This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
FOURS195.00 1072.39 3995.06 193.84 1574.49 11391.30 15
CP-MVS87.11 2986.92 3187.68 3494.20 3473.86 793.98 392.82 5876.62 7083.68 8494.46 2567.93 9095.95 5284.20 5594.39 5393.23 87
APDe-MVScopyleft89.15 689.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 8991.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 31
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SteuartSystems-ACMMP88.72 1088.86 1088.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 5977.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 42
3Dnovator+77.84 485.48 5384.47 6888.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19593.37 6260.40 18896.75 2677.20 11793.73 6295.29 5
HFP-MVS87.58 2187.47 2387.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 5994.44 2870.78 6096.61 3284.53 4994.89 4193.66 65
ACMMPR87.44 2287.23 2688.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6694.52 2168.81 8496.65 3084.53 4994.90 4094.00 50
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5394.32 3171.76 4896.93 1985.53 3995.79 2294.32 38
region2R87.42 2487.20 2788.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7094.52 2169.09 7896.70 2784.37 5194.83 4494.03 49
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5894.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CS-MVS86.69 3486.95 3085.90 6390.76 9067.57 14092.83 1793.30 3279.67 1784.57 6992.27 8671.47 5395.02 8684.24 5493.46 6395.13 6
XVS87.18 2886.91 3288.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8594.17 3667.45 9596.60 3383.06 6394.50 5094.07 47
X-MVStestdata80.37 14477.83 18188.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8512.47 39867.45 9596.60 3383.06 6394.50 5094.07 47
mPP-MVS86.67 3686.32 3887.72 3094.41 2273.55 1392.74 2092.22 8076.87 6282.81 9794.25 3466.44 10596.24 4182.88 6794.28 5693.38 81
ACMMPcopyleft85.89 4785.39 5387.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12193.82 5364.33 12596.29 3982.67 7390.69 9493.23 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 6477.57 4183.84 8294.40 3072.24 4396.28 4085.65 3895.30 3593.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MM88.97 473.65 1092.66 2391.17 11686.57 187.39 3594.97 1671.70 5097.68 192.19 195.63 2895.57 1
SF-MVS88.46 1188.74 1187.64 3592.78 6171.95 5092.40 2494.74 275.71 8789.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
SMA-MVScopyleft89.08 789.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10792.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GST-MVS87.42 2487.26 2487.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6393.99 4870.67 6296.82 2284.18 5695.01 3793.90 55
HPM-MVS++copyleft89.02 889.15 888.63 595.01 976.03 192.38 2792.85 5480.26 1187.78 2994.27 3275.89 1996.81 2387.45 3296.44 993.05 96
SR-MVS86.73 3386.67 3486.91 4694.11 3772.11 4792.37 2892.56 6774.50 11286.84 4294.65 2067.31 9795.77 5484.80 4692.85 6792.84 103
CS-MVS-test86.29 4186.48 3685.71 6591.02 8367.21 15292.36 2993.78 1878.97 2883.51 8891.20 11170.65 6395.15 7781.96 7694.89 4194.77 22
EC-MVSNet86.01 4286.38 3784.91 8889.31 13066.27 16692.32 3093.63 2179.37 2084.17 7691.88 9369.04 8295.43 6583.93 5793.77 6193.01 99
EPP-MVSNet83.40 8383.02 8384.57 9690.13 10064.47 20792.32 3090.73 12874.45 11579.35 13591.10 11469.05 8195.12 7872.78 16387.22 13894.13 44
PHI-MVS86.43 3886.17 4287.24 4190.88 8770.96 6592.27 3294.07 972.45 15285.22 5491.90 9269.47 7496.42 3783.28 6295.94 1994.35 36
MVS_030488.08 1388.08 1688.08 1489.67 11372.04 4892.26 3389.26 17384.19 285.01 5595.18 1369.93 6997.20 1491.63 295.60 2994.99 9
HPM-MVScopyleft87.11 2986.98 2987.50 3893.88 3972.16 4592.19 3493.33 3176.07 8283.81 8393.95 5169.77 7296.01 4885.15 4094.66 4694.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MTMP92.18 3532.83 403
HPM-MVS_fast85.35 5784.95 6286.57 5393.69 4270.58 7592.15 3691.62 10373.89 12682.67 9994.09 4062.60 14495.54 6080.93 8392.93 6693.57 74
CPTT-MVS83.73 7383.33 7984.92 8793.28 4970.86 6992.09 3790.38 13768.75 23279.57 13292.83 7660.60 18493.04 17880.92 8491.56 8490.86 167
APD-MVS_3200maxsize85.97 4485.88 4786.22 5792.69 6369.53 8991.93 3892.99 4573.54 13585.94 4594.51 2465.80 11595.61 5783.04 6592.51 7193.53 78
SR-MVS-dyc-post85.77 4885.61 5186.23 5693.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2665.00 12395.56 5882.75 6891.87 7992.50 114
RE-MVS-def85.48 5293.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2663.87 12982.75 6891.87 7992.50 114
APD-MVScopyleft87.44 2287.52 2287.19 4294.24 3272.39 3991.86 4192.83 5573.01 14988.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 105
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SD-MVS88.06 1488.50 1386.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13687.63 3094.27 5793.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8592.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 52
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
QAPM80.88 12579.50 14185.03 8188.01 17968.97 10391.59 4392.00 8766.63 26075.15 23592.16 8857.70 20295.45 6363.52 24088.76 12190.66 174
IS-MVSNet83.15 8782.81 8784.18 11689.94 10963.30 23291.59 4388.46 20479.04 2579.49 13392.16 8865.10 12094.28 11267.71 20991.86 8194.95 10
9.1488.26 1492.84 6091.52 4694.75 173.93 12588.57 2294.67 1975.57 2295.79 5386.77 3595.76 23
TSAR-MVS + MP.88.02 1788.11 1587.72 3093.68 4372.13 4691.41 4792.35 7474.62 11188.90 2093.85 5275.75 2096.00 4987.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
mvsmamba81.69 11080.74 11684.56 9787.45 20066.72 15991.26 4885.89 25174.66 10978.23 15990.56 12754.33 22794.91 8880.73 8883.54 19292.04 134
DeepC-MVS_fast79.65 386.91 3286.62 3587.76 2793.52 4672.37 4191.26 4893.04 3876.62 7084.22 7493.36 6371.44 5496.76 2580.82 8595.33 3494.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HQP_MVS83.64 7683.14 8085.14 7790.08 10268.71 11291.25 5092.44 6979.12 2378.92 14191.00 12060.42 18695.38 6978.71 10286.32 15191.33 149
plane_prior291.25 5079.12 23
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5292.83 5581.50 585.79 4893.47 6073.02 3997.00 1884.90 4294.94 3994.10 45
API-MVS81.99 10481.23 10884.26 11490.94 8570.18 8291.10 5389.32 16971.51 16978.66 14788.28 18665.26 11895.10 8364.74 23691.23 8887.51 273
RRT_MVS80.35 14579.22 15083.74 14087.63 19465.46 18591.08 5488.92 19173.82 12776.44 20390.03 13649.05 29194.25 11776.84 12179.20 24891.51 143
EPNet83.72 7482.92 8686.14 5984.22 26169.48 9191.05 5585.27 25781.30 676.83 19091.65 9766.09 11095.56 5876.00 13293.85 6093.38 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMMP_NAP88.05 1688.08 1687.94 1993.70 4173.05 2290.86 5693.59 2376.27 7988.14 2495.09 1571.06 5796.67 2987.67 2996.37 1494.09 46
CSCG86.41 4086.19 4187.07 4592.91 5872.48 3790.81 5793.56 2473.95 12383.16 9191.07 11675.94 1895.19 7579.94 9494.38 5493.55 76
MSLP-MVS++85.43 5585.76 4984.45 10391.93 7270.24 7690.71 5892.86 5377.46 4784.22 7492.81 7867.16 9992.94 18080.36 9094.35 5590.16 194
3Dnovator76.31 583.38 8482.31 9486.59 5287.94 18072.94 2890.64 5992.14 8477.21 5275.47 22092.83 7658.56 19594.72 9973.24 15992.71 6992.13 130
OpenMVScopyleft72.83 1079.77 15578.33 17084.09 12185.17 24069.91 8490.57 6090.97 12166.70 25472.17 27191.91 9154.70 22493.96 12461.81 26090.95 9188.41 258
CNVR-MVS88.93 989.13 988.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 37
MVSFormer82.85 9382.05 9885.24 7587.35 20170.21 7790.50 6290.38 13768.55 23581.32 11289.47 15161.68 15993.46 15378.98 9990.26 10092.05 132
test_djsdf80.30 14679.32 14683.27 15383.98 26765.37 18990.50 6290.38 13768.55 23576.19 20888.70 17256.44 21393.46 15378.98 9980.14 23690.97 164
save fliter93.80 4072.35 4290.47 6491.17 11674.31 116
nrg03083.88 7083.53 7484.96 8486.77 21769.28 9890.46 6592.67 6174.79 10682.95 9291.33 10872.70 4193.09 17480.79 8779.28 24692.50 114
canonicalmvs85.91 4685.87 4886.04 6089.84 11169.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13181.50 7988.80 12094.77 22
plane_prior68.71 11290.38 6777.62 3986.16 155
DeepC-MVS79.81 287.08 3186.88 3387.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 9694.23 3572.13 4597.09 1684.83 4595.37 3293.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Vis-MVSNetpermissive83.46 8182.80 8885.43 7190.25 9868.74 11090.30 6990.13 14876.33 7880.87 12092.89 7461.00 17694.20 11872.45 16890.97 9093.35 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PGM-MVS86.68 3586.27 3987.90 2294.22 3373.38 1890.22 7093.04 3875.53 9183.86 8194.42 2967.87 9296.64 3182.70 7294.57 4993.66 65
LPG-MVS_test82.08 10181.27 10784.50 9989.23 13468.76 10890.22 7091.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18289.83 215
Anonymous2023121178.97 17877.69 18982.81 17690.54 9364.29 21190.11 7291.51 10765.01 27876.16 21288.13 19550.56 27093.03 17969.68 19277.56 26391.11 156
ACMM73.20 880.78 13379.84 13483.58 14389.31 13068.37 12189.99 7391.60 10470.28 19477.25 18089.66 14453.37 23893.53 14974.24 14882.85 20188.85 246
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP74.13 681.51 11780.57 11984.36 10689.42 12268.69 11589.97 7491.50 11074.46 11475.04 23990.41 13053.82 23394.54 10477.56 11382.91 20089.86 214
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
iter_conf_final80.63 13579.35 14584.46 10289.36 12667.70 13789.85 7584.49 26773.19 14578.30 15788.94 16545.98 31294.56 10279.59 9684.48 17591.11 156
LFMVS81.82 10781.23 10883.57 14491.89 7363.43 23089.84 7681.85 30777.04 5883.21 8993.10 6752.26 24693.43 15571.98 16989.95 10793.85 57
MCST-MVS87.37 2687.25 2587.73 2894.53 1772.46 3889.82 7793.82 1673.07 14784.86 6292.89 7476.22 1796.33 3884.89 4495.13 3694.40 34
MAR-MVS81.84 10680.70 11785.27 7491.32 7971.53 5489.82 7790.92 12269.77 20778.50 15186.21 24562.36 15094.52 10665.36 23092.05 7789.77 218
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MP-MVS-pluss87.67 2087.72 2087.54 3693.64 4472.04 4889.80 7993.50 2575.17 10086.34 4495.29 1270.86 5996.00 4988.78 1996.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
UA-Net85.08 6184.96 6185.45 7092.07 7068.07 12989.78 8090.86 12682.48 384.60 6893.20 6669.35 7595.22 7471.39 17490.88 9293.07 95
alignmvs85.48 5385.32 5685.96 6289.51 11969.47 9289.74 8192.47 6876.17 8087.73 3391.46 10570.32 6593.78 13681.51 7888.95 11794.63 26
VDDNet81.52 11580.67 11884.05 12890.44 9564.13 21489.73 8285.91 25071.11 17683.18 9093.48 5850.54 27193.49 15073.40 15688.25 12894.54 30
CANet86.45 3786.10 4487.51 3790.09 10170.94 6789.70 8392.59 6681.78 481.32 11291.43 10670.34 6497.23 1384.26 5293.36 6494.37 35
test_fmvsmconf0.1_n85.61 5285.65 5085.50 6982.99 29269.39 9689.65 8490.29 14473.31 14187.77 3094.15 3871.72 4993.23 16190.31 490.67 9593.89 56
114514_t80.68 13479.51 14084.20 11594.09 3867.27 14989.64 8591.11 11958.75 33974.08 25190.72 12458.10 19895.04 8569.70 19189.42 11390.30 190
test_fmvsmconf_n85.92 4586.04 4685.57 6885.03 24769.51 9089.62 8690.58 13173.42 13887.75 3194.02 4472.85 4093.24 16090.37 390.75 9393.96 51
DeepPCF-MVS80.84 188.10 1288.56 1286.73 5092.24 6869.03 9989.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 27
test_fmvsmconf0.01_n84.73 6584.52 6785.34 7280.25 33269.03 9989.47 8889.65 16173.24 14486.98 4094.27 3266.62 10193.23 16190.26 589.95 10793.78 62
fmvsm_s_conf0.5_n83.80 7283.71 7384.07 12386.69 21967.31 14789.46 8983.07 29271.09 17786.96 4193.70 5569.02 8391.47 23388.79 1884.62 17193.44 80
fmvsm_s_conf0.5_n_a83.63 7783.41 7684.28 11186.14 22568.12 12789.43 9082.87 29670.27 19587.27 3793.80 5469.09 7891.58 22488.21 2683.65 18893.14 93
UGNet80.83 12779.59 13984.54 9888.04 17768.09 12889.42 9188.16 20676.95 5976.22 20789.46 15349.30 28693.94 12768.48 20490.31 9891.60 140
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tt080578.73 18277.83 18181.43 20585.17 24060.30 27389.41 9290.90 12371.21 17477.17 18688.73 17146.38 30693.21 16372.57 16678.96 24990.79 168
fmvsm_s_conf0.1_n83.56 7983.38 7784.10 11884.86 24967.28 14889.40 9383.01 29370.67 18587.08 3893.96 5068.38 8791.45 23488.56 2284.50 17293.56 75
AdaColmapbinary80.58 13979.42 14284.06 12593.09 5468.91 10489.36 9488.97 18869.27 21675.70 21789.69 14357.20 20995.77 5463.06 24588.41 12787.50 274
fmvsm_s_conf0.1_n_a83.32 8582.99 8484.28 11183.79 27068.07 12989.34 9582.85 29769.80 20587.36 3694.06 4268.34 8891.56 22687.95 2783.46 19493.21 90
PS-MVSNAJss82.07 10281.31 10684.34 10886.51 22167.27 14989.27 9691.51 10771.75 16179.37 13490.22 13463.15 13894.27 11377.69 11282.36 20891.49 146
jajsoiax79.29 16977.96 17683.27 15384.68 25266.57 16289.25 9790.16 14769.20 22075.46 22289.49 15045.75 31793.13 17276.84 12180.80 22690.11 198
mvs_tets79.13 17377.77 18583.22 15784.70 25166.37 16489.17 9890.19 14669.38 21475.40 22589.46 15344.17 32593.15 17076.78 12480.70 22890.14 195
HQP-NCC89.33 12789.17 9876.41 7277.23 182
ACMP_Plane89.33 12789.17 9876.41 7277.23 182
HQP-MVS82.61 9682.02 9984.37 10589.33 12766.98 15589.17 9892.19 8276.41 7277.23 18290.23 13360.17 18995.11 8077.47 11485.99 15891.03 161
LS3D76.95 22574.82 23883.37 15090.45 9467.36 14689.15 10286.94 23561.87 31469.52 29990.61 12651.71 25994.53 10546.38 35886.71 14688.21 260
OPM-MVS83.50 8082.95 8585.14 7788.79 15170.95 6689.13 10391.52 10677.55 4480.96 11991.75 9560.71 17994.50 10779.67 9586.51 14989.97 210
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
TSAR-MVS + GP.85.71 5085.33 5586.84 4791.34 7872.50 3689.07 10487.28 22876.41 7285.80 4790.22 13474.15 3195.37 7281.82 7791.88 7892.65 109
test_prior472.60 3489.01 105
GeoE81.71 10981.01 11383.80 13989.51 11964.45 20888.97 10688.73 19971.27 17378.63 14889.76 14266.32 10793.20 16669.89 18986.02 15793.74 63
Anonymous2024052980.19 14978.89 15784.10 11890.60 9164.75 20188.95 10790.90 12365.97 26880.59 12291.17 11349.97 27693.73 14269.16 19782.70 20593.81 60
VDD-MVS83.01 9282.36 9384.96 8491.02 8366.40 16388.91 10888.11 20777.57 4184.39 7293.29 6452.19 24793.91 13177.05 11988.70 12294.57 29
Effi-MVS+83.62 7883.08 8185.24 7588.38 16667.45 14288.89 10989.15 17975.50 9282.27 10088.28 18669.61 7394.45 10977.81 11187.84 13093.84 59
ACMH+68.96 1476.01 23974.01 24782.03 19388.60 15865.31 19088.86 11087.55 22270.25 19667.75 31387.47 20841.27 34293.19 16858.37 28975.94 28687.60 270
test_prior288.85 11175.41 9384.91 5993.54 5674.28 2983.31 6195.86 20
iter_conf0580.00 15378.70 15983.91 13787.84 18465.83 17588.84 11284.92 26271.61 16678.70 14488.94 16543.88 32794.56 10279.28 9784.28 17891.33 149
DP-MVS Recon83.11 9082.09 9786.15 5894.44 1970.92 6888.79 11392.20 8170.53 18979.17 13791.03 11964.12 12796.03 4668.39 20690.14 10291.50 145
Effi-MVS+-dtu80.03 15178.57 16384.42 10485.13 24468.74 11088.77 11488.10 20874.99 10274.97 24083.49 29757.27 20893.36 15673.53 15380.88 22491.18 154
TEST993.26 5072.96 2588.75 11591.89 9368.44 23885.00 5793.10 6774.36 2895.41 67
train_agg86.43 3886.20 4087.13 4493.26 5072.96 2588.75 11591.89 9368.69 23385.00 5793.10 6774.43 2695.41 6784.97 4195.71 2593.02 98
ETV-MVS84.90 6484.67 6485.59 6789.39 12468.66 11688.74 11792.64 6579.97 1584.10 7785.71 25469.32 7695.38 6980.82 8591.37 8692.72 104
PVSNet_Blended_VisFu82.62 9581.83 10384.96 8490.80 8969.76 8788.74 11791.70 10269.39 21378.96 13988.46 18165.47 11794.87 9474.42 14588.57 12390.24 192
casdiffmvs_mvgpermissive85.99 4386.09 4585.70 6687.65 19367.22 15188.69 11993.04 3879.64 1885.33 5292.54 8373.30 3594.50 10783.49 5991.14 8995.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_893.13 5272.57 3588.68 12091.84 9768.69 23384.87 6193.10 6774.43 2695.16 76
test_fmvsm_n_192085.29 5885.34 5485.13 7986.12 22669.93 8388.65 12190.78 12769.97 20188.27 2393.98 4971.39 5591.54 22888.49 2390.45 9793.91 53
ACMH67.68 1675.89 24073.93 24881.77 19888.71 15566.61 16188.62 12289.01 18569.81 20466.78 32586.70 23041.95 34191.51 23155.64 31078.14 25887.17 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CDPH-MVS85.76 4985.29 5887.17 4393.49 4771.08 6188.58 12392.42 7268.32 24084.61 6793.48 5872.32 4296.15 4579.00 9895.43 3194.28 40
DP-MVS76.78 22774.57 24083.42 14793.29 4869.46 9488.55 12483.70 27963.98 29270.20 28788.89 16854.01 23294.80 9646.66 35581.88 21486.01 306
fmvsm_l_conf0.5_n84.47 6684.54 6584.27 11385.42 23668.81 10588.49 12587.26 22968.08 24288.03 2793.49 5772.04 4691.77 21888.90 1789.14 11692.24 125
WR-MVS_H78.51 18878.49 16478.56 26588.02 17856.38 32088.43 12692.67 6177.14 5473.89 25287.55 20566.25 10889.24 27458.92 28373.55 31990.06 204
F-COLMAP76.38 23574.33 24582.50 18689.28 13266.95 15888.41 12789.03 18364.05 29066.83 32488.61 17646.78 30492.89 18157.48 29678.55 25187.67 268
GBi-Net78.40 18977.40 19481.40 20787.60 19563.01 23888.39 12889.28 17071.63 16375.34 22787.28 21054.80 22091.11 24262.72 24779.57 24090.09 200
test178.40 18977.40 19481.40 20787.60 19563.01 23888.39 12889.28 17071.63 16375.34 22787.28 21054.80 22091.11 24262.72 24779.57 24090.09 200
FMVSNet177.44 21576.12 22181.40 20786.81 21663.01 23888.39 12889.28 17070.49 19074.39 24887.28 21049.06 29091.11 24260.91 26778.52 25290.09 200
tttt051779.40 16677.91 17883.90 13888.10 17463.84 21888.37 13184.05 27571.45 17076.78 19289.12 16149.93 27994.89 9270.18 18583.18 19892.96 101
fmvsm_l_conf0.5_n_a84.13 6884.16 7084.06 12585.38 23768.40 12088.34 13286.85 23767.48 24987.48 3493.40 6170.89 5891.61 22288.38 2589.22 11592.16 129
v7n78.97 17877.58 19283.14 16083.45 27765.51 18288.32 13391.21 11473.69 13072.41 26886.32 24457.93 19993.81 13569.18 19675.65 28990.11 198
COLMAP_ROBcopyleft66.92 1773.01 27170.41 28480.81 22587.13 21165.63 18088.30 13484.19 27462.96 30063.80 35087.69 20038.04 35692.56 18946.66 35574.91 30684.24 330
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FIs82.07 10282.42 9081.04 21988.80 15058.34 28888.26 13593.49 2676.93 6078.47 15391.04 11769.92 7092.34 19969.87 19084.97 16692.44 118
EIA-MVS83.31 8682.80 8884.82 9089.59 11565.59 18188.21 13692.68 6074.66 10978.96 13986.42 24169.06 8095.26 7375.54 13890.09 10393.62 72
PLCcopyleft70.83 1178.05 20076.37 21983.08 16391.88 7467.80 13488.19 13789.46 16564.33 28669.87 29688.38 18353.66 23493.58 14458.86 28482.73 20387.86 265
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MG-MVS83.41 8283.45 7583.28 15292.74 6262.28 24888.17 13889.50 16475.22 9681.49 11192.74 8266.75 10095.11 8072.85 16291.58 8392.45 117
TAPA-MVS73.13 979.15 17277.94 17782.79 17989.59 11562.99 24188.16 13991.51 10765.77 26977.14 18791.09 11560.91 17793.21 16350.26 33887.05 14092.17 128
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_fmvsmvis_n_192084.02 6983.87 7184.49 10184.12 26369.37 9788.15 14087.96 21270.01 19983.95 8093.23 6568.80 8591.51 23188.61 2089.96 10692.57 110
h-mvs3383.15 8782.19 9586.02 6190.56 9270.85 7088.15 14089.16 17876.02 8384.67 6491.39 10761.54 16295.50 6182.71 7075.48 29391.72 139
bld_raw_dy_0_6477.29 22075.98 22281.22 21385.04 24665.47 18488.14 14277.56 34269.20 22073.77 25389.40 15942.24 33888.85 28476.78 12481.64 21689.33 228
PS-CasMVS78.01 20278.09 17477.77 27887.71 19054.39 34188.02 14391.22 11377.50 4673.26 25888.64 17560.73 17888.41 29061.88 25873.88 31690.53 180
OMC-MVS82.69 9481.97 10184.85 8988.75 15367.42 14387.98 14490.87 12574.92 10379.72 13091.65 9762.19 15493.96 12475.26 14086.42 15093.16 92
v879.97 15479.02 15582.80 17784.09 26464.50 20687.96 14590.29 14474.13 12275.24 23386.81 22362.88 14393.89 13374.39 14675.40 29890.00 206
FC-MVSNet-test81.52 11582.02 9980.03 24088.42 16555.97 32587.95 14693.42 2977.10 5677.38 17790.98 12269.96 6891.79 21768.46 20584.50 17292.33 119
CP-MVSNet78.22 19378.34 16977.84 27687.83 18554.54 33987.94 14791.17 11677.65 3873.48 25688.49 18062.24 15388.43 28962.19 25474.07 31290.55 179
PAPM_NR83.02 9182.41 9184.82 9092.47 6766.37 16487.93 14891.80 9873.82 12777.32 17990.66 12567.90 9194.90 9170.37 18389.48 11293.19 91
PEN-MVS77.73 20877.69 18977.84 27687.07 21253.91 34487.91 14991.18 11577.56 4373.14 26088.82 17061.23 17189.17 27559.95 27372.37 32790.43 184
ECVR-MVScopyleft79.61 15779.26 14880.67 22890.08 10254.69 33787.89 15077.44 34574.88 10480.27 12492.79 7948.96 29392.45 19268.55 20392.50 7294.86 17
v1079.74 15678.67 16082.97 17084.06 26564.95 19687.88 15190.62 13073.11 14675.11 23686.56 23761.46 16594.05 12373.68 15175.55 29189.90 212
test250677.30 21976.49 21579.74 24690.08 10252.02 35387.86 15263.10 38674.88 10480.16 12792.79 7938.29 35592.35 19868.74 20292.50 7294.86 17
casdiffmvspermissive85.11 6085.14 5985.01 8287.20 20965.77 17987.75 15392.83 5577.84 3784.36 7392.38 8572.15 4493.93 13081.27 8190.48 9695.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TranMVSNet+NR-MVSNet80.84 12680.31 12582.42 18787.85 18362.33 24687.74 15491.33 11280.55 977.99 16789.86 13965.23 11992.62 18667.05 21875.24 30392.30 121
EI-MVSNet-Vis-set84.19 6783.81 7285.31 7388.18 17167.85 13387.66 15589.73 15980.05 1482.95 9289.59 14870.74 6194.82 9580.66 8984.72 16993.28 86
UniMVSNet (Re)81.60 11481.11 11083.09 16288.38 16664.41 20987.60 15693.02 4278.42 3278.56 15088.16 19069.78 7193.26 15969.58 19376.49 27591.60 140
CNLPA78.08 19876.79 20881.97 19590.40 9671.07 6287.59 15784.55 26666.03 26772.38 26989.64 14557.56 20486.04 30859.61 27683.35 19588.79 249
DTE-MVSNet76.99 22376.80 20777.54 28386.24 22353.06 35287.52 15890.66 12977.08 5772.50 26688.67 17460.48 18589.52 26957.33 29970.74 33890.05 205
无先验87.48 15988.98 18660.00 32694.12 12167.28 21488.97 241
FMVSNet278.20 19577.21 19881.20 21487.60 19562.89 24287.47 16089.02 18471.63 16375.29 23287.28 21054.80 22091.10 24562.38 25279.38 24489.61 222
EI-MVSNet-UG-set83.81 7183.38 7785.09 8087.87 18267.53 14187.44 16189.66 16079.74 1682.23 10189.41 15770.24 6694.74 9879.95 9383.92 18192.99 100
thisisatest053079.40 16677.76 18684.31 10987.69 19265.10 19487.36 16284.26 27370.04 19877.42 17688.26 18849.94 27794.79 9770.20 18484.70 17093.03 97
CANet_DTU80.61 13679.87 13382.83 17485.60 23363.17 23787.36 16288.65 20076.37 7675.88 21488.44 18253.51 23693.07 17573.30 15789.74 11092.25 123
test111179.43 16479.18 15280.15 23889.99 10753.31 35087.33 16477.05 34875.04 10180.23 12692.77 8148.97 29292.33 20068.87 20092.40 7494.81 20
baseline84.93 6284.98 6084.80 9287.30 20765.39 18887.30 16592.88 5277.62 3984.04 7992.26 8771.81 4793.96 12481.31 8090.30 9995.03 8
UniMVSNet_ETH3D79.10 17478.24 17281.70 19986.85 21460.24 27487.28 16688.79 19374.25 11876.84 18990.53 12949.48 28291.56 22667.98 20782.15 20993.29 85
anonymousdsp78.60 18677.15 19982.98 16980.51 33067.08 15387.24 16789.53 16365.66 27175.16 23487.19 21652.52 24192.25 20277.17 11879.34 24589.61 222
UniMVSNet_NR-MVSNet81.88 10581.54 10582.92 17188.46 16363.46 22887.13 16892.37 7380.19 1278.38 15489.14 16071.66 5293.05 17670.05 18676.46 27692.25 123
DPM-MVS84.93 6284.29 6986.84 4790.20 9973.04 2387.12 16993.04 3869.80 20582.85 9591.22 11073.06 3896.02 4776.72 12694.63 4791.46 148
v114480.03 15179.03 15483.01 16783.78 27164.51 20487.11 17090.57 13371.96 16078.08 16586.20 24661.41 16693.94 12774.93 14177.23 26490.60 177
v2v48280.23 14779.29 14783.05 16583.62 27364.14 21387.04 17189.97 15273.61 13278.18 16287.22 21461.10 17493.82 13476.11 12976.78 27391.18 154
DU-MVS81.12 12280.52 12182.90 17287.80 18663.46 22887.02 17291.87 9579.01 2678.38 15489.07 16265.02 12193.05 17670.05 18676.46 27692.20 126
v14419279.47 16278.37 16882.78 18083.35 27863.96 21686.96 17390.36 14069.99 20077.50 17485.67 25760.66 18193.77 13874.27 14776.58 27490.62 175
Fast-Effi-MVS+-dtu78.02 20176.49 21582.62 18483.16 28666.96 15786.94 17487.45 22672.45 15271.49 27884.17 28554.79 22391.58 22467.61 21080.31 23389.30 229
v119279.59 15978.43 16783.07 16483.55 27564.52 20386.93 17590.58 13170.83 18177.78 17085.90 25059.15 19293.94 12773.96 15077.19 26690.76 170
EPNet_dtu75.46 24674.86 23777.23 28782.57 30154.60 33886.89 17683.09 29171.64 16266.25 33485.86 25255.99 21488.04 29454.92 31286.55 14889.05 236
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
原ACMM286.86 177
VPA-MVSNet80.60 13780.55 12080.76 22688.07 17660.80 26586.86 17791.58 10575.67 9080.24 12589.45 15563.34 13290.25 25970.51 18279.22 24791.23 153
v192192079.22 17078.03 17582.80 17783.30 28063.94 21786.80 17990.33 14169.91 20377.48 17585.53 26058.44 19693.75 14073.60 15276.85 27190.71 173
IterMVS-LS80.06 15079.38 14382.11 19185.89 22863.20 23586.79 18089.34 16874.19 11975.45 22386.72 22666.62 10192.39 19572.58 16576.86 27090.75 171
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TransMVSNet (Re)75.39 24974.56 24177.86 27585.50 23557.10 30886.78 18186.09 24972.17 15871.53 27787.34 20963.01 14289.31 27356.84 30461.83 36487.17 281
Baseline_NR-MVSNet78.15 19778.33 17077.61 28185.79 22956.21 32386.78 18185.76 25373.60 13377.93 16887.57 20365.02 12188.99 27867.14 21775.33 30087.63 269
PAPR81.66 11380.89 11583.99 13390.27 9764.00 21586.76 18391.77 10168.84 23177.13 18889.50 14967.63 9394.88 9367.55 21188.52 12593.09 94
Vis-MVSNet (Re-imp)78.36 19178.45 16578.07 27488.64 15751.78 35886.70 18479.63 32974.14 12175.11 23690.83 12361.29 17089.75 26558.10 29291.60 8292.69 107
pmmvs674.69 25273.39 25478.61 26381.38 31957.48 30386.64 18587.95 21364.99 27970.18 28886.61 23350.43 27289.52 26962.12 25670.18 34088.83 247
v124078.99 17777.78 18482.64 18383.21 28263.54 22586.62 18690.30 14369.74 21077.33 17885.68 25657.04 21093.76 13973.13 16076.92 26890.62 175
MTAPA87.23 2787.00 2887.90 2294.18 3574.25 586.58 18792.02 8579.45 1985.88 4694.80 1768.07 8996.21 4286.69 3695.34 3393.23 87
旧先验286.56 18858.10 34387.04 3988.98 27974.07 149
FMVSNet377.88 20576.85 20680.97 22286.84 21562.36 24586.52 18988.77 19471.13 17575.34 22786.66 23254.07 23191.10 24562.72 24779.57 24089.45 225
dcpmvs_285.63 5186.15 4384.06 12591.71 7564.94 19786.47 19091.87 9573.63 13186.60 4393.02 7276.57 1591.87 21683.36 6092.15 7595.35 3
pm-mvs177.25 22176.68 21378.93 25984.22 26158.62 28686.41 19188.36 20571.37 17173.31 25788.01 19661.22 17289.15 27664.24 23873.01 32489.03 237
EI-MVSNet80.52 14079.98 13082.12 19084.28 25963.19 23686.41 19188.95 18974.18 12078.69 14587.54 20666.62 10192.43 19372.57 16680.57 23090.74 172
CVMVSNet72.99 27272.58 26274.25 31384.28 25950.85 36486.41 19183.45 28544.56 37673.23 25987.54 20649.38 28485.70 31065.90 22678.44 25486.19 301
NR-MVSNet80.23 14779.38 14382.78 18087.80 18663.34 23186.31 19491.09 12079.01 2672.17 27189.07 16267.20 9892.81 18566.08 22575.65 28992.20 126
v14878.72 18377.80 18381.47 20482.73 29761.96 25286.30 19588.08 20973.26 14276.18 20985.47 26262.46 14892.36 19771.92 17073.82 31790.09 200
新几何286.29 196
test_yl81.17 12080.47 12283.24 15589.13 13863.62 22186.21 19789.95 15372.43 15581.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
DCV-MVSNet81.17 12080.47 12283.24 15589.13 13863.62 22186.21 19789.95 15372.43 15581.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
PVSNet_BlendedMVS80.60 13780.02 12982.36 18988.85 14565.40 18686.16 19992.00 8769.34 21578.11 16386.09 24966.02 11294.27 11371.52 17182.06 21187.39 275
MVS_Test83.15 8783.06 8283.41 14986.86 21363.21 23486.11 20092.00 8774.31 11682.87 9489.44 15670.03 6793.21 16377.39 11688.50 12693.81 60
BH-untuned79.47 16278.60 16282.05 19289.19 13665.91 17386.07 20188.52 20372.18 15775.42 22487.69 20061.15 17393.54 14860.38 27086.83 14486.70 294
MVS_111021_HR85.14 5984.75 6386.32 5591.65 7672.70 3085.98 20290.33 14176.11 8182.08 10291.61 10071.36 5694.17 12081.02 8292.58 7092.08 131
jason81.39 11880.29 12684.70 9486.63 22069.90 8585.95 20386.77 23863.24 29581.07 11889.47 15161.08 17592.15 20578.33 10790.07 10592.05 132
jason: jason.
test_040272.79 27470.44 28379.84 24488.13 17265.99 17185.93 20484.29 27165.57 27267.40 31985.49 26146.92 30392.61 18735.88 38074.38 31180.94 359
OurMVSNet-221017-074.26 25572.42 26479.80 24583.76 27259.59 28185.92 20586.64 23966.39 26266.96 32287.58 20239.46 34891.60 22365.76 22869.27 34388.22 259
hse-mvs281.72 10880.94 11484.07 12388.72 15467.68 13885.87 20687.26 22976.02 8384.67 6488.22 18961.54 16293.48 15182.71 7073.44 32191.06 159
EG-PatchMatch MVS74.04 25871.82 26880.71 22784.92 24867.42 14385.86 20788.08 20966.04 26664.22 34683.85 28935.10 36492.56 18957.44 29780.83 22582.16 353
AUN-MVS79.21 17177.60 19184.05 12888.71 15567.61 13985.84 20887.26 22969.08 22477.23 18288.14 19453.20 24093.47 15275.50 13973.45 32091.06 159
thres100view90076.50 23075.55 22879.33 25489.52 11856.99 30985.83 20983.23 28873.94 12476.32 20587.12 21851.89 25691.95 21148.33 34683.75 18489.07 231
CLD-MVS82.31 9881.65 10484.29 11088.47 16267.73 13685.81 21092.35 7475.78 8678.33 15686.58 23664.01 12894.35 11076.05 13187.48 13590.79 168
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SixPastTwentyTwo73.37 26571.26 27679.70 24785.08 24557.89 29685.57 21183.56 28271.03 17965.66 33685.88 25142.10 33992.57 18859.11 28163.34 36288.65 253
xiu_mvs_v1_base_debu80.80 13079.72 13684.03 13087.35 20170.19 7985.56 21288.77 19469.06 22581.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 233
xiu_mvs_v1_base80.80 13079.72 13684.03 13087.35 20170.19 7985.56 21288.77 19469.06 22581.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 233
xiu_mvs_v1_base_debi80.80 13079.72 13684.03 13087.35 20170.19 7985.56 21288.77 19469.06 22581.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 233
V4279.38 16878.24 17282.83 17481.10 32465.50 18385.55 21589.82 15571.57 16878.21 16086.12 24860.66 18193.18 16975.64 13575.46 29589.81 217
lupinMVS81.39 11880.27 12784.76 9387.35 20170.21 7785.55 21586.41 24262.85 30281.32 11288.61 17661.68 15992.24 20378.41 10690.26 10091.83 136
Fast-Effi-MVS+80.81 12879.92 13183.47 14588.85 14564.51 20485.53 21789.39 16770.79 18278.49 15285.06 27267.54 9493.58 14467.03 21986.58 14792.32 120
thres600view776.50 23075.44 22979.68 24889.40 12357.16 30685.53 21783.23 28873.79 12976.26 20687.09 21951.89 25691.89 21448.05 35183.72 18790.00 206
DELS-MVS85.41 5685.30 5785.77 6488.49 16167.93 13285.52 21993.44 2778.70 2983.63 8789.03 16474.57 2495.71 5680.26 9294.04 5993.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
tfpn200view976.42 23375.37 23379.55 25389.13 13857.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24891.95 21148.33 34683.75 18489.07 231
thres40076.50 23075.37 23379.86 24389.13 13857.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24891.95 21148.33 34683.75 18490.00 206
MVS_111021_LR82.61 9682.11 9684.11 11788.82 14871.58 5385.15 22286.16 24774.69 10880.47 12391.04 11762.29 15190.55 25680.33 9190.08 10490.20 193
baseline176.98 22476.75 21177.66 27988.13 17255.66 32885.12 22381.89 30573.04 14876.79 19188.90 16762.43 14987.78 29763.30 24471.18 33689.55 224
WR-MVS79.49 16179.22 15080.27 23688.79 15158.35 28785.06 22488.61 20278.56 3077.65 17288.34 18463.81 13190.66 25564.98 23477.22 26591.80 138
ET-MVSNet_ETH3D78.63 18576.63 21484.64 9586.73 21869.47 9285.01 22584.61 26569.54 21166.51 33286.59 23450.16 27491.75 21976.26 12884.24 17992.69 107
OpenMVS_ROBcopyleft64.09 1970.56 29268.19 29877.65 28080.26 33159.41 28385.01 22582.96 29558.76 33865.43 33882.33 31237.63 35891.23 24145.34 36476.03 28582.32 350
BH-RMVSNet79.61 15778.44 16683.14 16089.38 12565.93 17284.95 22787.15 23273.56 13478.19 16189.79 14156.67 21293.36 15659.53 27786.74 14590.13 196
BH-w/o78.21 19477.33 19780.84 22488.81 14965.13 19384.87 22887.85 21769.75 20874.52 24784.74 27761.34 16893.11 17358.24 29185.84 16084.27 329
TDRefinement67.49 31564.34 32576.92 28973.47 37361.07 26184.86 22982.98 29459.77 32858.30 36885.13 27026.06 37887.89 29547.92 35260.59 36981.81 355
Anonymous20240521178.25 19277.01 20181.99 19491.03 8260.67 26784.77 23083.90 27770.65 18880.00 12891.20 11141.08 34491.43 23565.21 23185.26 16493.85 57
TAMVS78.89 18077.51 19383.03 16687.80 18667.79 13584.72 23185.05 26067.63 24576.75 19387.70 19962.25 15290.82 25158.53 28887.13 13990.49 182
131476.53 22975.30 23580.21 23783.93 26862.32 24784.66 23288.81 19260.23 32470.16 29084.07 28755.30 21790.73 25467.37 21383.21 19787.59 272
MVS78.19 19676.99 20381.78 19785.66 23166.99 15484.66 23290.47 13555.08 35972.02 27385.27 26563.83 13094.11 12266.10 22489.80 10984.24 330
tfpnnormal74.39 25373.16 25778.08 27386.10 22758.05 29184.65 23487.53 22370.32 19371.22 28085.63 25854.97 21889.86 26343.03 36875.02 30586.32 298
TR-MVS77.44 21576.18 22081.20 21488.24 17063.24 23384.61 23586.40 24367.55 24777.81 16986.48 24054.10 23093.15 17057.75 29582.72 20487.20 280
AllTest70.96 28668.09 30179.58 25185.15 24263.62 22184.58 23679.83 32662.31 30960.32 36186.73 22432.02 36888.96 28150.28 33671.57 33486.15 302
FA-MVS(test-final)80.96 12479.91 13284.10 11888.30 16965.01 19584.55 23790.01 15173.25 14379.61 13187.57 20358.35 19794.72 9971.29 17586.25 15392.56 111
EU-MVSNet68.53 31067.61 31171.31 33678.51 35147.01 37484.47 23884.27 27242.27 37966.44 33384.79 27640.44 34683.76 32558.76 28668.54 34883.17 341
VNet82.21 9982.41 9181.62 20090.82 8860.93 26284.47 23889.78 15676.36 7784.07 7891.88 9364.71 12490.26 25870.68 18088.89 11893.66 65
xiu_mvs_v2_base81.69 11081.05 11183.60 14289.15 13768.03 13184.46 24090.02 15070.67 18581.30 11586.53 23963.17 13794.19 11975.60 13788.54 12488.57 255
VPNet78.69 18478.66 16178.76 26188.31 16855.72 32784.45 24186.63 24076.79 6478.26 15890.55 12859.30 19189.70 26766.63 22077.05 26790.88 166
PVSNet_Blended80.98 12380.34 12482.90 17288.85 14565.40 18684.43 24292.00 8767.62 24678.11 16385.05 27366.02 11294.27 11371.52 17189.50 11189.01 238
MVP-Stereo76.12 23774.46 24481.13 21785.37 23869.79 8684.42 24387.95 21365.03 27767.46 31785.33 26453.28 23991.73 22158.01 29383.27 19681.85 354
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CDS-MVSNet79.07 17577.70 18883.17 15987.60 19568.23 12584.40 24486.20 24667.49 24876.36 20486.54 23861.54 16290.79 25261.86 25987.33 13690.49 182
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
K. test v371.19 28368.51 29579.21 25783.04 28957.78 29984.35 24576.91 34972.90 15162.99 35382.86 30639.27 34991.09 24761.65 26152.66 38088.75 250
PS-MVSNAJ81.69 11081.02 11283.70 14189.51 11968.21 12684.28 24690.09 14970.79 18281.26 11685.62 25963.15 13894.29 11175.62 13688.87 11988.59 254
patch_mono-283.65 7584.54 6580.99 22090.06 10665.83 17584.21 24788.74 19871.60 16785.01 5592.44 8474.51 2583.50 32882.15 7592.15 7593.64 71
test22291.50 7768.26 12484.16 24883.20 29054.63 36079.74 12991.63 9958.97 19391.42 8586.77 292
testdata184.14 24975.71 87
c3_l78.75 18177.91 17881.26 21182.89 29461.56 25784.09 25089.13 18169.97 20175.56 21884.29 28466.36 10692.09 20773.47 15575.48 29390.12 197
MVSTER79.01 17677.88 18082.38 18883.07 28764.80 20084.08 25188.95 18969.01 22878.69 14587.17 21754.70 22492.43 19374.69 14280.57 23089.89 213
ab-mvs79.51 16078.97 15681.14 21688.46 16360.91 26383.84 25289.24 17570.36 19179.03 13888.87 16963.23 13690.21 26065.12 23282.57 20692.28 122
PAPM77.68 21276.40 21881.51 20387.29 20861.85 25383.78 25389.59 16264.74 28071.23 27988.70 17262.59 14593.66 14352.66 32387.03 14189.01 238
diffmvspermissive82.10 10081.88 10282.76 18283.00 29063.78 22083.68 25489.76 15772.94 15082.02 10389.85 14065.96 11490.79 25282.38 7487.30 13793.71 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
miper_ehance_all_eth78.59 18777.76 18681.08 21882.66 29961.56 25783.65 25589.15 17968.87 23075.55 21983.79 29266.49 10492.03 20873.25 15876.39 27889.64 221
1112_ss77.40 21776.43 21780.32 23589.11 14260.41 27283.65 25587.72 22062.13 31273.05 26186.72 22662.58 14689.97 26262.11 25780.80 22690.59 178
PCF-MVS73.52 780.38 14278.84 15885.01 8287.71 19068.99 10283.65 25591.46 11163.00 29977.77 17190.28 13166.10 10995.09 8461.40 26388.22 12990.94 165
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
XVG-ACMP-BASELINE76.11 23874.27 24681.62 20083.20 28364.67 20283.60 25889.75 15869.75 20871.85 27487.09 21932.78 36792.11 20669.99 18880.43 23288.09 261
cl2278.07 19977.01 20181.23 21282.37 30661.83 25483.55 25987.98 21168.96 22975.06 23883.87 28861.40 16791.88 21573.53 15376.39 27889.98 209
XVG-OURS-SEG-HR80.81 12879.76 13583.96 13585.60 23368.78 10783.54 26090.50 13470.66 18776.71 19491.66 9660.69 18091.26 23976.94 12081.58 21791.83 136
IB-MVS68.01 1575.85 24173.36 25583.31 15184.76 25066.03 16883.38 26185.06 25970.21 19769.40 30081.05 32345.76 31694.66 10165.10 23375.49 29289.25 230
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HY-MVS69.67 1277.95 20377.15 19980.36 23387.57 19960.21 27583.37 26287.78 21966.11 26475.37 22687.06 22163.27 13490.48 25761.38 26482.43 20790.40 186
test_vis1_n_192075.52 24575.78 22374.75 30979.84 33857.44 30483.26 26385.52 25562.83 30379.34 13686.17 24745.10 32179.71 34778.75 10181.21 22187.10 287
Anonymous2024052168.80 30667.22 31573.55 31774.33 36654.11 34283.18 26485.61 25458.15 34261.68 35680.94 32630.71 37381.27 34157.00 30273.34 32385.28 316
eth_miper_zixun_eth77.92 20476.69 21281.61 20283.00 29061.98 25183.15 26589.20 17769.52 21274.86 24284.35 28361.76 15892.56 18971.50 17372.89 32590.28 191
FE-MVS77.78 20775.68 22584.08 12288.09 17566.00 17083.13 26687.79 21868.42 23978.01 16685.23 26745.50 31995.12 7859.11 28185.83 16191.11 156
cl____77.72 20976.76 20980.58 22982.49 30360.48 27083.09 26787.87 21569.22 21874.38 24985.22 26862.10 15591.53 22971.09 17675.41 29789.73 220
DIV-MVS_self_test77.72 20976.76 20980.58 22982.48 30460.48 27083.09 26787.86 21669.22 21874.38 24985.24 26662.10 15591.53 22971.09 17675.40 29889.74 219
thres20075.55 24474.47 24378.82 26087.78 18957.85 29783.07 26983.51 28372.44 15475.84 21584.42 27952.08 25191.75 21947.41 35383.64 18986.86 290
testing368.56 30967.67 31071.22 33787.33 20642.87 38583.06 27071.54 36770.36 19169.08 30484.38 28130.33 37485.69 31137.50 37975.45 29685.09 322
XVG-OURS80.41 14179.23 14983.97 13485.64 23269.02 10183.03 27190.39 13671.09 17777.63 17391.49 10454.62 22691.35 23775.71 13483.47 19391.54 142
miper_enhance_ethall77.87 20676.86 20580.92 22381.65 31361.38 25982.68 27288.98 18665.52 27375.47 22082.30 31365.76 11692.00 21072.95 16176.39 27889.39 226
mvs_anonymous79.42 16579.11 15380.34 23484.45 25857.97 29482.59 27387.62 22167.40 25076.17 21188.56 17968.47 8689.59 26870.65 18186.05 15693.47 79
baseline275.70 24273.83 25181.30 21083.26 28161.79 25582.57 27480.65 31666.81 25166.88 32383.42 29857.86 20192.19 20463.47 24179.57 24089.91 211
cascas76.72 22874.64 23982.99 16885.78 23065.88 17482.33 27589.21 17660.85 32072.74 26381.02 32447.28 30093.75 14067.48 21285.02 16589.34 227
WB-MVSnew71.96 28071.65 27072.89 32384.67 25551.88 35682.29 27677.57 34162.31 30973.67 25483.00 30353.49 23781.10 34245.75 36182.13 21085.70 311
RPSCF73.23 26971.46 27178.54 26682.50 30259.85 27782.18 27782.84 29858.96 33671.15 28189.41 15745.48 32084.77 32058.82 28571.83 33291.02 163
thisisatest051577.33 21875.38 23283.18 15885.27 23963.80 21982.11 27883.27 28765.06 27675.91 21383.84 29049.54 28194.27 11367.24 21586.19 15491.48 147
pmmvs-eth3d70.50 29367.83 30678.52 26777.37 35566.18 16781.82 27981.51 30958.90 33763.90 34980.42 33142.69 33386.28 30758.56 28765.30 35883.11 343
MS-PatchMatch73.83 26172.67 26077.30 28683.87 26966.02 16981.82 27984.66 26461.37 31868.61 30882.82 30747.29 29988.21 29159.27 27884.32 17777.68 368
pmmvs571.55 28170.20 28775.61 29877.83 35256.39 31981.74 28180.89 31257.76 34567.46 31784.49 27849.26 28785.32 31657.08 30175.29 30185.11 321
Test_1112_low_res76.40 23475.44 22979.27 25589.28 13258.09 29081.69 28287.07 23359.53 33172.48 26786.67 23161.30 16989.33 27260.81 26980.15 23590.41 185
IterMVS74.29 25472.94 25978.35 26981.53 31663.49 22781.58 28382.49 30068.06 24369.99 29383.69 29451.66 26085.54 31265.85 22771.64 33386.01 306
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT75.43 24773.87 25080.11 23982.69 29864.85 19981.57 28483.47 28469.16 22270.49 28484.15 28651.95 25488.15 29269.23 19572.14 33087.34 277
test_vis1_n69.85 30069.21 29171.77 33072.66 37855.27 33381.48 28576.21 35252.03 36675.30 23183.20 30128.97 37576.22 36774.60 14378.41 25683.81 336
pmmvs474.03 26071.91 26780.39 23281.96 30968.32 12281.45 28682.14 30359.32 33269.87 29685.13 27052.40 24488.13 29360.21 27274.74 30884.73 326
GA-MVS76.87 22675.17 23681.97 19582.75 29662.58 24381.44 28786.35 24572.16 15974.74 24382.89 30546.20 31192.02 20968.85 20181.09 22291.30 152
test_fmvs1_n70.86 28870.24 28672.73 32572.51 37955.28 33281.27 28879.71 32851.49 36978.73 14384.87 27427.54 37777.02 35976.06 13079.97 23885.88 309
testing22274.04 25872.66 26178.19 27187.89 18155.36 33081.06 28979.20 33371.30 17274.65 24583.57 29639.11 35188.67 28651.43 33085.75 16290.53 180
test_fmvs170.93 28770.52 28172.16 32873.71 36955.05 33480.82 29078.77 33551.21 37078.58 14984.41 28031.20 37276.94 36075.88 13380.12 23784.47 328
CostFormer75.24 25073.90 24979.27 25582.65 30058.27 28980.80 29182.73 29961.57 31575.33 23083.13 30255.52 21591.07 24864.98 23478.34 25788.45 256
MIMVSNet168.58 30866.78 31873.98 31580.07 33551.82 35780.77 29284.37 26864.40 28459.75 36482.16 31636.47 36083.63 32742.73 36970.33 33986.48 297
CL-MVSNet_self_test72.37 27771.46 27175.09 30479.49 34553.53 34680.76 29385.01 26169.12 22370.51 28382.05 31757.92 20084.13 32352.27 32566.00 35687.60 270
MSDG73.36 26770.99 27780.49 23184.51 25765.80 17780.71 29486.13 24865.70 27065.46 33783.74 29344.60 32290.91 25051.13 33176.89 26984.74 325
tpm273.26 26871.46 27178.63 26283.34 27956.71 31480.65 29580.40 32156.63 35373.55 25582.02 31851.80 25891.24 24056.35 30878.42 25587.95 262
XXY-MVS75.41 24875.56 22774.96 30583.59 27457.82 29880.59 29683.87 27866.54 26174.93 24188.31 18563.24 13580.09 34662.16 25576.85 27186.97 288
test_cas_vis1_n_192073.76 26273.74 25273.81 31675.90 35959.77 27880.51 29782.40 30158.30 34181.62 11085.69 25544.35 32476.41 36576.29 12778.61 25085.23 317
EGC-MVSNET52.07 35247.05 35667.14 35483.51 27660.71 26680.50 29867.75 3770.07 4010.43 40275.85 36524.26 38181.54 33928.82 38662.25 36359.16 386
SDMVSNet80.38 14280.18 12880.99 22089.03 14364.94 19780.45 29989.40 16675.19 9876.61 19889.98 13760.61 18387.69 29876.83 12383.55 19090.33 188
HyFIR lowres test77.53 21475.40 23183.94 13689.59 11566.62 16080.36 30088.64 20156.29 35576.45 20085.17 26957.64 20393.28 15861.34 26583.10 19991.91 135
D2MVS74.82 25173.21 25679.64 25079.81 33962.56 24480.34 30187.35 22764.37 28568.86 30582.66 30946.37 30790.10 26167.91 20881.24 22086.25 299
TinyColmap67.30 31864.81 32374.76 30881.92 31156.68 31580.29 30281.49 31060.33 32256.27 37583.22 29924.77 38087.66 29945.52 36269.47 34279.95 363
LCM-MVSNet-Re77.05 22276.94 20477.36 28487.20 20951.60 35980.06 30380.46 32075.20 9767.69 31486.72 22662.48 14788.98 27963.44 24289.25 11491.51 143
test_fmvs268.35 31267.48 31370.98 33969.50 38251.95 35580.05 30476.38 35149.33 37274.65 24584.38 28123.30 38375.40 37474.51 14475.17 30485.60 312
FMVSNet569.50 30167.96 30274.15 31482.97 29355.35 33180.01 30582.12 30462.56 30763.02 35181.53 32036.92 35981.92 33748.42 34574.06 31385.17 320
SCA74.22 25672.33 26579.91 24284.05 26662.17 24979.96 30679.29 33266.30 26372.38 26980.13 33351.95 25488.60 28759.25 27977.67 26288.96 242
tpmrst72.39 27572.13 26673.18 32280.54 32949.91 36879.91 30779.08 33463.11 29771.69 27679.95 33555.32 21682.77 33365.66 22973.89 31586.87 289
PatchmatchNetpermissive73.12 27071.33 27478.49 26883.18 28460.85 26479.63 30878.57 33664.13 28771.73 27579.81 33851.20 26385.97 30957.40 29876.36 28388.66 252
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PatchMatch-RL72.38 27670.90 27876.80 29188.60 15867.38 14579.53 30976.17 35362.75 30569.36 30182.00 31945.51 31884.89 31953.62 31880.58 22978.12 367
CMPMVSbinary51.72 2170.19 29668.16 29976.28 29373.15 37557.55 30279.47 31083.92 27648.02 37356.48 37484.81 27543.13 33086.42 30662.67 25081.81 21584.89 323
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
GG-mvs-BLEND75.38 30281.59 31555.80 32679.32 31169.63 37267.19 32073.67 37043.24 32988.90 28350.41 33384.50 17281.45 356
LTVRE_ROB69.57 1376.25 23674.54 24281.41 20688.60 15864.38 21079.24 31289.12 18270.76 18469.79 29887.86 19749.09 28993.20 16656.21 30980.16 23486.65 295
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tpm72.37 27771.71 26974.35 31282.19 30752.00 35479.22 31377.29 34664.56 28272.95 26283.68 29551.35 26183.26 33158.33 29075.80 28787.81 266
ppachtmachnet_test70.04 29767.34 31478.14 27279.80 34061.13 26079.19 31480.59 31759.16 33465.27 33979.29 34146.75 30587.29 30049.33 34266.72 35186.00 308
USDC70.33 29468.37 29676.21 29480.60 32856.23 32279.19 31486.49 24160.89 31961.29 35785.47 26231.78 37089.47 27153.37 32076.21 28482.94 347
sd_testset77.70 21177.40 19478.60 26489.03 14360.02 27679.00 31685.83 25275.19 9876.61 19889.98 13754.81 21985.46 31462.63 25183.55 19090.33 188
PM-MVS66.41 32464.14 32673.20 32173.92 36856.45 31778.97 31764.96 38463.88 29464.72 34380.24 33219.84 38683.44 32966.24 22164.52 36079.71 364
tpmvs71.09 28569.29 29076.49 29282.04 30856.04 32478.92 31881.37 31164.05 29067.18 32178.28 35049.74 28089.77 26449.67 34172.37 32783.67 337
test_post178.90 3195.43 40048.81 29585.44 31559.25 279
CHOSEN 1792x268877.63 21375.69 22483.44 14689.98 10868.58 11878.70 32087.50 22456.38 35475.80 21686.84 22258.67 19491.40 23661.58 26285.75 16290.34 187
Syy-MVS68.05 31367.85 30468.67 35084.68 25240.97 39178.62 32173.08 36466.65 25866.74 32679.46 33952.11 25082.30 33532.89 38376.38 28182.75 348
myMVS_eth3d67.02 31966.29 32069.21 34584.68 25242.58 38678.62 32173.08 36466.65 25866.74 32679.46 33931.53 37182.30 33539.43 37676.38 28182.75 348
test-LLR72.94 27372.43 26374.48 31081.35 32058.04 29278.38 32377.46 34366.66 25569.95 29479.00 34448.06 29679.24 34866.13 22284.83 16786.15 302
TESTMET0.1,169.89 29969.00 29372.55 32679.27 34856.85 31078.38 32374.71 35957.64 34668.09 31177.19 35737.75 35776.70 36163.92 23984.09 18084.10 333
test-mter71.41 28270.39 28574.48 31081.35 32058.04 29278.38 32377.46 34360.32 32369.95 29479.00 34436.08 36279.24 34866.13 22284.83 16786.15 302
Anonymous2023120668.60 30767.80 30771.02 33880.23 33350.75 36578.30 32680.47 31956.79 35266.11 33582.63 31046.35 30878.95 35043.62 36775.70 28883.36 340
tpm cat170.57 29168.31 29777.35 28582.41 30557.95 29578.08 32780.22 32452.04 36568.54 30977.66 35552.00 25387.84 29651.77 32672.07 33186.25 299
our_test_369.14 30367.00 31675.57 29979.80 34058.80 28477.96 32877.81 33959.55 33062.90 35478.25 35147.43 29883.97 32451.71 32767.58 35083.93 335
KD-MVS_self_test68.81 30567.59 31272.46 32774.29 36745.45 37677.93 32987.00 23463.12 29663.99 34878.99 34642.32 33584.77 32056.55 30764.09 36187.16 283
WTY-MVS75.65 24375.68 22575.57 29986.40 22256.82 31177.92 33082.40 30165.10 27576.18 20987.72 19863.13 14180.90 34360.31 27181.96 21289.00 240
test20.0367.45 31666.95 31768.94 34675.48 36344.84 38177.50 33177.67 34066.66 25563.01 35283.80 29147.02 30278.40 35242.53 37068.86 34783.58 338
EPMVS69.02 30468.16 29971.59 33179.61 34349.80 37077.40 33266.93 37862.82 30470.01 29179.05 34245.79 31577.86 35656.58 30675.26 30287.13 284
test_fmvs363.36 33561.82 33867.98 35262.51 38946.96 37577.37 33374.03 36145.24 37567.50 31678.79 34712.16 39472.98 38272.77 16466.02 35583.99 334
gg-mvs-nofinetune69.95 29867.96 30275.94 29583.07 28754.51 34077.23 33470.29 37063.11 29770.32 28662.33 38143.62 32888.69 28553.88 31787.76 13184.62 327
MDTV_nov1_ep1369.97 28883.18 28453.48 34777.10 33580.18 32560.45 32169.33 30280.44 33048.89 29486.90 30251.60 32878.51 253
LF4IMVS64.02 33362.19 33769.50 34470.90 38053.29 35176.13 33677.18 34752.65 36458.59 36680.98 32523.55 38276.52 36353.06 32266.66 35278.68 366
sss73.60 26373.64 25373.51 31882.80 29555.01 33576.12 33781.69 30862.47 30874.68 24485.85 25357.32 20778.11 35460.86 26880.93 22387.39 275
testgi66.67 32266.53 31967.08 35575.62 36241.69 39075.93 33876.50 35066.11 26465.20 34286.59 23435.72 36374.71 37643.71 36673.38 32284.84 324
CR-MVSNet73.37 26571.27 27579.67 24981.32 32265.19 19175.92 33980.30 32259.92 32772.73 26481.19 32152.50 24286.69 30359.84 27477.71 26087.11 285
RPMNet73.51 26470.49 28282.58 18581.32 32265.19 19175.92 33992.27 7657.60 34772.73 26476.45 36052.30 24595.43 6548.14 35077.71 26087.11 285
MIMVSNet70.69 29069.30 28974.88 30684.52 25656.35 32175.87 34179.42 33064.59 28167.76 31282.41 31141.10 34381.54 33946.64 35781.34 21886.75 293
test0.0.03 168.00 31467.69 30968.90 34777.55 35347.43 37275.70 34272.95 36666.66 25566.56 32882.29 31448.06 29675.87 36944.97 36574.51 31083.41 339
dmvs_re71.14 28470.58 28072.80 32481.96 30959.68 27975.60 34379.34 33168.55 23569.27 30380.72 32949.42 28376.54 36252.56 32477.79 25982.19 352
dmvs_testset62.63 33664.11 32758.19 36578.55 35024.76 40175.28 34465.94 38167.91 24460.34 36076.01 36253.56 23573.94 38031.79 38467.65 34975.88 372
PMMVS69.34 30268.67 29471.35 33575.67 36162.03 25075.17 34573.46 36250.00 37168.68 30679.05 34252.07 25278.13 35361.16 26682.77 20273.90 374
UnsupCasMVSNet_eth67.33 31765.99 32171.37 33373.48 37251.47 36175.16 34685.19 25865.20 27460.78 35980.93 32842.35 33477.20 35857.12 30053.69 37985.44 314
MDTV_nov1_ep13_2view37.79 39375.16 34655.10 35866.53 32949.34 28553.98 31687.94 263
pmmvs357.79 34254.26 34768.37 35164.02 38856.72 31375.12 34865.17 38240.20 38152.93 37969.86 37820.36 38575.48 37245.45 36355.25 37872.90 376
dp66.80 32065.43 32270.90 34079.74 34248.82 37175.12 34874.77 35759.61 32964.08 34777.23 35642.89 33180.72 34448.86 34466.58 35383.16 342
Patchmtry70.74 28969.16 29275.49 30180.72 32654.07 34374.94 35080.30 32258.34 34070.01 29181.19 32152.50 24286.54 30453.37 32071.09 33785.87 310
PVSNet64.34 1872.08 27970.87 27975.69 29786.21 22456.44 31874.37 35180.73 31562.06 31370.17 28982.23 31542.86 33283.31 33054.77 31384.45 17687.32 278
WB-MVS54.94 34454.72 34655.60 37173.50 37120.90 40374.27 35261.19 38859.16 33450.61 38174.15 36847.19 30175.78 37017.31 39535.07 39070.12 378
MDA-MVSNet-bldmvs66.68 32163.66 33075.75 29679.28 34760.56 26973.92 35378.35 33764.43 28350.13 38279.87 33744.02 32683.67 32646.10 35956.86 37283.03 345
SSC-MVS53.88 34753.59 34854.75 37372.87 37619.59 40473.84 35460.53 39057.58 34849.18 38373.45 37146.34 30975.47 37316.20 39832.28 39269.20 379
UnsupCasMVSNet_bld63.70 33461.53 34070.21 34273.69 37051.39 36272.82 35581.89 30555.63 35757.81 37071.80 37438.67 35278.61 35149.26 34352.21 38180.63 360
PatchT68.46 31167.85 30470.29 34180.70 32743.93 38372.47 35674.88 35660.15 32570.55 28276.57 35949.94 27781.59 33850.58 33274.83 30785.34 315
miper_lstm_enhance74.11 25773.11 25877.13 28880.11 33459.62 28072.23 35786.92 23666.76 25370.40 28582.92 30456.93 21182.92 33269.06 19872.63 32688.87 245
MVS-HIRNet59.14 34157.67 34463.57 35981.65 31343.50 38471.73 35865.06 38339.59 38351.43 38057.73 38738.34 35482.58 33439.53 37473.95 31464.62 383
APD_test153.31 34949.93 35463.42 36065.68 38650.13 36771.59 35966.90 37934.43 38840.58 38771.56 3758.65 39976.27 36634.64 38255.36 37763.86 384
Patchmatch-RL test70.24 29567.78 30877.61 28177.43 35459.57 28271.16 36070.33 36962.94 30168.65 30772.77 37250.62 26985.49 31369.58 19366.58 35387.77 267
test1236.12 3698.11 3720.14 3840.06 4070.09 40971.05 3610.03 4090.04 4030.25 4041.30 4030.05 4070.03 4040.21 4030.01 4020.29 399
ANet_high50.57 35446.10 35863.99 35848.67 40039.13 39270.99 36280.85 31361.39 31731.18 39057.70 38817.02 38973.65 38131.22 38515.89 39879.18 365
KD-MVS_2432*160066.22 32663.89 32873.21 31975.47 36453.42 34870.76 36384.35 26964.10 28866.52 33078.52 34834.55 36584.98 31750.40 33450.33 38381.23 357
miper_refine_blended66.22 32663.89 32873.21 31975.47 36453.42 34870.76 36384.35 26964.10 28866.52 33078.52 34834.55 36584.98 31750.40 33450.33 38381.23 357
test_vis1_rt60.28 34058.42 34365.84 35667.25 38555.60 32970.44 36560.94 38944.33 37759.00 36566.64 37924.91 37968.67 38762.80 24669.48 34173.25 375
testmvs6.04 3708.02 3730.10 3850.08 4060.03 41069.74 3660.04 4080.05 4020.31 4031.68 4020.02 4080.04 4030.24 4020.02 4010.25 400
N_pmnet52.79 35053.26 34951.40 37578.99 3497.68 40769.52 3673.89 40651.63 36857.01 37274.98 36740.83 34565.96 39037.78 37864.67 35980.56 362
FPMVS53.68 34851.64 35059.81 36465.08 38751.03 36369.48 36869.58 37341.46 38040.67 38672.32 37316.46 39070.00 38624.24 39265.42 35758.40 388
DSMNet-mixed57.77 34356.90 34560.38 36367.70 38435.61 39469.18 36953.97 39532.30 39157.49 37179.88 33640.39 34768.57 38838.78 37772.37 32776.97 369
new-patchmatchnet61.73 33861.73 33961.70 36172.74 37724.50 40269.16 37078.03 33861.40 31656.72 37375.53 36638.42 35376.48 36445.95 36057.67 37184.13 332
YYNet165.03 32962.91 33471.38 33275.85 36056.60 31669.12 37174.66 36057.28 35054.12 37777.87 35345.85 31474.48 37749.95 33961.52 36683.05 344
MDA-MVSNet_test_wron65.03 32962.92 33371.37 33375.93 35856.73 31269.09 37274.73 35857.28 35054.03 37877.89 35245.88 31374.39 37849.89 34061.55 36582.99 346
PVSNet_057.27 2061.67 33959.27 34268.85 34879.61 34357.44 30468.01 37373.44 36355.93 35658.54 36770.41 37744.58 32377.55 35747.01 35435.91 38971.55 377
ADS-MVSNet266.20 32863.33 33174.82 30779.92 33658.75 28567.55 37475.19 35553.37 36265.25 34075.86 36342.32 33580.53 34541.57 37168.91 34585.18 318
ADS-MVSNet64.36 33262.88 33568.78 34979.92 33647.17 37367.55 37471.18 36853.37 36265.25 34075.86 36342.32 33573.99 37941.57 37168.91 34585.18 318
mvsany_test162.30 33761.26 34165.41 35769.52 38154.86 33666.86 37649.78 39746.65 37468.50 31083.21 30049.15 28866.28 38956.93 30360.77 36775.11 373
LCM-MVSNet54.25 34549.68 35567.97 35353.73 39745.28 37966.85 37780.78 31435.96 38739.45 38862.23 3838.70 39878.06 35548.24 34951.20 38280.57 361
test_vis3_rt49.26 35547.02 35756.00 36854.30 39445.27 38066.76 37848.08 39836.83 38544.38 38553.20 3907.17 40164.07 39156.77 30555.66 37558.65 387
testf145.72 35641.96 35957.00 36656.90 39145.32 37766.14 37959.26 39126.19 39230.89 39160.96 3854.14 40270.64 38426.39 39046.73 38755.04 389
APD_test245.72 35641.96 35957.00 36656.90 39145.32 37766.14 37959.26 39126.19 39230.89 39160.96 3854.14 40270.64 38426.39 39046.73 38755.04 389
JIA-IIPM66.32 32562.82 33676.82 29077.09 35661.72 25665.34 38175.38 35458.04 34464.51 34462.32 38242.05 34086.51 30551.45 32969.22 34482.21 351
PMVScopyleft37.38 2244.16 35940.28 36255.82 37040.82 40242.54 38865.12 38263.99 38534.43 38824.48 39457.12 3893.92 40476.17 36817.10 39655.52 37648.75 391
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new_pmnet50.91 35350.29 35352.78 37468.58 38334.94 39663.71 38356.63 39439.73 38244.95 38465.47 38021.93 38458.48 39334.98 38156.62 37364.92 382
mvsany_test353.99 34651.45 35161.61 36255.51 39344.74 38263.52 38445.41 40143.69 37858.11 36976.45 36017.99 38763.76 39254.77 31347.59 38576.34 371
Patchmatch-test64.82 33163.24 33269.57 34379.42 34649.82 36963.49 38569.05 37551.98 36759.95 36380.13 33350.91 26570.98 38340.66 37373.57 31887.90 264
ambc75.24 30373.16 37450.51 36663.05 38687.47 22564.28 34577.81 35417.80 38889.73 26657.88 29460.64 36885.49 313
test_f52.09 35150.82 35255.90 36953.82 39642.31 38959.42 38758.31 39336.45 38656.12 37670.96 37612.18 39357.79 39453.51 31956.57 37467.60 380
CHOSEN 280x42066.51 32364.71 32471.90 32981.45 31763.52 22657.98 38868.95 37653.57 36162.59 35576.70 35846.22 31075.29 37555.25 31179.68 23976.88 370
E-PMN31.77 36130.64 36435.15 37952.87 39827.67 39857.09 38947.86 39924.64 39416.40 39933.05 39511.23 39554.90 39614.46 39918.15 39622.87 395
EMVS30.81 36329.65 36534.27 38050.96 39925.95 40056.58 39046.80 40024.01 39515.53 40030.68 39612.47 39254.43 39712.81 40017.05 39722.43 396
PMMVS240.82 36038.86 36346.69 37653.84 39516.45 40548.61 39149.92 39637.49 38431.67 38960.97 3848.14 40056.42 39528.42 38730.72 39367.19 381
wuyk23d16.82 36715.94 37019.46 38258.74 39031.45 39739.22 3923.74 4076.84 3986.04 4012.70 4011.27 40624.29 40110.54 40114.40 4002.63 398
tmp_tt18.61 36621.40 36910.23 3834.82 40510.11 40634.70 39330.74 4041.48 40023.91 39626.07 39728.42 37613.41 40227.12 38815.35 3997.17 397
Gipumacopyleft45.18 35841.86 36155.16 37277.03 35751.52 36032.50 39480.52 31832.46 39027.12 39335.02 3949.52 39775.50 37122.31 39360.21 37038.45 393
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVEpermissive26.22 2330.37 36425.89 36843.81 37744.55 40135.46 39528.87 39539.07 40218.20 39618.58 39840.18 3932.68 40547.37 39917.07 39723.78 39548.60 392
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method31.52 36229.28 36638.23 37827.03 4046.50 40820.94 39662.21 3874.05 39922.35 39752.50 39113.33 39147.58 39827.04 38934.04 39160.62 385
test_blank0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
uanet_test0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
DCPMVS0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
cdsmvs_eth3d_5k19.96 36526.61 3670.00 3860.00 4080.00 4110.00 39789.26 1730.00 4040.00 40588.61 17661.62 1610.00 4050.00 4040.00 4030.00 401
pcd_1.5k_mvsjas5.26 3717.02 3740.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 40463.15 1380.00 4050.00 4040.00 4030.00 401
sosnet-low-res0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
sosnet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
uncertanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
Regformer0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
ab-mvs-re7.23 3689.64 3710.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 40586.72 2260.00 4090.00 4050.00 4040.00 4030.00 401
uanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
WAC-MVS42.58 38639.46 375
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
PC_three_145268.21 24192.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
No_MVS89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 408
eth-test0.00 408
ZD-MVS94.38 2572.22 4492.67 6170.98 18087.75 3194.07 4174.01 3296.70 2784.66 4794.84 43
IU-MVS95.30 271.25 5792.95 5166.81 25192.39 688.94 1696.63 494.85 19
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 41
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 24
GSMVS88.96 242
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26288.96 242
sam_mvs50.01 275
MTGPAbinary92.02 85
test_post5.46 39950.36 27384.24 322
patchmatchnet-post74.00 36951.12 26488.60 287
gm-plane-assit81.40 31853.83 34562.72 30680.94 32692.39 19563.40 243
test9_res84.90 4295.70 2692.87 102
agg_prior282.91 6695.45 3092.70 105
agg_prior92.85 5971.94 5191.78 10084.41 7194.93 87
TestCases79.58 25185.15 24263.62 22179.83 32662.31 30960.32 36186.73 22432.02 36888.96 28150.28 33671.57 33486.15 302
test_prior86.33 5492.61 6569.59 8892.97 5095.48 6293.91 53
新几何183.42 14793.13 5270.71 7185.48 25657.43 34981.80 10791.98 9063.28 13392.27 20164.60 23792.99 6587.27 279
旧先验191.96 7165.79 17886.37 24493.08 7169.31 7792.74 6888.74 251
原ACMM184.35 10793.01 5768.79 10692.44 6963.96 29381.09 11791.57 10166.06 11195.45 6367.19 21694.82 4588.81 248
testdata291.01 24962.37 253
segment_acmp73.08 37
testdata79.97 24190.90 8664.21 21284.71 26359.27 33385.40 5192.91 7362.02 15789.08 27768.95 19991.37 8686.63 296
test1286.80 4992.63 6470.70 7291.79 9982.71 9871.67 5196.16 4494.50 5093.54 77
plane_prior790.08 10268.51 119
plane_prior689.84 11168.70 11460.42 186
plane_prior592.44 6995.38 6978.71 10286.32 15191.33 149
plane_prior491.00 120
plane_prior368.60 11778.44 3178.92 141
plane_prior189.90 110
n20.00 410
nn0.00 410
door-mid69.98 371
lessismore_v078.97 25881.01 32557.15 30765.99 38061.16 35882.82 30739.12 35091.34 23859.67 27546.92 38688.43 257
LGP-MVS_train84.50 9989.23 13468.76 10891.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18289.83 215
test1192.23 79
door69.44 374
HQP5-MVS66.98 155
BP-MVS77.47 114
HQP4-MVS77.24 18195.11 8091.03 161
HQP3-MVS92.19 8285.99 158
HQP2-MVS60.17 189
NP-MVS89.62 11468.32 12290.24 132
ACMMP++_ref81.95 213
ACMMP++81.25 219
Test By Simon64.33 125
ITE_SJBPF78.22 27081.77 31260.57 26883.30 28669.25 21767.54 31587.20 21536.33 36187.28 30154.34 31574.62 30986.80 291
DeepMVS_CXcopyleft27.40 38140.17 40326.90 39924.59 40517.44 39723.95 39548.61 3929.77 39626.48 40018.06 39424.47 39428.83 394