This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
SED-MVS90.08 290.85 287.77 2695.30 270.98 6693.57 794.06 1077.24 5293.10 195.72 882.99 197.44 789.07 1496.63 494.88 14
test_241102_ONE95.30 270.98 6694.06 1077.17 5593.10 195.39 1482.99 197.27 12
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5995.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4782.45 396.87 2083.77 6396.48 894.88 14
PC_three_145268.21 25292.02 1294.00 4982.09 595.98 5684.58 5396.68 294.95 10
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8992.29 795.66 1081.67 697.38 1187.44 3396.34 1593.95 57
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 989.42 996.57 794.67 26
test_241102_TWO94.06 1077.24 5292.78 495.72 881.26 897.44 789.07 1496.58 694.26 46
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5993.49 992.73 6477.33 4992.12 995.78 480.98 997.40 989.08 1296.41 1293.33 89
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072695.27 571.25 5993.60 694.11 677.33 4992.81 395.79 380.98 9
test_one_060195.07 771.46 5794.14 578.27 3592.05 1195.74 680.83 11
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5392.24 7169.03 10389.57 9093.39 3077.53 4589.79 1894.12 4278.98 1296.58 3585.66 4095.72 2494.58 31
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 4078.35 1396.77 2489.59 894.22 6094.67 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9391.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 36
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
dcpmvs_285.63 5886.15 4884.06 13191.71 7864.94 20086.47 19491.87 10273.63 13886.60 5093.02 7576.57 1591.87 22183.36 6592.15 8095.35 3
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6293.00 4680.90 788.06 2994.06 4576.43 1696.84 2188.48 2495.99 1894.34 42
MCST-MVS87.37 2987.25 2987.73 2894.53 1772.46 3889.82 7993.82 1673.07 15584.86 6892.89 7776.22 1796.33 4184.89 4895.13 3694.40 39
CSCG86.41 4586.19 4687.07 4592.91 6172.48 3790.81 5893.56 2473.95 13083.16 9891.07 12375.94 1895.19 8079.94 10194.38 5693.55 81
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5980.26 1187.78 3394.27 3575.89 1996.81 2387.45 3296.44 993.05 104
TSAR-MVS + MP.88.02 1788.11 1687.72 3093.68 4372.13 4691.41 5092.35 8174.62 11888.90 2293.85 5575.75 2096.00 5487.80 2894.63 4895.04 8
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SF-MVS88.46 1288.74 1287.64 3592.78 6471.95 4992.40 2494.74 275.71 9189.16 1995.10 1675.65 2196.19 4687.07 3496.01 1794.79 21
9.1488.26 1592.84 6391.52 4894.75 173.93 13288.57 2594.67 2175.57 2295.79 5886.77 3595.76 23
SD-MVS88.06 1488.50 1486.71 5492.60 6972.71 2991.81 4193.19 3577.87 3690.32 1794.00 4974.83 2393.78 13987.63 3094.27 5993.65 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DELS-MVS85.41 6385.30 6585.77 7088.49 16967.93 13685.52 22493.44 2778.70 2983.63 9489.03 17074.57 2495.71 6180.26 9994.04 6193.66 70
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
patch_mono-283.65 8384.54 7380.99 22490.06 11265.83 18084.21 25388.74 20571.60 17685.01 6292.44 8774.51 2583.50 34382.15 8192.15 8093.64 76
train_agg86.43 4386.20 4587.13 4493.26 5272.96 2588.75 11891.89 10068.69 24485.00 6393.10 7074.43 2695.41 7284.97 4595.71 2593.02 106
test_893.13 5472.57 3588.68 12391.84 10468.69 24484.87 6793.10 7074.43 2695.16 81
TEST993.26 5272.96 2588.75 11891.89 10068.44 24985.00 6393.10 7074.36 2895.41 72
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 11492.29 795.97 274.28 2997.24 1388.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_prior288.85 11575.41 9784.91 6593.54 5974.28 2983.31 6695.86 20
TSAR-MVS + GP.85.71 5785.33 6386.84 5091.34 8172.50 3689.07 10887.28 23576.41 7685.80 5490.22 14274.15 3195.37 7781.82 8391.88 8392.65 118
ZD-MVS94.38 2572.22 4492.67 6670.98 18987.75 3594.07 4474.01 3296.70 2784.66 5294.84 44
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 7272.96 2593.73 593.67 2080.19 1288.10 2894.80 1973.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
APD-MVScopyleft87.44 2587.52 2587.19 4294.24 3272.39 3991.86 4092.83 6073.01 15788.58 2494.52 2373.36 3496.49 3884.26 5795.01 3792.70 114
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
casdiffmvs_mvgpermissive85.99 4886.09 5085.70 7287.65 20767.22 15788.69 12293.04 4179.64 1885.33 5992.54 8673.30 3594.50 11083.49 6491.14 9495.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
sasdasda85.91 5285.87 5486.04 6589.84 11769.44 9890.45 6893.00 4676.70 7188.01 3191.23 11573.28 3693.91 13381.50 8588.80 12694.77 23
canonicalmvs85.91 5285.87 5486.04 6589.84 11769.44 9890.45 6893.00 4676.70 7188.01 3191.23 11573.28 3693.91 13381.50 8588.80 12694.77 23
segment_acmp73.08 38
DPM-MVS84.93 7084.29 7786.84 5090.20 10573.04 2387.12 17393.04 4169.80 21682.85 10291.22 11773.06 3996.02 5276.72 13194.63 4891.46 157
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5492.83 6081.50 585.79 5593.47 6373.02 4097.00 1884.90 4694.94 4094.10 50
test_fmvsmconf_n85.92 5186.04 5185.57 7485.03 26069.51 9389.62 8990.58 13973.42 14687.75 3594.02 4772.85 4193.24 16490.37 390.75 9893.96 56
MGCFI-Net85.06 6985.51 5983.70 14589.42 13063.01 24189.43 9392.62 7276.43 7587.53 3891.34 11372.82 4293.42 15981.28 8888.74 12994.66 29
nrg03083.88 7883.53 8284.96 9086.77 22969.28 10290.46 6792.67 6674.79 11382.95 9991.33 11472.70 4393.09 17880.79 9579.28 25792.50 123
CDPH-MVS85.76 5685.29 6687.17 4393.49 4771.08 6488.58 12692.42 7968.32 25184.61 7493.48 6172.32 4496.15 4879.00 10495.43 3094.28 45
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 6977.57 4183.84 8994.40 3272.24 4596.28 4385.65 4195.30 3593.62 77
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
casdiffmvspermissive85.11 6785.14 6785.01 8887.20 22165.77 18387.75 15592.83 6077.84 3784.36 8092.38 8872.15 4693.93 13281.27 8990.48 10195.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepC-MVS79.81 287.08 3586.88 3887.69 3391.16 8472.32 4390.31 7193.94 1477.12 5782.82 10394.23 3872.13 4797.09 1684.83 4995.37 3193.65 74
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_l_conf0.5_n84.47 7484.54 7384.27 11785.42 25068.81 10988.49 12887.26 23668.08 25388.03 3093.49 6072.04 4891.77 22388.90 1789.14 12292.24 134
MVSMamba_PlusPlus85.99 4885.96 5286.05 6491.09 8567.64 14289.63 8892.65 6972.89 16084.64 7391.71 9971.85 4996.03 5084.77 5194.45 5494.49 35
baseline84.93 7084.98 6884.80 9887.30 21965.39 19187.30 16992.88 5777.62 3984.04 8692.26 9071.81 5093.96 12681.31 8790.30 10495.03 9
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6585.24 6094.32 3371.76 5196.93 1985.53 4395.79 2294.32 43
test_fmvsmconf0.1_n85.61 5985.65 5785.50 7582.99 30769.39 10089.65 8690.29 15273.31 14987.77 3494.15 4171.72 5293.23 16590.31 490.67 10093.89 61
MM89.16 689.23 788.97 490.79 9573.65 1092.66 2391.17 12486.57 187.39 4194.97 1871.70 5397.68 192.19 195.63 2895.57 1
test1286.80 5292.63 6770.70 7591.79 10682.71 10571.67 5496.16 4794.50 5193.54 82
UniMVSNet_NR-MVSNet81.88 11481.54 11482.92 17688.46 17163.46 23187.13 17292.37 8080.19 1278.38 16189.14 16671.66 5593.05 18070.05 19476.46 28892.25 132
CS-MVS86.69 3986.95 3585.90 6990.76 9667.57 14592.83 1793.30 3279.67 1784.57 7692.27 8971.47 5695.02 9184.24 5993.46 6795.13 7
DeepC-MVS_fast79.65 386.91 3686.62 4087.76 2793.52 4672.37 4191.26 5193.04 4176.62 7384.22 8193.36 6671.44 5796.76 2580.82 9395.33 3394.16 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsm_n_192085.29 6585.34 6285.13 8586.12 23969.93 8688.65 12490.78 13569.97 21288.27 2693.98 5271.39 5891.54 23388.49 2390.45 10293.91 58
MVS_111021_HR85.14 6684.75 7186.32 5891.65 7972.70 3085.98 20790.33 14976.11 8582.08 10991.61 10571.36 5994.17 12281.02 9092.58 7592.08 140
balanced_conf0386.78 3786.99 3386.15 6191.24 8367.61 14390.51 6292.90 5677.26 5187.44 4091.63 10371.27 6096.06 4985.62 4295.01 3794.78 22
reproduce-ours87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10788.96 2095.54 1271.20 6196.54 3686.28 3793.49 6593.06 102
our_new_method87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10788.96 2095.54 1271.20 6196.54 3686.28 3793.49 6593.06 102
ACMMP_NAP88.05 1688.08 1787.94 1993.70 4173.05 2290.86 5793.59 2376.27 8388.14 2795.09 1771.06 6396.67 2987.67 2996.37 1494.09 51
fmvsm_l_conf0.5_n_a84.13 7684.16 7884.06 13185.38 25168.40 12488.34 13586.85 24667.48 26087.48 3993.40 6470.89 6491.61 22788.38 2589.22 12092.16 138
MP-MVS-pluss87.67 2187.72 2087.54 3693.64 4472.04 4889.80 8193.50 2575.17 10486.34 5195.29 1570.86 6596.00 5488.78 1996.04 1694.58 31
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS87.58 2287.47 2687.94 1994.58 1673.54 1593.04 1293.24 3376.78 6784.91 6594.44 3070.78 6696.61 3284.53 5494.89 4293.66 70
EI-MVSNet-Vis-set84.19 7583.81 8085.31 7988.18 18067.85 13787.66 15789.73 16780.05 1482.95 9989.59 15570.74 6794.82 9980.66 9684.72 17993.28 91
GST-MVS87.42 2787.26 2887.89 2494.12 3672.97 2492.39 2693.43 2876.89 6384.68 6993.99 5170.67 6896.82 2284.18 6195.01 3793.90 60
SPE-MVS-test86.29 4686.48 4185.71 7191.02 8867.21 15892.36 2993.78 1878.97 2883.51 9591.20 11870.65 6995.15 8281.96 8294.89 4294.77 23
CANet86.45 4286.10 4987.51 3790.09 10770.94 7089.70 8592.59 7381.78 481.32 11991.43 11170.34 7097.23 1484.26 5793.36 6894.37 40
alignmvs85.48 6085.32 6485.96 6889.51 12669.47 9589.74 8392.47 7576.17 8487.73 3791.46 11070.32 7193.78 13981.51 8488.95 12394.63 30
reproduce_model87.28 3087.39 2786.95 4893.10 5671.24 6391.60 4293.19 3574.69 11588.80 2395.61 1170.29 7296.44 3986.20 3993.08 6993.16 97
EI-MVSNet-UG-set83.81 7983.38 8585.09 8687.87 19667.53 14687.44 16589.66 16879.74 1682.23 10889.41 16470.24 7394.74 10279.95 10083.92 19392.99 109
MVS_Test83.15 9583.06 9083.41 15486.86 22563.21 23786.11 20592.00 9474.31 12382.87 10189.44 16370.03 7493.21 16777.39 12288.50 13493.81 65
FC-MVSNet-test81.52 12382.02 10880.03 24488.42 17455.97 33487.95 14893.42 2977.10 5877.38 18290.98 13069.96 7591.79 22268.46 21384.50 18292.33 128
FIs82.07 11182.42 9881.04 22388.80 15858.34 29588.26 13893.49 2676.93 6278.47 16091.04 12469.92 7692.34 20469.87 19884.97 17692.44 127
UniMVSNet (Re)81.60 12281.11 11983.09 16788.38 17564.41 21287.60 15893.02 4578.42 3278.56 15788.16 19569.78 7793.26 16369.58 20176.49 28791.60 148
HPM-MVScopyleft87.11 3386.98 3487.50 3893.88 3972.16 4592.19 3393.33 3176.07 8683.81 9093.95 5469.77 7896.01 5385.15 4494.66 4794.32 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
Effi-MVS+83.62 8683.08 8985.24 8188.38 17567.45 14788.89 11389.15 18775.50 9682.27 10788.28 19169.61 7994.45 11277.81 11787.84 13993.84 64
PHI-MVS86.43 4386.17 4787.24 4190.88 9270.96 6892.27 3294.07 972.45 16185.22 6191.90 9569.47 8096.42 4083.28 6795.94 1994.35 41
UA-Net85.08 6884.96 6985.45 7692.07 7368.07 13389.78 8290.86 13482.48 284.60 7593.20 6969.35 8195.22 7971.39 18190.88 9793.07 101
ETV-MVS84.90 7284.67 7285.59 7389.39 13368.66 12088.74 12092.64 7179.97 1584.10 8485.71 25969.32 8295.38 7480.82 9391.37 9192.72 113
旧先验191.96 7465.79 18286.37 25393.08 7469.31 8392.74 7388.74 261
fmvsm_s_conf0.5_n_a83.63 8583.41 8484.28 11586.14 23868.12 13189.43 9382.87 30670.27 20587.27 4393.80 5769.09 8491.58 22988.21 2683.65 20193.14 99
region2R87.42 2787.20 3188.09 1494.63 1473.55 1393.03 1493.12 4076.73 7084.45 7794.52 2369.09 8496.70 2784.37 5694.83 4594.03 54
EIA-MVS83.31 9482.80 9684.82 9689.59 12265.59 18688.21 13992.68 6574.66 11778.96 14786.42 24669.06 8695.26 7875.54 14390.09 10893.62 77
EPP-MVSNet83.40 9183.02 9184.57 10290.13 10664.47 21092.32 3090.73 13674.45 12279.35 14391.10 12169.05 8795.12 8372.78 17087.22 14794.13 49
EC-MVSNet86.01 4786.38 4284.91 9489.31 13866.27 17192.32 3093.63 2179.37 2084.17 8391.88 9669.04 8895.43 7083.93 6293.77 6393.01 107
fmvsm_s_conf0.5_n83.80 8083.71 8184.07 12986.69 23167.31 15289.46 9283.07 30171.09 18686.96 4793.70 5869.02 8991.47 23888.79 1884.62 18193.44 85
ACMMPR87.44 2587.23 3088.08 1594.64 1373.59 1293.04 1293.20 3476.78 6784.66 7294.52 2368.81 9096.65 3084.53 5494.90 4194.00 55
test_fmvsmvis_n_192084.02 7783.87 7984.49 10684.12 27669.37 10188.15 14387.96 21970.01 21083.95 8793.23 6868.80 9191.51 23688.61 2089.96 11192.57 119
mvs_anonymous79.42 17179.11 16080.34 23884.45 27157.97 30182.59 28087.62 22867.40 26176.17 21688.56 18468.47 9289.59 27670.65 18986.05 16693.47 84
fmvsm_s_conf0.1_n83.56 8783.38 8584.10 12384.86 26267.28 15389.40 9783.01 30270.67 19487.08 4493.96 5368.38 9391.45 23988.56 2284.50 18293.56 80
fmvsm_s_conf0.1_n_a83.32 9382.99 9284.28 11583.79 28468.07 13389.34 9982.85 30769.80 21687.36 4294.06 4568.34 9491.56 23187.95 2783.46 20693.21 95
MVS_030487.69 2087.55 2488.12 1389.45 12971.76 5191.47 4989.54 17182.14 386.65 4994.28 3468.28 9597.46 690.81 295.31 3495.15 6
MTAPA87.23 3187.00 3287.90 2294.18 3574.25 586.58 19192.02 9279.45 1985.88 5394.80 1968.07 9696.21 4586.69 3695.34 3293.23 92
mamv476.81 23278.23 18072.54 34286.12 23965.75 18478.76 33382.07 31564.12 30272.97 27491.02 12767.97 9768.08 40683.04 7078.02 26983.80 352
CP-MVS87.11 3386.92 3687.68 3494.20 3473.86 793.98 392.82 6376.62 7383.68 9194.46 2767.93 9895.95 5784.20 6094.39 5593.23 92
PAPM_NR83.02 9982.41 9984.82 9692.47 7066.37 16987.93 15091.80 10573.82 13477.32 18490.66 13367.90 9994.90 9570.37 19189.48 11793.19 96
PGM-MVS86.68 4086.27 4487.90 2294.22 3373.38 1890.22 7393.04 4175.53 9583.86 8894.42 3167.87 10096.64 3182.70 7894.57 5093.66 70
PAPR81.66 12180.89 12483.99 13990.27 10364.00 21886.76 18791.77 10868.84 24277.13 19489.50 15667.63 10194.88 9767.55 21988.52 13393.09 100
Fast-Effi-MVS+80.81 13679.92 13983.47 15088.85 15364.51 20785.53 22289.39 17670.79 19178.49 15985.06 27767.54 10293.58 14767.03 22786.58 15692.32 129
XVS87.18 3286.91 3788.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9294.17 3967.45 10396.60 3383.06 6894.50 5194.07 52
X-MVStestdata80.37 15277.83 18888.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9212.47 41867.45 10396.60 3383.06 6894.50 5194.07 52
SR-MVS86.73 3886.67 3986.91 4994.11 3772.11 4792.37 2892.56 7474.50 11986.84 4894.65 2267.31 10595.77 5984.80 5092.85 7292.84 112
NR-MVSNet80.23 15479.38 15182.78 18587.80 19963.34 23486.31 19991.09 12879.01 2672.17 28689.07 16867.20 10692.81 18966.08 23375.65 30192.20 135
MSLP-MVS++85.43 6285.76 5684.45 10791.93 7570.24 7990.71 5992.86 5877.46 4784.22 8192.81 8167.16 10792.94 18480.36 9794.35 5790.16 201
MG-MVS83.41 9083.45 8383.28 15792.74 6562.28 25388.17 14189.50 17375.22 10081.49 11892.74 8566.75 10895.11 8572.85 16991.58 8892.45 126
test_fmvsmconf0.01_n84.73 7384.52 7585.34 7880.25 34869.03 10389.47 9189.65 16973.24 15386.98 4694.27 3566.62 10993.23 16590.26 589.95 11293.78 67
EI-MVSNet80.52 14879.98 13882.12 19584.28 27263.19 23986.41 19588.95 19774.18 12778.69 15287.54 21166.62 10992.43 19872.57 17380.57 24190.74 179
IterMVS-LS80.06 15779.38 15182.11 19685.89 24263.20 23886.79 18489.34 17774.19 12675.45 22986.72 23166.62 10992.39 20072.58 17276.86 28290.75 178
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_ehance_all_eth78.59 19377.76 19381.08 22282.66 31461.56 26283.65 26289.15 18768.87 24175.55 22583.79 30366.49 11292.03 21373.25 16576.39 29089.64 228
mPP-MVS86.67 4186.32 4387.72 3094.41 2273.55 1392.74 2092.22 8776.87 6482.81 10494.25 3766.44 11396.24 4482.88 7394.28 5893.38 86
c3_l78.75 18777.91 18581.26 21682.89 30961.56 26284.09 25689.13 18969.97 21275.56 22484.29 29266.36 11492.09 21273.47 16275.48 30590.12 204
GeoE81.71 11881.01 12283.80 14489.51 12664.45 21188.97 11088.73 20671.27 18278.63 15589.76 14966.32 11593.20 17069.89 19786.02 16793.74 68
WR-MVS_H78.51 19478.49 17078.56 27288.02 18956.38 32888.43 12992.67 6677.14 5673.89 26387.55 21066.25 11689.24 28358.92 29573.55 33190.06 211
PCF-MVS73.52 780.38 15078.84 16585.01 8887.71 20468.99 10683.65 26291.46 11863.00 31577.77 17690.28 13866.10 11795.09 8961.40 27488.22 13790.94 172
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EPNet83.72 8282.92 9486.14 6384.22 27469.48 9491.05 5685.27 26681.30 676.83 19691.65 10166.09 11895.56 6376.00 13793.85 6293.38 86
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
原ACMM184.35 11193.01 6068.79 11092.44 7663.96 30881.09 12491.57 10666.06 11995.45 6867.19 22494.82 4688.81 256
PVSNet_BlendedMVS80.60 14480.02 13782.36 19488.85 15365.40 18986.16 20492.00 9469.34 22678.11 16886.09 25466.02 12094.27 11671.52 17882.06 22387.39 288
PVSNet_Blended80.98 13180.34 13282.90 17788.85 15365.40 18984.43 24892.00 9467.62 25778.11 16885.05 27866.02 12094.27 11671.52 17889.50 11689.01 246
diffmvspermissive82.10 10981.88 11182.76 18783.00 30563.78 22383.68 26189.76 16572.94 15882.02 11089.85 14765.96 12290.79 25782.38 8087.30 14693.71 69
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVS_3200maxsize85.97 5085.88 5386.22 6092.69 6669.53 9291.93 3792.99 4973.54 14285.94 5294.51 2665.80 12395.61 6283.04 7092.51 7693.53 83
miper_enhance_ethall77.87 21276.86 21280.92 22781.65 32861.38 26482.68 27988.98 19465.52 28575.47 22682.30 33065.76 12492.00 21572.95 16876.39 29089.39 234
PVSNet_Blended_VisFu82.62 10381.83 11284.96 9090.80 9469.76 9088.74 12091.70 10969.39 22478.96 14788.46 18665.47 12594.87 9874.42 15288.57 13190.24 199
API-MVS81.99 11381.23 11784.26 11990.94 9070.18 8591.10 5589.32 17871.51 17878.66 15488.28 19165.26 12695.10 8864.74 24491.23 9387.51 286
TranMVSNet+NR-MVSNet80.84 13480.31 13382.42 19287.85 19762.33 25187.74 15691.33 11980.55 977.99 17289.86 14665.23 12792.62 19067.05 22675.24 31592.30 130
IS-MVSNet83.15 9582.81 9584.18 12189.94 11563.30 23591.59 4388.46 21179.04 2579.49 14192.16 9165.10 12894.28 11567.71 21791.86 8694.95 10
DU-MVS81.12 13080.52 12982.90 17787.80 19963.46 23187.02 17691.87 10279.01 2678.38 16189.07 16865.02 12993.05 18070.05 19476.46 28892.20 135
Baseline_NR-MVSNet78.15 20378.33 17677.61 29085.79 24356.21 33286.78 18585.76 26273.60 14077.93 17387.57 20865.02 12988.99 28767.14 22575.33 31287.63 282
SR-MVS-dyc-post85.77 5585.61 5886.23 5993.06 5870.63 7691.88 3892.27 8373.53 14385.69 5694.45 2865.00 13195.56 6382.75 7491.87 8492.50 123
VNet82.21 10882.41 9981.62 20590.82 9360.93 26884.47 24489.78 16476.36 8184.07 8591.88 9664.71 13290.26 26370.68 18888.89 12493.66 70
Test By Simon64.33 133
ACMMPcopyleft85.89 5485.39 6187.38 3993.59 4572.63 3392.74 2093.18 3976.78 6780.73 12893.82 5664.33 13396.29 4282.67 7990.69 9993.23 92
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DP-MVS Recon83.11 9882.09 10686.15 6194.44 1970.92 7188.79 11692.20 8870.53 19979.17 14591.03 12664.12 13596.03 5068.39 21490.14 10791.50 153
CLD-MVS82.31 10781.65 11384.29 11488.47 17067.73 14085.81 21592.35 8175.78 9078.33 16386.58 24164.01 13694.35 11376.05 13687.48 14490.79 175
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
RE-MVS-def85.48 6093.06 5870.63 7691.88 3892.27 8373.53 14385.69 5694.45 2863.87 13782.75 7491.87 8492.50 123
MVS78.19 20276.99 21081.78 20285.66 24566.99 16084.66 23890.47 14355.08 37572.02 28885.27 27063.83 13894.11 12466.10 23289.80 11484.24 345
WR-MVS79.49 16779.22 15880.27 24088.79 15958.35 29485.06 23088.61 20978.56 3077.65 17788.34 18963.81 13990.66 26064.98 24277.22 27791.80 146
VPA-MVSNet80.60 14480.55 12880.76 23088.07 18760.80 27186.86 18191.58 11275.67 9480.24 13289.45 16263.34 14090.25 26470.51 19079.22 25891.23 161
新几何183.42 15293.13 5470.71 7485.48 26557.43 36581.80 11491.98 9363.28 14192.27 20664.60 24592.99 7087.27 292
HY-MVS69.67 1277.95 20977.15 20680.36 23787.57 21260.21 28183.37 26987.78 22666.11 27675.37 23387.06 22663.27 14290.48 26261.38 27582.43 21990.40 193
XXY-MVS75.41 25775.56 23574.96 31983.59 28957.82 30580.59 30783.87 28666.54 27374.93 25088.31 19063.24 14380.09 36162.16 26676.85 28386.97 301
ab-mvs79.51 16678.97 16381.14 22088.46 17160.91 26983.84 25889.24 18370.36 20179.03 14688.87 17463.23 14490.21 26565.12 24082.57 21892.28 131
xiu_mvs_v2_base81.69 11981.05 12083.60 14789.15 14568.03 13584.46 24690.02 15870.67 19481.30 12286.53 24463.17 14594.19 12175.60 14288.54 13288.57 265
pcd_1.5k_mvsjas5.26 3927.02 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42463.15 1460.00 4250.00 4240.00 4230.00 421
PS-MVSNAJss82.07 11181.31 11584.34 11286.51 23467.27 15489.27 10091.51 11471.75 17179.37 14290.22 14263.15 14694.27 11677.69 11882.36 22091.49 154
PS-MVSNAJ81.69 11981.02 12183.70 14589.51 12668.21 13084.28 25290.09 15770.79 19181.26 12385.62 26463.15 14694.29 11475.62 14188.87 12588.59 264
WTY-MVS75.65 25275.68 23275.57 31086.40 23556.82 31977.92 34682.40 31165.10 28976.18 21487.72 20363.13 14980.90 35860.31 28281.96 22489.00 248
TransMVSNet (Re)75.39 25974.56 25077.86 28485.50 24957.10 31686.78 18586.09 25972.17 16771.53 29387.34 21463.01 15089.31 28156.84 31761.83 37887.17 294
v879.97 16079.02 16282.80 18284.09 27764.50 20987.96 14790.29 15274.13 12975.24 24186.81 22862.88 15193.89 13674.39 15375.40 31090.00 213
HPM-MVS_fast85.35 6484.95 7086.57 5693.69 4270.58 7892.15 3591.62 11073.89 13382.67 10694.09 4362.60 15295.54 6580.93 9192.93 7193.57 79
PAPM77.68 21876.40 22581.51 20887.29 22061.85 25883.78 25989.59 17064.74 29471.23 29588.70 17762.59 15393.66 14652.66 33787.03 15089.01 246
1112_ss77.40 22376.43 22480.32 23989.11 15060.41 27883.65 26287.72 22762.13 32873.05 27386.72 23162.58 15489.97 26962.11 26880.80 23790.59 185
LCM-MVSNet-Re77.05 22776.94 21177.36 29487.20 22151.60 37380.06 31480.46 33375.20 10167.69 33086.72 23162.48 15588.98 28863.44 25289.25 11991.51 152
v14878.72 18977.80 19081.47 20982.73 31261.96 25786.30 20088.08 21673.26 15176.18 21485.47 26762.46 15692.36 20271.92 17773.82 32990.09 207
baseline176.98 22976.75 21877.66 28888.13 18355.66 33985.12 22881.89 31673.04 15676.79 19788.90 17262.43 15787.78 30663.30 25471.18 34989.55 231
MAR-MVS81.84 11580.70 12585.27 8091.32 8271.53 5689.82 7990.92 13069.77 21878.50 15886.21 25062.36 15894.52 10965.36 23892.05 8289.77 225
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVS_111021_LR82.61 10482.11 10484.11 12288.82 15671.58 5585.15 22786.16 25774.69 11580.47 13091.04 12462.29 15990.55 26180.33 9890.08 10990.20 200
TAMVS78.89 18677.51 20083.03 17187.80 19967.79 13984.72 23785.05 27067.63 25676.75 19987.70 20462.25 16090.82 25658.53 30087.13 14890.49 189
CP-MVSNet78.22 19978.34 17577.84 28587.83 19854.54 35187.94 14991.17 12477.65 3873.48 26888.49 18562.24 16188.43 29862.19 26574.07 32490.55 186
OMC-MVS82.69 10281.97 11084.85 9588.75 16167.42 14887.98 14690.87 13374.92 10979.72 13891.65 10162.19 16293.96 12675.26 14786.42 15993.16 97
cl____77.72 21576.76 21680.58 23382.49 31860.48 27683.09 27487.87 22269.22 23074.38 26085.22 27362.10 16391.53 23471.09 18375.41 30989.73 227
DIV-MVS_self_test77.72 21576.76 21680.58 23382.48 31960.48 27683.09 27487.86 22369.22 23074.38 26085.24 27162.10 16391.53 23471.09 18375.40 31089.74 226
testdata79.97 24590.90 9164.21 21584.71 27259.27 34985.40 5892.91 7662.02 16589.08 28668.95 20791.37 9186.63 309
eth_miper_zixun_eth77.92 21076.69 21981.61 20783.00 30561.98 25683.15 27289.20 18569.52 22374.86 25184.35 29161.76 16692.56 19371.50 18072.89 33790.28 198
MVSFormer82.85 10182.05 10785.24 8187.35 21370.21 8090.50 6490.38 14568.55 24681.32 11989.47 15861.68 16793.46 15678.98 10590.26 10592.05 141
lupinMVS81.39 12680.27 13584.76 9987.35 21370.21 8085.55 22086.41 25162.85 31881.32 11988.61 18161.68 16792.24 20878.41 11290.26 10591.83 144
cdsmvs_eth3d_5k19.96 38626.61 3880.00 4060.00 4290.00 4310.00 41789.26 1820.00 4240.00 42588.61 18161.62 1690.00 4250.00 4240.00 4230.00 421
h-mvs3383.15 9582.19 10386.02 6790.56 9870.85 7388.15 14389.16 18676.02 8784.67 7091.39 11261.54 17095.50 6682.71 7675.48 30591.72 147
hse-mvs281.72 11780.94 12384.07 12988.72 16267.68 14185.87 21187.26 23676.02 8784.67 7088.22 19461.54 17093.48 15482.71 7673.44 33391.06 166
CDS-MVSNet79.07 18177.70 19583.17 16487.60 20868.23 12984.40 25086.20 25667.49 25976.36 20986.54 24361.54 17090.79 25761.86 27087.33 14590.49 189
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v1079.74 16278.67 16682.97 17584.06 27864.95 19987.88 15390.62 13873.11 15475.11 24586.56 24261.46 17394.05 12573.68 15875.55 30389.90 219
v114480.03 15879.03 16183.01 17283.78 28564.51 20787.11 17490.57 14171.96 17078.08 17086.20 25161.41 17493.94 12974.93 14877.23 27690.60 184
cl2278.07 20577.01 20881.23 21782.37 32161.83 25983.55 26687.98 21868.96 24075.06 24783.87 29961.40 17591.88 22073.53 16076.39 29089.98 216
BH-w/o78.21 20077.33 20480.84 22888.81 15765.13 19684.87 23487.85 22469.75 21974.52 25784.74 28461.34 17693.11 17758.24 30485.84 17084.27 344
Test_1112_low_res76.40 24275.44 23779.27 25989.28 14058.09 29781.69 28987.07 24059.53 34772.48 28186.67 23661.30 17789.33 28060.81 28080.15 24690.41 192
Vis-MVSNet (Re-imp)78.36 19778.45 17178.07 28388.64 16551.78 37286.70 18879.63 34374.14 12875.11 24590.83 13161.29 17889.75 27358.10 30591.60 8792.69 116
PEN-MVS77.73 21477.69 19677.84 28587.07 22453.91 35687.91 15191.18 12377.56 4373.14 27288.82 17561.23 17989.17 28459.95 28472.37 33990.43 191
pm-mvs177.25 22676.68 22078.93 26584.22 27458.62 29286.41 19588.36 21271.37 18073.31 26988.01 20161.22 18089.15 28564.24 24873.01 33689.03 245
BH-untuned79.47 16878.60 16882.05 19789.19 14465.91 17886.07 20688.52 21072.18 16675.42 23087.69 20561.15 18193.54 15160.38 28186.83 15386.70 307
v2v48280.23 15479.29 15583.05 17083.62 28864.14 21687.04 17589.97 16073.61 13978.18 16787.22 21961.10 18293.82 13776.11 13476.78 28591.18 162
jason81.39 12680.29 13484.70 10086.63 23369.90 8885.95 20886.77 24763.24 31181.07 12589.47 15861.08 18392.15 21078.33 11390.07 11092.05 141
jason: jason.
Vis-MVSNetpermissive83.46 8982.80 9685.43 7790.25 10468.74 11490.30 7290.13 15676.33 8280.87 12792.89 7761.00 18494.20 12072.45 17590.97 9593.35 88
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAPA-MVS73.13 979.15 17877.94 18482.79 18489.59 12262.99 24588.16 14291.51 11465.77 28177.14 19391.09 12260.91 18593.21 16750.26 35287.05 14992.17 137
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PS-CasMVS78.01 20878.09 18177.77 28787.71 20454.39 35388.02 14591.22 12177.50 4673.26 27088.64 18060.73 18688.41 29961.88 26973.88 32890.53 187
OPM-MVS83.50 8882.95 9385.14 8388.79 15970.95 6989.13 10791.52 11377.55 4480.96 12691.75 9860.71 18794.50 11079.67 10386.51 15889.97 217
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XVG-OURS-SEG-HR80.81 13679.76 14383.96 14185.60 24768.78 11183.54 26790.50 14270.66 19776.71 20091.66 10060.69 18891.26 24476.94 12781.58 22891.83 144
v14419279.47 16878.37 17482.78 18583.35 29363.96 21986.96 17790.36 14869.99 21177.50 17985.67 26260.66 18993.77 14174.27 15476.58 28690.62 182
V4279.38 17478.24 17882.83 17981.10 34065.50 18885.55 22089.82 16371.57 17778.21 16586.12 25360.66 18993.18 17375.64 14075.46 30789.81 224
SDMVSNet80.38 15080.18 13680.99 22489.03 15164.94 20080.45 31089.40 17575.19 10276.61 20489.98 14460.61 19187.69 30776.83 12983.55 20390.33 195
CPTT-MVS83.73 8183.33 8784.92 9393.28 4970.86 7292.09 3690.38 14568.75 24379.57 14092.83 7960.60 19293.04 18280.92 9291.56 8990.86 174
DTE-MVSNet76.99 22876.80 21477.54 29386.24 23653.06 36587.52 16090.66 13777.08 5972.50 28088.67 17960.48 19389.52 27757.33 31270.74 35190.05 212
HQP_MVS83.64 8483.14 8885.14 8390.08 10868.71 11691.25 5292.44 7679.12 2378.92 14991.00 12860.42 19495.38 7478.71 10886.32 16091.33 158
plane_prior689.84 11768.70 11860.42 194
3Dnovator+77.84 485.48 6084.47 7688.51 791.08 8673.49 1693.18 1193.78 1880.79 876.66 20193.37 6560.40 19696.75 2677.20 12393.73 6495.29 5
HQP2-MVS60.17 197
HQP-MVS82.61 10482.02 10884.37 10989.33 13566.98 16189.17 10292.19 8976.41 7677.23 18790.23 14160.17 19795.11 8577.47 12085.99 16891.03 168
VPNet78.69 19078.66 16778.76 26788.31 17755.72 33884.45 24786.63 24976.79 6678.26 16490.55 13559.30 19989.70 27566.63 22877.05 27990.88 173
v119279.59 16578.43 17383.07 16983.55 29064.52 20686.93 17990.58 13970.83 19077.78 17585.90 25559.15 20093.94 12973.96 15777.19 27890.76 177
test22291.50 8068.26 12884.16 25483.20 29954.63 37679.74 13791.63 10358.97 20191.42 9086.77 305
CHOSEN 1792x268877.63 21975.69 23183.44 15189.98 11468.58 12278.70 33487.50 23156.38 37075.80 22186.84 22758.67 20291.40 24161.58 27385.75 17290.34 194
3Dnovator76.31 583.38 9282.31 10286.59 5587.94 19372.94 2890.64 6092.14 9177.21 5475.47 22692.83 7958.56 20394.72 10373.24 16692.71 7492.13 139
v192192079.22 17678.03 18282.80 18283.30 29563.94 22086.80 18390.33 14969.91 21477.48 18085.53 26558.44 20493.75 14373.60 15976.85 28390.71 180
FA-MVS(test-final)80.96 13279.91 14084.10 12388.30 17865.01 19884.55 24390.01 15973.25 15279.61 13987.57 20858.35 20594.72 10371.29 18286.25 16292.56 120
114514_t80.68 14279.51 14884.20 12094.09 3867.27 15489.64 8791.11 12758.75 35574.08 26290.72 13258.10 20695.04 9069.70 19989.42 11890.30 197
v7n78.97 18477.58 19983.14 16583.45 29265.51 18788.32 13691.21 12273.69 13772.41 28286.32 24957.93 20793.81 13869.18 20475.65 30190.11 205
CL-MVSNet_self_test72.37 29171.46 28675.09 31879.49 36153.53 35880.76 30385.01 27169.12 23470.51 29982.05 33457.92 20884.13 33852.27 33966.00 37087.60 283
baseline275.70 25173.83 26281.30 21583.26 29661.79 26082.57 28180.65 32966.81 26366.88 33983.42 31157.86 20992.19 20963.47 25179.57 25189.91 218
QAPM80.88 13379.50 14985.03 8788.01 19168.97 10791.59 4392.00 9466.63 27275.15 24492.16 9157.70 21095.45 6863.52 25088.76 12890.66 181
HyFIR lowres test77.53 22075.40 23983.94 14289.59 12266.62 16580.36 31188.64 20856.29 37176.45 20685.17 27457.64 21193.28 16261.34 27683.10 21191.91 143
CNLPA78.08 20476.79 21581.97 20090.40 10271.07 6587.59 15984.55 27566.03 27972.38 28389.64 15257.56 21286.04 32059.61 28883.35 20788.79 257
test_yl81.17 12880.47 13083.24 16089.13 14663.62 22486.21 20289.95 16172.43 16481.78 11589.61 15357.50 21393.58 14770.75 18686.90 15192.52 121
DCV-MVSNet81.17 12880.47 13083.24 16089.13 14663.62 22486.21 20289.95 16172.43 16481.78 11589.61 15357.50 21393.58 14770.75 18686.90 15192.52 121
sss73.60 27573.64 26473.51 33382.80 31055.01 34776.12 35381.69 31962.47 32474.68 25485.85 25857.32 21578.11 36960.86 27980.93 23487.39 288
Effi-MVS+-dtu80.03 15878.57 16984.42 10885.13 25868.74 11488.77 11788.10 21574.99 10674.97 24983.49 31057.27 21693.36 16073.53 16080.88 23591.18 162
AdaColmapbinary80.58 14779.42 15084.06 13193.09 5768.91 10889.36 9888.97 19669.27 22775.70 22289.69 15057.20 21795.77 5963.06 25588.41 13587.50 287
v124078.99 18377.78 19182.64 18883.21 29763.54 22886.62 19090.30 15169.74 22177.33 18385.68 26157.04 21893.76 14273.13 16776.92 28090.62 182
miper_lstm_enhance74.11 26973.11 26977.13 29880.11 35059.62 28672.23 37486.92 24566.76 26570.40 30182.92 32056.93 21982.92 34769.06 20672.63 33888.87 253
BH-RMVSNet79.61 16378.44 17283.14 16589.38 13465.93 17784.95 23387.15 23973.56 14178.19 16689.79 14856.67 22093.36 16059.53 28986.74 15490.13 203
RRT-MVS82.60 10682.10 10584.10 12387.98 19262.94 24687.45 16491.27 12077.42 4879.85 13690.28 13856.62 22194.70 10579.87 10288.15 13894.67 26
test_djsdf80.30 15379.32 15483.27 15883.98 28065.37 19290.50 6490.38 14568.55 24676.19 21388.70 17756.44 22293.46 15678.98 10580.14 24790.97 171
EPNet_dtu75.46 25574.86 24677.23 29782.57 31654.60 35086.89 18083.09 30071.64 17266.25 35085.86 25755.99 22388.04 30354.92 32686.55 15789.05 244
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CostFormer75.24 26073.90 26079.27 25982.65 31558.27 29680.80 30082.73 30961.57 33175.33 23883.13 31655.52 22491.07 25364.98 24278.34 26788.45 267
tpmrst72.39 28972.13 28073.18 33780.54 34549.91 38479.91 31879.08 34863.11 31371.69 29179.95 35355.32 22582.77 34865.66 23773.89 32786.87 302
131476.53 23675.30 24380.21 24183.93 28162.32 25284.66 23888.81 19960.23 34070.16 30684.07 29855.30 22690.73 25967.37 22183.21 20987.59 285
tfpnnormal74.39 26473.16 26878.08 28286.10 24158.05 29884.65 24087.53 23070.32 20371.22 29685.63 26354.97 22789.86 27043.03 38475.02 31786.32 311
sd_testset77.70 21777.40 20178.60 27089.03 15160.02 28279.00 32985.83 26175.19 10276.61 20489.98 14454.81 22885.46 32862.63 26183.55 20390.33 195
GBi-Net78.40 19577.40 20181.40 21287.60 20863.01 24188.39 13189.28 17971.63 17375.34 23487.28 21554.80 22991.11 24762.72 25779.57 25190.09 207
test178.40 19577.40 20181.40 21287.60 20863.01 24188.39 13189.28 17971.63 17375.34 23487.28 21554.80 22991.11 24762.72 25779.57 25190.09 207
FMVSNet278.20 20177.21 20581.20 21887.60 20862.89 24787.47 16289.02 19271.63 17375.29 24087.28 21554.80 22991.10 25062.38 26279.38 25589.61 229
Fast-Effi-MVS+-dtu78.02 20776.49 22282.62 18983.16 30166.96 16386.94 17887.45 23372.45 16171.49 29484.17 29654.79 23291.58 22967.61 21880.31 24489.30 237
MVSTER79.01 18277.88 18782.38 19383.07 30264.80 20384.08 25788.95 19769.01 23978.69 15287.17 22254.70 23392.43 19874.69 14980.57 24189.89 220
OpenMVScopyleft72.83 1079.77 16178.33 17684.09 12785.17 25469.91 8790.57 6190.97 12966.70 26672.17 28691.91 9454.70 23393.96 12661.81 27190.95 9688.41 269
XVG-OURS80.41 14979.23 15783.97 14085.64 24669.02 10583.03 27890.39 14471.09 18677.63 17891.49 10954.62 23591.35 24275.71 13983.47 20591.54 151
LPG-MVS_test82.08 11081.27 11684.50 10489.23 14268.76 11290.22 7391.94 9875.37 9876.64 20291.51 10754.29 23694.91 9378.44 11083.78 19489.83 222
LGP-MVS_train84.50 10489.23 14268.76 11291.94 9875.37 9876.64 20291.51 10754.29 23694.91 9378.44 11083.78 19489.83 222
TR-MVS77.44 22176.18 22781.20 21888.24 17963.24 23684.61 24186.40 25267.55 25877.81 17486.48 24554.10 23893.15 17457.75 30882.72 21687.20 293
FMVSNet377.88 21176.85 21380.97 22686.84 22762.36 25086.52 19388.77 20171.13 18475.34 23486.66 23754.07 23991.10 25062.72 25779.57 25189.45 233
DP-MVS76.78 23374.57 24983.42 15293.29 4869.46 9788.55 12783.70 28763.98 30770.20 30388.89 17354.01 24094.80 10046.66 37081.88 22686.01 319
ACMP74.13 681.51 12580.57 12784.36 11089.42 13068.69 11989.97 7791.50 11774.46 12175.04 24890.41 13753.82 24194.54 10777.56 11982.91 21289.86 221
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PLCcopyleft70.83 1178.05 20676.37 22683.08 16891.88 7767.80 13888.19 14089.46 17464.33 30069.87 31288.38 18853.66 24293.58 14758.86 29682.73 21587.86 278
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
dmvs_testset62.63 35364.11 34458.19 38378.55 36624.76 42175.28 36065.94 39967.91 25560.34 37776.01 38053.56 24373.94 39631.79 40267.65 36375.88 390
CANet_DTU80.61 14379.87 14182.83 17985.60 24763.17 24087.36 16688.65 20776.37 8075.88 21988.44 18753.51 24493.07 17973.30 16489.74 11592.25 132
WB-MVSnew71.96 29671.65 28472.89 33884.67 26851.88 37082.29 28377.57 35562.31 32573.67 26683.00 31853.49 24581.10 35745.75 37782.13 22285.70 325
ACMM73.20 880.78 14179.84 14283.58 14889.31 13868.37 12589.99 7691.60 11170.28 20477.25 18589.66 15153.37 24693.53 15274.24 15582.85 21388.85 254
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVP-Stereo76.12 24574.46 25381.13 22185.37 25269.79 8984.42 24987.95 22065.03 29167.46 33385.33 26953.28 24791.73 22658.01 30683.27 20881.85 371
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
AUN-MVS79.21 17777.60 19884.05 13488.71 16367.61 14385.84 21387.26 23669.08 23577.23 18788.14 19953.20 24893.47 15575.50 14473.45 33291.06 166
anonymousdsp78.60 19277.15 20682.98 17480.51 34667.08 15987.24 17189.53 17265.66 28375.16 24387.19 22152.52 24992.25 20777.17 12479.34 25689.61 229
CR-MVSNet73.37 27871.27 29079.67 25381.32 33865.19 19475.92 35580.30 33659.92 34372.73 27781.19 33852.50 25086.69 31259.84 28577.71 27287.11 298
Patchmtry70.74 30569.16 30875.49 31380.72 34254.07 35574.94 36680.30 33658.34 35670.01 30781.19 33852.50 25086.54 31453.37 33471.09 35085.87 324
pmmvs474.03 27271.91 28180.39 23681.96 32468.32 12681.45 29382.14 31359.32 34869.87 31285.13 27552.40 25288.13 30260.21 28374.74 32084.73 341
RPMNet73.51 27670.49 29882.58 19081.32 33865.19 19475.92 35592.27 8357.60 36372.73 27776.45 37852.30 25395.43 7048.14 36577.71 27287.11 298
LFMVS81.82 11681.23 11783.57 14991.89 7663.43 23389.84 7881.85 31877.04 6083.21 9693.10 7052.26 25493.43 15871.98 17689.95 11293.85 62
VDD-MVS83.01 10082.36 10184.96 9091.02 8866.40 16888.91 11288.11 21477.57 4184.39 7993.29 6752.19 25593.91 13377.05 12688.70 13094.57 33
tfpn200view976.42 24175.37 24179.55 25789.13 14657.65 30885.17 22583.60 28873.41 14776.45 20686.39 24752.12 25691.95 21648.33 36183.75 19789.07 239
thres40076.50 23775.37 24179.86 24789.13 14657.65 30885.17 22583.60 28873.41 14776.45 20686.39 24752.12 25691.95 21648.33 36183.75 19790.00 213
Syy-MVS68.05 33067.85 32068.67 36684.68 26540.97 40978.62 33573.08 38066.65 27066.74 34279.46 35752.11 25882.30 35032.89 40176.38 29382.75 364
thres20075.55 25374.47 25278.82 26687.78 20257.85 30483.07 27683.51 29172.44 16375.84 22084.42 28752.08 25991.75 22447.41 36883.64 20286.86 303
PMMVS69.34 31968.67 31071.35 35175.67 37762.03 25575.17 36173.46 37850.00 38868.68 32279.05 36052.07 26078.13 36861.16 27782.77 21473.90 392
tpm cat170.57 30768.31 31377.35 29582.41 32057.95 30278.08 34380.22 33852.04 38268.54 32577.66 37352.00 26187.84 30551.77 34072.07 34486.25 312
IterMVS-SCA-FT75.43 25673.87 26180.11 24382.69 31364.85 20281.57 29183.47 29269.16 23370.49 30084.15 29751.95 26288.15 30169.23 20372.14 34387.34 290
SCA74.22 26772.33 27879.91 24684.05 27962.17 25479.96 31779.29 34666.30 27572.38 28380.13 35151.95 26288.60 29659.25 29177.67 27488.96 250
thres100view90076.50 23775.55 23679.33 25889.52 12556.99 31785.83 21483.23 29673.94 13176.32 21087.12 22351.89 26491.95 21648.33 36183.75 19789.07 239
thres600view776.50 23775.44 23779.68 25289.40 13257.16 31485.53 22283.23 29673.79 13576.26 21187.09 22451.89 26491.89 21948.05 36683.72 20090.00 213
tpm273.26 28171.46 28678.63 26883.34 29456.71 32280.65 30680.40 33556.63 36973.55 26782.02 33551.80 26691.24 24556.35 32178.42 26587.95 275
MonoMVSNet76.49 24075.80 22978.58 27181.55 33158.45 29386.36 19886.22 25574.87 11274.73 25383.73 30551.79 26788.73 29370.78 18572.15 34288.55 266
LS3D76.95 23074.82 24783.37 15590.45 10067.36 15189.15 10686.94 24361.87 33069.52 31590.61 13451.71 26894.53 10846.38 37386.71 15588.21 272
IterMVS74.29 26572.94 27178.35 27881.53 33263.49 23081.58 29082.49 31068.06 25469.99 30983.69 30751.66 26985.54 32665.85 23571.64 34686.01 319
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tpm72.37 29171.71 28374.35 32682.19 32252.00 36779.22 32577.29 36064.56 29672.95 27583.68 30851.35 27083.26 34658.33 30375.80 29987.81 279
sam_mvs151.32 27188.96 250
mvsmamba80.60 14479.38 15184.27 11789.74 12067.24 15687.47 16286.95 24270.02 20975.38 23288.93 17151.24 27292.56 19375.47 14589.22 12093.00 108
PatchmatchNetpermissive73.12 28371.33 28978.49 27683.18 29960.85 27079.63 31978.57 35064.13 30171.73 29079.81 35651.20 27385.97 32157.40 31176.36 29588.66 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
patchmatchnet-post74.00 38751.12 27488.60 296
xiu_mvs_v1_base_debu80.80 13879.72 14484.03 13687.35 21370.19 8285.56 21788.77 20169.06 23681.83 11188.16 19550.91 27592.85 18678.29 11487.56 14189.06 241
xiu_mvs_v1_base80.80 13879.72 14484.03 13687.35 21370.19 8285.56 21788.77 20169.06 23681.83 11188.16 19550.91 27592.85 18678.29 11487.56 14189.06 241
xiu_mvs_v1_base_debi80.80 13879.72 14484.03 13687.35 21370.19 8285.56 21788.77 20169.06 23681.83 11188.16 19550.91 27592.85 18678.29 11487.56 14189.06 241
Patchmatch-test64.82 34863.24 34969.57 35979.42 36249.82 38563.49 40569.05 39151.98 38459.95 38080.13 35150.91 27570.98 39940.66 39073.57 33087.90 277
Patchmatch-RL test70.24 31167.78 32477.61 29077.43 37059.57 28871.16 37870.33 38562.94 31768.65 32372.77 39050.62 27985.49 32769.58 20166.58 36787.77 280
Anonymous2023121178.97 18477.69 19682.81 18190.54 9964.29 21490.11 7591.51 11465.01 29276.16 21788.13 20050.56 28093.03 18369.68 20077.56 27591.11 164
VDDNet81.52 12380.67 12684.05 13490.44 10164.13 21789.73 8485.91 26071.11 18583.18 9793.48 6150.54 28193.49 15373.40 16388.25 13694.54 34
pmmvs674.69 26373.39 26578.61 26981.38 33557.48 31186.64 18987.95 22064.99 29370.18 30486.61 23850.43 28289.52 27762.12 26770.18 35488.83 255
test_post5.46 41950.36 28384.24 337
ET-MVSNet_ETH3D78.63 19176.63 22184.64 10186.73 23069.47 9585.01 23184.61 27469.54 22266.51 34886.59 23950.16 28491.75 22476.26 13384.24 19092.69 116
sam_mvs50.01 285
Anonymous2024052980.19 15678.89 16484.10 12390.60 9764.75 20488.95 11190.90 13165.97 28080.59 12991.17 12049.97 28693.73 14569.16 20582.70 21793.81 65
thisisatest053079.40 17277.76 19384.31 11387.69 20665.10 19787.36 16684.26 28170.04 20877.42 18188.26 19349.94 28794.79 10170.20 19284.70 18093.03 105
PatchT68.46 32867.85 32070.29 35780.70 34343.93 40172.47 37374.88 37260.15 34170.55 29876.57 37749.94 28781.59 35350.58 34674.83 31985.34 330
tttt051779.40 17277.91 18583.90 14388.10 18563.84 22188.37 13484.05 28371.45 17976.78 19889.12 16749.93 28994.89 9670.18 19383.18 21092.96 110
tpmvs71.09 30169.29 30676.49 30282.04 32356.04 33378.92 33181.37 32364.05 30567.18 33778.28 36849.74 29089.77 27249.67 35572.37 33983.67 353
thisisatest051577.33 22475.38 24083.18 16385.27 25363.80 22282.11 28583.27 29565.06 29075.91 21883.84 30149.54 29194.27 11667.24 22386.19 16391.48 155
UniMVSNet_ETH3D79.10 18078.24 17881.70 20486.85 22660.24 28087.28 17088.79 20074.25 12576.84 19590.53 13649.48 29291.56 23167.98 21582.15 22193.29 90
dmvs_re71.14 30070.58 29672.80 33981.96 32459.68 28575.60 35979.34 34568.55 24669.27 31980.72 34649.42 29376.54 37752.56 33877.79 27182.19 369
CVMVSNet72.99 28672.58 27574.25 32784.28 27250.85 38086.41 19583.45 29344.56 39573.23 27187.54 21149.38 29485.70 32365.90 23478.44 26486.19 314
MDTV_nov1_ep13_2view37.79 41175.16 36255.10 37466.53 34549.34 29553.98 33087.94 276
UGNet80.83 13579.59 14784.54 10388.04 18868.09 13289.42 9588.16 21376.95 6176.22 21289.46 16049.30 29693.94 12968.48 21290.31 10391.60 148
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pmmvs571.55 29770.20 30375.61 30977.83 36856.39 32781.74 28880.89 32557.76 36167.46 33384.49 28549.26 29785.32 33057.08 31475.29 31385.11 336
mvsany_test162.30 35461.26 35865.41 37569.52 39954.86 34866.86 39549.78 41546.65 39268.50 32683.21 31449.15 29866.28 40756.93 31660.77 38175.11 391
LTVRE_ROB69.57 1376.25 24474.54 25181.41 21188.60 16664.38 21379.24 32489.12 19070.76 19369.79 31487.86 20249.09 29993.20 17056.21 32280.16 24586.65 308
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
FMVSNet177.44 22176.12 22881.40 21286.81 22863.01 24188.39 13189.28 17970.49 20074.39 25987.28 21549.06 30091.11 24760.91 27878.52 26290.09 207
test111179.43 17079.18 15980.15 24289.99 11353.31 36287.33 16877.05 36275.04 10580.23 13392.77 8448.97 30192.33 20568.87 20892.40 7994.81 20
ECVR-MVScopyleft79.61 16379.26 15680.67 23290.08 10854.69 34987.89 15277.44 35874.88 11080.27 13192.79 8248.96 30292.45 19768.55 21192.50 7794.86 17
MDTV_nov1_ep1369.97 30483.18 29953.48 35977.10 35180.18 33960.45 33769.33 31880.44 34748.89 30386.90 31151.60 34278.51 263
test_post178.90 3325.43 42048.81 30485.44 32959.25 291
test-LLR72.94 28772.43 27674.48 32481.35 33658.04 29978.38 33877.46 35666.66 26769.95 31079.00 36248.06 30579.24 36366.13 23084.83 17786.15 315
test0.0.03 168.00 33167.69 32568.90 36377.55 36947.43 38975.70 35872.95 38266.66 26766.56 34482.29 33148.06 30575.87 38544.97 38174.51 32283.41 355
our_test_369.14 32067.00 33375.57 31079.80 35658.80 29077.96 34477.81 35359.55 34662.90 37078.25 36947.43 30783.97 33951.71 34167.58 36483.93 350
MS-PatchMatch73.83 27372.67 27377.30 29683.87 28366.02 17481.82 28684.66 27361.37 33468.61 32482.82 32347.29 30888.21 30059.27 29084.32 18977.68 386
cascas76.72 23474.64 24882.99 17385.78 24465.88 17982.33 28289.21 18460.85 33672.74 27681.02 34147.28 30993.75 14367.48 22085.02 17589.34 236
WB-MVS54.94 36354.72 36455.60 38973.50 38820.90 42374.27 36961.19 40659.16 35050.61 39874.15 38647.19 31075.78 38617.31 41435.07 40870.12 396
test20.0367.45 33366.95 33468.94 36275.48 37944.84 39977.50 34777.67 35466.66 26763.01 36883.80 30247.02 31178.40 36742.53 38768.86 36183.58 354
test_040272.79 28870.44 29979.84 24888.13 18365.99 17685.93 20984.29 27965.57 28467.40 33585.49 26646.92 31292.61 19135.88 39874.38 32380.94 376
F-COLMAP76.38 24374.33 25582.50 19189.28 14066.95 16488.41 13089.03 19164.05 30566.83 34088.61 18146.78 31392.89 18557.48 30978.55 26187.67 281
ppachtmachnet_test70.04 31367.34 33178.14 28179.80 35661.13 26579.19 32680.59 33059.16 35065.27 35579.29 35946.75 31487.29 30949.33 35666.72 36586.00 321
WBMVS73.43 27772.81 27275.28 31687.91 19450.99 37978.59 33781.31 32465.51 28774.47 25884.83 28146.39 31586.68 31358.41 30177.86 27088.17 273
tt080578.73 18877.83 18881.43 21085.17 25460.30 27989.41 9690.90 13171.21 18377.17 19288.73 17646.38 31693.21 16772.57 17378.96 25990.79 175
D2MVS74.82 26273.21 26779.64 25479.81 35562.56 24980.34 31287.35 23464.37 29968.86 32182.66 32546.37 31790.10 26667.91 21681.24 23186.25 312
Anonymous2023120668.60 32467.80 32371.02 35480.23 34950.75 38178.30 34280.47 33256.79 36866.11 35182.63 32646.35 31878.95 36543.62 38375.70 30083.36 356
SSC-MVS53.88 36653.59 36654.75 39172.87 39419.59 42473.84 37160.53 40857.58 36449.18 40273.45 38946.34 31975.47 38916.20 41732.28 41069.20 397
CHOSEN 280x42066.51 34064.71 34171.90 34581.45 33363.52 22957.98 40868.95 39253.57 37862.59 37176.70 37646.22 32075.29 39155.25 32479.68 25076.88 388
testing9176.54 23575.66 23479.18 26288.43 17355.89 33581.08 29783.00 30373.76 13675.34 23484.29 29246.20 32190.07 26764.33 24684.50 18291.58 150
GA-MVS76.87 23175.17 24481.97 20082.75 31162.58 24881.44 29486.35 25472.16 16874.74 25282.89 32146.20 32192.02 21468.85 20981.09 23391.30 160
MDA-MVSNet_test_wron65.03 34662.92 35071.37 34975.93 37456.73 32069.09 39074.73 37457.28 36654.03 39577.89 37045.88 32374.39 39449.89 35461.55 37982.99 362
YYNet165.03 34662.91 35171.38 34875.85 37656.60 32469.12 38974.66 37657.28 36654.12 39477.87 37145.85 32474.48 39349.95 35361.52 38083.05 360
EPMVS69.02 32168.16 31571.59 34779.61 35949.80 38677.40 34866.93 39662.82 32070.01 30779.05 36045.79 32577.86 37156.58 31975.26 31487.13 297
IB-MVS68.01 1575.85 25073.36 26683.31 15684.76 26366.03 17383.38 26885.06 26970.21 20769.40 31681.05 34045.76 32694.66 10665.10 24175.49 30489.25 238
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
jajsoiax79.29 17577.96 18383.27 15884.68 26566.57 16789.25 10190.16 15569.20 23275.46 22889.49 15745.75 32793.13 17676.84 12880.80 23790.11 205
UBG73.08 28472.27 27975.51 31288.02 18951.29 37778.35 34177.38 35965.52 28573.87 26482.36 32845.55 32886.48 31655.02 32584.39 18888.75 259
PatchMatch-RL72.38 29070.90 29476.80 30188.60 16667.38 15079.53 32076.17 36862.75 32169.36 31782.00 33645.51 32984.89 33453.62 33280.58 24078.12 385
FE-MVS77.78 21375.68 23284.08 12888.09 18666.00 17583.13 27387.79 22568.42 25078.01 17185.23 27245.50 33095.12 8359.11 29385.83 17191.11 164
RPSCF73.23 28271.46 28678.54 27382.50 31759.85 28382.18 28482.84 30858.96 35271.15 29789.41 16445.48 33184.77 33558.82 29771.83 34591.02 170
test_vis1_n_192075.52 25475.78 23074.75 32379.84 35457.44 31283.26 27085.52 26462.83 31979.34 14486.17 25245.10 33279.71 36278.75 10781.21 23287.10 300
MSDG73.36 28070.99 29380.49 23584.51 27065.80 18180.71 30586.13 25865.70 28265.46 35383.74 30444.60 33390.91 25551.13 34576.89 28184.74 340
PVSNet_057.27 2061.67 35659.27 35968.85 36479.61 35957.44 31268.01 39173.44 37955.93 37258.54 38470.41 39544.58 33477.55 37247.01 36935.91 40771.55 395
testing9976.09 24775.12 24579.00 26388.16 18155.50 34180.79 30181.40 32273.30 15075.17 24284.27 29444.48 33590.02 26864.28 24784.22 19191.48 155
test_cas_vis1_n_192073.76 27473.74 26373.81 33175.90 37559.77 28480.51 30882.40 31158.30 35781.62 11785.69 26044.35 33676.41 38076.29 13278.61 26085.23 332
mvs_tets79.13 17977.77 19283.22 16284.70 26466.37 16989.17 10290.19 15469.38 22575.40 23189.46 16044.17 33793.15 17476.78 13080.70 23990.14 202
MDA-MVSNet-bldmvs66.68 33863.66 34775.75 30779.28 36360.56 27573.92 37078.35 35164.43 29750.13 40079.87 35544.02 33883.67 34146.10 37556.86 38683.03 361
mmtdpeth74.16 26873.01 27077.60 29283.72 28761.13 26585.10 22985.10 26872.06 16977.21 19180.33 34943.84 33985.75 32277.14 12552.61 39685.91 322
gg-mvs-nofinetune69.95 31467.96 31875.94 30583.07 30254.51 35277.23 35070.29 38663.11 31370.32 30262.33 39943.62 34088.69 29453.88 33187.76 14084.62 342
testing1175.14 26174.01 25778.53 27488.16 18156.38 32880.74 30480.42 33470.67 19472.69 27983.72 30643.61 34189.86 27062.29 26483.76 19689.36 235
GG-mvs-BLEND75.38 31581.59 33055.80 33779.32 32369.63 38867.19 33673.67 38843.24 34288.90 29250.41 34784.50 18281.45 373
CMPMVSbinary51.72 2170.19 31268.16 31576.28 30373.15 39357.55 31079.47 32183.92 28448.02 39156.48 39184.81 28243.13 34386.42 31762.67 26081.81 22784.89 338
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
dp66.80 33765.43 33970.90 35679.74 35848.82 38775.12 36474.77 37359.61 34564.08 36377.23 37442.89 34480.72 35948.86 35966.58 36783.16 358
PVSNet64.34 1872.08 29570.87 29575.69 30886.21 23756.44 32674.37 36880.73 32862.06 32970.17 30582.23 33242.86 34583.31 34554.77 32784.45 18687.32 291
pmmvs-eth3d70.50 30967.83 32278.52 27577.37 37166.18 17281.82 28681.51 32058.90 35363.90 36580.42 34842.69 34686.28 31858.56 29965.30 37283.11 359
UnsupCasMVSNet_eth67.33 33465.99 33871.37 34973.48 38951.47 37575.16 36285.19 26765.20 28860.78 37680.93 34542.35 34777.20 37357.12 31353.69 39485.44 329
KD-MVS_self_test68.81 32267.59 32872.46 34374.29 38345.45 39477.93 34587.00 24163.12 31263.99 36478.99 36442.32 34884.77 33556.55 32064.09 37587.16 296
ADS-MVSNet266.20 34563.33 34874.82 32179.92 35258.75 29167.55 39375.19 37053.37 37965.25 35675.86 38142.32 34880.53 36041.57 38868.91 35985.18 333
ADS-MVSNet64.36 34962.88 35268.78 36579.92 35247.17 39067.55 39371.18 38453.37 37965.25 35675.86 38142.32 34873.99 39541.57 38868.91 35985.18 333
SixPastTwentyTwo73.37 27871.26 29179.70 25185.08 25957.89 30385.57 21683.56 29071.03 18865.66 35285.88 25642.10 35192.57 19259.11 29363.34 37688.65 263
JIA-IIPM66.32 34262.82 35376.82 30077.09 37261.72 26165.34 40175.38 36958.04 36064.51 36062.32 40042.05 35286.51 31551.45 34369.22 35882.21 368
ACMH67.68 1675.89 24973.93 25981.77 20388.71 16366.61 16688.62 12589.01 19369.81 21566.78 34186.70 23541.95 35391.51 23655.64 32378.14 26887.17 294
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+68.96 1476.01 24874.01 25782.03 19888.60 16665.31 19388.86 11487.55 22970.25 20667.75 32987.47 21341.27 35493.19 17258.37 30275.94 29887.60 283
MIMVSNet70.69 30669.30 30574.88 32084.52 26956.35 33075.87 35779.42 34464.59 29567.76 32882.41 32741.10 35581.54 35446.64 37281.34 22986.75 306
Anonymous20240521178.25 19877.01 20881.99 19991.03 8760.67 27384.77 23683.90 28570.65 19880.00 13591.20 11841.08 35691.43 24065.21 23985.26 17493.85 62
N_pmnet52.79 36953.26 36751.40 39378.99 3657.68 42769.52 3853.89 42651.63 38557.01 38974.98 38540.83 35765.96 40837.78 39564.67 37380.56 380
ETVMVS72.25 29371.05 29275.84 30687.77 20351.91 36979.39 32274.98 37169.26 22873.71 26582.95 31940.82 35886.14 31946.17 37484.43 18789.47 232
EU-MVSNet68.53 32767.61 32771.31 35278.51 36747.01 39184.47 24484.27 28042.27 39866.44 34984.79 28340.44 35983.76 34058.76 29868.54 36283.17 357
DSMNet-mixed57.77 36156.90 36360.38 38167.70 40235.61 41269.18 38753.97 41332.30 41157.49 38879.88 35440.39 36068.57 40538.78 39472.37 33976.97 387
UWE-MVS72.13 29471.49 28574.03 32986.66 23247.70 38881.40 29576.89 36463.60 31075.59 22384.22 29539.94 36185.62 32548.98 35886.13 16588.77 258
OurMVSNet-221017-074.26 26672.42 27779.80 24983.76 28659.59 28785.92 21086.64 24866.39 27466.96 33887.58 20739.46 36291.60 22865.76 23669.27 35788.22 271
K. test v371.19 29968.51 31179.21 26183.04 30457.78 30784.35 25176.91 36372.90 15962.99 36982.86 32239.27 36391.09 25261.65 27252.66 39588.75 259
lessismore_v078.97 26481.01 34157.15 31565.99 39861.16 37582.82 32339.12 36491.34 24359.67 28746.92 40288.43 268
testing22274.04 27072.66 27478.19 28087.89 19555.36 34281.06 29879.20 34771.30 18174.65 25583.57 30939.11 36588.67 29551.43 34485.75 17290.53 187
reproduce_monomvs75.40 25874.38 25478.46 27783.92 28257.80 30683.78 25986.94 24373.47 14572.25 28584.47 28638.74 36689.27 28275.32 14670.53 35288.31 270
UnsupCasMVSNet_bld63.70 35161.53 35770.21 35873.69 38751.39 37672.82 37281.89 31655.63 37357.81 38771.80 39238.67 36778.61 36649.26 35752.21 39780.63 378
new-patchmatchnet61.73 35561.73 35661.70 37972.74 39524.50 42269.16 38878.03 35261.40 33256.72 39075.53 38438.42 36876.48 37945.95 37657.67 38584.13 347
MVS-HIRNet59.14 35957.67 36163.57 37781.65 32843.50 40271.73 37565.06 40139.59 40251.43 39757.73 40538.34 36982.58 34939.53 39173.95 32664.62 401
test250677.30 22576.49 22279.74 25090.08 10852.02 36687.86 15463.10 40474.88 11080.16 13492.79 8238.29 37092.35 20368.74 21092.50 7794.86 17
COLMAP_ROBcopyleft66.92 1773.01 28570.41 30080.81 22987.13 22365.63 18588.30 13784.19 28262.96 31663.80 36687.69 20538.04 37192.56 19346.66 37074.91 31884.24 345
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TESTMET0.1,169.89 31569.00 30972.55 34179.27 36456.85 31878.38 33874.71 37557.64 36268.09 32777.19 37537.75 37276.70 37663.92 24984.09 19284.10 348
OpenMVS_ROBcopyleft64.09 1970.56 30868.19 31477.65 28980.26 34759.41 28985.01 23182.96 30558.76 35465.43 35482.33 32937.63 37391.23 24645.34 38076.03 29782.32 367
FMVSNet569.50 31767.96 31874.15 32882.97 30855.35 34380.01 31682.12 31462.56 32363.02 36781.53 33736.92 37481.92 35248.42 36074.06 32585.17 335
MIMVSNet168.58 32566.78 33573.98 33080.07 35151.82 37180.77 30284.37 27664.40 29859.75 38182.16 33336.47 37583.63 34242.73 38570.33 35386.48 310
ITE_SJBPF78.22 27981.77 32760.57 27483.30 29469.25 22967.54 33187.20 22036.33 37687.28 31054.34 32974.62 32186.80 304
test-mter71.41 29870.39 30174.48 32481.35 33658.04 29978.38 33877.46 35660.32 33969.95 31079.00 36236.08 37779.24 36366.13 23084.83 17786.15 315
testgi66.67 33966.53 33667.08 37375.62 37841.69 40875.93 35476.50 36566.11 27665.20 35886.59 23935.72 37874.71 39243.71 38273.38 33484.84 339
EG-PatchMatch MVS74.04 27071.82 28280.71 23184.92 26167.42 14885.86 21288.08 21666.04 27864.22 36283.85 30035.10 37992.56 19357.44 31080.83 23682.16 370
KD-MVS_2432*160066.22 34363.89 34573.21 33475.47 38053.42 36070.76 38184.35 27764.10 30366.52 34678.52 36634.55 38084.98 33250.40 34850.33 39981.23 374
miper_refine_blended66.22 34363.89 34573.21 33475.47 38053.42 36070.76 38184.35 27764.10 30366.52 34678.52 36634.55 38084.98 33250.40 34850.33 39981.23 374
mvs5depth69.45 31867.45 33075.46 31473.93 38455.83 33679.19 32683.23 29666.89 26271.63 29283.32 31233.69 38285.09 33159.81 28655.34 39285.46 328
XVG-ACMP-BASELINE76.11 24674.27 25681.62 20583.20 29864.67 20583.60 26589.75 16669.75 21971.85 28987.09 22432.78 38392.11 21169.99 19680.43 24388.09 274
AllTest70.96 30268.09 31779.58 25585.15 25663.62 22484.58 24279.83 34062.31 32560.32 37886.73 22932.02 38488.96 29050.28 35071.57 34786.15 315
TestCases79.58 25585.15 25663.62 22479.83 34062.31 32560.32 37886.73 22932.02 38488.96 29050.28 35071.57 34786.15 315
USDC70.33 31068.37 31276.21 30480.60 34456.23 33179.19 32686.49 25060.89 33561.29 37485.47 26731.78 38689.47 27953.37 33476.21 29682.94 363
myMVS_eth3d67.02 33666.29 33769.21 36184.68 26542.58 40478.62 33573.08 38066.65 27066.74 34279.46 35731.53 38782.30 35039.43 39376.38 29382.75 364
test_fmvs170.93 30370.52 29772.16 34473.71 38655.05 34680.82 29978.77 34951.21 38778.58 15684.41 28831.20 38876.94 37575.88 13880.12 24884.47 343
Anonymous2024052168.80 32367.22 33273.55 33274.33 38254.11 35483.18 27185.61 26358.15 35861.68 37380.94 34330.71 38981.27 35657.00 31573.34 33585.28 331
testing368.56 32667.67 32671.22 35387.33 21842.87 40383.06 27771.54 38370.36 20169.08 32084.38 28930.33 39085.69 32437.50 39675.45 30885.09 337
test_vis1_n69.85 31669.21 30771.77 34672.66 39655.27 34581.48 29276.21 36752.03 38375.30 23983.20 31528.97 39176.22 38274.60 15078.41 26683.81 351
tmp_tt18.61 38721.40 39010.23 4034.82 42610.11 42634.70 41330.74 4241.48 42023.91 41626.07 41728.42 39213.41 42227.12 40615.35 4197.17 417
test_fmvs1_n70.86 30470.24 30272.73 34072.51 39755.28 34481.27 29679.71 34251.49 38678.73 15184.87 28027.54 39377.02 37476.06 13579.97 24985.88 323
TDRefinement67.49 33264.34 34276.92 29973.47 39061.07 26784.86 23582.98 30459.77 34458.30 38585.13 27526.06 39487.89 30447.92 36760.59 38381.81 372
dongtai45.42 37745.38 37845.55 39573.36 39126.85 41967.72 39234.19 42154.15 37749.65 40156.41 40825.43 39562.94 41119.45 41228.09 41246.86 411
MVStest156.63 36252.76 36868.25 36961.67 41053.25 36471.67 37668.90 39338.59 40350.59 39983.05 31725.08 39670.66 40036.76 39738.56 40680.83 377
test_vis1_rt60.28 35758.42 36065.84 37467.25 40355.60 34070.44 38360.94 40744.33 39659.00 38266.64 39724.91 39768.67 40462.80 25669.48 35573.25 393
TinyColmap67.30 33564.81 34074.76 32281.92 32656.68 32380.29 31381.49 32160.33 33856.27 39283.22 31324.77 39887.66 30845.52 37869.47 35679.95 381
EGC-MVSNET52.07 37147.05 37567.14 37283.51 29160.71 27280.50 30967.75 3940.07 4210.43 42275.85 38324.26 39981.54 35428.82 40462.25 37759.16 404
kuosan39.70 38140.40 38237.58 39864.52 40726.98 41765.62 40033.02 42246.12 39342.79 40548.99 41124.10 40046.56 41912.16 42026.30 41339.20 412
LF4IMVS64.02 35062.19 35469.50 36070.90 39853.29 36376.13 35277.18 36152.65 38158.59 38380.98 34223.55 40176.52 37853.06 33666.66 36678.68 384
test_fmvs268.35 32967.48 32970.98 35569.50 40051.95 36880.05 31576.38 36649.33 38974.65 25584.38 28923.30 40275.40 39074.51 15175.17 31685.60 326
new_pmnet50.91 37250.29 37252.78 39268.58 40134.94 41463.71 40356.63 41239.73 40144.95 40365.47 39821.93 40358.48 41234.98 39956.62 38764.92 400
ttmdpeth59.91 35857.10 36268.34 36867.13 40446.65 39374.64 36767.41 39548.30 39062.52 37285.04 27920.40 40475.93 38442.55 38645.90 40582.44 366
pmmvs357.79 36054.26 36568.37 36764.02 40856.72 32175.12 36465.17 40040.20 40052.93 39669.86 39620.36 40575.48 38845.45 37955.25 39372.90 394
PM-MVS66.41 34164.14 34373.20 33673.92 38556.45 32578.97 33064.96 40263.88 30964.72 35980.24 35019.84 40683.44 34466.24 22964.52 37479.71 382
mvsany_test353.99 36551.45 37061.61 38055.51 41444.74 40063.52 40445.41 41943.69 39758.11 38676.45 37817.99 40763.76 41054.77 32747.59 40176.34 389
ambc75.24 31773.16 39250.51 38263.05 40687.47 23264.28 36177.81 37217.80 40889.73 27457.88 30760.64 38285.49 327
ANet_high50.57 37346.10 37763.99 37648.67 42139.13 41070.99 38080.85 32661.39 33331.18 41057.70 40617.02 40973.65 39731.22 40315.89 41879.18 383
FPMVS53.68 36751.64 36959.81 38265.08 40651.03 37869.48 38669.58 38941.46 39940.67 40672.32 39116.46 41070.00 40324.24 41065.42 37158.40 406
test_method31.52 38329.28 38738.23 39727.03 4256.50 42820.94 41662.21 4054.05 41922.35 41752.50 41013.33 41147.58 41727.04 40734.04 40960.62 403
EMVS30.81 38429.65 38634.27 40050.96 42025.95 42056.58 41046.80 41824.01 41515.53 42030.68 41612.47 41254.43 41612.81 41917.05 41722.43 416
test_f52.09 37050.82 37155.90 38753.82 41742.31 40759.42 40758.31 41136.45 40656.12 39370.96 39412.18 41357.79 41353.51 33356.57 38867.60 398
test_fmvs363.36 35261.82 35567.98 37062.51 40946.96 39277.37 34974.03 37745.24 39467.50 33278.79 36512.16 41472.98 39872.77 17166.02 36983.99 349
E-PMN31.77 38230.64 38535.15 39952.87 41927.67 41657.09 40947.86 41724.64 41416.40 41933.05 41511.23 41554.90 41514.46 41818.15 41622.87 415
DeepMVS_CXcopyleft27.40 40140.17 42426.90 41824.59 42517.44 41723.95 41548.61 4129.77 41626.48 42018.06 41324.47 41428.83 414
Gipumacopyleft45.18 37841.86 38155.16 39077.03 37351.52 37432.50 41480.52 33132.46 41027.12 41335.02 4149.52 41775.50 38722.31 41160.21 38438.45 413
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet54.25 36449.68 37467.97 37153.73 41845.28 39766.85 39680.78 32735.96 40739.45 40862.23 4018.70 41878.06 37048.24 36451.20 39880.57 379
APD_test153.31 36849.93 37363.42 37865.68 40550.13 38371.59 37766.90 39734.43 40840.58 40771.56 3938.65 41976.27 38134.64 40055.36 39163.86 402
PMMVS240.82 38038.86 38446.69 39453.84 41616.45 42548.61 41149.92 41437.49 40431.67 40960.97 4028.14 42056.42 41428.42 40530.72 41167.19 399
test_vis3_rt49.26 37447.02 37656.00 38654.30 41545.27 39866.76 39748.08 41636.83 40544.38 40453.20 4097.17 42164.07 40956.77 31855.66 38958.65 405
testf145.72 37541.96 37957.00 38456.90 41245.32 39566.14 39859.26 40926.19 41230.89 41160.96 4034.14 42270.64 40126.39 40846.73 40355.04 407
APD_test245.72 37541.96 37957.00 38456.90 41245.32 39566.14 39859.26 40926.19 41230.89 41160.96 4034.14 42270.64 40126.39 40846.73 40355.04 407
PMVScopyleft37.38 2244.16 37940.28 38355.82 38840.82 42342.54 40665.12 40263.99 40334.43 40824.48 41457.12 4073.92 42476.17 38317.10 41555.52 39048.75 409
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive26.22 2330.37 38525.89 38943.81 39644.55 42235.46 41328.87 41539.07 42018.20 41618.58 41840.18 4132.68 42547.37 41817.07 41623.78 41548.60 410
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d16.82 38815.94 39119.46 40258.74 41131.45 41539.22 4123.74 4276.84 4186.04 4212.70 4211.27 42624.29 42110.54 42114.40 4202.63 418
test1236.12 3908.11 3930.14 4040.06 4280.09 42971.05 3790.03 4290.04 4230.25 4241.30 4230.05 4270.03 4240.21 4230.01 4220.29 419
testmvs6.04 3918.02 3940.10 4050.08 4270.03 43069.74 3840.04 4280.05 4220.31 4231.68 4220.02 4280.04 4230.24 4220.02 4210.25 420
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re7.23 3899.64 3920.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42586.72 2310.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS42.58 40439.46 392
FOURS195.00 1072.39 3995.06 193.84 1574.49 12091.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4997.53 289.67 696.44 994.41 37
No_MVS89.16 194.34 2775.53 292.99 4997.53 289.67 696.44 994.41 37
eth-test20.00 429
eth-test0.00 429
IU-MVS95.30 271.25 5992.95 5566.81 26392.39 688.94 1696.63 494.85 19
save fliter93.80 4072.35 4290.47 6691.17 12474.31 123
test_0728_SECOND87.71 3295.34 171.43 5893.49 994.23 397.49 489.08 1296.41 1294.21 47
GSMVS88.96 250
test_part295.06 872.65 3291.80 13
MTGPAbinary92.02 92
MTMP92.18 3432.83 423
gm-plane-assit81.40 33453.83 35762.72 32280.94 34392.39 20063.40 253
test9_res84.90 4695.70 2692.87 111
agg_prior282.91 7295.45 2992.70 114
agg_prior92.85 6271.94 5091.78 10784.41 7894.93 92
test_prior472.60 3489.01 109
test_prior86.33 5792.61 6869.59 9192.97 5495.48 6793.91 58
旧先验286.56 19258.10 35987.04 4588.98 28874.07 156
新几何286.29 201
无先验87.48 16188.98 19460.00 34294.12 12367.28 22288.97 249
原ACMM286.86 181
testdata291.01 25462.37 263
testdata184.14 25575.71 91
plane_prior790.08 10868.51 123
plane_prior592.44 7695.38 7478.71 10886.32 16091.33 158
plane_prior491.00 128
plane_prior368.60 12178.44 3178.92 149
plane_prior291.25 5279.12 23
plane_prior189.90 116
plane_prior68.71 11690.38 7077.62 3986.16 164
n20.00 430
nn0.00 430
door-mid69.98 387
test1192.23 86
door69.44 390
HQP5-MVS66.98 161
HQP-NCC89.33 13589.17 10276.41 7677.23 187
ACMP_Plane89.33 13589.17 10276.41 7677.23 187
BP-MVS77.47 120
HQP4-MVS77.24 18695.11 8591.03 168
HQP3-MVS92.19 8985.99 168
NP-MVS89.62 12168.32 12690.24 140
ACMMP++_ref81.95 225
ACMMP++81.25 230