This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
PC_three_145268.21 24192.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8592.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 52
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 24
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 41
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 5977.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
DeepPCF-MVS80.84 188.10 1288.56 1286.73 5092.24 6869.03 9989.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 27
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5894.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVScopyleft89.15 689.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 8991.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 31
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
dcpmvs_285.63 5186.15 4384.06 12591.71 7564.94 19786.47 19091.87 9573.63 13186.60 4393.02 7276.57 1591.87 21683.36 6092.15 7595.35 3
CNVR-MVS88.93 989.13 988.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 37
MCST-MVS87.37 2687.25 2587.73 2894.53 1772.46 3889.82 7793.82 1673.07 14784.86 6292.89 7476.22 1796.33 3884.89 4495.13 3694.40 34
CSCG86.41 4086.19 4187.07 4592.91 5872.48 3790.81 5793.56 2473.95 12383.16 9191.07 11675.94 1895.19 7579.94 9494.38 5493.55 76
HPM-MVS++copyleft89.02 889.15 888.63 595.01 976.03 192.38 2792.85 5480.26 1187.78 2994.27 3275.89 1996.81 2387.45 3296.44 993.05 96
TSAR-MVS + MP.88.02 1788.11 1587.72 3093.68 4372.13 4691.41 4792.35 7474.62 11188.90 2093.85 5275.75 2096.00 4987.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SF-MVS88.46 1188.74 1187.64 3592.78 6171.95 5092.40 2494.74 275.71 8789.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
9.1488.26 1492.84 6091.52 4694.75 173.93 12588.57 2294.67 1975.57 2295.79 5386.77 3595.76 23
SD-MVS88.06 1488.50 1386.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13687.63 3094.27 5793.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DELS-MVS85.41 5685.30 5785.77 6488.49 16167.93 13285.52 21993.44 2778.70 2983.63 8789.03 16474.57 2495.71 5680.26 9294.04 5993.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
patch_mono-283.65 7584.54 6580.99 22090.06 10665.83 17584.21 24788.74 19871.60 16785.01 5592.44 8474.51 2583.50 32882.15 7592.15 7593.64 71
train_agg86.43 3886.20 4087.13 4493.26 5072.96 2588.75 11591.89 9368.69 23385.00 5793.10 6774.43 2695.41 6784.97 4195.71 2593.02 98
test_893.13 5272.57 3588.68 12091.84 9768.69 23384.87 6193.10 6774.43 2695.16 76
TEST993.26 5072.96 2588.75 11591.89 9368.44 23885.00 5793.10 6774.36 2895.41 67
SMA-MVScopyleft89.08 789.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10792.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_prior288.85 11175.41 9384.91 5993.54 5674.28 2983.31 6195.86 20
TSAR-MVS + GP.85.71 5085.33 5586.84 4791.34 7872.50 3689.07 10487.28 22876.41 7285.80 4790.22 13474.15 3195.37 7281.82 7791.88 7892.65 109
ZD-MVS94.38 2572.22 4492.67 6170.98 18087.75 3194.07 4174.01 3296.70 2784.66 4794.84 43
SteuartSystems-ACMMP88.72 1088.86 1088.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
APD-MVScopyleft87.44 2287.52 2287.19 4294.24 3272.39 3991.86 4192.83 5573.01 14988.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 105
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
casdiffmvs_mvgpermissive85.99 4386.09 4585.70 6687.65 19367.22 15188.69 11993.04 3879.64 1885.33 5292.54 8373.30 3594.50 10783.49 5991.14 8995.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
canonicalmvs85.91 4685.87 4886.04 6089.84 11169.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13181.50 7988.80 12094.77 22
segment_acmp73.08 37
DPM-MVS84.93 6284.29 6986.84 4790.20 9973.04 2387.12 16993.04 3869.80 20582.85 9591.22 11073.06 3896.02 4776.72 12694.63 4791.46 148
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5292.83 5581.50 585.79 4893.47 6073.02 3997.00 1884.90 4294.94 3994.10 45
test_fmvsmconf_n85.92 4586.04 4685.57 6885.03 24769.51 9089.62 8690.58 13173.42 13887.75 3194.02 4472.85 4093.24 16090.37 390.75 9393.96 51
nrg03083.88 7083.53 7484.96 8486.77 21769.28 9890.46 6592.67 6174.79 10682.95 9291.33 10872.70 4193.09 17480.79 8779.28 24692.50 114
CDPH-MVS85.76 4985.29 5887.17 4393.49 4771.08 6188.58 12392.42 7268.32 24084.61 6793.48 5872.32 4296.15 4579.00 9895.43 3194.28 40
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 6477.57 4183.84 8294.40 3072.24 4396.28 4085.65 3895.30 3593.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
casdiffmvspermissive85.11 6085.14 5985.01 8287.20 20965.77 17987.75 15392.83 5577.84 3784.36 7392.38 8572.15 4493.93 13081.27 8190.48 9695.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepC-MVS79.81 287.08 3186.88 3387.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 9694.23 3572.13 4597.09 1684.83 4595.37 3293.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_l_conf0.5_n84.47 6684.54 6584.27 11385.42 23668.81 10588.49 12587.26 22968.08 24288.03 2793.49 5772.04 4691.77 21888.90 1789.14 11692.24 125
baseline84.93 6284.98 6084.80 9287.30 20765.39 18887.30 16592.88 5277.62 3984.04 7992.26 8771.81 4793.96 12481.31 8090.30 9995.03 8
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5394.32 3171.76 4896.93 1985.53 3995.79 2294.32 38
test_fmvsmconf0.1_n85.61 5285.65 5085.50 6982.99 29269.39 9689.65 8490.29 14473.31 14187.77 3094.15 3871.72 4993.23 16190.31 490.67 9593.89 56
MM88.97 473.65 1092.66 2391.17 11686.57 187.39 3594.97 1671.70 5097.68 192.19 195.63 2895.57 1
test1286.80 4992.63 6470.70 7291.79 9982.71 9871.67 5196.16 4494.50 5093.54 77
UniMVSNet_NR-MVSNet81.88 10581.54 10582.92 17188.46 16363.46 22887.13 16892.37 7380.19 1278.38 15489.14 16071.66 5293.05 17670.05 18676.46 27692.25 123
CS-MVS86.69 3486.95 3085.90 6390.76 9067.57 14092.83 1793.30 3279.67 1784.57 6992.27 8671.47 5395.02 8684.24 5493.46 6395.13 6
DeepC-MVS_fast79.65 386.91 3286.62 3587.76 2793.52 4672.37 4191.26 4893.04 3876.62 7084.22 7493.36 6371.44 5496.76 2580.82 8595.33 3494.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsm_n_192085.29 5885.34 5485.13 7986.12 22669.93 8388.65 12190.78 12769.97 20188.27 2393.98 4971.39 5591.54 22888.49 2390.45 9793.91 53
MVS_111021_HR85.14 5984.75 6386.32 5591.65 7672.70 3085.98 20290.33 14176.11 8182.08 10291.61 10071.36 5694.17 12081.02 8292.58 7092.08 131
ACMMP_NAP88.05 1688.08 1687.94 1993.70 4173.05 2290.86 5693.59 2376.27 7988.14 2495.09 1571.06 5796.67 2987.67 2996.37 1494.09 46
fmvsm_l_conf0.5_n_a84.13 6884.16 7084.06 12585.38 23768.40 12088.34 13286.85 23767.48 24987.48 3493.40 6170.89 5891.61 22288.38 2589.22 11592.16 129
MP-MVS-pluss87.67 2087.72 2087.54 3693.64 4472.04 4889.80 7993.50 2575.17 10086.34 4495.29 1270.86 5996.00 4988.78 1996.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS87.58 2187.47 2387.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 5994.44 2870.78 6096.61 3284.53 4994.89 4193.66 65
EI-MVSNet-Vis-set84.19 6783.81 7285.31 7388.18 17167.85 13387.66 15589.73 15980.05 1482.95 9289.59 14870.74 6194.82 9580.66 8984.72 16993.28 86
GST-MVS87.42 2487.26 2487.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6393.99 4870.67 6296.82 2284.18 5695.01 3793.90 55
CS-MVS-test86.29 4186.48 3685.71 6591.02 8367.21 15292.36 2993.78 1878.97 2883.51 8891.20 11170.65 6395.15 7781.96 7694.89 4194.77 22
CANet86.45 3786.10 4487.51 3790.09 10170.94 6789.70 8392.59 6681.78 481.32 11291.43 10670.34 6497.23 1384.26 5293.36 6494.37 35
alignmvs85.48 5385.32 5685.96 6289.51 11969.47 9289.74 8192.47 6876.17 8087.73 3391.46 10570.32 6593.78 13681.51 7888.95 11794.63 26
EI-MVSNet-UG-set83.81 7183.38 7785.09 8087.87 18267.53 14187.44 16189.66 16079.74 1682.23 10189.41 15770.24 6694.74 9879.95 9383.92 18192.99 100
MVS_Test83.15 8783.06 8283.41 14986.86 21363.21 23486.11 20092.00 8774.31 11682.87 9489.44 15670.03 6793.21 16377.39 11688.50 12693.81 60
FC-MVSNet-test81.52 11582.02 9980.03 24088.42 16555.97 32587.95 14693.42 2977.10 5677.38 17790.98 12269.96 6891.79 21768.46 20584.50 17292.33 119
MVS_030488.08 1388.08 1688.08 1489.67 11372.04 4892.26 3389.26 17384.19 285.01 5595.18 1369.93 6997.20 1491.63 295.60 2994.99 9
FIs82.07 10282.42 9081.04 21988.80 15058.34 28888.26 13593.49 2676.93 6078.47 15391.04 11769.92 7092.34 19969.87 19084.97 16692.44 118
UniMVSNet (Re)81.60 11481.11 11083.09 16288.38 16664.41 20987.60 15693.02 4278.42 3278.56 15088.16 19069.78 7193.26 15969.58 19376.49 27591.60 140
HPM-MVScopyleft87.11 2986.98 2987.50 3893.88 3972.16 4592.19 3493.33 3176.07 8283.81 8393.95 5169.77 7296.01 4885.15 4094.66 4694.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
Effi-MVS+83.62 7883.08 8185.24 7588.38 16667.45 14288.89 10989.15 17975.50 9282.27 10088.28 18669.61 7394.45 10977.81 11187.84 13093.84 59
PHI-MVS86.43 3886.17 4287.24 4190.88 8770.96 6592.27 3294.07 972.45 15285.22 5491.90 9269.47 7496.42 3783.28 6295.94 1994.35 36
UA-Net85.08 6184.96 6185.45 7092.07 7068.07 12989.78 8090.86 12682.48 384.60 6893.20 6669.35 7595.22 7471.39 17490.88 9293.07 95
ETV-MVS84.90 6484.67 6485.59 6789.39 12468.66 11688.74 11792.64 6579.97 1584.10 7785.71 25469.32 7695.38 6980.82 8591.37 8692.72 104
旧先验191.96 7165.79 17886.37 24493.08 7169.31 7792.74 6888.74 251
fmvsm_s_conf0.5_n_a83.63 7783.41 7684.28 11186.14 22568.12 12789.43 9082.87 29670.27 19587.27 3793.80 5469.09 7891.58 22488.21 2683.65 18893.14 93
region2R87.42 2487.20 2788.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7094.52 2169.09 7896.70 2784.37 5194.83 4494.03 49
EIA-MVS83.31 8682.80 8884.82 9089.59 11565.59 18188.21 13692.68 6074.66 10978.96 13986.42 24169.06 8095.26 7375.54 13890.09 10393.62 72
EPP-MVSNet83.40 8383.02 8384.57 9690.13 10064.47 20792.32 3090.73 12874.45 11579.35 13591.10 11469.05 8195.12 7872.78 16387.22 13894.13 44
EC-MVSNet86.01 4286.38 3784.91 8889.31 13066.27 16692.32 3093.63 2179.37 2084.17 7691.88 9369.04 8295.43 6583.93 5793.77 6193.01 99
fmvsm_s_conf0.5_n83.80 7283.71 7384.07 12386.69 21967.31 14789.46 8983.07 29271.09 17786.96 4193.70 5569.02 8391.47 23388.79 1884.62 17193.44 80
ACMMPR87.44 2287.23 2688.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6694.52 2168.81 8496.65 3084.53 4994.90 4094.00 50
test_fmvsmvis_n_192084.02 6983.87 7184.49 10184.12 26369.37 9788.15 14087.96 21270.01 19983.95 8093.23 6568.80 8591.51 23188.61 2089.96 10692.57 110
mvs_anonymous79.42 16579.11 15380.34 23484.45 25857.97 29482.59 27387.62 22167.40 25076.17 21188.56 17968.47 8689.59 26870.65 18186.05 15693.47 79
fmvsm_s_conf0.1_n83.56 7983.38 7784.10 11884.86 24967.28 14889.40 9383.01 29370.67 18587.08 3893.96 5068.38 8791.45 23488.56 2284.50 17293.56 75
fmvsm_s_conf0.1_n_a83.32 8582.99 8484.28 11183.79 27068.07 12989.34 9582.85 29769.80 20587.36 3694.06 4268.34 8891.56 22687.95 2783.46 19493.21 90
MTAPA87.23 2787.00 2887.90 2294.18 3574.25 586.58 18792.02 8579.45 1985.88 4694.80 1768.07 8996.21 4286.69 3695.34 3393.23 87
CP-MVS87.11 2986.92 3187.68 3494.20 3473.86 793.98 392.82 5876.62 7083.68 8494.46 2567.93 9095.95 5284.20 5594.39 5393.23 87
PAPM_NR83.02 9182.41 9184.82 9092.47 6766.37 16487.93 14891.80 9873.82 12777.32 17990.66 12567.90 9194.90 9170.37 18389.48 11293.19 91
PGM-MVS86.68 3586.27 3987.90 2294.22 3373.38 1890.22 7093.04 3875.53 9183.86 8194.42 2967.87 9296.64 3182.70 7294.57 4993.66 65
PAPR81.66 11380.89 11583.99 13390.27 9764.00 21586.76 18391.77 10168.84 23177.13 18889.50 14967.63 9394.88 9367.55 21188.52 12593.09 94
Fast-Effi-MVS+80.81 12879.92 13183.47 14588.85 14564.51 20485.53 21789.39 16770.79 18278.49 15285.06 27267.54 9493.58 14467.03 21986.58 14792.32 120
XVS87.18 2886.91 3288.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8594.17 3667.45 9596.60 3383.06 6394.50 5094.07 47
X-MVStestdata80.37 14477.83 18188.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8512.47 39867.45 9596.60 3383.06 6394.50 5094.07 47
SR-MVS86.73 3386.67 3486.91 4694.11 3772.11 4792.37 2892.56 6774.50 11286.84 4294.65 2067.31 9795.77 5484.80 4692.85 6792.84 103
NR-MVSNet80.23 14779.38 14382.78 18087.80 18663.34 23186.31 19491.09 12079.01 2672.17 27189.07 16267.20 9892.81 18566.08 22575.65 28992.20 126
MSLP-MVS++85.43 5585.76 4984.45 10391.93 7270.24 7690.71 5892.86 5377.46 4784.22 7492.81 7867.16 9992.94 18080.36 9094.35 5590.16 194
MG-MVS83.41 8283.45 7583.28 15292.74 6262.28 24888.17 13889.50 16475.22 9681.49 11192.74 8266.75 10095.11 8072.85 16291.58 8392.45 117
test_fmvsmconf0.01_n84.73 6584.52 6785.34 7280.25 33269.03 9989.47 8889.65 16173.24 14486.98 4094.27 3266.62 10193.23 16190.26 589.95 10793.78 62
EI-MVSNet80.52 14079.98 13082.12 19084.28 25963.19 23686.41 19188.95 18974.18 12078.69 14587.54 20666.62 10192.43 19372.57 16680.57 23090.74 172
IterMVS-LS80.06 15079.38 14382.11 19185.89 22863.20 23586.79 18089.34 16874.19 11975.45 22386.72 22666.62 10192.39 19572.58 16576.86 27090.75 171
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_ehance_all_eth78.59 18777.76 18681.08 21882.66 29961.56 25783.65 25589.15 17968.87 23075.55 21983.79 29266.49 10492.03 20873.25 15876.39 27889.64 221
mPP-MVS86.67 3686.32 3887.72 3094.41 2273.55 1392.74 2092.22 8076.87 6282.81 9794.25 3466.44 10596.24 4182.88 6794.28 5693.38 81
c3_l78.75 18177.91 17881.26 21182.89 29461.56 25784.09 25089.13 18169.97 20175.56 21884.29 28466.36 10692.09 20773.47 15575.48 29390.12 197
GeoE81.71 10981.01 11383.80 13989.51 11964.45 20888.97 10688.73 19971.27 17378.63 14889.76 14266.32 10793.20 16669.89 18986.02 15793.74 63
WR-MVS_H78.51 18878.49 16478.56 26588.02 17856.38 32088.43 12692.67 6177.14 5473.89 25287.55 20566.25 10889.24 27458.92 28373.55 31990.06 204
PCF-MVS73.52 780.38 14278.84 15885.01 8287.71 19068.99 10283.65 25591.46 11163.00 29977.77 17190.28 13166.10 10995.09 8461.40 26388.22 12990.94 165
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EPNet83.72 7482.92 8686.14 5984.22 26169.48 9191.05 5585.27 25781.30 676.83 19091.65 9766.09 11095.56 5876.00 13293.85 6093.38 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
原ACMM184.35 10793.01 5768.79 10692.44 6963.96 29381.09 11791.57 10166.06 11195.45 6367.19 21694.82 4588.81 248
PVSNet_BlendedMVS80.60 13780.02 12982.36 18988.85 14565.40 18686.16 19992.00 8769.34 21578.11 16386.09 24966.02 11294.27 11371.52 17182.06 21187.39 275
PVSNet_Blended80.98 12380.34 12482.90 17288.85 14565.40 18684.43 24292.00 8767.62 24678.11 16385.05 27366.02 11294.27 11371.52 17189.50 11189.01 238
diffmvspermissive82.10 10081.88 10282.76 18283.00 29063.78 22083.68 25489.76 15772.94 15082.02 10389.85 14065.96 11490.79 25282.38 7487.30 13793.71 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVS_3200maxsize85.97 4485.88 4786.22 5792.69 6369.53 8991.93 3892.99 4573.54 13585.94 4594.51 2465.80 11595.61 5783.04 6592.51 7193.53 78
miper_enhance_ethall77.87 20676.86 20580.92 22381.65 31361.38 25982.68 27288.98 18665.52 27375.47 22082.30 31365.76 11692.00 21072.95 16176.39 27889.39 226
PVSNet_Blended_VisFu82.62 9581.83 10384.96 8490.80 8969.76 8788.74 11791.70 10269.39 21378.96 13988.46 18165.47 11794.87 9474.42 14588.57 12390.24 192
API-MVS81.99 10481.23 10884.26 11490.94 8570.18 8291.10 5389.32 16971.51 16978.66 14788.28 18665.26 11895.10 8364.74 23691.23 8887.51 273
TranMVSNet+NR-MVSNet80.84 12680.31 12582.42 18787.85 18362.33 24687.74 15491.33 11280.55 977.99 16789.86 13965.23 11992.62 18667.05 21875.24 30392.30 121
IS-MVSNet83.15 8782.81 8784.18 11689.94 10963.30 23291.59 4388.46 20479.04 2579.49 13392.16 8865.10 12094.28 11267.71 20991.86 8194.95 10
DU-MVS81.12 12280.52 12182.90 17287.80 18663.46 22887.02 17291.87 9579.01 2678.38 15489.07 16265.02 12193.05 17670.05 18676.46 27692.20 126
Baseline_NR-MVSNet78.15 19778.33 17077.61 28185.79 22956.21 32386.78 18185.76 25373.60 13377.93 16887.57 20365.02 12188.99 27867.14 21775.33 30087.63 269
SR-MVS-dyc-post85.77 4885.61 5186.23 5693.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2665.00 12395.56 5882.75 6891.87 7992.50 114
VNet82.21 9982.41 9181.62 20090.82 8860.93 26284.47 23889.78 15676.36 7784.07 7891.88 9364.71 12490.26 25870.68 18088.89 11893.66 65
Test By Simon64.33 125
ACMMPcopyleft85.89 4785.39 5387.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12193.82 5364.33 12596.29 3982.67 7390.69 9493.23 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DP-MVS Recon83.11 9082.09 9786.15 5894.44 1970.92 6888.79 11392.20 8170.53 18979.17 13791.03 11964.12 12796.03 4668.39 20690.14 10291.50 145
CLD-MVS82.31 9881.65 10484.29 11088.47 16267.73 13685.81 21092.35 7475.78 8678.33 15686.58 23664.01 12894.35 11076.05 13187.48 13590.79 168
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
RE-MVS-def85.48 5293.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2663.87 12982.75 6891.87 7992.50 114
MVS78.19 19676.99 20381.78 19785.66 23166.99 15484.66 23290.47 13555.08 35972.02 27385.27 26563.83 13094.11 12266.10 22489.80 10984.24 330
WR-MVS79.49 16179.22 15080.27 23688.79 15158.35 28785.06 22488.61 20278.56 3077.65 17288.34 18463.81 13190.66 25564.98 23477.22 26591.80 138
VPA-MVSNet80.60 13780.55 12080.76 22688.07 17660.80 26586.86 17791.58 10575.67 9080.24 12589.45 15563.34 13290.25 25970.51 18279.22 24791.23 153
新几何183.42 14793.13 5270.71 7185.48 25657.43 34981.80 10791.98 9063.28 13392.27 20164.60 23792.99 6587.27 279
HY-MVS69.67 1277.95 20377.15 19980.36 23387.57 19960.21 27583.37 26287.78 21966.11 26475.37 22687.06 22163.27 13490.48 25761.38 26482.43 20790.40 186
XXY-MVS75.41 24875.56 22774.96 30583.59 27457.82 29880.59 29683.87 27866.54 26174.93 24188.31 18563.24 13580.09 34662.16 25576.85 27186.97 288
ab-mvs79.51 16078.97 15681.14 21688.46 16360.91 26383.84 25289.24 17570.36 19179.03 13888.87 16963.23 13690.21 26065.12 23282.57 20692.28 122
xiu_mvs_v2_base81.69 11081.05 11183.60 14289.15 13768.03 13184.46 24090.02 15070.67 18581.30 11586.53 23963.17 13794.19 11975.60 13788.54 12488.57 255
pcd_1.5k_mvsjas5.26 3717.02 3740.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 40463.15 1380.00 4050.00 4040.00 4030.00 401
PS-MVSNAJss82.07 10281.31 10684.34 10886.51 22167.27 14989.27 9691.51 10771.75 16179.37 13490.22 13463.15 13894.27 11377.69 11282.36 20891.49 146
PS-MVSNAJ81.69 11081.02 11283.70 14189.51 11968.21 12684.28 24690.09 14970.79 18281.26 11685.62 25963.15 13894.29 11175.62 13688.87 11988.59 254
WTY-MVS75.65 24375.68 22575.57 29986.40 22256.82 31177.92 33082.40 30165.10 27576.18 20987.72 19863.13 14180.90 34360.31 27181.96 21289.00 240
TransMVSNet (Re)75.39 24974.56 24177.86 27585.50 23557.10 30886.78 18186.09 24972.17 15871.53 27787.34 20963.01 14289.31 27356.84 30461.83 36487.17 281
v879.97 15479.02 15582.80 17784.09 26464.50 20687.96 14590.29 14474.13 12275.24 23386.81 22362.88 14393.89 13374.39 14675.40 29890.00 206
HPM-MVS_fast85.35 5784.95 6286.57 5393.69 4270.58 7592.15 3691.62 10373.89 12682.67 9994.09 4062.60 14495.54 6080.93 8392.93 6693.57 74
PAPM77.68 21276.40 21881.51 20387.29 20861.85 25383.78 25389.59 16264.74 28071.23 27988.70 17262.59 14593.66 14352.66 32387.03 14189.01 238
1112_ss77.40 21776.43 21780.32 23589.11 14260.41 27283.65 25587.72 22062.13 31273.05 26186.72 22662.58 14689.97 26262.11 25780.80 22690.59 178
LCM-MVSNet-Re77.05 22276.94 20477.36 28487.20 20951.60 35980.06 30380.46 32075.20 9767.69 31486.72 22662.48 14788.98 27963.44 24289.25 11491.51 143
v14878.72 18377.80 18381.47 20482.73 29761.96 25286.30 19588.08 20973.26 14276.18 20985.47 26262.46 14892.36 19771.92 17073.82 31790.09 200
baseline176.98 22476.75 21177.66 27988.13 17255.66 32885.12 22381.89 30573.04 14876.79 19188.90 16762.43 14987.78 29763.30 24471.18 33689.55 224
MAR-MVS81.84 10680.70 11785.27 7491.32 7971.53 5489.82 7790.92 12269.77 20778.50 15186.21 24562.36 15094.52 10665.36 23092.05 7789.77 218
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVS_111021_LR82.61 9682.11 9684.11 11788.82 14871.58 5385.15 22286.16 24774.69 10880.47 12391.04 11762.29 15190.55 25680.33 9190.08 10490.20 193
TAMVS78.89 18077.51 19383.03 16687.80 18667.79 13584.72 23185.05 26067.63 24576.75 19387.70 19962.25 15290.82 25158.53 28887.13 13990.49 182
CP-MVSNet78.22 19378.34 16977.84 27687.83 18554.54 33987.94 14791.17 11677.65 3873.48 25688.49 18062.24 15388.43 28962.19 25474.07 31290.55 179
OMC-MVS82.69 9481.97 10184.85 8988.75 15367.42 14387.98 14490.87 12574.92 10379.72 13091.65 9762.19 15493.96 12475.26 14086.42 15093.16 92
cl____77.72 20976.76 20980.58 22982.49 30360.48 27083.09 26787.87 21569.22 21874.38 24985.22 26862.10 15591.53 22971.09 17675.41 29789.73 220
DIV-MVS_self_test77.72 20976.76 20980.58 22982.48 30460.48 27083.09 26787.86 21669.22 21874.38 24985.24 26662.10 15591.53 22971.09 17675.40 29889.74 219
testdata79.97 24190.90 8664.21 21284.71 26359.27 33385.40 5192.91 7362.02 15789.08 27768.95 19991.37 8686.63 296
eth_miper_zixun_eth77.92 20476.69 21281.61 20283.00 29061.98 25183.15 26589.20 17769.52 21274.86 24284.35 28361.76 15892.56 18971.50 17372.89 32590.28 191
MVSFormer82.85 9382.05 9885.24 7587.35 20170.21 7790.50 6290.38 13768.55 23581.32 11289.47 15161.68 15993.46 15378.98 9990.26 10092.05 132
lupinMVS81.39 11880.27 12784.76 9387.35 20170.21 7785.55 21586.41 24262.85 30281.32 11288.61 17661.68 15992.24 20378.41 10690.26 10091.83 136
cdsmvs_eth3d_5k19.96 36526.61 3670.00 3860.00 4080.00 4110.00 39789.26 1730.00 4040.00 40588.61 17661.62 1610.00 4050.00 4040.00 4030.00 401
h-mvs3383.15 8782.19 9586.02 6190.56 9270.85 7088.15 14089.16 17876.02 8384.67 6491.39 10761.54 16295.50 6182.71 7075.48 29391.72 139
hse-mvs281.72 10880.94 11484.07 12388.72 15467.68 13885.87 20687.26 22976.02 8384.67 6488.22 18961.54 16293.48 15182.71 7073.44 32191.06 159
CDS-MVSNet79.07 17577.70 18883.17 15987.60 19568.23 12584.40 24486.20 24667.49 24876.36 20486.54 23861.54 16290.79 25261.86 25987.33 13690.49 182
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v1079.74 15678.67 16082.97 17084.06 26564.95 19687.88 15190.62 13073.11 14675.11 23686.56 23761.46 16594.05 12373.68 15175.55 29189.90 212
v114480.03 15179.03 15483.01 16783.78 27164.51 20487.11 17090.57 13371.96 16078.08 16586.20 24661.41 16693.94 12774.93 14177.23 26490.60 177
cl2278.07 19977.01 20181.23 21282.37 30661.83 25483.55 25987.98 21168.96 22975.06 23883.87 28861.40 16791.88 21573.53 15376.39 27889.98 209
BH-w/o78.21 19477.33 19780.84 22488.81 14965.13 19384.87 22887.85 21769.75 20874.52 24784.74 27761.34 16893.11 17358.24 29185.84 16084.27 329
Test_1112_low_res76.40 23475.44 22979.27 25589.28 13258.09 29081.69 28287.07 23359.53 33172.48 26786.67 23161.30 16989.33 27260.81 26980.15 23590.41 185
Vis-MVSNet (Re-imp)78.36 19178.45 16578.07 27488.64 15751.78 35886.70 18479.63 32974.14 12175.11 23690.83 12361.29 17089.75 26558.10 29291.60 8292.69 107
PEN-MVS77.73 20877.69 18977.84 27687.07 21253.91 34487.91 14991.18 11577.56 4373.14 26088.82 17061.23 17189.17 27559.95 27372.37 32790.43 184
pm-mvs177.25 22176.68 21378.93 25984.22 26158.62 28686.41 19188.36 20571.37 17173.31 25788.01 19661.22 17289.15 27664.24 23873.01 32489.03 237
BH-untuned79.47 16278.60 16282.05 19289.19 13665.91 17386.07 20188.52 20372.18 15775.42 22487.69 20061.15 17393.54 14860.38 27086.83 14486.70 294
v2v48280.23 14779.29 14783.05 16583.62 27364.14 21387.04 17189.97 15273.61 13278.18 16287.22 21461.10 17493.82 13476.11 12976.78 27391.18 154
jason81.39 11880.29 12684.70 9486.63 22069.90 8585.95 20386.77 23863.24 29581.07 11889.47 15161.08 17592.15 20578.33 10790.07 10592.05 132
jason: jason.
Vis-MVSNetpermissive83.46 8182.80 8885.43 7190.25 9868.74 11090.30 6990.13 14876.33 7880.87 12092.89 7461.00 17694.20 11872.45 16890.97 9093.35 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAPA-MVS73.13 979.15 17277.94 17782.79 17989.59 11562.99 24188.16 13991.51 10765.77 26977.14 18791.09 11560.91 17793.21 16350.26 33887.05 14092.17 128
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PS-CasMVS78.01 20278.09 17477.77 27887.71 19054.39 34188.02 14391.22 11377.50 4673.26 25888.64 17560.73 17888.41 29061.88 25873.88 31690.53 180
OPM-MVS83.50 8082.95 8585.14 7788.79 15170.95 6689.13 10391.52 10677.55 4480.96 11991.75 9560.71 17994.50 10779.67 9586.51 14989.97 210
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XVG-OURS-SEG-HR80.81 12879.76 13583.96 13585.60 23368.78 10783.54 26090.50 13470.66 18776.71 19491.66 9660.69 18091.26 23976.94 12081.58 21791.83 136
v14419279.47 16278.37 16882.78 18083.35 27863.96 21686.96 17390.36 14069.99 20077.50 17485.67 25760.66 18193.77 13874.27 14776.58 27490.62 175
V4279.38 16878.24 17282.83 17481.10 32465.50 18385.55 21589.82 15571.57 16878.21 16086.12 24860.66 18193.18 16975.64 13575.46 29589.81 217
SDMVSNet80.38 14280.18 12880.99 22089.03 14364.94 19780.45 29989.40 16675.19 9876.61 19889.98 13760.61 18387.69 29876.83 12383.55 19090.33 188
CPTT-MVS83.73 7383.33 7984.92 8793.28 4970.86 6992.09 3790.38 13768.75 23279.57 13292.83 7660.60 18493.04 17880.92 8491.56 8490.86 167
DTE-MVSNet76.99 22376.80 20777.54 28386.24 22353.06 35287.52 15890.66 12977.08 5772.50 26688.67 17460.48 18589.52 26957.33 29970.74 33890.05 205
HQP_MVS83.64 7683.14 8085.14 7790.08 10268.71 11291.25 5092.44 6979.12 2378.92 14191.00 12060.42 18695.38 6978.71 10286.32 15191.33 149
plane_prior689.84 11168.70 11460.42 186
3Dnovator+77.84 485.48 5384.47 6888.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19593.37 6260.40 18896.75 2677.20 11793.73 6295.29 5
HQP2-MVS60.17 189
HQP-MVS82.61 9682.02 9984.37 10589.33 12766.98 15589.17 9892.19 8276.41 7277.23 18290.23 13360.17 18995.11 8077.47 11485.99 15891.03 161
VPNet78.69 18478.66 16178.76 26188.31 16855.72 32784.45 24186.63 24076.79 6478.26 15890.55 12859.30 19189.70 26766.63 22077.05 26790.88 166
v119279.59 15978.43 16783.07 16483.55 27564.52 20386.93 17590.58 13170.83 18177.78 17085.90 25059.15 19293.94 12773.96 15077.19 26690.76 170
test22291.50 7768.26 12484.16 24883.20 29054.63 36079.74 12991.63 9958.97 19391.42 8586.77 292
CHOSEN 1792x268877.63 21375.69 22483.44 14689.98 10868.58 11878.70 32087.50 22456.38 35475.80 21686.84 22258.67 19491.40 23661.58 26285.75 16290.34 187
3Dnovator76.31 583.38 8482.31 9486.59 5287.94 18072.94 2890.64 5992.14 8477.21 5275.47 22092.83 7658.56 19594.72 9973.24 15992.71 6992.13 130
v192192079.22 17078.03 17582.80 17783.30 28063.94 21786.80 17990.33 14169.91 20377.48 17585.53 26058.44 19693.75 14073.60 15276.85 27190.71 173
FA-MVS(test-final)80.96 12479.91 13284.10 11888.30 16965.01 19584.55 23790.01 15173.25 14379.61 13187.57 20358.35 19794.72 9971.29 17586.25 15392.56 111
114514_t80.68 13479.51 14084.20 11594.09 3867.27 14989.64 8591.11 11958.75 33974.08 25190.72 12458.10 19895.04 8569.70 19189.42 11390.30 190
v7n78.97 17877.58 19283.14 16083.45 27765.51 18288.32 13391.21 11473.69 13072.41 26886.32 24457.93 19993.81 13569.18 19675.65 28990.11 198
CL-MVSNet_self_test72.37 27771.46 27175.09 30479.49 34553.53 34680.76 29385.01 26169.12 22370.51 28382.05 31757.92 20084.13 32352.27 32566.00 35687.60 270
baseline275.70 24273.83 25181.30 21083.26 28161.79 25582.57 27480.65 31666.81 25166.88 32383.42 29857.86 20192.19 20463.47 24179.57 24089.91 211
QAPM80.88 12579.50 14185.03 8188.01 17968.97 10391.59 4392.00 8766.63 26075.15 23592.16 8857.70 20295.45 6363.52 24088.76 12190.66 174
HyFIR lowres test77.53 21475.40 23183.94 13689.59 11566.62 16080.36 30088.64 20156.29 35576.45 20085.17 26957.64 20393.28 15861.34 26583.10 19991.91 135
CNLPA78.08 19876.79 20881.97 19590.40 9671.07 6287.59 15784.55 26666.03 26772.38 26989.64 14557.56 20486.04 30859.61 27683.35 19588.79 249
test_yl81.17 12080.47 12283.24 15589.13 13863.62 22186.21 19789.95 15372.43 15581.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
DCV-MVSNet81.17 12080.47 12283.24 15589.13 13863.62 22186.21 19789.95 15372.43 15581.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
sss73.60 26373.64 25373.51 31882.80 29555.01 33576.12 33781.69 30862.47 30874.68 24485.85 25357.32 20778.11 35460.86 26880.93 22387.39 275
Effi-MVS+-dtu80.03 15178.57 16384.42 10485.13 24468.74 11088.77 11488.10 20874.99 10274.97 24083.49 29757.27 20893.36 15673.53 15380.88 22491.18 154
AdaColmapbinary80.58 13979.42 14284.06 12593.09 5468.91 10489.36 9488.97 18869.27 21675.70 21789.69 14357.20 20995.77 5463.06 24588.41 12787.50 274
v124078.99 17777.78 18482.64 18383.21 28263.54 22586.62 18690.30 14369.74 21077.33 17885.68 25657.04 21093.76 13973.13 16076.92 26890.62 175
miper_lstm_enhance74.11 25773.11 25877.13 28880.11 33459.62 28072.23 35786.92 23666.76 25370.40 28582.92 30456.93 21182.92 33269.06 19872.63 32688.87 245
BH-RMVSNet79.61 15778.44 16683.14 16089.38 12565.93 17284.95 22787.15 23273.56 13478.19 16189.79 14156.67 21293.36 15659.53 27786.74 14590.13 196
test_djsdf80.30 14679.32 14683.27 15383.98 26765.37 18990.50 6290.38 13768.55 23576.19 20888.70 17256.44 21393.46 15378.98 9980.14 23690.97 164
EPNet_dtu75.46 24674.86 23777.23 28782.57 30154.60 33886.89 17683.09 29171.64 16266.25 33485.86 25255.99 21488.04 29454.92 31286.55 14889.05 236
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CostFormer75.24 25073.90 24979.27 25582.65 30058.27 28980.80 29182.73 29961.57 31575.33 23083.13 30255.52 21591.07 24864.98 23478.34 25788.45 256
tpmrst72.39 27572.13 26673.18 32280.54 32949.91 36879.91 30779.08 33463.11 29771.69 27679.95 33555.32 21682.77 33365.66 22973.89 31586.87 289
131476.53 22975.30 23580.21 23783.93 26862.32 24784.66 23288.81 19260.23 32470.16 29084.07 28755.30 21790.73 25467.37 21383.21 19787.59 272
tfpnnormal74.39 25373.16 25778.08 27386.10 22758.05 29184.65 23487.53 22370.32 19371.22 28085.63 25854.97 21889.86 26343.03 36875.02 30586.32 298
sd_testset77.70 21177.40 19478.60 26489.03 14360.02 27679.00 31685.83 25275.19 9876.61 19889.98 13754.81 21985.46 31462.63 25183.55 19090.33 188
GBi-Net78.40 18977.40 19481.40 20787.60 19563.01 23888.39 12889.28 17071.63 16375.34 22787.28 21054.80 22091.11 24262.72 24779.57 24090.09 200
test178.40 18977.40 19481.40 20787.60 19563.01 23888.39 12889.28 17071.63 16375.34 22787.28 21054.80 22091.11 24262.72 24779.57 24090.09 200
FMVSNet278.20 19577.21 19881.20 21487.60 19562.89 24287.47 16089.02 18471.63 16375.29 23287.28 21054.80 22091.10 24562.38 25279.38 24489.61 222
Fast-Effi-MVS+-dtu78.02 20176.49 21582.62 18483.16 28666.96 15786.94 17487.45 22672.45 15271.49 27884.17 28554.79 22391.58 22467.61 21080.31 23389.30 229
MVSTER79.01 17677.88 18082.38 18883.07 28764.80 20084.08 25188.95 18969.01 22878.69 14587.17 21754.70 22492.43 19374.69 14280.57 23089.89 213
OpenMVScopyleft72.83 1079.77 15578.33 17084.09 12185.17 24069.91 8490.57 6090.97 12166.70 25472.17 27191.91 9154.70 22493.96 12461.81 26090.95 9188.41 258
XVG-OURS80.41 14179.23 14983.97 13485.64 23269.02 10183.03 27190.39 13671.09 17777.63 17391.49 10454.62 22691.35 23775.71 13483.47 19391.54 142
mvsmamba81.69 11080.74 11684.56 9787.45 20066.72 15991.26 4885.89 25174.66 10978.23 15990.56 12754.33 22794.91 8880.73 8883.54 19292.04 134
LPG-MVS_test82.08 10181.27 10784.50 9989.23 13468.76 10890.22 7091.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18289.83 215
LGP-MVS_train84.50 9989.23 13468.76 10891.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18289.83 215
TR-MVS77.44 21576.18 22081.20 21488.24 17063.24 23384.61 23586.40 24367.55 24777.81 16986.48 24054.10 23093.15 17057.75 29582.72 20487.20 280
FMVSNet377.88 20576.85 20680.97 22286.84 21562.36 24586.52 18988.77 19471.13 17575.34 22786.66 23254.07 23191.10 24562.72 24779.57 24089.45 225
DP-MVS76.78 22774.57 24083.42 14793.29 4869.46 9488.55 12483.70 27963.98 29270.20 28788.89 16854.01 23294.80 9646.66 35581.88 21486.01 306
ACMP74.13 681.51 11780.57 11984.36 10689.42 12268.69 11589.97 7491.50 11074.46 11475.04 23990.41 13053.82 23394.54 10477.56 11382.91 20089.86 214
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PLCcopyleft70.83 1178.05 20076.37 21983.08 16391.88 7467.80 13488.19 13789.46 16564.33 28669.87 29688.38 18353.66 23493.58 14458.86 28482.73 20387.86 265
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
dmvs_testset62.63 33664.11 32758.19 36578.55 35024.76 40175.28 34465.94 38167.91 24460.34 36076.01 36253.56 23573.94 38031.79 38467.65 34975.88 372
CANet_DTU80.61 13679.87 13382.83 17485.60 23363.17 23787.36 16288.65 20076.37 7675.88 21488.44 18253.51 23693.07 17573.30 15789.74 11092.25 123
WB-MVSnew71.96 28071.65 27072.89 32384.67 25551.88 35682.29 27677.57 34162.31 30973.67 25483.00 30353.49 23781.10 34245.75 36182.13 21085.70 311
ACMM73.20 880.78 13379.84 13483.58 14389.31 13068.37 12189.99 7391.60 10470.28 19477.25 18089.66 14453.37 23893.53 14974.24 14882.85 20188.85 246
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVP-Stereo76.12 23774.46 24481.13 21785.37 23869.79 8684.42 24387.95 21365.03 27767.46 31785.33 26453.28 23991.73 22158.01 29383.27 19681.85 354
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
AUN-MVS79.21 17177.60 19184.05 12888.71 15567.61 13985.84 20887.26 22969.08 22477.23 18288.14 19453.20 24093.47 15275.50 13973.45 32091.06 159
anonymousdsp78.60 18677.15 19982.98 16980.51 33067.08 15387.24 16789.53 16365.66 27175.16 23487.19 21652.52 24192.25 20277.17 11879.34 24589.61 222
CR-MVSNet73.37 26571.27 27579.67 24981.32 32265.19 19175.92 33980.30 32259.92 32772.73 26481.19 32152.50 24286.69 30359.84 27477.71 26087.11 285
Patchmtry70.74 28969.16 29275.49 30180.72 32654.07 34374.94 35080.30 32258.34 34070.01 29181.19 32152.50 24286.54 30453.37 32071.09 33785.87 310
pmmvs474.03 26071.91 26780.39 23281.96 30968.32 12281.45 28682.14 30359.32 33269.87 29685.13 27052.40 24488.13 29360.21 27274.74 30884.73 326
RPMNet73.51 26470.49 28282.58 18581.32 32265.19 19175.92 33992.27 7657.60 34772.73 26476.45 36052.30 24595.43 6548.14 35077.71 26087.11 285
LFMVS81.82 10781.23 10883.57 14491.89 7363.43 23089.84 7681.85 30777.04 5883.21 8993.10 6752.26 24693.43 15571.98 16989.95 10793.85 57
VDD-MVS83.01 9282.36 9384.96 8491.02 8366.40 16388.91 10888.11 20777.57 4184.39 7293.29 6452.19 24793.91 13177.05 11988.70 12294.57 29
tfpn200view976.42 23375.37 23379.55 25389.13 13857.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24891.95 21148.33 34683.75 18489.07 231
thres40076.50 23075.37 23379.86 24389.13 13857.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24891.95 21148.33 34683.75 18490.00 206
Syy-MVS68.05 31367.85 30468.67 35084.68 25240.97 39178.62 32173.08 36466.65 25866.74 32679.46 33952.11 25082.30 33532.89 38376.38 28182.75 348
thres20075.55 24474.47 24378.82 26087.78 18957.85 29783.07 26983.51 28372.44 15475.84 21584.42 27952.08 25191.75 21947.41 35383.64 18986.86 290
PMMVS69.34 30268.67 29471.35 33575.67 36162.03 25075.17 34573.46 36250.00 37168.68 30679.05 34252.07 25278.13 35361.16 26682.77 20273.90 374
tpm cat170.57 29168.31 29777.35 28582.41 30557.95 29578.08 32780.22 32452.04 36568.54 30977.66 35552.00 25387.84 29651.77 32672.07 33186.25 299
IterMVS-SCA-FT75.43 24773.87 25080.11 23982.69 29864.85 19981.57 28483.47 28469.16 22270.49 28484.15 28651.95 25488.15 29269.23 19572.14 33087.34 277
SCA74.22 25672.33 26579.91 24284.05 26662.17 24979.96 30679.29 33266.30 26372.38 26980.13 33351.95 25488.60 28759.25 27977.67 26288.96 242
thres100view90076.50 23075.55 22879.33 25489.52 11856.99 30985.83 20983.23 28873.94 12476.32 20587.12 21851.89 25691.95 21148.33 34683.75 18489.07 231
thres600view776.50 23075.44 22979.68 24889.40 12357.16 30685.53 21783.23 28873.79 12976.26 20687.09 21951.89 25691.89 21448.05 35183.72 18790.00 206
tpm273.26 26871.46 27178.63 26283.34 27956.71 31480.65 29580.40 32156.63 35373.55 25582.02 31851.80 25891.24 24056.35 30878.42 25587.95 262
LS3D76.95 22574.82 23883.37 15090.45 9467.36 14689.15 10286.94 23561.87 31469.52 29990.61 12651.71 25994.53 10546.38 35886.71 14688.21 260
IterMVS74.29 25472.94 25978.35 26981.53 31663.49 22781.58 28382.49 30068.06 24369.99 29383.69 29451.66 26085.54 31265.85 22771.64 33386.01 306
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tpm72.37 27771.71 26974.35 31282.19 30752.00 35479.22 31377.29 34664.56 28272.95 26283.68 29551.35 26183.26 33158.33 29075.80 28787.81 266
sam_mvs151.32 26288.96 242
PatchmatchNetpermissive73.12 27071.33 27478.49 26883.18 28460.85 26479.63 30878.57 33664.13 28771.73 27579.81 33851.20 26385.97 30957.40 29876.36 28388.66 252
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
patchmatchnet-post74.00 36951.12 26488.60 287
xiu_mvs_v1_base_debu80.80 13079.72 13684.03 13087.35 20170.19 7985.56 21288.77 19469.06 22581.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 233
xiu_mvs_v1_base80.80 13079.72 13684.03 13087.35 20170.19 7985.56 21288.77 19469.06 22581.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 233
xiu_mvs_v1_base_debi80.80 13079.72 13684.03 13087.35 20170.19 7985.56 21288.77 19469.06 22581.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 233
Patchmatch-test64.82 33163.24 33269.57 34379.42 34649.82 36963.49 38569.05 37551.98 36759.95 36380.13 33350.91 26570.98 38340.66 37373.57 31887.90 264
Patchmatch-RL test70.24 29567.78 30877.61 28177.43 35459.57 28271.16 36070.33 36962.94 30168.65 30772.77 37250.62 26985.49 31369.58 19366.58 35387.77 267
Anonymous2023121178.97 17877.69 18982.81 17690.54 9364.29 21190.11 7291.51 10765.01 27876.16 21288.13 19550.56 27093.03 17969.68 19277.56 26391.11 156
VDDNet81.52 11580.67 11884.05 12890.44 9564.13 21489.73 8285.91 25071.11 17683.18 9093.48 5850.54 27193.49 15073.40 15688.25 12894.54 30
pmmvs674.69 25273.39 25478.61 26381.38 31957.48 30386.64 18587.95 21364.99 27970.18 28886.61 23350.43 27289.52 26962.12 25670.18 34088.83 247
test_post5.46 39950.36 27384.24 322
ET-MVSNet_ETH3D78.63 18576.63 21484.64 9586.73 21869.47 9285.01 22584.61 26569.54 21166.51 33286.59 23450.16 27491.75 21976.26 12884.24 17992.69 107
sam_mvs50.01 275
Anonymous2024052980.19 14978.89 15784.10 11890.60 9164.75 20188.95 10790.90 12365.97 26880.59 12291.17 11349.97 27693.73 14269.16 19782.70 20593.81 60
thisisatest053079.40 16677.76 18684.31 10987.69 19265.10 19487.36 16284.26 27370.04 19877.42 17688.26 18849.94 27794.79 9770.20 18484.70 17093.03 97
PatchT68.46 31167.85 30470.29 34180.70 32743.93 38372.47 35674.88 35660.15 32570.55 28276.57 35949.94 27781.59 33850.58 33274.83 30785.34 315
tttt051779.40 16677.91 17883.90 13888.10 17463.84 21888.37 13184.05 27571.45 17076.78 19289.12 16149.93 27994.89 9270.18 18583.18 19892.96 101
tpmvs71.09 28569.29 29076.49 29282.04 30856.04 32478.92 31881.37 31164.05 29067.18 32178.28 35049.74 28089.77 26449.67 34172.37 32783.67 337
thisisatest051577.33 21875.38 23283.18 15885.27 23963.80 21982.11 27883.27 28765.06 27675.91 21383.84 29049.54 28194.27 11367.24 21586.19 15491.48 147
UniMVSNet_ETH3D79.10 17478.24 17281.70 19986.85 21460.24 27487.28 16688.79 19374.25 11876.84 18990.53 12949.48 28291.56 22667.98 20782.15 20993.29 85
dmvs_re71.14 28470.58 28072.80 32481.96 30959.68 27975.60 34379.34 33168.55 23569.27 30380.72 32949.42 28376.54 36252.56 32477.79 25982.19 352
CVMVSNet72.99 27272.58 26274.25 31384.28 25950.85 36486.41 19183.45 28544.56 37673.23 25987.54 20649.38 28485.70 31065.90 22678.44 25486.19 301
MDTV_nov1_ep13_2view37.79 39375.16 34655.10 35866.53 32949.34 28553.98 31687.94 263
UGNet80.83 12779.59 13984.54 9888.04 17768.09 12889.42 9188.16 20676.95 5976.22 20789.46 15349.30 28693.94 12768.48 20490.31 9891.60 140
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pmmvs571.55 28170.20 28775.61 29877.83 35256.39 31981.74 28180.89 31257.76 34567.46 31784.49 27849.26 28785.32 31657.08 30175.29 30185.11 321
mvsany_test162.30 33761.26 34165.41 35769.52 38154.86 33666.86 37649.78 39746.65 37468.50 31083.21 30049.15 28866.28 38956.93 30360.77 36775.11 373
LTVRE_ROB69.57 1376.25 23674.54 24281.41 20688.60 15864.38 21079.24 31289.12 18270.76 18469.79 29887.86 19749.09 28993.20 16656.21 30980.16 23486.65 295
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
FMVSNet177.44 21576.12 22181.40 20786.81 21663.01 23888.39 12889.28 17070.49 19074.39 24887.28 21049.06 29091.11 24260.91 26778.52 25290.09 200
RRT_MVS80.35 14579.22 15083.74 14087.63 19465.46 18591.08 5488.92 19173.82 12776.44 20390.03 13649.05 29194.25 11776.84 12179.20 24891.51 143
test111179.43 16479.18 15280.15 23889.99 10753.31 35087.33 16477.05 34875.04 10180.23 12692.77 8148.97 29292.33 20068.87 20092.40 7494.81 20
ECVR-MVScopyleft79.61 15779.26 14880.67 22890.08 10254.69 33787.89 15077.44 34574.88 10480.27 12492.79 7948.96 29392.45 19268.55 20392.50 7294.86 17
MDTV_nov1_ep1369.97 28883.18 28453.48 34777.10 33580.18 32560.45 32169.33 30280.44 33048.89 29486.90 30251.60 32878.51 253
test_post178.90 3195.43 40048.81 29585.44 31559.25 279
test-LLR72.94 27372.43 26374.48 31081.35 32058.04 29278.38 32377.46 34366.66 25569.95 29479.00 34448.06 29679.24 34866.13 22284.83 16786.15 302
test0.0.03 168.00 31467.69 30968.90 34777.55 35347.43 37275.70 34272.95 36666.66 25566.56 32882.29 31448.06 29675.87 36944.97 36574.51 31083.41 339
our_test_369.14 30367.00 31675.57 29979.80 34058.80 28477.96 32877.81 33959.55 33062.90 35478.25 35147.43 29883.97 32451.71 32767.58 35083.93 335
MS-PatchMatch73.83 26172.67 26077.30 28683.87 26966.02 16981.82 27984.66 26461.37 31868.61 30882.82 30747.29 29988.21 29159.27 27884.32 17777.68 368
cascas76.72 22874.64 23982.99 16885.78 23065.88 17482.33 27589.21 17660.85 32072.74 26381.02 32447.28 30093.75 14067.48 21285.02 16589.34 227
WB-MVS54.94 34454.72 34655.60 37173.50 37120.90 40374.27 35261.19 38859.16 33450.61 38174.15 36847.19 30175.78 37017.31 39535.07 39070.12 378
test20.0367.45 31666.95 31768.94 34675.48 36344.84 38177.50 33177.67 34066.66 25563.01 35283.80 29147.02 30278.40 35242.53 37068.86 34783.58 338
test_040272.79 27470.44 28379.84 24488.13 17265.99 17185.93 20484.29 27165.57 27267.40 31985.49 26146.92 30392.61 18735.88 38074.38 31180.94 359
F-COLMAP76.38 23574.33 24582.50 18689.28 13266.95 15888.41 12789.03 18364.05 29066.83 32488.61 17646.78 30492.89 18157.48 29678.55 25187.67 268
ppachtmachnet_test70.04 29767.34 31478.14 27279.80 34061.13 26079.19 31480.59 31759.16 33465.27 33979.29 34146.75 30587.29 30049.33 34266.72 35186.00 308
tt080578.73 18277.83 18181.43 20585.17 24060.30 27389.41 9290.90 12371.21 17477.17 18688.73 17146.38 30693.21 16372.57 16678.96 24990.79 168
D2MVS74.82 25173.21 25679.64 25079.81 33962.56 24480.34 30187.35 22764.37 28568.86 30582.66 30946.37 30790.10 26167.91 20881.24 22086.25 299
Anonymous2023120668.60 30767.80 30771.02 33880.23 33350.75 36578.30 32680.47 31956.79 35266.11 33582.63 31046.35 30878.95 35043.62 36775.70 28883.36 340
SSC-MVS53.88 34753.59 34854.75 37372.87 37619.59 40473.84 35460.53 39057.58 34849.18 38373.45 37146.34 30975.47 37316.20 39832.28 39269.20 379
CHOSEN 280x42066.51 32364.71 32471.90 32981.45 31763.52 22657.98 38868.95 37653.57 36162.59 35576.70 35846.22 31075.29 37555.25 31179.68 23976.88 370
GA-MVS76.87 22675.17 23681.97 19582.75 29662.58 24381.44 28786.35 24572.16 15974.74 24382.89 30546.20 31192.02 20968.85 20181.09 22291.30 152
iter_conf_final80.63 13579.35 14584.46 10289.36 12667.70 13789.85 7584.49 26773.19 14578.30 15788.94 16545.98 31294.56 10279.59 9684.48 17591.11 156
MDA-MVSNet_test_wron65.03 32962.92 33371.37 33375.93 35856.73 31269.09 37274.73 35857.28 35054.03 37877.89 35245.88 31374.39 37849.89 34061.55 36582.99 346
YYNet165.03 32962.91 33471.38 33275.85 36056.60 31669.12 37174.66 36057.28 35054.12 37777.87 35345.85 31474.48 37749.95 33961.52 36683.05 344
EPMVS69.02 30468.16 29971.59 33179.61 34349.80 37077.40 33266.93 37862.82 30470.01 29179.05 34245.79 31577.86 35656.58 30675.26 30287.13 284
IB-MVS68.01 1575.85 24173.36 25583.31 15184.76 25066.03 16883.38 26185.06 25970.21 19769.40 30081.05 32345.76 31694.66 10165.10 23375.49 29289.25 230
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
jajsoiax79.29 16977.96 17683.27 15384.68 25266.57 16289.25 9790.16 14769.20 22075.46 22289.49 15045.75 31793.13 17276.84 12180.80 22690.11 198
PatchMatch-RL72.38 27670.90 27876.80 29188.60 15867.38 14579.53 30976.17 35362.75 30569.36 30182.00 31945.51 31884.89 31953.62 31880.58 22978.12 367
FE-MVS77.78 20775.68 22584.08 12288.09 17566.00 17083.13 26687.79 21868.42 23978.01 16685.23 26745.50 31995.12 7859.11 28185.83 16191.11 156
RPSCF73.23 26971.46 27178.54 26682.50 30259.85 27782.18 27782.84 29858.96 33671.15 28189.41 15745.48 32084.77 32058.82 28571.83 33291.02 163
test_vis1_n_192075.52 24575.78 22374.75 30979.84 33857.44 30483.26 26385.52 25562.83 30379.34 13686.17 24745.10 32179.71 34778.75 10181.21 22187.10 287
MSDG73.36 26770.99 27780.49 23184.51 25765.80 17780.71 29486.13 24865.70 27065.46 33783.74 29344.60 32290.91 25051.13 33176.89 26984.74 325
PVSNet_057.27 2061.67 33959.27 34268.85 34879.61 34357.44 30468.01 37373.44 36355.93 35658.54 36770.41 37744.58 32377.55 35747.01 35435.91 38971.55 377
test_cas_vis1_n_192073.76 26273.74 25273.81 31675.90 35959.77 27880.51 29782.40 30158.30 34181.62 11085.69 25544.35 32476.41 36576.29 12778.61 25085.23 317
mvs_tets79.13 17377.77 18583.22 15784.70 25166.37 16489.17 9890.19 14669.38 21475.40 22589.46 15344.17 32593.15 17076.78 12480.70 22890.14 195
MDA-MVSNet-bldmvs66.68 32163.66 33075.75 29679.28 34760.56 26973.92 35378.35 33764.43 28350.13 38279.87 33744.02 32683.67 32646.10 35956.86 37283.03 345
iter_conf0580.00 15378.70 15983.91 13787.84 18465.83 17588.84 11284.92 26271.61 16678.70 14488.94 16543.88 32794.56 10279.28 9784.28 17891.33 149
gg-mvs-nofinetune69.95 29867.96 30275.94 29583.07 28754.51 34077.23 33470.29 37063.11 29770.32 28662.33 38143.62 32888.69 28553.88 31787.76 13184.62 327
GG-mvs-BLEND75.38 30281.59 31555.80 32679.32 31169.63 37267.19 32073.67 37043.24 32988.90 28350.41 33384.50 17281.45 356
CMPMVSbinary51.72 2170.19 29668.16 29976.28 29373.15 37557.55 30279.47 31083.92 27648.02 37356.48 37484.81 27543.13 33086.42 30662.67 25081.81 21584.89 323
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
dp66.80 32065.43 32270.90 34079.74 34248.82 37175.12 34874.77 35759.61 32964.08 34777.23 35642.89 33180.72 34448.86 34466.58 35383.16 342
PVSNet64.34 1872.08 27970.87 27975.69 29786.21 22456.44 31874.37 35180.73 31562.06 31370.17 28982.23 31542.86 33283.31 33054.77 31384.45 17687.32 278
pmmvs-eth3d70.50 29367.83 30678.52 26777.37 35566.18 16781.82 27981.51 30958.90 33763.90 34980.42 33142.69 33386.28 30758.56 28765.30 35883.11 343
UnsupCasMVSNet_eth67.33 31765.99 32171.37 33373.48 37251.47 36175.16 34685.19 25865.20 27460.78 35980.93 32842.35 33477.20 35857.12 30053.69 37985.44 314
KD-MVS_self_test68.81 30567.59 31272.46 32774.29 36745.45 37677.93 32987.00 23463.12 29663.99 34878.99 34642.32 33584.77 32056.55 30764.09 36187.16 283
ADS-MVSNet266.20 32863.33 33174.82 30779.92 33658.75 28567.55 37475.19 35553.37 36265.25 34075.86 36342.32 33580.53 34541.57 37168.91 34585.18 318
ADS-MVSNet64.36 33262.88 33568.78 34979.92 33647.17 37367.55 37471.18 36853.37 36265.25 34075.86 36342.32 33573.99 37941.57 37168.91 34585.18 318
bld_raw_dy_0_6477.29 22075.98 22281.22 21385.04 24665.47 18488.14 14277.56 34269.20 22073.77 25389.40 15942.24 33888.85 28476.78 12481.64 21689.33 228
SixPastTwentyTwo73.37 26571.26 27679.70 24785.08 24557.89 29685.57 21183.56 28271.03 17965.66 33685.88 25142.10 33992.57 18859.11 28163.34 36288.65 253
JIA-IIPM66.32 32562.82 33676.82 29077.09 35661.72 25665.34 38175.38 35458.04 34464.51 34462.32 38242.05 34086.51 30551.45 32969.22 34482.21 351
ACMH67.68 1675.89 24073.93 24881.77 19888.71 15566.61 16188.62 12289.01 18569.81 20466.78 32586.70 23041.95 34191.51 23155.64 31078.14 25887.17 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+68.96 1476.01 23974.01 24782.03 19388.60 15865.31 19088.86 11087.55 22270.25 19667.75 31387.47 20841.27 34293.19 16858.37 28975.94 28687.60 270
MIMVSNet70.69 29069.30 28974.88 30684.52 25656.35 32175.87 34179.42 33064.59 28167.76 31282.41 31141.10 34381.54 33946.64 35781.34 21886.75 293
Anonymous20240521178.25 19277.01 20181.99 19491.03 8260.67 26784.77 23083.90 27770.65 18880.00 12891.20 11141.08 34491.43 23565.21 23185.26 16493.85 57
N_pmnet52.79 35053.26 34951.40 37578.99 3497.68 40769.52 3673.89 40651.63 36857.01 37274.98 36740.83 34565.96 39037.78 37864.67 35980.56 362
EU-MVSNet68.53 31067.61 31171.31 33678.51 35147.01 37484.47 23884.27 27242.27 37966.44 33384.79 27640.44 34683.76 32558.76 28668.54 34883.17 341
DSMNet-mixed57.77 34356.90 34560.38 36367.70 38435.61 39469.18 36953.97 39532.30 39157.49 37179.88 33640.39 34768.57 38838.78 37772.37 32776.97 369
OurMVSNet-221017-074.26 25572.42 26479.80 24583.76 27259.59 28185.92 20586.64 23966.39 26266.96 32287.58 20239.46 34891.60 22365.76 22869.27 34388.22 259
K. test v371.19 28368.51 29579.21 25783.04 28957.78 29984.35 24576.91 34972.90 15162.99 35382.86 30639.27 34991.09 24761.65 26152.66 38088.75 250
lessismore_v078.97 25881.01 32557.15 30765.99 38061.16 35882.82 30739.12 35091.34 23859.67 27546.92 38688.43 257
testing22274.04 25872.66 26178.19 27187.89 18155.36 33081.06 28979.20 33371.30 17274.65 24583.57 29639.11 35188.67 28651.43 33085.75 16290.53 180
UnsupCasMVSNet_bld63.70 33461.53 34070.21 34273.69 37051.39 36272.82 35581.89 30555.63 35757.81 37071.80 37438.67 35278.61 35149.26 34352.21 38180.63 360
new-patchmatchnet61.73 33861.73 33961.70 36172.74 37724.50 40269.16 37078.03 33861.40 31656.72 37375.53 36638.42 35376.48 36445.95 36057.67 37184.13 332
MVS-HIRNet59.14 34157.67 34463.57 35981.65 31343.50 38471.73 35865.06 38339.59 38351.43 38057.73 38738.34 35482.58 33439.53 37473.95 31464.62 383
test250677.30 21976.49 21579.74 24690.08 10252.02 35387.86 15263.10 38674.88 10480.16 12792.79 7938.29 35592.35 19868.74 20292.50 7294.86 17
COLMAP_ROBcopyleft66.92 1773.01 27170.41 28480.81 22587.13 21165.63 18088.30 13484.19 27462.96 30063.80 35087.69 20038.04 35692.56 18946.66 35574.91 30684.24 330
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TESTMET0.1,169.89 29969.00 29372.55 32679.27 34856.85 31078.38 32374.71 35957.64 34668.09 31177.19 35737.75 35776.70 36163.92 23984.09 18084.10 333
OpenMVS_ROBcopyleft64.09 1970.56 29268.19 29877.65 28080.26 33159.41 28385.01 22582.96 29558.76 33865.43 33882.33 31237.63 35891.23 24145.34 36476.03 28582.32 350
FMVSNet569.50 30167.96 30274.15 31482.97 29355.35 33180.01 30582.12 30462.56 30763.02 35181.53 32036.92 35981.92 33748.42 34574.06 31385.17 320
MIMVSNet168.58 30866.78 31873.98 31580.07 33551.82 35780.77 29284.37 26864.40 28459.75 36482.16 31636.47 36083.63 32742.73 36970.33 33986.48 297
ITE_SJBPF78.22 27081.77 31260.57 26883.30 28669.25 21767.54 31587.20 21536.33 36187.28 30154.34 31574.62 30986.80 291
test-mter71.41 28270.39 28574.48 31081.35 32058.04 29278.38 32377.46 34360.32 32369.95 29479.00 34436.08 36279.24 34866.13 22284.83 16786.15 302
testgi66.67 32266.53 31967.08 35575.62 36241.69 39075.93 33876.50 35066.11 26465.20 34286.59 23435.72 36374.71 37643.71 36673.38 32284.84 324
EG-PatchMatch MVS74.04 25871.82 26880.71 22784.92 24867.42 14385.86 20788.08 20966.04 26664.22 34683.85 28935.10 36492.56 18957.44 29780.83 22582.16 353
KD-MVS_2432*160066.22 32663.89 32873.21 31975.47 36453.42 34870.76 36384.35 26964.10 28866.52 33078.52 34834.55 36584.98 31750.40 33450.33 38381.23 357
miper_refine_blended66.22 32663.89 32873.21 31975.47 36453.42 34870.76 36384.35 26964.10 28866.52 33078.52 34834.55 36584.98 31750.40 33450.33 38381.23 357
XVG-ACMP-BASELINE76.11 23874.27 24681.62 20083.20 28364.67 20283.60 25889.75 15869.75 20871.85 27487.09 21932.78 36792.11 20669.99 18880.43 23288.09 261
AllTest70.96 28668.09 30179.58 25185.15 24263.62 22184.58 23679.83 32662.31 30960.32 36186.73 22432.02 36888.96 28150.28 33671.57 33486.15 302
TestCases79.58 25185.15 24263.62 22179.83 32662.31 30960.32 36186.73 22432.02 36888.96 28150.28 33671.57 33486.15 302
USDC70.33 29468.37 29676.21 29480.60 32856.23 32279.19 31486.49 24160.89 31961.29 35785.47 26231.78 37089.47 27153.37 32076.21 28482.94 347
myMVS_eth3d67.02 31966.29 32069.21 34584.68 25242.58 38678.62 32173.08 36466.65 25866.74 32679.46 33931.53 37182.30 33539.43 37676.38 28182.75 348
test_fmvs170.93 28770.52 28172.16 32873.71 36955.05 33480.82 29078.77 33551.21 37078.58 14984.41 28031.20 37276.94 36075.88 13380.12 23784.47 328
Anonymous2024052168.80 30667.22 31573.55 31774.33 36654.11 34283.18 26485.61 25458.15 34261.68 35680.94 32630.71 37381.27 34157.00 30273.34 32385.28 316
testing368.56 30967.67 31071.22 33787.33 20642.87 38583.06 27071.54 36770.36 19169.08 30484.38 28130.33 37485.69 31137.50 37975.45 29685.09 322
test_vis1_n69.85 30069.21 29171.77 33072.66 37855.27 33381.48 28576.21 35252.03 36675.30 23183.20 30128.97 37576.22 36774.60 14378.41 25683.81 336
tmp_tt18.61 36621.40 36910.23 3834.82 40510.11 40634.70 39330.74 4041.48 40023.91 39626.07 39728.42 37613.41 40227.12 38815.35 3997.17 397
test_fmvs1_n70.86 28870.24 28672.73 32572.51 37955.28 33281.27 28879.71 32851.49 36978.73 14384.87 27427.54 37777.02 35976.06 13079.97 23885.88 309
TDRefinement67.49 31564.34 32576.92 28973.47 37361.07 26184.86 22982.98 29459.77 32858.30 36885.13 27026.06 37887.89 29547.92 35260.59 36981.81 355
test_vis1_rt60.28 34058.42 34365.84 35667.25 38555.60 32970.44 36560.94 38944.33 37759.00 36566.64 37924.91 37968.67 38762.80 24669.48 34173.25 375
TinyColmap67.30 31864.81 32374.76 30881.92 31156.68 31580.29 30281.49 31060.33 32256.27 37583.22 29924.77 38087.66 29945.52 36269.47 34279.95 363
EGC-MVSNET52.07 35247.05 35667.14 35483.51 27660.71 26680.50 29867.75 3770.07 4010.43 40275.85 36524.26 38181.54 33928.82 38662.25 36359.16 386
LF4IMVS64.02 33362.19 33769.50 34470.90 38053.29 35176.13 33677.18 34752.65 36458.59 36680.98 32523.55 38276.52 36353.06 32266.66 35278.68 366
test_fmvs268.35 31267.48 31370.98 33969.50 38251.95 35580.05 30476.38 35149.33 37274.65 24584.38 28123.30 38375.40 37474.51 14475.17 30485.60 312
new_pmnet50.91 35350.29 35352.78 37468.58 38334.94 39663.71 38356.63 39439.73 38244.95 38465.47 38021.93 38458.48 39334.98 38156.62 37364.92 382
pmmvs357.79 34254.26 34768.37 35164.02 38856.72 31375.12 34865.17 38240.20 38152.93 37969.86 37820.36 38575.48 37245.45 36355.25 37872.90 376
PM-MVS66.41 32464.14 32673.20 32173.92 36856.45 31778.97 31764.96 38463.88 29464.72 34380.24 33219.84 38683.44 32966.24 22164.52 36079.71 364
mvsany_test353.99 34651.45 35161.61 36255.51 39344.74 38263.52 38445.41 40143.69 37858.11 36976.45 36017.99 38763.76 39254.77 31347.59 38576.34 371
ambc75.24 30373.16 37450.51 36663.05 38687.47 22564.28 34577.81 35417.80 38889.73 26657.88 29460.64 36885.49 313
ANet_high50.57 35446.10 35863.99 35848.67 40039.13 39270.99 36280.85 31361.39 31731.18 39057.70 38817.02 38973.65 38131.22 38515.89 39879.18 365
FPMVS53.68 34851.64 35059.81 36465.08 38751.03 36369.48 36869.58 37341.46 38040.67 38672.32 37316.46 39070.00 38624.24 39265.42 35758.40 388
test_method31.52 36229.28 36638.23 37827.03 4046.50 40820.94 39662.21 3874.05 39922.35 39752.50 39113.33 39147.58 39827.04 38934.04 39160.62 385
EMVS30.81 36329.65 36534.27 38050.96 39925.95 40056.58 39046.80 40024.01 39515.53 40030.68 39612.47 39254.43 39712.81 40017.05 39722.43 396
test_f52.09 35150.82 35255.90 36953.82 39642.31 38959.42 38758.31 39336.45 38656.12 37670.96 37612.18 39357.79 39453.51 31956.57 37467.60 380
test_fmvs363.36 33561.82 33867.98 35262.51 38946.96 37577.37 33374.03 36145.24 37567.50 31678.79 34712.16 39472.98 38272.77 16466.02 35583.99 334
E-PMN31.77 36130.64 36435.15 37952.87 39827.67 39857.09 38947.86 39924.64 39416.40 39933.05 39511.23 39554.90 39614.46 39918.15 39622.87 395
DeepMVS_CXcopyleft27.40 38140.17 40326.90 39924.59 40517.44 39723.95 39548.61 3929.77 39626.48 40018.06 39424.47 39428.83 394
Gipumacopyleft45.18 35841.86 36155.16 37277.03 35751.52 36032.50 39480.52 31832.46 39027.12 39335.02 3949.52 39775.50 37122.31 39360.21 37038.45 393
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet54.25 34549.68 35567.97 35353.73 39745.28 37966.85 37780.78 31435.96 38739.45 38862.23 3838.70 39878.06 35548.24 34951.20 38280.57 361
APD_test153.31 34949.93 35463.42 36065.68 38650.13 36771.59 35966.90 37934.43 38840.58 38771.56 3758.65 39976.27 36634.64 38255.36 37763.86 384
PMMVS240.82 36038.86 36346.69 37653.84 39516.45 40548.61 39149.92 39637.49 38431.67 38960.97 3848.14 40056.42 39528.42 38730.72 39367.19 381
test_vis3_rt49.26 35547.02 35756.00 36854.30 39445.27 38066.76 37848.08 39836.83 38544.38 38553.20 3907.17 40164.07 39156.77 30555.66 37558.65 387
testf145.72 35641.96 35957.00 36656.90 39145.32 37766.14 37959.26 39126.19 39230.89 39160.96 3854.14 40270.64 38426.39 39046.73 38755.04 389
APD_test245.72 35641.96 35957.00 36656.90 39145.32 37766.14 37959.26 39126.19 39230.89 39160.96 3854.14 40270.64 38426.39 39046.73 38755.04 389
PMVScopyleft37.38 2244.16 35940.28 36255.82 37040.82 40242.54 38865.12 38263.99 38534.43 38824.48 39457.12 3893.92 40476.17 36817.10 39655.52 37648.75 391
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive26.22 2330.37 36425.89 36843.81 37744.55 40135.46 39528.87 39539.07 40218.20 39618.58 39840.18 3932.68 40547.37 39917.07 39723.78 39548.60 392
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d16.82 36715.94 37019.46 38258.74 39031.45 39739.22 3923.74 4076.84 3986.04 4012.70 4011.27 40624.29 40110.54 40114.40 4002.63 398
test1236.12 3698.11 3720.14 3840.06 4070.09 40971.05 3610.03 4090.04 4030.25 4041.30 4030.05 4070.03 4040.21 4030.01 4020.29 399
testmvs6.04 3708.02 3730.10 3850.08 4060.03 41069.74 3660.04 4080.05 4020.31 4031.68 4020.02 4080.04 4030.24 4020.02 4010.25 400
test_blank0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
uanet_test0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
DCPMVS0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
sosnet-low-res0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
sosnet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
uncertanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
Regformer0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
ab-mvs-re7.23 3689.64 3710.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 40586.72 2260.00 4090.00 4050.00 4040.00 4030.00 401
uanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
WAC-MVS42.58 38639.46 375
FOURS195.00 1072.39 3995.06 193.84 1574.49 11391.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
No_MVS89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
eth-test20.00 408
eth-test0.00 408
IU-MVS95.30 271.25 5792.95 5166.81 25192.39 688.94 1696.63 494.85 19
save fliter93.80 4072.35 4290.47 6491.17 11674.31 116
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 42
GSMVS88.96 242
test_part295.06 872.65 3291.80 13
MTGPAbinary92.02 85
MTMP92.18 3532.83 403
gm-plane-assit81.40 31853.83 34562.72 30680.94 32692.39 19563.40 243
test9_res84.90 4295.70 2692.87 102
agg_prior282.91 6695.45 3092.70 105
agg_prior92.85 5971.94 5191.78 10084.41 7194.93 87
test_prior472.60 3489.01 105
test_prior86.33 5492.61 6569.59 8892.97 5095.48 6293.91 53
旧先验286.56 18858.10 34387.04 3988.98 27974.07 149
新几何286.29 196
无先验87.48 15988.98 18660.00 32694.12 12167.28 21488.97 241
原ACMM286.86 177
testdata291.01 24962.37 253
testdata184.14 24975.71 87
plane_prior790.08 10268.51 119
plane_prior592.44 6995.38 6978.71 10286.32 15191.33 149
plane_prior491.00 120
plane_prior368.60 11778.44 3178.92 141
plane_prior291.25 5079.12 23
plane_prior189.90 110
plane_prior68.71 11290.38 6777.62 3986.16 155
n20.00 410
nn0.00 410
door-mid69.98 371
test1192.23 79
door69.44 374
HQP5-MVS66.98 155
HQP-NCC89.33 12789.17 9876.41 7277.23 182
ACMP_Plane89.33 12789.17 9876.41 7277.23 182
BP-MVS77.47 114
HQP4-MVS77.24 18195.11 8091.03 161
HQP3-MVS92.19 8285.99 158
NP-MVS89.62 11468.32 12290.24 132
ACMMP++_ref81.95 213
ACMMP++81.25 219