This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9591.06 1696.03 176.84 1497.03 1789.09 1495.65 2794.47 38
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 11692.29 795.97 274.28 2997.24 1388.58 2496.91 194.87 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test072695.27 571.25 5993.60 694.11 677.33 5192.81 395.79 380.98 9
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5993.49 992.73 6477.33 5192.12 995.78 480.98 997.40 989.08 1596.41 1293.33 93
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD78.38 3492.12 995.78 481.46 797.40 989.42 1296.57 794.67 28
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5995.06 194.23 378.38 3492.78 495.74 682.45 397.49 489.42 1296.68 294.95 11
test_one_060195.07 771.46 5794.14 578.27 3692.05 1195.74 680.83 11
SED-MVS90.08 290.85 287.77 2695.30 270.98 6693.57 794.06 1077.24 5493.10 195.72 882.99 197.44 789.07 1796.63 494.88 15
test_241102_TWO94.06 1077.24 5492.78 495.72 881.26 897.44 789.07 1796.58 694.26 48
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 9192.29 795.66 1081.67 697.38 1187.44 3696.34 1593.95 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
reproduce_model87.28 3087.39 2886.95 4893.10 5671.24 6391.60 4293.19 3574.69 11788.80 2495.61 1170.29 7396.44 3986.20 4293.08 6993.16 101
reproduce-ours87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10988.96 2195.54 1271.20 6296.54 3686.28 4093.49 6593.06 106
our_new_method87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10988.96 2195.54 1271.20 6296.54 3686.28 4093.49 6593.06 106
test_241102_ONE95.30 270.98 6694.06 1077.17 5793.10 195.39 1482.99 197.27 12
MP-MVS-pluss87.67 2187.72 2087.54 3693.64 4472.04 4889.80 8193.50 2575.17 10686.34 5495.29 1570.86 6696.00 5488.78 2296.04 1694.58 33
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SF-MVS88.46 1288.74 1287.64 3592.78 6471.95 4992.40 2494.74 275.71 9389.16 2095.10 1675.65 2196.19 4687.07 3796.01 1794.79 22
ACMMP_NAP88.05 1688.08 1787.94 1993.70 4173.05 2290.86 5793.59 2376.27 8588.14 2995.09 1771.06 6496.67 2987.67 3296.37 1494.09 53
fmvsm_s_conf0.5_n_386.36 4687.46 2783.09 17187.08 22665.21 19689.09 11090.21 15579.67 1789.98 1895.02 1873.17 3891.71 23191.30 291.60 8892.34 132
MM89.16 689.23 788.97 490.79 9573.65 1092.66 2391.17 12586.57 187.39 4494.97 1971.70 5497.68 192.19 195.63 2895.57 1
MTAPA87.23 3187.00 3387.90 2294.18 3574.25 586.58 19692.02 9379.45 2085.88 5694.80 2068.07 9796.21 4586.69 3995.34 3293.23 96
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 7272.96 2593.73 593.67 2080.19 1288.10 3094.80 2073.76 3397.11 1587.51 3495.82 2194.90 14
Skip Steuart: Steuart Systems R&D Blog.
9.1488.26 1592.84 6391.52 4894.75 173.93 13688.57 2694.67 2275.57 2295.79 5886.77 3895.76 23
SR-MVS86.73 3886.67 4086.91 4994.11 3772.11 4792.37 2892.56 7574.50 12186.84 5194.65 2367.31 10695.77 5984.80 5392.85 7292.84 116
region2R87.42 2787.20 3288.09 1494.63 1473.55 1393.03 1493.12 4076.73 7284.45 8094.52 2469.09 8596.70 2784.37 5994.83 4594.03 56
ACMMPR87.44 2587.23 3188.08 1594.64 1373.59 1293.04 1293.20 3476.78 6984.66 7594.52 2468.81 9196.65 3084.53 5794.90 4194.00 57
APD-MVScopyleft87.44 2587.52 2587.19 4294.24 3272.39 3991.86 4092.83 6073.01 16188.58 2594.52 2473.36 3496.49 3884.26 6095.01 3792.70 118
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
APD-MVS_3200maxsize85.97 5185.88 5486.22 6092.69 6669.53 9291.93 3792.99 4973.54 14685.94 5594.51 2765.80 12495.61 6283.04 7492.51 7693.53 87
CP-MVS87.11 3386.92 3787.68 3494.20 3473.86 793.98 392.82 6376.62 7583.68 9694.46 2867.93 9995.95 5784.20 6394.39 5593.23 96
SR-MVS-dyc-post85.77 5685.61 5986.23 5993.06 5870.63 7691.88 3892.27 8473.53 14785.69 5994.45 2965.00 13295.56 6382.75 7891.87 8492.50 127
RE-MVS-def85.48 6193.06 5870.63 7691.88 3892.27 8473.53 14785.69 5994.45 2963.87 13882.75 7891.87 8492.50 127
HFP-MVS87.58 2287.47 2687.94 1994.58 1673.54 1593.04 1293.24 3376.78 6984.91 6894.44 3170.78 6796.61 3284.53 5794.89 4293.66 74
PGM-MVS86.68 4086.27 4587.90 2294.22 3373.38 1890.22 7393.04 4175.53 9783.86 9294.42 3267.87 10196.64 3182.70 8294.57 5093.66 74
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 7077.57 4383.84 9394.40 3372.24 4696.28 4385.65 4495.30 3593.62 81
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
fmvsm_s_conf0.1_n_283.80 8383.79 8383.83 14685.62 25164.94 20487.03 17986.62 25474.32 12687.97 3594.33 3460.67 19192.60 19489.72 887.79 14493.96 58
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6785.24 6394.32 3571.76 5296.93 1985.53 4695.79 2294.32 45
MVS_030487.69 2087.55 2488.12 1389.45 12971.76 5191.47 4989.54 17482.14 386.65 5294.28 3668.28 9697.46 690.81 395.31 3495.15 7
test_fmvsmconf0.01_n84.73 7484.52 7685.34 8080.25 35369.03 10389.47 9189.65 17173.24 15786.98 4994.27 3766.62 11093.23 16790.26 689.95 11493.78 71
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5980.26 1187.78 3694.27 3775.89 1996.81 2387.45 3596.44 993.05 108
mPP-MVS86.67 4186.32 4487.72 3094.41 2273.55 1392.74 2092.22 8876.87 6682.81 10994.25 3966.44 11496.24 4482.88 7794.28 5893.38 90
fmvsm_s_conf0.5_n_284.04 7984.11 8083.81 14786.17 24165.00 20286.96 18187.28 23874.35 12588.25 2894.23 4061.82 16792.60 19489.85 788.09 14293.84 67
DeepC-MVS79.81 287.08 3586.88 3987.69 3391.16 8472.32 4390.31 7193.94 1477.12 5982.82 10894.23 4072.13 4897.09 1684.83 5295.37 3193.65 78
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVS87.18 3286.91 3888.00 1794.42 2073.33 1992.78 1892.99 4979.14 2283.67 9794.17 4267.45 10496.60 3383.06 7294.50 5194.07 54
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 4378.35 1396.77 2489.59 1194.22 6094.67 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_fmvsmconf0.1_n85.61 6085.65 5885.50 7782.99 31269.39 10089.65 8690.29 15373.31 15387.77 3794.15 4471.72 5393.23 16790.31 590.67 10293.89 64
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5392.24 7169.03 10389.57 9093.39 3077.53 4789.79 1994.12 4578.98 1296.58 3585.66 4395.72 2494.58 33
HPM-MVS_fast85.35 6584.95 7186.57 5693.69 4270.58 7892.15 3591.62 11173.89 13782.67 11194.09 4662.60 15395.54 6580.93 9592.93 7193.57 83
ZD-MVS94.38 2572.22 4492.67 6770.98 19487.75 3894.07 4774.01 3296.70 2784.66 5594.84 44
fmvsm_s_conf0.1_n_a83.32 9882.99 9684.28 11783.79 28968.07 13489.34 10082.85 31269.80 22187.36 4594.06 4868.34 9591.56 23687.95 3083.46 21193.21 99
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6293.00 4680.90 788.06 3194.06 4876.43 1696.84 2188.48 2795.99 1894.34 44
test_fmvsmconf_n85.92 5286.04 5285.57 7685.03 26569.51 9389.62 8990.58 14073.42 15087.75 3894.02 5072.85 4293.24 16690.37 490.75 10093.96 58
OPU-MVS89.06 394.62 1575.42 493.57 794.02 5082.45 396.87 2083.77 6796.48 894.88 15
PC_three_145268.21 25792.02 1294.00 5282.09 595.98 5684.58 5696.68 294.95 11
SD-MVS88.06 1488.50 1486.71 5492.60 6972.71 2991.81 4193.19 3577.87 3790.32 1794.00 5274.83 2393.78 14187.63 3394.27 5993.65 78
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GST-MVS87.42 2787.26 2987.89 2494.12 3672.97 2492.39 2693.43 2876.89 6584.68 7293.99 5470.67 6996.82 2284.18 6495.01 3793.90 63
test_fmvsm_n_192085.29 6685.34 6385.13 8786.12 24369.93 8688.65 12790.78 13669.97 21788.27 2793.98 5571.39 5991.54 23888.49 2690.45 10493.91 61
fmvsm_s_conf0.1_n83.56 9183.38 8984.10 12584.86 26767.28 15589.40 9783.01 30770.67 19987.08 4793.96 5668.38 9491.45 24488.56 2584.50 18793.56 84
HPM-MVScopyleft87.11 3386.98 3587.50 3893.88 3972.16 4592.19 3393.33 3176.07 8883.81 9493.95 5769.77 7996.01 5385.15 4794.66 4794.32 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TSAR-MVS + MP.88.02 1788.11 1687.72 3093.68 4372.13 4691.41 5092.35 8274.62 12088.90 2393.85 5875.75 2096.00 5487.80 3194.63 4895.04 9
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMPcopyleft85.89 5585.39 6287.38 3993.59 4572.63 3392.74 2093.18 3976.78 6980.73 13393.82 5964.33 13496.29 4282.67 8390.69 10193.23 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_s_conf0.5_n_a83.63 8983.41 8884.28 11786.14 24268.12 13289.43 9382.87 31170.27 21087.27 4693.80 6069.09 8591.58 23488.21 2983.65 20693.14 103
fmvsm_s_conf0.5_n83.80 8383.71 8484.07 13186.69 23467.31 15489.46 9283.07 30671.09 19186.96 5093.70 6169.02 9091.47 24388.79 2184.62 18693.44 89
test_prior288.85 11875.41 9984.91 6893.54 6274.28 2983.31 7095.86 20
fmvsm_l_conf0.5_n84.47 7584.54 7484.27 11985.42 25568.81 10988.49 13187.26 24068.08 25888.03 3293.49 6372.04 4991.77 22788.90 2089.14 12592.24 139
VDDNet81.52 12880.67 13184.05 13690.44 10164.13 22289.73 8485.91 26571.11 19083.18 10293.48 6450.54 28693.49 15573.40 16888.25 13994.54 36
CDPH-MVS85.76 5785.29 6787.17 4393.49 4771.08 6488.58 12992.42 8068.32 25684.61 7793.48 6472.32 4596.15 4879.00 10995.43 3094.28 47
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5492.83 6081.50 585.79 5893.47 6673.02 4197.00 1884.90 4994.94 4094.10 52
fmvsm_l_conf0.5_n_a84.13 7884.16 7984.06 13385.38 25668.40 12588.34 13886.85 25067.48 26587.48 4293.40 6770.89 6591.61 23288.38 2889.22 12392.16 143
3Dnovator+77.84 485.48 6184.47 7788.51 791.08 8673.49 1693.18 1193.78 1880.79 876.66 20693.37 6860.40 19996.75 2677.20 12893.73 6495.29 5
DeepC-MVS_fast79.65 386.91 3686.62 4187.76 2793.52 4672.37 4191.26 5193.04 4176.62 7584.22 8493.36 6971.44 5896.76 2580.82 9795.33 3394.16 50
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDD-MVS83.01 10582.36 10684.96 9291.02 8866.40 17088.91 11588.11 21777.57 4384.39 8293.29 7052.19 26093.91 13577.05 13188.70 13394.57 35
test_fmvsmvis_n_192084.02 8083.87 8184.49 10884.12 28169.37 10188.15 14687.96 22270.01 21583.95 9193.23 7168.80 9291.51 24188.61 2389.96 11392.57 123
UA-Net85.08 6984.96 7085.45 7892.07 7368.07 13489.78 8290.86 13582.48 284.60 7893.20 7269.35 8295.22 8171.39 18690.88 9993.07 105
TEST993.26 5272.96 2588.75 12191.89 10168.44 25485.00 6693.10 7374.36 2895.41 73
train_agg86.43 4386.20 4687.13 4493.26 5272.96 2588.75 12191.89 10168.69 24985.00 6693.10 7374.43 2695.41 7384.97 4895.71 2593.02 110
test_893.13 5472.57 3588.68 12691.84 10568.69 24984.87 7093.10 7374.43 2695.16 83
LFMVS81.82 12181.23 12283.57 15391.89 7663.43 23889.84 7881.85 32377.04 6283.21 10193.10 7352.26 25993.43 16071.98 18189.95 11493.85 65
旧先验191.96 7465.79 18486.37 25893.08 7769.31 8492.74 7388.74 266
dcpmvs_285.63 5986.15 4984.06 13391.71 7864.94 20486.47 19991.87 10373.63 14286.60 5393.02 7876.57 1591.87 22583.36 6992.15 8095.35 3
testdata79.97 25090.90 9164.21 22084.71 27759.27 35485.40 6192.91 7962.02 16689.08 29168.95 21291.37 9386.63 314
MCST-MVS87.37 2987.25 3087.73 2894.53 1772.46 3889.82 7993.82 1673.07 15984.86 7192.89 8076.22 1796.33 4184.89 5195.13 3694.40 41
Vis-MVSNetpermissive83.46 9482.80 10085.43 7990.25 10468.74 11490.30 7290.13 15876.33 8480.87 13292.89 8061.00 18694.20 12272.45 18090.97 9793.35 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CPTT-MVS83.73 8583.33 9184.92 9593.28 4970.86 7292.09 3690.38 14668.75 24879.57 14592.83 8260.60 19593.04 18480.92 9691.56 9190.86 179
3Dnovator76.31 583.38 9782.31 10786.59 5587.94 19472.94 2890.64 6092.14 9277.21 5675.47 23192.83 8258.56 20694.72 10573.24 17192.71 7492.13 144
MSLP-MVS++85.43 6385.76 5784.45 10991.93 7570.24 7990.71 5992.86 5877.46 4984.22 8492.81 8467.16 10892.94 18680.36 10194.35 5790.16 206
test250677.30 23076.49 22779.74 25590.08 10852.02 37187.86 15763.10 40974.88 11280.16 13992.79 8538.29 37592.35 20768.74 21592.50 7794.86 18
ECVR-MVScopyleft79.61 16879.26 16180.67 23790.08 10854.69 35487.89 15577.44 36374.88 11280.27 13692.79 8548.96 30792.45 20168.55 21692.50 7794.86 18
test111179.43 17579.18 16480.15 24789.99 11353.31 36787.33 17177.05 36775.04 10780.23 13892.77 8748.97 30692.33 20968.87 21392.40 7994.81 21
MG-MVS83.41 9583.45 8783.28 16192.74 6562.28 25888.17 14489.50 17675.22 10281.49 12392.74 8866.75 10995.11 8772.85 17491.58 9092.45 130
casdiffmvs_mvgpermissive85.99 4986.09 5185.70 7487.65 20967.22 15988.69 12593.04 4179.64 1985.33 6292.54 8973.30 3594.50 11283.49 6891.14 9695.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
patch_mono-283.65 8784.54 7480.99 22990.06 11265.83 18284.21 25888.74 20871.60 18185.01 6592.44 9074.51 2583.50 34882.15 8592.15 8093.64 80
casdiffmvspermissive85.11 6885.14 6885.01 9087.20 22365.77 18587.75 15892.83 6077.84 3884.36 8392.38 9172.15 4793.93 13481.27 9390.48 10395.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS86.69 3986.95 3685.90 7190.76 9667.57 14792.83 1793.30 3279.67 1784.57 7992.27 9271.47 5795.02 9384.24 6293.46 6795.13 8
baseline84.93 7184.98 6984.80 10087.30 22165.39 19387.30 17292.88 5777.62 4184.04 8992.26 9371.81 5193.96 12881.31 9190.30 10695.03 10
QAPM80.88 13879.50 15485.03 8988.01 19268.97 10791.59 4392.00 9566.63 27775.15 24992.16 9457.70 21395.45 6863.52 25588.76 13190.66 186
IS-MVSNet83.15 10082.81 9984.18 12389.94 11563.30 24091.59 4388.46 21479.04 2679.49 14692.16 9465.10 12994.28 11767.71 22291.86 8694.95 11
BP-MVS184.32 7683.71 8486.17 6187.84 19967.85 13889.38 9889.64 17277.73 3983.98 9092.12 9656.89 22395.43 7084.03 6591.75 8795.24 6
新几何183.42 15693.13 5470.71 7485.48 27057.43 37081.80 11991.98 9763.28 14292.27 21064.60 25092.99 7087.27 297
OpenMVScopyleft72.83 1079.77 16678.33 18184.09 12985.17 25969.91 8790.57 6190.97 13066.70 27172.17 29191.91 9854.70 23893.96 12861.81 27690.95 9888.41 274
PHI-MVS86.43 4386.17 4887.24 4190.88 9270.96 6892.27 3294.07 972.45 16685.22 6491.90 9969.47 8196.42 4083.28 7195.94 1994.35 43
VNet82.21 11382.41 10481.62 21090.82 9360.93 27384.47 24989.78 16676.36 8384.07 8891.88 10064.71 13390.26 26870.68 19388.89 12793.66 74
EC-MVSNet86.01 4886.38 4384.91 9689.31 13866.27 17392.32 3093.63 2179.37 2184.17 8691.88 10069.04 8995.43 7083.93 6693.77 6393.01 111
GDP-MVS83.52 9282.64 10286.16 6288.14 18368.45 12489.13 10892.69 6572.82 16583.71 9591.86 10255.69 22895.35 7980.03 10489.74 11794.69 27
OPM-MVS83.50 9382.95 9785.14 8588.79 15970.95 6989.13 10891.52 11477.55 4680.96 13191.75 10360.71 18994.50 11279.67 10886.51 16389.97 222
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MVSMamba_PlusPlus85.99 4985.96 5386.05 6691.09 8567.64 14489.63 8892.65 7072.89 16484.64 7691.71 10471.85 5096.03 5084.77 5494.45 5494.49 37
XVG-OURS-SEG-HR80.81 14179.76 14883.96 14385.60 25268.78 11183.54 27290.50 14370.66 20276.71 20591.66 10560.69 19091.26 24976.94 13281.58 23391.83 149
EPNet83.72 8682.92 9886.14 6584.22 27969.48 9491.05 5685.27 27181.30 676.83 20191.65 10666.09 11995.56 6376.00 14293.85 6293.38 90
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OMC-MVS82.69 10781.97 11584.85 9788.75 16167.42 15087.98 14990.87 13474.92 11179.72 14391.65 10662.19 16393.96 12875.26 15286.42 16493.16 101
balanced_conf0386.78 3786.99 3486.15 6391.24 8367.61 14590.51 6292.90 5677.26 5387.44 4391.63 10871.27 6196.06 4985.62 4595.01 3794.78 23
test22291.50 8068.26 12984.16 25983.20 30454.63 38179.74 14291.63 10858.97 20491.42 9286.77 310
MVS_111021_HR85.14 6784.75 7286.32 5891.65 7972.70 3085.98 21290.33 15076.11 8782.08 11491.61 11071.36 6094.17 12481.02 9492.58 7592.08 145
原ACMM184.35 11393.01 6068.79 11092.44 7763.96 31381.09 12991.57 11166.06 12095.45 6867.19 22994.82 4688.81 261
LPG-MVS_test82.08 11581.27 12184.50 10689.23 14268.76 11290.22 7391.94 9975.37 10076.64 20791.51 11254.29 24194.91 9578.44 11583.78 19989.83 227
LGP-MVS_train84.50 10689.23 14268.76 11291.94 9975.37 10076.64 20791.51 11254.29 24194.91 9578.44 11583.78 19989.83 227
XVG-OURS80.41 15479.23 16283.97 14285.64 25069.02 10583.03 28390.39 14571.09 19177.63 18391.49 11454.62 24091.35 24775.71 14483.47 21091.54 156
alignmvs85.48 6185.32 6585.96 7089.51 12669.47 9589.74 8392.47 7676.17 8687.73 4091.46 11570.32 7293.78 14181.51 8888.95 12694.63 32
CANet86.45 4286.10 5087.51 3790.09 10770.94 7089.70 8592.59 7481.78 481.32 12491.43 11670.34 7197.23 1484.26 6093.36 6894.37 42
h-mvs3383.15 10082.19 10886.02 6990.56 9870.85 7388.15 14689.16 18976.02 8984.67 7391.39 11761.54 17295.50 6682.71 8075.48 31091.72 152
MGCFI-Net85.06 7085.51 6083.70 14989.42 13063.01 24689.43 9392.62 7376.43 7787.53 4191.34 11872.82 4393.42 16181.28 9288.74 13294.66 31
nrg03083.88 8183.53 8684.96 9286.77 23269.28 10290.46 6792.67 6774.79 11582.95 10491.33 11972.70 4493.09 18080.79 9979.28 26292.50 127
sasdasda85.91 5385.87 5586.04 6789.84 11769.44 9890.45 6893.00 4676.70 7388.01 3391.23 12073.28 3693.91 13581.50 8988.80 12994.77 24
canonicalmvs85.91 5385.87 5586.04 6789.84 11769.44 9890.45 6893.00 4676.70 7388.01 3391.23 12073.28 3693.91 13581.50 8988.80 12994.77 24
DPM-MVS84.93 7184.29 7886.84 5090.20 10573.04 2387.12 17693.04 4169.80 22182.85 10791.22 12273.06 4096.02 5276.72 13694.63 4891.46 162
Anonymous20240521178.25 20377.01 21381.99 20491.03 8760.67 27884.77 24183.90 29070.65 20380.00 14091.20 12341.08 36191.43 24565.21 24485.26 17993.85 65
SPE-MVS-test86.29 4786.48 4285.71 7391.02 8867.21 16092.36 2993.78 1878.97 2983.51 10091.20 12370.65 7095.15 8481.96 8694.89 4294.77 24
Anonymous2024052980.19 16178.89 16984.10 12590.60 9764.75 20988.95 11490.90 13265.97 28580.59 13491.17 12549.97 29193.73 14769.16 21082.70 22293.81 69
EPP-MVSNet83.40 9683.02 9584.57 10490.13 10664.47 21592.32 3090.73 13774.45 12479.35 14891.10 12669.05 8895.12 8572.78 17587.22 15294.13 51
TAPA-MVS73.13 979.15 18377.94 18982.79 18989.59 12262.99 25088.16 14591.51 11565.77 28677.14 19891.09 12760.91 18793.21 16950.26 35787.05 15492.17 142
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CSCG86.41 4586.19 4787.07 4592.91 6172.48 3790.81 5893.56 2473.95 13483.16 10391.07 12875.94 1895.19 8279.94 10694.38 5693.55 85
FIs82.07 11682.42 10381.04 22888.80 15858.34 30088.26 14193.49 2676.93 6478.47 16591.04 12969.92 7792.34 20869.87 20384.97 18192.44 131
MVS_111021_LR82.61 10982.11 10984.11 12488.82 15671.58 5585.15 23286.16 26274.69 11780.47 13591.04 12962.29 16090.55 26680.33 10290.08 11190.20 205
DP-MVS Recon83.11 10382.09 11186.15 6394.44 1970.92 7188.79 11992.20 8970.53 20479.17 15091.03 13164.12 13696.03 5068.39 21990.14 10991.50 158
mamv476.81 23778.23 18572.54 34786.12 24365.75 18678.76 33882.07 32064.12 30772.97 27991.02 13267.97 9868.08 41183.04 7478.02 27483.80 357
HQP_MVS83.64 8883.14 9285.14 8590.08 10868.71 11691.25 5292.44 7779.12 2478.92 15491.00 13360.42 19795.38 7578.71 11386.32 16591.33 163
plane_prior491.00 133
FC-MVSNet-test81.52 12882.02 11380.03 24988.42 17455.97 33987.95 15193.42 2977.10 6077.38 18790.98 13569.96 7691.79 22668.46 21884.50 18792.33 133
Vis-MVSNet (Re-imp)78.36 20278.45 17678.07 28888.64 16551.78 37786.70 19379.63 34874.14 13275.11 25090.83 13661.29 18089.75 27858.10 31091.60 8892.69 120
114514_t80.68 14779.51 15384.20 12294.09 3867.27 15689.64 8791.11 12858.75 36074.08 26790.72 13758.10 20995.04 9269.70 20489.42 12190.30 202
PAPM_NR83.02 10482.41 10484.82 9892.47 7066.37 17187.93 15391.80 10673.82 13877.32 18990.66 13867.90 10094.90 9770.37 19689.48 12093.19 100
LS3D76.95 23574.82 25283.37 15990.45 10067.36 15389.15 10786.94 24761.87 33569.52 32090.61 13951.71 27394.53 11046.38 37886.71 16088.21 277
VPNet78.69 19578.66 17278.76 27288.31 17755.72 34384.45 25286.63 25376.79 6878.26 16990.55 14059.30 20289.70 28066.63 23377.05 28490.88 178
UniMVSNet_ETH3D79.10 18578.24 18381.70 20986.85 22960.24 28587.28 17388.79 20374.25 12976.84 20090.53 14149.48 29791.56 23667.98 22082.15 22693.29 94
ACMP74.13 681.51 13080.57 13284.36 11289.42 13068.69 11989.97 7791.50 11874.46 12375.04 25390.41 14253.82 24694.54 10977.56 12482.91 21789.86 226
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
RRT-MVS82.60 11182.10 11084.10 12587.98 19362.94 25187.45 16791.27 12177.42 5079.85 14190.28 14356.62 22594.70 10779.87 10788.15 14194.67 28
PCF-MVS73.52 780.38 15578.84 17085.01 9087.71 20668.99 10683.65 26791.46 11963.00 32077.77 18190.28 14366.10 11895.09 9161.40 27988.22 14090.94 177
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
NP-MVS89.62 12168.32 12790.24 145
HQP-MVS82.61 10982.02 11384.37 11189.33 13566.98 16389.17 10392.19 9076.41 7877.23 19290.23 14660.17 20095.11 8777.47 12585.99 17391.03 173
PS-MVSNAJss82.07 11681.31 12084.34 11486.51 23767.27 15689.27 10191.51 11571.75 17679.37 14790.22 14763.15 14794.27 11877.69 12382.36 22591.49 159
TSAR-MVS + GP.85.71 5885.33 6486.84 5091.34 8172.50 3689.07 11187.28 23876.41 7885.80 5790.22 14774.15 3195.37 7881.82 8791.88 8392.65 122
SDMVSNet80.38 15580.18 14180.99 22989.03 15164.94 20480.45 31589.40 17875.19 10476.61 20989.98 14960.61 19487.69 31276.83 13483.55 20890.33 200
sd_testset77.70 22277.40 20678.60 27589.03 15160.02 28779.00 33485.83 26675.19 10476.61 20989.98 14954.81 23385.46 33362.63 26683.55 20890.33 200
TranMVSNet+NR-MVSNet80.84 13980.31 13882.42 19787.85 19862.33 25687.74 15991.33 12080.55 977.99 17789.86 15165.23 12892.62 19267.05 23175.24 32092.30 135
diffmvspermissive82.10 11481.88 11682.76 19283.00 31063.78 22883.68 26689.76 16772.94 16282.02 11589.85 15265.96 12390.79 26282.38 8487.30 15193.71 73
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-RMVSNet79.61 16878.44 17783.14 16989.38 13465.93 17984.95 23887.15 24373.56 14578.19 17189.79 15356.67 22493.36 16259.53 29486.74 15990.13 208
GeoE81.71 12381.01 12783.80 14889.51 12664.45 21688.97 11388.73 20971.27 18778.63 16089.76 15466.32 11693.20 17269.89 20286.02 17293.74 72
AdaColmapbinary80.58 15279.42 15584.06 13393.09 5768.91 10889.36 9988.97 19969.27 23275.70 22789.69 15557.20 22095.77 5963.06 26088.41 13887.50 292
ACMM73.20 880.78 14679.84 14783.58 15289.31 13868.37 12689.99 7691.60 11270.28 20977.25 19089.66 15653.37 25193.53 15474.24 16082.85 21888.85 259
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CNLPA78.08 20976.79 22081.97 20590.40 10271.07 6587.59 16284.55 28066.03 28472.38 28889.64 15757.56 21586.04 32559.61 29383.35 21288.79 262
test_yl81.17 13380.47 13583.24 16489.13 14663.62 22986.21 20789.95 16372.43 16981.78 12089.61 15857.50 21693.58 14970.75 19186.90 15692.52 125
DCV-MVSNet81.17 13380.47 13583.24 16489.13 14663.62 22986.21 20789.95 16372.43 16981.78 12089.61 15857.50 21693.58 14970.75 19186.90 15692.52 125
EI-MVSNet-Vis-set84.19 7783.81 8285.31 8188.18 18067.85 13887.66 16089.73 16980.05 1482.95 10489.59 16070.74 6894.82 10180.66 10084.72 18493.28 95
PAPR81.66 12680.89 12983.99 14190.27 10364.00 22386.76 19291.77 10968.84 24777.13 19989.50 16167.63 10294.88 9967.55 22488.52 13693.09 104
jajsoiax79.29 18077.96 18883.27 16284.68 27066.57 16989.25 10290.16 15769.20 23775.46 23389.49 16245.75 33293.13 17876.84 13380.80 24290.11 210
MVSFormer82.85 10682.05 11285.24 8387.35 21570.21 8090.50 6490.38 14668.55 25181.32 12489.47 16361.68 16993.46 15878.98 11090.26 10792.05 146
jason81.39 13180.29 13984.70 10286.63 23669.90 8885.95 21386.77 25163.24 31681.07 13089.47 16361.08 18592.15 21478.33 11890.07 11292.05 146
jason: jason.
mvs_tets79.13 18477.77 19783.22 16684.70 26966.37 17189.17 10390.19 15669.38 23075.40 23689.46 16544.17 34293.15 17676.78 13580.70 24490.14 207
UGNet80.83 14079.59 15284.54 10588.04 18968.09 13389.42 9588.16 21676.95 6376.22 21789.46 16549.30 30193.94 13168.48 21790.31 10591.60 153
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VPA-MVSNet80.60 14980.55 13380.76 23588.07 18860.80 27686.86 18691.58 11375.67 9680.24 13789.45 16763.34 14190.25 26970.51 19579.22 26391.23 166
MVS_Test83.15 10083.06 9483.41 15886.86 22863.21 24286.11 21092.00 9574.31 12782.87 10689.44 16870.03 7593.21 16977.39 12788.50 13793.81 69
EI-MVSNet-UG-set83.81 8283.38 8985.09 8887.87 19767.53 14887.44 16889.66 17079.74 1682.23 11389.41 16970.24 7494.74 10479.95 10583.92 19892.99 113
RPSCF73.23 28771.46 29178.54 27882.50 32259.85 28882.18 28982.84 31358.96 35771.15 30289.41 16945.48 33684.77 34058.82 30271.83 35091.02 175
UniMVSNet_NR-MVSNet81.88 11981.54 11982.92 18188.46 17163.46 23687.13 17592.37 8180.19 1278.38 16689.14 17171.66 5693.05 18270.05 19976.46 29392.25 137
tttt051779.40 17777.91 19083.90 14588.10 18663.84 22688.37 13784.05 28871.45 18476.78 20389.12 17249.93 29494.89 9870.18 19883.18 21592.96 114
DU-MVS81.12 13580.52 13482.90 18287.80 20163.46 23687.02 18091.87 10379.01 2778.38 16689.07 17365.02 13093.05 18270.05 19976.46 29392.20 140
NR-MVSNet80.23 15979.38 15682.78 19087.80 20163.34 23986.31 20491.09 12979.01 2772.17 29189.07 17367.20 10792.81 19166.08 23875.65 30692.20 140
DELS-MVS85.41 6485.30 6685.77 7288.49 16967.93 13785.52 22993.44 2778.70 3083.63 9989.03 17574.57 2495.71 6180.26 10394.04 6193.66 74
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
mvsmamba80.60 14979.38 15684.27 11989.74 12067.24 15887.47 16586.95 24670.02 21475.38 23788.93 17651.24 27792.56 19775.47 15089.22 12393.00 112
baseline176.98 23476.75 22377.66 29388.13 18455.66 34485.12 23381.89 32173.04 16076.79 20288.90 17762.43 15887.78 31163.30 25971.18 35489.55 236
DP-MVS76.78 23874.57 25483.42 15693.29 4869.46 9788.55 13083.70 29263.98 31270.20 30888.89 17854.01 24594.80 10246.66 37581.88 23186.01 324
ab-mvs79.51 17178.97 16881.14 22588.46 17160.91 27483.84 26389.24 18670.36 20679.03 15188.87 17963.23 14590.21 27065.12 24582.57 22392.28 136
PEN-MVS77.73 21977.69 20177.84 29087.07 22753.91 36187.91 15491.18 12477.56 4573.14 27788.82 18061.23 18189.17 28959.95 28972.37 34490.43 196
tt080578.73 19377.83 19381.43 21585.17 25960.30 28489.41 9690.90 13271.21 18877.17 19788.73 18146.38 32193.21 16972.57 17878.96 26490.79 180
test_djsdf80.30 15879.32 15983.27 16283.98 28565.37 19490.50 6490.38 14668.55 25176.19 21888.70 18256.44 22693.46 15878.98 11080.14 25290.97 176
PAPM77.68 22376.40 23081.51 21387.29 22261.85 26383.78 26489.59 17364.74 29971.23 30088.70 18262.59 15493.66 14852.66 34287.03 15589.01 251
DTE-MVSNet76.99 23376.80 21977.54 29886.24 23953.06 37087.52 16390.66 13877.08 6172.50 28588.67 18460.48 19689.52 28257.33 31770.74 35690.05 217
PS-CasMVS78.01 21378.09 18677.77 29287.71 20654.39 35888.02 14891.22 12277.50 4873.26 27588.64 18560.73 18888.41 30461.88 27473.88 33390.53 192
cdsmvs_eth3d_5k19.96 39126.61 3930.00 4110.00 4340.00 4360.00 42289.26 1850.00 4290.00 43088.61 18661.62 1710.00 4300.00 4290.00 4280.00 426
lupinMVS81.39 13180.27 14084.76 10187.35 21570.21 8085.55 22586.41 25662.85 32381.32 12488.61 18661.68 16992.24 21278.41 11790.26 10791.83 149
F-COLMAP76.38 24874.33 26082.50 19689.28 14066.95 16688.41 13389.03 19464.05 31066.83 34588.61 18646.78 31892.89 18757.48 31478.55 26687.67 286
mvs_anonymous79.42 17679.11 16580.34 24384.45 27657.97 30682.59 28587.62 23167.40 26676.17 22188.56 18968.47 9389.59 28170.65 19486.05 17193.47 88
CP-MVSNet78.22 20478.34 18077.84 29087.83 20054.54 35687.94 15291.17 12577.65 4073.48 27388.49 19062.24 16288.43 30362.19 27074.07 32990.55 191
PVSNet_Blended_VisFu82.62 10881.83 11784.96 9290.80 9469.76 9088.74 12391.70 11069.39 22978.96 15288.46 19165.47 12694.87 10074.42 15788.57 13490.24 204
CANet_DTU80.61 14879.87 14682.83 18485.60 25263.17 24587.36 16988.65 21076.37 8275.88 22488.44 19253.51 24993.07 18173.30 16989.74 11792.25 137
PLCcopyleft70.83 1178.05 21176.37 23183.08 17391.88 7767.80 14088.19 14389.46 17764.33 30569.87 31788.38 19353.66 24793.58 14958.86 30182.73 22087.86 283
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
WR-MVS79.49 17279.22 16380.27 24588.79 15958.35 29985.06 23588.61 21278.56 3177.65 18288.34 19463.81 14090.66 26564.98 24777.22 28291.80 151
XXY-MVS75.41 26275.56 24074.96 32483.59 29457.82 31080.59 31283.87 29166.54 27874.93 25588.31 19563.24 14480.09 36662.16 27176.85 28886.97 306
Effi-MVS+83.62 9083.08 9385.24 8388.38 17567.45 14988.89 11689.15 19075.50 9882.27 11288.28 19669.61 8094.45 11477.81 12287.84 14393.84 67
API-MVS81.99 11881.23 12284.26 12190.94 9070.18 8591.10 5589.32 18171.51 18378.66 15988.28 19665.26 12795.10 9064.74 24991.23 9587.51 291
thisisatest053079.40 17777.76 19884.31 11587.69 20865.10 20087.36 16984.26 28670.04 21377.42 18688.26 19849.94 29294.79 10370.20 19784.70 18593.03 109
hse-mvs281.72 12280.94 12884.07 13188.72 16267.68 14385.87 21687.26 24076.02 8984.67 7388.22 19961.54 17293.48 15682.71 8073.44 33891.06 171
xiu_mvs_v1_base_debu80.80 14379.72 14984.03 13887.35 21570.19 8285.56 22288.77 20469.06 24181.83 11688.16 20050.91 28092.85 18878.29 11987.56 14689.06 246
xiu_mvs_v1_base80.80 14379.72 14984.03 13887.35 21570.19 8285.56 22288.77 20469.06 24181.83 11688.16 20050.91 28092.85 18878.29 11987.56 14689.06 246
xiu_mvs_v1_base_debi80.80 14379.72 14984.03 13887.35 21570.19 8285.56 22288.77 20469.06 24181.83 11688.16 20050.91 28092.85 18878.29 11987.56 14689.06 246
UniMVSNet (Re)81.60 12781.11 12483.09 17188.38 17564.41 21787.60 16193.02 4578.42 3378.56 16288.16 20069.78 7893.26 16569.58 20676.49 29291.60 153
AUN-MVS79.21 18277.60 20384.05 13688.71 16367.61 14585.84 21887.26 24069.08 24077.23 19288.14 20453.20 25393.47 15775.50 14973.45 33791.06 171
Anonymous2023121178.97 18977.69 20182.81 18690.54 9964.29 21990.11 7591.51 11565.01 29776.16 22288.13 20550.56 28593.03 18569.68 20577.56 28091.11 169
pm-mvs177.25 23176.68 22578.93 27084.22 27958.62 29786.41 20088.36 21571.37 18573.31 27488.01 20661.22 18289.15 29064.24 25373.01 34189.03 250
LTVRE_ROB69.57 1376.25 24974.54 25681.41 21688.60 16664.38 21879.24 32989.12 19370.76 19869.79 31987.86 20749.09 30493.20 17256.21 32780.16 25086.65 313
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WTY-MVS75.65 25775.68 23775.57 31586.40 23856.82 32477.92 35182.40 31665.10 29476.18 21987.72 20863.13 15080.90 36360.31 28781.96 22989.00 253
TAMVS78.89 19177.51 20583.03 17687.80 20167.79 14184.72 24285.05 27567.63 26176.75 20487.70 20962.25 16190.82 26158.53 30587.13 15390.49 194
BH-untuned79.47 17378.60 17382.05 20289.19 14465.91 18086.07 21188.52 21372.18 17175.42 23587.69 21061.15 18393.54 15360.38 28686.83 15886.70 312
COLMAP_ROBcopyleft66.92 1773.01 29070.41 30580.81 23487.13 22565.63 18788.30 14084.19 28762.96 32163.80 37187.69 21038.04 37692.56 19746.66 37574.91 32384.24 350
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OurMVSNet-221017-074.26 27172.42 28279.80 25483.76 29159.59 29285.92 21586.64 25266.39 27966.96 34387.58 21239.46 36791.60 23365.76 24169.27 36288.22 276
FA-MVS(test-final)80.96 13779.91 14584.10 12588.30 17865.01 20184.55 24890.01 16173.25 15679.61 14487.57 21358.35 20894.72 10571.29 18786.25 16792.56 124
Baseline_NR-MVSNet78.15 20878.33 18177.61 29585.79 24756.21 33786.78 19085.76 26773.60 14477.93 17887.57 21365.02 13088.99 29267.14 23075.33 31787.63 287
WR-MVS_H78.51 19978.49 17578.56 27788.02 19056.38 33388.43 13292.67 6777.14 5873.89 26887.55 21566.25 11789.24 28858.92 30073.55 33690.06 216
EI-MVSNet80.52 15379.98 14382.12 20084.28 27763.19 24486.41 20088.95 20074.18 13178.69 15787.54 21666.62 11092.43 20272.57 17880.57 24690.74 184
CVMVSNet72.99 29172.58 28074.25 33284.28 27750.85 38586.41 20083.45 29844.56 40073.23 27687.54 21649.38 29985.70 32865.90 23978.44 26986.19 319
ACMH+68.96 1476.01 25374.01 26282.03 20388.60 16665.31 19588.86 11787.55 23270.25 21167.75 33487.47 21841.27 35993.19 17458.37 30775.94 30387.60 288
TransMVSNet (Re)75.39 26474.56 25577.86 28985.50 25457.10 32186.78 19086.09 26472.17 17271.53 29887.34 21963.01 15189.31 28656.84 32261.83 38387.17 299
GBi-Net78.40 20077.40 20681.40 21787.60 21063.01 24688.39 13489.28 18271.63 17875.34 23987.28 22054.80 23491.11 25262.72 26279.57 25690.09 212
test178.40 20077.40 20681.40 21787.60 21063.01 24688.39 13489.28 18271.63 17875.34 23987.28 22054.80 23491.11 25262.72 26279.57 25690.09 212
FMVSNet278.20 20677.21 21081.20 22387.60 21062.89 25287.47 16589.02 19571.63 17875.29 24587.28 22054.80 23491.10 25562.38 26779.38 26089.61 234
FMVSNet177.44 22676.12 23381.40 21786.81 23163.01 24688.39 13489.28 18270.49 20574.39 26487.28 22049.06 30591.11 25260.91 28378.52 26790.09 212
v2v48280.23 15979.29 16083.05 17583.62 29364.14 22187.04 17889.97 16273.61 14378.18 17287.22 22461.10 18493.82 13976.11 13976.78 29091.18 167
ITE_SJBPF78.22 28481.77 33260.57 27983.30 29969.25 23467.54 33687.20 22536.33 38187.28 31554.34 33474.62 32686.80 309
anonymousdsp78.60 19777.15 21182.98 17980.51 35167.08 16187.24 17489.53 17565.66 28875.16 24887.19 22652.52 25492.25 21177.17 12979.34 26189.61 234
MVSTER79.01 18777.88 19282.38 19883.07 30764.80 20884.08 26288.95 20069.01 24478.69 15787.17 22754.70 23892.43 20274.69 15480.57 24689.89 225
thres100view90076.50 24275.55 24179.33 26389.52 12556.99 32285.83 21983.23 30173.94 13576.32 21587.12 22851.89 26991.95 22048.33 36683.75 20289.07 244
thres600view776.50 24275.44 24279.68 25789.40 13257.16 31985.53 22783.23 30173.79 13976.26 21687.09 22951.89 26991.89 22348.05 37183.72 20590.00 218
XVG-ACMP-BASELINE76.11 25174.27 26181.62 21083.20 30364.67 21083.60 27089.75 16869.75 22471.85 29487.09 22932.78 38892.11 21569.99 20180.43 24888.09 279
HY-MVS69.67 1277.95 21477.15 21180.36 24287.57 21460.21 28683.37 27487.78 22966.11 28175.37 23887.06 23163.27 14390.48 26761.38 28082.43 22490.40 198
CHOSEN 1792x268877.63 22475.69 23683.44 15589.98 11468.58 12278.70 33987.50 23456.38 37575.80 22686.84 23258.67 20591.40 24661.58 27885.75 17790.34 199
v879.97 16579.02 16782.80 18784.09 28264.50 21487.96 15090.29 15374.13 13375.24 24686.81 23362.88 15293.89 13874.39 15875.40 31590.00 218
AllTest70.96 30768.09 32279.58 26085.15 26163.62 22984.58 24779.83 34562.31 33060.32 38386.73 23432.02 38988.96 29550.28 35571.57 35286.15 320
TestCases79.58 26085.15 26163.62 22979.83 34562.31 33060.32 38386.73 23432.02 38988.96 29550.28 35571.57 35286.15 320
LCM-MVSNet-Re77.05 23276.94 21677.36 29987.20 22351.60 37880.06 31980.46 33875.20 10367.69 33586.72 23662.48 15688.98 29363.44 25789.25 12291.51 157
1112_ss77.40 22876.43 22980.32 24489.11 15060.41 28383.65 26787.72 23062.13 33373.05 27886.72 23662.58 15589.97 27462.11 27380.80 24290.59 190
ab-mvs-re7.23 3949.64 3970.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 43086.72 2360.00 4340.00 4300.00 4290.00 4280.00 426
IterMVS-LS80.06 16279.38 15682.11 20185.89 24663.20 24386.79 18989.34 18074.19 13075.45 23486.72 23666.62 11092.39 20472.58 17776.86 28790.75 183
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH67.68 1675.89 25473.93 26481.77 20888.71 16366.61 16888.62 12889.01 19669.81 22066.78 34686.70 24041.95 35891.51 24155.64 32878.14 27387.17 299
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Test_1112_low_res76.40 24775.44 24279.27 26489.28 14058.09 30281.69 29487.07 24459.53 35272.48 28686.67 24161.30 17989.33 28560.81 28580.15 25190.41 197
FMVSNet377.88 21676.85 21880.97 23186.84 23062.36 25586.52 19888.77 20471.13 18975.34 23986.66 24254.07 24491.10 25562.72 26279.57 25689.45 238
pmmvs674.69 26873.39 27078.61 27481.38 34057.48 31686.64 19487.95 22364.99 29870.18 30986.61 24350.43 28789.52 28262.12 27270.18 35988.83 260
ET-MVSNet_ETH3D78.63 19676.63 22684.64 10386.73 23369.47 9585.01 23684.61 27969.54 22766.51 35386.59 24450.16 28991.75 22876.26 13884.24 19592.69 120
testgi66.67 34466.53 34167.08 37875.62 38341.69 41375.93 35976.50 37066.11 28165.20 36386.59 24435.72 38374.71 39743.71 38773.38 33984.84 344
CLD-MVS82.31 11281.65 11884.29 11688.47 17067.73 14285.81 22092.35 8275.78 9278.33 16886.58 24664.01 13794.35 11576.05 14187.48 14990.79 180
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
v1079.74 16778.67 17182.97 18084.06 28364.95 20387.88 15690.62 13973.11 15875.11 25086.56 24761.46 17594.05 12773.68 16375.55 30889.90 224
CDS-MVSNet79.07 18677.70 20083.17 16887.60 21068.23 13084.40 25586.20 26167.49 26476.36 21486.54 24861.54 17290.79 26261.86 27587.33 15090.49 194
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
xiu_mvs_v2_base81.69 12481.05 12583.60 15189.15 14568.03 13684.46 25190.02 16070.67 19981.30 12786.53 24963.17 14694.19 12375.60 14788.54 13588.57 270
TR-MVS77.44 22676.18 23281.20 22388.24 17963.24 24184.61 24686.40 25767.55 26377.81 17986.48 25054.10 24393.15 17657.75 31382.72 22187.20 298
EIA-MVS83.31 9982.80 10084.82 9889.59 12265.59 18888.21 14292.68 6674.66 11978.96 15286.42 25169.06 8795.26 8075.54 14890.09 11093.62 81
tfpn200view976.42 24675.37 24679.55 26289.13 14657.65 31385.17 23083.60 29373.41 15176.45 21186.39 25252.12 26191.95 22048.33 36683.75 20289.07 244
thres40076.50 24275.37 24679.86 25289.13 14657.65 31385.17 23083.60 29373.41 15176.45 21186.39 25252.12 26191.95 22048.33 36683.75 20290.00 218
v7n78.97 18977.58 20483.14 16983.45 29765.51 18988.32 13991.21 12373.69 14172.41 28786.32 25457.93 21093.81 14069.18 20975.65 30690.11 210
MAR-MVS81.84 12080.70 13085.27 8291.32 8271.53 5689.82 7990.92 13169.77 22378.50 16386.21 25562.36 15994.52 11165.36 24392.05 8289.77 230
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
v114480.03 16379.03 16683.01 17783.78 29064.51 21287.11 17790.57 14271.96 17578.08 17586.20 25661.41 17693.94 13174.93 15377.23 28190.60 189
test_vis1_n_192075.52 25975.78 23574.75 32879.84 35957.44 31783.26 27585.52 26962.83 32479.34 14986.17 25745.10 33779.71 36778.75 11281.21 23787.10 305
V4279.38 17978.24 18382.83 18481.10 34565.50 19085.55 22589.82 16571.57 18278.21 17086.12 25860.66 19293.18 17575.64 14575.46 31289.81 229
PVSNet_BlendedMVS80.60 14980.02 14282.36 19988.85 15365.40 19186.16 20992.00 9569.34 23178.11 17386.09 25966.02 12194.27 11871.52 18382.06 22887.39 293
v119279.59 17078.43 17883.07 17483.55 29564.52 21186.93 18490.58 14070.83 19577.78 18085.90 26059.15 20393.94 13173.96 16277.19 28390.76 182
SixPastTwentyTwo73.37 28371.26 29679.70 25685.08 26457.89 30885.57 22183.56 29571.03 19365.66 35785.88 26142.10 35692.57 19659.11 29863.34 38188.65 268
EPNet_dtu75.46 26074.86 25177.23 30282.57 32154.60 35586.89 18583.09 30571.64 17766.25 35585.86 26255.99 22788.04 30854.92 33186.55 16289.05 249
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
sss73.60 28073.64 26973.51 33882.80 31555.01 35276.12 35881.69 32462.47 32974.68 25985.85 26357.32 21878.11 37460.86 28480.93 23987.39 293
ETV-MVS84.90 7384.67 7385.59 7589.39 13368.66 12088.74 12392.64 7279.97 1584.10 8785.71 26469.32 8395.38 7580.82 9791.37 9392.72 117
test_cas_vis1_n_192073.76 27973.74 26873.81 33675.90 38059.77 28980.51 31382.40 31658.30 36281.62 12285.69 26544.35 34176.41 38576.29 13778.61 26585.23 337
v124078.99 18877.78 19682.64 19383.21 30263.54 23386.62 19590.30 15269.74 22677.33 18885.68 26657.04 22193.76 14473.13 17276.92 28590.62 187
v14419279.47 17378.37 17982.78 19083.35 29863.96 22486.96 18190.36 14969.99 21677.50 18485.67 26760.66 19293.77 14374.27 15976.58 29190.62 187
tfpnnormal74.39 26973.16 27378.08 28786.10 24558.05 30384.65 24587.53 23370.32 20871.22 30185.63 26854.97 23289.86 27543.03 38975.02 32286.32 316
PS-MVSNAJ81.69 12481.02 12683.70 14989.51 12668.21 13184.28 25790.09 15970.79 19681.26 12885.62 26963.15 14794.29 11675.62 14688.87 12888.59 269
v192192079.22 18178.03 18782.80 18783.30 30063.94 22586.80 18890.33 15069.91 21977.48 18585.53 27058.44 20793.75 14573.60 16476.85 28890.71 185
test_040272.79 29370.44 30479.84 25388.13 18465.99 17885.93 21484.29 28465.57 28967.40 34085.49 27146.92 31792.61 19335.88 40374.38 32880.94 381
v14878.72 19477.80 19581.47 21482.73 31761.96 26286.30 20588.08 21973.26 15576.18 21985.47 27262.46 15792.36 20671.92 18273.82 33490.09 212
USDC70.33 31568.37 31776.21 30980.60 34956.23 33679.19 33186.49 25560.89 34061.29 37985.47 27231.78 39189.47 28453.37 33976.21 30182.94 368
MVP-Stereo76.12 25074.46 25881.13 22685.37 25769.79 8984.42 25487.95 22365.03 29667.46 33885.33 27453.28 25291.73 23058.01 31183.27 21381.85 376
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MVS78.19 20776.99 21581.78 20785.66 24966.99 16284.66 24390.47 14455.08 38072.02 29385.27 27563.83 13994.11 12666.10 23789.80 11684.24 350
DIV-MVS_self_test77.72 22076.76 22180.58 23882.48 32460.48 28183.09 27987.86 22669.22 23574.38 26585.24 27662.10 16491.53 23971.09 18875.40 31589.74 231
FE-MVS77.78 21875.68 23784.08 13088.09 18766.00 17783.13 27887.79 22868.42 25578.01 17685.23 27745.50 33595.12 8559.11 29885.83 17691.11 169
cl____77.72 22076.76 22180.58 23882.49 32360.48 28183.09 27987.87 22569.22 23574.38 26585.22 27862.10 16491.53 23971.09 18875.41 31489.73 232
HyFIR lowres test77.53 22575.40 24483.94 14489.59 12266.62 16780.36 31688.64 21156.29 37676.45 21185.17 27957.64 21493.28 16461.34 28183.10 21691.91 148
pmmvs474.03 27771.91 28680.39 24181.96 32968.32 12781.45 29882.14 31859.32 35369.87 31785.13 28052.40 25788.13 30760.21 28874.74 32584.73 346
TDRefinement67.49 33764.34 34776.92 30473.47 39561.07 27284.86 24082.98 30959.77 34958.30 39085.13 28026.06 39987.89 30947.92 37260.59 38881.81 377
Fast-Effi-MVS+80.81 14179.92 14483.47 15488.85 15364.51 21285.53 22789.39 17970.79 19678.49 16485.06 28267.54 10393.58 14967.03 23286.58 16192.32 134
PVSNet_Blended80.98 13680.34 13782.90 18288.85 15365.40 19184.43 25392.00 9567.62 26278.11 17385.05 28366.02 12194.27 11871.52 18389.50 11989.01 251
ttmdpeth59.91 36357.10 36768.34 37367.13 40946.65 39874.64 37267.41 40048.30 39562.52 37785.04 28420.40 40975.93 38942.55 39145.90 41082.44 371
test_fmvs1_n70.86 30970.24 30772.73 34572.51 40255.28 34981.27 30179.71 34751.49 39178.73 15684.87 28527.54 39877.02 37976.06 14079.97 25485.88 328
WBMVS73.43 28272.81 27775.28 32187.91 19550.99 38478.59 34281.31 32965.51 29274.47 26384.83 28646.39 32086.68 31858.41 30677.86 27588.17 278
CMPMVSbinary51.72 2170.19 31768.16 32076.28 30873.15 39857.55 31579.47 32683.92 28948.02 39656.48 39684.81 28743.13 34886.42 32262.67 26581.81 23284.89 343
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EU-MVSNet68.53 33267.61 33271.31 35778.51 37247.01 39684.47 24984.27 28542.27 40366.44 35484.79 28840.44 36483.76 34558.76 30368.54 36783.17 362
BH-w/o78.21 20577.33 20980.84 23388.81 15765.13 19984.87 23987.85 22769.75 22474.52 26284.74 28961.34 17893.11 17958.24 30985.84 17584.27 349
pmmvs571.55 30270.20 30875.61 31477.83 37356.39 33281.74 29380.89 33057.76 36667.46 33884.49 29049.26 30285.32 33557.08 31975.29 31885.11 341
reproduce_monomvs75.40 26374.38 25978.46 28283.92 28757.80 31183.78 26486.94 24773.47 14972.25 29084.47 29138.74 37189.27 28775.32 15170.53 35788.31 275
thres20075.55 25874.47 25778.82 27187.78 20457.85 30983.07 28183.51 29672.44 16875.84 22584.42 29252.08 26491.75 22847.41 37383.64 20786.86 308
test_fmvs170.93 30870.52 30272.16 34973.71 39155.05 35180.82 30478.77 35451.21 39278.58 16184.41 29331.20 39376.94 38075.88 14380.12 25384.47 348
testing368.56 33167.67 33171.22 35887.33 22042.87 40883.06 28271.54 38870.36 20669.08 32584.38 29430.33 39585.69 32937.50 40175.45 31385.09 342
test_fmvs268.35 33467.48 33470.98 36069.50 40551.95 37380.05 32076.38 37149.33 39474.65 26084.38 29423.30 40775.40 39574.51 15675.17 32185.60 331
eth_miper_zixun_eth77.92 21576.69 22481.61 21283.00 31061.98 26183.15 27789.20 18869.52 22874.86 25684.35 29661.76 16892.56 19771.50 18572.89 34290.28 203
testing9176.54 24075.66 23979.18 26788.43 17355.89 34081.08 30283.00 30873.76 14075.34 23984.29 29746.20 32690.07 27264.33 25184.50 18791.58 155
c3_l78.75 19277.91 19081.26 22182.89 31461.56 26784.09 26189.13 19269.97 21775.56 22984.29 29766.36 11592.09 21673.47 16775.48 31090.12 209
testing9976.09 25275.12 25079.00 26888.16 18155.50 34680.79 30681.40 32773.30 15475.17 24784.27 29944.48 34090.02 27364.28 25284.22 19691.48 160
UWE-MVS72.13 29971.49 29074.03 33486.66 23547.70 39381.40 30076.89 36963.60 31575.59 22884.22 30039.94 36685.62 33048.98 36386.13 17088.77 263
Fast-Effi-MVS+-dtu78.02 21276.49 22782.62 19483.16 30666.96 16586.94 18387.45 23672.45 16671.49 29984.17 30154.79 23791.58 23467.61 22380.31 24989.30 242
IterMVS-SCA-FT75.43 26173.87 26680.11 24882.69 31864.85 20781.57 29683.47 29769.16 23870.49 30584.15 30251.95 26788.15 30669.23 20872.14 34887.34 295
131476.53 24175.30 24880.21 24683.93 28662.32 25784.66 24388.81 20260.23 34570.16 31184.07 30355.30 23190.73 26467.37 22683.21 21487.59 290
cl2278.07 21077.01 21381.23 22282.37 32661.83 26483.55 27187.98 22168.96 24575.06 25283.87 30461.40 17791.88 22473.53 16576.39 29589.98 221
EG-PatchMatch MVS74.04 27571.82 28780.71 23684.92 26667.42 15085.86 21788.08 21966.04 28364.22 36783.85 30535.10 38492.56 19757.44 31580.83 24182.16 375
thisisatest051577.33 22975.38 24583.18 16785.27 25863.80 22782.11 29083.27 30065.06 29575.91 22383.84 30649.54 29694.27 11867.24 22886.19 16891.48 160
test20.0367.45 33866.95 33968.94 36775.48 38444.84 40477.50 35277.67 35966.66 27263.01 37383.80 30747.02 31678.40 37242.53 39268.86 36683.58 359
miper_ehance_all_eth78.59 19877.76 19881.08 22782.66 31961.56 26783.65 26789.15 19068.87 24675.55 23083.79 30866.49 11392.03 21773.25 17076.39 29589.64 233
MSDG73.36 28570.99 29880.49 24084.51 27565.80 18380.71 31086.13 26365.70 28765.46 35883.74 30944.60 33890.91 26051.13 35076.89 28684.74 345
MonoMVSNet76.49 24575.80 23478.58 27681.55 33658.45 29886.36 20386.22 26074.87 11474.73 25883.73 31051.79 27288.73 29870.78 19072.15 34788.55 271
testing1175.14 26674.01 26278.53 27988.16 18156.38 33380.74 30980.42 33970.67 19972.69 28483.72 31143.61 34689.86 27562.29 26983.76 20189.36 240
IterMVS74.29 27072.94 27678.35 28381.53 33763.49 23581.58 29582.49 31568.06 25969.99 31483.69 31251.66 27485.54 33165.85 24071.64 35186.01 324
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tpm72.37 29671.71 28874.35 33182.19 32752.00 37279.22 33077.29 36564.56 30172.95 28083.68 31351.35 27583.26 35158.33 30875.80 30487.81 284
testing22274.04 27572.66 27978.19 28587.89 19655.36 34781.06 30379.20 35271.30 18674.65 26083.57 31439.11 37088.67 30051.43 34985.75 17790.53 192
Effi-MVS+-dtu80.03 16378.57 17484.42 11085.13 26368.74 11488.77 12088.10 21874.99 10874.97 25483.49 31557.27 21993.36 16273.53 16580.88 24091.18 167
baseline275.70 25673.83 26781.30 22083.26 30161.79 26582.57 28680.65 33466.81 26866.88 34483.42 31657.86 21292.19 21363.47 25679.57 25689.91 223
mvs5depth69.45 32367.45 33575.46 31973.93 38955.83 34179.19 33183.23 30166.89 26771.63 29783.32 31733.69 38785.09 33659.81 29155.34 39785.46 333
TinyColmap67.30 34064.81 34574.76 32781.92 33156.68 32880.29 31881.49 32660.33 34356.27 39783.22 31824.77 40387.66 31345.52 38369.47 36179.95 386
mvsany_test162.30 35961.26 36365.41 38069.52 40454.86 35366.86 40049.78 42046.65 39768.50 33183.21 31949.15 30366.28 41256.93 32160.77 38675.11 396
test_vis1_n69.85 32169.21 31271.77 35172.66 40155.27 35081.48 29776.21 37252.03 38875.30 24483.20 32028.97 39676.22 38774.60 15578.41 27183.81 356
CostFormer75.24 26573.90 26579.27 26482.65 32058.27 30180.80 30582.73 31461.57 33675.33 24383.13 32155.52 22991.07 25864.98 24778.34 27288.45 272
MVStest156.63 36752.76 37368.25 37461.67 41553.25 36971.67 38168.90 39838.59 40850.59 40483.05 32225.08 40170.66 40536.76 40238.56 41180.83 382
WB-MVSnew71.96 30171.65 28972.89 34384.67 27351.88 37582.29 28877.57 36062.31 33073.67 27183.00 32353.49 25081.10 36245.75 38282.13 22785.70 330
ETVMVS72.25 29871.05 29775.84 31187.77 20551.91 37479.39 32774.98 37669.26 23373.71 27082.95 32440.82 36386.14 32446.17 37984.43 19289.47 237
miper_lstm_enhance74.11 27473.11 27477.13 30380.11 35559.62 29172.23 37986.92 24966.76 27070.40 30682.92 32556.93 22282.92 35269.06 21172.63 34388.87 258
GA-MVS76.87 23675.17 24981.97 20582.75 31662.58 25381.44 29986.35 25972.16 17374.74 25782.89 32646.20 32692.02 21868.85 21481.09 23891.30 165
K. test v371.19 30468.51 31679.21 26683.04 30957.78 31284.35 25676.91 36872.90 16362.99 37482.86 32739.27 36891.09 25761.65 27752.66 40088.75 264
MS-PatchMatch73.83 27872.67 27877.30 30183.87 28866.02 17681.82 29184.66 27861.37 33968.61 32982.82 32847.29 31388.21 30559.27 29584.32 19477.68 391
lessismore_v078.97 26981.01 34657.15 32065.99 40361.16 38082.82 32839.12 36991.34 24859.67 29246.92 40788.43 273
D2MVS74.82 26773.21 27279.64 25979.81 36062.56 25480.34 31787.35 23764.37 30468.86 32682.66 33046.37 32290.10 27167.91 22181.24 23686.25 317
Anonymous2023120668.60 32967.80 32871.02 35980.23 35450.75 38678.30 34780.47 33756.79 37366.11 35682.63 33146.35 32378.95 37043.62 38875.70 30583.36 361
MIMVSNet70.69 31169.30 31074.88 32584.52 27456.35 33575.87 36279.42 34964.59 30067.76 33382.41 33241.10 36081.54 35946.64 37781.34 23486.75 311
UBG73.08 28972.27 28475.51 31788.02 19051.29 38278.35 34677.38 36465.52 29073.87 26982.36 33345.55 33386.48 32155.02 33084.39 19388.75 264
OpenMVS_ROBcopyleft64.09 1970.56 31368.19 31977.65 29480.26 35259.41 29485.01 23682.96 31058.76 35965.43 35982.33 33437.63 37891.23 25145.34 38576.03 30282.32 372
miper_enhance_ethall77.87 21776.86 21780.92 23281.65 33361.38 26982.68 28488.98 19765.52 29075.47 23182.30 33565.76 12592.00 21972.95 17376.39 29589.39 239
test0.0.03 168.00 33667.69 33068.90 36877.55 37447.43 39475.70 36372.95 38766.66 27266.56 34982.29 33648.06 31075.87 39044.97 38674.51 32783.41 360
PVSNet64.34 1872.08 30070.87 30075.69 31386.21 24056.44 33174.37 37380.73 33362.06 33470.17 31082.23 33742.86 35083.31 35054.77 33284.45 19187.32 296
MIMVSNet168.58 33066.78 34073.98 33580.07 35651.82 37680.77 30784.37 28164.40 30359.75 38682.16 33836.47 38083.63 34742.73 39070.33 35886.48 315
CL-MVSNet_self_test72.37 29671.46 29175.09 32379.49 36653.53 36380.76 30885.01 27669.12 23970.51 30482.05 33957.92 21184.13 34352.27 34466.00 37587.60 288
tpm273.26 28671.46 29178.63 27383.34 29956.71 32780.65 31180.40 34056.63 37473.55 27282.02 34051.80 27191.24 25056.35 32678.42 27087.95 280
PatchMatch-RL72.38 29570.90 29976.80 30688.60 16667.38 15279.53 32576.17 37362.75 32669.36 32282.00 34145.51 33484.89 33953.62 33780.58 24578.12 390
FMVSNet569.50 32267.96 32374.15 33382.97 31355.35 34880.01 32182.12 31962.56 32863.02 37281.53 34236.92 37981.92 35748.42 36574.06 33085.17 340
CR-MVSNet73.37 28371.27 29579.67 25881.32 34365.19 19775.92 36080.30 34159.92 34872.73 28281.19 34352.50 25586.69 31759.84 29077.71 27787.11 303
Patchmtry70.74 31069.16 31375.49 31880.72 34754.07 36074.94 37180.30 34158.34 36170.01 31281.19 34352.50 25586.54 31953.37 33971.09 35585.87 329
IB-MVS68.01 1575.85 25573.36 27183.31 16084.76 26866.03 17583.38 27385.06 27470.21 21269.40 32181.05 34545.76 33194.66 10865.10 24675.49 30989.25 243
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cascas76.72 23974.64 25382.99 17885.78 24865.88 18182.33 28789.21 18760.85 34172.74 28181.02 34647.28 31493.75 14567.48 22585.02 18089.34 241
LF4IMVS64.02 35562.19 35969.50 36570.90 40353.29 36876.13 35777.18 36652.65 38658.59 38880.98 34723.55 40676.52 38353.06 34166.66 37178.68 389
Anonymous2024052168.80 32867.22 33773.55 33774.33 38754.11 35983.18 27685.61 26858.15 36361.68 37880.94 34830.71 39481.27 36157.00 32073.34 34085.28 336
gm-plane-assit81.40 33953.83 36262.72 32780.94 34892.39 20463.40 258
UnsupCasMVSNet_eth67.33 33965.99 34371.37 35473.48 39451.47 38075.16 36785.19 27265.20 29360.78 38180.93 35042.35 35277.20 37857.12 31853.69 39985.44 334
dmvs_re71.14 30570.58 30172.80 34481.96 32959.68 29075.60 36479.34 35068.55 25169.27 32480.72 35149.42 29876.54 38252.56 34377.79 27682.19 374
MDTV_nov1_ep1369.97 30983.18 30453.48 36477.10 35680.18 34460.45 34269.33 32380.44 35248.89 30886.90 31651.60 34778.51 268
pmmvs-eth3d70.50 31467.83 32778.52 28077.37 37666.18 17481.82 29181.51 32558.90 35863.90 37080.42 35342.69 35186.28 32358.56 30465.30 37783.11 364
mmtdpeth74.16 27373.01 27577.60 29783.72 29261.13 27085.10 23485.10 27372.06 17477.21 19680.33 35443.84 34485.75 32777.14 13052.61 40185.91 327
PM-MVS66.41 34664.14 34873.20 34173.92 39056.45 33078.97 33564.96 40763.88 31464.72 36480.24 35519.84 41183.44 34966.24 23464.52 37979.71 387
SCA74.22 27272.33 28379.91 25184.05 28462.17 25979.96 32279.29 35166.30 28072.38 28880.13 35651.95 26788.60 30159.25 29677.67 27988.96 255
Patchmatch-test64.82 35363.24 35469.57 36479.42 36749.82 39063.49 41069.05 39651.98 38959.95 38580.13 35650.91 28070.98 40440.66 39573.57 33587.90 282
tpmrst72.39 29472.13 28573.18 34280.54 35049.91 38979.91 32379.08 35363.11 31871.69 29679.95 35855.32 23082.77 35365.66 24273.89 33286.87 307
DSMNet-mixed57.77 36656.90 36860.38 38667.70 40735.61 41769.18 39253.97 41832.30 41657.49 39379.88 35940.39 36568.57 41038.78 39972.37 34476.97 392
MDA-MVSNet-bldmvs66.68 34363.66 35275.75 31279.28 36860.56 28073.92 37578.35 35664.43 30250.13 40579.87 36044.02 34383.67 34646.10 38056.86 39183.03 366
PatchmatchNetpermissive73.12 28871.33 29478.49 28183.18 30460.85 27579.63 32478.57 35564.13 30671.73 29579.81 36151.20 27885.97 32657.40 31676.36 30088.66 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Syy-MVS68.05 33567.85 32568.67 37184.68 27040.97 41478.62 34073.08 38566.65 27566.74 34779.46 36252.11 26382.30 35532.89 40676.38 29882.75 369
myMVS_eth3d67.02 34166.29 34269.21 36684.68 27042.58 40978.62 34073.08 38566.65 27566.74 34779.46 36231.53 39282.30 35539.43 39876.38 29882.75 369
ppachtmachnet_test70.04 31867.34 33678.14 28679.80 36161.13 27079.19 33180.59 33559.16 35565.27 36079.29 36446.75 31987.29 31449.33 36166.72 37086.00 326
EPMVS69.02 32668.16 32071.59 35279.61 36449.80 39177.40 35366.93 40162.82 32570.01 31279.05 36545.79 33077.86 37656.58 32475.26 31987.13 302
PMMVS69.34 32468.67 31571.35 35675.67 38262.03 26075.17 36673.46 38350.00 39368.68 32779.05 36552.07 26578.13 37361.16 28282.77 21973.90 397
test-LLR72.94 29272.43 28174.48 32981.35 34158.04 30478.38 34377.46 36166.66 27269.95 31579.00 36748.06 31079.24 36866.13 23584.83 18286.15 320
test-mter71.41 30370.39 30674.48 32981.35 34158.04 30478.38 34377.46 36160.32 34469.95 31579.00 36736.08 38279.24 36866.13 23584.83 18286.15 320
KD-MVS_self_test68.81 32767.59 33372.46 34874.29 38845.45 39977.93 35087.00 24563.12 31763.99 36978.99 36942.32 35384.77 34056.55 32564.09 38087.16 301
test_fmvs363.36 35761.82 36067.98 37562.51 41446.96 39777.37 35474.03 38245.24 39967.50 33778.79 37012.16 41972.98 40372.77 17666.02 37483.99 354
KD-MVS_2432*160066.22 34863.89 35073.21 33975.47 38553.42 36570.76 38684.35 28264.10 30866.52 35178.52 37134.55 38584.98 33750.40 35350.33 40481.23 379
miper_refine_blended66.22 34863.89 35073.21 33975.47 38553.42 36570.76 38684.35 28264.10 30866.52 35178.52 37134.55 38584.98 33750.40 35350.33 40481.23 379
tpmvs71.09 30669.29 31176.49 30782.04 32856.04 33878.92 33681.37 32864.05 31067.18 34278.28 37349.74 29589.77 27749.67 36072.37 34483.67 358
our_test_369.14 32567.00 33875.57 31579.80 36158.80 29577.96 34977.81 35859.55 35162.90 37578.25 37447.43 31283.97 34451.71 34667.58 36983.93 355
MDA-MVSNet_test_wron65.03 35162.92 35571.37 35475.93 37956.73 32569.09 39574.73 37957.28 37154.03 40077.89 37545.88 32874.39 39949.89 35961.55 38482.99 367
YYNet165.03 35162.91 35671.38 35375.85 38156.60 32969.12 39474.66 38157.28 37154.12 39977.87 37645.85 32974.48 39849.95 35861.52 38583.05 365
ambc75.24 32273.16 39750.51 38763.05 41187.47 23564.28 36677.81 37717.80 41389.73 27957.88 31260.64 38785.49 332
tpm cat170.57 31268.31 31877.35 30082.41 32557.95 30778.08 34880.22 34352.04 38768.54 33077.66 37852.00 26687.84 31051.77 34572.07 34986.25 317
dp66.80 34265.43 34470.90 36179.74 36348.82 39275.12 36974.77 37859.61 35064.08 36877.23 37942.89 34980.72 36448.86 36466.58 37283.16 363
TESTMET0.1,169.89 32069.00 31472.55 34679.27 36956.85 32378.38 34374.71 38057.64 36768.09 33277.19 38037.75 37776.70 38163.92 25484.09 19784.10 353
CHOSEN 280x42066.51 34564.71 34671.90 35081.45 33863.52 23457.98 41368.95 39753.57 38362.59 37676.70 38146.22 32575.29 39655.25 32979.68 25576.88 393
PatchT68.46 33367.85 32570.29 36280.70 34843.93 40672.47 37874.88 37760.15 34670.55 30376.57 38249.94 29281.59 35850.58 35174.83 32485.34 335
mvsany_test353.99 37051.45 37561.61 38555.51 41944.74 40563.52 40945.41 42443.69 40258.11 39176.45 38317.99 41263.76 41554.77 33247.59 40676.34 394
RPMNet73.51 28170.49 30382.58 19581.32 34365.19 19775.92 36092.27 8457.60 36872.73 28276.45 38352.30 25895.43 7048.14 37077.71 27787.11 303
dmvs_testset62.63 35864.11 34958.19 38878.55 37124.76 42675.28 36565.94 40467.91 26060.34 38276.01 38553.56 24873.94 40131.79 40767.65 36875.88 395
ADS-MVSNet266.20 35063.33 35374.82 32679.92 35758.75 29667.55 39875.19 37553.37 38465.25 36175.86 38642.32 35380.53 36541.57 39368.91 36485.18 338
ADS-MVSNet64.36 35462.88 35768.78 37079.92 35747.17 39567.55 39871.18 38953.37 38465.25 36175.86 38642.32 35373.99 40041.57 39368.91 36485.18 338
EGC-MVSNET52.07 37647.05 38067.14 37783.51 29660.71 27780.50 31467.75 3990.07 4260.43 42775.85 38824.26 40481.54 35928.82 40962.25 38259.16 409
new-patchmatchnet61.73 36061.73 36161.70 38472.74 40024.50 42769.16 39378.03 35761.40 33756.72 39575.53 38938.42 37376.48 38445.95 38157.67 39084.13 352
N_pmnet52.79 37453.26 37251.40 39878.99 3707.68 43269.52 3903.89 43151.63 39057.01 39474.98 39040.83 36265.96 41337.78 40064.67 37880.56 385
WB-MVS54.94 36854.72 36955.60 39473.50 39320.90 42874.27 37461.19 41159.16 35550.61 40374.15 39147.19 31575.78 39117.31 41935.07 41370.12 401
patchmatchnet-post74.00 39251.12 27988.60 301
GG-mvs-BLEND75.38 32081.59 33555.80 34279.32 32869.63 39367.19 34173.67 39343.24 34788.90 29750.41 35284.50 18781.45 378
SSC-MVS53.88 37153.59 37154.75 39672.87 39919.59 42973.84 37660.53 41357.58 36949.18 40773.45 39446.34 32475.47 39416.20 42232.28 41569.20 402
Patchmatch-RL test70.24 31667.78 32977.61 29577.43 37559.57 29371.16 38370.33 39062.94 32268.65 32872.77 39550.62 28485.49 33269.58 20666.58 37287.77 285
FPMVS53.68 37251.64 37459.81 38765.08 41151.03 38369.48 39169.58 39441.46 40440.67 41172.32 39616.46 41570.00 40824.24 41565.42 37658.40 411
UnsupCasMVSNet_bld63.70 35661.53 36270.21 36373.69 39251.39 38172.82 37781.89 32155.63 37857.81 39271.80 39738.67 37278.61 37149.26 36252.21 40280.63 383
APD_test153.31 37349.93 37863.42 38365.68 41050.13 38871.59 38266.90 40234.43 41340.58 41271.56 3988.65 42476.27 38634.64 40555.36 39663.86 407
test_f52.09 37550.82 37655.90 39253.82 42242.31 41259.42 41258.31 41636.45 41156.12 39870.96 39912.18 41857.79 41853.51 33856.57 39367.60 403
PVSNet_057.27 2061.67 36159.27 36468.85 36979.61 36457.44 31768.01 39673.44 38455.93 37758.54 38970.41 40044.58 33977.55 37747.01 37435.91 41271.55 400
pmmvs357.79 36554.26 37068.37 37264.02 41356.72 32675.12 36965.17 40540.20 40552.93 40169.86 40120.36 41075.48 39345.45 38455.25 39872.90 399
test_vis1_rt60.28 36258.42 36565.84 37967.25 40855.60 34570.44 38860.94 41244.33 40159.00 38766.64 40224.91 40268.67 40962.80 26169.48 36073.25 398
new_pmnet50.91 37750.29 37752.78 39768.58 40634.94 41963.71 40856.63 41739.73 40644.95 40865.47 40321.93 40858.48 41734.98 40456.62 39264.92 405
gg-mvs-nofinetune69.95 31967.96 32375.94 31083.07 30754.51 35777.23 35570.29 39163.11 31870.32 30762.33 40443.62 34588.69 29953.88 33687.76 14584.62 347
JIA-IIPM66.32 34762.82 35876.82 30577.09 37761.72 26665.34 40675.38 37458.04 36564.51 36562.32 40542.05 35786.51 32051.45 34869.22 36382.21 373
LCM-MVSNet54.25 36949.68 37967.97 37653.73 42345.28 40266.85 40180.78 33235.96 41239.45 41362.23 4068.70 42378.06 37548.24 36951.20 40380.57 384
PMMVS240.82 38538.86 38946.69 39953.84 42116.45 43048.61 41649.92 41937.49 40931.67 41460.97 4078.14 42556.42 41928.42 41030.72 41667.19 404
testf145.72 38041.96 38457.00 38956.90 41745.32 40066.14 40359.26 41426.19 41730.89 41660.96 4084.14 42770.64 40626.39 41346.73 40855.04 412
APD_test245.72 38041.96 38457.00 38956.90 41745.32 40066.14 40359.26 41426.19 41730.89 41660.96 4084.14 42770.64 40626.39 41346.73 40855.04 412
MVS-HIRNet59.14 36457.67 36663.57 38281.65 33343.50 40771.73 38065.06 40639.59 40751.43 40257.73 41038.34 37482.58 35439.53 39673.95 33164.62 406
ANet_high50.57 37846.10 38263.99 38148.67 42639.13 41570.99 38580.85 33161.39 33831.18 41557.70 41117.02 41473.65 40231.22 40815.89 42379.18 388
PMVScopyleft37.38 2244.16 38440.28 38855.82 39340.82 42842.54 41165.12 40763.99 40834.43 41324.48 41957.12 4123.92 42976.17 38817.10 42055.52 39548.75 414
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
dongtai45.42 38245.38 38345.55 40073.36 39626.85 42467.72 39734.19 42654.15 38249.65 40656.41 41325.43 40062.94 41619.45 41728.09 41746.86 416
test_vis3_rt49.26 37947.02 38156.00 39154.30 42045.27 40366.76 40248.08 42136.83 41044.38 40953.20 4147.17 42664.07 41456.77 32355.66 39458.65 410
test_method31.52 38829.28 39238.23 40227.03 4306.50 43320.94 42162.21 4104.05 42422.35 42252.50 41513.33 41647.58 42227.04 41234.04 41460.62 408
kuosan39.70 38640.40 38737.58 40364.52 41226.98 42265.62 40533.02 42746.12 39842.79 41048.99 41624.10 40546.56 42412.16 42526.30 41839.20 417
DeepMVS_CXcopyleft27.40 40640.17 42926.90 42324.59 43017.44 42223.95 42048.61 4179.77 42126.48 42518.06 41824.47 41928.83 419
MVEpermissive26.22 2330.37 39025.89 39443.81 40144.55 42735.46 41828.87 42039.07 42518.20 42118.58 42340.18 4182.68 43047.37 42317.07 42123.78 42048.60 415
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft45.18 38341.86 38655.16 39577.03 37851.52 37932.50 41980.52 33632.46 41527.12 41835.02 4199.52 42275.50 39222.31 41660.21 38938.45 418
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN31.77 38730.64 39035.15 40452.87 42427.67 42157.09 41447.86 42224.64 41916.40 42433.05 42011.23 42054.90 42014.46 42318.15 42122.87 420
EMVS30.81 38929.65 39134.27 40550.96 42525.95 42556.58 41546.80 42324.01 42015.53 42530.68 42112.47 41754.43 42112.81 42417.05 42222.43 421
tmp_tt18.61 39221.40 39510.23 4084.82 43110.11 43134.70 41830.74 4291.48 42523.91 42126.07 42228.42 39713.41 42727.12 41115.35 4247.17 422
X-MVStestdata80.37 15777.83 19388.00 1794.42 2073.33 1992.78 1892.99 4979.14 2283.67 9712.47 42367.45 10496.60 3383.06 7294.50 5194.07 54
test_post5.46 42450.36 28884.24 342
test_post178.90 3375.43 42548.81 30985.44 33459.25 296
wuyk23d16.82 39315.94 39619.46 40758.74 41631.45 42039.22 4173.74 4326.84 4236.04 4262.70 4261.27 43124.29 42610.54 42614.40 4252.63 423
testmvs6.04 3968.02 3990.10 4100.08 4320.03 43569.74 3890.04 4330.05 4270.31 4281.68 4270.02 4330.04 4280.24 4270.02 4260.25 425
test1236.12 3958.11 3980.14 4090.06 4330.09 43471.05 3840.03 4340.04 4280.25 4291.30 4280.05 4320.03 4290.21 4280.01 4270.29 424
mmdepth0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
monomultidepth0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
test_blank0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
uanet_test0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
DCPMVS0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
pcd_1.5k_mvsjas5.26 3977.02 4000.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 42963.15 1470.00 4300.00 4290.00 4280.00 426
sosnet-low-res0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
sosnet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
uncertanet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
Regformer0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
uanet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
WAC-MVS42.58 40939.46 397
FOURS195.00 1072.39 3995.06 193.84 1574.49 12291.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4997.53 289.67 996.44 994.41 39
No_MVS89.16 194.34 2775.53 292.99 4997.53 289.67 996.44 994.41 39
eth-test20.00 434
eth-test0.00 434
IU-MVS95.30 271.25 5992.95 5566.81 26892.39 688.94 1996.63 494.85 20
save fliter93.80 4072.35 4290.47 6691.17 12574.31 127
test_0728_SECOND87.71 3295.34 171.43 5893.49 994.23 397.49 489.08 1596.41 1294.21 49
GSMVS88.96 255
test_part295.06 872.65 3291.80 13
sam_mvs151.32 27688.96 255
sam_mvs50.01 290
MTGPAbinary92.02 93
MTMP92.18 3432.83 428
test9_res84.90 4995.70 2692.87 115
agg_prior282.91 7695.45 2992.70 118
agg_prior92.85 6271.94 5091.78 10884.41 8194.93 94
test_prior472.60 3489.01 112
test_prior86.33 5792.61 6869.59 9192.97 5495.48 6793.91 61
旧先验286.56 19758.10 36487.04 4888.98 29374.07 161
新几何286.29 206
无先验87.48 16488.98 19760.00 34794.12 12567.28 22788.97 254
原ACMM286.86 186
testdata291.01 25962.37 268
segment_acmp73.08 39
testdata184.14 26075.71 93
test1286.80 5292.63 6770.70 7591.79 10782.71 11071.67 5596.16 4794.50 5193.54 86
plane_prior790.08 10868.51 123
plane_prior689.84 11768.70 11860.42 197
plane_prior592.44 7795.38 7578.71 11386.32 16591.33 163
plane_prior368.60 12178.44 3278.92 154
plane_prior291.25 5279.12 24
plane_prior189.90 116
plane_prior68.71 11690.38 7077.62 4186.16 169
n20.00 435
nn0.00 435
door-mid69.98 392
test1192.23 87
door69.44 395
HQP5-MVS66.98 163
HQP-NCC89.33 13589.17 10376.41 7877.23 192
ACMP_Plane89.33 13589.17 10376.41 7877.23 192
BP-MVS77.47 125
HQP4-MVS77.24 19195.11 8791.03 173
HQP3-MVS92.19 9085.99 173
HQP2-MVS60.17 200
MDTV_nov1_ep13_2view37.79 41675.16 36755.10 37966.53 35049.34 30053.98 33587.94 281
ACMMP++_ref81.95 230
ACMMP++81.25 235
Test By Simon64.33 134