This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
SED-MVS90.08 290.85 287.77 2595.30 270.98 6293.57 794.06 1077.24 4993.10 195.72 882.99 197.44 589.07 1196.63 494.88 13
test_241102_ONE95.30 270.98 6294.06 1077.17 5293.10 195.39 1182.99 197.27 10
DVP-MVS++90.23 191.01 187.89 2394.34 2771.25 5695.06 194.23 378.38 3292.78 495.74 682.45 397.49 389.42 696.68 294.95 9
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4082.45 396.87 1983.77 4996.48 894.88 13
PC_three_145268.21 23392.02 1294.00 4282.09 595.98 5084.58 3996.68 294.95 9
DPE-MVScopyleft89.48 589.98 488.01 1594.80 1172.69 3091.59 4294.10 875.90 8492.29 795.66 1081.67 697.38 987.44 2496.34 1593.95 51
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_0728_THIRD78.38 3292.12 995.78 481.46 797.40 789.42 696.57 794.67 23
test_241102_TWO94.06 1077.24 4992.78 495.72 881.26 897.44 589.07 1196.58 694.26 40
DVP-MVScopyleft89.60 390.35 387.33 3995.27 571.25 5693.49 992.73 5977.33 4792.12 995.78 480.98 997.40 789.08 996.41 1293.33 79
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072695.27 571.25 5693.60 694.11 677.33 4792.81 395.79 380.98 9
test_one_060195.07 771.46 5494.14 578.27 3492.05 1195.74 680.83 11
DeepPCF-MVS80.84 188.10 1288.56 1286.73 4992.24 6869.03 9789.57 8593.39 3077.53 4489.79 1894.12 3678.98 1296.58 3485.66 2895.72 2494.58 26
MSP-MVS89.51 489.91 588.30 994.28 3073.46 1692.90 1694.11 680.27 991.35 1494.16 3578.35 1396.77 2389.59 594.22 5794.67 23
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVS89.15 689.63 687.73 2794.49 1871.69 5193.83 493.96 1375.70 8891.06 1696.03 176.84 1497.03 1689.09 895.65 2794.47 30
dcpmvs_285.63 5186.15 4384.06 11791.71 7564.94 18886.47 18191.87 9573.63 13086.60 3493.02 6376.57 1591.87 21383.36 5192.15 7495.35 2
CNVR-MVS88.93 989.13 988.33 794.77 1273.82 890.51 6093.00 4380.90 688.06 2694.06 3976.43 1696.84 2088.48 1895.99 1894.34 36
MCST-MVS87.37 2687.25 2587.73 2794.53 1772.46 3789.82 7693.82 1673.07 14484.86 5392.89 6576.22 1796.33 3784.89 3595.13 3594.40 33
CSCG86.41 4086.19 4187.07 4492.91 5872.48 3690.81 5693.56 2473.95 12283.16 8291.07 10775.94 1895.19 7479.94 8594.38 5393.55 72
HPM-MVS++copyleft89.02 889.15 888.63 495.01 976.03 192.38 2692.85 5480.26 1087.78 2894.27 3175.89 1996.81 2287.45 2396.44 993.05 89
TSAR-MVS + MP.88.02 1788.11 1587.72 2993.68 4372.13 4591.41 4692.35 7474.62 11088.90 2093.85 4775.75 2096.00 4887.80 1994.63 4695.04 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SF-MVS88.46 1188.74 1187.64 3492.78 6171.95 4992.40 2394.74 275.71 8689.16 1995.10 1475.65 2196.19 4287.07 2596.01 1794.79 20
9.1488.26 1492.84 6091.52 4594.75 173.93 12488.57 2294.67 1875.57 2295.79 5286.77 2695.76 23
SD-MVS88.06 1488.50 1386.71 5092.60 6672.71 2891.81 4193.19 3577.87 3590.32 1794.00 4274.83 2393.78 13587.63 2194.27 5693.65 66
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DELS-MVS85.41 5585.30 5685.77 6388.49 16167.93 12585.52 21093.44 2778.70 2883.63 7889.03 15574.57 2495.71 5580.26 8394.04 5893.66 62
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
patch_mono-283.65 7084.54 6480.99 21190.06 10665.83 16684.21 23888.74 19571.60 16485.01 4692.44 7574.51 2583.50 31882.15 6692.15 7493.64 68
train_agg86.43 3886.20 4087.13 4393.26 5072.96 2488.75 10891.89 9368.69 22585.00 4893.10 5874.43 2695.41 6684.97 3295.71 2593.02 91
test_893.13 5272.57 3488.68 11391.84 9768.69 22584.87 5293.10 5874.43 2695.16 75
TEST993.26 5072.96 2488.75 10891.89 9368.44 23085.00 4893.10 5874.36 2895.41 66
SMA-MVScopyleft89.08 789.23 788.61 594.25 3173.73 992.40 2393.63 2174.77 10692.29 795.97 274.28 2997.24 1188.58 1696.91 194.87 15
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_prior288.85 10475.41 9284.91 5093.54 4974.28 2983.31 5295.86 20
TSAR-MVS + GP.85.71 5085.33 5486.84 4691.34 7872.50 3589.07 9787.28 22576.41 7185.80 3890.22 12574.15 3195.37 7181.82 6891.88 7792.65 102
ZD-MVS94.38 2572.22 4392.67 6170.98 17587.75 2994.07 3874.01 3296.70 2684.66 3894.84 42
SteuartSystems-ACMMP88.72 1088.86 1088.32 892.14 6972.96 2493.73 593.67 2080.19 1188.10 2594.80 1673.76 3397.11 1487.51 2295.82 2194.90 12
Skip Steuart: Steuart Systems R&D Blog.
APD-MVScopyleft87.44 2287.52 2287.19 4194.24 3272.39 3891.86 4092.83 5573.01 14688.58 2194.52 2073.36 3496.49 3584.26 4395.01 3692.70 98
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
casdiffmvs_mvgpermissive85.99 4386.09 4585.70 6587.65 19267.22 14288.69 11293.04 3879.64 1785.33 4392.54 7473.30 3594.50 10683.49 5091.14 8895.37 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
canonicalmvs85.91 4685.87 4886.04 5989.84 11169.44 9490.45 6593.00 4376.70 6888.01 2791.23 10073.28 3693.91 13081.50 7088.80 11594.77 21
segment_acmp73.08 37
DPM-MVS84.93 6184.29 6686.84 4690.20 9973.04 2287.12 16093.04 3869.80 19882.85 8691.22 10173.06 3896.02 4676.72 11794.63 4691.46 139
NCCC88.06 1488.01 1888.24 1094.41 2273.62 1091.22 5192.83 5581.50 485.79 3993.47 5273.02 3997.00 1784.90 3394.94 3894.10 44
test_fmvsmconf_n85.92 4586.04 4685.57 6785.03 24269.51 8989.62 8490.58 13073.42 13787.75 2994.02 4072.85 4093.24 15990.37 290.75 9293.96 50
nrg03083.88 6683.53 6984.96 8186.77 21669.28 9690.46 6492.67 6174.79 10582.95 8391.33 9972.70 4193.09 17180.79 7879.28 23592.50 107
CDPH-MVS85.76 4985.29 5787.17 4293.49 4771.08 6088.58 11692.42 7268.32 23284.61 5893.48 5072.32 4296.15 4479.00 8995.43 3094.28 39
MP-MVScopyleft87.71 1987.64 2187.93 2094.36 2673.88 692.71 2292.65 6477.57 4083.84 7394.40 2972.24 4396.28 3985.65 2995.30 3493.62 69
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
casdiffmvspermissive85.11 5985.14 5885.01 7987.20 20865.77 17087.75 14492.83 5577.84 3684.36 6492.38 7672.15 4493.93 12981.27 7290.48 9495.33 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepC-MVS79.81 287.08 3186.88 3387.69 3291.16 8072.32 4290.31 6793.94 1477.12 5482.82 8794.23 3372.13 4597.09 1584.83 3695.37 3193.65 66
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline84.93 6184.98 5984.80 8987.30 20665.39 17987.30 15692.88 5277.62 3884.04 7092.26 7871.81 4693.96 12381.31 7190.30 9795.03 7
ZNCC-MVS87.94 1887.85 1988.20 1194.39 2473.33 1893.03 1493.81 1776.81 6285.24 4494.32 3071.76 4796.93 1885.53 3095.79 2294.32 37
test1286.80 4892.63 6470.70 7191.79 9982.71 8971.67 4896.16 4394.50 4993.54 73
UniMVSNet_NR-MVSNet81.88 9781.54 9782.92 16288.46 16363.46 21987.13 15992.37 7380.19 1178.38 14589.14 15171.66 4993.05 17370.05 17776.46 26592.25 116
CS-MVS86.69 3486.95 3085.90 6290.76 9067.57 13392.83 1793.30 3279.67 1684.57 6092.27 7771.47 5095.02 8584.24 4593.46 6295.13 5
DeepC-MVS_fast79.65 386.91 3286.62 3587.76 2693.52 4672.37 4091.26 4793.04 3876.62 6984.22 6593.36 5471.44 5196.76 2480.82 7695.33 3394.16 42
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsm_n_192085.29 5785.34 5385.13 7686.12 22369.93 8288.65 11490.78 12669.97 19488.27 2393.98 4571.39 5291.54 22188.49 1790.45 9593.91 52
MVS_111021_HR85.14 5884.75 6286.32 5491.65 7672.70 2985.98 19390.33 14076.11 8082.08 9391.61 9171.36 5394.17 11981.02 7392.58 6992.08 122
ACMMP_NAP88.05 1688.08 1687.94 1893.70 4173.05 2190.86 5593.59 2376.27 7888.14 2495.09 1571.06 5496.67 2887.67 2096.37 1494.09 45
MP-MVS-pluss87.67 2087.72 2087.54 3593.64 4472.04 4789.80 7893.50 2575.17 9986.34 3595.29 1270.86 5596.00 4888.78 1496.04 1694.58 26
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS87.58 2187.47 2387.94 1894.58 1673.54 1493.04 1293.24 3376.78 6484.91 5094.44 2770.78 5696.61 3184.53 4094.89 4093.66 62
EI-MVSNet-Vis-set84.19 6483.81 6885.31 7088.18 17167.85 12687.66 14689.73 15780.05 1382.95 8389.59 13970.74 5794.82 9480.66 8084.72 16393.28 81
GST-MVS87.42 2487.26 2487.89 2394.12 3672.97 2392.39 2593.43 2876.89 6084.68 5493.99 4470.67 5896.82 2184.18 4795.01 3693.90 54
CS-MVS-test86.29 4186.48 3685.71 6491.02 8367.21 14392.36 2893.78 1878.97 2783.51 7991.20 10270.65 5995.15 7681.96 6794.89 4094.77 21
CANet86.45 3786.10 4487.51 3690.09 10170.94 6689.70 8292.59 6681.78 381.32 10391.43 9770.34 6097.23 1284.26 4393.36 6394.37 34
alignmvs85.48 5285.32 5585.96 6189.51 11969.47 9189.74 8092.47 6876.17 7987.73 3191.46 9670.32 6193.78 13581.51 6988.95 11294.63 25
EI-MVSNet-UG-set83.81 6783.38 7185.09 7787.87 18167.53 13487.44 15289.66 15879.74 1582.23 9289.41 14870.24 6294.74 9779.95 8483.92 17392.99 93
MVS_Test83.15 7983.06 7583.41 14086.86 21263.21 22586.11 19192.00 8774.31 11582.87 8589.44 14770.03 6393.21 16077.39 10788.50 12193.81 58
FC-MVSNet-test81.52 10782.02 9180.03 23188.42 16555.97 31687.95 13793.42 2977.10 5577.38 16890.98 11369.96 6491.79 21468.46 19684.50 16592.33 112
MVS_030488.08 1388.08 1688.08 1389.67 11372.04 4792.26 3289.26 17084.19 185.01 4695.18 1369.93 6597.20 1391.63 195.60 2894.99 8
FIs82.07 9482.42 8281.04 21088.80 15058.34 27988.26 12693.49 2676.93 5978.47 14491.04 10869.92 6692.34 19669.87 18184.97 16092.44 111
UniMVSNet (Re)81.60 10681.11 10283.09 15388.38 16664.41 20087.60 14793.02 4278.42 3178.56 14188.16 18169.78 6793.26 15869.58 18476.49 26491.60 131
HPM-MVScopyleft87.11 2986.98 2987.50 3793.88 3972.16 4492.19 3393.33 3176.07 8183.81 7493.95 4669.77 6896.01 4785.15 3194.66 4594.32 37
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
Effi-MVS+83.62 7283.08 7485.24 7288.38 16667.45 13588.89 10289.15 17675.50 9182.27 9188.28 17769.61 6994.45 10877.81 10287.84 12593.84 57
PHI-MVS86.43 3886.17 4287.24 4090.88 8770.96 6492.27 3194.07 972.45 14985.22 4591.90 8369.47 7096.42 3683.28 5395.94 1994.35 35
UA-Net85.08 6084.96 6085.45 6892.07 7068.07 12389.78 7990.86 12582.48 284.60 5993.20 5769.35 7195.22 7371.39 16590.88 9193.07 88
ETV-MVS84.90 6384.67 6385.59 6689.39 12468.66 11288.74 11092.64 6579.97 1484.10 6885.71 24569.32 7295.38 6880.82 7691.37 8592.72 97
旧先验191.96 7165.79 16986.37 23993.08 6269.31 7392.74 6788.74 241
region2R87.42 2487.20 2788.09 1294.63 1473.55 1293.03 1493.12 3776.73 6784.45 6194.52 2069.09 7496.70 2684.37 4294.83 4394.03 48
EIA-MVS83.31 7882.80 8084.82 8789.59 11565.59 17288.21 12792.68 6074.66 10878.96 13086.42 23269.06 7595.26 7275.54 12990.09 10193.62 69
EPP-MVSNet83.40 7683.02 7684.57 9390.13 10064.47 19892.32 2990.73 12774.45 11479.35 12691.10 10569.05 7695.12 7772.78 15487.22 13394.13 43
EC-MVSNet86.01 4286.38 3784.91 8589.31 13066.27 15792.32 2993.63 2179.37 1984.17 6791.88 8469.04 7795.43 6483.93 4893.77 6093.01 92
ACMMPR87.44 2287.23 2688.08 1394.64 1373.59 1193.04 1293.20 3476.78 6484.66 5794.52 2068.81 7896.65 2984.53 4094.90 3994.00 49
test_fmvsmvis_n_192084.02 6583.87 6784.49 9884.12 25469.37 9588.15 13187.96 20970.01 19283.95 7193.23 5668.80 7991.51 22488.61 1589.96 10492.57 103
mvs_anonymous79.42 15779.11 14580.34 22584.45 24957.97 28582.59 26487.62 21867.40 24076.17 20288.56 17068.47 8089.59 25970.65 17286.05 15193.47 75
MTAPA87.23 2787.00 2887.90 2194.18 3574.25 586.58 17892.02 8579.45 1885.88 3794.80 1668.07 8196.21 4186.69 2795.34 3293.23 82
CP-MVS87.11 2986.92 3187.68 3394.20 3473.86 793.98 392.82 5876.62 6983.68 7594.46 2467.93 8295.95 5184.20 4694.39 5293.23 82
PAPM_NR83.02 8382.41 8384.82 8792.47 6766.37 15587.93 13991.80 9873.82 12677.32 17090.66 11667.90 8394.90 9070.37 17489.48 10993.19 85
PGM-MVS86.68 3586.27 3987.90 2194.22 3373.38 1790.22 6993.04 3875.53 9083.86 7294.42 2867.87 8496.64 3082.70 6394.57 4893.66 62
PAPR81.66 10580.89 10783.99 12490.27 9764.00 20686.76 17491.77 10168.84 22377.13 17989.50 14067.63 8594.88 9267.55 20288.52 12093.09 87
Fast-Effi-MVS+80.81 12079.92 12383.47 13688.85 14564.51 19585.53 20889.39 16470.79 17778.49 14385.06 26367.54 8693.58 14367.03 21086.58 14292.32 113
XVS87.18 2886.91 3288.00 1694.42 2073.33 1892.78 1892.99 4579.14 2083.67 7694.17 3467.45 8796.60 3283.06 5494.50 4994.07 46
X-MVStestdata80.37 13677.83 17388.00 1694.42 2073.33 1892.78 1892.99 4579.14 2083.67 7612.47 38567.45 8796.60 3283.06 5494.50 4994.07 46
SR-MVS86.73 3386.67 3486.91 4594.11 3772.11 4692.37 2792.56 6774.50 11186.84 3394.65 1967.31 8995.77 5384.80 3792.85 6692.84 96
NR-MVSNet80.23 13979.38 13582.78 17187.80 18563.34 22286.31 18591.09 11979.01 2572.17 26089.07 15367.20 9092.81 18266.08 21675.65 27692.20 118
MSLP-MVS++85.43 5485.76 4984.45 10091.93 7270.24 7590.71 5792.86 5377.46 4684.22 6592.81 6967.16 9192.94 17780.36 8194.35 5490.16 184
MG-MVS83.41 7583.45 7083.28 14392.74 6262.28 23988.17 12989.50 16175.22 9581.49 10292.74 7366.75 9295.11 7972.85 15391.58 8292.45 110
EI-MVSNet80.52 13279.98 12282.12 18184.28 25063.19 22786.41 18288.95 18674.18 11978.69 13687.54 19766.62 9392.43 19072.57 15780.57 21990.74 163
IterMVS-LS80.06 14279.38 13582.11 18285.89 22563.20 22686.79 17189.34 16574.19 11875.45 21486.72 21766.62 9392.39 19272.58 15676.86 25990.75 162
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_ehance_all_eth78.59 17977.76 17881.08 20982.66 28861.56 24883.65 24689.15 17668.87 22275.55 21083.79 28366.49 9592.03 20573.25 14976.39 26789.64 211
mPP-MVS86.67 3686.32 3887.72 2994.41 2273.55 1292.74 2092.22 8076.87 6182.81 8894.25 3266.44 9696.24 4082.88 5894.28 5593.38 76
c3_l78.75 17377.91 17081.26 20282.89 28361.56 24884.09 24189.13 17869.97 19475.56 20984.29 27566.36 9792.09 20473.47 14675.48 28090.12 187
GeoE81.71 10181.01 10583.80 13089.51 11964.45 19988.97 9988.73 19671.27 16978.63 13989.76 13366.32 9893.20 16369.89 18086.02 15293.74 60
WR-MVS_H78.51 18078.49 15678.56 25688.02 17856.38 31188.43 11892.67 6177.14 5373.89 24287.55 19666.25 9989.24 26558.92 27473.55 30690.06 194
PCF-MVS73.52 780.38 13478.84 15085.01 7987.71 18968.99 9983.65 24691.46 11163.00 28777.77 16290.28 12266.10 10095.09 8361.40 25488.22 12490.94 156
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EPNet83.72 6982.92 7886.14 5884.22 25269.48 9091.05 5485.27 25281.30 576.83 18191.65 8866.09 10195.56 5776.00 12393.85 5993.38 76
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
原ACMM184.35 10493.01 5768.79 10292.44 6963.96 28181.09 10891.57 9266.06 10295.45 6267.19 20794.82 4488.81 238
PVSNet_BlendedMVS80.60 12980.02 12182.36 18088.85 14565.40 17786.16 19092.00 8769.34 20778.11 15486.09 24066.02 10394.27 11271.52 16282.06 20087.39 265
PVSNet_Blended80.98 11580.34 11682.90 16388.85 14565.40 17784.43 23392.00 8767.62 23778.11 15485.05 26466.02 10394.27 11271.52 16289.50 10889.01 228
diffmvspermissive82.10 9281.88 9482.76 17383.00 28063.78 21183.68 24589.76 15572.94 14782.02 9489.85 13165.96 10590.79 24382.38 6587.30 13293.71 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVS_3200maxsize85.97 4485.88 4786.22 5692.69 6369.53 8891.93 3792.99 4573.54 13485.94 3694.51 2365.80 10695.61 5683.04 5692.51 7093.53 74
miper_enhance_ethall77.87 19876.86 19780.92 21481.65 30261.38 25082.68 26388.98 18365.52 26175.47 21182.30 30265.76 10792.00 20772.95 15276.39 26789.39 216
PVSNet_Blended_VisFu82.62 8781.83 9584.96 8190.80 8969.76 8688.74 11091.70 10269.39 20578.96 13088.46 17265.47 10894.87 9374.42 13688.57 11890.24 182
API-MVS81.99 9681.23 10084.26 10890.94 8570.18 8191.10 5289.32 16671.51 16678.66 13888.28 17765.26 10995.10 8264.74 22791.23 8787.51 263
TranMVSNet+NR-MVSNet80.84 11880.31 11782.42 17887.85 18262.33 23787.74 14591.33 11280.55 877.99 15889.86 13065.23 11092.62 18367.05 20975.24 29092.30 114
IS-MVSNet83.15 7982.81 7984.18 11089.94 10963.30 22391.59 4288.46 20179.04 2479.49 12492.16 7965.10 11194.28 11167.71 20091.86 8094.95 9
DU-MVS81.12 11480.52 11382.90 16387.80 18563.46 21987.02 16391.87 9579.01 2578.38 14589.07 15365.02 11293.05 17370.05 17776.46 26592.20 118
Baseline_NR-MVSNet78.15 18978.33 16277.61 27185.79 22656.21 31486.78 17285.76 24873.60 13277.93 15987.57 19465.02 11288.99 26967.14 20875.33 28787.63 259
SR-MVS-dyc-post85.77 4885.61 5086.23 5593.06 5570.63 7291.88 3892.27 7673.53 13585.69 4094.45 2565.00 11495.56 5782.75 5991.87 7892.50 107
VNet82.21 9182.41 8381.62 19190.82 8860.93 25384.47 22989.78 15476.36 7684.07 6991.88 8464.71 11590.26 24970.68 17188.89 11393.66 62
Test By Simon64.33 116
ACMMPcopyleft85.89 4785.39 5287.38 3893.59 4572.63 3292.74 2093.18 3676.78 6480.73 11293.82 4864.33 11696.29 3882.67 6490.69 9393.23 82
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DP-MVS Recon83.11 8282.09 8986.15 5794.44 1970.92 6788.79 10692.20 8170.53 18379.17 12891.03 11064.12 11896.03 4568.39 19790.14 10091.50 136
CLD-MVS82.31 9081.65 9684.29 10788.47 16267.73 12985.81 20192.35 7475.78 8578.33 14786.58 22764.01 11994.35 10976.05 12287.48 13090.79 159
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
RE-MVS-def85.48 5193.06 5570.63 7291.88 3892.27 7673.53 13585.69 4094.45 2563.87 12082.75 5991.87 7892.50 107
MVS78.19 18876.99 19581.78 18885.66 22866.99 14584.66 22390.47 13455.08 34672.02 26285.27 25663.83 12194.11 12166.10 21589.80 10684.24 319
WR-MVS79.49 15379.22 14280.27 22788.79 15158.35 27885.06 21588.61 19978.56 2977.65 16388.34 17563.81 12290.66 24664.98 22577.22 25491.80 129
VPA-MVSNet80.60 12980.55 11280.76 21788.07 17660.80 25686.86 16891.58 10575.67 8980.24 11689.45 14663.34 12390.25 25070.51 17379.22 23691.23 144
新几何183.42 13893.13 5270.71 7085.48 25157.43 33681.80 9891.98 8163.28 12492.27 19864.60 22892.99 6487.27 269
HY-MVS69.67 1277.95 19577.15 19180.36 22487.57 19860.21 26683.37 25387.78 21666.11 25275.37 21787.06 21263.27 12590.48 24861.38 25582.43 19790.40 176
XXY-MVS75.41 24075.56 21974.96 29583.59 26457.82 28980.59 28583.87 27366.54 24974.93 23288.31 17663.24 12680.09 33362.16 24676.85 26086.97 278
ab-mvs79.51 15278.97 14881.14 20788.46 16360.91 25483.84 24389.24 17270.36 18579.03 12988.87 16063.23 12790.21 25165.12 22382.57 19692.28 115
xiu_mvs_v2_base81.69 10281.05 10383.60 13389.15 13768.03 12484.46 23190.02 14870.67 18081.30 10686.53 23063.17 12894.19 11875.60 12888.54 11988.57 245
pcd_1.5k_mvsjas5.26 3597.02 3620.00 3730.00 3960.00 3970.00 3840.00 3970.00 3910.00 3920.00 39163.15 1290.00 3920.00 3900.00 3900.00 388
PS-MVSNAJss82.07 9481.31 9884.34 10586.51 21967.27 14089.27 8991.51 10771.75 15879.37 12590.22 12563.15 12994.27 11277.69 10382.36 19891.49 137
PS-MVSNAJ81.69 10281.02 10483.70 13289.51 11968.21 12184.28 23790.09 14770.79 17781.26 10785.62 25063.15 12994.29 11075.62 12788.87 11488.59 244
WTY-MVS75.65 23575.68 21775.57 28986.40 22056.82 30277.92 31782.40 29265.10 26376.18 20087.72 18963.13 13280.90 33060.31 26281.96 20189.00 230
TransMVSNet (Re)75.39 24174.56 23377.86 26585.50 23257.10 29986.78 17286.09 24472.17 15571.53 26687.34 20063.01 13389.31 26456.84 29561.83 35187.17 271
v879.97 14679.02 14782.80 16884.09 25564.50 19787.96 13690.29 14374.13 12175.24 22486.81 21462.88 13493.89 13274.39 13775.40 28590.00 196
HPM-MVS_fast85.35 5684.95 6186.57 5293.69 4270.58 7492.15 3591.62 10373.89 12582.67 9094.09 3762.60 13595.54 5980.93 7492.93 6593.57 71
PAPM77.68 20476.40 21081.51 19487.29 20761.85 24483.78 24489.59 15964.74 26871.23 26888.70 16362.59 13693.66 14252.66 31487.03 13689.01 228
1112_ss77.40 20976.43 20980.32 22689.11 14260.41 26383.65 24687.72 21762.13 29973.05 25086.72 21762.58 13789.97 25362.11 24880.80 21590.59 169
LCM-MVSNet-Re77.05 21476.94 19677.36 27487.20 20851.60 34880.06 29280.46 31175.20 9667.69 30386.72 21762.48 13888.98 27063.44 23389.25 11191.51 134
v14878.72 17577.80 17581.47 19582.73 28661.96 24386.30 18688.08 20673.26 14076.18 20085.47 25362.46 13992.36 19471.92 16173.82 30490.09 190
baseline176.98 21676.75 20377.66 26988.13 17255.66 31985.12 21481.89 29673.04 14576.79 18288.90 15862.43 14087.78 28763.30 23571.18 32389.55 214
MAR-MVS81.84 9880.70 10985.27 7191.32 7971.53 5389.82 7690.92 12169.77 19978.50 14286.21 23662.36 14194.52 10565.36 22192.05 7689.77 208
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVS_111021_LR82.61 8882.11 8884.11 11188.82 14871.58 5285.15 21386.16 24274.69 10780.47 11491.04 10862.29 14290.55 24780.33 8290.08 10290.20 183
TAMVS78.89 17277.51 18583.03 15787.80 18567.79 12884.72 22285.05 25567.63 23676.75 18487.70 19062.25 14390.82 24258.53 27987.13 13490.49 172
CP-MVSNet78.22 18578.34 16177.84 26687.83 18454.54 32987.94 13891.17 11677.65 3773.48 24588.49 17162.24 14488.43 27962.19 24574.07 29990.55 170
OMC-MVS82.69 8681.97 9384.85 8688.75 15367.42 13687.98 13590.87 12474.92 10279.72 12191.65 8862.19 14593.96 12375.26 13186.42 14593.16 86
cl____77.72 20176.76 20180.58 22082.49 29260.48 26183.09 25887.87 21269.22 21074.38 23985.22 25962.10 14691.53 22271.09 16775.41 28489.73 210
DIV-MVS_self_test77.72 20176.76 20180.58 22082.48 29360.48 26183.09 25887.86 21369.22 21074.38 23985.24 25762.10 14691.53 22271.09 16775.40 28589.74 209
testdata79.97 23290.90 8664.21 20384.71 25859.27 32085.40 4292.91 6462.02 14889.08 26868.95 19091.37 8586.63 286
eth_miper_zixun_eth77.92 19676.69 20481.61 19383.00 28061.98 24283.15 25689.20 17469.52 20474.86 23384.35 27461.76 14992.56 18671.50 16472.89 31290.28 181
MVSFormer82.85 8582.05 9085.24 7287.35 20070.21 7690.50 6190.38 13668.55 22781.32 10389.47 14261.68 15093.46 15278.98 9090.26 9892.05 123
lupinMVS81.39 11080.27 11984.76 9087.35 20070.21 7685.55 20686.41 23762.85 29081.32 10388.61 16761.68 15092.24 20078.41 9790.26 9891.83 127
cdsmvs_eth3d_5k19.96 35326.61 3550.00 3730.00 3960.00 3970.00 38489.26 1700.00 3910.00 39288.61 16761.62 1520.00 3920.00 3900.00 3900.00 388
h-mvs3383.15 7982.19 8786.02 6090.56 9270.85 6988.15 13189.16 17576.02 8284.67 5591.39 9861.54 15395.50 6082.71 6175.48 28091.72 130
hse-mvs281.72 10080.94 10684.07 11688.72 15467.68 13185.87 19787.26 22676.02 8284.67 5588.22 18061.54 15393.48 15082.71 6173.44 30891.06 150
CDS-MVSNet79.07 16777.70 18083.17 15087.60 19468.23 12084.40 23586.20 24167.49 23976.36 19586.54 22961.54 15390.79 24361.86 25087.33 13190.49 172
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v1079.74 14878.67 15282.97 16184.06 25664.95 18787.88 14290.62 12973.11 14375.11 22786.56 22861.46 15694.05 12273.68 14275.55 27889.90 202
v114480.03 14379.03 14683.01 15883.78 26164.51 19587.11 16190.57 13271.96 15778.08 15686.20 23761.41 15793.94 12674.93 13277.23 25390.60 168
cl2278.07 19177.01 19381.23 20382.37 29561.83 24583.55 25087.98 20868.96 22175.06 22983.87 27961.40 15891.88 21273.53 14476.39 26789.98 199
BH-w/o78.21 18677.33 18980.84 21588.81 14965.13 18484.87 21987.85 21469.75 20074.52 23784.74 26861.34 15993.11 17058.24 28285.84 15584.27 318
Test_1112_low_res76.40 22675.44 22179.27 24689.28 13258.09 28181.69 27287.07 22959.53 31872.48 25686.67 22261.30 16089.33 26360.81 26080.15 22490.41 175
Vis-MVSNet (Re-imp)78.36 18378.45 15778.07 26488.64 15751.78 34786.70 17579.63 32074.14 12075.11 22790.83 11461.29 16189.75 25658.10 28391.60 8192.69 100
PEN-MVS77.73 20077.69 18177.84 26687.07 21153.91 33487.91 14091.18 11577.56 4273.14 24988.82 16161.23 16289.17 26659.95 26472.37 31490.43 174
pm-mvs177.25 21376.68 20578.93 25084.22 25258.62 27786.41 18288.36 20271.37 16873.31 24688.01 18761.22 16389.15 26764.24 22973.01 31189.03 227
BH-untuned79.47 15478.60 15482.05 18389.19 13665.91 16486.07 19288.52 20072.18 15475.42 21587.69 19161.15 16493.54 14760.38 26186.83 13986.70 284
v2v48280.23 13979.29 13983.05 15683.62 26364.14 20487.04 16289.97 15073.61 13178.18 15387.22 20561.10 16593.82 13376.11 12076.78 26291.18 145
jason81.39 11080.29 11884.70 9186.63 21869.90 8485.95 19486.77 23363.24 28381.07 10989.47 14261.08 16692.15 20278.33 9890.07 10392.05 123
jason: jason.
Vis-MVSNetpermissive83.46 7482.80 8085.43 6990.25 9868.74 10690.30 6890.13 14676.33 7780.87 11192.89 6561.00 16794.20 11772.45 15990.97 8993.35 78
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAPA-MVS73.13 979.15 16477.94 16982.79 17089.59 11562.99 23288.16 13091.51 10765.77 25777.14 17891.09 10660.91 16893.21 16050.26 32887.05 13592.17 120
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PS-CasMVS78.01 19478.09 16677.77 26887.71 18954.39 33188.02 13491.22 11377.50 4573.26 24788.64 16660.73 16988.41 28061.88 24973.88 30390.53 171
OPM-MVS83.50 7382.95 7785.14 7488.79 15170.95 6589.13 9691.52 10677.55 4380.96 11091.75 8660.71 17094.50 10679.67 8686.51 14489.97 200
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XVG-OURS-SEG-HR80.81 12079.76 12783.96 12685.60 23068.78 10383.54 25190.50 13370.66 18176.71 18591.66 8760.69 17191.26 23076.94 11181.58 20691.83 127
v14419279.47 15478.37 16082.78 17183.35 26863.96 20786.96 16490.36 13969.99 19377.50 16585.67 24860.66 17293.77 13774.27 13876.58 26390.62 166
V4279.38 16078.24 16482.83 16581.10 31365.50 17485.55 20689.82 15371.57 16578.21 15186.12 23960.66 17293.18 16675.64 12675.46 28289.81 207
SDMVSNet80.38 13480.18 12080.99 21189.03 14364.94 18880.45 28889.40 16375.19 9776.61 18989.98 12860.61 17487.69 28876.83 11483.55 18190.33 178
CPTT-MVS83.73 6883.33 7284.92 8493.28 4970.86 6892.09 3690.38 13668.75 22479.57 12392.83 6760.60 17593.04 17580.92 7591.56 8390.86 158
DTE-MVSNet76.99 21576.80 19977.54 27386.24 22153.06 34287.52 14990.66 12877.08 5672.50 25588.67 16560.48 17689.52 26057.33 29070.74 32590.05 195
HQP_MVS83.64 7183.14 7385.14 7490.08 10268.71 10891.25 4992.44 6979.12 2278.92 13291.00 11160.42 17795.38 6878.71 9386.32 14691.33 140
plane_prior689.84 11168.70 11060.42 177
3Dnovator+77.84 485.48 5284.47 6588.51 691.08 8173.49 1593.18 1193.78 1880.79 776.66 18693.37 5360.40 17996.75 2577.20 10893.73 6195.29 4
HQP2-MVS60.17 180
HQP-MVS82.61 8882.02 9184.37 10289.33 12766.98 14689.17 9192.19 8276.41 7177.23 17390.23 12460.17 18095.11 7977.47 10585.99 15391.03 152
VPNet78.69 17678.66 15378.76 25288.31 16855.72 31884.45 23286.63 23576.79 6378.26 14990.55 11959.30 18289.70 25866.63 21177.05 25690.88 157
v119279.59 15178.43 15983.07 15583.55 26564.52 19486.93 16690.58 13070.83 17677.78 16185.90 24159.15 18393.94 12673.96 14177.19 25590.76 161
test22291.50 7768.26 11984.16 23983.20 28554.63 34779.74 12091.63 9058.97 18491.42 8486.77 282
CHOSEN 1792x268877.63 20575.69 21683.44 13789.98 10868.58 11478.70 30987.50 22156.38 34175.80 20786.84 21358.67 18591.40 22761.58 25385.75 15790.34 177
3Dnovator76.31 583.38 7782.31 8686.59 5187.94 18072.94 2790.64 5892.14 8477.21 5175.47 21192.83 6758.56 18694.72 9873.24 15092.71 6892.13 121
v192192079.22 16278.03 16782.80 16883.30 27063.94 20886.80 17090.33 14069.91 19677.48 16685.53 25158.44 18793.75 13973.60 14376.85 26090.71 164
FA-MVS(test-final)80.96 11679.91 12484.10 11288.30 16965.01 18684.55 22890.01 14973.25 14179.61 12287.57 19458.35 18894.72 9871.29 16686.25 14892.56 104
114514_t80.68 12679.51 13284.20 10994.09 3867.27 14089.64 8391.11 11858.75 32674.08 24190.72 11558.10 18995.04 8469.70 18289.42 11090.30 180
v7n78.97 17077.58 18483.14 15183.45 26765.51 17388.32 12491.21 11473.69 12972.41 25786.32 23557.93 19093.81 13469.18 18775.65 27690.11 188
CL-MVSNet_self_test72.37 26871.46 26175.09 29479.49 33353.53 33680.76 28285.01 25669.12 21570.51 27282.05 30657.92 19184.13 31352.27 31666.00 34387.60 260
baseline275.70 23473.83 24381.30 20183.26 27161.79 24682.57 26580.65 30766.81 24166.88 31283.42 28857.86 19292.19 20163.47 23279.57 22989.91 201
QAPM80.88 11779.50 13385.03 7888.01 17968.97 10091.59 4292.00 8766.63 24875.15 22692.16 7957.70 19395.45 6263.52 23188.76 11690.66 165
HyFIR lowres test77.53 20675.40 22383.94 12789.59 11566.62 15180.36 28988.64 19856.29 34276.45 19185.17 26057.64 19493.28 15761.34 25683.10 18991.91 126
CNLPA78.08 19076.79 20081.97 18690.40 9671.07 6187.59 14884.55 26166.03 25572.38 25889.64 13657.56 19586.04 29859.61 26783.35 18588.79 239
test_yl81.17 11280.47 11483.24 14689.13 13863.62 21286.21 18889.95 15172.43 15281.78 9989.61 13757.50 19693.58 14370.75 16986.90 13792.52 105
DCV-MVSNet81.17 11280.47 11483.24 14689.13 13863.62 21286.21 18889.95 15172.43 15281.78 9989.61 13757.50 19693.58 14370.75 16986.90 13792.52 105
sss73.60 25473.64 24573.51 30882.80 28455.01 32576.12 32481.69 29962.47 29674.68 23585.85 24457.32 19878.11 34160.86 25980.93 21287.39 265
Effi-MVS+-dtu80.03 14378.57 15584.42 10185.13 23968.74 10688.77 10788.10 20574.99 10174.97 23183.49 28757.27 19993.36 15573.53 14480.88 21391.18 145
AdaColmapbinary80.58 13179.42 13484.06 11793.09 5468.91 10189.36 8888.97 18569.27 20875.70 20889.69 13457.20 20095.77 5363.06 23688.41 12287.50 264
v124078.99 16977.78 17682.64 17483.21 27263.54 21686.62 17790.30 14269.74 20277.33 16985.68 24757.04 20193.76 13873.13 15176.92 25790.62 166
miper_lstm_enhance74.11 24973.11 25077.13 27880.11 32259.62 27172.23 34486.92 23266.76 24370.40 27482.92 29356.93 20282.92 32269.06 18972.63 31388.87 235
BH-RMVSNet79.61 14978.44 15883.14 15189.38 12565.93 16384.95 21887.15 22873.56 13378.19 15289.79 13256.67 20393.36 15559.53 26886.74 14090.13 186
test_djsdf80.30 13879.32 13883.27 14483.98 25865.37 18090.50 6190.38 13668.55 22776.19 19988.70 16356.44 20493.46 15278.98 9080.14 22590.97 155
EPNet_dtu75.46 23874.86 22977.23 27782.57 29054.60 32886.89 16783.09 28671.64 15966.25 32185.86 24355.99 20588.04 28454.92 30386.55 14389.05 226
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CostFormer75.24 24273.90 24179.27 24682.65 28958.27 28080.80 28082.73 29061.57 30275.33 22183.13 29255.52 20691.07 23964.98 22578.34 24688.45 246
tpmrst72.39 26672.13 25773.18 31280.54 31849.91 35779.91 29679.08 32463.11 28571.69 26579.95 32455.32 20782.77 32365.66 22073.89 30286.87 279
131476.53 22175.30 22780.21 22883.93 25962.32 23884.66 22388.81 18960.23 31170.16 27984.07 27855.30 20890.73 24567.37 20483.21 18787.59 262
tfpnnormal74.39 24573.16 24978.08 26386.10 22458.05 28284.65 22587.53 22070.32 18771.22 26985.63 24954.97 20989.86 25443.03 35775.02 29286.32 288
sd_testset77.70 20377.40 18678.60 25589.03 14360.02 26779.00 30585.83 24775.19 9776.61 18989.98 12854.81 21085.46 30462.63 24283.55 18190.33 178
GBi-Net78.40 18177.40 18681.40 19887.60 19463.01 22988.39 12089.28 16771.63 16075.34 21887.28 20154.80 21191.11 23362.72 23879.57 22990.09 190
test178.40 18177.40 18681.40 19887.60 19463.01 22988.39 12089.28 16771.63 16075.34 21887.28 20154.80 21191.11 23362.72 23879.57 22990.09 190
FMVSNet278.20 18777.21 19081.20 20587.60 19462.89 23387.47 15189.02 18171.63 16075.29 22387.28 20154.80 21191.10 23662.38 24379.38 23389.61 212
Fast-Effi-MVS+-dtu78.02 19376.49 20782.62 17583.16 27666.96 14886.94 16587.45 22372.45 14971.49 26784.17 27654.79 21491.58 21967.61 20180.31 22289.30 219
MVSTER79.01 16877.88 17282.38 17983.07 27764.80 19184.08 24288.95 18669.01 22078.69 13687.17 20854.70 21592.43 19074.69 13380.57 21989.89 203
OpenMVScopyleft72.83 1079.77 14778.33 16284.09 11485.17 23569.91 8390.57 5990.97 12066.70 24472.17 26091.91 8254.70 21593.96 12361.81 25190.95 9088.41 248
XVG-OURS80.41 13379.23 14183.97 12585.64 22969.02 9883.03 26290.39 13571.09 17377.63 16491.49 9554.62 21791.35 22875.71 12583.47 18491.54 133
mvsmamba81.69 10280.74 10884.56 9487.45 19966.72 15091.26 4785.89 24674.66 10878.23 15090.56 11854.33 21894.91 8780.73 7983.54 18392.04 125
LPG-MVS_test82.08 9381.27 9984.50 9689.23 13468.76 10490.22 6991.94 9175.37 9376.64 18791.51 9354.29 21994.91 8778.44 9583.78 17489.83 205
LGP-MVS_train84.50 9689.23 13468.76 10491.94 9175.37 9376.64 18791.51 9354.29 21994.91 8778.44 9583.78 17489.83 205
TR-MVS77.44 20776.18 21281.20 20588.24 17063.24 22484.61 22686.40 23867.55 23877.81 16086.48 23154.10 22193.15 16757.75 28682.72 19487.20 270
FMVSNet377.88 19776.85 19880.97 21386.84 21462.36 23686.52 18088.77 19171.13 17175.34 21886.66 22354.07 22291.10 23662.72 23879.57 22989.45 215
DP-MVS76.78 21974.57 23283.42 13893.29 4869.46 9388.55 11783.70 27463.98 28070.20 27688.89 15954.01 22394.80 9546.66 34581.88 20386.01 296
ACMP74.13 681.51 10980.57 11184.36 10389.42 12268.69 11189.97 7391.50 11074.46 11375.04 23090.41 12153.82 22494.54 10377.56 10482.91 19089.86 204
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PLCcopyleft70.83 1178.05 19276.37 21183.08 15491.88 7467.80 12788.19 12889.46 16264.33 27469.87 28588.38 17453.66 22593.58 14358.86 27582.73 19387.86 255
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
dmvs_testset62.63 32464.11 31558.19 35278.55 33824.76 38775.28 33165.94 36867.91 23560.34 34776.01 34953.56 22673.94 36731.79 37067.65 33675.88 359
CANet_DTU80.61 12879.87 12582.83 16585.60 23063.17 22887.36 15388.65 19776.37 7575.88 20588.44 17353.51 22793.07 17273.30 14889.74 10792.25 116
ACMM73.20 880.78 12579.84 12683.58 13489.31 13068.37 11689.99 7291.60 10470.28 18877.25 17189.66 13553.37 22893.53 14874.24 13982.85 19188.85 236
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVP-Stereo76.12 22974.46 23681.13 20885.37 23369.79 8584.42 23487.95 21065.03 26567.46 30685.33 25553.28 22991.73 21758.01 28483.27 18681.85 341
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
AUN-MVS79.21 16377.60 18384.05 11988.71 15567.61 13285.84 19987.26 22669.08 21677.23 17388.14 18553.20 23093.47 15175.50 13073.45 30791.06 150
anonymousdsp78.60 17877.15 19182.98 16080.51 31967.08 14487.24 15889.53 16065.66 25975.16 22587.19 20752.52 23192.25 19977.17 10979.34 23489.61 212
CR-MVSNet73.37 25671.27 26579.67 24081.32 31165.19 18275.92 32680.30 31359.92 31472.73 25381.19 31052.50 23286.69 29359.84 26577.71 24987.11 275
Patchmtry70.74 27969.16 28275.49 29180.72 31554.07 33374.94 33780.30 31358.34 32770.01 28081.19 31052.50 23286.54 29453.37 31171.09 32485.87 300
pmmvs474.03 25171.91 25880.39 22381.96 29868.32 11781.45 27682.14 29459.32 31969.87 28585.13 26152.40 23488.13 28360.21 26374.74 29584.73 315
RPMNet73.51 25570.49 27282.58 17681.32 31165.19 18275.92 32692.27 7657.60 33472.73 25376.45 34752.30 23595.43 6448.14 34077.71 24987.11 275
LFMVS81.82 9981.23 10083.57 13591.89 7363.43 22189.84 7581.85 29877.04 5783.21 8093.10 5852.26 23693.43 15471.98 16089.95 10593.85 55
VDD-MVS83.01 8482.36 8584.96 8191.02 8366.40 15488.91 10188.11 20477.57 4084.39 6393.29 5552.19 23793.91 13077.05 11088.70 11794.57 28
tfpn200view976.42 22575.37 22579.55 24489.13 13857.65 29185.17 21183.60 27573.41 13876.45 19186.39 23352.12 23891.95 20848.33 33683.75 17689.07 221
thres40076.50 22275.37 22579.86 23489.13 13857.65 29185.17 21183.60 27573.41 13876.45 19186.39 23352.12 23891.95 20848.33 33683.75 17690.00 196
thres20075.55 23674.47 23578.82 25187.78 18857.85 28883.07 26083.51 27872.44 15175.84 20684.42 27052.08 24091.75 21547.41 34383.64 18086.86 280
PMMVS69.34 29268.67 28471.35 32475.67 34962.03 24175.17 33273.46 35150.00 35868.68 29579.05 32952.07 24178.13 34061.16 25782.77 19273.90 361
tpm cat170.57 28168.31 28777.35 27582.41 29457.95 28678.08 31480.22 31552.04 35268.54 29877.66 34252.00 24287.84 28651.77 31772.07 31886.25 289
IterMVS-SCA-FT75.43 23973.87 24280.11 23082.69 28764.85 19081.57 27483.47 27969.16 21470.49 27384.15 27751.95 24388.15 28269.23 18672.14 31787.34 267
SCA74.22 24872.33 25679.91 23384.05 25762.17 24079.96 29579.29 32366.30 25172.38 25880.13 32251.95 24388.60 27759.25 27077.67 25188.96 232
thres100view90076.50 22275.55 22079.33 24589.52 11856.99 30085.83 20083.23 28373.94 12376.32 19687.12 20951.89 24591.95 20848.33 33683.75 17689.07 221
thres600view776.50 22275.44 22179.68 23989.40 12357.16 29785.53 20883.23 28373.79 12876.26 19787.09 21051.89 24591.89 21148.05 34183.72 17990.00 196
tpm273.26 25971.46 26178.63 25383.34 26956.71 30580.65 28480.40 31256.63 34073.55 24482.02 30751.80 24791.24 23156.35 29978.42 24487.95 252
LS3D76.95 21774.82 23083.37 14190.45 9467.36 13989.15 9586.94 23161.87 30169.52 28890.61 11751.71 24894.53 10446.38 34886.71 14188.21 250
IterMVS74.29 24672.94 25178.35 26081.53 30563.49 21881.58 27382.49 29168.06 23469.99 28283.69 28551.66 24985.54 30265.85 21871.64 32086.01 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tpm72.37 26871.71 26074.35 30282.19 29652.00 34479.22 30277.29 33564.56 27072.95 25183.68 28651.35 25083.26 32158.33 28175.80 27487.81 256
sam_mvs151.32 25188.96 232
PatchmatchNetpermissive73.12 26171.33 26478.49 25983.18 27460.85 25579.63 29778.57 32664.13 27571.73 26479.81 32751.20 25285.97 29957.40 28976.36 27088.66 242
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
patchmatchnet-post74.00 35651.12 25388.60 277
xiu_mvs_v1_base_debu80.80 12279.72 12884.03 12187.35 20070.19 7885.56 20388.77 19169.06 21781.83 9588.16 18150.91 25492.85 17978.29 9987.56 12789.06 223
xiu_mvs_v1_base80.80 12279.72 12884.03 12187.35 20070.19 7885.56 20388.77 19169.06 21781.83 9588.16 18150.91 25492.85 17978.29 9987.56 12789.06 223
xiu_mvs_v1_base_debi80.80 12279.72 12884.03 12187.35 20070.19 7885.56 20388.77 19169.06 21781.83 9588.16 18150.91 25492.85 17978.29 9987.56 12789.06 223
Patchmatch-test64.82 31963.24 32069.57 33279.42 33449.82 35863.49 37269.05 36251.98 35459.95 35080.13 32250.91 25470.98 37040.66 36273.57 30587.90 254
Patchmatch-RL test70.24 28567.78 29777.61 27177.43 34259.57 27371.16 34770.33 35662.94 28968.65 29672.77 35950.62 25885.49 30369.58 18466.58 34087.77 257
Anonymous2023121178.97 17077.69 18182.81 16790.54 9364.29 20290.11 7191.51 10765.01 26676.16 20388.13 18650.56 25993.03 17669.68 18377.56 25291.11 147
VDDNet81.52 10780.67 11084.05 11990.44 9564.13 20589.73 8185.91 24571.11 17283.18 8193.48 5050.54 26093.49 14973.40 14788.25 12394.54 29
pmmvs674.69 24473.39 24678.61 25481.38 30857.48 29486.64 17687.95 21064.99 26770.18 27786.61 22450.43 26189.52 26062.12 24770.18 32788.83 237
test_post5.46 38650.36 26284.24 312
ET-MVSNet_ETH3D78.63 17776.63 20684.64 9286.73 21769.47 9185.01 21684.61 26069.54 20366.51 31986.59 22550.16 26391.75 21576.26 11984.24 17192.69 100
sam_mvs50.01 264
Anonymous2024052980.19 14178.89 14984.10 11290.60 9164.75 19288.95 10090.90 12265.97 25680.59 11391.17 10449.97 26593.73 14169.16 18882.70 19593.81 58
thisisatest053079.40 15877.76 17884.31 10687.69 19165.10 18587.36 15384.26 26870.04 19177.42 16788.26 17949.94 26694.79 9670.20 17584.70 16493.03 90
PatchT68.46 30167.85 29470.29 33080.70 31643.93 37272.47 34374.88 34560.15 31270.55 27176.57 34649.94 26681.59 32650.58 32274.83 29485.34 304
tttt051779.40 15877.91 17083.90 12988.10 17463.84 20988.37 12384.05 27071.45 16776.78 18389.12 15249.93 26894.89 9170.18 17683.18 18892.96 94
tpmvs71.09 27569.29 28076.49 28282.04 29756.04 31578.92 30781.37 30264.05 27867.18 31078.28 33749.74 26989.77 25549.67 33172.37 31483.67 326
thisisatest051577.33 21075.38 22483.18 14985.27 23463.80 21082.11 26883.27 28265.06 26475.91 20483.84 28149.54 27094.27 11267.24 20686.19 14991.48 138
UniMVSNet_ETH3D79.10 16678.24 16481.70 19086.85 21360.24 26587.28 15788.79 19074.25 11776.84 18090.53 12049.48 27191.56 22067.98 19882.15 19993.29 80
dmvs_re71.14 27470.58 27072.80 31381.96 29859.68 27075.60 33079.34 32268.55 22769.27 29280.72 31849.42 27276.54 34952.56 31577.79 24882.19 339
CVMVSNet72.99 26372.58 25374.25 30384.28 25050.85 35386.41 18283.45 28044.56 36373.23 24887.54 19749.38 27385.70 30065.90 21778.44 24386.19 291
MDTV_nov1_ep13_2view37.79 37975.16 33355.10 34566.53 31649.34 27453.98 30787.94 253
UGNet80.83 11979.59 13184.54 9588.04 17768.09 12289.42 8688.16 20376.95 5876.22 19889.46 14449.30 27593.94 12668.48 19590.31 9691.60 131
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pmmvs571.55 27170.20 27775.61 28877.83 34056.39 31081.74 27180.89 30357.76 33267.46 30684.49 26949.26 27685.32 30657.08 29275.29 28885.11 310
mvsany_test162.30 32561.26 32965.41 34469.52 36954.86 32666.86 36349.78 38446.65 36168.50 29983.21 29049.15 27766.28 37656.93 29460.77 35475.11 360
LTVRE_ROB69.57 1376.25 22874.54 23481.41 19788.60 15864.38 20179.24 30189.12 17970.76 17969.79 28787.86 18849.09 27893.20 16356.21 30080.16 22386.65 285
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
FMVSNet177.44 20776.12 21381.40 19886.81 21563.01 22988.39 12089.28 16770.49 18474.39 23887.28 20149.06 27991.11 23360.91 25878.52 24190.09 190
RRT_MVS80.35 13779.22 14283.74 13187.63 19365.46 17691.08 5388.92 18873.82 12676.44 19490.03 12749.05 28094.25 11676.84 11279.20 23791.51 134
test111179.43 15679.18 14480.15 22989.99 10753.31 34087.33 15577.05 33775.04 10080.23 11792.77 7248.97 28192.33 19768.87 19192.40 7394.81 19
ECVR-MVScopyleft79.61 14979.26 14080.67 21990.08 10254.69 32787.89 14177.44 33474.88 10380.27 11592.79 7048.96 28292.45 18968.55 19492.50 7194.86 16
MDTV_nov1_ep1369.97 27883.18 27453.48 33777.10 32280.18 31660.45 30869.33 29180.44 31948.89 28386.90 29251.60 31978.51 242
test_post178.90 3085.43 38748.81 28485.44 30559.25 270
test-LLR72.94 26472.43 25474.48 30081.35 30958.04 28378.38 31077.46 33266.66 24569.95 28379.00 33148.06 28579.24 33566.13 21384.83 16186.15 292
test0.0.03 168.00 30367.69 29868.90 33577.55 34147.43 36175.70 32972.95 35366.66 24566.56 31582.29 30348.06 28575.87 35644.97 35474.51 29783.41 328
our_test_369.14 29367.00 30575.57 28979.80 32858.80 27577.96 31577.81 32959.55 31762.90 34178.25 33847.43 28783.97 31451.71 31867.58 33783.93 324
MS-PatchMatch73.83 25272.67 25277.30 27683.87 26066.02 16081.82 26984.66 25961.37 30568.61 29782.82 29647.29 28888.21 28159.27 26984.32 16977.68 355
cascas76.72 22074.64 23182.99 15985.78 22765.88 16582.33 26689.21 17360.85 30772.74 25281.02 31347.28 28993.75 13967.48 20385.02 15989.34 217
WB-MVS54.94 33254.72 33455.60 35873.50 35920.90 38974.27 33961.19 37559.16 32150.61 36874.15 35547.19 29075.78 35717.31 38135.07 37770.12 365
test20.0367.45 30566.95 30668.94 33475.48 35144.84 37077.50 31877.67 33066.66 24563.01 33983.80 28247.02 29178.40 33942.53 35968.86 33483.58 327
test_040272.79 26570.44 27379.84 23588.13 17265.99 16285.93 19584.29 26665.57 26067.40 30885.49 25246.92 29292.61 18435.88 36774.38 29880.94 346
F-COLMAP76.38 22774.33 23782.50 17789.28 13266.95 14988.41 11989.03 18064.05 27866.83 31388.61 16746.78 29392.89 17857.48 28778.55 24087.67 258
ppachtmachnet_test70.04 28767.34 30378.14 26279.80 32861.13 25179.19 30380.59 30859.16 32165.27 32679.29 32846.75 29487.29 29049.33 33266.72 33886.00 298
tt080578.73 17477.83 17381.43 19685.17 23560.30 26489.41 8790.90 12271.21 17077.17 17788.73 16246.38 29593.21 16072.57 15778.96 23890.79 159
D2MVS74.82 24373.21 24879.64 24179.81 32762.56 23580.34 29087.35 22464.37 27368.86 29482.66 29846.37 29690.10 25267.91 19981.24 20986.25 289
Anonymous2023120668.60 29767.80 29671.02 32780.23 32150.75 35478.30 31380.47 31056.79 33966.11 32282.63 29946.35 29778.95 33743.62 35675.70 27583.36 329
SSC-MVS53.88 33553.59 33654.75 36072.87 36419.59 39073.84 34160.53 37757.58 33549.18 37073.45 35846.34 29875.47 36016.20 38432.28 37969.20 366
CHOSEN 280x42066.51 31164.71 31271.90 31881.45 30663.52 21757.98 37568.95 36353.57 34862.59 34276.70 34546.22 29975.29 36255.25 30279.68 22876.88 357
GA-MVS76.87 21875.17 22881.97 18682.75 28562.58 23481.44 27786.35 24072.16 15674.74 23482.89 29446.20 30092.02 20668.85 19281.09 21191.30 143
iter_conf_final80.63 12779.35 13784.46 9989.36 12667.70 13089.85 7484.49 26273.19 14278.30 14888.94 15645.98 30194.56 10179.59 8784.48 16791.11 147
MDA-MVSNet_test_wron65.03 31762.92 32171.37 32275.93 34656.73 30369.09 35974.73 34757.28 33754.03 36577.89 33945.88 30274.39 36549.89 33061.55 35282.99 335
YYNet165.03 31762.91 32271.38 32175.85 34856.60 30769.12 35874.66 34957.28 33754.12 36477.87 34045.85 30374.48 36449.95 32961.52 35383.05 333
EPMVS69.02 29468.16 28971.59 32079.61 33149.80 35977.40 31966.93 36562.82 29270.01 28079.05 32945.79 30477.86 34356.58 29775.26 28987.13 274
IB-MVS68.01 1575.85 23373.36 24783.31 14284.76 24466.03 15983.38 25285.06 25470.21 19069.40 28981.05 31245.76 30594.66 10065.10 22475.49 27989.25 220
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
jajsoiax79.29 16177.96 16883.27 14484.68 24666.57 15389.25 9090.16 14569.20 21275.46 21389.49 14145.75 30693.13 16976.84 11280.80 21590.11 188
PatchMatch-RL72.38 26770.90 26876.80 28188.60 15867.38 13879.53 29876.17 34262.75 29369.36 29082.00 30845.51 30784.89 30953.62 30980.58 21878.12 354
FE-MVS77.78 19975.68 21784.08 11588.09 17566.00 16183.13 25787.79 21568.42 23178.01 15785.23 25845.50 30895.12 7759.11 27285.83 15691.11 147
RPSCF73.23 26071.46 26178.54 25782.50 29159.85 26882.18 26782.84 28958.96 32371.15 27089.41 14845.48 30984.77 31058.82 27671.83 31991.02 154
test_vis1_n_192075.52 23775.78 21574.75 29979.84 32657.44 29583.26 25485.52 25062.83 29179.34 12786.17 23845.10 31079.71 33478.75 9281.21 21087.10 277
MSDG73.36 25870.99 26780.49 22284.51 24865.80 16880.71 28386.13 24365.70 25865.46 32483.74 28444.60 31190.91 24151.13 32176.89 25884.74 314
PVSNet_057.27 2061.67 32759.27 33068.85 33679.61 33157.44 29568.01 36073.44 35255.93 34358.54 35470.41 36444.58 31277.55 34447.01 34435.91 37671.55 364
test_cas_vis1_n_192073.76 25373.74 24473.81 30675.90 34759.77 26980.51 28682.40 29258.30 32881.62 10185.69 24644.35 31376.41 35276.29 11878.61 23985.23 306
mvs_tets79.13 16577.77 17783.22 14884.70 24566.37 15589.17 9190.19 14469.38 20675.40 21689.46 14444.17 31493.15 16776.78 11580.70 21790.14 185
MDA-MVSNet-bldmvs66.68 30963.66 31875.75 28679.28 33560.56 26073.92 34078.35 32764.43 27150.13 36979.87 32644.02 31583.67 31646.10 34956.86 35983.03 334
iter_conf0580.00 14578.70 15183.91 12887.84 18365.83 16688.84 10584.92 25771.61 16378.70 13588.94 15643.88 31694.56 10179.28 8884.28 17091.33 140
gg-mvs-nofinetune69.95 28867.96 29275.94 28583.07 27754.51 33077.23 32170.29 35763.11 28570.32 27562.33 36843.62 31788.69 27653.88 30887.76 12684.62 316
GG-mvs-BLEND75.38 29281.59 30455.80 31779.32 30069.63 35967.19 30973.67 35743.24 31888.90 27450.41 32384.50 16581.45 343
CMPMVSbinary51.72 2170.19 28668.16 28976.28 28373.15 36357.55 29379.47 29983.92 27148.02 36056.48 36184.81 26643.13 31986.42 29662.67 24181.81 20484.89 312
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
dp66.80 30865.43 31070.90 32979.74 33048.82 36075.12 33574.77 34659.61 31664.08 33477.23 34342.89 32080.72 33148.86 33466.58 34083.16 331
PVSNet64.34 1872.08 27070.87 26975.69 28786.21 22256.44 30974.37 33880.73 30662.06 30070.17 27882.23 30442.86 32183.31 32054.77 30484.45 16887.32 268
pmmvs-eth3d70.50 28367.83 29578.52 25877.37 34366.18 15881.82 26981.51 30058.90 32463.90 33680.42 32042.69 32286.28 29758.56 27865.30 34583.11 332
UnsupCasMVSNet_eth67.33 30665.99 30971.37 32273.48 36051.47 35075.16 33385.19 25365.20 26260.78 34680.93 31742.35 32377.20 34557.12 29153.69 36685.44 303
KD-MVS_self_test68.81 29567.59 30172.46 31674.29 35545.45 36577.93 31687.00 23063.12 28463.99 33578.99 33342.32 32484.77 31056.55 29864.09 34887.16 273
ADS-MVSNet266.20 31663.33 31974.82 29779.92 32458.75 27667.55 36175.19 34453.37 34965.25 32775.86 35042.32 32480.53 33241.57 36068.91 33285.18 307
ADS-MVSNet64.36 32062.88 32368.78 33779.92 32447.17 36267.55 36171.18 35553.37 34965.25 32775.86 35042.32 32473.99 36641.57 36068.91 33285.18 307
bld_raw_dy_0_6477.29 21275.98 21481.22 20485.04 24165.47 17588.14 13377.56 33169.20 21273.77 24389.40 15042.24 32788.85 27576.78 11581.64 20589.33 218
SixPastTwentyTwo73.37 25671.26 26679.70 23885.08 24057.89 28785.57 20283.56 27771.03 17465.66 32385.88 24242.10 32892.57 18559.11 27263.34 34988.65 243
JIA-IIPM66.32 31362.82 32476.82 28077.09 34461.72 24765.34 36875.38 34358.04 33164.51 33162.32 36942.05 32986.51 29551.45 32069.22 33182.21 338
ACMH67.68 1675.89 23273.93 24081.77 18988.71 15566.61 15288.62 11589.01 18269.81 19766.78 31486.70 22141.95 33091.51 22455.64 30178.14 24787.17 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+68.96 1476.01 23174.01 23982.03 18488.60 15865.31 18188.86 10387.55 21970.25 18967.75 30287.47 19941.27 33193.19 16558.37 28075.94 27387.60 260
MIMVSNet70.69 28069.30 27974.88 29684.52 24756.35 31275.87 32879.42 32164.59 26967.76 30182.41 30041.10 33281.54 32746.64 34781.34 20786.75 283
Anonymous20240521178.25 18477.01 19381.99 18591.03 8260.67 25884.77 22183.90 27270.65 18280.00 11991.20 10241.08 33391.43 22665.21 22285.26 15893.85 55
N_pmnet52.79 33853.26 33751.40 36278.99 3377.68 39369.52 3543.89 39351.63 35557.01 35974.98 35440.83 33465.96 37737.78 36564.67 34680.56 349
EU-MVSNet68.53 30067.61 30071.31 32578.51 33947.01 36384.47 22984.27 26742.27 36666.44 32084.79 26740.44 33583.76 31558.76 27768.54 33583.17 330
DSMNet-mixed57.77 33156.90 33360.38 35067.70 37235.61 38069.18 35653.97 38232.30 37857.49 35879.88 32540.39 33668.57 37538.78 36472.37 31476.97 356
OurMVSNet-221017-074.26 24772.42 25579.80 23683.76 26259.59 27285.92 19686.64 23466.39 25066.96 31187.58 19339.46 33791.60 21865.76 21969.27 33088.22 249
K. test v371.19 27368.51 28579.21 24883.04 27957.78 29084.35 23676.91 33872.90 14862.99 34082.86 29539.27 33891.09 23861.65 25252.66 36788.75 240
lessismore_v078.97 24981.01 31457.15 29865.99 36761.16 34582.82 29639.12 33991.34 22959.67 26646.92 37388.43 247
UnsupCasMVSNet_bld63.70 32261.53 32870.21 33173.69 35851.39 35172.82 34281.89 29655.63 34457.81 35771.80 36138.67 34078.61 33849.26 33352.21 36880.63 347
new-patchmatchnet61.73 32661.73 32761.70 34872.74 36524.50 38869.16 35778.03 32861.40 30356.72 36075.53 35338.42 34176.48 35145.95 35057.67 35884.13 321
MVS-HIRNet59.14 32957.67 33263.57 34681.65 30243.50 37371.73 34565.06 37039.59 37051.43 36757.73 37438.34 34282.58 32439.53 36373.95 30164.62 370
test250677.30 21176.49 20779.74 23790.08 10252.02 34387.86 14363.10 37374.88 10380.16 11892.79 7038.29 34392.35 19568.74 19392.50 7194.86 16
COLMAP_ROBcopyleft66.92 1773.01 26270.41 27480.81 21687.13 21065.63 17188.30 12584.19 26962.96 28863.80 33787.69 19138.04 34492.56 18646.66 34574.91 29384.24 319
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TESTMET0.1,169.89 28969.00 28372.55 31579.27 33656.85 30178.38 31074.71 34857.64 33368.09 30077.19 34437.75 34576.70 34863.92 23084.09 17284.10 322
OpenMVS_ROBcopyleft64.09 1970.56 28268.19 28877.65 27080.26 32059.41 27485.01 21682.96 28858.76 32565.43 32582.33 30137.63 34691.23 23245.34 35376.03 27282.32 337
FMVSNet569.50 29167.96 29274.15 30482.97 28255.35 32180.01 29482.12 29562.56 29563.02 33881.53 30936.92 34781.92 32548.42 33574.06 30085.17 309
MIMVSNet168.58 29866.78 30773.98 30580.07 32351.82 34680.77 28184.37 26364.40 27259.75 35182.16 30536.47 34883.63 31742.73 35870.33 32686.48 287
ITE_SJBPF78.22 26181.77 30160.57 25983.30 28169.25 20967.54 30487.20 20636.33 34987.28 29154.34 30674.62 29686.80 281
test-mter71.41 27270.39 27574.48 30081.35 30958.04 28378.38 31077.46 33260.32 31069.95 28379.00 33136.08 35079.24 33566.13 21384.83 16186.15 292
testgi66.67 31066.53 30867.08 34275.62 35041.69 37775.93 32576.50 33966.11 25265.20 32986.59 22535.72 35174.71 36343.71 35573.38 30984.84 313
EG-PatchMatch MVS74.04 25071.82 25980.71 21884.92 24367.42 13685.86 19888.08 20666.04 25464.22 33383.85 28035.10 35292.56 18657.44 28880.83 21482.16 340
KD-MVS_2432*160066.22 31463.89 31673.21 30975.47 35253.42 33870.76 35084.35 26464.10 27666.52 31778.52 33534.55 35384.98 30750.40 32450.33 37081.23 344
miper_refine_blended66.22 31463.89 31673.21 30975.47 35253.42 33870.76 35084.35 26464.10 27666.52 31778.52 33534.55 35384.98 30750.40 32450.33 37081.23 344
XVG-ACMP-BASELINE76.11 23074.27 23881.62 19183.20 27364.67 19383.60 24989.75 15669.75 20071.85 26387.09 21032.78 35592.11 20369.99 17980.43 22188.09 251
AllTest70.96 27668.09 29179.58 24285.15 23763.62 21284.58 22779.83 31762.31 29760.32 34886.73 21532.02 35688.96 27250.28 32671.57 32186.15 292
TestCases79.58 24285.15 23763.62 21279.83 31762.31 29760.32 34886.73 21532.02 35688.96 27250.28 32671.57 32186.15 292
USDC70.33 28468.37 28676.21 28480.60 31756.23 31379.19 30386.49 23660.89 30661.29 34485.47 25331.78 35889.47 26253.37 31176.21 27182.94 336
test_fmvs170.93 27770.52 27172.16 31773.71 35755.05 32480.82 27978.77 32551.21 35778.58 14084.41 27131.20 35976.94 34775.88 12480.12 22684.47 317
Anonymous2024052168.80 29667.22 30473.55 30774.33 35454.11 33283.18 25585.61 24958.15 32961.68 34380.94 31530.71 36081.27 32957.00 29373.34 31085.28 305
testing368.56 29967.67 29971.22 32687.33 20542.87 37483.06 26171.54 35470.36 18569.08 29384.38 27230.33 36185.69 30137.50 36675.45 28385.09 311
test_vis1_n69.85 29069.21 28171.77 31972.66 36655.27 32381.48 27576.21 34152.03 35375.30 22283.20 29128.97 36276.22 35474.60 13478.41 24583.81 325
tmp_tt18.61 35421.40 35710.23 3704.82 39310.11 39234.70 38030.74 3911.48 38723.91 38326.07 38428.42 36313.41 38927.12 37415.35 3867.17 384
test_fmvs1_n70.86 27870.24 27672.73 31472.51 36755.28 32281.27 27879.71 31951.49 35678.73 13484.87 26527.54 36477.02 34676.06 12179.97 22785.88 299
TDRefinement67.49 30464.34 31376.92 27973.47 36161.07 25284.86 22082.98 28759.77 31558.30 35585.13 26126.06 36587.89 28547.92 34260.59 35681.81 342
test_vis1_rt60.28 32858.42 33165.84 34367.25 37355.60 32070.44 35260.94 37644.33 36459.00 35266.64 36624.91 36668.67 37462.80 23769.48 32873.25 362
TinyColmap67.30 30764.81 31174.76 29881.92 30056.68 30680.29 29181.49 30160.33 30956.27 36283.22 28924.77 36787.66 28945.52 35169.47 32979.95 350
EGC-MVSNET52.07 34047.05 34467.14 34183.51 26660.71 25780.50 28767.75 3640.07 3880.43 38975.85 35224.26 36881.54 32728.82 37262.25 35059.16 373
LF4IMVS64.02 32162.19 32569.50 33370.90 36853.29 34176.13 32377.18 33652.65 35158.59 35380.98 31423.55 36976.52 35053.06 31366.66 33978.68 353
test_fmvs268.35 30267.48 30270.98 32869.50 37051.95 34580.05 29376.38 34049.33 35974.65 23684.38 27223.30 37075.40 36174.51 13575.17 29185.60 301
new_pmnet50.91 34150.29 34152.78 36168.58 37134.94 38263.71 37056.63 38139.73 36944.95 37165.47 36721.93 37158.48 38034.98 36856.62 36064.92 369
pmmvs357.79 33054.26 33568.37 33864.02 37656.72 30475.12 33565.17 36940.20 36852.93 36669.86 36520.36 37275.48 35945.45 35255.25 36572.90 363
PM-MVS66.41 31264.14 31473.20 31173.92 35656.45 30878.97 30664.96 37163.88 28264.72 33080.24 32119.84 37383.44 31966.24 21264.52 34779.71 351
mvsany_test353.99 33451.45 33961.61 34955.51 38144.74 37163.52 37145.41 38843.69 36558.11 35676.45 34717.99 37463.76 37954.77 30447.59 37276.34 358
ambc75.24 29373.16 36250.51 35563.05 37387.47 22264.28 33277.81 34117.80 37589.73 25757.88 28560.64 35585.49 302
ANet_high50.57 34246.10 34663.99 34548.67 38839.13 37870.99 34980.85 30461.39 30431.18 37757.70 37517.02 37673.65 36831.22 37115.89 38579.18 352
FPMVS53.68 33651.64 33859.81 35165.08 37551.03 35269.48 35569.58 36041.46 36740.67 37372.32 36016.46 37770.00 37324.24 37865.42 34458.40 375
test_method31.52 35029.28 35438.23 36527.03 3926.50 39420.94 38362.21 3744.05 38622.35 38452.50 37813.33 37847.58 38527.04 37534.04 37860.62 372
EMVS30.81 35129.65 35334.27 36750.96 38725.95 38656.58 37746.80 38724.01 38215.53 38730.68 38312.47 37954.43 38412.81 38617.05 38422.43 383
test_f52.09 33950.82 34055.90 35653.82 38442.31 37659.42 37458.31 38036.45 37356.12 36370.96 36312.18 38057.79 38153.51 31056.57 36167.60 367
test_fmvs363.36 32361.82 32667.98 33962.51 37746.96 36477.37 32074.03 35045.24 36267.50 30578.79 33412.16 38172.98 36972.77 15566.02 34283.99 323
E-PMN31.77 34930.64 35235.15 36652.87 38627.67 38457.09 37647.86 38624.64 38116.40 38633.05 38211.23 38254.90 38314.46 38518.15 38322.87 382
DeepMVS_CXcopyleft27.40 36840.17 39126.90 38524.59 39217.44 38423.95 38248.61 3799.77 38326.48 38718.06 38024.47 38128.83 381
Gipumacopyleft45.18 34641.86 34955.16 35977.03 34551.52 34932.50 38180.52 30932.46 37727.12 38035.02 3819.52 38475.50 35822.31 37960.21 35738.45 380
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet54.25 33349.68 34367.97 34053.73 38545.28 36866.85 36480.78 30535.96 37439.45 37562.23 3708.70 38578.06 34248.24 33951.20 36980.57 348
APD_test153.31 33749.93 34263.42 34765.68 37450.13 35671.59 34666.90 36634.43 37540.58 37471.56 3628.65 38676.27 35334.64 36955.36 36463.86 371
PMMVS240.82 34838.86 35146.69 36353.84 38316.45 39148.61 37849.92 38337.49 37131.67 37660.97 3718.14 38756.42 38228.42 37330.72 38067.19 368
test_vis3_rt49.26 34347.02 34556.00 35554.30 38245.27 36966.76 36548.08 38536.83 37244.38 37253.20 3777.17 38864.07 37856.77 29655.66 36258.65 374
testf145.72 34441.96 34757.00 35356.90 37945.32 36666.14 36659.26 37826.19 37930.89 37860.96 3724.14 38970.64 37126.39 37646.73 37455.04 376
APD_test245.72 34441.96 34757.00 35356.90 37945.32 36666.14 36659.26 37826.19 37930.89 37860.96 3724.14 38970.64 37126.39 37646.73 37455.04 376
PMVScopyleft37.38 2244.16 34740.28 35055.82 35740.82 39042.54 37565.12 36963.99 37234.43 37524.48 38157.12 3763.92 39176.17 35517.10 38255.52 36348.75 378
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive26.22 2330.37 35225.89 35643.81 36444.55 38935.46 38128.87 38239.07 38918.20 38318.58 38540.18 3802.68 39247.37 38617.07 38323.78 38248.60 379
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d16.82 35515.94 35819.46 36958.74 37831.45 38339.22 3793.74 3946.84 3856.04 3882.70 3881.27 39324.29 38810.54 38714.40 3872.63 385
test1236.12 3578.11 3600.14 3710.06 3950.09 39571.05 3480.03 3960.04 3900.25 3911.30 3900.05 3940.03 3910.21 3890.01 3890.29 386
testmvs6.04 3588.02 3610.10 3720.08 3940.03 39669.74 3530.04 3950.05 3890.31 3901.68 3890.02 3950.04 3900.24 3880.02 3880.25 387
test_blank0.00 3600.00 3630.00 3730.00 3960.00 3970.00 3840.00 3970.00 3910.00 3920.00 3910.00 3960.00 3920.00 3900.00 3900.00 388
uanet_test0.00 3600.00 3630.00 3730.00 3960.00 3970.00 3840.00 3970.00 3910.00 3920.00 3910.00 3960.00 3920.00 3900.00 3900.00 388
DCPMVS0.00 3600.00 3630.00 3730.00 3960.00 3970.00 3840.00 3970.00 3910.00 3920.00 3910.00 3960.00 3920.00 3900.00 3900.00 388
sosnet-low-res0.00 3600.00 3630.00 3730.00 3960.00 3970.00 3840.00 3970.00 3910.00 3920.00 3910.00 3960.00 3920.00 3900.00 3900.00 388
sosnet0.00 3600.00 3630.00 3730.00 3960.00 3970.00 3840.00 3970.00 3910.00 3920.00 3910.00 3960.00 3920.00 3900.00 3900.00 388
uncertanet0.00 3600.00 3630.00 3730.00 3960.00 3970.00 3840.00 3970.00 3910.00 3920.00 3910.00 3960.00 3920.00 3900.00 3900.00 388
Regformer0.00 3600.00 3630.00 3730.00 3960.00 3970.00 3840.00 3970.00 3910.00 3920.00 3910.00 3960.00 3920.00 3900.00 3900.00 388
ab-mvs-re7.23 3569.64 3590.00 3730.00 3960.00 3970.00 3840.00 3970.00 3910.00 39286.72 2170.00 3960.00 3920.00 3900.00 3900.00 388
uanet0.00 3600.00 3630.00 3730.00 3960.00 3970.00 3840.00 3970.00 3910.00 3920.00 3910.00 3960.00 3920.00 3900.00 3900.00 388
FOURS195.00 1072.39 3895.06 193.84 1574.49 11291.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 189.67 396.44 994.41 31
No_MVS89.16 194.34 2775.53 292.99 4597.53 189.67 396.44 994.41 31
eth-test20.00 396
eth-test0.00 396
IU-MVS95.30 271.25 5692.95 5166.81 24192.39 688.94 1396.63 494.85 18
save fliter93.80 4072.35 4190.47 6391.17 11674.31 115
test_0728_SECOND87.71 3195.34 171.43 5593.49 994.23 397.49 389.08 996.41 1294.21 41
GSMVS88.96 232
test_part295.06 872.65 3191.80 13
MTGPAbinary92.02 85
MTMP92.18 3432.83 390
gm-plane-assit81.40 30753.83 33562.72 29480.94 31592.39 19263.40 234
test9_res84.90 3395.70 2692.87 95
agg_prior282.91 5795.45 2992.70 98
agg_prior92.85 5971.94 5091.78 10084.41 6294.93 86
test_prior472.60 3389.01 98
test_prior86.33 5392.61 6569.59 8792.97 5095.48 6193.91 52
旧先验286.56 17958.10 33087.04 3288.98 27074.07 140
新几何286.29 187
无先验87.48 15088.98 18360.00 31394.12 12067.28 20588.97 231
原ACMM286.86 168
testdata291.01 24062.37 244
testdata184.14 24075.71 86
plane_prior790.08 10268.51 115
plane_prior592.44 6995.38 6878.71 9386.32 14691.33 140
plane_prior491.00 111
plane_prior368.60 11378.44 3078.92 132
plane_prior291.25 4979.12 22
plane_prior189.90 110
plane_prior68.71 10890.38 6677.62 3886.16 150
n20.00 397
nn0.00 397
door-mid69.98 358
test1192.23 79
door69.44 361
HQP5-MVS66.98 146
HQP-NCC89.33 12789.17 9176.41 7177.23 173
ACMP_Plane89.33 12789.17 9176.41 7177.23 173
BP-MVS77.47 105
HQP4-MVS77.24 17295.11 7991.03 152
HQP3-MVS92.19 8285.99 153
NP-MVS89.62 11468.32 11790.24 123
ACMMP++_ref81.95 202
ACMMP++81.25 208