This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
MM89.16 689.23 788.97 490.79 9573.65 1092.66 2391.17 12486.57 187.39 4194.97 1871.70 5397.68 192.19 195.63 2895.57 1
UA-Net85.08 6884.96 6985.45 7692.07 7368.07 13389.78 8290.86 13482.48 284.60 7593.20 6969.35 8195.22 7971.39 18190.88 9793.07 101
MVS_030487.69 2087.55 2488.12 1389.45 12971.76 5191.47 4989.54 17182.14 386.65 4994.28 3468.28 9597.46 690.81 295.31 3495.15 6
CANet86.45 4286.10 4987.51 3790.09 10770.94 7089.70 8592.59 7381.78 481.32 11991.43 11170.34 7097.23 1484.26 5793.36 6894.37 40
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5492.83 6081.50 585.79 5593.47 6373.02 4097.00 1884.90 4694.94 4094.10 50
EPNet83.72 8282.92 9486.14 6384.22 27469.48 9491.05 5685.27 26681.30 676.83 19691.65 10166.09 11895.56 6376.00 13793.85 6293.38 86
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6293.00 4680.90 788.06 2994.06 4576.43 1696.84 2188.48 2495.99 1894.34 42
3Dnovator+77.84 485.48 6084.47 7688.51 791.08 8673.49 1693.18 1193.78 1880.79 876.66 20193.37 6560.40 19696.75 2677.20 12393.73 6495.29 5
TranMVSNet+NR-MVSNet80.84 13480.31 13382.42 19287.85 19762.33 25187.74 15691.33 11980.55 977.99 17289.86 14665.23 12792.62 19067.05 22675.24 31592.30 130
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 4078.35 1396.77 2489.59 894.22 6094.67 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5980.26 1187.78 3394.27 3575.89 1996.81 2387.45 3296.44 993.05 104
UniMVSNet_NR-MVSNet81.88 11481.54 11482.92 17688.46 17163.46 23187.13 17292.37 8080.19 1278.38 16189.14 16671.66 5593.05 18070.05 19476.46 28892.25 132
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 7272.96 2593.73 593.67 2080.19 1288.10 2894.80 1973.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
EI-MVSNet-Vis-set84.19 7583.81 8085.31 7988.18 18067.85 13787.66 15789.73 16780.05 1482.95 9989.59 15570.74 6794.82 9980.66 9684.72 17993.28 91
ETV-MVS84.90 7284.67 7285.59 7389.39 13368.66 12088.74 12092.64 7179.97 1584.10 8485.71 25969.32 8295.38 7480.82 9391.37 9192.72 113
EI-MVSNet-UG-set83.81 7983.38 8585.09 8687.87 19667.53 14687.44 16589.66 16879.74 1682.23 10889.41 16470.24 7394.74 10279.95 10083.92 19392.99 109
CS-MVS86.69 3986.95 3585.90 6990.76 9667.57 14592.83 1793.30 3279.67 1784.57 7692.27 8971.47 5695.02 9184.24 5993.46 6795.13 7
casdiffmvs_mvgpermissive85.99 4886.09 5085.70 7287.65 20767.22 15788.69 12293.04 4179.64 1885.33 5992.54 8673.30 3594.50 11083.49 6491.14 9495.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MTAPA87.23 3187.00 3287.90 2294.18 3574.25 586.58 19192.02 9279.45 1985.88 5394.80 1968.07 9696.21 4586.69 3695.34 3293.23 92
EC-MVSNet86.01 4786.38 4284.91 9489.31 13866.27 17192.32 3093.63 2179.37 2084.17 8391.88 9669.04 8895.43 7083.93 6293.77 6393.01 107
XVS87.18 3286.91 3788.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9294.17 3967.45 10396.60 3383.06 6894.50 5194.07 52
X-MVStestdata80.37 15277.83 18888.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9212.47 41867.45 10396.60 3383.06 6894.50 5194.07 52
HQP_MVS83.64 8483.14 8885.14 8390.08 10868.71 11691.25 5292.44 7679.12 2378.92 14991.00 12860.42 19495.38 7478.71 10886.32 16091.33 158
plane_prior291.25 5279.12 23
IS-MVSNet83.15 9582.81 9584.18 12189.94 11563.30 23591.59 4388.46 21179.04 2579.49 14192.16 9165.10 12894.28 11567.71 21791.86 8694.95 10
DU-MVS81.12 13080.52 12982.90 17787.80 19963.46 23187.02 17691.87 10279.01 2678.38 16189.07 16865.02 12993.05 18070.05 19476.46 28892.20 135
NR-MVSNet80.23 15479.38 15182.78 18587.80 19963.34 23486.31 19991.09 12879.01 2672.17 28689.07 16867.20 10692.81 18966.08 23375.65 30192.20 135
SPE-MVS-test86.29 4686.48 4185.71 7191.02 8867.21 15892.36 2993.78 1878.97 2883.51 9591.20 11870.65 6995.15 8281.96 8294.89 4294.77 23
DELS-MVS85.41 6385.30 6585.77 7088.49 16967.93 13685.52 22493.44 2778.70 2983.63 9489.03 17074.57 2495.71 6180.26 9994.04 6193.66 70
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
WR-MVS79.49 16779.22 15880.27 24088.79 15958.35 29485.06 23088.61 20978.56 3077.65 17788.34 18963.81 13990.66 26064.98 24277.22 27791.80 146
plane_prior368.60 12178.44 3178.92 149
UniMVSNet (Re)81.60 12281.11 11983.09 16788.38 17564.41 21287.60 15893.02 4578.42 3278.56 15788.16 19569.78 7793.26 16369.58 20176.49 28791.60 148
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5995.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 989.42 996.57 794.67 26
test_one_060195.07 771.46 5794.14 578.27 3592.05 1195.74 680.83 11
SD-MVS88.06 1488.50 1486.71 5492.60 6972.71 2991.81 4193.19 3577.87 3690.32 1794.00 4974.83 2393.78 13987.63 3094.27 5993.65 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
casdiffmvspermissive85.11 6785.14 6785.01 8887.20 22165.77 18387.75 15592.83 6077.84 3784.36 8092.38 8872.15 4693.93 13281.27 8990.48 10195.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CP-MVSNet78.22 19978.34 17577.84 28587.83 19854.54 35187.94 14991.17 12477.65 3873.48 26888.49 18562.24 16188.43 29862.19 26574.07 32490.55 186
plane_prior68.71 11690.38 7077.62 3986.16 164
baseline84.93 7084.98 6884.80 9887.30 21965.39 19187.30 16992.88 5777.62 3984.04 8692.26 9071.81 5093.96 12681.31 8790.30 10495.03 9
VDD-MVS83.01 10082.36 10184.96 9091.02 8866.40 16888.91 11288.11 21477.57 4184.39 7993.29 6752.19 25593.91 13377.05 12688.70 13094.57 33
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 6977.57 4183.84 8994.40 3272.24 4596.28 4385.65 4195.30 3593.62 77
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PEN-MVS77.73 21477.69 19677.84 28587.07 22453.91 35687.91 15191.18 12377.56 4373.14 27288.82 17561.23 17989.17 28459.95 28472.37 33990.43 191
OPM-MVS83.50 8882.95 9385.14 8388.79 15970.95 6989.13 10791.52 11377.55 4480.96 12691.75 9860.71 18794.50 11079.67 10386.51 15889.97 217
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5392.24 7169.03 10389.57 9093.39 3077.53 4589.79 1894.12 4278.98 1296.58 3585.66 4095.72 2494.58 31
PS-CasMVS78.01 20878.09 18177.77 28787.71 20454.39 35388.02 14591.22 12177.50 4673.26 27088.64 18060.73 18688.41 29961.88 26973.88 32890.53 187
MSLP-MVS++85.43 6285.76 5684.45 10791.93 7570.24 7990.71 5992.86 5877.46 4784.22 8192.81 8167.16 10792.94 18480.36 9794.35 5790.16 201
RRT-MVS82.60 10682.10 10584.10 12387.98 19262.94 24687.45 16491.27 12077.42 4879.85 13690.28 13856.62 22194.70 10579.87 10288.15 13894.67 26
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5993.49 992.73 6477.33 4992.12 995.78 480.98 997.40 989.08 1296.41 1293.33 89
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072695.27 571.25 5993.60 694.11 677.33 4992.81 395.79 380.98 9
balanced_conf0386.78 3786.99 3386.15 6191.24 8367.61 14390.51 6292.90 5677.26 5187.44 4091.63 10371.27 6096.06 4985.62 4295.01 3794.78 22
SED-MVS90.08 290.85 287.77 2695.30 270.98 6693.57 794.06 1077.24 5293.10 195.72 882.99 197.44 789.07 1496.63 494.88 14
test_241102_TWO94.06 1077.24 5292.78 495.72 881.26 897.44 789.07 1496.58 694.26 46
3Dnovator76.31 583.38 9282.31 10286.59 5587.94 19372.94 2890.64 6092.14 9177.21 5475.47 22692.83 7958.56 20394.72 10373.24 16692.71 7492.13 139
test_241102_ONE95.30 270.98 6694.06 1077.17 5593.10 195.39 1482.99 197.27 12
WR-MVS_H78.51 19478.49 17078.56 27288.02 18956.38 32888.43 12992.67 6677.14 5673.89 26387.55 21066.25 11689.24 28358.92 29573.55 33190.06 211
DeepC-MVS79.81 287.08 3586.88 3887.69 3391.16 8472.32 4390.31 7193.94 1477.12 5782.82 10394.23 3872.13 4797.09 1684.83 4995.37 3193.65 74
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FC-MVSNet-test81.52 12382.02 10880.03 24488.42 17455.97 33487.95 14893.42 2977.10 5877.38 18290.98 13069.96 7591.79 22268.46 21384.50 18292.33 128
DTE-MVSNet76.99 22876.80 21477.54 29386.24 23653.06 36587.52 16090.66 13777.08 5972.50 28088.67 17960.48 19389.52 27757.33 31270.74 35190.05 212
LFMVS81.82 11681.23 11783.57 14991.89 7663.43 23389.84 7881.85 31877.04 6083.21 9693.10 7052.26 25493.43 15871.98 17689.95 11293.85 62
UGNet80.83 13579.59 14784.54 10388.04 18868.09 13289.42 9588.16 21376.95 6176.22 21289.46 16049.30 29693.94 12968.48 21290.31 10391.60 148
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FIs82.07 11182.42 9881.04 22388.80 15858.34 29588.26 13893.49 2676.93 6278.47 16091.04 12469.92 7692.34 20469.87 19884.97 17692.44 127
GST-MVS87.42 2787.26 2887.89 2494.12 3672.97 2492.39 2693.43 2876.89 6384.68 6993.99 5170.67 6896.82 2284.18 6195.01 3793.90 60
mPP-MVS86.67 4186.32 4387.72 3094.41 2273.55 1392.74 2092.22 8776.87 6482.81 10494.25 3766.44 11396.24 4482.88 7394.28 5893.38 86
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6585.24 6094.32 3371.76 5196.93 1985.53 4395.79 2294.32 43
VPNet78.69 19078.66 16778.76 26788.31 17755.72 33884.45 24786.63 24976.79 6678.26 16490.55 13559.30 19989.70 27566.63 22877.05 27990.88 173
HFP-MVS87.58 2287.47 2687.94 1994.58 1673.54 1593.04 1293.24 3376.78 6784.91 6594.44 3070.78 6696.61 3284.53 5494.89 4293.66 70
ACMMPR87.44 2587.23 3088.08 1594.64 1373.59 1293.04 1293.20 3476.78 6784.66 7294.52 2368.81 9096.65 3084.53 5494.90 4194.00 55
ACMMPcopyleft85.89 5485.39 6187.38 3993.59 4572.63 3392.74 2093.18 3976.78 6780.73 12893.82 5664.33 13396.29 4282.67 7990.69 9993.23 92
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
region2R87.42 2787.20 3188.09 1494.63 1473.55 1393.03 1493.12 4076.73 7084.45 7794.52 2369.09 8496.70 2784.37 5694.83 4594.03 54
sasdasda85.91 5285.87 5486.04 6589.84 11769.44 9890.45 6893.00 4676.70 7188.01 3191.23 11573.28 3693.91 13381.50 8588.80 12694.77 23
canonicalmvs85.91 5285.87 5486.04 6589.84 11769.44 9890.45 6893.00 4676.70 7188.01 3191.23 11573.28 3693.91 13381.50 8588.80 12694.77 23
CP-MVS87.11 3386.92 3687.68 3494.20 3473.86 793.98 392.82 6376.62 7383.68 9194.46 2767.93 9895.95 5784.20 6094.39 5593.23 92
DeepC-MVS_fast79.65 386.91 3686.62 4087.76 2793.52 4672.37 4191.26 5193.04 4176.62 7384.22 8193.36 6671.44 5796.76 2580.82 9395.33 3394.16 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MGCFI-Net85.06 6985.51 5983.70 14589.42 13063.01 24189.43 9392.62 7276.43 7587.53 3891.34 11372.82 4293.42 15981.28 8888.74 12994.66 29
TSAR-MVS + GP.85.71 5785.33 6386.84 5091.34 8172.50 3689.07 10887.28 23576.41 7685.80 5490.22 14274.15 3195.37 7781.82 8391.88 8392.65 118
HQP-NCC89.33 13589.17 10276.41 7677.23 187
ACMP_Plane89.33 13589.17 10276.41 7677.23 187
HQP-MVS82.61 10482.02 10884.37 10989.33 13566.98 16189.17 10292.19 8976.41 7677.23 18790.23 14160.17 19795.11 8577.47 12085.99 16891.03 168
CANet_DTU80.61 14379.87 14182.83 17985.60 24763.17 24087.36 16688.65 20776.37 8075.88 21988.44 18753.51 24493.07 17973.30 16489.74 11592.25 132
VNet82.21 10882.41 9981.62 20590.82 9360.93 26884.47 24489.78 16476.36 8184.07 8591.88 9664.71 13290.26 26370.68 18888.89 12493.66 70
Vis-MVSNetpermissive83.46 8982.80 9685.43 7790.25 10468.74 11490.30 7290.13 15676.33 8280.87 12792.89 7761.00 18494.20 12072.45 17590.97 9593.35 88
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMMP_NAP88.05 1688.08 1787.94 1993.70 4173.05 2290.86 5793.59 2376.27 8388.14 2795.09 1771.06 6396.67 2987.67 2996.37 1494.09 51
alignmvs85.48 6085.32 6485.96 6889.51 12669.47 9589.74 8392.47 7576.17 8487.73 3791.46 11070.32 7193.78 13981.51 8488.95 12394.63 30
MVS_111021_HR85.14 6684.75 7186.32 5891.65 7972.70 3085.98 20790.33 14976.11 8582.08 10991.61 10571.36 5994.17 12281.02 9092.58 7592.08 140
HPM-MVScopyleft87.11 3386.98 3487.50 3893.88 3972.16 4592.19 3393.33 3176.07 8683.81 9093.95 5469.77 7896.01 5385.15 4494.66 4794.32 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
h-mvs3383.15 9582.19 10386.02 6790.56 9870.85 7388.15 14389.16 18676.02 8784.67 7091.39 11261.54 17095.50 6682.71 7675.48 30591.72 147
hse-mvs281.72 11780.94 12384.07 12988.72 16267.68 14185.87 21187.26 23676.02 8784.67 7088.22 19461.54 17093.48 15482.71 7673.44 33391.06 166
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8992.29 795.66 1081.67 697.38 1187.44 3396.34 1593.95 57
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CLD-MVS82.31 10781.65 11384.29 11488.47 17067.73 14085.81 21592.35 8175.78 9078.33 16386.58 24164.01 13694.35 11376.05 13687.48 14490.79 175
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SF-MVS88.46 1288.74 1287.64 3592.78 6471.95 4992.40 2494.74 275.71 9189.16 1995.10 1675.65 2196.19 4687.07 3496.01 1794.79 21
testdata184.14 25575.71 91
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9391.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 36
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
VPA-MVSNet80.60 14480.55 12880.76 23088.07 18760.80 27186.86 18191.58 11275.67 9480.24 13289.45 16263.34 14090.25 26470.51 19079.22 25891.23 161
PGM-MVS86.68 4086.27 4487.90 2294.22 3373.38 1890.22 7393.04 4175.53 9583.86 8894.42 3167.87 10096.64 3182.70 7894.57 5093.66 70
Effi-MVS+83.62 8683.08 8985.24 8188.38 17567.45 14788.89 11389.15 18775.50 9682.27 10788.28 19169.61 7994.45 11277.81 11787.84 13993.84 64
test_prior288.85 11575.41 9784.91 6593.54 5974.28 2983.31 6695.86 20
LPG-MVS_test82.08 11081.27 11684.50 10489.23 14268.76 11290.22 7391.94 9875.37 9876.64 20291.51 10754.29 23694.91 9378.44 11083.78 19489.83 222
LGP-MVS_train84.50 10489.23 14268.76 11291.94 9875.37 9876.64 20291.51 10754.29 23694.91 9378.44 11083.78 19489.83 222
MG-MVS83.41 9083.45 8383.28 15792.74 6562.28 25388.17 14189.50 17375.22 10081.49 11892.74 8566.75 10895.11 8572.85 16991.58 8892.45 126
LCM-MVSNet-Re77.05 22776.94 21177.36 29487.20 22151.60 37380.06 31480.46 33375.20 10167.69 33086.72 23162.48 15588.98 28863.44 25289.25 11991.51 152
SDMVSNet80.38 15080.18 13680.99 22489.03 15164.94 20080.45 31089.40 17575.19 10276.61 20489.98 14460.61 19187.69 30776.83 12983.55 20390.33 195
sd_testset77.70 21777.40 20178.60 27089.03 15160.02 28279.00 32985.83 26175.19 10276.61 20489.98 14454.81 22885.46 32862.63 26183.55 20390.33 195
MP-MVS-pluss87.67 2187.72 2087.54 3693.64 4472.04 4889.80 8193.50 2575.17 10486.34 5195.29 1570.86 6596.00 5488.78 1996.04 1694.58 31
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test111179.43 17079.18 15980.15 24289.99 11353.31 36287.33 16877.05 36275.04 10580.23 13392.77 8448.97 30192.33 20568.87 20892.40 7994.81 20
Effi-MVS+-dtu80.03 15878.57 16984.42 10885.13 25868.74 11488.77 11788.10 21574.99 10674.97 24983.49 31057.27 21693.36 16073.53 16080.88 23591.18 162
reproduce-ours87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10788.96 2095.54 1271.20 6196.54 3686.28 3793.49 6593.06 102
our_new_method87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10788.96 2095.54 1271.20 6196.54 3686.28 3793.49 6593.06 102
OMC-MVS82.69 10281.97 11084.85 9588.75 16167.42 14887.98 14690.87 13374.92 10979.72 13891.65 10162.19 16293.96 12675.26 14786.42 15993.16 97
test250677.30 22576.49 22279.74 25090.08 10852.02 36687.86 15463.10 40474.88 11080.16 13492.79 8238.29 37092.35 20368.74 21092.50 7794.86 17
ECVR-MVScopyleft79.61 16379.26 15680.67 23290.08 10854.69 34987.89 15277.44 35874.88 11080.27 13192.79 8248.96 30292.45 19768.55 21192.50 7794.86 17
MonoMVSNet76.49 24075.80 22978.58 27181.55 33158.45 29386.36 19886.22 25574.87 11274.73 25383.73 30551.79 26788.73 29370.78 18572.15 34288.55 266
nrg03083.88 7883.53 8284.96 9086.77 22969.28 10290.46 6792.67 6674.79 11382.95 9991.33 11472.70 4393.09 17880.79 9579.28 25792.50 123
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 11492.29 795.97 274.28 2997.24 1388.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
reproduce_model87.28 3087.39 2786.95 4893.10 5671.24 6391.60 4293.19 3574.69 11588.80 2395.61 1170.29 7296.44 3986.20 3993.08 6993.16 97
MVS_111021_LR82.61 10482.11 10484.11 12288.82 15671.58 5585.15 22786.16 25774.69 11580.47 13091.04 12462.29 15990.55 26180.33 9890.08 10990.20 200
EIA-MVS83.31 9482.80 9684.82 9689.59 12265.59 18688.21 13992.68 6574.66 11778.96 14786.42 24669.06 8695.26 7875.54 14390.09 10893.62 77
TSAR-MVS + MP.88.02 1788.11 1687.72 3093.68 4372.13 4691.41 5092.35 8174.62 11888.90 2293.85 5575.75 2096.00 5487.80 2894.63 4895.04 8
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SR-MVS86.73 3886.67 3986.91 4994.11 3772.11 4792.37 2892.56 7474.50 11986.84 4894.65 2267.31 10595.77 5984.80 5092.85 7292.84 112
FOURS195.00 1072.39 3995.06 193.84 1574.49 12091.30 15
ACMP74.13 681.51 12580.57 12784.36 11089.42 13068.69 11989.97 7791.50 11774.46 12175.04 24890.41 13753.82 24194.54 10777.56 11982.91 21289.86 221
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EPP-MVSNet83.40 9183.02 9184.57 10290.13 10664.47 21092.32 3090.73 13674.45 12279.35 14391.10 12169.05 8795.12 8372.78 17087.22 14794.13 49
save fliter93.80 4072.35 4290.47 6691.17 12474.31 123
MVS_Test83.15 9583.06 9083.41 15486.86 22563.21 23786.11 20592.00 9474.31 12382.87 10189.44 16370.03 7493.21 16777.39 12288.50 13493.81 65
UniMVSNet_ETH3D79.10 18078.24 17881.70 20486.85 22660.24 28087.28 17088.79 20074.25 12576.84 19590.53 13649.48 29291.56 23167.98 21582.15 22193.29 90
IterMVS-LS80.06 15779.38 15182.11 19685.89 24263.20 23886.79 18489.34 17774.19 12675.45 22986.72 23166.62 10992.39 20072.58 17276.86 28290.75 178
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet80.52 14879.98 13882.12 19584.28 27263.19 23986.41 19588.95 19774.18 12778.69 15287.54 21166.62 10992.43 19872.57 17380.57 24190.74 179
Vis-MVSNet (Re-imp)78.36 19778.45 17178.07 28388.64 16551.78 37286.70 18879.63 34374.14 12875.11 24590.83 13161.29 17889.75 27358.10 30591.60 8792.69 116
v879.97 16079.02 16282.80 18284.09 27764.50 20987.96 14790.29 15274.13 12975.24 24186.81 22862.88 15193.89 13674.39 15375.40 31090.00 213
CSCG86.41 4586.19 4687.07 4592.91 6172.48 3790.81 5893.56 2473.95 13083.16 9891.07 12375.94 1895.19 8079.94 10194.38 5693.55 81
thres100view90076.50 23775.55 23679.33 25889.52 12556.99 31785.83 21483.23 29673.94 13176.32 21087.12 22351.89 26491.95 21648.33 36183.75 19789.07 239
9.1488.26 1592.84 6391.52 4894.75 173.93 13288.57 2594.67 2175.57 2295.79 5886.77 3595.76 23
HPM-MVS_fast85.35 6484.95 7086.57 5693.69 4270.58 7892.15 3591.62 11073.89 13382.67 10694.09 4362.60 15295.54 6580.93 9192.93 7193.57 79
PAPM_NR83.02 9982.41 9984.82 9692.47 7066.37 16987.93 15091.80 10573.82 13477.32 18490.66 13367.90 9994.90 9570.37 19189.48 11793.19 96
thres600view776.50 23775.44 23779.68 25289.40 13257.16 31485.53 22283.23 29673.79 13576.26 21187.09 22451.89 26491.89 21948.05 36683.72 20090.00 213
testing9176.54 23575.66 23479.18 26288.43 17355.89 33581.08 29783.00 30373.76 13675.34 23484.29 29246.20 32190.07 26764.33 24684.50 18291.58 150
v7n78.97 18477.58 19983.14 16583.45 29265.51 18788.32 13691.21 12273.69 13772.41 28286.32 24957.93 20793.81 13869.18 20475.65 30190.11 205
dcpmvs_285.63 5886.15 4884.06 13191.71 7864.94 20086.47 19491.87 10273.63 13886.60 5093.02 7576.57 1591.87 22183.36 6592.15 8095.35 3
v2v48280.23 15479.29 15583.05 17083.62 28864.14 21687.04 17589.97 16073.61 13978.18 16787.22 21961.10 18293.82 13776.11 13476.78 28591.18 162
Baseline_NR-MVSNet78.15 20378.33 17677.61 29085.79 24356.21 33286.78 18585.76 26273.60 14077.93 17387.57 20865.02 12988.99 28767.14 22575.33 31287.63 282
BH-RMVSNet79.61 16378.44 17283.14 16589.38 13465.93 17784.95 23387.15 23973.56 14178.19 16689.79 14856.67 22093.36 16059.53 28986.74 15490.13 203
APD-MVS_3200maxsize85.97 5085.88 5386.22 6092.69 6669.53 9291.93 3792.99 4973.54 14285.94 5294.51 2665.80 12395.61 6283.04 7092.51 7693.53 83
SR-MVS-dyc-post85.77 5585.61 5886.23 5993.06 5870.63 7691.88 3892.27 8373.53 14385.69 5694.45 2865.00 13195.56 6382.75 7491.87 8492.50 123
RE-MVS-def85.48 6093.06 5870.63 7691.88 3892.27 8373.53 14385.69 5694.45 2863.87 13782.75 7491.87 8492.50 123
reproduce_monomvs75.40 25874.38 25478.46 27783.92 28257.80 30683.78 25986.94 24373.47 14572.25 28584.47 28638.74 36689.27 28275.32 14670.53 35288.31 270
test_fmvsmconf_n85.92 5186.04 5185.57 7485.03 26069.51 9389.62 8990.58 13973.42 14687.75 3594.02 4772.85 4193.24 16490.37 390.75 9893.96 56
tfpn200view976.42 24175.37 24179.55 25789.13 14657.65 30885.17 22583.60 28873.41 14776.45 20686.39 24752.12 25691.95 21648.33 36183.75 19789.07 239
thres40076.50 23775.37 24179.86 24789.13 14657.65 30885.17 22583.60 28873.41 14776.45 20686.39 24752.12 25691.95 21648.33 36183.75 19790.00 213
test_fmvsmconf0.1_n85.61 5985.65 5785.50 7582.99 30769.39 10089.65 8690.29 15273.31 14987.77 3494.15 4171.72 5293.23 16590.31 490.67 10093.89 61
testing9976.09 24775.12 24579.00 26388.16 18155.50 34180.79 30181.40 32273.30 15075.17 24284.27 29444.48 33590.02 26864.28 24784.22 19191.48 155
v14878.72 18977.80 19081.47 20982.73 31261.96 25786.30 20088.08 21673.26 15176.18 21485.47 26762.46 15692.36 20271.92 17773.82 32990.09 207
FA-MVS(test-final)80.96 13279.91 14084.10 12388.30 17865.01 19884.55 24390.01 15973.25 15279.61 13987.57 20858.35 20594.72 10371.29 18286.25 16292.56 120
test_fmvsmconf0.01_n84.73 7384.52 7585.34 7880.25 34869.03 10389.47 9189.65 16973.24 15386.98 4694.27 3566.62 10993.23 16590.26 589.95 11293.78 67
v1079.74 16278.67 16682.97 17584.06 27864.95 19987.88 15390.62 13873.11 15475.11 24586.56 24261.46 17394.05 12573.68 15875.55 30389.90 219
MCST-MVS87.37 2987.25 2987.73 2894.53 1772.46 3889.82 7993.82 1673.07 15584.86 6892.89 7776.22 1796.33 4184.89 4895.13 3694.40 39
baseline176.98 22976.75 21877.66 28888.13 18355.66 33985.12 22881.89 31673.04 15676.79 19788.90 17262.43 15787.78 30663.30 25471.18 34989.55 231
APD-MVScopyleft87.44 2587.52 2587.19 4294.24 3272.39 3991.86 4092.83 6073.01 15788.58 2494.52 2373.36 3496.49 3884.26 5795.01 3792.70 114
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
diffmvspermissive82.10 10981.88 11182.76 18783.00 30563.78 22383.68 26189.76 16572.94 15882.02 11089.85 14765.96 12290.79 25782.38 8087.30 14693.71 69
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
K. test v371.19 29968.51 31179.21 26183.04 30457.78 30784.35 25176.91 36372.90 15962.99 36982.86 32239.27 36391.09 25261.65 27252.66 39588.75 259
MVSMamba_PlusPlus85.99 4885.96 5286.05 6491.09 8567.64 14289.63 8892.65 6972.89 16084.64 7391.71 9971.85 4996.03 5084.77 5194.45 5494.49 35
Fast-Effi-MVS+-dtu78.02 20776.49 22282.62 18983.16 30166.96 16386.94 17887.45 23372.45 16171.49 29484.17 29654.79 23291.58 22967.61 21880.31 24489.30 237
PHI-MVS86.43 4386.17 4787.24 4190.88 9270.96 6892.27 3294.07 972.45 16185.22 6191.90 9569.47 8096.42 4083.28 6795.94 1994.35 41
thres20075.55 25374.47 25278.82 26687.78 20257.85 30483.07 27683.51 29172.44 16375.84 22084.42 28752.08 25991.75 22447.41 36883.64 20286.86 303
test_yl81.17 12880.47 13083.24 16089.13 14663.62 22486.21 20289.95 16172.43 16481.78 11589.61 15357.50 21393.58 14770.75 18686.90 15192.52 121
DCV-MVSNet81.17 12880.47 13083.24 16089.13 14663.62 22486.21 20289.95 16172.43 16481.78 11589.61 15357.50 21393.58 14770.75 18686.90 15192.52 121
BH-untuned79.47 16878.60 16882.05 19789.19 14465.91 17886.07 20688.52 21072.18 16675.42 23087.69 20561.15 18193.54 15160.38 28186.83 15386.70 307
TransMVSNet (Re)75.39 25974.56 25077.86 28485.50 24957.10 31686.78 18586.09 25972.17 16771.53 29387.34 21463.01 15089.31 28156.84 31761.83 37887.17 294
GA-MVS76.87 23175.17 24481.97 20082.75 31162.58 24881.44 29486.35 25472.16 16874.74 25282.89 32146.20 32192.02 21468.85 20981.09 23391.30 160
mmtdpeth74.16 26873.01 27077.60 29283.72 28761.13 26585.10 22985.10 26872.06 16977.21 19180.33 34943.84 33985.75 32277.14 12552.61 39685.91 322
v114480.03 15879.03 16183.01 17283.78 28564.51 20787.11 17490.57 14171.96 17078.08 17086.20 25161.41 17493.94 12974.93 14877.23 27690.60 184
PS-MVSNAJss82.07 11181.31 11584.34 11286.51 23467.27 15489.27 10091.51 11471.75 17179.37 14290.22 14263.15 14694.27 11677.69 11882.36 22091.49 154
EPNet_dtu75.46 25574.86 24677.23 29782.57 31654.60 35086.89 18083.09 30071.64 17266.25 35085.86 25755.99 22388.04 30354.92 32686.55 15789.05 244
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GBi-Net78.40 19577.40 20181.40 21287.60 20863.01 24188.39 13189.28 17971.63 17375.34 23487.28 21554.80 22991.11 24762.72 25779.57 25190.09 207
test178.40 19577.40 20181.40 21287.60 20863.01 24188.39 13189.28 17971.63 17375.34 23487.28 21554.80 22991.11 24762.72 25779.57 25190.09 207
FMVSNet278.20 20177.21 20581.20 21887.60 20862.89 24787.47 16289.02 19271.63 17375.29 24087.28 21554.80 22991.10 25062.38 26279.38 25589.61 229
patch_mono-283.65 8384.54 7380.99 22490.06 11265.83 18084.21 25388.74 20571.60 17685.01 6292.44 8774.51 2583.50 34382.15 8192.15 8093.64 76
V4279.38 17478.24 17882.83 17981.10 34065.50 18885.55 22089.82 16371.57 17778.21 16586.12 25360.66 18993.18 17375.64 14075.46 30789.81 224
API-MVS81.99 11381.23 11784.26 11990.94 9070.18 8591.10 5589.32 17871.51 17878.66 15488.28 19165.26 12695.10 8864.74 24491.23 9387.51 286
tttt051779.40 17277.91 18583.90 14388.10 18563.84 22188.37 13484.05 28371.45 17976.78 19889.12 16749.93 28994.89 9670.18 19383.18 21092.96 110
pm-mvs177.25 22676.68 22078.93 26584.22 27458.62 29286.41 19588.36 21271.37 18073.31 26988.01 20161.22 18089.15 28564.24 24873.01 33689.03 245
testing22274.04 27072.66 27478.19 28087.89 19555.36 34281.06 29879.20 34771.30 18174.65 25583.57 30939.11 36588.67 29551.43 34485.75 17290.53 187
GeoE81.71 11881.01 12283.80 14489.51 12664.45 21188.97 11088.73 20671.27 18278.63 15589.76 14966.32 11593.20 17069.89 19786.02 16793.74 68
tt080578.73 18877.83 18881.43 21085.17 25460.30 27989.41 9690.90 13171.21 18377.17 19288.73 17646.38 31693.21 16772.57 17378.96 25990.79 175
FMVSNet377.88 21176.85 21380.97 22686.84 22762.36 25086.52 19388.77 20171.13 18475.34 23486.66 23754.07 23991.10 25062.72 25779.57 25189.45 233
VDDNet81.52 12380.67 12684.05 13490.44 10164.13 21789.73 8485.91 26071.11 18583.18 9793.48 6150.54 28193.49 15373.40 16388.25 13694.54 34
fmvsm_s_conf0.5_n83.80 8083.71 8184.07 12986.69 23167.31 15289.46 9283.07 30171.09 18686.96 4793.70 5869.02 8991.47 23888.79 1884.62 18193.44 85
XVG-OURS80.41 14979.23 15783.97 14085.64 24669.02 10583.03 27890.39 14471.09 18677.63 17891.49 10954.62 23591.35 24275.71 13983.47 20591.54 151
SixPastTwentyTwo73.37 27871.26 29179.70 25185.08 25957.89 30385.57 21683.56 29071.03 18865.66 35285.88 25642.10 35192.57 19259.11 29363.34 37688.65 263
ZD-MVS94.38 2572.22 4492.67 6670.98 18987.75 3594.07 4474.01 3296.70 2784.66 5294.84 44
v119279.59 16578.43 17383.07 16983.55 29064.52 20686.93 17990.58 13970.83 19077.78 17585.90 25559.15 20093.94 12973.96 15777.19 27890.76 177
Fast-Effi-MVS+80.81 13679.92 13983.47 15088.85 15364.51 20785.53 22289.39 17670.79 19178.49 15985.06 27767.54 10293.58 14767.03 22786.58 15692.32 129
PS-MVSNAJ81.69 11981.02 12183.70 14589.51 12668.21 13084.28 25290.09 15770.79 19181.26 12385.62 26463.15 14694.29 11475.62 14188.87 12588.59 264
LTVRE_ROB69.57 1376.25 24474.54 25181.41 21188.60 16664.38 21379.24 32489.12 19070.76 19369.79 31487.86 20249.09 29993.20 17056.21 32280.16 24586.65 308
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
testing1175.14 26174.01 25778.53 27488.16 18156.38 32880.74 30480.42 33470.67 19472.69 27983.72 30643.61 34189.86 27062.29 26483.76 19689.36 235
fmvsm_s_conf0.1_n83.56 8783.38 8584.10 12384.86 26267.28 15389.40 9783.01 30270.67 19487.08 4493.96 5368.38 9391.45 23988.56 2284.50 18293.56 80
xiu_mvs_v2_base81.69 11981.05 12083.60 14789.15 14568.03 13584.46 24690.02 15870.67 19481.30 12286.53 24463.17 14594.19 12175.60 14288.54 13288.57 265
XVG-OURS-SEG-HR80.81 13679.76 14383.96 14185.60 24768.78 11183.54 26790.50 14270.66 19776.71 20091.66 10060.69 18891.26 24476.94 12781.58 22891.83 144
Anonymous20240521178.25 19877.01 20881.99 19991.03 8760.67 27384.77 23683.90 28570.65 19880.00 13591.20 11841.08 35691.43 24065.21 23985.26 17493.85 62
DP-MVS Recon83.11 9882.09 10686.15 6194.44 1970.92 7188.79 11692.20 8870.53 19979.17 14591.03 12664.12 13596.03 5068.39 21490.14 10791.50 153
FMVSNet177.44 22176.12 22881.40 21286.81 22863.01 24188.39 13189.28 17970.49 20074.39 25987.28 21549.06 30091.11 24760.91 27878.52 26290.09 207
testing368.56 32667.67 32671.22 35387.33 21842.87 40383.06 27771.54 38370.36 20169.08 32084.38 28930.33 39085.69 32437.50 39675.45 30885.09 337
ab-mvs79.51 16678.97 16381.14 22088.46 17160.91 26983.84 25889.24 18370.36 20179.03 14688.87 17463.23 14490.21 26565.12 24082.57 21892.28 131
tfpnnormal74.39 26473.16 26878.08 28286.10 24158.05 29884.65 24087.53 23070.32 20371.22 29685.63 26354.97 22789.86 27043.03 38475.02 31786.32 311
ACMM73.20 880.78 14179.84 14283.58 14889.31 13868.37 12589.99 7691.60 11170.28 20477.25 18589.66 15153.37 24693.53 15274.24 15582.85 21388.85 254
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.5_n_a83.63 8583.41 8484.28 11586.14 23868.12 13189.43 9382.87 30670.27 20587.27 4393.80 5769.09 8491.58 22988.21 2683.65 20193.14 99
ACMH+68.96 1476.01 24874.01 25782.03 19888.60 16665.31 19388.86 11487.55 22970.25 20667.75 32987.47 21341.27 35493.19 17258.37 30275.94 29887.60 283
IB-MVS68.01 1575.85 25073.36 26683.31 15684.76 26366.03 17383.38 26885.06 26970.21 20769.40 31681.05 34045.76 32694.66 10665.10 24175.49 30489.25 238
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thisisatest053079.40 17277.76 19384.31 11387.69 20665.10 19787.36 16684.26 28170.04 20877.42 18188.26 19349.94 28794.79 10170.20 19284.70 18093.03 105
mvsmamba80.60 14479.38 15184.27 11789.74 12067.24 15687.47 16286.95 24270.02 20975.38 23288.93 17151.24 27292.56 19375.47 14589.22 12093.00 108
test_fmvsmvis_n_192084.02 7783.87 7984.49 10684.12 27669.37 10188.15 14387.96 21970.01 21083.95 8793.23 6868.80 9191.51 23688.61 2089.96 11192.57 119
v14419279.47 16878.37 17482.78 18583.35 29363.96 21986.96 17790.36 14869.99 21177.50 17985.67 26260.66 18993.77 14174.27 15476.58 28690.62 182
test_fmvsm_n_192085.29 6585.34 6285.13 8586.12 23969.93 8688.65 12490.78 13569.97 21288.27 2693.98 5271.39 5891.54 23388.49 2390.45 10293.91 58
c3_l78.75 18777.91 18581.26 21682.89 30961.56 26284.09 25689.13 18969.97 21275.56 22484.29 29266.36 11492.09 21273.47 16275.48 30590.12 204
v192192079.22 17678.03 18282.80 18283.30 29563.94 22086.80 18390.33 14969.91 21477.48 18085.53 26558.44 20493.75 14373.60 15976.85 28390.71 180
ACMH67.68 1675.89 24973.93 25981.77 20388.71 16366.61 16688.62 12589.01 19369.81 21566.78 34186.70 23541.95 35391.51 23655.64 32378.14 26887.17 294
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.1_n_a83.32 9382.99 9284.28 11583.79 28468.07 13389.34 9982.85 30769.80 21687.36 4294.06 4568.34 9491.56 23187.95 2783.46 20693.21 95
DPM-MVS84.93 7084.29 7786.84 5090.20 10573.04 2387.12 17393.04 4169.80 21682.85 10291.22 11773.06 3996.02 5276.72 13194.63 4891.46 157
MAR-MVS81.84 11580.70 12585.27 8091.32 8271.53 5689.82 7990.92 13069.77 21878.50 15886.21 25062.36 15894.52 10965.36 23892.05 8289.77 225
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
XVG-ACMP-BASELINE76.11 24674.27 25681.62 20583.20 29864.67 20583.60 26589.75 16669.75 21971.85 28987.09 22432.78 38392.11 21169.99 19680.43 24388.09 274
BH-w/o78.21 20077.33 20480.84 22888.81 15765.13 19684.87 23487.85 22469.75 21974.52 25784.74 28461.34 17693.11 17758.24 30485.84 17084.27 344
v124078.99 18377.78 19182.64 18883.21 29763.54 22886.62 19090.30 15169.74 22177.33 18385.68 26157.04 21893.76 14273.13 16776.92 28090.62 182
ET-MVSNet_ETH3D78.63 19176.63 22184.64 10186.73 23069.47 9585.01 23184.61 27469.54 22266.51 34886.59 23950.16 28491.75 22476.26 13384.24 19092.69 116
eth_miper_zixun_eth77.92 21076.69 21981.61 20783.00 30561.98 25683.15 27289.20 18569.52 22374.86 25184.35 29161.76 16692.56 19371.50 18072.89 33790.28 198
PVSNet_Blended_VisFu82.62 10381.83 11284.96 9090.80 9469.76 9088.74 12091.70 10969.39 22478.96 14788.46 18665.47 12594.87 9874.42 15288.57 13190.24 199
mvs_tets79.13 17977.77 19283.22 16284.70 26466.37 16989.17 10290.19 15469.38 22575.40 23189.46 16044.17 33793.15 17476.78 13080.70 23990.14 202
PVSNet_BlendedMVS80.60 14480.02 13782.36 19488.85 15365.40 18986.16 20492.00 9469.34 22678.11 16886.09 25466.02 12094.27 11671.52 17882.06 22387.39 288
AdaColmapbinary80.58 14779.42 15084.06 13193.09 5768.91 10889.36 9888.97 19669.27 22775.70 22289.69 15057.20 21795.77 5963.06 25588.41 13587.50 287
ETVMVS72.25 29371.05 29275.84 30687.77 20351.91 36979.39 32274.98 37169.26 22873.71 26582.95 31940.82 35886.14 31946.17 37484.43 18789.47 232
ITE_SJBPF78.22 27981.77 32760.57 27483.30 29469.25 22967.54 33187.20 22036.33 37687.28 31054.34 32974.62 32186.80 304
cl____77.72 21576.76 21680.58 23382.49 31860.48 27683.09 27487.87 22269.22 23074.38 26085.22 27362.10 16391.53 23471.09 18375.41 30989.73 227
DIV-MVS_self_test77.72 21576.76 21680.58 23382.48 31960.48 27683.09 27487.86 22369.22 23074.38 26085.24 27162.10 16391.53 23471.09 18375.40 31089.74 226
jajsoiax79.29 17577.96 18383.27 15884.68 26566.57 16789.25 10190.16 15569.20 23275.46 22889.49 15745.75 32793.13 17676.84 12880.80 23790.11 205
IterMVS-SCA-FT75.43 25673.87 26180.11 24382.69 31364.85 20281.57 29183.47 29269.16 23370.49 30084.15 29751.95 26288.15 30169.23 20372.14 34387.34 290
CL-MVSNet_self_test72.37 29171.46 28675.09 31879.49 36153.53 35880.76 30385.01 27169.12 23470.51 29982.05 33457.92 20884.13 33852.27 33966.00 37087.60 283
AUN-MVS79.21 17777.60 19884.05 13488.71 16367.61 14385.84 21387.26 23669.08 23577.23 18788.14 19953.20 24893.47 15575.50 14473.45 33291.06 166
xiu_mvs_v1_base_debu80.80 13879.72 14484.03 13687.35 21370.19 8285.56 21788.77 20169.06 23681.83 11188.16 19550.91 27592.85 18678.29 11487.56 14189.06 241
xiu_mvs_v1_base80.80 13879.72 14484.03 13687.35 21370.19 8285.56 21788.77 20169.06 23681.83 11188.16 19550.91 27592.85 18678.29 11487.56 14189.06 241
xiu_mvs_v1_base_debi80.80 13879.72 14484.03 13687.35 21370.19 8285.56 21788.77 20169.06 23681.83 11188.16 19550.91 27592.85 18678.29 11487.56 14189.06 241
MVSTER79.01 18277.88 18782.38 19383.07 30264.80 20384.08 25788.95 19769.01 23978.69 15287.17 22254.70 23392.43 19874.69 14980.57 24189.89 220
cl2278.07 20577.01 20881.23 21782.37 32161.83 25983.55 26687.98 21868.96 24075.06 24783.87 29961.40 17591.88 22073.53 16076.39 29089.98 216
miper_ehance_all_eth78.59 19377.76 19381.08 22282.66 31461.56 26283.65 26289.15 18768.87 24175.55 22583.79 30366.49 11292.03 21373.25 16576.39 29089.64 228
PAPR81.66 12180.89 12483.99 13990.27 10364.00 21886.76 18791.77 10868.84 24277.13 19489.50 15667.63 10194.88 9767.55 21988.52 13393.09 100
CPTT-MVS83.73 8183.33 8784.92 9393.28 4970.86 7292.09 3690.38 14568.75 24379.57 14092.83 7960.60 19293.04 18280.92 9291.56 8990.86 174
train_agg86.43 4386.20 4587.13 4493.26 5272.96 2588.75 11891.89 10068.69 24485.00 6393.10 7074.43 2695.41 7284.97 4595.71 2593.02 106
test_893.13 5472.57 3588.68 12391.84 10468.69 24484.87 6793.10 7074.43 2695.16 81
dmvs_re71.14 30070.58 29672.80 33981.96 32459.68 28575.60 35979.34 34568.55 24669.27 31980.72 34649.42 29376.54 37752.56 33877.79 27182.19 369
MVSFormer82.85 10182.05 10785.24 8187.35 21370.21 8090.50 6490.38 14568.55 24681.32 11989.47 15861.68 16793.46 15678.98 10590.26 10592.05 141
test_djsdf80.30 15379.32 15483.27 15883.98 28065.37 19290.50 6490.38 14568.55 24676.19 21388.70 17756.44 22293.46 15678.98 10580.14 24790.97 171
TEST993.26 5272.96 2588.75 11891.89 10068.44 24985.00 6393.10 7074.36 2895.41 72
FE-MVS77.78 21375.68 23284.08 12888.09 18666.00 17583.13 27387.79 22568.42 25078.01 17185.23 27245.50 33095.12 8359.11 29385.83 17191.11 164
CDPH-MVS85.76 5685.29 6687.17 4393.49 4771.08 6488.58 12692.42 7968.32 25184.61 7493.48 6172.32 4496.15 4879.00 10495.43 3094.28 45
PC_three_145268.21 25292.02 1294.00 4982.09 595.98 5684.58 5396.68 294.95 10
fmvsm_l_conf0.5_n84.47 7484.54 7384.27 11785.42 25068.81 10988.49 12887.26 23668.08 25388.03 3093.49 6072.04 4891.77 22388.90 1789.14 12292.24 134
IterMVS74.29 26572.94 27178.35 27881.53 33263.49 23081.58 29082.49 31068.06 25469.99 30983.69 30751.66 26985.54 32665.85 23571.64 34686.01 319
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dmvs_testset62.63 35364.11 34458.19 38378.55 36624.76 42175.28 36065.94 39967.91 25560.34 37776.01 38053.56 24373.94 39631.79 40267.65 36375.88 390
TAMVS78.89 18677.51 20083.03 17187.80 19967.79 13984.72 23785.05 27067.63 25676.75 19987.70 20462.25 16090.82 25658.53 30087.13 14890.49 189
PVSNet_Blended80.98 13180.34 13282.90 17788.85 15365.40 18984.43 24892.00 9467.62 25778.11 16885.05 27866.02 12094.27 11671.52 17889.50 11689.01 246
TR-MVS77.44 22176.18 22781.20 21888.24 17963.24 23684.61 24186.40 25267.55 25877.81 17486.48 24554.10 23893.15 17457.75 30882.72 21687.20 293
CDS-MVSNet79.07 18177.70 19583.17 16487.60 20868.23 12984.40 25086.20 25667.49 25976.36 20986.54 24361.54 17090.79 25761.86 27087.33 14590.49 189
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
fmvsm_l_conf0.5_n_a84.13 7684.16 7884.06 13185.38 25168.40 12488.34 13586.85 24667.48 26087.48 3993.40 6470.89 6491.61 22788.38 2589.22 12092.16 138
mvs_anonymous79.42 17179.11 16080.34 23884.45 27157.97 30182.59 28087.62 22867.40 26176.17 21688.56 18468.47 9289.59 27670.65 18986.05 16693.47 84
mvs5depth69.45 31867.45 33075.46 31473.93 38455.83 33679.19 32683.23 29666.89 26271.63 29283.32 31233.69 38285.09 33159.81 28655.34 39285.46 328
IU-MVS95.30 271.25 5992.95 5566.81 26392.39 688.94 1696.63 494.85 19
baseline275.70 25173.83 26281.30 21583.26 29661.79 26082.57 28180.65 32966.81 26366.88 33983.42 31157.86 20992.19 20963.47 25179.57 25189.91 218
miper_lstm_enhance74.11 26973.11 26977.13 29880.11 35059.62 28672.23 37486.92 24566.76 26570.40 30182.92 32056.93 21982.92 34769.06 20672.63 33888.87 253
OpenMVScopyleft72.83 1079.77 16178.33 17684.09 12785.17 25469.91 8790.57 6190.97 12966.70 26672.17 28691.91 9454.70 23393.96 12661.81 27190.95 9688.41 269
test-LLR72.94 28772.43 27674.48 32481.35 33658.04 29978.38 33877.46 35666.66 26769.95 31079.00 36248.06 30579.24 36366.13 23084.83 17786.15 315
test20.0367.45 33366.95 33468.94 36275.48 37944.84 39977.50 34777.67 35466.66 26763.01 36883.80 30247.02 31178.40 36742.53 38768.86 36183.58 354
test0.0.03 168.00 33167.69 32568.90 36377.55 36947.43 38975.70 35872.95 38266.66 26766.56 34482.29 33148.06 30575.87 38544.97 38174.51 32283.41 355
Syy-MVS68.05 33067.85 32068.67 36684.68 26540.97 40978.62 33573.08 38066.65 27066.74 34279.46 35752.11 25882.30 35032.89 40176.38 29382.75 364
myMVS_eth3d67.02 33666.29 33769.21 36184.68 26542.58 40478.62 33573.08 38066.65 27066.74 34279.46 35731.53 38782.30 35039.43 39376.38 29382.75 364
QAPM80.88 13379.50 14985.03 8788.01 19168.97 10791.59 4392.00 9466.63 27275.15 24492.16 9157.70 21095.45 6863.52 25088.76 12890.66 181
XXY-MVS75.41 25775.56 23574.96 31983.59 28957.82 30580.59 30783.87 28666.54 27374.93 25088.31 19063.24 14380.09 36162.16 26676.85 28386.97 301
OurMVSNet-221017-074.26 26672.42 27779.80 24983.76 28659.59 28785.92 21086.64 24866.39 27466.96 33887.58 20739.46 36291.60 22865.76 23669.27 35788.22 271
SCA74.22 26772.33 27879.91 24684.05 27962.17 25479.96 31779.29 34666.30 27572.38 28380.13 35151.95 26288.60 29659.25 29177.67 27488.96 250
testgi66.67 33966.53 33667.08 37375.62 37841.69 40875.93 35476.50 36566.11 27665.20 35886.59 23935.72 37874.71 39243.71 38273.38 33484.84 339
HY-MVS69.67 1277.95 20977.15 20680.36 23787.57 21260.21 28183.37 26987.78 22666.11 27675.37 23387.06 22663.27 14290.48 26261.38 27582.43 21990.40 193
EG-PatchMatch MVS74.04 27071.82 28280.71 23184.92 26167.42 14885.86 21288.08 21666.04 27864.22 36283.85 30035.10 37992.56 19357.44 31080.83 23682.16 370
CNLPA78.08 20476.79 21581.97 20090.40 10271.07 6587.59 15984.55 27566.03 27972.38 28389.64 15257.56 21286.04 32059.61 28883.35 20788.79 257
Anonymous2024052980.19 15678.89 16484.10 12390.60 9764.75 20488.95 11190.90 13165.97 28080.59 12991.17 12049.97 28693.73 14569.16 20582.70 21793.81 65
TAPA-MVS73.13 979.15 17877.94 18482.79 18489.59 12262.99 24588.16 14291.51 11465.77 28177.14 19391.09 12260.91 18593.21 16750.26 35287.05 14992.17 137
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MSDG73.36 28070.99 29380.49 23584.51 27065.80 18180.71 30586.13 25865.70 28265.46 35383.74 30444.60 33390.91 25551.13 34576.89 28184.74 340
anonymousdsp78.60 19277.15 20682.98 17480.51 34667.08 15987.24 17189.53 17265.66 28375.16 24387.19 22152.52 24992.25 20777.17 12479.34 25689.61 229
test_040272.79 28870.44 29979.84 24888.13 18365.99 17685.93 20984.29 27965.57 28467.40 33585.49 26646.92 31292.61 19135.88 39874.38 32380.94 376
UBG73.08 28472.27 27975.51 31288.02 18951.29 37778.35 34177.38 35965.52 28573.87 26482.36 32845.55 32886.48 31655.02 32584.39 18888.75 259
miper_enhance_ethall77.87 21276.86 21280.92 22781.65 32861.38 26482.68 27988.98 19465.52 28575.47 22682.30 33065.76 12492.00 21572.95 16876.39 29089.39 234
WBMVS73.43 27772.81 27275.28 31687.91 19450.99 37978.59 33781.31 32465.51 28774.47 25884.83 28146.39 31586.68 31358.41 30177.86 27088.17 273
UnsupCasMVSNet_eth67.33 33465.99 33871.37 34973.48 38951.47 37575.16 36285.19 26765.20 28860.78 37680.93 34542.35 34777.20 37357.12 31353.69 39485.44 329
WTY-MVS75.65 25275.68 23275.57 31086.40 23556.82 31977.92 34682.40 31165.10 28976.18 21487.72 20363.13 14980.90 35860.31 28281.96 22489.00 248
thisisatest051577.33 22475.38 24083.18 16385.27 25363.80 22282.11 28583.27 29565.06 29075.91 21883.84 30149.54 29194.27 11667.24 22386.19 16391.48 155
MVP-Stereo76.12 24574.46 25381.13 22185.37 25269.79 8984.42 24987.95 22065.03 29167.46 33385.33 26953.28 24791.73 22658.01 30683.27 20881.85 371
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Anonymous2023121178.97 18477.69 19682.81 18190.54 9964.29 21490.11 7591.51 11465.01 29276.16 21788.13 20050.56 28093.03 18369.68 20077.56 27591.11 164
pmmvs674.69 26373.39 26578.61 26981.38 33557.48 31186.64 18987.95 22064.99 29370.18 30486.61 23850.43 28289.52 27762.12 26770.18 35488.83 255
PAPM77.68 21876.40 22581.51 20887.29 22061.85 25883.78 25989.59 17064.74 29471.23 29588.70 17762.59 15393.66 14652.66 33787.03 15089.01 246
MIMVSNet70.69 30669.30 30574.88 32084.52 26956.35 33075.87 35779.42 34464.59 29567.76 32882.41 32741.10 35581.54 35446.64 37281.34 22986.75 306
tpm72.37 29171.71 28374.35 32682.19 32252.00 36779.22 32577.29 36064.56 29672.95 27583.68 30851.35 27083.26 34658.33 30375.80 29987.81 279
MDA-MVSNet-bldmvs66.68 33863.66 34775.75 30779.28 36360.56 27573.92 37078.35 35164.43 29750.13 40079.87 35544.02 33883.67 34146.10 37556.86 38683.03 361
MIMVSNet168.58 32566.78 33573.98 33080.07 35151.82 37180.77 30284.37 27664.40 29859.75 38182.16 33336.47 37583.63 34242.73 38570.33 35386.48 310
D2MVS74.82 26273.21 26779.64 25479.81 35562.56 24980.34 31287.35 23464.37 29968.86 32182.66 32546.37 31790.10 26667.91 21681.24 23186.25 312
PLCcopyleft70.83 1178.05 20676.37 22683.08 16891.88 7767.80 13888.19 14089.46 17464.33 30069.87 31288.38 18853.66 24293.58 14758.86 29682.73 21587.86 278
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PatchmatchNetpermissive73.12 28371.33 28978.49 27683.18 29960.85 27079.63 31978.57 35064.13 30171.73 29079.81 35651.20 27385.97 32157.40 31176.36 29588.66 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
mamv476.81 23278.23 18072.54 34286.12 23965.75 18478.76 33382.07 31564.12 30272.97 27491.02 12767.97 9768.08 40683.04 7078.02 26983.80 352
KD-MVS_2432*160066.22 34363.89 34573.21 33475.47 38053.42 36070.76 38184.35 27764.10 30366.52 34678.52 36634.55 38084.98 33250.40 34850.33 39981.23 374
miper_refine_blended66.22 34363.89 34573.21 33475.47 38053.42 36070.76 38184.35 27764.10 30366.52 34678.52 36634.55 38084.98 33250.40 34850.33 39981.23 374
tpmvs71.09 30169.29 30676.49 30282.04 32356.04 33378.92 33181.37 32364.05 30567.18 33778.28 36849.74 29089.77 27249.67 35572.37 33983.67 353
F-COLMAP76.38 24374.33 25582.50 19189.28 14066.95 16488.41 13089.03 19164.05 30566.83 34088.61 18146.78 31392.89 18557.48 30978.55 26187.67 281
DP-MVS76.78 23374.57 24983.42 15293.29 4869.46 9788.55 12783.70 28763.98 30770.20 30388.89 17354.01 24094.80 10046.66 37081.88 22686.01 319
原ACMM184.35 11193.01 6068.79 11092.44 7663.96 30881.09 12491.57 10666.06 11995.45 6867.19 22494.82 4688.81 256
PM-MVS66.41 34164.14 34373.20 33673.92 38556.45 32578.97 33064.96 40263.88 30964.72 35980.24 35019.84 40683.44 34466.24 22964.52 37479.71 382
UWE-MVS72.13 29471.49 28574.03 32986.66 23247.70 38881.40 29576.89 36463.60 31075.59 22384.22 29539.94 36185.62 32548.98 35886.13 16588.77 258
jason81.39 12680.29 13484.70 10086.63 23369.90 8885.95 20886.77 24763.24 31181.07 12589.47 15861.08 18392.15 21078.33 11390.07 11092.05 141
jason: jason.
KD-MVS_self_test68.81 32267.59 32872.46 34374.29 38345.45 39477.93 34587.00 24163.12 31263.99 36478.99 36442.32 34884.77 33556.55 32064.09 37587.16 296
gg-mvs-nofinetune69.95 31467.96 31875.94 30583.07 30254.51 35277.23 35070.29 38663.11 31370.32 30262.33 39943.62 34088.69 29453.88 33187.76 14084.62 342
tpmrst72.39 28972.13 28073.18 33780.54 34549.91 38479.91 31879.08 34863.11 31371.69 29179.95 35355.32 22582.77 34865.66 23773.89 32786.87 302
PCF-MVS73.52 780.38 15078.84 16585.01 8887.71 20468.99 10683.65 26291.46 11863.00 31577.77 17690.28 13866.10 11795.09 8961.40 27488.22 13790.94 172
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
COLMAP_ROBcopyleft66.92 1773.01 28570.41 30080.81 22987.13 22365.63 18588.30 13784.19 28262.96 31663.80 36687.69 20538.04 37192.56 19346.66 37074.91 31884.24 345
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Patchmatch-RL test70.24 31167.78 32477.61 29077.43 37059.57 28871.16 37870.33 38562.94 31768.65 32372.77 39050.62 27985.49 32769.58 20166.58 36787.77 280
lupinMVS81.39 12680.27 13584.76 9987.35 21370.21 8085.55 22086.41 25162.85 31881.32 11988.61 18161.68 16792.24 20878.41 11290.26 10591.83 144
test_vis1_n_192075.52 25475.78 23074.75 32379.84 35457.44 31283.26 27085.52 26462.83 31979.34 14486.17 25245.10 33279.71 36278.75 10781.21 23287.10 300
EPMVS69.02 32168.16 31571.59 34779.61 35949.80 38677.40 34866.93 39662.82 32070.01 30779.05 36045.79 32577.86 37156.58 31975.26 31487.13 297
PatchMatch-RL72.38 29070.90 29476.80 30188.60 16667.38 15079.53 32076.17 36862.75 32169.36 31782.00 33645.51 32984.89 33453.62 33280.58 24078.12 385
gm-plane-assit81.40 33453.83 35762.72 32280.94 34392.39 20063.40 253
FMVSNet569.50 31767.96 31874.15 32882.97 30855.35 34380.01 31682.12 31462.56 32363.02 36781.53 33736.92 37481.92 35248.42 36074.06 32585.17 335
sss73.60 27573.64 26473.51 33382.80 31055.01 34776.12 35381.69 31962.47 32474.68 25485.85 25857.32 21578.11 36960.86 27980.93 23487.39 288
WB-MVSnew71.96 29671.65 28472.89 33884.67 26851.88 37082.29 28377.57 35562.31 32573.67 26683.00 31853.49 24581.10 35745.75 37782.13 22285.70 325
AllTest70.96 30268.09 31779.58 25585.15 25663.62 22484.58 24279.83 34062.31 32560.32 37886.73 22932.02 38488.96 29050.28 35071.57 34786.15 315
TestCases79.58 25585.15 25663.62 22479.83 34062.31 32560.32 37886.73 22932.02 38488.96 29050.28 35071.57 34786.15 315
1112_ss77.40 22376.43 22480.32 23989.11 15060.41 27883.65 26287.72 22762.13 32873.05 27386.72 23162.58 15489.97 26962.11 26880.80 23790.59 185
PVSNet64.34 1872.08 29570.87 29575.69 30886.21 23756.44 32674.37 36880.73 32862.06 32970.17 30582.23 33242.86 34583.31 34554.77 32784.45 18687.32 291
LS3D76.95 23074.82 24783.37 15590.45 10067.36 15189.15 10686.94 24361.87 33069.52 31590.61 13451.71 26894.53 10846.38 37386.71 15588.21 272
CostFormer75.24 26073.90 26079.27 25982.65 31558.27 29680.80 30082.73 30961.57 33175.33 23883.13 31655.52 22491.07 25364.98 24278.34 26788.45 267
new-patchmatchnet61.73 35561.73 35661.70 37972.74 39524.50 42269.16 38878.03 35261.40 33256.72 39075.53 38438.42 36876.48 37945.95 37657.67 38584.13 347
ANet_high50.57 37346.10 37763.99 37648.67 42139.13 41070.99 38080.85 32661.39 33331.18 41057.70 40617.02 40973.65 39731.22 40315.89 41879.18 383
MS-PatchMatch73.83 27372.67 27377.30 29683.87 28366.02 17481.82 28684.66 27361.37 33468.61 32482.82 32347.29 30888.21 30059.27 29084.32 18977.68 386
USDC70.33 31068.37 31276.21 30480.60 34456.23 33179.19 32686.49 25060.89 33561.29 37485.47 26731.78 38689.47 27953.37 33476.21 29682.94 363
cascas76.72 23474.64 24882.99 17385.78 24465.88 17982.33 28289.21 18460.85 33672.74 27681.02 34147.28 30993.75 14367.48 22085.02 17589.34 236
MDTV_nov1_ep1369.97 30483.18 29953.48 35977.10 35180.18 33960.45 33769.33 31880.44 34748.89 30386.90 31151.60 34278.51 263
TinyColmap67.30 33564.81 34074.76 32281.92 32656.68 32380.29 31381.49 32160.33 33856.27 39283.22 31324.77 39887.66 30845.52 37869.47 35679.95 381
test-mter71.41 29870.39 30174.48 32481.35 33658.04 29978.38 33877.46 35660.32 33969.95 31079.00 36236.08 37779.24 36366.13 23084.83 17786.15 315
131476.53 23675.30 24380.21 24183.93 28162.32 25284.66 23888.81 19960.23 34070.16 30684.07 29855.30 22690.73 25967.37 22183.21 20987.59 285
PatchT68.46 32867.85 32070.29 35780.70 34343.93 40172.47 37374.88 37260.15 34170.55 29876.57 37749.94 28781.59 35350.58 34674.83 31985.34 330
无先验87.48 16188.98 19460.00 34294.12 12367.28 22288.97 249
CR-MVSNet73.37 27871.27 29079.67 25381.32 33865.19 19475.92 35580.30 33659.92 34372.73 27781.19 33852.50 25086.69 31259.84 28577.71 27287.11 298
TDRefinement67.49 33264.34 34276.92 29973.47 39061.07 26784.86 23582.98 30459.77 34458.30 38585.13 27526.06 39487.89 30447.92 36760.59 38381.81 372
dp66.80 33765.43 33970.90 35679.74 35848.82 38775.12 36474.77 37359.61 34564.08 36377.23 37442.89 34480.72 35948.86 35966.58 36783.16 358
our_test_369.14 32067.00 33375.57 31079.80 35658.80 29077.96 34477.81 35359.55 34662.90 37078.25 36947.43 30783.97 33951.71 34167.58 36483.93 350
Test_1112_low_res76.40 24275.44 23779.27 25989.28 14058.09 29781.69 28987.07 24059.53 34772.48 28186.67 23661.30 17789.33 28060.81 28080.15 24690.41 192
pmmvs474.03 27271.91 28180.39 23681.96 32468.32 12681.45 29382.14 31359.32 34869.87 31285.13 27552.40 25288.13 30260.21 28374.74 32084.73 341
testdata79.97 24590.90 9164.21 21584.71 27259.27 34985.40 5892.91 7662.02 16589.08 28668.95 20791.37 9186.63 309
WB-MVS54.94 36354.72 36455.60 38973.50 38820.90 42374.27 36961.19 40659.16 35050.61 39874.15 38647.19 31075.78 38617.31 41435.07 40870.12 396
ppachtmachnet_test70.04 31367.34 33178.14 28179.80 35661.13 26579.19 32680.59 33059.16 35065.27 35579.29 35946.75 31487.29 30949.33 35666.72 36586.00 321
RPSCF73.23 28271.46 28678.54 27382.50 31759.85 28382.18 28482.84 30858.96 35271.15 29789.41 16445.48 33184.77 33558.82 29771.83 34591.02 170
pmmvs-eth3d70.50 30967.83 32278.52 27577.37 37166.18 17281.82 28681.51 32058.90 35363.90 36580.42 34842.69 34686.28 31858.56 29965.30 37283.11 359
OpenMVS_ROBcopyleft64.09 1970.56 30868.19 31477.65 28980.26 34759.41 28985.01 23182.96 30558.76 35465.43 35482.33 32937.63 37391.23 24645.34 38076.03 29782.32 367
114514_t80.68 14279.51 14884.20 12094.09 3867.27 15489.64 8791.11 12758.75 35574.08 26290.72 13258.10 20695.04 9069.70 19989.42 11890.30 197
Patchmtry70.74 30569.16 30875.49 31380.72 34254.07 35574.94 36680.30 33658.34 35670.01 30781.19 33852.50 25086.54 31453.37 33471.09 35085.87 324
test_cas_vis1_n_192073.76 27473.74 26373.81 33175.90 37559.77 28480.51 30882.40 31158.30 35781.62 11785.69 26044.35 33676.41 38076.29 13278.61 26085.23 332
Anonymous2024052168.80 32367.22 33273.55 33274.33 38254.11 35483.18 27185.61 26358.15 35861.68 37380.94 34330.71 38981.27 35657.00 31573.34 33585.28 331
旧先验286.56 19258.10 35987.04 4588.98 28874.07 156
JIA-IIPM66.32 34262.82 35376.82 30077.09 37261.72 26165.34 40175.38 36958.04 36064.51 36062.32 40042.05 35286.51 31551.45 34369.22 35882.21 368
pmmvs571.55 29770.20 30375.61 30977.83 36856.39 32781.74 28880.89 32557.76 36167.46 33384.49 28549.26 29785.32 33057.08 31475.29 31385.11 336
TESTMET0.1,169.89 31569.00 30972.55 34179.27 36456.85 31878.38 33874.71 37557.64 36268.09 32777.19 37537.75 37276.70 37663.92 24984.09 19284.10 348
RPMNet73.51 27670.49 29882.58 19081.32 33865.19 19475.92 35592.27 8357.60 36372.73 27776.45 37852.30 25395.43 7048.14 36577.71 27287.11 298
SSC-MVS53.88 36653.59 36654.75 39172.87 39419.59 42473.84 37160.53 40857.58 36449.18 40273.45 38946.34 31975.47 38916.20 41732.28 41069.20 397
新几何183.42 15293.13 5470.71 7485.48 26557.43 36581.80 11491.98 9363.28 14192.27 20664.60 24592.99 7087.27 292
YYNet165.03 34662.91 35171.38 34875.85 37656.60 32469.12 38974.66 37657.28 36654.12 39477.87 37145.85 32474.48 39349.95 35361.52 38083.05 360
MDA-MVSNet_test_wron65.03 34662.92 35071.37 34975.93 37456.73 32069.09 39074.73 37457.28 36654.03 39577.89 37045.88 32374.39 39449.89 35461.55 37982.99 362
Anonymous2023120668.60 32467.80 32371.02 35480.23 34950.75 38178.30 34280.47 33256.79 36866.11 35182.63 32646.35 31878.95 36543.62 38375.70 30083.36 356
tpm273.26 28171.46 28678.63 26883.34 29456.71 32280.65 30680.40 33556.63 36973.55 26782.02 33551.80 26691.24 24556.35 32178.42 26587.95 275
CHOSEN 1792x268877.63 21975.69 23183.44 15189.98 11468.58 12278.70 33487.50 23156.38 37075.80 22186.84 22758.67 20291.40 24161.58 27385.75 17290.34 194
HyFIR lowres test77.53 22075.40 23983.94 14289.59 12266.62 16580.36 31188.64 20856.29 37176.45 20685.17 27457.64 21193.28 16261.34 27683.10 21191.91 143
PVSNet_057.27 2061.67 35659.27 35968.85 36479.61 35957.44 31268.01 39173.44 37955.93 37258.54 38470.41 39544.58 33477.55 37247.01 36935.91 40771.55 395
UnsupCasMVSNet_bld63.70 35161.53 35770.21 35873.69 38751.39 37672.82 37281.89 31655.63 37357.81 38771.80 39238.67 36778.61 36649.26 35752.21 39780.63 378
MDTV_nov1_ep13_2view37.79 41175.16 36255.10 37466.53 34549.34 29553.98 33087.94 276
MVS78.19 20276.99 21081.78 20285.66 24566.99 16084.66 23890.47 14355.08 37572.02 28885.27 27063.83 13894.11 12466.10 23289.80 11484.24 345
test22291.50 8068.26 12884.16 25483.20 29954.63 37679.74 13791.63 10358.97 20191.42 9086.77 305
dongtai45.42 37745.38 37845.55 39573.36 39126.85 41967.72 39234.19 42154.15 37749.65 40156.41 40825.43 39562.94 41119.45 41228.09 41246.86 411
CHOSEN 280x42066.51 34064.71 34171.90 34581.45 33363.52 22957.98 40868.95 39253.57 37862.59 37176.70 37646.22 32075.29 39155.25 32479.68 25076.88 388
ADS-MVSNet266.20 34563.33 34874.82 32179.92 35258.75 29167.55 39375.19 37053.37 37965.25 35675.86 38142.32 34880.53 36041.57 38868.91 35985.18 333
ADS-MVSNet64.36 34962.88 35268.78 36579.92 35247.17 39067.55 39371.18 38453.37 37965.25 35675.86 38142.32 34873.99 39541.57 38868.91 35985.18 333
LF4IMVS64.02 35062.19 35469.50 36070.90 39853.29 36376.13 35277.18 36152.65 38158.59 38380.98 34223.55 40176.52 37853.06 33666.66 36678.68 384
tpm cat170.57 30768.31 31377.35 29582.41 32057.95 30278.08 34380.22 33852.04 38268.54 32577.66 37352.00 26187.84 30551.77 34072.07 34486.25 312
test_vis1_n69.85 31669.21 30771.77 34672.66 39655.27 34581.48 29276.21 36752.03 38375.30 23983.20 31528.97 39176.22 38274.60 15078.41 26683.81 351
Patchmatch-test64.82 34863.24 34969.57 35979.42 36249.82 38563.49 40569.05 39151.98 38459.95 38080.13 35150.91 27570.98 39940.66 39073.57 33087.90 277
N_pmnet52.79 36953.26 36751.40 39378.99 3657.68 42769.52 3853.89 42651.63 38557.01 38974.98 38540.83 35765.96 40837.78 39564.67 37380.56 380
test_fmvs1_n70.86 30470.24 30272.73 34072.51 39755.28 34481.27 29679.71 34251.49 38678.73 15184.87 28027.54 39377.02 37476.06 13579.97 24985.88 323
test_fmvs170.93 30370.52 29772.16 34473.71 38655.05 34680.82 29978.77 34951.21 38778.58 15684.41 28831.20 38876.94 37575.88 13880.12 24884.47 343
PMMVS69.34 31968.67 31071.35 35175.67 37762.03 25575.17 36173.46 37850.00 38868.68 32279.05 36052.07 26078.13 36861.16 27782.77 21473.90 392
test_fmvs268.35 32967.48 32970.98 35569.50 40051.95 36880.05 31576.38 36649.33 38974.65 25584.38 28923.30 40275.40 39074.51 15175.17 31685.60 326
ttmdpeth59.91 35857.10 36268.34 36867.13 40446.65 39374.64 36767.41 39548.30 39062.52 37285.04 27920.40 40475.93 38442.55 38645.90 40582.44 366
CMPMVSbinary51.72 2170.19 31268.16 31576.28 30373.15 39357.55 31079.47 32183.92 28448.02 39156.48 39184.81 28243.13 34386.42 31762.67 26081.81 22784.89 338
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
mvsany_test162.30 35461.26 35865.41 37569.52 39954.86 34866.86 39549.78 41546.65 39268.50 32683.21 31449.15 29866.28 40756.93 31660.77 38175.11 391
kuosan39.70 38140.40 38237.58 39864.52 40726.98 41765.62 40033.02 42246.12 39342.79 40548.99 41124.10 40046.56 41912.16 42026.30 41339.20 412
test_fmvs363.36 35261.82 35567.98 37062.51 40946.96 39277.37 34974.03 37745.24 39467.50 33278.79 36512.16 41472.98 39872.77 17166.02 36983.99 349
CVMVSNet72.99 28672.58 27574.25 32784.28 27250.85 38086.41 19583.45 29344.56 39573.23 27187.54 21149.38 29485.70 32365.90 23478.44 26486.19 314
test_vis1_rt60.28 35758.42 36065.84 37467.25 40355.60 34070.44 38360.94 40744.33 39659.00 38266.64 39724.91 39768.67 40462.80 25669.48 35573.25 393
mvsany_test353.99 36551.45 37061.61 38055.51 41444.74 40063.52 40445.41 41943.69 39758.11 38676.45 37817.99 40763.76 41054.77 32747.59 40176.34 389
EU-MVSNet68.53 32767.61 32771.31 35278.51 36747.01 39184.47 24484.27 28042.27 39866.44 34984.79 28340.44 35983.76 34058.76 29868.54 36283.17 357
FPMVS53.68 36751.64 36959.81 38265.08 40651.03 37869.48 38669.58 38941.46 39940.67 40672.32 39116.46 41070.00 40324.24 41065.42 37158.40 406
pmmvs357.79 36054.26 36568.37 36764.02 40856.72 32175.12 36465.17 40040.20 40052.93 39669.86 39620.36 40575.48 38845.45 37955.25 39372.90 394
new_pmnet50.91 37250.29 37252.78 39268.58 40134.94 41463.71 40356.63 41239.73 40144.95 40365.47 39821.93 40358.48 41234.98 39956.62 38764.92 400
MVS-HIRNet59.14 35957.67 36163.57 37781.65 32843.50 40271.73 37565.06 40139.59 40251.43 39757.73 40538.34 36982.58 34939.53 39173.95 32664.62 401
MVStest156.63 36252.76 36868.25 36961.67 41053.25 36471.67 37668.90 39338.59 40350.59 39983.05 31725.08 39670.66 40036.76 39738.56 40680.83 377
PMMVS240.82 38038.86 38446.69 39453.84 41616.45 42548.61 41149.92 41437.49 40431.67 40960.97 4028.14 42056.42 41428.42 40530.72 41167.19 399
test_vis3_rt49.26 37447.02 37656.00 38654.30 41545.27 39866.76 39748.08 41636.83 40544.38 40453.20 4097.17 42164.07 40956.77 31855.66 38958.65 405
test_f52.09 37050.82 37155.90 38753.82 41742.31 40759.42 40758.31 41136.45 40656.12 39370.96 39412.18 41357.79 41353.51 33356.57 38867.60 398
LCM-MVSNet54.25 36449.68 37467.97 37153.73 41845.28 39766.85 39680.78 32735.96 40739.45 40862.23 4018.70 41878.06 37048.24 36451.20 39880.57 379
APD_test153.31 36849.93 37363.42 37865.68 40550.13 38371.59 37766.90 39734.43 40840.58 40771.56 3938.65 41976.27 38134.64 40055.36 39163.86 402
PMVScopyleft37.38 2244.16 37940.28 38355.82 38840.82 42342.54 40665.12 40263.99 40334.43 40824.48 41457.12 4073.92 42476.17 38317.10 41555.52 39048.75 409
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft45.18 37841.86 38155.16 39077.03 37351.52 37432.50 41480.52 33132.46 41027.12 41335.02 4149.52 41775.50 38722.31 41160.21 38438.45 413
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DSMNet-mixed57.77 36156.90 36360.38 38167.70 40235.61 41269.18 38753.97 41332.30 41157.49 38879.88 35440.39 36068.57 40538.78 39472.37 33976.97 387
testf145.72 37541.96 37957.00 38456.90 41245.32 39566.14 39859.26 40926.19 41230.89 41160.96 4034.14 42270.64 40126.39 40846.73 40355.04 407
APD_test245.72 37541.96 37957.00 38456.90 41245.32 39566.14 39859.26 40926.19 41230.89 41160.96 4034.14 42270.64 40126.39 40846.73 40355.04 407
E-PMN31.77 38230.64 38535.15 39952.87 41927.67 41657.09 40947.86 41724.64 41416.40 41933.05 41511.23 41554.90 41514.46 41818.15 41622.87 415
EMVS30.81 38429.65 38634.27 40050.96 42025.95 42056.58 41046.80 41824.01 41515.53 42030.68 41612.47 41254.43 41612.81 41917.05 41722.43 416
MVEpermissive26.22 2330.37 38525.89 38943.81 39644.55 42235.46 41328.87 41539.07 42018.20 41618.58 41840.18 4132.68 42547.37 41817.07 41623.78 41548.60 410
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft27.40 40140.17 42426.90 41824.59 42517.44 41723.95 41548.61 4129.77 41626.48 42018.06 41324.47 41428.83 414
wuyk23d16.82 38815.94 39119.46 40258.74 41131.45 41539.22 4123.74 4276.84 4186.04 4212.70 4211.27 42624.29 42110.54 42114.40 4202.63 418
test_method31.52 38329.28 38738.23 39727.03 4256.50 42820.94 41662.21 4054.05 41922.35 41752.50 41013.33 41147.58 41727.04 40734.04 40960.62 403
tmp_tt18.61 38721.40 39010.23 4034.82 42610.11 42634.70 41330.74 4241.48 42023.91 41626.07 41728.42 39213.41 42227.12 40615.35 4197.17 417
EGC-MVSNET52.07 37147.05 37567.14 37283.51 29160.71 27280.50 30967.75 3940.07 4210.43 42275.85 38324.26 39981.54 35428.82 40462.25 37759.16 404
testmvs6.04 3918.02 3940.10 4050.08 4270.03 43069.74 3840.04 4280.05 4220.31 4231.68 4220.02 4280.04 4230.24 4220.02 4210.25 420
test1236.12 3908.11 3930.14 4040.06 4280.09 42971.05 3790.03 4290.04 4230.25 4241.30 4230.05 4270.03 4240.21 4230.01 4220.29 419
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k19.96 38626.61 3880.00 4060.00 4290.00 4310.00 41789.26 1820.00 4240.00 42588.61 18161.62 1690.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas5.26 3927.02 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42463.15 1460.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re7.23 3899.64 3920.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42586.72 2310.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS42.58 40439.46 392
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4997.53 289.67 696.44 994.41 37
No_MVS89.16 194.34 2775.53 292.99 4997.53 289.67 696.44 994.41 37
eth-test20.00 429
eth-test0.00 429
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4782.45 396.87 2083.77 6396.48 894.88 14
test_0728_SECOND87.71 3295.34 171.43 5893.49 994.23 397.49 489.08 1296.41 1294.21 47
GSMVS88.96 250
test_part295.06 872.65 3291.80 13
sam_mvs151.32 27188.96 250
sam_mvs50.01 285
ambc75.24 31773.16 39250.51 38263.05 40687.47 23264.28 36177.81 37217.80 40889.73 27457.88 30760.64 38285.49 327
MTGPAbinary92.02 92
test_post178.90 3325.43 42048.81 30485.44 32959.25 291
test_post5.46 41950.36 28384.24 337
patchmatchnet-post74.00 38751.12 27488.60 296
GG-mvs-BLEND75.38 31581.59 33055.80 33779.32 32369.63 38867.19 33673.67 38843.24 34288.90 29250.41 34784.50 18281.45 373
MTMP92.18 3432.83 423
test9_res84.90 4695.70 2692.87 111
agg_prior282.91 7295.45 2992.70 114
agg_prior92.85 6271.94 5091.78 10784.41 7894.93 92
test_prior472.60 3489.01 109
test_prior86.33 5792.61 6869.59 9192.97 5495.48 6793.91 58
新几何286.29 201
旧先验191.96 7465.79 18286.37 25393.08 7469.31 8392.74 7388.74 261
原ACMM286.86 181
testdata291.01 25462.37 263
segment_acmp73.08 38
test1286.80 5292.63 6770.70 7591.79 10682.71 10571.67 5496.16 4794.50 5193.54 82
plane_prior790.08 10868.51 123
plane_prior689.84 11768.70 11860.42 194
plane_prior592.44 7695.38 7478.71 10886.32 16091.33 158
plane_prior491.00 128
plane_prior189.90 116
n20.00 430
nn0.00 430
door-mid69.98 387
lessismore_v078.97 26481.01 34157.15 31565.99 39861.16 37582.82 32339.12 36491.34 24359.67 28746.92 40288.43 268
test1192.23 86
door69.44 390
HQP5-MVS66.98 161
BP-MVS77.47 120
HQP4-MVS77.24 18695.11 8591.03 168
HQP3-MVS92.19 8985.99 168
HQP2-MVS60.17 197
NP-MVS89.62 12168.32 12690.24 140
ACMMP++_ref81.95 225
ACMMP++81.25 230
Test By Simon64.33 133