This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
MM89.16 689.23 788.97 490.79 9573.65 1092.66 2391.17 12486.57 187.39 4194.97 1871.70 5397.68 192.19 195.63 2895.57 1
UA-Net85.08 6884.96 6985.45 7792.07 7368.07 13389.78 8290.86 13482.48 284.60 7593.20 6969.35 8195.22 8071.39 18290.88 9893.07 102
MVS_030487.69 2087.55 2488.12 1389.45 12971.76 5191.47 4989.54 17282.14 386.65 4994.28 3468.28 9597.46 690.81 295.31 3495.15 7
CANet86.45 4286.10 4987.51 3790.09 10770.94 7089.70 8592.59 7381.78 481.32 12091.43 11270.34 7097.23 1484.26 5793.36 6894.37 41
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5492.83 6081.50 585.79 5593.47 6373.02 4097.00 1884.90 4694.94 4094.10 51
EPNet83.72 8382.92 9586.14 6484.22 27569.48 9491.05 5685.27 26781.30 676.83 19791.65 10266.09 11895.56 6376.00 13893.85 6293.38 87
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6293.00 4680.90 788.06 2994.06 4576.43 1696.84 2188.48 2495.99 1894.34 43
3Dnovator+77.84 485.48 6084.47 7688.51 791.08 8673.49 1693.18 1193.78 1880.79 876.66 20293.37 6560.40 19696.75 2677.20 12493.73 6495.29 5
TranMVSNet+NR-MVSNet80.84 13580.31 13482.42 19387.85 19762.33 25287.74 15791.33 11980.55 977.99 17389.86 14765.23 12792.62 19167.05 22775.24 31692.30 131
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 4078.35 1396.77 2489.59 894.22 6094.67 27
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5980.26 1187.78 3394.27 3575.89 1996.81 2387.45 3296.44 993.05 105
UniMVSNet_NR-MVSNet81.88 11581.54 11582.92 17788.46 17163.46 23287.13 17392.37 8080.19 1278.38 16289.14 16771.66 5593.05 18170.05 19576.46 28992.25 133
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 7272.96 2593.73 593.67 2080.19 1288.10 2894.80 1973.76 3397.11 1587.51 3195.82 2194.90 14
Skip Steuart: Steuart Systems R&D Blog.
EI-MVSNet-Vis-set84.19 7683.81 8085.31 8088.18 18067.85 13787.66 15889.73 16780.05 1482.95 10089.59 15670.74 6794.82 10080.66 9784.72 18093.28 92
ETV-MVS84.90 7284.67 7285.59 7489.39 13368.66 12088.74 12192.64 7179.97 1584.10 8485.71 26069.32 8295.38 7580.82 9491.37 9292.72 114
EI-MVSNet-UG-set83.81 8083.38 8685.09 8787.87 19667.53 14787.44 16689.66 16879.74 1682.23 10989.41 16570.24 7394.74 10379.95 10183.92 19492.99 110
CS-MVS86.69 3986.95 3585.90 7090.76 9667.57 14692.83 1793.30 3279.67 1784.57 7692.27 8971.47 5695.02 9284.24 5993.46 6795.13 8
casdiffmvs_mvgpermissive85.99 4886.09 5085.70 7387.65 20867.22 15888.69 12393.04 4179.64 1885.33 5992.54 8673.30 3594.50 11183.49 6591.14 9595.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MTAPA87.23 3187.00 3287.90 2294.18 3574.25 586.58 19292.02 9279.45 1985.88 5394.80 1968.07 9696.21 4586.69 3695.34 3293.23 93
EC-MVSNet86.01 4786.38 4284.91 9589.31 13866.27 17292.32 3093.63 2179.37 2084.17 8391.88 9769.04 8895.43 7083.93 6393.77 6393.01 108
XVS87.18 3286.91 3788.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9394.17 3967.45 10396.60 3383.06 6994.50 5194.07 53
X-MVStestdata80.37 15377.83 18988.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9312.47 41967.45 10396.60 3383.06 6994.50 5194.07 53
HQP_MVS83.64 8583.14 8985.14 8490.08 10868.71 11691.25 5292.44 7679.12 2378.92 15091.00 12960.42 19495.38 7578.71 10986.32 16191.33 159
plane_prior291.25 5279.12 23
IS-MVSNet83.15 9682.81 9684.18 12289.94 11563.30 23691.59 4388.46 21279.04 2579.49 14292.16 9165.10 12894.28 11667.71 21891.86 8694.95 11
DU-MVS81.12 13180.52 13082.90 17887.80 20063.46 23287.02 17791.87 10279.01 2678.38 16289.07 16965.02 12993.05 18170.05 19576.46 28992.20 136
NR-MVSNet80.23 15579.38 15282.78 18687.80 20063.34 23586.31 20091.09 12879.01 2672.17 28789.07 16967.20 10692.81 19066.08 23475.65 30292.20 136
SPE-MVS-test86.29 4686.48 4185.71 7291.02 8867.21 15992.36 2993.78 1878.97 2883.51 9691.20 11970.65 6995.15 8381.96 8394.89 4294.77 24
DELS-MVS85.41 6385.30 6585.77 7188.49 16967.93 13685.52 22593.44 2778.70 2983.63 9589.03 17174.57 2495.71 6180.26 10094.04 6193.66 71
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
WR-MVS79.49 16879.22 15980.27 24188.79 15958.35 29585.06 23188.61 21078.56 3077.65 17888.34 19063.81 13990.66 26164.98 24377.22 27891.80 147
plane_prior368.60 12178.44 3178.92 150
UniMVSNet (Re)81.60 12381.11 12083.09 16888.38 17564.41 21387.60 15993.02 4578.42 3278.56 15888.16 19669.78 7793.26 16469.58 20276.49 28891.60 149
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5995.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 11
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 989.42 996.57 794.67 27
test_one_060195.07 771.46 5794.14 578.27 3592.05 1195.74 680.83 11
SD-MVS88.06 1488.50 1486.71 5492.60 6972.71 2991.81 4193.19 3577.87 3690.32 1794.00 4974.83 2393.78 14087.63 3094.27 5993.65 75
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
casdiffmvspermissive85.11 6785.14 6785.01 8987.20 22265.77 18487.75 15692.83 6077.84 3784.36 8092.38 8872.15 4693.93 13381.27 9090.48 10295.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BP-MVS184.32 7583.71 8186.17 6187.84 19867.85 13789.38 9889.64 17077.73 3883.98 8792.12 9356.89 22095.43 7084.03 6291.75 8795.24 6
CP-MVSNet78.22 20078.34 17677.84 28687.83 19954.54 35287.94 15091.17 12477.65 3973.48 26988.49 18662.24 16188.43 29962.19 26674.07 32590.55 187
plane_prior68.71 11690.38 7077.62 4086.16 165
baseline84.93 7084.98 6884.80 9987.30 22065.39 19287.30 17092.88 5777.62 4084.04 8692.26 9071.81 5093.96 12781.31 8890.30 10595.03 10
VDD-MVS83.01 10182.36 10284.96 9191.02 8866.40 16988.91 11388.11 21577.57 4284.39 7993.29 6752.19 25693.91 13477.05 12788.70 13194.57 34
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 6977.57 4283.84 9094.40 3272.24 4596.28 4385.65 4195.30 3593.62 78
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PEN-MVS77.73 21577.69 19777.84 28687.07 22553.91 35787.91 15291.18 12377.56 4473.14 27388.82 17661.23 17989.17 28559.95 28572.37 34090.43 192
OPM-MVS83.50 8982.95 9485.14 8488.79 15970.95 6989.13 10891.52 11377.55 4580.96 12791.75 9960.71 18794.50 11179.67 10486.51 15989.97 218
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5392.24 7169.03 10389.57 9093.39 3077.53 4689.79 1894.12 4278.98 1296.58 3585.66 4095.72 2494.58 32
PS-CasMVS78.01 20978.09 18277.77 28887.71 20554.39 35488.02 14691.22 12177.50 4773.26 27188.64 18160.73 18688.41 30061.88 27073.88 32990.53 188
MSLP-MVS++85.43 6285.76 5684.45 10891.93 7570.24 7990.71 5992.86 5877.46 4884.22 8192.81 8167.16 10792.94 18580.36 9894.35 5790.16 202
RRT-MVS82.60 10782.10 10684.10 12487.98 19262.94 24787.45 16591.27 12077.42 4979.85 13790.28 13956.62 22294.70 10679.87 10388.15 13994.67 27
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5993.49 992.73 6477.33 5092.12 995.78 480.98 997.40 989.08 1296.41 1293.33 90
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072695.27 571.25 5993.60 694.11 677.33 5092.81 395.79 380.98 9
balanced_conf0386.78 3786.99 3386.15 6291.24 8367.61 14490.51 6292.90 5677.26 5287.44 4091.63 10471.27 6096.06 4985.62 4295.01 3794.78 23
SED-MVS90.08 290.85 287.77 2695.30 270.98 6693.57 794.06 1077.24 5393.10 195.72 882.99 197.44 789.07 1496.63 494.88 15
test_241102_TWO94.06 1077.24 5392.78 495.72 881.26 897.44 789.07 1496.58 694.26 47
3Dnovator76.31 583.38 9382.31 10386.59 5587.94 19372.94 2890.64 6092.14 9177.21 5575.47 22792.83 7958.56 20394.72 10473.24 16792.71 7492.13 140
test_241102_ONE95.30 270.98 6694.06 1077.17 5693.10 195.39 1482.99 197.27 12
WR-MVS_H78.51 19578.49 17178.56 27388.02 18956.38 32988.43 13092.67 6677.14 5773.89 26487.55 21166.25 11689.24 28458.92 29673.55 33290.06 212
DeepC-MVS79.81 287.08 3586.88 3887.69 3391.16 8472.32 4390.31 7193.94 1477.12 5882.82 10494.23 3872.13 4797.09 1684.83 4995.37 3193.65 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FC-MVSNet-test81.52 12482.02 10980.03 24588.42 17455.97 33587.95 14993.42 2977.10 5977.38 18390.98 13169.96 7591.79 22368.46 21484.50 18392.33 129
DTE-MVSNet76.99 22976.80 21577.54 29486.24 23753.06 36687.52 16190.66 13777.08 6072.50 28188.67 18060.48 19389.52 27857.33 31370.74 35290.05 213
LFMVS81.82 11781.23 11883.57 15091.89 7663.43 23489.84 7881.85 31977.04 6183.21 9793.10 7052.26 25593.43 15971.98 17789.95 11393.85 63
UGNet80.83 13679.59 14884.54 10488.04 18868.09 13289.42 9588.16 21476.95 6276.22 21389.46 16149.30 29793.94 13068.48 21390.31 10491.60 149
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FIs82.07 11282.42 9981.04 22488.80 15858.34 29688.26 13993.49 2676.93 6378.47 16191.04 12569.92 7692.34 20569.87 19984.97 17792.44 128
GST-MVS87.42 2787.26 2887.89 2494.12 3672.97 2492.39 2693.43 2876.89 6484.68 6993.99 5170.67 6896.82 2284.18 6195.01 3793.90 61
mPP-MVS86.67 4186.32 4387.72 3094.41 2273.55 1392.74 2092.22 8776.87 6582.81 10594.25 3766.44 11396.24 4482.88 7494.28 5893.38 87
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6685.24 6094.32 3371.76 5196.93 1985.53 4395.79 2294.32 44
VPNet78.69 19178.66 16878.76 26888.31 17755.72 33984.45 24886.63 25076.79 6778.26 16590.55 13659.30 19989.70 27666.63 22977.05 28090.88 174
HFP-MVS87.58 2287.47 2687.94 1994.58 1673.54 1593.04 1293.24 3376.78 6884.91 6594.44 3070.78 6696.61 3284.53 5494.89 4293.66 71
ACMMPR87.44 2587.23 3088.08 1594.64 1373.59 1293.04 1293.20 3476.78 6884.66 7294.52 2368.81 9096.65 3084.53 5494.90 4194.00 56
ACMMPcopyleft85.89 5485.39 6187.38 3993.59 4572.63 3392.74 2093.18 3976.78 6880.73 12993.82 5664.33 13396.29 4282.67 8090.69 10093.23 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
region2R87.42 2787.20 3188.09 1494.63 1473.55 1393.03 1493.12 4076.73 7184.45 7794.52 2369.09 8496.70 2784.37 5694.83 4594.03 55
sasdasda85.91 5285.87 5486.04 6689.84 11769.44 9890.45 6893.00 4676.70 7288.01 3191.23 11673.28 3693.91 13481.50 8688.80 12794.77 24
canonicalmvs85.91 5285.87 5486.04 6689.84 11769.44 9890.45 6893.00 4676.70 7288.01 3191.23 11673.28 3693.91 13481.50 8688.80 12794.77 24
CP-MVS87.11 3386.92 3687.68 3494.20 3473.86 793.98 392.82 6376.62 7483.68 9294.46 2767.93 9895.95 5784.20 6094.39 5593.23 93
DeepC-MVS_fast79.65 386.91 3686.62 4087.76 2793.52 4672.37 4191.26 5193.04 4176.62 7484.22 8193.36 6671.44 5796.76 2580.82 9495.33 3394.16 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MGCFI-Net85.06 6985.51 5983.70 14689.42 13063.01 24289.43 9392.62 7276.43 7687.53 3891.34 11472.82 4293.42 16081.28 8988.74 13094.66 30
TSAR-MVS + GP.85.71 5785.33 6386.84 5091.34 8172.50 3689.07 10987.28 23676.41 7785.80 5490.22 14374.15 3195.37 7881.82 8491.88 8392.65 119
HQP-NCC89.33 13589.17 10376.41 7777.23 188
ACMP_Plane89.33 13589.17 10376.41 7777.23 188
HQP-MVS82.61 10582.02 10984.37 11089.33 13566.98 16289.17 10392.19 8976.41 7777.23 18890.23 14260.17 19795.11 8677.47 12185.99 16991.03 169
CANet_DTU80.61 14479.87 14282.83 18085.60 24863.17 24187.36 16788.65 20876.37 8175.88 22088.44 18853.51 24593.07 18073.30 16589.74 11692.25 133
VNet82.21 10982.41 10081.62 20690.82 9360.93 26984.47 24589.78 16476.36 8284.07 8591.88 9764.71 13290.26 26470.68 18988.89 12593.66 71
Vis-MVSNetpermissive83.46 9082.80 9785.43 7890.25 10468.74 11490.30 7290.13 15676.33 8380.87 12892.89 7761.00 18494.20 12172.45 17690.97 9693.35 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMMP_NAP88.05 1688.08 1787.94 1993.70 4173.05 2290.86 5793.59 2376.27 8488.14 2795.09 1771.06 6396.67 2987.67 2996.37 1494.09 52
alignmvs85.48 6085.32 6485.96 6989.51 12669.47 9589.74 8392.47 7576.17 8587.73 3791.46 11170.32 7193.78 14081.51 8588.95 12494.63 31
MVS_111021_HR85.14 6684.75 7186.32 5891.65 7972.70 3085.98 20890.33 14976.11 8682.08 11091.61 10671.36 5994.17 12381.02 9192.58 7592.08 141
HPM-MVScopyleft87.11 3386.98 3487.50 3893.88 3972.16 4592.19 3393.33 3176.07 8783.81 9193.95 5469.77 7896.01 5385.15 4494.66 4794.32 44
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
h-mvs3383.15 9682.19 10486.02 6890.56 9870.85 7388.15 14489.16 18776.02 8884.67 7091.39 11361.54 17095.50 6682.71 7775.48 30691.72 148
hse-mvs281.72 11880.94 12484.07 13088.72 16267.68 14285.87 21287.26 23776.02 8884.67 7088.22 19561.54 17093.48 15582.71 7773.44 33491.06 167
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 9092.29 795.66 1081.67 697.38 1187.44 3396.34 1593.95 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CLD-MVS82.31 10881.65 11484.29 11588.47 17067.73 14185.81 21692.35 8175.78 9178.33 16486.58 24264.01 13694.35 11476.05 13787.48 14590.79 176
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SF-MVS88.46 1288.74 1287.64 3592.78 6471.95 4992.40 2494.74 275.71 9289.16 1995.10 1675.65 2196.19 4687.07 3496.01 1794.79 22
testdata184.14 25675.71 92
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9491.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 37
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
VPA-MVSNet80.60 14580.55 12980.76 23188.07 18760.80 27286.86 18291.58 11275.67 9580.24 13389.45 16363.34 14090.25 26570.51 19179.22 25991.23 162
PGM-MVS86.68 4086.27 4487.90 2294.22 3373.38 1890.22 7393.04 4175.53 9683.86 8994.42 3167.87 10096.64 3182.70 7994.57 5093.66 71
Effi-MVS+83.62 8783.08 9085.24 8288.38 17567.45 14888.89 11489.15 18875.50 9782.27 10888.28 19269.61 7994.45 11377.81 11887.84 14093.84 65
test_prior288.85 11675.41 9884.91 6593.54 5974.28 2983.31 6795.86 20
LPG-MVS_test82.08 11181.27 11784.50 10589.23 14268.76 11290.22 7391.94 9875.37 9976.64 20391.51 10854.29 23794.91 9478.44 11183.78 19589.83 223
LGP-MVS_train84.50 10589.23 14268.76 11291.94 9875.37 9976.64 20391.51 10854.29 23794.91 9478.44 11183.78 19589.83 223
MG-MVS83.41 9183.45 8483.28 15892.74 6562.28 25488.17 14289.50 17475.22 10181.49 11992.74 8566.75 10895.11 8672.85 17091.58 8992.45 127
LCM-MVSNet-Re77.05 22876.94 21277.36 29587.20 22251.60 37480.06 31580.46 33475.20 10267.69 33186.72 23262.48 15588.98 28963.44 25389.25 12091.51 153
SDMVSNet80.38 15180.18 13780.99 22589.03 15164.94 20180.45 31189.40 17675.19 10376.61 20589.98 14560.61 19187.69 30876.83 13083.55 20490.33 196
sd_testset77.70 21877.40 20278.60 27189.03 15160.02 28379.00 33085.83 26275.19 10376.61 20589.98 14554.81 22985.46 32962.63 26283.55 20490.33 196
MP-MVS-pluss87.67 2187.72 2087.54 3693.64 4472.04 4889.80 8193.50 2575.17 10586.34 5195.29 1570.86 6596.00 5488.78 1996.04 1694.58 32
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test111179.43 17179.18 16080.15 24389.99 11353.31 36387.33 16977.05 36375.04 10680.23 13492.77 8448.97 30292.33 20668.87 20992.40 7994.81 21
Effi-MVS+-dtu80.03 15978.57 17084.42 10985.13 25968.74 11488.77 11888.10 21674.99 10774.97 25083.49 31157.27 21693.36 16173.53 16180.88 23691.18 163
reproduce-ours87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10888.96 2095.54 1271.20 6196.54 3686.28 3793.49 6593.06 103
our_new_method87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10888.96 2095.54 1271.20 6196.54 3686.28 3793.49 6593.06 103
OMC-MVS82.69 10381.97 11184.85 9688.75 16167.42 14987.98 14790.87 13374.92 11079.72 13991.65 10262.19 16293.96 12775.26 14886.42 16093.16 98
test250677.30 22676.49 22379.74 25190.08 10852.02 36787.86 15563.10 40574.88 11180.16 13592.79 8238.29 37192.35 20468.74 21192.50 7794.86 18
ECVR-MVScopyleft79.61 16479.26 15780.67 23390.08 10854.69 35087.89 15377.44 35974.88 11180.27 13292.79 8248.96 30392.45 19868.55 21292.50 7794.86 18
MonoMVSNet76.49 24175.80 23078.58 27281.55 33258.45 29486.36 19986.22 25674.87 11374.73 25483.73 30651.79 26888.73 29470.78 18672.15 34388.55 267
nrg03083.88 7983.53 8384.96 9186.77 23069.28 10290.46 6792.67 6674.79 11482.95 10091.33 11572.70 4393.09 17980.79 9679.28 25892.50 124
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 11592.29 795.97 274.28 2997.24 1388.58 2196.91 194.87 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
reproduce_model87.28 3087.39 2786.95 4893.10 5671.24 6391.60 4293.19 3574.69 11688.80 2395.61 1170.29 7296.44 3986.20 3993.08 6993.16 98
MVS_111021_LR82.61 10582.11 10584.11 12388.82 15671.58 5585.15 22886.16 25874.69 11680.47 13191.04 12562.29 15990.55 26280.33 9990.08 11090.20 201
EIA-MVS83.31 9582.80 9784.82 9789.59 12265.59 18788.21 14092.68 6574.66 11878.96 14886.42 24769.06 8695.26 7975.54 14490.09 10993.62 78
TSAR-MVS + MP.88.02 1788.11 1687.72 3093.68 4372.13 4691.41 5092.35 8174.62 11988.90 2293.85 5575.75 2096.00 5487.80 2894.63 4895.04 9
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SR-MVS86.73 3886.67 3986.91 4994.11 3772.11 4792.37 2892.56 7474.50 12086.84 4894.65 2267.31 10595.77 5984.80 5092.85 7292.84 113
FOURS195.00 1072.39 3995.06 193.84 1574.49 12191.30 15
ACMP74.13 681.51 12680.57 12884.36 11189.42 13068.69 11989.97 7791.50 11774.46 12275.04 24990.41 13853.82 24294.54 10877.56 12082.91 21389.86 222
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EPP-MVSNet83.40 9283.02 9284.57 10390.13 10664.47 21192.32 3090.73 13674.45 12379.35 14491.10 12269.05 8795.12 8472.78 17187.22 14894.13 50
save fliter93.80 4072.35 4290.47 6691.17 12474.31 124
MVS_Test83.15 9683.06 9183.41 15586.86 22663.21 23886.11 20692.00 9474.31 12482.87 10289.44 16470.03 7493.21 16877.39 12388.50 13593.81 66
UniMVSNet_ETH3D79.10 18178.24 17981.70 20586.85 22760.24 28187.28 17188.79 20174.25 12676.84 19690.53 13749.48 29391.56 23267.98 21682.15 22293.29 91
IterMVS-LS80.06 15879.38 15282.11 19785.89 24363.20 23986.79 18589.34 17874.19 12775.45 23086.72 23266.62 10992.39 20172.58 17376.86 28390.75 179
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet80.52 14979.98 13982.12 19684.28 27363.19 24086.41 19688.95 19874.18 12878.69 15387.54 21266.62 10992.43 19972.57 17480.57 24290.74 180
Vis-MVSNet (Re-imp)78.36 19878.45 17278.07 28488.64 16551.78 37386.70 18979.63 34474.14 12975.11 24690.83 13261.29 17889.75 27458.10 30691.60 8892.69 117
v879.97 16179.02 16382.80 18384.09 27864.50 21087.96 14890.29 15274.13 13075.24 24286.81 22962.88 15193.89 13774.39 15475.40 31190.00 214
CSCG86.41 4586.19 4687.07 4592.91 6172.48 3790.81 5893.56 2473.95 13183.16 9991.07 12475.94 1895.19 8179.94 10294.38 5693.55 82
thres100view90076.50 23875.55 23779.33 25989.52 12556.99 31885.83 21583.23 29773.94 13276.32 21187.12 22451.89 26591.95 21748.33 36283.75 19889.07 240
9.1488.26 1592.84 6391.52 4894.75 173.93 13388.57 2594.67 2175.57 2295.79 5886.77 3595.76 23
HPM-MVS_fast85.35 6484.95 7086.57 5693.69 4270.58 7892.15 3591.62 11073.89 13482.67 10794.09 4362.60 15295.54 6580.93 9292.93 7193.57 80
PAPM_NR83.02 10082.41 10084.82 9792.47 7066.37 17087.93 15191.80 10573.82 13577.32 18590.66 13467.90 9994.90 9670.37 19289.48 11893.19 97
thres600view776.50 23875.44 23879.68 25389.40 13257.16 31585.53 22383.23 29773.79 13676.26 21287.09 22551.89 26591.89 22048.05 36783.72 20190.00 214
testing9176.54 23675.66 23579.18 26388.43 17355.89 33681.08 29883.00 30473.76 13775.34 23584.29 29346.20 32290.07 26864.33 24784.50 18391.58 151
v7n78.97 18577.58 20083.14 16683.45 29365.51 18888.32 13791.21 12273.69 13872.41 28386.32 25057.93 20793.81 13969.18 20575.65 30290.11 206
dcpmvs_285.63 5886.15 4884.06 13291.71 7864.94 20186.47 19591.87 10273.63 13986.60 5093.02 7576.57 1591.87 22283.36 6692.15 8095.35 3
v2v48280.23 15579.29 15683.05 17183.62 28964.14 21787.04 17689.97 16073.61 14078.18 16887.22 22061.10 18293.82 13876.11 13576.78 28691.18 163
Baseline_NR-MVSNet78.15 20478.33 17777.61 29185.79 24456.21 33386.78 18685.76 26373.60 14177.93 17487.57 20965.02 12988.99 28867.14 22675.33 31387.63 283
BH-RMVSNet79.61 16478.44 17383.14 16689.38 13465.93 17884.95 23487.15 24073.56 14278.19 16789.79 14956.67 22193.36 16159.53 29086.74 15590.13 204
APD-MVS_3200maxsize85.97 5085.88 5386.22 6092.69 6669.53 9291.93 3792.99 4973.54 14385.94 5294.51 2665.80 12395.61 6283.04 7192.51 7693.53 84
SR-MVS-dyc-post85.77 5585.61 5886.23 5993.06 5870.63 7691.88 3892.27 8373.53 14485.69 5694.45 2865.00 13195.56 6382.75 7591.87 8492.50 124
RE-MVS-def85.48 6093.06 5870.63 7691.88 3892.27 8373.53 14485.69 5694.45 2863.87 13782.75 7591.87 8492.50 124
reproduce_monomvs75.40 25974.38 25578.46 27883.92 28357.80 30783.78 26086.94 24473.47 14672.25 28684.47 28738.74 36789.27 28375.32 14770.53 35388.31 271
test_fmvsmconf_n85.92 5186.04 5185.57 7585.03 26169.51 9389.62 8990.58 13973.42 14787.75 3594.02 4772.85 4193.24 16590.37 390.75 9993.96 57
tfpn200view976.42 24275.37 24279.55 25889.13 14657.65 30985.17 22683.60 28973.41 14876.45 20786.39 24852.12 25791.95 21748.33 36283.75 19889.07 240
thres40076.50 23875.37 24279.86 24889.13 14657.65 30985.17 22683.60 28973.41 14876.45 20786.39 24852.12 25791.95 21748.33 36283.75 19890.00 214
test_fmvsmconf0.1_n85.61 5985.65 5785.50 7682.99 30869.39 10089.65 8690.29 15273.31 15087.77 3494.15 4171.72 5293.23 16690.31 490.67 10193.89 62
testing9976.09 24875.12 24679.00 26488.16 18155.50 34280.79 30281.40 32373.30 15175.17 24384.27 29544.48 33690.02 26964.28 24884.22 19291.48 156
v14878.72 19077.80 19181.47 21082.73 31361.96 25886.30 20188.08 21773.26 15276.18 21585.47 26862.46 15692.36 20371.92 17873.82 33090.09 208
FA-MVS(test-final)80.96 13379.91 14184.10 12488.30 17865.01 19984.55 24490.01 15973.25 15379.61 14087.57 20958.35 20594.72 10471.29 18386.25 16392.56 121
test_fmvsmconf0.01_n84.73 7384.52 7585.34 7980.25 34969.03 10389.47 9189.65 16973.24 15486.98 4694.27 3566.62 10993.23 16690.26 589.95 11393.78 68
v1079.74 16378.67 16782.97 17684.06 27964.95 20087.88 15490.62 13873.11 15575.11 24686.56 24361.46 17394.05 12673.68 15975.55 30489.90 220
MCST-MVS87.37 2987.25 2987.73 2894.53 1772.46 3889.82 7993.82 1673.07 15684.86 6892.89 7776.22 1796.33 4184.89 4895.13 3694.40 40
baseline176.98 23076.75 21977.66 28988.13 18355.66 34085.12 22981.89 31773.04 15776.79 19888.90 17362.43 15787.78 30763.30 25571.18 35089.55 232
APD-MVScopyleft87.44 2587.52 2587.19 4294.24 3272.39 3991.86 4092.83 6073.01 15888.58 2494.52 2373.36 3496.49 3884.26 5795.01 3792.70 115
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
diffmvspermissive82.10 11081.88 11282.76 18883.00 30663.78 22483.68 26289.76 16572.94 15982.02 11189.85 14865.96 12290.79 25882.38 8187.30 14793.71 70
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
K. test v371.19 30068.51 31279.21 26283.04 30557.78 30884.35 25276.91 36472.90 16062.99 37082.86 32339.27 36491.09 25361.65 27352.66 39688.75 260
MVSMamba_PlusPlus85.99 4885.96 5286.05 6591.09 8567.64 14389.63 8892.65 6972.89 16184.64 7391.71 10071.85 4996.03 5084.77 5194.45 5494.49 36
Fast-Effi-MVS+-dtu78.02 20876.49 22382.62 19083.16 30266.96 16486.94 17987.45 23472.45 16271.49 29584.17 29754.79 23391.58 23067.61 21980.31 24589.30 238
PHI-MVS86.43 4386.17 4787.24 4190.88 9270.96 6892.27 3294.07 972.45 16285.22 6191.90 9669.47 8096.42 4083.28 6895.94 1994.35 42
thres20075.55 25474.47 25378.82 26787.78 20357.85 30583.07 27783.51 29272.44 16475.84 22184.42 28852.08 26091.75 22547.41 36983.64 20386.86 304
test_yl81.17 12980.47 13183.24 16189.13 14663.62 22586.21 20389.95 16172.43 16581.78 11689.61 15457.50 21393.58 14870.75 18786.90 15292.52 122
DCV-MVSNet81.17 12980.47 13183.24 16189.13 14663.62 22586.21 20389.95 16172.43 16581.78 11689.61 15457.50 21393.58 14870.75 18786.90 15292.52 122
BH-untuned79.47 16978.60 16982.05 19889.19 14465.91 17986.07 20788.52 21172.18 16775.42 23187.69 20661.15 18193.54 15260.38 28286.83 15486.70 308
TransMVSNet (Re)75.39 26074.56 25177.86 28585.50 25057.10 31786.78 18686.09 26072.17 16871.53 29487.34 21563.01 15089.31 28256.84 31861.83 37987.17 295
GA-MVS76.87 23275.17 24581.97 20182.75 31262.58 24981.44 29586.35 25572.16 16974.74 25382.89 32246.20 32292.02 21568.85 21081.09 23491.30 161
mmtdpeth74.16 26973.01 27177.60 29383.72 28861.13 26685.10 23085.10 26972.06 17077.21 19280.33 35043.84 34085.75 32377.14 12652.61 39785.91 323
v114480.03 15979.03 16283.01 17383.78 28664.51 20887.11 17590.57 14171.96 17178.08 17186.20 25261.41 17493.94 13074.93 14977.23 27790.60 185
PS-MVSNAJss82.07 11281.31 11684.34 11386.51 23567.27 15589.27 10191.51 11471.75 17279.37 14390.22 14363.15 14694.27 11777.69 11982.36 22191.49 155
EPNet_dtu75.46 25674.86 24777.23 29882.57 31754.60 35186.89 18183.09 30171.64 17366.25 35185.86 25855.99 22488.04 30454.92 32786.55 15889.05 245
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GBi-Net78.40 19677.40 20281.40 21387.60 20963.01 24288.39 13289.28 18071.63 17475.34 23587.28 21654.80 23091.11 24862.72 25879.57 25290.09 208
test178.40 19677.40 20281.40 21387.60 20963.01 24288.39 13289.28 18071.63 17475.34 23587.28 21654.80 23091.11 24862.72 25879.57 25290.09 208
FMVSNet278.20 20277.21 20681.20 21987.60 20962.89 24887.47 16389.02 19371.63 17475.29 24187.28 21654.80 23091.10 25162.38 26379.38 25689.61 230
patch_mono-283.65 8484.54 7380.99 22590.06 11265.83 18184.21 25488.74 20671.60 17785.01 6292.44 8774.51 2583.50 34482.15 8292.15 8093.64 77
V4279.38 17578.24 17982.83 18081.10 34165.50 18985.55 22189.82 16371.57 17878.21 16686.12 25460.66 18993.18 17475.64 14175.46 30889.81 225
API-MVS81.99 11481.23 11884.26 12090.94 9070.18 8591.10 5589.32 17971.51 17978.66 15588.28 19265.26 12695.10 8964.74 24591.23 9487.51 287
tttt051779.40 17377.91 18683.90 14488.10 18563.84 22288.37 13584.05 28471.45 18076.78 19989.12 16849.93 29094.89 9770.18 19483.18 21192.96 111
pm-mvs177.25 22776.68 22178.93 26684.22 27558.62 29386.41 19688.36 21371.37 18173.31 27088.01 20261.22 18089.15 28664.24 24973.01 33789.03 246
testing22274.04 27172.66 27578.19 28187.89 19555.36 34381.06 29979.20 34871.30 18274.65 25683.57 31039.11 36688.67 29651.43 34585.75 17390.53 188
GeoE81.71 11981.01 12383.80 14589.51 12664.45 21288.97 11188.73 20771.27 18378.63 15689.76 15066.32 11593.20 17169.89 19886.02 16893.74 69
tt080578.73 18977.83 18981.43 21185.17 25560.30 28089.41 9690.90 13171.21 18477.17 19388.73 17746.38 31793.21 16872.57 17478.96 26090.79 176
FMVSNet377.88 21276.85 21480.97 22786.84 22862.36 25186.52 19488.77 20271.13 18575.34 23586.66 23854.07 24091.10 25162.72 25879.57 25289.45 234
VDDNet81.52 12480.67 12784.05 13590.44 10164.13 21889.73 8485.91 26171.11 18683.18 9893.48 6150.54 28293.49 15473.40 16488.25 13794.54 35
fmvsm_s_conf0.5_n83.80 8183.71 8184.07 13086.69 23267.31 15389.46 9283.07 30271.09 18786.96 4793.70 5869.02 8991.47 23988.79 1884.62 18293.44 86
XVG-OURS80.41 15079.23 15883.97 14185.64 24769.02 10583.03 27990.39 14471.09 18777.63 17991.49 11054.62 23691.35 24375.71 14083.47 20691.54 152
SixPastTwentyTwo73.37 27971.26 29279.70 25285.08 26057.89 30485.57 21783.56 29171.03 18965.66 35385.88 25742.10 35292.57 19359.11 29463.34 37788.65 264
ZD-MVS94.38 2572.22 4492.67 6670.98 19087.75 3594.07 4474.01 3296.70 2784.66 5294.84 44
v119279.59 16678.43 17483.07 17083.55 29164.52 20786.93 18090.58 13970.83 19177.78 17685.90 25659.15 20093.94 13073.96 15877.19 27990.76 178
Fast-Effi-MVS+80.81 13779.92 14083.47 15188.85 15364.51 20885.53 22389.39 17770.79 19278.49 16085.06 27867.54 10293.58 14867.03 22886.58 15792.32 130
PS-MVSNAJ81.69 12081.02 12283.70 14689.51 12668.21 13084.28 25390.09 15770.79 19281.26 12485.62 26563.15 14694.29 11575.62 14288.87 12688.59 265
LTVRE_ROB69.57 1376.25 24574.54 25281.41 21288.60 16664.38 21479.24 32589.12 19170.76 19469.79 31587.86 20349.09 30093.20 17156.21 32380.16 24686.65 309
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
testing1175.14 26274.01 25878.53 27588.16 18156.38 32980.74 30580.42 33570.67 19572.69 28083.72 30743.61 34289.86 27162.29 26583.76 19789.36 236
fmvsm_s_conf0.1_n83.56 8883.38 8684.10 12484.86 26367.28 15489.40 9783.01 30370.67 19587.08 4493.96 5368.38 9391.45 24088.56 2284.50 18393.56 81
xiu_mvs_v2_base81.69 12081.05 12183.60 14889.15 14568.03 13584.46 24790.02 15870.67 19581.30 12386.53 24563.17 14594.19 12275.60 14388.54 13388.57 266
XVG-OURS-SEG-HR80.81 13779.76 14483.96 14285.60 24868.78 11183.54 26890.50 14270.66 19876.71 20191.66 10160.69 18891.26 24576.94 12881.58 22991.83 145
Anonymous20240521178.25 19977.01 20981.99 20091.03 8760.67 27484.77 23783.90 28670.65 19980.00 13691.20 11941.08 35791.43 24165.21 24085.26 17593.85 63
DP-MVS Recon83.11 9982.09 10786.15 6294.44 1970.92 7188.79 11792.20 8870.53 20079.17 14691.03 12764.12 13596.03 5068.39 21590.14 10891.50 154
FMVSNet177.44 22276.12 22981.40 21386.81 22963.01 24288.39 13289.28 18070.49 20174.39 26087.28 21649.06 30191.11 24860.91 27978.52 26390.09 208
testing368.56 32767.67 32771.22 35487.33 21942.87 40483.06 27871.54 38470.36 20269.08 32184.38 29030.33 39185.69 32537.50 39775.45 30985.09 338
ab-mvs79.51 16778.97 16481.14 22188.46 17160.91 27083.84 25989.24 18470.36 20279.03 14788.87 17563.23 14490.21 26665.12 24182.57 21992.28 132
tfpnnormal74.39 26573.16 26978.08 28386.10 24258.05 29984.65 24187.53 23170.32 20471.22 29785.63 26454.97 22889.86 27143.03 38575.02 31886.32 312
ACMM73.20 880.78 14279.84 14383.58 14989.31 13868.37 12589.99 7691.60 11170.28 20577.25 18689.66 15253.37 24793.53 15374.24 15682.85 21488.85 255
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.5_n_a83.63 8683.41 8584.28 11686.14 23968.12 13189.43 9382.87 30770.27 20687.27 4393.80 5769.09 8491.58 23088.21 2683.65 20293.14 100
ACMH+68.96 1476.01 24974.01 25882.03 19988.60 16665.31 19488.86 11587.55 23070.25 20767.75 33087.47 21441.27 35593.19 17358.37 30375.94 29987.60 284
IB-MVS68.01 1575.85 25173.36 26783.31 15784.76 26466.03 17483.38 26985.06 27070.21 20869.40 31781.05 34145.76 32794.66 10765.10 24275.49 30589.25 239
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thisisatest053079.40 17377.76 19484.31 11487.69 20765.10 19887.36 16784.26 28270.04 20977.42 18288.26 19449.94 28894.79 10270.20 19384.70 18193.03 106
mvsmamba80.60 14579.38 15284.27 11889.74 12067.24 15787.47 16386.95 24370.02 21075.38 23388.93 17251.24 27392.56 19475.47 14689.22 12193.00 109
test_fmvsmvis_n_192084.02 7883.87 7984.49 10784.12 27769.37 10188.15 14487.96 22070.01 21183.95 8893.23 6868.80 9191.51 23788.61 2089.96 11292.57 120
v14419279.47 16978.37 17582.78 18683.35 29463.96 22086.96 17890.36 14869.99 21277.50 18085.67 26360.66 18993.77 14274.27 15576.58 28790.62 183
test_fmvsm_n_192085.29 6585.34 6285.13 8686.12 24069.93 8688.65 12590.78 13569.97 21388.27 2693.98 5271.39 5891.54 23488.49 2390.45 10393.91 59
c3_l78.75 18877.91 18681.26 21782.89 31061.56 26384.09 25789.13 19069.97 21375.56 22584.29 29366.36 11492.09 21373.47 16375.48 30690.12 205
v192192079.22 17778.03 18382.80 18383.30 29663.94 22186.80 18490.33 14969.91 21577.48 18185.53 26658.44 20493.75 14473.60 16076.85 28490.71 181
ACMH67.68 1675.89 25073.93 26081.77 20488.71 16366.61 16788.62 12689.01 19469.81 21666.78 34286.70 23641.95 35491.51 23755.64 32478.14 26987.17 295
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.1_n_a83.32 9482.99 9384.28 11683.79 28568.07 13389.34 10082.85 30869.80 21787.36 4294.06 4568.34 9491.56 23287.95 2783.46 20793.21 96
DPM-MVS84.93 7084.29 7786.84 5090.20 10573.04 2387.12 17493.04 4169.80 21782.85 10391.22 11873.06 3996.02 5276.72 13294.63 4891.46 158
MAR-MVS81.84 11680.70 12685.27 8191.32 8271.53 5689.82 7990.92 13069.77 21978.50 15986.21 25162.36 15894.52 11065.36 23992.05 8289.77 226
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
XVG-ACMP-BASELINE76.11 24774.27 25781.62 20683.20 29964.67 20683.60 26689.75 16669.75 22071.85 29087.09 22532.78 38492.11 21269.99 19780.43 24488.09 275
BH-w/o78.21 20177.33 20580.84 22988.81 15765.13 19784.87 23587.85 22569.75 22074.52 25884.74 28561.34 17693.11 17858.24 30585.84 17184.27 345
v124078.99 18477.78 19282.64 18983.21 29863.54 22986.62 19190.30 15169.74 22277.33 18485.68 26257.04 21893.76 14373.13 16876.92 28190.62 183
ET-MVSNet_ETH3D78.63 19276.63 22284.64 10286.73 23169.47 9585.01 23284.61 27569.54 22366.51 34986.59 24050.16 28591.75 22576.26 13484.24 19192.69 117
eth_miper_zixun_eth77.92 21176.69 22081.61 20883.00 30661.98 25783.15 27389.20 18669.52 22474.86 25284.35 29261.76 16692.56 19471.50 18172.89 33890.28 199
PVSNet_Blended_VisFu82.62 10481.83 11384.96 9190.80 9469.76 9088.74 12191.70 10969.39 22578.96 14888.46 18765.47 12594.87 9974.42 15388.57 13290.24 200
mvs_tets79.13 18077.77 19383.22 16384.70 26566.37 17089.17 10390.19 15469.38 22675.40 23289.46 16144.17 33893.15 17576.78 13180.70 24090.14 203
PVSNet_BlendedMVS80.60 14580.02 13882.36 19588.85 15365.40 19086.16 20592.00 9469.34 22778.11 16986.09 25566.02 12094.27 11771.52 17982.06 22487.39 289
AdaColmapbinary80.58 14879.42 15184.06 13293.09 5768.91 10889.36 9988.97 19769.27 22875.70 22389.69 15157.20 21795.77 5963.06 25688.41 13687.50 288
ETVMVS72.25 29471.05 29375.84 30787.77 20451.91 37079.39 32374.98 37269.26 22973.71 26682.95 32040.82 35986.14 32046.17 37584.43 18889.47 233
ITE_SJBPF78.22 28081.77 32860.57 27583.30 29569.25 23067.54 33287.20 22136.33 37787.28 31154.34 33074.62 32286.80 305
cl____77.72 21676.76 21780.58 23482.49 31960.48 27783.09 27587.87 22369.22 23174.38 26185.22 27462.10 16391.53 23571.09 18475.41 31089.73 228
DIV-MVS_self_test77.72 21676.76 21780.58 23482.48 32060.48 27783.09 27587.86 22469.22 23174.38 26185.24 27262.10 16391.53 23571.09 18475.40 31189.74 227
jajsoiax79.29 17677.96 18483.27 15984.68 26666.57 16889.25 10290.16 15569.20 23375.46 22989.49 15845.75 32893.13 17776.84 12980.80 23890.11 206
IterMVS-SCA-FT75.43 25773.87 26280.11 24482.69 31464.85 20381.57 29283.47 29369.16 23470.49 30184.15 29851.95 26388.15 30269.23 20472.14 34487.34 291
CL-MVSNet_self_test72.37 29271.46 28775.09 31979.49 36253.53 35980.76 30485.01 27269.12 23570.51 30082.05 33557.92 20884.13 33952.27 34066.00 37187.60 284
AUN-MVS79.21 17877.60 19984.05 13588.71 16367.61 14485.84 21487.26 23769.08 23677.23 18888.14 20053.20 24993.47 15675.50 14573.45 33391.06 167
xiu_mvs_v1_base_debu80.80 13979.72 14584.03 13787.35 21470.19 8285.56 21888.77 20269.06 23781.83 11288.16 19650.91 27692.85 18778.29 11587.56 14289.06 242
xiu_mvs_v1_base80.80 13979.72 14584.03 13787.35 21470.19 8285.56 21888.77 20269.06 23781.83 11288.16 19650.91 27692.85 18778.29 11587.56 14289.06 242
xiu_mvs_v1_base_debi80.80 13979.72 14584.03 13787.35 21470.19 8285.56 21888.77 20269.06 23781.83 11288.16 19650.91 27692.85 18778.29 11587.56 14289.06 242
MVSTER79.01 18377.88 18882.38 19483.07 30364.80 20484.08 25888.95 19869.01 24078.69 15387.17 22354.70 23492.43 19974.69 15080.57 24289.89 221
cl2278.07 20677.01 20981.23 21882.37 32261.83 26083.55 26787.98 21968.96 24175.06 24883.87 30061.40 17591.88 22173.53 16176.39 29189.98 217
miper_ehance_all_eth78.59 19477.76 19481.08 22382.66 31561.56 26383.65 26389.15 18868.87 24275.55 22683.79 30466.49 11292.03 21473.25 16676.39 29189.64 229
PAPR81.66 12280.89 12583.99 14090.27 10364.00 21986.76 18891.77 10868.84 24377.13 19589.50 15767.63 10194.88 9867.55 22088.52 13493.09 101
CPTT-MVS83.73 8283.33 8884.92 9493.28 4970.86 7292.09 3690.38 14568.75 24479.57 14192.83 7960.60 19293.04 18380.92 9391.56 9090.86 175
train_agg86.43 4386.20 4587.13 4493.26 5272.96 2588.75 11991.89 10068.69 24585.00 6393.10 7074.43 2695.41 7384.97 4595.71 2593.02 107
test_893.13 5472.57 3588.68 12491.84 10468.69 24584.87 6793.10 7074.43 2695.16 82
dmvs_re71.14 30170.58 29772.80 34081.96 32559.68 28675.60 36079.34 34668.55 24769.27 32080.72 34749.42 29476.54 37852.56 33977.79 27282.19 370
MVSFormer82.85 10282.05 10885.24 8287.35 21470.21 8090.50 6490.38 14568.55 24781.32 12089.47 15961.68 16793.46 15778.98 10690.26 10692.05 142
test_djsdf80.30 15479.32 15583.27 15983.98 28165.37 19390.50 6490.38 14568.55 24776.19 21488.70 17856.44 22393.46 15778.98 10680.14 24890.97 172
TEST993.26 5272.96 2588.75 11991.89 10068.44 25085.00 6393.10 7074.36 2895.41 73
FE-MVS77.78 21475.68 23384.08 12988.09 18666.00 17683.13 27487.79 22668.42 25178.01 17285.23 27345.50 33195.12 8459.11 29485.83 17291.11 165
CDPH-MVS85.76 5685.29 6687.17 4393.49 4771.08 6488.58 12792.42 7968.32 25284.61 7493.48 6172.32 4496.15 4879.00 10595.43 3094.28 46
PC_three_145268.21 25392.02 1294.00 4982.09 595.98 5684.58 5396.68 294.95 11
fmvsm_l_conf0.5_n84.47 7484.54 7384.27 11885.42 25168.81 10988.49 12987.26 23768.08 25488.03 3093.49 6072.04 4891.77 22488.90 1789.14 12392.24 135
IterMVS74.29 26672.94 27278.35 27981.53 33363.49 23181.58 29182.49 31168.06 25569.99 31083.69 30851.66 27085.54 32765.85 23671.64 34786.01 320
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dmvs_testset62.63 35464.11 34558.19 38478.55 36724.76 42275.28 36165.94 40067.91 25660.34 37876.01 38153.56 24473.94 39731.79 40367.65 36475.88 391
TAMVS78.89 18777.51 20183.03 17287.80 20067.79 14084.72 23885.05 27167.63 25776.75 20087.70 20562.25 16090.82 25758.53 30187.13 14990.49 190
PVSNet_Blended80.98 13280.34 13382.90 17888.85 15365.40 19084.43 24992.00 9467.62 25878.11 16985.05 27966.02 12094.27 11771.52 17989.50 11789.01 247
TR-MVS77.44 22276.18 22881.20 21988.24 17963.24 23784.61 24286.40 25367.55 25977.81 17586.48 24654.10 23993.15 17557.75 30982.72 21787.20 294
CDS-MVSNet79.07 18277.70 19683.17 16587.60 20968.23 12984.40 25186.20 25767.49 26076.36 21086.54 24461.54 17090.79 25861.86 27187.33 14690.49 190
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
fmvsm_l_conf0.5_n_a84.13 7784.16 7884.06 13285.38 25268.40 12488.34 13686.85 24767.48 26187.48 3993.40 6470.89 6491.61 22888.38 2589.22 12192.16 139
mvs_anonymous79.42 17279.11 16180.34 23984.45 27257.97 30282.59 28187.62 22967.40 26276.17 21788.56 18568.47 9289.59 27770.65 19086.05 16793.47 85
mvs5depth69.45 31967.45 33175.46 31573.93 38555.83 33779.19 32783.23 29766.89 26371.63 29383.32 31333.69 38385.09 33259.81 28755.34 39385.46 329
IU-MVS95.30 271.25 5992.95 5566.81 26492.39 688.94 1696.63 494.85 20
baseline275.70 25273.83 26381.30 21683.26 29761.79 26182.57 28280.65 33066.81 26466.88 34083.42 31257.86 20992.19 21063.47 25279.57 25289.91 219
miper_lstm_enhance74.11 27073.11 27077.13 29980.11 35159.62 28772.23 37586.92 24666.76 26670.40 30282.92 32156.93 21982.92 34869.06 20772.63 33988.87 254
OpenMVScopyleft72.83 1079.77 16278.33 17784.09 12885.17 25569.91 8790.57 6190.97 12966.70 26772.17 28791.91 9554.70 23493.96 12761.81 27290.95 9788.41 270
test-LLR72.94 28872.43 27774.48 32581.35 33758.04 30078.38 33977.46 35766.66 26869.95 31179.00 36348.06 30679.24 36466.13 23184.83 17886.15 316
test20.0367.45 33466.95 33568.94 36375.48 38044.84 40077.50 34877.67 35566.66 26863.01 36983.80 30347.02 31278.40 36842.53 38868.86 36283.58 355
test0.0.03 168.00 33267.69 32668.90 36477.55 37047.43 39075.70 35972.95 38366.66 26866.56 34582.29 33248.06 30675.87 38644.97 38274.51 32383.41 356
Syy-MVS68.05 33167.85 32168.67 36784.68 26640.97 41078.62 33673.08 38166.65 27166.74 34379.46 35852.11 25982.30 35132.89 40276.38 29482.75 365
myMVS_eth3d67.02 33766.29 33869.21 36284.68 26642.58 40578.62 33673.08 38166.65 27166.74 34379.46 35831.53 38882.30 35139.43 39476.38 29482.75 365
QAPM80.88 13479.50 15085.03 8888.01 19168.97 10791.59 4392.00 9466.63 27375.15 24592.16 9157.70 21095.45 6863.52 25188.76 12990.66 182
XXY-MVS75.41 25875.56 23674.96 32083.59 29057.82 30680.59 30883.87 28766.54 27474.93 25188.31 19163.24 14380.09 36262.16 26776.85 28486.97 302
OurMVSNet-221017-074.26 26772.42 27879.80 25083.76 28759.59 28885.92 21186.64 24966.39 27566.96 33987.58 20839.46 36391.60 22965.76 23769.27 35888.22 272
SCA74.22 26872.33 27979.91 24784.05 28062.17 25579.96 31879.29 34766.30 27672.38 28480.13 35251.95 26388.60 29759.25 29277.67 27588.96 251
testgi66.67 34066.53 33767.08 37475.62 37941.69 40975.93 35576.50 36666.11 27765.20 35986.59 24035.72 37974.71 39343.71 38373.38 33584.84 340
HY-MVS69.67 1277.95 21077.15 20780.36 23887.57 21360.21 28283.37 27087.78 22766.11 27775.37 23487.06 22763.27 14290.48 26361.38 27682.43 22090.40 194
EG-PatchMatch MVS74.04 27171.82 28380.71 23284.92 26267.42 14985.86 21388.08 21766.04 27964.22 36383.85 30135.10 38092.56 19457.44 31180.83 23782.16 371
CNLPA78.08 20576.79 21681.97 20190.40 10271.07 6587.59 16084.55 27666.03 28072.38 28489.64 15357.56 21286.04 32159.61 28983.35 20888.79 258
Anonymous2024052980.19 15778.89 16584.10 12490.60 9764.75 20588.95 11290.90 13165.97 28180.59 13091.17 12149.97 28793.73 14669.16 20682.70 21893.81 66
TAPA-MVS73.13 979.15 17977.94 18582.79 18589.59 12262.99 24688.16 14391.51 11465.77 28277.14 19491.09 12360.91 18593.21 16850.26 35387.05 15092.17 138
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MSDG73.36 28170.99 29480.49 23684.51 27165.80 18280.71 30686.13 25965.70 28365.46 35483.74 30544.60 33490.91 25651.13 34676.89 28284.74 341
anonymousdsp78.60 19377.15 20782.98 17580.51 34767.08 16087.24 17289.53 17365.66 28475.16 24487.19 22252.52 25092.25 20877.17 12579.34 25789.61 230
test_040272.79 28970.44 30079.84 24988.13 18365.99 17785.93 21084.29 28065.57 28567.40 33685.49 26746.92 31392.61 19235.88 39974.38 32480.94 377
UBG73.08 28572.27 28075.51 31388.02 18951.29 37878.35 34277.38 36065.52 28673.87 26582.36 32945.55 32986.48 31755.02 32684.39 18988.75 260
miper_enhance_ethall77.87 21376.86 21380.92 22881.65 32961.38 26582.68 28088.98 19565.52 28675.47 22782.30 33165.76 12492.00 21672.95 16976.39 29189.39 235
WBMVS73.43 27872.81 27375.28 31787.91 19450.99 38078.59 33881.31 32565.51 28874.47 25984.83 28246.39 31686.68 31458.41 30277.86 27188.17 274
UnsupCasMVSNet_eth67.33 33565.99 33971.37 35073.48 39051.47 37675.16 36385.19 26865.20 28960.78 37780.93 34642.35 34877.20 37457.12 31453.69 39585.44 330
WTY-MVS75.65 25375.68 23375.57 31186.40 23656.82 32077.92 34782.40 31265.10 29076.18 21587.72 20463.13 14980.90 35960.31 28381.96 22589.00 249
thisisatest051577.33 22575.38 24183.18 16485.27 25463.80 22382.11 28683.27 29665.06 29175.91 21983.84 30249.54 29294.27 11767.24 22486.19 16491.48 156
MVP-Stereo76.12 24674.46 25481.13 22285.37 25369.79 8984.42 25087.95 22165.03 29267.46 33485.33 27053.28 24891.73 22758.01 30783.27 20981.85 372
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Anonymous2023121178.97 18577.69 19782.81 18290.54 9964.29 21590.11 7591.51 11465.01 29376.16 21888.13 20150.56 28193.03 18469.68 20177.56 27691.11 165
pmmvs674.69 26473.39 26678.61 27081.38 33657.48 31286.64 19087.95 22164.99 29470.18 30586.61 23950.43 28389.52 27862.12 26870.18 35588.83 256
PAPM77.68 21976.40 22681.51 20987.29 22161.85 25983.78 26089.59 17164.74 29571.23 29688.70 17862.59 15393.66 14752.66 33887.03 15189.01 247
MIMVSNet70.69 30769.30 30674.88 32184.52 27056.35 33175.87 35879.42 34564.59 29667.76 32982.41 32841.10 35681.54 35546.64 37381.34 23086.75 307
tpm72.37 29271.71 28474.35 32782.19 32352.00 36879.22 32677.29 36164.56 29772.95 27683.68 30951.35 27183.26 34758.33 30475.80 30087.81 280
MDA-MVSNet-bldmvs66.68 33963.66 34875.75 30879.28 36460.56 27673.92 37178.35 35264.43 29850.13 40179.87 35644.02 33983.67 34246.10 37656.86 38783.03 362
MIMVSNet168.58 32666.78 33673.98 33180.07 35251.82 37280.77 30384.37 27764.40 29959.75 38282.16 33436.47 37683.63 34342.73 38670.33 35486.48 311
D2MVS74.82 26373.21 26879.64 25579.81 35662.56 25080.34 31387.35 23564.37 30068.86 32282.66 32646.37 31890.10 26767.91 21781.24 23286.25 313
PLCcopyleft70.83 1178.05 20776.37 22783.08 16991.88 7767.80 13988.19 14189.46 17564.33 30169.87 31388.38 18953.66 24393.58 14858.86 29782.73 21687.86 279
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PatchmatchNetpermissive73.12 28471.33 29078.49 27783.18 30060.85 27179.63 32078.57 35164.13 30271.73 29179.81 35751.20 27485.97 32257.40 31276.36 29688.66 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
mamv476.81 23378.23 18172.54 34386.12 24065.75 18578.76 33482.07 31664.12 30372.97 27591.02 12867.97 9768.08 40783.04 7178.02 27083.80 353
KD-MVS_2432*160066.22 34463.89 34673.21 33575.47 38153.42 36170.76 38284.35 27864.10 30466.52 34778.52 36734.55 38184.98 33350.40 34950.33 40081.23 375
miper_refine_blended66.22 34463.89 34673.21 33575.47 38153.42 36170.76 38284.35 27864.10 30466.52 34778.52 36734.55 38184.98 33350.40 34950.33 40081.23 375
tpmvs71.09 30269.29 30776.49 30382.04 32456.04 33478.92 33281.37 32464.05 30667.18 33878.28 36949.74 29189.77 27349.67 35672.37 34083.67 354
F-COLMAP76.38 24474.33 25682.50 19289.28 14066.95 16588.41 13189.03 19264.05 30666.83 34188.61 18246.78 31492.89 18657.48 31078.55 26287.67 282
DP-MVS76.78 23474.57 25083.42 15393.29 4869.46 9788.55 12883.70 28863.98 30870.20 30488.89 17454.01 24194.80 10146.66 37181.88 22786.01 320
原ACMM184.35 11293.01 6068.79 11092.44 7663.96 30981.09 12591.57 10766.06 11995.45 6867.19 22594.82 4688.81 257
PM-MVS66.41 34264.14 34473.20 33773.92 38656.45 32678.97 33164.96 40363.88 31064.72 36080.24 35119.84 40783.44 34566.24 23064.52 37579.71 383
UWE-MVS72.13 29571.49 28674.03 33086.66 23347.70 38981.40 29676.89 36563.60 31175.59 22484.22 29639.94 36285.62 32648.98 35986.13 16688.77 259
jason81.39 12780.29 13584.70 10186.63 23469.90 8885.95 20986.77 24863.24 31281.07 12689.47 15961.08 18392.15 21178.33 11490.07 11192.05 142
jason: jason.
KD-MVS_self_test68.81 32367.59 32972.46 34474.29 38445.45 39577.93 34687.00 24263.12 31363.99 36578.99 36542.32 34984.77 33656.55 32164.09 37687.16 297
gg-mvs-nofinetune69.95 31567.96 31975.94 30683.07 30354.51 35377.23 35170.29 38763.11 31470.32 30362.33 40043.62 34188.69 29553.88 33287.76 14184.62 343
tpmrst72.39 29072.13 28173.18 33880.54 34649.91 38579.91 31979.08 34963.11 31471.69 29279.95 35455.32 22682.77 34965.66 23873.89 32886.87 303
PCF-MVS73.52 780.38 15178.84 16685.01 8987.71 20568.99 10683.65 26391.46 11863.00 31677.77 17790.28 13966.10 11795.09 9061.40 27588.22 13890.94 173
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
COLMAP_ROBcopyleft66.92 1773.01 28670.41 30180.81 23087.13 22465.63 18688.30 13884.19 28362.96 31763.80 36787.69 20638.04 37292.56 19446.66 37174.91 31984.24 346
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Patchmatch-RL test70.24 31267.78 32577.61 29177.43 37159.57 28971.16 37970.33 38662.94 31868.65 32472.77 39150.62 28085.49 32869.58 20266.58 36887.77 281
lupinMVS81.39 12780.27 13684.76 10087.35 21470.21 8085.55 22186.41 25262.85 31981.32 12088.61 18261.68 16792.24 20978.41 11390.26 10691.83 145
test_vis1_n_192075.52 25575.78 23174.75 32479.84 35557.44 31383.26 27185.52 26562.83 32079.34 14586.17 25345.10 33379.71 36378.75 10881.21 23387.10 301
EPMVS69.02 32268.16 31671.59 34879.61 36049.80 38777.40 34966.93 39762.82 32170.01 30879.05 36145.79 32677.86 37256.58 32075.26 31587.13 298
PatchMatch-RL72.38 29170.90 29576.80 30288.60 16667.38 15179.53 32176.17 36962.75 32269.36 31882.00 33745.51 33084.89 33553.62 33380.58 24178.12 386
gm-plane-assit81.40 33553.83 35862.72 32380.94 34492.39 20163.40 254
FMVSNet569.50 31867.96 31974.15 32982.97 30955.35 34480.01 31782.12 31562.56 32463.02 36881.53 33836.92 37581.92 35348.42 36174.06 32685.17 336
sss73.60 27673.64 26573.51 33482.80 31155.01 34876.12 35481.69 32062.47 32574.68 25585.85 25957.32 21578.11 37060.86 28080.93 23587.39 289
WB-MVSnew71.96 29771.65 28572.89 33984.67 26951.88 37182.29 28477.57 35662.31 32673.67 26783.00 31953.49 24681.10 35845.75 37882.13 22385.70 326
AllTest70.96 30368.09 31879.58 25685.15 25763.62 22584.58 24379.83 34162.31 32660.32 37986.73 23032.02 38588.96 29150.28 35171.57 34886.15 316
TestCases79.58 25685.15 25763.62 22579.83 34162.31 32660.32 37986.73 23032.02 38588.96 29150.28 35171.57 34886.15 316
1112_ss77.40 22476.43 22580.32 24089.11 15060.41 27983.65 26387.72 22862.13 32973.05 27486.72 23262.58 15489.97 27062.11 26980.80 23890.59 186
PVSNet64.34 1872.08 29670.87 29675.69 30986.21 23856.44 32774.37 36980.73 32962.06 33070.17 30682.23 33342.86 34683.31 34654.77 32884.45 18787.32 292
LS3D76.95 23174.82 24883.37 15690.45 10067.36 15289.15 10786.94 24461.87 33169.52 31690.61 13551.71 26994.53 10946.38 37486.71 15688.21 273
CostFormer75.24 26173.90 26179.27 26082.65 31658.27 29780.80 30182.73 31061.57 33275.33 23983.13 31755.52 22591.07 25464.98 24378.34 26888.45 268
new-patchmatchnet61.73 35661.73 35761.70 38072.74 39624.50 42369.16 38978.03 35361.40 33356.72 39175.53 38538.42 36976.48 38045.95 37757.67 38684.13 348
ANet_high50.57 37446.10 37863.99 37748.67 42239.13 41170.99 38180.85 32761.39 33431.18 41157.70 40717.02 41073.65 39831.22 40415.89 41979.18 384
MS-PatchMatch73.83 27472.67 27477.30 29783.87 28466.02 17581.82 28784.66 27461.37 33568.61 32582.82 32447.29 30988.21 30159.27 29184.32 19077.68 387
USDC70.33 31168.37 31376.21 30580.60 34556.23 33279.19 32786.49 25160.89 33661.29 37585.47 26831.78 38789.47 28053.37 33576.21 29782.94 364
cascas76.72 23574.64 24982.99 17485.78 24565.88 18082.33 28389.21 18560.85 33772.74 27781.02 34247.28 31093.75 14467.48 22185.02 17689.34 237
MDTV_nov1_ep1369.97 30583.18 30053.48 36077.10 35280.18 34060.45 33869.33 31980.44 34848.89 30486.90 31251.60 34378.51 264
TinyColmap67.30 33664.81 34174.76 32381.92 32756.68 32480.29 31481.49 32260.33 33956.27 39383.22 31424.77 39987.66 30945.52 37969.47 35779.95 382
test-mter71.41 29970.39 30274.48 32581.35 33758.04 30078.38 33977.46 35760.32 34069.95 31179.00 36336.08 37879.24 36466.13 23184.83 17886.15 316
131476.53 23775.30 24480.21 24283.93 28262.32 25384.66 23988.81 20060.23 34170.16 30784.07 29955.30 22790.73 26067.37 22283.21 21087.59 286
PatchT68.46 32967.85 32170.29 35880.70 34443.93 40272.47 37474.88 37360.15 34270.55 29976.57 37849.94 28881.59 35450.58 34774.83 32085.34 331
无先验87.48 16288.98 19560.00 34394.12 12467.28 22388.97 250
CR-MVSNet73.37 27971.27 29179.67 25481.32 33965.19 19575.92 35680.30 33759.92 34472.73 27881.19 33952.50 25186.69 31359.84 28677.71 27387.11 299
TDRefinement67.49 33364.34 34376.92 30073.47 39161.07 26884.86 23682.98 30559.77 34558.30 38685.13 27626.06 39587.89 30547.92 36860.59 38481.81 373
dp66.80 33865.43 34070.90 35779.74 35948.82 38875.12 36574.77 37459.61 34664.08 36477.23 37542.89 34580.72 36048.86 36066.58 36883.16 359
our_test_369.14 32167.00 33475.57 31179.80 35758.80 29177.96 34577.81 35459.55 34762.90 37178.25 37047.43 30883.97 34051.71 34267.58 36583.93 351
Test_1112_low_res76.40 24375.44 23879.27 26089.28 14058.09 29881.69 29087.07 24159.53 34872.48 28286.67 23761.30 17789.33 28160.81 28180.15 24790.41 193
pmmvs474.03 27371.91 28280.39 23781.96 32568.32 12681.45 29482.14 31459.32 34969.87 31385.13 27652.40 25388.13 30360.21 28474.74 32184.73 342
testdata79.97 24690.90 9164.21 21684.71 27359.27 35085.40 5892.91 7662.02 16589.08 28768.95 20891.37 9286.63 310
WB-MVS54.94 36454.72 36555.60 39073.50 38920.90 42474.27 37061.19 40759.16 35150.61 39974.15 38747.19 31175.78 38717.31 41535.07 40970.12 397
ppachtmachnet_test70.04 31467.34 33278.14 28279.80 35761.13 26679.19 32780.59 33159.16 35165.27 35679.29 36046.75 31587.29 31049.33 35766.72 36686.00 322
RPSCF73.23 28371.46 28778.54 27482.50 31859.85 28482.18 28582.84 30958.96 35371.15 29889.41 16545.48 33284.77 33658.82 29871.83 34691.02 171
pmmvs-eth3d70.50 31067.83 32378.52 27677.37 37266.18 17381.82 28781.51 32158.90 35463.90 36680.42 34942.69 34786.28 31958.56 30065.30 37383.11 360
OpenMVS_ROBcopyleft64.09 1970.56 30968.19 31577.65 29080.26 34859.41 29085.01 23282.96 30658.76 35565.43 35582.33 33037.63 37491.23 24745.34 38176.03 29882.32 368
114514_t80.68 14379.51 14984.20 12194.09 3867.27 15589.64 8791.11 12758.75 35674.08 26390.72 13358.10 20695.04 9169.70 20089.42 11990.30 198
Patchmtry70.74 30669.16 30975.49 31480.72 34354.07 35674.94 36780.30 33758.34 35770.01 30881.19 33952.50 25186.54 31553.37 33571.09 35185.87 325
test_cas_vis1_n_192073.76 27573.74 26473.81 33275.90 37659.77 28580.51 30982.40 31258.30 35881.62 11885.69 26144.35 33776.41 38176.29 13378.61 26185.23 333
Anonymous2024052168.80 32467.22 33373.55 33374.33 38354.11 35583.18 27285.61 26458.15 35961.68 37480.94 34430.71 39081.27 35757.00 31673.34 33685.28 332
旧先验286.56 19358.10 36087.04 4588.98 28974.07 157
JIA-IIPM66.32 34362.82 35476.82 30177.09 37361.72 26265.34 40275.38 37058.04 36164.51 36162.32 40142.05 35386.51 31651.45 34469.22 35982.21 369
pmmvs571.55 29870.20 30475.61 31077.83 36956.39 32881.74 28980.89 32657.76 36267.46 33484.49 28649.26 29885.32 33157.08 31575.29 31485.11 337
TESTMET0.1,169.89 31669.00 31072.55 34279.27 36556.85 31978.38 33974.71 37657.64 36368.09 32877.19 37637.75 37376.70 37763.92 25084.09 19384.10 349
RPMNet73.51 27770.49 29982.58 19181.32 33965.19 19575.92 35692.27 8357.60 36472.73 27876.45 37952.30 25495.43 7048.14 36677.71 27387.11 299
SSC-MVS53.88 36753.59 36754.75 39272.87 39519.59 42573.84 37260.53 40957.58 36549.18 40373.45 39046.34 32075.47 39016.20 41832.28 41169.20 398
新几何183.42 15393.13 5470.71 7485.48 26657.43 36681.80 11591.98 9463.28 14192.27 20764.60 24692.99 7087.27 293
YYNet165.03 34762.91 35271.38 34975.85 37756.60 32569.12 39074.66 37757.28 36754.12 39577.87 37245.85 32574.48 39449.95 35461.52 38183.05 361
MDA-MVSNet_test_wron65.03 34762.92 35171.37 35075.93 37556.73 32169.09 39174.73 37557.28 36754.03 39677.89 37145.88 32474.39 39549.89 35561.55 38082.99 363
Anonymous2023120668.60 32567.80 32471.02 35580.23 35050.75 38278.30 34380.47 33356.79 36966.11 35282.63 32746.35 31978.95 36643.62 38475.70 30183.36 357
tpm273.26 28271.46 28778.63 26983.34 29556.71 32380.65 30780.40 33656.63 37073.55 26882.02 33651.80 26791.24 24656.35 32278.42 26687.95 276
CHOSEN 1792x268877.63 22075.69 23283.44 15289.98 11468.58 12278.70 33587.50 23256.38 37175.80 22286.84 22858.67 20291.40 24261.58 27485.75 17390.34 195
HyFIR lowres test77.53 22175.40 24083.94 14389.59 12266.62 16680.36 31288.64 20956.29 37276.45 20785.17 27557.64 21193.28 16361.34 27783.10 21291.91 144
PVSNet_057.27 2061.67 35759.27 36068.85 36579.61 36057.44 31368.01 39273.44 38055.93 37358.54 38570.41 39644.58 33577.55 37347.01 37035.91 40871.55 396
UnsupCasMVSNet_bld63.70 35261.53 35870.21 35973.69 38851.39 37772.82 37381.89 31755.63 37457.81 38871.80 39338.67 36878.61 36749.26 35852.21 39880.63 379
MDTV_nov1_ep13_2view37.79 41275.16 36355.10 37566.53 34649.34 29653.98 33187.94 277
MVS78.19 20376.99 21181.78 20385.66 24666.99 16184.66 23990.47 14355.08 37672.02 28985.27 27163.83 13894.11 12566.10 23389.80 11584.24 346
test22291.50 8068.26 12884.16 25583.20 30054.63 37779.74 13891.63 10458.97 20191.42 9186.77 306
dongtai45.42 37845.38 37945.55 39673.36 39226.85 42067.72 39334.19 42254.15 37849.65 40256.41 40925.43 39662.94 41219.45 41328.09 41346.86 412
CHOSEN 280x42066.51 34164.71 34271.90 34681.45 33463.52 23057.98 40968.95 39353.57 37962.59 37276.70 37746.22 32175.29 39255.25 32579.68 25176.88 389
ADS-MVSNet266.20 34663.33 34974.82 32279.92 35358.75 29267.55 39475.19 37153.37 38065.25 35775.86 38242.32 34980.53 36141.57 38968.91 36085.18 334
ADS-MVSNet64.36 35062.88 35368.78 36679.92 35347.17 39167.55 39471.18 38553.37 38065.25 35775.86 38242.32 34973.99 39641.57 38968.91 36085.18 334
LF4IMVS64.02 35162.19 35569.50 36170.90 39953.29 36476.13 35377.18 36252.65 38258.59 38480.98 34323.55 40276.52 37953.06 33766.66 36778.68 385
tpm cat170.57 30868.31 31477.35 29682.41 32157.95 30378.08 34480.22 33952.04 38368.54 32677.66 37452.00 26287.84 30651.77 34172.07 34586.25 313
test_vis1_n69.85 31769.21 30871.77 34772.66 39755.27 34681.48 29376.21 36852.03 38475.30 24083.20 31628.97 39276.22 38374.60 15178.41 26783.81 352
Patchmatch-test64.82 34963.24 35069.57 36079.42 36349.82 38663.49 40669.05 39251.98 38559.95 38180.13 35250.91 27670.98 40040.66 39173.57 33187.90 278
N_pmnet52.79 37053.26 36851.40 39478.99 3667.68 42869.52 3863.89 42751.63 38657.01 39074.98 38640.83 35865.96 40937.78 39664.67 37480.56 381
test_fmvs1_n70.86 30570.24 30372.73 34172.51 39855.28 34581.27 29779.71 34351.49 38778.73 15284.87 28127.54 39477.02 37576.06 13679.97 25085.88 324
test_fmvs170.93 30470.52 29872.16 34573.71 38755.05 34780.82 30078.77 35051.21 38878.58 15784.41 28931.20 38976.94 37675.88 13980.12 24984.47 344
PMMVS69.34 32068.67 31171.35 35275.67 37862.03 25675.17 36273.46 37950.00 38968.68 32379.05 36152.07 26178.13 36961.16 27882.77 21573.90 393
test_fmvs268.35 33067.48 33070.98 35669.50 40151.95 36980.05 31676.38 36749.33 39074.65 25684.38 29023.30 40375.40 39174.51 15275.17 31785.60 327
ttmdpeth59.91 35957.10 36368.34 36967.13 40546.65 39474.64 36867.41 39648.30 39162.52 37385.04 28020.40 40575.93 38542.55 38745.90 40682.44 367
CMPMVSbinary51.72 2170.19 31368.16 31676.28 30473.15 39457.55 31179.47 32283.92 28548.02 39256.48 39284.81 28343.13 34486.42 31862.67 26181.81 22884.89 339
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
mvsany_test162.30 35561.26 35965.41 37669.52 40054.86 34966.86 39649.78 41646.65 39368.50 32783.21 31549.15 29966.28 40856.93 31760.77 38275.11 392
kuosan39.70 38240.40 38337.58 39964.52 40826.98 41865.62 40133.02 42346.12 39442.79 40648.99 41224.10 40146.56 42012.16 42126.30 41439.20 413
test_fmvs363.36 35361.82 35667.98 37162.51 41046.96 39377.37 35074.03 37845.24 39567.50 33378.79 36612.16 41572.98 39972.77 17266.02 37083.99 350
CVMVSNet72.99 28772.58 27674.25 32884.28 27350.85 38186.41 19683.45 29444.56 39673.23 27287.54 21249.38 29585.70 32465.90 23578.44 26586.19 315
test_vis1_rt60.28 35858.42 36165.84 37567.25 40455.60 34170.44 38460.94 40844.33 39759.00 38366.64 39824.91 39868.67 40562.80 25769.48 35673.25 394
mvsany_test353.99 36651.45 37161.61 38155.51 41544.74 40163.52 40545.41 42043.69 39858.11 38776.45 37917.99 40863.76 41154.77 32847.59 40276.34 390
EU-MVSNet68.53 32867.61 32871.31 35378.51 36847.01 39284.47 24584.27 28142.27 39966.44 35084.79 28440.44 36083.76 34158.76 29968.54 36383.17 358
FPMVS53.68 36851.64 37059.81 38365.08 40751.03 37969.48 38769.58 39041.46 40040.67 40772.32 39216.46 41170.00 40424.24 41165.42 37258.40 407
pmmvs357.79 36154.26 36668.37 36864.02 40956.72 32275.12 36565.17 40140.20 40152.93 39769.86 39720.36 40675.48 38945.45 38055.25 39472.90 395
new_pmnet50.91 37350.29 37352.78 39368.58 40234.94 41563.71 40456.63 41339.73 40244.95 40465.47 39921.93 40458.48 41334.98 40056.62 38864.92 401
MVS-HIRNet59.14 36057.67 36263.57 37881.65 32943.50 40371.73 37665.06 40239.59 40351.43 39857.73 40638.34 37082.58 35039.53 39273.95 32764.62 402
MVStest156.63 36352.76 36968.25 37061.67 41153.25 36571.67 37768.90 39438.59 40450.59 40083.05 31825.08 39770.66 40136.76 39838.56 40780.83 378
PMMVS240.82 38138.86 38546.69 39553.84 41716.45 42648.61 41249.92 41537.49 40531.67 41060.97 4038.14 42156.42 41528.42 40630.72 41267.19 400
test_vis3_rt49.26 37547.02 37756.00 38754.30 41645.27 39966.76 39848.08 41736.83 40644.38 40553.20 4107.17 42264.07 41056.77 31955.66 39058.65 406
test_f52.09 37150.82 37255.90 38853.82 41842.31 40859.42 40858.31 41236.45 40756.12 39470.96 39512.18 41457.79 41453.51 33456.57 38967.60 399
LCM-MVSNet54.25 36549.68 37567.97 37253.73 41945.28 39866.85 39780.78 32835.96 40839.45 40962.23 4028.70 41978.06 37148.24 36551.20 39980.57 380
APD_test153.31 36949.93 37463.42 37965.68 40650.13 38471.59 37866.90 39834.43 40940.58 40871.56 3948.65 42076.27 38234.64 40155.36 39263.86 403
PMVScopyleft37.38 2244.16 38040.28 38455.82 38940.82 42442.54 40765.12 40363.99 40434.43 40924.48 41557.12 4083.92 42576.17 38417.10 41655.52 39148.75 410
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft45.18 37941.86 38255.16 39177.03 37451.52 37532.50 41580.52 33232.46 41127.12 41435.02 4159.52 41875.50 38822.31 41260.21 38538.45 414
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DSMNet-mixed57.77 36256.90 36460.38 38267.70 40335.61 41369.18 38853.97 41432.30 41257.49 38979.88 35540.39 36168.57 40638.78 39572.37 34076.97 388
testf145.72 37641.96 38057.00 38556.90 41345.32 39666.14 39959.26 41026.19 41330.89 41260.96 4044.14 42370.64 40226.39 40946.73 40455.04 408
APD_test245.72 37641.96 38057.00 38556.90 41345.32 39666.14 39959.26 41026.19 41330.89 41260.96 4044.14 42370.64 40226.39 40946.73 40455.04 408
E-PMN31.77 38330.64 38635.15 40052.87 42027.67 41757.09 41047.86 41824.64 41516.40 42033.05 41611.23 41654.90 41614.46 41918.15 41722.87 416
EMVS30.81 38529.65 38734.27 40150.96 42125.95 42156.58 41146.80 41924.01 41615.53 42130.68 41712.47 41354.43 41712.81 42017.05 41822.43 417
MVEpermissive26.22 2330.37 38625.89 39043.81 39744.55 42335.46 41428.87 41639.07 42118.20 41718.58 41940.18 4142.68 42647.37 41917.07 41723.78 41648.60 411
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft27.40 40240.17 42526.90 41924.59 42617.44 41823.95 41648.61 4139.77 41726.48 42118.06 41424.47 41528.83 415
wuyk23d16.82 38915.94 39219.46 40358.74 41231.45 41639.22 4133.74 4286.84 4196.04 4222.70 4221.27 42724.29 42210.54 42214.40 4212.63 419
test_method31.52 38429.28 38838.23 39827.03 4266.50 42920.94 41762.21 4064.05 42022.35 41852.50 41113.33 41247.58 41827.04 40834.04 41060.62 404
tmp_tt18.61 38821.40 39110.23 4044.82 42710.11 42734.70 41430.74 4251.48 42123.91 41726.07 41828.42 39313.41 42327.12 40715.35 4207.17 418
EGC-MVSNET52.07 37247.05 37667.14 37383.51 29260.71 27380.50 31067.75 3950.07 4220.43 42375.85 38424.26 40081.54 35528.82 40562.25 37859.16 405
testmvs6.04 3928.02 3950.10 4060.08 4280.03 43169.74 3850.04 4290.05 4230.31 4241.68 4230.02 4290.04 4240.24 4230.02 4220.25 421
test1236.12 3918.11 3940.14 4050.06 4290.09 43071.05 3800.03 4300.04 4240.25 4251.30 4240.05 4280.03 4250.21 4240.01 4230.29 420
mmdepth0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
monomultidepth0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
test_blank0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
uanet_test0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
DCPMVS0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
cdsmvs_eth3d_5k19.96 38726.61 3890.00 4070.00 4300.00 4320.00 41889.26 1830.00 4250.00 42688.61 18261.62 1690.00 4260.00 4250.00 4240.00 422
pcd_1.5k_mvsjas5.26 3937.02 3960.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 42563.15 1460.00 4260.00 4250.00 4240.00 422
sosnet-low-res0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
sosnet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
uncertanet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
Regformer0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
ab-mvs-re7.23 3909.64 3930.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 42686.72 2320.00 4300.00 4260.00 4250.00 4240.00 422
uanet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
WAC-MVS42.58 40539.46 393
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4997.53 289.67 696.44 994.41 38
No_MVS89.16 194.34 2775.53 292.99 4997.53 289.67 696.44 994.41 38
eth-test20.00 430
eth-test0.00 430
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4782.45 396.87 2083.77 6496.48 894.88 15
test_0728_SECOND87.71 3295.34 171.43 5893.49 994.23 397.49 489.08 1296.41 1294.21 48
GSMVS88.96 251
test_part295.06 872.65 3291.80 13
sam_mvs151.32 27288.96 251
sam_mvs50.01 286
ambc75.24 31873.16 39350.51 38363.05 40787.47 23364.28 36277.81 37317.80 40989.73 27557.88 30860.64 38385.49 328
MTGPAbinary92.02 92
test_post178.90 3335.43 42148.81 30585.44 33059.25 292
test_post5.46 42050.36 28484.24 338
patchmatchnet-post74.00 38851.12 27588.60 297
GG-mvs-BLEND75.38 31681.59 33155.80 33879.32 32469.63 38967.19 33773.67 38943.24 34388.90 29350.41 34884.50 18381.45 374
MTMP92.18 3432.83 424
test9_res84.90 4695.70 2692.87 112
agg_prior282.91 7395.45 2992.70 115
agg_prior92.85 6271.94 5091.78 10784.41 7894.93 93
test_prior472.60 3489.01 110
test_prior86.33 5792.61 6869.59 9192.97 5495.48 6793.91 59
新几何286.29 202
旧先验191.96 7465.79 18386.37 25493.08 7469.31 8392.74 7388.74 262
原ACMM286.86 182
testdata291.01 25562.37 264
segment_acmp73.08 38
test1286.80 5292.63 6770.70 7591.79 10682.71 10671.67 5496.16 4794.50 5193.54 83
plane_prior790.08 10868.51 123
plane_prior689.84 11768.70 11860.42 194
plane_prior592.44 7695.38 7578.71 10986.32 16191.33 159
plane_prior491.00 129
plane_prior189.90 116
n20.00 431
nn0.00 431
door-mid69.98 388
lessismore_v078.97 26581.01 34257.15 31665.99 39961.16 37682.82 32439.12 36591.34 24459.67 28846.92 40388.43 269
test1192.23 86
door69.44 391
HQP5-MVS66.98 162
BP-MVS77.47 121
HQP4-MVS77.24 18795.11 8691.03 169
HQP3-MVS92.19 8985.99 169
HQP2-MVS60.17 197
NP-MVS89.62 12168.32 12690.24 141
ACMMP++_ref81.95 226
ACMMP++81.25 231
Test By Simon64.33 133