This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9491.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 38
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 11592.29 795.97 274.28 2997.24 1388.58 2196.91 194.87 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test072695.27 571.25 5993.60 694.11 677.33 5092.81 395.79 380.98 9
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5993.49 992.73 6477.33 5092.12 995.78 480.98 997.40 989.08 1296.41 1293.33 91
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 989.42 996.57 794.67 28
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5995.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 11
test_one_060195.07 771.46 5794.14 578.27 3592.05 1195.74 680.83 11
SED-MVS90.08 290.85 287.77 2695.30 270.98 6693.57 794.06 1077.24 5393.10 195.72 882.99 197.44 789.07 1496.63 494.88 15
test_241102_TWO94.06 1077.24 5392.78 495.72 881.26 897.44 789.07 1496.58 694.26 48
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 9092.29 795.66 1081.67 697.38 1187.44 3396.34 1593.95 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
reproduce_model87.28 3087.39 2786.95 4893.10 5671.24 6391.60 4293.19 3574.69 11688.80 2395.61 1170.29 7296.44 3986.20 3993.08 6993.16 99
reproduce-ours87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10888.96 2095.54 1271.20 6196.54 3686.28 3793.49 6593.06 104
our_new_method87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10888.96 2095.54 1271.20 6196.54 3686.28 3793.49 6593.06 104
test_241102_ONE95.30 270.98 6694.06 1077.17 5693.10 195.39 1482.99 197.27 12
MP-MVS-pluss87.67 2187.72 2087.54 3693.64 4472.04 4889.80 8193.50 2575.17 10586.34 5195.29 1570.86 6596.00 5488.78 1996.04 1694.58 33
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SF-MVS88.46 1288.74 1287.64 3592.78 6471.95 4992.40 2494.74 275.71 9289.16 1995.10 1675.65 2196.19 4687.07 3496.01 1794.79 22
ACMMP_NAP88.05 1688.08 1787.94 1993.70 4173.05 2290.86 5793.59 2376.27 8488.14 2795.09 1771.06 6396.67 2987.67 2996.37 1494.09 53
MM89.16 689.23 788.97 490.79 9573.65 1092.66 2391.17 12586.57 187.39 4194.97 1871.70 5397.68 192.19 195.63 2895.57 1
MTAPA87.23 3187.00 3287.90 2294.18 3574.25 586.58 19392.02 9379.45 1985.88 5394.80 1968.07 9696.21 4586.69 3695.34 3293.23 94
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 7272.96 2593.73 593.67 2080.19 1288.10 2894.80 1973.76 3397.11 1587.51 3195.82 2194.90 14
Skip Steuart: Steuart Systems R&D Blog.
9.1488.26 1592.84 6391.52 4894.75 173.93 13388.57 2594.67 2175.57 2295.79 5886.77 3595.76 23
SR-MVS86.73 3886.67 3986.91 4994.11 3772.11 4792.37 2892.56 7574.50 12086.84 4894.65 2267.31 10595.77 5984.80 5092.85 7292.84 114
region2R87.42 2787.20 3188.09 1494.63 1473.55 1393.03 1493.12 4076.73 7184.45 7794.52 2369.09 8496.70 2784.37 5694.83 4594.03 56
ACMMPR87.44 2587.23 3088.08 1594.64 1373.59 1293.04 1293.20 3476.78 6884.66 7294.52 2368.81 9096.65 3084.53 5494.90 4194.00 57
APD-MVScopyleft87.44 2587.52 2587.19 4294.24 3272.39 3991.86 4092.83 6073.01 15888.58 2494.52 2373.36 3496.49 3884.26 5795.01 3792.70 116
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
APD-MVS_3200maxsize85.97 5085.88 5386.22 6092.69 6669.53 9291.93 3792.99 4973.54 14385.94 5294.51 2665.80 12395.61 6283.04 7192.51 7693.53 85
CP-MVS87.11 3386.92 3687.68 3494.20 3473.86 793.98 392.82 6376.62 7483.68 9394.46 2767.93 9895.95 5784.20 6094.39 5593.23 94
SR-MVS-dyc-post85.77 5585.61 5886.23 5993.06 5870.63 7691.88 3892.27 8473.53 14485.69 5694.45 2865.00 13195.56 6382.75 7591.87 8492.50 125
RE-MVS-def85.48 6093.06 5870.63 7691.88 3892.27 8473.53 14485.69 5694.45 2863.87 13782.75 7591.87 8492.50 125
HFP-MVS87.58 2287.47 2687.94 1994.58 1673.54 1593.04 1293.24 3376.78 6884.91 6594.44 3070.78 6696.61 3284.53 5494.89 4293.66 72
PGM-MVS86.68 4086.27 4487.90 2294.22 3373.38 1890.22 7393.04 4175.53 9683.86 8994.42 3167.87 10096.64 3182.70 7994.57 5093.66 72
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 7077.57 4283.84 9094.40 3272.24 4596.28 4385.65 4195.30 3593.62 79
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6685.24 6094.32 3371.76 5196.93 1985.53 4395.79 2294.32 45
MVS_030487.69 2087.55 2488.12 1389.45 12971.76 5191.47 4989.54 17382.14 386.65 4994.28 3468.28 9597.46 690.81 295.31 3495.15 7
test_fmvsmconf0.01_n84.73 7384.52 7585.34 8080.25 35069.03 10389.47 9189.65 17073.24 15486.98 4694.27 3566.62 10993.23 16790.26 589.95 11393.78 69
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5980.26 1187.78 3394.27 3575.89 1996.81 2387.45 3296.44 993.05 106
mPP-MVS86.67 4186.32 4387.72 3094.41 2273.55 1392.74 2092.22 8876.87 6582.81 10694.25 3766.44 11396.24 4482.88 7494.28 5893.38 88
DeepC-MVS79.81 287.08 3586.88 3887.69 3391.16 8472.32 4390.31 7193.94 1477.12 5882.82 10594.23 3872.13 4797.09 1684.83 4995.37 3193.65 76
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVS87.18 3286.91 3788.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9494.17 3967.45 10396.60 3383.06 6994.50 5194.07 54
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 4078.35 1396.77 2489.59 894.22 6094.67 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_fmvsmconf0.1_n85.61 5985.65 5785.50 7782.99 30969.39 10089.65 8690.29 15373.31 15087.77 3494.15 4171.72 5293.23 16790.31 490.67 10193.89 63
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5392.24 7169.03 10389.57 9093.39 3077.53 4689.79 1894.12 4278.98 1296.58 3585.66 4095.72 2494.58 33
HPM-MVS_fast85.35 6484.95 7086.57 5693.69 4270.58 7892.15 3591.62 11173.89 13482.67 10894.09 4362.60 15295.54 6580.93 9292.93 7193.57 81
ZD-MVS94.38 2572.22 4492.67 6770.98 19187.75 3594.07 4474.01 3296.70 2784.66 5294.84 44
fmvsm_s_conf0.1_n_a83.32 9582.99 9384.28 11783.79 28668.07 13489.34 10082.85 30969.80 21887.36 4294.06 4568.34 9491.56 23387.95 2783.46 20893.21 97
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6293.00 4680.90 788.06 2994.06 4576.43 1696.84 2188.48 2495.99 1894.34 44
test_fmvsmconf_n85.92 5186.04 5185.57 7685.03 26269.51 9389.62 8990.58 14073.42 14787.75 3594.02 4772.85 4193.24 16690.37 390.75 9993.96 58
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4782.45 396.87 2083.77 6496.48 894.88 15
PC_three_145268.21 25492.02 1294.00 4982.09 595.98 5684.58 5396.68 294.95 11
SD-MVS88.06 1488.50 1486.71 5492.60 6972.71 2991.81 4193.19 3577.87 3690.32 1794.00 4974.83 2393.78 14187.63 3094.27 5993.65 76
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GST-MVS87.42 2787.26 2887.89 2494.12 3672.97 2492.39 2693.43 2876.89 6484.68 6993.99 5170.67 6896.82 2284.18 6195.01 3793.90 62
test_fmvsm_n_192085.29 6585.34 6285.13 8786.12 24169.93 8688.65 12690.78 13669.97 21488.27 2693.98 5271.39 5891.54 23588.49 2390.45 10393.91 60
fmvsm_s_conf0.1_n83.56 8883.38 8684.10 12584.86 26467.28 15589.40 9783.01 30470.67 19687.08 4493.96 5368.38 9391.45 24188.56 2284.50 18493.56 82
HPM-MVScopyleft87.11 3386.98 3487.50 3893.88 3972.16 4592.19 3393.33 3176.07 8783.81 9193.95 5469.77 7896.01 5385.15 4494.66 4794.32 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TSAR-MVS + MP.88.02 1788.11 1687.72 3093.68 4372.13 4691.41 5092.35 8274.62 11988.90 2293.85 5575.75 2096.00 5487.80 2894.63 4895.04 9
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMPcopyleft85.89 5485.39 6187.38 3993.59 4572.63 3392.74 2093.18 3976.78 6880.73 13093.82 5664.33 13396.29 4282.67 8090.69 10093.23 94
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_s_conf0.5_n_a83.63 8683.41 8584.28 11786.14 24068.12 13289.43 9382.87 30870.27 20787.27 4393.80 5769.09 8491.58 23188.21 2683.65 20393.14 101
fmvsm_s_conf0.5_n83.80 8183.71 8184.07 13186.69 23367.31 15489.46 9283.07 30371.09 18886.96 4793.70 5869.02 8991.47 24088.79 1884.62 18393.44 87
test_prior288.85 11775.41 9884.91 6593.54 5974.28 2983.31 6795.86 20
fmvsm_l_conf0.5_n84.47 7484.54 7384.27 11985.42 25268.81 10988.49 13087.26 23868.08 25588.03 3093.49 6072.04 4891.77 22588.90 1789.14 12492.24 136
VDDNet81.52 12580.67 12884.05 13690.44 10164.13 21989.73 8485.91 26271.11 18783.18 9993.48 6150.54 28393.49 15573.40 16588.25 13894.54 36
CDPH-MVS85.76 5685.29 6687.17 4393.49 4771.08 6488.58 12892.42 8068.32 25384.61 7493.48 6172.32 4496.15 4879.00 10695.43 3094.28 47
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5492.83 6081.50 585.79 5593.47 6373.02 4097.00 1884.90 4694.94 4094.10 52
fmvsm_l_conf0.5_n_a84.13 7784.16 7884.06 13385.38 25368.40 12588.34 13786.85 24867.48 26287.48 3993.40 6470.89 6491.61 22988.38 2589.22 12292.16 140
3Dnovator+77.84 485.48 6084.47 7688.51 791.08 8673.49 1693.18 1193.78 1880.79 876.66 20393.37 6560.40 19696.75 2677.20 12593.73 6495.29 5
DeepC-MVS_fast79.65 386.91 3686.62 4087.76 2793.52 4672.37 4191.26 5193.04 4176.62 7484.22 8193.36 6671.44 5796.76 2580.82 9495.33 3394.16 50
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDD-MVS83.01 10282.36 10384.96 9291.02 8866.40 17088.91 11488.11 21677.57 4284.39 7993.29 6752.19 25793.91 13577.05 12888.70 13294.57 35
test_fmvsmvis_n_192084.02 7883.87 7984.49 10884.12 27869.37 10188.15 14587.96 22170.01 21283.95 8893.23 6868.80 9191.51 23888.61 2089.96 11292.57 121
UA-Net85.08 6884.96 6985.45 7892.07 7368.07 13489.78 8290.86 13582.48 284.60 7593.20 6969.35 8195.22 8171.39 18390.88 9893.07 103
TEST993.26 5272.96 2588.75 12091.89 10168.44 25185.00 6393.10 7074.36 2895.41 73
train_agg86.43 4386.20 4587.13 4493.26 5272.96 2588.75 12091.89 10168.69 24685.00 6393.10 7074.43 2695.41 7384.97 4595.71 2593.02 108
test_893.13 5472.57 3588.68 12591.84 10568.69 24684.87 6793.10 7074.43 2695.16 83
LFMVS81.82 11881.23 11983.57 15191.89 7663.43 23589.84 7881.85 32077.04 6183.21 9893.10 7052.26 25693.43 16071.98 17889.95 11393.85 64
旧先验191.96 7465.79 18486.37 25593.08 7469.31 8392.74 7388.74 263
dcpmvs_285.63 5886.15 4884.06 13391.71 7864.94 20286.47 19691.87 10373.63 13986.60 5093.02 7576.57 1591.87 22383.36 6692.15 8095.35 3
testdata79.97 24790.90 9164.21 21784.71 27459.27 35185.40 5892.91 7662.02 16589.08 28868.95 20991.37 9286.63 311
MCST-MVS87.37 2987.25 2987.73 2894.53 1772.46 3889.82 7993.82 1673.07 15684.86 6892.89 7776.22 1796.33 4184.89 4895.13 3694.40 41
Vis-MVSNetpermissive83.46 9182.80 9785.43 7990.25 10468.74 11490.30 7290.13 15776.33 8380.87 12992.89 7761.00 18494.20 12272.45 17790.97 9693.35 90
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CPTT-MVS83.73 8283.33 8884.92 9593.28 4970.86 7292.09 3690.38 14668.75 24579.57 14292.83 7960.60 19293.04 18480.92 9391.56 9090.86 176
3Dnovator76.31 583.38 9482.31 10486.59 5587.94 19472.94 2890.64 6092.14 9277.21 5575.47 22892.83 7958.56 20394.72 10573.24 16892.71 7492.13 141
MSLP-MVS++85.43 6285.76 5684.45 10991.93 7570.24 7990.71 5992.86 5877.46 4884.22 8192.81 8167.16 10792.94 18680.36 9894.35 5790.16 203
test250677.30 22776.49 22479.74 25290.08 10852.02 36887.86 15663.10 40674.88 11180.16 13692.79 8238.29 37292.35 20568.74 21292.50 7794.86 18
ECVR-MVScopyleft79.61 16579.26 15880.67 23490.08 10854.69 35187.89 15477.44 36074.88 11180.27 13392.79 8248.96 30492.45 19968.55 21392.50 7794.86 18
test111179.43 17279.18 16180.15 24489.99 11353.31 36487.33 17077.05 36475.04 10680.23 13592.77 8448.97 30392.33 20768.87 21092.40 7994.81 21
MG-MVS83.41 9283.45 8483.28 15992.74 6562.28 25588.17 14389.50 17575.22 10181.49 12092.74 8566.75 10895.11 8772.85 17191.58 8992.45 128
casdiffmvs_mvgpermissive85.99 4886.09 5085.70 7487.65 20967.22 15988.69 12493.04 4179.64 1885.33 5992.54 8673.30 3594.50 11283.49 6591.14 9595.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
patch_mono-283.65 8484.54 7380.99 22690.06 11265.83 18284.21 25588.74 20771.60 17885.01 6292.44 8774.51 2583.50 34582.15 8292.15 8093.64 78
casdiffmvspermissive85.11 6785.14 6785.01 9087.20 22365.77 18587.75 15792.83 6077.84 3784.36 8092.38 8872.15 4693.93 13481.27 9090.48 10295.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS86.69 3986.95 3585.90 7190.76 9667.57 14792.83 1793.30 3279.67 1784.57 7692.27 8971.47 5695.02 9384.24 5993.46 6795.13 8
baseline84.93 7084.98 6884.80 10087.30 22165.39 19387.30 17192.88 5777.62 4084.04 8692.26 9071.81 5093.96 12881.31 8890.30 10595.03 10
QAPM80.88 13579.50 15185.03 8988.01 19268.97 10791.59 4392.00 9566.63 27475.15 24692.16 9157.70 21095.45 6863.52 25288.76 13090.66 183
IS-MVSNet83.15 9782.81 9684.18 12389.94 11563.30 23791.59 4388.46 21379.04 2579.49 14392.16 9165.10 12894.28 11767.71 21991.86 8694.95 11
BP-MVS184.32 7583.71 8186.17 6187.84 19967.85 13889.38 9889.64 17177.73 3883.98 8792.12 9356.89 22095.43 7084.03 6291.75 8795.24 6
新几何183.42 15493.13 5470.71 7485.48 26757.43 36781.80 11691.98 9463.28 14192.27 20864.60 24792.99 7087.27 294
OpenMVScopyleft72.83 1079.77 16378.33 17884.09 12985.17 25669.91 8790.57 6190.97 13066.70 26872.17 28891.91 9554.70 23593.96 12861.81 27390.95 9788.41 271
PHI-MVS86.43 4386.17 4787.24 4190.88 9270.96 6892.27 3294.07 972.45 16385.22 6191.90 9669.47 8096.42 4083.28 6895.94 1994.35 43
VNet82.21 11082.41 10181.62 20790.82 9360.93 27084.47 24689.78 16576.36 8284.07 8591.88 9764.71 13290.26 26570.68 19088.89 12693.66 72
EC-MVSNet86.01 4786.38 4284.91 9689.31 13866.27 17392.32 3093.63 2179.37 2084.17 8391.88 9769.04 8895.43 7083.93 6393.77 6393.01 109
GDP-MVS83.52 8982.64 9986.16 6288.14 18368.45 12489.13 10892.69 6572.82 16283.71 9291.86 9955.69 22595.35 7980.03 10189.74 11694.69 27
OPM-MVS83.50 9082.95 9485.14 8588.79 15970.95 6989.13 10891.52 11477.55 4580.96 12891.75 10060.71 18794.50 11279.67 10586.51 16089.97 219
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MVSMamba_PlusPlus85.99 4885.96 5286.05 6691.09 8567.64 14489.63 8892.65 7072.89 16184.64 7391.71 10171.85 4996.03 5084.77 5194.45 5494.49 37
XVG-OURS-SEG-HR80.81 13879.76 14583.96 14385.60 24968.78 11183.54 26990.50 14370.66 19976.71 20291.66 10260.69 18891.26 24676.94 12981.58 23091.83 146
EPNet83.72 8382.92 9586.14 6584.22 27669.48 9491.05 5685.27 26881.30 676.83 19891.65 10366.09 11895.56 6376.00 13993.85 6293.38 88
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OMC-MVS82.69 10481.97 11284.85 9788.75 16167.42 15087.98 14890.87 13474.92 11079.72 14091.65 10362.19 16293.96 12875.26 14986.42 16193.16 99
balanced_conf0386.78 3786.99 3386.15 6391.24 8367.61 14590.51 6292.90 5677.26 5287.44 4091.63 10571.27 6096.06 4985.62 4295.01 3794.78 23
test22291.50 8068.26 12984.16 25683.20 30154.63 37879.74 13991.63 10558.97 20191.42 9186.77 307
MVS_111021_HR85.14 6684.75 7186.32 5891.65 7972.70 3085.98 20990.33 15076.11 8682.08 11191.61 10771.36 5994.17 12481.02 9192.58 7592.08 142
原ACMM184.35 11393.01 6068.79 11092.44 7763.96 31081.09 12691.57 10866.06 11995.45 6867.19 22694.82 4688.81 258
LPG-MVS_test82.08 11281.27 11884.50 10689.23 14268.76 11290.22 7391.94 9975.37 9976.64 20491.51 10954.29 23894.91 9578.44 11283.78 19689.83 224
LGP-MVS_train84.50 10689.23 14268.76 11291.94 9975.37 9976.64 20491.51 10954.29 23894.91 9578.44 11283.78 19689.83 224
XVG-OURS80.41 15179.23 15983.97 14285.64 24869.02 10583.03 28090.39 14571.09 18877.63 18091.49 11154.62 23791.35 24475.71 14183.47 20791.54 153
alignmvs85.48 6085.32 6485.96 7089.51 12669.47 9589.74 8392.47 7676.17 8587.73 3791.46 11270.32 7193.78 14181.51 8588.95 12594.63 32
CANet86.45 4286.10 4987.51 3790.09 10770.94 7089.70 8592.59 7481.78 481.32 12191.43 11370.34 7097.23 1484.26 5793.36 6894.37 42
h-mvs3383.15 9782.19 10586.02 6990.56 9870.85 7388.15 14589.16 18876.02 8884.67 7091.39 11461.54 17095.50 6682.71 7775.48 30791.72 149
MGCFI-Net85.06 6985.51 5983.70 14789.42 13063.01 24389.43 9392.62 7376.43 7687.53 3891.34 11572.82 4293.42 16181.28 8988.74 13194.66 31
nrg03083.88 7983.53 8384.96 9286.77 23169.28 10290.46 6792.67 6774.79 11482.95 10191.33 11672.70 4393.09 18080.79 9679.28 25992.50 125
sasdasda85.91 5285.87 5486.04 6789.84 11769.44 9890.45 6893.00 4676.70 7288.01 3191.23 11773.28 3693.91 13581.50 8688.80 12894.77 24
canonicalmvs85.91 5285.87 5486.04 6789.84 11769.44 9890.45 6893.00 4676.70 7288.01 3191.23 11773.28 3693.91 13581.50 8688.80 12894.77 24
DPM-MVS84.93 7084.29 7786.84 5090.20 10573.04 2387.12 17593.04 4169.80 21882.85 10491.22 11973.06 3996.02 5276.72 13394.63 4891.46 159
Anonymous20240521178.25 20077.01 21081.99 20191.03 8760.67 27584.77 23883.90 28770.65 20080.00 13791.20 12041.08 35891.43 24265.21 24185.26 17693.85 64
SPE-MVS-test86.29 4686.48 4185.71 7391.02 8867.21 16092.36 2993.78 1878.97 2883.51 9791.20 12070.65 6995.15 8481.96 8394.89 4294.77 24
Anonymous2024052980.19 15878.89 16684.10 12590.60 9764.75 20688.95 11390.90 13265.97 28280.59 13191.17 12249.97 28893.73 14769.16 20782.70 21993.81 67
EPP-MVSNet83.40 9383.02 9284.57 10490.13 10664.47 21292.32 3090.73 13774.45 12379.35 14591.10 12369.05 8795.12 8572.78 17287.22 14994.13 51
TAPA-MVS73.13 979.15 18077.94 18682.79 18689.59 12262.99 24788.16 14491.51 11565.77 28377.14 19591.09 12460.91 18593.21 16950.26 35487.05 15192.17 139
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CSCG86.41 4586.19 4687.07 4592.91 6172.48 3790.81 5893.56 2473.95 13183.16 10091.07 12575.94 1895.19 8279.94 10394.38 5693.55 83
FIs82.07 11382.42 10081.04 22588.80 15858.34 29788.26 14093.49 2676.93 6378.47 16291.04 12669.92 7692.34 20669.87 20084.97 17892.44 129
MVS_111021_LR82.61 10682.11 10684.11 12488.82 15671.58 5585.15 22986.16 25974.69 11680.47 13291.04 12662.29 15990.55 26380.33 9990.08 11090.20 202
DP-MVS Recon83.11 10082.09 10886.15 6394.44 1970.92 7188.79 11892.20 8970.53 20179.17 14791.03 12864.12 13596.03 5068.39 21690.14 10891.50 155
mamv476.81 23478.23 18272.54 34486.12 24165.75 18678.76 33582.07 31764.12 30472.97 27691.02 12967.97 9768.08 40883.04 7178.02 27183.80 354
HQP_MVS83.64 8583.14 8985.14 8590.08 10868.71 11691.25 5292.44 7779.12 2378.92 15191.00 13060.42 19495.38 7578.71 11086.32 16291.33 160
plane_prior491.00 130
FC-MVSNet-test81.52 12582.02 11080.03 24688.42 17455.97 33687.95 15093.42 2977.10 5977.38 18490.98 13269.96 7591.79 22468.46 21584.50 18492.33 130
Vis-MVSNet (Re-imp)78.36 19978.45 17378.07 28588.64 16551.78 37486.70 19079.63 34574.14 12975.11 24790.83 13361.29 17889.75 27558.10 30791.60 8892.69 118
114514_t80.68 14479.51 15084.20 12294.09 3867.27 15689.64 8791.11 12858.75 35774.08 26490.72 13458.10 20695.04 9269.70 20189.42 12090.30 199
PAPM_NR83.02 10182.41 10184.82 9892.47 7066.37 17187.93 15291.80 10673.82 13577.32 18690.66 13567.90 9994.90 9770.37 19389.48 11993.19 98
LS3D76.95 23274.82 24983.37 15790.45 10067.36 15389.15 10786.94 24561.87 33269.52 31790.61 13651.71 27094.53 11046.38 37586.71 15788.21 274
VPNet78.69 19278.66 16978.76 26988.31 17755.72 34084.45 24986.63 25176.79 6778.26 16690.55 13759.30 19989.70 27766.63 23077.05 28190.88 175
UniMVSNet_ETH3D79.10 18278.24 18081.70 20686.85 22860.24 28287.28 17288.79 20274.25 12676.84 19790.53 13849.48 29491.56 23367.98 21782.15 22393.29 92
ACMP74.13 681.51 12780.57 12984.36 11289.42 13068.69 11989.97 7791.50 11874.46 12275.04 25090.41 13953.82 24394.54 10977.56 12182.91 21489.86 223
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
RRT-MVS82.60 10882.10 10784.10 12587.98 19362.94 24887.45 16691.27 12177.42 4979.85 13890.28 14056.62 22294.70 10779.87 10488.15 14094.67 28
PCF-MVS73.52 780.38 15278.84 16785.01 9087.71 20668.99 10683.65 26491.46 11963.00 31777.77 17890.28 14066.10 11795.09 9161.40 27688.22 13990.94 174
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
NP-MVS89.62 12168.32 12790.24 142
HQP-MVS82.61 10682.02 11084.37 11189.33 13566.98 16389.17 10392.19 9076.41 7777.23 18990.23 14360.17 19795.11 8777.47 12285.99 17091.03 170
PS-MVSNAJss82.07 11381.31 11784.34 11486.51 23667.27 15689.27 10191.51 11571.75 17379.37 14490.22 14463.15 14694.27 11877.69 12082.36 22291.49 156
TSAR-MVS + GP.85.71 5785.33 6386.84 5091.34 8172.50 3689.07 11087.28 23776.41 7785.80 5490.22 14474.15 3195.37 7881.82 8491.88 8392.65 120
SDMVSNet80.38 15280.18 13880.99 22689.03 15164.94 20280.45 31289.40 17775.19 10376.61 20689.98 14660.61 19187.69 30976.83 13183.55 20590.33 197
sd_testset77.70 21977.40 20378.60 27289.03 15160.02 28479.00 33185.83 26375.19 10376.61 20689.98 14654.81 23085.46 33062.63 26383.55 20590.33 197
TranMVSNet+NR-MVSNet80.84 13680.31 13582.42 19487.85 19862.33 25387.74 15891.33 12080.55 977.99 17489.86 14865.23 12792.62 19267.05 22875.24 31792.30 132
diffmvspermissive82.10 11181.88 11382.76 18983.00 30763.78 22583.68 26389.76 16672.94 15982.02 11289.85 14965.96 12290.79 25982.38 8187.30 14893.71 71
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-RMVSNet79.61 16578.44 17483.14 16789.38 13465.93 17984.95 23587.15 24173.56 14278.19 16889.79 15056.67 22193.36 16259.53 29186.74 15690.13 205
GeoE81.71 12081.01 12483.80 14689.51 12664.45 21388.97 11288.73 20871.27 18478.63 15789.76 15166.32 11593.20 17269.89 19986.02 16993.74 70
AdaColmapbinary80.58 14979.42 15284.06 13393.09 5768.91 10889.36 9988.97 19869.27 22975.70 22489.69 15257.20 21795.77 5963.06 25788.41 13787.50 289
ACMM73.20 880.78 14379.84 14483.58 15089.31 13868.37 12689.99 7691.60 11270.28 20677.25 18789.66 15353.37 24893.53 15474.24 15782.85 21588.85 256
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CNLPA78.08 20676.79 21781.97 20290.40 10271.07 6587.59 16184.55 27766.03 28172.38 28589.64 15457.56 21286.04 32259.61 29083.35 20988.79 259
test_yl81.17 13080.47 13283.24 16289.13 14663.62 22686.21 20489.95 16272.43 16681.78 11789.61 15557.50 21393.58 14970.75 18886.90 15392.52 123
DCV-MVSNet81.17 13080.47 13283.24 16289.13 14663.62 22686.21 20489.95 16272.43 16681.78 11789.61 15557.50 21393.58 14970.75 18886.90 15392.52 123
EI-MVSNet-Vis-set84.19 7683.81 8085.31 8188.18 18067.85 13887.66 15989.73 16880.05 1482.95 10189.59 15770.74 6794.82 10180.66 9784.72 18193.28 93
PAPR81.66 12380.89 12683.99 14190.27 10364.00 22086.76 18991.77 10968.84 24477.13 19689.50 15867.63 10194.88 9967.55 22188.52 13593.09 102
jajsoiax79.29 17777.96 18583.27 16084.68 26766.57 16989.25 10290.16 15669.20 23475.46 23089.49 15945.75 32993.13 17876.84 13080.80 23990.11 207
MVSFormer82.85 10382.05 10985.24 8387.35 21570.21 8090.50 6490.38 14668.55 24881.32 12189.47 16061.68 16793.46 15878.98 10790.26 10692.05 143
jason81.39 12880.29 13684.70 10286.63 23569.90 8885.95 21086.77 24963.24 31381.07 12789.47 16061.08 18392.15 21278.33 11590.07 11192.05 143
jason: jason.
mvs_tets79.13 18177.77 19483.22 16484.70 26666.37 17189.17 10390.19 15569.38 22775.40 23389.46 16244.17 33993.15 17676.78 13280.70 24190.14 204
UGNet80.83 13779.59 14984.54 10588.04 18968.09 13389.42 9588.16 21576.95 6276.22 21489.46 16249.30 29893.94 13168.48 21490.31 10491.60 150
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VPA-MVSNet80.60 14680.55 13080.76 23288.07 18860.80 27386.86 18391.58 11375.67 9580.24 13489.45 16463.34 14090.25 26670.51 19279.22 26091.23 163
MVS_Test83.15 9783.06 9183.41 15686.86 22763.21 23986.11 20792.00 9574.31 12482.87 10389.44 16570.03 7493.21 16977.39 12488.50 13693.81 67
EI-MVSNet-UG-set83.81 8083.38 8685.09 8887.87 19767.53 14887.44 16789.66 16979.74 1682.23 11089.41 16670.24 7394.74 10479.95 10283.92 19592.99 111
RPSCF73.23 28471.46 28878.54 27582.50 31959.85 28582.18 28682.84 31058.96 35471.15 29989.41 16645.48 33384.77 33758.82 29971.83 34791.02 172
UniMVSNet_NR-MVSNet81.88 11681.54 11682.92 17888.46 17163.46 23387.13 17492.37 8180.19 1278.38 16389.14 16871.66 5593.05 18270.05 19676.46 29092.25 134
tttt051779.40 17477.91 18783.90 14588.10 18663.84 22388.37 13684.05 28571.45 18176.78 20089.12 16949.93 29194.89 9870.18 19583.18 21292.96 112
DU-MVS81.12 13280.52 13182.90 17987.80 20163.46 23387.02 17891.87 10379.01 2678.38 16389.07 17065.02 12993.05 18270.05 19676.46 29092.20 137
NR-MVSNet80.23 15679.38 15382.78 18787.80 20163.34 23686.31 20191.09 12979.01 2672.17 28889.07 17067.20 10692.81 19166.08 23575.65 30392.20 137
DELS-MVS85.41 6385.30 6585.77 7288.49 16967.93 13785.52 22693.44 2778.70 2983.63 9689.03 17274.57 2495.71 6180.26 10094.04 6193.66 72
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
mvsmamba80.60 14679.38 15384.27 11989.74 12067.24 15887.47 16486.95 24470.02 21175.38 23488.93 17351.24 27492.56 19575.47 14789.22 12293.00 110
baseline176.98 23176.75 22077.66 29088.13 18455.66 34185.12 23081.89 31873.04 15776.79 19988.90 17462.43 15787.78 30863.30 25671.18 35189.55 233
DP-MVS76.78 23574.57 25183.42 15493.29 4869.46 9788.55 12983.70 28963.98 30970.20 30588.89 17554.01 24294.80 10246.66 37281.88 22886.01 321
ab-mvs79.51 16878.97 16581.14 22288.46 17160.91 27183.84 26089.24 18570.36 20379.03 14888.87 17663.23 14490.21 26765.12 24282.57 22092.28 133
PEN-MVS77.73 21677.69 19877.84 28787.07 22653.91 35887.91 15391.18 12477.56 4473.14 27488.82 17761.23 17989.17 28659.95 28672.37 34190.43 193
tt080578.73 19077.83 19081.43 21285.17 25660.30 28189.41 9690.90 13271.21 18577.17 19488.73 17846.38 31893.21 16972.57 17578.96 26190.79 177
test_djsdf80.30 15579.32 15683.27 16083.98 28265.37 19490.50 6490.38 14668.55 24876.19 21588.70 17956.44 22393.46 15878.98 10780.14 24990.97 173
PAPM77.68 22076.40 22781.51 21087.29 22261.85 26083.78 26189.59 17264.74 29671.23 29788.70 17962.59 15393.66 14852.66 33987.03 15289.01 248
DTE-MVSNet76.99 23076.80 21677.54 29586.24 23853.06 36787.52 16290.66 13877.08 6072.50 28288.67 18160.48 19389.52 27957.33 31470.74 35390.05 214
PS-CasMVS78.01 21078.09 18377.77 28987.71 20654.39 35588.02 14791.22 12277.50 4773.26 27288.64 18260.73 18688.41 30161.88 27173.88 33090.53 189
cdsmvs_eth3d_5k19.96 38826.61 3900.00 4080.00 4310.00 4330.00 41989.26 1840.00 4260.00 42788.61 18361.62 1690.00 4270.00 4260.00 4250.00 423
lupinMVS81.39 12880.27 13784.76 10187.35 21570.21 8085.55 22286.41 25362.85 32081.32 12188.61 18361.68 16792.24 21078.41 11490.26 10691.83 146
F-COLMAP76.38 24574.33 25782.50 19389.28 14066.95 16688.41 13289.03 19364.05 30766.83 34288.61 18346.78 31592.89 18757.48 31178.55 26387.67 283
mvs_anonymous79.42 17379.11 16280.34 24084.45 27357.97 30382.59 28287.62 23067.40 26376.17 21888.56 18668.47 9289.59 27870.65 19186.05 16893.47 86
CP-MVSNet78.22 20178.34 17777.84 28787.83 20054.54 35387.94 15191.17 12577.65 3973.48 27088.49 18762.24 16188.43 30062.19 26774.07 32690.55 188
PVSNet_Blended_VisFu82.62 10581.83 11484.96 9290.80 9469.76 9088.74 12291.70 11069.39 22678.96 14988.46 18865.47 12594.87 10074.42 15488.57 13390.24 201
CANet_DTU80.61 14579.87 14382.83 18185.60 24963.17 24287.36 16888.65 20976.37 8175.88 22188.44 18953.51 24693.07 18173.30 16689.74 11692.25 134
PLCcopyleft70.83 1178.05 20876.37 22883.08 17091.88 7767.80 14088.19 14289.46 17664.33 30269.87 31488.38 19053.66 24493.58 14958.86 29882.73 21787.86 280
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
WR-MVS79.49 16979.22 16080.27 24288.79 15958.35 29685.06 23288.61 21178.56 3077.65 17988.34 19163.81 13990.66 26264.98 24477.22 27991.80 148
XXY-MVS75.41 25975.56 23774.96 32183.59 29157.82 30780.59 30983.87 28866.54 27574.93 25288.31 19263.24 14380.09 36362.16 26876.85 28586.97 303
Effi-MVS+83.62 8783.08 9085.24 8388.38 17567.45 14988.89 11589.15 18975.50 9782.27 10988.28 19369.61 7994.45 11477.81 11987.84 14193.84 66
API-MVS81.99 11581.23 11984.26 12190.94 9070.18 8591.10 5589.32 18071.51 18078.66 15688.28 19365.26 12695.10 9064.74 24691.23 9487.51 288
thisisatest053079.40 17477.76 19584.31 11587.69 20865.10 19987.36 16884.26 28370.04 21077.42 18388.26 19549.94 28994.79 10370.20 19484.70 18293.03 107
hse-mvs281.72 11980.94 12584.07 13188.72 16267.68 14385.87 21387.26 23876.02 8884.67 7088.22 19661.54 17093.48 15682.71 7773.44 33591.06 168
xiu_mvs_v1_base_debu80.80 14079.72 14684.03 13887.35 21570.19 8285.56 21988.77 20369.06 23881.83 11388.16 19750.91 27792.85 18878.29 11687.56 14389.06 243
xiu_mvs_v1_base80.80 14079.72 14684.03 13887.35 21570.19 8285.56 21988.77 20369.06 23881.83 11388.16 19750.91 27792.85 18878.29 11687.56 14389.06 243
xiu_mvs_v1_base_debi80.80 14079.72 14684.03 13887.35 21570.19 8285.56 21988.77 20369.06 23881.83 11388.16 19750.91 27792.85 18878.29 11687.56 14389.06 243
UniMVSNet (Re)81.60 12481.11 12183.09 16988.38 17564.41 21487.60 16093.02 4578.42 3278.56 15988.16 19769.78 7793.26 16569.58 20376.49 28991.60 150
AUN-MVS79.21 17977.60 20084.05 13688.71 16367.61 14585.84 21587.26 23869.08 23777.23 18988.14 20153.20 25093.47 15775.50 14673.45 33491.06 168
Anonymous2023121178.97 18677.69 19882.81 18390.54 9964.29 21690.11 7591.51 11565.01 29476.16 21988.13 20250.56 28293.03 18569.68 20277.56 27791.11 166
pm-mvs177.25 22876.68 22278.93 26784.22 27658.62 29486.41 19788.36 21471.37 18273.31 27188.01 20361.22 18089.15 28764.24 25073.01 33889.03 247
LTVRE_ROB69.57 1376.25 24674.54 25381.41 21388.60 16664.38 21579.24 32689.12 19270.76 19569.79 31687.86 20449.09 30193.20 17256.21 32480.16 24786.65 310
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WTY-MVS75.65 25475.68 23475.57 31286.40 23756.82 32177.92 34882.40 31365.10 29176.18 21687.72 20563.13 14980.90 36060.31 28481.96 22689.00 250
TAMVS78.89 18877.51 20283.03 17387.80 20167.79 14184.72 23985.05 27267.63 25876.75 20187.70 20662.25 16090.82 25858.53 30287.13 15090.49 191
BH-untuned79.47 17078.60 17082.05 19989.19 14465.91 18086.07 20888.52 21272.18 16875.42 23287.69 20761.15 18193.54 15360.38 28386.83 15586.70 309
COLMAP_ROBcopyleft66.92 1773.01 28770.41 30280.81 23187.13 22565.63 18788.30 13984.19 28462.96 31863.80 36887.69 20738.04 37392.56 19546.66 37274.91 32084.24 347
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OurMVSNet-221017-074.26 26872.42 27979.80 25183.76 28859.59 28985.92 21286.64 25066.39 27666.96 34087.58 20939.46 36491.60 23065.76 23869.27 35988.22 273
FA-MVS(test-final)80.96 13479.91 14284.10 12588.30 17865.01 20084.55 24590.01 16073.25 15379.61 14187.57 21058.35 20594.72 10571.29 18486.25 16492.56 122
Baseline_NR-MVSNet78.15 20578.33 17877.61 29285.79 24556.21 33486.78 18785.76 26473.60 14177.93 17587.57 21065.02 12988.99 28967.14 22775.33 31487.63 284
WR-MVS_H78.51 19678.49 17278.56 27488.02 19056.38 33088.43 13192.67 6777.14 5773.89 26587.55 21266.25 11689.24 28558.92 29773.55 33390.06 213
EI-MVSNet80.52 15079.98 14082.12 19784.28 27463.19 24186.41 19788.95 19974.18 12878.69 15487.54 21366.62 10992.43 20072.57 17580.57 24390.74 181
CVMVSNet72.99 28872.58 27774.25 32984.28 27450.85 38286.41 19783.45 29544.56 39773.23 27387.54 21349.38 29685.70 32565.90 23678.44 26686.19 316
ACMH+68.96 1476.01 25074.01 25982.03 20088.60 16665.31 19588.86 11687.55 23170.25 20867.75 33187.47 21541.27 35693.19 17458.37 30475.94 30087.60 285
TransMVSNet (Re)75.39 26174.56 25277.86 28685.50 25157.10 31886.78 18786.09 26172.17 16971.53 29587.34 21663.01 15089.31 28356.84 31961.83 38087.17 296
GBi-Net78.40 19777.40 20381.40 21487.60 21063.01 24388.39 13389.28 18171.63 17575.34 23687.28 21754.80 23191.11 24962.72 25979.57 25390.09 209
test178.40 19777.40 20381.40 21487.60 21063.01 24388.39 13389.28 18171.63 17575.34 23687.28 21754.80 23191.11 24962.72 25979.57 25390.09 209
FMVSNet278.20 20377.21 20781.20 22087.60 21062.89 24987.47 16489.02 19471.63 17575.29 24287.28 21754.80 23191.10 25262.38 26479.38 25789.61 231
FMVSNet177.44 22376.12 23081.40 21486.81 23063.01 24388.39 13389.28 18170.49 20274.39 26187.28 21749.06 30291.11 24960.91 28078.52 26490.09 209
v2v48280.23 15679.29 15783.05 17283.62 29064.14 21887.04 17789.97 16173.61 14078.18 16987.22 22161.10 18293.82 13976.11 13676.78 28791.18 164
ITE_SJBPF78.22 28181.77 32960.57 27683.30 29669.25 23167.54 33387.20 22236.33 37887.28 31254.34 33174.62 32386.80 306
anonymousdsp78.60 19477.15 20882.98 17680.51 34867.08 16187.24 17389.53 17465.66 28575.16 24587.19 22352.52 25192.25 20977.17 12679.34 25889.61 231
MVSTER79.01 18477.88 18982.38 19583.07 30464.80 20584.08 25988.95 19969.01 24178.69 15487.17 22454.70 23592.43 20074.69 15180.57 24389.89 222
thres100view90076.50 23975.55 23879.33 26089.52 12556.99 31985.83 21683.23 29873.94 13276.32 21287.12 22551.89 26691.95 21848.33 36383.75 19989.07 241
thres600view776.50 23975.44 23979.68 25489.40 13257.16 31685.53 22483.23 29873.79 13676.26 21387.09 22651.89 26691.89 22148.05 36883.72 20290.00 215
XVG-ACMP-BASELINE76.11 24874.27 25881.62 20783.20 30064.67 20783.60 26789.75 16769.75 22171.85 29187.09 22632.78 38592.11 21369.99 19880.43 24588.09 276
HY-MVS69.67 1277.95 21177.15 20880.36 23987.57 21460.21 28383.37 27187.78 22866.11 27875.37 23587.06 22863.27 14290.48 26461.38 27782.43 22190.40 195
CHOSEN 1792x268877.63 22175.69 23383.44 15389.98 11468.58 12278.70 33687.50 23356.38 37275.80 22386.84 22958.67 20291.40 24361.58 27585.75 17490.34 196
v879.97 16279.02 16482.80 18484.09 27964.50 21187.96 14990.29 15374.13 13075.24 24386.81 23062.88 15193.89 13874.39 15575.40 31290.00 215
AllTest70.96 30468.09 31979.58 25785.15 25863.62 22684.58 24479.83 34262.31 32760.32 38086.73 23132.02 38688.96 29250.28 35271.57 34986.15 317
TestCases79.58 25785.15 25863.62 22679.83 34262.31 32760.32 38086.73 23132.02 38688.96 29250.28 35271.57 34986.15 317
LCM-MVSNet-Re77.05 22976.94 21377.36 29687.20 22351.60 37580.06 31680.46 33575.20 10267.69 33286.72 23362.48 15588.98 29063.44 25489.25 12191.51 154
1112_ss77.40 22576.43 22680.32 24189.11 15060.41 28083.65 26487.72 22962.13 33073.05 27586.72 23362.58 15489.97 27162.11 27080.80 23990.59 187
ab-mvs-re7.23 3919.64 3940.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42786.72 2330.00 4310.00 4270.00 4260.00 4250.00 423
IterMVS-LS80.06 15979.38 15382.11 19885.89 24463.20 24086.79 18689.34 17974.19 12775.45 23186.72 23366.62 10992.39 20272.58 17476.86 28490.75 180
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH67.68 1675.89 25173.93 26181.77 20588.71 16366.61 16888.62 12789.01 19569.81 21766.78 34386.70 23741.95 35591.51 23855.64 32578.14 27087.17 296
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Test_1112_low_res76.40 24475.44 23979.27 26189.28 14058.09 29981.69 29187.07 24259.53 34972.48 28386.67 23861.30 17789.33 28260.81 28280.15 24890.41 194
FMVSNet377.88 21376.85 21580.97 22886.84 22962.36 25286.52 19588.77 20371.13 18675.34 23686.66 23954.07 24191.10 25262.72 25979.57 25389.45 235
pmmvs674.69 26573.39 26778.61 27181.38 33757.48 31386.64 19187.95 22264.99 29570.18 30686.61 24050.43 28489.52 27962.12 26970.18 35688.83 257
ET-MVSNet_ETH3D78.63 19376.63 22384.64 10386.73 23269.47 9585.01 23384.61 27669.54 22466.51 35086.59 24150.16 28691.75 22676.26 13584.24 19292.69 118
testgi66.67 34166.53 33867.08 37575.62 38041.69 41075.93 35676.50 36766.11 27865.20 36086.59 24135.72 38074.71 39443.71 38473.38 33684.84 341
CLD-MVS82.31 10981.65 11584.29 11688.47 17067.73 14285.81 21792.35 8275.78 9178.33 16586.58 24364.01 13694.35 11576.05 13887.48 14690.79 177
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
v1079.74 16478.67 16882.97 17784.06 28064.95 20187.88 15590.62 13973.11 15575.11 24786.56 24461.46 17394.05 12773.68 16075.55 30589.90 221
CDS-MVSNet79.07 18377.70 19783.17 16687.60 21068.23 13084.40 25286.20 25867.49 26176.36 21186.54 24561.54 17090.79 25961.86 27287.33 14790.49 191
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
xiu_mvs_v2_base81.69 12181.05 12283.60 14989.15 14568.03 13684.46 24890.02 15970.67 19681.30 12486.53 24663.17 14594.19 12375.60 14488.54 13488.57 267
TR-MVS77.44 22376.18 22981.20 22088.24 17963.24 23884.61 24386.40 25467.55 26077.81 17686.48 24754.10 24093.15 17657.75 31082.72 21887.20 295
EIA-MVS83.31 9682.80 9784.82 9889.59 12265.59 18888.21 14192.68 6674.66 11878.96 14986.42 24869.06 8695.26 8075.54 14590.09 10993.62 79
tfpn200view976.42 24375.37 24379.55 25989.13 14657.65 31085.17 22783.60 29073.41 14876.45 20886.39 24952.12 25891.95 21848.33 36383.75 19989.07 241
thres40076.50 23975.37 24379.86 24989.13 14657.65 31085.17 22783.60 29073.41 14876.45 20886.39 24952.12 25891.95 21848.33 36383.75 19990.00 215
v7n78.97 18677.58 20183.14 16783.45 29465.51 18988.32 13891.21 12373.69 13872.41 28486.32 25157.93 20793.81 14069.18 20675.65 30390.11 207
MAR-MVS81.84 11780.70 12785.27 8291.32 8271.53 5689.82 7990.92 13169.77 22078.50 16086.21 25262.36 15894.52 11165.36 24092.05 8289.77 227
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
v114480.03 16079.03 16383.01 17483.78 28764.51 20987.11 17690.57 14271.96 17278.08 17286.20 25361.41 17493.94 13174.93 15077.23 27890.60 186
test_vis1_n_192075.52 25675.78 23274.75 32579.84 35657.44 31483.26 27285.52 26662.83 32179.34 14686.17 25445.10 33479.71 36478.75 10981.21 23487.10 302
V4279.38 17678.24 18082.83 18181.10 34265.50 19085.55 22289.82 16471.57 17978.21 16786.12 25560.66 18993.18 17575.64 14275.46 30989.81 226
PVSNet_BlendedMVS80.60 14680.02 13982.36 19688.85 15365.40 19186.16 20692.00 9569.34 22878.11 17086.09 25666.02 12094.27 11871.52 18082.06 22587.39 290
v119279.59 16778.43 17583.07 17183.55 29264.52 20886.93 18190.58 14070.83 19277.78 17785.90 25759.15 20093.94 13173.96 15977.19 28090.76 179
SixPastTwentyTwo73.37 28071.26 29379.70 25385.08 26157.89 30585.57 21883.56 29271.03 19065.66 35485.88 25842.10 35392.57 19459.11 29563.34 37888.65 265
EPNet_dtu75.46 25774.86 24877.23 29982.57 31854.60 35286.89 18283.09 30271.64 17466.25 35285.86 25955.99 22488.04 30554.92 32886.55 15989.05 246
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
sss73.60 27773.64 26673.51 33582.80 31255.01 34976.12 35581.69 32162.47 32674.68 25685.85 26057.32 21578.11 37160.86 28180.93 23687.39 290
ETV-MVS84.90 7284.67 7285.59 7589.39 13368.66 12088.74 12292.64 7279.97 1584.10 8485.71 26169.32 8295.38 7580.82 9491.37 9292.72 115
test_cas_vis1_n_192073.76 27673.74 26573.81 33375.90 37759.77 28680.51 31082.40 31358.30 35981.62 11985.69 26244.35 33876.41 38276.29 13478.61 26285.23 334
v124078.99 18577.78 19382.64 19083.21 29963.54 23086.62 19290.30 15269.74 22377.33 18585.68 26357.04 21893.76 14473.13 16976.92 28290.62 184
v14419279.47 17078.37 17682.78 18783.35 29563.96 22186.96 17990.36 14969.99 21377.50 18185.67 26460.66 18993.77 14374.27 15676.58 28890.62 184
tfpnnormal74.39 26673.16 27078.08 28486.10 24358.05 30084.65 24287.53 23270.32 20571.22 29885.63 26554.97 22989.86 27243.03 38675.02 31986.32 313
PS-MVSNAJ81.69 12181.02 12383.70 14789.51 12668.21 13184.28 25490.09 15870.79 19381.26 12585.62 26663.15 14694.29 11675.62 14388.87 12788.59 266
v192192079.22 17878.03 18482.80 18483.30 29763.94 22286.80 18590.33 15069.91 21677.48 18285.53 26758.44 20493.75 14573.60 16176.85 28590.71 182
test_040272.79 29070.44 30179.84 25088.13 18465.99 17885.93 21184.29 28165.57 28667.40 33785.49 26846.92 31492.61 19335.88 40074.38 32580.94 378
v14878.72 19177.80 19281.47 21182.73 31461.96 25986.30 20288.08 21873.26 15276.18 21685.47 26962.46 15692.36 20471.92 17973.82 33190.09 209
USDC70.33 31268.37 31476.21 30680.60 34656.23 33379.19 32886.49 25260.89 33761.29 37685.47 26931.78 38889.47 28153.37 33676.21 29882.94 365
MVP-Stereo76.12 24774.46 25581.13 22385.37 25469.79 8984.42 25187.95 22265.03 29367.46 33585.33 27153.28 24991.73 22858.01 30883.27 21081.85 373
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MVS78.19 20476.99 21281.78 20485.66 24766.99 16284.66 24090.47 14455.08 37772.02 29085.27 27263.83 13894.11 12666.10 23489.80 11584.24 347
DIV-MVS_self_test77.72 21776.76 21880.58 23582.48 32160.48 27883.09 27687.86 22569.22 23274.38 26285.24 27362.10 16391.53 23671.09 18575.40 31289.74 228
FE-MVS77.78 21575.68 23484.08 13088.09 18766.00 17783.13 27587.79 22768.42 25278.01 17385.23 27445.50 33295.12 8559.11 29585.83 17391.11 166
cl____77.72 21776.76 21880.58 23582.49 32060.48 27883.09 27687.87 22469.22 23274.38 26285.22 27562.10 16391.53 23671.09 18575.41 31189.73 229
HyFIR lowres test77.53 22275.40 24183.94 14489.59 12266.62 16780.36 31388.64 21056.29 37376.45 20885.17 27657.64 21193.28 16461.34 27883.10 21391.91 145
pmmvs474.03 27471.91 28380.39 23881.96 32668.32 12781.45 29582.14 31559.32 35069.87 31485.13 27752.40 25488.13 30460.21 28574.74 32284.73 343
TDRefinement67.49 33464.34 34476.92 30173.47 39261.07 26984.86 23782.98 30659.77 34658.30 38785.13 27726.06 39687.89 30647.92 36960.59 38581.81 374
Fast-Effi-MVS+80.81 13879.92 14183.47 15288.85 15364.51 20985.53 22489.39 17870.79 19378.49 16185.06 27967.54 10293.58 14967.03 22986.58 15892.32 131
PVSNet_Blended80.98 13380.34 13482.90 17988.85 15365.40 19184.43 25092.00 9567.62 25978.11 17085.05 28066.02 12094.27 11871.52 18089.50 11889.01 248
ttmdpeth59.91 36057.10 36468.34 37067.13 40646.65 39574.64 36967.41 39748.30 39262.52 37485.04 28120.40 40675.93 38642.55 38845.90 40782.44 368
test_fmvs1_n70.86 30670.24 30472.73 34272.51 39955.28 34681.27 29879.71 34451.49 38878.73 15384.87 28227.54 39577.02 37676.06 13779.97 25185.88 325
WBMVS73.43 27972.81 27475.28 31887.91 19550.99 38178.59 33981.31 32665.51 28974.47 26084.83 28346.39 31786.68 31558.41 30377.86 27288.17 275
CMPMVSbinary51.72 2170.19 31468.16 31776.28 30573.15 39557.55 31279.47 32383.92 28648.02 39356.48 39384.81 28443.13 34586.42 31962.67 26281.81 22984.89 340
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EU-MVSNet68.53 32967.61 32971.31 35478.51 36947.01 39384.47 24684.27 28242.27 40066.44 35184.79 28540.44 36183.76 34258.76 30068.54 36483.17 359
BH-w/o78.21 20277.33 20680.84 23088.81 15765.13 19884.87 23687.85 22669.75 22174.52 25984.74 28661.34 17693.11 17958.24 30685.84 17284.27 346
pmmvs571.55 29970.20 30575.61 31177.83 37056.39 32981.74 29080.89 32757.76 36367.46 33584.49 28749.26 29985.32 33257.08 31675.29 31585.11 338
reproduce_monomvs75.40 26074.38 25678.46 27983.92 28457.80 30883.78 26186.94 24573.47 14672.25 28784.47 28838.74 36889.27 28475.32 14870.53 35488.31 272
thres20075.55 25574.47 25478.82 26887.78 20457.85 30683.07 27883.51 29372.44 16575.84 22284.42 28952.08 26191.75 22647.41 37083.64 20486.86 305
test_fmvs170.93 30570.52 29972.16 34673.71 38855.05 34880.82 30178.77 35151.21 38978.58 15884.41 29031.20 39076.94 37775.88 14080.12 25084.47 345
testing368.56 32867.67 32871.22 35587.33 22042.87 40583.06 27971.54 38570.36 20369.08 32284.38 29130.33 39285.69 32637.50 39875.45 31085.09 339
test_fmvs268.35 33167.48 33170.98 35769.50 40251.95 37080.05 31776.38 36849.33 39174.65 25784.38 29123.30 40475.40 39274.51 15375.17 31885.60 328
eth_miper_zixun_eth77.92 21276.69 22181.61 20983.00 30761.98 25883.15 27489.20 18769.52 22574.86 25384.35 29361.76 16692.56 19571.50 18272.89 33990.28 200
testing9176.54 23775.66 23679.18 26488.43 17355.89 33781.08 29983.00 30573.76 13775.34 23684.29 29446.20 32390.07 26964.33 24884.50 18491.58 152
c3_l78.75 18977.91 18781.26 21882.89 31161.56 26484.09 25889.13 19169.97 21475.56 22684.29 29466.36 11492.09 21473.47 16475.48 30790.12 206
testing9976.09 24975.12 24779.00 26588.16 18155.50 34380.79 30381.40 32473.30 15175.17 24484.27 29644.48 33790.02 27064.28 24984.22 19391.48 157
UWE-MVS72.13 29671.49 28774.03 33186.66 23447.70 39081.40 29776.89 36663.60 31275.59 22584.22 29739.94 36385.62 32748.98 36086.13 16788.77 260
Fast-Effi-MVS+-dtu78.02 20976.49 22482.62 19183.16 30366.96 16586.94 18087.45 23572.45 16371.49 29684.17 29854.79 23491.58 23167.61 22080.31 24689.30 239
IterMVS-SCA-FT75.43 25873.87 26380.11 24582.69 31564.85 20481.57 29383.47 29469.16 23570.49 30284.15 29951.95 26488.15 30369.23 20572.14 34587.34 292
131476.53 23875.30 24580.21 24383.93 28362.32 25484.66 24088.81 20160.23 34270.16 30884.07 30055.30 22890.73 26167.37 22383.21 21187.59 287
cl2278.07 20777.01 21081.23 21982.37 32361.83 26183.55 26887.98 22068.96 24275.06 24983.87 30161.40 17591.88 22273.53 16276.39 29289.98 218
EG-PatchMatch MVS74.04 27271.82 28480.71 23384.92 26367.42 15085.86 21488.08 21866.04 28064.22 36483.85 30235.10 38192.56 19557.44 31280.83 23882.16 372
thisisatest051577.33 22675.38 24283.18 16585.27 25563.80 22482.11 28783.27 29765.06 29275.91 22083.84 30349.54 29394.27 11867.24 22586.19 16591.48 157
test20.0367.45 33566.95 33668.94 36475.48 38144.84 40177.50 34977.67 35666.66 26963.01 37083.80 30447.02 31378.40 36942.53 38968.86 36383.58 356
miper_ehance_all_eth78.59 19577.76 19581.08 22482.66 31661.56 26483.65 26489.15 18968.87 24375.55 22783.79 30566.49 11292.03 21573.25 16776.39 29289.64 230
MSDG73.36 28270.99 29580.49 23784.51 27265.80 18380.71 30786.13 26065.70 28465.46 35583.74 30644.60 33590.91 25751.13 34776.89 28384.74 342
MonoMVSNet76.49 24275.80 23178.58 27381.55 33358.45 29586.36 20086.22 25774.87 11374.73 25583.73 30751.79 26988.73 29570.78 18772.15 34488.55 268
testing1175.14 26374.01 25978.53 27688.16 18156.38 33080.74 30680.42 33670.67 19672.69 28183.72 30843.61 34389.86 27262.29 26683.76 19889.36 237
IterMVS74.29 26772.94 27378.35 28081.53 33463.49 23281.58 29282.49 31268.06 25669.99 31183.69 30951.66 27185.54 32865.85 23771.64 34886.01 321
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tpm72.37 29371.71 28574.35 32882.19 32452.00 36979.22 32777.29 36264.56 29872.95 27783.68 31051.35 27283.26 34858.33 30575.80 30187.81 281
testing22274.04 27272.66 27678.19 28287.89 19655.36 34481.06 30079.20 34971.30 18374.65 25783.57 31139.11 36788.67 29751.43 34685.75 17490.53 189
Effi-MVS+-dtu80.03 16078.57 17184.42 11085.13 26068.74 11488.77 11988.10 21774.99 10774.97 25183.49 31257.27 21693.36 16273.53 16280.88 23791.18 164
baseline275.70 25373.83 26481.30 21783.26 29861.79 26282.57 28380.65 33166.81 26566.88 34183.42 31357.86 20992.19 21163.47 25379.57 25389.91 220
mvs5depth69.45 32067.45 33275.46 31673.93 38655.83 33879.19 32883.23 29866.89 26471.63 29483.32 31433.69 38485.09 33359.81 28855.34 39485.46 330
TinyColmap67.30 33764.81 34274.76 32481.92 32856.68 32580.29 31581.49 32360.33 34056.27 39483.22 31524.77 40087.66 31045.52 38069.47 35879.95 383
mvsany_test162.30 35661.26 36065.41 37769.52 40154.86 35066.86 39749.78 41746.65 39468.50 32883.21 31649.15 30066.28 40956.93 31860.77 38375.11 393
test_vis1_n69.85 31869.21 30971.77 34872.66 39855.27 34781.48 29476.21 36952.03 38575.30 24183.20 31728.97 39376.22 38474.60 15278.41 26883.81 353
CostFormer75.24 26273.90 26279.27 26182.65 31758.27 29880.80 30282.73 31161.57 33375.33 24083.13 31855.52 22691.07 25564.98 24478.34 26988.45 269
MVStest156.63 36452.76 37068.25 37161.67 41253.25 36671.67 37868.90 39538.59 40550.59 40183.05 31925.08 39870.66 40236.76 39938.56 40880.83 379
WB-MVSnew71.96 29871.65 28672.89 34084.67 27051.88 37282.29 28577.57 35762.31 32773.67 26883.00 32053.49 24781.10 35945.75 37982.13 22485.70 327
ETVMVS72.25 29571.05 29475.84 30887.77 20551.91 37179.39 32474.98 37369.26 23073.71 26782.95 32140.82 36086.14 32146.17 37684.43 18989.47 234
miper_lstm_enhance74.11 27173.11 27177.13 30080.11 35259.62 28872.23 37686.92 24766.76 26770.40 30382.92 32256.93 21982.92 34969.06 20872.63 34088.87 255
GA-MVS76.87 23375.17 24681.97 20282.75 31362.58 25081.44 29686.35 25672.16 17074.74 25482.89 32346.20 32392.02 21668.85 21181.09 23591.30 162
K. test v371.19 30168.51 31379.21 26383.04 30657.78 30984.35 25376.91 36572.90 16062.99 37182.86 32439.27 36591.09 25461.65 27452.66 39788.75 261
MS-PatchMatch73.83 27572.67 27577.30 29883.87 28566.02 17681.82 28884.66 27561.37 33668.61 32682.82 32547.29 31088.21 30259.27 29284.32 19177.68 388
lessismore_v078.97 26681.01 34357.15 31765.99 40061.16 37782.82 32539.12 36691.34 24559.67 28946.92 40488.43 270
D2MVS74.82 26473.21 26979.64 25679.81 35762.56 25180.34 31487.35 23664.37 30168.86 32382.66 32746.37 31990.10 26867.91 21881.24 23386.25 314
Anonymous2023120668.60 32667.80 32571.02 35680.23 35150.75 38378.30 34480.47 33456.79 37066.11 35382.63 32846.35 32078.95 36743.62 38575.70 30283.36 358
MIMVSNet70.69 30869.30 30774.88 32284.52 27156.35 33275.87 35979.42 34664.59 29767.76 33082.41 32941.10 35781.54 35646.64 37481.34 23186.75 308
UBG73.08 28672.27 28175.51 31488.02 19051.29 37978.35 34377.38 36165.52 28773.87 26682.36 33045.55 33086.48 31855.02 32784.39 19088.75 261
OpenMVS_ROBcopyleft64.09 1970.56 31068.19 31677.65 29180.26 34959.41 29185.01 23382.96 30758.76 35665.43 35682.33 33137.63 37591.23 24845.34 38276.03 29982.32 369
miper_enhance_ethall77.87 21476.86 21480.92 22981.65 33061.38 26682.68 28188.98 19665.52 28775.47 22882.30 33265.76 12492.00 21772.95 17076.39 29289.39 236
test0.0.03 168.00 33367.69 32768.90 36577.55 37147.43 39175.70 36072.95 38466.66 26966.56 34682.29 33348.06 30775.87 38744.97 38374.51 32483.41 357
PVSNet64.34 1872.08 29770.87 29775.69 31086.21 23956.44 32874.37 37080.73 33062.06 33170.17 30782.23 33442.86 34783.31 34754.77 32984.45 18887.32 293
MIMVSNet168.58 32766.78 33773.98 33280.07 35351.82 37380.77 30484.37 27864.40 30059.75 38382.16 33536.47 37783.63 34442.73 38770.33 35586.48 312
CL-MVSNet_self_test72.37 29371.46 28875.09 32079.49 36353.53 36080.76 30585.01 27369.12 23670.51 30182.05 33657.92 20884.13 34052.27 34166.00 37287.60 285
tpm273.26 28371.46 28878.63 27083.34 29656.71 32480.65 30880.40 33756.63 37173.55 26982.02 33751.80 26891.24 24756.35 32378.42 26787.95 277
PatchMatch-RL72.38 29270.90 29676.80 30388.60 16667.38 15279.53 32276.17 37062.75 32369.36 31982.00 33845.51 33184.89 33653.62 33480.58 24278.12 387
FMVSNet569.50 31967.96 32074.15 33082.97 31055.35 34580.01 31882.12 31662.56 32563.02 36981.53 33936.92 37681.92 35448.42 36274.06 32785.17 337
CR-MVSNet73.37 28071.27 29279.67 25581.32 34065.19 19675.92 35780.30 33859.92 34572.73 27981.19 34052.50 25286.69 31459.84 28777.71 27487.11 300
Patchmtry70.74 30769.16 31075.49 31580.72 34454.07 35774.94 36880.30 33858.34 35870.01 30981.19 34052.50 25286.54 31653.37 33671.09 35285.87 326
IB-MVS68.01 1575.85 25273.36 26883.31 15884.76 26566.03 17583.38 27085.06 27170.21 20969.40 31881.05 34245.76 32894.66 10865.10 24375.49 30689.25 240
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cascas76.72 23674.64 25082.99 17585.78 24665.88 18182.33 28489.21 18660.85 33872.74 27881.02 34347.28 31193.75 14567.48 22285.02 17789.34 238
LF4IMVS64.02 35262.19 35669.50 36270.90 40053.29 36576.13 35477.18 36352.65 38358.59 38580.98 34423.55 40376.52 38053.06 33866.66 36878.68 386
Anonymous2024052168.80 32567.22 33473.55 33474.33 38454.11 35683.18 27385.61 26558.15 36061.68 37580.94 34530.71 39181.27 35857.00 31773.34 33785.28 333
gm-plane-assit81.40 33653.83 35962.72 32480.94 34592.39 20263.40 255
UnsupCasMVSNet_eth67.33 33665.99 34071.37 35173.48 39151.47 37775.16 36485.19 26965.20 29060.78 37880.93 34742.35 34977.20 37557.12 31553.69 39685.44 331
dmvs_re71.14 30270.58 29872.80 34181.96 32659.68 28775.60 36179.34 34768.55 24869.27 32180.72 34849.42 29576.54 37952.56 34077.79 27382.19 371
MDTV_nov1_ep1369.97 30683.18 30153.48 36177.10 35380.18 34160.45 33969.33 32080.44 34948.89 30586.90 31351.60 34478.51 265
pmmvs-eth3d70.50 31167.83 32478.52 27777.37 37366.18 17481.82 28881.51 32258.90 35563.90 36780.42 35042.69 34886.28 32058.56 30165.30 37483.11 361
mmtdpeth74.16 27073.01 27277.60 29483.72 28961.13 26785.10 23185.10 27072.06 17177.21 19380.33 35143.84 34185.75 32477.14 12752.61 39885.91 324
PM-MVS66.41 34364.14 34573.20 33873.92 38756.45 32778.97 33264.96 40463.88 31164.72 36180.24 35219.84 40883.44 34666.24 23164.52 37679.71 384
SCA74.22 26972.33 28079.91 24884.05 28162.17 25679.96 31979.29 34866.30 27772.38 28580.13 35351.95 26488.60 29859.25 29377.67 27688.96 252
Patchmatch-test64.82 35063.24 35169.57 36179.42 36449.82 38763.49 40769.05 39351.98 38659.95 38280.13 35350.91 27770.98 40140.66 39273.57 33287.90 279
tpmrst72.39 29172.13 28273.18 33980.54 34749.91 38679.91 32079.08 35063.11 31571.69 29379.95 35555.32 22782.77 35065.66 23973.89 32986.87 304
DSMNet-mixed57.77 36356.90 36560.38 38367.70 40435.61 41469.18 38953.97 41532.30 41357.49 39079.88 35640.39 36268.57 40738.78 39672.37 34176.97 389
MDA-MVSNet-bldmvs66.68 34063.66 34975.75 30979.28 36560.56 27773.92 37278.35 35364.43 29950.13 40279.87 35744.02 34083.67 34346.10 37756.86 38883.03 363
PatchmatchNetpermissive73.12 28571.33 29178.49 27883.18 30160.85 27279.63 32178.57 35264.13 30371.73 29279.81 35851.20 27585.97 32357.40 31376.36 29788.66 264
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Syy-MVS68.05 33267.85 32268.67 36884.68 26740.97 41178.62 33773.08 38266.65 27266.74 34479.46 35952.11 26082.30 35232.89 40376.38 29582.75 366
myMVS_eth3d67.02 33866.29 33969.21 36384.68 26742.58 40678.62 33773.08 38266.65 27266.74 34479.46 35931.53 38982.30 35239.43 39576.38 29582.75 366
ppachtmachnet_test70.04 31567.34 33378.14 28379.80 35861.13 26779.19 32880.59 33259.16 35265.27 35779.29 36146.75 31687.29 31149.33 35866.72 36786.00 323
EPMVS69.02 32368.16 31771.59 34979.61 36149.80 38877.40 35066.93 39862.82 32270.01 30979.05 36245.79 32777.86 37356.58 32175.26 31687.13 299
PMMVS69.34 32168.67 31271.35 35375.67 37962.03 25775.17 36373.46 38050.00 39068.68 32479.05 36252.07 26278.13 37061.16 27982.77 21673.90 394
test-LLR72.94 28972.43 27874.48 32681.35 33858.04 30178.38 34077.46 35866.66 26969.95 31279.00 36448.06 30779.24 36566.13 23284.83 17986.15 317
test-mter71.41 30070.39 30374.48 32681.35 33858.04 30178.38 34077.46 35860.32 34169.95 31279.00 36436.08 37979.24 36566.13 23284.83 17986.15 317
KD-MVS_self_test68.81 32467.59 33072.46 34574.29 38545.45 39677.93 34787.00 24363.12 31463.99 36678.99 36642.32 35084.77 33756.55 32264.09 37787.16 298
test_fmvs363.36 35461.82 35767.98 37262.51 41146.96 39477.37 35174.03 37945.24 39667.50 33478.79 36712.16 41672.98 40072.77 17366.02 37183.99 351
KD-MVS_2432*160066.22 34563.89 34773.21 33675.47 38253.42 36270.76 38384.35 27964.10 30566.52 34878.52 36834.55 38284.98 33450.40 35050.33 40181.23 376
miper_refine_blended66.22 34563.89 34773.21 33675.47 38253.42 36270.76 38384.35 27964.10 30566.52 34878.52 36834.55 38284.98 33450.40 35050.33 40181.23 376
tpmvs71.09 30369.29 30876.49 30482.04 32556.04 33578.92 33381.37 32564.05 30767.18 33978.28 37049.74 29289.77 27449.67 35772.37 34183.67 355
our_test_369.14 32267.00 33575.57 31279.80 35858.80 29277.96 34677.81 35559.55 34862.90 37278.25 37147.43 30983.97 34151.71 34367.58 36683.93 352
MDA-MVSNet_test_wron65.03 34862.92 35271.37 35175.93 37656.73 32269.09 39274.73 37657.28 36854.03 39777.89 37245.88 32574.39 39649.89 35661.55 38182.99 364
YYNet165.03 34862.91 35371.38 35075.85 37856.60 32669.12 39174.66 37857.28 36854.12 39677.87 37345.85 32674.48 39549.95 35561.52 38283.05 362
ambc75.24 31973.16 39450.51 38463.05 40887.47 23464.28 36377.81 37417.80 41089.73 27657.88 30960.64 38485.49 329
tpm cat170.57 30968.31 31577.35 29782.41 32257.95 30478.08 34580.22 34052.04 38468.54 32777.66 37552.00 26387.84 30751.77 34272.07 34686.25 314
dp66.80 33965.43 34170.90 35879.74 36048.82 38975.12 36674.77 37559.61 34764.08 36577.23 37642.89 34680.72 36148.86 36166.58 36983.16 360
TESTMET0.1,169.89 31769.00 31172.55 34379.27 36656.85 32078.38 34074.71 37757.64 36468.09 32977.19 37737.75 37476.70 37863.92 25184.09 19484.10 350
CHOSEN 280x42066.51 34264.71 34371.90 34781.45 33563.52 23157.98 41068.95 39453.57 38062.59 37376.70 37846.22 32275.29 39355.25 32679.68 25276.88 390
PatchT68.46 33067.85 32270.29 35980.70 34543.93 40372.47 37574.88 37460.15 34370.55 30076.57 37949.94 28981.59 35550.58 34874.83 32185.34 332
mvsany_test353.99 36751.45 37261.61 38255.51 41644.74 40263.52 40645.41 42143.69 39958.11 38876.45 38017.99 40963.76 41254.77 32947.59 40376.34 391
RPMNet73.51 27870.49 30082.58 19281.32 34065.19 19675.92 35792.27 8457.60 36572.73 27976.45 38052.30 25595.43 7048.14 36777.71 27487.11 300
dmvs_testset62.63 35564.11 34658.19 38578.55 36824.76 42375.28 36265.94 40167.91 25760.34 37976.01 38253.56 24573.94 39831.79 40467.65 36575.88 392
ADS-MVSNet266.20 34763.33 35074.82 32379.92 35458.75 29367.55 39575.19 37253.37 38165.25 35875.86 38342.32 35080.53 36241.57 39068.91 36185.18 335
ADS-MVSNet64.36 35162.88 35468.78 36779.92 35447.17 39267.55 39571.18 38653.37 38165.25 35875.86 38342.32 35073.99 39741.57 39068.91 36185.18 335
EGC-MVSNET52.07 37347.05 37767.14 37483.51 29360.71 27480.50 31167.75 3960.07 4230.43 42475.85 38524.26 40181.54 35628.82 40662.25 37959.16 406
new-patchmatchnet61.73 35761.73 35861.70 38172.74 39724.50 42469.16 39078.03 35461.40 33456.72 39275.53 38638.42 37076.48 38145.95 37857.67 38784.13 349
N_pmnet52.79 37153.26 36951.40 39578.99 3677.68 42969.52 3873.89 42851.63 38757.01 39174.98 38740.83 35965.96 41037.78 39764.67 37580.56 382
WB-MVS54.94 36554.72 36655.60 39173.50 39020.90 42574.27 37161.19 40859.16 35250.61 40074.15 38847.19 31275.78 38817.31 41635.07 41070.12 398
patchmatchnet-post74.00 38951.12 27688.60 298
GG-mvs-BLEND75.38 31781.59 33255.80 33979.32 32569.63 39067.19 33873.67 39043.24 34488.90 29450.41 34984.50 18481.45 375
SSC-MVS53.88 36853.59 36854.75 39372.87 39619.59 42673.84 37360.53 41057.58 36649.18 40473.45 39146.34 32175.47 39116.20 41932.28 41269.20 399
Patchmatch-RL test70.24 31367.78 32677.61 29277.43 37259.57 29071.16 38070.33 38762.94 31968.65 32572.77 39250.62 28185.49 32969.58 20366.58 36987.77 282
FPMVS53.68 36951.64 37159.81 38465.08 40851.03 38069.48 38869.58 39141.46 40140.67 40872.32 39316.46 41270.00 40524.24 41265.42 37358.40 408
UnsupCasMVSNet_bld63.70 35361.53 35970.21 36073.69 38951.39 37872.82 37481.89 31855.63 37557.81 38971.80 39438.67 36978.61 36849.26 35952.21 39980.63 380
APD_test153.31 37049.93 37563.42 38065.68 40750.13 38571.59 37966.90 39934.43 41040.58 40971.56 3958.65 42176.27 38334.64 40255.36 39363.86 404
test_f52.09 37250.82 37355.90 38953.82 41942.31 40959.42 40958.31 41336.45 40856.12 39570.96 39612.18 41557.79 41553.51 33556.57 39067.60 400
PVSNet_057.27 2061.67 35859.27 36168.85 36679.61 36157.44 31468.01 39373.44 38155.93 37458.54 38670.41 39744.58 33677.55 37447.01 37135.91 40971.55 397
pmmvs357.79 36254.26 36768.37 36964.02 41056.72 32375.12 36665.17 40240.20 40252.93 39869.86 39820.36 40775.48 39045.45 38155.25 39572.90 396
test_vis1_rt60.28 35958.42 36265.84 37667.25 40555.60 34270.44 38560.94 40944.33 39859.00 38466.64 39924.91 39968.67 40662.80 25869.48 35773.25 395
new_pmnet50.91 37450.29 37452.78 39468.58 40334.94 41663.71 40556.63 41439.73 40344.95 40565.47 40021.93 40558.48 41434.98 40156.62 38964.92 402
gg-mvs-nofinetune69.95 31667.96 32075.94 30783.07 30454.51 35477.23 35270.29 38863.11 31570.32 30462.33 40143.62 34288.69 29653.88 33387.76 14284.62 344
JIA-IIPM66.32 34462.82 35576.82 30277.09 37461.72 26365.34 40375.38 37158.04 36264.51 36262.32 40242.05 35486.51 31751.45 34569.22 36082.21 370
LCM-MVSNet54.25 36649.68 37667.97 37353.73 42045.28 39966.85 39880.78 32935.96 40939.45 41062.23 4038.70 42078.06 37248.24 36651.20 40080.57 381
PMMVS240.82 38238.86 38646.69 39653.84 41816.45 42748.61 41349.92 41637.49 40631.67 41160.97 4048.14 42256.42 41628.42 40730.72 41367.19 401
testf145.72 37741.96 38157.00 38656.90 41445.32 39766.14 40059.26 41126.19 41430.89 41360.96 4054.14 42470.64 40326.39 41046.73 40555.04 409
APD_test245.72 37741.96 38157.00 38656.90 41445.32 39766.14 40059.26 41126.19 41430.89 41360.96 4054.14 42470.64 40326.39 41046.73 40555.04 409
MVS-HIRNet59.14 36157.67 36363.57 37981.65 33043.50 40471.73 37765.06 40339.59 40451.43 39957.73 40738.34 37182.58 35139.53 39373.95 32864.62 403
ANet_high50.57 37546.10 37963.99 37848.67 42339.13 41270.99 38280.85 32861.39 33531.18 41257.70 40817.02 41173.65 39931.22 40515.89 42079.18 385
PMVScopyleft37.38 2244.16 38140.28 38555.82 39040.82 42542.54 40865.12 40463.99 40534.43 41024.48 41657.12 4093.92 42676.17 38517.10 41755.52 39248.75 411
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
dongtai45.42 37945.38 38045.55 39773.36 39326.85 42167.72 39434.19 42354.15 37949.65 40356.41 41025.43 39762.94 41319.45 41428.09 41446.86 413
test_vis3_rt49.26 37647.02 37856.00 38854.30 41745.27 40066.76 39948.08 41836.83 40744.38 40653.20 4117.17 42364.07 41156.77 32055.66 39158.65 407
test_method31.52 38529.28 38938.23 39927.03 4276.50 43020.94 41862.21 4074.05 42122.35 41952.50 41213.33 41347.58 41927.04 40934.04 41160.62 405
kuosan39.70 38340.40 38437.58 40064.52 40926.98 41965.62 40233.02 42446.12 39542.79 40748.99 41324.10 40246.56 42112.16 42226.30 41539.20 414
DeepMVS_CXcopyleft27.40 40340.17 42626.90 42024.59 42717.44 41923.95 41748.61 4149.77 41826.48 42218.06 41524.47 41628.83 416
MVEpermissive26.22 2330.37 38725.89 39143.81 39844.55 42435.46 41528.87 41739.07 42218.20 41818.58 42040.18 4152.68 42747.37 42017.07 41823.78 41748.60 412
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft45.18 38041.86 38355.16 39277.03 37551.52 37632.50 41680.52 33332.46 41227.12 41535.02 4169.52 41975.50 38922.31 41360.21 38638.45 415
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN31.77 38430.64 38735.15 40152.87 42127.67 41857.09 41147.86 41924.64 41616.40 42133.05 41711.23 41754.90 41714.46 42018.15 41822.87 417
EMVS30.81 38629.65 38834.27 40250.96 42225.95 42256.58 41246.80 42024.01 41715.53 42230.68 41812.47 41454.43 41812.81 42117.05 41922.43 418
tmp_tt18.61 38921.40 39210.23 4054.82 42810.11 42834.70 41530.74 4261.48 42223.91 41826.07 41928.42 39413.41 42427.12 40815.35 4217.17 419
X-MVStestdata80.37 15477.83 19088.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9412.47 42067.45 10396.60 3383.06 6994.50 5194.07 54
test_post5.46 42150.36 28584.24 339
test_post178.90 3345.43 42248.81 30685.44 33159.25 293
wuyk23d16.82 39015.94 39319.46 40458.74 41331.45 41739.22 4143.74 4296.84 4206.04 4232.70 4231.27 42824.29 42310.54 42314.40 4222.63 420
testmvs6.04 3938.02 3960.10 4070.08 4290.03 43269.74 3860.04 4300.05 4240.31 4251.68 4240.02 4300.04 4250.24 4240.02 4230.25 422
test1236.12 3928.11 3950.14 4060.06 4300.09 43171.05 3810.03 4310.04 4250.25 4261.30 4250.05 4290.03 4260.21 4250.01 4240.29 421
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas5.26 3947.02 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42663.15 1460.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS42.58 40639.46 394
FOURS195.00 1072.39 3995.06 193.84 1574.49 12191.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4997.53 289.67 696.44 994.41 39
No_MVS89.16 194.34 2775.53 292.99 4997.53 289.67 696.44 994.41 39
eth-test20.00 431
eth-test0.00 431
IU-MVS95.30 271.25 5992.95 5566.81 26592.39 688.94 1696.63 494.85 20
save fliter93.80 4072.35 4290.47 6691.17 12574.31 124
test_0728_SECOND87.71 3295.34 171.43 5893.49 994.23 397.49 489.08 1296.41 1294.21 49
GSMVS88.96 252
test_part295.06 872.65 3291.80 13
sam_mvs151.32 27388.96 252
sam_mvs50.01 287
MTGPAbinary92.02 93
MTMP92.18 3432.83 425
test9_res84.90 4695.70 2692.87 113
agg_prior282.91 7395.45 2992.70 116
agg_prior92.85 6271.94 5091.78 10884.41 7894.93 94
test_prior472.60 3489.01 111
test_prior86.33 5792.61 6869.59 9192.97 5495.48 6793.91 60
旧先验286.56 19458.10 36187.04 4588.98 29074.07 158
新几何286.29 203
无先验87.48 16388.98 19660.00 34494.12 12567.28 22488.97 251
原ACMM286.86 183
testdata291.01 25662.37 265
segment_acmp73.08 38
testdata184.14 25775.71 92
test1286.80 5292.63 6770.70 7591.79 10782.71 10771.67 5496.16 4794.50 5193.54 84
plane_prior790.08 10868.51 123
plane_prior689.84 11768.70 11860.42 194
plane_prior592.44 7795.38 7578.71 11086.32 16291.33 160
plane_prior368.60 12178.44 3178.92 151
plane_prior291.25 5279.12 23
plane_prior189.90 116
plane_prior68.71 11690.38 7077.62 4086.16 166
n20.00 432
nn0.00 432
door-mid69.98 389
test1192.23 87
door69.44 392
HQP5-MVS66.98 163
HQP-NCC89.33 13589.17 10376.41 7777.23 189
ACMP_Plane89.33 13589.17 10376.41 7777.23 189
BP-MVS77.47 122
HQP4-MVS77.24 18895.11 8791.03 170
HQP3-MVS92.19 9085.99 170
HQP2-MVS60.17 197
MDTV_nov1_ep13_2view37.79 41375.16 36455.10 37666.53 34749.34 29753.98 33287.94 278
ACMMP++_ref81.95 227
ACMMP++81.25 232
Test By Simon64.33 133