This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
PC_three_145268.21 24892.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8792.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 56
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 25
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 45
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 6077.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 89
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 10089.57 8693.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 29
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 6294.67 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9191.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 34
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
dcpmvs_285.63 5386.15 4484.06 12991.71 7564.94 19886.47 19291.87 10173.63 13386.60 4593.02 7276.57 1591.87 22083.36 6092.15 7995.35 3
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6093.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 41
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7693.82 1673.07 14984.86 6492.89 7476.22 1796.33 3884.89 4495.13 3694.40 38
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5693.56 2473.95 12583.16 9691.07 11875.94 1895.19 7879.94 10094.38 5793.55 81
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5580.26 1187.78 3094.27 3275.89 1996.81 2387.45 3296.44 993.05 101
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7974.62 11388.90 2093.85 5275.75 2096.00 4987.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8989.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
9.1488.26 1592.84 6091.52 4694.75 173.93 12788.57 2294.67 1975.57 2295.79 5386.77 3595.76 23
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13987.63 3094.27 6193.65 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DELS-MVS85.41 5885.30 6085.77 6788.49 16767.93 13385.52 22293.44 2778.70 2983.63 9289.03 16874.57 2495.71 5680.26 9894.04 6393.66 70
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
patch_mono-283.65 8284.54 7080.99 22390.06 10765.83 17884.21 25088.74 20471.60 17285.01 5792.44 8474.51 2583.50 33682.15 7592.15 7993.64 76
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11491.89 9968.69 24085.00 5993.10 6774.43 2695.41 6984.97 4195.71 2593.02 103
test_893.13 5272.57 3588.68 11991.84 10368.69 24084.87 6393.10 6774.43 2695.16 79
TEST993.26 5072.96 2588.75 11491.89 9968.44 24585.00 5993.10 6774.36 2895.41 69
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10992.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_prior288.85 11175.41 9584.91 6193.54 5674.28 2983.31 6195.86 20
TSAR-MVS + GP.85.71 5285.33 5886.84 4791.34 7872.50 3689.07 10487.28 23476.41 7485.80 4990.22 13874.15 3195.37 7481.82 7791.88 8292.65 114
ZD-MVS94.38 2572.22 4492.67 6270.98 18587.75 3294.07 4174.01 3296.70 2784.66 4794.84 43
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5673.01 15188.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 110
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6987.65 20267.22 15388.69 11893.04 3879.64 1885.33 5492.54 8373.30 3594.50 11083.49 5991.14 9395.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
sasdasda85.91 4785.87 4986.04 6089.84 11369.44 9590.45 6593.00 4376.70 6988.01 2891.23 11073.28 3693.91 13381.50 7988.80 12494.77 22
canonicalmvs85.91 4785.87 4986.04 6089.84 11369.44 9590.45 6593.00 4376.70 6988.01 2891.23 11073.28 3693.91 13381.50 7988.80 12494.77 22
segment_acmp73.08 38
DPM-MVS84.93 6784.29 7586.84 4790.20 10073.04 2387.12 17093.04 3869.80 21282.85 10091.22 11273.06 3996.02 4776.72 12994.63 4791.46 156
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5681.50 585.79 5093.47 6073.02 4097.00 1884.90 4294.94 3994.10 49
test_fmvsmconf_n85.92 4686.04 4785.57 7185.03 25669.51 9089.62 8590.58 13873.42 14087.75 3294.02 4472.85 4193.24 16490.37 390.75 9793.96 55
MGCFI-Net85.06 6485.51 5483.70 14489.42 12763.01 24089.43 8992.62 6976.43 7387.53 3591.34 10872.82 4293.42 15981.28 8388.74 12794.66 27
nrg03083.88 7783.53 8184.96 8886.77 22669.28 9990.46 6492.67 6274.79 10882.95 9791.33 10972.70 4393.09 17880.79 9279.28 25592.50 120
CDPH-MVS85.76 5185.29 6187.17 4393.49 4771.08 6188.58 12292.42 7768.32 24784.61 6993.48 5872.32 4496.15 4579.00 10395.43 3194.28 44
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6577.57 4183.84 8794.40 3072.24 4596.28 4085.65 3895.30 3593.62 77
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
casdiffmvspermissive85.11 6285.14 6285.01 8587.20 21865.77 18187.75 15492.83 5677.84 3784.36 7792.38 8572.15 4693.93 13281.27 8490.48 10095.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 10294.23 3572.13 4797.09 1684.83 4595.37 3293.65 74
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_l_conf0.5_n84.47 7184.54 7084.27 11785.42 24668.81 10688.49 12487.26 23568.08 24988.03 2793.49 5772.04 4891.77 22288.90 1789.14 12092.24 131
baseline84.93 6784.98 6384.80 9687.30 21665.39 18887.30 16692.88 5377.62 3984.04 8492.26 8771.81 4993.96 12681.31 8290.30 10395.03 8
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5594.32 3171.76 5096.93 1985.53 3995.79 2294.32 42
test_fmvsmconf0.1_n85.61 5485.65 5285.50 7282.99 30169.39 9789.65 8390.29 15173.31 14387.77 3194.15 3871.72 5193.23 16590.31 490.67 9993.89 60
MM89.16 689.23 788.97 490.79 9073.65 1092.66 2391.17 12386.57 187.39 3794.97 1671.70 5297.68 192.19 195.63 2895.57 1
test1286.80 4992.63 6470.70 7291.79 10582.71 10471.67 5396.16 4494.50 5093.54 82
UniMVSNet_NR-MVSNet81.88 11381.54 11382.92 17588.46 16963.46 23087.13 16992.37 7880.19 1278.38 16089.14 16471.66 5493.05 18070.05 18976.46 28492.25 129
CS-MVS86.69 3586.95 3185.90 6590.76 9167.57 14292.83 1793.30 3279.67 1784.57 7192.27 8671.47 5595.02 9084.24 5493.46 6795.13 6
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7184.22 7893.36 6371.44 5696.76 2580.82 9095.33 3494.16 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsm_n_192085.29 6085.34 5785.13 8286.12 23669.93 8388.65 12090.78 13469.97 20888.27 2393.98 4971.39 5791.54 23288.49 2390.45 10193.91 57
MVS_111021_HR85.14 6184.75 6686.32 5591.65 7672.70 3085.98 20590.33 14876.11 8382.08 10891.61 10071.36 5894.17 12281.02 8692.58 7492.08 137
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5593.59 2376.27 8188.14 2495.09 1571.06 5996.67 2987.67 2996.37 1494.09 50
fmvsm_l_conf0.5_n_a84.13 7484.16 7684.06 12985.38 24768.40 12188.34 13386.85 24367.48 25687.48 3693.40 6170.89 6091.61 22688.38 2589.22 11992.16 135
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7893.50 2575.17 10286.34 4695.29 1270.86 6196.00 4988.78 1996.04 1694.58 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 6194.44 2870.78 6296.61 3284.53 4994.89 4193.66 70
EI-MVSNet-Vis-set84.19 7383.81 7885.31 7688.18 17867.85 13487.66 15689.73 16680.05 1482.95 9789.59 15370.74 6394.82 10080.66 9484.72 17793.28 91
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6593.99 4870.67 6496.82 2284.18 5695.01 3793.90 59
CS-MVS-test86.29 4286.48 3785.71 6891.02 8367.21 15492.36 2993.78 1878.97 2883.51 9391.20 11370.65 6595.15 8081.96 7694.89 4194.77 22
CANet86.45 3886.10 4587.51 3790.09 10270.94 6789.70 8292.59 7081.78 481.32 11991.43 10670.34 6697.23 1384.26 5293.36 6894.37 39
alignmvs85.48 5585.32 5985.96 6389.51 12269.47 9289.74 8092.47 7376.17 8287.73 3491.46 10570.32 6793.78 13981.51 7888.95 12194.63 28
EI-MVSNet-UG-set83.81 7883.38 8485.09 8387.87 19167.53 14387.44 16289.66 16779.74 1682.23 10789.41 16270.24 6894.74 10379.95 9983.92 19092.99 105
MVS_Test83.15 9583.06 8983.41 15386.86 22263.21 23686.11 20292.00 9374.31 11882.87 9989.44 16170.03 6993.21 16777.39 12188.50 13293.81 65
FC-MVSNet-test81.52 12382.02 10780.03 24388.42 17255.97 32987.95 14793.42 2977.10 5677.38 18290.98 12469.96 7091.79 22168.46 20884.50 18092.33 125
MVS_030488.08 1488.08 1788.08 1489.67 11672.04 4892.26 3389.26 18084.19 285.01 5795.18 1369.93 7197.20 1491.63 295.60 2994.99 9
FIs82.07 11082.42 9881.04 22288.80 15658.34 29188.26 13793.49 2676.93 6078.47 15991.04 11969.92 7292.34 20369.87 19384.97 17492.44 124
UniMVSNet (Re)81.60 12281.11 11883.09 16688.38 17364.41 21187.60 15793.02 4278.42 3278.56 15688.16 19369.78 7393.26 16369.58 19676.49 28391.60 147
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8483.81 8893.95 5169.77 7496.01 4885.15 4094.66 4694.32 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
Effi-MVS+83.62 8583.08 8885.24 7888.38 17367.45 14488.89 10989.15 18675.50 9482.27 10688.28 18969.61 7594.45 11277.81 11687.84 13693.84 63
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15485.22 5691.90 9269.47 7696.42 3783.28 6295.94 1994.35 40
UA-Net85.08 6384.96 6485.45 7392.07 7068.07 13089.78 7990.86 13382.48 384.60 7093.20 6669.35 7795.22 7771.39 17790.88 9693.07 100
ETV-MVS84.90 6984.67 6985.59 7089.39 13068.66 11788.74 11692.64 6779.97 1584.10 8285.71 25769.32 7895.38 7180.82 9091.37 9092.72 109
旧先验191.96 7165.79 18086.37 25093.08 7169.31 7992.74 7288.74 259
fmvsm_s_conf0.5_n_a83.63 8483.41 8384.28 11586.14 23568.12 12889.43 8982.87 30170.27 20187.27 3993.80 5469.09 8091.58 22888.21 2683.65 19893.14 98
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7494.52 2169.09 8096.70 2784.37 5194.83 4494.03 53
EIA-MVS83.31 9382.80 9684.82 9489.59 11865.59 18388.21 13892.68 6174.66 11178.96 14686.42 24469.06 8295.26 7675.54 14190.09 10793.62 77
EPP-MVSNet83.40 9083.02 9084.57 10090.13 10164.47 20892.32 3090.73 13574.45 11779.35 14291.10 11669.05 8395.12 8172.78 16687.22 14494.13 48
EC-MVSNet86.01 4386.38 3884.91 9289.31 13666.27 16992.32 3093.63 2179.37 2084.17 8091.88 9369.04 8495.43 6783.93 5793.77 6593.01 104
fmvsm_s_conf0.5_n83.80 7983.71 7984.07 12786.69 22867.31 14989.46 8883.07 29671.09 18286.96 4393.70 5569.02 8591.47 23788.79 1884.62 17993.44 85
iter_conf05_1183.91 7683.56 8084.97 8789.34 13266.68 16286.01 20492.25 8470.16 20482.83 10188.56 18169.00 8695.60 5979.43 10294.43 5492.63 115
mamv485.00 6584.68 6885.93 6489.51 12267.64 13988.38 13192.65 6572.35 15984.47 7390.26 13568.98 8795.69 5781.09 8594.45 5394.47 34
MVSMamba_pp84.98 6684.70 6785.80 6689.43 12667.63 14088.44 12592.64 6772.17 16284.54 7290.39 13368.88 8895.28 7581.45 8194.39 5594.49 33
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6894.52 2168.81 8996.65 3084.53 4994.90 4094.00 54
test_fmvsmvis_n_192084.02 7583.87 7784.49 10584.12 27269.37 9888.15 14287.96 21870.01 20683.95 8593.23 6568.80 9091.51 23588.61 2089.96 11092.57 116
bld_raw_dy_0_6484.37 7284.35 7484.46 10689.86 11264.47 20886.68 18692.49 7272.08 16584.16 8189.77 14668.76 9195.08 8880.97 8794.34 5993.82 64
iter_conf0583.17 9482.90 9483.97 13887.59 20765.09 19588.29 13691.52 11272.35 15981.39 11890.13 14068.76 9194.84 9980.30 9785.75 16991.98 141
mvs_anonymous79.42 17079.11 15980.34 23784.45 26757.97 29782.59 27687.62 22767.40 25776.17 21588.56 18168.47 9389.59 27570.65 18486.05 16393.47 84
fmvsm_s_conf0.1_n83.56 8683.38 8484.10 12284.86 25867.28 15089.40 9383.01 29770.67 19087.08 4093.96 5068.38 9491.45 23888.56 2284.50 18093.56 80
fmvsm_s_conf0.1_n_a83.32 9282.99 9184.28 11583.79 27968.07 13089.34 9582.85 30269.80 21287.36 3894.06 4268.34 9591.56 23087.95 2783.46 20493.21 95
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18992.02 9179.45 1985.88 4894.80 1768.07 9696.21 4286.69 3695.34 3393.23 92
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5976.62 7183.68 8994.46 2567.93 9795.95 5284.20 5594.39 5593.23 92
PAPM_NR83.02 9982.41 9984.82 9492.47 6766.37 16787.93 14991.80 10473.82 12977.32 18490.66 12767.90 9894.90 9570.37 18689.48 11693.19 96
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7093.04 3875.53 9383.86 8694.42 2967.87 9996.64 3182.70 7294.57 4993.66 70
PAPR81.66 12180.89 12383.99 13790.27 9864.00 21786.76 18491.77 10768.84 23877.13 19389.50 15467.63 10094.88 9767.55 21488.52 13193.09 99
Fast-Effi-MVS+80.81 13679.92 13983.47 14988.85 15164.51 20585.53 22089.39 17470.79 18778.49 15885.06 27567.54 10193.58 14767.03 22286.58 15392.32 126
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 9094.17 3667.45 10296.60 3383.06 6394.50 5094.07 51
X-MVStestdata80.37 15177.83 18688.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 9012.47 40867.45 10296.60 3383.06 6394.50 5094.07 51
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 7174.50 11486.84 4494.65 2067.31 10495.77 5484.80 4692.85 7192.84 108
NR-MVSNet80.23 15379.38 15182.78 18487.80 19463.34 23386.31 19691.09 12779.01 2672.17 27989.07 16667.20 10592.81 18966.08 22875.65 29792.20 132
MSLP-MVS++85.43 5785.76 5184.45 10791.93 7270.24 7690.71 5792.86 5477.46 4784.22 7892.81 7867.16 10692.94 18480.36 9594.35 5890.16 200
MG-MVS83.41 8983.45 8283.28 15692.74 6262.28 25188.17 14089.50 17175.22 9881.49 11792.74 8266.75 10795.11 8372.85 16591.58 8792.45 123
test_fmvsmconf0.01_n84.73 7084.52 7285.34 7580.25 34169.03 10089.47 8789.65 16873.24 14786.98 4294.27 3266.62 10893.23 16590.26 589.95 11193.78 67
EI-MVSNet80.52 14779.98 13882.12 19484.28 26863.19 23886.41 19388.95 19674.18 12278.69 15187.54 20966.62 10892.43 19772.57 16980.57 23990.74 178
IterMVS-LS80.06 15679.38 15182.11 19585.89 23863.20 23786.79 18189.34 17574.19 12175.45 22886.72 22966.62 10892.39 19972.58 16876.86 27890.75 177
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_ehance_all_eth78.59 19277.76 19181.08 22182.66 30861.56 26083.65 25889.15 18668.87 23775.55 22483.79 29866.49 11192.03 21273.25 16176.39 28689.64 227
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8676.87 6282.81 10394.25 3466.44 11296.24 4182.88 6794.28 6093.38 86
c3_l78.75 18677.91 18381.26 21582.89 30361.56 26084.09 25389.13 18869.97 20875.56 22384.29 28766.36 11392.09 21173.47 15875.48 30190.12 203
GeoE81.71 11781.01 12183.80 14389.51 12264.45 21088.97 10688.73 20571.27 17878.63 15489.76 14766.32 11493.20 17069.89 19286.02 16493.74 68
WR-MVS_H78.51 19378.49 16978.56 27088.02 18756.38 32388.43 12692.67 6277.14 5473.89 25987.55 20866.25 11589.24 28158.92 28973.55 32790.06 210
PCF-MVS73.52 780.38 14978.84 16485.01 8587.71 19968.99 10383.65 25891.46 11863.00 30777.77 17690.28 13466.10 11695.09 8761.40 26988.22 13590.94 171
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EPNet83.72 8182.92 9386.14 5984.22 27069.48 9191.05 5485.27 26381.30 676.83 19591.65 9766.09 11795.56 6076.00 13593.85 6493.38 86
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
原ACMM184.35 11193.01 5768.79 10792.44 7463.96 30081.09 12491.57 10166.06 11895.45 6567.19 21994.82 4588.81 255
PVSNet_BlendedMVS80.60 14480.02 13782.36 19388.85 15165.40 18686.16 20192.00 9369.34 22278.11 16886.09 25266.02 11994.27 11671.52 17482.06 22187.39 283
PVSNet_Blended80.98 13180.34 13282.90 17688.85 15165.40 18684.43 24592.00 9367.62 25378.11 16885.05 27666.02 11994.27 11671.52 17489.50 11589.01 245
diffmvspermissive82.10 10881.88 11082.76 18683.00 29963.78 22283.68 25789.76 16472.94 15282.02 10989.85 14465.96 12190.79 25682.38 7487.30 14393.71 69
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4673.54 13785.94 4794.51 2465.80 12295.61 5883.04 6592.51 7593.53 83
miper_enhance_ethall77.87 21176.86 21080.92 22681.65 32261.38 26282.68 27588.98 19365.52 28075.47 22582.30 32165.76 12392.00 21472.95 16476.39 28689.39 233
PVSNet_Blended_VisFu82.62 10381.83 11184.96 8890.80 8969.76 8788.74 11691.70 10869.39 22078.96 14688.46 18465.47 12494.87 9874.42 14888.57 12990.24 198
API-MVS81.99 11281.23 11684.26 11890.94 8570.18 8291.10 5389.32 17671.51 17478.66 15388.28 18965.26 12595.10 8664.74 23991.23 9287.51 281
TranMVSNet+NR-MVSNet80.84 13480.31 13382.42 19187.85 19262.33 24987.74 15591.33 11980.55 977.99 17289.86 14365.23 12692.62 19067.05 22175.24 31192.30 127
IS-MVSNet83.15 9582.81 9584.18 12089.94 11063.30 23491.59 4388.46 21079.04 2579.49 14092.16 8865.10 12794.28 11567.71 21291.86 8594.95 10
DU-MVS81.12 13080.52 12982.90 17687.80 19463.46 23087.02 17391.87 10179.01 2678.38 16089.07 16665.02 12893.05 18070.05 18976.46 28492.20 132
Baseline_NR-MVSNet78.15 20278.33 17577.61 28785.79 23956.21 32786.78 18285.76 25973.60 13577.93 17387.57 20665.02 12888.99 28567.14 22075.33 30887.63 277
SR-MVS-dyc-post85.77 5085.61 5386.23 5693.06 5570.63 7391.88 3992.27 8173.53 13885.69 5194.45 2665.00 13095.56 6082.75 6891.87 8392.50 120
VNet82.21 10782.41 9981.62 20490.82 8860.93 26584.47 24189.78 16376.36 7984.07 8391.88 9364.71 13190.26 26270.68 18388.89 12293.66 70
Test By Simon64.33 132
ACMMPcopyleft85.89 4985.39 5687.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12893.82 5364.33 13296.29 3982.67 7390.69 9893.23 92
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DP-MVS Recon83.11 9882.09 10586.15 5894.44 1970.92 6888.79 11292.20 8770.53 19579.17 14491.03 12164.12 13496.03 4668.39 20990.14 10691.50 152
CLD-MVS82.31 10681.65 11284.29 11488.47 16867.73 13785.81 21392.35 7975.78 8878.33 16286.58 23964.01 13594.35 11376.05 13487.48 14190.79 174
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
RE-MVS-def85.48 5593.06 5570.63 7391.88 3992.27 8173.53 13885.69 5194.45 2663.87 13682.75 6891.87 8392.50 120
MVS78.19 20176.99 20881.78 20185.66 24166.99 15684.66 23590.47 14255.08 36772.02 28185.27 26863.83 13794.11 12466.10 22789.80 11384.24 338
WR-MVS79.49 16679.22 15780.27 23988.79 15758.35 29085.06 22788.61 20878.56 3077.65 17788.34 18763.81 13890.66 25964.98 23777.22 27391.80 145
VPA-MVSNet80.60 14480.55 12880.76 22988.07 18560.80 26886.86 17891.58 11175.67 9280.24 13289.45 16063.34 13990.25 26370.51 18579.22 25691.23 160
新几何183.42 15193.13 5270.71 7185.48 26257.43 35781.80 11391.98 9063.28 14092.27 20564.60 24092.99 6987.27 287
HY-MVS69.67 1277.95 20877.15 20480.36 23687.57 20860.21 27883.37 26587.78 22566.11 27175.37 23187.06 22463.27 14190.48 26161.38 27082.43 21790.40 192
XXY-MVS75.41 25475.56 23274.96 31283.59 28357.82 30180.59 30383.87 28266.54 26874.93 24888.31 18863.24 14280.09 35462.16 26176.85 27986.97 296
ab-mvs79.51 16578.97 16281.14 21988.46 16960.91 26683.84 25589.24 18270.36 19779.03 14588.87 17163.23 14390.21 26465.12 23582.57 21692.28 128
xiu_mvs_v2_base81.69 11881.05 11983.60 14689.15 14368.03 13284.46 24390.02 15770.67 19081.30 12286.53 24263.17 14494.19 12175.60 14088.54 13088.57 263
pcd_1.5k_mvsjas5.26 3827.02 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41463.15 1450.00 4150.00 4140.00 4130.00 411
PS-MVSNAJss82.07 11081.31 11484.34 11286.51 23167.27 15189.27 9691.51 11471.75 16779.37 14190.22 13863.15 14594.27 11677.69 11782.36 21891.49 153
PS-MVSNAJ81.69 11881.02 12083.70 14489.51 12268.21 12784.28 24990.09 15670.79 18781.26 12385.62 26263.15 14594.29 11475.62 13988.87 12388.59 262
WTY-MVS75.65 24975.68 22975.57 30686.40 23256.82 31477.92 33882.40 30665.10 28276.18 21387.72 20163.13 14880.90 35160.31 27781.96 22289.00 247
TransMVSNet (Re)75.39 25574.56 24777.86 28185.50 24557.10 31186.78 18286.09 25572.17 16271.53 28587.34 21263.01 14989.31 28056.84 31061.83 37287.17 289
v879.97 15979.02 16182.80 18184.09 27364.50 20787.96 14690.29 15174.13 12475.24 23986.81 22662.88 15093.89 13674.39 14975.40 30690.00 212
HPM-MVS_fast85.35 5984.95 6586.57 5393.69 4270.58 7592.15 3691.62 10973.89 12882.67 10594.09 4062.60 15195.54 6280.93 8892.93 7093.57 79
PAPM77.68 21776.40 22381.51 20787.29 21761.85 25683.78 25689.59 16964.74 28771.23 28788.70 17462.59 15293.66 14652.66 32987.03 14789.01 245
1112_ss77.40 22276.43 22280.32 23889.11 14860.41 27583.65 25887.72 22662.13 32073.05 26886.72 22962.58 15389.97 26862.11 26380.80 23590.59 184
LCM-MVSNet-Re77.05 22676.94 20977.36 29087.20 21851.60 36680.06 31080.46 32675.20 9967.69 32286.72 22962.48 15488.98 28663.44 24789.25 11891.51 151
v14878.72 18877.80 18881.47 20882.73 30661.96 25586.30 19788.08 21573.26 14576.18 21385.47 26562.46 15592.36 20171.92 17373.82 32590.09 206
baseline176.98 22876.75 21677.66 28588.13 18155.66 33385.12 22681.89 31073.04 15076.79 19688.90 16962.43 15687.78 30363.30 24971.18 34489.55 230
MAR-MVS81.84 11480.70 12585.27 7791.32 7971.53 5489.82 7690.92 12969.77 21478.50 15786.21 24862.36 15794.52 10965.36 23392.05 8189.77 224
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVS_111021_LR82.61 10482.11 10484.11 12188.82 15471.58 5385.15 22586.16 25374.69 11080.47 13091.04 11962.29 15890.55 26080.33 9690.08 10890.20 199
TAMVS78.89 18577.51 19883.03 17087.80 19467.79 13684.72 23485.05 26667.63 25276.75 19887.70 20262.25 15990.82 25558.53 29487.13 14590.49 188
CP-MVSNet78.22 19878.34 17477.84 28287.83 19354.54 34587.94 14891.17 12377.65 3873.48 26388.49 18362.24 16088.43 29562.19 26074.07 32090.55 185
OMC-MVS82.69 10281.97 10984.85 9388.75 15967.42 14587.98 14590.87 13274.92 10579.72 13791.65 9762.19 16193.96 12675.26 14386.42 15693.16 97
cl____77.72 21476.76 21480.58 23282.49 31260.48 27383.09 27087.87 22169.22 22674.38 25685.22 27162.10 16291.53 23371.09 17975.41 30589.73 226
DIV-MVS_self_test77.72 21476.76 21480.58 23282.48 31360.48 27383.09 27087.86 22269.22 22674.38 25685.24 26962.10 16291.53 23371.09 17975.40 30689.74 225
testdata79.97 24490.90 8664.21 21484.71 26859.27 34185.40 5392.91 7362.02 16489.08 28468.95 20291.37 9086.63 304
eth_miper_zixun_eth77.92 20976.69 21781.61 20683.00 29961.98 25483.15 26889.20 18469.52 21974.86 24984.35 28661.76 16592.56 19371.50 17672.89 33390.28 197
MVSFormer82.85 10182.05 10685.24 7887.35 21070.21 7790.50 6190.38 14468.55 24281.32 11989.47 15661.68 16693.46 15678.98 10490.26 10492.05 138
lupinMVS81.39 12680.27 13584.76 9787.35 21070.21 7785.55 21886.41 24862.85 31081.32 11988.61 17861.68 16692.24 20778.41 11190.26 10491.83 143
cdsmvs_eth3d_5k19.96 37626.61 3780.00 3960.00 4190.00 4210.00 40789.26 1800.00 4140.00 41588.61 17861.62 1680.00 4150.00 4140.00 4130.00 411
h-mvs3383.15 9582.19 10386.02 6290.56 9370.85 7088.15 14289.16 18576.02 8584.67 6691.39 10761.54 16995.50 6382.71 7075.48 30191.72 146
hse-mvs281.72 11680.94 12284.07 12788.72 16067.68 13885.87 20987.26 23576.02 8584.67 6688.22 19261.54 16993.48 15482.71 7073.44 32991.06 165
CDS-MVSNet79.07 18077.70 19383.17 16387.60 20368.23 12684.40 24786.20 25267.49 25576.36 20886.54 24161.54 16990.79 25661.86 26587.33 14290.49 188
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v1079.74 16178.67 16582.97 17484.06 27464.95 19787.88 15290.62 13773.11 14875.11 24386.56 24061.46 17294.05 12573.68 15475.55 29989.90 218
v114480.03 15779.03 16083.01 17183.78 28064.51 20587.11 17190.57 14071.96 16678.08 17086.20 24961.41 17393.94 12974.93 14477.23 27290.60 183
cl2278.07 20477.01 20681.23 21682.37 31561.83 25783.55 26287.98 21768.96 23675.06 24583.87 29461.40 17491.88 21973.53 15676.39 28689.98 215
BH-w/o78.21 19977.33 20280.84 22788.81 15565.13 19384.87 23187.85 22369.75 21574.52 25484.74 28061.34 17593.11 17758.24 29785.84 16784.27 337
Test_1112_low_res76.40 23975.44 23479.27 25889.28 13858.09 29381.69 28587.07 23959.53 33972.48 27586.67 23461.30 17689.33 27960.81 27580.15 24490.41 191
Vis-MVSNet (Re-imp)78.36 19678.45 17078.07 28088.64 16351.78 36586.70 18579.63 33674.14 12375.11 24390.83 12561.29 17789.75 27258.10 29891.60 8692.69 112
PEN-MVS77.73 21377.69 19477.84 28287.07 22153.91 35087.91 15091.18 12277.56 4373.14 26788.82 17261.23 17889.17 28259.95 27972.37 33590.43 190
pm-mvs177.25 22576.68 21878.93 26484.22 27058.62 28986.41 19388.36 21171.37 17673.31 26488.01 19961.22 17989.15 28364.24 24373.01 33289.03 244
BH-untuned79.47 16778.60 16782.05 19689.19 14265.91 17686.07 20388.52 20972.18 16175.42 22987.69 20361.15 18093.54 15160.38 27686.83 15086.70 302
v2v48280.23 15379.29 15483.05 16983.62 28264.14 21587.04 17289.97 15973.61 13478.18 16787.22 21761.10 18193.82 13776.11 13276.78 28191.18 161
jason81.39 12680.29 13484.70 9886.63 23069.90 8585.95 20686.77 24463.24 30381.07 12589.47 15661.08 18292.15 20978.33 11290.07 10992.05 138
jason: jason.
Vis-MVSNetpermissive83.46 8882.80 9685.43 7490.25 9968.74 11190.30 6990.13 15576.33 8080.87 12792.89 7461.00 18394.20 12072.45 17190.97 9493.35 88
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAPA-MVS73.13 979.15 17777.94 18282.79 18389.59 11862.99 24488.16 14191.51 11465.77 27677.14 19291.09 11760.91 18493.21 16750.26 34487.05 14692.17 134
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PS-CasMVS78.01 20778.09 17977.77 28487.71 19954.39 34788.02 14491.22 12077.50 4673.26 26588.64 17760.73 18588.41 29661.88 26473.88 32490.53 186
OPM-MVS83.50 8782.95 9285.14 8088.79 15770.95 6689.13 10391.52 11277.55 4480.96 12691.75 9560.71 18694.50 11079.67 10186.51 15589.97 216
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XVG-OURS-SEG-HR80.81 13679.76 14383.96 14085.60 24368.78 10883.54 26390.50 14170.66 19376.71 19991.66 9660.69 18791.26 24376.94 12581.58 22691.83 143
v14419279.47 16778.37 17382.78 18483.35 28763.96 21886.96 17490.36 14769.99 20777.50 17985.67 26060.66 18893.77 14174.27 15076.58 28290.62 181
V4279.38 17378.24 17782.83 17881.10 33365.50 18585.55 21889.82 16271.57 17378.21 16586.12 25160.66 18893.18 17375.64 13875.46 30389.81 223
SDMVSNet80.38 14980.18 13680.99 22389.03 14964.94 19880.45 30689.40 17375.19 10076.61 20389.98 14160.61 19087.69 30476.83 12783.55 20090.33 194
CPTT-MVS83.73 8083.33 8684.92 9193.28 4970.86 6992.09 3790.38 14468.75 23979.57 13992.83 7660.60 19193.04 18280.92 8991.56 8890.86 173
DTE-MVSNet76.99 22776.80 21277.54 28986.24 23353.06 35887.52 15990.66 13677.08 5772.50 27488.67 17660.48 19289.52 27657.33 30570.74 34690.05 211
HQP_MVS83.64 8383.14 8785.14 8090.08 10368.71 11391.25 5092.44 7479.12 2378.92 14891.00 12260.42 19395.38 7178.71 10786.32 15791.33 157
plane_prior689.84 11368.70 11560.42 193
3Dnovator+77.84 485.48 5584.47 7388.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 20093.37 6260.40 19596.75 2677.20 12293.73 6695.29 5
HQP2-MVS60.17 196
HQP-MVS82.61 10482.02 10784.37 10989.33 13366.98 15789.17 9892.19 8876.41 7477.23 18790.23 13760.17 19695.11 8377.47 11985.99 16591.03 167
VPNet78.69 18978.66 16678.76 26688.31 17555.72 33284.45 24486.63 24676.79 6478.26 16390.55 13059.30 19889.70 27466.63 22377.05 27590.88 172
v119279.59 16478.43 17283.07 16883.55 28464.52 20486.93 17690.58 13870.83 18677.78 17585.90 25359.15 19993.94 12973.96 15377.19 27490.76 176
test22291.50 7768.26 12584.16 25183.20 29454.63 36879.74 13691.63 9958.97 20091.42 8986.77 300
CHOSEN 1792x268877.63 21875.69 22883.44 15089.98 10968.58 11978.70 32887.50 23056.38 36275.80 22086.84 22558.67 20191.40 24061.58 26885.75 16990.34 193
3Dnovator76.31 583.38 9182.31 10286.59 5287.94 18972.94 2890.64 5892.14 9077.21 5275.47 22592.83 7658.56 20294.72 10473.24 16292.71 7392.13 136
v192192079.22 17578.03 18082.80 18183.30 28963.94 21986.80 18090.33 14869.91 21077.48 18085.53 26358.44 20393.75 14373.60 15576.85 27990.71 179
FA-MVS(test-final)80.96 13279.91 14084.10 12288.30 17665.01 19684.55 24090.01 15873.25 14679.61 13887.57 20658.35 20494.72 10471.29 17886.25 15992.56 117
114514_t80.68 14279.51 14884.20 11994.09 3867.27 15189.64 8491.11 12658.75 34774.08 25890.72 12658.10 20595.04 8969.70 19489.42 11790.30 196
v7n78.97 18377.58 19783.14 16483.45 28665.51 18488.32 13491.21 12173.69 13272.41 27686.32 24757.93 20693.81 13869.18 19975.65 29790.11 204
CL-MVSNet_self_test72.37 28471.46 27975.09 31179.49 35453.53 35280.76 29985.01 26769.12 23070.51 29182.05 32557.92 20784.13 33152.27 33166.00 36487.60 278
baseline275.70 24873.83 25881.30 21483.26 29061.79 25882.57 27780.65 32266.81 25866.88 33183.42 30557.86 20892.19 20863.47 24679.57 24989.91 217
QAPM80.88 13379.50 14985.03 8488.01 18868.97 10491.59 4392.00 9366.63 26775.15 24292.16 8857.70 20995.45 6563.52 24588.76 12690.66 180
HyFIR lowres test77.53 21975.40 23683.94 14189.59 11866.62 16380.36 30788.64 20756.29 36376.45 20585.17 27257.64 21093.28 16261.34 27183.10 20991.91 142
CNLPA78.08 20376.79 21381.97 19990.40 9771.07 6287.59 15884.55 27166.03 27472.38 27789.64 15057.56 21186.04 31559.61 28283.35 20588.79 256
test_yl81.17 12880.47 13083.24 15989.13 14463.62 22386.21 19989.95 16072.43 15781.78 11489.61 15157.50 21293.58 14770.75 18186.90 14892.52 118
DCV-MVSNet81.17 12880.47 13083.24 15989.13 14463.62 22386.21 19989.95 16072.43 15781.78 11489.61 15157.50 21293.58 14770.75 18186.90 14892.52 118
sss73.60 27073.64 26073.51 32682.80 30455.01 34176.12 34581.69 31362.47 31674.68 25185.85 25657.32 21478.11 36260.86 27480.93 23287.39 283
Effi-MVS+-dtu80.03 15778.57 16884.42 10885.13 25468.74 11188.77 11388.10 21474.99 10474.97 24783.49 30457.27 21593.36 16073.53 15680.88 23391.18 161
AdaColmapbinary80.58 14679.42 15084.06 12993.09 5468.91 10589.36 9488.97 19569.27 22375.70 22189.69 14857.20 21695.77 5463.06 25088.41 13387.50 282
v124078.99 18277.78 18982.64 18783.21 29163.54 22786.62 18890.30 15069.74 21777.33 18385.68 25957.04 21793.76 14273.13 16376.92 27690.62 181
miper_lstm_enhance74.11 26473.11 26577.13 29480.11 34359.62 28372.23 36586.92 24266.76 26070.40 29382.92 31256.93 21882.92 34069.06 20172.63 33488.87 252
BH-RMVSNet79.61 16278.44 17183.14 16489.38 13165.93 17584.95 23087.15 23873.56 13678.19 16689.79 14556.67 21993.36 16059.53 28386.74 15190.13 202
test_djsdf80.30 15279.32 15383.27 15783.98 27665.37 18990.50 6190.38 14468.55 24276.19 21288.70 17456.44 22093.46 15678.98 10480.14 24590.97 170
EPNet_dtu75.46 25274.86 24377.23 29382.57 31054.60 34486.89 17783.09 29571.64 16866.25 34285.86 25555.99 22188.04 30054.92 31886.55 15489.05 243
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CostFormer75.24 25673.90 25679.27 25882.65 30958.27 29280.80 29682.73 30461.57 32375.33 23683.13 30955.52 22291.07 25264.98 23778.34 26588.45 264
tpmrst72.39 28272.13 27373.18 33080.54 33849.91 37579.91 31479.08 34163.11 30571.69 28479.95 34355.32 22382.77 34165.66 23273.89 32386.87 297
131476.53 23475.30 24080.21 24083.93 27762.32 25084.66 23588.81 19860.23 33270.16 29884.07 29355.30 22490.73 25867.37 21683.21 20787.59 280
tfpnnormal74.39 26073.16 26478.08 27986.10 23758.05 29484.65 23787.53 22970.32 19971.22 28885.63 26154.97 22589.86 26943.03 37675.02 31386.32 306
sd_testset77.70 21677.40 19978.60 26989.03 14960.02 27979.00 32485.83 25875.19 10076.61 20389.98 14154.81 22685.46 32262.63 25683.55 20090.33 194
GBi-Net78.40 19477.40 19981.40 21187.60 20363.01 24088.39 12889.28 17771.63 16975.34 23287.28 21354.80 22791.11 24662.72 25279.57 24990.09 206
test178.40 19477.40 19981.40 21187.60 20363.01 24088.39 12889.28 17771.63 16975.34 23287.28 21354.80 22791.11 24662.72 25279.57 24990.09 206
FMVSNet278.20 20077.21 20381.20 21787.60 20362.89 24587.47 16189.02 19171.63 16975.29 23887.28 21354.80 22791.10 24962.38 25779.38 25389.61 228
Fast-Effi-MVS+-dtu78.02 20676.49 22082.62 18883.16 29566.96 15986.94 17587.45 23272.45 15471.49 28684.17 29154.79 23091.58 22867.61 21380.31 24289.30 236
MVSTER79.01 18177.88 18582.38 19283.07 29664.80 20184.08 25488.95 19669.01 23578.69 15187.17 22054.70 23192.43 19774.69 14580.57 23989.89 219
OpenMVScopyleft72.83 1079.77 16078.33 17584.09 12585.17 25069.91 8490.57 5990.97 12866.70 26172.17 27991.91 9154.70 23193.96 12661.81 26690.95 9588.41 266
XVG-OURS80.41 14879.23 15683.97 13885.64 24269.02 10283.03 27490.39 14371.09 18277.63 17891.49 10454.62 23391.35 24175.71 13783.47 20391.54 150
mvsmamba81.69 11880.74 12484.56 10187.45 20966.72 16191.26 4885.89 25774.66 11178.23 16490.56 12954.33 23494.91 9280.73 9383.54 20292.04 140
LPG-MVS_test82.08 10981.27 11584.50 10389.23 14068.76 10990.22 7091.94 9775.37 9676.64 20191.51 10254.29 23594.91 9278.44 10983.78 19189.83 221
LGP-MVS_train84.50 10389.23 14068.76 10991.94 9775.37 9676.64 20191.51 10254.29 23594.91 9278.44 10983.78 19189.83 221
TR-MVS77.44 22076.18 22581.20 21788.24 17763.24 23584.61 23886.40 24967.55 25477.81 17486.48 24354.10 23793.15 17457.75 30182.72 21487.20 288
FMVSNet377.88 21076.85 21180.97 22586.84 22462.36 24886.52 19188.77 20071.13 18075.34 23286.66 23554.07 23891.10 24962.72 25279.57 24989.45 232
DP-MVS76.78 23174.57 24683.42 15193.29 4869.46 9488.55 12383.70 28363.98 29970.20 29588.89 17054.01 23994.80 10146.66 36281.88 22486.01 314
ACMP74.13 681.51 12580.57 12784.36 11089.42 12768.69 11689.97 7491.50 11774.46 11675.04 24690.41 13253.82 24094.54 10777.56 11882.91 21089.86 220
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PLCcopyleft70.83 1178.05 20576.37 22483.08 16791.88 7467.80 13588.19 13989.46 17264.33 29369.87 30488.38 18653.66 24193.58 14758.86 29082.73 21387.86 273
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
dmvs_testset62.63 34564.11 33658.19 37378.55 35924.76 41175.28 35265.94 38967.91 25160.34 36876.01 37053.56 24273.94 38831.79 39267.65 35775.88 380
CANet_DTU80.61 14379.87 14182.83 17885.60 24363.17 23987.36 16388.65 20676.37 7875.88 21888.44 18553.51 24393.07 17973.30 16089.74 11492.25 129
WB-MVSnew71.96 28971.65 27772.89 33184.67 26451.88 36382.29 27977.57 34862.31 31773.67 26183.00 31053.49 24481.10 35045.75 36982.13 22085.70 319
ACMM73.20 880.78 14179.84 14283.58 14789.31 13668.37 12289.99 7391.60 11070.28 20077.25 18589.66 14953.37 24593.53 15274.24 15182.85 21188.85 253
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVP-Stereo76.12 24274.46 25081.13 22085.37 24869.79 8684.42 24687.95 21965.03 28467.46 32585.33 26753.28 24691.73 22558.01 29983.27 20681.85 362
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
AUN-MVS79.21 17677.60 19684.05 13288.71 16167.61 14185.84 21187.26 23569.08 23177.23 18788.14 19753.20 24793.47 15575.50 14273.45 32891.06 165
anonymousdsp78.60 19177.15 20482.98 17380.51 33967.08 15587.24 16889.53 17065.66 27875.16 24187.19 21952.52 24892.25 20677.17 12379.34 25489.61 228
CR-MVSNet73.37 27271.27 28379.67 25281.32 33165.19 19175.92 34780.30 32959.92 33572.73 27181.19 32952.50 24986.69 30959.84 28077.71 26887.11 293
Patchmtry70.74 29869.16 30175.49 30880.72 33554.07 34974.94 35880.30 32958.34 34870.01 29981.19 32952.50 24986.54 31053.37 32671.09 34585.87 318
pmmvs474.03 26771.91 27480.39 23581.96 31868.32 12381.45 28982.14 30859.32 34069.87 30485.13 27352.40 25188.13 29960.21 27874.74 31684.73 334
RPMNet73.51 27170.49 29182.58 18981.32 33165.19 19175.92 34792.27 8157.60 35572.73 27176.45 36852.30 25295.43 6748.14 35777.71 26887.11 293
LFMVS81.82 11581.23 11683.57 14891.89 7363.43 23289.84 7581.85 31277.04 5883.21 9493.10 6752.26 25393.43 15871.98 17289.95 11193.85 61
VDD-MVS83.01 10082.36 10184.96 8891.02 8366.40 16688.91 10888.11 21377.57 4184.39 7693.29 6452.19 25493.91 13377.05 12488.70 12894.57 31
tfpn200view976.42 23875.37 23879.55 25689.13 14457.65 30385.17 22383.60 28473.41 14176.45 20586.39 24552.12 25591.95 21548.33 35383.75 19489.07 238
thres40076.50 23575.37 23879.86 24689.13 14457.65 30385.17 22383.60 28473.41 14176.45 20586.39 24552.12 25591.95 21548.33 35383.75 19490.00 212
Syy-MVS68.05 32267.85 31368.67 35884.68 26140.97 39978.62 32973.08 37266.65 26566.74 33479.46 34752.11 25782.30 34332.89 39176.38 28982.75 356
thres20075.55 25074.47 24978.82 26587.78 19757.85 30083.07 27283.51 28772.44 15675.84 21984.42 28252.08 25891.75 22347.41 36083.64 19986.86 298
PMMVS69.34 31168.67 30371.35 34375.67 37062.03 25375.17 35373.46 37050.00 38068.68 31479.05 35052.07 25978.13 36161.16 27282.77 21273.90 382
tpm cat170.57 30068.31 30677.35 29182.41 31457.95 29878.08 33580.22 33152.04 37468.54 31777.66 36352.00 26087.84 30251.77 33272.07 33986.25 307
IterMVS-SCA-FT75.43 25373.87 25780.11 24282.69 30764.85 20081.57 28783.47 28869.16 22970.49 29284.15 29251.95 26188.15 29869.23 19872.14 33887.34 285
SCA74.22 26372.33 27279.91 24584.05 27562.17 25279.96 31379.29 33966.30 27072.38 27780.13 34151.95 26188.60 29359.25 28577.67 27088.96 249
thres100view90076.50 23575.55 23379.33 25789.52 12156.99 31285.83 21283.23 29273.94 12676.32 20987.12 22151.89 26391.95 21548.33 35383.75 19489.07 238
thres600view776.50 23575.44 23479.68 25189.40 12957.16 30985.53 22083.23 29273.79 13076.26 21087.09 22251.89 26391.89 21848.05 35883.72 19790.00 212
tpm273.26 27571.46 27978.63 26783.34 28856.71 31780.65 30280.40 32856.63 36173.55 26282.02 32651.80 26591.24 24456.35 31478.42 26387.95 270
LS3D76.95 22974.82 24483.37 15490.45 9567.36 14889.15 10286.94 24161.87 32269.52 30790.61 12851.71 26694.53 10846.38 36586.71 15288.21 268
IterMVS74.29 26172.94 26678.35 27581.53 32563.49 22981.58 28682.49 30568.06 25069.99 30183.69 30151.66 26785.54 32065.85 23071.64 34186.01 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tpm72.37 28471.71 27674.35 31982.19 31652.00 36079.22 32177.29 35264.56 28972.95 26983.68 30251.35 26883.26 33958.33 29675.80 29587.81 274
sam_mvs151.32 26988.96 249
PatchmatchNetpermissive73.12 27771.33 28278.49 27483.18 29360.85 26779.63 31578.57 34364.13 29471.73 28379.81 34651.20 27085.97 31657.40 30476.36 29188.66 260
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
patchmatchnet-post74.00 37751.12 27188.60 293
xiu_mvs_v1_base_debu80.80 13879.72 14484.03 13487.35 21070.19 7985.56 21588.77 20069.06 23281.83 11088.16 19350.91 27292.85 18678.29 11387.56 13889.06 240
xiu_mvs_v1_base80.80 13879.72 14484.03 13487.35 21070.19 7985.56 21588.77 20069.06 23281.83 11088.16 19350.91 27292.85 18678.29 11387.56 13889.06 240
xiu_mvs_v1_base_debi80.80 13879.72 14484.03 13487.35 21070.19 7985.56 21588.77 20069.06 23281.83 11088.16 19350.91 27292.85 18678.29 11387.56 13889.06 240
Patchmatch-test64.82 34063.24 34169.57 35179.42 35549.82 37663.49 39569.05 38351.98 37659.95 37180.13 34150.91 27270.98 39140.66 38173.57 32687.90 272
Patchmatch-RL test70.24 30467.78 31777.61 28777.43 36359.57 28571.16 36870.33 37762.94 30968.65 31572.77 38050.62 27685.49 32169.58 19666.58 36187.77 275
Anonymous2023121178.97 18377.69 19482.81 18090.54 9464.29 21390.11 7291.51 11465.01 28576.16 21688.13 19850.56 27793.03 18369.68 19577.56 27191.11 163
VDDNet81.52 12380.67 12684.05 13290.44 9664.13 21689.73 8185.91 25671.11 18183.18 9593.48 5850.54 27893.49 15373.40 15988.25 13494.54 32
pmmvs674.69 25973.39 26178.61 26881.38 32857.48 30686.64 18787.95 21964.99 28670.18 29686.61 23650.43 27989.52 27662.12 26270.18 34888.83 254
test_post5.46 40950.36 28084.24 330
ET-MVSNet_ETH3D78.63 19076.63 21984.64 9986.73 22769.47 9285.01 22884.61 27069.54 21866.51 34086.59 23750.16 28191.75 22376.26 13184.24 18792.69 112
sam_mvs50.01 282
Anonymous2024052980.19 15578.89 16384.10 12290.60 9264.75 20288.95 10790.90 13065.97 27580.59 12991.17 11549.97 28393.73 14569.16 20082.70 21593.81 65
thisisatest053079.40 17177.76 19184.31 11387.69 20165.10 19487.36 16384.26 27770.04 20577.42 18188.26 19149.94 28494.79 10270.20 18784.70 17893.03 102
PatchT68.46 32067.85 31370.29 34980.70 33643.93 39172.47 36474.88 36460.15 33370.55 29076.57 36749.94 28481.59 34650.58 33874.83 31585.34 323
tttt051779.40 17177.91 18383.90 14288.10 18363.84 22088.37 13284.05 27971.45 17576.78 19789.12 16549.93 28694.89 9670.18 18883.18 20892.96 106
tpmvs71.09 29469.29 29976.49 29882.04 31756.04 32878.92 32681.37 31764.05 29767.18 32978.28 35849.74 28789.77 27149.67 34772.37 33583.67 345
thisisatest051577.33 22375.38 23783.18 16285.27 24963.80 22182.11 28183.27 29165.06 28375.91 21783.84 29649.54 28894.27 11667.24 21886.19 16091.48 154
UniMVSNet_ETH3D79.10 17978.24 17781.70 20386.85 22360.24 27787.28 16788.79 19974.25 12076.84 19490.53 13149.48 28991.56 23067.98 21082.15 21993.29 90
dmvs_re71.14 29370.58 28972.80 33281.96 31859.68 28275.60 35179.34 33868.55 24269.27 31180.72 33749.42 29076.54 37052.56 33077.79 26782.19 360
CVMVSNet72.99 27972.58 26974.25 32084.28 26850.85 37186.41 19383.45 28944.56 38673.23 26687.54 20949.38 29185.70 31765.90 22978.44 26286.19 309
MDTV_nov1_ep13_2view37.79 40175.16 35455.10 36666.53 33749.34 29253.98 32287.94 271
UGNet80.83 13579.59 14784.54 10288.04 18668.09 12989.42 9188.16 21276.95 5976.22 21189.46 15849.30 29393.94 12968.48 20790.31 10291.60 147
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pmmvs571.55 29070.20 29675.61 30577.83 36156.39 32281.74 28480.89 31857.76 35367.46 32584.49 28149.26 29485.32 32457.08 30775.29 30985.11 329
mvsany_test162.30 34661.26 35065.41 36569.52 39154.86 34266.86 38549.78 40546.65 38368.50 31883.21 30749.15 29566.28 39756.93 30960.77 37575.11 381
LTVRE_ROB69.57 1376.25 24174.54 24881.41 21088.60 16464.38 21279.24 32089.12 18970.76 18969.79 30687.86 20049.09 29693.20 17056.21 31580.16 24386.65 303
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
FMVSNet177.44 22076.12 22681.40 21186.81 22563.01 24088.39 12889.28 17770.49 19674.39 25587.28 21349.06 29791.11 24660.91 27378.52 26090.09 206
test111179.43 16979.18 15880.15 24189.99 10853.31 35687.33 16577.05 35475.04 10380.23 13392.77 8148.97 29892.33 20468.87 20392.40 7894.81 20
ECVR-MVScopyleft79.61 16279.26 15580.67 23190.08 10354.69 34387.89 15177.44 35174.88 10680.27 13192.79 7948.96 29992.45 19668.55 20692.50 7694.86 17
MDTV_nov1_ep1369.97 29783.18 29353.48 35377.10 34380.18 33260.45 32969.33 31080.44 33848.89 30086.90 30851.60 33478.51 261
test_post178.90 3275.43 41048.81 30185.44 32359.25 285
test-LLR72.94 28072.43 27074.48 31781.35 32958.04 29578.38 33177.46 34966.66 26269.95 30279.00 35248.06 30279.24 35666.13 22584.83 17586.15 310
test0.0.03 168.00 32367.69 31868.90 35577.55 36247.43 38075.70 35072.95 37466.66 26266.56 33682.29 32248.06 30275.87 37744.97 37374.51 31883.41 347
our_test_369.14 31267.00 32575.57 30679.80 34958.80 28777.96 33677.81 34659.55 33862.90 36278.25 35947.43 30483.97 33251.71 33367.58 35883.93 343
MS-PatchMatch73.83 26872.67 26777.30 29283.87 27866.02 17281.82 28284.66 26961.37 32668.61 31682.82 31547.29 30588.21 29759.27 28484.32 18677.68 376
cascas76.72 23274.64 24582.99 17285.78 24065.88 17782.33 27889.21 18360.85 32872.74 27081.02 33247.28 30693.75 14367.48 21585.02 17389.34 235
WB-MVS54.94 35354.72 35555.60 37973.50 38020.90 41374.27 36061.19 39659.16 34250.61 38974.15 37647.19 30775.78 37817.31 40435.07 39870.12 386
test20.0367.45 32566.95 32668.94 35475.48 37244.84 38977.50 33977.67 34766.66 26263.01 36083.80 29747.02 30878.40 36042.53 37868.86 35583.58 346
test_040272.79 28170.44 29279.84 24788.13 18165.99 17485.93 20784.29 27565.57 27967.40 32785.49 26446.92 30992.61 19135.88 38874.38 31980.94 367
F-COLMAP76.38 24074.33 25182.50 19089.28 13866.95 16088.41 12789.03 19064.05 29766.83 33288.61 17846.78 31092.89 18557.48 30278.55 25987.67 276
ppachtmachnet_test70.04 30667.34 32378.14 27879.80 34961.13 26379.19 32280.59 32359.16 34265.27 34779.29 34946.75 31187.29 30649.33 34866.72 35986.00 316
tt080578.73 18777.83 18681.43 20985.17 25060.30 27689.41 9290.90 13071.21 17977.17 19188.73 17346.38 31293.21 16772.57 16978.96 25790.79 174
D2MVS74.82 25873.21 26379.64 25379.81 34862.56 24780.34 30887.35 23364.37 29268.86 31382.66 31746.37 31390.10 26567.91 21181.24 22986.25 307
Anonymous2023120668.60 31667.80 31671.02 34680.23 34250.75 37278.30 33480.47 32556.79 36066.11 34382.63 31846.35 31478.95 35843.62 37575.70 29683.36 348
SSC-MVS53.88 35653.59 35754.75 38172.87 38619.59 41473.84 36260.53 39857.58 35649.18 39273.45 37946.34 31575.47 38116.20 40732.28 40069.20 387
CHOSEN 280x42066.51 33264.71 33371.90 33781.45 32663.52 22857.98 39868.95 38453.57 37062.59 36376.70 36646.22 31675.29 38355.25 31779.68 24876.88 378
testing9176.54 23375.66 23179.18 26188.43 17155.89 33081.08 29383.00 29873.76 13175.34 23284.29 28746.20 31790.07 26664.33 24184.50 18091.58 149
GA-MVS76.87 23075.17 24181.97 19982.75 30562.58 24681.44 29086.35 25172.16 16474.74 25082.89 31346.20 31792.02 21368.85 20481.09 23191.30 159
MDA-MVSNet_test_wron65.03 33862.92 34271.37 34175.93 36756.73 31569.09 38074.73 36657.28 35854.03 38677.89 36045.88 31974.39 38649.89 34661.55 37382.99 354
YYNet165.03 33862.91 34371.38 34075.85 36956.60 31969.12 37974.66 36857.28 35854.12 38577.87 36145.85 32074.48 38549.95 34561.52 37483.05 352
EPMVS69.02 31368.16 30871.59 33979.61 35249.80 37777.40 34066.93 38662.82 31270.01 29979.05 35045.79 32177.86 36456.58 31275.26 31087.13 292
IB-MVS68.01 1575.85 24773.36 26283.31 15584.76 25966.03 17183.38 26485.06 26570.21 20369.40 30881.05 33145.76 32294.66 10665.10 23675.49 30089.25 237
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
jajsoiax79.29 17477.96 18183.27 15784.68 26166.57 16589.25 9790.16 15469.20 22875.46 22789.49 15545.75 32393.13 17676.84 12680.80 23590.11 204
PatchMatch-RL72.38 28370.90 28776.80 29788.60 16467.38 14779.53 31676.17 36062.75 31369.36 30982.00 32745.51 32484.89 32753.62 32480.58 23878.12 375
FE-MVS77.78 21275.68 22984.08 12688.09 18466.00 17383.13 26987.79 22468.42 24678.01 17185.23 27045.50 32595.12 8159.11 28785.83 16891.11 163
RPSCF73.23 27671.46 27978.54 27182.50 31159.85 28082.18 28082.84 30358.96 34471.15 28989.41 16245.48 32684.77 32858.82 29171.83 34091.02 169
test_vis1_n_192075.52 25175.78 22774.75 31679.84 34757.44 30783.26 26685.52 26162.83 31179.34 14386.17 25045.10 32779.71 35578.75 10681.21 23087.10 295
MSDG73.36 27470.99 28680.49 23484.51 26665.80 17980.71 30186.13 25465.70 27765.46 34583.74 29944.60 32890.91 25451.13 33776.89 27784.74 333
PVSNet_057.27 2061.67 34859.27 35168.85 35679.61 35257.44 30768.01 38173.44 37155.93 36458.54 37570.41 38544.58 32977.55 36547.01 36135.91 39771.55 385
testing9976.09 24475.12 24279.00 26288.16 17955.50 33580.79 29781.40 31673.30 14475.17 24084.27 28944.48 33090.02 26764.28 24284.22 18891.48 154
test_cas_vis1_n_192073.76 26973.74 25973.81 32475.90 36859.77 28180.51 30482.40 30658.30 34981.62 11685.69 25844.35 33176.41 37376.29 13078.61 25885.23 325
mvs_tets79.13 17877.77 19083.22 16184.70 26066.37 16789.17 9890.19 15369.38 22175.40 23089.46 15844.17 33293.15 17476.78 12880.70 23790.14 201
MDA-MVSNet-bldmvs66.68 33063.66 33975.75 30379.28 35660.56 27273.92 36178.35 34464.43 29050.13 39079.87 34544.02 33383.67 33446.10 36756.86 38083.03 353
gg-mvs-nofinetune69.95 30767.96 31175.94 30183.07 29654.51 34677.23 34270.29 37863.11 30570.32 29462.33 38943.62 33488.69 29153.88 32387.76 13784.62 335
testing1175.14 25774.01 25378.53 27288.16 17956.38 32380.74 30080.42 32770.67 19072.69 27383.72 30043.61 33589.86 26962.29 25983.76 19389.36 234
GG-mvs-BLEND75.38 30981.59 32455.80 33179.32 31969.63 38067.19 32873.67 37843.24 33688.90 29050.41 33984.50 18081.45 364
CMPMVSbinary51.72 2170.19 30568.16 30876.28 29973.15 38557.55 30579.47 31783.92 28048.02 38256.48 38284.81 27843.13 33786.42 31262.67 25581.81 22584.89 331
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
dp66.80 32965.43 33170.90 34879.74 35148.82 37875.12 35674.77 36559.61 33764.08 35577.23 36442.89 33880.72 35248.86 35166.58 36183.16 350
PVSNet64.34 1872.08 28870.87 28875.69 30486.21 23456.44 32174.37 35980.73 32162.06 32170.17 29782.23 32342.86 33983.31 33854.77 31984.45 18487.32 286
pmmvs-eth3d70.50 30267.83 31578.52 27377.37 36466.18 17081.82 28281.51 31458.90 34563.90 35780.42 33942.69 34086.28 31358.56 29365.30 36683.11 351
UnsupCasMVSNet_eth67.33 32665.99 33071.37 34173.48 38151.47 36875.16 35485.19 26465.20 28160.78 36780.93 33642.35 34177.20 36657.12 30653.69 38785.44 322
KD-MVS_self_test68.81 31467.59 32172.46 33574.29 37645.45 38477.93 33787.00 24063.12 30463.99 35678.99 35442.32 34284.77 32856.55 31364.09 36987.16 291
ADS-MVSNet266.20 33763.33 34074.82 31479.92 34558.75 28867.55 38375.19 36253.37 37165.25 34875.86 37142.32 34280.53 35341.57 37968.91 35385.18 326
ADS-MVSNet64.36 34162.88 34468.78 35779.92 34547.17 38167.55 38371.18 37653.37 37165.25 34875.86 37142.32 34273.99 38741.57 37968.91 35385.18 326
SixPastTwentyTwo73.37 27271.26 28479.70 25085.08 25557.89 29985.57 21483.56 28671.03 18465.66 34485.88 25442.10 34592.57 19259.11 28763.34 37088.65 261
JIA-IIPM66.32 33462.82 34576.82 29677.09 36561.72 25965.34 39175.38 36158.04 35264.51 35262.32 39042.05 34686.51 31151.45 33569.22 35282.21 359
ACMH67.68 1675.89 24673.93 25581.77 20288.71 16166.61 16488.62 12189.01 19269.81 21166.78 33386.70 23341.95 34791.51 23555.64 31678.14 26687.17 289
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+68.96 1476.01 24574.01 25382.03 19788.60 16465.31 19088.86 11087.55 22870.25 20267.75 32187.47 21141.27 34893.19 17258.37 29575.94 29487.60 278
MIMVSNet70.69 29969.30 29874.88 31384.52 26556.35 32575.87 34979.42 33764.59 28867.76 32082.41 31941.10 34981.54 34746.64 36481.34 22786.75 301
Anonymous20240521178.25 19777.01 20681.99 19891.03 8260.67 27084.77 23383.90 28170.65 19480.00 13591.20 11341.08 35091.43 23965.21 23485.26 17293.85 61
N_pmnet52.79 35953.26 35851.40 38378.99 3587.68 41769.52 3753.89 41651.63 37757.01 38074.98 37540.83 35165.96 39837.78 38664.67 36780.56 370
ETVMVS72.25 28671.05 28575.84 30287.77 19851.91 36279.39 31874.98 36369.26 22473.71 26082.95 31140.82 35286.14 31446.17 36684.43 18589.47 231
EU-MVSNet68.53 31967.61 32071.31 34478.51 36047.01 38284.47 24184.27 27642.27 38966.44 34184.79 27940.44 35383.76 33358.76 29268.54 35683.17 349
DSMNet-mixed57.77 35256.90 35460.38 37167.70 39435.61 40269.18 37753.97 40332.30 40157.49 37979.88 34440.39 35468.57 39638.78 38572.37 33576.97 377
UWE-MVS72.13 28771.49 27874.03 32286.66 22947.70 37981.40 29176.89 35663.60 30275.59 22284.22 29039.94 35585.62 31948.98 35086.13 16288.77 257
OurMVSNet-221017-074.26 26272.42 27179.80 24883.76 28159.59 28485.92 20886.64 24566.39 26966.96 33087.58 20539.46 35691.60 22765.76 23169.27 35188.22 267
K. test v371.19 29268.51 30479.21 26083.04 29857.78 30284.35 24876.91 35572.90 15362.99 36182.86 31439.27 35791.09 25161.65 26752.66 38888.75 258
lessismore_v078.97 26381.01 33457.15 31065.99 38861.16 36682.82 31539.12 35891.34 24259.67 28146.92 39488.43 265
testing22274.04 26572.66 26878.19 27787.89 19055.36 33681.06 29479.20 34071.30 17774.65 25283.57 30339.11 35988.67 29251.43 33685.75 16990.53 186
UnsupCasMVSNet_bld63.70 34361.53 34970.21 35073.69 37951.39 36972.82 36381.89 31055.63 36557.81 37871.80 38238.67 36078.61 35949.26 34952.21 38980.63 368
new-patchmatchnet61.73 34761.73 34861.70 36972.74 38724.50 41269.16 37878.03 34561.40 32456.72 38175.53 37438.42 36176.48 37245.95 36857.67 37984.13 340
MVS-HIRNet59.14 35057.67 35363.57 36781.65 32243.50 39271.73 36665.06 39139.59 39351.43 38857.73 39538.34 36282.58 34239.53 38273.95 32264.62 391
test250677.30 22476.49 22079.74 24990.08 10352.02 35987.86 15363.10 39474.88 10680.16 13492.79 7938.29 36392.35 20268.74 20592.50 7694.86 17
COLMAP_ROBcopyleft66.92 1773.01 27870.41 29380.81 22887.13 22065.63 18288.30 13584.19 27862.96 30863.80 35887.69 20338.04 36492.56 19346.66 36274.91 31484.24 338
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TESTMET0.1,169.89 30869.00 30272.55 33479.27 35756.85 31378.38 33174.71 36757.64 35468.09 31977.19 36537.75 36576.70 36963.92 24484.09 18984.10 341
OpenMVS_ROBcopyleft64.09 1970.56 30168.19 30777.65 28680.26 34059.41 28685.01 22882.96 30058.76 34665.43 34682.33 32037.63 36691.23 24545.34 37276.03 29382.32 358
FMVSNet569.50 31067.96 31174.15 32182.97 30255.35 33780.01 31282.12 30962.56 31563.02 35981.53 32836.92 36781.92 34548.42 35274.06 32185.17 328
MIMVSNet168.58 31766.78 32773.98 32380.07 34451.82 36480.77 29884.37 27264.40 29159.75 37282.16 32436.47 36883.63 33542.73 37770.33 34786.48 305
ITE_SJBPF78.22 27681.77 32160.57 27183.30 29069.25 22567.54 32387.20 21836.33 36987.28 30754.34 32174.62 31786.80 299
test-mter71.41 29170.39 29474.48 31781.35 32958.04 29578.38 33177.46 34960.32 33169.95 30279.00 35236.08 37079.24 35666.13 22584.83 17586.15 310
testgi66.67 33166.53 32867.08 36375.62 37141.69 39875.93 34676.50 35766.11 27165.20 35086.59 23735.72 37174.71 38443.71 37473.38 33084.84 332
EG-PatchMatch MVS74.04 26571.82 27580.71 23084.92 25767.42 14585.86 21088.08 21566.04 27364.22 35483.85 29535.10 37292.56 19357.44 30380.83 23482.16 361
KD-MVS_2432*160066.22 33563.89 33773.21 32775.47 37353.42 35470.76 37184.35 27364.10 29566.52 33878.52 35634.55 37384.98 32550.40 34050.33 39181.23 365
miper_refine_blended66.22 33563.89 33773.21 32775.47 37353.42 35470.76 37184.35 27364.10 29566.52 33878.52 35634.55 37384.98 32550.40 34050.33 39181.23 365
XVG-ACMP-BASELINE76.11 24374.27 25281.62 20483.20 29264.67 20383.60 26189.75 16569.75 21571.85 28287.09 22232.78 37592.11 21069.99 19180.43 24188.09 269
AllTest70.96 29568.09 31079.58 25485.15 25263.62 22384.58 23979.83 33362.31 31760.32 36986.73 22732.02 37688.96 28850.28 34271.57 34286.15 310
TestCases79.58 25485.15 25263.62 22379.83 33362.31 31760.32 36986.73 22732.02 37688.96 28850.28 34271.57 34286.15 310
USDC70.33 30368.37 30576.21 30080.60 33756.23 32679.19 32286.49 24760.89 32761.29 36585.47 26531.78 37889.47 27853.37 32676.21 29282.94 355
myMVS_eth3d67.02 32866.29 32969.21 35384.68 26142.58 39478.62 32973.08 37266.65 26566.74 33479.46 34731.53 37982.30 34339.43 38476.38 28982.75 356
test_fmvs170.93 29670.52 29072.16 33673.71 37855.05 34080.82 29578.77 34251.21 37978.58 15584.41 28331.20 38076.94 36875.88 13680.12 24684.47 336
Anonymous2024052168.80 31567.22 32473.55 32574.33 37554.11 34883.18 26785.61 26058.15 35061.68 36480.94 33430.71 38181.27 34957.00 30873.34 33185.28 324
testing368.56 31867.67 31971.22 34587.33 21542.87 39383.06 27371.54 37570.36 19769.08 31284.38 28430.33 38285.69 31837.50 38775.45 30485.09 330
test_vis1_n69.85 30969.21 30071.77 33872.66 38855.27 33981.48 28876.21 35952.03 37575.30 23783.20 30828.97 38376.22 37574.60 14678.41 26483.81 344
tmp_tt18.61 37721.40 38010.23 3934.82 41610.11 41634.70 40330.74 4141.48 41023.91 40626.07 40728.42 38413.41 41227.12 39615.35 4097.17 407
test_fmvs1_n70.86 29770.24 29572.73 33372.51 38955.28 33881.27 29279.71 33551.49 37878.73 15084.87 27727.54 38577.02 36776.06 13379.97 24785.88 317
TDRefinement67.49 32464.34 33476.92 29573.47 38261.07 26484.86 23282.98 29959.77 33658.30 37685.13 27326.06 38687.89 30147.92 35960.59 37781.81 363
dongtai45.42 36745.38 36845.55 38573.36 38326.85 40967.72 38234.19 41154.15 36949.65 39156.41 39825.43 38762.94 40119.45 40228.09 40246.86 401
test_vis1_rt60.28 34958.42 35265.84 36467.25 39555.60 33470.44 37360.94 39744.33 38759.00 37366.64 38724.91 38868.67 39562.80 25169.48 34973.25 383
TinyColmap67.30 32764.81 33274.76 31581.92 32056.68 31880.29 30981.49 31560.33 33056.27 38383.22 30624.77 38987.66 30545.52 37069.47 35079.95 371
EGC-MVSNET52.07 36147.05 36567.14 36283.51 28560.71 26980.50 30567.75 3850.07 4110.43 41275.85 37324.26 39081.54 34728.82 39462.25 37159.16 394
kuosan39.70 37140.40 37237.58 38864.52 39826.98 40765.62 39033.02 41246.12 38442.79 39548.99 40124.10 39146.56 40912.16 41026.30 40339.20 402
LF4IMVS64.02 34262.19 34669.50 35270.90 39053.29 35776.13 34477.18 35352.65 37358.59 37480.98 33323.55 39276.52 37153.06 32866.66 36078.68 374
test_fmvs268.35 32167.48 32270.98 34769.50 39251.95 36180.05 31176.38 35849.33 38174.65 25284.38 28423.30 39375.40 38274.51 14775.17 31285.60 320
new_pmnet50.91 36250.29 36252.78 38268.58 39334.94 40463.71 39356.63 40239.73 39244.95 39365.47 38821.93 39458.48 40234.98 38956.62 38164.92 390
pmmvs357.79 35154.26 35668.37 35964.02 39956.72 31675.12 35665.17 39040.20 39152.93 38769.86 38620.36 39575.48 38045.45 37155.25 38672.90 384
PM-MVS66.41 33364.14 33573.20 32973.92 37756.45 32078.97 32564.96 39263.88 30164.72 35180.24 34019.84 39683.44 33766.24 22464.52 36879.71 372
mvsany_test353.99 35551.45 36061.61 37055.51 40444.74 39063.52 39445.41 40943.69 38858.11 37776.45 36817.99 39763.76 40054.77 31947.59 39376.34 379
ambc75.24 31073.16 38450.51 37363.05 39687.47 23164.28 35377.81 36217.80 39889.73 27357.88 30060.64 37685.49 321
ANet_high50.57 36346.10 36763.99 36648.67 41139.13 40070.99 37080.85 31961.39 32531.18 40057.70 39617.02 39973.65 38931.22 39315.89 40879.18 373
FPMVS53.68 35751.64 35959.81 37265.08 39751.03 37069.48 37669.58 38141.46 39040.67 39672.32 38116.46 40070.00 39424.24 40065.42 36558.40 396
test_method31.52 37329.28 37738.23 38727.03 4156.50 41820.94 40662.21 3954.05 40922.35 40752.50 40013.33 40147.58 40727.04 39734.04 39960.62 393
EMVS30.81 37429.65 37634.27 39050.96 41025.95 41056.58 40046.80 40824.01 40515.53 41030.68 40612.47 40254.43 40612.81 40917.05 40722.43 406
test_f52.09 36050.82 36155.90 37753.82 40742.31 39759.42 39758.31 40136.45 39656.12 38470.96 38412.18 40357.79 40353.51 32556.57 38267.60 388
test_fmvs363.36 34461.82 34767.98 36062.51 40046.96 38377.37 34174.03 36945.24 38567.50 32478.79 35512.16 40472.98 39072.77 16766.02 36383.99 342
E-PMN31.77 37230.64 37535.15 38952.87 40927.67 40657.09 39947.86 40724.64 40416.40 40933.05 40511.23 40554.90 40514.46 40818.15 40622.87 405
DeepMVS_CXcopyleft27.40 39140.17 41426.90 40824.59 41517.44 40723.95 40548.61 4029.77 40626.48 41018.06 40324.47 40428.83 404
Gipumacopyleft45.18 36841.86 37155.16 38077.03 36651.52 36732.50 40480.52 32432.46 40027.12 40335.02 4049.52 40775.50 37922.31 40160.21 37838.45 403
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet54.25 35449.68 36467.97 36153.73 40845.28 38766.85 38680.78 32035.96 39739.45 39862.23 3918.70 40878.06 36348.24 35651.20 39080.57 369
APD_test153.31 35849.93 36363.42 36865.68 39650.13 37471.59 36766.90 38734.43 39840.58 39771.56 3838.65 40976.27 37434.64 39055.36 38563.86 392
PMMVS240.82 37038.86 37446.69 38453.84 40616.45 41548.61 40149.92 40437.49 39431.67 39960.97 3928.14 41056.42 40428.42 39530.72 40167.19 389
test_vis3_rt49.26 36447.02 36656.00 37654.30 40545.27 38866.76 38748.08 40636.83 39544.38 39453.20 3997.17 41164.07 39956.77 31155.66 38358.65 395
testf145.72 36541.96 36957.00 37456.90 40245.32 38566.14 38859.26 39926.19 40230.89 40160.96 3934.14 41270.64 39226.39 39846.73 39555.04 397
APD_test245.72 36541.96 36957.00 37456.90 40245.32 38566.14 38859.26 39926.19 40230.89 40160.96 3934.14 41270.64 39226.39 39846.73 39555.04 397
PMVScopyleft37.38 2244.16 36940.28 37355.82 37840.82 41342.54 39665.12 39263.99 39334.43 39824.48 40457.12 3973.92 41476.17 37617.10 40555.52 38448.75 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive26.22 2330.37 37525.89 37943.81 38644.55 41235.46 40328.87 40539.07 41018.20 40618.58 40840.18 4032.68 41547.37 40817.07 40623.78 40548.60 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d16.82 37815.94 38119.46 39258.74 40131.45 40539.22 4023.74 4176.84 4086.04 4112.70 4111.27 41624.29 41110.54 41114.40 4102.63 408
test1236.12 3808.11 3830.14 3940.06 4180.09 41971.05 3690.03 4190.04 4130.25 4141.30 4130.05 4170.03 4140.21 4130.01 4120.29 409
testmvs6.04 3818.02 3840.10 3950.08 4170.03 42069.74 3740.04 4180.05 4120.31 4131.68 4120.02 4180.04 4130.24 4120.02 4110.25 410
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re7.23 3799.64 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41586.72 2290.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS42.58 39439.46 383
FOURS195.00 1072.39 3995.06 193.84 1574.49 11591.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 36
No_MVS89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 36
eth-test20.00 419
eth-test0.00 419
IU-MVS95.30 271.25 5792.95 5266.81 25892.39 688.94 1696.63 494.85 19
save fliter93.80 4072.35 4290.47 6391.17 12374.31 118
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 46
GSMVS88.96 249
test_part295.06 872.65 3291.80 13
MTGPAbinary92.02 91
MTMP92.18 3532.83 413
gm-plane-assit81.40 32753.83 35162.72 31480.94 33492.39 19963.40 248
test9_res84.90 4295.70 2692.87 107
agg_prior282.91 6695.45 3092.70 110
agg_prior92.85 5971.94 5191.78 10684.41 7594.93 91
test_prior472.60 3489.01 105
test_prior86.33 5492.61 6569.59 8892.97 5195.48 6493.91 57
旧先验286.56 19058.10 35187.04 4188.98 28674.07 152
新几何286.29 198
无先验87.48 16088.98 19360.00 33494.12 12367.28 21788.97 248
原ACMM286.86 178
testdata291.01 25362.37 258
testdata184.14 25275.71 89
plane_prior790.08 10368.51 120
plane_prior592.44 7495.38 7178.71 10786.32 15791.33 157
plane_prior491.00 122
plane_prior368.60 11878.44 3178.92 148
plane_prior291.25 5079.12 23
plane_prior189.90 111
plane_prior68.71 11390.38 6777.62 3986.16 161
n20.00 420
nn0.00 420
door-mid69.98 379
test1192.23 85
door69.44 382
HQP5-MVS66.98 157
HQP-NCC89.33 13389.17 9876.41 7477.23 187
ACMP_Plane89.33 13389.17 9876.41 7477.23 187
BP-MVS77.47 119
HQP4-MVS77.24 18695.11 8391.03 167
HQP3-MVS92.19 8885.99 165
NP-MVS89.62 11768.32 12390.24 136
ACMMP++_ref81.95 223
ACMMP++81.25 228