This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
MM89.16 689.23 788.97 490.79 9573.65 1092.66 2391.17 12586.57 187.39 4194.97 1871.70 5397.68 192.19 195.63 2895.57 1
UA-Net85.08 6884.96 6985.45 7892.07 7368.07 13489.78 8290.86 13582.48 284.60 7593.20 6969.35 8195.22 8171.39 18390.88 9893.07 103
MVS_030487.69 2087.55 2488.12 1389.45 12971.76 5191.47 4989.54 17382.14 386.65 4994.28 3468.28 9597.46 690.81 295.31 3495.15 7
CANet86.45 4286.10 4987.51 3790.09 10770.94 7089.70 8592.59 7481.78 481.32 12191.43 11370.34 7097.23 1484.26 5793.36 6894.37 42
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5492.83 6081.50 585.79 5593.47 6373.02 4097.00 1884.90 4694.94 4094.10 52
EPNet83.72 8382.92 9586.14 6584.22 27669.48 9491.05 5685.27 26881.30 676.83 19891.65 10366.09 11895.56 6376.00 13993.85 6293.38 88
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6293.00 4680.90 788.06 2994.06 4576.43 1696.84 2188.48 2495.99 1894.34 44
3Dnovator+77.84 485.48 6084.47 7688.51 791.08 8673.49 1693.18 1193.78 1880.79 876.66 20393.37 6560.40 19696.75 2677.20 12593.73 6495.29 5
TranMVSNet+NR-MVSNet80.84 13680.31 13582.42 19487.85 19862.33 25387.74 15891.33 12080.55 977.99 17489.86 14865.23 12792.62 19267.05 22875.24 31792.30 132
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 4078.35 1396.77 2489.59 894.22 6094.67 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5980.26 1187.78 3394.27 3575.89 1996.81 2387.45 3296.44 993.05 106
UniMVSNet_NR-MVSNet81.88 11681.54 11682.92 17888.46 17163.46 23387.13 17492.37 8180.19 1278.38 16389.14 16871.66 5593.05 18270.05 19676.46 29092.25 134
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 7272.96 2593.73 593.67 2080.19 1288.10 2894.80 1973.76 3397.11 1587.51 3195.82 2194.90 14
Skip Steuart: Steuart Systems R&D Blog.
EI-MVSNet-Vis-set84.19 7683.81 8085.31 8188.18 18067.85 13887.66 15989.73 16880.05 1482.95 10189.59 15770.74 6794.82 10180.66 9784.72 18193.28 93
ETV-MVS84.90 7284.67 7285.59 7589.39 13368.66 12088.74 12292.64 7279.97 1584.10 8485.71 26169.32 8295.38 7580.82 9491.37 9292.72 115
EI-MVSNet-UG-set83.81 8083.38 8685.09 8887.87 19767.53 14887.44 16789.66 16979.74 1682.23 11089.41 16670.24 7394.74 10479.95 10283.92 19592.99 111
CS-MVS86.69 3986.95 3585.90 7190.76 9667.57 14792.83 1793.30 3279.67 1784.57 7692.27 8971.47 5695.02 9384.24 5993.46 6795.13 8
casdiffmvs_mvgpermissive85.99 4886.09 5085.70 7487.65 20967.22 15988.69 12493.04 4179.64 1885.33 5992.54 8673.30 3594.50 11283.49 6591.14 9595.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MTAPA87.23 3187.00 3287.90 2294.18 3574.25 586.58 19392.02 9379.45 1985.88 5394.80 1968.07 9696.21 4586.69 3695.34 3293.23 94
EC-MVSNet86.01 4786.38 4284.91 9689.31 13866.27 17392.32 3093.63 2179.37 2084.17 8391.88 9769.04 8895.43 7083.93 6393.77 6393.01 109
XVS87.18 3286.91 3788.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9494.17 3967.45 10396.60 3383.06 6994.50 5194.07 54
X-MVStestdata80.37 15477.83 19088.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9412.47 42067.45 10396.60 3383.06 6994.50 5194.07 54
HQP_MVS83.64 8583.14 8985.14 8590.08 10868.71 11691.25 5292.44 7779.12 2378.92 15191.00 13060.42 19495.38 7578.71 11086.32 16291.33 160
plane_prior291.25 5279.12 23
IS-MVSNet83.15 9782.81 9684.18 12389.94 11563.30 23791.59 4388.46 21379.04 2579.49 14392.16 9165.10 12894.28 11767.71 21991.86 8694.95 11
DU-MVS81.12 13280.52 13182.90 17987.80 20163.46 23387.02 17891.87 10379.01 2678.38 16389.07 17065.02 12993.05 18270.05 19676.46 29092.20 137
NR-MVSNet80.23 15679.38 15382.78 18787.80 20163.34 23686.31 20191.09 12979.01 2672.17 28889.07 17067.20 10692.81 19166.08 23575.65 30392.20 137
SPE-MVS-test86.29 4686.48 4185.71 7391.02 8867.21 16092.36 2993.78 1878.97 2883.51 9791.20 12070.65 6995.15 8481.96 8394.89 4294.77 24
DELS-MVS85.41 6385.30 6585.77 7288.49 16967.93 13785.52 22693.44 2778.70 2983.63 9689.03 17274.57 2495.71 6180.26 10094.04 6193.66 72
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
WR-MVS79.49 16979.22 16080.27 24288.79 15958.35 29685.06 23288.61 21178.56 3077.65 17988.34 19163.81 13990.66 26264.98 24477.22 27991.80 148
plane_prior368.60 12178.44 3178.92 151
UniMVSNet (Re)81.60 12481.11 12183.09 16988.38 17564.41 21487.60 16093.02 4578.42 3278.56 15988.16 19769.78 7793.26 16569.58 20376.49 28991.60 150
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5995.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 11
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 989.42 996.57 794.67 28
test_one_060195.07 771.46 5794.14 578.27 3592.05 1195.74 680.83 11
SD-MVS88.06 1488.50 1486.71 5492.60 6972.71 2991.81 4193.19 3577.87 3690.32 1794.00 4974.83 2393.78 14187.63 3094.27 5993.65 76
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
casdiffmvspermissive85.11 6785.14 6785.01 9087.20 22365.77 18587.75 15792.83 6077.84 3784.36 8092.38 8872.15 4693.93 13481.27 9090.48 10295.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BP-MVS184.32 7583.71 8186.17 6187.84 19967.85 13889.38 9889.64 17177.73 3883.98 8792.12 9356.89 22095.43 7084.03 6291.75 8795.24 6
CP-MVSNet78.22 20178.34 17777.84 28787.83 20054.54 35387.94 15191.17 12577.65 3973.48 27088.49 18762.24 16188.43 30062.19 26774.07 32690.55 188
plane_prior68.71 11690.38 7077.62 4086.16 166
baseline84.93 7084.98 6884.80 10087.30 22165.39 19387.30 17192.88 5777.62 4084.04 8692.26 9071.81 5093.96 12881.31 8890.30 10595.03 10
VDD-MVS83.01 10282.36 10384.96 9291.02 8866.40 17088.91 11488.11 21677.57 4284.39 7993.29 6752.19 25793.91 13577.05 12888.70 13294.57 35
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 7077.57 4283.84 9094.40 3272.24 4596.28 4385.65 4195.30 3593.62 79
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PEN-MVS77.73 21677.69 19877.84 28787.07 22653.91 35887.91 15391.18 12477.56 4473.14 27488.82 17761.23 17989.17 28659.95 28672.37 34190.43 193
OPM-MVS83.50 9082.95 9485.14 8588.79 15970.95 6989.13 10891.52 11477.55 4580.96 12891.75 10060.71 18794.50 11279.67 10586.51 16089.97 219
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5392.24 7169.03 10389.57 9093.39 3077.53 4689.79 1894.12 4278.98 1296.58 3585.66 4095.72 2494.58 33
PS-CasMVS78.01 21078.09 18377.77 28987.71 20654.39 35588.02 14791.22 12277.50 4773.26 27288.64 18260.73 18688.41 30161.88 27173.88 33090.53 189
MSLP-MVS++85.43 6285.76 5684.45 10991.93 7570.24 7990.71 5992.86 5877.46 4884.22 8192.81 8167.16 10792.94 18680.36 9894.35 5790.16 203
RRT-MVS82.60 10882.10 10784.10 12587.98 19362.94 24887.45 16691.27 12177.42 4979.85 13890.28 14056.62 22294.70 10779.87 10488.15 14094.67 28
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5993.49 992.73 6477.33 5092.12 995.78 480.98 997.40 989.08 1296.41 1293.33 91
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072695.27 571.25 5993.60 694.11 677.33 5092.81 395.79 380.98 9
balanced_conf0386.78 3786.99 3386.15 6391.24 8367.61 14590.51 6292.90 5677.26 5287.44 4091.63 10571.27 6096.06 4985.62 4295.01 3794.78 23
SED-MVS90.08 290.85 287.77 2695.30 270.98 6693.57 794.06 1077.24 5393.10 195.72 882.99 197.44 789.07 1496.63 494.88 15
test_241102_TWO94.06 1077.24 5392.78 495.72 881.26 897.44 789.07 1496.58 694.26 48
3Dnovator76.31 583.38 9482.31 10486.59 5587.94 19472.94 2890.64 6092.14 9277.21 5575.47 22892.83 7958.56 20394.72 10573.24 16892.71 7492.13 141
test_241102_ONE95.30 270.98 6694.06 1077.17 5693.10 195.39 1482.99 197.27 12
WR-MVS_H78.51 19678.49 17278.56 27488.02 19056.38 33088.43 13192.67 6777.14 5773.89 26587.55 21266.25 11689.24 28558.92 29773.55 33390.06 213
DeepC-MVS79.81 287.08 3586.88 3887.69 3391.16 8472.32 4390.31 7193.94 1477.12 5882.82 10594.23 3872.13 4797.09 1684.83 4995.37 3193.65 76
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FC-MVSNet-test81.52 12582.02 11080.03 24688.42 17455.97 33687.95 15093.42 2977.10 5977.38 18490.98 13269.96 7591.79 22468.46 21584.50 18492.33 130
DTE-MVSNet76.99 23076.80 21677.54 29586.24 23853.06 36787.52 16290.66 13877.08 6072.50 28288.67 18160.48 19389.52 27957.33 31470.74 35390.05 214
LFMVS81.82 11881.23 11983.57 15191.89 7663.43 23589.84 7881.85 32077.04 6183.21 9893.10 7052.26 25693.43 16071.98 17889.95 11393.85 64
UGNet80.83 13779.59 14984.54 10588.04 18968.09 13389.42 9588.16 21576.95 6276.22 21489.46 16249.30 29893.94 13168.48 21490.31 10491.60 150
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FIs82.07 11382.42 10081.04 22588.80 15858.34 29788.26 14093.49 2676.93 6378.47 16291.04 12669.92 7692.34 20669.87 20084.97 17892.44 129
GST-MVS87.42 2787.26 2887.89 2494.12 3672.97 2492.39 2693.43 2876.89 6484.68 6993.99 5170.67 6896.82 2284.18 6195.01 3793.90 62
mPP-MVS86.67 4186.32 4387.72 3094.41 2273.55 1392.74 2092.22 8876.87 6582.81 10694.25 3766.44 11396.24 4482.88 7494.28 5893.38 88
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6685.24 6094.32 3371.76 5196.93 1985.53 4395.79 2294.32 45
VPNet78.69 19278.66 16978.76 26988.31 17755.72 34084.45 24986.63 25176.79 6778.26 16690.55 13759.30 19989.70 27766.63 23077.05 28190.88 175
HFP-MVS87.58 2287.47 2687.94 1994.58 1673.54 1593.04 1293.24 3376.78 6884.91 6594.44 3070.78 6696.61 3284.53 5494.89 4293.66 72
ACMMPR87.44 2587.23 3088.08 1594.64 1373.59 1293.04 1293.20 3476.78 6884.66 7294.52 2368.81 9096.65 3084.53 5494.90 4194.00 57
ACMMPcopyleft85.89 5485.39 6187.38 3993.59 4572.63 3392.74 2093.18 3976.78 6880.73 13093.82 5664.33 13396.29 4282.67 8090.69 10093.23 94
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
region2R87.42 2787.20 3188.09 1494.63 1473.55 1393.03 1493.12 4076.73 7184.45 7794.52 2369.09 8496.70 2784.37 5694.83 4594.03 56
sasdasda85.91 5285.87 5486.04 6789.84 11769.44 9890.45 6893.00 4676.70 7288.01 3191.23 11773.28 3693.91 13581.50 8688.80 12894.77 24
canonicalmvs85.91 5285.87 5486.04 6789.84 11769.44 9890.45 6893.00 4676.70 7288.01 3191.23 11773.28 3693.91 13581.50 8688.80 12894.77 24
CP-MVS87.11 3386.92 3687.68 3494.20 3473.86 793.98 392.82 6376.62 7483.68 9394.46 2767.93 9895.95 5784.20 6094.39 5593.23 94
DeepC-MVS_fast79.65 386.91 3686.62 4087.76 2793.52 4672.37 4191.26 5193.04 4176.62 7484.22 8193.36 6671.44 5796.76 2580.82 9495.33 3394.16 50
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MGCFI-Net85.06 6985.51 5983.70 14789.42 13063.01 24389.43 9392.62 7376.43 7687.53 3891.34 11572.82 4293.42 16181.28 8988.74 13194.66 31
TSAR-MVS + GP.85.71 5785.33 6386.84 5091.34 8172.50 3689.07 11087.28 23776.41 7785.80 5490.22 14474.15 3195.37 7881.82 8491.88 8392.65 120
HQP-NCC89.33 13589.17 10376.41 7777.23 189
ACMP_Plane89.33 13589.17 10376.41 7777.23 189
HQP-MVS82.61 10682.02 11084.37 11189.33 13566.98 16389.17 10392.19 9076.41 7777.23 18990.23 14360.17 19795.11 8777.47 12285.99 17091.03 170
CANet_DTU80.61 14579.87 14382.83 18185.60 24963.17 24287.36 16888.65 20976.37 8175.88 22188.44 18953.51 24693.07 18173.30 16689.74 11692.25 134
VNet82.21 11082.41 10181.62 20790.82 9360.93 27084.47 24689.78 16576.36 8284.07 8591.88 9764.71 13290.26 26570.68 19088.89 12693.66 72
Vis-MVSNetpermissive83.46 9182.80 9785.43 7990.25 10468.74 11490.30 7290.13 15776.33 8380.87 12992.89 7761.00 18494.20 12272.45 17790.97 9693.35 90
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMMP_NAP88.05 1688.08 1787.94 1993.70 4173.05 2290.86 5793.59 2376.27 8488.14 2795.09 1771.06 6396.67 2987.67 2996.37 1494.09 53
alignmvs85.48 6085.32 6485.96 7089.51 12669.47 9589.74 8392.47 7676.17 8587.73 3791.46 11270.32 7193.78 14181.51 8588.95 12594.63 32
MVS_111021_HR85.14 6684.75 7186.32 5891.65 7972.70 3085.98 20990.33 15076.11 8682.08 11191.61 10771.36 5994.17 12481.02 9192.58 7592.08 142
HPM-MVScopyleft87.11 3386.98 3487.50 3893.88 3972.16 4592.19 3393.33 3176.07 8783.81 9193.95 5469.77 7896.01 5385.15 4494.66 4794.32 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
h-mvs3383.15 9782.19 10586.02 6990.56 9870.85 7388.15 14589.16 18876.02 8884.67 7091.39 11461.54 17095.50 6682.71 7775.48 30791.72 149
hse-mvs281.72 11980.94 12584.07 13188.72 16267.68 14385.87 21387.26 23876.02 8884.67 7088.22 19661.54 17093.48 15682.71 7773.44 33591.06 168
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 9092.29 795.66 1081.67 697.38 1187.44 3396.34 1593.95 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CLD-MVS82.31 10981.65 11584.29 11688.47 17067.73 14285.81 21792.35 8275.78 9178.33 16586.58 24364.01 13694.35 11576.05 13887.48 14690.79 177
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SF-MVS88.46 1288.74 1287.64 3592.78 6471.95 4992.40 2494.74 275.71 9289.16 1995.10 1675.65 2196.19 4687.07 3496.01 1794.79 22
testdata184.14 25775.71 92
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9491.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 38
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
VPA-MVSNet80.60 14680.55 13080.76 23288.07 18860.80 27386.86 18391.58 11375.67 9580.24 13489.45 16463.34 14090.25 26670.51 19279.22 26091.23 163
PGM-MVS86.68 4086.27 4487.90 2294.22 3373.38 1890.22 7393.04 4175.53 9683.86 8994.42 3167.87 10096.64 3182.70 7994.57 5093.66 72
Effi-MVS+83.62 8783.08 9085.24 8388.38 17567.45 14988.89 11589.15 18975.50 9782.27 10988.28 19369.61 7994.45 11477.81 11987.84 14193.84 66
test_prior288.85 11775.41 9884.91 6593.54 5974.28 2983.31 6795.86 20
LPG-MVS_test82.08 11281.27 11884.50 10689.23 14268.76 11290.22 7391.94 9975.37 9976.64 20491.51 10954.29 23894.91 9578.44 11283.78 19689.83 224
LGP-MVS_train84.50 10689.23 14268.76 11291.94 9975.37 9976.64 20491.51 10954.29 23894.91 9578.44 11283.78 19689.83 224
MG-MVS83.41 9283.45 8483.28 15992.74 6562.28 25588.17 14389.50 17575.22 10181.49 12092.74 8566.75 10895.11 8772.85 17191.58 8992.45 128
LCM-MVSNet-Re77.05 22976.94 21377.36 29687.20 22351.60 37580.06 31680.46 33575.20 10267.69 33286.72 23362.48 15588.98 29063.44 25489.25 12191.51 154
SDMVSNet80.38 15280.18 13880.99 22689.03 15164.94 20280.45 31289.40 17775.19 10376.61 20689.98 14660.61 19187.69 30976.83 13183.55 20590.33 197
sd_testset77.70 21977.40 20378.60 27289.03 15160.02 28479.00 33185.83 26375.19 10376.61 20689.98 14654.81 23085.46 33062.63 26383.55 20590.33 197
MP-MVS-pluss87.67 2187.72 2087.54 3693.64 4472.04 4889.80 8193.50 2575.17 10586.34 5195.29 1570.86 6596.00 5488.78 1996.04 1694.58 33
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test111179.43 17279.18 16180.15 24489.99 11353.31 36487.33 17077.05 36475.04 10680.23 13592.77 8448.97 30392.33 20768.87 21092.40 7994.81 21
Effi-MVS+-dtu80.03 16078.57 17184.42 11085.13 26068.74 11488.77 11988.10 21774.99 10774.97 25183.49 31257.27 21693.36 16273.53 16280.88 23791.18 164
reproduce-ours87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10888.96 2095.54 1271.20 6196.54 3686.28 3793.49 6593.06 104
our_new_method87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10888.96 2095.54 1271.20 6196.54 3686.28 3793.49 6593.06 104
OMC-MVS82.69 10481.97 11284.85 9788.75 16167.42 15087.98 14890.87 13474.92 11079.72 14091.65 10362.19 16293.96 12875.26 14986.42 16193.16 99
test250677.30 22776.49 22479.74 25290.08 10852.02 36887.86 15663.10 40674.88 11180.16 13692.79 8238.29 37292.35 20568.74 21292.50 7794.86 18
ECVR-MVScopyleft79.61 16579.26 15880.67 23490.08 10854.69 35187.89 15477.44 36074.88 11180.27 13392.79 8248.96 30492.45 19968.55 21392.50 7794.86 18
MonoMVSNet76.49 24275.80 23178.58 27381.55 33358.45 29586.36 20086.22 25774.87 11374.73 25583.73 30751.79 26988.73 29570.78 18772.15 34488.55 268
nrg03083.88 7983.53 8384.96 9286.77 23169.28 10290.46 6792.67 6774.79 11482.95 10191.33 11672.70 4393.09 18080.79 9679.28 25992.50 125
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 11592.29 795.97 274.28 2997.24 1388.58 2196.91 194.87 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
reproduce_model87.28 3087.39 2786.95 4893.10 5671.24 6391.60 4293.19 3574.69 11688.80 2395.61 1170.29 7296.44 3986.20 3993.08 6993.16 99
MVS_111021_LR82.61 10682.11 10684.11 12488.82 15671.58 5585.15 22986.16 25974.69 11680.47 13291.04 12662.29 15990.55 26380.33 9990.08 11090.20 202
EIA-MVS83.31 9682.80 9784.82 9889.59 12265.59 18888.21 14192.68 6674.66 11878.96 14986.42 24869.06 8695.26 8075.54 14590.09 10993.62 79
TSAR-MVS + MP.88.02 1788.11 1687.72 3093.68 4372.13 4691.41 5092.35 8274.62 11988.90 2293.85 5575.75 2096.00 5487.80 2894.63 4895.04 9
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SR-MVS86.73 3886.67 3986.91 4994.11 3772.11 4792.37 2892.56 7574.50 12086.84 4894.65 2267.31 10595.77 5984.80 5092.85 7292.84 114
FOURS195.00 1072.39 3995.06 193.84 1574.49 12191.30 15
ACMP74.13 681.51 12780.57 12984.36 11289.42 13068.69 11989.97 7791.50 11874.46 12275.04 25090.41 13953.82 24394.54 10977.56 12182.91 21489.86 223
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EPP-MVSNet83.40 9383.02 9284.57 10490.13 10664.47 21292.32 3090.73 13774.45 12379.35 14591.10 12369.05 8795.12 8572.78 17287.22 14994.13 51
save fliter93.80 4072.35 4290.47 6691.17 12574.31 124
MVS_Test83.15 9783.06 9183.41 15686.86 22763.21 23986.11 20792.00 9574.31 12482.87 10389.44 16570.03 7493.21 16977.39 12488.50 13693.81 67
UniMVSNet_ETH3D79.10 18278.24 18081.70 20686.85 22860.24 28287.28 17288.79 20274.25 12676.84 19790.53 13849.48 29491.56 23367.98 21782.15 22393.29 92
IterMVS-LS80.06 15979.38 15382.11 19885.89 24463.20 24086.79 18689.34 17974.19 12775.45 23186.72 23366.62 10992.39 20272.58 17476.86 28490.75 180
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet80.52 15079.98 14082.12 19784.28 27463.19 24186.41 19788.95 19974.18 12878.69 15487.54 21366.62 10992.43 20072.57 17580.57 24390.74 181
Vis-MVSNet (Re-imp)78.36 19978.45 17378.07 28588.64 16551.78 37486.70 19079.63 34574.14 12975.11 24790.83 13361.29 17889.75 27558.10 30791.60 8892.69 118
v879.97 16279.02 16482.80 18484.09 27964.50 21187.96 14990.29 15374.13 13075.24 24386.81 23062.88 15193.89 13874.39 15575.40 31290.00 215
CSCG86.41 4586.19 4687.07 4592.91 6172.48 3790.81 5893.56 2473.95 13183.16 10091.07 12575.94 1895.19 8279.94 10394.38 5693.55 83
thres100view90076.50 23975.55 23879.33 26089.52 12556.99 31985.83 21683.23 29873.94 13276.32 21287.12 22551.89 26691.95 21848.33 36383.75 19989.07 241
9.1488.26 1592.84 6391.52 4894.75 173.93 13388.57 2594.67 2175.57 2295.79 5886.77 3595.76 23
HPM-MVS_fast85.35 6484.95 7086.57 5693.69 4270.58 7892.15 3591.62 11173.89 13482.67 10894.09 4362.60 15295.54 6580.93 9292.93 7193.57 81
PAPM_NR83.02 10182.41 10184.82 9892.47 7066.37 17187.93 15291.80 10673.82 13577.32 18690.66 13567.90 9994.90 9770.37 19389.48 11993.19 98
thres600view776.50 23975.44 23979.68 25489.40 13257.16 31685.53 22483.23 29873.79 13676.26 21387.09 22651.89 26691.89 22148.05 36883.72 20290.00 215
testing9176.54 23775.66 23679.18 26488.43 17355.89 33781.08 29983.00 30573.76 13775.34 23684.29 29446.20 32390.07 26964.33 24884.50 18491.58 152
v7n78.97 18677.58 20183.14 16783.45 29465.51 18988.32 13891.21 12373.69 13872.41 28486.32 25157.93 20793.81 14069.18 20675.65 30390.11 207
dcpmvs_285.63 5886.15 4884.06 13391.71 7864.94 20286.47 19691.87 10373.63 13986.60 5093.02 7576.57 1591.87 22383.36 6692.15 8095.35 3
v2v48280.23 15679.29 15783.05 17283.62 29064.14 21887.04 17789.97 16173.61 14078.18 16987.22 22161.10 18293.82 13976.11 13676.78 28791.18 164
Baseline_NR-MVSNet78.15 20578.33 17877.61 29285.79 24556.21 33486.78 18785.76 26473.60 14177.93 17587.57 21065.02 12988.99 28967.14 22775.33 31487.63 284
BH-RMVSNet79.61 16578.44 17483.14 16789.38 13465.93 17984.95 23587.15 24173.56 14278.19 16889.79 15056.67 22193.36 16259.53 29186.74 15690.13 205
APD-MVS_3200maxsize85.97 5085.88 5386.22 6092.69 6669.53 9291.93 3792.99 4973.54 14385.94 5294.51 2665.80 12395.61 6283.04 7192.51 7693.53 85
SR-MVS-dyc-post85.77 5585.61 5886.23 5993.06 5870.63 7691.88 3892.27 8473.53 14485.69 5694.45 2865.00 13195.56 6382.75 7591.87 8492.50 125
RE-MVS-def85.48 6093.06 5870.63 7691.88 3892.27 8473.53 14485.69 5694.45 2863.87 13782.75 7591.87 8492.50 125
reproduce_monomvs75.40 26074.38 25678.46 27983.92 28457.80 30883.78 26186.94 24573.47 14672.25 28784.47 28838.74 36889.27 28475.32 14870.53 35488.31 272
test_fmvsmconf_n85.92 5186.04 5185.57 7685.03 26269.51 9389.62 8990.58 14073.42 14787.75 3594.02 4772.85 4193.24 16690.37 390.75 9993.96 58
tfpn200view976.42 24375.37 24379.55 25989.13 14657.65 31085.17 22783.60 29073.41 14876.45 20886.39 24952.12 25891.95 21848.33 36383.75 19989.07 241
thres40076.50 23975.37 24379.86 24989.13 14657.65 31085.17 22783.60 29073.41 14876.45 20886.39 24952.12 25891.95 21848.33 36383.75 19990.00 215
test_fmvsmconf0.1_n85.61 5985.65 5785.50 7782.99 30969.39 10089.65 8690.29 15373.31 15087.77 3494.15 4171.72 5293.23 16790.31 490.67 10193.89 63
testing9976.09 24975.12 24779.00 26588.16 18155.50 34380.79 30381.40 32473.30 15175.17 24484.27 29644.48 33790.02 27064.28 24984.22 19391.48 157
v14878.72 19177.80 19281.47 21182.73 31461.96 25986.30 20288.08 21873.26 15276.18 21685.47 26962.46 15692.36 20471.92 17973.82 33190.09 209
FA-MVS(test-final)80.96 13479.91 14284.10 12588.30 17865.01 20084.55 24590.01 16073.25 15379.61 14187.57 21058.35 20594.72 10571.29 18486.25 16492.56 122
test_fmvsmconf0.01_n84.73 7384.52 7585.34 8080.25 35069.03 10389.47 9189.65 17073.24 15486.98 4694.27 3566.62 10993.23 16790.26 589.95 11393.78 69
v1079.74 16478.67 16882.97 17784.06 28064.95 20187.88 15590.62 13973.11 15575.11 24786.56 24461.46 17394.05 12773.68 16075.55 30589.90 221
MCST-MVS87.37 2987.25 2987.73 2894.53 1772.46 3889.82 7993.82 1673.07 15684.86 6892.89 7776.22 1796.33 4184.89 4895.13 3694.40 41
baseline176.98 23176.75 22077.66 29088.13 18455.66 34185.12 23081.89 31873.04 15776.79 19988.90 17462.43 15787.78 30863.30 25671.18 35189.55 233
APD-MVScopyleft87.44 2587.52 2587.19 4294.24 3272.39 3991.86 4092.83 6073.01 15888.58 2494.52 2373.36 3496.49 3884.26 5795.01 3792.70 116
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
diffmvspermissive82.10 11181.88 11382.76 18983.00 30763.78 22583.68 26389.76 16672.94 15982.02 11289.85 14965.96 12290.79 25982.38 8187.30 14893.71 71
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
K. test v371.19 30168.51 31379.21 26383.04 30657.78 30984.35 25376.91 36572.90 16062.99 37182.86 32439.27 36591.09 25461.65 27452.66 39788.75 261
MVSMamba_PlusPlus85.99 4885.96 5286.05 6691.09 8567.64 14489.63 8892.65 7072.89 16184.64 7391.71 10171.85 4996.03 5084.77 5194.45 5494.49 37
GDP-MVS83.52 8982.64 9986.16 6288.14 18368.45 12489.13 10892.69 6572.82 16283.71 9291.86 9955.69 22595.35 7980.03 10189.74 11694.69 27
Fast-Effi-MVS+-dtu78.02 20976.49 22482.62 19183.16 30366.96 16586.94 18087.45 23572.45 16371.49 29684.17 29854.79 23491.58 23167.61 22080.31 24689.30 239
PHI-MVS86.43 4386.17 4787.24 4190.88 9270.96 6892.27 3294.07 972.45 16385.22 6191.90 9669.47 8096.42 4083.28 6895.94 1994.35 43
thres20075.55 25574.47 25478.82 26887.78 20457.85 30683.07 27883.51 29372.44 16575.84 22284.42 28952.08 26191.75 22647.41 37083.64 20486.86 305
test_yl81.17 13080.47 13283.24 16289.13 14663.62 22686.21 20489.95 16272.43 16681.78 11789.61 15557.50 21393.58 14970.75 18886.90 15392.52 123
DCV-MVSNet81.17 13080.47 13283.24 16289.13 14663.62 22686.21 20489.95 16272.43 16681.78 11789.61 15557.50 21393.58 14970.75 18886.90 15392.52 123
BH-untuned79.47 17078.60 17082.05 19989.19 14465.91 18086.07 20888.52 21272.18 16875.42 23287.69 20761.15 18193.54 15360.38 28386.83 15586.70 309
TransMVSNet (Re)75.39 26174.56 25277.86 28685.50 25157.10 31886.78 18786.09 26172.17 16971.53 29587.34 21663.01 15089.31 28356.84 31961.83 38087.17 296
GA-MVS76.87 23375.17 24681.97 20282.75 31362.58 25081.44 29686.35 25672.16 17074.74 25482.89 32346.20 32392.02 21668.85 21181.09 23591.30 162
mmtdpeth74.16 27073.01 27277.60 29483.72 28961.13 26785.10 23185.10 27072.06 17177.21 19380.33 35143.84 34185.75 32477.14 12752.61 39885.91 324
v114480.03 16079.03 16383.01 17483.78 28764.51 20987.11 17690.57 14271.96 17278.08 17286.20 25361.41 17493.94 13174.93 15077.23 27890.60 186
PS-MVSNAJss82.07 11381.31 11784.34 11486.51 23667.27 15689.27 10191.51 11571.75 17379.37 14490.22 14463.15 14694.27 11877.69 12082.36 22291.49 156
EPNet_dtu75.46 25774.86 24877.23 29982.57 31854.60 35286.89 18283.09 30271.64 17466.25 35285.86 25955.99 22488.04 30554.92 32886.55 15989.05 246
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GBi-Net78.40 19777.40 20381.40 21487.60 21063.01 24388.39 13389.28 18171.63 17575.34 23687.28 21754.80 23191.11 24962.72 25979.57 25390.09 209
test178.40 19777.40 20381.40 21487.60 21063.01 24388.39 13389.28 18171.63 17575.34 23687.28 21754.80 23191.11 24962.72 25979.57 25390.09 209
FMVSNet278.20 20377.21 20781.20 22087.60 21062.89 24987.47 16489.02 19471.63 17575.29 24287.28 21754.80 23191.10 25262.38 26479.38 25789.61 231
patch_mono-283.65 8484.54 7380.99 22690.06 11265.83 18284.21 25588.74 20771.60 17885.01 6292.44 8774.51 2583.50 34582.15 8292.15 8093.64 78
V4279.38 17678.24 18082.83 18181.10 34265.50 19085.55 22289.82 16471.57 17978.21 16786.12 25560.66 18993.18 17575.64 14275.46 30989.81 226
API-MVS81.99 11581.23 11984.26 12190.94 9070.18 8591.10 5589.32 18071.51 18078.66 15688.28 19365.26 12695.10 9064.74 24691.23 9487.51 288
tttt051779.40 17477.91 18783.90 14588.10 18663.84 22388.37 13684.05 28571.45 18176.78 20089.12 16949.93 29194.89 9870.18 19583.18 21292.96 112
pm-mvs177.25 22876.68 22278.93 26784.22 27658.62 29486.41 19788.36 21471.37 18273.31 27188.01 20361.22 18089.15 28764.24 25073.01 33889.03 247
testing22274.04 27272.66 27678.19 28287.89 19655.36 34481.06 30079.20 34971.30 18374.65 25783.57 31139.11 36788.67 29751.43 34685.75 17490.53 189
GeoE81.71 12081.01 12483.80 14689.51 12664.45 21388.97 11288.73 20871.27 18478.63 15789.76 15166.32 11593.20 17269.89 19986.02 16993.74 70
tt080578.73 19077.83 19081.43 21285.17 25660.30 28189.41 9690.90 13271.21 18577.17 19488.73 17846.38 31893.21 16972.57 17578.96 26190.79 177
FMVSNet377.88 21376.85 21580.97 22886.84 22962.36 25286.52 19588.77 20371.13 18675.34 23686.66 23954.07 24191.10 25262.72 25979.57 25389.45 235
VDDNet81.52 12580.67 12884.05 13690.44 10164.13 21989.73 8485.91 26271.11 18783.18 9993.48 6150.54 28393.49 15573.40 16588.25 13894.54 36
fmvsm_s_conf0.5_n83.80 8183.71 8184.07 13186.69 23367.31 15489.46 9283.07 30371.09 18886.96 4793.70 5869.02 8991.47 24088.79 1884.62 18393.44 87
XVG-OURS80.41 15179.23 15983.97 14285.64 24869.02 10583.03 28090.39 14571.09 18877.63 18091.49 11154.62 23791.35 24475.71 14183.47 20791.54 153
SixPastTwentyTwo73.37 28071.26 29379.70 25385.08 26157.89 30585.57 21883.56 29271.03 19065.66 35485.88 25842.10 35392.57 19459.11 29563.34 37888.65 265
ZD-MVS94.38 2572.22 4492.67 6770.98 19187.75 3594.07 4474.01 3296.70 2784.66 5294.84 44
v119279.59 16778.43 17583.07 17183.55 29264.52 20886.93 18190.58 14070.83 19277.78 17785.90 25759.15 20093.94 13173.96 15977.19 28090.76 179
Fast-Effi-MVS+80.81 13879.92 14183.47 15288.85 15364.51 20985.53 22489.39 17870.79 19378.49 16185.06 27967.54 10293.58 14967.03 22986.58 15892.32 131
PS-MVSNAJ81.69 12181.02 12383.70 14789.51 12668.21 13184.28 25490.09 15870.79 19381.26 12585.62 26663.15 14694.29 11675.62 14388.87 12788.59 266
LTVRE_ROB69.57 1376.25 24674.54 25381.41 21388.60 16664.38 21579.24 32689.12 19270.76 19569.79 31687.86 20449.09 30193.20 17256.21 32480.16 24786.65 310
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
testing1175.14 26374.01 25978.53 27688.16 18156.38 33080.74 30680.42 33670.67 19672.69 28183.72 30843.61 34389.86 27262.29 26683.76 19889.36 237
fmvsm_s_conf0.1_n83.56 8883.38 8684.10 12584.86 26467.28 15589.40 9783.01 30470.67 19687.08 4493.96 5368.38 9391.45 24188.56 2284.50 18493.56 82
xiu_mvs_v2_base81.69 12181.05 12283.60 14989.15 14568.03 13684.46 24890.02 15970.67 19681.30 12486.53 24663.17 14594.19 12375.60 14488.54 13488.57 267
XVG-OURS-SEG-HR80.81 13879.76 14583.96 14385.60 24968.78 11183.54 26990.50 14370.66 19976.71 20291.66 10260.69 18891.26 24676.94 12981.58 23091.83 146
Anonymous20240521178.25 20077.01 21081.99 20191.03 8760.67 27584.77 23883.90 28770.65 20080.00 13791.20 12041.08 35891.43 24265.21 24185.26 17693.85 64
DP-MVS Recon83.11 10082.09 10886.15 6394.44 1970.92 7188.79 11892.20 8970.53 20179.17 14791.03 12864.12 13596.03 5068.39 21690.14 10891.50 155
FMVSNet177.44 22376.12 23081.40 21486.81 23063.01 24388.39 13389.28 18170.49 20274.39 26187.28 21749.06 30291.11 24960.91 28078.52 26490.09 209
testing368.56 32867.67 32871.22 35587.33 22042.87 40583.06 27971.54 38570.36 20369.08 32284.38 29130.33 39285.69 32637.50 39875.45 31085.09 339
ab-mvs79.51 16878.97 16581.14 22288.46 17160.91 27183.84 26089.24 18570.36 20379.03 14888.87 17663.23 14490.21 26765.12 24282.57 22092.28 133
tfpnnormal74.39 26673.16 27078.08 28486.10 24358.05 30084.65 24287.53 23270.32 20571.22 29885.63 26554.97 22989.86 27243.03 38675.02 31986.32 313
ACMM73.20 880.78 14379.84 14483.58 15089.31 13868.37 12689.99 7691.60 11270.28 20677.25 18789.66 15353.37 24893.53 15474.24 15782.85 21588.85 256
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.5_n_a83.63 8683.41 8584.28 11786.14 24068.12 13289.43 9382.87 30870.27 20787.27 4393.80 5769.09 8491.58 23188.21 2683.65 20393.14 101
ACMH+68.96 1476.01 25074.01 25982.03 20088.60 16665.31 19588.86 11687.55 23170.25 20867.75 33187.47 21541.27 35693.19 17458.37 30475.94 30087.60 285
IB-MVS68.01 1575.85 25273.36 26883.31 15884.76 26566.03 17583.38 27085.06 27170.21 20969.40 31881.05 34245.76 32894.66 10865.10 24375.49 30689.25 240
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thisisatest053079.40 17477.76 19584.31 11587.69 20865.10 19987.36 16884.26 28370.04 21077.42 18388.26 19549.94 28994.79 10370.20 19484.70 18293.03 107
mvsmamba80.60 14679.38 15384.27 11989.74 12067.24 15887.47 16486.95 24470.02 21175.38 23488.93 17351.24 27492.56 19575.47 14789.22 12293.00 110
test_fmvsmvis_n_192084.02 7883.87 7984.49 10884.12 27869.37 10188.15 14587.96 22170.01 21283.95 8893.23 6868.80 9191.51 23888.61 2089.96 11292.57 121
v14419279.47 17078.37 17682.78 18783.35 29563.96 22186.96 17990.36 14969.99 21377.50 18185.67 26460.66 18993.77 14374.27 15676.58 28890.62 184
test_fmvsm_n_192085.29 6585.34 6285.13 8786.12 24169.93 8688.65 12690.78 13669.97 21488.27 2693.98 5271.39 5891.54 23588.49 2390.45 10393.91 60
c3_l78.75 18977.91 18781.26 21882.89 31161.56 26484.09 25889.13 19169.97 21475.56 22684.29 29466.36 11492.09 21473.47 16475.48 30790.12 206
v192192079.22 17878.03 18482.80 18483.30 29763.94 22286.80 18590.33 15069.91 21677.48 18285.53 26758.44 20493.75 14573.60 16176.85 28590.71 182
ACMH67.68 1675.89 25173.93 26181.77 20588.71 16366.61 16888.62 12789.01 19569.81 21766.78 34386.70 23741.95 35591.51 23855.64 32578.14 27087.17 296
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.1_n_a83.32 9582.99 9384.28 11783.79 28668.07 13489.34 10082.85 30969.80 21887.36 4294.06 4568.34 9491.56 23387.95 2783.46 20893.21 97
DPM-MVS84.93 7084.29 7786.84 5090.20 10573.04 2387.12 17593.04 4169.80 21882.85 10491.22 11973.06 3996.02 5276.72 13394.63 4891.46 159
MAR-MVS81.84 11780.70 12785.27 8291.32 8271.53 5689.82 7990.92 13169.77 22078.50 16086.21 25262.36 15894.52 11165.36 24092.05 8289.77 227
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
XVG-ACMP-BASELINE76.11 24874.27 25881.62 20783.20 30064.67 20783.60 26789.75 16769.75 22171.85 29187.09 22632.78 38592.11 21369.99 19880.43 24588.09 276
BH-w/o78.21 20277.33 20680.84 23088.81 15765.13 19884.87 23687.85 22669.75 22174.52 25984.74 28661.34 17693.11 17958.24 30685.84 17284.27 346
v124078.99 18577.78 19382.64 19083.21 29963.54 23086.62 19290.30 15269.74 22377.33 18585.68 26357.04 21893.76 14473.13 16976.92 28290.62 184
ET-MVSNet_ETH3D78.63 19376.63 22384.64 10386.73 23269.47 9585.01 23384.61 27669.54 22466.51 35086.59 24150.16 28691.75 22676.26 13584.24 19292.69 118
eth_miper_zixun_eth77.92 21276.69 22181.61 20983.00 30761.98 25883.15 27489.20 18769.52 22574.86 25384.35 29361.76 16692.56 19571.50 18272.89 33990.28 200
PVSNet_Blended_VisFu82.62 10581.83 11484.96 9290.80 9469.76 9088.74 12291.70 11069.39 22678.96 14988.46 18865.47 12594.87 10074.42 15488.57 13390.24 201
mvs_tets79.13 18177.77 19483.22 16484.70 26666.37 17189.17 10390.19 15569.38 22775.40 23389.46 16244.17 33993.15 17676.78 13280.70 24190.14 204
PVSNet_BlendedMVS80.60 14680.02 13982.36 19688.85 15365.40 19186.16 20692.00 9569.34 22878.11 17086.09 25666.02 12094.27 11871.52 18082.06 22587.39 290
AdaColmapbinary80.58 14979.42 15284.06 13393.09 5768.91 10889.36 9988.97 19869.27 22975.70 22489.69 15257.20 21795.77 5963.06 25788.41 13787.50 289
ETVMVS72.25 29571.05 29475.84 30887.77 20551.91 37179.39 32474.98 37369.26 23073.71 26782.95 32140.82 36086.14 32146.17 37684.43 18989.47 234
ITE_SJBPF78.22 28181.77 32960.57 27683.30 29669.25 23167.54 33387.20 22236.33 37887.28 31254.34 33174.62 32386.80 306
cl____77.72 21776.76 21880.58 23582.49 32060.48 27883.09 27687.87 22469.22 23274.38 26285.22 27562.10 16391.53 23671.09 18575.41 31189.73 229
DIV-MVS_self_test77.72 21776.76 21880.58 23582.48 32160.48 27883.09 27687.86 22569.22 23274.38 26285.24 27362.10 16391.53 23671.09 18575.40 31289.74 228
jajsoiax79.29 17777.96 18583.27 16084.68 26766.57 16989.25 10290.16 15669.20 23475.46 23089.49 15945.75 32993.13 17876.84 13080.80 23990.11 207
IterMVS-SCA-FT75.43 25873.87 26380.11 24582.69 31564.85 20481.57 29383.47 29469.16 23570.49 30284.15 29951.95 26488.15 30369.23 20572.14 34587.34 292
CL-MVSNet_self_test72.37 29371.46 28875.09 32079.49 36353.53 36080.76 30585.01 27369.12 23670.51 30182.05 33657.92 20884.13 34052.27 34166.00 37287.60 285
AUN-MVS79.21 17977.60 20084.05 13688.71 16367.61 14585.84 21587.26 23869.08 23777.23 18988.14 20153.20 25093.47 15775.50 14673.45 33491.06 168
xiu_mvs_v1_base_debu80.80 14079.72 14684.03 13887.35 21570.19 8285.56 21988.77 20369.06 23881.83 11388.16 19750.91 27792.85 18878.29 11687.56 14389.06 243
xiu_mvs_v1_base80.80 14079.72 14684.03 13887.35 21570.19 8285.56 21988.77 20369.06 23881.83 11388.16 19750.91 27792.85 18878.29 11687.56 14389.06 243
xiu_mvs_v1_base_debi80.80 14079.72 14684.03 13887.35 21570.19 8285.56 21988.77 20369.06 23881.83 11388.16 19750.91 27792.85 18878.29 11687.56 14389.06 243
MVSTER79.01 18477.88 18982.38 19583.07 30464.80 20584.08 25988.95 19969.01 24178.69 15487.17 22454.70 23592.43 20074.69 15180.57 24389.89 222
cl2278.07 20777.01 21081.23 21982.37 32361.83 26183.55 26887.98 22068.96 24275.06 24983.87 30161.40 17591.88 22273.53 16276.39 29289.98 218
miper_ehance_all_eth78.59 19577.76 19581.08 22482.66 31661.56 26483.65 26489.15 18968.87 24375.55 22783.79 30566.49 11292.03 21573.25 16776.39 29289.64 230
PAPR81.66 12380.89 12683.99 14190.27 10364.00 22086.76 18991.77 10968.84 24477.13 19689.50 15867.63 10194.88 9967.55 22188.52 13593.09 102
CPTT-MVS83.73 8283.33 8884.92 9593.28 4970.86 7292.09 3690.38 14668.75 24579.57 14292.83 7960.60 19293.04 18480.92 9391.56 9090.86 176
train_agg86.43 4386.20 4587.13 4493.26 5272.96 2588.75 12091.89 10168.69 24685.00 6393.10 7074.43 2695.41 7384.97 4595.71 2593.02 108
test_893.13 5472.57 3588.68 12591.84 10568.69 24684.87 6793.10 7074.43 2695.16 83
dmvs_re71.14 30270.58 29872.80 34181.96 32659.68 28775.60 36179.34 34768.55 24869.27 32180.72 34849.42 29576.54 37952.56 34077.79 27382.19 371
MVSFormer82.85 10382.05 10985.24 8387.35 21570.21 8090.50 6490.38 14668.55 24881.32 12189.47 16061.68 16793.46 15878.98 10790.26 10692.05 143
test_djsdf80.30 15579.32 15683.27 16083.98 28265.37 19490.50 6490.38 14668.55 24876.19 21588.70 17956.44 22393.46 15878.98 10780.14 24990.97 173
TEST993.26 5272.96 2588.75 12091.89 10168.44 25185.00 6393.10 7074.36 2895.41 73
FE-MVS77.78 21575.68 23484.08 13088.09 18766.00 17783.13 27587.79 22768.42 25278.01 17385.23 27445.50 33295.12 8559.11 29585.83 17391.11 166
CDPH-MVS85.76 5685.29 6687.17 4393.49 4771.08 6488.58 12892.42 8068.32 25384.61 7493.48 6172.32 4496.15 4879.00 10695.43 3094.28 47
PC_three_145268.21 25492.02 1294.00 4982.09 595.98 5684.58 5396.68 294.95 11
fmvsm_l_conf0.5_n84.47 7484.54 7384.27 11985.42 25268.81 10988.49 13087.26 23868.08 25588.03 3093.49 6072.04 4891.77 22588.90 1789.14 12492.24 136
IterMVS74.29 26772.94 27378.35 28081.53 33463.49 23281.58 29282.49 31268.06 25669.99 31183.69 30951.66 27185.54 32865.85 23771.64 34886.01 321
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dmvs_testset62.63 35564.11 34658.19 38578.55 36824.76 42375.28 36265.94 40167.91 25760.34 37976.01 38253.56 24573.94 39831.79 40467.65 36575.88 392
TAMVS78.89 18877.51 20283.03 17387.80 20167.79 14184.72 23985.05 27267.63 25876.75 20187.70 20662.25 16090.82 25858.53 30287.13 15090.49 191
PVSNet_Blended80.98 13380.34 13482.90 17988.85 15365.40 19184.43 25092.00 9567.62 25978.11 17085.05 28066.02 12094.27 11871.52 18089.50 11889.01 248
TR-MVS77.44 22376.18 22981.20 22088.24 17963.24 23884.61 24386.40 25467.55 26077.81 17686.48 24754.10 24093.15 17657.75 31082.72 21887.20 295
CDS-MVSNet79.07 18377.70 19783.17 16687.60 21068.23 13084.40 25286.20 25867.49 26176.36 21186.54 24561.54 17090.79 25961.86 27287.33 14790.49 191
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
fmvsm_l_conf0.5_n_a84.13 7784.16 7884.06 13385.38 25368.40 12588.34 13786.85 24867.48 26287.48 3993.40 6470.89 6491.61 22988.38 2589.22 12292.16 140
mvs_anonymous79.42 17379.11 16280.34 24084.45 27357.97 30382.59 28287.62 23067.40 26376.17 21888.56 18668.47 9289.59 27870.65 19186.05 16893.47 86
mvs5depth69.45 32067.45 33275.46 31673.93 38655.83 33879.19 32883.23 29866.89 26471.63 29483.32 31433.69 38485.09 33359.81 28855.34 39485.46 330
IU-MVS95.30 271.25 5992.95 5566.81 26592.39 688.94 1696.63 494.85 20
baseline275.70 25373.83 26481.30 21783.26 29861.79 26282.57 28380.65 33166.81 26566.88 34183.42 31357.86 20992.19 21163.47 25379.57 25389.91 220
miper_lstm_enhance74.11 27173.11 27177.13 30080.11 35259.62 28872.23 37686.92 24766.76 26770.40 30382.92 32256.93 21982.92 34969.06 20872.63 34088.87 255
OpenMVScopyleft72.83 1079.77 16378.33 17884.09 12985.17 25669.91 8790.57 6190.97 13066.70 26872.17 28891.91 9554.70 23593.96 12861.81 27390.95 9788.41 271
test-LLR72.94 28972.43 27874.48 32681.35 33858.04 30178.38 34077.46 35866.66 26969.95 31279.00 36448.06 30779.24 36566.13 23284.83 17986.15 317
test20.0367.45 33566.95 33668.94 36475.48 38144.84 40177.50 34977.67 35666.66 26963.01 37083.80 30447.02 31378.40 36942.53 38968.86 36383.58 356
test0.0.03 168.00 33367.69 32768.90 36577.55 37147.43 39175.70 36072.95 38466.66 26966.56 34682.29 33348.06 30775.87 38744.97 38374.51 32483.41 357
Syy-MVS68.05 33267.85 32268.67 36884.68 26740.97 41178.62 33773.08 38266.65 27266.74 34479.46 35952.11 26082.30 35232.89 40376.38 29582.75 366
myMVS_eth3d67.02 33866.29 33969.21 36384.68 26742.58 40678.62 33773.08 38266.65 27266.74 34479.46 35931.53 38982.30 35239.43 39576.38 29582.75 366
QAPM80.88 13579.50 15185.03 8988.01 19268.97 10791.59 4392.00 9566.63 27475.15 24692.16 9157.70 21095.45 6863.52 25288.76 13090.66 183
XXY-MVS75.41 25975.56 23774.96 32183.59 29157.82 30780.59 30983.87 28866.54 27574.93 25288.31 19263.24 14380.09 36362.16 26876.85 28586.97 303
OurMVSNet-221017-074.26 26872.42 27979.80 25183.76 28859.59 28985.92 21286.64 25066.39 27666.96 34087.58 20939.46 36491.60 23065.76 23869.27 35988.22 273
SCA74.22 26972.33 28079.91 24884.05 28162.17 25679.96 31979.29 34866.30 27772.38 28580.13 35351.95 26488.60 29859.25 29377.67 27688.96 252
testgi66.67 34166.53 33867.08 37575.62 38041.69 41075.93 35676.50 36766.11 27865.20 36086.59 24135.72 38074.71 39443.71 38473.38 33684.84 341
HY-MVS69.67 1277.95 21177.15 20880.36 23987.57 21460.21 28383.37 27187.78 22866.11 27875.37 23587.06 22863.27 14290.48 26461.38 27782.43 22190.40 195
EG-PatchMatch MVS74.04 27271.82 28480.71 23384.92 26367.42 15085.86 21488.08 21866.04 28064.22 36483.85 30235.10 38192.56 19557.44 31280.83 23882.16 372
CNLPA78.08 20676.79 21781.97 20290.40 10271.07 6587.59 16184.55 27766.03 28172.38 28589.64 15457.56 21286.04 32259.61 29083.35 20988.79 259
Anonymous2024052980.19 15878.89 16684.10 12590.60 9764.75 20688.95 11390.90 13265.97 28280.59 13191.17 12249.97 28893.73 14769.16 20782.70 21993.81 67
TAPA-MVS73.13 979.15 18077.94 18682.79 18689.59 12262.99 24788.16 14491.51 11565.77 28377.14 19591.09 12460.91 18593.21 16950.26 35487.05 15192.17 139
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MSDG73.36 28270.99 29580.49 23784.51 27265.80 18380.71 30786.13 26065.70 28465.46 35583.74 30644.60 33590.91 25751.13 34776.89 28384.74 342
anonymousdsp78.60 19477.15 20882.98 17680.51 34867.08 16187.24 17389.53 17465.66 28575.16 24587.19 22352.52 25192.25 20977.17 12679.34 25889.61 231
test_040272.79 29070.44 30179.84 25088.13 18465.99 17885.93 21184.29 28165.57 28667.40 33785.49 26846.92 31492.61 19335.88 40074.38 32580.94 378
UBG73.08 28672.27 28175.51 31488.02 19051.29 37978.35 34377.38 36165.52 28773.87 26682.36 33045.55 33086.48 31855.02 32784.39 19088.75 261
miper_enhance_ethall77.87 21476.86 21480.92 22981.65 33061.38 26682.68 28188.98 19665.52 28775.47 22882.30 33265.76 12492.00 21772.95 17076.39 29289.39 236
WBMVS73.43 27972.81 27475.28 31887.91 19550.99 38178.59 33981.31 32665.51 28974.47 26084.83 28346.39 31786.68 31558.41 30377.86 27288.17 275
UnsupCasMVSNet_eth67.33 33665.99 34071.37 35173.48 39151.47 37775.16 36485.19 26965.20 29060.78 37880.93 34742.35 34977.20 37557.12 31553.69 39685.44 331
WTY-MVS75.65 25475.68 23475.57 31286.40 23756.82 32177.92 34882.40 31365.10 29176.18 21687.72 20563.13 14980.90 36060.31 28481.96 22689.00 250
thisisatest051577.33 22675.38 24283.18 16585.27 25563.80 22482.11 28783.27 29765.06 29275.91 22083.84 30349.54 29394.27 11867.24 22586.19 16591.48 157
MVP-Stereo76.12 24774.46 25581.13 22385.37 25469.79 8984.42 25187.95 22265.03 29367.46 33585.33 27153.28 24991.73 22858.01 30883.27 21081.85 373
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Anonymous2023121178.97 18677.69 19882.81 18390.54 9964.29 21690.11 7591.51 11565.01 29476.16 21988.13 20250.56 28293.03 18569.68 20277.56 27791.11 166
pmmvs674.69 26573.39 26778.61 27181.38 33757.48 31386.64 19187.95 22264.99 29570.18 30686.61 24050.43 28489.52 27962.12 26970.18 35688.83 257
PAPM77.68 22076.40 22781.51 21087.29 22261.85 26083.78 26189.59 17264.74 29671.23 29788.70 17962.59 15393.66 14852.66 33987.03 15289.01 248
MIMVSNet70.69 30869.30 30774.88 32284.52 27156.35 33275.87 35979.42 34664.59 29767.76 33082.41 32941.10 35781.54 35646.64 37481.34 23186.75 308
tpm72.37 29371.71 28574.35 32882.19 32452.00 36979.22 32777.29 36264.56 29872.95 27783.68 31051.35 27283.26 34858.33 30575.80 30187.81 281
MDA-MVSNet-bldmvs66.68 34063.66 34975.75 30979.28 36560.56 27773.92 37278.35 35364.43 29950.13 40279.87 35744.02 34083.67 34346.10 37756.86 38883.03 363
MIMVSNet168.58 32766.78 33773.98 33280.07 35351.82 37380.77 30484.37 27864.40 30059.75 38382.16 33536.47 37783.63 34442.73 38770.33 35586.48 312
D2MVS74.82 26473.21 26979.64 25679.81 35762.56 25180.34 31487.35 23664.37 30168.86 32382.66 32746.37 31990.10 26867.91 21881.24 23386.25 314
PLCcopyleft70.83 1178.05 20876.37 22883.08 17091.88 7767.80 14088.19 14289.46 17664.33 30269.87 31488.38 19053.66 24493.58 14958.86 29882.73 21787.86 280
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PatchmatchNetpermissive73.12 28571.33 29178.49 27883.18 30160.85 27279.63 32178.57 35264.13 30371.73 29279.81 35851.20 27585.97 32357.40 31376.36 29788.66 264
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
mamv476.81 23478.23 18272.54 34486.12 24165.75 18678.76 33582.07 31764.12 30472.97 27691.02 12967.97 9768.08 40883.04 7178.02 27183.80 354
KD-MVS_2432*160066.22 34563.89 34773.21 33675.47 38253.42 36270.76 38384.35 27964.10 30566.52 34878.52 36834.55 38284.98 33450.40 35050.33 40181.23 376
miper_refine_blended66.22 34563.89 34773.21 33675.47 38253.42 36270.76 38384.35 27964.10 30566.52 34878.52 36834.55 38284.98 33450.40 35050.33 40181.23 376
tpmvs71.09 30369.29 30876.49 30482.04 32556.04 33578.92 33381.37 32564.05 30767.18 33978.28 37049.74 29289.77 27449.67 35772.37 34183.67 355
F-COLMAP76.38 24574.33 25782.50 19389.28 14066.95 16688.41 13289.03 19364.05 30766.83 34288.61 18346.78 31592.89 18757.48 31178.55 26387.67 283
DP-MVS76.78 23574.57 25183.42 15493.29 4869.46 9788.55 12983.70 28963.98 30970.20 30588.89 17554.01 24294.80 10246.66 37281.88 22886.01 321
原ACMM184.35 11393.01 6068.79 11092.44 7763.96 31081.09 12691.57 10866.06 11995.45 6867.19 22694.82 4688.81 258
PM-MVS66.41 34364.14 34573.20 33873.92 38756.45 32778.97 33264.96 40463.88 31164.72 36180.24 35219.84 40883.44 34666.24 23164.52 37679.71 384
UWE-MVS72.13 29671.49 28774.03 33186.66 23447.70 39081.40 29776.89 36663.60 31275.59 22584.22 29739.94 36385.62 32748.98 36086.13 16788.77 260
jason81.39 12880.29 13684.70 10286.63 23569.90 8885.95 21086.77 24963.24 31381.07 12789.47 16061.08 18392.15 21278.33 11590.07 11192.05 143
jason: jason.
KD-MVS_self_test68.81 32467.59 33072.46 34574.29 38545.45 39677.93 34787.00 24363.12 31463.99 36678.99 36642.32 35084.77 33756.55 32264.09 37787.16 298
gg-mvs-nofinetune69.95 31667.96 32075.94 30783.07 30454.51 35477.23 35270.29 38863.11 31570.32 30462.33 40143.62 34288.69 29653.88 33387.76 14284.62 344
tpmrst72.39 29172.13 28273.18 33980.54 34749.91 38679.91 32079.08 35063.11 31571.69 29379.95 35555.32 22782.77 35065.66 23973.89 32986.87 304
PCF-MVS73.52 780.38 15278.84 16785.01 9087.71 20668.99 10683.65 26491.46 11963.00 31777.77 17890.28 14066.10 11795.09 9161.40 27688.22 13990.94 174
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
COLMAP_ROBcopyleft66.92 1773.01 28770.41 30280.81 23187.13 22565.63 18788.30 13984.19 28462.96 31863.80 36887.69 20738.04 37392.56 19546.66 37274.91 32084.24 347
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Patchmatch-RL test70.24 31367.78 32677.61 29277.43 37259.57 29071.16 38070.33 38762.94 31968.65 32572.77 39250.62 28185.49 32969.58 20366.58 36987.77 282
lupinMVS81.39 12880.27 13784.76 10187.35 21570.21 8085.55 22286.41 25362.85 32081.32 12188.61 18361.68 16792.24 21078.41 11490.26 10691.83 146
test_vis1_n_192075.52 25675.78 23274.75 32579.84 35657.44 31483.26 27285.52 26662.83 32179.34 14686.17 25445.10 33479.71 36478.75 10981.21 23487.10 302
EPMVS69.02 32368.16 31771.59 34979.61 36149.80 38877.40 35066.93 39862.82 32270.01 30979.05 36245.79 32777.86 37356.58 32175.26 31687.13 299
PatchMatch-RL72.38 29270.90 29676.80 30388.60 16667.38 15279.53 32276.17 37062.75 32369.36 31982.00 33845.51 33184.89 33653.62 33480.58 24278.12 387
gm-plane-assit81.40 33653.83 35962.72 32480.94 34592.39 20263.40 255
FMVSNet569.50 31967.96 32074.15 33082.97 31055.35 34580.01 31882.12 31662.56 32563.02 36981.53 33936.92 37681.92 35448.42 36274.06 32785.17 337
sss73.60 27773.64 26673.51 33582.80 31255.01 34976.12 35581.69 32162.47 32674.68 25685.85 26057.32 21578.11 37160.86 28180.93 23687.39 290
WB-MVSnew71.96 29871.65 28672.89 34084.67 27051.88 37282.29 28577.57 35762.31 32773.67 26883.00 32053.49 24781.10 35945.75 37982.13 22485.70 327
AllTest70.96 30468.09 31979.58 25785.15 25863.62 22684.58 24479.83 34262.31 32760.32 38086.73 23132.02 38688.96 29250.28 35271.57 34986.15 317
TestCases79.58 25785.15 25863.62 22679.83 34262.31 32760.32 38086.73 23132.02 38688.96 29250.28 35271.57 34986.15 317
1112_ss77.40 22576.43 22680.32 24189.11 15060.41 28083.65 26487.72 22962.13 33073.05 27586.72 23362.58 15489.97 27162.11 27080.80 23990.59 187
PVSNet64.34 1872.08 29770.87 29775.69 31086.21 23956.44 32874.37 37080.73 33062.06 33170.17 30782.23 33442.86 34783.31 34754.77 32984.45 18887.32 293
LS3D76.95 23274.82 24983.37 15790.45 10067.36 15389.15 10786.94 24561.87 33269.52 31790.61 13651.71 27094.53 11046.38 37586.71 15788.21 274
CostFormer75.24 26273.90 26279.27 26182.65 31758.27 29880.80 30282.73 31161.57 33375.33 24083.13 31855.52 22691.07 25564.98 24478.34 26988.45 269
new-patchmatchnet61.73 35761.73 35861.70 38172.74 39724.50 42469.16 39078.03 35461.40 33456.72 39275.53 38638.42 37076.48 38145.95 37857.67 38784.13 349
ANet_high50.57 37546.10 37963.99 37848.67 42339.13 41270.99 38280.85 32861.39 33531.18 41257.70 40817.02 41173.65 39931.22 40515.89 42079.18 385
MS-PatchMatch73.83 27572.67 27577.30 29883.87 28566.02 17681.82 28884.66 27561.37 33668.61 32682.82 32547.29 31088.21 30259.27 29284.32 19177.68 388
USDC70.33 31268.37 31476.21 30680.60 34656.23 33379.19 32886.49 25260.89 33761.29 37685.47 26931.78 38889.47 28153.37 33676.21 29882.94 365
cascas76.72 23674.64 25082.99 17585.78 24665.88 18182.33 28489.21 18660.85 33872.74 27881.02 34347.28 31193.75 14567.48 22285.02 17789.34 238
MDTV_nov1_ep1369.97 30683.18 30153.48 36177.10 35380.18 34160.45 33969.33 32080.44 34948.89 30586.90 31351.60 34478.51 265
TinyColmap67.30 33764.81 34274.76 32481.92 32856.68 32580.29 31581.49 32360.33 34056.27 39483.22 31524.77 40087.66 31045.52 38069.47 35879.95 383
test-mter71.41 30070.39 30374.48 32681.35 33858.04 30178.38 34077.46 35860.32 34169.95 31279.00 36436.08 37979.24 36566.13 23284.83 17986.15 317
131476.53 23875.30 24580.21 24383.93 28362.32 25484.66 24088.81 20160.23 34270.16 30884.07 30055.30 22890.73 26167.37 22383.21 21187.59 287
PatchT68.46 33067.85 32270.29 35980.70 34543.93 40372.47 37574.88 37460.15 34370.55 30076.57 37949.94 28981.59 35550.58 34874.83 32185.34 332
无先验87.48 16388.98 19660.00 34494.12 12567.28 22488.97 251
CR-MVSNet73.37 28071.27 29279.67 25581.32 34065.19 19675.92 35780.30 33859.92 34572.73 27981.19 34052.50 25286.69 31459.84 28777.71 27487.11 300
TDRefinement67.49 33464.34 34476.92 30173.47 39261.07 26984.86 23782.98 30659.77 34658.30 38785.13 27726.06 39687.89 30647.92 36960.59 38581.81 374
dp66.80 33965.43 34170.90 35879.74 36048.82 38975.12 36674.77 37559.61 34764.08 36577.23 37642.89 34680.72 36148.86 36166.58 36983.16 360
our_test_369.14 32267.00 33575.57 31279.80 35858.80 29277.96 34677.81 35559.55 34862.90 37278.25 37147.43 30983.97 34151.71 34367.58 36683.93 352
Test_1112_low_res76.40 24475.44 23979.27 26189.28 14058.09 29981.69 29187.07 24259.53 34972.48 28386.67 23861.30 17789.33 28260.81 28280.15 24890.41 194
pmmvs474.03 27471.91 28380.39 23881.96 32668.32 12781.45 29582.14 31559.32 35069.87 31485.13 27752.40 25488.13 30460.21 28574.74 32284.73 343
testdata79.97 24790.90 9164.21 21784.71 27459.27 35185.40 5892.91 7662.02 16589.08 28868.95 20991.37 9286.63 311
WB-MVS54.94 36554.72 36655.60 39173.50 39020.90 42574.27 37161.19 40859.16 35250.61 40074.15 38847.19 31275.78 38817.31 41635.07 41070.12 398
ppachtmachnet_test70.04 31567.34 33378.14 28379.80 35861.13 26779.19 32880.59 33259.16 35265.27 35779.29 36146.75 31687.29 31149.33 35866.72 36786.00 323
RPSCF73.23 28471.46 28878.54 27582.50 31959.85 28582.18 28682.84 31058.96 35471.15 29989.41 16645.48 33384.77 33758.82 29971.83 34791.02 172
pmmvs-eth3d70.50 31167.83 32478.52 27777.37 37366.18 17481.82 28881.51 32258.90 35563.90 36780.42 35042.69 34886.28 32058.56 30165.30 37483.11 361
OpenMVS_ROBcopyleft64.09 1970.56 31068.19 31677.65 29180.26 34959.41 29185.01 23382.96 30758.76 35665.43 35682.33 33137.63 37591.23 24845.34 38276.03 29982.32 369
114514_t80.68 14479.51 15084.20 12294.09 3867.27 15689.64 8791.11 12858.75 35774.08 26490.72 13458.10 20695.04 9269.70 20189.42 12090.30 199
Patchmtry70.74 30769.16 31075.49 31580.72 34454.07 35774.94 36880.30 33858.34 35870.01 30981.19 34052.50 25286.54 31653.37 33671.09 35285.87 326
test_cas_vis1_n_192073.76 27673.74 26573.81 33375.90 37759.77 28680.51 31082.40 31358.30 35981.62 11985.69 26244.35 33876.41 38276.29 13478.61 26285.23 334
Anonymous2024052168.80 32567.22 33473.55 33474.33 38454.11 35683.18 27385.61 26558.15 36061.68 37580.94 34530.71 39181.27 35857.00 31773.34 33785.28 333
旧先验286.56 19458.10 36187.04 4588.98 29074.07 158
JIA-IIPM66.32 34462.82 35576.82 30277.09 37461.72 26365.34 40375.38 37158.04 36264.51 36262.32 40242.05 35486.51 31751.45 34569.22 36082.21 370
pmmvs571.55 29970.20 30575.61 31177.83 37056.39 32981.74 29080.89 32757.76 36367.46 33584.49 28749.26 29985.32 33257.08 31675.29 31585.11 338
TESTMET0.1,169.89 31769.00 31172.55 34379.27 36656.85 32078.38 34074.71 37757.64 36468.09 32977.19 37737.75 37476.70 37863.92 25184.09 19484.10 350
RPMNet73.51 27870.49 30082.58 19281.32 34065.19 19675.92 35792.27 8457.60 36572.73 27976.45 38052.30 25595.43 7048.14 36777.71 27487.11 300
SSC-MVS53.88 36853.59 36854.75 39372.87 39619.59 42673.84 37360.53 41057.58 36649.18 40473.45 39146.34 32175.47 39116.20 41932.28 41269.20 399
新几何183.42 15493.13 5470.71 7485.48 26757.43 36781.80 11691.98 9463.28 14192.27 20864.60 24792.99 7087.27 294
YYNet165.03 34862.91 35371.38 35075.85 37856.60 32669.12 39174.66 37857.28 36854.12 39677.87 37345.85 32674.48 39549.95 35561.52 38283.05 362
MDA-MVSNet_test_wron65.03 34862.92 35271.37 35175.93 37656.73 32269.09 39274.73 37657.28 36854.03 39777.89 37245.88 32574.39 39649.89 35661.55 38182.99 364
Anonymous2023120668.60 32667.80 32571.02 35680.23 35150.75 38378.30 34480.47 33456.79 37066.11 35382.63 32846.35 32078.95 36743.62 38575.70 30283.36 358
tpm273.26 28371.46 28878.63 27083.34 29656.71 32480.65 30880.40 33756.63 37173.55 26982.02 33751.80 26891.24 24756.35 32378.42 26787.95 277
CHOSEN 1792x268877.63 22175.69 23383.44 15389.98 11468.58 12278.70 33687.50 23356.38 37275.80 22386.84 22958.67 20291.40 24361.58 27585.75 17490.34 196
HyFIR lowres test77.53 22275.40 24183.94 14489.59 12266.62 16780.36 31388.64 21056.29 37376.45 20885.17 27657.64 21193.28 16461.34 27883.10 21391.91 145
PVSNet_057.27 2061.67 35859.27 36168.85 36679.61 36157.44 31468.01 39373.44 38155.93 37458.54 38670.41 39744.58 33677.55 37447.01 37135.91 40971.55 397
UnsupCasMVSNet_bld63.70 35361.53 35970.21 36073.69 38951.39 37872.82 37481.89 31855.63 37557.81 38971.80 39438.67 36978.61 36849.26 35952.21 39980.63 380
MDTV_nov1_ep13_2view37.79 41375.16 36455.10 37666.53 34749.34 29753.98 33287.94 278
MVS78.19 20476.99 21281.78 20485.66 24766.99 16284.66 24090.47 14455.08 37772.02 29085.27 27263.83 13894.11 12666.10 23489.80 11584.24 347
test22291.50 8068.26 12984.16 25683.20 30154.63 37879.74 13991.63 10558.97 20191.42 9186.77 307
dongtai45.42 37945.38 38045.55 39773.36 39326.85 42167.72 39434.19 42354.15 37949.65 40356.41 41025.43 39762.94 41319.45 41428.09 41446.86 413
CHOSEN 280x42066.51 34264.71 34371.90 34781.45 33563.52 23157.98 41068.95 39453.57 38062.59 37376.70 37846.22 32275.29 39355.25 32679.68 25276.88 390
ADS-MVSNet266.20 34763.33 35074.82 32379.92 35458.75 29367.55 39575.19 37253.37 38165.25 35875.86 38342.32 35080.53 36241.57 39068.91 36185.18 335
ADS-MVSNet64.36 35162.88 35468.78 36779.92 35447.17 39267.55 39571.18 38653.37 38165.25 35875.86 38342.32 35073.99 39741.57 39068.91 36185.18 335
LF4IMVS64.02 35262.19 35669.50 36270.90 40053.29 36576.13 35477.18 36352.65 38358.59 38580.98 34423.55 40376.52 38053.06 33866.66 36878.68 386
tpm cat170.57 30968.31 31577.35 29782.41 32257.95 30478.08 34580.22 34052.04 38468.54 32777.66 37552.00 26387.84 30751.77 34272.07 34686.25 314
test_vis1_n69.85 31869.21 30971.77 34872.66 39855.27 34781.48 29476.21 36952.03 38575.30 24183.20 31728.97 39376.22 38474.60 15278.41 26883.81 353
Patchmatch-test64.82 35063.24 35169.57 36179.42 36449.82 38763.49 40769.05 39351.98 38659.95 38280.13 35350.91 27770.98 40140.66 39273.57 33287.90 279
N_pmnet52.79 37153.26 36951.40 39578.99 3677.68 42969.52 3873.89 42851.63 38757.01 39174.98 38740.83 35965.96 41037.78 39764.67 37580.56 382
test_fmvs1_n70.86 30670.24 30472.73 34272.51 39955.28 34681.27 29879.71 34451.49 38878.73 15384.87 28227.54 39577.02 37676.06 13779.97 25185.88 325
test_fmvs170.93 30570.52 29972.16 34673.71 38855.05 34880.82 30178.77 35151.21 38978.58 15884.41 29031.20 39076.94 37775.88 14080.12 25084.47 345
PMMVS69.34 32168.67 31271.35 35375.67 37962.03 25775.17 36373.46 38050.00 39068.68 32479.05 36252.07 26278.13 37061.16 27982.77 21673.90 394
test_fmvs268.35 33167.48 33170.98 35769.50 40251.95 37080.05 31776.38 36849.33 39174.65 25784.38 29123.30 40475.40 39274.51 15375.17 31885.60 328
ttmdpeth59.91 36057.10 36468.34 37067.13 40646.65 39574.64 36967.41 39748.30 39262.52 37485.04 28120.40 40675.93 38642.55 38845.90 40782.44 368
CMPMVSbinary51.72 2170.19 31468.16 31776.28 30573.15 39557.55 31279.47 32383.92 28648.02 39356.48 39384.81 28443.13 34586.42 31962.67 26281.81 22984.89 340
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
mvsany_test162.30 35661.26 36065.41 37769.52 40154.86 35066.86 39749.78 41746.65 39468.50 32883.21 31649.15 30066.28 40956.93 31860.77 38375.11 393
kuosan39.70 38340.40 38437.58 40064.52 40926.98 41965.62 40233.02 42446.12 39542.79 40748.99 41324.10 40246.56 42112.16 42226.30 41539.20 414
test_fmvs363.36 35461.82 35767.98 37262.51 41146.96 39477.37 35174.03 37945.24 39667.50 33478.79 36712.16 41672.98 40072.77 17366.02 37183.99 351
CVMVSNet72.99 28872.58 27774.25 32984.28 27450.85 38286.41 19783.45 29544.56 39773.23 27387.54 21349.38 29685.70 32565.90 23678.44 26686.19 316
test_vis1_rt60.28 35958.42 36265.84 37667.25 40555.60 34270.44 38560.94 40944.33 39859.00 38466.64 39924.91 39968.67 40662.80 25869.48 35773.25 395
mvsany_test353.99 36751.45 37261.61 38255.51 41644.74 40263.52 40645.41 42143.69 39958.11 38876.45 38017.99 40963.76 41254.77 32947.59 40376.34 391
EU-MVSNet68.53 32967.61 32971.31 35478.51 36947.01 39384.47 24684.27 28242.27 40066.44 35184.79 28540.44 36183.76 34258.76 30068.54 36483.17 359
FPMVS53.68 36951.64 37159.81 38465.08 40851.03 38069.48 38869.58 39141.46 40140.67 40872.32 39316.46 41270.00 40524.24 41265.42 37358.40 408
pmmvs357.79 36254.26 36768.37 36964.02 41056.72 32375.12 36665.17 40240.20 40252.93 39869.86 39820.36 40775.48 39045.45 38155.25 39572.90 396
new_pmnet50.91 37450.29 37452.78 39468.58 40334.94 41663.71 40556.63 41439.73 40344.95 40565.47 40021.93 40558.48 41434.98 40156.62 38964.92 402
MVS-HIRNet59.14 36157.67 36363.57 37981.65 33043.50 40471.73 37765.06 40339.59 40451.43 39957.73 40738.34 37182.58 35139.53 39373.95 32864.62 403
MVStest156.63 36452.76 37068.25 37161.67 41253.25 36671.67 37868.90 39538.59 40550.59 40183.05 31925.08 39870.66 40236.76 39938.56 40880.83 379
PMMVS240.82 38238.86 38646.69 39653.84 41816.45 42748.61 41349.92 41637.49 40631.67 41160.97 4048.14 42256.42 41628.42 40730.72 41367.19 401
test_vis3_rt49.26 37647.02 37856.00 38854.30 41745.27 40066.76 39948.08 41836.83 40744.38 40653.20 4117.17 42364.07 41156.77 32055.66 39158.65 407
test_f52.09 37250.82 37355.90 38953.82 41942.31 40959.42 40958.31 41336.45 40856.12 39570.96 39612.18 41557.79 41553.51 33556.57 39067.60 400
LCM-MVSNet54.25 36649.68 37667.97 37353.73 42045.28 39966.85 39880.78 32935.96 40939.45 41062.23 4038.70 42078.06 37248.24 36651.20 40080.57 381
APD_test153.31 37049.93 37563.42 38065.68 40750.13 38571.59 37966.90 39934.43 41040.58 40971.56 3958.65 42176.27 38334.64 40255.36 39363.86 404
PMVScopyleft37.38 2244.16 38140.28 38555.82 39040.82 42542.54 40865.12 40463.99 40534.43 41024.48 41657.12 4093.92 42676.17 38517.10 41755.52 39248.75 411
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft45.18 38041.86 38355.16 39277.03 37551.52 37632.50 41680.52 33332.46 41227.12 41535.02 4169.52 41975.50 38922.31 41360.21 38638.45 415
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DSMNet-mixed57.77 36356.90 36560.38 38367.70 40435.61 41469.18 38953.97 41532.30 41357.49 39079.88 35640.39 36268.57 40738.78 39672.37 34176.97 389
testf145.72 37741.96 38157.00 38656.90 41445.32 39766.14 40059.26 41126.19 41430.89 41360.96 4054.14 42470.64 40326.39 41046.73 40555.04 409
APD_test245.72 37741.96 38157.00 38656.90 41445.32 39766.14 40059.26 41126.19 41430.89 41360.96 4054.14 42470.64 40326.39 41046.73 40555.04 409
E-PMN31.77 38430.64 38735.15 40152.87 42127.67 41857.09 41147.86 41924.64 41616.40 42133.05 41711.23 41754.90 41714.46 42018.15 41822.87 417
EMVS30.81 38629.65 38834.27 40250.96 42225.95 42256.58 41246.80 42024.01 41715.53 42230.68 41812.47 41454.43 41812.81 42117.05 41922.43 418
MVEpermissive26.22 2330.37 38725.89 39143.81 39844.55 42435.46 41528.87 41739.07 42218.20 41818.58 42040.18 4152.68 42747.37 42017.07 41823.78 41748.60 412
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft27.40 40340.17 42626.90 42024.59 42717.44 41923.95 41748.61 4149.77 41826.48 42218.06 41524.47 41628.83 416
wuyk23d16.82 39015.94 39319.46 40458.74 41331.45 41739.22 4143.74 4296.84 4206.04 4232.70 4231.27 42824.29 42310.54 42314.40 4222.63 420
test_method31.52 38529.28 38938.23 39927.03 4276.50 43020.94 41862.21 4074.05 42122.35 41952.50 41213.33 41347.58 41927.04 40934.04 41160.62 405
tmp_tt18.61 38921.40 39210.23 4054.82 42810.11 42834.70 41530.74 4261.48 42223.91 41826.07 41928.42 39413.41 42427.12 40815.35 4217.17 419
EGC-MVSNET52.07 37347.05 37767.14 37483.51 29360.71 27480.50 31167.75 3960.07 4230.43 42475.85 38524.26 40181.54 35628.82 40662.25 37959.16 406
testmvs6.04 3938.02 3960.10 4070.08 4290.03 43269.74 3860.04 4300.05 4240.31 4251.68 4240.02 4300.04 4250.24 4240.02 4230.25 422
test1236.12 3928.11 3950.14 4060.06 4300.09 43171.05 3810.03 4310.04 4250.25 4261.30 4250.05 4290.03 4260.21 4250.01 4240.29 421
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k19.96 38826.61 3900.00 4080.00 4310.00 4330.00 41989.26 1840.00 4260.00 42788.61 18361.62 1690.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas5.26 3947.02 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42663.15 1460.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re7.23 3919.64 3940.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42786.72 2330.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS42.58 40639.46 394
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4997.53 289.67 696.44 994.41 39
No_MVS89.16 194.34 2775.53 292.99 4997.53 289.67 696.44 994.41 39
eth-test20.00 431
eth-test0.00 431
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4782.45 396.87 2083.77 6496.48 894.88 15
test_0728_SECOND87.71 3295.34 171.43 5893.49 994.23 397.49 489.08 1296.41 1294.21 49
GSMVS88.96 252
test_part295.06 872.65 3291.80 13
sam_mvs151.32 27388.96 252
sam_mvs50.01 287
ambc75.24 31973.16 39450.51 38463.05 40887.47 23464.28 36377.81 37417.80 41089.73 27657.88 30960.64 38485.49 329
MTGPAbinary92.02 93
test_post178.90 3345.43 42248.81 30685.44 33159.25 293
test_post5.46 42150.36 28584.24 339
patchmatchnet-post74.00 38951.12 27688.60 298
GG-mvs-BLEND75.38 31781.59 33255.80 33979.32 32569.63 39067.19 33873.67 39043.24 34488.90 29450.41 34984.50 18481.45 375
MTMP92.18 3432.83 425
test9_res84.90 4695.70 2692.87 113
agg_prior282.91 7395.45 2992.70 116
agg_prior92.85 6271.94 5091.78 10884.41 7894.93 94
test_prior472.60 3489.01 111
test_prior86.33 5792.61 6869.59 9192.97 5495.48 6793.91 60
新几何286.29 203
旧先验191.96 7465.79 18486.37 25593.08 7469.31 8392.74 7388.74 263
原ACMM286.86 183
testdata291.01 25662.37 265
segment_acmp73.08 38
test1286.80 5292.63 6770.70 7591.79 10782.71 10771.67 5496.16 4794.50 5193.54 84
plane_prior790.08 10868.51 123
plane_prior689.84 11768.70 11860.42 194
plane_prior592.44 7795.38 7578.71 11086.32 16291.33 160
plane_prior491.00 130
plane_prior189.90 116
n20.00 432
nn0.00 432
door-mid69.98 389
lessismore_v078.97 26681.01 34357.15 31765.99 40061.16 37782.82 32539.12 36691.34 24559.67 28946.92 40488.43 270
test1192.23 87
door69.44 392
HQP5-MVS66.98 163
BP-MVS77.47 122
HQP4-MVS77.24 18895.11 8791.03 170
HQP3-MVS92.19 9085.99 170
HQP2-MVS60.17 197
NP-MVS89.62 12168.32 12790.24 142
ACMMP++_ref81.95 227
ACMMP++81.25 232
Test By Simon64.33 133