This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9391.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 36
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 11292.29 795.97 274.28 2997.24 1388.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test072695.27 571.25 5793.60 694.11 677.33 4992.81 395.79 380.98 9
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 6177.33 4992.12 995.78 480.98 997.40 989.08 1296.41 1293.33 89
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 989.42 996.57 794.67 26
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5293.10 195.72 882.99 197.44 789.07 1496.63 494.88 14
test_241102_TWO94.06 1077.24 5292.78 495.72 881.26 897.44 789.07 1496.58 694.26 46
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4294.10 875.90 8992.29 795.66 1081.67 697.38 1187.44 3396.34 1593.95 57
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_241102_ONE95.30 270.98 6394.06 1077.17 5593.10 195.39 1182.99 197.27 12
MP-MVS-pluss87.67 2187.72 2087.54 3693.64 4472.04 4889.80 7893.50 2575.17 10486.34 4895.29 1270.86 6396.00 5188.78 1996.04 1694.58 31
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 4992.40 2494.74 275.71 9189.16 1995.10 1375.65 2196.19 4387.07 3496.01 1794.79 21
ACMMP_NAP88.05 1688.08 1787.94 1993.70 4173.05 2290.86 5493.59 2376.27 8388.14 2495.09 1471.06 6196.67 2987.67 2996.37 1494.09 51
MM89.16 689.23 788.97 490.79 9273.65 1092.66 2391.17 12186.57 187.39 3894.97 1571.70 5397.68 192.19 195.63 2895.57 1
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18892.02 8979.45 1985.88 5094.80 1668.07 9396.21 4286.69 3695.34 3293.23 92
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1673.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
9.1488.26 1592.84 6091.52 4594.75 173.93 12988.57 2294.67 1875.57 2295.79 5586.77 3595.76 23
SR-MVS86.73 3586.67 3686.91 4694.11 3772.11 4792.37 2892.56 7174.50 11686.84 4594.65 1967.31 10295.77 5684.80 4792.85 6992.84 109
region2R87.42 2587.20 2888.09 1494.63 1473.55 1393.03 1493.12 3776.73 7084.45 7494.52 2069.09 8196.70 2784.37 5394.83 4594.03 54
ACMMPR87.44 2387.23 2788.08 1594.64 1373.59 1293.04 1293.20 3476.78 6784.66 6994.52 2068.81 8796.65 3084.53 5194.90 4194.00 55
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4092.83 5773.01 15388.58 2194.52 2073.36 3496.49 3684.26 5495.01 3792.70 111
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
APD-MVS_3200maxsize85.97 4785.88 5086.22 5792.69 6369.53 8991.93 3792.99 4673.54 13985.94 4994.51 2365.80 12095.61 5983.04 6792.51 7393.53 83
CP-MVS87.11 3086.92 3387.68 3494.20 3473.86 793.98 392.82 6076.62 7383.68 8894.46 2467.93 9595.95 5484.20 5794.39 5593.23 92
SR-MVS-dyc-post85.77 5285.61 5586.23 5693.06 5570.63 7391.88 3892.27 8073.53 14085.69 5394.45 2565.00 12895.56 6082.75 7191.87 8192.50 120
RE-MVS-def85.48 5793.06 5570.63 7391.88 3892.27 8073.53 14085.69 5394.45 2563.87 13482.75 7191.87 8192.50 120
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6784.91 6294.44 2770.78 6496.61 3284.53 5194.89 4293.66 70
PGM-MVS86.68 3786.27 4187.90 2294.22 3373.38 1890.22 7093.04 3875.53 9583.86 8594.42 2867.87 9796.64 3182.70 7594.57 5093.66 70
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 6677.57 4183.84 8694.40 2972.24 4596.28 4085.65 3895.30 3593.62 77
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6585.24 5794.32 3071.76 5196.93 1985.53 4095.79 2294.32 43
MVS_030487.69 2087.55 2288.12 1389.45 12671.76 5191.47 4689.54 16882.14 386.65 4694.28 3168.28 9297.46 690.81 295.31 3495.15 6
test_fmvsmconf0.01_n84.73 7084.52 7285.34 7580.25 34369.03 10089.47 8889.65 16673.24 14986.98 4394.27 3266.62 10693.23 16290.26 589.95 10993.78 67
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5680.26 1187.78 3094.27 3275.89 1996.81 2387.45 3296.44 993.05 101
mPP-MVS86.67 3886.32 4087.72 3094.41 2273.55 1392.74 2092.22 8476.87 6482.81 10194.25 3466.44 11096.24 4182.88 7094.28 5893.38 86
DeepC-MVS79.81 287.08 3286.88 3587.69 3391.16 8172.32 4390.31 6893.94 1477.12 5782.82 10094.23 3572.13 4797.09 1684.83 4695.37 3193.65 74
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVS87.18 2986.91 3488.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 8994.17 3667.45 10096.60 3383.06 6594.50 5194.07 52
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 6094.67 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_fmvsmconf0.1_n85.61 5685.65 5485.50 7282.99 30269.39 9789.65 8390.29 14973.31 14587.77 3194.15 3871.72 5293.23 16290.31 490.67 9793.89 61
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 10089.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 31
HPM-MVS_fast85.35 6184.95 6786.57 5393.69 4270.58 7592.15 3591.62 10773.89 13082.67 10394.09 4062.60 14995.54 6280.93 8892.93 6893.57 79
ZD-MVS94.38 2572.22 4492.67 6370.98 18487.75 3294.07 4174.01 3296.70 2784.66 4994.84 44
fmvsm_s_conf0.1_n_a83.32 9082.99 8984.28 11283.79 28068.07 13089.34 9682.85 30269.80 21187.36 3994.06 4268.34 9191.56 22887.95 2783.46 20393.21 95
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 5993.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 42
test_fmvsmconf_n85.92 4886.04 4885.57 7185.03 25769.51 9089.62 8690.58 13673.42 14287.75 3294.02 4472.85 4193.24 16190.37 390.75 9593.96 56
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 6096.48 894.88 14
PC_three_145268.21 24792.02 1294.00 4682.09 595.98 5384.58 5096.68 294.95 10
SD-MVS88.06 1488.50 1486.71 5192.60 6672.71 2991.81 4193.19 3577.87 3690.32 1794.00 4674.83 2393.78 13687.63 3094.27 5993.65 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6384.68 6693.99 4870.67 6696.82 2284.18 5895.01 3793.90 60
test_fmvsm_n_192085.29 6285.34 5985.13 8286.12 23669.93 8388.65 12190.78 13269.97 20788.27 2393.98 4971.39 5891.54 23088.49 2390.45 9993.91 58
fmvsm_s_conf0.1_n83.56 8483.38 8284.10 12084.86 25967.28 15089.40 9483.01 29770.67 18987.08 4193.96 5068.38 9091.45 23688.56 2284.50 17993.56 80
HPM-MVScopyleft87.11 3086.98 3187.50 3893.88 3972.16 4592.19 3393.33 3176.07 8683.81 8793.95 5169.77 7596.01 5085.15 4194.66 4794.32 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TSAR-MVS + MP.88.02 1788.11 1687.72 3093.68 4372.13 4691.41 4792.35 7874.62 11588.90 2093.85 5275.75 2096.00 5187.80 2894.63 4895.04 8
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMPcopyleft85.89 5185.39 5887.38 3993.59 4572.63 3392.74 2093.18 3676.78 6780.73 12593.82 5364.33 13096.29 3982.67 7690.69 9693.23 92
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_s_conf0.5_n_a83.63 8283.41 8184.28 11286.14 23568.12 12889.43 9082.87 30170.27 20087.27 4093.80 5469.09 8191.58 22688.21 2683.65 19893.14 98
fmvsm_s_conf0.5_n83.80 7783.71 7884.07 12686.69 22867.31 14989.46 8983.07 29671.09 18186.96 4493.70 5569.02 8691.47 23588.79 1884.62 17893.44 85
test_prior288.85 11275.41 9784.91 6293.54 5674.28 2983.31 6395.86 20
fmvsm_l_conf0.5_n84.47 7184.54 7084.27 11485.42 24768.81 10688.49 12587.26 23368.08 24888.03 2793.49 5772.04 4891.77 22088.90 1789.14 11992.24 131
VDDNet81.52 12080.67 12384.05 13190.44 9864.13 21489.73 8185.91 25671.11 18083.18 9493.48 5850.54 27893.49 15073.40 15888.25 13394.54 34
CDPH-MVS85.76 5385.29 6387.17 4393.49 4771.08 6188.58 12392.42 7668.32 24684.61 7193.48 5872.32 4496.15 4579.00 10195.43 3094.28 45
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5192.83 5781.50 585.79 5293.47 6073.02 4097.00 1884.90 4394.94 4094.10 50
fmvsm_l_conf0.5_n_a84.13 7384.16 7584.06 12885.38 24868.40 12188.34 13286.85 24267.48 25587.48 3693.40 6170.89 6291.61 22488.38 2589.22 11792.16 135
3Dnovator+77.84 485.48 5784.47 7388.51 791.08 8373.49 1693.18 1193.78 1880.79 876.66 19793.37 6260.40 19396.75 2677.20 12093.73 6495.29 5
DeepC-MVS_fast79.65 386.91 3386.62 3787.76 2793.52 4672.37 4191.26 4893.04 3876.62 7384.22 7893.36 6371.44 5796.76 2580.82 9095.33 3394.16 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDD-MVS83.01 9782.36 9884.96 8791.02 8566.40 16588.91 10988.11 21177.57 4184.39 7693.29 6452.19 25293.91 13077.05 12288.70 12794.57 33
test_fmvsmvis_n_192084.02 7483.87 7684.49 10384.12 27369.37 9888.15 14087.96 21670.01 20583.95 8493.23 6568.80 8891.51 23388.61 2089.96 10892.57 116
UA-Net85.08 6584.96 6685.45 7392.07 7068.07 13089.78 7990.86 13182.48 284.60 7293.20 6669.35 7895.22 7671.39 17690.88 9493.07 100
TEST993.26 5072.96 2588.75 11591.89 9768.44 24485.00 6093.10 6774.36 2895.41 69
train_agg86.43 4086.20 4287.13 4493.26 5072.96 2588.75 11591.89 9768.69 23985.00 6093.10 6774.43 2695.41 6984.97 4295.71 2593.02 103
test_893.13 5272.57 3588.68 12091.84 10168.69 23984.87 6493.10 6774.43 2695.16 78
LFMVS81.82 11381.23 11483.57 14691.89 7363.43 23089.84 7581.85 31377.04 6083.21 9393.10 6752.26 25193.43 15571.98 17189.95 10993.85 62
旧先验191.96 7165.79 17986.37 24993.08 7169.31 8092.74 7088.74 258
dcpmvs_285.63 5586.15 4584.06 12891.71 7564.94 19786.47 19191.87 9973.63 13586.60 4793.02 7276.57 1591.87 21883.36 6292.15 7795.35 3
testdata79.97 24290.90 8864.21 21284.71 26759.27 34485.40 5592.91 7362.02 16289.08 28268.95 20291.37 8886.63 305
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7693.82 1673.07 15184.86 6592.89 7476.22 1796.33 3884.89 4595.13 3694.40 39
Vis-MVSNetpermissive83.46 8682.80 9385.43 7490.25 10168.74 11190.30 6990.13 15376.33 8280.87 12492.89 7461.00 18194.20 11772.45 17090.97 9293.35 88
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CPTT-MVS83.73 7883.33 8484.92 9093.28 4970.86 6992.09 3690.38 14268.75 23879.57 13792.83 7660.60 18993.04 17980.92 8991.56 8690.86 171
3Dnovator76.31 583.38 8982.31 9986.59 5287.94 19072.94 2890.64 5792.14 8877.21 5475.47 22292.83 7658.56 20094.72 10073.24 16192.71 7192.13 136
MSLP-MVS++85.43 5985.76 5384.45 10491.93 7270.24 7690.71 5692.86 5577.46 4784.22 7892.81 7867.16 10492.94 18180.36 9494.35 5790.16 198
test250677.30 22276.49 21979.74 24790.08 10552.02 36187.86 15163.10 39974.88 10880.16 13192.79 7938.29 36592.35 20068.74 20592.50 7494.86 17
ECVR-MVScopyleft79.61 16079.26 15380.67 22990.08 10554.69 34487.89 14977.44 35374.88 10880.27 12892.79 7948.96 29992.45 19468.55 20692.50 7494.86 17
test111179.43 16779.18 15680.15 23989.99 11053.31 35787.33 16577.05 35775.04 10580.23 13092.77 8148.97 29892.33 20268.87 20392.40 7694.81 20
MG-MVS83.41 8783.45 8083.28 15492.74 6262.28 25088.17 13889.50 17075.22 10081.49 11592.74 8266.75 10595.11 8272.85 16491.58 8592.45 123
casdiffmvs_mvgpermissive85.99 4586.09 4785.70 6987.65 20467.22 15488.69 11993.04 3879.64 1885.33 5692.54 8373.30 3594.50 10783.49 6191.14 9195.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
patch_mono-283.65 8084.54 7080.99 22190.06 10965.83 17784.21 24988.74 20271.60 17185.01 5992.44 8474.51 2583.50 33882.15 7892.15 7793.64 76
casdiffmvspermissive85.11 6485.14 6485.01 8587.20 21865.77 18087.75 15292.83 5777.84 3784.36 7792.38 8572.15 4693.93 12981.27 8690.48 9895.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS86.69 3686.95 3285.90 6690.76 9367.57 14292.83 1793.30 3279.67 1784.57 7392.27 8671.47 5695.02 8884.24 5693.46 6595.13 7
baseline84.93 6784.98 6584.80 9587.30 21665.39 18887.30 16692.88 5477.62 3984.04 8392.26 8771.81 5093.96 12381.31 8490.30 10195.03 9
QAPM80.88 13079.50 14685.03 8488.01 18868.97 10491.59 4292.00 9166.63 26775.15 24092.16 8857.70 20795.45 6563.52 24588.76 12590.66 178
IS-MVSNet83.15 9282.81 9284.18 11889.94 11263.30 23291.59 4288.46 20879.04 2579.49 13892.16 8865.10 12594.28 11267.71 21291.86 8394.95 10
新几何183.42 14993.13 5270.71 7185.48 26157.43 36081.80 11191.98 9063.28 13892.27 20364.60 24092.99 6787.27 288
OpenMVScopyleft72.83 1079.77 15878.33 17384.09 12485.17 25169.91 8490.57 5890.97 12666.70 26172.17 28191.91 9154.70 23093.96 12361.81 26690.95 9388.41 266
PHI-MVS86.43 4086.17 4487.24 4190.88 8970.96 6592.27 3294.07 972.45 15785.22 5891.90 9269.47 7796.42 3783.28 6495.94 1994.35 41
VNet82.21 10582.41 9681.62 20290.82 9060.93 26484.47 24089.78 16176.36 8184.07 8291.88 9364.71 12990.26 26070.68 18388.89 12193.66 70
EC-MVSNet86.01 4486.38 3984.91 9189.31 13566.27 16892.32 3093.63 2179.37 2084.17 8091.88 9369.04 8595.43 6783.93 5993.77 6393.01 104
OPM-MVS83.50 8582.95 9085.14 8088.79 15670.95 6689.13 10491.52 11077.55 4480.96 12391.75 9560.71 18494.50 10779.67 10086.51 15589.97 214
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MVSMamba_PlusPlus85.99 4585.96 4986.05 6191.09 8267.64 13989.63 8592.65 6672.89 15684.64 7091.71 9671.85 4996.03 4784.77 4894.45 5494.49 35
XVG-OURS-SEG-HR80.81 13379.76 14083.96 13885.60 24468.78 10883.54 26290.50 13970.66 19276.71 19691.66 9760.69 18591.26 24176.94 12381.58 22591.83 141
EPNet83.72 7982.92 9186.14 6084.22 27169.48 9191.05 5385.27 26281.30 676.83 19291.65 9866.09 11595.56 6076.00 13393.85 6293.38 86
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OMC-MVS82.69 9981.97 10784.85 9288.75 15867.42 14587.98 14390.87 13074.92 10779.72 13591.65 9862.19 15993.96 12375.26 14286.42 15693.16 97
balanced_conf0386.78 3486.99 3086.15 5891.24 8067.61 14090.51 5992.90 5377.26 5187.44 3791.63 10071.27 6096.06 4685.62 3995.01 3794.78 22
test22291.50 7768.26 12584.16 25083.20 29454.63 37179.74 13491.63 10058.97 19891.42 8786.77 301
MVS_111021_HR85.14 6384.75 6886.32 5591.65 7672.70 3085.98 20490.33 14676.11 8582.08 10691.61 10271.36 5994.17 11981.02 8792.58 7292.08 137
原ACMM184.35 10893.01 5768.79 10792.44 7363.96 30381.09 12191.57 10366.06 11695.45 6567.19 21994.82 4688.81 253
LPG-MVS_test82.08 10781.27 11384.50 10189.23 13968.76 10990.22 7091.94 9575.37 9876.64 19891.51 10454.29 23394.91 9078.44 10783.78 19189.83 219
LGP-MVS_train84.50 10189.23 13968.76 10991.94 9575.37 9876.64 19891.51 10454.29 23394.91 9078.44 10783.78 19189.83 219
XVG-OURS80.41 14679.23 15483.97 13785.64 24369.02 10283.03 27390.39 14171.09 18177.63 17591.49 10654.62 23291.35 23975.71 13583.47 20291.54 148
alignmvs85.48 5785.32 6185.96 6589.51 12369.47 9289.74 8092.47 7276.17 8487.73 3491.46 10770.32 6993.78 13681.51 8188.95 12094.63 30
CANet86.45 3986.10 4687.51 3790.09 10470.94 6789.70 8292.59 7081.78 481.32 11691.43 10870.34 6897.23 1484.26 5493.36 6694.37 40
h-mvs3383.15 9282.19 10086.02 6490.56 9570.85 7088.15 14089.16 18376.02 8784.67 6791.39 10961.54 16795.50 6382.71 7375.48 30291.72 144
MGCFI-Net85.06 6685.51 5683.70 14289.42 12763.01 23889.43 9092.62 6976.43 7587.53 3591.34 11072.82 4293.42 15681.28 8588.74 12694.66 29
nrg03083.88 7583.53 7984.96 8786.77 22669.28 9990.46 6492.67 6374.79 11182.95 9691.33 11172.70 4393.09 17580.79 9279.28 25492.50 120
sasdasda85.91 4985.87 5186.04 6289.84 11469.44 9590.45 6593.00 4376.70 7188.01 2891.23 11273.28 3693.91 13081.50 8288.80 12394.77 23
canonicalmvs85.91 4985.87 5186.04 6289.84 11469.44 9590.45 6593.00 4376.70 7188.01 2891.23 11273.28 3693.91 13081.50 8288.80 12394.77 23
DPM-MVS84.93 6784.29 7486.84 4790.20 10273.04 2387.12 17093.04 3869.80 21182.85 9991.22 11473.06 3996.02 4976.72 12794.63 4891.46 154
Anonymous20240521178.25 19577.01 20581.99 19691.03 8460.67 26984.77 23283.90 28070.65 19380.00 13291.20 11541.08 35291.43 23765.21 23485.26 17193.85 62
CS-MVS-test86.29 4386.48 3885.71 6891.02 8567.21 15592.36 2993.78 1878.97 2883.51 9291.20 11570.65 6795.15 7981.96 7994.89 4294.77 23
Anonymous2024052980.19 15378.89 16184.10 12090.60 9464.75 20188.95 10890.90 12865.97 27580.59 12691.17 11749.97 28393.73 14269.16 20082.70 21493.81 65
EPP-MVSNet83.40 8883.02 8884.57 9990.13 10364.47 20792.32 3090.73 13374.45 11979.35 14091.10 11869.05 8495.12 8072.78 16587.22 14494.13 49
TAPA-MVS73.13 979.15 17577.94 18182.79 18189.59 11962.99 24288.16 13991.51 11165.77 27677.14 18991.09 11960.91 18293.21 16450.26 34787.05 14692.17 134
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CSCG86.41 4286.19 4387.07 4592.91 5872.48 3790.81 5593.56 2473.95 12783.16 9591.07 12075.94 1895.19 7779.94 9894.38 5693.55 81
FIs82.07 10882.42 9581.04 22088.80 15558.34 29188.26 13593.49 2676.93 6278.47 15791.04 12169.92 7392.34 20169.87 19384.97 17392.44 124
MVS_111021_LR82.61 10182.11 10184.11 11988.82 15371.58 5385.15 22486.16 25374.69 11380.47 12791.04 12162.29 15690.55 25880.33 9590.08 10690.20 197
DP-MVS Recon83.11 9582.09 10386.15 5894.44 1970.92 6888.79 11392.20 8570.53 19479.17 14291.03 12364.12 13296.03 4768.39 20990.14 10491.50 150
mamv476.81 22978.23 17772.54 33786.12 23665.75 18178.76 32882.07 31064.12 29772.97 27091.02 12467.97 9468.08 40183.04 6778.02 26683.80 347
HQP_MVS83.64 8183.14 8585.14 8090.08 10568.71 11391.25 4992.44 7379.12 2378.92 14691.00 12560.42 19195.38 7178.71 10586.32 15791.33 155
plane_prior491.00 125
FC-MVSNet-test81.52 12082.02 10580.03 24188.42 17155.97 32987.95 14593.42 2977.10 5877.38 17990.98 12769.96 7291.79 21968.46 20884.50 17992.33 125
Vis-MVSNet (Re-imp)78.36 19478.45 16878.07 27988.64 16251.78 36786.70 18579.63 33874.14 12575.11 24190.83 12861.29 17589.75 27058.10 30091.60 8492.69 113
114514_t80.68 13979.51 14584.20 11794.09 3867.27 15189.64 8491.11 12458.75 35074.08 25890.72 12958.10 20395.04 8769.70 19489.42 11590.30 194
PAPM_NR83.02 9682.41 9684.82 9392.47 6766.37 16687.93 14791.80 10273.82 13177.32 18190.66 13067.90 9694.90 9270.37 18689.48 11493.19 96
LS3D76.95 22774.82 24483.37 15290.45 9767.36 14889.15 10386.94 24061.87 32569.52 31090.61 13151.71 26594.53 10546.38 36886.71 15288.21 268
VPNet78.69 18778.66 16478.76 26488.31 17455.72 33384.45 24386.63 24576.79 6678.26 16190.55 13259.30 19689.70 27266.63 22377.05 27690.88 170
UniMVSNet_ETH3D79.10 17778.24 17581.70 20186.85 22360.24 27687.28 16788.79 19774.25 12276.84 19190.53 13349.48 28991.56 22867.98 21082.15 21893.29 90
ACMP74.13 681.51 12280.57 12484.36 10789.42 12768.69 11689.97 7491.50 11474.46 11875.04 24490.41 13453.82 23894.54 10477.56 11682.91 20989.86 218
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
RRT-MVS82.60 10382.10 10284.10 12087.98 18962.94 24387.45 16191.27 11777.42 4879.85 13390.28 13556.62 21894.70 10279.87 9988.15 13594.67 26
PCF-MVS73.52 780.38 14778.84 16285.01 8587.71 20168.99 10383.65 25791.46 11563.00 31077.77 17390.28 13566.10 11495.09 8661.40 26988.22 13490.94 169
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
NP-MVS89.62 11868.32 12390.24 137
HQP-MVS82.61 10182.02 10584.37 10689.33 13266.98 15889.17 9992.19 8676.41 7677.23 18490.23 13860.17 19495.11 8277.47 11785.99 16591.03 165
PS-MVSNAJss82.07 10881.31 11284.34 10986.51 23167.27 15189.27 9791.51 11171.75 16679.37 13990.22 13963.15 14394.27 11377.69 11582.36 21791.49 151
TSAR-MVS + GP.85.71 5485.33 6086.84 4791.34 7872.50 3689.07 10587.28 23276.41 7685.80 5190.22 13974.15 3195.37 7481.82 8091.88 8092.65 115
SDMVSNet80.38 14780.18 13380.99 22189.03 14864.94 19780.45 30589.40 17275.19 10276.61 20089.98 14160.61 18887.69 30376.83 12583.55 20090.33 192
sd_testset77.70 21477.40 19878.60 26789.03 14860.02 27879.00 32485.83 25775.19 10276.61 20089.98 14154.81 22585.46 32362.63 25683.55 20090.33 192
TranMVSNet+NR-MVSNet80.84 13180.31 13082.42 18987.85 19462.33 24887.74 15391.33 11680.55 977.99 16989.86 14365.23 12492.62 18767.05 22175.24 31292.30 127
diffmvspermissive82.10 10681.88 10882.76 18483.00 30063.78 22083.68 25689.76 16272.94 15482.02 10789.85 14465.96 11990.79 25482.38 7787.30 14393.71 69
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-RMVSNet79.61 16078.44 16983.14 16289.38 13165.93 17484.95 22987.15 23673.56 13878.19 16389.79 14556.67 21793.36 15759.53 28486.74 15190.13 200
GeoE81.71 11581.01 11983.80 14189.51 12364.45 20888.97 10788.73 20371.27 17778.63 15289.76 14666.32 11293.20 16769.89 19286.02 16493.74 68
AdaColmapbinary80.58 14479.42 14784.06 12893.09 5468.91 10589.36 9588.97 19369.27 22275.70 21889.69 14757.20 21495.77 5663.06 25088.41 13287.50 283
ACMM73.20 880.78 13879.84 13983.58 14589.31 13568.37 12289.99 7391.60 10870.28 19977.25 18289.66 14853.37 24393.53 14974.24 15082.85 21088.85 251
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CNLPA78.08 20176.79 21281.97 19790.40 9971.07 6287.59 15684.55 27066.03 27472.38 27989.64 14957.56 20986.04 31659.61 28383.35 20488.79 254
test_yl81.17 12580.47 12783.24 15789.13 14363.62 22186.21 19989.95 15872.43 16081.78 11289.61 15057.50 21093.58 14470.75 18186.90 14892.52 118
DCV-MVSNet81.17 12580.47 12783.24 15789.13 14363.62 22186.21 19989.95 15872.43 16081.78 11289.61 15057.50 21093.58 14470.75 18186.90 14892.52 118
EI-MVSNet-Vis-set84.19 7283.81 7785.31 7688.18 17767.85 13487.66 15489.73 16480.05 1482.95 9689.59 15270.74 6594.82 9680.66 9384.72 17693.28 91
PAPR81.66 11880.89 12183.99 13690.27 10064.00 21586.76 18491.77 10568.84 23777.13 19089.50 15367.63 9894.88 9467.55 21488.52 13093.09 99
jajsoiax79.29 17277.96 18083.27 15584.68 26266.57 16489.25 9890.16 15269.20 22775.46 22489.49 15445.75 32493.13 17376.84 12480.80 23490.11 202
MVSFormer82.85 9882.05 10485.24 7887.35 21070.21 7790.50 6190.38 14268.55 24181.32 11689.47 15561.68 16493.46 15378.98 10290.26 10292.05 138
jason81.39 12380.29 13184.70 9786.63 23069.90 8585.95 20586.77 24363.24 30681.07 12289.47 15561.08 18092.15 20778.33 11090.07 10792.05 138
jason: jason.
mvs_tets79.13 17677.77 18983.22 15984.70 26166.37 16689.17 9990.19 15169.38 22075.40 22789.46 15744.17 33493.15 17176.78 12680.70 23690.14 199
UGNet80.83 13279.59 14484.54 10088.04 18568.09 12989.42 9288.16 21076.95 6176.22 20889.46 15749.30 29393.94 12668.48 20790.31 10091.60 145
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VPA-MVSNet80.60 14180.55 12580.76 22788.07 18460.80 26786.86 17891.58 10975.67 9480.24 12989.45 15963.34 13790.25 26170.51 18579.22 25591.23 158
MVS_Test83.15 9283.06 8783.41 15186.86 22263.21 23486.11 20292.00 9174.31 12082.87 9889.44 16070.03 7193.21 16477.39 11988.50 13193.81 65
EI-MVSNet-UG-set83.81 7683.38 8285.09 8387.87 19367.53 14387.44 16289.66 16579.74 1682.23 10589.41 16170.24 7094.74 9979.95 9783.92 19092.99 106
RPSCF73.23 27771.46 28178.54 27082.50 31259.85 27982.18 27982.84 30358.96 34771.15 29289.41 16145.48 32884.77 33058.82 29271.83 34291.02 167
UniMVSNet_NR-MVSNet81.88 11181.54 11182.92 17388.46 16863.46 22887.13 16992.37 7780.19 1278.38 15889.14 16371.66 5593.05 17770.05 18976.46 28592.25 129
tttt051779.40 16977.91 18283.90 14088.10 18263.84 21888.37 13184.05 27871.45 17476.78 19489.12 16449.93 28694.89 9370.18 18883.18 20792.96 107
DU-MVS81.12 12780.52 12682.90 17487.80 19663.46 22887.02 17391.87 9979.01 2678.38 15889.07 16565.02 12693.05 17770.05 18976.46 28592.20 132
NR-MVSNet80.23 15179.38 14882.78 18287.80 19663.34 23186.31 19691.09 12579.01 2672.17 28189.07 16567.20 10392.81 18666.08 22875.65 29892.20 132
DELS-MVS85.41 6085.30 6285.77 6788.49 16667.93 13385.52 22193.44 2778.70 2983.63 9189.03 16774.57 2495.71 5880.26 9694.04 6193.66 70
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
mvsmamba80.60 14179.38 14884.27 11489.74 11767.24 15387.47 15986.95 23970.02 20475.38 22888.93 16851.24 26992.56 19075.47 14189.22 11793.00 105
baseline176.98 22676.75 21577.66 28488.13 18055.66 33485.12 22581.89 31173.04 15276.79 19388.90 16962.43 15487.78 30263.30 24971.18 34689.55 228
DP-MVS76.78 23074.57 24683.42 14993.29 4869.46 9488.55 12483.70 28263.98 30270.20 29888.89 17054.01 23794.80 9746.66 36581.88 22386.01 315
ab-mvs79.51 16378.97 16081.14 21788.46 16860.91 26583.84 25489.24 18070.36 19679.03 14388.87 17163.23 14190.21 26265.12 23582.57 21592.28 128
PEN-MVS77.73 21177.69 19377.84 28187.07 22153.91 35187.91 14891.18 12077.56 4373.14 26888.82 17261.23 17689.17 28059.95 27972.37 33690.43 188
tt080578.73 18577.83 18581.43 20785.17 25160.30 27589.41 9390.90 12871.21 17877.17 18888.73 17346.38 31393.21 16472.57 16878.96 25690.79 172
test_djsdf80.30 15079.32 15183.27 15583.98 27765.37 18990.50 6190.38 14268.55 24176.19 20988.70 17456.44 21993.46 15378.98 10280.14 24490.97 168
PAPM77.68 21576.40 22281.51 20587.29 21761.85 25583.78 25589.59 16764.74 28971.23 29088.70 17462.59 15093.66 14352.66 33287.03 14789.01 243
DTE-MVSNet76.99 22576.80 21177.54 28886.24 23353.06 36087.52 15790.66 13477.08 5972.50 27688.67 17660.48 19089.52 27457.33 30770.74 34890.05 209
PS-CasMVS78.01 20578.09 17877.77 28387.71 20154.39 34888.02 14291.22 11877.50 4673.26 26688.64 17760.73 18388.41 29561.88 26473.88 32590.53 184
cdsmvs_eth3d_5k19.96 38126.61 3830.00 4010.00 4240.00 4260.00 41289.26 1790.00 4190.00 42088.61 17861.62 1660.00 4200.00 4190.00 4180.00 416
lupinMVS81.39 12380.27 13284.76 9687.35 21070.21 7785.55 21786.41 24762.85 31381.32 11688.61 17861.68 16492.24 20578.41 10990.26 10291.83 141
F-COLMAP76.38 24074.33 25182.50 18889.28 13766.95 16188.41 12789.03 18864.05 30066.83 33588.61 17846.78 31092.89 18257.48 30478.55 25887.67 277
mvs_anonymous79.42 16879.11 15780.34 23584.45 26857.97 29782.59 27587.62 22567.40 25676.17 21288.56 18168.47 8989.59 27370.65 18486.05 16393.47 84
CP-MVSNet78.22 19678.34 17277.84 28187.83 19554.54 34687.94 14691.17 12177.65 3873.48 26488.49 18262.24 15888.43 29462.19 26074.07 32190.55 183
PVSNet_Blended_VisFu82.62 10081.83 10984.96 8790.80 9169.76 8788.74 11791.70 10669.39 21978.96 14488.46 18365.47 12294.87 9574.42 14788.57 12890.24 196
CANet_DTU80.61 14079.87 13882.83 17685.60 24463.17 23787.36 16388.65 20476.37 8075.88 21588.44 18453.51 24193.07 17673.30 15989.74 11292.25 129
PLCcopyleft70.83 1178.05 20376.37 22383.08 16591.88 7467.80 13588.19 13789.46 17164.33 29569.87 30788.38 18553.66 23993.58 14458.86 29182.73 21287.86 274
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
WR-MVS79.49 16479.22 15580.27 23788.79 15658.35 29085.06 22688.61 20678.56 3077.65 17488.34 18663.81 13690.66 25764.98 23777.22 27491.80 143
XXY-MVS75.41 25475.56 23274.96 31483.59 28457.82 30180.59 30283.87 28166.54 26874.93 24688.31 18763.24 14080.09 35662.16 26176.85 28086.97 297
Effi-MVS+83.62 8383.08 8685.24 7888.38 17267.45 14488.89 11089.15 18475.50 9682.27 10488.28 18869.61 7694.45 10977.81 11487.84 13693.84 64
API-MVS81.99 11081.23 11484.26 11690.94 8770.18 8291.10 5289.32 17571.51 17378.66 15188.28 18865.26 12395.10 8564.74 23991.23 9087.51 282
thisisatest053079.40 16977.76 19084.31 11087.69 20365.10 19487.36 16384.26 27670.04 20377.42 17888.26 19049.94 28494.79 9870.20 18784.70 17793.03 102
hse-mvs281.72 11480.94 12084.07 12688.72 15967.68 13885.87 20887.26 23376.02 8784.67 6788.22 19161.54 16793.48 15182.71 7373.44 33091.06 163
xiu_mvs_v1_base_debu80.80 13579.72 14184.03 13387.35 21070.19 7985.56 21488.77 19869.06 23181.83 10888.16 19250.91 27292.85 18378.29 11187.56 13889.06 238
xiu_mvs_v1_base80.80 13579.72 14184.03 13387.35 21070.19 7985.56 21488.77 19869.06 23181.83 10888.16 19250.91 27292.85 18378.29 11187.56 13889.06 238
xiu_mvs_v1_base_debi80.80 13579.72 14184.03 13387.35 21070.19 7985.56 21488.77 19869.06 23181.83 10888.16 19250.91 27292.85 18378.29 11187.56 13889.06 238
UniMVSNet (Re)81.60 11981.11 11683.09 16488.38 17264.41 20987.60 15593.02 4278.42 3278.56 15488.16 19269.78 7493.26 16069.58 19676.49 28491.60 145
AUN-MVS79.21 17477.60 19584.05 13188.71 16067.61 14085.84 21087.26 23369.08 23077.23 18488.14 19653.20 24593.47 15275.50 14073.45 32991.06 163
Anonymous2023121178.97 18177.69 19382.81 17890.54 9664.29 21190.11 7291.51 11165.01 28776.16 21388.13 19750.56 27793.03 18069.68 19577.56 27291.11 161
pm-mvs177.25 22376.68 21778.93 26284.22 27158.62 28886.41 19288.36 20971.37 17573.31 26588.01 19861.22 17789.15 28164.24 24373.01 33389.03 242
LTVRE_ROB69.57 1376.25 24174.54 24881.41 20888.60 16364.38 21079.24 31989.12 18770.76 18869.79 30987.86 19949.09 29693.20 16756.21 31780.16 24286.65 304
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WTY-MVS75.65 24975.68 22975.57 30586.40 23256.82 31477.92 34182.40 30665.10 28476.18 21087.72 20063.13 14680.90 35360.31 27781.96 22189.00 245
TAMVS78.89 18377.51 19783.03 16887.80 19667.79 13684.72 23385.05 26567.63 25176.75 19587.70 20162.25 15790.82 25358.53 29587.13 14590.49 186
BH-untuned79.47 16578.60 16582.05 19489.19 14165.91 17586.07 20388.52 20772.18 16275.42 22687.69 20261.15 17893.54 14860.38 27686.83 15086.70 303
COLMAP_ROBcopyleft66.92 1773.01 28070.41 29580.81 22687.13 22065.63 18288.30 13484.19 27762.96 31163.80 36187.69 20238.04 36692.56 19046.66 36574.91 31584.24 340
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OurMVSNet-221017-074.26 26272.42 27279.80 24683.76 28259.59 28385.92 20786.64 24466.39 26966.96 33387.58 20439.46 35891.60 22565.76 23169.27 35388.22 267
FA-MVS(test-final)80.96 12979.91 13784.10 12088.30 17565.01 19584.55 23990.01 15673.25 14879.61 13687.57 20558.35 20294.72 10071.29 17786.25 15992.56 117
Baseline_NR-MVSNet78.15 20078.33 17377.61 28685.79 24056.21 32786.78 18285.76 25873.60 13777.93 17087.57 20565.02 12688.99 28367.14 22075.33 30987.63 278
WR-MVS_H78.51 19178.49 16778.56 26988.02 18656.38 32388.43 12692.67 6377.14 5673.89 25987.55 20766.25 11389.24 27958.92 29073.55 32890.06 208
EI-MVSNet80.52 14579.98 13582.12 19284.28 26963.19 23686.41 19288.95 19474.18 12478.69 14987.54 20866.62 10692.43 19572.57 16880.57 23890.74 176
CVMVSNet72.99 28172.58 27074.25 32284.28 26950.85 37586.41 19283.45 28844.56 39073.23 26787.54 20849.38 29185.70 31865.90 22978.44 26186.19 310
ACMH+68.96 1476.01 24574.01 25382.03 19588.60 16365.31 19088.86 11187.55 22670.25 20167.75 32487.47 21041.27 35093.19 16958.37 29775.94 29587.60 279
TransMVSNet (Re)75.39 25574.56 24777.86 28085.50 24657.10 31186.78 18286.09 25572.17 16371.53 28887.34 21163.01 14789.31 27856.84 31261.83 37487.17 290
GBi-Net78.40 19277.40 19881.40 20987.60 20563.01 23888.39 12889.28 17671.63 16875.34 23087.28 21254.80 22691.11 24462.72 25279.57 24890.09 204
test178.40 19277.40 19881.40 20987.60 20563.01 23888.39 12889.28 17671.63 16875.34 23087.28 21254.80 22691.11 24462.72 25279.57 24890.09 204
FMVSNet278.20 19877.21 20281.20 21587.60 20562.89 24487.47 15989.02 18971.63 16875.29 23687.28 21254.80 22691.10 24762.38 25779.38 25289.61 226
FMVSNet177.44 21876.12 22581.40 20986.81 22563.01 23888.39 12889.28 17670.49 19574.39 25587.28 21249.06 29791.11 24460.91 27378.52 25990.09 204
v2v48280.23 15179.29 15283.05 16783.62 28364.14 21387.04 17289.97 15773.61 13678.18 16487.22 21661.10 17993.82 13476.11 13076.78 28291.18 159
ITE_SJBPF78.22 27581.77 32260.57 27083.30 28969.25 22467.54 32687.20 21736.33 37187.28 30654.34 32474.62 31886.80 300
anonymousdsp78.60 18977.15 20382.98 17180.51 34167.08 15687.24 16889.53 16965.66 27875.16 23987.19 21852.52 24692.25 20477.17 12179.34 25389.61 226
MVSTER79.01 17977.88 18482.38 19083.07 29764.80 20084.08 25388.95 19469.01 23478.69 14987.17 21954.70 23092.43 19574.69 14480.57 23889.89 217
thres100view90076.50 23475.55 23379.33 25589.52 12256.99 31285.83 21183.23 29173.94 12876.32 20687.12 22051.89 26191.95 21348.33 35683.75 19489.07 236
thres600view776.50 23475.44 23479.68 24989.40 12957.16 30985.53 21983.23 29173.79 13276.26 20787.09 22151.89 26191.89 21648.05 36183.72 19790.00 210
XVG-ACMP-BASELINE76.11 24374.27 25281.62 20283.20 29364.67 20283.60 26089.75 16369.75 21471.85 28487.09 22132.78 37892.11 20869.99 19180.43 24088.09 270
HY-MVS69.67 1277.95 20677.15 20380.36 23487.57 20960.21 27783.37 26487.78 22366.11 27175.37 22987.06 22363.27 13990.48 25961.38 27082.43 21690.40 190
CHOSEN 1792x268877.63 21675.69 22883.44 14889.98 11168.58 11978.70 32987.50 22856.38 36575.80 21786.84 22458.67 19991.40 23861.58 26885.75 16990.34 191
v879.97 15779.02 15982.80 17984.09 27464.50 20687.96 14490.29 14974.13 12675.24 23786.81 22562.88 14893.89 13374.39 14875.40 30790.00 210
AllTest70.96 29768.09 31279.58 25285.15 25363.62 22184.58 23879.83 33562.31 32060.32 37386.73 22632.02 37988.96 28650.28 34571.57 34486.15 311
TestCases79.58 25285.15 25363.62 22179.83 33562.31 32060.32 37386.73 22632.02 37988.96 28650.28 34571.57 34486.15 311
LCM-MVSNet-Re77.05 22476.94 20877.36 28987.20 21851.60 36880.06 30980.46 32875.20 10167.69 32586.72 22862.48 15288.98 28463.44 24789.25 11691.51 149
1112_ss77.40 22076.43 22180.32 23689.11 14760.41 27483.65 25787.72 22462.13 32373.05 26986.72 22862.58 15189.97 26662.11 26380.80 23490.59 182
ab-mvs-re7.23 3849.64 3870.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 42086.72 2280.00 4240.00 4200.00 4190.00 4180.00 416
IterMVS-LS80.06 15479.38 14882.11 19385.89 23963.20 23586.79 18189.34 17474.19 12375.45 22586.72 22866.62 10692.39 19772.58 16776.86 27990.75 175
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH67.68 1675.89 24673.93 25581.77 20088.71 16066.61 16388.62 12289.01 19069.81 21066.78 33686.70 23241.95 34991.51 23355.64 31878.14 26587.17 290
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Test_1112_low_res76.40 23975.44 23479.27 25689.28 13758.09 29381.69 28487.07 23759.53 34272.48 27786.67 23361.30 17489.33 27760.81 27580.15 24390.41 189
FMVSNet377.88 20876.85 21080.97 22386.84 22462.36 24786.52 19088.77 19871.13 17975.34 23086.66 23454.07 23691.10 24762.72 25279.57 24889.45 230
pmmvs674.69 25973.39 26178.61 26681.38 33057.48 30686.64 18687.95 21764.99 28870.18 29986.61 23550.43 27989.52 27462.12 26270.18 35088.83 252
ET-MVSNet_ETH3D78.63 18876.63 21884.64 9886.73 22769.47 9285.01 22784.61 26969.54 21766.51 34386.59 23650.16 28191.75 22176.26 12984.24 18792.69 113
testgi66.67 33466.53 33167.08 36875.62 37341.69 40375.93 34976.50 36066.11 27165.20 35386.59 23635.72 37374.71 38743.71 37773.38 33184.84 334
CLD-MVS82.31 10481.65 11084.29 11188.47 16767.73 13785.81 21292.35 7875.78 9078.33 16086.58 23864.01 13394.35 11076.05 13287.48 14190.79 172
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
v1079.74 15978.67 16382.97 17284.06 27564.95 19687.88 15090.62 13573.11 15075.11 24186.56 23961.46 17094.05 12273.68 15375.55 30089.90 216
CDS-MVSNet79.07 17877.70 19283.17 16187.60 20568.23 12684.40 24686.20 25267.49 25476.36 20586.54 24061.54 16790.79 25461.86 26587.33 14290.49 186
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
xiu_mvs_v2_base81.69 11681.05 11783.60 14489.15 14268.03 13284.46 24290.02 15570.67 18981.30 11986.53 24163.17 14294.19 11875.60 13888.54 12988.57 262
TR-MVS77.44 21876.18 22481.20 21588.24 17663.24 23384.61 23786.40 24867.55 25377.81 17186.48 24254.10 23593.15 17157.75 30382.72 21387.20 289
EIA-MVS83.31 9182.80 9384.82 9389.59 11965.59 18388.21 13692.68 6274.66 11478.96 14486.42 24369.06 8395.26 7575.54 13990.09 10593.62 77
tfpn200view976.42 23875.37 23879.55 25489.13 14357.65 30385.17 22283.60 28373.41 14376.45 20286.39 24452.12 25391.95 21348.33 35683.75 19489.07 236
thres40076.50 23475.37 23879.86 24489.13 14357.65 30385.17 22283.60 28373.41 14376.45 20286.39 24452.12 25391.95 21348.33 35683.75 19490.00 210
v7n78.97 18177.58 19683.14 16283.45 28765.51 18488.32 13391.21 11973.69 13472.41 27886.32 24657.93 20493.81 13569.18 19975.65 29890.11 202
MAR-MVS81.84 11280.70 12285.27 7791.32 7971.53 5489.82 7690.92 12769.77 21378.50 15586.21 24762.36 15594.52 10665.36 23392.05 7989.77 222
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
v114480.03 15579.03 15883.01 16983.78 28164.51 20487.11 17190.57 13871.96 16578.08 16786.20 24861.41 17193.94 12674.93 14377.23 27390.60 181
test_vis1_n_192075.52 25175.78 22774.75 31879.84 34957.44 30783.26 26585.52 26062.83 31479.34 14186.17 24945.10 32979.71 35778.75 10481.21 22987.10 296
V4279.38 17178.24 17582.83 17681.10 33565.50 18585.55 21789.82 16071.57 17278.21 16286.12 25060.66 18693.18 17075.64 13675.46 30489.81 221
PVSNet_BlendedMVS80.60 14180.02 13482.36 19188.85 15065.40 18686.16 20192.00 9169.34 22178.11 16586.09 25166.02 11794.27 11371.52 17382.06 22087.39 284
v119279.59 16278.43 17083.07 16683.55 28564.52 20386.93 17690.58 13670.83 18577.78 17285.90 25259.15 19793.94 12673.96 15277.19 27590.76 174
SixPastTwentyTwo73.37 27371.26 28679.70 24885.08 25657.89 29985.57 21383.56 28571.03 18365.66 34785.88 25342.10 34792.57 18959.11 28863.34 37288.65 260
EPNet_dtu75.46 25274.86 24377.23 29282.57 31154.60 34586.89 17783.09 29571.64 16766.25 34585.86 25455.99 22088.04 29954.92 32186.55 15489.05 241
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
sss73.60 27073.64 26073.51 32882.80 30555.01 34276.12 34881.69 31462.47 31974.68 25085.85 25557.32 21278.11 36460.86 27480.93 23187.39 284
ETV-MVS84.90 6984.67 6985.59 7089.39 13068.66 11788.74 11792.64 6879.97 1584.10 8185.71 25669.32 7995.38 7180.82 9091.37 8892.72 110
test_cas_vis1_n_192073.76 26973.74 25973.81 32675.90 37059.77 28080.51 30382.40 30658.30 35281.62 11485.69 25744.35 33376.41 37576.29 12878.61 25785.23 327
v124078.99 18077.78 18882.64 18583.21 29263.54 22586.62 18790.30 14869.74 21677.33 18085.68 25857.04 21593.76 13973.13 16276.92 27790.62 179
v14419279.47 16578.37 17182.78 18283.35 28863.96 21686.96 17490.36 14569.99 20677.50 17685.67 25960.66 18693.77 13874.27 14976.58 28390.62 179
tfpnnormal74.39 26073.16 26478.08 27886.10 23858.05 29484.65 23687.53 22770.32 19871.22 29185.63 26054.97 22489.86 26743.03 37975.02 31486.32 307
PS-MVSNAJ81.69 11681.02 11883.70 14289.51 12368.21 12784.28 24890.09 15470.79 18681.26 12085.62 26163.15 14394.29 11175.62 13788.87 12288.59 261
v192192079.22 17378.03 17982.80 17983.30 29063.94 21786.80 18090.33 14669.91 20977.48 17785.53 26258.44 20193.75 14073.60 15476.85 28090.71 177
test_040272.79 28370.44 29479.84 24588.13 18065.99 17385.93 20684.29 27465.57 27967.40 33085.49 26346.92 30992.61 18835.88 39374.38 32080.94 371
v14878.72 18677.80 18781.47 20682.73 30761.96 25486.30 19788.08 21373.26 14776.18 21085.47 26462.46 15392.36 19971.92 17273.82 32690.09 204
USDC70.33 30568.37 30776.21 29980.60 33956.23 32679.19 32186.49 24660.89 33061.29 36985.47 26431.78 38189.47 27653.37 32976.21 29382.94 358
MVP-Stereo76.12 24274.46 25081.13 21885.37 24969.79 8684.42 24587.95 21765.03 28667.46 32885.33 26653.28 24491.73 22358.01 30183.27 20581.85 366
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MVS78.19 19976.99 20781.78 19985.66 24266.99 15784.66 23490.47 14055.08 37072.02 28385.27 26763.83 13594.11 12166.10 22789.80 11184.24 340
DIV-MVS_self_test77.72 21276.76 21380.58 23082.48 31460.48 27283.09 26987.86 22069.22 22574.38 25685.24 26862.10 16091.53 23171.09 17875.40 30789.74 223
FE-MVS77.78 21075.68 22984.08 12588.09 18366.00 17283.13 26887.79 22268.42 24578.01 16885.23 26945.50 32795.12 8059.11 28885.83 16891.11 161
cl____77.72 21276.76 21380.58 23082.49 31360.48 27283.09 26987.87 21969.22 22574.38 25685.22 27062.10 16091.53 23171.09 17875.41 30689.73 224
HyFIR lowres test77.53 21775.40 23683.94 13989.59 11966.62 16280.36 30688.64 20556.29 36676.45 20285.17 27157.64 20893.28 15961.34 27183.10 20891.91 140
pmmvs474.03 26771.91 27680.39 23381.96 31968.32 12381.45 28882.14 30859.32 34369.87 30785.13 27252.40 24988.13 29860.21 27874.74 31784.73 336
TDRefinement67.49 32764.34 33776.92 29473.47 38561.07 26384.86 23182.98 29959.77 33958.30 38085.13 27226.06 38987.89 30047.92 36260.59 37981.81 367
Fast-Effi-MVS+80.81 13379.92 13683.47 14788.85 15064.51 20485.53 21989.39 17370.79 18678.49 15685.06 27467.54 9993.58 14467.03 22286.58 15392.32 126
PVSNet_Blended80.98 12880.34 12982.90 17488.85 15065.40 18684.43 24492.00 9167.62 25278.11 16585.05 27566.02 11794.27 11371.52 17389.50 11389.01 243
m2depth59.91 35357.10 35768.34 36367.13 39946.65 38874.64 36267.41 39048.30 38562.52 36785.04 27620.40 39975.93 37942.55 38145.90 40082.44 361
test_fmvs1_n70.86 29970.24 29772.73 33572.51 39255.28 33981.27 29179.71 33751.49 38178.73 14884.87 27727.54 38877.02 36976.06 13179.97 24685.88 318
WBMVS73.43 27272.81 26775.28 31187.91 19150.99 37478.59 33281.31 31965.51 28274.47 25484.83 27846.39 31286.68 30958.41 29677.86 26788.17 269
CMPMVSbinary51.72 2170.19 30768.16 31076.28 29873.15 38857.55 30579.47 31683.92 27948.02 38656.48 38684.81 27943.13 33986.42 31362.67 25581.81 22484.89 333
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EU-MVSNet68.53 32267.61 32271.31 34778.51 36247.01 38684.47 24084.27 27542.27 39366.44 34484.79 28040.44 35583.76 33558.76 29368.54 35883.17 352
BH-w/o78.21 19777.33 20180.84 22588.81 15465.13 19384.87 23087.85 22169.75 21474.52 25384.74 28161.34 17393.11 17458.24 29985.84 16784.27 339
pmmvs571.55 29270.20 29875.61 30477.83 36356.39 32281.74 28380.89 32057.76 35667.46 32884.49 28249.26 29485.32 32557.08 30975.29 31085.11 331
thres20075.55 25074.47 24978.82 26387.78 19957.85 30083.07 27183.51 28672.44 15975.84 21684.42 28352.08 25691.75 22147.41 36383.64 19986.86 299
test_fmvs170.93 29870.52 29272.16 33973.71 38155.05 34180.82 29478.77 34451.21 38278.58 15384.41 28431.20 38376.94 37075.88 13480.12 24584.47 338
testing368.56 32167.67 32171.22 34887.33 21542.87 39883.06 27271.54 37870.36 19669.08 31584.38 28530.33 38585.69 31937.50 39175.45 30585.09 332
test_fmvs268.35 32467.48 32470.98 35069.50 39551.95 36380.05 31076.38 36149.33 38474.65 25184.38 28523.30 39775.40 38574.51 14675.17 31385.60 321
eth_miper_zixun_eth77.92 20776.69 21681.61 20483.00 30061.98 25383.15 26789.20 18269.52 21874.86 24784.35 28761.76 16392.56 19071.50 17572.89 33490.28 195
testing9176.54 23275.66 23179.18 25988.43 17055.89 33081.08 29283.00 29873.76 13375.34 23084.29 28846.20 31890.07 26464.33 24184.50 17991.58 147
c3_l78.75 18477.91 18281.26 21382.89 30461.56 25984.09 25289.13 18669.97 20775.56 22084.29 28866.36 11192.09 20973.47 15775.48 30290.12 201
testing9976.09 24475.12 24279.00 26088.16 17855.50 33680.79 29681.40 31773.30 14675.17 23884.27 29044.48 33290.02 26564.28 24284.22 18891.48 152
UWE-MVS72.13 28971.49 28074.03 32486.66 22947.70 38381.40 29076.89 35963.60 30575.59 21984.22 29139.94 35785.62 32048.98 35386.13 16288.77 255
Fast-Effi-MVS+-dtu78.02 20476.49 21982.62 18683.16 29666.96 16086.94 17587.45 23072.45 15771.49 28984.17 29254.79 22991.58 22667.61 21380.31 24189.30 234
IterMVS-SCA-FT75.43 25373.87 25780.11 24082.69 30864.85 19981.57 28683.47 28769.16 22870.49 29584.15 29351.95 25988.15 29769.23 19872.14 34087.34 286
131476.53 23375.30 24080.21 23883.93 27862.32 24984.66 23488.81 19660.23 33570.16 30184.07 29455.30 22390.73 25667.37 21683.21 20687.59 281
cl2278.07 20277.01 20581.23 21482.37 31661.83 25683.55 26187.98 21568.96 23575.06 24383.87 29561.40 17291.88 21773.53 15576.39 28789.98 213
EG-PatchMatch MVS74.04 26571.82 27780.71 22884.92 25867.42 14585.86 20988.08 21366.04 27364.22 35783.85 29635.10 37492.56 19057.44 30580.83 23382.16 365
thisisatest051577.33 22175.38 23783.18 16085.27 25063.80 21982.11 28083.27 29065.06 28575.91 21483.84 29749.54 28894.27 11367.24 21886.19 16091.48 152
test20.0367.45 32866.95 32968.94 35775.48 37444.84 39477.50 34277.67 34966.66 26263.01 36383.80 29847.02 30878.40 36242.53 38268.86 35783.58 349
miper_ehance_all_eth78.59 19077.76 19081.08 21982.66 30961.56 25983.65 25789.15 18468.87 23675.55 22183.79 29966.49 10992.03 21073.25 16076.39 28789.64 225
MSDG73.36 27570.99 28880.49 23284.51 26765.80 17880.71 30086.13 25465.70 27765.46 34883.74 30044.60 33090.91 25251.13 34076.89 27884.74 335
MonoMVSNet76.49 23775.80 22678.58 26881.55 32658.45 28986.36 19586.22 25174.87 11074.73 24983.73 30151.79 26488.73 28970.78 18072.15 33988.55 263
testing1175.14 25774.01 25378.53 27188.16 17856.38 32380.74 29980.42 32970.67 18972.69 27583.72 30243.61 33789.86 26762.29 25983.76 19389.36 232
IterMVS74.29 26172.94 26678.35 27481.53 32763.49 22781.58 28582.49 30568.06 24969.99 30483.69 30351.66 26685.54 32165.85 23071.64 34386.01 315
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tpm72.37 28671.71 27874.35 32182.19 31752.00 36279.22 32077.29 35564.56 29172.95 27183.68 30451.35 26783.26 34158.33 29875.80 29687.81 275
testing22274.04 26572.66 26978.19 27687.89 19255.36 33781.06 29379.20 34271.30 17674.65 25183.57 30539.11 36188.67 29151.43 33985.75 16990.53 184
Effi-MVS+-dtu80.03 15578.57 16684.42 10585.13 25568.74 11188.77 11488.10 21274.99 10674.97 24583.49 30657.27 21393.36 15773.53 15580.88 23291.18 159
baseline275.70 24873.83 25881.30 21283.26 29161.79 25782.57 27680.65 32466.81 25866.88 33483.42 30757.86 20692.19 20663.47 24679.57 24889.91 215
mvs5depth69.45 31367.45 32575.46 30973.93 37955.83 33179.19 32183.23 29166.89 25771.63 28783.32 30833.69 37785.09 32659.81 28155.34 38885.46 323
TinyColmap67.30 33064.81 33574.76 31781.92 32156.68 31880.29 30881.49 31660.33 33356.27 38783.22 30924.77 39387.66 30445.52 37369.47 35279.95 376
mvsany_test162.30 34961.26 35365.41 37069.52 39454.86 34366.86 39049.78 41046.65 38768.50 32183.21 31049.15 29566.28 40256.93 31160.77 37775.11 386
test_vis1_n69.85 31169.21 30271.77 34172.66 39155.27 34081.48 28776.21 36252.03 37875.30 23583.20 31128.97 38676.22 37774.60 14578.41 26383.81 346
CostFormer75.24 25673.90 25679.27 25682.65 31058.27 29280.80 29582.73 30461.57 32675.33 23483.13 31255.52 22191.07 25064.98 23778.34 26488.45 264
MVStest156.63 35752.76 36368.25 36461.67 40553.25 35971.67 37168.90 38838.59 39850.59 39483.05 31325.08 39170.66 39536.76 39238.56 40180.83 372
WB-MVSnew71.96 29171.65 27972.89 33384.67 26551.88 36582.29 27877.57 35062.31 32073.67 26283.00 31453.49 24281.10 35245.75 37282.13 21985.70 320
ETVMVS72.25 28871.05 28775.84 30187.77 20051.91 36479.39 31774.98 36669.26 22373.71 26182.95 31540.82 35486.14 31546.17 36984.43 18489.47 229
miper_lstm_enhance74.11 26473.11 26577.13 29380.11 34559.62 28272.23 36986.92 24166.76 26070.40 29682.92 31656.93 21682.92 34269.06 20172.63 33588.87 250
GA-MVS76.87 22875.17 24181.97 19782.75 30662.58 24581.44 28986.35 25072.16 16474.74 24882.89 31746.20 31892.02 21168.85 20481.09 23091.30 157
K. test v371.19 29468.51 30679.21 25883.04 29957.78 30284.35 24776.91 35872.90 15562.99 36482.86 31839.27 35991.09 24961.65 26752.66 39188.75 256
MS-PatchMatch73.83 26872.67 26877.30 29183.87 27966.02 17181.82 28184.66 26861.37 32968.61 31982.82 31947.29 30588.21 29659.27 28584.32 18677.68 381
lessismore_v078.97 26181.01 33657.15 31065.99 39361.16 37082.82 31939.12 36091.34 24059.67 28246.92 39788.43 265
D2MVS74.82 25873.21 26379.64 25179.81 35062.56 24680.34 30787.35 23164.37 29468.86 31682.66 32146.37 31490.10 26367.91 21181.24 22886.25 308
Anonymous2023120668.60 31967.80 31871.02 34980.23 34450.75 37678.30 33780.47 32756.79 36366.11 34682.63 32246.35 31578.95 36043.62 37875.70 29783.36 351
MIMVSNet70.69 30169.30 30074.88 31584.52 26656.35 32575.87 35279.42 33964.59 29067.76 32382.41 32341.10 35181.54 34946.64 36781.34 22686.75 302
UBG73.08 27972.27 27475.51 30788.02 18651.29 37278.35 33677.38 35465.52 28073.87 26082.36 32445.55 32586.48 31255.02 32084.39 18588.75 256
OpenMVS_ROBcopyleft64.09 1970.56 30368.19 30977.65 28580.26 34259.41 28585.01 22782.96 30058.76 34965.43 34982.33 32537.63 36891.23 24345.34 37576.03 29482.32 362
miper_enhance_ethall77.87 20976.86 20980.92 22481.65 32361.38 26182.68 27488.98 19165.52 28075.47 22282.30 32665.76 12192.00 21272.95 16376.39 28789.39 231
test0.0.03 168.00 32667.69 32068.90 35877.55 36447.43 38475.70 35372.95 37766.66 26266.56 33982.29 32748.06 30275.87 38044.97 37674.51 31983.41 350
PVSNet64.34 1872.08 29070.87 29075.69 30386.21 23456.44 32174.37 36380.73 32362.06 32470.17 30082.23 32842.86 34183.31 34054.77 32284.45 18387.32 287
MIMVSNet168.58 32066.78 33073.98 32580.07 34651.82 36680.77 29784.37 27164.40 29359.75 37682.16 32936.47 37083.63 33742.73 38070.33 34986.48 306
CL-MVSNet_self_test72.37 28671.46 28175.09 31379.49 35653.53 35380.76 29885.01 26669.12 22970.51 29482.05 33057.92 20584.13 33352.27 33466.00 36687.60 279
tpm273.26 27671.46 28178.63 26583.34 28956.71 31780.65 30180.40 33056.63 36473.55 26382.02 33151.80 26391.24 24256.35 31678.42 26287.95 271
PatchMatch-RL72.38 28570.90 28976.80 29688.60 16367.38 14779.53 31576.17 36362.75 31669.36 31282.00 33245.51 32684.89 32953.62 32780.58 23778.12 380
FMVSNet569.50 31267.96 31374.15 32382.97 30355.35 33880.01 31182.12 30962.56 31863.02 36281.53 33336.92 36981.92 34748.42 35574.06 32285.17 330
CR-MVSNet73.37 27371.27 28579.67 25081.32 33365.19 19175.92 35080.30 33159.92 33872.73 27381.19 33452.50 24786.69 30859.84 28077.71 26987.11 294
Patchmtry70.74 30069.16 30375.49 30880.72 33754.07 35074.94 36180.30 33158.34 35170.01 30281.19 33452.50 24786.54 31053.37 32971.09 34785.87 319
IB-MVS68.01 1575.85 24773.36 26283.31 15384.76 26066.03 17083.38 26385.06 26470.21 20269.40 31181.05 33645.76 32394.66 10365.10 23675.49 30189.25 235
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cascas76.72 23174.64 24582.99 17085.78 24165.88 17682.33 27789.21 18160.85 33172.74 27281.02 33747.28 30693.75 14067.48 21585.02 17289.34 233
LF4IMVS64.02 34562.19 34969.50 35570.90 39353.29 35876.13 34777.18 35652.65 37658.59 37880.98 33823.55 39676.52 37353.06 33166.66 36278.68 379
Anonymous2024052168.80 31867.22 32773.55 32774.33 37754.11 34983.18 26685.61 25958.15 35361.68 36880.94 33930.71 38481.27 35157.00 31073.34 33285.28 326
gm-plane-assit81.40 32953.83 35262.72 31780.94 33992.39 19763.40 248
UnsupCasMVSNet_eth67.33 32965.99 33371.37 34473.48 38451.47 37075.16 35785.19 26365.20 28360.78 37180.93 34142.35 34377.20 36857.12 30853.69 39085.44 324
dmvs_re71.14 29570.58 29172.80 33481.96 31959.68 28175.60 35479.34 34068.55 24169.27 31480.72 34249.42 29076.54 37252.56 33377.79 26882.19 364
MDTV_nov1_ep1369.97 29983.18 29453.48 35477.10 34680.18 33460.45 33269.33 31380.44 34348.89 30086.90 30751.60 33778.51 260
pmmvs-eth3d70.50 30467.83 31778.52 27277.37 36666.18 16981.82 28181.51 31558.90 34863.90 36080.42 34442.69 34286.28 31458.56 29465.30 36883.11 354
PM-MVS66.41 33664.14 33873.20 33173.92 38056.45 32078.97 32564.96 39763.88 30464.72 35480.24 34519.84 40183.44 33966.24 22464.52 37079.71 377
SCA74.22 26372.33 27379.91 24384.05 27662.17 25179.96 31279.29 34166.30 27072.38 27980.13 34651.95 25988.60 29259.25 28677.67 27188.96 247
Patchmatch-test64.82 34363.24 34469.57 35479.42 35749.82 38063.49 40069.05 38651.98 37959.95 37580.13 34650.91 27270.98 39440.66 38573.57 32787.90 273
tpmrst72.39 28472.13 27573.18 33280.54 34049.91 37979.91 31379.08 34363.11 30871.69 28679.95 34855.32 22282.77 34365.66 23273.89 32486.87 298
DSMNet-mixed57.77 35656.90 35860.38 37667.70 39735.61 40769.18 38253.97 40832.30 40657.49 38379.88 34940.39 35668.57 40038.78 38972.37 33676.97 382
MDA-MVSNet-bldmvs66.68 33363.66 34275.75 30279.28 35860.56 27173.92 36578.35 34664.43 29250.13 39579.87 35044.02 33583.67 33646.10 37056.86 38283.03 356
PatchmatchNetpermissive73.12 27871.33 28478.49 27383.18 29460.85 26679.63 31478.57 34564.13 29671.73 28579.81 35151.20 27085.97 31757.40 30676.36 29288.66 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Syy-MVS68.05 32567.85 31568.67 36184.68 26240.97 40478.62 33073.08 37566.65 26566.74 33779.46 35252.11 25582.30 34532.89 39676.38 29082.75 359
myMVS_eth3d67.02 33166.29 33269.21 35684.68 26242.58 39978.62 33073.08 37566.65 26566.74 33779.46 35231.53 38282.30 34539.43 38876.38 29082.75 359
ppachtmachnet_test70.04 30867.34 32678.14 27779.80 35161.13 26279.19 32180.59 32559.16 34565.27 35079.29 35446.75 31187.29 30549.33 35166.72 36186.00 317
EPMVS69.02 31668.16 31071.59 34279.61 35449.80 38177.40 34366.93 39162.82 31570.01 30279.05 35545.79 32277.86 36656.58 31475.26 31187.13 293
PMMVS69.34 31468.67 30571.35 34675.67 37262.03 25275.17 35673.46 37350.00 38368.68 31779.05 35552.07 25778.13 36361.16 27282.77 21173.90 387
test-LLR72.94 28272.43 27174.48 31981.35 33158.04 29578.38 33377.46 35166.66 26269.95 30579.00 35748.06 30279.24 35866.13 22584.83 17486.15 311
test-mter71.41 29370.39 29674.48 31981.35 33158.04 29578.38 33377.46 35160.32 33469.95 30579.00 35736.08 37279.24 35866.13 22584.83 17486.15 311
KD-MVS_self_test68.81 31767.59 32372.46 33874.29 37845.45 38977.93 34087.00 23863.12 30763.99 35978.99 35942.32 34484.77 33056.55 31564.09 37187.16 292
test_fmvs363.36 34761.82 35067.98 36562.51 40446.96 38777.37 34474.03 37245.24 38967.50 32778.79 36012.16 40972.98 39372.77 16666.02 36583.99 344
KD-MVS_2432*160066.22 33863.89 34073.21 32975.47 37553.42 35570.76 37684.35 27264.10 29866.52 34178.52 36134.55 37584.98 32750.40 34350.33 39481.23 369
miper_refine_blended66.22 33863.89 34073.21 32975.47 37553.42 35570.76 37684.35 27264.10 29866.52 34178.52 36134.55 37584.98 32750.40 34350.33 39481.23 369
tpmvs71.09 29669.29 30176.49 29782.04 31856.04 32878.92 32681.37 31864.05 30067.18 33278.28 36349.74 28789.77 26949.67 35072.37 33683.67 348
our_test_369.14 31567.00 32875.57 30579.80 35158.80 28677.96 33977.81 34859.55 34162.90 36578.25 36447.43 30483.97 33451.71 33667.58 36083.93 345
MDA-MVSNet_test_wron65.03 34162.92 34571.37 34475.93 36956.73 31569.09 38574.73 36957.28 36154.03 39077.89 36545.88 32074.39 38949.89 34961.55 37582.99 357
YYNet165.03 34162.91 34671.38 34375.85 37156.60 31969.12 38474.66 37157.28 36154.12 38977.87 36645.85 32174.48 38849.95 34861.52 37683.05 355
ambc75.24 31273.16 38750.51 37763.05 40187.47 22964.28 35677.81 36717.80 40389.73 27157.88 30260.64 37885.49 322
tpm cat170.57 30268.31 30877.35 29082.41 31557.95 29878.08 33880.22 33352.04 37768.54 32077.66 36852.00 25887.84 30151.77 33572.07 34186.25 308
dp66.80 33265.43 33470.90 35179.74 35348.82 38275.12 35974.77 36859.61 34064.08 35877.23 36942.89 34080.72 35448.86 35466.58 36383.16 353
TESTMET0.1,169.89 31069.00 30472.55 33679.27 35956.85 31378.38 33374.71 37057.64 35768.09 32277.19 37037.75 36776.70 37163.92 24484.09 18984.10 343
CHOSEN 280x42066.51 33564.71 33671.90 34081.45 32863.52 22657.98 40368.95 38753.57 37362.59 36676.70 37146.22 31775.29 38655.25 31979.68 24776.88 383
PatchT68.46 32367.85 31570.29 35280.70 33843.93 39672.47 36874.88 36760.15 33670.55 29376.57 37249.94 28481.59 34850.58 34174.83 31685.34 325
mvsany_test353.99 36051.45 36561.61 37555.51 40944.74 39563.52 39945.41 41443.69 39258.11 38176.45 37317.99 40263.76 40554.77 32247.59 39676.34 384
RPMNet73.51 27170.49 29382.58 18781.32 33365.19 19175.92 35092.27 8057.60 35872.73 27376.45 37352.30 25095.43 6748.14 36077.71 26987.11 294
dmvs_testset62.63 34864.11 33958.19 37878.55 36124.76 41675.28 35565.94 39467.91 25060.34 37276.01 37553.56 24073.94 39131.79 39767.65 35975.88 385
ADS-MVSNet266.20 34063.33 34374.82 31679.92 34758.75 28767.55 38875.19 36553.37 37465.25 35175.86 37642.32 34480.53 35541.57 38368.91 35585.18 328
ADS-MVSNet64.36 34462.88 34768.78 36079.92 34747.17 38567.55 38871.18 37953.37 37465.25 35175.86 37642.32 34473.99 39041.57 38368.91 35585.18 328
EGC-MVSNET52.07 36647.05 37067.14 36783.51 28660.71 26880.50 30467.75 3890.07 4160.43 41775.85 37824.26 39481.54 34928.82 39962.25 37359.16 399
new-patchmatchnet61.73 35061.73 35161.70 37472.74 39024.50 41769.16 38378.03 34761.40 32756.72 38575.53 37938.42 36376.48 37445.95 37157.67 38184.13 342
N_pmnet52.79 36453.26 36251.40 38878.99 3607.68 42269.52 3803.89 42151.63 38057.01 38474.98 38040.83 35365.96 40337.78 39064.67 36980.56 375
WB-MVS54.94 35854.72 35955.60 38473.50 38320.90 41874.27 36461.19 40159.16 34550.61 39374.15 38147.19 30775.78 38117.31 40935.07 40370.12 391
patchmatchnet-post74.00 38251.12 27188.60 292
GG-mvs-BLEND75.38 31081.59 32555.80 33279.32 31869.63 38367.19 33173.67 38343.24 33888.90 28850.41 34284.50 17981.45 368
SSC-MVS53.88 36153.59 36154.75 38672.87 38919.59 41973.84 36660.53 40357.58 35949.18 39773.45 38446.34 31675.47 38416.20 41232.28 40569.20 392
Patchmatch-RL test70.24 30667.78 31977.61 28677.43 36559.57 28471.16 37370.33 38062.94 31268.65 31872.77 38550.62 27685.49 32269.58 19666.58 36387.77 276
FPMVS53.68 36251.64 36459.81 37765.08 40151.03 37369.48 38169.58 38441.46 39440.67 40172.32 38616.46 40570.00 39824.24 40565.42 36758.40 401
UnsupCasMVSNet_bld63.70 34661.53 35270.21 35373.69 38251.39 37172.82 36781.89 31155.63 36857.81 38271.80 38738.67 36278.61 36149.26 35252.21 39280.63 373
APD_test153.31 36349.93 36863.42 37365.68 40050.13 37871.59 37266.90 39234.43 40340.58 40271.56 3888.65 41476.27 37634.64 39555.36 38763.86 397
test_f52.09 36550.82 36655.90 38253.82 41242.31 40259.42 40258.31 40636.45 40156.12 38870.96 38912.18 40857.79 40853.51 32856.57 38467.60 393
PVSNet_057.27 2061.67 35159.27 35468.85 35979.61 35457.44 30768.01 38673.44 37455.93 36758.54 37970.41 39044.58 33177.55 36747.01 36435.91 40271.55 390
pmmvs357.79 35554.26 36068.37 36264.02 40356.72 31675.12 35965.17 39540.20 39552.93 39169.86 39120.36 40075.48 38345.45 37455.25 38972.90 389
test_vis1_rt60.28 35258.42 35565.84 36967.25 39855.60 33570.44 37860.94 40244.33 39159.00 37766.64 39224.91 39268.67 39962.80 25169.48 35173.25 388
new_pmnet50.91 36750.29 36752.78 38768.58 39634.94 40963.71 39856.63 40739.73 39644.95 39865.47 39321.93 39858.48 40734.98 39456.62 38364.92 395
gg-mvs-nofinetune69.95 30967.96 31375.94 30083.07 29754.51 34777.23 34570.29 38163.11 30870.32 29762.33 39443.62 33688.69 29053.88 32687.76 13784.62 337
JIA-IIPM66.32 33762.82 34876.82 29577.09 36761.72 25865.34 39675.38 36458.04 35564.51 35562.32 39542.05 34886.51 31151.45 33869.22 35482.21 363
LCM-MVSNet54.25 35949.68 36967.97 36653.73 41345.28 39266.85 39180.78 32235.96 40239.45 40362.23 3968.70 41378.06 36548.24 35951.20 39380.57 374
PMMVS240.82 37538.86 37946.69 38953.84 41116.45 42048.61 40649.92 40937.49 39931.67 40460.97 3978.14 41556.42 40928.42 40030.72 40667.19 394
testf145.72 37041.96 37457.00 37956.90 40745.32 39066.14 39359.26 40426.19 40730.89 40660.96 3984.14 41770.64 39626.39 40346.73 39855.04 402
APD_test245.72 37041.96 37457.00 37956.90 40745.32 39066.14 39359.26 40426.19 40730.89 40660.96 3984.14 41770.64 39626.39 40346.73 39855.04 402
MVS-HIRNet59.14 35457.67 35663.57 37281.65 32343.50 39771.73 37065.06 39639.59 39751.43 39257.73 40038.34 36482.58 34439.53 38673.95 32364.62 396
ANet_high50.57 36846.10 37263.99 37148.67 41639.13 40570.99 37580.85 32161.39 32831.18 40557.70 40117.02 40473.65 39231.22 39815.89 41379.18 378
PMVScopyleft37.38 2244.16 37440.28 37855.82 38340.82 41842.54 40165.12 39763.99 39834.43 40324.48 40957.12 4023.92 41976.17 37817.10 41055.52 38648.75 404
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
dongtai45.42 37245.38 37345.55 39073.36 38626.85 41467.72 38734.19 41654.15 37249.65 39656.41 40325.43 39062.94 40619.45 40728.09 40746.86 406
test_vis3_rt49.26 36947.02 37156.00 38154.30 41045.27 39366.76 39248.08 41136.83 40044.38 39953.20 4047.17 41664.07 40456.77 31355.66 38558.65 400
test_method31.52 37829.28 38238.23 39227.03 4206.50 42320.94 41162.21 4004.05 41422.35 41252.50 40513.33 40647.58 41227.04 40234.04 40460.62 398
kuosan39.70 37640.40 37737.58 39364.52 40226.98 41265.62 39533.02 41746.12 38842.79 40048.99 40624.10 39546.56 41412.16 41526.30 40839.20 407
DeepMVS_CXcopyleft27.40 39640.17 41926.90 41324.59 42017.44 41223.95 41048.61 4079.77 41126.48 41518.06 40824.47 40928.83 409
MVEpermissive26.22 2330.37 38025.89 38443.81 39144.55 41735.46 40828.87 41039.07 41518.20 41118.58 41340.18 4082.68 42047.37 41317.07 41123.78 41048.60 405
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft45.18 37341.86 37655.16 38577.03 36851.52 36932.50 40980.52 32632.46 40527.12 40835.02 4099.52 41275.50 38222.31 40660.21 38038.45 408
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN31.77 37730.64 38035.15 39452.87 41427.67 41157.09 40447.86 41224.64 40916.40 41433.05 41011.23 41054.90 41014.46 41318.15 41122.87 410
EMVS30.81 37929.65 38134.27 39550.96 41525.95 41556.58 40546.80 41324.01 41015.53 41530.68 41112.47 40754.43 41112.81 41417.05 41222.43 411
tmp_tt18.61 38221.40 38510.23 3984.82 42110.11 42134.70 40830.74 4191.48 41523.91 41126.07 41228.42 38713.41 41727.12 40115.35 4147.17 412
X-MVStestdata80.37 14977.83 18588.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 8912.47 41367.45 10096.60 3383.06 6594.50 5194.07 52
test_post5.46 41450.36 28084.24 332
test_post178.90 3275.43 41548.81 30185.44 32459.25 286
wuyk23d16.82 38315.94 38619.46 39758.74 40631.45 41039.22 4073.74 4226.84 4136.04 4162.70 4161.27 42124.29 41610.54 41614.40 4152.63 413
testmvs6.04 3868.02 3890.10 4000.08 4220.03 42569.74 3790.04 4230.05 4170.31 4181.68 4170.02 4230.04 4180.24 4170.02 4160.25 415
test1236.12 3858.11 3880.14 3990.06 4230.09 42471.05 3740.03 4240.04 4180.25 4191.30 4180.05 4220.03 4190.21 4180.01 4170.29 414
test_blank0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
uanet_test0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
DCPMVS0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
pcd_1.5k_mvsjas5.26 3877.02 3900.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 41963.15 1430.00 4200.00 4190.00 4180.00 416
sosnet-low-res0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
sosnet0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
uncertanet0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
Regformer0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
uanet0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
WAC-MVS42.58 39939.46 387
FOURS195.00 1072.39 3995.06 193.84 1574.49 11791.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 37
No_MVS89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 37
eth-test20.00 424
eth-test0.00 424
IU-MVS95.30 271.25 5792.95 5266.81 25892.39 688.94 1696.63 494.85 19
save fliter93.80 4072.35 4290.47 6391.17 12174.31 120
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 47
GSMVS88.96 247
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26888.96 247
sam_mvs50.01 282
MTGPAbinary92.02 89
MTMP92.18 3432.83 418
test9_res84.90 4395.70 2692.87 108
agg_prior282.91 6995.45 2992.70 111
agg_prior92.85 5971.94 5091.78 10484.41 7594.93 89
test_prior472.60 3489.01 106
test_prior86.33 5492.61 6569.59 8892.97 5195.48 6493.91 58
旧先验286.56 18958.10 35487.04 4288.98 28474.07 151
新几何286.29 198
无先验87.48 15888.98 19160.00 33794.12 12067.28 21788.97 246
原ACMM286.86 178
testdata291.01 25162.37 258
segment_acmp73.08 38
testdata184.14 25175.71 91
test1286.80 4992.63 6470.70 7291.79 10382.71 10271.67 5496.16 4494.50 5193.54 82
plane_prior790.08 10568.51 120
plane_prior689.84 11468.70 11560.42 191
plane_prior592.44 7395.38 7178.71 10586.32 15791.33 155
plane_prior368.60 11878.44 3178.92 146
plane_prior291.25 4979.12 23
plane_prior189.90 113
plane_prior68.71 11390.38 6777.62 3986.16 161
n20.00 425
nn0.00 425
door-mid69.98 382
test1192.23 83
door69.44 385
HQP5-MVS66.98 158
HQP-NCC89.33 13289.17 9976.41 7677.23 184
ACMP_Plane89.33 13289.17 9976.41 7677.23 184
BP-MVS77.47 117
HQP4-MVS77.24 18395.11 8291.03 165
HQP3-MVS92.19 8685.99 165
HQP2-MVS60.17 194
MDTV_nov1_ep13_2view37.79 40675.16 35755.10 36966.53 34049.34 29253.98 32587.94 272
ACMMP++_ref81.95 222
ACMMP++81.25 227
Test By Simon64.33 130