This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5392.24 7169.03 10389.57 9093.39 3077.53 4589.79 1894.12 4278.98 1296.58 3585.66 4095.72 2494.58 31
DeepC-MVS79.81 287.08 3586.88 3887.69 3391.16 8472.32 4390.31 7193.94 1477.12 5782.82 10394.23 3872.13 4797.09 1684.83 4995.37 3193.65 74
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast79.65 386.91 3686.62 4087.76 2793.52 4672.37 4191.26 5193.04 4176.62 7384.22 8193.36 6671.44 5796.76 2580.82 9395.33 3394.16 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+77.84 485.48 6084.47 7688.51 791.08 8673.49 1693.18 1193.78 1880.79 876.66 20093.37 6560.40 19696.75 2677.20 12393.73 6495.29 5
3Dnovator76.31 583.38 9282.31 10286.59 5587.94 19372.94 2890.64 6092.14 9177.21 5475.47 22592.83 7958.56 20394.72 10373.24 16492.71 7492.13 139
ACMP74.13 681.51 12580.57 12784.36 11089.42 13068.69 11989.97 7791.50 11774.46 12175.04 24790.41 13753.82 24194.54 10777.56 11982.91 21289.86 221
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PCF-MVS73.52 780.38 15078.84 16585.01 8887.71 20468.99 10683.65 26091.46 11863.00 31377.77 17690.28 13866.10 11795.09 8961.40 27288.22 13790.94 172
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ACMM73.20 880.78 14179.84 14283.58 14889.31 13868.37 12589.99 7691.60 11170.28 20277.25 18589.66 15153.37 24693.53 15274.24 15382.85 21388.85 254
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TAPA-MVS73.13 979.15 17877.94 18482.79 18489.59 12262.99 24588.16 14291.51 11465.77 27977.14 19291.09 12260.91 18593.21 16750.26 35087.05 14992.17 137
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OpenMVScopyleft72.83 1079.77 16178.33 17684.09 12785.17 25469.91 8790.57 6190.97 12966.70 26472.17 28491.91 9454.70 23393.96 12661.81 26990.95 9688.41 269
PLCcopyleft70.83 1178.05 20676.37 22683.08 16891.88 7767.80 13888.19 14089.46 17464.33 29869.87 31088.38 18853.66 24293.58 14758.86 29482.73 21587.86 277
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HY-MVS69.67 1277.95 20977.15 20680.36 23787.57 21260.21 28083.37 26787.78 22666.11 27475.37 23287.06 22663.27 14290.48 26261.38 27382.43 21990.40 193
LTVRE_ROB69.57 1376.25 24474.54 25181.41 21188.60 16664.38 21379.24 32289.12 19070.76 19169.79 31287.86 20249.09 29993.20 17056.21 32080.16 24586.65 307
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH+68.96 1476.01 24874.01 25682.03 19888.60 16665.31 19388.86 11487.55 22970.25 20467.75 32787.47 21341.27 35393.19 17258.37 30075.94 29887.60 282
IB-MVS68.01 1575.85 25073.36 26583.31 15684.76 26366.03 17383.38 26685.06 26770.21 20569.40 31481.05 33945.76 32694.66 10665.10 23975.49 30489.25 238
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ACMH67.68 1675.89 24973.93 25881.77 20388.71 16366.61 16688.62 12589.01 19369.81 21366.78 33986.70 23541.95 35291.51 23655.64 32178.14 26887.17 293
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft66.92 1773.01 28370.41 29880.81 22987.13 22365.63 18588.30 13784.19 28062.96 31463.80 36487.69 20538.04 36992.56 19346.66 36874.91 31884.24 343
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PVSNet64.34 1872.08 29370.87 29375.69 30686.21 23756.44 32474.37 36680.73 32662.06 32770.17 30382.23 33142.86 34483.31 34354.77 32584.45 18687.32 290
OpenMVS_ROBcopyleft64.09 1970.56 30668.19 31277.65 28880.26 34559.41 28885.01 23082.96 30358.76 35265.43 35282.33 32837.63 37191.23 24645.34 37876.03 29782.32 365
PVSNet_057.27 2061.67 35459.27 35768.85 36279.61 35757.44 31068.01 38973.44 37755.93 37058.54 38270.41 39344.58 33477.55 37047.01 36735.91 40571.55 393
CMPMVSbinary51.72 2170.19 31068.16 31376.28 30173.15 39157.55 30879.47 31983.92 28248.02 38956.48 38984.81 28243.13 34286.42 31662.67 25881.81 22784.89 336
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PMVScopyleft37.38 2244.16 37740.28 38155.82 38640.82 42142.54 40465.12 40063.99 40134.43 40624.48 41257.12 4053.92 42276.17 38117.10 41355.52 38948.75 407
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive26.22 2330.37 38325.89 38743.81 39444.55 42035.46 41128.87 41339.07 41818.20 41418.58 41640.18 4112.68 42347.37 41617.07 41423.78 41348.60 408
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
reproduce_model87.28 3087.39 2786.95 4893.10 5671.24 6391.60 4293.19 3574.69 11588.80 2395.61 1170.29 7296.44 3986.20 3993.08 6993.16 97
reproduce-ours87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10788.96 2095.54 1271.20 6196.54 3686.28 3793.49 6593.06 102
our_new_method87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10788.96 2095.54 1271.20 6196.54 3686.28 3793.49 6593.06 102
mmdepth0.00 3910.00 3940.00 4040.00 4270.00 4290.00 4150.00 4280.00 4220.00 4230.00 4220.00 4270.00 4230.00 4220.00 4210.00 419
monomultidepth0.00 3910.00 3940.00 4040.00 4270.00 4290.00 4150.00 4280.00 4220.00 4230.00 4220.00 4270.00 4230.00 4220.00 4210.00 419
mvs5depth69.45 31667.45 32875.46 31273.93 38255.83 33479.19 32483.23 29466.89 26071.63 29083.32 31133.69 38085.09 32959.81 28455.34 39185.46 326
MVStest156.63 36052.76 36668.25 36761.67 40853.25 36271.67 37468.90 39138.59 40150.59 39783.05 31625.08 39470.66 39836.76 39538.56 40480.83 375
ttmdpeth59.91 35657.10 36068.34 36667.13 40246.65 39174.64 36567.41 39348.30 38862.52 37085.04 27920.40 40275.93 38242.55 38445.90 40382.44 364
WBMVS73.43 27572.81 27075.28 31487.91 19450.99 37778.59 33581.31 32265.51 28574.47 25784.83 28146.39 31586.68 31258.41 29977.86 27088.17 272
dongtai45.42 37545.38 37645.55 39373.36 38926.85 41767.72 39034.19 41954.15 37549.65 39956.41 40625.43 39362.94 40919.45 41028.09 41046.86 409
kuosan39.70 37940.40 38037.58 39664.52 40526.98 41565.62 39833.02 42046.12 39142.79 40348.99 40924.10 39846.56 41712.16 41826.30 41139.20 410
MVSMamba_PlusPlus85.99 4885.96 5286.05 6491.09 8567.64 14289.63 8892.65 6972.89 15984.64 7391.71 9971.85 4996.03 5084.77 5194.45 5494.49 35
MGCFI-Net85.06 6985.51 5983.70 14589.42 13063.01 24189.43 9392.62 7276.43 7587.53 3891.34 11372.82 4293.42 15981.28 8888.74 12994.66 29
testing9176.54 23575.66 23479.18 26288.43 17355.89 33381.08 29583.00 30173.76 13675.34 23384.29 29146.20 32190.07 26764.33 24484.50 18291.58 150
testing1175.14 26074.01 25678.53 27488.16 18156.38 32680.74 30280.42 33270.67 19272.69 27883.72 30543.61 34089.86 27062.29 26283.76 19689.36 235
testing9976.09 24775.12 24579.00 26388.16 18155.50 33980.79 29981.40 32073.30 14975.17 24184.27 29344.48 33590.02 26864.28 24584.22 19191.48 155
UBG73.08 28272.27 27775.51 31088.02 18951.29 37578.35 33977.38 35765.52 28373.87 26382.36 32745.55 32886.48 31555.02 32384.39 18888.75 259
UWE-MVS72.13 29271.49 28374.03 32786.66 23247.70 38681.40 29376.89 36263.60 30875.59 22284.22 29439.94 36085.62 32348.98 35686.13 16588.77 258
ETVMVS72.25 29171.05 29075.84 30487.77 20351.91 36779.39 32074.98 36969.26 22673.71 26482.95 31840.82 35786.14 31846.17 37284.43 18789.47 232
sasdasda85.91 5285.87 5486.04 6589.84 11769.44 9890.45 6893.00 4676.70 7188.01 3191.23 11573.28 3693.91 13381.50 8588.80 12694.77 23
testing22274.04 26872.66 27278.19 27987.89 19555.36 34081.06 29679.20 34571.30 17974.65 25483.57 30839.11 36488.67 29451.43 34285.75 17290.53 187
WB-MVSnew71.96 29471.65 28272.89 33684.67 26851.88 36882.29 28177.57 35362.31 32373.67 26583.00 31753.49 24581.10 35545.75 37582.13 22285.70 323
fmvsm_l_conf0.5_n_a84.13 7684.16 7884.06 13185.38 25168.40 12488.34 13586.85 24567.48 25887.48 3993.40 6470.89 6491.61 22788.38 2589.22 12092.16 138
fmvsm_l_conf0.5_n84.47 7484.54 7384.27 11785.42 25068.81 10988.49 12887.26 23668.08 25188.03 3093.49 6072.04 4891.77 22388.90 1789.14 12292.24 134
fmvsm_s_conf0.1_n_a83.32 9382.99 9284.28 11583.79 28368.07 13389.34 9982.85 30569.80 21487.36 4294.06 4568.34 9491.56 23187.95 2783.46 20693.21 95
fmvsm_s_conf0.1_n83.56 8783.38 8584.10 12384.86 26267.28 15389.40 9783.01 30070.67 19287.08 4493.96 5368.38 9391.45 23988.56 2284.50 18293.56 80
fmvsm_s_conf0.5_n_a83.63 8583.41 8484.28 11586.14 23868.12 13189.43 9382.87 30470.27 20387.27 4393.80 5769.09 8491.58 22988.21 2683.65 20193.14 99
fmvsm_s_conf0.5_n83.80 8083.71 8184.07 12986.69 23167.31 15289.46 9283.07 29971.09 18486.96 4793.70 5869.02 8991.47 23888.79 1884.62 18193.44 85
MM89.16 689.23 788.97 490.79 9573.65 1092.66 2391.17 12486.57 187.39 4194.97 1871.70 5397.68 192.19 195.63 2895.57 1
WAC-MVS42.58 40239.46 390
Syy-MVS68.05 32867.85 31868.67 36484.68 26540.97 40778.62 33373.08 37866.65 26866.74 34079.46 35552.11 25882.30 34832.89 39976.38 29382.75 362
test_fmvsmconf0.1_n85.61 5985.65 5785.50 7582.99 30569.39 10089.65 8690.29 15273.31 14887.77 3494.15 4171.72 5293.23 16590.31 490.67 10093.89 61
test_fmvsmconf0.01_n84.73 7384.52 7585.34 7880.25 34669.03 10389.47 9189.65 16973.24 15286.98 4694.27 3566.62 10993.23 16590.26 589.95 11293.78 67
myMVS_eth3d67.02 33466.29 33569.21 35984.68 26542.58 40278.62 33373.08 37866.65 26866.74 34079.46 35531.53 38582.30 34839.43 39176.38 29382.75 362
testing368.56 32467.67 32471.22 35187.33 21842.87 40183.06 27571.54 38170.36 19969.08 31884.38 28830.33 38885.69 32237.50 39475.45 30885.09 335
SSC-MVS53.88 36453.59 36454.75 38972.87 39219.59 42273.84 36960.53 40657.58 36249.18 40073.45 38746.34 31975.47 38716.20 41532.28 40869.20 395
test_fmvsmconf_n85.92 5186.04 5185.57 7485.03 26069.51 9389.62 8990.58 13973.42 14587.75 3594.02 4772.85 4193.24 16490.37 390.75 9893.96 56
WB-MVS54.94 36154.72 36255.60 38773.50 38620.90 42174.27 36761.19 40459.16 34850.61 39674.15 38447.19 31075.78 38417.31 41235.07 40670.12 394
test_fmvsmvis_n_192084.02 7783.87 7984.49 10684.12 27669.37 10188.15 14387.96 21970.01 20883.95 8793.23 6868.80 9191.51 23688.61 2089.96 11192.57 119
dmvs_re71.14 29870.58 29472.80 33781.96 32259.68 28475.60 35779.34 34368.55 24469.27 31780.72 34549.42 29376.54 37552.56 33677.79 27182.19 367
SDMVSNet80.38 15080.18 13680.99 22489.03 15164.94 20080.45 30889.40 17575.19 10276.61 20389.98 14460.61 19187.69 30676.83 12883.55 20390.33 195
dmvs_testset62.63 35164.11 34258.19 38178.55 36424.76 41975.28 35865.94 39767.91 25360.34 37576.01 37853.56 24373.94 39431.79 40067.65 36275.88 388
sd_testset77.70 21777.40 20178.60 27089.03 15160.02 28179.00 32785.83 26075.19 10276.61 20389.98 14454.81 22885.46 32662.63 25983.55 20390.33 195
test_fmvsm_n_192085.29 6585.34 6285.13 8586.12 23969.93 8688.65 12490.78 13569.97 21088.27 2693.98 5271.39 5891.54 23388.49 2390.45 10293.91 58
test_cas_vis1_n_192073.76 27273.74 26273.81 32975.90 37359.77 28380.51 30682.40 30958.30 35581.62 11785.69 26044.35 33676.41 37876.29 13178.61 26085.23 330
test_vis1_n_192075.52 25475.78 23074.75 32179.84 35257.44 31083.26 26885.52 26362.83 31779.34 14486.17 25245.10 33279.71 36078.75 10781.21 23287.10 299
test_vis1_n69.85 31469.21 30571.77 34472.66 39455.27 34381.48 29076.21 36552.03 38175.30 23883.20 31428.97 38976.22 38074.60 14878.41 26683.81 349
test_fmvs1_n70.86 30270.24 30072.73 33872.51 39555.28 34281.27 29479.71 34051.49 38478.73 15184.87 28027.54 39177.02 37276.06 13479.97 24985.88 321
mvsany_test162.30 35261.26 35665.41 37369.52 39754.86 34666.86 39349.78 41346.65 39068.50 32483.21 31349.15 29866.28 40556.93 31460.77 38075.11 389
APD_test153.31 36649.93 37163.42 37665.68 40350.13 38171.59 37566.90 39534.43 40640.58 40571.56 3918.65 41776.27 37934.64 39855.36 39063.86 400
test_vis1_rt60.28 35558.42 35865.84 37267.25 40155.60 33870.44 38160.94 40544.33 39459.00 38066.64 39524.91 39568.67 40262.80 25469.48 35473.25 391
test_vis3_rt49.26 37247.02 37456.00 38454.30 41345.27 39666.76 39548.08 41436.83 40344.38 40253.20 4077.17 41964.07 40756.77 31655.66 38858.65 403
test_fmvs268.35 32767.48 32770.98 35369.50 39851.95 36680.05 31376.38 36449.33 38774.65 25484.38 28823.30 40075.40 38874.51 14975.17 31685.60 324
test_fmvs170.93 30170.52 29572.16 34273.71 38455.05 34480.82 29778.77 34751.21 38578.58 15684.41 28731.20 38676.94 37375.88 13780.12 24884.47 341
test_fmvs363.36 35061.82 35367.98 36862.51 40746.96 39077.37 34774.03 37545.24 39267.50 33078.79 36312.16 41272.98 39672.77 16966.02 36883.99 347
mvsany_test353.99 36351.45 36861.61 37855.51 41244.74 39863.52 40245.41 41743.69 39558.11 38476.45 37617.99 40563.76 40854.77 32547.59 39976.34 387
testf145.72 37341.96 37757.00 38256.90 41045.32 39366.14 39659.26 40726.19 41030.89 40960.96 4014.14 42070.64 39926.39 40646.73 40155.04 405
APD_test245.72 37341.96 37757.00 38256.90 41045.32 39366.14 39659.26 40726.19 41030.89 40960.96 4014.14 42070.64 39926.39 40646.73 40155.04 405
test_f52.09 36850.82 36955.90 38553.82 41542.31 40559.42 40558.31 40936.45 40456.12 39170.96 39212.18 41157.79 41153.51 33156.57 38767.60 396
FE-MVS77.78 21375.68 23284.08 12888.09 18666.00 17583.13 27187.79 22568.42 24878.01 17185.23 27245.50 33095.12 8359.11 29185.83 17191.11 164
FA-MVS(test-final)80.96 13279.91 14084.10 12388.30 17865.01 19884.55 24290.01 15973.25 15179.61 13987.57 20858.35 20594.72 10371.29 18086.25 16292.56 120
balanced_conf0386.78 3786.99 3386.15 6191.24 8367.61 14390.51 6292.90 5677.26 5187.44 4091.63 10371.27 6096.06 4985.62 4295.01 3794.78 22
MonoMVSNet76.49 24075.80 22978.58 27181.55 32958.45 29286.36 19886.22 25474.87 11274.73 25283.73 30451.79 26788.73 29270.78 18372.15 34288.55 266
patch_mono-283.65 8384.54 7380.99 22490.06 11265.83 18084.21 25288.74 20571.60 17485.01 6292.44 8774.51 2583.50 34182.15 8192.15 8093.64 76
EGC-MVSNET52.07 36947.05 37367.14 37083.51 28960.71 27180.50 30767.75 3920.07 4190.43 42075.85 38124.26 39781.54 35228.82 40262.25 37659.16 402
test250677.30 22576.49 22279.74 25090.08 10852.02 36487.86 15463.10 40274.88 11080.16 13492.79 8238.29 36892.35 20368.74 20892.50 7794.86 17
test111179.43 17079.18 15980.15 24289.99 11353.31 36087.33 16877.05 36075.04 10580.23 13392.77 8448.97 30192.33 20568.87 20692.40 7994.81 20
ECVR-MVScopyleft79.61 16379.26 15680.67 23290.08 10854.69 34787.89 15277.44 35674.88 11080.27 13192.79 8248.96 30292.45 19768.55 20992.50 7794.86 17
test_blank0.00 3910.00 3940.00 4040.00 4270.00 4290.00 4150.00 4280.00 4220.00 4230.00 4220.00 4270.00 4230.00 4220.00 4210.00 419
tt080578.73 18877.83 18881.43 21085.17 25460.30 27889.41 9690.90 13171.21 18177.17 19188.73 17646.38 31693.21 16772.57 17178.96 25990.79 175
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5995.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
FOURS195.00 1072.39 3995.06 193.84 1574.49 12091.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4997.53 289.67 696.44 994.41 37
PC_three_145268.21 25092.02 1294.00 4982.09 595.98 5684.58 5396.68 294.95 10
No_MVS89.16 194.34 2775.53 292.99 4997.53 289.67 696.44 994.41 37
test_one_060195.07 771.46 5794.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 427
eth-test0.00 427
GeoE81.71 11881.01 12283.80 14489.51 12664.45 21188.97 11088.73 20671.27 18078.63 15589.76 14966.32 11593.20 17069.89 19586.02 16793.74 68
test_method31.52 38129.28 38538.23 39527.03 4236.50 42620.94 41462.21 4034.05 41722.35 41552.50 40813.33 40947.58 41527.04 40534.04 40760.62 401
Anonymous2024052168.80 32167.22 33073.55 33074.33 38054.11 35283.18 26985.61 26258.15 35661.68 37180.94 34230.71 38781.27 35457.00 31373.34 33585.28 329
h-mvs3383.15 9582.19 10386.02 6790.56 9870.85 7388.15 14389.16 18676.02 8784.67 7091.39 11261.54 17095.50 6682.71 7675.48 30591.72 147
hse-mvs281.72 11780.94 12384.07 12988.72 16267.68 14185.87 21187.26 23676.02 8784.67 7088.22 19461.54 17093.48 15482.71 7673.44 33391.06 166
CL-MVSNet_self_test72.37 28971.46 28475.09 31679.49 35953.53 35680.76 30185.01 26969.12 23270.51 29782.05 33357.92 20884.13 33652.27 33766.00 36987.60 282
KD-MVS_2432*160066.22 34163.89 34373.21 33275.47 37853.42 35870.76 37984.35 27564.10 30166.52 34478.52 36434.55 37884.98 33050.40 34650.33 39781.23 372
KD-MVS_self_test68.81 32067.59 32672.46 34174.29 38145.45 39277.93 34387.00 24163.12 31063.99 36278.99 36242.32 34784.77 33356.55 31864.09 37487.16 295
AUN-MVS79.21 17777.60 19884.05 13488.71 16367.61 14385.84 21387.26 23669.08 23377.23 18788.14 19953.20 24893.47 15575.50 14373.45 33291.06 166
ZD-MVS94.38 2572.22 4492.67 6670.98 18787.75 3594.07 4474.01 3296.70 2784.66 5294.84 44
SR-MVS-dyc-post85.77 5585.61 5886.23 5993.06 5870.63 7691.88 3892.27 8373.53 14385.69 5694.45 2865.00 13195.56 6382.75 7491.87 8492.50 123
RE-MVS-def85.48 6093.06 5870.63 7691.88 3892.27 8373.53 14385.69 5694.45 2863.87 13782.75 7491.87 8492.50 123
SED-MVS90.08 290.85 287.77 2695.30 270.98 6693.57 794.06 1077.24 5293.10 195.72 882.99 197.44 789.07 1496.63 494.88 14
IU-MVS95.30 271.25 5992.95 5566.81 26192.39 688.94 1696.63 494.85 19
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4782.45 396.87 2083.77 6396.48 894.88 14
test_241102_TWO94.06 1077.24 5292.78 495.72 881.26 897.44 789.07 1496.58 694.26 46
test_241102_ONE95.30 270.98 6694.06 1077.17 5593.10 195.39 1482.99 197.27 12
SF-MVS88.46 1288.74 1287.64 3592.78 6471.95 4992.40 2494.74 275.71 9189.16 1995.10 1675.65 2196.19 4687.07 3496.01 1794.79 21
cl2278.07 20577.01 20881.23 21782.37 31961.83 25983.55 26487.98 21868.96 23875.06 24683.87 29861.40 17591.88 22073.53 15876.39 29089.98 216
miper_ehance_all_eth78.59 19377.76 19381.08 22282.66 31261.56 26283.65 26089.15 18768.87 23975.55 22483.79 30266.49 11292.03 21373.25 16376.39 29089.64 228
miper_enhance_ethall77.87 21276.86 21280.92 22781.65 32661.38 26482.68 27788.98 19465.52 28375.47 22582.30 32965.76 12492.00 21572.95 16676.39 29089.39 234
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6585.24 6094.32 3371.76 5196.93 1985.53 4395.79 2294.32 43
dcpmvs_285.63 5886.15 4884.06 13191.71 7864.94 20086.47 19491.87 10273.63 13886.60 5093.02 7576.57 1591.87 22183.36 6592.15 8095.35 3
cl____77.72 21576.76 21680.58 23382.49 31660.48 27583.09 27287.87 22269.22 22874.38 25985.22 27362.10 16391.53 23471.09 18175.41 30989.73 227
DIV-MVS_self_test77.72 21576.76 21680.58 23382.48 31760.48 27583.09 27287.86 22369.22 22874.38 25985.24 27162.10 16391.53 23471.09 18175.40 31089.74 226
eth_miper_zixun_eth77.92 21076.69 21981.61 20783.00 30361.98 25683.15 27089.20 18569.52 22174.86 25084.35 29061.76 16692.56 19371.50 17872.89 33790.28 198
9.1488.26 1592.84 6391.52 4894.75 173.93 13288.57 2594.67 2175.57 2295.79 5886.77 3595.76 23
uanet_test0.00 3910.00 3940.00 4040.00 4270.00 4290.00 4150.00 4280.00 4220.00 4230.00 4220.00 4270.00 4230.00 4220.00 4210.00 419
DCPMVS0.00 3910.00 3940.00 4040.00 4270.00 4290.00 4150.00 4280.00 4220.00 4230.00 4220.00 4270.00 4230.00 4220.00 4210.00 419
save fliter93.80 4072.35 4290.47 6691.17 12474.31 123
ET-MVSNet_ETH3D78.63 19176.63 22184.64 10186.73 23069.47 9585.01 23084.61 27269.54 22066.51 34686.59 23950.16 28491.75 22476.26 13284.24 19092.69 116
UniMVSNet_ETH3D79.10 18078.24 17881.70 20486.85 22660.24 27987.28 17088.79 20074.25 12576.84 19490.53 13649.48 29291.56 23167.98 21382.15 22193.29 90
EIA-MVS83.31 9482.80 9684.82 9689.59 12265.59 18688.21 13992.68 6574.66 11778.96 14786.42 24669.06 8695.26 7875.54 14290.09 10893.62 77
miper_refine_blended66.22 34163.89 34373.21 33275.47 37853.42 35870.76 37984.35 27564.10 30166.52 34478.52 36434.55 37884.98 33050.40 34650.33 39781.23 372
miper_lstm_enhance74.11 26773.11 26877.13 29680.11 34859.62 28572.23 37286.92 24466.76 26370.40 29982.92 31956.93 21982.92 34569.06 20472.63 33888.87 253
ETV-MVS84.90 7284.67 7285.59 7389.39 13368.66 12088.74 12092.64 7179.97 1584.10 8485.71 25969.32 8295.38 7480.82 9391.37 9192.72 113
CS-MVS86.69 3986.95 3585.90 6990.76 9667.57 14592.83 1793.30 3279.67 1784.57 7692.27 8971.47 5695.02 9184.24 5993.46 6795.13 7
D2MVS74.82 26173.21 26679.64 25479.81 35362.56 24980.34 31087.35 23464.37 29768.86 31982.66 32446.37 31790.10 26667.91 21481.24 23186.25 311
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5993.49 992.73 6477.33 4992.12 995.78 480.98 997.40 989.08 1296.41 1293.33 89
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 989.42 996.57 794.67 26
test_0728_SECOND87.71 3295.34 171.43 5893.49 994.23 397.49 489.08 1296.41 1294.21 47
test072695.27 571.25 5993.60 694.11 677.33 4992.81 395.79 380.98 9
SR-MVS86.73 3886.67 3986.91 4994.11 3772.11 4792.37 2892.56 7474.50 11986.84 4894.65 2267.31 10595.77 5984.80 5092.85 7292.84 112
DPM-MVS84.93 7084.29 7786.84 5090.20 10573.04 2387.12 17393.04 4169.80 21482.85 10291.22 11773.06 3996.02 5276.72 13094.63 4891.46 157
GST-MVS87.42 2787.26 2887.89 2494.12 3672.97 2492.39 2693.43 2876.89 6384.68 6993.99 5170.67 6896.82 2284.18 6195.01 3793.90 60
test_yl81.17 12880.47 13083.24 16089.13 14663.62 22486.21 20289.95 16172.43 16381.78 11589.61 15357.50 21393.58 14770.75 18486.90 15192.52 121
thisisatest053079.40 17277.76 19384.31 11387.69 20665.10 19787.36 16684.26 27970.04 20677.42 18188.26 19349.94 28794.79 10170.20 19084.70 18093.03 105
Anonymous2024052980.19 15678.89 16484.10 12390.60 9764.75 20488.95 11190.90 13165.97 27880.59 12991.17 12049.97 28693.73 14569.16 20382.70 21793.81 65
Anonymous20240521178.25 19877.01 20881.99 19991.03 8760.67 27284.77 23583.90 28370.65 19680.00 13591.20 11841.08 35591.43 24065.21 23785.26 17493.85 62
DCV-MVSNet81.17 12880.47 13083.24 16089.13 14663.62 22486.21 20289.95 16172.43 16381.78 11589.61 15357.50 21393.58 14770.75 18486.90 15192.52 121
tttt051779.40 17277.91 18583.90 14388.10 18563.84 22188.37 13484.05 28171.45 17776.78 19789.12 16749.93 28994.89 9670.18 19183.18 21092.96 110
our_test_369.14 31867.00 33175.57 30879.80 35458.80 28977.96 34277.81 35159.55 34462.90 36878.25 36747.43 30783.97 33751.71 33967.58 36383.93 348
thisisatest051577.33 22475.38 24083.18 16385.27 25363.80 22282.11 28383.27 29365.06 28875.91 21783.84 30049.54 29194.27 11667.24 22186.19 16391.48 155
ppachtmachnet_test70.04 31167.34 32978.14 28079.80 35461.13 26579.19 32480.59 32859.16 34865.27 35379.29 35746.75 31487.29 30849.33 35466.72 36486.00 320
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 11492.29 795.97 274.28 2997.24 1388.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS88.96 250
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8992.29 795.66 1081.67 697.38 1187.44 3396.34 1593.95 57
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part295.06 872.65 3291.80 13
thres100view90076.50 23775.55 23679.33 25889.52 12556.99 31585.83 21483.23 29473.94 13176.32 20987.12 22351.89 26491.95 21648.33 35983.75 19789.07 239
tfpnnormal74.39 26373.16 26778.08 28186.10 24158.05 29784.65 23987.53 23070.32 20171.22 29485.63 26354.97 22789.86 27043.03 38275.02 31786.32 310
tfpn200view976.42 24175.37 24179.55 25789.13 14657.65 30685.17 22583.60 28673.41 14676.45 20586.39 24752.12 25691.95 21648.33 35983.75 19789.07 239
c3_l78.75 18777.91 18581.26 21682.89 30761.56 26284.09 25589.13 18969.97 21075.56 22384.29 29166.36 11492.09 21273.47 16075.48 30590.12 204
CHOSEN 280x42066.51 33864.71 33971.90 34381.45 33163.52 22957.98 40668.95 39053.57 37662.59 36976.70 37446.22 32075.29 38955.25 32279.68 25076.88 386
CANet86.45 4286.10 4987.51 3790.09 10770.94 7089.70 8592.59 7381.78 481.32 11991.43 11170.34 7097.23 1484.26 5793.36 6894.37 40
Fast-Effi-MVS+-dtu78.02 20776.49 22282.62 18983.16 29966.96 16386.94 17887.45 23372.45 16071.49 29284.17 29554.79 23291.58 22967.61 21680.31 24489.30 237
Effi-MVS+-dtu80.03 15878.57 16984.42 10885.13 25868.74 11488.77 11788.10 21574.99 10674.97 24883.49 30957.27 21693.36 16073.53 15880.88 23591.18 162
CANet_DTU80.61 14379.87 14182.83 17985.60 24763.17 24087.36 16688.65 20776.37 8075.88 21888.44 18753.51 24493.07 17973.30 16289.74 11592.25 132
MVS_030487.69 2087.55 2488.12 1389.45 12971.76 5191.47 4989.54 17182.14 386.65 4994.28 3468.28 9597.46 690.81 295.31 3495.15 6
MP-MVS-pluss87.67 2187.72 2087.54 3693.64 4472.04 4889.80 8193.50 2575.17 10486.34 5195.29 1570.86 6596.00 5488.78 1996.04 1694.58 31
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 4078.35 1396.77 2489.59 894.22 6094.67 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs151.32 27188.96 250
sam_mvs50.01 285
IterMVS-SCA-FT75.43 25673.87 26080.11 24382.69 31164.85 20281.57 28983.47 29069.16 23170.49 29884.15 29651.95 26288.15 30069.23 20172.14 34387.34 289
TSAR-MVS + MP.88.02 1788.11 1687.72 3093.68 4372.13 4691.41 5092.35 8174.62 11888.90 2293.85 5575.75 2096.00 5487.80 2894.63 4895.04 8
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu80.80 13879.72 14484.03 13687.35 21370.19 8285.56 21788.77 20169.06 23481.83 11188.16 19550.91 27592.85 18678.29 11487.56 14189.06 241
OPM-MVS83.50 8882.95 9385.14 8388.79 15970.95 6989.13 10791.52 11377.55 4480.96 12691.75 9860.71 18794.50 11079.67 10386.51 15889.97 217
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP88.05 1688.08 1787.94 1993.70 4173.05 2290.86 5793.59 2376.27 8388.14 2795.09 1771.06 6396.67 2987.67 2996.37 1494.09 51
ambc75.24 31573.16 39050.51 38063.05 40487.47 23264.28 35977.81 37017.80 40689.73 27457.88 30560.64 38185.49 325
MTGPAbinary92.02 92
CS-MVS-test86.29 4686.48 4185.71 7191.02 8867.21 15892.36 2993.78 1878.97 2883.51 9591.20 11870.65 6995.15 8281.96 8294.89 4294.77 23
Effi-MVS+83.62 8683.08 8985.24 8188.38 17567.45 14788.89 11389.15 18775.50 9682.27 10788.28 19169.61 7994.45 11277.81 11787.84 13993.84 64
xiu_mvs_v2_base81.69 11981.05 12083.60 14789.15 14568.03 13584.46 24590.02 15870.67 19281.30 12286.53 24463.17 14594.19 12175.60 14188.54 13288.57 265
xiu_mvs_v1_base80.80 13879.72 14484.03 13687.35 21370.19 8285.56 21788.77 20169.06 23481.83 11188.16 19550.91 27592.85 18678.29 11487.56 14189.06 241
new-patchmatchnet61.73 35361.73 35461.70 37772.74 39324.50 42069.16 38678.03 35061.40 33056.72 38875.53 38238.42 36676.48 37745.95 37457.67 38484.13 345
pmmvs674.69 26273.39 26478.61 26981.38 33357.48 30986.64 18987.95 22064.99 29170.18 30286.61 23850.43 28289.52 27762.12 26570.18 35388.83 255
pmmvs571.55 29570.20 30175.61 30777.83 36656.39 32581.74 28680.89 32357.76 35967.46 33184.49 28549.26 29785.32 32857.08 31275.29 31385.11 334
test_post178.90 3305.43 41848.81 30485.44 32759.25 289
test_post5.46 41750.36 28384.24 335
Fast-Effi-MVS+80.81 13679.92 13983.47 15088.85 15364.51 20785.53 22289.39 17670.79 18978.49 15985.06 27767.54 10293.58 14767.03 22586.58 15692.32 129
patchmatchnet-post74.00 38551.12 27488.60 295
Anonymous2023121178.97 18477.69 19682.81 18190.54 9964.29 21490.11 7591.51 11465.01 29076.16 21688.13 20050.56 28093.03 18369.68 19877.56 27591.11 164
pmmvs-eth3d70.50 30767.83 32078.52 27577.37 36966.18 17281.82 28481.51 31858.90 35163.90 36380.42 34742.69 34586.28 31758.56 29765.30 37183.11 357
GG-mvs-BLEND75.38 31381.59 32855.80 33579.32 32169.63 38667.19 33473.67 38643.24 34188.90 29150.41 34584.50 18281.45 371
xiu_mvs_v1_base_debi80.80 13879.72 14484.03 13687.35 21370.19 8285.56 21788.77 20169.06 23481.83 11188.16 19550.91 27592.85 18678.29 11487.56 14189.06 241
Anonymous2023120668.60 32267.80 32171.02 35280.23 34750.75 37978.30 34080.47 33056.79 36666.11 34982.63 32546.35 31878.95 36343.62 38175.70 30083.36 354
MTAPA87.23 3187.00 3287.90 2294.18 3574.25 586.58 19192.02 9279.45 1985.88 5394.80 1968.07 9696.21 4586.69 3695.34 3293.23 92
MTMP92.18 3432.83 421
gm-plane-assit81.40 33253.83 35562.72 32080.94 34292.39 20063.40 251
test9_res84.90 4695.70 2692.87 111
MVP-Stereo76.12 24574.46 25381.13 22185.37 25269.79 8984.42 24887.95 22065.03 28967.46 33185.33 26953.28 24791.73 22658.01 30483.27 20881.85 369
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST993.26 5272.96 2588.75 11891.89 10068.44 24785.00 6393.10 7074.36 2895.41 72
train_agg86.43 4386.20 4587.13 4493.26 5272.96 2588.75 11891.89 10068.69 24285.00 6393.10 7074.43 2695.41 7284.97 4595.71 2593.02 106
gg-mvs-nofinetune69.95 31267.96 31675.94 30383.07 30054.51 35077.23 34870.29 38463.11 31170.32 30062.33 39743.62 33988.69 29353.88 32987.76 14084.62 340
SCA74.22 26672.33 27679.91 24684.05 27962.17 25479.96 31579.29 34466.30 27372.38 28280.13 34951.95 26288.60 29559.25 28977.67 27488.96 250
Patchmatch-test64.82 34663.24 34769.57 35779.42 36049.82 38363.49 40369.05 38951.98 38259.95 37880.13 34950.91 27570.98 39740.66 38873.57 33087.90 276
test_893.13 5472.57 3588.68 12391.84 10468.69 24284.87 6793.10 7074.43 2695.16 81
MS-PatchMatch73.83 27172.67 27177.30 29483.87 28266.02 17481.82 28484.66 27161.37 33268.61 32282.82 32247.29 30888.21 29959.27 28884.32 18977.68 384
Patchmatch-RL test70.24 30967.78 32277.61 28977.43 36859.57 28771.16 37670.33 38362.94 31568.65 32172.77 38850.62 27985.49 32569.58 19966.58 36687.77 279
cdsmvs_eth3d_5k19.96 38426.61 3860.00 4040.00 4270.00 4290.00 41589.26 1820.00 4220.00 42388.61 18161.62 1690.00 4230.00 4220.00 4210.00 419
pcd_1.5k_mvsjas5.26 3907.02 3930.00 4040.00 4270.00 4290.00 4150.00 4280.00 4220.00 4230.00 42263.15 1460.00 4230.00 4220.00 4210.00 419
agg_prior282.91 7295.45 2992.70 114
agg_prior92.85 6271.94 5091.78 10784.41 7894.93 92
tmp_tt18.61 38521.40 38810.23 4014.82 42410.11 42434.70 41130.74 4221.48 41823.91 41426.07 41528.42 39013.41 42027.12 40415.35 4177.17 415
canonicalmvs85.91 5285.87 5486.04 6589.84 11769.44 9890.45 6893.00 4676.70 7188.01 3191.23 11573.28 3693.91 13381.50 8588.80 12694.77 23
anonymousdsp78.60 19277.15 20682.98 17480.51 34467.08 15987.24 17189.53 17265.66 28175.16 24287.19 22152.52 24992.25 20777.17 12479.34 25689.61 229
alignmvs85.48 6085.32 6485.96 6889.51 12669.47 9589.74 8392.47 7576.17 8487.73 3791.46 11070.32 7193.78 13981.51 8488.95 12394.63 30
nrg03083.88 7883.53 8284.96 9086.77 22969.28 10290.46 6792.67 6674.79 11382.95 9991.33 11472.70 4393.09 17880.79 9579.28 25792.50 123
v14419279.47 16878.37 17482.78 18583.35 29163.96 21986.96 17790.36 14869.99 20977.50 17985.67 26260.66 18993.77 14174.27 15276.58 28690.62 182
FIs82.07 11182.42 9881.04 22388.80 15858.34 29488.26 13893.49 2676.93 6278.47 16091.04 12469.92 7692.34 20469.87 19684.97 17692.44 127
v192192079.22 17678.03 18282.80 18283.30 29363.94 22086.80 18390.33 14969.91 21277.48 18085.53 26558.44 20493.75 14373.60 15776.85 28390.71 180
UA-Net85.08 6884.96 6985.45 7692.07 7368.07 13389.78 8290.86 13482.48 284.60 7593.20 6969.35 8195.22 7971.39 17990.88 9793.07 101
v119279.59 16578.43 17383.07 16983.55 28864.52 20686.93 17990.58 13970.83 18877.78 17585.90 25559.15 20093.94 12973.96 15577.19 27890.76 177
FC-MVSNet-test81.52 12382.02 10880.03 24488.42 17455.97 33287.95 14893.42 2977.10 5877.38 18290.98 13069.96 7591.79 22268.46 21184.50 18292.33 128
v114480.03 15879.03 16183.01 17283.78 28464.51 20787.11 17490.57 14171.96 16878.08 17086.20 25161.41 17493.94 12974.93 14677.23 27690.60 184
sosnet-low-res0.00 3910.00 3940.00 4040.00 4270.00 4290.00 4150.00 4280.00 4220.00 4230.00 4220.00 4270.00 4230.00 4220.00 4210.00 419
HFP-MVS87.58 2287.47 2687.94 1994.58 1673.54 1593.04 1293.24 3376.78 6784.91 6594.44 3070.78 6696.61 3284.53 5494.89 4293.66 70
v14878.72 18977.80 19081.47 20982.73 31061.96 25786.30 20088.08 21673.26 15076.18 21385.47 26762.46 15692.36 20271.92 17573.82 32990.09 207
sosnet0.00 3910.00 3940.00 4040.00 4270.00 4290.00 4150.00 4280.00 4220.00 4230.00 4220.00 4270.00 4230.00 4220.00 4210.00 419
uncertanet0.00 3910.00 3940.00 4040.00 4270.00 4290.00 4150.00 4280.00 4220.00 4230.00 4220.00 4270.00 4230.00 4220.00 4210.00 419
AllTest70.96 30068.09 31579.58 25585.15 25663.62 22484.58 24179.83 33862.31 32360.32 37686.73 22932.02 38288.96 28950.28 34871.57 34786.15 314
TestCases79.58 25585.15 25663.62 22479.83 33862.31 32360.32 37686.73 22932.02 38288.96 28950.28 34871.57 34786.15 314
v7n78.97 18477.58 19983.14 16583.45 29065.51 18788.32 13691.21 12273.69 13772.41 28186.32 24957.93 20793.81 13869.18 20275.65 30190.11 205
region2R87.42 2787.20 3188.09 1494.63 1473.55 1393.03 1493.12 4076.73 7084.45 7794.52 2369.09 8496.70 2784.37 5694.83 4594.03 54
RRT-MVS82.60 10682.10 10584.10 12387.98 19262.94 24687.45 16491.27 12077.42 4879.85 13690.28 13856.62 22194.70 10579.87 10288.15 13894.67 26
mamv476.81 23278.23 18072.54 34086.12 23965.75 18478.76 33182.07 31364.12 30072.97 27391.02 12767.97 9768.08 40483.04 7078.02 26983.80 350
PS-MVSNAJss82.07 11181.31 11584.34 11286.51 23467.27 15489.27 10091.51 11471.75 16979.37 14290.22 14263.15 14694.27 11677.69 11882.36 22091.49 154
PS-MVSNAJ81.69 11981.02 12183.70 14589.51 12668.21 13084.28 25190.09 15770.79 18981.26 12385.62 26463.15 14694.29 11475.62 14088.87 12588.59 264
jajsoiax79.29 17577.96 18383.27 15884.68 26566.57 16789.25 10190.16 15569.20 23075.46 22789.49 15745.75 32793.13 17676.84 12780.80 23790.11 205
mvs_tets79.13 17977.77 19283.22 16284.70 26466.37 16989.17 10290.19 15469.38 22375.40 23089.46 16044.17 33793.15 17476.78 12980.70 23990.14 202
EI-MVSNet-UG-set83.81 7983.38 8585.09 8687.87 19667.53 14687.44 16589.66 16879.74 1682.23 10889.41 16470.24 7394.74 10279.95 10083.92 19392.99 109
EI-MVSNet-Vis-set84.19 7583.81 8085.31 7988.18 18067.85 13787.66 15789.73 16780.05 1482.95 9989.59 15570.74 6794.82 9980.66 9684.72 17993.28 91
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5980.26 1187.78 3394.27 3575.89 1996.81 2387.45 3296.44 993.05 104
test_prior472.60 3489.01 109
XVS87.18 3286.91 3788.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9294.17 3967.45 10396.60 3383.06 6894.50 5194.07 52
v124078.99 18377.78 19182.64 18883.21 29563.54 22886.62 19090.30 15169.74 21977.33 18385.68 26157.04 21893.76 14273.13 16576.92 28090.62 182
pm-mvs177.25 22676.68 22078.93 26584.22 27458.62 29186.41 19588.36 21271.37 17873.31 26888.01 20161.22 18089.15 28464.24 24673.01 33689.03 245
test_prior288.85 11575.41 9784.91 6593.54 5974.28 2983.31 6695.86 20
X-MVStestdata80.37 15277.83 18888.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9212.47 41667.45 10396.60 3383.06 6894.50 5194.07 52
test_prior86.33 5792.61 6869.59 9192.97 5495.48 6793.91 58
旧先验286.56 19258.10 35787.04 4588.98 28774.07 154
新几何286.29 201
新几何183.42 15293.13 5470.71 7485.48 26457.43 36381.80 11491.98 9363.28 14192.27 20664.60 24392.99 7087.27 291
旧先验191.96 7465.79 18286.37 25293.08 7469.31 8392.74 7388.74 261
无先验87.48 16188.98 19460.00 34094.12 12367.28 22088.97 249
原ACMM286.86 181
原ACMM184.35 11193.01 6068.79 11092.44 7663.96 30681.09 12491.57 10666.06 11995.45 6867.19 22294.82 4688.81 256
test22291.50 8068.26 12884.16 25383.20 29754.63 37479.74 13791.63 10358.97 20191.42 9086.77 304
testdata291.01 25462.37 261
segment_acmp73.08 38
testdata79.97 24590.90 9164.21 21584.71 27059.27 34785.40 5892.91 7662.02 16589.08 28568.95 20591.37 9186.63 308
testdata184.14 25475.71 91
v879.97 16079.02 16282.80 18284.09 27764.50 20987.96 14790.29 15274.13 12975.24 24086.81 22862.88 15193.89 13674.39 15175.40 31090.00 213
131476.53 23675.30 24380.21 24183.93 28162.32 25284.66 23788.81 19960.23 33870.16 30484.07 29755.30 22690.73 25967.37 21983.21 20987.59 284
LFMVS81.82 11681.23 11783.57 14991.89 7663.43 23389.84 7881.85 31677.04 6083.21 9693.10 7052.26 25493.43 15871.98 17489.95 11293.85 62
VDD-MVS83.01 10082.36 10184.96 9091.02 8866.40 16888.91 11288.11 21477.57 4184.39 7993.29 6752.19 25593.91 13377.05 12588.70 13094.57 33
VDDNet81.52 12380.67 12684.05 13490.44 10164.13 21789.73 8485.91 25971.11 18383.18 9793.48 6150.54 28193.49 15373.40 16188.25 13694.54 34
v1079.74 16278.67 16682.97 17584.06 27864.95 19987.88 15390.62 13873.11 15375.11 24486.56 24261.46 17394.05 12573.68 15675.55 30389.90 219
VPNet78.69 19078.66 16778.76 26788.31 17755.72 33684.45 24686.63 24876.79 6678.26 16490.55 13559.30 19989.70 27566.63 22677.05 27990.88 173
MVS78.19 20276.99 21081.78 20285.66 24566.99 16084.66 23790.47 14355.08 37372.02 28685.27 27063.83 13894.11 12466.10 23089.80 11484.24 343
v2v48280.23 15479.29 15583.05 17083.62 28664.14 21687.04 17589.97 16073.61 13978.18 16787.22 21961.10 18293.82 13776.11 13376.78 28591.18 162
V4279.38 17478.24 17882.83 17981.10 33865.50 18885.55 22089.82 16371.57 17578.21 16586.12 25360.66 18993.18 17375.64 13975.46 30789.81 224
SD-MVS88.06 1488.50 1486.71 5492.60 6972.71 2991.81 4193.19 3577.87 3690.32 1794.00 4974.83 2393.78 13987.63 3094.27 5993.65 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS76.87 23175.17 24481.97 20082.75 30962.58 24881.44 29286.35 25372.16 16774.74 25182.89 32046.20 32192.02 21468.85 20781.09 23391.30 160
MSLP-MVS++85.43 6285.76 5684.45 10791.93 7570.24 7990.71 5992.86 5877.46 4784.22 8192.81 8167.16 10792.94 18480.36 9794.35 5790.16 201
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9391.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 36
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize85.97 5085.88 5386.22 6092.69 6669.53 9291.93 3792.99 4973.54 14285.94 5294.51 2665.80 12395.61 6283.04 7092.51 7693.53 83
ADS-MVSNet266.20 34363.33 34674.82 31979.92 35058.75 29067.55 39175.19 36853.37 37765.25 35475.86 37942.32 34780.53 35841.57 38668.91 35885.18 331
EI-MVSNet80.52 14879.98 13882.12 19584.28 27263.19 23986.41 19588.95 19774.18 12778.69 15287.54 21166.62 10992.43 19872.57 17180.57 24190.74 179
Regformer0.00 3910.00 3940.00 4040.00 4270.00 4290.00 4150.00 4280.00 4220.00 4230.00 4220.00 4270.00 4230.00 4220.00 4210.00 419
CVMVSNet72.99 28472.58 27374.25 32584.28 27250.85 37886.41 19583.45 29144.56 39373.23 27087.54 21149.38 29485.70 32165.90 23278.44 26486.19 313
pmmvs474.03 27071.91 27980.39 23681.96 32268.32 12681.45 29182.14 31159.32 34669.87 31085.13 27552.40 25288.13 30160.21 28174.74 32084.73 339
EU-MVSNet68.53 32567.61 32571.31 35078.51 36547.01 38984.47 24384.27 27842.27 39666.44 34784.79 28340.44 35883.76 33858.76 29668.54 36183.17 355
VNet82.21 10882.41 9981.62 20590.82 9360.93 26784.47 24389.78 16476.36 8184.07 8591.88 9664.71 13290.26 26370.68 18688.89 12493.66 70
test-LLR72.94 28572.43 27474.48 32281.35 33458.04 29878.38 33677.46 35466.66 26569.95 30879.00 36048.06 30579.24 36166.13 22884.83 17786.15 314
TESTMET0.1,169.89 31369.00 30772.55 33979.27 36256.85 31678.38 33674.71 37357.64 36068.09 32577.19 37337.75 37076.70 37463.92 24784.09 19284.10 346
test-mter71.41 29670.39 29974.48 32281.35 33458.04 29878.38 33677.46 35460.32 33769.95 30879.00 36036.08 37579.24 36166.13 22884.83 17786.15 314
VPA-MVSNet80.60 14480.55 12880.76 23088.07 18760.80 27086.86 18191.58 11275.67 9480.24 13289.45 16263.34 14090.25 26470.51 18879.22 25891.23 161
ACMMPR87.44 2587.23 3088.08 1594.64 1373.59 1293.04 1293.20 3476.78 6784.66 7294.52 2368.81 9096.65 3084.53 5494.90 4194.00 55
testgi66.67 33766.53 33467.08 37175.62 37641.69 40675.93 35276.50 36366.11 27465.20 35686.59 23935.72 37674.71 39043.71 38073.38 33484.84 337
test20.0367.45 33166.95 33268.94 36075.48 37744.84 39777.50 34577.67 35266.66 26563.01 36683.80 30147.02 31178.40 36542.53 38568.86 36083.58 352
thres600view776.50 23775.44 23779.68 25289.40 13257.16 31285.53 22283.23 29473.79 13576.26 21087.09 22451.89 26491.89 21948.05 36483.72 20090.00 213
ADS-MVSNet64.36 34762.88 35068.78 36379.92 35047.17 38867.55 39171.18 38253.37 37765.25 35475.86 37942.32 34773.99 39341.57 38668.91 35885.18 331
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 6977.57 4183.84 8994.40 3272.24 4596.28 4385.65 4195.30 3593.62 77
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs6.04 3898.02 3920.10 4030.08 4250.03 42869.74 3820.04 4260.05 4200.31 4211.68 4200.02 4260.04 4210.24 4200.02 4190.25 418
thres40076.50 23775.37 24179.86 24789.13 14657.65 30685.17 22583.60 28673.41 14676.45 20586.39 24752.12 25691.95 21648.33 35983.75 19790.00 213
test1236.12 3888.11 3910.14 4020.06 4260.09 42771.05 3770.03 4270.04 4210.25 4221.30 4210.05 4250.03 4220.21 4210.01 4200.29 417
thres20075.55 25374.47 25278.82 26687.78 20257.85 30383.07 27483.51 28972.44 16275.84 21984.42 28652.08 25991.75 22447.41 36683.64 20286.86 302
test0.0.03 168.00 32967.69 32368.90 36177.55 36747.43 38775.70 35672.95 38066.66 26566.56 34282.29 33048.06 30575.87 38344.97 37974.51 32283.41 353
pmmvs357.79 35854.26 36368.37 36564.02 40656.72 31975.12 36265.17 39840.20 39852.93 39469.86 39420.36 40375.48 38645.45 37755.25 39272.90 392
EMVS30.81 38229.65 38434.27 39850.96 41825.95 41856.58 40846.80 41624.01 41315.53 41830.68 41412.47 41054.43 41412.81 41717.05 41522.43 414
E-PMN31.77 38030.64 38335.15 39752.87 41727.67 41457.09 40747.86 41524.64 41216.40 41733.05 41311.23 41354.90 41314.46 41618.15 41422.87 413
PGM-MVS86.68 4086.27 4487.90 2294.22 3373.38 1890.22 7393.04 4175.53 9583.86 8894.42 3167.87 10096.64 3182.70 7894.57 5093.66 70
LCM-MVSNet-Re77.05 22776.94 21177.36 29287.20 22151.60 37180.06 31280.46 33175.20 10167.69 32886.72 23162.48 15588.98 28763.44 25089.25 11991.51 152
LCM-MVSNet54.25 36249.68 37267.97 36953.73 41645.28 39566.85 39480.78 32535.96 40539.45 40662.23 3998.70 41678.06 36848.24 36251.20 39680.57 377
MCST-MVS87.37 2987.25 2987.73 2894.53 1772.46 3889.82 7993.82 1673.07 15484.86 6892.89 7776.22 1796.33 4184.89 4895.13 3694.40 39
mvs_anonymous79.42 17179.11 16080.34 23884.45 27157.97 30082.59 27887.62 22867.40 25976.17 21588.56 18468.47 9289.59 27670.65 18786.05 16693.47 84
MVS_Test83.15 9583.06 9083.41 15486.86 22563.21 23786.11 20592.00 9474.31 12382.87 10189.44 16370.03 7493.21 16777.39 12288.50 13493.81 65
MDA-MVSNet-bldmvs66.68 33663.66 34575.75 30579.28 36160.56 27473.92 36878.35 34964.43 29550.13 39879.87 35344.02 33883.67 33946.10 37356.86 38583.03 359
CDPH-MVS85.76 5685.29 6687.17 4393.49 4771.08 6488.58 12692.42 7968.32 24984.61 7493.48 6172.32 4496.15 4879.00 10495.43 3094.28 45
test1286.80 5292.63 6770.70 7591.79 10682.71 10571.67 5496.16 4794.50 5193.54 82
casdiffmvspermissive85.11 6785.14 6785.01 8887.20 22165.77 18387.75 15592.83 6077.84 3784.36 8092.38 8872.15 4693.93 13281.27 8990.48 10195.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive82.10 10981.88 11182.76 18783.00 30363.78 22383.68 25989.76 16572.94 15782.02 11089.85 14765.96 12290.79 25782.38 8087.30 14693.71 69
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline275.70 25173.83 26181.30 21583.26 29461.79 26082.57 27980.65 32766.81 26166.88 33783.42 31057.86 20992.19 20963.47 24979.57 25189.91 218
baseline176.98 22976.75 21877.66 28788.13 18355.66 33785.12 22881.89 31473.04 15576.79 19688.90 17262.43 15787.78 30563.30 25271.18 34989.55 231
YYNet165.03 34462.91 34971.38 34675.85 37456.60 32269.12 38774.66 37457.28 36454.12 39277.87 36945.85 32474.48 39149.95 35161.52 37983.05 358
PMMVS240.82 37838.86 38246.69 39253.84 41416.45 42348.61 40949.92 41237.49 40231.67 40760.97 4008.14 41856.42 41228.42 40330.72 40967.19 397
MDA-MVSNet_test_wron65.03 34462.92 34871.37 34775.93 37256.73 31869.09 38874.73 37257.28 36454.03 39377.89 36845.88 32374.39 39249.89 35261.55 37882.99 360
tpmvs71.09 29969.29 30476.49 30082.04 32156.04 33178.92 32981.37 32164.05 30367.18 33578.28 36649.74 29089.77 27249.67 35372.37 33983.67 351
PM-MVS66.41 33964.14 34173.20 33473.92 38356.45 32378.97 32864.96 40063.88 30764.72 35780.24 34819.84 40483.44 34266.24 22764.52 37379.71 380
HQP_MVS83.64 8483.14 8885.14 8390.08 10868.71 11691.25 5292.44 7679.12 2378.92 14991.00 12860.42 19495.38 7478.71 10886.32 16091.33 158
plane_prior790.08 10868.51 123
plane_prior689.84 11768.70 11860.42 194
plane_prior592.44 7695.38 7478.71 10886.32 16091.33 158
plane_prior491.00 128
plane_prior368.60 12178.44 3178.92 149
plane_prior291.25 5279.12 23
plane_prior189.90 116
plane_prior68.71 11690.38 7077.62 3986.16 164
PS-CasMVS78.01 20878.09 18177.77 28687.71 20454.39 35188.02 14591.22 12177.50 4673.26 26988.64 18060.73 18688.41 29861.88 26773.88 32890.53 187
UniMVSNet_NR-MVSNet81.88 11481.54 11482.92 17688.46 17163.46 23187.13 17292.37 8080.19 1278.38 16189.14 16671.66 5593.05 18070.05 19276.46 28892.25 132
PEN-MVS77.73 21477.69 19677.84 28487.07 22453.91 35487.91 15191.18 12377.56 4373.14 27188.82 17561.23 17989.17 28359.95 28272.37 33990.43 191
TransMVSNet (Re)75.39 25874.56 25077.86 28385.50 24957.10 31486.78 18586.09 25872.17 16671.53 29187.34 21463.01 15089.31 28156.84 31561.83 37787.17 293
DTE-MVSNet76.99 22876.80 21477.54 29186.24 23653.06 36387.52 16090.66 13777.08 5972.50 27988.67 17960.48 19389.52 27757.33 31070.74 35190.05 212
DU-MVS81.12 13080.52 12982.90 17787.80 19963.46 23187.02 17691.87 10279.01 2678.38 16189.07 16865.02 12993.05 18070.05 19276.46 28892.20 135
UniMVSNet (Re)81.60 12281.11 11983.09 16788.38 17564.41 21287.60 15893.02 4578.42 3278.56 15788.16 19569.78 7793.26 16369.58 19976.49 28791.60 148
CP-MVSNet78.22 19978.34 17577.84 28487.83 19854.54 34987.94 14991.17 12477.65 3873.48 26788.49 18562.24 16188.43 29762.19 26374.07 32490.55 186
WR-MVS_H78.51 19478.49 17078.56 27288.02 18956.38 32688.43 12992.67 6677.14 5673.89 26287.55 21066.25 11689.24 28258.92 29373.55 33190.06 211
WR-MVS79.49 16779.22 15880.27 24088.79 15958.35 29385.06 22988.61 20978.56 3077.65 17788.34 18963.81 13990.66 26064.98 24077.22 27791.80 146
NR-MVSNet80.23 15479.38 15182.78 18587.80 19963.34 23486.31 19991.09 12879.01 2672.17 28489.07 16867.20 10692.81 18966.08 23175.65 30192.20 135
Baseline_NR-MVSNet78.15 20378.33 17677.61 28985.79 24356.21 33086.78 18585.76 26173.60 14077.93 17387.57 20865.02 12988.99 28667.14 22375.33 31287.63 281
TranMVSNet+NR-MVSNet80.84 13480.31 13382.42 19287.85 19762.33 25187.74 15691.33 11980.55 977.99 17289.86 14665.23 12792.62 19067.05 22475.24 31592.30 130
TSAR-MVS + GP.85.71 5785.33 6386.84 5091.34 8172.50 3689.07 10887.28 23576.41 7685.80 5490.22 14274.15 3195.37 7781.82 8391.88 8392.65 118
n20.00 428
nn0.00 428
mPP-MVS86.67 4186.32 4387.72 3094.41 2273.55 1392.74 2092.22 8776.87 6482.81 10494.25 3766.44 11396.24 4482.88 7394.28 5893.38 86
door-mid69.98 385
XVG-OURS-SEG-HR80.81 13679.76 14383.96 14185.60 24768.78 11183.54 26590.50 14270.66 19576.71 19991.66 10060.69 18891.26 24476.94 12681.58 22891.83 144
mvsmamba80.60 14479.38 15184.27 11789.74 12067.24 15687.47 16286.95 24270.02 20775.38 23188.93 17151.24 27292.56 19375.47 14489.22 12093.00 108
MVSFormer82.85 10182.05 10785.24 8187.35 21370.21 8090.50 6490.38 14568.55 24481.32 11989.47 15861.68 16793.46 15678.98 10590.26 10592.05 141
jason81.39 12680.29 13484.70 10086.63 23369.90 8885.95 20886.77 24663.24 30981.07 12589.47 15861.08 18392.15 21078.33 11390.07 11092.05 141
jason: jason.
lupinMVS81.39 12680.27 13584.76 9987.35 21370.21 8085.55 22086.41 25062.85 31681.32 11988.61 18161.68 16792.24 20878.41 11290.26 10591.83 144
test_djsdf80.30 15379.32 15483.27 15883.98 28065.37 19290.50 6490.38 14568.55 24476.19 21288.70 17756.44 22293.46 15678.98 10580.14 24790.97 171
HPM-MVS_fast85.35 6484.95 7086.57 5693.69 4270.58 7892.15 3591.62 11073.89 13382.67 10694.09 4362.60 15295.54 6580.93 9192.93 7193.57 79
K. test v371.19 29768.51 30979.21 26183.04 30257.78 30584.35 25076.91 36172.90 15862.99 36782.86 32139.27 36291.09 25261.65 27052.66 39488.75 259
lessismore_v078.97 26481.01 33957.15 31365.99 39661.16 37382.82 32239.12 36391.34 24359.67 28546.92 40088.43 268
SixPastTwentyTwo73.37 27671.26 28979.70 25185.08 25957.89 30285.57 21683.56 28871.03 18665.66 35085.88 25642.10 35092.57 19259.11 29163.34 37588.65 263
OurMVSNet-221017-074.26 26572.42 27579.80 24983.76 28559.59 28685.92 21086.64 24766.39 27266.96 33687.58 20739.46 36191.60 22865.76 23469.27 35688.22 270
HPM-MVScopyleft87.11 3386.98 3487.50 3893.88 3972.16 4592.19 3393.33 3176.07 8683.81 9093.95 5469.77 7896.01 5385.15 4494.66 4794.32 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS80.41 14979.23 15783.97 14085.64 24669.02 10583.03 27690.39 14471.09 18477.63 17891.49 10954.62 23591.35 24275.71 13883.47 20591.54 151
XVG-ACMP-BASELINE76.11 24674.27 25581.62 20583.20 29664.67 20583.60 26389.75 16669.75 21771.85 28787.09 22432.78 38192.11 21169.99 19480.43 24388.09 273
casdiffmvs_mvgpermissive85.99 4886.09 5085.70 7287.65 20767.22 15788.69 12293.04 4179.64 1885.33 5992.54 8673.30 3594.50 11083.49 6491.14 9495.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test82.08 11081.27 11684.50 10489.23 14268.76 11290.22 7391.94 9875.37 9876.64 20191.51 10754.29 23694.91 9378.44 11083.78 19489.83 222
LGP-MVS_train84.50 10489.23 14268.76 11291.94 9875.37 9876.64 20191.51 10754.29 23694.91 9378.44 11083.78 19489.83 222
baseline84.93 7084.98 6884.80 9887.30 21965.39 19187.30 16992.88 5777.62 3984.04 8692.26 9071.81 5093.96 12681.31 8790.30 10495.03 9
test1192.23 86
door69.44 388
EPNet_dtu75.46 25574.86 24677.23 29582.57 31454.60 34886.89 18083.09 29871.64 17066.25 34885.86 25755.99 22388.04 30254.92 32486.55 15789.05 244
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268877.63 21975.69 23183.44 15189.98 11468.58 12278.70 33287.50 23156.38 36875.80 22086.84 22758.67 20291.40 24161.58 27185.75 17290.34 194
EPNet83.72 8282.92 9486.14 6384.22 27469.48 9491.05 5685.27 26581.30 676.83 19591.65 10166.09 11895.56 6376.00 13693.85 6293.38 86
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS66.98 161
HQP-NCC89.33 13589.17 10276.41 7677.23 187
ACMP_Plane89.33 13589.17 10276.41 7677.23 187
APD-MVScopyleft87.44 2587.52 2587.19 4294.24 3272.39 3991.86 4092.83 6073.01 15688.58 2494.52 2373.36 3496.49 3884.26 5795.01 3792.70 114
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS77.47 120
HQP4-MVS77.24 18695.11 8591.03 168
HQP3-MVS92.19 8985.99 168
HQP2-MVS60.17 197
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6293.00 4680.90 788.06 2994.06 4576.43 1696.84 2188.48 2495.99 1894.34 42
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5492.83 6081.50 585.79 5593.47 6373.02 4097.00 1884.90 4694.94 4094.10 50
114514_t80.68 14279.51 14884.20 12094.09 3867.27 15489.64 8791.11 12758.75 35374.08 26190.72 13258.10 20695.04 9069.70 19789.42 11890.30 197
CP-MVS87.11 3386.92 3687.68 3494.20 3473.86 793.98 392.82 6376.62 7383.68 9194.46 2767.93 9895.95 5784.20 6094.39 5593.23 92
DSMNet-mixed57.77 35956.90 36160.38 37967.70 40035.61 41069.18 38553.97 41132.30 40957.49 38679.88 35240.39 35968.57 40338.78 39272.37 33976.97 385
tpm273.26 27971.46 28478.63 26883.34 29256.71 32080.65 30480.40 33356.63 36773.55 26682.02 33451.80 26691.24 24556.35 31978.42 26587.95 274
NP-MVS89.62 12168.32 12690.24 140
EG-PatchMatch MVS74.04 26871.82 28080.71 23184.92 26167.42 14885.86 21288.08 21666.04 27664.22 36083.85 29935.10 37792.56 19357.44 30880.83 23682.16 368
tpm cat170.57 30568.31 31177.35 29382.41 31857.95 30178.08 34180.22 33652.04 38068.54 32377.66 37152.00 26187.84 30451.77 33872.07 34486.25 311
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 7272.96 2593.73 593.67 2080.19 1288.10 2894.80 1973.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
CostFormer75.24 25973.90 25979.27 25982.65 31358.27 29580.80 29882.73 30761.57 32975.33 23783.13 31555.52 22491.07 25364.98 24078.34 26788.45 267
CR-MVSNet73.37 27671.27 28879.67 25381.32 33665.19 19475.92 35380.30 33459.92 34172.73 27681.19 33752.50 25086.69 31159.84 28377.71 27287.11 297
JIA-IIPM66.32 34062.82 35176.82 29877.09 37061.72 26165.34 39975.38 36758.04 35864.51 35862.32 39842.05 35186.51 31451.45 34169.22 35782.21 366
Patchmtry70.74 30369.16 30675.49 31180.72 34054.07 35374.94 36480.30 33458.34 35470.01 30581.19 33752.50 25086.54 31353.37 33271.09 35085.87 322
PatchT68.46 32667.85 31870.29 35580.70 34143.93 39972.47 37174.88 37060.15 33970.55 29676.57 37549.94 28781.59 35150.58 34474.83 31985.34 328
tpmrst72.39 28772.13 27873.18 33580.54 34349.91 38279.91 31679.08 34663.11 31171.69 28979.95 35155.32 22582.77 34665.66 23573.89 32786.87 301
BH-w/o78.21 20077.33 20480.84 22888.81 15765.13 19684.87 23387.85 22469.75 21774.52 25684.74 28461.34 17693.11 17758.24 30285.84 17084.27 342
tpm72.37 28971.71 28174.35 32482.19 32052.00 36579.22 32377.29 35864.56 29472.95 27483.68 30751.35 27083.26 34458.33 30175.80 29987.81 278
DELS-MVS85.41 6385.30 6585.77 7088.49 16967.93 13685.52 22493.44 2778.70 2983.63 9489.03 17074.57 2495.71 6180.26 9994.04 6193.66 70
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned79.47 16878.60 16882.05 19789.19 14465.91 17886.07 20688.52 21072.18 16575.42 22987.69 20561.15 18193.54 15160.38 27986.83 15386.70 306
RPMNet73.51 27470.49 29682.58 19081.32 33665.19 19475.92 35392.27 8357.60 36172.73 27676.45 37652.30 25395.43 7048.14 36377.71 27287.11 297
MVSTER79.01 18277.88 18782.38 19383.07 30064.80 20384.08 25688.95 19769.01 23778.69 15287.17 22254.70 23392.43 19874.69 14780.57 24189.89 220
CPTT-MVS83.73 8183.33 8784.92 9393.28 4970.86 7292.09 3690.38 14568.75 24179.57 14092.83 7960.60 19293.04 18280.92 9291.56 8990.86 174
GBi-Net78.40 19577.40 20181.40 21287.60 20863.01 24188.39 13189.28 17971.63 17175.34 23387.28 21554.80 22991.11 24762.72 25579.57 25190.09 207
PVSNet_Blended_VisFu82.62 10381.83 11284.96 9090.80 9469.76 9088.74 12091.70 10969.39 22278.96 14788.46 18665.47 12594.87 9874.42 15088.57 13190.24 199
PVSNet_BlendedMVS80.60 14480.02 13782.36 19488.85 15365.40 18986.16 20492.00 9469.34 22478.11 16886.09 25466.02 12094.27 11671.52 17682.06 22387.39 287
UnsupCasMVSNet_eth67.33 33265.99 33671.37 34773.48 38751.47 37375.16 36085.19 26665.20 28660.78 37480.93 34442.35 34677.20 37157.12 31153.69 39385.44 327
UnsupCasMVSNet_bld63.70 34961.53 35570.21 35673.69 38551.39 37472.82 37081.89 31455.63 37157.81 38571.80 39038.67 36578.61 36449.26 35552.21 39580.63 376
PVSNet_Blended80.98 13180.34 13282.90 17788.85 15365.40 18984.43 24792.00 9467.62 25578.11 16885.05 27866.02 12094.27 11671.52 17689.50 11689.01 246
FMVSNet569.50 31567.96 31674.15 32682.97 30655.35 34180.01 31482.12 31262.56 32163.02 36581.53 33636.92 37281.92 35048.42 35874.06 32585.17 333
test178.40 19577.40 20181.40 21287.60 20863.01 24188.39 13189.28 17971.63 17175.34 23387.28 21554.80 22991.11 24762.72 25579.57 25190.09 207
new_pmnet50.91 37050.29 37052.78 39068.58 39934.94 41263.71 40156.63 41039.73 39944.95 40165.47 39621.93 40158.48 41034.98 39756.62 38664.92 398
FMVSNet377.88 21176.85 21380.97 22686.84 22762.36 25086.52 19388.77 20171.13 18275.34 23386.66 23754.07 23991.10 25062.72 25579.57 25189.45 233
dp66.80 33565.43 33770.90 35479.74 35648.82 38575.12 36274.77 37159.61 34364.08 36177.23 37242.89 34380.72 35748.86 35766.58 36683.16 356
FMVSNet278.20 20177.21 20581.20 21887.60 20862.89 24787.47 16289.02 19271.63 17175.29 23987.28 21554.80 22991.10 25062.38 26079.38 25589.61 229
FMVSNet177.44 22176.12 22881.40 21286.81 22863.01 24188.39 13189.28 17970.49 19874.39 25887.28 21549.06 30091.11 24760.91 27678.52 26290.09 207
N_pmnet52.79 36753.26 36551.40 39178.99 3637.68 42569.52 3833.89 42451.63 38357.01 38774.98 38340.83 35665.96 40637.78 39364.67 37280.56 378
cascas76.72 23474.64 24882.99 17385.78 24465.88 17982.33 28089.21 18460.85 33472.74 27581.02 34047.28 30993.75 14367.48 21885.02 17589.34 236
BH-RMVSNet79.61 16378.44 17283.14 16589.38 13465.93 17784.95 23287.15 23973.56 14178.19 16689.79 14856.67 22093.36 16059.53 28786.74 15490.13 203
UGNet80.83 13579.59 14784.54 10388.04 18868.09 13289.42 9588.16 21376.95 6176.22 21189.46 16049.30 29693.94 12968.48 21090.31 10391.60 148
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS75.65 25275.68 23275.57 30886.40 23556.82 31777.92 34482.40 30965.10 28776.18 21387.72 20363.13 14980.90 35660.31 28081.96 22489.00 248
XXY-MVS75.41 25775.56 23574.96 31783.59 28757.82 30480.59 30583.87 28466.54 27174.93 24988.31 19063.24 14380.09 35962.16 26476.85 28386.97 300
EC-MVSNet86.01 4786.38 4284.91 9489.31 13866.27 17192.32 3093.63 2179.37 2084.17 8391.88 9669.04 8895.43 7083.93 6293.77 6393.01 107
sss73.60 27373.64 26373.51 33182.80 30855.01 34576.12 35181.69 31762.47 32274.68 25385.85 25857.32 21578.11 36760.86 27780.93 23487.39 287
Test_1112_low_res76.40 24275.44 23779.27 25989.28 14058.09 29681.69 28787.07 24059.53 34572.48 28086.67 23661.30 17789.33 28060.81 27880.15 24690.41 192
1112_ss77.40 22376.43 22480.32 23989.11 15060.41 27783.65 26087.72 22762.13 32673.05 27286.72 23162.58 15489.97 26962.11 26680.80 23790.59 185
ab-mvs-re7.23 3879.64 3900.00 4040.00 4270.00 4290.00 4150.00 4280.00 4220.00 42386.72 2310.00 4270.00 4230.00 4220.00 4210.00 419
ab-mvs79.51 16678.97 16381.14 22088.46 17160.91 26883.84 25789.24 18370.36 19979.03 14688.87 17463.23 14490.21 26565.12 23882.57 21892.28 131
TR-MVS77.44 22176.18 22781.20 21888.24 17963.24 23684.61 24086.40 25167.55 25677.81 17486.48 24554.10 23893.15 17457.75 30682.72 21687.20 292
MDTV_nov1_ep13_2view37.79 40975.16 36055.10 37266.53 34349.34 29553.98 32887.94 275
MDTV_nov1_ep1369.97 30283.18 29753.48 35777.10 34980.18 33760.45 33569.33 31680.44 34648.89 30386.90 31051.60 34078.51 263
MIMVSNet168.58 32366.78 33373.98 32880.07 34951.82 36980.77 30084.37 27464.40 29659.75 37982.16 33236.47 37383.63 34042.73 38370.33 35286.48 309
MIMVSNet70.69 30469.30 30374.88 31884.52 26956.35 32875.87 35579.42 34264.59 29367.76 32682.41 32641.10 35481.54 35246.64 37081.34 22986.75 305
IterMVS-LS80.06 15779.38 15182.11 19685.89 24263.20 23886.79 18489.34 17774.19 12675.45 22886.72 23166.62 10992.39 20072.58 17076.86 28290.75 178
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet79.07 18177.70 19583.17 16487.60 20868.23 12984.40 24986.20 25567.49 25776.36 20886.54 24361.54 17090.79 25761.86 26887.33 14590.49 189
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref81.95 225
IterMVS74.29 26472.94 26978.35 27781.53 33063.49 23081.58 28882.49 30868.06 25269.99 30783.69 30651.66 26985.54 32465.85 23371.64 34686.01 318
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon83.11 9882.09 10686.15 6194.44 1970.92 7188.79 11692.20 8870.53 19779.17 14591.03 12664.12 13596.03 5068.39 21290.14 10791.50 153
MVS_111021_LR82.61 10482.11 10484.11 12288.82 15671.58 5585.15 22786.16 25674.69 11580.47 13091.04 12462.29 15990.55 26180.33 9890.08 10990.20 200
DP-MVS76.78 23374.57 24983.42 15293.29 4869.46 9788.55 12783.70 28563.98 30570.20 30188.89 17354.01 24094.80 10046.66 36881.88 22686.01 318
ACMMP++81.25 230
HQP-MVS82.61 10482.02 10884.37 10989.33 13566.98 16189.17 10292.19 8976.41 7677.23 18790.23 14160.17 19795.11 8577.47 12085.99 16891.03 168
QAPM80.88 13379.50 14985.03 8788.01 19168.97 10791.59 4392.00 9466.63 27075.15 24392.16 9157.70 21095.45 6863.52 24888.76 12890.66 181
Vis-MVSNetpermissive83.46 8982.80 9685.43 7790.25 10468.74 11490.30 7290.13 15676.33 8280.87 12792.89 7761.00 18494.20 12072.45 17390.97 9593.35 88
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet59.14 35757.67 35963.57 37581.65 32643.50 40071.73 37365.06 39939.59 40051.43 39557.73 40338.34 36782.58 34739.53 38973.95 32664.62 399
IS-MVSNet83.15 9582.81 9584.18 12189.94 11563.30 23591.59 4388.46 21179.04 2579.49 14192.16 9165.10 12894.28 11567.71 21591.86 8694.95 10
HyFIR lowres test77.53 22075.40 23983.94 14289.59 12266.62 16580.36 30988.64 20856.29 36976.45 20585.17 27457.64 21193.28 16261.34 27483.10 21191.91 143
EPMVS69.02 31968.16 31371.59 34579.61 35749.80 38477.40 34666.93 39462.82 31870.01 30579.05 35845.79 32577.86 36956.58 31775.26 31487.13 296
PAPM_NR83.02 9982.41 9984.82 9692.47 7066.37 16987.93 15091.80 10573.82 13477.32 18490.66 13367.90 9994.90 9570.37 18989.48 11793.19 96
TAMVS78.89 18677.51 20083.03 17187.80 19967.79 13984.72 23685.05 26867.63 25476.75 19887.70 20462.25 16090.82 25658.53 29887.13 14890.49 189
PAPR81.66 12180.89 12483.99 13990.27 10364.00 21886.76 18791.77 10868.84 24077.13 19389.50 15667.63 10194.88 9767.55 21788.52 13393.09 100
RPSCF73.23 28071.46 28478.54 27382.50 31559.85 28282.18 28282.84 30658.96 35071.15 29589.41 16445.48 33184.77 33358.82 29571.83 34591.02 170
Vis-MVSNet (Re-imp)78.36 19778.45 17178.07 28288.64 16551.78 37086.70 18879.63 34174.14 12875.11 24490.83 13161.29 17889.75 27358.10 30391.60 8792.69 116
test_040272.79 28670.44 29779.84 24888.13 18365.99 17685.93 20984.29 27765.57 28267.40 33385.49 26646.92 31292.61 19135.88 39674.38 32380.94 374
MVS_111021_HR85.14 6684.75 7186.32 5891.65 7972.70 3085.98 20790.33 14976.11 8582.08 10991.61 10571.36 5994.17 12281.02 9092.58 7592.08 140
CSCG86.41 4586.19 4687.07 4592.91 6172.48 3790.81 5893.56 2473.95 13083.16 9891.07 12375.94 1895.19 8079.94 10194.38 5693.55 81
PatchMatch-RL72.38 28870.90 29276.80 29988.60 16667.38 15079.53 31876.17 36662.75 31969.36 31582.00 33545.51 32984.89 33253.62 33080.58 24078.12 383
API-MVS81.99 11381.23 11784.26 11990.94 9070.18 8591.10 5589.32 17871.51 17678.66 15488.28 19165.26 12695.10 8864.74 24291.23 9387.51 285
Test By Simon64.33 133
TDRefinement67.49 33064.34 34076.92 29773.47 38861.07 26684.86 23482.98 30259.77 34258.30 38385.13 27526.06 39287.89 30347.92 36560.59 38281.81 370
USDC70.33 30868.37 31076.21 30280.60 34256.23 32979.19 32486.49 24960.89 33361.29 37285.47 26731.78 38489.47 27953.37 33276.21 29682.94 361
EPP-MVSNet83.40 9183.02 9184.57 10290.13 10664.47 21092.32 3090.73 13674.45 12279.35 14391.10 12169.05 8795.12 8372.78 16887.22 14794.13 49
PMMVS69.34 31768.67 30871.35 34975.67 37562.03 25575.17 35973.46 37650.00 38668.68 32079.05 35852.07 26078.13 36661.16 27582.77 21473.90 390
PAPM77.68 21876.40 22581.51 20887.29 22061.85 25883.78 25889.59 17064.74 29271.23 29388.70 17762.59 15393.66 14652.66 33587.03 15089.01 246
ACMMPcopyleft85.89 5485.39 6187.38 3993.59 4572.63 3392.74 2093.18 3976.78 6780.73 12893.82 5664.33 13396.29 4282.67 7990.69 9993.23 92
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA78.08 20476.79 21581.97 20090.40 10271.07 6587.59 15984.55 27366.03 27772.38 28289.64 15257.56 21286.04 31959.61 28683.35 20788.79 257
PatchmatchNetpermissive73.12 28171.33 28778.49 27683.18 29760.85 26979.63 31778.57 34864.13 29971.73 28879.81 35451.20 27385.97 32057.40 30976.36 29588.66 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS86.43 4386.17 4787.24 4190.88 9270.96 6892.27 3294.07 972.45 16085.22 6191.90 9569.47 8096.42 4083.28 6795.94 1994.35 41
F-COLMAP76.38 24374.33 25482.50 19189.28 14066.95 16488.41 13089.03 19164.05 30366.83 33888.61 18146.78 31392.89 18557.48 30778.55 26187.67 280
ANet_high50.57 37146.10 37563.99 37448.67 41939.13 40870.99 37880.85 32461.39 33131.18 40857.70 40417.02 40773.65 39531.22 40115.89 41679.18 381
wuyk23d16.82 38615.94 38919.46 40058.74 40931.45 41339.22 4103.74 4256.84 4166.04 4192.70 4191.27 42424.29 41910.54 41914.40 4182.63 416
OMC-MVS82.69 10281.97 11084.85 9588.75 16167.42 14887.98 14690.87 13374.92 10979.72 13891.65 10162.19 16293.96 12675.26 14586.42 15993.16 97
MG-MVS83.41 9083.45 8383.28 15792.74 6562.28 25388.17 14189.50 17375.22 10081.49 11892.74 8566.75 10895.11 8572.85 16791.58 8892.45 126
AdaColmapbinary80.58 14779.42 15084.06 13193.09 5768.91 10889.36 9888.97 19669.27 22575.70 22189.69 15057.20 21795.77 5963.06 25388.41 13587.50 286
uanet0.00 3910.00 3940.00 4040.00 4270.00 4290.00 4150.00 4280.00 4220.00 4230.00 4220.00 4270.00 4230.00 4220.00 4210.00 419
ITE_SJBPF78.22 27881.77 32560.57 27383.30 29269.25 22767.54 32987.20 22036.33 37487.28 30954.34 32774.62 32186.80 303
DeepMVS_CXcopyleft27.40 39940.17 42226.90 41624.59 42317.44 41523.95 41348.61 4109.77 41426.48 41818.06 41124.47 41228.83 412
TinyColmap67.30 33364.81 33874.76 32081.92 32456.68 32180.29 31181.49 31960.33 33656.27 39083.22 31224.77 39687.66 30745.52 37669.47 35579.95 379
MAR-MVS81.84 11580.70 12585.27 8091.32 8271.53 5689.82 7990.92 13069.77 21678.50 15886.21 25062.36 15894.52 10965.36 23692.05 8289.77 225
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS64.02 34862.19 35269.50 35870.90 39653.29 36176.13 35077.18 35952.65 37958.59 38180.98 34123.55 39976.52 37653.06 33466.66 36578.68 382
MSDG73.36 27870.99 29180.49 23584.51 27065.80 18180.71 30386.13 25765.70 28065.46 35183.74 30344.60 33390.91 25551.13 34376.89 28184.74 338
LS3D76.95 23074.82 24783.37 15590.45 10067.36 15189.15 10686.94 24361.87 32869.52 31390.61 13451.71 26894.53 10846.38 37186.71 15588.21 271
CLD-MVS82.31 10781.65 11384.29 11488.47 17067.73 14085.81 21592.35 8175.78 9078.33 16386.58 24164.01 13694.35 11376.05 13587.48 14490.79 175
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS53.68 36551.64 36759.81 38065.08 40451.03 37669.48 38469.58 38741.46 39740.67 40472.32 38916.46 40870.00 40124.24 40865.42 37058.40 404
Gipumacopyleft45.18 37641.86 37955.16 38877.03 37151.52 37232.50 41280.52 32932.46 40827.12 41135.02 4129.52 41575.50 38522.31 40960.21 38338.45 411
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015