This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 8991.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 31
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10792.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 5977.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 24
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 41
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8592.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 52
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7993.50 2575.17 10086.34 4495.29 1270.86 5996.00 4988.78 1996.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MVS_030488.08 1488.08 1788.08 1489.67 11472.04 4892.26 3389.26 17384.19 285.01 5595.18 1369.93 6997.20 1491.63 295.60 2994.99 9
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8789.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5693.59 2376.27 7988.14 2495.09 1571.06 5796.67 2987.67 2996.37 1494.09 46
MM89.16 689.23 788.97 490.79 9073.65 1092.66 2391.17 11686.57 187.39 3594.97 1671.70 5097.68 192.19 195.63 2895.57 1
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18792.02 8579.45 1985.88 4694.80 1768.07 8996.21 4286.69 3695.34 3393.23 87
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
9.1488.26 1592.84 6091.52 4694.75 173.93 12588.57 2294.67 1975.57 2295.79 5386.77 3595.76 23
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 6774.50 11286.84 4294.65 2067.31 9795.77 5484.80 4692.85 6792.84 103
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7094.52 2169.09 7896.70 2784.37 5194.83 4494.03 49
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6694.52 2168.81 8496.65 3084.53 4994.90 4094.00 50
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5573.01 14988.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 105
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4573.54 13585.94 4594.51 2465.80 11595.61 5783.04 6592.51 7193.53 78
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5876.62 7083.68 8494.46 2567.93 9095.95 5284.20 5594.39 5393.23 87
SR-MVS-dyc-post85.77 4985.61 5286.23 5693.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2665.00 12395.56 5882.75 6891.87 7992.50 114
RE-MVS-def85.48 5393.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2663.87 12982.75 6891.87 7992.50 114
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 5994.44 2870.78 6096.61 3284.53 4994.89 4193.66 65
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7093.04 3875.53 9183.86 8194.42 2967.87 9296.64 3182.70 7294.57 4993.66 65
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6477.57 4183.84 8294.40 3072.24 4396.28 4085.65 3895.30 3593.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5394.32 3171.76 4896.93 1985.53 3995.79 2294.32 38
test_fmvsmconf0.01_n84.73 6684.52 6885.34 7280.25 33469.03 9989.47 8889.65 16173.24 14486.98 4094.27 3266.62 10193.23 16190.26 589.95 10793.78 62
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5480.26 1187.78 2994.27 3275.89 1996.81 2387.45 3296.44 993.05 96
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8076.87 6282.81 9794.25 3466.44 10596.24 4182.88 6794.28 5693.38 81
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 9694.23 3572.13 4597.09 1684.83 4595.37 3293.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8594.17 3667.45 9596.60 3383.06 6394.50 5094.07 47
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5894.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_fmvsmconf0.1_n85.61 5385.65 5185.50 6982.99 29469.39 9689.65 8490.29 14473.31 14187.77 3094.15 3871.72 4993.23 16190.31 490.67 9593.89 56
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 9989.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 27
HPM-MVS_fast85.35 5884.95 6386.57 5393.69 4270.58 7592.15 3691.62 10373.89 12682.67 9994.09 4062.60 14495.54 6080.93 8392.93 6693.57 74
ZD-MVS94.38 2572.22 4492.67 6170.98 18087.75 3194.07 4174.01 3296.70 2784.66 4794.84 43
fmvsm_s_conf0.1_n_a83.32 8682.99 8584.28 11183.79 27268.07 12989.34 9582.85 29769.80 20587.36 3694.06 4268.34 8891.56 22687.95 2783.46 19593.21 90
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 37
test_fmvsmconf_n85.92 4686.04 4785.57 6885.03 24969.51 9089.62 8690.58 13173.42 13887.75 3194.02 4472.85 4093.24 16090.37 390.75 9393.96 51
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
PC_three_145268.21 24292.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13687.63 3094.27 5793.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6393.99 4870.67 6296.82 2284.18 5695.01 3793.90 55
test_fmvsm_n_192085.29 5985.34 5585.13 7986.12 22869.93 8388.65 12190.78 12769.97 20188.27 2393.98 4971.39 5591.54 22888.49 2390.45 9793.91 53
fmvsm_s_conf0.1_n83.56 8083.38 7884.10 11884.86 25167.28 14889.40 9383.01 29370.67 18587.08 3893.96 5068.38 8791.45 23488.56 2284.50 17293.56 75
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8283.81 8393.95 5169.77 7296.01 4885.15 4094.66 4694.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7474.62 11188.90 2093.85 5275.75 2096.00 4987.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMPcopyleft85.89 4885.39 5487.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12193.82 5364.33 12596.29 3982.67 7390.69 9493.23 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_s_conf0.5_n_a83.63 7883.41 7784.28 11186.14 22768.12 12789.43 9082.87 29670.27 19587.27 3793.80 5469.09 7891.58 22488.21 2683.65 18993.14 93
fmvsm_s_conf0.5_n83.80 7383.71 7484.07 12386.69 22167.31 14789.46 8983.07 29271.09 17786.96 4193.70 5569.02 8391.47 23388.79 1884.62 17193.44 80
test_prior288.85 11175.41 9384.91 5993.54 5674.28 2983.31 6195.86 20
fmvsm_l_conf0.5_n84.47 6784.54 6684.27 11385.42 23868.81 10588.49 12587.26 22968.08 24388.03 2793.49 5772.04 4691.77 21888.90 1789.14 11692.24 125
VDDNet81.52 11680.67 11984.05 12890.44 9664.13 21489.73 8285.91 25071.11 17683.18 9093.48 5850.54 27193.49 15073.40 15688.25 12894.54 30
CDPH-MVS85.76 5085.29 5987.17 4393.49 4771.08 6188.58 12392.42 7268.32 24184.61 6793.48 5872.32 4296.15 4579.00 9895.43 3194.28 40
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5581.50 585.79 4893.47 6073.02 3997.00 1884.90 4294.94 3994.10 45
fmvsm_l_conf0.5_n_a84.13 6984.16 7184.06 12585.38 23968.40 12088.34 13286.85 23767.48 25087.48 3493.40 6170.89 5891.61 22288.38 2589.22 11592.16 129
3Dnovator+77.84 485.48 5484.47 6988.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19593.37 6260.40 18896.75 2677.20 11793.73 6295.29 5
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7084.22 7493.36 6371.44 5496.76 2580.82 8595.33 3494.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDD-MVS83.01 9382.36 9484.96 8491.02 8366.40 16388.91 10888.11 20777.57 4184.39 7293.29 6452.19 24793.91 13177.05 11988.70 12294.57 29
test_fmvsmvis_n_192084.02 7083.87 7284.49 10184.12 26569.37 9788.15 14087.96 21270.01 19983.95 8093.23 6568.80 8591.51 23188.61 2089.96 10692.57 110
UA-Net85.08 6284.96 6285.45 7092.07 7068.07 12989.78 8090.86 12682.48 384.60 6893.20 6669.35 7595.22 7471.39 17490.88 9293.07 95
TEST993.26 5072.96 2588.75 11591.89 9368.44 23985.00 5793.10 6774.36 2895.41 67
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11591.89 9368.69 23485.00 5793.10 6774.43 2695.41 6784.97 4195.71 2593.02 98
test_893.13 5272.57 3588.68 12091.84 9768.69 23484.87 6193.10 6774.43 2695.16 76
LFMVS81.82 10881.23 10983.57 14491.89 7363.43 23089.84 7681.85 30777.04 5883.21 8993.10 6752.26 24693.43 15571.98 16989.95 10793.85 57
旧先验191.96 7165.79 17886.37 24493.08 7169.31 7792.74 6888.74 252
dcpmvs_285.63 5286.15 4484.06 12591.71 7564.94 19786.47 19091.87 9573.63 13186.60 4393.02 7276.57 1591.87 21683.36 6092.15 7595.35 3
testdata79.97 24190.90 8664.21 21284.71 26359.27 33485.40 5192.91 7362.02 15789.08 27768.95 19991.37 8686.63 297
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7793.82 1673.07 14784.86 6292.89 7476.22 1796.33 3884.89 4495.13 3694.40 34
Vis-MVSNetpermissive83.46 8282.80 8985.43 7190.25 9968.74 11090.30 6990.13 14876.33 7880.87 12092.89 7461.00 17694.20 11872.45 16890.97 9093.35 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CPTT-MVS83.73 7483.33 8084.92 8793.28 4970.86 6992.09 3790.38 13768.75 23379.57 13292.83 7660.60 18493.04 17880.92 8491.56 8490.86 167
3Dnovator76.31 583.38 8582.31 9586.59 5287.94 18172.94 2890.64 5992.14 8477.21 5275.47 22092.83 7658.56 19594.72 9973.24 15992.71 6992.13 130
MSLP-MVS++85.43 5685.76 5084.45 10391.93 7270.24 7690.71 5892.86 5377.46 4784.22 7492.81 7867.16 9992.94 18080.36 9094.35 5590.16 194
test250677.30 22076.49 21679.74 24690.08 10352.02 35387.86 15263.10 38774.88 10480.16 12792.79 7938.29 35692.35 19868.74 20292.50 7294.86 17
ECVR-MVScopyleft79.61 15879.26 14980.67 22890.08 10354.69 33787.89 15077.44 34574.88 10480.27 12492.79 7948.96 29392.45 19268.55 20392.50 7294.86 17
test111179.43 16579.18 15380.15 23889.99 10853.31 35087.33 16477.05 34875.04 10180.23 12692.77 8148.97 29292.33 20068.87 20092.40 7494.81 20
MG-MVS83.41 8383.45 7683.28 15292.74 6262.28 24888.17 13889.50 16475.22 9681.49 11192.74 8266.75 10095.11 8072.85 16291.58 8392.45 117
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6687.65 19567.22 15188.69 11993.04 3879.64 1885.33 5292.54 8373.30 3594.50 10783.49 5991.14 8995.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
patch_mono-283.65 7684.54 6680.99 22090.06 10765.83 17584.21 24788.74 19871.60 16785.01 5592.44 8474.51 2583.50 32982.15 7592.15 7593.64 71
casdiffmvspermissive85.11 6185.14 6085.01 8287.20 21165.77 17987.75 15392.83 5577.84 3784.36 7392.38 8572.15 4493.93 13081.27 8190.48 9695.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS86.69 3586.95 3185.90 6390.76 9167.57 14092.83 1793.30 3279.67 1784.57 6992.27 8671.47 5395.02 8684.24 5493.46 6395.13 6
baseline84.93 6384.98 6184.80 9287.30 20965.39 18887.30 16592.88 5277.62 3984.04 7992.26 8771.81 4793.96 12481.31 8090.30 9995.03 8
QAPM80.88 12679.50 14285.03 8188.01 18068.97 10391.59 4392.00 8766.63 26175.15 23592.16 8857.70 20295.45 6363.52 24088.76 12190.66 174
IS-MVSNet83.15 8882.81 8884.18 11689.94 11063.30 23291.59 4388.46 20479.04 2579.49 13392.16 8865.10 12094.28 11267.71 20991.86 8194.95 10
新几何183.42 14793.13 5270.71 7185.48 25657.43 35081.80 10791.98 9063.28 13392.27 20164.60 23792.99 6587.27 280
OpenMVScopyleft72.83 1079.77 15678.33 17184.09 12185.17 24269.91 8490.57 6090.97 12166.70 25572.17 27291.91 9154.70 22493.96 12461.81 26090.95 9188.41 259
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15285.22 5491.90 9269.47 7496.42 3783.28 6295.94 1994.35 36
VNet82.21 10082.41 9281.62 20090.82 8860.93 26284.47 23889.78 15676.36 7784.07 7891.88 9364.71 12490.26 25870.68 18088.89 11893.66 65
EC-MVSNet86.01 4386.38 3884.91 8889.31 13166.27 16692.32 3093.63 2179.37 2084.17 7691.88 9369.04 8295.43 6583.93 5793.77 6193.01 99
OPM-MVS83.50 8182.95 8685.14 7788.79 15270.95 6689.13 10391.52 10677.55 4480.96 11991.75 9560.71 17994.50 10779.67 9586.51 14989.97 210
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XVG-OURS-SEG-HR80.81 12979.76 13683.96 13585.60 23568.78 10783.54 26090.50 13470.66 18776.71 19491.66 9660.69 18091.26 23976.94 12081.58 21891.83 136
EPNet83.72 7582.92 8786.14 5984.22 26369.48 9191.05 5585.27 25781.30 676.83 19091.65 9766.09 11095.56 5876.00 13293.85 6093.38 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OMC-MVS82.69 9581.97 10284.85 8988.75 15467.42 14387.98 14490.87 12574.92 10379.72 13091.65 9762.19 15493.96 12475.26 14086.42 15093.16 92
test22291.50 7768.26 12484.16 24883.20 29054.63 36179.74 12991.63 9958.97 19391.42 8586.77 293
MVS_111021_HR85.14 6084.75 6486.32 5591.65 7672.70 3085.98 20290.33 14176.11 8182.08 10291.61 10071.36 5694.17 12081.02 8292.58 7092.08 131
原ACMM184.35 10793.01 5768.79 10692.44 6963.96 29481.09 11791.57 10166.06 11195.45 6367.19 21694.82 4588.81 249
LPG-MVS_test82.08 10281.27 10884.50 9989.23 13568.76 10890.22 7091.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18389.83 215
LGP-MVS_train84.50 9989.23 13568.76 10891.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18389.83 215
XVG-OURS80.41 14279.23 15083.97 13485.64 23469.02 10183.03 27190.39 13671.09 17777.63 17391.49 10454.62 22691.35 23775.71 13483.47 19491.54 142
alignmvs85.48 5485.32 5785.96 6289.51 12069.47 9289.74 8192.47 6876.17 8087.73 3391.46 10570.32 6593.78 13681.51 7888.95 11794.63 26
CANet86.45 3886.10 4587.51 3790.09 10270.94 6789.70 8392.59 6681.78 481.32 11291.43 10670.34 6497.23 1384.26 5293.36 6494.37 35
h-mvs3383.15 8882.19 9686.02 6190.56 9370.85 7088.15 14089.16 17876.02 8384.67 6491.39 10761.54 16295.50 6182.71 7075.48 29491.72 139
nrg03083.88 7183.53 7584.96 8486.77 21969.28 9890.46 6592.67 6174.79 10682.95 9291.33 10872.70 4193.09 17480.79 8779.28 24792.50 114
canonicalmvs85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13181.50 7988.80 12094.77 22
DPM-MVS84.93 6384.29 7086.84 4790.20 10073.04 2387.12 16993.04 3869.80 20582.85 9591.22 11073.06 3896.02 4776.72 12694.63 4791.46 148
Anonymous20240521178.25 19377.01 20281.99 19491.03 8260.67 26784.77 23083.90 27770.65 18880.00 12891.20 11141.08 34491.43 23565.21 23185.26 16493.85 57
CS-MVS-test86.29 4286.48 3785.71 6591.02 8367.21 15292.36 2993.78 1878.97 2883.51 8891.20 11170.65 6395.15 7781.96 7694.89 4194.77 22
Anonymous2024052980.19 15078.89 15884.10 11890.60 9264.75 20188.95 10790.90 12365.97 26980.59 12291.17 11349.97 27693.73 14269.16 19782.70 20693.81 60
EPP-MVSNet83.40 8483.02 8484.57 9690.13 10164.47 20792.32 3090.73 12874.45 11579.35 13591.10 11469.05 8195.12 7872.78 16387.22 13894.13 44
TAPA-MVS73.13 979.15 17377.94 17882.79 17989.59 11662.99 24188.16 13991.51 10765.77 27077.14 18791.09 11560.91 17793.21 16350.26 33887.05 14092.17 128
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5793.56 2473.95 12383.16 9191.07 11675.94 1895.19 7579.94 9494.38 5493.55 76
FIs82.07 10382.42 9181.04 21988.80 15158.34 28888.26 13593.49 2676.93 6078.47 15391.04 11769.92 7092.34 19969.87 19084.97 16692.44 118
MVS_111021_LR82.61 9782.11 9784.11 11788.82 14971.58 5385.15 22286.16 24774.69 10880.47 12391.04 11762.29 15190.55 25680.33 9190.08 10490.20 193
DP-MVS Recon83.11 9182.09 9886.15 5894.44 1970.92 6888.79 11392.20 8170.53 18979.17 13791.03 11964.12 12796.03 4668.39 20690.14 10291.50 145
HQP_MVS83.64 7783.14 8185.14 7790.08 10368.71 11291.25 5092.44 6979.12 2378.92 14191.00 12060.42 18695.38 6978.71 10286.32 15191.33 149
plane_prior491.00 120
FC-MVSNet-test81.52 11682.02 10080.03 24088.42 16655.97 32587.95 14693.42 2977.10 5677.38 17790.98 12269.96 6891.79 21768.46 20584.50 17292.33 119
Vis-MVSNet (Re-imp)78.36 19278.45 16678.07 27488.64 15851.78 35986.70 18479.63 32974.14 12175.11 23690.83 12361.29 17089.75 26558.10 29291.60 8292.69 107
114514_t80.68 13579.51 14184.20 11594.09 3867.27 14989.64 8591.11 11958.75 34074.08 25190.72 12458.10 19895.04 8569.70 19189.42 11390.30 190
PAPM_NR83.02 9282.41 9284.82 9092.47 6766.37 16487.93 14891.80 9873.82 12777.32 17990.66 12567.90 9194.90 9170.37 18389.48 11293.19 91
LS3D76.95 22674.82 23983.37 15090.45 9567.36 14689.15 10286.94 23561.87 31569.52 30090.61 12651.71 25994.53 10546.38 35886.71 14688.21 261
mvsmamba81.69 11180.74 11784.56 9787.45 20266.72 15991.26 4885.89 25174.66 10978.23 15990.56 12754.33 22794.91 8880.73 8883.54 19392.04 134
VPNet78.69 18578.66 16278.76 26188.31 16955.72 32784.45 24186.63 24076.79 6478.26 15890.55 12859.30 19189.70 26766.63 22077.05 26890.88 166
UniMVSNet_ETH3D79.10 17578.24 17381.70 19986.85 21660.24 27487.28 16688.79 19374.25 11876.84 18990.53 12949.48 28291.56 22667.98 20782.15 21093.29 85
ACMP74.13 681.51 11880.57 12084.36 10689.42 12368.69 11589.97 7491.50 11074.46 11475.04 23990.41 13053.82 23394.54 10477.56 11382.91 20189.86 214
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PCF-MVS73.52 780.38 14378.84 15985.01 8287.71 19268.99 10283.65 25591.46 11163.00 30077.77 17190.28 13166.10 10995.09 8461.40 26388.22 12990.94 165
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
NP-MVS89.62 11568.32 12290.24 132
HQP-MVS82.61 9782.02 10084.37 10589.33 12866.98 15589.17 9892.19 8276.41 7277.23 18290.23 13360.17 18995.11 8077.47 11485.99 15891.03 161
PS-MVSNAJss82.07 10381.31 10784.34 10886.51 22367.27 14989.27 9691.51 10771.75 16179.37 13490.22 13463.15 13894.27 11377.69 11282.36 20991.49 146
TSAR-MVS + GP.85.71 5185.33 5686.84 4791.34 7872.50 3689.07 10487.28 22876.41 7285.80 4790.22 13474.15 3195.37 7281.82 7791.88 7892.65 109
RRT_MVS80.35 14679.22 15183.74 14087.63 19665.46 18591.08 5488.92 19173.82 12776.44 20390.03 13649.05 29194.25 11776.84 12179.20 24991.51 143
SDMVSNet80.38 14380.18 12980.99 22089.03 14464.94 19780.45 29989.40 16675.19 9876.61 19889.98 13760.61 18387.69 29876.83 12383.55 19190.33 188
sd_testset77.70 21277.40 19578.60 26489.03 14460.02 27679.00 31785.83 25275.19 9876.61 19889.98 13754.81 21985.46 31562.63 25183.55 19190.33 188
TranMVSNet+NR-MVSNet80.84 12780.31 12682.42 18787.85 18462.33 24687.74 15491.33 11280.55 977.99 16789.86 13965.23 11992.62 18667.05 21875.24 30492.30 121
diffmvspermissive82.10 10181.88 10382.76 18283.00 29263.78 22083.68 25489.76 15772.94 15082.02 10389.85 14065.96 11490.79 25282.38 7487.30 13793.71 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-RMVSNet79.61 15878.44 16783.14 16089.38 12665.93 17284.95 22787.15 23273.56 13478.19 16189.79 14156.67 21293.36 15659.53 27786.74 14590.13 196
GeoE81.71 11081.01 11483.80 13989.51 12064.45 20888.97 10688.73 19971.27 17378.63 14889.76 14266.32 10793.20 16669.89 18986.02 15793.74 63
AdaColmapbinary80.58 14079.42 14384.06 12593.09 5468.91 10489.36 9488.97 18869.27 21675.70 21789.69 14357.20 20995.77 5463.06 24588.41 12787.50 275
ACMM73.20 880.78 13479.84 13583.58 14389.31 13168.37 12189.99 7391.60 10470.28 19477.25 18089.66 14453.37 23893.53 14974.24 14882.85 20288.85 247
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CNLPA78.08 19976.79 20981.97 19590.40 9771.07 6287.59 15784.55 26666.03 26872.38 27089.64 14557.56 20486.04 30959.61 27683.35 19688.79 250
test_yl81.17 12180.47 12383.24 15589.13 13963.62 22186.21 19789.95 15372.43 15581.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
DCV-MVSNet81.17 12180.47 12383.24 15589.13 13963.62 22186.21 19789.95 15372.43 15581.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
EI-MVSNet-Vis-set84.19 6883.81 7385.31 7388.18 17267.85 13387.66 15589.73 15980.05 1482.95 9289.59 14870.74 6194.82 9580.66 8984.72 16993.28 86
PAPR81.66 11480.89 11683.99 13390.27 9864.00 21586.76 18391.77 10168.84 23277.13 18889.50 14967.63 9394.88 9367.55 21188.52 12593.09 94
jajsoiax79.29 17077.96 17783.27 15384.68 25466.57 16289.25 9790.16 14769.20 22175.46 22289.49 15045.75 31793.13 17276.84 12180.80 22790.11 198
MVSFormer82.85 9482.05 9985.24 7587.35 20370.21 7790.50 6290.38 13768.55 23681.32 11289.47 15161.68 15993.46 15378.98 9990.26 10092.05 132
jason81.39 11980.29 12784.70 9486.63 22269.90 8585.95 20386.77 23863.24 29681.07 11889.47 15161.08 17592.15 20578.33 10790.07 10592.05 132
jason: jason.
mvs_tets79.13 17477.77 18683.22 15784.70 25366.37 16489.17 9890.19 14669.38 21475.40 22589.46 15344.17 32593.15 17076.78 12480.70 22990.14 195
UGNet80.83 12879.59 14084.54 9888.04 17868.09 12889.42 9188.16 20676.95 5976.22 20789.46 15349.30 28693.94 12768.48 20490.31 9891.60 140
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VPA-MVSNet80.60 13880.55 12180.76 22688.07 17760.80 26586.86 17791.58 10575.67 9080.24 12589.45 15563.34 13290.25 25970.51 18279.22 24891.23 153
MVS_Test83.15 8883.06 8383.41 14986.86 21563.21 23486.11 20092.00 8774.31 11682.87 9489.44 15670.03 6793.21 16377.39 11688.50 12693.81 60
EI-MVSNet-UG-set83.81 7283.38 7885.09 8087.87 18367.53 14187.44 16189.66 16079.74 1682.23 10189.41 15770.24 6694.74 9879.95 9383.92 18292.99 100
RPSCF73.23 27071.46 27278.54 26682.50 30459.85 27782.18 27782.84 29858.96 33771.15 28289.41 15745.48 32084.77 32158.82 28571.83 33391.02 163
bld_raw_dy_0_6477.29 22175.98 22381.22 21385.04 24865.47 18488.14 14277.56 34269.20 22173.77 25389.40 15942.24 33888.85 28476.78 12481.64 21789.33 229
UniMVSNet_NR-MVSNet81.88 10681.54 10682.92 17188.46 16463.46 22887.13 16892.37 7380.19 1278.38 15489.14 16071.66 5293.05 17670.05 18676.46 27792.25 123
tttt051779.40 16777.91 17983.90 13888.10 17563.84 21888.37 13184.05 27571.45 17076.78 19289.12 16149.93 27994.89 9270.18 18583.18 19992.96 101
DU-MVS81.12 12380.52 12282.90 17287.80 18763.46 22887.02 17291.87 9579.01 2678.38 15489.07 16265.02 12193.05 17670.05 18676.46 27792.20 126
NR-MVSNet80.23 14879.38 14482.78 18087.80 18763.34 23186.31 19491.09 12079.01 2672.17 27289.07 16267.20 9892.81 18566.08 22575.65 29092.20 126
DELS-MVS85.41 5785.30 5885.77 6488.49 16267.93 13285.52 21993.44 2778.70 2983.63 8789.03 16474.57 2495.71 5680.26 9294.04 5993.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
iter_conf_final80.63 13679.35 14684.46 10289.36 12767.70 13789.85 7584.49 26773.19 14578.30 15788.94 16545.98 31294.56 10279.59 9684.48 17591.11 156
iter_conf0580.00 15478.70 16083.91 13787.84 18565.83 17588.84 11284.92 26271.61 16678.70 14488.94 16543.88 32794.56 10279.28 9784.28 17991.33 149
baseline176.98 22576.75 21277.66 27988.13 17355.66 32885.12 22381.89 30573.04 14876.79 19188.90 16762.43 14987.78 29763.30 24471.18 33789.55 224
DP-MVS76.78 22874.57 24183.42 14793.29 4869.46 9488.55 12483.70 27963.98 29370.20 28888.89 16854.01 23294.80 9646.66 35581.88 21586.01 307
ab-mvs79.51 16178.97 15781.14 21688.46 16460.91 26383.84 25289.24 17570.36 19179.03 13888.87 16963.23 13690.21 26065.12 23282.57 20792.28 122
PEN-MVS77.73 20977.69 19077.84 27687.07 21453.91 34487.91 14991.18 11577.56 4373.14 26188.82 17061.23 17189.17 27559.95 27372.37 32890.43 184
tt080578.73 18377.83 18281.43 20585.17 24260.30 27389.41 9290.90 12371.21 17477.17 18688.73 17146.38 30693.21 16372.57 16678.96 25090.79 168
test_djsdf80.30 14779.32 14783.27 15383.98 26965.37 18990.50 6290.38 13768.55 23676.19 20888.70 17256.44 21393.46 15378.98 9980.14 23790.97 164
PAPM77.68 21376.40 21981.51 20387.29 21061.85 25383.78 25389.59 16264.74 28171.23 28088.70 17262.59 14593.66 14352.66 32387.03 14189.01 239
DTE-MVSNet76.99 22476.80 20877.54 28386.24 22553.06 35287.52 15890.66 12977.08 5772.50 26788.67 17460.48 18589.52 26957.33 29970.74 33990.05 205
PS-CasMVS78.01 20378.09 17577.77 27887.71 19254.39 34188.02 14391.22 11377.50 4673.26 25988.64 17560.73 17888.41 29061.88 25873.88 31790.53 180
cdsmvs_eth3d_5k19.96 36726.61 3690.00 3870.00 4100.00 4120.00 39889.26 1730.00 4050.00 40688.61 17661.62 1610.00 4060.00 4050.00 4040.00 402
lupinMVS81.39 11980.27 12884.76 9387.35 20370.21 7785.55 21586.41 24262.85 30381.32 11288.61 17661.68 15992.24 20378.41 10690.26 10091.83 136
F-COLMAP76.38 23674.33 24682.50 18689.28 13366.95 15888.41 12789.03 18364.05 29166.83 32588.61 17646.78 30492.89 18157.48 29678.55 25287.67 269
mvs_anonymous79.42 16679.11 15480.34 23484.45 26057.97 29482.59 27387.62 22167.40 25176.17 21188.56 17968.47 8689.59 26870.65 18186.05 15693.47 79
CP-MVSNet78.22 19478.34 17077.84 27687.83 18654.54 33987.94 14791.17 11677.65 3873.48 25788.49 18062.24 15388.43 28962.19 25474.07 31390.55 179
PVSNet_Blended_VisFu82.62 9681.83 10484.96 8490.80 8969.76 8788.74 11791.70 10269.39 21378.96 13988.46 18165.47 11794.87 9474.42 14588.57 12390.24 192
CANet_DTU80.61 13779.87 13482.83 17485.60 23563.17 23787.36 16288.65 20076.37 7675.88 21488.44 18253.51 23693.07 17573.30 15789.74 11092.25 123
PLCcopyleft70.83 1178.05 20176.37 22083.08 16391.88 7467.80 13488.19 13789.46 16564.33 28769.87 29788.38 18353.66 23493.58 14458.86 28482.73 20487.86 266
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
WR-MVS79.49 16279.22 15180.27 23688.79 15258.35 28785.06 22488.61 20278.56 3077.65 17288.34 18463.81 13190.66 25564.98 23477.22 26691.80 138
XXY-MVS75.41 24975.56 22874.96 30683.59 27657.82 29880.59 29683.87 27866.54 26274.93 24188.31 18563.24 13580.09 34762.16 25576.85 27286.97 289
Effi-MVS+83.62 7983.08 8285.24 7588.38 16767.45 14288.89 10989.15 17975.50 9282.27 10088.28 18669.61 7394.45 10977.81 11187.84 13093.84 59
API-MVS81.99 10581.23 10984.26 11490.94 8570.18 8291.10 5389.32 16971.51 16978.66 14788.28 18665.26 11895.10 8364.74 23691.23 8887.51 274
thisisatest053079.40 16777.76 18784.31 10987.69 19465.10 19487.36 16284.26 27370.04 19877.42 17688.26 18849.94 27794.79 9770.20 18484.70 17093.03 97
hse-mvs281.72 10980.94 11584.07 12388.72 15567.68 13885.87 20687.26 22976.02 8384.67 6488.22 18961.54 16293.48 15182.71 7073.44 32291.06 159
xiu_mvs_v1_base_debu80.80 13179.72 13784.03 13087.35 20370.19 7985.56 21288.77 19469.06 22681.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 234
xiu_mvs_v1_base80.80 13179.72 13784.03 13087.35 20370.19 7985.56 21288.77 19469.06 22681.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 234
xiu_mvs_v1_base_debi80.80 13179.72 13784.03 13087.35 20370.19 7985.56 21288.77 19469.06 22681.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 234
UniMVSNet (Re)81.60 11581.11 11183.09 16288.38 16764.41 20987.60 15693.02 4278.42 3278.56 15088.16 19069.78 7193.26 15969.58 19376.49 27691.60 140
AUN-MVS79.21 17277.60 19284.05 12888.71 15667.61 13985.84 20887.26 22969.08 22577.23 18288.14 19453.20 24093.47 15275.50 13973.45 32191.06 159
Anonymous2023121178.97 17977.69 19082.81 17690.54 9464.29 21190.11 7291.51 10765.01 27976.16 21288.13 19550.56 27093.03 17969.68 19277.56 26491.11 156
pm-mvs177.25 22276.68 21478.93 25984.22 26358.62 28686.41 19188.36 20571.37 17173.31 25888.01 19661.22 17289.15 27664.24 23873.01 32589.03 238
LTVRE_ROB69.57 1376.25 23774.54 24381.41 20688.60 15964.38 21079.24 31389.12 18270.76 18469.79 29987.86 19749.09 28993.20 16656.21 30980.16 23586.65 296
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WTY-MVS75.65 24475.68 22675.57 30086.40 22456.82 31177.92 33182.40 30165.10 27676.18 20987.72 19863.13 14180.90 34460.31 27181.96 21389.00 241
TAMVS78.89 18177.51 19483.03 16687.80 18767.79 13584.72 23185.05 26067.63 24676.75 19387.70 19962.25 15290.82 25158.53 28887.13 13990.49 182
BH-untuned79.47 16378.60 16382.05 19289.19 13765.91 17386.07 20188.52 20372.18 15775.42 22487.69 20061.15 17393.54 14860.38 27086.83 14486.70 295
COLMAP_ROBcopyleft66.92 1773.01 27270.41 28680.81 22587.13 21365.63 18088.30 13484.19 27462.96 30163.80 35187.69 20038.04 35792.56 18946.66 35574.91 30784.24 331
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OurMVSNet-221017-074.26 25672.42 26579.80 24583.76 27459.59 28185.92 20586.64 23966.39 26366.96 32387.58 20239.46 34991.60 22365.76 22869.27 34488.22 260
FA-MVS(test-final)80.96 12579.91 13384.10 11888.30 17065.01 19584.55 23790.01 15173.25 14379.61 13187.57 20358.35 19794.72 9971.29 17586.25 15392.56 111
Baseline_NR-MVSNet78.15 19878.33 17177.61 28185.79 23156.21 32386.78 18185.76 25373.60 13377.93 16887.57 20365.02 12188.99 27867.14 21775.33 30187.63 270
WR-MVS_H78.51 18978.49 16578.56 26588.02 17956.38 32088.43 12692.67 6177.14 5473.89 25287.55 20566.25 10889.24 27458.92 28373.55 32090.06 204
EI-MVSNet80.52 14179.98 13182.12 19084.28 26163.19 23686.41 19188.95 18974.18 12078.69 14587.54 20666.62 10192.43 19372.57 16680.57 23190.74 172
CVMVSNet72.99 27372.58 26374.25 31484.28 26150.85 36586.41 19183.45 28544.56 37773.23 26087.54 20649.38 28485.70 31165.90 22678.44 25586.19 302
ACMH+68.96 1476.01 24074.01 24882.03 19388.60 15965.31 19088.86 11087.55 22270.25 19667.75 31487.47 20841.27 34293.19 16858.37 28975.94 28787.60 271
TransMVSNet (Re)75.39 25074.56 24277.86 27585.50 23757.10 30886.78 18186.09 24972.17 15871.53 27887.34 20963.01 14289.31 27356.84 30461.83 36587.17 282
GBi-Net78.40 19077.40 19581.40 20787.60 19763.01 23888.39 12889.28 17071.63 16375.34 22787.28 21054.80 22091.11 24262.72 24779.57 24190.09 200
test178.40 19077.40 19581.40 20787.60 19763.01 23888.39 12889.28 17071.63 16375.34 22787.28 21054.80 22091.11 24262.72 24779.57 24190.09 200
FMVSNet278.20 19677.21 19981.20 21487.60 19762.89 24287.47 16089.02 18471.63 16375.29 23287.28 21054.80 22091.10 24562.38 25279.38 24589.61 222
FMVSNet177.44 21676.12 22281.40 20786.81 21863.01 23888.39 12889.28 17070.49 19074.39 24887.28 21049.06 29091.11 24260.91 26778.52 25390.09 200
v2v48280.23 14879.29 14883.05 16583.62 27564.14 21387.04 17189.97 15273.61 13278.18 16287.22 21461.10 17493.82 13476.11 12976.78 27491.18 154
ITE_SJBPF78.22 27081.77 31460.57 26883.30 28669.25 21867.54 31687.20 21536.33 36287.28 30154.34 31574.62 31086.80 292
anonymousdsp78.60 18777.15 20082.98 16980.51 33267.08 15387.24 16789.53 16365.66 27275.16 23487.19 21652.52 24192.25 20277.17 11879.34 24689.61 222
MVSTER79.01 17777.88 18182.38 18883.07 28964.80 20084.08 25188.95 18969.01 22978.69 14587.17 21754.70 22492.43 19374.69 14280.57 23189.89 213
thres100view90076.50 23175.55 22979.33 25489.52 11956.99 30985.83 20983.23 28873.94 12476.32 20587.12 21851.89 25691.95 21148.33 34683.75 18589.07 232
thres600view776.50 23175.44 23079.68 24889.40 12457.16 30685.53 21783.23 28873.79 12976.26 20687.09 21951.89 25691.89 21448.05 35183.72 18890.00 206
XVG-ACMP-BASELINE76.11 23974.27 24781.62 20083.20 28564.67 20283.60 25889.75 15869.75 20871.85 27587.09 21932.78 36892.11 20669.99 18880.43 23388.09 262
HY-MVS69.67 1277.95 20477.15 20080.36 23387.57 20160.21 27583.37 26287.78 21966.11 26575.37 22687.06 22163.27 13490.48 25761.38 26482.43 20890.40 186
CHOSEN 1792x268877.63 21475.69 22583.44 14689.98 10968.58 11878.70 32187.50 22456.38 35575.80 21686.84 22258.67 19491.40 23661.58 26285.75 16290.34 187
v879.97 15579.02 15682.80 17784.09 26664.50 20687.96 14590.29 14474.13 12275.24 23386.81 22362.88 14393.89 13374.39 14675.40 29990.00 206
AllTest70.96 28868.09 30379.58 25185.15 24463.62 22184.58 23679.83 32662.31 31060.32 36286.73 22432.02 36988.96 28150.28 33671.57 33586.15 303
TestCases79.58 25185.15 24463.62 22179.83 32662.31 31060.32 36286.73 22432.02 36988.96 28150.28 33671.57 33586.15 303
LCM-MVSNet-Re77.05 22376.94 20577.36 28487.20 21151.60 36080.06 30380.46 32075.20 9767.69 31586.72 22662.48 14788.98 27963.44 24289.25 11491.51 143
1112_ss77.40 21876.43 21880.32 23589.11 14360.41 27283.65 25587.72 22062.13 31373.05 26286.72 22662.58 14689.97 26262.11 25780.80 22790.59 178
ab-mvs-re7.23 3709.64 3730.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 40686.72 2260.00 4100.00 4060.00 4050.00 4040.00 402
IterMVS-LS80.06 15179.38 14482.11 19185.89 23063.20 23586.79 18089.34 16874.19 11975.45 22386.72 22666.62 10192.39 19572.58 16576.86 27190.75 171
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH67.68 1675.89 24173.93 24981.77 19888.71 15666.61 16188.62 12289.01 18569.81 20466.78 32686.70 23041.95 34191.51 23155.64 31078.14 25987.17 282
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Test_1112_low_res76.40 23575.44 23079.27 25589.28 13358.09 29081.69 28287.07 23359.53 33272.48 26886.67 23161.30 16989.33 27260.81 26980.15 23690.41 185
FMVSNet377.88 20676.85 20780.97 22286.84 21762.36 24586.52 18988.77 19471.13 17575.34 22786.66 23254.07 23191.10 24562.72 24779.57 24189.45 226
pmmvs674.69 25373.39 25578.61 26381.38 32157.48 30386.64 18587.95 21364.99 28070.18 28986.61 23350.43 27289.52 26962.12 25670.18 34188.83 248
ET-MVSNet_ETH3D78.63 18676.63 21584.64 9586.73 22069.47 9285.01 22584.61 26569.54 21166.51 33386.59 23450.16 27491.75 21976.26 12884.24 18092.69 107
testgi66.67 32466.53 32167.08 35675.62 36441.69 39175.93 33976.50 35066.11 26565.20 34386.59 23435.72 36474.71 37743.71 36773.38 32384.84 325
CLD-MVS82.31 9981.65 10584.29 11088.47 16367.73 13685.81 21092.35 7475.78 8678.33 15686.58 23664.01 12894.35 11076.05 13187.48 13590.79 168
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
v1079.74 15778.67 16182.97 17084.06 26764.95 19687.88 15190.62 13073.11 14675.11 23686.56 23761.46 16594.05 12373.68 15175.55 29289.90 212
CDS-MVSNet79.07 17677.70 18983.17 15987.60 19768.23 12584.40 24486.20 24667.49 24976.36 20486.54 23861.54 16290.79 25261.86 25987.33 13690.49 182
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
xiu_mvs_v2_base81.69 11181.05 11283.60 14289.15 13868.03 13184.46 24090.02 15070.67 18581.30 11586.53 23963.17 13794.19 11975.60 13788.54 12488.57 256
TR-MVS77.44 21676.18 22181.20 21488.24 17163.24 23384.61 23586.40 24367.55 24877.81 16986.48 24054.10 23093.15 17057.75 29582.72 20587.20 281
EIA-MVS83.31 8782.80 8984.82 9089.59 11665.59 18188.21 13692.68 6074.66 10978.96 13986.42 24169.06 8095.26 7375.54 13890.09 10393.62 72
tfpn200view976.42 23475.37 23479.55 25389.13 13957.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24891.95 21148.33 34683.75 18589.07 232
thres40076.50 23175.37 23479.86 24389.13 13957.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24891.95 21148.33 34683.75 18590.00 206
v7n78.97 17977.58 19383.14 16083.45 27965.51 18288.32 13391.21 11473.69 13072.41 26986.32 24457.93 19993.81 13569.18 19675.65 29090.11 198
MAR-MVS81.84 10780.70 11885.27 7491.32 7971.53 5489.82 7790.92 12269.77 20778.50 15186.21 24562.36 15094.52 10665.36 23092.05 7789.77 218
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
v114480.03 15279.03 15583.01 16783.78 27364.51 20487.11 17090.57 13371.96 16078.08 16586.20 24661.41 16693.94 12774.93 14177.23 26590.60 177
test_vis1_n_192075.52 24675.78 22474.75 31079.84 34057.44 30483.26 26385.52 25562.83 30479.34 13686.17 24745.10 32179.71 34878.75 10181.21 22287.10 288
V4279.38 16978.24 17382.83 17481.10 32665.50 18385.55 21589.82 15571.57 16878.21 16086.12 24860.66 18193.18 16975.64 13575.46 29689.81 217
PVSNet_BlendedMVS80.60 13880.02 13082.36 18988.85 14665.40 18686.16 19992.00 8769.34 21578.11 16386.09 24966.02 11294.27 11371.52 17182.06 21287.39 276
v119279.59 16078.43 16883.07 16483.55 27764.52 20386.93 17590.58 13170.83 18177.78 17085.90 25059.15 19293.94 12773.96 15077.19 26790.76 170
SixPastTwentyTwo73.37 26671.26 27779.70 24785.08 24757.89 29685.57 21183.56 28271.03 17965.66 33785.88 25142.10 33992.57 18859.11 28163.34 36388.65 254
EPNet_dtu75.46 24774.86 23877.23 28782.57 30354.60 33886.89 17683.09 29171.64 16266.25 33585.86 25255.99 21488.04 29454.92 31286.55 14889.05 237
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
sss73.60 26473.64 25473.51 31982.80 29755.01 33576.12 33881.69 30862.47 30974.68 24485.85 25357.32 20778.11 35560.86 26880.93 22487.39 276
ETV-MVS84.90 6584.67 6585.59 6789.39 12568.66 11688.74 11792.64 6579.97 1584.10 7785.71 25469.32 7695.38 6980.82 8591.37 8692.72 104
test_cas_vis1_n_192073.76 26373.74 25373.81 31775.90 36159.77 27880.51 29782.40 30158.30 34281.62 11085.69 25544.35 32476.41 36676.29 12778.61 25185.23 318
v124078.99 17877.78 18582.64 18383.21 28463.54 22586.62 18690.30 14369.74 21077.33 17885.68 25657.04 21093.76 13973.13 16076.92 26990.62 175
v14419279.47 16378.37 16982.78 18083.35 28063.96 21686.96 17390.36 14069.99 20077.50 17485.67 25760.66 18193.77 13874.27 14776.58 27590.62 175
tfpnnormal74.39 25473.16 25878.08 27386.10 22958.05 29184.65 23487.53 22370.32 19371.22 28185.63 25854.97 21889.86 26343.03 36975.02 30686.32 299
PS-MVSNAJ81.69 11181.02 11383.70 14189.51 12068.21 12684.28 24690.09 14970.79 18281.26 11685.62 25963.15 13894.29 11175.62 13688.87 11988.59 255
v192192079.22 17178.03 17682.80 17783.30 28263.94 21786.80 17990.33 14169.91 20377.48 17585.53 26058.44 19693.75 14073.60 15276.85 27290.71 173
test_040272.79 27570.44 28579.84 24488.13 17365.99 17185.93 20484.29 27165.57 27367.40 32085.49 26146.92 30392.61 18735.88 38174.38 31280.94 360
v14878.72 18477.80 18481.47 20482.73 29961.96 25286.30 19588.08 20973.26 14276.18 20985.47 26262.46 14892.36 19771.92 17073.82 31890.09 200
USDC70.33 29668.37 29876.21 29480.60 33056.23 32279.19 31586.49 24160.89 32061.29 35885.47 26231.78 37189.47 27153.37 32076.21 28582.94 348
MVP-Stereo76.12 23874.46 24581.13 21785.37 24069.79 8684.42 24387.95 21365.03 27867.46 31885.33 26453.28 23991.73 22158.01 29383.27 19781.85 355
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MVS78.19 19776.99 20481.78 19785.66 23366.99 15484.66 23290.47 13555.08 36072.02 27485.27 26563.83 13094.11 12266.10 22489.80 10984.24 331
DIV-MVS_self_test77.72 21076.76 21080.58 22982.48 30660.48 27083.09 26787.86 21669.22 21974.38 24985.24 26662.10 15591.53 22971.09 17675.40 29989.74 219
FE-MVS77.78 20875.68 22684.08 12288.09 17666.00 17083.13 26687.79 21868.42 24078.01 16685.23 26745.50 31995.12 7859.11 28185.83 16191.11 156
cl____77.72 21076.76 21080.58 22982.49 30560.48 27083.09 26787.87 21569.22 21974.38 24985.22 26862.10 15591.53 22971.09 17675.41 29889.73 220
HyFIR lowres test77.53 21575.40 23283.94 13689.59 11666.62 16080.36 30088.64 20156.29 35676.45 20085.17 26957.64 20393.28 15861.34 26583.10 20091.91 135
pmmvs474.03 26171.91 26880.39 23281.96 31168.32 12281.45 28682.14 30359.32 33369.87 29785.13 27052.40 24488.13 29360.21 27274.74 30984.73 327
TDRefinement67.49 31764.34 32776.92 28973.47 37561.07 26184.86 22982.98 29459.77 32958.30 36985.13 27026.06 37987.89 29547.92 35260.59 37081.81 356
Fast-Effi-MVS+80.81 12979.92 13283.47 14588.85 14664.51 20485.53 21789.39 16770.79 18278.49 15285.06 27267.54 9493.58 14467.03 21986.58 14792.32 120
PVSNet_Blended80.98 12480.34 12582.90 17288.85 14665.40 18684.43 24292.00 8767.62 24778.11 16385.05 27366.02 11294.27 11371.52 17189.50 11189.01 239
test_fmvs1_n70.86 29070.24 28872.73 32672.51 38155.28 33281.27 28879.71 32851.49 37078.73 14384.87 27427.54 37877.02 36076.06 13079.97 23985.88 310
CMPMVSbinary51.72 2170.19 29868.16 30176.28 29373.15 37757.55 30279.47 31083.92 27648.02 37456.48 37584.81 27543.13 33086.42 30662.67 25081.81 21684.89 324
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EU-MVSNet68.53 31267.61 31371.31 33778.51 35347.01 37584.47 23884.27 27242.27 38066.44 33484.79 27640.44 34783.76 32658.76 28668.54 34983.17 342
BH-w/o78.21 19577.33 19880.84 22488.81 15065.13 19384.87 22887.85 21769.75 20874.52 24784.74 27761.34 16893.11 17358.24 29185.84 16084.27 330
pmmvs571.55 28370.20 28975.61 29977.83 35456.39 31981.74 28180.89 31257.76 34667.46 31884.49 27849.26 28785.32 31757.08 30175.29 30285.11 322
thres20075.55 24574.47 24478.82 26087.78 19057.85 29783.07 26983.51 28372.44 15475.84 21584.42 27952.08 25191.75 21947.41 35383.64 19086.86 291
test_fmvs170.93 28970.52 28372.16 32973.71 37155.05 33480.82 29078.77 33551.21 37178.58 14984.41 28031.20 37376.94 36175.88 13380.12 23884.47 329
testing368.56 31167.67 31271.22 33887.33 20842.87 38683.06 27071.54 36870.36 19169.08 30584.38 28130.33 37585.69 31237.50 38075.45 29785.09 323
test_fmvs268.35 31467.48 31570.98 34069.50 38451.95 35580.05 30476.38 35149.33 37374.65 24584.38 28123.30 38475.40 37574.51 14475.17 30585.60 313
eth_miper_zixun_eth77.92 20576.69 21381.61 20283.00 29261.98 25183.15 26589.20 17769.52 21274.86 24284.35 28361.76 15892.56 18971.50 17372.89 32690.28 191
c3_l78.75 18277.91 17981.26 21182.89 29661.56 25784.09 25089.13 18169.97 20175.56 21884.29 28466.36 10692.09 20773.47 15575.48 29490.12 197
Fast-Effi-MVS+-dtu78.02 20276.49 21682.62 18483.16 28866.96 15786.94 17487.45 22672.45 15271.49 27984.17 28554.79 22391.58 22467.61 21080.31 23489.30 230
IterMVS-SCA-FT75.43 24873.87 25180.11 23982.69 30064.85 19981.57 28483.47 28469.16 22370.49 28584.15 28651.95 25488.15 29269.23 19572.14 33187.34 278
131476.53 23075.30 23680.21 23783.93 27062.32 24784.66 23288.81 19260.23 32570.16 29184.07 28755.30 21790.73 25467.37 21383.21 19887.59 273
cl2278.07 20077.01 20281.23 21282.37 30861.83 25483.55 25987.98 21168.96 23075.06 23883.87 28861.40 16791.88 21573.53 15376.39 27989.98 209
EG-PatchMatch MVS74.04 25971.82 26980.71 22784.92 25067.42 14385.86 20788.08 20966.04 26764.22 34783.85 28935.10 36592.56 18957.44 29780.83 22682.16 354
thisisatest051577.33 21975.38 23383.18 15885.27 24163.80 21982.11 27883.27 28765.06 27775.91 21383.84 29049.54 28194.27 11367.24 21586.19 15491.48 147
test20.0367.45 31866.95 31968.94 34775.48 36544.84 38277.50 33277.67 34066.66 25663.01 35383.80 29147.02 30278.40 35342.53 37168.86 34883.58 339
miper_ehance_all_eth78.59 18877.76 18781.08 21882.66 30161.56 25783.65 25589.15 17968.87 23175.55 21983.79 29266.49 10492.03 20873.25 15876.39 27989.64 221
MSDG73.36 26870.99 27980.49 23184.51 25965.80 17780.71 29486.13 24865.70 27165.46 33883.74 29344.60 32290.91 25051.13 33176.89 27084.74 326
IterMVS74.29 25572.94 26078.35 26981.53 31863.49 22781.58 28382.49 30068.06 24469.99 29483.69 29451.66 26085.54 31365.85 22771.64 33486.01 307
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tpm72.37 27871.71 27074.35 31382.19 30952.00 35479.22 31477.29 34664.56 28372.95 26383.68 29551.35 26183.26 33258.33 29075.80 28887.81 267
testing22274.04 25972.66 26278.19 27187.89 18255.36 33081.06 28979.20 33371.30 17274.65 24583.57 29639.11 35288.67 28651.43 33085.75 16290.53 180
Effi-MVS+-dtu80.03 15278.57 16484.42 10485.13 24668.74 11088.77 11488.10 20874.99 10274.97 24083.49 29757.27 20893.36 15673.53 15380.88 22591.18 154
baseline275.70 24373.83 25281.30 21083.26 28361.79 25582.57 27480.65 31666.81 25266.88 32483.42 29857.86 20192.19 20463.47 24179.57 24189.91 211
TinyColmap67.30 32064.81 32574.76 30981.92 31356.68 31580.29 30281.49 31060.33 32356.27 37683.22 29924.77 38187.66 29945.52 36369.47 34379.95 364
mvsany_test162.30 33961.26 34365.41 35869.52 38354.86 33666.86 37749.78 39846.65 37568.50 31183.21 30049.15 28866.28 39056.93 30360.77 36875.11 374
test_vis1_n69.85 30269.21 29371.77 33172.66 38055.27 33381.48 28576.21 35252.03 36775.30 23183.20 30128.97 37676.22 36874.60 14378.41 25783.81 337
CostFormer75.24 25173.90 25079.27 25582.65 30258.27 28980.80 29182.73 29961.57 31675.33 23083.13 30255.52 21591.07 24864.98 23478.34 25888.45 257
WB-MVSnew71.96 28271.65 27172.89 32484.67 25751.88 35782.29 27677.57 34162.31 31073.67 25583.00 30353.49 23781.10 34345.75 36282.13 21185.70 312
ETVMVS72.25 28071.05 27875.84 29687.77 19151.91 35679.39 31174.98 35669.26 21773.71 25482.95 30440.82 34686.14 30846.17 35984.43 17789.47 225
miper_lstm_enhance74.11 25873.11 25977.13 28880.11 33659.62 28072.23 35886.92 23666.76 25470.40 28682.92 30556.93 21182.92 33369.06 19872.63 32788.87 246
GA-MVS76.87 22775.17 23781.97 19582.75 29862.58 24381.44 28786.35 24572.16 15974.74 24382.89 30646.20 31192.02 20968.85 20181.09 22391.30 152
K. test v371.19 28568.51 29779.21 25783.04 29157.78 29984.35 24576.91 34972.90 15162.99 35482.86 30739.27 35091.09 24761.65 26152.66 38188.75 251
MS-PatchMatch73.83 26272.67 26177.30 28683.87 27166.02 16981.82 27984.66 26461.37 31968.61 30982.82 30847.29 29988.21 29159.27 27884.32 17877.68 369
lessismore_v078.97 25881.01 32757.15 30765.99 38161.16 35982.82 30839.12 35191.34 23859.67 27546.92 38788.43 258
D2MVS74.82 25273.21 25779.64 25079.81 34162.56 24480.34 30187.35 22764.37 28668.86 30682.66 31046.37 30790.10 26167.91 20881.24 22186.25 300
Anonymous2023120668.60 30967.80 30971.02 33980.23 33550.75 36678.30 32780.47 31956.79 35366.11 33682.63 31146.35 30878.95 35143.62 36875.70 28983.36 341
MIMVSNet70.69 29269.30 29174.88 30784.52 25856.35 32175.87 34279.42 33064.59 28267.76 31382.41 31241.10 34381.54 34046.64 35781.34 21986.75 294
OpenMVS_ROBcopyleft64.09 1970.56 29468.19 30077.65 28080.26 33359.41 28385.01 22582.96 29558.76 33965.43 33982.33 31337.63 35991.23 24145.34 36576.03 28682.32 351
miper_enhance_ethall77.87 20776.86 20680.92 22381.65 31561.38 25982.68 27288.98 18665.52 27475.47 22082.30 31465.76 11692.00 21072.95 16176.39 27989.39 227
test0.0.03 168.00 31667.69 31168.90 34877.55 35547.43 37375.70 34372.95 36766.66 25666.56 32982.29 31548.06 29675.87 37044.97 36674.51 31183.41 340
PVSNet64.34 1872.08 28170.87 28175.69 29886.21 22656.44 31874.37 35280.73 31562.06 31470.17 29082.23 31642.86 33283.31 33154.77 31384.45 17687.32 279
MIMVSNet168.58 31066.78 32073.98 31680.07 33751.82 35880.77 29284.37 26864.40 28559.75 36582.16 31736.47 36183.63 32842.73 37070.33 34086.48 298
CL-MVSNet_self_test72.37 27871.46 27275.09 30579.49 34753.53 34680.76 29385.01 26169.12 22470.51 28482.05 31857.92 20084.13 32452.27 32566.00 35787.60 271
tpm273.26 26971.46 27278.63 26283.34 28156.71 31480.65 29580.40 32156.63 35473.55 25682.02 31951.80 25891.24 24056.35 30878.42 25687.95 263
PatchMatch-RL72.38 27770.90 28076.80 29188.60 15967.38 14579.53 30976.17 35362.75 30669.36 30282.00 32045.51 31884.89 32053.62 31880.58 23078.12 368
FMVSNet569.50 30367.96 30474.15 31582.97 29555.35 33180.01 30582.12 30462.56 30863.02 35281.53 32136.92 36081.92 33848.42 34574.06 31485.17 321
CR-MVSNet73.37 26671.27 27679.67 24981.32 32465.19 19175.92 34080.30 32259.92 32872.73 26581.19 32252.50 24286.69 30359.84 27477.71 26187.11 286
Patchmtry70.74 29169.16 29475.49 30280.72 32854.07 34374.94 35180.30 32258.34 34170.01 29281.19 32252.50 24286.54 30453.37 32071.09 33885.87 311
IB-MVS68.01 1575.85 24273.36 25683.31 15184.76 25266.03 16883.38 26185.06 25970.21 19769.40 30181.05 32445.76 31694.66 10165.10 23375.49 29389.25 231
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cascas76.72 22974.64 24082.99 16885.78 23265.88 17482.33 27589.21 17660.85 32172.74 26481.02 32547.28 30093.75 14067.48 21285.02 16589.34 228
LF4IMVS64.02 33562.19 33969.50 34570.90 38253.29 35176.13 33777.18 34752.65 36558.59 36780.98 32623.55 38376.52 36453.06 32266.66 35378.68 367
Anonymous2024052168.80 30867.22 31773.55 31874.33 36854.11 34283.18 26485.61 25458.15 34361.68 35780.94 32730.71 37481.27 34257.00 30273.34 32485.28 317
gm-plane-assit81.40 32053.83 34562.72 30780.94 32792.39 19563.40 243
UnsupCasMVSNet_eth67.33 31965.99 32371.37 33473.48 37451.47 36275.16 34785.19 25865.20 27560.78 36080.93 32942.35 33477.20 35957.12 30053.69 38085.44 315
dmvs_re71.14 28670.58 28272.80 32581.96 31159.68 27975.60 34479.34 33168.55 23669.27 30480.72 33049.42 28376.54 36352.56 32477.79 26082.19 353
MDTV_nov1_ep1369.97 29083.18 28653.48 34777.10 33680.18 32560.45 32269.33 30380.44 33148.89 29486.90 30251.60 32878.51 254
pmmvs-eth3d70.50 29567.83 30878.52 26777.37 35766.18 16781.82 27981.51 30958.90 33863.90 35080.42 33242.69 33386.28 30758.56 28765.30 35983.11 344
PM-MVS66.41 32664.14 32873.20 32273.92 37056.45 31778.97 31864.96 38563.88 29564.72 34480.24 33319.84 38783.44 33066.24 22164.52 36179.71 365
SCA74.22 25772.33 26679.91 24284.05 26862.17 24979.96 30679.29 33266.30 26472.38 27080.13 33451.95 25488.60 28759.25 27977.67 26388.96 243
Patchmatch-test64.82 33363.24 33469.57 34479.42 34849.82 37063.49 38669.05 37651.98 36859.95 36480.13 33450.91 26570.98 38440.66 37473.57 31987.90 265
tpmrst72.39 27672.13 26773.18 32380.54 33149.91 36979.91 30779.08 33463.11 29871.69 27779.95 33655.32 21682.77 33465.66 22973.89 31686.87 290
DSMNet-mixed57.77 34556.90 34760.38 36467.70 38635.61 39569.18 37053.97 39632.30 39257.49 37279.88 33740.39 34868.57 38938.78 37872.37 32876.97 370
MDA-MVSNet-bldmvs66.68 32363.66 33275.75 29779.28 34960.56 26973.92 35478.35 33764.43 28450.13 38379.87 33844.02 32683.67 32746.10 36056.86 37383.03 346
PatchmatchNetpermissive73.12 27171.33 27578.49 26883.18 28660.85 26479.63 30878.57 33664.13 28871.73 27679.81 33951.20 26385.97 31057.40 29876.36 28488.66 253
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Syy-MVS68.05 31567.85 30668.67 35184.68 25440.97 39278.62 32273.08 36566.65 25966.74 32779.46 34052.11 25082.30 33632.89 38476.38 28282.75 349
myMVS_eth3d67.02 32166.29 32269.21 34684.68 25442.58 38778.62 32273.08 36566.65 25966.74 32779.46 34031.53 37282.30 33639.43 37776.38 28282.75 349
ppachtmachnet_test70.04 29967.34 31678.14 27279.80 34261.13 26079.19 31580.59 31759.16 33565.27 34079.29 34246.75 30587.29 30049.33 34266.72 35286.00 309
EPMVS69.02 30668.16 30171.59 33279.61 34549.80 37177.40 33366.93 37962.82 30570.01 29279.05 34345.79 31577.86 35756.58 30675.26 30387.13 285
PMMVS69.34 30468.67 29671.35 33675.67 36362.03 25075.17 34673.46 36350.00 37268.68 30779.05 34352.07 25278.13 35461.16 26682.77 20373.90 375
test-LLR72.94 27472.43 26474.48 31181.35 32258.04 29278.38 32477.46 34366.66 25669.95 29579.00 34548.06 29679.24 34966.13 22284.83 16786.15 303
test-mter71.41 28470.39 28774.48 31181.35 32258.04 29278.38 32477.46 34360.32 32469.95 29579.00 34536.08 36379.24 34966.13 22284.83 16786.15 303
KD-MVS_self_test68.81 30767.59 31472.46 32874.29 36945.45 37777.93 33087.00 23463.12 29763.99 34978.99 34742.32 33584.77 32156.55 30764.09 36287.16 284
test_fmvs363.36 33761.82 34067.98 35362.51 39146.96 37677.37 33474.03 36245.24 37667.50 31778.79 34812.16 39572.98 38372.77 16466.02 35683.99 335
KD-MVS_2432*160066.22 32863.89 33073.21 32075.47 36653.42 34870.76 36484.35 26964.10 28966.52 33178.52 34934.55 36684.98 31850.40 33450.33 38481.23 358
miper_refine_blended66.22 32863.89 33073.21 32075.47 36653.42 34870.76 36484.35 26964.10 28966.52 33178.52 34934.55 36684.98 31850.40 33450.33 38481.23 358
tpmvs71.09 28769.29 29276.49 29282.04 31056.04 32478.92 31981.37 31164.05 29167.18 32278.28 35149.74 28089.77 26449.67 34172.37 32883.67 338
our_test_369.14 30567.00 31875.57 30079.80 34258.80 28477.96 32977.81 33959.55 33162.90 35578.25 35247.43 29883.97 32551.71 32767.58 35183.93 336
MDA-MVSNet_test_wron65.03 33162.92 33571.37 33475.93 36056.73 31269.09 37374.73 35957.28 35154.03 37977.89 35345.88 31374.39 37949.89 34061.55 36682.99 347
YYNet165.03 33162.91 33671.38 33375.85 36256.60 31669.12 37274.66 36157.28 35154.12 37877.87 35445.85 31474.48 37849.95 33961.52 36783.05 345
ambc75.24 30473.16 37650.51 36763.05 38787.47 22564.28 34677.81 35517.80 38989.73 26657.88 29460.64 36985.49 314
tpm cat170.57 29368.31 29977.35 28582.41 30757.95 29578.08 32880.22 32452.04 36668.54 31077.66 35652.00 25387.84 29651.77 32672.07 33286.25 300
dp66.80 32265.43 32470.90 34179.74 34448.82 37275.12 34974.77 35859.61 33064.08 34877.23 35742.89 33180.72 34548.86 34466.58 35483.16 343
TESTMET0.1,169.89 30169.00 29572.55 32779.27 35056.85 31078.38 32474.71 36057.64 34768.09 31277.19 35837.75 35876.70 36263.92 23984.09 18184.10 334
CHOSEN 280x42066.51 32564.71 32671.90 33081.45 31963.52 22657.98 38968.95 37753.57 36262.59 35676.70 35946.22 31075.29 37655.25 31179.68 24076.88 371
PatchT68.46 31367.85 30670.29 34280.70 32943.93 38472.47 35774.88 35760.15 32670.55 28376.57 36049.94 27781.59 33950.58 33274.83 30885.34 316
mvsany_test353.99 34851.45 35361.61 36355.51 39544.74 38363.52 38545.41 40243.69 37958.11 37076.45 36117.99 38863.76 39354.77 31347.59 38676.34 372
RPMNet73.51 26570.49 28482.58 18581.32 32465.19 19175.92 34092.27 7657.60 34872.73 26576.45 36152.30 24595.43 6548.14 35077.71 26187.11 286
dmvs_testset62.63 33864.11 32958.19 36678.55 35224.76 40275.28 34565.94 38267.91 24560.34 36176.01 36353.56 23573.94 38131.79 38567.65 35075.88 373
ADS-MVSNet266.20 33063.33 33374.82 30879.92 33858.75 28567.55 37575.19 35553.37 36365.25 34175.86 36442.32 33580.53 34641.57 37268.91 34685.18 319
ADS-MVSNet64.36 33462.88 33768.78 35079.92 33847.17 37467.55 37571.18 36953.37 36365.25 34175.86 36442.32 33573.99 38041.57 37268.91 34685.18 319
EGC-MVSNET52.07 35447.05 35867.14 35583.51 27860.71 26680.50 29867.75 3780.07 4020.43 40375.85 36624.26 38281.54 34028.82 38762.25 36459.16 387
new-patchmatchnet61.73 34061.73 34161.70 36272.74 37924.50 40369.16 37178.03 33861.40 31756.72 37475.53 36738.42 35476.48 36545.95 36157.67 37284.13 333
N_pmnet52.79 35253.26 35151.40 37678.99 3517.68 40869.52 3683.89 40751.63 36957.01 37374.98 36840.83 34565.96 39137.78 37964.67 36080.56 363
WB-MVS54.94 34654.72 34855.60 37273.50 37320.90 40474.27 35361.19 38959.16 33550.61 38274.15 36947.19 30175.78 37117.31 39635.07 39170.12 379
patchmatchnet-post74.00 37051.12 26488.60 287
GG-mvs-BLEND75.38 30381.59 31755.80 32679.32 31269.63 37367.19 32173.67 37143.24 32988.90 28350.41 33384.50 17281.45 357
SSC-MVS53.88 34953.59 35054.75 37472.87 37819.59 40573.84 35560.53 39157.58 34949.18 38473.45 37246.34 30975.47 37416.20 39932.28 39369.20 380
Patchmatch-RL test70.24 29767.78 31077.61 28177.43 35659.57 28271.16 36170.33 37062.94 30268.65 30872.77 37350.62 26985.49 31469.58 19366.58 35487.77 268
FPMVS53.68 35051.64 35259.81 36565.08 38951.03 36469.48 36969.58 37441.46 38140.67 38772.32 37416.46 39170.00 38724.24 39365.42 35858.40 389
UnsupCasMVSNet_bld63.70 33661.53 34270.21 34373.69 37251.39 36372.82 35681.89 30555.63 35857.81 37171.80 37538.67 35378.61 35249.26 34352.21 38280.63 361
APD_test153.31 35149.93 35663.42 36165.68 38850.13 36871.59 36066.90 38034.43 38940.58 38871.56 3768.65 40076.27 36734.64 38355.36 37863.86 385
test_f52.09 35350.82 35455.90 37053.82 39842.31 39059.42 38858.31 39436.45 38756.12 37770.96 37712.18 39457.79 39553.51 31956.57 37567.60 381
PVSNet_057.27 2061.67 34159.27 34468.85 34979.61 34557.44 30468.01 37473.44 36455.93 35758.54 36870.41 37844.58 32377.55 35847.01 35435.91 39071.55 378
pmmvs357.79 34454.26 34968.37 35264.02 39056.72 31375.12 34965.17 38340.20 38252.93 38069.86 37920.36 38675.48 37345.45 36455.25 37972.90 377
test_vis1_rt60.28 34258.42 34565.84 35767.25 38755.60 32970.44 36660.94 39044.33 37859.00 36666.64 38024.91 38068.67 38862.80 24669.48 34273.25 376
new_pmnet50.91 35550.29 35552.78 37568.58 38534.94 39763.71 38456.63 39539.73 38344.95 38565.47 38121.93 38558.48 39434.98 38256.62 37464.92 383
gg-mvs-nofinetune69.95 30067.96 30475.94 29583.07 28954.51 34077.23 33570.29 37163.11 29870.32 28762.33 38243.62 32888.69 28553.88 31787.76 13184.62 328
JIA-IIPM66.32 32762.82 33876.82 29077.09 35861.72 25665.34 38275.38 35458.04 34564.51 34562.32 38342.05 34086.51 30551.45 32969.22 34582.21 352
LCM-MVSNet54.25 34749.68 35767.97 35453.73 39945.28 38066.85 37880.78 31435.96 38839.45 38962.23 3848.70 39978.06 35648.24 34951.20 38380.57 362
PMMVS240.82 36238.86 36546.69 37753.84 39716.45 40648.61 39249.92 39737.49 38531.67 39060.97 3858.14 40156.42 39628.42 38830.72 39467.19 382
testf145.72 35841.96 36157.00 36756.90 39345.32 37866.14 38059.26 39226.19 39330.89 39260.96 3864.14 40370.64 38526.39 39146.73 38855.04 390
APD_test245.72 35841.96 36157.00 36756.90 39345.32 37866.14 38059.26 39226.19 39330.89 39260.96 3864.14 40370.64 38526.39 39146.73 38855.04 390
MVS-HIRNet59.14 34357.67 34663.57 36081.65 31543.50 38571.73 35965.06 38439.59 38451.43 38157.73 38838.34 35582.58 33539.53 37573.95 31564.62 384
ANet_high50.57 35646.10 36063.99 35948.67 40239.13 39370.99 36380.85 31361.39 31831.18 39157.70 38917.02 39073.65 38231.22 38615.89 39979.18 366
PMVScopyleft37.38 2244.16 36140.28 36455.82 37140.82 40442.54 38965.12 38363.99 38634.43 38924.48 39557.12 3903.92 40576.17 36917.10 39755.52 37748.75 392
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis3_rt49.26 35747.02 35956.00 36954.30 39645.27 38166.76 37948.08 39936.83 38644.38 38653.20 3917.17 40264.07 39256.77 30555.66 37658.65 388
test_method31.52 36429.28 36838.23 37927.03 4066.50 40920.94 39762.21 3884.05 40022.35 39852.50 39213.33 39247.58 39927.04 39034.04 39260.62 386
DeepMVS_CXcopyleft27.40 38240.17 40526.90 40024.59 40617.44 39823.95 39648.61 3939.77 39726.48 40118.06 39524.47 39528.83 395
MVEpermissive26.22 2330.37 36625.89 37043.81 37844.55 40335.46 39628.87 39639.07 40318.20 39718.58 39940.18 3942.68 40647.37 40017.07 39823.78 39648.60 393
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft45.18 36041.86 36355.16 37377.03 35951.52 36132.50 39580.52 31832.46 39127.12 39435.02 3959.52 39875.50 37222.31 39460.21 37138.45 394
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN31.77 36330.64 36635.15 38052.87 40027.67 39957.09 39047.86 40024.64 39516.40 40033.05 39611.23 39654.90 39714.46 40018.15 39722.87 396
EMVS30.81 36529.65 36734.27 38150.96 40125.95 40156.58 39146.80 40124.01 39615.53 40130.68 39712.47 39354.43 39812.81 40117.05 39822.43 397
tmp_tt18.61 36821.40 37110.23 3844.82 40710.11 40734.70 39430.74 4051.48 40123.91 39726.07 39828.42 37713.41 40327.12 38915.35 4007.17 398
X-MVStestdata80.37 14577.83 18288.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8512.47 39967.45 9596.60 3383.06 6394.50 5094.07 47
test_post5.46 40050.36 27384.24 323
test_post178.90 3205.43 40148.81 29585.44 31659.25 279
wuyk23d16.82 36915.94 37219.46 38358.74 39231.45 39839.22 3933.74 4086.84 3996.04 4022.70 4021.27 40724.29 40210.54 40214.40 4012.63 399
testmvs6.04 3728.02 3750.10 3860.08 4080.03 41169.74 3670.04 4090.05 4030.31 4041.68 4030.02 4090.04 4040.24 4030.02 4020.25 401
test1236.12 3718.11 3740.14 3850.06 4090.09 41071.05 3620.03 4100.04 4040.25 4051.30 4040.05 4080.03 4050.21 4040.01 4030.29 400
test_blank0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
uanet_test0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
DCPMVS0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
pcd_1.5k_mvsjas5.26 3737.02 3760.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 40563.15 1380.00 4060.00 4050.00 4040.00 402
sosnet-low-res0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
sosnet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
uncertanet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
Regformer0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
uanet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
WAC-MVS42.58 38739.46 376
FOURS195.00 1072.39 3995.06 193.84 1574.49 11391.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
No_MVS89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
eth-test20.00 410
eth-test0.00 410
IU-MVS95.30 271.25 5792.95 5166.81 25292.39 688.94 1696.63 494.85 19
save fliter93.80 4072.35 4290.47 6491.17 11674.31 116
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 42
GSMVS88.96 243
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26288.96 243
sam_mvs50.01 275
MTGPAbinary92.02 85
MTMP92.18 3532.83 404
test9_res84.90 4295.70 2692.87 102
agg_prior282.91 6695.45 3092.70 105
agg_prior92.85 5971.94 5191.78 10084.41 7194.93 87
test_prior472.60 3489.01 105
test_prior86.33 5492.61 6569.59 8892.97 5095.48 6293.91 53
旧先验286.56 18858.10 34487.04 3988.98 27974.07 149
新几何286.29 196
无先验87.48 15988.98 18660.00 32794.12 12167.28 21488.97 242
原ACMM286.86 177
testdata291.01 24962.37 253
segment_acmp73.08 37
testdata184.14 24975.71 87
test1286.80 4992.63 6470.70 7291.79 9982.71 9871.67 5196.16 4494.50 5093.54 77
plane_prior790.08 10368.51 119
plane_prior689.84 11268.70 11460.42 186
plane_prior592.44 6995.38 6978.71 10286.32 15191.33 149
plane_prior368.60 11778.44 3178.92 141
plane_prior291.25 5079.12 23
plane_prior189.90 111
plane_prior68.71 11290.38 6777.62 3986.16 155
n20.00 411
nn0.00 411
door-mid69.98 372
test1192.23 79
door69.44 375
HQP5-MVS66.98 155
HQP-NCC89.33 12889.17 9876.41 7277.23 182
ACMP_Plane89.33 12889.17 9876.41 7277.23 182
BP-MVS77.47 114
HQP4-MVS77.24 18195.11 8091.03 161
HQP3-MVS92.19 8285.99 158
HQP2-MVS60.17 189
MDTV_nov1_ep13_2view37.79 39475.16 34755.10 35966.53 33049.34 28553.98 31687.94 264
ACMMP++_ref81.95 214
ACMMP++81.25 220
Test By Simon64.33 125