This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
APDe-MVScopyleft89.15 689.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 8991.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 31
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SMA-MVScopyleft89.08 789.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10792.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 5977.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 24
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 41
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8592.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 52
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
MP-MVS-pluss87.67 2087.72 2087.54 3693.64 4472.04 4889.80 7993.50 2575.17 10086.34 4495.29 1270.86 5996.00 4988.78 1996.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MVS_030488.08 1388.08 1688.08 1489.67 11372.04 4892.26 3389.26 17384.19 285.01 5595.18 1369.93 6997.20 1491.63 295.60 2994.99 9
SF-MVS88.46 1188.74 1187.64 3592.78 6171.95 5092.40 2494.74 275.71 8789.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
ACMMP_NAP88.05 1688.08 1687.94 1993.70 4173.05 2290.86 5693.59 2376.27 7988.14 2495.09 1571.06 5796.67 2987.67 2996.37 1494.09 46
MM88.97 473.65 1092.66 2391.17 11686.57 187.39 3594.97 1671.70 5097.68 192.19 195.63 2895.57 1
MTAPA87.23 2787.00 2887.90 2294.18 3574.25 586.58 18792.02 8579.45 1985.88 4694.80 1768.07 8996.21 4286.69 3695.34 3393.23 87
SteuartSystems-ACMMP88.72 1088.86 1088.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
9.1488.26 1492.84 6091.52 4694.75 173.93 12588.57 2294.67 1975.57 2295.79 5386.77 3595.76 23
SR-MVS86.73 3386.67 3486.91 4694.11 3772.11 4792.37 2892.56 6774.50 11286.84 4294.65 2067.31 9795.77 5484.80 4692.85 6792.84 103
region2R87.42 2487.20 2788.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7094.52 2169.09 7896.70 2784.37 5194.83 4494.03 49
ACMMPR87.44 2287.23 2688.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6694.52 2168.81 8496.65 3084.53 4994.90 4094.00 50
APD-MVScopyleft87.44 2287.52 2287.19 4294.24 3272.39 3991.86 4192.83 5573.01 14988.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 105
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
APD-MVS_3200maxsize85.97 4485.88 4786.22 5792.69 6369.53 8991.93 3892.99 4573.54 13585.94 4594.51 2465.80 11595.61 5783.04 6592.51 7193.53 78
CP-MVS87.11 2986.92 3187.68 3494.20 3473.86 793.98 392.82 5876.62 7083.68 8494.46 2567.93 9095.95 5284.20 5594.39 5393.23 87
SR-MVS-dyc-post85.77 4885.61 5186.23 5693.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2665.00 12395.56 5882.75 6891.87 7992.50 114
RE-MVS-def85.48 5293.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2663.87 12982.75 6891.87 7992.50 114
HFP-MVS87.58 2187.47 2387.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 5994.44 2870.78 6096.61 3284.53 4994.89 4193.66 65
PGM-MVS86.68 3586.27 3987.90 2294.22 3373.38 1890.22 7093.04 3875.53 9183.86 8194.42 2967.87 9296.64 3182.70 7294.57 4993.66 65
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 6477.57 4183.84 8294.40 3072.24 4396.28 4085.65 3895.30 3593.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5394.32 3171.76 4896.93 1985.53 3995.79 2294.32 38
test_fmvsmconf0.01_n84.73 6584.52 6785.34 7280.25 33069.03 9989.47 8889.65 16173.24 14486.98 4094.27 3266.62 10193.23 16190.26 589.95 10793.78 62
HPM-MVS++copyleft89.02 889.15 888.63 595.01 976.03 192.38 2792.85 5480.26 1187.78 2994.27 3275.89 1996.81 2387.45 3296.44 993.05 96
mPP-MVS86.67 3686.32 3887.72 3094.41 2273.55 1392.74 2092.22 8076.87 6282.81 9794.25 3466.44 10596.24 4182.88 6794.28 5693.38 81
DeepC-MVS79.81 287.08 3186.88 3387.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 9694.23 3572.13 4597.09 1684.83 4595.37 3293.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVS87.18 2886.91 3288.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8594.17 3667.45 9596.60 3383.06 6394.50 5094.07 47
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5894.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_fmvsmconf0.1_n85.61 5285.65 5085.50 6982.99 29069.39 9689.65 8490.29 14473.31 14187.77 3094.15 3871.72 4993.23 16190.31 490.67 9593.89 56
DeepPCF-MVS80.84 188.10 1288.56 1286.73 5092.24 6869.03 9989.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 27
HPM-MVS_fast85.35 5784.95 6286.57 5393.69 4270.58 7592.15 3691.62 10373.89 12682.67 9994.09 4062.60 14495.54 6080.93 8392.93 6693.57 74
ZD-MVS94.38 2572.22 4492.67 6170.98 17987.75 3194.07 4174.01 3296.70 2784.66 4794.84 43
fmvsm_s_conf0.1_n_a83.32 8582.99 8484.28 11183.79 26868.07 12989.34 9582.85 29769.80 20487.36 3694.06 4268.34 8891.56 22687.95 2783.46 19393.21 90
CNVR-MVS88.93 989.13 988.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 37
test_fmvsmconf_n85.92 4586.04 4685.57 6885.03 24669.51 9089.62 8690.58 13173.42 13887.75 3194.02 4472.85 4093.24 16090.37 390.75 9393.96 51
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
PC_three_145268.21 24092.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
SD-MVS88.06 1488.50 1386.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13687.63 3094.27 5793.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GST-MVS87.42 2487.26 2487.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6393.99 4870.67 6296.82 2284.18 5695.01 3793.90 55
test_fmvsm_n_192085.29 5885.34 5485.13 7986.12 22569.93 8388.65 12190.78 12769.97 20088.27 2393.98 4971.39 5591.54 22888.49 2390.45 9793.91 53
fmvsm_s_conf0.1_n83.56 7983.38 7784.10 11884.86 24867.28 14889.40 9383.01 29370.67 18487.08 3893.96 5068.38 8791.45 23488.56 2284.50 17193.56 75
HPM-MVScopyleft87.11 2986.98 2987.50 3893.88 3972.16 4592.19 3493.33 3176.07 8283.81 8393.95 5169.77 7296.01 4885.15 4094.66 4694.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TSAR-MVS + MP.88.02 1788.11 1587.72 3093.68 4372.13 4691.41 4792.35 7474.62 11188.90 2093.85 5275.75 2096.00 4987.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMPcopyleft85.89 4785.39 5387.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12193.82 5364.33 12596.29 3982.67 7390.69 9493.23 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_s_conf0.5_n_a83.63 7783.41 7684.28 11186.14 22468.12 12789.43 9082.87 29670.27 19487.27 3793.80 5469.09 7891.58 22488.21 2683.65 18793.14 93
fmvsm_s_conf0.5_n83.80 7283.71 7384.07 12386.69 21867.31 14789.46 8983.07 29271.09 17686.96 4193.70 5569.02 8391.47 23388.79 1884.62 17093.44 80
test_prior288.85 11175.41 9384.91 5993.54 5674.28 2983.31 6195.86 20
fmvsm_l_conf0.5_n84.47 6684.54 6584.27 11385.42 23568.81 10588.49 12587.26 22968.08 24188.03 2793.49 5772.04 4691.77 21888.90 1789.14 11692.24 125
VDDNet81.52 11580.67 11884.05 12890.44 9564.13 21489.73 8285.91 25071.11 17583.18 9093.48 5850.54 27093.49 15073.40 15688.25 12894.54 30
CDPH-MVS85.76 4985.29 5887.17 4393.49 4771.08 6188.58 12392.42 7268.32 23984.61 6793.48 5872.32 4296.15 4579.00 9895.43 3194.28 40
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5292.83 5581.50 585.79 4893.47 6073.02 3997.00 1884.90 4294.94 3994.10 45
fmvsm_l_conf0.5_n_a84.13 6884.16 7084.06 12585.38 23668.40 12088.34 13286.85 23767.48 24887.48 3493.40 6170.89 5891.61 22288.38 2589.22 11592.16 129
3Dnovator+77.84 485.48 5384.47 6888.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19593.37 6260.40 18896.75 2677.20 11793.73 6295.29 5
DeepC-MVS_fast79.65 386.91 3286.62 3587.76 2793.52 4672.37 4191.26 4893.04 3876.62 7084.22 7493.36 6371.44 5496.76 2580.82 8595.33 3494.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDD-MVS83.01 9282.36 9384.96 8491.02 8366.40 16388.91 10888.11 20777.57 4184.39 7293.29 6452.19 24693.91 13177.05 11988.70 12294.57 29
test_fmvsmvis_n_192084.02 6983.87 7184.49 10184.12 26169.37 9788.15 14087.96 21270.01 19883.95 8093.23 6568.80 8591.51 23188.61 2089.96 10692.57 110
UA-Net85.08 6184.96 6185.45 7092.07 7068.07 12989.78 8090.86 12682.48 384.60 6893.20 6669.35 7595.22 7471.39 17490.88 9293.07 95
TEST993.26 5072.96 2588.75 11591.89 9368.44 23785.00 5793.10 6774.36 2895.41 67
train_agg86.43 3886.20 4087.13 4493.26 5072.96 2588.75 11591.89 9368.69 23285.00 5793.10 6774.43 2695.41 6784.97 4195.71 2593.02 98
test_893.13 5272.57 3588.68 12091.84 9768.69 23284.87 6193.10 6774.43 2695.16 76
LFMVS81.82 10781.23 10883.57 14491.89 7363.43 23089.84 7681.85 30777.04 5883.21 8993.10 6752.26 24593.43 15571.98 16989.95 10793.85 57
旧先验191.96 7165.79 17886.37 24493.08 7169.31 7792.74 6888.74 250
dcpmvs_285.63 5186.15 4384.06 12591.71 7564.94 19786.47 19091.87 9573.63 13186.60 4393.02 7276.57 1591.87 21683.36 6092.15 7595.35 3
testdata79.97 24190.90 8664.21 21284.71 26359.27 33185.40 5192.91 7362.02 15789.08 27768.95 19991.37 8686.63 295
MCST-MVS87.37 2687.25 2587.73 2894.53 1772.46 3889.82 7793.82 1673.07 14784.86 6292.89 7476.22 1796.33 3884.89 4495.13 3694.40 34
Vis-MVSNetpermissive83.46 8182.80 8885.43 7190.25 9868.74 11090.30 6990.13 14876.33 7880.87 12092.89 7461.00 17694.20 11872.45 16890.97 9093.35 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CPTT-MVS83.73 7383.33 7984.92 8793.28 4970.86 6992.09 3790.38 13768.75 23179.57 13292.83 7660.60 18493.04 17880.92 8491.56 8490.86 167
3Dnovator76.31 583.38 8482.31 9486.59 5287.94 18072.94 2890.64 5992.14 8477.21 5275.47 22092.83 7658.56 19594.72 9973.24 15992.71 6992.13 130
MSLP-MVS++85.43 5585.76 4984.45 10391.93 7270.24 7690.71 5892.86 5377.46 4784.22 7492.81 7867.16 9992.94 18080.36 9094.35 5590.16 193
test250677.30 21976.49 21579.74 24690.08 10252.02 35287.86 15263.10 38474.88 10480.16 12792.79 7938.29 35392.35 19868.74 20292.50 7294.86 17
ECVR-MVScopyleft79.61 15779.26 14880.67 22890.08 10254.69 33687.89 15077.44 34374.88 10480.27 12492.79 7948.96 29292.45 19268.55 20392.50 7294.86 17
test111179.43 16479.18 15280.15 23889.99 10753.31 34987.33 16477.05 34675.04 10180.23 12692.77 8148.97 29192.33 20068.87 20092.40 7494.81 20
MG-MVS83.41 8283.45 7583.28 15292.74 6262.28 24888.17 13889.50 16475.22 9681.49 11192.74 8266.75 10095.11 8072.85 16291.58 8392.45 117
casdiffmvs_mvgpermissive85.99 4386.09 4585.70 6687.65 19267.22 15188.69 11993.04 3879.64 1885.33 5292.54 8373.30 3594.50 10783.49 5991.14 8995.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
patch_mono-283.65 7584.54 6580.99 22090.06 10665.83 17584.21 24788.74 19871.60 16785.01 5592.44 8474.51 2583.50 32782.15 7592.15 7593.64 71
casdiffmvspermissive85.11 6085.14 5985.01 8287.20 20865.77 17987.75 15392.83 5577.84 3784.36 7392.38 8572.15 4493.93 13081.27 8190.48 9695.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS86.69 3486.95 3085.90 6390.76 9067.57 14092.83 1793.30 3279.67 1784.57 6992.27 8671.47 5395.02 8684.24 5493.46 6395.13 6
baseline84.93 6284.98 6084.80 9287.30 20665.39 18887.30 16592.88 5277.62 3984.04 7992.26 8771.81 4793.96 12481.31 8090.30 9995.03 8
QAPM80.88 12579.50 14185.03 8188.01 17968.97 10391.59 4392.00 8766.63 25975.15 23592.16 8857.70 20295.45 6363.52 24088.76 12190.66 174
IS-MVSNet83.15 8782.81 8784.18 11689.94 10963.30 23291.59 4388.46 20479.04 2579.49 13392.16 8865.10 12094.28 11267.71 20991.86 8194.95 10
新几何183.42 14793.13 5270.71 7185.48 25657.43 34781.80 10791.98 9063.28 13392.27 20164.60 23792.99 6587.27 278
OpenMVScopyleft72.83 1079.77 15578.33 17084.09 12185.17 23969.91 8490.57 6090.97 12166.70 25372.17 26991.91 9154.70 22493.96 12461.81 26090.95 9188.41 257
PHI-MVS86.43 3886.17 4287.24 4190.88 8770.96 6592.27 3294.07 972.45 15285.22 5491.90 9269.47 7496.42 3783.28 6295.94 1994.35 36
VNet82.21 9982.41 9181.62 20090.82 8860.93 26284.47 23889.78 15676.36 7784.07 7891.88 9364.71 12490.26 25870.68 18088.89 11893.66 65
EC-MVSNet86.01 4286.38 3784.91 8889.31 13066.27 16692.32 3093.63 2179.37 2084.17 7691.88 9369.04 8295.43 6583.93 5793.77 6193.01 99
OPM-MVS83.50 8082.95 8585.14 7788.79 15170.95 6689.13 10391.52 10677.55 4480.96 11991.75 9560.71 17994.50 10779.67 9586.51 14989.97 209
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XVG-OURS-SEG-HR80.81 12879.76 13583.96 13585.60 23268.78 10783.54 26090.50 13470.66 18676.71 19491.66 9660.69 18091.26 23976.94 12081.58 21591.83 136
EPNet83.72 7482.92 8686.14 5984.22 25969.48 9191.05 5585.27 25781.30 676.83 19091.65 9766.09 11095.56 5876.00 13293.85 6093.38 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OMC-MVS82.69 9481.97 10184.85 8988.75 15367.42 14387.98 14490.87 12574.92 10379.72 13091.65 9762.19 15493.96 12475.26 14086.42 15093.16 92
test22291.50 7768.26 12484.16 24883.20 29054.63 35879.74 12991.63 9958.97 19391.42 8586.77 291
MVS_111021_HR85.14 5984.75 6386.32 5591.65 7672.70 3085.98 20290.33 14176.11 8182.08 10291.61 10071.36 5694.17 12081.02 8292.58 7092.08 131
原ACMM184.35 10793.01 5768.79 10692.44 6963.96 29281.09 11791.57 10166.06 11195.45 6367.19 21694.82 4588.81 247
LPG-MVS_test82.08 10181.27 10784.50 9989.23 13468.76 10890.22 7091.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18189.83 214
LGP-MVS_train84.50 9989.23 13468.76 10891.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18189.83 214
XVG-OURS80.41 14179.23 14983.97 13485.64 23169.02 10183.03 27190.39 13671.09 17677.63 17391.49 10454.62 22691.35 23775.71 13483.47 19291.54 142
alignmvs85.48 5385.32 5685.96 6289.51 11969.47 9289.74 8192.47 6876.17 8087.73 3391.46 10570.32 6593.78 13681.51 7888.95 11794.63 26
CANet86.45 3786.10 4487.51 3790.09 10170.94 6789.70 8392.59 6681.78 481.32 11291.43 10670.34 6497.23 1384.26 5293.36 6494.37 35
h-mvs3383.15 8782.19 9586.02 6190.56 9270.85 7088.15 14089.16 17876.02 8384.67 6491.39 10761.54 16295.50 6182.71 7075.48 29191.72 139
nrg03083.88 7083.53 7484.96 8486.77 21669.28 9890.46 6592.67 6174.79 10682.95 9291.33 10872.70 4193.09 17480.79 8779.28 24492.50 114
canonicalmvs85.91 4685.87 4886.04 6089.84 11169.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13181.50 7988.80 12094.77 22
DPM-MVS84.93 6284.29 6986.84 4790.20 9973.04 2387.12 16993.04 3869.80 20482.85 9591.22 11073.06 3896.02 4776.72 12694.63 4791.46 148
Anonymous20240521178.25 19277.01 20181.99 19491.03 8260.67 26784.77 23083.90 27770.65 18780.00 12891.20 11141.08 34391.43 23565.21 23185.26 16393.85 57
CS-MVS-test86.29 4186.48 3685.71 6591.02 8367.21 15292.36 2993.78 1878.97 2883.51 8891.20 11170.65 6395.15 7781.96 7694.89 4194.77 22
Anonymous2024052980.19 14978.89 15784.10 11890.60 9164.75 20188.95 10790.90 12365.97 26780.59 12291.17 11349.97 27593.73 14269.16 19782.70 20493.81 60
EPP-MVSNet83.40 8383.02 8384.57 9690.13 10064.47 20792.32 3090.73 12874.45 11579.35 13591.10 11469.05 8195.12 7872.78 16387.22 13894.13 44
TAPA-MVS73.13 979.15 17277.94 17782.79 17989.59 11562.99 24188.16 13991.51 10765.77 26877.14 18791.09 11560.91 17793.21 16350.26 33787.05 14092.17 128
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CSCG86.41 4086.19 4187.07 4592.91 5872.48 3790.81 5793.56 2473.95 12383.16 9191.07 11675.94 1895.19 7579.94 9494.38 5493.55 76
FIs82.07 10282.42 9081.04 21988.80 15058.34 28888.26 13593.49 2676.93 6078.47 15391.04 11769.92 7092.34 19969.87 19084.97 16592.44 118
MVS_111021_LR82.61 9682.11 9684.11 11788.82 14871.58 5385.15 22286.16 24774.69 10880.47 12391.04 11762.29 15190.55 25680.33 9190.08 10490.20 192
DP-MVS Recon83.11 9082.09 9786.15 5894.44 1970.92 6888.79 11392.20 8170.53 18879.17 13791.03 11964.12 12796.03 4668.39 20690.14 10291.50 145
HQP_MVS83.64 7683.14 8085.14 7790.08 10268.71 11291.25 5092.44 6979.12 2378.92 14191.00 12060.42 18695.38 6978.71 10286.32 15191.33 149
plane_prior491.00 120
FC-MVSNet-test81.52 11582.02 9980.03 24088.42 16555.97 32587.95 14693.42 2977.10 5677.38 17790.98 12269.96 6891.79 21768.46 20584.50 17192.33 119
Vis-MVSNet (Re-imp)78.36 19178.45 16578.07 27388.64 15751.78 35686.70 18479.63 32974.14 12175.11 23690.83 12361.29 17089.75 26558.10 29291.60 8292.69 107
114514_t80.68 13479.51 14084.20 11594.09 3867.27 14989.64 8591.11 11958.75 33774.08 25090.72 12458.10 19895.04 8569.70 19189.42 11390.30 189
PAPM_NR83.02 9182.41 9184.82 9092.47 6766.37 16487.93 14891.80 9873.82 12777.32 17990.66 12567.90 9194.90 9170.37 18389.48 11293.19 91
LS3D76.95 22574.82 23883.37 15090.45 9467.36 14689.15 10286.94 23561.87 31269.52 29790.61 12651.71 25894.53 10546.38 35786.71 14688.21 259
mvsmamba81.69 11080.74 11684.56 9787.45 19966.72 15991.26 4885.89 25174.66 10978.23 15990.56 12754.33 22794.91 8880.73 8883.54 19192.04 134
VPNet78.69 18478.66 16178.76 26188.31 16855.72 32784.45 24186.63 24076.79 6478.26 15890.55 12859.30 19189.70 26766.63 22077.05 26590.88 166
UniMVSNet_ETH3D79.10 17478.24 17281.70 19986.85 21360.24 27487.28 16688.79 19374.25 11876.84 18990.53 12949.48 28191.56 22667.98 20782.15 20893.29 85
ACMP74.13 681.51 11780.57 11984.36 10689.42 12268.69 11589.97 7491.50 11074.46 11475.04 23990.41 13053.82 23394.54 10477.56 11382.91 19989.86 213
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PCF-MVS73.52 780.38 14278.84 15885.01 8287.71 18968.99 10283.65 25591.46 11163.00 29877.77 17190.28 13166.10 10995.09 8461.40 26388.22 12990.94 165
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
NP-MVS89.62 11468.32 12290.24 132
HQP-MVS82.61 9682.02 9984.37 10589.33 12766.98 15589.17 9892.19 8276.41 7277.23 18290.23 13360.17 18995.11 8077.47 11485.99 15891.03 161
PS-MVSNAJss82.07 10281.31 10684.34 10886.51 22067.27 14989.27 9691.51 10771.75 16179.37 13490.22 13463.15 13894.27 11377.69 11282.36 20791.49 146
TSAR-MVS + GP.85.71 5085.33 5586.84 4791.34 7872.50 3689.07 10487.28 22876.41 7285.80 4790.22 13474.15 3195.37 7281.82 7791.88 7892.65 109
RRT_MVS80.35 14579.22 15083.74 14087.63 19365.46 18591.08 5488.92 19173.82 12776.44 20390.03 13649.05 29094.25 11776.84 12179.20 24691.51 143
SDMVSNet80.38 14280.18 12880.99 22089.03 14364.94 19780.45 29789.40 16675.19 9876.61 19889.98 13760.61 18387.69 29776.83 12383.55 18990.33 187
sd_testset77.70 21177.40 19478.60 26489.03 14360.02 27679.00 31485.83 25275.19 9876.61 19889.98 13754.81 21985.46 31362.63 25183.55 18990.33 187
TranMVSNet+NR-MVSNet80.84 12680.31 12582.42 18787.85 18262.33 24687.74 15491.33 11280.55 977.99 16789.86 13965.23 11992.62 18667.05 21875.24 30192.30 121
diffmvspermissive82.10 10081.88 10282.76 18283.00 28863.78 22083.68 25489.76 15772.94 15082.02 10389.85 14065.96 11490.79 25282.38 7487.30 13793.71 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-RMVSNet79.61 15778.44 16683.14 16089.38 12565.93 17284.95 22787.15 23273.56 13478.19 16189.79 14156.67 21293.36 15659.53 27786.74 14590.13 195
GeoE81.71 10981.01 11383.80 13989.51 11964.45 20888.97 10688.73 19971.27 17278.63 14889.76 14266.32 10793.20 16669.89 18986.02 15793.74 63
AdaColmapbinary80.58 13979.42 14284.06 12593.09 5468.91 10489.36 9488.97 18869.27 21575.70 21789.69 14357.20 20995.77 5463.06 24588.41 12787.50 273
ACMM73.20 880.78 13379.84 13483.58 14389.31 13068.37 12189.99 7391.60 10470.28 19377.25 18089.66 14453.37 23793.53 14974.24 14882.85 20088.85 245
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CNLPA78.08 19876.79 20881.97 19590.40 9671.07 6287.59 15784.55 26666.03 26672.38 26789.64 14557.56 20486.04 30759.61 27683.35 19488.79 248
test_yl81.17 12080.47 12283.24 15589.13 13863.62 22186.21 19789.95 15372.43 15581.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
DCV-MVSNet81.17 12080.47 12283.24 15589.13 13863.62 22186.21 19789.95 15372.43 15581.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
EI-MVSNet-Vis-set84.19 6783.81 7285.31 7388.18 17167.85 13387.66 15589.73 15980.05 1482.95 9289.59 14870.74 6194.82 9580.66 8984.72 16893.28 86
PAPR81.66 11380.89 11583.99 13390.27 9764.00 21586.76 18391.77 10168.84 23077.13 18889.50 14967.63 9394.88 9367.55 21188.52 12593.09 94
jajsoiax79.29 16977.96 17683.27 15384.68 25166.57 16289.25 9790.16 14769.20 21975.46 22289.49 15045.75 31693.13 17276.84 12180.80 22490.11 197
MVSFormer82.85 9382.05 9885.24 7587.35 20070.21 7790.50 6290.38 13768.55 23481.32 11289.47 15161.68 15993.46 15378.98 9990.26 10092.05 132
jason81.39 11880.29 12684.70 9486.63 21969.90 8585.95 20386.77 23863.24 29481.07 11889.47 15161.08 17592.15 20578.33 10790.07 10592.05 132
jason: jason.
mvs_tets79.13 17377.77 18583.22 15784.70 25066.37 16489.17 9890.19 14669.38 21375.40 22589.46 15344.17 32493.15 17076.78 12480.70 22690.14 194
UGNet80.83 12779.59 13984.54 9888.04 17768.09 12889.42 9188.16 20676.95 5976.22 20789.46 15349.30 28593.94 12768.48 20490.31 9891.60 140
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VPA-MVSNet80.60 13780.55 12080.76 22688.07 17660.80 26586.86 17791.58 10575.67 9080.24 12589.45 15563.34 13290.25 25970.51 18279.22 24591.23 153
MVS_Test83.15 8783.06 8283.41 14986.86 21263.21 23486.11 20092.00 8774.31 11682.87 9489.44 15670.03 6793.21 16377.39 11688.50 12693.81 60
EI-MVSNet-UG-set83.81 7183.38 7785.09 8087.87 18167.53 14187.44 16189.66 16079.74 1682.23 10189.41 15770.24 6694.74 9879.95 9383.92 18092.99 100
RPSCF73.23 26871.46 26978.54 26682.50 30059.85 27782.18 27682.84 29858.96 33471.15 27989.41 15745.48 31984.77 31958.82 28571.83 33091.02 163
bld_raw_dy_0_6477.29 22075.98 22281.22 21385.04 24565.47 18488.14 14277.56 34069.20 21973.77 25289.40 15942.24 33788.85 28476.78 12481.64 21489.33 227
UniMVSNet_NR-MVSNet81.88 10581.54 10582.92 17188.46 16363.46 22887.13 16892.37 7380.19 1278.38 15489.14 16071.66 5293.05 17670.05 18676.46 27492.25 123
tttt051779.40 16677.91 17883.90 13888.10 17463.84 21888.37 13184.05 27571.45 17076.78 19289.12 16149.93 27894.89 9270.18 18583.18 19792.96 101
DU-MVS81.12 12280.52 12182.90 17287.80 18563.46 22887.02 17291.87 9579.01 2678.38 15489.07 16265.02 12193.05 17670.05 18676.46 27492.20 126
NR-MVSNet80.23 14779.38 14382.78 18087.80 18563.34 23186.31 19491.09 12079.01 2672.17 26989.07 16267.20 9892.81 18566.08 22575.65 28792.20 126
DELS-MVS85.41 5685.30 5785.77 6488.49 16167.93 13285.52 21993.44 2778.70 2983.63 8789.03 16474.57 2495.71 5680.26 9294.04 5993.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
iter_conf_final80.63 13579.35 14584.46 10289.36 12667.70 13789.85 7584.49 26773.19 14578.30 15788.94 16545.98 31194.56 10279.59 9684.48 17491.11 156
iter_conf0580.00 15378.70 15983.91 13787.84 18365.83 17588.84 11284.92 26271.61 16678.70 14488.94 16543.88 32694.56 10279.28 9784.28 17791.33 149
baseline176.98 22476.75 21177.66 27888.13 17255.66 32885.12 22381.89 30573.04 14876.79 19188.90 16762.43 14987.78 29663.30 24471.18 33489.55 223
DP-MVS76.78 22774.57 24083.42 14793.29 4869.46 9488.55 12483.70 27963.98 29170.20 28588.89 16854.01 23294.80 9646.66 35481.88 21286.01 305
ab-mvs79.51 16078.97 15681.14 21688.46 16360.91 26383.84 25289.24 17570.36 19079.03 13888.87 16963.23 13690.21 26065.12 23282.57 20592.28 122
PEN-MVS77.73 20877.69 18977.84 27587.07 21153.91 34387.91 14991.18 11577.56 4373.14 25888.82 17061.23 17189.17 27559.95 27372.37 32590.43 183
tt080578.73 18277.83 18181.43 20585.17 23960.30 27389.41 9290.90 12371.21 17377.17 18688.73 17146.38 30593.21 16372.57 16678.96 24790.79 168
test_djsdf80.30 14679.32 14683.27 15383.98 26565.37 18990.50 6290.38 13768.55 23476.19 20888.70 17256.44 21393.46 15378.98 9980.14 23490.97 164
PAPM77.68 21276.40 21881.51 20387.29 20761.85 25383.78 25389.59 16264.74 27971.23 27788.70 17262.59 14593.66 14352.66 32387.03 14189.01 237
DTE-MVSNet76.99 22376.80 20777.54 28286.24 22253.06 35187.52 15890.66 12977.08 5772.50 26488.67 17460.48 18589.52 26957.33 29970.74 33690.05 204
PS-CasMVS78.01 20278.09 17477.77 27787.71 18954.39 34088.02 14391.22 11377.50 4673.26 25688.64 17560.73 17888.41 28961.88 25873.88 31490.53 180
cdsmvs_eth3d_5k19.96 36326.61 3650.00 3840.00 4060.00 4090.00 39589.26 1730.00 4020.00 40388.61 17661.62 1610.00 4030.00 4020.00 4010.00 399
lupinMVS81.39 11880.27 12784.76 9387.35 20070.21 7785.55 21586.41 24262.85 30181.32 11288.61 17661.68 15992.24 20378.41 10690.26 10091.83 136
F-COLMAP76.38 23574.33 24582.50 18689.28 13266.95 15888.41 12789.03 18364.05 28966.83 32288.61 17646.78 30392.89 18157.48 29678.55 24987.67 267
mvs_anonymous79.42 16579.11 15380.34 23484.45 25657.97 29482.59 27387.62 22167.40 24976.17 21188.56 17968.47 8689.59 26870.65 18186.05 15693.47 79
CP-MVSNet78.22 19378.34 16977.84 27587.83 18454.54 33887.94 14791.17 11677.65 3873.48 25488.49 18062.24 15388.43 28862.19 25474.07 31090.55 179
PVSNet_Blended_VisFu82.62 9581.83 10384.96 8490.80 8969.76 8788.74 11791.70 10269.39 21278.96 13988.46 18165.47 11794.87 9474.42 14588.57 12390.24 191
CANet_DTU80.61 13679.87 13382.83 17485.60 23263.17 23787.36 16288.65 20076.37 7675.88 21488.44 18253.51 23693.07 17573.30 15789.74 11092.25 123
PLCcopyleft70.83 1178.05 20076.37 21983.08 16391.88 7467.80 13488.19 13789.46 16564.33 28569.87 29488.38 18353.66 23493.58 14458.86 28482.73 20287.86 264
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
WR-MVS79.49 16179.22 15080.27 23688.79 15158.35 28785.06 22488.61 20278.56 3077.65 17288.34 18463.81 13190.66 25564.98 23477.22 26391.80 138
XXY-MVS75.41 24875.56 22774.96 30483.59 27257.82 29880.59 29483.87 27866.54 26074.93 24188.31 18563.24 13580.09 34462.16 25576.85 26986.97 287
Effi-MVS+83.62 7883.08 8185.24 7588.38 16667.45 14288.89 10989.15 17975.50 9282.27 10088.28 18669.61 7394.45 10977.81 11187.84 13093.84 59
API-MVS81.99 10481.23 10884.26 11490.94 8570.18 8291.10 5389.32 16971.51 16978.66 14788.28 18665.26 11895.10 8364.74 23691.23 8887.51 272
thisisatest053079.40 16677.76 18684.31 10987.69 19165.10 19487.36 16284.26 27370.04 19777.42 17688.26 18849.94 27694.79 9770.20 18484.70 16993.03 97
hse-mvs281.72 10880.94 11484.07 12388.72 15467.68 13885.87 20687.26 22976.02 8384.67 6488.22 18961.54 16293.48 15182.71 7073.44 31991.06 159
xiu_mvs_v1_base_debu80.80 13079.72 13684.03 13087.35 20070.19 7985.56 21288.77 19469.06 22481.83 10488.16 19050.91 26492.85 18278.29 10887.56 13289.06 232
xiu_mvs_v1_base80.80 13079.72 13684.03 13087.35 20070.19 7985.56 21288.77 19469.06 22481.83 10488.16 19050.91 26492.85 18278.29 10887.56 13289.06 232
xiu_mvs_v1_base_debi80.80 13079.72 13684.03 13087.35 20070.19 7985.56 21288.77 19469.06 22481.83 10488.16 19050.91 26492.85 18278.29 10887.56 13289.06 232
UniMVSNet (Re)81.60 11481.11 11083.09 16288.38 16664.41 20987.60 15693.02 4278.42 3278.56 15088.16 19069.78 7193.26 15969.58 19376.49 27391.60 140
AUN-MVS79.21 17177.60 19184.05 12888.71 15567.61 13985.84 20887.26 22969.08 22377.23 18288.14 19453.20 23993.47 15275.50 13973.45 31891.06 159
Anonymous2023121178.97 17877.69 18982.81 17690.54 9364.29 21190.11 7291.51 10765.01 27776.16 21288.13 19550.56 26993.03 17969.68 19277.56 26191.11 156
pm-mvs177.25 22176.68 21378.93 25984.22 25958.62 28686.41 19188.36 20571.37 17173.31 25588.01 19661.22 17289.15 27664.24 23873.01 32289.03 236
LTVRE_ROB69.57 1376.25 23674.54 24281.41 20688.60 15864.38 21079.24 31089.12 18270.76 18369.79 29687.86 19749.09 28893.20 16656.21 30980.16 23286.65 294
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WTY-MVS75.65 24375.68 22575.57 29886.40 22156.82 31177.92 32882.40 30165.10 27476.18 20987.72 19863.13 14180.90 34160.31 27181.96 21089.00 239
TAMVS78.89 18077.51 19383.03 16687.80 18567.79 13584.72 23185.05 26067.63 24476.75 19387.70 19962.25 15290.82 25158.53 28887.13 13990.49 181
BH-untuned79.47 16278.60 16282.05 19289.19 13665.91 17386.07 20188.52 20372.18 15775.42 22487.69 20061.15 17393.54 14860.38 27086.83 14486.70 293
COLMAP_ROBcopyleft66.92 1773.01 27070.41 28280.81 22587.13 21065.63 18088.30 13484.19 27462.96 29963.80 34887.69 20038.04 35492.56 18946.66 35474.91 30484.24 328
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OurMVSNet-221017-074.26 25572.42 26379.80 24583.76 27059.59 28185.92 20586.64 23966.39 26166.96 32087.58 20239.46 34791.60 22365.76 22869.27 34188.22 258
FA-MVS(test-final)80.96 12479.91 13284.10 11888.30 16965.01 19584.55 23790.01 15173.25 14379.61 13187.57 20358.35 19794.72 9971.29 17586.25 15392.56 111
Baseline_NR-MVSNet78.15 19778.33 17077.61 28085.79 22856.21 32386.78 18185.76 25373.60 13377.93 16887.57 20365.02 12188.99 27867.14 21775.33 29887.63 268
WR-MVS_H78.51 18878.49 16478.56 26588.02 17856.38 32088.43 12692.67 6177.14 5473.89 25187.55 20566.25 10889.24 27458.92 28373.55 31790.06 203
EI-MVSNet80.52 14079.98 13082.12 19084.28 25763.19 23686.41 19188.95 18974.18 12078.69 14587.54 20666.62 10192.43 19372.57 16680.57 22890.74 172
CVMVSNet72.99 27172.58 26174.25 31284.28 25750.85 36286.41 19183.45 28544.56 37473.23 25787.54 20649.38 28385.70 30965.90 22678.44 25286.19 300
ACMH+68.96 1476.01 23974.01 24782.03 19388.60 15865.31 19088.86 11087.55 22270.25 19567.75 31187.47 20841.27 34193.19 16858.37 28975.94 28487.60 269
TransMVSNet (Re)75.39 24974.56 24177.86 27485.50 23457.10 30886.78 18186.09 24972.17 15871.53 27587.34 20963.01 14289.31 27356.84 30461.83 36287.17 280
GBi-Net78.40 18977.40 19481.40 20787.60 19463.01 23888.39 12889.28 17071.63 16375.34 22787.28 21054.80 22091.11 24262.72 24779.57 23890.09 199
test178.40 18977.40 19481.40 20787.60 19463.01 23888.39 12889.28 17071.63 16375.34 22787.28 21054.80 22091.11 24262.72 24779.57 23890.09 199
FMVSNet278.20 19577.21 19881.20 21487.60 19462.89 24287.47 16089.02 18471.63 16375.29 23287.28 21054.80 22091.10 24562.38 25279.38 24289.61 221
FMVSNet177.44 21576.12 22181.40 20786.81 21563.01 23888.39 12889.28 17070.49 18974.39 24787.28 21049.06 28991.11 24260.91 26778.52 25090.09 199
v2v48280.23 14779.29 14783.05 16583.62 27164.14 21387.04 17189.97 15273.61 13278.18 16287.22 21461.10 17493.82 13476.11 12976.78 27191.18 154
ITE_SJBPF78.22 27081.77 31060.57 26883.30 28669.25 21667.54 31387.20 21536.33 35987.28 30054.34 31574.62 30786.80 290
anonymousdsp78.60 18677.15 19982.98 16980.51 32867.08 15387.24 16789.53 16365.66 27075.16 23487.19 21652.52 24092.25 20277.17 11879.34 24389.61 221
MVSTER79.01 17677.88 18082.38 18883.07 28564.80 20084.08 25188.95 18969.01 22778.69 14587.17 21754.70 22492.43 19374.69 14280.57 22889.89 212
thres100view90076.50 23075.55 22879.33 25489.52 11856.99 30985.83 20983.23 28873.94 12476.32 20587.12 21851.89 25591.95 21148.33 34583.75 18389.07 230
thres600view776.50 23075.44 22979.68 24889.40 12357.16 30685.53 21783.23 28873.79 12976.26 20687.09 21951.89 25591.89 21448.05 35083.72 18690.00 205
XVG-ACMP-BASELINE76.11 23874.27 24681.62 20083.20 28164.67 20283.60 25889.75 15869.75 20771.85 27287.09 21932.78 36592.11 20669.99 18880.43 23088.09 260
HY-MVS69.67 1277.95 20377.15 19980.36 23387.57 19860.21 27583.37 26287.78 21966.11 26375.37 22687.06 22163.27 13490.48 25761.38 26482.43 20690.40 185
CHOSEN 1792x268877.63 21375.69 22483.44 14689.98 10868.58 11878.70 31887.50 22456.38 35275.80 21686.84 22258.67 19491.40 23661.58 26285.75 16290.34 186
v879.97 15479.02 15582.80 17784.09 26264.50 20687.96 14590.29 14474.13 12275.24 23386.81 22362.88 14393.89 13374.39 14675.40 29690.00 205
AllTest70.96 28468.09 29979.58 25185.15 24163.62 22184.58 23679.83 32662.31 30860.32 35986.73 22432.02 36688.96 28150.28 33571.57 33286.15 301
TestCases79.58 25185.15 24163.62 22179.83 32662.31 30860.32 35986.73 22432.02 36688.96 28150.28 33571.57 33286.15 301
LCM-MVSNet-Re77.05 22276.94 20477.36 28387.20 20851.60 35780.06 30180.46 32075.20 9767.69 31286.72 22662.48 14788.98 27963.44 24289.25 11491.51 143
1112_ss77.40 21776.43 21780.32 23589.11 14260.41 27283.65 25587.72 22062.13 31073.05 25986.72 22662.58 14689.97 26262.11 25780.80 22490.59 178
ab-mvs-re7.23 3669.64 3690.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40386.72 2260.00 4070.00 4030.00 4020.00 4010.00 399
IterMVS-LS80.06 15079.38 14382.11 19185.89 22763.20 23586.79 18089.34 16874.19 11975.45 22386.72 22666.62 10192.39 19572.58 16576.86 26890.75 171
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH67.68 1675.89 24073.93 24881.77 19888.71 15566.61 16188.62 12289.01 18569.81 20366.78 32386.70 23041.95 34091.51 23155.64 31078.14 25687.17 280
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Test_1112_low_res76.40 23475.44 22979.27 25589.28 13258.09 29081.69 28187.07 23359.53 32972.48 26586.67 23161.30 16989.33 27260.81 26980.15 23390.41 184
FMVSNet377.88 20576.85 20680.97 22286.84 21462.36 24586.52 18988.77 19471.13 17475.34 22786.66 23254.07 23191.10 24562.72 24779.57 23889.45 224
pmmvs674.69 25273.39 25478.61 26381.38 31757.48 30386.64 18587.95 21364.99 27870.18 28686.61 23350.43 27189.52 26962.12 25670.18 33888.83 246
ET-MVSNet_ETH3D78.63 18576.63 21484.64 9586.73 21769.47 9285.01 22584.61 26569.54 21066.51 33086.59 23450.16 27391.75 21976.26 12884.24 17892.69 107
testgi66.67 32066.53 31767.08 35375.62 36041.69 38875.93 33676.50 34866.11 26365.20 34086.59 23435.72 36174.71 37443.71 36473.38 32084.84 322
CLD-MVS82.31 9881.65 10484.29 11088.47 16267.73 13685.81 21092.35 7475.78 8678.33 15686.58 23664.01 12894.35 11076.05 13187.48 13590.79 168
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
v1079.74 15678.67 16082.97 17084.06 26364.95 19687.88 15190.62 13073.11 14675.11 23686.56 23761.46 16594.05 12373.68 15175.55 28989.90 211
CDS-MVSNet79.07 17577.70 18883.17 15987.60 19468.23 12584.40 24486.20 24667.49 24776.36 20486.54 23861.54 16290.79 25261.86 25987.33 13690.49 181
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
xiu_mvs_v2_base81.69 11081.05 11183.60 14289.15 13768.03 13184.46 24090.02 15070.67 18481.30 11586.53 23963.17 13794.19 11975.60 13788.54 12488.57 254
TR-MVS77.44 21576.18 22081.20 21488.24 17063.24 23384.61 23586.40 24367.55 24677.81 16986.48 24054.10 23093.15 17057.75 29582.72 20387.20 279
EIA-MVS83.31 8682.80 8884.82 9089.59 11565.59 18188.21 13692.68 6074.66 10978.96 13986.42 24169.06 8095.26 7375.54 13890.09 10393.62 72
tfpn200view976.42 23375.37 23379.55 25389.13 13857.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24791.95 21148.33 34583.75 18389.07 230
thres40076.50 23075.37 23379.86 24389.13 13857.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24791.95 21148.33 34583.75 18390.00 205
v7n78.97 17877.58 19283.14 16083.45 27565.51 18288.32 13391.21 11473.69 13072.41 26686.32 24457.93 19993.81 13569.18 19675.65 28790.11 197
MAR-MVS81.84 10680.70 11785.27 7491.32 7971.53 5489.82 7790.92 12269.77 20678.50 15186.21 24562.36 15094.52 10665.36 23092.05 7789.77 217
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
v114480.03 15179.03 15483.01 16783.78 26964.51 20487.11 17090.57 13371.96 16078.08 16586.20 24661.41 16693.94 12774.93 14177.23 26290.60 177
test_vis1_n_192075.52 24575.78 22374.75 30879.84 33657.44 30483.26 26385.52 25562.83 30279.34 13686.17 24745.10 32079.71 34578.75 10181.21 21987.10 286
V4279.38 16878.24 17282.83 17481.10 32265.50 18385.55 21589.82 15571.57 16878.21 16086.12 24860.66 18193.18 16975.64 13575.46 29389.81 216
PVSNet_BlendedMVS80.60 13780.02 12982.36 18988.85 14565.40 18686.16 19992.00 8769.34 21478.11 16386.09 24966.02 11294.27 11371.52 17182.06 20987.39 274
v119279.59 15978.43 16783.07 16483.55 27364.52 20386.93 17590.58 13170.83 18077.78 17085.90 25059.15 19293.94 12773.96 15077.19 26490.76 170
SixPastTwentyTwo73.37 26471.26 27479.70 24785.08 24457.89 29685.57 21183.56 28271.03 17865.66 33485.88 25142.10 33892.57 18859.11 28163.34 36088.65 252
EPNet_dtu75.46 24674.86 23777.23 28682.57 29954.60 33786.89 17683.09 29171.64 16266.25 33285.86 25255.99 21488.04 29354.92 31286.55 14889.05 235
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
sss73.60 26273.64 25373.51 31782.80 29355.01 33476.12 33581.69 30862.47 30774.68 24485.85 25357.32 20778.11 35260.86 26880.93 22187.39 274
ETV-MVS84.90 6484.67 6485.59 6789.39 12468.66 11688.74 11792.64 6579.97 1584.10 7785.71 25469.32 7695.38 6980.82 8591.37 8692.72 104
test_cas_vis1_n_192073.76 26173.74 25273.81 31575.90 35759.77 27880.51 29582.40 30158.30 33981.62 11085.69 25544.35 32376.41 36376.29 12778.61 24885.23 315
v124078.99 17777.78 18482.64 18383.21 28063.54 22586.62 18690.30 14369.74 20977.33 17885.68 25657.04 21093.76 13973.13 16076.92 26690.62 175
v14419279.47 16278.37 16882.78 18083.35 27663.96 21686.96 17390.36 14069.99 19977.50 17485.67 25760.66 18193.77 13874.27 14776.58 27290.62 175
tfpnnormal74.39 25373.16 25778.08 27286.10 22658.05 29184.65 23487.53 22370.32 19271.22 27885.63 25854.97 21889.86 26343.03 36675.02 30386.32 297
PS-MVSNAJ81.69 11081.02 11283.70 14189.51 11968.21 12684.28 24690.09 14970.79 18181.26 11685.62 25963.15 13894.29 11175.62 13688.87 11988.59 253
v192192079.22 17078.03 17582.80 17783.30 27863.94 21786.80 17990.33 14169.91 20277.48 17585.53 26058.44 19693.75 14073.60 15276.85 26990.71 173
test_040272.79 27370.44 28179.84 24488.13 17265.99 17185.93 20484.29 27165.57 27167.40 31785.49 26146.92 30292.61 18735.88 37874.38 30980.94 357
v14878.72 18377.80 18381.47 20482.73 29561.96 25286.30 19588.08 20973.26 14276.18 20985.47 26262.46 14892.36 19771.92 17073.82 31590.09 199
USDC70.33 29268.37 29476.21 29380.60 32656.23 32279.19 31286.49 24160.89 31761.29 35585.47 26231.78 36889.47 27153.37 32076.21 28282.94 345
MVP-Stereo76.12 23774.46 24481.13 21785.37 23769.79 8684.42 24387.95 21365.03 27667.46 31585.33 26453.28 23891.73 22158.01 29383.27 19581.85 352
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MVS78.19 19676.99 20381.78 19785.66 23066.99 15484.66 23290.47 13555.08 35772.02 27185.27 26563.83 13094.11 12266.10 22489.80 10984.24 328
DIV-MVS_self_test77.72 20976.76 20980.58 22982.48 30260.48 27083.09 26787.86 21669.22 21774.38 24885.24 26662.10 15591.53 22971.09 17675.40 29689.74 218
FE-MVS77.78 20775.68 22584.08 12288.09 17566.00 17083.13 26687.79 21868.42 23878.01 16685.23 26745.50 31895.12 7859.11 28185.83 16191.11 156
cl____77.72 20976.76 20980.58 22982.49 30160.48 27083.09 26787.87 21569.22 21774.38 24885.22 26862.10 15591.53 22971.09 17675.41 29589.73 219
HyFIR lowres test77.53 21475.40 23183.94 13689.59 11566.62 16080.36 29888.64 20156.29 35376.45 20085.17 26957.64 20393.28 15861.34 26583.10 19891.91 135
pmmvs474.03 25971.91 26680.39 23281.96 30768.32 12281.45 28582.14 30359.32 33069.87 29485.13 27052.40 24388.13 29260.21 27274.74 30684.73 324
TDRefinement67.49 31364.34 32376.92 28873.47 37161.07 26184.86 22982.98 29459.77 32658.30 36685.13 27026.06 37687.89 29447.92 35160.59 36781.81 353
Fast-Effi-MVS+80.81 12879.92 13183.47 14588.85 14564.51 20485.53 21789.39 16770.79 18178.49 15285.06 27267.54 9493.58 14467.03 21986.58 14792.32 120
PVSNet_Blended80.98 12380.34 12482.90 17288.85 14565.40 18684.43 24292.00 8767.62 24578.11 16385.05 27366.02 11294.27 11371.52 17189.50 11189.01 237
test_fmvs1_n70.86 28670.24 28472.73 32372.51 37755.28 33181.27 28779.71 32851.49 36778.73 14384.87 27427.54 37577.02 35776.06 13079.97 23685.88 308
CMPMVSbinary51.72 2170.19 29468.16 29776.28 29273.15 37357.55 30279.47 30883.92 27648.02 37156.48 37284.81 27543.13 32986.42 30562.67 25081.81 21384.89 321
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EU-MVSNet68.53 30867.61 30971.31 33478.51 34947.01 37284.47 23884.27 27242.27 37766.44 33184.79 27640.44 34583.76 32458.76 28668.54 34683.17 339
BH-w/o78.21 19477.33 19780.84 22488.81 14965.13 19384.87 22887.85 21769.75 20774.52 24684.74 27761.34 16893.11 17358.24 29185.84 16084.27 327
pmmvs571.55 27970.20 28575.61 29777.83 35056.39 31981.74 28080.89 31257.76 34367.46 31584.49 27849.26 28685.32 31557.08 30175.29 29985.11 319
thres20075.55 24474.47 24378.82 26087.78 18857.85 29783.07 26983.51 28372.44 15475.84 21584.42 27952.08 25091.75 21947.41 35283.64 18886.86 289
test_fmvs170.93 28570.52 27972.16 32673.71 36755.05 33380.82 28878.77 33451.21 36878.58 14984.41 28031.20 37076.94 35875.88 13380.12 23584.47 326
testing368.56 30767.67 30871.22 33587.33 20542.87 38383.06 27071.54 36570.36 19069.08 30284.38 28130.33 37285.69 31037.50 37775.45 29485.09 320
test_fmvs268.35 31067.48 31170.98 33769.50 38051.95 35480.05 30276.38 34949.33 37074.65 24584.38 28123.30 38175.40 37274.51 14475.17 30285.60 310
eth_miper_zixun_eth77.92 20476.69 21281.61 20283.00 28861.98 25183.15 26589.20 17769.52 21174.86 24284.35 28361.76 15892.56 18971.50 17372.89 32390.28 190
c3_l78.75 18177.91 17881.26 21182.89 29261.56 25784.09 25089.13 18169.97 20075.56 21884.29 28466.36 10692.09 20773.47 15575.48 29190.12 196
Fast-Effi-MVS+-dtu78.02 20176.49 21582.62 18483.16 28466.96 15786.94 17487.45 22672.45 15271.49 27684.17 28554.79 22391.58 22467.61 21080.31 23189.30 228
IterMVS-SCA-FT75.43 24773.87 25080.11 23982.69 29664.85 19981.57 28383.47 28469.16 22170.49 28284.15 28651.95 25388.15 29169.23 19572.14 32887.34 276
131476.53 22975.30 23580.21 23783.93 26662.32 24784.66 23288.81 19260.23 32270.16 28884.07 28755.30 21790.73 25467.37 21383.21 19687.59 271
cl2278.07 19977.01 20181.23 21282.37 30461.83 25483.55 25987.98 21168.96 22875.06 23883.87 28861.40 16791.88 21573.53 15376.39 27689.98 208
EG-PatchMatch MVS74.04 25871.82 26780.71 22784.92 24767.42 14385.86 20788.08 20966.04 26564.22 34483.85 28935.10 36292.56 18957.44 29780.83 22382.16 351
thisisatest051577.33 21875.38 23283.18 15885.27 23863.80 21982.11 27783.27 28765.06 27575.91 21383.84 29049.54 28094.27 11367.24 21586.19 15491.48 147
test20.0367.45 31466.95 31568.94 34475.48 36144.84 37977.50 32977.67 33966.66 25463.01 35083.80 29147.02 30178.40 35042.53 36868.86 34583.58 336
miper_ehance_all_eth78.59 18777.76 18681.08 21882.66 29761.56 25783.65 25589.15 17968.87 22975.55 21983.79 29266.49 10492.03 20873.25 15876.39 27689.64 220
MSDG73.36 26670.99 27580.49 23184.51 25565.80 17780.71 29286.13 24865.70 26965.46 33583.74 29344.60 32190.91 25051.13 33076.89 26784.74 323
IterMVS74.29 25472.94 25978.35 26981.53 31463.49 22781.58 28282.49 30068.06 24269.99 29183.69 29451.66 25985.54 31165.85 22771.64 33186.01 305
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tpm72.37 27671.71 26874.35 31182.19 30552.00 35379.22 31177.29 34464.56 28172.95 26083.68 29551.35 26083.26 33058.33 29075.80 28587.81 265
Effi-MVS+-dtu80.03 15178.57 16384.42 10485.13 24368.74 11088.77 11488.10 20874.99 10274.97 24083.49 29657.27 20893.36 15673.53 15380.88 22291.18 154
baseline275.70 24273.83 25181.30 21083.26 27961.79 25582.57 27480.65 31666.81 25066.88 32183.42 29757.86 20192.19 20463.47 24179.57 23889.91 210
TinyColmap67.30 31664.81 32174.76 30781.92 30956.68 31580.29 30081.49 31060.33 32056.27 37383.22 29824.77 37887.66 29845.52 36069.47 34079.95 361
mvsany_test162.30 33561.26 33965.41 35569.52 37954.86 33566.86 37449.78 39546.65 37268.50 30883.21 29949.15 28766.28 38756.93 30360.77 36575.11 371
test_vis1_n69.85 29869.21 28971.77 32872.66 37655.27 33281.48 28476.21 35052.03 36475.30 23183.20 30028.97 37376.22 36574.60 14378.41 25483.81 334
CostFormer75.24 25073.90 24979.27 25582.65 29858.27 28980.80 28982.73 29961.57 31375.33 23083.13 30155.52 21591.07 24864.98 23478.34 25588.45 255
miper_lstm_enhance74.11 25773.11 25877.13 28780.11 33259.62 28072.23 35586.92 23666.76 25270.40 28382.92 30256.93 21182.92 33169.06 19872.63 32488.87 244
GA-MVS76.87 22675.17 23681.97 19582.75 29462.58 24381.44 28686.35 24572.16 15974.74 24382.89 30346.20 31092.02 20968.85 20181.09 22091.30 152
K. test v371.19 28168.51 29379.21 25783.04 28757.78 29984.35 24576.91 34772.90 15162.99 35182.86 30439.27 34891.09 24761.65 26152.66 37888.75 249
MS-PatchMatch73.83 26072.67 26077.30 28583.87 26766.02 16981.82 27884.66 26461.37 31668.61 30682.82 30547.29 29888.21 29059.27 27884.32 17677.68 366
lessismore_v078.97 25881.01 32357.15 30765.99 37861.16 35682.82 30539.12 34991.34 23859.67 27546.92 38488.43 256
D2MVS74.82 25173.21 25679.64 25079.81 33762.56 24480.34 29987.35 22764.37 28468.86 30382.66 30746.37 30690.10 26167.91 20881.24 21886.25 298
Anonymous2023120668.60 30567.80 30571.02 33680.23 33150.75 36378.30 32480.47 31956.79 35066.11 33382.63 30846.35 30778.95 34843.62 36575.70 28683.36 338
MIMVSNet70.69 28869.30 28774.88 30584.52 25456.35 32175.87 33979.42 33064.59 28067.76 31082.41 30941.10 34281.54 33846.64 35681.34 21686.75 292
OpenMVS_ROBcopyleft64.09 1970.56 29068.19 29677.65 27980.26 32959.41 28385.01 22582.96 29558.76 33665.43 33682.33 31037.63 35691.23 24145.34 36276.03 28382.32 348
miper_enhance_ethall77.87 20676.86 20580.92 22381.65 31161.38 25982.68 27288.98 18665.52 27275.47 22082.30 31165.76 11692.00 21072.95 16176.39 27689.39 225
test0.0.03 168.00 31267.69 30768.90 34577.55 35147.43 37075.70 34072.95 36466.66 25466.56 32682.29 31248.06 29575.87 36744.97 36374.51 30883.41 337
PVSNet64.34 1872.08 27870.87 27775.69 29686.21 22356.44 31874.37 34980.73 31562.06 31170.17 28782.23 31342.86 33183.31 32954.77 31384.45 17587.32 277
MIMVSNet168.58 30666.78 31673.98 31480.07 33351.82 35580.77 29084.37 26864.40 28359.75 36282.16 31436.47 35883.63 32642.73 36770.33 33786.48 296
CL-MVSNet_self_test72.37 27671.46 26975.09 30379.49 34353.53 34580.76 29185.01 26169.12 22270.51 28182.05 31557.92 20084.13 32252.27 32566.00 35487.60 269
tpm273.26 26771.46 26978.63 26283.34 27756.71 31480.65 29380.40 32156.63 35173.55 25382.02 31651.80 25791.24 24056.35 30878.42 25387.95 261
PatchMatch-RL72.38 27570.90 27676.80 29088.60 15867.38 14579.53 30776.17 35162.75 30469.36 29982.00 31745.51 31784.89 31853.62 31880.58 22778.12 365
FMVSNet569.50 29967.96 30074.15 31382.97 29155.35 33080.01 30382.12 30462.56 30663.02 34981.53 31836.92 35781.92 33648.42 34474.06 31185.17 318
CR-MVSNet73.37 26471.27 27379.67 24981.32 32065.19 19175.92 33780.30 32259.92 32572.73 26281.19 31952.50 24186.69 30259.84 27477.71 25887.11 284
Patchmtry70.74 28769.16 29075.49 30080.72 32454.07 34274.94 34880.30 32258.34 33870.01 28981.19 31952.50 24186.54 30353.37 32071.09 33585.87 309
IB-MVS68.01 1575.85 24173.36 25583.31 15184.76 24966.03 16883.38 26185.06 25970.21 19669.40 29881.05 32145.76 31594.66 10165.10 23375.49 29089.25 229
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cascas76.72 22874.64 23982.99 16885.78 22965.88 17482.33 27589.21 17660.85 31872.74 26181.02 32247.28 29993.75 14067.48 21285.02 16489.34 226
LF4IMVS64.02 33162.19 33569.50 34270.90 37853.29 35076.13 33477.18 34552.65 36258.59 36480.98 32323.55 38076.52 36153.06 32266.66 35078.68 364
Anonymous2024052168.80 30467.22 31373.55 31674.33 36454.11 34183.18 26485.61 25458.15 34061.68 35480.94 32430.71 37181.27 34057.00 30273.34 32185.28 314
gm-plane-assit81.40 31653.83 34462.72 30580.94 32492.39 19563.40 243
UnsupCasMVSNet_eth67.33 31565.99 31971.37 33173.48 37051.47 35975.16 34485.19 25865.20 27360.78 35780.93 32642.35 33377.20 35657.12 30053.69 37785.44 312
dmvs_re71.14 28270.58 27872.80 32281.96 30759.68 27975.60 34179.34 33168.55 23469.27 30180.72 32749.42 28276.54 36052.56 32477.79 25782.19 350
MDTV_nov1_ep1369.97 28683.18 28253.48 34677.10 33380.18 32560.45 31969.33 30080.44 32848.89 29386.90 30151.60 32878.51 251
pmmvs-eth3d70.50 29167.83 30478.52 26777.37 35366.18 16781.82 27881.51 30958.90 33563.90 34780.42 32942.69 33286.28 30658.56 28765.30 35683.11 341
PM-MVS66.41 32264.14 32473.20 32073.92 36656.45 31778.97 31564.96 38263.88 29364.72 34180.24 33019.84 38483.44 32866.24 22164.52 35879.71 362
SCA74.22 25672.33 26479.91 24284.05 26462.17 24979.96 30479.29 33266.30 26272.38 26780.13 33151.95 25388.60 28659.25 27977.67 26088.96 241
Patchmatch-test64.82 32963.24 33069.57 34179.42 34449.82 36763.49 38369.05 37351.98 36559.95 36180.13 33150.91 26470.98 38140.66 37173.57 31687.90 263
tpmrst72.39 27472.13 26573.18 32180.54 32749.91 36679.91 30579.08 33363.11 29671.69 27479.95 33355.32 21682.77 33265.66 22973.89 31386.87 288
DSMNet-mixed57.77 34156.90 34360.38 36167.70 38235.61 39269.18 36753.97 39332.30 38957.49 36979.88 33440.39 34668.57 38638.78 37572.37 32576.97 367
MDA-MVSNet-bldmvs66.68 31963.66 32875.75 29579.28 34560.56 26973.92 35178.35 33664.43 28250.13 38079.87 33544.02 32583.67 32546.10 35856.86 37083.03 343
PatchmatchNetpermissive73.12 26971.33 27278.49 26883.18 28260.85 26479.63 30678.57 33564.13 28671.73 27379.81 33651.20 26285.97 30857.40 29876.36 28188.66 251
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Syy-MVS68.05 31167.85 30268.67 34884.68 25140.97 38978.62 31973.08 36266.65 25766.74 32479.46 33752.11 24982.30 33432.89 38176.38 27982.75 346
myMVS_eth3d67.02 31766.29 31869.21 34384.68 25142.58 38478.62 31973.08 36266.65 25766.74 32479.46 33731.53 36982.30 33439.43 37476.38 27982.75 346
ppachtmachnet_test70.04 29567.34 31278.14 27179.80 33861.13 26079.19 31280.59 31759.16 33265.27 33779.29 33946.75 30487.29 29949.33 34166.72 34986.00 307
EPMVS69.02 30268.16 29771.59 32979.61 34149.80 36877.40 33066.93 37662.82 30370.01 28979.05 34045.79 31477.86 35456.58 30675.26 30087.13 283
PMMVS69.34 30068.67 29271.35 33375.67 35962.03 25075.17 34373.46 36050.00 36968.68 30479.05 34052.07 25178.13 35161.16 26682.77 20173.90 372
test-LLR72.94 27272.43 26274.48 30981.35 31858.04 29278.38 32177.46 34166.66 25469.95 29279.00 34248.06 29579.24 34666.13 22284.83 16686.15 301
test-mter71.41 28070.39 28374.48 30981.35 31858.04 29278.38 32177.46 34160.32 32169.95 29279.00 34236.08 36079.24 34666.13 22284.83 16686.15 301
KD-MVS_self_test68.81 30367.59 31072.46 32574.29 36545.45 37477.93 32787.00 23463.12 29563.99 34678.99 34442.32 33484.77 31956.55 30764.09 35987.16 282
test_fmvs363.36 33361.82 33667.98 35062.51 38746.96 37377.37 33174.03 35945.24 37367.50 31478.79 34512.16 39272.98 38072.77 16466.02 35383.99 332
KD-MVS_2432*160066.22 32463.89 32673.21 31875.47 36253.42 34770.76 36184.35 26964.10 28766.52 32878.52 34634.55 36384.98 31650.40 33350.33 38181.23 355
miper_refine_blended66.22 32463.89 32673.21 31875.47 36253.42 34770.76 36184.35 26964.10 28766.52 32878.52 34634.55 36384.98 31650.40 33350.33 38181.23 355
tpmvs71.09 28369.29 28876.49 29182.04 30656.04 32478.92 31681.37 31164.05 28967.18 31978.28 34849.74 27989.77 26449.67 34072.37 32583.67 335
our_test_369.14 30167.00 31475.57 29879.80 33858.80 28477.96 32677.81 33859.55 32862.90 35278.25 34947.43 29783.97 32351.71 32767.58 34883.93 333
MDA-MVSNet_test_wron65.03 32762.92 33171.37 33175.93 35656.73 31269.09 37074.73 35657.28 34854.03 37677.89 35045.88 31274.39 37649.89 33961.55 36382.99 344
YYNet165.03 32762.91 33271.38 33075.85 35856.60 31669.12 36974.66 35857.28 34854.12 37577.87 35145.85 31374.48 37549.95 33861.52 36483.05 342
ambc75.24 30273.16 37250.51 36463.05 38487.47 22564.28 34377.81 35217.80 38689.73 26657.88 29460.64 36685.49 311
tpm cat170.57 28968.31 29577.35 28482.41 30357.95 29578.08 32580.22 32452.04 36368.54 30777.66 35352.00 25287.84 29551.77 32672.07 32986.25 298
dp66.80 31865.43 32070.90 33879.74 34048.82 36975.12 34674.77 35559.61 32764.08 34577.23 35442.89 33080.72 34248.86 34366.58 35183.16 340
TESTMET0.1,169.89 29769.00 29172.55 32479.27 34656.85 31078.38 32174.71 35757.64 34468.09 30977.19 35537.75 35576.70 35963.92 23984.09 17984.10 331
CHOSEN 280x42066.51 32164.71 32271.90 32781.45 31563.52 22657.98 38668.95 37453.57 35962.59 35376.70 35646.22 30975.29 37355.25 31179.68 23776.88 368
PatchT68.46 30967.85 30270.29 33980.70 32543.93 38172.47 35474.88 35460.15 32370.55 28076.57 35749.94 27681.59 33750.58 33174.83 30585.34 313
mvsany_test353.99 34451.45 34961.61 36055.51 39144.74 38063.52 38245.41 39943.69 37658.11 36776.45 35817.99 38563.76 39054.77 31347.59 38376.34 369
RPMNet73.51 26370.49 28082.58 18581.32 32065.19 19175.92 33792.27 7657.60 34572.73 26276.45 35852.30 24495.43 6548.14 34977.71 25887.11 284
dmvs_testset62.63 33464.11 32558.19 36378.55 34824.76 39975.28 34265.94 37967.91 24360.34 35876.01 36053.56 23573.94 37831.79 38267.65 34775.88 370
ADS-MVSNet266.20 32663.33 32974.82 30679.92 33458.75 28567.55 37275.19 35353.37 36065.25 33875.86 36142.32 33480.53 34341.57 36968.91 34385.18 316
ADS-MVSNet64.36 33062.88 33368.78 34779.92 33447.17 37167.55 37271.18 36653.37 36065.25 33875.86 36142.32 33473.99 37741.57 36968.91 34385.18 316
EGC-MVSNET52.07 35047.05 35467.14 35283.51 27460.71 26680.50 29667.75 3750.07 3990.43 40075.85 36324.26 37981.54 33828.82 38462.25 36159.16 384
new-patchmatchnet61.73 33661.73 33761.70 35972.74 37524.50 40069.16 36878.03 33761.40 31456.72 37175.53 36438.42 35176.48 36245.95 35957.67 36984.13 330
N_pmnet52.79 34853.26 34751.40 37378.99 3477.68 40569.52 3653.89 40451.63 36657.01 37074.98 36540.83 34465.96 38837.78 37664.67 35780.56 360
WB-MVS54.94 34254.72 34455.60 36973.50 36920.90 40174.27 35061.19 38659.16 33250.61 37974.15 36647.19 30075.78 36817.31 39335.07 38870.12 376
patchmatchnet-post74.00 36751.12 26388.60 286
GG-mvs-BLEND75.38 30181.59 31355.80 32679.32 30969.63 37067.19 31873.67 36843.24 32888.90 28350.41 33284.50 17181.45 354
SSC-MVS53.88 34553.59 34654.75 37172.87 37419.59 40273.84 35260.53 38857.58 34649.18 38173.45 36946.34 30875.47 37116.20 39632.28 39069.20 377
Patchmatch-RL test70.24 29367.78 30677.61 28077.43 35259.57 28271.16 35870.33 36762.94 30068.65 30572.77 37050.62 26885.49 31269.58 19366.58 35187.77 266
FPMVS53.68 34651.64 34859.81 36265.08 38551.03 36169.48 36669.58 37141.46 37840.67 38472.32 37116.46 38870.00 38424.24 39065.42 35558.40 386
UnsupCasMVSNet_bld63.70 33261.53 33870.21 34073.69 36851.39 36072.82 35381.89 30555.63 35557.81 36871.80 37238.67 35078.61 34949.26 34252.21 37980.63 358
APD_test153.31 34749.93 35263.42 35865.68 38450.13 36571.59 35766.90 37734.43 38640.58 38571.56 3738.65 39776.27 36434.64 38055.36 37563.86 382
test_f52.09 34950.82 35055.90 36753.82 39442.31 38759.42 38558.31 39136.45 38456.12 37470.96 37412.18 39157.79 39253.51 31956.57 37267.60 378
PVSNet_057.27 2061.67 33759.27 34068.85 34679.61 34157.44 30468.01 37173.44 36155.93 35458.54 36570.41 37544.58 32277.55 35547.01 35335.91 38771.55 375
pmmvs357.79 34054.26 34568.37 34964.02 38656.72 31375.12 34665.17 38040.20 37952.93 37769.86 37620.36 38375.48 37045.45 36155.25 37672.90 374
test_vis1_rt60.28 33858.42 34165.84 35467.25 38355.60 32970.44 36360.94 38744.33 37559.00 36366.64 37724.91 37768.67 38562.80 24669.48 33973.25 373
new_pmnet50.91 35150.29 35152.78 37268.58 38134.94 39463.71 38156.63 39239.73 38044.95 38265.47 37821.93 38258.48 39134.98 37956.62 37164.92 380
gg-mvs-nofinetune69.95 29667.96 30075.94 29483.07 28554.51 33977.23 33270.29 36863.11 29670.32 28462.33 37943.62 32788.69 28553.88 31787.76 13184.62 325
JIA-IIPM66.32 32362.82 33476.82 28977.09 35461.72 25665.34 37975.38 35258.04 34264.51 34262.32 38042.05 33986.51 30451.45 32969.22 34282.21 349
LCM-MVSNet54.25 34349.68 35367.97 35153.73 39545.28 37766.85 37580.78 31435.96 38539.45 38662.23 3818.70 39678.06 35348.24 34851.20 38080.57 359
PMMVS240.82 35838.86 36146.69 37453.84 39316.45 40348.61 38949.92 39437.49 38231.67 38760.97 3828.14 39856.42 39328.42 38530.72 39167.19 379
testf145.72 35441.96 35757.00 36456.90 38945.32 37566.14 37759.26 38926.19 39030.89 38960.96 3834.14 40070.64 38226.39 38846.73 38555.04 387
APD_test245.72 35441.96 35757.00 36456.90 38945.32 37566.14 37759.26 38926.19 39030.89 38960.96 3834.14 40070.64 38226.39 38846.73 38555.04 387
MVS-HIRNet59.14 33957.67 34263.57 35781.65 31143.50 38271.73 35665.06 38139.59 38151.43 37857.73 38538.34 35282.58 33339.53 37273.95 31264.62 381
ANet_high50.57 35246.10 35663.99 35648.67 39839.13 39070.99 36080.85 31361.39 31531.18 38857.70 38617.02 38773.65 37931.22 38315.89 39679.18 363
PMVScopyleft37.38 2244.16 35740.28 36055.82 36840.82 40042.54 38665.12 38063.99 38334.43 38624.48 39257.12 3873.92 40276.17 36617.10 39455.52 37448.75 389
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis3_rt49.26 35347.02 35556.00 36654.30 39245.27 37866.76 37648.08 39636.83 38344.38 38353.20 3887.17 39964.07 38956.77 30555.66 37358.65 385
test_method31.52 36029.28 36438.23 37627.03 4026.50 40620.94 39462.21 3854.05 39722.35 39552.50 38913.33 38947.58 39627.04 38734.04 38960.62 383
DeepMVS_CXcopyleft27.40 37940.17 40126.90 39724.59 40317.44 39523.95 39348.61 3909.77 39426.48 39818.06 39224.47 39228.83 392
MVEpermissive26.22 2330.37 36225.89 36643.81 37544.55 39935.46 39328.87 39339.07 40018.20 39418.58 39640.18 3912.68 40347.37 39717.07 39523.78 39348.60 390
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft45.18 35641.86 35955.16 37077.03 35551.52 35832.50 39280.52 31832.46 38827.12 39135.02 3929.52 39575.50 36922.31 39160.21 36838.45 391
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN31.77 35930.64 36235.15 37752.87 39627.67 39657.09 38747.86 39724.64 39216.40 39733.05 39311.23 39354.90 39414.46 39718.15 39422.87 393
EMVS30.81 36129.65 36334.27 37850.96 39725.95 39856.58 38846.80 39824.01 39315.53 39830.68 39412.47 39054.43 39512.81 39817.05 39522.43 394
tmp_tt18.61 36421.40 36710.23 3814.82 40310.11 40434.70 39130.74 4021.48 39823.91 39426.07 39528.42 37413.41 40027.12 38615.35 3977.17 395
X-MVStestdata80.37 14477.83 18188.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8512.47 39667.45 9596.60 3383.06 6394.50 5094.07 47
test_post5.46 39750.36 27284.24 321
test_post178.90 3175.43 39848.81 29485.44 31459.25 279
wuyk23d16.82 36515.94 36819.46 38058.74 38831.45 39539.22 3903.74 4056.84 3966.04 3992.70 3991.27 40424.29 39910.54 39914.40 3982.63 396
testmvs6.04 3688.02 3710.10 3830.08 4040.03 40869.74 3640.04 4060.05 4000.31 4011.68 4000.02 4060.04 4010.24 4000.02 3990.25 398
test1236.12 3678.11 3700.14 3820.06 4050.09 40771.05 3590.03 4070.04 4010.25 4021.30 4010.05 4050.03 4020.21 4010.01 4000.29 397
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas5.26 3697.02 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40263.15 1380.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS42.58 38439.46 373
FOURS195.00 1072.39 3995.06 193.84 1574.49 11391.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
No_MVS89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
eth-test20.00 406
eth-test0.00 406
IU-MVS95.30 271.25 5792.95 5166.81 25092.39 688.94 1696.63 494.85 19
save fliter93.80 4072.35 4290.47 6491.17 11674.31 116
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 42
GSMVS88.96 241
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26188.96 241
sam_mvs50.01 274
MTGPAbinary92.02 85
MTMP92.18 3532.83 401
test9_res84.90 4295.70 2692.87 102
agg_prior282.91 6695.45 3092.70 105
agg_prior92.85 5971.94 5191.78 10084.41 7194.93 87
test_prior472.60 3489.01 105
test_prior86.33 5492.61 6569.59 8892.97 5095.48 6293.91 53
旧先验286.56 18858.10 34187.04 3988.98 27974.07 149
新几何286.29 196
无先验87.48 15988.98 18660.00 32494.12 12167.28 21488.97 240
原ACMM286.86 177
testdata291.01 24962.37 253
segment_acmp73.08 37
testdata184.14 24975.71 87
test1286.80 4992.63 6470.70 7291.79 9982.71 9871.67 5196.16 4494.50 5093.54 77
plane_prior790.08 10268.51 119
plane_prior689.84 11168.70 11460.42 186
plane_prior592.44 6995.38 6978.71 10286.32 15191.33 149
plane_prior368.60 11778.44 3178.92 141
plane_prior291.25 5079.12 23
plane_prior189.90 110
plane_prior68.71 11290.38 6777.62 3986.16 155
n20.00 408
nn0.00 408
door-mid69.98 369
test1192.23 79
door69.44 372
HQP5-MVS66.98 155
HQP-NCC89.33 12789.17 9876.41 7277.23 182
ACMP_Plane89.33 12789.17 9876.41 7277.23 182
BP-MVS77.47 114
HQP4-MVS77.24 18195.11 8091.03 161
HQP3-MVS92.19 8285.99 158
HQP2-MVS60.17 189
MDTV_nov1_ep13_2view37.79 39175.16 34455.10 35666.53 32749.34 28453.98 31687.94 262
ACMMP++_ref81.95 211
ACMMP++81.25 217
Test By Simon64.33 125