This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
9.1488.26 1592.84 6391.52 4894.75 173.93 13688.57 2694.67 2275.57 2295.79 5886.77 3895.76 23
SF-MVS88.46 1288.74 1287.64 3592.78 6471.95 4992.40 2494.74 275.71 9389.16 2095.10 1675.65 2196.19 4687.07 3796.01 1794.79 22
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5995.06 194.23 378.38 3492.78 495.74 682.45 397.49 489.42 1296.68 294.95 11
test_0728_SECOND87.71 3295.34 171.43 5893.49 994.23 397.49 489.08 1596.41 1294.21 49
test_one_060195.07 771.46 5794.14 578.27 3692.05 1195.74 680.83 11
test072695.27 571.25 5993.60 694.11 677.33 5192.81 395.79 380.98 9
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 4378.35 1396.77 2489.59 1194.22 6094.67 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 9192.29 795.66 1081.67 697.38 1187.44 3696.34 1593.95 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PHI-MVS86.43 4386.17 4887.24 4190.88 9270.96 6892.27 3294.07 972.45 16685.22 6491.90 9969.47 8196.42 4083.28 7195.94 1994.35 43
SED-MVS90.08 290.85 287.77 2695.30 270.98 6693.57 794.06 1077.24 5493.10 195.72 882.99 197.44 789.07 1796.63 494.88 15
test_241102_TWO94.06 1077.24 5492.78 495.72 881.26 897.44 789.07 1796.58 694.26 48
test_241102_ONE95.30 270.98 6694.06 1077.17 5793.10 195.39 1482.99 197.27 12
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9591.06 1696.03 176.84 1497.03 1789.09 1495.65 2794.47 38
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DeepC-MVS79.81 287.08 3586.88 3987.69 3391.16 8472.32 4390.31 7193.94 1477.12 5982.82 10894.23 4072.13 4897.09 1684.83 5295.37 3193.65 78
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FOURS195.00 1072.39 3995.06 193.84 1574.49 12291.30 15
MCST-MVS87.37 2987.25 3087.73 2894.53 1772.46 3889.82 7993.82 1673.07 15984.86 7192.89 8076.22 1796.33 4184.89 5195.13 3694.40 41
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6785.24 6394.32 3571.76 5296.93 1985.53 4695.79 2294.32 45
SPE-MVS-test86.29 4786.48 4285.71 7391.02 8867.21 16092.36 2993.78 1878.97 2983.51 10091.20 12370.65 7095.15 8481.96 8694.89 4294.77 24
3Dnovator+77.84 485.48 6184.47 7788.51 791.08 8673.49 1693.18 1193.78 1880.79 876.66 20693.37 6860.40 19996.75 2677.20 12893.73 6495.29 5
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 7272.96 2593.73 593.67 2080.19 1288.10 3094.80 2073.76 3397.11 1587.51 3495.82 2194.90 14
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 11692.29 795.97 274.28 2997.24 1388.58 2496.91 194.87 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
EC-MVSNet86.01 4886.38 4384.91 9689.31 13866.27 17392.32 3093.63 2179.37 2184.17 8691.88 10069.04 8995.43 7083.93 6693.77 6393.01 111
ACMMP_NAP88.05 1688.08 1787.94 1993.70 4173.05 2290.86 5793.59 2376.27 8588.14 2995.09 1771.06 6496.67 2987.67 3296.37 1494.09 53
CSCG86.41 4586.19 4787.07 4592.91 6172.48 3790.81 5893.56 2473.95 13483.16 10391.07 12875.94 1895.19 8279.94 10694.38 5693.55 85
MP-MVS-pluss87.67 2187.72 2087.54 3693.64 4472.04 4889.80 8193.50 2575.17 10686.34 5495.29 1570.86 6696.00 5488.78 2296.04 1694.58 33
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FIs82.07 11682.42 10381.04 22888.80 15858.34 30088.26 14193.49 2676.93 6478.47 16591.04 12969.92 7792.34 20869.87 20384.97 18192.44 131
DELS-MVS85.41 6485.30 6685.77 7288.49 16967.93 13785.52 22993.44 2778.70 3083.63 9989.03 17574.57 2495.71 6180.26 10394.04 6193.66 74
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
GST-MVS87.42 2787.26 2987.89 2494.12 3672.97 2492.39 2693.43 2876.89 6584.68 7293.99 5470.67 6996.82 2284.18 6495.01 3793.90 63
FC-MVSNet-test81.52 12882.02 11380.03 24988.42 17455.97 33987.95 15193.42 2977.10 6077.38 18790.98 13569.96 7691.79 22668.46 21884.50 18792.33 133
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5392.24 7169.03 10389.57 9093.39 3077.53 4789.79 1994.12 4578.98 1296.58 3585.66 4395.72 2494.58 33
HPM-MVScopyleft87.11 3386.98 3587.50 3893.88 3972.16 4592.19 3393.33 3176.07 8883.81 9493.95 5769.77 7996.01 5385.15 4794.66 4794.32 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS86.69 3986.95 3685.90 7190.76 9667.57 14792.83 1793.30 3279.67 1784.57 7992.27 9271.47 5795.02 9384.24 6293.46 6795.13 8
HFP-MVS87.58 2287.47 2687.94 1994.58 1673.54 1593.04 1293.24 3376.78 6984.91 6894.44 3170.78 6796.61 3284.53 5794.89 4293.66 74
ACMMPR87.44 2587.23 3188.08 1594.64 1373.59 1293.04 1293.20 3476.78 6984.66 7594.52 2468.81 9196.65 3084.53 5794.90 4194.00 57
reproduce_model87.28 3087.39 2886.95 4893.10 5671.24 6391.60 4293.19 3574.69 11788.80 2495.61 1170.29 7396.44 3986.20 4293.08 6993.16 101
reproduce-ours87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10988.96 2195.54 1271.20 6296.54 3686.28 4093.49 6593.06 106
our_new_method87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10988.96 2195.54 1271.20 6296.54 3686.28 4093.49 6593.06 106
SD-MVS88.06 1488.50 1486.71 5492.60 6972.71 2991.81 4193.19 3577.87 3790.32 1794.00 5274.83 2393.78 14187.63 3394.27 5993.65 78
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMMPcopyleft85.89 5585.39 6287.38 3993.59 4572.63 3392.74 2093.18 3976.78 6980.73 13393.82 5964.33 13496.29 4282.67 8390.69 10193.23 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
region2R87.42 2787.20 3288.09 1494.63 1473.55 1393.03 1493.12 4076.73 7284.45 8094.52 2469.09 8596.70 2784.37 5994.83 4594.03 56
DPM-MVS84.93 7184.29 7886.84 5090.20 10573.04 2387.12 17693.04 4169.80 22182.85 10791.22 12273.06 4096.02 5276.72 13694.63 4891.46 162
PGM-MVS86.68 4086.27 4587.90 2294.22 3373.38 1890.22 7393.04 4175.53 9783.86 9294.42 3267.87 10196.64 3182.70 8294.57 5093.66 74
casdiffmvs_mvgpermissive85.99 4986.09 5185.70 7487.65 20967.22 15988.69 12593.04 4179.64 1985.33 6292.54 8973.30 3594.50 11283.49 6891.14 9695.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepC-MVS_fast79.65 386.91 3686.62 4187.76 2793.52 4672.37 4191.26 5193.04 4176.62 7584.22 8493.36 6971.44 5896.76 2580.82 9795.33 3394.16 50
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UniMVSNet (Re)81.60 12781.11 12483.09 17188.38 17564.41 21787.60 16193.02 4578.42 3378.56 16288.16 20069.78 7893.26 16569.58 20676.49 29291.60 153
sasdasda85.91 5385.87 5586.04 6789.84 11769.44 9890.45 6893.00 4676.70 7388.01 3391.23 12073.28 3693.91 13581.50 8988.80 12994.77 24
canonicalmvs85.91 5385.87 5586.04 6789.84 11769.44 9890.45 6893.00 4676.70 7388.01 3391.23 12073.28 3693.91 13581.50 8988.80 12994.77 24
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6293.00 4680.90 788.06 3194.06 4876.43 1696.84 2188.48 2795.99 1894.34 44
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4997.53 289.67 996.44 994.41 39
No_MVS89.16 194.34 2775.53 292.99 4997.53 289.67 996.44 994.41 39
XVS87.18 3286.91 3888.00 1794.42 2073.33 1992.78 1892.99 4979.14 2283.67 9794.17 4267.45 10496.60 3383.06 7294.50 5194.07 54
X-MVStestdata80.37 15777.83 19388.00 1794.42 2073.33 1992.78 1892.99 4979.14 2283.67 9712.47 42367.45 10496.60 3383.06 7294.50 5194.07 54
APD-MVS_3200maxsize85.97 5185.88 5486.22 6092.69 6669.53 9291.93 3792.99 4973.54 14685.94 5594.51 2765.80 12495.61 6283.04 7492.51 7693.53 87
test_prior86.33 5792.61 6869.59 9192.97 5495.48 6793.91 61
IU-MVS95.30 271.25 5992.95 5566.81 26892.39 688.94 1996.63 494.85 20
balanced_conf0386.78 3786.99 3486.15 6391.24 8367.61 14590.51 6292.90 5677.26 5387.44 4391.63 10871.27 6196.06 4985.62 4595.01 3794.78 23
baseline84.93 7184.98 6984.80 10087.30 22165.39 19387.30 17292.88 5777.62 4184.04 8992.26 9371.81 5193.96 12881.31 9190.30 10695.03 10
MSLP-MVS++85.43 6385.76 5784.45 10991.93 7570.24 7990.71 5992.86 5877.46 4984.22 8492.81 8467.16 10892.94 18680.36 10194.35 5790.16 206
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5980.26 1187.78 3694.27 3775.89 1996.81 2387.45 3596.44 993.05 108
casdiffmvspermissive85.11 6885.14 6885.01 9087.20 22365.77 18587.75 15892.83 6077.84 3884.36 8392.38 9172.15 4793.93 13481.27 9390.48 10395.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVScopyleft87.44 2587.52 2587.19 4294.24 3272.39 3991.86 4092.83 6073.01 16188.58 2594.52 2473.36 3496.49 3884.26 6095.01 3792.70 118
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5492.83 6081.50 585.79 5893.47 6673.02 4197.00 1884.90 4994.94 4094.10 52
CP-MVS87.11 3386.92 3787.68 3494.20 3473.86 793.98 392.82 6376.62 7583.68 9694.46 2867.93 9995.95 5784.20 6394.39 5593.23 96
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5993.49 992.73 6477.33 5192.12 995.78 480.98 997.40 989.08 1596.41 1293.33 93
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
GDP-MVS83.52 9282.64 10286.16 6288.14 18368.45 12489.13 10892.69 6572.82 16583.71 9591.86 10255.69 22895.35 7980.03 10489.74 11794.69 27
EIA-MVS83.31 9982.80 10084.82 9889.59 12265.59 18888.21 14292.68 6674.66 11978.96 15286.42 25169.06 8795.26 8075.54 14890.09 11093.62 81
ZD-MVS94.38 2572.22 4492.67 6770.98 19487.75 3894.07 4774.01 3296.70 2784.66 5594.84 44
nrg03083.88 8183.53 8684.96 9286.77 23269.28 10290.46 6792.67 6774.79 11582.95 10491.33 11972.70 4493.09 18080.79 9979.28 26292.50 127
WR-MVS_H78.51 19978.49 17578.56 27788.02 19056.38 33388.43 13292.67 6777.14 5873.89 26887.55 21566.25 11789.24 28858.92 30073.55 33690.06 216
MVSMamba_PlusPlus85.99 4985.96 5386.05 6691.09 8567.64 14489.63 8892.65 7072.89 16484.64 7691.71 10471.85 5096.03 5084.77 5494.45 5494.49 37
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 7077.57 4383.84 9394.40 3372.24 4696.28 4385.65 4495.30 3593.62 81
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ETV-MVS84.90 7384.67 7385.59 7589.39 13368.66 12088.74 12392.64 7279.97 1584.10 8785.71 26469.32 8395.38 7580.82 9791.37 9392.72 117
MGCFI-Net85.06 7085.51 6083.70 14989.42 13063.01 24689.43 9392.62 7376.43 7787.53 4191.34 11872.82 4393.42 16181.28 9288.74 13294.66 31
CANet86.45 4286.10 5087.51 3790.09 10770.94 7089.70 8592.59 7481.78 481.32 12491.43 11670.34 7197.23 1484.26 6093.36 6894.37 42
SR-MVS86.73 3886.67 4086.91 4994.11 3772.11 4792.37 2892.56 7574.50 12186.84 5194.65 2367.31 10695.77 5984.80 5392.85 7292.84 116
alignmvs85.48 6185.32 6585.96 7089.51 12669.47 9589.74 8392.47 7676.17 8687.73 4091.46 11570.32 7293.78 14181.51 8888.95 12694.63 32
原ACMM184.35 11393.01 6068.79 11092.44 7763.96 31381.09 12991.57 11166.06 12095.45 6867.19 22994.82 4688.81 261
HQP_MVS83.64 8883.14 9285.14 8590.08 10868.71 11691.25 5292.44 7779.12 2478.92 15491.00 13360.42 19795.38 7578.71 11386.32 16591.33 163
plane_prior592.44 7795.38 7578.71 11386.32 16591.33 163
CDPH-MVS85.76 5785.29 6787.17 4393.49 4771.08 6488.58 12992.42 8068.32 25684.61 7793.48 6472.32 4596.15 4879.00 10995.43 3094.28 47
UniMVSNet_NR-MVSNet81.88 11981.54 11982.92 18188.46 17163.46 23687.13 17592.37 8180.19 1278.38 16689.14 17171.66 5693.05 18270.05 19976.46 29392.25 137
TSAR-MVS + MP.88.02 1788.11 1687.72 3093.68 4372.13 4691.41 5092.35 8274.62 12088.90 2393.85 5875.75 2096.00 5487.80 3194.63 4895.04 9
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CLD-MVS82.31 11281.65 11884.29 11688.47 17067.73 14285.81 22092.35 8275.78 9278.33 16886.58 24664.01 13794.35 11576.05 14187.48 14990.79 180
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SR-MVS-dyc-post85.77 5685.61 5986.23 5993.06 5870.63 7691.88 3892.27 8473.53 14785.69 5994.45 2965.00 13295.56 6382.75 7891.87 8492.50 127
RE-MVS-def85.48 6193.06 5870.63 7691.88 3892.27 8473.53 14785.69 5994.45 2963.87 13882.75 7891.87 8492.50 127
RPMNet73.51 28170.49 30382.58 19581.32 34365.19 19775.92 36092.27 8457.60 36872.73 28276.45 38352.30 25895.43 7048.14 37077.71 27787.11 303
test1192.23 87
mPP-MVS86.67 4186.32 4487.72 3094.41 2273.55 1392.74 2092.22 8876.87 6682.81 10994.25 3966.44 11496.24 4482.88 7794.28 5893.38 90
DP-MVS Recon83.11 10382.09 11186.15 6394.44 1970.92 7188.79 11992.20 8970.53 20479.17 15091.03 13164.12 13696.03 5068.39 21990.14 10991.50 158
HQP3-MVS92.19 9085.99 173
HQP-MVS82.61 10982.02 11384.37 11189.33 13566.98 16389.17 10392.19 9076.41 7877.23 19290.23 14660.17 20095.11 8777.47 12585.99 17391.03 173
3Dnovator76.31 583.38 9782.31 10786.59 5587.94 19472.94 2890.64 6092.14 9277.21 5675.47 23192.83 8258.56 20694.72 10573.24 17192.71 7492.13 144
MTGPAbinary92.02 93
MTAPA87.23 3187.00 3387.90 2294.18 3574.25 586.58 19692.02 9379.45 2085.88 5694.80 2068.07 9796.21 4586.69 3995.34 3293.23 96
MVS_Test83.15 10083.06 9483.41 15886.86 22863.21 24286.11 21092.00 9574.31 12782.87 10689.44 16870.03 7593.21 16977.39 12788.50 13793.81 69
PVSNet_BlendedMVS80.60 14980.02 14282.36 19988.85 15365.40 19186.16 20992.00 9569.34 23178.11 17386.09 25966.02 12194.27 11871.52 18382.06 22887.39 293
PVSNet_Blended80.98 13680.34 13782.90 18288.85 15365.40 19184.43 25392.00 9567.62 26278.11 17385.05 28366.02 12194.27 11871.52 18389.50 11989.01 251
QAPM80.88 13879.50 15485.03 8988.01 19268.97 10791.59 4392.00 9566.63 27775.15 24992.16 9457.70 21395.45 6863.52 25588.76 13190.66 186
LPG-MVS_test82.08 11581.27 12184.50 10689.23 14268.76 11290.22 7391.94 9975.37 10076.64 20791.51 11254.29 24194.91 9578.44 11583.78 19989.83 227
LGP-MVS_train84.50 10689.23 14268.76 11291.94 9975.37 10076.64 20791.51 11254.29 24194.91 9578.44 11583.78 19989.83 227
TEST993.26 5272.96 2588.75 12191.89 10168.44 25485.00 6693.10 7374.36 2895.41 73
train_agg86.43 4386.20 4687.13 4493.26 5272.96 2588.75 12191.89 10168.69 24985.00 6693.10 7374.43 2695.41 7384.97 4895.71 2593.02 110
dcpmvs_285.63 5986.15 4984.06 13391.71 7864.94 20486.47 19991.87 10373.63 14286.60 5393.02 7876.57 1591.87 22583.36 6992.15 8095.35 3
DU-MVS81.12 13580.52 13482.90 18287.80 20163.46 23687.02 18091.87 10379.01 2778.38 16689.07 17365.02 13093.05 18270.05 19976.46 29392.20 140
test_893.13 5472.57 3588.68 12691.84 10568.69 24984.87 7093.10 7374.43 2695.16 83
PAPM_NR83.02 10482.41 10484.82 9892.47 7066.37 17187.93 15391.80 10673.82 13877.32 18990.66 13867.90 10094.90 9770.37 19689.48 12093.19 100
test1286.80 5292.63 6770.70 7591.79 10782.71 11071.67 5596.16 4794.50 5193.54 86
agg_prior92.85 6271.94 5091.78 10884.41 8194.93 94
PAPR81.66 12680.89 12983.99 14190.27 10364.00 22386.76 19291.77 10968.84 24777.13 19989.50 16167.63 10294.88 9967.55 22488.52 13693.09 104
PVSNet_Blended_VisFu82.62 10881.83 11784.96 9290.80 9469.76 9088.74 12391.70 11069.39 22978.96 15288.46 19165.47 12694.87 10074.42 15788.57 13490.24 204
HPM-MVS_fast85.35 6584.95 7186.57 5693.69 4270.58 7892.15 3591.62 11173.89 13782.67 11194.09 4662.60 15395.54 6580.93 9592.93 7193.57 83
ACMM73.20 880.78 14679.84 14783.58 15289.31 13868.37 12689.99 7691.60 11270.28 20977.25 19089.66 15653.37 25193.53 15474.24 16082.85 21888.85 259
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPA-MVSNet80.60 14980.55 13380.76 23588.07 18860.80 27686.86 18691.58 11375.67 9680.24 13789.45 16763.34 14190.25 26970.51 19579.22 26391.23 166
OPM-MVS83.50 9382.95 9785.14 8588.79 15970.95 6989.13 10891.52 11477.55 4680.96 13191.75 10360.71 18994.50 11279.67 10886.51 16389.97 222
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Anonymous2023121178.97 18977.69 20182.81 18690.54 9964.29 21990.11 7591.51 11565.01 29776.16 22288.13 20550.56 28593.03 18569.68 20577.56 28091.11 169
PS-MVSNAJss82.07 11681.31 12084.34 11486.51 23767.27 15689.27 10191.51 11571.75 17679.37 14790.22 14763.15 14794.27 11877.69 12382.36 22591.49 159
TAPA-MVS73.13 979.15 18377.94 18982.79 18989.59 12262.99 25088.16 14591.51 11565.77 28677.14 19891.09 12760.91 18793.21 16950.26 35787.05 15492.17 142
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMP74.13 681.51 13080.57 13284.36 11289.42 13068.69 11989.97 7791.50 11874.46 12375.04 25390.41 14253.82 24694.54 10977.56 12482.91 21789.86 226
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PCF-MVS73.52 780.38 15578.84 17085.01 9087.71 20668.99 10683.65 26791.46 11963.00 32077.77 18190.28 14366.10 11895.09 9161.40 27988.22 14090.94 177
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TranMVSNet+NR-MVSNet80.84 13980.31 13882.42 19787.85 19862.33 25687.74 15991.33 12080.55 977.99 17789.86 15165.23 12892.62 19267.05 23175.24 32092.30 135
RRT-MVS82.60 11182.10 11084.10 12587.98 19362.94 25187.45 16791.27 12177.42 5079.85 14190.28 14356.62 22594.70 10779.87 10788.15 14194.67 28
PS-CasMVS78.01 21378.09 18677.77 29287.71 20654.39 35888.02 14891.22 12277.50 4873.26 27588.64 18560.73 18888.41 30461.88 27473.88 33390.53 192
v7n78.97 18977.58 20483.14 16983.45 29765.51 18988.32 13991.21 12373.69 14172.41 28786.32 25457.93 21093.81 14069.18 20975.65 30690.11 210
PEN-MVS77.73 21977.69 20177.84 29087.07 22753.91 36187.91 15491.18 12477.56 4573.14 27788.82 18061.23 18189.17 28959.95 28972.37 34490.43 196
MM89.16 689.23 788.97 490.79 9573.65 1092.66 2391.17 12586.57 187.39 4494.97 1971.70 5497.68 192.19 195.63 2895.57 1
save fliter93.80 4072.35 4290.47 6691.17 12574.31 127
CP-MVSNet78.22 20478.34 18077.84 29087.83 20054.54 35687.94 15291.17 12577.65 4073.48 27388.49 19062.24 16288.43 30362.19 27074.07 32990.55 191
114514_t80.68 14779.51 15384.20 12294.09 3867.27 15689.64 8791.11 12858.75 36074.08 26790.72 13758.10 20995.04 9269.70 20489.42 12190.30 202
NR-MVSNet80.23 15979.38 15682.78 19087.80 20163.34 23986.31 20491.09 12979.01 2772.17 29189.07 17367.20 10792.81 19166.08 23875.65 30692.20 140
OpenMVScopyleft72.83 1079.77 16678.33 18184.09 12985.17 25969.91 8790.57 6190.97 13066.70 27172.17 29191.91 9854.70 23893.96 12861.81 27690.95 9888.41 274
MAR-MVS81.84 12080.70 13085.27 8291.32 8271.53 5689.82 7990.92 13169.77 22378.50 16386.21 25562.36 15994.52 11165.36 24392.05 8289.77 230
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
tt080578.73 19377.83 19381.43 21585.17 25960.30 28489.41 9690.90 13271.21 18877.17 19788.73 18146.38 32193.21 16972.57 17878.96 26490.79 180
Anonymous2024052980.19 16178.89 16984.10 12590.60 9764.75 20988.95 11490.90 13265.97 28580.59 13491.17 12549.97 29193.73 14769.16 21082.70 22293.81 69
OMC-MVS82.69 10781.97 11584.85 9788.75 16167.42 15087.98 14990.87 13474.92 11179.72 14391.65 10662.19 16393.96 12875.26 15286.42 16493.16 101
UA-Net85.08 6984.96 7085.45 7892.07 7368.07 13489.78 8290.86 13582.48 284.60 7893.20 7269.35 8295.22 8171.39 18690.88 9993.07 105
test_fmvsm_n_192085.29 6685.34 6385.13 8786.12 24369.93 8688.65 12790.78 13669.97 21788.27 2793.98 5571.39 5991.54 23888.49 2690.45 10493.91 61
EPP-MVSNet83.40 9683.02 9584.57 10490.13 10664.47 21592.32 3090.73 13774.45 12479.35 14891.10 12669.05 8895.12 8572.78 17587.22 15294.13 51
DTE-MVSNet76.99 23376.80 21977.54 29886.24 23953.06 37087.52 16390.66 13877.08 6172.50 28588.67 18460.48 19689.52 28257.33 31770.74 35690.05 217
v1079.74 16778.67 17182.97 18084.06 28364.95 20387.88 15690.62 13973.11 15875.11 25086.56 24761.46 17594.05 12773.68 16375.55 30889.90 224
test_fmvsmconf_n85.92 5286.04 5285.57 7685.03 26569.51 9389.62 8990.58 14073.42 15087.75 3894.02 5072.85 4293.24 16690.37 490.75 10093.96 58
v119279.59 17078.43 17883.07 17483.55 29564.52 21186.93 18490.58 14070.83 19577.78 18085.90 26059.15 20393.94 13173.96 16277.19 28390.76 182
v114480.03 16379.03 16683.01 17783.78 29064.51 21287.11 17790.57 14271.96 17578.08 17586.20 25661.41 17693.94 13174.93 15377.23 28190.60 189
XVG-OURS-SEG-HR80.81 14179.76 14883.96 14385.60 25268.78 11183.54 27290.50 14370.66 20276.71 20591.66 10560.69 19091.26 24976.94 13281.58 23391.83 149
MVS78.19 20776.99 21581.78 20785.66 24966.99 16284.66 24390.47 14455.08 38072.02 29385.27 27563.83 13994.11 12666.10 23789.80 11684.24 350
XVG-OURS80.41 15479.23 16283.97 14285.64 25069.02 10583.03 28390.39 14571.09 19177.63 18391.49 11454.62 24091.35 24775.71 14483.47 21091.54 156
MVSFormer82.85 10682.05 11285.24 8387.35 21570.21 8090.50 6490.38 14668.55 25181.32 12489.47 16361.68 16993.46 15878.98 11090.26 10792.05 146
test_djsdf80.30 15879.32 15983.27 16283.98 28565.37 19490.50 6490.38 14668.55 25176.19 21888.70 18256.44 22693.46 15878.98 11080.14 25290.97 176
CPTT-MVS83.73 8583.33 9184.92 9593.28 4970.86 7292.09 3690.38 14668.75 24879.57 14592.83 8260.60 19593.04 18480.92 9691.56 9190.86 179
v14419279.47 17378.37 17982.78 19083.35 29863.96 22486.96 18190.36 14969.99 21677.50 18485.67 26760.66 19293.77 14374.27 15976.58 29190.62 187
v192192079.22 18178.03 18782.80 18783.30 30063.94 22586.80 18890.33 15069.91 21977.48 18585.53 27058.44 20793.75 14573.60 16476.85 28890.71 185
MVS_111021_HR85.14 6784.75 7286.32 5891.65 7972.70 3085.98 21290.33 15076.11 8782.08 11491.61 11071.36 6094.17 12481.02 9492.58 7592.08 145
v124078.99 18877.78 19682.64 19383.21 30263.54 23386.62 19590.30 15269.74 22677.33 18885.68 26657.04 22193.76 14473.13 17276.92 28590.62 187
test_fmvsmconf0.1_n85.61 6085.65 5885.50 7782.99 31269.39 10089.65 8690.29 15373.31 15387.77 3794.15 4471.72 5393.23 16790.31 590.67 10293.89 64
v879.97 16579.02 16782.80 18784.09 28264.50 21487.96 15090.29 15374.13 13375.24 24686.81 23362.88 15293.89 13874.39 15875.40 31590.00 218
fmvsm_s_conf0.5_n_386.36 4687.46 2783.09 17187.08 22665.21 19689.09 11090.21 15579.67 1789.98 1895.02 1873.17 3891.71 23191.30 291.60 8892.34 132
mvs_tets79.13 18477.77 19783.22 16684.70 26966.37 17189.17 10390.19 15669.38 23075.40 23689.46 16544.17 34293.15 17676.78 13580.70 24490.14 207
jajsoiax79.29 18077.96 18883.27 16284.68 27066.57 16989.25 10290.16 15769.20 23775.46 23389.49 16245.75 33293.13 17876.84 13380.80 24290.11 210
Vis-MVSNetpermissive83.46 9482.80 10085.43 7990.25 10468.74 11490.30 7290.13 15876.33 8480.87 13292.89 8061.00 18694.20 12272.45 18090.97 9793.35 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PS-MVSNAJ81.69 12481.02 12683.70 14989.51 12668.21 13184.28 25790.09 15970.79 19681.26 12885.62 26963.15 14794.29 11675.62 14688.87 12888.59 269
xiu_mvs_v2_base81.69 12481.05 12583.60 15189.15 14568.03 13684.46 25190.02 16070.67 19981.30 12786.53 24963.17 14694.19 12375.60 14788.54 13588.57 270
FA-MVS(test-final)80.96 13779.91 14584.10 12588.30 17865.01 20184.55 24890.01 16173.25 15679.61 14487.57 21358.35 20894.72 10571.29 18786.25 16792.56 124
v2v48280.23 15979.29 16083.05 17583.62 29364.14 22187.04 17889.97 16273.61 14378.18 17287.22 22461.10 18493.82 13976.11 13976.78 29091.18 167
test_yl81.17 13380.47 13583.24 16489.13 14663.62 22986.21 20789.95 16372.43 16981.78 12089.61 15857.50 21693.58 14970.75 19186.90 15692.52 125
DCV-MVSNet81.17 13380.47 13583.24 16489.13 14663.62 22986.21 20789.95 16372.43 16981.78 12089.61 15857.50 21693.58 14970.75 19186.90 15692.52 125
V4279.38 17978.24 18382.83 18481.10 34565.50 19085.55 22589.82 16571.57 18278.21 17086.12 25860.66 19293.18 17575.64 14575.46 31289.81 229
VNet82.21 11382.41 10481.62 21090.82 9360.93 27384.47 24989.78 16676.36 8384.07 8891.88 10064.71 13390.26 26870.68 19388.89 12793.66 74
diffmvspermissive82.10 11481.88 11682.76 19283.00 31063.78 22883.68 26689.76 16772.94 16282.02 11589.85 15265.96 12390.79 26282.38 8487.30 15193.71 73
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XVG-ACMP-BASELINE76.11 25174.27 26181.62 21083.20 30364.67 21083.60 27089.75 16869.75 22471.85 29487.09 22932.78 38892.11 21569.99 20180.43 24888.09 279
EI-MVSNet-Vis-set84.19 7783.81 8285.31 8188.18 18067.85 13887.66 16089.73 16980.05 1482.95 10489.59 16070.74 6894.82 10180.66 10084.72 18493.28 95
EI-MVSNet-UG-set83.81 8283.38 8985.09 8887.87 19767.53 14887.44 16889.66 17079.74 1682.23 11389.41 16970.24 7494.74 10479.95 10583.92 19892.99 113
test_fmvsmconf0.01_n84.73 7484.52 7685.34 8080.25 35369.03 10389.47 9189.65 17173.24 15786.98 4994.27 3766.62 11093.23 16790.26 689.95 11493.78 71
BP-MVS184.32 7683.71 8486.17 6187.84 19967.85 13889.38 9889.64 17277.73 3983.98 9092.12 9656.89 22395.43 7084.03 6591.75 8795.24 6
PAPM77.68 22376.40 23081.51 21387.29 22261.85 26383.78 26489.59 17364.74 29971.23 30088.70 18262.59 15493.66 14852.66 34287.03 15589.01 251
MVS_030487.69 2087.55 2488.12 1389.45 12971.76 5191.47 4989.54 17482.14 386.65 5294.28 3668.28 9697.46 690.81 395.31 3495.15 7
anonymousdsp78.60 19777.15 21182.98 17980.51 35167.08 16187.24 17489.53 17565.66 28875.16 24887.19 22652.52 25492.25 21177.17 12979.34 26189.61 234
MG-MVS83.41 9583.45 8783.28 16192.74 6562.28 25888.17 14489.50 17675.22 10281.49 12392.74 8866.75 10995.11 8772.85 17491.58 9092.45 130
PLCcopyleft70.83 1178.05 21176.37 23183.08 17391.88 7767.80 14088.19 14389.46 17764.33 30569.87 31788.38 19353.66 24793.58 14958.86 30182.73 22087.86 283
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SDMVSNet80.38 15580.18 14180.99 22989.03 15164.94 20480.45 31589.40 17875.19 10476.61 20989.98 14960.61 19487.69 31276.83 13483.55 20890.33 200
Fast-Effi-MVS+80.81 14179.92 14483.47 15488.85 15364.51 21285.53 22789.39 17970.79 19678.49 16485.06 28267.54 10393.58 14967.03 23286.58 16192.32 134
IterMVS-LS80.06 16279.38 15682.11 20185.89 24663.20 24386.79 18989.34 18074.19 13075.45 23486.72 23666.62 11092.39 20472.58 17776.86 28790.75 183
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
API-MVS81.99 11881.23 12284.26 12190.94 9070.18 8591.10 5589.32 18171.51 18378.66 15988.28 19665.26 12795.10 9064.74 24991.23 9587.51 291
GBi-Net78.40 20077.40 20681.40 21787.60 21063.01 24688.39 13489.28 18271.63 17875.34 23987.28 22054.80 23491.11 25262.72 26279.57 25690.09 212
test178.40 20077.40 20681.40 21787.60 21063.01 24688.39 13489.28 18271.63 17875.34 23987.28 22054.80 23491.11 25262.72 26279.57 25690.09 212
FMVSNet177.44 22676.12 23381.40 21786.81 23163.01 24688.39 13489.28 18270.49 20574.39 26487.28 22049.06 30591.11 25260.91 28378.52 26790.09 212
cdsmvs_eth3d_5k19.96 39126.61 3930.00 4110.00 4340.00 4360.00 42289.26 1850.00 4290.00 43088.61 18661.62 1710.00 4300.00 4290.00 4280.00 426
ab-mvs79.51 17178.97 16881.14 22588.46 17160.91 27483.84 26389.24 18670.36 20679.03 15188.87 17963.23 14590.21 27065.12 24582.57 22392.28 136
cascas76.72 23974.64 25382.99 17885.78 24865.88 18182.33 28789.21 18760.85 34172.74 28181.02 34647.28 31493.75 14567.48 22585.02 18089.34 241
eth_miper_zixun_eth77.92 21576.69 22481.61 21283.00 31061.98 26183.15 27789.20 18869.52 22874.86 25684.35 29661.76 16892.56 19771.50 18572.89 34290.28 203
h-mvs3383.15 10082.19 10886.02 6990.56 9870.85 7388.15 14689.16 18976.02 8984.67 7391.39 11761.54 17295.50 6682.71 8075.48 31091.72 152
miper_ehance_all_eth78.59 19877.76 19881.08 22782.66 31961.56 26783.65 26789.15 19068.87 24675.55 23083.79 30866.49 11392.03 21773.25 17076.39 29589.64 233
Effi-MVS+83.62 9083.08 9385.24 8388.38 17567.45 14988.89 11689.15 19075.50 9882.27 11288.28 19669.61 8094.45 11477.81 12287.84 14393.84 67
c3_l78.75 19277.91 19081.26 22182.89 31461.56 26784.09 26189.13 19269.97 21775.56 22984.29 29766.36 11592.09 21673.47 16775.48 31090.12 209
LTVRE_ROB69.57 1376.25 24974.54 25681.41 21688.60 16664.38 21879.24 32989.12 19370.76 19869.79 31987.86 20749.09 30493.20 17256.21 32780.16 25086.65 313
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
F-COLMAP76.38 24874.33 26082.50 19689.28 14066.95 16688.41 13389.03 19464.05 31066.83 34588.61 18646.78 31892.89 18757.48 31478.55 26687.67 286
FMVSNet278.20 20677.21 21081.20 22387.60 21062.89 25287.47 16589.02 19571.63 17875.29 24587.28 22054.80 23491.10 25562.38 26779.38 26089.61 234
ACMH67.68 1675.89 25473.93 26481.77 20888.71 16366.61 16888.62 12889.01 19669.81 22066.78 34686.70 24041.95 35891.51 24155.64 32878.14 27387.17 299
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
miper_enhance_ethall77.87 21776.86 21780.92 23281.65 33361.38 26982.68 28488.98 19765.52 29075.47 23182.30 33565.76 12592.00 21972.95 17376.39 29589.39 239
无先验87.48 16488.98 19760.00 34794.12 12567.28 22788.97 254
AdaColmapbinary80.58 15279.42 15584.06 13393.09 5768.91 10889.36 9988.97 19969.27 23275.70 22789.69 15557.20 22095.77 5963.06 26088.41 13887.50 292
EI-MVSNet80.52 15379.98 14382.12 20084.28 27763.19 24486.41 20088.95 20074.18 13178.69 15787.54 21666.62 11092.43 20272.57 17880.57 24690.74 184
MVSTER79.01 18777.88 19282.38 19883.07 30764.80 20884.08 26288.95 20069.01 24478.69 15787.17 22754.70 23892.43 20274.69 15480.57 24689.89 225
131476.53 24175.30 24880.21 24683.93 28662.32 25784.66 24388.81 20260.23 34570.16 31184.07 30355.30 23190.73 26467.37 22683.21 21487.59 290
UniMVSNet_ETH3D79.10 18578.24 18381.70 20986.85 22960.24 28587.28 17388.79 20374.25 12976.84 20090.53 14149.48 29791.56 23667.98 22082.15 22693.29 94
xiu_mvs_v1_base_debu80.80 14379.72 14984.03 13887.35 21570.19 8285.56 22288.77 20469.06 24181.83 11688.16 20050.91 28092.85 18878.29 11987.56 14689.06 246
xiu_mvs_v1_base80.80 14379.72 14984.03 13887.35 21570.19 8285.56 22288.77 20469.06 24181.83 11688.16 20050.91 28092.85 18878.29 11987.56 14689.06 246
xiu_mvs_v1_base_debi80.80 14379.72 14984.03 13887.35 21570.19 8285.56 22288.77 20469.06 24181.83 11688.16 20050.91 28092.85 18878.29 11987.56 14689.06 246
FMVSNet377.88 21676.85 21880.97 23186.84 23062.36 25586.52 19888.77 20471.13 18975.34 23986.66 24254.07 24491.10 25562.72 26279.57 25689.45 238
patch_mono-283.65 8784.54 7480.99 22990.06 11265.83 18284.21 25888.74 20871.60 18185.01 6592.44 9074.51 2583.50 34882.15 8592.15 8093.64 80
GeoE81.71 12381.01 12783.80 14889.51 12664.45 21688.97 11388.73 20971.27 18778.63 16089.76 15466.32 11693.20 17269.89 20286.02 17293.74 72
CANet_DTU80.61 14879.87 14682.83 18485.60 25263.17 24587.36 16988.65 21076.37 8275.88 22488.44 19253.51 24993.07 18173.30 16989.74 11792.25 137
HyFIR lowres test77.53 22575.40 24483.94 14489.59 12266.62 16780.36 31688.64 21156.29 37676.45 21185.17 27957.64 21493.28 16461.34 28183.10 21691.91 148
WR-MVS79.49 17279.22 16380.27 24588.79 15958.35 29985.06 23588.61 21278.56 3177.65 18288.34 19463.81 14090.66 26564.98 24777.22 28291.80 151
BH-untuned79.47 17378.60 17382.05 20289.19 14465.91 18086.07 21188.52 21372.18 17175.42 23587.69 21061.15 18393.54 15360.38 28686.83 15886.70 312
IS-MVSNet83.15 10082.81 9984.18 12389.94 11563.30 24091.59 4388.46 21479.04 2679.49 14692.16 9465.10 12994.28 11767.71 22291.86 8694.95 11
pm-mvs177.25 23176.68 22578.93 27084.22 27958.62 29786.41 20088.36 21571.37 18573.31 27488.01 20661.22 18289.15 29064.24 25373.01 34189.03 250
UGNet80.83 14079.59 15284.54 10588.04 18968.09 13389.42 9588.16 21676.95 6376.22 21789.46 16549.30 30193.94 13168.48 21790.31 10591.60 153
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VDD-MVS83.01 10582.36 10684.96 9291.02 8866.40 17088.91 11588.11 21777.57 4384.39 8293.29 7052.19 26093.91 13577.05 13188.70 13394.57 35
Effi-MVS+-dtu80.03 16378.57 17484.42 11085.13 26368.74 11488.77 12088.10 21874.99 10874.97 25483.49 31557.27 21993.36 16273.53 16580.88 24091.18 167
v14878.72 19477.80 19581.47 21482.73 31761.96 26286.30 20588.08 21973.26 15576.18 21985.47 27262.46 15792.36 20671.92 18273.82 33490.09 212
EG-PatchMatch MVS74.04 27571.82 28780.71 23684.92 26667.42 15085.86 21788.08 21966.04 28364.22 36783.85 30535.10 38492.56 19757.44 31580.83 24182.16 375
cl2278.07 21077.01 21381.23 22282.37 32661.83 26483.55 27187.98 22168.96 24575.06 25283.87 30461.40 17791.88 22473.53 16576.39 29589.98 221
test_fmvsmvis_n_192084.02 8083.87 8184.49 10884.12 28169.37 10188.15 14687.96 22270.01 21583.95 9193.23 7168.80 9291.51 24188.61 2389.96 11392.57 123
pmmvs674.69 26873.39 27078.61 27481.38 34057.48 31686.64 19487.95 22364.99 29870.18 30986.61 24350.43 28789.52 28262.12 27270.18 35988.83 260
MVP-Stereo76.12 25074.46 25881.13 22685.37 25769.79 8984.42 25487.95 22365.03 29667.46 33885.33 27453.28 25291.73 23058.01 31183.27 21381.85 376
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
cl____77.72 22076.76 22180.58 23882.49 32360.48 28183.09 27987.87 22569.22 23574.38 26585.22 27862.10 16491.53 23971.09 18875.41 31489.73 232
DIV-MVS_self_test77.72 22076.76 22180.58 23882.48 32460.48 28183.09 27987.86 22669.22 23574.38 26585.24 27662.10 16491.53 23971.09 18875.40 31589.74 231
BH-w/o78.21 20577.33 20980.84 23388.81 15765.13 19984.87 23987.85 22769.75 22474.52 26284.74 28961.34 17893.11 17958.24 30985.84 17584.27 349
FE-MVS77.78 21875.68 23784.08 13088.09 18766.00 17783.13 27887.79 22868.42 25578.01 17685.23 27745.50 33595.12 8559.11 29885.83 17691.11 169
HY-MVS69.67 1277.95 21477.15 21180.36 24287.57 21460.21 28683.37 27487.78 22966.11 28175.37 23887.06 23163.27 14390.48 26761.38 28082.43 22490.40 198
1112_ss77.40 22876.43 22980.32 24489.11 15060.41 28383.65 26787.72 23062.13 33373.05 27886.72 23662.58 15589.97 27462.11 27380.80 24290.59 190
mvs_anonymous79.42 17679.11 16580.34 24384.45 27657.97 30682.59 28587.62 23167.40 26676.17 22188.56 18968.47 9389.59 28170.65 19486.05 17193.47 88
ACMH+68.96 1476.01 25374.01 26282.03 20388.60 16665.31 19588.86 11787.55 23270.25 21167.75 33487.47 21841.27 35993.19 17458.37 30775.94 30387.60 288
tfpnnormal74.39 26973.16 27378.08 28786.10 24558.05 30384.65 24587.53 23370.32 20871.22 30185.63 26854.97 23289.86 27543.03 38975.02 32286.32 316
CHOSEN 1792x268877.63 22475.69 23683.44 15589.98 11468.58 12278.70 33987.50 23456.38 37575.80 22686.84 23258.67 20591.40 24661.58 27885.75 17790.34 199
ambc75.24 32273.16 39750.51 38763.05 41187.47 23564.28 36677.81 37717.80 41389.73 27957.88 31260.64 38785.49 332
Fast-Effi-MVS+-dtu78.02 21276.49 22782.62 19483.16 30666.96 16586.94 18387.45 23672.45 16671.49 29984.17 30154.79 23791.58 23467.61 22380.31 24989.30 242
D2MVS74.82 26773.21 27279.64 25979.81 36062.56 25480.34 31787.35 23764.37 30468.86 32682.66 33046.37 32290.10 27167.91 22181.24 23686.25 317
fmvsm_s_conf0.5_n_284.04 7984.11 8083.81 14786.17 24165.00 20286.96 18187.28 23874.35 12588.25 2894.23 4061.82 16792.60 19489.85 788.09 14293.84 67
TSAR-MVS + GP.85.71 5885.33 6486.84 5091.34 8172.50 3689.07 11187.28 23876.41 7885.80 5790.22 14774.15 3195.37 7881.82 8791.88 8392.65 122
fmvsm_l_conf0.5_n84.47 7584.54 7484.27 11985.42 25568.81 10988.49 13187.26 24068.08 25888.03 3293.49 6372.04 4991.77 22788.90 2089.14 12592.24 139
hse-mvs281.72 12280.94 12884.07 13188.72 16267.68 14385.87 21687.26 24076.02 8984.67 7388.22 19961.54 17293.48 15682.71 8073.44 33891.06 171
AUN-MVS79.21 18277.60 20384.05 13688.71 16367.61 14585.84 21887.26 24069.08 24077.23 19288.14 20453.20 25393.47 15775.50 14973.45 33791.06 171
BH-RMVSNet79.61 16878.44 17783.14 16989.38 13465.93 17984.95 23887.15 24373.56 14578.19 17189.79 15356.67 22493.36 16259.53 29486.74 15990.13 208
Test_1112_low_res76.40 24775.44 24279.27 26489.28 14058.09 30281.69 29487.07 24459.53 35272.48 28686.67 24161.30 17989.33 28560.81 28580.15 25190.41 197
KD-MVS_self_test68.81 32767.59 33372.46 34874.29 38845.45 39977.93 35087.00 24563.12 31763.99 36978.99 36942.32 35384.77 34056.55 32564.09 38087.16 301
mvsmamba80.60 14979.38 15684.27 11989.74 12067.24 15887.47 16586.95 24670.02 21475.38 23788.93 17651.24 27792.56 19775.47 15089.22 12393.00 112
reproduce_monomvs75.40 26374.38 25978.46 28283.92 28757.80 31183.78 26486.94 24773.47 14972.25 29084.47 29138.74 37189.27 28775.32 15170.53 35788.31 275
LS3D76.95 23574.82 25283.37 15990.45 10067.36 15389.15 10786.94 24761.87 33569.52 32090.61 13951.71 27394.53 11046.38 37886.71 16088.21 277
miper_lstm_enhance74.11 27473.11 27477.13 30380.11 35559.62 29172.23 37986.92 24966.76 27070.40 30682.92 32556.93 22282.92 35269.06 21172.63 34388.87 258
fmvsm_l_conf0.5_n_a84.13 7884.16 7984.06 13385.38 25668.40 12588.34 13886.85 25067.48 26587.48 4293.40 6770.89 6591.61 23288.38 2889.22 12392.16 143
jason81.39 13180.29 13984.70 10286.63 23669.90 8885.95 21386.77 25163.24 31681.07 13089.47 16361.08 18592.15 21478.33 11890.07 11292.05 146
jason: jason.
OurMVSNet-221017-074.26 27172.42 28279.80 25483.76 29159.59 29285.92 21586.64 25266.39 27966.96 34387.58 21239.46 36791.60 23365.76 24169.27 36288.22 276
VPNet78.69 19578.66 17278.76 27288.31 17755.72 34384.45 25286.63 25376.79 6878.26 16990.55 14059.30 20289.70 28066.63 23377.05 28490.88 178
fmvsm_s_conf0.1_n_283.80 8383.79 8383.83 14685.62 25164.94 20487.03 17986.62 25474.32 12687.97 3594.33 3460.67 19192.60 19489.72 887.79 14493.96 58
USDC70.33 31568.37 31776.21 30980.60 34956.23 33679.19 33186.49 25560.89 34061.29 37985.47 27231.78 39189.47 28453.37 33976.21 30182.94 368
lupinMVS81.39 13180.27 14084.76 10187.35 21570.21 8085.55 22586.41 25662.85 32381.32 12488.61 18661.68 16992.24 21278.41 11790.26 10791.83 149
TR-MVS77.44 22676.18 23281.20 22388.24 17963.24 24184.61 24686.40 25767.55 26377.81 17986.48 25054.10 24393.15 17657.75 31382.72 22187.20 298
旧先验191.96 7465.79 18486.37 25893.08 7769.31 8492.74 7388.74 266
GA-MVS76.87 23675.17 24981.97 20582.75 31662.58 25381.44 29986.35 25972.16 17374.74 25782.89 32646.20 32692.02 21868.85 21481.09 23891.30 165
MonoMVSNet76.49 24575.80 23478.58 27681.55 33658.45 29886.36 20386.22 26074.87 11474.73 25883.73 31051.79 27288.73 29870.78 19072.15 34788.55 271
CDS-MVSNet79.07 18677.70 20083.17 16887.60 21068.23 13084.40 25586.20 26167.49 26476.36 21486.54 24861.54 17290.79 26261.86 27587.33 15090.49 194
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS_111021_LR82.61 10982.11 10984.11 12488.82 15671.58 5585.15 23286.16 26274.69 11780.47 13591.04 12962.29 16090.55 26680.33 10290.08 11190.20 205
MSDG73.36 28570.99 29880.49 24084.51 27565.80 18380.71 31086.13 26365.70 28765.46 35883.74 30944.60 33890.91 26051.13 35076.89 28684.74 345
TransMVSNet (Re)75.39 26474.56 25577.86 28985.50 25457.10 32186.78 19086.09 26472.17 17271.53 29887.34 21963.01 15189.31 28656.84 32261.83 38387.17 299
VDDNet81.52 12880.67 13184.05 13690.44 10164.13 22289.73 8485.91 26571.11 19083.18 10293.48 6450.54 28693.49 15573.40 16888.25 13994.54 36
sd_testset77.70 22277.40 20678.60 27589.03 15160.02 28779.00 33485.83 26675.19 10476.61 20989.98 14954.81 23385.46 33362.63 26683.55 20890.33 200
Baseline_NR-MVSNet78.15 20878.33 18177.61 29585.79 24756.21 33786.78 19085.76 26773.60 14477.93 17887.57 21365.02 13088.99 29267.14 23075.33 31787.63 287
Anonymous2024052168.80 32867.22 33773.55 33774.33 38754.11 35983.18 27685.61 26858.15 36361.68 37880.94 34830.71 39481.27 36157.00 32073.34 34085.28 336
test_vis1_n_192075.52 25975.78 23574.75 32879.84 35957.44 31783.26 27585.52 26962.83 32479.34 14986.17 25745.10 33779.71 36778.75 11281.21 23787.10 305
新几何183.42 15693.13 5470.71 7485.48 27057.43 37081.80 11991.98 9763.28 14292.27 21064.60 25092.99 7087.27 297
EPNet83.72 8682.92 9886.14 6584.22 27969.48 9491.05 5685.27 27181.30 676.83 20191.65 10666.09 11995.56 6376.00 14293.85 6293.38 90
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UnsupCasMVSNet_eth67.33 33965.99 34371.37 35473.48 39451.47 38075.16 36785.19 27265.20 29360.78 38180.93 35042.35 35277.20 37857.12 31853.69 39985.44 334
mmtdpeth74.16 27373.01 27577.60 29783.72 29261.13 27085.10 23485.10 27372.06 17477.21 19680.33 35443.84 34485.75 32777.14 13052.61 40185.91 327
IB-MVS68.01 1575.85 25573.36 27183.31 16084.76 26866.03 17583.38 27385.06 27470.21 21269.40 32181.05 34545.76 33194.66 10865.10 24675.49 30989.25 243
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TAMVS78.89 19177.51 20583.03 17687.80 20167.79 14184.72 24285.05 27567.63 26176.75 20487.70 20962.25 16190.82 26158.53 30587.13 15390.49 194
CL-MVSNet_self_test72.37 29671.46 29175.09 32379.49 36653.53 36380.76 30885.01 27669.12 23970.51 30482.05 33957.92 21184.13 34352.27 34466.00 37587.60 288
testdata79.97 25090.90 9164.21 22084.71 27759.27 35485.40 6192.91 7962.02 16689.08 29168.95 21291.37 9386.63 314
MS-PatchMatch73.83 27872.67 27877.30 30183.87 28866.02 17681.82 29184.66 27861.37 33968.61 32982.82 32847.29 31388.21 30559.27 29584.32 19477.68 391
ET-MVSNet_ETH3D78.63 19676.63 22684.64 10386.73 23369.47 9585.01 23684.61 27969.54 22766.51 35386.59 24450.16 28991.75 22876.26 13884.24 19592.69 120
CNLPA78.08 20976.79 22081.97 20590.40 10271.07 6587.59 16284.55 28066.03 28472.38 28889.64 15757.56 21586.04 32559.61 29383.35 21288.79 262
MIMVSNet168.58 33066.78 34073.98 33580.07 35651.82 37680.77 30784.37 28164.40 30359.75 38682.16 33836.47 38083.63 34742.73 39070.33 35886.48 315
KD-MVS_2432*160066.22 34863.89 35073.21 33975.47 38553.42 36570.76 38684.35 28264.10 30866.52 35178.52 37134.55 38584.98 33750.40 35350.33 40481.23 379
miper_refine_blended66.22 34863.89 35073.21 33975.47 38553.42 36570.76 38684.35 28264.10 30866.52 35178.52 37134.55 38584.98 33750.40 35350.33 40481.23 379
test_040272.79 29370.44 30479.84 25388.13 18465.99 17885.93 21484.29 28465.57 28967.40 34085.49 27146.92 31792.61 19335.88 40374.38 32880.94 381
EU-MVSNet68.53 33267.61 33271.31 35778.51 37247.01 39684.47 24984.27 28542.27 40366.44 35484.79 28840.44 36483.76 34558.76 30368.54 36783.17 362
thisisatest053079.40 17777.76 19884.31 11587.69 20865.10 20087.36 16984.26 28670.04 21377.42 18688.26 19849.94 29294.79 10370.20 19784.70 18593.03 109
COLMAP_ROBcopyleft66.92 1773.01 29070.41 30580.81 23487.13 22565.63 18788.30 14084.19 28762.96 32163.80 37187.69 21038.04 37692.56 19746.66 37574.91 32384.24 350
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tttt051779.40 17777.91 19083.90 14588.10 18663.84 22688.37 13784.05 28871.45 18476.78 20389.12 17249.93 29494.89 9870.18 19883.18 21592.96 114
CMPMVSbinary51.72 2170.19 31768.16 32076.28 30873.15 39857.55 31579.47 32683.92 28948.02 39656.48 39684.81 28743.13 34886.42 32262.67 26581.81 23284.89 343
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous20240521178.25 20377.01 21381.99 20491.03 8760.67 27884.77 24183.90 29070.65 20380.00 14091.20 12341.08 36191.43 24565.21 24485.26 17993.85 65
XXY-MVS75.41 26275.56 24074.96 32483.59 29457.82 31080.59 31283.87 29166.54 27874.93 25588.31 19563.24 14480.09 36662.16 27176.85 28886.97 306
DP-MVS76.78 23874.57 25483.42 15693.29 4869.46 9788.55 13083.70 29263.98 31270.20 30888.89 17854.01 24594.80 10246.66 37581.88 23186.01 324
tfpn200view976.42 24675.37 24679.55 26289.13 14657.65 31385.17 23083.60 29373.41 15176.45 21186.39 25252.12 26191.95 22048.33 36683.75 20289.07 244
thres40076.50 24275.37 24679.86 25289.13 14657.65 31385.17 23083.60 29373.41 15176.45 21186.39 25252.12 26191.95 22048.33 36683.75 20290.00 218
SixPastTwentyTwo73.37 28371.26 29679.70 25685.08 26457.89 30885.57 22183.56 29571.03 19365.66 35785.88 26142.10 35692.57 19659.11 29863.34 38188.65 268
thres20075.55 25874.47 25778.82 27187.78 20457.85 30983.07 28183.51 29672.44 16875.84 22584.42 29252.08 26491.75 22847.41 37383.64 20786.86 308
IterMVS-SCA-FT75.43 26173.87 26680.11 24882.69 31864.85 20781.57 29683.47 29769.16 23870.49 30584.15 30251.95 26788.15 30669.23 20872.14 34887.34 295
CVMVSNet72.99 29172.58 28074.25 33284.28 27750.85 38586.41 20083.45 29844.56 40073.23 27687.54 21649.38 29985.70 32865.90 23978.44 26986.19 319
ITE_SJBPF78.22 28481.77 33260.57 27983.30 29969.25 23467.54 33687.20 22536.33 38187.28 31554.34 33474.62 32686.80 309
thisisatest051577.33 22975.38 24583.18 16785.27 25863.80 22782.11 29083.27 30065.06 29575.91 22383.84 30649.54 29694.27 11867.24 22886.19 16891.48 160
mvs5depth69.45 32367.45 33575.46 31973.93 38955.83 34179.19 33183.23 30166.89 26771.63 29783.32 31733.69 38785.09 33659.81 29155.34 39785.46 333
thres100view90076.50 24275.55 24179.33 26389.52 12556.99 32285.83 21983.23 30173.94 13576.32 21587.12 22851.89 26991.95 22048.33 36683.75 20289.07 244
thres600view776.50 24275.44 24279.68 25789.40 13257.16 31985.53 22783.23 30173.79 13976.26 21687.09 22951.89 26991.89 22348.05 37183.72 20590.00 218
test22291.50 8068.26 12984.16 25983.20 30454.63 38179.74 14291.63 10858.97 20491.42 9286.77 310
EPNet_dtu75.46 26074.86 25177.23 30282.57 32154.60 35586.89 18583.09 30571.64 17766.25 35585.86 26255.99 22788.04 30854.92 33186.55 16289.05 249
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_s_conf0.5_n83.80 8383.71 8484.07 13186.69 23467.31 15489.46 9283.07 30671.09 19186.96 5093.70 6169.02 9091.47 24388.79 2184.62 18693.44 89
fmvsm_s_conf0.1_n83.56 9183.38 8984.10 12584.86 26767.28 15589.40 9783.01 30770.67 19987.08 4793.96 5668.38 9491.45 24488.56 2584.50 18793.56 84
testing9176.54 24075.66 23979.18 26788.43 17355.89 34081.08 30283.00 30873.76 14075.34 23984.29 29746.20 32690.07 27264.33 25184.50 18791.58 155
TDRefinement67.49 33764.34 34776.92 30473.47 39561.07 27284.86 24082.98 30959.77 34958.30 39085.13 28026.06 39987.89 30947.92 37260.59 38881.81 377
OpenMVS_ROBcopyleft64.09 1970.56 31368.19 31977.65 29480.26 35259.41 29485.01 23682.96 31058.76 35965.43 35982.33 33437.63 37891.23 25145.34 38576.03 30282.32 372
fmvsm_s_conf0.5_n_a83.63 8983.41 8884.28 11786.14 24268.12 13289.43 9382.87 31170.27 21087.27 4693.80 6069.09 8591.58 23488.21 2983.65 20693.14 103
fmvsm_s_conf0.1_n_a83.32 9882.99 9684.28 11783.79 28968.07 13489.34 10082.85 31269.80 22187.36 4594.06 4868.34 9591.56 23687.95 3083.46 21193.21 99
RPSCF73.23 28771.46 29178.54 27882.50 32259.85 28882.18 28982.84 31358.96 35771.15 30289.41 16945.48 33684.77 34058.82 30271.83 35091.02 175
CostFormer75.24 26573.90 26579.27 26482.65 32058.27 30180.80 30582.73 31461.57 33675.33 24383.13 32155.52 22991.07 25864.98 24778.34 27288.45 272
IterMVS74.29 27072.94 27678.35 28381.53 33763.49 23581.58 29582.49 31568.06 25969.99 31483.69 31251.66 27485.54 33165.85 24071.64 35186.01 324
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_cas_vis1_n_192073.76 27973.74 26873.81 33675.90 38059.77 28980.51 31382.40 31658.30 36281.62 12285.69 26544.35 34176.41 38576.29 13778.61 26585.23 337
WTY-MVS75.65 25775.68 23775.57 31586.40 23856.82 32477.92 35182.40 31665.10 29476.18 21987.72 20863.13 15080.90 36360.31 28781.96 22989.00 253
pmmvs474.03 27771.91 28680.39 24181.96 32968.32 12781.45 29882.14 31859.32 35369.87 31785.13 28052.40 25788.13 30760.21 28874.74 32584.73 346
FMVSNet569.50 32267.96 32374.15 33382.97 31355.35 34880.01 32182.12 31962.56 32863.02 37281.53 34236.92 37981.92 35748.42 36574.06 33085.17 340
mamv476.81 23778.23 18572.54 34786.12 24365.75 18678.76 33882.07 32064.12 30772.97 27991.02 13267.97 9868.08 41183.04 7478.02 27483.80 357
baseline176.98 23476.75 22377.66 29388.13 18455.66 34485.12 23381.89 32173.04 16076.79 20288.90 17762.43 15887.78 31163.30 25971.18 35489.55 236
UnsupCasMVSNet_bld63.70 35661.53 36270.21 36373.69 39251.39 38172.82 37781.89 32155.63 37857.81 39271.80 39738.67 37278.61 37149.26 36252.21 40280.63 383
LFMVS81.82 12181.23 12283.57 15391.89 7663.43 23889.84 7881.85 32377.04 6283.21 10193.10 7352.26 25993.43 16071.98 18189.95 11493.85 65
sss73.60 28073.64 26973.51 33882.80 31555.01 35276.12 35881.69 32462.47 32974.68 25985.85 26357.32 21878.11 37460.86 28480.93 23987.39 293
pmmvs-eth3d70.50 31467.83 32778.52 28077.37 37666.18 17481.82 29181.51 32558.90 35863.90 37080.42 35342.69 35186.28 32358.56 30465.30 37783.11 364
TinyColmap67.30 34064.81 34574.76 32781.92 33156.68 32880.29 31881.49 32660.33 34356.27 39783.22 31824.77 40387.66 31345.52 38369.47 36179.95 386
testing9976.09 25275.12 25079.00 26888.16 18155.50 34680.79 30681.40 32773.30 15475.17 24784.27 29944.48 34090.02 27364.28 25284.22 19691.48 160
tpmvs71.09 30669.29 31176.49 30782.04 32856.04 33878.92 33681.37 32864.05 31067.18 34278.28 37349.74 29589.77 27749.67 36072.37 34483.67 358
WBMVS73.43 28272.81 27775.28 32187.91 19550.99 38478.59 34281.31 32965.51 29274.47 26384.83 28646.39 32086.68 31858.41 30677.86 27588.17 278
pmmvs571.55 30270.20 30875.61 31477.83 37356.39 33281.74 29380.89 33057.76 36667.46 33884.49 29049.26 30285.32 33557.08 31975.29 31885.11 341
ANet_high50.57 37846.10 38263.99 38148.67 42639.13 41570.99 38580.85 33161.39 33831.18 41557.70 41117.02 41473.65 40231.22 40815.89 42379.18 388
LCM-MVSNet54.25 36949.68 37967.97 37653.73 42345.28 40266.85 40180.78 33235.96 41239.45 41362.23 4068.70 42378.06 37548.24 36951.20 40380.57 384
PVSNet64.34 1872.08 30070.87 30075.69 31386.21 24056.44 33174.37 37380.73 33362.06 33470.17 31082.23 33742.86 35083.31 35054.77 33284.45 19187.32 296
baseline275.70 25673.83 26781.30 22083.26 30161.79 26582.57 28680.65 33466.81 26866.88 34483.42 31657.86 21292.19 21363.47 25679.57 25689.91 223
ppachtmachnet_test70.04 31867.34 33678.14 28679.80 36161.13 27079.19 33180.59 33559.16 35565.27 36079.29 36446.75 31987.29 31449.33 36166.72 37086.00 326
Gipumacopyleft45.18 38341.86 38655.16 39577.03 37851.52 37932.50 41980.52 33632.46 41527.12 41835.02 4199.52 42275.50 39222.31 41660.21 38938.45 418
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
Anonymous2023120668.60 32967.80 32871.02 35980.23 35450.75 38678.30 34780.47 33756.79 37366.11 35682.63 33146.35 32378.95 37043.62 38875.70 30583.36 361
LCM-MVSNet-Re77.05 23276.94 21677.36 29987.20 22351.60 37880.06 31980.46 33875.20 10367.69 33586.72 23662.48 15688.98 29363.44 25789.25 12291.51 157
testing1175.14 26674.01 26278.53 27988.16 18156.38 33380.74 30980.42 33970.67 19972.69 28483.72 31143.61 34689.86 27562.29 26983.76 20189.36 240
tpm273.26 28671.46 29178.63 27383.34 29956.71 32780.65 31180.40 34056.63 37473.55 27282.02 34051.80 27191.24 25056.35 32678.42 27087.95 280
CR-MVSNet73.37 28371.27 29579.67 25881.32 34365.19 19775.92 36080.30 34159.92 34872.73 28281.19 34352.50 25586.69 31759.84 29077.71 27787.11 303
Patchmtry70.74 31069.16 31375.49 31880.72 34754.07 36074.94 37180.30 34158.34 36170.01 31281.19 34352.50 25586.54 31953.37 33971.09 35585.87 329
tpm cat170.57 31268.31 31877.35 30082.41 32557.95 30778.08 34880.22 34352.04 38768.54 33077.66 37852.00 26687.84 31051.77 34572.07 34986.25 317
MDTV_nov1_ep1369.97 30983.18 30453.48 36477.10 35680.18 34460.45 34269.33 32380.44 35248.89 30886.90 31651.60 34778.51 268
AllTest70.96 30768.09 32279.58 26085.15 26163.62 22984.58 24779.83 34562.31 33060.32 38386.73 23432.02 38988.96 29550.28 35571.57 35286.15 320
TestCases79.58 26085.15 26163.62 22979.83 34562.31 33060.32 38386.73 23432.02 38988.96 29550.28 35571.57 35286.15 320
test_fmvs1_n70.86 30970.24 30772.73 34572.51 40255.28 34981.27 30179.71 34751.49 39178.73 15684.87 28527.54 39877.02 37976.06 14079.97 25485.88 328
Vis-MVSNet (Re-imp)78.36 20278.45 17678.07 28888.64 16551.78 37786.70 19379.63 34874.14 13275.11 25090.83 13661.29 18089.75 27858.10 31091.60 8892.69 120
MIMVSNet70.69 31169.30 31074.88 32584.52 27456.35 33575.87 36279.42 34964.59 30067.76 33382.41 33241.10 36081.54 35946.64 37781.34 23486.75 311
dmvs_re71.14 30570.58 30172.80 34481.96 32959.68 29075.60 36479.34 35068.55 25169.27 32480.72 35149.42 29876.54 38252.56 34377.79 27682.19 374
SCA74.22 27272.33 28379.91 25184.05 28462.17 25979.96 32279.29 35166.30 28072.38 28880.13 35651.95 26788.60 30159.25 29677.67 27988.96 255
testing22274.04 27572.66 27978.19 28587.89 19655.36 34781.06 30379.20 35271.30 18674.65 26083.57 31439.11 37088.67 30051.43 34985.75 17790.53 192
tpmrst72.39 29472.13 28573.18 34280.54 35049.91 38979.91 32379.08 35363.11 31871.69 29679.95 35855.32 23082.77 35365.66 24273.89 33286.87 307
test_fmvs170.93 30870.52 30272.16 34973.71 39155.05 35180.82 30478.77 35451.21 39278.58 16184.41 29331.20 39376.94 38075.88 14380.12 25384.47 348
PatchmatchNetpermissive73.12 28871.33 29478.49 28183.18 30460.85 27579.63 32478.57 35564.13 30671.73 29579.81 36151.20 27885.97 32657.40 31676.36 30088.66 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDA-MVSNet-bldmvs66.68 34363.66 35275.75 31279.28 36860.56 28073.92 37578.35 35664.43 30250.13 40579.87 36044.02 34383.67 34646.10 38056.86 39183.03 366
new-patchmatchnet61.73 36061.73 36161.70 38472.74 40024.50 42769.16 39378.03 35761.40 33756.72 39575.53 38938.42 37376.48 38445.95 38157.67 39084.13 352
our_test_369.14 32567.00 33875.57 31579.80 36158.80 29577.96 34977.81 35859.55 35162.90 37578.25 37447.43 31283.97 34451.71 34667.58 36983.93 355
test20.0367.45 33866.95 33968.94 36775.48 38444.84 40477.50 35277.67 35966.66 27263.01 37383.80 30747.02 31678.40 37242.53 39268.86 36683.58 359
WB-MVSnew71.96 30171.65 28972.89 34384.67 27351.88 37582.29 28877.57 36062.31 33073.67 27183.00 32353.49 25081.10 36245.75 38282.13 22785.70 330
test-LLR72.94 29272.43 28174.48 32981.35 34158.04 30478.38 34377.46 36166.66 27269.95 31579.00 36748.06 31079.24 36866.13 23584.83 18286.15 320
test-mter71.41 30370.39 30674.48 32981.35 34158.04 30478.38 34377.46 36160.32 34469.95 31579.00 36736.08 38279.24 36866.13 23584.83 18286.15 320
ECVR-MVScopyleft79.61 16879.26 16180.67 23790.08 10854.69 35487.89 15577.44 36374.88 11280.27 13692.79 8548.96 30792.45 20168.55 21692.50 7794.86 18
UBG73.08 28972.27 28475.51 31788.02 19051.29 38278.35 34677.38 36465.52 29073.87 26982.36 33345.55 33386.48 32155.02 33084.39 19388.75 264
tpm72.37 29671.71 28874.35 33182.19 32752.00 37279.22 33077.29 36564.56 30172.95 28083.68 31351.35 27583.26 35158.33 30875.80 30487.81 284
LF4IMVS64.02 35562.19 35969.50 36570.90 40353.29 36876.13 35777.18 36652.65 38658.59 38880.98 34723.55 40676.52 38353.06 34166.66 37178.68 389
test111179.43 17579.18 16480.15 24789.99 11353.31 36787.33 17177.05 36775.04 10780.23 13892.77 8748.97 30692.33 20968.87 21392.40 7994.81 21
K. test v371.19 30468.51 31679.21 26683.04 30957.78 31284.35 25676.91 36872.90 16362.99 37482.86 32739.27 36891.09 25761.65 27752.66 40088.75 264
UWE-MVS72.13 29971.49 29074.03 33486.66 23547.70 39381.40 30076.89 36963.60 31575.59 22884.22 30039.94 36685.62 33048.98 36386.13 17088.77 263
testgi66.67 34466.53 34167.08 37875.62 38341.69 41375.93 35976.50 37066.11 28165.20 36386.59 24435.72 38374.71 39743.71 38773.38 33984.84 344
test_fmvs268.35 33467.48 33470.98 36069.50 40551.95 37380.05 32076.38 37149.33 39474.65 26084.38 29423.30 40775.40 39574.51 15675.17 32185.60 331
test_vis1_n69.85 32169.21 31271.77 35172.66 40155.27 35081.48 29776.21 37252.03 38875.30 24483.20 32028.97 39676.22 38774.60 15578.41 27183.81 356
PatchMatch-RL72.38 29570.90 29976.80 30688.60 16667.38 15279.53 32576.17 37362.75 32669.36 32282.00 34145.51 33484.89 33953.62 33780.58 24578.12 390
JIA-IIPM66.32 34762.82 35876.82 30577.09 37761.72 26665.34 40675.38 37458.04 36564.51 36562.32 40542.05 35786.51 32051.45 34869.22 36382.21 373
ADS-MVSNet266.20 35063.33 35374.82 32679.92 35758.75 29667.55 39875.19 37553.37 38465.25 36175.86 38642.32 35380.53 36541.57 39368.91 36485.18 338
ETVMVS72.25 29871.05 29775.84 31187.77 20551.91 37479.39 32774.98 37669.26 23373.71 27082.95 32440.82 36386.14 32446.17 37984.43 19289.47 237
PatchT68.46 33367.85 32570.29 36280.70 34843.93 40672.47 37874.88 37760.15 34670.55 30376.57 38249.94 29281.59 35850.58 35174.83 32485.34 335
dp66.80 34265.43 34470.90 36179.74 36348.82 39275.12 36974.77 37859.61 35064.08 36877.23 37942.89 34980.72 36448.86 36466.58 37283.16 363
MDA-MVSNet_test_wron65.03 35162.92 35571.37 35475.93 37956.73 32569.09 39574.73 37957.28 37154.03 40077.89 37545.88 32874.39 39949.89 35961.55 38482.99 367
TESTMET0.1,169.89 32069.00 31472.55 34679.27 36956.85 32378.38 34374.71 38057.64 36768.09 33277.19 38037.75 37776.70 38163.92 25484.09 19784.10 353
YYNet165.03 35162.91 35671.38 35375.85 38156.60 32969.12 39474.66 38157.28 37154.12 39977.87 37645.85 32974.48 39849.95 35861.52 38583.05 365
test_fmvs363.36 35761.82 36067.98 37562.51 41446.96 39777.37 35474.03 38245.24 39967.50 33778.79 37012.16 41972.98 40372.77 17666.02 37483.99 354
PMMVS69.34 32468.67 31571.35 35675.67 38262.03 26075.17 36673.46 38350.00 39368.68 32779.05 36552.07 26578.13 37361.16 28282.77 21973.90 397
PVSNet_057.27 2061.67 36159.27 36468.85 36979.61 36457.44 31768.01 39673.44 38455.93 37758.54 38970.41 40044.58 33977.55 37747.01 37435.91 41271.55 400
Syy-MVS68.05 33567.85 32568.67 37184.68 27040.97 41478.62 34073.08 38566.65 27566.74 34779.46 36252.11 26382.30 35532.89 40676.38 29882.75 369
myMVS_eth3d67.02 34166.29 34269.21 36684.68 27042.58 40978.62 34073.08 38566.65 27566.74 34779.46 36231.53 39282.30 35539.43 39876.38 29882.75 369
test0.0.03 168.00 33667.69 33068.90 36877.55 37447.43 39475.70 36372.95 38766.66 27266.56 34982.29 33648.06 31075.87 39044.97 38674.51 32783.41 360
testing368.56 33167.67 33171.22 35887.33 22042.87 40883.06 28271.54 38870.36 20669.08 32584.38 29430.33 39585.69 32937.50 40175.45 31385.09 342
ADS-MVSNet64.36 35462.88 35768.78 37079.92 35747.17 39567.55 39871.18 38953.37 38465.25 36175.86 38642.32 35373.99 40041.57 39368.91 36485.18 338
Patchmatch-RL test70.24 31667.78 32977.61 29577.43 37559.57 29371.16 38370.33 39062.94 32268.65 32872.77 39550.62 28485.49 33269.58 20666.58 37287.77 285
gg-mvs-nofinetune69.95 31967.96 32375.94 31083.07 30754.51 35777.23 35570.29 39163.11 31870.32 30762.33 40443.62 34588.69 29953.88 33687.76 14584.62 347
door-mid69.98 392
GG-mvs-BLEND75.38 32081.59 33555.80 34279.32 32869.63 39367.19 34173.67 39343.24 34788.90 29750.41 35284.50 18781.45 378
FPMVS53.68 37251.64 37459.81 38765.08 41151.03 38369.48 39169.58 39441.46 40440.67 41172.32 39616.46 41570.00 40824.24 41565.42 37658.40 411
door69.44 395
Patchmatch-test64.82 35363.24 35469.57 36479.42 36749.82 39063.49 41069.05 39651.98 38959.95 38580.13 35650.91 28070.98 40440.66 39573.57 33587.90 282
CHOSEN 280x42066.51 34564.71 34671.90 35081.45 33863.52 23457.98 41368.95 39753.57 38362.59 37676.70 38146.22 32575.29 39655.25 32979.68 25576.88 393
MVStest156.63 36752.76 37368.25 37461.67 41553.25 36971.67 38168.90 39838.59 40850.59 40483.05 32225.08 40170.66 40536.76 40238.56 41180.83 382
EGC-MVSNET52.07 37647.05 38067.14 37783.51 29660.71 27780.50 31467.75 3990.07 4260.43 42775.85 38824.26 40481.54 35928.82 40962.25 38259.16 409
ttmdpeth59.91 36357.10 36768.34 37367.13 40946.65 39874.64 37267.41 40048.30 39562.52 37785.04 28420.40 40975.93 38942.55 39145.90 41082.44 371
EPMVS69.02 32668.16 32071.59 35279.61 36449.80 39177.40 35366.93 40162.82 32570.01 31279.05 36545.79 33077.86 37656.58 32475.26 31987.13 302
APD_test153.31 37349.93 37863.42 38365.68 41050.13 38871.59 38266.90 40234.43 41340.58 41271.56 3988.65 42476.27 38634.64 40555.36 39663.86 407
lessismore_v078.97 26981.01 34657.15 32065.99 40361.16 38082.82 32839.12 36991.34 24859.67 29246.92 40788.43 273
dmvs_testset62.63 35864.11 34958.19 38878.55 37124.76 42675.28 36565.94 40467.91 26060.34 38276.01 38553.56 24873.94 40131.79 40767.65 36875.88 395
pmmvs357.79 36554.26 37068.37 37264.02 41356.72 32675.12 36965.17 40540.20 40552.93 40169.86 40120.36 41075.48 39345.45 38455.25 39872.90 399
MVS-HIRNet59.14 36457.67 36663.57 38281.65 33343.50 40771.73 38065.06 40639.59 40751.43 40257.73 41038.34 37482.58 35439.53 39673.95 33164.62 406
PM-MVS66.41 34664.14 34873.20 34173.92 39056.45 33078.97 33564.96 40763.88 31464.72 36480.24 35519.84 41183.44 34966.24 23464.52 37979.71 387
PMVScopyleft37.38 2244.16 38440.28 38855.82 39340.82 42842.54 41165.12 40763.99 40834.43 41324.48 41957.12 4123.92 42976.17 38817.10 42055.52 39548.75 414
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test250677.30 23076.49 22779.74 25590.08 10852.02 37187.86 15763.10 40974.88 11280.16 13992.79 8538.29 37592.35 20768.74 21592.50 7794.86 18
test_method31.52 38829.28 39238.23 40227.03 4306.50 43320.94 42162.21 4104.05 42422.35 42252.50 41513.33 41647.58 42227.04 41234.04 41460.62 408
WB-MVS54.94 36854.72 36955.60 39473.50 39320.90 42874.27 37461.19 41159.16 35550.61 40374.15 39147.19 31575.78 39117.31 41935.07 41370.12 401
test_vis1_rt60.28 36258.42 36565.84 37967.25 40855.60 34570.44 38860.94 41244.33 40159.00 38766.64 40224.91 40268.67 40962.80 26169.48 36073.25 398
SSC-MVS53.88 37153.59 37154.75 39672.87 39919.59 42973.84 37660.53 41357.58 36949.18 40773.45 39446.34 32475.47 39416.20 42232.28 41569.20 402
testf145.72 38041.96 38457.00 38956.90 41745.32 40066.14 40359.26 41426.19 41730.89 41660.96 4084.14 42770.64 40626.39 41346.73 40855.04 412
APD_test245.72 38041.96 38457.00 38956.90 41745.32 40066.14 40359.26 41426.19 41730.89 41660.96 4084.14 42770.64 40626.39 41346.73 40855.04 412
test_f52.09 37550.82 37655.90 39253.82 42242.31 41259.42 41258.31 41636.45 41156.12 39870.96 39912.18 41857.79 41853.51 33856.57 39367.60 403
new_pmnet50.91 37750.29 37752.78 39768.58 40634.94 41963.71 40856.63 41739.73 40644.95 40865.47 40321.93 40858.48 41734.98 40456.62 39264.92 405
DSMNet-mixed57.77 36656.90 36860.38 38667.70 40735.61 41769.18 39253.97 41832.30 41657.49 39379.88 35940.39 36568.57 41038.78 39972.37 34476.97 392
PMMVS240.82 38538.86 38946.69 39953.84 42116.45 43048.61 41649.92 41937.49 40931.67 41460.97 4078.14 42556.42 41928.42 41030.72 41667.19 404
mvsany_test162.30 35961.26 36365.41 38069.52 40454.86 35366.86 40049.78 42046.65 39768.50 33183.21 31949.15 30366.28 41256.93 32160.77 38675.11 396
test_vis3_rt49.26 37947.02 38156.00 39154.30 42045.27 40366.76 40248.08 42136.83 41044.38 40953.20 4147.17 42664.07 41456.77 32355.66 39458.65 410
E-PMN31.77 38730.64 39035.15 40452.87 42427.67 42157.09 41447.86 42224.64 41916.40 42433.05 42011.23 42054.90 42014.46 42318.15 42122.87 420
EMVS30.81 38929.65 39134.27 40550.96 42525.95 42556.58 41546.80 42324.01 42015.53 42530.68 42112.47 41754.43 42112.81 42417.05 42222.43 421
mvsany_test353.99 37051.45 37561.61 38555.51 41944.74 40563.52 40945.41 42443.69 40258.11 39176.45 38317.99 41263.76 41554.77 33247.59 40676.34 394
MVEpermissive26.22 2330.37 39025.89 39443.81 40144.55 42735.46 41828.87 42039.07 42518.20 42118.58 42340.18 4182.68 43047.37 42317.07 42123.78 42048.60 415
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dongtai45.42 38245.38 38345.55 40073.36 39626.85 42467.72 39734.19 42654.15 38249.65 40656.41 41325.43 40062.94 41619.45 41728.09 41746.86 416
kuosan39.70 38640.40 38737.58 40364.52 41226.98 42265.62 40533.02 42746.12 39842.79 41048.99 41624.10 40546.56 42412.16 42526.30 41839.20 417
MTMP92.18 3432.83 428
tmp_tt18.61 39221.40 39510.23 4084.82 43110.11 43134.70 41830.74 4291.48 42523.91 42126.07 42228.42 39713.41 42727.12 41115.35 4247.17 422
DeepMVS_CXcopyleft27.40 40640.17 42926.90 42324.59 43017.44 42223.95 42048.61 4179.77 42126.48 42518.06 41824.47 41928.83 419
N_pmnet52.79 37453.26 37251.40 39878.99 3707.68 43269.52 3903.89 43151.63 39057.01 39474.98 39040.83 36265.96 41337.78 40064.67 37880.56 385
wuyk23d16.82 39315.94 39619.46 40758.74 41631.45 42039.22 4173.74 4326.84 4236.04 4262.70 4261.27 43124.29 42610.54 42614.40 4252.63 423
testmvs6.04 3968.02 3990.10 4100.08 4320.03 43569.74 3890.04 4330.05 4270.31 4281.68 4270.02 4330.04 4280.24 4270.02 4260.25 425
test1236.12 3958.11 3980.14 4090.06 4330.09 43471.05 3840.03 4340.04 4280.25 4291.30 4280.05 4320.03 4290.21 4280.01 4270.29 424
mmdepth0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
monomultidepth0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
test_blank0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
uanet_test0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
DCPMVS0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
pcd_1.5k_mvsjas5.26 3977.02 4000.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 42963.15 1470.00 4300.00 4290.00 4280.00 426
sosnet-low-res0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
sosnet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
uncertanet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
Regformer0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
n20.00 435
nn0.00 435
ab-mvs-re7.23 3949.64 3970.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 43086.72 2360.00 4340.00 4300.00 4290.00 4280.00 426
uanet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
WAC-MVS42.58 40939.46 397
PC_three_145268.21 25792.02 1294.00 5282.09 595.98 5684.58 5696.68 294.95 11
eth-test20.00 434
eth-test0.00 434
OPU-MVS89.06 394.62 1575.42 493.57 794.02 5082.45 396.87 2083.77 6796.48 894.88 15
test_0728_THIRD78.38 3492.12 995.78 481.46 797.40 989.42 1296.57 794.67 28
GSMVS88.96 255
test_part295.06 872.65 3291.80 13
sam_mvs151.32 27688.96 255
sam_mvs50.01 290
test_post178.90 3375.43 42548.81 30985.44 33459.25 296
test_post5.46 42450.36 28884.24 342
patchmatchnet-post74.00 39251.12 27988.60 301
gm-plane-assit81.40 33953.83 36262.72 32780.94 34892.39 20463.40 258
test9_res84.90 4995.70 2692.87 115
agg_prior282.91 7695.45 2992.70 118
test_prior472.60 3489.01 112
test_prior288.85 11875.41 9984.91 6893.54 6274.28 2983.31 7095.86 20
旧先验286.56 19758.10 36487.04 4888.98 29374.07 161
新几何286.29 206
原ACMM286.86 186
testdata291.01 25962.37 268
segment_acmp73.08 39
testdata184.14 26075.71 93
plane_prior790.08 10868.51 123
plane_prior689.84 11768.70 11860.42 197
plane_prior491.00 133
plane_prior368.60 12178.44 3278.92 154
plane_prior291.25 5279.12 24
plane_prior189.90 116
plane_prior68.71 11690.38 7077.62 4186.16 169
HQP5-MVS66.98 163
HQP-NCC89.33 13589.17 10376.41 7877.23 192
ACMP_Plane89.33 13589.17 10376.41 7877.23 192
BP-MVS77.47 125
HQP4-MVS77.24 19195.11 8791.03 173
HQP2-MVS60.17 200
NP-MVS89.62 12168.32 12790.24 145
MDTV_nov1_ep13_2view37.79 41675.16 36755.10 37966.53 35049.34 30053.98 33587.94 281
ACMMP++_ref81.95 230
ACMMP++81.25 235
Test By Simon64.33 134