This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
MM89.16 689.23 788.97 490.79 9073.65 1092.66 2391.17 11686.57 187.39 3594.97 1671.70 5097.68 192.19 195.63 2895.57 1
MVS_030488.08 1488.08 1788.08 1489.67 11472.04 4892.26 3389.26 17384.19 285.01 5595.18 1369.93 6997.20 1491.63 295.60 2994.99 9
UA-Net85.08 6284.96 6285.45 7092.07 7068.07 12989.78 7990.86 12682.48 384.60 6893.20 6669.35 7595.22 7671.39 17490.88 9393.07 97
CANet86.45 3886.10 4587.51 3790.09 10270.94 6789.70 8292.59 6681.78 481.32 11491.43 10670.34 6497.23 1384.26 5293.36 6594.37 35
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5581.50 585.79 4893.47 6073.02 3997.00 1884.90 4294.94 3994.10 45
EPNet83.72 7582.92 8786.14 5984.22 26769.48 9191.05 5585.27 25981.30 676.83 19191.65 9766.09 11095.56 6076.00 13293.85 6193.38 83
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 37
3Dnovator+77.84 485.48 5484.47 6988.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19693.37 6260.40 18896.75 2677.20 11893.73 6395.29 5
TranMVSNet+NR-MVSNet80.84 12880.31 12782.42 18887.85 18862.33 24687.74 15391.33 11280.55 977.99 16889.86 13965.23 11992.62 18767.05 21875.24 30892.30 123
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5994.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5480.26 1187.78 2994.27 3275.89 1996.81 2387.45 3296.44 993.05 98
UniMVSNet_NR-MVSNet81.88 10681.54 10682.92 17288.46 16563.46 22887.13 16792.37 7380.19 1278.38 15689.14 15971.66 5293.05 17770.05 18676.46 28192.25 125
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
EI-MVSNet-Vis-set84.19 6883.81 7385.31 7388.18 17467.85 13387.66 15489.73 15980.05 1482.95 9389.59 14870.74 6194.82 9780.66 8984.72 17293.28 88
ETV-MVS84.90 6584.67 6585.59 6789.39 12768.66 11688.74 11792.64 6579.97 1584.10 7785.71 25469.32 7695.38 7180.82 8591.37 8792.72 106
EI-MVSNet-UG-set83.81 7283.38 7885.09 8187.87 18767.53 14087.44 16089.66 16079.74 1682.23 10289.41 15770.24 6694.74 10079.95 9383.92 18692.99 102
CS-MVS86.69 3586.95 3185.90 6390.76 9167.57 13992.83 1793.30 3279.67 1784.57 6992.27 8671.47 5395.02 8884.24 5493.46 6495.13 6
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6687.65 19967.22 15088.69 11993.04 3879.64 1885.33 5292.54 8373.30 3594.50 10883.49 5991.14 9095.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18692.02 8579.45 1985.88 4694.80 1768.07 8996.21 4286.69 3695.34 3393.23 89
EC-MVSNet86.01 4386.38 3884.91 9089.31 13266.27 16592.32 3093.63 2179.37 2084.17 7691.88 9369.04 8295.43 6783.93 5793.77 6293.01 101
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8594.17 3667.45 9596.60 3383.06 6394.50 5194.07 47
X-MVStestdata80.37 14677.83 18388.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8512.47 40367.45 9596.60 3383.06 6394.50 5194.07 47
HQP_MVS83.64 7783.14 8185.14 7890.08 10368.71 11291.25 5092.44 6979.12 2378.92 14391.00 12060.42 18695.38 7178.71 10386.32 15291.33 153
plane_prior291.25 5079.12 23
IS-MVSNet83.15 8882.81 8884.18 11789.94 11063.30 23291.59 4388.46 20479.04 2579.49 13592.16 8865.10 12094.28 11367.71 20991.86 8294.95 10
DU-MVS81.12 12480.52 12282.90 17387.80 19163.46 22887.02 17191.87 9579.01 2678.38 15689.07 16165.02 12193.05 17770.05 18676.46 28192.20 128
NR-MVSNet80.23 14979.38 14582.78 18187.80 19163.34 23186.31 19391.09 12079.01 2672.17 27689.07 16167.20 9892.81 18666.08 22575.65 29492.20 128
CS-MVS-test86.29 4286.48 3785.71 6591.02 8367.21 15192.36 2993.78 1878.97 2883.51 8891.20 11170.65 6395.15 7981.96 7694.89 4194.77 22
DELS-MVS85.41 5785.30 5885.77 6488.49 16367.93 13285.52 21993.44 2778.70 2983.63 8789.03 16474.57 2495.71 5780.26 9294.04 6093.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
WR-MVS79.49 16379.22 15280.27 23688.79 15358.35 28785.06 22488.61 20278.56 3077.65 17388.34 18463.81 13190.66 25664.98 23477.22 27091.80 140
plane_prior368.60 11778.44 3178.92 143
UniMVSNet (Re)81.60 11681.11 11183.09 16388.38 16964.41 20987.60 15593.02 4278.42 3278.56 15288.16 19069.78 7193.26 16069.58 19376.49 28091.60 142
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 24
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13787.63 3094.27 5893.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
casdiffmvspermissive85.11 6185.14 6085.01 8487.20 21565.77 18087.75 15292.83 5577.84 3784.36 7392.38 8572.15 4493.93 13181.27 8190.48 9795.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CP-MVSNet78.22 19578.34 17177.84 27987.83 19054.54 34287.94 14691.17 11677.65 3873.48 26088.49 18062.24 15388.43 29262.19 25774.07 31790.55 182
plane_prior68.71 11290.38 6777.62 3986.16 156
baseline84.93 6384.98 6184.80 9487.30 21365.39 18887.30 16492.88 5277.62 3984.04 7992.26 8771.81 4793.96 12581.31 8090.30 10095.03 8
VDD-MVS83.01 9382.36 9484.96 8691.02 8366.40 16288.91 10888.11 20777.57 4184.39 7293.29 6452.19 24793.91 13277.05 12088.70 12394.57 29
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6477.57 4183.84 8294.40 3072.24 4396.28 4085.65 3895.30 3593.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PEN-MVS77.73 21077.69 19177.84 27987.07 21853.91 34787.91 14891.18 11577.56 4373.14 26488.82 16961.23 17189.17 27959.95 27672.37 33290.43 187
OPM-MVS83.50 8182.95 8685.14 7888.79 15370.95 6689.13 10391.52 10677.55 4480.96 12191.75 9560.71 17994.50 10879.67 9786.51 15089.97 213
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 9989.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 27
PS-CasMVS78.01 20478.09 17677.77 28187.71 19654.39 34488.02 14291.22 11377.50 4673.26 26288.64 17460.73 17888.41 29361.88 26173.88 32190.53 183
MSLP-MVS++85.43 5685.76 5084.45 10491.93 7270.24 7690.71 5892.86 5377.46 4784.22 7492.81 7867.16 9992.94 18180.36 9094.35 5690.16 197
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 5977.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 86
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 41
3Dnovator76.31 583.38 8582.31 9586.59 5287.94 18572.94 2890.64 5992.14 8477.21 5275.47 22292.83 7658.56 19594.72 10173.24 15992.71 7092.13 132
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
WR-MVS_H78.51 19078.49 16678.56 26788.02 18356.38 32088.43 12692.67 6177.14 5473.89 25687.55 20566.25 10889.24 27858.92 28673.55 32490.06 207
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 9794.23 3572.13 4597.09 1684.83 4595.37 3293.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FC-MVSNet-test81.52 11782.02 10080.03 24088.42 16855.97 32687.95 14593.42 2977.10 5677.38 17890.98 12269.96 6891.79 21868.46 20584.50 17592.33 121
DTE-MVSNet76.99 22476.80 20977.54 28686.24 23053.06 35587.52 15790.66 12977.08 5772.50 27188.67 17360.48 18589.52 27357.33 30270.74 34390.05 208
LFMVS81.82 10881.23 10983.57 14591.89 7363.43 23089.84 7581.85 30977.04 5883.21 9093.10 6752.26 24693.43 15671.98 16989.95 10893.85 57
UGNet80.83 12979.59 14184.54 10088.04 18268.09 12889.42 9188.16 20676.95 5976.22 20889.46 15349.30 28693.94 12868.48 20490.31 9991.60 142
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FIs82.07 10382.42 9181.04 21988.80 15258.34 28888.26 13593.49 2676.93 6078.47 15591.04 11769.92 7092.34 20069.87 19084.97 16992.44 120
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6393.99 4870.67 6296.82 2284.18 5695.01 3793.90 55
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8076.87 6282.81 9894.25 3466.44 10596.24 4182.88 6794.28 5793.38 83
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5394.32 3171.76 4896.93 1985.53 3995.79 2294.32 38
VPNet78.69 18678.66 16378.76 26388.31 17155.72 32984.45 24186.63 24176.79 6478.26 15990.55 12859.30 19189.70 27166.63 22077.05 27290.88 169
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 5994.44 2870.78 6096.61 3284.53 4994.89 4193.66 65
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6694.52 2168.81 8496.65 3084.53 4994.90 4094.00 50
ACMMPcopyleft85.89 4885.39 5487.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12393.82 5364.33 12596.29 3982.67 7390.69 9593.23 89
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7094.52 2169.09 7896.70 2784.37 5194.83 4594.03 49
canonicalmvs85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13281.50 7988.80 12194.77 22
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5876.62 7083.68 8494.46 2567.93 9095.95 5284.20 5594.39 5493.23 89
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7084.22 7493.36 6371.44 5496.76 2580.82 8595.33 3494.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + GP.85.71 5185.33 5686.84 4791.34 7872.50 3689.07 10487.28 22876.41 7285.80 4790.22 13474.15 3195.37 7481.82 7791.88 7992.65 111
HQP-NCC89.33 12989.17 9876.41 7277.23 183
ACMP_Plane89.33 12989.17 9876.41 7277.23 183
HQP-MVS82.61 9782.02 10084.37 10689.33 12966.98 15489.17 9892.19 8276.41 7277.23 18390.23 13360.17 18995.11 8277.47 11585.99 16091.03 164
CANet_DTU80.61 13879.87 13582.83 17585.60 24063.17 23787.36 16188.65 20076.37 7675.88 21588.44 18253.51 23693.07 17673.30 15789.74 11192.25 125
VNet82.21 10082.41 9281.62 20190.82 8860.93 26284.47 23889.78 15676.36 7784.07 7891.88 9364.71 12490.26 25970.68 18088.89 11993.66 65
Vis-MVSNetpermissive83.46 8282.80 8985.43 7190.25 9968.74 11090.30 6990.13 14876.33 7880.87 12292.89 7461.00 17694.20 11972.45 16890.97 9193.35 85
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5693.59 2376.27 7988.14 2495.09 1571.06 5796.67 2987.67 2996.37 1494.09 46
alignmvs85.48 5485.32 5785.96 6289.51 12069.47 9289.74 8092.47 6876.17 8087.73 3391.46 10570.32 6593.78 13781.51 7888.95 11894.63 26
MVS_111021_HR85.14 6084.75 6486.32 5591.65 7672.70 3085.98 20290.33 14176.11 8182.08 10391.61 10071.36 5694.17 12181.02 8292.58 7192.08 133
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8283.81 8393.95 5169.77 7296.01 4885.15 4094.66 4794.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
h-mvs3383.15 8882.19 9686.02 6190.56 9370.85 7088.15 14089.16 17876.02 8384.67 6491.39 10761.54 16295.50 6382.71 7075.48 29891.72 141
hse-mvs281.72 10980.94 11584.07 12488.72 15667.68 13785.87 20687.26 22976.02 8384.67 6488.22 18961.54 16293.48 15282.71 7073.44 32691.06 162
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8592.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 52
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CLD-MVS82.31 9981.65 10584.29 11188.47 16467.73 13685.81 21092.35 7475.78 8678.33 15886.58 23664.01 12894.35 11176.05 13187.48 13690.79 171
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8789.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
testdata184.14 24975.71 87
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 8991.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 31
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
VPA-MVSNet80.60 13980.55 12180.76 22688.07 18160.80 26586.86 17691.58 10575.67 9080.24 12789.45 15563.34 13290.25 26070.51 18279.22 25291.23 157
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7093.04 3875.53 9183.86 8194.42 2967.87 9296.64 3182.70 7294.57 5093.66 65
Effi-MVS+83.62 7983.08 8285.24 7588.38 16967.45 14188.89 10989.15 17975.50 9282.27 10188.28 18669.61 7394.45 11077.81 11287.84 13193.84 59
test_prior288.85 11175.41 9384.91 5993.54 5674.28 2983.31 6195.86 20
LPG-MVS_test82.08 10281.27 10884.50 10189.23 13668.76 10890.22 7091.94 9175.37 9476.64 19791.51 10254.29 22894.91 9078.44 10583.78 18789.83 218
LGP-MVS_train84.50 10189.23 13668.76 10891.94 9175.37 9476.64 19791.51 10254.29 22894.91 9078.44 10583.78 18789.83 218
MG-MVS83.41 8383.45 7683.28 15392.74 6262.28 24888.17 13889.50 16475.22 9681.49 11392.74 8266.75 10095.11 8272.85 16291.58 8492.45 119
LCM-MVSNet-Re77.05 22376.94 20677.36 28787.20 21551.60 36380.06 30780.46 32375.20 9767.69 31986.72 22662.48 14788.98 28363.44 24489.25 11591.51 146
SDMVSNet80.38 14480.18 13080.99 22089.03 14564.94 19780.45 30389.40 16675.19 9876.61 19989.98 13760.61 18387.69 30176.83 12483.55 19690.33 191
sd_testset77.70 21377.40 19678.60 26689.03 14560.02 27679.00 32185.83 25375.19 9876.61 19989.98 13754.81 21985.46 31962.63 25383.55 19690.33 191
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7893.50 2575.17 10086.34 4495.29 1270.86 5996.00 4988.78 1996.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test111179.43 16679.18 15480.15 23889.99 10853.31 35387.33 16377.05 35175.04 10180.23 12892.77 8148.97 29292.33 20168.87 20092.40 7594.81 20
Effi-MVS+-dtu80.03 15378.57 16584.42 10585.13 25168.74 11088.77 11488.10 20874.99 10274.97 24483.49 30157.27 20893.36 15773.53 15380.88 22991.18 158
OMC-MVS82.69 9581.97 10284.85 9188.75 15567.42 14287.98 14390.87 12574.92 10379.72 13291.65 9762.19 15493.96 12575.26 14086.42 15193.16 94
test250677.30 22176.49 21779.74 24690.08 10352.02 35687.86 15163.10 39174.88 10480.16 12992.79 7938.29 36092.35 19968.74 20292.50 7394.86 17
ECVR-MVScopyleft79.61 15979.26 15080.67 22890.08 10354.69 34087.89 14977.44 34874.88 10480.27 12692.79 7948.96 29392.45 19368.55 20392.50 7394.86 17
nrg03083.88 7183.53 7584.96 8686.77 22369.28 9890.46 6592.67 6174.79 10682.95 9391.33 10872.70 4193.09 17580.79 8779.28 25192.50 116
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10792.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MVS_111021_LR82.61 9782.11 9784.11 11888.82 15071.58 5385.15 22286.16 24874.69 10880.47 12591.04 11762.29 15190.55 25780.33 9190.08 10590.20 196
EIA-MVS83.31 8782.80 8984.82 9289.59 11665.59 18288.21 13692.68 6074.66 10978.96 14186.42 24169.06 8095.26 7575.54 13890.09 10493.62 72
mvsmamba81.69 11180.74 11784.56 9987.45 20666.72 15891.26 4885.89 25274.66 10978.23 16090.56 12754.33 22794.91 9080.73 8883.54 19892.04 136
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7474.62 11188.90 2093.85 5275.75 2096.00 4987.80 2894.63 4895.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 6774.50 11286.84 4294.65 2067.31 9795.77 5584.80 4692.85 6892.84 105
FOURS195.00 1072.39 3995.06 193.84 1574.49 11391.30 15
ACMP74.13 681.51 11980.57 12084.36 10789.42 12568.69 11589.97 7491.50 11074.46 11475.04 24390.41 13053.82 23394.54 10577.56 11482.91 20689.86 217
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EPP-MVSNet83.40 8483.02 8484.57 9890.13 10164.47 20792.32 3090.73 12874.45 11579.35 13791.10 11469.05 8195.12 8072.78 16387.22 13994.13 44
save fliter93.80 4072.35 4290.47 6491.17 11674.31 116
MVS_Test83.15 8883.06 8383.41 15086.86 21963.21 23486.11 20092.00 8774.31 11682.87 9589.44 15670.03 6793.21 16477.39 11788.50 12793.81 60
UniMVSNet_ETH3D79.10 17678.24 17481.70 20086.85 22060.24 27487.28 16588.79 19374.25 11876.84 19090.53 12949.48 28291.56 22767.98 20782.15 21593.29 87
IterMVS-LS80.06 15279.38 14582.11 19285.89 23563.20 23586.79 17989.34 16874.19 11975.45 22586.72 22666.62 10192.39 19672.58 16576.86 27590.75 174
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet80.52 14279.98 13282.12 19184.28 26563.19 23686.41 19088.95 18974.18 12078.69 14787.54 20666.62 10192.43 19472.57 16680.57 23590.74 175
Vis-MVSNet (Re-imp)78.36 19378.45 16778.07 27788.64 15951.78 36286.70 18379.63 33374.14 12175.11 24090.83 12361.29 17089.75 26958.10 29591.60 8392.69 109
v879.97 15679.02 15782.80 17884.09 27064.50 20687.96 14490.29 14474.13 12275.24 23686.81 22362.88 14393.89 13474.39 14675.40 30390.00 209
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5793.56 2473.95 12383.16 9291.07 11675.94 1895.19 7779.94 9494.38 5593.55 76
thres100view90076.50 23275.55 23079.33 25489.52 11956.99 30985.83 20983.23 28973.94 12476.32 20687.12 21851.89 25691.95 21248.33 35083.75 19089.07 235
9.1488.26 1592.84 6091.52 4694.75 173.93 12588.57 2294.67 1975.57 2295.79 5486.77 3595.76 23
HPM-MVS_fast85.35 5884.95 6386.57 5393.69 4270.58 7592.15 3691.62 10373.89 12682.67 10094.09 4062.60 14495.54 6280.93 8392.93 6793.57 74
RRT_MVS80.35 14779.22 15283.74 14187.63 20065.46 18591.08 5488.92 19173.82 12776.44 20490.03 13649.05 29194.25 11876.84 12279.20 25391.51 146
PAPM_NR83.02 9282.41 9284.82 9292.47 6766.37 16387.93 14791.80 9873.82 12777.32 18090.66 12567.90 9194.90 9370.37 18389.48 11393.19 93
thres600view776.50 23275.44 23179.68 24889.40 12657.16 30685.53 21783.23 28973.79 12976.26 20787.09 21951.89 25691.89 21548.05 35583.72 19390.00 209
testing9176.54 23075.66 22879.18 25888.43 16755.89 32781.08 29083.00 29573.76 13075.34 22984.29 28446.20 31190.07 26364.33 23884.50 17591.58 144
v7n78.97 18077.58 19483.14 16183.45 28365.51 18388.32 13391.21 11473.69 13172.41 27386.32 24457.93 19993.81 13669.18 19675.65 29490.11 201
dcpmvs_285.63 5286.15 4484.06 12691.71 7564.94 19786.47 18991.87 9573.63 13286.60 4393.02 7276.57 1591.87 21783.36 6092.15 7695.35 3
v2v48280.23 14979.29 14983.05 16683.62 27964.14 21387.04 17089.97 15273.61 13378.18 16387.22 21461.10 17493.82 13576.11 12976.78 27891.18 158
Baseline_NR-MVSNet78.15 19978.33 17277.61 28485.79 23656.21 32486.78 18085.76 25473.60 13477.93 16987.57 20365.02 12188.99 28267.14 21775.33 30587.63 274
BH-RMVSNet79.61 15978.44 16883.14 16189.38 12865.93 17384.95 22787.15 23273.56 13578.19 16289.79 14156.67 21293.36 15759.53 28086.74 14690.13 199
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4573.54 13685.94 4594.51 2465.80 11595.61 5983.04 6592.51 7293.53 78
SR-MVS-dyc-post85.77 4985.61 5286.23 5693.06 5570.63 7391.88 3992.27 7673.53 13785.69 4994.45 2665.00 12395.56 6082.75 6891.87 8092.50 116
RE-MVS-def85.48 5393.06 5570.63 7391.88 3992.27 7673.53 13785.69 4994.45 2663.87 12982.75 6891.87 8092.50 116
test_fmvsmconf_n85.92 4686.04 4785.57 6885.03 25369.51 9089.62 8690.58 13173.42 13987.75 3194.02 4472.85 4093.24 16190.37 390.75 9493.96 51
tfpn200view976.42 23575.37 23579.55 25389.13 14057.65 30085.17 22083.60 28173.41 14076.45 20186.39 24252.12 24891.95 21248.33 35083.75 19089.07 235
thres40076.50 23275.37 23579.86 24389.13 14057.65 30085.17 22083.60 28173.41 14076.45 20186.39 24252.12 24891.95 21248.33 35083.75 19090.00 209
test_fmvsmconf0.1_n85.61 5385.65 5185.50 6982.99 29869.39 9689.65 8390.29 14473.31 14287.77 3094.15 3871.72 4993.23 16290.31 490.67 9693.89 56
testing9976.09 24175.12 23979.00 25988.16 17555.50 33280.79 29481.40 31373.30 14375.17 23784.27 28644.48 32490.02 26464.28 23984.22 18491.48 150
v14878.72 18577.80 18581.47 20582.73 30361.96 25286.30 19488.08 20973.26 14476.18 21085.47 26262.46 14892.36 19871.92 17073.82 32290.09 203
FA-MVS(test-final)80.96 12679.91 13484.10 11988.30 17265.01 19584.55 23790.01 15173.25 14579.61 13387.57 20358.35 19794.72 10171.29 17586.25 15492.56 113
test_fmvsmconf0.01_n84.73 6684.52 6885.34 7280.25 33869.03 9989.47 8889.65 16173.24 14686.98 4094.27 3266.62 10193.23 16290.26 589.95 10893.78 62
v1079.74 15878.67 16282.97 17184.06 27164.95 19687.88 15090.62 13073.11 14775.11 24086.56 23761.46 16594.05 12473.68 15175.55 29689.90 215
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7693.82 1673.07 14884.86 6292.89 7476.22 1796.33 3884.89 4495.13 3694.40 34
baseline176.98 22576.75 21377.66 28288.13 17755.66 33085.12 22381.89 30773.04 14976.79 19288.90 16662.43 14987.78 30063.30 24671.18 34189.55 227
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5573.01 15088.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 107
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
diffmvspermissive82.10 10181.88 10382.76 18383.00 29663.78 22083.68 25489.76 15772.94 15182.02 10489.85 14065.96 11490.79 25382.38 7487.30 13893.71 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
K. test v371.19 28968.51 30179.21 25783.04 29557.78 29984.35 24576.91 35272.90 15262.99 35882.86 31139.27 35491.09 24861.65 26452.66 38588.75 255
Fast-Effi-MVS+-dtu78.02 20376.49 21782.62 18583.16 29266.96 15686.94 17387.45 22672.45 15371.49 28384.17 28854.79 22391.58 22567.61 21080.31 23889.30 233
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15385.22 5491.90 9269.47 7496.42 3783.28 6295.94 1994.35 36
thres20075.55 24774.47 24678.82 26287.78 19457.85 29783.07 26983.51 28472.44 15575.84 21684.42 27952.08 25191.75 22047.41 35783.64 19586.86 295
test_yl81.17 12280.47 12383.24 15689.13 14063.62 22186.21 19689.95 15372.43 15681.78 11089.61 14657.50 20593.58 14570.75 17886.90 14392.52 114
DCV-MVSNet81.17 12280.47 12383.24 15689.13 14063.62 22186.21 19689.95 15372.43 15681.78 11089.61 14657.50 20593.58 14570.75 17886.90 14392.52 114
BH-untuned79.47 16478.60 16482.05 19389.19 13865.91 17486.07 20188.52 20372.18 15875.42 22687.69 20061.15 17393.54 14960.38 27386.83 14586.70 299
TransMVSNet (Re)75.39 25274.56 24477.86 27885.50 24257.10 30886.78 18086.09 25072.17 15971.53 28287.34 20963.01 14289.31 27756.84 30761.83 36987.17 286
GA-MVS76.87 22775.17 23881.97 19682.75 30262.58 24381.44 28786.35 24672.16 16074.74 24782.89 31046.20 31192.02 21068.85 20181.09 22791.30 156
v114480.03 15379.03 15683.01 16883.78 27764.51 20487.11 16990.57 13371.96 16178.08 16686.20 24661.41 16693.94 12874.93 14177.23 26990.60 180
PS-MVSNAJss82.07 10381.31 10784.34 10986.51 22867.27 14889.27 9691.51 10771.75 16279.37 13690.22 13463.15 13894.27 11477.69 11382.36 21491.49 149
EPNet_dtu75.46 24974.86 24077.23 29082.57 30754.60 34186.89 17583.09 29271.64 16366.25 33985.86 25255.99 21488.04 29754.92 31586.55 14989.05 240
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GBi-Net78.40 19177.40 19681.40 20887.60 20163.01 23888.39 12889.28 17071.63 16475.34 22987.28 21054.80 22091.11 24362.72 24979.57 24590.09 203
test178.40 19177.40 19681.40 20887.60 20163.01 23888.39 12889.28 17071.63 16475.34 22987.28 21054.80 22091.11 24362.72 24979.57 24590.09 203
FMVSNet278.20 19777.21 20081.20 21487.60 20162.89 24287.47 15989.02 18471.63 16475.29 23587.28 21054.80 22091.10 24662.38 25479.38 24989.61 225
iter_conf0580.00 15578.70 16183.91 13887.84 18965.83 17688.84 11284.92 26471.61 16778.70 14688.94 16543.88 32894.56 10479.28 9884.28 18291.33 153
patch_mono-283.65 7684.54 6680.99 22090.06 10765.83 17684.21 24788.74 19871.60 16885.01 5592.44 8474.51 2583.50 33382.15 7592.15 7693.64 71
V4279.38 17078.24 17482.83 17581.10 33065.50 18485.55 21589.82 15571.57 16978.21 16186.12 24860.66 18193.18 17075.64 13575.46 30089.81 220
iter_conf05_1181.63 11580.44 12585.20 7789.46 12366.20 16686.21 19686.97 23571.53 17083.35 8988.53 17943.22 33395.94 5379.82 9594.85 4393.47 79
API-MVS81.99 10581.23 10984.26 11590.94 8570.18 8291.10 5389.32 16971.51 17178.66 14988.28 18665.26 11895.10 8564.74 23691.23 8987.51 278
tttt051779.40 16877.91 18083.90 13988.10 17963.84 21888.37 13184.05 27671.45 17276.78 19389.12 16049.93 27994.89 9470.18 18583.18 20492.96 103
pm-mvs177.25 22276.68 21578.93 26184.22 26758.62 28686.41 19088.36 20571.37 17373.31 26188.01 19661.22 17289.15 28064.24 24073.01 32989.03 241
testing22274.04 26272.66 26578.19 27487.89 18655.36 33381.06 29179.20 33771.30 17474.65 24983.57 30039.11 35688.67 28951.43 33385.75 16490.53 183
GeoE81.71 11081.01 11483.80 14089.51 12064.45 20888.97 10688.73 19971.27 17578.63 15089.76 14266.32 10793.20 16769.89 18986.02 15993.74 63
tt080578.73 18477.83 18381.43 20685.17 24760.30 27389.41 9290.90 12371.21 17677.17 18788.73 17046.38 30693.21 16472.57 16678.96 25490.79 171
FMVSNet377.88 20776.85 20880.97 22286.84 22162.36 24586.52 18888.77 19471.13 17775.34 22986.66 23254.07 23191.10 24662.72 24979.57 24589.45 229
VDDNet81.52 11780.67 11984.05 12990.44 9664.13 21489.73 8185.91 25171.11 17883.18 9193.48 5850.54 27193.49 15173.40 15688.25 12994.54 30
fmvsm_s_conf0.5_n83.80 7383.71 7484.07 12486.69 22567.31 14689.46 8983.07 29371.09 17986.96 4193.70 5569.02 8391.47 23488.79 1884.62 17493.44 82
XVG-OURS80.41 14379.23 15183.97 13585.64 23969.02 10183.03 27190.39 13671.09 17977.63 17491.49 10454.62 22691.35 23875.71 13483.47 19991.54 145
SixPastTwentyTwo73.37 26971.26 28179.70 24785.08 25257.89 29685.57 21183.56 28371.03 18165.66 34185.88 25142.10 34292.57 18959.11 28463.34 36788.65 258
ZD-MVS94.38 2572.22 4492.67 6170.98 18287.75 3194.07 4174.01 3296.70 2784.66 4794.84 44
v119279.59 16178.43 16983.07 16583.55 28164.52 20386.93 17490.58 13170.83 18377.78 17185.90 25059.15 19293.94 12873.96 15077.19 27190.76 173
Fast-Effi-MVS+80.81 13079.92 13383.47 14688.85 14764.51 20485.53 21789.39 16770.79 18478.49 15485.06 27267.54 9493.58 14567.03 21986.58 14892.32 122
PS-MVSNAJ81.69 11181.02 11383.70 14289.51 12068.21 12684.28 24690.09 14970.79 18481.26 11885.62 25963.15 13894.29 11275.62 13688.87 12088.59 259
LTVRE_ROB69.57 1376.25 23874.54 24581.41 20788.60 16064.38 21079.24 31789.12 18270.76 18669.79 30387.86 19749.09 28993.20 16756.21 31280.16 23986.65 300
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
testing1175.14 25474.01 25078.53 26988.16 17556.38 32080.74 29780.42 32470.67 18772.69 27083.72 29743.61 33089.86 26662.29 25683.76 18989.36 231
fmvsm_s_conf0.1_n83.56 8083.38 7884.10 11984.86 25567.28 14789.40 9383.01 29470.67 18787.08 3893.96 5068.38 8791.45 23588.56 2284.50 17593.56 75
xiu_mvs_v2_base81.69 11181.05 11283.60 14389.15 13968.03 13184.46 24090.02 15070.67 18781.30 11786.53 23963.17 13794.19 12075.60 13788.54 12588.57 260
XVG-OURS-SEG-HR80.81 13079.76 13783.96 13685.60 24068.78 10783.54 26090.50 13470.66 19076.71 19591.66 9660.69 18091.26 24076.94 12181.58 22291.83 138
Anonymous20240521178.25 19477.01 20381.99 19591.03 8260.67 26784.77 23083.90 27870.65 19180.00 13091.20 11141.08 34791.43 23665.21 23185.26 16793.85 57
DP-MVS Recon83.11 9182.09 9886.15 5894.44 1970.92 6888.79 11392.20 8170.53 19279.17 13991.03 11964.12 12796.03 4668.39 20690.14 10391.50 148
FMVSNet177.44 21776.12 22381.40 20886.81 22263.01 23888.39 12889.28 17070.49 19374.39 25287.28 21049.06 29091.11 24360.91 27078.52 25790.09 203
testing368.56 31567.67 31671.22 34287.33 21242.87 39083.06 27071.54 37270.36 19469.08 30984.38 28130.33 37985.69 31537.50 38475.45 30185.09 327
ab-mvs79.51 16278.97 15881.14 21688.46 16560.91 26383.84 25289.24 17570.36 19479.03 14088.87 16863.23 13690.21 26165.12 23282.57 21292.28 124
tfpnnormal74.39 25773.16 26178.08 27686.10 23458.05 29184.65 23487.53 22370.32 19671.22 28585.63 25854.97 21889.86 26643.03 37375.02 31086.32 303
ACMM73.20 880.78 13579.84 13683.58 14489.31 13268.37 12189.99 7391.60 10470.28 19777.25 18189.66 14453.37 23893.53 15074.24 14882.85 20788.85 250
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.5_n_a83.63 7883.41 7784.28 11286.14 23268.12 12789.43 9082.87 29870.27 19887.27 3793.80 5469.09 7891.58 22588.21 2683.65 19493.14 95
ACMH+68.96 1476.01 24274.01 25082.03 19488.60 16065.31 19088.86 11087.55 22270.25 19967.75 31887.47 20841.27 34593.19 16958.37 29275.94 29187.60 275
IB-MVS68.01 1575.85 24473.36 25983.31 15284.76 25666.03 16883.38 26185.06 26170.21 20069.40 30581.05 32845.76 31694.66 10365.10 23375.49 29789.25 234
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thisisatest053079.40 16877.76 18884.31 11087.69 19865.10 19487.36 16184.26 27470.04 20177.42 17788.26 18849.94 27794.79 9970.20 18484.70 17393.03 99
test_fmvsmvis_n_192084.02 7083.87 7284.49 10384.12 26969.37 9788.15 14087.96 21270.01 20283.95 8093.23 6568.80 8591.51 23288.61 2089.96 10792.57 112
v14419279.47 16478.37 17082.78 18183.35 28463.96 21686.96 17290.36 14069.99 20377.50 17585.67 25760.66 18193.77 13974.27 14776.58 27990.62 178
test_fmvsm_n_192085.29 5985.34 5585.13 8086.12 23369.93 8388.65 12190.78 12769.97 20488.27 2393.98 4971.39 5591.54 22988.49 2390.45 9893.91 53
c3_l78.75 18377.91 18081.26 21282.89 30061.56 25784.09 25089.13 18169.97 20475.56 22084.29 28466.36 10692.09 20873.47 15575.48 29890.12 200
v192192079.22 17278.03 17782.80 17883.30 28663.94 21786.80 17890.33 14169.91 20677.48 17685.53 26058.44 19693.75 14173.60 15276.85 27690.71 176
ACMH67.68 1675.89 24373.93 25281.77 19988.71 15766.61 16088.62 12289.01 18569.81 20766.78 33086.70 23041.95 34491.51 23255.64 31378.14 26387.17 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.1_n_a83.32 8682.99 8584.28 11283.79 27668.07 12989.34 9582.85 29969.80 20887.36 3694.06 4268.34 8891.56 22787.95 2783.46 20093.21 92
DPM-MVS84.93 6384.29 7086.84 4790.20 10073.04 2387.12 16893.04 3869.80 20882.85 9691.22 11073.06 3896.02 4776.72 12694.63 4891.46 152
MAR-MVS81.84 10780.70 11885.27 7491.32 7971.53 5489.82 7690.92 12269.77 21078.50 15386.21 24562.36 15094.52 10765.36 23092.05 7889.77 221
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
bld_raw_dy_0_6480.78 13579.36 14785.06 8289.46 12366.03 16889.63 8585.46 25869.76 21181.88 10589.06 16343.39 33195.70 5879.82 9585.74 16693.47 79
XVG-ACMP-BASELINE76.11 24074.27 24981.62 20183.20 28964.67 20283.60 25889.75 15869.75 21271.85 27987.09 21932.78 37292.11 20769.99 18880.43 23788.09 266
BH-w/o78.21 19677.33 19980.84 22488.81 15165.13 19384.87 22887.85 21769.75 21274.52 25184.74 27761.34 16893.11 17458.24 29485.84 16284.27 334
v124078.99 17977.78 18682.64 18483.21 28863.54 22586.62 18590.30 14369.74 21477.33 17985.68 25657.04 21093.76 14073.13 16076.92 27390.62 178
ET-MVSNet_ETH3D78.63 18776.63 21684.64 9786.73 22469.47 9285.01 22584.61 26769.54 21566.51 33786.59 23450.16 27491.75 22076.26 12884.24 18392.69 109
eth_miper_zixun_eth77.92 20676.69 21481.61 20383.00 29661.98 25183.15 26589.20 17769.52 21674.86 24684.35 28361.76 15892.56 19071.50 17372.89 33090.28 194
PVSNet_Blended_VisFu82.62 9681.83 10484.96 8690.80 8969.76 8788.74 11791.70 10269.39 21778.96 14188.46 18165.47 11794.87 9674.42 14588.57 12490.24 195
mvs_tets79.13 17577.77 18783.22 15884.70 25766.37 16389.17 9890.19 14669.38 21875.40 22789.46 15344.17 32693.15 17176.78 12580.70 23390.14 198
PVSNet_BlendedMVS80.60 13980.02 13182.36 19088.85 14765.40 18686.16 19992.00 8769.34 21978.11 16486.09 24966.02 11294.27 11471.52 17182.06 21787.39 280
AdaColmapbinary80.58 14179.42 14484.06 12693.09 5468.91 10489.36 9488.97 18869.27 22075.70 21889.69 14357.20 20995.77 5563.06 24788.41 12887.50 279
ETVMVS72.25 28371.05 28275.84 29987.77 19551.91 35979.39 31574.98 36069.26 22173.71 25782.95 30840.82 34986.14 31146.17 36384.43 18089.47 228
ITE_SJBPF78.22 27381.77 31860.57 26883.30 28769.25 22267.54 32087.20 21536.33 36687.28 30454.34 31874.62 31486.80 296
cl____77.72 21176.76 21180.58 22982.49 30960.48 27083.09 26787.87 21569.22 22374.38 25385.22 26862.10 15591.53 23071.09 17675.41 30289.73 223
DIV-MVS_self_test77.72 21176.76 21180.58 22982.48 31060.48 27083.09 26787.86 21669.22 22374.38 25385.24 26662.10 15591.53 23071.09 17675.40 30389.74 222
jajsoiax79.29 17177.96 17883.27 15484.68 25866.57 16189.25 9790.16 14769.20 22575.46 22489.49 15045.75 31793.13 17376.84 12280.80 23190.11 201
IterMVS-SCA-FT75.43 25073.87 25480.11 23982.69 30464.85 19981.57 28483.47 28569.16 22670.49 28984.15 28951.95 25488.15 29569.23 19572.14 33587.34 282
CL-MVSNet_self_test72.37 28171.46 27675.09 30879.49 35153.53 34980.76 29685.01 26369.12 22770.51 28882.05 32257.92 20084.13 32852.27 32866.00 36187.60 275
AUN-MVS79.21 17377.60 19384.05 12988.71 15767.61 13885.84 20887.26 22969.08 22877.23 18388.14 19453.20 24093.47 15375.50 13973.45 32591.06 162
xiu_mvs_v1_base_debu80.80 13279.72 13884.03 13187.35 20770.19 7985.56 21288.77 19469.06 22981.83 10688.16 19050.91 26592.85 18378.29 10987.56 13389.06 237
xiu_mvs_v1_base80.80 13279.72 13884.03 13187.35 20770.19 7985.56 21288.77 19469.06 22981.83 10688.16 19050.91 26592.85 18378.29 10987.56 13389.06 237
xiu_mvs_v1_base_debi80.80 13279.72 13884.03 13187.35 20770.19 7985.56 21288.77 19469.06 22981.83 10688.16 19050.91 26592.85 18378.29 10987.56 13389.06 237
MVSTER79.01 17877.88 18282.38 18983.07 29364.80 20084.08 25188.95 18969.01 23278.69 14787.17 21754.70 22492.43 19474.69 14280.57 23589.89 216
cl2278.07 20177.01 20381.23 21382.37 31261.83 25483.55 25987.98 21168.96 23375.06 24283.87 29161.40 16791.88 21673.53 15376.39 28389.98 212
miper_ehance_all_eth78.59 18977.76 18881.08 21882.66 30561.56 25783.65 25589.15 17968.87 23475.55 22183.79 29566.49 10492.03 20973.25 15876.39 28389.64 224
PAPR81.66 11480.89 11683.99 13490.27 9864.00 21586.76 18291.77 10168.84 23577.13 18989.50 14967.63 9394.88 9567.55 21188.52 12693.09 96
CPTT-MVS83.73 7483.33 8084.92 8993.28 4970.86 6992.09 3790.38 13768.75 23679.57 13492.83 7660.60 18493.04 17980.92 8491.56 8590.86 170
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11591.89 9368.69 23785.00 5793.10 6774.43 2695.41 6984.97 4195.71 2593.02 100
test_893.13 5272.57 3588.68 12091.84 9768.69 23784.87 6193.10 6774.43 2695.16 78
dmvs_re71.14 29070.58 28672.80 32981.96 31559.68 27975.60 34879.34 33568.55 23969.27 30880.72 33449.42 28376.54 36752.56 32777.79 26482.19 357
MVSFormer82.85 9482.05 9985.24 7587.35 20770.21 7790.50 6290.38 13768.55 23981.32 11489.47 15161.68 15993.46 15478.98 10090.26 10192.05 134
test_djsdf80.30 14879.32 14883.27 15483.98 27365.37 18990.50 6290.38 13768.55 23976.19 20988.70 17156.44 21393.46 15478.98 10080.14 24190.97 167
TEST993.26 5072.96 2588.75 11591.89 9368.44 24285.00 5793.10 6774.36 2895.41 69
FE-MVS77.78 20975.68 22684.08 12388.09 18066.00 17183.13 26687.79 21868.42 24378.01 16785.23 26745.50 31995.12 8059.11 28485.83 16391.11 160
CDPH-MVS85.76 5085.29 5987.17 4393.49 4771.08 6188.58 12392.42 7268.32 24484.61 6793.48 5872.32 4296.15 4579.00 9995.43 3194.28 40
PC_three_145268.21 24592.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
fmvsm_l_conf0.5_n84.47 6784.54 6684.27 11485.42 24368.81 10588.49 12587.26 22968.08 24688.03 2793.49 5772.04 4691.77 21988.90 1789.14 11792.24 127
IterMVS74.29 25872.94 26378.35 27281.53 32263.49 22781.58 28382.49 30268.06 24769.99 29883.69 29851.66 26085.54 31765.85 22771.64 33886.01 311
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dmvs_testset62.63 34264.11 33358.19 37078.55 35624.76 40675.28 34965.94 38667.91 24860.34 36576.01 36753.56 23573.94 38531.79 38967.65 35475.88 377
TAMVS78.89 18277.51 19583.03 16787.80 19167.79 13584.72 23185.05 26267.63 24976.75 19487.70 19962.25 15290.82 25258.53 29187.13 14090.49 185
PVSNet_Blended80.98 12580.34 12682.90 17388.85 14765.40 18684.43 24292.00 8767.62 25078.11 16485.05 27366.02 11294.27 11471.52 17189.50 11289.01 242
TR-MVS77.44 21776.18 22281.20 21488.24 17363.24 23384.61 23586.40 24467.55 25177.81 17086.48 24054.10 23093.15 17157.75 29882.72 21087.20 285
CDS-MVSNet79.07 17777.70 19083.17 16087.60 20168.23 12584.40 24486.20 24767.49 25276.36 20586.54 23861.54 16290.79 25361.86 26287.33 13790.49 185
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
fmvsm_l_conf0.5_n_a84.13 6984.16 7184.06 12685.38 24468.40 12088.34 13286.85 23867.48 25387.48 3493.40 6170.89 5891.61 22388.38 2589.22 11692.16 131
mvs_anonymous79.42 16779.11 15580.34 23484.45 26457.97 29482.59 27387.62 22167.40 25476.17 21288.56 17868.47 8689.59 27270.65 18186.05 15893.47 79
IU-MVS95.30 271.25 5792.95 5166.81 25592.39 688.94 1696.63 494.85 19
baseline275.70 24573.83 25581.30 21183.26 28761.79 25582.57 27480.65 31966.81 25566.88 32883.42 30257.86 20192.19 20563.47 24379.57 24589.91 214
miper_lstm_enhance74.11 26173.11 26277.13 29180.11 34059.62 28072.23 36286.92 23766.76 25770.40 29082.92 30956.93 21182.92 33769.06 19872.63 33188.87 249
OpenMVScopyleft72.83 1079.77 15778.33 17284.09 12285.17 24769.91 8490.57 6090.97 12166.70 25872.17 27691.91 9154.70 22493.96 12561.81 26390.95 9288.41 263
test-LLR72.94 27772.43 26774.48 31481.35 32658.04 29278.38 32877.46 34666.66 25969.95 29979.00 34948.06 29679.24 35366.13 22284.83 17086.15 307
test20.0367.45 32266.95 32368.94 35175.48 36944.84 38677.50 33677.67 34466.66 25963.01 35783.80 29447.02 30278.40 35742.53 37568.86 35283.58 343
test0.0.03 168.00 32067.69 31568.90 35277.55 35947.43 37775.70 34772.95 37166.66 25966.56 33382.29 31948.06 29675.87 37444.97 37074.51 31583.41 344
Syy-MVS68.05 31967.85 31068.67 35584.68 25840.97 39678.62 32673.08 36966.65 26266.74 33179.46 34452.11 25082.30 34032.89 38876.38 28682.75 353
myMVS_eth3d67.02 32566.29 32669.21 35084.68 25842.58 39178.62 32673.08 36966.65 26266.74 33179.46 34431.53 37682.30 34039.43 38176.38 28682.75 353
QAPM80.88 12779.50 14385.03 8388.01 18468.97 10391.59 4392.00 8766.63 26475.15 23992.16 8857.70 20295.45 6563.52 24288.76 12290.66 177
XXY-MVS75.41 25175.56 22974.96 30983.59 28057.82 29880.59 30083.87 27966.54 26574.93 24588.31 18563.24 13580.09 35162.16 25876.85 27686.97 293
OurMVSNet-221017-074.26 25972.42 26879.80 24583.76 27859.59 28185.92 20586.64 24066.39 26666.96 32787.58 20239.46 35391.60 22465.76 22869.27 34888.22 264
SCA74.22 26072.33 26979.91 24284.05 27262.17 24979.96 31079.29 33666.30 26772.38 27480.13 33851.95 25488.60 29059.25 28277.67 26788.96 246
testgi66.67 32866.53 32567.08 36075.62 36841.69 39575.93 34376.50 35466.11 26865.20 34786.59 23435.72 36874.71 38143.71 37173.38 32784.84 329
HY-MVS69.67 1277.95 20577.15 20180.36 23387.57 20560.21 27583.37 26287.78 21966.11 26875.37 22887.06 22163.27 13490.48 25861.38 26782.43 21390.40 189
EG-PatchMatch MVS74.04 26271.82 27280.71 22784.92 25467.42 14285.86 20788.08 20966.04 27064.22 35183.85 29235.10 36992.56 19057.44 30080.83 23082.16 358
CNLPA78.08 20076.79 21081.97 19690.40 9771.07 6287.59 15684.55 26866.03 27172.38 27489.64 14557.56 20486.04 31259.61 27983.35 20188.79 253
Anonymous2024052980.19 15178.89 15984.10 11990.60 9264.75 20188.95 10790.90 12365.97 27280.59 12491.17 11349.97 27693.73 14369.16 19782.70 21193.81 60
TAPA-MVS73.13 979.15 17477.94 17982.79 18089.59 11662.99 24188.16 13991.51 10765.77 27377.14 18891.09 11560.91 17793.21 16450.26 34187.05 14192.17 130
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MSDG73.36 27170.99 28380.49 23184.51 26365.80 17880.71 29886.13 24965.70 27465.46 34283.74 29644.60 32290.91 25151.13 33476.89 27484.74 330
anonymousdsp78.60 18877.15 20182.98 17080.51 33667.08 15287.24 16689.53 16365.66 27575.16 23887.19 21652.52 24192.25 20377.17 11979.34 25089.61 225
test_040272.79 27870.44 28979.84 24488.13 17765.99 17285.93 20484.29 27265.57 27667.40 32485.49 26146.92 30392.61 18835.88 38574.38 31680.94 364
miper_enhance_ethall77.87 20876.86 20780.92 22381.65 31961.38 25982.68 27288.98 18665.52 27775.47 22282.30 31865.76 11692.00 21172.95 16176.39 28389.39 230
UnsupCasMVSNet_eth67.33 32365.99 32771.37 33873.48 37851.47 36575.16 35185.19 26065.20 27860.78 36480.93 33342.35 33877.20 36357.12 30353.69 38485.44 319
WTY-MVS75.65 24675.68 22675.57 30386.40 22956.82 31177.92 33582.40 30365.10 27976.18 21087.72 19863.13 14180.90 34860.31 27481.96 21889.00 244
thisisatest051577.33 22075.38 23483.18 15985.27 24663.80 21982.11 27883.27 28865.06 28075.91 21483.84 29349.54 28194.27 11467.24 21586.19 15591.48 150
MVP-Stereo76.12 23974.46 24781.13 21785.37 24569.79 8684.42 24387.95 21365.03 28167.46 32285.33 26453.28 23991.73 22258.01 29683.27 20281.85 359
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Anonymous2023121178.97 18077.69 19182.81 17790.54 9464.29 21190.11 7291.51 10765.01 28276.16 21388.13 19550.56 27093.03 18069.68 19277.56 26891.11 160
pmmvs674.69 25673.39 25878.61 26581.38 32557.48 30386.64 18487.95 21364.99 28370.18 29386.61 23350.43 27289.52 27362.12 25970.18 34588.83 251
PAPM77.68 21476.40 22081.51 20487.29 21461.85 25383.78 25389.59 16264.74 28471.23 28488.70 17162.59 14593.66 14452.66 32687.03 14289.01 242
MIMVSNet70.69 29669.30 29574.88 31084.52 26256.35 32275.87 34679.42 33464.59 28567.76 31782.41 31641.10 34681.54 34446.64 36181.34 22386.75 298
tpm72.37 28171.71 27374.35 31682.19 31352.00 35779.22 31877.29 34964.56 28672.95 26683.68 29951.35 26183.26 33658.33 29375.80 29287.81 271
MDA-MVSNet-bldmvs66.68 32763.66 33675.75 30079.28 35360.56 26973.92 35878.35 34164.43 28750.13 38779.87 34244.02 32783.67 33146.10 36456.86 37783.03 350
MIMVSNet168.58 31466.78 32473.98 32080.07 34151.82 36180.77 29584.37 26964.40 28859.75 36982.16 32136.47 36583.63 33242.73 37470.33 34486.48 302
D2MVS74.82 25573.21 26079.64 25079.81 34562.56 24480.34 30587.35 22764.37 28968.86 31082.66 31446.37 30790.10 26267.91 20881.24 22586.25 304
PLCcopyleft70.83 1178.05 20276.37 22183.08 16491.88 7467.80 13488.19 13789.46 16564.33 29069.87 30188.38 18353.66 23493.58 14558.86 28782.73 20987.86 270
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PatchmatchNetpermissive73.12 27471.33 27978.49 27183.18 29060.85 26479.63 31278.57 34064.13 29171.73 28079.81 34351.20 26385.97 31357.40 30176.36 28888.66 257
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
KD-MVS_2432*160066.22 33263.89 33473.21 32475.47 37053.42 35170.76 36884.35 27064.10 29266.52 33578.52 35334.55 37084.98 32250.40 33750.33 38881.23 362
miper_refine_blended66.22 33263.89 33473.21 32475.47 37053.42 35170.76 36884.35 27064.10 29266.52 33578.52 35334.55 37084.98 32250.40 33750.33 38881.23 362
tpmvs71.09 29169.29 29676.49 29582.04 31456.04 32578.92 32381.37 31464.05 29467.18 32678.28 35549.74 28089.77 26849.67 34472.37 33283.67 342
F-COLMAP76.38 23774.33 24882.50 18789.28 13466.95 15788.41 12789.03 18364.05 29466.83 32988.61 17546.78 30492.89 18257.48 29978.55 25687.67 273
DP-MVS76.78 22874.57 24383.42 14893.29 4869.46 9488.55 12483.70 28063.98 29670.20 29288.89 16754.01 23294.80 9846.66 35981.88 22086.01 311
原ACMM184.35 10893.01 5768.79 10692.44 6963.96 29781.09 11991.57 10166.06 11195.45 6567.19 21694.82 4688.81 252
PM-MVS66.41 33064.14 33273.20 32673.92 37456.45 31778.97 32264.96 38963.88 29864.72 34880.24 33719.84 39183.44 33466.24 22164.52 36579.71 369
UWE-MVS72.13 28471.49 27574.03 31986.66 22647.70 37681.40 28876.89 35363.60 29975.59 21984.22 28739.94 35285.62 31648.98 34786.13 15788.77 254
jason81.39 12080.29 12884.70 9686.63 22769.90 8585.95 20386.77 23963.24 30081.07 12089.47 15161.08 17592.15 20678.33 10890.07 10692.05 134
jason: jason.
KD-MVS_self_test68.81 31167.59 31872.46 33274.29 37345.45 38177.93 33487.00 23463.12 30163.99 35378.99 35142.32 33984.77 32556.55 31064.09 36687.16 288
gg-mvs-nofinetune69.95 30467.96 30875.94 29883.07 29354.51 34377.23 33970.29 37563.11 30270.32 29162.33 38643.62 32988.69 28853.88 32087.76 13284.62 332
tpmrst72.39 27972.13 27073.18 32780.54 33549.91 37279.91 31179.08 33863.11 30271.69 28179.95 34055.32 21682.77 33865.66 22973.89 32086.87 294
PCF-MVS73.52 780.38 14478.84 16085.01 8487.71 19668.99 10283.65 25591.46 11163.00 30477.77 17290.28 13166.10 10995.09 8661.40 26688.22 13090.94 168
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
COLMAP_ROBcopyleft66.92 1773.01 27570.41 29080.81 22587.13 21765.63 18188.30 13484.19 27562.96 30563.80 35587.69 20038.04 36192.56 19046.66 35974.91 31184.24 335
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Patchmatch-RL test70.24 30167.78 31477.61 28477.43 36059.57 28271.16 36570.33 37462.94 30668.65 31272.77 37750.62 26985.49 31869.58 19366.58 35887.77 272
lupinMVS81.39 12080.27 12984.76 9587.35 20770.21 7785.55 21586.41 24362.85 30781.32 11488.61 17561.68 15992.24 20478.41 10790.26 10191.83 138
test_vis1_n_192075.52 24875.78 22474.75 31379.84 34457.44 30483.26 26385.52 25662.83 30879.34 13886.17 24745.10 32179.71 35278.75 10281.21 22687.10 292
EPMVS69.02 31068.16 30571.59 33679.61 34949.80 37477.40 33766.93 38362.82 30970.01 29679.05 34745.79 31577.86 36156.58 30975.26 30787.13 289
PatchMatch-RL72.38 28070.90 28476.80 29488.60 16067.38 14479.53 31376.17 35762.75 31069.36 30682.00 32445.51 31884.89 32453.62 32180.58 23478.12 372
gm-plane-assit81.40 32453.83 34862.72 31180.94 33192.39 19663.40 245
FMVSNet569.50 30767.96 30874.15 31882.97 29955.35 33480.01 30982.12 30662.56 31263.02 35681.53 32536.92 36481.92 34248.42 34974.06 31885.17 325
sss73.60 26773.64 25773.51 32382.80 30155.01 33876.12 34281.69 31062.47 31374.68 24885.85 25357.32 20778.11 35960.86 27180.93 22887.39 280
WB-MVSnew71.96 28671.65 27472.89 32884.67 26151.88 36082.29 27677.57 34562.31 31473.67 25883.00 30753.49 23781.10 34745.75 36682.13 21685.70 316
AllTest70.96 29268.09 30779.58 25185.15 24963.62 22184.58 23679.83 33062.31 31460.32 36686.73 22432.02 37388.96 28550.28 33971.57 33986.15 307
TestCases79.58 25185.15 24963.62 22179.83 33062.31 31460.32 36686.73 22432.02 37388.96 28550.28 33971.57 33986.15 307
1112_ss77.40 21976.43 21980.32 23589.11 14460.41 27283.65 25587.72 22062.13 31773.05 26586.72 22662.58 14689.97 26562.11 26080.80 23190.59 181
PVSNet64.34 1872.08 28570.87 28575.69 30186.21 23156.44 31874.37 35680.73 31862.06 31870.17 29482.23 32042.86 33683.31 33554.77 31684.45 17987.32 283
LS3D76.95 22674.82 24183.37 15190.45 9567.36 14589.15 10286.94 23661.87 31969.52 30490.61 12651.71 25994.53 10646.38 36286.71 14788.21 265
CostFormer75.24 25373.90 25379.27 25582.65 30658.27 28980.80 29382.73 30161.57 32075.33 23383.13 30655.52 21591.07 24964.98 23478.34 26288.45 261
new-patchmatchnet61.73 34461.73 34561.70 36672.74 38324.50 40769.16 37578.03 34261.40 32156.72 37875.53 37138.42 35876.48 36945.95 36557.67 37684.13 337
ANet_high50.57 36046.10 36463.99 36348.67 40639.13 39770.99 36780.85 31661.39 32231.18 39557.70 39317.02 39473.65 38631.22 39015.89 40379.18 370
MS-PatchMatch73.83 26572.67 26477.30 28983.87 27566.02 17081.82 27984.66 26661.37 32368.61 31382.82 31247.29 29988.21 29459.27 28184.32 18177.68 373
USDC70.33 30068.37 30276.21 29780.60 33456.23 32379.19 31986.49 24260.89 32461.29 36285.47 26231.78 37589.47 27553.37 32376.21 28982.94 352
cascas76.72 22974.64 24282.99 16985.78 23765.88 17582.33 27589.21 17660.85 32572.74 26781.02 32947.28 30093.75 14167.48 21285.02 16889.34 232
MDTV_nov1_ep1369.97 29483.18 29053.48 35077.10 34080.18 32960.45 32669.33 30780.44 33548.89 29486.90 30551.60 33178.51 258
TinyColmap67.30 32464.81 32974.76 31281.92 31756.68 31580.29 30681.49 31260.33 32756.27 38083.22 30324.77 38587.66 30245.52 36769.47 34779.95 368
test-mter71.41 28870.39 29174.48 31481.35 32658.04 29278.38 32877.46 34660.32 32869.95 29979.00 34936.08 36779.24 35366.13 22284.83 17086.15 307
131476.53 23175.30 23780.21 23783.93 27462.32 24784.66 23288.81 19260.23 32970.16 29584.07 29055.30 21790.73 25567.37 21383.21 20387.59 277
PatchT68.46 31767.85 31070.29 34680.70 33343.93 38872.47 36174.88 36160.15 33070.55 28776.57 36449.94 27781.59 34350.58 33574.83 31285.34 320
无先验87.48 15888.98 18660.00 33194.12 12267.28 21488.97 245
CR-MVSNet73.37 26971.27 28079.67 24981.32 32865.19 19175.92 34480.30 32659.92 33272.73 26881.19 32652.50 24286.69 30659.84 27777.71 26587.11 290
TDRefinement67.49 32164.34 33176.92 29273.47 37961.07 26184.86 22982.98 29659.77 33358.30 37385.13 27026.06 38387.89 29847.92 35660.59 37481.81 360
dp66.80 32665.43 32870.90 34579.74 34848.82 37575.12 35374.77 36259.61 33464.08 35277.23 36142.89 33580.72 34948.86 34866.58 35883.16 347
our_test_369.14 30967.00 32275.57 30379.80 34658.80 28477.96 33377.81 34359.55 33562.90 35978.25 35647.43 29883.97 32951.71 33067.58 35583.93 340
Test_1112_low_res76.40 23675.44 23179.27 25589.28 13458.09 29081.69 28287.07 23359.53 33672.48 27286.67 23161.30 16989.33 27660.81 27280.15 24090.41 188
pmmvs474.03 26471.91 27180.39 23281.96 31568.32 12281.45 28682.14 30559.32 33769.87 30185.13 27052.40 24488.13 29660.21 27574.74 31384.73 331
testdata79.97 24190.90 8664.21 21284.71 26559.27 33885.40 5192.91 7362.02 15789.08 28168.95 19991.37 8786.63 301
WB-MVS54.94 35054.72 35255.60 37673.50 37720.90 40874.27 35761.19 39359.16 33950.61 38674.15 37347.19 30175.78 37517.31 40035.07 39570.12 383
ppachtmachnet_test70.04 30367.34 32078.14 27579.80 34661.13 26079.19 31980.59 32059.16 33965.27 34479.29 34646.75 30587.29 30349.33 34566.72 35686.00 313
RPSCF73.23 27371.46 27678.54 26882.50 30859.85 27782.18 27782.84 30058.96 34171.15 28689.41 15745.48 32084.77 32558.82 28871.83 33791.02 166
pmmvs-eth3d70.50 29967.83 31278.52 27077.37 36166.18 16781.82 27981.51 31158.90 34263.90 35480.42 33642.69 33786.28 31058.56 29065.30 36383.11 348
OpenMVS_ROBcopyleft64.09 1970.56 29868.19 30477.65 28380.26 33759.41 28385.01 22582.96 29758.76 34365.43 34382.33 31737.63 36391.23 24245.34 36976.03 29082.32 355
114514_t80.68 13779.51 14284.20 11694.09 3867.27 14889.64 8491.11 11958.75 34474.08 25590.72 12458.10 19895.04 8769.70 19189.42 11490.30 193
Patchmtry70.74 29569.16 29875.49 30580.72 33254.07 34674.94 35580.30 32658.34 34570.01 29681.19 32652.50 24286.54 30753.37 32371.09 34285.87 315
test_cas_vis1_n_192073.76 26673.74 25673.81 32175.90 36559.77 27880.51 30182.40 30358.30 34681.62 11285.69 25544.35 32576.41 37076.29 12778.61 25585.23 322
Anonymous2024052168.80 31267.22 32173.55 32274.33 37254.11 34583.18 26485.61 25558.15 34761.68 36180.94 33130.71 37881.27 34657.00 30573.34 32885.28 321
旧先验286.56 18758.10 34887.04 3988.98 28374.07 149
JIA-IIPM66.32 33162.82 34276.82 29377.09 36261.72 25665.34 38675.38 35858.04 34964.51 34962.32 38742.05 34386.51 30851.45 33269.22 34982.21 356
pmmvs571.55 28770.20 29375.61 30277.83 35856.39 31981.74 28180.89 31557.76 35067.46 32284.49 27849.26 28785.32 32157.08 30475.29 30685.11 326
TESTMET0.1,169.89 30569.00 29972.55 33179.27 35456.85 31078.38 32874.71 36457.64 35168.09 31677.19 36237.75 36276.70 36663.92 24184.09 18584.10 338
RPMNet73.51 26870.49 28882.58 18681.32 32865.19 19175.92 34492.27 7657.60 35272.73 26876.45 36552.30 24595.43 6748.14 35477.71 26587.11 290
SSC-MVS53.88 35353.59 35454.75 37872.87 38219.59 40973.84 35960.53 39557.58 35349.18 38873.45 37646.34 30975.47 37816.20 40332.28 39769.20 384
新几何183.42 14893.13 5270.71 7185.48 25757.43 35481.80 10991.98 9063.28 13392.27 20264.60 23792.99 6687.27 284
YYNet165.03 33562.91 34071.38 33775.85 36656.60 31669.12 37674.66 36557.28 35554.12 38277.87 35845.85 31474.48 38249.95 34261.52 37183.05 349
MDA-MVSNet_test_wron65.03 33562.92 33971.37 33875.93 36456.73 31269.09 37774.73 36357.28 35554.03 38377.89 35745.88 31374.39 38349.89 34361.55 37082.99 351
Anonymous2023120668.60 31367.80 31371.02 34380.23 33950.75 36978.30 33180.47 32256.79 35766.11 34082.63 31546.35 30878.95 35543.62 37275.70 29383.36 345
tpm273.26 27271.46 27678.63 26483.34 28556.71 31480.65 29980.40 32556.63 35873.55 25982.02 32351.80 25891.24 24156.35 31178.42 26087.95 267
CHOSEN 1792x268877.63 21575.69 22583.44 14789.98 10968.58 11878.70 32587.50 22456.38 35975.80 21786.84 22258.67 19491.40 23761.58 26585.75 16490.34 190
HyFIR lowres test77.53 21675.40 23383.94 13789.59 11666.62 15980.36 30488.64 20156.29 36076.45 20185.17 26957.64 20393.28 15961.34 26883.10 20591.91 137
PVSNet_057.27 2061.67 34559.27 34868.85 35379.61 34957.44 30468.01 37873.44 36855.93 36158.54 37270.41 38244.58 32377.55 36247.01 35835.91 39471.55 382
UnsupCasMVSNet_bld63.70 34061.53 34670.21 34773.69 37651.39 36672.82 36081.89 30755.63 36257.81 37571.80 37938.67 35778.61 35649.26 34652.21 38680.63 365
MDTV_nov1_ep13_2view37.79 39875.16 35155.10 36366.53 33449.34 28553.98 31987.94 268
MVS78.19 19876.99 20581.78 19885.66 23866.99 15384.66 23290.47 13555.08 36472.02 27885.27 26563.83 13094.11 12366.10 22489.80 11084.24 335
test22291.50 7768.26 12484.16 24883.20 29154.63 36579.74 13191.63 9958.97 19391.42 8686.77 297
CHOSEN 280x42066.51 32964.71 33071.90 33481.45 32363.52 22657.98 39368.95 38153.57 36662.59 36076.70 36346.22 31075.29 38055.25 31479.68 24476.88 375
ADS-MVSNet266.20 33463.33 33774.82 31179.92 34258.75 28567.55 37975.19 35953.37 36765.25 34575.86 36842.32 33980.53 35041.57 37668.91 35085.18 323
ADS-MVSNet64.36 33862.88 34168.78 35479.92 34247.17 37867.55 37971.18 37353.37 36765.25 34575.86 36842.32 33973.99 38441.57 37668.91 35085.18 323
LF4IMVS64.02 33962.19 34369.50 34970.90 38653.29 35476.13 34177.18 35052.65 36958.59 37180.98 33023.55 38776.52 36853.06 32566.66 35778.68 371
tpm cat170.57 29768.31 30377.35 28882.41 31157.95 29578.08 33280.22 32852.04 37068.54 31477.66 36052.00 25387.84 29951.77 32972.07 33686.25 304
test_vis1_n69.85 30669.21 29771.77 33572.66 38455.27 33681.48 28576.21 35652.03 37175.30 23483.20 30528.97 38076.22 37274.60 14378.41 26183.81 341
Patchmatch-test64.82 33763.24 33869.57 34879.42 35249.82 37363.49 39069.05 38051.98 37259.95 36880.13 33850.91 26570.98 38840.66 37873.57 32387.90 269
N_pmnet52.79 35653.26 35551.40 38078.99 3557.68 41269.52 3723.89 41151.63 37357.01 37774.98 37240.83 34865.96 39537.78 38364.67 36480.56 367
test_fmvs1_n70.86 29470.24 29272.73 33072.51 38555.28 33581.27 28979.71 33251.49 37478.73 14584.87 27427.54 38277.02 36476.06 13079.97 24385.88 314
test_fmvs170.93 29370.52 28772.16 33373.71 37555.05 33780.82 29278.77 33951.21 37578.58 15184.41 28031.20 37776.94 36575.88 13380.12 24284.47 333
PMMVS69.34 30868.67 30071.35 34075.67 36762.03 25075.17 35073.46 36750.00 37668.68 31179.05 34752.07 25278.13 35861.16 26982.77 20873.90 379
test_fmvs268.35 31867.48 31970.98 34469.50 38851.95 35880.05 30876.38 35549.33 37774.65 24984.38 28123.30 38875.40 37974.51 14475.17 30985.60 317
CMPMVSbinary51.72 2170.19 30268.16 30576.28 29673.15 38157.55 30279.47 31483.92 27748.02 37856.48 37984.81 27543.13 33486.42 30962.67 25281.81 22184.89 328
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
mvsany_test162.30 34361.26 34765.41 36269.52 38754.86 33966.86 38149.78 40246.65 37968.50 31583.21 30449.15 28866.28 39456.93 30660.77 37275.11 378
test_fmvs363.36 34161.82 34467.98 35762.51 39546.96 38077.37 33874.03 36645.24 38067.50 32178.79 35212.16 39972.98 38772.77 16466.02 36083.99 339
CVMVSNet72.99 27672.58 26674.25 31784.28 26550.85 36886.41 19083.45 28644.56 38173.23 26387.54 20649.38 28485.70 31465.90 22678.44 25986.19 306
test_vis1_rt60.28 34658.42 34965.84 36167.25 39155.60 33170.44 37060.94 39444.33 38259.00 37066.64 38424.91 38468.67 39262.80 24869.48 34673.25 380
mvsany_test353.99 35251.45 35761.61 36755.51 39944.74 38763.52 38945.41 40643.69 38358.11 37476.45 36517.99 39263.76 39754.77 31647.59 39076.34 376
EU-MVSNet68.53 31667.61 31771.31 34178.51 35747.01 37984.47 23884.27 27342.27 38466.44 33884.79 27640.44 35083.76 33058.76 28968.54 35383.17 346
FPMVS53.68 35451.64 35659.81 36965.08 39351.03 36769.48 37369.58 37841.46 38540.67 39172.32 37816.46 39570.00 39124.24 39765.42 36258.40 393
pmmvs357.79 34854.26 35368.37 35664.02 39456.72 31375.12 35365.17 38740.20 38652.93 38469.86 38320.36 39075.48 37745.45 36855.25 38372.90 381
new_pmnet50.91 35950.29 35952.78 37968.58 38934.94 40163.71 38856.63 39939.73 38744.95 38965.47 38521.93 38958.48 39834.98 38656.62 37864.92 387
MVS-HIRNet59.14 34757.67 35063.57 36481.65 31943.50 38971.73 36365.06 38839.59 38851.43 38557.73 39238.34 35982.58 33939.53 37973.95 31964.62 388
PMMVS240.82 36638.86 36946.69 38153.84 40116.45 41048.61 39649.92 40137.49 38931.67 39460.97 3898.14 40556.42 40028.42 39230.72 39867.19 386
test_vis3_rt49.26 36147.02 36356.00 37354.30 40045.27 38566.76 38348.08 40336.83 39044.38 39053.20 3957.17 40664.07 39656.77 30855.66 38058.65 392
test_f52.09 35750.82 35855.90 37453.82 40242.31 39459.42 39258.31 39836.45 39156.12 38170.96 38112.18 39857.79 39953.51 32256.57 37967.60 385
LCM-MVSNet54.25 35149.68 36167.97 35853.73 40345.28 38466.85 38280.78 31735.96 39239.45 39362.23 3888.70 40378.06 36048.24 35351.20 38780.57 366
APD_test153.31 35549.93 36063.42 36565.68 39250.13 37171.59 36466.90 38434.43 39340.58 39271.56 3808.65 40476.27 37134.64 38755.36 38263.86 389
PMVScopyleft37.38 2244.16 36540.28 36855.82 37540.82 40842.54 39365.12 38763.99 39034.43 39324.48 39957.12 3943.92 40976.17 37317.10 40155.52 38148.75 396
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft45.18 36441.86 36755.16 37777.03 36351.52 36432.50 39980.52 32132.46 39527.12 39835.02 3999.52 40275.50 37622.31 39860.21 37538.45 398
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DSMNet-mixed57.77 34956.90 35160.38 36867.70 39035.61 39969.18 37453.97 40032.30 39657.49 37679.88 34140.39 35168.57 39338.78 38272.37 33276.97 374
testf145.72 36241.96 36557.00 37156.90 39745.32 38266.14 38459.26 39626.19 39730.89 39660.96 3904.14 40770.64 38926.39 39546.73 39255.04 394
APD_test245.72 36241.96 36557.00 37156.90 39745.32 38266.14 38459.26 39626.19 39730.89 39660.96 3904.14 40770.64 38926.39 39546.73 39255.04 394
E-PMN31.77 36730.64 37035.15 38452.87 40427.67 40357.09 39447.86 40424.64 39916.40 40433.05 40011.23 40054.90 40114.46 40418.15 40122.87 400
EMVS30.81 36929.65 37134.27 38550.96 40525.95 40556.58 39546.80 40524.01 40015.53 40530.68 40112.47 39754.43 40212.81 40517.05 40222.43 401
MVEpermissive26.22 2330.37 37025.89 37443.81 38244.55 40735.46 40028.87 40039.07 40718.20 40118.58 40340.18 3982.68 41047.37 40417.07 40223.78 40048.60 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft27.40 38640.17 40926.90 40424.59 41017.44 40223.95 40048.61 3979.77 40126.48 40518.06 39924.47 39928.83 399
wuyk23d16.82 37315.94 37619.46 38758.74 39631.45 40239.22 3973.74 4126.84 4036.04 4062.70 4061.27 41124.29 40610.54 40614.40 4052.63 403
test_method31.52 36829.28 37238.23 38327.03 4106.50 41320.94 40162.21 3924.05 40422.35 40252.50 39613.33 39647.58 40327.04 39434.04 39660.62 390
tmp_tt18.61 37221.40 37510.23 3884.82 41110.11 41134.70 39830.74 4091.48 40523.91 40126.07 40228.42 38113.41 40727.12 39315.35 4047.17 402
EGC-MVSNET52.07 35847.05 36267.14 35983.51 28260.71 26680.50 30267.75 3820.07 4060.43 40775.85 37024.26 38681.54 34428.82 39162.25 36859.16 391
testmvs6.04 3768.02 3790.10 3900.08 4120.03 41569.74 3710.04 4130.05 4070.31 4081.68 4070.02 4130.04 4080.24 4070.02 4060.25 405
test1236.12 3758.11 3780.14 3890.06 4130.09 41471.05 3660.03 4140.04 4080.25 4091.30 4080.05 4120.03 4090.21 4080.01 4070.29 404
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k19.96 37126.61 3730.00 3910.00 4140.00 4160.00 40289.26 1730.00 4090.00 41088.61 17561.62 1610.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas5.26 3777.02 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40963.15 1380.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re7.23 3749.64 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41086.72 2260.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS42.58 39139.46 380
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
No_MVS89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
eth-test20.00 414
eth-test0.00 414
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 42
GSMVS88.96 246
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26288.96 246
sam_mvs50.01 275
ambc75.24 30773.16 38050.51 37063.05 39187.47 22564.28 35077.81 35917.80 39389.73 27057.88 29760.64 37385.49 318
MTGPAbinary92.02 85
test_post178.90 3245.43 40548.81 29585.44 32059.25 282
test_post5.46 40450.36 27384.24 327
patchmatchnet-post74.00 37451.12 26488.60 290
GG-mvs-BLEND75.38 30681.59 32155.80 32879.32 31669.63 37767.19 32573.67 37543.24 33288.90 28750.41 33684.50 17581.45 361
MTMP92.18 3532.83 408
test9_res84.90 4295.70 2692.87 104
agg_prior282.91 6695.45 3092.70 107
agg_prior92.85 5971.94 5191.78 10084.41 7194.93 89
test_prior472.60 3489.01 105
test_prior86.33 5492.61 6569.59 8892.97 5095.48 6493.91 53
新几何286.29 195
旧先验191.96 7165.79 17986.37 24593.08 7169.31 7792.74 6988.74 256
原ACMM286.86 176
testdata291.01 25062.37 255
segment_acmp73.08 37
test1286.80 4992.63 6470.70 7291.79 9982.71 9971.67 5196.16 4494.50 5193.54 77
plane_prior790.08 10368.51 119
plane_prior689.84 11268.70 11460.42 186
plane_prior592.44 6995.38 7178.71 10386.32 15291.33 153
plane_prior491.00 120
plane_prior189.90 111
n20.00 415
nn0.00 415
door-mid69.98 376
lessismore_v078.97 26081.01 33157.15 30765.99 38561.16 36382.82 31239.12 35591.34 23959.67 27846.92 39188.43 262
test1192.23 79
door69.44 379
HQP5-MVS66.98 154
BP-MVS77.47 115
HQP4-MVS77.24 18295.11 8291.03 164
HQP3-MVS92.19 8285.99 160
HQP2-MVS60.17 189
NP-MVS89.62 11568.32 12290.24 132
ACMMP++_ref81.95 219
ACMMP++81.25 224
Test By Simon64.33 125