This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6088.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 11
SED-MVS81.56 282.30 279.32 1387.77 458.90 6987.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1790.87 588.23 16
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6487.85 585.03 3464.26 2983.82 892.00 364.82 890.75 878.66 1590.61 1185.45 116
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2363.71 1289.23 2081.51 388.44 2788.09 21
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 2989.67 1886.84 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft80.16 880.59 678.86 2886.64 2160.02 4588.12 386.42 1462.94 5182.40 1492.12 259.64 1889.76 1578.70 1388.32 3186.79 61
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3489.70 1679.85 591.48 188.19 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MM80.20 780.28 879.99 282.19 7960.01 4686.19 1783.93 5173.19 177.08 3091.21 1557.23 3190.73 1083.35 188.12 3589.22 5
HPM-MVS++copyleft79.88 980.14 979.10 2188.17 164.80 186.59 1283.70 6165.37 1378.78 2290.64 1958.63 2487.24 5179.00 1290.37 1485.26 127
CNVR-MVS79.84 1079.97 1079.45 1187.90 262.17 1784.37 3685.03 3466.96 577.58 2790.06 3659.47 2089.13 2278.67 1489.73 1687.03 53
SteuartSystems-ACMMP79.48 1179.31 1179.98 383.01 7262.18 1687.60 985.83 1966.69 978.03 2690.98 1654.26 5390.06 1378.42 1989.02 2387.69 33
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS78.82 1379.22 1277.60 4482.88 7457.83 8084.99 3288.13 261.86 7579.16 2090.75 1857.96 2587.09 6077.08 2690.18 1587.87 26
DeepPCF-MVS69.58 179.03 1279.00 1379.13 1984.92 5660.32 4483.03 5785.33 2762.86 5480.17 1790.03 3861.76 1488.95 2474.21 4588.67 2688.12 20
ACMMP_NAP78.77 1578.78 1478.74 2985.44 4561.04 3183.84 4985.16 3062.88 5378.10 2491.26 1352.51 7588.39 3079.34 890.52 1386.78 62
9.1478.75 1583.10 6984.15 4388.26 159.90 10678.57 2390.36 2757.51 3086.86 6477.39 2389.52 21
MVS_030478.73 1678.75 1578.66 3080.82 10157.62 8385.31 3081.31 11270.51 274.17 5891.24 1454.99 4589.56 1782.29 288.13 3488.80 7
ZNCC-MVS78.82 1378.67 1779.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4090.47 2653.96 5788.68 2776.48 2889.63 2087.16 51
MP-MVS-pluss78.35 2078.46 1878.03 4084.96 5259.52 5382.93 5985.39 2662.15 6776.41 3391.51 1152.47 7786.78 6780.66 489.64 1987.80 30
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
NCCC78.58 1778.31 1979.39 1287.51 1262.61 1385.20 3184.42 4266.73 874.67 5189.38 4955.30 4289.18 2174.19 4687.34 4386.38 72
TSAR-MVS + MP.78.44 1978.28 2078.90 2684.96 5261.41 2684.03 4583.82 5959.34 11779.37 1989.76 4559.84 1687.62 4776.69 2786.74 5287.68 34
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MP-MVScopyleft78.35 2078.26 2178.64 3186.54 2563.47 486.02 2083.55 6563.89 3773.60 6590.60 2054.85 4886.72 6877.20 2588.06 3785.74 105
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS69.38 278.56 1878.14 2279.83 783.60 6361.62 2384.17 4286.85 663.23 4673.84 6390.25 3257.68 2789.96 1474.62 4389.03 2287.89 24
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APD-MVScopyleft78.02 2378.04 2377.98 4186.44 2760.81 3885.52 2784.36 4360.61 8979.05 2190.30 3055.54 4188.32 3273.48 5387.03 4584.83 139
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
GST-MVS78.14 2277.85 2478.99 2586.05 3861.82 2285.84 2185.21 2963.56 4174.29 5790.03 3852.56 7488.53 2974.79 4288.34 2986.63 68
HFP-MVS78.01 2477.65 2579.10 2186.71 1962.81 886.29 1484.32 4462.82 5573.96 6190.50 2453.20 6888.35 3174.02 4887.05 4486.13 87
SD-MVS77.70 2677.62 2677.93 4284.47 5961.88 2184.55 3483.87 5760.37 9679.89 1889.38 4954.97 4685.58 9776.12 3184.94 6286.33 78
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MCST-MVS77.48 2877.45 2777.54 4586.67 2058.36 7683.22 5586.93 556.91 15974.91 4588.19 6259.15 2287.68 4673.67 5187.45 4286.57 69
ACMMPR77.71 2577.23 2879.16 1786.75 1862.93 786.29 1484.24 4562.82 5573.55 6690.56 2249.80 10988.24 3374.02 4887.03 4586.32 80
region2R77.67 2777.18 2979.15 1886.76 1762.95 686.29 1484.16 4762.81 5773.30 6890.58 2149.90 10788.21 3473.78 5087.03 4586.29 83
HPM-MVScopyleft77.28 2976.85 3078.54 3285.00 5160.81 3882.91 6085.08 3162.57 6073.09 7789.97 4150.90 10287.48 4975.30 3686.85 5087.33 49
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CSCG76.92 3376.75 3177.41 4683.96 6259.60 5182.95 5886.50 1360.78 8775.27 3784.83 13360.76 1586.56 7367.86 8487.87 4186.06 89
CP-MVS77.12 3276.68 3278.43 3386.05 3863.18 587.55 1083.45 6862.44 6472.68 8590.50 2448.18 12787.34 5073.59 5285.71 5884.76 143
DeepC-MVS_fast68.24 377.25 3076.63 3379.12 2086.15 3460.86 3684.71 3384.85 3861.98 7473.06 7888.88 5553.72 6289.06 2368.27 7888.04 3887.42 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVS77.17 3176.56 3479.00 2386.32 2962.62 1185.83 2283.92 5264.55 2372.17 9290.01 4047.95 12988.01 3871.55 6586.74 5286.37 74
MTAPA76.90 3476.42 3578.35 3586.08 3763.57 274.92 20880.97 12365.13 1575.77 3590.88 1748.63 12286.66 7077.23 2488.17 3384.81 140
casdiffmvs_mvgpermissive76.14 4176.30 3675.66 7176.46 21751.83 18679.67 10985.08 3165.02 1975.84 3488.58 6059.42 2185.08 10872.75 5683.93 7290.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
train_agg76.27 3976.15 3776.64 5585.58 4361.59 2481.62 8281.26 11555.86 18074.93 4388.81 5653.70 6384.68 11875.24 3888.33 3083.65 180
PGM-MVS76.77 3576.06 3878.88 2786.14 3562.73 982.55 6783.74 6061.71 7672.45 9190.34 2948.48 12588.13 3572.32 5886.85 5085.78 99
CS-MVS76.25 4075.98 3977.06 5080.15 11655.63 12084.51 3583.90 5463.24 4573.30 6887.27 7955.06 4486.30 8371.78 6284.58 6489.25 4
CANet76.46 3775.93 4078.06 3981.29 9357.53 8582.35 6983.31 7467.78 370.09 10986.34 10154.92 4788.90 2572.68 5784.55 6587.76 32
mPP-MVS76.54 3675.93 4078.34 3686.47 2663.50 385.74 2582.28 9062.90 5271.77 9590.26 3146.61 15386.55 7471.71 6385.66 5984.97 136
EC-MVSNet75.84 4575.87 4275.74 6978.86 14252.65 16883.73 5086.08 1763.47 4272.77 8487.25 8053.13 6987.93 4071.97 6185.57 6086.66 66
SR-MVS76.13 4275.70 4377.40 4885.87 4061.20 2985.52 2782.19 9159.99 10575.10 3990.35 2847.66 13486.52 7571.64 6482.99 7884.47 149
CDPH-MVS76.31 3875.67 4478.22 3785.35 4859.14 6281.31 8784.02 4856.32 17274.05 5988.98 5453.34 6787.92 4169.23 7688.42 2887.59 38
PHI-MVS75.87 4475.36 4577.41 4680.62 10755.91 11384.28 3985.78 2056.08 17873.41 6786.58 9450.94 10188.54 2870.79 6889.71 1787.79 31
ACMMPcopyleft76.02 4375.33 4678.07 3885.20 4961.91 2085.49 2984.44 4163.04 4969.80 11989.74 4645.43 16687.16 5572.01 6082.87 8385.14 129
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CS-MVS-test75.62 4775.31 4776.56 5780.63 10655.13 13083.88 4885.22 2862.05 7171.49 9986.03 11153.83 5986.36 8167.74 8586.91 4988.19 18
dcpmvs_274.55 5775.23 4872.48 15382.34 7753.34 15577.87 13881.46 10357.80 14875.49 3686.81 8462.22 1377.75 25171.09 6782.02 9186.34 76
DPM-MVS75.47 4875.00 4976.88 5181.38 9259.16 5979.94 10285.71 2256.59 16772.46 8986.76 8556.89 3287.86 4366.36 9788.91 2583.64 181
canonicalmvs74.67 5474.98 5073.71 12178.94 14150.56 20280.23 9683.87 5760.30 10077.15 2986.56 9559.65 1782.00 17466.01 10182.12 8988.58 10
casdiffmvspermissive74.80 5174.89 5174.53 9875.59 22950.37 20478.17 13185.06 3362.80 5874.40 5487.86 7057.88 2683.61 13869.46 7582.79 8589.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline74.61 5574.70 5274.34 10275.70 22549.99 21277.54 14884.63 4062.73 5973.98 6087.79 7357.67 2883.82 13469.49 7382.74 8689.20 6
3Dnovator+66.72 475.84 4574.57 5379.66 982.40 7659.92 4885.83 2286.32 1666.92 767.80 15789.24 5142.03 19789.38 1964.07 11686.50 5589.69 2
DELS-MVS74.76 5274.46 5475.65 7277.84 17752.25 17875.59 19284.17 4663.76 3873.15 7382.79 17459.58 1986.80 6667.24 9186.04 5787.89 24
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
APD-MVS_3200maxsize74.96 4974.39 5576.67 5482.20 7858.24 7783.67 5183.29 7558.41 13373.71 6490.14 3345.62 15985.99 8769.64 7282.85 8485.78 99
OPM-MVS74.73 5374.25 5676.19 6180.81 10259.01 6782.60 6683.64 6263.74 3972.52 8887.49 7447.18 14485.88 9069.47 7480.78 9983.66 179
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
TSAR-MVS + GP.74.90 5074.15 5777.17 4982.00 8158.77 7281.80 7978.57 16258.58 13074.32 5684.51 14355.94 3987.22 5267.11 9284.48 6785.52 112
alignmvs73.86 6373.99 5873.45 13378.20 16350.50 20378.57 12382.43 8859.40 11576.57 3186.71 8956.42 3681.23 19065.84 10381.79 9388.62 8
SR-MVS-dyc-post74.57 5673.90 5976.58 5683.49 6559.87 4984.29 3781.36 10758.07 13973.14 7490.07 3444.74 17385.84 9168.20 7981.76 9484.03 159
MG-MVS73.96 6273.89 6074.16 10785.65 4249.69 21781.59 8481.29 11461.45 7871.05 10188.11 6351.77 8987.73 4561.05 14683.09 7685.05 133
ETV-MVS74.46 5873.84 6176.33 6079.27 13255.24 12979.22 11585.00 3664.97 2172.65 8679.46 24853.65 6687.87 4267.45 9082.91 8185.89 96
HQP_MVS74.31 5973.73 6276.06 6281.41 9056.31 10284.22 4084.01 4964.52 2569.27 12786.10 10845.26 17087.21 5368.16 8180.58 10384.65 144
RE-MVS-def73.71 6383.49 6559.87 4984.29 3781.36 10758.07 13973.14 7490.07 3443.06 18868.20 7981.76 9484.03 159
MSLP-MVS++73.77 6473.47 6474.66 9183.02 7159.29 5882.30 7481.88 9559.34 11771.59 9886.83 8345.94 15783.65 13765.09 11085.22 6181.06 236
HPM-MVS_fast74.30 6073.46 6576.80 5284.45 6059.04 6683.65 5281.05 12060.15 10270.43 10589.84 4341.09 21385.59 9667.61 8882.90 8285.77 102
MVS_111021_HR74.02 6173.46 6575.69 7083.01 7260.63 4077.29 15678.40 17361.18 8270.58 10485.97 11354.18 5584.00 13167.52 8982.98 8082.45 207
nrg03072.96 7173.01 6772.84 14675.41 23250.24 20580.02 10082.89 8458.36 13574.44 5386.73 8758.90 2380.83 20065.84 10374.46 18087.44 42
UA-Net73.13 6872.93 6873.76 11783.58 6451.66 18778.75 11877.66 18467.75 472.61 8789.42 4749.82 10883.29 14353.61 19983.14 7586.32 80
HQP-MVS73.45 6572.80 6975.40 7680.66 10354.94 13182.31 7183.90 5462.10 6867.85 15285.54 12645.46 16486.93 6267.04 9380.35 10784.32 151
CLD-MVS73.33 6672.68 7075.29 8078.82 14453.33 15678.23 12884.79 3961.30 8170.41 10681.04 21652.41 7887.12 5864.61 11582.49 8885.41 120
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_fmvsmconf_n73.01 7072.59 7174.27 10571.28 30055.88 11478.21 13075.56 21454.31 22074.86 4687.80 7254.72 4980.23 21478.07 2178.48 13686.70 63
Effi-MVS+73.31 6772.54 7275.62 7377.87 17553.64 14779.62 11179.61 14161.63 7772.02 9482.61 17956.44 3585.97 8863.99 11979.07 12787.25 50
MVS_Test72.45 7972.46 7372.42 15774.88 23848.50 23376.28 17883.14 8059.40 11572.46 8984.68 13555.66 4081.12 19165.98 10279.66 11587.63 36
test_fmvsmconf0.1_n72.81 7272.33 7474.24 10669.89 32055.81 11578.22 12975.40 21754.17 22275.00 4288.03 6853.82 6080.23 21478.08 2078.34 13986.69 64
EPNet73.09 6972.16 7575.90 6575.95 22356.28 10483.05 5672.39 25666.53 1065.27 20687.00 8150.40 10485.47 10262.48 13386.32 5685.94 92
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
VDD-MVS72.50 7772.09 7673.75 11981.58 8649.69 21777.76 14377.63 18563.21 4773.21 7189.02 5342.14 19683.32 14261.72 14082.50 8788.25 15
CPTT-MVS72.78 7372.08 7774.87 8684.88 5761.41 2684.15 4377.86 18055.27 19667.51 16388.08 6541.93 19981.85 17669.04 7780.01 11181.35 229
PAPM_NR72.63 7671.80 7875.13 8381.72 8553.42 15479.91 10483.28 7659.14 11966.31 18685.90 11651.86 8786.06 8457.45 16780.62 10185.91 94
LPG-MVS_test72.74 7471.74 7975.76 6780.22 11157.51 8682.55 6783.40 7061.32 7966.67 17987.33 7739.15 22986.59 7167.70 8677.30 15383.19 191
EI-MVSNet-Vis-set72.42 8071.59 8074.91 8478.47 15354.02 14177.05 16279.33 14765.03 1871.68 9779.35 25152.75 7284.89 11466.46 9674.23 18485.83 98
LFMVS71.78 9071.59 8072.32 15883.40 6746.38 25479.75 10771.08 26564.18 3272.80 8388.64 5942.58 19283.72 13557.41 16884.49 6686.86 58
test_fmvsmconf0.01_n72.17 8471.50 8274.16 10767.96 33755.58 12378.06 13574.67 23254.19 22174.54 5288.23 6150.35 10680.24 21378.07 2177.46 14986.65 67
h-mvs3372.71 7571.49 8376.40 5881.99 8259.58 5276.92 16676.74 20060.40 9374.81 4785.95 11545.54 16285.76 9370.41 7070.61 23783.86 168
FIs70.82 10771.43 8468.98 22778.33 16038.14 32976.96 16483.59 6461.02 8367.33 16586.73 8755.07 4381.64 17954.61 19279.22 12387.14 52
API-MVS72.17 8471.41 8574.45 10081.95 8357.22 8984.03 4580.38 13259.89 10968.40 13982.33 18849.64 11087.83 4451.87 21384.16 7178.30 271
3Dnovator64.47 572.49 7871.39 8675.79 6677.70 18058.99 6880.66 9483.15 7962.24 6665.46 20286.59 9342.38 19585.52 9859.59 15884.72 6382.85 200
Vis-MVSNetpermissive72.18 8371.37 8774.61 9481.29 9355.41 12680.90 9078.28 17560.73 8869.23 13088.09 6444.36 17882.65 16257.68 16581.75 9685.77 102
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
VDDNet71.81 8971.33 8873.26 14082.80 7547.60 24578.74 11975.27 21959.59 11472.94 8089.40 4841.51 20783.91 13258.75 16282.99 7888.26 14
EPP-MVSNet72.16 8671.31 8974.71 8878.68 14849.70 21582.10 7681.65 9960.40 9365.94 19185.84 11851.74 9086.37 8055.93 17679.55 11888.07 23
PS-MVSNAJss72.24 8271.21 9075.31 7878.50 15155.93 11281.63 8182.12 9256.24 17570.02 11385.68 12247.05 14684.34 12465.27 10974.41 18385.67 106
ACMP63.53 672.30 8171.20 9175.59 7580.28 10957.54 8482.74 6382.84 8560.58 9065.24 21086.18 10539.25 22786.03 8666.95 9576.79 16183.22 189
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_fmvsm_n_192071.73 9271.14 9273.50 13072.52 27756.53 10175.60 19176.16 20448.11 29377.22 2885.56 12353.10 7077.43 25574.86 4077.14 15586.55 70
patch_mono-269.85 12671.09 9366.16 26179.11 13854.80 13571.97 25674.31 23753.50 23070.90 10284.17 14757.63 2963.31 34066.17 9882.02 9180.38 247
EI-MVSNet-UG-set71.92 8871.06 9474.52 9977.98 17353.56 14976.62 17179.16 14864.40 2771.18 10078.95 25652.19 8284.66 12065.47 10773.57 19585.32 123
UniMVSNet_NR-MVSNet71.11 10071.00 9571.44 17779.20 13444.13 27776.02 18682.60 8766.48 1168.20 14284.60 14056.82 3382.82 15854.62 19070.43 23987.36 48
IS-MVSNet71.57 9471.00 9573.27 13978.86 14245.63 26580.22 9778.69 15964.14 3566.46 18287.36 7649.30 11385.60 9550.26 22683.71 7488.59 9
fmvsm_l_conf0.5_n70.99 10370.82 9771.48 17571.45 29354.40 13877.18 15970.46 27148.67 28475.17 3886.86 8253.77 6176.86 26676.33 3077.51 14883.17 194
PAPR71.72 9370.82 9774.41 10181.20 9751.17 18979.55 11283.33 7355.81 18466.93 17484.61 13950.95 10086.06 8455.79 17979.20 12486.00 90
DP-MVS Recon72.15 8770.73 9976.40 5886.57 2457.99 7981.15 8982.96 8157.03 15666.78 17585.56 12344.50 17688.11 3651.77 21580.23 11083.10 195
EIA-MVS71.78 9070.60 10075.30 7979.85 12053.54 15077.27 15783.26 7757.92 14566.49 18179.39 24952.07 8486.69 6960.05 15279.14 12685.66 107
OMC-MVS71.40 9870.60 10073.78 11576.60 21353.15 15979.74 10879.78 13758.37 13468.75 13486.45 9945.43 16680.60 20462.58 13177.73 14487.58 39
FC-MVSNet-test69.80 12970.58 10267.46 24377.61 18934.73 36076.05 18483.19 7860.84 8565.88 19586.46 9854.52 5280.76 20352.52 20678.12 14086.91 56
diffmvspermissive70.69 10970.43 10371.46 17669.45 32548.95 22772.93 24078.46 16857.27 15371.69 9683.97 15451.48 9377.92 24870.70 6977.95 14387.53 40
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu71.45 9770.39 10474.65 9282.01 8058.82 7179.93 10380.35 13355.09 20165.82 19782.16 19449.17 11682.64 16360.34 15078.62 13582.50 206
test_fmvsmvis_n_192070.84 10570.38 10572.22 16071.16 30155.39 12775.86 18872.21 25849.03 28073.28 7086.17 10651.83 8877.29 25875.80 3278.05 14183.98 162
MVSFormer71.50 9670.38 10574.88 8578.76 14557.15 9482.79 6178.48 16651.26 25469.49 12283.22 16843.99 18183.24 14466.06 9979.37 11984.23 154
fmvsm_l_conf0.5_n_a70.50 11370.27 10771.18 18771.30 29954.09 14076.89 16769.87 27447.90 29774.37 5586.49 9753.07 7176.69 27175.41 3577.11 15682.76 201
UniMVSNet (Re)70.63 11070.20 10871.89 16378.55 15045.29 26875.94 18782.92 8263.68 4068.16 14583.59 16153.89 5883.49 14153.97 19571.12 23286.89 57
VNet69.68 13370.19 10968.16 23779.73 12241.63 30270.53 27577.38 19060.37 9670.69 10386.63 9151.08 9877.09 26153.61 19981.69 9885.75 104
GeoE71.01 10270.15 11073.60 12879.57 12552.17 17978.93 11778.12 17758.02 14167.76 16083.87 15552.36 7982.72 16056.90 17075.79 17185.92 93
MAR-MVS71.51 9570.15 11075.60 7481.84 8459.39 5581.38 8682.90 8354.90 20968.08 14878.70 25747.73 13285.51 9951.68 21784.17 7081.88 219
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
TranMVSNet+NR-MVSNet70.36 11670.10 11271.17 18878.64 14942.97 28976.53 17381.16 11966.95 668.53 13885.42 12851.61 9283.07 14752.32 20769.70 25987.46 41
hse-mvs271.04 10169.86 11374.60 9579.58 12457.12 9673.96 22475.25 22060.40 9374.81 4781.95 19945.54 16282.90 15170.41 7066.83 28983.77 173
xiu_mvs_v2_base70.52 11169.75 11472.84 14681.21 9655.63 12075.11 20278.92 15354.92 20869.96 11679.68 24347.00 15082.09 17361.60 14279.37 11980.81 241
ACMM61.98 770.80 10869.73 11574.02 10980.59 10858.59 7482.68 6482.02 9455.46 19367.18 16884.39 14538.51 23483.17 14660.65 14876.10 16880.30 248
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PS-MVSNAJ70.51 11269.70 11672.93 14481.52 8755.79 11674.92 20879.00 15155.04 20669.88 11778.66 25847.05 14682.19 17161.61 14179.58 11680.83 240
114514_t70.83 10669.56 11774.64 9386.21 3154.63 13682.34 7081.81 9748.22 29163.01 24385.83 11940.92 21487.10 5957.91 16479.79 11282.18 212
mvsmamba71.15 9969.54 11875.99 6377.61 18953.46 15281.95 7875.11 22557.73 14966.95 17385.96 11437.14 25287.56 4867.94 8375.49 17686.97 54
DU-MVS70.01 12269.53 11971.44 17778.05 17044.13 27775.01 20581.51 10264.37 2868.20 14284.52 14149.12 11982.82 15854.62 19070.43 23987.37 46
PCF-MVS61.88 870.95 10469.49 12075.35 7777.63 18455.71 11776.04 18581.81 9750.30 26669.66 12085.40 12952.51 7584.89 11451.82 21480.24 10985.45 116
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VPA-MVSNet69.02 15169.47 12167.69 24177.42 19541.00 30774.04 22279.68 13960.06 10369.26 12984.81 13451.06 9977.58 25354.44 19374.43 18284.48 148
v2v48270.50 11369.45 12273.66 12372.62 27450.03 21177.58 14580.51 13059.90 10669.52 12182.14 19547.53 13784.88 11665.07 11170.17 24686.09 88
v114470.42 11569.31 12373.76 11773.22 26250.64 19977.83 14181.43 10458.58 13069.40 12581.16 21347.53 13785.29 10764.01 11870.64 23585.34 122
v870.33 11769.28 12473.49 13173.15 26450.22 20678.62 12280.78 12660.79 8666.45 18382.11 19749.35 11284.98 11163.58 12468.71 27485.28 125
test_yl69.69 13169.13 12571.36 18178.37 15845.74 26174.71 21280.20 13457.91 14670.01 11483.83 15642.44 19382.87 15454.97 18679.72 11385.48 114
DCV-MVSNet69.69 13169.13 12571.36 18178.37 15845.74 26174.71 21280.20 13457.91 14670.01 11483.83 15642.44 19382.87 15454.97 18679.72 11385.48 114
Fast-Effi-MVS+70.28 11869.12 12773.73 12078.50 15151.50 18875.01 20579.46 14556.16 17768.59 13579.55 24653.97 5684.05 12753.34 20177.53 14785.65 108
Anonymous2024052969.91 12569.02 12872.56 15180.19 11447.65 24377.56 14780.99 12255.45 19469.88 11786.76 8539.24 22882.18 17254.04 19477.10 15787.85 27
v1070.21 11969.02 12873.81 11473.51 26150.92 19478.74 11981.39 10560.05 10466.39 18481.83 20247.58 13685.41 10562.80 13068.86 27385.09 132
NR-MVSNet69.54 13868.85 13071.59 17478.05 17043.81 28174.20 22080.86 12565.18 1462.76 24584.52 14152.35 8083.59 13950.96 22270.78 23487.37 46
fmvsm_s_conf0.5_n69.58 13668.84 13171.79 16772.31 28352.90 16477.90 13762.43 33249.97 27072.85 8285.90 11652.21 8176.49 27475.75 3370.26 24585.97 91
QAPM70.05 12168.81 13273.78 11576.54 21553.43 15383.23 5483.48 6652.89 23565.90 19386.29 10241.55 20686.49 7751.01 22078.40 13881.42 223
MVS_111021_LR69.50 14068.78 13371.65 17278.38 15659.33 5674.82 21070.11 27358.08 13867.83 15684.68 13541.96 19876.34 27865.62 10677.54 14679.30 264
fmvsm_s_conf0.5_n_a69.54 13868.74 13471.93 16272.47 27953.82 14478.25 12762.26 33449.78 27273.12 7686.21 10452.66 7376.79 26875.02 3968.88 27185.18 128
v119269.97 12468.68 13573.85 11273.19 26350.94 19277.68 14481.36 10757.51 15168.95 13380.85 22345.28 16985.33 10662.97 12970.37 24185.27 126
AdaColmapbinary69.99 12368.66 13673.97 11184.94 5457.83 8082.63 6578.71 15856.28 17464.34 22484.14 14841.57 20487.06 6146.45 25878.88 12877.02 290
fmvsm_s_conf0.1_n69.41 14468.60 13771.83 16571.07 30252.88 16577.85 14062.44 33149.58 27472.97 7986.22 10351.68 9176.48 27575.53 3470.10 24886.14 86
v14419269.71 13068.51 13873.33 13873.10 26550.13 20877.54 14880.64 12756.65 16168.57 13780.55 22646.87 15184.96 11362.98 12869.66 26084.89 138
FA-MVS(test-final)69.82 12768.48 13973.84 11378.44 15450.04 21075.58 19478.99 15258.16 13767.59 16182.14 19542.66 19085.63 9456.60 17176.19 16785.84 97
IterMVS-LS69.22 15068.48 13971.43 17974.44 25249.40 22176.23 17977.55 18659.60 11165.85 19681.59 20851.28 9581.58 18259.87 15669.90 25483.30 186
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous2023121169.28 14768.47 14171.73 16980.28 10947.18 24979.98 10182.37 8954.61 21367.24 16684.01 15239.43 22482.41 16955.45 18472.83 20985.62 110
WR-MVS68.47 16468.47 14168.44 23480.20 11339.84 31373.75 23276.07 20764.68 2268.11 14783.63 16050.39 10579.14 23249.78 22769.66 26086.34 76
fmvsm_s_conf0.1_n_a69.32 14668.44 14371.96 16170.91 30453.78 14578.12 13362.30 33349.35 27673.20 7286.55 9651.99 8576.79 26874.83 4168.68 27685.32 123
EI-MVSNet69.27 14868.44 14371.73 16974.47 25049.39 22275.20 20078.45 16959.60 11169.16 13176.51 29551.29 9482.50 16659.86 15771.45 22983.30 186
jason69.65 13468.39 14573.43 13578.27 16256.88 9877.12 16073.71 24646.53 31269.34 12683.22 16843.37 18579.18 22764.77 11279.20 12484.23 154
jason: jason.
lupinMVS69.57 13768.28 14673.44 13478.76 14557.15 9476.57 17273.29 25046.19 31569.49 12282.18 19143.99 18179.23 22664.66 11379.37 11983.93 163
v192192069.47 14168.17 14773.36 13773.06 26650.10 20977.39 15180.56 12856.58 16868.59 13580.37 22844.72 17484.98 11162.47 13469.82 25585.00 134
VPNet67.52 18368.11 14865.74 27079.18 13536.80 34472.17 25372.83 25362.04 7267.79 15885.83 11948.88 12176.60 27351.30 21872.97 20883.81 169
SDMVSNet68.03 17268.10 14967.84 23977.13 20148.72 23165.32 31879.10 14958.02 14165.08 21382.55 18147.83 13173.40 29163.92 12073.92 18881.41 224
iter_conf_final69.82 12768.02 15075.23 8179.38 12952.91 16380.11 9973.96 24354.99 20768.04 14983.59 16129.05 32887.16 5565.41 10877.62 14585.63 109
v124069.24 14967.91 15173.25 14173.02 26849.82 21377.21 15880.54 12956.43 17068.34 14180.51 22743.33 18684.99 10962.03 13869.77 25884.95 137
test_djsdf69.45 14267.74 15274.58 9674.57 24954.92 13382.79 6178.48 16651.26 25465.41 20383.49 16638.37 23683.24 14466.06 9969.25 26685.56 111
PVSNet_BlendedMVS68.56 16367.72 15371.07 19177.03 20550.57 20074.50 21681.52 10053.66 22964.22 23079.72 24249.13 11782.87 15455.82 17773.92 18879.77 259
PVSNet_Blended68.59 15967.72 15371.19 18677.03 20550.57 20072.51 24881.52 10051.91 24364.22 23077.77 27749.13 11782.87 15455.82 17779.58 11680.14 251
CANet_DTU68.18 17067.71 15569.59 21774.83 24046.24 25678.66 12176.85 19759.60 11163.45 23682.09 19835.25 26777.41 25659.88 15578.76 13285.14 129
iter_conf0569.40 14567.62 15674.73 8777.84 17751.13 19079.28 11473.71 24654.62 21268.17 14483.59 16128.68 33387.16 5565.74 10576.95 15885.91 94
c3_l68.33 16667.56 15770.62 19870.87 30546.21 25774.47 21778.80 15656.22 17666.19 18778.53 26351.88 8681.40 18462.08 13569.04 26984.25 153
Baseline_NR-MVSNet67.05 19467.56 15765.50 27375.65 22637.70 33575.42 19574.65 23359.90 10668.14 14683.15 17149.12 11977.20 25952.23 20869.78 25681.60 221
OpenMVScopyleft61.03 968.85 15367.56 15772.70 15074.26 25653.99 14281.21 8881.34 11152.70 23662.75 24685.55 12538.86 23284.14 12648.41 24283.01 7779.97 253
Effi-MVS+-dtu69.64 13567.53 16075.95 6476.10 22162.29 1580.20 9876.06 20859.83 11065.26 20977.09 28441.56 20584.02 13060.60 14971.09 23381.53 222
ECVR-MVScopyleft67.72 18067.51 16168.35 23579.46 12736.29 35274.79 21166.93 29858.72 12567.19 16788.05 6636.10 26081.38 18552.07 21084.25 6887.39 44
mvs_anonymous68.03 17267.51 16169.59 21772.08 28544.57 27571.99 25575.23 22151.67 24467.06 17082.57 18054.68 5077.94 24756.56 17275.71 17386.26 84
RRT_MVS69.42 14367.49 16375.21 8278.01 17252.56 17282.23 7578.15 17655.84 18265.65 19885.07 13030.86 31386.83 6561.56 14470.00 25086.24 85
XVG-OURS-SEG-HR68.81 15467.47 16472.82 14874.40 25356.87 9970.59 27479.04 15054.77 21066.99 17186.01 11239.57 22378.21 24462.54 13273.33 20183.37 185
BH-RMVSNet68.81 15467.42 16572.97 14380.11 11752.53 17374.26 21976.29 20358.48 13268.38 14084.20 14642.59 19183.83 13346.53 25775.91 16982.56 202
UGNet68.81 15467.39 16673.06 14278.33 16054.47 13779.77 10675.40 21760.45 9263.22 23784.40 14432.71 29980.91 19951.71 21680.56 10583.81 169
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XVG-OURS68.76 15767.37 16772.90 14574.32 25557.22 8970.09 28178.81 15555.24 19767.79 15885.81 12136.54 25978.28 24362.04 13775.74 17283.19 191
v7n69.01 15267.36 16873.98 11072.51 27852.65 16878.54 12581.30 11360.26 10162.67 24781.62 20543.61 18384.49 12157.01 16968.70 27584.79 141
V4268.65 15867.35 16972.56 15168.93 33150.18 20772.90 24179.47 14456.92 15869.45 12480.26 23246.29 15582.99 14864.07 11667.82 28184.53 146
BH-untuned68.27 16767.29 17071.21 18579.74 12153.22 15876.06 18377.46 18957.19 15466.10 18881.61 20645.37 16883.50 14045.42 27376.68 16376.91 294
xiu_mvs_v1_base_debu68.58 16067.28 17172.48 15378.19 16457.19 9175.28 19775.09 22651.61 24570.04 11081.41 21032.79 29579.02 23463.81 12177.31 15081.22 231
xiu_mvs_v1_base68.58 16067.28 17172.48 15378.19 16457.19 9175.28 19775.09 22651.61 24570.04 11081.41 21032.79 29579.02 23463.81 12177.31 15081.22 231
xiu_mvs_v1_base_debi68.58 16067.28 17172.48 15378.19 16457.19 9175.28 19775.09 22651.61 24570.04 11081.41 21032.79 29579.02 23463.81 12177.31 15081.22 231
X-MVStestdata70.21 11967.28 17179.00 2386.32 2962.62 1185.83 2283.92 5264.55 2372.17 926.49 40347.95 12988.01 3871.55 6586.74 5286.37 74
tt080567.77 17967.24 17569.34 22274.87 23940.08 31077.36 15281.37 10655.31 19566.33 18584.65 13737.35 24782.55 16555.65 18272.28 22085.39 121
miper_ehance_all_eth68.03 17267.24 17570.40 20270.54 30846.21 25773.98 22378.68 16055.07 20466.05 18977.80 27452.16 8381.31 18761.53 14569.32 26383.67 177
v14868.24 16967.19 17771.40 18070.43 31047.77 24275.76 19077.03 19558.91 12267.36 16480.10 23548.60 12481.89 17560.01 15366.52 29284.53 146
test111167.21 18767.14 17867.42 24479.24 13334.76 35973.89 22965.65 30758.71 12766.96 17287.95 6936.09 26180.53 20552.03 21183.79 7386.97 54
UniMVSNet_ETH3D67.60 18267.07 17969.18 22677.39 19642.29 29374.18 22175.59 21360.37 9666.77 17686.06 11037.64 24378.93 23952.16 20973.49 19786.32 80
WR-MVS_H67.02 19566.92 18067.33 24777.95 17437.75 33377.57 14682.11 9362.03 7362.65 24882.48 18550.57 10379.46 22242.91 29364.01 31084.79 141
PAPM67.92 17666.69 18171.63 17378.09 16849.02 22577.09 16181.24 11751.04 25860.91 26983.98 15347.71 13384.99 10940.81 30579.32 12280.90 239
GBi-Net67.21 18766.55 18269.19 22377.63 18443.33 28477.31 15377.83 18156.62 16465.04 21582.70 17541.85 20080.33 21047.18 25272.76 21083.92 164
test167.21 18766.55 18269.19 22377.63 18443.33 28477.31 15377.83 18156.62 16465.04 21582.70 17541.85 20080.33 21047.18 25272.76 21083.92 164
cl2267.47 18466.45 18470.54 20069.85 32146.49 25373.85 23077.35 19155.07 20465.51 20177.92 27047.64 13581.10 19261.58 14369.32 26384.01 161
jajsoiax68.25 16866.45 18473.66 12375.62 22755.49 12580.82 9178.51 16552.33 24064.33 22584.11 14928.28 33681.81 17863.48 12570.62 23683.67 177
PEN-MVS66.60 20466.45 18467.04 24877.11 20336.56 34677.03 16380.42 13162.95 5062.51 25384.03 15146.69 15279.07 23344.22 27763.08 32085.51 113
ab-mvs66.65 20366.42 18767.37 24576.17 22041.73 29970.41 27876.14 20653.99 22465.98 19083.51 16549.48 11176.24 27948.60 24073.46 19984.14 157
AUN-MVS68.45 16566.41 18874.57 9779.53 12657.08 9773.93 22775.23 22154.44 21866.69 17881.85 20137.10 25482.89 15262.07 13666.84 28883.75 174
CP-MVSNet66.49 20766.41 18866.72 25077.67 18236.33 34976.83 17079.52 14362.45 6362.54 25183.47 16746.32 15478.37 24145.47 27263.43 31785.45 116
mvs_tets68.18 17066.36 19073.63 12675.61 22855.35 12880.77 9278.56 16352.48 23964.27 22784.10 15027.45 34281.84 17763.45 12670.56 23883.69 176
MVS67.37 18566.33 19170.51 20175.46 23150.94 19273.95 22581.85 9641.57 35262.54 25178.57 26247.98 12885.47 10252.97 20482.05 9075.14 307
PS-CasMVS66.42 20866.32 19266.70 25277.60 19136.30 35176.94 16579.61 14162.36 6562.43 25583.66 15945.69 15878.37 24145.35 27463.26 31885.42 119
FMVSNet266.93 19766.31 19368.79 23077.63 18442.98 28876.11 18177.47 18756.62 16465.22 21282.17 19341.85 20080.18 21647.05 25572.72 21383.20 190
eth_miper_zixun_eth67.63 18166.28 19471.67 17171.60 29148.33 23573.68 23377.88 17955.80 18565.91 19278.62 26147.35 14382.88 15359.45 15966.25 29383.81 169
cl____67.18 19066.26 19569.94 20970.20 31345.74 26173.30 23576.83 19855.10 19965.27 20679.57 24547.39 14180.53 20559.41 16169.22 26783.53 183
DIV-MVS_self_test67.18 19066.26 19569.94 20970.20 31345.74 26173.29 23676.83 19855.10 19965.27 20679.58 24447.38 14280.53 20559.43 16069.22 26783.54 182
miper_enhance_ethall67.11 19366.09 19770.17 20669.21 32845.98 25972.85 24278.41 17251.38 25165.65 19875.98 30351.17 9781.25 18860.82 14769.32 26383.29 188
Anonymous20240521166.84 19965.99 19869.40 22180.19 11442.21 29571.11 26971.31 26458.80 12467.90 15086.39 10029.83 32279.65 21949.60 23378.78 13186.33 78
FMVSNet166.70 20265.87 19969.19 22377.49 19343.33 28477.31 15377.83 18156.45 16964.60 22382.70 17538.08 24180.33 21046.08 26172.31 21983.92 164
BH-w/o66.85 19865.83 20069.90 21279.29 13052.46 17574.66 21476.65 20154.51 21764.85 21978.12 26445.59 16182.95 15043.26 28975.54 17574.27 320
thisisatest053067.92 17665.78 20174.33 10376.29 21851.03 19176.89 16774.25 23953.67 22865.59 20081.76 20335.15 26885.50 10055.94 17572.47 21486.47 71
ET-MVSNet_ETH3D67.96 17565.72 20274.68 9076.67 21155.62 12275.11 20274.74 23052.91 23460.03 27680.12 23433.68 28582.64 16361.86 13976.34 16585.78 99
tttt051767.83 17865.66 20374.33 10376.69 21050.82 19677.86 13973.99 24254.54 21664.64 22282.53 18435.06 26985.50 10055.71 18069.91 25386.67 65
FMVSNet366.32 20965.61 20468.46 23376.48 21642.34 29274.98 20777.15 19455.83 18365.04 21581.16 21339.91 21880.14 21747.18 25272.76 21082.90 199
MVSTER67.16 19265.58 20571.88 16470.37 31249.70 21570.25 28078.45 16951.52 24869.16 13180.37 22838.45 23582.50 16660.19 15171.46 22883.44 184
CDS-MVSNet66.80 20065.37 20671.10 19078.98 14053.13 16173.27 23771.07 26652.15 24264.72 22080.23 23343.56 18477.10 26045.48 27178.88 12883.05 196
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
DTE-MVSNet65.58 21665.34 20766.31 25776.06 22234.79 35776.43 17579.38 14662.55 6161.66 26383.83 15645.60 16079.15 23141.64 30460.88 33585.00 134
Fast-Effi-MVS+-dtu67.37 18565.33 20873.48 13272.94 26957.78 8277.47 15076.88 19657.60 15061.97 25876.85 28839.31 22580.49 20854.72 18970.28 24482.17 214
TAMVS66.78 20165.27 20971.33 18479.16 13753.67 14673.84 23169.59 27852.32 24165.28 20581.72 20444.49 17777.40 25742.32 29778.66 13482.92 197
TAPA-MVS59.36 1066.60 20465.20 21070.81 19476.63 21248.75 22976.52 17480.04 13650.64 26365.24 21084.93 13239.15 22978.54 24036.77 32776.88 16085.14 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TR-MVS66.59 20665.07 21171.17 18879.18 13549.63 21973.48 23475.20 22352.95 23367.90 15080.33 23139.81 22183.68 13643.20 29073.56 19680.20 249
pm-mvs165.24 22264.97 21266.04 26572.38 28039.40 31972.62 24575.63 21255.53 19162.35 25783.18 17047.45 13976.47 27649.06 23766.54 29182.24 211
anonymousdsp67.00 19664.82 21373.57 12970.09 31656.13 10776.35 17677.35 19148.43 28964.99 21880.84 22433.01 29280.34 20964.66 11367.64 28384.23 154
test250665.33 22164.61 21467.50 24279.46 12734.19 36474.43 21851.92 37158.72 12566.75 17788.05 6625.99 35380.92 19851.94 21284.25 6887.39 44
sd_testset64.46 23264.45 21564.51 28377.13 20142.25 29462.67 33272.11 25958.02 14165.08 21382.55 18141.22 21269.88 31247.32 25073.92 18881.41 224
TransMVSNet (Re)64.72 22764.33 21665.87 26975.22 23438.56 32574.66 21475.08 22958.90 12361.79 26182.63 17851.18 9678.07 24643.63 28655.87 35680.99 238
ACMH+57.40 1166.12 21064.06 21772.30 15977.79 17952.83 16680.39 9578.03 17857.30 15257.47 30482.55 18127.68 34084.17 12545.54 26869.78 25679.90 254
CNLPA65.43 21864.02 21869.68 21578.73 14758.07 7877.82 14270.71 26951.49 24961.57 26583.58 16438.23 23970.82 30443.90 28370.10 24880.16 250
HY-MVS56.14 1364.55 23163.89 21966.55 25374.73 24441.02 30469.96 28274.43 23449.29 27761.66 26380.92 22047.43 14076.68 27244.91 27671.69 22581.94 217
Vis-MVSNet (Re-imp)63.69 23963.88 22063.14 29274.75 24331.04 37871.16 26763.64 32256.32 17259.80 28184.99 13144.51 17575.46 28239.12 31480.62 10182.92 197
baseline163.81 23863.87 22163.62 28776.29 21836.36 34771.78 25967.29 29556.05 17964.23 22982.95 17347.11 14574.41 28747.30 25161.85 32980.10 252
testing9164.46 23263.80 22266.47 25478.43 15540.06 31167.63 29869.59 27859.06 12063.18 23978.05 26634.05 27976.99 26348.30 24375.87 17082.37 209
MVP-Stereo65.41 21963.80 22270.22 20377.62 18855.53 12476.30 17778.53 16450.59 26456.47 31378.65 25939.84 22082.68 16144.10 28172.12 22272.44 335
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
GA-MVS65.53 21763.70 22471.02 19270.87 30548.10 23770.48 27674.40 23556.69 16064.70 22176.77 28933.66 28681.10 19255.42 18570.32 24383.87 167
DP-MVS65.68 21463.66 22571.75 16884.93 5556.87 9980.74 9373.16 25153.06 23259.09 29082.35 18736.79 25885.94 8932.82 35069.96 25272.45 334
ACMH55.70 1565.20 22363.57 22670.07 20778.07 16952.01 18479.48 11379.69 13855.75 18656.59 31080.98 21827.12 34580.94 19642.90 29471.58 22777.25 288
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thisisatest051565.83 21363.50 22772.82 14873.75 25949.50 22071.32 26373.12 25249.39 27563.82 23276.50 29734.95 27184.84 11753.20 20375.49 17684.13 158
cascas65.98 21163.42 22873.64 12577.26 19952.58 17172.26 25277.21 19348.56 28561.21 26774.60 31632.57 30485.82 9250.38 22576.75 16282.52 205
1112_ss64.00 23763.36 22965.93 26779.28 13142.58 29171.35 26272.36 25746.41 31360.55 27177.89 27246.27 15673.28 29246.18 26069.97 25181.92 218
FE-MVS65.91 21263.33 23073.63 12677.36 19751.95 18572.62 24575.81 20953.70 22765.31 20478.96 25528.81 33286.39 7943.93 28273.48 19882.55 203
testing9964.05 23563.29 23166.34 25678.17 16739.76 31567.33 30368.00 29158.60 12963.03 24278.10 26532.57 30476.94 26548.22 24475.58 17482.34 210
bld_raw_dy_0_6464.87 22663.22 23269.83 21474.79 24253.32 15778.15 13262.02 33751.20 25660.17 27383.12 17224.15 36274.20 29063.08 12772.33 21781.96 216
131464.61 23063.21 23368.80 22971.87 28947.46 24673.95 22578.39 17442.88 34559.97 27776.60 29438.11 24079.39 22454.84 18872.32 21879.55 260
PLCcopyleft56.13 1465.09 22463.21 23370.72 19781.04 9954.87 13478.57 12377.47 18748.51 28755.71 31681.89 20033.71 28479.71 21841.66 30270.37 24177.58 282
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HyFIR lowres test65.67 21563.01 23573.67 12279.97 11955.65 11969.07 29075.52 21542.68 34663.53 23577.95 26840.43 21681.64 17946.01 26271.91 22383.73 175
EG-PatchMatch MVS64.71 22862.87 23670.22 20377.68 18153.48 15177.99 13678.82 15453.37 23156.03 31577.41 28224.75 36084.04 12846.37 25973.42 20073.14 326
CHOSEN 1792x268865.08 22562.84 23771.82 16681.49 8956.26 10566.32 30774.20 24040.53 35763.16 24078.65 25941.30 20877.80 25045.80 26474.09 18581.40 226
pmmvs663.69 23962.82 23866.27 25970.63 30739.27 32073.13 23875.47 21652.69 23759.75 28382.30 18939.71 22277.03 26247.40 24964.35 30982.53 204
IB-MVS56.42 1265.40 22062.73 23973.40 13674.89 23752.78 16773.09 23975.13 22455.69 18758.48 29873.73 32132.86 29486.32 8250.63 22370.11 24781.10 235
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CostFormer64.04 23662.51 24068.61 23271.88 28845.77 26071.30 26470.60 27047.55 30164.31 22676.61 29341.63 20379.62 22149.74 22969.00 27080.42 245
LS3D64.71 22862.50 24171.34 18379.72 12355.71 11779.82 10574.72 23148.50 28856.62 30984.62 13833.59 28782.34 17029.65 37175.23 17875.97 298
thres100view90063.28 24462.41 24265.89 26877.31 19838.66 32472.65 24369.11 28557.07 15562.45 25481.03 21737.01 25679.17 22831.84 35673.25 20379.83 256
thres600view763.30 24362.27 24366.41 25577.18 20038.87 32272.35 25069.11 28556.98 15762.37 25680.96 21937.01 25679.00 23731.43 36373.05 20781.36 227
XVG-ACMP-BASELINE64.36 23462.23 24470.74 19672.35 28152.45 17670.80 27378.45 16953.84 22659.87 27981.10 21516.24 37879.32 22555.64 18371.76 22480.47 244
tfpn200view963.18 24662.18 24566.21 26076.85 20839.62 31671.96 25769.44 28156.63 16262.61 24979.83 23837.18 24979.17 22831.84 35673.25 20379.83 256
thres40063.31 24262.18 24566.72 25076.85 20839.62 31671.96 25769.44 28156.63 16262.61 24979.83 23837.18 24979.17 22831.84 35673.25 20381.36 227
EPNet_dtu61.90 26061.97 24761.68 30072.89 27039.78 31475.85 18965.62 30855.09 20154.56 33179.36 25037.59 24467.02 32639.80 31176.95 15878.25 272
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testing1162.81 24961.90 24865.54 27278.38 15640.76 30867.59 30066.78 30055.48 19260.13 27477.11 28331.67 31076.79 26845.53 26974.45 18179.06 265
Test_1112_low_res62.32 25461.77 24964.00 28679.08 13939.53 31868.17 29470.17 27243.25 34159.03 29179.90 23744.08 17971.24 30343.79 28568.42 27781.25 230
XXY-MVS60.68 26961.67 25057.70 32770.43 31038.45 32764.19 32666.47 30148.05 29563.22 23780.86 22249.28 11460.47 34945.25 27567.28 28674.19 321
tfpnnormal62.47 25261.63 25164.99 28074.81 24139.01 32171.22 26573.72 24555.22 19860.21 27280.09 23641.26 21176.98 26430.02 36968.09 27978.97 268
IterMVS-SCA-FT62.49 25161.52 25265.40 27571.99 28750.80 19771.15 26869.63 27745.71 32160.61 27077.93 26937.45 24565.99 33255.67 18163.50 31679.42 262
MS-PatchMatch62.42 25361.46 25365.31 27775.21 23552.10 18072.05 25474.05 24146.41 31357.42 30674.36 31734.35 27777.57 25445.62 26773.67 19266.26 369
LCM-MVSNet-Re61.88 26161.35 25463.46 28874.58 24831.48 37761.42 33958.14 35058.71 12753.02 34579.55 24643.07 18776.80 26745.69 26577.96 14282.11 215
testing22262.29 25661.31 25565.25 27877.87 17538.53 32668.34 29366.31 30456.37 17163.15 24177.58 28028.47 33476.18 28137.04 32576.65 16481.05 237
IterMVS62.79 25061.27 25667.35 24669.37 32652.04 18371.17 26668.24 29052.63 23859.82 28076.91 28737.32 24872.36 29552.80 20563.19 31977.66 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
baseline263.42 24161.26 25769.89 21372.55 27647.62 24471.54 26068.38 28950.11 26754.82 32775.55 30843.06 18880.96 19548.13 24567.16 28781.11 234
LTVRE_ROB55.42 1663.15 24761.23 25868.92 22876.57 21447.80 24059.92 34876.39 20254.35 21958.67 29482.46 18629.44 32681.49 18342.12 29871.14 23177.46 283
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
thres20062.20 25761.16 25965.34 27675.38 23339.99 31269.60 28569.29 28355.64 19061.87 26076.99 28537.07 25578.96 23831.28 36473.28 20277.06 289
test_040263.25 24561.01 26069.96 20880.00 11854.37 13976.86 16972.02 26054.58 21558.71 29380.79 22535.00 27084.36 12326.41 38264.71 30471.15 352
CL-MVSNet_self_test61.53 26460.94 26163.30 29068.95 33036.93 34367.60 29972.80 25455.67 18859.95 27876.63 29145.01 17272.22 29839.74 31262.09 32880.74 242
miper_lstm_enhance62.03 25960.88 26265.49 27466.71 34546.25 25556.29 36475.70 21150.68 26161.27 26675.48 30940.21 21768.03 32156.31 17465.25 30082.18 212
F-COLMAP63.05 24860.87 26369.58 21976.99 20753.63 14878.12 13376.16 20447.97 29652.41 34681.61 20627.87 33878.11 24540.07 30866.66 29077.00 291
WTY-MVS59.75 27660.39 26457.85 32572.32 28237.83 33261.05 34464.18 31845.95 32061.91 25979.11 25447.01 14960.88 34842.50 29669.49 26274.83 313
D2MVS62.30 25560.29 26568.34 23666.46 34848.42 23465.70 31073.42 24847.71 29958.16 30075.02 31230.51 31577.71 25253.96 19671.68 22678.90 269
tpm262.07 25860.10 26667.99 23872.79 27143.86 28071.05 27166.85 29943.14 34362.77 24475.39 31038.32 23780.80 20141.69 30168.88 27179.32 263
UWE-MVS60.18 27259.78 26761.39 30577.67 18233.92 36769.04 29163.82 32048.56 28564.27 22777.64 27927.20 34470.40 30933.56 34776.24 16679.83 256
WB-MVSnew59.66 27759.69 26859.56 30975.19 23635.78 35469.34 28864.28 31746.88 31061.76 26275.79 30440.61 21565.20 33532.16 35271.21 23077.70 280
pmmvs461.48 26659.39 26967.76 24071.57 29253.86 14371.42 26165.34 30944.20 33259.46 28577.92 27035.90 26274.71 28543.87 28464.87 30374.71 316
MSDG61.81 26259.23 27069.55 22072.64 27352.63 17070.45 27775.81 20951.38 25153.70 33876.11 29929.52 32481.08 19437.70 32065.79 29774.93 312
CVMVSNet59.63 27859.14 27161.08 30774.47 25038.84 32375.20 20068.74 28731.15 37458.24 29976.51 29532.39 30668.58 31749.77 22865.84 29675.81 300
test_vis1_n_192058.86 28159.06 27258.25 32063.76 36043.14 28767.49 30166.36 30340.22 35965.89 19471.95 33331.04 31159.75 35459.94 15464.90 30271.85 343
ETVMVS59.51 27958.81 27361.58 30277.46 19434.87 35664.94 32359.35 34554.06 22361.08 26876.67 29029.54 32371.87 30032.16 35274.07 18678.01 279
COLMAP_ROBcopyleft52.97 1761.27 26858.81 27368.64 23174.63 24752.51 17478.42 12673.30 24949.92 27150.96 35181.51 20923.06 36479.40 22331.63 36065.85 29574.01 323
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SixPastTwentyTwo61.65 26358.80 27570.20 20575.80 22447.22 24875.59 19269.68 27654.61 21354.11 33579.26 25227.07 34682.96 14943.27 28849.79 37380.41 246
tpmrst58.24 28558.70 27656.84 32966.97 34234.32 36269.57 28661.14 34147.17 30858.58 29771.60 33541.28 21060.41 35049.20 23562.84 32175.78 301
OurMVSNet-221017-061.37 26758.63 27769.61 21672.05 28648.06 23873.93 22772.51 25547.23 30754.74 32880.92 22021.49 37181.24 18948.57 24156.22 35579.53 261
RPMNet61.53 26458.42 27870.86 19369.96 31852.07 18165.31 31981.36 10743.20 34259.36 28670.15 34735.37 26685.47 10236.42 33464.65 30575.06 308
SCA60.49 27058.38 27966.80 24974.14 25848.06 23863.35 32963.23 32549.13 27959.33 28972.10 33037.45 24574.27 28844.17 27862.57 32378.05 275
PatchmatchNetpermissive59.84 27558.24 28064.65 28273.05 26746.70 25269.42 28762.18 33547.55 30158.88 29271.96 33234.49 27569.16 31442.99 29263.60 31478.07 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm57.34 29258.16 28154.86 33971.80 29034.77 35867.47 30256.04 36348.20 29260.10 27576.92 28637.17 25153.41 38040.76 30665.01 30176.40 297
OpenMVS_ROBcopyleft52.78 1860.03 27358.14 28265.69 27170.47 30944.82 27075.33 19670.86 26845.04 32456.06 31476.00 30026.89 34879.65 21935.36 33967.29 28572.60 331
test-LLR58.15 28758.13 28358.22 32168.57 33244.80 27165.46 31557.92 35150.08 26855.44 31969.82 34932.62 30157.44 36449.66 23173.62 19372.41 336
CR-MVSNet59.91 27457.90 28465.96 26669.96 31852.07 18165.31 31963.15 32642.48 34759.36 28674.84 31335.83 26370.75 30545.50 27064.65 30575.06 308
PVSNet50.76 1958.40 28457.39 28561.42 30375.53 23044.04 27961.43 33863.45 32347.04 30956.91 30773.61 32227.00 34764.76 33639.12 31472.40 21575.47 305
K. test v360.47 27157.11 28670.56 19973.74 26048.22 23675.10 20462.55 32958.27 13653.62 34176.31 29827.81 33981.59 18147.42 24839.18 38681.88 219
MIMVSNet57.35 29157.07 28758.22 32174.21 25737.18 33862.46 33360.88 34248.88 28255.29 32275.99 30231.68 30962.04 34531.87 35572.35 21675.43 306
MDTV_nov1_ep1357.00 28872.73 27238.26 32865.02 32264.73 31444.74 32655.46 31872.48 32632.61 30370.47 30637.47 32167.75 282
tpmvs58.47 28356.95 28963.03 29470.20 31341.21 30367.90 29767.23 29649.62 27354.73 32970.84 34034.14 27876.24 27936.64 33161.29 33371.64 344
tpm cat159.25 28056.95 28966.15 26272.19 28446.96 25068.09 29565.76 30640.03 36157.81 30270.56 34238.32 23774.51 28638.26 31861.50 33277.00 291
dmvs_re56.77 29656.83 29156.61 33069.23 32741.02 30458.37 35364.18 31850.59 26457.45 30571.42 33635.54 26558.94 35837.23 32367.45 28469.87 361
test_cas_vis1_n_192056.91 29556.71 29257.51 32859.13 38045.40 26763.58 32861.29 34036.24 36867.14 16971.85 33429.89 32156.69 36857.65 16663.58 31570.46 356
sss56.17 30356.57 29354.96 33866.93 34336.32 35057.94 35661.69 33841.67 35058.64 29575.32 31138.72 23356.25 37142.04 29966.19 29472.31 339
Patchmtry57.16 29356.47 29459.23 31269.17 32934.58 36162.98 33063.15 32644.53 32856.83 30874.84 31335.83 26368.71 31640.03 30960.91 33474.39 319
gg-mvs-nofinetune57.86 28956.43 29562.18 29872.62 27435.35 35566.57 30456.33 36050.65 26257.64 30357.10 38330.65 31476.36 27737.38 32278.88 12874.82 314
pmmvs-eth3d58.81 28256.31 29666.30 25867.61 33952.42 17772.30 25164.76 31343.55 33854.94 32674.19 31928.95 32972.60 29443.31 28757.21 35073.88 324
Syy-MVS56.00 30456.23 29755.32 33674.69 24526.44 39265.52 31357.49 35450.97 25956.52 31172.18 32839.89 21968.09 31924.20 38564.59 30771.44 348
CMPMVSbinary42.80 2157.81 29055.97 29863.32 28960.98 37547.38 24764.66 32469.50 28032.06 37346.83 36777.80 27429.50 32571.36 30248.68 23973.75 19171.21 351
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testing356.54 29755.92 29958.41 31977.52 19227.93 38669.72 28456.36 35954.75 21158.63 29677.80 27420.88 37271.75 30125.31 38462.25 32675.53 304
test-mter56.42 30055.82 30058.22 32168.57 33244.80 27165.46 31557.92 35139.94 36255.44 31969.82 34921.92 36757.44 36449.66 23173.62 19372.41 336
pmmvs556.47 29955.68 30158.86 31661.41 37236.71 34566.37 30662.75 32840.38 35853.70 33876.62 29234.56 27367.05 32540.02 31065.27 29972.83 329
Patchmatch-RL test58.16 28655.49 30266.15 26267.92 33848.89 22860.66 34651.07 37547.86 29859.36 28662.71 37734.02 28172.27 29756.41 17359.40 34277.30 285
ppachtmachnet_test58.06 28855.38 30366.10 26469.51 32348.99 22668.01 29666.13 30544.50 32954.05 33670.74 34132.09 30872.34 29636.68 33056.71 35476.99 293
Anonymous2023120655.10 31255.30 30454.48 34169.81 32233.94 36662.91 33162.13 33641.08 35455.18 32375.65 30632.75 29856.59 37030.32 36867.86 28072.91 327
FMVSNet555.86 30554.93 30558.66 31871.05 30336.35 34864.18 32762.48 33046.76 31150.66 35674.73 31525.80 35464.04 33833.11 34865.57 29875.59 303
TESTMET0.1,155.28 30954.90 30656.42 33166.56 34643.67 28265.46 31556.27 36139.18 36453.83 33767.44 36124.21 36155.46 37548.04 24673.11 20670.13 359
AllTest57.08 29454.65 30764.39 28471.44 29449.03 22369.92 28367.30 29345.97 31847.16 36579.77 24017.47 37467.56 32333.65 34459.16 34376.57 295
myMVS_eth3d54.86 31354.61 30855.61 33574.69 24527.31 38965.52 31357.49 35450.97 25956.52 31172.18 32821.87 37068.09 31927.70 37764.59 30771.44 348
PatchMatch-RL56.25 30254.55 30961.32 30677.06 20456.07 10965.57 31254.10 36844.13 33453.49 34471.27 33925.20 35766.78 32736.52 33363.66 31361.12 373
our_test_356.49 29854.42 31062.68 29669.51 32345.48 26666.08 30861.49 33944.11 33550.73 35569.60 35233.05 29168.15 31838.38 31756.86 35174.40 318
Anonymous2024052155.30 30854.41 31157.96 32460.92 37741.73 29971.09 27071.06 26741.18 35348.65 36173.31 32316.93 37659.25 35642.54 29564.01 31072.90 328
EU-MVSNet55.61 30754.41 31159.19 31465.41 35433.42 36972.44 24971.91 26128.81 37651.27 34973.87 32024.76 35969.08 31543.04 29158.20 34675.06 308
MIMVSNet155.17 31154.31 31357.77 32670.03 31732.01 37565.68 31164.81 31249.19 27846.75 36876.00 30025.53 35664.04 33828.65 37462.13 32777.26 287
USDC56.35 30154.24 31462.69 29564.74 35640.31 30965.05 32173.83 24443.93 33647.58 36377.71 27815.36 38075.05 28438.19 31961.81 33072.70 330
RPSCF55.80 30654.22 31560.53 30865.13 35542.91 29064.30 32557.62 35336.84 36758.05 30182.28 19028.01 33756.24 37237.14 32458.61 34582.44 208
test20.0353.87 31754.02 31653.41 34961.47 37128.11 38561.30 34059.21 34651.34 25352.09 34777.43 28133.29 29058.55 36029.76 37060.27 34073.58 325
KD-MVS_self_test55.22 31053.89 31759.21 31357.80 38327.47 38857.75 35874.32 23647.38 30350.90 35270.00 34828.45 33570.30 31040.44 30757.92 34779.87 255
EPMVS53.96 31553.69 31854.79 34066.12 35131.96 37662.34 33549.05 37844.42 33155.54 31771.33 33830.22 31856.70 36741.65 30362.54 32475.71 302
test0.0.03 153.32 32253.59 31952.50 35362.81 36629.45 38159.51 34954.11 36750.08 26854.40 33374.31 31832.62 30155.92 37330.50 36763.95 31272.15 341
PatchT53.17 32353.44 32052.33 35468.29 33625.34 39658.21 35454.41 36644.46 33054.56 33169.05 35533.32 28960.94 34736.93 32661.76 33170.73 355
PMMVS53.96 31553.26 32156.04 33262.60 36750.92 19461.17 34256.09 36232.81 37253.51 34366.84 36634.04 28059.93 35344.14 28068.18 27857.27 381
UnsupCasMVSNet_eth53.16 32452.47 32255.23 33759.45 37933.39 37059.43 35069.13 28445.98 31750.35 35872.32 32729.30 32758.26 36242.02 30044.30 37974.05 322
testgi51.90 32652.37 32350.51 35960.39 37823.55 39958.42 35258.15 34949.03 28051.83 34879.21 25322.39 36555.59 37429.24 37362.64 32272.40 338
dmvs_testset50.16 33451.90 32444.94 36766.49 34711.78 40561.01 34551.50 37251.17 25750.30 35967.44 36139.28 22660.29 35122.38 38757.49 34962.76 372
TinyColmap54.14 31451.72 32561.40 30466.84 34441.97 29666.52 30568.51 28844.81 32542.69 37975.77 30511.66 38672.94 29331.96 35456.77 35369.27 365
dp51.89 32751.60 32652.77 35268.44 33532.45 37462.36 33454.57 36544.16 33349.31 36067.91 35728.87 33156.61 36933.89 34354.89 35869.24 366
KD-MVS_2432*160053.45 31951.50 32759.30 31062.82 36437.14 33955.33 36571.79 26247.34 30555.09 32470.52 34321.91 36870.45 30735.72 33742.97 38170.31 357
miper_refine_blended53.45 31951.50 32759.30 31062.82 36437.14 33955.33 36571.79 26247.34 30555.09 32470.52 34321.91 36870.45 30735.72 33742.97 38170.31 357
MDA-MVSNet-bldmvs53.87 31750.81 32963.05 29366.25 34948.58 23256.93 36263.82 32048.09 29441.22 38070.48 34530.34 31768.00 32234.24 34245.92 37872.57 332
TDRefinement53.44 32150.72 33061.60 30164.31 35946.96 25070.89 27265.27 31141.78 34844.61 37477.98 26711.52 38866.36 33028.57 37551.59 36771.49 347
test_fmvs151.32 33150.48 33153.81 34553.57 38537.51 33660.63 34751.16 37328.02 38063.62 23469.23 35416.41 37753.93 37951.01 22060.70 33769.99 360
test_fmvs1_n51.37 32950.35 33254.42 34352.85 38637.71 33461.16 34351.93 37028.15 37863.81 23369.73 35113.72 38153.95 37851.16 21960.65 33871.59 345
PM-MVS52.33 32550.19 33358.75 31762.10 36945.14 26965.75 30940.38 39443.60 33753.52 34272.65 3259.16 39465.87 33350.41 22454.18 36165.24 371
YYNet150.73 33248.96 33456.03 33361.10 37441.78 29851.94 37356.44 35840.94 35644.84 37267.80 35930.08 31955.08 37636.77 32750.71 36971.22 350
MDA-MVSNet_test_wron50.71 33348.95 33556.00 33461.17 37341.84 29751.90 37456.45 35740.96 35544.79 37367.84 35830.04 32055.07 37736.71 32950.69 37071.11 353
UnsupCasMVSNet_bld50.07 33548.87 33653.66 34660.97 37633.67 36857.62 35964.56 31539.47 36347.38 36464.02 37527.47 34159.32 35534.69 34143.68 38067.98 368
ADS-MVSNet251.33 33048.76 33759.07 31566.02 35244.60 27450.90 37559.76 34436.90 36550.74 35366.18 36926.38 34963.11 34127.17 37854.76 35969.50 363
test_vis1_n49.89 33648.69 33853.50 34853.97 38437.38 33761.53 33747.33 38428.54 37759.62 28467.10 36513.52 38252.27 38349.07 23657.52 34870.84 354
Patchmatch-test49.08 33748.28 33951.50 35764.40 35830.85 37945.68 38548.46 38135.60 36946.10 37172.10 33034.47 27646.37 39027.08 38060.65 33877.27 286
ADS-MVSNet48.48 33947.77 34050.63 35866.02 35229.92 38050.90 37550.87 37736.90 36550.74 35366.18 36926.38 34952.47 38227.17 37854.76 35969.50 363
new-patchmatchnet47.56 34147.73 34147.06 36258.81 3819.37 40848.78 37959.21 34643.28 34044.22 37568.66 35625.67 35557.20 36631.57 36249.35 37474.62 317
JIA-IIPM51.56 32847.68 34263.21 29164.61 35750.73 19847.71 38158.77 34842.90 34448.46 36251.72 38724.97 35870.24 31136.06 33653.89 36268.64 367
test_fmvs248.69 33847.49 34352.29 35548.63 39233.06 37257.76 35748.05 38225.71 38459.76 28269.60 35211.57 38752.23 38449.45 23456.86 35171.58 346
CHOSEN 280x42047.83 34046.36 34452.24 35667.37 34149.78 21438.91 39343.11 39235.00 37043.27 37863.30 37628.95 32949.19 38736.53 33260.80 33657.76 380
PVSNet_043.31 2047.46 34245.64 34552.92 35167.60 34044.65 27354.06 36954.64 36441.59 35146.15 37058.75 38030.99 31258.66 35932.18 35124.81 39555.46 383
MVS-HIRNet45.52 34344.48 34648.65 36168.49 33434.05 36559.41 35144.50 38927.03 38137.96 38850.47 39126.16 35264.10 33726.74 38159.52 34147.82 390
WB-MVS43.26 34643.41 34742.83 37163.32 36310.32 40758.17 35545.20 38745.42 32240.44 38367.26 36434.01 28258.98 35711.96 39924.88 39459.20 375
test_fmvs344.30 34542.55 34849.55 36042.83 39627.15 39153.03 37144.93 38822.03 39153.69 34064.94 3724.21 40149.63 38647.47 24749.82 37271.88 342
LF4IMVS42.95 34742.26 34945.04 36548.30 39332.50 37354.80 36748.49 38028.03 37940.51 38270.16 3469.24 39343.89 39331.63 36049.18 37558.72 377
SSC-MVS41.96 35041.99 35041.90 37262.46 3689.28 40957.41 36044.32 39043.38 33938.30 38766.45 36732.67 30058.42 36110.98 40021.91 39757.99 379
pmmvs344.92 34441.95 35153.86 34452.58 38843.55 28362.11 33646.90 38626.05 38340.63 38160.19 37911.08 39157.91 36331.83 35946.15 37760.11 374
FPMVS42.18 34941.11 35245.39 36458.03 38241.01 30649.50 37753.81 36930.07 37533.71 38964.03 37311.69 38552.08 38514.01 39555.11 35743.09 392
N_pmnet39.35 35540.28 35336.54 37863.76 3601.62 41349.37 3780.76 41234.62 37143.61 37766.38 36826.25 35142.57 39426.02 38351.77 36665.44 370
test_vis1_rt41.35 35239.45 35447.03 36346.65 39537.86 33147.76 38038.65 39523.10 38744.21 37651.22 38911.20 39044.08 39239.27 31353.02 36459.14 376
DSMNet-mixed39.30 35638.72 35541.03 37351.22 38919.66 40245.53 38631.35 40115.83 39839.80 38567.42 36322.19 36645.13 39122.43 38652.69 36558.31 378
EGC-MVSNET42.47 34838.48 35654.46 34274.33 25448.73 23070.33 27951.10 3740.03 4060.18 40767.78 36013.28 38366.49 32918.91 39150.36 37148.15 388
mvsany_test139.38 35438.16 35743.02 37049.05 39034.28 36344.16 38925.94 40522.74 38946.57 36962.21 37823.85 36341.16 39733.01 34935.91 38953.63 384
ANet_high41.38 35137.47 35853.11 35039.73 40224.45 39756.94 36169.69 27547.65 30026.04 39452.32 38612.44 38462.38 34421.80 38810.61 40372.49 333
LCM-MVSNet40.30 35335.88 35953.57 34742.24 39729.15 38245.21 38760.53 34322.23 39028.02 39250.98 3903.72 40361.78 34631.22 36538.76 38769.78 362
APD_test137.39 35734.94 36044.72 36848.88 39133.19 37152.95 37244.00 39119.49 39227.28 39358.59 3813.18 40552.84 38118.92 39041.17 38448.14 389
new_pmnet34.13 36034.29 36133.64 38052.63 38718.23 40444.43 38833.90 40022.81 38830.89 39153.18 38510.48 39235.72 40120.77 38939.51 38546.98 391
PMVScopyleft28.69 2236.22 35833.29 36245.02 36636.82 40435.98 35354.68 36848.74 37926.31 38221.02 39751.61 3882.88 40660.10 3529.99 40347.58 37638.99 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft34.77 35931.91 36343.33 36962.05 37037.87 33020.39 39867.03 29723.23 38618.41 39925.84 3994.24 40062.73 34214.71 39451.32 36829.38 398
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_f31.86 36331.05 36434.28 37932.33 40821.86 40032.34 39530.46 40216.02 39739.78 38655.45 3844.80 39932.36 40230.61 36637.66 38848.64 386
mvsany_test332.62 36130.57 36538.77 37636.16 40524.20 39838.10 39420.63 40719.14 39340.36 38457.43 3825.06 39836.63 40029.59 37228.66 39355.49 382
test_vis3_rt32.09 36230.20 36637.76 37735.36 40627.48 38740.60 39228.29 40416.69 39632.52 39040.53 3951.96 40737.40 39933.64 34642.21 38348.39 387
testf131.46 36428.89 36739.16 37441.99 39928.78 38346.45 38337.56 39614.28 39921.10 39548.96 3921.48 40947.11 38813.63 39634.56 39041.60 393
APD_test231.46 36428.89 36739.16 37441.99 39928.78 38346.45 38337.56 39614.28 39921.10 39548.96 3921.48 40947.11 38813.63 39634.56 39041.60 393
PMMVS227.40 36625.91 36931.87 38239.46 4036.57 41031.17 39628.52 40323.96 38520.45 39848.94 3944.20 40237.94 39816.51 39219.97 39851.09 385
cdsmvs_eth3d_5k17.50 37123.34 3700.00 3910.00 4140.00 4150.00 40278.63 1610.00 4090.00 41082.18 19149.25 1150.00 4080.00 4090.00 4060.00 406
E-PMN23.77 36722.73 37126.90 38342.02 39820.67 40142.66 39035.70 39817.43 39410.28 40425.05 4006.42 39642.39 39510.28 40214.71 40017.63 399
EMVS22.97 36821.84 37226.36 38440.20 40119.53 40341.95 39134.64 39917.09 3959.73 40522.83 4017.29 39542.22 3969.18 40413.66 40117.32 400
test_method19.68 37018.10 37324.41 38513.68 4103.11 41212.06 40142.37 3932.00 40411.97 40236.38 3965.77 39729.35 40415.06 39323.65 39640.76 395
MVEpermissive17.77 2321.41 36917.77 37432.34 38134.34 40725.44 39516.11 39924.11 40611.19 40113.22 40131.92 3971.58 40830.95 40310.47 40117.03 39940.62 396
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d13.32 37212.52 37515.71 38647.54 39426.27 39331.06 3971.98 4114.93 4035.18 4061.94 4060.45 41118.54 4056.81 40612.83 4022.33 403
tmp_tt9.43 37311.14 3764.30 3882.38 4114.40 41113.62 40016.08 4090.39 40515.89 40013.06 40215.80 3795.54 40712.63 39810.46 4042.95 402
ab-mvs-re6.49 3748.65 3770.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 41077.89 2720.00 4130.00 4080.00 4090.00 4060.00 406
test1234.73 3756.30 3780.02 3890.01 4120.01 41456.36 3630.00 4130.01 4070.04 4080.21 4080.01 4120.00 4080.03 4080.00 4060.04 404
testmvs4.52 3766.03 3790.01 3900.01 4120.00 41553.86 3700.00 4130.01 4070.04 4080.27 4070.00 4130.00 4080.04 4070.00 4060.03 405
pcd_1.5k_mvsjas3.92 3775.23 3800.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 40947.05 1460.00 4080.00 4090.00 4060.00 406
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
WAC-MVS27.31 38927.77 376
FOURS186.12 3660.82 3788.18 183.61 6360.87 8481.50 16
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 27
PC_three_145255.09 20184.46 489.84 4366.68 589.41 1874.24 4491.38 288.42 11
No_MVS79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 27
test_one_060187.58 959.30 5786.84 765.01 2083.80 1191.86 664.03 11
eth-test20.00 414
eth-test0.00 414
ZD-MVS86.64 2160.38 4382.70 8657.95 14478.10 2490.06 3656.12 3888.84 2674.05 4787.00 48
IU-MVS87.77 459.15 6085.53 2553.93 22584.64 379.07 1190.87 588.37 13
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4267.01 190.33 1273.16 5491.15 488.23 16
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1790.70 787.65 35
test_241102_ONE87.77 458.90 6986.78 1064.20 3185.97 191.34 1266.87 390.78 7
save fliter86.17 3361.30 2883.98 4779.66 14059.00 121
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 21
test_0728_SECOND79.19 1687.82 359.11 6387.85 587.15 390.84 378.66 1590.61 1187.62 37
test072687.75 759.07 6487.86 486.83 864.26 2984.19 791.92 564.82 8
GSMVS78.05 275
test_part287.58 960.47 4283.42 12
sam_mvs134.74 27278.05 275
sam_mvs33.43 288
ambc65.13 27963.72 36237.07 34147.66 38278.78 15754.37 33471.42 33611.24 38980.94 19645.64 26653.85 36377.38 284
MTGPAbinary80.97 123
test_post168.67 2923.64 40432.39 30669.49 31344.17 278
test_post3.55 40533.90 28366.52 328
patchmatchnet-post64.03 37334.50 27474.27 288
GG-mvs-BLEND62.34 29771.36 29837.04 34269.20 28957.33 35654.73 32965.48 37130.37 31677.82 24934.82 34074.93 17972.17 340
MTMP86.03 1917.08 408
gm-plane-assit71.40 29741.72 30148.85 28373.31 32382.48 16848.90 238
test9_res75.28 3788.31 3283.81 169
TEST985.58 4361.59 2481.62 8281.26 11555.65 18974.93 4388.81 5653.70 6384.68 118
test_885.40 4660.96 3481.54 8581.18 11855.86 18074.81 4788.80 5853.70 6384.45 122
agg_prior273.09 5587.93 4084.33 150
agg_prior85.04 5059.96 4781.04 12174.68 5084.04 128
TestCases64.39 28471.44 29449.03 22367.30 29345.97 31847.16 36579.77 24017.47 37467.56 32333.65 34459.16 34376.57 295
test_prior462.51 1482.08 77
test_prior281.75 8060.37 9675.01 4189.06 5256.22 3772.19 5988.96 24
test_prior76.69 5384.20 6157.27 8884.88 3786.43 7886.38 72
旧先验276.08 18245.32 32376.55 3265.56 33458.75 162
新几何276.12 180
新几何170.76 19585.66 4161.13 3066.43 30244.68 32770.29 10786.64 9041.29 20975.23 28349.72 23081.75 9675.93 299
旧先验183.04 7053.15 15967.52 29287.85 7144.08 17980.76 10078.03 278
无先验79.66 11074.30 23848.40 29080.78 20253.62 19879.03 267
原ACMM279.02 116
原ACMM174.69 8985.39 4759.40 5483.42 6951.47 25070.27 10886.61 9248.61 12386.51 7653.85 19787.96 3978.16 273
test22283.14 6858.68 7372.57 24763.45 32341.78 34867.56 16286.12 10737.13 25378.73 13374.98 311
testdata272.18 29946.95 256
segment_acmp54.23 54
testdata64.66 28181.52 8752.93 16265.29 31046.09 31673.88 6287.46 7538.08 24166.26 33153.31 20278.48 13674.78 315
testdata172.65 24360.50 91
test1277.76 4384.52 5858.41 7583.36 7272.93 8154.61 5188.05 3788.12 3586.81 60
plane_prior781.41 9055.96 111
plane_prior681.20 9756.24 10645.26 170
plane_prior584.01 4987.21 5368.16 8180.58 10384.65 144
plane_prior486.10 108
plane_prior356.09 10863.92 3669.27 127
plane_prior284.22 4064.52 25
plane_prior181.27 95
plane_prior56.31 10283.58 5363.19 4880.48 106
n20.00 413
nn0.00 413
door-mid47.19 385
lessismore_v069.91 21171.42 29647.80 24050.90 37650.39 35775.56 30727.43 34381.33 18645.91 26334.10 39280.59 243
LGP-MVS_train75.76 6780.22 11157.51 8683.40 7061.32 7966.67 17987.33 7739.15 22986.59 7167.70 8677.30 15383.19 191
test1183.47 67
door47.60 383
HQP5-MVS54.94 131
HQP-NCC80.66 10382.31 7162.10 6867.85 152
ACMP_Plane80.66 10382.31 7162.10 6867.85 152
BP-MVS67.04 93
HQP4-MVS67.85 15286.93 6284.32 151
HQP3-MVS83.90 5480.35 107
HQP2-MVS45.46 164
NP-MVS80.98 10056.05 11085.54 126
MDTV_nov1_ep13_2view25.89 39461.22 34140.10 36051.10 35032.97 29338.49 31678.61 270
ACMMP++_ref74.07 186
ACMMP++72.16 221
Test By Simon48.33 126
ITE_SJBPF62.09 29966.16 35044.55 27664.32 31647.36 30455.31 32180.34 23019.27 37362.68 34336.29 33562.39 32579.04 266
DeepMVS_CXcopyleft12.03 38717.97 40910.91 40610.60 4107.46 40211.07 40328.36 3983.28 40411.29 4068.01 4059.74 40513.89 401