This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6088.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 14
SED-MVS81.56 282.30 279.32 1387.77 458.90 6987.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1790.87 588.23 21
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6487.85 585.03 3564.26 2983.82 892.00 364.82 890.75 878.66 1590.61 1185.45 118
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2363.71 1289.23 2081.51 388.44 2788.09 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 2989.67 1886.84 64
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft80.16 880.59 678.86 2886.64 2160.02 4588.12 386.42 1462.94 5182.40 1492.12 259.64 1989.76 1578.70 1388.32 3186.79 66
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3789.70 1679.85 591.48 188.19 23
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MM80.20 780.28 879.99 282.19 7960.01 4686.19 1783.93 5473.19 177.08 3191.21 1557.23 3390.73 1083.35 188.12 3589.22 6
HPM-MVS++copyleft79.88 980.14 979.10 2188.17 164.80 186.59 1283.70 6565.37 1378.78 2290.64 1958.63 2587.24 5479.00 1290.37 1485.26 129
CNVR-MVS79.84 1079.97 1079.45 1187.90 262.17 1784.37 3685.03 3566.96 577.58 2790.06 3659.47 2189.13 2278.67 1489.73 1687.03 58
SteuartSystems-ACMMP79.48 1179.31 1179.98 383.01 7262.18 1687.60 985.83 1966.69 978.03 2690.98 1654.26 5790.06 1378.42 1989.02 2387.69 38
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS78.82 1379.22 1277.60 4482.88 7457.83 8084.99 3288.13 261.86 7579.16 2090.75 1857.96 2687.09 6277.08 2690.18 1587.87 31
DeepPCF-MVS69.58 179.03 1279.00 1379.13 1984.92 5660.32 4483.03 5785.33 2762.86 5480.17 1790.03 3861.76 1488.95 2474.21 4588.67 2688.12 25
ACMMP_NAP78.77 1578.78 1478.74 2985.44 4561.04 3183.84 4985.16 3162.88 5378.10 2491.26 1352.51 8188.39 3179.34 890.52 1386.78 67
9.1478.75 1583.10 6984.15 4388.26 159.90 10778.57 2390.36 2757.51 3286.86 6677.39 2389.52 21
MVS_030478.73 1678.75 1578.66 3080.82 10357.62 8385.31 3081.31 11770.51 274.17 6091.24 1454.99 4889.56 1782.29 288.13 3488.80 8
ZNCC-MVS78.82 1378.67 1779.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4290.47 2653.96 6288.68 2776.48 2889.63 2087.16 56
MP-MVS-pluss78.35 2078.46 1878.03 4084.96 5259.52 5382.93 5985.39 2662.15 6776.41 3491.51 1152.47 8386.78 6880.66 489.64 1987.80 35
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
NCCC78.58 1778.31 1979.39 1287.51 1262.61 1385.20 3184.42 4566.73 874.67 5389.38 4955.30 4589.18 2174.19 4687.34 4486.38 77
TSAR-MVS + MP.78.44 1978.28 2078.90 2684.96 5261.41 2684.03 4583.82 6359.34 12079.37 1989.76 4559.84 1687.62 5076.69 2786.74 5387.68 39
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MP-MVScopyleft78.35 2078.26 2178.64 3186.54 2563.47 486.02 2083.55 6963.89 3773.60 6790.60 2054.85 5186.72 6977.20 2588.06 3785.74 108
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS69.38 278.56 1878.14 2279.83 783.60 6361.62 2384.17 4286.85 663.23 4673.84 6590.25 3257.68 2989.96 1474.62 4389.03 2287.89 29
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APD-MVScopyleft78.02 2378.04 2377.98 4186.44 2760.81 3885.52 2784.36 4660.61 8979.05 2190.30 3055.54 4488.32 3373.48 5387.03 4684.83 141
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
GST-MVS78.14 2277.85 2478.99 2586.05 3861.82 2285.84 2185.21 2963.56 4174.29 5990.03 3852.56 8088.53 3074.79 4288.34 2986.63 73
HFP-MVS78.01 2477.65 2579.10 2186.71 1962.81 886.29 1484.32 4762.82 5573.96 6390.50 2453.20 7488.35 3274.02 4887.05 4586.13 91
SD-MVS77.70 2677.62 2677.93 4284.47 5961.88 2184.55 3483.87 6060.37 9679.89 1889.38 4954.97 4985.58 9876.12 3184.94 6686.33 83
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MCST-MVS77.48 2877.45 2777.54 4586.67 2058.36 7683.22 5586.93 556.91 16274.91 4788.19 6259.15 2387.68 4973.67 5187.45 4386.57 74
ACMMPR77.71 2577.23 2879.16 1786.75 1862.93 786.29 1484.24 4862.82 5573.55 6890.56 2249.80 11588.24 3474.02 4887.03 4686.32 85
region2R77.67 2777.18 2979.15 1886.76 1762.95 686.29 1484.16 5062.81 5773.30 7090.58 2149.90 11388.21 3573.78 5087.03 4686.29 88
HPM-MVScopyleft77.28 2976.85 3078.54 3285.00 5160.81 3882.91 6085.08 3262.57 6073.09 7989.97 4150.90 10887.48 5275.30 3686.85 5187.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CSCG76.92 3376.75 3177.41 4683.96 6259.60 5182.95 5886.50 1360.78 8775.27 3984.83 13860.76 1586.56 7467.86 8687.87 4186.06 93
CP-MVS77.12 3276.68 3278.43 3386.05 3863.18 587.55 1083.45 7362.44 6472.68 8990.50 2448.18 13387.34 5373.59 5285.71 6084.76 146
DeepC-MVS_fast68.24 377.25 3076.63 3379.12 2086.15 3460.86 3684.71 3384.85 3961.98 7473.06 8088.88 5553.72 6889.06 2368.27 7988.04 3887.42 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVS77.17 3176.56 3479.00 2386.32 2962.62 1185.83 2283.92 5564.55 2372.17 9690.01 4047.95 13588.01 4171.55 6686.74 5386.37 79
MTAPA76.90 3476.42 3578.35 3586.08 3763.57 274.92 20980.97 12965.13 1575.77 3690.88 1748.63 12886.66 7177.23 2488.17 3384.81 143
casdiffmvs_mvgpermissive76.14 4176.30 3675.66 7476.46 22051.83 18879.67 10985.08 3265.02 1975.84 3588.58 6059.42 2285.08 10972.75 5683.93 7690.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
train_agg76.27 3976.15 3776.64 5585.58 4361.59 2481.62 8181.26 12055.86 18374.93 4588.81 5653.70 6984.68 11975.24 3888.33 3083.65 183
PGM-MVS76.77 3576.06 3878.88 2786.14 3562.73 982.55 6783.74 6461.71 7672.45 9590.34 2948.48 13188.13 3872.32 5886.85 5185.78 102
CS-MVS76.25 4075.98 3977.06 5080.15 11855.63 12084.51 3583.90 5763.24 4573.30 7087.27 8055.06 4786.30 8471.78 6384.58 6889.25 4
CANet76.46 3775.93 4078.06 3981.29 9357.53 8582.35 6983.31 7967.78 370.09 11486.34 10454.92 5088.90 2572.68 5784.55 6987.76 37
mPP-MVS76.54 3675.93 4078.34 3686.47 2663.50 385.74 2582.28 9562.90 5271.77 9990.26 3146.61 16086.55 7571.71 6485.66 6184.97 138
EC-MVSNet75.84 4575.87 4275.74 7278.86 14552.65 16883.73 5086.08 1763.47 4272.77 8887.25 8153.13 7587.93 4371.97 6285.57 6286.66 71
SR-MVS76.13 4275.70 4377.40 4885.87 4061.20 2985.52 2782.19 9659.99 10675.10 4190.35 2847.66 14086.52 7671.64 6582.99 8284.47 152
CDPH-MVS76.31 3875.67 4478.22 3785.35 4859.14 6281.31 8684.02 5156.32 17574.05 6188.98 5453.34 7387.92 4469.23 7788.42 2887.59 43
iter_conf0575.83 4775.63 4576.43 5880.84 10251.87 18778.13 13284.81 4059.65 11272.86 8487.47 7556.92 3488.17 3772.18 6087.79 4289.24 5
PHI-MVS75.87 4475.36 4677.41 4680.62 10955.91 11384.28 3985.78 2056.08 18173.41 6986.58 9650.94 10788.54 2970.79 6989.71 1787.79 36
ACMMPcopyleft76.02 4375.33 4778.07 3885.20 4961.91 2085.49 2984.44 4463.04 4969.80 12489.74 4645.43 17387.16 5972.01 6182.87 8785.14 131
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CS-MVS-test75.62 4875.31 4876.56 5780.63 10855.13 13083.88 4885.22 2862.05 7171.49 10486.03 11453.83 6586.36 8267.74 8786.91 5088.19 23
dcpmvs_274.55 6075.23 4972.48 15582.34 7753.34 15677.87 13881.46 10857.80 15175.49 3786.81 8562.22 1377.75 25471.09 6882.02 9686.34 81
DPM-MVS75.47 4975.00 5076.88 5181.38 9259.16 5979.94 10285.71 2256.59 17072.46 9386.76 8656.89 3587.86 4666.36 9988.91 2583.64 184
sasdasda74.67 5574.98 5173.71 12278.94 14350.56 20380.23 9583.87 6060.30 10077.15 2986.56 9759.65 1782.00 17566.01 10382.12 9388.58 12
canonicalmvs74.67 5574.98 5173.71 12278.94 14350.56 20380.23 9583.87 6060.30 10077.15 2986.56 9759.65 1782.00 17566.01 10382.12 9388.58 12
casdiffmvspermissive74.80 5274.89 5374.53 9975.59 23250.37 20678.17 13185.06 3462.80 5874.40 5687.86 7057.88 2783.61 13969.46 7682.79 8989.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline74.61 5874.70 5474.34 10375.70 22849.99 21477.54 14884.63 4362.73 5973.98 6287.79 7357.67 3083.82 13569.49 7482.74 9089.20 7
3Dnovator+66.72 475.84 4574.57 5579.66 982.40 7659.92 4885.83 2286.32 1666.92 767.80 16089.24 5142.03 20489.38 1964.07 11886.50 5689.69 2
DELS-MVS74.76 5374.46 5675.65 7577.84 17952.25 17775.59 19384.17 4963.76 3873.15 7582.79 17659.58 2086.80 6767.24 9386.04 5987.89 29
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
APD-MVS_3200maxsize74.96 5074.39 5776.67 5482.20 7858.24 7783.67 5183.29 8058.41 13673.71 6690.14 3345.62 16685.99 8869.64 7382.85 8885.78 102
OPM-MVS74.73 5474.25 5876.19 6480.81 10459.01 6782.60 6683.64 6663.74 3972.52 9287.49 7447.18 15185.88 9169.47 7580.78 10583.66 182
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
TSAR-MVS + GP.74.90 5174.15 5977.17 4982.00 8158.77 7281.80 7878.57 16858.58 13374.32 5884.51 14855.94 4287.22 5567.11 9484.48 7185.52 114
MVSMamba_pp74.64 5774.07 6076.35 6179.76 12353.09 16279.97 10185.21 2955.21 20172.81 8685.37 13553.93 6387.17 5867.93 8586.46 5788.80 8
alignmvs73.86 6673.99 6173.45 13578.20 16650.50 20578.57 12382.43 9359.40 11876.57 3286.71 9056.42 3981.23 19265.84 10681.79 9988.62 10
SR-MVS-dyc-post74.57 5973.90 6276.58 5683.49 6559.87 4984.29 3781.36 11258.07 14273.14 7690.07 3444.74 18085.84 9268.20 8081.76 10084.03 162
MG-MVS73.96 6573.89 6374.16 10885.65 4249.69 21981.59 8381.29 11961.45 7871.05 10688.11 6351.77 9587.73 4861.05 14883.09 8085.05 135
ETV-MVS74.46 6173.84 6476.33 6279.27 13455.24 12979.22 11485.00 3764.97 2172.65 9079.46 25053.65 7287.87 4567.45 9282.91 8585.89 99
HQP_MVS74.31 6273.73 6576.06 6581.41 9056.31 10284.22 4084.01 5264.52 2569.27 13286.10 11145.26 17787.21 5668.16 8280.58 10984.65 147
RE-MVS-def73.71 6683.49 6559.87 4984.29 3781.36 11258.07 14273.14 7690.07 3443.06 19568.20 8081.76 10084.03 162
MSLP-MVS++73.77 6773.47 6774.66 9283.02 7159.29 5882.30 7481.88 10059.34 12071.59 10286.83 8445.94 16483.65 13865.09 11185.22 6581.06 238
HPM-MVS_fast74.30 6373.46 6876.80 5284.45 6059.04 6683.65 5281.05 12660.15 10370.43 11089.84 4341.09 22085.59 9767.61 9082.90 8685.77 105
MVS_111021_HR74.02 6473.46 6875.69 7383.01 7260.63 4077.29 15678.40 17961.18 8270.58 10985.97 11654.18 5984.00 13267.52 9182.98 8482.45 210
MGCFI-Net72.45 8373.34 7069.81 21677.77 18143.21 28975.84 19081.18 12359.59 11675.45 3886.64 9157.74 2877.94 24963.92 12281.90 9888.30 18
nrg03072.96 7573.01 7172.84 14875.41 23550.24 20780.02 9982.89 8958.36 13874.44 5586.73 8858.90 2480.83 20265.84 10674.46 18487.44 47
UA-Net73.13 7272.93 7273.76 11883.58 6451.66 18978.75 11777.66 18967.75 472.61 9189.42 4749.82 11483.29 14453.61 20283.14 7986.32 85
HQP-MVS73.45 6972.80 7375.40 7980.66 10554.94 13182.31 7183.90 5762.10 6867.85 15585.54 13145.46 17186.93 6467.04 9580.35 11384.32 154
CLD-MVS73.33 7072.68 7475.29 8378.82 14753.33 15778.23 12884.79 4161.30 8170.41 11181.04 21852.41 8487.12 6064.61 11682.49 9285.41 122
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_fmvsmconf_n73.01 7472.59 7574.27 10671.28 30355.88 11478.21 13075.56 21954.31 22174.86 4887.80 7254.72 5280.23 21678.07 2178.48 14286.70 68
iter_conf05_1173.52 6872.59 7576.30 6380.93 10151.97 18478.62 12183.48 7052.20 24371.53 10385.93 11954.01 6088.55 2861.08 14785.56 6388.39 16
Effi-MVS+73.31 7172.54 7775.62 7677.87 17753.64 14879.62 11179.61 14761.63 7772.02 9882.61 18156.44 3885.97 8963.99 12179.07 13387.25 55
MVS_Test72.45 8372.46 7872.42 15974.88 24148.50 23576.28 17883.14 8559.40 11872.46 9384.68 14055.66 4381.12 19365.98 10579.66 12187.63 41
test_fmvsmconf0.1_n72.81 7672.33 7974.24 10769.89 32355.81 11578.22 12975.40 22254.17 22375.00 4488.03 6853.82 6680.23 21678.08 2078.34 14586.69 69
EPNet73.09 7372.16 8075.90 6875.95 22656.28 10483.05 5672.39 25966.53 1065.27 20887.00 8250.40 11085.47 10362.48 13586.32 5885.94 96
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
VDD-MVS72.50 8172.09 8173.75 12081.58 8649.69 21977.76 14377.63 19063.21 4773.21 7389.02 5342.14 20383.32 14361.72 14282.50 9188.25 20
CPTT-MVS72.78 7772.08 8274.87 8884.88 5761.41 2684.15 4377.86 18555.27 19867.51 16688.08 6541.93 20681.85 17869.04 7880.01 11781.35 231
PAPM_NR72.63 8071.80 8375.13 8481.72 8553.42 15579.91 10483.28 8159.14 12266.31 18985.90 12051.86 9386.06 8557.45 17080.62 10785.91 98
LPG-MVS_test72.74 7871.74 8475.76 7080.22 11357.51 8682.55 6783.40 7561.32 7966.67 18287.33 7839.15 23686.59 7267.70 8877.30 15883.19 194
EI-MVSNet-Vis-set72.42 8571.59 8574.91 8678.47 15654.02 14277.05 16279.33 15365.03 1871.68 10179.35 25452.75 7884.89 11566.46 9874.23 18885.83 101
LFMVS71.78 9671.59 8572.32 16083.40 6746.38 25679.75 10771.08 26864.18 3272.80 8788.64 5942.58 19983.72 13657.41 17184.49 7086.86 63
test_fmvsmconf0.01_n72.17 8971.50 8774.16 10867.96 34055.58 12378.06 13574.67 23754.19 22274.54 5488.23 6150.35 11280.24 21578.07 2177.46 15486.65 72
h-mvs3372.71 7971.49 8876.40 5981.99 8259.58 5276.92 16676.74 20560.40 9374.81 4985.95 11845.54 16985.76 9470.41 7170.61 24083.86 171
FIs70.82 11371.43 8968.98 22978.33 16338.14 33276.96 16483.59 6861.02 8367.33 16886.73 8855.07 4681.64 18154.61 19579.22 12987.14 57
API-MVS72.17 8971.41 9074.45 10181.95 8357.22 8984.03 4580.38 13859.89 11068.40 14482.33 19049.64 11687.83 4751.87 21684.16 7578.30 273
3Dnovator64.47 572.49 8271.39 9175.79 6977.70 18258.99 6880.66 9383.15 8462.24 6665.46 20486.59 9542.38 20285.52 9959.59 16184.72 6782.85 203
Vis-MVSNetpermissive72.18 8871.37 9274.61 9581.29 9355.41 12680.90 8978.28 18160.73 8869.23 13588.09 6444.36 18582.65 16357.68 16881.75 10285.77 105
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
VDDNet71.81 9571.33 9373.26 14282.80 7547.60 24778.74 11875.27 22459.59 11672.94 8289.40 4841.51 21483.91 13358.75 16582.99 8288.26 19
EPP-MVSNet72.16 9171.31 9474.71 8978.68 15149.70 21782.10 7581.65 10460.40 9365.94 19485.84 12251.74 9686.37 8155.93 17979.55 12488.07 28
PS-MVSNAJss72.24 8771.21 9575.31 8178.50 15455.93 11281.63 8082.12 9756.24 17870.02 11885.68 12747.05 15384.34 12565.27 11074.41 18785.67 109
ACMP63.53 672.30 8671.20 9675.59 7880.28 11157.54 8482.74 6382.84 9060.58 9065.24 21286.18 10839.25 23486.03 8766.95 9776.79 16583.22 192
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
bld_raw_dy_0_6472.13 9371.18 9774.96 8577.70 18251.88 18671.67 26184.69 4251.27 25665.06 21785.80 12654.50 5688.19 3664.51 11785.45 6484.82 142
test_fmvsm_n_192071.73 9871.14 9873.50 13272.52 27956.53 10175.60 19276.16 20948.11 29577.22 2885.56 12853.10 7677.43 25874.86 4077.14 16086.55 75
patch_mono-269.85 13271.09 9966.16 26379.11 14054.80 13571.97 25774.31 24253.50 23170.90 10784.17 15257.63 3163.31 34266.17 10082.02 9680.38 249
EI-MVSNet-UG-set71.92 9471.06 10074.52 10077.98 17553.56 15076.62 17179.16 15464.40 2771.18 10578.95 25952.19 8884.66 12165.47 10973.57 19985.32 125
UniMVSNet_NR-MVSNet71.11 10671.00 10171.44 17979.20 13644.13 27976.02 18682.60 9266.48 1168.20 14784.60 14556.82 3682.82 15954.62 19370.43 24287.36 53
IS-MVSNet71.57 10071.00 10173.27 14178.86 14545.63 26780.22 9778.69 16564.14 3566.46 18587.36 7749.30 11985.60 9650.26 22983.71 7888.59 11
fmvsm_l_conf0.5_n70.99 10970.82 10371.48 17771.45 29654.40 13977.18 15970.46 27448.67 28675.17 4086.86 8353.77 6776.86 26976.33 3077.51 15383.17 197
PAPR71.72 9970.82 10374.41 10281.20 9751.17 19179.55 11283.33 7855.81 18666.93 17784.61 14450.95 10686.06 8555.79 18279.20 13086.00 94
DP-MVS Recon72.15 9270.73 10576.40 5986.57 2457.99 7981.15 8882.96 8657.03 15966.78 17885.56 12844.50 18388.11 3951.77 21880.23 11683.10 198
EIA-MVS71.78 9670.60 10675.30 8279.85 12253.54 15177.27 15783.26 8257.92 14866.49 18479.39 25252.07 9086.69 7060.05 15579.14 13285.66 110
OMC-MVS71.40 10470.60 10673.78 11676.60 21653.15 15979.74 10879.78 14358.37 13768.75 13986.45 10245.43 17380.60 20662.58 13377.73 15087.58 44
FC-MVSNet-test69.80 13470.58 10867.46 24577.61 19234.73 36376.05 18483.19 8360.84 8565.88 19886.46 10154.52 5580.76 20552.52 20978.12 14686.91 61
diffmvspermissive70.69 11570.43 10971.46 17869.45 32848.95 22972.93 24178.46 17457.27 15671.69 10083.97 15951.48 9977.92 25170.70 7077.95 14987.53 45
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu71.45 10370.39 11074.65 9382.01 8058.82 7179.93 10380.35 13955.09 20465.82 20082.16 19649.17 12282.64 16460.34 15378.62 14182.50 209
test_fmvsmvis_n_192070.84 11170.38 11172.22 16271.16 30455.39 12775.86 18872.21 26149.03 28273.28 7286.17 10951.83 9477.29 26175.80 3278.05 14783.98 165
MVSFormer71.50 10270.38 11174.88 8778.76 14857.15 9482.79 6178.48 17251.26 25769.49 12783.22 17143.99 18883.24 14566.06 10179.37 12584.23 157
fmvsm_l_conf0.5_n_a70.50 11970.27 11371.18 18971.30 30254.09 14176.89 16769.87 27747.90 29974.37 5786.49 10053.07 7776.69 27475.41 3577.11 16182.76 204
UniMVSNet (Re)70.63 11670.20 11471.89 16578.55 15345.29 27075.94 18782.92 8763.68 4068.16 14983.59 16653.89 6483.49 14253.97 19871.12 23586.89 62
VNet69.68 13870.19 11568.16 23979.73 12541.63 30570.53 27777.38 19560.37 9670.69 10886.63 9351.08 10477.09 26453.61 20281.69 10485.75 107
GeoE71.01 10870.15 11673.60 13079.57 12852.17 17878.93 11678.12 18258.02 14467.76 16383.87 16052.36 8582.72 16156.90 17375.79 17585.92 97
MAR-MVS71.51 10170.15 11675.60 7781.84 8459.39 5581.38 8582.90 8854.90 21168.08 15278.70 26047.73 13885.51 10051.68 22084.17 7481.88 221
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
TranMVSNet+NR-MVSNet70.36 12270.10 11871.17 19078.64 15242.97 29276.53 17381.16 12566.95 668.53 14385.42 13351.61 9883.07 14852.32 21069.70 26187.46 46
hse-mvs271.04 10769.86 11974.60 9679.58 12757.12 9673.96 22575.25 22560.40 9374.81 4981.95 20145.54 16982.90 15270.41 7166.83 29183.77 176
xiu_mvs_v2_base70.52 11769.75 12072.84 14881.21 9655.63 12075.11 20378.92 15954.92 21069.96 12179.68 24547.00 15782.09 17461.60 14479.37 12580.81 243
ACMM61.98 770.80 11469.73 12174.02 11080.59 11058.59 7482.68 6482.02 9955.46 19567.18 17184.39 15038.51 24183.17 14760.65 15176.10 17280.30 250
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PS-MVSNAJ70.51 11869.70 12272.93 14681.52 8755.79 11674.92 20979.00 15755.04 20969.88 12278.66 26147.05 15382.19 17261.61 14379.58 12280.83 242
114514_t70.83 11269.56 12374.64 9486.21 3154.63 13682.34 7081.81 10248.22 29363.01 24685.83 12340.92 22187.10 6157.91 16779.79 11882.18 215
mvsmamba71.15 10569.54 12475.99 6677.61 19253.46 15381.95 7775.11 23057.73 15266.95 17685.96 11737.14 25987.56 5167.94 8475.49 18086.97 59
DU-MVS70.01 12869.53 12571.44 17978.05 17344.13 27975.01 20681.51 10764.37 2868.20 14784.52 14649.12 12582.82 15954.62 19370.43 24287.37 51
PCF-MVS61.88 870.95 11069.49 12675.35 8077.63 18755.71 11776.04 18581.81 10250.30 26869.66 12585.40 13452.51 8184.89 11551.82 21780.24 11585.45 118
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VPA-MVSNet69.02 15469.47 12767.69 24377.42 19841.00 31074.04 22379.68 14560.06 10469.26 13484.81 13951.06 10577.58 25654.44 19674.43 18684.48 151
v2v48270.50 11969.45 12873.66 12572.62 27650.03 21377.58 14580.51 13659.90 10769.52 12682.14 19747.53 14484.88 11765.07 11270.17 24986.09 92
v114470.42 12169.31 12973.76 11873.22 26450.64 20077.83 14181.43 10958.58 13369.40 13081.16 21547.53 14485.29 10864.01 12070.64 23885.34 124
v870.33 12369.28 13073.49 13373.15 26650.22 20878.62 12180.78 13260.79 8666.45 18682.11 19949.35 11884.98 11263.58 12768.71 27685.28 127
test_yl69.69 13669.13 13171.36 18378.37 16145.74 26374.71 21380.20 14057.91 14970.01 11983.83 16142.44 20082.87 15554.97 18979.72 11985.48 116
DCV-MVSNet69.69 13669.13 13171.36 18378.37 16145.74 26374.71 21380.20 14057.91 14970.01 11983.83 16142.44 20082.87 15554.97 18979.72 11985.48 116
Fast-Effi-MVS+70.28 12469.12 13373.73 12178.50 15451.50 19075.01 20679.46 15156.16 18068.59 14079.55 24853.97 6184.05 12853.34 20477.53 15285.65 111
Anonymous2024052969.91 13169.02 13472.56 15380.19 11647.65 24577.56 14780.99 12855.45 19669.88 12286.76 8639.24 23582.18 17354.04 19777.10 16287.85 32
v1070.21 12569.02 13473.81 11573.51 26350.92 19578.74 11881.39 11060.05 10566.39 18781.83 20447.58 14285.41 10662.80 13268.86 27585.09 134
NR-MVSNet69.54 14368.85 13671.59 17678.05 17343.81 28374.20 22180.86 13165.18 1462.76 24884.52 14652.35 8683.59 14050.96 22570.78 23787.37 51
fmvsm_s_conf0.5_n69.58 14168.84 13771.79 16972.31 28652.90 16477.90 13762.43 33549.97 27272.85 8585.90 12052.21 8776.49 27775.75 3370.26 24885.97 95
QAPM70.05 12768.81 13873.78 11676.54 21853.43 15483.23 5483.48 7052.89 23665.90 19686.29 10541.55 21386.49 7851.01 22378.40 14481.42 225
MVS_111021_LR69.50 14568.78 13971.65 17478.38 15959.33 5674.82 21170.11 27658.08 14167.83 15984.68 14041.96 20576.34 28165.62 10877.54 15179.30 266
fmvsm_s_conf0.5_n_a69.54 14368.74 14071.93 16472.47 28153.82 14578.25 12762.26 33749.78 27473.12 7886.21 10752.66 7976.79 27175.02 3968.88 27385.18 130
v119269.97 13068.68 14173.85 11373.19 26550.94 19377.68 14481.36 11257.51 15468.95 13880.85 22545.28 17685.33 10762.97 13170.37 24485.27 128
AdaColmapbinary69.99 12968.66 14273.97 11284.94 5457.83 8082.63 6578.71 16456.28 17764.34 22784.14 15341.57 21187.06 6346.45 26178.88 13477.02 292
fmvsm_s_conf0.1_n69.41 14868.60 14371.83 16771.07 30552.88 16577.85 14062.44 33449.58 27672.97 8186.22 10651.68 9776.48 27875.53 3470.10 25186.14 90
v14419269.71 13568.51 14473.33 14073.10 26750.13 21077.54 14880.64 13356.65 16468.57 14280.55 22846.87 15884.96 11462.98 13069.66 26284.89 140
FA-MVS(test-final)69.82 13368.48 14573.84 11478.44 15750.04 21275.58 19578.99 15858.16 14067.59 16482.14 19742.66 19785.63 9556.60 17476.19 17185.84 100
IterMVS-LS69.22 15368.48 14571.43 18174.44 25449.40 22376.23 17977.55 19159.60 11365.85 19981.59 21051.28 10181.58 18459.87 15969.90 25683.30 189
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous2023121169.28 15068.47 14771.73 17180.28 11147.18 25179.98 10082.37 9454.61 21467.24 16984.01 15739.43 23182.41 17055.45 18772.83 21385.62 112
WR-MVS68.47 16768.47 14768.44 23680.20 11539.84 31673.75 23376.07 21264.68 2268.11 15183.63 16550.39 11179.14 23449.78 23069.66 26286.34 81
fmvsm_s_conf0.1_n_a69.32 14968.44 14971.96 16370.91 30753.78 14678.12 13362.30 33649.35 27873.20 7486.55 9951.99 9176.79 27174.83 4168.68 27885.32 125
EI-MVSNet69.27 15168.44 14971.73 17174.47 25249.39 22475.20 20178.45 17559.60 11369.16 13676.51 29851.29 10082.50 16759.86 16071.45 23283.30 189
jason69.65 13968.39 15173.43 13778.27 16556.88 9877.12 16073.71 25046.53 31469.34 13183.22 17143.37 19279.18 22964.77 11379.20 13084.23 157
jason: jason.
lupinMVS69.57 14268.28 15273.44 13678.76 14857.15 9476.57 17273.29 25346.19 31769.49 12782.18 19343.99 18879.23 22864.66 11479.37 12583.93 166
v192192069.47 14668.17 15373.36 13973.06 26850.10 21177.39 15180.56 13456.58 17168.59 14080.37 23044.72 18184.98 11262.47 13669.82 25785.00 136
VPNet67.52 18668.11 15465.74 27279.18 13736.80 34772.17 25472.83 25662.04 7267.79 16185.83 12348.88 12776.60 27651.30 22172.97 21283.81 172
SDMVSNet68.03 17568.10 15567.84 24177.13 20448.72 23365.32 32079.10 15558.02 14465.08 21582.55 18347.83 13773.40 29363.92 12273.92 19281.41 226
v124069.24 15267.91 15673.25 14373.02 27049.82 21577.21 15880.54 13556.43 17368.34 14680.51 22943.33 19384.99 11062.03 14069.77 26084.95 139
test_djsdf69.45 14767.74 15774.58 9774.57 25154.92 13382.79 6178.48 17251.26 25765.41 20583.49 16938.37 24383.24 14566.06 10169.25 26885.56 113
PVSNet_BlendedMVS68.56 16667.72 15871.07 19377.03 20850.57 20174.50 21781.52 10553.66 23064.22 23379.72 24449.13 12382.87 15555.82 18073.92 19279.77 261
PVSNet_Blended68.59 16267.72 15871.19 18877.03 20850.57 20172.51 24981.52 10551.91 24564.22 23377.77 28049.13 12382.87 15555.82 18079.58 12280.14 253
CANet_DTU68.18 17367.71 16069.59 21974.83 24346.24 25878.66 12076.85 20259.60 11363.45 23982.09 20035.25 27477.41 25959.88 15878.76 13885.14 131
c3_l68.33 16967.56 16170.62 20070.87 30846.21 25974.47 21878.80 16256.22 17966.19 19078.53 26651.88 9281.40 18662.08 13769.04 27184.25 156
Baseline_NR-MVSNet67.05 19767.56 16165.50 27575.65 22937.70 33875.42 19674.65 23859.90 10768.14 15083.15 17449.12 12577.20 26252.23 21169.78 25881.60 223
OpenMVScopyleft61.03 968.85 15667.56 16172.70 15274.26 25853.99 14381.21 8781.34 11652.70 23762.75 24985.55 13038.86 23984.14 12748.41 24583.01 8179.97 255
Effi-MVS+-dtu69.64 14067.53 16475.95 6776.10 22462.29 1580.20 9876.06 21359.83 11165.26 21177.09 28741.56 21284.02 13160.60 15271.09 23681.53 224
ECVR-MVScopyleft67.72 18367.51 16568.35 23779.46 13036.29 35574.79 21266.93 30158.72 12867.19 17088.05 6636.10 26781.38 18752.07 21384.25 7287.39 49
mvs_anonymous68.03 17567.51 16569.59 21972.08 28844.57 27771.99 25675.23 22651.67 24667.06 17382.57 18254.68 5377.94 24956.56 17575.71 17786.26 89
XVG-OURS-SEG-HR68.81 15767.47 16772.82 15074.40 25556.87 9970.59 27679.04 15654.77 21266.99 17486.01 11539.57 23078.21 24662.54 13473.33 20583.37 188
BH-RMVSNet68.81 15767.42 16872.97 14580.11 11952.53 17274.26 22076.29 20858.48 13568.38 14584.20 15142.59 19883.83 13446.53 26075.91 17382.56 205
UGNet68.81 15767.39 16973.06 14478.33 16354.47 13779.77 10675.40 22260.45 9263.22 24084.40 14932.71 30680.91 20151.71 21980.56 11183.81 172
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XVG-OURS68.76 16067.37 17072.90 14774.32 25757.22 8970.09 28378.81 16155.24 19967.79 16185.81 12536.54 26678.28 24562.04 13975.74 17683.19 194
v7n69.01 15567.36 17173.98 11172.51 28052.65 16878.54 12581.30 11860.26 10262.67 25081.62 20743.61 19084.49 12257.01 17268.70 27784.79 144
V4268.65 16167.35 17272.56 15368.93 33450.18 20972.90 24279.47 15056.92 16169.45 12980.26 23446.29 16282.99 14964.07 11867.82 28384.53 149
BH-untuned68.27 17067.29 17371.21 18779.74 12453.22 15876.06 18377.46 19457.19 15766.10 19181.61 20845.37 17583.50 14145.42 27676.68 16776.91 296
xiu_mvs_v1_base_debu68.58 16367.28 17472.48 15578.19 16757.19 9175.28 19875.09 23151.61 24770.04 11581.41 21232.79 30279.02 23663.81 12477.31 15581.22 233
xiu_mvs_v1_base68.58 16367.28 17472.48 15578.19 16757.19 9175.28 19875.09 23151.61 24770.04 11581.41 21232.79 30279.02 23663.81 12477.31 15581.22 233
xiu_mvs_v1_base_debi68.58 16367.28 17472.48 15578.19 16757.19 9175.28 19875.09 23151.61 24770.04 11581.41 21232.79 30279.02 23663.81 12477.31 15581.22 233
X-MVStestdata70.21 12567.28 17479.00 2386.32 2962.62 1185.83 2283.92 5564.55 2372.17 966.49 40847.95 13588.01 4171.55 6686.74 5386.37 79
tt080567.77 18267.24 17869.34 22474.87 24240.08 31377.36 15281.37 11155.31 19766.33 18884.65 14237.35 25482.55 16655.65 18572.28 22385.39 123
miper_ehance_all_eth68.03 17567.24 17870.40 20470.54 31146.21 25973.98 22478.68 16655.07 20766.05 19277.80 27752.16 8981.31 18961.53 14669.32 26583.67 180
v14868.24 17267.19 18071.40 18270.43 31347.77 24475.76 19177.03 20058.91 12567.36 16780.10 23748.60 13081.89 17760.01 15666.52 29484.53 149
test111167.21 19067.14 18167.42 24679.24 13534.76 36273.89 23065.65 31058.71 13066.96 17587.95 6936.09 26880.53 20752.03 21483.79 7786.97 59
UniMVSNet_ETH3D67.60 18567.07 18269.18 22877.39 19942.29 29674.18 22275.59 21860.37 9666.77 17986.06 11337.64 25078.93 24152.16 21273.49 20186.32 85
WR-MVS_H67.02 19866.92 18367.33 24977.95 17637.75 33677.57 14682.11 9862.03 7362.65 25182.48 18750.57 10979.46 22442.91 29664.01 31284.79 144
PAPM67.92 17966.69 18471.63 17578.09 17149.02 22777.09 16181.24 12251.04 26060.91 27283.98 15847.71 13984.99 11040.81 30879.32 12880.90 241
GBi-Net67.21 19066.55 18569.19 22577.63 18743.33 28677.31 15377.83 18656.62 16765.04 21882.70 17741.85 20780.33 21247.18 25572.76 21483.92 167
test167.21 19066.55 18569.19 22577.63 18743.33 28677.31 15377.83 18656.62 16765.04 21882.70 17741.85 20780.33 21247.18 25572.76 21483.92 167
cl2267.47 18766.45 18770.54 20269.85 32446.49 25573.85 23177.35 19655.07 20765.51 20377.92 27347.64 14181.10 19461.58 14569.32 26584.01 164
jajsoiax68.25 17166.45 18773.66 12575.62 23055.49 12580.82 9078.51 17152.33 24164.33 22884.11 15428.28 34081.81 18063.48 12870.62 23983.67 180
PEN-MVS66.60 20766.45 18767.04 25077.11 20636.56 34977.03 16380.42 13762.95 5062.51 25684.03 15646.69 15979.07 23544.22 28063.08 32285.51 115
ab-mvs66.65 20666.42 19067.37 24776.17 22341.73 30270.41 28076.14 21153.99 22565.98 19383.51 16849.48 11776.24 28248.60 24373.46 20384.14 160
AUN-MVS68.45 16866.41 19174.57 9879.53 12957.08 9773.93 22875.23 22654.44 21966.69 18181.85 20337.10 26182.89 15362.07 13866.84 29083.75 177
CP-MVSNet66.49 21066.41 19166.72 25277.67 18536.33 35276.83 17079.52 14962.45 6362.54 25483.47 17046.32 16178.37 24345.47 27563.43 31985.45 118
mvs_tets68.18 17366.36 19373.63 12875.61 23155.35 12880.77 9178.56 16952.48 24064.27 23084.10 15527.45 34681.84 17963.45 12970.56 24183.69 179
MVS67.37 18866.33 19470.51 20375.46 23450.94 19373.95 22681.85 10141.57 35462.54 25478.57 26547.98 13485.47 10352.97 20782.05 9575.14 309
PS-CasMVS66.42 21166.32 19566.70 25477.60 19436.30 35476.94 16579.61 14762.36 6562.43 25883.66 16445.69 16578.37 24345.35 27763.26 32085.42 121
FMVSNet266.93 20066.31 19668.79 23277.63 18742.98 29176.11 18177.47 19256.62 16765.22 21482.17 19541.85 20780.18 21847.05 25872.72 21783.20 193
eth_miper_zixun_eth67.63 18466.28 19771.67 17371.60 29448.33 23773.68 23477.88 18455.80 18765.91 19578.62 26447.35 15082.88 15459.45 16266.25 29583.81 172
cl____67.18 19366.26 19869.94 21170.20 31645.74 26373.30 23676.83 20355.10 20265.27 20879.57 24747.39 14880.53 20759.41 16469.22 26983.53 186
DIV-MVS_self_test67.18 19366.26 19869.94 21170.20 31645.74 26373.29 23776.83 20355.10 20265.27 20879.58 24647.38 14980.53 20759.43 16369.22 26983.54 185
miper_enhance_ethall67.11 19666.09 20070.17 20869.21 33145.98 26172.85 24378.41 17851.38 25365.65 20175.98 30651.17 10381.25 19060.82 15069.32 26583.29 191
Anonymous20240521166.84 20265.99 20169.40 22380.19 11642.21 29871.11 27171.31 26758.80 12767.90 15386.39 10329.83 32879.65 22149.60 23678.78 13786.33 83
FMVSNet166.70 20565.87 20269.19 22577.49 19643.33 28677.31 15377.83 18656.45 17264.60 22682.70 17738.08 24880.33 21246.08 26472.31 22283.92 167
BH-w/o66.85 20165.83 20369.90 21479.29 13252.46 17474.66 21576.65 20654.51 21864.85 22278.12 26745.59 16882.95 15143.26 29275.54 17974.27 322
thisisatest053067.92 17965.78 20474.33 10476.29 22151.03 19276.89 16774.25 24453.67 22965.59 20281.76 20535.15 27585.50 10155.94 17872.47 21886.47 76
ET-MVSNet_ETH3D67.96 17865.72 20574.68 9176.67 21455.62 12275.11 20374.74 23552.91 23560.03 27880.12 23633.68 29282.64 16461.86 14176.34 16985.78 102
tttt051767.83 18165.66 20674.33 10476.69 21350.82 19777.86 13973.99 24754.54 21764.64 22582.53 18635.06 27685.50 10155.71 18369.91 25586.67 70
FMVSNet366.32 21265.61 20768.46 23576.48 21942.34 29574.98 20877.15 19955.83 18565.04 21881.16 21539.91 22580.14 21947.18 25572.76 21482.90 202
MVSTER67.16 19565.58 20871.88 16670.37 31549.70 21770.25 28278.45 17551.52 25069.16 13680.37 23038.45 24282.50 16760.19 15471.46 23183.44 187
CDS-MVSNet66.80 20365.37 20971.10 19278.98 14253.13 16173.27 23871.07 26952.15 24464.72 22380.23 23543.56 19177.10 26345.48 27478.88 13483.05 199
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
DTE-MVSNet65.58 21965.34 21066.31 25976.06 22534.79 36076.43 17579.38 15262.55 6161.66 26683.83 16145.60 16779.15 23341.64 30760.88 33785.00 136
Fast-Effi-MVS+-dtu67.37 18865.33 21173.48 13472.94 27157.78 8277.47 15076.88 20157.60 15361.97 26176.85 29139.31 23280.49 21054.72 19270.28 24782.17 217
TAMVS66.78 20465.27 21271.33 18679.16 13953.67 14773.84 23269.59 28152.32 24265.28 20781.72 20644.49 18477.40 26042.32 30078.66 14082.92 200
TAPA-MVS59.36 1066.60 20765.20 21370.81 19676.63 21548.75 23176.52 17480.04 14250.64 26565.24 21284.93 13739.15 23678.54 24236.77 33076.88 16485.14 131
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TR-MVS66.59 20965.07 21471.17 19079.18 13749.63 22173.48 23575.20 22852.95 23467.90 15380.33 23339.81 22883.68 13743.20 29373.56 20080.20 251
pm-mvs165.24 22564.97 21566.04 26772.38 28339.40 32272.62 24675.63 21755.53 19362.35 26083.18 17347.45 14676.47 27949.06 24066.54 29382.24 214
anonymousdsp67.00 19964.82 21673.57 13170.09 31956.13 10776.35 17677.35 19648.43 29164.99 22180.84 22633.01 29980.34 21164.66 11467.64 28584.23 157
test250665.33 22464.61 21767.50 24479.46 13034.19 36774.43 21951.92 37458.72 12866.75 18088.05 6625.99 35780.92 20051.94 21584.25 7287.39 49
sd_testset64.46 23464.45 21864.51 28577.13 20442.25 29762.67 33472.11 26258.02 14465.08 21582.55 18341.22 21969.88 31447.32 25373.92 19281.41 226
TransMVSNet (Re)64.72 22964.33 21965.87 27175.22 23738.56 32874.66 21575.08 23458.90 12661.79 26482.63 18051.18 10278.07 24843.63 28955.87 35880.99 240
ACMH+57.40 1166.12 21364.06 22072.30 16177.79 18052.83 16680.39 9478.03 18357.30 15557.47 30682.55 18327.68 34484.17 12645.54 27169.78 25879.90 256
CNLPA65.43 22164.02 22169.68 21778.73 15058.07 7877.82 14270.71 27251.49 25161.57 26883.58 16738.23 24670.82 30643.90 28670.10 25180.16 252
HY-MVS56.14 1364.55 23363.89 22266.55 25574.73 24641.02 30769.96 28474.43 23949.29 27961.66 26680.92 22247.43 14776.68 27544.91 27971.69 22881.94 219
Vis-MVSNet (Re-imp)63.69 24163.88 22363.14 29474.75 24531.04 38171.16 26963.64 32556.32 17559.80 28384.99 13644.51 18275.46 28539.12 31780.62 10782.92 200
baseline163.81 24063.87 22463.62 28976.29 22136.36 35071.78 26067.29 29856.05 18264.23 23282.95 17547.11 15274.41 29047.30 25461.85 33180.10 254
testing9164.46 23463.80 22566.47 25678.43 15840.06 31467.63 30069.59 28159.06 12363.18 24278.05 26934.05 28676.99 26648.30 24675.87 17482.37 212
MVP-Stereo65.41 22263.80 22570.22 20577.62 19155.53 12476.30 17778.53 17050.59 26656.47 31678.65 26239.84 22782.68 16244.10 28472.12 22572.44 337
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
GA-MVS65.53 22063.70 22771.02 19470.87 30848.10 23970.48 27874.40 24056.69 16364.70 22476.77 29233.66 29381.10 19455.42 18870.32 24683.87 170
DP-MVS65.68 21763.66 22871.75 17084.93 5556.87 9980.74 9273.16 25453.06 23359.09 29282.35 18936.79 26585.94 9032.82 35369.96 25472.45 336
ACMH55.70 1565.20 22663.57 22970.07 20978.07 17252.01 18379.48 11379.69 14455.75 18856.59 31380.98 22027.12 34980.94 19842.90 29771.58 23077.25 290
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thisisatest051565.83 21663.50 23072.82 15073.75 26149.50 22271.32 26573.12 25549.39 27763.82 23576.50 30034.95 27884.84 11853.20 20675.49 18084.13 161
cascas65.98 21463.42 23173.64 12777.26 20252.58 17172.26 25377.21 19848.56 28761.21 27074.60 31932.57 31185.82 9350.38 22876.75 16682.52 208
1112_ss64.00 23963.36 23265.93 26979.28 13342.58 29471.35 26472.36 26046.41 31560.55 27477.89 27546.27 16373.28 29446.18 26369.97 25381.92 220
FE-MVS65.91 21563.33 23373.63 12877.36 20051.95 18572.62 24675.81 21453.70 22865.31 20678.96 25828.81 33786.39 8043.93 28573.48 20282.55 206
testing9964.05 23763.29 23466.34 25878.17 17039.76 31867.33 30568.00 29458.60 13263.03 24578.10 26832.57 31176.94 26848.22 24775.58 17882.34 213
131464.61 23263.21 23568.80 23171.87 29247.46 24873.95 22678.39 18042.88 34759.97 27976.60 29738.11 24779.39 22654.84 19172.32 22179.55 262
PLCcopyleft56.13 1465.09 22763.21 23570.72 19981.04 9954.87 13478.57 12377.47 19248.51 28955.71 31981.89 20233.71 29179.71 22041.66 30570.37 24477.58 284
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HyFIR lowres test65.67 21863.01 23773.67 12479.97 12155.65 11969.07 29275.52 22042.68 34863.53 23877.95 27140.43 22381.64 18146.01 26571.91 22683.73 178
EG-PatchMatch MVS64.71 23062.87 23870.22 20577.68 18453.48 15277.99 13678.82 16053.37 23256.03 31877.41 28524.75 36484.04 12946.37 26273.42 20473.14 328
CHOSEN 1792x268865.08 22862.84 23971.82 16881.49 8956.26 10566.32 30974.20 24540.53 36063.16 24378.65 26241.30 21577.80 25345.80 26774.09 18981.40 228
pmmvs663.69 24162.82 24066.27 26170.63 31039.27 32373.13 23975.47 22152.69 23859.75 28582.30 19139.71 22977.03 26547.40 25264.35 31182.53 207
IB-MVS56.42 1265.40 22362.73 24173.40 13874.89 24052.78 16773.09 24075.13 22955.69 18958.48 30073.73 32432.86 30186.32 8350.63 22670.11 25081.10 237
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CostFormer64.04 23862.51 24268.61 23471.88 29145.77 26271.30 26670.60 27347.55 30364.31 22976.61 29641.63 21079.62 22349.74 23269.00 27280.42 247
LS3D64.71 23062.50 24371.34 18579.72 12655.71 11779.82 10574.72 23648.50 29056.62 31284.62 14333.59 29482.34 17129.65 37475.23 18275.97 300
thres100view90063.28 24662.41 24465.89 27077.31 20138.66 32772.65 24469.11 28857.07 15862.45 25781.03 21937.01 26379.17 23031.84 35973.25 20779.83 258
thres600view763.30 24562.27 24566.41 25777.18 20338.87 32572.35 25169.11 28856.98 16062.37 25980.96 22137.01 26379.00 23931.43 36673.05 21181.36 229
XVG-ACMP-BASELINE64.36 23662.23 24670.74 19872.35 28452.45 17570.80 27578.45 17553.84 22759.87 28181.10 21716.24 38279.32 22755.64 18671.76 22780.47 246
tfpn200view963.18 24862.18 24766.21 26276.85 21139.62 31971.96 25869.44 28456.63 16562.61 25279.83 24037.18 25679.17 23031.84 35973.25 20779.83 258
thres40063.31 24462.18 24766.72 25276.85 21139.62 31971.96 25869.44 28456.63 16562.61 25279.83 24037.18 25679.17 23031.84 35973.25 20781.36 229
EPNet_dtu61.90 26261.97 24961.68 30272.89 27239.78 31775.85 18965.62 31155.09 20454.56 33479.36 25337.59 25167.02 32839.80 31476.95 16378.25 274
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testing1162.81 25161.90 25065.54 27478.38 15940.76 31167.59 30266.78 30355.48 19460.13 27677.11 28631.67 31776.79 27145.53 27274.45 18579.06 267
Test_1112_low_res62.32 25661.77 25164.00 28879.08 14139.53 32168.17 29670.17 27543.25 34359.03 29379.90 23944.08 18671.24 30543.79 28868.42 27981.25 232
XXY-MVS60.68 27161.67 25257.70 32970.43 31338.45 33064.19 32866.47 30448.05 29763.22 24080.86 22449.28 12060.47 35145.25 27867.28 28874.19 323
tfpnnormal62.47 25461.63 25364.99 28274.81 24439.01 32471.22 26773.72 24955.22 20060.21 27580.09 23841.26 21876.98 26730.02 37268.09 28178.97 270
IterMVS-SCA-FT62.49 25361.52 25465.40 27771.99 29050.80 19871.15 27069.63 28045.71 32360.61 27377.93 27237.45 25265.99 33455.67 18463.50 31879.42 264
MS-PatchMatch62.42 25561.46 25565.31 27975.21 23852.10 17972.05 25574.05 24646.41 31557.42 30874.36 32034.35 28477.57 25745.62 27073.67 19666.26 372
LCM-MVSNet-Re61.88 26361.35 25663.46 29074.58 25031.48 38061.42 34158.14 35258.71 13053.02 34879.55 24843.07 19476.80 27045.69 26877.96 14882.11 218
testing22262.29 25861.31 25765.25 28077.87 17738.53 32968.34 29566.31 30756.37 17463.15 24477.58 28328.47 33876.18 28437.04 32876.65 16881.05 239
IterMVS62.79 25261.27 25867.35 24869.37 32952.04 18271.17 26868.24 29352.63 23959.82 28276.91 29037.32 25572.36 29752.80 20863.19 32177.66 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
baseline263.42 24361.26 25969.89 21572.55 27847.62 24671.54 26268.38 29250.11 26954.82 33075.55 31143.06 19580.96 19748.13 24867.16 28981.11 236
LTVRE_ROB55.42 1663.15 24961.23 26068.92 23076.57 21747.80 24259.92 35076.39 20754.35 22058.67 29682.46 18829.44 33281.49 18542.12 30171.14 23477.46 285
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
thres20062.20 25961.16 26165.34 27875.38 23639.99 31569.60 28769.29 28655.64 19261.87 26376.99 28837.07 26278.96 24031.28 36773.28 20677.06 291
test_040263.25 24761.01 26269.96 21080.00 12054.37 14076.86 16972.02 26354.58 21658.71 29580.79 22735.00 27784.36 12426.41 38564.71 30671.15 354
CL-MVSNet_self_test61.53 26660.94 26363.30 29268.95 33336.93 34667.60 30172.80 25755.67 19059.95 28076.63 29445.01 17972.22 30039.74 31562.09 33080.74 244
miper_lstm_enhance62.03 26160.88 26465.49 27666.71 34846.25 25756.29 36775.70 21650.68 26361.27 26975.48 31240.21 22468.03 32356.31 17765.25 30282.18 215
F-COLMAP63.05 25060.87 26569.58 22176.99 21053.63 14978.12 13376.16 20947.97 29852.41 34981.61 20827.87 34278.11 24740.07 31166.66 29277.00 293
WTY-MVS59.75 27860.39 26657.85 32772.32 28537.83 33561.05 34664.18 32145.95 32261.91 26279.11 25747.01 15660.88 35042.50 29969.49 26474.83 315
D2MVS62.30 25760.29 26768.34 23866.46 35148.42 23665.70 31273.42 25147.71 30158.16 30275.02 31530.51 32177.71 25553.96 19971.68 22978.90 271
tpm262.07 26060.10 26867.99 24072.79 27343.86 28271.05 27366.85 30243.14 34562.77 24775.39 31338.32 24480.80 20341.69 30468.88 27379.32 265
UWE-MVS60.18 27459.78 26961.39 30777.67 18533.92 37069.04 29363.82 32348.56 28764.27 23077.64 28227.20 34870.40 31133.56 35076.24 17079.83 258
WB-MVSnew59.66 27959.69 27059.56 31175.19 23935.78 35769.34 29064.28 32046.88 31261.76 26575.79 30740.61 22265.20 33732.16 35571.21 23377.70 282
pmmvs461.48 26859.39 27167.76 24271.57 29553.86 14471.42 26365.34 31244.20 33459.46 28777.92 27335.90 26974.71 28843.87 28764.87 30574.71 318
MSDG61.81 26459.23 27269.55 22272.64 27552.63 17070.45 27975.81 21451.38 25353.70 34176.11 30229.52 33081.08 19637.70 32365.79 29974.93 314
CVMVSNet59.63 28059.14 27361.08 30974.47 25238.84 32675.20 20168.74 29031.15 37958.24 30176.51 29832.39 31368.58 31949.77 23165.84 29875.81 302
test_vis1_n_192058.86 28359.06 27458.25 32263.76 36343.14 29067.49 30366.36 30640.22 36265.89 19771.95 33631.04 31859.75 35659.94 15764.90 30471.85 345
ETVMVS59.51 28158.81 27561.58 30477.46 19734.87 35964.94 32559.35 34754.06 22461.08 27176.67 29329.54 32971.87 30232.16 35574.07 19078.01 281
COLMAP_ROBcopyleft52.97 1761.27 27058.81 27568.64 23374.63 24952.51 17378.42 12673.30 25249.92 27350.96 35481.51 21123.06 36779.40 22531.63 36365.85 29774.01 325
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SixPastTwentyTwo61.65 26558.80 27770.20 20775.80 22747.22 25075.59 19369.68 27954.61 21454.11 33879.26 25527.07 35082.96 15043.27 29149.79 37680.41 248
tpmrst58.24 28758.70 27856.84 33166.97 34534.32 36569.57 28861.14 34347.17 31058.58 29971.60 33841.28 21760.41 35249.20 23862.84 32375.78 303
OurMVSNet-221017-061.37 26958.63 27969.61 21872.05 28948.06 24073.93 22872.51 25847.23 30954.74 33180.92 22221.49 37481.24 19148.57 24456.22 35779.53 263
RPMNet61.53 26658.42 28070.86 19569.96 32152.07 18065.31 32181.36 11243.20 34459.36 28870.15 35035.37 27385.47 10336.42 33764.65 30775.06 310
SCA60.49 27258.38 28166.80 25174.14 26048.06 24063.35 33163.23 32849.13 28159.33 29172.10 33337.45 25274.27 29144.17 28162.57 32578.05 277
PatchmatchNetpermissive59.84 27758.24 28264.65 28473.05 26946.70 25469.42 28962.18 33847.55 30358.88 29471.96 33534.49 28269.16 31642.99 29563.60 31678.07 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm57.34 29458.16 28354.86 34171.80 29334.77 36167.47 30456.04 36548.20 29460.10 27776.92 28937.17 25853.41 38240.76 30965.01 30376.40 299
OpenMVS_ROBcopyleft52.78 1860.03 27558.14 28465.69 27370.47 31244.82 27275.33 19770.86 27145.04 32656.06 31776.00 30326.89 35279.65 22135.36 34267.29 28772.60 333
test-LLR58.15 28958.13 28558.22 32368.57 33544.80 27365.46 31757.92 35350.08 27055.44 32269.82 35232.62 30857.44 36649.66 23473.62 19772.41 338
mamv456.85 29858.00 28653.43 35172.46 28254.47 13757.56 36254.74 36638.81 36857.42 30879.45 25147.57 14338.70 40160.88 14953.07 36667.11 371
CR-MVSNet59.91 27657.90 28765.96 26869.96 32152.07 18065.31 32163.15 32942.48 34959.36 28874.84 31635.83 27070.75 30745.50 27364.65 30775.06 310
PVSNet50.76 1958.40 28657.39 28861.42 30575.53 23344.04 28161.43 34063.45 32647.04 31156.91 31073.61 32527.00 35164.76 33839.12 31772.40 21975.47 307
K. test v360.47 27357.11 28970.56 20173.74 26248.22 23875.10 20562.55 33258.27 13953.62 34476.31 30127.81 34381.59 18347.42 25139.18 38981.88 221
MIMVSNet57.35 29357.07 29058.22 32374.21 25937.18 34162.46 33560.88 34448.88 28455.29 32575.99 30531.68 31662.04 34731.87 35872.35 22075.43 308
MDTV_nov1_ep1357.00 29172.73 27438.26 33165.02 32464.73 31744.74 32855.46 32172.48 32932.61 31070.47 30837.47 32467.75 284
tpmvs58.47 28556.95 29263.03 29670.20 31641.21 30667.90 29967.23 29949.62 27554.73 33270.84 34334.14 28576.24 28236.64 33461.29 33571.64 346
tpm cat159.25 28256.95 29266.15 26472.19 28746.96 25268.09 29765.76 30940.03 36457.81 30470.56 34538.32 24474.51 28938.26 32161.50 33477.00 293
dmvs_re56.77 29956.83 29456.61 33269.23 33041.02 30758.37 35564.18 32150.59 26657.45 30771.42 33935.54 27258.94 36037.23 32667.45 28669.87 363
test_cas_vis1_n_192056.91 29756.71 29557.51 33059.13 38445.40 26963.58 33061.29 34236.24 37267.14 17271.85 33729.89 32756.69 37057.65 16963.58 31770.46 358
sss56.17 30656.57 29654.96 34066.93 34636.32 35357.94 35861.69 34041.67 35258.64 29775.32 31438.72 24056.25 37342.04 30266.19 29672.31 341
Patchmtry57.16 29556.47 29759.23 31469.17 33234.58 36462.98 33263.15 32944.53 33056.83 31174.84 31635.83 27068.71 31840.03 31260.91 33674.39 321
gg-mvs-nofinetune57.86 29156.43 29862.18 30072.62 27635.35 35866.57 30656.33 36250.65 26457.64 30557.10 38630.65 32076.36 28037.38 32578.88 13474.82 316
pmmvs-eth3d58.81 28456.31 29966.30 26067.61 34252.42 17672.30 25264.76 31643.55 34054.94 32974.19 32228.95 33472.60 29643.31 29057.21 35273.88 326
Syy-MVS56.00 30756.23 30055.32 33874.69 24726.44 39565.52 31557.49 35650.97 26156.52 31472.18 33139.89 22668.09 32124.20 38864.59 30971.44 350
CMPMVSbinary42.80 2157.81 29255.97 30163.32 29160.98 37947.38 24964.66 32669.50 28332.06 37846.83 37077.80 27729.50 33171.36 30448.68 24273.75 19571.21 353
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testing356.54 30055.92 30258.41 32177.52 19527.93 38969.72 28656.36 36154.75 21358.63 29877.80 27720.88 37571.75 30325.31 38762.25 32875.53 306
test-mter56.42 30355.82 30358.22 32368.57 33544.80 27365.46 31757.92 35339.94 36555.44 32269.82 35221.92 37057.44 36649.66 23473.62 19772.41 338
pmmvs556.47 30255.68 30458.86 31861.41 37536.71 34866.37 30862.75 33140.38 36153.70 34176.62 29534.56 28067.05 32740.02 31365.27 30172.83 331
Patchmatch-RL test58.16 28855.49 30566.15 26467.92 34148.89 23060.66 34851.07 37847.86 30059.36 28862.71 38034.02 28872.27 29956.41 17659.40 34477.30 287
ppachtmachnet_test58.06 29055.38 30666.10 26669.51 32648.99 22868.01 29866.13 30844.50 33154.05 33970.74 34432.09 31572.34 29836.68 33356.71 35676.99 295
Anonymous2023120655.10 31555.30 30754.48 34369.81 32533.94 36962.91 33362.13 33941.08 35655.18 32675.65 30932.75 30556.59 37230.32 37167.86 28272.91 329
FMVSNet555.86 30854.93 30858.66 32071.05 30636.35 35164.18 32962.48 33346.76 31350.66 35974.73 31825.80 35864.04 34033.11 35165.57 30075.59 305
TESTMET0.1,155.28 31254.90 30956.42 33366.56 34943.67 28465.46 31756.27 36339.18 36753.83 34067.44 36424.21 36555.46 37748.04 24973.11 21070.13 361
AllTest57.08 29654.65 31064.39 28671.44 29749.03 22569.92 28567.30 29645.97 32047.16 36879.77 24217.47 37767.56 32533.65 34759.16 34576.57 297
myMVS_eth3d54.86 31654.61 31155.61 33774.69 24727.31 39265.52 31557.49 35650.97 26156.52 31472.18 33121.87 37368.09 32127.70 38064.59 30971.44 350
PatchMatch-RL56.25 30554.55 31261.32 30877.06 20756.07 10965.57 31454.10 37144.13 33653.49 34771.27 34225.20 36166.78 32936.52 33663.66 31561.12 376
our_test_356.49 30154.42 31362.68 29869.51 32645.48 26866.08 31061.49 34144.11 33750.73 35869.60 35533.05 29868.15 32038.38 32056.86 35374.40 320
Anonymous2024052155.30 31154.41 31457.96 32660.92 38141.73 30271.09 27271.06 27041.18 35548.65 36473.31 32616.93 37959.25 35842.54 29864.01 31272.90 330
EU-MVSNet55.61 31054.41 31459.19 31665.41 35733.42 37272.44 25071.91 26428.81 38151.27 35273.87 32324.76 36369.08 31743.04 29458.20 34875.06 310
MIMVSNet155.17 31454.31 31657.77 32870.03 32032.01 37865.68 31364.81 31549.19 28046.75 37176.00 30325.53 36064.04 34028.65 37762.13 32977.26 289
USDC56.35 30454.24 31762.69 29764.74 35940.31 31265.05 32373.83 24843.93 33847.58 36677.71 28115.36 38575.05 28738.19 32261.81 33272.70 332
RPSCF55.80 30954.22 31860.53 31065.13 35842.91 29364.30 32757.62 35536.84 37158.05 30382.28 19228.01 34156.24 37437.14 32758.61 34782.44 211
test20.0353.87 32054.02 31953.41 35261.47 37428.11 38861.30 34259.21 34851.34 25552.09 35077.43 28433.29 29758.55 36229.76 37360.27 34273.58 327
KD-MVS_self_test55.22 31353.89 32059.21 31557.80 38727.47 39157.75 36074.32 24147.38 30550.90 35570.00 35128.45 33970.30 31240.44 31057.92 34979.87 257
EPMVS53.96 31853.69 32154.79 34266.12 35431.96 37962.34 33749.05 38144.42 33355.54 32071.33 34130.22 32456.70 36941.65 30662.54 32675.71 304
test0.0.03 153.32 32553.59 32252.50 35662.81 36929.45 38459.51 35154.11 37050.08 27054.40 33674.31 32132.62 30855.92 37530.50 37063.95 31472.15 343
PatchT53.17 32653.44 32352.33 35768.29 33925.34 39958.21 35654.41 36944.46 33254.56 33469.05 35833.32 29660.94 34936.93 32961.76 33370.73 357
PMMVS53.96 31853.26 32456.04 33462.60 37050.92 19561.17 34456.09 36432.81 37753.51 34666.84 36934.04 28759.93 35544.14 28368.18 28057.27 384
UnsupCasMVSNet_eth53.16 32752.47 32555.23 33959.45 38333.39 37359.43 35269.13 28745.98 31950.35 36172.32 33029.30 33358.26 36442.02 30344.30 38274.05 324
testgi51.90 32952.37 32650.51 36260.39 38223.55 40258.42 35458.15 35149.03 28251.83 35179.21 25622.39 36855.59 37629.24 37662.64 32472.40 340
dmvs_testset50.16 33751.90 32744.94 37066.49 35011.78 41061.01 34751.50 37551.17 25950.30 36267.44 36439.28 23360.29 35322.38 39057.49 35162.76 375
TinyColmap54.14 31751.72 32861.40 30666.84 34741.97 29966.52 30768.51 29144.81 32742.69 38275.77 30811.66 39172.94 29531.96 35756.77 35569.27 367
dp51.89 33051.60 32952.77 35568.44 33832.45 37762.36 33654.57 36844.16 33549.31 36367.91 36028.87 33656.61 37133.89 34654.89 36069.24 368
KD-MVS_2432*160053.45 32251.50 33059.30 31262.82 36737.14 34255.33 36871.79 26547.34 30755.09 32770.52 34621.91 37170.45 30935.72 34042.97 38470.31 359
miper_refine_blended53.45 32251.50 33059.30 31262.82 36737.14 34255.33 36871.79 26547.34 30755.09 32770.52 34621.91 37170.45 30935.72 34042.97 38470.31 359
MDA-MVSNet-bldmvs53.87 32050.81 33263.05 29566.25 35248.58 23456.93 36563.82 32348.09 29641.22 38370.48 34830.34 32368.00 32434.24 34545.92 38172.57 334
TDRefinement53.44 32450.72 33361.60 30364.31 36246.96 25270.89 27465.27 31441.78 35044.61 37777.98 27011.52 39366.36 33228.57 37851.59 37071.49 349
test_fmvs151.32 33450.48 33453.81 34753.57 38937.51 33960.63 34951.16 37628.02 38563.62 23769.23 35716.41 38153.93 38151.01 22360.70 33969.99 362
test_fmvs1_n51.37 33250.35 33554.42 34552.85 39137.71 33761.16 34551.93 37328.15 38363.81 23669.73 35413.72 38653.95 38051.16 22260.65 34071.59 347
PM-MVS52.33 32850.19 33658.75 31962.10 37245.14 27165.75 31140.38 39743.60 33953.52 34572.65 3289.16 39965.87 33550.41 22754.18 36365.24 374
YYNet150.73 33548.96 33756.03 33561.10 37741.78 30151.94 37756.44 36040.94 35844.84 37567.80 36230.08 32555.08 37836.77 33050.71 37271.22 352
MDA-MVSNet_test_wron50.71 33648.95 33856.00 33661.17 37641.84 30051.90 37856.45 35940.96 35744.79 37667.84 36130.04 32655.07 37936.71 33250.69 37371.11 355
UnsupCasMVSNet_bld50.07 33848.87 33953.66 34860.97 38033.67 37157.62 36164.56 31839.47 36647.38 36764.02 37827.47 34559.32 35734.69 34443.68 38367.98 370
ADS-MVSNet251.33 33348.76 34059.07 31766.02 35544.60 27650.90 38059.76 34636.90 36950.74 35666.18 37226.38 35363.11 34327.17 38154.76 36169.50 365
test_vis1_n49.89 33948.69 34153.50 35053.97 38837.38 34061.53 33947.33 38728.54 38259.62 28667.10 36813.52 38752.27 38549.07 23957.52 35070.84 356
Patchmatch-test49.08 34048.28 34251.50 36064.40 36130.85 38245.68 39048.46 38435.60 37346.10 37472.10 33334.47 28346.37 39327.08 38360.65 34077.27 288
ADS-MVSNet48.48 34247.77 34350.63 36166.02 35529.92 38350.90 38050.87 38036.90 36950.74 35666.18 37226.38 35352.47 38427.17 38154.76 36169.50 365
new-patchmatchnet47.56 34447.73 34447.06 36558.81 3859.37 41348.78 38459.21 34843.28 34244.22 37868.66 35925.67 35957.20 36831.57 36549.35 37774.62 319
JIA-IIPM51.56 33147.68 34563.21 29364.61 36050.73 19947.71 38658.77 35042.90 34648.46 36551.72 39024.97 36270.24 31336.06 33953.89 36468.64 369
test_fmvs248.69 34147.49 34652.29 35848.63 39733.06 37557.76 35948.05 38525.71 38959.76 28469.60 35511.57 39252.23 38649.45 23756.86 35371.58 348
CHOSEN 280x42047.83 34346.36 34752.24 35967.37 34449.78 21638.91 39843.11 39535.00 37443.27 38163.30 37928.95 33449.19 38936.53 33560.80 33857.76 383
PVSNet_043.31 2047.46 34545.64 34852.92 35467.60 34344.65 27554.06 37254.64 36741.59 35346.15 37358.75 38330.99 31958.66 36132.18 35424.81 39855.46 386
MVS-HIRNet45.52 34644.48 34948.65 36468.49 33734.05 36859.41 35344.50 39227.03 38637.96 39250.47 39426.16 35664.10 33926.74 38459.52 34347.82 393
WB-MVS43.26 34943.41 35042.83 37463.32 36610.32 41258.17 35745.20 39045.42 32440.44 38667.26 36734.01 28958.98 35911.96 40324.88 39759.20 378
test_fmvs344.30 34842.55 35149.55 36342.83 40127.15 39453.03 37444.93 39122.03 39653.69 34364.94 3754.21 40649.63 38847.47 25049.82 37571.88 344
LF4IMVS42.95 35042.26 35245.04 36848.30 39832.50 37654.80 37048.49 38328.03 38440.51 38570.16 3499.24 39843.89 39631.63 36349.18 37858.72 380
SSC-MVS41.96 35341.99 35341.90 37562.46 3719.28 41457.41 36344.32 39343.38 34138.30 39166.45 37032.67 30758.42 36310.98 40421.91 40057.99 382
pmmvs344.92 34741.95 35453.86 34652.58 39343.55 28562.11 33846.90 38926.05 38840.63 38460.19 38211.08 39657.91 36531.83 36246.15 38060.11 377
FPMVS42.18 35241.11 35545.39 36758.03 38641.01 30949.50 38253.81 37230.07 38033.71 39464.03 37611.69 39052.08 38714.01 39855.11 35943.09 395
N_pmnet39.35 35840.28 35636.54 38163.76 3631.62 41849.37 3830.76 41734.62 37543.61 38066.38 37126.25 35542.57 39726.02 38651.77 36965.44 373
test_vis1_rt41.35 35539.45 35747.03 36646.65 40037.86 33447.76 38538.65 39823.10 39244.21 37951.22 39211.20 39544.08 39539.27 31653.02 36759.14 379
DSMNet-mixed39.30 35938.72 35841.03 37651.22 39419.66 40545.53 39131.35 40415.83 40339.80 38867.42 36622.19 36945.13 39422.43 38952.69 36858.31 381
EGC-MVSNET42.47 35138.48 35954.46 34474.33 25648.73 23270.33 28151.10 3770.03 4110.18 41267.78 36313.28 38866.49 33118.91 39450.36 37448.15 391
mvsany_test139.38 35738.16 36043.02 37349.05 39534.28 36644.16 39425.94 40822.74 39446.57 37262.21 38123.85 36641.16 40033.01 35235.91 39253.63 387
ANet_high41.38 35437.47 36153.11 35339.73 40724.45 40056.94 36469.69 27847.65 30226.04 39952.32 38912.44 38962.38 34621.80 39110.61 40872.49 335
LCM-MVSNet40.30 35635.88 36253.57 34942.24 40229.15 38545.21 39260.53 34522.23 39528.02 39750.98 3933.72 40861.78 34831.22 36838.76 39069.78 364
dongtai34.52 36334.94 36333.26 38461.06 37816.00 40952.79 37623.78 41040.71 35939.33 39048.65 39816.91 38048.34 39012.18 40219.05 40235.44 401
APD_test137.39 36034.94 36344.72 37148.88 39633.19 37452.95 37544.00 39419.49 39727.28 39858.59 3843.18 41052.84 38318.92 39341.17 38748.14 392
new_pmnet34.13 36434.29 36533.64 38352.63 39218.23 40744.43 39333.90 40322.81 39330.89 39653.18 38810.48 39735.72 40520.77 39239.51 38846.98 394
PMVScopyleft28.69 2236.22 36133.29 36645.02 36936.82 40935.98 35654.68 37148.74 38226.31 38721.02 40251.61 3912.88 41160.10 3549.99 40747.58 37938.99 400
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft34.77 36231.91 36743.33 37262.05 37337.87 33320.39 40367.03 30023.23 39118.41 40425.84 4044.24 40562.73 34414.71 39751.32 37129.38 402
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_f31.86 36731.05 36834.28 38232.33 41321.86 40332.34 40030.46 40516.02 40239.78 38955.45 3874.80 40432.36 40730.61 36937.66 39148.64 389
kuosan29.62 37030.82 36926.02 38952.99 39016.22 40851.09 37922.71 41133.91 37633.99 39340.85 39915.89 38333.11 4067.59 41018.37 40328.72 403
mvsany_test332.62 36530.57 37038.77 37936.16 41024.20 40138.10 39920.63 41219.14 39840.36 38757.43 3855.06 40336.63 40429.59 37528.66 39655.49 385
test_vis3_rt32.09 36630.20 37137.76 38035.36 41127.48 39040.60 39728.29 40716.69 40132.52 39540.53 4001.96 41237.40 40333.64 34942.21 38648.39 390
testf131.46 36828.89 37239.16 37741.99 40428.78 38646.45 38837.56 39914.28 40421.10 40048.96 3951.48 41447.11 39113.63 39934.56 39341.60 396
APD_test231.46 36828.89 37239.16 37741.99 40428.78 38646.45 38837.56 39914.28 40421.10 40048.96 3951.48 41447.11 39113.63 39934.56 39341.60 396
PMMVS227.40 37125.91 37431.87 38639.46 4086.57 41531.17 40128.52 40623.96 39020.45 40348.94 3974.20 40737.94 40216.51 39519.97 40151.09 388
cdsmvs_eth3d_5k17.50 37623.34 3750.00 3960.00 4190.00 4200.00 40778.63 1670.00 4140.00 41582.18 19349.25 1210.00 4130.00 4140.00 4110.00 411
E-PMN23.77 37222.73 37626.90 38742.02 40320.67 40442.66 39535.70 40117.43 39910.28 40925.05 4056.42 40142.39 39810.28 40614.71 40517.63 404
EMVS22.97 37321.84 37726.36 38840.20 40619.53 40641.95 39634.64 40217.09 4009.73 41022.83 4067.29 40042.22 3999.18 40813.66 40617.32 405
test_method19.68 37518.10 37824.41 39013.68 4153.11 41712.06 40642.37 3962.00 40911.97 40736.38 4015.77 40229.35 40915.06 39623.65 39940.76 398
MVEpermissive17.77 2321.41 37417.77 37932.34 38534.34 41225.44 39816.11 40424.11 40911.19 40613.22 40631.92 4021.58 41330.95 40810.47 40517.03 40440.62 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d13.32 37712.52 38015.71 39147.54 39926.27 39631.06 4021.98 4164.93 4085.18 4111.94 4110.45 41618.54 4106.81 41112.83 4072.33 408
tmp_tt9.43 37811.14 3814.30 3932.38 4164.40 41613.62 40516.08 4140.39 41015.89 40513.06 40715.80 3845.54 41212.63 40110.46 4092.95 407
ab-mvs-re6.49 3798.65 3820.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 41577.89 2750.00 4180.00 4130.00 4140.00 4110.00 411
test1234.73 3806.30 3830.02 3940.01 4170.01 41956.36 3660.00 4180.01 4120.04 4130.21 4130.01 4170.00 4130.03 4130.00 4110.04 409
testmvs4.52 3816.03 3840.01 3950.01 4170.00 42053.86 3730.00 4180.01 4120.04 4130.27 4120.00 4180.00 4130.04 4120.00 4110.03 410
pcd_1.5k_mvsjas3.92 3825.23 3850.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 41447.05 1530.00 4130.00 4140.00 4110.00 411
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
WAC-MVS27.31 39227.77 379
FOURS186.12 3660.82 3788.18 183.61 6760.87 8481.50 16
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 32
PC_three_145255.09 20484.46 489.84 4366.68 589.41 1874.24 4491.38 288.42 14
No_MVS79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 32
test_one_060187.58 959.30 5786.84 765.01 2083.80 1191.86 664.03 11
eth-test20.00 419
eth-test0.00 419
ZD-MVS86.64 2160.38 4382.70 9157.95 14778.10 2490.06 3656.12 4188.84 2674.05 4787.00 49
IU-MVS87.77 459.15 6085.53 2553.93 22684.64 379.07 1190.87 588.37 17
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4267.01 190.33 1273.16 5491.15 488.23 21
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1790.70 787.65 40
test_241102_ONE87.77 458.90 6986.78 1064.20 3185.97 191.34 1266.87 390.78 7
save fliter86.17 3361.30 2883.98 4779.66 14659.00 124
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 26
test_0728_SECOND79.19 1687.82 359.11 6387.85 587.15 390.84 378.66 1590.61 1187.62 42
test072687.75 759.07 6487.86 486.83 864.26 2984.19 791.92 564.82 8
GSMVS78.05 277
test_part287.58 960.47 4283.42 12
sam_mvs134.74 27978.05 277
sam_mvs33.43 295
ambc65.13 28163.72 36537.07 34447.66 38778.78 16354.37 33771.42 33911.24 39480.94 19845.64 26953.85 36577.38 286
MTGPAbinary80.97 129
test_post168.67 2943.64 40932.39 31369.49 31544.17 281
test_post3.55 41033.90 29066.52 330
patchmatchnet-post64.03 37634.50 28174.27 291
GG-mvs-BLEND62.34 29971.36 30137.04 34569.20 29157.33 35854.73 33265.48 37430.37 32277.82 25234.82 34374.93 18372.17 342
MTMP86.03 1917.08 413
gm-plane-assit71.40 30041.72 30448.85 28573.31 32682.48 16948.90 241
test9_res75.28 3788.31 3283.81 172
TEST985.58 4361.59 2481.62 8181.26 12055.65 19174.93 4588.81 5653.70 6984.68 119
test_885.40 4660.96 3481.54 8481.18 12355.86 18374.81 4988.80 5853.70 6984.45 123
agg_prior273.09 5587.93 4084.33 153
agg_prior85.04 5059.96 4781.04 12774.68 5284.04 129
TestCases64.39 28671.44 29749.03 22567.30 29645.97 32047.16 36879.77 24217.47 37767.56 32533.65 34759.16 34576.57 297
test_prior462.51 1482.08 76
test_prior281.75 7960.37 9675.01 4389.06 5256.22 4072.19 5988.96 24
test_prior76.69 5384.20 6157.27 8884.88 3886.43 7986.38 77
旧先验276.08 18245.32 32576.55 3365.56 33658.75 165
新几何276.12 180
新几何170.76 19785.66 4161.13 3066.43 30544.68 32970.29 11286.64 9141.29 21675.23 28649.72 23381.75 10275.93 301
旧先验183.04 7053.15 15967.52 29587.85 7144.08 18680.76 10678.03 280
无先验79.66 11074.30 24348.40 29280.78 20453.62 20179.03 269
原ACMM279.02 115
原ACMM174.69 9085.39 4759.40 5483.42 7451.47 25270.27 11386.61 9448.61 12986.51 7753.85 20087.96 3978.16 275
test22283.14 6858.68 7372.57 24863.45 32641.78 35067.56 16586.12 11037.13 26078.73 13974.98 313
testdata272.18 30146.95 259
segment_acmp54.23 58
testdata64.66 28381.52 8752.93 16365.29 31346.09 31873.88 6487.46 7638.08 24866.26 33353.31 20578.48 14274.78 317
testdata172.65 24460.50 91
test1277.76 4384.52 5858.41 7583.36 7772.93 8354.61 5488.05 4088.12 3586.81 65
plane_prior781.41 9055.96 111
plane_prior681.20 9756.24 10645.26 177
plane_prior584.01 5287.21 5668.16 8280.58 10984.65 147
plane_prior486.10 111
plane_prior356.09 10863.92 3669.27 132
plane_prior284.22 4064.52 25
plane_prior181.27 95
plane_prior56.31 10283.58 5363.19 4880.48 112
n20.00 418
nn0.00 418
door-mid47.19 388
lessismore_v069.91 21371.42 29947.80 24250.90 37950.39 36075.56 31027.43 34781.33 18845.91 26634.10 39580.59 245
LGP-MVS_train75.76 7080.22 11357.51 8683.40 7561.32 7966.67 18287.33 7839.15 23686.59 7267.70 8877.30 15883.19 194
test1183.47 72
door47.60 386
HQP5-MVS54.94 131
HQP-NCC80.66 10582.31 7162.10 6867.85 155
ACMP_Plane80.66 10582.31 7162.10 6867.85 155
BP-MVS67.04 95
HQP4-MVS67.85 15586.93 6484.32 154
HQP3-MVS83.90 5780.35 113
HQP2-MVS45.46 171
NP-MVS80.98 10056.05 11085.54 131
MDTV_nov1_ep13_2view25.89 39761.22 34340.10 36351.10 35332.97 30038.49 31978.61 272
ACMMP++_ref74.07 190
ACMMP++72.16 224
Test By Simon48.33 132
ITE_SJBPF62.09 30166.16 35344.55 27864.32 31947.36 30655.31 32480.34 23219.27 37662.68 34536.29 33862.39 32779.04 268
DeepMVS_CXcopyleft12.03 39217.97 41410.91 41110.60 4157.46 40711.07 40828.36 4033.28 40911.29 4118.01 4099.74 41013.89 406