This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 9989.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 27
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 9694.23 3572.13 4597.09 1684.83 4595.37 3293.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7084.22 7493.36 6371.44 5496.76 2580.82 8595.33 3494.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+77.84 485.48 5484.47 6988.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19593.37 6260.40 18896.75 2677.20 11793.73 6295.29 5
3Dnovator76.31 583.38 8582.31 9586.59 5287.94 18372.94 2890.64 5992.14 8477.21 5275.47 22192.83 7658.56 19594.72 9973.24 15992.71 6992.13 130
ACMP74.13 681.51 11880.57 12084.36 10689.42 12368.69 11589.97 7491.50 11074.46 11475.04 24190.41 13053.82 23394.54 10477.56 11382.91 20489.86 215
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PCF-MVS73.52 780.38 14378.84 15985.01 8287.71 19468.99 10283.65 25591.46 11163.00 30377.77 17190.28 13166.10 10995.09 8461.40 26588.22 12990.94 166
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ACMM73.20 880.78 13479.84 13583.58 14389.31 13168.37 12189.99 7391.60 10470.28 19677.25 18089.66 14453.37 23893.53 14974.24 14882.85 20588.85 249
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TAPA-MVS73.13 979.15 17377.94 17882.79 17989.59 11662.99 24188.16 13991.51 10765.77 27277.14 18791.09 11560.91 17793.21 16350.26 34087.05 14092.17 128
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OpenMVScopyleft72.83 1079.77 15678.33 17184.09 12185.17 24569.91 8490.57 6090.97 12166.70 25772.17 27591.91 9154.70 22493.96 12461.81 26290.95 9188.41 262
PLCcopyleft70.83 1178.05 20176.37 22083.08 16391.88 7467.80 13488.19 13789.46 16564.33 28969.87 30088.38 18353.66 23493.58 14458.86 28682.73 20787.86 269
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HY-MVS69.67 1277.95 20477.15 20080.36 23387.57 20360.21 27583.37 26287.78 21966.11 26775.37 22787.06 22163.27 13490.48 25761.38 26682.43 21190.40 187
LTVRE_ROB69.57 1376.25 23774.54 24481.41 20688.60 15964.38 21079.24 31689.12 18270.76 18569.79 30287.86 19749.09 28993.20 16656.21 31180.16 23886.65 299
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH+68.96 1476.01 24174.01 24982.03 19388.60 15965.31 19088.86 11087.55 22270.25 19867.75 31787.47 20841.27 34493.19 16858.37 29175.94 29087.60 274
IB-MVS68.01 1575.85 24373.36 25883.31 15184.76 25566.03 16883.38 26185.06 25970.21 19969.40 30481.05 32745.76 31694.66 10165.10 23375.49 29689.25 233
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ACMH67.68 1675.89 24273.93 25181.77 19888.71 15666.61 16188.62 12289.01 18569.81 20666.78 32986.70 23041.95 34391.51 23155.64 31278.14 26287.17 285
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft66.92 1773.01 27470.41 28980.81 22587.13 21565.63 18088.30 13484.19 27462.96 30463.80 35487.69 20038.04 36092.56 18946.66 35874.91 31084.24 334
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PVSNet64.34 1872.08 28470.87 28475.69 30086.21 22956.44 31874.37 35580.73 31662.06 31770.17 29382.23 31942.86 33483.31 33454.77 31584.45 17787.32 282
OpenMVS_ROBcopyleft64.09 1970.56 29768.19 30377.65 28280.26 33659.41 28385.01 22582.96 29558.76 34265.43 34282.33 31637.63 36291.23 24145.34 36876.03 28982.32 354
PVSNet_057.27 2061.67 34459.27 34768.85 35279.61 34857.44 30468.01 37773.44 36755.93 36058.54 37170.41 38144.58 32377.55 36147.01 35735.91 39371.55 381
CMPMVSbinary51.72 2170.19 30168.16 30476.28 29573.15 38057.55 30279.47 31383.92 27648.02 37756.48 37884.81 27543.13 33286.42 30862.67 25181.81 21984.89 327
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PMVScopyleft37.38 2244.16 36440.28 36755.82 37440.82 40742.54 39265.12 38663.99 38934.43 39224.48 39857.12 3933.92 40876.17 37217.10 40055.52 38048.75 395
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive26.22 2330.37 36925.89 37343.81 38144.55 40635.46 39928.87 39939.07 40618.20 40018.58 40240.18 3972.68 40947.37 40317.07 40123.78 39948.60 396
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testing1175.14 25374.01 24978.53 26888.16 17356.38 32080.74 29680.42 32270.67 18672.69 26983.72 29643.61 33089.86 26462.29 25583.76 18789.36 229
testing9976.09 24075.12 23879.00 25888.16 17355.50 33180.79 29381.40 31173.30 14275.17 23584.27 28544.48 32490.02 26264.28 23884.22 18291.48 147
UWE-MVS72.13 28371.49 27474.03 31886.66 22447.70 37581.40 28876.89 35263.60 29875.59 21884.22 28639.94 35185.62 31548.98 34686.13 15688.77 253
ETVMVS72.25 28271.05 28175.84 29887.77 19351.91 35879.39 31474.98 35969.26 21973.71 25682.95 30740.82 34886.14 31046.17 36284.43 17889.47 226
testing22274.04 26172.66 26478.19 27387.89 18455.36 33281.06 29079.20 33571.30 17374.65 24783.57 29939.11 35588.67 28851.43 33285.75 16390.53 181
WB-MVSnew71.96 28571.65 27372.89 32784.67 26051.88 35982.29 27677.57 34362.31 31373.67 25783.00 30653.49 23781.10 34645.75 36582.13 21485.70 315
fmvsm_l_conf0.5_n_a84.13 6984.16 7184.06 12585.38 24268.40 12088.34 13286.85 23767.48 25287.48 3493.40 6170.89 5891.61 22288.38 2589.22 11592.16 129
fmvsm_l_conf0.5_n84.47 6784.54 6684.27 11385.42 24168.81 10588.49 12587.26 22968.08 24588.03 2793.49 5772.04 4691.77 21888.90 1789.14 11692.24 125
fmvsm_s_conf0.1_n_a83.32 8682.99 8584.28 11183.79 27568.07 12989.34 9582.85 29769.80 20787.36 3694.06 4268.34 8891.56 22687.95 2783.46 19893.21 90
fmvsm_s_conf0.1_n83.56 8083.38 7884.10 11884.86 25467.28 14889.40 9383.01 29370.67 18687.08 3893.96 5068.38 8791.45 23488.56 2284.50 17393.56 75
fmvsm_s_conf0.5_n_a83.63 7883.41 7784.28 11186.14 23068.12 12789.43 9082.87 29670.27 19787.27 3793.80 5469.09 7891.58 22488.21 2683.65 19293.14 93
fmvsm_s_conf0.5_n83.80 7383.71 7484.07 12386.69 22367.31 14789.46 8983.07 29271.09 17886.96 4193.70 5569.02 8391.47 23388.79 1884.62 17293.44 80
MM89.16 689.23 788.97 490.79 9073.65 1092.66 2391.17 11686.57 187.39 3594.97 1671.70 5097.68 192.19 195.63 2895.57 1
WAC-MVS42.58 39039.46 379
Syy-MVS68.05 31867.85 30968.67 35484.68 25740.97 39578.62 32573.08 36866.65 26166.74 33079.46 34352.11 25082.30 33932.89 38776.38 28582.75 352
test_fmvsmconf0.1_n85.61 5385.65 5185.50 6982.99 29769.39 9689.65 8490.29 14473.31 14187.77 3094.15 3871.72 4993.23 16190.31 490.67 9593.89 56
test_fmvsmconf0.01_n84.73 6684.52 6885.34 7280.25 33769.03 9989.47 8889.65 16173.24 14586.98 4094.27 3266.62 10193.23 16190.26 589.95 10793.78 62
myMVS_eth3d67.02 32466.29 32569.21 34984.68 25742.58 39078.62 32573.08 36866.65 26166.74 33079.46 34331.53 37582.30 33939.43 38076.38 28582.75 352
testing368.56 31467.67 31571.22 34187.33 21042.87 38983.06 27071.54 37170.36 19369.08 30884.38 28130.33 37885.69 31437.50 38375.45 30085.09 326
SSC-MVS53.88 35253.59 35354.75 37772.87 38119.59 40873.84 35860.53 39457.58 35249.18 38773.45 37546.34 30975.47 37716.20 40232.28 39669.20 383
test_fmvsmconf_n85.92 4686.04 4785.57 6885.03 25269.51 9089.62 8690.58 13173.42 13887.75 3194.02 4472.85 4093.24 16090.37 390.75 9393.96 51
WB-MVS54.94 34954.72 35155.60 37573.50 37620.90 40774.27 35661.19 39259.16 33850.61 38574.15 37247.19 30175.78 37417.31 39935.07 39470.12 382
test_fmvsmvis_n_192084.02 7083.87 7284.49 10184.12 26869.37 9788.15 14087.96 21270.01 20183.95 8093.23 6568.80 8591.51 23188.61 2089.96 10692.57 110
dmvs_re71.14 28970.58 28572.80 32881.96 31459.68 27975.60 34779.34 33368.55 23869.27 30780.72 33349.42 28376.54 36652.56 32677.79 26382.19 356
SDMVSNet80.38 14380.18 12980.99 22089.03 14464.94 19780.45 30289.40 16675.19 9876.61 19889.98 13760.61 18387.69 30076.83 12383.55 19490.33 189
dmvs_testset62.63 34164.11 33258.19 36978.55 35524.76 40575.28 34865.94 38567.91 24760.34 36476.01 36653.56 23573.94 38431.79 38867.65 35375.88 376
sd_testset77.70 21277.40 19578.60 26589.03 14460.02 27679.00 32085.83 25275.19 9876.61 19889.98 13754.81 21985.46 31862.63 25283.55 19490.33 189
test_fmvsm_n_192085.29 5985.34 5585.13 7986.12 23169.93 8388.65 12190.78 12769.97 20388.27 2393.98 4971.39 5591.54 22888.49 2390.45 9793.91 53
test_cas_vis1_n_192073.76 26573.74 25573.81 32075.90 36459.77 27880.51 30082.40 30158.30 34581.62 11085.69 25544.35 32576.41 36976.29 12778.61 25485.23 321
test_vis1_n_192075.52 24775.78 22474.75 31279.84 34357.44 30483.26 26385.52 25562.83 30779.34 13686.17 24745.10 32179.71 35178.75 10181.21 22587.10 291
test_vis1_n69.85 30569.21 29671.77 33472.66 38355.27 33581.48 28576.21 35552.03 37075.30 23283.20 30428.97 37976.22 37174.60 14378.41 26083.81 340
test_fmvs1_n70.86 29370.24 29172.73 32972.51 38455.28 33481.27 28979.71 33051.49 37378.73 14384.87 27427.54 38177.02 36376.06 13079.97 24285.88 313
mvsany_test162.30 34261.26 34665.41 36169.52 38654.86 33866.86 38049.78 40146.65 37868.50 31483.21 30349.15 28866.28 39356.93 30560.77 37175.11 377
APD_test153.31 35449.93 35963.42 36465.68 39150.13 37071.59 36366.90 38334.43 39240.58 39171.56 3798.65 40376.27 37034.64 38655.36 38163.86 388
test_vis1_rt60.28 34558.42 34865.84 36067.25 39055.60 33070.44 36960.94 39344.33 38159.00 36966.64 38324.91 38368.67 39162.80 24769.48 34573.25 379
test_vis3_rt49.26 36047.02 36256.00 37254.30 39945.27 38466.76 38248.08 40236.83 38944.38 38953.20 3947.17 40564.07 39556.77 30755.66 37958.65 391
test_fmvs268.35 31767.48 31870.98 34369.50 38751.95 35780.05 30776.38 35449.33 37674.65 24784.38 28123.30 38775.40 37874.51 14475.17 30885.60 316
test_fmvs170.93 29270.52 28672.16 33273.71 37455.05 33680.82 29178.77 33751.21 37478.58 14984.41 28031.20 37676.94 36475.88 13380.12 24184.47 332
test_fmvs363.36 34061.82 34367.98 35662.51 39446.96 37977.37 33774.03 36545.24 37967.50 32078.79 35112.16 39872.98 38672.77 16466.02 35983.99 338
mvsany_test353.99 35151.45 35661.61 36655.51 39844.74 38663.52 38845.41 40543.69 38258.11 37376.45 36417.99 39163.76 39654.77 31547.59 38976.34 375
testf145.72 36141.96 36457.00 37056.90 39645.32 38166.14 38359.26 39526.19 39630.89 39560.96 3894.14 40670.64 38826.39 39446.73 39155.04 393
APD_test245.72 36141.96 36457.00 37056.90 39645.32 38166.14 38359.26 39526.19 39630.89 39560.96 3894.14 40670.64 38826.39 39446.73 39155.04 393
test_f52.09 35650.82 35755.90 37353.82 40142.31 39359.42 39158.31 39736.45 39056.12 38070.96 38012.18 39757.79 39853.51 32156.57 37867.60 384
FE-MVS77.78 20875.68 22684.08 12288.09 17866.00 17083.13 26687.79 21868.42 24278.01 16685.23 26745.50 31995.12 7859.11 28385.83 16291.11 157
FA-MVS(test-final)80.96 12579.91 13384.10 11888.30 17065.01 19584.55 23790.01 15173.25 14479.61 13187.57 20358.35 19794.72 9971.29 17586.25 15392.56 111
iter_conf_final80.63 13679.35 14684.46 10289.36 12767.70 13789.85 7584.49 26773.19 14678.30 15788.94 16545.98 31294.56 10279.59 9684.48 17691.11 157
bld_raw_dy_0_6477.29 22175.98 22381.22 21385.04 25165.47 18488.14 14277.56 34469.20 22373.77 25589.40 15942.24 34088.85 28676.78 12481.64 22089.33 231
patch_mono-283.65 7684.54 6680.99 22090.06 10765.83 17584.21 24788.74 19871.60 16885.01 5592.44 8474.51 2583.50 33282.15 7592.15 7593.64 71
EGC-MVSNET52.07 35747.05 36167.14 35883.51 28160.71 26680.50 30167.75 3810.07 4050.43 40675.85 36924.26 38581.54 34328.82 39062.25 36759.16 390
test250677.30 22076.49 21679.74 24690.08 10352.02 35587.86 15263.10 39074.88 10480.16 12792.79 7938.29 35992.35 19868.74 20292.50 7294.86 17
test111179.43 16579.18 15380.15 23889.99 10853.31 35287.33 16477.05 35075.04 10180.23 12692.77 8148.97 29292.33 20068.87 20092.40 7494.81 20
ECVR-MVScopyleft79.61 15879.26 14980.67 22890.08 10354.69 33987.89 15077.44 34774.88 10480.27 12492.79 7948.96 29392.45 19268.55 20392.50 7294.86 17
test_blank0.00 3770.00 3800.00 3900.00 4130.00 4150.00 4010.00 4140.00 4080.00 4090.00 4080.00 4130.00 4090.00 4080.00 4070.00 405
tt080578.73 18377.83 18281.43 20585.17 24560.30 27389.41 9290.90 12371.21 17577.17 18688.73 17146.38 30693.21 16372.57 16678.96 25390.79 169
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
FOURS195.00 1072.39 3995.06 193.84 1574.49 11391.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
PC_three_145268.21 24492.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
No_MVS89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 413
eth-test0.00 413
GeoE81.71 11081.01 11483.80 13989.51 12064.45 20888.97 10688.73 19971.27 17478.63 14889.76 14266.32 10793.20 16669.89 18986.02 15893.74 63
test_method31.52 36729.28 37138.23 38227.03 4096.50 41220.94 40062.21 3914.05 40322.35 40152.50 39513.33 39547.58 40227.04 39334.04 39560.62 389
Anonymous2024052168.80 31167.22 32073.55 32174.33 37154.11 34483.18 26485.61 25458.15 34661.68 36080.94 33030.71 37781.27 34557.00 30473.34 32785.28 320
h-mvs3383.15 8882.19 9686.02 6190.56 9370.85 7088.15 14089.16 17876.02 8384.67 6491.39 10761.54 16295.50 6182.71 7075.48 29791.72 139
hse-mvs281.72 10980.94 11584.07 12388.72 15567.68 13885.87 20687.26 22976.02 8384.67 6488.22 18961.54 16293.48 15182.71 7073.44 32591.06 160
CL-MVSNet_self_test72.37 28071.46 27575.09 30779.49 35053.53 34880.76 29585.01 26169.12 22670.51 28782.05 32157.92 20084.13 32752.27 32766.00 36087.60 274
KD-MVS_2432*160066.22 33163.89 33373.21 32375.47 36953.42 35070.76 36784.35 26964.10 29166.52 33478.52 35234.55 36984.98 32150.40 33650.33 38781.23 361
KD-MVS_self_test68.81 31067.59 31772.46 33174.29 37245.45 38077.93 33387.00 23463.12 30063.99 35278.99 35042.32 33784.77 32456.55 30964.09 36587.16 287
AUN-MVS79.21 17277.60 19284.05 12888.71 15667.61 13985.84 20887.26 22969.08 22777.23 18288.14 19453.20 24093.47 15275.50 13973.45 32491.06 160
ZD-MVS94.38 2572.22 4492.67 6170.98 18187.75 3194.07 4174.01 3296.70 2784.66 4794.84 43
SR-MVS-dyc-post85.77 4985.61 5286.23 5693.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2665.00 12395.56 5882.75 6891.87 7992.50 114
RE-MVS-def85.48 5393.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2663.87 12982.75 6891.87 7992.50 114
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
IU-MVS95.30 271.25 5792.95 5166.81 25492.39 688.94 1696.63 494.85 19
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 41
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8789.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
cl2278.07 20077.01 20281.23 21282.37 31161.83 25483.55 25987.98 21168.96 23275.06 24083.87 29061.40 16791.88 21573.53 15376.39 28289.98 210
miper_ehance_all_eth78.59 18877.76 18781.08 21882.66 30461.56 25783.65 25589.15 17968.87 23375.55 22083.79 29466.49 10492.03 20873.25 15876.39 28289.64 222
miper_enhance_ethall77.87 20776.86 20680.92 22381.65 31861.38 25982.68 27288.98 18665.52 27675.47 22182.30 31765.76 11692.00 21072.95 16176.39 28289.39 228
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5394.32 3171.76 4896.93 1985.53 3995.79 2294.32 38
dcpmvs_285.63 5286.15 4484.06 12591.71 7564.94 19786.47 19091.87 9573.63 13186.60 4393.02 7276.57 1591.87 21683.36 6092.15 7595.35 3
cl____77.72 21076.76 21080.58 22982.49 30860.48 27083.09 26787.87 21569.22 22174.38 25185.22 26862.10 15591.53 22971.09 17675.41 30189.73 221
DIV-MVS_self_test77.72 21076.76 21080.58 22982.48 30960.48 27083.09 26787.86 21669.22 22174.38 25185.24 26662.10 15591.53 22971.09 17675.40 30289.74 220
eth_miper_zixun_eth77.92 20576.69 21381.61 20283.00 29561.98 25183.15 26589.20 17769.52 21474.86 24484.35 28361.76 15892.56 18971.50 17372.89 32990.28 192
9.1488.26 1592.84 6091.52 4694.75 173.93 12588.57 2294.67 1975.57 2295.79 5386.77 3595.76 23
uanet_test0.00 3770.00 3800.00 3900.00 4130.00 4150.00 4010.00 4140.00 4080.00 4090.00 4080.00 4130.00 4090.00 4080.00 4070.00 405
DCPMVS0.00 3770.00 3800.00 3900.00 4130.00 4150.00 4010.00 4140.00 4080.00 4090.00 4080.00 4130.00 4090.00 4080.00 4070.00 405
save fliter93.80 4072.35 4290.47 6491.17 11674.31 116
ET-MVSNet_ETH3D78.63 18676.63 21584.64 9586.73 22269.47 9285.01 22584.61 26569.54 21366.51 33686.59 23450.16 27491.75 21976.26 12884.24 18192.69 107
UniMVSNet_ETH3D79.10 17578.24 17381.70 19986.85 21860.24 27487.28 16688.79 19374.25 11876.84 18990.53 12949.48 28291.56 22667.98 20782.15 21393.29 85
EIA-MVS83.31 8782.80 8984.82 9089.59 11665.59 18188.21 13692.68 6074.66 10978.96 13986.42 24169.06 8095.26 7375.54 13890.09 10393.62 72
miper_refine_blended66.22 33163.89 33373.21 32375.47 36953.42 35070.76 36784.35 26964.10 29166.52 33478.52 35234.55 36984.98 32150.40 33650.33 38781.23 361
miper_lstm_enhance74.11 26073.11 26177.13 29080.11 33959.62 28072.23 36186.92 23666.76 25670.40 28982.92 30856.93 21182.92 33669.06 19872.63 33088.87 248
ETV-MVS84.90 6584.67 6585.59 6789.39 12568.66 11688.74 11792.64 6579.97 1584.10 7785.71 25469.32 7695.38 6980.82 8591.37 8692.72 104
CS-MVS86.69 3586.95 3185.90 6390.76 9167.57 14092.83 1793.30 3279.67 1784.57 6992.27 8671.47 5395.02 8684.24 5493.46 6395.13 6
D2MVS74.82 25473.21 25979.64 25079.81 34462.56 24480.34 30487.35 22764.37 28868.86 30982.66 31346.37 30790.10 26167.91 20881.24 22486.25 303
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 5977.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 24
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 42
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 6774.50 11286.84 4294.65 2067.31 9795.77 5484.80 4692.85 6792.84 103
DPM-MVS84.93 6384.29 7086.84 4790.20 10073.04 2387.12 16993.04 3869.80 20782.85 9591.22 11073.06 3896.02 4776.72 12694.63 4791.46 149
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6393.99 4870.67 6296.82 2284.18 5695.01 3793.90 55
test_yl81.17 12180.47 12383.24 15589.13 13963.62 22186.21 19789.95 15372.43 15681.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
thisisatest053079.40 16777.76 18784.31 10987.69 19665.10 19487.36 16284.26 27370.04 20077.42 17688.26 18849.94 27794.79 9770.20 18484.70 17193.03 97
Anonymous2024052980.19 15078.89 15884.10 11890.60 9264.75 20188.95 10790.90 12365.97 27180.59 12291.17 11349.97 27693.73 14269.16 19782.70 20993.81 60
Anonymous20240521178.25 19377.01 20281.99 19491.03 8260.67 26784.77 23083.90 27770.65 19080.00 12891.20 11141.08 34691.43 23565.21 23185.26 16593.85 57
DCV-MVSNet81.17 12180.47 12383.24 15589.13 13963.62 22186.21 19789.95 15372.43 15681.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
tttt051779.40 16777.91 17983.90 13888.10 17763.84 21888.37 13184.05 27571.45 17176.78 19289.12 16149.93 27994.89 9270.18 18583.18 20292.96 101
our_test_369.14 30867.00 32175.57 30279.80 34558.80 28477.96 33277.81 34159.55 33462.90 35878.25 35547.43 29883.97 32851.71 32967.58 35483.93 339
thisisatest051577.33 21975.38 23383.18 15885.27 24463.80 21982.11 27883.27 28765.06 27975.91 21383.84 29249.54 28194.27 11367.24 21586.19 15491.48 147
ppachtmachnet_test70.04 30267.34 31978.14 27479.80 34561.13 26079.19 31880.59 31859.16 33865.27 34379.29 34546.75 30587.29 30249.33 34466.72 35586.00 312
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10792.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS88.96 245
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8592.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 52
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part295.06 872.65 3291.80 13
thres100view90076.50 23175.55 22979.33 25489.52 11956.99 30985.83 20983.23 28873.94 12476.32 20587.12 21851.89 25691.95 21148.33 34983.75 18889.07 234
tfpnnormal74.39 25673.16 26078.08 27586.10 23258.05 29184.65 23487.53 22370.32 19571.22 28485.63 25854.97 21889.86 26443.03 37275.02 30986.32 302
tfpn200view976.42 23475.37 23479.55 25389.13 13957.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24891.95 21148.33 34983.75 18889.07 234
c3_l78.75 18277.91 17981.26 21182.89 29961.56 25784.09 25089.13 18169.97 20375.56 21984.29 28466.36 10692.09 20773.47 15575.48 29790.12 198
CHOSEN 280x42066.51 32864.71 32971.90 33381.45 32263.52 22657.98 39268.95 38053.57 36562.59 35976.70 36246.22 31075.29 37955.25 31379.68 24376.88 374
CANet86.45 3886.10 4587.51 3790.09 10270.94 6789.70 8392.59 6681.78 481.32 11291.43 10670.34 6497.23 1384.26 5293.36 6494.37 35
Fast-Effi-MVS+-dtu78.02 20276.49 21682.62 18483.16 29166.96 15786.94 17487.45 22672.45 15371.49 28284.17 28754.79 22391.58 22467.61 21080.31 23789.30 232
Effi-MVS+-dtu80.03 15278.57 16484.42 10485.13 24968.74 11088.77 11488.10 20874.99 10274.97 24283.49 30057.27 20893.36 15673.53 15380.88 22891.18 155
CANet_DTU80.61 13779.87 13482.83 17485.60 23863.17 23787.36 16288.65 20076.37 7675.88 21488.44 18253.51 23693.07 17573.30 15789.74 11092.25 123
MVS_030488.08 1488.08 1788.08 1489.67 11472.04 4892.26 3389.26 17384.19 285.01 5595.18 1369.93 6997.20 1491.63 295.60 2994.99 9
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7993.50 2575.17 10086.34 4495.29 1270.86 5996.00 4988.78 1996.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5894.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs151.32 26288.96 245
sam_mvs50.01 275
IterMVS-SCA-FT75.43 24973.87 25380.11 23982.69 30364.85 19981.57 28483.47 28469.16 22570.49 28884.15 28851.95 25488.15 29469.23 19572.14 33487.34 281
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7474.62 11188.90 2093.85 5275.75 2096.00 4987.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu80.80 13179.72 13784.03 13087.35 20570.19 7985.56 21288.77 19469.06 22881.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 236
OPM-MVS83.50 8182.95 8685.14 7788.79 15270.95 6689.13 10391.52 10677.55 4480.96 11991.75 9560.71 17994.50 10779.67 9586.51 14989.97 211
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5693.59 2376.27 7988.14 2495.09 1571.06 5796.67 2987.67 2996.37 1494.09 46
ambc75.24 30673.16 37950.51 36963.05 39087.47 22564.28 34977.81 35817.80 39289.73 26857.88 29660.64 37285.49 317
MTGPAbinary92.02 85
CS-MVS-test86.29 4286.48 3785.71 6591.02 8367.21 15292.36 2993.78 1878.97 2883.51 8891.20 11170.65 6395.15 7781.96 7694.89 4194.77 22
Effi-MVS+83.62 7983.08 8285.24 7588.38 16767.45 14288.89 10989.15 17975.50 9282.27 10088.28 18669.61 7394.45 10977.81 11187.84 13093.84 59
xiu_mvs_v2_base81.69 11181.05 11283.60 14289.15 13868.03 13184.46 24090.02 15070.67 18681.30 11586.53 23963.17 13794.19 11975.60 13788.54 12488.57 259
xiu_mvs_v1_base80.80 13179.72 13784.03 13087.35 20570.19 7985.56 21288.77 19469.06 22881.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 236
new-patchmatchnet61.73 34361.73 34461.70 36572.74 38224.50 40669.16 37478.03 34061.40 32056.72 37775.53 37038.42 35776.48 36845.95 36457.67 37584.13 336
pmmvs674.69 25573.39 25778.61 26481.38 32457.48 30386.64 18587.95 21364.99 28270.18 29286.61 23350.43 27289.52 27162.12 25870.18 34488.83 250
pmmvs571.55 28670.20 29275.61 30177.83 35756.39 31981.74 28180.89 31357.76 34967.46 32184.49 27849.26 28785.32 32057.08 30375.29 30585.11 325
test_post178.90 3235.43 40448.81 29585.44 31959.25 281
test_post5.46 40350.36 27384.24 326
Fast-Effi-MVS+80.81 12979.92 13283.47 14588.85 14664.51 20485.53 21789.39 16770.79 18378.49 15285.06 27267.54 9493.58 14467.03 21986.58 14792.32 120
patchmatchnet-post74.00 37351.12 26488.60 289
Anonymous2023121178.97 17977.69 19082.81 17690.54 9464.29 21190.11 7291.51 10765.01 28176.16 21288.13 19550.56 27093.03 17969.68 19277.56 26791.11 157
pmmvs-eth3d70.50 29867.83 31178.52 26977.37 36066.18 16781.82 27981.51 30958.90 34163.90 35380.42 33542.69 33586.28 30958.56 28965.30 36283.11 347
GG-mvs-BLEND75.38 30581.59 32055.80 32779.32 31569.63 37667.19 32473.67 37443.24 33188.90 28550.41 33584.50 17381.45 360
xiu_mvs_v1_base_debi80.80 13179.72 13784.03 13087.35 20570.19 7985.56 21288.77 19469.06 22881.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 236
Anonymous2023120668.60 31267.80 31271.02 34280.23 33850.75 36878.30 33080.47 32056.79 35666.11 33982.63 31446.35 30878.95 35443.62 37175.70 29283.36 344
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18792.02 8579.45 1985.88 4694.80 1768.07 8996.21 4286.69 3695.34 3393.23 87
MTMP92.18 3532.83 407
gm-plane-assit81.40 32353.83 34762.72 31080.94 33092.39 19563.40 244
test9_res84.90 4295.70 2692.87 102
MVP-Stereo76.12 23874.46 24681.13 21785.37 24369.79 8684.42 24387.95 21365.03 28067.46 32185.33 26453.28 23991.73 22158.01 29583.27 20081.85 358
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST993.26 5072.96 2588.75 11591.89 9368.44 24185.00 5793.10 6774.36 2895.41 67
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11591.89 9368.69 23685.00 5793.10 6774.43 2695.41 6784.97 4195.71 2593.02 98
gg-mvs-nofinetune69.95 30367.96 30775.94 29783.07 29254.51 34277.23 33870.29 37463.11 30170.32 29062.33 38543.62 32988.69 28753.88 31987.76 13184.62 331
SCA74.22 25972.33 26879.91 24284.05 27162.17 24979.96 30979.29 33466.30 26672.38 27380.13 33751.95 25488.60 28959.25 28177.67 26688.96 245
Patchmatch-test64.82 33663.24 33769.57 34779.42 35149.82 37263.49 38969.05 37951.98 37159.95 36780.13 33750.91 26570.98 38740.66 37773.57 32287.90 268
test_893.13 5272.57 3588.68 12091.84 9768.69 23684.87 6193.10 6774.43 2695.16 76
MS-PatchMatch73.83 26472.67 26377.30 28883.87 27466.02 16981.82 27984.66 26461.37 32268.61 31282.82 31147.29 29988.21 29359.27 28084.32 17977.68 372
Patchmatch-RL test70.24 30067.78 31377.61 28377.43 35959.57 28271.16 36470.33 37362.94 30568.65 31172.77 37650.62 26985.49 31769.58 19366.58 35787.77 271
cdsmvs_eth3d_5k19.96 37026.61 3720.00 3900.00 4130.00 4150.00 40189.26 1730.00 4080.00 40988.61 17661.62 1610.00 4090.00 4080.00 4070.00 405
pcd_1.5k_mvsjas5.26 3767.02 3790.00 3900.00 4130.00 4150.00 4010.00 4140.00 4080.00 4090.00 40863.15 1380.00 4090.00 4080.00 4070.00 405
agg_prior282.91 6695.45 3092.70 105
agg_prior92.85 5971.94 5191.78 10084.41 7194.93 87
tmp_tt18.61 37121.40 37410.23 3874.82 41010.11 41034.70 39730.74 4081.48 40423.91 40026.07 40128.42 38013.41 40627.12 39215.35 4037.17 401
canonicalmvs85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13181.50 7988.80 12094.77 22
anonymousdsp78.60 18777.15 20082.98 16980.51 33567.08 15387.24 16789.53 16365.66 27475.16 23687.19 21652.52 24192.25 20277.17 11879.34 24989.61 223
alignmvs85.48 5485.32 5785.96 6289.51 12069.47 9289.74 8192.47 6876.17 8087.73 3391.46 10570.32 6593.78 13681.51 7888.95 11794.63 26
nrg03083.88 7183.53 7584.96 8486.77 22169.28 9890.46 6592.67 6174.79 10682.95 9291.33 10872.70 4193.09 17480.79 8779.28 25092.50 114
v14419279.47 16378.37 16982.78 18083.35 28363.96 21686.96 17390.36 14069.99 20277.50 17485.67 25760.66 18193.77 13874.27 14776.58 27890.62 176
FIs82.07 10382.42 9181.04 21988.80 15158.34 28888.26 13593.49 2676.93 6078.47 15391.04 11769.92 7092.34 19969.87 19084.97 16792.44 118
v192192079.22 17178.03 17682.80 17783.30 28563.94 21786.80 17990.33 14169.91 20577.48 17585.53 26058.44 19693.75 14073.60 15276.85 27590.71 174
UA-Net85.08 6284.96 6285.45 7092.07 7068.07 12989.78 8090.86 12682.48 384.60 6893.20 6669.35 7595.22 7471.39 17490.88 9293.07 95
v119279.59 16078.43 16883.07 16483.55 28064.52 20386.93 17590.58 13170.83 18277.78 17085.90 25059.15 19293.94 12773.96 15077.19 27090.76 171
FC-MVSNet-test81.52 11682.02 10080.03 24088.42 16655.97 32687.95 14693.42 2977.10 5677.38 17790.98 12269.96 6891.79 21768.46 20584.50 17392.33 119
v114480.03 15279.03 15583.01 16783.78 27664.51 20487.11 17090.57 13371.96 16178.08 16586.20 24661.41 16693.94 12774.93 14177.23 26890.60 178
sosnet-low-res0.00 3770.00 3800.00 3900.00 4130.00 4150.00 4010.00 4140.00 4080.00 4090.00 4080.00 4130.00 4090.00 4080.00 4070.00 405
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 5994.44 2870.78 6096.61 3284.53 4994.89 4193.66 65
v14878.72 18477.80 18481.47 20482.73 30261.96 25286.30 19588.08 20973.26 14376.18 20985.47 26262.46 14892.36 19771.92 17073.82 32190.09 201
sosnet0.00 3770.00 3800.00 3900.00 4130.00 4150.00 4010.00 4140.00 4080.00 4090.00 4080.00 4130.00 4090.00 4080.00 4070.00 405
uncertanet0.00 3770.00 3800.00 3900.00 4130.00 4150.00 4010.00 4140.00 4080.00 4090.00 4080.00 4130.00 4090.00 4080.00 4070.00 405
AllTest70.96 29168.09 30679.58 25185.15 24763.62 22184.58 23679.83 32862.31 31360.32 36586.73 22432.02 37288.96 28350.28 33871.57 33886.15 306
TestCases79.58 25185.15 24763.62 22179.83 32862.31 31360.32 36586.73 22432.02 37288.96 28350.28 33871.57 33886.15 306
v7n78.97 17977.58 19383.14 16083.45 28265.51 18288.32 13391.21 11473.69 13072.41 27286.32 24457.93 19993.81 13569.18 19675.65 29390.11 199
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7094.52 2169.09 7896.70 2784.37 5194.83 4494.03 49
iter_conf0580.00 15478.70 16083.91 13787.84 18765.83 17588.84 11284.92 26271.61 16778.70 14488.94 16543.88 32894.56 10279.28 9784.28 18091.33 150
RRT_MVS80.35 14679.22 15183.74 14087.63 19865.46 18591.08 5488.92 19173.82 12776.44 20390.03 13649.05 29194.25 11776.84 12179.20 25291.51 143
PS-MVSNAJss82.07 10381.31 10784.34 10886.51 22667.27 14989.27 9691.51 10771.75 16279.37 13490.22 13463.15 13894.27 11377.69 11282.36 21291.49 146
PS-MVSNAJ81.69 11181.02 11383.70 14189.51 12068.21 12684.28 24690.09 14970.79 18381.26 11685.62 25963.15 13894.29 11175.62 13688.87 11988.59 258
jajsoiax79.29 17077.96 17783.27 15384.68 25766.57 16289.25 9790.16 14769.20 22375.46 22389.49 15045.75 31793.13 17276.84 12180.80 23090.11 199
mvs_tets79.13 17477.77 18683.22 15784.70 25666.37 16489.17 9890.19 14669.38 21675.40 22689.46 15344.17 32693.15 17076.78 12480.70 23290.14 196
EI-MVSNet-UG-set83.81 7283.38 7885.09 8087.87 18567.53 14187.44 16189.66 16079.74 1682.23 10189.41 15770.24 6694.74 9879.95 9383.92 18492.99 100
EI-MVSNet-Vis-set84.19 6883.81 7385.31 7388.18 17267.85 13387.66 15589.73 15980.05 1482.95 9289.59 14870.74 6194.82 9580.66 8984.72 17093.28 86
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5480.26 1187.78 2994.27 3275.89 1996.81 2387.45 3296.44 993.05 96
test_prior472.60 3489.01 105
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8594.17 3667.45 9596.60 3383.06 6394.50 5094.07 47
v124078.99 17877.78 18582.64 18383.21 28763.54 22586.62 18690.30 14369.74 21277.33 17885.68 25657.04 21093.76 13973.13 16076.92 27290.62 176
pm-mvs177.25 22276.68 21478.93 26084.22 26658.62 28686.41 19188.36 20571.37 17273.31 26088.01 19661.22 17289.15 27864.24 23973.01 32889.03 240
test_prior288.85 11175.41 9384.91 5993.54 5674.28 2983.31 6195.86 20
X-MVStestdata80.37 14577.83 18288.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8512.47 40267.45 9596.60 3383.06 6394.50 5094.07 47
test_prior86.33 5492.61 6569.59 8892.97 5095.48 6293.91 53
旧先验286.56 18858.10 34787.04 3988.98 28174.07 149
新几何286.29 196
新几何183.42 14793.13 5270.71 7185.48 25657.43 35381.80 10791.98 9063.28 13392.27 20164.60 23792.99 6587.27 283
旧先验191.96 7165.79 17886.37 24493.08 7169.31 7792.74 6888.74 255
无先验87.48 15988.98 18660.00 33094.12 12167.28 21488.97 244
原ACMM286.86 177
原ACMM184.35 10793.01 5768.79 10692.44 6963.96 29681.09 11791.57 10166.06 11195.45 6367.19 21694.82 4588.81 251
test22291.50 7768.26 12484.16 24883.20 29054.63 36479.74 12991.63 9958.97 19391.42 8586.77 296
testdata291.01 24962.37 254
segment_acmp73.08 37
testdata79.97 24190.90 8664.21 21284.71 26359.27 33785.40 5192.91 7362.02 15789.08 27968.95 19991.37 8686.63 300
testdata184.14 24975.71 87
v879.97 15579.02 15682.80 17784.09 26964.50 20687.96 14590.29 14474.13 12275.24 23486.81 22362.88 14393.89 13374.39 14675.40 30290.00 207
131476.53 23075.30 23680.21 23783.93 27362.32 24784.66 23288.81 19260.23 32870.16 29484.07 28955.30 21790.73 25467.37 21383.21 20187.59 276
LFMVS81.82 10881.23 10983.57 14491.89 7363.43 23089.84 7681.85 30777.04 5883.21 8993.10 6752.26 24693.43 15571.98 16989.95 10793.85 57
VDD-MVS83.01 9382.36 9484.96 8491.02 8366.40 16388.91 10888.11 20777.57 4184.39 7293.29 6452.19 24793.91 13177.05 11988.70 12294.57 29
VDDNet81.52 11680.67 11984.05 12890.44 9664.13 21489.73 8285.91 25071.11 17783.18 9093.48 5850.54 27193.49 15073.40 15688.25 12894.54 30
v1079.74 15778.67 16182.97 17084.06 27064.95 19687.88 15190.62 13073.11 14775.11 23886.56 23761.46 16594.05 12373.68 15175.55 29589.90 213
VPNet78.69 18578.66 16278.76 26288.31 16955.72 32884.45 24186.63 24076.79 6478.26 15890.55 12859.30 19189.70 26966.63 22077.05 27190.88 167
MVS78.19 19776.99 20481.78 19785.66 23666.99 15484.66 23290.47 13555.08 36372.02 27785.27 26563.83 13094.11 12266.10 22489.80 10984.24 334
v2v48280.23 14879.29 14883.05 16583.62 27864.14 21387.04 17189.97 15273.61 13278.18 16287.22 21461.10 17493.82 13476.11 12976.78 27791.18 155
V4279.38 16978.24 17382.83 17481.10 32965.50 18385.55 21589.82 15571.57 16978.21 16086.12 24860.66 18193.18 16975.64 13575.46 29989.81 218
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13687.63 3094.27 5793.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS76.87 22775.17 23781.97 19582.75 30162.58 24381.44 28786.35 24572.16 16074.74 24582.89 30946.20 31192.02 20968.85 20181.09 22691.30 153
MSLP-MVS++85.43 5685.76 5084.45 10391.93 7270.24 7690.71 5892.86 5377.46 4784.22 7492.81 7867.16 9992.94 18080.36 9094.35 5590.16 195
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 8991.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 31
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4573.54 13585.94 4594.51 2465.80 11595.61 5783.04 6592.51 7193.53 78
ADS-MVSNet266.20 33363.33 33674.82 31079.92 34158.75 28567.55 37875.19 35853.37 36665.25 34475.86 36742.32 33780.53 34941.57 37568.91 34985.18 322
EI-MVSNet80.52 14179.98 13182.12 19084.28 26463.19 23686.41 19188.95 18974.18 12078.69 14587.54 20666.62 10192.43 19372.57 16680.57 23490.74 173
Regformer0.00 3770.00 3800.00 3900.00 4130.00 4150.00 4010.00 4140.00 4080.00 4090.00 4080.00 4130.00 4090.00 4080.00 4070.00 405
CVMVSNet72.99 27572.58 26574.25 31684.28 26450.85 36786.41 19183.45 28544.56 38073.23 26287.54 20649.38 28485.70 31365.90 22678.44 25886.19 305
pmmvs474.03 26371.91 27080.39 23281.96 31468.32 12281.45 28682.14 30359.32 33669.87 30085.13 27052.40 24488.13 29560.21 27474.74 31284.73 330
EU-MVSNet68.53 31567.61 31671.31 34078.51 35647.01 37884.47 23884.27 27242.27 38366.44 33784.79 27640.44 34983.76 32958.76 28868.54 35283.17 345
VNet82.21 10082.41 9281.62 20090.82 8860.93 26284.47 23889.78 15676.36 7784.07 7891.88 9364.71 12490.26 25870.68 18088.89 11893.66 65
test-LLR72.94 27672.43 26674.48 31381.35 32558.04 29278.38 32777.46 34566.66 25869.95 29879.00 34848.06 29679.24 35266.13 22284.83 16886.15 306
TESTMET0.1,169.89 30469.00 29872.55 33079.27 35356.85 31078.38 32774.71 36357.64 35068.09 31577.19 36137.75 36176.70 36563.92 24084.09 18384.10 337
test-mter71.41 28770.39 29074.48 31381.35 32558.04 29278.38 32777.46 34560.32 32769.95 29879.00 34836.08 36679.24 35266.13 22284.83 16886.15 306
VPA-MVSNet80.60 13880.55 12180.76 22688.07 17960.80 26586.86 17791.58 10575.67 9080.24 12589.45 15563.34 13290.25 25970.51 18279.22 25191.23 154
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6694.52 2168.81 8496.65 3084.53 4994.90 4094.00 50
testgi66.67 32766.53 32467.08 35975.62 36741.69 39475.93 34276.50 35366.11 26765.20 34686.59 23435.72 36774.71 38043.71 37073.38 32684.84 328
test20.0367.45 32166.95 32268.94 35075.48 36844.84 38577.50 33577.67 34266.66 25863.01 35683.80 29347.02 30278.40 35642.53 37468.86 35183.58 342
thres600view776.50 23175.44 23079.68 24889.40 12457.16 30685.53 21783.23 28873.79 12976.26 20687.09 21951.89 25691.89 21448.05 35483.72 19190.00 207
ADS-MVSNet64.36 33762.88 34068.78 35379.92 34147.17 37767.55 37871.18 37253.37 36665.25 34475.86 36742.32 33773.99 38341.57 37568.91 34985.18 322
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6477.57 4183.84 8294.40 3072.24 4396.28 4085.65 3895.30 3593.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs6.04 3758.02 3780.10 3890.08 4110.03 41469.74 3700.04 4120.05 4060.31 4071.68 4060.02 4120.04 4070.24 4060.02 4050.25 404
thres40076.50 23175.37 23479.86 24389.13 13957.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24891.95 21148.33 34983.75 18890.00 207
test1236.12 3748.11 3770.14 3880.06 4120.09 41371.05 3650.03 4130.04 4070.25 4081.30 4070.05 4110.03 4080.21 4070.01 4060.29 403
thres20075.55 24674.47 24578.82 26187.78 19257.85 29783.07 26983.51 28372.44 15575.84 21584.42 27952.08 25191.75 21947.41 35683.64 19386.86 294
test0.0.03 168.00 31967.69 31468.90 35177.55 35847.43 37675.70 34672.95 37066.66 25866.56 33282.29 31848.06 29675.87 37344.97 36974.51 31483.41 343
pmmvs357.79 34754.26 35268.37 35564.02 39356.72 31375.12 35265.17 38640.20 38552.93 38369.86 38220.36 38975.48 37645.45 36755.25 38272.90 380
EMVS30.81 36829.65 37034.27 38450.96 40425.95 40456.58 39446.80 40424.01 39915.53 40430.68 40012.47 39654.43 40112.81 40417.05 40122.43 400
E-PMN31.77 36630.64 36935.15 38352.87 40327.67 40257.09 39347.86 40324.64 39816.40 40333.05 39911.23 39954.90 40014.46 40318.15 40022.87 399
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7093.04 3875.53 9183.86 8194.42 2967.87 9296.64 3182.70 7294.57 4993.66 65
LCM-MVSNet-Re77.05 22376.94 20577.36 28687.20 21351.60 36280.06 30680.46 32175.20 9767.69 31886.72 22662.48 14788.98 28163.44 24389.25 11491.51 143
LCM-MVSNet54.25 35049.68 36067.97 35753.73 40245.28 38366.85 38180.78 31535.96 39139.45 39262.23 3878.70 40278.06 35948.24 35251.20 38680.57 365
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7793.82 1673.07 14884.86 6292.89 7476.22 1796.33 3884.89 4495.13 3694.40 34
mvs_anonymous79.42 16679.11 15480.34 23484.45 26357.97 29482.59 27387.62 22167.40 25376.17 21188.56 17968.47 8689.59 27070.65 18186.05 15793.47 79
MVS_Test83.15 8883.06 8383.41 14986.86 21763.21 23486.11 20092.00 8774.31 11682.87 9489.44 15670.03 6793.21 16377.39 11688.50 12693.81 60
MDA-MVSNet-bldmvs66.68 32663.66 33575.75 29979.28 35260.56 26973.92 35778.35 33964.43 28650.13 38679.87 34144.02 32783.67 33046.10 36356.86 37683.03 349
CDPH-MVS85.76 5085.29 5987.17 4393.49 4771.08 6188.58 12392.42 7268.32 24384.61 6793.48 5872.32 4296.15 4579.00 9895.43 3194.28 40
test1286.80 4992.63 6470.70 7291.79 9982.71 9871.67 5196.16 4494.50 5093.54 77
casdiffmvspermissive85.11 6185.14 6085.01 8287.20 21365.77 17987.75 15392.83 5577.84 3784.36 7392.38 8572.15 4493.93 13081.27 8190.48 9695.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive82.10 10181.88 10382.76 18283.00 29563.78 22083.68 25489.76 15772.94 15182.02 10389.85 14065.96 11490.79 25282.38 7487.30 13793.71 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline275.70 24473.83 25481.30 21083.26 28661.79 25582.57 27480.65 31766.81 25466.88 32783.42 30157.86 20192.19 20463.47 24279.57 24489.91 212
baseline176.98 22576.75 21277.66 28188.13 17555.66 32985.12 22381.89 30573.04 14976.79 19188.90 16762.43 14987.78 29963.30 24571.18 34089.55 225
YYNet165.03 33462.91 33971.38 33675.85 36556.60 31669.12 37574.66 36457.28 35454.12 38177.87 35745.85 31474.48 38149.95 34161.52 37083.05 348
PMMVS240.82 36538.86 36846.69 38053.84 40016.45 40948.61 39549.92 40037.49 38831.67 39360.97 3888.14 40456.42 39928.42 39130.72 39767.19 385
MDA-MVSNet_test_wron65.03 33462.92 33871.37 33775.93 36356.73 31269.09 37674.73 36257.28 35454.03 38277.89 35645.88 31374.39 38249.89 34261.55 36982.99 350
tpmvs71.09 29069.29 29576.49 29482.04 31356.04 32578.92 32281.37 31264.05 29367.18 32578.28 35449.74 28089.77 26649.67 34372.37 33183.67 341
PM-MVS66.41 32964.14 33173.20 32573.92 37356.45 31778.97 32164.96 38863.88 29764.72 34780.24 33619.84 39083.44 33366.24 22164.52 36479.71 368
HQP_MVS83.64 7783.14 8185.14 7790.08 10368.71 11291.25 5092.44 6979.12 2378.92 14191.00 12060.42 18695.38 6978.71 10286.32 15191.33 150
plane_prior790.08 10368.51 119
plane_prior689.84 11268.70 11460.42 186
plane_prior592.44 6995.38 6978.71 10286.32 15191.33 150
plane_prior491.00 120
plane_prior368.60 11778.44 3178.92 141
plane_prior291.25 5079.12 23
plane_prior189.90 111
plane_prior68.71 11290.38 6777.62 3986.16 155
PS-CasMVS78.01 20378.09 17577.77 28087.71 19454.39 34388.02 14391.22 11377.50 4673.26 26188.64 17560.73 17888.41 29261.88 26073.88 32090.53 181
UniMVSNet_NR-MVSNet81.88 10681.54 10682.92 17188.46 16463.46 22887.13 16892.37 7380.19 1278.38 15489.14 16071.66 5293.05 17670.05 18676.46 28092.25 123
PEN-MVS77.73 20977.69 19077.84 27887.07 21653.91 34687.91 14991.18 11577.56 4373.14 26388.82 17061.23 17189.17 27759.95 27572.37 33190.43 185
TransMVSNet (Re)75.39 25174.56 24377.86 27785.50 24057.10 30886.78 18186.09 24972.17 15971.53 28187.34 20963.01 14289.31 27556.84 30661.83 36887.17 285
DTE-MVSNet76.99 22476.80 20877.54 28586.24 22853.06 35487.52 15890.66 12977.08 5772.50 27088.67 17460.48 18589.52 27157.33 30170.74 34290.05 206
DU-MVS81.12 12380.52 12282.90 17287.80 18963.46 22887.02 17291.87 9579.01 2678.38 15489.07 16265.02 12193.05 17670.05 18676.46 28092.20 126
UniMVSNet (Re)81.60 11581.11 11183.09 16288.38 16764.41 20987.60 15693.02 4278.42 3278.56 15088.16 19069.78 7193.26 15969.58 19376.49 27991.60 140
CP-MVSNet78.22 19478.34 17077.84 27887.83 18854.54 34187.94 14791.17 11677.65 3873.48 25988.49 18062.24 15388.43 29162.19 25674.07 31690.55 180
WR-MVS_H78.51 18978.49 16578.56 26688.02 18156.38 32088.43 12692.67 6177.14 5473.89 25487.55 20566.25 10889.24 27658.92 28573.55 32390.06 205
WR-MVS79.49 16279.22 15180.27 23688.79 15258.35 28785.06 22488.61 20278.56 3077.65 17288.34 18463.81 13190.66 25564.98 23477.22 26991.80 138
NR-MVSNet80.23 14879.38 14482.78 18087.80 18963.34 23186.31 19491.09 12079.01 2672.17 27589.07 16267.20 9892.81 18566.08 22575.65 29392.20 126
Baseline_NR-MVSNet78.15 19878.33 17177.61 28385.79 23456.21 32486.78 18185.76 25373.60 13377.93 16887.57 20365.02 12188.99 28067.14 21775.33 30487.63 273
TranMVSNet+NR-MVSNet80.84 12780.31 12682.42 18787.85 18662.33 24687.74 15491.33 11280.55 977.99 16789.86 13965.23 11992.62 18667.05 21875.24 30792.30 121
TSAR-MVS + GP.85.71 5185.33 5686.84 4791.34 7872.50 3689.07 10487.28 22876.41 7285.80 4790.22 13474.15 3195.37 7281.82 7791.88 7892.65 109
n20.00 414
nn0.00 414
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8076.87 6282.81 9794.25 3466.44 10596.24 4182.88 6794.28 5693.38 81
door-mid69.98 375
XVG-OURS-SEG-HR80.81 12979.76 13683.96 13585.60 23868.78 10783.54 26090.50 13470.66 18976.71 19491.66 9660.69 18091.26 23976.94 12081.58 22191.83 136
mvsmamba81.69 11180.74 11784.56 9787.45 20466.72 15991.26 4885.89 25174.66 10978.23 15990.56 12754.33 22794.91 8880.73 8883.54 19692.04 134
MVSFormer82.85 9482.05 9985.24 7587.35 20570.21 7790.50 6290.38 13768.55 23881.32 11289.47 15161.68 15993.46 15378.98 9990.26 10092.05 132
jason81.39 11980.29 12784.70 9486.63 22569.90 8585.95 20386.77 23863.24 29981.07 11889.47 15161.08 17592.15 20578.33 10790.07 10592.05 132
jason: jason.
lupinMVS81.39 11980.27 12884.76 9387.35 20570.21 7785.55 21586.41 24262.85 30681.32 11288.61 17661.68 15992.24 20378.41 10690.26 10091.83 136
test_djsdf80.30 14779.32 14783.27 15383.98 27265.37 18990.50 6290.38 13768.55 23876.19 20888.70 17256.44 21393.46 15378.98 9980.14 24090.97 165
HPM-MVS_fast85.35 5884.95 6386.57 5393.69 4270.58 7592.15 3691.62 10373.89 12682.67 9994.09 4062.60 14495.54 6080.93 8392.93 6693.57 74
K. test v371.19 28868.51 30079.21 25783.04 29457.78 29984.35 24576.91 35172.90 15262.99 35782.86 31039.27 35391.09 24761.65 26352.66 38488.75 254
lessismore_v078.97 25981.01 33057.15 30765.99 38461.16 36282.82 31139.12 35491.34 23859.67 27746.92 39088.43 261
SixPastTwentyTwo73.37 26871.26 28079.70 24785.08 25057.89 29685.57 21183.56 28271.03 18065.66 34085.88 25142.10 34192.57 18859.11 28363.34 36688.65 257
OurMVSNet-221017-074.26 25872.42 26779.80 24583.76 27759.59 28185.92 20586.64 23966.39 26566.96 32687.58 20239.46 35291.60 22365.76 22869.27 34788.22 263
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8283.81 8393.95 5169.77 7296.01 4885.15 4094.66 4694.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS80.41 14279.23 15083.97 13485.64 23769.02 10183.03 27190.39 13671.09 17877.63 17391.49 10454.62 22691.35 23775.71 13483.47 19791.54 142
XVG-ACMP-BASELINE76.11 23974.27 24881.62 20083.20 28864.67 20283.60 25889.75 15869.75 21071.85 27887.09 21932.78 37192.11 20669.99 18880.43 23688.09 265
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6687.65 19767.22 15188.69 11993.04 3879.64 1885.33 5292.54 8373.30 3594.50 10783.49 5991.14 8995.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test82.08 10281.27 10884.50 9989.23 13568.76 10890.22 7091.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18589.83 216
LGP-MVS_train84.50 9989.23 13568.76 10891.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18589.83 216
baseline84.93 6384.98 6184.80 9287.30 21165.39 18887.30 16592.88 5277.62 3984.04 7992.26 8771.81 4793.96 12481.31 8090.30 9995.03 8
test1192.23 79
door69.44 378
EPNet_dtu75.46 24874.86 23977.23 28982.57 30654.60 34086.89 17683.09 29171.64 16366.25 33885.86 25255.99 21488.04 29654.92 31486.55 14889.05 239
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268877.63 21475.69 22583.44 14689.98 10968.58 11878.70 32487.50 22456.38 35875.80 21686.84 22258.67 19491.40 23661.58 26485.75 16390.34 188
EPNet83.72 7582.92 8786.14 5984.22 26669.48 9191.05 5585.27 25781.30 676.83 19091.65 9766.09 11095.56 5876.00 13293.85 6093.38 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS66.98 155
HQP-NCC89.33 12889.17 9876.41 7277.23 182
ACMP_Plane89.33 12889.17 9876.41 7277.23 182
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5573.01 15088.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 105
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS77.47 114
HQP4-MVS77.24 18195.11 8091.03 162
HQP3-MVS92.19 8285.99 159
HQP2-MVS60.17 189
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 37
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5581.50 585.79 4893.47 6073.02 3997.00 1884.90 4294.94 3994.10 45
114514_t80.68 13579.51 14184.20 11594.09 3867.27 14989.64 8591.11 11958.75 34374.08 25390.72 12458.10 19895.04 8569.70 19189.42 11390.30 191
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5876.62 7083.68 8494.46 2567.93 9095.95 5284.20 5594.39 5393.23 87
DSMNet-mixed57.77 34856.90 35060.38 36767.70 38935.61 39869.18 37353.97 39932.30 39557.49 37579.88 34040.39 35068.57 39238.78 38172.37 33176.97 373
tpm273.26 27171.46 27578.63 26383.34 28456.71 31480.65 29880.40 32356.63 35773.55 25882.02 32251.80 25891.24 24056.35 31078.42 25987.95 266
NP-MVS89.62 11568.32 12290.24 132
EG-PatchMatch MVS74.04 26171.82 27180.71 22784.92 25367.42 14385.86 20788.08 20966.04 26964.22 35083.85 29135.10 36892.56 18957.44 29980.83 22982.16 357
tpm cat170.57 29668.31 30277.35 28782.41 31057.95 29578.08 33180.22 32652.04 36968.54 31377.66 35952.00 25387.84 29851.77 32872.07 33586.25 303
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
CostFormer75.24 25273.90 25279.27 25582.65 30558.27 28980.80 29282.73 29961.57 31975.33 23183.13 30555.52 21591.07 24864.98 23478.34 26188.45 260
CR-MVSNet73.37 26871.27 27979.67 24981.32 32765.19 19175.92 34380.30 32459.92 33172.73 26781.19 32552.50 24286.69 30559.84 27677.71 26487.11 289
JIA-IIPM66.32 33062.82 34176.82 29277.09 36161.72 25665.34 38575.38 35758.04 34864.51 34862.32 38642.05 34286.51 30751.45 33169.22 34882.21 355
Patchmtry70.74 29469.16 29775.49 30480.72 33154.07 34574.94 35480.30 32458.34 34470.01 29581.19 32552.50 24286.54 30653.37 32271.09 34185.87 314
PatchT68.46 31667.85 30970.29 34580.70 33243.93 38772.47 36074.88 36060.15 32970.55 28676.57 36349.94 27781.59 34250.58 33474.83 31185.34 319
tpmrst72.39 27872.13 26973.18 32680.54 33449.91 37179.91 31079.08 33663.11 30171.69 28079.95 33955.32 21682.77 33765.66 22973.89 31986.87 293
BH-w/o78.21 19577.33 19880.84 22488.81 15065.13 19384.87 22887.85 21769.75 21074.52 24984.74 27761.34 16893.11 17358.24 29385.84 16184.27 333
tpm72.37 28071.71 27274.35 31582.19 31252.00 35679.22 31777.29 34864.56 28572.95 26583.68 29851.35 26183.26 33558.33 29275.80 29187.81 270
DELS-MVS85.41 5785.30 5885.77 6488.49 16267.93 13285.52 21993.44 2778.70 2983.63 8789.03 16474.57 2495.71 5680.26 9294.04 5993.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned79.47 16378.60 16382.05 19289.19 13765.91 17386.07 20188.52 20372.18 15875.42 22587.69 20061.15 17393.54 14860.38 27286.83 14486.70 298
RPMNet73.51 26770.49 28782.58 18581.32 32765.19 19175.92 34392.27 7657.60 35172.73 26776.45 36452.30 24595.43 6548.14 35377.71 26487.11 289
MVSTER79.01 17777.88 18182.38 18883.07 29264.80 20084.08 25188.95 18969.01 23178.69 14587.17 21754.70 22492.43 19374.69 14280.57 23489.89 214
CPTT-MVS83.73 7483.33 8084.92 8793.28 4970.86 6992.09 3790.38 13768.75 23579.57 13292.83 7660.60 18493.04 17880.92 8491.56 8490.86 168
GBi-Net78.40 19077.40 19581.40 20787.60 19963.01 23888.39 12889.28 17071.63 16475.34 22887.28 21054.80 22091.11 24262.72 24879.57 24490.09 201
PVSNet_Blended_VisFu82.62 9681.83 10484.96 8490.80 8969.76 8788.74 11791.70 10269.39 21578.96 13988.46 18165.47 11794.87 9474.42 14588.57 12390.24 193
PVSNet_BlendedMVS80.60 13880.02 13082.36 18988.85 14665.40 18686.16 19992.00 8769.34 21778.11 16386.09 24966.02 11294.27 11371.52 17182.06 21587.39 279
UnsupCasMVSNet_eth67.33 32265.99 32671.37 33773.48 37751.47 36475.16 35085.19 25865.20 27760.78 36380.93 33242.35 33677.20 36257.12 30253.69 38385.44 318
UnsupCasMVSNet_bld63.70 33961.53 34570.21 34673.69 37551.39 36572.82 35981.89 30555.63 36157.81 37471.80 37838.67 35678.61 35549.26 34552.21 38580.63 364
PVSNet_Blended80.98 12480.34 12582.90 17288.85 14665.40 18684.43 24292.00 8767.62 24978.11 16385.05 27366.02 11294.27 11371.52 17189.50 11189.01 241
FMVSNet569.50 30667.96 30774.15 31782.97 29855.35 33380.01 30882.12 30462.56 31163.02 35581.53 32436.92 36381.92 34148.42 34874.06 31785.17 324
test178.40 19077.40 19581.40 20787.60 19963.01 23888.39 12889.28 17071.63 16475.34 22887.28 21054.80 22091.11 24262.72 24879.57 24490.09 201
new_pmnet50.91 35850.29 35852.78 37868.58 38834.94 40063.71 38756.63 39839.73 38644.95 38865.47 38421.93 38858.48 39734.98 38556.62 37764.92 386
FMVSNet377.88 20676.85 20780.97 22286.84 21962.36 24586.52 18988.77 19471.13 17675.34 22886.66 23254.07 23191.10 24562.72 24879.57 24489.45 227
dp66.80 32565.43 32770.90 34479.74 34748.82 37475.12 35274.77 36159.61 33364.08 35177.23 36042.89 33380.72 34848.86 34766.58 35783.16 346
FMVSNet278.20 19677.21 19981.20 21487.60 19962.89 24287.47 16089.02 18471.63 16475.29 23387.28 21054.80 22091.10 24562.38 25379.38 24889.61 223
FMVSNet177.44 21676.12 22281.40 20786.81 22063.01 23888.39 12889.28 17070.49 19274.39 25087.28 21049.06 29091.11 24260.91 26978.52 25690.09 201
N_pmnet52.79 35553.26 35451.40 37978.99 3547.68 41169.52 3713.89 41051.63 37257.01 37674.98 37140.83 34765.96 39437.78 38264.67 36380.56 366
cascas76.72 22974.64 24182.99 16885.78 23565.88 17482.33 27589.21 17660.85 32472.74 26681.02 32847.28 30093.75 14067.48 21285.02 16689.34 230
BH-RMVSNet79.61 15878.44 16783.14 16089.38 12665.93 17284.95 22787.15 23273.56 13478.19 16189.79 14156.67 21293.36 15659.53 27986.74 14590.13 197
UGNet80.83 12879.59 14084.54 9888.04 18068.09 12889.42 9188.16 20676.95 5976.22 20789.46 15349.30 28693.94 12768.48 20490.31 9891.60 140
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS75.65 24575.68 22675.57 30286.40 22756.82 31177.92 33482.40 30165.10 27876.18 20987.72 19863.13 14180.90 34760.31 27381.96 21689.00 243
XXY-MVS75.41 25075.56 22874.96 30883.59 27957.82 29880.59 29983.87 27866.54 26474.93 24388.31 18563.24 13580.09 35062.16 25776.85 27586.97 292
EC-MVSNet86.01 4386.38 3884.91 8889.31 13166.27 16692.32 3093.63 2179.37 2084.17 7691.88 9369.04 8295.43 6583.93 5793.77 6193.01 99
sss73.60 26673.64 25673.51 32282.80 30055.01 33776.12 34181.69 30862.47 31274.68 24685.85 25357.32 20778.11 35860.86 27080.93 22787.39 279
Test_1112_low_res76.40 23575.44 23079.27 25589.28 13358.09 29081.69 28287.07 23359.53 33572.48 27186.67 23161.30 16989.33 27460.81 27180.15 23990.41 186
1112_ss77.40 21876.43 21880.32 23589.11 14360.41 27283.65 25587.72 22062.13 31673.05 26486.72 22662.58 14689.97 26362.11 25980.80 23090.59 179
ab-mvs-re7.23 3739.64 3760.00 3900.00 4130.00 4150.00 4010.00 4140.00 4080.00 40986.72 2260.00 4130.00 4090.00 4080.00 4070.00 405
ab-mvs79.51 16178.97 15781.14 21688.46 16460.91 26383.84 25289.24 17570.36 19379.03 13888.87 16963.23 13690.21 26065.12 23282.57 21092.28 122
TR-MVS77.44 21676.18 22181.20 21488.24 17163.24 23384.61 23586.40 24367.55 25077.81 16986.48 24054.10 23093.15 17057.75 29782.72 20887.20 284
MDTV_nov1_ep13_2view37.79 39775.16 35055.10 36266.53 33349.34 28553.98 31887.94 267
MDTV_nov1_ep1369.97 29383.18 28953.48 34977.10 33980.18 32760.45 32569.33 30680.44 33448.89 29486.90 30451.60 33078.51 257
MIMVSNet168.58 31366.78 32373.98 31980.07 34051.82 36080.77 29484.37 26864.40 28759.75 36882.16 32036.47 36483.63 33142.73 37370.33 34386.48 301
MIMVSNet70.69 29569.30 29474.88 30984.52 26156.35 32275.87 34579.42 33264.59 28467.76 31682.41 31541.10 34581.54 34346.64 36081.34 22286.75 297
IterMVS-LS80.06 15179.38 14482.11 19185.89 23363.20 23586.79 18089.34 16874.19 11975.45 22486.72 22666.62 10192.39 19572.58 16576.86 27490.75 172
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet79.07 17677.70 18983.17 15987.60 19968.23 12584.40 24486.20 24667.49 25176.36 20486.54 23861.54 16290.79 25261.86 26187.33 13690.49 183
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref81.95 217
IterMVS74.29 25772.94 26278.35 27181.53 32163.49 22781.58 28382.49 30068.06 24669.99 29783.69 29751.66 26085.54 31665.85 22771.64 33786.01 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon83.11 9182.09 9886.15 5894.44 1970.92 6888.79 11392.20 8170.53 19179.17 13791.03 11964.12 12796.03 4668.39 20690.14 10291.50 145
MVS_111021_LR82.61 9782.11 9784.11 11788.82 14971.58 5385.15 22286.16 24774.69 10880.47 12391.04 11762.29 15190.55 25680.33 9190.08 10490.20 194
DP-MVS76.78 22874.57 24283.42 14793.29 4869.46 9488.55 12483.70 27963.98 29570.20 29188.89 16854.01 23294.80 9646.66 35881.88 21886.01 310
ACMMP++81.25 223
HQP-MVS82.61 9782.02 10084.37 10589.33 12866.98 15589.17 9892.19 8276.41 7277.23 18290.23 13360.17 18995.11 8077.47 11485.99 15991.03 162
QAPM80.88 12679.50 14285.03 8188.01 18268.97 10391.59 4392.00 8766.63 26375.15 23792.16 8857.70 20295.45 6363.52 24188.76 12190.66 175
Vis-MVSNetpermissive83.46 8282.80 8985.43 7190.25 9968.74 11090.30 6990.13 14876.33 7880.87 12092.89 7461.00 17694.20 11872.45 16890.97 9093.35 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet59.14 34657.67 34963.57 36381.65 31843.50 38871.73 36265.06 38739.59 38751.43 38457.73 39138.34 35882.58 33839.53 37873.95 31864.62 387
IS-MVSNet83.15 8882.81 8884.18 11689.94 11063.30 23291.59 4388.46 20479.04 2579.49 13392.16 8865.10 12094.28 11267.71 20991.86 8194.95 10
HyFIR lowres test77.53 21575.40 23283.94 13689.59 11666.62 16080.36 30388.64 20156.29 35976.45 20085.17 26957.64 20393.28 15861.34 26783.10 20391.91 135
EPMVS69.02 30968.16 30471.59 33579.61 34849.80 37377.40 33666.93 38262.82 30870.01 29579.05 34645.79 31577.86 36056.58 30875.26 30687.13 288
PAPM_NR83.02 9282.41 9284.82 9092.47 6766.37 16487.93 14891.80 9873.82 12777.32 17990.66 12567.90 9194.90 9170.37 18389.48 11293.19 91
TAMVS78.89 18177.51 19483.03 16687.80 18967.79 13584.72 23185.05 26067.63 24876.75 19387.70 19962.25 15290.82 25158.53 29087.13 13990.49 183
PAPR81.66 11480.89 11683.99 13390.27 9864.00 21586.76 18391.77 10168.84 23477.13 18889.50 14967.63 9394.88 9367.55 21188.52 12593.09 94
RPSCF73.23 27271.46 27578.54 26782.50 30759.85 27782.18 27782.84 29858.96 34071.15 28589.41 15745.48 32084.77 32458.82 28771.83 33691.02 164
Vis-MVSNet (Re-imp)78.36 19278.45 16678.07 27688.64 15851.78 36186.70 18479.63 33174.14 12175.11 23890.83 12361.29 17089.75 26758.10 29491.60 8292.69 107
test_040272.79 27770.44 28879.84 24488.13 17565.99 17185.93 20484.29 27165.57 27567.40 32385.49 26146.92 30392.61 18735.88 38474.38 31580.94 363
MVS_111021_HR85.14 6084.75 6486.32 5591.65 7672.70 3085.98 20290.33 14176.11 8182.08 10291.61 10071.36 5694.17 12081.02 8292.58 7092.08 131
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5793.56 2473.95 12383.16 9191.07 11675.94 1895.19 7579.94 9494.38 5493.55 76
PatchMatch-RL72.38 27970.90 28376.80 29388.60 15967.38 14579.53 31276.17 35662.75 30969.36 30582.00 32345.51 31884.89 32353.62 32080.58 23378.12 371
API-MVS81.99 10581.23 10984.26 11490.94 8570.18 8291.10 5389.32 16971.51 17078.66 14788.28 18665.26 11895.10 8364.74 23691.23 8887.51 277
Test By Simon64.33 125
TDRefinement67.49 32064.34 33076.92 29173.47 37861.07 26184.86 22982.98 29459.77 33258.30 37285.13 27026.06 38287.89 29747.92 35560.59 37381.81 359
USDC70.33 29968.37 30176.21 29680.60 33356.23 32379.19 31886.49 24160.89 32361.29 36185.47 26231.78 37489.47 27353.37 32276.21 28882.94 351
EPP-MVSNet83.40 8483.02 8484.57 9690.13 10164.47 20792.32 3090.73 12874.45 11579.35 13591.10 11469.05 8195.12 7872.78 16387.22 13894.13 44
PMMVS69.34 30768.67 29971.35 33975.67 36662.03 25075.17 34973.46 36650.00 37568.68 31079.05 34652.07 25278.13 35761.16 26882.77 20673.90 378
PAPM77.68 21376.40 21981.51 20387.29 21261.85 25383.78 25389.59 16264.74 28371.23 28388.70 17262.59 14593.66 14352.66 32587.03 14189.01 241
ACMMPcopyleft85.89 4885.39 5487.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12193.82 5364.33 12596.29 3982.67 7390.69 9493.23 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA78.08 19976.79 20981.97 19590.40 9771.07 6287.59 15784.55 26666.03 27072.38 27389.64 14557.56 20486.04 31159.61 27883.35 19988.79 252
PatchmatchNetpermissive73.12 27371.33 27878.49 27083.18 28960.85 26479.63 31178.57 33864.13 29071.73 27979.81 34251.20 26385.97 31257.40 30076.36 28788.66 256
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15385.22 5491.90 9269.47 7496.42 3783.28 6295.94 1994.35 36
F-COLMAP76.38 23674.33 24782.50 18689.28 13366.95 15888.41 12789.03 18364.05 29366.83 32888.61 17646.78 30492.89 18157.48 29878.55 25587.67 272
ANet_high50.57 35946.10 36363.99 36248.67 40539.13 39670.99 36680.85 31461.39 32131.18 39457.70 39217.02 39373.65 38531.22 38915.89 40279.18 369
wuyk23d16.82 37215.94 37519.46 38658.74 39531.45 40139.22 3963.74 4116.84 4026.04 4052.70 4051.27 41024.29 40510.54 40514.40 4042.63 402
OMC-MVS82.69 9581.97 10284.85 8988.75 15467.42 14387.98 14490.87 12574.92 10379.72 13091.65 9762.19 15493.96 12475.26 14086.42 15093.16 92
MG-MVS83.41 8383.45 7683.28 15292.74 6262.28 24888.17 13889.50 16475.22 9681.49 11192.74 8266.75 10095.11 8072.85 16291.58 8392.45 117
AdaColmapbinary80.58 14079.42 14384.06 12593.09 5468.91 10489.36 9488.97 18869.27 21875.70 21789.69 14357.20 20995.77 5463.06 24688.41 12787.50 278
uanet0.00 3770.00 3800.00 3900.00 4130.00 4150.00 4010.00 4140.00 4080.00 4090.00 4080.00 4130.00 4090.00 4080.00 4070.00 405
ITE_SJBPF78.22 27281.77 31760.57 26883.30 28669.25 22067.54 31987.20 21536.33 36587.28 30354.34 31774.62 31386.80 295
DeepMVS_CXcopyleft27.40 38540.17 40826.90 40324.59 40917.44 40123.95 39948.61 3969.77 40026.48 40418.06 39824.47 39828.83 398
TinyColmap67.30 32364.81 32874.76 31181.92 31656.68 31580.29 30581.49 31060.33 32656.27 37983.22 30224.77 38487.66 30145.52 36669.47 34679.95 367
MAR-MVS81.84 10780.70 11885.27 7491.32 7971.53 5489.82 7790.92 12269.77 20978.50 15186.21 24562.36 15094.52 10665.36 23092.05 7789.77 219
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS64.02 33862.19 34269.50 34870.90 38553.29 35376.13 34077.18 34952.65 36858.59 37080.98 32923.55 38676.52 36753.06 32466.66 35678.68 370
MSDG73.36 27070.99 28280.49 23184.51 26265.80 17780.71 29786.13 24865.70 27365.46 34183.74 29544.60 32290.91 25051.13 33376.89 27384.74 329
LS3D76.95 22674.82 24083.37 15090.45 9567.36 14689.15 10286.94 23561.87 31869.52 30390.61 12651.71 25994.53 10546.38 36186.71 14688.21 264
CLD-MVS82.31 9981.65 10584.29 11088.47 16367.73 13685.81 21092.35 7475.78 8678.33 15686.58 23664.01 12894.35 11076.05 13187.48 13590.79 169
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS53.68 35351.64 35559.81 36865.08 39251.03 36669.48 37269.58 37741.46 38440.67 39072.32 37716.46 39470.00 39024.24 39665.42 36158.40 392
Gipumacopyleft45.18 36341.86 36655.16 37677.03 36251.52 36332.50 39880.52 31932.46 39427.12 39735.02 3989.52 40175.50 37522.31 39760.21 37438.45 397
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015