This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
MVS_030488.08 1388.08 1688.08 1389.67 11372.04 4792.26 3289.26 17284.19 185.01 4895.18 1369.93 6697.20 1391.63 195.60 2894.99 8
UA-Net85.08 6184.96 6185.45 6992.07 7068.07 12589.78 7990.86 12582.48 284.60 6193.20 5969.35 7295.22 7371.39 16790.88 9193.07 90
CANet86.45 3786.10 4487.51 3690.09 10170.94 6689.70 8292.59 6681.78 381.32 10591.43 9970.34 6197.23 1284.26 4593.36 6394.37 34
NCCC88.06 1488.01 1888.24 1094.41 2273.62 1091.22 5192.83 5581.50 485.79 4193.47 5473.02 3997.00 1784.90 3594.94 3894.10 44
EPNet83.72 7182.92 8086.14 5884.22 25469.48 9091.05 5485.27 25481.30 576.83 18391.65 9066.09 10395.56 5776.00 12593.85 5993.38 78
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNVR-MVS88.93 989.13 988.33 794.77 1273.82 890.51 6093.00 4380.90 688.06 2694.06 4176.43 1696.84 2088.48 2095.99 1894.34 36
3Dnovator+77.84 485.48 5384.47 6788.51 691.08 8173.49 1593.18 1193.78 1880.79 776.66 18893.37 5560.40 18196.75 2577.20 11093.73 6195.29 4
TranMVSNet+NR-MVSNet80.84 12080.31 11982.42 18087.85 18262.33 23987.74 14791.33 11280.55 877.99 16089.86 13265.23 11292.62 18567.05 21175.24 29492.30 116
MSP-MVS89.51 489.91 588.30 994.28 3073.46 1692.90 1694.11 680.27 991.35 1494.16 3678.35 1396.77 2389.59 794.22 5794.67 23
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft89.02 889.15 888.63 495.01 976.03 192.38 2692.85 5480.26 1087.78 2894.27 3175.89 1996.81 2287.45 2596.44 993.05 91
UniMVSNet_NR-MVSNet81.88 9981.54 9982.92 16488.46 16363.46 22187.13 16192.37 7380.19 1178.38 14789.14 15371.66 5093.05 17570.05 17976.46 26792.25 118
SteuartSystems-ACMMP88.72 1088.86 1088.32 892.14 6972.96 2493.73 593.67 2080.19 1188.10 2594.80 1673.76 3397.11 1487.51 2495.82 2194.90 12
Skip Steuart: Steuart Systems R&D Blog.
EI-MVSNet-Vis-set84.19 6683.81 7085.31 7288.18 17167.85 12887.66 14889.73 15880.05 1382.95 8589.59 14170.74 5894.82 9480.66 8284.72 16593.28 83
ETV-MVS84.90 6484.67 6485.59 6689.39 12468.66 11488.74 11292.64 6579.97 1484.10 7085.71 24769.32 7395.38 6880.82 7891.37 8592.72 99
EI-MVSNet-UG-set83.81 6983.38 7385.09 7987.87 18167.53 13687.44 15489.66 15979.74 1582.23 9489.41 15070.24 6394.74 9779.95 8683.92 17592.99 95
CS-MVS86.69 3486.95 3085.90 6290.76 9067.57 13592.83 1793.30 3279.67 1684.57 6292.27 7971.47 5195.02 8584.24 4793.46 6295.13 5
casdiffmvs_mvgpermissive85.99 4386.09 4585.70 6587.65 19267.22 14488.69 11493.04 3879.64 1785.33 4592.54 7673.30 3594.50 10683.49 5291.14 8895.37 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MTAPA87.23 2787.00 2887.90 2194.18 3574.25 586.58 18092.02 8579.45 1885.88 3994.80 1668.07 8296.21 4186.69 2995.34 3293.23 84
EC-MVSNet86.01 4286.38 3784.91 8789.31 13066.27 15992.32 2993.63 2179.37 1984.17 6991.88 8669.04 7895.43 6483.93 5093.77 6093.01 94
XVS87.18 2886.91 3288.00 1694.42 2073.33 1892.78 1892.99 4579.14 2083.67 7894.17 3567.45 8896.60 3283.06 5694.50 4994.07 46
X-MVStestdata80.37 13877.83 17588.00 1694.42 2073.33 1892.78 1892.99 4579.14 2083.67 7812.47 38967.45 8896.60 3283.06 5694.50 4994.07 46
HQP_MVS83.64 7383.14 7585.14 7690.08 10268.71 11091.25 4992.44 6979.12 2278.92 13491.00 11360.42 17995.38 6878.71 9586.32 14891.33 142
plane_prior291.25 4979.12 22
IS-MVSNet83.15 8182.81 8184.18 11289.94 10963.30 22591.59 4288.46 20379.04 2479.49 12692.16 8165.10 11394.28 11167.71 20291.86 8094.95 9
DU-MVS81.12 11680.52 11582.90 16587.80 18563.46 22187.02 16591.87 9579.01 2578.38 14789.07 15565.02 11493.05 17570.05 17976.46 26792.20 120
NR-MVSNet80.23 14179.38 13782.78 17387.80 18563.34 22486.31 18791.09 11979.01 2572.17 26289.07 15567.20 9192.81 18466.08 21875.65 28092.20 120
CS-MVS-test86.29 4186.48 3685.71 6491.02 8367.21 14592.36 2893.78 1878.97 2783.51 8191.20 10470.65 6095.15 7681.96 6994.89 4094.77 21
DELS-MVS85.41 5685.30 5785.77 6388.49 16167.93 12785.52 21293.44 2778.70 2883.63 8089.03 15774.57 2495.71 5580.26 8594.04 5893.66 64
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
WR-MVS79.49 15579.22 14480.27 22988.79 15158.35 28085.06 21788.61 20178.56 2977.65 16588.34 17763.81 12490.66 24864.98 22777.22 25691.80 131
plane_prior368.60 11578.44 3078.92 134
UniMVSNet (Re)81.60 10881.11 10483.09 15588.38 16664.41 20287.60 14993.02 4278.42 3178.56 14388.16 18369.78 6893.26 15869.58 18676.49 26691.60 133
DVP-MVS++90.23 191.01 187.89 2394.34 2771.25 5695.06 194.23 378.38 3292.78 495.74 682.45 397.49 389.42 896.68 294.95 9
test_0728_THIRD78.38 3292.12 995.78 481.46 797.40 789.42 896.57 794.67 23
test_one_060195.07 771.46 5494.14 578.27 3492.05 1195.74 680.83 11
SD-MVS88.06 1488.50 1386.71 5092.60 6672.71 2891.81 4193.19 3577.87 3590.32 1794.00 4474.83 2393.78 13587.63 2394.27 5693.65 68
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
casdiffmvspermissive85.11 6085.14 5985.01 8187.20 20865.77 17287.75 14692.83 5577.84 3684.36 6692.38 7872.15 4493.93 12981.27 7490.48 9595.33 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CP-MVSNet78.22 18778.34 16377.84 26887.83 18454.54 33187.94 14091.17 11677.65 3773.48 24788.49 17362.24 14688.43 28162.19 24774.07 30390.55 172
plane_prior68.71 11090.38 6677.62 3886.16 152
baseline84.93 6284.98 6084.80 9187.30 20665.39 18187.30 15892.88 5277.62 3884.04 7292.26 8071.81 4693.96 12381.31 7390.30 9895.03 7
VDD-MVS83.01 8682.36 8784.96 8391.02 8366.40 15688.91 10388.11 20677.57 4084.39 6593.29 5752.19 23993.91 13077.05 11288.70 11994.57 28
MP-MVScopyleft87.71 1987.64 2187.93 2094.36 2673.88 692.71 2292.65 6477.57 4083.84 7594.40 2972.24 4396.28 3985.65 3195.30 3493.62 71
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PEN-MVS77.73 20277.69 18377.84 26887.07 21153.91 33687.91 14291.18 11577.56 4273.14 25188.82 16361.23 16489.17 26859.95 26672.37 31890.43 176
OPM-MVS83.50 7582.95 7985.14 7688.79 15170.95 6589.13 9891.52 10677.55 4380.96 11291.75 8860.71 17294.50 10679.67 8886.51 14689.97 202
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DeepPCF-MVS80.84 188.10 1288.56 1286.73 4992.24 6869.03 9889.57 8693.39 3077.53 4489.79 1894.12 3878.98 1296.58 3485.66 3095.72 2494.58 26
PS-CasMVS78.01 19678.09 16877.77 27087.71 18954.39 33388.02 13691.22 11377.50 4573.26 24988.64 16860.73 17188.41 28261.88 25173.88 30790.53 173
MSLP-MVS++85.43 5585.76 4984.45 10291.93 7270.24 7590.71 5792.86 5377.46 4684.22 6792.81 7167.16 9292.94 17980.36 8394.35 5490.16 186
DVP-MVScopyleft89.60 390.35 387.33 3995.27 571.25 5693.49 992.73 5977.33 4792.12 995.78 480.98 997.40 789.08 1196.41 1293.33 81
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072695.27 571.25 5693.60 694.11 677.33 4792.81 395.79 380.98 9
SED-MVS90.08 290.85 287.77 2595.30 270.98 6293.57 794.06 1077.24 4993.10 195.72 882.99 197.44 589.07 1396.63 494.88 13
test_241102_TWO94.06 1077.24 4992.78 495.72 881.26 897.44 589.07 1396.58 694.26 40
3Dnovator76.31 583.38 7982.31 8886.59 5187.94 18072.94 2790.64 5892.14 8477.21 5175.47 21392.83 6958.56 18894.72 9873.24 15292.71 6892.13 123
test_241102_ONE95.30 270.98 6294.06 1077.17 5293.10 195.39 1182.99 197.27 10
WR-MVS_H78.51 18278.49 15878.56 25888.02 17856.38 31388.43 12092.67 6177.14 5373.89 24487.55 19866.25 10189.24 26758.92 27673.55 31090.06 196
DeepC-MVS79.81 287.08 3186.88 3387.69 3291.16 8072.32 4290.31 6793.94 1477.12 5482.82 8994.23 3472.13 4597.09 1584.83 3895.37 3193.65 68
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FC-MVSNet-test81.52 10982.02 9380.03 23388.42 16555.97 31887.95 13993.42 2977.10 5577.38 17090.98 11569.96 6591.79 21668.46 19884.50 16792.33 114
DTE-MVSNet76.99 21776.80 20177.54 27586.24 22153.06 34487.52 15190.66 12877.08 5672.50 25788.67 16760.48 17889.52 26257.33 29270.74 32990.05 197
LFMVS81.82 10181.23 10283.57 13791.89 7363.43 22389.84 7581.85 30077.04 5783.21 8293.10 6052.26 23893.43 15471.98 16289.95 10693.85 56
UGNet80.83 12179.59 13384.54 9788.04 17768.09 12489.42 8888.16 20576.95 5876.22 20089.46 14649.30 27893.94 12668.48 19790.31 9791.60 133
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FIs82.07 9682.42 8481.04 21288.80 15058.34 28188.26 12893.49 2676.93 5978.47 14691.04 11069.92 6792.34 19869.87 18384.97 16292.44 113
GST-MVS87.42 2487.26 2487.89 2394.12 3672.97 2392.39 2593.43 2876.89 6084.68 5693.99 4670.67 5996.82 2184.18 4995.01 3693.90 54
mPP-MVS86.67 3686.32 3887.72 2994.41 2273.55 1292.74 2092.22 8076.87 6182.81 9094.25 3366.44 9896.24 4082.88 6094.28 5593.38 78
ZNCC-MVS87.94 1887.85 1988.20 1194.39 2473.33 1893.03 1493.81 1776.81 6285.24 4694.32 3071.76 4796.93 1885.53 3295.79 2294.32 37
VPNet78.69 17878.66 15578.76 25488.31 16855.72 32084.45 23486.63 23776.79 6378.26 15190.55 12159.30 18489.70 26066.63 21377.05 25890.88 159
HFP-MVS87.58 2187.47 2387.94 1894.58 1673.54 1493.04 1293.24 3376.78 6484.91 5294.44 2770.78 5796.61 3184.53 4294.89 4093.66 64
ACMMPR87.44 2287.23 2688.08 1394.64 1373.59 1193.04 1293.20 3476.78 6484.66 5994.52 2068.81 7996.65 2984.53 4294.90 3994.00 49
ACMMPcopyleft85.89 4785.39 5387.38 3893.59 4572.63 3292.74 2093.18 3676.78 6480.73 11493.82 5064.33 11896.29 3882.67 6690.69 9393.23 84
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
region2R87.42 2487.20 2788.09 1294.63 1473.55 1293.03 1493.12 3776.73 6784.45 6394.52 2069.09 7596.70 2684.37 4494.83 4394.03 48
canonicalmvs85.91 4685.87 4886.04 5989.84 11169.44 9490.45 6593.00 4376.70 6888.01 2791.23 10273.28 3693.91 13081.50 7288.80 11794.77 21
CP-MVS87.11 2986.92 3187.68 3394.20 3473.86 793.98 392.82 5876.62 6983.68 7794.46 2467.93 8395.95 5184.20 4894.39 5293.23 84
DeepC-MVS_fast79.65 386.91 3286.62 3587.76 2693.52 4672.37 4091.26 4793.04 3876.62 6984.22 6793.36 5671.44 5296.76 2480.82 7895.33 3394.16 42
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + GP.85.71 5085.33 5586.84 4691.34 7872.50 3589.07 9987.28 22776.41 7185.80 4090.22 12774.15 3195.37 7181.82 7091.88 7792.65 104
HQP-NCC89.33 12789.17 9376.41 7177.23 175
ACMP_Plane89.33 12789.17 9376.41 7177.23 175
HQP-MVS82.61 9082.02 9384.37 10489.33 12766.98 14889.17 9392.19 8276.41 7177.23 17590.23 12660.17 18295.11 7977.47 10785.99 15591.03 154
CANet_DTU80.61 13079.87 12782.83 16785.60 23063.17 23087.36 15588.65 19976.37 7575.88 20788.44 17553.51 22993.07 17473.30 15089.74 10992.25 118
VNet82.21 9382.41 8581.62 19390.82 8860.93 25584.47 23189.78 15576.36 7684.07 7191.88 8664.71 11790.26 25170.68 17388.89 11593.66 64
Vis-MVSNetpermissive83.46 7682.80 8285.43 7090.25 9868.74 10890.30 6890.13 14776.33 7780.87 11392.89 6761.00 16994.20 11772.45 16190.97 8993.35 80
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMMP_NAP88.05 1688.08 1687.94 1893.70 4173.05 2190.86 5593.59 2376.27 7888.14 2495.09 1571.06 5596.67 2887.67 2296.37 1494.09 45
alignmvs85.48 5385.32 5685.96 6189.51 11969.47 9189.74 8092.47 6876.17 7987.73 3291.46 9870.32 6293.78 13581.51 7188.95 11494.63 25
MVS_111021_HR85.14 5984.75 6386.32 5491.65 7672.70 2985.98 19590.33 14076.11 8082.08 9591.61 9371.36 5494.17 11981.02 7592.58 6992.08 124
HPM-MVScopyleft87.11 2986.98 2987.50 3793.88 3972.16 4492.19 3393.33 3176.07 8183.81 7693.95 4869.77 6996.01 4785.15 3394.66 4594.32 37
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
h-mvs3383.15 8182.19 8986.02 6090.56 9270.85 6988.15 13389.16 17776.02 8284.67 5791.39 10061.54 15595.50 6082.71 6375.48 28491.72 132
hse-mvs281.72 10280.94 10884.07 11888.72 15467.68 13385.87 19987.26 22876.02 8284.67 5788.22 18261.54 15593.48 15082.71 6373.44 31291.06 152
DPE-MVScopyleft89.48 589.98 488.01 1594.80 1172.69 3091.59 4294.10 875.90 8492.29 795.66 1081.67 697.38 987.44 2696.34 1593.95 51
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CLD-MVS82.31 9281.65 9884.29 10988.47 16267.73 13185.81 20392.35 7475.78 8578.33 14986.58 22964.01 12194.35 10976.05 12487.48 13290.79 161
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SF-MVS88.46 1188.74 1187.64 3492.78 6171.95 4992.40 2394.74 275.71 8689.16 1995.10 1475.65 2196.19 4287.07 2796.01 1794.79 20
testdata184.14 24275.71 86
APDe-MVScopyleft89.15 689.63 687.73 2794.49 1871.69 5193.83 493.96 1375.70 8891.06 1696.03 176.84 1497.03 1689.09 1095.65 2794.47 30
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
VPA-MVSNet80.60 13180.55 11480.76 21988.07 17660.80 25886.86 17091.58 10575.67 8980.24 11889.45 14863.34 12590.25 25270.51 17579.22 23891.23 146
PGM-MVS86.68 3586.27 3987.90 2194.22 3373.38 1790.22 6993.04 3875.53 9083.86 7494.42 2867.87 8596.64 3082.70 6594.57 4893.66 64
Effi-MVS+83.62 7483.08 7685.24 7488.38 16667.45 13788.89 10489.15 17875.50 9182.27 9388.28 17969.61 7094.45 10877.81 10487.84 12793.84 58
test_prior288.85 10675.41 9284.91 5293.54 5174.28 2983.31 5495.86 20
LPG-MVS_test82.08 9581.27 10184.50 9889.23 13468.76 10690.22 6991.94 9175.37 9376.64 18991.51 9554.29 22194.91 8778.44 9783.78 17689.83 207
LGP-MVS_train84.50 9889.23 13468.76 10691.94 9175.37 9376.64 18991.51 9554.29 22194.91 8778.44 9783.78 17689.83 207
MG-MVS83.41 7783.45 7283.28 14592.74 6262.28 24188.17 13189.50 16375.22 9581.49 10492.74 7566.75 9395.11 7972.85 15591.58 8292.45 112
LCM-MVSNet-Re77.05 21676.94 19877.36 27687.20 20851.60 35080.06 29480.46 31375.20 9667.69 30586.72 21962.48 14088.98 27263.44 23589.25 11391.51 136
SDMVSNet80.38 13680.18 12280.99 21389.03 14364.94 19080.45 29089.40 16575.19 9776.61 19189.98 13060.61 17687.69 29076.83 11683.55 18390.33 180
sd_testset77.70 20577.40 18878.60 25789.03 14360.02 26979.00 30785.83 24975.19 9776.61 19189.98 13054.81 21285.46 30662.63 24483.55 18390.33 180
MP-MVS-pluss87.67 2087.72 2087.54 3593.64 4472.04 4789.80 7893.50 2575.17 9986.34 3795.29 1270.86 5696.00 4888.78 1696.04 1694.58 26
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test111179.43 15879.18 14680.15 23189.99 10753.31 34287.33 15777.05 33975.04 10080.23 11992.77 7448.97 28492.33 19968.87 19392.40 7394.81 19
Effi-MVS+-dtu80.03 14578.57 15784.42 10385.13 23968.74 10888.77 10988.10 20774.99 10174.97 23383.49 28957.27 20193.36 15573.53 14680.88 21591.18 147
OMC-MVS82.69 8881.97 9584.85 8888.75 15367.42 13887.98 13790.87 12474.92 10279.72 12391.65 9062.19 14793.96 12375.26 13386.42 14793.16 88
test250677.30 21376.49 20979.74 23990.08 10252.02 34587.86 14563.10 37774.88 10380.16 12092.79 7238.29 34692.35 19768.74 19592.50 7194.86 16
ECVR-MVScopyleft79.61 15179.26 14280.67 22190.08 10254.69 32987.89 14377.44 33674.88 10380.27 11792.79 7248.96 28592.45 19168.55 19692.50 7194.86 16
nrg03083.88 6883.53 7184.96 8386.77 21669.28 9790.46 6492.67 6174.79 10582.95 8591.33 10172.70 4193.09 17380.79 8079.28 23792.50 109
SMA-MVScopyleft89.08 789.23 788.61 594.25 3173.73 992.40 2393.63 2174.77 10692.29 795.97 274.28 2997.24 1188.58 1896.91 194.87 15
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MVS_111021_LR82.61 9082.11 9084.11 11388.82 14871.58 5285.15 21586.16 24474.69 10780.47 11691.04 11062.29 14490.55 24980.33 8490.08 10390.20 185
EIA-MVS83.31 8082.80 8284.82 8989.59 11565.59 17488.21 12992.68 6074.66 10878.96 13286.42 23469.06 7695.26 7275.54 13190.09 10293.62 71
mvsmamba81.69 10480.74 11084.56 9687.45 19966.72 15291.26 4785.89 24874.66 10878.23 15290.56 12054.33 22094.91 8780.73 8183.54 18592.04 127
TSAR-MVS + MP.88.02 1788.11 1587.72 2993.68 4372.13 4591.41 4692.35 7474.62 11088.90 2093.85 4975.75 2096.00 4887.80 2194.63 4695.04 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SR-MVS86.73 3386.67 3486.91 4594.11 3772.11 4692.37 2792.56 6774.50 11186.84 3594.65 1967.31 9095.77 5384.80 3992.85 6692.84 98
FOURS195.00 1072.39 3895.06 193.84 1574.49 11291.30 15
ACMP74.13 681.51 11180.57 11384.36 10589.42 12268.69 11389.97 7391.50 11074.46 11375.04 23290.41 12353.82 22694.54 10377.56 10682.91 19289.86 206
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EPP-MVSNet83.40 7883.02 7884.57 9590.13 10064.47 20092.32 2990.73 12774.45 11479.35 12891.10 10769.05 7795.12 7772.78 15687.22 13594.13 43
save fliter93.80 4072.35 4190.47 6391.17 11674.31 115
MVS_Test83.15 8183.06 7783.41 14286.86 21263.21 22786.11 19392.00 8774.31 11582.87 8789.44 14970.03 6493.21 16277.39 10988.50 12393.81 59
UniMVSNet_ETH3D79.10 16878.24 16681.70 19286.85 21360.24 26787.28 15988.79 19274.25 11776.84 18290.53 12249.48 27491.56 22267.98 20082.15 20193.29 82
IterMVS-LS80.06 14479.38 13782.11 18485.89 22563.20 22886.79 17389.34 16774.19 11875.45 21686.72 21966.62 9492.39 19472.58 15876.86 26190.75 164
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet80.52 13479.98 12482.12 18384.28 25263.19 22986.41 18488.95 18874.18 11978.69 13887.54 19966.62 9492.43 19272.57 15980.57 22190.74 165
Vis-MVSNet (Re-imp)78.36 18578.45 15978.07 26688.64 15751.78 34986.70 17779.63 32274.14 12075.11 22990.83 11661.29 16389.75 25858.10 28591.60 8192.69 102
v879.97 14879.02 14982.80 17084.09 25764.50 19987.96 13890.29 14374.13 12175.24 22686.81 21662.88 13693.89 13274.39 13975.40 28990.00 198
CSCG86.41 4086.19 4187.07 4492.91 5872.48 3690.81 5693.56 2473.95 12283.16 8491.07 10975.94 1895.19 7479.94 8794.38 5393.55 74
thres100view90076.50 22475.55 22279.33 24789.52 11856.99 30285.83 20283.23 28573.94 12376.32 19887.12 21151.89 24891.95 21048.33 33883.75 17889.07 223
9.1488.26 1492.84 6091.52 4594.75 173.93 12488.57 2294.67 1875.57 2295.79 5286.77 2895.76 23
HPM-MVS_fast85.35 5784.95 6286.57 5293.69 4270.58 7492.15 3591.62 10373.89 12582.67 9294.09 3962.60 13795.54 5980.93 7692.93 6593.57 73
RRT_MVS80.35 13979.22 14483.74 13387.63 19365.46 17891.08 5388.92 19073.82 12676.44 19690.03 12949.05 28394.25 11676.84 11479.20 23991.51 136
PAPM_NR83.02 8582.41 8584.82 8992.47 6766.37 15787.93 14191.80 9873.82 12677.32 17290.66 11867.90 8494.90 9070.37 17689.48 11193.19 87
thres600view776.50 22475.44 22379.68 24189.40 12357.16 29985.53 21083.23 28573.79 12876.26 19987.09 21251.89 24891.89 21348.05 34383.72 18190.00 198
v7n78.97 17277.58 18683.14 15383.45 26965.51 17588.32 12691.21 11473.69 12972.41 25986.32 23757.93 19293.81 13469.18 18975.65 28090.11 190
dcpmvs_285.63 5186.15 4384.06 11991.71 7564.94 19086.47 18391.87 9573.63 13086.60 3693.02 6576.57 1591.87 21583.36 5392.15 7495.35 2
v2v48280.23 14179.29 14183.05 15883.62 26564.14 20687.04 16489.97 15173.61 13178.18 15587.22 20761.10 16793.82 13376.11 12276.78 26491.18 147
Baseline_NR-MVSNet78.15 19178.33 16477.61 27385.79 22656.21 31686.78 17485.76 25073.60 13277.93 16187.57 19665.02 11488.99 27167.14 21075.33 29187.63 261
BH-RMVSNet79.61 15178.44 16083.14 15389.38 12565.93 16584.95 22087.15 23073.56 13378.19 15489.79 13456.67 20593.36 15559.53 27086.74 14290.13 188
APD-MVS_3200maxsize85.97 4485.88 4786.22 5692.69 6369.53 8891.93 3792.99 4573.54 13485.94 3894.51 2365.80 10895.61 5683.04 5892.51 7093.53 76
SR-MVS-dyc-post85.77 4885.61 5186.23 5593.06 5570.63 7291.88 3892.27 7673.53 13585.69 4294.45 2565.00 11695.56 5782.75 6191.87 7892.50 109
RE-MVS-def85.48 5293.06 5570.63 7291.88 3892.27 7673.53 13585.69 4294.45 2563.87 12282.75 6191.87 7892.50 109
test_fmvsmconf_n85.92 4586.04 4685.57 6785.03 24269.51 8989.62 8590.58 13073.42 13787.75 3094.02 4272.85 4093.24 15990.37 290.75 9293.96 50
tfpn200view976.42 22775.37 22779.55 24689.13 13857.65 29385.17 21383.60 27773.41 13876.45 19386.39 23552.12 24091.95 21048.33 33883.75 17889.07 223
thres40076.50 22475.37 22779.86 23689.13 13857.65 29385.17 21383.60 27773.41 13876.45 19386.39 23552.12 24091.95 21048.33 33883.75 17890.00 198
test_fmvsmconf0.1_n85.61 5285.65 5085.50 6882.99 28469.39 9589.65 8390.29 14373.31 14087.77 2994.15 3771.72 4893.23 16090.31 390.67 9493.89 55
v14878.72 17777.80 17781.47 19782.73 28961.96 24586.30 18888.08 20873.26 14176.18 20285.47 25562.46 14192.36 19671.92 16373.82 30890.09 192
FA-MVS(test-final)80.96 11879.91 12684.10 11488.30 16965.01 18884.55 23090.01 15073.25 14279.61 12487.57 19658.35 19094.72 9871.29 16886.25 15092.56 106
test_fmvsmconf0.01_n84.73 6584.52 6685.34 7180.25 32469.03 9889.47 8789.65 16073.24 14386.98 3494.27 3166.62 9493.23 16090.26 489.95 10693.78 61
iter_conf_final80.63 12979.35 13984.46 10189.36 12667.70 13289.85 7484.49 26473.19 14478.30 15088.94 15845.98 30494.56 10179.59 8984.48 16991.11 149
v1079.74 15078.67 15482.97 16384.06 25864.95 18987.88 14490.62 12973.11 14575.11 22986.56 23061.46 15894.05 12273.68 14475.55 28289.90 204
MCST-MVS87.37 2687.25 2587.73 2794.53 1772.46 3789.82 7693.82 1673.07 14684.86 5592.89 6776.22 1796.33 3784.89 3795.13 3594.40 33
baseline176.98 21876.75 20577.66 27188.13 17255.66 32185.12 21681.89 29873.04 14776.79 18488.90 16062.43 14287.78 28963.30 23771.18 32789.55 216
APD-MVScopyleft87.44 2287.52 2287.19 4194.24 3272.39 3891.86 4092.83 5573.01 14888.58 2194.52 2073.36 3496.49 3584.26 4595.01 3692.70 100
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
diffmvspermissive82.10 9481.88 9682.76 17583.00 28263.78 21383.68 24789.76 15672.94 14982.02 9689.85 13365.96 10790.79 24582.38 6787.30 13493.71 63
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
K. test v371.19 27568.51 28779.21 25083.04 28157.78 29284.35 23876.91 34072.90 15062.99 34482.86 29739.27 34191.09 24061.65 25452.66 37188.75 242
Fast-Effi-MVS+-dtu78.02 19576.49 20982.62 17783.16 27866.96 15086.94 16787.45 22572.45 15171.49 26984.17 27854.79 21691.58 22167.61 20380.31 22489.30 221
PHI-MVS86.43 3886.17 4287.24 4090.88 8770.96 6492.27 3194.07 972.45 15185.22 4791.90 8569.47 7196.42 3683.28 5595.94 1994.35 35
thres20075.55 23874.47 23778.82 25387.78 18857.85 29083.07 26283.51 28072.44 15375.84 20884.42 27252.08 24391.75 21747.41 34583.64 18286.86 282
test_yl81.17 11480.47 11683.24 14889.13 13863.62 21486.21 19089.95 15272.43 15481.78 10189.61 13957.50 19893.58 14370.75 17186.90 13992.52 107
DCV-MVSNet81.17 11480.47 11683.24 14889.13 13863.62 21486.21 19089.95 15272.43 15481.78 10189.61 13957.50 19893.58 14370.75 17186.90 13992.52 107
BH-untuned79.47 15678.60 15682.05 18589.19 13665.91 16686.07 19488.52 20272.18 15675.42 21787.69 19361.15 16693.54 14760.38 26386.83 14186.70 286
TransMVSNet (Re)75.39 24374.56 23577.86 26785.50 23257.10 30186.78 17486.09 24672.17 15771.53 26887.34 20263.01 13589.31 26656.84 29761.83 35587.17 273
GA-MVS76.87 22075.17 23081.97 18882.75 28862.58 23681.44 27986.35 24272.16 15874.74 23682.89 29646.20 30392.02 20868.85 19481.09 21391.30 145
v114480.03 14579.03 14883.01 16083.78 26364.51 19787.11 16390.57 13271.96 15978.08 15886.20 23961.41 15993.94 12674.93 13477.23 25590.60 170
PS-MVSNAJss82.07 9681.31 10084.34 10786.51 21967.27 14289.27 9191.51 10771.75 16079.37 12790.22 12763.15 13194.27 11277.69 10582.36 20091.49 139
EPNet_dtu75.46 24074.86 23177.23 27982.57 29354.60 33086.89 16983.09 28871.64 16166.25 32585.86 24555.99 20788.04 28654.92 30586.55 14589.05 228
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GBi-Net78.40 18377.40 18881.40 20087.60 19463.01 23188.39 12289.28 16971.63 16275.34 22087.28 20354.80 21391.11 23562.72 24079.57 23190.09 192
test178.40 18377.40 18881.40 20087.60 19463.01 23188.39 12289.28 16971.63 16275.34 22087.28 20354.80 21391.11 23562.72 24079.57 23190.09 192
FMVSNet278.20 18977.21 19281.20 20787.60 19462.89 23587.47 15389.02 18371.63 16275.29 22587.28 20354.80 21391.10 23862.38 24579.38 23589.61 214
iter_conf0580.00 14778.70 15383.91 13087.84 18365.83 16888.84 10784.92 25971.61 16578.70 13788.94 15843.88 31994.56 10179.28 9084.28 17291.33 142
patch_mono-283.65 7284.54 6580.99 21390.06 10665.83 16884.21 24088.74 19771.60 16685.01 4892.44 7774.51 2583.50 32082.15 6892.15 7493.64 70
V4279.38 16278.24 16682.83 16781.10 31665.50 17685.55 20889.82 15471.57 16778.21 15386.12 24160.66 17493.18 16875.64 12875.46 28689.81 209
API-MVS81.99 9881.23 10284.26 11090.94 8570.18 8191.10 5289.32 16871.51 16878.66 14088.28 17965.26 11195.10 8264.74 22991.23 8787.51 265
tttt051779.40 16077.91 17283.90 13188.10 17463.84 21188.37 12584.05 27271.45 16976.78 18589.12 15449.93 27194.89 9170.18 17883.18 19092.96 96
pm-mvs177.25 21576.68 20778.93 25284.22 25458.62 27986.41 18488.36 20471.37 17073.31 24888.01 18961.22 16589.15 26964.24 23173.01 31589.03 229
GeoE81.71 10381.01 10783.80 13289.51 11964.45 20188.97 10188.73 19871.27 17178.63 14189.76 13566.32 10093.20 16569.89 18286.02 15493.74 62
tt080578.73 17677.83 17581.43 19885.17 23560.30 26689.41 8990.90 12271.21 17277.17 17988.73 16446.38 29893.21 16272.57 15978.96 24090.79 161
FMVSNet377.88 19976.85 20080.97 21586.84 21462.36 23886.52 18288.77 19371.13 17375.34 22086.66 22554.07 22491.10 23862.72 24079.57 23189.45 217
VDDNet81.52 10980.67 11284.05 12190.44 9564.13 20789.73 8185.91 24771.11 17483.18 8393.48 5250.54 26393.49 14973.40 14988.25 12594.54 29
XVG-OURS80.41 13579.23 14383.97 12785.64 22969.02 10083.03 26490.39 13571.09 17577.63 16691.49 9754.62 21991.35 23075.71 12783.47 18691.54 135
SixPastTwentyTwo73.37 25871.26 26879.70 24085.08 24057.89 28985.57 20483.56 27971.03 17665.66 32785.88 24442.10 33192.57 18759.11 27463.34 35388.65 245
ZD-MVS94.38 2572.22 4392.67 6170.98 17787.75 3094.07 4074.01 3296.70 2684.66 4094.84 42
v119279.59 15378.43 16183.07 15783.55 26764.52 19686.93 16890.58 13070.83 17877.78 16385.90 24359.15 18593.94 12673.96 14377.19 25790.76 163
Fast-Effi-MVS+80.81 12279.92 12583.47 13888.85 14564.51 19785.53 21089.39 16670.79 17978.49 14585.06 26567.54 8793.58 14367.03 21286.58 14492.32 115
PS-MVSNAJ81.69 10481.02 10683.70 13489.51 11968.21 12384.28 23990.09 14870.79 17981.26 10985.62 25263.15 13194.29 11075.62 12988.87 11688.59 246
LTVRE_ROB69.57 1376.25 23074.54 23681.41 19988.60 15864.38 20379.24 30389.12 18170.76 18169.79 28987.86 19049.09 28193.20 16556.21 30280.16 22586.65 287
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
xiu_mvs_v2_base81.69 10481.05 10583.60 13589.15 13768.03 12684.46 23390.02 14970.67 18281.30 10886.53 23263.17 13094.19 11875.60 13088.54 12188.57 247
XVG-OURS-SEG-HR80.81 12279.76 12983.96 12885.60 23068.78 10583.54 25390.50 13370.66 18376.71 18791.66 8960.69 17391.26 23276.94 11381.58 20891.83 129
Anonymous20240521178.25 18677.01 19581.99 18791.03 8260.67 26084.77 22383.90 27470.65 18480.00 12191.20 10441.08 33691.43 22865.21 22485.26 16093.85 56
DP-MVS Recon83.11 8482.09 9186.15 5794.44 1970.92 6788.79 10892.20 8170.53 18579.17 13091.03 11264.12 12096.03 4568.39 19990.14 10191.50 138
FMVSNet177.44 20976.12 21581.40 20086.81 21563.01 23188.39 12289.28 16970.49 18674.39 24087.28 20349.06 28291.11 23560.91 26078.52 24390.09 192
testing368.56 30167.67 30271.22 32887.33 20542.87 37683.06 26371.54 35870.36 18769.08 29584.38 27430.33 36585.69 30337.50 37075.45 28785.09 313
ab-mvs79.51 15478.97 15081.14 20988.46 16360.91 25683.84 24589.24 17470.36 18779.03 13188.87 16263.23 12990.21 25365.12 22582.57 19892.28 117
tfpnnormal74.39 24773.16 25178.08 26586.10 22458.05 28484.65 22787.53 22270.32 18971.22 27185.63 25154.97 21189.86 25643.03 35975.02 29686.32 290
ACMM73.20 880.78 12779.84 12883.58 13689.31 13068.37 11889.99 7291.60 10470.28 19077.25 17389.66 13753.37 23093.53 14874.24 14182.85 19388.85 238
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+68.96 1476.01 23374.01 24182.03 18688.60 15865.31 18388.86 10587.55 22170.25 19167.75 30487.47 20141.27 33493.19 16758.37 28275.94 27787.60 262
IB-MVS68.01 1575.85 23573.36 24983.31 14484.76 24466.03 16183.38 25485.06 25670.21 19269.40 29181.05 31445.76 30894.66 10065.10 22675.49 28389.25 222
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thisisatest053079.40 16077.76 18084.31 10887.69 19165.10 18787.36 15584.26 27070.04 19377.42 16988.26 18149.94 26994.79 9670.20 17784.70 16693.03 92
test_fmvsmvis_n_192084.02 6783.87 6984.49 10084.12 25669.37 9688.15 13387.96 21170.01 19483.95 7393.23 5868.80 8091.51 22688.61 1789.96 10592.57 105
v14419279.47 15678.37 16282.78 17383.35 27063.96 20986.96 16690.36 13969.99 19577.50 16785.67 25060.66 17493.77 13774.27 14076.58 26590.62 168
test_fmvsm_n_192085.29 5885.34 5485.13 7886.12 22369.93 8288.65 11690.78 12669.97 19688.27 2393.98 4771.39 5391.54 22388.49 1990.45 9693.91 52
c3_l78.75 17577.91 17281.26 20482.89 28661.56 25084.09 24389.13 18069.97 19675.56 21184.29 27766.36 9992.09 20673.47 14875.48 28490.12 189
v192192079.22 16478.03 16982.80 17083.30 27263.94 21086.80 17290.33 14069.91 19877.48 16885.53 25358.44 18993.75 13973.60 14576.85 26290.71 166
ACMH67.68 1675.89 23473.93 24281.77 19188.71 15566.61 15488.62 11789.01 18469.81 19966.78 31686.70 22341.95 33391.51 22655.64 30378.14 24987.17 273
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DPM-MVS84.93 6284.29 6886.84 4690.20 9973.04 2287.12 16293.04 3869.80 20082.85 8891.22 10373.06 3896.02 4676.72 11994.63 4691.46 141
MAR-MVS81.84 10080.70 11185.27 7391.32 7971.53 5389.82 7690.92 12169.77 20178.50 14486.21 23862.36 14394.52 10565.36 22392.05 7689.77 210
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
XVG-ACMP-BASELINE76.11 23274.27 24081.62 19383.20 27564.67 19583.60 25189.75 15769.75 20271.85 26587.09 21232.78 35892.11 20569.99 18180.43 22388.09 253
BH-w/o78.21 18877.33 19180.84 21788.81 14965.13 18684.87 22187.85 21669.75 20274.52 23984.74 27061.34 16193.11 17258.24 28485.84 15784.27 320
v124078.99 17177.78 17882.64 17683.21 27463.54 21886.62 17990.30 14269.74 20477.33 17185.68 24957.04 20393.76 13873.13 15376.92 25990.62 168
ET-MVSNet_ETH3D78.63 17976.63 20884.64 9486.73 21769.47 9185.01 21884.61 26269.54 20566.51 32386.59 22750.16 26691.75 21776.26 12184.24 17392.69 102
eth_miper_zixun_eth77.92 19876.69 20681.61 19583.00 28261.98 24483.15 25889.20 17669.52 20674.86 23584.35 27661.76 15192.56 18871.50 16672.89 31690.28 183
PVSNet_Blended_VisFu82.62 8981.83 9784.96 8390.80 8969.76 8688.74 11291.70 10269.39 20778.96 13288.46 17465.47 11094.87 9374.42 13888.57 12090.24 184
mvs_tets79.13 16777.77 17983.22 15084.70 24566.37 15789.17 9390.19 14569.38 20875.40 21889.46 14644.17 31793.15 16976.78 11780.70 21990.14 187
PVSNet_BlendedMVS80.60 13180.02 12382.36 18288.85 14565.40 17986.16 19292.00 8769.34 20978.11 15686.09 24266.02 10594.27 11271.52 16482.06 20287.39 267
AdaColmapbinary80.58 13379.42 13684.06 11993.09 5468.91 10389.36 9088.97 18769.27 21075.70 21089.69 13657.20 20295.77 5363.06 23888.41 12487.50 266
ITE_SJBPF78.22 26381.77 30460.57 26183.30 28369.25 21167.54 30687.20 20836.33 35287.28 29354.34 30874.62 30086.80 283
cl____77.72 20376.76 20380.58 22282.49 29560.48 26383.09 26087.87 21469.22 21274.38 24185.22 26162.10 14891.53 22471.09 16975.41 28889.73 212
DIV-MVS_self_test77.72 20376.76 20380.58 22282.48 29660.48 26383.09 26087.86 21569.22 21274.38 24185.24 25962.10 14891.53 22471.09 16975.40 28989.74 211
bld_raw_dy_0_6477.29 21475.98 21681.22 20685.04 24165.47 17788.14 13577.56 33369.20 21473.77 24589.40 15242.24 33088.85 27776.78 11781.64 20789.33 220
jajsoiax79.29 16377.96 17083.27 14684.68 24666.57 15589.25 9290.16 14669.20 21475.46 21589.49 14345.75 30993.13 17176.84 11480.80 21790.11 190
IterMVS-SCA-FT75.43 24173.87 24480.11 23282.69 29064.85 19281.57 27683.47 28169.16 21670.49 27584.15 27951.95 24688.15 28469.23 18872.14 32187.34 269
CL-MVSNet_self_test72.37 27071.46 26375.09 29679.49 33753.53 33880.76 28485.01 25869.12 21770.51 27482.05 30857.92 19384.13 31552.27 31866.00 34787.60 262
AUN-MVS79.21 16577.60 18584.05 12188.71 15567.61 13485.84 20187.26 22869.08 21877.23 17588.14 18753.20 23293.47 15175.50 13273.45 31191.06 152
xiu_mvs_v1_base_debu80.80 12479.72 13084.03 12387.35 20070.19 7885.56 20588.77 19369.06 21981.83 9788.16 18350.91 25792.85 18178.29 10187.56 12989.06 225
xiu_mvs_v1_base80.80 12479.72 13084.03 12387.35 20070.19 7885.56 20588.77 19369.06 21981.83 9788.16 18350.91 25792.85 18178.29 10187.56 12989.06 225
xiu_mvs_v1_base_debi80.80 12479.72 13084.03 12387.35 20070.19 7885.56 20588.77 19369.06 21981.83 9788.16 18350.91 25792.85 18178.29 10187.56 12989.06 225
MVSTER79.01 17077.88 17482.38 18183.07 27964.80 19384.08 24488.95 18869.01 22278.69 13887.17 21054.70 21792.43 19274.69 13580.57 22189.89 205
cl2278.07 19377.01 19581.23 20582.37 29861.83 24783.55 25287.98 21068.96 22375.06 23183.87 28161.40 16091.88 21473.53 14676.39 26989.98 201
miper_ehance_all_eth78.59 18177.76 18081.08 21182.66 29161.56 25083.65 24889.15 17868.87 22475.55 21283.79 28566.49 9792.03 20773.25 15176.39 26989.64 213
PAPR81.66 10780.89 10983.99 12690.27 9764.00 20886.76 17691.77 10168.84 22577.13 18189.50 14267.63 8694.88 9267.55 20488.52 12293.09 89
CPTT-MVS83.73 7083.33 7484.92 8693.28 4970.86 6892.09 3690.38 13668.75 22679.57 12592.83 6960.60 17793.04 17780.92 7791.56 8390.86 160
train_agg86.43 3886.20 4087.13 4393.26 5072.96 2488.75 11091.89 9368.69 22785.00 5093.10 6074.43 2695.41 6684.97 3495.71 2593.02 93
test_893.13 5272.57 3488.68 11591.84 9768.69 22784.87 5493.10 6074.43 2695.16 75
dmvs_re71.14 27670.58 27272.80 31581.96 30159.68 27275.60 33479.34 32468.55 22969.27 29480.72 32049.42 27576.54 35352.56 31777.79 25082.19 343
MVSFormer82.85 8782.05 9285.24 7487.35 20070.21 7690.50 6190.38 13668.55 22981.32 10589.47 14461.68 15293.46 15278.98 9290.26 9992.05 125
test_djsdf80.30 14079.32 14083.27 14683.98 26065.37 18290.50 6190.38 13668.55 22976.19 20188.70 16556.44 20693.46 15278.98 9280.14 22790.97 157
TEST993.26 5072.96 2488.75 11091.89 9368.44 23285.00 5093.10 6074.36 2895.41 66
FE-MVS77.78 20175.68 21984.08 11788.09 17566.00 16383.13 25987.79 21768.42 23378.01 15985.23 26045.50 31195.12 7759.11 27485.83 15891.11 149
CDPH-MVS85.76 4985.29 5887.17 4293.49 4771.08 6088.58 11892.42 7268.32 23484.61 6093.48 5272.32 4296.15 4479.00 9195.43 3094.28 39
PC_three_145268.21 23592.02 1294.00 4482.09 595.98 5084.58 4196.68 294.95 9
IterMVS74.29 24872.94 25378.35 26281.53 30863.49 22081.58 27582.49 29368.06 23669.99 28483.69 28751.66 25285.54 30465.85 22071.64 32486.01 298
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dmvs_testset62.63 32864.11 31958.19 35678.55 34224.76 39275.28 33565.94 37267.91 23760.34 35176.01 35353.56 22873.94 37131.79 37567.65 34075.88 363
TAMVS78.89 17477.51 18783.03 15987.80 18567.79 13084.72 22485.05 25767.63 23876.75 18687.70 19262.25 14590.82 24458.53 28187.13 13690.49 174
PVSNet_Blended80.98 11780.34 11882.90 16588.85 14565.40 17984.43 23592.00 8767.62 23978.11 15685.05 26666.02 10594.27 11271.52 16489.50 11089.01 230
TR-MVS77.44 20976.18 21481.20 20788.24 17063.24 22684.61 22886.40 24067.55 24077.81 16286.48 23354.10 22393.15 16957.75 28882.72 19687.20 272
CDS-MVSNet79.07 16977.70 18283.17 15287.60 19468.23 12284.40 23786.20 24367.49 24176.36 19786.54 23161.54 15590.79 24561.86 25287.33 13390.49 174
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mvs_anonymous79.42 15979.11 14780.34 22784.45 25157.97 28782.59 26687.62 22067.40 24276.17 20488.56 17268.47 8189.59 26170.65 17486.05 15393.47 77
IU-MVS95.30 271.25 5692.95 5166.81 24392.39 688.94 1596.63 494.85 18
baseline275.70 23673.83 24581.30 20383.26 27361.79 24882.57 26780.65 30966.81 24366.88 31483.42 29057.86 19492.19 20363.47 23479.57 23189.91 203
miper_lstm_enhance74.11 25173.11 25277.13 28080.11 32659.62 27372.23 34886.92 23466.76 24570.40 27682.92 29556.93 20482.92 32469.06 19172.63 31788.87 237
OpenMVScopyleft72.83 1079.77 14978.33 16484.09 11685.17 23569.91 8390.57 5990.97 12066.70 24672.17 26291.91 8454.70 21793.96 12361.81 25390.95 9088.41 250
test-LLR72.94 26672.43 25674.48 30281.35 31258.04 28578.38 31477.46 33466.66 24769.95 28579.00 33548.06 28879.24 33966.13 21584.83 16386.15 294
test20.0367.45 30866.95 30968.94 33775.48 35544.84 37277.50 32277.67 33266.66 24763.01 34383.80 28447.02 29478.40 34342.53 36168.86 33883.58 329
test0.0.03 168.00 30667.69 30168.90 33877.55 34547.43 36375.70 33372.95 35766.66 24766.56 31982.29 30548.06 28875.87 36044.97 35674.51 30183.41 330
Syy-MVS68.05 30567.85 29668.67 34184.68 24640.97 38278.62 31273.08 35566.65 25066.74 31779.46 33052.11 24282.30 32732.89 37476.38 27282.75 339
myMVS_eth3d67.02 31166.29 31269.21 33684.68 24642.58 37778.62 31273.08 35566.65 25066.74 31779.46 33031.53 36282.30 32739.43 36776.38 27282.75 339
QAPM80.88 11979.50 13585.03 8088.01 17968.97 10291.59 4292.00 8766.63 25275.15 22892.16 8157.70 19595.45 6263.52 23388.76 11890.66 167
XXY-MVS75.41 24275.56 22174.96 29783.59 26657.82 29180.59 28783.87 27566.54 25374.93 23488.31 17863.24 12880.09 33762.16 24876.85 26286.97 280
OurMVSNet-221017-074.26 24972.42 25779.80 23883.76 26459.59 27485.92 19886.64 23666.39 25466.96 31387.58 19539.46 34091.60 22065.76 22169.27 33488.22 251
SCA74.22 25072.33 25879.91 23584.05 25962.17 24279.96 29779.29 32566.30 25572.38 26080.13 32451.95 24688.60 27959.25 27277.67 25388.96 234
testgi66.67 31466.53 31167.08 34675.62 35441.69 38175.93 32976.50 34166.11 25665.20 33386.59 22735.72 35474.71 36743.71 35773.38 31384.84 315
HY-MVS69.67 1277.95 19777.15 19380.36 22687.57 19860.21 26883.37 25587.78 21866.11 25675.37 21987.06 21463.27 12790.48 25061.38 25782.43 19990.40 178
EG-PatchMatch MVS74.04 25271.82 26180.71 22084.92 24367.42 13885.86 20088.08 20866.04 25864.22 33783.85 28235.10 35592.56 18857.44 29080.83 21682.16 344
CNLPA78.08 19276.79 20281.97 18890.40 9671.07 6187.59 15084.55 26366.03 25972.38 26089.64 13857.56 19786.04 30059.61 26983.35 18788.79 241
Anonymous2024052980.19 14378.89 15184.10 11490.60 9164.75 19488.95 10290.90 12265.97 26080.59 11591.17 10649.97 26893.73 14169.16 19082.70 19793.81 59
TAPA-MVS73.13 979.15 16677.94 17182.79 17289.59 11562.99 23488.16 13291.51 10765.77 26177.14 18091.09 10860.91 17093.21 16250.26 33087.05 13792.17 122
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MSDG73.36 26070.99 26980.49 22484.51 25065.80 17080.71 28586.13 24565.70 26265.46 32883.74 28644.60 31490.91 24351.13 32376.89 26084.74 316
anonymousdsp78.60 18077.15 19382.98 16280.51 32267.08 14687.24 16089.53 16265.66 26375.16 22787.19 20952.52 23392.25 20177.17 11179.34 23689.61 214
test_040272.79 26770.44 27579.84 23788.13 17265.99 16485.93 19784.29 26865.57 26467.40 31085.49 25446.92 29592.61 18635.88 37174.38 30280.94 350
miper_enhance_ethall77.87 20076.86 19980.92 21681.65 30561.38 25282.68 26588.98 18565.52 26575.47 21382.30 30465.76 10992.00 20972.95 15476.39 26989.39 218
UnsupCasMVSNet_eth67.33 30965.99 31371.37 32473.48 36451.47 35275.16 33785.19 25565.20 26660.78 35080.93 31942.35 32677.20 34957.12 29353.69 37085.44 305
WTY-MVS75.65 23775.68 21975.57 29186.40 22056.82 30477.92 32182.40 29465.10 26776.18 20287.72 19163.13 13480.90 33460.31 26481.96 20389.00 232
thisisatest051577.33 21275.38 22683.18 15185.27 23463.80 21282.11 27083.27 28465.06 26875.91 20683.84 28349.54 27394.27 11267.24 20886.19 15191.48 140
MVP-Stereo76.12 23174.46 23881.13 21085.37 23369.79 8584.42 23687.95 21265.03 26967.46 30885.33 25753.28 23191.73 21958.01 28683.27 18881.85 345
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Anonymous2023121178.97 17277.69 18382.81 16990.54 9364.29 20490.11 7191.51 10765.01 27076.16 20588.13 18850.56 26293.03 17869.68 18577.56 25491.11 149
pmmvs674.69 24673.39 24878.61 25681.38 31157.48 29686.64 17887.95 21264.99 27170.18 27986.61 22650.43 26489.52 26262.12 24970.18 33188.83 239
PAPM77.68 20676.40 21281.51 19687.29 20761.85 24683.78 24689.59 16164.74 27271.23 27088.70 16562.59 13893.66 14252.66 31687.03 13889.01 230
MIMVSNet70.69 28269.30 28174.88 29884.52 24956.35 31475.87 33279.42 32364.59 27367.76 30382.41 30241.10 33581.54 33146.64 34981.34 20986.75 285
tpm72.37 27071.71 26274.35 30482.19 29952.00 34679.22 30477.29 33764.56 27472.95 25383.68 28851.35 25383.26 32358.33 28375.80 27887.81 258
MDA-MVSNet-bldmvs66.68 31363.66 32275.75 28879.28 33960.56 26273.92 34478.35 32964.43 27550.13 37379.87 32844.02 31883.67 31846.10 35156.86 36383.03 336
MIMVSNet168.58 30066.78 31073.98 30780.07 32751.82 34880.77 28384.37 26564.40 27659.75 35582.16 30736.47 35183.63 31942.73 36070.33 33086.48 289
D2MVS74.82 24573.21 25079.64 24379.81 33162.56 23780.34 29287.35 22664.37 27768.86 29682.66 30046.37 29990.10 25467.91 20181.24 21186.25 291
PLCcopyleft70.83 1178.05 19476.37 21383.08 15691.88 7467.80 12988.19 13089.46 16464.33 27869.87 28788.38 17653.66 22793.58 14358.86 27782.73 19587.86 257
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PatchmatchNetpermissive73.12 26371.33 26678.49 26183.18 27660.85 25779.63 29978.57 32864.13 27971.73 26679.81 32951.20 25585.97 30157.40 29176.36 27488.66 244
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
KD-MVS_2432*160066.22 31863.89 32073.21 31175.47 35653.42 34070.76 35484.35 26664.10 28066.52 32178.52 33934.55 35684.98 30950.40 32650.33 37481.23 348
miper_refine_blended66.22 31863.89 32073.21 31175.47 35653.42 34070.76 35484.35 26664.10 28066.52 32178.52 33934.55 35684.98 30950.40 32650.33 37481.23 348
tpmvs71.09 27769.29 28276.49 28482.04 30056.04 31778.92 30981.37 30464.05 28267.18 31278.28 34149.74 27289.77 25749.67 33372.37 31883.67 328
F-COLMAP76.38 22974.33 23982.50 17989.28 13266.95 15188.41 12189.03 18264.05 28266.83 31588.61 16946.78 29692.89 18057.48 28978.55 24287.67 260
DP-MVS76.78 22174.57 23483.42 14093.29 4869.46 9388.55 11983.70 27663.98 28470.20 27888.89 16154.01 22594.80 9546.66 34781.88 20586.01 298
原ACMM184.35 10693.01 5768.79 10492.44 6963.96 28581.09 11091.57 9466.06 10495.45 6267.19 20994.82 4488.81 240
PM-MVS66.41 31664.14 31873.20 31373.92 36056.45 31078.97 30864.96 37563.88 28664.72 33480.24 32319.84 37783.44 32166.24 21464.52 35179.71 355
jason81.39 11280.29 12084.70 9386.63 21869.90 8485.95 19686.77 23563.24 28781.07 11189.47 14461.08 16892.15 20478.33 10090.07 10492.05 125
jason: jason.
KD-MVS_self_test68.81 29767.59 30472.46 31874.29 35945.45 36777.93 32087.00 23263.12 28863.99 33978.99 33742.32 32784.77 31256.55 30064.09 35287.16 275
gg-mvs-nofinetune69.95 29067.96 29475.94 28783.07 27954.51 33277.23 32570.29 36163.11 28970.32 27762.33 37243.62 32088.69 27853.88 31087.76 12884.62 318
tpmrst72.39 26872.13 25973.18 31480.54 32149.91 35979.91 29879.08 32663.11 28971.69 26779.95 32655.32 20982.77 32565.66 22273.89 30686.87 281
PCF-MVS73.52 780.38 13678.84 15285.01 8187.71 18968.99 10183.65 24891.46 11163.00 29177.77 16490.28 12466.10 10295.09 8361.40 25688.22 12690.94 158
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
COLMAP_ROBcopyleft66.92 1773.01 26470.41 27680.81 21887.13 21065.63 17388.30 12784.19 27162.96 29263.80 34187.69 19338.04 34792.56 18846.66 34774.91 29784.24 321
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Patchmatch-RL test70.24 28767.78 30077.61 27377.43 34659.57 27571.16 35170.33 36062.94 29368.65 29872.77 36350.62 26185.49 30569.58 18666.58 34487.77 259
lupinMVS81.39 11280.27 12184.76 9287.35 20070.21 7685.55 20886.41 23962.85 29481.32 10588.61 16961.68 15292.24 20278.41 9990.26 9991.83 129
test_vis1_n_192075.52 23975.78 21774.75 30179.84 33057.44 29783.26 25685.52 25262.83 29579.34 12986.17 24045.10 31379.71 33878.75 9481.21 21287.10 279
EPMVS69.02 29668.16 29171.59 32279.61 33549.80 36177.40 32366.93 36962.82 29670.01 28279.05 33345.79 30777.86 34756.58 29975.26 29387.13 276
PatchMatch-RL72.38 26970.90 27076.80 28388.60 15867.38 14079.53 30076.17 34462.75 29769.36 29282.00 31045.51 31084.89 31153.62 31180.58 22078.12 358
gm-plane-assit81.40 31053.83 33762.72 29880.94 31792.39 19463.40 236
FMVSNet569.50 29367.96 29474.15 30682.97 28555.35 32380.01 29682.12 29762.56 29963.02 34281.53 31136.92 35081.92 32948.42 33774.06 30485.17 311
sss73.60 25673.64 24773.51 31082.80 28755.01 32776.12 32881.69 30162.47 30074.68 23785.85 24657.32 20078.11 34560.86 26180.93 21487.39 267
AllTest70.96 27868.09 29379.58 24485.15 23763.62 21484.58 22979.83 31962.31 30160.32 35286.73 21732.02 35988.96 27450.28 32871.57 32586.15 294
TestCases79.58 24485.15 23763.62 21479.83 31962.31 30160.32 35286.73 21732.02 35988.96 27450.28 32871.57 32586.15 294
1112_ss77.40 21176.43 21180.32 22889.11 14260.41 26583.65 24887.72 21962.13 30373.05 25286.72 21962.58 13989.97 25562.11 25080.80 21790.59 171
PVSNet64.34 1872.08 27270.87 27175.69 28986.21 22256.44 31174.37 34280.73 30862.06 30470.17 28082.23 30642.86 32483.31 32254.77 30684.45 17087.32 270
LS3D76.95 21974.82 23283.37 14390.45 9467.36 14189.15 9786.94 23361.87 30569.52 29090.61 11951.71 25194.53 10446.38 35086.71 14388.21 252
CostFormer75.24 24473.90 24379.27 24882.65 29258.27 28280.80 28282.73 29261.57 30675.33 22383.13 29455.52 20891.07 24164.98 22778.34 24888.45 248
new-patchmatchnet61.73 33061.73 33161.70 35272.74 36924.50 39369.16 36178.03 33061.40 30756.72 36475.53 35738.42 34476.48 35545.95 35257.67 36284.13 323
ANet_high50.57 34646.10 35063.99 34948.67 39239.13 38370.99 35380.85 30661.39 30831.18 38157.70 37917.02 38073.65 37231.22 37615.89 38979.18 356
MS-PatchMatch73.83 25472.67 25477.30 27883.87 26266.02 16281.82 27184.66 26161.37 30968.61 29982.82 29847.29 29188.21 28359.27 27184.32 17177.68 359
USDC70.33 28668.37 28876.21 28680.60 32056.23 31579.19 30586.49 23860.89 31061.29 34885.47 25531.78 36189.47 26453.37 31376.21 27582.94 338
cascas76.72 22274.64 23382.99 16185.78 22765.88 16782.33 26889.21 17560.85 31172.74 25481.02 31547.28 29293.75 13967.48 20585.02 16189.34 219
MDTV_nov1_ep1369.97 28083.18 27653.48 33977.10 32680.18 31860.45 31269.33 29380.44 32148.89 28686.90 29451.60 32178.51 244
TinyColmap67.30 31064.81 31574.76 30081.92 30356.68 30880.29 29381.49 30360.33 31356.27 36683.22 29124.77 37187.66 29145.52 35369.47 33379.95 354
test-mter71.41 27470.39 27774.48 30281.35 31258.04 28578.38 31477.46 33460.32 31469.95 28579.00 33536.08 35379.24 33966.13 21584.83 16386.15 294
131476.53 22375.30 22980.21 23083.93 26162.32 24084.66 22588.81 19160.23 31570.16 28184.07 28055.30 21090.73 24767.37 20683.21 18987.59 264
PatchT68.46 30367.85 29670.29 33280.70 31943.93 37472.47 34774.88 34760.15 31670.55 27376.57 35049.94 26981.59 33050.58 32474.83 29885.34 306
无先验87.48 15288.98 18560.00 31794.12 12067.28 20788.97 233
CR-MVSNet73.37 25871.27 26779.67 24281.32 31465.19 18475.92 33080.30 31559.92 31872.73 25581.19 31252.50 23486.69 29559.84 26777.71 25187.11 277
TDRefinement67.49 30764.34 31776.92 28173.47 36561.07 25484.86 22282.98 28959.77 31958.30 35985.13 26326.06 36987.89 28747.92 34460.59 36081.81 346
dp66.80 31265.43 31470.90 33179.74 33448.82 36275.12 33974.77 34859.61 32064.08 33877.23 34742.89 32380.72 33548.86 33666.58 34483.16 333
our_test_369.14 29567.00 30875.57 29179.80 33258.80 27777.96 31977.81 33159.55 32162.90 34578.25 34247.43 29083.97 31651.71 32067.58 34183.93 326
Test_1112_low_res76.40 22875.44 22379.27 24889.28 13258.09 28381.69 27487.07 23159.53 32272.48 25886.67 22461.30 16289.33 26560.81 26280.15 22690.41 177
pmmvs474.03 25371.91 26080.39 22581.96 30168.32 11981.45 27882.14 29659.32 32369.87 28785.13 26352.40 23688.13 28560.21 26574.74 29984.73 317
testdata79.97 23490.90 8664.21 20584.71 26059.27 32485.40 4492.91 6662.02 15089.08 27068.95 19291.37 8586.63 288
WB-MVS54.94 33654.72 33855.60 36273.50 36320.90 39474.27 34361.19 37959.16 32550.61 37274.15 35947.19 29375.78 36117.31 38635.07 38170.12 369
ppachtmachnet_test70.04 28967.34 30678.14 26479.80 33261.13 25379.19 30580.59 31059.16 32565.27 33079.29 33246.75 29787.29 29249.33 33466.72 34286.00 300
RPSCF73.23 26271.46 26378.54 25982.50 29459.85 27082.18 26982.84 29158.96 32771.15 27289.41 15045.48 31284.77 31258.82 27871.83 32391.02 156
pmmvs-eth3d70.50 28567.83 29878.52 26077.37 34766.18 16081.82 27181.51 30258.90 32863.90 34080.42 32242.69 32586.28 29958.56 28065.30 34983.11 334
OpenMVS_ROBcopyleft64.09 1970.56 28468.19 29077.65 27280.26 32359.41 27685.01 21882.96 29058.76 32965.43 32982.33 30337.63 34991.23 23445.34 35576.03 27682.32 341
114514_t80.68 12879.51 13484.20 11194.09 3867.27 14289.64 8491.11 11858.75 33074.08 24390.72 11758.10 19195.04 8469.70 18489.42 11290.30 182
Patchmtry70.74 28169.16 28475.49 29380.72 31854.07 33574.94 34180.30 31558.34 33170.01 28281.19 31252.50 23486.54 29653.37 31371.09 32885.87 302
test_cas_vis1_n_192073.76 25573.74 24673.81 30875.90 35159.77 27180.51 28882.40 29458.30 33281.62 10385.69 24844.35 31676.41 35676.29 12078.61 24185.23 308
Anonymous2024052168.80 29867.22 30773.55 30974.33 35854.11 33483.18 25785.61 25158.15 33361.68 34780.94 31730.71 36481.27 33357.00 29573.34 31485.28 307
旧先验286.56 18158.10 33487.04 3388.98 27274.07 142
JIA-IIPM66.32 31762.82 32876.82 28277.09 34861.72 24965.34 37275.38 34558.04 33564.51 33562.32 37342.05 33286.51 29751.45 32269.22 33582.21 342
pmmvs571.55 27370.20 27975.61 29077.83 34456.39 31281.74 27380.89 30557.76 33667.46 30884.49 27149.26 27985.32 30857.08 29475.29 29285.11 312
TESTMET0.1,169.89 29169.00 28572.55 31779.27 34056.85 30378.38 31474.71 35057.64 33768.09 30277.19 34837.75 34876.70 35263.92 23284.09 17484.10 324
RPMNet73.51 25770.49 27482.58 17881.32 31465.19 18475.92 33092.27 7657.60 33872.73 25576.45 35152.30 23795.43 6448.14 34277.71 25187.11 277
SSC-MVS53.88 33953.59 34054.75 36472.87 36819.59 39573.84 34560.53 38157.58 33949.18 37473.45 36246.34 30175.47 36416.20 38932.28 38369.20 370
新几何183.42 14093.13 5270.71 7085.48 25357.43 34081.80 10091.98 8363.28 12692.27 20064.60 23092.99 6487.27 271
YYNet165.03 32162.91 32671.38 32375.85 35256.60 30969.12 36274.66 35157.28 34154.12 36877.87 34445.85 30674.48 36849.95 33161.52 35783.05 335
MDA-MVSNet_test_wron65.03 32162.92 32571.37 32475.93 35056.73 30569.09 36374.73 34957.28 34154.03 36977.89 34345.88 30574.39 36949.89 33261.55 35682.99 337
Anonymous2023120668.60 29967.80 29971.02 32980.23 32550.75 35678.30 31780.47 31256.79 34366.11 32682.63 30146.35 30078.95 34143.62 35875.70 27983.36 331
tpm273.26 26171.46 26378.63 25583.34 27156.71 30780.65 28680.40 31456.63 34473.55 24682.02 30951.80 25091.24 23356.35 30178.42 24687.95 254
CHOSEN 1792x268877.63 20775.69 21883.44 13989.98 10868.58 11678.70 31187.50 22356.38 34575.80 20986.84 21558.67 18791.40 22961.58 25585.75 15990.34 179
HyFIR lowres test77.53 20875.40 22583.94 12989.59 11566.62 15380.36 29188.64 20056.29 34676.45 19385.17 26257.64 19693.28 15761.34 25883.10 19191.91 128
PVSNet_057.27 2061.67 33159.27 33468.85 33979.61 33557.44 29768.01 36473.44 35455.93 34758.54 35870.41 36844.58 31577.55 34847.01 34635.91 38071.55 368
UnsupCasMVSNet_bld63.70 32661.53 33270.21 33373.69 36251.39 35372.82 34681.89 29855.63 34857.81 36171.80 36538.67 34378.61 34249.26 33552.21 37280.63 351
MDTV_nov1_ep13_2view37.79 38475.16 33755.10 34966.53 32049.34 27753.98 30987.94 255
MVS78.19 19076.99 19781.78 19085.66 22866.99 14784.66 22590.47 13455.08 35072.02 26485.27 25863.83 12394.11 12166.10 21789.80 10884.24 321
test22291.50 7768.26 12184.16 24183.20 28754.63 35179.74 12291.63 9258.97 18691.42 8486.77 284
CHOSEN 280x42066.51 31564.71 31671.90 32081.45 30963.52 21957.98 37968.95 36753.57 35262.59 34676.70 34946.22 30275.29 36655.25 30479.68 23076.88 361
ADS-MVSNet266.20 32063.33 32374.82 29979.92 32858.75 27867.55 36575.19 34653.37 35365.25 33175.86 35442.32 32780.53 33641.57 36268.91 33685.18 309
ADS-MVSNet64.36 32462.88 32768.78 34079.92 32847.17 36467.55 36571.18 35953.37 35365.25 33175.86 35442.32 32773.99 37041.57 36268.91 33685.18 309
LF4IMVS64.02 32562.19 32969.50 33570.90 37253.29 34376.13 32777.18 33852.65 35558.59 35780.98 31623.55 37376.52 35453.06 31566.66 34378.68 357
tpm cat170.57 28368.31 28977.35 27782.41 29757.95 28878.08 31880.22 31752.04 35668.54 30077.66 34652.00 24587.84 28851.77 31972.07 32286.25 291
test_vis1_n69.85 29269.21 28371.77 32172.66 37055.27 32581.48 27776.21 34352.03 35775.30 22483.20 29328.97 36676.22 35874.60 13678.41 24783.81 327
Patchmatch-test64.82 32363.24 32469.57 33479.42 33849.82 36063.49 37669.05 36651.98 35859.95 35480.13 32450.91 25770.98 37440.66 36473.57 30987.90 256
N_pmnet52.79 34253.26 34151.40 36678.99 3417.68 39869.52 3583.89 39751.63 35957.01 36374.98 35840.83 33765.96 38137.78 36964.67 35080.56 353
test_fmvs1_n70.86 28070.24 27872.73 31672.51 37155.28 32481.27 28079.71 32151.49 36078.73 13684.87 26727.54 36877.02 35076.06 12379.97 22985.88 301
test_fmvs170.93 27970.52 27372.16 31973.71 36155.05 32680.82 28178.77 32751.21 36178.58 14284.41 27331.20 36376.94 35175.88 12680.12 22884.47 319
PMMVS69.34 29468.67 28671.35 32675.67 35362.03 24375.17 33673.46 35350.00 36268.68 29779.05 33352.07 24478.13 34461.16 25982.77 19473.90 365
test_fmvs268.35 30467.48 30570.98 33069.50 37451.95 34780.05 29576.38 34249.33 36374.65 23884.38 27423.30 37475.40 36574.51 13775.17 29585.60 303
CMPMVSbinary51.72 2170.19 28868.16 29176.28 28573.15 36757.55 29579.47 30183.92 27348.02 36456.48 36584.81 26843.13 32286.42 29862.67 24381.81 20684.89 314
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
mvsany_test162.30 32961.26 33365.41 34869.52 37354.86 32866.86 36749.78 38846.65 36568.50 30183.21 29249.15 28066.28 38056.93 29660.77 35875.11 364
test_fmvs363.36 32761.82 33067.98 34362.51 38146.96 36677.37 32474.03 35245.24 36667.50 30778.79 33812.16 38572.98 37372.77 15766.02 34683.99 325
CVMVSNet72.99 26572.58 25574.25 30584.28 25250.85 35586.41 18483.45 28244.56 36773.23 25087.54 19949.38 27685.70 30265.90 21978.44 24586.19 293
test_vis1_rt60.28 33258.42 33565.84 34767.25 37755.60 32270.44 35660.94 38044.33 36859.00 35666.64 37024.91 37068.67 37862.80 23969.48 33273.25 366
mvsany_test353.99 33851.45 34361.61 35355.51 38544.74 37363.52 37545.41 39243.69 36958.11 36076.45 35117.99 37863.76 38354.77 30647.59 37676.34 362
EU-MVSNet68.53 30267.61 30371.31 32778.51 34347.01 36584.47 23184.27 26942.27 37066.44 32484.79 26940.44 33883.76 31758.76 27968.54 33983.17 332
FPMVS53.68 34051.64 34259.81 35565.08 37951.03 35469.48 35969.58 36441.46 37140.67 37772.32 36416.46 38170.00 37724.24 38365.42 34858.40 379
pmmvs357.79 33454.26 33968.37 34264.02 38056.72 30675.12 33965.17 37340.20 37252.93 37069.86 36920.36 37675.48 36345.45 35455.25 36972.90 367
new_pmnet50.91 34550.29 34552.78 36568.58 37534.94 38763.71 37456.63 38539.73 37344.95 37565.47 37121.93 37558.48 38434.98 37256.62 36464.92 373
MVS-HIRNet59.14 33357.67 33663.57 35081.65 30543.50 37571.73 34965.06 37439.59 37451.43 37157.73 37838.34 34582.58 32639.53 36573.95 30564.62 374
PMMVS240.82 35238.86 35546.69 36753.84 38716.45 39648.61 38249.92 38737.49 37531.67 38060.97 3758.14 39156.42 38628.42 37830.72 38467.19 372
test_vis3_rt49.26 34747.02 34956.00 35954.30 38645.27 37166.76 36948.08 38936.83 37644.38 37653.20 3817.17 39264.07 38256.77 29855.66 36658.65 378
test_f52.09 34350.82 34455.90 36053.82 38842.31 38059.42 37858.31 38436.45 37756.12 36770.96 36712.18 38457.79 38553.51 31256.57 36567.60 371
LCM-MVSNet54.25 33749.68 34767.97 34453.73 38945.28 37066.85 36880.78 30735.96 37839.45 37962.23 3748.70 38978.06 34648.24 34151.20 37380.57 352
APD_test153.31 34149.93 34663.42 35165.68 37850.13 35871.59 35066.90 37034.43 37940.58 37871.56 3668.65 39076.27 35734.64 37355.36 36863.86 375
PMVScopyleft37.38 2244.16 35140.28 35455.82 36140.82 39442.54 37965.12 37363.99 37634.43 37924.48 38557.12 3803.92 39576.17 35917.10 38755.52 36748.75 382
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft45.18 35041.86 35355.16 36377.03 34951.52 35132.50 38580.52 31132.46 38127.12 38435.02 3859.52 38875.50 36222.31 38460.21 36138.45 384
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DSMNet-mixed57.77 33556.90 33760.38 35467.70 37635.61 38569.18 36053.97 38632.30 38257.49 36279.88 32740.39 33968.57 37938.78 36872.37 31876.97 360
testf145.72 34841.96 35157.00 35756.90 38345.32 36866.14 37059.26 38226.19 38330.89 38260.96 3764.14 39370.64 37526.39 38146.73 37855.04 380
APD_test245.72 34841.96 35157.00 35756.90 38345.32 36866.14 37059.26 38226.19 38330.89 38260.96 3764.14 39370.64 37526.39 38146.73 37855.04 380
E-PMN31.77 35330.64 35635.15 37052.87 39027.67 38957.09 38047.86 39024.64 38516.40 39033.05 38611.23 38654.90 38714.46 39018.15 38722.87 386
EMVS30.81 35529.65 35734.27 37150.96 39125.95 39156.58 38146.80 39124.01 38615.53 39130.68 38712.47 38354.43 38812.81 39117.05 38822.43 387
MVEpermissive26.22 2330.37 35625.89 36043.81 36844.55 39335.46 38628.87 38639.07 39318.20 38718.58 38940.18 3842.68 39647.37 39017.07 38823.78 38648.60 383
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft27.40 37240.17 39526.90 39024.59 39617.44 38823.95 38648.61 3839.77 38726.48 39118.06 38524.47 38528.83 385
wuyk23d16.82 35915.94 36219.46 37358.74 38231.45 38839.22 3833.74 3986.84 3896.04 3922.70 3921.27 39724.29 39210.54 39214.40 3912.63 389
test_method31.52 35429.28 35838.23 36927.03 3966.50 39920.94 38762.21 3784.05 39022.35 38852.50 38213.33 38247.58 38927.04 38034.04 38260.62 376
tmp_tt18.61 35821.40 36110.23 3744.82 39710.11 39734.70 38430.74 3951.48 39123.91 38726.07 38828.42 36713.41 39327.12 37915.35 3907.17 388
EGC-MVSNET52.07 34447.05 34867.14 34583.51 26860.71 25980.50 28967.75 3680.07 3920.43 39375.85 35624.26 37281.54 33128.82 37762.25 35459.16 377
testmvs6.04 3628.02 3650.10 3760.08 3980.03 40169.74 3570.04 3990.05 3930.31 3941.68 3930.02 3990.04 3940.24 3930.02 3920.25 391
test1236.12 3618.11 3640.14 3750.06 3990.09 40071.05 3520.03 4000.04 3940.25 3951.30 3940.05 3980.03 3950.21 3940.01 3930.29 390
test_blank0.00 3640.00 3670.00 3770.00 4000.00 4020.00 3880.00 4010.00 3950.00 3960.00 3950.00 4000.00 3960.00 3950.00 3940.00 392
uanet_test0.00 3640.00 3670.00 3770.00 4000.00 4020.00 3880.00 4010.00 3950.00 3960.00 3950.00 4000.00 3960.00 3950.00 3940.00 392
DCPMVS0.00 3640.00 3670.00 3770.00 4000.00 4020.00 3880.00 4010.00 3950.00 3960.00 3950.00 4000.00 3960.00 3950.00 3940.00 392
cdsmvs_eth3d_5k19.96 35726.61 3590.00 3770.00 4000.00 4020.00 38889.26 1720.00 3950.00 39688.61 16961.62 1540.00 3960.00 3950.00 3940.00 392
pcd_1.5k_mvsjas5.26 3637.02 3660.00 3770.00 4000.00 4020.00 3880.00 4010.00 3950.00 3960.00 39563.15 1310.00 3960.00 3950.00 3940.00 392
sosnet-low-res0.00 3640.00 3670.00 3770.00 4000.00 4020.00 3880.00 4010.00 3950.00 3960.00 3950.00 4000.00 3960.00 3950.00 3940.00 392
sosnet0.00 3640.00 3670.00 3770.00 4000.00 4020.00 3880.00 4010.00 3950.00 3960.00 3950.00 4000.00 3960.00 3950.00 3940.00 392
uncertanet0.00 3640.00 3670.00 3770.00 4000.00 4020.00 3880.00 4010.00 3950.00 3960.00 3950.00 4000.00 3960.00 3950.00 3940.00 392
Regformer0.00 3640.00 3670.00 3770.00 4000.00 4020.00 3880.00 4010.00 3950.00 3960.00 3950.00 4000.00 3960.00 3950.00 3940.00 392
ab-mvs-re7.23 3609.64 3630.00 3770.00 4000.00 4020.00 3880.00 4010.00 3950.00 39686.72 2190.00 4000.00 3960.00 3950.00 3940.00 392
uanet0.00 3640.00 3670.00 3770.00 4000.00 4020.00 3880.00 4010.00 3950.00 3960.00 3950.00 4000.00 3960.00 3950.00 3940.00 392
WAC-MVS42.58 37739.46 366
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 189.67 596.44 994.41 31
No_MVS89.16 194.34 2775.53 292.99 4597.53 189.67 596.44 994.41 31
eth-test20.00 400
eth-test0.00 400
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4282.45 396.87 1983.77 5196.48 894.88 13
test_0728_SECOND87.71 3195.34 171.43 5593.49 994.23 397.49 389.08 1196.41 1294.21 41
GSMVS88.96 234
test_part295.06 872.65 3191.80 13
sam_mvs151.32 25488.96 234
sam_mvs50.01 267
ambc75.24 29573.16 36650.51 35763.05 37787.47 22464.28 33677.81 34517.80 37989.73 25957.88 28760.64 35985.49 304
MTGPAbinary92.02 85
test_post178.90 3105.43 39148.81 28785.44 30759.25 272
test_post5.46 39050.36 26584.24 314
patchmatchnet-post74.00 36051.12 25688.60 279
GG-mvs-BLEND75.38 29481.59 30755.80 31979.32 30269.63 36367.19 31173.67 36143.24 32188.90 27650.41 32584.50 16781.45 347
MTMP92.18 3432.83 394
test9_res84.90 3595.70 2692.87 97
agg_prior282.91 5995.45 2992.70 100
agg_prior92.85 5971.94 5091.78 10084.41 6494.93 86
test_prior472.60 3389.01 100
test_prior86.33 5392.61 6569.59 8792.97 5095.48 6193.91 52
新几何286.29 189
旧先验191.96 7165.79 17186.37 24193.08 6469.31 7492.74 6788.74 243
原ACMM286.86 170
testdata291.01 24262.37 246
segment_acmp73.08 37
test1286.80 4892.63 6470.70 7191.79 9982.71 9171.67 4996.16 4394.50 4993.54 75
plane_prior790.08 10268.51 117
plane_prior689.84 11168.70 11260.42 179
plane_prior592.44 6995.38 6878.71 9586.32 14891.33 142
plane_prior491.00 113
plane_prior189.90 110
n20.00 401
nn0.00 401
door-mid69.98 362
lessismore_v078.97 25181.01 31757.15 30065.99 37161.16 34982.82 29839.12 34291.34 23159.67 26846.92 37788.43 249
test1192.23 79
door69.44 365
HQP5-MVS66.98 148
BP-MVS77.47 107
HQP4-MVS77.24 17495.11 7991.03 154
HQP3-MVS92.19 8285.99 155
HQP2-MVS60.17 182
NP-MVS89.62 11468.32 11990.24 125
ACMMP++_ref81.95 204
ACMMP++81.25 210
Test By Simon64.33 118