This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
MM89.16 689.23 788.97 490.79 9473.65 1092.66 2391.17 12286.57 187.39 3894.97 1571.70 5497.68 192.19 195.63 2895.57 1
UA-Net85.08 6784.96 6885.45 7592.07 7068.07 13089.78 7990.86 13282.48 284.60 7393.20 6669.35 7995.22 7871.39 17790.88 9693.07 101
MVS_030487.69 2087.55 2288.12 1389.45 12871.76 5191.47 4689.54 16982.14 386.65 4694.28 3168.28 9497.46 690.81 295.31 3495.15 6
CANet86.45 3986.10 4687.51 3790.09 10670.94 6789.70 8292.59 7181.78 481.32 11891.43 10970.34 6997.23 1484.26 5593.36 6894.37 41
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5192.83 5781.50 585.79 5293.47 6073.02 4097.00 1884.90 4394.94 4094.10 51
EPNet83.72 8182.92 9386.14 6084.22 27169.48 9191.05 5385.27 26281.30 676.83 19391.65 9966.09 11795.56 6276.00 13493.85 6493.38 87
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 5993.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 43
3Dnovator+77.84 485.48 5884.47 7588.51 791.08 8473.49 1693.18 1193.78 1880.79 876.66 19893.37 6260.40 19596.75 2677.20 12193.73 6695.29 5
TranMVSNet+NR-MVSNet80.84 13280.31 13182.42 19087.85 19462.33 24987.74 15491.33 11880.55 977.99 17089.86 14465.23 12692.62 18867.05 22175.24 31292.30 128
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 6294.67 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5680.26 1187.78 3094.27 3275.89 1996.81 2387.45 3296.44 993.05 102
UniMVSNet_NR-MVSNet81.88 11281.54 11282.92 17488.46 17063.46 23087.13 17092.37 7880.19 1278.38 15989.14 16471.66 5693.05 17870.05 18976.46 28592.25 130
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1673.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
EI-MVSNet-Vis-set84.19 7483.81 7985.31 7888.18 17967.85 13487.66 15589.73 16580.05 1482.95 9789.59 15370.74 6694.82 9880.66 9584.72 17793.28 92
ETV-MVS84.90 7184.67 7185.59 7289.39 13268.66 11788.74 11892.64 6979.97 1584.10 8285.71 25769.32 8095.38 7380.82 9291.37 9092.72 111
EI-MVSNet-UG-set83.81 7883.38 8485.09 8587.87 19367.53 14487.44 16289.66 16679.74 1682.23 10789.41 16270.24 7194.74 10179.95 9983.92 19092.99 107
CS-MVS86.69 3686.95 3285.90 6790.76 9567.57 14392.83 1793.30 3279.67 1784.57 7492.27 8671.47 5795.02 9084.24 5793.46 6795.13 7
casdiffmvs_mvgpermissive85.99 4586.09 4785.70 7087.65 20467.22 15588.69 12093.04 3879.64 1885.33 5692.54 8373.30 3594.50 10883.49 6291.14 9395.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18992.02 9179.45 1985.88 5094.80 1668.07 9596.21 4286.69 3695.34 3293.23 93
EC-MVSNet86.01 4486.38 3984.91 9389.31 13766.27 17092.32 3093.63 2179.37 2084.17 8191.88 9369.04 8695.43 6983.93 6093.77 6593.01 105
XVS87.18 2986.91 3488.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 9094.17 3667.45 10296.60 3383.06 6694.50 5194.07 53
X-MVStestdata80.37 15077.83 18688.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 9012.47 41067.45 10296.60 3383.06 6694.50 5194.07 53
HQP_MVS83.64 8383.14 8785.14 8290.08 10768.71 11391.25 4992.44 7479.12 2378.92 14791.00 12660.42 19395.38 7378.71 10686.32 15891.33 156
plane_prior291.25 4979.12 23
IS-MVSNet83.15 9482.81 9484.18 12089.94 11463.30 23491.59 4288.46 20979.04 2579.49 13992.16 8865.10 12794.28 11367.71 21291.86 8594.95 10
DU-MVS81.12 12880.52 12782.90 17587.80 19663.46 23087.02 17491.87 10179.01 2678.38 15989.07 16665.02 12893.05 17870.05 18976.46 28592.20 133
NR-MVSNet80.23 15279.38 14982.78 18387.80 19663.34 23386.31 19691.09 12679.01 2672.17 28089.07 16667.20 10592.81 18766.08 22875.65 29892.20 133
CS-MVS-test86.29 4386.48 3885.71 6991.02 8667.21 15692.36 2993.78 1878.97 2883.51 9391.20 11670.65 6895.15 8181.96 8094.89 4294.77 23
DELS-MVS85.41 6185.30 6385.77 6888.49 16867.93 13385.52 22193.44 2778.70 2983.63 9289.03 16874.57 2495.71 6080.26 9894.04 6393.66 71
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
WR-MVS79.49 16579.22 15680.27 23888.79 15858.35 29085.06 22688.61 20778.56 3077.65 17588.34 18763.81 13890.66 25864.98 23777.22 27491.80 144
plane_prior368.60 11878.44 3178.92 147
UniMVSNet (Re)81.60 12081.11 11783.09 16588.38 17464.41 21187.60 15693.02 4278.42 3278.56 15588.16 19369.78 7593.26 16169.58 19676.49 28491.60 146
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 989.42 996.57 794.67 26
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
SD-MVS88.06 1488.50 1486.71 5192.60 6672.71 2991.81 4193.19 3577.87 3690.32 1794.00 4674.83 2393.78 13787.63 3094.27 6193.65 75
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
casdiffmvspermissive85.11 6685.14 6585.01 8787.20 21865.77 18287.75 15392.83 5777.84 3784.36 7892.38 8572.15 4693.93 13081.27 8890.48 10095.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CP-MVSNet78.22 19778.34 17377.84 28187.83 19554.54 34587.94 14791.17 12277.65 3873.48 26388.49 18362.24 16088.43 29462.19 26074.07 32190.55 184
plane_prior68.71 11390.38 6777.62 3986.16 162
baseline84.93 6984.98 6784.80 9787.30 21665.39 19087.30 16692.88 5477.62 3984.04 8492.26 8771.81 5193.96 12481.31 8690.30 10395.03 9
VDD-MVS83.01 9982.36 10084.96 8991.02 8666.40 16788.91 11088.11 21277.57 4184.39 7793.29 6452.19 25393.91 13177.05 12388.70 12994.57 32
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 6677.57 4183.84 8794.40 2972.24 4596.28 4085.65 3895.30 3593.62 78
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PEN-MVS77.73 21277.69 19477.84 28187.07 22153.91 35087.91 14991.18 12177.56 4373.14 26788.82 17361.23 17889.17 28159.95 27972.37 33690.43 189
OPM-MVS83.50 8782.95 9285.14 8288.79 15870.95 6689.13 10591.52 11277.55 4480.96 12591.75 9560.71 18694.50 10879.67 10186.51 15689.97 215
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 10089.57 8893.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 30
PS-CasMVS78.01 20678.09 17977.77 28387.71 20154.39 34788.02 14391.22 11977.50 4673.26 26588.64 17860.73 18588.41 29561.88 26473.88 32590.53 185
MSLP-MVS++85.43 6085.76 5384.45 10691.93 7270.24 7690.71 5692.86 5577.46 4784.22 7992.81 7867.16 10692.94 18280.36 9694.35 5990.16 199
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 6177.33 4892.12 995.78 480.98 997.40 989.08 1296.41 1293.33 90
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
balanced_conf0386.78 3486.99 3086.15 5891.24 8067.61 14190.51 5992.90 5377.26 5087.44 3791.63 10171.27 6196.06 4785.62 3995.01 3794.78 22
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5193.10 195.72 882.99 197.44 789.07 1496.63 494.88 14
test_241102_TWO94.06 1077.24 5192.78 495.72 881.26 897.44 789.07 1496.58 694.26 47
3Dnovator76.31 583.38 9182.31 10186.59 5287.94 19072.94 2890.64 5792.14 8977.21 5375.47 22392.83 7658.56 20294.72 10273.24 16292.71 7392.13 137
test_241102_ONE95.30 270.98 6394.06 1077.17 5493.10 195.39 1182.99 197.27 12
WR-MVS_H78.51 19278.49 16878.56 26988.02 18856.38 32388.43 12792.67 6377.14 5573.89 25987.55 20866.25 11589.24 28058.92 28973.55 32890.06 209
DeepC-MVS79.81 287.08 3286.88 3587.69 3391.16 8172.32 4390.31 6893.94 1477.12 5682.82 10294.23 3572.13 4797.09 1684.83 4695.37 3193.65 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FC-MVSNet-test81.52 12182.02 10680.03 24288.42 17355.97 32987.95 14693.42 2977.10 5777.38 18090.98 12869.96 7391.79 22068.46 20884.50 18092.33 126
DTE-MVSNet76.99 22676.80 21277.54 28886.24 23353.06 35887.52 15890.66 13577.08 5872.50 27588.67 17760.48 19289.52 27557.33 30670.74 34790.05 210
LFMVS81.82 11481.23 11583.57 14791.89 7363.43 23289.84 7581.85 31277.04 5983.21 9493.10 6752.26 25293.43 15671.98 17289.95 11193.85 63
UGNet80.83 13379.59 14584.54 10288.04 18768.09 12989.42 9388.16 21176.95 6076.22 20989.46 15849.30 29393.94 12768.48 20790.31 10291.60 146
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FIs82.07 10982.42 9781.04 22188.80 15758.34 29188.26 13693.49 2676.93 6178.47 15891.04 12269.92 7492.34 20269.87 19384.97 17492.44 125
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6284.68 6693.99 4870.67 6796.82 2284.18 5995.01 3793.90 61
mPP-MVS86.67 3886.32 4087.72 3094.41 2273.55 1392.74 2092.22 8576.87 6382.81 10394.25 3466.44 11296.24 4182.88 7194.28 6093.38 87
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6485.24 5794.32 3071.76 5296.93 1985.53 4095.79 2294.32 44
VPNet78.69 18878.66 16578.76 26588.31 17655.72 33284.45 24386.63 24676.79 6578.26 16290.55 13459.30 19889.70 27366.63 22377.05 27690.88 171
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6684.91 6294.44 2770.78 6596.61 3284.53 5294.89 4293.66 71
ACMMPR87.44 2387.23 2788.08 1594.64 1373.59 1293.04 1293.20 3476.78 6684.66 6994.52 2068.81 8896.65 3084.53 5294.90 4194.00 56
ACMMPcopyleft85.89 5185.39 5987.38 3993.59 4572.63 3392.74 2093.18 3676.78 6680.73 12793.82 5364.33 13296.29 3982.67 7790.69 9893.23 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
region2R87.42 2587.20 2888.09 1494.63 1473.55 1393.03 1493.12 3776.73 6984.45 7594.52 2069.09 8296.70 2784.37 5494.83 4594.03 55
sasdasda85.91 4985.87 5186.04 6389.84 11669.44 9590.45 6593.00 4376.70 7088.01 2891.23 11373.28 3693.91 13181.50 8388.80 12594.77 23
canonicalmvs85.91 4985.87 5186.04 6389.84 11669.44 9590.45 6593.00 4376.70 7088.01 2891.23 11373.28 3693.91 13181.50 8388.80 12594.77 23
CP-MVS87.11 3086.92 3387.68 3494.20 3473.86 793.98 392.82 6076.62 7283.68 8994.46 2467.93 9795.95 5684.20 5894.39 5693.23 93
DeepC-MVS_fast79.65 386.91 3386.62 3787.76 2793.52 4672.37 4191.26 4893.04 3876.62 7284.22 7993.36 6371.44 5896.76 2580.82 9295.33 3394.16 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MGCFI-Net85.06 6885.51 5683.70 14389.42 12963.01 24089.43 9192.62 7076.43 7487.53 3591.34 11172.82 4293.42 15781.28 8788.74 12894.66 28
TSAR-MVS + GP.85.71 5485.33 6186.84 4791.34 7872.50 3689.07 10687.28 23376.41 7585.80 5190.22 14074.15 3195.37 7681.82 8191.88 8292.65 116
HQP-NCC89.33 13489.17 10076.41 7577.23 185
ACMP_Plane89.33 13489.17 10076.41 7577.23 185
HQP-MVS82.61 10382.02 10684.37 10889.33 13466.98 15989.17 10092.19 8776.41 7577.23 18590.23 13960.17 19695.11 8477.47 11885.99 16691.03 166
CANet_DTU80.61 14179.87 13982.83 17785.60 24463.17 23987.36 16388.65 20576.37 7975.88 21688.44 18553.51 24293.07 17773.30 16089.74 11492.25 130
VNet82.21 10682.41 9881.62 20390.82 9260.93 26584.47 24089.78 16276.36 8084.07 8391.88 9364.71 13190.26 26170.68 18388.89 12393.66 71
Vis-MVSNetpermissive83.46 8882.80 9585.43 7690.25 10368.74 11190.30 6990.13 15476.33 8180.87 12692.89 7461.00 18394.20 11872.45 17190.97 9493.35 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMMP_NAP88.05 1688.08 1787.94 1993.70 4173.05 2290.86 5493.59 2376.27 8288.14 2495.09 1471.06 6296.67 2987.67 2996.37 1494.09 52
alignmvs85.48 5885.32 6285.96 6689.51 12569.47 9289.74 8092.47 7376.17 8387.73 3491.46 10870.32 7093.78 13781.51 8288.95 12294.63 29
MVS_111021_HR85.14 6584.75 7086.32 5591.65 7672.70 3085.98 20490.33 14776.11 8482.08 10891.61 10371.36 6094.17 12081.02 8992.58 7492.08 138
HPM-MVScopyleft87.11 3086.98 3187.50 3893.88 3972.16 4592.19 3393.33 3176.07 8583.81 8893.95 5169.77 7696.01 5285.15 4194.66 4794.32 44
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
h-mvs3383.15 9482.19 10286.02 6590.56 9770.85 7088.15 14189.16 18476.02 8684.67 6791.39 11061.54 16995.50 6582.71 7475.48 30291.72 145
hse-mvs281.72 11580.94 12184.07 12788.72 16167.68 13885.87 20887.26 23476.02 8684.67 6788.22 19261.54 16993.48 15282.71 7473.44 33091.06 164
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4294.10 875.90 8892.29 795.66 1081.67 697.38 1187.44 3396.34 1593.95 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CLD-MVS82.31 10581.65 11184.29 11388.47 16967.73 13785.81 21292.35 7975.78 8978.33 16186.58 23964.01 13594.35 11176.05 13387.48 14290.79 173
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 4992.40 2494.74 275.71 9089.16 1995.10 1375.65 2196.19 4387.07 3496.01 1794.79 21
testdata184.14 25175.71 90
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9291.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 36
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
VPA-MVSNet80.60 14280.55 12680.76 22888.07 18660.80 26886.86 17991.58 11175.67 9380.24 13189.45 16063.34 13990.25 26270.51 18579.22 25591.23 159
PGM-MVS86.68 3786.27 4187.90 2294.22 3373.38 1890.22 7093.04 3875.53 9483.86 8694.42 2867.87 9996.64 3182.70 7694.57 5093.66 71
Effi-MVS+83.62 8583.08 8885.24 8088.38 17467.45 14588.89 11189.15 18575.50 9582.27 10688.28 18969.61 7794.45 11077.81 11587.84 13793.84 65
test_prior288.85 11375.41 9684.91 6293.54 5674.28 2983.31 6495.86 20
LPG-MVS_test82.08 10881.27 11484.50 10389.23 14168.76 10990.22 7091.94 9775.37 9776.64 19991.51 10554.29 23494.91 9278.44 10883.78 19189.83 220
LGP-MVS_train84.50 10389.23 14168.76 10991.94 9775.37 9776.64 19991.51 10554.29 23494.91 9278.44 10883.78 19189.83 220
MG-MVS83.41 8983.45 8283.28 15592.74 6262.28 25188.17 13989.50 17175.22 9981.49 11792.74 8266.75 10795.11 8472.85 16591.58 8792.45 124
LCM-MVSNet-Re77.05 22576.94 20977.36 28987.20 21851.60 36680.06 30980.46 32775.20 10067.69 32386.72 22962.48 15488.98 28563.44 24789.25 11891.51 150
SDMVSNet80.38 14880.18 13480.99 22289.03 15064.94 19980.45 30589.40 17375.19 10176.61 20189.98 14260.61 19087.69 30376.83 12683.55 20090.33 193
sd_testset77.70 21577.40 19978.60 26889.03 15060.02 27979.00 32385.83 25775.19 10176.61 20189.98 14254.81 22685.46 32262.63 25683.55 20090.33 193
MP-MVS-pluss87.67 2187.72 2087.54 3693.64 4472.04 4889.80 7893.50 2575.17 10386.34 4895.29 1270.86 6496.00 5388.78 1996.04 1694.58 30
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test111179.43 16879.18 15780.15 24089.99 11253.31 35687.33 16577.05 35575.04 10480.23 13292.77 8148.97 29892.33 20368.87 20392.40 7894.81 20
Effi-MVS+-dtu80.03 15678.57 16784.42 10785.13 25568.74 11188.77 11588.10 21374.99 10574.97 24683.49 30657.27 21593.36 15873.53 15680.88 23291.18 160
OMC-MVS82.69 10181.97 10884.85 9488.75 16067.42 14687.98 14490.87 13174.92 10679.72 13691.65 9962.19 16193.96 12475.26 14386.42 15793.16 98
test250677.30 22376.49 22079.74 24890.08 10752.02 35987.86 15263.10 39674.88 10780.16 13392.79 7938.29 36492.35 20168.74 20592.50 7694.86 17
ECVR-MVScopyleft79.61 16179.26 15480.67 23090.08 10754.69 34387.89 15077.44 35274.88 10780.27 13092.79 7948.96 29992.45 19568.55 20692.50 7694.86 17
nrg03083.88 7783.53 8184.96 8986.77 22669.28 9990.46 6492.67 6374.79 10982.95 9791.33 11272.70 4393.09 17680.79 9479.28 25492.50 121
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 11092.29 795.97 274.28 2997.24 1388.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MVS_111021_LR82.61 10382.11 10384.11 12188.82 15571.58 5385.15 22486.16 25374.69 11180.47 12991.04 12262.29 15890.55 25980.33 9790.08 10890.20 198
EIA-MVS83.31 9382.80 9584.82 9589.59 12165.59 18588.21 13792.68 6274.66 11278.96 14586.42 24469.06 8495.26 7775.54 14090.09 10793.62 78
TSAR-MVS + MP.88.02 1788.11 1687.72 3093.68 4372.13 4691.41 4792.35 7974.62 11388.90 2093.85 5275.75 2096.00 5387.80 2894.63 4895.04 8
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SR-MVS86.73 3586.67 3686.91 4694.11 3772.11 4792.37 2892.56 7274.50 11486.84 4594.65 1967.31 10495.77 5884.80 4792.85 7192.84 110
FOURS195.00 1072.39 3995.06 193.84 1574.49 11591.30 15
ACMP74.13 681.51 12380.57 12584.36 10989.42 12968.69 11689.97 7491.50 11674.46 11675.04 24590.41 13653.82 23994.54 10577.56 11782.91 20989.86 219
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EPP-MVSNet83.40 9083.02 9084.57 10190.13 10564.47 20992.32 3090.73 13474.45 11779.35 14191.10 11969.05 8595.12 8272.78 16687.22 14594.13 50
save fliter93.80 4072.35 4290.47 6391.17 12274.31 118
MVS_Test83.15 9483.06 8983.41 15286.86 22263.21 23686.11 20292.00 9374.31 11882.87 10089.44 16170.03 7293.21 16577.39 12088.50 13393.81 66
UniMVSNet_ETH3D79.10 17878.24 17681.70 20286.85 22360.24 27787.28 16788.79 19874.25 12076.84 19290.53 13549.48 28991.56 22967.98 21082.15 21893.29 91
IterMVS-LS80.06 15579.38 14982.11 19485.89 23963.20 23786.79 18289.34 17574.19 12175.45 22686.72 22966.62 10892.39 19872.58 16876.86 27990.75 176
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet80.52 14679.98 13682.12 19384.28 26963.19 23886.41 19388.95 19574.18 12278.69 15087.54 20966.62 10892.43 19672.57 16980.57 23890.74 177
Vis-MVSNet (Re-imp)78.36 19578.45 16978.07 27988.64 16451.78 36586.70 18679.63 33774.14 12375.11 24290.83 12961.29 17789.75 27158.10 29991.60 8692.69 114
v879.97 15879.02 16082.80 18084.09 27464.50 20887.96 14590.29 15074.13 12475.24 23886.81 22662.88 15093.89 13474.39 14975.40 30790.00 211
CSCG86.41 4286.19 4387.07 4592.91 5872.48 3790.81 5593.56 2473.95 12583.16 9691.07 12175.94 1895.19 7979.94 10094.38 5893.55 82
thres100view90076.50 23575.55 23379.33 25689.52 12456.99 31285.83 21183.23 29173.94 12676.32 20787.12 22151.89 26291.95 21448.33 35483.75 19489.07 237
9.1488.26 1592.84 6091.52 4594.75 173.93 12788.57 2294.67 1875.57 2295.79 5786.77 3595.76 23
HPM-MVS_fast85.35 6284.95 6986.57 5393.69 4270.58 7592.15 3591.62 10973.89 12882.67 10594.09 4062.60 15195.54 6480.93 9092.93 7093.57 80
PAPM_NR83.02 9882.41 9884.82 9592.47 6766.37 16887.93 14891.80 10473.82 12977.32 18290.66 13267.90 9894.90 9470.37 18689.48 11693.19 97
thres600view776.50 23575.44 23479.68 25089.40 13157.16 30985.53 21983.23 29173.79 13076.26 20887.09 22251.89 26291.89 21748.05 35983.72 19790.00 211
testing9176.54 23375.66 23179.18 26088.43 17255.89 33081.08 29283.00 29773.76 13175.34 23184.29 28946.20 31890.07 26564.33 24184.50 18091.58 148
v7n78.97 18277.58 19783.14 16383.45 28765.51 18688.32 13491.21 12073.69 13272.41 27786.32 24757.93 20693.81 13669.18 19975.65 29890.11 203
dcpmvs_285.63 5586.15 4584.06 12991.71 7564.94 19986.47 19291.87 10173.63 13386.60 4793.02 7276.57 1591.87 21983.36 6392.15 7995.35 3
v2v48280.23 15279.29 15383.05 16883.62 28364.14 21587.04 17389.97 15873.61 13478.18 16587.22 21761.10 18193.82 13576.11 13176.78 28291.18 160
Baseline_NR-MVSNet78.15 20178.33 17477.61 28685.79 24056.21 32786.78 18385.76 25873.60 13577.93 17187.57 20665.02 12888.99 28467.14 22075.33 30987.63 277
BH-RMVSNet79.61 16178.44 17083.14 16389.38 13365.93 17684.95 22987.15 23773.56 13678.19 16489.79 14656.67 21993.36 15859.53 28386.74 15290.13 201
APD-MVS_3200maxsize85.97 4785.88 5086.22 5792.69 6369.53 8991.93 3792.99 4673.54 13785.94 4994.51 2365.80 12295.61 6183.04 6892.51 7593.53 84
SR-MVS-dyc-post85.77 5285.61 5586.23 5693.06 5570.63 7391.88 3892.27 8173.53 13885.69 5394.45 2565.00 13095.56 6282.75 7291.87 8392.50 121
RE-MVS-def85.48 5793.06 5570.63 7391.88 3892.27 8173.53 13885.69 5394.45 2563.87 13682.75 7291.87 8392.50 121
test_fmvsmconf_n85.92 4886.04 4885.57 7385.03 25769.51 9089.62 8790.58 13773.42 14087.75 3294.02 4472.85 4193.24 16290.37 390.75 9793.96 57
tfpn200view976.42 23875.37 23879.55 25589.13 14557.65 30385.17 22283.60 28373.41 14176.45 20386.39 24552.12 25491.95 21448.33 35483.75 19489.07 237
thres40076.50 23575.37 23879.86 24589.13 14557.65 30385.17 22283.60 28373.41 14176.45 20386.39 24552.12 25491.95 21448.33 35483.75 19490.00 211
test_fmvsmconf0.1_n85.61 5685.65 5485.50 7482.99 30269.39 9789.65 8390.29 15073.31 14387.77 3194.15 3871.72 5393.23 16390.31 490.67 9993.89 62
testing9976.09 24475.12 24279.00 26188.16 18055.50 33580.79 29681.40 31673.30 14475.17 23984.27 29144.48 33190.02 26664.28 24284.22 18891.48 153
v14878.72 18777.80 18881.47 20782.73 30761.96 25586.30 19788.08 21473.26 14576.18 21185.47 26562.46 15592.36 20071.92 17373.82 32690.09 205
FA-MVS(test-final)80.96 13079.91 13884.10 12288.30 17765.01 19784.55 23990.01 15773.25 14679.61 13787.57 20658.35 20494.72 10271.29 17886.25 16092.56 118
test_fmvsmconf0.01_n84.73 7284.52 7485.34 7780.25 34269.03 10089.47 8989.65 16773.24 14786.98 4394.27 3266.62 10893.23 16390.26 589.95 11193.78 68
v1079.74 16078.67 16482.97 17384.06 27564.95 19887.88 15190.62 13673.11 14875.11 24286.56 24061.46 17294.05 12373.68 15475.55 30089.90 217
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7693.82 1673.07 14984.86 6592.89 7476.22 1796.33 3884.89 4595.13 3694.40 40
baseline176.98 22776.75 21677.66 28488.13 18255.66 33385.12 22581.89 31073.04 15076.79 19488.90 17062.43 15687.78 30263.30 24971.18 34589.55 229
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4092.83 5773.01 15188.58 2194.52 2073.36 3496.49 3684.26 5595.01 3792.70 112
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
diffmvspermissive82.10 10781.88 10982.76 18583.00 30063.78 22283.68 25689.76 16372.94 15282.02 10989.85 14565.96 12190.79 25582.38 7887.30 14493.71 70
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
K. test v371.19 29368.51 30579.21 25983.04 29957.78 30284.35 24776.91 35672.90 15362.99 36282.86 31639.27 35891.09 25061.65 26752.66 38988.75 257
MVSMamba_PlusPlus85.99 4585.96 4986.05 6291.09 8267.64 13989.63 8592.65 6672.89 15484.64 7091.71 9671.85 4996.03 4884.77 4894.45 5494.49 34
iter_conf0585.49 5785.43 5885.67 7191.09 8266.55 16687.18 16992.08 9072.89 15482.90 9991.71 9671.85 4996.03 4884.77 4894.39 5694.42 37
Fast-Effi-MVS+-dtu78.02 20576.49 22082.62 18783.16 29666.96 16186.94 17687.45 23172.45 15671.49 28784.17 29354.79 23091.58 22767.61 21380.31 24189.30 235
PHI-MVS86.43 4086.17 4487.24 4190.88 9070.96 6592.27 3294.07 972.45 15685.22 5891.90 9269.47 7896.42 3783.28 6595.94 1994.35 42
thres20075.55 25074.47 24978.82 26487.78 19957.85 30083.07 27183.51 28672.44 15875.84 21784.42 28452.08 25791.75 22247.41 36183.64 19986.86 298
test_yl81.17 12680.47 12883.24 15889.13 14563.62 22386.21 19989.95 15972.43 15981.78 11489.61 15157.50 21293.58 14570.75 18186.90 14992.52 119
DCV-MVSNet81.17 12680.47 12883.24 15889.13 14563.62 22386.21 19989.95 15972.43 15981.78 11489.61 15157.50 21293.58 14570.75 18186.90 14992.52 119
bld_raw_conf0385.32 6385.07 6686.07 6190.86 9167.64 13989.63 8592.65 6672.35 16184.64 7090.81 13068.76 9096.09 4681.45 8594.45 5494.49 34
BH-untuned79.47 16678.60 16682.05 19589.19 14365.91 17786.07 20388.52 20872.18 16275.42 22787.69 20361.15 18093.54 14960.38 27686.83 15186.70 302
TransMVSNet (Re)75.39 25574.56 24777.86 28085.50 24657.10 31186.78 18386.09 25572.17 16371.53 28687.34 21263.01 14989.31 27956.84 31161.83 37387.17 289
GA-MVS76.87 22975.17 24181.97 19882.75 30662.58 24681.44 28986.35 25172.16 16474.74 24982.89 31546.20 31892.02 21268.85 20481.09 23091.30 158
v114480.03 15679.03 15983.01 17083.78 28164.51 20687.11 17290.57 13971.96 16578.08 16886.20 24961.41 17393.94 12774.93 14477.23 27390.60 182
PS-MVSNAJss82.07 10981.31 11384.34 11186.51 23167.27 15289.27 9891.51 11371.75 16679.37 14090.22 14063.15 14594.27 11477.69 11682.36 21791.49 152
EPNet_dtu75.46 25274.86 24377.23 29282.57 31154.60 34486.89 17883.09 29471.64 16766.25 34385.86 25555.99 22188.04 29954.92 31986.55 15589.05 242
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GBi-Net78.40 19377.40 19981.40 21087.60 20563.01 24088.39 12989.28 17771.63 16875.34 23187.28 21354.80 22791.11 24562.72 25279.57 24890.09 205
test178.40 19377.40 19981.40 21087.60 20563.01 24088.39 12989.28 17771.63 16875.34 23187.28 21354.80 22791.11 24562.72 25279.57 24890.09 205
FMVSNet278.20 19977.21 20381.20 21687.60 20562.89 24587.47 16089.02 19071.63 16875.29 23787.28 21354.80 22791.10 24862.38 25779.38 25289.61 227
patch_mono-283.65 8284.54 7280.99 22290.06 11165.83 17984.21 24988.74 20371.60 17185.01 5992.44 8474.51 2583.50 33682.15 7992.15 7993.64 77
V4279.38 17278.24 17682.83 17781.10 33465.50 18785.55 21789.82 16171.57 17278.21 16386.12 25160.66 18893.18 17175.64 13775.46 30489.81 222
API-MVS81.99 11181.23 11584.26 11890.94 8870.18 8291.10 5289.32 17671.51 17378.66 15288.28 18965.26 12595.10 8764.74 23991.23 9287.51 281
tttt051779.40 17077.91 18383.90 14188.10 18463.84 22088.37 13284.05 27871.45 17476.78 19589.12 16549.93 28694.89 9570.18 18883.18 20792.96 108
pm-mvs177.25 22476.68 21878.93 26384.22 27158.62 28986.41 19388.36 21071.37 17573.31 26488.01 19961.22 17989.15 28264.24 24373.01 33389.03 243
testing22274.04 26572.66 26978.19 27687.89 19255.36 33681.06 29379.20 34171.30 17674.65 25183.57 30539.11 36088.67 29151.43 33785.75 17090.53 185
GeoE81.71 11681.01 12083.80 14289.51 12564.45 21088.97 10888.73 20471.27 17778.63 15389.76 14766.32 11493.20 16869.89 19286.02 16593.74 69
tt080578.73 18677.83 18681.43 20885.17 25160.30 27689.41 9490.90 12971.21 17877.17 18988.73 17446.38 31393.21 16572.57 16978.96 25690.79 173
FMVSNet377.88 20976.85 21180.97 22486.84 22462.36 24886.52 19188.77 19971.13 17975.34 23186.66 23554.07 23791.10 24862.72 25279.57 24889.45 231
VDDNet81.52 12180.67 12484.05 13290.44 10064.13 21689.73 8185.91 25671.11 18083.18 9593.48 5850.54 27893.49 15173.40 15988.25 13594.54 33
fmvsm_s_conf0.5_n83.80 7983.71 8084.07 12786.69 22867.31 15089.46 9083.07 29571.09 18186.96 4493.70 5569.02 8791.47 23688.79 1884.62 17993.44 86
XVG-OURS80.41 14779.23 15583.97 13885.64 24369.02 10283.03 27390.39 14271.09 18177.63 17691.49 10754.62 23391.35 24075.71 13683.47 20291.54 149
SixPastTwentyTwo73.37 27371.26 28579.70 24985.08 25657.89 29985.57 21383.56 28571.03 18365.66 34585.88 25442.10 34692.57 19059.11 28763.34 37188.65 260
ZD-MVS94.38 2572.22 4492.67 6370.98 18487.75 3294.07 4174.01 3296.70 2784.66 5094.84 44
v119279.59 16378.43 17183.07 16783.55 28564.52 20586.93 17790.58 13770.83 18577.78 17385.90 25359.15 19993.94 12773.96 15377.19 27590.76 175
Fast-Effi-MVS+80.81 13479.92 13783.47 14888.85 15264.51 20685.53 21989.39 17470.79 18678.49 15785.06 27567.54 10193.58 14567.03 22286.58 15492.32 127
PS-MVSNAJ81.69 11781.02 11983.70 14389.51 12568.21 12784.28 24890.09 15570.79 18681.26 12285.62 26263.15 14594.29 11275.62 13888.87 12488.59 261
LTVRE_ROB69.57 1376.25 24174.54 24881.41 20988.60 16564.38 21279.24 31989.12 18870.76 18869.79 30787.86 20049.09 29693.20 16856.21 31680.16 24286.65 303
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
testing1175.14 25774.01 25378.53 27188.16 18056.38 32380.74 29980.42 32870.67 18972.69 27483.72 30243.61 33689.86 26862.29 25983.76 19389.36 233
fmvsm_s_conf0.1_n83.56 8683.38 8484.10 12284.86 25967.28 15189.40 9583.01 29670.67 18987.08 4193.96 5068.38 9291.45 23788.56 2284.50 18093.56 81
xiu_mvs_v2_base81.69 11781.05 11883.60 14589.15 14468.03 13284.46 24290.02 15670.67 18981.30 12186.53 24263.17 14494.19 11975.60 13988.54 13188.57 262
XVG-OURS-SEG-HR80.81 13479.76 14183.96 13985.60 24468.78 10883.54 26290.50 14070.66 19276.71 19791.66 9860.69 18791.26 24276.94 12481.58 22591.83 142
Anonymous20240521178.25 19677.01 20681.99 19791.03 8560.67 27084.77 23283.90 28070.65 19380.00 13491.20 11641.08 35191.43 23865.21 23485.26 17293.85 63
DP-MVS Recon83.11 9782.09 10486.15 5894.44 1970.92 6888.79 11492.20 8670.53 19479.17 14391.03 12464.12 13496.03 4868.39 20990.14 10691.50 151
FMVSNet177.44 21976.12 22681.40 21086.81 22563.01 24088.39 12989.28 17770.49 19574.39 25587.28 21349.06 29791.11 24560.91 27378.52 25990.09 205
testing368.56 31967.67 32071.22 34687.33 21542.87 39583.06 27271.54 37670.36 19669.08 31384.38 28630.33 38385.69 31837.50 38975.45 30585.09 330
ab-mvs79.51 16478.97 16181.14 21888.46 17060.91 26683.84 25489.24 18170.36 19679.03 14488.87 17263.23 14390.21 26365.12 23582.57 21592.28 129
tfpnnormal74.39 26073.16 26478.08 27886.10 23858.05 29484.65 23687.53 22870.32 19871.22 28985.63 26154.97 22589.86 26843.03 37775.02 31486.32 306
ACMM73.20 880.78 13979.84 14083.58 14689.31 13768.37 12289.99 7391.60 11070.28 19977.25 18389.66 14953.37 24493.53 15074.24 15182.85 21088.85 252
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.5_n_a83.63 8483.41 8384.28 11486.14 23568.12 12889.43 9182.87 30070.27 20087.27 4093.80 5469.09 8291.58 22788.21 2683.65 19893.14 99
ACMH+68.96 1476.01 24574.01 25382.03 19688.60 16565.31 19288.86 11287.55 22770.25 20167.75 32287.47 21141.27 34993.19 17058.37 29675.94 29587.60 278
IB-MVS68.01 1575.85 24773.36 26283.31 15484.76 26066.03 17283.38 26385.06 26470.21 20269.40 30981.05 33345.76 32394.66 10465.10 23675.49 30189.25 236
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thisisatest053079.40 17077.76 19184.31 11287.69 20365.10 19687.36 16384.26 27670.04 20377.42 17988.26 19149.94 28494.79 10070.20 18784.70 17893.03 103
mvsmamba80.60 14279.38 14984.27 11689.74 11967.24 15487.47 16086.95 24070.02 20475.38 22988.93 16951.24 26992.56 19175.47 14289.22 11993.00 106
test_fmvsmvis_n_192084.02 7683.87 7884.49 10584.12 27369.37 9888.15 14187.96 21770.01 20583.95 8593.23 6568.80 8991.51 23488.61 2089.96 11092.57 117
v14419279.47 16678.37 17282.78 18383.35 28863.96 21886.96 17590.36 14669.99 20677.50 17785.67 26060.66 18893.77 13974.27 15076.58 28390.62 180
test_fmvsm_n_192085.29 6485.34 6085.13 8486.12 23669.93 8388.65 12290.78 13369.97 20788.27 2393.98 4971.39 5991.54 23188.49 2390.45 10193.91 59
c3_l78.75 18577.91 18381.26 21482.89 30461.56 26084.09 25289.13 18769.97 20775.56 22184.29 28966.36 11392.09 21073.47 15875.48 30290.12 202
v192192079.22 17478.03 18082.80 18083.30 29063.94 21986.80 18190.33 14769.91 20977.48 17885.53 26358.44 20393.75 14173.60 15576.85 28090.71 178
ACMH67.68 1675.89 24673.93 25581.77 20188.71 16266.61 16488.62 12389.01 19169.81 21066.78 33486.70 23341.95 34891.51 23455.64 31778.14 26587.17 289
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.1_n_a83.32 9282.99 9184.28 11483.79 28068.07 13089.34 9782.85 30169.80 21187.36 3994.06 4268.34 9391.56 22987.95 2783.46 20393.21 96
DPM-MVS84.93 6984.29 7686.84 4790.20 10473.04 2387.12 17193.04 3869.80 21182.85 10191.22 11573.06 3996.02 5176.72 12894.63 4891.46 155
MAR-MVS81.84 11380.70 12385.27 7991.32 7971.53 5489.82 7690.92 12869.77 21378.50 15686.21 24862.36 15794.52 10765.36 23392.05 8189.77 223
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
XVG-ACMP-BASELINE76.11 24374.27 25281.62 20383.20 29364.67 20483.60 26089.75 16469.75 21471.85 28387.09 22232.78 37692.11 20969.99 19180.43 24088.09 269
BH-w/o78.21 19877.33 20280.84 22688.81 15665.13 19584.87 23087.85 22269.75 21474.52 25384.74 28261.34 17593.11 17558.24 29885.84 16884.27 337
v124078.99 18177.78 18982.64 18683.21 29263.54 22786.62 18890.30 14969.74 21677.33 18185.68 25957.04 21793.76 14073.13 16376.92 27790.62 180
ET-MVSNet_ETH3D78.63 18976.63 21984.64 10086.73 22769.47 9285.01 22784.61 26969.54 21766.51 34186.59 23750.16 28191.75 22276.26 13084.24 18792.69 114
eth_miper_zixun_eth77.92 20876.69 21781.61 20583.00 30061.98 25483.15 26789.20 18369.52 21874.86 24884.35 28861.76 16592.56 19171.50 17672.89 33490.28 196
PVSNet_Blended_VisFu82.62 10281.83 11084.96 8990.80 9369.76 8788.74 11891.70 10869.39 21978.96 14588.46 18465.47 12494.87 9774.42 14888.57 13090.24 197
mvs_tets79.13 17777.77 19083.22 16084.70 26166.37 16889.17 10090.19 15269.38 22075.40 22889.46 15844.17 33393.15 17276.78 12780.70 23690.14 200
PVSNet_BlendedMVS80.60 14280.02 13582.36 19288.85 15265.40 18886.16 20192.00 9369.34 22178.11 16686.09 25266.02 11994.27 11471.52 17482.06 22087.39 283
AdaColmapbinary80.58 14579.42 14884.06 12993.09 5468.91 10589.36 9688.97 19469.27 22275.70 21989.69 14857.20 21695.77 5863.06 25088.41 13487.50 282
ETVMVS72.25 28771.05 28675.84 30187.77 20051.91 36279.39 31774.98 36469.26 22373.71 26082.95 31340.82 35386.14 31446.17 36784.43 18589.47 230
ITE_SJBPF78.22 27581.77 32260.57 27183.30 28969.25 22467.54 32487.20 21836.33 37087.28 30654.34 32274.62 31886.80 299
cl____77.72 21376.76 21480.58 23182.49 31360.48 27383.09 26987.87 22069.22 22574.38 25685.22 27162.10 16291.53 23271.09 17975.41 30689.73 225
DIV-MVS_self_test77.72 21376.76 21480.58 23182.48 31460.48 27383.09 26987.86 22169.22 22574.38 25685.24 26962.10 16291.53 23271.09 17975.40 30789.74 224
jajsoiax79.29 17377.96 18183.27 15684.68 26266.57 16589.25 9990.16 15369.20 22775.46 22589.49 15545.75 32493.13 17476.84 12580.80 23490.11 203
IterMVS-SCA-FT75.43 25373.87 25780.11 24182.69 30864.85 20181.57 28683.47 28769.16 22870.49 29384.15 29451.95 26088.15 29769.23 19872.14 33987.34 285
CL-MVSNet_self_test72.37 28571.46 28075.09 31179.49 35553.53 35280.76 29885.01 26669.12 22970.51 29282.05 32757.92 20784.13 33152.27 33266.00 36587.60 278
AUN-MVS79.21 17577.60 19684.05 13288.71 16267.61 14185.84 21087.26 23469.08 23077.23 18588.14 19753.20 24693.47 15375.50 14173.45 32991.06 164
xiu_mvs_v1_base_debu80.80 13679.72 14284.03 13487.35 21070.19 7985.56 21488.77 19969.06 23181.83 11088.16 19350.91 27292.85 18478.29 11287.56 13989.06 239
xiu_mvs_v1_base80.80 13679.72 14284.03 13487.35 21070.19 7985.56 21488.77 19969.06 23181.83 11088.16 19350.91 27292.85 18478.29 11287.56 13989.06 239
xiu_mvs_v1_base_debi80.80 13679.72 14284.03 13487.35 21070.19 7985.56 21488.77 19969.06 23181.83 11088.16 19350.91 27292.85 18478.29 11287.56 13989.06 239
MVSTER79.01 18077.88 18582.38 19183.07 29764.80 20284.08 25388.95 19569.01 23478.69 15087.17 22054.70 23192.43 19674.69 14580.57 23889.89 218
cl2278.07 20377.01 20681.23 21582.37 31661.83 25783.55 26187.98 21668.96 23575.06 24483.87 29661.40 17491.88 21873.53 15676.39 28789.98 214
miper_ehance_all_eth78.59 19177.76 19181.08 22082.66 30961.56 26083.65 25789.15 18568.87 23675.55 22283.79 30066.49 11192.03 21173.25 16176.39 28789.64 226
PAPR81.66 11980.89 12283.99 13790.27 10264.00 21786.76 18591.77 10768.84 23777.13 19189.50 15467.63 10094.88 9667.55 21488.52 13293.09 100
CPTT-MVS83.73 8083.33 8684.92 9293.28 4970.86 6992.09 3690.38 14368.75 23879.57 13892.83 7660.60 19193.04 18080.92 9191.56 8890.86 172
train_agg86.43 4086.20 4287.13 4493.26 5072.96 2588.75 11691.89 9968.69 23985.00 6093.10 6774.43 2695.41 7184.97 4295.71 2593.02 104
test_893.13 5272.57 3588.68 12191.84 10368.69 23984.87 6493.10 6774.43 2695.16 80
dmvs_re71.14 29470.58 29072.80 33281.96 31959.68 28275.60 35279.34 33968.55 24169.27 31280.72 33949.42 29076.54 37052.56 33177.79 26882.19 362
MVSFormer82.85 10082.05 10585.24 8087.35 21070.21 7790.50 6190.38 14368.55 24181.32 11889.47 15661.68 16693.46 15478.98 10390.26 10492.05 139
test_djsdf80.30 15179.32 15283.27 15683.98 27765.37 19190.50 6190.38 14368.55 24176.19 21088.70 17556.44 22093.46 15478.98 10380.14 24490.97 169
TEST993.26 5072.96 2588.75 11691.89 9968.44 24485.00 6093.10 6774.36 2895.41 71
FE-MVS77.78 21175.68 22984.08 12688.09 18566.00 17483.13 26887.79 22368.42 24578.01 16985.23 27045.50 32695.12 8259.11 28785.83 16991.11 162
CDPH-MVS85.76 5385.29 6487.17 4393.49 4771.08 6188.58 12492.42 7768.32 24684.61 7293.48 5872.32 4496.15 4579.00 10295.43 3094.28 46
PC_three_145268.21 24792.02 1294.00 4682.09 595.98 5584.58 5196.68 294.95 10
fmvsm_l_conf0.5_n84.47 7384.54 7284.27 11685.42 24768.81 10688.49 12687.26 23468.08 24888.03 2793.49 5772.04 4891.77 22188.90 1789.14 12192.24 132
IterMVS74.29 26172.94 26678.35 27481.53 32663.49 22981.58 28582.49 30468.06 24969.99 30283.69 30351.66 26685.54 32065.85 23071.64 34286.01 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dmvs_testset62.63 34664.11 33758.19 37578.55 36024.76 41375.28 35365.94 39167.91 25060.34 37076.01 37253.56 24173.94 38931.79 39467.65 35875.88 382
TAMVS78.89 18477.51 19883.03 16987.80 19667.79 13684.72 23385.05 26567.63 25176.75 19687.70 20262.25 15990.82 25458.53 29487.13 14690.49 187
PVSNet_Blended80.98 12980.34 13082.90 17588.85 15265.40 18884.43 24492.00 9367.62 25278.11 16685.05 27666.02 11994.27 11471.52 17489.50 11589.01 244
TR-MVS77.44 21976.18 22581.20 21688.24 17863.24 23584.61 23786.40 24967.55 25377.81 17286.48 24354.10 23693.15 17257.75 30282.72 21387.20 288
CDS-MVSNet79.07 17977.70 19383.17 16287.60 20568.23 12684.40 24686.20 25267.49 25476.36 20686.54 24161.54 16990.79 25561.86 26587.33 14390.49 187
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
fmvsm_l_conf0.5_n_a84.13 7584.16 7784.06 12985.38 24868.40 12188.34 13386.85 24367.48 25587.48 3693.40 6170.89 6391.61 22588.38 2589.22 11992.16 136
mvs_anonymous79.42 16979.11 15880.34 23684.45 26857.97 29782.59 27587.62 22667.40 25676.17 21388.56 18268.47 9189.59 27470.65 18486.05 16493.47 85
IU-MVS95.30 271.25 5792.95 5266.81 25792.39 688.94 1696.63 494.85 19
baseline275.70 24873.83 25881.30 21383.26 29161.79 25882.57 27680.65 32366.81 25766.88 33283.42 30757.86 20892.19 20763.47 24679.57 24889.91 216
miper_lstm_enhance74.11 26473.11 26577.13 29380.11 34459.62 28372.23 36786.92 24266.76 25970.40 29482.92 31456.93 21882.92 34069.06 20172.63 33588.87 251
OpenMVScopyleft72.83 1079.77 15978.33 17484.09 12585.17 25169.91 8490.57 5890.97 12766.70 26072.17 28091.91 9154.70 23193.96 12461.81 26690.95 9588.41 265
test-LLR72.94 28172.43 27174.48 31781.35 33058.04 29578.38 33277.46 35066.66 26169.95 30379.00 35448.06 30279.24 35666.13 22584.83 17586.15 310
test20.0367.45 32666.95 32768.94 35575.48 37344.84 39177.50 34077.67 34866.66 26163.01 36183.80 29947.02 30878.40 36042.53 38068.86 35683.58 347
test0.0.03 168.00 32467.69 31968.90 35677.55 36347.43 38175.70 35172.95 37566.66 26166.56 33782.29 32448.06 30275.87 37844.97 37474.51 31983.41 348
Syy-MVS68.05 32367.85 31468.67 35984.68 26240.97 40178.62 32973.08 37366.65 26466.74 33579.46 34952.11 25682.30 34332.89 39376.38 29082.75 357
myMVS_eth3d67.02 32966.29 33069.21 35484.68 26242.58 39678.62 32973.08 37366.65 26466.74 33579.46 34931.53 38082.30 34339.43 38676.38 29082.75 357
QAPM80.88 13179.50 14785.03 8688.01 18968.97 10491.59 4292.00 9366.63 26675.15 24192.16 8857.70 20995.45 6763.52 24588.76 12790.66 179
XXY-MVS75.41 25475.56 23274.96 31283.59 28457.82 30180.59 30283.87 28166.54 26774.93 24788.31 18863.24 14280.09 35462.16 26176.85 28086.97 296
OurMVSNet-221017-074.26 26272.42 27279.80 24783.76 28259.59 28485.92 20786.64 24566.39 26866.96 33187.58 20539.46 35791.60 22665.76 23169.27 35288.22 266
SCA74.22 26372.33 27379.91 24484.05 27662.17 25279.96 31279.29 34066.30 26972.38 27880.13 34351.95 26088.60 29259.25 28577.67 27188.96 248
testgi66.67 33266.53 32967.08 36575.62 37241.69 40075.93 34776.50 35866.11 27065.20 35186.59 23735.72 37274.71 38543.71 37573.38 33184.84 332
HY-MVS69.67 1277.95 20777.15 20480.36 23587.57 20960.21 27883.37 26487.78 22466.11 27075.37 23087.06 22463.27 14190.48 26061.38 27082.43 21690.40 191
EG-PatchMatch MVS74.04 26571.82 27680.71 22984.92 25867.42 14685.86 20988.08 21466.04 27264.22 35583.85 29735.10 37392.56 19157.44 30480.83 23382.16 363
CNLPA78.08 20276.79 21381.97 19890.40 10171.07 6287.59 15784.55 27066.03 27372.38 27889.64 15057.56 21186.04 31559.61 28283.35 20488.79 255
Anonymous2024052980.19 15478.89 16284.10 12290.60 9664.75 20388.95 10990.90 12965.97 27480.59 12891.17 11849.97 28393.73 14369.16 20082.70 21493.81 66
TAPA-MVS73.13 979.15 17677.94 18282.79 18289.59 12162.99 24488.16 14091.51 11365.77 27577.14 19091.09 12060.91 18493.21 16550.26 34587.05 14792.17 135
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MSDG73.36 27570.99 28780.49 23384.51 26765.80 18080.71 30086.13 25465.70 27665.46 34683.74 30144.60 32990.91 25351.13 33876.89 27884.74 333
anonymousdsp78.60 19077.15 20482.98 17280.51 34067.08 15787.24 16889.53 17065.66 27775.16 24087.19 21952.52 24792.25 20577.17 12279.34 25389.61 227
test_040272.79 28270.44 29379.84 24688.13 18265.99 17585.93 20684.29 27465.57 27867.40 32885.49 26446.92 30992.61 18935.88 39074.38 32080.94 369
miper_enhance_ethall77.87 21076.86 21080.92 22581.65 32361.38 26282.68 27488.98 19265.52 27975.47 22382.30 32365.76 12392.00 21372.95 16476.39 28789.39 232
WBMVS73.43 27272.81 26775.28 30987.91 19150.99 37178.59 33181.31 31865.51 28074.47 25484.83 27946.39 31286.68 30958.41 29577.86 26788.17 268
UnsupCasMVSNet_eth67.33 32765.99 33171.37 34273.48 38251.47 36875.16 35585.19 26365.20 28160.78 36980.93 33842.35 34277.20 36657.12 30753.69 38885.44 322
WTY-MVS75.65 24975.68 22975.57 30586.40 23256.82 31477.92 33982.40 30565.10 28276.18 21187.72 20163.13 14880.90 35160.31 27781.96 22189.00 246
thisisatest051577.33 22275.38 23783.18 16185.27 25063.80 22182.11 28083.27 29065.06 28375.91 21583.84 29849.54 28894.27 11467.24 21886.19 16191.48 153
MVP-Stereo76.12 24274.46 25081.13 21985.37 24969.79 8684.42 24587.95 21865.03 28467.46 32685.33 26753.28 24591.73 22458.01 30083.27 20581.85 364
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Anonymous2023121178.97 18277.69 19482.81 17990.54 9864.29 21390.11 7291.51 11365.01 28576.16 21488.13 19850.56 27793.03 18169.68 19577.56 27291.11 162
pmmvs674.69 25973.39 26178.61 26781.38 32957.48 30686.64 18787.95 21864.99 28670.18 29786.61 23650.43 27989.52 27562.12 26270.18 34988.83 253
PAPM77.68 21676.40 22381.51 20687.29 21761.85 25683.78 25589.59 16864.74 28771.23 28888.70 17562.59 15293.66 14452.66 33087.03 14889.01 244
MIMVSNet70.69 30069.30 29974.88 31384.52 26656.35 32575.87 35079.42 33864.59 28867.76 32182.41 32141.10 35081.54 34746.64 36581.34 22686.75 301
tpm72.37 28571.71 27774.35 31982.19 31752.00 36079.22 32077.29 35364.56 28972.95 27083.68 30451.35 26783.26 33958.33 29775.80 29687.81 274
MDA-MVSNet-bldmvs66.68 33163.66 34075.75 30279.28 35760.56 27273.92 36378.35 34564.43 29050.13 39279.87 34744.02 33483.67 33446.10 36856.86 38183.03 354
MIMVSNet168.58 31866.78 32873.98 32380.07 34551.82 36480.77 29784.37 27164.40 29159.75 37482.16 32636.47 36983.63 33542.73 37870.33 34886.48 305
D2MVS74.82 25873.21 26379.64 25279.81 34962.56 24780.34 30787.35 23264.37 29268.86 31482.66 31946.37 31490.10 26467.91 21181.24 22886.25 307
PLCcopyleft70.83 1178.05 20476.37 22483.08 16691.88 7467.80 13588.19 13889.46 17264.33 29369.87 30588.38 18653.66 24093.58 14558.86 29082.73 21287.86 273
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PatchmatchNetpermissive73.12 27871.33 28378.49 27383.18 29460.85 26779.63 31478.57 34464.13 29471.73 28479.81 34851.20 27085.97 31657.40 30576.36 29288.66 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
mamv476.81 23078.23 17872.54 33586.12 23665.75 18378.76 32782.07 30964.12 29572.97 26991.02 12567.97 9668.08 39883.04 6878.02 26683.80 345
KD-MVS_2432*160066.22 33663.89 33873.21 32775.47 37453.42 35470.76 37384.35 27264.10 29666.52 33978.52 35834.55 37484.98 32550.40 34150.33 39281.23 367
miper_refine_blended66.22 33663.89 33873.21 32775.47 37453.42 35470.76 37384.35 27264.10 29666.52 33978.52 35834.55 37484.98 32550.40 34150.33 39281.23 367
tpmvs71.09 29569.29 30076.49 29782.04 31856.04 32878.92 32581.37 31764.05 29867.18 33078.28 36049.74 28789.77 27049.67 34872.37 33683.67 346
F-COLMAP76.38 24074.33 25182.50 18989.28 13966.95 16288.41 12889.03 18964.05 29866.83 33388.61 17946.78 31092.89 18357.48 30378.55 25887.67 276
DP-MVS76.78 23174.57 24683.42 15093.29 4869.46 9488.55 12583.70 28263.98 30070.20 29688.89 17154.01 23894.80 9946.66 36381.88 22386.01 314
原ACMM184.35 11093.01 5768.79 10792.44 7463.96 30181.09 12391.57 10466.06 11895.45 6767.19 21994.82 4688.81 254
PM-MVS66.41 33464.14 33673.20 32973.92 37856.45 32078.97 32464.96 39463.88 30264.72 35280.24 34219.84 39883.44 33766.24 22464.52 36979.71 374
UWE-MVS72.13 28871.49 27974.03 32286.66 22947.70 38081.40 29076.89 35763.60 30375.59 22084.22 29239.94 35685.62 31948.98 35186.13 16388.77 256
jason81.39 12480.29 13284.70 9986.63 23069.90 8585.95 20586.77 24463.24 30481.07 12489.47 15661.08 18292.15 20878.33 11190.07 10992.05 139
jason: jason.
KD-MVS_self_test68.81 31567.59 32272.46 33674.29 37745.45 38677.93 33887.00 23963.12 30563.99 35778.99 35642.32 34384.77 32856.55 31464.09 37087.16 291
gg-mvs-nofinetune69.95 30867.96 31275.94 30083.07 29754.51 34677.23 34370.29 37963.11 30670.32 29562.33 39143.62 33588.69 29053.88 32487.76 13884.62 335
tpmrst72.39 28372.13 27473.18 33080.54 33949.91 37679.91 31379.08 34263.11 30671.69 28579.95 34555.32 22382.77 34165.66 23273.89 32486.87 297
PCF-MVS73.52 780.38 14878.84 16385.01 8787.71 20168.99 10383.65 25791.46 11763.00 30877.77 17490.28 13766.10 11695.09 8861.40 26988.22 13690.94 170
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
COLMAP_ROBcopyleft66.92 1773.01 27970.41 29480.81 22787.13 22065.63 18488.30 13584.19 27762.96 30963.80 35987.69 20338.04 36592.56 19146.66 36374.91 31584.24 338
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Patchmatch-RL test70.24 30567.78 31877.61 28677.43 36459.57 28571.16 37070.33 37862.94 31068.65 31672.77 38250.62 27685.49 32169.58 19666.58 36287.77 275
lupinMVS81.39 12480.27 13384.76 9887.35 21070.21 7785.55 21786.41 24862.85 31181.32 11888.61 17961.68 16692.24 20678.41 11090.26 10491.83 142
test_vis1_n_192075.52 25175.78 22774.75 31679.84 34857.44 30783.26 26585.52 26062.83 31279.34 14286.17 25045.10 32879.71 35578.75 10581.21 22987.10 295
EPMVS69.02 31468.16 30971.59 34079.61 35349.80 37877.40 34166.93 38862.82 31370.01 30079.05 35245.79 32277.86 36456.58 31375.26 31187.13 292
PatchMatch-RL72.38 28470.90 28876.80 29688.60 16567.38 14879.53 31576.17 36162.75 31469.36 31082.00 32945.51 32584.89 32753.62 32580.58 23778.12 377
gm-plane-assit81.40 32853.83 35162.72 31580.94 33692.39 19863.40 248
FMVSNet569.50 31167.96 31274.15 32182.97 30355.35 33780.01 31182.12 30862.56 31663.02 36081.53 33036.92 36881.92 34548.42 35374.06 32285.17 328
sss73.60 27073.64 26073.51 32682.80 30555.01 34176.12 34681.69 31362.47 31774.68 25085.85 25657.32 21478.11 36260.86 27480.93 23187.39 283
WB-MVSnew71.96 29071.65 27872.89 33184.67 26551.88 36382.29 27877.57 34962.31 31873.67 26183.00 31253.49 24381.10 35045.75 37082.13 21985.70 319
AllTest70.96 29668.09 31179.58 25385.15 25363.62 22384.58 23879.83 33462.31 31860.32 37186.73 22732.02 37788.96 28750.28 34371.57 34386.15 310
TestCases79.58 25385.15 25363.62 22379.83 33462.31 31860.32 37186.73 22732.02 37788.96 28750.28 34371.57 34386.15 310
1112_ss77.40 22176.43 22280.32 23789.11 14960.41 27583.65 25787.72 22562.13 32173.05 26886.72 22962.58 15389.97 26762.11 26380.80 23490.59 183
PVSNet64.34 1872.08 28970.87 28975.69 30386.21 23456.44 32174.37 36180.73 32262.06 32270.17 29882.23 32542.86 34083.31 33854.77 32084.45 18487.32 286
LS3D76.95 22874.82 24483.37 15390.45 9967.36 14989.15 10486.94 24161.87 32369.52 30890.61 13351.71 26594.53 10646.38 36686.71 15388.21 267
CostFormer75.24 25673.90 25679.27 25782.65 31058.27 29280.80 29582.73 30361.57 32475.33 23583.13 31155.52 22291.07 25164.98 23778.34 26488.45 263
new-patchmatchnet61.73 34861.73 34961.70 37172.74 38824.50 41469.16 38078.03 34661.40 32556.72 38375.53 37638.42 36276.48 37245.95 36957.67 38084.13 340
ANet_high50.57 36546.10 36963.99 36848.67 41339.13 40270.99 37280.85 32061.39 32631.18 40257.70 39817.02 40173.65 39031.22 39515.89 41079.18 375
MS-PatchMatch73.83 26872.67 26877.30 29183.87 27966.02 17381.82 28184.66 26861.37 32768.61 31782.82 31747.29 30588.21 29659.27 28484.32 18677.68 378
USDC70.33 30468.37 30676.21 29980.60 33856.23 32679.19 32186.49 24760.89 32861.29 36785.47 26531.78 37989.47 27753.37 32776.21 29382.94 356
cascas76.72 23274.64 24582.99 17185.78 24165.88 17882.33 27789.21 18260.85 32972.74 27181.02 33447.28 30693.75 14167.48 21585.02 17389.34 234
MDTV_nov1_ep1369.97 29883.18 29453.48 35377.10 34480.18 33360.45 33069.33 31180.44 34048.89 30086.90 30751.60 33578.51 260
TinyColmap67.30 32864.81 33374.76 31581.92 32156.68 31880.29 30881.49 31560.33 33156.27 38583.22 30824.77 39087.66 30445.52 37169.47 35179.95 373
test-mter71.41 29270.39 29574.48 31781.35 33058.04 29578.38 33277.46 35060.32 33269.95 30379.00 35436.08 37179.24 35666.13 22584.83 17586.15 310
131476.53 23475.30 24080.21 23983.93 27862.32 25084.66 23488.81 19760.23 33370.16 29984.07 29555.30 22490.73 25767.37 21683.21 20687.59 280
PatchT68.46 32167.85 31470.29 35080.70 33743.93 39372.47 36674.88 36560.15 33470.55 29176.57 36949.94 28481.59 34650.58 33974.83 31685.34 323
无先验87.48 15988.98 19260.00 33594.12 12167.28 21788.97 247
CR-MVSNet73.37 27371.27 28479.67 25181.32 33265.19 19375.92 34880.30 33059.92 33672.73 27281.19 33152.50 24886.69 30859.84 28077.71 26987.11 293
TDRefinement67.49 32564.34 33576.92 29473.47 38361.07 26484.86 23182.98 29859.77 33758.30 37885.13 27326.06 38787.89 30047.92 36060.59 37881.81 365
dp66.80 33065.43 33270.90 34979.74 35248.82 37975.12 35774.77 36659.61 33864.08 35677.23 36642.89 33980.72 35248.86 35266.58 36283.16 351
our_test_369.14 31367.00 32675.57 30579.80 35058.80 28777.96 33777.81 34759.55 33962.90 36378.25 36147.43 30483.97 33251.71 33467.58 35983.93 343
Test_1112_low_res76.40 23975.44 23479.27 25789.28 13958.09 29381.69 28487.07 23859.53 34072.48 27686.67 23461.30 17689.33 27860.81 27580.15 24390.41 190
pmmvs474.03 26771.91 27580.39 23481.96 31968.32 12381.45 28882.14 30759.32 34169.87 30585.13 27352.40 25088.13 29860.21 27874.74 31784.73 334
testdata79.97 24390.90 8964.21 21484.71 26759.27 34285.40 5592.91 7362.02 16489.08 28368.95 20291.37 9086.63 304
WB-MVS54.94 35554.72 35755.60 38173.50 38120.90 41574.27 36261.19 39859.16 34350.61 39174.15 37847.19 30775.78 37917.31 40635.07 40070.12 388
ppachtmachnet_test70.04 30767.34 32478.14 27779.80 35061.13 26379.19 32180.59 32459.16 34365.27 34879.29 35146.75 31187.29 30549.33 34966.72 36086.00 316
RPSCF73.23 27771.46 28078.54 27082.50 31259.85 28082.18 27982.84 30258.96 34571.15 29089.41 16245.48 32784.77 32858.82 29171.83 34191.02 168
pmmvs-eth3d70.50 30367.83 31678.52 27277.37 36566.18 17181.82 28181.51 31458.90 34663.90 35880.42 34142.69 34186.28 31358.56 29365.30 36783.11 352
OpenMVS_ROBcopyleft64.09 1970.56 30268.19 30877.65 28580.26 34159.41 28685.01 22782.96 29958.76 34765.43 34782.33 32237.63 36791.23 24445.34 37376.03 29482.32 360
114514_t80.68 14079.51 14684.20 11994.09 3867.27 15289.64 8491.11 12558.75 34874.08 25890.72 13158.10 20595.04 8969.70 19489.42 11790.30 195
Patchmtry70.74 29969.16 30275.49 30780.72 33654.07 34974.94 35980.30 33058.34 34970.01 30081.19 33152.50 24886.54 31053.37 32771.09 34685.87 318
test_cas_vis1_n_192073.76 26973.74 25973.81 32475.90 36959.77 28180.51 30382.40 30558.30 35081.62 11685.69 25844.35 33276.41 37376.29 12978.61 25785.23 325
Anonymous2024052168.80 31667.22 32573.55 32574.33 37654.11 34883.18 26685.61 25958.15 35161.68 36680.94 33630.71 38281.27 34957.00 30973.34 33285.28 324
旧先验286.56 19058.10 35287.04 4288.98 28574.07 152
JIA-IIPM66.32 33562.82 34676.82 29577.09 36661.72 25965.34 39375.38 36258.04 35364.51 35362.32 39242.05 34786.51 31151.45 33669.22 35382.21 361
pmmvs571.55 29170.20 29775.61 30477.83 36256.39 32281.74 28380.89 31957.76 35467.46 32684.49 28349.26 29485.32 32457.08 30875.29 31085.11 329
TESTMET0.1,169.89 30969.00 30372.55 33479.27 35856.85 31378.38 33274.71 36857.64 35568.09 32077.19 36737.75 36676.70 36963.92 24484.09 18984.10 341
RPMNet73.51 27170.49 29282.58 18881.32 33265.19 19375.92 34892.27 8157.60 35672.73 27276.45 37052.30 25195.43 6948.14 35877.71 26987.11 293
SSC-MVS53.88 35853.59 35954.75 38372.87 38719.59 41673.84 36460.53 40057.58 35749.18 39473.45 38146.34 31675.47 38216.20 40932.28 40269.20 389
新几何183.42 15093.13 5270.71 7185.48 26157.43 35881.80 11391.98 9063.28 14092.27 20464.60 24092.99 6987.27 287
YYNet165.03 33962.91 34471.38 34175.85 37056.60 31969.12 38174.66 36957.28 35954.12 38777.87 36345.85 32174.48 38649.95 34661.52 37583.05 353
MDA-MVSNet_test_wron65.03 33962.92 34371.37 34275.93 36856.73 31569.09 38274.73 36757.28 35954.03 38877.89 36245.88 32074.39 38749.89 34761.55 37482.99 355
Anonymous2023120668.60 31767.80 31771.02 34780.23 34350.75 37378.30 33580.47 32656.79 36166.11 34482.63 32046.35 31578.95 35843.62 37675.70 29783.36 349
tpm273.26 27671.46 28078.63 26683.34 28956.71 31780.65 30180.40 32956.63 36273.55 26282.02 32851.80 26491.24 24356.35 31578.42 26287.95 270
CHOSEN 1792x268877.63 21775.69 22883.44 14989.98 11368.58 11978.70 32887.50 22956.38 36375.80 21886.84 22558.67 20191.40 23961.58 26885.75 17090.34 192
HyFIR lowres test77.53 21875.40 23683.94 14089.59 12166.62 16380.36 30688.64 20656.29 36476.45 20385.17 27257.64 21093.28 16061.34 27183.10 20891.91 141
PVSNet_057.27 2061.67 34959.27 35268.85 35779.61 35357.44 30768.01 38373.44 37255.93 36558.54 37770.41 38744.58 33077.55 36547.01 36235.91 39971.55 387
UnsupCasMVSNet_bld63.70 34461.53 35070.21 35173.69 38051.39 36972.82 36581.89 31055.63 36657.81 38071.80 38438.67 36178.61 35949.26 35052.21 39080.63 370
MDTV_nov1_ep13_2view37.79 40375.16 35555.10 36766.53 33849.34 29253.98 32387.94 271
MVS78.19 20076.99 20881.78 20085.66 24266.99 15884.66 23490.47 14155.08 36872.02 28285.27 26863.83 13794.11 12266.10 22789.80 11384.24 338
test22291.50 7768.26 12584.16 25083.20 29354.63 36979.74 13591.63 10158.97 20091.42 8986.77 300
dongtai45.42 36945.38 37045.55 38773.36 38426.85 41167.72 38434.19 41354.15 37049.65 39356.41 40025.43 38862.94 40319.45 40428.09 40446.86 403
CHOSEN 280x42066.51 33364.71 33471.90 33881.45 32763.52 22857.98 40068.95 38553.57 37162.59 36476.70 36846.22 31775.29 38455.25 31879.68 24776.88 380
ADS-MVSNet266.20 33863.33 34174.82 31479.92 34658.75 28867.55 38575.19 36353.37 37265.25 34975.86 37342.32 34380.53 35341.57 38168.91 35485.18 326
ADS-MVSNet64.36 34262.88 34568.78 35879.92 34647.17 38267.55 38571.18 37753.37 37265.25 34975.86 37342.32 34373.99 38841.57 38168.91 35485.18 326
LF4IMVS64.02 34362.19 34769.50 35370.90 39153.29 35776.13 34577.18 35452.65 37458.59 37680.98 33523.55 39376.52 37153.06 32966.66 36178.68 376
tpm cat170.57 30168.31 30777.35 29082.41 31557.95 29878.08 33680.22 33252.04 37568.54 31877.66 36552.00 25987.84 30151.77 33372.07 34086.25 307
test_vis1_n69.85 31069.21 30171.77 33972.66 38955.27 33981.48 28776.21 36052.03 37675.30 23683.20 31028.97 38476.22 37574.60 14678.41 26383.81 344
Patchmatch-test64.82 34163.24 34269.57 35279.42 35649.82 37763.49 39769.05 38451.98 37759.95 37380.13 34350.91 27270.98 39240.66 38373.57 32787.90 272
N_pmnet52.79 36153.26 36051.40 38578.99 3597.68 41969.52 3773.89 41851.63 37857.01 38274.98 37740.83 35265.96 40037.78 38864.67 36880.56 372
test_fmvs1_n70.86 29870.24 29672.73 33372.51 39055.28 33881.27 29179.71 33651.49 37978.73 14984.87 27827.54 38677.02 36776.06 13279.97 24685.88 317
test_fmvs170.93 29770.52 29172.16 33773.71 37955.05 34080.82 29478.77 34351.21 38078.58 15484.41 28531.20 38176.94 36875.88 13580.12 24584.47 336
PMMVS69.34 31268.67 30471.35 34475.67 37162.03 25375.17 35473.46 37150.00 38168.68 31579.05 35252.07 25878.13 36161.16 27282.77 21173.90 384
test_fmvs268.35 32267.48 32370.98 34869.50 39351.95 36180.05 31076.38 35949.33 38274.65 25184.38 28623.30 39475.40 38374.51 14775.17 31385.60 320
m2depth59.91 35157.10 35568.34 36167.13 39746.65 38574.64 36067.41 38748.30 38362.52 36585.04 27720.40 39675.93 37742.55 37945.90 39882.44 359
CMPMVSbinary51.72 2170.19 30668.16 30976.28 29873.15 38657.55 30579.47 31683.92 27948.02 38456.48 38484.81 28043.13 33886.42 31262.67 25581.81 22484.89 331
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
mvsany_test162.30 34761.26 35165.41 36769.52 39254.86 34266.86 38749.78 40746.65 38568.50 31983.21 30949.15 29566.28 39956.93 31060.77 37675.11 383
kuosan39.70 37340.40 37437.58 39064.52 40026.98 40965.62 39233.02 41446.12 38642.79 39748.99 40324.10 39246.56 41112.16 41226.30 40539.20 404
test_fmvs363.36 34561.82 34867.98 36262.51 40246.96 38477.37 34274.03 37045.24 38767.50 32578.79 35712.16 40672.98 39172.77 16766.02 36483.99 342
CVMVSNet72.99 28072.58 27074.25 32084.28 26950.85 37286.41 19383.45 28844.56 38873.23 26687.54 20949.38 29185.70 31765.90 22978.44 26186.19 309
test_vis1_rt60.28 35058.42 35365.84 36667.25 39655.60 33470.44 37560.94 39944.33 38959.00 37566.64 38924.91 38968.67 39662.80 25169.48 35073.25 385
mvsany_test353.99 35751.45 36261.61 37255.51 40644.74 39263.52 39645.41 41143.69 39058.11 37976.45 37017.99 39963.76 40254.77 32047.59 39476.34 381
EU-MVSNet68.53 32067.61 32171.31 34578.51 36147.01 38384.47 24084.27 27542.27 39166.44 34284.79 28140.44 35483.76 33358.76 29268.54 35783.17 350
FPMVS53.68 35951.64 36159.81 37465.08 39951.03 37069.48 37869.58 38241.46 39240.67 39872.32 38316.46 40270.00 39524.24 40265.42 36658.40 398
pmmvs357.79 35354.26 35868.37 36064.02 40156.72 31675.12 35765.17 39240.20 39352.93 38969.86 38820.36 39775.48 38145.45 37255.25 38772.90 386
new_pmnet50.91 36450.29 36452.78 38468.58 39434.94 40663.71 39556.63 40439.73 39444.95 39565.47 39021.93 39558.48 40434.98 39156.62 38264.92 392
MVS-HIRNet59.14 35257.67 35463.57 36981.65 32343.50 39471.73 36865.06 39339.59 39551.43 39057.73 39738.34 36382.58 34239.53 38473.95 32364.62 393
PMMVS240.82 37238.86 37646.69 38653.84 40816.45 41748.61 40349.92 40637.49 39631.67 40160.97 3948.14 41256.42 40628.42 39730.72 40367.19 391
test_vis3_rt49.26 36647.02 36856.00 37854.30 40745.27 39066.76 38948.08 40836.83 39744.38 39653.20 4017.17 41364.07 40156.77 31255.66 38458.65 397
test_f52.09 36250.82 36355.90 37953.82 40942.31 39959.42 39958.31 40336.45 39856.12 38670.96 38612.18 40557.79 40553.51 32656.57 38367.60 390
LCM-MVSNet54.25 35649.68 36667.97 36353.73 41045.28 38966.85 38880.78 32135.96 39939.45 40062.23 3938.70 41078.06 36348.24 35751.20 39180.57 371
APD_test153.31 36049.93 36563.42 37065.68 39850.13 37571.59 36966.90 38934.43 40040.58 39971.56 3858.65 41176.27 37434.64 39255.36 38663.86 394
PMVScopyleft37.38 2244.16 37140.28 37555.82 38040.82 41542.54 39865.12 39463.99 39534.43 40024.48 40657.12 3993.92 41676.17 37617.10 40755.52 38548.75 401
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft45.18 37041.86 37355.16 38277.03 36751.52 36732.50 40680.52 32532.46 40227.12 40535.02 4069.52 40975.50 38022.31 40360.21 37938.45 405
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DSMNet-mixed57.77 35456.90 35660.38 37367.70 39535.61 40469.18 37953.97 40532.30 40357.49 38179.88 34640.39 35568.57 39738.78 38772.37 33676.97 379
testf145.72 36741.96 37157.00 37656.90 40445.32 38766.14 39059.26 40126.19 40430.89 40360.96 3954.14 41470.64 39326.39 40046.73 39655.04 399
APD_test245.72 36741.96 37157.00 37656.90 40445.32 38766.14 39059.26 40126.19 40430.89 40360.96 3954.14 41470.64 39326.39 40046.73 39655.04 399
E-PMN31.77 37430.64 37735.15 39152.87 41127.67 40857.09 40147.86 40924.64 40616.40 41133.05 40711.23 40754.90 40714.46 41018.15 40822.87 407
EMVS30.81 37629.65 37834.27 39250.96 41225.95 41256.58 40246.80 41024.01 40715.53 41230.68 40812.47 40454.43 40812.81 41117.05 40922.43 408
MVEpermissive26.22 2330.37 37725.89 38143.81 38844.55 41435.46 40528.87 40739.07 41218.20 40818.58 41040.18 4052.68 41747.37 41017.07 40823.78 40748.60 402
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft27.40 39340.17 41626.90 41024.59 41717.44 40923.95 40748.61 4049.77 40826.48 41218.06 40524.47 40628.83 406
wuyk23d16.82 38015.94 38319.46 39458.74 40331.45 40739.22 4043.74 4196.84 4106.04 4132.70 4131.27 41824.29 41310.54 41314.40 4122.63 410
test_method31.52 37529.28 37938.23 38927.03 4176.50 42020.94 40862.21 3974.05 41122.35 40952.50 40213.33 40347.58 40927.04 39934.04 40160.62 395
tmp_tt18.61 37921.40 38210.23 3954.82 41810.11 41834.70 40530.74 4161.48 41223.91 40826.07 40928.42 38513.41 41427.12 39815.35 4117.17 409
EGC-MVSNET52.07 36347.05 36767.14 36483.51 28660.71 26980.50 30467.75 3860.07 4130.43 41475.85 37524.26 39181.54 34728.82 39662.25 37259.16 396
testmvs6.04 3838.02 3860.10 3970.08 4190.03 42269.74 3760.04 4200.05 4140.31 4151.68 4140.02 4200.04 4150.24 4140.02 4130.25 412
test1236.12 3828.11 3850.14 3960.06 4200.09 42171.05 3710.03 4210.04 4150.25 4161.30 4150.05 4190.03 4160.21 4150.01 4140.29 411
test_blank0.00 3850.00 3880.00 3980.00 4210.00 4230.00 4090.00 4220.00 4160.00 4170.00 4160.00 4210.00 4170.00 4160.00 4150.00 413
uanet_test0.00 3850.00 3880.00 3980.00 4210.00 4230.00 4090.00 4220.00 4160.00 4170.00 4160.00 4210.00 4170.00 4160.00 4150.00 413
DCPMVS0.00 3850.00 3880.00 3980.00 4210.00 4230.00 4090.00 4220.00 4160.00 4170.00 4160.00 4210.00 4170.00 4160.00 4150.00 413
cdsmvs_eth3d_5k19.96 37826.61 3800.00 3980.00 4210.00 4230.00 40989.26 1800.00 4160.00 41788.61 17961.62 1680.00 4170.00 4160.00 4150.00 413
pcd_1.5k_mvsjas5.26 3847.02 3870.00 3980.00 4210.00 4230.00 4090.00 4220.00 4160.00 4170.00 41663.15 1450.00 4170.00 4160.00 4150.00 413
sosnet-low-res0.00 3850.00 3880.00 3980.00 4210.00 4230.00 4090.00 4220.00 4160.00 4170.00 4160.00 4210.00 4170.00 4160.00 4150.00 413
sosnet0.00 3850.00 3880.00 3980.00 4210.00 4230.00 4090.00 4220.00 4160.00 4170.00 4160.00 4210.00 4170.00 4160.00 4150.00 413
uncertanet0.00 3850.00 3880.00 3980.00 4210.00 4230.00 4090.00 4220.00 4160.00 4170.00 4160.00 4210.00 4170.00 4160.00 4150.00 413
Regformer0.00 3850.00 3880.00 3980.00 4210.00 4230.00 4090.00 4220.00 4160.00 4170.00 4160.00 4210.00 4170.00 4160.00 4150.00 413
ab-mvs-re7.23 3819.64 3840.00 3980.00 4210.00 4230.00 4090.00 4220.00 4160.00 41786.72 2290.00 4210.00 4170.00 4160.00 4150.00 413
uanet0.00 3850.00 3880.00 3980.00 4210.00 4230.00 4090.00 4220.00 4160.00 4170.00 4160.00 4210.00 4170.00 4160.00 4150.00 413
WAC-MVS42.58 39639.46 385
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 38
No_MVS89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 38
eth-test20.00 421
eth-test0.00 421
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 6196.48 894.88 14
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 48
GSMVS88.96 248
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26888.96 248
sam_mvs50.01 282
ambc75.24 31073.16 38550.51 37463.05 39887.47 23064.28 35477.81 36417.80 40089.73 27257.88 30160.64 37785.49 321
MTGPAbinary92.02 91
test_post178.90 3265.43 41248.81 30185.44 32359.25 285
test_post5.46 41150.36 28084.24 330
patchmatchnet-post74.00 37951.12 27188.60 292
GG-mvs-BLEND75.38 30881.59 32555.80 33179.32 31869.63 38167.19 32973.67 38043.24 33788.90 28950.41 34084.50 18081.45 366
MTMP92.18 3432.83 415
test9_res84.90 4395.70 2692.87 109
agg_prior282.91 7095.45 2992.70 112
agg_prior92.85 5971.94 5091.78 10684.41 7694.93 91
test_prior472.60 3489.01 107
test_prior86.33 5492.61 6569.59 8892.97 5195.48 6693.91 59
新几何286.29 198
旧先验191.96 7165.79 18186.37 25093.08 7169.31 8192.74 7288.74 258
原ACMM286.86 179
testdata291.01 25262.37 258
segment_acmp73.08 38
test1286.80 4992.63 6470.70 7291.79 10582.71 10471.67 5596.16 4494.50 5193.54 83
plane_prior790.08 10768.51 120
plane_prior689.84 11668.70 11560.42 193
plane_prior592.44 7495.38 7378.71 10686.32 15891.33 156
plane_prior491.00 126
plane_prior189.90 115
n20.00 422
nn0.00 422
door-mid69.98 380
lessismore_v078.97 26281.01 33557.15 31065.99 39061.16 36882.82 31739.12 35991.34 24159.67 28146.92 39588.43 264
test1192.23 84
door69.44 383
HQP5-MVS66.98 159
BP-MVS77.47 118
HQP4-MVS77.24 18495.11 8491.03 166
HQP3-MVS92.19 8785.99 166
HQP2-MVS60.17 196
NP-MVS89.62 12068.32 12390.24 138
ACMMP++_ref81.95 222
ACMMP++81.25 227
Test By Simon64.33 132