This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
MM89.16 689.23 788.97 490.79 9573.65 1092.66 2391.17 12586.57 187.39 4494.97 1971.70 5497.68 192.19 195.63 2895.57 1
UA-Net85.08 6984.96 7085.45 7892.07 7368.07 13489.78 8290.86 13582.48 284.60 7893.20 7269.35 8295.22 8171.39 18690.88 9993.07 105
MVS_030487.69 2087.55 2488.12 1389.45 12971.76 5191.47 4989.54 17482.14 386.65 5294.28 3668.28 9697.46 690.81 395.31 3495.15 7
CANet86.45 4286.10 5087.51 3790.09 10770.94 7089.70 8592.59 7481.78 481.32 12491.43 11670.34 7197.23 1484.26 6093.36 6894.37 42
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5492.83 6081.50 585.79 5893.47 6673.02 4197.00 1884.90 4994.94 4094.10 52
EPNet83.72 8682.92 9886.14 6584.22 27969.48 9491.05 5685.27 27181.30 676.83 20191.65 10666.09 11995.56 6376.00 14293.85 6293.38 90
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6293.00 4680.90 788.06 3194.06 4876.43 1696.84 2188.48 2795.99 1894.34 44
3Dnovator+77.84 485.48 6184.47 7788.51 791.08 8673.49 1693.18 1193.78 1880.79 876.66 20693.37 6860.40 19996.75 2677.20 12893.73 6495.29 5
TranMVSNet+NR-MVSNet80.84 13980.31 13882.42 19787.85 19862.33 25687.74 15991.33 12080.55 977.99 17789.86 15165.23 12892.62 19267.05 23175.24 32092.30 135
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 4378.35 1396.77 2489.59 1194.22 6094.67 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5980.26 1187.78 3694.27 3775.89 1996.81 2387.45 3596.44 993.05 108
UniMVSNet_NR-MVSNet81.88 11981.54 11982.92 18188.46 17163.46 23687.13 17592.37 8180.19 1278.38 16689.14 17171.66 5693.05 18270.05 19976.46 29392.25 137
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 7272.96 2593.73 593.67 2080.19 1288.10 3094.80 2073.76 3397.11 1587.51 3495.82 2194.90 14
Skip Steuart: Steuart Systems R&D Blog.
EI-MVSNet-Vis-set84.19 7783.81 8285.31 8188.18 18067.85 13887.66 16089.73 16980.05 1482.95 10489.59 16070.74 6894.82 10180.66 10084.72 18493.28 95
ETV-MVS84.90 7384.67 7385.59 7589.39 13368.66 12088.74 12392.64 7279.97 1584.10 8785.71 26469.32 8395.38 7580.82 9791.37 9392.72 117
EI-MVSNet-UG-set83.81 8283.38 8985.09 8887.87 19767.53 14887.44 16889.66 17079.74 1682.23 11389.41 16970.24 7494.74 10479.95 10583.92 19892.99 113
fmvsm_s_conf0.5_n_386.36 4687.46 2783.09 17187.08 22665.21 19689.09 11090.21 15579.67 1789.98 1895.02 1873.17 3891.71 23191.30 291.60 8892.34 132
CS-MVS86.69 3986.95 3685.90 7190.76 9667.57 14792.83 1793.30 3279.67 1784.57 7992.27 9271.47 5795.02 9384.24 6293.46 6795.13 8
casdiffmvs_mvgpermissive85.99 4986.09 5185.70 7487.65 20967.22 15988.69 12593.04 4179.64 1985.33 6292.54 8973.30 3594.50 11283.49 6891.14 9695.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MTAPA87.23 3187.00 3387.90 2294.18 3574.25 586.58 19692.02 9379.45 2085.88 5694.80 2068.07 9796.21 4586.69 3995.34 3293.23 96
EC-MVSNet86.01 4886.38 4384.91 9689.31 13866.27 17392.32 3093.63 2179.37 2184.17 8691.88 10069.04 8995.43 7083.93 6693.77 6393.01 111
XVS87.18 3286.91 3888.00 1794.42 2073.33 1992.78 1892.99 4979.14 2283.67 9794.17 4267.45 10496.60 3383.06 7294.50 5194.07 54
X-MVStestdata80.37 15777.83 19388.00 1794.42 2073.33 1992.78 1892.99 4979.14 2283.67 9712.47 42367.45 10496.60 3383.06 7294.50 5194.07 54
HQP_MVS83.64 8883.14 9285.14 8590.08 10868.71 11691.25 5292.44 7779.12 2478.92 15491.00 13360.42 19795.38 7578.71 11386.32 16591.33 163
plane_prior291.25 5279.12 24
IS-MVSNet83.15 10082.81 9984.18 12389.94 11563.30 24091.59 4388.46 21479.04 2679.49 14692.16 9465.10 12994.28 11767.71 22291.86 8694.95 11
DU-MVS81.12 13580.52 13482.90 18287.80 20163.46 23687.02 18091.87 10379.01 2778.38 16689.07 17365.02 13093.05 18270.05 19976.46 29392.20 140
NR-MVSNet80.23 15979.38 15682.78 19087.80 20163.34 23986.31 20491.09 12979.01 2772.17 29189.07 17367.20 10792.81 19166.08 23875.65 30692.20 140
SPE-MVS-test86.29 4786.48 4285.71 7391.02 8867.21 16092.36 2993.78 1878.97 2983.51 10091.20 12370.65 7095.15 8481.96 8694.89 4294.77 24
DELS-MVS85.41 6485.30 6685.77 7288.49 16967.93 13785.52 22993.44 2778.70 3083.63 9989.03 17574.57 2495.71 6180.26 10394.04 6193.66 74
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
WR-MVS79.49 17279.22 16380.27 24588.79 15958.35 29985.06 23588.61 21278.56 3177.65 18288.34 19463.81 14090.66 26564.98 24777.22 28291.80 151
plane_prior368.60 12178.44 3278.92 154
UniMVSNet (Re)81.60 12781.11 12483.09 17188.38 17564.41 21787.60 16193.02 4578.42 3378.56 16288.16 20069.78 7893.26 16569.58 20676.49 29291.60 153
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5995.06 194.23 378.38 3492.78 495.74 682.45 397.49 489.42 1296.68 294.95 11
test_0728_THIRD78.38 3492.12 995.78 481.46 797.40 989.42 1296.57 794.67 28
test_one_060195.07 771.46 5794.14 578.27 3692.05 1195.74 680.83 11
SD-MVS88.06 1488.50 1486.71 5492.60 6972.71 2991.81 4193.19 3577.87 3790.32 1794.00 5274.83 2393.78 14187.63 3394.27 5993.65 78
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
casdiffmvspermissive85.11 6885.14 6885.01 9087.20 22365.77 18587.75 15892.83 6077.84 3884.36 8392.38 9172.15 4793.93 13481.27 9390.48 10395.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BP-MVS184.32 7683.71 8486.17 6187.84 19967.85 13889.38 9889.64 17277.73 3983.98 9092.12 9656.89 22395.43 7084.03 6591.75 8795.24 6
CP-MVSNet78.22 20478.34 18077.84 29087.83 20054.54 35687.94 15291.17 12577.65 4073.48 27388.49 19062.24 16288.43 30362.19 27074.07 32990.55 191
plane_prior68.71 11690.38 7077.62 4186.16 169
baseline84.93 7184.98 6984.80 10087.30 22165.39 19387.30 17292.88 5777.62 4184.04 8992.26 9371.81 5193.96 12881.31 9190.30 10695.03 10
VDD-MVS83.01 10582.36 10684.96 9291.02 8866.40 17088.91 11588.11 21777.57 4384.39 8293.29 7052.19 26093.91 13577.05 13188.70 13394.57 35
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 7077.57 4383.84 9394.40 3372.24 4696.28 4385.65 4495.30 3593.62 81
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PEN-MVS77.73 21977.69 20177.84 29087.07 22753.91 36187.91 15491.18 12477.56 4573.14 27788.82 18061.23 18189.17 28959.95 28972.37 34490.43 196
OPM-MVS83.50 9382.95 9785.14 8588.79 15970.95 6989.13 10891.52 11477.55 4680.96 13191.75 10360.71 18994.50 11279.67 10886.51 16389.97 222
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5392.24 7169.03 10389.57 9093.39 3077.53 4789.79 1994.12 4578.98 1296.58 3585.66 4395.72 2494.58 33
PS-CasMVS78.01 21378.09 18677.77 29287.71 20654.39 35888.02 14891.22 12277.50 4873.26 27588.64 18560.73 18888.41 30461.88 27473.88 33390.53 192
MSLP-MVS++85.43 6385.76 5784.45 10991.93 7570.24 7990.71 5992.86 5877.46 4984.22 8492.81 8467.16 10892.94 18680.36 10194.35 5790.16 206
RRT-MVS82.60 11182.10 11084.10 12587.98 19362.94 25187.45 16791.27 12177.42 5079.85 14190.28 14356.62 22594.70 10779.87 10788.15 14194.67 28
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5993.49 992.73 6477.33 5192.12 995.78 480.98 997.40 989.08 1596.41 1293.33 93
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072695.27 571.25 5993.60 694.11 677.33 5192.81 395.79 380.98 9
balanced_conf0386.78 3786.99 3486.15 6391.24 8367.61 14590.51 6292.90 5677.26 5387.44 4391.63 10871.27 6196.06 4985.62 4595.01 3794.78 23
SED-MVS90.08 290.85 287.77 2695.30 270.98 6693.57 794.06 1077.24 5493.10 195.72 882.99 197.44 789.07 1796.63 494.88 15
test_241102_TWO94.06 1077.24 5492.78 495.72 881.26 897.44 789.07 1796.58 694.26 48
3Dnovator76.31 583.38 9782.31 10786.59 5587.94 19472.94 2890.64 6092.14 9277.21 5675.47 23192.83 8258.56 20694.72 10573.24 17192.71 7492.13 144
test_241102_ONE95.30 270.98 6694.06 1077.17 5793.10 195.39 1482.99 197.27 12
WR-MVS_H78.51 19978.49 17578.56 27788.02 19056.38 33388.43 13292.67 6777.14 5873.89 26887.55 21566.25 11789.24 28858.92 30073.55 33690.06 216
DeepC-MVS79.81 287.08 3586.88 3987.69 3391.16 8472.32 4390.31 7193.94 1477.12 5982.82 10894.23 4072.13 4897.09 1684.83 5295.37 3193.65 78
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FC-MVSNet-test81.52 12882.02 11380.03 24988.42 17455.97 33987.95 15193.42 2977.10 6077.38 18790.98 13569.96 7691.79 22668.46 21884.50 18792.33 133
DTE-MVSNet76.99 23376.80 21977.54 29886.24 23953.06 37087.52 16390.66 13877.08 6172.50 28588.67 18460.48 19689.52 28257.33 31770.74 35690.05 217
LFMVS81.82 12181.23 12283.57 15391.89 7663.43 23889.84 7881.85 32377.04 6283.21 10193.10 7352.26 25993.43 16071.98 18189.95 11493.85 65
UGNet80.83 14079.59 15284.54 10588.04 18968.09 13389.42 9588.16 21676.95 6376.22 21789.46 16549.30 30193.94 13168.48 21790.31 10591.60 153
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FIs82.07 11682.42 10381.04 22888.80 15858.34 30088.26 14193.49 2676.93 6478.47 16591.04 12969.92 7792.34 20869.87 20384.97 18192.44 131
GST-MVS87.42 2787.26 2987.89 2494.12 3672.97 2492.39 2693.43 2876.89 6584.68 7293.99 5470.67 6996.82 2284.18 6495.01 3793.90 63
mPP-MVS86.67 4186.32 4487.72 3094.41 2273.55 1392.74 2092.22 8876.87 6682.81 10994.25 3966.44 11496.24 4482.88 7794.28 5893.38 90
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6785.24 6394.32 3571.76 5296.93 1985.53 4695.79 2294.32 45
VPNet78.69 19578.66 17278.76 27288.31 17755.72 34384.45 25286.63 25376.79 6878.26 16990.55 14059.30 20289.70 28066.63 23377.05 28490.88 178
HFP-MVS87.58 2287.47 2687.94 1994.58 1673.54 1593.04 1293.24 3376.78 6984.91 6894.44 3170.78 6796.61 3284.53 5794.89 4293.66 74
ACMMPR87.44 2587.23 3188.08 1594.64 1373.59 1293.04 1293.20 3476.78 6984.66 7594.52 2468.81 9196.65 3084.53 5794.90 4194.00 57
ACMMPcopyleft85.89 5585.39 6287.38 3993.59 4572.63 3392.74 2093.18 3976.78 6980.73 13393.82 5964.33 13496.29 4282.67 8390.69 10193.23 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
region2R87.42 2787.20 3288.09 1494.63 1473.55 1393.03 1493.12 4076.73 7284.45 8094.52 2469.09 8596.70 2784.37 5994.83 4594.03 56
sasdasda85.91 5385.87 5586.04 6789.84 11769.44 9890.45 6893.00 4676.70 7388.01 3391.23 12073.28 3693.91 13581.50 8988.80 12994.77 24
canonicalmvs85.91 5385.87 5586.04 6789.84 11769.44 9890.45 6893.00 4676.70 7388.01 3391.23 12073.28 3693.91 13581.50 8988.80 12994.77 24
CP-MVS87.11 3386.92 3787.68 3494.20 3473.86 793.98 392.82 6376.62 7583.68 9694.46 2867.93 9995.95 5784.20 6394.39 5593.23 96
DeepC-MVS_fast79.65 386.91 3686.62 4187.76 2793.52 4672.37 4191.26 5193.04 4176.62 7584.22 8493.36 6971.44 5896.76 2580.82 9795.33 3394.16 50
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MGCFI-Net85.06 7085.51 6083.70 14989.42 13063.01 24689.43 9392.62 7376.43 7787.53 4191.34 11872.82 4393.42 16181.28 9288.74 13294.66 31
TSAR-MVS + GP.85.71 5885.33 6486.84 5091.34 8172.50 3689.07 11187.28 23876.41 7885.80 5790.22 14774.15 3195.37 7881.82 8791.88 8392.65 122
HQP-NCC89.33 13589.17 10376.41 7877.23 192
ACMP_Plane89.33 13589.17 10376.41 7877.23 192
HQP-MVS82.61 10982.02 11384.37 11189.33 13566.98 16389.17 10392.19 9076.41 7877.23 19290.23 14660.17 20095.11 8777.47 12585.99 17391.03 173
CANet_DTU80.61 14879.87 14682.83 18485.60 25263.17 24587.36 16988.65 21076.37 8275.88 22488.44 19253.51 24993.07 18173.30 16989.74 11792.25 137
VNet82.21 11382.41 10481.62 21090.82 9360.93 27384.47 24989.78 16676.36 8384.07 8891.88 10064.71 13390.26 26870.68 19388.89 12793.66 74
Vis-MVSNetpermissive83.46 9482.80 10085.43 7990.25 10468.74 11490.30 7290.13 15876.33 8480.87 13292.89 8061.00 18694.20 12272.45 18090.97 9793.35 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMMP_NAP88.05 1688.08 1787.94 1993.70 4173.05 2290.86 5793.59 2376.27 8588.14 2995.09 1771.06 6496.67 2987.67 3296.37 1494.09 53
alignmvs85.48 6185.32 6585.96 7089.51 12669.47 9589.74 8392.47 7676.17 8687.73 4091.46 11570.32 7293.78 14181.51 8888.95 12694.63 32
MVS_111021_HR85.14 6784.75 7286.32 5891.65 7972.70 3085.98 21290.33 15076.11 8782.08 11491.61 11071.36 6094.17 12481.02 9492.58 7592.08 145
HPM-MVScopyleft87.11 3386.98 3587.50 3893.88 3972.16 4592.19 3393.33 3176.07 8883.81 9493.95 5769.77 7996.01 5385.15 4794.66 4794.32 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
h-mvs3383.15 10082.19 10886.02 6990.56 9870.85 7388.15 14689.16 18976.02 8984.67 7391.39 11761.54 17295.50 6682.71 8075.48 31091.72 152
hse-mvs281.72 12280.94 12884.07 13188.72 16267.68 14385.87 21687.26 24076.02 8984.67 7388.22 19961.54 17293.48 15682.71 8073.44 33891.06 171
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 9192.29 795.66 1081.67 697.38 1187.44 3696.34 1593.95 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CLD-MVS82.31 11281.65 11884.29 11688.47 17067.73 14285.81 22092.35 8275.78 9278.33 16886.58 24664.01 13794.35 11576.05 14187.48 14990.79 180
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SF-MVS88.46 1288.74 1287.64 3592.78 6471.95 4992.40 2494.74 275.71 9389.16 2095.10 1675.65 2196.19 4687.07 3796.01 1794.79 22
testdata184.14 26075.71 93
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9591.06 1696.03 176.84 1497.03 1789.09 1495.65 2794.47 38
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
VPA-MVSNet80.60 14980.55 13380.76 23588.07 18860.80 27686.86 18691.58 11375.67 9680.24 13789.45 16763.34 14190.25 26970.51 19579.22 26391.23 166
PGM-MVS86.68 4086.27 4587.90 2294.22 3373.38 1890.22 7393.04 4175.53 9783.86 9294.42 3267.87 10196.64 3182.70 8294.57 5093.66 74
Effi-MVS+83.62 9083.08 9385.24 8388.38 17567.45 14988.89 11689.15 19075.50 9882.27 11288.28 19669.61 8094.45 11477.81 12287.84 14393.84 67
test_prior288.85 11875.41 9984.91 6893.54 6274.28 2983.31 7095.86 20
LPG-MVS_test82.08 11581.27 12184.50 10689.23 14268.76 11290.22 7391.94 9975.37 10076.64 20791.51 11254.29 24194.91 9578.44 11583.78 19989.83 227
LGP-MVS_train84.50 10689.23 14268.76 11291.94 9975.37 10076.64 20791.51 11254.29 24194.91 9578.44 11583.78 19989.83 227
MG-MVS83.41 9583.45 8783.28 16192.74 6562.28 25888.17 14489.50 17675.22 10281.49 12392.74 8866.75 10995.11 8772.85 17491.58 9092.45 130
LCM-MVSNet-Re77.05 23276.94 21677.36 29987.20 22351.60 37880.06 31980.46 33875.20 10367.69 33586.72 23662.48 15688.98 29363.44 25789.25 12291.51 157
SDMVSNet80.38 15580.18 14180.99 22989.03 15164.94 20480.45 31589.40 17875.19 10476.61 20989.98 14960.61 19487.69 31276.83 13483.55 20890.33 200
sd_testset77.70 22277.40 20678.60 27589.03 15160.02 28779.00 33485.83 26675.19 10476.61 20989.98 14954.81 23385.46 33362.63 26683.55 20890.33 200
MP-MVS-pluss87.67 2187.72 2087.54 3693.64 4472.04 4889.80 8193.50 2575.17 10686.34 5495.29 1570.86 6696.00 5488.78 2296.04 1694.58 33
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test111179.43 17579.18 16480.15 24789.99 11353.31 36787.33 17177.05 36775.04 10780.23 13892.77 8748.97 30692.33 20968.87 21392.40 7994.81 21
Effi-MVS+-dtu80.03 16378.57 17484.42 11085.13 26368.74 11488.77 12088.10 21874.99 10874.97 25483.49 31557.27 21993.36 16273.53 16580.88 24091.18 167
reproduce-ours87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10988.96 2195.54 1271.20 6296.54 3686.28 4093.49 6593.06 106
our_new_method87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10988.96 2195.54 1271.20 6296.54 3686.28 4093.49 6593.06 106
OMC-MVS82.69 10781.97 11584.85 9788.75 16167.42 15087.98 14990.87 13474.92 11179.72 14391.65 10662.19 16393.96 12875.26 15286.42 16493.16 101
test250677.30 23076.49 22779.74 25590.08 10852.02 37187.86 15763.10 40974.88 11280.16 13992.79 8538.29 37592.35 20768.74 21592.50 7794.86 18
ECVR-MVScopyleft79.61 16879.26 16180.67 23790.08 10854.69 35487.89 15577.44 36374.88 11280.27 13692.79 8548.96 30792.45 20168.55 21692.50 7794.86 18
MonoMVSNet76.49 24575.80 23478.58 27681.55 33658.45 29886.36 20386.22 26074.87 11474.73 25883.73 31051.79 27288.73 29870.78 19072.15 34788.55 271
nrg03083.88 8183.53 8684.96 9286.77 23269.28 10290.46 6792.67 6774.79 11582.95 10491.33 11972.70 4493.09 18080.79 9979.28 26292.50 127
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 11692.29 795.97 274.28 2997.24 1388.58 2496.91 194.87 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
reproduce_model87.28 3087.39 2886.95 4893.10 5671.24 6391.60 4293.19 3574.69 11788.80 2495.61 1170.29 7396.44 3986.20 4293.08 6993.16 101
MVS_111021_LR82.61 10982.11 10984.11 12488.82 15671.58 5585.15 23286.16 26274.69 11780.47 13591.04 12962.29 16090.55 26680.33 10290.08 11190.20 205
EIA-MVS83.31 9982.80 10084.82 9889.59 12265.59 18888.21 14292.68 6674.66 11978.96 15286.42 25169.06 8795.26 8075.54 14890.09 11093.62 81
TSAR-MVS + MP.88.02 1788.11 1687.72 3093.68 4372.13 4691.41 5092.35 8274.62 12088.90 2393.85 5875.75 2096.00 5487.80 3194.63 4895.04 9
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SR-MVS86.73 3886.67 4086.91 4994.11 3772.11 4792.37 2892.56 7574.50 12186.84 5194.65 2367.31 10695.77 5984.80 5392.85 7292.84 116
FOURS195.00 1072.39 3995.06 193.84 1574.49 12291.30 15
ACMP74.13 681.51 13080.57 13284.36 11289.42 13068.69 11989.97 7791.50 11874.46 12375.04 25390.41 14253.82 24694.54 10977.56 12482.91 21789.86 226
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EPP-MVSNet83.40 9683.02 9584.57 10490.13 10664.47 21592.32 3090.73 13774.45 12479.35 14891.10 12669.05 8895.12 8572.78 17587.22 15294.13 51
fmvsm_s_conf0.5_n_284.04 7984.11 8083.81 14786.17 24165.00 20286.96 18187.28 23874.35 12588.25 2894.23 4061.82 16792.60 19489.85 788.09 14293.84 67
fmvsm_s_conf0.1_n_283.80 8383.79 8383.83 14685.62 25164.94 20487.03 17986.62 25474.32 12687.97 3594.33 3460.67 19192.60 19489.72 887.79 14493.96 58
save fliter93.80 4072.35 4290.47 6691.17 12574.31 127
MVS_Test83.15 10083.06 9483.41 15886.86 22863.21 24286.11 21092.00 9574.31 12782.87 10689.44 16870.03 7593.21 16977.39 12788.50 13793.81 69
UniMVSNet_ETH3D79.10 18578.24 18381.70 20986.85 22960.24 28587.28 17388.79 20374.25 12976.84 20090.53 14149.48 29791.56 23667.98 22082.15 22693.29 94
IterMVS-LS80.06 16279.38 15682.11 20185.89 24663.20 24386.79 18989.34 18074.19 13075.45 23486.72 23666.62 11092.39 20472.58 17776.86 28790.75 183
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet80.52 15379.98 14382.12 20084.28 27763.19 24486.41 20088.95 20074.18 13178.69 15787.54 21666.62 11092.43 20272.57 17880.57 24690.74 184
Vis-MVSNet (Re-imp)78.36 20278.45 17678.07 28888.64 16551.78 37786.70 19379.63 34874.14 13275.11 25090.83 13661.29 18089.75 27858.10 31091.60 8892.69 120
v879.97 16579.02 16782.80 18784.09 28264.50 21487.96 15090.29 15374.13 13375.24 24686.81 23362.88 15293.89 13874.39 15875.40 31590.00 218
CSCG86.41 4586.19 4787.07 4592.91 6172.48 3790.81 5893.56 2473.95 13483.16 10391.07 12875.94 1895.19 8279.94 10694.38 5693.55 85
thres100view90076.50 24275.55 24179.33 26389.52 12556.99 32285.83 21983.23 30173.94 13576.32 21587.12 22851.89 26991.95 22048.33 36683.75 20289.07 244
9.1488.26 1592.84 6391.52 4894.75 173.93 13688.57 2694.67 2275.57 2295.79 5886.77 3895.76 23
HPM-MVS_fast85.35 6584.95 7186.57 5693.69 4270.58 7892.15 3591.62 11173.89 13782.67 11194.09 4662.60 15395.54 6580.93 9592.93 7193.57 83
PAPM_NR83.02 10482.41 10484.82 9892.47 7066.37 17187.93 15391.80 10673.82 13877.32 18990.66 13867.90 10094.90 9770.37 19689.48 12093.19 100
thres600view776.50 24275.44 24279.68 25789.40 13257.16 31985.53 22783.23 30173.79 13976.26 21687.09 22951.89 26991.89 22348.05 37183.72 20590.00 218
testing9176.54 24075.66 23979.18 26788.43 17355.89 34081.08 30283.00 30873.76 14075.34 23984.29 29746.20 32690.07 27264.33 25184.50 18791.58 155
v7n78.97 18977.58 20483.14 16983.45 29765.51 18988.32 13991.21 12373.69 14172.41 28786.32 25457.93 21093.81 14069.18 20975.65 30690.11 210
dcpmvs_285.63 5986.15 4984.06 13391.71 7864.94 20486.47 19991.87 10373.63 14286.60 5393.02 7876.57 1591.87 22583.36 6992.15 8095.35 3
v2v48280.23 15979.29 16083.05 17583.62 29364.14 22187.04 17889.97 16273.61 14378.18 17287.22 22461.10 18493.82 13976.11 13976.78 29091.18 167
Baseline_NR-MVSNet78.15 20878.33 18177.61 29585.79 24756.21 33786.78 19085.76 26773.60 14477.93 17887.57 21365.02 13088.99 29267.14 23075.33 31787.63 287
BH-RMVSNet79.61 16878.44 17783.14 16989.38 13465.93 17984.95 23887.15 24373.56 14578.19 17189.79 15356.67 22493.36 16259.53 29486.74 15990.13 208
APD-MVS_3200maxsize85.97 5185.88 5486.22 6092.69 6669.53 9291.93 3792.99 4973.54 14685.94 5594.51 2765.80 12495.61 6283.04 7492.51 7693.53 87
SR-MVS-dyc-post85.77 5685.61 5986.23 5993.06 5870.63 7691.88 3892.27 8473.53 14785.69 5994.45 2965.00 13295.56 6382.75 7891.87 8492.50 127
RE-MVS-def85.48 6193.06 5870.63 7691.88 3892.27 8473.53 14785.69 5994.45 2963.87 13882.75 7891.87 8492.50 127
reproduce_monomvs75.40 26374.38 25978.46 28283.92 28757.80 31183.78 26486.94 24773.47 14972.25 29084.47 29138.74 37189.27 28775.32 15170.53 35788.31 275
test_fmvsmconf_n85.92 5286.04 5285.57 7685.03 26569.51 9389.62 8990.58 14073.42 15087.75 3894.02 5072.85 4293.24 16690.37 490.75 10093.96 58
tfpn200view976.42 24675.37 24679.55 26289.13 14657.65 31385.17 23083.60 29373.41 15176.45 21186.39 25252.12 26191.95 22048.33 36683.75 20289.07 244
thres40076.50 24275.37 24679.86 25289.13 14657.65 31385.17 23083.60 29373.41 15176.45 21186.39 25252.12 26191.95 22048.33 36683.75 20290.00 218
test_fmvsmconf0.1_n85.61 6085.65 5885.50 7782.99 31269.39 10089.65 8690.29 15373.31 15387.77 3794.15 4471.72 5393.23 16790.31 590.67 10293.89 64
testing9976.09 25275.12 25079.00 26888.16 18155.50 34680.79 30681.40 32773.30 15475.17 24784.27 29944.48 34090.02 27364.28 25284.22 19691.48 160
v14878.72 19477.80 19581.47 21482.73 31761.96 26286.30 20588.08 21973.26 15576.18 21985.47 27262.46 15792.36 20671.92 18273.82 33490.09 212
FA-MVS(test-final)80.96 13779.91 14584.10 12588.30 17865.01 20184.55 24890.01 16173.25 15679.61 14487.57 21358.35 20894.72 10571.29 18786.25 16792.56 124
test_fmvsmconf0.01_n84.73 7484.52 7685.34 8080.25 35369.03 10389.47 9189.65 17173.24 15786.98 4994.27 3766.62 11093.23 16790.26 689.95 11493.78 71
v1079.74 16778.67 17182.97 18084.06 28364.95 20387.88 15690.62 13973.11 15875.11 25086.56 24761.46 17594.05 12773.68 16375.55 30889.90 224
MCST-MVS87.37 2987.25 3087.73 2894.53 1772.46 3889.82 7993.82 1673.07 15984.86 7192.89 8076.22 1796.33 4184.89 5195.13 3694.40 41
baseline176.98 23476.75 22377.66 29388.13 18455.66 34485.12 23381.89 32173.04 16076.79 20288.90 17762.43 15887.78 31163.30 25971.18 35489.55 236
APD-MVScopyleft87.44 2587.52 2587.19 4294.24 3272.39 3991.86 4092.83 6073.01 16188.58 2594.52 2473.36 3496.49 3884.26 6095.01 3792.70 118
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
diffmvspermissive82.10 11481.88 11682.76 19283.00 31063.78 22883.68 26689.76 16772.94 16282.02 11589.85 15265.96 12390.79 26282.38 8487.30 15193.71 73
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
K. test v371.19 30468.51 31679.21 26683.04 30957.78 31284.35 25676.91 36872.90 16362.99 37482.86 32739.27 36891.09 25761.65 27752.66 40088.75 264
MVSMamba_PlusPlus85.99 4985.96 5386.05 6691.09 8567.64 14489.63 8892.65 7072.89 16484.64 7691.71 10471.85 5096.03 5084.77 5494.45 5494.49 37
GDP-MVS83.52 9282.64 10286.16 6288.14 18368.45 12489.13 10892.69 6572.82 16583.71 9591.86 10255.69 22895.35 7980.03 10489.74 11794.69 27
Fast-Effi-MVS+-dtu78.02 21276.49 22782.62 19483.16 30666.96 16586.94 18387.45 23672.45 16671.49 29984.17 30154.79 23791.58 23467.61 22380.31 24989.30 242
PHI-MVS86.43 4386.17 4887.24 4190.88 9270.96 6892.27 3294.07 972.45 16685.22 6491.90 9969.47 8196.42 4083.28 7195.94 1994.35 43
thres20075.55 25874.47 25778.82 27187.78 20457.85 30983.07 28183.51 29672.44 16875.84 22584.42 29252.08 26491.75 22847.41 37383.64 20786.86 308
test_yl81.17 13380.47 13583.24 16489.13 14663.62 22986.21 20789.95 16372.43 16981.78 12089.61 15857.50 21693.58 14970.75 19186.90 15692.52 125
DCV-MVSNet81.17 13380.47 13583.24 16489.13 14663.62 22986.21 20789.95 16372.43 16981.78 12089.61 15857.50 21693.58 14970.75 19186.90 15692.52 125
BH-untuned79.47 17378.60 17382.05 20289.19 14465.91 18086.07 21188.52 21372.18 17175.42 23587.69 21061.15 18393.54 15360.38 28686.83 15886.70 312
TransMVSNet (Re)75.39 26474.56 25577.86 28985.50 25457.10 32186.78 19086.09 26472.17 17271.53 29887.34 21963.01 15189.31 28656.84 32261.83 38387.17 299
GA-MVS76.87 23675.17 24981.97 20582.75 31662.58 25381.44 29986.35 25972.16 17374.74 25782.89 32646.20 32692.02 21868.85 21481.09 23891.30 165
mmtdpeth74.16 27373.01 27577.60 29783.72 29261.13 27085.10 23485.10 27372.06 17477.21 19680.33 35443.84 34485.75 32777.14 13052.61 40185.91 327
v114480.03 16379.03 16683.01 17783.78 29064.51 21287.11 17790.57 14271.96 17578.08 17586.20 25661.41 17693.94 13174.93 15377.23 28190.60 189
PS-MVSNAJss82.07 11681.31 12084.34 11486.51 23767.27 15689.27 10191.51 11571.75 17679.37 14790.22 14763.15 14794.27 11877.69 12382.36 22591.49 159
EPNet_dtu75.46 26074.86 25177.23 30282.57 32154.60 35586.89 18583.09 30571.64 17766.25 35585.86 26255.99 22788.04 30854.92 33186.55 16289.05 249
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GBi-Net78.40 20077.40 20681.40 21787.60 21063.01 24688.39 13489.28 18271.63 17875.34 23987.28 22054.80 23491.11 25262.72 26279.57 25690.09 212
test178.40 20077.40 20681.40 21787.60 21063.01 24688.39 13489.28 18271.63 17875.34 23987.28 22054.80 23491.11 25262.72 26279.57 25690.09 212
FMVSNet278.20 20677.21 21081.20 22387.60 21062.89 25287.47 16589.02 19571.63 17875.29 24587.28 22054.80 23491.10 25562.38 26779.38 26089.61 234
patch_mono-283.65 8784.54 7480.99 22990.06 11265.83 18284.21 25888.74 20871.60 18185.01 6592.44 9074.51 2583.50 34882.15 8592.15 8093.64 80
V4279.38 17978.24 18382.83 18481.10 34565.50 19085.55 22589.82 16571.57 18278.21 17086.12 25860.66 19293.18 17575.64 14575.46 31289.81 229
API-MVS81.99 11881.23 12284.26 12190.94 9070.18 8591.10 5589.32 18171.51 18378.66 15988.28 19665.26 12795.10 9064.74 24991.23 9587.51 291
tttt051779.40 17777.91 19083.90 14588.10 18663.84 22688.37 13784.05 28871.45 18476.78 20389.12 17249.93 29494.89 9870.18 19883.18 21592.96 114
pm-mvs177.25 23176.68 22578.93 27084.22 27958.62 29786.41 20088.36 21571.37 18573.31 27488.01 20661.22 18289.15 29064.24 25373.01 34189.03 250
testing22274.04 27572.66 27978.19 28587.89 19655.36 34781.06 30379.20 35271.30 18674.65 26083.57 31439.11 37088.67 30051.43 34985.75 17790.53 192
GeoE81.71 12381.01 12783.80 14889.51 12664.45 21688.97 11388.73 20971.27 18778.63 16089.76 15466.32 11693.20 17269.89 20286.02 17293.74 72
tt080578.73 19377.83 19381.43 21585.17 25960.30 28489.41 9690.90 13271.21 18877.17 19788.73 18146.38 32193.21 16972.57 17878.96 26490.79 180
FMVSNet377.88 21676.85 21880.97 23186.84 23062.36 25586.52 19888.77 20471.13 18975.34 23986.66 24254.07 24491.10 25562.72 26279.57 25689.45 238
VDDNet81.52 12880.67 13184.05 13690.44 10164.13 22289.73 8485.91 26571.11 19083.18 10293.48 6450.54 28693.49 15573.40 16888.25 13994.54 36
fmvsm_s_conf0.5_n83.80 8383.71 8484.07 13186.69 23467.31 15489.46 9283.07 30671.09 19186.96 5093.70 6169.02 9091.47 24388.79 2184.62 18693.44 89
XVG-OURS80.41 15479.23 16283.97 14285.64 25069.02 10583.03 28390.39 14571.09 19177.63 18391.49 11454.62 24091.35 24775.71 14483.47 21091.54 156
SixPastTwentyTwo73.37 28371.26 29679.70 25685.08 26457.89 30885.57 22183.56 29571.03 19365.66 35785.88 26142.10 35692.57 19659.11 29863.34 38188.65 268
ZD-MVS94.38 2572.22 4492.67 6770.98 19487.75 3894.07 4774.01 3296.70 2784.66 5594.84 44
v119279.59 17078.43 17883.07 17483.55 29564.52 21186.93 18490.58 14070.83 19577.78 18085.90 26059.15 20393.94 13173.96 16277.19 28390.76 182
Fast-Effi-MVS+80.81 14179.92 14483.47 15488.85 15364.51 21285.53 22789.39 17970.79 19678.49 16485.06 28267.54 10393.58 14967.03 23286.58 16192.32 134
PS-MVSNAJ81.69 12481.02 12683.70 14989.51 12668.21 13184.28 25790.09 15970.79 19681.26 12885.62 26963.15 14794.29 11675.62 14688.87 12888.59 269
LTVRE_ROB69.57 1376.25 24974.54 25681.41 21688.60 16664.38 21879.24 32989.12 19370.76 19869.79 31987.86 20749.09 30493.20 17256.21 32780.16 25086.65 313
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
testing1175.14 26674.01 26278.53 27988.16 18156.38 33380.74 30980.42 33970.67 19972.69 28483.72 31143.61 34689.86 27562.29 26983.76 20189.36 240
fmvsm_s_conf0.1_n83.56 9183.38 8984.10 12584.86 26767.28 15589.40 9783.01 30770.67 19987.08 4793.96 5668.38 9491.45 24488.56 2584.50 18793.56 84
xiu_mvs_v2_base81.69 12481.05 12583.60 15189.15 14568.03 13684.46 25190.02 16070.67 19981.30 12786.53 24963.17 14694.19 12375.60 14788.54 13588.57 270
XVG-OURS-SEG-HR80.81 14179.76 14883.96 14385.60 25268.78 11183.54 27290.50 14370.66 20276.71 20591.66 10560.69 19091.26 24976.94 13281.58 23391.83 149
Anonymous20240521178.25 20377.01 21381.99 20491.03 8760.67 27884.77 24183.90 29070.65 20380.00 14091.20 12341.08 36191.43 24565.21 24485.26 17993.85 65
DP-MVS Recon83.11 10382.09 11186.15 6394.44 1970.92 7188.79 11992.20 8970.53 20479.17 15091.03 13164.12 13696.03 5068.39 21990.14 10991.50 158
FMVSNet177.44 22676.12 23381.40 21786.81 23163.01 24688.39 13489.28 18270.49 20574.39 26487.28 22049.06 30591.11 25260.91 28378.52 26790.09 212
testing368.56 33167.67 33171.22 35887.33 22042.87 40883.06 28271.54 38870.36 20669.08 32584.38 29430.33 39585.69 32937.50 40175.45 31385.09 342
ab-mvs79.51 17178.97 16881.14 22588.46 17160.91 27483.84 26389.24 18670.36 20679.03 15188.87 17963.23 14590.21 27065.12 24582.57 22392.28 136
tfpnnormal74.39 26973.16 27378.08 28786.10 24558.05 30384.65 24587.53 23370.32 20871.22 30185.63 26854.97 23289.86 27543.03 38975.02 32286.32 316
ACMM73.20 880.78 14679.84 14783.58 15289.31 13868.37 12689.99 7691.60 11270.28 20977.25 19089.66 15653.37 25193.53 15474.24 16082.85 21888.85 259
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.5_n_a83.63 8983.41 8884.28 11786.14 24268.12 13289.43 9382.87 31170.27 21087.27 4693.80 6069.09 8591.58 23488.21 2983.65 20693.14 103
ACMH+68.96 1476.01 25374.01 26282.03 20388.60 16665.31 19588.86 11787.55 23270.25 21167.75 33487.47 21841.27 35993.19 17458.37 30775.94 30387.60 288
IB-MVS68.01 1575.85 25573.36 27183.31 16084.76 26866.03 17583.38 27385.06 27470.21 21269.40 32181.05 34545.76 33194.66 10865.10 24675.49 30989.25 243
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thisisatest053079.40 17777.76 19884.31 11587.69 20865.10 20087.36 16984.26 28670.04 21377.42 18688.26 19849.94 29294.79 10370.20 19784.70 18593.03 109
mvsmamba80.60 14979.38 15684.27 11989.74 12067.24 15887.47 16586.95 24670.02 21475.38 23788.93 17651.24 27792.56 19775.47 15089.22 12393.00 112
test_fmvsmvis_n_192084.02 8083.87 8184.49 10884.12 28169.37 10188.15 14687.96 22270.01 21583.95 9193.23 7168.80 9291.51 24188.61 2389.96 11392.57 123
v14419279.47 17378.37 17982.78 19083.35 29863.96 22486.96 18190.36 14969.99 21677.50 18485.67 26760.66 19293.77 14374.27 15976.58 29190.62 187
test_fmvsm_n_192085.29 6685.34 6385.13 8786.12 24369.93 8688.65 12790.78 13669.97 21788.27 2793.98 5571.39 5991.54 23888.49 2690.45 10493.91 61
c3_l78.75 19277.91 19081.26 22182.89 31461.56 26784.09 26189.13 19269.97 21775.56 22984.29 29766.36 11592.09 21673.47 16775.48 31090.12 209
v192192079.22 18178.03 18782.80 18783.30 30063.94 22586.80 18890.33 15069.91 21977.48 18585.53 27058.44 20793.75 14573.60 16476.85 28890.71 185
ACMH67.68 1675.89 25473.93 26481.77 20888.71 16366.61 16888.62 12889.01 19669.81 22066.78 34686.70 24041.95 35891.51 24155.64 32878.14 27387.17 299
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.1_n_a83.32 9882.99 9684.28 11783.79 28968.07 13489.34 10082.85 31269.80 22187.36 4594.06 4868.34 9591.56 23687.95 3083.46 21193.21 99
DPM-MVS84.93 7184.29 7886.84 5090.20 10573.04 2387.12 17693.04 4169.80 22182.85 10791.22 12273.06 4096.02 5276.72 13694.63 4891.46 162
MAR-MVS81.84 12080.70 13085.27 8291.32 8271.53 5689.82 7990.92 13169.77 22378.50 16386.21 25562.36 15994.52 11165.36 24392.05 8289.77 230
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
XVG-ACMP-BASELINE76.11 25174.27 26181.62 21083.20 30364.67 21083.60 27089.75 16869.75 22471.85 29487.09 22932.78 38892.11 21569.99 20180.43 24888.09 279
BH-w/o78.21 20577.33 20980.84 23388.81 15765.13 19984.87 23987.85 22769.75 22474.52 26284.74 28961.34 17893.11 17958.24 30985.84 17584.27 349
v124078.99 18877.78 19682.64 19383.21 30263.54 23386.62 19590.30 15269.74 22677.33 18885.68 26657.04 22193.76 14473.13 17276.92 28590.62 187
ET-MVSNet_ETH3D78.63 19676.63 22684.64 10386.73 23369.47 9585.01 23684.61 27969.54 22766.51 35386.59 24450.16 28991.75 22876.26 13884.24 19592.69 120
eth_miper_zixun_eth77.92 21576.69 22481.61 21283.00 31061.98 26183.15 27789.20 18869.52 22874.86 25684.35 29661.76 16892.56 19771.50 18572.89 34290.28 203
PVSNet_Blended_VisFu82.62 10881.83 11784.96 9290.80 9469.76 9088.74 12391.70 11069.39 22978.96 15288.46 19165.47 12694.87 10074.42 15788.57 13490.24 204
mvs_tets79.13 18477.77 19783.22 16684.70 26966.37 17189.17 10390.19 15669.38 23075.40 23689.46 16544.17 34293.15 17676.78 13580.70 24490.14 207
PVSNet_BlendedMVS80.60 14980.02 14282.36 19988.85 15365.40 19186.16 20992.00 9569.34 23178.11 17386.09 25966.02 12194.27 11871.52 18382.06 22887.39 293
AdaColmapbinary80.58 15279.42 15584.06 13393.09 5768.91 10889.36 9988.97 19969.27 23275.70 22789.69 15557.20 22095.77 5963.06 26088.41 13887.50 292
ETVMVS72.25 29871.05 29775.84 31187.77 20551.91 37479.39 32774.98 37669.26 23373.71 27082.95 32440.82 36386.14 32446.17 37984.43 19289.47 237
ITE_SJBPF78.22 28481.77 33260.57 27983.30 29969.25 23467.54 33687.20 22536.33 38187.28 31554.34 33474.62 32686.80 309
cl____77.72 22076.76 22180.58 23882.49 32360.48 28183.09 27987.87 22569.22 23574.38 26585.22 27862.10 16491.53 23971.09 18875.41 31489.73 232
DIV-MVS_self_test77.72 22076.76 22180.58 23882.48 32460.48 28183.09 27987.86 22669.22 23574.38 26585.24 27662.10 16491.53 23971.09 18875.40 31589.74 231
jajsoiax79.29 18077.96 18883.27 16284.68 27066.57 16989.25 10290.16 15769.20 23775.46 23389.49 16245.75 33293.13 17876.84 13380.80 24290.11 210
IterMVS-SCA-FT75.43 26173.87 26680.11 24882.69 31864.85 20781.57 29683.47 29769.16 23870.49 30584.15 30251.95 26788.15 30669.23 20872.14 34887.34 295
CL-MVSNet_self_test72.37 29671.46 29175.09 32379.49 36653.53 36380.76 30885.01 27669.12 23970.51 30482.05 33957.92 21184.13 34352.27 34466.00 37587.60 288
AUN-MVS79.21 18277.60 20384.05 13688.71 16367.61 14585.84 21887.26 24069.08 24077.23 19288.14 20453.20 25393.47 15775.50 14973.45 33791.06 171
xiu_mvs_v1_base_debu80.80 14379.72 14984.03 13887.35 21570.19 8285.56 22288.77 20469.06 24181.83 11688.16 20050.91 28092.85 18878.29 11987.56 14689.06 246
xiu_mvs_v1_base80.80 14379.72 14984.03 13887.35 21570.19 8285.56 22288.77 20469.06 24181.83 11688.16 20050.91 28092.85 18878.29 11987.56 14689.06 246
xiu_mvs_v1_base_debi80.80 14379.72 14984.03 13887.35 21570.19 8285.56 22288.77 20469.06 24181.83 11688.16 20050.91 28092.85 18878.29 11987.56 14689.06 246
MVSTER79.01 18777.88 19282.38 19883.07 30764.80 20884.08 26288.95 20069.01 24478.69 15787.17 22754.70 23892.43 20274.69 15480.57 24689.89 225
cl2278.07 21077.01 21381.23 22282.37 32661.83 26483.55 27187.98 22168.96 24575.06 25283.87 30461.40 17791.88 22473.53 16576.39 29589.98 221
miper_ehance_all_eth78.59 19877.76 19881.08 22782.66 31961.56 26783.65 26789.15 19068.87 24675.55 23083.79 30866.49 11392.03 21773.25 17076.39 29589.64 233
PAPR81.66 12680.89 12983.99 14190.27 10364.00 22386.76 19291.77 10968.84 24777.13 19989.50 16167.63 10294.88 9967.55 22488.52 13693.09 104
CPTT-MVS83.73 8583.33 9184.92 9593.28 4970.86 7292.09 3690.38 14668.75 24879.57 14592.83 8260.60 19593.04 18480.92 9691.56 9190.86 179
train_agg86.43 4386.20 4687.13 4493.26 5272.96 2588.75 12191.89 10168.69 24985.00 6693.10 7374.43 2695.41 7384.97 4895.71 2593.02 110
test_893.13 5472.57 3588.68 12691.84 10568.69 24984.87 7093.10 7374.43 2695.16 83
dmvs_re71.14 30570.58 30172.80 34481.96 32959.68 29075.60 36479.34 35068.55 25169.27 32480.72 35149.42 29876.54 38252.56 34377.79 27682.19 374
MVSFormer82.85 10682.05 11285.24 8387.35 21570.21 8090.50 6490.38 14668.55 25181.32 12489.47 16361.68 16993.46 15878.98 11090.26 10792.05 146
test_djsdf80.30 15879.32 15983.27 16283.98 28565.37 19490.50 6490.38 14668.55 25176.19 21888.70 18256.44 22693.46 15878.98 11080.14 25290.97 176
TEST993.26 5272.96 2588.75 12191.89 10168.44 25485.00 6693.10 7374.36 2895.41 73
FE-MVS77.78 21875.68 23784.08 13088.09 18766.00 17783.13 27887.79 22868.42 25578.01 17685.23 27745.50 33595.12 8559.11 29885.83 17691.11 169
CDPH-MVS85.76 5785.29 6787.17 4393.49 4771.08 6488.58 12992.42 8068.32 25684.61 7793.48 6472.32 4596.15 4879.00 10995.43 3094.28 47
PC_three_145268.21 25792.02 1294.00 5282.09 595.98 5684.58 5696.68 294.95 11
fmvsm_l_conf0.5_n84.47 7584.54 7484.27 11985.42 25568.81 10988.49 13187.26 24068.08 25888.03 3293.49 6372.04 4991.77 22788.90 2089.14 12592.24 139
IterMVS74.29 27072.94 27678.35 28381.53 33763.49 23581.58 29582.49 31568.06 25969.99 31483.69 31251.66 27485.54 33165.85 24071.64 35186.01 324
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dmvs_testset62.63 35864.11 34958.19 38878.55 37124.76 42675.28 36565.94 40467.91 26060.34 38276.01 38553.56 24873.94 40131.79 40767.65 36875.88 395
TAMVS78.89 19177.51 20583.03 17687.80 20167.79 14184.72 24285.05 27567.63 26176.75 20487.70 20962.25 16190.82 26158.53 30587.13 15390.49 194
PVSNet_Blended80.98 13680.34 13782.90 18288.85 15365.40 19184.43 25392.00 9567.62 26278.11 17385.05 28366.02 12194.27 11871.52 18389.50 11989.01 251
TR-MVS77.44 22676.18 23281.20 22388.24 17963.24 24184.61 24686.40 25767.55 26377.81 17986.48 25054.10 24393.15 17657.75 31382.72 22187.20 298
CDS-MVSNet79.07 18677.70 20083.17 16887.60 21068.23 13084.40 25586.20 26167.49 26476.36 21486.54 24861.54 17290.79 26261.86 27587.33 15090.49 194
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
fmvsm_l_conf0.5_n_a84.13 7884.16 7984.06 13385.38 25668.40 12588.34 13886.85 25067.48 26587.48 4293.40 6770.89 6591.61 23288.38 2889.22 12392.16 143
mvs_anonymous79.42 17679.11 16580.34 24384.45 27657.97 30682.59 28587.62 23167.40 26676.17 22188.56 18968.47 9389.59 28170.65 19486.05 17193.47 88
mvs5depth69.45 32367.45 33575.46 31973.93 38955.83 34179.19 33183.23 30166.89 26771.63 29783.32 31733.69 38785.09 33659.81 29155.34 39785.46 333
IU-MVS95.30 271.25 5992.95 5566.81 26892.39 688.94 1996.63 494.85 20
baseline275.70 25673.83 26781.30 22083.26 30161.79 26582.57 28680.65 33466.81 26866.88 34483.42 31657.86 21292.19 21363.47 25679.57 25689.91 223
miper_lstm_enhance74.11 27473.11 27477.13 30380.11 35559.62 29172.23 37986.92 24966.76 27070.40 30682.92 32556.93 22282.92 35269.06 21172.63 34388.87 258
OpenMVScopyleft72.83 1079.77 16678.33 18184.09 12985.17 25969.91 8790.57 6190.97 13066.70 27172.17 29191.91 9854.70 23893.96 12861.81 27690.95 9888.41 274
test-LLR72.94 29272.43 28174.48 32981.35 34158.04 30478.38 34377.46 36166.66 27269.95 31579.00 36748.06 31079.24 36866.13 23584.83 18286.15 320
test20.0367.45 33866.95 33968.94 36775.48 38444.84 40477.50 35277.67 35966.66 27263.01 37383.80 30747.02 31678.40 37242.53 39268.86 36683.58 359
test0.0.03 168.00 33667.69 33068.90 36877.55 37447.43 39475.70 36372.95 38766.66 27266.56 34982.29 33648.06 31075.87 39044.97 38674.51 32783.41 360
Syy-MVS68.05 33567.85 32568.67 37184.68 27040.97 41478.62 34073.08 38566.65 27566.74 34779.46 36252.11 26382.30 35532.89 40676.38 29882.75 369
myMVS_eth3d67.02 34166.29 34269.21 36684.68 27042.58 40978.62 34073.08 38566.65 27566.74 34779.46 36231.53 39282.30 35539.43 39876.38 29882.75 369
QAPM80.88 13879.50 15485.03 8988.01 19268.97 10791.59 4392.00 9566.63 27775.15 24992.16 9457.70 21395.45 6863.52 25588.76 13190.66 186
XXY-MVS75.41 26275.56 24074.96 32483.59 29457.82 31080.59 31283.87 29166.54 27874.93 25588.31 19563.24 14480.09 36662.16 27176.85 28886.97 306
OurMVSNet-221017-074.26 27172.42 28279.80 25483.76 29159.59 29285.92 21586.64 25266.39 27966.96 34387.58 21239.46 36791.60 23365.76 24169.27 36288.22 276
SCA74.22 27272.33 28379.91 25184.05 28462.17 25979.96 32279.29 35166.30 28072.38 28880.13 35651.95 26788.60 30159.25 29677.67 27988.96 255
testgi66.67 34466.53 34167.08 37875.62 38341.69 41375.93 35976.50 37066.11 28165.20 36386.59 24435.72 38374.71 39743.71 38773.38 33984.84 344
HY-MVS69.67 1277.95 21477.15 21180.36 24287.57 21460.21 28683.37 27487.78 22966.11 28175.37 23887.06 23163.27 14390.48 26761.38 28082.43 22490.40 198
EG-PatchMatch MVS74.04 27571.82 28780.71 23684.92 26667.42 15085.86 21788.08 21966.04 28364.22 36783.85 30535.10 38492.56 19757.44 31580.83 24182.16 375
CNLPA78.08 20976.79 22081.97 20590.40 10271.07 6587.59 16284.55 28066.03 28472.38 28889.64 15757.56 21586.04 32559.61 29383.35 21288.79 262
Anonymous2024052980.19 16178.89 16984.10 12590.60 9764.75 20988.95 11490.90 13265.97 28580.59 13491.17 12549.97 29193.73 14769.16 21082.70 22293.81 69
TAPA-MVS73.13 979.15 18377.94 18982.79 18989.59 12262.99 25088.16 14591.51 11565.77 28677.14 19891.09 12760.91 18793.21 16950.26 35787.05 15492.17 142
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MSDG73.36 28570.99 29880.49 24084.51 27565.80 18380.71 31086.13 26365.70 28765.46 35883.74 30944.60 33890.91 26051.13 35076.89 28684.74 345
anonymousdsp78.60 19777.15 21182.98 17980.51 35167.08 16187.24 17489.53 17565.66 28875.16 24887.19 22652.52 25492.25 21177.17 12979.34 26189.61 234
test_040272.79 29370.44 30479.84 25388.13 18465.99 17885.93 21484.29 28465.57 28967.40 34085.49 27146.92 31792.61 19335.88 40374.38 32880.94 381
UBG73.08 28972.27 28475.51 31788.02 19051.29 38278.35 34677.38 36465.52 29073.87 26982.36 33345.55 33386.48 32155.02 33084.39 19388.75 264
miper_enhance_ethall77.87 21776.86 21780.92 23281.65 33361.38 26982.68 28488.98 19765.52 29075.47 23182.30 33565.76 12592.00 21972.95 17376.39 29589.39 239
WBMVS73.43 28272.81 27775.28 32187.91 19550.99 38478.59 34281.31 32965.51 29274.47 26384.83 28646.39 32086.68 31858.41 30677.86 27588.17 278
UnsupCasMVSNet_eth67.33 33965.99 34371.37 35473.48 39451.47 38075.16 36785.19 27265.20 29360.78 38180.93 35042.35 35277.20 37857.12 31853.69 39985.44 334
WTY-MVS75.65 25775.68 23775.57 31586.40 23856.82 32477.92 35182.40 31665.10 29476.18 21987.72 20863.13 15080.90 36360.31 28781.96 22989.00 253
thisisatest051577.33 22975.38 24583.18 16785.27 25863.80 22782.11 29083.27 30065.06 29575.91 22383.84 30649.54 29694.27 11867.24 22886.19 16891.48 160
MVP-Stereo76.12 25074.46 25881.13 22685.37 25769.79 8984.42 25487.95 22365.03 29667.46 33885.33 27453.28 25291.73 23058.01 31183.27 21381.85 376
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Anonymous2023121178.97 18977.69 20182.81 18690.54 9964.29 21990.11 7591.51 11565.01 29776.16 22288.13 20550.56 28593.03 18569.68 20577.56 28091.11 169
pmmvs674.69 26873.39 27078.61 27481.38 34057.48 31686.64 19487.95 22364.99 29870.18 30986.61 24350.43 28789.52 28262.12 27270.18 35988.83 260
PAPM77.68 22376.40 23081.51 21387.29 22261.85 26383.78 26489.59 17364.74 29971.23 30088.70 18262.59 15493.66 14852.66 34287.03 15589.01 251
MIMVSNet70.69 31169.30 31074.88 32584.52 27456.35 33575.87 36279.42 34964.59 30067.76 33382.41 33241.10 36081.54 35946.64 37781.34 23486.75 311
tpm72.37 29671.71 28874.35 33182.19 32752.00 37279.22 33077.29 36564.56 30172.95 28083.68 31351.35 27583.26 35158.33 30875.80 30487.81 284
MDA-MVSNet-bldmvs66.68 34363.66 35275.75 31279.28 36860.56 28073.92 37578.35 35664.43 30250.13 40579.87 36044.02 34383.67 34646.10 38056.86 39183.03 366
MIMVSNet168.58 33066.78 34073.98 33580.07 35651.82 37680.77 30784.37 28164.40 30359.75 38682.16 33836.47 38083.63 34742.73 39070.33 35886.48 315
D2MVS74.82 26773.21 27279.64 25979.81 36062.56 25480.34 31787.35 23764.37 30468.86 32682.66 33046.37 32290.10 27167.91 22181.24 23686.25 317
PLCcopyleft70.83 1178.05 21176.37 23183.08 17391.88 7767.80 14088.19 14389.46 17764.33 30569.87 31788.38 19353.66 24793.58 14958.86 30182.73 22087.86 283
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PatchmatchNetpermissive73.12 28871.33 29478.49 28183.18 30460.85 27579.63 32478.57 35564.13 30671.73 29579.81 36151.20 27885.97 32657.40 31676.36 30088.66 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
mamv476.81 23778.23 18572.54 34786.12 24365.75 18678.76 33882.07 32064.12 30772.97 27991.02 13267.97 9868.08 41183.04 7478.02 27483.80 357
KD-MVS_2432*160066.22 34863.89 35073.21 33975.47 38553.42 36570.76 38684.35 28264.10 30866.52 35178.52 37134.55 38584.98 33750.40 35350.33 40481.23 379
miper_refine_blended66.22 34863.89 35073.21 33975.47 38553.42 36570.76 38684.35 28264.10 30866.52 35178.52 37134.55 38584.98 33750.40 35350.33 40481.23 379
tpmvs71.09 30669.29 31176.49 30782.04 32856.04 33878.92 33681.37 32864.05 31067.18 34278.28 37349.74 29589.77 27749.67 36072.37 34483.67 358
F-COLMAP76.38 24874.33 26082.50 19689.28 14066.95 16688.41 13389.03 19464.05 31066.83 34588.61 18646.78 31892.89 18757.48 31478.55 26687.67 286
DP-MVS76.78 23874.57 25483.42 15693.29 4869.46 9788.55 13083.70 29263.98 31270.20 30888.89 17854.01 24594.80 10246.66 37581.88 23186.01 324
原ACMM184.35 11393.01 6068.79 11092.44 7763.96 31381.09 12991.57 11166.06 12095.45 6867.19 22994.82 4688.81 261
PM-MVS66.41 34664.14 34873.20 34173.92 39056.45 33078.97 33564.96 40763.88 31464.72 36480.24 35519.84 41183.44 34966.24 23464.52 37979.71 387
UWE-MVS72.13 29971.49 29074.03 33486.66 23547.70 39381.40 30076.89 36963.60 31575.59 22884.22 30039.94 36685.62 33048.98 36386.13 17088.77 263
jason81.39 13180.29 13984.70 10286.63 23669.90 8885.95 21386.77 25163.24 31681.07 13089.47 16361.08 18592.15 21478.33 11890.07 11292.05 146
jason: jason.
KD-MVS_self_test68.81 32767.59 33372.46 34874.29 38845.45 39977.93 35087.00 24563.12 31763.99 36978.99 36942.32 35384.77 34056.55 32564.09 38087.16 301
gg-mvs-nofinetune69.95 31967.96 32375.94 31083.07 30754.51 35777.23 35570.29 39163.11 31870.32 30762.33 40443.62 34588.69 29953.88 33687.76 14584.62 347
tpmrst72.39 29472.13 28573.18 34280.54 35049.91 38979.91 32379.08 35363.11 31871.69 29679.95 35855.32 23082.77 35365.66 24273.89 33286.87 307
PCF-MVS73.52 780.38 15578.84 17085.01 9087.71 20668.99 10683.65 26791.46 11963.00 32077.77 18190.28 14366.10 11895.09 9161.40 27988.22 14090.94 177
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
COLMAP_ROBcopyleft66.92 1773.01 29070.41 30580.81 23487.13 22565.63 18788.30 14084.19 28762.96 32163.80 37187.69 21038.04 37692.56 19746.66 37574.91 32384.24 350
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Patchmatch-RL test70.24 31667.78 32977.61 29577.43 37559.57 29371.16 38370.33 39062.94 32268.65 32872.77 39550.62 28485.49 33269.58 20666.58 37287.77 285
lupinMVS81.39 13180.27 14084.76 10187.35 21570.21 8085.55 22586.41 25662.85 32381.32 12488.61 18661.68 16992.24 21278.41 11790.26 10791.83 149
test_vis1_n_192075.52 25975.78 23574.75 32879.84 35957.44 31783.26 27585.52 26962.83 32479.34 14986.17 25745.10 33779.71 36778.75 11281.21 23787.10 305
EPMVS69.02 32668.16 32071.59 35279.61 36449.80 39177.40 35366.93 40162.82 32570.01 31279.05 36545.79 33077.86 37656.58 32475.26 31987.13 302
PatchMatch-RL72.38 29570.90 29976.80 30688.60 16667.38 15279.53 32576.17 37362.75 32669.36 32282.00 34145.51 33484.89 33953.62 33780.58 24578.12 390
gm-plane-assit81.40 33953.83 36262.72 32780.94 34892.39 20463.40 258
FMVSNet569.50 32267.96 32374.15 33382.97 31355.35 34880.01 32182.12 31962.56 32863.02 37281.53 34236.92 37981.92 35748.42 36574.06 33085.17 340
sss73.60 28073.64 26973.51 33882.80 31555.01 35276.12 35881.69 32462.47 32974.68 25985.85 26357.32 21878.11 37460.86 28480.93 23987.39 293
WB-MVSnew71.96 30171.65 28972.89 34384.67 27351.88 37582.29 28877.57 36062.31 33073.67 27183.00 32353.49 25081.10 36245.75 38282.13 22785.70 330
AllTest70.96 30768.09 32279.58 26085.15 26163.62 22984.58 24779.83 34562.31 33060.32 38386.73 23432.02 38988.96 29550.28 35571.57 35286.15 320
TestCases79.58 26085.15 26163.62 22979.83 34562.31 33060.32 38386.73 23432.02 38988.96 29550.28 35571.57 35286.15 320
1112_ss77.40 22876.43 22980.32 24489.11 15060.41 28383.65 26787.72 23062.13 33373.05 27886.72 23662.58 15589.97 27462.11 27380.80 24290.59 190
PVSNet64.34 1872.08 30070.87 30075.69 31386.21 24056.44 33174.37 37380.73 33362.06 33470.17 31082.23 33742.86 35083.31 35054.77 33284.45 19187.32 296
LS3D76.95 23574.82 25283.37 15990.45 10067.36 15389.15 10786.94 24761.87 33569.52 32090.61 13951.71 27394.53 11046.38 37886.71 16088.21 277
CostFormer75.24 26573.90 26579.27 26482.65 32058.27 30180.80 30582.73 31461.57 33675.33 24383.13 32155.52 22991.07 25864.98 24778.34 27288.45 272
new-patchmatchnet61.73 36061.73 36161.70 38472.74 40024.50 42769.16 39378.03 35761.40 33756.72 39575.53 38938.42 37376.48 38445.95 38157.67 39084.13 352
ANet_high50.57 37846.10 38263.99 38148.67 42639.13 41570.99 38580.85 33161.39 33831.18 41557.70 41117.02 41473.65 40231.22 40815.89 42379.18 388
MS-PatchMatch73.83 27872.67 27877.30 30183.87 28866.02 17681.82 29184.66 27861.37 33968.61 32982.82 32847.29 31388.21 30559.27 29584.32 19477.68 391
USDC70.33 31568.37 31776.21 30980.60 34956.23 33679.19 33186.49 25560.89 34061.29 37985.47 27231.78 39189.47 28453.37 33976.21 30182.94 368
cascas76.72 23974.64 25382.99 17885.78 24865.88 18182.33 28789.21 18760.85 34172.74 28181.02 34647.28 31493.75 14567.48 22585.02 18089.34 241
MDTV_nov1_ep1369.97 30983.18 30453.48 36477.10 35680.18 34460.45 34269.33 32380.44 35248.89 30886.90 31651.60 34778.51 268
TinyColmap67.30 34064.81 34574.76 32781.92 33156.68 32880.29 31881.49 32660.33 34356.27 39783.22 31824.77 40387.66 31345.52 38369.47 36179.95 386
test-mter71.41 30370.39 30674.48 32981.35 34158.04 30478.38 34377.46 36160.32 34469.95 31579.00 36736.08 38279.24 36866.13 23584.83 18286.15 320
131476.53 24175.30 24880.21 24683.93 28662.32 25784.66 24388.81 20260.23 34570.16 31184.07 30355.30 23190.73 26467.37 22683.21 21487.59 290
PatchT68.46 33367.85 32570.29 36280.70 34843.93 40672.47 37874.88 37760.15 34670.55 30376.57 38249.94 29281.59 35850.58 35174.83 32485.34 335
无先验87.48 16488.98 19760.00 34794.12 12567.28 22788.97 254
CR-MVSNet73.37 28371.27 29579.67 25881.32 34365.19 19775.92 36080.30 34159.92 34872.73 28281.19 34352.50 25586.69 31759.84 29077.71 27787.11 303
TDRefinement67.49 33764.34 34776.92 30473.47 39561.07 27284.86 24082.98 30959.77 34958.30 39085.13 28026.06 39987.89 30947.92 37260.59 38881.81 377
dp66.80 34265.43 34470.90 36179.74 36348.82 39275.12 36974.77 37859.61 35064.08 36877.23 37942.89 34980.72 36448.86 36466.58 37283.16 363
our_test_369.14 32567.00 33875.57 31579.80 36158.80 29577.96 34977.81 35859.55 35162.90 37578.25 37447.43 31283.97 34451.71 34667.58 36983.93 355
Test_1112_low_res76.40 24775.44 24279.27 26489.28 14058.09 30281.69 29487.07 24459.53 35272.48 28686.67 24161.30 17989.33 28560.81 28580.15 25190.41 197
pmmvs474.03 27771.91 28680.39 24181.96 32968.32 12781.45 29882.14 31859.32 35369.87 31785.13 28052.40 25788.13 30760.21 28874.74 32584.73 346
testdata79.97 25090.90 9164.21 22084.71 27759.27 35485.40 6192.91 7962.02 16689.08 29168.95 21291.37 9386.63 314
WB-MVS54.94 36854.72 36955.60 39473.50 39320.90 42874.27 37461.19 41159.16 35550.61 40374.15 39147.19 31575.78 39117.31 41935.07 41370.12 401
ppachtmachnet_test70.04 31867.34 33678.14 28679.80 36161.13 27079.19 33180.59 33559.16 35565.27 36079.29 36446.75 31987.29 31449.33 36166.72 37086.00 326
RPSCF73.23 28771.46 29178.54 27882.50 32259.85 28882.18 28982.84 31358.96 35771.15 30289.41 16945.48 33684.77 34058.82 30271.83 35091.02 175
pmmvs-eth3d70.50 31467.83 32778.52 28077.37 37666.18 17481.82 29181.51 32558.90 35863.90 37080.42 35342.69 35186.28 32358.56 30465.30 37783.11 364
OpenMVS_ROBcopyleft64.09 1970.56 31368.19 31977.65 29480.26 35259.41 29485.01 23682.96 31058.76 35965.43 35982.33 33437.63 37891.23 25145.34 38576.03 30282.32 372
114514_t80.68 14779.51 15384.20 12294.09 3867.27 15689.64 8791.11 12858.75 36074.08 26790.72 13758.10 20995.04 9269.70 20489.42 12190.30 202
Patchmtry70.74 31069.16 31375.49 31880.72 34754.07 36074.94 37180.30 34158.34 36170.01 31281.19 34352.50 25586.54 31953.37 33971.09 35585.87 329
test_cas_vis1_n_192073.76 27973.74 26873.81 33675.90 38059.77 28980.51 31382.40 31658.30 36281.62 12285.69 26544.35 34176.41 38576.29 13778.61 26585.23 337
Anonymous2024052168.80 32867.22 33773.55 33774.33 38754.11 35983.18 27685.61 26858.15 36361.68 37880.94 34830.71 39481.27 36157.00 32073.34 34085.28 336
旧先验286.56 19758.10 36487.04 4888.98 29374.07 161
JIA-IIPM66.32 34762.82 35876.82 30577.09 37761.72 26665.34 40675.38 37458.04 36564.51 36562.32 40542.05 35786.51 32051.45 34869.22 36382.21 373
pmmvs571.55 30270.20 30875.61 31477.83 37356.39 33281.74 29380.89 33057.76 36667.46 33884.49 29049.26 30285.32 33557.08 31975.29 31885.11 341
TESTMET0.1,169.89 32069.00 31472.55 34679.27 36956.85 32378.38 34374.71 38057.64 36768.09 33277.19 38037.75 37776.70 38163.92 25484.09 19784.10 353
RPMNet73.51 28170.49 30382.58 19581.32 34365.19 19775.92 36092.27 8457.60 36872.73 28276.45 38352.30 25895.43 7048.14 37077.71 27787.11 303
SSC-MVS53.88 37153.59 37154.75 39672.87 39919.59 42973.84 37660.53 41357.58 36949.18 40773.45 39446.34 32475.47 39416.20 42232.28 41569.20 402
新几何183.42 15693.13 5470.71 7485.48 27057.43 37081.80 11991.98 9763.28 14292.27 21064.60 25092.99 7087.27 297
YYNet165.03 35162.91 35671.38 35375.85 38156.60 32969.12 39474.66 38157.28 37154.12 39977.87 37645.85 32974.48 39849.95 35861.52 38583.05 365
MDA-MVSNet_test_wron65.03 35162.92 35571.37 35475.93 37956.73 32569.09 39574.73 37957.28 37154.03 40077.89 37545.88 32874.39 39949.89 35961.55 38482.99 367
Anonymous2023120668.60 32967.80 32871.02 35980.23 35450.75 38678.30 34780.47 33756.79 37366.11 35682.63 33146.35 32378.95 37043.62 38875.70 30583.36 361
tpm273.26 28671.46 29178.63 27383.34 29956.71 32780.65 31180.40 34056.63 37473.55 27282.02 34051.80 27191.24 25056.35 32678.42 27087.95 280
CHOSEN 1792x268877.63 22475.69 23683.44 15589.98 11468.58 12278.70 33987.50 23456.38 37575.80 22686.84 23258.67 20591.40 24661.58 27885.75 17790.34 199
HyFIR lowres test77.53 22575.40 24483.94 14489.59 12266.62 16780.36 31688.64 21156.29 37676.45 21185.17 27957.64 21493.28 16461.34 28183.10 21691.91 148
PVSNet_057.27 2061.67 36159.27 36468.85 36979.61 36457.44 31768.01 39673.44 38455.93 37758.54 38970.41 40044.58 33977.55 37747.01 37435.91 41271.55 400
UnsupCasMVSNet_bld63.70 35661.53 36270.21 36373.69 39251.39 38172.82 37781.89 32155.63 37857.81 39271.80 39738.67 37278.61 37149.26 36252.21 40280.63 383
MDTV_nov1_ep13_2view37.79 41675.16 36755.10 37966.53 35049.34 30053.98 33587.94 281
MVS78.19 20776.99 21581.78 20785.66 24966.99 16284.66 24390.47 14455.08 38072.02 29385.27 27563.83 13994.11 12666.10 23789.80 11684.24 350
test22291.50 8068.26 12984.16 25983.20 30454.63 38179.74 14291.63 10858.97 20491.42 9286.77 310
dongtai45.42 38245.38 38345.55 40073.36 39626.85 42467.72 39734.19 42654.15 38249.65 40656.41 41325.43 40062.94 41619.45 41728.09 41746.86 416
CHOSEN 280x42066.51 34564.71 34671.90 35081.45 33863.52 23457.98 41368.95 39753.57 38362.59 37676.70 38146.22 32575.29 39655.25 32979.68 25576.88 393
ADS-MVSNet266.20 35063.33 35374.82 32679.92 35758.75 29667.55 39875.19 37553.37 38465.25 36175.86 38642.32 35380.53 36541.57 39368.91 36485.18 338
ADS-MVSNet64.36 35462.88 35768.78 37079.92 35747.17 39567.55 39871.18 38953.37 38465.25 36175.86 38642.32 35373.99 40041.57 39368.91 36485.18 338
LF4IMVS64.02 35562.19 35969.50 36570.90 40353.29 36876.13 35777.18 36652.65 38658.59 38880.98 34723.55 40676.52 38353.06 34166.66 37178.68 389
tpm cat170.57 31268.31 31877.35 30082.41 32557.95 30778.08 34880.22 34352.04 38768.54 33077.66 37852.00 26687.84 31051.77 34572.07 34986.25 317
test_vis1_n69.85 32169.21 31271.77 35172.66 40155.27 35081.48 29776.21 37252.03 38875.30 24483.20 32028.97 39676.22 38774.60 15578.41 27183.81 356
Patchmatch-test64.82 35363.24 35469.57 36479.42 36749.82 39063.49 41069.05 39651.98 38959.95 38580.13 35650.91 28070.98 40440.66 39573.57 33587.90 282
N_pmnet52.79 37453.26 37251.40 39878.99 3707.68 43269.52 3903.89 43151.63 39057.01 39474.98 39040.83 36265.96 41337.78 40064.67 37880.56 385
test_fmvs1_n70.86 30970.24 30772.73 34572.51 40255.28 34981.27 30179.71 34751.49 39178.73 15684.87 28527.54 39877.02 37976.06 14079.97 25485.88 328
test_fmvs170.93 30870.52 30272.16 34973.71 39155.05 35180.82 30478.77 35451.21 39278.58 16184.41 29331.20 39376.94 38075.88 14380.12 25384.47 348
PMMVS69.34 32468.67 31571.35 35675.67 38262.03 26075.17 36673.46 38350.00 39368.68 32779.05 36552.07 26578.13 37361.16 28282.77 21973.90 397
test_fmvs268.35 33467.48 33470.98 36069.50 40551.95 37380.05 32076.38 37149.33 39474.65 26084.38 29423.30 40775.40 39574.51 15675.17 32185.60 331
ttmdpeth59.91 36357.10 36768.34 37367.13 40946.65 39874.64 37267.41 40048.30 39562.52 37785.04 28420.40 40975.93 38942.55 39145.90 41082.44 371
CMPMVSbinary51.72 2170.19 31768.16 32076.28 30873.15 39857.55 31579.47 32683.92 28948.02 39656.48 39684.81 28743.13 34886.42 32262.67 26581.81 23284.89 343
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
mvsany_test162.30 35961.26 36365.41 38069.52 40454.86 35366.86 40049.78 42046.65 39768.50 33183.21 31949.15 30366.28 41256.93 32160.77 38675.11 396
kuosan39.70 38640.40 38737.58 40364.52 41226.98 42265.62 40533.02 42746.12 39842.79 41048.99 41624.10 40546.56 42412.16 42526.30 41839.20 417
test_fmvs363.36 35761.82 36067.98 37562.51 41446.96 39777.37 35474.03 38245.24 39967.50 33778.79 37012.16 41972.98 40372.77 17666.02 37483.99 354
CVMVSNet72.99 29172.58 28074.25 33284.28 27750.85 38586.41 20083.45 29844.56 40073.23 27687.54 21649.38 29985.70 32865.90 23978.44 26986.19 319
test_vis1_rt60.28 36258.42 36565.84 37967.25 40855.60 34570.44 38860.94 41244.33 40159.00 38766.64 40224.91 40268.67 40962.80 26169.48 36073.25 398
mvsany_test353.99 37051.45 37561.61 38555.51 41944.74 40563.52 40945.41 42443.69 40258.11 39176.45 38317.99 41263.76 41554.77 33247.59 40676.34 394
EU-MVSNet68.53 33267.61 33271.31 35778.51 37247.01 39684.47 24984.27 28542.27 40366.44 35484.79 28840.44 36483.76 34558.76 30368.54 36783.17 362
FPMVS53.68 37251.64 37459.81 38765.08 41151.03 38369.48 39169.58 39441.46 40440.67 41172.32 39616.46 41570.00 40824.24 41565.42 37658.40 411
pmmvs357.79 36554.26 37068.37 37264.02 41356.72 32675.12 36965.17 40540.20 40552.93 40169.86 40120.36 41075.48 39345.45 38455.25 39872.90 399
new_pmnet50.91 37750.29 37752.78 39768.58 40634.94 41963.71 40856.63 41739.73 40644.95 40865.47 40321.93 40858.48 41734.98 40456.62 39264.92 405
MVS-HIRNet59.14 36457.67 36663.57 38281.65 33343.50 40771.73 38065.06 40639.59 40751.43 40257.73 41038.34 37482.58 35439.53 39673.95 33164.62 406
MVStest156.63 36752.76 37368.25 37461.67 41553.25 36971.67 38168.90 39838.59 40850.59 40483.05 32225.08 40170.66 40536.76 40238.56 41180.83 382
PMMVS240.82 38538.86 38946.69 39953.84 42116.45 43048.61 41649.92 41937.49 40931.67 41460.97 4078.14 42556.42 41928.42 41030.72 41667.19 404
test_vis3_rt49.26 37947.02 38156.00 39154.30 42045.27 40366.76 40248.08 42136.83 41044.38 40953.20 4147.17 42664.07 41456.77 32355.66 39458.65 410
test_f52.09 37550.82 37655.90 39253.82 42242.31 41259.42 41258.31 41636.45 41156.12 39870.96 39912.18 41857.79 41853.51 33856.57 39367.60 403
LCM-MVSNet54.25 36949.68 37967.97 37653.73 42345.28 40266.85 40180.78 33235.96 41239.45 41362.23 4068.70 42378.06 37548.24 36951.20 40380.57 384
APD_test153.31 37349.93 37863.42 38365.68 41050.13 38871.59 38266.90 40234.43 41340.58 41271.56 3988.65 42476.27 38634.64 40555.36 39663.86 407
PMVScopyleft37.38 2244.16 38440.28 38855.82 39340.82 42842.54 41165.12 40763.99 40834.43 41324.48 41957.12 4123.92 42976.17 38817.10 42055.52 39548.75 414
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft45.18 38341.86 38655.16 39577.03 37851.52 37932.50 41980.52 33632.46 41527.12 41835.02 4199.52 42275.50 39222.31 41660.21 38938.45 418
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DSMNet-mixed57.77 36656.90 36860.38 38667.70 40735.61 41769.18 39253.97 41832.30 41657.49 39379.88 35940.39 36568.57 41038.78 39972.37 34476.97 392
testf145.72 38041.96 38457.00 38956.90 41745.32 40066.14 40359.26 41426.19 41730.89 41660.96 4084.14 42770.64 40626.39 41346.73 40855.04 412
APD_test245.72 38041.96 38457.00 38956.90 41745.32 40066.14 40359.26 41426.19 41730.89 41660.96 4084.14 42770.64 40626.39 41346.73 40855.04 412
E-PMN31.77 38730.64 39035.15 40452.87 42427.67 42157.09 41447.86 42224.64 41916.40 42433.05 42011.23 42054.90 42014.46 42318.15 42122.87 420
EMVS30.81 38929.65 39134.27 40550.96 42525.95 42556.58 41546.80 42324.01 42015.53 42530.68 42112.47 41754.43 42112.81 42417.05 42222.43 421
MVEpermissive26.22 2330.37 39025.89 39443.81 40144.55 42735.46 41828.87 42039.07 42518.20 42118.58 42340.18 4182.68 43047.37 42317.07 42123.78 42048.60 415
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft27.40 40640.17 42926.90 42324.59 43017.44 42223.95 42048.61 4179.77 42126.48 42518.06 41824.47 41928.83 419
wuyk23d16.82 39315.94 39619.46 40758.74 41631.45 42039.22 4173.74 4326.84 4236.04 4262.70 4261.27 43124.29 42610.54 42614.40 4252.63 423
test_method31.52 38829.28 39238.23 40227.03 4306.50 43320.94 42162.21 4104.05 42422.35 42252.50 41513.33 41647.58 42227.04 41234.04 41460.62 408
tmp_tt18.61 39221.40 39510.23 4084.82 43110.11 43134.70 41830.74 4291.48 42523.91 42126.07 42228.42 39713.41 42727.12 41115.35 4247.17 422
EGC-MVSNET52.07 37647.05 38067.14 37783.51 29660.71 27780.50 31467.75 3990.07 4260.43 42775.85 38824.26 40481.54 35928.82 40962.25 38259.16 409
testmvs6.04 3968.02 3990.10 4100.08 4320.03 43569.74 3890.04 4330.05 4270.31 4281.68 4270.02 4330.04 4280.24 4270.02 4260.25 425
test1236.12 3958.11 3980.14 4090.06 4330.09 43471.05 3840.03 4340.04 4280.25 4291.30 4280.05 4320.03 4290.21 4280.01 4270.29 424
mmdepth0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
monomultidepth0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
test_blank0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
uanet_test0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
DCPMVS0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
cdsmvs_eth3d_5k19.96 39126.61 3930.00 4110.00 4340.00 4360.00 42289.26 1850.00 4290.00 43088.61 18661.62 1710.00 4300.00 4290.00 4280.00 426
pcd_1.5k_mvsjas5.26 3977.02 4000.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 42963.15 1470.00 4300.00 4290.00 4280.00 426
sosnet-low-res0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
sosnet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
uncertanet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
Regformer0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
ab-mvs-re7.23 3949.64 3970.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 43086.72 2360.00 4340.00 4300.00 4290.00 4280.00 426
uanet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
WAC-MVS42.58 40939.46 397
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4997.53 289.67 996.44 994.41 39
No_MVS89.16 194.34 2775.53 292.99 4997.53 289.67 996.44 994.41 39
eth-test20.00 434
eth-test0.00 434
OPU-MVS89.06 394.62 1575.42 493.57 794.02 5082.45 396.87 2083.77 6796.48 894.88 15
test_0728_SECOND87.71 3295.34 171.43 5893.49 994.23 397.49 489.08 1596.41 1294.21 49
GSMVS88.96 255
test_part295.06 872.65 3291.80 13
sam_mvs151.32 27688.96 255
sam_mvs50.01 290
ambc75.24 32273.16 39750.51 38763.05 41187.47 23564.28 36677.81 37717.80 41389.73 27957.88 31260.64 38785.49 332
MTGPAbinary92.02 93
test_post178.90 3375.43 42548.81 30985.44 33459.25 296
test_post5.46 42450.36 28884.24 342
patchmatchnet-post74.00 39251.12 27988.60 301
GG-mvs-BLEND75.38 32081.59 33555.80 34279.32 32869.63 39367.19 34173.67 39343.24 34788.90 29750.41 35284.50 18781.45 378
MTMP92.18 3432.83 428
test9_res84.90 4995.70 2692.87 115
agg_prior282.91 7695.45 2992.70 118
agg_prior92.85 6271.94 5091.78 10884.41 8194.93 94
test_prior472.60 3489.01 112
test_prior86.33 5792.61 6869.59 9192.97 5495.48 6793.91 61
新几何286.29 206
旧先验191.96 7465.79 18486.37 25893.08 7769.31 8492.74 7388.74 266
原ACMM286.86 186
testdata291.01 25962.37 268
segment_acmp73.08 39
test1286.80 5292.63 6770.70 7591.79 10782.71 11071.67 5596.16 4794.50 5193.54 86
plane_prior790.08 10868.51 123
plane_prior689.84 11768.70 11860.42 197
plane_prior592.44 7795.38 7578.71 11386.32 16591.33 163
plane_prior491.00 133
plane_prior189.90 116
n20.00 435
nn0.00 435
door-mid69.98 392
lessismore_v078.97 26981.01 34657.15 32065.99 40361.16 38082.82 32839.12 36991.34 24859.67 29246.92 40788.43 273
test1192.23 87
door69.44 395
HQP5-MVS66.98 163
BP-MVS77.47 125
HQP4-MVS77.24 19195.11 8791.03 173
HQP3-MVS92.19 9085.99 173
HQP2-MVS60.17 200
NP-MVS89.62 12168.32 12790.24 145
ACMMP++_ref81.95 230
ACMMP++81.25 235
Test By Simon64.33 134