This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 8991.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 31
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10792.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 5977.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 24
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 41
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8592.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 52
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7993.50 2575.17 10086.34 4495.29 1270.86 5996.00 4988.78 1996.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MVS_030488.08 1488.08 1788.08 1489.67 11472.04 4892.26 3389.26 17384.19 285.01 5595.18 1369.93 6997.20 1491.63 295.60 2994.99 9
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8789.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5693.59 2376.27 7988.14 2495.09 1571.06 5796.67 2987.67 2996.37 1494.09 46
MM89.16 689.23 788.97 490.79 9073.65 1092.66 2391.17 11686.57 187.39 3594.97 1671.70 5097.68 192.19 195.63 2895.57 1
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18792.02 8579.45 1985.88 4694.80 1768.07 8996.21 4286.69 3695.34 3393.23 87
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
9.1488.26 1592.84 6091.52 4694.75 173.93 12588.57 2294.67 1975.57 2295.79 5386.77 3595.76 23
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 6774.50 11286.84 4294.65 2067.31 9795.77 5484.80 4692.85 6792.84 103
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7094.52 2169.09 7896.70 2784.37 5194.83 4494.03 49
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6694.52 2168.81 8496.65 3084.53 4994.90 4094.00 50
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5573.01 15188.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 105
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4573.54 13685.94 4594.51 2465.80 11595.61 5783.04 6592.51 7193.53 78
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5876.62 7083.68 8494.46 2567.93 9095.95 5284.20 5594.39 5393.23 87
SR-MVS-dyc-post85.77 4985.61 5286.23 5693.06 5570.63 7391.88 3992.27 7673.53 13785.69 4994.45 2665.00 12395.56 5882.75 6891.87 7992.50 114
RE-MVS-def85.48 5393.06 5570.63 7391.88 3992.27 7673.53 13785.69 4994.45 2663.87 12982.75 6891.87 7992.50 114
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 5994.44 2870.78 6096.61 3284.53 4994.89 4193.66 65
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7093.04 3875.53 9183.86 8194.42 2967.87 9296.64 3182.70 7294.57 4993.66 65
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6477.57 4183.84 8294.40 3072.24 4396.28 4085.65 3895.30 3593.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5394.32 3171.76 4896.93 1985.53 3995.79 2294.32 38
test_fmvsmconf0.01_n84.73 6684.52 6885.34 7280.25 33869.03 9989.47 8889.65 16173.24 14686.98 4094.27 3266.62 10193.23 16190.26 589.95 10793.78 62
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5480.26 1187.78 2994.27 3275.89 1996.81 2387.45 3296.44 993.05 96
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8076.87 6282.81 9794.25 3466.44 10596.24 4182.88 6794.28 5693.38 81
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 9694.23 3572.13 4597.09 1684.83 4595.37 3293.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8594.17 3667.45 9596.60 3383.06 6394.50 5094.07 47
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5894.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_fmvsmconf0.1_n85.61 5385.65 5185.50 6982.99 29869.39 9689.65 8490.29 14473.31 14287.77 3094.15 3871.72 4993.23 16190.31 490.67 9593.89 56
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 9989.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 27
HPM-MVS_fast85.35 5884.95 6386.57 5393.69 4270.58 7592.15 3691.62 10373.89 12682.67 9994.09 4062.60 14495.54 6080.93 8392.93 6693.57 74
ZD-MVS94.38 2572.22 4492.67 6170.98 18287.75 3194.07 4174.01 3296.70 2784.66 4794.84 43
fmvsm_s_conf0.1_n_a83.32 8682.99 8584.28 11183.79 27668.07 12989.34 9582.85 29869.80 20887.36 3694.06 4268.34 8891.56 22687.95 2783.46 19993.21 90
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 37
test_fmvsmconf_n85.92 4686.04 4785.57 6885.03 25369.51 9089.62 8690.58 13173.42 13987.75 3194.02 4472.85 4093.24 16090.37 390.75 9393.96 51
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
PC_three_145268.21 24592.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13687.63 3094.27 5793.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6393.99 4870.67 6296.82 2284.18 5695.01 3793.90 55
test_fmvsm_n_192085.29 5985.34 5585.13 7986.12 23269.93 8388.65 12190.78 12769.97 20488.27 2393.98 4971.39 5591.54 22888.49 2390.45 9793.91 53
fmvsm_s_conf0.1_n83.56 8083.38 7884.10 11884.86 25567.28 14889.40 9383.01 29370.67 18787.08 3893.96 5068.38 8791.45 23488.56 2284.50 17393.56 75
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8283.81 8393.95 5169.77 7296.01 4885.15 4094.66 4694.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7474.62 11188.90 2093.85 5275.75 2096.00 4987.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMPcopyleft85.89 4885.39 5487.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12193.82 5364.33 12596.29 3982.67 7390.69 9493.23 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_s_conf0.5_n_a83.63 7883.41 7784.28 11186.14 23168.12 12789.43 9082.87 29770.27 19887.27 3793.80 5469.09 7891.58 22488.21 2683.65 19393.14 93
fmvsm_s_conf0.5_n83.80 7383.71 7484.07 12386.69 22467.31 14789.46 8983.07 29271.09 17986.96 4193.70 5569.02 8391.47 23388.79 1884.62 17293.44 80
test_prior288.85 11175.41 9384.91 5993.54 5674.28 2983.31 6195.86 20
fmvsm_l_conf0.5_n84.47 6784.54 6684.27 11385.42 24268.81 10588.49 12587.26 22968.08 24688.03 2793.49 5772.04 4691.77 21888.90 1789.14 11692.24 125
VDDNet81.52 11680.67 11984.05 12890.44 9664.13 21489.73 8285.91 25071.11 17883.18 9093.48 5850.54 27193.49 15073.40 15688.25 12894.54 30
CDPH-MVS85.76 5085.29 5987.17 4393.49 4771.08 6188.58 12392.42 7268.32 24484.61 6793.48 5872.32 4296.15 4579.00 9895.43 3194.28 40
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5581.50 585.79 4893.47 6073.02 3997.00 1884.90 4294.94 3994.10 45
fmvsm_l_conf0.5_n_a84.13 6984.16 7184.06 12585.38 24368.40 12088.34 13286.85 23767.48 25387.48 3493.40 6170.89 5891.61 22288.38 2589.22 11592.16 129
3Dnovator+77.84 485.48 5484.47 6988.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19593.37 6260.40 18896.75 2677.20 11793.73 6295.29 5
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7084.22 7493.36 6371.44 5496.76 2580.82 8595.33 3494.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDD-MVS83.01 9382.36 9484.96 8491.02 8366.40 16388.91 10888.11 20777.57 4184.39 7293.29 6452.19 24793.91 13177.05 11988.70 12294.57 29
test_fmvsmvis_n_192084.02 7083.87 7284.49 10184.12 26969.37 9788.15 14087.96 21270.01 20283.95 8093.23 6568.80 8591.51 23188.61 2089.96 10692.57 110
UA-Net85.08 6284.96 6285.45 7092.07 7068.07 12989.78 8090.86 12682.48 384.60 6893.20 6669.35 7595.22 7471.39 17490.88 9293.07 95
TEST993.26 5072.96 2588.75 11591.89 9368.44 24285.00 5793.10 6774.36 2895.41 67
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11591.89 9368.69 23785.00 5793.10 6774.43 2695.41 6784.97 4195.71 2593.02 98
test_893.13 5272.57 3588.68 12091.84 9768.69 23784.87 6193.10 6774.43 2695.16 76
LFMVS81.82 10881.23 10983.57 14491.89 7363.43 23089.84 7681.85 30877.04 5883.21 8993.10 6752.26 24693.43 15571.98 16989.95 10793.85 57
旧先验191.96 7165.79 17886.37 24493.08 7169.31 7792.74 6888.74 256
dcpmvs_285.63 5286.15 4484.06 12591.71 7564.94 19786.47 19091.87 9573.63 13286.60 4393.02 7276.57 1591.87 21683.36 6092.15 7595.35 3
testdata79.97 24190.90 8664.21 21284.71 26359.27 33885.40 5192.91 7362.02 15789.08 28068.95 19991.37 8686.63 301
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7793.82 1673.07 14984.86 6292.89 7476.22 1796.33 3884.89 4495.13 3694.40 34
Vis-MVSNetpermissive83.46 8282.80 8985.43 7190.25 9968.74 11090.30 6990.13 14876.33 7880.87 12092.89 7461.00 17694.20 11872.45 16890.97 9093.35 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CPTT-MVS83.73 7483.33 8084.92 8793.28 4970.86 6992.09 3790.38 13768.75 23679.57 13292.83 7660.60 18493.04 17880.92 8491.56 8490.86 169
3Dnovator76.31 583.38 8582.31 9586.59 5287.94 18472.94 2890.64 5992.14 8477.21 5275.47 22192.83 7658.56 19594.72 9973.24 15992.71 6992.13 130
MSLP-MVS++85.43 5685.76 5084.45 10391.93 7270.24 7690.71 5892.86 5377.46 4784.22 7492.81 7867.16 9992.94 18080.36 9094.35 5590.16 196
test250677.30 22076.49 21679.74 24690.08 10352.02 35687.86 15263.10 39174.88 10480.16 12792.79 7938.29 36092.35 19868.74 20292.50 7294.86 17
ECVR-MVScopyleft79.61 15879.26 14980.67 22890.08 10354.69 34087.89 15077.44 34874.88 10480.27 12492.79 7948.96 29392.45 19268.55 20392.50 7294.86 17
test111179.43 16579.18 15380.15 23889.99 10853.31 35387.33 16477.05 35175.04 10180.23 12692.77 8148.97 29292.33 20068.87 20092.40 7494.81 20
MG-MVS83.41 8383.45 7683.28 15292.74 6262.28 24888.17 13889.50 16475.22 9681.49 11192.74 8266.75 10095.11 8072.85 16291.58 8392.45 117
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6687.65 19867.22 15188.69 11993.04 3879.64 1885.33 5292.54 8373.30 3594.50 10783.49 5991.14 8995.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
patch_mono-283.65 7684.54 6680.99 22090.06 10765.83 17584.21 24788.74 19871.60 16985.01 5592.44 8474.51 2583.50 33382.15 7592.15 7593.64 71
casdiffmvspermissive85.11 6185.14 6085.01 8287.20 21465.77 17987.75 15392.83 5577.84 3784.36 7392.38 8572.15 4493.93 13081.27 8190.48 9695.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS86.69 3586.95 3185.90 6390.76 9167.57 14092.83 1793.30 3279.67 1784.57 6992.27 8671.47 5395.02 8684.24 5493.46 6395.13 6
baseline84.93 6384.98 6184.80 9287.30 21265.39 18887.30 16592.88 5277.62 3984.04 7992.26 8771.81 4793.96 12481.31 8090.30 9995.03 8
QAPM80.88 12679.50 14285.03 8188.01 18368.97 10391.59 4392.00 8766.63 26475.15 23892.16 8857.70 20295.45 6363.52 24288.76 12190.66 176
IS-MVSNet83.15 8882.81 8884.18 11689.94 11063.30 23291.59 4388.46 20479.04 2579.49 13392.16 8865.10 12094.28 11267.71 20991.86 8194.95 10
新几何183.42 14793.13 5270.71 7185.48 25657.43 35481.80 10791.98 9063.28 13392.27 20164.60 23792.99 6587.27 284
OpenMVScopyleft72.83 1079.77 15678.33 17184.09 12185.17 24669.91 8490.57 6090.97 12166.70 25872.17 27691.91 9154.70 22493.96 12461.81 26390.95 9188.41 263
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15485.22 5491.90 9269.47 7496.42 3783.28 6295.94 1994.35 36
VNet82.21 10082.41 9281.62 20090.82 8860.93 26284.47 23889.78 15676.36 7784.07 7891.88 9364.71 12490.26 25870.68 18088.89 11893.66 65
EC-MVSNet86.01 4386.38 3884.91 8889.31 13166.27 16692.32 3093.63 2179.37 2084.17 7691.88 9369.04 8295.43 6583.93 5793.77 6193.01 99
OPM-MVS83.50 8182.95 8685.14 7788.79 15270.95 6689.13 10391.52 10677.55 4480.96 11991.75 9560.71 17994.50 10779.67 9586.51 14989.97 212
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XVG-OURS-SEG-HR80.81 12979.76 13683.96 13585.60 23968.78 10783.54 26090.50 13470.66 19076.71 19491.66 9660.69 18091.26 23976.94 12081.58 22291.83 136
EPNet83.72 7582.92 8786.14 5984.22 26769.48 9191.05 5585.27 25781.30 676.83 19091.65 9766.09 11095.56 5876.00 13293.85 6093.38 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OMC-MVS82.69 9581.97 10284.85 8988.75 15467.42 14387.98 14490.87 12574.92 10379.72 13091.65 9762.19 15493.96 12475.26 14086.42 15093.16 92
test22291.50 7768.26 12484.16 24883.20 29054.63 36579.74 12991.63 9958.97 19391.42 8586.77 297
MVS_111021_HR85.14 6084.75 6486.32 5591.65 7672.70 3085.98 20290.33 14176.11 8182.08 10291.61 10071.36 5694.17 12081.02 8292.58 7092.08 131
原ACMM184.35 10793.01 5768.79 10692.44 6963.96 29781.09 11791.57 10166.06 11195.45 6367.19 21694.82 4588.81 252
LPG-MVS_test82.08 10281.27 10884.50 9989.23 13568.76 10890.22 7091.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18689.83 217
LGP-MVS_train84.50 9989.23 13568.76 10891.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18689.83 217
XVG-OURS80.41 14279.23 15083.97 13485.64 23869.02 10183.03 27190.39 13671.09 17977.63 17391.49 10454.62 22691.35 23775.71 13483.47 19891.54 143
alignmvs85.48 5485.32 5785.96 6289.51 12069.47 9289.74 8192.47 6876.17 8087.73 3391.46 10570.32 6593.78 13681.51 7888.95 11794.63 26
CANet86.45 3886.10 4587.51 3790.09 10270.94 6789.70 8392.59 6681.78 481.32 11291.43 10670.34 6497.23 1384.26 5293.36 6494.37 35
h-mvs3383.15 8882.19 9686.02 6190.56 9370.85 7088.15 14089.16 17876.02 8384.67 6491.39 10761.54 16295.50 6182.71 7075.48 29891.72 139
nrg03083.88 7183.53 7584.96 8486.77 22269.28 9890.46 6592.67 6174.79 10682.95 9291.33 10872.70 4193.09 17480.79 8779.28 25192.50 114
canonicalmvs85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13181.50 7988.80 12094.77 22
DPM-MVS84.93 6384.29 7086.84 4790.20 10073.04 2387.12 16993.04 3869.80 20882.85 9591.22 11073.06 3896.02 4776.72 12694.63 4791.46 150
Anonymous20240521178.25 19377.01 20281.99 19491.03 8260.67 26784.77 23083.90 27770.65 19180.00 12891.20 11141.08 34791.43 23565.21 23185.26 16593.85 57
CS-MVS-test86.29 4286.48 3785.71 6591.02 8367.21 15292.36 2993.78 1878.97 2883.51 8891.20 11170.65 6395.15 7781.96 7694.89 4194.77 22
Anonymous2024052980.19 15078.89 15884.10 11890.60 9264.75 20188.95 10790.90 12365.97 27280.59 12291.17 11349.97 27693.73 14269.16 19782.70 21093.81 60
EPP-MVSNet83.40 8483.02 8484.57 9690.13 10164.47 20792.32 3090.73 12874.45 11579.35 13591.10 11469.05 8195.12 7872.78 16387.22 13894.13 44
TAPA-MVS73.13 979.15 17377.94 17882.79 17989.59 11662.99 24188.16 13991.51 10765.77 27377.14 18791.09 11560.91 17793.21 16350.26 34187.05 14092.17 128
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5793.56 2473.95 12383.16 9191.07 11675.94 1895.19 7579.94 9494.38 5493.55 76
FIs82.07 10382.42 9181.04 21988.80 15158.34 28888.26 13593.49 2676.93 6078.47 15391.04 11769.92 7092.34 19969.87 19084.97 16792.44 118
MVS_111021_LR82.61 9782.11 9784.11 11788.82 14971.58 5385.15 22286.16 24774.69 10880.47 12391.04 11762.29 15190.55 25680.33 9190.08 10490.20 195
DP-MVS Recon83.11 9182.09 9886.15 5894.44 1970.92 6888.79 11392.20 8170.53 19279.17 13791.03 11964.12 12796.03 4668.39 20690.14 10291.50 146
HQP_MVS83.64 7783.14 8185.14 7790.08 10368.71 11291.25 5092.44 6979.12 2378.92 14191.00 12060.42 18695.38 6978.71 10286.32 15191.33 151
plane_prior491.00 120
FC-MVSNet-test81.52 11682.02 10080.03 24088.42 16755.97 32687.95 14693.42 2977.10 5677.38 17790.98 12269.96 6891.79 21768.46 20584.50 17392.33 119
Vis-MVSNet (Re-imp)78.36 19278.45 16678.07 27788.64 15851.78 36286.70 18479.63 33274.14 12175.11 23990.83 12361.29 17089.75 26858.10 29591.60 8292.69 107
114514_t80.68 13579.51 14184.20 11594.09 3867.27 14989.64 8591.11 11958.75 34474.08 25490.72 12458.10 19895.04 8569.70 19189.42 11390.30 192
PAPM_NR83.02 9282.41 9284.82 9092.47 6766.37 16487.93 14891.80 9873.82 12777.32 17990.66 12567.90 9194.90 9170.37 18389.48 11293.19 91
LS3D76.95 22674.82 24183.37 15090.45 9567.36 14689.15 10286.94 23561.87 31969.52 30490.61 12651.71 25994.53 10546.38 36286.71 14688.21 265
mvsmamba81.69 11180.74 11784.56 9787.45 20566.72 15991.26 4885.89 25174.66 10978.23 15990.56 12754.33 22794.91 8880.73 8883.54 19792.04 134
VPNet78.69 18578.66 16278.76 26388.31 17055.72 32984.45 24186.63 24076.79 6478.26 15890.55 12859.30 19189.70 27066.63 22077.05 27290.88 168
UniMVSNet_ETH3D79.10 17578.24 17381.70 19986.85 21960.24 27487.28 16688.79 19374.25 11876.84 18990.53 12949.48 28291.56 22667.98 20782.15 21493.29 85
ACMP74.13 681.51 11880.57 12084.36 10689.42 12368.69 11589.97 7491.50 11074.46 11475.04 24290.41 13053.82 23394.54 10477.56 11382.91 20589.86 216
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PCF-MVS73.52 780.38 14378.84 15985.01 8287.71 19568.99 10283.65 25591.46 11163.00 30477.77 17190.28 13166.10 10995.09 8461.40 26688.22 12990.94 167
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
NP-MVS89.62 11568.32 12290.24 132
HQP-MVS82.61 9782.02 10084.37 10589.33 12866.98 15589.17 9892.19 8276.41 7277.23 18290.23 13360.17 18995.11 8077.47 11485.99 15991.03 163
PS-MVSNAJss82.07 10381.31 10784.34 10886.51 22767.27 14989.27 9691.51 10771.75 16379.37 13490.22 13463.15 13894.27 11377.69 11282.36 21391.49 147
TSAR-MVS + GP.85.71 5185.33 5686.84 4791.34 7872.50 3689.07 10487.28 22876.41 7285.80 4790.22 13474.15 3195.37 7281.82 7791.88 7892.65 109
RRT_MVS80.35 14679.22 15183.74 14087.63 19965.46 18591.08 5488.92 19173.82 12776.44 20390.03 13649.05 29194.25 11776.84 12179.20 25391.51 144
SDMVSNet80.38 14380.18 12980.99 22089.03 14464.94 19780.45 30389.40 16675.19 9876.61 19889.98 13760.61 18387.69 30176.83 12383.55 19590.33 190
sd_testset77.70 21277.40 19578.60 26689.03 14460.02 27679.00 32185.83 25275.19 9876.61 19889.98 13754.81 21985.46 31962.63 25383.55 19590.33 190
TranMVSNet+NR-MVSNet80.84 12780.31 12682.42 18787.85 18762.33 24687.74 15491.33 11280.55 977.99 16789.86 13965.23 11992.62 18667.05 21875.24 30892.30 121
diffmvspermissive82.10 10181.88 10382.76 18283.00 29663.78 22083.68 25489.76 15772.94 15282.02 10389.85 14065.96 11490.79 25282.38 7487.30 13793.71 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-RMVSNet79.61 15878.44 16783.14 16089.38 12665.93 17284.95 22787.15 23273.56 13578.19 16189.79 14156.67 21293.36 15659.53 28086.74 14590.13 198
GeoE81.71 11081.01 11483.80 13989.51 12064.45 20888.97 10688.73 19971.27 17578.63 14889.76 14266.32 10793.20 16669.89 18986.02 15893.74 63
AdaColmapbinary80.58 14079.42 14384.06 12593.09 5468.91 10489.36 9488.97 18869.27 21975.70 21789.69 14357.20 20995.77 5463.06 24788.41 12787.50 279
ACMM73.20 880.78 13479.84 13583.58 14389.31 13168.37 12189.99 7391.60 10470.28 19777.25 18089.66 14453.37 23893.53 14974.24 14882.85 20688.85 250
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CNLPA78.08 19976.79 20981.97 19590.40 9771.07 6287.59 15784.55 26666.03 27172.38 27489.64 14557.56 20486.04 31259.61 27983.35 20088.79 253
test_yl81.17 12180.47 12383.24 15589.13 13963.62 22186.21 19789.95 15372.43 15781.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
DCV-MVSNet81.17 12180.47 12383.24 15589.13 13963.62 22186.21 19789.95 15372.43 15781.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
EI-MVSNet-Vis-set84.19 6883.81 7385.31 7388.18 17367.85 13387.66 15589.73 15980.05 1482.95 9289.59 14870.74 6194.82 9580.66 8984.72 17093.28 86
PAPR81.66 11480.89 11683.99 13390.27 9864.00 21586.76 18391.77 10168.84 23577.13 18889.50 14967.63 9394.88 9367.55 21188.52 12593.09 94
jajsoiax79.29 17077.96 17783.27 15384.68 25866.57 16289.25 9790.16 14769.20 22475.46 22389.49 15045.75 31893.13 17276.84 12180.80 23190.11 200
MVSFormer82.85 9482.05 9985.24 7587.35 20670.21 7790.50 6290.38 13768.55 23981.32 11289.47 15161.68 15993.46 15378.98 9990.26 10092.05 132
jason81.39 11980.29 12784.70 9486.63 22669.90 8585.95 20386.77 23863.24 30081.07 11889.47 15161.08 17592.15 20578.33 10790.07 10592.05 132
jason: jason.
mvs_tets79.13 17477.77 18683.22 15784.70 25766.37 16489.17 9890.19 14669.38 21775.40 22689.46 15344.17 32793.15 17076.78 12480.70 23390.14 197
UGNet80.83 12879.59 14084.54 9888.04 18168.09 12889.42 9188.16 20676.95 5976.22 20789.46 15349.30 28693.94 12768.48 20490.31 9891.60 140
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VPA-MVSNet80.60 13880.55 12180.76 22688.07 18060.80 26586.86 17791.58 10575.67 9080.24 12589.45 15563.34 13290.25 25970.51 18279.22 25291.23 155
MVS_Test83.15 8883.06 8383.41 14986.86 21863.21 23486.11 20092.00 8774.31 11682.87 9489.44 15670.03 6793.21 16377.39 11688.50 12693.81 60
EI-MVSNet-UG-set83.81 7283.38 7885.09 8087.87 18667.53 14187.44 16189.66 16079.74 1682.23 10189.41 15770.24 6694.74 9879.95 9383.92 18592.99 100
RPSCF73.23 27371.46 27678.54 26882.50 30859.85 27782.18 27782.84 29958.96 34171.15 28689.41 15745.48 32184.77 32558.82 28871.83 33791.02 165
bld_raw_dy_0_6477.29 22175.98 22381.22 21385.04 25265.47 18488.14 14277.56 34569.20 22473.77 25689.40 15942.24 34188.85 28776.78 12481.64 22189.33 232
UniMVSNet_NR-MVSNet81.88 10681.54 10682.92 17188.46 16463.46 22887.13 16892.37 7380.19 1278.38 15489.14 16071.66 5293.05 17670.05 18676.46 28192.25 123
tttt051779.40 16777.91 17983.90 13888.10 17863.84 21888.37 13184.05 27571.45 17276.78 19289.12 16149.93 27994.89 9270.18 18583.18 20392.96 101
DU-MVS81.12 12380.52 12282.90 17287.80 19063.46 22887.02 17291.87 9579.01 2678.38 15489.07 16265.02 12193.05 17670.05 18676.46 28192.20 126
NR-MVSNet80.23 14879.38 14482.78 18087.80 19063.34 23186.31 19491.09 12079.01 2672.17 27689.07 16267.20 9892.81 18566.08 22575.65 29492.20 126
DELS-MVS85.41 5785.30 5885.77 6488.49 16267.93 13285.52 21993.44 2778.70 2983.63 8789.03 16474.57 2495.71 5680.26 9294.04 5993.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
iter_conf_final80.63 13679.35 14684.46 10289.36 12767.70 13789.85 7584.49 26773.19 14778.30 15788.94 16545.98 31394.56 10279.59 9684.48 17791.11 158
iter_conf0580.00 15478.70 16083.91 13787.84 18865.83 17588.84 11284.92 26271.61 16878.70 14488.94 16543.88 32994.56 10279.28 9784.28 18191.33 151
baseline176.98 22576.75 21277.66 28288.13 17655.66 33085.12 22381.89 30673.04 15076.79 19188.90 16762.43 14987.78 30063.30 24671.18 34189.55 226
DP-MVS76.78 22874.57 24383.42 14793.29 4869.46 9488.55 12483.70 27963.98 29670.20 29288.89 16854.01 23294.80 9646.66 35981.88 21986.01 311
ab-mvs79.51 16178.97 15781.14 21688.46 16460.91 26383.84 25289.24 17570.36 19479.03 13888.87 16963.23 13690.21 26065.12 23282.57 21192.28 122
PEN-MVS77.73 20977.69 19077.84 27987.07 21753.91 34787.91 14991.18 11577.56 4373.14 26488.82 17061.23 17189.17 27859.95 27672.37 33290.43 186
tt080578.73 18377.83 18281.43 20585.17 24660.30 27389.41 9290.90 12371.21 17677.17 18688.73 17146.38 30693.21 16372.57 16678.96 25490.79 170
test_djsdf80.30 14779.32 14783.27 15383.98 27365.37 18990.50 6290.38 13768.55 23976.19 20888.70 17256.44 21393.46 15378.98 9980.14 24190.97 166
PAPM77.68 21376.40 21981.51 20387.29 21361.85 25383.78 25389.59 16264.74 28471.23 28488.70 17262.59 14593.66 14352.66 32687.03 14189.01 242
DTE-MVSNet76.99 22476.80 20877.54 28686.24 22953.06 35587.52 15890.66 12977.08 5772.50 27188.67 17460.48 18589.52 27257.33 30270.74 34390.05 207
PS-CasMVS78.01 20378.09 17577.77 28187.71 19554.39 34488.02 14391.22 11377.50 4673.26 26288.64 17560.73 17888.41 29361.88 26173.88 32190.53 182
cdsmvs_eth3d_5k19.96 37126.61 3730.00 3910.00 4140.00 4160.00 40289.26 1730.00 4090.00 41088.61 17661.62 1610.00 4100.00 4090.00 4080.00 406
lupinMVS81.39 11980.27 12884.76 9387.35 20670.21 7785.55 21586.41 24262.85 30781.32 11288.61 17661.68 15992.24 20378.41 10690.26 10091.83 136
F-COLMAP76.38 23774.33 24882.50 18689.28 13366.95 15888.41 12789.03 18364.05 29466.83 32988.61 17646.78 30492.89 18157.48 29978.55 25687.67 273
mvs_anonymous79.42 16679.11 15480.34 23484.45 26457.97 29482.59 27387.62 22167.40 25476.17 21188.56 17968.47 8689.59 27170.65 18186.05 15793.47 79
CP-MVSNet78.22 19478.34 17077.84 27987.83 18954.54 34287.94 14791.17 11677.65 3873.48 26088.49 18062.24 15388.43 29262.19 25774.07 31790.55 181
PVSNet_Blended_VisFu82.62 9681.83 10484.96 8490.80 8969.76 8788.74 11791.70 10269.39 21678.96 13988.46 18165.47 11794.87 9474.42 14588.57 12390.24 194
CANet_DTU80.61 13779.87 13482.83 17485.60 23963.17 23787.36 16288.65 20076.37 7675.88 21488.44 18253.51 23693.07 17573.30 15789.74 11092.25 123
PLCcopyleft70.83 1178.05 20176.37 22083.08 16391.88 7467.80 13488.19 13789.46 16564.33 29069.87 30188.38 18353.66 23493.58 14458.86 28782.73 20887.86 270
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
WR-MVS79.49 16279.22 15180.27 23688.79 15258.35 28785.06 22488.61 20278.56 3077.65 17288.34 18463.81 13190.66 25564.98 23477.22 27091.80 138
XXY-MVS75.41 25175.56 22974.96 30983.59 28057.82 29880.59 30083.87 27866.54 26574.93 24488.31 18563.24 13580.09 35162.16 25876.85 27686.97 293
Effi-MVS+83.62 7983.08 8285.24 7588.38 16867.45 14288.89 10989.15 17975.50 9282.27 10088.28 18669.61 7394.45 10977.81 11187.84 13093.84 59
API-MVS81.99 10581.23 10984.26 11490.94 8570.18 8291.10 5389.32 16971.51 17178.66 14788.28 18665.26 11895.10 8364.74 23691.23 8887.51 278
thisisatest053079.40 16777.76 18784.31 10987.69 19765.10 19487.36 16284.26 27370.04 20177.42 17688.26 18849.94 27794.79 9770.20 18484.70 17193.03 97
hse-mvs281.72 10980.94 11584.07 12388.72 15567.68 13885.87 20687.26 22976.02 8384.67 6488.22 18961.54 16293.48 15182.71 7073.44 32691.06 161
xiu_mvs_v1_base_debu80.80 13179.72 13784.03 13087.35 20670.19 7985.56 21288.77 19469.06 22981.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 237
xiu_mvs_v1_base80.80 13179.72 13784.03 13087.35 20670.19 7985.56 21288.77 19469.06 22981.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 237
xiu_mvs_v1_base_debi80.80 13179.72 13784.03 13087.35 20670.19 7985.56 21288.77 19469.06 22981.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 237
UniMVSNet (Re)81.60 11581.11 11183.09 16288.38 16864.41 20987.60 15693.02 4278.42 3278.56 15088.16 19069.78 7193.26 15969.58 19376.49 28091.60 140
AUN-MVS79.21 17277.60 19284.05 12888.71 15667.61 13985.84 20887.26 22969.08 22877.23 18288.14 19453.20 24093.47 15275.50 13973.45 32591.06 161
Anonymous2023121178.97 17977.69 19082.81 17690.54 9464.29 21190.11 7291.51 10765.01 28276.16 21288.13 19550.56 27093.03 17969.68 19277.56 26891.11 158
pm-mvs177.25 22276.68 21478.93 26184.22 26758.62 28686.41 19188.36 20571.37 17373.31 26188.01 19661.22 17289.15 27964.24 24073.01 32989.03 241
LTVRE_ROB69.57 1376.25 23874.54 24581.41 20688.60 15964.38 21079.24 31789.12 18270.76 18669.79 30387.86 19749.09 28993.20 16656.21 31280.16 23986.65 300
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WTY-MVS75.65 24675.68 22675.57 30386.40 22856.82 31177.92 33582.40 30265.10 27976.18 20987.72 19863.13 14180.90 34860.31 27481.96 21789.00 244
TAMVS78.89 18177.51 19483.03 16687.80 19067.79 13584.72 23185.05 26067.63 24976.75 19387.70 19962.25 15290.82 25158.53 29187.13 13990.49 184
BH-untuned79.47 16378.60 16382.05 19289.19 13765.91 17386.07 20188.52 20372.18 15975.42 22587.69 20061.15 17393.54 14860.38 27386.83 14486.70 299
COLMAP_ROBcopyleft66.92 1773.01 27570.41 29080.81 22587.13 21665.63 18088.30 13484.19 27462.96 30563.80 35587.69 20038.04 36192.56 18946.66 35974.91 31184.24 335
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OurMVSNet-221017-074.26 25972.42 26879.80 24583.76 27859.59 28185.92 20586.64 23966.39 26666.96 32787.58 20239.46 35391.60 22365.76 22869.27 34888.22 264
FA-MVS(test-final)80.96 12579.91 13384.10 11888.30 17165.01 19584.55 23790.01 15173.25 14579.61 13187.57 20358.35 19794.72 9971.29 17586.25 15392.56 111
Baseline_NR-MVSNet78.15 19878.33 17177.61 28485.79 23556.21 32486.78 18185.76 25373.60 13477.93 16887.57 20365.02 12188.99 28167.14 21775.33 30587.63 274
WR-MVS_H78.51 18978.49 16578.56 26788.02 18256.38 32088.43 12692.67 6177.14 5473.89 25587.55 20566.25 10889.24 27758.92 28673.55 32490.06 206
EI-MVSNet80.52 14179.98 13182.12 19084.28 26563.19 23686.41 19188.95 18974.18 12078.69 14587.54 20666.62 10192.43 19372.57 16680.57 23590.74 174
CVMVSNet72.99 27672.58 26674.25 31784.28 26550.85 36886.41 19183.45 28544.56 38173.23 26387.54 20649.38 28485.70 31465.90 22678.44 25986.19 306
ACMH+68.96 1476.01 24274.01 25082.03 19388.60 15965.31 19088.86 11087.55 22270.25 19967.75 31887.47 20841.27 34593.19 16858.37 29275.94 29187.60 275
TransMVSNet (Re)75.39 25274.56 24477.86 27885.50 24157.10 30886.78 18186.09 24972.17 16071.53 28287.34 20963.01 14289.31 27656.84 30761.83 36987.17 286
GBi-Net78.40 19077.40 19581.40 20787.60 20063.01 23888.39 12889.28 17071.63 16575.34 22887.28 21054.80 22091.11 24262.72 24979.57 24590.09 202
test178.40 19077.40 19581.40 20787.60 20063.01 23888.39 12889.28 17071.63 16575.34 22887.28 21054.80 22091.11 24262.72 24979.57 24590.09 202
FMVSNet278.20 19677.21 19981.20 21487.60 20062.89 24287.47 16089.02 18471.63 16575.29 23487.28 21054.80 22091.10 24562.38 25479.38 24989.61 224
FMVSNet177.44 21676.12 22281.40 20786.81 22163.01 23888.39 12889.28 17070.49 19374.39 25187.28 21049.06 29091.11 24260.91 27078.52 25790.09 202
v2v48280.23 14879.29 14883.05 16583.62 27964.14 21387.04 17189.97 15273.61 13378.18 16287.22 21461.10 17493.82 13476.11 12976.78 27891.18 156
ITE_SJBPF78.22 27381.77 31860.57 26883.30 28669.25 22167.54 32087.20 21536.33 36687.28 30454.34 31874.62 31486.80 296
anonymousdsp78.60 18777.15 20082.98 16980.51 33667.08 15387.24 16789.53 16365.66 27575.16 23787.19 21652.52 24192.25 20277.17 11879.34 25089.61 224
MVSTER79.01 17777.88 18182.38 18883.07 29364.80 20084.08 25188.95 18969.01 23278.69 14587.17 21754.70 22492.43 19374.69 14280.57 23589.89 215
thres100view90076.50 23275.55 23079.33 25489.52 11956.99 30985.83 20983.23 28873.94 12476.32 20587.12 21851.89 25691.95 21148.33 35083.75 18989.07 235
thres600view776.50 23275.44 23179.68 24889.40 12457.16 30685.53 21783.23 28873.79 12976.26 20687.09 21951.89 25691.89 21448.05 35583.72 19290.00 208
XVG-ACMP-BASELINE76.11 24074.27 24981.62 20083.20 28964.67 20283.60 25889.75 15869.75 21171.85 27987.09 21932.78 37292.11 20669.99 18880.43 23788.09 266
HY-MVS69.67 1277.95 20477.15 20080.36 23387.57 20460.21 27583.37 26287.78 21966.11 26875.37 22787.06 22163.27 13490.48 25761.38 26782.43 21290.40 188
CHOSEN 1792x268877.63 21475.69 22583.44 14689.98 10968.58 11878.70 32587.50 22456.38 35975.80 21686.84 22258.67 19491.40 23661.58 26585.75 16390.34 189
v879.97 15579.02 15682.80 17784.09 27064.50 20687.96 14590.29 14474.13 12275.24 23586.81 22362.88 14393.89 13374.39 14675.40 30390.00 208
AllTest70.96 29268.09 30779.58 25185.15 24863.62 22184.58 23679.83 32962.31 31460.32 36686.73 22432.02 37388.96 28450.28 33971.57 33986.15 307
TestCases79.58 25185.15 24863.62 22179.83 32962.31 31460.32 36686.73 22432.02 37388.96 28450.28 33971.57 33986.15 307
LCM-MVSNet-Re77.05 22376.94 20577.36 28787.20 21451.60 36380.06 30780.46 32275.20 9767.69 31986.72 22662.48 14788.98 28263.44 24489.25 11491.51 144
1112_ss77.40 21876.43 21880.32 23589.11 14360.41 27283.65 25587.72 22062.13 31773.05 26586.72 22662.58 14689.97 26462.11 26080.80 23190.59 180
ab-mvs-re7.23 3749.64 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41086.72 2260.00 4140.00 4100.00 4090.00 4080.00 406
IterMVS-LS80.06 15179.38 14482.11 19185.89 23463.20 23586.79 18089.34 16874.19 11975.45 22486.72 22666.62 10192.39 19572.58 16576.86 27590.75 173
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH67.68 1675.89 24373.93 25281.77 19888.71 15666.61 16188.62 12289.01 18569.81 20766.78 33086.70 23041.95 34491.51 23155.64 31378.14 26387.17 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Test_1112_low_res76.40 23675.44 23179.27 25589.28 13358.09 29081.69 28287.07 23359.53 33672.48 27286.67 23161.30 16989.33 27560.81 27280.15 24090.41 187
FMVSNet377.88 20676.85 20780.97 22286.84 22062.36 24586.52 18988.77 19471.13 17775.34 22886.66 23254.07 23191.10 24562.72 24979.57 24589.45 228
pmmvs674.69 25673.39 25878.61 26581.38 32557.48 30386.64 18587.95 21364.99 28370.18 29386.61 23350.43 27289.52 27262.12 25970.18 34588.83 251
ET-MVSNet_ETH3D78.63 18676.63 21584.64 9586.73 22369.47 9285.01 22584.61 26569.54 21466.51 33786.59 23450.16 27491.75 21976.26 12884.24 18292.69 107
testgi66.67 32866.53 32567.08 36075.62 36841.69 39575.93 34376.50 35466.11 26865.20 34786.59 23435.72 36874.71 38143.71 37173.38 32784.84 329
CLD-MVS82.31 9981.65 10584.29 11088.47 16367.73 13685.81 21092.35 7475.78 8678.33 15686.58 23664.01 12894.35 11076.05 13187.48 13590.79 170
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
v1079.74 15778.67 16182.97 17084.06 27164.95 19687.88 15190.62 13073.11 14875.11 23986.56 23761.46 16594.05 12373.68 15175.55 29689.90 214
CDS-MVSNet79.07 17677.70 18983.17 15987.60 20068.23 12584.40 24486.20 24667.49 25276.36 20486.54 23861.54 16290.79 25261.86 26287.33 13690.49 184
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
xiu_mvs_v2_base81.69 11181.05 11283.60 14289.15 13868.03 13184.46 24090.02 15070.67 18781.30 11586.53 23963.17 13794.19 11975.60 13788.54 12488.57 260
TR-MVS77.44 21676.18 22181.20 21488.24 17263.24 23384.61 23586.40 24367.55 25177.81 16986.48 24054.10 23093.15 17057.75 29882.72 20987.20 285
EIA-MVS83.31 8782.80 8984.82 9089.59 11665.59 18188.21 13692.68 6074.66 10978.96 13986.42 24169.06 8095.26 7375.54 13890.09 10393.62 72
tfpn200view976.42 23575.37 23579.55 25389.13 13957.65 30085.17 22083.60 28073.41 14076.45 20086.39 24252.12 24891.95 21148.33 35083.75 18989.07 235
thres40076.50 23275.37 23579.86 24389.13 13957.65 30085.17 22083.60 28073.41 14076.45 20086.39 24252.12 24891.95 21148.33 35083.75 18990.00 208
v7n78.97 17977.58 19383.14 16083.45 28365.51 18288.32 13391.21 11473.69 13172.41 27386.32 24457.93 19993.81 13569.18 19675.65 29490.11 200
MAR-MVS81.84 10780.70 11885.27 7491.32 7971.53 5489.82 7790.92 12269.77 21078.50 15186.21 24562.36 15094.52 10665.36 23092.05 7789.77 220
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
v114480.03 15279.03 15583.01 16783.78 27764.51 20487.11 17090.57 13371.96 16278.08 16586.20 24661.41 16693.94 12774.93 14177.23 26990.60 179
test_vis1_n_192075.52 24875.78 22474.75 31379.84 34457.44 30483.26 26385.52 25562.83 30879.34 13686.17 24745.10 32279.71 35278.75 10181.21 22687.10 292
V4279.38 16978.24 17382.83 17481.10 33065.50 18385.55 21589.82 15571.57 17078.21 16086.12 24860.66 18193.18 16975.64 13575.46 30089.81 219
PVSNet_BlendedMVS80.60 13880.02 13082.36 18988.85 14665.40 18686.16 19992.00 8769.34 21878.11 16386.09 24966.02 11294.27 11371.52 17182.06 21687.39 280
v119279.59 16078.43 16883.07 16483.55 28164.52 20386.93 17590.58 13170.83 18377.78 17085.90 25059.15 19293.94 12773.96 15077.19 27190.76 172
SixPastTwentyTwo73.37 26971.26 28179.70 24785.08 25157.89 29685.57 21183.56 28271.03 18165.66 34185.88 25142.10 34292.57 18859.11 28463.34 36788.65 258
EPNet_dtu75.46 24974.86 24077.23 29082.57 30754.60 34186.89 17683.09 29171.64 16466.25 33985.86 25255.99 21488.04 29754.92 31586.55 14889.05 240
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
sss73.60 26773.64 25773.51 32382.80 30155.01 33876.12 34281.69 30962.47 31374.68 24785.85 25357.32 20778.11 35960.86 27180.93 22887.39 280
ETV-MVS84.90 6584.67 6585.59 6789.39 12568.66 11688.74 11792.64 6579.97 1584.10 7785.71 25469.32 7695.38 6980.82 8591.37 8692.72 104
test_cas_vis1_n_192073.76 26673.74 25673.81 32175.90 36559.77 27880.51 30182.40 30258.30 34681.62 11085.69 25544.35 32676.41 37076.29 12778.61 25585.23 322
v124078.99 17877.78 18582.64 18383.21 28863.54 22586.62 18690.30 14369.74 21377.33 17885.68 25657.04 21093.76 13973.13 16076.92 27390.62 177
v14419279.47 16378.37 16982.78 18083.35 28463.96 21686.96 17390.36 14069.99 20377.50 17485.67 25760.66 18193.77 13874.27 14776.58 27990.62 177
tfpnnormal74.39 25773.16 26178.08 27686.10 23358.05 29184.65 23487.53 22370.32 19671.22 28585.63 25854.97 21889.86 26543.03 37375.02 31086.32 303
PS-MVSNAJ81.69 11181.02 11383.70 14189.51 12068.21 12684.28 24690.09 14970.79 18481.26 11685.62 25963.15 13894.29 11175.62 13688.87 11988.59 259
v192192079.22 17178.03 17682.80 17783.30 28663.94 21786.80 17990.33 14169.91 20677.48 17585.53 26058.44 19693.75 14073.60 15276.85 27690.71 175
test_040272.79 27870.44 28979.84 24488.13 17665.99 17185.93 20484.29 27165.57 27667.40 32485.49 26146.92 30392.61 18735.88 38574.38 31680.94 364
v14878.72 18477.80 18481.47 20482.73 30361.96 25286.30 19588.08 20973.26 14476.18 20985.47 26262.46 14892.36 19771.92 17073.82 32290.09 202
USDC70.33 30068.37 30276.21 29780.60 33456.23 32379.19 31986.49 24160.89 32461.29 36285.47 26231.78 37589.47 27453.37 32376.21 28982.94 352
MVP-Stereo76.12 23974.46 24781.13 21785.37 24469.79 8684.42 24387.95 21365.03 28167.46 32285.33 26453.28 23991.73 22158.01 29683.27 20181.85 359
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MVS78.19 19776.99 20481.78 19785.66 23766.99 15484.66 23290.47 13555.08 36472.02 27885.27 26563.83 13094.11 12266.10 22489.80 10984.24 335
DIV-MVS_self_test77.72 21076.76 21080.58 22982.48 31060.48 27083.09 26787.86 21669.22 22274.38 25285.24 26662.10 15591.53 22971.09 17675.40 30389.74 221
FE-MVS77.78 20875.68 22684.08 12288.09 17966.00 17083.13 26687.79 21868.42 24378.01 16685.23 26745.50 32095.12 7859.11 28485.83 16291.11 158
cl____77.72 21076.76 21080.58 22982.49 30960.48 27083.09 26787.87 21569.22 22274.38 25285.22 26862.10 15591.53 22971.09 17675.41 30289.73 222
HyFIR lowres test77.53 21575.40 23383.94 13689.59 11666.62 16080.36 30488.64 20156.29 36076.45 20085.17 26957.64 20393.28 15861.34 26883.10 20491.91 135
pmmvs474.03 26471.91 27180.39 23281.96 31568.32 12281.45 28682.14 30459.32 33769.87 30185.13 27052.40 24488.13 29660.21 27574.74 31384.73 331
TDRefinement67.49 32164.34 33176.92 29273.47 37961.07 26184.86 22982.98 29559.77 33358.30 37385.13 27026.06 38387.89 29847.92 35660.59 37481.81 360
Fast-Effi-MVS+80.81 12979.92 13283.47 14588.85 14664.51 20485.53 21789.39 16770.79 18478.49 15285.06 27267.54 9493.58 14467.03 21986.58 14792.32 120
PVSNet_Blended80.98 12480.34 12582.90 17288.85 14665.40 18684.43 24292.00 8767.62 25078.11 16385.05 27366.02 11294.27 11371.52 17189.50 11189.01 242
test_fmvs1_n70.86 29470.24 29272.73 33072.51 38555.28 33581.27 28979.71 33151.49 37478.73 14384.87 27427.54 38277.02 36476.06 13079.97 24385.88 314
CMPMVSbinary51.72 2170.19 30268.16 30576.28 29673.15 38157.55 30279.47 31483.92 27648.02 37856.48 37984.81 27543.13 33386.42 30962.67 25281.81 22084.89 328
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EU-MVSNet68.53 31667.61 31771.31 34178.51 35747.01 37984.47 23884.27 27242.27 38466.44 33884.79 27640.44 35083.76 33058.76 28968.54 35383.17 346
BH-w/o78.21 19577.33 19880.84 22488.81 15065.13 19384.87 22887.85 21769.75 21174.52 25084.74 27761.34 16893.11 17358.24 29485.84 16184.27 334
pmmvs571.55 28770.20 29375.61 30277.83 35856.39 31981.74 28180.89 31457.76 35067.46 32284.49 27849.26 28785.32 32157.08 30475.29 30685.11 326
thres20075.55 24774.47 24678.82 26287.78 19357.85 29783.07 26983.51 28372.44 15675.84 21584.42 27952.08 25191.75 21947.41 35783.64 19486.86 295
test_fmvs170.93 29370.52 28772.16 33373.71 37555.05 33780.82 29278.77 33851.21 37578.58 14984.41 28031.20 37776.94 36575.88 13380.12 24284.47 333
testing368.56 31567.67 31671.22 34287.33 21142.87 39083.06 27071.54 37270.36 19469.08 30984.38 28130.33 37985.69 31537.50 38475.45 30185.09 327
test_fmvs268.35 31867.48 31970.98 34469.50 38851.95 35880.05 30876.38 35549.33 37774.65 24884.38 28123.30 38875.40 37974.51 14475.17 30985.60 317
eth_miper_zixun_eth77.92 20576.69 21381.61 20283.00 29661.98 25183.15 26589.20 17769.52 21574.86 24584.35 28361.76 15892.56 18971.50 17372.89 33090.28 193
testing9176.54 23075.66 22879.18 25888.43 16655.89 32781.08 29083.00 29473.76 13075.34 22884.29 28446.20 31190.07 26264.33 23884.50 17391.58 142
c3_l78.75 18277.91 17981.26 21182.89 30061.56 25784.09 25089.13 18169.97 20475.56 21984.29 28466.36 10692.09 20773.47 15575.48 29890.12 199
testing9976.09 24175.12 23979.00 25988.16 17455.50 33280.79 29481.40 31273.30 14375.17 23684.27 28644.48 32590.02 26364.28 23984.22 18391.48 148
UWE-MVS72.13 28471.49 27574.03 31986.66 22547.70 37681.40 28876.89 35363.60 29975.59 21884.22 28739.94 35285.62 31648.98 34786.13 15688.77 254
Fast-Effi-MVS+-dtu78.02 20276.49 21682.62 18483.16 29266.96 15786.94 17487.45 22672.45 15471.49 28384.17 28854.79 22391.58 22467.61 21080.31 23889.30 233
IterMVS-SCA-FT75.43 25073.87 25480.11 23982.69 30464.85 19981.57 28483.47 28469.16 22670.49 28984.15 28951.95 25488.15 29569.23 19572.14 33587.34 282
131476.53 23175.30 23780.21 23783.93 27462.32 24784.66 23288.81 19260.23 32970.16 29584.07 29055.30 21790.73 25467.37 21383.21 20287.59 277
cl2278.07 20077.01 20281.23 21282.37 31261.83 25483.55 25987.98 21168.96 23375.06 24183.87 29161.40 16791.88 21573.53 15376.39 28389.98 211
EG-PatchMatch MVS74.04 26271.82 27280.71 22784.92 25467.42 14385.86 20788.08 20966.04 27064.22 35183.85 29235.10 36992.56 18957.44 30080.83 23082.16 358
thisisatest051577.33 21975.38 23483.18 15885.27 24563.80 21982.11 27883.27 28765.06 28075.91 21383.84 29349.54 28194.27 11367.24 21586.19 15491.48 148
test20.0367.45 32266.95 32368.94 35175.48 36944.84 38677.50 33677.67 34366.66 25963.01 35783.80 29447.02 30278.40 35742.53 37568.86 35283.58 343
miper_ehance_all_eth78.59 18877.76 18781.08 21882.66 30561.56 25783.65 25589.15 17968.87 23475.55 22083.79 29566.49 10492.03 20873.25 15876.39 28389.64 223
MSDG73.36 27170.99 28380.49 23184.51 26365.80 17780.71 29886.13 24865.70 27465.46 34283.74 29644.60 32390.91 25051.13 33476.89 27484.74 330
testing1175.14 25474.01 25078.53 26988.16 17456.38 32080.74 29780.42 32370.67 18772.69 27083.72 29743.61 33189.86 26562.29 25683.76 18889.36 230
IterMVS74.29 25872.94 26378.35 27281.53 32263.49 22781.58 28382.49 30168.06 24769.99 29883.69 29851.66 26085.54 31765.85 22771.64 33886.01 311
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tpm72.37 28171.71 27374.35 31682.19 31352.00 35779.22 31877.29 34964.56 28672.95 26683.68 29951.35 26183.26 33658.33 29375.80 29287.81 271
testing22274.04 26272.66 26578.19 27487.89 18555.36 33381.06 29179.20 33671.30 17474.65 24883.57 30039.11 35688.67 28951.43 33385.75 16390.53 182
Effi-MVS+-dtu80.03 15278.57 16484.42 10485.13 25068.74 11088.77 11488.10 20874.99 10274.97 24383.49 30157.27 20893.36 15673.53 15380.88 22991.18 156
baseline275.70 24573.83 25581.30 21083.26 28761.79 25582.57 27480.65 31866.81 25566.88 32883.42 30257.86 20192.19 20463.47 24379.57 24589.91 213
TinyColmap67.30 32464.81 32974.76 31281.92 31756.68 31580.29 30681.49 31160.33 32756.27 38083.22 30324.77 38587.66 30245.52 36769.47 34779.95 368
mvsany_test162.30 34361.26 34765.41 36269.52 38754.86 33966.86 38149.78 40246.65 37968.50 31583.21 30449.15 28866.28 39456.93 30660.77 37275.11 378
test_vis1_n69.85 30669.21 29771.77 33572.66 38455.27 33681.48 28576.21 35652.03 37175.30 23383.20 30528.97 38076.22 37274.60 14378.41 26183.81 341
CostFormer75.24 25373.90 25379.27 25582.65 30658.27 28980.80 29382.73 30061.57 32075.33 23283.13 30655.52 21591.07 24864.98 23478.34 26288.45 261
WB-MVSnew71.96 28671.65 27472.89 32884.67 26151.88 36082.29 27677.57 34462.31 31473.67 25883.00 30753.49 23781.10 34745.75 36682.13 21585.70 316
ETVMVS72.25 28371.05 28275.84 29987.77 19451.91 35979.39 31574.98 36069.26 22073.71 25782.95 30840.82 34986.14 31146.17 36384.43 17989.47 227
miper_lstm_enhance74.11 26173.11 26277.13 29180.11 34059.62 28072.23 36286.92 23666.76 25770.40 29082.92 30956.93 21182.92 33769.06 19872.63 33188.87 249
GA-MVS76.87 22775.17 23881.97 19582.75 30262.58 24381.44 28786.35 24572.16 16174.74 24682.89 31046.20 31192.02 20968.85 20181.09 22791.30 154
K. test v371.19 28968.51 30179.21 25783.04 29557.78 29984.35 24576.91 35272.90 15362.99 35882.86 31139.27 35491.09 24761.65 26452.66 38588.75 255
MS-PatchMatch73.83 26572.67 26477.30 28983.87 27566.02 16981.82 27984.66 26461.37 32368.61 31382.82 31247.29 29988.21 29459.27 28184.32 18077.68 373
lessismore_v078.97 26081.01 33157.15 30765.99 38561.16 36382.82 31239.12 35591.34 23859.67 27846.92 39188.43 262
D2MVS74.82 25573.21 26079.64 25079.81 34562.56 24480.34 30587.35 22764.37 28968.86 31082.66 31446.37 30790.10 26167.91 20881.24 22586.25 304
Anonymous2023120668.60 31367.80 31371.02 34380.23 33950.75 36978.30 33180.47 32156.79 35766.11 34082.63 31546.35 30878.95 35543.62 37275.70 29383.36 345
MIMVSNet70.69 29669.30 29574.88 31084.52 26256.35 32275.87 34679.42 33364.59 28567.76 31782.41 31641.10 34681.54 34446.64 36181.34 22386.75 298
OpenMVS_ROBcopyleft64.09 1970.56 29868.19 30477.65 28380.26 33759.41 28385.01 22582.96 29658.76 34365.43 34382.33 31737.63 36391.23 24145.34 36976.03 29082.32 355
miper_enhance_ethall77.87 20776.86 20680.92 22381.65 31961.38 25982.68 27288.98 18665.52 27775.47 22182.30 31865.76 11692.00 21072.95 16176.39 28389.39 229
test0.0.03 168.00 32067.69 31568.90 35277.55 35947.43 37775.70 34772.95 37166.66 25966.56 33382.29 31948.06 29675.87 37444.97 37074.51 31583.41 344
PVSNet64.34 1872.08 28570.87 28575.69 30186.21 23056.44 31874.37 35680.73 31762.06 31870.17 29482.23 32042.86 33583.31 33554.77 31684.45 17887.32 283
MIMVSNet168.58 31466.78 32473.98 32080.07 34151.82 36180.77 29584.37 26864.40 28859.75 36982.16 32136.47 36583.63 33242.73 37470.33 34486.48 302
CL-MVSNet_self_test72.37 28171.46 27675.09 30879.49 35153.53 34980.76 29685.01 26169.12 22770.51 28882.05 32257.92 20084.13 32852.27 32866.00 36187.60 275
tpm273.26 27271.46 27678.63 26483.34 28556.71 31480.65 29980.40 32456.63 35873.55 25982.02 32351.80 25891.24 24056.35 31178.42 26087.95 267
PatchMatch-RL72.38 28070.90 28476.80 29488.60 15967.38 14579.53 31376.17 35762.75 31069.36 30682.00 32445.51 31984.89 32453.62 32180.58 23478.12 372
FMVSNet569.50 30767.96 30874.15 31882.97 29955.35 33480.01 30982.12 30562.56 31263.02 35681.53 32536.92 36481.92 34248.42 34974.06 31885.17 325
CR-MVSNet73.37 26971.27 28079.67 24981.32 32865.19 19175.92 34480.30 32559.92 33272.73 26881.19 32652.50 24286.69 30659.84 27777.71 26587.11 290
Patchmtry70.74 29569.16 29875.49 30580.72 33254.07 34674.94 35580.30 32558.34 34570.01 29681.19 32652.50 24286.54 30753.37 32371.09 34285.87 315
IB-MVS68.01 1575.85 24473.36 25983.31 15184.76 25666.03 16883.38 26185.06 25970.21 20069.40 30581.05 32845.76 31794.66 10165.10 23375.49 29789.25 234
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cascas76.72 22974.64 24282.99 16885.78 23665.88 17482.33 27589.21 17660.85 32572.74 26781.02 32947.28 30093.75 14067.48 21285.02 16689.34 231
LF4IMVS64.02 33962.19 34369.50 34970.90 38653.29 35476.13 34177.18 35052.65 36958.59 37180.98 33023.55 38776.52 36853.06 32566.66 35778.68 371
Anonymous2024052168.80 31267.22 32173.55 32274.33 37254.11 34583.18 26485.61 25458.15 34761.68 36180.94 33130.71 37881.27 34657.00 30573.34 32885.28 321
gm-plane-assit81.40 32453.83 34862.72 31180.94 33192.39 19563.40 245
UnsupCasMVSNet_eth67.33 32365.99 32771.37 33873.48 37851.47 36575.16 35185.19 25865.20 27860.78 36480.93 33342.35 33777.20 36357.12 30353.69 38485.44 319
dmvs_re71.14 29070.58 28672.80 32981.96 31559.68 27975.60 34879.34 33468.55 23969.27 30880.72 33449.42 28376.54 36752.56 32777.79 26482.19 357
MDTV_nov1_ep1369.97 29483.18 29053.48 35077.10 34080.18 32860.45 32669.33 30780.44 33548.89 29486.90 30551.60 33178.51 258
pmmvs-eth3d70.50 29967.83 31278.52 27077.37 36166.18 16781.82 27981.51 31058.90 34263.90 35480.42 33642.69 33686.28 31058.56 29065.30 36383.11 348
PM-MVS66.41 33064.14 33273.20 32673.92 37456.45 31778.97 32264.96 38963.88 29864.72 34880.24 33719.84 39183.44 33466.24 22164.52 36579.71 369
SCA74.22 26072.33 26979.91 24284.05 27262.17 24979.96 31079.29 33566.30 26772.38 27480.13 33851.95 25488.60 29059.25 28277.67 26788.96 246
Patchmatch-test64.82 33763.24 33869.57 34879.42 35249.82 37363.49 39069.05 38051.98 37259.95 36880.13 33850.91 26570.98 38840.66 37873.57 32387.90 269
tpmrst72.39 27972.13 27073.18 32780.54 33549.91 37279.91 31179.08 33763.11 30271.69 28179.95 34055.32 21682.77 33865.66 22973.89 32086.87 294
DSMNet-mixed57.77 34956.90 35160.38 36867.70 39035.61 39969.18 37453.97 40032.30 39657.49 37679.88 34140.39 35168.57 39338.78 38272.37 33276.97 374
MDA-MVSNet-bldmvs66.68 32763.66 33675.75 30079.28 35360.56 26973.92 35878.35 34064.43 28750.13 38779.87 34244.02 32883.67 33146.10 36456.86 37783.03 350
PatchmatchNetpermissive73.12 27471.33 27978.49 27183.18 29060.85 26479.63 31278.57 33964.13 29171.73 28079.81 34351.20 26385.97 31357.40 30176.36 28888.66 257
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Syy-MVS68.05 31967.85 31068.67 35584.68 25840.97 39678.62 32673.08 36966.65 26266.74 33179.46 34452.11 25082.30 34032.89 38876.38 28682.75 353
myMVS_eth3d67.02 32566.29 32669.21 35084.68 25842.58 39178.62 32673.08 36966.65 26266.74 33179.46 34431.53 37682.30 34039.43 38176.38 28682.75 353
ppachtmachnet_test70.04 30367.34 32078.14 27579.80 34661.13 26079.19 31980.59 31959.16 33965.27 34479.29 34646.75 30587.29 30349.33 34566.72 35686.00 313
EPMVS69.02 31068.16 30571.59 33679.61 34949.80 37477.40 33766.93 38362.82 30970.01 29679.05 34745.79 31677.86 36156.58 30975.26 30787.13 289
PMMVS69.34 30868.67 30071.35 34075.67 36762.03 25075.17 35073.46 36750.00 37668.68 31179.05 34752.07 25278.13 35861.16 26982.77 20773.90 379
test-LLR72.94 27772.43 26774.48 31481.35 32658.04 29278.38 32877.46 34666.66 25969.95 29979.00 34948.06 29679.24 35366.13 22284.83 16886.15 307
test-mter71.41 28870.39 29174.48 31481.35 32658.04 29278.38 32877.46 34660.32 32869.95 29979.00 34936.08 36779.24 35366.13 22284.83 16886.15 307
KD-MVS_self_test68.81 31167.59 31872.46 33274.29 37345.45 38177.93 33487.00 23463.12 30163.99 35378.99 35142.32 33884.77 32556.55 31064.09 36687.16 288
test_fmvs363.36 34161.82 34467.98 35762.51 39546.96 38077.37 33874.03 36645.24 38067.50 32178.79 35212.16 39972.98 38772.77 16466.02 36083.99 339
KD-MVS_2432*160066.22 33263.89 33473.21 32475.47 37053.42 35170.76 36884.35 26964.10 29266.52 33578.52 35334.55 37084.98 32250.40 33750.33 38881.23 362
miper_refine_blended66.22 33263.89 33473.21 32475.47 37053.42 35170.76 36884.35 26964.10 29266.52 33578.52 35334.55 37084.98 32250.40 33750.33 38881.23 362
tpmvs71.09 29169.29 29676.49 29582.04 31456.04 32578.92 32381.37 31364.05 29467.18 32678.28 35549.74 28089.77 26749.67 34472.37 33283.67 342
our_test_369.14 30967.00 32275.57 30379.80 34658.80 28477.96 33377.81 34259.55 33562.90 35978.25 35647.43 29883.97 32951.71 33067.58 35583.93 340
MDA-MVSNet_test_wron65.03 33562.92 33971.37 33875.93 36456.73 31269.09 37774.73 36357.28 35554.03 38377.89 35745.88 31474.39 38349.89 34361.55 37082.99 351
YYNet165.03 33562.91 34071.38 33775.85 36656.60 31669.12 37674.66 36557.28 35554.12 38277.87 35845.85 31574.48 38249.95 34261.52 37183.05 349
ambc75.24 30773.16 38050.51 37063.05 39187.47 22564.28 35077.81 35917.80 39389.73 26957.88 29760.64 37385.49 318
tpm cat170.57 29768.31 30377.35 28882.41 31157.95 29578.08 33280.22 32752.04 37068.54 31477.66 36052.00 25387.84 29951.77 32972.07 33686.25 304
dp66.80 32665.43 32870.90 34579.74 34848.82 37575.12 35374.77 36259.61 33464.08 35277.23 36142.89 33480.72 34948.86 34866.58 35883.16 347
TESTMET0.1,169.89 30569.00 29972.55 33179.27 35456.85 31078.38 32874.71 36457.64 35168.09 31677.19 36237.75 36276.70 36663.92 24184.09 18484.10 338
CHOSEN 280x42066.51 32964.71 33071.90 33481.45 32363.52 22657.98 39368.95 38153.57 36662.59 36076.70 36346.22 31075.29 38055.25 31479.68 24476.88 375
PatchT68.46 31767.85 31070.29 34680.70 33343.93 38872.47 36174.88 36160.15 33070.55 28776.57 36449.94 27781.59 34350.58 33574.83 31285.34 320
mvsany_test353.99 35251.45 35761.61 36755.51 39944.74 38763.52 38945.41 40643.69 38358.11 37476.45 36517.99 39263.76 39754.77 31647.59 39076.34 376
RPMNet73.51 26870.49 28882.58 18581.32 32865.19 19175.92 34492.27 7657.60 35272.73 26876.45 36552.30 24595.43 6548.14 35477.71 26587.11 290
dmvs_testset62.63 34264.11 33358.19 37078.55 35624.76 40675.28 34965.94 38667.91 24860.34 36576.01 36753.56 23573.94 38531.79 38967.65 35475.88 377
ADS-MVSNet266.20 33463.33 33774.82 31179.92 34258.75 28567.55 37975.19 35953.37 36765.25 34575.86 36842.32 33880.53 35041.57 37668.91 35085.18 323
ADS-MVSNet64.36 33862.88 34168.78 35479.92 34247.17 37867.55 37971.18 37353.37 36765.25 34575.86 36842.32 33873.99 38441.57 37668.91 35085.18 323
EGC-MVSNET52.07 35847.05 36267.14 35983.51 28260.71 26680.50 30267.75 3820.07 4060.43 40775.85 37024.26 38681.54 34428.82 39162.25 36859.16 391
new-patchmatchnet61.73 34461.73 34561.70 36672.74 38324.50 40769.16 37578.03 34161.40 32156.72 37875.53 37138.42 35876.48 36945.95 36557.67 37684.13 337
N_pmnet52.79 35653.26 35551.40 38078.99 3557.68 41269.52 3723.89 41151.63 37357.01 37774.98 37240.83 34865.96 39537.78 38364.67 36480.56 367
WB-MVS54.94 35054.72 35255.60 37673.50 37720.90 40874.27 35761.19 39359.16 33950.61 38674.15 37347.19 30175.78 37517.31 40035.07 39570.12 383
patchmatchnet-post74.00 37451.12 26488.60 290
GG-mvs-BLEND75.38 30681.59 32155.80 32879.32 31669.63 37767.19 32573.67 37543.24 33288.90 28650.41 33684.50 17381.45 361
SSC-MVS53.88 35353.59 35454.75 37872.87 38219.59 40973.84 35960.53 39557.58 35349.18 38873.45 37646.34 30975.47 37816.20 40332.28 39769.20 384
Patchmatch-RL test70.24 30167.78 31477.61 28477.43 36059.57 28271.16 36570.33 37462.94 30668.65 31272.77 37750.62 26985.49 31869.58 19366.58 35887.77 272
FPMVS53.68 35451.64 35659.81 36965.08 39351.03 36769.48 37369.58 37841.46 38540.67 39172.32 37816.46 39570.00 39124.24 39765.42 36258.40 393
UnsupCasMVSNet_bld63.70 34061.53 34670.21 34773.69 37651.39 36672.82 36081.89 30655.63 36257.81 37571.80 37938.67 35778.61 35649.26 34652.21 38680.63 365
APD_test153.31 35549.93 36063.42 36565.68 39250.13 37171.59 36466.90 38434.43 39340.58 39271.56 3808.65 40476.27 37134.64 38755.36 38263.86 389
test_f52.09 35750.82 35855.90 37453.82 40242.31 39459.42 39258.31 39836.45 39156.12 38170.96 38112.18 39857.79 39953.51 32256.57 37967.60 385
PVSNet_057.27 2061.67 34559.27 34868.85 35379.61 34957.44 30468.01 37873.44 36855.93 36158.54 37270.41 38244.58 32477.55 36247.01 35835.91 39471.55 382
pmmvs357.79 34854.26 35368.37 35664.02 39456.72 31375.12 35365.17 38740.20 38652.93 38469.86 38320.36 39075.48 37745.45 36855.25 38372.90 381
test_vis1_rt60.28 34658.42 34965.84 36167.25 39155.60 33170.44 37060.94 39444.33 38259.00 37066.64 38424.91 38468.67 39262.80 24869.48 34673.25 380
new_pmnet50.91 35950.29 35952.78 37968.58 38934.94 40163.71 38856.63 39939.73 38744.95 38965.47 38521.93 38958.48 39834.98 38656.62 37864.92 387
gg-mvs-nofinetune69.95 30467.96 30875.94 29883.07 29354.51 34377.23 33970.29 37563.11 30270.32 29162.33 38643.62 33088.69 28853.88 32087.76 13184.62 332
JIA-IIPM66.32 33162.82 34276.82 29377.09 36261.72 25665.34 38675.38 35858.04 34964.51 34962.32 38742.05 34386.51 30851.45 33269.22 34982.21 356
LCM-MVSNet54.25 35149.68 36167.97 35853.73 40345.28 38466.85 38280.78 31635.96 39239.45 39362.23 3888.70 40378.06 36048.24 35351.20 38780.57 366
PMMVS240.82 36638.86 36946.69 38153.84 40116.45 41048.61 39649.92 40137.49 38931.67 39460.97 3898.14 40556.42 40028.42 39230.72 39867.19 386
testf145.72 36241.96 36557.00 37156.90 39745.32 38266.14 38459.26 39626.19 39730.89 39660.96 3904.14 40770.64 38926.39 39546.73 39255.04 394
APD_test245.72 36241.96 36557.00 37156.90 39745.32 38266.14 38459.26 39626.19 39730.89 39660.96 3904.14 40770.64 38926.39 39546.73 39255.04 394
MVS-HIRNet59.14 34757.67 35063.57 36481.65 31943.50 38971.73 36365.06 38839.59 38851.43 38557.73 39238.34 35982.58 33939.53 37973.95 31964.62 388
ANet_high50.57 36046.10 36463.99 36348.67 40639.13 39770.99 36780.85 31561.39 32231.18 39557.70 39317.02 39473.65 38631.22 39015.89 40379.18 370
PMVScopyleft37.38 2244.16 36540.28 36855.82 37540.82 40842.54 39365.12 38763.99 39034.43 39324.48 39957.12 3943.92 40976.17 37317.10 40155.52 38148.75 396
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis3_rt49.26 36147.02 36356.00 37354.30 40045.27 38566.76 38348.08 40336.83 39044.38 39053.20 3957.17 40664.07 39656.77 30855.66 38058.65 392
test_method31.52 36829.28 37238.23 38327.03 4106.50 41320.94 40162.21 3924.05 40422.35 40252.50 39613.33 39647.58 40327.04 39434.04 39660.62 390
DeepMVS_CXcopyleft27.40 38640.17 40926.90 40424.59 41017.44 40223.95 40048.61 3979.77 40126.48 40518.06 39924.47 39928.83 399
MVEpermissive26.22 2330.37 37025.89 37443.81 38244.55 40735.46 40028.87 40039.07 40718.20 40118.58 40340.18 3982.68 41047.37 40417.07 40223.78 40048.60 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft45.18 36441.86 36755.16 37777.03 36351.52 36432.50 39980.52 32032.46 39527.12 39835.02 3999.52 40275.50 37622.31 39860.21 37538.45 398
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN31.77 36730.64 37035.15 38452.87 40427.67 40357.09 39447.86 40424.64 39916.40 40433.05 40011.23 40054.90 40114.46 40418.15 40122.87 400
EMVS30.81 36929.65 37134.27 38550.96 40525.95 40556.58 39546.80 40524.01 40015.53 40530.68 40112.47 39754.43 40212.81 40517.05 40222.43 401
tmp_tt18.61 37221.40 37510.23 3884.82 41110.11 41134.70 39830.74 4091.48 40523.91 40126.07 40228.42 38113.41 40727.12 39315.35 4047.17 402
X-MVStestdata80.37 14577.83 18288.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8512.47 40367.45 9596.60 3383.06 6394.50 5094.07 47
test_post5.46 40450.36 27384.24 327
test_post178.90 3245.43 40548.81 29585.44 32059.25 282
wuyk23d16.82 37315.94 37619.46 38758.74 39631.45 40239.22 3973.74 4126.84 4036.04 4062.70 4061.27 41124.29 40610.54 40614.40 4052.63 403
testmvs6.04 3768.02 3790.10 3900.08 4120.03 41569.74 3710.04 4130.05 4070.31 4081.68 4070.02 4130.04 4080.24 4070.02 4060.25 405
test1236.12 3758.11 3780.14 3890.06 4130.09 41471.05 3660.03 4140.04 4080.25 4091.30 4080.05 4120.03 4090.21 4080.01 4070.29 404
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas5.26 3777.02 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40963.15 1380.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS42.58 39139.46 380
FOURS195.00 1072.39 3995.06 193.84 1574.49 11391.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
No_MVS89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
eth-test20.00 414
eth-test0.00 414
IU-MVS95.30 271.25 5792.95 5166.81 25592.39 688.94 1696.63 494.85 19
save fliter93.80 4072.35 4290.47 6491.17 11674.31 116
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 42
GSMVS88.96 246
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26288.96 246
sam_mvs50.01 275
MTGPAbinary92.02 85
MTMP92.18 3532.83 408
test9_res84.90 4295.70 2692.87 102
agg_prior282.91 6695.45 3092.70 105
agg_prior92.85 5971.94 5191.78 10084.41 7194.93 87
test_prior472.60 3489.01 105
test_prior86.33 5492.61 6569.59 8892.97 5095.48 6293.91 53
旧先验286.56 18858.10 34887.04 3988.98 28274.07 149
新几何286.29 196
无先验87.48 15988.98 18660.00 33194.12 12167.28 21488.97 245
原ACMM286.86 177
testdata291.01 24962.37 255
segment_acmp73.08 37
testdata184.14 24975.71 87
test1286.80 4992.63 6470.70 7291.79 9982.71 9871.67 5196.16 4494.50 5093.54 77
plane_prior790.08 10368.51 119
plane_prior689.84 11268.70 11460.42 186
plane_prior592.44 6995.38 6978.71 10286.32 15191.33 151
plane_prior368.60 11778.44 3178.92 141
plane_prior291.25 5079.12 23
plane_prior189.90 111
plane_prior68.71 11290.38 6777.62 3986.16 155
n20.00 415
nn0.00 415
door-mid69.98 376
test1192.23 79
door69.44 379
HQP5-MVS66.98 155
HQP-NCC89.33 12889.17 9876.41 7277.23 182
ACMP_Plane89.33 12889.17 9876.41 7277.23 182
BP-MVS77.47 114
HQP4-MVS77.24 18195.11 8091.03 163
HQP3-MVS92.19 8285.99 159
HQP2-MVS60.17 189
MDTV_nov1_ep13_2view37.79 39875.16 35155.10 36366.53 33449.34 28553.98 31987.94 268
ACMMP++_ref81.95 218
ACMMP++81.25 224
Test By Simon64.33 125