This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9291.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 36
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 11092.29 795.97 274.28 2997.24 1388.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 6177.33 4892.12 995.78 480.98 997.40 989.08 1296.41 1293.33 90
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 989.42 996.57 794.67 26
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5193.10 195.72 882.99 197.44 789.07 1496.63 494.88 14
test_241102_TWO94.06 1077.24 5192.78 495.72 881.26 897.44 789.07 1496.58 694.26 47
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4294.10 875.90 8892.29 795.66 1081.67 697.38 1187.44 3396.34 1593.95 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_241102_ONE95.30 270.98 6394.06 1077.17 5493.10 195.39 1182.99 197.27 12
MP-MVS-pluss87.67 2187.72 2087.54 3693.64 4472.04 4889.80 7893.50 2575.17 10386.34 4895.29 1270.86 6496.00 5388.78 1996.04 1694.58 30
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 4992.40 2494.74 275.71 9089.16 1995.10 1375.65 2196.19 4387.07 3496.01 1794.79 21
ACMMP_NAP88.05 1688.08 1787.94 1993.70 4173.05 2290.86 5493.59 2376.27 8288.14 2495.09 1471.06 6296.67 2987.67 2996.37 1494.09 52
MM89.16 689.23 788.97 490.79 9473.65 1092.66 2391.17 12286.57 187.39 3894.97 1571.70 5497.68 192.19 195.63 2895.57 1
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18992.02 9179.45 1985.88 5094.80 1668.07 9596.21 4286.69 3695.34 3293.23 93
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1673.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
9.1488.26 1592.84 6091.52 4594.75 173.93 12788.57 2294.67 1875.57 2295.79 5786.77 3595.76 23
SR-MVS86.73 3586.67 3686.91 4694.11 3772.11 4792.37 2892.56 7274.50 11486.84 4594.65 1967.31 10495.77 5884.80 4792.85 7192.84 110
region2R87.42 2587.20 2888.09 1494.63 1473.55 1393.03 1493.12 3776.73 6984.45 7594.52 2069.09 8296.70 2784.37 5494.83 4594.03 55
ACMMPR87.44 2387.23 2788.08 1594.64 1373.59 1293.04 1293.20 3476.78 6684.66 6994.52 2068.81 8896.65 3084.53 5294.90 4194.00 56
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4092.83 5773.01 15188.58 2194.52 2073.36 3496.49 3684.26 5595.01 3792.70 112
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
APD-MVS_3200maxsize85.97 4785.88 5086.22 5792.69 6369.53 8991.93 3792.99 4673.54 13785.94 4994.51 2365.80 12295.61 6183.04 6892.51 7593.53 84
CP-MVS87.11 3086.92 3387.68 3494.20 3473.86 793.98 392.82 6076.62 7283.68 8994.46 2467.93 9795.95 5684.20 5894.39 5693.23 93
SR-MVS-dyc-post85.77 5285.61 5586.23 5693.06 5570.63 7391.88 3892.27 8173.53 13885.69 5394.45 2565.00 13095.56 6282.75 7291.87 8392.50 121
RE-MVS-def85.48 5793.06 5570.63 7391.88 3892.27 8173.53 13885.69 5394.45 2563.87 13682.75 7291.87 8392.50 121
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6684.91 6294.44 2770.78 6596.61 3284.53 5294.89 4293.66 71
PGM-MVS86.68 3786.27 4187.90 2294.22 3373.38 1890.22 7093.04 3875.53 9483.86 8694.42 2867.87 9996.64 3182.70 7694.57 5093.66 71
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 6677.57 4183.84 8794.40 2972.24 4596.28 4085.65 3895.30 3593.62 78
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6485.24 5794.32 3071.76 5296.93 1985.53 4095.79 2294.32 44
MVS_030487.69 2087.55 2288.12 1389.45 12871.76 5191.47 4689.54 16982.14 386.65 4694.28 3168.28 9497.46 690.81 295.31 3495.15 6
test_fmvsmconf0.01_n84.73 7284.52 7485.34 7780.25 34369.03 10089.47 8989.65 16773.24 14786.98 4394.27 3266.62 10893.23 16390.26 589.95 11193.78 68
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5680.26 1187.78 3094.27 3275.89 1996.81 2387.45 3296.44 993.05 102
mPP-MVS86.67 3886.32 4087.72 3094.41 2273.55 1392.74 2092.22 8576.87 6382.81 10394.25 3466.44 11296.24 4182.88 7194.28 6093.38 87
DeepC-MVS79.81 287.08 3286.88 3587.69 3391.16 8172.32 4390.31 6893.94 1477.12 5682.82 10294.23 3572.13 4797.09 1684.83 4695.37 3193.65 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVS87.18 2986.91 3488.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 9094.17 3667.45 10296.60 3383.06 6694.50 5194.07 53
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 6294.67 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_fmvsmconf0.1_n85.61 5685.65 5485.50 7482.99 30369.39 9789.65 8390.29 15073.31 14387.77 3194.15 3871.72 5393.23 16390.31 490.67 9993.89 62
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 10089.57 8893.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 30
HPM-MVS_fast85.35 6284.95 6986.57 5393.69 4270.58 7592.15 3591.62 10973.89 12882.67 10594.09 4062.60 15195.54 6480.93 9092.93 7093.57 80
ZD-MVS94.38 2572.22 4492.67 6370.98 18487.75 3294.07 4174.01 3296.70 2784.66 5094.84 44
fmvsm_s_conf0.1_n_a83.32 9282.99 9184.28 11483.79 28168.07 13089.34 9782.85 30169.80 21187.36 3994.06 4268.34 9391.56 22987.95 2783.46 20493.21 96
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 5993.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 43
test_fmvsmconf_n85.92 4886.04 4885.57 7385.03 25869.51 9089.62 8790.58 13773.42 14087.75 3294.02 4472.85 4193.24 16290.37 390.75 9793.96 57
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 6196.48 894.88 14
PC_three_145268.21 24792.02 1294.00 4682.09 595.98 5584.58 5196.68 294.95 10
SD-MVS88.06 1488.50 1486.71 5192.60 6672.71 2991.81 4193.19 3577.87 3690.32 1794.00 4674.83 2393.78 13787.63 3094.27 6193.65 75
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6284.68 6693.99 4870.67 6796.82 2284.18 5995.01 3793.90 61
test_fmvsm_n_192085.29 6485.34 6085.13 8486.12 23769.93 8388.65 12290.78 13369.97 20788.27 2393.98 4971.39 5991.54 23188.49 2390.45 10193.91 59
fmvsm_s_conf0.1_n83.56 8683.38 8484.10 12284.86 26067.28 15189.40 9583.01 29670.67 18987.08 4193.96 5068.38 9291.45 23788.56 2284.50 18093.56 81
HPM-MVScopyleft87.11 3086.98 3187.50 3893.88 3972.16 4592.19 3393.33 3176.07 8583.81 8893.95 5169.77 7696.01 5285.15 4194.66 4794.32 44
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TSAR-MVS + MP.88.02 1788.11 1687.72 3093.68 4372.13 4691.41 4792.35 7974.62 11388.90 2093.85 5275.75 2096.00 5387.80 2894.63 4895.04 8
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMPcopyleft85.89 5185.39 5987.38 3993.59 4572.63 3392.74 2093.18 3676.78 6680.73 12793.82 5364.33 13296.29 3982.67 7790.69 9893.23 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_s_conf0.5_n_a83.63 8483.41 8384.28 11486.14 23668.12 12889.43 9182.87 30070.27 20087.27 4093.80 5469.09 8291.58 22788.21 2683.65 19993.14 99
fmvsm_s_conf0.5_n83.80 7983.71 8084.07 12786.69 22967.31 15089.46 9083.07 29571.09 18186.96 4493.70 5569.02 8791.47 23688.79 1884.62 17993.44 86
test_prior288.85 11375.41 9684.91 6293.54 5674.28 2983.31 6495.86 20
fmvsm_l_conf0.5_n84.47 7384.54 7284.27 11685.42 24868.81 10688.49 12687.26 23468.08 24888.03 2793.49 5772.04 4891.77 22188.90 1789.14 12192.24 132
VDDNet81.52 12180.67 12484.05 13290.44 10064.13 21689.73 8185.91 25671.11 18083.18 9593.48 5850.54 27893.49 15173.40 15988.25 13594.54 33
CDPH-MVS85.76 5385.29 6487.17 4393.49 4771.08 6188.58 12492.42 7768.32 24684.61 7293.48 5872.32 4496.15 4579.00 10295.43 3094.28 46
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5192.83 5781.50 585.79 5293.47 6073.02 4097.00 1884.90 4394.94 4094.10 51
fmvsm_l_conf0.5_n_a84.13 7584.16 7784.06 12985.38 24968.40 12188.34 13386.85 24367.48 25587.48 3693.40 6170.89 6391.61 22588.38 2589.22 11992.16 136
3Dnovator+77.84 485.48 5884.47 7588.51 791.08 8473.49 1693.18 1193.78 1880.79 876.66 19893.37 6260.40 19596.75 2677.20 12193.73 6695.29 5
DeepC-MVS_fast79.65 386.91 3386.62 3787.76 2793.52 4672.37 4191.26 4893.04 3876.62 7284.22 7993.36 6371.44 5896.76 2580.82 9295.33 3394.16 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDD-MVS83.01 9982.36 10084.96 8991.02 8666.40 16788.91 11088.11 21277.57 4184.39 7793.29 6452.19 25393.91 13177.05 12388.70 12994.57 32
test_fmvsmvis_n_192084.02 7683.87 7884.49 10584.12 27469.37 9888.15 14187.96 21770.01 20583.95 8593.23 6568.80 8991.51 23488.61 2089.96 11092.57 117
UA-Net85.08 6784.96 6885.45 7592.07 7068.07 13089.78 7990.86 13282.48 284.60 7393.20 6669.35 7995.22 7871.39 17790.88 9693.07 101
TEST993.26 5072.96 2588.75 11691.89 9968.44 24485.00 6093.10 6774.36 2895.41 71
train_agg86.43 4086.20 4287.13 4493.26 5072.96 2588.75 11691.89 9968.69 23985.00 6093.10 6774.43 2695.41 7184.97 4295.71 2593.02 104
test_893.13 5272.57 3588.68 12191.84 10368.69 23984.87 6493.10 6774.43 2695.16 80
LFMVS81.82 11481.23 11583.57 14791.89 7363.43 23289.84 7581.85 31277.04 5983.21 9493.10 6752.26 25293.43 15671.98 17289.95 11193.85 63
旧先验191.96 7165.79 18186.37 25093.08 7169.31 8192.74 7288.74 259
dcpmvs_285.63 5586.15 4584.06 12991.71 7564.94 19986.47 19291.87 10173.63 13386.60 4793.02 7276.57 1591.87 21983.36 6392.15 7995.35 3
testdata79.97 24390.90 8964.21 21484.71 26759.27 34385.40 5592.91 7362.02 16489.08 28368.95 20291.37 9086.63 305
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7693.82 1673.07 14984.86 6592.89 7476.22 1796.33 3884.89 4595.13 3694.40 40
Vis-MVSNetpermissive83.46 8882.80 9585.43 7690.25 10368.74 11190.30 6990.13 15476.33 8180.87 12692.89 7461.00 18394.20 11872.45 17190.97 9493.35 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CPTT-MVS83.73 8083.33 8684.92 9293.28 4970.86 6992.09 3690.38 14368.75 23879.57 13892.83 7660.60 19193.04 18080.92 9191.56 8890.86 172
3Dnovator76.31 583.38 9182.31 10186.59 5287.94 19172.94 2890.64 5792.14 8977.21 5375.47 22392.83 7658.56 20294.72 10273.24 16292.71 7392.13 137
MSLP-MVS++85.43 6085.76 5384.45 10691.93 7270.24 7690.71 5692.86 5577.46 4784.22 7992.81 7867.16 10692.94 18280.36 9694.35 5990.16 199
test250677.30 22376.49 22079.74 24890.08 10752.02 35987.86 15263.10 39774.88 10780.16 13392.79 7938.29 36592.35 20168.74 20592.50 7694.86 17
ECVR-MVScopyleft79.61 16179.26 15480.67 23090.08 10754.69 34387.89 15077.44 35274.88 10780.27 13092.79 7948.96 29992.45 19568.55 20692.50 7694.86 17
test111179.43 16879.18 15780.15 24089.99 11253.31 35687.33 16577.05 35675.04 10480.23 13292.77 8148.97 29892.33 20368.87 20392.40 7894.81 20
MG-MVS83.41 8983.45 8283.28 15592.74 6262.28 25188.17 13989.50 17175.22 9981.49 11792.74 8266.75 10795.11 8472.85 16591.58 8792.45 124
casdiffmvs_mvgpermissive85.99 4586.09 4785.70 7087.65 20567.22 15588.69 12093.04 3879.64 1885.33 5692.54 8373.30 3594.50 10883.49 6291.14 9395.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
patch_mono-283.65 8284.54 7280.99 22290.06 11165.83 17984.21 24988.74 20371.60 17185.01 5992.44 8474.51 2583.50 33782.15 7992.15 7993.64 77
casdiffmvspermissive85.11 6685.14 6585.01 8787.20 21965.77 18287.75 15392.83 5777.84 3784.36 7892.38 8572.15 4693.93 13081.27 8890.48 10095.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS86.69 3686.95 3285.90 6790.76 9567.57 14392.83 1793.30 3279.67 1784.57 7492.27 8671.47 5795.02 9084.24 5793.46 6795.13 7
baseline84.93 6984.98 6784.80 9787.30 21765.39 19087.30 16692.88 5477.62 3984.04 8492.26 8771.81 5193.96 12481.31 8690.30 10395.03 9
QAPM80.88 13179.50 14785.03 8688.01 19068.97 10491.59 4292.00 9366.63 26675.15 24192.16 8857.70 20995.45 6763.52 24588.76 12790.66 179
IS-MVSNet83.15 9482.81 9484.18 12089.94 11463.30 23491.59 4288.46 20979.04 2579.49 13992.16 8865.10 12794.28 11367.71 21291.86 8594.95 10
新几何183.42 15093.13 5270.71 7185.48 26157.43 35981.80 11391.98 9063.28 14092.27 20464.60 24092.99 6987.27 288
OpenMVScopyleft72.83 1079.77 15978.33 17484.09 12585.17 25269.91 8490.57 5890.97 12766.70 26072.17 28191.91 9154.70 23193.96 12461.81 26690.95 9588.41 266
PHI-MVS86.43 4086.17 4487.24 4190.88 9070.96 6592.27 3294.07 972.45 15685.22 5891.90 9269.47 7896.42 3783.28 6595.94 1994.35 42
VNet82.21 10682.41 9881.62 20390.82 9260.93 26584.47 24089.78 16276.36 8084.07 8391.88 9364.71 13190.26 26170.68 18388.89 12393.66 71
EC-MVSNet86.01 4486.38 3984.91 9389.31 13766.27 17092.32 3093.63 2179.37 2084.17 8191.88 9369.04 8695.43 6983.93 6093.77 6593.01 105
OPM-MVS83.50 8782.95 9285.14 8288.79 15870.95 6689.13 10591.52 11277.55 4480.96 12591.75 9560.71 18694.50 10879.67 10186.51 15689.97 215
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MVSMamba_PlusPlus85.99 4585.96 4986.05 6291.09 8267.64 13989.63 8592.65 6672.89 15484.64 7091.71 9671.85 4996.03 4884.77 4894.45 5494.49 34
iter_conf0585.49 5785.43 5885.67 7191.09 8266.55 16687.18 16992.08 9072.89 15482.90 9991.71 9671.85 4996.03 4884.77 4894.39 5694.42 37
XVG-OURS-SEG-HR80.81 13479.76 14183.96 13985.60 24568.78 10883.54 26290.50 14070.66 19276.71 19791.66 9860.69 18791.26 24276.94 12481.58 22691.83 142
EPNet83.72 8182.92 9386.14 6084.22 27269.48 9191.05 5385.27 26281.30 676.83 19391.65 9966.09 11795.56 6276.00 13493.85 6493.38 87
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OMC-MVS82.69 10181.97 10884.85 9488.75 16067.42 14687.98 14490.87 13174.92 10679.72 13691.65 9962.19 16193.96 12475.26 14386.42 15793.16 98
balanced_conf0386.78 3486.99 3086.15 5891.24 8067.61 14190.51 5992.90 5377.26 5087.44 3791.63 10171.27 6196.06 4785.62 3995.01 3794.78 22
test22291.50 7768.26 12584.16 25083.20 29354.63 37079.74 13591.63 10158.97 20091.42 8986.77 301
MVS_111021_HR85.14 6584.75 7086.32 5591.65 7672.70 3085.98 20490.33 14776.11 8482.08 10891.61 10371.36 6094.17 12081.02 8992.58 7492.08 138
原ACMM184.35 11093.01 5768.79 10792.44 7463.96 30281.09 12391.57 10466.06 11895.45 6767.19 21994.82 4688.81 254
LPG-MVS_test82.08 10881.27 11484.50 10389.23 14168.76 10990.22 7091.94 9775.37 9776.64 19991.51 10554.29 23494.91 9278.44 10883.78 19289.83 220
LGP-MVS_train84.50 10389.23 14168.76 10991.94 9775.37 9776.64 19991.51 10554.29 23494.91 9278.44 10883.78 19289.83 220
XVG-OURS80.41 14779.23 15583.97 13885.64 24469.02 10283.03 27390.39 14271.09 18177.63 17691.49 10754.62 23391.35 24075.71 13683.47 20391.54 149
alignmvs85.48 5885.32 6285.96 6689.51 12569.47 9289.74 8092.47 7376.17 8387.73 3491.46 10870.32 7093.78 13781.51 8288.95 12294.63 29
CANet86.45 3986.10 4687.51 3790.09 10670.94 6789.70 8292.59 7181.78 481.32 11891.43 10970.34 6997.23 1484.26 5593.36 6894.37 41
h-mvs3383.15 9482.19 10286.02 6590.56 9770.85 7088.15 14189.16 18476.02 8684.67 6791.39 11061.54 16995.50 6582.71 7475.48 30391.72 145
MGCFI-Net85.06 6885.51 5683.70 14389.42 12963.01 24089.43 9192.62 7076.43 7487.53 3591.34 11172.82 4293.42 15781.28 8788.74 12894.66 28
nrg03083.88 7783.53 8184.96 8986.77 22769.28 9990.46 6492.67 6374.79 10982.95 9791.33 11272.70 4393.09 17680.79 9479.28 25592.50 121
sasdasda85.91 4985.87 5186.04 6389.84 11669.44 9590.45 6593.00 4376.70 7088.01 2891.23 11373.28 3693.91 13181.50 8388.80 12594.77 23
canonicalmvs85.91 4985.87 5186.04 6389.84 11669.44 9590.45 6593.00 4376.70 7088.01 2891.23 11373.28 3693.91 13181.50 8388.80 12594.77 23
DPM-MVS84.93 6984.29 7686.84 4790.20 10473.04 2387.12 17193.04 3869.80 21182.85 10191.22 11573.06 3996.02 5176.72 12894.63 4891.46 155
Anonymous20240521178.25 19677.01 20681.99 19791.03 8560.67 27084.77 23283.90 28070.65 19380.00 13491.20 11641.08 35291.43 23865.21 23485.26 17293.85 63
CS-MVS-test86.29 4386.48 3885.71 6991.02 8667.21 15692.36 2993.78 1878.97 2883.51 9391.20 11670.65 6895.15 8181.96 8094.89 4294.77 23
Anonymous2024052980.19 15478.89 16284.10 12290.60 9664.75 20388.95 10990.90 12965.97 27480.59 12891.17 11849.97 28393.73 14369.16 20082.70 21593.81 66
EPP-MVSNet83.40 9083.02 9084.57 10190.13 10564.47 20992.32 3090.73 13474.45 11779.35 14191.10 11969.05 8595.12 8272.78 16687.22 14594.13 50
TAPA-MVS73.13 979.15 17677.94 18282.79 18289.59 12162.99 24488.16 14091.51 11365.77 27577.14 19091.09 12060.91 18493.21 16550.26 34687.05 14792.17 135
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CSCG86.41 4286.19 4387.07 4592.91 5872.48 3790.81 5593.56 2473.95 12583.16 9691.07 12175.94 1895.19 7979.94 10094.38 5893.55 82
FIs82.07 10982.42 9781.04 22188.80 15758.34 29188.26 13693.49 2676.93 6178.47 15891.04 12269.92 7492.34 20269.87 19384.97 17492.44 125
MVS_111021_LR82.61 10382.11 10384.11 12188.82 15571.58 5385.15 22486.16 25374.69 11180.47 12991.04 12262.29 15890.55 25980.33 9790.08 10890.20 198
DP-MVS Recon83.11 9782.09 10486.15 5894.44 1970.92 6888.79 11492.20 8670.53 19479.17 14391.03 12464.12 13496.03 4868.39 20990.14 10691.50 151
mamv476.81 23078.23 17872.54 33686.12 23765.75 18378.76 32782.07 30964.12 29672.97 27091.02 12567.97 9668.08 39983.04 6878.02 26783.80 346
HQP_MVS83.64 8383.14 8785.14 8290.08 10768.71 11391.25 4992.44 7479.12 2378.92 14791.00 12660.42 19395.38 7378.71 10686.32 15891.33 156
plane_prior491.00 126
FC-MVSNet-test81.52 12182.02 10680.03 24288.42 17355.97 32987.95 14693.42 2977.10 5777.38 18090.98 12869.96 7391.79 22068.46 20884.50 18092.33 126
Vis-MVSNet (Re-imp)78.36 19578.45 16978.07 27988.64 16451.78 36586.70 18679.63 33774.14 12375.11 24290.83 12961.29 17789.75 27158.10 29991.60 8692.69 114
bld_raw_conf0385.32 6385.07 6686.07 6190.86 9167.64 13989.63 8592.65 6672.35 16184.64 7090.81 13068.76 9096.09 4681.45 8594.45 5494.49 34
114514_t80.68 14079.51 14684.20 11994.09 3867.27 15289.64 8491.11 12558.75 34974.08 25890.72 13158.10 20595.04 8969.70 19489.42 11790.30 195
PAPM_NR83.02 9882.41 9884.82 9592.47 6766.37 16887.93 14891.80 10473.82 12977.32 18290.66 13267.90 9894.90 9470.37 18689.48 11693.19 97
LS3D76.95 22874.82 24483.37 15390.45 9967.36 14989.15 10486.94 24161.87 32469.52 30990.61 13351.71 26594.53 10646.38 36786.71 15388.21 268
VPNet78.69 18878.66 16578.76 26588.31 17655.72 33284.45 24386.63 24676.79 6578.26 16290.55 13459.30 19889.70 27366.63 22377.05 27790.88 171
UniMVSNet_ETH3D79.10 17878.24 17681.70 20286.85 22460.24 27787.28 16788.79 19874.25 12076.84 19290.53 13549.48 28991.56 22967.98 21082.15 21993.29 91
ACMP74.13 681.51 12380.57 12584.36 10989.42 12968.69 11689.97 7491.50 11674.46 11675.04 24590.41 13653.82 23994.54 10577.56 11782.91 21089.86 219
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PCF-MVS73.52 780.38 14878.84 16385.01 8787.71 20268.99 10383.65 25791.46 11763.00 30977.77 17490.28 13766.10 11695.09 8861.40 26988.22 13690.94 170
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
NP-MVS89.62 12068.32 12390.24 138
HQP-MVS82.61 10382.02 10684.37 10889.33 13466.98 15989.17 10092.19 8776.41 7577.23 18590.23 13960.17 19695.11 8477.47 11885.99 16691.03 166
PS-MVSNAJss82.07 10981.31 11384.34 11186.51 23267.27 15289.27 9891.51 11371.75 16679.37 14090.22 14063.15 14594.27 11477.69 11682.36 21891.49 152
TSAR-MVS + GP.85.71 5485.33 6186.84 4791.34 7872.50 3689.07 10687.28 23376.41 7585.80 5190.22 14074.15 3195.37 7681.82 8191.88 8292.65 116
SDMVSNet80.38 14880.18 13480.99 22289.03 15064.94 19980.45 30589.40 17375.19 10176.61 20189.98 14260.61 19087.69 30376.83 12683.55 20190.33 193
sd_testset77.70 21577.40 19978.60 26889.03 15060.02 27979.00 32385.83 25775.19 10176.61 20189.98 14254.81 22685.46 32362.63 25683.55 20190.33 193
TranMVSNet+NR-MVSNet80.84 13280.31 13182.42 19087.85 19562.33 24987.74 15491.33 11880.55 977.99 17089.86 14465.23 12692.62 18867.05 22175.24 31392.30 128
diffmvspermissive82.10 10781.88 10982.76 18583.00 30163.78 22283.68 25689.76 16372.94 15282.02 10989.85 14565.96 12190.79 25582.38 7887.30 14493.71 70
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-RMVSNet79.61 16178.44 17083.14 16389.38 13365.93 17684.95 22987.15 23773.56 13678.19 16489.79 14656.67 21993.36 15859.53 28386.74 15290.13 201
GeoE81.71 11681.01 12083.80 14289.51 12564.45 21088.97 10888.73 20471.27 17778.63 15389.76 14766.32 11493.20 16869.89 19286.02 16593.74 69
AdaColmapbinary80.58 14579.42 14884.06 12993.09 5468.91 10589.36 9688.97 19469.27 22275.70 21989.69 14857.20 21695.77 5863.06 25088.41 13487.50 283
ACMM73.20 880.78 13979.84 14083.58 14689.31 13768.37 12289.99 7391.60 11070.28 19977.25 18389.66 14953.37 24493.53 15074.24 15182.85 21188.85 252
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CNLPA78.08 20276.79 21381.97 19890.40 10171.07 6287.59 15784.55 27066.03 27372.38 27989.64 15057.56 21186.04 31659.61 28283.35 20588.79 255
test_yl81.17 12680.47 12883.24 15889.13 14563.62 22386.21 19989.95 15972.43 15981.78 11489.61 15157.50 21293.58 14570.75 18186.90 14992.52 119
DCV-MVSNet81.17 12680.47 12883.24 15889.13 14563.62 22386.21 19989.95 15972.43 15981.78 11489.61 15157.50 21293.58 14570.75 18186.90 14992.52 119
EI-MVSNet-Vis-set84.19 7483.81 7985.31 7888.18 17967.85 13487.66 15589.73 16580.05 1482.95 9789.59 15370.74 6694.82 9880.66 9584.72 17793.28 92
PAPR81.66 11980.89 12283.99 13790.27 10264.00 21786.76 18591.77 10768.84 23777.13 19189.50 15467.63 10094.88 9667.55 21488.52 13293.09 100
jajsoiax79.29 17377.96 18183.27 15684.68 26366.57 16589.25 9990.16 15369.20 22775.46 22589.49 15545.75 32493.13 17476.84 12580.80 23590.11 203
MVSFormer82.85 10082.05 10585.24 8087.35 21170.21 7790.50 6190.38 14368.55 24181.32 11889.47 15661.68 16693.46 15478.98 10390.26 10492.05 139
jason81.39 12480.29 13284.70 9986.63 23169.90 8585.95 20586.77 24463.24 30581.07 12489.47 15661.08 18292.15 20878.33 11190.07 10992.05 139
jason: jason.
mvs_tets79.13 17777.77 19083.22 16084.70 26266.37 16889.17 10090.19 15269.38 22075.40 22889.46 15844.17 33493.15 17276.78 12780.70 23790.14 200
UGNet80.83 13379.59 14584.54 10288.04 18768.09 12989.42 9388.16 21176.95 6076.22 20989.46 15849.30 29393.94 12768.48 20790.31 10291.60 146
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VPA-MVSNet80.60 14280.55 12680.76 22888.07 18660.80 26886.86 17991.58 11175.67 9380.24 13189.45 16063.34 13990.25 26270.51 18579.22 25691.23 159
MVS_Test83.15 9483.06 8983.41 15286.86 22363.21 23686.11 20292.00 9374.31 11882.87 10089.44 16170.03 7293.21 16577.39 12088.50 13393.81 66
EI-MVSNet-UG-set83.81 7883.38 8485.09 8587.87 19467.53 14487.44 16289.66 16679.74 1682.23 10789.41 16270.24 7194.74 10179.95 9983.92 19192.99 107
RPSCF73.23 27771.46 28178.54 27082.50 31359.85 28082.18 27982.84 30258.96 34671.15 29189.41 16245.48 32884.77 32958.82 29171.83 34291.02 168
UniMVSNet_NR-MVSNet81.88 11281.54 11282.92 17488.46 17063.46 23087.13 17092.37 7880.19 1278.38 15989.14 16471.66 5693.05 17870.05 18976.46 28692.25 130
tttt051779.40 17077.91 18383.90 14188.10 18463.84 22088.37 13284.05 27871.45 17476.78 19589.12 16549.93 28694.89 9570.18 18883.18 20892.96 108
DU-MVS81.12 12880.52 12782.90 17587.80 19763.46 23087.02 17491.87 10179.01 2678.38 15989.07 16665.02 12893.05 17870.05 18976.46 28692.20 133
NR-MVSNet80.23 15279.38 14982.78 18387.80 19763.34 23386.31 19691.09 12679.01 2672.17 28189.07 16667.20 10592.81 18766.08 22875.65 29992.20 133
DELS-MVS85.41 6185.30 6385.77 6888.49 16867.93 13385.52 22193.44 2778.70 2983.63 9289.03 16874.57 2495.71 6080.26 9894.04 6393.66 71
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
mvsmamba80.60 14279.38 14984.27 11689.74 11967.24 15487.47 16086.95 24070.02 20475.38 22988.93 16951.24 26992.56 19175.47 14289.22 11993.00 106
baseline176.98 22776.75 21677.66 28488.13 18255.66 33385.12 22581.89 31073.04 15076.79 19488.90 17062.43 15687.78 30263.30 24971.18 34689.55 229
DP-MVS76.78 23174.57 24683.42 15093.29 4869.46 9488.55 12583.70 28263.98 30170.20 29788.89 17154.01 23894.80 9946.66 36481.88 22486.01 315
ab-mvs79.51 16478.97 16181.14 21888.46 17060.91 26683.84 25489.24 18170.36 19679.03 14488.87 17263.23 14390.21 26365.12 23582.57 21692.28 129
PEN-MVS77.73 21277.69 19477.84 28187.07 22253.91 35087.91 14991.18 12177.56 4373.14 26888.82 17361.23 17889.17 28159.95 27972.37 33790.43 189
tt080578.73 18677.83 18681.43 20885.17 25260.30 27689.41 9490.90 12971.21 17877.17 18988.73 17446.38 31393.21 16572.57 16978.96 25790.79 173
test_djsdf80.30 15179.32 15283.27 15683.98 27865.37 19190.50 6190.38 14368.55 24176.19 21088.70 17556.44 22093.46 15478.98 10380.14 24590.97 169
PAPM77.68 21676.40 22381.51 20687.29 21861.85 25683.78 25589.59 16864.74 28871.23 28988.70 17562.59 15293.66 14452.66 33187.03 14889.01 244
DTE-MVSNet76.99 22676.80 21277.54 28886.24 23453.06 35887.52 15890.66 13577.08 5872.50 27688.67 17760.48 19289.52 27557.33 30670.74 34890.05 210
PS-CasMVS78.01 20678.09 17977.77 28387.71 20254.39 34788.02 14391.22 11977.50 4673.26 26688.64 17860.73 18588.41 29561.88 26473.88 32690.53 185
cdsmvs_eth3d_5k19.96 37926.61 3810.00 3990.00 4220.00 4240.00 41089.26 1800.00 4170.00 41888.61 17961.62 1680.00 4180.00 4170.00 4160.00 414
lupinMVS81.39 12480.27 13384.76 9887.35 21170.21 7785.55 21786.41 24862.85 31281.32 11888.61 17961.68 16692.24 20678.41 11090.26 10491.83 142
F-COLMAP76.38 24074.33 25182.50 18989.28 13966.95 16288.41 12889.03 18964.05 29966.83 33488.61 17946.78 31092.89 18357.48 30378.55 25987.67 277
mvs_anonymous79.42 16979.11 15880.34 23684.45 26957.97 29782.59 27587.62 22667.40 25676.17 21388.56 18268.47 9189.59 27470.65 18486.05 16493.47 85
CP-MVSNet78.22 19778.34 17377.84 28187.83 19654.54 34587.94 14791.17 12277.65 3873.48 26488.49 18362.24 16088.43 29462.19 26074.07 32290.55 184
PVSNet_Blended_VisFu82.62 10281.83 11084.96 8990.80 9369.76 8788.74 11891.70 10869.39 21978.96 14588.46 18465.47 12494.87 9774.42 14888.57 13090.24 197
CANet_DTU80.61 14179.87 13982.83 17785.60 24563.17 23987.36 16388.65 20576.37 7975.88 21688.44 18553.51 24293.07 17773.30 16089.74 11492.25 130
PLCcopyleft70.83 1178.05 20476.37 22483.08 16691.88 7467.80 13588.19 13889.46 17264.33 29469.87 30688.38 18653.66 24093.58 14558.86 29082.73 21387.86 274
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
WR-MVS79.49 16579.22 15680.27 23888.79 15858.35 29085.06 22688.61 20778.56 3077.65 17588.34 18763.81 13890.66 25864.98 23777.22 27591.80 144
XXY-MVS75.41 25475.56 23274.96 31383.59 28557.82 30180.59 30283.87 28166.54 26774.93 24788.31 18863.24 14280.09 35562.16 26176.85 28186.97 297
Effi-MVS+83.62 8583.08 8885.24 8088.38 17467.45 14588.89 11189.15 18575.50 9582.27 10688.28 18969.61 7794.45 11077.81 11587.84 13793.84 65
API-MVS81.99 11181.23 11584.26 11890.94 8870.18 8291.10 5289.32 17671.51 17378.66 15288.28 18965.26 12595.10 8764.74 23991.23 9287.51 282
thisisatest053079.40 17077.76 19184.31 11287.69 20465.10 19687.36 16384.26 27670.04 20377.42 17988.26 19149.94 28494.79 10070.20 18784.70 17893.03 103
hse-mvs281.72 11580.94 12184.07 12788.72 16167.68 13885.87 20887.26 23476.02 8684.67 6788.22 19261.54 16993.48 15282.71 7473.44 33191.06 164
xiu_mvs_v1_base_debu80.80 13679.72 14284.03 13487.35 21170.19 7985.56 21488.77 19969.06 23181.83 11088.16 19350.91 27292.85 18478.29 11287.56 13989.06 239
xiu_mvs_v1_base80.80 13679.72 14284.03 13487.35 21170.19 7985.56 21488.77 19969.06 23181.83 11088.16 19350.91 27292.85 18478.29 11287.56 13989.06 239
xiu_mvs_v1_base_debi80.80 13679.72 14284.03 13487.35 21170.19 7985.56 21488.77 19969.06 23181.83 11088.16 19350.91 27292.85 18478.29 11287.56 13989.06 239
UniMVSNet (Re)81.60 12081.11 11783.09 16588.38 17464.41 21187.60 15693.02 4278.42 3278.56 15588.16 19369.78 7593.26 16169.58 19676.49 28591.60 146
AUN-MVS79.21 17577.60 19684.05 13288.71 16267.61 14185.84 21087.26 23469.08 23077.23 18588.14 19753.20 24693.47 15375.50 14173.45 33091.06 164
Anonymous2023121178.97 18277.69 19482.81 17990.54 9864.29 21390.11 7291.51 11365.01 28676.16 21488.13 19850.56 27793.03 18169.68 19577.56 27391.11 162
pm-mvs177.25 22476.68 21878.93 26384.22 27258.62 28986.41 19388.36 21071.37 17573.31 26588.01 19961.22 17989.15 28264.24 24373.01 33489.03 243
LTVRE_ROB69.57 1376.25 24174.54 24881.41 20988.60 16564.38 21279.24 31989.12 18870.76 18869.79 30887.86 20049.09 29693.20 16856.21 31680.16 24386.65 304
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WTY-MVS75.65 24975.68 22975.57 30586.40 23356.82 31477.92 34082.40 30565.10 28376.18 21187.72 20163.13 14880.90 35260.31 27781.96 22289.00 246
TAMVS78.89 18477.51 19883.03 16987.80 19767.79 13684.72 23385.05 26567.63 25176.75 19687.70 20262.25 15990.82 25458.53 29487.13 14690.49 187
BH-untuned79.47 16678.60 16682.05 19589.19 14365.91 17786.07 20388.52 20872.18 16275.42 22787.69 20361.15 18093.54 14960.38 27686.83 15186.70 303
COLMAP_ROBcopyleft66.92 1773.01 28070.41 29580.81 22787.13 22165.63 18488.30 13584.19 27762.96 31063.80 36087.69 20338.04 36692.56 19146.66 36474.91 31684.24 339
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OurMVSNet-221017-074.26 26272.42 27279.80 24783.76 28359.59 28485.92 20786.64 24566.39 26866.96 33287.58 20539.46 35891.60 22665.76 23169.27 35388.22 267
FA-MVS(test-final)80.96 13079.91 13884.10 12288.30 17765.01 19784.55 23990.01 15773.25 14679.61 13787.57 20658.35 20494.72 10271.29 17886.25 16092.56 118
Baseline_NR-MVSNet78.15 20178.33 17477.61 28685.79 24156.21 32786.78 18385.76 25873.60 13577.93 17187.57 20665.02 12888.99 28467.14 22075.33 31087.63 278
WR-MVS_H78.51 19278.49 16878.56 26988.02 18856.38 32388.43 12792.67 6377.14 5573.89 25987.55 20866.25 11589.24 28058.92 28973.55 32990.06 209
EI-MVSNet80.52 14679.98 13682.12 19384.28 27063.19 23886.41 19388.95 19574.18 12278.69 15087.54 20966.62 10892.43 19672.57 16980.57 23990.74 177
CVMVSNet72.99 28172.58 27074.25 32184.28 27050.85 37386.41 19383.45 28844.56 38973.23 26787.54 20949.38 29185.70 31865.90 22978.44 26286.19 310
ACMH+68.96 1476.01 24574.01 25382.03 19688.60 16565.31 19288.86 11287.55 22770.25 20167.75 32387.47 21141.27 35093.19 17058.37 29675.94 29687.60 279
TransMVSNet (Re)75.39 25574.56 24777.86 28085.50 24757.10 31186.78 18386.09 25572.17 16371.53 28787.34 21263.01 14989.31 27956.84 31161.83 37487.17 290
GBi-Net78.40 19377.40 19981.40 21087.60 20663.01 24088.39 12989.28 17771.63 16875.34 23187.28 21354.80 22791.11 24562.72 25279.57 24990.09 205
test178.40 19377.40 19981.40 21087.60 20663.01 24088.39 12989.28 17771.63 16875.34 23187.28 21354.80 22791.11 24562.72 25279.57 24990.09 205
FMVSNet278.20 19977.21 20381.20 21687.60 20662.89 24587.47 16089.02 19071.63 16875.29 23787.28 21354.80 22791.10 24862.38 25779.38 25389.61 227
FMVSNet177.44 21976.12 22681.40 21086.81 22663.01 24088.39 12989.28 17770.49 19574.39 25587.28 21349.06 29791.11 24560.91 27378.52 26090.09 205
v2v48280.23 15279.29 15383.05 16883.62 28464.14 21587.04 17389.97 15873.61 13478.18 16587.22 21761.10 18193.82 13576.11 13176.78 28391.18 160
ITE_SJBPF78.22 27581.77 32360.57 27183.30 28969.25 22467.54 32587.20 21836.33 37187.28 30654.34 32374.62 31986.80 300
anonymousdsp78.60 19077.15 20482.98 17280.51 34167.08 15787.24 16889.53 17065.66 27775.16 24087.19 21952.52 24792.25 20577.17 12279.34 25489.61 227
MVSTER79.01 18077.88 18582.38 19183.07 29864.80 20284.08 25388.95 19569.01 23478.69 15087.17 22054.70 23192.43 19674.69 14580.57 23989.89 218
thres100view90076.50 23575.55 23379.33 25689.52 12456.99 31285.83 21183.23 29173.94 12676.32 20787.12 22151.89 26291.95 21448.33 35583.75 19589.07 237
thres600view776.50 23575.44 23479.68 25089.40 13157.16 30985.53 21983.23 29173.79 13076.26 20887.09 22251.89 26291.89 21748.05 36083.72 19890.00 211
XVG-ACMP-BASELINE76.11 24374.27 25281.62 20383.20 29464.67 20483.60 26089.75 16469.75 21471.85 28487.09 22232.78 37792.11 20969.99 19180.43 24188.09 270
HY-MVS69.67 1277.95 20777.15 20480.36 23587.57 21060.21 27883.37 26487.78 22466.11 27075.37 23087.06 22463.27 14190.48 26061.38 27082.43 21790.40 191
CHOSEN 1792x268877.63 21775.69 22883.44 14989.98 11368.58 11978.70 32887.50 22956.38 36475.80 21886.84 22558.67 20191.40 23961.58 26885.75 17090.34 192
v879.97 15879.02 16082.80 18084.09 27564.50 20887.96 14590.29 15074.13 12475.24 23886.81 22662.88 15093.89 13474.39 14975.40 30890.00 211
AllTest70.96 29768.09 31279.58 25385.15 25463.62 22384.58 23879.83 33462.31 31960.32 37286.73 22732.02 37888.96 28750.28 34471.57 34486.15 311
TestCases79.58 25385.15 25463.62 22379.83 33462.31 31960.32 37286.73 22732.02 37888.96 28750.28 34471.57 34486.15 311
LCM-MVSNet-Re77.05 22576.94 20977.36 28987.20 21951.60 36680.06 30980.46 32775.20 10067.69 32486.72 22962.48 15488.98 28563.44 24789.25 11891.51 150
1112_ss77.40 22176.43 22280.32 23789.11 14960.41 27583.65 25787.72 22562.13 32273.05 26986.72 22962.58 15389.97 26762.11 26380.80 23590.59 183
ab-mvs-re7.23 3829.64 3850.00 3990.00 4220.00 4240.00 4100.00 4230.00 4170.00 41886.72 2290.00 4220.00 4180.00 4170.00 4160.00 414
IterMVS-LS80.06 15579.38 14982.11 19485.89 24063.20 23786.79 18289.34 17574.19 12175.45 22686.72 22966.62 10892.39 19872.58 16876.86 28090.75 176
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH67.68 1675.89 24673.93 25581.77 20188.71 16266.61 16488.62 12389.01 19169.81 21066.78 33586.70 23341.95 34991.51 23455.64 31778.14 26687.17 290
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Test_1112_low_res76.40 23975.44 23479.27 25789.28 13958.09 29381.69 28487.07 23859.53 34172.48 27786.67 23461.30 17689.33 27860.81 27580.15 24490.41 190
FMVSNet377.88 20976.85 21180.97 22486.84 22562.36 24886.52 19188.77 19971.13 17975.34 23186.66 23554.07 23791.10 24862.72 25279.57 24989.45 231
pmmvs674.69 25973.39 26178.61 26781.38 33057.48 30686.64 18787.95 21864.99 28770.18 29886.61 23650.43 27989.52 27562.12 26270.18 35088.83 253
ET-MVSNet_ETH3D78.63 18976.63 21984.64 10086.73 22869.47 9285.01 22784.61 26969.54 21766.51 34286.59 23750.16 28191.75 22276.26 13084.24 18892.69 114
testgi66.67 33366.53 33067.08 36675.62 37341.69 40175.93 34876.50 35966.11 27065.20 35286.59 23735.72 37374.71 38643.71 37673.38 33284.84 333
CLD-MVS82.31 10581.65 11184.29 11388.47 16967.73 13785.81 21292.35 7975.78 8978.33 16186.58 23964.01 13594.35 11176.05 13387.48 14290.79 173
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
v1079.74 16078.67 16482.97 17384.06 27664.95 19887.88 15190.62 13673.11 14875.11 24286.56 24061.46 17294.05 12373.68 15475.55 30189.90 217
CDS-MVSNet79.07 17977.70 19383.17 16287.60 20668.23 12684.40 24686.20 25267.49 25476.36 20686.54 24161.54 16990.79 25561.86 26587.33 14390.49 187
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
xiu_mvs_v2_base81.69 11781.05 11883.60 14589.15 14468.03 13284.46 24290.02 15670.67 18981.30 12186.53 24263.17 14494.19 11975.60 13988.54 13188.57 263
TR-MVS77.44 21976.18 22581.20 21688.24 17863.24 23584.61 23786.40 24967.55 25377.81 17286.48 24354.10 23693.15 17257.75 30282.72 21487.20 289
EIA-MVS83.31 9382.80 9584.82 9589.59 12165.59 18588.21 13792.68 6274.66 11278.96 14586.42 24469.06 8495.26 7775.54 14090.09 10793.62 78
tfpn200view976.42 23875.37 23879.55 25589.13 14557.65 30385.17 22283.60 28373.41 14176.45 20386.39 24552.12 25491.95 21448.33 35583.75 19589.07 237
thres40076.50 23575.37 23879.86 24589.13 14557.65 30385.17 22283.60 28373.41 14176.45 20386.39 24552.12 25491.95 21448.33 35583.75 19590.00 211
v7n78.97 18277.58 19783.14 16383.45 28865.51 18688.32 13491.21 12073.69 13272.41 27886.32 24757.93 20693.81 13669.18 19975.65 29990.11 203
MAR-MVS81.84 11380.70 12385.27 7991.32 7971.53 5489.82 7690.92 12869.77 21378.50 15686.21 24862.36 15794.52 10765.36 23392.05 8189.77 223
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
v114480.03 15679.03 15983.01 17083.78 28264.51 20687.11 17290.57 13971.96 16578.08 16886.20 24961.41 17393.94 12774.93 14477.23 27490.60 182
test_vis1_n_192075.52 25175.78 22774.75 31779.84 34957.44 30783.26 26585.52 26062.83 31379.34 14286.17 25045.10 32979.71 35678.75 10581.21 23087.10 296
V4279.38 17278.24 17682.83 17781.10 33565.50 18785.55 21789.82 16171.57 17278.21 16386.12 25160.66 18893.18 17175.64 13775.46 30589.81 222
PVSNet_BlendedMVS80.60 14280.02 13582.36 19288.85 15265.40 18886.16 20192.00 9369.34 22178.11 16686.09 25266.02 11994.27 11471.52 17482.06 22187.39 284
v119279.59 16378.43 17183.07 16783.55 28664.52 20586.93 17790.58 13770.83 18577.78 17385.90 25359.15 19993.94 12773.96 15377.19 27690.76 175
SixPastTwentyTwo73.37 27371.26 28679.70 24985.08 25757.89 29985.57 21383.56 28571.03 18365.66 34685.88 25442.10 34792.57 19059.11 28763.34 37288.65 261
EPNet_dtu75.46 25274.86 24377.23 29282.57 31254.60 34486.89 17883.09 29471.64 16766.25 34485.86 25555.99 22188.04 29954.92 32086.55 15589.05 242
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
sss73.60 27073.64 26073.51 32782.80 30655.01 34176.12 34781.69 31362.47 31874.68 25085.85 25657.32 21478.11 36360.86 27480.93 23287.39 284
ETV-MVS84.90 7184.67 7185.59 7289.39 13268.66 11788.74 11892.64 6979.97 1584.10 8285.71 25769.32 8095.38 7380.82 9291.37 9092.72 111
test_cas_vis1_n_192073.76 26973.74 25973.81 32575.90 37059.77 28180.51 30382.40 30558.30 35181.62 11685.69 25844.35 33376.41 37476.29 12978.61 25885.23 326
v124078.99 18177.78 18982.64 18683.21 29363.54 22786.62 18890.30 14969.74 21677.33 18185.68 25957.04 21793.76 14073.13 16376.92 27890.62 180
v14419279.47 16678.37 17282.78 18383.35 28963.96 21886.96 17590.36 14669.99 20677.50 17785.67 26060.66 18893.77 13974.27 15076.58 28490.62 180
tfpnnormal74.39 26073.16 26478.08 27886.10 23958.05 29484.65 23687.53 22870.32 19871.22 29085.63 26154.97 22589.86 26843.03 37875.02 31586.32 307
PS-MVSNAJ81.69 11781.02 11983.70 14389.51 12568.21 12784.28 24890.09 15570.79 18681.26 12285.62 26263.15 14594.29 11275.62 13888.87 12488.59 262
v192192079.22 17478.03 18082.80 18083.30 29163.94 21986.80 18190.33 14769.91 20977.48 17885.53 26358.44 20393.75 14173.60 15576.85 28190.71 178
test_040272.79 28370.44 29479.84 24688.13 18265.99 17585.93 20684.29 27465.57 27867.40 32985.49 26446.92 30992.61 18935.88 39174.38 32180.94 370
v14878.72 18777.80 18881.47 20782.73 30861.96 25586.30 19788.08 21473.26 14576.18 21185.47 26562.46 15592.36 20071.92 17373.82 32790.09 205
USDC70.33 30568.37 30776.21 29980.60 33956.23 32679.19 32186.49 24760.89 32961.29 36885.47 26531.78 38089.47 27753.37 32876.21 29482.94 357
MVP-Stereo76.12 24274.46 25081.13 21985.37 25069.79 8684.42 24587.95 21865.03 28567.46 32785.33 26753.28 24591.73 22458.01 30083.27 20681.85 365
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MVS78.19 20076.99 20881.78 20085.66 24366.99 15884.66 23490.47 14155.08 36972.02 28385.27 26863.83 13794.11 12266.10 22789.80 11384.24 339
DIV-MVS_self_test77.72 21376.76 21480.58 23182.48 31560.48 27383.09 26987.86 22169.22 22574.38 25685.24 26962.10 16291.53 23271.09 17975.40 30889.74 224
FE-MVS77.78 21175.68 22984.08 12688.09 18566.00 17483.13 26887.79 22368.42 24578.01 16985.23 27045.50 32795.12 8259.11 28785.83 16991.11 162
cl____77.72 21376.76 21480.58 23182.49 31460.48 27383.09 26987.87 22069.22 22574.38 25685.22 27162.10 16291.53 23271.09 17975.41 30789.73 225
HyFIR lowres test77.53 21875.40 23683.94 14089.59 12166.62 16380.36 30688.64 20656.29 36576.45 20385.17 27257.64 21093.28 16061.34 27183.10 20991.91 141
pmmvs474.03 26771.91 27680.39 23481.96 32068.32 12381.45 28882.14 30759.32 34269.87 30685.13 27352.40 25088.13 29860.21 27874.74 31884.73 335
TDRefinement67.49 32664.34 33676.92 29473.47 38461.07 26484.86 23182.98 29859.77 33858.30 37985.13 27326.06 38887.89 30047.92 36160.59 37981.81 366
Fast-Effi-MVS+80.81 13479.92 13783.47 14888.85 15264.51 20685.53 21989.39 17470.79 18678.49 15785.06 27567.54 10193.58 14567.03 22286.58 15492.32 127
PVSNet_Blended80.98 12980.34 13082.90 17588.85 15265.40 18884.43 24492.00 9367.62 25278.11 16685.05 27666.02 11994.27 11471.52 17489.50 11589.01 244
m2depth59.91 35257.10 35668.34 36267.13 39846.65 38674.64 36167.41 38848.30 38462.52 36685.04 27720.40 39775.93 37842.55 38045.90 39982.44 360
test_fmvs1_n70.86 29970.24 29772.73 33472.51 39155.28 33881.27 29179.71 33651.49 38078.73 14984.87 27827.54 38777.02 36876.06 13279.97 24785.88 318
WBMVS73.43 27272.81 26775.28 31087.91 19250.99 37278.59 33181.31 31865.51 28174.47 25484.83 27946.39 31286.68 30958.41 29577.86 26888.17 269
CMPMVSbinary51.72 2170.19 30768.16 31076.28 29873.15 38757.55 30579.47 31683.92 27948.02 38556.48 38584.81 28043.13 33986.42 31362.67 25581.81 22584.89 332
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EU-MVSNet68.53 32167.61 32271.31 34678.51 36247.01 38484.47 24084.27 27542.27 39266.44 34384.79 28140.44 35583.76 33458.76 29268.54 35883.17 351
BH-w/o78.21 19877.33 20280.84 22688.81 15665.13 19584.87 23087.85 22269.75 21474.52 25384.74 28261.34 17593.11 17558.24 29885.84 16884.27 338
pmmvs571.55 29270.20 29875.61 30477.83 36356.39 32281.74 28380.89 31957.76 35567.46 32784.49 28349.26 29485.32 32557.08 30875.29 31185.11 330
thres20075.55 25074.47 24978.82 26487.78 20057.85 30083.07 27183.51 28672.44 15875.84 21784.42 28452.08 25791.75 22247.41 36283.64 20086.86 299
test_fmvs170.93 29870.52 29272.16 33873.71 38055.05 34080.82 29478.77 34351.21 38178.58 15484.41 28531.20 38276.94 36975.88 13580.12 24684.47 337
testing368.56 32067.67 32171.22 34787.33 21642.87 39683.06 27271.54 37770.36 19669.08 31484.38 28630.33 38485.69 31937.50 39075.45 30685.09 331
test_fmvs268.35 32367.48 32470.98 34969.50 39451.95 36180.05 31076.38 36049.33 38374.65 25184.38 28623.30 39575.40 38474.51 14775.17 31485.60 321
eth_miper_zixun_eth77.92 20876.69 21781.61 20583.00 30161.98 25483.15 26789.20 18369.52 21874.86 24884.35 28861.76 16592.56 19171.50 17672.89 33590.28 196
testing9176.54 23375.66 23179.18 26088.43 17255.89 33081.08 29283.00 29773.76 13175.34 23184.29 28946.20 31890.07 26564.33 24184.50 18091.58 148
c3_l78.75 18577.91 18381.26 21482.89 30561.56 26084.09 25289.13 18769.97 20775.56 22184.29 28966.36 11392.09 21073.47 15875.48 30390.12 202
testing9976.09 24475.12 24279.00 26188.16 18055.50 33580.79 29681.40 31673.30 14475.17 23984.27 29144.48 33290.02 26664.28 24284.22 18991.48 153
UWE-MVS72.13 28971.49 28074.03 32386.66 23047.70 38181.40 29076.89 35863.60 30475.59 22084.22 29239.94 35785.62 32048.98 35286.13 16388.77 256
Fast-Effi-MVS+-dtu78.02 20576.49 22082.62 18783.16 29766.96 16186.94 17687.45 23172.45 15671.49 28884.17 29354.79 23091.58 22767.61 21380.31 24289.30 235
IterMVS-SCA-FT75.43 25373.87 25780.11 24182.69 30964.85 20181.57 28683.47 28769.16 22870.49 29484.15 29451.95 26088.15 29769.23 19872.14 34087.34 286
131476.53 23475.30 24080.21 23983.93 27962.32 25084.66 23488.81 19760.23 33470.16 30084.07 29555.30 22490.73 25767.37 21683.21 20787.59 281
cl2278.07 20377.01 20681.23 21582.37 31761.83 25783.55 26187.98 21668.96 23575.06 24483.87 29661.40 17491.88 21873.53 15676.39 28889.98 214
EG-PatchMatch MVS74.04 26571.82 27780.71 22984.92 25967.42 14685.86 20988.08 21466.04 27264.22 35683.85 29735.10 37492.56 19157.44 30480.83 23482.16 364
thisisatest051577.33 22275.38 23783.18 16185.27 25163.80 22182.11 28083.27 29065.06 28475.91 21583.84 29849.54 28894.27 11467.24 21886.19 16191.48 153
test20.0367.45 32766.95 32868.94 35675.48 37444.84 39277.50 34177.67 34866.66 26163.01 36283.80 29947.02 30878.40 36142.53 38168.86 35783.58 348
miper_ehance_all_eth78.59 19177.76 19181.08 22082.66 31061.56 26083.65 25789.15 18568.87 23675.55 22283.79 30066.49 11192.03 21173.25 16176.39 28889.64 226
MSDG73.36 27570.99 28880.49 23384.51 26865.80 18080.71 30086.13 25465.70 27665.46 34783.74 30144.60 33090.91 25351.13 33976.89 27984.74 334
testing1175.14 25774.01 25378.53 27188.16 18056.38 32380.74 29980.42 32870.67 18972.69 27583.72 30243.61 33789.86 26862.29 25983.76 19489.36 233
IterMVS74.29 26172.94 26678.35 27481.53 32763.49 22981.58 28582.49 30468.06 24969.99 30383.69 30351.66 26685.54 32165.85 23071.64 34386.01 315
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tpm72.37 28671.71 27874.35 32082.19 31852.00 36079.22 32077.29 35464.56 29072.95 27183.68 30451.35 26783.26 34058.33 29775.80 29787.81 275
testing22274.04 26572.66 26978.19 27687.89 19355.36 33681.06 29379.20 34171.30 17674.65 25183.57 30539.11 36188.67 29151.43 33885.75 17090.53 185
Effi-MVS+-dtu80.03 15678.57 16784.42 10785.13 25668.74 11188.77 11588.10 21374.99 10574.97 24683.49 30657.27 21593.36 15873.53 15680.88 23391.18 160
baseline275.70 24873.83 25881.30 21383.26 29261.79 25882.57 27680.65 32366.81 25766.88 33383.42 30757.86 20892.19 20763.47 24679.57 24989.91 216
TinyColmap67.30 32964.81 33474.76 31681.92 32256.68 31880.29 30881.49 31560.33 33256.27 38683.22 30824.77 39187.66 30445.52 37269.47 35279.95 374
mvsany_test162.30 34861.26 35265.41 36869.52 39354.86 34266.86 38849.78 40846.65 38668.50 32083.21 30949.15 29566.28 40056.93 31060.77 37775.11 384
test_vis1_n69.85 31169.21 30271.77 34072.66 39055.27 33981.48 28776.21 36152.03 37775.30 23683.20 31028.97 38576.22 37674.60 14678.41 26483.81 345
CostFormer75.24 25673.90 25679.27 25782.65 31158.27 29280.80 29582.73 30361.57 32575.33 23583.13 31155.52 22291.07 25164.98 23778.34 26588.45 264
WB-MVSnew71.96 29171.65 27972.89 33284.67 26651.88 36382.29 27877.57 34962.31 31973.67 26283.00 31253.49 24381.10 35145.75 37182.13 22085.70 320
ETVMVS72.25 28871.05 28775.84 30187.77 20151.91 36279.39 31774.98 36569.26 22373.71 26182.95 31340.82 35486.14 31546.17 36884.43 18589.47 230
miper_lstm_enhance74.11 26473.11 26577.13 29380.11 34559.62 28372.23 36886.92 24266.76 25970.40 29582.92 31456.93 21882.92 34169.06 20172.63 33688.87 251
GA-MVS76.87 22975.17 24181.97 19882.75 30762.58 24681.44 28986.35 25172.16 16474.74 24982.89 31546.20 31892.02 21268.85 20481.09 23191.30 158
K. test v371.19 29468.51 30679.21 25983.04 30057.78 30284.35 24776.91 35772.90 15362.99 36382.86 31639.27 35991.09 25061.65 26752.66 39088.75 257
MS-PatchMatch73.83 26872.67 26877.30 29183.87 28066.02 17381.82 28184.66 26861.37 32868.61 31882.82 31747.29 30588.21 29659.27 28484.32 18777.68 379
lessismore_v078.97 26281.01 33657.15 31065.99 39161.16 36982.82 31739.12 36091.34 24159.67 28146.92 39688.43 265
D2MVS74.82 25873.21 26379.64 25279.81 35062.56 24780.34 30787.35 23264.37 29368.86 31582.66 31946.37 31490.10 26467.91 21181.24 22986.25 308
Anonymous2023120668.60 31867.80 31871.02 34880.23 34450.75 37478.30 33680.47 32656.79 36266.11 34582.63 32046.35 31578.95 35943.62 37775.70 29883.36 350
MIMVSNet70.69 30169.30 30074.88 31484.52 26756.35 32575.87 35179.42 33864.59 28967.76 32282.41 32141.10 35181.54 34846.64 36681.34 22786.75 302
UBG73.08 27972.27 27475.51 30788.02 18851.29 37078.35 33577.38 35365.52 27973.87 26082.36 32245.55 32586.48 31255.02 31984.39 18688.75 257
OpenMVS_ROBcopyleft64.09 1970.56 30368.19 30977.65 28580.26 34259.41 28685.01 22782.96 29958.76 34865.43 34882.33 32337.63 36891.23 24445.34 37476.03 29582.32 361
miper_enhance_ethall77.87 21076.86 21080.92 22581.65 32461.38 26282.68 27488.98 19265.52 27975.47 22382.30 32465.76 12392.00 21372.95 16476.39 28889.39 232
test0.0.03 168.00 32567.69 32068.90 35777.55 36447.43 38275.70 35272.95 37666.66 26166.56 33882.29 32548.06 30275.87 37944.97 37574.51 32083.41 349
PVSNet64.34 1872.08 29070.87 29075.69 30386.21 23556.44 32174.37 36280.73 32262.06 32370.17 29982.23 32642.86 34183.31 33954.77 32184.45 18487.32 287
MIMVSNet168.58 31966.78 32973.98 32480.07 34651.82 36480.77 29784.37 27164.40 29259.75 37582.16 32736.47 37083.63 33642.73 37970.33 34986.48 306
CL-MVSNet_self_test72.37 28671.46 28175.09 31279.49 35653.53 35280.76 29885.01 26669.12 22970.51 29382.05 32857.92 20784.13 33252.27 33366.00 36687.60 279
tpm273.26 27671.46 28178.63 26683.34 29056.71 31780.65 30180.40 32956.63 36373.55 26382.02 32951.80 26491.24 24356.35 31578.42 26387.95 271
PatchMatch-RL72.38 28570.90 28976.80 29688.60 16567.38 14879.53 31576.17 36262.75 31569.36 31182.00 33045.51 32684.89 32853.62 32680.58 23878.12 378
FMVSNet569.50 31267.96 31374.15 32282.97 30455.35 33780.01 31182.12 30862.56 31763.02 36181.53 33136.92 36981.92 34648.42 35474.06 32385.17 329
CR-MVSNet73.37 27371.27 28579.67 25181.32 33365.19 19375.92 34980.30 33059.92 33772.73 27381.19 33252.50 24886.69 30859.84 28077.71 27087.11 294
Patchmtry70.74 30069.16 30375.49 30880.72 33754.07 34974.94 36080.30 33058.34 35070.01 30181.19 33252.50 24886.54 31053.37 32871.09 34785.87 319
IB-MVS68.01 1575.85 24773.36 26283.31 15484.76 26166.03 17283.38 26385.06 26470.21 20269.40 31081.05 33445.76 32394.66 10465.10 23675.49 30289.25 236
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cascas76.72 23274.64 24582.99 17185.78 24265.88 17882.33 27789.21 18260.85 33072.74 27281.02 33547.28 30693.75 14167.48 21585.02 17389.34 234
LF4IMVS64.02 34462.19 34869.50 35470.90 39253.29 35776.13 34677.18 35552.65 37558.59 37780.98 33623.55 39476.52 37253.06 33066.66 36278.68 377
Anonymous2024052168.80 31767.22 32673.55 32674.33 37754.11 34883.18 26685.61 25958.15 35261.68 36780.94 33730.71 38381.27 35057.00 30973.34 33385.28 325
gm-plane-assit81.40 32953.83 35162.72 31680.94 33792.39 19863.40 248
UnsupCasMVSNet_eth67.33 32865.99 33271.37 34373.48 38351.47 36875.16 35685.19 26365.20 28260.78 37080.93 33942.35 34377.20 36757.12 30753.69 38985.44 323
dmvs_re71.14 29570.58 29172.80 33381.96 32059.68 28275.60 35379.34 33968.55 24169.27 31380.72 34049.42 29076.54 37152.56 33277.79 26982.19 363
MDTV_nov1_ep1369.97 29983.18 29553.48 35377.10 34580.18 33360.45 33169.33 31280.44 34148.89 30086.90 30751.60 33678.51 261
pmmvs-eth3d70.50 30467.83 31778.52 27277.37 36666.18 17181.82 28181.51 31458.90 34763.90 35980.42 34242.69 34286.28 31458.56 29365.30 36883.11 353
PM-MVS66.41 33564.14 33773.20 33073.92 37956.45 32078.97 32464.96 39563.88 30364.72 35380.24 34319.84 39983.44 33866.24 22464.52 37079.71 375
SCA74.22 26372.33 27379.91 24484.05 27762.17 25279.96 31279.29 34066.30 26972.38 27980.13 34451.95 26088.60 29259.25 28577.67 27288.96 248
Patchmatch-test64.82 34263.24 34369.57 35379.42 35749.82 37863.49 39869.05 38551.98 37859.95 37480.13 34450.91 27270.98 39340.66 38473.57 32887.90 273
tpmrst72.39 28472.13 27573.18 33180.54 34049.91 37779.91 31379.08 34263.11 30771.69 28679.95 34655.32 22382.77 34265.66 23273.89 32586.87 298
DSMNet-mixed57.77 35556.90 35760.38 37467.70 39635.61 40569.18 38053.97 40632.30 40457.49 38279.88 34740.39 35668.57 39838.78 38872.37 33776.97 380
MDA-MVSNet-bldmvs66.68 33263.66 34175.75 30279.28 35860.56 27273.92 36478.35 34564.43 29150.13 39379.87 34844.02 33583.67 33546.10 36956.86 38283.03 355
PatchmatchNetpermissive73.12 27871.33 28478.49 27383.18 29560.85 26779.63 31478.57 34464.13 29571.73 28579.81 34951.20 27085.97 31757.40 30576.36 29388.66 260
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Syy-MVS68.05 32467.85 31568.67 36084.68 26340.97 40278.62 32973.08 37466.65 26466.74 33679.46 35052.11 25682.30 34432.89 39476.38 29182.75 358
myMVS_eth3d67.02 33066.29 33169.21 35584.68 26342.58 39778.62 32973.08 37466.65 26466.74 33679.46 35031.53 38182.30 34439.43 38776.38 29182.75 358
ppachtmachnet_test70.04 30867.34 32578.14 27779.80 35161.13 26379.19 32180.59 32459.16 34465.27 34979.29 35246.75 31187.29 30549.33 35066.72 36186.00 317
EPMVS69.02 31568.16 31071.59 34179.61 35449.80 37977.40 34266.93 38962.82 31470.01 30179.05 35345.79 32277.86 36556.58 31375.26 31287.13 293
PMMVS69.34 31368.67 30571.35 34575.67 37262.03 25375.17 35573.46 37250.00 38268.68 31679.05 35352.07 25878.13 36261.16 27282.77 21273.90 385
test-LLR72.94 28272.43 27174.48 31881.35 33158.04 29578.38 33277.46 35066.66 26169.95 30479.00 35548.06 30279.24 35766.13 22584.83 17586.15 311
test-mter71.41 29370.39 29674.48 31881.35 33158.04 29578.38 33277.46 35060.32 33369.95 30479.00 35536.08 37279.24 35766.13 22584.83 17586.15 311
KD-MVS_self_test68.81 31667.59 32372.46 33774.29 37845.45 38777.93 33987.00 23963.12 30663.99 35878.99 35742.32 34484.77 32956.55 31464.09 37187.16 292
test_fmvs363.36 34661.82 34967.98 36362.51 40346.96 38577.37 34374.03 37145.24 38867.50 32678.79 35812.16 40772.98 39272.77 16766.02 36583.99 343
KD-MVS_2432*160066.22 33763.89 33973.21 32875.47 37553.42 35470.76 37484.35 27264.10 29766.52 34078.52 35934.55 37584.98 32650.40 34250.33 39381.23 368
miper_refine_blended66.22 33763.89 33973.21 32875.47 37553.42 35470.76 37484.35 27264.10 29766.52 34078.52 35934.55 37584.98 32650.40 34250.33 39381.23 368
tpmvs71.09 29669.29 30176.49 29782.04 31956.04 32878.92 32581.37 31764.05 29967.18 33178.28 36149.74 28789.77 27049.67 34972.37 33783.67 347
our_test_369.14 31467.00 32775.57 30579.80 35158.80 28777.96 33877.81 34759.55 34062.90 36478.25 36247.43 30483.97 33351.71 33567.58 36083.93 344
MDA-MVSNet_test_wron65.03 34062.92 34471.37 34375.93 36956.73 31569.09 38374.73 36857.28 36054.03 38977.89 36345.88 32074.39 38849.89 34861.55 37582.99 356
YYNet165.03 34062.91 34571.38 34275.85 37156.60 31969.12 38274.66 37057.28 36054.12 38877.87 36445.85 32174.48 38749.95 34761.52 37683.05 354
ambc75.24 31173.16 38650.51 37563.05 39987.47 23064.28 35577.81 36517.80 40189.73 27257.88 30160.64 37885.49 322
tpm cat170.57 30268.31 30877.35 29082.41 31657.95 29878.08 33780.22 33252.04 37668.54 31977.66 36652.00 25987.84 30151.77 33472.07 34186.25 308
dp66.80 33165.43 33370.90 35079.74 35348.82 38075.12 35874.77 36759.61 33964.08 35777.23 36742.89 34080.72 35348.86 35366.58 36383.16 352
TESTMET0.1,169.89 31069.00 30472.55 33579.27 35956.85 31378.38 33274.71 36957.64 35668.09 32177.19 36837.75 36776.70 37063.92 24484.09 19084.10 342
CHOSEN 280x42066.51 33464.71 33571.90 33981.45 32863.52 22857.98 40168.95 38653.57 37262.59 36576.70 36946.22 31775.29 38555.25 31879.68 24876.88 381
PatchT68.46 32267.85 31570.29 35180.70 33843.93 39472.47 36774.88 36660.15 33570.55 29276.57 37049.94 28481.59 34750.58 34074.83 31785.34 324
mvsany_test353.99 35851.45 36361.61 37355.51 40744.74 39363.52 39745.41 41243.69 39158.11 38076.45 37117.99 40063.76 40354.77 32147.59 39576.34 382
RPMNet73.51 27170.49 29382.58 18881.32 33365.19 19375.92 34992.27 8157.60 35772.73 27376.45 37152.30 25195.43 6948.14 35977.71 27087.11 294
dmvs_testset62.63 34764.11 33858.19 37678.55 36124.76 41475.28 35465.94 39267.91 25060.34 37176.01 37353.56 24173.94 39031.79 39567.65 35975.88 383
ADS-MVSNet266.20 33963.33 34274.82 31579.92 34758.75 28867.55 38675.19 36453.37 37365.25 35075.86 37442.32 34480.53 35441.57 38268.91 35585.18 327
ADS-MVSNet64.36 34362.88 34668.78 35979.92 34747.17 38367.55 38671.18 37853.37 37365.25 35075.86 37442.32 34473.99 38941.57 38268.91 35585.18 327
EGC-MVSNET52.07 36447.05 36867.14 36583.51 28760.71 26980.50 30467.75 3870.07 4140.43 41575.85 37624.26 39281.54 34828.82 39762.25 37359.16 397
new-patchmatchnet61.73 34961.73 35061.70 37272.74 38924.50 41569.16 38178.03 34661.40 32656.72 38475.53 37738.42 36376.48 37345.95 37057.67 38184.13 341
N_pmnet52.79 36253.26 36151.40 38678.99 3607.68 42069.52 3783.89 41951.63 37957.01 38374.98 37840.83 35365.96 40137.78 38964.67 36980.56 373
WB-MVS54.94 35654.72 35855.60 38273.50 38220.90 41674.27 36361.19 39959.16 34450.61 39274.15 37947.19 30775.78 38017.31 40735.07 40170.12 389
patchmatchnet-post74.00 38051.12 27188.60 292
GG-mvs-BLEND75.38 30981.59 32655.80 33179.32 31869.63 38267.19 33073.67 38143.24 33888.90 28950.41 34184.50 18081.45 367
SSC-MVS53.88 35953.59 36054.75 38472.87 38819.59 41773.84 36560.53 40157.58 35849.18 39573.45 38246.34 31675.47 38316.20 41032.28 40369.20 390
Patchmatch-RL test70.24 30667.78 31977.61 28677.43 36559.57 28571.16 37170.33 37962.94 31168.65 31772.77 38350.62 27685.49 32269.58 19666.58 36387.77 276
FPMVS53.68 36051.64 36259.81 37565.08 40051.03 37169.48 37969.58 38341.46 39340.67 39972.32 38416.46 40370.00 39624.24 40365.42 36758.40 399
UnsupCasMVSNet_bld63.70 34561.53 35170.21 35273.69 38151.39 36972.82 36681.89 31055.63 36757.81 38171.80 38538.67 36278.61 36049.26 35152.21 39180.63 371
APD_test153.31 36149.93 36663.42 37165.68 39950.13 37671.59 37066.90 39034.43 40140.58 40071.56 3868.65 41276.27 37534.64 39355.36 38763.86 395
test_f52.09 36350.82 36455.90 38053.82 41042.31 40059.42 40058.31 40436.45 39956.12 38770.96 38712.18 40657.79 40653.51 32756.57 38467.60 391
PVSNet_057.27 2061.67 35059.27 35368.85 35879.61 35457.44 30768.01 38473.44 37355.93 36658.54 37870.41 38844.58 33177.55 36647.01 36335.91 40071.55 388
pmmvs357.79 35454.26 35968.37 36164.02 40256.72 31675.12 35865.17 39340.20 39452.93 39069.86 38920.36 39875.48 38245.45 37355.25 38872.90 387
test_vis1_rt60.28 35158.42 35465.84 36767.25 39755.60 33470.44 37660.94 40044.33 39059.00 37666.64 39024.91 39068.67 39762.80 25169.48 35173.25 386
new_pmnet50.91 36550.29 36552.78 38568.58 39534.94 40763.71 39656.63 40539.73 39544.95 39665.47 39121.93 39658.48 40534.98 39256.62 38364.92 393
gg-mvs-nofinetune69.95 30967.96 31375.94 30083.07 29854.51 34677.23 34470.29 38063.11 30770.32 29662.33 39243.62 33688.69 29053.88 32587.76 13884.62 336
JIA-IIPM66.32 33662.82 34776.82 29577.09 36761.72 25965.34 39475.38 36358.04 35464.51 35462.32 39342.05 34886.51 31151.45 33769.22 35482.21 362
LCM-MVSNet54.25 35749.68 36767.97 36453.73 41145.28 39066.85 38980.78 32135.96 40039.45 40162.23 3948.70 41178.06 36448.24 35851.20 39280.57 372
PMMVS240.82 37338.86 37746.69 38753.84 40916.45 41848.61 40449.92 40737.49 39731.67 40260.97 3958.14 41356.42 40728.42 39830.72 40467.19 392
testf145.72 36841.96 37257.00 37756.90 40545.32 38866.14 39159.26 40226.19 40530.89 40460.96 3964.14 41570.64 39426.39 40146.73 39755.04 400
APD_test245.72 36841.96 37257.00 37756.90 40545.32 38866.14 39159.26 40226.19 40530.89 40460.96 3964.14 41570.64 39426.39 40146.73 39755.04 400
MVS-HIRNet59.14 35357.67 35563.57 37081.65 32443.50 39571.73 36965.06 39439.59 39651.43 39157.73 39838.34 36482.58 34339.53 38573.95 32464.62 394
ANet_high50.57 36646.10 37063.99 36948.67 41439.13 40370.99 37380.85 32061.39 32731.18 40357.70 39917.02 40273.65 39131.22 39615.89 41179.18 376
PMVScopyleft37.38 2244.16 37240.28 37655.82 38140.82 41642.54 39965.12 39563.99 39634.43 40124.48 40757.12 4003.92 41776.17 37717.10 40855.52 38648.75 402
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
dongtai45.42 37045.38 37145.55 38873.36 38526.85 41267.72 38534.19 41454.15 37149.65 39456.41 40125.43 38962.94 40419.45 40528.09 40546.86 404
test_vis3_rt49.26 36747.02 36956.00 37954.30 40845.27 39166.76 39048.08 40936.83 39844.38 39753.20 4027.17 41464.07 40256.77 31255.66 38558.65 398
test_method31.52 37629.28 38038.23 39027.03 4186.50 42120.94 40962.21 3984.05 41222.35 41052.50 40313.33 40447.58 41027.04 40034.04 40260.62 396
kuosan39.70 37440.40 37537.58 39164.52 40126.98 41065.62 39333.02 41546.12 38742.79 39848.99 40424.10 39346.56 41212.16 41326.30 40639.20 405
DeepMVS_CXcopyleft27.40 39440.17 41726.90 41124.59 41817.44 41023.95 40848.61 4059.77 40926.48 41318.06 40624.47 40728.83 407
MVEpermissive26.22 2330.37 37825.89 38243.81 38944.55 41535.46 40628.87 40839.07 41318.20 40918.58 41140.18 4062.68 41847.37 41117.07 40923.78 40848.60 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft45.18 37141.86 37455.16 38377.03 36851.52 36732.50 40780.52 32532.46 40327.12 40635.02 4079.52 41075.50 38122.31 40460.21 38038.45 406
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN31.77 37530.64 37835.15 39252.87 41227.67 40957.09 40247.86 41024.64 40716.40 41233.05 40811.23 40854.90 40814.46 41118.15 40922.87 408
EMVS30.81 37729.65 37934.27 39350.96 41325.95 41356.58 40346.80 41124.01 40815.53 41330.68 40912.47 40554.43 40912.81 41217.05 41022.43 409
tmp_tt18.61 38021.40 38310.23 3964.82 41910.11 41934.70 40630.74 4171.48 41323.91 40926.07 41028.42 38613.41 41527.12 39915.35 4127.17 410
X-MVStestdata80.37 15077.83 18688.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 9012.47 41167.45 10296.60 3383.06 6694.50 5194.07 53
test_post5.46 41250.36 28084.24 331
test_post178.90 3265.43 41348.81 30185.44 32459.25 285
wuyk23d16.82 38115.94 38419.46 39558.74 40431.45 40839.22 4053.74 4206.84 4116.04 4142.70 4141.27 41924.29 41410.54 41414.40 4132.63 411
testmvs6.04 3848.02 3870.10 3980.08 4200.03 42369.74 3770.04 4210.05 4150.31 4161.68 4150.02 4210.04 4160.24 4150.02 4140.25 413
test1236.12 3838.11 3860.14 3970.06 4210.09 42271.05 3720.03 4220.04 4160.25 4171.30 4160.05 4200.03 4170.21 4160.01 4150.29 412
test_blank0.00 3860.00 3890.00 3990.00 4220.00 4240.00 4100.00 4230.00 4170.00 4180.00 4170.00 4220.00 4180.00 4170.00 4160.00 414
uanet_test0.00 3860.00 3890.00 3990.00 4220.00 4240.00 4100.00 4230.00 4170.00 4180.00 4170.00 4220.00 4180.00 4170.00 4160.00 414
DCPMVS0.00 3860.00 3890.00 3990.00 4220.00 4240.00 4100.00 4230.00 4170.00 4180.00 4170.00 4220.00 4180.00 4170.00 4160.00 414
pcd_1.5k_mvsjas5.26 3857.02 3880.00 3990.00 4220.00 4240.00 4100.00 4230.00 4170.00 4180.00 41763.15 1450.00 4180.00 4170.00 4160.00 414
sosnet-low-res0.00 3860.00 3890.00 3990.00 4220.00 4240.00 4100.00 4230.00 4170.00 4180.00 4170.00 4220.00 4180.00 4170.00 4160.00 414
sosnet0.00 3860.00 3890.00 3990.00 4220.00 4240.00 4100.00 4230.00 4170.00 4180.00 4170.00 4220.00 4180.00 4170.00 4160.00 414
uncertanet0.00 3860.00 3890.00 3990.00 4220.00 4240.00 4100.00 4230.00 4170.00 4180.00 4170.00 4220.00 4180.00 4170.00 4160.00 414
Regformer0.00 3860.00 3890.00 3990.00 4220.00 4240.00 4100.00 4230.00 4170.00 4180.00 4170.00 4220.00 4180.00 4170.00 4160.00 414
uanet0.00 3860.00 3890.00 3990.00 4220.00 4240.00 4100.00 4230.00 4170.00 4180.00 4170.00 4220.00 4180.00 4170.00 4160.00 414
WAC-MVS42.58 39739.46 386
FOURS195.00 1072.39 3995.06 193.84 1574.49 11591.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 38
No_MVS89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 38
eth-test20.00 422
eth-test0.00 422
IU-MVS95.30 271.25 5792.95 5266.81 25792.39 688.94 1696.63 494.85 19
save fliter93.80 4072.35 4290.47 6391.17 12274.31 118
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 48
GSMVS88.96 248
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26888.96 248
sam_mvs50.01 282
MTGPAbinary92.02 91
MTMP92.18 3432.83 416
test9_res84.90 4395.70 2692.87 109
agg_prior282.91 7095.45 2992.70 112
agg_prior92.85 5971.94 5091.78 10684.41 7694.93 91
test_prior472.60 3489.01 107
test_prior86.33 5492.61 6569.59 8892.97 5195.48 6693.91 59
旧先验286.56 19058.10 35387.04 4288.98 28574.07 152
新几何286.29 198
无先验87.48 15988.98 19260.00 33694.12 12167.28 21788.97 247
原ACMM286.86 179
testdata291.01 25262.37 258
segment_acmp73.08 38
testdata184.14 25175.71 90
test1286.80 4992.63 6470.70 7291.79 10582.71 10471.67 5596.16 4494.50 5193.54 83
plane_prior790.08 10768.51 120
plane_prior689.84 11668.70 11560.42 193
plane_prior592.44 7495.38 7378.71 10686.32 15891.33 156
plane_prior368.60 11878.44 3178.92 147
plane_prior291.25 4979.12 23
plane_prior189.90 115
plane_prior68.71 11390.38 6777.62 3986.16 162
n20.00 423
nn0.00 423
door-mid69.98 381
test1192.23 84
door69.44 384
HQP5-MVS66.98 159
HQP-NCC89.33 13489.17 10076.41 7577.23 185
ACMP_Plane89.33 13489.17 10076.41 7577.23 185
BP-MVS77.47 118
HQP4-MVS77.24 18495.11 8491.03 166
HQP3-MVS92.19 8785.99 166
HQP2-MVS60.17 196
MDTV_nov1_ep13_2view37.79 40475.16 35655.10 36866.53 33949.34 29253.98 32487.94 272
ACMMP++_ref81.95 223
ACMMP++81.25 228
Test By Simon64.33 132