This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++95.98 196.36 194.82 2997.78 5186.00 4898.29 197.49 690.75 1897.62 598.06 692.59 299.61 395.64 999.02 1298.86 10
SED-MVS95.91 296.28 294.80 3198.77 585.99 5097.13 1497.44 1590.31 2797.71 198.07 492.31 499.58 995.66 799.13 398.84 13
DVP-MVScopyleft95.67 396.02 394.64 3798.78 385.93 5397.09 1696.73 7790.27 3097.04 1198.05 891.47 899.55 1595.62 1199.08 798.45 35
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft95.57 495.67 495.25 998.36 2587.28 1695.56 8597.51 589.13 6097.14 997.91 1191.64 799.62 194.61 1799.17 298.86 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS95.46 595.64 594.91 2098.26 2886.29 4497.46 697.40 2089.03 6396.20 1798.10 289.39 1699.34 3395.88 699.03 1199.10 4
MSP-MVS95.42 695.56 694.98 1898.49 1786.52 3496.91 2597.47 1191.73 996.10 1896.69 5689.90 1299.30 3994.70 1598.04 6599.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS95.40 795.37 795.50 798.11 3688.51 795.29 9596.96 5192.09 595.32 2397.08 3989.49 1599.33 3695.10 1498.85 1998.66 19
SD-MVS94.96 1295.33 893.88 5597.25 6986.69 2696.19 4997.11 4290.42 2696.95 1397.27 2889.53 1496.91 23894.38 1998.85 1998.03 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SteuartSystems-ACMMP95.20 895.32 994.85 2496.99 7286.33 4097.33 797.30 2891.38 1195.39 2297.46 2088.98 1999.40 2994.12 2198.89 1898.82 15
Skip Steuart: Steuart Systems R&D Blog.
test_fmvsm_n_192094.71 1695.11 1093.50 6395.79 11484.62 7396.15 5297.64 289.85 3997.19 897.89 1286.28 4098.71 9197.11 298.08 6497.17 104
SMA-MVScopyleft95.20 895.07 1195.59 598.14 3588.48 896.26 4697.28 3085.90 14397.67 398.10 288.41 2099.56 1194.66 1699.19 198.71 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.94.85 1394.94 1294.58 4098.25 2986.33 4096.11 5596.62 8688.14 9496.10 1896.96 4589.09 1898.94 7494.48 1898.68 3698.48 29
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 6596.96 5191.75 894.02 3696.83 5188.12 2499.55 1593.41 3298.94 1698.28 49
SF-MVS94.97 1194.90 1495.20 1197.84 4787.76 996.65 3497.48 1087.76 10695.71 2097.70 1588.28 2399.35 3293.89 2598.78 2598.48 29
DeepPCF-MVS89.96 194.20 3194.77 1592.49 10496.52 8780.00 20994.00 18497.08 4390.05 3495.65 2197.29 2789.66 1398.97 7193.95 2398.71 3198.50 26
NCCC94.81 1494.69 1695.17 1397.83 4887.46 1595.66 7996.93 5592.34 393.94 3796.58 6687.74 2799.44 2892.83 4098.40 5198.62 20
ACMMP_NAP94.74 1594.56 1795.28 898.02 4187.70 1095.68 7797.34 2288.28 8795.30 2497.67 1685.90 4499.54 1993.91 2498.95 1598.60 22
9.1494.47 1897.79 4996.08 5697.44 1586.13 14195.10 2597.40 2388.34 2299.22 4393.25 3498.70 33
CS-MVS94.12 3294.44 1993.17 7096.55 8483.08 11997.63 396.95 5391.71 1093.50 4796.21 7685.61 4598.24 12693.64 2798.17 5798.19 57
HFP-MVS94.52 1894.40 2094.86 2398.61 1086.81 2396.94 2097.34 2288.63 7693.65 4197.21 3286.10 4299.49 2592.35 5198.77 2798.30 46
MVS_030494.60 1794.38 2195.23 1095.41 12887.49 1496.53 3792.75 26793.82 193.07 5597.84 1483.66 7099.59 797.61 198.76 2898.61 21
patch_mono-293.74 4194.32 2292.01 12097.54 5778.37 24793.40 20897.19 3488.02 9694.99 2797.21 3288.35 2198.44 11294.07 2298.09 6299.23 1
XVS94.45 2094.32 2294.85 2498.54 1386.60 3296.93 2297.19 3490.66 2392.85 5997.16 3785.02 5599.49 2591.99 6498.56 4798.47 32
CS-MVS-test94.02 3494.29 2493.24 6796.69 7883.24 11197.49 596.92 5692.14 492.90 5795.77 9885.02 5598.33 12193.03 3798.62 4398.13 61
ZNCC-MVS94.47 1994.28 2595.03 1598.52 1586.96 1896.85 2897.32 2688.24 8893.15 5197.04 4286.17 4199.62 192.40 4998.81 2298.52 25
ACMMPR94.43 2294.28 2594.91 2098.63 986.69 2696.94 2097.32 2688.63 7693.53 4697.26 3085.04 5499.54 1992.35 5198.78 2598.50 26
region2R94.43 2294.27 2794.92 1998.65 886.67 2896.92 2497.23 3388.60 7893.58 4397.27 2885.22 5199.54 1992.21 5498.74 3098.56 24
MTAPA94.42 2494.22 2895.00 1798.42 2186.95 1994.36 16096.97 4991.07 1293.14 5297.56 1784.30 6399.56 1193.43 3098.75 2998.47 32
CP-MVS94.34 2594.21 2994.74 3598.39 2386.64 3097.60 497.24 3188.53 8092.73 6797.23 3185.20 5299.32 3792.15 5798.83 2198.25 54
MCST-MVS94.45 2094.20 3095.19 1298.46 1987.50 1395.00 11597.12 4087.13 11692.51 7396.30 7389.24 1799.34 3393.46 2998.62 4398.73 16
dcpmvs_293.49 4594.19 3191.38 15597.69 5476.78 27994.25 16396.29 10288.33 8494.46 2896.88 4888.07 2598.64 9493.62 2898.09 6298.73 16
SR-MVS94.23 2894.17 3294.43 4598.21 3285.78 6096.40 4096.90 5888.20 9294.33 3097.40 2384.75 6099.03 5793.35 3397.99 6698.48 29
MSLP-MVS++93.72 4294.08 3392.65 9697.31 6583.43 10695.79 7197.33 2490.03 3593.58 4396.96 4584.87 5897.76 16492.19 5698.66 3996.76 121
MP-MVScopyleft94.25 2694.07 3494.77 3398.47 1886.31 4296.71 3196.98 4889.04 6291.98 8397.19 3485.43 4999.56 1192.06 6398.79 2398.44 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft94.24 2794.07 3494.75 3498.06 3986.90 2195.88 6696.94 5485.68 14995.05 2697.18 3587.31 3399.07 5291.90 7098.61 4598.28 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MP-MVS-pluss94.21 2994.00 3694.85 2498.17 3386.65 2994.82 12697.17 3886.26 13592.83 6197.87 1385.57 4799.56 1194.37 2098.92 1798.34 41
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
GST-MVS94.21 2993.97 3794.90 2298.41 2286.82 2296.54 3697.19 3488.24 8893.26 4896.83 5185.48 4899.59 791.43 7798.40 5198.30 46
HPM-MVScopyleft94.02 3493.88 3894.43 4598.39 2385.78 6097.25 1097.07 4486.90 12492.62 7096.80 5584.85 5999.17 4692.43 4798.65 4198.33 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SR-MVS-dyc-post93.82 3993.82 3993.82 5797.92 4384.57 7596.28 4496.76 7387.46 11093.75 3997.43 2184.24 6499.01 6292.73 4197.80 7297.88 76
DeepC-MVS_fast89.43 294.04 3393.79 4094.80 3197.48 6186.78 2495.65 8196.89 5989.40 5292.81 6296.97 4485.37 5099.24 4290.87 8798.69 3498.38 40
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mPP-MVS93.99 3693.78 4194.63 3898.50 1685.90 5796.87 2696.91 5788.70 7491.83 9297.17 3683.96 6799.55 1591.44 7698.64 4298.43 37
APD-MVS_3200maxsize93.78 4093.77 4293.80 5997.92 4384.19 8896.30 4296.87 6186.96 12093.92 3897.47 1983.88 6898.96 7392.71 4497.87 7098.26 53
PGM-MVS93.96 3793.72 4394.68 3698.43 2086.22 4595.30 9397.78 187.45 11293.26 4897.33 2684.62 6199.51 2390.75 8998.57 4698.32 45
EC-MVSNet93.44 4793.71 4492.63 9795.21 13582.43 14097.27 996.71 8090.57 2592.88 5895.80 9683.16 7498.16 13293.68 2698.14 5997.31 97
RE-MVS-def93.68 4597.92 4384.57 7596.28 4496.76 7387.46 11093.75 3997.43 2182.94 7792.73 4197.80 7297.88 76
PHI-MVS93.89 3893.65 4694.62 3996.84 7586.43 3796.69 3297.49 685.15 16393.56 4596.28 7485.60 4699.31 3892.45 4698.79 2398.12 63
test_fmvsmvis_n_192093.44 4793.55 4793.10 7393.67 20784.26 8795.83 6996.14 11589.00 6692.43 7597.50 1883.37 7398.72 9096.61 397.44 7896.32 134
TSAR-MVS + GP.93.66 4393.41 4894.41 4796.59 8286.78 2494.40 15393.93 24089.77 4494.21 3195.59 10587.35 3298.61 9892.72 4396.15 10197.83 80
MVS_111021_HR93.45 4693.31 4993.84 5696.99 7284.84 6993.24 21997.24 3188.76 7191.60 9795.85 9386.07 4398.66 9291.91 6898.16 5898.03 69
DELS-MVS93.43 5093.25 5093.97 5295.42 12785.04 6893.06 22697.13 3990.74 2091.84 9095.09 12386.32 3999.21 4491.22 7898.45 4997.65 85
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast93.40 5193.22 5193.94 5498.36 2584.83 7097.15 1396.80 6985.77 14692.47 7497.13 3882.38 8299.07 5290.51 9498.40 5197.92 75
CANet93.54 4493.20 5294.55 4195.65 12085.73 6294.94 11896.69 8291.89 790.69 10895.88 9281.99 9399.54 1993.14 3697.95 6898.39 38
train_agg93.44 4793.08 5394.52 4297.53 5886.49 3594.07 17696.78 7081.86 23692.77 6496.20 7787.63 2999.12 5092.14 5898.69 3497.94 72
CSCG93.23 5593.05 5493.76 6098.04 4084.07 9096.22 4897.37 2184.15 18090.05 11895.66 10287.77 2699.15 4989.91 9798.27 5598.07 65
DeepC-MVS88.79 393.31 5292.99 5594.26 5096.07 10285.83 5894.89 12196.99 4789.02 6589.56 12297.37 2582.51 8199.38 3092.20 5598.30 5497.57 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EI-MVSNet-Vis-set93.01 5792.92 5693.29 6595.01 14283.51 10594.48 14595.77 14490.87 1492.52 7296.67 5884.50 6299.00 6691.99 6494.44 13497.36 96
ACMMPcopyleft93.24 5492.88 5794.30 4998.09 3885.33 6696.86 2797.45 1488.33 8490.15 11797.03 4381.44 9699.51 2390.85 8895.74 10498.04 68
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
casdiffmvs_mvgpermissive92.96 5892.83 5893.35 6494.59 16583.40 10895.00 11596.34 10090.30 2992.05 8196.05 8583.43 7198.15 13392.07 6095.67 10598.49 28
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
canonicalmvs93.27 5392.75 5994.85 2495.70 11987.66 1196.33 4196.41 9690.00 3694.09 3494.60 14482.33 8498.62 9792.40 4992.86 16398.27 51
ETV-MVS92.74 6192.66 6092.97 8195.20 13684.04 9295.07 11196.51 9290.73 2192.96 5691.19 26384.06 6598.34 11991.72 7296.54 9596.54 130
EI-MVSNet-UG-set92.74 6192.62 6193.12 7294.86 15383.20 11394.40 15395.74 14790.71 2292.05 8196.60 6584.00 6698.99 6891.55 7493.63 14497.17 104
UA-Net92.83 5992.54 6293.68 6196.10 10084.71 7295.66 7996.39 9791.92 693.22 5096.49 6983.16 7498.87 7884.47 16495.47 11097.45 95
alignmvs93.08 5692.50 6394.81 3095.62 12287.61 1295.99 6196.07 12189.77 4494.12 3394.87 12980.56 10298.66 9292.42 4893.10 15998.15 60
casdiffmvspermissive92.51 6492.43 6492.74 9194.41 17781.98 15094.54 14396.23 10989.57 4891.96 8596.17 8182.58 8098.01 15190.95 8595.45 11298.23 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CDPH-MVS92.83 5992.30 6594.44 4397.79 4986.11 4794.06 17896.66 8380.09 26392.77 6496.63 6386.62 3699.04 5687.40 12698.66 3998.17 59
baseline92.39 6792.29 6692.69 9594.46 17481.77 15594.14 16996.27 10489.22 5691.88 8896.00 8682.35 8397.99 15391.05 8095.27 11798.30 46
MVS_111021_LR92.47 6592.29 6692.98 8095.99 10884.43 8493.08 22496.09 11988.20 9291.12 10495.72 10181.33 9897.76 16491.74 7197.37 8096.75 122
EIA-MVS91.95 7091.94 6891.98 12495.16 13780.01 20895.36 8896.73 7788.44 8189.34 12692.16 22983.82 6998.45 11189.35 10197.06 8397.48 93
VNet92.24 6891.91 6993.24 6796.59 8283.43 10694.84 12596.44 9489.19 5894.08 3595.90 9177.85 13798.17 13188.90 10793.38 15398.13 61
CPTT-MVS91.99 6991.80 7092.55 10198.24 3181.98 15096.76 3096.49 9381.89 23590.24 11396.44 7178.59 12698.61 9889.68 9897.85 7197.06 109
DPM-MVS92.58 6391.74 7195.08 1496.19 9589.31 592.66 23796.56 9183.44 19891.68 9695.04 12486.60 3898.99 6885.60 15097.92 6996.93 117
MG-MVS91.77 7391.70 7292.00 12397.08 7180.03 20793.60 20295.18 18587.85 10490.89 10696.47 7082.06 9198.36 11685.07 15497.04 8497.62 86
EPP-MVSNet91.70 7691.56 7392.13 11995.88 11180.50 19197.33 795.25 18186.15 13989.76 12195.60 10483.42 7298.32 12387.37 12893.25 15697.56 91
3Dnovator+87.14 492.42 6691.37 7495.55 695.63 12188.73 697.07 1896.77 7290.84 1584.02 24896.62 6475.95 15399.34 3387.77 12097.68 7598.59 23
MVSFormer91.68 7791.30 7592.80 8793.86 19883.88 9595.96 6395.90 13584.66 17591.76 9394.91 12777.92 13497.30 20889.64 9997.11 8197.24 100
DP-MVS Recon91.95 7091.28 7693.96 5398.33 2785.92 5594.66 13796.66 8382.69 21790.03 11995.82 9582.30 8599.03 5784.57 16296.48 9896.91 118
diffmvspermissive91.37 8191.23 7791.77 14093.09 22180.27 19592.36 24695.52 16487.03 11991.40 10194.93 12680.08 10697.44 19292.13 5994.56 12997.61 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive91.75 7491.23 7793.29 6595.32 13083.78 9796.14 5395.98 12789.89 3790.45 11096.58 6675.09 16598.31 12484.75 16096.90 8797.78 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Effi-MVS+91.59 7891.11 7993.01 7994.35 18183.39 10994.60 13995.10 18987.10 11790.57 10993.10 20181.43 9798.07 14789.29 10394.48 13297.59 89
MVS_Test91.31 8291.11 7991.93 12894.37 17880.14 20093.46 20795.80 14286.46 13191.35 10293.77 18082.21 8798.09 14487.57 12494.95 12097.55 92
IS-MVSNet91.43 7991.09 8192.46 10595.87 11381.38 16796.95 1993.69 25089.72 4689.50 12495.98 8878.57 12797.77 16383.02 18296.50 9798.22 56
EPNet91.79 7291.02 8294.10 5190.10 31785.25 6796.03 6092.05 28792.83 287.39 16195.78 9779.39 11799.01 6288.13 11697.48 7798.05 67
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PS-MVSNAJ91.18 8590.92 8391.96 12695.26 13382.60 13992.09 25895.70 14986.27 13491.84 9092.46 21979.70 11298.99 6889.08 10595.86 10394.29 223
PVSNet_Blended_VisFu91.38 8090.91 8492.80 8796.39 9083.17 11494.87 12396.66 8383.29 20289.27 12794.46 14880.29 10499.17 4687.57 12495.37 11396.05 149
xiu_mvs_v2_base91.13 8690.89 8591.86 13494.97 14582.42 14192.24 25295.64 15686.11 14291.74 9593.14 19979.67 11598.89 7789.06 10695.46 11194.28 224
3Dnovator86.66 591.73 7590.82 8694.44 4394.59 16586.37 3997.18 1297.02 4689.20 5784.31 24496.66 5973.74 18999.17 4686.74 13697.96 6797.79 82
PAPM_NR91.22 8490.78 8792.52 10397.60 5681.46 16494.37 15996.24 10886.39 13387.41 15894.80 13582.06 9198.48 10582.80 18895.37 11397.61 87
OMC-MVS91.23 8390.62 8893.08 7596.27 9384.07 9093.52 20495.93 13186.95 12189.51 12396.13 8378.50 12898.35 11885.84 14892.90 16296.83 120
nrg03091.08 8790.39 8993.17 7093.07 22286.91 2096.41 3896.26 10588.30 8688.37 14194.85 13282.19 8897.64 17591.09 7982.95 27694.96 187
FIs90.51 10090.35 9090.99 17693.99 19480.98 17795.73 7497.54 489.15 5986.72 17794.68 14081.83 9597.24 21685.18 15388.31 22694.76 197
PVSNet_Blended90.73 9290.32 9191.98 12496.12 9781.25 16992.55 24196.83 6582.04 22989.10 12992.56 21781.04 10098.85 8286.72 13895.91 10295.84 156
lupinMVS90.92 8890.21 9293.03 7893.86 19883.88 9592.81 23493.86 24479.84 26591.76 9394.29 15477.92 13498.04 14990.48 9597.11 8197.17 104
HQP_MVS90.60 9990.19 9391.82 13794.70 16182.73 13295.85 6796.22 11090.81 1686.91 17094.86 13074.23 17798.12 13488.15 11489.99 19094.63 199
FC-MVSNet-test90.27 10290.18 9490.53 18893.71 20479.85 21495.77 7297.59 389.31 5486.27 18694.67 14181.93 9497.01 23284.26 16688.09 22994.71 198
h-mvs3390.80 8990.15 9592.75 9096.01 10482.66 13695.43 8795.53 16389.80 4093.08 5395.64 10375.77 15499.00 6692.07 6078.05 33196.60 126
jason90.80 8990.10 9692.90 8493.04 22483.53 10493.08 22494.15 23380.22 26091.41 10094.91 12776.87 14197.93 15890.28 9696.90 8797.24 100
jason: jason.
API-MVS90.66 9590.07 9792.45 10696.36 9184.57 7596.06 5995.22 18482.39 22089.13 12894.27 15780.32 10398.46 10880.16 23596.71 9294.33 220
xiu_mvs_v1_base_debu90.64 9690.05 9892.40 10793.97 19584.46 8193.32 21095.46 16685.17 16092.25 7694.03 16270.59 22598.57 10190.97 8294.67 12494.18 225
xiu_mvs_v1_base90.64 9690.05 9892.40 10793.97 19584.46 8193.32 21095.46 16685.17 16092.25 7694.03 16270.59 22598.57 10190.97 8294.67 12494.18 225
xiu_mvs_v1_base_debi90.64 9690.05 9892.40 10793.97 19584.46 8193.32 21095.46 16685.17 16092.25 7694.03 16270.59 22598.57 10190.97 8294.67 12494.18 225
test_yl90.69 9390.02 10192.71 9295.72 11782.41 14394.11 17195.12 18785.63 15191.49 9894.70 13874.75 16998.42 11486.13 14392.53 16797.31 97
DCV-MVSNet90.69 9390.02 10192.71 9295.72 11782.41 14394.11 17195.12 18785.63 15191.49 9894.70 13874.75 16998.42 11486.13 14392.53 16797.31 97
VDD-MVS90.74 9189.92 10393.20 6996.27 9383.02 12195.73 7493.86 24488.42 8392.53 7196.84 5062.09 30498.64 9490.95 8592.62 16697.93 74
test_vis1_n_192089.39 13389.84 10488.04 27392.97 22872.64 32294.71 13496.03 12686.18 13891.94 8796.56 6861.63 30795.74 29893.42 3195.11 11995.74 161
PVSNet_BlendedMVS89.98 10989.70 10590.82 18196.12 9781.25 16993.92 18996.83 6583.49 19789.10 12992.26 22781.04 10098.85 8286.72 13887.86 23392.35 305
PS-MVSNAJss89.97 11089.62 10691.02 17391.90 25480.85 18295.26 9895.98 12786.26 13586.21 18794.29 15479.70 11297.65 17288.87 10988.10 22794.57 204
SDMVSNet90.19 10489.61 10791.93 12896.00 10583.09 11892.89 23195.98 12788.73 7286.85 17495.20 11872.09 20997.08 22688.90 10789.85 19695.63 166
OPM-MVS90.12 10589.56 10891.82 13793.14 21983.90 9494.16 16895.74 14788.96 6787.86 14895.43 10972.48 20597.91 15988.10 11890.18 18993.65 259
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
mvsmamba89.96 11189.50 10991.33 15892.90 23181.82 15396.68 3392.37 27589.03 6387.00 16694.85 13273.05 19797.65 17291.03 8188.63 21794.51 209
XVG-OURS-SEG-HR89.95 11289.45 11091.47 15294.00 19381.21 17291.87 26196.06 12385.78 14588.55 13795.73 10074.67 17397.27 21288.71 11089.64 20195.91 152
Vis-MVSNet (Re-imp)89.59 12289.44 11190.03 21595.74 11675.85 29295.61 8390.80 32287.66 10987.83 15095.40 11076.79 14396.46 26578.37 25296.73 9197.80 81
GeoE90.05 10789.43 11291.90 13395.16 13780.37 19495.80 7094.65 21783.90 18587.55 15794.75 13778.18 13297.62 17781.28 21593.63 14497.71 84
CANet_DTU90.26 10389.41 11392.81 8693.46 21383.01 12293.48 20594.47 22089.43 5187.76 15394.23 15870.54 22999.03 5784.97 15596.39 9996.38 133
MAR-MVS90.30 10189.37 11493.07 7796.61 8184.48 8095.68 7795.67 15182.36 22287.85 14992.85 20676.63 14798.80 8680.01 23696.68 9395.91 152
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
hse-mvs289.88 11689.34 11591.51 14994.83 15581.12 17493.94 18793.91 24389.80 4093.08 5393.60 18475.77 15497.66 17192.07 6077.07 33895.74 161
mvs_anonymous89.37 13489.32 11689.51 23893.47 21274.22 30591.65 26894.83 20782.91 21285.45 20893.79 17881.23 9996.36 27286.47 14094.09 13797.94 72
UniMVSNet_NR-MVSNet89.92 11489.29 11791.81 13993.39 21483.72 9894.43 15197.12 4089.80 4086.46 18093.32 19083.16 7497.23 21784.92 15681.02 30594.49 214
HQP-MVS89.80 11789.28 11891.34 15794.17 18481.56 15894.39 15596.04 12488.81 6885.43 21193.97 16973.83 18797.96 15587.11 13389.77 19994.50 212
PAPR90.02 10889.27 11992.29 11595.78 11580.95 17992.68 23696.22 11081.91 23386.66 17893.75 18282.23 8698.44 11279.40 24794.79 12297.48 93
LFMVS90.08 10689.13 12092.95 8296.71 7782.32 14596.08 5689.91 33786.79 12592.15 8096.81 5362.60 30298.34 11987.18 13093.90 14098.19 57
UniMVSNet (Re)89.80 11789.07 12192.01 12093.60 20984.52 7894.78 12997.47 1189.26 5586.44 18392.32 22482.10 8997.39 20484.81 15980.84 30994.12 229
AdaColmapbinary89.89 11589.07 12192.37 11097.41 6283.03 12094.42 15295.92 13282.81 21486.34 18594.65 14273.89 18599.02 6080.69 22695.51 10895.05 182
VPA-MVSNet89.62 12088.96 12391.60 14593.86 19882.89 12795.46 8697.33 2487.91 9988.43 14093.31 19174.17 18097.40 20187.32 12982.86 28194.52 207
UGNet89.95 11288.95 12492.95 8294.51 17183.31 11095.70 7695.23 18289.37 5387.58 15593.94 17064.00 29398.78 8783.92 17196.31 10096.74 123
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS89.60 12188.92 12591.67 14395.47 12681.15 17392.38 24594.78 21183.11 20689.06 13194.32 15278.67 12596.61 25281.57 21290.89 18397.24 100
FA-MVS(test-final)89.66 11988.91 12691.93 12894.57 16880.27 19591.36 27294.74 21384.87 16889.82 12092.61 21674.72 17298.47 10783.97 17093.53 14797.04 111
LPG-MVS_test89.45 12788.90 12791.12 16594.47 17281.49 16295.30 9396.14 11586.73 12785.45 20895.16 12069.89 23598.10 13687.70 12289.23 20893.77 252
CLD-MVS89.47 12688.90 12791.18 16394.22 18382.07 14892.13 25696.09 11987.90 10085.37 21792.45 22074.38 17597.56 18087.15 13190.43 18593.93 238
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
EI-MVSNet89.10 13888.86 12989.80 22791.84 25678.30 24993.70 19995.01 19285.73 14787.15 16395.28 11279.87 10997.21 21983.81 17387.36 23993.88 241
test_cas_vis1_n_192088.83 15288.85 13088.78 25291.15 28476.72 28093.85 19294.93 19983.23 20592.81 6296.00 8661.17 31594.45 31891.67 7394.84 12195.17 179
XVG-OURS89.40 13288.70 13191.52 14894.06 18781.46 16491.27 27496.07 12186.14 14088.89 13395.77 9868.73 25597.26 21487.39 12789.96 19295.83 157
iter_conf_final89.42 12988.69 13291.60 14595.12 14082.93 12595.75 7392.14 28487.32 11487.12 16594.07 16067.09 26797.55 18190.61 9189.01 21294.32 221
test111189.10 13888.64 13390.48 19495.53 12574.97 29896.08 5684.89 35988.13 9590.16 11696.65 6063.29 29898.10 13686.14 14196.90 8798.39 38
Fast-Effi-MVS+89.41 13088.64 13391.71 14294.74 15780.81 18393.54 20395.10 18983.11 20686.82 17690.67 28079.74 11197.75 16780.51 23093.55 14696.57 128
test_djsdf89.03 14488.64 13390.21 20590.74 30379.28 23095.96 6395.90 13584.66 17585.33 21992.94 20574.02 18397.30 20889.64 9988.53 21994.05 235
RRT_MVS89.09 14088.62 13690.49 19292.85 23279.65 21896.41 3894.41 22388.22 9085.50 20494.77 13669.36 24397.31 20789.33 10286.73 24694.51 209
ECVR-MVScopyleft89.09 14088.53 13790.77 18395.62 12275.89 29196.16 5084.22 36187.89 10290.20 11496.65 6063.19 30098.10 13685.90 14696.94 8598.33 42
CDS-MVSNet89.45 12788.51 13892.29 11593.62 20883.61 10393.01 22794.68 21681.95 23187.82 15193.24 19578.69 12496.99 23380.34 23293.23 15796.28 137
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
DU-MVS89.34 13588.50 13991.85 13693.04 22483.72 9894.47 14896.59 8889.50 4986.46 18093.29 19377.25 13997.23 21784.92 15681.02 30594.59 202
114514_t89.51 12488.50 13992.54 10298.11 3681.99 14995.16 10696.36 9970.19 35485.81 19295.25 11476.70 14598.63 9682.07 20096.86 9097.00 114
VDDNet89.56 12388.49 14192.76 8995.07 14182.09 14796.30 4293.19 25781.05 25591.88 8896.86 4961.16 31698.33 12188.43 11392.49 16997.84 79
ACMM84.12 989.14 13788.48 14291.12 16594.65 16481.22 17195.31 9196.12 11885.31 15985.92 19194.34 15070.19 23398.06 14885.65 14988.86 21594.08 233
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Effi-MVS+-dtu88.65 15588.35 14389.54 23593.33 21576.39 28694.47 14894.36 22587.70 10785.43 21189.56 30273.45 19297.26 21485.57 15191.28 17694.97 184
ab-mvs89.41 13088.35 14392.60 9895.15 13982.65 13792.20 25495.60 15883.97 18488.55 13793.70 18374.16 18198.21 13082.46 19389.37 20496.94 116
ACMP84.23 889.01 14688.35 14390.99 17694.73 15881.27 16895.07 11195.89 13786.48 13083.67 25694.30 15369.33 24497.99 15387.10 13588.55 21893.72 256
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LCM-MVSNet-Re88.30 16588.32 14688.27 26694.71 16072.41 32793.15 22090.98 31787.77 10579.25 31491.96 24178.35 13095.75 29783.04 18195.62 10696.65 125
MVSTER88.84 14988.29 14790.51 19192.95 22980.44 19293.73 19695.01 19284.66 17587.15 16393.12 20072.79 20197.21 21987.86 11987.36 23993.87 242
TAMVS89.21 13688.29 14791.96 12693.71 20482.62 13893.30 21494.19 23182.22 22487.78 15293.94 17078.83 12196.95 23577.70 26192.98 16196.32 134
sss88.93 14788.26 14990.94 17994.05 18880.78 18491.71 26595.38 17581.55 24488.63 13693.91 17475.04 16695.47 30882.47 19291.61 17496.57 128
QAPM89.51 12488.15 15093.59 6294.92 14984.58 7496.82 2996.70 8178.43 28783.41 26396.19 8073.18 19699.30 3977.11 26896.54 9596.89 119
BH-untuned88.60 15788.13 15190.01 21895.24 13478.50 24393.29 21594.15 23384.75 17284.46 23493.40 18775.76 15697.40 20177.59 26294.52 13194.12 229
iter_conf0588.85 14888.08 15291.17 16494.27 18281.64 15795.18 10392.15 28386.23 13787.28 16294.07 16063.89 29697.55 18190.63 9089.00 21394.32 221
PLCcopyleft84.53 789.06 14388.03 15392.15 11897.27 6882.69 13594.29 16195.44 17179.71 26784.01 24994.18 15976.68 14698.75 8877.28 26593.41 15295.02 183
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA89.07 14287.98 15492.34 11196.87 7484.78 7194.08 17593.24 25581.41 24684.46 23495.13 12275.57 16196.62 24977.21 26693.84 14295.61 168
TranMVSNet+NR-MVSNet88.84 14987.95 15591.49 15092.68 23683.01 12294.92 12096.31 10189.88 3885.53 20193.85 17776.63 14796.96 23481.91 20479.87 32294.50 212
HY-MVS83.01 1289.03 14487.94 15692.29 11594.86 15382.77 12892.08 25994.49 21981.52 24586.93 16892.79 21278.32 13198.23 12779.93 23790.55 18495.88 154
IterMVS-LS88.36 16387.91 15789.70 23193.80 20178.29 25093.73 19695.08 19185.73 14784.75 22691.90 24379.88 10896.92 23783.83 17282.51 28293.89 239
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
sd_testset88.59 15887.85 15890.83 18096.00 10580.42 19392.35 24794.71 21488.73 7286.85 17495.20 11867.31 26296.43 26779.64 24189.85 19695.63 166
tttt051788.61 15687.78 15991.11 16894.96 14677.81 26295.35 8989.69 34185.09 16588.05 14694.59 14566.93 26998.48 10583.27 17992.13 17297.03 112
CHOSEN 1792x268888.84 14987.69 16092.30 11496.14 9681.42 16690.01 29995.86 13974.52 32687.41 15893.94 17075.46 16298.36 11680.36 23195.53 10797.12 108
WR-MVS88.38 16187.67 16190.52 19093.30 21680.18 19893.26 21795.96 13088.57 7985.47 20792.81 21076.12 14996.91 23881.24 21682.29 28594.47 217
thisisatest053088.67 15487.61 16291.86 13494.87 15280.07 20394.63 13889.90 33884.00 18388.46 13993.78 17966.88 27198.46 10883.30 17892.65 16597.06 109
test_fmvs187.34 20087.56 16386.68 30690.59 30771.80 33194.01 18294.04 23878.30 28991.97 8495.22 11556.28 33693.71 33292.89 3994.71 12394.52 207
jajsoiax88.24 16687.50 16490.48 19490.89 29780.14 20095.31 9195.65 15584.97 16784.24 24594.02 16565.31 28697.42 19488.56 11188.52 22093.89 239
BH-RMVSNet88.37 16287.48 16591.02 17395.28 13179.45 22292.89 23193.07 25985.45 15686.91 17094.84 13470.35 23097.76 16473.97 29594.59 12895.85 155
VPNet88.20 16787.47 16690.39 19993.56 21079.46 22194.04 17995.54 16288.67 7586.96 16794.58 14669.33 24497.15 22184.05 16980.53 31494.56 205
NR-MVSNet88.58 15987.47 16691.93 12893.04 22484.16 8994.77 13096.25 10789.05 6180.04 30693.29 19379.02 12097.05 23081.71 21180.05 31994.59 202
WR-MVS_H87.80 17787.37 16889.10 24693.23 21778.12 25395.61 8397.30 2887.90 10083.72 25492.01 24079.65 11696.01 28576.36 27480.54 31393.16 278
1112_ss88.42 16087.33 16991.72 14194.92 14980.98 17792.97 22994.54 21878.16 29383.82 25293.88 17578.78 12397.91 15979.45 24389.41 20396.26 138
OpenMVScopyleft83.78 1188.74 15387.29 17093.08 7592.70 23585.39 6596.57 3596.43 9578.74 28280.85 29396.07 8469.64 23999.01 6278.01 25996.65 9494.83 194
mvs_tets88.06 17287.28 17190.38 20190.94 29379.88 21295.22 10095.66 15385.10 16484.21 24693.94 17063.53 29797.40 20188.50 11288.40 22493.87 242
baseline188.10 16987.28 17190.57 18694.96 14680.07 20394.27 16291.29 31086.74 12687.41 15894.00 16776.77 14496.20 27780.77 22479.31 32795.44 170
CP-MVSNet87.63 18587.26 17388.74 25693.12 22076.59 28395.29 9596.58 8988.43 8283.49 26292.98 20475.28 16395.83 29378.97 24981.15 30193.79 247
anonymousdsp87.84 17587.09 17490.12 21189.13 32980.54 19094.67 13695.55 16082.05 22783.82 25292.12 23271.47 21497.15 22187.15 13187.80 23592.67 293
v2v48287.84 17587.06 17590.17 20790.99 28979.23 23394.00 18495.13 18684.87 16885.53 20192.07 23874.45 17497.45 19084.71 16181.75 29393.85 245
BH-w/o87.57 19187.05 17689.12 24594.90 15177.90 25892.41 24393.51 25282.89 21383.70 25591.34 25775.75 15797.07 22875.49 28193.49 14992.39 303
test_fmvs1_n87.03 21687.04 17786.97 29889.74 32571.86 32994.55 14294.43 22178.47 28591.95 8695.50 10651.16 35393.81 33093.02 3894.56 12995.26 176
TAPA-MVS84.62 688.16 16887.01 17891.62 14496.64 8080.65 18694.39 15596.21 11376.38 30686.19 18895.44 10779.75 11098.08 14662.75 35395.29 11596.13 142
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PS-CasMVS87.32 20286.88 17988.63 25992.99 22776.33 28895.33 9096.61 8788.22 9083.30 26793.07 20273.03 19995.79 29678.36 25381.00 30793.75 254
V4287.68 18086.86 18090.15 20990.58 30880.14 20094.24 16595.28 18083.66 19185.67 19591.33 25874.73 17197.41 19984.43 16581.83 29192.89 288
XXY-MVS87.65 18286.85 18190.03 21592.14 24680.60 18993.76 19595.23 18282.94 21184.60 22994.02 16574.27 17695.49 30781.04 21883.68 26994.01 237
HyFIR lowres test88.09 17086.81 18291.93 12896.00 10580.63 18790.01 29995.79 14373.42 33687.68 15492.10 23573.86 18697.96 15580.75 22591.70 17397.19 103
F-COLMAP87.95 17386.80 18391.40 15496.35 9280.88 18194.73 13295.45 16979.65 26882.04 28094.61 14371.13 21698.50 10476.24 27791.05 18194.80 196
v114487.61 18886.79 18490.06 21491.01 28879.34 22693.95 18695.42 17483.36 20185.66 19691.31 26174.98 16797.42 19483.37 17782.06 28793.42 268
bld_raw_dy_0_6487.60 18986.73 18590.21 20591.72 26180.26 19795.09 11088.61 34685.68 14985.55 19894.38 14963.93 29596.66 24687.73 12187.84 23493.72 256
Fast-Effi-MVS+-dtu87.44 19686.72 18689.63 23392.04 25077.68 26894.03 18093.94 23985.81 14482.42 27491.32 26070.33 23197.06 22980.33 23390.23 18894.14 228
thres100view90087.63 18586.71 18790.38 20196.12 9778.55 24095.03 11491.58 30187.15 11588.06 14592.29 22668.91 25298.10 13670.13 31791.10 17794.48 215
v887.50 19586.71 18789.89 22191.37 27479.40 22394.50 14495.38 17584.81 17183.60 25991.33 25876.05 15097.42 19482.84 18680.51 31692.84 290
thres600view787.65 18286.67 18990.59 18596.08 10178.72 23694.88 12291.58 30187.06 11888.08 14492.30 22568.91 25298.10 13670.05 32091.10 17794.96 187
tfpn200view987.58 19086.64 19090.41 19895.99 10878.64 23894.58 14091.98 29186.94 12288.09 14291.77 24569.18 24998.10 13670.13 31791.10 17794.48 215
thres40087.62 18786.64 19090.57 18695.99 10878.64 23894.58 14091.98 29186.94 12288.09 14291.77 24569.18 24998.10 13670.13 31791.10 17794.96 187
Baseline_NR-MVSNet87.07 21486.63 19288.40 26291.44 26977.87 26094.23 16692.57 27284.12 18185.74 19492.08 23677.25 13996.04 28282.29 19779.94 32091.30 323
miper_ehance_all_eth87.22 20886.62 19389.02 24992.13 24777.40 27290.91 28094.81 20981.28 24984.32 24290.08 29179.26 11896.62 24983.81 17382.94 27793.04 283
Anonymous2024052988.09 17086.59 19492.58 10096.53 8681.92 15295.99 6195.84 14074.11 33089.06 13195.21 11761.44 31098.81 8583.67 17687.47 23697.01 113
131487.51 19386.57 19590.34 20392.42 24079.74 21692.63 23895.35 17978.35 28880.14 30391.62 25274.05 18297.15 22181.05 21793.53 14794.12 229
AUN-MVS87.78 17886.54 19691.48 15194.82 15681.05 17593.91 19193.93 24083.00 20986.93 16893.53 18569.50 24197.67 16986.14 14177.12 33795.73 163
Test_1112_low_res87.65 18286.51 19791.08 16994.94 14879.28 23091.77 26394.30 22776.04 31183.51 26192.37 22277.86 13697.73 16878.69 25189.13 21096.22 139
c3_l87.14 21386.50 19889.04 24892.20 24477.26 27391.22 27694.70 21582.01 23084.34 24190.43 28478.81 12296.61 25283.70 17581.09 30293.25 273
test_vis1_n86.56 23086.49 19986.78 30588.51 33472.69 31994.68 13593.78 24879.55 26990.70 10795.31 11148.75 35893.28 33893.15 3593.99 13894.38 219
v1087.25 20586.38 20089.85 22291.19 28079.50 22094.48 14595.45 16983.79 18983.62 25891.19 26375.13 16497.42 19481.94 20380.60 31192.63 295
UniMVSNet_ETH3D87.53 19286.37 20191.00 17592.44 23978.96 23594.74 13195.61 15784.07 18285.36 21894.52 14759.78 32497.34 20682.93 18387.88 23296.71 124
v14419287.19 21186.35 20289.74 22890.64 30678.24 25193.92 18995.43 17281.93 23285.51 20391.05 27174.21 17997.45 19082.86 18581.56 29593.53 262
v119287.25 20586.33 20390.00 21990.76 30279.04 23493.80 19395.48 16582.57 21885.48 20691.18 26573.38 19597.42 19482.30 19682.06 28793.53 262
v14887.04 21586.32 20489.21 24290.94 29377.26 27393.71 19894.43 22184.84 17084.36 24090.80 27776.04 15197.05 23082.12 19979.60 32493.31 270
LS3D87.89 17486.32 20492.59 9996.07 10282.92 12695.23 9994.92 20075.66 31382.89 27095.98 8872.48 20599.21 4468.43 32795.23 11895.64 165
test250687.21 20986.28 20690.02 21795.62 12273.64 31096.25 4771.38 38187.89 10290.45 11096.65 6055.29 34198.09 14486.03 14596.94 8598.33 42
PEN-MVS86.80 22186.27 20788.40 26292.32 24275.71 29495.18 10396.38 9887.97 9782.82 27193.15 19873.39 19495.92 28876.15 27879.03 32993.59 260
thres20087.21 20986.24 20890.12 21195.36 12978.53 24193.26 21792.10 28586.42 13288.00 14791.11 26969.24 24898.00 15269.58 32191.04 18293.83 246
miper_enhance_ethall86.90 21986.18 20989.06 24791.66 26677.58 27090.22 29494.82 20879.16 27484.48 23389.10 30679.19 11996.66 24684.06 16882.94 27792.94 286
Anonymous20240521187.68 18086.13 21092.31 11396.66 7980.74 18594.87 12391.49 30580.47 25989.46 12595.44 10754.72 34398.23 12782.19 19889.89 19497.97 71
X-MVStestdata88.31 16486.13 21094.85 2498.54 1386.60 3296.93 2297.19 3490.66 2392.85 5923.41 38185.02 5599.49 2591.99 6498.56 4798.47 32
FMVSNet387.40 19886.11 21291.30 15993.79 20383.64 10194.20 16794.81 20983.89 18684.37 23791.87 24468.45 25896.56 25778.23 25685.36 25493.70 258
MVS87.44 19686.10 21391.44 15392.61 23783.62 10292.63 23895.66 15367.26 35881.47 28592.15 23077.95 13398.22 12979.71 23995.48 10992.47 299
PCF-MVS84.11 1087.74 17986.08 21492.70 9494.02 18984.43 8489.27 30995.87 13873.62 33584.43 23694.33 15178.48 12998.86 8070.27 31394.45 13394.81 195
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v192192086.97 21786.06 21589.69 23290.53 31178.11 25493.80 19395.43 17281.90 23485.33 21991.05 27172.66 20297.41 19982.05 20181.80 29293.53 262
FE-MVS87.40 19886.02 21691.57 14794.56 16979.69 21790.27 28893.72 24980.57 25888.80 13491.62 25265.32 28598.59 10074.97 28994.33 13696.44 131
thisisatest051587.33 20185.99 21791.37 15693.49 21179.55 21990.63 28489.56 34480.17 26187.56 15690.86 27467.07 26898.28 12581.50 21393.02 16096.29 136
cl2286.78 22285.98 21889.18 24492.34 24177.62 26990.84 28194.13 23581.33 24883.97 25090.15 28973.96 18496.60 25484.19 16782.94 27793.33 269
GBi-Net87.26 20385.98 21891.08 16994.01 19083.10 11595.14 10794.94 19583.57 19384.37 23791.64 24866.59 27696.34 27378.23 25685.36 25493.79 247
test187.26 20385.98 21891.08 16994.01 19083.10 11595.14 10794.94 19583.57 19384.37 23791.64 24866.59 27696.34 27378.23 25685.36 25493.79 247
EPNet_dtu86.49 23585.94 22188.14 27190.24 31572.82 31794.11 17192.20 28186.66 12979.42 31392.36 22373.52 19095.81 29571.26 30793.66 14395.80 159
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ET-MVSNet_ETH3D87.51 19385.91 22292.32 11293.70 20683.93 9392.33 24990.94 31884.16 17972.09 35292.52 21869.90 23495.85 29289.20 10488.36 22597.17 104
v124086.78 22285.85 22389.56 23490.45 31277.79 26493.61 20195.37 17781.65 24085.43 21191.15 26771.50 21397.43 19381.47 21482.05 28993.47 266
FMVSNet287.19 21185.82 22491.30 15994.01 19083.67 10094.79 12894.94 19583.57 19383.88 25192.05 23966.59 27696.51 26077.56 26385.01 25793.73 255
cl____86.52 23285.78 22588.75 25492.03 25176.46 28490.74 28294.30 22781.83 23883.34 26590.78 27875.74 15996.57 25581.74 20981.54 29693.22 275
DIV-MVS_self_test86.53 23185.78 22588.75 25492.02 25276.45 28590.74 28294.30 22781.83 23883.34 26590.82 27675.75 15796.57 25581.73 21081.52 29793.24 274
eth_miper_zixun_eth86.50 23385.77 22788.68 25791.94 25375.81 29390.47 28694.89 20182.05 22784.05 24790.46 28375.96 15296.77 24282.76 18979.36 32693.46 267
v7n86.81 22085.76 22889.95 22090.72 30479.25 23295.07 11195.92 13284.45 17882.29 27590.86 27472.60 20497.53 18479.42 24680.52 31593.08 282
TR-MVS86.78 22285.76 22889.82 22494.37 17878.41 24592.47 24292.83 26481.11 25486.36 18492.40 22168.73 25597.48 18773.75 29889.85 19693.57 261
tt080586.92 21885.74 23090.48 19492.22 24379.98 21095.63 8294.88 20383.83 18884.74 22792.80 21157.61 33297.67 16985.48 15284.42 26193.79 247
pm-mvs186.61 22785.54 23189.82 22491.44 26980.18 19895.28 9794.85 20583.84 18781.66 28392.62 21572.45 20796.48 26279.67 24078.06 33092.82 291
PatchMatch-RL86.77 22585.54 23190.47 19795.88 11182.71 13490.54 28592.31 27879.82 26684.32 24291.57 25668.77 25496.39 26973.16 30093.48 15192.32 306
DTE-MVSNet86.11 23985.48 23387.98 27491.65 26774.92 29994.93 11995.75 14687.36 11382.26 27693.04 20372.85 20095.82 29474.04 29477.46 33593.20 276
test-LLR85.87 24385.41 23487.25 29090.95 29171.67 33389.55 30389.88 33983.41 19984.54 23187.95 32467.25 26495.11 31381.82 20693.37 15494.97 184
baseline286.50 23385.39 23589.84 22391.12 28576.70 28191.88 26088.58 34782.35 22379.95 30790.95 27373.42 19397.63 17680.27 23489.95 19395.19 178
PAPM86.68 22685.39 23590.53 18893.05 22379.33 22989.79 30294.77 21278.82 27981.95 28193.24 19576.81 14297.30 20866.94 33693.16 15894.95 190
DP-MVS87.25 20585.36 23792.90 8497.65 5583.24 11194.81 12792.00 28974.99 32181.92 28295.00 12572.66 20299.05 5466.92 33892.33 17096.40 132
mvsany_test185.42 25185.30 23885.77 31687.95 34575.41 29787.61 33380.97 36976.82 30388.68 13595.83 9477.44 13890.82 35785.90 14686.51 24791.08 331
GA-MVS86.61 22785.27 23990.66 18491.33 27778.71 23790.40 28793.81 24785.34 15885.12 22189.57 30161.25 31297.11 22580.99 22189.59 20296.15 140
SCA86.32 23785.18 24089.73 23092.15 24576.60 28291.12 27791.69 29883.53 19685.50 20488.81 31066.79 27296.48 26276.65 27190.35 18796.12 143
Anonymous2023121186.59 22985.13 24190.98 17896.52 8781.50 16096.14 5396.16 11473.78 33383.65 25792.15 23063.26 29997.37 20582.82 18781.74 29494.06 234
D2MVS85.90 24285.09 24288.35 26490.79 30077.42 27191.83 26295.70 14980.77 25780.08 30590.02 29266.74 27496.37 27081.88 20587.97 23191.26 324
tpmrst85.35 25384.99 24386.43 30890.88 29867.88 35488.71 31891.43 30780.13 26286.08 19088.80 31273.05 19796.02 28482.48 19183.40 27595.40 172
cascas86.43 23684.98 24490.80 18292.10 24980.92 18090.24 29295.91 13473.10 33983.57 26088.39 31765.15 28797.46 18984.90 15891.43 17594.03 236
PMMVS85.71 24784.96 24587.95 27588.90 33277.09 27588.68 31990.06 33372.32 34586.47 17990.76 27972.15 20894.40 32081.78 20893.49 14992.36 304
CostFormer85.77 24684.94 24688.26 26791.16 28372.58 32589.47 30791.04 31676.26 30986.45 18289.97 29470.74 22396.86 24182.35 19587.07 24495.34 175
LTVRE_ROB82.13 1386.26 23884.90 24790.34 20394.44 17681.50 16092.31 25194.89 20183.03 20879.63 31192.67 21369.69 23897.79 16271.20 30886.26 24991.72 315
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVP-Stereo85.97 24184.86 24889.32 24090.92 29582.19 14692.11 25794.19 23178.76 28178.77 31791.63 25168.38 25996.56 25775.01 28893.95 13989.20 347
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
XVG-ACMP-BASELINE86.00 24084.84 24989.45 23991.20 27978.00 25591.70 26695.55 16085.05 16682.97 26992.25 22854.49 34497.48 18782.93 18387.45 23892.89 288
CVMVSNet84.69 26684.79 25084.37 32791.84 25664.92 36393.70 19991.47 30666.19 36086.16 18995.28 11267.18 26693.33 33780.89 22390.42 18694.88 192
PatchmatchNetpermissive85.85 24484.70 25189.29 24191.76 26075.54 29588.49 32191.30 30981.63 24285.05 22288.70 31471.71 21096.24 27674.61 29289.05 21196.08 146
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PVSNet78.82 1885.55 24884.65 25288.23 26994.72 15971.93 32887.12 33692.75 26778.80 28084.95 22490.53 28264.43 29196.71 24574.74 29093.86 14196.06 148
OurMVSNet-221017-085.35 25384.64 25387.49 28490.77 30172.59 32494.01 18294.40 22484.72 17379.62 31293.17 19761.91 30696.72 24381.99 20281.16 29993.16 278
miper_lstm_enhance85.27 25684.59 25487.31 28791.28 27874.63 30087.69 33094.09 23781.20 25381.36 28889.85 29774.97 16894.30 32381.03 22079.84 32393.01 284
IterMVS-SCA-FT85.45 24984.53 25588.18 27091.71 26376.87 27890.19 29592.65 27185.40 15781.44 28690.54 28166.79 27295.00 31681.04 21881.05 30392.66 294
RPSCF85.07 25984.27 25687.48 28592.91 23070.62 34391.69 26792.46 27376.20 31082.67 27395.22 11563.94 29497.29 21177.51 26485.80 25194.53 206
MS-PatchMatch85.05 26084.16 25787.73 27891.42 27278.51 24291.25 27593.53 25177.50 29680.15 30291.58 25461.99 30595.51 30475.69 28094.35 13589.16 348
FMVSNet185.85 24484.11 25891.08 16992.81 23383.10 11595.14 10794.94 19581.64 24182.68 27291.64 24859.01 32896.34 27375.37 28383.78 26693.79 247
test_fmvs283.98 27284.03 25983.83 33287.16 34867.53 35793.93 18892.89 26277.62 29586.89 17393.53 18547.18 36292.02 34990.54 9286.51 24791.93 312
tpm84.73 26484.02 26086.87 30390.33 31368.90 35089.06 31489.94 33680.85 25685.75 19389.86 29668.54 25795.97 28677.76 26084.05 26595.75 160
CHOSEN 280x42085.15 25883.99 26188.65 25892.47 23878.40 24679.68 36992.76 26674.90 32381.41 28789.59 30069.85 23795.51 30479.92 23895.29 11592.03 310
IterMVS84.88 26283.98 26287.60 28091.44 26976.03 29090.18 29692.41 27483.24 20481.06 29290.42 28566.60 27594.28 32479.46 24280.98 30892.48 298
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs485.43 25083.86 26390.16 20890.02 32082.97 12490.27 28892.67 27075.93 31280.73 29491.74 24771.05 21795.73 29978.85 25083.46 27391.78 314
CR-MVSNet85.35 25383.76 26490.12 21190.58 30879.34 22685.24 34991.96 29378.27 29085.55 19887.87 32771.03 21895.61 30073.96 29689.36 20595.40 172
ACMH80.38 1785.36 25283.68 26590.39 19994.45 17580.63 18794.73 13294.85 20582.09 22677.24 32592.65 21460.01 32297.58 17872.25 30484.87 25892.96 285
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test-mter84.54 26783.64 26687.25 29090.95 29171.67 33389.55 30389.88 33979.17 27384.54 23187.95 32455.56 33895.11 31381.82 20693.37 15494.97 184
MDTV_nov1_ep1383.56 26791.69 26569.93 34787.75 32991.54 30378.60 28484.86 22588.90 30969.54 24096.03 28370.25 31488.93 214
ACMH+81.04 1485.05 26083.46 26889.82 22494.66 16379.37 22494.44 15094.12 23682.19 22578.04 32092.82 20958.23 33097.54 18373.77 29782.90 28092.54 296
IB-MVS80.51 1585.24 25783.26 26991.19 16292.13 24779.86 21391.75 26491.29 31083.28 20380.66 29688.49 31661.28 31198.46 10880.99 22179.46 32595.25 177
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tfpnnormal84.72 26583.23 27089.20 24392.79 23480.05 20594.48 14595.81 14182.38 22181.08 29191.21 26269.01 25196.95 23561.69 35580.59 31290.58 337
dmvs_re84.20 27083.22 27187.14 29691.83 25877.81 26290.04 29890.19 32984.70 17481.49 28489.17 30564.37 29291.13 35571.58 30685.65 25392.46 300
MSDG84.86 26383.09 27290.14 21093.80 20180.05 20589.18 31293.09 25878.89 27778.19 31891.91 24265.86 28497.27 21268.47 32688.45 22293.11 280
TransMVSNet (Re)84.43 26883.06 27388.54 26091.72 26178.44 24495.18 10392.82 26582.73 21679.67 31092.12 23273.49 19195.96 28771.10 31268.73 36091.21 325
tpm284.08 27182.94 27487.48 28591.39 27371.27 33589.23 31190.37 32671.95 34784.64 22889.33 30367.30 26396.55 25975.17 28587.09 24394.63 199
SixPastTwentyTwo83.91 27582.90 27586.92 30090.99 28970.67 34293.48 20591.99 29085.54 15477.62 32492.11 23460.59 31896.87 24076.05 27977.75 33293.20 276
TESTMET0.1,183.74 27782.85 27686.42 30989.96 32171.21 33789.55 30387.88 34977.41 29783.37 26487.31 33256.71 33493.65 33480.62 22892.85 16494.40 218
pmmvs584.21 26982.84 27788.34 26588.95 33176.94 27792.41 24391.91 29575.63 31480.28 30091.18 26564.59 29095.57 30177.09 26983.47 27292.53 297
EPMVS83.90 27682.70 27887.51 28290.23 31672.67 32088.62 32081.96 36781.37 24785.01 22388.34 31866.31 27994.45 31875.30 28487.12 24295.43 171
tpmvs83.35 28082.07 27987.20 29491.07 28771.00 34088.31 32491.70 29778.91 27680.49 29987.18 33469.30 24797.08 22668.12 33183.56 27193.51 265
COLMAP_ROBcopyleft80.39 1683.96 27382.04 28089.74 22895.28 13179.75 21594.25 16392.28 27975.17 31978.02 32193.77 18058.60 32997.84 16165.06 34685.92 25091.63 317
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test0.0.03 182.41 28581.69 28184.59 32588.23 34072.89 31690.24 29287.83 35083.41 19979.86 30889.78 29867.25 26488.99 36565.18 34483.42 27491.90 313
pmmvs683.42 27881.60 28288.87 25188.01 34377.87 26094.96 11794.24 23074.67 32578.80 31691.09 27060.17 32196.49 26177.06 27075.40 34492.23 308
RPMNet83.95 27481.53 28391.21 16190.58 30879.34 22685.24 34996.76 7371.44 34985.55 19882.97 35770.87 22198.91 7661.01 35789.36 20595.40 172
AllTest83.42 27881.39 28489.52 23695.01 14277.79 26493.12 22190.89 32077.41 29776.12 33393.34 18854.08 34697.51 18568.31 32884.27 26393.26 271
PatchT82.68 28381.27 28586.89 30290.09 31870.94 34184.06 35690.15 33074.91 32285.63 19783.57 35369.37 24294.87 31765.19 34388.50 22194.84 193
USDC82.76 28181.26 28687.26 28991.17 28174.55 30189.27 30993.39 25478.26 29175.30 33892.08 23654.43 34596.63 24871.64 30585.79 25290.61 334
EU-MVSNet81.32 29980.95 28782.42 33888.50 33663.67 36493.32 21091.33 30864.02 36380.57 29892.83 20861.21 31492.27 34776.34 27580.38 31791.32 322
Patchmtry82.71 28280.93 28888.06 27290.05 31976.37 28784.74 35491.96 29372.28 34681.32 28987.87 32771.03 21895.50 30668.97 32380.15 31892.32 306
CL-MVSNet_self_test81.74 29180.53 28985.36 31985.96 35472.45 32690.25 29093.07 25981.24 25179.85 30987.29 33370.93 22092.52 34566.95 33569.23 35691.11 329
MIMVSNet82.59 28480.53 28988.76 25391.51 26878.32 24886.57 34090.13 33179.32 27080.70 29588.69 31552.98 35093.07 34266.03 34188.86 21594.90 191
our_test_381.93 28880.46 29186.33 31088.46 33773.48 31288.46 32291.11 31276.46 30476.69 32988.25 32066.89 27094.36 32168.75 32479.08 32891.14 327
EG-PatchMatch MVS82.37 28680.34 29288.46 26190.27 31479.35 22592.80 23594.33 22677.14 30173.26 34990.18 28847.47 36196.72 24370.25 31487.32 24189.30 345
tpm cat181.96 28780.27 29387.01 29791.09 28671.02 33987.38 33491.53 30466.25 35980.17 30186.35 34068.22 26096.15 28069.16 32282.29 28593.86 244
dp81.47 29780.23 29485.17 32289.92 32265.49 36186.74 33890.10 33276.30 30881.10 29087.12 33562.81 30195.92 28868.13 33079.88 32194.09 232
testgi80.94 30480.20 29583.18 33387.96 34466.29 35891.28 27390.70 32483.70 19078.12 31992.84 20751.37 35290.82 35763.34 35082.46 28392.43 301
K. test v381.59 29480.15 29685.91 31589.89 32369.42 34992.57 24087.71 35185.56 15373.44 34889.71 29955.58 33795.52 30377.17 26769.76 35492.78 292
ppachtmachnet_test81.84 28980.07 29787.15 29588.46 33774.43 30489.04 31592.16 28275.33 31777.75 32288.99 30766.20 28095.37 30965.12 34577.60 33391.65 316
Patchmatch-RL test81.67 29279.96 29886.81 30485.42 35971.23 33682.17 36387.50 35378.47 28577.19 32682.50 35870.81 22293.48 33582.66 19072.89 34895.71 164
ADS-MVSNet81.56 29579.78 29986.90 30191.35 27571.82 33083.33 35989.16 34572.90 34182.24 27785.77 34464.98 28893.76 33164.57 34783.74 26795.12 180
Anonymous2023120681.03 30279.77 30084.82 32487.85 34670.26 34591.42 27192.08 28673.67 33477.75 32289.25 30462.43 30393.08 34161.50 35682.00 29091.12 328
ADS-MVSNet281.66 29379.71 30187.50 28391.35 27574.19 30683.33 35988.48 34872.90 34182.24 27785.77 34464.98 28893.20 34064.57 34783.74 26795.12 180
FMVSNet581.52 29679.60 30287.27 28891.17 28177.95 25691.49 27092.26 28076.87 30276.16 33287.91 32651.67 35192.34 34667.74 33281.16 29991.52 318
gg-mvs-nofinetune81.77 29079.37 30388.99 25090.85 29977.73 26786.29 34179.63 37274.88 32483.19 26869.05 37160.34 31996.11 28175.46 28294.64 12793.11 280
Patchmatch-test81.37 29879.30 30487.58 28190.92 29574.16 30780.99 36587.68 35270.52 35376.63 33088.81 31071.21 21592.76 34460.01 36186.93 24595.83 157
KD-MVS_self_test80.20 30879.24 30583.07 33485.64 35865.29 36291.01 27993.93 24078.71 28376.32 33186.40 33959.20 32792.93 34372.59 30269.35 35591.00 332
Anonymous2024052180.44 30679.21 30684.11 33085.75 35767.89 35392.86 23393.23 25675.61 31575.59 33787.47 33150.03 35494.33 32271.14 31181.21 29890.12 339
CMPMVSbinary59.16 2180.52 30579.20 30784.48 32683.98 36267.63 35689.95 30193.84 24664.79 36266.81 36391.14 26857.93 33195.17 31176.25 27688.10 22790.65 333
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_040281.30 30079.17 30887.67 27993.19 21878.17 25292.98 22891.71 29675.25 31876.02 33590.31 28659.23 32696.37 27050.22 36983.63 27088.47 354
test20.0379.95 31079.08 30982.55 33685.79 35667.74 35591.09 27891.08 31381.23 25274.48 34489.96 29561.63 30790.15 35960.08 35976.38 34089.76 340
LF4IMVS80.37 30779.07 31084.27 32986.64 35069.87 34889.39 30891.05 31576.38 30674.97 34090.00 29347.85 36094.25 32574.55 29380.82 31088.69 352
JIA-IIPM81.04 30178.98 31187.25 29088.64 33373.48 31281.75 36489.61 34373.19 33882.05 27973.71 36866.07 28395.87 29171.18 31084.60 26092.41 302
pmmvs-eth3d80.97 30378.72 31287.74 27784.99 36179.97 21190.11 29791.65 29975.36 31673.51 34786.03 34159.45 32593.96 32975.17 28572.21 34989.29 346
UnsupCasMVSNet_eth80.07 30978.27 31385.46 31885.24 36072.63 32388.45 32394.87 20482.99 21071.64 35588.07 32356.34 33591.75 35273.48 29963.36 36792.01 311
TinyColmap79.76 31277.69 31485.97 31291.71 26373.12 31489.55 30390.36 32775.03 32072.03 35390.19 28746.22 36396.19 27963.11 35181.03 30488.59 353
TDRefinement79.81 31177.34 31587.22 29379.24 37175.48 29693.12 22192.03 28876.45 30575.01 33991.58 25449.19 35796.44 26670.22 31669.18 35789.75 341
MIMVSNet179.38 31477.28 31685.69 31786.35 35173.67 30991.61 26992.75 26778.11 29472.64 35188.12 32248.16 35991.97 35160.32 35877.49 33491.43 321
YYNet179.22 31577.20 31785.28 32188.20 34272.66 32185.87 34390.05 33574.33 32862.70 36587.61 32966.09 28292.03 34866.94 33672.97 34791.15 326
MDA-MVSNet_test_wron79.21 31677.19 31885.29 32088.22 34172.77 31885.87 34390.06 33374.34 32762.62 36687.56 33066.14 28191.99 35066.90 33973.01 34691.10 330
test_fmvs377.67 32277.16 31979.22 34279.52 37061.14 36892.34 24891.64 30073.98 33178.86 31586.59 33627.38 37487.03 36788.12 11775.97 34289.50 342
OpenMVS_ROBcopyleft74.94 1979.51 31377.03 32086.93 29987.00 34976.23 28992.33 24990.74 32368.93 35674.52 34388.23 32149.58 35696.62 24957.64 36384.29 26287.94 357
test_vis1_rt77.96 32176.46 32182.48 33785.89 35571.74 33290.25 29078.89 37371.03 35271.30 35681.35 36042.49 36691.05 35684.55 16382.37 28484.65 360
MDA-MVSNet-bldmvs78.85 31776.31 32286.46 30789.76 32473.88 30888.79 31790.42 32579.16 27459.18 36788.33 31960.20 32094.04 32662.00 35468.96 35891.48 320
DSMNet-mixed76.94 32476.29 32378.89 34383.10 36556.11 37887.78 32879.77 37160.65 36675.64 33688.71 31361.56 30988.34 36660.07 36089.29 20792.21 309
PM-MVS78.11 32076.12 32484.09 33183.54 36470.08 34688.97 31685.27 35879.93 26474.73 34286.43 33834.70 37093.48 33579.43 24572.06 35088.72 351
KD-MVS_2432*160078.50 31876.02 32585.93 31386.22 35274.47 30284.80 35292.33 27679.29 27176.98 32785.92 34253.81 34893.97 32767.39 33357.42 37289.36 343
miper_refine_blended78.50 31876.02 32585.93 31386.22 35274.47 30284.80 35292.33 27679.29 27176.98 32785.92 34253.81 34893.97 32767.39 33357.42 37289.36 343
dmvs_testset74.57 32875.81 32770.86 35387.72 34740.47 38487.05 33777.90 37782.75 21571.15 35785.47 34667.98 26184.12 37345.26 37176.98 33988.00 356
new-patchmatchnet76.41 32575.17 32880.13 34082.65 36759.61 37087.66 33191.08 31378.23 29269.85 35983.22 35454.76 34291.63 35464.14 34964.89 36589.16 348
PVSNet_073.20 2077.22 32374.83 32984.37 32790.70 30571.10 33883.09 36189.67 34272.81 34373.93 34683.13 35560.79 31793.70 33368.54 32550.84 37588.30 355
UnsupCasMVSNet_bld76.23 32673.27 33085.09 32383.79 36372.92 31585.65 34693.47 25371.52 34868.84 36179.08 36349.77 35593.21 33966.81 34060.52 36989.13 350
mvsany_test374.95 32773.26 33180.02 34174.61 37363.16 36685.53 34778.42 37474.16 32974.89 34186.46 33736.02 36989.09 36482.39 19466.91 36187.82 358
MVS-HIRNet73.70 32972.20 33278.18 34691.81 25956.42 37782.94 36282.58 36555.24 36868.88 36066.48 37255.32 34095.13 31258.12 36288.42 22383.01 363
test_f71.95 33170.87 33375.21 34974.21 37559.37 37185.07 35185.82 35565.25 36170.42 35883.13 35523.62 37582.93 37578.32 25471.94 35183.33 362
new_pmnet72.15 33070.13 33478.20 34582.95 36665.68 35983.91 35782.40 36662.94 36564.47 36479.82 36242.85 36586.26 36957.41 36474.44 34582.65 365
pmmvs371.81 33268.71 33581.11 33975.86 37270.42 34486.74 33883.66 36258.95 36768.64 36280.89 36136.93 36889.52 36263.10 35263.59 36683.39 361
N_pmnet68.89 33468.44 33670.23 35489.07 33028.79 38888.06 32519.50 38969.47 35571.86 35484.93 34761.24 31391.75 35254.70 36677.15 33690.15 338
APD_test169.04 33366.26 33777.36 34880.51 36862.79 36785.46 34883.51 36354.11 37059.14 36884.79 34923.40 37789.61 36155.22 36570.24 35379.68 368
test_vis3_rt65.12 33662.60 33872.69 35171.44 37660.71 36987.17 33565.55 38263.80 36453.22 37065.65 37414.54 38489.44 36376.65 27165.38 36367.91 373
FPMVS64.63 33762.55 33970.88 35270.80 37756.71 37384.42 35584.42 36051.78 37149.57 37181.61 35923.49 37681.48 37640.61 37776.25 34174.46 369
LCM-MVSNet66.00 33562.16 34077.51 34764.51 38358.29 37283.87 35890.90 31948.17 37254.69 36973.31 36916.83 38386.75 36865.47 34261.67 36887.48 359
PMMVS259.60 33956.40 34169.21 35768.83 38046.58 38273.02 37477.48 37855.07 36949.21 37272.95 37017.43 38280.04 37749.32 37044.33 37780.99 367
EGC-MVSNET61.97 33856.37 34278.77 34489.63 32773.50 31189.12 31382.79 3640.21 3861.24 38784.80 34839.48 36790.04 36044.13 37275.94 34372.79 370
testf159.54 34056.11 34369.85 35569.28 37856.61 37580.37 36776.55 37942.58 37545.68 37475.61 36411.26 38584.18 37143.20 37460.44 37068.75 371
APD_test259.54 34056.11 34369.85 35569.28 37856.61 37580.37 36776.55 37942.58 37545.68 37475.61 36411.26 38584.18 37143.20 37460.44 37068.75 371
Gipumacopyleft57.99 34354.91 34567.24 35888.51 33465.59 36052.21 37790.33 32843.58 37442.84 37751.18 37820.29 38085.07 37034.77 37870.45 35251.05 377
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high58.88 34254.22 34672.86 35056.50 38656.67 37480.75 36686.00 35473.09 34037.39 37864.63 37522.17 37879.49 37843.51 37323.96 38082.43 366
test_method50.52 34548.47 34756.66 36152.26 38718.98 39041.51 37981.40 36810.10 38144.59 37675.01 36728.51 37268.16 37953.54 36749.31 37682.83 364
PMVScopyleft47.18 2252.22 34448.46 34863.48 35945.72 38846.20 38373.41 37378.31 37541.03 37730.06 38065.68 3736.05 38783.43 37430.04 37965.86 36260.80 374
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN43.23 34742.29 34946.03 36365.58 38237.41 38573.51 37264.62 38333.99 37828.47 38247.87 37919.90 38167.91 38022.23 38124.45 37932.77 378
EMVS42.07 34841.12 35044.92 36463.45 38435.56 38773.65 37163.48 38433.05 37926.88 38345.45 38021.27 37967.14 38119.80 38223.02 38132.06 379
tmp_tt35.64 34939.24 35124.84 36514.87 38923.90 38962.71 37551.51 3886.58 38336.66 37962.08 37644.37 36430.34 38552.40 36822.00 38220.27 380
MVEpermissive39.65 2343.39 34638.59 35257.77 36056.52 38548.77 38155.38 37658.64 38629.33 38028.96 38152.65 3774.68 38864.62 38228.11 38033.07 37859.93 375
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k22.14 35029.52 3530.00 3690.00 3920.00 3930.00 38095.76 1450.00 3870.00 38894.29 15475.66 1600.00 3880.00 3860.00 3860.00 384
wuyk23d21.27 35120.48 35423.63 36668.59 38136.41 38649.57 3786.85 3909.37 3827.89 3844.46 3864.03 38931.37 38417.47 38316.07 3833.12 381
testmvs8.92 35211.52 3551.12 3681.06 3900.46 39286.02 3420.65 3910.62 3842.74 3859.52 3840.31 3910.45 3872.38 3840.39 3842.46 383
test1238.76 35311.22 3561.39 3670.85 3910.97 39185.76 3450.35 3920.54 3852.45 3868.14 3850.60 3900.48 3862.16 3850.17 3852.71 382
ab-mvs-re7.82 35410.43 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38893.88 1750.00 3920.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas6.64 3558.86 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38779.70 1120.00 3880.00 3860.00 3860.00 384
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
FOURS198.86 185.54 6498.29 197.49 689.79 4396.29 16
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6299.61 396.03 499.06 999.07 5
PC_three_145282.47 21997.09 1097.07 4192.72 198.04 14992.70 4599.02 1298.86 10
No_MVS96.52 197.78 5190.86 196.85 6299.61 396.03 499.06 999.07 5
test_one_060198.58 1185.83 5897.44 1591.05 1396.78 1498.06 691.45 11
eth-test20.00 392
eth-test0.00 392
ZD-MVS98.15 3486.62 3197.07 4483.63 19294.19 3296.91 4787.57 3199.26 4191.99 6498.44 50
IU-MVS98.77 586.00 4896.84 6481.26 25097.26 795.50 1399.13 399.03 7
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 3992.59 298.94 7492.25 5398.99 1498.84 13
test_241102_TWO97.44 1590.31 2797.62 598.07 491.46 1099.58 995.66 799.12 698.98 9
test_241102_ONE98.77 585.99 5097.44 1590.26 3297.71 197.96 1092.31 499.38 30
save fliter97.85 4685.63 6395.21 10196.82 6789.44 50
test_0728_THIRD90.75 1897.04 1198.05 892.09 699.55 1595.64 999.13 399.13 2
test_0728_SECOND95.01 1698.79 286.43 3797.09 1697.49 699.61 395.62 1199.08 798.99 8
test072698.78 385.93 5397.19 1197.47 1190.27 3097.64 498.13 191.47 8
GSMVS96.12 143
test_part298.55 1287.22 1796.40 15
sam_mvs171.70 21196.12 143
sam_mvs70.60 224
ambc83.06 33579.99 36963.51 36577.47 37092.86 26374.34 34584.45 35028.74 37195.06 31573.06 30168.89 35990.61 334
MTGPAbinary96.97 49
test_post188.00 3269.81 38369.31 24695.53 30276.65 271
test_post10.29 38270.57 22895.91 290
patchmatchnet-post83.76 35271.53 21296.48 262
GG-mvs-BLEND87.94 27689.73 32677.91 25787.80 32778.23 37680.58 29783.86 35159.88 32395.33 31071.20 30892.22 17190.60 336
MTMP96.16 5060.64 385
gm-plane-assit89.60 32868.00 35277.28 30088.99 30797.57 17979.44 244
test9_res91.91 6898.71 3198.07 65
TEST997.53 5886.49 3594.07 17696.78 7081.61 24392.77 6496.20 7787.71 2899.12 50
test_897.49 6086.30 4394.02 18196.76 7381.86 23692.70 6896.20 7787.63 2999.02 60
agg_prior290.54 9298.68 3698.27 51
agg_prior97.38 6385.92 5596.72 7992.16 7998.97 71
TestCases89.52 23695.01 14277.79 26490.89 32077.41 29776.12 33393.34 18854.08 34697.51 18568.31 32884.27 26393.26 271
test_prior485.96 5294.11 171
test_prior294.12 17087.67 10892.63 6996.39 7286.62 3691.50 7598.67 38
test_prior93.82 5797.29 6784.49 7996.88 6098.87 7898.11 64
旧先验293.36 20971.25 35094.37 2997.13 22486.74 136
新几何293.11 223
新几何193.10 7397.30 6684.35 8695.56 15971.09 35191.26 10396.24 7582.87 7898.86 8079.19 24898.10 6196.07 147
旧先验196.79 7681.81 15495.67 15196.81 5386.69 3597.66 7696.97 115
无先验93.28 21696.26 10573.95 33299.05 5480.56 22996.59 127
原ACMM292.94 230
原ACMM192.01 12097.34 6481.05 17596.81 6878.89 27790.45 11095.92 9082.65 7998.84 8480.68 22798.26 5696.14 141
test22296.55 8481.70 15692.22 25395.01 19268.36 35790.20 11496.14 8280.26 10597.80 7296.05 149
testdata298.75 8878.30 255
segment_acmp87.16 34
testdata90.49 19296.40 8977.89 25995.37 17772.51 34493.63 4296.69 5682.08 9097.65 17283.08 18097.39 7995.94 151
testdata192.15 25587.94 98
test1294.34 4897.13 7086.15 4696.29 10291.04 10585.08 5399.01 6298.13 6097.86 78
plane_prior794.70 16182.74 131
plane_prior694.52 17082.75 12974.23 177
plane_prior596.22 11098.12 13488.15 11489.99 19094.63 199
plane_prior494.86 130
plane_prior382.75 12990.26 3286.91 170
plane_prior295.85 6790.81 16
plane_prior194.59 165
plane_prior82.73 13295.21 10189.66 4789.88 195
n20.00 393
nn0.00 393
door-mid85.49 356
lessismore_v086.04 31188.46 33768.78 35180.59 37073.01 35090.11 29055.39 33996.43 26775.06 28765.06 36492.90 287
LGP-MVS_train91.12 16594.47 17281.49 16296.14 11586.73 12785.45 20895.16 12069.89 23598.10 13687.70 12289.23 20893.77 252
test1196.57 90
door85.33 357
HQP5-MVS81.56 158
HQP-NCC94.17 18494.39 15588.81 6885.43 211
ACMP_Plane94.17 18494.39 15588.81 6885.43 211
BP-MVS87.11 133
HQP4-MVS85.43 21197.96 15594.51 209
HQP3-MVS96.04 12489.77 199
HQP2-MVS73.83 187
NP-MVS94.37 17882.42 14193.98 168
MDTV_nov1_ep13_2view55.91 37987.62 33273.32 33784.59 23070.33 23174.65 29195.50 169
ACMMP++_ref87.47 236
ACMMP++88.01 230
Test By Simon80.02 107
ITE_SJBPF88.24 26891.88 25577.05 27692.92 26185.54 15480.13 30493.30 19257.29 33396.20 27772.46 30384.71 25991.49 319
DeepMVS_CXcopyleft56.31 36274.23 37451.81 38056.67 38744.85 37348.54 37375.16 36627.87 37358.74 38340.92 37652.22 37458.39 376