This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
SED-MVS90.08 290.85 287.77 2695.30 270.98 6693.57 794.06 1077.24 5393.10 195.72 882.99 197.44 789.07 1696.63 494.88 15
test_241102_ONE95.30 270.98 6694.06 1077.17 5693.10 195.39 1482.99 197.27 12
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5995.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 1196.68 294.95 11
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4982.45 396.87 2083.77 6696.48 894.88 15
PC_three_145268.21 25692.02 1294.00 5182.09 595.98 5684.58 5596.68 294.95 11
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 9092.29 795.66 1081.67 697.38 1187.44 3596.34 1593.95 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 989.42 1196.57 794.67 28
test_241102_TWO94.06 1077.24 5392.78 495.72 881.26 897.44 789.07 1696.58 694.26 48
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5993.49 992.73 6477.33 5092.12 995.78 480.98 997.40 989.08 1496.41 1293.33 93
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072695.27 571.25 5993.60 694.11 677.33 5092.81 395.79 380.98 9
test_one_060195.07 771.46 5794.14 578.27 3592.05 1195.74 680.83 11
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5392.24 7169.03 10389.57 9093.39 3077.53 4689.79 1894.12 4478.98 1296.58 3585.66 4295.72 2494.58 33
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 4278.35 1396.77 2489.59 1094.22 6094.67 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9491.06 1696.03 176.84 1497.03 1789.09 1395.65 2794.47 38
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
dcpmvs_285.63 5886.15 4884.06 13391.71 7864.94 20386.47 19891.87 10373.63 14186.60 5293.02 7776.57 1591.87 22583.36 6892.15 8095.35 3
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6293.00 4680.90 788.06 3094.06 4776.43 1696.84 2188.48 2695.99 1894.34 44
MCST-MVS87.37 2987.25 2987.73 2894.53 1772.46 3889.82 7993.82 1673.07 15884.86 7092.89 7976.22 1796.33 4184.89 5095.13 3694.40 41
CSCG86.41 4586.19 4687.07 4592.91 6172.48 3790.81 5893.56 2473.95 13383.16 10291.07 12775.94 1895.19 8279.94 10594.38 5693.55 85
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5980.26 1187.78 3594.27 3675.89 1996.81 2387.45 3496.44 993.05 108
TSAR-MVS + MP.88.02 1788.11 1687.72 3093.68 4372.13 4691.41 5092.35 8274.62 11988.90 2293.85 5775.75 2096.00 5487.80 3094.63 4895.04 9
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SF-MVS88.46 1288.74 1287.64 3592.78 6471.95 4992.40 2494.74 275.71 9289.16 1995.10 1675.65 2196.19 4687.07 3696.01 1794.79 22
9.1488.26 1592.84 6391.52 4894.75 173.93 13588.57 2594.67 2175.57 2295.79 5886.77 3795.76 23
SD-MVS88.06 1488.50 1486.71 5492.60 6972.71 2991.81 4193.19 3577.87 3690.32 1794.00 5174.83 2393.78 14187.63 3294.27 5993.65 78
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DELS-MVS85.41 6385.30 6585.77 7288.49 16967.93 13785.52 22893.44 2778.70 2983.63 9889.03 17474.57 2495.71 6180.26 10294.04 6193.66 74
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
patch_mono-283.65 8684.54 7380.99 22890.06 11265.83 18284.21 25788.74 20771.60 18085.01 6492.44 8974.51 2583.50 34782.15 8492.15 8093.64 80
train_agg86.43 4386.20 4587.13 4493.26 5272.96 2588.75 12091.89 10168.69 24885.00 6593.10 7274.43 2695.41 7384.97 4795.71 2593.02 110
test_893.13 5472.57 3588.68 12591.84 10568.69 24884.87 6993.10 7274.43 2695.16 83
TEST993.26 5272.96 2588.75 12091.89 10168.44 25385.00 6593.10 7274.36 2895.41 73
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 11592.29 795.97 274.28 2997.24 1388.58 2396.91 194.87 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_prior288.85 11775.41 9884.91 6793.54 6174.28 2983.31 6995.86 20
TSAR-MVS + GP.85.71 5785.33 6386.84 5091.34 8172.50 3689.07 11087.28 23776.41 7785.80 5690.22 14674.15 3195.37 7881.82 8691.88 8392.65 122
ZD-MVS94.38 2572.22 4492.67 6770.98 19387.75 3794.07 4674.01 3296.70 2784.66 5494.84 44
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 7272.96 2593.73 593.67 2080.19 1288.10 2994.80 1973.76 3397.11 1587.51 3395.82 2194.90 14
Skip Steuart: Steuart Systems R&D Blog.
APD-MVScopyleft87.44 2587.52 2587.19 4294.24 3272.39 3991.86 4092.83 6073.01 16088.58 2494.52 2373.36 3496.49 3884.26 5995.01 3792.70 118
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
casdiffmvs_mvgpermissive85.99 4886.09 5085.70 7487.65 20967.22 15988.69 12493.04 4179.64 1885.33 6192.54 8873.30 3594.50 11283.49 6791.14 9595.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
sasdasda85.91 5285.87 5486.04 6789.84 11769.44 9890.45 6893.00 4676.70 7288.01 3291.23 11973.28 3693.91 13581.50 8888.80 12894.77 24
canonicalmvs85.91 5285.87 5486.04 6789.84 11769.44 9890.45 6893.00 4676.70 7288.01 3291.23 11973.28 3693.91 13581.50 8888.80 12894.77 24
segment_acmp73.08 38
DPM-MVS84.93 7084.29 7786.84 5090.20 10573.04 2387.12 17593.04 4169.80 22082.85 10691.22 12173.06 3996.02 5276.72 13594.63 4891.46 161
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5492.83 6081.50 585.79 5793.47 6573.02 4097.00 1884.90 4894.94 4094.10 52
test_fmvsmconf_n85.92 5186.04 5185.57 7685.03 26469.51 9389.62 8990.58 14073.42 14987.75 3794.02 4972.85 4193.24 16690.37 390.75 9993.96 58
MGCFI-Net85.06 6985.51 5983.70 14989.42 13063.01 24589.43 9392.62 7376.43 7687.53 4091.34 11772.82 4293.42 16181.28 9188.74 13194.66 31
nrg03083.88 8083.53 8584.96 9286.77 23169.28 10290.46 6792.67 6774.79 11482.95 10391.33 11872.70 4393.09 18080.79 9879.28 26192.50 127
CDPH-MVS85.76 5685.29 6687.17 4393.49 4771.08 6488.58 12892.42 8068.32 25584.61 7693.48 6372.32 4496.15 4879.00 10895.43 3094.28 47
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 7077.57 4283.84 9294.40 3272.24 4596.28 4385.65 4395.30 3593.62 81
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
casdiffmvspermissive85.11 6785.14 6785.01 9087.20 22365.77 18587.75 15792.83 6077.84 3784.36 8292.38 9072.15 4693.93 13481.27 9290.48 10295.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepC-MVS79.81 287.08 3586.88 3887.69 3391.16 8472.32 4390.31 7193.94 1477.12 5882.82 10794.23 3972.13 4797.09 1684.83 5195.37 3193.65 78
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_l_conf0.5_n84.47 7484.54 7384.27 11985.42 25468.81 10988.49 13087.26 23968.08 25788.03 3193.49 6272.04 4891.77 22788.90 1989.14 12492.24 138
MVSMamba_PlusPlus85.99 4885.96 5286.05 6691.09 8567.64 14489.63 8892.65 7072.89 16384.64 7591.71 10371.85 4996.03 5084.77 5394.45 5494.49 37
baseline84.93 7084.98 6884.80 10087.30 22165.39 19387.30 17192.88 5777.62 4084.04 8892.26 9271.81 5093.96 12881.31 9090.30 10595.03 10
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6685.24 6294.32 3471.76 5196.93 1985.53 4595.79 2294.32 45
test_fmvsmconf0.1_n85.61 5985.65 5785.50 7782.99 31169.39 10089.65 8690.29 15373.31 15287.77 3694.15 4371.72 5293.23 16790.31 490.67 10193.89 64
MM89.16 689.23 788.97 490.79 9573.65 1092.66 2391.17 12586.57 187.39 4394.97 1871.70 5397.68 192.19 195.63 2895.57 1
test1286.80 5292.63 6770.70 7591.79 10782.71 10971.67 5496.16 4794.50 5193.54 86
UniMVSNet_NR-MVSNet81.88 11881.54 11882.92 18088.46 17163.46 23587.13 17492.37 8180.19 1278.38 16589.14 17071.66 5593.05 18270.05 19876.46 29292.25 136
CS-MVS86.69 3986.95 3585.90 7190.76 9667.57 14792.83 1793.30 3279.67 1784.57 7892.27 9171.47 5695.02 9384.24 6193.46 6795.13 8
DeepC-MVS_fast79.65 386.91 3686.62 4087.76 2793.52 4672.37 4191.26 5193.04 4176.62 7484.22 8393.36 6871.44 5796.76 2580.82 9695.33 3394.16 50
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsm_n_192085.29 6585.34 6285.13 8786.12 24269.93 8688.65 12690.78 13669.97 21688.27 2693.98 5471.39 5891.54 23788.49 2590.45 10393.91 61
MVS_111021_HR85.14 6684.75 7186.32 5891.65 7972.70 3085.98 21190.33 15076.11 8682.08 11391.61 10971.36 5994.17 12481.02 9392.58 7592.08 144
balanced_conf0386.78 3786.99 3386.15 6391.24 8367.61 14590.51 6292.90 5677.26 5287.44 4291.63 10771.27 6096.06 4985.62 4495.01 3794.78 23
reproduce-ours87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10888.96 2095.54 1271.20 6196.54 3686.28 3993.49 6593.06 106
our_new_method87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10888.96 2095.54 1271.20 6196.54 3686.28 3993.49 6593.06 106
ACMMP_NAP88.05 1688.08 1787.94 1993.70 4173.05 2290.86 5793.59 2376.27 8488.14 2895.09 1771.06 6396.67 2987.67 3196.37 1494.09 53
fmvsm_l_conf0.5_n_a84.13 7784.16 7884.06 13385.38 25568.40 12588.34 13786.85 24967.48 26487.48 4193.40 6670.89 6491.61 23188.38 2789.22 12292.16 142
MP-MVS-pluss87.67 2187.72 2087.54 3693.64 4472.04 4889.80 8193.50 2575.17 10586.34 5395.29 1570.86 6596.00 5488.78 2196.04 1694.58 33
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS87.58 2287.47 2687.94 1994.58 1673.54 1593.04 1293.24 3376.78 6884.91 6794.44 3070.78 6696.61 3284.53 5694.89 4293.66 74
EI-MVSNet-Vis-set84.19 7683.81 8185.31 8188.18 18067.85 13887.66 15989.73 16880.05 1482.95 10389.59 15970.74 6794.82 10180.66 9984.72 18393.28 95
GST-MVS87.42 2787.26 2887.89 2494.12 3672.97 2492.39 2693.43 2876.89 6484.68 7193.99 5370.67 6896.82 2284.18 6395.01 3793.90 63
SPE-MVS-test86.29 4686.48 4185.71 7391.02 8867.21 16092.36 2993.78 1878.97 2883.51 9991.20 12270.65 6995.15 8481.96 8594.89 4294.77 24
CANet86.45 4286.10 4987.51 3790.09 10770.94 7089.70 8592.59 7481.78 481.32 12391.43 11570.34 7097.23 1484.26 5993.36 6894.37 42
alignmvs85.48 6085.32 6485.96 7089.51 12669.47 9589.74 8392.47 7676.17 8587.73 3991.46 11470.32 7193.78 14181.51 8788.95 12594.63 32
reproduce_model87.28 3087.39 2786.95 4893.10 5671.24 6391.60 4293.19 3574.69 11688.80 2395.61 1170.29 7296.44 3986.20 4193.08 6993.16 101
EI-MVSNet-UG-set83.81 8183.38 8885.09 8887.87 19767.53 14887.44 16789.66 16979.74 1682.23 11289.41 16870.24 7394.74 10479.95 10483.92 19792.99 113
MVS_Test83.15 9983.06 9383.41 15886.86 22763.21 24186.11 20992.00 9574.31 12682.87 10589.44 16770.03 7493.21 16977.39 12688.50 13693.81 69
FC-MVSNet-test81.52 12782.02 11280.03 24888.42 17455.97 33887.95 15093.42 2977.10 5977.38 18690.98 13469.96 7591.79 22668.46 21784.50 18692.33 132
FIs82.07 11582.42 10281.04 22788.80 15858.34 29988.26 14093.49 2676.93 6378.47 16491.04 12869.92 7692.34 20869.87 20284.97 18092.44 131
UniMVSNet (Re)81.60 12681.11 12383.09 17188.38 17564.41 21687.60 16093.02 4578.42 3278.56 16188.16 19969.78 7793.26 16569.58 20576.49 29191.60 152
HPM-MVScopyleft87.11 3386.98 3487.50 3893.88 3972.16 4592.19 3393.33 3176.07 8783.81 9393.95 5669.77 7896.01 5385.15 4694.66 4794.32 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
Effi-MVS+83.62 8983.08 9285.24 8388.38 17567.45 14988.89 11589.15 18975.50 9782.27 11188.28 19569.61 7994.45 11477.81 12187.84 14293.84 67
PHI-MVS86.43 4386.17 4787.24 4190.88 9270.96 6892.27 3294.07 972.45 16585.22 6391.90 9869.47 8096.42 4083.28 7095.94 1994.35 43
UA-Net85.08 6884.96 6985.45 7892.07 7368.07 13489.78 8290.86 13582.48 284.60 7793.20 7169.35 8195.22 8171.39 18590.88 9893.07 105
ETV-MVS84.90 7284.67 7285.59 7589.39 13368.66 12088.74 12292.64 7279.97 1584.10 8685.71 26369.32 8295.38 7580.82 9691.37 9292.72 117
旧先验191.96 7465.79 18486.37 25793.08 7669.31 8392.74 7388.74 265
fmvsm_s_conf0.5_n_a83.63 8883.41 8784.28 11786.14 24168.12 13289.43 9382.87 31070.27 20987.27 4593.80 5969.09 8491.58 23388.21 2883.65 20593.14 103
region2R87.42 2787.20 3188.09 1494.63 1473.55 1393.03 1493.12 4076.73 7184.45 7994.52 2369.09 8496.70 2784.37 5894.83 4594.03 56
EIA-MVS83.31 9882.80 9984.82 9889.59 12265.59 18888.21 14192.68 6674.66 11878.96 15186.42 25069.06 8695.26 8075.54 14790.09 10993.62 81
EPP-MVSNet83.40 9583.02 9484.57 10490.13 10664.47 21492.32 3090.73 13774.45 12379.35 14791.10 12569.05 8795.12 8572.78 17487.22 15194.13 51
EC-MVSNet86.01 4786.38 4284.91 9689.31 13866.27 17392.32 3093.63 2179.37 2084.17 8591.88 9969.04 8895.43 7083.93 6593.77 6393.01 111
fmvsm_s_conf0.5_n83.80 8283.71 8384.07 13186.69 23367.31 15489.46 9283.07 30571.09 19086.96 4993.70 6069.02 8991.47 24288.79 2084.62 18593.44 89
ACMMPR87.44 2587.23 3088.08 1594.64 1373.59 1293.04 1293.20 3476.78 6884.66 7494.52 2368.81 9096.65 3084.53 5694.90 4194.00 57
test_fmvsmvis_n_192084.02 7983.87 8084.49 10884.12 28069.37 10188.15 14587.96 22170.01 21483.95 9093.23 7068.80 9191.51 24088.61 2289.96 11292.57 123
mvs_anonymous79.42 17579.11 16480.34 24284.45 27557.97 30582.59 28487.62 23067.40 26576.17 22088.56 18868.47 9289.59 28070.65 19386.05 17093.47 88
fmvsm_s_conf0.1_n83.56 9083.38 8884.10 12584.86 26667.28 15589.40 9783.01 30670.67 19887.08 4693.96 5568.38 9391.45 24388.56 2484.50 18693.56 84
fmvsm_s_conf0.1_n_a83.32 9782.99 9584.28 11783.79 28868.07 13489.34 10082.85 31169.80 22087.36 4494.06 4768.34 9491.56 23587.95 2983.46 21093.21 99
MVS_030487.69 2087.55 2488.12 1389.45 12971.76 5191.47 4989.54 17382.14 386.65 5194.28 3568.28 9597.46 690.81 295.31 3495.15 7
MTAPA87.23 3187.00 3287.90 2294.18 3574.25 586.58 19592.02 9379.45 1985.88 5594.80 1968.07 9696.21 4586.69 3895.34 3293.23 96
mamv476.81 23678.23 18472.54 34686.12 24265.75 18678.76 33782.07 31964.12 30672.97 27891.02 13167.97 9768.08 41083.04 7378.02 27383.80 356
CP-MVS87.11 3386.92 3687.68 3494.20 3473.86 793.98 392.82 6376.62 7483.68 9594.46 2767.93 9895.95 5784.20 6294.39 5593.23 96
PAPM_NR83.02 10382.41 10384.82 9892.47 7066.37 17187.93 15291.80 10673.82 13777.32 18890.66 13767.90 9994.90 9770.37 19589.48 11993.19 100
PGM-MVS86.68 4086.27 4487.90 2294.22 3373.38 1890.22 7393.04 4175.53 9683.86 9194.42 3167.87 10096.64 3182.70 8194.57 5093.66 74
PAPR81.66 12580.89 12883.99 14190.27 10364.00 22286.76 19191.77 10968.84 24677.13 19889.50 16067.63 10194.88 9967.55 22388.52 13593.09 104
Fast-Effi-MVS+80.81 14079.92 14383.47 15488.85 15364.51 21185.53 22689.39 17870.79 19578.49 16385.06 28167.54 10293.58 14967.03 23186.58 16092.32 133
XVS87.18 3286.91 3788.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9694.17 4167.45 10396.60 3383.06 7194.50 5194.07 54
X-MVStestdata80.37 15677.83 19288.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9612.47 42267.45 10396.60 3383.06 7194.50 5194.07 54
SR-MVS86.73 3886.67 3986.91 4994.11 3772.11 4792.37 2892.56 7574.50 12086.84 5094.65 2267.31 10595.77 5984.80 5292.85 7292.84 116
NR-MVSNet80.23 15879.38 15582.78 18987.80 20163.34 23886.31 20391.09 12979.01 2672.17 29089.07 17267.20 10692.81 19166.08 23775.65 30592.20 139
MSLP-MVS++85.43 6285.76 5684.45 10991.93 7570.24 7990.71 5992.86 5877.46 4884.22 8392.81 8367.16 10792.94 18680.36 10094.35 5790.16 205
MG-MVS83.41 9483.45 8683.28 16192.74 6562.28 25788.17 14389.50 17575.22 10181.49 12292.74 8766.75 10895.11 8772.85 17391.58 8992.45 130
test_fmvsmconf0.01_n84.73 7384.52 7585.34 8080.25 35269.03 10389.47 9189.65 17073.24 15686.98 4894.27 3666.62 10993.23 16790.26 589.95 11393.78 71
EI-MVSNet80.52 15279.98 14282.12 19984.28 27663.19 24386.41 19988.95 19974.18 13078.69 15687.54 21566.62 10992.43 20272.57 17780.57 24590.74 183
IterMVS-LS80.06 16179.38 15582.11 20085.89 24563.20 24286.79 18889.34 17974.19 12975.45 23386.72 23566.62 10992.39 20472.58 17676.86 28690.75 182
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_ehance_all_eth78.59 19777.76 19781.08 22682.66 31861.56 26683.65 26689.15 18968.87 24575.55 22983.79 30766.49 11292.03 21773.25 16976.39 29489.64 232
mPP-MVS86.67 4186.32 4387.72 3094.41 2273.55 1392.74 2092.22 8876.87 6582.81 10894.25 3866.44 11396.24 4482.88 7694.28 5893.38 90
c3_l78.75 19177.91 18981.26 22082.89 31361.56 26684.09 26089.13 19169.97 21675.56 22884.29 29666.36 11492.09 21673.47 16675.48 30990.12 208
GeoE81.71 12281.01 12683.80 14889.51 12664.45 21588.97 11288.73 20871.27 18678.63 15989.76 15366.32 11593.20 17269.89 20186.02 17193.74 72
WR-MVS_H78.51 19878.49 17478.56 27688.02 19056.38 33288.43 13192.67 6777.14 5773.89 26787.55 21466.25 11689.24 28758.92 29973.55 33590.06 215
PCF-MVS73.52 780.38 15478.84 16985.01 9087.71 20668.99 10683.65 26691.46 11963.00 31977.77 18090.28 14266.10 11795.09 9161.40 27888.22 13990.94 176
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EPNet83.72 8582.92 9786.14 6584.22 27869.48 9491.05 5685.27 27081.30 676.83 20091.65 10566.09 11895.56 6376.00 14193.85 6293.38 90
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
原ACMM184.35 11393.01 6068.79 11092.44 7763.96 31281.09 12891.57 11066.06 11995.45 6867.19 22894.82 4688.81 260
PVSNet_BlendedMVS80.60 14880.02 14182.36 19888.85 15365.40 19186.16 20892.00 9569.34 23078.11 17286.09 25866.02 12094.27 11871.52 18282.06 22787.39 292
PVSNet_Blended80.98 13580.34 13682.90 18188.85 15365.40 19184.43 25292.00 9567.62 26178.11 17285.05 28266.02 12094.27 11871.52 18289.50 11889.01 250
diffmvspermissive82.10 11381.88 11582.76 19183.00 30963.78 22783.68 26589.76 16672.94 16182.02 11489.85 15165.96 12290.79 26182.38 8387.30 15093.71 73
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVS_3200maxsize85.97 5085.88 5386.22 6092.69 6669.53 9291.93 3792.99 4973.54 14585.94 5494.51 2665.80 12395.61 6283.04 7392.51 7693.53 87
miper_enhance_ethall77.87 21676.86 21680.92 23181.65 33261.38 26882.68 28388.98 19665.52 28975.47 23082.30 33465.76 12492.00 21972.95 17276.39 29489.39 238
PVSNet_Blended_VisFu82.62 10781.83 11684.96 9290.80 9469.76 9088.74 12291.70 11069.39 22878.96 15188.46 19065.47 12594.87 10074.42 15688.57 13390.24 203
API-MVS81.99 11781.23 12184.26 12190.94 9070.18 8591.10 5589.32 18071.51 18278.66 15888.28 19565.26 12695.10 9064.74 24891.23 9487.51 290
TranMVSNet+NR-MVSNet80.84 13880.31 13782.42 19687.85 19862.33 25587.74 15891.33 12080.55 977.99 17689.86 15065.23 12792.62 19267.05 23075.24 31992.30 134
IS-MVSNet83.15 9982.81 9884.18 12389.94 11563.30 23991.59 4388.46 21379.04 2579.49 14592.16 9365.10 12894.28 11767.71 22191.86 8694.95 11
DU-MVS81.12 13480.52 13382.90 18187.80 20163.46 23587.02 17991.87 10379.01 2678.38 16589.07 17265.02 12993.05 18270.05 19876.46 29292.20 139
Baseline_NR-MVSNet78.15 20778.33 18077.61 29485.79 24656.21 33686.78 18985.76 26673.60 14377.93 17787.57 21265.02 12988.99 29167.14 22975.33 31687.63 286
SR-MVS-dyc-post85.77 5585.61 5886.23 5993.06 5870.63 7691.88 3892.27 8473.53 14685.69 5894.45 2865.00 13195.56 6382.75 7791.87 8492.50 127
VNet82.21 11282.41 10381.62 20990.82 9360.93 27284.47 24889.78 16576.36 8284.07 8791.88 9964.71 13290.26 26770.68 19288.89 12693.66 74
Test By Simon64.33 133
ACMMPcopyleft85.89 5485.39 6187.38 3993.59 4572.63 3392.74 2093.18 3976.78 6880.73 13293.82 5864.33 13396.29 4282.67 8290.69 10093.23 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DP-MVS Recon83.11 10282.09 11086.15 6394.44 1970.92 7188.79 11892.20 8970.53 20379.17 14991.03 13064.12 13596.03 5068.39 21890.14 10891.50 157
CLD-MVS82.31 11181.65 11784.29 11688.47 17067.73 14285.81 21992.35 8275.78 9178.33 16786.58 24564.01 13694.35 11576.05 14087.48 14890.79 179
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
RE-MVS-def85.48 6093.06 5870.63 7691.88 3892.27 8473.53 14685.69 5894.45 2863.87 13782.75 7791.87 8492.50 127
MVS78.19 20676.99 21481.78 20685.66 24866.99 16284.66 24290.47 14455.08 37972.02 29285.27 27463.83 13894.11 12666.10 23689.80 11584.24 349
WR-MVS79.49 17179.22 16280.27 24488.79 15958.35 29885.06 23488.61 21178.56 3077.65 18188.34 19363.81 13990.66 26464.98 24677.22 28191.80 150
VPA-MVSNet80.60 14880.55 13280.76 23488.07 18860.80 27586.86 18591.58 11375.67 9580.24 13689.45 16663.34 14090.25 26870.51 19479.22 26291.23 165
新几何183.42 15693.13 5470.71 7485.48 26957.43 36981.80 11891.98 9663.28 14192.27 21064.60 24992.99 7087.27 296
HY-MVS69.67 1277.95 21377.15 21080.36 24187.57 21460.21 28583.37 27387.78 22866.11 28075.37 23787.06 23063.27 14290.48 26661.38 27982.43 22390.40 197
XXY-MVS75.41 26175.56 23974.96 32383.59 29357.82 30980.59 31183.87 29066.54 27774.93 25488.31 19463.24 14380.09 36562.16 27076.85 28786.97 305
ab-mvs79.51 17078.97 16781.14 22488.46 17160.91 27383.84 26289.24 18570.36 20579.03 15088.87 17863.23 14490.21 26965.12 24482.57 22292.28 135
xiu_mvs_v2_base81.69 12381.05 12483.60 15189.15 14568.03 13684.46 25090.02 15970.67 19881.30 12686.53 24863.17 14594.19 12375.60 14688.54 13488.57 269
pcd_1.5k_mvsjas5.26 3967.02 3990.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 42863.15 1460.00 4290.00 4280.00 4270.00 425
PS-MVSNAJss82.07 11581.31 11984.34 11486.51 23667.27 15689.27 10191.51 11571.75 17579.37 14690.22 14663.15 14694.27 11877.69 12282.36 22491.49 158
PS-MVSNAJ81.69 12381.02 12583.70 14989.51 12668.21 13184.28 25690.09 15870.79 19581.26 12785.62 26863.15 14694.29 11675.62 14588.87 12788.59 268
WTY-MVS75.65 25675.68 23675.57 31486.40 23756.82 32377.92 35082.40 31565.10 29376.18 21887.72 20763.13 14980.90 36260.31 28681.96 22889.00 252
TransMVSNet (Re)75.39 26374.56 25477.86 28885.50 25357.10 32086.78 18986.09 26372.17 17171.53 29787.34 21863.01 15089.31 28556.84 32161.83 38287.17 298
v879.97 16479.02 16682.80 18684.09 28164.50 21387.96 14990.29 15374.13 13275.24 24586.81 23262.88 15193.89 13874.39 15775.40 31490.00 217
HPM-MVS_fast85.35 6484.95 7086.57 5693.69 4270.58 7892.15 3591.62 11173.89 13682.67 11094.09 4562.60 15295.54 6580.93 9492.93 7193.57 83
PAPM77.68 22276.40 22981.51 21287.29 22261.85 26283.78 26389.59 17264.74 29871.23 29988.70 18162.59 15393.66 14852.66 34187.03 15489.01 250
1112_ss77.40 22776.43 22880.32 24389.11 15060.41 28283.65 26687.72 22962.13 33273.05 27786.72 23562.58 15489.97 27362.11 27280.80 24190.59 189
LCM-MVSNet-Re77.05 23176.94 21577.36 29887.20 22351.60 37780.06 31880.46 33775.20 10267.69 33486.72 23562.48 15588.98 29263.44 25689.25 12191.51 156
v14878.72 19377.80 19481.47 21382.73 31661.96 26186.30 20488.08 21873.26 15476.18 21885.47 27162.46 15692.36 20671.92 18173.82 33390.09 211
baseline176.98 23376.75 22277.66 29288.13 18455.66 34385.12 23281.89 32073.04 15976.79 20188.90 17662.43 15787.78 31063.30 25871.18 35389.55 235
MAR-MVS81.84 11980.70 12985.27 8291.32 8271.53 5689.82 7990.92 13169.77 22278.50 16286.21 25462.36 15894.52 11165.36 24292.05 8289.77 229
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVS_111021_LR82.61 10882.11 10884.11 12488.82 15671.58 5585.15 23186.16 26174.69 11680.47 13491.04 12862.29 15990.55 26580.33 10190.08 11090.20 204
TAMVS78.89 19077.51 20483.03 17587.80 20167.79 14184.72 24185.05 27467.63 26076.75 20387.70 20862.25 16090.82 26058.53 30487.13 15290.49 193
CP-MVSNet78.22 20378.34 17977.84 28987.83 20054.54 35587.94 15191.17 12577.65 3973.48 27288.49 18962.24 16188.43 30262.19 26974.07 32890.55 190
OMC-MVS82.69 10681.97 11484.85 9788.75 16167.42 15087.98 14890.87 13474.92 11079.72 14291.65 10562.19 16293.96 12875.26 15186.42 16393.16 101
cl____77.72 21976.76 22080.58 23782.49 32260.48 28083.09 27887.87 22469.22 23474.38 26485.22 27762.10 16391.53 23871.09 18775.41 31389.73 231
DIV-MVS_self_test77.72 21976.76 22080.58 23782.48 32360.48 28083.09 27887.86 22569.22 23474.38 26485.24 27562.10 16391.53 23871.09 18775.40 31489.74 230
testdata79.97 24990.90 9164.21 21984.71 27659.27 35385.40 6092.91 7862.02 16589.08 29068.95 21191.37 9286.63 313
fmvsm_s_conf0.5_n_284.04 7884.11 7983.81 14786.17 24065.00 20186.96 18087.28 23774.35 12488.25 2794.23 3961.82 16692.60 19489.85 688.09 14193.84 67
eth_miper_zixun_eth77.92 21476.69 22381.61 21183.00 30961.98 26083.15 27689.20 18769.52 22774.86 25584.35 29561.76 16792.56 19771.50 18472.89 34190.28 202
MVSFormer82.85 10582.05 11185.24 8387.35 21570.21 8090.50 6490.38 14668.55 25081.32 12389.47 16261.68 16893.46 15878.98 10990.26 10692.05 145
lupinMVS81.39 13080.27 13984.76 10187.35 21570.21 8085.55 22486.41 25562.85 32281.32 12388.61 18561.68 16892.24 21278.41 11690.26 10691.83 148
cdsmvs_eth3d_5k19.96 39026.61 3920.00 4100.00 4330.00 4350.00 42189.26 1840.00 4280.00 42988.61 18561.62 1700.00 4290.00 4280.00 4270.00 425
h-mvs3383.15 9982.19 10786.02 6990.56 9870.85 7388.15 14589.16 18876.02 8884.67 7291.39 11661.54 17195.50 6682.71 7975.48 30991.72 151
hse-mvs281.72 12180.94 12784.07 13188.72 16267.68 14385.87 21587.26 23976.02 8884.67 7288.22 19861.54 17193.48 15682.71 7973.44 33791.06 170
CDS-MVSNet79.07 18577.70 19983.17 16887.60 21068.23 13084.40 25486.20 26067.49 26376.36 21386.54 24761.54 17190.79 26161.86 27487.33 14990.49 193
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v1079.74 16678.67 17082.97 17984.06 28264.95 20287.88 15590.62 13973.11 15775.11 24986.56 24661.46 17494.05 12773.68 16275.55 30789.90 223
v114480.03 16279.03 16583.01 17683.78 28964.51 21187.11 17690.57 14271.96 17478.08 17486.20 25561.41 17593.94 13174.93 15277.23 28090.60 188
cl2278.07 20977.01 21281.23 22182.37 32561.83 26383.55 27087.98 22068.96 24475.06 25183.87 30361.40 17691.88 22473.53 16476.39 29489.98 220
BH-w/o78.21 20477.33 20880.84 23288.81 15765.13 19884.87 23887.85 22669.75 22374.52 26184.74 28861.34 17793.11 17958.24 30885.84 17484.27 348
Test_1112_low_res76.40 24675.44 24179.27 26389.28 14058.09 30181.69 29387.07 24359.53 35172.48 28586.67 24061.30 17889.33 28460.81 28480.15 25090.41 196
Vis-MVSNet (Re-imp)78.36 20178.45 17578.07 28788.64 16551.78 37686.70 19279.63 34774.14 13175.11 24990.83 13561.29 17989.75 27758.10 30991.60 8892.69 120
PEN-MVS77.73 21877.69 20077.84 28987.07 22653.91 36087.91 15391.18 12477.56 4473.14 27688.82 17961.23 18089.17 28859.95 28872.37 34390.43 195
pm-mvs177.25 23076.68 22478.93 26984.22 27858.62 29686.41 19988.36 21471.37 18473.31 27388.01 20561.22 18189.15 28964.24 25273.01 34089.03 249
BH-untuned79.47 17278.60 17282.05 20189.19 14465.91 18086.07 21088.52 21272.18 17075.42 23487.69 20961.15 18293.54 15360.38 28586.83 15786.70 311
v2v48280.23 15879.29 15983.05 17483.62 29264.14 22087.04 17789.97 16173.61 14278.18 17187.22 22361.10 18393.82 13976.11 13876.78 28991.18 166
jason81.39 13080.29 13884.70 10286.63 23569.90 8885.95 21286.77 25063.24 31581.07 12989.47 16261.08 18492.15 21478.33 11790.07 11192.05 145
jason: jason.
Vis-MVSNetpermissive83.46 9382.80 9985.43 7990.25 10468.74 11490.30 7290.13 15776.33 8380.87 13192.89 7961.00 18594.20 12272.45 17990.97 9693.35 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAPA-MVS73.13 979.15 18277.94 18882.79 18889.59 12262.99 24988.16 14491.51 11565.77 28577.14 19791.09 12660.91 18693.21 16950.26 35687.05 15392.17 141
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PS-CasMVS78.01 21278.09 18577.77 29187.71 20654.39 35788.02 14791.22 12277.50 4773.26 27488.64 18460.73 18788.41 30361.88 27373.88 33290.53 191
OPM-MVS83.50 9282.95 9685.14 8588.79 15970.95 6989.13 10891.52 11477.55 4580.96 13091.75 10260.71 18894.50 11279.67 10786.51 16289.97 221
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XVG-OURS-SEG-HR80.81 14079.76 14783.96 14385.60 25168.78 11183.54 27190.50 14370.66 20176.71 20491.66 10460.69 18991.26 24876.94 13181.58 23291.83 148
fmvsm_s_conf0.1_n_283.80 8283.79 8283.83 14685.62 25064.94 20387.03 17886.62 25374.32 12587.97 3494.33 3360.67 19092.60 19489.72 787.79 14393.96 58
v14419279.47 17278.37 17882.78 18983.35 29763.96 22386.96 18090.36 14969.99 21577.50 18385.67 26660.66 19193.77 14374.27 15876.58 29090.62 186
V4279.38 17878.24 18282.83 18381.10 34465.50 19085.55 22489.82 16471.57 18178.21 16986.12 25760.66 19193.18 17575.64 14475.46 31189.81 228
SDMVSNet80.38 15480.18 14080.99 22889.03 15164.94 20380.45 31489.40 17775.19 10376.61 20889.98 14860.61 19387.69 31176.83 13383.55 20790.33 199
CPTT-MVS83.73 8483.33 9084.92 9593.28 4970.86 7292.09 3690.38 14668.75 24779.57 14492.83 8160.60 19493.04 18480.92 9591.56 9090.86 178
DTE-MVSNet76.99 23276.80 21877.54 29786.24 23853.06 36987.52 16290.66 13877.08 6072.50 28488.67 18360.48 19589.52 28157.33 31670.74 35590.05 216
HQP_MVS83.64 8783.14 9185.14 8590.08 10868.71 11691.25 5292.44 7779.12 2378.92 15391.00 13260.42 19695.38 7578.71 11286.32 16491.33 162
plane_prior689.84 11768.70 11860.42 196
3Dnovator+77.84 485.48 6084.47 7688.51 791.08 8673.49 1693.18 1193.78 1880.79 876.66 20593.37 6760.40 19896.75 2677.20 12793.73 6495.29 5
HQP2-MVS60.17 199
HQP-MVS82.61 10882.02 11284.37 11189.33 13566.98 16389.17 10392.19 9076.41 7777.23 19190.23 14560.17 19995.11 8777.47 12485.99 17291.03 172
VPNet78.69 19478.66 17178.76 27188.31 17755.72 34284.45 25186.63 25276.79 6778.26 16890.55 13959.30 20189.70 27966.63 23277.05 28390.88 177
v119279.59 16978.43 17783.07 17383.55 29464.52 21086.93 18390.58 14070.83 19477.78 17985.90 25959.15 20293.94 13173.96 16177.19 28290.76 181
test22291.50 8068.26 12984.16 25883.20 30354.63 38079.74 14191.63 10758.97 20391.42 9186.77 309
CHOSEN 1792x268877.63 22375.69 23583.44 15589.98 11468.58 12278.70 33887.50 23356.38 37475.80 22586.84 23158.67 20491.40 24561.58 27785.75 17690.34 198
3Dnovator76.31 583.38 9682.31 10686.59 5587.94 19472.94 2890.64 6092.14 9277.21 5575.47 23092.83 8158.56 20594.72 10573.24 17092.71 7492.13 143
v192192079.22 18078.03 18682.80 18683.30 29963.94 22486.80 18790.33 15069.91 21877.48 18485.53 26958.44 20693.75 14573.60 16376.85 28790.71 184
FA-MVS(test-final)80.96 13679.91 14484.10 12588.30 17865.01 20084.55 24790.01 16073.25 15579.61 14387.57 21258.35 20794.72 10571.29 18686.25 16692.56 124
114514_t80.68 14679.51 15284.20 12294.09 3867.27 15689.64 8791.11 12858.75 35974.08 26690.72 13658.10 20895.04 9269.70 20389.42 12090.30 201
v7n78.97 18877.58 20383.14 16983.45 29665.51 18988.32 13891.21 12373.69 14072.41 28686.32 25357.93 20993.81 14069.18 20875.65 30590.11 209
CL-MVSNet_self_test72.37 29571.46 29075.09 32279.49 36553.53 36280.76 30785.01 27569.12 23870.51 30382.05 33857.92 21084.13 34252.27 34366.00 37487.60 287
baseline275.70 25573.83 26681.30 21983.26 30061.79 26482.57 28580.65 33366.81 26766.88 34383.42 31557.86 21192.19 21363.47 25579.57 25589.91 222
QAPM80.88 13779.50 15385.03 8988.01 19268.97 10791.59 4392.00 9566.63 27675.15 24892.16 9357.70 21295.45 6863.52 25488.76 13090.66 185
HyFIR lowres test77.53 22475.40 24383.94 14489.59 12266.62 16780.36 31588.64 21056.29 37576.45 21085.17 27857.64 21393.28 16461.34 28083.10 21591.91 147
CNLPA78.08 20876.79 21981.97 20490.40 10271.07 6587.59 16184.55 27966.03 28372.38 28789.64 15657.56 21486.04 32459.61 29283.35 21188.79 261
test_yl81.17 13280.47 13483.24 16489.13 14663.62 22886.21 20689.95 16272.43 16881.78 11989.61 15757.50 21593.58 14970.75 19086.90 15592.52 125
DCV-MVSNet81.17 13280.47 13483.24 16489.13 14663.62 22886.21 20689.95 16272.43 16881.78 11989.61 15757.50 21593.58 14970.75 19086.90 15592.52 125
sss73.60 27973.64 26873.51 33782.80 31455.01 35176.12 35781.69 32362.47 32874.68 25885.85 26257.32 21778.11 37360.86 28380.93 23887.39 292
Effi-MVS+-dtu80.03 16278.57 17384.42 11085.13 26268.74 11488.77 11988.10 21774.99 10774.97 25383.49 31457.27 21893.36 16273.53 16480.88 23991.18 166
AdaColmapbinary80.58 15179.42 15484.06 13393.09 5768.91 10889.36 9988.97 19869.27 23175.70 22689.69 15457.20 21995.77 5963.06 25988.41 13787.50 291
v124078.99 18777.78 19582.64 19283.21 30163.54 23286.62 19490.30 15269.74 22577.33 18785.68 26557.04 22093.76 14473.13 17176.92 28490.62 186
miper_lstm_enhance74.11 27373.11 27377.13 30280.11 35459.62 29072.23 37886.92 24866.76 26970.40 30582.92 32456.93 22182.92 35169.06 21072.63 34288.87 257
BP-MVS184.32 7583.71 8386.17 6187.84 19967.85 13889.38 9889.64 17177.73 3883.98 8992.12 9556.89 22295.43 7084.03 6491.75 8795.24 6
BH-RMVSNet79.61 16778.44 17683.14 16989.38 13465.93 17984.95 23787.15 24273.56 14478.19 17089.79 15256.67 22393.36 16259.53 29386.74 15890.13 207
RRT-MVS82.60 11082.10 10984.10 12587.98 19362.94 25087.45 16691.27 12177.42 4979.85 14090.28 14256.62 22494.70 10779.87 10688.15 14094.67 28
test_djsdf80.30 15779.32 15883.27 16283.98 28465.37 19490.50 6490.38 14668.55 25076.19 21788.70 18156.44 22593.46 15878.98 10980.14 25190.97 175
EPNet_dtu75.46 25974.86 25077.23 30182.57 32054.60 35486.89 18483.09 30471.64 17666.25 35485.86 26155.99 22688.04 30754.92 33086.55 16189.05 248
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GDP-MVS83.52 9182.64 10186.16 6288.14 18368.45 12489.13 10892.69 6572.82 16483.71 9491.86 10155.69 22795.35 7980.03 10389.74 11694.69 27
CostFormer75.24 26473.90 26479.27 26382.65 31958.27 30080.80 30482.73 31361.57 33575.33 24283.13 32055.52 22891.07 25764.98 24678.34 27188.45 271
tpmrst72.39 29372.13 28473.18 34180.54 34949.91 38879.91 32279.08 35263.11 31771.69 29579.95 35755.32 22982.77 35265.66 24173.89 33186.87 306
131476.53 24075.30 24780.21 24583.93 28562.32 25684.66 24288.81 20160.23 34470.16 31084.07 30255.30 23090.73 26367.37 22583.21 21387.59 289
tfpnnormal74.39 26873.16 27278.08 28686.10 24458.05 30284.65 24487.53 23270.32 20771.22 30085.63 26754.97 23189.86 27443.03 38875.02 32186.32 315
sd_testset77.70 22177.40 20578.60 27489.03 15160.02 28679.00 33385.83 26575.19 10376.61 20889.98 14854.81 23285.46 33262.63 26583.55 20790.33 199
GBi-Net78.40 19977.40 20581.40 21687.60 21063.01 24588.39 13389.28 18171.63 17775.34 23887.28 21954.80 23391.11 25162.72 26179.57 25590.09 211
test178.40 19977.40 20581.40 21687.60 21063.01 24588.39 13389.28 18171.63 17775.34 23887.28 21954.80 23391.11 25162.72 26179.57 25590.09 211
FMVSNet278.20 20577.21 20981.20 22287.60 21062.89 25187.47 16489.02 19471.63 17775.29 24487.28 21954.80 23391.10 25462.38 26679.38 25989.61 233
Fast-Effi-MVS+-dtu78.02 21176.49 22682.62 19383.16 30566.96 16586.94 18287.45 23572.45 16571.49 29884.17 30054.79 23691.58 23367.61 22280.31 24889.30 241
MVSTER79.01 18677.88 19182.38 19783.07 30664.80 20784.08 26188.95 19969.01 24378.69 15687.17 22654.70 23792.43 20274.69 15380.57 24589.89 224
OpenMVScopyleft72.83 1079.77 16578.33 18084.09 12985.17 25869.91 8790.57 6190.97 13066.70 27072.17 29091.91 9754.70 23793.96 12861.81 27590.95 9788.41 273
XVG-OURS80.41 15379.23 16183.97 14285.64 24969.02 10583.03 28290.39 14571.09 19077.63 18291.49 11354.62 23991.35 24675.71 14383.47 20991.54 155
LPG-MVS_test82.08 11481.27 12084.50 10689.23 14268.76 11290.22 7391.94 9975.37 9976.64 20691.51 11154.29 24094.91 9578.44 11483.78 19889.83 226
LGP-MVS_train84.50 10689.23 14268.76 11291.94 9975.37 9976.64 20691.51 11154.29 24094.91 9578.44 11483.78 19889.83 226
TR-MVS77.44 22576.18 23181.20 22288.24 17963.24 24084.61 24586.40 25667.55 26277.81 17886.48 24954.10 24293.15 17657.75 31282.72 22087.20 297
FMVSNet377.88 21576.85 21780.97 23086.84 22962.36 25486.52 19788.77 20371.13 18875.34 23886.66 24154.07 24391.10 25462.72 26179.57 25589.45 237
DP-MVS76.78 23774.57 25383.42 15693.29 4869.46 9788.55 12983.70 29163.98 31170.20 30788.89 17754.01 24494.80 10246.66 37481.88 23086.01 323
ACMP74.13 681.51 12980.57 13184.36 11289.42 13068.69 11989.97 7791.50 11874.46 12275.04 25290.41 14153.82 24594.54 10977.56 12382.91 21689.86 225
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PLCcopyleft70.83 1178.05 21076.37 23083.08 17291.88 7767.80 14088.19 14289.46 17664.33 30469.87 31688.38 19253.66 24693.58 14958.86 30082.73 21987.86 282
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
dmvs_testset62.63 35764.11 34858.19 38778.55 37024.76 42575.28 36465.94 40367.91 25960.34 38176.01 38453.56 24773.94 40031.79 40667.65 36775.88 394
CANet_DTU80.61 14779.87 14582.83 18385.60 25163.17 24487.36 16888.65 20976.37 8175.88 22388.44 19153.51 24893.07 18173.30 16889.74 11692.25 136
WB-MVSnew71.96 30071.65 28872.89 34284.67 27251.88 37482.29 28777.57 35962.31 32973.67 27083.00 32253.49 24981.10 36145.75 38182.13 22685.70 329
ACMM73.20 880.78 14579.84 14683.58 15289.31 13868.37 12689.99 7691.60 11270.28 20877.25 18989.66 15553.37 25093.53 15474.24 15982.85 21788.85 258
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVP-Stereo76.12 24974.46 25781.13 22585.37 25669.79 8984.42 25387.95 22265.03 29567.46 33785.33 27353.28 25191.73 23058.01 31083.27 21281.85 375
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
AUN-MVS79.21 18177.60 20284.05 13688.71 16367.61 14585.84 21787.26 23969.08 23977.23 19188.14 20353.20 25293.47 15775.50 14873.45 33691.06 170
anonymousdsp78.60 19677.15 21082.98 17880.51 35067.08 16187.24 17389.53 17465.66 28775.16 24787.19 22552.52 25392.25 21177.17 12879.34 26089.61 233
CR-MVSNet73.37 28271.27 29479.67 25781.32 34265.19 19675.92 35980.30 34059.92 34772.73 28181.19 34252.50 25486.69 31659.84 28977.71 27687.11 302
Patchmtry70.74 30969.16 31275.49 31780.72 34654.07 35974.94 37080.30 34058.34 36070.01 31181.19 34252.50 25486.54 31853.37 33871.09 35485.87 328
pmmvs474.03 27671.91 28580.39 24081.96 32868.32 12781.45 29782.14 31759.32 35269.87 31685.13 27952.40 25688.13 30660.21 28774.74 32484.73 345
RPMNet73.51 28070.49 30282.58 19481.32 34265.19 19675.92 35992.27 8457.60 36772.73 28176.45 38252.30 25795.43 7048.14 36977.71 27687.11 302
LFMVS81.82 12081.23 12183.57 15391.89 7663.43 23789.84 7881.85 32277.04 6183.21 10093.10 7252.26 25893.43 16071.98 18089.95 11393.85 65
VDD-MVS83.01 10482.36 10584.96 9291.02 8866.40 17088.91 11488.11 21677.57 4284.39 8193.29 6952.19 25993.91 13577.05 13088.70 13294.57 35
tfpn200view976.42 24575.37 24579.55 26189.13 14657.65 31285.17 22983.60 29273.41 15076.45 21086.39 25152.12 26091.95 22048.33 36583.75 20189.07 243
thres40076.50 24175.37 24579.86 25189.13 14657.65 31285.17 22983.60 29273.41 15076.45 21086.39 25152.12 26091.95 22048.33 36583.75 20190.00 217
Syy-MVS68.05 33467.85 32468.67 37084.68 26940.97 41378.62 33973.08 38466.65 27466.74 34679.46 36152.11 26282.30 35432.89 40576.38 29782.75 368
thres20075.55 25774.47 25678.82 27087.78 20457.85 30883.07 28083.51 29572.44 16775.84 22484.42 29152.08 26391.75 22847.41 37283.64 20686.86 307
PMMVS69.34 32368.67 31471.35 35575.67 38162.03 25975.17 36573.46 38250.00 39268.68 32679.05 36452.07 26478.13 37261.16 28182.77 21873.90 396
tpm cat170.57 31168.31 31777.35 29982.41 32457.95 30678.08 34780.22 34252.04 38668.54 32977.66 37752.00 26587.84 30951.77 34472.07 34886.25 316
IterMVS-SCA-FT75.43 26073.87 26580.11 24782.69 31764.85 20681.57 29583.47 29669.16 23770.49 30484.15 30151.95 26688.15 30569.23 20772.14 34787.34 294
SCA74.22 27172.33 28279.91 25084.05 28362.17 25879.96 32179.29 35066.30 27972.38 28780.13 35551.95 26688.60 30059.25 29577.67 27888.96 254
thres100view90076.50 24175.55 24079.33 26289.52 12556.99 32185.83 21883.23 30073.94 13476.32 21487.12 22751.89 26891.95 22048.33 36583.75 20189.07 243
thres600view776.50 24175.44 24179.68 25689.40 13257.16 31885.53 22683.23 30073.79 13876.26 21587.09 22851.89 26891.89 22348.05 37083.72 20490.00 217
tpm273.26 28571.46 29078.63 27283.34 29856.71 32680.65 31080.40 33956.63 37373.55 27182.02 33951.80 27091.24 24956.35 32578.42 26987.95 279
MonoMVSNet76.49 24475.80 23378.58 27581.55 33558.45 29786.36 20286.22 25974.87 11374.73 25783.73 30951.79 27188.73 29770.78 18972.15 34688.55 270
LS3D76.95 23474.82 25183.37 15990.45 10067.36 15389.15 10786.94 24661.87 33469.52 31990.61 13851.71 27294.53 11046.38 37786.71 15988.21 276
IterMVS74.29 26972.94 27578.35 28281.53 33663.49 23481.58 29482.49 31468.06 25869.99 31383.69 31151.66 27385.54 33065.85 23971.64 35086.01 323
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tpm72.37 29571.71 28774.35 33082.19 32652.00 37179.22 32977.29 36464.56 30072.95 27983.68 31251.35 27483.26 35058.33 30775.80 30387.81 283
sam_mvs151.32 27588.96 254
mvsmamba80.60 14879.38 15584.27 11989.74 12067.24 15887.47 16486.95 24570.02 21375.38 23688.93 17551.24 27692.56 19775.47 14989.22 12293.00 112
PatchmatchNetpermissive73.12 28771.33 29378.49 28083.18 30360.85 27479.63 32378.57 35464.13 30571.73 29479.81 36051.20 27785.97 32557.40 31576.36 29988.66 266
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
patchmatchnet-post74.00 39151.12 27888.60 300
xiu_mvs_v1_base_debu80.80 14279.72 14884.03 13887.35 21570.19 8285.56 22188.77 20369.06 24081.83 11588.16 19950.91 27992.85 18878.29 11887.56 14589.06 245
xiu_mvs_v1_base80.80 14279.72 14884.03 13887.35 21570.19 8285.56 22188.77 20369.06 24081.83 11588.16 19950.91 27992.85 18878.29 11887.56 14589.06 245
xiu_mvs_v1_base_debi80.80 14279.72 14884.03 13887.35 21570.19 8285.56 22188.77 20369.06 24081.83 11588.16 19950.91 27992.85 18878.29 11887.56 14589.06 245
Patchmatch-test64.82 35263.24 35369.57 36379.42 36649.82 38963.49 40969.05 39551.98 38859.95 38480.13 35550.91 27970.98 40340.66 39473.57 33487.90 281
Patchmatch-RL test70.24 31567.78 32877.61 29477.43 37459.57 29271.16 38270.33 38962.94 32168.65 32772.77 39450.62 28385.49 33169.58 20566.58 37187.77 284
Anonymous2023121178.97 18877.69 20082.81 18590.54 9964.29 21890.11 7591.51 11565.01 29676.16 22188.13 20450.56 28493.03 18569.68 20477.56 27991.11 168
VDDNet81.52 12780.67 13084.05 13690.44 10164.13 22189.73 8485.91 26471.11 18983.18 10193.48 6350.54 28593.49 15573.40 16788.25 13894.54 36
pmmvs674.69 26773.39 26978.61 27381.38 33957.48 31586.64 19387.95 22264.99 29770.18 30886.61 24250.43 28689.52 28162.12 27170.18 35888.83 259
test_post5.46 42350.36 28784.24 341
ET-MVSNet_ETH3D78.63 19576.63 22584.64 10386.73 23269.47 9585.01 23584.61 27869.54 22666.51 35286.59 24350.16 28891.75 22876.26 13784.24 19492.69 120
sam_mvs50.01 289
Anonymous2024052980.19 16078.89 16884.10 12590.60 9764.75 20888.95 11390.90 13265.97 28480.59 13391.17 12449.97 29093.73 14769.16 20982.70 22193.81 69
thisisatest053079.40 17677.76 19784.31 11587.69 20865.10 19987.36 16884.26 28570.04 21277.42 18588.26 19749.94 29194.79 10370.20 19684.70 18493.03 109
PatchT68.46 33267.85 32470.29 36180.70 34743.93 40572.47 37774.88 37660.15 34570.55 30276.57 38149.94 29181.59 35750.58 35074.83 32385.34 334
tttt051779.40 17677.91 18983.90 14588.10 18663.84 22588.37 13684.05 28771.45 18376.78 20289.12 17149.93 29394.89 9870.18 19783.18 21492.96 114
tpmvs71.09 30569.29 31076.49 30682.04 32756.04 33778.92 33581.37 32764.05 30967.18 34178.28 37249.74 29489.77 27649.67 35972.37 34383.67 357
thisisatest051577.33 22875.38 24483.18 16785.27 25763.80 22682.11 28983.27 29965.06 29475.91 22283.84 30549.54 29594.27 11867.24 22786.19 16791.48 159
UniMVSNet_ETH3D79.10 18478.24 18281.70 20886.85 22860.24 28487.28 17288.79 20274.25 12876.84 19990.53 14049.48 29691.56 23567.98 21982.15 22593.29 94
dmvs_re71.14 30470.58 30072.80 34381.96 32859.68 28975.60 36379.34 34968.55 25069.27 32380.72 35049.42 29776.54 38152.56 34277.79 27582.19 373
CVMVSNet72.99 29072.58 27974.25 33184.28 27650.85 38486.41 19983.45 29744.56 39973.23 27587.54 21549.38 29885.70 32765.90 23878.44 26886.19 318
MDTV_nov1_ep13_2view37.79 41575.16 36655.10 37866.53 34949.34 29953.98 33487.94 280
UGNet80.83 13979.59 15184.54 10588.04 18968.09 13389.42 9588.16 21576.95 6276.22 21689.46 16449.30 30093.94 13168.48 21690.31 10491.60 152
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pmmvs571.55 30170.20 30775.61 31377.83 37256.39 33181.74 29280.89 32957.76 36567.46 33784.49 28949.26 30185.32 33457.08 31875.29 31785.11 340
mvsany_test162.30 35861.26 36265.41 37969.52 40354.86 35266.86 39949.78 41946.65 39668.50 33083.21 31849.15 30266.28 41156.93 32060.77 38575.11 395
LTVRE_ROB69.57 1376.25 24874.54 25581.41 21588.60 16664.38 21779.24 32889.12 19270.76 19769.79 31887.86 20649.09 30393.20 17256.21 32680.16 24986.65 312
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
FMVSNet177.44 22576.12 23281.40 21686.81 23063.01 24588.39 13389.28 18170.49 20474.39 26387.28 21949.06 30491.11 25160.91 28278.52 26690.09 211
test111179.43 17479.18 16380.15 24689.99 11353.31 36687.33 17077.05 36675.04 10680.23 13792.77 8648.97 30592.33 20968.87 21292.40 7994.81 21
ECVR-MVScopyleft79.61 16779.26 16080.67 23690.08 10854.69 35387.89 15477.44 36274.88 11180.27 13592.79 8448.96 30692.45 20168.55 21592.50 7794.86 18
MDTV_nov1_ep1369.97 30883.18 30353.48 36377.10 35580.18 34360.45 34169.33 32280.44 35148.89 30786.90 31551.60 34678.51 267
test_post178.90 3365.43 42448.81 30885.44 33359.25 295
test-LLR72.94 29172.43 28074.48 32881.35 34058.04 30378.38 34277.46 36066.66 27169.95 31479.00 36648.06 30979.24 36766.13 23484.83 18186.15 319
test0.0.03 168.00 33567.69 32968.90 36777.55 37347.43 39375.70 36272.95 38666.66 27166.56 34882.29 33548.06 30975.87 38944.97 38574.51 32683.41 359
our_test_369.14 32467.00 33775.57 31479.80 36058.80 29477.96 34877.81 35759.55 35062.90 37478.25 37347.43 31183.97 34351.71 34567.58 36883.93 354
MS-PatchMatch73.83 27772.67 27777.30 30083.87 28766.02 17681.82 29084.66 27761.37 33868.61 32882.82 32747.29 31288.21 30459.27 29484.32 19377.68 390
cascas76.72 23874.64 25282.99 17785.78 24765.88 18182.33 28689.21 18660.85 34072.74 28081.02 34547.28 31393.75 14567.48 22485.02 17989.34 240
WB-MVS54.94 36754.72 36855.60 39373.50 39220.90 42774.27 37361.19 41059.16 35450.61 40274.15 39047.19 31475.78 39017.31 41835.07 41270.12 400
test20.0367.45 33766.95 33868.94 36675.48 38344.84 40377.50 35177.67 35866.66 27163.01 37283.80 30647.02 31578.40 37142.53 39168.86 36583.58 358
test_040272.79 29270.44 30379.84 25288.13 18465.99 17885.93 21384.29 28365.57 28867.40 33985.49 27046.92 31692.61 19335.88 40274.38 32780.94 380
F-COLMAP76.38 24774.33 25982.50 19589.28 14066.95 16688.41 13289.03 19364.05 30966.83 34488.61 18546.78 31792.89 18757.48 31378.55 26587.67 285
ppachtmachnet_test70.04 31767.34 33578.14 28579.80 36061.13 26979.19 33080.59 33459.16 35465.27 35979.29 36346.75 31887.29 31349.33 36066.72 36986.00 325
WBMVS73.43 28172.81 27675.28 32087.91 19550.99 38378.59 34181.31 32865.51 29174.47 26284.83 28546.39 31986.68 31758.41 30577.86 27488.17 277
tt080578.73 19277.83 19281.43 21485.17 25860.30 28389.41 9690.90 13271.21 18777.17 19688.73 18046.38 32093.21 16972.57 17778.96 26390.79 179
D2MVS74.82 26673.21 27179.64 25879.81 35962.56 25380.34 31687.35 23664.37 30368.86 32582.66 32946.37 32190.10 27067.91 22081.24 23586.25 316
Anonymous2023120668.60 32867.80 32771.02 35880.23 35350.75 38578.30 34680.47 33656.79 37266.11 35582.63 33046.35 32278.95 36943.62 38775.70 30483.36 360
SSC-MVS53.88 37053.59 37054.75 39572.87 39819.59 42873.84 37560.53 41257.58 36849.18 40673.45 39346.34 32375.47 39316.20 42132.28 41469.20 401
CHOSEN 280x42066.51 34464.71 34571.90 34981.45 33763.52 23357.98 41268.95 39653.57 38262.59 37576.70 38046.22 32475.29 39555.25 32879.68 25476.88 392
testing9176.54 23975.66 23879.18 26688.43 17355.89 33981.08 30183.00 30773.76 13975.34 23884.29 29646.20 32590.07 27164.33 25084.50 18691.58 154
GA-MVS76.87 23575.17 24881.97 20482.75 31562.58 25281.44 29886.35 25872.16 17274.74 25682.89 32546.20 32592.02 21868.85 21381.09 23791.30 164
MDA-MVSNet_test_wron65.03 35062.92 35471.37 35375.93 37856.73 32469.09 39474.73 37857.28 37054.03 39977.89 37445.88 32774.39 39849.89 35861.55 38382.99 366
YYNet165.03 35062.91 35571.38 35275.85 38056.60 32869.12 39374.66 38057.28 37054.12 39877.87 37545.85 32874.48 39749.95 35761.52 38483.05 364
EPMVS69.02 32568.16 31971.59 35179.61 36349.80 39077.40 35266.93 40062.82 32470.01 31179.05 36445.79 32977.86 37556.58 32375.26 31887.13 301
IB-MVS68.01 1575.85 25473.36 27083.31 16084.76 26766.03 17583.38 27285.06 27370.21 21169.40 32081.05 34445.76 33094.66 10865.10 24575.49 30889.25 242
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
jajsoiax79.29 17977.96 18783.27 16284.68 26966.57 16989.25 10290.16 15669.20 23675.46 23289.49 16145.75 33193.13 17876.84 13280.80 24190.11 209
UBG73.08 28872.27 28375.51 31688.02 19051.29 38178.35 34577.38 36365.52 28973.87 26882.36 33245.55 33286.48 32055.02 32984.39 19288.75 263
PatchMatch-RL72.38 29470.90 29876.80 30588.60 16667.38 15279.53 32476.17 37262.75 32569.36 32182.00 34045.51 33384.89 33853.62 33680.58 24478.12 389
FE-MVS77.78 21775.68 23684.08 13088.09 18766.00 17783.13 27787.79 22768.42 25478.01 17585.23 27645.50 33495.12 8559.11 29785.83 17591.11 168
RPSCF73.23 28671.46 29078.54 27782.50 32159.85 28782.18 28882.84 31258.96 35671.15 30189.41 16845.48 33584.77 33958.82 30171.83 34991.02 174
test_vis1_n_192075.52 25875.78 23474.75 32779.84 35857.44 31683.26 27485.52 26862.83 32379.34 14886.17 25645.10 33679.71 36678.75 11181.21 23687.10 304
MSDG73.36 28470.99 29780.49 23984.51 27465.80 18380.71 30986.13 26265.70 28665.46 35783.74 30844.60 33790.91 25951.13 34976.89 28584.74 344
PVSNet_057.27 2061.67 36059.27 36368.85 36879.61 36357.44 31668.01 39573.44 38355.93 37658.54 38870.41 39944.58 33877.55 37647.01 37335.91 41171.55 399
testing9976.09 25175.12 24979.00 26788.16 18155.50 34580.79 30581.40 32673.30 15375.17 24684.27 29844.48 33990.02 27264.28 25184.22 19591.48 159
test_cas_vis1_n_192073.76 27873.74 26773.81 33575.90 37959.77 28880.51 31282.40 31558.30 36181.62 12185.69 26444.35 34076.41 38476.29 13678.61 26485.23 336
mvs_tets79.13 18377.77 19683.22 16684.70 26866.37 17189.17 10390.19 15569.38 22975.40 23589.46 16444.17 34193.15 17676.78 13480.70 24390.14 206
MDA-MVSNet-bldmvs66.68 34263.66 35175.75 31179.28 36760.56 27973.92 37478.35 35564.43 30150.13 40479.87 35944.02 34283.67 34546.10 37956.86 39083.03 365
mmtdpeth74.16 27273.01 27477.60 29683.72 29161.13 26985.10 23385.10 27272.06 17377.21 19580.33 35343.84 34385.75 32677.14 12952.61 40085.91 326
gg-mvs-nofinetune69.95 31867.96 32275.94 30983.07 30654.51 35677.23 35470.29 39063.11 31770.32 30662.33 40343.62 34488.69 29853.88 33587.76 14484.62 346
testing1175.14 26574.01 26178.53 27888.16 18156.38 33280.74 30880.42 33870.67 19872.69 28383.72 31043.61 34589.86 27462.29 26883.76 20089.36 239
GG-mvs-BLEND75.38 31981.59 33455.80 34179.32 32769.63 39267.19 34073.67 39243.24 34688.90 29650.41 35184.50 18681.45 377
CMPMVSbinary51.72 2170.19 31668.16 31976.28 30773.15 39757.55 31479.47 32583.92 28848.02 39556.48 39584.81 28643.13 34786.42 32162.67 26481.81 23184.89 342
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
dp66.80 34165.43 34370.90 36079.74 36248.82 39175.12 36874.77 37759.61 34964.08 36777.23 37842.89 34880.72 36348.86 36366.58 37183.16 362
PVSNet64.34 1872.08 29970.87 29975.69 31286.21 23956.44 33074.37 37280.73 33262.06 33370.17 30982.23 33642.86 34983.31 34954.77 33184.45 19087.32 295
pmmvs-eth3d70.50 31367.83 32678.52 27977.37 37566.18 17481.82 29081.51 32458.90 35763.90 36980.42 35242.69 35086.28 32258.56 30365.30 37683.11 363
UnsupCasMVSNet_eth67.33 33865.99 34271.37 35373.48 39351.47 37975.16 36685.19 27165.20 29260.78 38080.93 34942.35 35177.20 37757.12 31753.69 39885.44 333
KD-MVS_self_test68.81 32667.59 33272.46 34774.29 38745.45 39877.93 34987.00 24463.12 31663.99 36878.99 36842.32 35284.77 33956.55 32464.09 37987.16 300
ADS-MVSNet266.20 34963.33 35274.82 32579.92 35658.75 29567.55 39775.19 37453.37 38365.25 36075.86 38542.32 35280.53 36441.57 39268.91 36385.18 337
ADS-MVSNet64.36 35362.88 35668.78 36979.92 35647.17 39467.55 39771.18 38853.37 38365.25 36075.86 38542.32 35273.99 39941.57 39268.91 36385.18 337
SixPastTwentyTwo73.37 28271.26 29579.70 25585.08 26357.89 30785.57 22083.56 29471.03 19265.66 35685.88 26042.10 35592.57 19659.11 29763.34 38088.65 267
JIA-IIPM66.32 34662.82 35776.82 30477.09 37661.72 26565.34 40575.38 37358.04 36464.51 36462.32 40442.05 35686.51 31951.45 34769.22 36282.21 372
ACMH67.68 1675.89 25373.93 26381.77 20788.71 16366.61 16888.62 12789.01 19569.81 21966.78 34586.70 23941.95 35791.51 24055.64 32778.14 27287.17 298
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+68.96 1476.01 25274.01 26182.03 20288.60 16665.31 19588.86 11687.55 23170.25 21067.75 33387.47 21741.27 35893.19 17458.37 30675.94 30287.60 287
MIMVSNet70.69 31069.30 30974.88 32484.52 27356.35 33475.87 36179.42 34864.59 29967.76 33282.41 33141.10 35981.54 35846.64 37681.34 23386.75 310
Anonymous20240521178.25 20277.01 21281.99 20391.03 8760.67 27784.77 24083.90 28970.65 20280.00 13991.20 12241.08 36091.43 24465.21 24385.26 17893.85 65
N_pmnet52.79 37353.26 37151.40 39778.99 3697.68 43169.52 3893.89 43051.63 38957.01 39374.98 38940.83 36165.96 41237.78 39964.67 37780.56 384
ETVMVS72.25 29771.05 29675.84 31087.77 20551.91 37379.39 32674.98 37569.26 23273.71 26982.95 32340.82 36286.14 32346.17 37884.43 19189.47 236
EU-MVSNet68.53 33167.61 33171.31 35678.51 37147.01 39584.47 24884.27 28442.27 40266.44 35384.79 28740.44 36383.76 34458.76 30268.54 36683.17 361
DSMNet-mixed57.77 36556.90 36760.38 38567.70 40635.61 41669.18 39153.97 41732.30 41557.49 39279.88 35840.39 36468.57 40938.78 39872.37 34376.97 391
UWE-MVS72.13 29871.49 28974.03 33386.66 23447.70 39281.40 29976.89 36863.60 31475.59 22784.22 29939.94 36585.62 32948.98 36286.13 16988.77 262
OurMVSNet-221017-074.26 27072.42 28179.80 25383.76 29059.59 29185.92 21486.64 25166.39 27866.96 34287.58 21139.46 36691.60 23265.76 24069.27 36188.22 275
K. test v371.19 30368.51 31579.21 26583.04 30857.78 31184.35 25576.91 36772.90 16262.99 37382.86 32639.27 36791.09 25661.65 27652.66 39988.75 263
lessismore_v078.97 26881.01 34557.15 31965.99 40261.16 37982.82 32739.12 36891.34 24759.67 29146.92 40688.43 272
testing22274.04 27472.66 27878.19 28487.89 19655.36 34681.06 30279.20 35171.30 18574.65 25983.57 31339.11 36988.67 29951.43 34885.75 17690.53 191
reproduce_monomvs75.40 26274.38 25878.46 28183.92 28657.80 31083.78 26386.94 24673.47 14872.25 28984.47 29038.74 37089.27 28675.32 15070.53 35688.31 274
UnsupCasMVSNet_bld63.70 35561.53 36170.21 36273.69 39151.39 38072.82 37681.89 32055.63 37757.81 39171.80 39638.67 37178.61 37049.26 36152.21 40180.63 382
new-patchmatchnet61.73 35961.73 36061.70 38372.74 39924.50 42669.16 39278.03 35661.40 33656.72 39475.53 38838.42 37276.48 38345.95 38057.67 38984.13 351
MVS-HIRNet59.14 36357.67 36563.57 38181.65 33243.50 40671.73 37965.06 40539.59 40651.43 40157.73 40938.34 37382.58 35339.53 39573.95 33064.62 405
test250677.30 22976.49 22679.74 25490.08 10852.02 37087.86 15663.10 40874.88 11180.16 13892.79 8438.29 37492.35 20768.74 21492.50 7794.86 18
COLMAP_ROBcopyleft66.92 1773.01 28970.41 30480.81 23387.13 22565.63 18788.30 13984.19 28662.96 32063.80 37087.69 20938.04 37592.56 19746.66 37474.91 32284.24 349
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TESTMET0.1,169.89 31969.00 31372.55 34579.27 36856.85 32278.38 34274.71 37957.64 36668.09 33177.19 37937.75 37676.70 38063.92 25384.09 19684.10 352
OpenMVS_ROBcopyleft64.09 1970.56 31268.19 31877.65 29380.26 35159.41 29385.01 23582.96 30958.76 35865.43 35882.33 33337.63 37791.23 25045.34 38476.03 30182.32 371
FMVSNet569.50 32167.96 32274.15 33282.97 31255.35 34780.01 32082.12 31862.56 32763.02 37181.53 34136.92 37881.92 35648.42 36474.06 32985.17 339
MIMVSNet168.58 32966.78 33973.98 33480.07 35551.82 37580.77 30684.37 28064.40 30259.75 38582.16 33736.47 37983.63 34642.73 38970.33 35786.48 314
ITE_SJBPF78.22 28381.77 33160.57 27883.30 29869.25 23367.54 33587.20 22436.33 38087.28 31454.34 33374.62 32586.80 308
test-mter71.41 30270.39 30574.48 32881.35 34058.04 30378.38 34277.46 36060.32 34369.95 31479.00 36636.08 38179.24 36766.13 23484.83 18186.15 319
testgi66.67 34366.53 34067.08 37775.62 38241.69 41275.93 35876.50 36966.11 28065.20 36286.59 24335.72 38274.71 39643.71 38673.38 33884.84 343
EG-PatchMatch MVS74.04 27471.82 28680.71 23584.92 26567.42 15085.86 21688.08 21866.04 28264.22 36683.85 30435.10 38392.56 19757.44 31480.83 24082.16 374
KD-MVS_2432*160066.22 34763.89 34973.21 33875.47 38453.42 36470.76 38584.35 28164.10 30766.52 35078.52 37034.55 38484.98 33650.40 35250.33 40381.23 378
miper_refine_blended66.22 34763.89 34973.21 33875.47 38453.42 36470.76 38584.35 28164.10 30766.52 35078.52 37034.55 38484.98 33650.40 35250.33 40381.23 378
mvs5depth69.45 32267.45 33475.46 31873.93 38855.83 34079.19 33083.23 30066.89 26671.63 29683.32 31633.69 38685.09 33559.81 29055.34 39685.46 332
XVG-ACMP-BASELINE76.11 25074.27 26081.62 20983.20 30264.67 20983.60 26989.75 16769.75 22371.85 29387.09 22832.78 38792.11 21569.99 20080.43 24788.09 278
AllTest70.96 30668.09 32179.58 25985.15 26063.62 22884.58 24679.83 34462.31 32960.32 38286.73 23332.02 38888.96 29450.28 35471.57 35186.15 319
TestCases79.58 25985.15 26063.62 22879.83 34462.31 32960.32 38286.73 23332.02 38888.96 29450.28 35471.57 35186.15 319
USDC70.33 31468.37 31676.21 30880.60 34856.23 33579.19 33086.49 25460.89 33961.29 37885.47 27131.78 39089.47 28353.37 33876.21 30082.94 367
myMVS_eth3d67.02 34066.29 34169.21 36584.68 26942.58 40878.62 33973.08 38466.65 27466.74 34679.46 36131.53 39182.30 35439.43 39776.38 29782.75 368
test_fmvs170.93 30770.52 30172.16 34873.71 39055.05 35080.82 30378.77 35351.21 39178.58 16084.41 29231.20 39276.94 37975.88 14280.12 25284.47 347
Anonymous2024052168.80 32767.22 33673.55 33674.33 38654.11 35883.18 27585.61 26758.15 36261.68 37780.94 34730.71 39381.27 36057.00 31973.34 33985.28 335
testing368.56 33067.67 33071.22 35787.33 22042.87 40783.06 28171.54 38770.36 20569.08 32484.38 29330.33 39485.69 32837.50 40075.45 31285.09 341
test_vis1_n69.85 32069.21 31171.77 35072.66 40055.27 34981.48 29676.21 37152.03 38775.30 24383.20 31928.97 39576.22 38674.60 15478.41 27083.81 355
tmp_tt18.61 39121.40 39410.23 4074.82 43010.11 43034.70 41730.74 4281.48 42423.91 42026.07 42128.42 39613.41 42627.12 41015.35 4237.17 421
test_fmvs1_n70.86 30870.24 30672.73 34472.51 40155.28 34881.27 30079.71 34651.49 39078.73 15584.87 28427.54 39777.02 37876.06 13979.97 25385.88 327
TDRefinement67.49 33664.34 34676.92 30373.47 39461.07 27184.86 23982.98 30859.77 34858.30 38985.13 27926.06 39887.89 30847.92 37160.59 38781.81 376
dongtai45.42 38145.38 38245.55 39973.36 39526.85 42367.72 39634.19 42554.15 38149.65 40556.41 41225.43 39962.94 41519.45 41628.09 41646.86 415
MVStest156.63 36652.76 37268.25 37361.67 41453.25 36871.67 38068.90 39738.59 40750.59 40383.05 32125.08 40070.66 40436.76 40138.56 41080.83 381
test_vis1_rt60.28 36158.42 36465.84 37867.25 40755.60 34470.44 38760.94 41144.33 40059.00 38666.64 40124.91 40168.67 40862.80 26069.48 35973.25 397
TinyColmap67.30 33964.81 34474.76 32681.92 33056.68 32780.29 31781.49 32560.33 34256.27 39683.22 31724.77 40287.66 31245.52 38269.47 36079.95 385
EGC-MVSNET52.07 37547.05 37967.14 37683.51 29560.71 27680.50 31367.75 3980.07 4250.43 42675.85 38724.26 40381.54 35828.82 40862.25 38159.16 408
kuosan39.70 38540.40 38637.58 40264.52 41126.98 42165.62 40433.02 42646.12 39742.79 40948.99 41524.10 40446.56 42312.16 42426.30 41739.20 416
LF4IMVS64.02 35462.19 35869.50 36470.90 40253.29 36776.13 35677.18 36552.65 38558.59 38780.98 34623.55 40576.52 38253.06 34066.66 37078.68 388
test_fmvs268.35 33367.48 33370.98 35969.50 40451.95 37280.05 31976.38 37049.33 39374.65 25984.38 29323.30 40675.40 39474.51 15575.17 32085.60 330
new_pmnet50.91 37650.29 37652.78 39668.58 40534.94 41863.71 40756.63 41639.73 40544.95 40765.47 40221.93 40758.48 41634.98 40356.62 39164.92 404
ttmdpeth59.91 36257.10 36668.34 37267.13 40846.65 39774.64 37167.41 39948.30 39462.52 37685.04 28320.40 40875.93 38842.55 39045.90 40982.44 370
pmmvs357.79 36454.26 36968.37 37164.02 41256.72 32575.12 36865.17 40440.20 40452.93 40069.86 40020.36 40975.48 39245.45 38355.25 39772.90 398
PM-MVS66.41 34564.14 34773.20 34073.92 38956.45 32978.97 33464.96 40663.88 31364.72 36380.24 35419.84 41083.44 34866.24 23364.52 37879.71 386
mvsany_test353.99 36951.45 37461.61 38455.51 41844.74 40463.52 40845.41 42343.69 40158.11 39076.45 38217.99 41163.76 41454.77 33147.59 40576.34 393
ambc75.24 32173.16 39650.51 38663.05 41087.47 23464.28 36577.81 37617.80 41289.73 27857.88 31160.64 38685.49 331
ANet_high50.57 37746.10 38163.99 38048.67 42539.13 41470.99 38480.85 33061.39 33731.18 41457.70 41017.02 41373.65 40131.22 40715.89 42279.18 387
FPMVS53.68 37151.64 37359.81 38665.08 41051.03 38269.48 39069.58 39341.46 40340.67 41072.32 39516.46 41470.00 40724.24 41465.42 37558.40 410
test_method31.52 38729.28 39138.23 40127.03 4296.50 43220.94 42062.21 4094.05 42322.35 42152.50 41413.33 41547.58 42127.04 41134.04 41360.62 407
EMVS30.81 38829.65 39034.27 40450.96 42425.95 42456.58 41446.80 42224.01 41915.53 42430.68 42012.47 41654.43 42012.81 42317.05 42122.43 420
test_f52.09 37450.82 37555.90 39153.82 42142.31 41159.42 41158.31 41536.45 41056.12 39770.96 39812.18 41757.79 41753.51 33756.57 39267.60 402
test_fmvs363.36 35661.82 35967.98 37462.51 41346.96 39677.37 35374.03 38145.24 39867.50 33678.79 36912.16 41872.98 40272.77 17566.02 37383.99 353
E-PMN31.77 38630.64 38935.15 40352.87 42327.67 42057.09 41347.86 42124.64 41816.40 42333.05 41911.23 41954.90 41914.46 42218.15 42022.87 419
DeepMVS_CXcopyleft27.40 40540.17 42826.90 42224.59 42917.44 42123.95 41948.61 4169.77 42026.48 42418.06 41724.47 41828.83 418
Gipumacopyleft45.18 38241.86 38555.16 39477.03 37751.52 37832.50 41880.52 33532.46 41427.12 41735.02 4189.52 42175.50 39122.31 41560.21 38838.45 417
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet54.25 36849.68 37867.97 37553.73 42245.28 40166.85 40080.78 33135.96 41139.45 41262.23 4058.70 42278.06 37448.24 36851.20 40280.57 383
APD_test153.31 37249.93 37763.42 38265.68 40950.13 38771.59 38166.90 40134.43 41240.58 41171.56 3978.65 42376.27 38534.64 40455.36 39563.86 406
PMMVS240.82 38438.86 38846.69 39853.84 42016.45 42948.61 41549.92 41837.49 40831.67 41360.97 4068.14 42456.42 41828.42 40930.72 41567.19 403
test_vis3_rt49.26 37847.02 38056.00 39054.30 41945.27 40266.76 40148.08 42036.83 40944.38 40853.20 4137.17 42564.07 41356.77 32255.66 39358.65 409
testf145.72 37941.96 38357.00 38856.90 41645.32 39966.14 40259.26 41326.19 41630.89 41560.96 4074.14 42670.64 40526.39 41246.73 40755.04 411
APD_test245.72 37941.96 38357.00 38856.90 41645.32 39966.14 40259.26 41326.19 41630.89 41560.96 4074.14 42670.64 40526.39 41246.73 40755.04 411
PMVScopyleft37.38 2244.16 38340.28 38755.82 39240.82 42742.54 41065.12 40663.99 40734.43 41224.48 41857.12 4113.92 42876.17 38717.10 41955.52 39448.75 413
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive26.22 2330.37 38925.89 39343.81 40044.55 42635.46 41728.87 41939.07 42418.20 42018.58 42240.18 4172.68 42947.37 42217.07 42023.78 41948.60 414
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d16.82 39215.94 39519.46 40658.74 41531.45 41939.22 4163.74 4316.84 4226.04 4252.70 4251.27 43024.29 42510.54 42514.40 4242.63 422
test1236.12 3948.11 3970.14 4080.06 4320.09 43371.05 3830.03 4330.04 4270.25 4281.30 4270.05 4310.03 4280.21 4270.01 4260.29 423
testmvs6.04 3958.02 3980.10 4090.08 4310.03 43469.74 3880.04 4320.05 4260.31 4271.68 4260.02 4320.04 4270.24 4260.02 4250.25 424
mmdepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
monomultidepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
test_blank0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uanet_test0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
DCPMVS0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
sosnet-low-res0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
sosnet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uncertanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
Regformer0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
ab-mvs-re7.23 3939.64 3960.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 42986.72 2350.00 4330.00 4290.00 4280.00 4270.00 425
uanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
WAC-MVS42.58 40839.46 396
FOURS195.00 1072.39 3995.06 193.84 1574.49 12191.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4997.53 289.67 896.44 994.41 39
No_MVS89.16 194.34 2775.53 292.99 4997.53 289.67 896.44 994.41 39
eth-test20.00 433
eth-test0.00 433
IU-MVS95.30 271.25 5992.95 5566.81 26792.39 688.94 1896.63 494.85 20
save fliter93.80 4072.35 4290.47 6691.17 12574.31 126
test_0728_SECOND87.71 3295.34 171.43 5893.49 994.23 397.49 489.08 1496.41 1294.21 49
GSMVS88.96 254
test_part295.06 872.65 3291.80 13
MTGPAbinary92.02 93
MTMP92.18 3432.83 427
gm-plane-assit81.40 33853.83 36162.72 32680.94 34792.39 20463.40 257
test9_res84.90 4895.70 2692.87 115
agg_prior282.91 7595.45 2992.70 118
agg_prior92.85 6271.94 5091.78 10884.41 8094.93 94
test_prior472.60 3489.01 111
test_prior86.33 5792.61 6869.59 9192.97 5495.48 6793.91 61
旧先验286.56 19658.10 36387.04 4788.98 29274.07 160
新几何286.29 205
无先验87.48 16388.98 19660.00 34694.12 12567.28 22688.97 253
原ACMM286.86 185
testdata291.01 25862.37 267
testdata184.14 25975.71 92
plane_prior790.08 10868.51 123
plane_prior592.44 7795.38 7578.71 11286.32 16491.33 162
plane_prior491.00 132
plane_prior368.60 12178.44 3178.92 153
plane_prior291.25 5279.12 23
plane_prior189.90 116
plane_prior68.71 11690.38 7077.62 4086.16 168
n20.00 434
nn0.00 434
door-mid69.98 391
test1192.23 87
door69.44 394
HQP5-MVS66.98 163
HQP-NCC89.33 13589.17 10376.41 7777.23 191
ACMP_Plane89.33 13589.17 10376.41 7777.23 191
BP-MVS77.47 124
HQP4-MVS77.24 19095.11 8791.03 172
HQP3-MVS92.19 9085.99 172
NP-MVS89.62 12168.32 12790.24 144
ACMMP++_ref81.95 229
ACMMP++81.25 234