_test162.30 34861.26 35265.41 36969.52 39354.86 34266.86 38949.78 40946.65 38668.50 32083.21 30949.15 29566.28 40156.93 31060.77 37775.11 385
test_vis3_rt49.26 36847.02 37056.00 38054.30 40945.27 39266.76 39148.08 41036.83 39944.38 39853.20 4037.17 41564.07 40356.77 31255.66 38558.65 399
E-PMN31.77 37630.64 37935.15 39352.87 41327.67 41057.09 40347.86 41124.64 40816.40 41333.05 40911.23 40954.90 40914.46 41218.15 41022.87 409
EMVS30.81 37829.65 38034.27 39450.96 41425.95 41456.58 40446.80 41224.01 40915.53 41430.68 41012.47 40654.43 41012.81 41317.05 41122.43 410
mvsany_test353.99 35951.45 36461.61 37455.51 40844.74 39463.52 39845.41 41343.69 39158.11 38076.45 37217.99 40163.76 40454.77 32147.59 39576.34 383
MVEpermissive26.22 2330.37 37925.89 38343.81 39044.55 41635.46 40728.87 40939.07 41418.20 41018.58 41240.18 4072.68 41947.37 41217.07 41023.78 40948.60 404
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dongtai45.42 37145.38 37245.55 38973.36 38526.85 41367.72 38634.19 41554.15 37149.65 39556.41 40225.43 38962.94 40519.45 40628.09 40646.86 405
kuosan39.70 37540.40 37637.58 39264.52 40126.98 41165.62 39433.02 41646.12 38742.79 39948.99 40524.10 39446.56 41312.16 41426.30 40739.20 406
MTMP92.18 3432.83 417
tmp_tt18.61 38121.40 38410.23 3974.82 42010.11 42034.70 40730.74 4181.48 41423.91 41026.07 41128.42 38613.41 41627.12 40015.35 4137.17 411
DeepMVS_CXcopyleft27.40 39540.17 41826.90 41224.59 41917.44 41123.95 40948.61 4069.77 41026.48 41418.06 40724.47 40828.83 408
N_pmnet52.79 36353.26 36151.40 38778.99 3607.68 42169.52 3793.89 42051.63 37957.01 38374.98 37940.83 35365.96 40237.78 38964.67 36980.56 374
wuyk23d16.82 38215.94 38519.46 39658.74 40531.45 40939.22 4063.74 4216.84 4126.04 4152.70 4151.27 42024.29 41510.54 41514.40 4142.63 412
testmvs6.04 3858.02 3880.10 3990.08 4210.03 42469.74 3780.04 4220.05 4160.31 4171.68 4160.02 4220.04 4170.24 4160.02 4150.25 414
test1236.12 3848.11 3870.14 3980.06 4220.09 42371.05 3730.03 4230.04 4170.25 4181.30 4170.05 4210.03 4180.21 4170.01 4160.29 413
test_blank0.00 3870.00 3900.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 4180.00 4230.00 4190.00 4180.00 4170.00 415
uanet_test0.00 3870.00 3900.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 4180.00 4230.00 4190.00 4180.00 4170.00 415
DCPMVS0.00 3870.00 3900.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 4180.00 4230.00 4190.00 4180.00 4170.00 415
pcd_1.5k_mvsjas5.26 3867.02 3890.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 41863.15 1450.00 4190.00 4180.00 4170.00 415
sosnet-low-res0.00 3870.00 3900.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 4180.00 4230.00 4190.00 4180.00 4170.00 415
sosnet0.00 3870.00 3900.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 4180.00 4230.00 4190.00 4180.00 4170.00 415
uncertanet0.00 3870.00 3900.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 4180.00 4230.00 4190.00 4180.00 4170.00 415
Regformer0.00 3870.00 3900.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 4180.00 4230.00 4190.00 4180.00 4170.00 415
n20.00 424
nn0.00 424
ab-mvs-re7.23 3839.64 3860.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 41986.72 2290.00 4230.00 4190.00 4180.00 4170.00 415
uanet0.00 3870.00 3900.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 4180.00 4230.00 4190.00 4180.00 4170.00 415
WAC-MVS42.58 39839.46 386
PC_three_145268.21 24792.02 1294.00 4682.09 595.98 5584.58 5196.68 294.95 10
eth-test20.00 423
eth-test0.00 423
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 6196.48 894.88 14
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 989.42 996.57 794.67 26
GSMVS88.96 248
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26888.96 248
sam_mvs50.01 282
test_post178.90 3265.43 41448.81 30185.44 32459.25 285
test_post5.46 41350.36 28084.24 331
patchmatchnet-post74.00 38151.12 27188.60 292
gm-plane-assit81.40 32953.83 35162.72 31680.94 33892.39 19863.40 248
test9_res84.90 4395.70 2692.87 109
agg_prior282.91 7095.45 2992.70 112
test_prior472.60 3489.01 107
test_prior288.85 11375.41 9684.91 6293.54 5674.28 2983.31 6495.86 20
旧先验286.56 19058.10 35387.04 4288.98 28574.07 152
新几何286.29 198
原ACMM286.86 179
testdata291.01 25262.37 258
segment_acmp73.08 38
testdata184.14 25175.71 90
plane_prior790.08 10768.51 120
plane_prior689.84 11668.70 11560.42 193
plane_prior491.00 126
plane_prior368.60 11878.44 3178.92 147
plane_prior291.25 4979.12 23
plane_prior189.90 115
plane_prior68.71 11390.38 6777.62 3986.16 162
HQP5-MVS66.98 159
HQP-NCC89.33 13489.17 10076.41 7577.23 185
ACMP_Plane89.33 13489.17 10076.41 7577.23 185
BP-MVS77.47 118
HQP4-MVS77.24 18495.11 8491.03 166
HQP2-MVS60.17 196
NP-MVS89.62 12068.32 12390.24 138
MDTV_nov1_ep13_2view37.79 40575.16 35655.10 36866.53 33949.34 29253.98 32487.94 272
ACMMP++_ref81.95 223
ACMMP++81.25 228
Test By Simon64.33 132