This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
MM89.16 689.23 788.97 490.79 9073.65 1092.66 2391.17 11886.57 187.39 3794.97 1671.70 5297.68 192.19 195.63 2895.57 1
MVS_030488.08 1488.08 1788.08 1489.67 11572.04 4892.26 3389.26 17584.19 285.01 5795.18 1369.93 7197.20 1491.63 295.60 2994.99 9
UA-Net85.08 6384.96 6485.45 7192.07 7068.07 13089.78 8090.86 12882.48 384.60 7093.20 6669.35 7795.22 7671.39 17690.88 9393.07 99
CANet86.45 3886.10 4587.51 3790.09 10270.94 6789.70 8392.59 6881.78 481.32 11691.43 10670.34 6697.23 1384.26 5293.36 6594.37 37
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5681.50 585.79 5093.47 6073.02 4097.00 1884.90 4294.94 3994.10 47
EPNet83.72 7782.92 8986.14 5984.22 26969.48 9191.05 5585.27 26181.30 676.83 19391.65 9766.09 11295.56 6076.00 13493.85 6193.38 85
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 39
3Dnovator+77.84 485.48 5584.47 7188.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19893.37 6260.40 19096.75 2677.20 12093.73 6395.29 5
TranMVSNet+NR-MVSNet80.84 13080.31 12982.42 19087.85 19062.33 24887.74 15591.33 11480.55 977.99 17089.86 14165.23 12192.62 18967.05 22075.24 31092.30 125
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5994.67 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5580.26 1187.78 3094.27 3275.89 1996.81 2387.45 3296.44 993.05 100
UniMVSNet_NR-MVSNet81.88 10881.54 10882.92 17488.46 16763.46 22987.13 16992.37 7580.19 1278.38 15889.14 16171.66 5493.05 17970.05 18876.46 28392.25 127
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
EI-MVSNet-Vis-set84.19 7083.81 7585.31 7488.18 17667.85 13487.66 15689.73 16180.05 1482.95 9589.59 15070.74 6394.82 9780.66 9184.72 17493.28 90
ETV-MVS84.90 6784.67 6785.59 6889.39 12968.66 11788.74 11992.64 6679.97 1584.10 7985.71 25669.32 7895.38 7180.82 8791.37 8792.72 108
EI-MVSNet-UG-set83.81 7483.38 8085.09 8287.87 18967.53 14187.44 16289.66 16279.74 1682.23 10489.41 15970.24 6894.74 10079.95 9583.92 18892.99 104
CS-MVS86.69 3586.95 3185.90 6490.76 9167.57 14092.83 1793.30 3279.67 1784.57 7192.27 8671.47 5595.02 8884.24 5493.46 6495.13 6
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6787.65 20167.22 15188.69 12193.04 3879.64 1885.33 5492.54 8373.30 3594.50 10883.49 5991.14 9095.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18892.02 8779.45 1985.88 4894.80 1768.07 9196.21 4286.69 3695.34 3393.23 91
EC-MVSNet86.01 4386.38 3884.91 9189.31 13466.27 16692.32 3093.63 2179.37 2084.17 7891.88 9369.04 8495.43 6783.93 5793.77 6293.01 103
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 8794.17 3667.45 9796.60 3383.06 6394.50 5194.07 49
X-MVStestdata80.37 14877.83 18588.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 8712.47 40567.45 9796.60 3383.06 6394.50 5194.07 49
HQP_MVS83.64 7983.14 8385.14 7990.08 10368.71 11391.25 5092.44 7179.12 2378.92 14591.00 12260.42 18895.38 7178.71 10586.32 15491.33 155
plane_prior291.25 5079.12 23
IS-MVSNet83.15 9082.81 9084.18 11889.94 11063.30 23391.59 4388.46 20679.04 2579.49 13792.16 8865.10 12294.28 11367.71 21191.86 8294.95 10
DU-MVS81.12 12680.52 12482.90 17587.80 19363.46 22987.02 17391.87 9779.01 2678.38 15889.07 16365.02 12393.05 17970.05 18876.46 28392.20 130
NR-MVSNet80.23 15179.38 14782.78 18387.80 19363.34 23286.31 19591.09 12279.01 2672.17 27889.07 16367.20 10092.81 18866.08 22775.65 29692.20 130
CS-MVS-test86.29 4286.48 3785.71 6691.02 8367.21 15292.36 2993.78 1878.97 2883.51 9091.20 11370.65 6595.15 7981.96 7694.89 4194.77 22
DELS-MVS85.41 5885.30 6085.77 6588.49 16567.93 13385.52 22193.44 2778.70 2983.63 8989.03 16674.57 2495.71 5780.26 9494.04 6093.66 67
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
WR-MVS79.49 16579.22 15480.27 23888.79 15558.35 28985.06 22688.61 20478.56 3077.65 17588.34 18663.81 13390.66 25864.98 23677.22 27291.80 142
plane_prior368.60 11878.44 3178.92 145
UniMVSNet (Re)81.60 11881.11 11383.09 16588.38 17164.41 21087.60 15793.02 4278.42 3278.56 15488.16 19269.78 7393.26 16269.58 19576.49 28291.60 144
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 25
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13887.63 3094.27 5893.65 71
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
casdiffmvspermissive85.11 6285.14 6285.01 8587.20 21765.77 18187.75 15492.83 5677.84 3784.36 7592.38 8572.15 4693.93 13181.27 8390.48 9795.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CP-MVSNet78.22 19778.34 17377.84 28187.83 19254.54 34487.94 14891.17 11877.65 3873.48 26288.49 18262.24 15588.43 29462.19 25974.07 31990.55 184
plane_prior68.71 11390.38 6877.62 3986.16 158
baseline84.93 6584.98 6384.80 9587.30 21565.39 18987.30 16692.88 5377.62 3984.04 8192.26 8771.81 4993.96 12581.31 8190.30 10095.03 8
VDD-MVS83.01 9582.36 9684.96 8791.02 8366.40 16388.91 11088.11 20977.57 4184.39 7493.29 6452.19 24993.91 13277.05 12288.70 12594.57 31
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6577.57 4183.84 8494.40 3072.24 4596.28 4085.65 3895.30 3593.62 74
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PEN-MVS77.73 21277.69 19377.84 28187.07 22053.91 34987.91 15091.18 11777.56 4373.14 26688.82 17161.23 17389.17 28159.95 27872.37 33490.43 189
OPM-MVS83.50 8382.95 8885.14 7988.79 15570.95 6689.13 10591.52 10877.55 4480.96 12391.75 9560.71 18194.50 10879.67 9986.51 15289.97 215
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 10089.57 8893.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 29
PS-CasMVS78.01 20678.09 17877.77 28387.71 19854.39 34688.02 14491.22 11577.50 4673.26 26488.64 17660.73 18088.41 29561.88 26373.88 32390.53 185
MSLP-MVS++85.43 5785.76 5184.45 10591.93 7270.24 7690.71 5892.86 5477.46 4784.22 7692.81 7867.16 10192.94 18380.36 9294.35 5690.16 199
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 6077.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 88
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 43
3Dnovator76.31 583.38 8782.31 9786.59 5287.94 18772.94 2890.64 5992.14 8677.21 5275.47 22492.83 7658.56 19794.72 10173.24 16192.71 7092.13 134
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
WR-MVS_H78.51 19278.49 16878.56 26988.02 18556.38 32288.43 12892.67 6277.14 5473.89 25887.55 20766.25 11089.24 28058.92 28873.55 32690.06 209
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6993.94 1477.12 5582.82 9994.23 3572.13 4797.09 1684.83 4595.37 3293.65 71
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FC-MVSNet-test81.52 11982.02 10280.03 24288.42 17055.97 32887.95 14793.42 2977.10 5677.38 18090.98 12469.96 7091.79 22068.46 20784.50 17792.33 123
DTE-MVSNet76.99 22676.80 21177.54 28886.24 23253.06 35787.52 15990.66 13177.08 5772.50 27388.67 17560.48 18789.52 27557.33 30470.74 34590.05 210
LFMVS81.82 11081.23 11183.57 14791.89 7363.43 23189.84 7681.85 31177.04 5883.21 9293.10 6752.26 24893.43 15771.98 17189.95 10893.85 59
UGNet80.83 13179.59 14384.54 10188.04 18468.09 12989.42 9388.16 20876.95 5976.22 21089.46 15549.30 28893.94 12868.48 20690.31 9991.60 144
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FIs82.07 10582.42 9381.04 22188.80 15458.34 29088.26 13793.49 2676.93 6078.47 15791.04 11969.92 7292.34 20269.87 19284.97 17192.44 122
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6593.99 4870.67 6496.82 2284.18 5695.01 3793.90 57
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8276.87 6282.81 10094.25 3466.44 10796.24 4182.88 6794.28 5793.38 85
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5594.32 3171.76 5096.93 1985.53 3995.79 2294.32 40
VPNet78.69 18878.66 16578.76 26588.31 17355.72 33184.45 24386.63 24376.79 6478.26 16190.55 13059.30 19389.70 27366.63 22277.05 27490.88 171
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 6194.44 2870.78 6296.61 3284.53 4994.89 4193.66 67
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6894.52 2168.81 8696.65 3084.53 4994.90 4094.00 52
ACMMPcopyleft85.89 4985.39 5687.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12593.82 5364.33 12796.29 3982.67 7390.69 9593.23 91
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7294.52 2169.09 8096.70 2784.37 5194.83 4594.03 51
sasdasda85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 11073.28 3693.91 13281.50 7988.80 12194.77 22
canonicalmvs85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 11073.28 3693.91 13281.50 7988.80 12194.77 22
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5976.62 7183.68 8694.46 2567.93 9295.95 5284.20 5594.39 5493.23 91
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7184.22 7693.36 6371.44 5696.76 2580.82 8795.33 3494.16 45
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MGCFI-Net85.06 6485.51 5483.70 14389.42 12663.01 23989.43 9192.62 6776.43 7387.53 3591.34 10872.82 4293.42 15881.28 8288.74 12494.66 27
TSAR-MVS + GP.85.71 5285.33 5886.84 4791.34 7872.50 3689.07 10687.28 23076.41 7485.80 4990.22 13674.15 3195.37 7481.82 7791.88 7992.65 113
HQP-NCC89.33 13189.17 10076.41 7477.23 185
ACMP_Plane89.33 13189.17 10076.41 7477.23 185
HQP-MVS82.61 9982.02 10284.37 10789.33 13166.98 15589.17 10092.19 8476.41 7477.23 18590.23 13560.17 19195.11 8277.47 11785.99 16291.03 166
CANet_DTU80.61 14079.87 13782.83 17785.60 24263.17 23887.36 16388.65 20276.37 7875.88 21788.44 18453.51 23893.07 17873.30 15989.74 11192.25 127
VNet82.21 10282.41 9481.62 20390.82 8860.93 26484.47 24089.78 15876.36 7984.07 8091.88 9364.71 12690.26 26170.68 18288.89 11993.66 67
Vis-MVSNetpermissive83.46 8482.80 9185.43 7290.25 9968.74 11190.30 7090.13 15076.33 8080.87 12492.89 7461.00 17894.20 11972.45 17090.97 9193.35 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5693.59 2376.27 8188.14 2495.09 1571.06 5996.67 2987.67 2996.37 1494.09 48
alignmvs85.48 5585.32 5985.96 6389.51 12169.47 9289.74 8192.47 7076.17 8287.73 3491.46 10570.32 6793.78 13881.51 7888.95 11894.63 28
MVS_111021_HR85.14 6184.75 6686.32 5591.65 7672.70 3085.98 20490.33 14376.11 8382.08 10591.61 10071.36 5894.17 12181.02 8492.58 7192.08 135
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8483.81 8593.95 5169.77 7496.01 4885.15 4094.66 4794.32 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
h-mvs3383.15 9082.19 9886.02 6290.56 9370.85 7088.15 14289.16 18076.02 8584.67 6691.39 10761.54 16495.50 6382.71 7075.48 30091.72 143
hse-mvs281.72 11180.94 11784.07 12588.72 15867.68 13885.87 20887.26 23176.02 8584.67 6688.22 19161.54 16493.48 15382.71 7073.44 32891.06 164
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8792.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 54
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CLD-MVS82.31 10181.65 10784.29 11288.47 16667.73 13785.81 21292.35 7675.78 8878.33 16086.58 23864.01 13094.35 11176.05 13387.48 13890.79 173
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8989.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
testdata184.14 25175.71 89
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9191.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 33
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
VPA-MVSNet80.60 14180.55 12380.76 22888.07 18360.80 26786.86 17891.58 10775.67 9280.24 12989.45 15763.34 13490.25 26270.51 18479.22 25491.23 159
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7193.04 3875.53 9383.86 8394.42 2967.87 9496.64 3182.70 7294.57 5093.66 67
Effi-MVS+83.62 8183.08 8485.24 7688.38 17167.45 14288.89 11189.15 18175.50 9482.27 10388.28 18869.61 7594.45 11077.81 11487.84 13393.84 61
test_prior288.85 11375.41 9584.91 6193.54 5674.28 2983.31 6195.86 20
LPG-MVS_test82.08 10481.27 11084.50 10289.23 13868.76 10990.22 7191.94 9375.37 9676.64 19991.51 10254.29 23094.91 9078.44 10783.78 18989.83 220
LGP-MVS_train84.50 10289.23 13868.76 10991.94 9375.37 9676.64 19991.51 10254.29 23094.91 9078.44 10783.78 18989.83 220
MG-MVS83.41 8583.45 7883.28 15592.74 6262.28 25088.17 14089.50 16675.22 9881.49 11592.74 8266.75 10295.11 8272.85 16491.58 8492.45 121
LCM-MVSNet-Re77.05 22576.94 20877.36 28987.20 21751.60 36580.06 30980.46 32575.20 9967.69 32186.72 22862.48 14988.98 28563.44 24689.25 11591.51 148
SDMVSNet80.38 14680.18 13280.99 22289.03 14764.94 19880.45 30589.40 16875.19 10076.61 20189.98 13960.61 18587.69 30376.83 12683.55 19890.33 193
sd_testset77.70 21577.40 19878.60 26889.03 14760.02 27879.00 32385.83 25575.19 10076.61 20189.98 13954.81 22185.46 32162.63 25583.55 19890.33 193
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7993.50 2575.17 10286.34 4695.29 1270.86 6196.00 4988.78 1996.04 1694.58 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test111179.43 16879.18 15680.15 24089.99 10853.31 35587.33 16577.05 35375.04 10380.23 13092.77 8148.97 29492.33 20368.87 20292.40 7594.81 20
Effi-MVS+-dtu80.03 15578.57 16784.42 10685.13 25368.74 11188.77 11688.10 21074.99 10474.97 24683.49 30357.27 21093.36 15973.53 15580.88 23191.18 160
OMC-MVS82.69 9781.97 10484.85 9288.75 15767.42 14387.98 14590.87 12774.92 10579.72 13491.65 9762.19 15693.96 12575.26 14286.42 15393.16 96
test250677.30 22376.49 21979.74 24890.08 10352.02 35887.86 15363.10 39374.88 10680.16 13192.79 7938.29 36292.35 20168.74 20492.50 7394.86 17
ECVR-MVScopyleft79.61 16179.26 15280.67 23090.08 10354.69 34287.89 15177.44 35074.88 10680.27 12892.79 7948.96 29592.45 19568.55 20592.50 7394.86 17
nrg03083.88 7383.53 7784.96 8786.77 22569.28 9990.46 6592.67 6274.79 10882.95 9591.33 10972.70 4393.09 17780.79 8979.28 25392.50 118
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10992.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MVS_111021_LR82.61 9982.11 9984.11 11988.82 15271.58 5385.15 22486.16 25074.69 11080.47 12791.04 11962.29 15390.55 25980.33 9390.08 10590.20 198
EIA-MVS83.31 8982.80 9184.82 9389.59 11765.59 18388.21 13892.68 6174.66 11178.96 14386.42 24369.06 8295.26 7575.54 14090.09 10493.62 74
mvsmamba81.69 11380.74 11984.56 10087.45 20866.72 15991.26 4885.89 25474.66 11178.23 16290.56 12954.33 22994.91 9080.73 9083.54 20092.04 138
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7674.62 11388.90 2093.85 5275.75 2096.00 4987.80 2894.63 4895.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 6974.50 11486.84 4494.65 2067.31 9995.77 5584.80 4692.85 6892.84 107
FOURS195.00 1072.39 3995.06 193.84 1574.49 11591.30 15
ACMP74.13 681.51 12180.57 12284.36 10889.42 12668.69 11689.97 7591.50 11274.46 11675.04 24590.41 13253.82 23594.54 10577.56 11682.91 20889.86 219
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EPP-MVSNet83.40 8683.02 8684.57 9990.13 10164.47 20892.32 3090.73 13074.45 11779.35 13991.10 11669.05 8395.12 8072.78 16587.22 14194.13 46
save fliter93.80 4072.35 4290.47 6491.17 11874.31 118
MVS_Test83.15 9083.06 8583.41 15286.86 22163.21 23586.11 20292.00 8974.31 11882.87 9789.44 15870.03 6993.21 16677.39 11988.50 12993.81 62
UniMVSNet_ETH3D79.10 17878.24 17681.70 20286.85 22260.24 27687.28 16788.79 19574.25 12076.84 19290.53 13149.48 28491.56 22967.98 20982.15 21793.29 89
IterMVS-LS80.06 15479.38 14782.11 19485.89 23763.20 23686.79 18189.34 17074.19 12175.45 22786.72 22866.62 10392.39 19872.58 16776.86 27790.75 176
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet80.52 14479.98 13482.12 19384.28 26763.19 23786.41 19288.95 19174.18 12278.69 14987.54 20866.62 10392.43 19672.57 16880.57 23790.74 177
Vis-MVSNet (Re-imp)78.36 19578.45 16978.07 27988.64 16151.78 36486.70 18579.63 33574.14 12375.11 24290.83 12561.29 17289.75 27158.10 29791.60 8392.69 111
v879.97 15879.02 15982.80 18084.09 27264.50 20787.96 14690.29 14674.13 12475.24 23886.81 22562.88 14593.89 13574.39 14875.40 30590.00 211
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5793.56 2473.95 12583.16 9491.07 11875.94 1895.19 7779.94 9694.38 5593.55 78
thres100view90076.50 23475.55 23279.33 25689.52 12056.99 31185.83 21183.23 29173.94 12676.32 20887.12 22051.89 25891.95 21448.33 35283.75 19289.07 237
9.1488.26 1592.84 6091.52 4694.75 173.93 12788.57 2294.67 1975.57 2295.79 5486.77 3595.76 23
HPM-MVS_fast85.35 5984.95 6586.57 5393.69 4270.58 7592.15 3691.62 10573.89 12882.67 10294.09 4062.60 14695.54 6280.93 8592.93 6793.57 76
RRT_MVS80.35 14979.22 15483.74 14287.63 20265.46 18691.08 5488.92 19373.82 12976.44 20690.03 13849.05 29394.25 11876.84 12479.20 25591.51 148
PAPM_NR83.02 9482.41 9484.82 9392.47 6766.37 16487.93 14991.80 10073.82 12977.32 18290.66 12767.90 9394.90 9370.37 18589.48 11393.19 95
thres600view776.50 23475.44 23379.68 25089.40 12857.16 30885.53 21983.23 29173.79 13176.26 20987.09 22151.89 25891.89 21748.05 35783.72 19590.00 211
testing9176.54 23275.66 23079.18 26088.43 16955.89 32981.08 29283.00 29773.76 13275.34 23184.29 28646.20 31390.07 26564.33 24084.50 17791.58 146
v7n78.97 18277.58 19683.14 16383.45 28565.51 18488.32 13591.21 11673.69 13372.41 27586.32 24657.93 20193.81 13769.18 19875.65 29690.11 203
dcpmvs_285.63 5386.15 4484.06 12791.71 7564.94 19886.47 19191.87 9773.63 13486.60 4593.02 7276.57 1591.87 21983.36 6092.15 7695.35 3
v2v48280.23 15179.29 15183.05 16883.62 28164.14 21487.04 17289.97 15473.61 13578.18 16587.22 21661.10 17693.82 13676.11 13176.78 28091.18 160
Baseline_NR-MVSNet78.15 20178.33 17477.61 28685.79 23856.21 32686.78 18285.76 25673.60 13677.93 17187.57 20565.02 12388.99 28467.14 21975.33 30787.63 276
BH-RMVSNet79.61 16178.44 17083.14 16389.38 13065.93 17484.95 22987.15 23473.56 13778.19 16489.79 14356.67 21493.36 15959.53 28286.74 14890.13 201
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4673.54 13885.94 4794.51 2465.80 11795.61 5983.04 6592.51 7293.53 80
SR-MVS-dyc-post85.77 5085.61 5386.23 5693.06 5570.63 7391.88 3992.27 7873.53 13985.69 5194.45 2665.00 12595.56 6082.75 6891.87 8092.50 118
RE-MVS-def85.48 5593.06 5570.63 7391.88 3992.27 7873.53 13985.69 5194.45 2663.87 13182.75 6891.87 8092.50 118
test_fmvsmconf_n85.92 4686.04 4785.57 6985.03 25569.51 9089.62 8790.58 13373.42 14187.75 3294.02 4472.85 4193.24 16390.37 390.75 9493.96 53
tfpn200view976.42 23775.37 23779.55 25589.13 14257.65 30285.17 22283.60 28373.41 14276.45 20386.39 24452.12 25091.95 21448.33 35283.75 19289.07 237
thres40076.50 23475.37 23779.86 24589.13 14257.65 30285.17 22283.60 28373.41 14276.45 20386.39 24452.12 25091.95 21448.33 35283.75 19290.00 211
test_fmvsmconf0.1_n85.61 5485.65 5285.50 7082.99 30069.39 9789.65 8490.29 14673.31 14487.77 3194.15 3871.72 5193.23 16490.31 490.67 9693.89 58
testing9976.09 24375.12 24179.00 26188.16 17755.50 33480.79 29681.40 31573.30 14575.17 23984.27 28844.48 32690.02 26664.28 24184.22 18691.48 152
v14878.72 18777.80 18781.47 20782.73 30561.96 25486.30 19688.08 21173.26 14676.18 21285.47 26462.46 15092.36 20071.92 17273.82 32490.09 205
FA-MVS(test-final)80.96 12879.91 13684.10 12088.30 17465.01 19684.55 23990.01 15373.25 14779.61 13587.57 20558.35 19994.72 10171.29 17786.25 15692.56 115
test_fmvsmconf0.01_n84.73 6884.52 7085.34 7380.25 34069.03 10089.47 8989.65 16373.24 14886.98 4294.27 3266.62 10393.23 16490.26 589.95 10893.78 64
v1079.74 16078.67 16482.97 17384.06 27364.95 19787.88 15290.62 13273.11 14975.11 24286.56 23961.46 16794.05 12473.68 15375.55 29889.90 217
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7793.82 1673.07 15084.86 6492.89 7476.22 1796.33 3884.89 4495.13 3694.40 36
baseline176.98 22776.75 21577.66 28488.13 17955.66 33285.12 22581.89 30973.04 15176.79 19488.90 16862.43 15187.78 30263.30 24871.18 34389.55 229
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5673.01 15288.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 109
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
diffmvspermissive82.10 10381.88 10582.76 18583.00 29863.78 22183.68 25689.76 15972.94 15382.02 10689.85 14265.96 11690.79 25582.38 7487.30 14093.71 66
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
K. test v371.19 29168.51 30379.21 25983.04 29757.78 30184.35 24776.91 35472.90 15462.99 36082.86 31339.27 35691.09 25061.65 26652.66 38788.75 257
Fast-Effi-MVS+-dtu78.02 20576.49 21982.62 18783.16 29466.96 15786.94 17587.45 22872.45 15571.49 28584.17 29054.79 22591.58 22767.61 21280.31 24089.30 235
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15585.22 5691.90 9269.47 7696.42 3783.28 6295.94 1994.35 38
thres20075.55 24974.47 24878.82 26487.78 19657.85 29983.07 27183.51 28672.44 15775.84 21884.42 28152.08 25391.75 22247.41 35983.64 19786.86 297
test_yl81.17 12480.47 12583.24 15889.13 14263.62 22286.21 19889.95 15572.43 15881.78 11289.61 14857.50 20793.58 14670.75 18086.90 14592.52 116
DCV-MVSNet81.17 12480.47 12583.24 15889.13 14263.62 22286.21 19889.95 15572.43 15881.78 11289.61 14857.50 20793.58 14670.75 18086.90 14592.52 116
BH-untuned79.47 16678.60 16682.05 19589.19 14065.91 17586.07 20388.52 20572.18 16075.42 22887.69 20261.15 17593.54 15060.38 27586.83 14786.70 301
TransMVSNet (Re)75.39 25474.56 24677.86 28085.50 24457.10 31086.78 18286.09 25272.17 16171.53 28487.34 21163.01 14489.31 27956.84 30961.83 37187.17 288
GA-MVS76.87 22975.17 24081.97 19882.75 30462.58 24581.44 28986.35 24872.16 16274.74 24982.89 31246.20 31392.02 21268.85 20381.09 22991.30 158
v114480.03 15579.03 15883.01 17083.78 27964.51 20587.11 17190.57 13571.96 16378.08 16886.20 24861.41 16893.94 12874.93 14377.23 27190.60 182
PS-MVSNAJss82.07 10581.31 10984.34 11086.51 23067.27 14989.27 9891.51 10971.75 16479.37 13890.22 13663.15 14094.27 11477.69 11582.36 21691.49 151
EPNet_dtu75.46 25174.86 24277.23 29282.57 30954.60 34386.89 17783.09 29471.64 16566.25 34185.86 25455.99 21688.04 29954.92 31786.55 15189.05 242
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GBi-Net78.40 19377.40 19881.40 21087.60 20363.01 23988.39 13089.28 17271.63 16675.34 23187.28 21254.80 22291.11 24562.72 25179.57 24790.09 205
test178.40 19377.40 19881.40 21087.60 20363.01 23988.39 13089.28 17271.63 16675.34 23187.28 21254.80 22291.11 24562.72 25179.57 24790.09 205
FMVSNet278.20 19977.21 20281.20 21687.60 20362.89 24487.47 16189.02 18671.63 16675.29 23787.28 21254.80 22291.10 24862.38 25679.38 25189.61 227
iter_conf0580.00 15778.70 16383.91 13987.84 19165.83 17788.84 11484.92 26671.61 16978.70 14888.94 16743.88 33094.56 10479.28 10084.28 18491.33 155
patch_mono-283.65 7884.54 6880.99 22290.06 10765.83 17784.21 24988.74 20071.60 17085.01 5792.44 8474.51 2583.50 33582.15 7592.15 7693.64 73
V4279.38 17278.24 17682.83 17781.10 33265.50 18585.55 21789.82 15771.57 17178.21 16386.12 25060.66 18393.18 17275.64 13775.46 30289.81 222
iter_conf05_1181.63 11780.44 12785.20 7889.46 12466.20 16786.21 19886.97 23771.53 17283.35 9188.53 18143.22 33595.94 5379.82 9794.85 4393.47 81
API-MVS81.99 10781.23 11184.26 11690.94 8570.18 8291.10 5389.32 17171.51 17378.66 15188.28 18865.26 12095.10 8564.74 23891.23 8987.51 280
tttt051779.40 17077.91 18283.90 14088.10 18163.84 21988.37 13384.05 27871.45 17476.78 19589.12 16249.93 28194.89 9470.18 18783.18 20692.96 105
pm-mvs177.25 22476.68 21778.93 26384.22 26958.62 28886.41 19288.36 20771.37 17573.31 26388.01 19861.22 17489.15 28264.24 24273.01 33189.03 243
testing22274.04 26472.66 26778.19 27687.89 18855.36 33581.06 29379.20 33971.30 17674.65 25183.57 30239.11 35888.67 29151.43 33585.75 16690.53 185
GeoE81.71 11281.01 11683.80 14189.51 12164.45 20988.97 10888.73 20171.27 17778.63 15289.76 14466.32 10993.20 16969.89 19186.02 16193.74 65
tt080578.73 18677.83 18581.43 20885.17 24960.30 27589.41 9490.90 12571.21 17877.17 18988.73 17246.38 30893.21 16672.57 16878.96 25690.79 173
FMVSNet377.88 20976.85 21080.97 22486.84 22362.36 24786.52 19088.77 19671.13 17975.34 23186.66 23454.07 23391.10 24862.72 25179.57 24789.45 231
VDDNet81.52 11980.67 12184.05 13090.44 9664.13 21589.73 8285.91 25371.11 18083.18 9393.48 5850.54 27393.49 15273.40 15888.25 13194.54 32
fmvsm_s_conf0.5_n83.80 7583.71 7684.07 12586.69 22767.31 14789.46 9083.07 29571.09 18186.96 4393.70 5569.02 8591.47 23688.79 1884.62 17693.44 84
XVG-OURS80.41 14579.23 15383.97 13685.64 24169.02 10283.03 27390.39 13871.09 18177.63 17691.49 10454.62 22891.35 24075.71 13683.47 20191.54 147
SixPastTwentyTwo73.37 27171.26 28379.70 24985.08 25457.89 29885.57 21383.56 28571.03 18365.66 34385.88 25342.10 34492.57 19159.11 28663.34 36988.65 260
ZD-MVS94.38 2572.22 4492.67 6270.98 18487.75 3294.07 4174.01 3296.70 2784.66 4794.84 44
v119279.59 16378.43 17183.07 16783.55 28364.52 20486.93 17690.58 13370.83 18577.78 17385.90 25259.15 19493.94 12873.96 15277.19 27390.76 175
Fast-Effi-MVS+80.81 13279.92 13583.47 14888.85 14964.51 20585.53 21989.39 16970.79 18678.49 15685.06 27467.54 9693.58 14667.03 22186.58 15092.32 124
PS-MVSNAJ81.69 11381.02 11583.70 14389.51 12168.21 12784.28 24890.09 15170.79 18681.26 12085.62 26163.15 14094.29 11275.62 13888.87 12088.59 261
LTVRE_ROB69.57 1376.25 24074.54 24781.41 20988.60 16264.38 21179.24 31989.12 18470.76 18869.79 30587.86 19949.09 29193.20 16956.21 31480.16 24186.65 302
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
testing1175.14 25674.01 25278.53 27188.16 17756.38 32280.74 29980.42 32670.67 18972.69 27283.72 29943.61 33289.86 26862.29 25883.76 19189.36 233
fmvsm_s_conf0.1_n83.56 8283.38 8084.10 12084.86 25767.28 14889.40 9583.01 29670.67 18987.08 4093.96 5068.38 8991.45 23788.56 2284.50 17793.56 77
xiu_mvs_v2_base81.69 11381.05 11483.60 14589.15 14168.03 13284.46 24290.02 15270.67 18981.30 11986.53 24163.17 13994.19 12075.60 13988.54 12788.57 262
XVG-OURS-SEG-HR80.81 13279.76 13983.96 13785.60 24268.78 10883.54 26290.50 13670.66 19276.71 19791.66 9660.69 18291.26 24276.94 12381.58 22491.83 140
Anonymous20240521178.25 19677.01 20581.99 19791.03 8260.67 26984.77 23283.90 28070.65 19380.00 13291.20 11341.08 34991.43 23865.21 23385.26 16993.85 59
DP-MVS Recon83.11 9382.09 10086.15 5894.44 1970.92 6888.79 11592.20 8370.53 19479.17 14191.03 12164.12 12996.03 4668.39 20890.14 10391.50 150
FMVSNet177.44 21976.12 22581.40 21086.81 22463.01 23988.39 13089.28 17270.49 19574.39 25487.28 21249.06 29291.11 24560.91 27278.52 25990.09 205
testing368.56 31767.67 31871.22 34487.33 21442.87 39283.06 27271.54 37470.36 19669.08 31184.38 28330.33 38185.69 31737.50 38675.45 30385.09 329
ab-mvs79.51 16478.97 16081.14 21888.46 16760.91 26583.84 25489.24 17770.36 19679.03 14288.87 17063.23 13890.21 26365.12 23482.57 21492.28 126
tfpnnormal74.39 25973.16 26378.08 27886.10 23658.05 29384.65 23687.53 22570.32 19871.22 28785.63 26054.97 22089.86 26843.03 37575.02 31286.32 305
ACMM73.20 880.78 13779.84 13883.58 14689.31 13468.37 12289.99 7491.60 10670.28 19977.25 18389.66 14653.37 24093.53 15174.24 15082.85 20988.85 252
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.5_n_a83.63 8083.41 7984.28 11386.14 23468.12 12889.43 9182.87 30070.27 20087.27 3993.80 5469.09 8091.58 22788.21 2683.65 19693.14 97
ACMH+68.96 1476.01 24474.01 25282.03 19688.60 16265.31 19188.86 11287.55 22470.25 20167.75 32087.47 21041.27 34793.19 17158.37 29475.94 29387.60 277
IB-MVS68.01 1575.85 24673.36 26183.31 15484.76 25866.03 16983.38 26385.06 26370.21 20269.40 30781.05 33045.76 31894.66 10365.10 23575.49 29989.25 236
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thisisatest053079.40 17077.76 19084.31 11187.69 20065.10 19587.36 16384.26 27670.04 20377.42 17988.26 19049.94 27994.79 9970.20 18684.70 17593.03 101
test_fmvsmvis_n_192084.02 7283.87 7484.49 10484.12 27169.37 9888.15 14287.96 21470.01 20483.95 8293.23 6568.80 8791.51 23488.61 2089.96 10792.57 114
v14419279.47 16678.37 17282.78 18383.35 28663.96 21786.96 17490.36 14269.99 20577.50 17785.67 25960.66 18393.77 14074.27 14976.58 28190.62 180
test_fmvsm_n_192085.29 6085.34 5785.13 8186.12 23569.93 8388.65 12390.78 12969.97 20688.27 2393.98 4971.39 5791.54 23188.49 2390.45 9893.91 55
c3_l78.75 18577.91 18281.26 21482.89 30261.56 25984.09 25289.13 18369.97 20675.56 22284.29 28666.36 10892.09 21073.47 15775.48 30090.12 202
v192192079.22 17478.03 17982.80 18083.30 28863.94 21886.80 18090.33 14369.91 20877.48 17885.53 26258.44 19893.75 14273.60 15476.85 27890.71 178
ACMH67.68 1675.89 24573.93 25481.77 20188.71 15966.61 16188.62 12489.01 18769.81 20966.78 33286.70 23241.95 34691.51 23455.64 31578.14 26587.17 288
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.1_n_a83.32 8882.99 8784.28 11383.79 27868.07 13089.34 9782.85 30169.80 21087.36 3894.06 4268.34 9091.56 22987.95 2783.46 20293.21 94
DPM-MVS84.93 6584.29 7286.84 4790.20 10073.04 2387.12 17093.04 3869.80 21082.85 9891.22 11273.06 3996.02 4776.72 12894.63 4891.46 154
MAR-MVS81.84 10980.70 12085.27 7591.32 7971.53 5489.82 7790.92 12469.77 21278.50 15586.21 24762.36 15294.52 10765.36 23292.05 7889.77 223
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
bld_raw_dy_0_6480.78 13779.36 14985.06 8389.46 12466.03 16989.63 8685.46 26069.76 21381.88 10789.06 16543.39 33395.70 5879.82 9785.74 16893.47 81
XVG-ACMP-BASELINE76.11 24274.27 25181.62 20383.20 29164.67 20383.60 26089.75 16069.75 21471.85 28187.09 22132.78 37492.11 20969.99 19080.43 23988.09 268
BH-w/o78.21 19877.33 20180.84 22688.81 15365.13 19484.87 23087.85 21969.75 21474.52 25384.74 27961.34 17093.11 17658.24 29685.84 16484.27 336
v124078.99 18177.78 18882.64 18683.21 29063.54 22686.62 18790.30 14569.74 21677.33 18185.68 25857.04 21293.76 14173.13 16276.92 27590.62 180
ET-MVSNet_ETH3D78.63 18976.63 21884.64 9886.73 22669.47 9285.01 22784.61 26969.54 21766.51 33986.59 23650.16 27691.75 22276.26 13084.24 18592.69 111
eth_miper_zixun_eth77.92 20876.69 21681.61 20583.00 29861.98 25383.15 26789.20 17969.52 21874.86 24884.35 28561.76 16092.56 19271.50 17572.89 33290.28 196
PVSNet_Blended_VisFu82.62 9881.83 10684.96 8790.80 8969.76 8788.74 11991.70 10469.39 21978.96 14388.46 18365.47 11994.87 9674.42 14788.57 12690.24 197
mvs_tets79.13 17777.77 18983.22 16084.70 25966.37 16489.17 10090.19 14869.38 22075.40 22989.46 15544.17 32893.15 17376.78 12780.70 23590.14 200
PVSNet_BlendedMVS80.60 14180.02 13382.36 19288.85 14965.40 18786.16 20192.00 8969.34 22178.11 16686.09 25166.02 11494.27 11471.52 17382.06 21987.39 282
AdaColmapbinary80.58 14379.42 14684.06 12793.09 5468.91 10589.36 9688.97 19069.27 22275.70 22089.69 14557.20 21195.77 5563.06 24988.41 13087.50 281
ETVMVS72.25 28571.05 28475.84 30187.77 19751.91 36179.39 31774.98 36269.26 22373.71 25982.95 31040.82 35186.14 31346.17 36584.43 18289.47 230
ITE_SJBPF78.22 27581.77 32060.57 27083.30 28969.25 22467.54 32287.20 21736.33 36887.28 30654.34 32074.62 31686.80 298
cl____77.72 21376.76 21380.58 23182.49 31160.48 27283.09 26987.87 21769.22 22574.38 25585.22 27062.10 15791.53 23271.09 17875.41 30489.73 225
DIV-MVS_self_test77.72 21376.76 21380.58 23182.48 31260.48 27283.09 26987.86 21869.22 22574.38 25585.24 26862.10 15791.53 23271.09 17875.40 30589.74 224
jajsoiax79.29 17377.96 18083.27 15684.68 26066.57 16289.25 9990.16 14969.20 22775.46 22689.49 15245.75 31993.13 17576.84 12480.80 23390.11 203
IterMVS-SCA-FT75.43 25273.87 25680.11 24182.69 30664.85 20081.57 28683.47 28769.16 22870.49 29184.15 29151.95 25688.15 29769.23 19772.14 33787.34 284
CL-MVSNet_self_test72.37 28371.46 27875.09 31079.49 35353.53 35180.76 29885.01 26569.12 22970.51 29082.05 32457.92 20284.13 33052.27 33066.00 36387.60 277
AUN-MVS79.21 17577.60 19584.05 13088.71 15967.61 13985.84 21087.26 23169.08 23077.23 18588.14 19653.20 24293.47 15475.50 14173.45 32791.06 164
xiu_mvs_v1_base_debu80.80 13479.72 14084.03 13287.35 20970.19 7985.56 21488.77 19669.06 23181.83 10888.16 19250.91 26792.85 18578.29 11187.56 13589.06 239
xiu_mvs_v1_base80.80 13479.72 14084.03 13287.35 20970.19 7985.56 21488.77 19669.06 23181.83 10888.16 19250.91 26792.85 18578.29 11187.56 13589.06 239
xiu_mvs_v1_base_debi80.80 13479.72 14084.03 13287.35 20970.19 7985.56 21488.77 19669.06 23181.83 10888.16 19250.91 26792.85 18578.29 11187.56 13589.06 239
MVSTER79.01 18077.88 18482.38 19183.07 29564.80 20184.08 25388.95 19169.01 23478.69 14987.17 21954.70 22692.43 19674.69 14480.57 23789.89 218
cl2278.07 20377.01 20581.23 21582.37 31461.83 25683.55 26187.98 21368.96 23575.06 24483.87 29361.40 16991.88 21873.53 15576.39 28589.98 214
miper_ehance_all_eth78.59 19177.76 19081.08 22082.66 30761.56 25983.65 25789.15 18168.87 23675.55 22383.79 29766.49 10692.03 21173.25 16076.39 28589.64 226
PAPR81.66 11680.89 11883.99 13590.27 9864.00 21686.76 18491.77 10368.84 23777.13 19189.50 15167.63 9594.88 9567.55 21388.52 12893.09 98
CPTT-MVS83.73 7683.33 8284.92 9093.28 4970.86 6992.09 3790.38 13968.75 23879.57 13692.83 7660.60 18693.04 18180.92 8691.56 8590.86 172
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11791.89 9568.69 23985.00 5993.10 6774.43 2695.41 6984.97 4195.71 2593.02 102
test_893.13 5272.57 3588.68 12291.84 9968.69 23984.87 6393.10 6774.43 2695.16 78
dmvs_re71.14 29270.58 28872.80 33181.96 31759.68 28175.60 35079.34 33768.55 24169.27 31080.72 33649.42 28576.54 36952.56 32977.79 26682.19 359
MVSFormer82.85 9682.05 10185.24 7687.35 20970.21 7790.50 6290.38 13968.55 24181.32 11689.47 15361.68 16193.46 15578.98 10290.26 10192.05 136
test_djsdf80.30 15079.32 15083.27 15683.98 27565.37 19090.50 6290.38 13968.55 24176.19 21188.70 17356.44 21593.46 15578.98 10280.14 24390.97 169
TEST993.26 5072.96 2588.75 11791.89 9568.44 24485.00 5993.10 6774.36 2895.41 69
FE-MVS77.78 21175.68 22884.08 12488.09 18266.00 17283.13 26887.79 22068.42 24578.01 16985.23 26945.50 32195.12 8059.11 28685.83 16591.11 162
CDPH-MVS85.76 5185.29 6187.17 4393.49 4771.08 6188.58 12592.42 7468.32 24684.61 6993.48 5872.32 4496.15 4579.00 10195.43 3194.28 42
PC_three_145268.21 24792.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
fmvsm_l_conf0.5_n84.47 6984.54 6884.27 11585.42 24568.81 10688.49 12787.26 23168.08 24888.03 2793.49 5772.04 4891.77 22188.90 1789.14 11792.24 129
IterMVS74.29 26072.94 26578.35 27481.53 32463.49 22881.58 28582.49 30468.06 24969.99 30083.69 30051.66 26285.54 31965.85 22971.64 34086.01 313
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dmvs_testset62.63 34464.11 33558.19 37278.55 35824.76 40875.28 35165.94 38867.91 25060.34 36776.01 36953.56 23773.94 38731.79 39167.65 35675.88 379
TAMVS78.89 18477.51 19783.03 16987.80 19367.79 13684.72 23385.05 26467.63 25176.75 19687.70 20162.25 15490.82 25458.53 29387.13 14290.49 187
PVSNet_Blended80.98 12780.34 12882.90 17588.85 14965.40 18784.43 24492.00 8967.62 25278.11 16685.05 27566.02 11494.27 11471.52 17389.50 11289.01 244
TR-MVS77.44 21976.18 22481.20 21688.24 17563.24 23484.61 23786.40 24667.55 25377.81 17286.48 24254.10 23293.15 17357.75 30082.72 21287.20 287
CDS-MVSNet79.07 17977.70 19283.17 16287.60 20368.23 12684.40 24686.20 24967.49 25476.36 20786.54 24061.54 16490.79 25561.86 26487.33 13990.49 187
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
fmvsm_l_conf0.5_n_a84.13 7184.16 7384.06 12785.38 24668.40 12188.34 13486.85 24067.48 25587.48 3693.40 6170.89 6091.61 22588.38 2589.22 11692.16 133
mvs_anonymous79.42 16979.11 15780.34 23684.45 26657.97 29682.59 27587.62 22367.40 25676.17 21488.56 18068.47 8889.59 27470.65 18386.05 16093.47 81
IU-MVS95.30 271.25 5792.95 5266.81 25792.39 688.94 1696.63 494.85 19
baseline275.70 24773.83 25781.30 21383.26 28961.79 25782.57 27680.65 32166.81 25766.88 33083.42 30457.86 20392.19 20763.47 24579.57 24789.91 216
miper_lstm_enhance74.11 26373.11 26477.13 29380.11 34259.62 28272.23 36486.92 23966.76 25970.40 29282.92 31156.93 21382.92 33969.06 20072.63 33388.87 251
OpenMVScopyleft72.83 1079.77 15978.33 17484.09 12385.17 24969.91 8490.57 6090.97 12366.70 26072.17 27891.91 9154.70 22693.96 12561.81 26590.95 9288.41 265
test-LLR72.94 27972.43 26974.48 31681.35 32858.04 29478.38 33077.46 34866.66 26169.95 30179.00 35148.06 29879.24 35566.13 22484.83 17286.15 309
test20.0367.45 32466.95 32568.94 35375.48 37144.84 38877.50 33877.67 34666.66 26163.01 35983.80 29647.02 30478.40 35942.53 37768.86 35483.58 345
test0.0.03 168.00 32267.69 31768.90 35477.55 36147.43 37975.70 34972.95 37366.66 26166.56 33582.29 32148.06 29875.87 37644.97 37274.51 31783.41 346
Syy-MVS68.05 32167.85 31268.67 35784.68 26040.97 39878.62 32873.08 37166.65 26466.74 33379.46 34652.11 25282.30 34232.89 39076.38 28882.75 355
myMVS_eth3d67.02 32766.29 32869.21 35284.68 26042.58 39378.62 32873.08 37166.65 26466.74 33379.46 34631.53 37882.30 34239.43 38376.38 28882.75 355
QAPM80.88 12979.50 14585.03 8488.01 18668.97 10491.59 4392.00 8966.63 26675.15 24192.16 8857.70 20495.45 6563.52 24488.76 12390.66 179
XXY-MVS75.41 25375.56 23174.96 31183.59 28257.82 30080.59 30283.87 28166.54 26774.93 24788.31 18763.24 13780.09 35362.16 26076.85 27886.97 295
OurMVSNet-221017-074.26 26172.42 27079.80 24783.76 28059.59 28385.92 20786.64 24266.39 26866.96 32987.58 20439.46 35591.60 22665.76 23069.27 35088.22 266
SCA74.22 26272.33 27179.91 24484.05 27462.17 25179.96 31279.29 33866.30 26972.38 27680.13 34051.95 25688.60 29259.25 28477.67 26988.96 248
testgi66.67 33066.53 32767.08 36275.62 37041.69 39775.93 34576.50 35666.11 27065.20 34986.59 23635.72 37074.71 38343.71 37373.38 32984.84 331
HY-MVS69.67 1277.95 20777.15 20380.36 23587.57 20760.21 27783.37 26487.78 22166.11 27075.37 23087.06 22363.27 13690.48 26061.38 26982.43 21590.40 191
EG-PatchMatch MVS74.04 26471.82 27480.71 22984.92 25667.42 14385.86 20988.08 21166.04 27264.22 35383.85 29435.10 37192.56 19257.44 30280.83 23282.16 360
CNLPA78.08 20276.79 21281.97 19890.40 9771.07 6287.59 15884.55 27066.03 27372.38 27689.64 14757.56 20686.04 31459.61 28183.35 20388.79 255
Anonymous2024052980.19 15378.89 16184.10 12090.60 9264.75 20288.95 10990.90 12565.97 27480.59 12691.17 11549.97 27893.73 14469.16 19982.70 21393.81 62
TAPA-MVS73.13 979.15 17677.94 18182.79 18289.59 11762.99 24388.16 14191.51 10965.77 27577.14 19091.09 11760.91 17993.21 16650.26 34387.05 14392.17 132
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MSDG73.36 27370.99 28580.49 23384.51 26565.80 17980.71 30086.13 25165.70 27665.46 34483.74 29844.60 32490.91 25351.13 33676.89 27684.74 332
anonymousdsp78.60 19077.15 20382.98 17280.51 33867.08 15387.24 16889.53 16565.66 27775.16 24087.19 21852.52 24392.25 20577.17 12179.34 25289.61 227
test_040272.79 28070.44 29179.84 24688.13 17965.99 17385.93 20684.29 27465.57 27867.40 32685.49 26346.92 30592.61 19035.88 38774.38 31880.94 366
miper_enhance_ethall77.87 21076.86 20980.92 22581.65 32161.38 26182.68 27488.98 18865.52 27975.47 22482.30 32065.76 11892.00 21372.95 16376.39 28589.39 232
UnsupCasMVSNet_eth67.33 32565.99 32971.37 34073.48 38051.47 36775.16 35385.19 26265.20 28060.78 36680.93 33542.35 34077.20 36557.12 30553.69 38685.44 321
WTY-MVS75.65 24875.68 22875.57 30586.40 23156.82 31377.92 33782.40 30565.10 28176.18 21287.72 20063.13 14380.90 35060.31 27681.96 22089.00 246
thisisatest051577.33 22275.38 23683.18 16185.27 24863.80 22082.11 28083.27 29065.06 28275.91 21683.84 29549.54 28394.27 11467.24 21786.19 15791.48 152
MVP-Stereo76.12 24174.46 24981.13 21985.37 24769.79 8684.42 24587.95 21565.03 28367.46 32485.33 26653.28 24191.73 22458.01 29883.27 20481.85 361
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Anonymous2023121178.97 18277.69 19382.81 17990.54 9464.29 21290.11 7391.51 10965.01 28476.16 21588.13 19750.56 27293.03 18269.68 19477.56 27091.11 162
pmmvs674.69 25873.39 26078.61 26781.38 32757.48 30586.64 18687.95 21564.99 28570.18 29586.61 23550.43 27489.52 27562.12 26170.18 34788.83 253
PAPM77.68 21676.40 22281.51 20687.29 21661.85 25583.78 25589.59 16464.74 28671.23 28688.70 17362.59 14793.66 14552.66 32887.03 14489.01 244
MIMVSNet70.69 29869.30 29774.88 31284.52 26456.35 32475.87 34879.42 33664.59 28767.76 31982.41 31841.10 34881.54 34646.64 36381.34 22586.75 300
tpm72.37 28371.71 27574.35 31882.19 31552.00 35979.22 32077.29 35164.56 28872.95 26883.68 30151.35 26383.26 33858.33 29575.80 29487.81 273
MDA-MVSNet-bldmvs66.68 32963.66 33875.75 30279.28 35560.56 27173.92 36078.35 34364.43 28950.13 38979.87 34444.02 32983.67 33346.10 36656.86 37983.03 352
MIMVSNet168.58 31666.78 32673.98 32280.07 34351.82 36380.77 29784.37 27164.40 29059.75 37182.16 32336.47 36783.63 33442.73 37670.33 34686.48 304
D2MVS74.82 25773.21 26279.64 25279.81 34762.56 24680.34 30787.35 22964.37 29168.86 31282.66 31646.37 30990.10 26467.91 21081.24 22786.25 306
PLCcopyleft70.83 1178.05 20476.37 22383.08 16691.88 7467.80 13588.19 13989.46 16764.33 29269.87 30388.38 18553.66 23693.58 14658.86 28982.73 21187.86 272
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PatchmatchNetpermissive73.12 27671.33 28178.49 27383.18 29260.85 26679.63 31478.57 34264.13 29371.73 28279.81 34551.20 26585.97 31557.40 30376.36 29088.66 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
KD-MVS_2432*160066.22 33463.89 33673.21 32675.47 37253.42 35370.76 37084.35 27264.10 29466.52 33778.52 35534.55 37284.98 32450.40 33950.33 39081.23 364
miper_refine_blended66.22 33463.89 33673.21 32675.47 37253.42 35370.76 37084.35 27264.10 29466.52 33778.52 35534.55 37284.98 32450.40 33950.33 39081.23 364
tpmvs71.09 29369.29 29876.49 29782.04 31656.04 32778.92 32581.37 31664.05 29667.18 32878.28 35749.74 28289.77 27049.67 34672.37 33483.67 344
F-COLMAP76.38 23974.33 25082.50 18989.28 13666.95 15888.41 12989.03 18564.05 29666.83 33188.61 17746.78 30692.89 18457.48 30178.55 25887.67 275
DP-MVS76.78 23074.57 24583.42 15093.29 4869.46 9488.55 12683.70 28263.98 29870.20 29488.89 16954.01 23494.80 9846.66 36181.88 22286.01 313
原ACMM184.35 10993.01 5768.79 10792.44 7163.96 29981.09 12191.57 10166.06 11395.45 6567.19 21894.82 4688.81 254
PM-MVS66.41 33264.14 33473.20 32873.92 37656.45 31978.97 32464.96 39163.88 30064.72 35080.24 33919.84 39383.44 33666.24 22364.52 36779.71 371
UWE-MVS72.13 28671.49 27774.03 32186.66 22847.70 37881.40 29076.89 35563.60 30175.59 22184.22 28939.94 35485.62 31848.98 34986.13 15988.77 256
jason81.39 12280.29 13084.70 9786.63 22969.90 8585.95 20586.77 24163.24 30281.07 12289.47 15361.08 17792.15 20878.33 11090.07 10692.05 136
jason: jason.
KD-MVS_self_test68.81 31367.59 32072.46 33474.29 37545.45 38377.93 33687.00 23663.12 30363.99 35578.99 35342.32 34184.77 32756.55 31264.09 36887.16 290
gg-mvs-nofinetune69.95 30667.96 31075.94 30083.07 29554.51 34577.23 34170.29 37763.11 30470.32 29362.33 38843.62 33188.69 29053.88 32287.76 13484.62 334
tpmrst72.39 28172.13 27273.18 32980.54 33749.91 37479.91 31379.08 34063.11 30471.69 28379.95 34255.32 21882.77 34065.66 23173.89 32286.87 296
PCF-MVS73.52 780.38 14678.84 16285.01 8587.71 19868.99 10383.65 25791.46 11363.00 30677.77 17490.28 13366.10 11195.09 8661.40 26888.22 13290.94 170
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
COLMAP_ROBcopyleft66.92 1773.01 27770.41 29280.81 22787.13 21965.63 18288.30 13684.19 27762.96 30763.80 35787.69 20238.04 36392.56 19246.66 36174.91 31384.24 337
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Patchmatch-RL test70.24 30367.78 31677.61 28677.43 36259.57 28471.16 36770.33 37662.94 30868.65 31472.77 37950.62 27185.49 32069.58 19566.58 36087.77 274
lupinMVS81.39 12280.27 13184.76 9687.35 20970.21 7785.55 21786.41 24562.85 30981.32 11688.61 17761.68 16192.24 20678.41 10990.26 10191.83 140
test_vis1_n_192075.52 25075.78 22674.75 31579.84 34657.44 30683.26 26585.52 25862.83 31079.34 14086.17 24945.10 32379.71 35478.75 10481.21 22887.10 294
EPMVS69.02 31268.16 30771.59 33879.61 35149.80 37677.40 33966.93 38562.82 31170.01 29879.05 34945.79 31777.86 36356.58 31175.26 30987.13 291
PatchMatch-RL72.38 28270.90 28676.80 29688.60 16267.38 14579.53 31576.17 35962.75 31269.36 30882.00 32645.51 32084.89 32653.62 32380.58 23678.12 374
gm-plane-assit81.40 32653.83 35062.72 31380.94 33392.39 19863.40 247
FMVSNet569.50 30967.96 31074.15 32082.97 30155.35 33680.01 31182.12 30862.56 31463.02 35881.53 32736.92 36681.92 34448.42 35174.06 32085.17 327
sss73.60 26973.64 25973.51 32582.80 30355.01 34076.12 34481.69 31262.47 31574.68 25085.85 25557.32 20978.11 36160.86 27380.93 23087.39 282
WB-MVSnew71.96 28871.65 27672.89 33084.67 26351.88 36282.29 27877.57 34762.31 31673.67 26083.00 30953.49 23981.10 34945.75 36882.13 21885.70 318
AllTest70.96 29468.09 30979.58 25385.15 25163.62 22284.58 23879.83 33262.31 31660.32 36886.73 22632.02 37588.96 28750.28 34171.57 34186.15 309
TestCases79.58 25385.15 25163.62 22279.83 33262.31 31660.32 36886.73 22632.02 37588.96 28750.28 34171.57 34186.15 309
1112_ss77.40 22176.43 22180.32 23789.11 14660.41 27483.65 25787.72 22262.13 31973.05 26786.72 22862.58 14889.97 26762.11 26280.80 23390.59 183
PVSNet64.34 1872.08 28770.87 28775.69 30386.21 23356.44 32074.37 35880.73 32062.06 32070.17 29682.23 32242.86 33883.31 33754.77 31884.45 18187.32 285
LS3D76.95 22874.82 24383.37 15390.45 9567.36 14689.15 10486.94 23861.87 32169.52 30690.61 12851.71 26194.53 10646.38 36486.71 14988.21 267
CostFormer75.24 25573.90 25579.27 25782.65 30858.27 29180.80 29582.73 30361.57 32275.33 23583.13 30855.52 21791.07 25164.98 23678.34 26488.45 263
new-patchmatchnet61.73 34661.73 34761.70 36872.74 38524.50 40969.16 37778.03 34461.40 32356.72 38075.53 37338.42 36076.48 37145.95 36757.67 37884.13 339
ANet_high50.57 36246.10 36663.99 36548.67 40839.13 39970.99 36980.85 31861.39 32431.18 39757.70 39517.02 39673.65 38831.22 39215.89 40579.18 372
MS-PatchMatch73.83 26772.67 26677.30 29183.87 27766.02 17181.82 28184.66 26861.37 32568.61 31582.82 31447.29 30188.21 29659.27 28384.32 18377.68 375
USDC70.33 30268.37 30476.21 29980.60 33656.23 32579.19 32186.49 24460.89 32661.29 36485.47 26431.78 37789.47 27753.37 32576.21 29182.94 354
cascas76.72 23174.64 24482.99 17185.78 23965.88 17682.33 27789.21 17860.85 32772.74 26981.02 33147.28 30293.75 14267.48 21485.02 17089.34 234
MDTV_nov1_ep1369.97 29683.18 29253.48 35277.10 34280.18 33160.45 32869.33 30980.44 33748.89 29686.90 30751.60 33378.51 260
TinyColmap67.30 32664.81 33174.76 31481.92 31956.68 31780.29 30881.49 31460.33 32956.27 38283.22 30524.77 38787.66 30445.52 36969.47 34979.95 370
test-mter71.41 29070.39 29374.48 31681.35 32858.04 29478.38 33077.46 34860.32 33069.95 30179.00 35136.08 36979.24 35566.13 22484.83 17286.15 309
131476.53 23375.30 23980.21 23983.93 27662.32 24984.66 23488.81 19460.23 33170.16 29784.07 29255.30 21990.73 25767.37 21583.21 20587.59 279
PatchT68.46 31967.85 31270.29 34880.70 33543.93 39072.47 36374.88 36360.15 33270.55 28976.57 36649.94 27981.59 34550.58 33774.83 31485.34 322
无先验87.48 16088.98 18860.00 33394.12 12267.28 21688.97 247
CR-MVSNet73.37 27171.27 28279.67 25181.32 33065.19 19275.92 34680.30 32859.92 33472.73 27081.19 32852.50 24486.69 30859.84 27977.71 26787.11 292
TDRefinement67.49 32364.34 33376.92 29473.47 38161.07 26384.86 23182.98 29859.77 33558.30 37585.13 27226.06 38587.89 30047.92 35860.59 37681.81 362
dp66.80 32865.43 33070.90 34779.74 35048.82 37775.12 35574.77 36459.61 33664.08 35477.23 36342.89 33780.72 35148.86 35066.58 36083.16 349
our_test_369.14 31167.00 32475.57 30579.80 34858.80 28677.96 33577.81 34559.55 33762.90 36178.25 35847.43 30083.97 33151.71 33267.58 35783.93 342
Test_1112_low_res76.40 23875.44 23379.27 25789.28 13658.09 29281.69 28487.07 23559.53 33872.48 27486.67 23361.30 17189.33 27860.81 27480.15 24290.41 190
pmmvs474.03 26671.91 27380.39 23481.96 31768.32 12381.45 28882.14 30759.32 33969.87 30385.13 27252.40 24688.13 29860.21 27774.74 31584.73 333
testdata79.97 24390.90 8664.21 21384.71 26759.27 34085.40 5392.91 7362.02 15989.08 28368.95 20191.37 8786.63 303
WB-MVS54.94 35254.72 35455.60 37873.50 37920.90 41074.27 35961.19 39559.16 34150.61 38874.15 37547.19 30375.78 37717.31 40235.07 39770.12 385
ppachtmachnet_test70.04 30567.34 32278.14 27779.80 34861.13 26279.19 32180.59 32259.16 34165.27 34679.29 34846.75 30787.29 30549.33 34766.72 35886.00 315
RPSCF73.23 27571.46 27878.54 27082.50 31059.85 27982.18 27982.84 30258.96 34371.15 28889.41 15945.48 32284.77 32758.82 29071.83 33991.02 168
pmmvs-eth3d70.50 30167.83 31478.52 27277.37 36366.18 16881.82 28181.51 31358.90 34463.90 35680.42 33842.69 33986.28 31258.56 29265.30 36583.11 350
OpenMVS_ROBcopyleft64.09 1970.56 30068.19 30677.65 28580.26 33959.41 28585.01 22782.96 29958.76 34565.43 34582.33 31937.63 36591.23 24445.34 37176.03 29282.32 357
114514_t80.68 13979.51 14484.20 11794.09 3867.27 14989.64 8591.11 12158.75 34674.08 25790.72 12658.10 20095.04 8769.70 19389.42 11490.30 195
Patchmtry70.74 29769.16 30075.49 30780.72 33454.07 34874.94 35780.30 32858.34 34770.01 29881.19 32852.50 24486.54 30953.37 32571.09 34485.87 317
test_cas_vis1_n_192073.76 26873.74 25873.81 32375.90 36759.77 28080.51 30382.40 30558.30 34881.62 11485.69 25744.35 32776.41 37276.29 12978.61 25785.23 324
Anonymous2024052168.80 31467.22 32373.55 32474.33 37454.11 34783.18 26685.61 25758.15 34961.68 36380.94 33330.71 38081.27 34857.00 30773.34 33085.28 323
旧先验286.56 18958.10 35087.04 4188.98 28574.07 151
JIA-IIPM66.32 33362.82 34476.82 29577.09 36461.72 25865.34 38875.38 36058.04 35164.51 35162.32 38942.05 34586.51 31051.45 33469.22 35182.21 358
pmmvs571.55 28970.20 29575.61 30477.83 36056.39 32181.74 28380.89 31757.76 35267.46 32484.49 28049.26 28985.32 32357.08 30675.29 30885.11 328
TESTMET0.1,169.89 30769.00 30172.55 33379.27 35656.85 31278.38 33074.71 36657.64 35368.09 31877.19 36437.75 36476.70 36863.92 24384.09 18784.10 340
RPMNet73.51 27070.49 29082.58 18881.32 33065.19 19275.92 34692.27 7857.60 35472.73 27076.45 36752.30 24795.43 6748.14 35677.71 26787.11 292
SSC-MVS53.88 35553.59 35654.75 38072.87 38419.59 41173.84 36160.53 39757.58 35549.18 39073.45 37846.34 31175.47 38016.20 40532.28 39969.20 386
新几何183.42 15093.13 5270.71 7185.48 25957.43 35681.80 11191.98 9063.28 13592.27 20464.60 23992.99 6687.27 286
YYNet165.03 33762.91 34271.38 33975.85 36856.60 31869.12 37874.66 36757.28 35754.12 38477.87 36045.85 31674.48 38449.95 34461.52 37383.05 351
MDA-MVSNet_test_wron65.03 33762.92 34171.37 34075.93 36656.73 31469.09 37974.73 36557.28 35754.03 38577.89 35945.88 31574.39 38549.89 34561.55 37282.99 353
Anonymous2023120668.60 31567.80 31571.02 34580.23 34150.75 37178.30 33380.47 32456.79 35966.11 34282.63 31746.35 31078.95 35743.62 37475.70 29583.36 347
tpm273.26 27471.46 27878.63 26683.34 28756.71 31680.65 30180.40 32756.63 36073.55 26182.02 32551.80 26091.24 24356.35 31378.42 26287.95 269
CHOSEN 1792x268877.63 21775.69 22783.44 14989.98 10968.58 11978.70 32787.50 22656.38 36175.80 21986.84 22458.67 19691.40 23961.58 26785.75 16690.34 192
HyFIR lowres test77.53 21875.40 23583.94 13889.59 11766.62 16080.36 30688.64 20356.29 36276.45 20385.17 27157.64 20593.28 16161.34 27083.10 20791.91 139
PVSNet_057.27 2061.67 34759.27 35068.85 35579.61 35157.44 30668.01 38073.44 37055.93 36358.54 37470.41 38444.58 32577.55 36447.01 36035.91 39671.55 384
UnsupCasMVSNet_bld63.70 34261.53 34870.21 34973.69 37851.39 36872.82 36281.89 30955.63 36457.81 37771.80 38138.67 35978.61 35849.26 34852.21 38880.63 367
MDTV_nov1_ep13_2view37.79 40075.16 35355.10 36566.53 33649.34 28753.98 32187.94 270
MVS78.19 20076.99 20781.78 20085.66 24066.99 15484.66 23490.47 13755.08 36672.02 28085.27 26763.83 13294.11 12366.10 22689.80 11084.24 337
test22291.50 7768.26 12584.16 25083.20 29354.63 36779.74 13391.63 9958.97 19591.42 8686.77 299
CHOSEN 280x42066.51 33164.71 33271.90 33681.45 32563.52 22757.98 39568.95 38353.57 36862.59 36276.70 36546.22 31275.29 38255.25 31679.68 24676.88 377
ADS-MVSNet266.20 33663.33 33974.82 31379.92 34458.75 28767.55 38175.19 36153.37 36965.25 34775.86 37042.32 34180.53 35241.57 37868.91 35285.18 325
ADS-MVSNet64.36 34062.88 34368.78 35679.92 34447.17 38067.55 38171.18 37553.37 36965.25 34775.86 37042.32 34173.99 38641.57 37868.91 35285.18 325
LF4IMVS64.02 34162.19 34569.50 35170.90 38853.29 35676.13 34377.18 35252.65 37158.59 37380.98 33223.55 38976.52 37053.06 32766.66 35978.68 373
tpm cat170.57 29968.31 30577.35 29082.41 31357.95 29778.08 33480.22 33052.04 37268.54 31677.66 36252.00 25587.84 30151.77 33172.07 33886.25 306
test_vis1_n69.85 30869.21 29971.77 33772.66 38655.27 33881.48 28776.21 35852.03 37375.30 23683.20 30728.97 38276.22 37474.60 14578.41 26383.81 343
Patchmatch-test64.82 33963.24 34069.57 35079.42 35449.82 37563.49 39269.05 38251.98 37459.95 37080.13 34050.91 26770.98 39040.66 38073.57 32587.90 271
N_pmnet52.79 35853.26 35751.40 38278.99 3577.68 41469.52 3743.89 41351.63 37557.01 37974.98 37440.83 35065.96 39737.78 38564.67 36680.56 369
test_fmvs1_n70.86 29670.24 29472.73 33272.51 38755.28 33781.27 29179.71 33451.49 37678.73 14784.87 27627.54 38477.02 36676.06 13279.97 24585.88 316
test_fmvs170.93 29570.52 28972.16 33573.71 37755.05 33980.82 29478.77 34151.21 37778.58 15384.41 28231.20 37976.94 36775.88 13580.12 24484.47 335
PMMVS69.34 31068.67 30271.35 34275.67 36962.03 25275.17 35273.46 36950.00 37868.68 31379.05 34952.07 25478.13 36061.16 27182.77 21073.90 381
test_fmvs268.35 32067.48 32170.98 34669.50 39051.95 36080.05 31076.38 35749.33 37974.65 25184.38 28323.30 39075.40 38174.51 14675.17 31185.60 319
CMPMVSbinary51.72 2170.19 30468.16 30776.28 29873.15 38357.55 30479.47 31683.92 27948.02 38056.48 38184.81 27743.13 33686.42 31162.67 25481.81 22384.89 330
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
mvsany_test162.30 34561.26 34965.41 36469.52 38954.86 34166.86 38349.78 40446.65 38168.50 31783.21 30649.15 29066.28 39656.93 30860.77 37475.11 380
test_fmvs363.36 34361.82 34667.98 35962.51 39746.96 38277.37 34074.03 36845.24 38267.50 32378.79 35412.16 40172.98 38972.77 16666.02 36283.99 341
CVMVSNet72.99 27872.58 26874.25 31984.28 26750.85 37086.41 19283.45 28844.56 38373.23 26587.54 20849.38 28685.70 31665.90 22878.44 26186.19 308
test_vis1_rt60.28 34858.42 35165.84 36367.25 39355.60 33370.44 37260.94 39644.33 38459.00 37266.64 38624.91 38668.67 39462.80 25069.48 34873.25 382
mvsany_test353.99 35451.45 35961.61 36955.51 40144.74 38963.52 39145.41 40843.69 38558.11 37676.45 36717.99 39463.76 39954.77 31847.59 39276.34 378
EU-MVSNet68.53 31867.61 31971.31 34378.51 35947.01 38184.47 24084.27 27542.27 38666.44 34084.79 27840.44 35283.76 33258.76 29168.54 35583.17 348
FPMVS53.68 35651.64 35859.81 37165.08 39551.03 36969.48 37569.58 38041.46 38740.67 39372.32 38016.46 39770.00 39324.24 39965.42 36458.40 395
pmmvs357.79 35054.26 35568.37 35864.02 39656.72 31575.12 35565.17 38940.20 38852.93 38669.86 38520.36 39275.48 37945.45 37055.25 38572.90 383
new_pmnet50.91 36150.29 36152.78 38168.58 39134.94 40363.71 39056.63 40139.73 38944.95 39165.47 38721.93 39158.48 40034.98 38856.62 38064.92 389
MVS-HIRNet59.14 34957.67 35263.57 36681.65 32143.50 39171.73 36565.06 39039.59 39051.43 38757.73 39438.34 36182.58 34139.53 38173.95 32164.62 390
PMMVS240.82 36838.86 37146.69 38353.84 40316.45 41248.61 39849.92 40337.49 39131.67 39660.97 3918.14 40756.42 40228.42 39430.72 40067.19 388
test_vis3_rt49.26 36347.02 36556.00 37554.30 40245.27 38766.76 38548.08 40536.83 39244.38 39253.20 3977.17 40864.07 39856.77 31055.66 38258.65 394
test_f52.09 35950.82 36055.90 37653.82 40442.31 39659.42 39458.31 40036.45 39356.12 38370.96 38312.18 40057.79 40153.51 32456.57 38167.60 387
LCM-MVSNet54.25 35349.68 36367.97 36053.73 40545.28 38666.85 38480.78 31935.96 39439.45 39562.23 3908.70 40578.06 36248.24 35551.20 38980.57 368
APD_test153.31 35749.93 36263.42 36765.68 39450.13 37371.59 36666.90 38634.43 39540.58 39471.56 3828.65 40676.27 37334.64 38955.36 38463.86 391
PMVScopyleft37.38 2244.16 36740.28 37055.82 37740.82 41042.54 39565.12 38963.99 39234.43 39524.48 40157.12 3963.92 41176.17 37517.10 40355.52 38348.75 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft45.18 36641.86 36955.16 37977.03 36551.52 36632.50 40180.52 32332.46 39727.12 40035.02 4019.52 40475.50 37822.31 40060.21 37738.45 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DSMNet-mixed57.77 35156.90 35360.38 37067.70 39235.61 40169.18 37653.97 40232.30 39857.49 37879.88 34340.39 35368.57 39538.78 38472.37 33476.97 376
testf145.72 36441.96 36757.00 37356.90 39945.32 38466.14 38659.26 39826.19 39930.89 39860.96 3924.14 40970.64 39126.39 39746.73 39455.04 396
APD_test245.72 36441.96 36757.00 37356.90 39945.32 38466.14 38659.26 39826.19 39930.89 39860.96 3924.14 40970.64 39126.39 39746.73 39455.04 396
E-PMN31.77 36930.64 37235.15 38652.87 40627.67 40557.09 39647.86 40624.64 40116.40 40633.05 40211.23 40254.90 40314.46 40618.15 40322.87 402
EMVS30.81 37129.65 37334.27 38750.96 40725.95 40756.58 39746.80 40724.01 40215.53 40730.68 40312.47 39954.43 40412.81 40717.05 40422.43 403
MVEpermissive26.22 2330.37 37225.89 37643.81 38444.55 40935.46 40228.87 40239.07 40918.20 40318.58 40540.18 4002.68 41247.37 40617.07 40423.78 40248.60 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft27.40 38840.17 41126.90 40624.59 41217.44 40423.95 40248.61 3999.77 40326.48 40718.06 40124.47 40128.83 401
wuyk23d16.82 37515.94 37819.46 38958.74 39831.45 40439.22 3993.74 4146.84 4056.04 4082.70 4081.27 41324.29 40810.54 40814.40 4072.63 405
test_method31.52 37029.28 37438.23 38527.03 4126.50 41520.94 40362.21 3944.05 40622.35 40452.50 39813.33 39847.58 40527.04 39634.04 39860.62 392
tmp_tt18.61 37421.40 37710.23 3904.82 41310.11 41334.70 40030.74 4111.48 40723.91 40326.07 40428.42 38313.41 40927.12 39515.35 4067.17 404
EGC-MVSNET52.07 36047.05 36467.14 36183.51 28460.71 26880.50 30467.75 3840.07 4080.43 40975.85 37224.26 38881.54 34628.82 39362.25 37059.16 393
testmvs6.04 3788.02 3810.10 3920.08 4140.03 41769.74 3730.04 4150.05 4090.31 4101.68 4090.02 4150.04 4100.24 4090.02 4080.25 407
test1236.12 3778.11 3800.14 3910.06 4150.09 41671.05 3680.03 4160.04 4100.25 4111.30 4100.05 4140.03 4110.21 4100.01 4090.29 406
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k19.96 37326.61 3750.00 3930.00 4160.00 4180.00 40489.26 1750.00 4110.00 41288.61 17761.62 1630.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas5.26 3797.02 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41163.15 1400.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re7.23 3769.64 3790.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41286.72 2280.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS42.58 39339.46 382
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 34
No_MVS89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 34
eth-test20.00 416
eth-test0.00 416
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 44
GSMVS88.96 248
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26488.96 248
sam_mvs50.01 277
ambc75.24 30973.16 38250.51 37263.05 39387.47 22764.28 35277.81 36117.80 39589.73 27257.88 29960.64 37585.49 320
MTGPAbinary92.02 87
test_post178.90 3265.43 40748.81 29785.44 32259.25 284
test_post5.46 40650.36 27584.24 329
patchmatchnet-post74.00 37651.12 26688.60 292
GG-mvs-BLEND75.38 30881.59 32355.80 33079.32 31869.63 37967.19 32773.67 37743.24 33488.90 28950.41 33884.50 17781.45 363
MTMP92.18 3532.83 410
test9_res84.90 4295.70 2692.87 106
agg_prior282.91 6695.45 3092.70 109
agg_prior92.85 5971.94 5191.78 10284.41 7394.93 89
test_prior472.60 3489.01 107
test_prior86.33 5492.61 6569.59 8892.97 5195.48 6493.91 55
新几何286.29 197
旧先验191.96 7165.79 18086.37 24793.08 7169.31 7992.74 6988.74 258
原ACMM286.86 178
testdata291.01 25262.37 257
segment_acmp73.08 38
test1286.80 4992.63 6470.70 7291.79 10182.71 10171.67 5396.16 4494.50 5193.54 79
plane_prior790.08 10368.51 120
plane_prior689.84 11268.70 11560.42 188
plane_prior592.44 7195.38 7178.71 10586.32 15491.33 155
plane_prior491.00 122
plane_prior189.90 111
n20.00 417
nn0.00 417
door-mid69.98 378
lessismore_v078.97 26281.01 33357.15 30965.99 38761.16 36582.82 31439.12 35791.34 24159.67 28046.92 39388.43 264
test1192.23 81
door69.44 381
HQP5-MVS66.98 155
BP-MVS77.47 117
HQP4-MVS77.24 18495.11 8291.03 166
HQP3-MVS92.19 8485.99 162
HQP2-MVS60.17 191
NP-MVS89.62 11668.32 12390.24 134
ACMMP++_ref81.95 221
ACMMP++81.25 226
Test By Simon64.33 127