| SED-MVS | | | 90.08 2 | 90.85 2 | 87.77 25 | 95.30 2 | 70.98 62 | 93.57 7 | 94.06 10 | 77.24 49 | 93.10 1 | 95.72 8 | 82.99 1 | 97.44 5 | 89.07 11 | 96.63 4 | 94.88 13 |
|
| test_241102_ONE | | | | | | 95.30 2 | 70.98 62 | | 94.06 10 | 77.17 52 | 93.10 1 | 95.39 11 | 82.99 1 | 97.27 10 | | | |
|
| DVP-MVS++ | | | 90.23 1 | 91.01 1 | 87.89 23 | 94.34 27 | 71.25 56 | 95.06 1 | 94.23 3 | 78.38 32 | 92.78 4 | 95.74 6 | 82.45 3 | 97.49 3 | 89.42 6 | 96.68 2 | 94.95 9 |
|
| OPU-MVS | | | | | 89.06 3 | 94.62 15 | 75.42 4 | 93.57 7 | | | | 94.02 40 | 82.45 3 | 96.87 19 | 83.77 49 | 96.48 8 | 94.88 13 |
|
| PC_three_1452 | | | | | | | | | | 68.21 233 | 92.02 12 | 94.00 42 | 82.09 5 | 95.98 50 | 84.58 39 | 96.68 2 | 94.95 9 |
|
| DPE-MVS |  | | 89.48 5 | 89.98 4 | 88.01 15 | 94.80 11 | 72.69 30 | 91.59 42 | 94.10 8 | 75.90 84 | 92.29 7 | 95.66 10 | 81.67 6 | 97.38 9 | 87.44 24 | 96.34 15 | 93.95 51 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| test_0728_THIRD | | | | | | | | | | 78.38 32 | 92.12 9 | 95.78 4 | 81.46 7 | 97.40 7 | 89.42 6 | 96.57 7 | 94.67 23 |
|
| test_241102_TWO | | | | | | | | | 94.06 10 | 77.24 49 | 92.78 4 | 95.72 8 | 81.26 8 | 97.44 5 | 89.07 11 | 96.58 6 | 94.26 40 |
|
| DVP-MVS |  | | 89.60 3 | 90.35 3 | 87.33 39 | 95.27 5 | 71.25 56 | 93.49 9 | 92.73 59 | 77.33 47 | 92.12 9 | 95.78 4 | 80.98 9 | 97.40 7 | 89.08 9 | 96.41 12 | 93.33 79 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 95.27 5 | 71.25 56 | 93.60 6 | 94.11 6 | 77.33 47 | 92.81 3 | 95.79 3 | 80.98 9 | | | | |
|
| test_one_0601 | | | | | | 95.07 7 | 71.46 54 | | 94.14 5 | 78.27 34 | 92.05 11 | 95.74 6 | 80.83 11 | | | | |
|
| DeepPCF-MVS | | 80.84 1 | 88.10 12 | 88.56 12 | 86.73 49 | 92.24 68 | 69.03 97 | 89.57 85 | 93.39 30 | 77.53 44 | 89.79 18 | 94.12 36 | 78.98 12 | 96.58 34 | 85.66 28 | 95.72 24 | 94.58 26 |
|
| MSP-MVS | | | 89.51 4 | 89.91 5 | 88.30 9 | 94.28 30 | 73.46 16 | 92.90 16 | 94.11 6 | 80.27 9 | 91.35 14 | 94.16 35 | 78.35 13 | 96.77 23 | 89.59 5 | 94.22 57 | 94.67 23 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| APDe-MVS | | | 89.15 6 | 89.63 6 | 87.73 27 | 94.49 18 | 71.69 51 | 93.83 4 | 93.96 13 | 75.70 88 | 91.06 16 | 96.03 1 | 76.84 14 | 97.03 16 | 89.09 8 | 95.65 27 | 94.47 30 |
|
| dcpmvs_2 | | | 85.63 51 | 86.15 43 | 84.06 117 | 91.71 75 | 64.94 188 | 86.47 181 | 91.87 95 | 73.63 130 | 86.60 34 | 93.02 63 | 76.57 15 | 91.87 213 | 83.36 51 | 92.15 74 | 95.35 2 |
|
| CNVR-MVS | | | 88.93 9 | 89.13 9 | 88.33 7 | 94.77 12 | 73.82 8 | 90.51 60 | 93.00 43 | 80.90 6 | 88.06 26 | 94.06 39 | 76.43 16 | 96.84 20 | 88.48 18 | 95.99 18 | 94.34 36 |
|
| MCST-MVS | | | 87.37 26 | 87.25 25 | 87.73 27 | 94.53 17 | 72.46 37 | 89.82 76 | 93.82 16 | 73.07 144 | 84.86 53 | 92.89 65 | 76.22 17 | 96.33 37 | 84.89 35 | 95.13 35 | 94.40 33 |
|
| CSCG | | | 86.41 40 | 86.19 41 | 87.07 44 | 92.91 58 | 72.48 36 | 90.81 56 | 93.56 24 | 73.95 122 | 83.16 82 | 91.07 107 | 75.94 18 | 95.19 74 | 79.94 85 | 94.38 53 | 93.55 72 |
|
| HPM-MVS++ |  | | 89.02 8 | 89.15 8 | 88.63 4 | 95.01 9 | 76.03 1 | 92.38 26 | 92.85 54 | 80.26 10 | 87.78 28 | 94.27 31 | 75.89 19 | 96.81 22 | 87.45 23 | 96.44 9 | 93.05 89 |
|
| TSAR-MVS + MP. | | | 88.02 17 | 88.11 15 | 87.72 29 | 93.68 43 | 72.13 45 | 91.41 46 | 92.35 74 | 74.62 110 | 88.90 20 | 93.85 47 | 75.75 20 | 96.00 48 | 87.80 19 | 94.63 46 | 95.04 6 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| SF-MVS | | | 88.46 11 | 88.74 11 | 87.64 34 | 92.78 61 | 71.95 49 | 92.40 23 | 94.74 2 | 75.71 86 | 89.16 19 | 95.10 14 | 75.65 21 | 96.19 42 | 87.07 25 | 96.01 17 | 94.79 20 |
|
| 9.14 | | | | 88.26 14 | | 92.84 60 | | 91.52 45 | 94.75 1 | 73.93 124 | 88.57 22 | 94.67 18 | 75.57 22 | 95.79 52 | 86.77 26 | 95.76 23 | |
|
| SD-MVS | | | 88.06 14 | 88.50 13 | 86.71 50 | 92.60 66 | 72.71 28 | 91.81 41 | 93.19 35 | 77.87 35 | 90.32 17 | 94.00 42 | 74.83 23 | 93.78 135 | 87.63 21 | 94.27 56 | 93.65 66 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| DELS-MVS | | | 85.41 55 | 85.30 56 | 85.77 63 | 88.49 161 | 67.93 125 | 85.52 210 | 93.44 27 | 78.70 28 | 83.63 78 | 89.03 155 | 74.57 24 | 95.71 55 | 80.26 83 | 94.04 58 | 93.66 62 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| patch_mono-2 | | | 83.65 70 | 84.54 64 | 80.99 211 | 90.06 106 | 65.83 166 | 84.21 238 | 88.74 195 | 71.60 164 | 85.01 46 | 92.44 75 | 74.51 25 | 83.50 318 | 82.15 66 | 92.15 74 | 93.64 68 |
|
| train_agg | | | 86.43 38 | 86.20 40 | 87.13 43 | 93.26 50 | 72.96 24 | 88.75 108 | 91.89 93 | 68.69 225 | 85.00 48 | 93.10 58 | 74.43 26 | 95.41 66 | 84.97 32 | 95.71 25 | 93.02 91 |
|
| test_8 | | | | | | 93.13 52 | 72.57 34 | 88.68 113 | 91.84 97 | 68.69 225 | 84.87 52 | 93.10 58 | 74.43 26 | 95.16 75 | | | |
|
| TEST9 | | | | | | 93.26 50 | 72.96 24 | 88.75 108 | 91.89 93 | 68.44 230 | 85.00 48 | 93.10 58 | 74.36 28 | 95.41 66 | | | |
|
| SMA-MVS |  | | 89.08 7 | 89.23 7 | 88.61 5 | 94.25 31 | 73.73 9 | 92.40 23 | 93.63 21 | 74.77 106 | 92.29 7 | 95.97 2 | 74.28 29 | 97.24 11 | 88.58 16 | 96.91 1 | 94.87 15 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| test_prior2 | | | | | | | | 88.85 104 | | 75.41 92 | 84.91 50 | 93.54 49 | 74.28 29 | | 83.31 52 | 95.86 20 | |
|
| TSAR-MVS + GP. | | | 85.71 50 | 85.33 54 | 86.84 46 | 91.34 78 | 72.50 35 | 89.07 97 | 87.28 225 | 76.41 71 | 85.80 38 | 90.22 125 | 74.15 31 | 95.37 71 | 81.82 68 | 91.88 77 | 92.65 102 |
|
| ZD-MVS | | | | | | 94.38 25 | 72.22 43 | | 92.67 61 | 70.98 175 | 87.75 29 | 94.07 38 | 74.01 32 | 96.70 26 | 84.66 38 | 94.84 42 | |
|
| SteuartSystems-ACMMP | | | 88.72 10 | 88.86 10 | 88.32 8 | 92.14 69 | 72.96 24 | 93.73 5 | 93.67 20 | 80.19 11 | 88.10 25 | 94.80 16 | 73.76 33 | 97.11 14 | 87.51 22 | 95.82 21 | 94.90 12 |
| Skip Steuart: Steuart Systems R&D Blog. |
| APD-MVS |  | | 87.44 22 | 87.52 22 | 87.19 41 | 94.24 32 | 72.39 38 | 91.86 40 | 92.83 55 | 73.01 146 | 88.58 21 | 94.52 20 | 73.36 34 | 96.49 35 | 84.26 43 | 95.01 36 | 92.70 98 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| casdiffmvs_mvg |  | | 85.99 43 | 86.09 45 | 85.70 65 | 87.65 192 | 67.22 142 | 88.69 112 | 93.04 38 | 79.64 17 | 85.33 43 | 92.54 74 | 73.30 35 | 94.50 106 | 83.49 50 | 91.14 88 | 95.37 1 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| canonicalmvs | | | 85.91 46 | 85.87 48 | 86.04 59 | 89.84 111 | 69.44 94 | 90.45 65 | 93.00 43 | 76.70 68 | 88.01 27 | 91.23 100 | 73.28 36 | 93.91 130 | 81.50 70 | 88.80 115 | 94.77 21 |
|
| segment_acmp | | | | | | | | | | | | | 73.08 37 | | | | |
|
| DPM-MVS | | | 84.93 61 | 84.29 66 | 86.84 46 | 90.20 99 | 73.04 22 | 87.12 160 | 93.04 38 | 69.80 198 | 82.85 86 | 91.22 101 | 73.06 38 | 96.02 46 | 76.72 117 | 94.63 46 | 91.46 139 |
|
| NCCC | | | 88.06 14 | 88.01 18 | 88.24 10 | 94.41 22 | 73.62 10 | 91.22 51 | 92.83 55 | 81.50 4 | 85.79 39 | 93.47 52 | 73.02 39 | 97.00 17 | 84.90 33 | 94.94 38 | 94.10 44 |
|
| test_fmvsmconf_n | | | 85.92 45 | 86.04 46 | 85.57 67 | 85.03 242 | 69.51 89 | 89.62 84 | 90.58 130 | 73.42 137 | 87.75 29 | 94.02 40 | 72.85 40 | 93.24 159 | 90.37 2 | 90.75 92 | 93.96 50 |
|
| nrg030 | | | 83.88 66 | 83.53 69 | 84.96 81 | 86.77 216 | 69.28 96 | 90.46 64 | 92.67 61 | 74.79 105 | 82.95 83 | 91.33 99 | 72.70 41 | 93.09 171 | 80.79 78 | 79.28 235 | 92.50 107 |
|
| CDPH-MVS | | | 85.76 49 | 85.29 57 | 87.17 42 | 93.49 47 | 71.08 60 | 88.58 116 | 92.42 72 | 68.32 232 | 84.61 58 | 93.48 50 | 72.32 42 | 96.15 44 | 79.00 89 | 95.43 30 | 94.28 39 |
|
| MP-MVS |  | | 87.71 19 | 87.64 21 | 87.93 20 | 94.36 26 | 73.88 6 | 92.71 22 | 92.65 64 | 77.57 40 | 83.84 73 | 94.40 29 | 72.24 43 | 96.28 39 | 85.65 29 | 95.30 34 | 93.62 69 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| casdiffmvs |  | | 85.11 59 | 85.14 58 | 85.01 79 | 87.20 208 | 65.77 170 | 87.75 144 | 92.83 55 | 77.84 36 | 84.36 64 | 92.38 76 | 72.15 44 | 93.93 129 | 81.27 72 | 90.48 94 | 95.33 3 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| DeepC-MVS | | 79.81 2 | 87.08 31 | 86.88 33 | 87.69 32 | 91.16 80 | 72.32 42 | 90.31 67 | 93.94 14 | 77.12 54 | 82.82 87 | 94.23 33 | 72.13 45 | 97.09 15 | 84.83 36 | 95.37 31 | 93.65 66 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| baseline | | | 84.93 61 | 84.98 59 | 84.80 89 | 87.30 206 | 65.39 179 | 87.30 156 | 92.88 52 | 77.62 38 | 84.04 70 | 92.26 78 | 71.81 46 | 93.96 123 | 81.31 71 | 90.30 97 | 95.03 7 |
|
| ZNCC-MVS | | | 87.94 18 | 87.85 19 | 88.20 11 | 94.39 24 | 73.33 18 | 93.03 14 | 93.81 17 | 76.81 62 | 85.24 44 | 94.32 30 | 71.76 47 | 96.93 18 | 85.53 30 | 95.79 22 | 94.32 37 |
|
| test12 | | | | | 86.80 48 | 92.63 64 | 70.70 71 | | 91.79 99 | | 82.71 89 | | 71.67 48 | 96.16 43 | | 94.50 49 | 93.54 73 |
|
| UniMVSNet_NR-MVSNet | | | 81.88 97 | 81.54 97 | 82.92 162 | 88.46 163 | 63.46 219 | 87.13 159 | 92.37 73 | 80.19 11 | 78.38 145 | 89.14 151 | 71.66 49 | 93.05 173 | 70.05 177 | 76.46 265 | 92.25 116 |
|
| CS-MVS | | | 86.69 34 | 86.95 30 | 85.90 62 | 90.76 90 | 67.57 133 | 92.83 17 | 93.30 32 | 79.67 16 | 84.57 60 | 92.27 77 | 71.47 50 | 95.02 85 | 84.24 45 | 93.46 62 | 95.13 5 |
|
| DeepC-MVS_fast | | 79.65 3 | 86.91 32 | 86.62 35 | 87.76 26 | 93.52 46 | 72.37 40 | 91.26 47 | 93.04 38 | 76.62 69 | 84.22 65 | 93.36 54 | 71.44 51 | 96.76 24 | 80.82 76 | 95.33 33 | 94.16 42 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| test_fmvsm_n_1920 | | | 85.29 57 | 85.34 53 | 85.13 76 | 86.12 223 | 69.93 82 | 88.65 114 | 90.78 126 | 69.97 194 | 88.27 23 | 93.98 45 | 71.39 52 | 91.54 221 | 88.49 17 | 90.45 95 | 93.91 52 |
|
| MVS_111021_HR | | | 85.14 58 | 84.75 62 | 86.32 54 | 91.65 76 | 72.70 29 | 85.98 193 | 90.33 140 | 76.11 80 | 82.08 93 | 91.61 91 | 71.36 53 | 94.17 119 | 81.02 73 | 92.58 69 | 92.08 122 |
|
| ACMMP_NAP | | | 88.05 16 | 88.08 16 | 87.94 18 | 93.70 41 | 73.05 21 | 90.86 55 | 93.59 23 | 76.27 78 | 88.14 24 | 95.09 15 | 71.06 54 | 96.67 28 | 87.67 20 | 96.37 14 | 94.09 45 |
|
| MP-MVS-pluss | | | 87.67 20 | 87.72 20 | 87.54 35 | 93.64 44 | 72.04 47 | 89.80 78 | 93.50 25 | 75.17 99 | 86.34 35 | 95.29 12 | 70.86 55 | 96.00 48 | 88.78 14 | 96.04 16 | 94.58 26 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| HFP-MVS | | | 87.58 21 | 87.47 23 | 87.94 18 | 94.58 16 | 73.54 14 | 93.04 12 | 93.24 33 | 76.78 64 | 84.91 50 | 94.44 27 | 70.78 56 | 96.61 31 | 84.53 40 | 94.89 40 | 93.66 62 |
|
| EI-MVSNet-Vis-set | | | 84.19 64 | 83.81 68 | 85.31 70 | 88.18 171 | 67.85 126 | 87.66 146 | 89.73 157 | 80.05 13 | 82.95 83 | 89.59 139 | 70.74 57 | 94.82 94 | 80.66 80 | 84.72 163 | 93.28 81 |
|
| GST-MVS | | | 87.42 24 | 87.26 24 | 87.89 23 | 94.12 36 | 72.97 23 | 92.39 25 | 93.43 28 | 76.89 60 | 84.68 54 | 93.99 44 | 70.67 58 | 96.82 21 | 84.18 47 | 95.01 36 | 93.90 54 |
|
| CS-MVS-test | | | 86.29 41 | 86.48 36 | 85.71 64 | 91.02 83 | 67.21 143 | 92.36 28 | 93.78 18 | 78.97 27 | 83.51 79 | 91.20 102 | 70.65 59 | 95.15 76 | 81.96 67 | 94.89 40 | 94.77 21 |
|
| CANet | | | 86.45 37 | 86.10 44 | 87.51 36 | 90.09 101 | 70.94 66 | 89.70 82 | 92.59 66 | 81.78 3 | 81.32 103 | 91.43 97 | 70.34 60 | 97.23 12 | 84.26 43 | 93.36 63 | 94.37 34 |
|
| alignmvs | | | 85.48 52 | 85.32 55 | 85.96 61 | 89.51 119 | 69.47 91 | 89.74 80 | 92.47 68 | 76.17 79 | 87.73 31 | 91.46 96 | 70.32 61 | 93.78 135 | 81.51 69 | 88.95 112 | 94.63 25 |
|
| EI-MVSNet-UG-set | | | 83.81 67 | 83.38 71 | 85.09 77 | 87.87 181 | 67.53 134 | 87.44 152 | 89.66 158 | 79.74 15 | 82.23 92 | 89.41 148 | 70.24 62 | 94.74 97 | 79.95 84 | 83.92 173 | 92.99 93 |
|
| MVS_Test | | | 83.15 79 | 83.06 75 | 83.41 140 | 86.86 212 | 63.21 225 | 86.11 191 | 92.00 87 | 74.31 115 | 82.87 85 | 89.44 147 | 70.03 63 | 93.21 160 | 77.39 107 | 88.50 121 | 93.81 58 |
|
| FC-MVSNet-test | | | 81.52 107 | 82.02 91 | 80.03 231 | 88.42 165 | 55.97 316 | 87.95 137 | 93.42 29 | 77.10 55 | 77.38 168 | 90.98 113 | 69.96 64 | 91.79 214 | 68.46 196 | 84.50 165 | 92.33 112 |
|
| MVS_0304 | | | 88.08 13 | 88.08 16 | 88.08 13 | 89.67 113 | 72.04 47 | 92.26 32 | 89.26 170 | 84.19 1 | 85.01 46 | 95.18 13 | 69.93 65 | 97.20 13 | 91.63 1 | 95.60 28 | 94.99 8 |
|
| FIs | | | 82.07 94 | 82.42 82 | 81.04 210 | 88.80 150 | 58.34 279 | 88.26 126 | 93.49 26 | 76.93 59 | 78.47 144 | 91.04 108 | 69.92 66 | 92.34 196 | 69.87 181 | 84.97 160 | 92.44 111 |
|
| UniMVSNet (Re) | | | 81.60 106 | 81.11 102 | 83.09 153 | 88.38 166 | 64.41 200 | 87.60 147 | 93.02 42 | 78.42 31 | 78.56 141 | 88.16 181 | 69.78 67 | 93.26 158 | 69.58 184 | 76.49 264 | 91.60 131 |
|
| HPM-MVS |  | | 87.11 29 | 86.98 29 | 87.50 37 | 93.88 39 | 72.16 44 | 92.19 33 | 93.33 31 | 76.07 81 | 83.81 74 | 93.95 46 | 69.77 68 | 96.01 47 | 85.15 31 | 94.66 45 | 94.32 37 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| Effi-MVS+ | | | 83.62 72 | 83.08 74 | 85.24 72 | 88.38 166 | 67.45 135 | 88.89 102 | 89.15 176 | 75.50 91 | 82.27 91 | 88.28 177 | 69.61 69 | 94.45 108 | 77.81 102 | 87.84 125 | 93.84 57 |
|
| PHI-MVS | | | 86.43 38 | 86.17 42 | 87.24 40 | 90.88 87 | 70.96 64 | 92.27 31 | 94.07 9 | 72.45 149 | 85.22 45 | 91.90 83 | 69.47 70 | 96.42 36 | 83.28 53 | 95.94 19 | 94.35 35 |
|
| UA-Net | | | 85.08 60 | 84.96 60 | 85.45 68 | 92.07 70 | 68.07 123 | 89.78 79 | 90.86 125 | 82.48 2 | 84.60 59 | 93.20 57 | 69.35 71 | 95.22 73 | 71.39 165 | 90.88 91 | 93.07 88 |
|
| ETV-MVS | | | 84.90 63 | 84.67 63 | 85.59 66 | 89.39 124 | 68.66 112 | 88.74 110 | 92.64 65 | 79.97 14 | 84.10 68 | 85.71 245 | 69.32 72 | 95.38 68 | 80.82 76 | 91.37 85 | 92.72 97 |
|
| 旧先验1 | | | | | | 91.96 71 | 65.79 169 | | 86.37 239 | | | 93.08 62 | 69.31 73 | | | 92.74 67 | 88.74 241 |
|
| region2R | | | 87.42 24 | 87.20 27 | 88.09 12 | 94.63 14 | 73.55 12 | 93.03 14 | 93.12 37 | 76.73 67 | 84.45 61 | 94.52 20 | 69.09 74 | 96.70 26 | 84.37 42 | 94.83 43 | 94.03 48 |
|
| EIA-MVS | | | 83.31 78 | 82.80 80 | 84.82 87 | 89.59 115 | 65.59 172 | 88.21 127 | 92.68 60 | 74.66 108 | 78.96 130 | 86.42 232 | 69.06 75 | 95.26 72 | 75.54 129 | 90.09 101 | 93.62 69 |
|
| EPP-MVSNet | | | 83.40 76 | 83.02 76 | 84.57 93 | 90.13 100 | 64.47 198 | 92.32 29 | 90.73 127 | 74.45 114 | 79.35 126 | 91.10 105 | 69.05 76 | 95.12 77 | 72.78 154 | 87.22 133 | 94.13 43 |
|
| EC-MVSNet | | | 86.01 42 | 86.38 37 | 84.91 85 | 89.31 130 | 66.27 157 | 92.32 29 | 93.63 21 | 79.37 19 | 84.17 67 | 91.88 84 | 69.04 77 | 95.43 64 | 83.93 48 | 93.77 60 | 93.01 92 |
|
| ACMMPR | | | 87.44 22 | 87.23 26 | 88.08 13 | 94.64 13 | 73.59 11 | 93.04 12 | 93.20 34 | 76.78 64 | 84.66 57 | 94.52 20 | 68.81 78 | 96.65 29 | 84.53 40 | 94.90 39 | 94.00 49 |
|
| test_fmvsmvis_n_1920 | | | 84.02 65 | 83.87 67 | 84.49 98 | 84.12 254 | 69.37 95 | 88.15 131 | 87.96 209 | 70.01 192 | 83.95 71 | 93.23 56 | 68.80 79 | 91.51 224 | 88.61 15 | 89.96 104 | 92.57 103 |
|
| mvs_anonymous | | | 79.42 157 | 79.11 145 | 80.34 225 | 84.45 249 | 57.97 285 | 82.59 264 | 87.62 218 | 67.40 240 | 76.17 202 | 88.56 170 | 68.47 80 | 89.59 259 | 70.65 172 | 86.05 151 | 93.47 75 |
|
| MTAPA | | | 87.23 27 | 87.00 28 | 87.90 21 | 94.18 35 | 74.25 5 | 86.58 178 | 92.02 85 | 79.45 18 | 85.88 37 | 94.80 16 | 68.07 81 | 96.21 41 | 86.69 27 | 95.34 32 | 93.23 82 |
|
| CP-MVS | | | 87.11 29 | 86.92 31 | 87.68 33 | 94.20 34 | 73.86 7 | 93.98 3 | 92.82 58 | 76.62 69 | 83.68 75 | 94.46 24 | 67.93 82 | 95.95 51 | 84.20 46 | 94.39 52 | 93.23 82 |
|
| PAPM_NR | | | 83.02 83 | 82.41 83 | 84.82 87 | 92.47 67 | 66.37 155 | 87.93 139 | 91.80 98 | 73.82 126 | 77.32 170 | 90.66 116 | 67.90 83 | 94.90 90 | 70.37 174 | 89.48 109 | 93.19 85 |
|
| PGM-MVS | | | 86.68 35 | 86.27 39 | 87.90 21 | 94.22 33 | 73.38 17 | 90.22 69 | 93.04 38 | 75.53 90 | 83.86 72 | 94.42 28 | 67.87 84 | 96.64 30 | 82.70 63 | 94.57 48 | 93.66 62 |
|
| PAPR | | | 81.66 105 | 80.89 107 | 83.99 124 | 90.27 97 | 64.00 206 | 86.76 174 | 91.77 101 | 68.84 223 | 77.13 179 | 89.50 140 | 67.63 85 | 94.88 92 | 67.55 202 | 88.52 120 | 93.09 87 |
|
| Fast-Effi-MVS+ | | | 80.81 120 | 79.92 123 | 83.47 136 | 88.85 145 | 64.51 195 | 85.53 208 | 89.39 164 | 70.79 177 | 78.49 143 | 85.06 263 | 67.54 86 | 93.58 143 | 67.03 210 | 86.58 142 | 92.32 113 |
|
| XVS | | | 87.18 28 | 86.91 32 | 88.00 16 | 94.42 20 | 73.33 18 | 92.78 18 | 92.99 45 | 79.14 20 | 83.67 76 | 94.17 34 | 67.45 87 | 96.60 32 | 83.06 54 | 94.50 49 | 94.07 46 |
|
| X-MVStestdata | | | 80.37 136 | 77.83 173 | 88.00 16 | 94.42 20 | 73.33 18 | 92.78 18 | 92.99 45 | 79.14 20 | 83.67 76 | 12.47 385 | 67.45 87 | 96.60 32 | 83.06 54 | 94.50 49 | 94.07 46 |
|
| SR-MVS | | | 86.73 33 | 86.67 34 | 86.91 45 | 94.11 37 | 72.11 46 | 92.37 27 | 92.56 67 | 74.50 111 | 86.84 33 | 94.65 19 | 67.31 89 | 95.77 53 | 84.80 37 | 92.85 66 | 92.84 96 |
|
| NR-MVSNet | | | 80.23 139 | 79.38 135 | 82.78 171 | 87.80 185 | 63.34 222 | 86.31 185 | 91.09 119 | 79.01 25 | 72.17 260 | 89.07 153 | 67.20 90 | 92.81 182 | 66.08 216 | 75.65 276 | 92.20 118 |
|
| MSLP-MVS++ | | | 85.43 54 | 85.76 49 | 84.45 100 | 91.93 72 | 70.24 75 | 90.71 57 | 92.86 53 | 77.46 46 | 84.22 65 | 92.81 69 | 67.16 91 | 92.94 177 | 80.36 81 | 94.35 54 | 90.16 184 |
|
| MG-MVS | | | 83.41 75 | 83.45 70 | 83.28 143 | 92.74 62 | 62.28 239 | 88.17 129 | 89.50 161 | 75.22 95 | 81.49 102 | 92.74 73 | 66.75 92 | 95.11 79 | 72.85 153 | 91.58 82 | 92.45 110 |
|
| EI-MVSNet | | | 80.52 132 | 79.98 122 | 82.12 181 | 84.28 250 | 63.19 227 | 86.41 182 | 88.95 186 | 74.18 119 | 78.69 136 | 87.54 197 | 66.62 93 | 92.43 190 | 72.57 157 | 80.57 219 | 90.74 163 |
|
| IterMVS-LS | | | 80.06 142 | 79.38 135 | 82.11 182 | 85.89 225 | 63.20 226 | 86.79 171 | 89.34 165 | 74.19 118 | 75.45 214 | 86.72 217 | 66.62 93 | 92.39 192 | 72.58 156 | 76.86 259 | 90.75 162 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| miper_ehance_all_eth | | | 78.59 179 | 77.76 178 | 81.08 209 | 82.66 288 | 61.56 248 | 83.65 246 | 89.15 176 | 68.87 222 | 75.55 210 | 83.79 283 | 66.49 95 | 92.03 205 | 73.25 149 | 76.39 267 | 89.64 211 |
|
| mPP-MVS | | | 86.67 36 | 86.32 38 | 87.72 29 | 94.41 22 | 73.55 12 | 92.74 20 | 92.22 80 | 76.87 61 | 82.81 88 | 94.25 32 | 66.44 96 | 96.24 40 | 82.88 58 | 94.28 55 | 93.38 76 |
|
| c3_l | | | 78.75 173 | 77.91 170 | 81.26 202 | 82.89 283 | 61.56 248 | 84.09 241 | 89.13 178 | 69.97 194 | 75.56 209 | 84.29 275 | 66.36 97 | 92.09 204 | 73.47 146 | 75.48 280 | 90.12 187 |
|
| GeoE | | | 81.71 101 | 81.01 105 | 83.80 130 | 89.51 119 | 64.45 199 | 88.97 99 | 88.73 196 | 71.27 169 | 78.63 139 | 89.76 133 | 66.32 98 | 93.20 163 | 69.89 180 | 86.02 152 | 93.74 60 |
|
| WR-MVS_H | | | 78.51 180 | 78.49 156 | 78.56 256 | 88.02 178 | 56.38 311 | 88.43 118 | 92.67 61 | 77.14 53 | 73.89 242 | 87.55 196 | 66.25 99 | 89.24 265 | 58.92 274 | 73.55 306 | 90.06 194 |
|
| PCF-MVS | | 73.52 7 | 80.38 134 | 78.84 150 | 85.01 79 | 87.71 189 | 68.99 99 | 83.65 246 | 91.46 111 | 63.00 287 | 77.77 162 | 90.28 122 | 66.10 100 | 95.09 83 | 61.40 254 | 88.22 124 | 90.94 156 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| EPNet | | | 83.72 69 | 82.92 78 | 86.14 58 | 84.22 252 | 69.48 90 | 91.05 54 | 85.27 252 | 81.30 5 | 76.83 181 | 91.65 88 | 66.09 101 | 95.56 57 | 76.00 123 | 93.85 59 | 93.38 76 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| 原ACMM1 | | | | | 84.35 104 | 93.01 57 | 68.79 102 | | 92.44 69 | 63.96 281 | 81.09 108 | 91.57 92 | 66.06 102 | 95.45 62 | 67.19 207 | 94.82 44 | 88.81 238 |
|
| PVSNet_BlendedMVS | | | 80.60 129 | 80.02 121 | 82.36 180 | 88.85 145 | 65.40 177 | 86.16 190 | 92.00 87 | 69.34 207 | 78.11 154 | 86.09 240 | 66.02 103 | 94.27 112 | 71.52 162 | 82.06 200 | 87.39 265 |
|
| PVSNet_Blended | | | 80.98 115 | 80.34 116 | 82.90 163 | 88.85 145 | 65.40 177 | 84.43 233 | 92.00 87 | 67.62 237 | 78.11 154 | 85.05 264 | 66.02 103 | 94.27 112 | 71.52 162 | 89.50 108 | 89.01 228 |
|
| diffmvs |  | | 82.10 92 | 81.88 94 | 82.76 173 | 83.00 280 | 63.78 211 | 83.68 245 | 89.76 155 | 72.94 147 | 82.02 94 | 89.85 131 | 65.96 105 | 90.79 243 | 82.38 65 | 87.30 132 | 93.71 61 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| APD-MVS_3200maxsize | | | 85.97 44 | 85.88 47 | 86.22 56 | 92.69 63 | 69.53 88 | 91.93 37 | 92.99 45 | 73.54 134 | 85.94 36 | 94.51 23 | 65.80 106 | 95.61 56 | 83.04 56 | 92.51 70 | 93.53 74 |
|
| miper_enhance_ethall | | | 77.87 198 | 76.86 197 | 80.92 214 | 81.65 302 | 61.38 250 | 82.68 263 | 88.98 183 | 65.52 261 | 75.47 211 | 82.30 302 | 65.76 107 | 92.00 207 | 72.95 152 | 76.39 267 | 89.39 216 |
|
| PVSNet_Blended_VisFu | | | 82.62 87 | 81.83 95 | 84.96 81 | 90.80 89 | 69.76 86 | 88.74 110 | 91.70 102 | 69.39 205 | 78.96 130 | 88.46 172 | 65.47 108 | 94.87 93 | 74.42 136 | 88.57 118 | 90.24 182 |
|
| API-MVS | | | 81.99 96 | 81.23 100 | 84.26 108 | 90.94 85 | 70.18 81 | 91.10 52 | 89.32 166 | 71.51 166 | 78.66 138 | 88.28 177 | 65.26 109 | 95.10 82 | 64.74 227 | 91.23 87 | 87.51 263 |
|
| TranMVSNet+NR-MVSNet | | | 80.84 118 | 80.31 117 | 82.42 178 | 87.85 182 | 62.33 237 | 87.74 145 | 91.33 112 | 80.55 8 | 77.99 158 | 89.86 130 | 65.23 110 | 92.62 183 | 67.05 209 | 75.24 290 | 92.30 114 |
|
| IS-MVSNet | | | 83.15 79 | 82.81 79 | 84.18 110 | 89.94 109 | 63.30 223 | 91.59 42 | 88.46 201 | 79.04 24 | 79.49 124 | 92.16 79 | 65.10 111 | 94.28 111 | 67.71 200 | 91.86 80 | 94.95 9 |
|
| DU-MVS | | | 81.12 114 | 80.52 113 | 82.90 163 | 87.80 185 | 63.46 219 | 87.02 163 | 91.87 95 | 79.01 25 | 78.38 145 | 89.07 153 | 65.02 112 | 93.05 173 | 70.05 177 | 76.46 265 | 92.20 118 |
|
| Baseline_NR-MVSNet | | | 78.15 189 | 78.33 162 | 77.61 271 | 85.79 226 | 56.21 314 | 86.78 172 | 85.76 248 | 73.60 132 | 77.93 159 | 87.57 194 | 65.02 112 | 88.99 269 | 67.14 208 | 75.33 287 | 87.63 259 |
|
| SR-MVS-dyc-post | | | 85.77 48 | 85.61 50 | 86.23 55 | 93.06 55 | 70.63 72 | 91.88 38 | 92.27 76 | 73.53 135 | 85.69 40 | 94.45 25 | 65.00 114 | 95.56 57 | 82.75 59 | 91.87 78 | 92.50 107 |
|
| VNet | | | 82.21 91 | 82.41 83 | 81.62 191 | 90.82 88 | 60.93 253 | 84.47 229 | 89.78 154 | 76.36 76 | 84.07 69 | 91.88 84 | 64.71 115 | 90.26 249 | 70.68 171 | 88.89 113 | 93.66 62 |
|
| Test By Simon | | | | | | | | | | | | | 64.33 116 | | | | |
|
| ACMMP |  | | 85.89 47 | 85.39 52 | 87.38 38 | 93.59 45 | 72.63 32 | 92.74 20 | 93.18 36 | 76.78 64 | 80.73 112 | 93.82 48 | 64.33 116 | 96.29 38 | 82.67 64 | 90.69 93 | 93.23 82 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| DP-MVS Recon | | | 83.11 82 | 82.09 89 | 86.15 57 | 94.44 19 | 70.92 67 | 88.79 106 | 92.20 81 | 70.53 183 | 79.17 128 | 91.03 110 | 64.12 118 | 96.03 45 | 68.39 197 | 90.14 100 | 91.50 136 |
|
| CLD-MVS | | | 82.31 90 | 81.65 96 | 84.29 107 | 88.47 162 | 67.73 129 | 85.81 201 | 92.35 74 | 75.78 85 | 78.33 147 | 86.58 227 | 64.01 119 | 94.35 109 | 76.05 122 | 87.48 130 | 90.79 159 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| RE-MVS-def | | | | 85.48 51 | | 93.06 55 | 70.63 72 | 91.88 38 | 92.27 76 | 73.53 135 | 85.69 40 | 94.45 25 | 63.87 120 | | 82.75 59 | 91.87 78 | 92.50 107 |
|
| MVS | | | 78.19 188 | 76.99 195 | 81.78 188 | 85.66 228 | 66.99 145 | 84.66 223 | 90.47 134 | 55.08 346 | 72.02 262 | 85.27 256 | 63.83 121 | 94.11 121 | 66.10 215 | 89.80 106 | 84.24 319 |
|
| WR-MVS | | | 79.49 153 | 79.22 142 | 80.27 227 | 88.79 151 | 58.35 278 | 85.06 215 | 88.61 199 | 78.56 29 | 77.65 163 | 88.34 175 | 63.81 122 | 90.66 246 | 64.98 225 | 77.22 254 | 91.80 129 |
|
| VPA-MVSNet | | | 80.60 129 | 80.55 112 | 80.76 217 | 88.07 176 | 60.80 256 | 86.86 168 | 91.58 105 | 75.67 89 | 80.24 116 | 89.45 146 | 63.34 123 | 90.25 250 | 70.51 173 | 79.22 236 | 91.23 144 |
|
| 新几何1 | | | | | 83.42 138 | 93.13 52 | 70.71 70 | | 85.48 251 | 57.43 336 | 81.80 98 | 91.98 81 | 63.28 124 | 92.27 198 | 64.60 228 | 92.99 64 | 87.27 269 |
|
| HY-MVS | | 69.67 12 | 77.95 195 | 77.15 191 | 80.36 224 | 87.57 198 | 60.21 266 | 83.37 253 | 87.78 216 | 66.11 252 | 75.37 217 | 87.06 212 | 63.27 125 | 90.48 248 | 61.38 255 | 82.43 197 | 90.40 176 |
|
| XXY-MVS | | | 75.41 240 | 75.56 219 | 74.96 295 | 83.59 264 | 57.82 289 | 80.59 285 | 83.87 273 | 66.54 249 | 74.93 232 | 88.31 176 | 63.24 126 | 80.09 333 | 62.16 246 | 76.85 260 | 86.97 278 |
|
| ab-mvs | | | 79.51 152 | 78.97 148 | 81.14 207 | 88.46 163 | 60.91 254 | 83.84 243 | 89.24 172 | 70.36 185 | 79.03 129 | 88.87 160 | 63.23 127 | 90.21 251 | 65.12 223 | 82.57 196 | 92.28 115 |
|
| xiu_mvs_v2_base | | | 81.69 102 | 81.05 103 | 83.60 133 | 89.15 137 | 68.03 124 | 84.46 231 | 90.02 148 | 70.67 180 | 81.30 106 | 86.53 230 | 63.17 128 | 94.19 118 | 75.60 128 | 88.54 119 | 88.57 245 |
|
| pcd_1.5k_mvsjas | | | 5.26 359 | 7.02 362 | 0.00 373 | 0.00 396 | 0.00 397 | 0.00 384 | 0.00 397 | 0.00 391 | 0.00 392 | 0.00 391 | 63.15 129 | 0.00 392 | 0.00 390 | 0.00 390 | 0.00 388 |
|
| PS-MVSNAJss | | | 82.07 94 | 81.31 98 | 84.34 105 | 86.51 219 | 67.27 140 | 89.27 89 | 91.51 107 | 71.75 158 | 79.37 125 | 90.22 125 | 63.15 129 | 94.27 112 | 77.69 103 | 82.36 198 | 91.49 137 |
|
| PS-MVSNAJ | | | 81.69 102 | 81.02 104 | 83.70 132 | 89.51 119 | 68.21 121 | 84.28 237 | 90.09 147 | 70.79 177 | 81.26 107 | 85.62 250 | 63.15 129 | 94.29 110 | 75.62 127 | 88.87 114 | 88.59 244 |
|
| WTY-MVS | | | 75.65 235 | 75.68 217 | 75.57 289 | 86.40 220 | 56.82 302 | 77.92 317 | 82.40 292 | 65.10 263 | 76.18 200 | 87.72 189 | 63.13 132 | 80.90 330 | 60.31 262 | 81.96 201 | 89.00 230 |
|
| TransMVSNet (Re) | | | 75.39 241 | 74.56 233 | 77.86 265 | 85.50 232 | 57.10 299 | 86.78 172 | 86.09 244 | 72.17 155 | 71.53 266 | 87.34 200 | 63.01 133 | 89.31 264 | 56.84 295 | 61.83 351 | 87.17 271 |
|
| v8 | | | 79.97 146 | 79.02 147 | 82.80 168 | 84.09 255 | 64.50 197 | 87.96 136 | 90.29 143 | 74.13 121 | 75.24 224 | 86.81 214 | 62.88 134 | 93.89 132 | 74.39 137 | 75.40 285 | 90.00 196 |
|
| HPM-MVS_fast | | | 85.35 56 | 84.95 61 | 86.57 52 | 93.69 42 | 70.58 74 | 92.15 35 | 91.62 103 | 73.89 125 | 82.67 90 | 94.09 37 | 62.60 135 | 95.54 59 | 80.93 74 | 92.93 65 | 93.57 71 |
|
| PAPM | | | 77.68 204 | 76.40 210 | 81.51 194 | 87.29 207 | 61.85 244 | 83.78 244 | 89.59 159 | 64.74 268 | 71.23 268 | 88.70 163 | 62.59 136 | 93.66 142 | 52.66 314 | 87.03 136 | 89.01 228 |
|
| 1112_ss | | | 77.40 209 | 76.43 209 | 80.32 226 | 89.11 142 | 60.41 263 | 83.65 246 | 87.72 217 | 62.13 299 | 73.05 250 | 86.72 217 | 62.58 137 | 89.97 253 | 62.11 248 | 80.80 215 | 90.59 169 |
|
| LCM-MVSNet-Re | | | 77.05 214 | 76.94 196 | 77.36 274 | 87.20 208 | 51.60 348 | 80.06 292 | 80.46 311 | 75.20 96 | 67.69 303 | 86.72 217 | 62.48 138 | 88.98 270 | 63.44 233 | 89.25 111 | 91.51 134 |
|
| v148 | | | 78.72 175 | 77.80 175 | 81.47 195 | 82.73 286 | 61.96 243 | 86.30 186 | 88.08 206 | 73.26 140 | 76.18 200 | 85.47 253 | 62.46 139 | 92.36 194 | 71.92 161 | 73.82 304 | 90.09 190 |
|
| baseline1 | | | 76.98 216 | 76.75 203 | 77.66 269 | 88.13 172 | 55.66 319 | 85.12 214 | 81.89 296 | 73.04 145 | 76.79 182 | 88.90 158 | 62.43 140 | 87.78 287 | 63.30 235 | 71.18 323 | 89.55 214 |
|
| MAR-MVS | | | 81.84 98 | 80.70 109 | 85.27 71 | 91.32 79 | 71.53 53 | 89.82 76 | 90.92 121 | 69.77 199 | 78.50 142 | 86.21 236 | 62.36 141 | 94.52 105 | 65.36 221 | 92.05 76 | 89.77 208 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| MVS_111021_LR | | | 82.61 88 | 82.11 88 | 84.11 111 | 88.82 148 | 71.58 52 | 85.15 213 | 86.16 242 | 74.69 107 | 80.47 114 | 91.04 108 | 62.29 142 | 90.55 247 | 80.33 82 | 90.08 102 | 90.20 183 |
|
| TAMVS | | | 78.89 172 | 77.51 185 | 83.03 157 | 87.80 185 | 67.79 128 | 84.72 222 | 85.05 255 | 67.63 236 | 76.75 184 | 87.70 190 | 62.25 143 | 90.82 242 | 58.53 279 | 87.13 134 | 90.49 172 |
|
| CP-MVSNet | | | 78.22 185 | 78.34 161 | 77.84 266 | 87.83 184 | 54.54 329 | 87.94 138 | 91.17 116 | 77.65 37 | 73.48 245 | 88.49 171 | 62.24 144 | 88.43 279 | 62.19 245 | 74.07 299 | 90.55 170 |
|
| OMC-MVS | | | 82.69 86 | 81.97 93 | 84.85 86 | 88.75 153 | 67.42 136 | 87.98 135 | 90.87 124 | 74.92 102 | 79.72 121 | 91.65 88 | 62.19 145 | 93.96 123 | 75.26 131 | 86.42 145 | 93.16 86 |
|
| cl____ | | | 77.72 201 | 76.76 201 | 80.58 220 | 82.49 292 | 60.48 261 | 83.09 258 | 87.87 212 | 69.22 210 | 74.38 239 | 85.22 259 | 62.10 146 | 91.53 222 | 71.09 167 | 75.41 284 | 89.73 210 |
|
| DIV-MVS_self_test | | | 77.72 201 | 76.76 201 | 80.58 220 | 82.48 293 | 60.48 261 | 83.09 258 | 87.86 213 | 69.22 210 | 74.38 239 | 85.24 257 | 62.10 146 | 91.53 222 | 71.09 167 | 75.40 285 | 89.74 209 |
|
| testdata | | | | | 79.97 232 | 90.90 86 | 64.21 203 | | 84.71 258 | 59.27 320 | 85.40 42 | 92.91 64 | 62.02 148 | 89.08 268 | 68.95 190 | 91.37 85 | 86.63 286 |
|
| eth_miper_zixun_eth | | | 77.92 196 | 76.69 204 | 81.61 193 | 83.00 280 | 61.98 242 | 83.15 256 | 89.20 174 | 69.52 204 | 74.86 233 | 84.35 274 | 61.76 149 | 92.56 186 | 71.50 164 | 72.89 312 | 90.28 181 |
|
| MVSFormer | | | 82.85 85 | 82.05 90 | 85.24 72 | 87.35 200 | 70.21 76 | 90.50 61 | 90.38 136 | 68.55 227 | 81.32 103 | 89.47 142 | 61.68 150 | 93.46 152 | 78.98 90 | 90.26 98 | 92.05 123 |
|
| lupinMVS | | | 81.39 110 | 80.27 119 | 84.76 90 | 87.35 200 | 70.21 76 | 85.55 206 | 86.41 237 | 62.85 290 | 81.32 103 | 88.61 167 | 61.68 150 | 92.24 200 | 78.41 97 | 90.26 98 | 91.83 127 |
|
| cdsmvs_eth3d_5k | | | 19.96 353 | 26.61 355 | 0.00 373 | 0.00 396 | 0.00 397 | 0.00 384 | 89.26 170 | 0.00 391 | 0.00 392 | 88.61 167 | 61.62 152 | 0.00 392 | 0.00 390 | 0.00 390 | 0.00 388 |
|
| h-mvs33 | | | 83.15 79 | 82.19 87 | 86.02 60 | 90.56 92 | 70.85 69 | 88.15 131 | 89.16 175 | 76.02 82 | 84.67 55 | 91.39 98 | 61.54 153 | 95.50 60 | 82.71 61 | 75.48 280 | 91.72 130 |
|
| hse-mvs2 | | | 81.72 100 | 80.94 106 | 84.07 116 | 88.72 154 | 67.68 131 | 85.87 197 | 87.26 226 | 76.02 82 | 84.67 55 | 88.22 180 | 61.54 153 | 93.48 150 | 82.71 61 | 73.44 308 | 91.06 150 |
|
| CDS-MVSNet | | | 79.07 167 | 77.70 180 | 83.17 150 | 87.60 194 | 68.23 120 | 84.40 235 | 86.20 241 | 67.49 239 | 76.36 195 | 86.54 229 | 61.54 153 | 90.79 243 | 61.86 250 | 87.33 131 | 90.49 172 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| v10 | | | 79.74 148 | 78.67 152 | 82.97 161 | 84.06 256 | 64.95 187 | 87.88 142 | 90.62 129 | 73.11 143 | 75.11 227 | 86.56 228 | 61.46 156 | 94.05 122 | 73.68 142 | 75.55 278 | 89.90 202 |
|
| v1144 | | | 80.03 143 | 79.03 146 | 83.01 158 | 83.78 261 | 64.51 195 | 87.11 161 | 90.57 132 | 71.96 157 | 78.08 156 | 86.20 237 | 61.41 157 | 93.94 126 | 74.93 132 | 77.23 253 | 90.60 168 |
|
| cl22 | | | 78.07 191 | 77.01 193 | 81.23 203 | 82.37 295 | 61.83 245 | 83.55 250 | 87.98 208 | 68.96 221 | 75.06 229 | 83.87 279 | 61.40 158 | 91.88 212 | 73.53 144 | 76.39 267 | 89.98 199 |
|
| BH-w/o | | | 78.21 186 | 77.33 189 | 80.84 215 | 88.81 149 | 65.13 184 | 84.87 219 | 87.85 214 | 69.75 200 | 74.52 237 | 84.74 268 | 61.34 159 | 93.11 170 | 58.24 282 | 85.84 155 | 84.27 318 |
|
| Test_1112_low_res | | | 76.40 226 | 75.44 221 | 79.27 246 | 89.28 132 | 58.09 281 | 81.69 272 | 87.07 229 | 59.53 318 | 72.48 256 | 86.67 222 | 61.30 160 | 89.33 263 | 60.81 260 | 80.15 224 | 90.41 175 |
|
| Vis-MVSNet (Re-imp) | | | 78.36 183 | 78.45 157 | 78.07 264 | 88.64 157 | 51.78 347 | 86.70 175 | 79.63 320 | 74.14 120 | 75.11 227 | 90.83 114 | 61.29 161 | 89.75 256 | 58.10 283 | 91.60 81 | 92.69 100 |
|
| PEN-MVS | | | 77.73 200 | 77.69 181 | 77.84 266 | 87.07 211 | 53.91 334 | 87.91 140 | 91.18 115 | 77.56 42 | 73.14 249 | 88.82 161 | 61.23 162 | 89.17 266 | 59.95 264 | 72.37 314 | 90.43 174 |
|
| pm-mvs1 | | | 77.25 213 | 76.68 205 | 78.93 250 | 84.22 252 | 58.62 277 | 86.41 182 | 88.36 202 | 71.37 168 | 73.31 246 | 88.01 187 | 61.22 163 | 89.15 267 | 64.24 229 | 73.01 311 | 89.03 227 |
|
| BH-untuned | | | 79.47 154 | 78.60 154 | 82.05 183 | 89.19 136 | 65.91 164 | 86.07 192 | 88.52 200 | 72.18 154 | 75.42 215 | 87.69 191 | 61.15 164 | 93.54 147 | 60.38 261 | 86.83 139 | 86.70 284 |
|
| v2v482 | | | 80.23 139 | 79.29 139 | 83.05 156 | 83.62 263 | 64.14 204 | 87.04 162 | 89.97 150 | 73.61 131 | 78.18 153 | 87.22 205 | 61.10 165 | 93.82 133 | 76.11 120 | 76.78 262 | 91.18 145 |
|
| jason | | | 81.39 110 | 80.29 118 | 84.70 91 | 86.63 218 | 69.90 84 | 85.95 194 | 86.77 233 | 63.24 283 | 81.07 109 | 89.47 142 | 61.08 166 | 92.15 202 | 78.33 98 | 90.07 103 | 92.05 123 |
| jason: jason. |
| Vis-MVSNet |  | | 83.46 74 | 82.80 80 | 85.43 69 | 90.25 98 | 68.74 106 | 90.30 68 | 90.13 146 | 76.33 77 | 80.87 111 | 92.89 65 | 61.00 167 | 94.20 117 | 72.45 159 | 90.97 89 | 93.35 78 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| TAPA-MVS | | 73.13 9 | 79.15 164 | 77.94 169 | 82.79 170 | 89.59 115 | 62.99 232 | 88.16 130 | 91.51 107 | 65.77 257 | 77.14 178 | 91.09 106 | 60.91 168 | 93.21 160 | 50.26 328 | 87.05 135 | 92.17 120 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| PS-CasMVS | | | 78.01 194 | 78.09 166 | 77.77 268 | 87.71 189 | 54.39 331 | 88.02 134 | 91.22 113 | 77.50 45 | 73.26 247 | 88.64 166 | 60.73 169 | 88.41 280 | 61.88 249 | 73.88 303 | 90.53 171 |
|
| OPM-MVS | | | 83.50 73 | 82.95 77 | 85.14 74 | 88.79 151 | 70.95 65 | 89.13 96 | 91.52 106 | 77.55 43 | 80.96 110 | 91.75 86 | 60.71 170 | 94.50 106 | 79.67 86 | 86.51 144 | 89.97 200 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| XVG-OURS-SEG-HR | | | 80.81 120 | 79.76 127 | 83.96 126 | 85.60 230 | 68.78 103 | 83.54 251 | 90.50 133 | 70.66 181 | 76.71 185 | 91.66 87 | 60.69 171 | 91.26 230 | 76.94 111 | 81.58 206 | 91.83 127 |
|
| v144192 | | | 79.47 154 | 78.37 160 | 82.78 171 | 83.35 268 | 63.96 207 | 86.96 164 | 90.36 139 | 69.99 193 | 77.50 165 | 85.67 248 | 60.66 172 | 93.77 137 | 74.27 138 | 76.58 263 | 90.62 166 |
|
| V42 | | | 79.38 160 | 78.24 164 | 82.83 165 | 81.10 313 | 65.50 174 | 85.55 206 | 89.82 153 | 71.57 165 | 78.21 151 | 86.12 239 | 60.66 172 | 93.18 166 | 75.64 126 | 75.46 282 | 89.81 207 |
|
| SDMVSNet | | | 80.38 134 | 80.18 120 | 80.99 211 | 89.03 143 | 64.94 188 | 80.45 288 | 89.40 163 | 75.19 97 | 76.61 189 | 89.98 128 | 60.61 174 | 87.69 288 | 76.83 114 | 83.55 181 | 90.33 178 |
|
| CPTT-MVS | | | 83.73 68 | 83.33 72 | 84.92 84 | 93.28 49 | 70.86 68 | 92.09 36 | 90.38 136 | 68.75 224 | 79.57 123 | 92.83 67 | 60.60 175 | 93.04 175 | 80.92 75 | 91.56 83 | 90.86 158 |
|
| DTE-MVSNet | | | 76.99 215 | 76.80 199 | 77.54 273 | 86.24 221 | 53.06 342 | 87.52 149 | 90.66 128 | 77.08 56 | 72.50 255 | 88.67 165 | 60.48 176 | 89.52 260 | 57.33 290 | 70.74 325 | 90.05 195 |
|
| HQP_MVS | | | 83.64 71 | 83.14 73 | 85.14 74 | 90.08 102 | 68.71 108 | 91.25 49 | 92.44 69 | 79.12 22 | 78.92 132 | 91.00 111 | 60.42 177 | 95.38 68 | 78.71 93 | 86.32 146 | 91.33 140 |
|
| plane_prior6 | | | | | | 89.84 111 | 68.70 110 | | | | | | 60.42 177 | | | | |
|
| 3Dnovator+ | | 77.84 4 | 85.48 52 | 84.47 65 | 88.51 6 | 91.08 81 | 73.49 15 | 93.18 11 | 93.78 18 | 80.79 7 | 76.66 186 | 93.37 53 | 60.40 179 | 96.75 25 | 77.20 108 | 93.73 61 | 95.29 4 |
|
| HQP2-MVS | | | | | | | | | | | | | 60.17 180 | | | | |
|
| HQP-MVS | | | 82.61 88 | 82.02 91 | 84.37 102 | 89.33 127 | 66.98 146 | 89.17 91 | 92.19 82 | 76.41 71 | 77.23 173 | 90.23 124 | 60.17 180 | 95.11 79 | 77.47 105 | 85.99 153 | 91.03 152 |
|
| VPNet | | | 78.69 176 | 78.66 153 | 78.76 252 | 88.31 168 | 55.72 318 | 84.45 232 | 86.63 235 | 76.79 63 | 78.26 149 | 90.55 119 | 59.30 182 | 89.70 258 | 66.63 211 | 77.05 256 | 90.88 157 |
|
| v1192 | | | 79.59 151 | 78.43 159 | 83.07 155 | 83.55 265 | 64.52 194 | 86.93 166 | 90.58 130 | 70.83 176 | 77.78 161 | 85.90 241 | 59.15 183 | 93.94 126 | 73.96 141 | 77.19 255 | 90.76 161 |
|
| test222 | | | | | | 91.50 77 | 68.26 119 | 84.16 239 | 83.20 285 | 54.63 347 | 79.74 120 | 91.63 90 | 58.97 184 | | | 91.42 84 | 86.77 282 |
|
| CHOSEN 1792x2688 | | | 77.63 205 | 75.69 216 | 83.44 137 | 89.98 108 | 68.58 114 | 78.70 309 | 87.50 221 | 56.38 341 | 75.80 207 | 86.84 213 | 58.67 185 | 91.40 227 | 61.58 253 | 85.75 157 | 90.34 177 |
|
| 3Dnovator | | 76.31 5 | 83.38 77 | 82.31 86 | 86.59 51 | 87.94 180 | 72.94 27 | 90.64 58 | 92.14 84 | 77.21 51 | 75.47 211 | 92.83 67 | 58.56 186 | 94.72 98 | 73.24 150 | 92.71 68 | 92.13 121 |
|
| v1921920 | | | 79.22 162 | 78.03 167 | 82.80 168 | 83.30 270 | 63.94 208 | 86.80 170 | 90.33 140 | 69.91 196 | 77.48 166 | 85.53 251 | 58.44 187 | 93.75 139 | 73.60 143 | 76.85 260 | 90.71 164 |
|
| FA-MVS(test-final) | | | 80.96 116 | 79.91 124 | 84.10 112 | 88.30 169 | 65.01 186 | 84.55 228 | 90.01 149 | 73.25 141 | 79.61 122 | 87.57 194 | 58.35 188 | 94.72 98 | 71.29 166 | 86.25 148 | 92.56 104 |
|
| 114514_t | | | 80.68 126 | 79.51 132 | 84.20 109 | 94.09 38 | 67.27 140 | 89.64 83 | 91.11 118 | 58.75 326 | 74.08 241 | 90.72 115 | 58.10 189 | 95.04 84 | 69.70 182 | 89.42 110 | 90.30 180 |
|
| v7n | | | 78.97 170 | 77.58 184 | 83.14 151 | 83.45 267 | 65.51 173 | 88.32 124 | 91.21 114 | 73.69 129 | 72.41 257 | 86.32 235 | 57.93 190 | 93.81 134 | 69.18 187 | 75.65 276 | 90.11 188 |
|
| CL-MVSNet_self_test | | | 72.37 268 | 71.46 261 | 75.09 294 | 79.49 333 | 53.53 336 | 80.76 282 | 85.01 256 | 69.12 215 | 70.51 272 | 82.05 306 | 57.92 191 | 84.13 313 | 52.27 316 | 66.00 343 | 87.60 260 |
|
| baseline2 | | | 75.70 234 | 73.83 243 | 81.30 201 | 83.26 271 | 61.79 246 | 82.57 265 | 80.65 307 | 66.81 241 | 66.88 312 | 83.42 288 | 57.86 192 | 92.19 201 | 63.47 232 | 79.57 229 | 89.91 201 |
|
| QAPM | | | 80.88 117 | 79.50 133 | 85.03 78 | 88.01 179 | 68.97 100 | 91.59 42 | 92.00 87 | 66.63 248 | 75.15 226 | 92.16 79 | 57.70 193 | 95.45 62 | 63.52 231 | 88.76 116 | 90.66 165 |
|
| HyFIR lowres test | | | 77.53 206 | 75.40 223 | 83.94 127 | 89.59 115 | 66.62 151 | 80.36 289 | 88.64 198 | 56.29 342 | 76.45 191 | 85.17 260 | 57.64 194 | 93.28 157 | 61.34 256 | 83.10 189 | 91.91 126 |
|
| CNLPA | | | 78.08 190 | 76.79 200 | 81.97 186 | 90.40 96 | 71.07 61 | 87.59 148 | 84.55 261 | 66.03 255 | 72.38 258 | 89.64 136 | 57.56 195 | 86.04 298 | 59.61 267 | 83.35 185 | 88.79 239 |
|
| test_yl | | | 81.17 112 | 80.47 114 | 83.24 146 | 89.13 138 | 63.62 212 | 86.21 188 | 89.95 151 | 72.43 152 | 81.78 99 | 89.61 137 | 57.50 196 | 93.58 143 | 70.75 169 | 86.90 137 | 92.52 105 |
|
| DCV-MVSNet | | | 81.17 112 | 80.47 114 | 83.24 146 | 89.13 138 | 63.62 212 | 86.21 188 | 89.95 151 | 72.43 152 | 81.78 99 | 89.61 137 | 57.50 196 | 93.58 143 | 70.75 169 | 86.90 137 | 92.52 105 |
|
| sss | | | 73.60 254 | 73.64 245 | 73.51 308 | 82.80 284 | 55.01 325 | 76.12 324 | 81.69 299 | 62.47 296 | 74.68 235 | 85.85 244 | 57.32 198 | 78.11 341 | 60.86 259 | 80.93 212 | 87.39 265 |
|
| Effi-MVS+-dtu | | | 80.03 143 | 78.57 155 | 84.42 101 | 85.13 239 | 68.74 106 | 88.77 107 | 88.10 205 | 74.99 101 | 74.97 231 | 83.49 287 | 57.27 199 | 93.36 155 | 73.53 144 | 80.88 213 | 91.18 145 |
|
| AdaColmap |  | | 80.58 131 | 79.42 134 | 84.06 117 | 93.09 54 | 68.91 101 | 89.36 88 | 88.97 185 | 69.27 208 | 75.70 208 | 89.69 134 | 57.20 200 | 95.77 53 | 63.06 236 | 88.41 122 | 87.50 264 |
|
| v1240 | | | 78.99 169 | 77.78 176 | 82.64 174 | 83.21 272 | 63.54 216 | 86.62 177 | 90.30 142 | 69.74 202 | 77.33 169 | 85.68 247 | 57.04 201 | 93.76 138 | 73.13 151 | 76.92 257 | 90.62 166 |
|
| miper_lstm_enhance | | | 74.11 249 | 73.11 250 | 77.13 278 | 80.11 322 | 59.62 271 | 72.23 344 | 86.92 232 | 66.76 243 | 70.40 274 | 82.92 293 | 56.93 202 | 82.92 322 | 69.06 189 | 72.63 313 | 88.87 235 |
|
| BH-RMVSNet | | | 79.61 149 | 78.44 158 | 83.14 151 | 89.38 125 | 65.93 163 | 84.95 218 | 87.15 228 | 73.56 133 | 78.19 152 | 89.79 132 | 56.67 203 | 93.36 155 | 59.53 268 | 86.74 140 | 90.13 186 |
|
| test_djsdf | | | 80.30 138 | 79.32 138 | 83.27 144 | 83.98 258 | 65.37 180 | 90.50 61 | 90.38 136 | 68.55 227 | 76.19 199 | 88.70 163 | 56.44 204 | 93.46 152 | 78.98 90 | 80.14 225 | 90.97 155 |
|
| EPNet_dtu | | | 75.46 238 | 74.86 229 | 77.23 277 | 82.57 290 | 54.60 328 | 86.89 167 | 83.09 286 | 71.64 159 | 66.25 321 | 85.86 243 | 55.99 205 | 88.04 284 | 54.92 303 | 86.55 143 | 89.05 226 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| CostFormer | | | 75.24 242 | 73.90 241 | 79.27 246 | 82.65 289 | 58.27 280 | 80.80 280 | 82.73 290 | 61.57 302 | 75.33 221 | 83.13 292 | 55.52 206 | 91.07 239 | 64.98 225 | 78.34 246 | 88.45 246 |
|
| tpmrst | | | 72.39 266 | 72.13 257 | 73.18 312 | 80.54 318 | 49.91 357 | 79.91 296 | 79.08 324 | 63.11 285 | 71.69 265 | 79.95 324 | 55.32 207 | 82.77 323 | 65.66 220 | 73.89 302 | 86.87 279 |
|
| 1314 | | | 76.53 221 | 75.30 227 | 80.21 228 | 83.93 259 | 62.32 238 | 84.66 223 | 88.81 189 | 60.23 311 | 70.16 279 | 84.07 278 | 55.30 208 | 90.73 245 | 67.37 204 | 83.21 187 | 87.59 262 |
|
| tfpnnormal | | | 74.39 245 | 73.16 249 | 78.08 263 | 86.10 224 | 58.05 282 | 84.65 225 | 87.53 220 | 70.32 187 | 71.22 269 | 85.63 249 | 54.97 209 | 89.86 254 | 43.03 357 | 75.02 292 | 86.32 288 |
|
| sd_testset | | | 77.70 203 | 77.40 186 | 78.60 255 | 89.03 143 | 60.02 267 | 79.00 305 | 85.83 247 | 75.19 97 | 76.61 189 | 89.98 128 | 54.81 210 | 85.46 304 | 62.63 242 | 83.55 181 | 90.33 178 |
|
| GBi-Net | | | 78.40 181 | 77.40 186 | 81.40 198 | 87.60 194 | 63.01 229 | 88.39 120 | 89.28 167 | 71.63 160 | 75.34 218 | 87.28 201 | 54.80 211 | 91.11 233 | 62.72 238 | 79.57 229 | 90.09 190 |
|
| test1 | | | 78.40 181 | 77.40 186 | 81.40 198 | 87.60 194 | 63.01 229 | 88.39 120 | 89.28 167 | 71.63 160 | 75.34 218 | 87.28 201 | 54.80 211 | 91.11 233 | 62.72 238 | 79.57 229 | 90.09 190 |
|
| FMVSNet2 | | | 78.20 187 | 77.21 190 | 81.20 205 | 87.60 194 | 62.89 233 | 87.47 151 | 89.02 181 | 71.63 160 | 75.29 223 | 87.28 201 | 54.80 211 | 91.10 236 | 62.38 243 | 79.38 233 | 89.61 212 |
|
| Fast-Effi-MVS+-dtu | | | 78.02 193 | 76.49 207 | 82.62 175 | 83.16 276 | 66.96 148 | 86.94 165 | 87.45 223 | 72.45 149 | 71.49 267 | 84.17 276 | 54.79 214 | 91.58 219 | 67.61 201 | 80.31 222 | 89.30 219 |
|
| MVSTER | | | 79.01 168 | 77.88 172 | 82.38 179 | 83.07 277 | 64.80 191 | 84.08 242 | 88.95 186 | 69.01 220 | 78.69 136 | 87.17 208 | 54.70 215 | 92.43 190 | 74.69 133 | 80.57 219 | 89.89 203 |
|
| OpenMVS |  | 72.83 10 | 79.77 147 | 78.33 162 | 84.09 114 | 85.17 235 | 69.91 83 | 90.57 59 | 90.97 120 | 66.70 244 | 72.17 260 | 91.91 82 | 54.70 215 | 93.96 123 | 61.81 251 | 90.95 90 | 88.41 248 |
|
| XVG-OURS | | | 80.41 133 | 79.23 141 | 83.97 125 | 85.64 229 | 69.02 98 | 83.03 262 | 90.39 135 | 71.09 173 | 77.63 164 | 91.49 95 | 54.62 217 | 91.35 228 | 75.71 125 | 83.47 184 | 91.54 133 |
|
| mvsmamba | | | 81.69 102 | 80.74 108 | 84.56 94 | 87.45 199 | 66.72 150 | 91.26 47 | 85.89 246 | 74.66 108 | 78.23 150 | 90.56 118 | 54.33 218 | 94.91 87 | 80.73 79 | 83.54 183 | 92.04 125 |
|
| LPG-MVS_test | | | 82.08 93 | 81.27 99 | 84.50 96 | 89.23 134 | 68.76 104 | 90.22 69 | 91.94 91 | 75.37 93 | 76.64 187 | 91.51 93 | 54.29 219 | 94.91 87 | 78.44 95 | 83.78 174 | 89.83 205 |
|
| LGP-MVS_train | | | | | 84.50 96 | 89.23 134 | 68.76 104 | | 91.94 91 | 75.37 93 | 76.64 187 | 91.51 93 | 54.29 219 | 94.91 87 | 78.44 95 | 83.78 174 | 89.83 205 |
|
| TR-MVS | | | 77.44 207 | 76.18 212 | 81.20 205 | 88.24 170 | 63.24 224 | 84.61 226 | 86.40 238 | 67.55 238 | 77.81 160 | 86.48 231 | 54.10 221 | 93.15 167 | 57.75 286 | 82.72 194 | 87.20 270 |
|
| FMVSNet3 | | | 77.88 197 | 76.85 198 | 80.97 213 | 86.84 214 | 62.36 236 | 86.52 180 | 88.77 191 | 71.13 171 | 75.34 218 | 86.66 223 | 54.07 222 | 91.10 236 | 62.72 238 | 79.57 229 | 89.45 215 |
|
| DP-MVS | | | 76.78 219 | 74.57 232 | 83.42 138 | 93.29 48 | 69.46 93 | 88.55 117 | 83.70 274 | 63.98 280 | 70.20 276 | 88.89 159 | 54.01 223 | 94.80 95 | 46.66 345 | 81.88 203 | 86.01 296 |
|
| ACMP | | 74.13 6 | 81.51 109 | 80.57 111 | 84.36 103 | 89.42 122 | 68.69 111 | 89.97 73 | 91.50 110 | 74.46 113 | 75.04 230 | 90.41 121 | 53.82 224 | 94.54 103 | 77.56 104 | 82.91 190 | 89.86 204 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| PLC |  | 70.83 11 | 78.05 192 | 76.37 211 | 83.08 154 | 91.88 74 | 67.80 127 | 88.19 128 | 89.46 162 | 64.33 274 | 69.87 285 | 88.38 174 | 53.66 225 | 93.58 143 | 58.86 275 | 82.73 193 | 87.86 255 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| dmvs_testset | | | 62.63 324 | 64.11 315 | 58.19 352 | 78.55 338 | 24.76 387 | 75.28 331 | 65.94 368 | 67.91 235 | 60.34 347 | 76.01 349 | 53.56 226 | 73.94 367 | 31.79 370 | 67.65 336 | 75.88 359 |
|
| CANet_DTU | | | 80.61 128 | 79.87 125 | 82.83 165 | 85.60 230 | 63.17 228 | 87.36 153 | 88.65 197 | 76.37 75 | 75.88 205 | 88.44 173 | 53.51 227 | 93.07 172 | 73.30 148 | 89.74 107 | 92.25 116 |
|
| ACMM | | 73.20 8 | 80.78 125 | 79.84 126 | 83.58 134 | 89.31 130 | 68.37 116 | 89.99 72 | 91.60 104 | 70.28 188 | 77.25 171 | 89.66 135 | 53.37 228 | 93.53 148 | 74.24 139 | 82.85 191 | 88.85 236 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| MVP-Stereo | | | 76.12 229 | 74.46 236 | 81.13 208 | 85.37 233 | 69.79 85 | 84.42 234 | 87.95 210 | 65.03 265 | 67.46 306 | 85.33 255 | 53.28 229 | 91.73 217 | 58.01 284 | 83.27 186 | 81.85 341 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| AUN-MVS | | | 79.21 163 | 77.60 183 | 84.05 119 | 88.71 155 | 67.61 132 | 85.84 199 | 87.26 226 | 69.08 216 | 77.23 173 | 88.14 185 | 53.20 230 | 93.47 151 | 75.50 130 | 73.45 307 | 91.06 150 |
|
| anonymousdsp | | | 78.60 178 | 77.15 191 | 82.98 160 | 80.51 319 | 67.08 144 | 87.24 158 | 89.53 160 | 65.66 259 | 75.16 225 | 87.19 207 | 52.52 231 | 92.25 199 | 77.17 109 | 79.34 234 | 89.61 212 |
|
| CR-MVSNet | | | 73.37 256 | 71.27 265 | 79.67 240 | 81.32 311 | 65.19 182 | 75.92 326 | 80.30 313 | 59.92 314 | 72.73 253 | 81.19 310 | 52.50 232 | 86.69 293 | 59.84 265 | 77.71 249 | 87.11 275 |
|
| Patchmtry | | | 70.74 279 | 69.16 282 | 75.49 291 | 80.72 315 | 54.07 333 | 74.94 337 | 80.30 313 | 58.34 327 | 70.01 280 | 81.19 310 | 52.50 232 | 86.54 294 | 53.37 311 | 71.09 324 | 85.87 300 |
|
| pmmvs4 | | | 74.03 251 | 71.91 258 | 80.39 223 | 81.96 298 | 68.32 117 | 81.45 276 | 82.14 294 | 59.32 319 | 69.87 285 | 85.13 261 | 52.40 234 | 88.13 283 | 60.21 263 | 74.74 295 | 84.73 315 |
|
| RPMNet | | | 73.51 255 | 70.49 272 | 82.58 176 | 81.32 311 | 65.19 182 | 75.92 326 | 92.27 76 | 57.60 334 | 72.73 253 | 76.45 347 | 52.30 235 | 95.43 64 | 48.14 340 | 77.71 249 | 87.11 275 |
|
| LFMVS | | | 81.82 99 | 81.23 100 | 83.57 135 | 91.89 73 | 63.43 221 | 89.84 75 | 81.85 298 | 77.04 57 | 83.21 80 | 93.10 58 | 52.26 236 | 93.43 154 | 71.98 160 | 89.95 105 | 93.85 55 |
|
| VDD-MVS | | | 83.01 84 | 82.36 85 | 84.96 81 | 91.02 83 | 66.40 154 | 88.91 101 | 88.11 204 | 77.57 40 | 84.39 63 | 93.29 55 | 52.19 237 | 93.91 130 | 77.05 110 | 88.70 117 | 94.57 28 |
|
| tfpn200view9 | | | 76.42 225 | 75.37 225 | 79.55 244 | 89.13 138 | 57.65 291 | 85.17 211 | 83.60 275 | 73.41 138 | 76.45 191 | 86.39 233 | 52.12 238 | 91.95 208 | 48.33 336 | 83.75 176 | 89.07 221 |
|
| thres400 | | | 76.50 222 | 75.37 225 | 79.86 234 | 89.13 138 | 57.65 291 | 85.17 211 | 83.60 275 | 73.41 138 | 76.45 191 | 86.39 233 | 52.12 238 | 91.95 208 | 48.33 336 | 83.75 176 | 90.00 196 |
|
| thres200 | | | 75.55 236 | 74.47 235 | 78.82 251 | 87.78 188 | 57.85 288 | 83.07 260 | 83.51 278 | 72.44 151 | 75.84 206 | 84.42 270 | 52.08 240 | 91.75 215 | 47.41 343 | 83.64 180 | 86.86 280 |
|
| PMMVS | | | 69.34 292 | 68.67 284 | 71.35 324 | 75.67 349 | 62.03 241 | 75.17 332 | 73.46 351 | 50.00 358 | 68.68 295 | 79.05 329 | 52.07 241 | 78.13 340 | 61.16 257 | 82.77 192 | 73.90 361 |
|
| tpm cat1 | | | 70.57 281 | 68.31 287 | 77.35 275 | 82.41 294 | 57.95 286 | 78.08 314 | 80.22 315 | 52.04 352 | 68.54 298 | 77.66 342 | 52.00 242 | 87.84 286 | 51.77 317 | 72.07 318 | 86.25 289 |
|
| IterMVS-SCA-FT | | | 75.43 239 | 73.87 242 | 80.11 230 | 82.69 287 | 64.85 190 | 81.57 274 | 83.47 279 | 69.16 214 | 70.49 273 | 84.15 277 | 51.95 243 | 88.15 282 | 69.23 186 | 72.14 317 | 87.34 267 |
|
| SCA | | | 74.22 248 | 72.33 256 | 79.91 233 | 84.05 257 | 62.17 240 | 79.96 295 | 79.29 323 | 66.30 251 | 72.38 258 | 80.13 322 | 51.95 243 | 88.60 277 | 59.25 270 | 77.67 251 | 88.96 232 |
|
| thres100view900 | | | 76.50 222 | 75.55 220 | 79.33 245 | 89.52 118 | 56.99 300 | 85.83 200 | 83.23 283 | 73.94 123 | 76.32 196 | 87.12 209 | 51.89 245 | 91.95 208 | 48.33 336 | 83.75 176 | 89.07 221 |
|
| thres600view7 | | | 76.50 222 | 75.44 221 | 79.68 239 | 89.40 123 | 57.16 297 | 85.53 208 | 83.23 283 | 73.79 128 | 76.26 197 | 87.09 210 | 51.89 245 | 91.89 211 | 48.05 341 | 83.72 179 | 90.00 196 |
|
| tpm2 | | | 73.26 259 | 71.46 261 | 78.63 253 | 83.34 269 | 56.71 305 | 80.65 284 | 80.40 312 | 56.63 340 | 73.55 244 | 82.02 307 | 51.80 247 | 91.24 231 | 56.35 299 | 78.42 244 | 87.95 252 |
|
| LS3D | | | 76.95 217 | 74.82 230 | 83.37 141 | 90.45 94 | 67.36 139 | 89.15 95 | 86.94 231 | 61.87 301 | 69.52 288 | 90.61 117 | 51.71 248 | 94.53 104 | 46.38 348 | 86.71 141 | 88.21 250 |
|
| IterMVS | | | 74.29 246 | 72.94 251 | 78.35 260 | 81.53 305 | 63.49 218 | 81.58 273 | 82.49 291 | 68.06 234 | 69.99 282 | 83.69 285 | 51.66 249 | 85.54 302 | 65.85 218 | 71.64 320 | 86.01 296 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| tpm | | | 72.37 268 | 71.71 260 | 74.35 302 | 82.19 296 | 52.00 344 | 79.22 302 | 77.29 335 | 64.56 270 | 72.95 251 | 83.68 286 | 51.35 250 | 83.26 321 | 58.33 281 | 75.80 274 | 87.81 256 |
|
| sam_mvs1 | | | | | | | | | | | | | 51.32 251 | | | | 88.96 232 |
|
| PatchmatchNet |  | | 73.12 261 | 71.33 264 | 78.49 259 | 83.18 274 | 60.85 255 | 79.63 297 | 78.57 326 | 64.13 275 | 71.73 264 | 79.81 327 | 51.20 252 | 85.97 299 | 57.40 289 | 76.36 270 | 88.66 242 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| patchmatchnet-post | | | | | | | | | | | | 74.00 356 | 51.12 253 | 88.60 277 | | | |
|
| xiu_mvs_v1_base_debu | | | 80.80 122 | 79.72 128 | 84.03 121 | 87.35 200 | 70.19 78 | 85.56 203 | 88.77 191 | 69.06 217 | 81.83 95 | 88.16 181 | 50.91 254 | 92.85 179 | 78.29 99 | 87.56 127 | 89.06 223 |
|
| xiu_mvs_v1_base | | | 80.80 122 | 79.72 128 | 84.03 121 | 87.35 200 | 70.19 78 | 85.56 203 | 88.77 191 | 69.06 217 | 81.83 95 | 88.16 181 | 50.91 254 | 92.85 179 | 78.29 99 | 87.56 127 | 89.06 223 |
|
| xiu_mvs_v1_base_debi | | | 80.80 122 | 79.72 128 | 84.03 121 | 87.35 200 | 70.19 78 | 85.56 203 | 88.77 191 | 69.06 217 | 81.83 95 | 88.16 181 | 50.91 254 | 92.85 179 | 78.29 99 | 87.56 127 | 89.06 223 |
|
| Patchmatch-test | | | 64.82 319 | 63.24 320 | 69.57 332 | 79.42 334 | 49.82 358 | 63.49 372 | 69.05 362 | 51.98 354 | 59.95 350 | 80.13 322 | 50.91 254 | 70.98 370 | 40.66 362 | 73.57 305 | 87.90 254 |
|
| Patchmatch-RL test | | | 70.24 285 | 67.78 297 | 77.61 271 | 77.43 342 | 59.57 273 | 71.16 347 | 70.33 356 | 62.94 289 | 68.65 296 | 72.77 359 | 50.62 258 | 85.49 303 | 69.58 184 | 66.58 340 | 87.77 257 |
|
| Anonymous20231211 | | | 78.97 170 | 77.69 181 | 82.81 167 | 90.54 93 | 64.29 202 | 90.11 71 | 91.51 107 | 65.01 266 | 76.16 203 | 88.13 186 | 50.56 259 | 93.03 176 | 69.68 183 | 77.56 252 | 91.11 147 |
|
| VDDNet | | | 81.52 107 | 80.67 110 | 84.05 119 | 90.44 95 | 64.13 205 | 89.73 81 | 85.91 245 | 71.11 172 | 83.18 81 | 93.48 50 | 50.54 260 | 93.49 149 | 73.40 147 | 88.25 123 | 94.54 29 |
|
| pmmvs6 | | | 74.69 244 | 73.39 246 | 78.61 254 | 81.38 308 | 57.48 294 | 86.64 176 | 87.95 210 | 64.99 267 | 70.18 277 | 86.61 224 | 50.43 261 | 89.52 260 | 62.12 247 | 70.18 327 | 88.83 237 |
|
| test_post | | | | | | | | | | | | 5.46 386 | 50.36 262 | 84.24 312 | | | |
|
| ET-MVSNet_ETH3D | | | 78.63 177 | 76.63 206 | 84.64 92 | 86.73 217 | 69.47 91 | 85.01 216 | 84.61 260 | 69.54 203 | 66.51 319 | 86.59 225 | 50.16 263 | 91.75 215 | 76.26 119 | 84.24 171 | 92.69 100 |
|
| sam_mvs | | | | | | | | | | | | | 50.01 264 | | | | |
|
| Anonymous20240529 | | | 80.19 141 | 78.89 149 | 84.10 112 | 90.60 91 | 64.75 192 | 88.95 100 | 90.90 122 | 65.97 256 | 80.59 113 | 91.17 104 | 49.97 265 | 93.73 141 | 69.16 188 | 82.70 195 | 93.81 58 |
|
| thisisatest0530 | | | 79.40 158 | 77.76 178 | 84.31 106 | 87.69 191 | 65.10 185 | 87.36 153 | 84.26 268 | 70.04 191 | 77.42 167 | 88.26 179 | 49.94 266 | 94.79 96 | 70.20 175 | 84.70 164 | 93.03 90 |
|
| PatchT | | | 68.46 301 | 67.85 294 | 70.29 330 | 80.70 316 | 43.93 372 | 72.47 343 | 74.88 345 | 60.15 312 | 70.55 271 | 76.57 346 | 49.94 266 | 81.59 326 | 50.58 322 | 74.83 294 | 85.34 304 |
|
| tttt0517 | | | 79.40 158 | 77.91 170 | 83.90 129 | 88.10 174 | 63.84 209 | 88.37 123 | 84.05 270 | 71.45 167 | 76.78 183 | 89.12 152 | 49.93 268 | 94.89 91 | 70.18 176 | 83.18 188 | 92.96 94 |
|
| tpmvs | | | 71.09 275 | 69.29 280 | 76.49 282 | 82.04 297 | 56.04 315 | 78.92 307 | 81.37 302 | 64.05 278 | 67.18 310 | 78.28 337 | 49.74 269 | 89.77 255 | 49.67 331 | 72.37 314 | 83.67 326 |
|
| thisisatest0515 | | | 77.33 210 | 75.38 224 | 83.18 149 | 85.27 234 | 63.80 210 | 82.11 268 | 83.27 282 | 65.06 264 | 75.91 204 | 83.84 281 | 49.54 270 | 94.27 112 | 67.24 206 | 86.19 149 | 91.48 138 |
|
| UniMVSNet_ETH3D | | | 79.10 166 | 78.24 164 | 81.70 190 | 86.85 213 | 60.24 265 | 87.28 157 | 88.79 190 | 74.25 117 | 76.84 180 | 90.53 120 | 49.48 271 | 91.56 220 | 67.98 198 | 82.15 199 | 93.29 80 |
|
| dmvs_re | | | 71.14 274 | 70.58 270 | 72.80 313 | 81.96 298 | 59.68 270 | 75.60 330 | 79.34 322 | 68.55 227 | 69.27 292 | 80.72 318 | 49.42 272 | 76.54 349 | 52.56 315 | 77.79 248 | 82.19 339 |
|
| CVMVSNet | | | 72.99 263 | 72.58 253 | 74.25 303 | 84.28 250 | 50.85 353 | 86.41 182 | 83.45 280 | 44.56 363 | 73.23 248 | 87.54 197 | 49.38 273 | 85.70 300 | 65.90 217 | 78.44 243 | 86.19 291 |
|
| MDTV_nov1_ep13_2view | | | | | | | 37.79 379 | 75.16 333 | | 55.10 345 | 66.53 316 | | 49.34 274 | | 53.98 307 | | 87.94 253 |
|
| UGNet | | | 80.83 119 | 79.59 131 | 84.54 95 | 88.04 177 | 68.09 122 | 89.42 86 | 88.16 203 | 76.95 58 | 76.22 198 | 89.46 144 | 49.30 275 | 93.94 126 | 68.48 195 | 90.31 96 | 91.60 131 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| pmmvs5 | | | 71.55 271 | 70.20 277 | 75.61 288 | 77.83 340 | 56.39 310 | 81.74 271 | 80.89 303 | 57.76 332 | 67.46 306 | 84.49 269 | 49.26 276 | 85.32 306 | 57.08 292 | 75.29 288 | 85.11 310 |
|
| mvsany_test1 | | | 62.30 325 | 61.26 329 | 65.41 344 | 69.52 369 | 54.86 326 | 66.86 363 | 49.78 384 | 46.65 361 | 68.50 299 | 83.21 290 | 49.15 277 | 66.28 376 | 56.93 294 | 60.77 354 | 75.11 360 |
|
| LTVRE_ROB | | 69.57 13 | 76.25 228 | 74.54 234 | 81.41 197 | 88.60 158 | 64.38 201 | 79.24 301 | 89.12 179 | 70.76 179 | 69.79 287 | 87.86 188 | 49.09 278 | 93.20 163 | 56.21 300 | 80.16 223 | 86.65 285 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| FMVSNet1 | | | 77.44 207 | 76.12 213 | 81.40 198 | 86.81 215 | 63.01 229 | 88.39 120 | 89.28 167 | 70.49 184 | 74.39 238 | 87.28 201 | 49.06 279 | 91.11 233 | 60.91 258 | 78.52 241 | 90.09 190 |
|
| RRT_MVS | | | 80.35 137 | 79.22 142 | 83.74 131 | 87.63 193 | 65.46 176 | 91.08 53 | 88.92 188 | 73.82 126 | 76.44 194 | 90.03 127 | 49.05 280 | 94.25 116 | 76.84 112 | 79.20 237 | 91.51 134 |
|
| test1111 | | | 79.43 156 | 79.18 144 | 80.15 229 | 89.99 107 | 53.31 340 | 87.33 155 | 77.05 337 | 75.04 100 | 80.23 117 | 92.77 72 | 48.97 281 | 92.33 197 | 68.87 191 | 92.40 73 | 94.81 19 |
|
| ECVR-MVS |  | | 79.61 149 | 79.26 140 | 80.67 219 | 90.08 102 | 54.69 327 | 87.89 141 | 77.44 334 | 74.88 103 | 80.27 115 | 92.79 70 | 48.96 282 | 92.45 189 | 68.55 194 | 92.50 71 | 94.86 16 |
|
| MDTV_nov1_ep13 | | | | 69.97 278 | | 83.18 274 | 53.48 337 | 77.10 322 | 80.18 316 | 60.45 308 | 69.33 291 | 80.44 319 | 48.89 283 | 86.90 292 | 51.60 319 | 78.51 242 | |
|
| test_post1 | | | | | | | | 78.90 308 | | | | 5.43 387 | 48.81 284 | 85.44 305 | 59.25 270 | | |
|
| test-LLR | | | 72.94 264 | 72.43 254 | 74.48 300 | 81.35 309 | 58.04 283 | 78.38 310 | 77.46 332 | 66.66 245 | 69.95 283 | 79.00 331 | 48.06 285 | 79.24 335 | 66.13 213 | 84.83 161 | 86.15 292 |
|
| test0.0.03 1 | | | 68.00 303 | 67.69 298 | 68.90 335 | 77.55 341 | 47.43 361 | 75.70 329 | 72.95 353 | 66.66 245 | 66.56 315 | 82.29 303 | 48.06 285 | 75.87 356 | 44.97 354 | 74.51 297 | 83.41 328 |
|
| our_test_3 | | | 69.14 293 | 67.00 305 | 75.57 289 | 79.80 328 | 58.80 275 | 77.96 315 | 77.81 329 | 59.55 317 | 62.90 341 | 78.25 338 | 47.43 287 | 83.97 314 | 51.71 318 | 67.58 337 | 83.93 324 |
|
| MS-PatchMatch | | | 73.83 252 | 72.67 252 | 77.30 276 | 83.87 260 | 66.02 160 | 81.82 269 | 84.66 259 | 61.37 305 | 68.61 297 | 82.82 296 | 47.29 288 | 88.21 281 | 59.27 269 | 84.32 169 | 77.68 355 |
|
| cascas | | | 76.72 220 | 74.64 231 | 82.99 159 | 85.78 227 | 65.88 165 | 82.33 266 | 89.21 173 | 60.85 307 | 72.74 252 | 81.02 313 | 47.28 289 | 93.75 139 | 67.48 203 | 85.02 159 | 89.34 217 |
|
| WB-MVS | | | 54.94 332 | 54.72 334 | 55.60 358 | 73.50 359 | 20.90 389 | 74.27 339 | 61.19 375 | 59.16 321 | 50.61 368 | 74.15 355 | 47.19 290 | 75.78 357 | 17.31 381 | 35.07 377 | 70.12 365 |
|
| test20.03 | | | 67.45 305 | 66.95 306 | 68.94 334 | 75.48 351 | 44.84 370 | 77.50 318 | 77.67 330 | 66.66 245 | 63.01 339 | 83.80 282 | 47.02 291 | 78.40 339 | 42.53 359 | 68.86 334 | 83.58 327 |
|
| test_0402 | | | 72.79 265 | 70.44 273 | 79.84 235 | 88.13 172 | 65.99 162 | 85.93 195 | 84.29 266 | 65.57 260 | 67.40 308 | 85.49 252 | 46.92 292 | 92.61 184 | 35.88 367 | 74.38 298 | 80.94 346 |
|
| F-COLMAP | | | 76.38 227 | 74.33 237 | 82.50 177 | 89.28 132 | 66.95 149 | 88.41 119 | 89.03 180 | 64.05 278 | 66.83 313 | 88.61 167 | 46.78 293 | 92.89 178 | 57.48 287 | 78.55 240 | 87.67 258 |
|
| ppachtmachnet_test | | | 70.04 287 | 67.34 303 | 78.14 262 | 79.80 328 | 61.13 251 | 79.19 303 | 80.59 308 | 59.16 321 | 65.27 326 | 79.29 328 | 46.75 294 | 87.29 290 | 49.33 332 | 66.72 338 | 86.00 298 |
|
| tt0805 | | | 78.73 174 | 77.83 173 | 81.43 196 | 85.17 235 | 60.30 264 | 89.41 87 | 90.90 122 | 71.21 170 | 77.17 177 | 88.73 162 | 46.38 295 | 93.21 160 | 72.57 157 | 78.96 238 | 90.79 159 |
|
| D2MVS | | | 74.82 243 | 73.21 248 | 79.64 241 | 79.81 327 | 62.56 235 | 80.34 290 | 87.35 224 | 64.37 273 | 68.86 294 | 82.66 298 | 46.37 296 | 90.10 252 | 67.91 199 | 81.24 209 | 86.25 289 |
|
| Anonymous20231206 | | | 68.60 297 | 67.80 296 | 71.02 327 | 80.23 321 | 50.75 354 | 78.30 313 | 80.47 310 | 56.79 339 | 66.11 322 | 82.63 299 | 46.35 297 | 78.95 337 | 43.62 356 | 75.70 275 | 83.36 329 |
|
| SSC-MVS | | | 53.88 335 | 53.59 336 | 54.75 360 | 72.87 364 | 19.59 390 | 73.84 341 | 60.53 377 | 57.58 335 | 49.18 370 | 73.45 358 | 46.34 298 | 75.47 360 | 16.20 384 | 32.28 379 | 69.20 366 |
|
| CHOSEN 280x420 | | | 66.51 311 | 64.71 312 | 71.90 318 | 81.45 306 | 63.52 217 | 57.98 375 | 68.95 363 | 53.57 348 | 62.59 342 | 76.70 345 | 46.22 299 | 75.29 362 | 55.25 302 | 79.68 228 | 76.88 357 |
|
| GA-MVS | | | 76.87 218 | 75.17 228 | 81.97 186 | 82.75 285 | 62.58 234 | 81.44 277 | 86.35 240 | 72.16 156 | 74.74 234 | 82.89 294 | 46.20 300 | 92.02 206 | 68.85 192 | 81.09 211 | 91.30 143 |
|
| iter_conf_final | | | 80.63 127 | 79.35 137 | 84.46 99 | 89.36 126 | 67.70 130 | 89.85 74 | 84.49 262 | 73.19 142 | 78.30 148 | 88.94 156 | 45.98 301 | 94.56 101 | 79.59 87 | 84.48 167 | 91.11 147 |
|
| MDA-MVSNet_test_wron | | | 65.03 317 | 62.92 321 | 71.37 322 | 75.93 346 | 56.73 303 | 69.09 359 | 74.73 347 | 57.28 337 | 54.03 365 | 77.89 339 | 45.88 302 | 74.39 365 | 49.89 330 | 61.55 352 | 82.99 335 |
|
| YYNet1 | | | 65.03 317 | 62.91 322 | 71.38 321 | 75.85 348 | 56.60 307 | 69.12 358 | 74.66 349 | 57.28 337 | 54.12 364 | 77.87 340 | 45.85 303 | 74.48 364 | 49.95 329 | 61.52 353 | 83.05 333 |
|
| EPMVS | | | 69.02 294 | 68.16 289 | 71.59 320 | 79.61 331 | 49.80 359 | 77.40 319 | 66.93 365 | 62.82 292 | 70.01 280 | 79.05 329 | 45.79 304 | 77.86 343 | 56.58 297 | 75.26 289 | 87.13 274 |
|
| IB-MVS | | 68.01 15 | 75.85 233 | 73.36 247 | 83.31 142 | 84.76 244 | 66.03 159 | 83.38 252 | 85.06 254 | 70.21 190 | 69.40 289 | 81.05 312 | 45.76 305 | 94.66 100 | 65.10 224 | 75.49 279 | 89.25 220 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| jajsoiax | | | 79.29 161 | 77.96 168 | 83.27 144 | 84.68 246 | 66.57 153 | 89.25 90 | 90.16 145 | 69.20 212 | 75.46 213 | 89.49 141 | 45.75 306 | 93.13 169 | 76.84 112 | 80.80 215 | 90.11 188 |
|
| PatchMatch-RL | | | 72.38 267 | 70.90 268 | 76.80 281 | 88.60 158 | 67.38 138 | 79.53 298 | 76.17 342 | 62.75 293 | 69.36 290 | 82.00 308 | 45.51 307 | 84.89 309 | 53.62 309 | 80.58 218 | 78.12 354 |
|
| FE-MVS | | | 77.78 199 | 75.68 217 | 84.08 115 | 88.09 175 | 66.00 161 | 83.13 257 | 87.79 215 | 68.42 231 | 78.01 157 | 85.23 258 | 45.50 308 | 95.12 77 | 59.11 272 | 85.83 156 | 91.11 147 |
|
| RPSCF | | | 73.23 260 | 71.46 261 | 78.54 257 | 82.50 291 | 59.85 268 | 82.18 267 | 82.84 289 | 58.96 323 | 71.15 270 | 89.41 148 | 45.48 309 | 84.77 310 | 58.82 276 | 71.83 319 | 91.02 154 |
|
| test_vis1_n_1920 | | | 75.52 237 | 75.78 215 | 74.75 299 | 79.84 326 | 57.44 295 | 83.26 254 | 85.52 250 | 62.83 291 | 79.34 127 | 86.17 238 | 45.10 310 | 79.71 334 | 78.75 92 | 81.21 210 | 87.10 277 |
|
| MSDG | | | 73.36 258 | 70.99 267 | 80.49 222 | 84.51 248 | 65.80 168 | 80.71 283 | 86.13 243 | 65.70 258 | 65.46 324 | 83.74 284 | 44.60 311 | 90.91 241 | 51.13 321 | 76.89 258 | 84.74 314 |
|
| PVSNet_0 | | 57.27 20 | 61.67 327 | 59.27 330 | 68.85 336 | 79.61 331 | 57.44 295 | 68.01 360 | 73.44 352 | 55.93 343 | 58.54 354 | 70.41 364 | 44.58 312 | 77.55 344 | 47.01 344 | 35.91 376 | 71.55 364 |
|
| test_cas_vis1_n_1920 | | | 73.76 253 | 73.74 244 | 73.81 306 | 75.90 347 | 59.77 269 | 80.51 286 | 82.40 292 | 58.30 328 | 81.62 101 | 85.69 246 | 44.35 313 | 76.41 352 | 76.29 118 | 78.61 239 | 85.23 306 |
|
| mvs_tets | | | 79.13 165 | 77.77 177 | 83.22 148 | 84.70 245 | 66.37 155 | 89.17 91 | 90.19 144 | 69.38 206 | 75.40 216 | 89.46 144 | 44.17 314 | 93.15 167 | 76.78 115 | 80.70 217 | 90.14 185 |
|
| MDA-MVSNet-bldmvs | | | 66.68 309 | 63.66 318 | 75.75 286 | 79.28 335 | 60.56 260 | 73.92 340 | 78.35 327 | 64.43 271 | 50.13 369 | 79.87 326 | 44.02 315 | 83.67 316 | 46.10 349 | 56.86 359 | 83.03 334 |
|
| iter_conf05 | | | 80.00 145 | 78.70 151 | 83.91 128 | 87.84 183 | 65.83 166 | 88.84 105 | 84.92 257 | 71.61 163 | 78.70 135 | 88.94 156 | 43.88 316 | 94.56 101 | 79.28 88 | 84.28 170 | 91.33 140 |
|
| gg-mvs-nofinetune | | | 69.95 288 | 67.96 292 | 75.94 285 | 83.07 277 | 54.51 330 | 77.23 321 | 70.29 357 | 63.11 285 | 70.32 275 | 62.33 368 | 43.62 317 | 88.69 276 | 53.88 308 | 87.76 126 | 84.62 316 |
|
| GG-mvs-BLEND | | | | | 75.38 292 | 81.59 304 | 55.80 317 | 79.32 300 | 69.63 359 | | 67.19 309 | 73.67 357 | 43.24 318 | 88.90 274 | 50.41 323 | 84.50 165 | 81.45 343 |
|
| CMPMVS |  | 51.72 21 | 70.19 286 | 68.16 289 | 76.28 283 | 73.15 363 | 57.55 293 | 79.47 299 | 83.92 271 | 48.02 360 | 56.48 361 | 84.81 266 | 43.13 319 | 86.42 296 | 62.67 241 | 81.81 204 | 84.89 312 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| dp | | | 66.80 308 | 65.43 310 | 70.90 329 | 79.74 330 | 48.82 360 | 75.12 335 | 74.77 346 | 59.61 316 | 64.08 334 | 77.23 343 | 42.89 320 | 80.72 331 | 48.86 334 | 66.58 340 | 83.16 331 |
|
| PVSNet | | 64.34 18 | 72.08 270 | 70.87 269 | 75.69 287 | 86.21 222 | 56.44 309 | 74.37 338 | 80.73 306 | 62.06 300 | 70.17 278 | 82.23 304 | 42.86 321 | 83.31 320 | 54.77 304 | 84.45 168 | 87.32 268 |
|
| pmmvs-eth3d | | | 70.50 283 | 67.83 295 | 78.52 258 | 77.37 343 | 66.18 158 | 81.82 269 | 81.51 300 | 58.90 324 | 63.90 336 | 80.42 320 | 42.69 322 | 86.28 297 | 58.56 278 | 65.30 345 | 83.11 332 |
|
| UnsupCasMVSNet_eth | | | 67.33 306 | 65.99 309 | 71.37 322 | 73.48 360 | 51.47 350 | 75.16 333 | 85.19 253 | 65.20 262 | 60.78 346 | 80.93 317 | 42.35 323 | 77.20 345 | 57.12 291 | 53.69 366 | 85.44 303 |
|
| KD-MVS_self_test | | | 68.81 295 | 67.59 301 | 72.46 316 | 74.29 355 | 45.45 365 | 77.93 316 | 87.00 230 | 63.12 284 | 63.99 335 | 78.99 333 | 42.32 324 | 84.77 310 | 56.55 298 | 64.09 348 | 87.16 273 |
|
| ADS-MVSNet2 | | | 66.20 316 | 63.33 319 | 74.82 297 | 79.92 324 | 58.75 276 | 67.55 361 | 75.19 344 | 53.37 349 | 65.25 327 | 75.86 350 | 42.32 324 | 80.53 332 | 41.57 360 | 68.91 332 | 85.18 307 |
|
| ADS-MVSNet | | | 64.36 320 | 62.88 323 | 68.78 337 | 79.92 324 | 47.17 362 | 67.55 361 | 71.18 355 | 53.37 349 | 65.25 327 | 75.86 350 | 42.32 324 | 73.99 366 | 41.57 360 | 68.91 332 | 85.18 307 |
|
| bld_raw_dy_0_64 | | | 77.29 212 | 75.98 214 | 81.22 204 | 85.04 241 | 65.47 175 | 88.14 133 | 77.56 331 | 69.20 212 | 73.77 243 | 89.40 150 | 42.24 327 | 88.85 275 | 76.78 115 | 81.64 205 | 89.33 218 |
|
| SixPastTwentyTwo | | | 73.37 256 | 71.26 266 | 79.70 238 | 85.08 240 | 57.89 287 | 85.57 202 | 83.56 277 | 71.03 174 | 65.66 323 | 85.88 242 | 42.10 328 | 92.57 185 | 59.11 272 | 63.34 349 | 88.65 243 |
|
| JIA-IIPM | | | 66.32 313 | 62.82 324 | 76.82 280 | 77.09 344 | 61.72 247 | 65.34 368 | 75.38 343 | 58.04 331 | 64.51 331 | 62.32 369 | 42.05 329 | 86.51 295 | 51.45 320 | 69.22 331 | 82.21 338 |
|
| ACMH | | 67.68 16 | 75.89 232 | 73.93 240 | 81.77 189 | 88.71 155 | 66.61 152 | 88.62 115 | 89.01 182 | 69.81 197 | 66.78 314 | 86.70 221 | 41.95 330 | 91.51 224 | 55.64 301 | 78.14 247 | 87.17 271 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| ACMH+ | | 68.96 14 | 76.01 231 | 74.01 239 | 82.03 184 | 88.60 158 | 65.31 181 | 88.86 103 | 87.55 219 | 70.25 189 | 67.75 302 | 87.47 199 | 41.27 331 | 93.19 165 | 58.37 280 | 75.94 273 | 87.60 260 |
|
| MIMVSNet | | | 70.69 280 | 69.30 279 | 74.88 296 | 84.52 247 | 56.35 312 | 75.87 328 | 79.42 321 | 64.59 269 | 67.76 301 | 82.41 300 | 41.10 332 | 81.54 327 | 46.64 347 | 81.34 207 | 86.75 283 |
|
| Anonymous202405211 | | | 78.25 184 | 77.01 193 | 81.99 185 | 91.03 82 | 60.67 258 | 84.77 221 | 83.90 272 | 70.65 182 | 80.00 119 | 91.20 102 | 41.08 333 | 91.43 226 | 65.21 222 | 85.26 158 | 93.85 55 |
|
| N_pmnet | | | 52.79 338 | 53.26 337 | 51.40 362 | 78.99 337 | 7.68 393 | 69.52 354 | 3.89 393 | 51.63 355 | 57.01 359 | 74.98 354 | 40.83 334 | 65.96 377 | 37.78 365 | 64.67 346 | 80.56 349 |
|
| EU-MVSNet | | | 68.53 300 | 67.61 300 | 71.31 325 | 78.51 339 | 47.01 363 | 84.47 229 | 84.27 267 | 42.27 366 | 66.44 320 | 84.79 267 | 40.44 335 | 83.76 315 | 58.76 277 | 68.54 335 | 83.17 330 |
|
| DSMNet-mixed | | | 57.77 331 | 56.90 333 | 60.38 350 | 67.70 372 | 35.61 380 | 69.18 356 | 53.97 382 | 32.30 378 | 57.49 358 | 79.88 325 | 40.39 336 | 68.57 375 | 38.78 364 | 72.37 314 | 76.97 356 |
|
| OurMVSNet-221017-0 | | | 74.26 247 | 72.42 255 | 79.80 236 | 83.76 262 | 59.59 272 | 85.92 196 | 86.64 234 | 66.39 250 | 66.96 311 | 87.58 193 | 39.46 337 | 91.60 218 | 65.76 219 | 69.27 330 | 88.22 249 |
|
| K. test v3 | | | 71.19 273 | 68.51 285 | 79.21 248 | 83.04 279 | 57.78 290 | 84.35 236 | 76.91 338 | 72.90 148 | 62.99 340 | 82.86 295 | 39.27 338 | 91.09 238 | 61.65 252 | 52.66 367 | 88.75 240 |
|
| lessismore_v0 | | | | | 78.97 249 | 81.01 314 | 57.15 298 | | 65.99 367 | | 61.16 345 | 82.82 296 | 39.12 339 | 91.34 229 | 59.67 266 | 46.92 373 | 88.43 247 |
|
| UnsupCasMVSNet_bld | | | 63.70 322 | 61.53 328 | 70.21 331 | 73.69 358 | 51.39 351 | 72.82 342 | 81.89 296 | 55.63 344 | 57.81 357 | 71.80 361 | 38.67 340 | 78.61 338 | 49.26 333 | 52.21 368 | 80.63 347 |
|
| new-patchmatchnet | | | 61.73 326 | 61.73 327 | 61.70 348 | 72.74 365 | 24.50 388 | 69.16 357 | 78.03 328 | 61.40 303 | 56.72 360 | 75.53 353 | 38.42 341 | 76.48 351 | 45.95 350 | 57.67 358 | 84.13 321 |
|
| MVS-HIRNet | | | 59.14 329 | 57.67 332 | 63.57 346 | 81.65 302 | 43.50 373 | 71.73 345 | 65.06 370 | 39.59 370 | 51.43 367 | 57.73 374 | 38.34 342 | 82.58 324 | 39.53 363 | 73.95 301 | 64.62 370 |
|
| test2506 | | | 77.30 211 | 76.49 207 | 79.74 237 | 90.08 102 | 52.02 343 | 87.86 143 | 63.10 373 | 74.88 103 | 80.16 118 | 92.79 70 | 38.29 343 | 92.35 195 | 68.74 193 | 92.50 71 | 94.86 16 |
|
| COLMAP_ROB |  | 66.92 17 | 73.01 262 | 70.41 274 | 80.81 216 | 87.13 210 | 65.63 171 | 88.30 125 | 84.19 269 | 62.96 288 | 63.80 337 | 87.69 191 | 38.04 344 | 92.56 186 | 46.66 345 | 74.91 293 | 84.24 319 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| TESTMET0.1,1 | | | 69.89 289 | 69.00 283 | 72.55 315 | 79.27 336 | 56.85 301 | 78.38 310 | 74.71 348 | 57.64 333 | 68.09 300 | 77.19 344 | 37.75 345 | 76.70 348 | 63.92 230 | 84.09 172 | 84.10 322 |
|
| OpenMVS_ROB |  | 64.09 19 | 70.56 282 | 68.19 288 | 77.65 270 | 80.26 320 | 59.41 274 | 85.01 216 | 82.96 288 | 58.76 325 | 65.43 325 | 82.33 301 | 37.63 346 | 91.23 232 | 45.34 353 | 76.03 272 | 82.32 337 |
|
| FMVSNet5 | | | 69.50 291 | 67.96 292 | 74.15 304 | 82.97 282 | 55.35 321 | 80.01 294 | 82.12 295 | 62.56 295 | 63.02 338 | 81.53 309 | 36.92 347 | 81.92 325 | 48.42 335 | 74.06 300 | 85.17 309 |
|
| MIMVSNet1 | | | 68.58 298 | 66.78 307 | 73.98 305 | 80.07 323 | 51.82 346 | 80.77 281 | 84.37 263 | 64.40 272 | 59.75 351 | 82.16 305 | 36.47 348 | 83.63 317 | 42.73 358 | 70.33 326 | 86.48 287 |
|
| ITE_SJBPF | | | | | 78.22 261 | 81.77 301 | 60.57 259 | | 83.30 281 | 69.25 209 | 67.54 304 | 87.20 206 | 36.33 349 | 87.28 291 | 54.34 306 | 74.62 296 | 86.80 281 |
|
| test-mter | | | 71.41 272 | 70.39 275 | 74.48 300 | 81.35 309 | 58.04 283 | 78.38 310 | 77.46 332 | 60.32 310 | 69.95 283 | 79.00 331 | 36.08 350 | 79.24 335 | 66.13 213 | 84.83 161 | 86.15 292 |
|
| testgi | | | 66.67 310 | 66.53 308 | 67.08 342 | 75.62 350 | 41.69 377 | 75.93 325 | 76.50 339 | 66.11 252 | 65.20 329 | 86.59 225 | 35.72 351 | 74.71 363 | 43.71 355 | 73.38 309 | 84.84 313 |
|
| EG-PatchMatch MVS | | | 74.04 250 | 71.82 259 | 80.71 218 | 84.92 243 | 67.42 136 | 85.86 198 | 88.08 206 | 66.04 254 | 64.22 333 | 83.85 280 | 35.10 352 | 92.56 186 | 57.44 288 | 80.83 214 | 82.16 340 |
|
| KD-MVS_2432*1600 | | | 66.22 314 | 63.89 316 | 73.21 309 | 75.47 352 | 53.42 338 | 70.76 350 | 84.35 264 | 64.10 276 | 66.52 317 | 78.52 335 | 34.55 353 | 84.98 307 | 50.40 324 | 50.33 370 | 81.23 344 |
|
| miper_refine_blended | | | 66.22 314 | 63.89 316 | 73.21 309 | 75.47 352 | 53.42 338 | 70.76 350 | 84.35 264 | 64.10 276 | 66.52 317 | 78.52 335 | 34.55 353 | 84.98 307 | 50.40 324 | 50.33 370 | 81.23 344 |
|
| XVG-ACMP-BASELINE | | | 76.11 230 | 74.27 238 | 81.62 191 | 83.20 273 | 64.67 193 | 83.60 249 | 89.75 156 | 69.75 200 | 71.85 263 | 87.09 210 | 32.78 355 | 92.11 203 | 69.99 179 | 80.43 221 | 88.09 251 |
|
| AllTest | | | 70.96 276 | 68.09 291 | 79.58 242 | 85.15 237 | 63.62 212 | 84.58 227 | 79.83 317 | 62.31 297 | 60.32 348 | 86.73 215 | 32.02 356 | 88.96 272 | 50.28 326 | 71.57 321 | 86.15 292 |
|
| TestCases | | | | | 79.58 242 | 85.15 237 | 63.62 212 | | 79.83 317 | 62.31 297 | 60.32 348 | 86.73 215 | 32.02 356 | 88.96 272 | 50.28 326 | 71.57 321 | 86.15 292 |
|
| USDC | | | 70.33 284 | 68.37 286 | 76.21 284 | 80.60 317 | 56.23 313 | 79.19 303 | 86.49 236 | 60.89 306 | 61.29 344 | 85.47 253 | 31.78 358 | 89.47 262 | 53.37 311 | 76.21 271 | 82.94 336 |
|
| test_fmvs1 | | | 70.93 277 | 70.52 271 | 72.16 317 | 73.71 357 | 55.05 324 | 80.82 279 | 78.77 325 | 51.21 357 | 78.58 140 | 84.41 271 | 31.20 359 | 76.94 347 | 75.88 124 | 80.12 226 | 84.47 317 |
|
| Anonymous20240521 | | | 68.80 296 | 67.22 304 | 73.55 307 | 74.33 354 | 54.11 332 | 83.18 255 | 85.61 249 | 58.15 329 | 61.68 343 | 80.94 315 | 30.71 360 | 81.27 329 | 57.00 293 | 73.34 310 | 85.28 305 |
|
| testing3 | | | 68.56 299 | 67.67 299 | 71.22 326 | 87.33 205 | 42.87 374 | 83.06 261 | 71.54 354 | 70.36 185 | 69.08 293 | 84.38 272 | 30.33 361 | 85.69 301 | 37.50 366 | 75.45 283 | 85.09 311 |
|
| test_vis1_n | | | 69.85 290 | 69.21 281 | 71.77 319 | 72.66 366 | 55.27 323 | 81.48 275 | 76.21 341 | 52.03 353 | 75.30 222 | 83.20 291 | 28.97 362 | 76.22 354 | 74.60 134 | 78.41 245 | 83.81 325 |
|
| tmp_tt | | | 18.61 354 | 21.40 357 | 10.23 370 | 4.82 393 | 10.11 392 | 34.70 380 | 30.74 391 | 1.48 387 | 23.91 383 | 26.07 384 | 28.42 363 | 13.41 389 | 27.12 374 | 15.35 386 | 7.17 384 |
|
| test_fmvs1_n | | | 70.86 278 | 70.24 276 | 72.73 314 | 72.51 367 | 55.28 322 | 81.27 278 | 79.71 319 | 51.49 356 | 78.73 134 | 84.87 265 | 27.54 364 | 77.02 346 | 76.06 121 | 79.97 227 | 85.88 299 |
|
| TDRefinement | | | 67.49 304 | 64.34 313 | 76.92 279 | 73.47 361 | 61.07 252 | 84.86 220 | 82.98 287 | 59.77 315 | 58.30 355 | 85.13 261 | 26.06 365 | 87.89 285 | 47.92 342 | 60.59 356 | 81.81 342 |
|
| test_vis1_rt | | | 60.28 328 | 58.42 331 | 65.84 343 | 67.25 373 | 55.60 320 | 70.44 352 | 60.94 376 | 44.33 364 | 59.00 352 | 66.64 366 | 24.91 366 | 68.67 374 | 62.80 237 | 69.48 328 | 73.25 362 |
|
| TinyColmap | | | 67.30 307 | 64.81 311 | 74.76 298 | 81.92 300 | 56.68 306 | 80.29 291 | 81.49 301 | 60.33 309 | 56.27 362 | 83.22 289 | 24.77 367 | 87.66 289 | 45.52 351 | 69.47 329 | 79.95 350 |
|
| EGC-MVSNET | | | 52.07 340 | 47.05 344 | 67.14 341 | 83.51 266 | 60.71 257 | 80.50 287 | 67.75 364 | 0.07 388 | 0.43 389 | 75.85 352 | 24.26 368 | 81.54 327 | 28.82 372 | 62.25 350 | 59.16 373 |
|
| LF4IMVS | | | 64.02 321 | 62.19 325 | 69.50 333 | 70.90 368 | 53.29 341 | 76.13 323 | 77.18 336 | 52.65 351 | 58.59 353 | 80.98 314 | 23.55 369 | 76.52 350 | 53.06 313 | 66.66 339 | 78.68 353 |
|
| test_fmvs2 | | | 68.35 302 | 67.48 302 | 70.98 328 | 69.50 370 | 51.95 345 | 80.05 293 | 76.38 340 | 49.33 359 | 74.65 236 | 84.38 272 | 23.30 370 | 75.40 361 | 74.51 135 | 75.17 291 | 85.60 301 |
|
| new_pmnet | | | 50.91 341 | 50.29 341 | 52.78 361 | 68.58 371 | 34.94 382 | 63.71 370 | 56.63 381 | 39.73 369 | 44.95 371 | 65.47 367 | 21.93 371 | 58.48 380 | 34.98 368 | 56.62 360 | 64.92 369 |
|
| pmmvs3 | | | 57.79 330 | 54.26 335 | 68.37 338 | 64.02 376 | 56.72 304 | 75.12 335 | 65.17 369 | 40.20 368 | 52.93 366 | 69.86 365 | 20.36 372 | 75.48 359 | 45.45 352 | 55.25 365 | 72.90 363 |
|
| PM-MVS | | | 66.41 312 | 64.14 314 | 73.20 311 | 73.92 356 | 56.45 308 | 78.97 306 | 64.96 371 | 63.88 282 | 64.72 330 | 80.24 321 | 19.84 373 | 83.44 319 | 66.24 212 | 64.52 347 | 79.71 351 |
|
| mvsany_test3 | | | 53.99 334 | 51.45 339 | 61.61 349 | 55.51 381 | 44.74 371 | 63.52 371 | 45.41 388 | 43.69 365 | 58.11 356 | 76.45 347 | 17.99 374 | 63.76 379 | 54.77 304 | 47.59 372 | 76.34 358 |
|
| ambc | | | | | 75.24 293 | 73.16 362 | 50.51 355 | 63.05 373 | 87.47 222 | | 64.28 332 | 77.81 341 | 17.80 375 | 89.73 257 | 57.88 285 | 60.64 355 | 85.49 302 |
|
| ANet_high | | | 50.57 342 | 46.10 346 | 63.99 345 | 48.67 388 | 39.13 378 | 70.99 349 | 80.85 304 | 61.39 304 | 31.18 377 | 57.70 375 | 17.02 376 | 73.65 368 | 31.22 371 | 15.89 385 | 79.18 352 |
|
| FPMVS | | | 53.68 336 | 51.64 338 | 59.81 351 | 65.08 375 | 51.03 352 | 69.48 355 | 69.58 360 | 41.46 367 | 40.67 373 | 72.32 360 | 16.46 377 | 70.00 373 | 24.24 378 | 65.42 344 | 58.40 375 |
|
| test_method | | | 31.52 350 | 29.28 354 | 38.23 365 | 27.03 392 | 6.50 394 | 20.94 383 | 62.21 374 | 4.05 386 | 22.35 384 | 52.50 378 | 13.33 378 | 47.58 385 | 27.04 375 | 34.04 378 | 60.62 372 |
|
| EMVS | | | 30.81 351 | 29.65 353 | 34.27 367 | 50.96 387 | 25.95 386 | 56.58 377 | 46.80 387 | 24.01 382 | 15.53 387 | 30.68 383 | 12.47 379 | 54.43 384 | 12.81 386 | 17.05 384 | 22.43 383 |
|
| test_f | | | 52.09 339 | 50.82 340 | 55.90 356 | 53.82 384 | 42.31 376 | 59.42 374 | 58.31 380 | 36.45 373 | 56.12 363 | 70.96 363 | 12.18 380 | 57.79 381 | 53.51 310 | 56.57 361 | 67.60 367 |
|
| test_fmvs3 | | | 63.36 323 | 61.82 326 | 67.98 339 | 62.51 377 | 46.96 364 | 77.37 320 | 74.03 350 | 45.24 362 | 67.50 305 | 78.79 334 | 12.16 381 | 72.98 369 | 72.77 155 | 66.02 342 | 83.99 323 |
|
| E-PMN | | | 31.77 349 | 30.64 352 | 35.15 366 | 52.87 386 | 27.67 384 | 57.09 376 | 47.86 386 | 24.64 381 | 16.40 386 | 33.05 382 | 11.23 382 | 54.90 383 | 14.46 385 | 18.15 383 | 22.87 382 |
|
| DeepMVS_CX |  | | | | 27.40 368 | 40.17 391 | 26.90 385 | | 24.59 392 | 17.44 384 | 23.95 382 | 48.61 379 | 9.77 383 | 26.48 387 | 18.06 380 | 24.47 381 | 28.83 381 |
|
| Gipuma |  | | 45.18 346 | 41.86 349 | 55.16 359 | 77.03 345 | 51.52 349 | 32.50 381 | 80.52 309 | 32.46 377 | 27.12 380 | 35.02 381 | 9.52 384 | 75.50 358 | 22.31 379 | 60.21 357 | 38.45 380 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| LCM-MVSNet | | | 54.25 333 | 49.68 343 | 67.97 340 | 53.73 385 | 45.28 368 | 66.85 364 | 80.78 305 | 35.96 374 | 39.45 375 | 62.23 370 | 8.70 385 | 78.06 342 | 48.24 339 | 51.20 369 | 80.57 348 |
|
| APD_test1 | | | 53.31 337 | 49.93 342 | 63.42 347 | 65.68 374 | 50.13 356 | 71.59 346 | 66.90 366 | 34.43 375 | 40.58 374 | 71.56 362 | 8.65 386 | 76.27 353 | 34.64 369 | 55.36 364 | 63.86 371 |
|
| PMMVS2 | | | 40.82 348 | 38.86 351 | 46.69 363 | 53.84 383 | 16.45 391 | 48.61 378 | 49.92 383 | 37.49 371 | 31.67 376 | 60.97 371 | 8.14 387 | 56.42 382 | 28.42 373 | 30.72 380 | 67.19 368 |
|
| test_vis3_rt | | | 49.26 343 | 47.02 345 | 56.00 355 | 54.30 382 | 45.27 369 | 66.76 365 | 48.08 385 | 36.83 372 | 44.38 372 | 53.20 377 | 7.17 388 | 64.07 378 | 56.77 296 | 55.66 362 | 58.65 374 |
|
| testf1 | | | 45.72 344 | 41.96 347 | 57.00 353 | 56.90 379 | 45.32 366 | 66.14 366 | 59.26 378 | 26.19 379 | 30.89 378 | 60.96 372 | 4.14 389 | 70.64 371 | 26.39 376 | 46.73 374 | 55.04 376 |
|
| APD_test2 | | | 45.72 344 | 41.96 347 | 57.00 353 | 56.90 379 | 45.32 366 | 66.14 366 | 59.26 378 | 26.19 379 | 30.89 378 | 60.96 372 | 4.14 389 | 70.64 371 | 26.39 376 | 46.73 374 | 55.04 376 |
|
| PMVS |  | 37.38 22 | 44.16 347 | 40.28 350 | 55.82 357 | 40.82 390 | 42.54 375 | 65.12 369 | 63.99 372 | 34.43 375 | 24.48 381 | 57.12 376 | 3.92 391 | 76.17 355 | 17.10 382 | 55.52 363 | 48.75 378 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| MVE |  | 26.22 23 | 30.37 352 | 25.89 356 | 43.81 364 | 44.55 389 | 35.46 381 | 28.87 382 | 39.07 389 | 18.20 383 | 18.58 385 | 40.18 380 | 2.68 392 | 47.37 386 | 17.07 383 | 23.78 382 | 48.60 379 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| wuyk23d | | | 16.82 355 | 15.94 358 | 19.46 369 | 58.74 378 | 31.45 383 | 39.22 379 | 3.74 394 | 6.84 385 | 6.04 388 | 2.70 388 | 1.27 393 | 24.29 388 | 10.54 387 | 14.40 387 | 2.63 385 |
|
| test123 | | | 6.12 357 | 8.11 360 | 0.14 371 | 0.06 395 | 0.09 395 | 71.05 348 | 0.03 396 | 0.04 390 | 0.25 391 | 1.30 390 | 0.05 394 | 0.03 391 | 0.21 389 | 0.01 389 | 0.29 386 |
|
| testmvs | | | 6.04 358 | 8.02 361 | 0.10 372 | 0.08 394 | 0.03 396 | 69.74 353 | 0.04 395 | 0.05 389 | 0.31 390 | 1.68 389 | 0.02 395 | 0.04 390 | 0.24 388 | 0.02 388 | 0.25 387 |
|
| test_blank | | | 0.00 360 | 0.00 363 | 0.00 373 | 0.00 396 | 0.00 397 | 0.00 384 | 0.00 397 | 0.00 391 | 0.00 392 | 0.00 391 | 0.00 396 | 0.00 392 | 0.00 390 | 0.00 390 | 0.00 388 |
|
| uanet_test | | | 0.00 360 | 0.00 363 | 0.00 373 | 0.00 396 | 0.00 397 | 0.00 384 | 0.00 397 | 0.00 391 | 0.00 392 | 0.00 391 | 0.00 396 | 0.00 392 | 0.00 390 | 0.00 390 | 0.00 388 |
|
| DCPMVS | | | 0.00 360 | 0.00 363 | 0.00 373 | 0.00 396 | 0.00 397 | 0.00 384 | 0.00 397 | 0.00 391 | 0.00 392 | 0.00 391 | 0.00 396 | 0.00 392 | 0.00 390 | 0.00 390 | 0.00 388 |
|
| sosnet-low-res | | | 0.00 360 | 0.00 363 | 0.00 373 | 0.00 396 | 0.00 397 | 0.00 384 | 0.00 397 | 0.00 391 | 0.00 392 | 0.00 391 | 0.00 396 | 0.00 392 | 0.00 390 | 0.00 390 | 0.00 388 |
|
| sosnet | | | 0.00 360 | 0.00 363 | 0.00 373 | 0.00 396 | 0.00 397 | 0.00 384 | 0.00 397 | 0.00 391 | 0.00 392 | 0.00 391 | 0.00 396 | 0.00 392 | 0.00 390 | 0.00 390 | 0.00 388 |
|
| uncertanet | | | 0.00 360 | 0.00 363 | 0.00 373 | 0.00 396 | 0.00 397 | 0.00 384 | 0.00 397 | 0.00 391 | 0.00 392 | 0.00 391 | 0.00 396 | 0.00 392 | 0.00 390 | 0.00 390 | 0.00 388 |
|
| Regformer | | | 0.00 360 | 0.00 363 | 0.00 373 | 0.00 396 | 0.00 397 | 0.00 384 | 0.00 397 | 0.00 391 | 0.00 392 | 0.00 391 | 0.00 396 | 0.00 392 | 0.00 390 | 0.00 390 | 0.00 388 |
|
| ab-mvs-re | | | 7.23 356 | 9.64 359 | 0.00 373 | 0.00 396 | 0.00 397 | 0.00 384 | 0.00 397 | 0.00 391 | 0.00 392 | 86.72 217 | 0.00 396 | 0.00 392 | 0.00 390 | 0.00 390 | 0.00 388 |
|
| uanet | | | 0.00 360 | 0.00 363 | 0.00 373 | 0.00 396 | 0.00 397 | 0.00 384 | 0.00 397 | 0.00 391 | 0.00 392 | 0.00 391 | 0.00 396 | 0.00 392 | 0.00 390 | 0.00 390 | 0.00 388 |
|
| FOURS1 | | | | | | 95.00 10 | 72.39 38 | 95.06 1 | 93.84 15 | 74.49 112 | 91.30 15 | | | | | | |
|
| MSC_two_6792asdad | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 45 | | | | | 97.53 1 | 89.67 3 | 96.44 9 | 94.41 31 |
|
| No_MVS | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 45 | | | | | 97.53 1 | 89.67 3 | 96.44 9 | 94.41 31 |
|
| eth-test2 | | | | | | 0.00 396 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 396 | | | | | | | | | | | |
|
| IU-MVS | | | | | | 95.30 2 | 71.25 56 | | 92.95 51 | 66.81 241 | 92.39 6 | | | | 88.94 13 | 96.63 4 | 94.85 18 |
|
| save fliter | | | | | | 93.80 40 | 72.35 41 | 90.47 63 | 91.17 116 | 74.31 115 | | | | | | | |
|
| test_0728_SECOND | | | | | 87.71 31 | 95.34 1 | 71.43 55 | 93.49 9 | 94.23 3 | | | | | 97.49 3 | 89.08 9 | 96.41 12 | 94.21 41 |
|
| GSMVS | | | | | | | | | | | | | | | | | 88.96 232 |
|
| test_part2 | | | | | | 95.06 8 | 72.65 31 | | | | 91.80 13 | | | | | | |
|
| MTGPA |  | | | | | | | | 92.02 85 | | | | | | | | |
|
| MTMP | | | | | | | | 92.18 34 | 32.83 390 | | | | | | | | |
|
| gm-plane-assit | | | | | | 81.40 307 | 53.83 335 | | | 62.72 294 | | 80.94 315 | | 92.39 192 | 63.40 234 | | |
|
| test9_res | | | | | | | | | | | | | | | 84.90 33 | 95.70 26 | 92.87 95 |
|
| agg_prior2 | | | | | | | | | | | | | | | 82.91 57 | 95.45 29 | 92.70 98 |
|
| agg_prior | | | | | | 92.85 59 | 71.94 50 | | 91.78 100 | | 84.41 62 | | | 94.93 86 | | | |
|
| test_prior4 | | | | | | | 72.60 33 | 89.01 98 | | | | | | | | | |
|
| test_prior | | | | | 86.33 53 | 92.61 65 | 69.59 87 | | 92.97 50 | | | | | 95.48 61 | | | 93.91 52 |
|
| 旧先验2 | | | | | | | | 86.56 179 | | 58.10 330 | 87.04 32 | | | 88.98 270 | 74.07 140 | | |
|
| 新几何2 | | | | | | | | 86.29 187 | | | | | | | | | |
|
| 无先验 | | | | | | | | 87.48 150 | 88.98 183 | 60.00 313 | | | | 94.12 120 | 67.28 205 | | 88.97 231 |
|
| 原ACMM2 | | | | | | | | 86.86 168 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 91.01 240 | 62.37 244 | | |
|
| testdata1 | | | | | | | | 84.14 240 | | 75.71 86 | | | | | | | |
|
| plane_prior7 | | | | | | 90.08 102 | 68.51 115 | | | | | | | | | | |
|
| plane_prior5 | | | | | | | | | 92.44 69 | | | | | 95.38 68 | 78.71 93 | 86.32 146 | 91.33 140 |
|
| plane_prior4 | | | | | | | | | | | | 91.00 111 | | | | | |
|
| plane_prior3 | | | | | | | 68.60 113 | | | 78.44 30 | 78.92 132 | | | | | | |
|
| plane_prior2 | | | | | | | | 91.25 49 | | 79.12 22 | | | | | | | |
|
| plane_prior1 | | | | | | 89.90 110 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 68.71 108 | 90.38 66 | | 77.62 38 | | | | | | 86.16 150 | |
|
| n2 | | | | | | | | | 0.00 397 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 397 | | | | | | | | |
|
| door-mid | | | | | | | | | 69.98 358 | | | | | | | | |
|
| test11 | | | | | | | | | 92.23 79 | | | | | | | | |
|
| door | | | | | | | | | 69.44 361 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 66.98 146 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 89.33 127 | | 89.17 91 | | 76.41 71 | 77.23 173 | | | | | | |
|
| ACMP_Plane | | | | | | 89.33 127 | | 89.17 91 | | 76.41 71 | 77.23 173 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.47 105 | | |
|
| HQP4-MVS | | | | | | | | | | | 77.24 172 | | | 95.11 79 | | | 91.03 152 |
|
| HQP3-MVS | | | | | | | | | 92.19 82 | | | | | | | 85.99 153 | |
|
| NP-MVS | | | | | | 89.62 114 | 68.32 117 | | | | | 90.24 123 | | | | | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 81.95 202 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 81.25 208 | |
|