| DeepPCF-MVS | | 80.84 1 | 88.10 13 | 88.56 13 | 86.73 53 | 92.24 71 | 69.03 103 | 89.57 90 | 93.39 30 | 77.53 45 | 89.79 18 | 94.12 42 | 78.98 12 | 96.58 35 | 85.66 40 | 95.72 24 | 94.58 31 |
|
| DeepC-MVS | | 79.81 2 | 87.08 35 | 86.88 38 | 87.69 33 | 91.16 84 | 72.32 43 | 90.31 71 | 93.94 14 | 77.12 57 | 82.82 103 | 94.23 38 | 72.13 47 | 97.09 16 | 84.83 49 | 95.37 31 | 93.65 74 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| DeepC-MVS_fast | | 79.65 3 | 86.91 36 | 86.62 40 | 87.76 27 | 93.52 46 | 72.37 41 | 91.26 51 | 93.04 41 | 76.62 73 | 84.22 81 | 93.36 66 | 71.44 57 | 96.76 25 | 80.82 93 | 95.33 33 | 94.16 48 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| 3Dnovator+ | | 77.84 4 | 85.48 60 | 84.47 76 | 88.51 7 | 91.08 86 | 73.49 16 | 93.18 11 | 93.78 18 | 80.79 8 | 76.66 200 | 93.37 65 | 60.40 196 | 96.75 26 | 77.20 123 | 93.73 64 | 95.29 5 |
|
| 3Dnovator | | 76.31 5 | 83.38 92 | 82.31 102 | 86.59 55 | 87.94 193 | 72.94 28 | 90.64 60 | 92.14 91 | 77.21 54 | 75.47 225 | 92.83 79 | 58.56 203 | 94.72 103 | 73.24 164 | 92.71 74 | 92.13 139 |
|
| ACMP | | 74.13 6 | 81.51 125 | 80.57 127 | 84.36 110 | 89.42 130 | 68.69 119 | 89.97 77 | 91.50 117 | 74.46 121 | 75.04 247 | 90.41 137 | 53.82 241 | 94.54 107 | 77.56 119 | 82.91 212 | 89.86 221 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| PCF-MVS | | 73.52 7 | 80.38 150 | 78.84 165 | 85.01 88 | 87.71 204 | 68.99 106 | 83.65 260 | 91.46 118 | 63.00 313 | 77.77 176 | 90.28 138 | 66.10 117 | 95.09 89 | 61.40 272 | 88.22 137 | 90.94 172 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| ACMM | | 73.20 8 | 80.78 141 | 79.84 142 | 83.58 148 | 89.31 138 | 68.37 125 | 89.99 76 | 91.60 111 | 70.28 202 | 77.25 185 | 89.66 151 | 53.37 246 | 93.53 152 | 74.24 153 | 82.85 213 | 88.85 254 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| TAPA-MVS | | 73.13 9 | 79.15 178 | 77.94 184 | 82.79 184 | 89.59 122 | 62.99 245 | 88.16 142 | 91.51 114 | 65.77 279 | 77.14 192 | 91.09 122 | 60.91 185 | 93.21 167 | 50.26 350 | 87.05 149 | 92.17 137 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| OpenMVS |  | 72.83 10 | 79.77 161 | 78.33 176 | 84.09 127 | 85.17 254 | 69.91 87 | 90.57 61 | 90.97 129 | 66.70 264 | 72.17 284 | 91.91 94 | 54.70 233 | 93.96 126 | 61.81 269 | 90.95 96 | 88.41 269 |
|
| PLC |  | 70.83 11 | 78.05 206 | 76.37 226 | 83.08 168 | 91.88 77 | 67.80 138 | 88.19 140 | 89.46 174 | 64.33 298 | 69.87 310 | 88.38 188 | 53.66 242 | 93.58 147 | 58.86 294 | 82.73 215 | 87.86 277 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| HY-MVS | | 69.67 12 | 77.95 209 | 77.15 206 | 80.36 237 | 87.57 212 | 60.21 280 | 83.37 267 | 87.78 226 | 66.11 274 | 75.37 232 | 87.06 226 | 63.27 142 | 90.48 262 | 61.38 273 | 82.43 219 | 90.40 193 |
|
| LTVRE_ROB | | 69.57 13 | 76.25 244 | 74.54 251 | 81.41 211 | 88.60 166 | 64.38 213 | 79.24 322 | 89.12 190 | 70.76 191 | 69.79 312 | 87.86 202 | 49.09 299 | 93.20 170 | 56.21 320 | 80.16 245 | 86.65 307 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| ACMH+ | | 68.96 14 | 76.01 248 | 74.01 256 | 82.03 198 | 88.60 166 | 65.31 193 | 88.86 114 | 87.55 229 | 70.25 204 | 67.75 327 | 87.47 213 | 41.27 353 | 93.19 172 | 58.37 300 | 75.94 298 | 87.60 282 |
|
| IB-MVS | | 68.01 15 | 75.85 250 | 73.36 265 | 83.31 156 | 84.76 263 | 66.03 173 | 83.38 266 | 85.06 267 | 70.21 205 | 69.40 314 | 81.05 339 | 45.76 326 | 94.66 106 | 65.10 239 | 75.49 304 | 89.25 238 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| ACMH | | 67.68 16 | 75.89 249 | 73.93 258 | 81.77 203 | 88.71 163 | 66.61 166 | 88.62 125 | 89.01 193 | 69.81 213 | 66.78 339 | 86.70 235 | 41.95 352 | 91.51 236 | 55.64 321 | 78.14 268 | 87.17 293 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| COLMAP_ROB |  | 66.92 17 | 73.01 283 | 70.41 298 | 80.81 229 | 87.13 223 | 65.63 185 | 88.30 137 | 84.19 280 | 62.96 314 | 63.80 364 | 87.69 205 | 38.04 369 | 92.56 193 | 46.66 368 | 74.91 318 | 84.24 343 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| PVSNet | | 64.34 18 | 72.08 293 | 70.87 293 | 75.69 306 | 86.21 237 | 56.44 324 | 74.37 366 | 80.73 326 | 62.06 327 | 70.17 303 | 82.23 331 | 42.86 344 | 83.31 343 | 54.77 325 | 84.45 186 | 87.32 290 |
|
| OpenMVS_ROB |  | 64.09 19 | 70.56 306 | 68.19 312 | 77.65 288 | 80.26 345 | 59.41 288 | 85.01 230 | 82.96 303 | 58.76 352 | 65.43 352 | 82.33 328 | 37.63 371 | 91.23 246 | 45.34 378 | 76.03 297 | 82.32 365 |
|
| PVSNet_0 | | 57.27 20 | 61.67 354 | 59.27 357 | 68.85 362 | 79.61 357 | 57.44 310 | 68.01 389 | 73.44 377 | 55.93 370 | 58.54 382 | 70.41 393 | 44.58 334 | 77.55 370 | 47.01 367 | 35.91 405 | 71.55 393 |
|
| CMPMVS |  | 51.72 21 | 70.19 310 | 68.16 313 | 76.28 301 | 73.15 391 | 57.55 308 | 79.47 319 | 83.92 282 | 48.02 389 | 56.48 389 | 84.81 282 | 43.13 342 | 86.42 316 | 62.67 258 | 81.81 227 | 84.89 336 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| PMVS |  | 37.38 22 | 44.16 377 | 40.28 381 | 55.82 386 | 40.82 421 | 42.54 404 | 65.12 400 | 63.99 401 | 34.43 406 | 24.48 412 | 57.12 405 | 3.92 422 | 76.17 381 | 17.10 413 | 55.52 389 | 48.75 407 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| MVE |  | 26.22 23 | 30.37 383 | 25.89 387 | 43.81 394 | 44.55 420 | 35.46 411 | 28.87 413 | 39.07 418 | 18.20 414 | 18.58 416 | 40.18 411 | 2.68 423 | 47.37 416 | 17.07 414 | 23.78 413 | 48.60 408 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| reproduce_model | | | 87.28 30 | 87.39 27 | 86.95 48 | 93.10 56 | 71.24 63 | 91.60 42 | 93.19 35 | 74.69 115 | 88.80 23 | 95.61 11 | 70.29 72 | 96.44 39 | 86.20 39 | 93.08 69 | 93.16 97 |
|
| reproduce-ours | | | 87.47 23 | 87.61 22 | 87.07 45 | 93.27 50 | 71.60 53 | 91.56 46 | 93.19 35 | 74.98 107 | 88.96 20 | 95.54 12 | 71.20 61 | 96.54 36 | 86.28 37 | 93.49 65 | 93.06 102 |
|
| our_new_method | | | 87.47 23 | 87.61 22 | 87.07 45 | 93.27 50 | 71.60 53 | 91.56 46 | 93.19 35 | 74.98 107 | 88.96 20 | 95.54 12 | 71.20 61 | 96.54 36 | 86.28 37 | 93.49 65 | 93.06 102 |
|
| mmdepth | | | 0.00 391 | 0.00 394 | 0.00 404 | 0.00 427 | 0.00 429 | 0.00 415 | 0.00 428 | 0.00 422 | 0.00 423 | 0.00 422 | 0.00 427 | 0.00 423 | 0.00 422 | 0.00 421 | 0.00 419 |
|
| monomultidepth | | | 0.00 391 | 0.00 394 | 0.00 404 | 0.00 427 | 0.00 429 | 0.00 415 | 0.00 428 | 0.00 422 | 0.00 423 | 0.00 422 | 0.00 427 | 0.00 423 | 0.00 422 | 0.00 421 | 0.00 419 |
|
| mvs5depth | | | 69.45 316 | 67.45 328 | 75.46 312 | 73.93 382 | 55.83 334 | 79.19 324 | 83.23 294 | 66.89 260 | 71.63 290 | 83.32 311 | 33.69 380 | 85.09 329 | 59.81 284 | 55.34 391 | 85.46 326 |
|
| MVStest1 | | | 56.63 360 | 52.76 366 | 68.25 367 | 61.67 408 | 53.25 362 | 71.67 374 | 68.90 391 | 38.59 401 | 50.59 397 | 83.05 316 | 25.08 394 | 70.66 398 | 36.76 395 | 38.56 404 | 80.83 375 |
|
| ttmdpeth | | | 59.91 356 | 57.10 360 | 68.34 366 | 67.13 402 | 46.65 391 | 74.64 365 | 67.41 393 | 48.30 388 | 62.52 370 | 85.04 279 | 20.40 402 | 75.93 382 | 42.55 384 | 45.90 403 | 82.44 364 |
|
| WBMVS | | | 73.43 275 | 72.81 270 | 75.28 314 | 87.91 194 | 50.99 377 | 78.59 335 | 81.31 322 | 65.51 285 | 74.47 257 | 84.83 281 | 46.39 315 | 86.68 312 | 58.41 299 | 77.86 270 | 88.17 272 |
|
| dongtai | | | 45.42 375 | 45.38 376 | 45.55 393 | 73.36 389 | 26.85 417 | 67.72 390 | 34.19 419 | 54.15 375 | 49.65 399 | 56.41 406 | 25.43 393 | 62.94 409 | 19.45 410 | 28.09 410 | 46.86 409 |
|
| kuosan | | | 39.70 379 | 40.40 380 | 37.58 396 | 64.52 405 | 26.98 415 | 65.62 398 | 33.02 420 | 46.12 391 | 42.79 403 | 48.99 409 | 24.10 398 | 46.56 417 | 12.16 418 | 26.30 411 | 39.20 410 |
|
| MVSMamba_PlusPlus | | | 85.99 48 | 85.96 52 | 86.05 64 | 91.09 85 | 67.64 142 | 89.63 88 | 92.65 69 | 72.89 159 | 84.64 73 | 91.71 99 | 71.85 49 | 96.03 50 | 84.77 51 | 94.45 54 | 94.49 35 |
|
| MGCFI-Net | | | 85.06 69 | 85.51 59 | 83.70 145 | 89.42 130 | 63.01 241 | 89.43 93 | 92.62 72 | 76.43 75 | 87.53 38 | 91.34 113 | 72.82 42 | 93.42 159 | 81.28 88 | 88.74 129 | 94.66 29 |
|
| testing91 | | | 76.54 235 | 75.66 234 | 79.18 262 | 88.43 173 | 55.89 333 | 81.08 295 | 83.00 301 | 73.76 136 | 75.34 233 | 84.29 291 | 46.20 321 | 90.07 267 | 64.33 244 | 84.50 182 | 91.58 150 |
|
| testing11 | | | 75.14 260 | 74.01 256 | 78.53 274 | 88.16 181 | 56.38 326 | 80.74 302 | 80.42 332 | 70.67 192 | 72.69 278 | 83.72 305 | 43.61 340 | 89.86 270 | 62.29 262 | 83.76 196 | 89.36 235 |
|
| testing99 | | | 76.09 247 | 75.12 245 | 79.00 263 | 88.16 181 | 55.50 339 | 80.79 299 | 81.40 320 | 73.30 149 | 75.17 241 | 84.27 293 | 44.48 335 | 90.02 268 | 64.28 245 | 84.22 191 | 91.48 155 |
|
| UBG | | | 73.08 282 | 72.27 277 | 75.51 310 | 88.02 189 | 51.29 375 | 78.35 339 | 77.38 357 | 65.52 283 | 73.87 263 | 82.36 327 | 45.55 328 | 86.48 315 | 55.02 323 | 84.39 188 | 88.75 259 |
|
| UWE-MVS | | | 72.13 292 | 71.49 283 | 74.03 327 | 86.66 232 | 47.70 386 | 81.40 293 | 76.89 362 | 63.60 308 | 75.59 222 | 84.22 294 | 39.94 360 | 85.62 323 | 48.98 356 | 86.13 165 | 88.77 258 |
|
| ETVMVS | | | 72.25 291 | 71.05 290 | 75.84 304 | 87.77 203 | 51.91 367 | 79.39 320 | 74.98 369 | 69.26 226 | 73.71 264 | 82.95 318 | 40.82 357 | 86.14 318 | 46.17 372 | 84.43 187 | 89.47 232 |
|
| sasdasda | | | 85.91 52 | 85.87 54 | 86.04 65 | 89.84 117 | 69.44 98 | 90.45 68 | 93.00 46 | 76.70 71 | 88.01 31 | 91.23 115 | 73.28 36 | 93.91 133 | 81.50 85 | 88.80 126 | 94.77 23 |
|
| testing222 | | | 74.04 268 | 72.66 272 | 78.19 279 | 87.89 195 | 55.36 340 | 81.06 296 | 79.20 345 | 71.30 179 | 74.65 254 | 83.57 308 | 39.11 364 | 88.67 294 | 51.43 342 | 85.75 172 | 90.53 187 |
|
| WB-MVSnew | | | 71.96 294 | 71.65 282 | 72.89 336 | 84.67 268 | 51.88 368 | 82.29 281 | 77.57 353 | 62.31 323 | 73.67 265 | 83.00 317 | 53.49 245 | 81.10 355 | 45.75 375 | 82.13 222 | 85.70 323 |
|
| fmvsm_l_conf0.5_n_a | | | 84.13 76 | 84.16 78 | 84.06 131 | 85.38 251 | 68.40 124 | 88.34 135 | 86.85 245 | 67.48 258 | 87.48 39 | 93.40 64 | 70.89 64 | 91.61 227 | 88.38 25 | 89.22 120 | 92.16 138 |
|
| fmvsm_l_conf0.5_n | | | 84.47 74 | 84.54 73 | 84.27 117 | 85.42 250 | 68.81 109 | 88.49 128 | 87.26 236 | 68.08 251 | 88.03 30 | 93.49 60 | 72.04 48 | 91.77 223 | 88.90 17 | 89.14 122 | 92.24 134 |
|
| fmvsm_s_conf0.1_n_a | | | 83.32 93 | 82.99 92 | 84.28 115 | 83.79 283 | 68.07 133 | 89.34 99 | 82.85 305 | 69.80 214 | 87.36 42 | 94.06 45 | 68.34 94 | 91.56 231 | 87.95 27 | 83.46 206 | 93.21 95 |
|
| fmvsm_s_conf0.1_n | | | 83.56 87 | 83.38 85 | 84.10 123 | 84.86 262 | 67.28 153 | 89.40 97 | 83.01 300 | 70.67 192 | 87.08 44 | 93.96 53 | 68.38 93 | 91.45 239 | 88.56 22 | 84.50 182 | 93.56 80 |
|
| fmvsm_s_conf0.5_n_a | | | 83.63 85 | 83.41 84 | 84.28 115 | 86.14 238 | 68.12 131 | 89.43 93 | 82.87 304 | 70.27 203 | 87.27 43 | 93.80 57 | 69.09 84 | 91.58 229 | 88.21 26 | 83.65 201 | 93.14 99 |
|
| fmvsm_s_conf0.5_n | | | 83.80 80 | 83.71 81 | 84.07 129 | 86.69 231 | 67.31 152 | 89.46 92 | 83.07 299 | 71.09 184 | 86.96 47 | 93.70 58 | 69.02 89 | 91.47 238 | 88.79 18 | 84.62 181 | 93.44 85 |
|
| MM | | | 89.16 6 | 89.23 7 | 88.97 4 | 90.79 95 | 73.65 10 | 92.66 23 | 91.17 124 | 86.57 1 | 87.39 41 | 94.97 18 | 71.70 53 | 97.68 1 | 92.19 1 | 95.63 28 | 95.57 1 |
|
| WAC-MVS | | | | | | | 42.58 402 | | | | | | | | 39.46 390 | | |
|
| Syy-MVS | | | 68.05 328 | 67.85 318 | 68.67 364 | 84.68 265 | 40.97 407 | 78.62 333 | 73.08 378 | 66.65 268 | 66.74 340 | 79.46 355 | 52.11 258 | 82.30 348 | 32.89 399 | 76.38 293 | 82.75 362 |
|
| test_fmvsmconf0.1_n | | | 85.61 59 | 85.65 57 | 85.50 75 | 82.99 305 | 69.39 100 | 89.65 86 | 90.29 152 | 73.31 148 | 87.77 34 | 94.15 41 | 71.72 52 | 93.23 165 | 90.31 4 | 90.67 100 | 93.89 61 |
|
| test_fmvsmconf0.01_n | | | 84.73 73 | 84.52 75 | 85.34 78 | 80.25 346 | 69.03 103 | 89.47 91 | 89.65 169 | 73.24 152 | 86.98 46 | 94.27 35 | 66.62 109 | 93.23 165 | 90.26 5 | 89.95 112 | 93.78 67 |
|
| myMVS_eth3d | | | 67.02 334 | 66.29 335 | 69.21 359 | 84.68 265 | 42.58 402 | 78.62 333 | 73.08 378 | 66.65 268 | 66.74 340 | 79.46 355 | 31.53 385 | 82.30 348 | 39.43 391 | 76.38 293 | 82.75 362 |
|
| testing3 | | | 68.56 324 | 67.67 324 | 71.22 351 | 87.33 218 | 42.87 401 | 83.06 275 | 71.54 381 | 70.36 199 | 69.08 318 | 84.38 288 | 30.33 388 | 85.69 322 | 37.50 394 | 75.45 308 | 85.09 335 |
|
| SSC-MVS | | | 53.88 364 | 53.59 364 | 54.75 389 | 72.87 392 | 19.59 422 | 73.84 369 | 60.53 406 | 57.58 362 | 49.18 400 | 73.45 387 | 46.34 319 | 75.47 387 | 16.20 415 | 32.28 408 | 69.20 395 |
|
| test_fmvsmconf_n | | | 85.92 51 | 86.04 51 | 85.57 74 | 85.03 260 | 69.51 93 | 89.62 89 | 90.58 139 | 73.42 145 | 87.75 35 | 94.02 47 | 72.85 41 | 93.24 164 | 90.37 3 | 90.75 98 | 93.96 56 |
|
| WB-MVS | | | 54.94 361 | 54.72 362 | 55.60 387 | 73.50 386 | 20.90 421 | 74.27 367 | 61.19 404 | 59.16 348 | 50.61 396 | 74.15 384 | 47.19 310 | 75.78 384 | 17.31 412 | 35.07 406 | 70.12 394 |
|
| test_fmvsmvis_n_1920 | | | 84.02 77 | 83.87 79 | 84.49 106 | 84.12 276 | 69.37 101 | 88.15 143 | 87.96 219 | 70.01 208 | 83.95 87 | 93.23 68 | 68.80 91 | 91.51 236 | 88.61 20 | 89.96 111 | 92.57 119 |
|
| dmvs_re | | | 71.14 298 | 70.58 294 | 72.80 337 | 81.96 322 | 59.68 284 | 75.60 357 | 79.34 343 | 68.55 244 | 69.27 317 | 80.72 345 | 49.42 293 | 76.54 375 | 52.56 336 | 77.79 271 | 82.19 367 |
|
| SDMVSNet | | | 80.38 150 | 80.18 136 | 80.99 224 | 89.03 151 | 64.94 200 | 80.45 308 | 89.40 175 | 75.19 102 | 76.61 203 | 89.98 144 | 60.61 191 | 87.69 306 | 76.83 128 | 83.55 203 | 90.33 195 |
|
| dmvs_testset | | | 62.63 351 | 64.11 342 | 58.19 381 | 78.55 364 | 24.76 419 | 75.28 358 | 65.94 397 | 67.91 253 | 60.34 375 | 76.01 378 | 53.56 243 | 73.94 394 | 31.79 400 | 67.65 362 | 75.88 388 |
|
| sd_testset | | | 77.70 217 | 77.40 201 | 78.60 270 | 89.03 151 | 60.02 281 | 79.00 327 | 85.83 260 | 75.19 102 | 76.61 203 | 89.98 144 | 54.81 228 | 85.46 326 | 62.63 259 | 83.55 203 | 90.33 195 |
|
| test_fmvsm_n_1920 | | | 85.29 65 | 85.34 62 | 85.13 85 | 86.12 239 | 69.93 86 | 88.65 124 | 90.78 135 | 69.97 210 | 88.27 26 | 93.98 52 | 71.39 58 | 91.54 233 | 88.49 23 | 90.45 102 | 93.91 58 |
|
| test_cas_vis1_n_1920 | | | 73.76 272 | 73.74 262 | 73.81 329 | 75.90 373 | 59.77 283 | 80.51 306 | 82.40 309 | 58.30 355 | 81.62 117 | 85.69 260 | 44.35 336 | 76.41 378 | 76.29 131 | 78.61 260 | 85.23 330 |
|
| test_vis1_n_1920 | | | 75.52 254 | 75.78 230 | 74.75 321 | 79.84 352 | 57.44 310 | 83.26 268 | 85.52 263 | 62.83 317 | 79.34 144 | 86.17 252 | 45.10 332 | 79.71 360 | 78.75 107 | 81.21 232 | 87.10 299 |
|
| test_vis1_n | | | 69.85 314 | 69.21 305 | 71.77 344 | 72.66 394 | 55.27 343 | 81.48 290 | 76.21 365 | 52.03 381 | 75.30 238 | 83.20 314 | 28.97 389 | 76.22 380 | 74.60 148 | 78.41 266 | 83.81 349 |
|
| test_fmvs1_n | | | 70.86 302 | 70.24 300 | 72.73 338 | 72.51 395 | 55.28 342 | 81.27 294 | 79.71 340 | 51.49 384 | 78.73 151 | 84.87 280 | 27.54 391 | 77.02 372 | 76.06 134 | 79.97 249 | 85.88 321 |
|
| mvsany_test1 | | | 62.30 352 | 61.26 356 | 65.41 373 | 69.52 397 | 54.86 346 | 66.86 393 | 49.78 413 | 46.65 390 | 68.50 324 | 83.21 313 | 49.15 298 | 66.28 405 | 56.93 314 | 60.77 380 | 75.11 389 |
|
| APD_test1 | | | 53.31 366 | 49.93 371 | 63.42 376 | 65.68 403 | 50.13 381 | 71.59 375 | 66.90 395 | 34.43 406 | 40.58 405 | 71.56 391 | 8.65 417 | 76.27 379 | 34.64 398 | 55.36 390 | 63.86 400 |
|
| test_vis1_rt | | | 60.28 355 | 58.42 358 | 65.84 372 | 67.25 401 | 55.60 338 | 70.44 381 | 60.94 405 | 44.33 394 | 59.00 380 | 66.64 395 | 24.91 395 | 68.67 402 | 62.80 254 | 69.48 354 | 73.25 391 |
|
| test_vis3_rt | | | 49.26 372 | 47.02 374 | 56.00 384 | 54.30 413 | 45.27 396 | 66.76 395 | 48.08 414 | 36.83 403 | 44.38 402 | 53.20 407 | 7.17 419 | 64.07 407 | 56.77 316 | 55.66 388 | 58.65 403 |
|
| test_fmvs2 | | | 68.35 327 | 67.48 327 | 70.98 353 | 69.50 398 | 51.95 366 | 80.05 313 | 76.38 364 | 49.33 387 | 74.65 254 | 84.38 288 | 23.30 400 | 75.40 388 | 74.51 149 | 75.17 316 | 85.60 324 |
|
| test_fmvs1 | | | 70.93 301 | 70.52 295 | 72.16 342 | 73.71 384 | 55.05 344 | 80.82 297 | 78.77 347 | 51.21 385 | 78.58 156 | 84.41 287 | 31.20 386 | 76.94 373 | 75.88 137 | 80.12 248 | 84.47 341 |
|
| test_fmvs3 | | | 63.36 350 | 61.82 353 | 67.98 368 | 62.51 407 | 46.96 390 | 77.37 347 | 74.03 375 | 45.24 392 | 67.50 330 | 78.79 363 | 12.16 412 | 72.98 396 | 72.77 169 | 66.02 368 | 83.99 347 |
|
| mvsany_test3 | | | 53.99 363 | 51.45 368 | 61.61 378 | 55.51 412 | 44.74 398 | 63.52 402 | 45.41 417 | 43.69 395 | 58.11 384 | 76.45 376 | 17.99 405 | 63.76 408 | 54.77 325 | 47.59 399 | 76.34 387 |
|
| testf1 | | | 45.72 373 | 41.96 377 | 57.00 382 | 56.90 410 | 45.32 393 | 66.14 396 | 59.26 407 | 26.19 410 | 30.89 409 | 60.96 401 | 4.14 420 | 70.64 399 | 26.39 406 | 46.73 401 | 55.04 405 |
|
| APD_test2 | | | 45.72 373 | 41.96 377 | 57.00 382 | 56.90 410 | 45.32 393 | 66.14 396 | 59.26 407 | 26.19 410 | 30.89 409 | 60.96 401 | 4.14 420 | 70.64 399 | 26.39 406 | 46.73 401 | 55.04 405 |
|
| test_f | | | 52.09 368 | 50.82 369 | 55.90 385 | 53.82 415 | 42.31 405 | 59.42 405 | 58.31 409 | 36.45 404 | 56.12 391 | 70.96 392 | 12.18 411 | 57.79 411 | 53.51 331 | 56.57 387 | 67.60 396 |
|
| FE-MVS | | | 77.78 213 | 75.68 232 | 84.08 128 | 88.09 186 | 66.00 175 | 83.13 271 | 87.79 225 | 68.42 248 | 78.01 171 | 85.23 272 | 45.50 330 | 95.12 83 | 59.11 291 | 85.83 171 | 91.11 164 |
|
| FA-MVS(test-final) | | | 80.96 132 | 79.91 140 | 84.10 123 | 88.30 178 | 65.01 198 | 84.55 242 | 90.01 159 | 73.25 151 | 79.61 139 | 87.57 208 | 58.35 205 | 94.72 103 | 71.29 180 | 86.25 162 | 92.56 120 |
|
| balanced_conf03 | | | 86.78 37 | 86.99 33 | 86.15 61 | 91.24 83 | 67.61 143 | 90.51 62 | 92.90 56 | 77.26 51 | 87.44 40 | 91.63 103 | 71.27 60 | 96.06 49 | 85.62 42 | 95.01 37 | 94.78 22 |
|
| MonoMVSNet | | | 76.49 240 | 75.80 229 | 78.58 271 | 81.55 329 | 58.45 292 | 86.36 198 | 86.22 254 | 74.87 112 | 74.73 252 | 83.73 304 | 51.79 267 | 88.73 292 | 70.78 183 | 72.15 342 | 88.55 266 |
|
| patch_mono-2 | | | 83.65 83 | 84.54 73 | 80.99 224 | 90.06 112 | 65.83 180 | 84.21 252 | 88.74 205 | 71.60 174 | 85.01 62 | 92.44 87 | 74.51 25 | 83.50 341 | 82.15 81 | 92.15 80 | 93.64 76 |
|
| EGC-MVSNET | | | 52.07 369 | 47.05 373 | 67.14 370 | 83.51 289 | 60.71 271 | 80.50 307 | 67.75 392 | 0.07 419 | 0.43 420 | 75.85 381 | 24.26 397 | 81.54 352 | 28.82 402 | 62.25 376 | 59.16 402 |
|
| test2506 | | | 77.30 225 | 76.49 222 | 79.74 250 | 90.08 108 | 52.02 364 | 87.86 154 | 63.10 402 | 74.88 110 | 80.16 134 | 92.79 82 | 38.29 368 | 92.35 203 | 68.74 208 | 92.50 77 | 94.86 17 |
|
| test1111 | | | 79.43 170 | 79.18 159 | 80.15 242 | 89.99 113 | 53.31 360 | 87.33 168 | 77.05 360 | 75.04 105 | 80.23 133 | 92.77 84 | 48.97 301 | 92.33 205 | 68.87 206 | 92.40 79 | 94.81 20 |
|
| ECVR-MVS |  | | 79.61 163 | 79.26 156 | 80.67 232 | 90.08 108 | 54.69 347 | 87.89 152 | 77.44 356 | 74.88 110 | 80.27 131 | 92.79 82 | 48.96 302 | 92.45 197 | 68.55 209 | 92.50 77 | 94.86 17 |
|
| test_blank | | | 0.00 391 | 0.00 394 | 0.00 404 | 0.00 427 | 0.00 429 | 0.00 415 | 0.00 428 | 0.00 422 | 0.00 423 | 0.00 422 | 0.00 427 | 0.00 423 | 0.00 422 | 0.00 421 | 0.00 419 |
|
| tt0805 | | | 78.73 188 | 77.83 188 | 81.43 210 | 85.17 254 | 60.30 278 | 89.41 96 | 90.90 131 | 71.21 181 | 77.17 191 | 88.73 176 | 46.38 316 | 93.21 167 | 72.57 171 | 78.96 259 | 90.79 175 |
|
| DVP-MVS++ | | | 90.23 1 | 91.01 1 | 87.89 24 | 94.34 27 | 71.25 59 | 95.06 1 | 94.23 3 | 78.38 33 | 92.78 4 | 95.74 6 | 82.45 3 | 97.49 4 | 89.42 9 | 96.68 2 | 94.95 10 |
|
| FOURS1 | | | | | | 95.00 10 | 72.39 39 | 95.06 1 | 93.84 15 | 74.49 120 | 91.30 15 | | | | | | |
|
| MSC_two_6792asdad | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 49 | | | | | 97.53 2 | 89.67 6 | 96.44 9 | 94.41 37 |
|
| PC_three_1452 | | | | | | | | | | 68.21 250 | 92.02 12 | 94.00 49 | 82.09 5 | 95.98 56 | 84.58 53 | 96.68 2 | 94.95 10 |
|
| No_MVS | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 49 | | | | | 97.53 2 | 89.67 6 | 96.44 9 | 94.41 37 |
|
| test_one_0601 | | | | | | 95.07 7 | 71.46 57 | | 94.14 5 | 78.27 35 | 92.05 11 | 95.74 6 | 80.83 11 | | | | |
|
| eth-test2 | | | | | | 0.00 427 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 427 | | | | | | | | | | | |
|
| GeoE | | | 81.71 118 | 81.01 122 | 83.80 144 | 89.51 126 | 64.45 211 | 88.97 110 | 88.73 206 | 71.27 180 | 78.63 155 | 89.76 149 | 66.32 115 | 93.20 170 | 69.89 195 | 86.02 167 | 93.74 68 |
|
| test_method | | | 31.52 381 | 29.28 385 | 38.23 395 | 27.03 423 | 6.50 426 | 20.94 414 | 62.21 403 | 4.05 417 | 22.35 415 | 52.50 408 | 13.33 409 | 47.58 415 | 27.04 405 | 34.04 407 | 60.62 401 |
|
| Anonymous20240521 | | | 68.80 321 | 67.22 330 | 73.55 330 | 74.33 380 | 54.11 352 | 83.18 269 | 85.61 262 | 58.15 356 | 61.68 371 | 80.94 342 | 30.71 387 | 81.27 354 | 57.00 313 | 73.34 335 | 85.28 329 |
|
| h-mvs33 | | | 83.15 95 | 82.19 103 | 86.02 67 | 90.56 98 | 70.85 73 | 88.15 143 | 89.16 186 | 76.02 87 | 84.67 70 | 91.39 112 | 61.54 170 | 95.50 66 | 82.71 76 | 75.48 305 | 91.72 147 |
|
| hse-mvs2 | | | 81.72 117 | 80.94 123 | 84.07 129 | 88.72 162 | 67.68 141 | 85.87 211 | 87.26 236 | 76.02 87 | 84.67 70 | 88.22 194 | 61.54 170 | 93.48 154 | 82.71 76 | 73.44 333 | 91.06 166 |
|
| CL-MVSNet_self_test | | | 72.37 289 | 71.46 284 | 75.09 316 | 79.49 359 | 53.53 356 | 80.76 301 | 85.01 269 | 69.12 232 | 70.51 297 | 82.05 333 | 57.92 208 | 84.13 336 | 52.27 337 | 66.00 369 | 87.60 282 |
|
| KD-MVS_2432*1600 | | | 66.22 341 | 63.89 343 | 73.21 332 | 75.47 378 | 53.42 358 | 70.76 379 | 84.35 275 | 64.10 301 | 66.52 344 | 78.52 364 | 34.55 378 | 84.98 330 | 50.40 346 | 50.33 397 | 81.23 372 |
|
| KD-MVS_self_test | | | 68.81 320 | 67.59 326 | 72.46 341 | 74.29 381 | 45.45 392 | 77.93 343 | 87.00 241 | 63.12 310 | 63.99 362 | 78.99 362 | 42.32 347 | 84.77 333 | 56.55 318 | 64.09 374 | 87.16 295 |
|
| AUN-MVS | | | 79.21 177 | 77.60 198 | 84.05 134 | 88.71 163 | 67.61 143 | 85.84 213 | 87.26 236 | 69.08 233 | 77.23 187 | 88.14 199 | 53.20 248 | 93.47 155 | 75.50 143 | 73.45 332 | 91.06 166 |
|
| ZD-MVS | | | | | | 94.38 25 | 72.22 44 | | 92.67 66 | 70.98 187 | 87.75 35 | 94.07 44 | 74.01 32 | 96.70 27 | 84.66 52 | 94.84 44 | |
|
| SR-MVS-dyc-post | | | 85.77 55 | 85.61 58 | 86.23 59 | 93.06 58 | 70.63 76 | 91.88 38 | 92.27 83 | 73.53 143 | 85.69 56 | 94.45 28 | 65.00 131 | 95.56 63 | 82.75 74 | 91.87 84 | 92.50 123 |
|
| RE-MVS-def | | | | 85.48 60 | | 93.06 58 | 70.63 76 | 91.88 38 | 92.27 83 | 73.53 143 | 85.69 56 | 94.45 28 | 63.87 137 | | 82.75 74 | 91.87 84 | 92.50 123 |
|
| SED-MVS | | | 90.08 2 | 90.85 2 | 87.77 26 | 95.30 2 | 70.98 66 | 93.57 7 | 94.06 10 | 77.24 52 | 93.10 1 | 95.72 8 | 82.99 1 | 97.44 7 | 89.07 14 | 96.63 4 | 94.88 14 |
|
| IU-MVS | | | | | | 95.30 2 | 71.25 59 | | 92.95 55 | 66.81 261 | 92.39 6 | | | | 88.94 16 | 96.63 4 | 94.85 19 |
|
| OPU-MVS | | | | | 89.06 3 | 94.62 15 | 75.42 4 | 93.57 7 | | | | 94.02 47 | 82.45 3 | 96.87 20 | 83.77 63 | 96.48 8 | 94.88 14 |
|
| test_241102_TWO | | | | | | | | | 94.06 10 | 77.24 52 | 92.78 4 | 95.72 8 | 81.26 8 | 97.44 7 | 89.07 14 | 96.58 6 | 94.26 46 |
|
| test_241102_ONE | | | | | | 95.30 2 | 70.98 66 | | 94.06 10 | 77.17 55 | 93.10 1 | 95.39 14 | 82.99 1 | 97.27 12 | | | |
|
| SF-MVS | | | 88.46 12 | 88.74 12 | 87.64 35 | 92.78 64 | 71.95 49 | 92.40 24 | 94.74 2 | 75.71 91 | 89.16 19 | 95.10 16 | 75.65 21 | 96.19 46 | 87.07 34 | 96.01 17 | 94.79 21 |
|
| cl22 | | | 78.07 205 | 77.01 208 | 81.23 217 | 82.37 319 | 61.83 259 | 83.55 264 | 87.98 218 | 68.96 238 | 75.06 246 | 83.87 298 | 61.40 175 | 91.88 220 | 73.53 158 | 76.39 290 | 89.98 216 |
|
| miper_ehance_all_eth | | | 78.59 193 | 77.76 193 | 81.08 222 | 82.66 312 | 61.56 262 | 83.65 260 | 89.15 187 | 68.87 239 | 75.55 224 | 83.79 302 | 66.49 112 | 92.03 213 | 73.25 163 | 76.39 290 | 89.64 228 |
|
| miper_enhance_ethall | | | 77.87 212 | 76.86 212 | 80.92 227 | 81.65 326 | 61.38 264 | 82.68 277 | 88.98 194 | 65.52 283 | 75.47 225 | 82.30 329 | 65.76 124 | 92.00 215 | 72.95 166 | 76.39 290 | 89.39 234 |
|
| ZNCC-MVS | | | 87.94 18 | 87.85 19 | 88.20 12 | 94.39 24 | 73.33 19 | 93.03 14 | 93.81 17 | 76.81 65 | 85.24 60 | 94.32 33 | 71.76 51 | 96.93 19 | 85.53 43 | 95.79 22 | 94.32 43 |
|
| dcpmvs_2 | | | 85.63 58 | 86.15 48 | 84.06 131 | 91.71 78 | 64.94 200 | 86.47 194 | 91.87 102 | 73.63 138 | 86.60 50 | 93.02 75 | 76.57 15 | 91.87 221 | 83.36 65 | 92.15 80 | 95.35 3 |
|
| cl____ | | | 77.72 215 | 76.76 216 | 80.58 233 | 82.49 316 | 60.48 275 | 83.09 272 | 87.87 222 | 69.22 228 | 74.38 259 | 85.22 273 | 62.10 163 | 91.53 234 | 71.09 181 | 75.41 309 | 89.73 227 |
|
| DIV-MVS_self_test | | | 77.72 215 | 76.76 216 | 80.58 233 | 82.48 317 | 60.48 275 | 83.09 272 | 87.86 223 | 69.22 228 | 74.38 259 | 85.24 271 | 62.10 163 | 91.53 234 | 71.09 181 | 75.40 310 | 89.74 226 |
|
| eth_miper_zixun_eth | | | 77.92 210 | 76.69 219 | 81.61 207 | 83.00 303 | 61.98 256 | 83.15 270 | 89.20 185 | 69.52 221 | 74.86 250 | 84.35 290 | 61.76 166 | 92.56 193 | 71.50 178 | 72.89 337 | 90.28 198 |
|
| 9.14 | | | | 88.26 15 | | 92.84 63 | | 91.52 48 | 94.75 1 | 73.93 132 | 88.57 25 | 94.67 21 | 75.57 22 | 95.79 58 | 86.77 35 | 95.76 23 | |
|
| uanet_test | | | 0.00 391 | 0.00 394 | 0.00 404 | 0.00 427 | 0.00 429 | 0.00 415 | 0.00 428 | 0.00 422 | 0.00 423 | 0.00 422 | 0.00 427 | 0.00 423 | 0.00 422 | 0.00 421 | 0.00 419 |
|
| DCPMVS | | | 0.00 391 | 0.00 394 | 0.00 404 | 0.00 427 | 0.00 429 | 0.00 415 | 0.00 428 | 0.00 422 | 0.00 423 | 0.00 422 | 0.00 427 | 0.00 423 | 0.00 422 | 0.00 421 | 0.00 419 |
|
| save fliter | | | | | | 93.80 40 | 72.35 42 | 90.47 66 | 91.17 124 | 74.31 123 | | | | | | | |
|
| ET-MVSNet_ETH3D | | | 78.63 191 | 76.63 221 | 84.64 101 | 86.73 230 | 69.47 95 | 85.01 230 | 84.61 272 | 69.54 220 | 66.51 346 | 86.59 239 | 50.16 284 | 91.75 224 | 76.26 132 | 84.24 190 | 92.69 116 |
|
| UniMVSNet_ETH3D | | | 79.10 180 | 78.24 178 | 81.70 204 | 86.85 226 | 60.24 279 | 87.28 170 | 88.79 200 | 74.25 125 | 76.84 194 | 90.53 136 | 49.48 292 | 91.56 231 | 67.98 213 | 82.15 221 | 93.29 90 |
|
| EIA-MVS | | | 83.31 94 | 82.80 96 | 84.82 96 | 89.59 122 | 65.59 186 | 88.21 139 | 92.68 65 | 74.66 117 | 78.96 147 | 86.42 246 | 69.06 86 | 95.26 78 | 75.54 142 | 90.09 108 | 93.62 77 |
|
| miper_refine_blended | | | 66.22 341 | 63.89 343 | 73.21 332 | 75.47 378 | 53.42 358 | 70.76 379 | 84.35 275 | 64.10 301 | 66.52 344 | 78.52 364 | 34.55 378 | 84.98 330 | 50.40 346 | 50.33 397 | 81.23 372 |
|
| miper_lstm_enhance | | | 74.11 267 | 73.11 268 | 77.13 296 | 80.11 348 | 59.62 285 | 72.23 372 | 86.92 244 | 66.76 263 | 70.40 299 | 82.92 319 | 56.93 219 | 82.92 345 | 69.06 204 | 72.63 338 | 88.87 253 |
|
| ETV-MVS | | | 84.90 72 | 84.67 72 | 85.59 73 | 89.39 133 | 68.66 120 | 88.74 120 | 92.64 71 | 79.97 15 | 84.10 84 | 85.71 259 | 69.32 82 | 95.38 74 | 80.82 93 | 91.37 91 | 92.72 113 |
|
| CS-MVS | | | 86.69 39 | 86.95 35 | 85.90 69 | 90.76 96 | 67.57 145 | 92.83 17 | 93.30 32 | 79.67 17 | 84.57 76 | 92.27 89 | 71.47 56 | 95.02 91 | 84.24 59 | 93.46 67 | 95.13 7 |
|
| D2MVS | | | 74.82 261 | 73.21 266 | 79.64 254 | 79.81 353 | 62.56 249 | 80.34 310 | 87.35 234 | 64.37 297 | 68.86 319 | 82.66 324 | 46.37 317 | 90.10 266 | 67.91 214 | 81.24 231 | 86.25 311 |
|
| DVP-MVS |  | | 89.60 3 | 90.35 3 | 87.33 40 | 95.27 5 | 71.25 59 | 93.49 9 | 92.73 64 | 77.33 49 | 92.12 9 | 95.78 4 | 80.98 9 | 97.40 9 | 89.08 12 | 96.41 12 | 93.33 89 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_THIRD | | | | | | | | | | 78.38 33 | 92.12 9 | 95.78 4 | 81.46 7 | 97.40 9 | 89.42 9 | 96.57 7 | 94.67 26 |
|
| test_0728_SECOND | | | | | 87.71 32 | 95.34 1 | 71.43 58 | 93.49 9 | 94.23 3 | | | | | 97.49 4 | 89.08 12 | 96.41 12 | 94.21 47 |
|
| test0726 | | | | | | 95.27 5 | 71.25 59 | 93.60 6 | 94.11 6 | 77.33 49 | 92.81 3 | 95.79 3 | 80.98 9 | | | | |
|
| SR-MVS | | | 86.73 38 | 86.67 39 | 86.91 49 | 94.11 37 | 72.11 47 | 92.37 28 | 92.56 74 | 74.50 119 | 86.84 48 | 94.65 22 | 67.31 105 | 95.77 59 | 84.80 50 | 92.85 72 | 92.84 112 |
|
| DPM-MVS | | | 84.93 70 | 84.29 77 | 86.84 50 | 90.20 105 | 73.04 23 | 87.12 173 | 93.04 41 | 69.80 214 | 82.85 102 | 91.22 117 | 73.06 39 | 96.02 52 | 76.72 130 | 94.63 48 | 91.46 157 |
|
| GST-MVS | | | 87.42 27 | 87.26 28 | 87.89 24 | 94.12 36 | 72.97 24 | 92.39 26 | 93.43 28 | 76.89 63 | 84.68 69 | 93.99 51 | 70.67 68 | 96.82 22 | 84.18 61 | 95.01 37 | 93.90 60 |
|
| test_yl | | | 81.17 128 | 80.47 130 | 83.24 160 | 89.13 146 | 63.62 224 | 86.21 202 | 89.95 161 | 72.43 163 | 81.78 115 | 89.61 153 | 57.50 213 | 93.58 147 | 70.75 184 | 86.90 151 | 92.52 121 |
|
| thisisatest0530 | | | 79.40 172 | 77.76 193 | 84.31 113 | 87.69 206 | 65.10 197 | 87.36 166 | 84.26 279 | 70.04 206 | 77.42 181 | 88.26 193 | 49.94 287 | 94.79 101 | 70.20 190 | 84.70 180 | 93.03 105 |
|
| Anonymous20240529 | | | 80.19 156 | 78.89 164 | 84.10 123 | 90.60 97 | 64.75 204 | 88.95 111 | 90.90 131 | 65.97 278 | 80.59 129 | 91.17 120 | 49.97 286 | 93.73 145 | 69.16 203 | 82.70 217 | 93.81 65 |
|
| Anonymous202405211 | | | 78.25 198 | 77.01 208 | 81.99 199 | 91.03 87 | 60.67 272 | 84.77 235 | 83.90 283 | 70.65 196 | 80.00 135 | 91.20 118 | 41.08 355 | 91.43 240 | 65.21 237 | 85.26 174 | 93.85 62 |
|
| DCV-MVSNet | | | 81.17 128 | 80.47 130 | 83.24 160 | 89.13 146 | 63.62 224 | 86.21 202 | 89.95 161 | 72.43 163 | 81.78 115 | 89.61 153 | 57.50 213 | 93.58 147 | 70.75 184 | 86.90 151 | 92.52 121 |
|
| tttt0517 | | | 79.40 172 | 77.91 185 | 83.90 143 | 88.10 185 | 63.84 221 | 88.37 134 | 84.05 281 | 71.45 177 | 76.78 197 | 89.12 167 | 49.93 289 | 94.89 96 | 70.18 191 | 83.18 210 | 92.96 110 |
|
| our_test_3 | | | 69.14 318 | 67.00 331 | 75.57 308 | 79.80 354 | 58.80 289 | 77.96 342 | 77.81 351 | 59.55 344 | 62.90 368 | 78.25 367 | 47.43 307 | 83.97 337 | 51.71 339 | 67.58 363 | 83.93 348 |
|
| thisisatest0515 | | | 77.33 224 | 75.38 240 | 83.18 163 | 85.27 253 | 63.80 222 | 82.11 283 | 83.27 293 | 65.06 288 | 75.91 217 | 83.84 300 | 49.54 291 | 94.27 116 | 67.24 221 | 86.19 163 | 91.48 155 |
|
| ppachtmachnet_test | | | 70.04 311 | 67.34 329 | 78.14 280 | 79.80 354 | 61.13 265 | 79.19 324 | 80.59 328 | 59.16 348 | 65.27 353 | 79.29 357 | 46.75 314 | 87.29 308 | 49.33 354 | 66.72 364 | 86.00 320 |
|
| SMA-MVS |  | | 89.08 8 | 89.23 7 | 88.61 6 | 94.25 31 | 73.73 9 | 92.40 24 | 93.63 21 | 74.77 114 | 92.29 7 | 95.97 2 | 74.28 29 | 97.24 13 | 88.58 21 | 96.91 1 | 94.87 16 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| GSMVS | | | | | | | | | | | | | | | | | 88.96 250 |
|
| DPE-MVS |  | | 89.48 5 | 89.98 4 | 88.01 16 | 94.80 11 | 72.69 31 | 91.59 43 | 94.10 8 | 75.90 89 | 92.29 7 | 95.66 10 | 81.67 6 | 97.38 11 | 87.44 33 | 96.34 15 | 93.95 57 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| test_part2 | | | | | | 95.06 8 | 72.65 32 | | | | 91.80 13 | | | | | | |
|
| thres100view900 | | | 76.50 237 | 75.55 236 | 79.33 258 | 89.52 125 | 56.99 315 | 85.83 214 | 83.23 294 | 73.94 131 | 76.32 209 | 87.12 223 | 51.89 264 | 91.95 216 | 48.33 359 | 83.75 197 | 89.07 239 |
|
| tfpnnormal | | | 74.39 263 | 73.16 267 | 78.08 281 | 86.10 241 | 58.05 297 | 84.65 239 | 87.53 230 | 70.32 201 | 71.22 294 | 85.63 263 | 54.97 227 | 89.86 270 | 43.03 382 | 75.02 317 | 86.32 310 |
|
| tfpn200view9 | | | 76.42 241 | 75.37 241 | 79.55 257 | 89.13 146 | 57.65 306 | 85.17 225 | 83.60 286 | 73.41 146 | 76.45 205 | 86.39 247 | 52.12 256 | 91.95 216 | 48.33 359 | 83.75 197 | 89.07 239 |
|
| c3_l | | | 78.75 187 | 77.91 185 | 81.26 216 | 82.89 307 | 61.56 262 | 84.09 255 | 89.13 189 | 69.97 210 | 75.56 223 | 84.29 291 | 66.36 114 | 92.09 212 | 73.47 160 | 75.48 305 | 90.12 204 |
|
| CHOSEN 280x420 | | | 66.51 338 | 64.71 339 | 71.90 343 | 81.45 331 | 63.52 229 | 57.98 406 | 68.95 390 | 53.57 376 | 62.59 369 | 76.70 374 | 46.22 320 | 75.29 389 | 55.25 322 | 79.68 250 | 76.88 386 |
|
| CANet | | | 86.45 42 | 86.10 49 | 87.51 37 | 90.09 107 | 70.94 70 | 89.70 85 | 92.59 73 | 81.78 4 | 81.32 119 | 91.43 111 | 70.34 70 | 97.23 14 | 84.26 57 | 93.36 68 | 94.37 40 |
|
| Fast-Effi-MVS+-dtu | | | 78.02 207 | 76.49 222 | 82.62 189 | 83.16 299 | 66.96 163 | 86.94 178 | 87.45 233 | 72.45 160 | 71.49 292 | 84.17 295 | 54.79 232 | 91.58 229 | 67.61 216 | 80.31 244 | 89.30 237 |
|
| Effi-MVS+-dtu | | | 80.03 158 | 78.57 169 | 84.42 108 | 85.13 258 | 68.74 114 | 88.77 117 | 88.10 215 | 74.99 106 | 74.97 248 | 83.49 309 | 57.27 216 | 93.36 160 | 73.53 158 | 80.88 235 | 91.18 162 |
|
| CANet_DTU | | | 80.61 143 | 79.87 141 | 82.83 179 | 85.60 247 | 63.17 240 | 87.36 166 | 88.65 207 | 76.37 80 | 75.88 218 | 88.44 187 | 53.51 244 | 93.07 179 | 73.30 162 | 89.74 115 | 92.25 132 |
|
| MVS_0304 | | | 87.69 20 | 87.55 24 | 88.12 13 | 89.45 129 | 71.76 51 | 91.47 49 | 89.54 171 | 82.14 3 | 86.65 49 | 94.28 34 | 68.28 95 | 97.46 6 | 90.81 2 | 95.31 34 | 95.15 6 |
|
| MP-MVS-pluss | | | 87.67 21 | 87.72 20 | 87.54 36 | 93.64 44 | 72.04 48 | 89.80 81 | 93.50 25 | 75.17 104 | 86.34 51 | 95.29 15 | 70.86 65 | 96.00 54 | 88.78 19 | 96.04 16 | 94.58 31 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| MSP-MVS | | | 89.51 4 | 89.91 5 | 88.30 10 | 94.28 30 | 73.46 17 | 92.90 16 | 94.11 6 | 80.27 10 | 91.35 14 | 94.16 40 | 78.35 13 | 96.77 24 | 89.59 8 | 94.22 60 | 94.67 26 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| sam_mvs1 | | | | | | | | | | | | | 51.32 271 | | | | 88.96 250 |
|
| sam_mvs | | | | | | | | | | | | | 50.01 285 | | | | |
|
| IterMVS-SCA-FT | | | 75.43 256 | 73.87 260 | 80.11 243 | 82.69 311 | 64.85 202 | 81.57 289 | 83.47 290 | 69.16 231 | 70.49 298 | 84.15 296 | 51.95 262 | 88.15 300 | 69.23 201 | 72.14 343 | 87.34 289 |
|
| TSAR-MVS + MP. | | | 88.02 17 | 88.11 16 | 87.72 30 | 93.68 43 | 72.13 46 | 91.41 50 | 92.35 81 | 74.62 118 | 88.90 22 | 93.85 55 | 75.75 20 | 96.00 54 | 87.80 28 | 94.63 48 | 95.04 8 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| xiu_mvs_v1_base_debu | | | 80.80 138 | 79.72 144 | 84.03 136 | 87.35 213 | 70.19 82 | 85.56 217 | 88.77 201 | 69.06 234 | 81.83 111 | 88.16 195 | 50.91 275 | 92.85 186 | 78.29 114 | 87.56 141 | 89.06 241 |
|
| OPM-MVS | | | 83.50 88 | 82.95 93 | 85.14 83 | 88.79 159 | 70.95 69 | 89.13 107 | 91.52 113 | 77.55 44 | 80.96 126 | 91.75 98 | 60.71 187 | 94.50 110 | 79.67 103 | 86.51 158 | 89.97 217 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| ACMMP_NAP | | | 88.05 16 | 88.08 17 | 87.94 19 | 93.70 41 | 73.05 22 | 90.86 57 | 93.59 23 | 76.27 83 | 88.14 27 | 95.09 17 | 71.06 63 | 96.67 29 | 87.67 29 | 96.37 14 | 94.09 51 |
|
| ambc | | | | | 75.24 315 | 73.16 390 | 50.51 380 | 63.05 404 | 87.47 232 | | 64.28 359 | 77.81 370 | 17.80 406 | 89.73 274 | 57.88 305 | 60.64 381 | 85.49 325 |
|
| MTGPA |  | | | | | | | | 92.02 92 | | | | | | | | |
|
| CS-MVS-test | | | 86.29 46 | 86.48 41 | 85.71 71 | 91.02 88 | 67.21 158 | 92.36 29 | 93.78 18 | 78.97 28 | 83.51 95 | 91.20 118 | 70.65 69 | 95.15 82 | 81.96 82 | 94.89 42 | 94.77 23 |
|
| Effi-MVS+ | | | 83.62 86 | 83.08 89 | 85.24 81 | 88.38 175 | 67.45 147 | 88.89 113 | 89.15 187 | 75.50 96 | 82.27 107 | 88.28 191 | 69.61 79 | 94.45 112 | 77.81 117 | 87.84 139 | 93.84 64 |
|
| xiu_mvs_v2_base | | | 81.69 119 | 81.05 120 | 83.60 147 | 89.15 145 | 68.03 135 | 84.46 245 | 90.02 158 | 70.67 192 | 81.30 122 | 86.53 244 | 63.17 145 | 94.19 121 | 75.60 141 | 88.54 132 | 88.57 265 |
|
| xiu_mvs_v1_base | | | 80.80 138 | 79.72 144 | 84.03 136 | 87.35 213 | 70.19 82 | 85.56 217 | 88.77 201 | 69.06 234 | 81.83 111 | 88.16 195 | 50.91 275 | 92.85 186 | 78.29 114 | 87.56 141 | 89.06 241 |
|
| new-patchmatchnet | | | 61.73 353 | 61.73 354 | 61.70 377 | 72.74 393 | 24.50 420 | 69.16 386 | 78.03 350 | 61.40 330 | 56.72 388 | 75.53 382 | 38.42 366 | 76.48 377 | 45.95 374 | 57.67 384 | 84.13 345 |
|
| pmmvs6 | | | 74.69 262 | 73.39 264 | 78.61 269 | 81.38 333 | 57.48 309 | 86.64 189 | 87.95 220 | 64.99 291 | 70.18 302 | 86.61 238 | 50.43 282 | 89.52 277 | 62.12 265 | 70.18 353 | 88.83 255 |
|
| pmmvs5 | | | 71.55 295 | 70.20 301 | 75.61 307 | 77.83 366 | 56.39 325 | 81.74 286 | 80.89 323 | 57.76 359 | 67.46 331 | 84.49 285 | 49.26 297 | 85.32 328 | 57.08 312 | 75.29 313 | 85.11 334 |
|
| test_post1 | | | | | | | | 78.90 330 | | | | 5.43 418 | 48.81 304 | 85.44 327 | 59.25 289 | | |
|
| test_post | | | | | | | | | | | | 5.46 417 | 50.36 283 | 84.24 335 | | | |
|
| Fast-Effi-MVS+ | | | 80.81 136 | 79.92 139 | 83.47 150 | 88.85 153 | 64.51 207 | 85.53 222 | 89.39 176 | 70.79 189 | 78.49 159 | 85.06 277 | 67.54 102 | 93.58 147 | 67.03 225 | 86.58 156 | 92.32 129 |
|
| patchmatchnet-post | | | | | | | | | | | | 74.00 385 | 51.12 274 | 88.60 295 | | | |
|
| Anonymous20231211 | | | 78.97 184 | 77.69 196 | 82.81 181 | 90.54 99 | 64.29 214 | 90.11 75 | 91.51 114 | 65.01 290 | 76.16 216 | 88.13 200 | 50.56 280 | 93.03 183 | 69.68 198 | 77.56 275 | 91.11 164 |
|
| pmmvs-eth3d | | | 70.50 307 | 67.83 320 | 78.52 275 | 77.37 369 | 66.18 172 | 81.82 284 | 81.51 318 | 58.90 351 | 63.90 363 | 80.42 347 | 42.69 345 | 86.28 317 | 58.56 297 | 65.30 371 | 83.11 357 |
|
| GG-mvs-BLEND | | | | | 75.38 313 | 81.59 328 | 55.80 335 | 79.32 321 | 69.63 386 | | 67.19 334 | 73.67 386 | 43.24 341 | 88.90 291 | 50.41 345 | 84.50 182 | 81.45 371 |
|
| xiu_mvs_v1_base_debi | | | 80.80 138 | 79.72 144 | 84.03 136 | 87.35 213 | 70.19 82 | 85.56 217 | 88.77 201 | 69.06 234 | 81.83 111 | 88.16 195 | 50.91 275 | 92.85 186 | 78.29 114 | 87.56 141 | 89.06 241 |
|
| Anonymous20231206 | | | 68.60 322 | 67.80 321 | 71.02 352 | 80.23 347 | 50.75 379 | 78.30 340 | 80.47 330 | 56.79 366 | 66.11 349 | 82.63 325 | 46.35 318 | 78.95 363 | 43.62 381 | 75.70 300 | 83.36 354 |
|
| MTAPA | | | 87.23 31 | 87.00 32 | 87.90 22 | 94.18 35 | 74.25 5 | 86.58 191 | 92.02 92 | 79.45 19 | 85.88 53 | 94.80 19 | 68.07 96 | 96.21 45 | 86.69 36 | 95.34 32 | 93.23 92 |
|
| MTMP | | | | | | | | 92.18 34 | 32.83 421 | | | | | | | | |
|
| gm-plane-assit | | | | | | 81.40 332 | 53.83 355 | | | 62.72 320 | | 80.94 342 | | 92.39 200 | 63.40 251 | | |
|
| test9_res | | | | | | | | | | | | | | | 84.90 46 | 95.70 26 | 92.87 111 |
|
| MVP-Stereo | | | 76.12 245 | 74.46 253 | 81.13 221 | 85.37 252 | 69.79 89 | 84.42 248 | 87.95 220 | 65.03 289 | 67.46 331 | 85.33 269 | 53.28 247 | 91.73 226 | 58.01 304 | 83.27 208 | 81.85 369 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| TEST9 | | | | | | 93.26 52 | 72.96 25 | 88.75 118 | 91.89 100 | 68.44 247 | 85.00 63 | 93.10 70 | 74.36 28 | 95.41 72 | | | |
|
| train_agg | | | 86.43 43 | 86.20 45 | 87.13 44 | 93.26 52 | 72.96 25 | 88.75 118 | 91.89 100 | 68.69 242 | 85.00 63 | 93.10 70 | 74.43 26 | 95.41 72 | 84.97 45 | 95.71 25 | 93.02 106 |
|
| gg-mvs-nofinetune | | | 69.95 312 | 67.96 316 | 75.94 303 | 83.07 300 | 54.51 350 | 77.23 348 | 70.29 384 | 63.11 311 | 70.32 300 | 62.33 397 | 43.62 339 | 88.69 293 | 53.88 329 | 87.76 140 | 84.62 340 |
|
| SCA | | | 74.22 266 | 72.33 276 | 79.91 246 | 84.05 279 | 62.17 254 | 79.96 315 | 79.29 344 | 66.30 273 | 72.38 282 | 80.13 349 | 51.95 262 | 88.60 295 | 59.25 289 | 77.67 274 | 88.96 250 |
|
| Patchmatch-test | | | 64.82 346 | 63.24 347 | 69.57 357 | 79.42 360 | 49.82 383 | 63.49 403 | 69.05 389 | 51.98 382 | 59.95 378 | 80.13 349 | 50.91 275 | 70.98 397 | 40.66 388 | 73.57 330 | 87.90 276 |
|
| test_8 | | | | | | 93.13 54 | 72.57 35 | 88.68 123 | 91.84 104 | 68.69 242 | 84.87 67 | 93.10 70 | 74.43 26 | 95.16 81 | | | |
|
| MS-PatchMatch | | | 73.83 271 | 72.67 271 | 77.30 294 | 83.87 282 | 66.02 174 | 81.82 284 | 84.66 271 | 61.37 332 | 68.61 322 | 82.82 322 | 47.29 308 | 88.21 299 | 59.27 288 | 84.32 189 | 77.68 384 |
|
| Patchmatch-RL test | | | 70.24 309 | 67.78 322 | 77.61 289 | 77.43 368 | 59.57 287 | 71.16 376 | 70.33 383 | 62.94 315 | 68.65 321 | 72.77 388 | 50.62 279 | 85.49 325 | 69.58 199 | 66.58 366 | 87.77 279 |
|
| cdsmvs_eth3d_5k | | | 19.96 384 | 26.61 386 | 0.00 404 | 0.00 427 | 0.00 429 | 0.00 415 | 89.26 182 | 0.00 422 | 0.00 423 | 88.61 181 | 61.62 169 | 0.00 423 | 0.00 422 | 0.00 421 | 0.00 419 |
|
| pcd_1.5k_mvsjas | | | 5.26 390 | 7.02 393 | 0.00 404 | 0.00 427 | 0.00 429 | 0.00 415 | 0.00 428 | 0.00 422 | 0.00 423 | 0.00 422 | 63.15 146 | 0.00 423 | 0.00 422 | 0.00 421 | 0.00 419 |
|
| agg_prior2 | | | | | | | | | | | | | | | 82.91 72 | 95.45 29 | 92.70 114 |
|
| agg_prior | | | | | | 92.85 62 | 71.94 50 | | 91.78 107 | | 84.41 78 | | | 94.93 92 | | | |
|
| tmp_tt | | | 18.61 385 | 21.40 388 | 10.23 401 | 4.82 424 | 10.11 424 | 34.70 411 | 30.74 422 | 1.48 418 | 23.91 414 | 26.07 415 | 28.42 390 | 13.41 420 | 27.12 404 | 15.35 417 | 7.17 415 |
|
| canonicalmvs | | | 85.91 52 | 85.87 54 | 86.04 65 | 89.84 117 | 69.44 98 | 90.45 68 | 93.00 46 | 76.70 71 | 88.01 31 | 91.23 115 | 73.28 36 | 93.91 133 | 81.50 85 | 88.80 126 | 94.77 23 |
|
| anonymousdsp | | | 78.60 192 | 77.15 206 | 82.98 174 | 80.51 344 | 67.08 159 | 87.24 171 | 89.53 172 | 65.66 281 | 75.16 242 | 87.19 221 | 52.52 249 | 92.25 207 | 77.17 124 | 79.34 256 | 89.61 229 |
|
| alignmvs | | | 85.48 60 | 85.32 64 | 85.96 68 | 89.51 126 | 69.47 95 | 89.74 83 | 92.47 75 | 76.17 84 | 87.73 37 | 91.46 110 | 70.32 71 | 93.78 139 | 81.51 84 | 88.95 123 | 94.63 30 |
|
| nrg030 | | | 83.88 78 | 83.53 82 | 84.96 90 | 86.77 229 | 69.28 102 | 90.46 67 | 92.67 66 | 74.79 113 | 82.95 99 | 91.33 114 | 72.70 43 | 93.09 178 | 80.79 95 | 79.28 257 | 92.50 123 |
|
| v144192 | | | 79.47 168 | 78.37 174 | 82.78 185 | 83.35 291 | 63.96 219 | 86.96 177 | 90.36 148 | 69.99 209 | 77.50 179 | 85.67 262 | 60.66 189 | 93.77 141 | 74.27 152 | 76.58 286 | 90.62 182 |
|
| FIs | | | 82.07 111 | 82.42 98 | 81.04 223 | 88.80 158 | 58.34 294 | 88.26 138 | 93.49 26 | 76.93 62 | 78.47 160 | 91.04 124 | 69.92 76 | 92.34 204 | 69.87 196 | 84.97 176 | 92.44 127 |
|
| v1921920 | | | 79.22 176 | 78.03 182 | 82.80 182 | 83.30 293 | 63.94 220 | 86.80 183 | 90.33 149 | 69.91 212 | 77.48 180 | 85.53 265 | 58.44 204 | 93.75 143 | 73.60 157 | 76.85 283 | 90.71 180 |
|
| UA-Net | | | 85.08 68 | 84.96 69 | 85.45 76 | 92.07 73 | 68.07 133 | 89.78 82 | 90.86 134 | 82.48 2 | 84.60 75 | 93.20 69 | 69.35 81 | 95.22 79 | 71.39 179 | 90.88 97 | 93.07 101 |
|
| v1192 | | | 79.59 165 | 78.43 173 | 83.07 169 | 83.55 288 | 64.52 206 | 86.93 179 | 90.58 139 | 70.83 188 | 77.78 175 | 85.90 255 | 59.15 200 | 93.94 129 | 73.96 155 | 77.19 278 | 90.76 177 |
|
| FC-MVSNet-test | | | 81.52 123 | 82.02 108 | 80.03 244 | 88.42 174 | 55.97 332 | 87.95 148 | 93.42 29 | 77.10 58 | 77.38 182 | 90.98 130 | 69.96 75 | 91.79 222 | 68.46 211 | 84.50 182 | 92.33 128 |
|
| v1144 | | | 80.03 158 | 79.03 161 | 83.01 172 | 83.78 284 | 64.51 207 | 87.11 174 | 90.57 141 | 71.96 168 | 78.08 170 | 86.20 251 | 61.41 174 | 93.94 129 | 74.93 146 | 77.23 276 | 90.60 184 |
|
| sosnet-low-res | | | 0.00 391 | 0.00 394 | 0.00 404 | 0.00 427 | 0.00 429 | 0.00 415 | 0.00 428 | 0.00 422 | 0.00 423 | 0.00 422 | 0.00 427 | 0.00 423 | 0.00 422 | 0.00 421 | 0.00 419 |
|
| HFP-MVS | | | 87.58 22 | 87.47 26 | 87.94 19 | 94.58 16 | 73.54 15 | 93.04 12 | 93.24 33 | 76.78 67 | 84.91 65 | 94.44 30 | 70.78 66 | 96.61 32 | 84.53 54 | 94.89 42 | 93.66 70 |
|
| v148 | | | 78.72 189 | 77.80 190 | 81.47 209 | 82.73 310 | 61.96 257 | 86.30 200 | 88.08 216 | 73.26 150 | 76.18 213 | 85.47 267 | 62.46 156 | 92.36 202 | 71.92 175 | 73.82 329 | 90.09 207 |
|
| sosnet | | | 0.00 391 | 0.00 394 | 0.00 404 | 0.00 427 | 0.00 429 | 0.00 415 | 0.00 428 | 0.00 422 | 0.00 423 | 0.00 422 | 0.00 427 | 0.00 423 | 0.00 422 | 0.00 421 | 0.00 419 |
|
| uncertanet | | | 0.00 391 | 0.00 394 | 0.00 404 | 0.00 427 | 0.00 429 | 0.00 415 | 0.00 428 | 0.00 422 | 0.00 423 | 0.00 422 | 0.00 427 | 0.00 423 | 0.00 422 | 0.00 421 | 0.00 419 |
|
| AllTest | | | 70.96 300 | 68.09 315 | 79.58 255 | 85.15 256 | 63.62 224 | 84.58 241 | 79.83 338 | 62.31 323 | 60.32 376 | 86.73 229 | 32.02 382 | 88.96 289 | 50.28 348 | 71.57 347 | 86.15 314 |
|
| TestCases | | | | | 79.58 255 | 85.15 256 | 63.62 224 | | 79.83 338 | 62.31 323 | 60.32 376 | 86.73 229 | 32.02 382 | 88.96 289 | 50.28 348 | 71.57 347 | 86.15 314 |
|
| v7n | | | 78.97 184 | 77.58 199 | 83.14 165 | 83.45 290 | 65.51 187 | 88.32 136 | 91.21 122 | 73.69 137 | 72.41 281 | 86.32 249 | 57.93 207 | 93.81 138 | 69.18 202 | 75.65 301 | 90.11 205 |
|
| region2R | | | 87.42 27 | 87.20 31 | 88.09 14 | 94.63 14 | 73.55 13 | 93.03 14 | 93.12 40 | 76.73 70 | 84.45 77 | 94.52 23 | 69.09 84 | 96.70 27 | 84.37 56 | 94.83 45 | 94.03 54 |
|
| RRT-MVS | | | 82.60 106 | 82.10 105 | 84.10 123 | 87.98 192 | 62.94 246 | 87.45 164 | 91.27 120 | 77.42 48 | 79.85 136 | 90.28 138 | 56.62 221 | 94.70 105 | 79.87 102 | 88.15 138 | 94.67 26 |
|
| mamv4 | | | 76.81 232 | 78.23 180 | 72.54 340 | 86.12 239 | 65.75 184 | 78.76 331 | 82.07 313 | 64.12 300 | 72.97 273 | 91.02 127 | 67.97 97 | 68.08 404 | 83.04 70 | 78.02 269 | 83.80 350 |
|
| PS-MVSNAJss | | | 82.07 111 | 81.31 115 | 84.34 112 | 86.51 234 | 67.27 154 | 89.27 100 | 91.51 114 | 71.75 169 | 79.37 142 | 90.22 142 | 63.15 146 | 94.27 116 | 77.69 118 | 82.36 220 | 91.49 154 |
|
| PS-MVSNAJ | | | 81.69 119 | 81.02 121 | 83.70 145 | 89.51 126 | 68.21 130 | 84.28 251 | 90.09 157 | 70.79 189 | 81.26 123 | 85.62 264 | 63.15 146 | 94.29 114 | 75.62 140 | 88.87 125 | 88.59 264 |
|
| jajsoiax | | | 79.29 175 | 77.96 183 | 83.27 158 | 84.68 265 | 66.57 167 | 89.25 101 | 90.16 155 | 69.20 230 | 75.46 227 | 89.49 157 | 45.75 327 | 93.13 176 | 76.84 127 | 80.80 237 | 90.11 205 |
|
| mvs_tets | | | 79.13 179 | 77.77 192 | 83.22 162 | 84.70 264 | 66.37 169 | 89.17 102 | 90.19 154 | 69.38 223 | 75.40 230 | 89.46 160 | 44.17 337 | 93.15 174 | 76.78 129 | 80.70 239 | 90.14 202 |
|
| EI-MVSNet-UG-set | | | 83.81 79 | 83.38 85 | 85.09 86 | 87.87 196 | 67.53 146 | 87.44 165 | 89.66 168 | 79.74 16 | 82.23 108 | 89.41 164 | 70.24 73 | 94.74 102 | 79.95 100 | 83.92 193 | 92.99 109 |
|
| EI-MVSNet-Vis-set | | | 84.19 75 | 83.81 80 | 85.31 79 | 88.18 180 | 67.85 137 | 87.66 157 | 89.73 167 | 80.05 14 | 82.95 99 | 89.59 155 | 70.74 67 | 94.82 99 | 80.66 96 | 84.72 179 | 93.28 91 |
|
| HPM-MVS++ |  | | 89.02 9 | 89.15 9 | 88.63 5 | 95.01 9 | 76.03 1 | 92.38 27 | 92.85 59 | 80.26 11 | 87.78 33 | 94.27 35 | 75.89 19 | 96.81 23 | 87.45 32 | 96.44 9 | 93.05 104 |
|
| test_prior4 | | | | | | | 72.60 34 | 89.01 109 | | | | | | | | | |
|
| XVS | | | 87.18 32 | 86.91 37 | 88.00 17 | 94.42 20 | 73.33 19 | 92.78 18 | 92.99 49 | 79.14 21 | 83.67 92 | 94.17 39 | 67.45 103 | 96.60 33 | 83.06 68 | 94.50 51 | 94.07 52 |
|
| v1240 | | | 78.99 183 | 77.78 191 | 82.64 188 | 83.21 295 | 63.54 228 | 86.62 190 | 90.30 151 | 69.74 219 | 77.33 183 | 85.68 261 | 57.04 218 | 93.76 142 | 73.13 165 | 76.92 280 | 90.62 182 |
|
| pm-mvs1 | | | 77.25 226 | 76.68 220 | 78.93 265 | 84.22 274 | 58.62 291 | 86.41 195 | 88.36 212 | 71.37 178 | 73.31 268 | 88.01 201 | 61.22 180 | 89.15 284 | 64.24 246 | 73.01 336 | 89.03 245 |
|
| test_prior2 | | | | | | | | 88.85 115 | | 75.41 97 | 84.91 65 | 93.54 59 | 74.28 29 | | 83.31 66 | 95.86 20 | |
|
| X-MVStestdata | | | 80.37 152 | 77.83 188 | 88.00 17 | 94.42 20 | 73.33 19 | 92.78 18 | 92.99 49 | 79.14 21 | 83.67 92 | 12.47 416 | 67.45 103 | 96.60 33 | 83.06 68 | 94.50 51 | 94.07 52 |
|
| test_prior | | | | | 86.33 57 | 92.61 68 | 69.59 91 | | 92.97 54 | | | | | 95.48 67 | | | 93.91 58 |
|
| 旧先验2 | | | | | | | | 86.56 192 | | 58.10 357 | 87.04 45 | | | 88.98 287 | 74.07 154 | | |
|
| 新几何2 | | | | | | | | 86.29 201 | | | | | | | | | |
|
| 新几何1 | | | | | 83.42 152 | 93.13 54 | 70.71 74 | | 85.48 264 | 57.43 363 | 81.80 114 | 91.98 93 | 63.28 141 | 92.27 206 | 64.60 243 | 92.99 70 | 87.27 291 |
|
| 旧先验1 | | | | | | 91.96 74 | 65.79 182 | | 86.37 252 | | | 93.08 74 | 69.31 83 | | | 92.74 73 | 88.74 261 |
|
| 无先验 | | | | | | | | 87.48 161 | 88.98 194 | 60.00 340 | | | | 94.12 123 | 67.28 220 | | 88.97 249 |
|
| 原ACMM2 | | | | | | | | 86.86 181 | | | | | | | | | |
|
| 原ACMM1 | | | | | 84.35 111 | 93.01 60 | 68.79 110 | | 92.44 76 | 63.96 306 | 81.09 124 | 91.57 106 | 66.06 119 | 95.45 68 | 67.19 222 | 94.82 46 | 88.81 256 |
|
| test222 | | | | | | 91.50 80 | 68.26 128 | 84.16 253 | 83.20 297 | 54.63 374 | 79.74 137 | 91.63 103 | 58.97 201 | | | 91.42 90 | 86.77 304 |
|
| testdata2 | | | | | | | | | | | | | | 91.01 254 | 62.37 261 | | |
|
| segment_acmp | | | | | | | | | | | | | 73.08 38 | | | | |
|
| testdata | | | | | 79.97 245 | 90.90 91 | 64.21 215 | | 84.71 270 | 59.27 347 | 85.40 58 | 92.91 76 | 62.02 165 | 89.08 285 | 68.95 205 | 91.37 91 | 86.63 308 |
|
| testdata1 | | | | | | | | 84.14 254 | | 75.71 91 | | | | | | | |
|
| v8 | | | 79.97 160 | 79.02 162 | 82.80 182 | 84.09 277 | 64.50 209 | 87.96 147 | 90.29 152 | 74.13 129 | 75.24 240 | 86.81 228 | 62.88 151 | 93.89 136 | 74.39 151 | 75.40 310 | 90.00 213 |
|
| 1314 | | | 76.53 236 | 75.30 243 | 80.21 241 | 83.93 281 | 62.32 252 | 84.66 237 | 88.81 199 | 60.23 338 | 70.16 304 | 84.07 297 | 55.30 226 | 90.73 259 | 67.37 219 | 83.21 209 | 87.59 284 |
|
| LFMVS | | | 81.82 116 | 81.23 117 | 83.57 149 | 91.89 76 | 63.43 233 | 89.84 78 | 81.85 316 | 77.04 60 | 83.21 96 | 93.10 70 | 52.26 254 | 93.43 158 | 71.98 174 | 89.95 112 | 93.85 62 |
|
| VDD-MVS | | | 83.01 100 | 82.36 101 | 84.96 90 | 91.02 88 | 66.40 168 | 88.91 112 | 88.11 214 | 77.57 41 | 84.39 79 | 93.29 67 | 52.19 255 | 93.91 133 | 77.05 125 | 88.70 130 | 94.57 33 |
|
| VDDNet | | | 81.52 123 | 80.67 126 | 84.05 134 | 90.44 101 | 64.13 217 | 89.73 84 | 85.91 259 | 71.11 183 | 83.18 97 | 93.48 61 | 50.54 281 | 93.49 153 | 73.40 161 | 88.25 136 | 94.54 34 |
|
| v10 | | | 79.74 162 | 78.67 166 | 82.97 175 | 84.06 278 | 64.95 199 | 87.88 153 | 90.62 138 | 73.11 153 | 75.11 244 | 86.56 242 | 61.46 173 | 94.05 125 | 73.68 156 | 75.55 303 | 89.90 219 |
|
| VPNet | | | 78.69 190 | 78.66 167 | 78.76 267 | 88.31 177 | 55.72 336 | 84.45 246 | 86.63 248 | 76.79 66 | 78.26 164 | 90.55 135 | 59.30 199 | 89.70 275 | 66.63 226 | 77.05 279 | 90.88 173 |
|
| MVS | | | 78.19 202 | 76.99 210 | 81.78 202 | 85.66 245 | 66.99 160 | 84.66 237 | 90.47 143 | 55.08 373 | 72.02 286 | 85.27 270 | 63.83 138 | 94.11 124 | 66.10 230 | 89.80 114 | 84.24 343 |
|
| v2v482 | | | 80.23 154 | 79.29 155 | 83.05 170 | 83.62 286 | 64.14 216 | 87.04 175 | 89.97 160 | 73.61 139 | 78.18 167 | 87.22 219 | 61.10 182 | 93.82 137 | 76.11 133 | 76.78 285 | 91.18 162 |
|
| V42 | | | 79.38 174 | 78.24 178 | 82.83 179 | 81.10 338 | 65.50 188 | 85.55 220 | 89.82 163 | 71.57 175 | 78.21 165 | 86.12 253 | 60.66 189 | 93.18 173 | 75.64 139 | 75.46 307 | 89.81 224 |
|
| SD-MVS | | | 88.06 14 | 88.50 14 | 86.71 54 | 92.60 69 | 72.71 29 | 91.81 41 | 93.19 35 | 77.87 36 | 90.32 17 | 94.00 49 | 74.83 23 | 93.78 139 | 87.63 30 | 94.27 59 | 93.65 74 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| GA-MVS | | | 76.87 231 | 75.17 244 | 81.97 200 | 82.75 309 | 62.58 248 | 81.44 292 | 86.35 253 | 72.16 167 | 74.74 251 | 82.89 320 | 46.20 321 | 92.02 214 | 68.85 207 | 81.09 233 | 91.30 160 |
|
| MSLP-MVS++ | | | 85.43 62 | 85.76 56 | 84.45 107 | 91.93 75 | 70.24 79 | 90.71 59 | 92.86 58 | 77.46 47 | 84.22 81 | 92.81 81 | 67.16 107 | 92.94 184 | 80.36 97 | 94.35 57 | 90.16 201 |
|
| APDe-MVS |  | | 89.15 7 | 89.63 6 | 87.73 28 | 94.49 18 | 71.69 52 | 93.83 4 | 93.96 13 | 75.70 93 | 91.06 16 | 96.03 1 | 76.84 14 | 97.03 17 | 89.09 11 | 95.65 27 | 94.47 36 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| APD-MVS_3200maxsize | | | 85.97 50 | 85.88 53 | 86.22 60 | 92.69 66 | 69.53 92 | 91.93 37 | 92.99 49 | 73.54 142 | 85.94 52 | 94.51 26 | 65.80 123 | 95.61 62 | 83.04 70 | 92.51 76 | 93.53 83 |
|
| ADS-MVSNet2 | | | 66.20 343 | 63.33 346 | 74.82 319 | 79.92 350 | 58.75 290 | 67.55 391 | 75.19 368 | 53.37 377 | 65.25 354 | 75.86 379 | 42.32 347 | 80.53 358 | 41.57 386 | 68.91 358 | 85.18 331 |
|
| EI-MVSNet | | | 80.52 148 | 79.98 138 | 82.12 195 | 84.28 272 | 63.19 239 | 86.41 195 | 88.95 197 | 74.18 127 | 78.69 152 | 87.54 211 | 66.62 109 | 92.43 198 | 72.57 171 | 80.57 241 | 90.74 179 |
|
| Regformer | | | 0.00 391 | 0.00 394 | 0.00 404 | 0.00 427 | 0.00 429 | 0.00 415 | 0.00 428 | 0.00 422 | 0.00 423 | 0.00 422 | 0.00 427 | 0.00 423 | 0.00 422 | 0.00 421 | 0.00 419 |
|
| CVMVSNet | | | 72.99 284 | 72.58 273 | 74.25 325 | 84.28 272 | 50.85 378 | 86.41 195 | 83.45 291 | 44.56 393 | 73.23 270 | 87.54 211 | 49.38 294 | 85.70 321 | 65.90 232 | 78.44 264 | 86.19 313 |
|
| pmmvs4 | | | 74.03 270 | 71.91 279 | 80.39 236 | 81.96 322 | 68.32 126 | 81.45 291 | 82.14 311 | 59.32 346 | 69.87 310 | 85.13 275 | 52.40 252 | 88.13 301 | 60.21 281 | 74.74 320 | 84.73 339 |
|
| EU-MVSNet | | | 68.53 325 | 67.61 325 | 71.31 350 | 78.51 365 | 47.01 389 | 84.47 243 | 84.27 278 | 42.27 396 | 66.44 347 | 84.79 283 | 40.44 358 | 83.76 338 | 58.76 296 | 68.54 361 | 83.17 355 |
|
| VNet | | | 82.21 108 | 82.41 99 | 81.62 205 | 90.82 93 | 60.93 267 | 84.47 243 | 89.78 164 | 76.36 81 | 84.07 85 | 91.88 96 | 64.71 132 | 90.26 263 | 70.68 186 | 88.89 124 | 93.66 70 |
|
| test-LLR | | | 72.94 285 | 72.43 274 | 74.48 322 | 81.35 334 | 58.04 298 | 78.38 336 | 77.46 354 | 66.66 265 | 69.95 308 | 79.00 360 | 48.06 305 | 79.24 361 | 66.13 228 | 84.83 177 | 86.15 314 |
|
| TESTMET0.1,1 | | | 69.89 313 | 69.00 307 | 72.55 339 | 79.27 362 | 56.85 316 | 78.38 336 | 74.71 373 | 57.64 360 | 68.09 325 | 77.19 373 | 37.75 370 | 76.70 374 | 63.92 247 | 84.09 192 | 84.10 346 |
|
| test-mter | | | 71.41 296 | 70.39 299 | 74.48 322 | 81.35 334 | 58.04 298 | 78.38 336 | 77.46 354 | 60.32 337 | 69.95 308 | 79.00 360 | 36.08 375 | 79.24 361 | 66.13 228 | 84.83 177 | 86.15 314 |
|
| VPA-MVSNet | | | 80.60 144 | 80.55 128 | 80.76 230 | 88.07 187 | 60.80 270 | 86.86 181 | 91.58 112 | 75.67 94 | 80.24 132 | 89.45 162 | 63.34 140 | 90.25 264 | 70.51 188 | 79.22 258 | 91.23 161 |
|
| ACMMPR | | | 87.44 25 | 87.23 30 | 88.08 15 | 94.64 13 | 73.59 12 | 93.04 12 | 93.20 34 | 76.78 67 | 84.66 72 | 94.52 23 | 68.81 90 | 96.65 30 | 84.53 54 | 94.90 41 | 94.00 55 |
|
| testgi | | | 66.67 337 | 66.53 334 | 67.08 371 | 75.62 376 | 41.69 406 | 75.93 352 | 76.50 363 | 66.11 274 | 65.20 356 | 86.59 239 | 35.72 376 | 74.71 390 | 43.71 380 | 73.38 334 | 84.84 337 |
|
| test20.03 | | | 67.45 331 | 66.95 332 | 68.94 360 | 75.48 377 | 44.84 397 | 77.50 345 | 77.67 352 | 66.66 265 | 63.01 366 | 83.80 301 | 47.02 311 | 78.40 365 | 42.53 385 | 68.86 360 | 83.58 352 |
|
| thres600view7 | | | 76.50 237 | 75.44 237 | 79.68 252 | 89.40 132 | 57.16 312 | 85.53 222 | 83.23 294 | 73.79 135 | 76.26 210 | 87.09 224 | 51.89 264 | 91.89 219 | 48.05 364 | 83.72 200 | 90.00 213 |
|
| ADS-MVSNet | | | 64.36 347 | 62.88 350 | 68.78 363 | 79.92 350 | 47.17 388 | 67.55 391 | 71.18 382 | 53.37 377 | 65.25 354 | 75.86 379 | 42.32 347 | 73.99 393 | 41.57 386 | 68.91 358 | 85.18 331 |
|
| MP-MVS |  | | 87.71 19 | 87.64 21 | 87.93 21 | 94.36 26 | 73.88 6 | 92.71 22 | 92.65 69 | 77.57 41 | 83.84 89 | 94.40 32 | 72.24 45 | 96.28 43 | 85.65 41 | 95.30 35 | 93.62 77 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| testmvs | | | 6.04 389 | 8.02 392 | 0.10 403 | 0.08 425 | 0.03 428 | 69.74 382 | 0.04 426 | 0.05 420 | 0.31 421 | 1.68 420 | 0.02 426 | 0.04 421 | 0.24 420 | 0.02 419 | 0.25 418 |
|
| thres400 | | | 76.50 237 | 75.37 241 | 79.86 247 | 89.13 146 | 57.65 306 | 85.17 225 | 83.60 286 | 73.41 146 | 76.45 205 | 86.39 247 | 52.12 256 | 91.95 216 | 48.33 359 | 83.75 197 | 90.00 213 |
|
| test123 | | | 6.12 388 | 8.11 391 | 0.14 402 | 0.06 426 | 0.09 427 | 71.05 377 | 0.03 427 | 0.04 421 | 0.25 422 | 1.30 421 | 0.05 425 | 0.03 422 | 0.21 421 | 0.01 420 | 0.29 417 |
|
| thres200 | | | 75.55 253 | 74.47 252 | 78.82 266 | 87.78 202 | 57.85 303 | 83.07 274 | 83.51 289 | 72.44 162 | 75.84 219 | 84.42 286 | 52.08 259 | 91.75 224 | 47.41 366 | 83.64 202 | 86.86 302 |
|
| test0.0.03 1 | | | 68.00 329 | 67.69 323 | 68.90 361 | 77.55 367 | 47.43 387 | 75.70 356 | 72.95 380 | 66.66 265 | 66.56 342 | 82.29 330 | 48.06 305 | 75.87 383 | 44.97 379 | 74.51 322 | 83.41 353 |
|
| pmmvs3 | | | 57.79 358 | 54.26 363 | 68.37 365 | 64.02 406 | 56.72 319 | 75.12 362 | 65.17 398 | 40.20 398 | 52.93 394 | 69.86 394 | 20.36 403 | 75.48 386 | 45.45 377 | 55.25 392 | 72.90 392 |
|
| EMVS | | | 30.81 382 | 29.65 384 | 34.27 398 | 50.96 418 | 25.95 418 | 56.58 408 | 46.80 416 | 24.01 413 | 15.53 418 | 30.68 414 | 12.47 410 | 54.43 414 | 12.81 417 | 17.05 415 | 22.43 414 |
|
| E-PMN | | | 31.77 380 | 30.64 383 | 35.15 397 | 52.87 417 | 27.67 414 | 57.09 407 | 47.86 415 | 24.64 412 | 16.40 417 | 33.05 413 | 11.23 413 | 54.90 413 | 14.46 416 | 18.15 414 | 22.87 413 |
|
| PGM-MVS | | | 86.68 40 | 86.27 44 | 87.90 22 | 94.22 33 | 73.38 18 | 90.22 73 | 93.04 41 | 75.53 95 | 83.86 88 | 94.42 31 | 67.87 100 | 96.64 31 | 82.70 78 | 94.57 50 | 93.66 70 |
|
| LCM-MVSNet-Re | | | 77.05 227 | 76.94 211 | 77.36 292 | 87.20 221 | 51.60 371 | 80.06 312 | 80.46 331 | 75.20 101 | 67.69 328 | 86.72 231 | 62.48 155 | 88.98 287 | 63.44 250 | 89.25 119 | 91.51 152 |
|
| LCM-MVSNet | | | 54.25 362 | 49.68 372 | 67.97 369 | 53.73 416 | 45.28 395 | 66.85 394 | 80.78 325 | 35.96 405 | 39.45 406 | 62.23 399 | 8.70 416 | 78.06 368 | 48.24 362 | 51.20 396 | 80.57 377 |
|
| MCST-MVS | | | 87.37 29 | 87.25 29 | 87.73 28 | 94.53 17 | 72.46 38 | 89.82 79 | 93.82 16 | 73.07 154 | 84.86 68 | 92.89 77 | 76.22 17 | 96.33 41 | 84.89 48 | 95.13 36 | 94.40 39 |
|
| mvs_anonymous | | | 79.42 171 | 79.11 160 | 80.34 238 | 84.45 271 | 57.97 300 | 82.59 278 | 87.62 228 | 67.40 259 | 76.17 215 | 88.56 184 | 68.47 92 | 89.59 276 | 70.65 187 | 86.05 166 | 93.47 84 |
|
| MVS_Test | | | 83.15 95 | 83.06 90 | 83.41 154 | 86.86 225 | 63.21 237 | 86.11 205 | 92.00 94 | 74.31 123 | 82.87 101 | 89.44 163 | 70.03 74 | 93.21 167 | 77.39 122 | 88.50 134 | 93.81 65 |
|
| MDA-MVSNet-bldmvs | | | 66.68 336 | 63.66 345 | 75.75 305 | 79.28 361 | 60.56 274 | 73.92 368 | 78.35 349 | 64.43 295 | 50.13 398 | 79.87 353 | 44.02 338 | 83.67 339 | 46.10 373 | 56.86 385 | 83.03 359 |
|
| CDPH-MVS | | | 85.76 56 | 85.29 66 | 87.17 43 | 93.49 47 | 71.08 64 | 88.58 126 | 92.42 79 | 68.32 249 | 84.61 74 | 93.48 61 | 72.32 44 | 96.15 48 | 79.00 104 | 95.43 30 | 94.28 45 |
|
| test12 | | | | | 86.80 52 | 92.63 67 | 70.70 75 | | 91.79 106 | | 82.71 105 | | 71.67 54 | 96.16 47 | | 94.50 51 | 93.54 82 |
|
| casdiffmvs |  | | 85.11 67 | 85.14 67 | 85.01 88 | 87.20 221 | 65.77 183 | 87.75 155 | 92.83 60 | 77.84 37 | 84.36 80 | 92.38 88 | 72.15 46 | 93.93 132 | 81.27 89 | 90.48 101 | 95.33 4 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| diffmvs |  | | 82.10 109 | 81.88 111 | 82.76 187 | 83.00 303 | 63.78 223 | 83.68 259 | 89.76 165 | 72.94 157 | 82.02 110 | 89.85 147 | 65.96 122 | 90.79 257 | 82.38 80 | 87.30 146 | 93.71 69 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| baseline2 | | | 75.70 251 | 73.83 261 | 81.30 215 | 83.26 294 | 61.79 260 | 82.57 279 | 80.65 327 | 66.81 261 | 66.88 337 | 83.42 310 | 57.86 209 | 92.19 209 | 63.47 249 | 79.57 251 | 89.91 218 |
|
| baseline1 | | | 76.98 229 | 76.75 218 | 77.66 287 | 88.13 183 | 55.66 337 | 85.12 228 | 81.89 314 | 73.04 155 | 76.79 196 | 88.90 172 | 62.43 157 | 87.78 305 | 63.30 252 | 71.18 349 | 89.55 231 |
|
| YYNet1 | | | 65.03 344 | 62.91 349 | 71.38 346 | 75.85 374 | 56.60 322 | 69.12 387 | 74.66 374 | 57.28 364 | 54.12 392 | 77.87 369 | 45.85 324 | 74.48 391 | 49.95 351 | 61.52 379 | 83.05 358 |
|
| PMMVS2 | | | 40.82 378 | 38.86 382 | 46.69 392 | 53.84 414 | 16.45 423 | 48.61 409 | 49.92 412 | 37.49 402 | 31.67 407 | 60.97 400 | 8.14 418 | 56.42 412 | 28.42 403 | 30.72 409 | 67.19 397 |
|
| MDA-MVSNet_test_wron | | | 65.03 344 | 62.92 348 | 71.37 347 | 75.93 372 | 56.73 318 | 69.09 388 | 74.73 372 | 57.28 364 | 54.03 393 | 77.89 368 | 45.88 323 | 74.39 392 | 49.89 352 | 61.55 378 | 82.99 360 |
|
| tpmvs | | | 71.09 299 | 69.29 304 | 76.49 300 | 82.04 321 | 56.04 331 | 78.92 329 | 81.37 321 | 64.05 303 | 67.18 335 | 78.28 366 | 49.74 290 | 89.77 272 | 49.67 353 | 72.37 339 | 83.67 351 |
|
| PM-MVS | | | 66.41 339 | 64.14 341 | 73.20 334 | 73.92 383 | 56.45 323 | 78.97 328 | 64.96 400 | 63.88 307 | 64.72 357 | 80.24 348 | 19.84 404 | 83.44 342 | 66.24 227 | 64.52 373 | 79.71 380 |
|
| HQP_MVS | | | 83.64 84 | 83.14 88 | 85.14 83 | 90.08 108 | 68.71 116 | 91.25 52 | 92.44 76 | 79.12 23 | 78.92 149 | 91.00 128 | 60.42 194 | 95.38 74 | 78.71 108 | 86.32 160 | 91.33 158 |
|
| plane_prior7 | | | | | | 90.08 108 | 68.51 123 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 89.84 117 | 68.70 118 | | | | | | 60.42 194 | | | | |
|
| plane_prior5 | | | | | | | | | 92.44 76 | | | | | 95.38 74 | 78.71 108 | 86.32 160 | 91.33 158 |
|
| plane_prior4 | | | | | | | | | | | | 91.00 128 | | | | | |
|
| plane_prior3 | | | | | | | 68.60 121 | | | 78.44 31 | 78.92 149 | | | | | | |
|
| plane_prior2 | | | | | | | | 91.25 52 | | 79.12 23 | | | | | | | |
|
| plane_prior1 | | | | | | 89.90 116 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 68.71 116 | 90.38 70 | | 77.62 39 | | | | | | 86.16 164 | |
|
| PS-CasMVS | | | 78.01 208 | 78.09 181 | 77.77 286 | 87.71 204 | 54.39 351 | 88.02 145 | 91.22 121 | 77.50 46 | 73.26 269 | 88.64 180 | 60.73 186 | 88.41 298 | 61.88 267 | 73.88 328 | 90.53 187 |
|
| UniMVSNet_NR-MVSNet | | | 81.88 114 | 81.54 114 | 82.92 176 | 88.46 171 | 63.46 231 | 87.13 172 | 92.37 80 | 80.19 12 | 78.38 161 | 89.14 166 | 71.66 55 | 93.05 180 | 70.05 192 | 76.46 288 | 92.25 132 |
|
| PEN-MVS | | | 77.73 214 | 77.69 196 | 77.84 284 | 87.07 224 | 53.91 354 | 87.91 151 | 91.18 123 | 77.56 43 | 73.14 271 | 88.82 175 | 61.23 179 | 89.17 283 | 59.95 282 | 72.37 339 | 90.43 191 |
|
| TransMVSNet (Re) | | | 75.39 258 | 74.56 250 | 77.86 283 | 85.50 249 | 57.10 314 | 86.78 185 | 86.09 258 | 72.17 166 | 71.53 291 | 87.34 214 | 63.01 150 | 89.31 281 | 56.84 315 | 61.83 377 | 87.17 293 |
|
| DTE-MVSNet | | | 76.99 228 | 76.80 214 | 77.54 291 | 86.24 236 | 53.06 363 | 87.52 160 | 90.66 137 | 77.08 59 | 72.50 279 | 88.67 179 | 60.48 193 | 89.52 277 | 57.33 310 | 70.74 351 | 90.05 212 |
|
| DU-MVS | | | 81.12 130 | 80.52 129 | 82.90 177 | 87.80 199 | 63.46 231 | 87.02 176 | 91.87 102 | 79.01 26 | 78.38 161 | 89.07 168 | 65.02 129 | 93.05 180 | 70.05 192 | 76.46 288 | 92.20 135 |
|
| UniMVSNet (Re) | | | 81.60 122 | 81.11 119 | 83.09 167 | 88.38 175 | 64.41 212 | 87.60 158 | 93.02 45 | 78.42 32 | 78.56 157 | 88.16 195 | 69.78 77 | 93.26 163 | 69.58 199 | 76.49 287 | 91.60 148 |
|
| CP-MVSNet | | | 78.22 199 | 78.34 175 | 77.84 284 | 87.83 198 | 54.54 349 | 87.94 149 | 91.17 124 | 77.65 38 | 73.48 267 | 88.49 185 | 62.24 161 | 88.43 297 | 62.19 263 | 74.07 324 | 90.55 186 |
|
| WR-MVS_H | | | 78.51 194 | 78.49 170 | 78.56 272 | 88.02 189 | 56.38 326 | 88.43 129 | 92.67 66 | 77.14 56 | 73.89 262 | 87.55 210 | 66.25 116 | 89.24 282 | 58.92 293 | 73.55 331 | 90.06 211 |
|
| WR-MVS | | | 79.49 167 | 79.22 158 | 80.27 240 | 88.79 159 | 58.35 293 | 85.06 229 | 88.61 209 | 78.56 30 | 77.65 177 | 88.34 189 | 63.81 139 | 90.66 260 | 64.98 240 | 77.22 277 | 91.80 146 |
|
| NR-MVSNet | | | 80.23 154 | 79.38 151 | 82.78 185 | 87.80 199 | 63.34 234 | 86.31 199 | 91.09 128 | 79.01 26 | 72.17 284 | 89.07 168 | 67.20 106 | 92.81 189 | 66.08 231 | 75.65 301 | 92.20 135 |
|
| Baseline_NR-MVSNet | | | 78.15 203 | 78.33 176 | 77.61 289 | 85.79 243 | 56.21 330 | 86.78 185 | 85.76 261 | 73.60 140 | 77.93 173 | 87.57 208 | 65.02 129 | 88.99 286 | 67.14 223 | 75.33 312 | 87.63 281 |
|
| TranMVSNet+NR-MVSNet | | | 80.84 134 | 80.31 133 | 82.42 192 | 87.85 197 | 62.33 251 | 87.74 156 | 91.33 119 | 80.55 9 | 77.99 172 | 89.86 146 | 65.23 127 | 92.62 190 | 67.05 224 | 75.24 315 | 92.30 130 |
|
| TSAR-MVS + GP. | | | 85.71 57 | 85.33 63 | 86.84 50 | 91.34 81 | 72.50 36 | 89.07 108 | 87.28 235 | 76.41 76 | 85.80 54 | 90.22 142 | 74.15 31 | 95.37 77 | 81.82 83 | 91.88 83 | 92.65 118 |
|
| n2 | | | | | | | | | 0.00 428 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 428 | | | | | | | | |
|
| mPP-MVS | | | 86.67 41 | 86.32 43 | 87.72 30 | 94.41 22 | 73.55 13 | 92.74 20 | 92.22 87 | 76.87 64 | 82.81 104 | 94.25 37 | 66.44 113 | 96.24 44 | 82.88 73 | 94.28 58 | 93.38 86 |
|
| door-mid | | | | | | | | | 69.98 385 | | | | | | | | |
|
| XVG-OURS-SEG-HR | | | 80.81 136 | 79.76 143 | 83.96 141 | 85.60 247 | 68.78 111 | 83.54 265 | 90.50 142 | 70.66 195 | 76.71 199 | 91.66 100 | 60.69 188 | 91.26 244 | 76.94 126 | 81.58 228 | 91.83 144 |
|
| mvsmamba | | | 80.60 144 | 79.38 151 | 84.27 117 | 89.74 120 | 67.24 156 | 87.47 162 | 86.95 242 | 70.02 207 | 75.38 231 | 88.93 171 | 51.24 272 | 92.56 193 | 75.47 144 | 89.22 120 | 93.00 108 |
|
| MVSFormer | | | 82.85 101 | 82.05 107 | 85.24 81 | 87.35 213 | 70.21 80 | 90.50 64 | 90.38 145 | 68.55 244 | 81.32 119 | 89.47 158 | 61.68 167 | 93.46 156 | 78.98 105 | 90.26 105 | 92.05 141 |
|
| jason | | | 81.39 126 | 80.29 134 | 84.70 100 | 86.63 233 | 69.90 88 | 85.95 208 | 86.77 246 | 63.24 309 | 81.07 125 | 89.47 158 | 61.08 183 | 92.15 210 | 78.33 113 | 90.07 110 | 92.05 141 |
| jason: jason. |
| lupinMVS | | | 81.39 126 | 80.27 135 | 84.76 99 | 87.35 213 | 70.21 80 | 85.55 220 | 86.41 250 | 62.85 316 | 81.32 119 | 88.61 181 | 61.68 167 | 92.24 208 | 78.41 112 | 90.26 105 | 91.83 144 |
|
| test_djsdf | | | 80.30 153 | 79.32 154 | 83.27 158 | 83.98 280 | 65.37 192 | 90.50 64 | 90.38 145 | 68.55 244 | 76.19 212 | 88.70 177 | 56.44 222 | 93.46 156 | 78.98 105 | 80.14 247 | 90.97 171 |
|
| HPM-MVS_fast | | | 85.35 64 | 84.95 70 | 86.57 56 | 93.69 42 | 70.58 78 | 92.15 35 | 91.62 110 | 73.89 133 | 82.67 106 | 94.09 43 | 62.60 152 | 95.54 65 | 80.93 91 | 92.93 71 | 93.57 79 |
|
| K. test v3 | | | 71.19 297 | 68.51 309 | 79.21 261 | 83.04 302 | 57.78 305 | 84.35 250 | 76.91 361 | 72.90 158 | 62.99 367 | 82.86 321 | 39.27 362 | 91.09 252 | 61.65 270 | 52.66 394 | 88.75 259 |
|
| lessismore_v0 | | | | | 78.97 264 | 81.01 339 | 57.15 313 | | 65.99 396 | | 61.16 373 | 82.82 322 | 39.12 363 | 91.34 243 | 59.67 285 | 46.92 400 | 88.43 268 |
|
| SixPastTwentyTwo | | | 73.37 276 | 71.26 289 | 79.70 251 | 85.08 259 | 57.89 302 | 85.57 216 | 83.56 288 | 71.03 186 | 65.66 350 | 85.88 256 | 42.10 350 | 92.57 192 | 59.11 291 | 63.34 375 | 88.65 263 |
|
| OurMVSNet-221017-0 | | | 74.26 265 | 72.42 275 | 79.80 249 | 83.76 285 | 59.59 286 | 85.92 210 | 86.64 247 | 66.39 272 | 66.96 336 | 87.58 207 | 39.46 361 | 91.60 228 | 65.76 234 | 69.27 356 | 88.22 270 |
|
| HPM-MVS |  | | 87.11 33 | 86.98 34 | 87.50 38 | 93.88 39 | 72.16 45 | 92.19 33 | 93.33 31 | 76.07 86 | 83.81 90 | 93.95 54 | 69.77 78 | 96.01 53 | 85.15 44 | 94.66 47 | 94.32 43 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| XVG-OURS | | | 80.41 149 | 79.23 157 | 83.97 140 | 85.64 246 | 69.02 105 | 83.03 276 | 90.39 144 | 71.09 184 | 77.63 178 | 91.49 109 | 54.62 235 | 91.35 242 | 75.71 138 | 83.47 205 | 91.54 151 |
|
| XVG-ACMP-BASELINE | | | 76.11 246 | 74.27 255 | 81.62 205 | 83.20 296 | 64.67 205 | 83.60 263 | 89.75 166 | 69.75 217 | 71.85 287 | 87.09 224 | 32.78 381 | 92.11 211 | 69.99 194 | 80.43 243 | 88.09 273 |
|
| casdiffmvs_mvg |  | | 85.99 48 | 86.09 50 | 85.70 72 | 87.65 207 | 67.22 157 | 88.69 122 | 93.04 41 | 79.64 18 | 85.33 59 | 92.54 86 | 73.30 35 | 94.50 110 | 83.49 64 | 91.14 94 | 95.37 2 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| LPG-MVS_test | | | 82.08 110 | 81.27 116 | 84.50 104 | 89.23 142 | 68.76 112 | 90.22 73 | 91.94 98 | 75.37 98 | 76.64 201 | 91.51 107 | 54.29 236 | 94.91 93 | 78.44 110 | 83.78 194 | 89.83 222 |
|
| LGP-MVS_train | | | | | 84.50 104 | 89.23 142 | 68.76 112 | | 91.94 98 | 75.37 98 | 76.64 201 | 91.51 107 | 54.29 236 | 94.91 93 | 78.44 110 | 83.78 194 | 89.83 222 |
|
| baseline | | | 84.93 70 | 84.98 68 | 84.80 98 | 87.30 219 | 65.39 191 | 87.30 169 | 92.88 57 | 77.62 39 | 84.04 86 | 92.26 90 | 71.81 50 | 93.96 126 | 81.31 87 | 90.30 104 | 95.03 9 |
|
| test11 | | | | | | | | | 92.23 86 | | | | | | | | |
|
| door | | | | | | | | | 69.44 388 | | | | | | | | |
|
| EPNet_dtu | | | 75.46 255 | 74.86 246 | 77.23 295 | 82.57 314 | 54.60 348 | 86.89 180 | 83.09 298 | 71.64 170 | 66.25 348 | 85.86 257 | 55.99 223 | 88.04 302 | 54.92 324 | 86.55 157 | 89.05 244 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| CHOSEN 1792x2688 | | | 77.63 219 | 75.69 231 | 83.44 151 | 89.98 114 | 68.58 122 | 78.70 332 | 87.50 231 | 56.38 368 | 75.80 220 | 86.84 227 | 58.67 202 | 91.40 241 | 61.58 271 | 85.75 172 | 90.34 194 |
|
| EPNet | | | 83.72 82 | 82.92 94 | 86.14 63 | 84.22 274 | 69.48 94 | 91.05 56 | 85.27 265 | 81.30 6 | 76.83 195 | 91.65 101 | 66.09 118 | 95.56 63 | 76.00 136 | 93.85 62 | 93.38 86 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| HQP5-MVS | | | | | | | 66.98 161 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 89.33 135 | | 89.17 102 | | 76.41 76 | 77.23 187 | | | | | | |
|
| ACMP_Plane | | | | | | 89.33 135 | | 89.17 102 | | 76.41 76 | 77.23 187 | | | | | | |
|
| APD-MVS |  | | 87.44 25 | 87.52 25 | 87.19 42 | 94.24 32 | 72.39 39 | 91.86 40 | 92.83 60 | 73.01 156 | 88.58 24 | 94.52 23 | 73.36 34 | 96.49 38 | 84.26 57 | 95.01 37 | 92.70 114 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| BP-MVS | | | | | | | | | | | | | | | 77.47 120 | | |
|
| HQP4-MVS | | | | | | | | | | | 77.24 186 | | | 95.11 85 | | | 91.03 168 |
|
| HQP3-MVS | | | | | | | | | 92.19 89 | | | | | | | 85.99 168 | |
|
| HQP2-MVS | | | | | | | | | | | | | 60.17 197 | | | | |
|
| CNVR-MVS | | | 88.93 10 | 89.13 10 | 88.33 8 | 94.77 12 | 73.82 8 | 90.51 62 | 93.00 46 | 80.90 7 | 88.06 29 | 94.06 45 | 76.43 16 | 96.84 21 | 88.48 24 | 95.99 18 | 94.34 42 |
|
| NCCC | | | 88.06 14 | 88.01 18 | 88.24 11 | 94.41 22 | 73.62 11 | 91.22 54 | 92.83 60 | 81.50 5 | 85.79 55 | 93.47 63 | 73.02 40 | 97.00 18 | 84.90 46 | 94.94 40 | 94.10 50 |
|
| 114514_t | | | 80.68 142 | 79.51 148 | 84.20 120 | 94.09 38 | 67.27 154 | 89.64 87 | 91.11 127 | 58.75 353 | 74.08 261 | 90.72 132 | 58.10 206 | 95.04 90 | 69.70 197 | 89.42 118 | 90.30 197 |
|
| CP-MVS | | | 87.11 33 | 86.92 36 | 87.68 34 | 94.20 34 | 73.86 7 | 93.98 3 | 92.82 63 | 76.62 73 | 83.68 91 | 94.46 27 | 67.93 98 | 95.95 57 | 84.20 60 | 94.39 55 | 93.23 92 |
|
| DSMNet-mixed | | | 57.77 359 | 56.90 361 | 60.38 379 | 67.70 400 | 35.61 410 | 69.18 385 | 53.97 411 | 32.30 409 | 57.49 386 | 79.88 352 | 40.39 359 | 68.57 403 | 38.78 392 | 72.37 339 | 76.97 385 |
|
| tpm2 | | | 73.26 279 | 71.46 284 | 78.63 268 | 83.34 292 | 56.71 320 | 80.65 304 | 80.40 333 | 56.63 367 | 73.55 266 | 82.02 334 | 51.80 266 | 91.24 245 | 56.35 319 | 78.42 265 | 87.95 274 |
|
| NP-MVS | | | | | | 89.62 121 | 68.32 126 | | | | | 90.24 140 | | | | | |
|
| EG-PatchMatch MVS | | | 74.04 268 | 71.82 280 | 80.71 231 | 84.92 261 | 67.42 148 | 85.86 212 | 88.08 216 | 66.04 276 | 64.22 360 | 83.85 299 | 35.10 377 | 92.56 193 | 57.44 308 | 80.83 236 | 82.16 368 |
|
| tpm cat1 | | | 70.57 305 | 68.31 311 | 77.35 293 | 82.41 318 | 57.95 301 | 78.08 341 | 80.22 336 | 52.04 380 | 68.54 323 | 77.66 371 | 52.00 261 | 87.84 304 | 51.77 338 | 72.07 344 | 86.25 311 |
|
| SteuartSystems-ACMMP | | | 88.72 11 | 88.86 11 | 88.32 9 | 92.14 72 | 72.96 25 | 93.73 5 | 93.67 20 | 80.19 12 | 88.10 28 | 94.80 19 | 73.76 33 | 97.11 15 | 87.51 31 | 95.82 21 | 94.90 13 |
| Skip Steuart: Steuart Systems R&D Blog. |
| CostFormer | | | 75.24 259 | 73.90 259 | 79.27 259 | 82.65 313 | 58.27 295 | 80.80 298 | 82.73 307 | 61.57 329 | 75.33 237 | 83.13 315 | 55.52 224 | 91.07 253 | 64.98 240 | 78.34 267 | 88.45 267 |
|
| CR-MVSNet | | | 73.37 276 | 71.27 288 | 79.67 253 | 81.32 336 | 65.19 194 | 75.92 353 | 80.30 334 | 59.92 341 | 72.73 276 | 81.19 337 | 52.50 250 | 86.69 311 | 59.84 283 | 77.71 272 | 87.11 297 |
|
| JIA-IIPM | | | 66.32 340 | 62.82 351 | 76.82 298 | 77.09 370 | 61.72 261 | 65.34 399 | 75.38 367 | 58.04 358 | 64.51 358 | 62.32 398 | 42.05 351 | 86.51 314 | 51.45 341 | 69.22 357 | 82.21 366 |
|
| Patchmtry | | | 70.74 303 | 69.16 306 | 75.49 311 | 80.72 340 | 54.07 353 | 74.94 364 | 80.30 334 | 58.34 354 | 70.01 305 | 81.19 337 | 52.50 250 | 86.54 313 | 53.37 332 | 71.09 350 | 85.87 322 |
|
| PatchT | | | 68.46 326 | 67.85 318 | 70.29 355 | 80.70 341 | 43.93 399 | 72.47 371 | 74.88 370 | 60.15 339 | 70.55 296 | 76.57 375 | 49.94 287 | 81.59 351 | 50.58 344 | 74.83 319 | 85.34 328 |
|
| tpmrst | | | 72.39 287 | 72.13 278 | 73.18 335 | 80.54 343 | 49.91 382 | 79.91 316 | 79.08 346 | 63.11 311 | 71.69 289 | 79.95 351 | 55.32 225 | 82.77 346 | 65.66 235 | 73.89 327 | 86.87 301 |
|
| BH-w/o | | | 78.21 200 | 77.33 204 | 80.84 228 | 88.81 157 | 65.13 196 | 84.87 233 | 87.85 224 | 69.75 217 | 74.52 256 | 84.74 284 | 61.34 176 | 93.11 177 | 58.24 302 | 85.84 170 | 84.27 342 |
|
| tpm | | | 72.37 289 | 71.71 281 | 74.35 324 | 82.19 320 | 52.00 365 | 79.22 323 | 77.29 358 | 64.56 294 | 72.95 274 | 83.68 307 | 51.35 270 | 83.26 344 | 58.33 301 | 75.80 299 | 87.81 278 |
|
| DELS-MVS | | | 85.41 63 | 85.30 65 | 85.77 70 | 88.49 169 | 67.93 136 | 85.52 224 | 93.44 27 | 78.70 29 | 83.63 94 | 89.03 170 | 74.57 24 | 95.71 61 | 80.26 99 | 94.04 61 | 93.66 70 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| BH-untuned | | | 79.47 168 | 78.60 168 | 82.05 197 | 89.19 144 | 65.91 178 | 86.07 206 | 88.52 210 | 72.18 165 | 75.42 229 | 87.69 205 | 61.15 181 | 93.54 151 | 60.38 279 | 86.83 153 | 86.70 306 |
|
| RPMNet | | | 73.51 274 | 70.49 296 | 82.58 190 | 81.32 336 | 65.19 194 | 75.92 353 | 92.27 83 | 57.60 361 | 72.73 276 | 76.45 376 | 52.30 253 | 95.43 70 | 48.14 363 | 77.71 272 | 87.11 297 |
|
| MVSTER | | | 79.01 182 | 77.88 187 | 82.38 193 | 83.07 300 | 64.80 203 | 84.08 256 | 88.95 197 | 69.01 237 | 78.69 152 | 87.17 222 | 54.70 233 | 92.43 198 | 74.69 147 | 80.57 241 | 89.89 220 |
|
| CPTT-MVS | | | 83.73 81 | 83.33 87 | 84.92 93 | 93.28 49 | 70.86 72 | 92.09 36 | 90.38 145 | 68.75 241 | 79.57 140 | 92.83 79 | 60.60 192 | 93.04 182 | 80.92 92 | 91.56 89 | 90.86 174 |
|
| GBi-Net | | | 78.40 195 | 77.40 201 | 81.40 212 | 87.60 208 | 63.01 241 | 88.39 131 | 89.28 179 | 71.63 171 | 75.34 233 | 87.28 215 | 54.80 229 | 91.11 247 | 62.72 255 | 79.57 251 | 90.09 207 |
|
| PVSNet_Blended_VisFu | | | 82.62 103 | 81.83 112 | 84.96 90 | 90.80 94 | 69.76 90 | 88.74 120 | 91.70 109 | 69.39 222 | 78.96 147 | 88.46 186 | 65.47 125 | 94.87 98 | 74.42 150 | 88.57 131 | 90.24 199 |
|
| PVSNet_BlendedMVS | | | 80.60 144 | 80.02 137 | 82.36 194 | 88.85 153 | 65.40 189 | 86.16 204 | 92.00 94 | 69.34 224 | 78.11 168 | 86.09 254 | 66.02 120 | 94.27 116 | 71.52 176 | 82.06 223 | 87.39 287 |
|
| UnsupCasMVSNet_eth | | | 67.33 332 | 65.99 336 | 71.37 347 | 73.48 387 | 51.47 373 | 75.16 360 | 85.19 266 | 65.20 286 | 60.78 374 | 80.93 344 | 42.35 346 | 77.20 371 | 57.12 311 | 53.69 393 | 85.44 327 |
|
| UnsupCasMVSNet_bld | | | 63.70 349 | 61.53 355 | 70.21 356 | 73.69 385 | 51.39 374 | 72.82 370 | 81.89 314 | 55.63 371 | 57.81 385 | 71.80 390 | 38.67 365 | 78.61 364 | 49.26 355 | 52.21 395 | 80.63 376 |
|
| PVSNet_Blended | | | 80.98 131 | 80.34 132 | 82.90 177 | 88.85 153 | 65.40 189 | 84.43 247 | 92.00 94 | 67.62 255 | 78.11 168 | 85.05 278 | 66.02 120 | 94.27 116 | 71.52 176 | 89.50 116 | 89.01 246 |
|
| FMVSNet5 | | | 69.50 315 | 67.96 316 | 74.15 326 | 82.97 306 | 55.35 341 | 80.01 314 | 82.12 312 | 62.56 321 | 63.02 365 | 81.53 336 | 36.92 372 | 81.92 350 | 48.42 358 | 74.06 325 | 85.17 333 |
|
| test1 | | | 78.40 195 | 77.40 201 | 81.40 212 | 87.60 208 | 63.01 241 | 88.39 131 | 89.28 179 | 71.63 171 | 75.34 233 | 87.28 215 | 54.80 229 | 91.11 247 | 62.72 255 | 79.57 251 | 90.09 207 |
|
| new_pmnet | | | 50.91 370 | 50.29 370 | 52.78 390 | 68.58 399 | 34.94 412 | 63.71 401 | 56.63 410 | 39.73 399 | 44.95 401 | 65.47 396 | 21.93 401 | 58.48 410 | 34.98 397 | 56.62 386 | 64.92 398 |
|
| FMVSNet3 | | | 77.88 211 | 76.85 213 | 80.97 226 | 86.84 227 | 62.36 250 | 86.52 193 | 88.77 201 | 71.13 182 | 75.34 233 | 86.66 237 | 54.07 239 | 91.10 250 | 62.72 255 | 79.57 251 | 89.45 233 |
|
| dp | | | 66.80 335 | 65.43 337 | 70.90 354 | 79.74 356 | 48.82 385 | 75.12 362 | 74.77 371 | 59.61 343 | 64.08 361 | 77.23 372 | 42.89 343 | 80.72 357 | 48.86 357 | 66.58 366 | 83.16 356 |
|
| FMVSNet2 | | | 78.20 201 | 77.21 205 | 81.20 218 | 87.60 208 | 62.89 247 | 87.47 162 | 89.02 192 | 71.63 171 | 75.29 239 | 87.28 215 | 54.80 229 | 91.10 250 | 62.38 260 | 79.38 255 | 89.61 229 |
|
| FMVSNet1 | | | 77.44 221 | 76.12 228 | 81.40 212 | 86.81 228 | 63.01 241 | 88.39 131 | 89.28 179 | 70.49 198 | 74.39 258 | 87.28 215 | 49.06 300 | 91.11 247 | 60.91 276 | 78.52 262 | 90.09 207 |
|
| N_pmnet | | | 52.79 367 | 53.26 365 | 51.40 391 | 78.99 363 | 7.68 425 | 69.52 383 | 3.89 424 | 51.63 383 | 57.01 387 | 74.98 383 | 40.83 356 | 65.96 406 | 37.78 393 | 64.67 372 | 80.56 378 |
|
| cascas | | | 76.72 234 | 74.64 248 | 82.99 173 | 85.78 244 | 65.88 179 | 82.33 280 | 89.21 184 | 60.85 334 | 72.74 275 | 81.02 340 | 47.28 309 | 93.75 143 | 67.48 218 | 85.02 175 | 89.34 236 |
|
| BH-RMVSNet | | | 79.61 163 | 78.44 172 | 83.14 165 | 89.38 134 | 65.93 177 | 84.95 232 | 87.15 239 | 73.56 141 | 78.19 166 | 89.79 148 | 56.67 220 | 93.36 160 | 59.53 287 | 86.74 154 | 90.13 203 |
|
| UGNet | | | 80.83 135 | 79.59 147 | 84.54 103 | 88.04 188 | 68.09 132 | 89.42 95 | 88.16 213 | 76.95 61 | 76.22 211 | 89.46 160 | 49.30 296 | 93.94 129 | 68.48 210 | 90.31 103 | 91.60 148 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| WTY-MVS | | | 75.65 252 | 75.68 232 | 75.57 308 | 86.40 235 | 56.82 317 | 77.92 344 | 82.40 309 | 65.10 287 | 76.18 213 | 87.72 203 | 63.13 149 | 80.90 356 | 60.31 280 | 81.96 224 | 89.00 248 |
|
| XXY-MVS | | | 75.41 257 | 75.56 235 | 74.96 317 | 83.59 287 | 57.82 304 | 80.59 305 | 83.87 284 | 66.54 271 | 74.93 249 | 88.31 190 | 63.24 143 | 80.09 359 | 62.16 264 | 76.85 283 | 86.97 300 |
|
| EC-MVSNet | | | 86.01 47 | 86.38 42 | 84.91 94 | 89.31 138 | 66.27 171 | 92.32 30 | 93.63 21 | 79.37 20 | 84.17 83 | 91.88 96 | 69.04 88 | 95.43 70 | 83.93 62 | 93.77 63 | 93.01 107 |
|
| sss | | | 73.60 273 | 73.64 263 | 73.51 331 | 82.80 308 | 55.01 345 | 76.12 351 | 81.69 317 | 62.47 322 | 74.68 253 | 85.85 258 | 57.32 215 | 78.11 367 | 60.86 277 | 80.93 234 | 87.39 287 |
|
| Test_1112_low_res | | | 76.40 242 | 75.44 237 | 79.27 259 | 89.28 140 | 58.09 296 | 81.69 287 | 87.07 240 | 59.53 345 | 72.48 280 | 86.67 236 | 61.30 177 | 89.33 280 | 60.81 278 | 80.15 246 | 90.41 192 |
|
| 1112_ss | | | 77.40 223 | 76.43 224 | 80.32 239 | 89.11 150 | 60.41 277 | 83.65 260 | 87.72 227 | 62.13 326 | 73.05 272 | 86.72 231 | 62.58 154 | 89.97 269 | 62.11 266 | 80.80 237 | 90.59 185 |
|
| ab-mvs-re | | | 7.23 387 | 9.64 390 | 0.00 404 | 0.00 427 | 0.00 429 | 0.00 415 | 0.00 428 | 0.00 422 | 0.00 423 | 86.72 231 | 0.00 427 | 0.00 423 | 0.00 422 | 0.00 421 | 0.00 419 |
|
| ab-mvs | | | 79.51 166 | 78.97 163 | 81.14 220 | 88.46 171 | 60.91 268 | 83.84 257 | 89.24 183 | 70.36 199 | 79.03 146 | 88.87 174 | 63.23 144 | 90.21 265 | 65.12 238 | 82.57 218 | 92.28 131 |
|
| TR-MVS | | | 77.44 221 | 76.18 227 | 81.20 218 | 88.24 179 | 63.24 236 | 84.61 240 | 86.40 251 | 67.55 256 | 77.81 174 | 86.48 245 | 54.10 238 | 93.15 174 | 57.75 306 | 82.72 216 | 87.20 292 |
|
| MDTV_nov1_ep13_2view | | | | | | | 37.79 409 | 75.16 360 | | 55.10 372 | 66.53 343 | | 49.34 295 | | 53.98 328 | | 87.94 275 |
|
| MDTV_nov1_ep13 | | | | 69.97 302 | | 83.18 297 | 53.48 357 | 77.10 349 | 80.18 337 | 60.45 335 | 69.33 316 | 80.44 346 | 48.89 303 | 86.90 310 | 51.60 340 | 78.51 263 | |
|
| MIMVSNet1 | | | 68.58 323 | 66.78 333 | 73.98 328 | 80.07 349 | 51.82 369 | 80.77 300 | 84.37 274 | 64.40 296 | 59.75 379 | 82.16 332 | 36.47 373 | 83.63 340 | 42.73 383 | 70.33 352 | 86.48 309 |
|
| MIMVSNet | | | 70.69 304 | 69.30 303 | 74.88 318 | 84.52 269 | 56.35 328 | 75.87 355 | 79.42 342 | 64.59 293 | 67.76 326 | 82.41 326 | 41.10 354 | 81.54 352 | 46.64 370 | 81.34 229 | 86.75 305 |
|
| IterMVS-LS | | | 80.06 157 | 79.38 151 | 82.11 196 | 85.89 242 | 63.20 238 | 86.79 184 | 89.34 177 | 74.19 126 | 75.45 228 | 86.72 231 | 66.62 109 | 92.39 200 | 72.58 170 | 76.86 282 | 90.75 178 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| CDS-MVSNet | | | 79.07 181 | 77.70 195 | 83.17 164 | 87.60 208 | 68.23 129 | 84.40 249 | 86.20 255 | 67.49 257 | 76.36 208 | 86.54 243 | 61.54 170 | 90.79 257 | 61.86 268 | 87.33 145 | 90.49 189 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| ACMMP++_ref | | | | | | | | | | | | | | | | 81.95 225 | |
|
| IterMVS | | | 74.29 264 | 72.94 269 | 78.35 277 | 81.53 330 | 63.49 230 | 81.58 288 | 82.49 308 | 68.06 252 | 69.99 307 | 83.69 306 | 51.66 269 | 85.54 324 | 65.85 233 | 71.64 346 | 86.01 318 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| DP-MVS Recon | | | 83.11 98 | 82.09 106 | 86.15 61 | 94.44 19 | 70.92 71 | 88.79 116 | 92.20 88 | 70.53 197 | 79.17 145 | 91.03 126 | 64.12 135 | 96.03 50 | 68.39 212 | 90.14 107 | 91.50 153 |
|
| MVS_111021_LR | | | 82.61 104 | 82.11 104 | 84.11 122 | 88.82 156 | 71.58 55 | 85.15 227 | 86.16 256 | 74.69 115 | 80.47 130 | 91.04 124 | 62.29 159 | 90.55 261 | 80.33 98 | 90.08 109 | 90.20 200 |
|
| DP-MVS | | | 76.78 233 | 74.57 249 | 83.42 152 | 93.29 48 | 69.46 97 | 88.55 127 | 83.70 285 | 63.98 305 | 70.20 301 | 88.89 173 | 54.01 240 | 94.80 100 | 46.66 368 | 81.88 226 | 86.01 318 |
|
| ACMMP++ | | | | | | | | | | | | | | | | 81.25 230 | |
|
| HQP-MVS | | | 82.61 104 | 82.02 108 | 84.37 109 | 89.33 135 | 66.98 161 | 89.17 102 | 92.19 89 | 76.41 76 | 77.23 187 | 90.23 141 | 60.17 197 | 95.11 85 | 77.47 120 | 85.99 168 | 91.03 168 |
|
| QAPM | | | 80.88 133 | 79.50 149 | 85.03 87 | 88.01 191 | 68.97 107 | 91.59 43 | 92.00 94 | 66.63 270 | 75.15 243 | 92.16 91 | 57.70 210 | 95.45 68 | 63.52 248 | 88.76 128 | 90.66 181 |
|
| Vis-MVSNet |  | | 83.46 89 | 82.80 96 | 85.43 77 | 90.25 104 | 68.74 114 | 90.30 72 | 90.13 156 | 76.33 82 | 80.87 127 | 92.89 77 | 61.00 184 | 94.20 120 | 72.45 173 | 90.97 95 | 93.35 88 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| MVS-HIRNet | | | 59.14 357 | 57.67 359 | 63.57 375 | 81.65 326 | 43.50 400 | 71.73 373 | 65.06 399 | 39.59 400 | 51.43 395 | 57.73 403 | 38.34 367 | 82.58 347 | 39.53 389 | 73.95 326 | 64.62 399 |
|
| IS-MVSNet | | | 83.15 95 | 82.81 95 | 84.18 121 | 89.94 115 | 63.30 235 | 91.59 43 | 88.46 211 | 79.04 25 | 79.49 141 | 92.16 91 | 65.10 128 | 94.28 115 | 67.71 215 | 91.86 86 | 94.95 10 |
|
| HyFIR lowres test | | | 77.53 220 | 75.40 239 | 83.94 142 | 89.59 122 | 66.62 165 | 80.36 309 | 88.64 208 | 56.29 369 | 76.45 205 | 85.17 274 | 57.64 211 | 93.28 162 | 61.34 274 | 83.10 211 | 91.91 143 |
|
| EPMVS | | | 69.02 319 | 68.16 313 | 71.59 345 | 79.61 357 | 49.80 384 | 77.40 346 | 66.93 394 | 62.82 318 | 70.01 305 | 79.05 358 | 45.79 325 | 77.86 369 | 56.58 317 | 75.26 314 | 87.13 296 |
|
| PAPM_NR | | | 83.02 99 | 82.41 99 | 84.82 96 | 92.47 70 | 66.37 169 | 87.93 150 | 91.80 105 | 73.82 134 | 77.32 184 | 90.66 133 | 67.90 99 | 94.90 95 | 70.37 189 | 89.48 117 | 93.19 96 |
|
| TAMVS | | | 78.89 186 | 77.51 200 | 83.03 171 | 87.80 199 | 67.79 139 | 84.72 236 | 85.05 268 | 67.63 254 | 76.75 198 | 87.70 204 | 62.25 160 | 90.82 256 | 58.53 298 | 87.13 148 | 90.49 189 |
|
| PAPR | | | 81.66 121 | 80.89 124 | 83.99 139 | 90.27 103 | 64.00 218 | 86.76 187 | 91.77 108 | 68.84 240 | 77.13 193 | 89.50 156 | 67.63 101 | 94.88 97 | 67.55 217 | 88.52 133 | 93.09 100 |
|
| RPSCF | | | 73.23 280 | 71.46 284 | 78.54 273 | 82.50 315 | 59.85 282 | 82.18 282 | 82.84 306 | 58.96 350 | 71.15 295 | 89.41 164 | 45.48 331 | 84.77 333 | 58.82 295 | 71.83 345 | 91.02 170 |
|
| Vis-MVSNet (Re-imp) | | | 78.36 197 | 78.45 171 | 78.07 282 | 88.64 165 | 51.78 370 | 86.70 188 | 79.63 341 | 74.14 128 | 75.11 244 | 90.83 131 | 61.29 178 | 89.75 273 | 58.10 303 | 91.60 87 | 92.69 116 |
|
| test_0402 | | | 72.79 286 | 70.44 297 | 79.84 248 | 88.13 183 | 65.99 176 | 85.93 209 | 84.29 277 | 65.57 282 | 67.40 333 | 85.49 266 | 46.92 312 | 92.61 191 | 35.88 396 | 74.38 323 | 80.94 374 |
|
| MVS_111021_HR | | | 85.14 66 | 84.75 71 | 86.32 58 | 91.65 79 | 72.70 30 | 85.98 207 | 90.33 149 | 76.11 85 | 82.08 109 | 91.61 105 | 71.36 59 | 94.17 122 | 81.02 90 | 92.58 75 | 92.08 140 |
|
| CSCG | | | 86.41 45 | 86.19 46 | 87.07 45 | 92.91 61 | 72.48 37 | 90.81 58 | 93.56 24 | 73.95 130 | 83.16 98 | 91.07 123 | 75.94 18 | 95.19 80 | 79.94 101 | 94.38 56 | 93.55 81 |
|
| PatchMatch-RL | | | 72.38 288 | 70.90 292 | 76.80 299 | 88.60 166 | 67.38 150 | 79.53 318 | 76.17 366 | 62.75 319 | 69.36 315 | 82.00 335 | 45.51 329 | 84.89 332 | 53.62 330 | 80.58 240 | 78.12 383 |
|
| API-MVS | | | 81.99 113 | 81.23 117 | 84.26 119 | 90.94 90 | 70.18 85 | 91.10 55 | 89.32 178 | 71.51 176 | 78.66 154 | 88.28 191 | 65.26 126 | 95.10 88 | 64.74 242 | 91.23 93 | 87.51 285 |
|
| Test By Simon | | | | | | | | | | | | | 64.33 133 | | | | |
|
| TDRefinement | | | 67.49 330 | 64.34 340 | 76.92 297 | 73.47 388 | 61.07 266 | 84.86 234 | 82.98 302 | 59.77 342 | 58.30 383 | 85.13 275 | 26.06 392 | 87.89 303 | 47.92 365 | 60.59 382 | 81.81 370 |
|
| USDC | | | 70.33 308 | 68.37 310 | 76.21 302 | 80.60 342 | 56.23 329 | 79.19 324 | 86.49 249 | 60.89 333 | 61.29 372 | 85.47 267 | 31.78 384 | 89.47 279 | 53.37 332 | 76.21 296 | 82.94 361 |
|
| EPP-MVSNet | | | 83.40 91 | 83.02 91 | 84.57 102 | 90.13 106 | 64.47 210 | 92.32 30 | 90.73 136 | 74.45 122 | 79.35 143 | 91.10 121 | 69.05 87 | 95.12 83 | 72.78 168 | 87.22 147 | 94.13 49 |
|
| PMMVS | | | 69.34 317 | 68.67 308 | 71.35 349 | 75.67 375 | 62.03 255 | 75.17 359 | 73.46 376 | 50.00 386 | 68.68 320 | 79.05 358 | 52.07 260 | 78.13 366 | 61.16 275 | 82.77 214 | 73.90 390 |
|
| PAPM | | | 77.68 218 | 76.40 225 | 81.51 208 | 87.29 220 | 61.85 258 | 83.78 258 | 89.59 170 | 64.74 292 | 71.23 293 | 88.70 177 | 62.59 153 | 93.66 146 | 52.66 335 | 87.03 150 | 89.01 246 |
|
| ACMMP |  | | 85.89 54 | 85.39 61 | 87.38 39 | 93.59 45 | 72.63 33 | 92.74 20 | 93.18 39 | 76.78 67 | 80.73 128 | 93.82 56 | 64.33 133 | 96.29 42 | 82.67 79 | 90.69 99 | 93.23 92 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| CNLPA | | | 78.08 204 | 76.79 215 | 81.97 200 | 90.40 102 | 71.07 65 | 87.59 159 | 84.55 273 | 66.03 277 | 72.38 282 | 89.64 152 | 57.56 212 | 86.04 319 | 59.61 286 | 83.35 207 | 88.79 257 |
|
| PatchmatchNet |  | | 73.12 281 | 71.33 287 | 78.49 276 | 83.18 297 | 60.85 269 | 79.63 317 | 78.57 348 | 64.13 299 | 71.73 288 | 79.81 354 | 51.20 273 | 85.97 320 | 57.40 309 | 76.36 295 | 88.66 262 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| PHI-MVS | | | 86.43 43 | 86.17 47 | 87.24 41 | 90.88 92 | 70.96 68 | 92.27 32 | 94.07 9 | 72.45 160 | 85.22 61 | 91.90 95 | 69.47 80 | 96.42 40 | 83.28 67 | 95.94 19 | 94.35 41 |
|
| F-COLMAP | | | 76.38 243 | 74.33 254 | 82.50 191 | 89.28 140 | 66.95 164 | 88.41 130 | 89.03 191 | 64.05 303 | 66.83 338 | 88.61 181 | 46.78 313 | 92.89 185 | 57.48 307 | 78.55 261 | 87.67 280 |
|
| ANet_high | | | 50.57 371 | 46.10 375 | 63.99 374 | 48.67 419 | 39.13 408 | 70.99 378 | 80.85 324 | 61.39 331 | 31.18 408 | 57.70 404 | 17.02 407 | 73.65 395 | 31.22 401 | 15.89 416 | 79.18 381 |
|
| wuyk23d | | | 16.82 386 | 15.94 389 | 19.46 400 | 58.74 409 | 31.45 413 | 39.22 410 | 3.74 425 | 6.84 416 | 6.04 419 | 2.70 419 | 1.27 424 | 24.29 419 | 10.54 419 | 14.40 418 | 2.63 416 |
|
| OMC-MVS | | | 82.69 102 | 81.97 110 | 84.85 95 | 88.75 161 | 67.42 148 | 87.98 146 | 90.87 133 | 74.92 109 | 79.72 138 | 91.65 101 | 62.19 162 | 93.96 126 | 75.26 145 | 86.42 159 | 93.16 97 |
|
| MG-MVS | | | 83.41 90 | 83.45 83 | 83.28 157 | 92.74 65 | 62.28 253 | 88.17 141 | 89.50 173 | 75.22 100 | 81.49 118 | 92.74 85 | 66.75 108 | 95.11 85 | 72.85 167 | 91.58 88 | 92.45 126 |
|
| AdaColmap |  | | 80.58 147 | 79.42 150 | 84.06 131 | 93.09 57 | 68.91 108 | 89.36 98 | 88.97 196 | 69.27 225 | 75.70 221 | 89.69 150 | 57.20 217 | 95.77 59 | 63.06 253 | 88.41 135 | 87.50 286 |
|
| uanet | | | 0.00 391 | 0.00 394 | 0.00 404 | 0.00 427 | 0.00 429 | 0.00 415 | 0.00 428 | 0.00 422 | 0.00 423 | 0.00 422 | 0.00 427 | 0.00 423 | 0.00 422 | 0.00 421 | 0.00 419 |
|
| ITE_SJBPF | | | | | 78.22 278 | 81.77 325 | 60.57 273 | | 83.30 292 | 69.25 227 | 67.54 329 | 87.20 220 | 36.33 374 | 87.28 309 | 54.34 327 | 74.62 321 | 86.80 303 |
|
| DeepMVS_CX |  | | | | 27.40 399 | 40.17 422 | 26.90 416 | | 24.59 423 | 17.44 415 | 23.95 413 | 48.61 410 | 9.77 414 | 26.48 418 | 18.06 411 | 24.47 412 | 28.83 412 |
|
| TinyColmap | | | 67.30 333 | 64.81 338 | 74.76 320 | 81.92 324 | 56.68 321 | 80.29 311 | 81.49 319 | 60.33 336 | 56.27 390 | 83.22 312 | 24.77 396 | 87.66 307 | 45.52 376 | 69.47 355 | 79.95 379 |
|
| MAR-MVS | | | 81.84 115 | 80.70 125 | 85.27 80 | 91.32 82 | 71.53 56 | 89.82 79 | 90.92 130 | 69.77 216 | 78.50 158 | 86.21 250 | 62.36 158 | 94.52 109 | 65.36 236 | 92.05 82 | 89.77 225 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| LF4IMVS | | | 64.02 348 | 62.19 352 | 69.50 358 | 70.90 396 | 53.29 361 | 76.13 350 | 77.18 359 | 52.65 379 | 58.59 381 | 80.98 341 | 23.55 399 | 76.52 376 | 53.06 334 | 66.66 365 | 78.68 382 |
|
| MSDG | | | 73.36 278 | 70.99 291 | 80.49 235 | 84.51 270 | 65.80 181 | 80.71 303 | 86.13 257 | 65.70 280 | 65.46 351 | 83.74 303 | 44.60 333 | 90.91 255 | 51.13 343 | 76.89 281 | 84.74 338 |
|
| LS3D | | | 76.95 230 | 74.82 247 | 83.37 155 | 90.45 100 | 67.36 151 | 89.15 106 | 86.94 243 | 61.87 328 | 69.52 313 | 90.61 134 | 51.71 268 | 94.53 108 | 46.38 371 | 86.71 155 | 88.21 271 |
|
| CLD-MVS | | | 82.31 107 | 81.65 113 | 84.29 114 | 88.47 170 | 67.73 140 | 85.81 215 | 92.35 81 | 75.78 90 | 78.33 163 | 86.58 241 | 64.01 136 | 94.35 113 | 76.05 135 | 87.48 144 | 90.79 175 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| FPMVS | | | 53.68 365 | 51.64 367 | 59.81 380 | 65.08 404 | 51.03 376 | 69.48 384 | 69.58 387 | 41.46 397 | 40.67 404 | 72.32 389 | 16.46 408 | 70.00 401 | 24.24 408 | 65.42 370 | 58.40 404 |
|
| Gipuma |  | | 45.18 376 | 41.86 379 | 55.16 388 | 77.03 371 | 51.52 372 | 32.50 412 | 80.52 329 | 32.46 408 | 27.12 411 | 35.02 412 | 9.52 415 | 75.50 385 | 22.31 409 | 60.21 383 | 38.45 411 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |