This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++95.98 196.36 194.82 3497.78 5786.00 5698.29 197.49 590.75 2097.62 598.06 692.59 299.61 395.64 699.02 1298.86 9
SED-MVS95.91 296.28 294.80 3698.77 585.99 5897.13 1297.44 1490.31 2997.71 198.07 492.31 499.58 895.66 499.13 398.84 12
DVP-MVScopyleft95.67 396.02 394.64 4398.78 385.93 6197.09 1496.73 8190.27 3197.04 1098.05 891.47 899.55 1595.62 899.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft95.57 495.67 495.25 998.36 2787.28 1795.56 8297.51 489.13 6197.14 897.91 1191.64 799.62 194.61 1499.17 298.86 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS95.46 595.64 594.91 2498.26 3086.29 5197.46 497.40 2089.03 6596.20 1698.10 289.39 1699.34 3695.88 399.03 1199.10 3
MSP-MVS95.42 695.56 694.98 2198.49 1886.52 4096.91 2397.47 1091.73 896.10 1796.69 6189.90 1299.30 4294.70 1298.04 7099.13 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS95.40 795.37 795.50 798.11 3988.51 795.29 9596.96 5592.09 395.32 2397.08 4289.49 1599.33 3995.10 1198.85 1998.66 18
SD-MVS94.96 1295.33 893.88 6597.25 7886.69 3296.19 4797.11 4590.42 2896.95 1297.27 2989.53 1496.91 24694.38 1698.85 1998.03 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SteuartSystems-ACMMP95.20 895.32 994.85 2996.99 8186.33 4797.33 597.30 2991.38 1195.39 2297.46 1988.98 1999.40 3194.12 1898.89 1898.82 14
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVScopyleft95.20 895.07 1095.59 598.14 3888.48 896.26 4397.28 3185.90 14497.67 398.10 288.41 2099.56 1094.66 1399.19 198.71 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.94.85 1394.94 1194.58 4698.25 3186.33 4796.11 5496.62 9488.14 9296.10 1796.96 4989.09 1898.94 8794.48 1598.68 3998.48 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft95.14 1094.91 1295.83 498.25 3189.65 495.92 6596.96 5591.75 794.02 3996.83 5488.12 2499.55 1593.41 2898.94 1698.28 52
SF-MVS94.97 1194.90 1395.20 1097.84 5287.76 1096.65 3197.48 987.76 10495.71 1997.70 1388.28 2299.35 3493.89 2198.78 2598.48 28
DeepPCF-MVS89.96 194.20 3694.77 1492.49 11496.52 9580.00 21794.00 18797.08 4690.05 3595.65 2197.29 2889.66 1398.97 8393.95 1998.71 3498.50 26
xxxxxxxxxxxxxcwj94.65 1694.70 1594.48 5097.85 5085.63 7295.21 10195.47 17689.44 5095.71 1997.70 1388.28 2299.35 3493.89 2198.78 2598.48 28
NCCC94.81 1494.69 1695.17 1297.83 5387.46 1695.66 7796.93 5892.34 293.94 4096.58 7187.74 2799.44 3092.83 3798.40 5798.62 20
ACMMP_NAP94.74 1594.56 1795.28 898.02 4587.70 1295.68 7597.34 2288.28 8595.30 2497.67 1585.90 5299.54 1993.91 2098.95 1598.60 21
9.1494.47 1897.79 5496.08 5597.44 1486.13 14295.10 2697.40 2388.34 2199.22 4993.25 3298.70 36
ETH3D-3000-0.194.61 1794.44 1995.12 1397.70 6087.71 1195.98 6297.44 1486.67 13095.25 2597.31 2787.73 2899.24 4793.11 3598.76 3098.40 39
HFP-MVS94.52 1894.40 2094.86 2798.61 1086.81 2696.94 1897.34 2288.63 7493.65 4797.21 3486.10 4899.49 2692.35 4998.77 2898.30 48
XVS94.45 2194.32 2194.85 2998.54 1486.60 3896.93 2097.19 3890.66 2592.85 6697.16 3985.02 6399.49 2691.99 6198.56 5198.47 32
zzz-MVS94.47 1994.30 2295.00 1898.42 2286.95 2095.06 11396.97 5291.07 1393.14 6097.56 1684.30 7099.56 1093.43 2698.75 3198.47 32
ZNCC-MVS94.47 1994.28 2395.03 1698.52 1686.96 1996.85 2697.32 2788.24 8693.15 5997.04 4586.17 4799.62 192.40 4798.81 2298.52 24
ACMMPR94.43 2394.28 2394.91 2498.63 986.69 3296.94 1897.32 2788.63 7493.53 5497.26 3185.04 6299.54 1992.35 4998.78 2598.50 26
region2R94.43 2394.27 2594.92 2298.65 886.67 3496.92 2297.23 3588.60 7693.58 5197.27 2985.22 5999.54 1992.21 5298.74 3398.56 23
MTAPA94.42 2594.22 2695.00 1898.42 2286.95 2094.36 16396.97 5291.07 1393.14 6097.56 1684.30 7099.56 1093.43 2698.75 3198.47 32
Regformer-294.33 2894.22 2694.68 4195.54 13186.75 3194.57 14396.70 8691.84 694.41 2996.56 7387.19 3799.13 5793.50 2497.65 8398.16 62
CP-MVS94.34 2794.21 2894.74 4098.39 2586.64 3697.60 397.24 3388.53 7892.73 7397.23 3285.20 6099.32 4092.15 5598.83 2198.25 57
MCST-MVS94.45 2194.20 2995.19 1198.46 2087.50 1595.00 11597.12 4387.13 11792.51 8096.30 8089.24 1799.34 3693.46 2598.62 4898.73 15
testtj94.39 2694.18 3095.00 1898.24 3386.77 3096.16 4897.23 3587.28 11594.85 2897.04 4586.99 4099.52 2391.54 7598.33 6098.71 16
SR-MVS94.23 3294.17 3194.43 5398.21 3585.78 6996.40 3796.90 6088.20 8994.33 3197.40 2384.75 6799.03 6793.35 2997.99 7198.48 28
#test#94.32 2994.14 3294.86 2798.61 1086.81 2696.43 3497.34 2287.51 11093.65 4797.21 3486.10 4899.49 2691.68 7398.77 2898.30 48
Regformer-194.22 3394.13 3394.51 4995.54 13186.36 4694.57 14396.44 10391.69 994.32 3296.56 7387.05 3999.03 6793.35 2997.65 8398.15 63
MSLP-MVS++93.72 4794.08 3492.65 10697.31 7283.43 12195.79 7097.33 2590.03 3693.58 5196.96 4984.87 6597.76 17392.19 5498.66 4496.76 128
test117293.97 4094.07 3593.66 7498.11 3983.45 12096.26 4396.84 6788.33 8294.19 3497.43 2084.24 7299.01 7393.26 3197.98 7298.52 24
MP-MVScopyleft94.25 3094.07 3594.77 3898.47 1986.31 4996.71 2996.98 5189.04 6391.98 9097.19 3685.43 5799.56 1092.06 6098.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft94.24 3194.07 3594.75 3998.06 4386.90 2395.88 6696.94 5785.68 15095.05 2797.18 3787.31 3499.07 6191.90 6998.61 4998.28 52
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MP-MVS-pluss94.21 3494.00 3894.85 2998.17 3686.65 3594.82 12797.17 4186.26 13892.83 6897.87 1285.57 5599.56 1094.37 1798.92 1798.34 43
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
GST-MVS94.21 3493.97 3994.90 2698.41 2486.82 2596.54 3397.19 3888.24 8693.26 5596.83 5485.48 5699.59 791.43 7998.40 5798.30 48
HPM-MVScopyleft94.02 3893.88 4094.43 5398.39 2585.78 6997.25 897.07 4786.90 12592.62 7796.80 5884.85 6699.17 5392.43 4598.65 4698.33 44
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SR-MVS-dyc-post93.82 4593.82 4193.82 6797.92 4784.57 8696.28 4196.76 7787.46 11193.75 4497.43 2084.24 7299.01 7392.73 3897.80 7897.88 84
Regformer-493.91 4293.81 4294.19 6095.36 13685.47 7594.68 13596.41 10691.60 1093.75 4496.71 5985.95 5199.10 6093.21 3396.65 10398.01 76
DeepC-MVS_fast89.43 294.04 3793.79 4394.80 3697.48 6786.78 2895.65 7996.89 6189.40 5392.81 6996.97 4885.37 5899.24 4790.87 8898.69 3798.38 42
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mPP-MVS93.99 3993.78 4494.63 4498.50 1785.90 6696.87 2496.91 5988.70 7291.83 9697.17 3883.96 7799.55 1591.44 7898.64 4798.43 38
APD-MVS_3200maxsize93.78 4693.77 4593.80 7197.92 4784.19 10196.30 3996.87 6486.96 12193.92 4197.47 1883.88 7898.96 8692.71 4197.87 7698.26 56
PGM-MVS93.96 4193.72 4694.68 4198.43 2186.22 5295.30 9297.78 187.45 11393.26 5597.33 2684.62 6899.51 2490.75 9198.57 5098.32 47
DROMVSNet93.44 5493.71 4792.63 10795.21 14482.43 15097.27 796.71 8590.57 2792.88 6595.80 10283.16 8298.16 13993.68 2398.14 6697.31 105
RE-MVS-def93.68 4897.92 4784.57 8696.28 4196.76 7787.46 11193.75 4497.43 2082.94 8592.73 3897.80 7897.88 84
PHI-MVS93.89 4493.65 4994.62 4596.84 8486.43 4396.69 3097.49 585.15 16693.56 5396.28 8285.60 5499.31 4192.45 4498.79 2398.12 66
Regformer-393.68 4893.64 5093.81 7095.36 13684.61 8494.68 13595.83 14991.27 1293.60 5096.71 5985.75 5398.86 9492.87 3696.65 10397.96 78
ETH3D cwj APD-0.1693.91 4293.53 5195.06 1596.76 8687.78 994.92 12097.21 3784.33 18093.89 4297.09 4187.20 3699.29 4491.90 6998.44 5598.12 66
test_prior393.60 5193.53 5193.82 6797.29 7484.49 9094.12 17396.88 6287.67 10792.63 7596.39 7886.62 4298.87 9191.50 7698.67 4198.11 68
TSAR-MVS + GP.93.66 4993.41 5394.41 5596.59 9186.78 2894.40 15593.93 24689.77 4494.21 3395.59 11087.35 3398.61 11092.72 4096.15 11297.83 88
MVS_111021_HR93.45 5393.31 5493.84 6696.99 8184.84 8093.24 22197.24 3388.76 7191.60 10195.85 10086.07 5098.66 10591.91 6698.16 6598.03 74
DELS-MVS93.43 5693.25 5593.97 6295.42 13585.04 7993.06 22897.13 4290.74 2291.84 9495.09 12386.32 4699.21 5091.22 8098.45 5497.65 93
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ETH3 D test640093.64 5093.22 5694.92 2297.79 5486.84 2495.31 8997.26 3282.67 21793.81 4396.29 8187.29 3599.27 4589.87 9798.67 4198.65 19
HPM-MVS_fast93.40 5793.22 5693.94 6498.36 2784.83 8197.15 1196.80 7385.77 14792.47 8197.13 4082.38 9199.07 6190.51 9398.40 5797.92 82
CANet93.54 5293.20 5894.55 4795.65 12685.73 7194.94 11896.69 8891.89 590.69 11395.88 9981.99 10299.54 1993.14 3497.95 7498.39 40
train_agg93.44 5493.08 5994.52 4897.53 6386.49 4194.07 18096.78 7481.86 23792.77 7096.20 8687.63 3099.12 5892.14 5698.69 3797.94 79
abl_693.18 6393.05 6093.57 7697.52 6584.27 10095.53 8396.67 9087.85 10193.20 5897.22 3380.35 11299.18 5291.91 6697.21 8997.26 108
CSCG93.23 6293.05 6093.76 7298.04 4484.07 10396.22 4697.37 2184.15 18290.05 12395.66 10787.77 2699.15 5689.91 9698.27 6298.07 70
DeepC-MVS88.79 393.31 5892.99 6294.26 5896.07 11085.83 6794.89 12296.99 5089.02 6689.56 12697.37 2582.51 9099.38 3292.20 5398.30 6197.57 98
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
agg_prior193.29 5992.97 6394.26 5897.38 6985.92 6393.92 19196.72 8381.96 23192.16 8596.23 8487.85 2598.97 8391.95 6598.55 5397.90 83
EI-MVSNet-Vis-set93.01 6592.92 6493.29 7795.01 15083.51 11994.48 14795.77 15390.87 1692.52 7996.67 6384.50 6999.00 7891.99 6194.44 14097.36 104
ACMMPcopyleft93.24 6192.88 6594.30 5798.09 4285.33 7796.86 2597.45 1388.33 8290.15 12297.03 4781.44 10599.51 2490.85 8995.74 11598.04 73
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CS-MVS92.55 7192.87 6691.58 15694.21 18980.54 20095.30 9296.68 8988.18 9192.09 8894.57 14584.06 7498.05 15692.56 4398.19 6496.15 146
canonicalmvs93.27 6092.75 6794.85 2995.70 12587.66 1396.33 3896.41 10690.00 3794.09 3794.60 14282.33 9398.62 10992.40 4792.86 16798.27 54
CS-MVS-test92.55 7192.72 6892.02 13294.87 16081.34 17796.43 3496.57 9889.04 6391.05 11094.41 14883.85 7998.09 15090.83 9097.47 8696.64 133
ETV-MVS92.74 6892.66 6992.97 9195.20 14584.04 10595.07 11096.51 10190.73 2392.96 6491.19 26084.06 7498.34 12891.72 7296.54 10696.54 138
EI-MVSNet-UG-set92.74 6892.62 7093.12 8394.86 16283.20 12694.40 15595.74 15690.71 2492.05 8996.60 7084.00 7698.99 8091.55 7493.63 14897.17 113
UA-Net92.83 6692.54 7193.68 7396.10 10884.71 8395.66 7796.39 10891.92 493.22 5796.49 7583.16 8298.87 9184.47 16295.47 12097.45 103
alignmvs93.08 6492.50 7294.81 3595.62 12887.61 1495.99 6096.07 12989.77 4494.12 3694.87 12980.56 11198.66 10592.42 4693.10 16298.15 63
casdiffmvs92.51 7392.43 7392.74 10194.41 18381.98 16094.54 14596.23 11889.57 4891.96 9196.17 9082.58 8998.01 16090.95 8695.45 12298.23 58
CDPH-MVS92.83 6692.30 7494.44 5197.79 5486.11 5494.06 18296.66 9180.09 26492.77 7096.63 6886.62 4299.04 6687.40 12598.66 4498.17 61
baseline92.39 7692.29 7592.69 10594.46 18081.77 16494.14 17296.27 11389.22 5791.88 9296.00 9482.35 9297.99 16291.05 8295.27 12798.30 48
MVS_111021_LR92.47 7492.29 7592.98 9095.99 11484.43 9793.08 22696.09 12788.20 8991.12 10995.72 10681.33 10797.76 17391.74 7197.37 8896.75 129
EIA-MVS91.95 7991.94 7791.98 13695.16 14680.01 21695.36 8696.73 8188.44 7989.34 13092.16 22783.82 8098.45 12189.35 10297.06 9297.48 101
VNet92.24 7791.91 7893.24 7996.59 9183.43 12194.84 12696.44 10389.19 5994.08 3895.90 9877.85 14798.17 13888.90 10793.38 15698.13 65
CPTT-MVS91.99 7891.80 7992.55 11198.24 3381.98 16096.76 2896.49 10281.89 23690.24 11896.44 7778.59 13698.61 11089.68 9897.85 7797.06 117
DPM-MVS92.58 7091.74 8095.08 1496.19 10389.31 592.66 23896.56 10083.44 19991.68 10095.04 12486.60 4598.99 8085.60 14997.92 7596.93 124
MG-MVS91.77 8291.70 8192.00 13597.08 8080.03 21593.60 20495.18 19687.85 10190.89 11296.47 7682.06 10098.36 12585.07 15397.04 9397.62 94
EPP-MVSNet91.70 8591.56 8292.13 13095.88 11880.50 20297.33 595.25 19286.15 14089.76 12595.60 10983.42 8198.32 13187.37 12793.25 15997.56 99
3Dnovator+87.14 492.42 7591.37 8395.55 695.63 12788.73 697.07 1696.77 7690.84 1784.02 24696.62 6975.95 16299.34 3687.77 12097.68 8198.59 22
MVSFormer91.68 8691.30 8492.80 9793.86 20483.88 10895.96 6395.90 14384.66 17691.76 9794.91 12777.92 14497.30 21489.64 9997.11 9097.24 109
DP-MVS Recon91.95 7991.28 8593.96 6398.33 2985.92 6394.66 13896.66 9182.69 21690.03 12495.82 10182.30 9499.03 6784.57 16196.48 10996.91 125
diffmvs91.37 9091.23 8691.77 15093.09 22780.27 20592.36 24895.52 17387.03 12091.40 10594.93 12680.08 11697.44 19992.13 5794.56 13697.61 95
Vis-MVSNetpermissive91.75 8391.23 8693.29 7795.32 13983.78 11196.14 5195.98 13589.89 3890.45 11596.58 7175.09 17498.31 13284.75 15996.90 9697.78 91
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Effi-MVS+91.59 8791.11 8893.01 8994.35 18783.39 12394.60 14095.10 20087.10 11890.57 11493.10 19981.43 10698.07 15489.29 10394.48 13897.59 97
MVS_Test91.31 9191.11 8891.93 14094.37 18480.14 20893.46 20995.80 15186.46 13391.35 10693.77 17882.21 9698.09 15087.57 12394.95 12997.55 100
IS-MVSNet91.43 8891.09 9092.46 11595.87 12081.38 17696.95 1793.69 25589.72 4689.50 12895.98 9578.57 13797.77 17283.02 17996.50 10898.22 59
EPNet91.79 8191.02 9194.10 6190.10 31985.25 7896.03 5992.05 28792.83 187.39 16395.78 10379.39 12799.01 7388.13 11797.48 8598.05 72
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PS-MVSNAJ91.18 9490.92 9291.96 13895.26 14282.60 14992.09 25895.70 15886.27 13791.84 9492.46 21779.70 12298.99 8089.08 10595.86 11494.29 224
PVSNet_Blended_VisFu91.38 8990.91 9392.80 9796.39 9883.17 12794.87 12496.66 9183.29 20389.27 13194.46 14780.29 11499.17 5387.57 12395.37 12396.05 157
xiu_mvs_v2_base91.13 9590.89 9491.86 14494.97 15382.42 15192.24 25295.64 16586.11 14391.74 9993.14 19779.67 12598.89 9089.06 10695.46 12194.28 225
3Dnovator86.66 591.73 8490.82 9594.44 5194.59 17486.37 4597.18 1097.02 4989.20 5884.31 24196.66 6473.74 19799.17 5386.74 13597.96 7397.79 90
PAPM_NR91.22 9390.78 9692.52 11397.60 6281.46 17394.37 16296.24 11786.39 13687.41 16094.80 13482.06 10098.48 11682.80 18595.37 12397.61 95
OMC-MVS91.23 9290.62 9793.08 8596.27 10184.07 10393.52 20695.93 13986.95 12289.51 12796.13 9278.50 13898.35 12785.84 14692.90 16696.83 127
nrg03091.08 9690.39 9893.17 8293.07 22886.91 2296.41 3696.26 11488.30 8488.37 14394.85 13282.19 9797.64 18491.09 8182.95 27394.96 192
FIs90.51 10990.35 9990.99 18293.99 20080.98 18795.73 7297.54 389.15 6086.72 17594.68 13881.83 10497.24 22285.18 15288.31 22594.76 202
PVSNet_Blended90.73 10190.32 10091.98 13696.12 10581.25 17992.55 24396.83 6982.04 22989.10 13392.56 21581.04 10998.85 9786.72 13795.91 11395.84 164
lupinMVS90.92 9790.21 10193.03 8893.86 20483.88 10892.81 23593.86 25079.84 26791.76 9794.29 15377.92 14498.04 15790.48 9497.11 9097.17 113
HQP_MVS90.60 10890.19 10291.82 14794.70 17082.73 14295.85 6796.22 11990.81 1886.91 17194.86 13074.23 18598.12 14088.15 11589.99 19494.63 205
FC-MVSNet-test90.27 11290.18 10390.53 19493.71 21079.85 22195.77 7197.59 289.31 5586.27 18494.67 13981.93 10397.01 24084.26 16488.09 22994.71 203
h-mvs3390.80 9890.15 10492.75 10096.01 11282.66 14695.43 8595.53 17289.80 4093.08 6295.64 10875.77 16399.00 7892.07 5878.05 32996.60 134
jason90.80 9890.10 10592.90 9493.04 23083.53 11893.08 22694.15 24080.22 26191.41 10494.91 12776.87 15097.93 16790.28 9596.90 9697.24 109
jason: jason.
API-MVS90.66 10490.07 10692.45 11696.36 9984.57 8696.06 5895.22 19582.39 22089.13 13294.27 15680.32 11398.46 11880.16 23296.71 10194.33 223
xiu_mvs_v1_base_debu90.64 10590.05 10792.40 11793.97 20184.46 9393.32 21195.46 17785.17 16392.25 8294.03 15970.59 23398.57 11290.97 8394.67 13194.18 226
xiu_mvs_v1_base90.64 10590.05 10792.40 11793.97 20184.46 9393.32 21195.46 17785.17 16392.25 8294.03 15970.59 23398.57 11290.97 8394.67 13194.18 226
xiu_mvs_v1_base_debi90.64 10590.05 10792.40 11793.97 20184.46 9393.32 21195.46 17785.17 16392.25 8294.03 15970.59 23398.57 11290.97 8394.67 13194.18 226
test_yl90.69 10290.02 11092.71 10295.72 12382.41 15394.11 17595.12 19885.63 15191.49 10294.70 13674.75 17898.42 12386.13 14292.53 17197.31 105
DCV-MVSNet90.69 10290.02 11092.71 10295.72 12382.41 15394.11 17595.12 19885.63 15191.49 10294.70 13674.75 17898.42 12386.13 14292.53 17197.31 105
VDD-MVS90.74 10089.92 11293.20 8096.27 10183.02 13295.73 7293.86 25088.42 8192.53 7896.84 5362.09 30798.64 10790.95 8692.62 17097.93 81
PVSNet_BlendedMVS89.98 11889.70 11390.82 18696.12 10581.25 17993.92 19196.83 6983.49 19889.10 13392.26 22581.04 10998.85 9786.72 13787.86 23392.35 305
PS-MVSNAJss89.97 11989.62 11491.02 17991.90 25880.85 19295.26 9895.98 13586.26 13886.21 18594.29 15379.70 12297.65 18288.87 10888.10 22794.57 211
OPM-MVS90.12 11489.56 11591.82 14793.14 22583.90 10794.16 17195.74 15688.96 6787.86 15095.43 11372.48 21397.91 16888.10 11890.18 19393.65 259
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
112190.42 11089.49 11693.20 8097.27 7684.46 9392.63 23995.51 17471.01 34791.20 10896.21 8582.92 8699.05 6380.56 22598.07 6996.10 153
XVG-OURS-SEG-HR89.95 12089.45 11791.47 16194.00 19981.21 18291.87 26196.06 13185.78 14688.55 13995.73 10574.67 18197.27 21888.71 11089.64 20395.91 160
Vis-MVSNet (Re-imp)89.59 12989.44 11890.03 21995.74 12275.85 29595.61 8090.80 32287.66 10987.83 15295.40 11476.79 15296.46 27278.37 24996.73 10097.80 89
GeoE90.05 11689.43 11991.90 14395.16 14680.37 20495.80 6994.65 22583.90 18787.55 15994.75 13578.18 14297.62 18681.28 21193.63 14897.71 92
CANet_DTU90.26 11389.41 12092.81 9693.46 21883.01 13393.48 20794.47 22889.43 5287.76 15594.23 15770.54 23799.03 6784.97 15496.39 11096.38 140
MAR-MVS90.30 11189.37 12193.07 8796.61 9084.48 9295.68 7595.67 16082.36 22287.85 15192.85 20576.63 15698.80 10180.01 23396.68 10295.91 160
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
hse-mvs289.88 12489.34 12291.51 15894.83 16481.12 18493.94 19093.91 24989.80 4093.08 6293.60 18375.77 16397.66 18092.07 5877.07 33695.74 169
mvs_anonymous89.37 14089.32 12389.51 24293.47 21774.22 30791.65 26994.83 21782.91 21285.45 20693.79 17681.23 10896.36 27886.47 13994.09 14297.94 79
UniMVSNet_NR-MVSNet89.92 12289.29 12491.81 14993.39 21983.72 11294.43 15397.12 4389.80 4086.46 17893.32 18883.16 8297.23 22384.92 15581.02 30294.49 218
HQP-MVS89.80 12589.28 12591.34 16594.17 19081.56 16794.39 15796.04 13388.81 6885.43 20993.97 16673.83 19597.96 16487.11 13289.77 20194.50 216
PAPR90.02 11789.27 12692.29 12695.78 12180.95 18992.68 23796.22 11981.91 23486.66 17693.75 18082.23 9598.44 12279.40 24394.79 13097.48 101
mvs-test189.45 13489.14 12790.38 20593.33 22077.63 27294.95 11794.36 23187.70 10587.10 16792.81 20973.45 20098.03 15985.57 15093.04 16395.48 175
LFMVS90.08 11589.13 12892.95 9296.71 8782.32 15596.08 5589.91 33786.79 12692.15 8796.81 5662.60 30498.34 12887.18 12993.90 14498.19 60
UniMVSNet (Re)89.80 12589.07 12992.01 13393.60 21484.52 8994.78 13097.47 1089.26 5686.44 18192.32 22282.10 9897.39 21184.81 15880.84 30694.12 230
AdaColmapbinary89.89 12389.07 12992.37 12197.41 6883.03 13194.42 15495.92 14082.81 21486.34 18394.65 14073.89 19399.02 7180.69 22295.51 11895.05 187
VPA-MVSNet89.62 12788.96 13191.60 15593.86 20482.89 13795.46 8497.33 2587.91 9688.43 14293.31 18974.17 18897.40 20887.32 12882.86 27894.52 214
UGNet89.95 12088.95 13292.95 9294.51 17783.31 12495.70 7495.23 19389.37 5487.58 15793.94 16764.00 29798.78 10283.92 16896.31 11196.74 130
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS89.60 12888.92 13391.67 15395.47 13481.15 18392.38 24794.78 22183.11 20689.06 13594.32 15178.67 13596.61 25981.57 20890.89 18797.24 109
LPG-MVS_test89.45 13488.90 13491.12 17194.47 17881.49 17195.30 9296.14 12486.73 12885.45 20695.16 12069.89 24398.10 14287.70 12189.23 21093.77 253
CLD-MVS89.47 13388.90 13491.18 17094.22 18882.07 15892.13 25696.09 12787.90 9785.37 21592.45 21874.38 18397.56 18987.15 13090.43 18993.93 240
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
EI-MVSNet89.10 14488.86 13689.80 23191.84 26078.30 25393.70 20195.01 20385.73 14887.15 16495.28 11579.87 11997.21 22583.81 17087.36 23893.88 243
XVG-OURS89.40 13988.70 13791.52 15794.06 19381.46 17391.27 27496.07 12986.14 14188.89 13795.77 10468.73 26297.26 22087.39 12689.96 19695.83 165
test111189.10 14488.64 13890.48 19995.53 13374.97 30096.08 5584.89 35788.13 9390.16 12196.65 6563.29 30098.10 14286.14 14096.90 9698.39 40
Fast-Effi-MVS+89.41 13788.64 13891.71 15294.74 16680.81 19393.54 20595.10 20083.11 20686.82 17490.67 27879.74 12197.75 17680.51 22793.55 15096.57 136
test_djsdf89.03 14988.64 13890.21 21090.74 30579.28 23595.96 6395.90 14384.66 17685.33 21792.94 20374.02 19197.30 21489.64 9988.53 21894.05 236
ECVR-MVScopyleft89.09 14688.53 14190.77 18895.62 12875.89 29496.16 4884.22 35987.89 9990.20 11996.65 6563.19 30298.10 14285.90 14596.94 9498.33 44
CDS-MVSNet89.45 13488.51 14292.29 12693.62 21383.61 11793.01 22994.68 22481.95 23287.82 15393.24 19378.69 13496.99 24180.34 22993.23 16096.28 143
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
DU-MVS89.34 14188.50 14391.85 14693.04 23083.72 11294.47 15096.59 9689.50 4986.46 17893.29 19177.25 14897.23 22384.92 15581.02 30294.59 209
114514_t89.51 13188.50 14392.54 11298.11 3981.99 15995.16 10696.36 11070.19 34985.81 19095.25 11776.70 15498.63 10882.07 19696.86 9997.00 121
VDDNet89.56 13088.49 14592.76 9995.07 14982.09 15796.30 3993.19 26281.05 25691.88 9296.86 5261.16 31798.33 13088.43 11392.49 17397.84 87
ACMM84.12 989.14 14388.48 14691.12 17194.65 17381.22 18195.31 8996.12 12685.31 16185.92 18994.34 14970.19 24198.06 15585.65 14888.86 21594.08 234
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Effi-MVS+-dtu88.65 16088.35 14789.54 23993.33 22076.39 28994.47 15094.36 23187.70 10585.43 20989.56 30073.45 20097.26 22085.57 15091.28 18094.97 189
ab-mvs89.41 13788.35 14792.60 10895.15 14882.65 14792.20 25495.60 16783.97 18688.55 13993.70 18274.16 18998.21 13782.46 19089.37 20696.94 123
ACMP84.23 889.01 15188.35 14790.99 18294.73 16781.27 17895.07 11095.89 14586.48 13283.67 25594.30 15269.33 25197.99 16287.10 13488.55 21793.72 257
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LCM-MVSNet-Re88.30 16988.32 15088.27 27194.71 16972.41 32993.15 22290.98 31687.77 10379.25 31391.96 23978.35 14095.75 30383.04 17895.62 11696.65 132
MVSTER88.84 15588.29 15190.51 19792.95 23580.44 20393.73 19895.01 20384.66 17687.15 16493.12 19872.79 20997.21 22587.86 11987.36 23893.87 244
TAMVS89.21 14288.29 15191.96 13893.71 21082.62 14893.30 21594.19 23882.22 22487.78 15493.94 16778.83 13196.95 24377.70 25792.98 16596.32 141
sss88.93 15388.26 15390.94 18594.05 19480.78 19491.71 26695.38 18681.55 24588.63 13893.91 17175.04 17595.47 31482.47 18991.61 17896.57 136
QAPM89.51 13188.15 15493.59 7594.92 15784.58 8596.82 2796.70 8678.43 28783.41 26296.19 8973.18 20599.30 4277.11 26496.54 10696.89 126
BH-untuned88.60 16288.13 15590.01 22295.24 14378.50 24893.29 21694.15 24084.75 17484.46 23193.40 18575.76 16597.40 20877.59 25894.52 13794.12 230
PLCcopyleft84.53 789.06 14888.03 15692.15 12997.27 7682.69 14594.29 16595.44 18279.71 26984.01 24794.18 15876.68 15598.75 10377.28 26193.41 15595.02 188
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_part189.00 15287.99 15792.04 13195.94 11783.81 11096.14 5196.05 13286.44 13485.69 19393.73 18171.57 21997.66 18085.80 14780.54 31094.66 204
CNLPA89.07 14787.98 15892.34 12296.87 8384.78 8294.08 17993.24 26081.41 24784.46 23195.13 12275.57 17096.62 25677.21 26293.84 14695.61 173
TranMVSNet+NR-MVSNet88.84 15587.95 15991.49 15992.68 24083.01 13394.92 12096.31 11189.88 3985.53 19993.85 17476.63 15696.96 24281.91 20079.87 32094.50 216
HY-MVS83.01 1289.03 14987.94 16092.29 12694.86 16282.77 13892.08 25994.49 22781.52 24686.93 16992.79 21178.32 14198.23 13479.93 23490.55 18895.88 162
IterMVS-LS88.36 16787.91 16189.70 23593.80 20778.29 25493.73 19895.08 20285.73 14884.75 22491.90 24179.88 11896.92 24583.83 16982.51 27993.89 241
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tttt051788.61 16187.78 16291.11 17494.96 15477.81 26695.35 8789.69 34185.09 16888.05 14894.59 14366.93 27498.48 11683.27 17692.13 17697.03 119
CHOSEN 1792x268888.84 15587.69 16392.30 12596.14 10481.42 17590.01 29695.86 14774.52 32387.41 16093.94 16775.46 17198.36 12580.36 22895.53 11797.12 116
RRT_MVS88.86 15487.68 16492.39 12092.02 25586.09 5594.38 16194.94 20685.45 15787.14 16693.84 17565.88 28997.11 23188.73 10986.77 24593.98 239
WR-MVS88.38 16587.67 16590.52 19693.30 22280.18 20693.26 21895.96 13788.57 7785.47 20592.81 20976.12 15896.91 24681.24 21282.29 28194.47 221
thisisatest053088.67 15987.61 16691.86 14494.87 16080.07 21194.63 13989.90 33884.00 18588.46 14193.78 17766.88 27698.46 11883.30 17592.65 16997.06 117
jajsoiax88.24 17087.50 16790.48 19990.89 29980.14 20895.31 8995.65 16484.97 17084.24 24394.02 16265.31 29197.42 20188.56 11188.52 21993.89 241
BH-RMVSNet88.37 16687.48 16891.02 17995.28 14079.45 22792.89 23393.07 26485.45 15786.91 17194.84 13370.35 23897.76 17373.97 29094.59 13595.85 163
VPNet88.20 17187.47 16990.39 20393.56 21579.46 22694.04 18395.54 17188.67 7386.96 16894.58 14469.33 25197.15 22784.05 16780.53 31294.56 212
NR-MVSNet88.58 16387.47 16991.93 14093.04 23084.16 10294.77 13196.25 11689.05 6280.04 30593.29 19179.02 13097.05 23781.71 20780.05 31794.59 209
WR-MVS_H87.80 18187.37 17189.10 25093.23 22378.12 25795.61 8097.30 2987.90 9783.72 25392.01 23879.65 12696.01 29176.36 26980.54 31093.16 279
1112_ss88.42 16487.33 17291.72 15194.92 15780.98 18792.97 23194.54 22678.16 29283.82 25193.88 17278.78 13397.91 16879.45 23989.41 20596.26 144
OpenMVScopyleft83.78 1188.74 15887.29 17393.08 8592.70 23985.39 7696.57 3296.43 10578.74 28380.85 29196.07 9369.64 24799.01 7378.01 25596.65 10394.83 199
mvs_tets88.06 17687.28 17490.38 20590.94 29579.88 21995.22 10095.66 16285.10 16784.21 24493.94 16763.53 29997.40 20888.50 11288.40 22393.87 244
baseline188.10 17387.28 17490.57 19294.96 15480.07 21194.27 16691.29 30986.74 12787.41 16094.00 16476.77 15396.20 28380.77 22079.31 32595.44 177
CP-MVSNet87.63 18987.26 17688.74 26093.12 22676.59 28695.29 9596.58 9788.43 8083.49 26192.98 20275.28 17295.83 29978.97 24581.15 29893.79 249
anonymousdsp87.84 17987.09 17790.12 21589.13 33080.54 20094.67 13795.55 16982.05 22783.82 25192.12 23071.47 22297.15 22787.15 13087.80 23492.67 294
v2v48287.84 17987.06 17890.17 21190.99 29179.23 23894.00 18795.13 19784.87 17185.53 19992.07 23674.45 18297.45 19784.71 16081.75 29093.85 247
BH-w/o87.57 19487.05 17989.12 24994.90 15977.90 26292.41 24593.51 25782.89 21383.70 25491.34 25475.75 16697.07 23575.49 27793.49 15292.39 303
TAPA-MVS84.62 688.16 17287.01 18091.62 15496.64 8980.65 19694.39 15796.21 12276.38 30386.19 18695.44 11179.75 12098.08 15362.75 34795.29 12596.13 149
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PS-CasMVS87.32 20386.88 18188.63 26392.99 23476.33 29195.33 8896.61 9588.22 8883.30 26693.07 20073.03 20795.79 30278.36 25081.00 30493.75 255
V4287.68 18486.86 18290.15 21390.58 31080.14 20894.24 16895.28 19183.66 19285.67 19491.33 25574.73 18097.41 20684.43 16381.83 28892.89 289
XXY-MVS87.65 18686.85 18390.03 21992.14 24980.60 19993.76 19795.23 19382.94 21184.60 22694.02 16274.27 18495.49 31381.04 21483.68 26694.01 238
HyFIR lowres test88.09 17486.81 18491.93 14096.00 11380.63 19790.01 29695.79 15273.42 33187.68 15692.10 23373.86 19497.96 16480.75 22191.70 17797.19 112
F-COLMAP87.95 17786.80 18591.40 16396.35 10080.88 19194.73 13395.45 18079.65 27082.04 27994.61 14171.13 22498.50 11576.24 27291.05 18594.80 201
v114487.61 19286.79 18690.06 21891.01 29079.34 23193.95 18995.42 18583.36 20285.66 19591.31 25874.98 17697.42 20183.37 17482.06 28493.42 268
Fast-Effi-MVS+-dtu87.44 19986.72 18789.63 23792.04 25377.68 27194.03 18493.94 24585.81 14582.42 27391.32 25770.33 23997.06 23680.33 23090.23 19294.14 229
thres100view90087.63 18986.71 18890.38 20596.12 10578.55 24595.03 11491.58 30087.15 11688.06 14792.29 22468.91 25998.10 14270.13 31191.10 18194.48 219
v887.50 19886.71 18889.89 22591.37 27779.40 22894.50 14695.38 18684.81 17383.60 25891.33 25576.05 15997.42 20182.84 18380.51 31492.84 291
thres600view787.65 18686.67 19090.59 19196.08 10978.72 24194.88 12391.58 30087.06 11988.08 14692.30 22368.91 25998.10 14270.05 31491.10 18194.96 192
tfpn200view987.58 19386.64 19190.41 20295.99 11478.64 24394.58 14191.98 29186.94 12388.09 14491.77 24369.18 25698.10 14270.13 31191.10 18194.48 219
thres40087.62 19186.64 19190.57 19295.99 11478.64 24394.58 14191.98 29186.94 12388.09 14491.77 24369.18 25698.10 14270.13 31191.10 18194.96 192
Baseline_NR-MVSNet87.07 21586.63 19388.40 26791.44 27177.87 26494.23 16992.57 27584.12 18385.74 19292.08 23477.25 14896.04 28882.29 19379.94 31891.30 322
miper_ehance_all_eth87.22 20986.62 19489.02 25392.13 25077.40 27790.91 28094.81 21981.28 25084.32 23990.08 28979.26 12896.62 25683.81 17082.94 27493.04 284
Anonymous2024052988.09 17486.59 19592.58 11096.53 9481.92 16295.99 6095.84 14874.11 32689.06 13595.21 11961.44 31298.81 10083.67 17387.47 23597.01 120
131487.51 19686.57 19690.34 20892.42 24479.74 22392.63 23995.35 19078.35 28880.14 30291.62 25074.05 19097.15 22781.05 21393.53 15194.12 230
AUN-MVS87.78 18286.54 19791.48 16094.82 16581.05 18593.91 19493.93 24683.00 20986.93 16993.53 18469.50 24997.67 17986.14 14077.12 33595.73 170
Test_1112_low_res87.65 18686.51 19891.08 17594.94 15679.28 23591.77 26394.30 23476.04 30883.51 26092.37 22077.86 14697.73 17778.69 24889.13 21296.22 145
c3_l87.14 21486.50 19989.04 25292.20 24777.26 27891.22 27694.70 22382.01 23084.34 23890.43 28278.81 13296.61 25983.70 17281.09 29993.25 273
v1087.25 20686.38 20089.85 22691.19 28379.50 22594.48 14795.45 18083.79 19083.62 25791.19 26075.13 17397.42 20181.94 19980.60 30892.63 296
UniMVSNet_ETH3D87.53 19586.37 20191.00 18192.44 24378.96 24094.74 13295.61 16684.07 18485.36 21694.52 14659.78 32697.34 21382.93 18087.88 23296.71 131
RRT_test8_iter0586.90 21886.36 20288.52 26593.00 23373.27 31794.32 16495.96 13785.50 15684.26 24292.86 20460.76 31997.70 17888.32 11482.29 28194.60 208
v14419287.19 21286.35 20389.74 23290.64 30878.24 25593.92 19195.43 18381.93 23385.51 20191.05 26874.21 18797.45 19782.86 18281.56 29293.53 262
v119287.25 20686.33 20490.00 22390.76 30479.04 23993.80 19595.48 17582.57 21885.48 20491.18 26273.38 20497.42 20182.30 19282.06 28493.53 262
v14887.04 21686.32 20589.21 24690.94 29577.26 27893.71 20094.43 22984.84 17284.36 23790.80 27476.04 16097.05 23782.12 19579.60 32293.31 270
LS3D87.89 17886.32 20592.59 10996.07 11082.92 13695.23 9994.92 21175.66 31082.89 26995.98 9572.48 21399.21 5068.43 32195.23 12895.64 172
test250687.21 21086.28 20790.02 22195.62 12873.64 31396.25 4571.38 37287.89 9990.45 11596.65 6555.29 34198.09 15086.03 14496.94 9498.33 44
PEN-MVS86.80 22286.27 20888.40 26792.32 24675.71 29795.18 10496.38 10987.97 9482.82 27093.15 19673.39 20395.92 29476.15 27379.03 32793.59 260
thres20087.21 21086.24 20990.12 21595.36 13678.53 24693.26 21892.10 28586.42 13588.00 14991.11 26669.24 25598.00 16169.58 31591.04 18693.83 248
miper_enhance_ethall86.90 21886.18 21089.06 25191.66 26877.58 27490.22 29294.82 21879.16 27584.48 23089.10 30379.19 12996.66 25484.06 16682.94 27492.94 287
Anonymous20240521187.68 18486.13 21192.31 12496.66 8880.74 19594.87 12491.49 30480.47 26089.46 12995.44 11154.72 34398.23 13482.19 19489.89 19897.97 77
X-MVStestdata88.31 16886.13 21194.85 2998.54 1486.60 3896.93 2097.19 3890.66 2592.85 6623.41 37185.02 6399.49 2691.99 6198.56 5198.47 32
FMVSNet387.40 20186.11 21391.30 16693.79 20983.64 11594.20 17094.81 21983.89 18884.37 23491.87 24268.45 26596.56 26478.23 25285.36 25193.70 258
MVS87.44 19986.10 21491.44 16292.61 24183.62 11692.63 23995.66 16267.26 35381.47 28392.15 22877.95 14398.22 13679.71 23695.48 11992.47 300
PCF-MVS84.11 1087.74 18386.08 21592.70 10494.02 19584.43 9789.27 30695.87 14673.62 33084.43 23394.33 15078.48 13998.86 9470.27 30794.45 13994.81 200
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v192192086.97 21786.06 21689.69 23690.53 31378.11 25893.80 19595.43 18381.90 23585.33 21791.05 26872.66 21097.41 20682.05 19781.80 28993.53 262
thisisatest051587.33 20285.99 21791.37 16493.49 21679.55 22490.63 28489.56 34480.17 26287.56 15890.86 27167.07 27398.28 13381.50 20993.02 16496.29 142
cl2286.78 22385.98 21889.18 24892.34 24577.62 27390.84 28194.13 24281.33 24983.97 24890.15 28773.96 19296.60 26184.19 16582.94 27493.33 269
GBi-Net87.26 20485.98 21891.08 17594.01 19683.10 12895.14 10794.94 20683.57 19484.37 23491.64 24666.59 28196.34 27978.23 25285.36 25193.79 249
test187.26 20485.98 21891.08 17594.01 19683.10 12895.14 10794.94 20683.57 19484.37 23491.64 24666.59 28196.34 27978.23 25285.36 25193.79 249
EPNet_dtu86.49 23585.94 22188.14 27690.24 31772.82 32194.11 17592.20 28386.66 13179.42 31292.36 22173.52 19895.81 30171.26 30193.66 14795.80 167
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ET-MVSNet_ETH3D87.51 19685.91 22292.32 12393.70 21283.93 10692.33 24990.94 31884.16 18172.09 34992.52 21669.90 24295.85 29889.20 10488.36 22497.17 113
v124086.78 22385.85 22389.56 23890.45 31477.79 26793.61 20395.37 18881.65 24185.43 20991.15 26471.50 22197.43 20081.47 21082.05 28693.47 266
FMVSNet287.19 21285.82 22491.30 16694.01 19683.67 11494.79 12994.94 20683.57 19483.88 24992.05 23766.59 28196.51 26777.56 25985.01 25493.73 256
cl____86.52 23285.78 22588.75 25892.03 25476.46 28790.74 28294.30 23481.83 23983.34 26490.78 27575.74 16896.57 26281.74 20581.54 29393.22 276
DIV-MVS_self_test86.53 23185.78 22588.75 25892.02 25576.45 28890.74 28294.30 23481.83 23983.34 26490.82 27375.75 16696.57 26281.73 20681.52 29493.24 274
eth_miper_zixun_eth86.50 23385.77 22788.68 26191.94 25775.81 29690.47 28694.89 21282.05 22784.05 24590.46 28175.96 16196.77 25082.76 18679.36 32493.46 267
v7n86.81 22185.76 22889.95 22490.72 30679.25 23795.07 11095.92 14084.45 17982.29 27490.86 27172.60 21297.53 19179.42 24280.52 31393.08 283
TR-MVS86.78 22385.76 22889.82 22894.37 18478.41 25092.47 24492.83 26881.11 25586.36 18292.40 21968.73 26297.48 19473.75 29389.85 20093.57 261
bset_n11_16_dypcd86.83 22085.55 23090.65 19088.22 34181.70 16588.88 31490.42 32585.26 16285.49 20390.69 27767.11 27297.02 23989.51 10184.39 25893.23 275
pm-mvs186.61 22885.54 23189.82 22891.44 27180.18 20695.28 9794.85 21583.84 18981.66 28292.62 21472.45 21596.48 26979.67 23778.06 32892.82 292
PatchMatch-RL86.77 22685.54 23190.47 20195.88 11882.71 14490.54 28592.31 28079.82 26884.32 23991.57 25368.77 26196.39 27573.16 29593.48 15492.32 306
DTE-MVSNet86.11 23985.48 23387.98 27991.65 26974.92 30194.93 11995.75 15587.36 11482.26 27593.04 20172.85 20895.82 30074.04 28977.46 33393.20 277
test-LLR85.87 24385.41 23487.25 29590.95 29371.67 33289.55 30089.88 33983.41 20084.54 22887.95 32167.25 26995.11 31981.82 20293.37 15794.97 189
baseline286.50 23385.39 23589.84 22791.12 28776.70 28491.88 26088.58 34682.35 22379.95 30690.95 27073.42 20297.63 18580.27 23189.95 19795.19 184
PAPM86.68 22785.39 23590.53 19493.05 22979.33 23489.79 29994.77 22278.82 28081.95 28093.24 19376.81 15197.30 21466.94 33093.16 16194.95 195
DP-MVS87.25 20685.36 23792.90 9497.65 6183.24 12594.81 12892.00 28974.99 31881.92 28195.00 12572.66 21099.05 6366.92 33292.33 17496.40 139
GA-MVS86.61 22885.27 23890.66 18991.33 28078.71 24290.40 28793.81 25385.34 16085.12 21989.57 29961.25 31497.11 23180.99 21789.59 20496.15 146
SCA86.32 23785.18 23989.73 23492.15 24876.60 28591.12 27791.69 29883.53 19785.50 20288.81 30766.79 27796.48 26976.65 26790.35 19196.12 150
Anonymous2023121186.59 23085.13 24090.98 18496.52 9581.50 16996.14 5196.16 12373.78 32883.65 25692.15 22863.26 30197.37 21282.82 18481.74 29194.06 235
D2MVS85.90 24285.09 24188.35 26990.79 30277.42 27691.83 26295.70 15880.77 25880.08 30490.02 29066.74 27996.37 27681.88 20187.97 23191.26 323
tpmrst85.35 25284.99 24286.43 30990.88 30067.88 35388.71 31691.43 30680.13 26386.08 18888.80 30973.05 20696.02 29082.48 18883.40 27295.40 179
cascas86.43 23684.98 24390.80 18792.10 25280.92 19090.24 29095.91 14273.10 33483.57 25988.39 31465.15 29297.46 19684.90 15791.43 17994.03 237
PMMVS85.71 24784.96 24487.95 28088.90 33377.09 28088.68 31790.06 33372.32 34086.47 17790.76 27672.15 21694.40 32581.78 20493.49 15292.36 304
CostFormer85.77 24684.94 24588.26 27291.16 28672.58 32789.47 30491.04 31576.26 30686.45 18089.97 29270.74 23196.86 24982.35 19187.07 24395.34 182
LTVRE_ROB82.13 1386.26 23884.90 24690.34 20894.44 18281.50 16992.31 25194.89 21283.03 20879.63 31092.67 21269.69 24697.79 17171.20 30286.26 24691.72 314
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVP-Stereo85.97 24184.86 24789.32 24490.92 29782.19 15692.11 25794.19 23878.76 28278.77 31591.63 24968.38 26696.56 26475.01 28493.95 14389.20 345
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
XVG-ACMP-BASELINE86.00 24084.84 24889.45 24391.20 28278.00 25991.70 26795.55 16985.05 16982.97 26892.25 22654.49 34497.48 19482.93 18087.45 23792.89 289
CVMVSNet84.69 26684.79 24984.37 32791.84 26064.92 36193.70 20191.47 30566.19 35586.16 18795.28 11567.18 27193.33 34080.89 21990.42 19094.88 197
PatchmatchNetpermissive85.85 24484.70 25089.29 24591.76 26375.54 29888.49 31991.30 30881.63 24385.05 22088.70 31171.71 21796.24 28274.61 28789.05 21396.08 154
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PVSNet78.82 1885.55 24884.65 25188.23 27494.72 16871.93 33087.12 33292.75 27178.80 28184.95 22290.53 28064.43 29696.71 25374.74 28593.86 14596.06 156
OurMVSNet-221017-085.35 25284.64 25287.49 28990.77 30372.59 32694.01 18694.40 23084.72 17579.62 31193.17 19561.91 30996.72 25181.99 19881.16 29693.16 279
miper_lstm_enhance85.27 25584.59 25387.31 29291.28 28174.63 30287.69 32894.09 24481.20 25481.36 28689.85 29574.97 17794.30 32881.03 21679.84 32193.01 285
IterMVS-SCA-FT85.45 24984.53 25488.18 27591.71 26576.87 28390.19 29392.65 27485.40 15981.44 28490.54 27966.79 27795.00 32281.04 21481.05 30092.66 295
RPSCF85.07 25884.27 25587.48 29092.91 23670.62 34291.69 26892.46 27676.20 30782.67 27295.22 11863.94 29897.29 21777.51 26085.80 24994.53 213
MS-PatchMatch85.05 25984.16 25687.73 28391.42 27578.51 24791.25 27593.53 25677.50 29480.15 30191.58 25161.99 30895.51 31075.69 27694.35 14189.16 346
FMVSNet185.85 24484.11 25791.08 17592.81 23783.10 12895.14 10794.94 20681.64 24282.68 27191.64 24659.01 33096.34 27975.37 27983.78 26393.79 249
tpm84.73 26484.02 25886.87 30690.33 31568.90 34989.06 31189.94 33680.85 25785.75 19189.86 29468.54 26495.97 29277.76 25684.05 26295.75 168
CHOSEN 280x42085.15 25783.99 25988.65 26292.47 24278.40 25179.68 35992.76 27074.90 32081.41 28589.59 29869.85 24595.51 31079.92 23595.29 12592.03 310
IterMVS84.88 26283.98 26087.60 28591.44 27176.03 29390.18 29492.41 27783.24 20581.06 29090.42 28366.60 28094.28 32979.46 23880.98 30592.48 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs485.43 25083.86 26190.16 21290.02 32282.97 13590.27 28892.67 27375.93 30980.73 29291.74 24571.05 22595.73 30478.85 24683.46 27091.78 313
CR-MVSNet85.35 25283.76 26290.12 21590.58 31079.34 23185.24 34291.96 29378.27 28985.55 19787.87 32471.03 22695.61 30573.96 29189.36 20795.40 179
DWT-MVSNet_test84.95 26183.68 26388.77 25691.43 27473.75 31191.74 26590.98 31680.66 25983.84 25087.36 32962.44 30597.11 23178.84 24785.81 24895.46 176
ACMH80.38 1785.36 25183.68 26390.39 20394.45 18180.63 19794.73 13394.85 21582.09 22677.24 32392.65 21360.01 32497.58 18772.25 29984.87 25592.96 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test-mter84.54 26783.64 26587.25 29590.95 29371.67 33289.55 30089.88 33979.17 27484.54 22887.95 32155.56 33895.11 31981.82 20293.37 15794.97 189
MDTV_nov1_ep1383.56 26691.69 26769.93 34687.75 32791.54 30278.60 28584.86 22388.90 30669.54 24896.03 28970.25 30888.93 214
ACMH+81.04 1485.05 25983.46 26789.82 22894.66 17279.37 22994.44 15294.12 24382.19 22578.04 31892.82 20858.23 33297.54 19073.77 29282.90 27792.54 297
IB-MVS80.51 1585.24 25683.26 26891.19 16992.13 25079.86 22091.75 26491.29 30983.28 20480.66 29488.49 31361.28 31398.46 11880.99 21779.46 32395.25 183
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tfpnnormal84.72 26583.23 26989.20 24792.79 23880.05 21394.48 14795.81 15082.38 22181.08 28991.21 25969.01 25896.95 24361.69 34980.59 30990.58 336
MSDG84.86 26383.09 27090.14 21493.80 20780.05 21389.18 30993.09 26378.89 27878.19 31691.91 24065.86 29097.27 21868.47 32088.45 22193.11 281
TransMVSNet (Re)84.43 26883.06 27188.54 26491.72 26478.44 24995.18 10492.82 26982.73 21579.67 30992.12 23073.49 19995.96 29371.10 30668.73 35491.21 325
tpm284.08 27082.94 27287.48 29091.39 27671.27 33489.23 30890.37 32771.95 34284.64 22589.33 30167.30 26896.55 26675.17 28187.09 24294.63 205
SixPastTwentyTwo83.91 27382.90 27386.92 30390.99 29170.67 34193.48 20791.99 29085.54 15477.62 32292.11 23260.59 32096.87 24876.05 27477.75 33093.20 277
TESTMET0.1,183.74 27582.85 27486.42 31089.96 32371.21 33689.55 30087.88 34877.41 29583.37 26387.31 33056.71 33593.65 33780.62 22492.85 16894.40 222
pmmvs584.21 26982.84 27588.34 27088.95 33276.94 28292.41 24591.91 29575.63 31180.28 29991.18 26264.59 29595.57 30677.09 26583.47 26992.53 298
EPMVS83.90 27482.70 27687.51 28790.23 31872.67 32388.62 31881.96 36481.37 24885.01 22188.34 31566.31 28494.45 32475.30 28087.12 24195.43 178
tpmvs83.35 27982.07 27787.20 29991.07 28971.00 33988.31 32291.70 29778.91 27780.49 29787.18 33369.30 25497.08 23468.12 32583.56 26893.51 265
COLMAP_ROBcopyleft80.39 1683.96 27182.04 27889.74 23295.28 14079.75 22294.25 16792.28 28175.17 31678.02 31993.77 17858.60 33197.84 17065.06 34085.92 24791.63 316
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MVS_030483.46 27681.92 27988.10 27790.63 30977.49 27593.26 21893.75 25480.04 26580.44 29887.24 33247.94 35895.55 30775.79 27588.16 22691.26 323
test0.0.03 182.41 28481.69 28084.59 32588.23 34072.89 32090.24 29087.83 34983.41 20079.86 30789.78 29667.25 26988.99 36065.18 33883.42 27191.90 312
pmmvs683.42 27781.60 28188.87 25588.01 34477.87 26494.96 11694.24 23774.67 32278.80 31491.09 26760.17 32396.49 26877.06 26675.40 34092.23 308
RPMNet83.95 27281.53 28291.21 16890.58 31079.34 23185.24 34296.76 7771.44 34485.55 19782.97 35170.87 22998.91 8961.01 35189.36 20795.40 179
AllTest83.42 27781.39 28389.52 24095.01 15077.79 26793.12 22390.89 32077.41 29576.12 33193.34 18654.08 34697.51 19268.31 32284.27 26093.26 271
PatchT82.68 28281.27 28486.89 30590.09 32070.94 34084.06 34890.15 33074.91 31985.63 19683.57 34869.37 25094.87 32365.19 33788.50 22094.84 198
USDC82.76 28081.26 28587.26 29491.17 28474.55 30389.27 30693.39 25978.26 29075.30 33692.08 23454.43 34596.63 25571.64 30085.79 25090.61 333
EU-MVSNet81.32 29880.95 28682.42 33688.50 33663.67 36293.32 21191.33 30764.02 35780.57 29692.83 20761.21 31692.27 34976.34 27080.38 31591.32 321
Patchmtry82.71 28180.93 28788.06 27890.05 32176.37 29084.74 34691.96 29372.28 34181.32 28787.87 32471.03 22695.50 31268.97 31780.15 31692.32 306
CL-MVSNet_self_test81.74 29080.53 28885.36 31985.96 35272.45 32890.25 28993.07 26481.24 25279.85 30887.29 33170.93 22892.52 34766.95 32969.23 35091.11 329
MIMVSNet82.59 28380.53 28888.76 25791.51 27078.32 25286.57 33590.13 33179.32 27180.70 29388.69 31252.98 35093.07 34466.03 33588.86 21594.90 196
our_test_381.93 28780.46 29086.33 31188.46 33773.48 31588.46 32091.11 31176.46 30176.69 32788.25 31766.89 27594.36 32668.75 31879.08 32691.14 327
EG-PatchMatch MVS82.37 28580.34 29188.46 26690.27 31679.35 23092.80 23694.33 23377.14 29973.26 34690.18 28647.47 36096.72 25170.25 30887.32 24089.30 343
tpm cat181.96 28680.27 29287.01 30191.09 28871.02 33887.38 33191.53 30366.25 35480.17 30086.35 33768.22 26796.15 28669.16 31682.29 28193.86 246
dp81.47 29680.23 29385.17 32289.92 32465.49 35986.74 33390.10 33276.30 30581.10 28887.12 33462.81 30395.92 29468.13 32479.88 31994.09 233
testgi80.94 30380.20 29483.18 33287.96 34566.29 35691.28 27390.70 32483.70 19178.12 31792.84 20651.37 35290.82 35663.34 34482.46 28092.43 301
K. test v381.59 29380.15 29585.91 31689.89 32569.42 34892.57 24287.71 35085.56 15373.44 34589.71 29755.58 33795.52 30977.17 26369.76 34892.78 293
ppachtmachnet_test81.84 28880.07 29687.15 30088.46 33774.43 30689.04 31292.16 28475.33 31477.75 32088.99 30466.20 28595.37 31565.12 33977.60 33191.65 315
Patchmatch-RL test81.67 29179.96 29786.81 30785.42 35671.23 33582.17 35587.50 35278.47 28677.19 32482.50 35270.81 23093.48 33882.66 18772.89 34495.71 171
ADS-MVSNet81.56 29479.78 29886.90 30491.35 27871.82 33183.33 35189.16 34572.90 33682.24 27685.77 34164.98 29393.76 33564.57 34183.74 26495.12 185
Anonymous2023120681.03 30179.77 29984.82 32487.85 34670.26 34491.42 27292.08 28673.67 32977.75 32089.25 30262.43 30693.08 34361.50 35082.00 28791.12 328
ADS-MVSNet281.66 29279.71 30087.50 28891.35 27874.19 30883.33 35188.48 34772.90 33682.24 27685.77 34164.98 29393.20 34264.57 34183.74 26495.12 185
FMVSNet581.52 29579.60 30187.27 29391.17 28477.95 26091.49 27192.26 28276.87 30076.16 33087.91 32351.67 35192.34 34867.74 32681.16 29691.52 317
gg-mvs-nofinetune81.77 28979.37 30288.99 25490.85 30177.73 27086.29 33679.63 36874.88 32183.19 26769.05 36260.34 32196.11 28775.46 27894.64 13493.11 281
Patchmatch-test81.37 29779.30 30387.58 28690.92 29774.16 30980.99 35787.68 35170.52 34876.63 32888.81 30771.21 22392.76 34660.01 35586.93 24495.83 165
KD-MVS_self_test80.20 30779.24 30483.07 33385.64 35565.29 36091.01 27993.93 24678.71 28476.32 32986.40 33659.20 32992.93 34572.59 29769.35 34991.00 331
Anonymous2024052180.44 30579.21 30584.11 33085.75 35467.89 35292.86 23493.23 26175.61 31275.59 33587.47 32850.03 35394.33 32771.14 30581.21 29590.12 338
CMPMVSbinary59.16 2180.52 30479.20 30684.48 32683.98 35967.63 35589.95 29893.84 25264.79 35666.81 35791.14 26557.93 33395.17 31776.25 27188.10 22790.65 332
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_040281.30 29979.17 30787.67 28493.19 22478.17 25692.98 23091.71 29675.25 31576.02 33390.31 28459.23 32896.37 27650.22 36283.63 26788.47 352
test20.0379.95 30979.08 30882.55 33585.79 35367.74 35491.09 27891.08 31281.23 25374.48 34189.96 29361.63 31090.15 35760.08 35376.38 33789.76 339
LF4IMVS80.37 30679.07 30984.27 32986.64 34869.87 34789.39 30591.05 31476.38 30374.97 33890.00 29147.85 35994.25 33074.55 28880.82 30788.69 350
JIA-IIPM81.04 30078.98 31087.25 29588.64 33473.48 31581.75 35689.61 34373.19 33382.05 27873.71 35966.07 28895.87 29771.18 30484.60 25792.41 302
pmmvs-eth3d80.97 30278.72 31187.74 28284.99 35879.97 21890.11 29591.65 29975.36 31373.51 34486.03 33859.45 32793.96 33475.17 28172.21 34589.29 344
UnsupCasMVSNet_eth80.07 30878.27 31285.46 31885.24 35772.63 32588.45 32194.87 21482.99 21071.64 35288.07 32056.34 33691.75 35373.48 29463.36 35992.01 311
TinyColmap79.76 31177.69 31385.97 31391.71 26573.12 31889.55 30090.36 32875.03 31772.03 35090.19 28546.22 36196.19 28563.11 34581.03 30188.59 351
TDRefinement79.81 31077.34 31487.22 29879.24 36675.48 29993.12 22392.03 28876.45 30275.01 33791.58 25149.19 35696.44 27370.22 31069.18 35189.75 340
MIMVSNet179.38 31377.28 31585.69 31786.35 34973.67 31291.61 27092.75 27178.11 29372.64 34888.12 31948.16 35791.97 35260.32 35277.49 33291.43 320
YYNet179.22 31477.20 31685.28 32188.20 34372.66 32485.87 33890.05 33574.33 32562.70 35987.61 32666.09 28792.03 35066.94 33072.97 34391.15 326
MDA-MVSNet_test_wron79.21 31577.19 31785.29 32088.22 34172.77 32285.87 33890.06 33374.34 32462.62 36087.56 32766.14 28691.99 35166.90 33373.01 34291.10 330
OpenMVS_ROBcopyleft74.94 1979.51 31277.03 31886.93 30287.00 34776.23 29292.33 24990.74 32368.93 35174.52 34088.23 31849.58 35596.62 25657.64 35784.29 25987.94 354
MDA-MVSNet-bldmvs78.85 31676.31 31986.46 30889.76 32673.88 31088.79 31590.42 32579.16 27559.18 36188.33 31660.20 32294.04 33162.00 34868.96 35291.48 319
DSMNet-mixed76.94 32176.29 32078.89 33983.10 36256.11 36987.78 32679.77 36760.65 35975.64 33488.71 31061.56 31188.34 36160.07 35489.29 20992.21 309
PM-MVS78.11 31976.12 32184.09 33183.54 36170.08 34588.97 31385.27 35679.93 26674.73 33986.43 33534.70 36693.48 33879.43 24172.06 34688.72 349
KD-MVS_2432*160078.50 31776.02 32285.93 31486.22 35074.47 30484.80 34492.33 27879.29 27276.98 32585.92 33953.81 34893.97 33267.39 32757.42 36289.36 341
miper_refine_blended78.50 31776.02 32285.93 31486.22 35074.47 30484.80 34492.33 27879.29 27276.98 32585.92 33953.81 34893.97 33267.39 32757.42 36289.36 341
new-patchmatchnet76.41 32275.17 32480.13 33882.65 36459.61 36487.66 32991.08 31278.23 29169.85 35383.22 34954.76 34291.63 35564.14 34364.89 35789.16 346
PVSNet_073.20 2077.22 32074.83 32584.37 32790.70 30771.10 33783.09 35389.67 34272.81 33873.93 34383.13 35060.79 31893.70 33668.54 31950.84 36588.30 353
UnsupCasMVSNet_bld76.23 32373.27 32685.09 32383.79 36072.92 31985.65 34193.47 25871.52 34368.84 35579.08 35649.77 35493.21 34166.81 33460.52 36189.13 348
MVS-HIRNet73.70 32472.20 32778.18 34291.81 26256.42 36882.94 35482.58 36255.24 36168.88 35466.48 36355.32 34095.13 31858.12 35688.42 22283.01 357
new_pmnet72.15 32570.13 32878.20 34182.95 36365.68 35783.91 34982.40 36362.94 35864.47 35879.82 35542.85 36386.26 36357.41 35874.44 34182.65 359
pmmvs371.81 32668.71 32981.11 33775.86 36770.42 34386.74 33383.66 36058.95 36068.64 35680.89 35436.93 36589.52 35963.10 34663.59 35883.39 356
N_pmnet68.89 32768.44 33070.23 34689.07 33128.79 37888.06 32319.50 37969.47 35071.86 35184.93 34361.24 31591.75 35354.70 35977.15 33490.15 337
FPMVS64.63 32962.55 33170.88 34570.80 36956.71 36684.42 34784.42 35851.78 36349.57 36381.61 35323.49 37081.48 36640.61 36776.25 33874.46 362
LCM-MVSNet66.00 32862.16 33277.51 34364.51 37358.29 36583.87 35090.90 31948.17 36454.69 36273.31 36016.83 37686.75 36265.47 33661.67 36087.48 355
PMMVS259.60 33156.40 33369.21 34768.83 37046.58 37373.02 36477.48 37155.07 36249.21 36472.95 36117.43 37580.04 36749.32 36344.33 36780.99 361
EGC-MVSNET61.97 33056.37 33478.77 34089.63 32873.50 31489.12 31082.79 3610.21 3761.24 37784.80 34439.48 36490.04 35844.13 36475.94 33972.79 363
Gipumacopyleft57.99 33354.91 33567.24 34888.51 33565.59 35852.21 36790.33 32943.58 36642.84 36751.18 36820.29 37385.07 36434.77 36870.45 34751.05 367
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high58.88 33254.22 33672.86 34456.50 37656.67 36780.75 35886.00 35373.09 33537.39 36864.63 36522.17 37179.49 36843.51 36523.96 37082.43 360
test_method50.52 33548.47 33756.66 35152.26 37718.98 38041.51 36981.40 36510.10 37144.59 36675.01 35828.51 36868.16 36953.54 36049.31 36682.83 358
PMVScopyleft47.18 2252.22 33448.46 33863.48 34945.72 37846.20 37473.41 36378.31 36941.03 36730.06 37065.68 3646.05 37783.43 36530.04 36965.86 35560.80 364
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN43.23 33742.29 33946.03 35365.58 37237.41 37573.51 36264.62 37333.99 36828.47 37247.87 36919.90 37467.91 37022.23 37124.45 36932.77 368
EMVS42.07 33841.12 34044.92 35463.45 37435.56 37773.65 36163.48 37433.05 36926.88 37345.45 37021.27 37267.14 37119.80 37223.02 37132.06 369
tmp_tt35.64 33939.24 34124.84 35514.87 37923.90 37962.71 36551.51 3786.58 37336.66 36962.08 36644.37 36230.34 37552.40 36122.00 37220.27 370
MVEpermissive39.65 2343.39 33638.59 34257.77 35056.52 37548.77 37255.38 36658.64 37629.33 37028.96 37152.65 3674.68 37864.62 37228.11 37033.07 36859.93 365
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k22.14 34029.52 3430.00 3590.00 3820.00 3830.00 37095.76 1540.00 3770.00 37894.29 15375.66 1690.00 3780.00 3760.00 3760.00 374
wuyk23d21.27 34120.48 34423.63 35668.59 37136.41 37649.57 3686.85 3809.37 3727.89 3744.46 3764.03 37931.37 37417.47 37316.07 3733.12 371
testmvs8.92 34211.52 3451.12 3581.06 3800.46 38286.02 3370.65 3810.62 3742.74 3759.52 3740.31 3810.45 3772.38 3740.39 3742.46 373
test1238.76 34311.22 3461.39 3570.85 3810.97 38185.76 3400.35 3820.54 3752.45 3768.14 3750.60 3800.48 3762.16 3750.17 3752.71 372
ab-mvs-re7.82 34410.43 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37893.88 1720.00 3820.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas6.64 3458.86 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37779.70 1220.00 3780.00 3760.00 3760.00 374
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
FOURS198.86 185.54 7498.29 197.49 589.79 4396.29 15
MSC_two_6792asdad96.52 197.78 5790.86 196.85 6599.61 396.03 199.06 999.07 4
PC_three_145282.47 21997.09 997.07 4492.72 198.04 15792.70 4299.02 1298.86 9
No_MVS96.52 197.78 5790.86 196.85 6599.61 396.03 199.06 999.07 4
test_one_060198.58 1285.83 6797.44 1491.05 1596.78 1398.06 691.45 11
eth-test20.00 382
eth-test0.00 382
ZD-MVS98.15 3786.62 3797.07 4783.63 19394.19 3496.91 5187.57 3299.26 4691.99 6198.44 55
IU-MVS98.77 586.00 5696.84 6781.26 25197.26 795.50 1099.13 399.03 6
OPU-MVS96.21 398.00 4690.85 397.13 1297.08 4292.59 298.94 8792.25 5198.99 1498.84 12
test_241102_TWO97.44 1490.31 2997.62 598.07 491.46 1099.58 895.66 499.12 698.98 8
test_241102_ONE98.77 585.99 5897.44 1490.26 3397.71 197.96 1092.31 499.38 32
save fliter97.85 5085.63 7295.21 10196.82 7189.44 50
test_0728_THIRD90.75 2097.04 1098.05 892.09 699.55 1595.64 699.13 399.13 1
test_0728_SECOND95.01 1798.79 286.43 4397.09 1497.49 599.61 395.62 899.08 798.99 7
test072698.78 385.93 6197.19 997.47 1090.27 3197.64 498.13 191.47 8
GSMVS96.12 150
test_part298.55 1387.22 1896.40 14
sam_mvs171.70 21896.12 150
sam_mvs70.60 232
ambc83.06 33479.99 36563.51 36377.47 36092.86 26774.34 34284.45 34528.74 36795.06 32173.06 29668.89 35390.61 333
MTGPAbinary96.97 52
test_post188.00 3249.81 37369.31 25395.53 30876.65 267
test_post10.29 37270.57 23695.91 296
patchmatchnet-post83.76 34771.53 22096.48 269
GG-mvs-BLEND87.94 28189.73 32777.91 26187.80 32578.23 37080.58 29583.86 34659.88 32595.33 31671.20 30292.22 17590.60 335
MTMP96.16 4860.64 375
gm-plane-assit89.60 32968.00 35177.28 29888.99 30497.57 18879.44 240
test9_res91.91 6698.71 3498.07 70
TEST997.53 6386.49 4194.07 18096.78 7481.61 24492.77 7096.20 8687.71 2999.12 58
test_897.49 6686.30 5094.02 18596.76 7781.86 23792.70 7496.20 8687.63 3099.02 71
agg_prior290.54 9298.68 3998.27 54
agg_prior97.38 6985.92 6396.72 8392.16 8598.97 83
TestCases89.52 24095.01 15077.79 26790.89 32077.41 29576.12 33193.34 18654.08 34697.51 19268.31 32284.27 26093.26 271
test_prior485.96 6094.11 175
test_prior294.12 17387.67 10792.63 7596.39 7886.62 4291.50 7698.67 41
test_prior93.82 6797.29 7484.49 9096.88 6298.87 9198.11 68
旧先验293.36 21071.25 34594.37 3097.13 23086.74 135
新几何293.11 225
新几何193.10 8497.30 7384.35 9995.56 16871.09 34691.26 10796.24 8382.87 8798.86 9479.19 24498.10 6896.07 155
旧先验196.79 8581.81 16395.67 16096.81 5686.69 4197.66 8296.97 122
无先验93.28 21796.26 11473.95 32799.05 6380.56 22596.59 135
原ACMM292.94 232
原ACMM192.01 13397.34 7181.05 18596.81 7278.89 27890.45 11595.92 9782.65 8898.84 9980.68 22398.26 6396.14 148
test22296.55 9381.70 16592.22 25395.01 20368.36 35290.20 11996.14 9180.26 11597.80 7896.05 157
testdata298.75 10378.30 251
segment_acmp87.16 38
testdata90.49 19896.40 9777.89 26395.37 18872.51 33993.63 4996.69 6182.08 9997.65 18283.08 17797.39 8795.94 159
testdata192.15 25587.94 95
test1294.34 5697.13 7986.15 5396.29 11291.04 11185.08 6199.01 7398.13 6797.86 86
plane_prior794.70 17082.74 141
plane_prior694.52 17682.75 13974.23 185
plane_prior596.22 11998.12 14088.15 11589.99 19494.63 205
plane_prior494.86 130
plane_prior382.75 13990.26 3386.91 171
plane_prior295.85 6790.81 18
plane_prior194.59 174
plane_prior82.73 14295.21 10189.66 4789.88 199
n20.00 383
nn0.00 383
door-mid85.49 354
lessismore_v086.04 31288.46 33768.78 35080.59 36673.01 34790.11 28855.39 33996.43 27475.06 28365.06 35692.90 288
LGP-MVS_train91.12 17194.47 17881.49 17196.14 12486.73 12885.45 20695.16 12069.89 24398.10 14287.70 12189.23 21093.77 253
test1196.57 98
door85.33 355
HQP5-MVS81.56 167
HQP-NCC94.17 19094.39 15788.81 6885.43 209
ACMP_Plane94.17 19094.39 15788.81 6885.43 209
BP-MVS87.11 132
HQP4-MVS85.43 20997.96 16494.51 215
HQP3-MVS96.04 13389.77 201
HQP2-MVS73.83 195
NP-MVS94.37 18482.42 15193.98 165
MDTV_nov1_ep13_2view55.91 37087.62 33073.32 33284.59 22770.33 23974.65 28695.50 174
ACMMP++_ref87.47 235
ACMMP++88.01 230
Test By Simon80.02 117
ITE_SJBPF88.24 27391.88 25977.05 28192.92 26685.54 15480.13 30393.30 19057.29 33496.20 28372.46 29884.71 25691.49 318
DeepMVS_CXcopyleft56.31 35274.23 36851.81 37156.67 37744.85 36548.54 36575.16 35727.87 36958.74 37340.92 36652.22 36458.39 366