This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
9.1488.26 1492.84 6091.52 4694.75 173.93 12588.57 2294.67 1975.57 2295.79 5386.77 3595.76 23
SF-MVS88.46 1188.74 1187.64 3592.78 6171.95 5092.40 2494.74 275.71 8789.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 42
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5894.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8592.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 52
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PHI-MVS86.43 3886.17 4287.24 4190.88 8770.96 6592.27 3294.07 972.45 15285.22 5491.90 9269.47 7496.42 3783.28 6295.94 1994.35 36
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 41
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
APDe-MVScopyleft89.15 689.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 8991.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 31
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DeepC-MVS79.81 287.08 3186.88 3387.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 9694.23 3572.13 4597.09 1684.83 4595.37 3293.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FOURS195.00 1072.39 3995.06 193.84 1574.49 11391.30 15
MCST-MVS87.37 2687.25 2587.73 2894.53 1772.46 3889.82 7793.82 1673.07 14784.86 6292.89 7476.22 1796.33 3884.89 4495.13 3694.40 34
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5394.32 3171.76 4896.93 1985.53 3995.79 2294.32 38
CS-MVS-test86.29 4186.48 3685.71 6591.02 8367.21 15292.36 2993.78 1878.97 2883.51 8891.20 11170.65 6395.15 7781.96 7694.89 4194.77 22
3Dnovator+77.84 485.48 5384.47 6888.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19593.37 6260.40 18896.75 2677.20 11793.73 6295.29 5
SteuartSystems-ACMMP88.72 1088.86 1088.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVScopyleft89.08 789.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10792.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
EC-MVSNet86.01 4286.38 3784.91 8889.31 13066.27 16692.32 3093.63 2179.37 2084.17 7691.88 9369.04 8295.43 6583.93 5793.77 6193.01 99
ACMMP_NAP88.05 1688.08 1687.94 1993.70 4173.05 2290.86 5693.59 2376.27 7988.14 2495.09 1571.06 5796.67 2987.67 2996.37 1494.09 46
CSCG86.41 4086.19 4187.07 4592.91 5872.48 3790.81 5793.56 2473.95 12383.16 9191.07 11675.94 1895.19 7579.94 9494.38 5493.55 76
MP-MVS-pluss87.67 2087.72 2087.54 3693.64 4472.04 4889.80 7993.50 2575.17 10086.34 4495.29 1270.86 5996.00 4988.78 1996.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FIs82.07 10282.42 9081.04 21988.80 15058.34 28888.26 13593.49 2676.93 6078.47 15391.04 11769.92 7092.34 19969.87 19084.97 16692.44 118
DELS-MVS85.41 5685.30 5785.77 6488.49 16167.93 13285.52 21993.44 2778.70 2983.63 8789.03 16474.57 2495.71 5680.26 9294.04 5993.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
GST-MVS87.42 2487.26 2487.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6393.99 4870.67 6296.82 2284.18 5695.01 3793.90 55
FC-MVSNet-test81.52 11582.02 9980.03 24088.42 16555.97 32587.95 14693.42 2977.10 5677.38 17790.98 12269.96 6891.79 21768.46 20584.50 17292.33 119
DeepPCF-MVS80.84 188.10 1288.56 1286.73 5092.24 6869.03 9989.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 27
HPM-MVScopyleft87.11 2986.98 2987.50 3893.88 3972.16 4592.19 3493.33 3176.07 8283.81 8393.95 5169.77 7296.01 4885.15 4094.66 4694.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS86.69 3486.95 3085.90 6390.76 9067.57 14092.83 1793.30 3279.67 1784.57 6992.27 8671.47 5395.02 8684.24 5493.46 6395.13 6
HFP-MVS87.58 2187.47 2387.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 5994.44 2870.78 6096.61 3284.53 4994.89 4193.66 65
ACMMPR87.44 2287.23 2688.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6694.52 2168.81 8496.65 3084.53 4994.90 4094.00 50
SD-MVS88.06 1488.50 1386.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13687.63 3094.27 5793.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMMPcopyleft85.89 4785.39 5387.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12193.82 5364.33 12596.29 3982.67 7390.69 9493.23 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
region2R87.42 2487.20 2788.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7094.52 2169.09 7896.70 2784.37 5194.83 4494.03 49
DPM-MVS84.93 6284.29 6986.84 4790.20 9973.04 2387.12 16993.04 3869.80 20582.85 9591.22 11073.06 3896.02 4776.72 12694.63 4791.46 148
PGM-MVS86.68 3586.27 3987.90 2294.22 3373.38 1890.22 7093.04 3875.53 9183.86 8194.42 2967.87 9296.64 3182.70 7294.57 4993.66 65
casdiffmvs_mvgpermissive85.99 4386.09 4585.70 6687.65 19367.22 15188.69 11993.04 3879.64 1885.33 5292.54 8373.30 3594.50 10783.49 5991.14 8995.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepC-MVS_fast79.65 386.91 3286.62 3587.76 2793.52 4672.37 4191.26 4893.04 3876.62 7084.22 7493.36 6371.44 5496.76 2580.82 8595.33 3494.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UniMVSNet (Re)81.60 11481.11 11083.09 16288.38 16664.41 20987.60 15693.02 4278.42 3278.56 15088.16 19069.78 7193.26 15969.58 19376.49 27591.60 140
canonicalmvs85.91 4685.87 4886.04 6089.84 11169.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13181.50 7988.80 12094.77 22
CNVR-MVS88.93 989.13 988.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 37
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
No_MVS89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
XVS87.18 2886.91 3288.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8594.17 3667.45 9596.60 3383.06 6394.50 5094.07 47
X-MVStestdata80.37 14477.83 18188.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8512.47 39867.45 9596.60 3383.06 6394.50 5094.07 47
APD-MVS_3200maxsize85.97 4485.88 4786.22 5792.69 6369.53 8991.93 3892.99 4573.54 13585.94 4594.51 2465.80 11595.61 5783.04 6592.51 7193.53 78
test_prior86.33 5492.61 6569.59 8892.97 5095.48 6293.91 53
IU-MVS95.30 271.25 5792.95 5166.81 25192.39 688.94 1696.63 494.85 19
baseline84.93 6284.98 6084.80 9287.30 20765.39 18887.30 16592.88 5277.62 3984.04 7992.26 8771.81 4793.96 12481.31 8090.30 9995.03 8
MSLP-MVS++85.43 5585.76 4984.45 10391.93 7270.24 7690.71 5892.86 5377.46 4784.22 7492.81 7867.16 9992.94 18080.36 9094.35 5590.16 194
HPM-MVS++copyleft89.02 889.15 888.63 595.01 976.03 192.38 2792.85 5480.26 1187.78 2994.27 3275.89 1996.81 2387.45 3296.44 993.05 96
casdiffmvspermissive85.11 6085.14 5985.01 8287.20 20965.77 17987.75 15392.83 5577.84 3784.36 7392.38 8572.15 4493.93 13081.27 8190.48 9695.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVScopyleft87.44 2287.52 2287.19 4294.24 3272.39 3991.86 4192.83 5573.01 14988.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 105
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5292.83 5581.50 585.79 4893.47 6073.02 3997.00 1884.90 4294.94 3994.10 45
CP-MVS87.11 2986.92 3187.68 3494.20 3473.86 793.98 392.82 5876.62 7083.68 8494.46 2567.93 9095.95 5284.20 5594.39 5393.23 87
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 5977.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
EIA-MVS83.31 8682.80 8884.82 9089.59 11565.59 18188.21 13692.68 6074.66 10978.96 13986.42 24169.06 8095.26 7375.54 13890.09 10393.62 72
ZD-MVS94.38 2572.22 4492.67 6170.98 18087.75 3194.07 4174.01 3296.70 2784.66 4794.84 43
nrg03083.88 7083.53 7484.96 8486.77 21769.28 9890.46 6592.67 6174.79 10682.95 9291.33 10872.70 4193.09 17480.79 8779.28 24692.50 114
WR-MVS_H78.51 18878.49 16478.56 26588.02 17856.38 32088.43 12692.67 6177.14 5473.89 25287.55 20566.25 10889.24 27458.92 28373.55 31990.06 204
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 6477.57 4183.84 8294.40 3072.24 4396.28 4085.65 3895.30 3593.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ETV-MVS84.90 6484.67 6485.59 6789.39 12468.66 11688.74 11792.64 6579.97 1584.10 7785.71 25469.32 7695.38 6980.82 8591.37 8692.72 104
CANet86.45 3786.10 4487.51 3790.09 10170.94 6789.70 8392.59 6681.78 481.32 11291.43 10670.34 6497.23 1384.26 5293.36 6494.37 35
SR-MVS86.73 3386.67 3486.91 4694.11 3772.11 4792.37 2892.56 6774.50 11286.84 4294.65 2067.31 9795.77 5484.80 4692.85 6792.84 103
alignmvs85.48 5385.32 5685.96 6289.51 11969.47 9289.74 8192.47 6876.17 8087.73 3391.46 10570.32 6593.78 13681.51 7888.95 11794.63 26
原ACMM184.35 10793.01 5768.79 10692.44 6963.96 29381.09 11791.57 10166.06 11195.45 6367.19 21694.82 4588.81 248
HQP_MVS83.64 7683.14 8085.14 7790.08 10268.71 11291.25 5092.44 6979.12 2378.92 14191.00 12060.42 18695.38 6978.71 10286.32 15191.33 149
plane_prior592.44 6995.38 6978.71 10286.32 15191.33 149
CDPH-MVS85.76 4985.29 5887.17 4393.49 4771.08 6188.58 12392.42 7268.32 24084.61 6793.48 5872.32 4296.15 4579.00 9895.43 3194.28 40
UniMVSNet_NR-MVSNet81.88 10581.54 10582.92 17188.46 16363.46 22887.13 16892.37 7380.19 1278.38 15489.14 16071.66 5293.05 17670.05 18676.46 27692.25 123
TSAR-MVS + MP.88.02 1788.11 1587.72 3093.68 4372.13 4691.41 4792.35 7474.62 11188.90 2093.85 5275.75 2096.00 4987.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CLD-MVS82.31 9881.65 10484.29 11088.47 16267.73 13685.81 21092.35 7475.78 8678.33 15686.58 23664.01 12894.35 11076.05 13187.48 13590.79 168
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SR-MVS-dyc-post85.77 4885.61 5186.23 5693.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2665.00 12395.56 5882.75 6891.87 7992.50 114
RE-MVS-def85.48 5293.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2663.87 12982.75 6891.87 7992.50 114
RPMNet73.51 26470.49 28282.58 18581.32 32265.19 19175.92 33992.27 7657.60 34772.73 26476.45 36052.30 24595.43 6548.14 35077.71 26087.11 285
test1192.23 79
mPP-MVS86.67 3686.32 3887.72 3094.41 2273.55 1392.74 2092.22 8076.87 6282.81 9794.25 3466.44 10596.24 4182.88 6794.28 5693.38 81
DP-MVS Recon83.11 9082.09 9786.15 5894.44 1970.92 6888.79 11392.20 8170.53 18979.17 13791.03 11964.12 12796.03 4668.39 20690.14 10291.50 145
HQP3-MVS92.19 8285.99 158
HQP-MVS82.61 9682.02 9984.37 10589.33 12766.98 15589.17 9892.19 8276.41 7277.23 18290.23 13360.17 18995.11 8077.47 11485.99 15891.03 161
3Dnovator76.31 583.38 8482.31 9486.59 5287.94 18072.94 2890.64 5992.14 8477.21 5275.47 22092.83 7658.56 19594.72 9973.24 15992.71 6992.13 130
MTGPAbinary92.02 85
MTAPA87.23 2787.00 2887.90 2294.18 3574.25 586.58 18792.02 8579.45 1985.88 4694.80 1768.07 8996.21 4286.69 3695.34 3393.23 87
MVS_Test83.15 8783.06 8283.41 14986.86 21363.21 23486.11 20092.00 8774.31 11682.87 9489.44 15670.03 6793.21 16377.39 11688.50 12693.81 60
PVSNet_BlendedMVS80.60 13780.02 12982.36 18988.85 14565.40 18686.16 19992.00 8769.34 21578.11 16386.09 24966.02 11294.27 11371.52 17182.06 21187.39 275
PVSNet_Blended80.98 12380.34 12482.90 17288.85 14565.40 18684.43 24292.00 8767.62 24678.11 16385.05 27366.02 11294.27 11371.52 17189.50 11189.01 238
QAPM80.88 12579.50 14185.03 8188.01 17968.97 10391.59 4392.00 8766.63 26075.15 23592.16 8857.70 20295.45 6363.52 24088.76 12190.66 174
LPG-MVS_test82.08 10181.27 10784.50 9989.23 13468.76 10890.22 7091.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18289.83 215
LGP-MVS_train84.50 9989.23 13468.76 10891.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18289.83 215
TEST993.26 5072.96 2588.75 11591.89 9368.44 23885.00 5793.10 6774.36 2895.41 67
train_agg86.43 3886.20 4087.13 4493.26 5072.96 2588.75 11591.89 9368.69 23385.00 5793.10 6774.43 2695.41 6784.97 4195.71 2593.02 98
dcpmvs_285.63 5186.15 4384.06 12591.71 7564.94 19786.47 19091.87 9573.63 13186.60 4393.02 7276.57 1591.87 21683.36 6092.15 7595.35 3
DU-MVS81.12 12280.52 12182.90 17287.80 18663.46 22887.02 17291.87 9579.01 2678.38 15489.07 16265.02 12193.05 17670.05 18676.46 27692.20 126
test_893.13 5272.57 3588.68 12091.84 9768.69 23384.87 6193.10 6774.43 2695.16 76
PAPM_NR83.02 9182.41 9184.82 9092.47 6766.37 16487.93 14891.80 9873.82 12777.32 17990.66 12567.90 9194.90 9170.37 18389.48 11293.19 91
test1286.80 4992.63 6470.70 7291.79 9982.71 9871.67 5196.16 4494.50 5093.54 77
agg_prior92.85 5971.94 5191.78 10084.41 7194.93 87
PAPR81.66 11380.89 11583.99 13390.27 9764.00 21586.76 18391.77 10168.84 23177.13 18889.50 14967.63 9394.88 9367.55 21188.52 12593.09 94
PVSNet_Blended_VisFu82.62 9581.83 10384.96 8490.80 8969.76 8788.74 11791.70 10269.39 21378.96 13988.46 18165.47 11794.87 9474.42 14588.57 12390.24 192
HPM-MVS_fast85.35 5784.95 6286.57 5393.69 4270.58 7592.15 3691.62 10373.89 12682.67 9994.09 4062.60 14495.54 6080.93 8392.93 6693.57 74
ACMM73.20 880.78 13379.84 13483.58 14389.31 13068.37 12189.99 7391.60 10470.28 19477.25 18089.66 14453.37 23893.53 14974.24 14882.85 20188.85 246
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPA-MVSNet80.60 13780.55 12080.76 22688.07 17660.80 26586.86 17791.58 10575.67 9080.24 12589.45 15563.34 13290.25 25970.51 18279.22 24791.23 153
OPM-MVS83.50 8082.95 8585.14 7788.79 15170.95 6689.13 10391.52 10677.55 4480.96 11991.75 9560.71 17994.50 10779.67 9586.51 14989.97 210
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Anonymous2023121178.97 17877.69 18982.81 17690.54 9364.29 21190.11 7291.51 10765.01 27876.16 21288.13 19550.56 27093.03 17969.68 19277.56 26391.11 156
PS-MVSNAJss82.07 10281.31 10684.34 10886.51 22167.27 14989.27 9691.51 10771.75 16179.37 13490.22 13463.15 13894.27 11377.69 11282.36 20891.49 146
TAPA-MVS73.13 979.15 17277.94 17782.79 17989.59 11562.99 24188.16 13991.51 10765.77 26977.14 18791.09 11560.91 17793.21 16350.26 33887.05 14092.17 128
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMP74.13 681.51 11780.57 11984.36 10689.42 12268.69 11589.97 7491.50 11074.46 11475.04 23990.41 13053.82 23394.54 10477.56 11382.91 20089.86 214
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PCF-MVS73.52 780.38 14278.84 15885.01 8287.71 19068.99 10283.65 25591.46 11163.00 29977.77 17190.28 13166.10 10995.09 8461.40 26388.22 12990.94 165
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TranMVSNet+NR-MVSNet80.84 12680.31 12582.42 18787.85 18362.33 24687.74 15491.33 11280.55 977.99 16789.86 13965.23 11992.62 18667.05 21875.24 30392.30 121
PS-CasMVS78.01 20278.09 17477.77 27887.71 19054.39 34188.02 14391.22 11377.50 4673.26 25888.64 17560.73 17888.41 29061.88 25873.88 31690.53 180
v7n78.97 17877.58 19283.14 16083.45 27765.51 18288.32 13391.21 11473.69 13072.41 26886.32 24457.93 19993.81 13569.18 19675.65 28990.11 198
PEN-MVS77.73 20877.69 18977.84 27687.07 21253.91 34487.91 14991.18 11577.56 4373.14 26088.82 17061.23 17189.17 27559.95 27372.37 32790.43 184
MM88.97 473.65 1092.66 2391.17 11686.57 187.39 3594.97 1671.70 5097.68 192.19 195.63 2895.57 1
save fliter93.80 4072.35 4290.47 6491.17 11674.31 116
CP-MVSNet78.22 19378.34 16977.84 27687.83 18554.54 33987.94 14791.17 11677.65 3873.48 25688.49 18062.24 15388.43 28962.19 25474.07 31290.55 179
114514_t80.68 13479.51 14084.20 11594.09 3867.27 14989.64 8591.11 11958.75 33974.08 25190.72 12458.10 19895.04 8569.70 19189.42 11390.30 190
NR-MVSNet80.23 14779.38 14382.78 18087.80 18663.34 23186.31 19491.09 12079.01 2672.17 27189.07 16267.20 9892.81 18566.08 22575.65 28992.20 126
OpenMVScopyleft72.83 1079.77 15578.33 17084.09 12185.17 24069.91 8490.57 6090.97 12166.70 25472.17 27191.91 9154.70 22493.96 12461.81 26090.95 9188.41 258
MAR-MVS81.84 10680.70 11785.27 7491.32 7971.53 5489.82 7790.92 12269.77 20778.50 15186.21 24562.36 15094.52 10665.36 23092.05 7789.77 218
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
tt080578.73 18277.83 18181.43 20585.17 24060.30 27389.41 9290.90 12371.21 17477.17 18688.73 17146.38 30693.21 16372.57 16678.96 24990.79 168
Anonymous2024052980.19 14978.89 15784.10 11890.60 9164.75 20188.95 10790.90 12365.97 26880.59 12291.17 11349.97 27693.73 14269.16 19782.70 20593.81 60
OMC-MVS82.69 9481.97 10184.85 8988.75 15367.42 14387.98 14490.87 12574.92 10379.72 13091.65 9762.19 15493.96 12475.26 14086.42 15093.16 92
UA-Net85.08 6184.96 6185.45 7092.07 7068.07 12989.78 8090.86 12682.48 384.60 6893.20 6669.35 7595.22 7471.39 17490.88 9293.07 95
test_fmvsm_n_192085.29 5885.34 5485.13 7986.12 22669.93 8388.65 12190.78 12769.97 20188.27 2393.98 4971.39 5591.54 22888.49 2390.45 9793.91 53
EPP-MVSNet83.40 8383.02 8384.57 9690.13 10064.47 20792.32 3090.73 12874.45 11579.35 13591.10 11469.05 8195.12 7872.78 16387.22 13894.13 44
DTE-MVSNet76.99 22376.80 20777.54 28386.24 22353.06 35287.52 15890.66 12977.08 5772.50 26688.67 17460.48 18589.52 26957.33 29970.74 33890.05 205
v1079.74 15678.67 16082.97 17084.06 26564.95 19687.88 15190.62 13073.11 14675.11 23686.56 23761.46 16594.05 12373.68 15175.55 29189.90 212
test_fmvsmconf_n85.92 4586.04 4685.57 6885.03 24769.51 9089.62 8690.58 13173.42 13887.75 3194.02 4472.85 4093.24 16090.37 390.75 9393.96 51
v119279.59 15978.43 16783.07 16483.55 27564.52 20386.93 17590.58 13170.83 18177.78 17085.90 25059.15 19293.94 12773.96 15077.19 26690.76 170
v114480.03 15179.03 15483.01 16783.78 27164.51 20487.11 17090.57 13371.96 16078.08 16586.20 24661.41 16693.94 12774.93 14177.23 26490.60 177
XVG-OURS-SEG-HR80.81 12879.76 13583.96 13585.60 23368.78 10783.54 26090.50 13470.66 18776.71 19491.66 9660.69 18091.26 23976.94 12081.58 21791.83 136
MVS78.19 19676.99 20381.78 19785.66 23166.99 15484.66 23290.47 13555.08 35972.02 27385.27 26563.83 13094.11 12266.10 22489.80 10984.24 330
XVG-OURS80.41 14179.23 14983.97 13485.64 23269.02 10183.03 27190.39 13671.09 17777.63 17391.49 10454.62 22691.35 23775.71 13483.47 19391.54 142
MVSFormer82.85 9382.05 9885.24 7587.35 20170.21 7790.50 6290.38 13768.55 23581.32 11289.47 15161.68 15993.46 15378.98 9990.26 10092.05 132
test_djsdf80.30 14679.32 14683.27 15383.98 26765.37 18990.50 6290.38 13768.55 23576.19 20888.70 17256.44 21393.46 15378.98 9980.14 23690.97 164
CPTT-MVS83.73 7383.33 7984.92 8793.28 4970.86 6992.09 3790.38 13768.75 23279.57 13292.83 7660.60 18493.04 17880.92 8491.56 8490.86 167
v14419279.47 16278.37 16882.78 18083.35 27863.96 21686.96 17390.36 14069.99 20077.50 17485.67 25760.66 18193.77 13874.27 14776.58 27490.62 175
v192192079.22 17078.03 17582.80 17783.30 28063.94 21786.80 17990.33 14169.91 20377.48 17585.53 26058.44 19693.75 14073.60 15276.85 27190.71 173
MVS_111021_HR85.14 5984.75 6386.32 5591.65 7672.70 3085.98 20290.33 14176.11 8182.08 10291.61 10071.36 5694.17 12081.02 8292.58 7092.08 131
v124078.99 17777.78 18482.64 18383.21 28263.54 22586.62 18690.30 14369.74 21077.33 17885.68 25657.04 21093.76 13973.13 16076.92 26890.62 175
test_fmvsmconf0.1_n85.61 5285.65 5085.50 6982.99 29269.39 9689.65 8490.29 14473.31 14187.77 3094.15 3871.72 4993.23 16190.31 490.67 9593.89 56
v879.97 15479.02 15582.80 17784.09 26464.50 20687.96 14590.29 14474.13 12275.24 23386.81 22362.88 14393.89 13374.39 14675.40 29890.00 206
mvs_tets79.13 17377.77 18583.22 15784.70 25166.37 16489.17 9890.19 14669.38 21475.40 22589.46 15344.17 32593.15 17076.78 12480.70 22890.14 195
jajsoiax79.29 16977.96 17683.27 15384.68 25266.57 16289.25 9790.16 14769.20 22075.46 22289.49 15045.75 31793.13 17276.84 12180.80 22690.11 198
Vis-MVSNetpermissive83.46 8182.80 8885.43 7190.25 9868.74 11090.30 6990.13 14876.33 7880.87 12092.89 7461.00 17694.20 11872.45 16890.97 9093.35 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PS-MVSNAJ81.69 11081.02 11283.70 14189.51 11968.21 12684.28 24690.09 14970.79 18281.26 11685.62 25963.15 13894.29 11175.62 13688.87 11988.59 254
xiu_mvs_v2_base81.69 11081.05 11183.60 14289.15 13768.03 13184.46 24090.02 15070.67 18581.30 11586.53 23963.17 13794.19 11975.60 13788.54 12488.57 255
FA-MVS(test-final)80.96 12479.91 13284.10 11888.30 16965.01 19584.55 23790.01 15173.25 14379.61 13187.57 20358.35 19794.72 9971.29 17586.25 15392.56 111
v2v48280.23 14779.29 14783.05 16583.62 27364.14 21387.04 17189.97 15273.61 13278.18 16287.22 21461.10 17493.82 13476.11 12976.78 27391.18 154
test_yl81.17 12080.47 12283.24 15589.13 13863.62 22186.21 19789.95 15372.43 15581.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
DCV-MVSNet81.17 12080.47 12283.24 15589.13 13863.62 22186.21 19789.95 15372.43 15581.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
V4279.38 16878.24 17282.83 17481.10 32465.50 18385.55 21589.82 15571.57 16878.21 16086.12 24860.66 18193.18 16975.64 13575.46 29589.81 217
VNet82.21 9982.41 9181.62 20090.82 8860.93 26284.47 23889.78 15676.36 7784.07 7891.88 9364.71 12490.26 25870.68 18088.89 11893.66 65
diffmvspermissive82.10 10081.88 10282.76 18283.00 29063.78 22083.68 25489.76 15772.94 15082.02 10389.85 14065.96 11490.79 25282.38 7487.30 13793.71 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XVG-ACMP-BASELINE76.11 23874.27 24681.62 20083.20 28364.67 20283.60 25889.75 15869.75 20871.85 27487.09 21932.78 36792.11 20669.99 18880.43 23288.09 261
EI-MVSNet-Vis-set84.19 6783.81 7285.31 7388.18 17167.85 13387.66 15589.73 15980.05 1482.95 9289.59 14870.74 6194.82 9580.66 8984.72 16993.28 86
EI-MVSNet-UG-set83.81 7183.38 7785.09 8087.87 18267.53 14187.44 16189.66 16079.74 1682.23 10189.41 15770.24 6694.74 9879.95 9383.92 18192.99 100
test_fmvsmconf0.01_n84.73 6584.52 6785.34 7280.25 33269.03 9989.47 8889.65 16173.24 14486.98 4094.27 3266.62 10193.23 16190.26 589.95 10793.78 62
PAPM77.68 21276.40 21881.51 20387.29 20861.85 25383.78 25389.59 16264.74 28071.23 27988.70 17262.59 14593.66 14352.66 32387.03 14189.01 238
anonymousdsp78.60 18677.15 19982.98 16980.51 33067.08 15387.24 16789.53 16365.66 27175.16 23487.19 21652.52 24192.25 20277.17 11879.34 24589.61 222
MG-MVS83.41 8283.45 7583.28 15292.74 6262.28 24888.17 13889.50 16475.22 9681.49 11192.74 8266.75 10095.11 8072.85 16291.58 8392.45 117
PLCcopyleft70.83 1178.05 20076.37 21983.08 16391.88 7467.80 13488.19 13789.46 16564.33 28669.87 29688.38 18353.66 23493.58 14458.86 28482.73 20387.86 265
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SDMVSNet80.38 14280.18 12880.99 22089.03 14364.94 19780.45 29989.40 16675.19 9876.61 19889.98 13760.61 18387.69 29876.83 12383.55 19090.33 188
Fast-Effi-MVS+80.81 12879.92 13183.47 14588.85 14564.51 20485.53 21789.39 16770.79 18278.49 15285.06 27267.54 9493.58 14467.03 21986.58 14792.32 120
IterMVS-LS80.06 15079.38 14382.11 19185.89 22863.20 23586.79 18089.34 16874.19 11975.45 22386.72 22666.62 10192.39 19572.58 16576.86 27090.75 171
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
API-MVS81.99 10481.23 10884.26 11490.94 8570.18 8291.10 5389.32 16971.51 16978.66 14788.28 18665.26 11895.10 8364.74 23691.23 8887.51 273
GBi-Net78.40 18977.40 19481.40 20787.60 19563.01 23888.39 12889.28 17071.63 16375.34 22787.28 21054.80 22091.11 24262.72 24779.57 24090.09 200
test178.40 18977.40 19481.40 20787.60 19563.01 23888.39 12889.28 17071.63 16375.34 22787.28 21054.80 22091.11 24262.72 24779.57 24090.09 200
FMVSNet177.44 21576.12 22181.40 20786.81 21663.01 23888.39 12889.28 17070.49 19074.39 24887.28 21049.06 29091.11 24260.91 26778.52 25290.09 200
MVS_030488.08 1388.08 1688.08 1489.67 11372.04 4892.26 3389.26 17384.19 285.01 5595.18 1369.93 6997.20 1491.63 295.60 2994.99 9
cdsmvs_eth3d_5k19.96 36526.61 3670.00 3860.00 4080.00 4110.00 39789.26 1730.00 4040.00 40588.61 17661.62 1610.00 4050.00 4040.00 4030.00 401
ab-mvs79.51 16078.97 15681.14 21688.46 16360.91 26383.84 25289.24 17570.36 19179.03 13888.87 16963.23 13690.21 26065.12 23282.57 20692.28 122
cascas76.72 22874.64 23982.99 16885.78 23065.88 17482.33 27589.21 17660.85 32072.74 26381.02 32447.28 30093.75 14067.48 21285.02 16589.34 227
eth_miper_zixun_eth77.92 20476.69 21281.61 20283.00 29061.98 25183.15 26589.20 17769.52 21274.86 24284.35 28361.76 15892.56 18971.50 17372.89 32590.28 191
h-mvs3383.15 8782.19 9586.02 6190.56 9270.85 7088.15 14089.16 17876.02 8384.67 6491.39 10761.54 16295.50 6182.71 7075.48 29391.72 139
miper_ehance_all_eth78.59 18777.76 18681.08 21882.66 29961.56 25783.65 25589.15 17968.87 23075.55 21983.79 29266.49 10492.03 20873.25 15876.39 27889.64 221
Effi-MVS+83.62 7883.08 8185.24 7588.38 16667.45 14288.89 10989.15 17975.50 9282.27 10088.28 18669.61 7394.45 10977.81 11187.84 13093.84 59
c3_l78.75 18177.91 17881.26 21182.89 29461.56 25784.09 25089.13 18169.97 20175.56 21884.29 28466.36 10692.09 20773.47 15575.48 29390.12 197
LTVRE_ROB69.57 1376.25 23674.54 24281.41 20688.60 15864.38 21079.24 31289.12 18270.76 18469.79 29887.86 19749.09 28993.20 16656.21 30980.16 23486.65 295
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
F-COLMAP76.38 23574.33 24582.50 18689.28 13266.95 15888.41 12789.03 18364.05 29066.83 32488.61 17646.78 30492.89 18157.48 29678.55 25187.67 268
FMVSNet278.20 19577.21 19881.20 21487.60 19562.89 24287.47 16089.02 18471.63 16375.29 23287.28 21054.80 22091.10 24562.38 25279.38 24489.61 222
ACMH67.68 1675.89 24073.93 24881.77 19888.71 15566.61 16188.62 12289.01 18569.81 20466.78 32586.70 23041.95 34191.51 23155.64 31078.14 25887.17 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
miper_enhance_ethall77.87 20676.86 20580.92 22381.65 31361.38 25982.68 27288.98 18665.52 27375.47 22082.30 31365.76 11692.00 21072.95 16176.39 27889.39 226
无先验87.48 15988.98 18660.00 32694.12 12167.28 21488.97 241
AdaColmapbinary80.58 13979.42 14284.06 12593.09 5468.91 10489.36 9488.97 18869.27 21675.70 21789.69 14357.20 20995.77 5463.06 24588.41 12787.50 274
EI-MVSNet80.52 14079.98 13082.12 19084.28 25963.19 23686.41 19188.95 18974.18 12078.69 14587.54 20666.62 10192.43 19372.57 16680.57 23090.74 172
MVSTER79.01 17677.88 18082.38 18883.07 28764.80 20084.08 25188.95 18969.01 22878.69 14587.17 21754.70 22492.43 19374.69 14280.57 23089.89 213
RRT_MVS80.35 14579.22 15083.74 14087.63 19465.46 18591.08 5488.92 19173.82 12776.44 20390.03 13649.05 29194.25 11776.84 12179.20 24891.51 143
131476.53 22975.30 23580.21 23783.93 26862.32 24784.66 23288.81 19260.23 32470.16 29084.07 28755.30 21790.73 25467.37 21383.21 19787.59 272
UniMVSNet_ETH3D79.10 17478.24 17281.70 19986.85 21460.24 27487.28 16688.79 19374.25 11876.84 18990.53 12949.48 28291.56 22667.98 20782.15 20993.29 85
xiu_mvs_v1_base_debu80.80 13079.72 13684.03 13087.35 20170.19 7985.56 21288.77 19469.06 22581.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 233
xiu_mvs_v1_base80.80 13079.72 13684.03 13087.35 20170.19 7985.56 21288.77 19469.06 22581.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 233
xiu_mvs_v1_base_debi80.80 13079.72 13684.03 13087.35 20170.19 7985.56 21288.77 19469.06 22581.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 233
FMVSNet377.88 20576.85 20680.97 22286.84 21562.36 24586.52 18988.77 19471.13 17575.34 22786.66 23254.07 23191.10 24562.72 24779.57 24089.45 225
patch_mono-283.65 7584.54 6580.99 22090.06 10665.83 17584.21 24788.74 19871.60 16785.01 5592.44 8474.51 2583.50 32882.15 7592.15 7593.64 71
GeoE81.71 10981.01 11383.80 13989.51 11964.45 20888.97 10688.73 19971.27 17378.63 14889.76 14266.32 10793.20 16669.89 18986.02 15793.74 63
CANet_DTU80.61 13679.87 13382.83 17485.60 23363.17 23787.36 16288.65 20076.37 7675.88 21488.44 18253.51 23693.07 17573.30 15789.74 11092.25 123
HyFIR lowres test77.53 21475.40 23183.94 13689.59 11566.62 16080.36 30088.64 20156.29 35576.45 20085.17 26957.64 20393.28 15861.34 26583.10 19991.91 135
WR-MVS79.49 16179.22 15080.27 23688.79 15158.35 28785.06 22488.61 20278.56 3077.65 17288.34 18463.81 13190.66 25564.98 23477.22 26591.80 138
BH-untuned79.47 16278.60 16282.05 19289.19 13665.91 17386.07 20188.52 20372.18 15775.42 22487.69 20061.15 17393.54 14860.38 27086.83 14486.70 294
IS-MVSNet83.15 8782.81 8784.18 11689.94 10963.30 23291.59 4388.46 20479.04 2579.49 13392.16 8865.10 12094.28 11267.71 20991.86 8194.95 10
pm-mvs177.25 22176.68 21378.93 25984.22 26158.62 28686.41 19188.36 20571.37 17173.31 25788.01 19661.22 17289.15 27664.24 23873.01 32489.03 237
UGNet80.83 12779.59 13984.54 9888.04 17768.09 12889.42 9188.16 20676.95 5976.22 20789.46 15349.30 28693.94 12768.48 20490.31 9891.60 140
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VDD-MVS83.01 9282.36 9384.96 8491.02 8366.40 16388.91 10888.11 20777.57 4184.39 7293.29 6452.19 24793.91 13177.05 11988.70 12294.57 29
Effi-MVS+-dtu80.03 15178.57 16384.42 10485.13 24468.74 11088.77 11488.10 20874.99 10274.97 24083.49 29757.27 20893.36 15673.53 15380.88 22491.18 154
v14878.72 18377.80 18381.47 20482.73 29761.96 25286.30 19588.08 20973.26 14276.18 20985.47 26262.46 14892.36 19771.92 17073.82 31790.09 200
EG-PatchMatch MVS74.04 25871.82 26880.71 22784.92 24867.42 14385.86 20788.08 20966.04 26664.22 34683.85 28935.10 36492.56 18957.44 29780.83 22582.16 353
cl2278.07 19977.01 20181.23 21282.37 30661.83 25483.55 25987.98 21168.96 22975.06 23883.87 28861.40 16791.88 21573.53 15376.39 27889.98 209
test_fmvsmvis_n_192084.02 6983.87 7184.49 10184.12 26369.37 9788.15 14087.96 21270.01 19983.95 8093.23 6568.80 8591.51 23188.61 2089.96 10692.57 110
pmmvs674.69 25273.39 25478.61 26381.38 31957.48 30386.64 18587.95 21364.99 27970.18 28886.61 23350.43 27289.52 26962.12 25670.18 34088.83 247
MVP-Stereo76.12 23774.46 24481.13 21785.37 23869.79 8684.42 24387.95 21365.03 27767.46 31785.33 26453.28 23991.73 22158.01 29383.27 19681.85 354
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
cl____77.72 20976.76 20980.58 22982.49 30360.48 27083.09 26787.87 21569.22 21874.38 24985.22 26862.10 15591.53 22971.09 17675.41 29789.73 220
DIV-MVS_self_test77.72 20976.76 20980.58 22982.48 30460.48 27083.09 26787.86 21669.22 21874.38 24985.24 26662.10 15591.53 22971.09 17675.40 29889.74 219
BH-w/o78.21 19477.33 19780.84 22488.81 14965.13 19384.87 22887.85 21769.75 20874.52 24784.74 27761.34 16893.11 17358.24 29185.84 16084.27 329
FE-MVS77.78 20775.68 22584.08 12288.09 17566.00 17083.13 26687.79 21868.42 23978.01 16685.23 26745.50 31995.12 7859.11 28185.83 16191.11 156
HY-MVS69.67 1277.95 20377.15 19980.36 23387.57 19960.21 27583.37 26287.78 21966.11 26475.37 22687.06 22163.27 13490.48 25761.38 26482.43 20790.40 186
1112_ss77.40 21776.43 21780.32 23589.11 14260.41 27283.65 25587.72 22062.13 31273.05 26186.72 22662.58 14689.97 26262.11 25780.80 22690.59 178
mvs_anonymous79.42 16579.11 15380.34 23484.45 25857.97 29482.59 27387.62 22167.40 25076.17 21188.56 17968.47 8689.59 26870.65 18186.05 15693.47 79
ACMH+68.96 1476.01 23974.01 24782.03 19388.60 15865.31 19088.86 11087.55 22270.25 19667.75 31387.47 20841.27 34293.19 16858.37 28975.94 28687.60 270
tfpnnormal74.39 25373.16 25778.08 27386.10 22758.05 29184.65 23487.53 22370.32 19371.22 28085.63 25854.97 21889.86 26343.03 36875.02 30586.32 298
CHOSEN 1792x268877.63 21375.69 22483.44 14689.98 10868.58 11878.70 32087.50 22456.38 35475.80 21686.84 22258.67 19491.40 23661.58 26285.75 16290.34 187
ambc75.24 30373.16 37450.51 36663.05 38687.47 22564.28 34577.81 35417.80 38889.73 26657.88 29460.64 36885.49 313
Fast-Effi-MVS+-dtu78.02 20176.49 21582.62 18483.16 28666.96 15786.94 17487.45 22672.45 15271.49 27884.17 28554.79 22391.58 22467.61 21080.31 23389.30 229
D2MVS74.82 25173.21 25679.64 25079.81 33962.56 24480.34 30187.35 22764.37 28568.86 30582.66 30946.37 30790.10 26167.91 20881.24 22086.25 299
TSAR-MVS + GP.85.71 5085.33 5586.84 4791.34 7872.50 3689.07 10487.28 22876.41 7285.80 4790.22 13474.15 3195.37 7281.82 7791.88 7892.65 109
fmvsm_l_conf0.5_n84.47 6684.54 6584.27 11385.42 23668.81 10588.49 12587.26 22968.08 24288.03 2793.49 5772.04 4691.77 21888.90 1789.14 11692.24 125
hse-mvs281.72 10880.94 11484.07 12388.72 15467.68 13885.87 20687.26 22976.02 8384.67 6488.22 18961.54 16293.48 15182.71 7073.44 32191.06 159
AUN-MVS79.21 17177.60 19184.05 12888.71 15567.61 13985.84 20887.26 22969.08 22477.23 18288.14 19453.20 24093.47 15275.50 13973.45 32091.06 159
BH-RMVSNet79.61 15778.44 16683.14 16089.38 12565.93 17284.95 22787.15 23273.56 13478.19 16189.79 14156.67 21293.36 15659.53 27786.74 14590.13 196
Test_1112_low_res76.40 23475.44 22979.27 25589.28 13258.09 29081.69 28287.07 23359.53 33172.48 26786.67 23161.30 16989.33 27260.81 26980.15 23590.41 185
KD-MVS_self_test68.81 30567.59 31272.46 32774.29 36745.45 37677.93 32987.00 23463.12 29663.99 34878.99 34642.32 33584.77 32056.55 30764.09 36187.16 283
LS3D76.95 22574.82 23883.37 15090.45 9467.36 14689.15 10286.94 23561.87 31469.52 29990.61 12651.71 25994.53 10546.38 35886.71 14688.21 260
miper_lstm_enhance74.11 25773.11 25877.13 28880.11 33459.62 28072.23 35786.92 23666.76 25370.40 28582.92 30456.93 21182.92 33269.06 19872.63 32688.87 245
fmvsm_l_conf0.5_n_a84.13 6884.16 7084.06 12585.38 23768.40 12088.34 13286.85 23767.48 24987.48 3493.40 6170.89 5891.61 22288.38 2589.22 11592.16 129
jason81.39 11880.29 12684.70 9486.63 22069.90 8585.95 20386.77 23863.24 29581.07 11889.47 15161.08 17592.15 20578.33 10790.07 10592.05 132
jason: jason.
OurMVSNet-221017-074.26 25572.42 26479.80 24583.76 27259.59 28185.92 20586.64 23966.39 26266.96 32287.58 20239.46 34891.60 22365.76 22869.27 34388.22 259
VPNet78.69 18478.66 16178.76 26188.31 16855.72 32784.45 24186.63 24076.79 6478.26 15890.55 12859.30 19189.70 26766.63 22077.05 26790.88 166
USDC70.33 29468.37 29676.21 29480.60 32856.23 32279.19 31486.49 24160.89 31961.29 35785.47 26231.78 37089.47 27153.37 32076.21 28482.94 347
lupinMVS81.39 11880.27 12784.76 9387.35 20170.21 7785.55 21586.41 24262.85 30281.32 11288.61 17661.68 15992.24 20378.41 10690.26 10091.83 136
TR-MVS77.44 21576.18 22081.20 21488.24 17063.24 23384.61 23586.40 24367.55 24777.81 16986.48 24054.10 23093.15 17057.75 29582.72 20487.20 280
旧先验191.96 7165.79 17886.37 24493.08 7169.31 7792.74 6888.74 251
GA-MVS76.87 22675.17 23681.97 19582.75 29662.58 24381.44 28786.35 24572.16 15974.74 24382.89 30546.20 31192.02 20968.85 20181.09 22291.30 152
CDS-MVSNet79.07 17577.70 18883.17 15987.60 19568.23 12584.40 24486.20 24667.49 24876.36 20486.54 23861.54 16290.79 25261.86 25987.33 13690.49 182
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS_111021_LR82.61 9682.11 9684.11 11788.82 14871.58 5385.15 22286.16 24774.69 10880.47 12391.04 11762.29 15190.55 25680.33 9190.08 10490.20 193
MSDG73.36 26770.99 27780.49 23184.51 25765.80 17780.71 29486.13 24865.70 27065.46 33783.74 29344.60 32290.91 25051.13 33176.89 26984.74 325
TransMVSNet (Re)75.39 24974.56 24177.86 27585.50 23557.10 30886.78 18186.09 24972.17 15871.53 27787.34 20963.01 14289.31 27356.84 30461.83 36487.17 281
VDDNet81.52 11580.67 11884.05 12890.44 9564.13 21489.73 8285.91 25071.11 17683.18 9093.48 5850.54 27193.49 15073.40 15688.25 12894.54 30
mvsmamba81.69 11080.74 11684.56 9787.45 20066.72 15991.26 4885.89 25174.66 10978.23 15990.56 12754.33 22794.91 8880.73 8883.54 19292.04 134
sd_testset77.70 21177.40 19478.60 26489.03 14360.02 27679.00 31685.83 25275.19 9876.61 19889.98 13754.81 21985.46 31462.63 25183.55 19090.33 188
Baseline_NR-MVSNet78.15 19778.33 17077.61 28185.79 22956.21 32386.78 18185.76 25373.60 13377.93 16887.57 20365.02 12188.99 27867.14 21775.33 30087.63 269
Anonymous2024052168.80 30667.22 31573.55 31774.33 36654.11 34283.18 26485.61 25458.15 34261.68 35680.94 32630.71 37381.27 34157.00 30273.34 32385.28 316
test_vis1_n_192075.52 24575.78 22374.75 30979.84 33857.44 30483.26 26385.52 25562.83 30379.34 13686.17 24745.10 32179.71 34778.75 10181.21 22187.10 287
新几何183.42 14793.13 5270.71 7185.48 25657.43 34981.80 10791.98 9063.28 13392.27 20164.60 23792.99 6587.27 279
EPNet83.72 7482.92 8686.14 5984.22 26169.48 9191.05 5585.27 25781.30 676.83 19091.65 9766.09 11095.56 5876.00 13293.85 6093.38 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UnsupCasMVSNet_eth67.33 31765.99 32171.37 33373.48 37251.47 36175.16 34685.19 25865.20 27460.78 35980.93 32842.35 33477.20 35857.12 30053.69 37985.44 314
IB-MVS68.01 1575.85 24173.36 25583.31 15184.76 25066.03 16883.38 26185.06 25970.21 19769.40 30081.05 32345.76 31694.66 10165.10 23375.49 29289.25 230
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TAMVS78.89 18077.51 19383.03 16687.80 18667.79 13584.72 23185.05 26067.63 24576.75 19387.70 19962.25 15290.82 25158.53 28887.13 13990.49 182
CL-MVSNet_self_test72.37 27771.46 27175.09 30479.49 34553.53 34680.76 29385.01 26169.12 22370.51 28382.05 31757.92 20084.13 32352.27 32566.00 35687.60 270
iter_conf0580.00 15378.70 15983.91 13787.84 18465.83 17588.84 11284.92 26271.61 16678.70 14488.94 16543.88 32794.56 10279.28 9784.28 17891.33 149
testdata79.97 24190.90 8664.21 21284.71 26359.27 33385.40 5192.91 7362.02 15789.08 27768.95 19991.37 8686.63 296
MS-PatchMatch73.83 26172.67 26077.30 28683.87 26966.02 16981.82 27984.66 26461.37 31868.61 30882.82 30747.29 29988.21 29159.27 27884.32 17777.68 368
ET-MVSNet_ETH3D78.63 18576.63 21484.64 9586.73 21869.47 9285.01 22584.61 26569.54 21166.51 33286.59 23450.16 27491.75 21976.26 12884.24 17992.69 107
CNLPA78.08 19876.79 20881.97 19590.40 9671.07 6287.59 15784.55 26666.03 26772.38 26989.64 14557.56 20486.04 30859.61 27683.35 19588.79 249
iter_conf_final80.63 13579.35 14584.46 10289.36 12667.70 13789.85 7584.49 26773.19 14578.30 15788.94 16545.98 31294.56 10279.59 9684.48 17591.11 156
MIMVSNet168.58 30866.78 31873.98 31580.07 33551.82 35780.77 29284.37 26864.40 28459.75 36482.16 31636.47 36083.63 32742.73 36970.33 33986.48 297
KD-MVS_2432*160066.22 32663.89 32873.21 31975.47 36453.42 34870.76 36384.35 26964.10 28866.52 33078.52 34834.55 36584.98 31750.40 33450.33 38381.23 357
miper_refine_blended66.22 32663.89 32873.21 31975.47 36453.42 34870.76 36384.35 26964.10 28866.52 33078.52 34834.55 36584.98 31750.40 33450.33 38381.23 357
test_040272.79 27470.44 28379.84 24488.13 17265.99 17185.93 20484.29 27165.57 27267.40 31985.49 26146.92 30392.61 18735.88 38074.38 31180.94 359
EU-MVSNet68.53 31067.61 31171.31 33678.51 35147.01 37484.47 23884.27 27242.27 37966.44 33384.79 27640.44 34683.76 32558.76 28668.54 34883.17 341
thisisatest053079.40 16677.76 18684.31 10987.69 19265.10 19487.36 16284.26 27370.04 19877.42 17688.26 18849.94 27794.79 9770.20 18484.70 17093.03 97
COLMAP_ROBcopyleft66.92 1773.01 27170.41 28480.81 22587.13 21165.63 18088.30 13484.19 27462.96 30063.80 35087.69 20038.04 35692.56 18946.66 35574.91 30684.24 330
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tttt051779.40 16677.91 17883.90 13888.10 17463.84 21888.37 13184.05 27571.45 17076.78 19289.12 16149.93 27994.89 9270.18 18583.18 19892.96 101
CMPMVSbinary51.72 2170.19 29668.16 29976.28 29373.15 37557.55 30279.47 31083.92 27648.02 37356.48 37484.81 27543.13 33086.42 30662.67 25081.81 21584.89 323
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous20240521178.25 19277.01 20181.99 19491.03 8260.67 26784.77 23083.90 27770.65 18880.00 12891.20 11141.08 34491.43 23565.21 23185.26 16493.85 57
XXY-MVS75.41 24875.56 22774.96 30583.59 27457.82 29880.59 29683.87 27866.54 26174.93 24188.31 18563.24 13580.09 34662.16 25576.85 27186.97 288
DP-MVS76.78 22774.57 24083.42 14793.29 4869.46 9488.55 12483.70 27963.98 29270.20 28788.89 16854.01 23294.80 9646.66 35581.88 21486.01 306
tfpn200view976.42 23375.37 23379.55 25389.13 13857.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24891.95 21148.33 34683.75 18489.07 231
thres40076.50 23075.37 23379.86 24389.13 13857.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24891.95 21148.33 34683.75 18490.00 206
SixPastTwentyTwo73.37 26571.26 27679.70 24785.08 24557.89 29685.57 21183.56 28271.03 17965.66 33685.88 25142.10 33992.57 18859.11 28163.34 36288.65 253
thres20075.55 24474.47 24378.82 26087.78 18957.85 29783.07 26983.51 28372.44 15475.84 21584.42 27952.08 25191.75 21947.41 35383.64 18986.86 290
IterMVS-SCA-FT75.43 24773.87 25080.11 23982.69 29864.85 19981.57 28483.47 28469.16 22270.49 28484.15 28651.95 25488.15 29269.23 19572.14 33087.34 277
CVMVSNet72.99 27272.58 26274.25 31384.28 25950.85 36486.41 19183.45 28544.56 37673.23 25987.54 20649.38 28485.70 31065.90 22678.44 25486.19 301
ITE_SJBPF78.22 27081.77 31260.57 26883.30 28669.25 21767.54 31587.20 21536.33 36187.28 30154.34 31574.62 30986.80 291
thisisatest051577.33 21875.38 23283.18 15885.27 23963.80 21982.11 27883.27 28765.06 27675.91 21383.84 29049.54 28194.27 11367.24 21586.19 15491.48 147
thres100view90076.50 23075.55 22879.33 25489.52 11856.99 30985.83 20983.23 28873.94 12476.32 20587.12 21851.89 25691.95 21148.33 34683.75 18489.07 231
thres600view776.50 23075.44 22979.68 24889.40 12357.16 30685.53 21783.23 28873.79 12976.26 20687.09 21951.89 25691.89 21448.05 35183.72 18790.00 206
test22291.50 7768.26 12484.16 24883.20 29054.63 36079.74 12991.63 9958.97 19391.42 8586.77 292
EPNet_dtu75.46 24674.86 23777.23 28782.57 30154.60 33886.89 17683.09 29171.64 16266.25 33485.86 25255.99 21488.04 29454.92 31286.55 14889.05 236
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_s_conf0.5_n83.80 7283.71 7384.07 12386.69 21967.31 14789.46 8983.07 29271.09 17786.96 4193.70 5569.02 8391.47 23388.79 1884.62 17193.44 80
fmvsm_s_conf0.1_n83.56 7983.38 7784.10 11884.86 24967.28 14889.40 9383.01 29370.67 18587.08 3893.96 5068.38 8791.45 23488.56 2284.50 17293.56 75
TDRefinement67.49 31564.34 32576.92 28973.47 37361.07 26184.86 22982.98 29459.77 32858.30 36885.13 27026.06 37887.89 29547.92 35260.59 36981.81 355
OpenMVS_ROBcopyleft64.09 1970.56 29268.19 29877.65 28080.26 33159.41 28385.01 22582.96 29558.76 33865.43 33882.33 31237.63 35891.23 24145.34 36476.03 28582.32 350
fmvsm_s_conf0.5_n_a83.63 7783.41 7684.28 11186.14 22568.12 12789.43 9082.87 29670.27 19587.27 3793.80 5469.09 7891.58 22488.21 2683.65 18893.14 93
fmvsm_s_conf0.1_n_a83.32 8582.99 8484.28 11183.79 27068.07 12989.34 9582.85 29769.80 20587.36 3694.06 4268.34 8891.56 22687.95 2783.46 19493.21 90
RPSCF73.23 26971.46 27178.54 26682.50 30259.85 27782.18 27782.84 29858.96 33671.15 28189.41 15745.48 32084.77 32058.82 28571.83 33291.02 163
CostFormer75.24 25073.90 24979.27 25582.65 30058.27 28980.80 29182.73 29961.57 31575.33 23083.13 30255.52 21591.07 24864.98 23478.34 25788.45 256
IterMVS74.29 25472.94 25978.35 26981.53 31663.49 22781.58 28382.49 30068.06 24369.99 29383.69 29451.66 26085.54 31265.85 22771.64 33386.01 306
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_cas_vis1_n_192073.76 26273.74 25273.81 31675.90 35959.77 27880.51 29782.40 30158.30 34181.62 11085.69 25544.35 32476.41 36576.29 12778.61 25085.23 317
WTY-MVS75.65 24375.68 22575.57 29986.40 22256.82 31177.92 33082.40 30165.10 27576.18 20987.72 19863.13 14180.90 34360.31 27181.96 21289.00 240
pmmvs474.03 26071.91 26780.39 23281.96 30968.32 12281.45 28682.14 30359.32 33269.87 29685.13 27052.40 24488.13 29360.21 27274.74 30884.73 326
FMVSNet569.50 30167.96 30274.15 31482.97 29355.35 33180.01 30582.12 30462.56 30763.02 35181.53 32036.92 35981.92 33748.42 34574.06 31385.17 320
baseline176.98 22476.75 21177.66 27988.13 17255.66 32885.12 22381.89 30573.04 14876.79 19188.90 16762.43 14987.78 29763.30 24471.18 33689.55 224
UnsupCasMVSNet_bld63.70 33461.53 34070.21 34273.69 37051.39 36272.82 35581.89 30555.63 35757.81 37071.80 37438.67 35278.61 35149.26 34352.21 38180.63 360
LFMVS81.82 10781.23 10883.57 14491.89 7363.43 23089.84 7681.85 30777.04 5883.21 8993.10 6752.26 24693.43 15571.98 16989.95 10793.85 57
sss73.60 26373.64 25373.51 31882.80 29555.01 33576.12 33781.69 30862.47 30874.68 24485.85 25357.32 20778.11 35460.86 26880.93 22387.39 275
pmmvs-eth3d70.50 29367.83 30678.52 26777.37 35566.18 16781.82 27981.51 30958.90 33763.90 34980.42 33142.69 33386.28 30758.56 28765.30 35883.11 343
TinyColmap67.30 31864.81 32374.76 30881.92 31156.68 31580.29 30281.49 31060.33 32256.27 37583.22 29924.77 38087.66 29945.52 36269.47 34279.95 363
tpmvs71.09 28569.29 29076.49 29282.04 30856.04 32478.92 31881.37 31164.05 29067.18 32178.28 35049.74 28089.77 26449.67 34172.37 32783.67 337
pmmvs571.55 28170.20 28775.61 29877.83 35256.39 31981.74 28180.89 31257.76 34567.46 31784.49 27849.26 28785.32 31657.08 30175.29 30185.11 321
ANet_high50.57 35446.10 35863.99 35848.67 40039.13 39270.99 36280.85 31361.39 31731.18 39057.70 38817.02 38973.65 38131.22 38515.89 39879.18 365
LCM-MVSNet54.25 34549.68 35567.97 35353.73 39745.28 37966.85 37780.78 31435.96 38739.45 38862.23 3838.70 39878.06 35548.24 34951.20 38280.57 361
PVSNet64.34 1872.08 27970.87 27975.69 29786.21 22456.44 31874.37 35180.73 31562.06 31370.17 28982.23 31542.86 33283.31 33054.77 31384.45 17687.32 278
baseline275.70 24273.83 25181.30 21083.26 28161.79 25582.57 27480.65 31666.81 25166.88 32383.42 29857.86 20192.19 20463.47 24179.57 24089.91 211
ppachtmachnet_test70.04 29767.34 31478.14 27279.80 34061.13 26079.19 31480.59 31759.16 33465.27 33979.29 34146.75 30587.29 30049.33 34266.72 35186.00 308
Gipumacopyleft45.18 35841.86 36155.16 37277.03 35751.52 36032.50 39480.52 31832.46 39027.12 39335.02 3949.52 39775.50 37122.31 39360.21 37038.45 393
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
Anonymous2023120668.60 30767.80 30771.02 33880.23 33350.75 36578.30 32680.47 31956.79 35266.11 33582.63 31046.35 30878.95 35043.62 36775.70 28883.36 340
LCM-MVSNet-Re77.05 22276.94 20477.36 28487.20 20951.60 35980.06 30380.46 32075.20 9767.69 31486.72 22662.48 14788.98 27963.44 24289.25 11491.51 143
tpm273.26 26871.46 27178.63 26283.34 27956.71 31480.65 29580.40 32156.63 35373.55 25582.02 31851.80 25891.24 24056.35 30878.42 25587.95 262
CR-MVSNet73.37 26571.27 27579.67 24981.32 32265.19 19175.92 33980.30 32259.92 32772.73 26481.19 32152.50 24286.69 30359.84 27477.71 26087.11 285
Patchmtry70.74 28969.16 29275.49 30180.72 32654.07 34374.94 35080.30 32258.34 34070.01 29181.19 32152.50 24286.54 30453.37 32071.09 33785.87 310
tpm cat170.57 29168.31 29777.35 28582.41 30557.95 29578.08 32780.22 32452.04 36568.54 30977.66 35552.00 25387.84 29651.77 32672.07 33186.25 299
MDTV_nov1_ep1369.97 28883.18 28453.48 34777.10 33580.18 32560.45 32169.33 30280.44 33048.89 29486.90 30251.60 32878.51 253
AllTest70.96 28668.09 30179.58 25185.15 24263.62 22184.58 23679.83 32662.31 30960.32 36186.73 22432.02 36888.96 28150.28 33671.57 33486.15 302
TestCases79.58 25185.15 24263.62 22179.83 32662.31 30960.32 36186.73 22432.02 36888.96 28150.28 33671.57 33486.15 302
test_fmvs1_n70.86 28870.24 28672.73 32572.51 37955.28 33281.27 28879.71 32851.49 36978.73 14384.87 27427.54 37777.02 35976.06 13079.97 23885.88 309
Vis-MVSNet (Re-imp)78.36 19178.45 16578.07 27488.64 15751.78 35886.70 18479.63 32974.14 12175.11 23690.83 12361.29 17089.75 26558.10 29291.60 8292.69 107
MIMVSNet70.69 29069.30 28974.88 30684.52 25656.35 32175.87 34179.42 33064.59 28167.76 31282.41 31141.10 34381.54 33946.64 35781.34 21886.75 293
dmvs_re71.14 28470.58 28072.80 32481.96 30959.68 27975.60 34379.34 33168.55 23569.27 30380.72 32949.42 28376.54 36252.56 32477.79 25982.19 352
SCA74.22 25672.33 26579.91 24284.05 26662.17 24979.96 30679.29 33266.30 26372.38 26980.13 33351.95 25488.60 28759.25 27977.67 26288.96 242
testing22274.04 25872.66 26178.19 27187.89 18155.36 33081.06 28979.20 33371.30 17274.65 24583.57 29639.11 35188.67 28651.43 33085.75 16290.53 180
tpmrst72.39 27572.13 26673.18 32280.54 32949.91 36879.91 30779.08 33463.11 29771.69 27679.95 33555.32 21682.77 33365.66 22973.89 31586.87 289
test_fmvs170.93 28770.52 28172.16 32873.71 36955.05 33480.82 29078.77 33551.21 37078.58 14984.41 28031.20 37276.94 36075.88 13380.12 23784.47 328
PatchmatchNetpermissive73.12 27071.33 27478.49 26883.18 28460.85 26479.63 30878.57 33664.13 28771.73 27579.81 33851.20 26385.97 30957.40 29876.36 28388.66 252
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDA-MVSNet-bldmvs66.68 32163.66 33075.75 29679.28 34760.56 26973.92 35378.35 33764.43 28350.13 38279.87 33744.02 32683.67 32646.10 35956.86 37283.03 345
new-patchmatchnet61.73 33861.73 33961.70 36172.74 37724.50 40269.16 37078.03 33861.40 31656.72 37375.53 36638.42 35376.48 36445.95 36057.67 37184.13 332
our_test_369.14 30367.00 31675.57 29979.80 34058.80 28477.96 32877.81 33959.55 33062.90 35478.25 35147.43 29883.97 32451.71 32767.58 35083.93 335
test20.0367.45 31666.95 31768.94 34675.48 36344.84 38177.50 33177.67 34066.66 25563.01 35283.80 29147.02 30278.40 35242.53 37068.86 34783.58 338
WB-MVSnew71.96 28071.65 27072.89 32384.67 25551.88 35682.29 27677.57 34162.31 30973.67 25483.00 30353.49 23781.10 34245.75 36182.13 21085.70 311
bld_raw_dy_0_6477.29 22075.98 22281.22 21385.04 24665.47 18488.14 14277.56 34269.20 22073.77 25389.40 15942.24 33888.85 28476.78 12481.64 21689.33 228
test-LLR72.94 27372.43 26374.48 31081.35 32058.04 29278.38 32377.46 34366.66 25569.95 29479.00 34448.06 29679.24 34866.13 22284.83 16786.15 302
test-mter71.41 28270.39 28574.48 31081.35 32058.04 29278.38 32377.46 34360.32 32369.95 29479.00 34436.08 36279.24 34866.13 22284.83 16786.15 302
ECVR-MVScopyleft79.61 15779.26 14880.67 22890.08 10254.69 33787.89 15077.44 34574.88 10480.27 12492.79 7948.96 29392.45 19268.55 20392.50 7294.86 17
tpm72.37 27771.71 26974.35 31282.19 30752.00 35479.22 31377.29 34664.56 28272.95 26283.68 29551.35 26183.26 33158.33 29075.80 28787.81 266
LF4IMVS64.02 33362.19 33769.50 34470.90 38053.29 35176.13 33677.18 34752.65 36458.59 36680.98 32523.55 38276.52 36353.06 32266.66 35278.68 366
test111179.43 16479.18 15280.15 23889.99 10753.31 35087.33 16477.05 34875.04 10180.23 12692.77 8148.97 29292.33 20068.87 20092.40 7494.81 20
K. test v371.19 28368.51 29579.21 25783.04 28957.78 29984.35 24576.91 34972.90 15162.99 35382.86 30639.27 34991.09 24761.65 26152.66 38088.75 250
testgi66.67 32266.53 31967.08 35575.62 36241.69 39075.93 33876.50 35066.11 26465.20 34286.59 23435.72 36374.71 37643.71 36673.38 32284.84 324
test_fmvs268.35 31267.48 31370.98 33969.50 38251.95 35580.05 30476.38 35149.33 37274.65 24584.38 28123.30 38375.40 37474.51 14475.17 30485.60 312
test_vis1_n69.85 30069.21 29171.77 33072.66 37855.27 33381.48 28576.21 35252.03 36675.30 23183.20 30128.97 37576.22 36774.60 14378.41 25683.81 336
PatchMatch-RL72.38 27670.90 27876.80 29188.60 15867.38 14579.53 30976.17 35362.75 30569.36 30182.00 31945.51 31884.89 31953.62 31880.58 22978.12 367
JIA-IIPM66.32 32562.82 33676.82 29077.09 35661.72 25665.34 38175.38 35458.04 34464.51 34462.32 38242.05 34086.51 30551.45 32969.22 34482.21 351
ADS-MVSNet266.20 32863.33 33174.82 30779.92 33658.75 28567.55 37475.19 35553.37 36265.25 34075.86 36342.32 33580.53 34541.57 37168.91 34585.18 318
PatchT68.46 31167.85 30470.29 34180.70 32743.93 38372.47 35674.88 35660.15 32570.55 28276.57 35949.94 27781.59 33850.58 33274.83 30785.34 315
dp66.80 32065.43 32270.90 34079.74 34248.82 37175.12 34874.77 35759.61 32964.08 34777.23 35642.89 33180.72 34448.86 34466.58 35383.16 342
MDA-MVSNet_test_wron65.03 32962.92 33371.37 33375.93 35856.73 31269.09 37274.73 35857.28 35054.03 37877.89 35245.88 31374.39 37849.89 34061.55 36582.99 346
TESTMET0.1,169.89 29969.00 29372.55 32679.27 34856.85 31078.38 32374.71 35957.64 34668.09 31177.19 35737.75 35776.70 36163.92 23984.09 18084.10 333
YYNet165.03 32962.91 33471.38 33275.85 36056.60 31669.12 37174.66 36057.28 35054.12 37777.87 35345.85 31474.48 37749.95 33961.52 36683.05 344
test_fmvs363.36 33561.82 33867.98 35262.51 38946.96 37577.37 33374.03 36145.24 37567.50 31678.79 34712.16 39472.98 38272.77 16466.02 35583.99 334
PMMVS69.34 30268.67 29471.35 33575.67 36162.03 25075.17 34573.46 36250.00 37168.68 30679.05 34252.07 25278.13 35361.16 26682.77 20273.90 374
PVSNet_057.27 2061.67 33959.27 34268.85 34879.61 34357.44 30468.01 37373.44 36355.93 35658.54 36770.41 37744.58 32377.55 35747.01 35435.91 38971.55 377
Syy-MVS68.05 31367.85 30468.67 35084.68 25240.97 39178.62 32173.08 36466.65 25866.74 32679.46 33952.11 25082.30 33532.89 38376.38 28182.75 348
myMVS_eth3d67.02 31966.29 32069.21 34584.68 25242.58 38678.62 32173.08 36466.65 25866.74 32679.46 33931.53 37182.30 33539.43 37676.38 28182.75 348
test0.0.03 168.00 31467.69 30968.90 34777.55 35347.43 37275.70 34272.95 36666.66 25566.56 32882.29 31448.06 29675.87 36944.97 36574.51 31083.41 339
testing368.56 30967.67 31071.22 33787.33 20642.87 38583.06 27071.54 36770.36 19169.08 30484.38 28130.33 37485.69 31137.50 37975.45 29685.09 322
ADS-MVSNet64.36 33262.88 33568.78 34979.92 33647.17 37367.55 37471.18 36853.37 36265.25 34075.86 36342.32 33573.99 37941.57 37168.91 34585.18 318
Patchmatch-RL test70.24 29567.78 30877.61 28177.43 35459.57 28271.16 36070.33 36962.94 30168.65 30772.77 37250.62 26985.49 31369.58 19366.58 35387.77 267
gg-mvs-nofinetune69.95 29867.96 30275.94 29583.07 28754.51 34077.23 33470.29 37063.11 29770.32 28662.33 38143.62 32888.69 28553.88 31787.76 13184.62 327
door-mid69.98 371
GG-mvs-BLEND75.38 30281.59 31555.80 32679.32 31169.63 37267.19 32073.67 37043.24 32988.90 28350.41 33384.50 17281.45 356
FPMVS53.68 34851.64 35059.81 36465.08 38751.03 36369.48 36869.58 37341.46 38040.67 38672.32 37316.46 39070.00 38624.24 39265.42 35758.40 388
door69.44 374
Patchmatch-test64.82 33163.24 33269.57 34379.42 34649.82 36963.49 38569.05 37551.98 36759.95 36380.13 33350.91 26570.98 38340.66 37373.57 31887.90 264
CHOSEN 280x42066.51 32364.71 32471.90 32981.45 31763.52 22657.98 38868.95 37653.57 36162.59 35576.70 35846.22 31075.29 37555.25 31179.68 23976.88 370
EGC-MVSNET52.07 35247.05 35667.14 35483.51 27660.71 26680.50 29867.75 3770.07 4010.43 40275.85 36524.26 38181.54 33928.82 38662.25 36359.16 386
EPMVS69.02 30468.16 29971.59 33179.61 34349.80 37077.40 33266.93 37862.82 30470.01 29179.05 34245.79 31577.86 35656.58 30675.26 30287.13 284
APD_test153.31 34949.93 35463.42 36065.68 38650.13 36771.59 35966.90 37934.43 38840.58 38771.56 3758.65 39976.27 36634.64 38255.36 37763.86 384
lessismore_v078.97 25881.01 32557.15 30765.99 38061.16 35882.82 30739.12 35091.34 23859.67 27546.92 38688.43 257
dmvs_testset62.63 33664.11 32758.19 36578.55 35024.76 40175.28 34465.94 38167.91 24460.34 36076.01 36253.56 23573.94 38031.79 38467.65 34975.88 372
pmmvs357.79 34254.26 34768.37 35164.02 38856.72 31375.12 34865.17 38240.20 38152.93 37969.86 37820.36 38575.48 37245.45 36355.25 37872.90 376
MVS-HIRNet59.14 34157.67 34463.57 35981.65 31343.50 38471.73 35865.06 38339.59 38351.43 38057.73 38738.34 35482.58 33439.53 37473.95 31464.62 383
PM-MVS66.41 32464.14 32673.20 32173.92 36856.45 31778.97 31764.96 38463.88 29464.72 34380.24 33219.84 38683.44 32966.24 22164.52 36079.71 364
PMVScopyleft37.38 2244.16 35940.28 36255.82 37040.82 40242.54 38865.12 38263.99 38534.43 38824.48 39457.12 3893.92 40476.17 36817.10 39655.52 37648.75 391
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test250677.30 21976.49 21579.74 24690.08 10252.02 35387.86 15263.10 38674.88 10480.16 12792.79 7938.29 35592.35 19868.74 20292.50 7294.86 17
test_method31.52 36229.28 36638.23 37827.03 4046.50 40820.94 39662.21 3874.05 39922.35 39752.50 39113.33 39147.58 39827.04 38934.04 39160.62 385
WB-MVS54.94 34454.72 34655.60 37173.50 37120.90 40374.27 35261.19 38859.16 33450.61 38174.15 36847.19 30175.78 37017.31 39535.07 39070.12 378
test_vis1_rt60.28 34058.42 34365.84 35667.25 38555.60 32970.44 36560.94 38944.33 37759.00 36566.64 37924.91 37968.67 38762.80 24669.48 34173.25 375
SSC-MVS53.88 34753.59 34854.75 37372.87 37619.59 40473.84 35460.53 39057.58 34849.18 38373.45 37146.34 30975.47 37316.20 39832.28 39269.20 379
testf145.72 35641.96 35957.00 36656.90 39145.32 37766.14 37959.26 39126.19 39230.89 39160.96 3854.14 40270.64 38426.39 39046.73 38755.04 389
APD_test245.72 35641.96 35957.00 36656.90 39145.32 37766.14 37959.26 39126.19 39230.89 39160.96 3854.14 40270.64 38426.39 39046.73 38755.04 389
test_f52.09 35150.82 35255.90 36953.82 39642.31 38959.42 38758.31 39336.45 38656.12 37670.96 37612.18 39357.79 39453.51 31956.57 37467.60 380
new_pmnet50.91 35350.29 35352.78 37468.58 38334.94 39663.71 38356.63 39439.73 38244.95 38465.47 38021.93 38458.48 39334.98 38156.62 37364.92 382
DSMNet-mixed57.77 34356.90 34560.38 36367.70 38435.61 39469.18 36953.97 39532.30 39157.49 37179.88 33640.39 34768.57 38838.78 37772.37 32776.97 369
PMMVS240.82 36038.86 36346.69 37653.84 39516.45 40548.61 39149.92 39637.49 38431.67 38960.97 3848.14 40056.42 39528.42 38730.72 39367.19 381
mvsany_test162.30 33761.26 34165.41 35769.52 38154.86 33666.86 37649.78 39746.65 37468.50 31083.21 30049.15 28866.28 38956.93 30360.77 36775.11 373
test_vis3_rt49.26 35547.02 35756.00 36854.30 39445.27 38066.76 37848.08 39836.83 38544.38 38553.20 3907.17 40164.07 39156.77 30555.66 37558.65 387
E-PMN31.77 36130.64 36435.15 37952.87 39827.67 39857.09 38947.86 39924.64 39416.40 39933.05 39511.23 39554.90 39614.46 39918.15 39622.87 395
EMVS30.81 36329.65 36534.27 38050.96 39925.95 40056.58 39046.80 40024.01 39515.53 40030.68 39612.47 39254.43 39712.81 40017.05 39722.43 396
mvsany_test353.99 34651.45 35161.61 36255.51 39344.74 38263.52 38445.41 40143.69 37858.11 36976.45 36017.99 38763.76 39254.77 31347.59 38576.34 371
MVEpermissive26.22 2330.37 36425.89 36843.81 37744.55 40135.46 39528.87 39539.07 40218.20 39618.58 39840.18 3932.68 40547.37 39917.07 39723.78 39548.60 392
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MTMP92.18 3532.83 403
tmp_tt18.61 36621.40 36910.23 3834.82 40510.11 40634.70 39330.74 4041.48 40023.91 39626.07 39728.42 37613.41 40227.12 38815.35 3997.17 397
DeepMVS_CXcopyleft27.40 38140.17 40326.90 39924.59 40517.44 39723.95 39548.61 3929.77 39626.48 40018.06 39424.47 39428.83 394
N_pmnet52.79 35053.26 34951.40 37578.99 3497.68 40769.52 3673.89 40651.63 36857.01 37274.98 36740.83 34565.96 39037.78 37864.67 35980.56 362
wuyk23d16.82 36715.94 37019.46 38258.74 39031.45 39739.22 3923.74 4076.84 3986.04 4012.70 4011.27 40624.29 40110.54 40114.40 4002.63 398
testmvs6.04 3708.02 3730.10 3850.08 4060.03 41069.74 3660.04 4080.05 4020.31 4031.68 4020.02 4080.04 4030.24 4020.02 4010.25 400
test1236.12 3698.11 3720.14 3840.06 4070.09 40971.05 3610.03 4090.04 4030.25 4041.30 4030.05 4070.03 4040.21 4030.01 4020.29 399
test_blank0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
uanet_test0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
DCPMVS0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
pcd_1.5k_mvsjas5.26 3717.02 3740.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 40463.15 1380.00 4050.00 4040.00 4030.00 401
sosnet-low-res0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
sosnet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
uncertanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
Regformer0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
n20.00 410
nn0.00 410
ab-mvs-re7.23 3689.64 3710.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 40586.72 2260.00 4090.00 4050.00 4040.00 4030.00 401
uanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
WAC-MVS42.58 38639.46 375
PC_three_145268.21 24192.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
eth-test20.00 408
eth-test0.00 408
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 24
GSMVS88.96 242
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26288.96 242
sam_mvs50.01 275
test_post178.90 3195.43 40048.81 29585.44 31559.25 279
test_post5.46 39950.36 27384.24 322
patchmatchnet-post74.00 36951.12 26488.60 287
gm-plane-assit81.40 31853.83 34562.72 30680.94 32692.39 19563.40 243
test9_res84.90 4295.70 2692.87 102
agg_prior282.91 6695.45 3092.70 105
test_prior472.60 3489.01 105
test_prior288.85 11175.41 9384.91 5993.54 5674.28 2983.31 6195.86 20
旧先验286.56 18858.10 34387.04 3988.98 27974.07 149
新几何286.29 196
原ACMM286.86 177
testdata291.01 24962.37 253
segment_acmp73.08 37
testdata184.14 24975.71 87
plane_prior790.08 10268.51 119
plane_prior689.84 11168.70 11460.42 186
plane_prior491.00 120
plane_prior368.60 11778.44 3178.92 141
plane_prior291.25 5079.12 23
plane_prior189.90 110
plane_prior68.71 11290.38 6777.62 3986.16 155
HQP5-MVS66.98 155
HQP-NCC89.33 12789.17 9876.41 7277.23 182
ACMP_Plane89.33 12789.17 9876.41 7277.23 182
BP-MVS77.47 114
HQP4-MVS77.24 18195.11 8091.03 161
HQP2-MVS60.17 189
NP-MVS89.62 11468.32 12290.24 132
MDTV_nov1_ep13_2view37.79 39375.16 34655.10 35866.53 32949.34 28553.98 31687.94 263
ACMMP++_ref81.95 213
ACMMP++81.25 219
Test By Simon64.33 125