This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
PC_three_145268.21 24292.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8592.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 52
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 24
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 41
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 5977.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 9989.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 27
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5894.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 8991.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 31
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
dcpmvs_285.63 5286.15 4484.06 12591.71 7564.94 19786.47 19091.87 9573.63 13186.60 4393.02 7276.57 1591.87 21683.36 6092.15 7595.35 3
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 37
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7793.82 1673.07 14784.86 6292.89 7476.22 1796.33 3884.89 4495.13 3694.40 34
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5793.56 2473.95 12383.16 9191.07 11675.94 1895.19 7579.94 9494.38 5493.55 76
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5480.26 1187.78 2994.27 3275.89 1996.81 2387.45 3296.44 993.05 96
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7474.62 11188.90 2093.85 5275.75 2096.00 4987.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8789.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
9.1488.26 1592.84 6091.52 4694.75 173.93 12588.57 2294.67 1975.57 2295.79 5386.77 3595.76 23
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13687.63 3094.27 5793.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DELS-MVS85.41 5785.30 5885.77 6488.49 16267.93 13285.52 21993.44 2778.70 2983.63 8789.03 16474.57 2495.71 5680.26 9294.04 5993.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
patch_mono-283.65 7684.54 6680.99 22090.06 10765.83 17584.21 24788.74 19871.60 16785.01 5592.44 8474.51 2583.50 33082.15 7592.15 7593.64 71
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11591.89 9368.69 23485.00 5793.10 6774.43 2695.41 6784.97 4195.71 2593.02 98
test_893.13 5272.57 3588.68 12091.84 9768.69 23484.87 6193.10 6774.43 2695.16 76
TEST993.26 5072.96 2588.75 11591.89 9368.44 23985.00 5793.10 6774.36 2895.41 67
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10792.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_prior288.85 11175.41 9384.91 5993.54 5674.28 2983.31 6195.86 20
TSAR-MVS + GP.85.71 5185.33 5686.84 4791.34 7872.50 3689.07 10487.28 22876.41 7285.80 4790.22 13474.15 3195.37 7281.82 7791.88 7892.65 109
ZD-MVS94.38 2572.22 4492.67 6170.98 18087.75 3194.07 4174.01 3296.70 2784.66 4794.84 43
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5573.01 14988.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 105
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6687.65 19567.22 15188.69 11993.04 3879.64 1885.33 5292.54 8373.30 3594.50 10783.49 5991.14 8995.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
canonicalmvs85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13181.50 7988.80 12094.77 22
segment_acmp73.08 37
DPM-MVS84.93 6384.29 7086.84 4790.20 10073.04 2387.12 16993.04 3869.80 20582.85 9591.22 11073.06 3896.02 4776.72 12694.63 4791.46 148
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5581.50 585.79 4893.47 6073.02 3997.00 1884.90 4294.94 3994.10 45
test_fmvsmconf_n85.92 4686.04 4785.57 6885.03 25069.51 9089.62 8690.58 13173.42 13887.75 3194.02 4472.85 4093.24 16090.37 390.75 9393.96 51
nrg03083.88 7183.53 7584.96 8486.77 21969.28 9890.46 6592.67 6174.79 10682.95 9291.33 10872.70 4193.09 17480.79 8779.28 24892.50 114
CDPH-MVS85.76 5085.29 5987.17 4393.49 4771.08 6188.58 12392.42 7268.32 24184.61 6793.48 5872.32 4296.15 4579.00 9895.43 3194.28 40
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6477.57 4183.84 8294.40 3072.24 4396.28 4085.65 3895.30 3593.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
casdiffmvspermissive85.11 6185.14 6085.01 8287.20 21165.77 17987.75 15392.83 5577.84 3784.36 7392.38 8572.15 4493.93 13081.27 8190.48 9695.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 9694.23 3572.13 4597.09 1684.83 4595.37 3293.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_l_conf0.5_n84.47 6784.54 6684.27 11385.42 23968.81 10588.49 12587.26 22968.08 24388.03 2793.49 5772.04 4691.77 21888.90 1789.14 11692.24 125
baseline84.93 6384.98 6184.80 9287.30 20965.39 18887.30 16592.88 5277.62 3984.04 7992.26 8771.81 4793.96 12481.31 8090.30 9995.03 8
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5394.32 3171.76 4896.93 1985.53 3995.79 2294.32 38
test_fmvsmconf0.1_n85.61 5385.65 5185.50 6982.99 29569.39 9689.65 8490.29 14473.31 14187.77 3094.15 3871.72 4993.23 16190.31 490.67 9593.89 56
MM89.16 689.23 788.97 490.79 9073.65 1092.66 2391.17 11686.57 187.39 3594.97 1671.70 5097.68 192.19 195.63 2895.57 1
test1286.80 4992.63 6470.70 7291.79 9982.71 9871.67 5196.16 4494.50 5093.54 77
UniMVSNet_NR-MVSNet81.88 10681.54 10682.92 17188.46 16463.46 22887.13 16892.37 7380.19 1278.38 15489.14 16071.66 5293.05 17670.05 18676.46 27892.25 123
CS-MVS86.69 3586.95 3185.90 6390.76 9167.57 14092.83 1793.30 3279.67 1784.57 6992.27 8671.47 5395.02 8684.24 5493.46 6395.13 6
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7084.22 7493.36 6371.44 5496.76 2580.82 8595.33 3494.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsm_n_192085.29 5985.34 5585.13 7986.12 22969.93 8388.65 12190.78 12769.97 20188.27 2393.98 4971.39 5591.54 22888.49 2390.45 9793.91 53
MVS_111021_HR85.14 6084.75 6486.32 5591.65 7672.70 3085.98 20290.33 14176.11 8182.08 10291.61 10071.36 5694.17 12081.02 8292.58 7092.08 131
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5693.59 2376.27 7988.14 2495.09 1571.06 5796.67 2987.67 2996.37 1494.09 46
fmvsm_l_conf0.5_n_a84.13 6984.16 7184.06 12585.38 24068.40 12088.34 13286.85 23767.48 25087.48 3493.40 6170.89 5891.61 22288.38 2589.22 11592.16 129
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7993.50 2575.17 10086.34 4495.29 1270.86 5996.00 4988.78 1996.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 5994.44 2870.78 6096.61 3284.53 4994.89 4193.66 65
EI-MVSNet-Vis-set84.19 6883.81 7385.31 7388.18 17267.85 13387.66 15589.73 15980.05 1482.95 9289.59 14870.74 6194.82 9580.66 8984.72 17093.28 86
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6393.99 4870.67 6296.82 2284.18 5695.01 3793.90 55
CS-MVS-test86.29 4286.48 3785.71 6591.02 8367.21 15292.36 2993.78 1878.97 2883.51 8891.20 11170.65 6395.15 7781.96 7694.89 4194.77 22
CANet86.45 3886.10 4587.51 3790.09 10270.94 6789.70 8392.59 6681.78 481.32 11291.43 10670.34 6497.23 1384.26 5293.36 6494.37 35
alignmvs85.48 5485.32 5785.96 6289.51 12069.47 9289.74 8192.47 6876.17 8087.73 3391.46 10570.32 6593.78 13681.51 7888.95 11794.63 26
EI-MVSNet-UG-set83.81 7283.38 7885.09 8087.87 18367.53 14187.44 16189.66 16079.74 1682.23 10189.41 15770.24 6694.74 9879.95 9383.92 18392.99 100
MVS_Test83.15 8883.06 8383.41 14986.86 21563.21 23486.11 20092.00 8774.31 11682.87 9489.44 15670.03 6793.21 16377.39 11688.50 12693.81 60
FC-MVSNet-test81.52 11682.02 10080.03 24088.42 16655.97 32587.95 14693.42 2977.10 5677.38 17790.98 12269.96 6891.79 21768.46 20584.50 17392.33 119
MVS_030488.08 1488.08 1788.08 1489.67 11472.04 4892.26 3389.26 17384.19 285.01 5595.18 1369.93 6997.20 1491.63 295.60 2994.99 9
FIs82.07 10382.42 9181.04 21988.80 15158.34 28888.26 13593.49 2676.93 6078.47 15391.04 11769.92 7092.34 19969.87 19084.97 16792.44 118
UniMVSNet (Re)81.60 11581.11 11183.09 16288.38 16764.41 20987.60 15693.02 4278.42 3278.56 15088.16 19069.78 7193.26 15969.58 19376.49 27791.60 140
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8283.81 8393.95 5169.77 7296.01 4885.15 4094.66 4694.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
Effi-MVS+83.62 7983.08 8285.24 7588.38 16767.45 14288.89 10989.15 17975.50 9282.27 10088.28 18669.61 7394.45 10977.81 11187.84 13093.84 59
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15285.22 5491.90 9269.47 7496.42 3783.28 6295.94 1994.35 36
UA-Net85.08 6284.96 6285.45 7092.07 7068.07 12989.78 8090.86 12682.48 384.60 6893.20 6669.35 7595.22 7471.39 17490.88 9293.07 95
ETV-MVS84.90 6584.67 6585.59 6789.39 12568.66 11688.74 11792.64 6579.97 1584.10 7785.71 25469.32 7695.38 6980.82 8591.37 8692.72 104
旧先验191.96 7165.79 17886.37 24493.08 7169.31 7792.74 6888.74 253
fmvsm_s_conf0.5_n_a83.63 7883.41 7784.28 11186.14 22868.12 12789.43 9082.87 29670.27 19587.27 3793.80 5469.09 7891.58 22488.21 2683.65 19093.14 93
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7094.52 2169.09 7896.70 2784.37 5194.83 4494.03 49
EIA-MVS83.31 8782.80 8984.82 9089.59 11665.59 18188.21 13692.68 6074.66 10978.96 13986.42 24169.06 8095.26 7375.54 13890.09 10393.62 72
EPP-MVSNet83.40 8483.02 8484.57 9690.13 10164.47 20792.32 3090.73 12874.45 11579.35 13591.10 11469.05 8195.12 7872.78 16387.22 13894.13 44
EC-MVSNet86.01 4386.38 3884.91 8889.31 13166.27 16692.32 3093.63 2179.37 2084.17 7691.88 9369.04 8295.43 6583.93 5793.77 6193.01 99
fmvsm_s_conf0.5_n83.80 7383.71 7484.07 12386.69 22167.31 14789.46 8983.07 29271.09 17786.96 4193.70 5569.02 8391.47 23388.79 1884.62 17293.44 80
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6694.52 2168.81 8496.65 3084.53 4994.90 4094.00 50
test_fmvsmvis_n_192084.02 7083.87 7284.49 10184.12 26669.37 9788.15 14087.96 21270.01 19983.95 8093.23 6568.80 8591.51 23188.61 2089.96 10692.57 110
mvs_anonymous79.42 16679.11 15480.34 23484.45 26157.97 29482.59 27387.62 22167.40 25176.17 21188.56 17968.47 8689.59 26870.65 18186.05 15793.47 79
fmvsm_s_conf0.1_n83.56 8083.38 7884.10 11884.86 25267.28 14889.40 9383.01 29370.67 18587.08 3893.96 5068.38 8791.45 23488.56 2284.50 17393.56 75
fmvsm_s_conf0.1_n_a83.32 8682.99 8584.28 11183.79 27368.07 12989.34 9582.85 29769.80 20587.36 3694.06 4268.34 8891.56 22687.95 2783.46 19693.21 90
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18792.02 8579.45 1985.88 4694.80 1768.07 8996.21 4286.69 3695.34 3393.23 87
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5876.62 7083.68 8494.46 2567.93 9095.95 5284.20 5594.39 5393.23 87
PAPM_NR83.02 9282.41 9284.82 9092.47 6766.37 16487.93 14891.80 9873.82 12777.32 17990.66 12567.90 9194.90 9170.37 18389.48 11293.19 91
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7093.04 3875.53 9183.86 8194.42 2967.87 9296.64 3182.70 7294.57 4993.66 65
PAPR81.66 11480.89 11683.99 13390.27 9864.00 21586.76 18391.77 10168.84 23277.13 18889.50 14967.63 9394.88 9367.55 21188.52 12593.09 94
Fast-Effi-MVS+80.81 12979.92 13283.47 14588.85 14664.51 20485.53 21789.39 16770.79 18278.49 15285.06 27267.54 9493.58 14467.03 21986.58 14792.32 120
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8594.17 3667.45 9596.60 3383.06 6394.50 5094.07 47
X-MVStestdata80.37 14577.83 18288.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8512.47 40067.45 9596.60 3383.06 6394.50 5094.07 47
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 6774.50 11286.84 4294.65 2067.31 9795.77 5484.80 4692.85 6792.84 103
NR-MVSNet80.23 14879.38 14482.78 18087.80 18763.34 23186.31 19491.09 12079.01 2672.17 27389.07 16267.20 9892.81 18566.08 22575.65 29192.20 126
MSLP-MVS++85.43 5685.76 5084.45 10391.93 7270.24 7690.71 5892.86 5377.46 4784.22 7492.81 7867.16 9992.94 18080.36 9094.35 5590.16 194
MG-MVS83.41 8383.45 7683.28 15292.74 6262.28 24888.17 13889.50 16475.22 9681.49 11192.74 8266.75 10095.11 8072.85 16291.58 8392.45 117
test_fmvsmconf0.01_n84.73 6684.52 6885.34 7280.25 33569.03 9989.47 8889.65 16173.24 14486.98 4094.27 3266.62 10193.23 16190.26 589.95 10793.78 62
EI-MVSNet80.52 14179.98 13182.12 19084.28 26263.19 23686.41 19188.95 18974.18 12078.69 14587.54 20666.62 10192.43 19372.57 16680.57 23290.74 172
IterMVS-LS80.06 15179.38 14482.11 19185.89 23163.20 23586.79 18089.34 16874.19 11975.45 22486.72 22666.62 10192.39 19572.58 16576.86 27290.75 171
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_ehance_all_eth78.59 18877.76 18781.08 21882.66 30261.56 25783.65 25589.15 17968.87 23175.55 22083.79 29366.49 10492.03 20873.25 15876.39 28089.64 221
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8076.87 6282.81 9794.25 3466.44 10596.24 4182.88 6794.28 5693.38 81
c3_l78.75 18277.91 17981.26 21182.89 29761.56 25784.09 25089.13 18169.97 20175.56 21984.29 28466.36 10692.09 20773.47 15575.48 29590.12 197
GeoE81.71 11081.01 11483.80 13989.51 12064.45 20888.97 10688.73 19971.27 17378.63 14889.76 14266.32 10793.20 16669.89 18986.02 15893.74 63
WR-MVS_H78.51 18978.49 16578.56 26588.02 17956.38 32088.43 12692.67 6177.14 5473.89 25387.55 20566.25 10889.24 27458.92 28373.55 32190.06 204
PCF-MVS73.52 780.38 14378.84 15985.01 8287.71 19268.99 10283.65 25591.46 11163.00 30177.77 17190.28 13166.10 10995.09 8461.40 26388.22 12990.94 165
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EPNet83.72 7582.92 8786.14 5984.22 26469.48 9191.05 5585.27 25781.30 676.83 19091.65 9766.09 11095.56 5876.00 13293.85 6093.38 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
原ACMM184.35 10793.01 5768.79 10692.44 6963.96 29481.09 11791.57 10166.06 11195.45 6367.19 21694.82 4588.81 249
PVSNet_BlendedMVS80.60 13880.02 13082.36 18988.85 14665.40 18686.16 19992.00 8769.34 21578.11 16386.09 24966.02 11294.27 11371.52 17182.06 21387.39 277
PVSNet_Blended80.98 12480.34 12582.90 17288.85 14665.40 18684.43 24292.00 8767.62 24778.11 16385.05 27366.02 11294.27 11371.52 17189.50 11189.01 239
diffmvspermissive82.10 10181.88 10382.76 18283.00 29363.78 22083.68 25489.76 15772.94 15082.02 10389.85 14065.96 11490.79 25282.38 7487.30 13793.71 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4573.54 13585.94 4594.51 2465.80 11595.61 5783.04 6592.51 7193.53 78
miper_enhance_ethall77.87 20776.86 20680.92 22381.65 31661.38 25982.68 27288.98 18665.52 27475.47 22182.30 31565.76 11692.00 21072.95 16176.39 28089.39 227
PVSNet_Blended_VisFu82.62 9681.83 10484.96 8490.80 8969.76 8788.74 11791.70 10269.39 21378.96 13988.46 18165.47 11794.87 9474.42 14588.57 12390.24 192
API-MVS81.99 10581.23 10984.26 11490.94 8570.18 8291.10 5389.32 16971.51 16978.66 14788.28 18665.26 11895.10 8364.74 23691.23 8887.51 275
TranMVSNet+NR-MVSNet80.84 12780.31 12682.42 18787.85 18462.33 24687.74 15491.33 11280.55 977.99 16789.86 13965.23 11992.62 18667.05 21875.24 30592.30 121
IS-MVSNet83.15 8882.81 8884.18 11689.94 11063.30 23291.59 4388.46 20479.04 2579.49 13392.16 8865.10 12094.28 11267.71 20991.86 8194.95 10
DU-MVS81.12 12380.52 12282.90 17287.80 18763.46 22887.02 17291.87 9579.01 2678.38 15489.07 16265.02 12193.05 17670.05 18676.46 27892.20 126
Baseline_NR-MVSNet78.15 19878.33 17177.61 28185.79 23256.21 32386.78 18185.76 25373.60 13377.93 16887.57 20365.02 12188.99 27867.14 21775.33 30287.63 271
SR-MVS-dyc-post85.77 4985.61 5286.23 5693.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2665.00 12395.56 5882.75 6891.87 7992.50 114
VNet82.21 10082.41 9281.62 20090.82 8860.93 26284.47 23889.78 15676.36 7784.07 7891.88 9364.71 12490.26 25870.68 18088.89 11893.66 65
Test By Simon64.33 125
ACMMPcopyleft85.89 4885.39 5487.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12193.82 5364.33 12596.29 3982.67 7390.69 9493.23 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DP-MVS Recon83.11 9182.09 9886.15 5894.44 1970.92 6888.79 11392.20 8170.53 18979.17 13791.03 11964.12 12796.03 4668.39 20690.14 10291.50 145
CLD-MVS82.31 9981.65 10584.29 11088.47 16367.73 13685.81 21092.35 7475.78 8678.33 15686.58 23664.01 12894.35 11076.05 13187.48 13590.79 168
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
RE-MVS-def85.48 5393.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2663.87 12982.75 6891.87 7992.50 114
MVS78.19 19776.99 20481.78 19785.66 23466.99 15484.66 23290.47 13555.08 36172.02 27585.27 26563.83 13094.11 12266.10 22489.80 10984.24 332
WR-MVS79.49 16279.22 15180.27 23688.79 15258.35 28785.06 22488.61 20278.56 3077.65 17288.34 18463.81 13190.66 25564.98 23477.22 26791.80 138
VPA-MVSNet80.60 13880.55 12180.76 22688.07 17760.80 26586.86 17791.58 10575.67 9080.24 12589.45 15563.34 13290.25 25970.51 18279.22 24991.23 153
新几何183.42 14793.13 5270.71 7185.48 25657.43 35181.80 10791.98 9063.28 13392.27 20164.60 23792.99 6587.27 281
HY-MVS69.67 1277.95 20477.15 20080.36 23387.57 20160.21 27583.37 26287.78 21966.11 26575.37 22787.06 22163.27 13490.48 25761.38 26482.43 20990.40 186
XXY-MVS75.41 24975.56 22874.96 30683.59 27757.82 29880.59 29783.87 27866.54 26274.93 24288.31 18563.24 13580.09 34862.16 25576.85 27386.97 290
ab-mvs79.51 16178.97 15781.14 21688.46 16460.91 26383.84 25289.24 17570.36 19179.03 13888.87 16963.23 13690.21 26065.12 23282.57 20892.28 122
xiu_mvs_v2_base81.69 11181.05 11283.60 14289.15 13868.03 13184.46 24090.02 15070.67 18581.30 11586.53 23963.17 13794.19 11975.60 13788.54 12488.57 257
pcd_1.5k_mvsjas5.26 3747.02 3770.00 3880.00 4110.00 4130.00 3990.00 4120.00 4060.00 4070.00 40663.15 1380.00 4070.00 4060.00 4050.00 403
PS-MVSNAJss82.07 10381.31 10784.34 10886.51 22467.27 14989.27 9691.51 10771.75 16179.37 13490.22 13463.15 13894.27 11377.69 11282.36 21091.49 146
PS-MVSNAJ81.69 11181.02 11383.70 14189.51 12068.21 12684.28 24690.09 14970.79 18281.26 11685.62 25963.15 13894.29 11175.62 13688.87 11988.59 256
WTY-MVS75.65 24475.68 22675.57 30086.40 22556.82 31177.92 33282.40 30165.10 27676.18 20987.72 19863.13 14180.90 34560.31 27181.96 21489.00 241
TransMVSNet (Re)75.39 25074.56 24277.86 27585.50 23857.10 30886.78 18186.09 24972.17 15871.53 27987.34 20963.01 14289.31 27356.84 30461.83 36687.17 283
v879.97 15579.02 15682.80 17784.09 26764.50 20687.96 14590.29 14474.13 12275.24 23486.81 22362.88 14393.89 13374.39 14675.40 30090.00 206
HPM-MVS_fast85.35 5884.95 6386.57 5393.69 4270.58 7592.15 3691.62 10373.89 12682.67 9994.09 4062.60 14495.54 6080.93 8392.93 6693.57 74
PAPM77.68 21376.40 21981.51 20387.29 21061.85 25383.78 25389.59 16264.74 28171.23 28188.70 17262.59 14593.66 14352.66 32387.03 14189.01 239
1112_ss77.40 21876.43 21880.32 23589.11 14360.41 27283.65 25587.72 22062.13 31473.05 26386.72 22662.58 14689.97 26262.11 25780.80 22890.59 178
LCM-MVSNet-Re77.05 22376.94 20577.36 28487.20 21151.60 36080.06 30480.46 32075.20 9767.69 31686.72 22662.48 14788.98 27963.44 24289.25 11491.51 143
v14878.72 18477.80 18481.47 20482.73 30061.96 25286.30 19588.08 20973.26 14276.18 20985.47 26262.46 14892.36 19771.92 17073.82 31990.09 200
baseline176.98 22576.75 21277.66 27988.13 17355.66 32885.12 22381.89 30573.04 14876.79 19188.90 16762.43 14987.78 29763.30 24471.18 33889.55 224
MAR-MVS81.84 10780.70 11885.27 7491.32 7971.53 5489.82 7790.92 12269.77 20778.50 15186.21 24562.36 15094.52 10665.36 23092.05 7789.77 218
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVS_111021_LR82.61 9782.11 9784.11 11788.82 14971.58 5385.15 22286.16 24774.69 10880.47 12391.04 11762.29 15190.55 25680.33 9190.08 10490.20 193
TAMVS78.89 18177.51 19483.03 16687.80 18767.79 13584.72 23185.05 26067.63 24676.75 19387.70 19962.25 15290.82 25158.53 28887.13 13990.49 182
CP-MVSNet78.22 19478.34 17077.84 27687.83 18654.54 33987.94 14791.17 11677.65 3873.48 25888.49 18062.24 15388.43 28962.19 25474.07 31490.55 179
OMC-MVS82.69 9581.97 10284.85 8988.75 15467.42 14387.98 14490.87 12574.92 10379.72 13091.65 9762.19 15493.96 12475.26 14086.42 15093.16 92
cl____77.72 21076.76 21080.58 22982.49 30660.48 27083.09 26787.87 21569.22 21974.38 25085.22 26862.10 15591.53 22971.09 17675.41 29989.73 220
DIV-MVS_self_test77.72 21076.76 21080.58 22982.48 30760.48 27083.09 26787.86 21669.22 21974.38 25085.24 26662.10 15591.53 22971.09 17675.40 30089.74 219
testdata79.97 24190.90 8664.21 21284.71 26359.27 33585.40 5192.91 7362.02 15789.08 27768.95 19991.37 8686.63 298
eth_miper_zixun_eth77.92 20576.69 21381.61 20283.00 29361.98 25183.15 26589.20 17769.52 21274.86 24384.35 28361.76 15892.56 18971.50 17372.89 32790.28 191
MVSFormer82.85 9482.05 9985.24 7587.35 20370.21 7790.50 6290.38 13768.55 23681.32 11289.47 15161.68 15993.46 15378.98 9990.26 10092.05 132
lupinMVS81.39 11980.27 12884.76 9387.35 20370.21 7785.55 21586.41 24262.85 30481.32 11288.61 17661.68 15992.24 20378.41 10690.26 10091.83 136
cdsmvs_eth3d_5k19.96 36826.61 3700.00 3880.00 4110.00 4130.00 39989.26 1730.00 4060.00 40788.61 17661.62 1610.00 4070.00 4060.00 4050.00 403
h-mvs3383.15 8882.19 9686.02 6190.56 9370.85 7088.15 14089.16 17876.02 8384.67 6491.39 10761.54 16295.50 6182.71 7075.48 29591.72 139
hse-mvs281.72 10980.94 11584.07 12388.72 15567.68 13885.87 20687.26 22976.02 8384.67 6488.22 18961.54 16293.48 15182.71 7073.44 32391.06 159
CDS-MVSNet79.07 17677.70 18983.17 15987.60 19768.23 12584.40 24486.20 24667.49 24976.36 20486.54 23861.54 16290.79 25261.86 25987.33 13690.49 182
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v1079.74 15778.67 16182.97 17084.06 26864.95 19687.88 15190.62 13073.11 14675.11 23786.56 23761.46 16594.05 12373.68 15175.55 29389.90 212
v114480.03 15279.03 15583.01 16783.78 27464.51 20487.11 17090.57 13371.96 16078.08 16586.20 24661.41 16693.94 12774.93 14177.23 26690.60 177
cl2278.07 20077.01 20281.23 21282.37 30961.83 25483.55 25987.98 21168.96 23075.06 23983.87 28961.40 16791.88 21573.53 15376.39 28089.98 209
BH-w/o78.21 19577.33 19880.84 22488.81 15065.13 19384.87 22887.85 21769.75 20874.52 24884.74 27761.34 16893.11 17358.24 29185.84 16184.27 331
Test_1112_low_res76.40 23575.44 23079.27 25589.28 13358.09 29081.69 28287.07 23359.53 33372.48 26986.67 23161.30 16989.33 27260.81 26980.15 23790.41 185
Vis-MVSNet (Re-imp)78.36 19278.45 16678.07 27488.64 15851.78 35986.70 18479.63 32974.14 12175.11 23790.83 12361.29 17089.75 26558.10 29291.60 8292.69 107
PEN-MVS77.73 20977.69 19077.84 27687.07 21453.91 34487.91 14991.18 11577.56 4373.14 26288.82 17061.23 17189.17 27559.95 27372.37 32990.43 184
pm-mvs177.25 22276.68 21478.93 25984.22 26458.62 28686.41 19188.36 20571.37 17173.31 25988.01 19661.22 17289.15 27664.24 23873.01 32689.03 238
BH-untuned79.47 16378.60 16382.05 19289.19 13765.91 17386.07 20188.52 20372.18 15775.42 22587.69 20061.15 17393.54 14860.38 27086.83 14486.70 296
v2v48280.23 14879.29 14883.05 16583.62 27664.14 21387.04 17189.97 15273.61 13278.18 16287.22 21461.10 17493.82 13476.11 12976.78 27591.18 154
jason81.39 11980.29 12784.70 9486.63 22369.90 8585.95 20386.77 23863.24 29781.07 11889.47 15161.08 17592.15 20578.33 10790.07 10592.05 132
jason: jason.
Vis-MVSNetpermissive83.46 8282.80 8985.43 7190.25 9968.74 11090.30 6990.13 14876.33 7880.87 12092.89 7461.00 17694.20 11872.45 16890.97 9093.35 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAPA-MVS73.13 979.15 17377.94 17882.79 17989.59 11662.99 24188.16 13991.51 10765.77 27077.14 18791.09 11560.91 17793.21 16350.26 33887.05 14092.17 128
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PS-CasMVS78.01 20378.09 17577.77 27887.71 19254.39 34188.02 14391.22 11377.50 4673.26 26088.64 17560.73 17888.41 29061.88 25873.88 31890.53 180
OPM-MVS83.50 8182.95 8685.14 7788.79 15270.95 6689.13 10391.52 10677.55 4480.96 11991.75 9560.71 17994.50 10779.67 9586.51 14989.97 210
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XVG-OURS-SEG-HR80.81 12979.76 13683.96 13585.60 23668.78 10783.54 26090.50 13470.66 18776.71 19491.66 9660.69 18091.26 23976.94 12081.58 21991.83 136
v14419279.47 16378.37 16982.78 18083.35 28163.96 21686.96 17390.36 14069.99 20077.50 17485.67 25760.66 18193.77 13874.27 14776.58 27690.62 175
V4279.38 16978.24 17382.83 17481.10 32765.50 18385.55 21589.82 15571.57 16878.21 16086.12 24860.66 18193.18 16975.64 13575.46 29789.81 217
SDMVSNet80.38 14380.18 12980.99 22089.03 14464.94 19780.45 30089.40 16675.19 9876.61 19889.98 13760.61 18387.69 29876.83 12383.55 19290.33 188
CPTT-MVS83.73 7483.33 8084.92 8793.28 4970.86 6992.09 3790.38 13768.75 23379.57 13292.83 7660.60 18493.04 17880.92 8491.56 8490.86 167
DTE-MVSNet76.99 22476.80 20877.54 28386.24 22653.06 35287.52 15890.66 12977.08 5772.50 26888.67 17460.48 18589.52 26957.33 29970.74 34090.05 205
HQP_MVS83.64 7783.14 8185.14 7790.08 10368.71 11291.25 5092.44 6979.12 2378.92 14191.00 12060.42 18695.38 6978.71 10286.32 15191.33 149
plane_prior689.84 11268.70 11460.42 186
3Dnovator+77.84 485.48 5484.47 6988.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19593.37 6260.40 18896.75 2677.20 11793.73 6295.29 5
HQP2-MVS60.17 189
HQP-MVS82.61 9782.02 10084.37 10589.33 12866.98 15589.17 9892.19 8276.41 7277.23 18290.23 13360.17 18995.11 8077.47 11485.99 15991.03 161
VPNet78.69 18578.66 16278.76 26188.31 16955.72 32784.45 24186.63 24076.79 6478.26 15890.55 12859.30 19189.70 26766.63 22077.05 26990.88 166
v119279.59 16078.43 16883.07 16483.55 27864.52 20386.93 17590.58 13170.83 18177.78 17085.90 25059.15 19293.94 12773.96 15077.19 26890.76 170
test22291.50 7768.26 12484.16 24883.20 29054.63 36279.74 12991.63 9958.97 19391.42 8586.77 294
CHOSEN 1792x268877.63 21475.69 22583.44 14689.98 10968.58 11878.70 32287.50 22456.38 35675.80 21686.84 22258.67 19491.40 23661.58 26285.75 16390.34 187
3Dnovator76.31 583.38 8582.31 9586.59 5287.94 18172.94 2890.64 5992.14 8477.21 5275.47 22192.83 7658.56 19594.72 9973.24 15992.71 6992.13 130
v192192079.22 17178.03 17682.80 17783.30 28363.94 21786.80 17990.33 14169.91 20377.48 17585.53 26058.44 19693.75 14073.60 15276.85 27390.71 173
FA-MVS(test-final)80.96 12579.91 13384.10 11888.30 17065.01 19584.55 23790.01 15173.25 14379.61 13187.57 20358.35 19794.72 9971.29 17586.25 15392.56 111
114514_t80.68 13579.51 14184.20 11594.09 3867.27 14989.64 8591.11 11958.75 34174.08 25290.72 12458.10 19895.04 8569.70 19189.42 11390.30 190
v7n78.97 17977.58 19383.14 16083.45 28065.51 18288.32 13391.21 11473.69 13072.41 27086.32 24457.93 19993.81 13569.18 19675.65 29190.11 198
CL-MVSNet_self_test72.37 27871.46 27375.09 30579.49 34853.53 34680.76 29485.01 26169.12 22470.51 28582.05 31957.92 20084.13 32552.27 32566.00 35887.60 272
baseline275.70 24373.83 25281.30 21083.26 28461.79 25582.57 27480.65 31666.81 25266.88 32583.42 29957.86 20192.19 20463.47 24179.57 24289.91 211
QAPM80.88 12679.50 14285.03 8188.01 18068.97 10391.59 4392.00 8766.63 26175.15 23692.16 8857.70 20295.45 6363.52 24088.76 12190.66 174
HyFIR lowres test77.53 21575.40 23283.94 13689.59 11666.62 16080.36 30188.64 20156.29 35776.45 20085.17 26957.64 20393.28 15861.34 26583.10 20191.91 135
CNLPA78.08 19976.79 20981.97 19590.40 9771.07 6287.59 15784.55 26666.03 26872.38 27189.64 14557.56 20486.04 30959.61 27683.35 19788.79 250
test_yl81.17 12180.47 12383.24 15589.13 13963.62 22186.21 19789.95 15372.43 15581.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
DCV-MVSNet81.17 12180.47 12383.24 15589.13 13963.62 22186.21 19789.95 15372.43 15581.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
sss73.60 26473.64 25473.51 32082.80 29855.01 33576.12 33981.69 30862.47 31074.68 24585.85 25357.32 20778.11 35660.86 26880.93 22587.39 277
Effi-MVS+-dtu80.03 15278.57 16484.42 10485.13 24768.74 11088.77 11488.10 20874.99 10274.97 24183.49 29857.27 20893.36 15673.53 15380.88 22691.18 154
AdaColmapbinary80.58 14079.42 14384.06 12593.09 5468.91 10489.36 9488.97 18869.27 21675.70 21789.69 14357.20 20995.77 5463.06 24588.41 12787.50 276
v124078.99 17877.78 18582.64 18383.21 28563.54 22586.62 18690.30 14369.74 21077.33 17885.68 25657.04 21093.76 13973.13 16076.92 27090.62 175
miper_lstm_enhance74.11 25873.11 25977.13 28880.11 33759.62 28072.23 35986.92 23666.76 25470.40 28782.92 30656.93 21182.92 33469.06 19872.63 32888.87 246
BH-RMVSNet79.61 15878.44 16783.14 16089.38 12665.93 17284.95 22787.15 23273.56 13478.19 16189.79 14156.67 21293.36 15659.53 27786.74 14590.13 196
test_djsdf80.30 14779.32 14783.27 15383.98 27065.37 18990.50 6290.38 13768.55 23676.19 20888.70 17256.44 21393.46 15378.98 9980.14 23890.97 164
EPNet_dtu75.46 24774.86 23877.23 28782.57 30454.60 33886.89 17683.09 29171.64 16266.25 33685.86 25255.99 21488.04 29454.92 31286.55 14889.05 237
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CostFormer75.24 25173.90 25079.27 25582.65 30358.27 28980.80 29282.73 29961.57 31775.33 23183.13 30355.52 21591.07 24864.98 23478.34 25988.45 258
tpmrst72.39 27672.13 26773.18 32480.54 33249.91 36979.91 30879.08 33463.11 29971.69 27879.95 33755.32 21682.77 33565.66 22973.89 31786.87 291
131476.53 23075.30 23680.21 23783.93 27162.32 24784.66 23288.81 19260.23 32670.16 29284.07 28855.30 21790.73 25467.37 21383.21 19987.59 274
tfpnnormal74.39 25473.16 25878.08 27386.10 23058.05 29184.65 23487.53 22370.32 19371.22 28285.63 25854.97 21889.86 26343.03 37075.02 30786.32 300
sd_testset77.70 21277.40 19578.60 26489.03 14460.02 27679.00 31885.83 25275.19 9876.61 19889.98 13754.81 21985.46 31662.63 25183.55 19290.33 188
GBi-Net78.40 19077.40 19581.40 20787.60 19763.01 23888.39 12889.28 17071.63 16375.34 22887.28 21054.80 22091.11 24262.72 24779.57 24290.09 200
test178.40 19077.40 19581.40 20787.60 19763.01 23888.39 12889.28 17071.63 16375.34 22887.28 21054.80 22091.11 24262.72 24779.57 24290.09 200
FMVSNet278.20 19677.21 19981.20 21487.60 19762.89 24287.47 16089.02 18471.63 16375.29 23387.28 21054.80 22091.10 24562.38 25279.38 24689.61 222
Fast-Effi-MVS+-dtu78.02 20276.49 21682.62 18483.16 28966.96 15786.94 17487.45 22672.45 15271.49 28084.17 28654.79 22391.58 22467.61 21080.31 23589.30 230
MVSTER79.01 17777.88 18182.38 18883.07 29064.80 20084.08 25188.95 18969.01 22978.69 14587.17 21754.70 22492.43 19374.69 14280.57 23289.89 213
OpenMVScopyleft72.83 1079.77 15678.33 17184.09 12185.17 24369.91 8490.57 6090.97 12166.70 25572.17 27391.91 9154.70 22493.96 12461.81 26090.95 9188.41 260
XVG-OURS80.41 14279.23 15083.97 13485.64 23569.02 10183.03 27190.39 13671.09 17777.63 17391.49 10454.62 22691.35 23775.71 13483.47 19591.54 142
mvsmamba81.69 11180.74 11784.56 9787.45 20266.72 15991.26 4885.89 25174.66 10978.23 15990.56 12754.33 22794.91 8880.73 8883.54 19492.04 134
LPG-MVS_test82.08 10281.27 10884.50 9989.23 13568.76 10890.22 7091.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18489.83 215
LGP-MVS_train84.50 9989.23 13568.76 10891.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18489.83 215
TR-MVS77.44 21676.18 22181.20 21488.24 17163.24 23384.61 23586.40 24367.55 24877.81 16986.48 24054.10 23093.15 17057.75 29582.72 20687.20 282
FMVSNet377.88 20676.85 20780.97 22286.84 21762.36 24586.52 18988.77 19471.13 17575.34 22886.66 23254.07 23191.10 24562.72 24779.57 24289.45 226
DP-MVS76.78 22874.57 24183.42 14793.29 4869.46 9488.55 12483.70 27963.98 29370.20 28988.89 16854.01 23294.80 9646.66 35681.88 21686.01 308
ACMP74.13 681.51 11880.57 12084.36 10689.42 12368.69 11589.97 7491.50 11074.46 11475.04 24090.41 13053.82 23394.54 10477.56 11382.91 20289.86 214
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PLCcopyleft70.83 1178.05 20176.37 22083.08 16391.88 7467.80 13488.19 13789.46 16564.33 28769.87 29888.38 18353.66 23493.58 14458.86 28482.73 20587.86 267
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
dmvs_testset62.63 33964.11 33058.19 36778.55 35324.76 40375.28 34665.94 38367.91 24560.34 36276.01 36453.56 23573.94 38231.79 38667.65 35175.88 374
CANet_DTU80.61 13779.87 13482.83 17485.60 23663.17 23787.36 16288.65 20076.37 7675.88 21488.44 18253.51 23693.07 17573.30 15789.74 11092.25 123
WB-MVSnew71.96 28371.65 27172.89 32584.67 25851.88 35782.29 27677.57 34162.31 31173.67 25683.00 30453.49 23781.10 34445.75 36382.13 21285.70 313
ACMM73.20 880.78 13479.84 13583.58 14389.31 13168.37 12189.99 7391.60 10470.28 19477.25 18089.66 14453.37 23893.53 14974.24 14882.85 20388.85 247
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVP-Stereo76.12 23874.46 24581.13 21785.37 24169.79 8684.42 24387.95 21365.03 27867.46 31985.33 26453.28 23991.73 22158.01 29383.27 19881.85 356
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
AUN-MVS79.21 17277.60 19284.05 12888.71 15667.61 13985.84 20887.26 22969.08 22577.23 18288.14 19453.20 24093.47 15275.50 13973.45 32291.06 159
anonymousdsp78.60 18777.15 20082.98 16980.51 33367.08 15387.24 16789.53 16365.66 27275.16 23587.19 21652.52 24192.25 20277.17 11879.34 24789.61 222
CR-MVSNet73.37 26671.27 27779.67 24981.32 32565.19 19175.92 34180.30 32259.92 32972.73 26681.19 32352.50 24286.69 30359.84 27477.71 26287.11 287
Patchmtry70.74 29269.16 29575.49 30280.72 32954.07 34374.94 35280.30 32258.34 34270.01 29381.19 32352.50 24286.54 30453.37 32071.09 33985.87 312
pmmvs474.03 26171.91 26880.39 23281.96 31268.32 12281.45 28682.14 30359.32 33469.87 29885.13 27052.40 24488.13 29360.21 27274.74 31084.73 328
RPMNet73.51 26570.49 28582.58 18581.32 32565.19 19175.92 34192.27 7657.60 34972.73 26676.45 36252.30 24595.43 6548.14 35177.71 26287.11 287
LFMVS81.82 10881.23 10983.57 14491.89 7363.43 23089.84 7681.85 30777.04 5883.21 8993.10 6752.26 24693.43 15571.98 16989.95 10793.85 57
VDD-MVS83.01 9382.36 9484.96 8491.02 8366.40 16388.91 10888.11 20777.57 4184.39 7293.29 6452.19 24793.91 13177.05 11988.70 12294.57 29
tfpn200view976.42 23475.37 23479.55 25389.13 13957.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24891.95 21148.33 34783.75 18689.07 232
thres40076.50 23175.37 23479.86 24389.13 13957.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24891.95 21148.33 34783.75 18690.00 206
Syy-MVS68.05 31667.85 30768.67 35284.68 25540.97 39378.62 32373.08 36666.65 25966.74 32879.46 34152.11 25082.30 33732.89 38576.38 28382.75 350
thres20075.55 24574.47 24478.82 26087.78 19057.85 29783.07 26983.51 28372.44 15475.84 21584.42 27952.08 25191.75 21947.41 35483.64 19186.86 292
PMMVS69.34 30568.67 29771.35 33775.67 36462.03 25075.17 34773.46 36450.00 37368.68 30879.05 34452.07 25278.13 35561.16 26682.77 20473.90 376
tpm cat170.57 29468.31 30077.35 28582.41 30857.95 29578.08 32980.22 32452.04 36768.54 31177.66 35752.00 25387.84 29651.77 32672.07 33386.25 301
IterMVS-SCA-FT75.43 24873.87 25180.11 23982.69 30164.85 19981.57 28483.47 28469.16 22370.49 28684.15 28751.95 25488.15 29269.23 19572.14 33287.34 279
SCA74.22 25772.33 26679.91 24284.05 26962.17 24979.96 30779.29 33266.30 26472.38 27180.13 33551.95 25488.60 28759.25 27977.67 26488.96 243
thres100view90076.50 23175.55 22979.33 25489.52 11956.99 30985.83 20983.23 28873.94 12476.32 20587.12 21851.89 25691.95 21148.33 34783.75 18689.07 232
thres600view776.50 23175.44 23079.68 24889.40 12457.16 30685.53 21783.23 28873.79 12976.26 20687.09 21951.89 25691.89 21448.05 35283.72 18990.00 206
tpm273.26 26971.46 27378.63 26283.34 28256.71 31480.65 29680.40 32156.63 35573.55 25782.02 32051.80 25891.24 24056.35 30878.42 25787.95 264
LS3D76.95 22674.82 23983.37 15090.45 9567.36 14689.15 10286.94 23561.87 31669.52 30190.61 12651.71 25994.53 10546.38 35986.71 14688.21 262
IterMVS74.29 25572.94 26078.35 26981.53 31963.49 22781.58 28382.49 30068.06 24469.99 29583.69 29551.66 26085.54 31465.85 22771.64 33586.01 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tpm72.37 27871.71 27074.35 31382.19 31052.00 35479.22 31577.29 34664.56 28372.95 26483.68 29651.35 26183.26 33358.33 29075.80 28987.81 268
sam_mvs151.32 26288.96 243
PatchmatchNetpermissive73.12 27171.33 27678.49 26883.18 28760.85 26479.63 30978.57 33664.13 28871.73 27779.81 34051.20 26385.97 31057.40 29876.36 28588.66 254
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
patchmatchnet-post74.00 37151.12 26488.60 287
xiu_mvs_v1_base_debu80.80 13179.72 13784.03 13087.35 20370.19 7985.56 21288.77 19469.06 22681.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 234
xiu_mvs_v1_base80.80 13179.72 13784.03 13087.35 20370.19 7985.56 21288.77 19469.06 22681.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 234
xiu_mvs_v1_base_debi80.80 13179.72 13784.03 13087.35 20370.19 7985.56 21288.77 19469.06 22681.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 234
Patchmatch-test64.82 33463.24 33569.57 34579.42 34949.82 37063.49 38769.05 37751.98 36959.95 36580.13 33550.91 26570.98 38540.66 37573.57 32087.90 266
Patchmatch-RL test70.24 29867.78 31177.61 28177.43 35759.57 28271.16 36270.33 37162.94 30368.65 30972.77 37450.62 26985.49 31569.58 19366.58 35587.77 269
Anonymous2023121178.97 17977.69 19082.81 17690.54 9464.29 21190.11 7291.51 10765.01 27976.16 21288.13 19550.56 27093.03 17969.68 19277.56 26591.11 156
VDDNet81.52 11680.67 11984.05 12890.44 9664.13 21489.73 8285.91 25071.11 17683.18 9093.48 5850.54 27193.49 15073.40 15688.25 12894.54 30
pmmvs674.69 25373.39 25578.61 26381.38 32257.48 30386.64 18587.95 21364.99 28070.18 29086.61 23350.43 27289.52 26962.12 25670.18 34288.83 248
test_post5.46 40150.36 27384.24 324
ET-MVSNet_ETH3D78.63 18676.63 21584.64 9586.73 22069.47 9285.01 22584.61 26569.54 21166.51 33486.59 23450.16 27491.75 21976.26 12884.24 18192.69 107
sam_mvs50.01 275
Anonymous2024052980.19 15078.89 15884.10 11890.60 9264.75 20188.95 10790.90 12365.97 26980.59 12291.17 11349.97 27693.73 14269.16 19782.70 20793.81 60
thisisatest053079.40 16777.76 18784.31 10987.69 19465.10 19487.36 16284.26 27370.04 19877.42 17688.26 18849.94 27794.79 9770.20 18484.70 17193.03 97
PatchT68.46 31467.85 30770.29 34380.70 33043.93 38572.47 35874.88 35860.15 32770.55 28476.57 36149.94 27781.59 34050.58 33274.83 30985.34 317
tttt051779.40 16777.91 17983.90 13888.10 17563.84 21888.37 13184.05 27571.45 17076.78 19289.12 16149.93 27994.89 9270.18 18583.18 20092.96 101
tpmvs71.09 28869.29 29376.49 29282.04 31156.04 32478.92 32081.37 31164.05 29167.18 32378.28 35249.74 28089.77 26449.67 34172.37 32983.67 339
thisisatest051577.33 21975.38 23383.18 15885.27 24263.80 21982.11 27883.27 28765.06 27775.91 21383.84 29149.54 28194.27 11367.24 21586.19 15491.48 147
UniMVSNet_ETH3D79.10 17578.24 17381.70 19986.85 21660.24 27487.28 16688.79 19374.25 11876.84 18990.53 12949.48 28291.56 22667.98 20782.15 21193.29 85
dmvs_re71.14 28770.58 28372.80 32681.96 31259.68 27975.60 34579.34 33168.55 23669.27 30580.72 33149.42 28376.54 36452.56 32477.79 26182.19 354
CVMVSNet72.99 27372.58 26374.25 31484.28 26250.85 36586.41 19183.45 28544.56 37873.23 26187.54 20649.38 28485.70 31165.90 22678.44 25686.19 303
MDTV_nov1_ep13_2view37.79 39575.16 34855.10 36066.53 33149.34 28553.98 31687.94 265
UGNet80.83 12879.59 14084.54 9888.04 17868.09 12889.42 9188.16 20676.95 5976.22 20789.46 15349.30 28693.94 12768.48 20490.31 9891.60 140
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pmmvs571.55 28470.20 29075.61 29977.83 35556.39 31981.74 28180.89 31257.76 34767.46 31984.49 27849.26 28785.32 31857.08 30175.29 30385.11 323
mvsany_test162.30 34061.26 34465.41 35969.52 38454.86 33666.86 37849.78 39946.65 37668.50 31283.21 30149.15 28866.28 39156.93 30360.77 36975.11 375
LTVRE_ROB69.57 1376.25 23774.54 24381.41 20688.60 15964.38 21079.24 31489.12 18270.76 18469.79 30087.86 19749.09 28993.20 16656.21 30980.16 23686.65 297
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
FMVSNet177.44 21676.12 22281.40 20786.81 21863.01 23888.39 12889.28 17070.49 19074.39 24987.28 21049.06 29091.11 24260.91 26778.52 25490.09 200
RRT_MVS80.35 14679.22 15183.74 14087.63 19665.46 18591.08 5488.92 19173.82 12776.44 20390.03 13649.05 29194.25 11776.84 12179.20 25091.51 143
test111179.43 16579.18 15380.15 23889.99 10853.31 35087.33 16477.05 34875.04 10180.23 12692.77 8148.97 29292.33 20068.87 20092.40 7494.81 20
ECVR-MVScopyleft79.61 15879.26 14980.67 22890.08 10354.69 33787.89 15077.44 34574.88 10480.27 12492.79 7948.96 29392.45 19268.55 20392.50 7294.86 17
MDTV_nov1_ep1369.97 29183.18 28753.48 34777.10 33780.18 32560.45 32369.33 30480.44 33248.89 29486.90 30251.60 32878.51 255
test_post178.90 3215.43 40248.81 29585.44 31759.25 279
test-LLR72.94 27472.43 26474.48 31181.35 32358.04 29278.38 32577.46 34366.66 25669.95 29679.00 34648.06 29679.24 35066.13 22284.83 16886.15 304
test0.0.03 168.00 31767.69 31268.90 34977.55 35647.43 37475.70 34472.95 36866.66 25666.56 33082.29 31648.06 29675.87 37144.97 36774.51 31283.41 341
our_test_369.14 30667.00 31975.57 30079.80 34358.80 28477.96 33077.81 33959.55 33262.90 35678.25 35347.43 29883.97 32651.71 32767.58 35283.93 337
MS-PatchMatch73.83 26272.67 26177.30 28683.87 27266.02 16981.82 27984.66 26461.37 32068.61 31082.82 30947.29 29988.21 29159.27 27884.32 17977.68 370
cascas76.72 22974.64 24082.99 16885.78 23365.88 17482.33 27589.21 17660.85 32272.74 26581.02 32647.28 30093.75 14067.48 21285.02 16689.34 228
WB-MVS54.94 34754.72 34955.60 37373.50 37420.90 40574.27 35461.19 39059.16 33650.61 38374.15 37047.19 30175.78 37217.31 39735.07 39270.12 380
test20.0367.45 31966.95 32068.94 34875.48 36644.84 38377.50 33377.67 34066.66 25663.01 35483.80 29247.02 30278.40 35442.53 37268.86 34983.58 340
test_040272.79 27570.44 28679.84 24488.13 17365.99 17185.93 20484.29 27165.57 27367.40 32185.49 26146.92 30392.61 18735.88 38274.38 31380.94 361
F-COLMAP76.38 23674.33 24682.50 18689.28 13366.95 15888.41 12789.03 18364.05 29166.83 32688.61 17646.78 30492.89 18157.48 29678.55 25387.67 270
ppachtmachnet_test70.04 30067.34 31778.14 27279.80 34361.13 26079.19 31680.59 31759.16 33665.27 34179.29 34346.75 30587.29 30049.33 34266.72 35386.00 310
tt080578.73 18377.83 18281.43 20585.17 24360.30 27389.41 9290.90 12371.21 17477.17 18688.73 17146.38 30693.21 16372.57 16678.96 25190.79 168
D2MVS74.82 25273.21 25779.64 25079.81 34262.56 24480.34 30287.35 22764.37 28668.86 30782.66 31146.37 30790.10 26167.91 20881.24 22286.25 301
Anonymous2023120668.60 31067.80 31071.02 34080.23 33650.75 36678.30 32880.47 31956.79 35466.11 33782.63 31246.35 30878.95 35243.62 36975.70 29083.36 342
SSC-MVS53.88 35053.59 35154.75 37572.87 37919.59 40673.84 35660.53 39257.58 35049.18 38573.45 37346.34 30975.47 37516.20 40032.28 39469.20 381
CHOSEN 280x42066.51 32664.71 32771.90 33181.45 32063.52 22657.98 39068.95 37853.57 36362.59 35776.70 36046.22 31075.29 37755.25 31179.68 24176.88 372
GA-MVS76.87 22775.17 23781.97 19582.75 29962.58 24381.44 28786.35 24572.16 15974.74 24482.89 30746.20 31192.02 20968.85 20181.09 22491.30 152
iter_conf_final80.63 13679.35 14684.46 10289.36 12767.70 13789.85 7584.49 26773.19 14578.30 15788.94 16545.98 31294.56 10279.59 9684.48 17691.11 156
MDA-MVSNet_test_wron65.03 33262.92 33671.37 33575.93 36156.73 31269.09 37474.73 36057.28 35254.03 38077.89 35445.88 31374.39 38049.89 34061.55 36782.99 348
YYNet165.03 33262.91 33771.38 33475.85 36356.60 31669.12 37374.66 36257.28 35254.12 37977.87 35545.85 31474.48 37949.95 33961.52 36883.05 346
EPMVS69.02 30768.16 30271.59 33379.61 34649.80 37177.40 33466.93 38062.82 30670.01 29379.05 34445.79 31577.86 35856.58 30675.26 30487.13 286
IB-MVS68.01 1575.85 24273.36 25683.31 15184.76 25366.03 16883.38 26185.06 25970.21 19769.40 30281.05 32545.76 31694.66 10165.10 23375.49 29489.25 231
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
jajsoiax79.29 17077.96 17783.27 15384.68 25566.57 16289.25 9790.16 14769.20 22175.46 22389.49 15045.75 31793.13 17276.84 12180.80 22890.11 198
PatchMatch-RL72.38 27770.90 28176.80 29188.60 15967.38 14579.53 31076.17 35462.75 30769.36 30382.00 32145.51 31884.89 32153.62 31880.58 23178.12 369
FE-MVS77.78 20875.68 22684.08 12288.09 17666.00 17083.13 26687.79 21868.42 24078.01 16685.23 26745.50 31995.12 7859.11 28185.83 16291.11 156
RPSCF73.23 27071.46 27378.54 26682.50 30559.85 27782.18 27782.84 29858.96 33871.15 28389.41 15745.48 32084.77 32258.82 28571.83 33491.02 163
test_vis1_n_192075.52 24675.78 22474.75 31079.84 34157.44 30483.26 26385.52 25562.83 30579.34 13686.17 24745.10 32179.71 34978.75 10181.21 22387.10 289
MSDG73.36 26870.99 28080.49 23184.51 26065.80 17780.71 29586.13 24865.70 27165.46 33983.74 29444.60 32290.91 25051.13 33176.89 27184.74 327
PVSNet_057.27 2061.67 34259.27 34568.85 35079.61 34657.44 30468.01 37573.44 36555.93 35858.54 36970.41 37944.58 32377.55 35947.01 35535.91 39171.55 379
test_cas_vis1_n_192073.76 26373.74 25373.81 31875.90 36259.77 27880.51 29882.40 30158.30 34381.62 11085.69 25544.35 32476.41 36776.29 12778.61 25285.23 319
mvs_tets79.13 17477.77 18683.22 15784.70 25466.37 16489.17 9890.19 14669.38 21475.40 22689.46 15344.17 32593.15 17076.78 12480.70 23090.14 195
MDA-MVSNet-bldmvs66.68 32463.66 33375.75 29779.28 35060.56 26973.92 35578.35 33764.43 28450.13 38479.87 33944.02 32683.67 32846.10 36156.86 37483.03 347
iter_conf0580.00 15478.70 16083.91 13787.84 18565.83 17588.84 11284.92 26271.61 16678.70 14488.94 16543.88 32794.56 10279.28 9784.28 18091.33 149
gg-mvs-nofinetune69.95 30167.96 30575.94 29583.07 29054.51 34077.23 33670.29 37263.11 29970.32 28862.33 38343.62 32888.69 28553.88 31787.76 13184.62 329
GG-mvs-BLEND75.38 30381.59 31855.80 32679.32 31369.63 37467.19 32273.67 37243.24 32988.90 28350.41 33384.50 17381.45 358
CMPMVSbinary51.72 2170.19 29968.16 30276.28 29373.15 37857.55 30279.47 31183.92 27648.02 37556.48 37684.81 27543.13 33086.42 30662.67 25081.81 21784.89 325
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
dp66.80 32365.43 32570.90 34279.74 34548.82 37275.12 35074.77 35959.61 33164.08 34977.23 35842.89 33180.72 34648.86 34566.58 35583.16 344
PVSNet64.34 1872.08 28270.87 28275.69 29886.21 22756.44 31874.37 35380.73 31562.06 31570.17 29182.23 31742.86 33283.31 33254.77 31384.45 17787.32 280
pmmvs-eth3d70.50 29667.83 30978.52 26777.37 35866.18 16781.82 27981.51 30958.90 33963.90 35180.42 33342.69 33386.28 30758.56 28765.30 36083.11 345
UnsupCasMVSNet_eth67.33 32065.99 32471.37 33573.48 37551.47 36275.16 34885.19 25865.20 27560.78 36180.93 33042.35 33477.20 36057.12 30053.69 38185.44 316
KD-MVS_self_test68.81 30867.59 31572.46 32974.29 37045.45 37877.93 33187.00 23463.12 29863.99 35078.99 34842.32 33584.77 32256.55 30764.09 36387.16 285
ADS-MVSNet266.20 33163.33 33474.82 30879.92 33958.75 28567.55 37675.19 35653.37 36465.25 34275.86 36542.32 33580.53 34741.57 37368.91 34785.18 320
ADS-MVSNet64.36 33562.88 33868.78 35179.92 33947.17 37567.55 37671.18 37053.37 36465.25 34275.86 36542.32 33573.99 38141.57 37368.91 34785.18 320
bld_raw_dy_0_6477.29 22175.98 22381.22 21385.04 24965.47 18488.14 14277.56 34269.20 22173.77 25489.40 15942.24 33888.85 28476.78 12481.64 21889.33 229
SixPastTwentyTwo73.37 26671.26 27879.70 24785.08 24857.89 29685.57 21183.56 28271.03 17965.66 33885.88 25142.10 33992.57 18859.11 28163.34 36488.65 255
JIA-IIPM66.32 32862.82 33976.82 29077.09 35961.72 25665.34 38375.38 35558.04 34664.51 34662.32 38442.05 34086.51 30551.45 32969.22 34682.21 353
ACMH67.68 1675.89 24173.93 24981.77 19888.71 15666.61 16188.62 12289.01 18569.81 20466.78 32786.70 23041.95 34191.51 23155.64 31078.14 26087.17 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+68.96 1476.01 24074.01 24882.03 19388.60 15965.31 19088.86 11087.55 22270.25 19667.75 31587.47 20841.27 34293.19 16858.37 28975.94 28887.60 272
MIMVSNet70.69 29369.30 29274.88 30784.52 25956.35 32175.87 34379.42 33064.59 28267.76 31482.41 31341.10 34381.54 34146.64 35881.34 22086.75 295
Anonymous20240521178.25 19377.01 20281.99 19491.03 8260.67 26784.77 23083.90 27770.65 18880.00 12891.20 11141.08 34491.43 23565.21 23185.26 16593.85 57
N_pmnet52.79 35353.26 35251.40 37778.99 3527.68 40969.52 3693.89 40851.63 37057.01 37474.98 36940.83 34565.96 39237.78 38064.67 36180.56 364
ETVMVS72.25 28071.05 27975.84 29687.77 19151.91 35679.39 31274.98 35769.26 21773.71 25582.95 30540.82 34686.14 30846.17 36084.43 17889.47 225
EU-MVSNet68.53 31367.61 31471.31 33878.51 35447.01 37684.47 23884.27 27242.27 38166.44 33584.79 27640.44 34783.76 32758.76 28668.54 35083.17 343
DSMNet-mixed57.77 34656.90 34860.38 36567.70 38735.61 39669.18 37153.97 39732.30 39357.49 37379.88 33840.39 34868.57 39038.78 37972.37 32976.97 371
UWE-MVS72.13 28171.49 27274.03 31686.66 22247.70 37381.40 28876.89 35063.60 29675.59 21884.22 28539.94 34985.62 31348.98 34486.13 15688.77 251
OurMVSNet-221017-074.26 25672.42 26579.80 24583.76 27559.59 28185.92 20586.64 23966.39 26366.96 32487.58 20239.46 35091.60 22365.76 22869.27 34588.22 261
K. test v371.19 28668.51 29879.21 25783.04 29257.78 29984.35 24576.91 34972.90 15162.99 35582.86 30839.27 35191.09 24761.65 26152.66 38288.75 252
lessismore_v078.97 25881.01 32857.15 30765.99 38261.16 36082.82 30939.12 35291.34 23859.67 27546.92 38888.43 259
testing22274.04 25972.66 26278.19 27187.89 18255.36 33081.06 29079.20 33371.30 17274.65 24683.57 29739.11 35388.67 28651.43 33085.75 16390.53 180
UnsupCasMVSNet_bld63.70 33761.53 34370.21 34473.69 37351.39 36372.82 35781.89 30555.63 35957.81 37271.80 37638.67 35478.61 35349.26 34352.21 38380.63 362
new-patchmatchnet61.73 34161.73 34261.70 36372.74 38024.50 40469.16 37278.03 33861.40 31856.72 37575.53 36838.42 35576.48 36645.95 36257.67 37384.13 334
MVS-HIRNet59.14 34457.67 34763.57 36181.65 31643.50 38671.73 36065.06 38539.59 38551.43 38257.73 38938.34 35682.58 33639.53 37673.95 31664.62 385
test250677.30 22076.49 21679.74 24690.08 10352.02 35387.86 15263.10 38874.88 10480.16 12792.79 7938.29 35792.35 19868.74 20292.50 7294.86 17
COLMAP_ROBcopyleft66.92 1773.01 27270.41 28780.81 22587.13 21365.63 18088.30 13484.19 27462.96 30263.80 35287.69 20038.04 35892.56 18946.66 35674.91 30884.24 332
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TESTMET0.1,169.89 30269.00 29672.55 32879.27 35156.85 31078.38 32574.71 36157.64 34868.09 31377.19 35937.75 35976.70 36363.92 23984.09 18284.10 335
OpenMVS_ROBcopyleft64.09 1970.56 29568.19 30177.65 28080.26 33459.41 28385.01 22582.96 29558.76 34065.43 34082.33 31437.63 36091.23 24145.34 36676.03 28782.32 352
FMVSNet569.50 30467.96 30574.15 31582.97 29655.35 33180.01 30682.12 30462.56 30963.02 35381.53 32236.92 36181.92 33948.42 34674.06 31585.17 322
MIMVSNet168.58 31166.78 32173.98 31780.07 33851.82 35880.77 29384.37 26864.40 28559.75 36682.16 31836.47 36283.63 32942.73 37170.33 34186.48 299
ITE_SJBPF78.22 27081.77 31560.57 26883.30 28669.25 21867.54 31787.20 21536.33 36387.28 30154.34 31574.62 31186.80 293
test-mter71.41 28570.39 28874.48 31181.35 32358.04 29278.38 32577.46 34360.32 32569.95 29679.00 34636.08 36479.24 35066.13 22284.83 16886.15 304
testgi66.67 32566.53 32267.08 35775.62 36541.69 39275.93 34076.50 35166.11 26565.20 34486.59 23435.72 36574.71 37843.71 36873.38 32484.84 326
EG-PatchMatch MVS74.04 25971.82 26980.71 22784.92 25167.42 14385.86 20788.08 20966.04 26764.22 34883.85 29035.10 36692.56 18957.44 29780.83 22782.16 355
KD-MVS_2432*160066.22 32963.89 33173.21 32175.47 36753.42 34870.76 36584.35 26964.10 28966.52 33278.52 35034.55 36784.98 31950.40 33450.33 38581.23 359
miper_refine_blended66.22 32963.89 33173.21 32175.47 36753.42 34870.76 36584.35 26964.10 28966.52 33278.52 35034.55 36784.98 31950.40 33450.33 38581.23 359
XVG-ACMP-BASELINE76.11 23974.27 24781.62 20083.20 28664.67 20283.60 25889.75 15869.75 20871.85 27687.09 21932.78 36992.11 20669.99 18880.43 23488.09 263
AllTest70.96 28968.09 30479.58 25185.15 24563.62 22184.58 23679.83 32662.31 31160.32 36386.73 22432.02 37088.96 28150.28 33671.57 33686.15 304
TestCases79.58 25185.15 24563.62 22179.83 32662.31 31160.32 36386.73 22432.02 37088.96 28150.28 33671.57 33686.15 304
USDC70.33 29768.37 29976.21 29480.60 33156.23 32279.19 31686.49 24160.89 32161.29 35985.47 26231.78 37289.47 27153.37 32076.21 28682.94 349
myMVS_eth3d67.02 32266.29 32369.21 34784.68 25542.58 38878.62 32373.08 36666.65 25966.74 32879.46 34131.53 37382.30 33739.43 37876.38 28382.75 350
test_fmvs170.93 29070.52 28472.16 33073.71 37255.05 33480.82 29178.77 33551.21 37278.58 14984.41 28031.20 37476.94 36275.88 13380.12 23984.47 330
Anonymous2024052168.80 30967.22 31873.55 31974.33 36954.11 34283.18 26485.61 25458.15 34461.68 35880.94 32830.71 37581.27 34357.00 30273.34 32585.28 318
testing368.56 31267.67 31371.22 33987.33 20842.87 38783.06 27071.54 36970.36 19169.08 30684.38 28130.33 37685.69 31237.50 38175.45 29885.09 324
test_vis1_n69.85 30369.21 29471.77 33272.66 38155.27 33381.48 28576.21 35352.03 36875.30 23283.20 30228.97 37776.22 36974.60 14378.41 25883.81 338
tmp_tt18.61 36921.40 37210.23 3854.82 40810.11 40834.70 39530.74 4061.48 40223.91 39826.07 39928.42 37813.41 40427.12 39015.35 4017.17 399
test_fmvs1_n70.86 29170.24 28972.73 32772.51 38255.28 33281.27 28979.71 32851.49 37178.73 14384.87 27427.54 37977.02 36176.06 13079.97 24085.88 311
TDRefinement67.49 31864.34 32876.92 28973.47 37661.07 26184.86 22982.98 29459.77 33058.30 37085.13 27026.06 38087.89 29547.92 35360.59 37181.81 357
test_vis1_rt60.28 34358.42 34665.84 35867.25 38855.60 32970.44 36760.94 39144.33 37959.00 36766.64 38124.91 38168.67 38962.80 24669.48 34373.25 377
TinyColmap67.30 32164.81 32674.76 30981.92 31456.68 31580.29 30381.49 31060.33 32456.27 37783.22 30024.77 38287.66 29945.52 36469.47 34479.95 365
EGC-MVSNET52.07 35547.05 35967.14 35683.51 27960.71 26680.50 29967.75 3790.07 4030.43 40475.85 36724.26 38381.54 34128.82 38862.25 36559.16 388
LF4IMVS64.02 33662.19 34069.50 34670.90 38353.29 35176.13 33877.18 34752.65 36658.59 36880.98 32723.55 38476.52 36553.06 32266.66 35478.68 368
test_fmvs268.35 31567.48 31670.98 34169.50 38551.95 35580.05 30576.38 35249.33 37474.65 24684.38 28123.30 38575.40 37674.51 14475.17 30685.60 314
new_pmnet50.91 35650.29 35652.78 37668.58 38634.94 39863.71 38556.63 39639.73 38444.95 38665.47 38221.93 38658.48 39534.98 38356.62 37564.92 384
pmmvs357.79 34554.26 35068.37 35364.02 39156.72 31375.12 35065.17 38440.20 38352.93 38169.86 38020.36 38775.48 37445.45 36555.25 38072.90 378
PM-MVS66.41 32764.14 32973.20 32373.92 37156.45 31778.97 31964.96 38663.88 29564.72 34580.24 33419.84 38883.44 33166.24 22164.52 36279.71 366
mvsany_test353.99 34951.45 35461.61 36455.51 39644.74 38463.52 38645.41 40343.69 38058.11 37176.45 36217.99 38963.76 39454.77 31347.59 38776.34 373
ambc75.24 30473.16 37750.51 36763.05 38887.47 22564.28 34777.81 35617.80 39089.73 26657.88 29460.64 37085.49 315
ANet_high50.57 35746.10 36163.99 36048.67 40339.13 39470.99 36480.85 31361.39 31931.18 39257.70 39017.02 39173.65 38331.22 38715.89 40079.18 367
FPMVS53.68 35151.64 35359.81 36665.08 39051.03 36469.48 37069.58 37541.46 38240.67 38872.32 37516.46 39270.00 38824.24 39465.42 35958.40 390
test_method31.52 36529.28 36938.23 38027.03 4076.50 41020.94 39862.21 3894.05 40122.35 39952.50 39313.33 39347.58 40027.04 39134.04 39360.62 387
EMVS30.81 36629.65 36834.27 38250.96 40225.95 40256.58 39246.80 40224.01 39715.53 40230.68 39812.47 39454.43 39912.81 40217.05 39922.43 398
test_f52.09 35450.82 35555.90 37153.82 39942.31 39159.42 38958.31 39536.45 38856.12 37870.96 37812.18 39557.79 39653.51 31956.57 37667.60 382
test_fmvs363.36 33861.82 34167.98 35462.51 39246.96 37777.37 33574.03 36345.24 37767.50 31878.79 34912.16 39672.98 38472.77 16466.02 35783.99 336
E-PMN31.77 36430.64 36735.15 38152.87 40127.67 40057.09 39147.86 40124.64 39616.40 40133.05 39711.23 39754.90 39814.46 40118.15 39822.87 397
DeepMVS_CXcopyleft27.40 38340.17 40626.90 40124.59 40717.44 39923.95 39748.61 3949.77 39826.48 40218.06 39624.47 39628.83 396
Gipumacopyleft45.18 36141.86 36455.16 37477.03 36051.52 36132.50 39680.52 31832.46 39227.12 39535.02 3969.52 39975.50 37322.31 39560.21 37238.45 395
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet54.25 34849.68 35867.97 35553.73 40045.28 38166.85 37980.78 31435.96 38939.45 39062.23 3858.70 40078.06 35748.24 35051.20 38480.57 363
APD_test153.31 35249.93 35763.42 36265.68 38950.13 36871.59 36166.90 38134.43 39040.58 38971.56 3778.65 40176.27 36834.64 38455.36 37963.86 386
PMMVS240.82 36338.86 36646.69 37853.84 39816.45 40748.61 39349.92 39837.49 38631.67 39160.97 3868.14 40256.42 39728.42 38930.72 39567.19 383
test_vis3_rt49.26 35847.02 36056.00 37054.30 39745.27 38266.76 38048.08 40036.83 38744.38 38753.20 3927.17 40364.07 39356.77 30555.66 37758.65 389
testf145.72 35941.96 36257.00 36856.90 39445.32 37966.14 38159.26 39326.19 39430.89 39360.96 3874.14 40470.64 38626.39 39246.73 38955.04 391
APD_test245.72 35941.96 36257.00 36856.90 39445.32 37966.14 38159.26 39326.19 39430.89 39360.96 3874.14 40470.64 38626.39 39246.73 38955.04 391
PMVScopyleft37.38 2244.16 36240.28 36555.82 37240.82 40542.54 39065.12 38463.99 38734.43 39024.48 39657.12 3913.92 40676.17 37017.10 39855.52 37848.75 393
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive26.22 2330.37 36725.89 37143.81 37944.55 40435.46 39728.87 39739.07 40418.20 39818.58 40040.18 3952.68 40747.37 40117.07 39923.78 39748.60 394
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d16.82 37015.94 37319.46 38458.74 39331.45 39939.22 3943.74 4096.84 4006.04 4032.70 4031.27 40824.29 40310.54 40314.40 4022.63 400
test1236.12 3728.11 3750.14 3860.06 4100.09 41171.05 3630.03 4110.04 4050.25 4061.30 4050.05 4090.03 4060.21 4050.01 4040.29 401
testmvs6.04 3738.02 3760.10 3870.08 4090.03 41269.74 3680.04 4100.05 4040.31 4051.68 4040.02 4100.04 4050.24 4040.02 4030.25 402
test_blank0.00 3750.00 3780.00 3880.00 4110.00 4130.00 3990.00 4120.00 4060.00 4070.00 4060.00 4110.00 4070.00 4060.00 4050.00 403
uanet_test0.00 3750.00 3780.00 3880.00 4110.00 4130.00 3990.00 4120.00 4060.00 4070.00 4060.00 4110.00 4070.00 4060.00 4050.00 403
DCPMVS0.00 3750.00 3780.00 3880.00 4110.00 4130.00 3990.00 4120.00 4060.00 4070.00 4060.00 4110.00 4070.00 4060.00 4050.00 403
sosnet-low-res0.00 3750.00 3780.00 3880.00 4110.00 4130.00 3990.00 4120.00 4060.00 4070.00 4060.00 4110.00 4070.00 4060.00 4050.00 403
sosnet0.00 3750.00 3780.00 3880.00 4110.00 4130.00 3990.00 4120.00 4060.00 4070.00 4060.00 4110.00 4070.00 4060.00 4050.00 403
uncertanet0.00 3750.00 3780.00 3880.00 4110.00 4130.00 3990.00 4120.00 4060.00 4070.00 4060.00 4110.00 4070.00 4060.00 4050.00 403
Regformer0.00 3750.00 3780.00 3880.00 4110.00 4130.00 3990.00 4120.00 4060.00 4070.00 4060.00 4110.00 4070.00 4060.00 4050.00 403
ab-mvs-re7.23 3719.64 3740.00 3880.00 4110.00 4130.00 3990.00 4120.00 4060.00 40786.72 2260.00 4110.00 4070.00 4060.00 4050.00 403
uanet0.00 3750.00 3780.00 3880.00 4110.00 4130.00 3990.00 4120.00 4060.00 4070.00 4060.00 4110.00 4070.00 4060.00 4050.00 403
WAC-MVS42.58 38839.46 377
FOURS195.00 1072.39 3995.06 193.84 1574.49 11391.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
No_MVS89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
eth-test20.00 411
eth-test0.00 411
IU-MVS95.30 271.25 5792.95 5166.81 25292.39 688.94 1696.63 494.85 19
save fliter93.80 4072.35 4290.47 6491.17 11674.31 116
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 42
GSMVS88.96 243
test_part295.06 872.65 3291.80 13
MTGPAbinary92.02 85
MTMP92.18 3532.83 405
gm-plane-assit81.40 32153.83 34562.72 30880.94 32892.39 19563.40 243
test9_res84.90 4295.70 2692.87 102
agg_prior282.91 6695.45 3092.70 105
agg_prior92.85 5971.94 5191.78 10084.41 7194.93 87
test_prior472.60 3489.01 105
test_prior86.33 5492.61 6569.59 8892.97 5095.48 6293.91 53
旧先验286.56 18858.10 34587.04 3988.98 27974.07 149
新几何286.29 196
无先验87.48 15988.98 18660.00 32894.12 12167.28 21488.97 242
原ACMM286.86 177
testdata291.01 24962.37 253
testdata184.14 24975.71 87
plane_prior790.08 10368.51 119
plane_prior592.44 6995.38 6978.71 10286.32 15191.33 149
plane_prior491.00 120
plane_prior368.60 11778.44 3178.92 141
plane_prior291.25 5079.12 23
plane_prior189.90 111
plane_prior68.71 11290.38 6777.62 3986.16 155
n20.00 412
nn0.00 412
door-mid69.98 373
test1192.23 79
door69.44 376
HQP5-MVS66.98 155
HQP-NCC89.33 12889.17 9876.41 7277.23 182
ACMP_Plane89.33 12889.17 9876.41 7277.23 182
BP-MVS77.47 114
HQP4-MVS77.24 18195.11 8091.03 161
HQP3-MVS92.19 8285.99 159
NP-MVS89.62 11568.32 12290.24 132
ACMMP++_ref81.95 215
ACMMP++81.25 221