| MVS_0304 | | | 88.08 13 | 88.08 16 | 88.08 13 | 89.67 113 | 72.04 47 | 92.26 32 | 89.26 172 | 84.19 1 | 85.01 48 | 95.18 13 | 69.93 66 | 97.20 13 | 91.63 1 | 95.60 28 | 94.99 8 |
|
| UA-Net | | | 85.08 61 | 84.96 61 | 85.45 69 | 92.07 70 | 68.07 125 | 89.78 79 | 90.86 125 | 82.48 2 | 84.60 61 | 93.20 59 | 69.35 72 | 95.22 73 | 71.39 167 | 90.88 91 | 93.07 90 |
|
| CANet | | | 86.45 37 | 86.10 44 | 87.51 36 | 90.09 101 | 70.94 66 | 89.70 82 | 92.59 66 | 81.78 3 | 81.32 105 | 91.43 99 | 70.34 61 | 97.23 12 | 84.26 45 | 93.36 63 | 94.37 34 |
|
| NCCC | | | 88.06 14 | 88.01 18 | 88.24 10 | 94.41 22 | 73.62 10 | 91.22 51 | 92.83 55 | 81.50 4 | 85.79 41 | 93.47 54 | 73.02 39 | 97.00 17 | 84.90 35 | 94.94 38 | 94.10 44 |
|
| EPNet | | | 83.72 71 | 82.92 80 | 86.14 58 | 84.22 254 | 69.48 90 | 91.05 54 | 85.27 254 | 81.30 5 | 76.83 183 | 91.65 90 | 66.09 103 | 95.56 57 | 76.00 125 | 93.85 59 | 93.38 78 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| CNVR-MVS | | | 88.93 9 | 89.13 9 | 88.33 7 | 94.77 12 | 73.82 8 | 90.51 60 | 93.00 43 | 80.90 6 | 88.06 26 | 94.06 41 | 76.43 16 | 96.84 20 | 88.48 20 | 95.99 18 | 94.34 36 |
|
| 3Dnovator+ | | 77.84 4 | 85.48 53 | 84.47 67 | 88.51 6 | 91.08 81 | 73.49 15 | 93.18 11 | 93.78 18 | 80.79 7 | 76.66 188 | 93.37 55 | 60.40 181 | 96.75 25 | 77.20 110 | 93.73 61 | 95.29 4 |
|
| TranMVSNet+NR-MVSNet | | | 80.84 120 | 80.31 119 | 82.42 180 | 87.85 182 | 62.33 239 | 87.74 147 | 91.33 112 | 80.55 8 | 77.99 160 | 89.86 132 | 65.23 112 | 92.62 185 | 67.05 211 | 75.24 294 | 92.30 116 |
|
| MSP-MVS | | | 89.51 4 | 89.91 5 | 88.30 9 | 94.28 30 | 73.46 16 | 92.90 16 | 94.11 6 | 80.27 9 | 91.35 14 | 94.16 36 | 78.35 13 | 96.77 23 | 89.59 7 | 94.22 57 | 94.67 23 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| HPM-MVS++ |  | | 89.02 8 | 89.15 8 | 88.63 4 | 95.01 9 | 76.03 1 | 92.38 26 | 92.85 54 | 80.26 10 | 87.78 28 | 94.27 31 | 75.89 19 | 96.81 22 | 87.45 25 | 96.44 9 | 93.05 91 |
|
| UniMVSNet_NR-MVSNet | | | 81.88 99 | 81.54 99 | 82.92 164 | 88.46 163 | 63.46 221 | 87.13 161 | 92.37 73 | 80.19 11 | 78.38 147 | 89.14 153 | 71.66 50 | 93.05 175 | 70.05 179 | 76.46 267 | 92.25 118 |
|
| SteuartSystems-ACMMP | | | 88.72 10 | 88.86 10 | 88.32 8 | 92.14 69 | 72.96 24 | 93.73 5 | 93.67 20 | 80.19 11 | 88.10 25 | 94.80 16 | 73.76 33 | 97.11 14 | 87.51 24 | 95.82 21 | 94.90 12 |
| Skip Steuart: Steuart Systems R&D Blog. |
| EI-MVSNet-Vis-set | | | 84.19 66 | 83.81 70 | 85.31 72 | 88.18 171 | 67.85 128 | 87.66 148 | 89.73 158 | 80.05 13 | 82.95 85 | 89.59 141 | 70.74 58 | 94.82 94 | 80.66 82 | 84.72 165 | 93.28 83 |
|
| ETV-MVS | | | 84.90 64 | 84.67 64 | 85.59 66 | 89.39 124 | 68.66 114 | 88.74 112 | 92.64 65 | 79.97 14 | 84.10 70 | 85.71 247 | 69.32 73 | 95.38 68 | 80.82 78 | 91.37 85 | 92.72 99 |
|
| EI-MVSNet-UG-set | | | 83.81 69 | 83.38 73 | 85.09 79 | 87.87 181 | 67.53 136 | 87.44 154 | 89.66 159 | 79.74 15 | 82.23 94 | 89.41 150 | 70.24 63 | 94.74 97 | 79.95 86 | 83.92 175 | 92.99 95 |
|
| CS-MVS | | | 86.69 34 | 86.95 30 | 85.90 62 | 90.76 90 | 67.57 135 | 92.83 17 | 93.30 32 | 79.67 16 | 84.57 62 | 92.27 79 | 71.47 51 | 95.02 85 | 84.24 47 | 93.46 62 | 95.13 5 |
|
| casdiffmvs_mvg |  | | 85.99 43 | 86.09 45 | 85.70 65 | 87.65 192 | 67.22 144 | 88.69 114 | 93.04 38 | 79.64 17 | 85.33 45 | 92.54 76 | 73.30 35 | 94.50 106 | 83.49 52 | 91.14 88 | 95.37 1 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MTAPA | | | 87.23 27 | 87.00 28 | 87.90 21 | 94.18 35 | 74.25 5 | 86.58 180 | 92.02 85 | 79.45 18 | 85.88 39 | 94.80 16 | 68.07 82 | 96.21 41 | 86.69 29 | 95.34 32 | 93.23 84 |
|
| EC-MVSNet | | | 86.01 42 | 86.38 37 | 84.91 87 | 89.31 130 | 66.27 159 | 92.32 29 | 93.63 21 | 79.37 19 | 84.17 69 | 91.88 86 | 69.04 78 | 95.43 64 | 83.93 50 | 93.77 60 | 93.01 94 |
|
| XVS | | | 87.18 28 | 86.91 32 | 88.00 16 | 94.42 20 | 73.33 18 | 92.78 18 | 92.99 45 | 79.14 20 | 83.67 78 | 94.17 35 | 67.45 88 | 96.60 32 | 83.06 56 | 94.50 49 | 94.07 46 |
|
| X-MVStestdata | | | 80.37 138 | 77.83 175 | 88.00 16 | 94.42 20 | 73.33 18 | 92.78 18 | 92.99 45 | 79.14 20 | 83.67 78 | 12.47 389 | 67.45 88 | 96.60 32 | 83.06 56 | 94.50 49 | 94.07 46 |
|
| HQP_MVS | | | 83.64 73 | 83.14 75 | 85.14 76 | 90.08 102 | 68.71 110 | 91.25 49 | 92.44 69 | 79.12 22 | 78.92 134 | 91.00 113 | 60.42 179 | 95.38 68 | 78.71 95 | 86.32 148 | 91.33 142 |
|
| plane_prior2 | | | | | | | | 91.25 49 | | 79.12 22 | | | | | | | |
|
| IS-MVSNet | | | 83.15 81 | 82.81 81 | 84.18 112 | 89.94 109 | 63.30 225 | 91.59 42 | 88.46 203 | 79.04 24 | 79.49 126 | 92.16 81 | 65.10 113 | 94.28 111 | 67.71 202 | 91.86 80 | 94.95 9 |
|
| DU-MVS | | | 81.12 116 | 80.52 115 | 82.90 165 | 87.80 185 | 63.46 221 | 87.02 165 | 91.87 95 | 79.01 25 | 78.38 147 | 89.07 155 | 65.02 114 | 93.05 175 | 70.05 179 | 76.46 267 | 92.20 120 |
|
| NR-MVSNet | | | 80.23 141 | 79.38 137 | 82.78 173 | 87.80 185 | 63.34 224 | 86.31 187 | 91.09 119 | 79.01 25 | 72.17 262 | 89.07 155 | 67.20 91 | 92.81 184 | 66.08 218 | 75.65 280 | 92.20 120 |
|
| CS-MVS-test | | | 86.29 41 | 86.48 36 | 85.71 64 | 91.02 83 | 67.21 145 | 92.36 28 | 93.78 18 | 78.97 27 | 83.51 81 | 91.20 104 | 70.65 60 | 95.15 76 | 81.96 69 | 94.89 40 | 94.77 21 |
|
| DELS-MVS | | | 85.41 56 | 85.30 57 | 85.77 63 | 88.49 161 | 67.93 127 | 85.52 212 | 93.44 27 | 78.70 28 | 83.63 80 | 89.03 157 | 74.57 24 | 95.71 55 | 80.26 85 | 94.04 58 | 93.66 64 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| WR-MVS | | | 79.49 155 | 79.22 144 | 80.27 229 | 88.79 151 | 58.35 280 | 85.06 217 | 88.61 201 | 78.56 29 | 77.65 165 | 88.34 177 | 63.81 124 | 90.66 248 | 64.98 227 | 77.22 256 | 91.80 131 |
|
| plane_prior3 | | | | | | | 68.60 115 | | | 78.44 30 | 78.92 134 | | | | | | |
|
| UniMVSNet (Re) | | | 81.60 108 | 81.11 104 | 83.09 155 | 88.38 166 | 64.41 202 | 87.60 149 | 93.02 42 | 78.42 31 | 78.56 143 | 88.16 183 | 69.78 68 | 93.26 158 | 69.58 186 | 76.49 266 | 91.60 133 |
|
| DVP-MVS++ | | | 90.23 1 | 91.01 1 | 87.89 23 | 94.34 27 | 71.25 56 | 95.06 1 | 94.23 3 | 78.38 32 | 92.78 4 | 95.74 6 | 82.45 3 | 97.49 3 | 89.42 8 | 96.68 2 | 94.95 9 |
|
| test_0728_THIRD | | | | | | | | | | 78.38 32 | 92.12 9 | 95.78 4 | 81.46 7 | 97.40 7 | 89.42 8 | 96.57 7 | 94.67 23 |
|
| test_one_0601 | | | | | | 95.07 7 | 71.46 54 | | 94.14 5 | 78.27 34 | 92.05 11 | 95.74 6 | 80.83 11 | | | | |
|
| SD-MVS | | | 88.06 14 | 88.50 13 | 86.71 50 | 92.60 66 | 72.71 28 | 91.81 41 | 93.19 35 | 77.87 35 | 90.32 17 | 94.00 44 | 74.83 23 | 93.78 135 | 87.63 23 | 94.27 56 | 93.65 68 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| casdiffmvs |  | | 85.11 60 | 85.14 59 | 85.01 81 | 87.20 208 | 65.77 172 | 87.75 146 | 92.83 55 | 77.84 36 | 84.36 66 | 92.38 78 | 72.15 44 | 93.93 129 | 81.27 74 | 90.48 95 | 95.33 3 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| CP-MVSNet | | | 78.22 187 | 78.34 163 | 77.84 268 | 87.83 184 | 54.54 331 | 87.94 140 | 91.17 116 | 77.65 37 | 73.48 247 | 88.49 173 | 62.24 146 | 88.43 281 | 62.19 247 | 74.07 303 | 90.55 172 |
|
| plane_prior | | | | | | | 68.71 110 | 90.38 66 | | 77.62 38 | | | | | | 86.16 152 | |
|
| baseline | | | 84.93 62 | 84.98 60 | 84.80 91 | 87.30 206 | 65.39 181 | 87.30 158 | 92.88 52 | 77.62 38 | 84.04 72 | 92.26 80 | 71.81 46 | 93.96 123 | 81.31 73 | 90.30 98 | 95.03 7 |
|
| VDD-MVS | | | 83.01 86 | 82.36 87 | 84.96 83 | 91.02 83 | 66.40 156 | 88.91 103 | 88.11 206 | 77.57 40 | 84.39 65 | 93.29 57 | 52.19 239 | 93.91 130 | 77.05 112 | 88.70 119 | 94.57 28 |
|
| MP-MVS |  | | 87.71 19 | 87.64 21 | 87.93 20 | 94.36 26 | 73.88 6 | 92.71 22 | 92.65 64 | 77.57 40 | 83.84 75 | 94.40 29 | 72.24 43 | 96.28 39 | 85.65 31 | 95.30 34 | 93.62 71 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| PEN-MVS | | | 77.73 202 | 77.69 183 | 77.84 268 | 87.07 211 | 53.91 336 | 87.91 142 | 91.18 115 | 77.56 42 | 73.14 251 | 88.82 163 | 61.23 164 | 89.17 268 | 59.95 266 | 72.37 318 | 90.43 176 |
|
| OPM-MVS | | | 83.50 75 | 82.95 79 | 85.14 76 | 88.79 151 | 70.95 65 | 89.13 98 | 91.52 106 | 77.55 43 | 80.96 112 | 91.75 88 | 60.71 172 | 94.50 106 | 79.67 88 | 86.51 146 | 89.97 202 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| DeepPCF-MVS | | 80.84 1 | 88.10 12 | 88.56 12 | 86.73 49 | 92.24 68 | 69.03 98 | 89.57 86 | 93.39 30 | 77.53 44 | 89.79 18 | 94.12 38 | 78.98 12 | 96.58 34 | 85.66 30 | 95.72 24 | 94.58 26 |
|
| PS-CasMVS | | | 78.01 196 | 78.09 168 | 77.77 270 | 87.71 189 | 54.39 333 | 88.02 136 | 91.22 113 | 77.50 45 | 73.26 249 | 88.64 168 | 60.73 171 | 88.41 282 | 61.88 251 | 73.88 307 | 90.53 173 |
|
| MSLP-MVS++ | | | 85.43 55 | 85.76 49 | 84.45 102 | 91.93 72 | 70.24 75 | 90.71 57 | 92.86 53 | 77.46 46 | 84.22 67 | 92.81 71 | 67.16 92 | 92.94 179 | 80.36 83 | 94.35 54 | 90.16 186 |
|
| DVP-MVS |  | | 89.60 3 | 90.35 3 | 87.33 39 | 95.27 5 | 71.25 56 | 93.49 9 | 92.73 59 | 77.33 47 | 92.12 9 | 95.78 4 | 80.98 9 | 97.40 7 | 89.08 11 | 96.41 12 | 93.33 81 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 95.27 5 | 71.25 56 | 93.60 6 | 94.11 6 | 77.33 47 | 92.81 3 | 95.79 3 | 80.98 9 | | | | |
|
| SED-MVS | | | 90.08 2 | 90.85 2 | 87.77 25 | 95.30 2 | 70.98 62 | 93.57 7 | 94.06 10 | 77.24 49 | 93.10 1 | 95.72 8 | 82.99 1 | 97.44 5 | 89.07 13 | 96.63 4 | 94.88 13 |
|
| test_241102_TWO | | | | | | | | | 94.06 10 | 77.24 49 | 92.78 4 | 95.72 8 | 81.26 8 | 97.44 5 | 89.07 13 | 96.58 6 | 94.26 40 |
|
| 3Dnovator | | 76.31 5 | 83.38 79 | 82.31 88 | 86.59 51 | 87.94 180 | 72.94 27 | 90.64 58 | 92.14 84 | 77.21 51 | 75.47 213 | 92.83 69 | 58.56 188 | 94.72 98 | 73.24 152 | 92.71 68 | 92.13 123 |
|
| test_241102_ONE | | | | | | 95.30 2 | 70.98 62 | | 94.06 10 | 77.17 52 | 93.10 1 | 95.39 11 | 82.99 1 | 97.27 10 | | | |
|
| WR-MVS_H | | | 78.51 182 | 78.49 158 | 78.56 258 | 88.02 178 | 56.38 313 | 88.43 120 | 92.67 61 | 77.14 53 | 73.89 244 | 87.55 198 | 66.25 101 | 89.24 267 | 58.92 276 | 73.55 310 | 90.06 196 |
|
| DeepC-MVS | | 79.81 2 | 87.08 31 | 86.88 33 | 87.69 32 | 91.16 80 | 72.32 42 | 90.31 67 | 93.94 14 | 77.12 54 | 82.82 89 | 94.23 34 | 72.13 45 | 97.09 15 | 84.83 38 | 95.37 31 | 93.65 68 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| FC-MVSNet-test | | | 81.52 109 | 82.02 93 | 80.03 233 | 88.42 165 | 55.97 318 | 87.95 139 | 93.42 29 | 77.10 55 | 77.38 170 | 90.98 115 | 69.96 65 | 91.79 216 | 68.46 198 | 84.50 167 | 92.33 114 |
|
| DTE-MVSNet | | | 76.99 217 | 76.80 201 | 77.54 275 | 86.24 221 | 53.06 344 | 87.52 151 | 90.66 128 | 77.08 56 | 72.50 257 | 88.67 167 | 60.48 178 | 89.52 262 | 57.33 292 | 70.74 329 | 90.05 197 |
|
| LFMVS | | | 81.82 101 | 81.23 102 | 83.57 137 | 91.89 73 | 63.43 223 | 89.84 75 | 81.85 300 | 77.04 57 | 83.21 82 | 93.10 60 | 52.26 238 | 93.43 154 | 71.98 162 | 89.95 106 | 93.85 56 |
|
| UGNet | | | 80.83 121 | 79.59 133 | 84.54 97 | 88.04 177 | 68.09 124 | 89.42 88 | 88.16 205 | 76.95 58 | 76.22 200 | 89.46 146 | 49.30 278 | 93.94 126 | 68.48 197 | 90.31 97 | 91.60 133 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| FIs | | | 82.07 96 | 82.42 84 | 81.04 212 | 88.80 150 | 58.34 281 | 88.26 128 | 93.49 26 | 76.93 59 | 78.47 146 | 91.04 110 | 69.92 67 | 92.34 198 | 69.87 183 | 84.97 162 | 92.44 113 |
|
| GST-MVS | | | 87.42 24 | 87.26 24 | 87.89 23 | 94.12 36 | 72.97 23 | 92.39 25 | 93.43 28 | 76.89 60 | 84.68 56 | 93.99 46 | 70.67 59 | 96.82 21 | 84.18 49 | 95.01 36 | 93.90 54 |
|
| mPP-MVS | | | 86.67 36 | 86.32 38 | 87.72 29 | 94.41 22 | 73.55 12 | 92.74 20 | 92.22 80 | 76.87 61 | 82.81 90 | 94.25 33 | 66.44 98 | 96.24 40 | 82.88 60 | 94.28 55 | 93.38 78 |
|
| ZNCC-MVS | | | 87.94 18 | 87.85 19 | 88.20 11 | 94.39 24 | 73.33 18 | 93.03 14 | 93.81 17 | 76.81 62 | 85.24 46 | 94.32 30 | 71.76 47 | 96.93 18 | 85.53 32 | 95.79 22 | 94.32 37 |
|
| VPNet | | | 78.69 178 | 78.66 155 | 78.76 254 | 88.31 168 | 55.72 320 | 84.45 234 | 86.63 237 | 76.79 63 | 78.26 151 | 90.55 121 | 59.30 184 | 89.70 260 | 66.63 213 | 77.05 258 | 90.88 159 |
|
| HFP-MVS | | | 87.58 21 | 87.47 23 | 87.94 18 | 94.58 16 | 73.54 14 | 93.04 12 | 93.24 33 | 76.78 64 | 84.91 52 | 94.44 27 | 70.78 57 | 96.61 31 | 84.53 42 | 94.89 40 | 93.66 64 |
|
| ACMMPR | | | 87.44 22 | 87.23 26 | 88.08 13 | 94.64 13 | 73.59 11 | 93.04 12 | 93.20 34 | 76.78 64 | 84.66 59 | 94.52 20 | 68.81 79 | 96.65 29 | 84.53 42 | 94.90 39 | 94.00 49 |
|
| ACMMP |  | | 85.89 47 | 85.39 53 | 87.38 38 | 93.59 45 | 72.63 32 | 92.74 20 | 93.18 36 | 76.78 64 | 80.73 114 | 93.82 50 | 64.33 118 | 96.29 38 | 82.67 66 | 90.69 93 | 93.23 84 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| region2R | | | 87.42 24 | 87.20 27 | 88.09 12 | 94.63 14 | 73.55 12 | 93.03 14 | 93.12 37 | 76.73 67 | 84.45 63 | 94.52 20 | 69.09 75 | 96.70 26 | 84.37 44 | 94.83 43 | 94.03 48 |
|
| canonicalmvs | | | 85.91 46 | 85.87 48 | 86.04 59 | 89.84 111 | 69.44 94 | 90.45 65 | 93.00 43 | 76.70 68 | 88.01 27 | 91.23 102 | 73.28 36 | 93.91 130 | 81.50 72 | 88.80 117 | 94.77 21 |
|
| CP-MVS | | | 87.11 29 | 86.92 31 | 87.68 33 | 94.20 34 | 73.86 7 | 93.98 3 | 92.82 58 | 76.62 69 | 83.68 77 | 94.46 24 | 67.93 83 | 95.95 51 | 84.20 48 | 94.39 52 | 93.23 84 |
|
| DeepC-MVS_fast | | 79.65 3 | 86.91 32 | 86.62 35 | 87.76 26 | 93.52 46 | 72.37 40 | 91.26 47 | 93.04 38 | 76.62 69 | 84.22 67 | 93.36 56 | 71.44 52 | 96.76 24 | 80.82 78 | 95.33 33 | 94.16 42 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| TSAR-MVS + GP. | | | 85.71 50 | 85.33 55 | 86.84 46 | 91.34 78 | 72.50 35 | 89.07 99 | 87.28 227 | 76.41 71 | 85.80 40 | 90.22 127 | 74.15 31 | 95.37 71 | 81.82 70 | 91.88 77 | 92.65 104 |
|
| HQP-NCC | | | | | | 89.33 127 | | 89.17 93 | | 76.41 71 | 77.23 175 | | | | | | |
|
| ACMP_Plane | | | | | | 89.33 127 | | 89.17 93 | | 76.41 71 | 77.23 175 | | | | | | |
|
| HQP-MVS | | | 82.61 90 | 82.02 93 | 84.37 104 | 89.33 127 | 66.98 148 | 89.17 93 | 92.19 82 | 76.41 71 | 77.23 175 | 90.23 126 | 60.17 182 | 95.11 79 | 77.47 107 | 85.99 155 | 91.03 154 |
|
| CANet_DTU | | | 80.61 130 | 79.87 127 | 82.83 167 | 85.60 230 | 63.17 230 | 87.36 155 | 88.65 199 | 76.37 75 | 75.88 207 | 88.44 175 | 53.51 229 | 93.07 174 | 73.30 150 | 89.74 109 | 92.25 118 |
|
| VNet | | | 82.21 93 | 82.41 85 | 81.62 193 | 90.82 88 | 60.93 255 | 84.47 231 | 89.78 155 | 76.36 76 | 84.07 71 | 91.88 86 | 64.71 117 | 90.26 251 | 70.68 173 | 88.89 115 | 93.66 64 |
|
| Vis-MVSNet |  | | 83.46 76 | 82.80 82 | 85.43 70 | 90.25 98 | 68.74 108 | 90.30 68 | 90.13 147 | 76.33 77 | 80.87 113 | 92.89 67 | 61.00 169 | 94.20 117 | 72.45 161 | 90.97 89 | 93.35 80 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| ACMMP_NAP | | | 88.05 16 | 88.08 16 | 87.94 18 | 93.70 41 | 73.05 21 | 90.86 55 | 93.59 23 | 76.27 78 | 88.14 24 | 95.09 15 | 71.06 55 | 96.67 28 | 87.67 22 | 96.37 14 | 94.09 45 |
|
| alignmvs | | | 85.48 53 | 85.32 56 | 85.96 61 | 89.51 119 | 69.47 91 | 89.74 80 | 92.47 68 | 76.17 79 | 87.73 32 | 91.46 98 | 70.32 62 | 93.78 135 | 81.51 71 | 88.95 114 | 94.63 25 |
|
| MVS_111021_HR | | | 85.14 59 | 84.75 63 | 86.32 54 | 91.65 76 | 72.70 29 | 85.98 195 | 90.33 140 | 76.11 80 | 82.08 95 | 91.61 93 | 71.36 54 | 94.17 119 | 81.02 75 | 92.58 69 | 92.08 124 |
|
| HPM-MVS |  | | 87.11 29 | 86.98 29 | 87.50 37 | 93.88 39 | 72.16 44 | 92.19 33 | 93.33 31 | 76.07 81 | 83.81 76 | 93.95 48 | 69.77 69 | 96.01 47 | 85.15 33 | 94.66 45 | 94.32 37 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| h-mvs33 | | | 83.15 81 | 82.19 89 | 86.02 60 | 90.56 92 | 70.85 69 | 88.15 133 | 89.16 177 | 76.02 82 | 84.67 57 | 91.39 100 | 61.54 155 | 95.50 60 | 82.71 63 | 75.48 284 | 91.72 132 |
|
| hse-mvs2 | | | 81.72 102 | 80.94 108 | 84.07 118 | 88.72 154 | 67.68 133 | 85.87 199 | 87.26 228 | 76.02 82 | 84.67 57 | 88.22 182 | 61.54 155 | 93.48 150 | 82.71 63 | 73.44 312 | 91.06 152 |
|
| DPE-MVS |  | | 89.48 5 | 89.98 4 | 88.01 15 | 94.80 11 | 72.69 30 | 91.59 42 | 94.10 8 | 75.90 84 | 92.29 7 | 95.66 10 | 81.67 6 | 97.38 9 | 87.44 26 | 96.34 15 | 93.95 51 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| CLD-MVS | | | 82.31 92 | 81.65 98 | 84.29 109 | 88.47 162 | 67.73 131 | 85.81 203 | 92.35 74 | 75.78 85 | 78.33 149 | 86.58 229 | 64.01 121 | 94.35 109 | 76.05 124 | 87.48 132 | 90.79 161 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| SF-MVS | | | 88.46 11 | 88.74 11 | 87.64 34 | 92.78 61 | 71.95 49 | 92.40 23 | 94.74 2 | 75.71 86 | 89.16 19 | 95.10 14 | 75.65 21 | 96.19 42 | 87.07 27 | 96.01 17 | 94.79 20 |
|
| testdata1 | | | | | | | | 84.14 242 | | 75.71 86 | | | | | | | |
|
| APDe-MVS |  | | 89.15 6 | 89.63 6 | 87.73 27 | 94.49 18 | 71.69 51 | 93.83 4 | 93.96 13 | 75.70 88 | 91.06 16 | 96.03 1 | 76.84 14 | 97.03 16 | 89.09 10 | 95.65 27 | 94.47 30 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| VPA-MVSNet | | | 80.60 131 | 80.55 114 | 80.76 219 | 88.07 176 | 60.80 258 | 86.86 170 | 91.58 105 | 75.67 89 | 80.24 118 | 89.45 148 | 63.34 125 | 90.25 252 | 70.51 175 | 79.22 238 | 91.23 146 |
|
| PGM-MVS | | | 86.68 35 | 86.27 39 | 87.90 21 | 94.22 33 | 73.38 17 | 90.22 69 | 93.04 38 | 75.53 90 | 83.86 74 | 94.42 28 | 67.87 85 | 96.64 30 | 82.70 65 | 94.57 48 | 93.66 64 |
|
| Effi-MVS+ | | | 83.62 74 | 83.08 76 | 85.24 74 | 88.38 166 | 67.45 137 | 88.89 104 | 89.15 178 | 75.50 91 | 82.27 93 | 88.28 179 | 69.61 70 | 94.45 108 | 77.81 104 | 87.84 127 | 93.84 58 |
|
| test_prior2 | | | | | | | | 88.85 106 | | 75.41 92 | 84.91 52 | 93.54 51 | 74.28 29 | | 83.31 54 | 95.86 20 | |
|
| LPG-MVS_test | | | 82.08 95 | 81.27 101 | 84.50 98 | 89.23 134 | 68.76 106 | 90.22 69 | 91.94 91 | 75.37 93 | 76.64 189 | 91.51 95 | 54.29 221 | 94.91 87 | 78.44 97 | 83.78 176 | 89.83 207 |
|
| LGP-MVS_train | | | | | 84.50 98 | 89.23 134 | 68.76 106 | | 91.94 91 | 75.37 93 | 76.64 189 | 91.51 95 | 54.29 221 | 94.91 87 | 78.44 97 | 83.78 176 | 89.83 207 |
|
| MG-MVS | | | 83.41 77 | 83.45 72 | 83.28 145 | 92.74 62 | 62.28 241 | 88.17 131 | 89.50 163 | 75.22 95 | 81.49 104 | 92.74 75 | 66.75 93 | 95.11 79 | 72.85 155 | 91.58 82 | 92.45 112 |
|
| LCM-MVSNet-Re | | | 77.05 216 | 76.94 198 | 77.36 276 | 87.20 208 | 51.60 350 | 80.06 294 | 80.46 313 | 75.20 96 | 67.69 305 | 86.72 219 | 62.48 140 | 88.98 272 | 63.44 235 | 89.25 113 | 91.51 136 |
|
| SDMVSNet | | | 80.38 136 | 80.18 122 | 80.99 213 | 89.03 143 | 64.94 190 | 80.45 290 | 89.40 165 | 75.19 97 | 76.61 191 | 89.98 130 | 60.61 176 | 87.69 290 | 76.83 116 | 83.55 183 | 90.33 180 |
|
| sd_testset | | | 77.70 205 | 77.40 188 | 78.60 257 | 89.03 143 | 60.02 269 | 79.00 307 | 85.83 249 | 75.19 97 | 76.61 191 | 89.98 130 | 54.81 212 | 85.46 306 | 62.63 244 | 83.55 183 | 90.33 180 |
|
| MP-MVS-pluss | | | 87.67 20 | 87.72 20 | 87.54 35 | 93.64 44 | 72.04 47 | 89.80 78 | 93.50 25 | 75.17 99 | 86.34 37 | 95.29 12 | 70.86 56 | 96.00 48 | 88.78 16 | 96.04 16 | 94.58 26 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| test1111 | | | 79.43 158 | 79.18 146 | 80.15 231 | 89.99 107 | 53.31 342 | 87.33 157 | 77.05 339 | 75.04 100 | 80.23 119 | 92.77 74 | 48.97 284 | 92.33 199 | 68.87 193 | 92.40 73 | 94.81 19 |
|
| Effi-MVS+-dtu | | | 80.03 145 | 78.57 157 | 84.42 103 | 85.13 239 | 68.74 108 | 88.77 109 | 88.10 207 | 74.99 101 | 74.97 233 | 83.49 289 | 57.27 201 | 93.36 155 | 73.53 146 | 80.88 215 | 91.18 147 |
|
| OMC-MVS | | | 82.69 88 | 81.97 95 | 84.85 88 | 88.75 153 | 67.42 138 | 87.98 137 | 90.87 124 | 74.92 102 | 79.72 123 | 91.65 90 | 62.19 147 | 93.96 123 | 75.26 133 | 86.42 147 | 93.16 88 |
|
| test2506 | | | 77.30 213 | 76.49 209 | 79.74 239 | 90.08 102 | 52.02 345 | 87.86 145 | 63.10 377 | 74.88 103 | 80.16 120 | 92.79 72 | 38.29 346 | 92.35 197 | 68.74 195 | 92.50 71 | 94.86 16 |
|
| ECVR-MVS |  | | 79.61 151 | 79.26 142 | 80.67 221 | 90.08 102 | 54.69 329 | 87.89 143 | 77.44 336 | 74.88 103 | 80.27 117 | 92.79 72 | 48.96 285 | 92.45 191 | 68.55 196 | 92.50 71 | 94.86 16 |
|
| nrg030 | | | 83.88 68 | 83.53 71 | 84.96 83 | 86.77 216 | 69.28 97 | 90.46 64 | 92.67 61 | 74.79 105 | 82.95 85 | 91.33 101 | 72.70 41 | 93.09 173 | 80.79 80 | 79.28 237 | 92.50 109 |
|
| SMA-MVS |  | | 89.08 7 | 89.23 7 | 88.61 5 | 94.25 31 | 73.73 9 | 92.40 23 | 93.63 21 | 74.77 106 | 92.29 7 | 95.97 2 | 74.28 29 | 97.24 11 | 88.58 18 | 96.91 1 | 94.87 15 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| MVS_111021_LR | | | 82.61 90 | 82.11 90 | 84.11 113 | 88.82 148 | 71.58 52 | 85.15 215 | 86.16 244 | 74.69 107 | 80.47 116 | 91.04 110 | 62.29 144 | 90.55 249 | 80.33 84 | 90.08 103 | 90.20 185 |
|
| EIA-MVS | | | 83.31 80 | 82.80 82 | 84.82 89 | 89.59 115 | 65.59 174 | 88.21 129 | 92.68 60 | 74.66 108 | 78.96 132 | 86.42 234 | 69.06 76 | 95.26 72 | 75.54 131 | 90.09 102 | 93.62 71 |
|
| mvsmamba | | | 81.69 104 | 80.74 110 | 84.56 96 | 87.45 199 | 66.72 152 | 91.26 47 | 85.89 248 | 74.66 108 | 78.23 152 | 90.56 120 | 54.33 220 | 94.91 87 | 80.73 81 | 83.54 185 | 92.04 127 |
|
| TSAR-MVS + MP. | | | 88.02 17 | 88.11 15 | 87.72 29 | 93.68 43 | 72.13 45 | 91.41 46 | 92.35 74 | 74.62 110 | 88.90 20 | 93.85 49 | 75.75 20 | 96.00 48 | 87.80 21 | 94.63 46 | 95.04 6 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| SR-MVS | | | 86.73 33 | 86.67 34 | 86.91 45 | 94.11 37 | 72.11 46 | 92.37 27 | 92.56 67 | 74.50 111 | 86.84 35 | 94.65 19 | 67.31 90 | 95.77 53 | 84.80 39 | 92.85 66 | 92.84 98 |
|
| FOURS1 | | | | | | 95.00 10 | 72.39 38 | 95.06 1 | 93.84 15 | 74.49 112 | 91.30 15 | | | | | | |
|
| ACMP | | 74.13 6 | 81.51 111 | 80.57 113 | 84.36 105 | 89.42 122 | 68.69 113 | 89.97 73 | 91.50 110 | 74.46 113 | 75.04 232 | 90.41 123 | 53.82 226 | 94.54 103 | 77.56 106 | 82.91 192 | 89.86 206 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| EPP-MVSNet | | | 83.40 78 | 83.02 78 | 84.57 95 | 90.13 100 | 64.47 200 | 92.32 29 | 90.73 127 | 74.45 114 | 79.35 128 | 91.10 107 | 69.05 77 | 95.12 77 | 72.78 156 | 87.22 135 | 94.13 43 |
|
| save fliter | | | | | | 93.80 40 | 72.35 41 | 90.47 63 | 91.17 116 | 74.31 115 | | | | | | | |
|
| MVS_Test | | | 83.15 81 | 83.06 77 | 83.41 142 | 86.86 212 | 63.21 227 | 86.11 193 | 92.00 87 | 74.31 115 | 82.87 87 | 89.44 149 | 70.03 64 | 93.21 162 | 77.39 109 | 88.50 123 | 93.81 59 |
|
| UniMVSNet_ETH3D | | | 79.10 168 | 78.24 166 | 81.70 192 | 86.85 213 | 60.24 267 | 87.28 159 | 88.79 192 | 74.25 117 | 76.84 182 | 90.53 122 | 49.48 274 | 91.56 222 | 67.98 200 | 82.15 201 | 93.29 82 |
|
| IterMVS-LS | | | 80.06 144 | 79.38 137 | 82.11 184 | 85.89 225 | 63.20 228 | 86.79 173 | 89.34 167 | 74.19 118 | 75.45 216 | 86.72 219 | 66.62 94 | 92.39 194 | 72.58 158 | 76.86 261 | 90.75 164 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| EI-MVSNet | | | 80.52 134 | 79.98 124 | 82.12 183 | 84.28 252 | 63.19 229 | 86.41 184 | 88.95 188 | 74.18 119 | 78.69 138 | 87.54 199 | 66.62 94 | 92.43 192 | 72.57 159 | 80.57 221 | 90.74 165 |
|
| Vis-MVSNet (Re-imp) | | | 78.36 185 | 78.45 159 | 78.07 266 | 88.64 157 | 51.78 349 | 86.70 177 | 79.63 322 | 74.14 120 | 75.11 229 | 90.83 116 | 61.29 163 | 89.75 258 | 58.10 285 | 91.60 81 | 92.69 102 |
|
| v8 | | | 79.97 148 | 79.02 149 | 82.80 170 | 84.09 257 | 64.50 199 | 87.96 138 | 90.29 143 | 74.13 121 | 75.24 226 | 86.81 216 | 62.88 136 | 93.89 132 | 74.39 139 | 75.40 289 | 90.00 198 |
|
| CSCG | | | 86.41 40 | 86.19 41 | 87.07 44 | 92.91 58 | 72.48 36 | 90.81 56 | 93.56 24 | 73.95 122 | 83.16 84 | 91.07 109 | 75.94 18 | 95.19 74 | 79.94 87 | 94.38 53 | 93.55 74 |
|
| thres100view900 | | | 76.50 224 | 75.55 222 | 79.33 247 | 89.52 118 | 56.99 302 | 85.83 202 | 83.23 285 | 73.94 123 | 76.32 198 | 87.12 211 | 51.89 248 | 91.95 210 | 48.33 338 | 83.75 178 | 89.07 223 |
|
| 9.14 | | | | 88.26 14 | | 92.84 60 | | 91.52 45 | 94.75 1 | 73.93 124 | 88.57 22 | 94.67 18 | 75.57 22 | 95.79 52 | 86.77 28 | 95.76 23 | |
|
| HPM-MVS_fast | | | 85.35 57 | 84.95 62 | 86.57 52 | 93.69 42 | 70.58 74 | 92.15 35 | 91.62 103 | 73.89 125 | 82.67 92 | 94.09 39 | 62.60 137 | 95.54 59 | 80.93 76 | 92.93 65 | 93.57 73 |
|
| RRT_MVS | | | 80.35 139 | 79.22 144 | 83.74 133 | 87.63 193 | 65.46 178 | 91.08 53 | 88.92 190 | 73.82 126 | 76.44 196 | 90.03 129 | 49.05 283 | 94.25 116 | 76.84 114 | 79.20 239 | 91.51 136 |
|
| PAPM_NR | | | 83.02 85 | 82.41 85 | 84.82 89 | 92.47 67 | 66.37 157 | 87.93 141 | 91.80 98 | 73.82 126 | 77.32 172 | 90.66 118 | 67.90 84 | 94.90 90 | 70.37 176 | 89.48 111 | 93.19 87 |
|
| thres600view7 | | | 76.50 224 | 75.44 223 | 79.68 241 | 89.40 123 | 57.16 299 | 85.53 210 | 83.23 285 | 73.79 128 | 76.26 199 | 87.09 212 | 51.89 248 | 91.89 213 | 48.05 343 | 83.72 181 | 90.00 198 |
|
| v7n | | | 78.97 172 | 77.58 186 | 83.14 153 | 83.45 269 | 65.51 175 | 88.32 126 | 91.21 114 | 73.69 129 | 72.41 259 | 86.32 237 | 57.93 192 | 93.81 134 | 69.18 189 | 75.65 280 | 90.11 190 |
|
| dcpmvs_2 | | | 85.63 51 | 86.15 43 | 84.06 119 | 91.71 75 | 64.94 190 | 86.47 183 | 91.87 95 | 73.63 130 | 86.60 36 | 93.02 65 | 76.57 15 | 91.87 215 | 83.36 53 | 92.15 74 | 95.35 2 |
|
| v2v482 | | | 80.23 141 | 79.29 141 | 83.05 158 | 83.62 265 | 64.14 206 | 87.04 164 | 89.97 151 | 73.61 131 | 78.18 155 | 87.22 207 | 61.10 167 | 93.82 133 | 76.11 122 | 76.78 264 | 91.18 147 |
|
| Baseline_NR-MVSNet | | | 78.15 191 | 78.33 164 | 77.61 273 | 85.79 226 | 56.21 316 | 86.78 174 | 85.76 250 | 73.60 132 | 77.93 161 | 87.57 196 | 65.02 114 | 88.99 271 | 67.14 210 | 75.33 291 | 87.63 261 |
|
| BH-RMVSNet | | | 79.61 151 | 78.44 160 | 83.14 153 | 89.38 125 | 65.93 165 | 84.95 220 | 87.15 230 | 73.56 133 | 78.19 154 | 89.79 134 | 56.67 205 | 93.36 155 | 59.53 270 | 86.74 142 | 90.13 188 |
|
| APD-MVS_3200maxsize | | | 85.97 44 | 85.88 47 | 86.22 56 | 92.69 63 | 69.53 88 | 91.93 37 | 92.99 45 | 73.54 134 | 85.94 38 | 94.51 23 | 65.80 108 | 95.61 56 | 83.04 58 | 92.51 70 | 93.53 76 |
|
| SR-MVS-dyc-post | | | 85.77 48 | 85.61 51 | 86.23 55 | 93.06 55 | 70.63 72 | 91.88 38 | 92.27 76 | 73.53 135 | 85.69 42 | 94.45 25 | 65.00 116 | 95.56 57 | 82.75 61 | 91.87 78 | 92.50 109 |
|
| RE-MVS-def | | | | 85.48 52 | | 93.06 55 | 70.63 72 | 91.88 38 | 92.27 76 | 73.53 135 | 85.69 42 | 94.45 25 | 63.87 122 | | 82.75 61 | 91.87 78 | 92.50 109 |
|
| test_fmvsmconf_n | | | 85.92 45 | 86.04 46 | 85.57 67 | 85.03 242 | 69.51 89 | 89.62 85 | 90.58 130 | 73.42 137 | 87.75 30 | 94.02 42 | 72.85 40 | 93.24 159 | 90.37 2 | 90.75 92 | 93.96 50 |
|
| tfpn200view9 | | | 76.42 227 | 75.37 227 | 79.55 246 | 89.13 138 | 57.65 293 | 85.17 213 | 83.60 277 | 73.41 138 | 76.45 193 | 86.39 235 | 52.12 240 | 91.95 210 | 48.33 338 | 83.75 178 | 89.07 223 |
|
| thres400 | | | 76.50 224 | 75.37 227 | 79.86 236 | 89.13 138 | 57.65 293 | 85.17 213 | 83.60 277 | 73.41 138 | 76.45 193 | 86.39 235 | 52.12 240 | 91.95 210 | 48.33 338 | 83.75 178 | 90.00 198 |
|
| test_fmvsmconf0.1_n | | | 85.61 52 | 85.65 50 | 85.50 68 | 82.99 284 | 69.39 95 | 89.65 83 | 90.29 143 | 73.31 140 | 87.77 29 | 94.15 37 | 71.72 48 | 93.23 160 | 90.31 3 | 90.67 94 | 93.89 55 |
|
| v148 | | | 78.72 177 | 77.80 177 | 81.47 197 | 82.73 289 | 61.96 245 | 86.30 188 | 88.08 208 | 73.26 141 | 76.18 202 | 85.47 255 | 62.46 141 | 92.36 196 | 71.92 163 | 73.82 308 | 90.09 192 |
|
| FA-MVS(test-final) | | | 80.96 118 | 79.91 126 | 84.10 114 | 88.30 169 | 65.01 188 | 84.55 230 | 90.01 150 | 73.25 142 | 79.61 124 | 87.57 196 | 58.35 190 | 94.72 98 | 71.29 168 | 86.25 150 | 92.56 106 |
|
| test_fmvsmconf0.01_n | | | 84.73 65 | 84.52 66 | 85.34 71 | 80.25 324 | 69.03 98 | 89.47 87 | 89.65 160 | 73.24 143 | 86.98 34 | 94.27 31 | 66.62 94 | 93.23 160 | 90.26 4 | 89.95 106 | 93.78 61 |
|
| iter_conf_final | | | 80.63 129 | 79.35 139 | 84.46 101 | 89.36 126 | 67.70 132 | 89.85 74 | 84.49 264 | 73.19 144 | 78.30 150 | 88.94 158 | 45.98 304 | 94.56 101 | 79.59 89 | 84.48 169 | 91.11 149 |
|
| v10 | | | 79.74 150 | 78.67 154 | 82.97 163 | 84.06 258 | 64.95 189 | 87.88 144 | 90.62 129 | 73.11 145 | 75.11 229 | 86.56 230 | 61.46 158 | 94.05 122 | 73.68 144 | 75.55 282 | 89.90 204 |
|
| MCST-MVS | | | 87.37 26 | 87.25 25 | 87.73 27 | 94.53 17 | 72.46 37 | 89.82 76 | 93.82 16 | 73.07 146 | 84.86 55 | 92.89 67 | 76.22 17 | 96.33 37 | 84.89 37 | 95.13 35 | 94.40 33 |
|
| baseline1 | | | 76.98 218 | 76.75 205 | 77.66 271 | 88.13 172 | 55.66 321 | 85.12 216 | 81.89 298 | 73.04 147 | 76.79 184 | 88.90 160 | 62.43 142 | 87.78 289 | 63.30 237 | 71.18 327 | 89.55 216 |
|
| APD-MVS |  | | 87.44 22 | 87.52 22 | 87.19 41 | 94.24 32 | 72.39 38 | 91.86 40 | 92.83 55 | 73.01 148 | 88.58 21 | 94.52 20 | 73.36 34 | 96.49 35 | 84.26 45 | 95.01 36 | 92.70 100 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| diffmvs |  | | 82.10 94 | 81.88 96 | 82.76 175 | 83.00 282 | 63.78 213 | 83.68 247 | 89.76 156 | 72.94 149 | 82.02 96 | 89.85 133 | 65.96 107 | 90.79 245 | 82.38 67 | 87.30 134 | 93.71 63 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| K. test v3 | | | 71.19 275 | 68.51 287 | 79.21 250 | 83.04 281 | 57.78 292 | 84.35 238 | 76.91 340 | 72.90 150 | 62.99 344 | 82.86 297 | 39.27 341 | 91.09 240 | 61.65 254 | 52.66 371 | 88.75 242 |
|
| Fast-Effi-MVS+-dtu | | | 78.02 195 | 76.49 209 | 82.62 177 | 83.16 278 | 66.96 150 | 86.94 167 | 87.45 225 | 72.45 151 | 71.49 269 | 84.17 278 | 54.79 216 | 91.58 221 | 67.61 203 | 80.31 224 | 89.30 221 |
|
| PHI-MVS | | | 86.43 38 | 86.17 42 | 87.24 40 | 90.88 87 | 70.96 64 | 92.27 31 | 94.07 9 | 72.45 151 | 85.22 47 | 91.90 85 | 69.47 71 | 96.42 36 | 83.28 55 | 95.94 19 | 94.35 35 |
|
| thres200 | | | 75.55 238 | 74.47 237 | 78.82 253 | 87.78 188 | 57.85 290 | 83.07 262 | 83.51 280 | 72.44 153 | 75.84 208 | 84.42 272 | 52.08 243 | 91.75 217 | 47.41 345 | 83.64 182 | 86.86 282 |
|
| test_yl | | | 81.17 114 | 80.47 116 | 83.24 148 | 89.13 138 | 63.62 214 | 86.21 190 | 89.95 152 | 72.43 154 | 81.78 101 | 89.61 139 | 57.50 198 | 93.58 143 | 70.75 171 | 86.90 139 | 92.52 107 |
|
| DCV-MVSNet | | | 81.17 114 | 80.47 116 | 83.24 148 | 89.13 138 | 63.62 214 | 86.21 190 | 89.95 152 | 72.43 154 | 81.78 101 | 89.61 139 | 57.50 198 | 93.58 143 | 70.75 171 | 86.90 139 | 92.52 107 |
|
| BH-untuned | | | 79.47 156 | 78.60 156 | 82.05 185 | 89.19 136 | 65.91 166 | 86.07 194 | 88.52 202 | 72.18 156 | 75.42 217 | 87.69 193 | 61.15 166 | 93.54 147 | 60.38 263 | 86.83 141 | 86.70 286 |
|
| TransMVSNet (Re) | | | 75.39 243 | 74.56 235 | 77.86 267 | 85.50 232 | 57.10 301 | 86.78 174 | 86.09 246 | 72.17 157 | 71.53 268 | 87.34 202 | 63.01 135 | 89.31 266 | 56.84 297 | 61.83 355 | 87.17 273 |
|
| GA-MVS | | | 76.87 220 | 75.17 230 | 81.97 188 | 82.75 288 | 62.58 236 | 81.44 279 | 86.35 242 | 72.16 158 | 74.74 236 | 82.89 296 | 46.20 303 | 92.02 208 | 68.85 194 | 81.09 213 | 91.30 145 |
|
| v1144 | | | 80.03 145 | 79.03 148 | 83.01 160 | 83.78 263 | 64.51 197 | 87.11 163 | 90.57 132 | 71.96 159 | 78.08 158 | 86.20 239 | 61.41 159 | 93.94 126 | 74.93 134 | 77.23 255 | 90.60 170 |
|
| PS-MVSNAJss | | | 82.07 96 | 81.31 100 | 84.34 107 | 86.51 219 | 67.27 142 | 89.27 91 | 91.51 107 | 71.75 160 | 79.37 127 | 90.22 127 | 63.15 131 | 94.27 112 | 77.69 105 | 82.36 200 | 91.49 139 |
|
| EPNet_dtu | | | 75.46 240 | 74.86 231 | 77.23 279 | 82.57 293 | 54.60 330 | 86.89 169 | 83.09 288 | 71.64 161 | 66.25 325 | 85.86 245 | 55.99 207 | 88.04 286 | 54.92 305 | 86.55 145 | 89.05 228 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| GBi-Net | | | 78.40 183 | 77.40 188 | 81.40 200 | 87.60 194 | 63.01 231 | 88.39 122 | 89.28 169 | 71.63 162 | 75.34 220 | 87.28 203 | 54.80 213 | 91.11 235 | 62.72 240 | 79.57 231 | 90.09 192 |
|
| test1 | | | 78.40 183 | 77.40 188 | 81.40 200 | 87.60 194 | 63.01 231 | 88.39 122 | 89.28 169 | 71.63 162 | 75.34 220 | 87.28 203 | 54.80 213 | 91.11 235 | 62.72 240 | 79.57 231 | 90.09 192 |
|
| FMVSNet2 | | | 78.20 189 | 77.21 192 | 81.20 207 | 87.60 194 | 62.89 235 | 87.47 153 | 89.02 183 | 71.63 162 | 75.29 225 | 87.28 203 | 54.80 213 | 91.10 238 | 62.38 245 | 79.38 235 | 89.61 214 |
|
| iter_conf05 | | | 80.00 147 | 78.70 153 | 83.91 130 | 87.84 183 | 65.83 168 | 88.84 107 | 84.92 259 | 71.61 165 | 78.70 137 | 88.94 158 | 43.88 319 | 94.56 101 | 79.28 90 | 84.28 172 | 91.33 142 |
|
| patch_mono-2 | | | 83.65 72 | 84.54 65 | 80.99 213 | 90.06 106 | 65.83 168 | 84.21 240 | 88.74 197 | 71.60 166 | 85.01 48 | 92.44 77 | 74.51 25 | 83.50 320 | 82.15 68 | 92.15 74 | 93.64 70 |
|
| V42 | | | 79.38 162 | 78.24 166 | 82.83 167 | 81.10 316 | 65.50 176 | 85.55 208 | 89.82 154 | 71.57 167 | 78.21 153 | 86.12 241 | 60.66 174 | 93.18 168 | 75.64 128 | 75.46 286 | 89.81 209 |
|
| API-MVS | | | 81.99 98 | 81.23 102 | 84.26 110 | 90.94 85 | 70.18 81 | 91.10 52 | 89.32 168 | 71.51 168 | 78.66 140 | 88.28 179 | 65.26 111 | 95.10 82 | 64.74 229 | 91.23 87 | 87.51 265 |
|
| tttt0517 | | | 79.40 160 | 77.91 172 | 83.90 131 | 88.10 174 | 63.84 211 | 88.37 125 | 84.05 272 | 71.45 169 | 76.78 185 | 89.12 154 | 49.93 271 | 94.89 91 | 70.18 178 | 83.18 190 | 92.96 96 |
|
| pm-mvs1 | | | 77.25 215 | 76.68 207 | 78.93 252 | 84.22 254 | 58.62 279 | 86.41 184 | 88.36 204 | 71.37 170 | 73.31 248 | 88.01 189 | 61.22 165 | 89.15 269 | 64.24 231 | 73.01 315 | 89.03 229 |
|
| GeoE | | | 81.71 103 | 81.01 107 | 83.80 132 | 89.51 119 | 64.45 201 | 88.97 101 | 88.73 198 | 71.27 171 | 78.63 141 | 89.76 135 | 66.32 100 | 93.20 165 | 69.89 182 | 86.02 154 | 93.74 62 |
|
| tt0805 | | | 78.73 176 | 77.83 175 | 81.43 198 | 85.17 235 | 60.30 266 | 89.41 89 | 90.90 122 | 71.21 172 | 77.17 179 | 88.73 164 | 46.38 298 | 93.21 162 | 72.57 159 | 78.96 240 | 90.79 161 |
|
| FMVSNet3 | | | 77.88 199 | 76.85 200 | 80.97 215 | 86.84 214 | 62.36 238 | 86.52 182 | 88.77 193 | 71.13 173 | 75.34 220 | 86.66 225 | 54.07 224 | 91.10 238 | 62.72 240 | 79.57 231 | 89.45 217 |
|
| VDDNet | | | 81.52 109 | 80.67 112 | 84.05 121 | 90.44 95 | 64.13 207 | 89.73 81 | 85.91 247 | 71.11 174 | 83.18 83 | 93.48 52 | 50.54 263 | 93.49 149 | 73.40 149 | 88.25 125 | 94.54 29 |
|
| XVG-OURS | | | 80.41 135 | 79.23 143 | 83.97 127 | 85.64 229 | 69.02 100 | 83.03 264 | 90.39 135 | 71.09 175 | 77.63 166 | 91.49 97 | 54.62 219 | 91.35 230 | 75.71 127 | 83.47 186 | 91.54 135 |
|
| SixPastTwentyTwo | | | 73.37 258 | 71.26 268 | 79.70 240 | 85.08 240 | 57.89 289 | 85.57 204 | 83.56 279 | 71.03 176 | 65.66 327 | 85.88 244 | 42.10 331 | 92.57 187 | 59.11 274 | 63.34 353 | 88.65 245 |
|
| ZD-MVS | | | | | | 94.38 25 | 72.22 43 | | 92.67 61 | 70.98 177 | 87.75 30 | 94.07 40 | 74.01 32 | 96.70 26 | 84.66 40 | 94.84 42 | |
|
| v1192 | | | 79.59 153 | 78.43 161 | 83.07 157 | 83.55 267 | 64.52 196 | 86.93 168 | 90.58 130 | 70.83 178 | 77.78 163 | 85.90 243 | 59.15 185 | 93.94 126 | 73.96 143 | 77.19 257 | 90.76 163 |
|
| Fast-Effi-MVS+ | | | 80.81 122 | 79.92 125 | 83.47 138 | 88.85 145 | 64.51 197 | 85.53 210 | 89.39 166 | 70.79 179 | 78.49 145 | 85.06 265 | 67.54 87 | 93.58 143 | 67.03 212 | 86.58 144 | 92.32 115 |
|
| PS-MVSNAJ | | | 81.69 104 | 81.02 106 | 83.70 134 | 89.51 119 | 68.21 123 | 84.28 239 | 90.09 148 | 70.79 179 | 81.26 109 | 85.62 252 | 63.15 131 | 94.29 110 | 75.62 129 | 88.87 116 | 88.59 246 |
|
| LTVRE_ROB | | 69.57 13 | 76.25 230 | 74.54 236 | 81.41 199 | 88.60 158 | 64.38 203 | 79.24 303 | 89.12 181 | 70.76 181 | 69.79 289 | 87.86 190 | 49.09 281 | 93.20 165 | 56.21 302 | 80.16 225 | 86.65 287 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| xiu_mvs_v2_base | | | 81.69 104 | 81.05 105 | 83.60 135 | 89.15 137 | 68.03 126 | 84.46 233 | 90.02 149 | 70.67 182 | 81.30 108 | 86.53 232 | 63.17 130 | 94.19 118 | 75.60 130 | 88.54 121 | 88.57 247 |
|
| XVG-OURS-SEG-HR | | | 80.81 122 | 79.76 129 | 83.96 128 | 85.60 230 | 68.78 105 | 83.54 253 | 90.50 133 | 70.66 183 | 76.71 187 | 91.66 89 | 60.69 173 | 91.26 232 | 76.94 113 | 81.58 208 | 91.83 129 |
|
| Anonymous202405211 | | | 78.25 186 | 77.01 195 | 81.99 187 | 91.03 82 | 60.67 260 | 84.77 223 | 83.90 274 | 70.65 184 | 80.00 121 | 91.20 104 | 41.08 336 | 91.43 228 | 65.21 224 | 85.26 160 | 93.85 56 |
|
| DP-MVS Recon | | | 83.11 84 | 82.09 91 | 86.15 57 | 94.44 19 | 70.92 67 | 88.79 108 | 92.20 81 | 70.53 185 | 79.17 130 | 91.03 112 | 64.12 120 | 96.03 45 | 68.39 199 | 90.14 101 | 91.50 138 |
|
| FMVSNet1 | | | 77.44 209 | 76.12 215 | 81.40 200 | 86.81 215 | 63.01 231 | 88.39 122 | 89.28 169 | 70.49 186 | 74.39 240 | 87.28 203 | 49.06 282 | 91.11 235 | 60.91 260 | 78.52 243 | 90.09 192 |
|
| testing3 | | | 68.56 301 | 67.67 302 | 71.22 328 | 87.33 205 | 42.87 376 | 83.06 263 | 71.54 358 | 70.36 187 | 69.08 295 | 84.38 274 | 30.33 365 | 85.69 303 | 37.50 370 | 75.45 287 | 85.09 313 |
|
| ab-mvs | | | 79.51 154 | 78.97 150 | 81.14 209 | 88.46 163 | 60.91 256 | 83.84 245 | 89.24 174 | 70.36 187 | 79.03 131 | 88.87 162 | 63.23 129 | 90.21 253 | 65.12 225 | 82.57 198 | 92.28 117 |
|
| tfpnnormal | | | 74.39 247 | 73.16 251 | 78.08 265 | 86.10 224 | 58.05 284 | 84.65 227 | 87.53 222 | 70.32 189 | 71.22 271 | 85.63 251 | 54.97 211 | 89.86 256 | 43.03 359 | 75.02 296 | 86.32 290 |
|
| ACMM | | 73.20 8 | 80.78 127 | 79.84 128 | 83.58 136 | 89.31 130 | 68.37 118 | 89.99 72 | 91.60 104 | 70.28 190 | 77.25 173 | 89.66 137 | 53.37 230 | 93.53 148 | 74.24 141 | 82.85 193 | 88.85 238 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| ACMH+ | | 68.96 14 | 76.01 233 | 74.01 241 | 82.03 186 | 88.60 158 | 65.31 183 | 88.86 105 | 87.55 221 | 70.25 191 | 67.75 304 | 87.47 201 | 41.27 334 | 93.19 167 | 58.37 282 | 75.94 277 | 87.60 262 |
|
| IB-MVS | | 68.01 15 | 75.85 235 | 73.36 249 | 83.31 144 | 84.76 244 | 66.03 161 | 83.38 254 | 85.06 256 | 70.21 192 | 69.40 291 | 81.05 314 | 45.76 308 | 94.66 100 | 65.10 226 | 75.49 283 | 89.25 222 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| thisisatest0530 | | | 79.40 160 | 77.76 180 | 84.31 108 | 87.69 191 | 65.10 187 | 87.36 155 | 84.26 270 | 70.04 193 | 77.42 169 | 88.26 181 | 49.94 269 | 94.79 96 | 70.20 177 | 84.70 166 | 93.03 92 |
|
| test_fmvsmvis_n_1920 | | | 84.02 67 | 83.87 69 | 84.49 100 | 84.12 256 | 69.37 96 | 88.15 133 | 87.96 211 | 70.01 194 | 83.95 73 | 93.23 58 | 68.80 80 | 91.51 226 | 88.61 17 | 89.96 105 | 92.57 105 |
|
| v144192 | | | 79.47 156 | 78.37 162 | 82.78 173 | 83.35 270 | 63.96 209 | 86.96 166 | 90.36 139 | 69.99 195 | 77.50 167 | 85.67 250 | 60.66 174 | 93.77 137 | 74.27 140 | 76.58 265 | 90.62 168 |
|
| test_fmvsm_n_1920 | | | 85.29 58 | 85.34 54 | 85.13 78 | 86.12 223 | 69.93 82 | 88.65 116 | 90.78 126 | 69.97 196 | 88.27 23 | 93.98 47 | 71.39 53 | 91.54 223 | 88.49 19 | 90.45 96 | 93.91 52 |
|
| c3_l | | | 78.75 175 | 77.91 172 | 81.26 204 | 82.89 286 | 61.56 250 | 84.09 243 | 89.13 180 | 69.97 196 | 75.56 211 | 84.29 277 | 66.36 99 | 92.09 206 | 73.47 148 | 75.48 284 | 90.12 189 |
|
| v1921920 | | | 79.22 164 | 78.03 169 | 82.80 170 | 83.30 272 | 63.94 210 | 86.80 172 | 90.33 140 | 69.91 198 | 77.48 168 | 85.53 253 | 58.44 189 | 93.75 139 | 73.60 145 | 76.85 262 | 90.71 166 |
|
| ACMH | | 67.68 16 | 75.89 234 | 73.93 242 | 81.77 191 | 88.71 155 | 66.61 154 | 88.62 117 | 89.01 184 | 69.81 199 | 66.78 316 | 86.70 223 | 41.95 333 | 91.51 226 | 55.64 303 | 78.14 249 | 87.17 273 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| DPM-MVS | | | 84.93 62 | 84.29 68 | 86.84 46 | 90.20 99 | 73.04 22 | 87.12 162 | 93.04 38 | 69.80 200 | 82.85 88 | 91.22 103 | 73.06 38 | 96.02 46 | 76.72 119 | 94.63 46 | 91.46 141 |
|
| MAR-MVS | | | 81.84 100 | 80.70 111 | 85.27 73 | 91.32 79 | 71.53 53 | 89.82 76 | 90.92 121 | 69.77 201 | 78.50 144 | 86.21 238 | 62.36 143 | 94.52 105 | 65.36 223 | 92.05 76 | 89.77 210 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| XVG-ACMP-BASELINE | | | 76.11 232 | 74.27 240 | 81.62 193 | 83.20 275 | 64.67 195 | 83.60 251 | 89.75 157 | 69.75 202 | 71.85 265 | 87.09 212 | 32.78 358 | 92.11 205 | 69.99 181 | 80.43 223 | 88.09 253 |
|
| BH-w/o | | | 78.21 188 | 77.33 191 | 80.84 217 | 88.81 149 | 65.13 186 | 84.87 221 | 87.85 216 | 69.75 202 | 74.52 239 | 84.74 270 | 61.34 161 | 93.11 172 | 58.24 284 | 85.84 157 | 84.27 320 |
|
| v1240 | | | 78.99 171 | 77.78 178 | 82.64 176 | 83.21 274 | 63.54 218 | 86.62 179 | 90.30 142 | 69.74 204 | 77.33 171 | 85.68 249 | 57.04 203 | 93.76 138 | 73.13 153 | 76.92 259 | 90.62 168 |
|
| ET-MVSNet_ETH3D | | | 78.63 179 | 76.63 208 | 84.64 94 | 86.73 217 | 69.47 91 | 85.01 218 | 84.61 262 | 69.54 205 | 66.51 323 | 86.59 227 | 50.16 266 | 91.75 217 | 76.26 121 | 84.24 173 | 92.69 102 |
|
| eth_miper_zixun_eth | | | 77.92 198 | 76.69 206 | 81.61 195 | 83.00 282 | 61.98 244 | 83.15 258 | 89.20 176 | 69.52 206 | 74.86 235 | 84.35 276 | 61.76 151 | 92.56 188 | 71.50 166 | 72.89 316 | 90.28 183 |
|
| PVSNet_Blended_VisFu | | | 82.62 89 | 81.83 97 | 84.96 83 | 90.80 89 | 69.76 86 | 88.74 112 | 91.70 102 | 69.39 207 | 78.96 132 | 88.46 174 | 65.47 110 | 94.87 93 | 74.42 138 | 88.57 120 | 90.24 184 |
|
| mvs_tets | | | 79.13 167 | 77.77 179 | 83.22 150 | 84.70 245 | 66.37 157 | 89.17 93 | 90.19 145 | 69.38 208 | 75.40 218 | 89.46 146 | 44.17 317 | 93.15 169 | 76.78 117 | 80.70 219 | 90.14 187 |
|
| PVSNet_BlendedMVS | | | 80.60 131 | 80.02 123 | 82.36 182 | 88.85 145 | 65.40 179 | 86.16 192 | 92.00 87 | 69.34 209 | 78.11 156 | 86.09 242 | 66.02 105 | 94.27 112 | 71.52 164 | 82.06 202 | 87.39 267 |
|
| AdaColmap |  | | 80.58 133 | 79.42 136 | 84.06 119 | 93.09 54 | 68.91 103 | 89.36 90 | 88.97 187 | 69.27 210 | 75.70 210 | 89.69 136 | 57.20 202 | 95.77 53 | 63.06 238 | 88.41 124 | 87.50 266 |
|
| ITE_SJBPF | | | | | 78.22 263 | 81.77 304 | 60.57 261 | | 83.30 283 | 69.25 211 | 67.54 306 | 87.20 208 | 36.33 352 | 87.28 293 | 54.34 308 | 74.62 300 | 86.80 283 |
|
| cl____ | | | 77.72 203 | 76.76 203 | 80.58 222 | 82.49 295 | 60.48 263 | 83.09 260 | 87.87 214 | 69.22 212 | 74.38 241 | 85.22 261 | 62.10 148 | 91.53 224 | 71.09 169 | 75.41 288 | 89.73 212 |
|
| DIV-MVS_self_test | | | 77.72 203 | 76.76 203 | 80.58 222 | 82.48 296 | 60.48 263 | 83.09 260 | 87.86 215 | 69.22 212 | 74.38 241 | 85.24 259 | 62.10 148 | 91.53 224 | 71.09 169 | 75.40 289 | 89.74 211 |
|
| bld_raw_dy_0_64 | | | 77.29 214 | 75.98 216 | 81.22 206 | 85.04 241 | 65.47 177 | 88.14 135 | 77.56 333 | 69.20 214 | 73.77 245 | 89.40 152 | 42.24 330 | 88.85 277 | 76.78 117 | 81.64 207 | 89.33 220 |
|
| jajsoiax | | | 79.29 163 | 77.96 170 | 83.27 146 | 84.68 246 | 66.57 155 | 89.25 92 | 90.16 146 | 69.20 214 | 75.46 215 | 89.49 143 | 45.75 309 | 93.13 171 | 76.84 114 | 80.80 217 | 90.11 190 |
|
| IterMVS-SCA-FT | | | 75.43 241 | 73.87 244 | 80.11 232 | 82.69 290 | 64.85 192 | 81.57 276 | 83.47 281 | 69.16 216 | 70.49 275 | 84.15 279 | 51.95 246 | 88.15 284 | 69.23 188 | 72.14 321 | 87.34 269 |
|
| CL-MVSNet_self_test | | | 72.37 270 | 71.46 263 | 75.09 296 | 79.49 337 | 53.53 338 | 80.76 284 | 85.01 258 | 69.12 217 | 70.51 274 | 82.05 308 | 57.92 193 | 84.13 315 | 52.27 318 | 66.00 347 | 87.60 262 |
|
| AUN-MVS | | | 79.21 165 | 77.60 185 | 84.05 121 | 88.71 155 | 67.61 134 | 85.84 201 | 87.26 228 | 69.08 218 | 77.23 175 | 88.14 187 | 53.20 232 | 93.47 151 | 75.50 132 | 73.45 311 | 91.06 152 |
|
| xiu_mvs_v1_base_debu | | | 80.80 124 | 79.72 130 | 84.03 123 | 87.35 200 | 70.19 78 | 85.56 205 | 88.77 193 | 69.06 219 | 81.83 97 | 88.16 183 | 50.91 257 | 92.85 181 | 78.29 101 | 87.56 129 | 89.06 225 |
|
| xiu_mvs_v1_base | | | 80.80 124 | 79.72 130 | 84.03 123 | 87.35 200 | 70.19 78 | 85.56 205 | 88.77 193 | 69.06 219 | 81.83 97 | 88.16 183 | 50.91 257 | 92.85 181 | 78.29 101 | 87.56 129 | 89.06 225 |
|
| xiu_mvs_v1_base_debi | | | 80.80 124 | 79.72 130 | 84.03 123 | 87.35 200 | 70.19 78 | 85.56 205 | 88.77 193 | 69.06 219 | 81.83 97 | 88.16 183 | 50.91 257 | 92.85 181 | 78.29 101 | 87.56 129 | 89.06 225 |
|
| MVSTER | | | 79.01 170 | 77.88 174 | 82.38 181 | 83.07 279 | 64.80 193 | 84.08 244 | 88.95 188 | 69.01 222 | 78.69 138 | 87.17 210 | 54.70 217 | 92.43 192 | 74.69 135 | 80.57 221 | 89.89 205 |
|
| cl22 | | | 78.07 193 | 77.01 195 | 81.23 205 | 82.37 298 | 61.83 247 | 83.55 252 | 87.98 210 | 68.96 223 | 75.06 231 | 83.87 281 | 61.40 160 | 91.88 214 | 73.53 146 | 76.39 269 | 89.98 201 |
|
| miper_ehance_all_eth | | | 78.59 181 | 77.76 180 | 81.08 211 | 82.66 291 | 61.56 250 | 83.65 248 | 89.15 178 | 68.87 224 | 75.55 212 | 83.79 285 | 66.49 97 | 92.03 207 | 73.25 151 | 76.39 269 | 89.64 213 |
|
| PAPR | | | 81.66 107 | 80.89 109 | 83.99 126 | 90.27 97 | 64.00 208 | 86.76 176 | 91.77 101 | 68.84 225 | 77.13 181 | 89.50 142 | 67.63 86 | 94.88 92 | 67.55 204 | 88.52 122 | 93.09 89 |
|
| CPTT-MVS | | | 83.73 70 | 83.33 74 | 84.92 86 | 93.28 49 | 70.86 68 | 92.09 36 | 90.38 136 | 68.75 226 | 79.57 125 | 92.83 69 | 60.60 177 | 93.04 177 | 80.92 77 | 91.56 83 | 90.86 160 |
|
| train_agg | | | 86.43 38 | 86.20 40 | 87.13 43 | 93.26 50 | 72.96 24 | 88.75 110 | 91.89 93 | 68.69 227 | 85.00 50 | 93.10 60 | 74.43 26 | 95.41 66 | 84.97 34 | 95.71 25 | 93.02 93 |
|
| test_8 | | | | | | 93.13 52 | 72.57 34 | 88.68 115 | 91.84 97 | 68.69 227 | 84.87 54 | 93.10 60 | 74.43 26 | 95.16 75 | | | |
|
| dmvs_re | | | 71.14 276 | 70.58 272 | 72.80 315 | 81.96 301 | 59.68 272 | 75.60 334 | 79.34 324 | 68.55 229 | 69.27 294 | 80.72 320 | 49.42 275 | 76.54 353 | 52.56 317 | 77.79 250 | 82.19 343 |
|
| MVSFormer | | | 82.85 87 | 82.05 92 | 85.24 74 | 87.35 200 | 70.21 76 | 90.50 61 | 90.38 136 | 68.55 229 | 81.32 105 | 89.47 144 | 61.68 152 | 93.46 152 | 78.98 92 | 90.26 99 | 92.05 125 |
|
| test_djsdf | | | 80.30 140 | 79.32 140 | 83.27 146 | 83.98 260 | 65.37 182 | 90.50 61 | 90.38 136 | 68.55 229 | 76.19 201 | 88.70 165 | 56.44 206 | 93.46 152 | 78.98 92 | 80.14 227 | 90.97 157 |
|
| TEST9 | | | | | | 93.26 50 | 72.96 24 | 88.75 110 | 91.89 93 | 68.44 232 | 85.00 50 | 93.10 60 | 74.36 28 | 95.41 66 | | | |
|
| FE-MVS | | | 77.78 201 | 75.68 219 | 84.08 117 | 88.09 175 | 66.00 163 | 83.13 259 | 87.79 217 | 68.42 233 | 78.01 159 | 85.23 260 | 45.50 311 | 95.12 77 | 59.11 274 | 85.83 158 | 91.11 149 |
|
| CDPH-MVS | | | 85.76 49 | 85.29 58 | 87.17 42 | 93.49 47 | 71.08 60 | 88.58 118 | 92.42 72 | 68.32 234 | 84.61 60 | 93.48 52 | 72.32 42 | 96.15 44 | 79.00 91 | 95.43 30 | 94.28 39 |
|
| PC_three_1452 | | | | | | | | | | 68.21 235 | 92.02 12 | 94.00 44 | 82.09 5 | 95.98 50 | 84.58 41 | 96.68 2 | 94.95 9 |
|
| IterMVS | | | 74.29 248 | 72.94 253 | 78.35 262 | 81.53 308 | 63.49 220 | 81.58 275 | 82.49 293 | 68.06 236 | 69.99 284 | 83.69 287 | 51.66 252 | 85.54 304 | 65.85 220 | 71.64 324 | 86.01 298 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| dmvs_testset | | | 62.63 328 | 64.11 319 | 58.19 356 | 78.55 342 | 24.76 392 | 75.28 335 | 65.94 372 | 67.91 237 | 60.34 351 | 76.01 353 | 53.56 228 | 73.94 371 | 31.79 375 | 67.65 340 | 75.88 363 |
|
| TAMVS | | | 78.89 174 | 77.51 187 | 83.03 159 | 87.80 185 | 67.79 130 | 84.72 224 | 85.05 257 | 67.63 238 | 76.75 186 | 87.70 192 | 62.25 145 | 90.82 244 | 58.53 281 | 87.13 136 | 90.49 174 |
|
| PVSNet_Blended | | | 80.98 117 | 80.34 118 | 82.90 165 | 88.85 145 | 65.40 179 | 84.43 235 | 92.00 87 | 67.62 239 | 78.11 156 | 85.05 266 | 66.02 105 | 94.27 112 | 71.52 164 | 89.50 110 | 89.01 230 |
|
| TR-MVS | | | 77.44 209 | 76.18 214 | 81.20 207 | 88.24 170 | 63.24 226 | 84.61 228 | 86.40 240 | 67.55 240 | 77.81 162 | 86.48 233 | 54.10 223 | 93.15 169 | 57.75 288 | 82.72 196 | 87.20 272 |
|
| CDS-MVSNet | | | 79.07 169 | 77.70 182 | 83.17 152 | 87.60 194 | 68.23 122 | 84.40 237 | 86.20 243 | 67.49 241 | 76.36 197 | 86.54 231 | 61.54 155 | 90.79 245 | 61.86 252 | 87.33 133 | 90.49 174 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| mvs_anonymous | | | 79.42 159 | 79.11 147 | 80.34 227 | 84.45 251 | 57.97 287 | 82.59 266 | 87.62 220 | 67.40 242 | 76.17 204 | 88.56 172 | 68.47 81 | 89.59 261 | 70.65 174 | 86.05 153 | 93.47 77 |
|
| IU-MVS | | | | | | 95.30 2 | 71.25 56 | | 92.95 51 | 66.81 243 | 92.39 6 | | | | 88.94 15 | 96.63 4 | 94.85 18 |
|
| baseline2 | | | 75.70 236 | 73.83 245 | 81.30 203 | 83.26 273 | 61.79 248 | 82.57 267 | 80.65 309 | 66.81 243 | 66.88 314 | 83.42 290 | 57.86 194 | 92.19 203 | 63.47 234 | 79.57 231 | 89.91 203 |
|
| miper_lstm_enhance | | | 74.11 251 | 73.11 252 | 77.13 280 | 80.11 326 | 59.62 273 | 72.23 348 | 86.92 234 | 66.76 245 | 70.40 276 | 82.92 295 | 56.93 204 | 82.92 324 | 69.06 191 | 72.63 317 | 88.87 237 |
|
| OpenMVS |  | 72.83 10 | 79.77 149 | 78.33 164 | 84.09 116 | 85.17 235 | 69.91 83 | 90.57 59 | 90.97 120 | 66.70 246 | 72.17 262 | 91.91 84 | 54.70 217 | 93.96 123 | 61.81 253 | 90.95 90 | 88.41 250 |
|
| test-LLR | | | 72.94 266 | 72.43 256 | 74.48 302 | 81.35 312 | 58.04 285 | 78.38 314 | 77.46 334 | 66.66 247 | 69.95 285 | 79.00 335 | 48.06 288 | 79.24 339 | 66.13 215 | 84.83 163 | 86.15 294 |
|
| test20.03 | | | 67.45 308 | 66.95 309 | 68.94 337 | 75.48 355 | 44.84 372 | 77.50 322 | 77.67 332 | 66.66 247 | 63.01 343 | 83.80 284 | 47.02 294 | 78.40 343 | 42.53 361 | 68.86 338 | 83.58 329 |
|
| test0.0.03 1 | | | 68.00 306 | 67.69 301 | 68.90 338 | 77.55 345 | 47.43 363 | 75.70 333 | 72.95 357 | 66.66 247 | 66.56 319 | 82.29 305 | 48.06 288 | 75.87 360 | 44.97 356 | 74.51 301 | 83.41 330 |
|
| Syy-MVS | | | 68.05 305 | 67.85 296 | 68.67 341 | 84.68 246 | 40.97 382 | 78.62 312 | 73.08 355 | 66.65 250 | 66.74 317 | 79.46 330 | 52.11 242 | 82.30 327 | 32.89 374 | 76.38 272 | 82.75 339 |
|
| myMVS_eth3d | | | 67.02 311 | 66.29 312 | 69.21 336 | 84.68 246 | 42.58 377 | 78.62 312 | 73.08 355 | 66.65 250 | 66.74 317 | 79.46 330 | 31.53 362 | 82.30 327 | 39.43 367 | 76.38 272 | 82.75 339 |
|
| QAPM | | | 80.88 119 | 79.50 135 | 85.03 80 | 88.01 179 | 68.97 102 | 91.59 42 | 92.00 87 | 66.63 252 | 75.15 228 | 92.16 81 | 57.70 195 | 95.45 62 | 63.52 233 | 88.76 118 | 90.66 167 |
|
| XXY-MVS | | | 75.41 242 | 75.56 221 | 74.96 297 | 83.59 266 | 57.82 291 | 80.59 287 | 83.87 275 | 66.54 253 | 74.93 234 | 88.31 178 | 63.24 128 | 80.09 337 | 62.16 248 | 76.85 262 | 86.97 280 |
|
| OurMVSNet-221017-0 | | | 74.26 249 | 72.42 257 | 79.80 238 | 83.76 264 | 59.59 274 | 85.92 198 | 86.64 236 | 66.39 254 | 66.96 313 | 87.58 195 | 39.46 340 | 91.60 220 | 65.76 221 | 69.27 334 | 88.22 251 |
|
| SCA | | | 74.22 250 | 72.33 258 | 79.91 235 | 84.05 259 | 62.17 242 | 79.96 297 | 79.29 325 | 66.30 255 | 72.38 260 | 80.13 324 | 51.95 246 | 88.60 279 | 59.25 272 | 77.67 253 | 88.96 234 |
|
| testgi | | | 66.67 314 | 66.53 311 | 67.08 346 | 75.62 354 | 41.69 381 | 75.93 329 | 76.50 341 | 66.11 256 | 65.20 333 | 86.59 227 | 35.72 354 | 74.71 367 | 43.71 357 | 73.38 313 | 84.84 315 |
|
| HY-MVS | | 69.67 12 | 77.95 197 | 77.15 193 | 80.36 226 | 87.57 198 | 60.21 268 | 83.37 255 | 87.78 218 | 66.11 256 | 75.37 219 | 87.06 214 | 63.27 127 | 90.48 250 | 61.38 257 | 82.43 199 | 90.40 178 |
|
| EG-PatchMatch MVS | | | 74.04 252 | 71.82 261 | 80.71 220 | 84.92 243 | 67.42 138 | 85.86 200 | 88.08 208 | 66.04 258 | 64.22 337 | 83.85 282 | 35.10 355 | 92.56 188 | 57.44 290 | 80.83 216 | 82.16 344 |
|
| CNLPA | | | 78.08 192 | 76.79 202 | 81.97 188 | 90.40 96 | 71.07 61 | 87.59 150 | 84.55 263 | 66.03 259 | 72.38 260 | 89.64 138 | 57.56 197 | 86.04 300 | 59.61 269 | 83.35 187 | 88.79 241 |
|
| Anonymous20240529 | | | 80.19 143 | 78.89 151 | 84.10 114 | 90.60 91 | 64.75 194 | 88.95 102 | 90.90 122 | 65.97 260 | 80.59 115 | 91.17 106 | 49.97 268 | 93.73 141 | 69.16 190 | 82.70 197 | 93.81 59 |
|
| TAPA-MVS | | 73.13 9 | 79.15 166 | 77.94 171 | 82.79 172 | 89.59 115 | 62.99 234 | 88.16 132 | 91.51 107 | 65.77 261 | 77.14 180 | 91.09 108 | 60.91 170 | 93.21 162 | 50.26 330 | 87.05 137 | 92.17 122 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| MSDG | | | 73.36 260 | 70.99 269 | 80.49 224 | 84.51 250 | 65.80 170 | 80.71 285 | 86.13 245 | 65.70 262 | 65.46 328 | 83.74 286 | 44.60 314 | 90.91 243 | 51.13 323 | 76.89 260 | 84.74 316 |
|
| anonymousdsp | | | 78.60 180 | 77.15 193 | 82.98 162 | 80.51 322 | 67.08 146 | 87.24 160 | 89.53 162 | 65.66 263 | 75.16 227 | 87.19 209 | 52.52 233 | 92.25 201 | 77.17 111 | 79.34 236 | 89.61 214 |
|
| test_0402 | | | 72.79 267 | 70.44 275 | 79.84 237 | 88.13 172 | 65.99 164 | 85.93 197 | 84.29 268 | 65.57 264 | 67.40 310 | 85.49 254 | 46.92 295 | 92.61 186 | 35.88 371 | 74.38 302 | 80.94 350 |
|
| miper_enhance_ethall | | | 77.87 200 | 76.86 199 | 80.92 216 | 81.65 305 | 61.38 252 | 82.68 265 | 88.98 185 | 65.52 265 | 75.47 213 | 82.30 304 | 65.76 109 | 92.00 209 | 72.95 154 | 76.39 269 | 89.39 218 |
|
| UnsupCasMVSNet_eth | | | 67.33 309 | 65.99 313 | 71.37 324 | 73.48 364 | 51.47 352 | 75.16 337 | 85.19 255 | 65.20 266 | 60.78 350 | 80.93 319 | 42.35 326 | 77.20 349 | 57.12 293 | 53.69 370 | 85.44 305 |
|
| WTY-MVS | | | 75.65 237 | 75.68 219 | 75.57 291 | 86.40 220 | 56.82 304 | 77.92 321 | 82.40 294 | 65.10 267 | 76.18 202 | 87.72 191 | 63.13 134 | 80.90 334 | 60.31 264 | 81.96 203 | 89.00 232 |
|
| thisisatest0515 | | | 77.33 212 | 75.38 226 | 83.18 151 | 85.27 234 | 63.80 212 | 82.11 270 | 83.27 284 | 65.06 268 | 75.91 206 | 83.84 283 | 49.54 273 | 94.27 112 | 67.24 208 | 86.19 151 | 91.48 140 |
|
| MVP-Stereo | | | 76.12 231 | 74.46 238 | 81.13 210 | 85.37 233 | 69.79 85 | 84.42 236 | 87.95 212 | 65.03 269 | 67.46 308 | 85.33 257 | 53.28 231 | 91.73 219 | 58.01 286 | 83.27 188 | 81.85 345 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| Anonymous20231211 | | | 78.97 172 | 77.69 183 | 82.81 169 | 90.54 93 | 64.29 204 | 90.11 71 | 91.51 107 | 65.01 270 | 76.16 205 | 88.13 188 | 50.56 262 | 93.03 178 | 69.68 185 | 77.56 254 | 91.11 149 |
|
| pmmvs6 | | | 74.69 246 | 73.39 248 | 78.61 256 | 81.38 311 | 57.48 296 | 86.64 178 | 87.95 212 | 64.99 271 | 70.18 279 | 86.61 226 | 50.43 264 | 89.52 262 | 62.12 249 | 70.18 331 | 88.83 239 |
|
| PAPM | | | 77.68 206 | 76.40 212 | 81.51 196 | 87.29 207 | 61.85 246 | 83.78 246 | 89.59 161 | 64.74 272 | 71.23 270 | 88.70 165 | 62.59 138 | 93.66 142 | 52.66 316 | 87.03 138 | 89.01 230 |
|
| MIMVSNet | | | 70.69 282 | 69.30 281 | 74.88 298 | 84.52 249 | 56.35 314 | 75.87 332 | 79.42 323 | 64.59 273 | 67.76 303 | 82.41 302 | 41.10 335 | 81.54 331 | 46.64 349 | 81.34 209 | 86.75 285 |
|
| tpm | | | 72.37 270 | 71.71 262 | 74.35 304 | 82.19 299 | 52.00 346 | 79.22 304 | 77.29 337 | 64.56 274 | 72.95 253 | 83.68 288 | 51.35 253 | 83.26 323 | 58.33 283 | 75.80 278 | 87.81 258 |
|
| MDA-MVSNet-bldmvs | | | 66.68 313 | 63.66 322 | 75.75 288 | 79.28 339 | 60.56 262 | 73.92 344 | 78.35 329 | 64.43 275 | 50.13 373 | 79.87 328 | 44.02 318 | 83.67 318 | 46.10 351 | 56.86 363 | 83.03 336 |
|
| MIMVSNet1 | | | 68.58 300 | 66.78 310 | 73.98 307 | 80.07 327 | 51.82 348 | 80.77 283 | 84.37 265 | 64.40 276 | 59.75 355 | 82.16 307 | 36.47 351 | 83.63 319 | 42.73 360 | 70.33 330 | 86.48 289 |
|
| D2MVS | | | 74.82 245 | 73.21 250 | 79.64 243 | 79.81 331 | 62.56 237 | 80.34 292 | 87.35 226 | 64.37 277 | 68.86 296 | 82.66 300 | 46.37 299 | 90.10 254 | 67.91 201 | 81.24 211 | 86.25 291 |
|
| PLC |  | 70.83 11 | 78.05 194 | 76.37 213 | 83.08 156 | 91.88 74 | 67.80 129 | 88.19 130 | 89.46 164 | 64.33 278 | 69.87 287 | 88.38 176 | 53.66 227 | 93.58 143 | 58.86 277 | 82.73 195 | 87.86 257 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| PatchmatchNet |  | | 73.12 263 | 71.33 266 | 78.49 261 | 83.18 276 | 60.85 257 | 79.63 299 | 78.57 328 | 64.13 279 | 71.73 266 | 79.81 329 | 51.20 255 | 85.97 301 | 57.40 291 | 76.36 274 | 88.66 244 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| KD-MVS_2432*1600 | | | 66.22 318 | 63.89 320 | 73.21 311 | 75.47 356 | 53.42 340 | 70.76 354 | 84.35 266 | 64.10 280 | 66.52 321 | 78.52 339 | 34.55 356 | 84.98 309 | 50.40 326 | 50.33 374 | 81.23 348 |
|
| miper_refine_blended | | | 66.22 318 | 63.89 320 | 73.21 311 | 75.47 356 | 53.42 340 | 70.76 354 | 84.35 266 | 64.10 280 | 66.52 321 | 78.52 339 | 34.55 356 | 84.98 309 | 50.40 326 | 50.33 374 | 81.23 348 |
|
| tpmvs | | | 71.09 277 | 69.29 282 | 76.49 284 | 82.04 300 | 56.04 317 | 78.92 309 | 81.37 304 | 64.05 282 | 67.18 312 | 78.28 341 | 49.74 272 | 89.77 257 | 49.67 333 | 72.37 318 | 83.67 328 |
|
| F-COLMAP | | | 76.38 229 | 74.33 239 | 82.50 179 | 89.28 132 | 66.95 151 | 88.41 121 | 89.03 182 | 64.05 282 | 66.83 315 | 88.61 169 | 46.78 296 | 92.89 180 | 57.48 289 | 78.55 242 | 87.67 260 |
|
| DP-MVS | | | 76.78 221 | 74.57 234 | 83.42 140 | 93.29 48 | 69.46 93 | 88.55 119 | 83.70 276 | 63.98 284 | 70.20 278 | 88.89 161 | 54.01 225 | 94.80 95 | 46.66 347 | 81.88 205 | 86.01 298 |
|
| 原ACMM1 | | | | | 84.35 106 | 93.01 57 | 68.79 104 | | 92.44 69 | 63.96 285 | 81.09 110 | 91.57 94 | 66.06 104 | 95.45 62 | 67.19 209 | 94.82 44 | 88.81 240 |
|
| PM-MVS | | | 66.41 316 | 64.14 318 | 73.20 313 | 73.92 360 | 56.45 310 | 78.97 308 | 64.96 375 | 63.88 286 | 64.72 334 | 80.24 323 | 19.84 377 | 83.44 321 | 66.24 214 | 64.52 351 | 79.71 355 |
|
| jason | | | 81.39 112 | 80.29 120 | 84.70 93 | 86.63 218 | 69.90 84 | 85.95 196 | 86.77 235 | 63.24 287 | 81.07 111 | 89.47 144 | 61.08 168 | 92.15 204 | 78.33 100 | 90.07 104 | 92.05 125 |
| jason: jason. |
| KD-MVS_self_test | | | 68.81 297 | 67.59 304 | 72.46 318 | 74.29 359 | 45.45 367 | 77.93 320 | 87.00 232 | 63.12 288 | 63.99 339 | 78.99 337 | 42.32 327 | 84.77 312 | 56.55 300 | 64.09 352 | 87.16 275 |
|
| gg-mvs-nofinetune | | | 69.95 290 | 67.96 294 | 75.94 287 | 83.07 279 | 54.51 332 | 77.23 325 | 70.29 361 | 63.11 289 | 70.32 277 | 62.33 372 | 43.62 320 | 88.69 278 | 53.88 310 | 87.76 128 | 84.62 318 |
|
| tpmrst | | | 72.39 268 | 72.13 259 | 73.18 314 | 80.54 321 | 49.91 359 | 79.91 298 | 79.08 326 | 63.11 289 | 71.69 267 | 79.95 326 | 55.32 209 | 82.77 325 | 65.66 222 | 73.89 306 | 86.87 281 |
|
| PCF-MVS | | 73.52 7 | 80.38 136 | 78.84 152 | 85.01 81 | 87.71 189 | 68.99 101 | 83.65 248 | 91.46 111 | 63.00 291 | 77.77 164 | 90.28 124 | 66.10 102 | 95.09 83 | 61.40 256 | 88.22 126 | 90.94 158 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| COLMAP_ROB |  | 66.92 17 | 73.01 264 | 70.41 276 | 80.81 218 | 87.13 210 | 65.63 173 | 88.30 127 | 84.19 271 | 62.96 292 | 63.80 341 | 87.69 193 | 38.04 347 | 92.56 188 | 46.66 347 | 74.91 297 | 84.24 321 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| Patchmatch-RL test | | | 70.24 287 | 67.78 300 | 77.61 273 | 77.43 346 | 59.57 275 | 71.16 351 | 70.33 360 | 62.94 293 | 68.65 298 | 72.77 363 | 50.62 261 | 85.49 305 | 69.58 186 | 66.58 344 | 87.77 259 |
|
| lupinMVS | | | 81.39 112 | 80.27 121 | 84.76 92 | 87.35 200 | 70.21 76 | 85.55 208 | 86.41 239 | 62.85 294 | 81.32 105 | 88.61 169 | 61.68 152 | 92.24 202 | 78.41 99 | 90.26 99 | 91.83 129 |
|
| test_vis1_n_1920 | | | 75.52 239 | 75.78 217 | 74.75 301 | 79.84 330 | 57.44 297 | 83.26 256 | 85.52 252 | 62.83 295 | 79.34 129 | 86.17 240 | 45.10 313 | 79.71 338 | 78.75 94 | 81.21 212 | 87.10 279 |
|
| EPMVS | | | 69.02 296 | 68.16 291 | 71.59 322 | 79.61 335 | 49.80 361 | 77.40 323 | 66.93 369 | 62.82 296 | 70.01 282 | 79.05 333 | 45.79 307 | 77.86 347 | 56.58 299 | 75.26 293 | 87.13 276 |
|
| PatchMatch-RL | | | 72.38 269 | 70.90 270 | 76.80 283 | 88.60 158 | 67.38 140 | 79.53 300 | 76.17 344 | 62.75 297 | 69.36 292 | 82.00 310 | 45.51 310 | 84.89 311 | 53.62 311 | 80.58 220 | 78.12 358 |
|
| gm-plane-assit | | | | | | 81.40 310 | 53.83 337 | | | 62.72 298 | | 80.94 317 | | 92.39 194 | 63.40 236 | | |
|
| FMVSNet5 | | | 69.50 293 | 67.96 294 | 74.15 306 | 82.97 285 | 55.35 323 | 80.01 296 | 82.12 297 | 62.56 299 | 63.02 342 | 81.53 311 | 36.92 350 | 81.92 329 | 48.42 337 | 74.06 304 | 85.17 311 |
|
| sss | | | 73.60 256 | 73.64 247 | 73.51 310 | 82.80 287 | 55.01 327 | 76.12 328 | 81.69 301 | 62.47 300 | 74.68 237 | 85.85 246 | 57.32 200 | 78.11 345 | 60.86 261 | 80.93 214 | 87.39 267 |
|
| AllTest | | | 70.96 278 | 68.09 293 | 79.58 244 | 85.15 237 | 63.62 214 | 84.58 229 | 79.83 319 | 62.31 301 | 60.32 352 | 86.73 217 | 32.02 359 | 88.96 274 | 50.28 328 | 71.57 325 | 86.15 294 |
|
| TestCases | | | | | 79.58 244 | 85.15 237 | 63.62 214 | | 79.83 319 | 62.31 301 | 60.32 352 | 86.73 217 | 32.02 359 | 88.96 274 | 50.28 328 | 71.57 325 | 86.15 294 |
|
| 1112_ss | | | 77.40 211 | 76.43 211 | 80.32 228 | 89.11 142 | 60.41 265 | 83.65 248 | 87.72 219 | 62.13 303 | 73.05 252 | 86.72 219 | 62.58 139 | 89.97 255 | 62.11 250 | 80.80 217 | 90.59 171 |
|
| PVSNet | | 64.34 18 | 72.08 272 | 70.87 271 | 75.69 289 | 86.21 222 | 56.44 311 | 74.37 342 | 80.73 308 | 62.06 304 | 70.17 280 | 82.23 306 | 42.86 324 | 83.31 322 | 54.77 306 | 84.45 170 | 87.32 270 |
|
| LS3D | | | 76.95 219 | 74.82 232 | 83.37 143 | 90.45 94 | 67.36 141 | 89.15 97 | 86.94 233 | 61.87 305 | 69.52 290 | 90.61 119 | 51.71 251 | 94.53 104 | 46.38 350 | 86.71 143 | 88.21 252 |
|
| CostFormer | | | 75.24 244 | 73.90 243 | 79.27 248 | 82.65 292 | 58.27 282 | 80.80 282 | 82.73 292 | 61.57 306 | 75.33 223 | 83.13 294 | 55.52 208 | 91.07 241 | 64.98 227 | 78.34 248 | 88.45 248 |
|
| new-patchmatchnet | | | 61.73 330 | 61.73 331 | 61.70 352 | 72.74 369 | 24.50 393 | 69.16 361 | 78.03 330 | 61.40 307 | 56.72 364 | 75.53 357 | 38.42 344 | 76.48 355 | 45.95 352 | 57.67 362 | 84.13 323 |
|
| ANet_high | | | 50.57 346 | 46.10 350 | 63.99 349 | 48.67 392 | 39.13 383 | 70.99 353 | 80.85 306 | 61.39 308 | 31.18 381 | 57.70 379 | 17.02 380 | 73.65 372 | 31.22 376 | 15.89 389 | 79.18 356 |
|
| MS-PatchMatch | | | 73.83 254 | 72.67 254 | 77.30 278 | 83.87 262 | 66.02 162 | 81.82 271 | 84.66 261 | 61.37 309 | 68.61 299 | 82.82 298 | 47.29 291 | 88.21 283 | 59.27 271 | 84.32 171 | 77.68 359 |
|
| USDC | | | 70.33 286 | 68.37 288 | 76.21 286 | 80.60 320 | 56.23 315 | 79.19 305 | 86.49 238 | 60.89 310 | 61.29 348 | 85.47 255 | 31.78 361 | 89.47 264 | 53.37 313 | 76.21 275 | 82.94 338 |
|
| cascas | | | 76.72 222 | 74.64 233 | 82.99 161 | 85.78 227 | 65.88 167 | 82.33 268 | 89.21 175 | 60.85 311 | 72.74 254 | 81.02 315 | 47.28 292 | 93.75 139 | 67.48 205 | 85.02 161 | 89.34 219 |
|
| MDTV_nov1_ep13 | | | | 69.97 280 | | 83.18 276 | 53.48 339 | 77.10 326 | 80.18 318 | 60.45 312 | 69.33 293 | 80.44 321 | 48.89 286 | 86.90 294 | 51.60 321 | 78.51 244 | |
|
| TinyColmap | | | 67.30 310 | 64.81 315 | 74.76 300 | 81.92 303 | 56.68 308 | 80.29 293 | 81.49 303 | 60.33 313 | 56.27 366 | 83.22 291 | 24.77 371 | 87.66 291 | 45.52 353 | 69.47 333 | 79.95 354 |
|
| test-mter | | | 71.41 274 | 70.39 277 | 74.48 302 | 81.35 312 | 58.04 285 | 78.38 314 | 77.46 334 | 60.32 314 | 69.95 285 | 79.00 335 | 36.08 353 | 79.24 339 | 66.13 215 | 84.83 163 | 86.15 294 |
|
| 1314 | | | 76.53 223 | 75.30 229 | 80.21 230 | 83.93 261 | 62.32 240 | 84.66 225 | 88.81 191 | 60.23 315 | 70.16 281 | 84.07 280 | 55.30 210 | 90.73 247 | 67.37 206 | 83.21 189 | 87.59 264 |
|
| PatchT | | | 68.46 303 | 67.85 296 | 70.29 332 | 80.70 319 | 43.93 374 | 72.47 347 | 74.88 347 | 60.15 316 | 70.55 273 | 76.57 350 | 49.94 269 | 81.59 330 | 50.58 324 | 74.83 298 | 85.34 306 |
|
| 无先验 | | | | | | | | 87.48 152 | 88.98 185 | 60.00 317 | | | | 94.12 120 | 67.28 207 | | 88.97 233 |
|
| CR-MVSNet | | | 73.37 258 | 71.27 267 | 79.67 242 | 81.32 314 | 65.19 184 | 75.92 330 | 80.30 315 | 59.92 318 | 72.73 255 | 81.19 312 | 52.50 234 | 86.69 295 | 59.84 267 | 77.71 251 | 87.11 277 |
|
| TDRefinement | | | 67.49 307 | 64.34 317 | 76.92 281 | 73.47 365 | 61.07 254 | 84.86 222 | 82.98 289 | 59.77 319 | 58.30 359 | 85.13 263 | 26.06 369 | 87.89 287 | 47.92 344 | 60.59 360 | 81.81 346 |
|
| dp | | | 66.80 312 | 65.43 314 | 70.90 331 | 79.74 334 | 48.82 362 | 75.12 339 | 74.77 348 | 59.61 320 | 64.08 338 | 77.23 347 | 42.89 323 | 80.72 335 | 48.86 336 | 66.58 344 | 83.16 333 |
|
| our_test_3 | | | 69.14 295 | 67.00 308 | 75.57 291 | 79.80 332 | 58.80 277 | 77.96 319 | 77.81 331 | 59.55 321 | 62.90 345 | 78.25 342 | 47.43 290 | 83.97 316 | 51.71 320 | 67.58 341 | 83.93 326 |
|
| Test_1112_low_res | | | 76.40 228 | 75.44 223 | 79.27 248 | 89.28 132 | 58.09 283 | 81.69 274 | 87.07 231 | 59.53 322 | 72.48 258 | 86.67 224 | 61.30 162 | 89.33 265 | 60.81 262 | 80.15 226 | 90.41 177 |
|
| pmmvs4 | | | 74.03 253 | 71.91 260 | 80.39 225 | 81.96 301 | 68.32 119 | 81.45 278 | 82.14 296 | 59.32 323 | 69.87 287 | 85.13 263 | 52.40 236 | 88.13 285 | 60.21 265 | 74.74 299 | 84.73 317 |
|
| testdata | | | | | 79.97 234 | 90.90 86 | 64.21 205 | | 84.71 260 | 59.27 324 | 85.40 44 | 92.91 66 | 62.02 150 | 89.08 270 | 68.95 192 | 91.37 85 | 86.63 288 |
|
| WB-MVS | | | 54.94 336 | 54.72 338 | 55.60 362 | 73.50 363 | 20.90 394 | 74.27 343 | 61.19 379 | 59.16 325 | 50.61 372 | 74.15 359 | 47.19 293 | 75.78 361 | 17.31 386 | 35.07 381 | 70.12 369 |
|
| ppachtmachnet_test | | | 70.04 289 | 67.34 306 | 78.14 264 | 79.80 332 | 61.13 253 | 79.19 305 | 80.59 310 | 59.16 325 | 65.27 330 | 79.29 332 | 46.75 297 | 87.29 292 | 49.33 334 | 66.72 342 | 86.00 300 |
|
| RPSCF | | | 73.23 262 | 71.46 263 | 78.54 259 | 82.50 294 | 59.85 270 | 82.18 269 | 82.84 291 | 58.96 327 | 71.15 272 | 89.41 150 | 45.48 312 | 84.77 312 | 58.82 278 | 71.83 323 | 91.02 156 |
|
| pmmvs-eth3d | | | 70.50 285 | 67.83 298 | 78.52 260 | 77.37 347 | 66.18 160 | 81.82 271 | 81.51 302 | 58.90 328 | 63.90 340 | 80.42 322 | 42.69 325 | 86.28 299 | 58.56 280 | 65.30 349 | 83.11 334 |
|
| OpenMVS_ROB |  | 64.09 19 | 70.56 284 | 68.19 290 | 77.65 272 | 80.26 323 | 59.41 276 | 85.01 218 | 82.96 290 | 58.76 329 | 65.43 329 | 82.33 303 | 37.63 349 | 91.23 234 | 45.34 355 | 76.03 276 | 82.32 341 |
|
| 114514_t | | | 80.68 128 | 79.51 134 | 84.20 111 | 94.09 38 | 67.27 142 | 89.64 84 | 91.11 118 | 58.75 330 | 74.08 243 | 90.72 117 | 58.10 191 | 95.04 84 | 69.70 184 | 89.42 112 | 90.30 182 |
|
| Patchmtry | | | 70.74 281 | 69.16 284 | 75.49 293 | 80.72 318 | 54.07 335 | 74.94 341 | 80.30 315 | 58.34 331 | 70.01 282 | 81.19 312 | 52.50 234 | 86.54 296 | 53.37 313 | 71.09 328 | 85.87 302 |
|
| test_cas_vis1_n_1920 | | | 73.76 255 | 73.74 246 | 73.81 308 | 75.90 351 | 59.77 271 | 80.51 288 | 82.40 294 | 58.30 332 | 81.62 103 | 85.69 248 | 44.35 316 | 76.41 356 | 76.29 120 | 78.61 241 | 85.23 308 |
|
| Anonymous20240521 | | | 68.80 298 | 67.22 307 | 73.55 309 | 74.33 358 | 54.11 334 | 83.18 257 | 85.61 251 | 58.15 333 | 61.68 347 | 80.94 317 | 30.71 364 | 81.27 333 | 57.00 295 | 73.34 314 | 85.28 307 |
|
| 旧先验2 | | | | | | | | 86.56 181 | | 58.10 334 | 87.04 33 | | | 88.98 272 | 74.07 142 | | |
|
| JIA-IIPM | | | 66.32 317 | 62.82 328 | 76.82 282 | 77.09 348 | 61.72 249 | 65.34 372 | 75.38 345 | 58.04 335 | 64.51 335 | 62.32 373 | 42.05 332 | 86.51 297 | 51.45 322 | 69.22 335 | 82.21 342 |
|
| pmmvs5 | | | 71.55 273 | 70.20 279 | 75.61 290 | 77.83 344 | 56.39 312 | 81.74 273 | 80.89 305 | 57.76 336 | 67.46 308 | 84.49 271 | 49.26 279 | 85.32 308 | 57.08 294 | 75.29 292 | 85.11 312 |
|
| TESTMET0.1,1 | | | 69.89 291 | 69.00 285 | 72.55 317 | 79.27 340 | 56.85 303 | 78.38 314 | 74.71 350 | 57.64 337 | 68.09 302 | 77.19 348 | 37.75 348 | 76.70 352 | 63.92 232 | 84.09 174 | 84.10 324 |
|
| RPMNet | | | 73.51 257 | 70.49 274 | 82.58 178 | 81.32 314 | 65.19 184 | 75.92 330 | 92.27 76 | 57.60 338 | 72.73 255 | 76.45 351 | 52.30 237 | 95.43 64 | 48.14 342 | 77.71 251 | 87.11 277 |
|
| SSC-MVS | | | 53.88 339 | 53.59 340 | 54.75 364 | 72.87 368 | 19.59 395 | 73.84 345 | 60.53 381 | 57.58 339 | 49.18 374 | 73.45 362 | 46.34 301 | 75.47 364 | 16.20 389 | 32.28 383 | 69.20 370 |
|
| 新几何1 | | | | | 83.42 140 | 93.13 52 | 70.71 70 | | 85.48 253 | 57.43 340 | 81.80 100 | 91.98 83 | 63.28 126 | 92.27 200 | 64.60 230 | 92.99 64 | 87.27 271 |
|
| YYNet1 | | | 65.03 321 | 62.91 326 | 71.38 323 | 75.85 352 | 56.60 309 | 69.12 362 | 74.66 351 | 57.28 341 | 54.12 368 | 77.87 344 | 45.85 306 | 74.48 368 | 49.95 331 | 61.52 357 | 83.05 335 |
|
| MDA-MVSNet_test_wron | | | 65.03 321 | 62.92 325 | 71.37 324 | 75.93 350 | 56.73 305 | 69.09 363 | 74.73 349 | 57.28 341 | 54.03 369 | 77.89 343 | 45.88 305 | 74.39 369 | 49.89 332 | 61.55 356 | 82.99 337 |
|
| Anonymous20231206 | | | 68.60 299 | 67.80 299 | 71.02 329 | 80.23 325 | 50.75 356 | 78.30 317 | 80.47 312 | 56.79 343 | 66.11 326 | 82.63 301 | 46.35 300 | 78.95 341 | 43.62 358 | 75.70 279 | 83.36 331 |
|
| tpm2 | | | 73.26 261 | 71.46 263 | 78.63 255 | 83.34 271 | 56.71 307 | 80.65 286 | 80.40 314 | 56.63 344 | 73.55 246 | 82.02 309 | 51.80 250 | 91.24 233 | 56.35 301 | 78.42 246 | 87.95 254 |
|
| CHOSEN 1792x2688 | | | 77.63 207 | 75.69 218 | 83.44 139 | 89.98 108 | 68.58 116 | 78.70 311 | 87.50 223 | 56.38 345 | 75.80 209 | 86.84 215 | 58.67 187 | 91.40 229 | 61.58 255 | 85.75 159 | 90.34 179 |
|
| HyFIR lowres test | | | 77.53 208 | 75.40 225 | 83.94 129 | 89.59 115 | 66.62 153 | 80.36 291 | 88.64 200 | 56.29 346 | 76.45 193 | 85.17 262 | 57.64 196 | 93.28 157 | 61.34 258 | 83.10 191 | 91.91 128 |
|
| PVSNet_0 | | 57.27 20 | 61.67 331 | 59.27 334 | 68.85 339 | 79.61 335 | 57.44 297 | 68.01 364 | 73.44 354 | 55.93 347 | 58.54 358 | 70.41 368 | 44.58 315 | 77.55 348 | 47.01 346 | 35.91 380 | 71.55 368 |
|
| UnsupCasMVSNet_bld | | | 63.70 326 | 61.53 332 | 70.21 333 | 73.69 362 | 51.39 353 | 72.82 346 | 81.89 298 | 55.63 348 | 57.81 361 | 71.80 365 | 38.67 343 | 78.61 342 | 49.26 335 | 52.21 372 | 80.63 351 |
|
| MDTV_nov1_ep13_2view | | | | | | | 37.79 384 | 75.16 337 | | 55.10 349 | 66.53 320 | | 49.34 277 | | 53.98 309 | | 87.94 255 |
|
| MVS | | | 78.19 190 | 76.99 197 | 81.78 190 | 85.66 228 | 66.99 147 | 84.66 225 | 90.47 134 | 55.08 350 | 72.02 264 | 85.27 258 | 63.83 123 | 94.11 121 | 66.10 217 | 89.80 108 | 84.24 321 |
|
| test222 | | | | | | 91.50 77 | 68.26 121 | 84.16 241 | 83.20 287 | 54.63 351 | 79.74 122 | 91.63 92 | 58.97 186 | | | 91.42 84 | 86.77 284 |
|
| CHOSEN 280x420 | | | 66.51 315 | 64.71 316 | 71.90 320 | 81.45 309 | 63.52 219 | 57.98 379 | 68.95 367 | 53.57 352 | 62.59 346 | 76.70 349 | 46.22 302 | 75.29 366 | 55.25 304 | 79.68 230 | 76.88 361 |
|
| ADS-MVSNet2 | | | 66.20 320 | 63.33 323 | 74.82 299 | 79.92 328 | 58.75 278 | 67.55 365 | 75.19 346 | 53.37 353 | 65.25 331 | 75.86 354 | 42.32 327 | 80.53 336 | 41.57 362 | 68.91 336 | 85.18 309 |
|
| ADS-MVSNet | | | 64.36 324 | 62.88 327 | 68.78 340 | 79.92 328 | 47.17 364 | 67.55 365 | 71.18 359 | 53.37 353 | 65.25 331 | 75.86 354 | 42.32 327 | 73.99 370 | 41.57 362 | 68.91 336 | 85.18 309 |
|
| LF4IMVS | | | 64.02 325 | 62.19 329 | 69.50 335 | 70.90 372 | 53.29 343 | 76.13 327 | 77.18 338 | 52.65 355 | 58.59 357 | 80.98 316 | 23.55 373 | 76.52 354 | 53.06 315 | 66.66 343 | 78.68 357 |
|
| tpm cat1 | | | 70.57 283 | 68.31 289 | 77.35 277 | 82.41 297 | 57.95 288 | 78.08 318 | 80.22 317 | 52.04 356 | 68.54 300 | 77.66 346 | 52.00 245 | 87.84 288 | 51.77 319 | 72.07 322 | 86.25 291 |
|
| test_vis1_n | | | 69.85 292 | 69.21 283 | 71.77 321 | 72.66 370 | 55.27 325 | 81.48 277 | 76.21 343 | 52.03 357 | 75.30 224 | 83.20 293 | 28.97 366 | 76.22 358 | 74.60 136 | 78.41 247 | 83.81 327 |
|
| Patchmatch-test | | | 64.82 323 | 63.24 324 | 69.57 334 | 79.42 338 | 49.82 360 | 63.49 376 | 69.05 366 | 51.98 358 | 59.95 354 | 80.13 324 | 50.91 257 | 70.98 374 | 40.66 364 | 73.57 309 | 87.90 256 |
|
| N_pmnet | | | 52.79 342 | 53.26 341 | 51.40 366 | 78.99 341 | 7.68 398 | 69.52 358 | 3.89 397 | 51.63 359 | 57.01 363 | 74.98 358 | 40.83 337 | 65.96 381 | 37.78 369 | 64.67 350 | 80.56 353 |
|
| test_fmvs1_n | | | 70.86 280 | 70.24 278 | 72.73 316 | 72.51 371 | 55.28 324 | 81.27 280 | 79.71 321 | 51.49 360 | 78.73 136 | 84.87 267 | 27.54 368 | 77.02 350 | 76.06 123 | 79.97 229 | 85.88 301 |
|
| test_fmvs1 | | | 70.93 279 | 70.52 273 | 72.16 319 | 73.71 361 | 55.05 326 | 80.82 281 | 78.77 327 | 51.21 361 | 78.58 142 | 84.41 273 | 31.20 363 | 76.94 351 | 75.88 126 | 80.12 228 | 84.47 319 |
|
| PMMVS | | | 69.34 294 | 68.67 286 | 71.35 326 | 75.67 353 | 62.03 243 | 75.17 336 | 73.46 353 | 50.00 362 | 68.68 297 | 79.05 333 | 52.07 244 | 78.13 344 | 61.16 259 | 82.77 194 | 73.90 365 |
|
| test_fmvs2 | | | 68.35 304 | 67.48 305 | 70.98 330 | 69.50 374 | 51.95 347 | 80.05 295 | 76.38 342 | 49.33 363 | 74.65 238 | 84.38 274 | 23.30 374 | 75.40 365 | 74.51 137 | 75.17 295 | 85.60 303 |
|
| CMPMVS |  | 51.72 21 | 70.19 288 | 68.16 291 | 76.28 285 | 73.15 367 | 57.55 295 | 79.47 301 | 83.92 273 | 48.02 364 | 56.48 365 | 84.81 268 | 43.13 322 | 86.42 298 | 62.67 243 | 81.81 206 | 84.89 314 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| mvsany_test1 | | | 62.30 329 | 61.26 333 | 65.41 348 | 69.52 373 | 54.86 328 | 66.86 367 | 49.78 388 | 46.65 365 | 68.50 301 | 83.21 292 | 49.15 280 | 66.28 380 | 56.93 296 | 60.77 358 | 75.11 364 |
|
| test_fmvs3 | | | 63.36 327 | 61.82 330 | 67.98 343 | 62.51 381 | 46.96 366 | 77.37 324 | 74.03 352 | 45.24 366 | 67.50 307 | 78.79 338 | 12.16 385 | 72.98 373 | 72.77 157 | 66.02 346 | 83.99 325 |
|
| CVMVSNet | | | 72.99 265 | 72.58 255 | 74.25 305 | 84.28 252 | 50.85 355 | 86.41 184 | 83.45 282 | 44.56 367 | 73.23 250 | 87.54 199 | 49.38 276 | 85.70 302 | 65.90 219 | 78.44 245 | 86.19 293 |
|
| test_vis1_rt | | | 60.28 332 | 58.42 335 | 65.84 347 | 67.25 377 | 55.60 322 | 70.44 356 | 60.94 380 | 44.33 368 | 59.00 356 | 66.64 370 | 24.91 370 | 68.67 378 | 62.80 239 | 69.48 332 | 73.25 366 |
|
| mvsany_test3 | | | 53.99 338 | 51.45 343 | 61.61 353 | 55.51 385 | 44.74 373 | 63.52 375 | 45.41 392 | 43.69 369 | 58.11 360 | 76.45 351 | 17.99 378 | 63.76 383 | 54.77 306 | 47.59 376 | 76.34 362 |
|
| EU-MVSNet | | | 68.53 302 | 67.61 303 | 71.31 327 | 78.51 343 | 47.01 365 | 84.47 231 | 84.27 269 | 42.27 370 | 66.44 324 | 84.79 269 | 40.44 338 | 83.76 317 | 58.76 279 | 68.54 339 | 83.17 332 |
|
| FPMVS | | | 53.68 340 | 51.64 342 | 59.81 355 | 65.08 379 | 51.03 354 | 69.48 359 | 69.58 364 | 41.46 371 | 40.67 377 | 72.32 364 | 16.46 381 | 70.00 377 | 24.24 383 | 65.42 348 | 58.40 379 |
|
| pmmvs3 | | | 57.79 334 | 54.26 339 | 68.37 342 | 64.02 380 | 56.72 306 | 75.12 339 | 65.17 373 | 40.20 372 | 52.93 370 | 69.86 369 | 20.36 376 | 75.48 363 | 45.45 354 | 55.25 369 | 72.90 367 |
|
| new_pmnet | | | 50.91 345 | 50.29 345 | 52.78 365 | 68.58 375 | 34.94 387 | 63.71 374 | 56.63 385 | 39.73 373 | 44.95 375 | 65.47 371 | 21.93 375 | 58.48 384 | 34.98 372 | 56.62 364 | 64.92 373 |
|
| MVS-HIRNet | | | 59.14 333 | 57.67 336 | 63.57 350 | 81.65 305 | 43.50 375 | 71.73 349 | 65.06 374 | 39.59 374 | 51.43 371 | 57.73 378 | 38.34 345 | 82.58 326 | 39.53 365 | 73.95 305 | 64.62 374 |
|
| PMMVS2 | | | 40.82 352 | 38.86 355 | 46.69 367 | 53.84 387 | 16.45 396 | 48.61 382 | 49.92 387 | 37.49 375 | 31.67 380 | 60.97 375 | 8.14 391 | 56.42 386 | 28.42 378 | 30.72 384 | 67.19 372 |
|
| test_vis3_rt | | | 49.26 347 | 47.02 349 | 56.00 359 | 54.30 386 | 45.27 371 | 66.76 369 | 48.08 389 | 36.83 376 | 44.38 376 | 53.20 381 | 7.17 392 | 64.07 382 | 56.77 298 | 55.66 366 | 58.65 378 |
|
| test_f | | | 52.09 343 | 50.82 344 | 55.90 360 | 53.82 388 | 42.31 380 | 59.42 378 | 58.31 384 | 36.45 377 | 56.12 367 | 70.96 367 | 12.18 384 | 57.79 385 | 53.51 312 | 56.57 365 | 67.60 371 |
|
| LCM-MVSNet | | | 54.25 337 | 49.68 347 | 67.97 344 | 53.73 389 | 45.28 370 | 66.85 368 | 80.78 307 | 35.96 378 | 39.45 379 | 62.23 374 | 8.70 389 | 78.06 346 | 48.24 341 | 51.20 373 | 80.57 352 |
|
| APD_test1 | | | 53.31 341 | 49.93 346 | 63.42 351 | 65.68 378 | 50.13 358 | 71.59 350 | 66.90 370 | 34.43 379 | 40.58 378 | 71.56 366 | 8.65 390 | 76.27 357 | 34.64 373 | 55.36 368 | 63.86 375 |
|
| PMVS |  | 37.38 22 | 44.16 351 | 40.28 354 | 55.82 361 | 40.82 394 | 42.54 379 | 65.12 373 | 63.99 376 | 34.43 379 | 24.48 385 | 57.12 380 | 3.92 395 | 76.17 359 | 17.10 387 | 55.52 367 | 48.75 382 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| Gipuma |  | | 45.18 350 | 41.86 353 | 55.16 363 | 77.03 349 | 51.52 351 | 32.50 385 | 80.52 311 | 32.46 381 | 27.12 384 | 35.02 385 | 9.52 388 | 75.50 362 | 22.31 384 | 60.21 361 | 38.45 384 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| DSMNet-mixed | | | 57.77 335 | 56.90 337 | 60.38 354 | 67.70 376 | 35.61 385 | 69.18 360 | 53.97 386 | 32.30 382 | 57.49 362 | 79.88 327 | 40.39 339 | 68.57 379 | 38.78 368 | 72.37 318 | 76.97 360 |
|
| testf1 | | | 45.72 348 | 41.96 351 | 57.00 357 | 56.90 383 | 45.32 368 | 66.14 370 | 59.26 382 | 26.19 383 | 30.89 382 | 60.96 376 | 4.14 393 | 70.64 375 | 26.39 381 | 46.73 378 | 55.04 380 |
|
| APD_test2 | | | 45.72 348 | 41.96 351 | 57.00 357 | 56.90 383 | 45.32 368 | 66.14 370 | 59.26 382 | 26.19 383 | 30.89 382 | 60.96 376 | 4.14 393 | 70.64 375 | 26.39 381 | 46.73 378 | 55.04 380 |
|
| E-PMN | | | 31.77 353 | 30.64 356 | 35.15 370 | 52.87 390 | 27.67 389 | 57.09 380 | 47.86 390 | 24.64 385 | 16.40 390 | 33.05 386 | 11.23 386 | 54.90 387 | 14.46 390 | 18.15 387 | 22.87 386 |
|
| EMVS | | | 30.81 355 | 29.65 357 | 34.27 371 | 50.96 391 | 25.95 391 | 56.58 381 | 46.80 391 | 24.01 386 | 15.53 391 | 30.68 387 | 12.47 383 | 54.43 388 | 12.81 391 | 17.05 388 | 22.43 387 |
|
| MVE |  | 26.22 23 | 30.37 356 | 25.89 360 | 43.81 368 | 44.55 393 | 35.46 386 | 28.87 386 | 39.07 393 | 18.20 387 | 18.58 389 | 40.18 384 | 2.68 396 | 47.37 390 | 17.07 388 | 23.78 386 | 48.60 383 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| DeepMVS_CX |  | | | | 27.40 372 | 40.17 395 | 26.90 390 | | 24.59 396 | 17.44 388 | 23.95 386 | 48.61 383 | 9.77 387 | 26.48 391 | 18.06 385 | 24.47 385 | 28.83 385 |
|
| wuyk23d | | | 16.82 359 | 15.94 362 | 19.46 373 | 58.74 382 | 31.45 388 | 39.22 383 | 3.74 398 | 6.84 389 | 6.04 392 | 2.70 392 | 1.27 397 | 24.29 392 | 10.54 392 | 14.40 391 | 2.63 389 |
|
| test_method | | | 31.52 354 | 29.28 358 | 38.23 369 | 27.03 396 | 6.50 399 | 20.94 387 | 62.21 378 | 4.05 390 | 22.35 388 | 52.50 382 | 13.33 382 | 47.58 389 | 27.04 380 | 34.04 382 | 60.62 376 |
|
| tmp_tt | | | 18.61 358 | 21.40 361 | 10.23 374 | 4.82 397 | 10.11 397 | 34.70 384 | 30.74 395 | 1.48 391 | 23.91 387 | 26.07 388 | 28.42 367 | 13.41 393 | 27.12 379 | 15.35 390 | 7.17 388 |
|
| EGC-MVSNET | | | 52.07 344 | 47.05 348 | 67.14 345 | 83.51 268 | 60.71 259 | 80.50 289 | 67.75 368 | 0.07 392 | 0.43 393 | 75.85 356 | 24.26 372 | 81.54 331 | 28.82 377 | 62.25 354 | 59.16 377 |
|
| testmvs | | | 6.04 362 | 8.02 365 | 0.10 376 | 0.08 398 | 0.03 401 | 69.74 357 | 0.04 399 | 0.05 393 | 0.31 394 | 1.68 393 | 0.02 399 | 0.04 394 | 0.24 393 | 0.02 392 | 0.25 391 |
|
| test123 | | | 6.12 361 | 8.11 364 | 0.14 375 | 0.06 399 | 0.09 400 | 71.05 352 | 0.03 400 | 0.04 394 | 0.25 395 | 1.30 394 | 0.05 398 | 0.03 395 | 0.21 394 | 0.01 393 | 0.29 390 |
|
| test_blank | | | 0.00 364 | 0.00 367 | 0.00 377 | 0.00 400 | 0.00 402 | 0.00 388 | 0.00 401 | 0.00 395 | 0.00 396 | 0.00 395 | 0.00 400 | 0.00 396 | 0.00 395 | 0.00 394 | 0.00 392 |
|
| uanet_test | | | 0.00 364 | 0.00 367 | 0.00 377 | 0.00 400 | 0.00 402 | 0.00 388 | 0.00 401 | 0.00 395 | 0.00 396 | 0.00 395 | 0.00 400 | 0.00 396 | 0.00 395 | 0.00 394 | 0.00 392 |
|
| DCPMVS | | | 0.00 364 | 0.00 367 | 0.00 377 | 0.00 400 | 0.00 402 | 0.00 388 | 0.00 401 | 0.00 395 | 0.00 396 | 0.00 395 | 0.00 400 | 0.00 396 | 0.00 395 | 0.00 394 | 0.00 392 |
|
| cdsmvs_eth3d_5k | | | 19.96 357 | 26.61 359 | 0.00 377 | 0.00 400 | 0.00 402 | 0.00 388 | 89.26 172 | 0.00 395 | 0.00 396 | 88.61 169 | 61.62 154 | 0.00 396 | 0.00 395 | 0.00 394 | 0.00 392 |
|
| pcd_1.5k_mvsjas | | | 5.26 363 | 7.02 366 | 0.00 377 | 0.00 400 | 0.00 402 | 0.00 388 | 0.00 401 | 0.00 395 | 0.00 396 | 0.00 395 | 63.15 131 | 0.00 396 | 0.00 395 | 0.00 394 | 0.00 392 |
|
| sosnet-low-res | | | 0.00 364 | 0.00 367 | 0.00 377 | 0.00 400 | 0.00 402 | 0.00 388 | 0.00 401 | 0.00 395 | 0.00 396 | 0.00 395 | 0.00 400 | 0.00 396 | 0.00 395 | 0.00 394 | 0.00 392 |
|
| sosnet | | | 0.00 364 | 0.00 367 | 0.00 377 | 0.00 400 | 0.00 402 | 0.00 388 | 0.00 401 | 0.00 395 | 0.00 396 | 0.00 395 | 0.00 400 | 0.00 396 | 0.00 395 | 0.00 394 | 0.00 392 |
|
| uncertanet | | | 0.00 364 | 0.00 367 | 0.00 377 | 0.00 400 | 0.00 402 | 0.00 388 | 0.00 401 | 0.00 395 | 0.00 396 | 0.00 395 | 0.00 400 | 0.00 396 | 0.00 395 | 0.00 394 | 0.00 392 |
|
| Regformer | | | 0.00 364 | 0.00 367 | 0.00 377 | 0.00 400 | 0.00 402 | 0.00 388 | 0.00 401 | 0.00 395 | 0.00 396 | 0.00 395 | 0.00 400 | 0.00 396 | 0.00 395 | 0.00 394 | 0.00 392 |
|
| ab-mvs-re | | | 7.23 360 | 9.64 363 | 0.00 377 | 0.00 400 | 0.00 402 | 0.00 388 | 0.00 401 | 0.00 395 | 0.00 396 | 86.72 219 | 0.00 400 | 0.00 396 | 0.00 395 | 0.00 394 | 0.00 392 |
|
| uanet | | | 0.00 364 | 0.00 367 | 0.00 377 | 0.00 400 | 0.00 402 | 0.00 388 | 0.00 401 | 0.00 395 | 0.00 396 | 0.00 395 | 0.00 400 | 0.00 396 | 0.00 395 | 0.00 394 | 0.00 392 |
|
| WAC-MVS | | | | | | | 42.58 377 | | | | | | | | 39.46 366 | | |
|
| MSC_two_6792asdad | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 45 | | | | | 97.53 1 | 89.67 5 | 96.44 9 | 94.41 31 |
|
| No_MVS | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 45 | | | | | 97.53 1 | 89.67 5 | 96.44 9 | 94.41 31 |
|
| eth-test2 | | | | | | 0.00 400 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 400 | | | | | | | | | | | |
|
| OPU-MVS | | | | | 89.06 3 | 94.62 15 | 75.42 4 | 93.57 7 | | | | 94.02 42 | 82.45 3 | 96.87 19 | 83.77 51 | 96.48 8 | 94.88 13 |
|
| test_0728_SECOND | | | | | 87.71 31 | 95.34 1 | 71.43 55 | 93.49 9 | 94.23 3 | | | | | 97.49 3 | 89.08 11 | 96.41 12 | 94.21 41 |
|
| GSMVS | | | | | | | | | | | | | | | | | 88.96 234 |
|
| test_part2 | | | | | | 95.06 8 | 72.65 31 | | | | 91.80 13 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 51.32 254 | | | | 88.96 234 |
|
| sam_mvs | | | | | | | | | | | | | 50.01 267 | | | | |
|
| ambc | | | | | 75.24 295 | 73.16 366 | 50.51 357 | 63.05 377 | 87.47 224 | | 64.28 336 | 77.81 345 | 17.80 379 | 89.73 259 | 57.88 287 | 60.64 359 | 85.49 304 |
|
| MTGPA |  | | | | | | | | 92.02 85 | | | | | | | | |
|
| test_post1 | | | | | | | | 78.90 310 | | | | 5.43 391 | 48.81 287 | 85.44 307 | 59.25 272 | | |
|
| test_post | | | | | | | | | | | | 5.46 390 | 50.36 265 | 84.24 314 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 74.00 360 | 51.12 256 | 88.60 279 | | | |
|
| GG-mvs-BLEND | | | | | 75.38 294 | 81.59 307 | 55.80 319 | 79.32 302 | 69.63 363 | | 67.19 311 | 73.67 361 | 43.24 321 | 88.90 276 | 50.41 325 | 84.50 167 | 81.45 347 |
|
| MTMP | | | | | | | | 92.18 34 | 32.83 394 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 84.90 35 | 95.70 26 | 92.87 97 |
|
| agg_prior2 | | | | | | | | | | | | | | | 82.91 59 | 95.45 29 | 92.70 100 |
|
| agg_prior | | | | | | 92.85 59 | 71.94 50 | | 91.78 100 | | 84.41 64 | | | 94.93 86 | | | |
|
| test_prior4 | | | | | | | 72.60 33 | 89.01 100 | | | | | | | | | |
|
| test_prior | | | | | 86.33 53 | 92.61 65 | 69.59 87 | | 92.97 50 | | | | | 95.48 61 | | | 93.91 52 |
|
| 新几何2 | | | | | | | | 86.29 189 | | | | | | | | | |
|
| 旧先验1 | | | | | | 91.96 71 | 65.79 171 | | 86.37 241 | | | 93.08 64 | 69.31 74 | | | 92.74 67 | 88.74 243 |
|
| 原ACMM2 | | | | | | | | 86.86 170 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 91.01 242 | 62.37 246 | | |
|
| segment_acmp | | | | | | | | | | | | | 73.08 37 | | | | |
|
| test12 | | | | | 86.80 48 | 92.63 64 | 70.70 71 | | 91.79 99 | | 82.71 91 | | 71.67 49 | 96.16 43 | | 94.50 49 | 93.54 75 |
|
| plane_prior7 | | | | | | 90.08 102 | 68.51 117 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 89.84 111 | 68.70 112 | | | | | | 60.42 179 | | | | |
|
| plane_prior5 | | | | | | | | | 92.44 69 | | | | | 95.38 68 | 78.71 95 | 86.32 148 | 91.33 142 |
|
| plane_prior4 | | | | | | | | | | | | 91.00 113 | | | | | |
|
| plane_prior1 | | | | | | 89.90 110 | | | | | | | | | | | |
|
| n2 | | | | | | | | | 0.00 401 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 401 | | | | | | | | |
|
| door-mid | | | | | | | | | 69.98 362 | | | | | | | | |
|
| lessismore_v0 | | | | | 78.97 251 | 81.01 317 | 57.15 300 | | 65.99 371 | | 61.16 349 | 82.82 298 | 39.12 342 | 91.34 231 | 59.67 268 | 46.92 377 | 88.43 249 |
|
| test11 | | | | | | | | | 92.23 79 | | | | | | | | |
|
| door | | | | | | | | | 69.44 365 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 66.98 148 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.47 107 | | |
|
| HQP4-MVS | | | | | | | | | | | 77.24 174 | | | 95.11 79 | | | 91.03 154 |
|
| HQP3-MVS | | | | | | | | | 92.19 82 | | | | | | | 85.99 155 | |
|
| HQP2-MVS | | | | | | | | | | | | | 60.17 182 | | | | |
|
| NP-MVS | | | | | | 89.62 114 | 68.32 119 | | | | | 90.24 125 | | | | | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 81.95 204 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 81.25 210 | |
|
| Test By Simon | | | | | | | | | | | | | 64.33 118 | | | | |
|