| APDe-MVS |  | | 89.15 7 | 89.63 6 | 87.73 28 | 94.49 18 | 71.69 52 | 93.83 4 | 93.96 13 | 75.70 93 | 91.06 16 | 96.03 1 | 76.84 14 | 97.03 17 | 89.09 11 | 95.65 27 | 94.47 36 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| SMA-MVS |  | | 89.08 8 | 89.23 7 | 88.61 6 | 94.25 31 | 73.73 9 | 92.40 24 | 93.63 21 | 74.77 112 | 92.29 7 | 95.97 2 | 74.28 29 | 97.24 13 | 88.58 21 | 96.91 1 | 94.87 16 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| test0726 | | | | | | 95.27 5 | 71.25 57 | 93.60 6 | 94.11 6 | 77.33 49 | 92.81 3 | 95.79 3 | 80.98 9 | | | | |
|
| DVP-MVS |  | | 89.60 3 | 90.35 3 | 87.33 40 | 95.27 5 | 71.25 57 | 93.49 9 | 92.73 61 | 77.33 49 | 92.12 9 | 95.78 4 | 80.98 9 | 97.40 9 | 89.08 12 | 96.41 12 | 93.33 89 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_THIRD | | | | | | | | | | 78.38 33 | 92.12 9 | 95.78 4 | 81.46 7 | 97.40 9 | 89.42 9 | 96.57 7 | 94.67 26 |
|
| DVP-MVS++ | | | 90.23 1 | 91.01 1 | 87.89 24 | 94.34 27 | 71.25 57 | 95.06 1 | 94.23 3 | 78.38 33 | 92.78 4 | 95.74 6 | 82.45 3 | 97.49 4 | 89.42 9 | 96.68 2 | 94.95 10 |
|
| test_one_0601 | | | | | | 95.07 7 | 71.46 55 | | 94.14 5 | 78.27 35 | 92.05 11 | 95.74 6 | 80.83 11 | | | | |
|
| SED-MVS | | | 90.08 2 | 90.85 2 | 87.77 26 | 95.30 2 | 70.98 63 | 93.57 7 | 94.06 10 | 77.24 52 | 93.10 1 | 95.72 8 | 82.99 1 | 97.44 7 | 89.07 14 | 96.63 4 | 94.88 14 |
|
| test_241102_TWO | | | | | | | | | 94.06 10 | 77.24 52 | 92.78 4 | 95.72 8 | 81.26 8 | 97.44 7 | 89.07 14 | 96.58 6 | 94.26 46 |
|
| DPE-MVS |  | | 89.48 5 | 89.98 4 | 88.01 16 | 94.80 11 | 72.69 31 | 91.59 42 | 94.10 8 | 75.90 89 | 92.29 7 | 95.66 10 | 81.67 6 | 97.38 11 | 87.44 33 | 96.34 15 | 93.95 57 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| test_241102_ONE | | | | | | 95.30 2 | 70.98 63 | | 94.06 10 | 77.17 55 | 93.10 1 | 95.39 11 | 82.99 1 | 97.27 12 | | | |
|
| MP-MVS-pluss | | | 87.67 21 | 87.72 20 | 87.54 36 | 93.64 44 | 72.04 48 | 89.80 78 | 93.50 25 | 75.17 104 | 86.34 48 | 95.29 12 | 70.86 63 | 96.00 51 | 88.78 19 | 96.04 16 | 94.58 31 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| SF-MVS | | | 88.46 12 | 88.74 12 | 87.64 35 | 92.78 61 | 71.95 49 | 92.40 24 | 94.74 2 | 75.71 91 | 89.16 19 | 95.10 13 | 75.65 21 | 96.19 43 | 87.07 34 | 96.01 17 | 94.79 21 |
|
| ACMMP_NAP | | | 88.05 16 | 88.08 17 | 87.94 19 | 93.70 41 | 73.05 22 | 90.86 54 | 93.59 23 | 76.27 83 | 88.14 24 | 95.09 14 | 71.06 61 | 96.67 29 | 87.67 29 | 96.37 14 | 94.09 51 |
|
| MM | | | 89.16 6 | 89.23 7 | 88.97 4 | 90.79 92 | 73.65 10 | 92.66 23 | 91.17 121 | 86.57 1 | 87.39 38 | 94.97 15 | 71.70 53 | 97.68 1 | 92.19 1 | 95.63 28 | 95.57 1 |
|
| MTAPA | | | 87.23 28 | 87.00 29 | 87.90 22 | 94.18 35 | 74.25 5 | 86.58 188 | 92.02 89 | 79.45 19 | 85.88 50 | 94.80 16 | 68.07 93 | 96.21 42 | 86.69 36 | 95.34 32 | 93.23 92 |
|
| SteuartSystems-ACMMP | | | 88.72 11 | 88.86 11 | 88.32 9 | 92.14 69 | 72.96 25 | 93.73 5 | 93.67 20 | 80.19 12 | 88.10 25 | 94.80 16 | 73.76 33 | 97.11 15 | 87.51 31 | 95.82 21 | 94.90 13 |
| Skip Steuart: Steuart Systems R&D Blog. |
| 9.14 | | | | 88.26 15 | | 92.84 60 | | 91.52 45 | 94.75 1 | 73.93 129 | 88.57 22 | 94.67 18 | 75.57 22 | 95.79 55 | 86.77 35 | 95.76 23 | |
|
| SR-MVS | | | 86.73 35 | 86.67 36 | 86.91 46 | 94.11 37 | 72.11 47 | 92.37 28 | 92.56 71 | 74.50 116 | 86.84 45 | 94.65 19 | 67.31 102 | 95.77 56 | 84.80 47 | 92.85 69 | 92.84 109 |
|
| region2R | | | 87.42 25 | 87.20 28 | 88.09 14 | 94.63 14 | 73.55 13 | 93.03 14 | 93.12 37 | 76.73 70 | 84.45 74 | 94.52 20 | 69.09 81 | 96.70 27 | 84.37 53 | 94.83 45 | 94.03 54 |
|
| ACMMPR | | | 87.44 23 | 87.23 27 | 88.08 15 | 94.64 13 | 73.59 12 | 93.04 12 | 93.20 34 | 76.78 67 | 84.66 69 | 94.52 20 | 68.81 87 | 96.65 30 | 84.53 51 | 94.90 41 | 94.00 55 |
|
| APD-MVS |  | | 87.44 23 | 87.52 23 | 87.19 42 | 94.24 32 | 72.39 39 | 91.86 40 | 92.83 57 | 73.01 153 | 88.58 21 | 94.52 20 | 73.36 34 | 96.49 36 | 84.26 54 | 95.01 37 | 92.70 111 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| APD-MVS_3200maxsize | | | 85.97 47 | 85.88 50 | 86.22 57 | 92.69 63 | 69.53 89 | 91.93 37 | 92.99 46 | 73.54 139 | 85.94 49 | 94.51 23 | 65.80 120 | 95.61 59 | 83.04 67 | 92.51 73 | 93.53 83 |
|
| CP-MVS | | | 87.11 30 | 86.92 33 | 87.68 34 | 94.20 34 | 73.86 7 | 93.98 3 | 92.82 60 | 76.62 73 | 83.68 88 | 94.46 24 | 67.93 95 | 95.95 54 | 84.20 57 | 94.39 55 | 93.23 92 |
|
| SR-MVS-dyc-post | | | 85.77 52 | 85.61 55 | 86.23 56 | 93.06 55 | 70.63 73 | 91.88 38 | 92.27 80 | 73.53 140 | 85.69 53 | 94.45 25 | 65.00 128 | 95.56 60 | 82.75 71 | 91.87 81 | 92.50 120 |
|
| RE-MVS-def | | | | 85.48 57 | | 93.06 55 | 70.63 73 | 91.88 38 | 92.27 80 | 73.53 140 | 85.69 53 | 94.45 25 | 63.87 134 | | 82.75 71 | 91.87 81 | 92.50 120 |
|
| HFP-MVS | | | 87.58 22 | 87.47 24 | 87.94 19 | 94.58 16 | 73.54 15 | 93.04 12 | 93.24 33 | 76.78 67 | 84.91 62 | 94.44 27 | 70.78 64 | 96.61 32 | 84.53 51 | 94.89 42 | 93.66 70 |
|
| PGM-MVS | | | 86.68 37 | 86.27 41 | 87.90 22 | 94.22 33 | 73.38 18 | 90.22 70 | 93.04 38 | 75.53 95 | 83.86 85 | 94.42 28 | 67.87 97 | 96.64 31 | 82.70 75 | 94.57 50 | 93.66 70 |
|
| MP-MVS |  | | 87.71 19 | 87.64 21 | 87.93 21 | 94.36 26 | 73.88 6 | 92.71 22 | 92.65 66 | 77.57 41 | 83.84 86 | 94.40 29 | 72.24 45 | 96.28 40 | 85.65 38 | 95.30 35 | 93.62 77 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| ZNCC-MVS | | | 87.94 18 | 87.85 19 | 88.20 12 | 94.39 24 | 73.33 19 | 93.03 14 | 93.81 17 | 76.81 65 | 85.24 57 | 94.32 30 | 71.76 51 | 96.93 19 | 85.53 40 | 95.79 22 | 94.32 43 |
|
| MVS_0304 | | | 87.69 20 | 87.55 22 | 88.12 13 | 89.45 126 | 71.76 51 | 91.47 46 | 89.54 168 | 82.14 3 | 86.65 46 | 94.28 31 | 68.28 92 | 97.46 6 | 90.81 2 | 95.31 34 | 95.15 6 |
|
| test_fmvsmconf0.01_n | | | 84.73 70 | 84.52 72 | 85.34 75 | 80.25 343 | 69.03 100 | 89.47 88 | 89.65 166 | 73.24 149 | 86.98 43 | 94.27 32 | 66.62 106 | 93.23 162 | 90.26 5 | 89.95 109 | 93.78 67 |
|
| HPM-MVS++ |  | | 89.02 9 | 89.15 9 | 88.63 5 | 95.01 9 | 76.03 1 | 92.38 27 | 92.85 56 | 80.26 11 | 87.78 30 | 94.27 32 | 75.89 19 | 96.81 23 | 87.45 32 | 96.44 9 | 93.05 101 |
|
| mPP-MVS | | | 86.67 38 | 86.32 40 | 87.72 30 | 94.41 22 | 73.55 13 | 92.74 20 | 92.22 84 | 76.87 64 | 82.81 101 | 94.25 34 | 66.44 110 | 96.24 41 | 82.88 70 | 94.28 58 | 93.38 86 |
|
| DeepC-MVS | | 79.81 2 | 87.08 32 | 86.88 35 | 87.69 33 | 91.16 81 | 72.32 43 | 90.31 68 | 93.94 14 | 77.12 57 | 82.82 100 | 94.23 35 | 72.13 47 | 97.09 16 | 84.83 46 | 95.37 31 | 93.65 74 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| XVS | | | 87.18 29 | 86.91 34 | 88.00 17 | 94.42 20 | 73.33 19 | 92.78 18 | 92.99 46 | 79.14 21 | 83.67 89 | 94.17 36 | 67.45 100 | 96.60 33 | 83.06 65 | 94.50 51 | 94.07 52 |
|
| MSP-MVS | | | 89.51 4 | 89.91 5 | 88.30 10 | 94.28 30 | 73.46 17 | 92.90 16 | 94.11 6 | 80.27 10 | 91.35 14 | 94.16 37 | 78.35 13 | 96.77 24 | 89.59 8 | 94.22 60 | 94.67 26 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| test_fmvsmconf0.1_n | | | 85.61 56 | 85.65 54 | 85.50 72 | 82.99 302 | 69.39 97 | 89.65 83 | 90.29 149 | 73.31 145 | 87.77 31 | 94.15 38 | 71.72 52 | 93.23 162 | 90.31 4 | 90.67 97 | 93.89 61 |
|
| DeepPCF-MVS | | 80.84 1 | 88.10 13 | 88.56 13 | 86.73 50 | 92.24 68 | 69.03 100 | 89.57 87 | 93.39 30 | 77.53 45 | 89.79 18 | 94.12 39 | 78.98 12 | 96.58 35 | 85.66 37 | 95.72 24 | 94.58 31 |
|
| HPM-MVS_fast | | | 85.35 61 | 84.95 67 | 86.57 53 | 93.69 42 | 70.58 75 | 92.15 35 | 91.62 107 | 73.89 130 | 82.67 103 | 94.09 40 | 62.60 149 | 95.54 62 | 80.93 88 | 92.93 68 | 93.57 79 |
|
| ZD-MVS | | | | | | 94.38 25 | 72.22 44 | | 92.67 63 | 70.98 184 | 87.75 32 | 94.07 41 | 74.01 32 | 96.70 27 | 84.66 49 | 94.84 44 | |
|
| fmvsm_s_conf0.1_n_a | | | 83.32 90 | 82.99 89 | 84.28 112 | 83.79 280 | 68.07 130 | 89.34 96 | 82.85 302 | 69.80 211 | 87.36 39 | 94.06 42 | 68.34 91 | 91.56 228 | 87.95 27 | 83.46 203 | 93.21 95 |
|
| CNVR-MVS | | | 88.93 10 | 89.13 10 | 88.33 8 | 94.77 12 | 73.82 8 | 90.51 59 | 93.00 43 | 80.90 7 | 88.06 26 | 94.06 42 | 76.43 16 | 96.84 21 | 88.48 24 | 95.99 18 | 94.34 42 |
|
| test_fmvsmconf_n | | | 85.92 48 | 86.04 48 | 85.57 71 | 85.03 257 | 69.51 90 | 89.62 86 | 90.58 136 | 73.42 142 | 87.75 32 | 94.02 44 | 72.85 41 | 93.24 161 | 90.37 3 | 90.75 95 | 93.96 56 |
|
| OPU-MVS | | | | | 89.06 3 | 94.62 15 | 75.42 4 | 93.57 7 | | | | 94.02 44 | 82.45 3 | 96.87 20 | 83.77 60 | 96.48 8 | 94.88 14 |
|
| PC_three_1452 | | | | | | | | | | 68.21 247 | 92.02 12 | 94.00 46 | 82.09 5 | 95.98 53 | 84.58 50 | 96.68 2 | 94.95 10 |
|
| SD-MVS | | | 88.06 14 | 88.50 14 | 86.71 51 | 92.60 66 | 72.71 29 | 91.81 41 | 93.19 35 | 77.87 36 | 90.32 17 | 94.00 46 | 74.83 23 | 93.78 136 | 87.63 30 | 94.27 59 | 93.65 74 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| GST-MVS | | | 87.42 25 | 87.26 25 | 87.89 24 | 94.12 36 | 72.97 24 | 92.39 26 | 93.43 28 | 76.89 63 | 84.68 66 | 93.99 48 | 70.67 66 | 96.82 22 | 84.18 58 | 95.01 37 | 93.90 60 |
|
| test_fmvsm_n_1920 | | | 85.29 62 | 85.34 59 | 85.13 82 | 86.12 236 | 69.93 83 | 88.65 121 | 90.78 132 | 69.97 207 | 88.27 23 | 93.98 49 | 71.39 58 | 91.54 230 | 88.49 23 | 90.45 99 | 93.91 58 |
|
| fmvsm_s_conf0.1_n | | | 83.56 84 | 83.38 82 | 84.10 120 | 84.86 259 | 67.28 150 | 89.40 94 | 83.01 297 | 70.67 189 | 87.08 41 | 93.96 50 | 68.38 90 | 91.45 236 | 88.56 22 | 84.50 179 | 93.56 80 |
|
| HPM-MVS |  | | 87.11 30 | 86.98 31 | 87.50 38 | 93.88 39 | 72.16 45 | 92.19 33 | 93.33 31 | 76.07 86 | 83.81 87 | 93.95 51 | 69.77 75 | 96.01 50 | 85.15 41 | 94.66 47 | 94.32 43 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| TSAR-MVS + MP. | | | 88.02 17 | 88.11 16 | 87.72 30 | 93.68 43 | 72.13 46 | 91.41 47 | 92.35 78 | 74.62 115 | 88.90 20 | 93.85 52 | 75.75 20 | 96.00 51 | 87.80 28 | 94.63 48 | 95.04 8 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| ACMMP |  | | 85.89 51 | 85.39 58 | 87.38 39 | 93.59 45 | 72.63 33 | 92.74 20 | 93.18 36 | 76.78 67 | 80.73 125 | 93.82 53 | 64.33 130 | 96.29 39 | 82.67 76 | 90.69 96 | 93.23 92 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| fmvsm_s_conf0.5_n_a | | | 83.63 82 | 83.41 81 | 84.28 112 | 86.14 235 | 68.12 128 | 89.43 90 | 82.87 301 | 70.27 200 | 87.27 40 | 93.80 54 | 69.09 81 | 91.58 226 | 88.21 26 | 83.65 198 | 93.14 98 |
|
| fmvsm_s_conf0.5_n | | | 83.80 77 | 83.71 78 | 84.07 126 | 86.69 228 | 67.31 149 | 89.46 89 | 83.07 296 | 71.09 181 | 86.96 44 | 93.70 55 | 69.02 86 | 91.47 235 | 88.79 18 | 84.62 178 | 93.44 85 |
|
| test_prior2 | | | | | | | | 88.85 112 | | 75.41 97 | 84.91 62 | 93.54 56 | 74.28 29 | | 83.31 63 | 95.86 20 | |
|
| fmvsm_l_conf0.5_n | | | 84.47 71 | 84.54 70 | 84.27 114 | 85.42 247 | 68.81 106 | 88.49 125 | 87.26 233 | 68.08 248 | 88.03 27 | 93.49 57 | 72.04 48 | 91.77 220 | 88.90 17 | 89.14 119 | 92.24 131 |
|
| VDDNet | | | 81.52 120 | 80.67 123 | 84.05 131 | 90.44 98 | 64.13 214 | 89.73 81 | 85.91 256 | 71.11 180 | 83.18 94 | 93.48 58 | 50.54 278 | 93.49 150 | 73.40 158 | 88.25 133 | 94.54 34 |
|
| CDPH-MVS | | | 85.76 53 | 85.29 63 | 87.17 43 | 93.49 47 | 71.08 61 | 88.58 123 | 92.42 76 | 68.32 246 | 84.61 71 | 93.48 58 | 72.32 44 | 96.15 45 | 79.00 101 | 95.43 30 | 94.28 45 |
|
| NCCC | | | 88.06 14 | 88.01 18 | 88.24 11 | 94.41 22 | 73.62 11 | 91.22 51 | 92.83 57 | 81.50 5 | 85.79 52 | 93.47 60 | 73.02 40 | 97.00 18 | 84.90 43 | 94.94 40 | 94.10 50 |
|
| fmvsm_l_conf0.5_n_a | | | 84.13 73 | 84.16 75 | 84.06 128 | 85.38 248 | 68.40 121 | 88.34 132 | 86.85 242 | 67.48 255 | 87.48 36 | 93.40 61 | 70.89 62 | 91.61 224 | 88.38 25 | 89.22 117 | 92.16 135 |
|
| 3Dnovator+ | | 77.84 4 | 85.48 57 | 84.47 73 | 88.51 7 | 91.08 83 | 73.49 16 | 93.18 11 | 93.78 18 | 80.79 8 | 76.66 197 | 93.37 62 | 60.40 193 | 96.75 26 | 77.20 120 | 93.73 64 | 95.29 5 |
|
| DeepC-MVS_fast | | 79.65 3 | 86.91 33 | 86.62 37 | 87.76 27 | 93.52 46 | 72.37 41 | 91.26 48 | 93.04 38 | 76.62 73 | 84.22 78 | 93.36 63 | 71.44 57 | 96.76 25 | 80.82 90 | 95.33 33 | 94.16 48 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| VDD-MVS | | | 83.01 97 | 82.36 98 | 84.96 87 | 91.02 85 | 66.40 165 | 88.91 109 | 88.11 211 | 77.57 41 | 84.39 76 | 93.29 64 | 52.19 252 | 93.91 130 | 77.05 122 | 88.70 127 | 94.57 33 |
|
| test_fmvsmvis_n_1920 | | | 84.02 74 | 83.87 76 | 84.49 103 | 84.12 273 | 69.37 98 | 88.15 140 | 87.96 216 | 70.01 205 | 83.95 84 | 93.23 65 | 68.80 88 | 91.51 233 | 88.61 20 | 89.96 108 | 92.57 116 |
|
| UA-Net | | | 85.08 65 | 84.96 66 | 85.45 73 | 92.07 70 | 68.07 130 | 89.78 79 | 90.86 131 | 82.48 2 | 84.60 72 | 93.20 66 | 69.35 78 | 95.22 76 | 71.39 176 | 90.88 94 | 93.07 100 |
|
| TEST9 | | | | | | 93.26 50 | 72.96 25 | 88.75 115 | 91.89 97 | 68.44 244 | 85.00 60 | 93.10 67 | 74.36 28 | 95.41 69 | | | |
|
| train_agg | | | 86.43 40 | 86.20 42 | 87.13 44 | 93.26 50 | 72.96 25 | 88.75 115 | 91.89 97 | 68.69 239 | 85.00 60 | 93.10 67 | 74.43 26 | 95.41 69 | 84.97 42 | 95.71 25 | 93.02 103 |
|
| test_8 | | | | | | 93.13 52 | 72.57 35 | 88.68 120 | 91.84 101 | 68.69 239 | 84.87 64 | 93.10 67 | 74.43 26 | 95.16 78 | | | |
|
| LFMVS | | | 81.82 113 | 81.23 114 | 83.57 146 | 91.89 73 | 63.43 230 | 89.84 75 | 81.85 313 | 77.04 60 | 83.21 93 | 93.10 67 | 52.26 251 | 93.43 155 | 71.98 171 | 89.95 109 | 93.85 62 |
|
| 旧先验1 | | | | | | 91.96 71 | 65.79 179 | | 86.37 249 | | | 93.08 71 | 69.31 80 | | | 92.74 70 | 88.74 258 |
|
| dcpmvs_2 | | | 85.63 55 | 86.15 45 | 84.06 128 | 91.71 75 | 64.94 197 | 86.47 191 | 91.87 99 | 73.63 135 | 86.60 47 | 93.02 72 | 76.57 15 | 91.87 218 | 83.36 62 | 92.15 77 | 95.35 3 |
|
| testdata | | | | | 79.97 242 | 90.90 88 | 64.21 212 | | 84.71 267 | 59.27 344 | 85.40 55 | 92.91 73 | 62.02 162 | 89.08 282 | 68.95 202 | 91.37 88 | 86.63 305 |
|
| MCST-MVS | | | 87.37 27 | 87.25 26 | 87.73 28 | 94.53 17 | 72.46 38 | 89.82 76 | 93.82 16 | 73.07 151 | 84.86 65 | 92.89 74 | 76.22 17 | 96.33 38 | 84.89 45 | 95.13 36 | 94.40 39 |
|
| Vis-MVSNet |  | | 83.46 86 | 82.80 93 | 85.43 74 | 90.25 101 | 68.74 111 | 90.30 69 | 90.13 153 | 76.33 82 | 80.87 124 | 92.89 74 | 61.00 181 | 94.20 117 | 72.45 170 | 90.97 92 | 93.35 88 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| CPTT-MVS | | | 83.73 78 | 83.33 84 | 84.92 90 | 93.28 49 | 70.86 69 | 92.09 36 | 90.38 142 | 68.75 238 | 79.57 137 | 92.83 76 | 60.60 189 | 93.04 179 | 80.92 89 | 91.56 86 | 90.86 171 |
|
| 3Dnovator | | 76.31 5 | 83.38 89 | 82.31 99 | 86.59 52 | 87.94 190 | 72.94 28 | 90.64 57 | 92.14 88 | 77.21 54 | 75.47 222 | 92.83 76 | 58.56 200 | 94.72 100 | 73.24 161 | 92.71 71 | 92.13 136 |
|
| MSLP-MVS++ | | | 85.43 59 | 85.76 53 | 84.45 104 | 91.93 72 | 70.24 76 | 90.71 56 | 92.86 55 | 77.46 47 | 84.22 78 | 92.81 78 | 67.16 104 | 92.94 181 | 80.36 94 | 94.35 57 | 90.16 198 |
|
| test2506 | | | 77.30 222 | 76.49 219 | 79.74 247 | 90.08 105 | 52.02 361 | 87.86 151 | 63.10 399 | 74.88 108 | 80.16 131 | 92.79 79 | 38.29 365 | 92.35 200 | 68.74 205 | 92.50 74 | 94.86 17 |
|
| ECVR-MVS |  | | 79.61 160 | 79.26 153 | 80.67 229 | 90.08 105 | 54.69 344 | 87.89 149 | 77.44 353 | 74.88 108 | 80.27 128 | 92.79 79 | 48.96 299 | 92.45 194 | 68.55 206 | 92.50 74 | 94.86 17 |
|
| test1111 | | | 79.43 167 | 79.18 156 | 80.15 239 | 89.99 110 | 53.31 357 | 87.33 165 | 77.05 357 | 75.04 105 | 80.23 130 | 92.77 81 | 48.97 298 | 92.33 202 | 68.87 203 | 92.40 76 | 94.81 20 |
|
| MG-MVS | | | 83.41 87 | 83.45 80 | 83.28 154 | 92.74 62 | 62.28 250 | 88.17 138 | 89.50 170 | 75.22 100 | 81.49 115 | 92.74 82 | 66.75 105 | 95.11 82 | 72.85 164 | 91.58 85 | 92.45 123 |
|
| casdiffmvs_mvg |  | | 85.99 45 | 86.09 47 | 85.70 69 | 87.65 204 | 67.22 154 | 88.69 119 | 93.04 38 | 79.64 18 | 85.33 56 | 92.54 83 | 73.30 35 | 94.50 107 | 83.49 61 | 91.14 91 | 95.37 2 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| patch_mono-2 | | | 83.65 80 | 84.54 70 | 80.99 221 | 90.06 109 | 65.83 177 | 84.21 249 | 88.74 202 | 71.60 171 | 85.01 59 | 92.44 84 | 74.51 25 | 83.50 338 | 82.15 78 | 92.15 77 | 93.64 76 |
|
| casdiffmvs |  | | 85.11 64 | 85.14 64 | 85.01 85 | 87.20 218 | 65.77 180 | 87.75 152 | 92.83 57 | 77.84 37 | 84.36 77 | 92.38 85 | 72.15 46 | 93.93 129 | 81.27 86 | 90.48 98 | 95.33 4 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| CS-MVS | | | 86.69 36 | 86.95 32 | 85.90 66 | 90.76 93 | 67.57 142 | 92.83 17 | 93.30 32 | 79.67 17 | 84.57 73 | 92.27 86 | 71.47 56 | 95.02 88 | 84.24 56 | 93.46 65 | 95.13 7 |
|
| baseline | | | 84.93 67 | 84.98 65 | 84.80 95 | 87.30 216 | 65.39 188 | 87.30 166 | 92.88 54 | 77.62 39 | 84.04 83 | 92.26 87 | 71.81 50 | 93.96 123 | 81.31 84 | 90.30 101 | 95.03 9 |
|
| QAPM | | | 80.88 130 | 79.50 146 | 85.03 84 | 88.01 188 | 68.97 104 | 91.59 42 | 92.00 91 | 66.63 267 | 75.15 240 | 92.16 88 | 57.70 207 | 95.45 65 | 63.52 245 | 88.76 125 | 90.66 178 |
|
| IS-MVSNet | | | 83.15 92 | 82.81 92 | 84.18 118 | 89.94 112 | 63.30 232 | 91.59 42 | 88.46 208 | 79.04 25 | 79.49 138 | 92.16 88 | 65.10 125 | 94.28 112 | 67.71 212 | 91.86 83 | 94.95 10 |
|
| æ–°å‡ ä½•1 | | | | | 83.42 149 | 93.13 52 | 70.71 71 | | 85.48 261 | 57.43 360 | 81.80 111 | 91.98 90 | 63.28 138 | 92.27 203 | 64.60 240 | 92.99 67 | 87.27 288 |
|
| OpenMVS |  | 72.83 10 | 79.77 158 | 78.33 173 | 84.09 124 | 85.17 251 | 69.91 84 | 90.57 58 | 90.97 126 | 66.70 261 | 72.17 281 | 91.91 91 | 54.70 230 | 93.96 123 | 61.81 266 | 90.95 93 | 88.41 266 |
|
| PHI-MVS | | | 86.43 40 | 86.17 44 | 87.24 41 | 90.88 89 | 70.96 65 | 92.27 32 | 94.07 9 | 72.45 157 | 85.22 58 | 91.90 92 | 69.47 77 | 96.42 37 | 83.28 64 | 95.94 19 | 94.35 41 |
|
| VNet | | | 82.21 105 | 82.41 96 | 81.62 202 | 90.82 90 | 60.93 264 | 84.47 240 | 89.78 161 | 76.36 81 | 84.07 82 | 91.88 93 | 64.71 129 | 90.26 260 | 70.68 183 | 88.89 121 | 93.66 70 |
|
| EC-MVSNet | | | 86.01 44 | 86.38 39 | 84.91 91 | 89.31 135 | 66.27 168 | 92.32 30 | 93.63 21 | 79.37 20 | 84.17 80 | 91.88 93 | 69.04 85 | 95.43 67 | 83.93 59 | 93.77 63 | 93.01 104 |
|
| OPM-MVS | | | 83.50 85 | 82.95 90 | 85.14 80 | 88.79 156 | 70.95 66 | 89.13 104 | 91.52 110 | 77.55 44 | 80.96 123 | 91.75 95 | 60.71 184 | 94.50 107 | 79.67 100 | 86.51 155 | 89.97 214 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| MVSMamba_PlusPlus | | | 85.99 45 | 85.96 49 | 86.05 61 | 91.09 82 | 67.64 139 | 89.63 85 | 92.65 66 | 72.89 156 | 84.64 70 | 91.71 96 | 71.85 49 | 96.03 47 | 84.77 48 | 94.45 54 | 94.49 35 |
|
| XVG-OURS-SEG-HR | | | 80.81 133 | 79.76 140 | 83.96 138 | 85.60 244 | 68.78 108 | 83.54 262 | 90.50 139 | 70.66 192 | 76.71 196 | 91.66 97 | 60.69 185 | 91.26 241 | 76.94 123 | 81.58 225 | 91.83 141 |
|
| EPNet | | | 83.72 79 | 82.92 91 | 86.14 60 | 84.22 271 | 69.48 91 | 91.05 53 | 85.27 262 | 81.30 6 | 76.83 192 | 91.65 98 | 66.09 115 | 95.56 60 | 76.00 133 | 93.85 62 | 93.38 86 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| OMC-MVS | | | 82.69 99 | 81.97 107 | 84.85 92 | 88.75 158 | 67.42 145 | 87.98 143 | 90.87 130 | 74.92 107 | 79.72 135 | 91.65 98 | 62.19 159 | 93.96 123 | 75.26 142 | 86.42 156 | 93.16 97 |
|
| balanced_conf03 | | | 86.78 34 | 86.99 30 | 86.15 58 | 91.24 80 | 67.61 140 | 90.51 59 | 92.90 53 | 77.26 51 | 87.44 37 | 91.63 100 | 71.27 60 | 96.06 46 | 85.62 39 | 95.01 37 | 94.78 22 |
|
| test222 | | | | | | 91.50 77 | 68.26 125 | 84.16 250 | 83.20 294 | 54.63 371 | 79.74 134 | 91.63 100 | 58.97 198 | | | 91.42 87 | 86.77 301 |
|
| MVS_111021_HR | | | 85.14 63 | 84.75 68 | 86.32 55 | 91.65 76 | 72.70 30 | 85.98 204 | 90.33 146 | 76.11 85 | 82.08 106 | 91.61 102 | 71.36 59 | 94.17 119 | 81.02 87 | 92.58 72 | 92.08 137 |
|
| 原ACMM1 | | | | | 84.35 108 | 93.01 57 | 68.79 107 | | 92.44 73 | 63.96 303 | 81.09 121 | 91.57 103 | 66.06 116 | 95.45 65 | 67.19 219 | 94.82 46 | 88.81 253 |
|
| LPG-MVS_test | | | 82.08 107 | 81.27 113 | 84.50 101 | 89.23 139 | 68.76 109 | 90.22 70 | 91.94 95 | 75.37 98 | 76.64 198 | 91.51 104 | 54.29 233 | 94.91 90 | 78.44 107 | 83.78 191 | 89.83 219 |
|
| LGP-MVS_train | | | | | 84.50 101 | 89.23 139 | 68.76 109 | | 91.94 95 | 75.37 98 | 76.64 198 | 91.51 104 | 54.29 233 | 94.91 90 | 78.44 107 | 83.78 191 | 89.83 219 |
|
| XVG-OURS | | | 80.41 146 | 79.23 154 | 83.97 137 | 85.64 243 | 69.02 102 | 83.03 273 | 90.39 141 | 71.09 181 | 77.63 175 | 91.49 106 | 54.62 232 | 91.35 239 | 75.71 135 | 83.47 202 | 91.54 148 |
|
| alignmvs | | | 85.48 57 | 85.32 61 | 85.96 65 | 89.51 123 | 69.47 92 | 89.74 80 | 92.47 72 | 76.17 84 | 87.73 34 | 91.46 107 | 70.32 69 | 93.78 136 | 81.51 81 | 88.95 120 | 94.63 30 |
|
| CANet | | | 86.45 39 | 86.10 46 | 87.51 37 | 90.09 104 | 70.94 67 | 89.70 82 | 92.59 70 | 81.78 4 | 81.32 116 | 91.43 108 | 70.34 68 | 97.23 14 | 84.26 54 | 93.36 66 | 94.37 40 |
|
| h-mvs33 | | | 83.15 92 | 82.19 100 | 86.02 64 | 90.56 95 | 70.85 70 | 88.15 140 | 89.16 183 | 76.02 87 | 84.67 67 | 91.39 109 | 61.54 167 | 95.50 63 | 82.71 73 | 75.48 302 | 91.72 144 |
|
| MGCFI-Net | | | 85.06 66 | 85.51 56 | 83.70 142 | 89.42 127 | 63.01 238 | 89.43 90 | 92.62 69 | 76.43 75 | 87.53 35 | 91.34 110 | 72.82 42 | 93.42 156 | 81.28 85 | 88.74 126 | 94.66 29 |
|
| nrg030 | | | 83.88 75 | 83.53 79 | 84.96 87 | 86.77 226 | 69.28 99 | 90.46 64 | 92.67 63 | 74.79 111 | 82.95 96 | 91.33 111 | 72.70 43 | 93.09 175 | 80.79 92 | 79.28 254 | 92.50 120 |
|
| sasdasda | | | 85.91 49 | 85.87 51 | 86.04 62 | 89.84 114 | 69.44 95 | 90.45 65 | 93.00 43 | 76.70 71 | 88.01 28 | 91.23 112 | 73.28 36 | 93.91 130 | 81.50 82 | 88.80 123 | 94.77 23 |
|
| canonicalmvs | | | 85.91 49 | 85.87 51 | 86.04 62 | 89.84 114 | 69.44 95 | 90.45 65 | 93.00 43 | 76.70 71 | 88.01 28 | 91.23 112 | 73.28 36 | 93.91 130 | 81.50 82 | 88.80 123 | 94.77 23 |
|
| DPM-MVS | | | 84.93 67 | 84.29 74 | 86.84 47 | 90.20 102 | 73.04 23 | 87.12 170 | 93.04 38 | 69.80 211 | 82.85 99 | 91.22 114 | 73.06 39 | 96.02 49 | 76.72 127 | 94.63 48 | 91.46 154 |
|
| Anonymous202405211 | | | 78.25 195 | 77.01 205 | 81.99 196 | 91.03 84 | 60.67 269 | 84.77 232 | 83.90 280 | 70.65 193 | 80.00 132 | 91.20 115 | 41.08 352 | 91.43 237 | 65.21 234 | 85.26 171 | 93.85 62 |
|
| CS-MVS-test | | | 86.29 43 | 86.48 38 | 85.71 68 | 91.02 85 | 67.21 155 | 92.36 29 | 93.78 18 | 78.97 28 | 83.51 92 | 91.20 115 | 70.65 67 | 95.15 79 | 81.96 79 | 94.89 42 | 94.77 23 |
|
| Anonymous20240529 | | | 80.19 153 | 78.89 161 | 84.10 120 | 90.60 94 | 64.75 201 | 88.95 108 | 90.90 128 | 65.97 275 | 80.59 126 | 91.17 117 | 49.97 283 | 93.73 142 | 69.16 200 | 82.70 214 | 93.81 65 |
|
| EPP-MVSNet | | | 83.40 88 | 83.02 88 | 84.57 99 | 90.13 103 | 64.47 207 | 92.32 30 | 90.73 133 | 74.45 119 | 79.35 140 | 91.10 118 | 69.05 84 | 95.12 80 | 72.78 165 | 87.22 144 | 94.13 49 |
|
| TAPA-MVS | | 73.13 9 | 79.15 175 | 77.94 181 | 82.79 181 | 89.59 119 | 62.99 242 | 88.16 139 | 91.51 111 | 65.77 276 | 77.14 189 | 91.09 119 | 60.91 182 | 93.21 164 | 50.26 347 | 87.05 146 | 92.17 134 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| CSCG | | | 86.41 42 | 86.19 43 | 87.07 45 | 92.91 58 | 72.48 37 | 90.81 55 | 93.56 24 | 73.95 127 | 83.16 95 | 91.07 120 | 75.94 18 | 95.19 77 | 79.94 98 | 94.38 56 | 93.55 81 |
|
| FIs | | | 82.07 108 | 82.42 95 | 81.04 220 | 88.80 155 | 58.34 291 | 88.26 135 | 93.49 26 | 76.93 62 | 78.47 157 | 91.04 121 | 69.92 73 | 92.34 201 | 69.87 193 | 84.97 173 | 92.44 124 |
|
| MVS_111021_LR | | | 82.61 101 | 82.11 101 | 84.11 119 | 88.82 153 | 71.58 53 | 85.15 224 | 86.16 253 | 74.69 113 | 80.47 127 | 91.04 121 | 62.29 156 | 90.55 258 | 80.33 95 | 90.08 106 | 90.20 197 |
|
| DP-MVS Recon | | | 83.11 95 | 82.09 103 | 86.15 58 | 94.44 19 | 70.92 68 | 88.79 113 | 92.20 85 | 70.53 194 | 79.17 142 | 91.03 123 | 64.12 132 | 96.03 47 | 68.39 209 | 90.14 104 | 91.50 150 |
|
| mamv4 | | | 76.81 229 | 78.23 177 | 72.54 337 | 86.12 236 | 65.75 181 | 78.76 328 | 82.07 310 | 64.12 297 | 72.97 270 | 91.02 124 | 67.97 94 | 68.08 401 | 83.04 67 | 78.02 266 | 83.80 347 |
|
| HQP_MVS | | | 83.64 81 | 83.14 85 | 85.14 80 | 90.08 105 | 68.71 113 | 91.25 49 | 92.44 73 | 79.12 23 | 78.92 146 | 91.00 125 | 60.42 191 | 95.38 71 | 78.71 105 | 86.32 157 | 91.33 155 |
|
| plane_prior4 | | | | | | | | | | | | 91.00 125 | | | | | |
|
| FC-MVSNet-test | | | 81.52 120 | 82.02 105 | 80.03 241 | 88.42 171 | 55.97 329 | 87.95 145 | 93.42 29 | 77.10 58 | 77.38 179 | 90.98 127 | 69.96 72 | 91.79 219 | 68.46 208 | 84.50 179 | 92.33 125 |
|
| Vis-MVSNet (Re-imp) | | | 78.36 194 | 78.45 168 | 78.07 279 | 88.64 162 | 51.78 367 | 86.70 185 | 79.63 338 | 74.14 125 | 75.11 241 | 90.83 128 | 61.29 175 | 89.75 270 | 58.10 300 | 91.60 84 | 92.69 113 |
|
| 114514_t | | | 80.68 139 | 79.51 145 | 84.20 117 | 94.09 38 | 67.27 151 | 89.64 84 | 91.11 124 | 58.75 350 | 74.08 258 | 90.72 129 | 58.10 203 | 95.04 87 | 69.70 194 | 89.42 115 | 90.30 194 |
|
| PAPM_NR | | | 83.02 96 | 82.41 96 | 84.82 93 | 92.47 67 | 66.37 166 | 87.93 147 | 91.80 102 | 73.82 131 | 77.32 181 | 90.66 130 | 67.90 96 | 94.90 92 | 70.37 186 | 89.48 114 | 93.19 96 |
|
| LS3D | | | 76.95 227 | 74.82 244 | 83.37 152 | 90.45 97 | 67.36 148 | 89.15 103 | 86.94 240 | 61.87 325 | 69.52 310 | 90.61 131 | 51.71 265 | 94.53 105 | 46.38 368 | 86.71 152 | 88.21 268 |
|
| VPNet | | | 78.69 187 | 78.66 164 | 78.76 264 | 88.31 174 | 55.72 333 | 84.45 243 | 86.63 245 | 76.79 66 | 78.26 161 | 90.55 132 | 59.30 196 | 89.70 272 | 66.63 223 | 77.05 276 | 90.88 170 |
|
| UniMVSNet_ETH3D | | | 79.10 177 | 78.24 175 | 81.70 201 | 86.85 223 | 60.24 276 | 87.28 167 | 88.79 197 | 74.25 122 | 76.84 191 | 90.53 133 | 49.48 289 | 91.56 228 | 67.98 210 | 82.15 218 | 93.29 90 |
|
| ACMP | | 74.13 6 | 81.51 122 | 80.57 124 | 84.36 107 | 89.42 127 | 68.69 116 | 89.97 74 | 91.50 114 | 74.46 118 | 75.04 244 | 90.41 134 | 53.82 238 | 94.54 104 | 77.56 116 | 82.91 209 | 89.86 218 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| RRT-MVS | | | 82.60 103 | 82.10 102 | 84.10 120 | 87.98 189 | 62.94 243 | 87.45 161 | 91.27 117 | 77.42 48 | 79.85 133 | 90.28 135 | 56.62 218 | 94.70 102 | 79.87 99 | 88.15 135 | 94.67 26 |
|
| PCF-MVS | | 73.52 7 | 80.38 147 | 78.84 162 | 85.01 85 | 87.71 201 | 68.99 103 | 83.65 257 | 91.46 115 | 63.00 310 | 77.77 173 | 90.28 135 | 66.10 114 | 95.09 86 | 61.40 269 | 88.22 134 | 90.94 169 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| NP-MVS | | | | | | 89.62 118 | 68.32 123 | | | | | 90.24 137 | | | | | |
|
| HQP-MVS | | | 82.61 101 | 82.02 105 | 84.37 106 | 89.33 132 | 66.98 158 | 89.17 99 | 92.19 86 | 76.41 76 | 77.23 184 | 90.23 138 | 60.17 194 | 95.11 82 | 77.47 117 | 85.99 165 | 91.03 165 |
|
| PS-MVSNAJss | | | 82.07 108 | 81.31 112 | 84.34 109 | 86.51 231 | 67.27 151 | 89.27 97 | 91.51 111 | 71.75 166 | 79.37 139 | 90.22 139 | 63.15 143 | 94.27 113 | 77.69 115 | 82.36 217 | 91.49 151 |
|
| TSAR-MVS + GP. | | | 85.71 54 | 85.33 60 | 86.84 47 | 91.34 78 | 72.50 36 | 89.07 105 | 87.28 232 | 76.41 76 | 85.80 51 | 90.22 139 | 74.15 31 | 95.37 74 | 81.82 80 | 91.88 80 | 92.65 115 |
|
| SDMVSNet | | | 80.38 147 | 80.18 133 | 80.99 221 | 89.03 148 | 64.94 197 | 80.45 305 | 89.40 172 | 75.19 102 | 76.61 200 | 89.98 141 | 60.61 188 | 87.69 303 | 76.83 125 | 83.55 200 | 90.33 192 |
|
| sd_testset | | | 77.70 214 | 77.40 198 | 78.60 267 | 89.03 148 | 60.02 278 | 79.00 324 | 85.83 257 | 75.19 102 | 76.61 200 | 89.98 141 | 54.81 225 | 85.46 323 | 62.63 256 | 83.55 200 | 90.33 192 |
|
| TranMVSNet+NR-MVSNet | | | 80.84 131 | 80.31 130 | 82.42 189 | 87.85 194 | 62.33 248 | 87.74 153 | 91.33 116 | 80.55 9 | 77.99 169 | 89.86 143 | 65.23 124 | 92.62 187 | 67.05 221 | 75.24 312 | 92.30 127 |
|
| diffmvs |  | | 82.10 106 | 81.88 108 | 82.76 184 | 83.00 300 | 63.78 220 | 83.68 256 | 89.76 162 | 72.94 154 | 82.02 107 | 89.85 144 | 65.96 119 | 90.79 254 | 82.38 77 | 87.30 143 | 93.71 69 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| BH-RMVSNet | | | 79.61 160 | 78.44 169 | 83.14 162 | 89.38 131 | 65.93 174 | 84.95 229 | 87.15 236 | 73.56 138 | 78.19 163 | 89.79 145 | 56.67 217 | 93.36 157 | 59.53 284 | 86.74 151 | 90.13 200 |
|
| GeoE | | | 81.71 115 | 81.01 119 | 83.80 141 | 89.51 123 | 64.45 208 | 88.97 107 | 88.73 203 | 71.27 177 | 78.63 152 | 89.76 146 | 66.32 112 | 93.20 167 | 69.89 192 | 86.02 164 | 93.74 68 |
|
| AdaColmap |  | | 80.58 144 | 79.42 147 | 84.06 128 | 93.09 54 | 68.91 105 | 89.36 95 | 88.97 193 | 69.27 222 | 75.70 218 | 89.69 147 | 57.20 214 | 95.77 56 | 63.06 250 | 88.41 132 | 87.50 283 |
|
| ACMM | | 73.20 8 | 80.78 138 | 79.84 139 | 83.58 145 | 89.31 135 | 68.37 122 | 89.99 73 | 91.60 108 | 70.28 199 | 77.25 182 | 89.66 148 | 53.37 243 | 93.53 149 | 74.24 150 | 82.85 210 | 88.85 251 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| CNLPA | | | 78.08 201 | 76.79 212 | 81.97 197 | 90.40 99 | 71.07 62 | 87.59 156 | 84.55 270 | 66.03 274 | 72.38 279 | 89.64 149 | 57.56 209 | 86.04 316 | 59.61 283 | 83.35 204 | 88.79 254 |
|
| test_yl | | | 81.17 125 | 80.47 127 | 83.24 157 | 89.13 143 | 63.62 221 | 86.21 199 | 89.95 158 | 72.43 160 | 81.78 112 | 89.61 150 | 57.50 210 | 93.58 144 | 70.75 181 | 86.90 148 | 92.52 118 |
|
| DCV-MVSNet | | | 81.17 125 | 80.47 127 | 83.24 157 | 89.13 143 | 63.62 221 | 86.21 199 | 89.95 158 | 72.43 160 | 81.78 112 | 89.61 150 | 57.50 210 | 93.58 144 | 70.75 181 | 86.90 148 | 92.52 118 |
|
| EI-MVSNet-Vis-set | | | 84.19 72 | 83.81 77 | 85.31 76 | 88.18 177 | 67.85 134 | 87.66 154 | 89.73 164 | 80.05 14 | 82.95 96 | 89.59 152 | 70.74 65 | 94.82 96 | 80.66 93 | 84.72 176 | 93.28 91 |
|
| PAPR | | | 81.66 118 | 80.89 121 | 83.99 136 | 90.27 100 | 64.00 215 | 86.76 184 | 91.77 105 | 68.84 237 | 77.13 190 | 89.50 153 | 67.63 98 | 94.88 94 | 67.55 214 | 88.52 130 | 93.09 99 |
|
| jajsoiax | | | 79.29 172 | 77.96 180 | 83.27 155 | 84.68 262 | 66.57 164 | 89.25 98 | 90.16 152 | 69.20 227 | 75.46 224 | 89.49 154 | 45.75 324 | 93.13 173 | 76.84 124 | 80.80 234 | 90.11 202 |
|
| MVSFormer | | | 82.85 98 | 82.05 104 | 85.24 78 | 87.35 210 | 70.21 77 | 90.50 61 | 90.38 142 | 68.55 241 | 81.32 116 | 89.47 155 | 61.68 164 | 93.46 153 | 78.98 102 | 90.26 102 | 92.05 138 |
|
| jason | | | 81.39 123 | 80.29 131 | 84.70 97 | 86.63 230 | 69.90 85 | 85.95 205 | 86.77 243 | 63.24 306 | 81.07 122 | 89.47 155 | 61.08 180 | 92.15 207 | 78.33 110 | 90.07 107 | 92.05 138 |
| jason: jason. |
| mvs_tets | | | 79.13 176 | 77.77 189 | 83.22 159 | 84.70 261 | 66.37 166 | 89.17 99 | 90.19 151 | 69.38 220 | 75.40 227 | 89.46 157 | 44.17 334 | 93.15 171 | 76.78 126 | 80.70 236 | 90.14 199 |
|
| UGNet | | | 80.83 132 | 79.59 144 | 84.54 100 | 88.04 185 | 68.09 129 | 89.42 92 | 88.16 210 | 76.95 61 | 76.22 208 | 89.46 157 | 49.30 293 | 93.94 126 | 68.48 207 | 90.31 100 | 91.60 145 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| VPA-MVSNet | | | 80.60 141 | 80.55 125 | 80.76 227 | 88.07 184 | 60.80 267 | 86.86 178 | 91.58 109 | 75.67 94 | 80.24 129 | 89.45 159 | 63.34 137 | 90.25 261 | 70.51 185 | 79.22 255 | 91.23 158 |
|
| MVS_Test | | | 83.15 92 | 83.06 87 | 83.41 151 | 86.86 222 | 63.21 234 | 86.11 202 | 92.00 91 | 74.31 120 | 82.87 98 | 89.44 160 | 70.03 71 | 93.21 164 | 77.39 119 | 88.50 131 | 93.81 65 |
|
| EI-MVSNet-UG-set | | | 83.81 76 | 83.38 82 | 85.09 83 | 87.87 193 | 67.53 143 | 87.44 162 | 89.66 165 | 79.74 16 | 82.23 105 | 89.41 161 | 70.24 70 | 94.74 99 | 79.95 97 | 83.92 190 | 92.99 106 |
|
| RPSCF | | | 73.23 277 | 71.46 281 | 78.54 270 | 82.50 312 | 59.85 279 | 82.18 279 | 82.84 303 | 58.96 347 | 71.15 292 | 89.41 161 | 45.48 328 | 84.77 330 | 58.82 292 | 71.83 342 | 91.02 167 |
|
| UniMVSNet_NR-MVSNet | | | 81.88 111 | 81.54 111 | 82.92 173 | 88.46 168 | 63.46 228 | 87.13 169 | 92.37 77 | 80.19 12 | 78.38 158 | 89.14 163 | 71.66 55 | 93.05 177 | 70.05 189 | 76.46 285 | 92.25 129 |
|
| tttt0517 | | | 79.40 169 | 77.91 182 | 83.90 140 | 88.10 182 | 63.84 218 | 88.37 131 | 84.05 278 | 71.45 174 | 76.78 194 | 89.12 164 | 49.93 286 | 94.89 93 | 70.18 188 | 83.18 207 | 92.96 107 |
|
| DU-MVS | | | 81.12 127 | 80.52 126 | 82.90 174 | 87.80 196 | 63.46 228 | 87.02 173 | 91.87 99 | 79.01 26 | 78.38 158 | 89.07 165 | 65.02 126 | 93.05 177 | 70.05 189 | 76.46 285 | 92.20 132 |
|
| NR-MVSNet | | | 80.23 151 | 79.38 148 | 82.78 182 | 87.80 196 | 63.34 231 | 86.31 196 | 91.09 125 | 79.01 26 | 72.17 281 | 89.07 165 | 67.20 103 | 92.81 186 | 66.08 228 | 75.65 298 | 92.20 132 |
|
| DELS-MVS | | | 85.41 60 | 85.30 62 | 85.77 67 | 88.49 166 | 67.93 133 | 85.52 221 | 93.44 27 | 78.70 29 | 83.63 91 | 89.03 167 | 74.57 24 | 95.71 58 | 80.26 96 | 94.04 61 | 93.66 70 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| mvsmamba | | | 80.60 141 | 79.38 148 | 84.27 114 | 89.74 117 | 67.24 153 | 87.47 159 | 86.95 239 | 70.02 204 | 75.38 228 | 88.93 168 | 51.24 269 | 92.56 190 | 75.47 141 | 89.22 117 | 93.00 105 |
|
| baseline1 | | | 76.98 226 | 76.75 215 | 77.66 284 | 88.13 180 | 55.66 334 | 85.12 225 | 81.89 311 | 73.04 152 | 76.79 193 | 88.90 169 | 62.43 154 | 87.78 302 | 63.30 249 | 71.18 346 | 89.55 228 |
|
| DP-MVS | | | 76.78 230 | 74.57 246 | 83.42 149 | 93.29 48 | 69.46 94 | 88.55 124 | 83.70 282 | 63.98 302 | 70.20 298 | 88.89 170 | 54.01 237 | 94.80 97 | 46.66 365 | 81.88 223 | 86.01 315 |
|
| ab-mvs | | | 79.51 163 | 78.97 160 | 81.14 217 | 88.46 168 | 60.91 265 | 83.84 254 | 89.24 180 | 70.36 196 | 79.03 143 | 88.87 171 | 63.23 141 | 90.21 262 | 65.12 235 | 82.57 215 | 92.28 128 |
|
| PEN-MVS | | | 77.73 211 | 77.69 193 | 77.84 281 | 87.07 221 | 53.91 351 | 87.91 148 | 91.18 120 | 77.56 43 | 73.14 268 | 88.82 172 | 61.23 176 | 89.17 280 | 59.95 279 | 72.37 336 | 90.43 188 |
|
| tt0805 | | | 78.73 185 | 77.83 185 | 81.43 207 | 85.17 251 | 60.30 275 | 89.41 93 | 90.90 128 | 71.21 178 | 77.17 188 | 88.73 173 | 46.38 313 | 93.21 164 | 72.57 168 | 78.96 256 | 90.79 172 |
|
| test_djsdf | | | 80.30 150 | 79.32 151 | 83.27 155 | 83.98 277 | 65.37 189 | 90.50 61 | 90.38 142 | 68.55 241 | 76.19 209 | 88.70 174 | 56.44 219 | 93.46 153 | 78.98 102 | 80.14 244 | 90.97 168 |
|
| PAPM | | | 77.68 215 | 76.40 222 | 81.51 205 | 87.29 217 | 61.85 255 | 83.78 255 | 89.59 167 | 64.74 289 | 71.23 290 | 88.70 174 | 62.59 150 | 93.66 143 | 52.66 332 | 87.03 147 | 89.01 243 |
|
| DTE-MVSNet | | | 76.99 225 | 76.80 211 | 77.54 288 | 86.24 233 | 53.06 360 | 87.52 157 | 90.66 134 | 77.08 59 | 72.50 276 | 88.67 176 | 60.48 190 | 89.52 274 | 57.33 307 | 70.74 348 | 90.05 209 |
|
| PS-CasMVS | | | 78.01 205 | 78.09 178 | 77.77 283 | 87.71 201 | 54.39 348 | 88.02 142 | 91.22 118 | 77.50 46 | 73.26 266 | 88.64 177 | 60.73 183 | 88.41 295 | 61.88 264 | 73.88 325 | 90.53 184 |
|
| cdsmvs_eth3d_5k | | | 19.96 381 | 26.61 383 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 89.26 179 | 0.00 419 | 0.00 420 | 88.61 178 | 61.62 166 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| lupinMVS | | | 81.39 123 | 80.27 132 | 84.76 96 | 87.35 210 | 70.21 77 | 85.55 217 | 86.41 247 | 62.85 313 | 81.32 116 | 88.61 178 | 61.68 164 | 92.24 205 | 78.41 109 | 90.26 102 | 91.83 141 |
|
| F-COLMAP | | | 76.38 240 | 74.33 251 | 82.50 188 | 89.28 137 | 66.95 161 | 88.41 127 | 89.03 188 | 64.05 300 | 66.83 335 | 88.61 178 | 46.78 310 | 92.89 182 | 57.48 304 | 78.55 258 | 87.67 277 |
|
| mvs_anonymous | | | 79.42 168 | 79.11 157 | 80.34 235 | 84.45 268 | 57.97 297 | 82.59 275 | 87.62 225 | 67.40 256 | 76.17 212 | 88.56 181 | 68.47 89 | 89.59 273 | 70.65 184 | 86.05 163 | 93.47 84 |
|
| CP-MVSNet | | | 78.22 196 | 78.34 172 | 77.84 281 | 87.83 195 | 54.54 346 | 87.94 146 | 91.17 121 | 77.65 38 | 73.48 264 | 88.49 182 | 62.24 158 | 88.43 294 | 62.19 260 | 74.07 321 | 90.55 183 |
|
| PVSNet_Blended_VisFu | | | 82.62 100 | 81.83 109 | 84.96 87 | 90.80 91 | 69.76 87 | 88.74 117 | 91.70 106 | 69.39 219 | 78.96 144 | 88.46 183 | 65.47 122 | 94.87 95 | 74.42 147 | 88.57 128 | 90.24 196 |
|
| CANet_DTU | | | 80.61 140 | 79.87 138 | 82.83 176 | 85.60 244 | 63.17 237 | 87.36 163 | 88.65 204 | 76.37 80 | 75.88 215 | 88.44 184 | 53.51 241 | 93.07 176 | 73.30 159 | 89.74 112 | 92.25 129 |
|
| PLC |  | 70.83 11 | 78.05 203 | 76.37 223 | 83.08 165 | 91.88 74 | 67.80 135 | 88.19 137 | 89.46 171 | 64.33 295 | 69.87 307 | 88.38 185 | 53.66 239 | 93.58 144 | 58.86 291 | 82.73 212 | 87.86 274 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| WR-MVS | | | 79.49 164 | 79.22 155 | 80.27 237 | 88.79 156 | 58.35 290 | 85.06 226 | 88.61 206 | 78.56 30 | 77.65 174 | 88.34 186 | 63.81 136 | 90.66 257 | 64.98 237 | 77.22 274 | 91.80 143 |
|
| XXY-MVS | | | 75.41 254 | 75.56 232 | 74.96 314 | 83.59 284 | 57.82 301 | 80.59 302 | 83.87 281 | 66.54 268 | 74.93 246 | 88.31 187 | 63.24 140 | 80.09 356 | 62.16 261 | 76.85 280 | 86.97 297 |
|
| Effi-MVS+ | | | 83.62 83 | 83.08 86 | 85.24 78 | 88.38 172 | 67.45 144 | 88.89 110 | 89.15 184 | 75.50 96 | 82.27 104 | 88.28 188 | 69.61 76 | 94.45 109 | 77.81 114 | 87.84 136 | 93.84 64 |
|
| API-MVS | | | 81.99 110 | 81.23 114 | 84.26 116 | 90.94 87 | 70.18 82 | 91.10 52 | 89.32 175 | 71.51 173 | 78.66 151 | 88.28 188 | 65.26 123 | 95.10 85 | 64.74 239 | 91.23 90 | 87.51 282 |
|
| thisisatest0530 | | | 79.40 169 | 77.76 190 | 84.31 110 | 87.69 203 | 65.10 194 | 87.36 163 | 84.26 276 | 70.04 203 | 77.42 178 | 88.26 190 | 49.94 284 | 94.79 98 | 70.20 187 | 84.70 177 | 93.03 102 |
|
| hse-mvs2 | | | 81.72 114 | 80.94 120 | 84.07 126 | 88.72 159 | 67.68 138 | 85.87 208 | 87.26 233 | 76.02 87 | 84.67 67 | 88.22 191 | 61.54 167 | 93.48 151 | 82.71 73 | 73.44 330 | 91.06 163 |
|
| xiu_mvs_v1_base_debu | | | 80.80 135 | 79.72 141 | 84.03 133 | 87.35 210 | 70.19 79 | 85.56 214 | 88.77 198 | 69.06 231 | 81.83 108 | 88.16 192 | 50.91 272 | 92.85 183 | 78.29 111 | 87.56 138 | 89.06 238 |
|
| xiu_mvs_v1_base | | | 80.80 135 | 79.72 141 | 84.03 133 | 87.35 210 | 70.19 79 | 85.56 214 | 88.77 198 | 69.06 231 | 81.83 108 | 88.16 192 | 50.91 272 | 92.85 183 | 78.29 111 | 87.56 138 | 89.06 238 |
|
| xiu_mvs_v1_base_debi | | | 80.80 135 | 79.72 141 | 84.03 133 | 87.35 210 | 70.19 79 | 85.56 214 | 88.77 198 | 69.06 231 | 81.83 108 | 88.16 192 | 50.91 272 | 92.85 183 | 78.29 111 | 87.56 138 | 89.06 238 |
|
| UniMVSNet (Re) | | | 81.60 119 | 81.11 116 | 83.09 164 | 88.38 172 | 64.41 209 | 87.60 155 | 93.02 42 | 78.42 32 | 78.56 154 | 88.16 192 | 69.78 74 | 93.26 160 | 69.58 196 | 76.49 284 | 91.60 145 |
|
| AUN-MVS | | | 79.21 174 | 77.60 195 | 84.05 131 | 88.71 160 | 67.61 140 | 85.84 210 | 87.26 233 | 69.08 230 | 77.23 184 | 88.14 196 | 53.20 245 | 93.47 152 | 75.50 140 | 73.45 329 | 91.06 163 |
|
| Anonymous20231211 | | | 78.97 181 | 77.69 193 | 82.81 178 | 90.54 96 | 64.29 211 | 90.11 72 | 91.51 111 | 65.01 287 | 76.16 213 | 88.13 197 | 50.56 277 | 93.03 180 | 69.68 195 | 77.56 272 | 91.11 161 |
|
| pm-mvs1 | | | 77.25 223 | 76.68 217 | 78.93 262 | 84.22 271 | 58.62 288 | 86.41 192 | 88.36 209 | 71.37 175 | 73.31 265 | 88.01 198 | 61.22 177 | 89.15 281 | 64.24 243 | 73.01 333 | 89.03 242 |
|
| LTVRE_ROB | | 69.57 13 | 76.25 241 | 74.54 248 | 81.41 208 | 88.60 163 | 64.38 210 | 79.24 319 | 89.12 187 | 70.76 188 | 69.79 309 | 87.86 199 | 49.09 296 | 93.20 167 | 56.21 317 | 80.16 242 | 86.65 304 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| WTY-MVS | | | 75.65 249 | 75.68 229 | 75.57 305 | 86.40 232 | 56.82 314 | 77.92 341 | 82.40 306 | 65.10 284 | 76.18 210 | 87.72 200 | 63.13 146 | 80.90 353 | 60.31 277 | 81.96 221 | 89.00 245 |
|
| TAMVS | | | 78.89 183 | 77.51 197 | 83.03 168 | 87.80 196 | 67.79 136 | 84.72 233 | 85.05 265 | 67.63 251 | 76.75 195 | 87.70 201 | 62.25 157 | 90.82 253 | 58.53 295 | 87.13 145 | 90.49 186 |
|
| BH-untuned | | | 79.47 165 | 78.60 165 | 82.05 194 | 89.19 141 | 65.91 175 | 86.07 203 | 88.52 207 | 72.18 162 | 75.42 226 | 87.69 202 | 61.15 178 | 93.54 148 | 60.38 276 | 86.83 150 | 86.70 303 |
|
| COLMAP_ROB |  | 66.92 17 | 73.01 280 | 70.41 295 | 80.81 226 | 87.13 220 | 65.63 182 | 88.30 134 | 84.19 277 | 62.96 311 | 63.80 361 | 87.69 202 | 38.04 366 | 92.56 190 | 46.66 365 | 74.91 315 | 84.24 340 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| OurMVSNet-221017-0 | | | 74.26 262 | 72.42 272 | 79.80 246 | 83.76 282 | 59.59 283 | 85.92 207 | 86.64 244 | 66.39 269 | 66.96 333 | 87.58 204 | 39.46 358 | 91.60 225 | 65.76 231 | 69.27 353 | 88.22 267 |
|
| FA-MVS(test-final) | | | 80.96 129 | 79.91 137 | 84.10 120 | 88.30 175 | 65.01 195 | 84.55 239 | 90.01 156 | 73.25 148 | 79.61 136 | 87.57 205 | 58.35 202 | 94.72 100 | 71.29 177 | 86.25 159 | 92.56 117 |
|
| Baseline_NR-MVSNet | | | 78.15 200 | 78.33 173 | 77.61 286 | 85.79 240 | 56.21 327 | 86.78 182 | 85.76 258 | 73.60 137 | 77.93 170 | 87.57 205 | 65.02 126 | 88.99 283 | 67.14 220 | 75.33 309 | 87.63 278 |
|
| WR-MVS_H | | | 78.51 191 | 78.49 167 | 78.56 269 | 88.02 186 | 56.38 323 | 88.43 126 | 92.67 63 | 77.14 56 | 73.89 259 | 87.55 207 | 66.25 113 | 89.24 279 | 58.92 290 | 73.55 328 | 90.06 208 |
|
| EI-MVSNet | | | 80.52 145 | 79.98 135 | 82.12 192 | 84.28 269 | 63.19 236 | 86.41 192 | 88.95 194 | 74.18 124 | 78.69 149 | 87.54 208 | 66.62 106 | 92.43 195 | 72.57 168 | 80.57 238 | 90.74 176 |
|
| CVMVSNet | | | 72.99 281 | 72.58 270 | 74.25 322 | 84.28 269 | 50.85 375 | 86.41 192 | 83.45 288 | 44.56 390 | 73.23 267 | 87.54 208 | 49.38 291 | 85.70 318 | 65.90 229 | 78.44 261 | 86.19 310 |
|
| ACMH+ | | 68.96 14 | 76.01 245 | 74.01 253 | 82.03 195 | 88.60 163 | 65.31 190 | 88.86 111 | 87.55 226 | 70.25 201 | 67.75 324 | 87.47 210 | 41.27 350 | 93.19 169 | 58.37 297 | 75.94 295 | 87.60 279 |
|
| TransMVSNet (Re) | | | 75.39 255 | 74.56 247 | 77.86 280 | 85.50 246 | 57.10 311 | 86.78 182 | 86.09 255 | 72.17 163 | 71.53 288 | 87.34 211 | 63.01 147 | 89.31 278 | 56.84 312 | 61.83 374 | 87.17 290 |
|
| GBi-Net | | | 78.40 192 | 77.40 198 | 81.40 209 | 87.60 205 | 63.01 238 | 88.39 128 | 89.28 176 | 71.63 168 | 75.34 230 | 87.28 212 | 54.80 226 | 91.11 244 | 62.72 252 | 79.57 248 | 90.09 204 |
|
| test1 | | | 78.40 192 | 77.40 198 | 81.40 209 | 87.60 205 | 63.01 238 | 88.39 128 | 89.28 176 | 71.63 168 | 75.34 230 | 87.28 212 | 54.80 226 | 91.11 244 | 62.72 252 | 79.57 248 | 90.09 204 |
|
| FMVSNet2 | | | 78.20 198 | 77.21 202 | 81.20 215 | 87.60 205 | 62.89 244 | 87.47 159 | 89.02 189 | 71.63 168 | 75.29 236 | 87.28 212 | 54.80 226 | 91.10 247 | 62.38 257 | 79.38 252 | 89.61 226 |
|
| FMVSNet1 | | | 77.44 218 | 76.12 225 | 81.40 209 | 86.81 225 | 63.01 238 | 88.39 128 | 89.28 176 | 70.49 195 | 74.39 255 | 87.28 212 | 49.06 297 | 91.11 244 | 60.91 273 | 78.52 259 | 90.09 204 |
|
| v2v482 | | | 80.23 151 | 79.29 152 | 83.05 167 | 83.62 283 | 64.14 213 | 87.04 172 | 89.97 157 | 73.61 136 | 78.18 164 | 87.22 216 | 61.10 179 | 93.82 134 | 76.11 130 | 76.78 282 | 91.18 159 |
|
| ITE_SJBPF | | | | | 78.22 275 | 81.77 322 | 60.57 270 | | 83.30 289 | 69.25 224 | 67.54 326 | 87.20 217 | 36.33 371 | 87.28 306 | 54.34 324 | 74.62 318 | 86.80 300 |
|
| anonymousdsp | | | 78.60 189 | 77.15 203 | 82.98 171 | 80.51 341 | 67.08 156 | 87.24 168 | 89.53 169 | 65.66 278 | 75.16 239 | 87.19 218 | 52.52 246 | 92.25 204 | 77.17 121 | 79.34 253 | 89.61 226 |
|
| MVSTER | | | 79.01 179 | 77.88 184 | 82.38 190 | 83.07 297 | 64.80 200 | 84.08 253 | 88.95 194 | 69.01 234 | 78.69 149 | 87.17 219 | 54.70 230 | 92.43 195 | 74.69 144 | 80.57 238 | 89.89 217 |
|
| thres100view900 | | | 76.50 234 | 75.55 233 | 79.33 255 | 89.52 122 | 56.99 312 | 85.83 211 | 83.23 291 | 73.94 128 | 76.32 206 | 87.12 220 | 51.89 261 | 91.95 213 | 48.33 356 | 83.75 194 | 89.07 236 |
|
| thres600view7 | | | 76.50 234 | 75.44 234 | 79.68 249 | 89.40 129 | 57.16 309 | 85.53 219 | 83.23 291 | 73.79 132 | 76.26 207 | 87.09 221 | 51.89 261 | 91.89 216 | 48.05 361 | 83.72 197 | 90.00 210 |
|
| XVG-ACMP-BASELINE | | | 76.11 243 | 74.27 252 | 81.62 202 | 83.20 293 | 64.67 202 | 83.60 260 | 89.75 163 | 69.75 214 | 71.85 284 | 87.09 221 | 32.78 378 | 92.11 208 | 69.99 191 | 80.43 240 | 88.09 270 |
|
| HY-MVS | | 69.67 12 | 77.95 206 | 77.15 203 | 80.36 234 | 87.57 209 | 60.21 277 | 83.37 264 | 87.78 223 | 66.11 271 | 75.37 229 | 87.06 223 | 63.27 139 | 90.48 259 | 61.38 270 | 82.43 216 | 90.40 190 |
|
| CHOSEN 1792x2688 | | | 77.63 216 | 75.69 228 | 83.44 148 | 89.98 111 | 68.58 119 | 78.70 329 | 87.50 228 | 56.38 365 | 75.80 217 | 86.84 224 | 58.67 199 | 91.40 238 | 61.58 268 | 85.75 169 | 90.34 191 |
|
| v8 | | | 79.97 157 | 79.02 159 | 82.80 179 | 84.09 274 | 64.50 206 | 87.96 144 | 90.29 149 | 74.13 126 | 75.24 237 | 86.81 225 | 62.88 148 | 93.89 133 | 74.39 148 | 75.40 307 | 90.00 210 |
|
| AllTest | | | 70.96 297 | 68.09 312 | 79.58 252 | 85.15 253 | 63.62 221 | 84.58 238 | 79.83 335 | 62.31 320 | 60.32 373 | 86.73 226 | 32.02 379 | 88.96 286 | 50.28 345 | 71.57 344 | 86.15 311 |
|
| TestCases | | | | | 79.58 252 | 85.15 253 | 63.62 221 | | 79.83 335 | 62.31 320 | 60.32 373 | 86.73 226 | 32.02 379 | 88.96 286 | 50.28 345 | 71.57 344 | 86.15 311 |
|
| LCM-MVSNet-Re | | | 77.05 224 | 76.94 208 | 77.36 289 | 87.20 218 | 51.60 368 | 80.06 309 | 80.46 328 | 75.20 101 | 67.69 325 | 86.72 228 | 62.48 152 | 88.98 284 | 63.44 247 | 89.25 116 | 91.51 149 |
|
| 1112_ss | | | 77.40 220 | 76.43 221 | 80.32 236 | 89.11 147 | 60.41 274 | 83.65 257 | 87.72 224 | 62.13 323 | 73.05 269 | 86.72 228 | 62.58 151 | 89.97 266 | 62.11 263 | 80.80 234 | 90.59 182 |
|
| ab-mvs-re | | | 7.23 384 | 9.64 387 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 86.72 228 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| IterMVS-LS | | | 80.06 154 | 79.38 148 | 82.11 193 | 85.89 239 | 63.20 235 | 86.79 181 | 89.34 174 | 74.19 123 | 75.45 225 | 86.72 228 | 66.62 106 | 92.39 197 | 72.58 167 | 76.86 279 | 90.75 175 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| ACMH | | 67.68 16 | 75.89 246 | 73.93 255 | 81.77 200 | 88.71 160 | 66.61 163 | 88.62 122 | 89.01 190 | 69.81 210 | 66.78 336 | 86.70 232 | 41.95 349 | 91.51 233 | 55.64 318 | 78.14 265 | 87.17 290 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| Test_1112_low_res | | | 76.40 239 | 75.44 234 | 79.27 256 | 89.28 137 | 58.09 293 | 81.69 284 | 87.07 237 | 59.53 342 | 72.48 277 | 86.67 233 | 61.30 174 | 89.33 277 | 60.81 275 | 80.15 243 | 90.41 189 |
|
| FMVSNet3 | | | 77.88 208 | 76.85 210 | 80.97 223 | 86.84 224 | 62.36 247 | 86.52 190 | 88.77 198 | 71.13 179 | 75.34 230 | 86.66 234 | 54.07 236 | 91.10 247 | 62.72 252 | 79.57 248 | 89.45 230 |
|
| pmmvs6 | | | 74.69 259 | 73.39 261 | 78.61 266 | 81.38 330 | 57.48 306 | 86.64 186 | 87.95 217 | 64.99 288 | 70.18 299 | 86.61 235 | 50.43 279 | 89.52 274 | 62.12 262 | 70.18 350 | 88.83 252 |
|
| ET-MVSNet_ETH3D | | | 78.63 188 | 76.63 218 | 84.64 98 | 86.73 227 | 69.47 92 | 85.01 227 | 84.61 269 | 69.54 217 | 66.51 343 | 86.59 236 | 50.16 281 | 91.75 221 | 76.26 129 | 84.24 187 | 92.69 113 |
|
| testgi | | | 66.67 334 | 66.53 331 | 67.08 368 | 75.62 373 | 41.69 403 | 75.93 349 | 76.50 360 | 66.11 271 | 65.20 353 | 86.59 236 | 35.72 373 | 74.71 387 | 43.71 377 | 73.38 331 | 84.84 334 |
|
| CLD-MVS | | | 82.31 104 | 81.65 110 | 84.29 111 | 88.47 167 | 67.73 137 | 85.81 212 | 92.35 78 | 75.78 90 | 78.33 160 | 86.58 238 | 64.01 133 | 94.35 110 | 76.05 132 | 87.48 141 | 90.79 172 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| v10 | | | 79.74 159 | 78.67 163 | 82.97 172 | 84.06 275 | 64.95 196 | 87.88 150 | 90.62 135 | 73.11 150 | 75.11 241 | 86.56 239 | 61.46 170 | 94.05 122 | 73.68 153 | 75.55 300 | 89.90 216 |
|
| CDS-MVSNet | | | 79.07 178 | 77.70 192 | 83.17 161 | 87.60 205 | 68.23 126 | 84.40 246 | 86.20 252 | 67.49 254 | 76.36 205 | 86.54 240 | 61.54 167 | 90.79 254 | 61.86 265 | 87.33 142 | 90.49 186 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| xiu_mvs_v2_base | | | 81.69 116 | 81.05 117 | 83.60 144 | 89.15 142 | 68.03 132 | 84.46 242 | 90.02 155 | 70.67 189 | 81.30 119 | 86.53 241 | 63.17 142 | 94.19 118 | 75.60 138 | 88.54 129 | 88.57 262 |
|
| TR-MVS | | | 77.44 218 | 76.18 224 | 81.20 215 | 88.24 176 | 63.24 233 | 84.61 237 | 86.40 248 | 67.55 253 | 77.81 171 | 86.48 242 | 54.10 235 | 93.15 171 | 57.75 303 | 82.72 213 | 87.20 289 |
|
| EIA-MVS | | | 83.31 91 | 82.80 93 | 84.82 93 | 89.59 119 | 65.59 183 | 88.21 136 | 92.68 62 | 74.66 114 | 78.96 144 | 86.42 243 | 69.06 83 | 95.26 75 | 75.54 139 | 90.09 105 | 93.62 77 |
|
| tfpn200view9 | | | 76.42 238 | 75.37 238 | 79.55 254 | 89.13 143 | 57.65 303 | 85.17 222 | 83.60 283 | 73.41 143 | 76.45 202 | 86.39 244 | 52.12 253 | 91.95 213 | 48.33 356 | 83.75 194 | 89.07 236 |
|
| thres400 | | | 76.50 234 | 75.37 238 | 79.86 244 | 89.13 143 | 57.65 303 | 85.17 222 | 83.60 283 | 73.41 143 | 76.45 202 | 86.39 244 | 52.12 253 | 91.95 213 | 48.33 356 | 83.75 194 | 90.00 210 |
|
| v7n | | | 78.97 181 | 77.58 196 | 83.14 162 | 83.45 287 | 65.51 184 | 88.32 133 | 91.21 119 | 73.69 134 | 72.41 278 | 86.32 246 | 57.93 204 | 93.81 135 | 69.18 199 | 75.65 298 | 90.11 202 |
|
| MAR-MVS | | | 81.84 112 | 80.70 122 | 85.27 77 | 91.32 79 | 71.53 54 | 89.82 76 | 90.92 127 | 69.77 213 | 78.50 155 | 86.21 247 | 62.36 155 | 94.52 106 | 65.36 233 | 92.05 79 | 89.77 222 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| v1144 | | | 80.03 155 | 79.03 158 | 83.01 169 | 83.78 281 | 64.51 204 | 87.11 171 | 90.57 138 | 71.96 165 | 78.08 167 | 86.20 248 | 61.41 171 | 93.94 126 | 74.93 143 | 77.23 273 | 90.60 181 |
|
| test_vis1_n_1920 | | | 75.52 251 | 75.78 227 | 74.75 318 | 79.84 349 | 57.44 307 | 83.26 265 | 85.52 260 | 62.83 314 | 79.34 141 | 86.17 249 | 45.10 329 | 79.71 357 | 78.75 104 | 81.21 229 | 87.10 296 |
|
| V42 | | | 79.38 171 | 78.24 175 | 82.83 176 | 81.10 335 | 65.50 185 | 85.55 217 | 89.82 160 | 71.57 172 | 78.21 162 | 86.12 250 | 60.66 186 | 93.18 170 | 75.64 136 | 75.46 304 | 89.81 221 |
|
| PVSNet_BlendedMVS | | | 80.60 141 | 80.02 134 | 82.36 191 | 88.85 150 | 65.40 186 | 86.16 201 | 92.00 91 | 69.34 221 | 78.11 165 | 86.09 251 | 66.02 117 | 94.27 113 | 71.52 173 | 82.06 220 | 87.39 284 |
|
| v1192 | | | 79.59 162 | 78.43 170 | 83.07 166 | 83.55 285 | 64.52 203 | 86.93 176 | 90.58 136 | 70.83 185 | 77.78 172 | 85.90 252 | 59.15 197 | 93.94 126 | 73.96 152 | 77.19 275 | 90.76 174 |
|
| SixPastTwentyTwo | | | 73.37 273 | 71.26 286 | 79.70 248 | 85.08 256 | 57.89 299 | 85.57 213 | 83.56 285 | 71.03 183 | 65.66 347 | 85.88 253 | 42.10 347 | 92.57 189 | 59.11 288 | 63.34 372 | 88.65 260 |
|
| EPNet_dtu | | | 75.46 252 | 74.86 243 | 77.23 292 | 82.57 311 | 54.60 345 | 86.89 177 | 83.09 295 | 71.64 167 | 66.25 345 | 85.86 254 | 55.99 220 | 88.04 299 | 54.92 321 | 86.55 154 | 89.05 241 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| sss | | | 73.60 270 | 73.64 260 | 73.51 328 | 82.80 305 | 55.01 342 | 76.12 348 | 81.69 314 | 62.47 319 | 74.68 250 | 85.85 255 | 57.32 212 | 78.11 364 | 60.86 274 | 80.93 231 | 87.39 284 |
|
| ETV-MVS | | | 84.90 69 | 84.67 69 | 85.59 70 | 89.39 130 | 68.66 117 | 88.74 117 | 92.64 68 | 79.97 15 | 84.10 81 | 85.71 256 | 69.32 79 | 95.38 71 | 80.82 90 | 91.37 88 | 92.72 110 |
|
| test_cas_vis1_n_1920 | | | 73.76 269 | 73.74 259 | 73.81 326 | 75.90 370 | 59.77 280 | 80.51 303 | 82.40 306 | 58.30 352 | 81.62 114 | 85.69 257 | 44.35 333 | 76.41 375 | 76.29 128 | 78.61 257 | 85.23 327 |
|
| v1240 | | | 78.99 180 | 77.78 188 | 82.64 185 | 83.21 292 | 63.54 225 | 86.62 187 | 90.30 148 | 69.74 216 | 77.33 180 | 85.68 258 | 57.04 215 | 93.76 139 | 73.13 162 | 76.92 277 | 90.62 179 |
|
| v144192 | | | 79.47 165 | 78.37 171 | 82.78 182 | 83.35 288 | 63.96 216 | 86.96 174 | 90.36 145 | 69.99 206 | 77.50 176 | 85.67 259 | 60.66 186 | 93.77 138 | 74.27 149 | 76.58 283 | 90.62 179 |
|
| tfpnnormal | | | 74.39 260 | 73.16 264 | 78.08 278 | 86.10 238 | 58.05 294 | 84.65 236 | 87.53 227 | 70.32 198 | 71.22 291 | 85.63 260 | 54.97 224 | 89.86 267 | 43.03 379 | 75.02 314 | 86.32 307 |
|
| PS-MVSNAJ | | | 81.69 116 | 81.02 118 | 83.70 142 | 89.51 123 | 68.21 127 | 84.28 248 | 90.09 154 | 70.79 186 | 81.26 120 | 85.62 261 | 63.15 143 | 94.29 111 | 75.62 137 | 88.87 122 | 88.59 261 |
|
| v1921920 | | | 79.22 173 | 78.03 179 | 82.80 179 | 83.30 290 | 63.94 217 | 86.80 180 | 90.33 146 | 69.91 209 | 77.48 177 | 85.53 262 | 58.44 201 | 93.75 140 | 73.60 154 | 76.85 280 | 90.71 177 |
|
| test_0402 | | | 72.79 283 | 70.44 294 | 79.84 245 | 88.13 180 | 65.99 173 | 85.93 206 | 84.29 274 | 65.57 279 | 67.40 330 | 85.49 263 | 46.92 309 | 92.61 188 | 35.88 393 | 74.38 320 | 80.94 371 |
|
| v148 | | | 78.72 186 | 77.80 187 | 81.47 206 | 82.73 307 | 61.96 254 | 86.30 197 | 88.08 213 | 73.26 147 | 76.18 210 | 85.47 264 | 62.46 153 | 92.36 199 | 71.92 172 | 73.82 326 | 90.09 204 |
|
| USDC | | | 70.33 305 | 68.37 307 | 76.21 299 | 80.60 339 | 56.23 326 | 79.19 321 | 86.49 246 | 60.89 330 | 61.29 369 | 85.47 264 | 31.78 381 | 89.47 276 | 53.37 329 | 76.21 293 | 82.94 358 |
|
| MVP-Stereo | | | 76.12 242 | 74.46 250 | 81.13 218 | 85.37 249 | 69.79 86 | 84.42 245 | 87.95 217 | 65.03 286 | 67.46 328 | 85.33 266 | 53.28 244 | 91.73 223 | 58.01 301 | 83.27 205 | 81.85 366 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| MVS | | | 78.19 199 | 76.99 207 | 81.78 199 | 85.66 242 | 66.99 157 | 84.66 234 | 90.47 140 | 55.08 370 | 72.02 283 | 85.27 267 | 63.83 135 | 94.11 121 | 66.10 227 | 89.80 111 | 84.24 340 |
|
| DIV-MVS_self_test | | | 77.72 212 | 76.76 213 | 80.58 230 | 82.48 314 | 60.48 272 | 83.09 269 | 87.86 220 | 69.22 225 | 74.38 256 | 85.24 268 | 62.10 160 | 91.53 231 | 71.09 178 | 75.40 307 | 89.74 223 |
|
| FE-MVS | | | 77.78 210 | 75.68 229 | 84.08 125 | 88.09 183 | 66.00 172 | 83.13 268 | 87.79 222 | 68.42 245 | 78.01 168 | 85.23 269 | 45.50 327 | 95.12 80 | 59.11 288 | 85.83 168 | 91.11 161 |
|
| cl____ | | | 77.72 212 | 76.76 213 | 80.58 230 | 82.49 313 | 60.48 272 | 83.09 269 | 87.87 219 | 69.22 225 | 74.38 256 | 85.22 270 | 62.10 160 | 91.53 231 | 71.09 178 | 75.41 306 | 89.73 224 |
|
| HyFIR lowres test | | | 77.53 217 | 75.40 236 | 83.94 139 | 89.59 119 | 66.62 162 | 80.36 306 | 88.64 205 | 56.29 366 | 76.45 202 | 85.17 271 | 57.64 208 | 93.28 159 | 61.34 271 | 83.10 208 | 91.91 140 |
|
| pmmvs4 | | | 74.03 267 | 71.91 276 | 80.39 233 | 81.96 319 | 68.32 123 | 81.45 288 | 82.14 308 | 59.32 343 | 69.87 307 | 85.13 272 | 52.40 249 | 88.13 298 | 60.21 278 | 74.74 317 | 84.73 336 |
|
| TDRefinement | | | 67.49 327 | 64.34 337 | 76.92 294 | 73.47 385 | 61.07 263 | 84.86 231 | 82.98 299 | 59.77 339 | 58.30 380 | 85.13 272 | 26.06 389 | 87.89 300 | 47.92 362 | 60.59 379 | 81.81 367 |
|
| Fast-Effi-MVS+ | | | 80.81 133 | 79.92 136 | 83.47 147 | 88.85 150 | 64.51 204 | 85.53 219 | 89.39 173 | 70.79 186 | 78.49 156 | 85.06 274 | 67.54 99 | 93.58 144 | 67.03 222 | 86.58 153 | 92.32 126 |
|
| PVSNet_Blended | | | 80.98 128 | 80.34 129 | 82.90 174 | 88.85 150 | 65.40 186 | 84.43 244 | 92.00 91 | 67.62 252 | 78.11 165 | 85.05 275 | 66.02 117 | 94.27 113 | 71.52 173 | 89.50 113 | 89.01 243 |
|
| m2depth | | | 59.91 353 | 57.10 357 | 68.34 363 | 67.13 399 | 46.65 388 | 74.64 362 | 67.41 390 | 48.30 385 | 62.52 367 | 85.04 276 | 20.40 399 | 75.93 379 | 42.55 381 | 45.90 400 | 82.44 361 |
|
| test_fmvs1_n | | | 70.86 299 | 70.24 297 | 72.73 335 | 72.51 392 | 55.28 339 | 81.27 291 | 79.71 337 | 51.49 381 | 78.73 148 | 84.87 277 | 27.54 388 | 77.02 369 | 76.06 131 | 79.97 246 | 85.88 318 |
|
| WBMVS | | | 73.43 272 | 72.81 267 | 75.28 311 | 87.91 191 | 50.99 374 | 78.59 332 | 81.31 319 | 65.51 282 | 74.47 254 | 84.83 278 | 46.39 312 | 86.68 309 | 58.41 296 | 77.86 267 | 88.17 269 |
|
| CMPMVS |  | 51.72 21 | 70.19 307 | 68.16 310 | 76.28 298 | 73.15 388 | 57.55 305 | 79.47 316 | 83.92 279 | 48.02 386 | 56.48 386 | 84.81 279 | 43.13 339 | 86.42 313 | 62.67 255 | 81.81 224 | 84.89 333 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| EU-MVSNet | | | 68.53 322 | 67.61 322 | 71.31 347 | 78.51 362 | 47.01 386 | 84.47 240 | 84.27 275 | 42.27 393 | 66.44 344 | 84.79 280 | 40.44 355 | 83.76 335 | 58.76 293 | 68.54 358 | 83.17 352 |
|
| BH-w/o | | | 78.21 197 | 77.33 201 | 80.84 225 | 88.81 154 | 65.13 193 | 84.87 230 | 87.85 221 | 69.75 214 | 74.52 253 | 84.74 281 | 61.34 173 | 93.11 174 | 58.24 299 | 85.84 167 | 84.27 339 |
|
| pmmvs5 | | | 71.55 292 | 70.20 298 | 75.61 304 | 77.83 363 | 56.39 322 | 81.74 283 | 80.89 320 | 57.76 356 | 67.46 328 | 84.49 282 | 49.26 294 | 85.32 325 | 57.08 309 | 75.29 310 | 85.11 331 |
|
| thres200 | | | 75.55 250 | 74.47 249 | 78.82 263 | 87.78 199 | 57.85 300 | 83.07 271 | 83.51 286 | 72.44 159 | 75.84 216 | 84.42 283 | 52.08 256 | 91.75 221 | 47.41 363 | 83.64 199 | 86.86 299 |
|
| test_fmvs1 | | | 70.93 298 | 70.52 292 | 72.16 339 | 73.71 381 | 55.05 341 | 80.82 294 | 78.77 344 | 51.21 382 | 78.58 153 | 84.41 284 | 31.20 383 | 76.94 370 | 75.88 134 | 80.12 245 | 84.47 338 |
|
| testing3 | | | 68.56 321 | 67.67 321 | 71.22 348 | 87.33 215 | 42.87 398 | 83.06 272 | 71.54 378 | 70.36 196 | 69.08 315 | 84.38 285 | 30.33 385 | 85.69 319 | 37.50 391 | 75.45 305 | 85.09 332 |
|
| test_fmvs2 | | | 68.35 324 | 67.48 324 | 70.98 350 | 69.50 395 | 51.95 363 | 80.05 310 | 76.38 361 | 49.33 384 | 74.65 251 | 84.38 285 | 23.30 397 | 75.40 385 | 74.51 146 | 75.17 313 | 85.60 321 |
|
| eth_miper_zixun_eth | | | 77.92 207 | 76.69 216 | 81.61 204 | 83.00 300 | 61.98 253 | 83.15 267 | 89.20 182 | 69.52 218 | 74.86 247 | 84.35 287 | 61.76 163 | 92.56 190 | 71.50 175 | 72.89 334 | 90.28 195 |
|
| testing91 | | | 76.54 232 | 75.66 231 | 79.18 259 | 88.43 170 | 55.89 330 | 81.08 292 | 83.00 298 | 73.76 133 | 75.34 230 | 84.29 288 | 46.20 318 | 90.07 264 | 64.33 241 | 84.50 179 | 91.58 147 |
|
| c3_l | | | 78.75 184 | 77.91 182 | 81.26 213 | 82.89 304 | 61.56 259 | 84.09 252 | 89.13 186 | 69.97 207 | 75.56 220 | 84.29 288 | 66.36 111 | 92.09 209 | 73.47 157 | 75.48 302 | 90.12 201 |
|
| testing99 | | | 76.09 244 | 75.12 242 | 79.00 260 | 88.16 178 | 55.50 336 | 80.79 296 | 81.40 317 | 73.30 146 | 75.17 238 | 84.27 290 | 44.48 332 | 90.02 265 | 64.28 242 | 84.22 188 | 91.48 152 |
|
| UWE-MVS | | | 72.13 289 | 71.49 280 | 74.03 324 | 86.66 229 | 47.70 383 | 81.40 290 | 76.89 359 | 63.60 305 | 75.59 219 | 84.22 291 | 39.94 357 | 85.62 320 | 48.98 353 | 86.13 162 | 88.77 255 |
|
| Fast-Effi-MVS+-dtu | | | 78.02 204 | 76.49 219 | 82.62 186 | 83.16 296 | 66.96 160 | 86.94 175 | 87.45 230 | 72.45 157 | 71.49 289 | 84.17 292 | 54.79 229 | 91.58 226 | 67.61 213 | 80.31 241 | 89.30 234 |
|
| IterMVS-SCA-FT | | | 75.43 253 | 73.87 257 | 80.11 240 | 82.69 308 | 64.85 199 | 81.57 286 | 83.47 287 | 69.16 228 | 70.49 295 | 84.15 293 | 51.95 259 | 88.15 297 | 69.23 198 | 72.14 340 | 87.34 286 |
|
| 1314 | | | 76.53 233 | 75.30 240 | 80.21 238 | 83.93 278 | 62.32 249 | 84.66 234 | 88.81 196 | 60.23 335 | 70.16 301 | 84.07 294 | 55.30 223 | 90.73 256 | 67.37 216 | 83.21 206 | 87.59 281 |
|
| cl22 | | | 78.07 202 | 77.01 205 | 81.23 214 | 82.37 316 | 61.83 256 | 83.55 261 | 87.98 215 | 68.96 235 | 75.06 243 | 83.87 295 | 61.40 172 | 91.88 217 | 73.53 155 | 76.39 287 | 89.98 213 |
|
| EG-PatchMatch MVS | | | 74.04 265 | 71.82 277 | 80.71 228 | 84.92 258 | 67.42 145 | 85.86 209 | 88.08 213 | 66.04 273 | 64.22 357 | 83.85 296 | 35.10 374 | 92.56 190 | 57.44 305 | 80.83 233 | 82.16 365 |
|
| thisisatest0515 | | | 77.33 221 | 75.38 237 | 83.18 160 | 85.27 250 | 63.80 219 | 82.11 280 | 83.27 290 | 65.06 285 | 75.91 214 | 83.84 297 | 49.54 288 | 94.27 113 | 67.24 218 | 86.19 160 | 91.48 152 |
|
| test20.03 | | | 67.45 328 | 66.95 329 | 68.94 357 | 75.48 374 | 44.84 394 | 77.50 342 | 77.67 349 | 66.66 262 | 63.01 363 | 83.80 298 | 47.02 308 | 78.40 362 | 42.53 382 | 68.86 357 | 83.58 349 |
|
| miper_ehance_all_eth | | | 78.59 190 | 77.76 190 | 81.08 219 | 82.66 309 | 61.56 259 | 83.65 257 | 89.15 184 | 68.87 236 | 75.55 221 | 83.79 299 | 66.49 109 | 92.03 210 | 73.25 160 | 76.39 287 | 89.64 225 |
|
| MSDG | | | 73.36 275 | 70.99 288 | 80.49 232 | 84.51 267 | 65.80 178 | 80.71 300 | 86.13 254 | 65.70 277 | 65.46 348 | 83.74 300 | 44.60 330 | 90.91 252 | 51.13 340 | 76.89 278 | 84.74 335 |
|
| MonoMVSNet | | | 76.49 237 | 75.80 226 | 78.58 268 | 81.55 326 | 58.45 289 | 86.36 195 | 86.22 251 | 74.87 110 | 74.73 249 | 83.73 301 | 51.79 264 | 88.73 289 | 70.78 180 | 72.15 339 | 88.55 263 |
|
| testing11 | | | 75.14 257 | 74.01 253 | 78.53 271 | 88.16 178 | 56.38 323 | 80.74 299 | 80.42 329 | 70.67 189 | 72.69 275 | 83.72 302 | 43.61 337 | 89.86 267 | 62.29 259 | 83.76 193 | 89.36 232 |
|
| IterMVS | | | 74.29 261 | 72.94 266 | 78.35 274 | 81.53 327 | 63.49 227 | 81.58 285 | 82.49 305 | 68.06 249 | 69.99 304 | 83.69 303 | 51.66 266 | 85.54 321 | 65.85 230 | 71.64 343 | 86.01 315 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| tpm | | | 72.37 286 | 71.71 278 | 74.35 321 | 82.19 317 | 52.00 362 | 79.22 320 | 77.29 355 | 64.56 291 | 72.95 271 | 83.68 304 | 51.35 267 | 83.26 341 | 58.33 298 | 75.80 296 | 87.81 275 |
|
| testing222 | | | 74.04 265 | 72.66 269 | 78.19 276 | 87.89 192 | 55.36 337 | 81.06 293 | 79.20 342 | 71.30 176 | 74.65 251 | 83.57 305 | 39.11 361 | 88.67 291 | 51.43 339 | 85.75 169 | 90.53 184 |
|
| Effi-MVS+-dtu | | | 80.03 155 | 78.57 166 | 84.42 105 | 85.13 255 | 68.74 111 | 88.77 114 | 88.10 212 | 74.99 106 | 74.97 245 | 83.49 306 | 57.27 213 | 93.36 157 | 73.53 155 | 80.88 232 | 91.18 159 |
|
| baseline2 | | | 75.70 248 | 73.83 258 | 81.30 212 | 83.26 291 | 61.79 257 | 82.57 276 | 80.65 324 | 66.81 258 | 66.88 334 | 83.42 307 | 57.86 206 | 92.19 206 | 63.47 246 | 79.57 248 | 89.91 215 |
|
| mvs5depth | | | 69.45 313 | 67.45 325 | 75.46 309 | 73.93 379 | 55.83 331 | 79.19 321 | 83.23 291 | 66.89 257 | 71.63 287 | 83.32 308 | 33.69 377 | 85.09 326 | 59.81 281 | 55.34 388 | 85.46 323 |
|
| TinyColmap | | | 67.30 330 | 64.81 335 | 74.76 317 | 81.92 321 | 56.68 318 | 80.29 308 | 81.49 316 | 60.33 333 | 56.27 387 | 83.22 309 | 24.77 393 | 87.66 304 | 45.52 373 | 69.47 352 | 79.95 376 |
|
| mvsany_test1 | | | 62.30 349 | 61.26 353 | 65.41 370 | 69.52 394 | 54.86 343 | 66.86 390 | 49.78 410 | 46.65 387 | 68.50 321 | 83.21 310 | 49.15 295 | 66.28 402 | 56.93 311 | 60.77 377 | 75.11 386 |
|
| test_vis1_n | | | 69.85 311 | 69.21 302 | 71.77 341 | 72.66 391 | 55.27 340 | 81.48 287 | 76.21 362 | 52.03 378 | 75.30 235 | 83.20 311 | 28.97 386 | 76.22 377 | 74.60 145 | 78.41 263 | 83.81 346 |
|
| CostFormer | | | 75.24 256 | 73.90 256 | 79.27 256 | 82.65 310 | 58.27 292 | 80.80 295 | 82.73 304 | 61.57 326 | 75.33 234 | 83.13 312 | 55.52 221 | 91.07 250 | 64.98 237 | 78.34 264 | 88.45 264 |
|
| MVStest1 | | | 56.63 357 | 52.76 363 | 68.25 364 | 61.67 405 | 53.25 359 | 71.67 371 | 68.90 388 | 38.59 398 | 50.59 394 | 83.05 313 | 25.08 391 | 70.66 395 | 36.76 392 | 38.56 401 | 80.83 372 |
|
| WB-MVSnew | | | 71.96 291 | 71.65 279 | 72.89 333 | 84.67 265 | 51.88 365 | 82.29 278 | 77.57 350 | 62.31 320 | 73.67 262 | 83.00 314 | 53.49 242 | 81.10 352 | 45.75 372 | 82.13 219 | 85.70 320 |
|
| ETVMVS | | | 72.25 288 | 71.05 287 | 75.84 301 | 87.77 200 | 51.91 364 | 79.39 317 | 74.98 366 | 69.26 223 | 73.71 261 | 82.95 315 | 40.82 354 | 86.14 315 | 46.17 369 | 84.43 184 | 89.47 229 |
|
| miper_lstm_enhance | | | 74.11 264 | 73.11 265 | 77.13 293 | 80.11 345 | 59.62 282 | 72.23 369 | 86.92 241 | 66.76 260 | 70.40 296 | 82.92 316 | 56.93 216 | 82.92 342 | 69.06 201 | 72.63 335 | 88.87 250 |
|
| GA-MVS | | | 76.87 228 | 75.17 241 | 81.97 197 | 82.75 306 | 62.58 245 | 81.44 289 | 86.35 250 | 72.16 164 | 74.74 248 | 82.89 317 | 46.20 318 | 92.02 211 | 68.85 204 | 81.09 230 | 91.30 157 |
|
| K. test v3 | | | 71.19 294 | 68.51 306 | 79.21 258 | 83.04 299 | 57.78 302 | 84.35 247 | 76.91 358 | 72.90 155 | 62.99 364 | 82.86 318 | 39.27 359 | 91.09 249 | 61.65 267 | 52.66 391 | 88.75 256 |
|
| MS-PatchMatch | | | 73.83 268 | 72.67 268 | 77.30 291 | 83.87 279 | 66.02 171 | 81.82 281 | 84.66 268 | 61.37 329 | 68.61 319 | 82.82 319 | 47.29 305 | 88.21 296 | 59.27 285 | 84.32 186 | 77.68 381 |
|
| lessismore_v0 | | | | | 78.97 261 | 81.01 336 | 57.15 310 | | 65.99 393 | | 61.16 370 | 82.82 319 | 39.12 360 | 91.34 240 | 59.67 282 | 46.92 397 | 88.43 265 |
|
| D2MVS | | | 74.82 258 | 73.21 263 | 79.64 251 | 79.81 350 | 62.56 246 | 80.34 307 | 87.35 231 | 64.37 294 | 68.86 316 | 82.66 321 | 46.37 314 | 90.10 263 | 67.91 211 | 81.24 228 | 86.25 308 |
|
| Anonymous20231206 | | | 68.60 319 | 67.80 318 | 71.02 349 | 80.23 344 | 50.75 376 | 78.30 337 | 80.47 327 | 56.79 363 | 66.11 346 | 82.63 322 | 46.35 315 | 78.95 360 | 43.62 378 | 75.70 297 | 83.36 351 |
|
| MIMVSNet | | | 70.69 301 | 69.30 300 | 74.88 315 | 84.52 266 | 56.35 325 | 75.87 352 | 79.42 339 | 64.59 290 | 67.76 323 | 82.41 323 | 41.10 351 | 81.54 349 | 46.64 367 | 81.34 226 | 86.75 302 |
|
| UBG | | | 73.08 279 | 72.27 274 | 75.51 307 | 88.02 186 | 51.29 372 | 78.35 336 | 77.38 354 | 65.52 280 | 73.87 260 | 82.36 324 | 45.55 325 | 86.48 312 | 55.02 320 | 84.39 185 | 88.75 256 |
|
| OpenMVS_ROB |  | 64.09 19 | 70.56 303 | 68.19 309 | 77.65 285 | 80.26 342 | 59.41 285 | 85.01 227 | 82.96 300 | 58.76 349 | 65.43 349 | 82.33 325 | 37.63 368 | 91.23 243 | 45.34 375 | 76.03 294 | 82.32 362 |
|
| miper_enhance_ethall | | | 77.87 209 | 76.86 209 | 80.92 224 | 81.65 323 | 61.38 261 | 82.68 274 | 88.98 191 | 65.52 280 | 75.47 222 | 82.30 326 | 65.76 121 | 92.00 212 | 72.95 163 | 76.39 287 | 89.39 231 |
|
| test0.0.03 1 | | | 68.00 326 | 67.69 320 | 68.90 358 | 77.55 364 | 47.43 384 | 75.70 353 | 72.95 377 | 66.66 262 | 66.56 339 | 82.29 327 | 48.06 302 | 75.87 380 | 44.97 376 | 74.51 319 | 83.41 350 |
|
| PVSNet | | 64.34 18 | 72.08 290 | 70.87 290 | 75.69 303 | 86.21 234 | 56.44 321 | 74.37 363 | 80.73 323 | 62.06 324 | 70.17 300 | 82.23 328 | 42.86 341 | 83.31 340 | 54.77 322 | 84.45 183 | 87.32 287 |
|
| MIMVSNet1 | | | 68.58 320 | 66.78 330 | 73.98 325 | 80.07 346 | 51.82 366 | 80.77 297 | 84.37 271 | 64.40 293 | 59.75 376 | 82.16 329 | 36.47 370 | 83.63 337 | 42.73 380 | 70.33 349 | 86.48 306 |
|
| CL-MVSNet_self_test | | | 72.37 286 | 71.46 281 | 75.09 313 | 79.49 356 | 53.53 353 | 80.76 298 | 85.01 266 | 69.12 229 | 70.51 294 | 82.05 330 | 57.92 205 | 84.13 333 | 52.27 334 | 66.00 366 | 87.60 279 |
|
| tpm2 | | | 73.26 276 | 71.46 281 | 78.63 265 | 83.34 289 | 56.71 317 | 80.65 301 | 80.40 330 | 56.63 364 | 73.55 263 | 82.02 331 | 51.80 263 | 91.24 242 | 56.35 316 | 78.42 262 | 87.95 271 |
|
| PatchMatch-RL | | | 72.38 285 | 70.90 289 | 76.80 296 | 88.60 163 | 67.38 147 | 79.53 315 | 76.17 363 | 62.75 316 | 69.36 312 | 82.00 332 | 45.51 326 | 84.89 329 | 53.62 327 | 80.58 237 | 78.12 380 |
|
| FMVSNet5 | | | 69.50 312 | 67.96 313 | 74.15 323 | 82.97 303 | 55.35 338 | 80.01 311 | 82.12 309 | 62.56 318 | 63.02 362 | 81.53 333 | 36.92 369 | 81.92 347 | 48.42 355 | 74.06 322 | 85.17 330 |
|
| CR-MVSNet | | | 73.37 273 | 71.27 285 | 79.67 250 | 81.32 333 | 65.19 191 | 75.92 350 | 80.30 331 | 59.92 338 | 72.73 273 | 81.19 334 | 52.50 247 | 86.69 308 | 59.84 280 | 77.71 269 | 87.11 294 |
|
| Patchmtry | | | 70.74 300 | 69.16 303 | 75.49 308 | 80.72 337 | 54.07 350 | 74.94 361 | 80.30 331 | 58.34 351 | 70.01 302 | 81.19 334 | 52.50 247 | 86.54 310 | 53.37 329 | 71.09 347 | 85.87 319 |
|
| IB-MVS | | 68.01 15 | 75.85 247 | 73.36 262 | 83.31 153 | 84.76 260 | 66.03 170 | 83.38 263 | 85.06 264 | 70.21 202 | 69.40 311 | 81.05 336 | 45.76 323 | 94.66 103 | 65.10 236 | 75.49 301 | 89.25 235 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| cascas | | | 76.72 231 | 74.64 245 | 82.99 170 | 85.78 241 | 65.88 176 | 82.33 277 | 89.21 181 | 60.85 331 | 72.74 272 | 81.02 337 | 47.28 306 | 93.75 140 | 67.48 215 | 85.02 172 | 89.34 233 |
|
| LF4IMVS | | | 64.02 345 | 62.19 349 | 69.50 355 | 70.90 393 | 53.29 358 | 76.13 347 | 77.18 356 | 52.65 376 | 58.59 378 | 80.98 338 | 23.55 396 | 76.52 373 | 53.06 331 | 66.66 362 | 78.68 379 |
|
| Anonymous20240521 | | | 68.80 318 | 67.22 327 | 73.55 327 | 74.33 377 | 54.11 349 | 83.18 266 | 85.61 259 | 58.15 353 | 61.68 368 | 80.94 339 | 30.71 384 | 81.27 351 | 57.00 310 | 73.34 332 | 85.28 326 |
|
| gm-plane-assit | | | | | | 81.40 329 | 53.83 352 | | | 62.72 317 | | 80.94 339 | | 92.39 197 | 63.40 248 | | |
|
| UnsupCasMVSNet_eth | | | 67.33 329 | 65.99 333 | 71.37 344 | 73.48 384 | 51.47 370 | 75.16 357 | 85.19 263 | 65.20 283 | 60.78 371 | 80.93 341 | 42.35 343 | 77.20 368 | 57.12 308 | 53.69 390 | 85.44 324 |
|
| dmvs_re | | | 71.14 295 | 70.58 291 | 72.80 334 | 81.96 319 | 59.68 281 | 75.60 354 | 79.34 340 | 68.55 241 | 69.27 314 | 80.72 342 | 49.42 290 | 76.54 372 | 52.56 333 | 77.79 268 | 82.19 364 |
|
| MDTV_nov1_ep13 | | | | 69.97 299 | | 83.18 294 | 53.48 354 | 77.10 346 | 80.18 334 | 60.45 332 | 69.33 313 | 80.44 343 | 48.89 300 | 86.90 307 | 51.60 337 | 78.51 260 | |
|
| pmmvs-eth3d | | | 70.50 304 | 67.83 317 | 78.52 272 | 77.37 366 | 66.18 169 | 81.82 281 | 81.51 315 | 58.90 348 | 63.90 360 | 80.42 344 | 42.69 342 | 86.28 314 | 58.56 294 | 65.30 368 | 83.11 354 |
|
| PM-MVS | | | 66.41 336 | 64.14 338 | 73.20 331 | 73.92 380 | 56.45 320 | 78.97 325 | 64.96 397 | 63.88 304 | 64.72 354 | 80.24 345 | 19.84 401 | 83.44 339 | 66.24 224 | 64.52 370 | 79.71 377 |
|
| SCA | | | 74.22 263 | 72.33 273 | 79.91 243 | 84.05 276 | 62.17 251 | 79.96 312 | 79.29 341 | 66.30 270 | 72.38 279 | 80.13 346 | 51.95 259 | 88.60 292 | 59.25 286 | 77.67 271 | 88.96 247 |
|
| Patchmatch-test | | | 64.82 343 | 63.24 344 | 69.57 354 | 79.42 357 | 49.82 380 | 63.49 400 | 69.05 386 | 51.98 379 | 59.95 375 | 80.13 346 | 50.91 272 | 70.98 394 | 40.66 385 | 73.57 327 | 87.90 273 |
|
| tpmrst | | | 72.39 284 | 72.13 275 | 73.18 332 | 80.54 340 | 49.91 379 | 79.91 313 | 79.08 343 | 63.11 308 | 71.69 286 | 79.95 348 | 55.32 222 | 82.77 343 | 65.66 232 | 73.89 324 | 86.87 298 |
|
| DSMNet-mixed | | | 57.77 356 | 56.90 358 | 60.38 376 | 67.70 397 | 35.61 407 | 69.18 382 | 53.97 408 | 32.30 406 | 57.49 383 | 79.88 349 | 40.39 356 | 68.57 400 | 38.78 389 | 72.37 336 | 76.97 382 |
|
| MDA-MVSNet-bldmvs | | | 66.68 333 | 63.66 342 | 75.75 302 | 79.28 358 | 60.56 271 | 73.92 365 | 78.35 346 | 64.43 292 | 50.13 395 | 79.87 350 | 44.02 335 | 83.67 336 | 46.10 370 | 56.86 382 | 83.03 356 |
|
| PatchmatchNet |  | | 73.12 278 | 71.33 284 | 78.49 273 | 83.18 294 | 60.85 266 | 79.63 314 | 78.57 345 | 64.13 296 | 71.73 285 | 79.81 351 | 51.20 270 | 85.97 317 | 57.40 306 | 76.36 292 | 88.66 259 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| Syy-MVS | | | 68.05 325 | 67.85 315 | 68.67 361 | 84.68 262 | 40.97 404 | 78.62 330 | 73.08 375 | 66.65 265 | 66.74 337 | 79.46 352 | 52.11 255 | 82.30 345 | 32.89 396 | 76.38 290 | 82.75 359 |
|
| myMVS_eth3d | | | 67.02 331 | 66.29 332 | 69.21 356 | 84.68 262 | 42.58 399 | 78.62 330 | 73.08 375 | 66.65 265 | 66.74 337 | 79.46 352 | 31.53 382 | 82.30 345 | 39.43 388 | 76.38 290 | 82.75 359 |
|
| ppachtmachnet_test | | | 70.04 308 | 67.34 326 | 78.14 277 | 79.80 351 | 61.13 262 | 79.19 321 | 80.59 325 | 59.16 345 | 65.27 350 | 79.29 354 | 46.75 311 | 87.29 305 | 49.33 351 | 66.72 361 | 86.00 317 |
|
| EPMVS | | | 69.02 316 | 68.16 310 | 71.59 342 | 79.61 354 | 49.80 381 | 77.40 343 | 66.93 391 | 62.82 315 | 70.01 302 | 79.05 355 | 45.79 322 | 77.86 366 | 56.58 314 | 75.26 311 | 87.13 293 |
|
| PMMVS | | | 69.34 314 | 68.67 305 | 71.35 346 | 75.67 372 | 62.03 252 | 75.17 356 | 73.46 373 | 50.00 383 | 68.68 317 | 79.05 355 | 52.07 257 | 78.13 363 | 61.16 272 | 82.77 211 | 73.90 387 |
|
| test-LLR | | | 72.94 282 | 72.43 271 | 74.48 319 | 81.35 331 | 58.04 295 | 78.38 333 | 77.46 351 | 66.66 262 | 69.95 305 | 79.00 357 | 48.06 302 | 79.24 358 | 66.13 225 | 84.83 174 | 86.15 311 |
|
| test-mter | | | 71.41 293 | 70.39 296 | 74.48 319 | 81.35 331 | 58.04 295 | 78.38 333 | 77.46 351 | 60.32 334 | 69.95 305 | 79.00 357 | 36.08 372 | 79.24 358 | 66.13 225 | 84.83 174 | 86.15 311 |
|
| KD-MVS_self_test | | | 68.81 317 | 67.59 323 | 72.46 338 | 74.29 378 | 45.45 389 | 77.93 340 | 87.00 238 | 63.12 307 | 63.99 359 | 78.99 359 | 42.32 344 | 84.77 330 | 56.55 315 | 64.09 371 | 87.16 292 |
|
| test_fmvs3 | | | 63.36 347 | 61.82 350 | 67.98 365 | 62.51 404 | 46.96 387 | 77.37 344 | 74.03 372 | 45.24 389 | 67.50 327 | 78.79 360 | 12.16 409 | 72.98 393 | 72.77 166 | 66.02 365 | 83.99 344 |
|
| KD-MVS_2432*1600 | | | 66.22 338 | 63.89 340 | 73.21 329 | 75.47 375 | 53.42 355 | 70.76 376 | 84.35 272 | 64.10 298 | 66.52 341 | 78.52 361 | 34.55 375 | 84.98 327 | 50.40 343 | 50.33 394 | 81.23 369 |
|
| miper_refine_blended | | | 66.22 338 | 63.89 340 | 73.21 329 | 75.47 375 | 53.42 355 | 70.76 376 | 84.35 272 | 64.10 298 | 66.52 341 | 78.52 361 | 34.55 375 | 84.98 327 | 50.40 343 | 50.33 394 | 81.23 369 |
|
| tpmvs | | | 71.09 296 | 69.29 301 | 76.49 297 | 82.04 318 | 56.04 328 | 78.92 326 | 81.37 318 | 64.05 300 | 67.18 332 | 78.28 363 | 49.74 287 | 89.77 269 | 49.67 350 | 72.37 336 | 83.67 348 |
|
| our_test_3 | | | 69.14 315 | 67.00 328 | 75.57 305 | 79.80 351 | 58.80 286 | 77.96 339 | 77.81 348 | 59.55 341 | 62.90 365 | 78.25 364 | 47.43 304 | 83.97 334 | 51.71 336 | 67.58 360 | 83.93 345 |
|
| MDA-MVSNet_test_wron | | | 65.03 341 | 62.92 345 | 71.37 344 | 75.93 369 | 56.73 315 | 69.09 385 | 74.73 369 | 57.28 361 | 54.03 390 | 77.89 365 | 45.88 320 | 74.39 389 | 49.89 349 | 61.55 375 | 82.99 357 |
|
| YYNet1 | | | 65.03 341 | 62.91 346 | 71.38 343 | 75.85 371 | 56.60 319 | 69.12 384 | 74.66 371 | 57.28 361 | 54.12 389 | 77.87 366 | 45.85 321 | 74.48 388 | 49.95 348 | 61.52 376 | 83.05 355 |
|
| ambc | | | | | 75.24 312 | 73.16 387 | 50.51 377 | 63.05 401 | 87.47 229 | | 64.28 356 | 77.81 367 | 17.80 403 | 89.73 271 | 57.88 302 | 60.64 378 | 85.49 322 |
|
| tpm cat1 | | | 70.57 302 | 68.31 308 | 77.35 290 | 82.41 315 | 57.95 298 | 78.08 338 | 80.22 333 | 52.04 377 | 68.54 320 | 77.66 368 | 52.00 258 | 87.84 301 | 51.77 335 | 72.07 341 | 86.25 308 |
|
| dp | | | 66.80 332 | 65.43 334 | 70.90 351 | 79.74 353 | 48.82 382 | 75.12 359 | 74.77 368 | 59.61 340 | 64.08 358 | 77.23 369 | 42.89 340 | 80.72 354 | 48.86 354 | 66.58 363 | 83.16 353 |
|
| TESTMET0.1,1 | | | 69.89 310 | 69.00 304 | 72.55 336 | 79.27 359 | 56.85 313 | 78.38 333 | 74.71 370 | 57.64 357 | 68.09 322 | 77.19 370 | 37.75 367 | 76.70 371 | 63.92 244 | 84.09 189 | 84.10 343 |
|
| CHOSEN 280x420 | | | 66.51 335 | 64.71 336 | 71.90 340 | 81.45 328 | 63.52 226 | 57.98 403 | 68.95 387 | 53.57 373 | 62.59 366 | 76.70 371 | 46.22 317 | 75.29 386 | 55.25 319 | 79.68 247 | 76.88 383 |
|
| PatchT | | | 68.46 323 | 67.85 315 | 70.29 352 | 80.70 338 | 43.93 396 | 72.47 368 | 74.88 367 | 60.15 336 | 70.55 293 | 76.57 372 | 49.94 284 | 81.59 348 | 50.58 341 | 74.83 316 | 85.34 325 |
|
| mvsany_test3 | | | 53.99 360 | 51.45 365 | 61.61 375 | 55.51 409 | 44.74 395 | 63.52 399 | 45.41 414 | 43.69 392 | 58.11 381 | 76.45 373 | 17.99 402 | 63.76 405 | 54.77 322 | 47.59 396 | 76.34 384 |
|
| RPMNet | | | 73.51 271 | 70.49 293 | 82.58 187 | 81.32 333 | 65.19 191 | 75.92 350 | 92.27 80 | 57.60 358 | 72.73 273 | 76.45 373 | 52.30 250 | 95.43 67 | 48.14 360 | 77.71 269 | 87.11 294 |
|
| dmvs_testset | | | 62.63 348 | 64.11 339 | 58.19 378 | 78.55 361 | 24.76 416 | 75.28 355 | 65.94 394 | 67.91 250 | 60.34 372 | 76.01 375 | 53.56 240 | 73.94 391 | 31.79 397 | 67.65 359 | 75.88 385 |
|
| ADS-MVSNet2 | | | 66.20 340 | 63.33 343 | 74.82 316 | 79.92 347 | 58.75 287 | 67.55 388 | 75.19 365 | 53.37 374 | 65.25 351 | 75.86 376 | 42.32 344 | 80.53 355 | 41.57 383 | 68.91 355 | 85.18 328 |
|
| ADS-MVSNet | | | 64.36 344 | 62.88 347 | 68.78 360 | 79.92 347 | 47.17 385 | 67.55 388 | 71.18 379 | 53.37 374 | 65.25 351 | 75.86 376 | 42.32 344 | 73.99 390 | 41.57 383 | 68.91 355 | 85.18 328 |
|
| EGC-MVSNET | | | 52.07 366 | 47.05 370 | 67.14 367 | 83.51 286 | 60.71 268 | 80.50 304 | 67.75 389 | 0.07 416 | 0.43 417 | 75.85 378 | 24.26 394 | 81.54 349 | 28.82 399 | 62.25 373 | 59.16 399 |
|
| new-patchmatchnet | | | 61.73 350 | 61.73 351 | 61.70 374 | 72.74 390 | 24.50 417 | 69.16 383 | 78.03 347 | 61.40 327 | 56.72 385 | 75.53 379 | 38.42 363 | 76.48 374 | 45.95 371 | 57.67 381 | 84.13 342 |
|
| N_pmnet | | | 52.79 364 | 53.26 362 | 51.40 388 | 78.99 360 | 7.68 422 | 69.52 380 | 3.89 421 | 51.63 380 | 57.01 384 | 74.98 380 | 40.83 353 | 65.96 403 | 37.78 390 | 64.67 369 | 80.56 375 |
|
| WB-MVS | | | 54.94 358 | 54.72 359 | 55.60 384 | 73.50 383 | 20.90 418 | 74.27 364 | 61.19 401 | 59.16 345 | 50.61 393 | 74.15 381 | 47.19 307 | 75.78 381 | 17.31 409 | 35.07 403 | 70.12 391 |
|
| patchmatchnet-post | | | | | | | | | | | | 74.00 382 | 51.12 271 | 88.60 292 | | | |
|
| GG-mvs-BLEND | | | | | 75.38 310 | 81.59 325 | 55.80 332 | 79.32 318 | 69.63 383 | | 67.19 331 | 73.67 383 | 43.24 338 | 88.90 288 | 50.41 342 | 84.50 179 | 81.45 368 |
|
| SSC-MVS | | | 53.88 361 | 53.59 361 | 54.75 386 | 72.87 389 | 19.59 419 | 73.84 366 | 60.53 403 | 57.58 359 | 49.18 397 | 73.45 384 | 46.34 316 | 75.47 384 | 16.20 412 | 32.28 405 | 69.20 392 |
|
| Patchmatch-RL test | | | 70.24 306 | 67.78 319 | 77.61 286 | 77.43 365 | 59.57 284 | 71.16 373 | 70.33 380 | 62.94 312 | 68.65 318 | 72.77 385 | 50.62 276 | 85.49 322 | 69.58 196 | 66.58 363 | 87.77 276 |
|
| FPMVS | | | 53.68 362 | 51.64 364 | 59.81 377 | 65.08 401 | 51.03 373 | 69.48 381 | 69.58 384 | 41.46 394 | 40.67 401 | 72.32 386 | 16.46 405 | 70.00 398 | 24.24 405 | 65.42 367 | 58.40 401 |
|
| UnsupCasMVSNet_bld | | | 63.70 346 | 61.53 352 | 70.21 353 | 73.69 382 | 51.39 371 | 72.82 367 | 81.89 311 | 55.63 368 | 57.81 382 | 71.80 387 | 38.67 362 | 78.61 361 | 49.26 352 | 52.21 392 | 80.63 373 |
|
| APD_test1 | | | 53.31 363 | 49.93 368 | 63.42 373 | 65.68 400 | 50.13 378 | 71.59 372 | 66.90 392 | 34.43 403 | 40.58 402 | 71.56 388 | 8.65 414 | 76.27 376 | 34.64 395 | 55.36 387 | 63.86 397 |
|
| test_f | | | 52.09 365 | 50.82 366 | 55.90 382 | 53.82 412 | 42.31 402 | 59.42 402 | 58.31 406 | 36.45 401 | 56.12 388 | 70.96 389 | 12.18 408 | 57.79 408 | 53.51 328 | 56.57 384 | 67.60 393 |
|
| PVSNet_0 | | 57.27 20 | 61.67 351 | 59.27 354 | 68.85 359 | 79.61 354 | 57.44 307 | 68.01 386 | 73.44 374 | 55.93 367 | 58.54 379 | 70.41 390 | 44.58 331 | 77.55 367 | 47.01 364 | 35.91 402 | 71.55 390 |
|
| pmmvs3 | | | 57.79 355 | 54.26 360 | 68.37 362 | 64.02 403 | 56.72 316 | 75.12 359 | 65.17 395 | 40.20 395 | 52.93 391 | 69.86 391 | 20.36 400 | 75.48 383 | 45.45 374 | 55.25 389 | 72.90 389 |
|
| test_vis1_rt | | | 60.28 352 | 58.42 355 | 65.84 369 | 67.25 398 | 55.60 335 | 70.44 378 | 60.94 402 | 44.33 391 | 59.00 377 | 66.64 392 | 24.91 392 | 68.67 399 | 62.80 251 | 69.48 351 | 73.25 388 |
|
| new_pmnet | | | 50.91 367 | 50.29 367 | 52.78 387 | 68.58 396 | 34.94 409 | 63.71 398 | 56.63 407 | 39.73 396 | 44.95 398 | 65.47 393 | 21.93 398 | 58.48 407 | 34.98 394 | 56.62 383 | 64.92 395 |
|
| gg-mvs-nofinetune | | | 69.95 309 | 67.96 313 | 75.94 300 | 83.07 297 | 54.51 347 | 77.23 345 | 70.29 381 | 63.11 308 | 70.32 297 | 62.33 394 | 43.62 336 | 88.69 290 | 53.88 326 | 87.76 137 | 84.62 337 |
|
| JIA-IIPM | | | 66.32 337 | 62.82 348 | 76.82 295 | 77.09 367 | 61.72 258 | 65.34 396 | 75.38 364 | 58.04 355 | 64.51 355 | 62.32 395 | 42.05 348 | 86.51 311 | 51.45 338 | 69.22 354 | 82.21 363 |
|
| LCM-MVSNet | | | 54.25 359 | 49.68 369 | 67.97 366 | 53.73 413 | 45.28 392 | 66.85 391 | 80.78 322 | 35.96 402 | 39.45 403 | 62.23 396 | 8.70 413 | 78.06 365 | 48.24 359 | 51.20 393 | 80.57 374 |
|
| PMMVS2 | | | 40.82 375 | 38.86 379 | 46.69 389 | 53.84 411 | 16.45 420 | 48.61 406 | 49.92 409 | 37.49 399 | 31.67 404 | 60.97 397 | 8.14 415 | 56.42 409 | 28.42 400 | 30.72 406 | 67.19 394 |
|
| testf1 | | | 45.72 370 | 41.96 374 | 57.00 379 | 56.90 407 | 45.32 390 | 66.14 393 | 59.26 404 | 26.19 407 | 30.89 406 | 60.96 398 | 4.14 417 | 70.64 396 | 26.39 403 | 46.73 398 | 55.04 402 |
|
| APD_test2 | | | 45.72 370 | 41.96 374 | 57.00 379 | 56.90 407 | 45.32 390 | 66.14 393 | 59.26 404 | 26.19 407 | 30.89 406 | 60.96 398 | 4.14 417 | 70.64 396 | 26.39 403 | 46.73 398 | 55.04 402 |
|
| MVS-HIRNet | | | 59.14 354 | 57.67 356 | 63.57 372 | 81.65 323 | 43.50 397 | 71.73 370 | 65.06 396 | 39.59 397 | 51.43 392 | 57.73 400 | 38.34 364 | 82.58 344 | 39.53 386 | 73.95 323 | 64.62 396 |
|
| ANet_high | | | 50.57 368 | 46.10 372 | 63.99 371 | 48.67 416 | 39.13 405 | 70.99 375 | 80.85 321 | 61.39 328 | 31.18 405 | 57.70 401 | 17.02 404 | 73.65 392 | 31.22 398 | 15.89 413 | 79.18 378 |
|
| PMVS |  | 37.38 22 | 44.16 374 | 40.28 378 | 55.82 383 | 40.82 418 | 42.54 401 | 65.12 397 | 63.99 398 | 34.43 403 | 24.48 409 | 57.12 402 | 3.92 419 | 76.17 378 | 17.10 410 | 55.52 386 | 48.75 404 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| dongtai | | | 45.42 372 | 45.38 373 | 45.55 390 | 73.36 386 | 26.85 414 | 67.72 387 | 34.19 416 | 54.15 372 | 49.65 396 | 56.41 403 | 25.43 390 | 62.94 406 | 19.45 407 | 28.09 407 | 46.86 406 |
|
| test_vis3_rt | | | 49.26 369 | 47.02 371 | 56.00 381 | 54.30 410 | 45.27 393 | 66.76 392 | 48.08 411 | 36.83 400 | 44.38 399 | 53.20 404 | 7.17 416 | 64.07 404 | 56.77 313 | 55.66 385 | 58.65 400 |
|
| test_method | | | 31.52 378 | 29.28 382 | 38.23 392 | 27.03 420 | 6.50 423 | 20.94 411 | 62.21 400 | 4.05 414 | 22.35 412 | 52.50 405 | 13.33 406 | 47.58 412 | 27.04 402 | 34.04 404 | 60.62 398 |
|
| kuosan | | | 39.70 376 | 40.40 377 | 37.58 393 | 64.52 402 | 26.98 412 | 65.62 395 | 33.02 417 | 46.12 388 | 42.79 400 | 48.99 406 | 24.10 395 | 46.56 414 | 12.16 415 | 26.30 408 | 39.20 407 |
|
| DeepMVS_CX |  | | | | 27.40 396 | 40.17 419 | 26.90 413 | | 24.59 420 | 17.44 412 | 23.95 410 | 48.61 407 | 9.77 411 | 26.48 415 | 18.06 408 | 24.47 409 | 28.83 409 |
|
| MVE |  | 26.22 23 | 30.37 380 | 25.89 384 | 43.81 391 | 44.55 417 | 35.46 408 | 28.87 410 | 39.07 415 | 18.20 411 | 18.58 413 | 40.18 408 | 2.68 420 | 47.37 413 | 17.07 411 | 23.78 410 | 48.60 405 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| Gipuma |  | | 45.18 373 | 41.86 376 | 55.16 385 | 77.03 368 | 51.52 369 | 32.50 409 | 80.52 326 | 32.46 405 | 27.12 408 | 35.02 409 | 9.52 412 | 75.50 382 | 22.31 406 | 60.21 380 | 38.45 408 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| E-PMN | | | 31.77 377 | 30.64 380 | 35.15 394 | 52.87 414 | 27.67 411 | 57.09 404 | 47.86 412 | 24.64 409 | 16.40 414 | 33.05 410 | 11.23 410 | 54.90 410 | 14.46 413 | 18.15 411 | 22.87 410 |
|
| EMVS | | | 30.81 379 | 29.65 381 | 34.27 395 | 50.96 415 | 25.95 415 | 56.58 405 | 46.80 413 | 24.01 410 | 15.53 415 | 30.68 411 | 12.47 407 | 54.43 411 | 12.81 414 | 17.05 412 | 22.43 411 |
|
| tmp_tt | | | 18.61 382 | 21.40 385 | 10.23 398 | 4.82 421 | 10.11 421 | 34.70 408 | 30.74 419 | 1.48 415 | 23.91 411 | 26.07 412 | 28.42 387 | 13.41 417 | 27.12 401 | 15.35 414 | 7.17 412 |
|
| X-MVStestdata | | | 80.37 149 | 77.83 185 | 88.00 17 | 94.42 20 | 73.33 19 | 92.78 18 | 92.99 46 | 79.14 21 | 83.67 89 | 12.47 413 | 67.45 100 | 96.60 33 | 83.06 65 | 94.50 51 | 94.07 52 |
|
| test_post | | | | | | | | | | | | 5.46 414 | 50.36 280 | 84.24 332 | | | |
|
| test_post1 | | | | | | | | 78.90 327 | | | | 5.43 415 | 48.81 301 | 85.44 324 | 59.25 286 | | |
|
| wuyk23d | | | 16.82 383 | 15.94 386 | 19.46 397 | 58.74 406 | 31.45 410 | 39.22 407 | 3.74 422 | 6.84 413 | 6.04 416 | 2.70 416 | 1.27 421 | 24.29 416 | 10.54 416 | 14.40 415 | 2.63 413 |
|
| testmvs | | | 6.04 386 | 8.02 389 | 0.10 400 | 0.08 422 | 0.03 425 | 69.74 379 | 0.04 423 | 0.05 417 | 0.31 418 | 1.68 417 | 0.02 423 | 0.04 418 | 0.24 417 | 0.02 416 | 0.25 415 |
|
| test123 | | | 6.12 385 | 8.11 388 | 0.14 399 | 0.06 423 | 0.09 424 | 71.05 374 | 0.03 424 | 0.04 418 | 0.25 419 | 1.30 418 | 0.05 422 | 0.03 419 | 0.21 418 | 0.01 417 | 0.29 414 |
|
| test_blank | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| uanet_test | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| DCPMVS | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| pcd_1.5k_mvsjas | | | 5.26 387 | 7.02 390 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 63.15 143 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| sosnet-low-res | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| sosnet | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| uncertanet | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| Regformer | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| uanet | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| WAC-MVS | | | | | | | 42.58 399 | | | | | | | | 39.46 387 | | |
|
| FOURS1 | | | | | | 95.00 10 | 72.39 39 | 95.06 1 | 93.84 15 | 74.49 117 | 91.30 15 | | | | | | |
|
| MSC_two_6792asdad | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 46 | | | | | 97.53 2 | 89.67 6 | 96.44 9 | 94.41 37 |
|
| No_MVS | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 46 | | | | | 97.53 2 | 89.67 6 | 96.44 9 | 94.41 37 |
|
| eth-test2 | | | | | | 0.00 424 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 424 | | | | | | | | | | | |
|
| IU-MVS | | | | | | 95.30 2 | 71.25 57 | | 92.95 52 | 66.81 258 | 92.39 6 | | | | 88.94 16 | 96.63 4 | 94.85 19 |
|
| save fliter | | | | | | 93.80 40 | 72.35 42 | 90.47 63 | 91.17 121 | 74.31 120 | | | | | | | |
|
| test_0728_SECOND | | | | | 87.71 32 | 95.34 1 | 71.43 56 | 93.49 9 | 94.23 3 | | | | | 97.49 4 | 89.08 12 | 96.41 12 | 94.21 47 |
|
| GSMVS | | | | | | | | | | | | | | | | | 88.96 247 |
|
| test_part2 | | | | | | 95.06 8 | 72.65 32 | | | | 91.80 13 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 51.32 268 | | | | 88.96 247 |
|
| sam_mvs | | | | | | | | | | | | | 50.01 282 | | | | |
|
| MTGPA |  | | | | | | | | 92.02 89 | | | | | | | | |
|
| MTMP | | | | | | | | 92.18 34 | 32.83 418 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 84.90 43 | 95.70 26 | 92.87 108 |
|
| agg_prior2 | | | | | | | | | | | | | | | 82.91 69 | 95.45 29 | 92.70 111 |
|
| agg_prior | | | | | | 92.85 59 | 71.94 50 | | 91.78 104 | | 84.41 75 | | | 94.93 89 | | | |
|
| test_prior4 | | | | | | | 72.60 34 | 89.01 106 | | | | | | | | | |
|
| test_prior | | | | | 86.33 54 | 92.61 65 | 69.59 88 | | 92.97 51 | | | | | 95.48 64 | | | 93.91 58 |
|
| 旧先验2 | | | | | | | | 86.56 189 | | 58.10 354 | 87.04 42 | | | 88.98 284 | 74.07 151 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 86.29 198 | | | | | | | | | |
|
| æ— å…ˆéªŒ | | | | | | | | 87.48 158 | 88.98 191 | 60.00 337 | | | | 94.12 120 | 67.28 217 | | 88.97 246 |
|
| 原ACMM2 | | | | | | | | 86.86 178 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 91.01 251 | 62.37 258 | | |
|
| segment_acmp | | | | | | | | | | | | | 73.08 38 | | | | |
|
| testdata1 | | | | | | | | 84.14 251 | | 75.71 91 | | | | | | | |
|
| test12 | | | | | 86.80 49 | 92.63 64 | 70.70 72 | | 91.79 103 | | 82.71 102 | | 71.67 54 | 96.16 44 | | 94.50 51 | 93.54 82 |
|
| plane_prior7 | | | | | | 90.08 105 | 68.51 120 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 89.84 114 | 68.70 115 | | | | | | 60.42 191 | | | | |
|
| plane_prior5 | | | | | | | | | 92.44 73 | | | | | 95.38 71 | 78.71 105 | 86.32 157 | 91.33 155 |
|
| plane_prior3 | | | | | | | 68.60 118 | | | 78.44 31 | 78.92 146 | | | | | | |
|
| plane_prior2 | | | | | | | | 91.25 49 | | 79.12 23 | | | | | | | |
|
| plane_prior1 | | | | | | 89.90 113 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 68.71 113 | 90.38 67 | | 77.62 39 | | | | | | 86.16 161 | |
|
| n2 | | | | | | | | | 0.00 425 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 425 | | | | | | | | |
|
| door-mid | | | | | | | | | 69.98 382 | | | | | | | | |
|
| test11 | | | | | | | | | 92.23 83 | | | | | | | | |
|
| door | | | | | | | | | 69.44 385 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 66.98 158 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 89.33 132 | | 89.17 99 | | 76.41 76 | 77.23 184 | | | | | | |
|
| ACMP_Plane | | | | | | 89.33 132 | | 89.17 99 | | 76.41 76 | 77.23 184 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.47 117 | | |
|
| HQP4-MVS | | | | | | | | | | | 77.24 183 | | | 95.11 82 | | | 91.03 165 |
|
| HQP3-MVS | | | | | | | | | 92.19 86 | | | | | | | 85.99 165 | |
|
| HQP2-MVS | | | | | | | | | | | | | 60.17 194 | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 37.79 406 | 75.16 357 | | 55.10 369 | 66.53 340 | | 49.34 292 | | 53.98 325 | | 87.94 272 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 81.95 222 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 81.25 227 | |
|
| Test By Simon | | | | | | | | | | | | | 64.33 130 | | | | |
|