This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
FOURS195.00 1072.39 3995.06 193.84 1574.49 11391.30 15
CP-MVS87.11 2986.92 3187.68 3494.20 3473.86 793.98 392.82 5876.62 7083.68 8294.46 2567.93 8895.95 5284.20 5394.39 5393.23 87
APDe-MVScopyleft89.15 689.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 8991.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 31
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SteuartSystems-ACMMP88.72 1088.86 1088.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 2995.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5696.48 894.88 14
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 5977.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 42
3Dnovator+77.84 485.48 5384.47 6788.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19393.37 6060.40 18696.75 2677.20 11593.73 6295.29 5
HFP-MVS87.58 2187.47 2387.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 5794.44 2870.78 5896.61 3284.53 4794.89 4193.66 65
ACMMPR87.44 2287.23 2688.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6494.52 2168.81 8296.65 3084.53 4794.90 4094.00 50
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5194.32 3171.76 4796.93 1985.53 3795.79 2294.32 38
region2R87.42 2487.20 2788.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 6894.52 2169.09 7696.70 2784.37 4994.83 4494.03 49
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5894.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CS-MVS86.69 3486.95 3085.90 6390.76 9067.57 13892.83 1793.30 3279.67 1784.57 6792.27 8471.47 5295.02 8684.24 5293.46 6395.13 6
XVS87.18 2886.91 3288.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8394.17 3667.45 9396.60 3383.06 6194.50 5094.07 47
X-MVStestdata80.37 14277.83 17988.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8312.47 39467.45 9396.60 3383.06 6194.50 5094.07 47
mPP-MVS86.67 3686.32 3887.72 3094.41 2273.55 1392.74 2092.22 8076.87 6282.81 9594.25 3466.44 10396.24 4182.88 6594.28 5693.38 81
ACMMPcopyleft85.89 4785.39 5387.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 11993.82 5364.33 12396.29 3982.67 7190.69 9493.23 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 6477.57 4183.84 8094.40 3072.24 4396.28 4085.65 3695.30 3593.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MM88.97 473.65 1092.66 2391.17 11686.57 187.39 3394.97 1671.70 4997.68 192.19 195.63 2895.57 1
SF-MVS88.46 1188.74 1187.64 3592.78 6171.95 5092.40 2494.74 275.71 8789.16 1995.10 1475.65 2196.19 4387.07 3296.01 1794.79 21
SMA-MVScopyleft89.08 789.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10792.29 795.97 274.28 2997.24 1288.58 2096.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GST-MVS87.42 2487.26 2487.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6193.99 4870.67 6096.82 2284.18 5495.01 3793.90 55
HPM-MVS++copyleft89.02 889.15 888.63 595.01 976.03 192.38 2792.85 5480.26 1187.78 2894.27 3275.89 1996.81 2387.45 3096.44 993.05 96
SR-MVS86.73 3386.67 3486.91 4694.11 3772.11 4792.37 2892.56 6774.50 11286.84 4094.65 2067.31 9595.77 5484.80 4492.85 6792.84 103
CS-MVS-test86.29 4186.48 3685.71 6591.02 8367.21 15092.36 2993.78 1878.97 2883.51 8691.20 10970.65 6195.15 7781.96 7494.89 4194.77 22
EC-MVSNet86.01 4286.38 3784.91 8889.31 13066.27 16492.32 3093.63 2179.37 2084.17 7491.88 9169.04 8095.43 6583.93 5593.77 6193.01 99
EPP-MVSNet83.40 8183.02 8184.57 9690.13 10064.47 20592.32 3090.73 12874.45 11579.35 13391.10 11269.05 7995.12 7872.78 16187.22 13694.13 44
PHI-MVS86.43 3886.17 4287.24 4190.88 8770.96 6592.27 3294.07 972.45 15285.22 5291.90 9069.47 7296.42 3783.28 6095.94 1994.35 36
MVS_030488.08 1388.08 1688.08 1489.67 11372.04 4892.26 3389.26 17384.19 285.01 5395.18 1369.93 6797.20 1491.63 295.60 2994.99 9
HPM-MVScopyleft87.11 2986.98 2987.50 3893.88 3972.16 4592.19 3493.33 3176.07 8283.81 8193.95 5169.77 7096.01 4885.15 3894.66 4694.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MTMP92.18 3532.83 399
HPM-MVS_fast85.35 5784.95 6286.57 5393.69 4270.58 7592.15 3691.62 10373.89 12682.67 9794.09 4062.60 14295.54 6080.93 8192.93 6693.57 74
CPTT-MVS83.73 7183.33 7784.92 8793.28 4970.86 6992.09 3790.38 13768.75 23179.57 13092.83 7460.60 18293.04 17880.92 8291.56 8490.86 165
APD-MVS_3200maxsize85.97 4485.88 4786.22 5792.69 6369.53 8991.93 3892.99 4573.54 13585.94 4394.51 2465.80 11395.61 5783.04 6392.51 7193.53 78
SR-MVS-dyc-post85.77 4885.61 5186.23 5693.06 5570.63 7391.88 3992.27 7673.53 13685.69 4794.45 2665.00 12195.56 5882.75 6691.87 7992.50 114
RE-MVS-def85.48 5293.06 5570.63 7391.88 3992.27 7673.53 13685.69 4794.45 2663.87 12782.75 6691.87 7992.50 114
APD-MVScopyleft87.44 2287.52 2287.19 4294.24 3272.39 3991.86 4192.83 5573.01 14988.58 2194.52 2173.36 3496.49 3684.26 5095.01 3792.70 105
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SD-MVS88.06 1488.50 1386.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13687.63 2894.27 5793.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8592.29 795.66 1081.67 697.38 1087.44 3196.34 1593.95 52
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
QAPM80.88 12379.50 13985.03 8188.01 17968.97 10391.59 4392.00 8766.63 25775.15 23392.16 8657.70 20095.45 6363.52 23888.76 11990.66 172
IS-MVSNet83.15 8582.81 8584.18 11589.94 10963.30 23091.59 4388.46 20479.04 2579.49 13192.16 8665.10 11894.28 11267.71 20791.86 8194.95 10
9.1488.26 1492.84 6091.52 4694.75 173.93 12588.57 2294.67 1975.57 2295.79 5386.77 3395.76 23
TSAR-MVS + MP.88.02 1788.11 1587.72 3093.68 4372.13 4691.41 4792.35 7474.62 11188.90 2093.85 5275.75 2096.00 4987.80 2694.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
mvsmamba81.69 10880.74 11484.56 9787.45 19966.72 15791.26 4885.89 24974.66 10978.23 15790.56 12554.33 22594.91 8880.73 8683.54 18992.04 132
DeepC-MVS_fast79.65 386.91 3286.62 3587.76 2793.52 4672.37 4191.26 4893.04 3876.62 7084.22 7293.36 6171.44 5396.76 2580.82 8395.33 3494.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HQP_MVS83.64 7483.14 7885.14 7790.08 10268.71 11191.25 5092.44 6979.12 2378.92 13991.00 11860.42 18495.38 6978.71 10086.32 14991.33 147
plane_prior291.25 5079.12 23
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5292.83 5581.50 585.79 4693.47 5973.02 3997.00 1884.90 4094.94 3994.10 45
API-MVS81.99 10281.23 10684.26 11390.94 8570.18 8291.10 5389.32 16971.51 16978.66 14588.28 18465.26 11695.10 8364.74 23491.23 8887.51 270
RRT_MVS80.35 14379.22 14883.74 13887.63 19365.46 18391.08 5488.92 19173.82 12776.44 20190.03 13449.05 28894.25 11776.84 11979.20 24491.51 141
EPNet83.72 7282.92 8486.14 5984.22 25769.48 9191.05 5585.27 25581.30 676.83 18891.65 9566.09 10895.56 5876.00 13093.85 6093.38 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMMP_NAP88.05 1688.08 1687.94 1993.70 4173.05 2290.86 5693.59 2376.27 7988.14 2495.09 1571.06 5696.67 2987.67 2796.37 1494.09 46
CSCG86.41 4086.19 4187.07 4592.91 5872.48 3790.81 5793.56 2473.95 12383.16 8991.07 11475.94 1895.19 7579.94 9294.38 5493.55 76
MSLP-MVS++85.43 5585.76 4984.45 10391.93 7270.24 7690.71 5892.86 5377.46 4784.22 7292.81 7667.16 9792.94 18080.36 8894.35 5590.16 191
3Dnovator76.31 583.38 8282.31 9286.59 5287.94 18072.94 2890.64 5992.14 8477.21 5275.47 21892.83 7458.56 19394.72 9973.24 15792.71 6992.13 128
OpenMVScopyleft72.83 1079.77 15378.33 16884.09 12085.17 23769.91 8490.57 6090.97 12166.70 25172.17 26791.91 8954.70 22293.96 12461.81 25890.95 9188.41 255
CNVR-MVS88.93 989.13 988.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2395.99 1894.34 37
MVSFormer82.85 9182.05 9685.24 7587.35 20070.21 7790.50 6290.38 13768.55 23481.32 11089.47 14961.68 15793.46 15378.98 9790.26 10092.05 130
test_djsdf80.30 14479.32 14483.27 15183.98 26365.37 18790.50 6290.38 13768.55 23476.19 20688.70 17056.44 21193.46 15378.98 9780.14 23290.97 162
save fliter93.80 4072.35 4290.47 6491.17 11674.31 116
nrg03083.88 6883.53 7284.96 8486.77 21669.28 9890.46 6592.67 6174.79 10682.95 9091.33 10672.70 4193.09 17480.79 8579.28 24292.50 114
canonicalmvs85.91 4685.87 4886.04 6089.84 11169.44 9590.45 6693.00 4376.70 6988.01 2791.23 10773.28 3693.91 13181.50 7788.80 11894.77 22
plane_prior68.71 11190.38 6777.62 3986.16 153
DeepC-MVS79.81 287.08 3186.88 3387.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 9494.23 3572.13 4597.09 1684.83 4395.37 3293.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Vis-MVSNetpermissive83.46 7982.80 8685.43 7190.25 9868.74 10990.30 6990.13 14876.33 7880.87 11892.89 7261.00 17494.20 11872.45 16690.97 9093.35 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PGM-MVS86.68 3586.27 3987.90 2294.22 3373.38 1890.22 7093.04 3875.53 9183.86 7994.42 2967.87 9096.64 3182.70 7094.57 4993.66 65
LPG-MVS_test82.08 9981.27 10584.50 9989.23 13468.76 10790.22 7091.94 9175.37 9476.64 19491.51 10054.29 22694.91 8878.44 10283.78 17989.83 212
Anonymous2023121178.97 17677.69 18782.81 17490.54 9364.29 20990.11 7291.51 10765.01 27576.16 21088.13 19350.56 26793.03 17969.68 19077.56 25991.11 154
ACMM73.20 880.78 13179.84 13283.58 14189.31 13068.37 11989.99 7391.60 10470.28 19377.25 17889.66 14253.37 23593.53 14974.24 14682.85 19888.85 243
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP74.13 681.51 11580.57 11784.36 10689.42 12268.69 11489.97 7491.50 11074.46 11475.04 23790.41 12853.82 23194.54 10477.56 11182.91 19789.86 211
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
iter_conf_final80.63 13379.35 14384.46 10289.36 12667.70 13589.85 7584.49 26573.19 14578.30 15588.94 16345.98 30994.56 10279.59 9484.48 17291.11 154
LFMVS81.82 10581.23 10683.57 14291.89 7363.43 22889.84 7681.85 30577.04 5883.21 8793.10 6552.26 24393.43 15571.98 16789.95 10793.85 57
MCST-MVS87.37 2687.25 2587.73 2894.53 1772.46 3889.82 7793.82 1673.07 14784.86 6092.89 7276.22 1796.33 3884.89 4295.13 3694.40 34
MAR-MVS81.84 10480.70 11585.27 7491.32 7971.53 5489.82 7790.92 12269.77 20678.50 14986.21 24362.36 14894.52 10665.36 22892.05 7789.77 215
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MP-MVS-pluss87.67 2087.72 2087.54 3693.64 4472.04 4889.80 7993.50 2575.17 10086.34 4295.29 1270.86 5796.00 4988.78 1896.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
UA-Net85.08 6184.96 6185.45 7092.07 7068.07 12789.78 8090.86 12682.48 384.60 6693.20 6469.35 7395.22 7471.39 17290.88 9293.07 95
alignmvs85.48 5385.32 5685.96 6289.51 11969.47 9289.74 8192.47 6876.17 8087.73 3291.46 10370.32 6393.78 13681.51 7688.95 11594.63 26
VDDNet81.52 11380.67 11684.05 12690.44 9564.13 21289.73 8285.91 24871.11 17583.18 8893.48 5750.54 26893.49 15073.40 15488.25 12694.54 30
CANet86.45 3786.10 4487.51 3790.09 10170.94 6789.70 8392.59 6681.78 481.32 11091.43 10470.34 6297.23 1384.26 5093.36 6494.37 35
test_fmvsmconf0.1_n85.61 5285.65 5085.50 6982.99 28869.39 9689.65 8490.29 14473.31 14187.77 2994.15 3871.72 4893.23 16190.31 490.67 9593.89 56
114514_t80.68 13279.51 13884.20 11494.09 3867.27 14789.64 8591.11 11958.75 33574.08 24890.72 12258.10 19695.04 8569.70 18989.42 11390.30 187
test_fmvsmconf_n85.92 4586.04 4685.57 6885.03 24469.51 9089.62 8690.58 13173.42 13887.75 3094.02 4472.85 4093.24 16090.37 390.75 9393.96 51
DeepPCF-MVS80.84 188.10 1288.56 1286.73 5092.24 6869.03 9989.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3595.72 2494.58 27
test_fmvsmconf0.01_n84.73 6584.52 6685.34 7280.25 32869.03 9989.47 8889.65 16173.24 14486.98 3894.27 3266.62 9993.23 16190.26 589.95 10793.78 62
fmvsm_s_conf0.5_n83.80 7083.71 7184.07 12286.69 21867.31 14589.46 8983.07 29071.09 17686.96 3993.70 5569.02 8191.47 23188.79 1784.62 16893.44 80
fmvsm_s_conf0.5_n_a83.63 7583.41 7484.28 11186.14 22468.12 12589.43 9082.87 29470.27 19487.27 3593.80 5469.09 7691.58 22288.21 2483.65 18593.14 93
UGNet80.83 12579.59 13784.54 9888.04 17768.09 12689.42 9188.16 20676.95 5976.22 20589.46 15149.30 28393.94 12768.48 20290.31 9891.60 138
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tt080578.73 18077.83 17981.43 20385.17 23760.30 27189.41 9290.90 12371.21 17377.17 18488.73 16946.38 30393.21 16372.57 16478.96 24590.79 166
fmvsm_s_conf0.1_n83.56 7783.38 7584.10 11784.86 24667.28 14689.40 9383.01 29170.67 18487.08 3693.96 5068.38 8591.45 23288.56 2184.50 16993.56 75
AdaColmapbinary80.58 13779.42 14084.06 12493.09 5468.91 10489.36 9488.97 18869.27 21575.70 21589.69 14157.20 20795.77 5463.06 24388.41 12587.50 271
fmvsm_s_conf0.1_n_a83.32 8382.99 8284.28 11183.79 26668.07 12789.34 9582.85 29569.80 20487.36 3494.06 4268.34 8691.56 22487.95 2583.46 19193.21 90
PS-MVSNAJss82.07 10081.31 10484.34 10886.51 22067.27 14789.27 9691.51 10771.75 16179.37 13290.22 13263.15 13694.27 11377.69 11082.36 20591.49 144
jajsoiax79.29 16777.96 17483.27 15184.68 24966.57 16089.25 9790.16 14769.20 21975.46 22089.49 14845.75 31493.13 17276.84 11980.80 22290.11 195
mvs_tets79.13 17177.77 18383.22 15584.70 24866.37 16289.17 9890.19 14669.38 21375.40 22389.46 15144.17 32293.15 17076.78 12280.70 22490.14 192
HQP-NCC89.33 12789.17 9876.41 7277.23 180
ACMP_Plane89.33 12789.17 9876.41 7277.23 180
HQP-MVS82.61 9482.02 9784.37 10589.33 12766.98 15389.17 9892.19 8276.41 7277.23 18090.23 13160.17 18795.11 8077.47 11285.99 15691.03 159
LS3D76.95 22374.82 23683.37 14890.45 9467.36 14489.15 10286.94 23461.87 31069.52 29590.61 12451.71 25694.53 10546.38 35586.71 14488.21 257
OPM-MVS83.50 7882.95 8385.14 7788.79 15170.95 6689.13 10391.52 10677.55 4480.96 11791.75 9360.71 17794.50 10779.67 9386.51 14789.97 207
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
TSAR-MVS + GP.85.71 5085.33 5586.84 4791.34 7872.50 3689.07 10487.28 22876.41 7285.80 4590.22 13274.15 3195.37 7281.82 7591.88 7892.65 109
test_prior472.60 3489.01 105
GeoE81.71 10781.01 11183.80 13789.51 11964.45 20688.97 10688.73 19971.27 17278.63 14689.76 14066.32 10593.20 16669.89 18786.02 15593.74 63
Anonymous2024052980.19 14778.89 15584.10 11790.60 9164.75 19988.95 10790.90 12365.97 26580.59 12091.17 11149.97 27393.73 14269.16 19582.70 20293.81 60
VDD-MVS83.01 9082.36 9184.96 8491.02 8366.40 16188.91 10888.11 20777.57 4184.39 7093.29 6252.19 24493.91 13177.05 11788.70 12094.57 29
Effi-MVS+83.62 7683.08 7985.24 7588.38 16667.45 14088.89 10989.15 17975.50 9282.27 9888.28 18469.61 7194.45 10977.81 10987.84 12893.84 59
ACMH+68.96 1476.01 23774.01 24582.03 19188.60 15865.31 18888.86 11087.55 22270.25 19567.75 30987.47 20641.27 33993.19 16858.37 28775.94 28287.60 267
test_prior288.85 11175.41 9384.91 5793.54 5674.28 2983.31 5995.86 20
iter_conf0580.00 15178.70 15783.91 13587.84 18365.83 17388.84 11284.92 26071.61 16678.70 14288.94 16343.88 32494.56 10279.28 9584.28 17591.33 147
DP-MVS Recon83.11 8882.09 9586.15 5894.44 1970.92 6888.79 11392.20 8170.53 18879.17 13591.03 11764.12 12596.03 4668.39 20490.14 10291.50 143
Effi-MVS+-dtu80.03 14978.57 16184.42 10485.13 24168.74 10988.77 11488.10 20874.99 10274.97 23883.49 29457.27 20693.36 15673.53 15180.88 22091.18 152
TEST993.26 5072.96 2588.75 11591.89 9368.44 23785.00 5593.10 6574.36 2895.41 67
train_agg86.43 3886.20 4087.13 4493.26 5072.96 2588.75 11591.89 9368.69 23285.00 5593.10 6574.43 2695.41 6784.97 3995.71 2593.02 98
ETV-MVS84.90 6484.67 6485.59 6789.39 12468.66 11588.74 11792.64 6579.97 1584.10 7585.71 25269.32 7495.38 6980.82 8391.37 8692.72 104
PVSNet_Blended_VisFu82.62 9381.83 10184.96 8490.80 8969.76 8788.74 11791.70 10269.39 21278.96 13788.46 17965.47 11594.87 9474.42 14388.57 12190.24 189
casdiffmvs_mvgpermissive85.99 4386.09 4585.70 6687.65 19267.22 14988.69 11993.04 3879.64 1885.33 5092.54 8173.30 3594.50 10783.49 5791.14 8995.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_893.13 5272.57 3588.68 12091.84 9768.69 23284.87 5993.10 6574.43 2695.16 76
test_fmvsm_n_192085.29 5885.34 5485.13 7986.12 22569.93 8388.65 12190.78 12769.97 20088.27 2393.98 4971.39 5491.54 22688.49 2290.45 9793.91 53
ACMH67.68 1675.89 23873.93 24681.77 19688.71 15566.61 15988.62 12289.01 18569.81 20366.78 32186.70 22841.95 33891.51 22955.64 30878.14 25487.17 278
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CDPH-MVS85.76 4985.29 5887.17 4393.49 4771.08 6188.58 12392.42 7268.32 23984.61 6593.48 5772.32 4296.15 4579.00 9695.43 3194.28 40
DP-MVS76.78 22574.57 23883.42 14593.29 4869.46 9488.55 12483.70 27763.98 28970.20 28388.89 16654.01 23094.80 9646.66 35281.88 21086.01 303
WR-MVS_H78.51 18678.49 16278.56 26388.02 17856.38 31888.43 12592.67 6177.14 5473.89 24987.55 20366.25 10689.24 27258.92 28173.55 31590.06 201
F-COLMAP76.38 23374.33 24382.50 18489.28 13266.95 15688.41 12689.03 18364.05 28766.83 32088.61 17446.78 30192.89 18157.48 29478.55 24787.67 265
GBi-Net78.40 18777.40 19281.40 20587.60 19463.01 23688.39 12789.28 17071.63 16375.34 22587.28 20854.80 21891.11 24062.72 24579.57 23690.09 197
test178.40 18777.40 19281.40 20587.60 19463.01 23688.39 12789.28 17071.63 16375.34 22587.28 20854.80 21891.11 24062.72 24579.57 23690.09 197
FMVSNet177.44 21376.12 21981.40 20586.81 21563.01 23688.39 12789.28 17070.49 18974.39 24587.28 20849.06 28791.11 24060.91 26578.52 24890.09 197
tttt051779.40 16477.91 17683.90 13688.10 17463.84 21688.37 13084.05 27371.45 17076.78 19089.12 15949.93 27694.89 9270.18 18383.18 19592.96 101
v7n78.97 17677.58 19083.14 15883.45 27365.51 18088.32 13191.21 11473.69 13072.41 26486.32 24257.93 19793.81 13569.18 19475.65 28590.11 195
COLMAP_ROBcopyleft66.92 1773.01 26870.41 28080.81 22387.13 21065.63 17888.30 13284.19 27262.96 29763.80 34687.69 19838.04 35292.56 18946.66 35274.91 30284.24 326
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FIs82.07 10082.42 8881.04 21788.80 15058.34 28688.26 13393.49 2676.93 6078.47 15191.04 11569.92 6892.34 19969.87 18884.97 16392.44 118
EIA-MVS83.31 8482.80 8684.82 9089.59 11565.59 17988.21 13492.68 6074.66 10978.96 13786.42 23969.06 7895.26 7375.54 13690.09 10393.62 72
PLCcopyleft70.83 1178.05 19876.37 21783.08 16191.88 7467.80 13288.19 13589.46 16564.33 28369.87 29288.38 18153.66 23293.58 14458.86 28282.73 20087.86 262
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MG-MVS83.41 8083.45 7383.28 15092.74 6262.28 24688.17 13689.50 16475.22 9681.49 10992.74 8066.75 9895.11 8072.85 16091.58 8392.45 117
TAPA-MVS73.13 979.15 17077.94 17582.79 17789.59 11562.99 23988.16 13791.51 10765.77 26677.14 18591.09 11360.91 17593.21 16350.26 33587.05 13892.17 127
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_fmvsmvis_n_192084.02 6783.87 6984.49 10184.12 25969.37 9788.15 13887.96 21270.01 19883.95 7893.23 6368.80 8391.51 22988.61 1989.96 10692.57 110
h-mvs3383.15 8582.19 9386.02 6190.56 9270.85 7088.15 13889.16 17876.02 8384.67 6291.39 10561.54 16095.50 6182.71 6875.48 28991.72 137
bld_raw_dy_0_6477.29 21875.98 22081.22 21185.04 24365.47 18288.14 14077.56 33869.20 21973.77 25089.40 15742.24 33588.85 28276.78 12281.64 21289.33 225
PS-CasMVS78.01 20078.09 17277.77 27587.71 18954.39 33888.02 14191.22 11377.50 4673.26 25488.64 17360.73 17688.41 28761.88 25673.88 31290.53 178
OMC-MVS82.69 9281.97 9984.85 8988.75 15367.42 14187.98 14290.87 12574.92 10379.72 12891.65 9562.19 15293.96 12475.26 13886.42 14893.16 92
v879.97 15279.02 15382.80 17584.09 26064.50 20487.96 14390.29 14474.13 12275.24 23186.81 22162.88 14193.89 13374.39 14475.40 29490.00 203
FC-MVSNet-test81.52 11382.02 9780.03 23888.42 16555.97 32387.95 14493.42 2977.10 5677.38 17590.98 12069.96 6691.79 21768.46 20384.50 16992.33 119
CP-MVSNet78.22 19178.34 16777.84 27387.83 18454.54 33687.94 14591.17 11677.65 3873.48 25288.49 17862.24 15188.43 28662.19 25274.07 30890.55 177
PAPM_NR83.02 8982.41 8984.82 9092.47 6766.37 16287.93 14691.80 9873.82 12777.32 17790.66 12367.90 8994.90 9170.37 18189.48 11293.19 91
PEN-MVS77.73 20677.69 18777.84 27387.07 21153.91 34187.91 14791.18 11577.56 4373.14 25688.82 16861.23 16989.17 27359.95 27172.37 32390.43 181
ECVR-MVScopyleft79.61 15579.26 14680.67 22690.08 10254.69 33487.89 14877.44 34174.88 10480.27 12292.79 7748.96 29092.45 19268.55 20192.50 7294.86 17
v1079.74 15478.67 15882.97 16884.06 26164.95 19487.88 14990.62 13073.11 14675.11 23486.56 23561.46 16394.05 12373.68 14975.55 28789.90 209
test250677.30 21776.49 21379.74 24490.08 10252.02 35087.86 15063.10 38274.88 10480.16 12592.79 7738.29 35192.35 19868.74 20092.50 7294.86 17
casdiffmvspermissive85.11 6085.14 5985.01 8287.20 20865.77 17787.75 15192.83 5577.84 3784.36 7192.38 8372.15 4493.93 13081.27 7990.48 9695.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TranMVSNet+NR-MVSNet80.84 12480.31 12382.42 18587.85 18262.33 24487.74 15291.33 11280.55 977.99 16589.86 13765.23 11792.62 18667.05 21675.24 29992.30 121
EI-MVSNet-Vis-set84.19 6683.81 7085.31 7388.18 17167.85 13187.66 15389.73 15980.05 1482.95 9089.59 14670.74 5994.82 9580.66 8784.72 16693.28 86
UniMVSNet (Re)81.60 11281.11 10883.09 16088.38 16664.41 20787.60 15493.02 4278.42 3278.56 14888.16 18869.78 6993.26 15969.58 19176.49 27191.60 138
CNLPA78.08 19676.79 20681.97 19390.40 9671.07 6287.59 15584.55 26466.03 26472.38 26589.64 14357.56 20286.04 30559.61 27483.35 19288.79 246
DTE-MVSNet76.99 22176.80 20577.54 28086.24 22253.06 34987.52 15690.66 12977.08 5772.50 26288.67 17260.48 18389.52 26757.33 29770.74 33490.05 202
无先验87.48 15788.98 18660.00 32294.12 12167.28 21288.97 238
FMVSNet278.20 19377.21 19681.20 21287.60 19462.89 24087.47 15889.02 18471.63 16375.29 23087.28 20854.80 21891.10 24362.38 25079.38 24089.61 219
EI-MVSNet-UG-set83.81 6983.38 7585.09 8087.87 18167.53 13987.44 15989.66 16079.74 1682.23 9989.41 15570.24 6494.74 9879.95 9183.92 17892.99 100
thisisatest053079.40 16477.76 18484.31 10987.69 19165.10 19287.36 16084.26 27170.04 19777.42 17488.26 18649.94 27494.79 9770.20 18284.70 16793.03 97
CANet_DTU80.61 13479.87 13182.83 17285.60 23263.17 23587.36 16088.65 20076.37 7675.88 21288.44 18053.51 23493.07 17573.30 15589.74 11092.25 123
test111179.43 16279.18 15080.15 23689.99 10753.31 34787.33 16277.05 34475.04 10180.23 12492.77 7948.97 28992.33 20068.87 19892.40 7494.81 20
baseline84.93 6284.98 6084.80 9287.30 20665.39 18687.30 16392.88 5277.62 3984.04 7792.26 8571.81 4693.96 12481.31 7890.30 9995.03 8
UniMVSNet_ETH3D79.10 17278.24 17081.70 19786.85 21360.24 27287.28 16488.79 19374.25 11876.84 18790.53 12749.48 27991.56 22467.98 20582.15 20693.29 85
anonymousdsp78.60 18477.15 19782.98 16780.51 32667.08 15187.24 16589.53 16365.66 26875.16 23287.19 21452.52 23892.25 20277.17 11679.34 24189.61 219
UniMVSNet_NR-MVSNet81.88 10381.54 10382.92 16988.46 16363.46 22687.13 16692.37 7380.19 1278.38 15289.14 15871.66 5193.05 17670.05 18476.46 27292.25 123
DPM-MVS84.93 6284.29 6886.84 4790.20 9973.04 2387.12 16793.04 3869.80 20482.85 9391.22 10873.06 3896.02 4776.72 12494.63 4791.46 146
v114480.03 14979.03 15283.01 16583.78 26764.51 20287.11 16890.57 13371.96 16078.08 16386.20 24461.41 16493.94 12774.93 13977.23 26090.60 175
v2v48280.23 14579.29 14583.05 16383.62 26964.14 21187.04 16989.97 15273.61 13278.18 16087.22 21261.10 17293.82 13476.11 12776.78 26991.18 152
DU-MVS81.12 12080.52 11982.90 17087.80 18563.46 22687.02 17091.87 9579.01 2678.38 15289.07 16065.02 11993.05 17670.05 18476.46 27292.20 125
v14419279.47 16078.37 16682.78 17883.35 27463.96 21486.96 17190.36 14069.99 19977.50 17285.67 25560.66 17993.77 13874.27 14576.58 27090.62 173
Fast-Effi-MVS+-dtu78.02 19976.49 21382.62 18283.16 28266.96 15586.94 17287.45 22672.45 15271.49 27484.17 28354.79 22191.58 22267.61 20880.31 22989.30 226
v119279.59 15778.43 16583.07 16283.55 27164.52 20186.93 17390.58 13170.83 18077.78 16885.90 24859.15 19093.94 12773.96 14877.19 26290.76 168
EPNet_dtu75.46 24474.86 23577.23 28482.57 29754.60 33586.89 17483.09 28971.64 16266.25 33085.86 25055.99 21288.04 29154.92 31086.55 14689.05 233
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
原ACMM286.86 175
VPA-MVSNet80.60 13580.55 11880.76 22488.07 17660.80 26386.86 17591.58 10575.67 9080.24 12389.45 15363.34 13090.25 25770.51 18079.22 24391.23 151
v192192079.22 16878.03 17382.80 17583.30 27663.94 21586.80 17790.33 14169.91 20277.48 17385.53 25858.44 19493.75 14073.60 15076.85 26790.71 171
IterMVS-LS80.06 14879.38 14182.11 18985.89 22763.20 23386.79 17889.34 16874.19 11975.45 22186.72 22466.62 9992.39 19572.58 16376.86 26690.75 169
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TransMVSNet (Re)75.39 24774.56 23977.86 27285.50 23457.10 30686.78 17986.09 24772.17 15871.53 27387.34 20763.01 14089.31 27156.84 30261.83 36087.17 278
Baseline_NR-MVSNet78.15 19578.33 16877.61 27885.79 22856.21 32186.78 17985.76 25173.60 13377.93 16687.57 20165.02 11988.99 27667.14 21575.33 29687.63 266
PAPR81.66 11180.89 11383.99 13190.27 9764.00 21386.76 18191.77 10168.84 23077.13 18689.50 14767.63 9194.88 9367.55 20988.52 12393.09 94
Vis-MVSNet (Re-imp)78.36 18978.45 16378.07 27188.64 15751.78 35486.70 18279.63 32774.14 12175.11 23490.83 12161.29 16889.75 26358.10 29091.60 8292.69 107
pmmvs674.69 25073.39 25278.61 26181.38 31557.48 30186.64 18387.95 21364.99 27670.18 28486.61 23150.43 26989.52 26762.12 25470.18 33688.83 244
v124078.99 17577.78 18282.64 18183.21 27863.54 22386.62 18490.30 14369.74 20977.33 17685.68 25457.04 20893.76 13973.13 15876.92 26490.62 173
MTAPA87.23 2787.00 2887.90 2294.18 3574.25 586.58 18592.02 8579.45 1985.88 4494.80 1768.07 8796.21 4286.69 3495.34 3393.23 87
旧先验286.56 18658.10 33987.04 3788.98 27774.07 147
FMVSNet377.88 20376.85 20480.97 22086.84 21462.36 24386.52 18788.77 19471.13 17475.34 22586.66 23054.07 22991.10 24362.72 24579.57 23689.45 222
dcpmvs_285.63 5186.15 4384.06 12491.71 7564.94 19586.47 18891.87 9573.63 13186.60 4193.02 7076.57 1591.87 21683.36 5892.15 7595.35 3
pm-mvs177.25 21976.68 21178.93 25784.22 25758.62 28486.41 18988.36 20571.37 17173.31 25388.01 19461.22 17089.15 27464.24 23673.01 32089.03 234
EI-MVSNet80.52 13879.98 12882.12 18884.28 25563.19 23486.41 18988.95 18974.18 12078.69 14387.54 20466.62 9992.43 19372.57 16480.57 22690.74 170
CVMVSNet72.99 26972.58 25974.25 31084.28 25550.85 36086.41 18983.45 28344.56 37273.23 25587.54 20449.38 28185.70 30765.90 22478.44 25086.19 298
NR-MVSNet80.23 14579.38 14182.78 17887.80 18563.34 22986.31 19291.09 12079.01 2672.17 26789.07 16067.20 9692.81 18566.08 22375.65 28592.20 125
v14878.72 18177.80 18181.47 20282.73 29361.96 25086.30 19388.08 20973.26 14276.18 20785.47 26062.46 14692.36 19771.92 16873.82 31390.09 197
新几何286.29 194
test_yl81.17 11880.47 12083.24 15389.13 13863.62 21986.21 19589.95 15372.43 15581.78 10689.61 14457.50 20393.58 14470.75 17686.90 14092.52 112
DCV-MVSNet81.17 11880.47 12083.24 15389.13 13863.62 21986.21 19589.95 15372.43 15581.78 10689.61 14457.50 20393.58 14470.75 17686.90 14092.52 112
PVSNet_BlendedMVS80.60 13580.02 12782.36 18788.85 14565.40 18486.16 19792.00 8769.34 21478.11 16186.09 24766.02 11094.27 11371.52 16982.06 20787.39 272
MVS_Test83.15 8583.06 8083.41 14786.86 21263.21 23286.11 19892.00 8774.31 11682.87 9289.44 15470.03 6593.21 16377.39 11488.50 12493.81 60
BH-untuned79.47 16078.60 16082.05 19089.19 13665.91 17186.07 19988.52 20372.18 15775.42 22287.69 19861.15 17193.54 14860.38 26886.83 14286.70 291
MVS_111021_HR85.14 5984.75 6386.32 5591.65 7672.70 3085.98 20090.33 14176.11 8182.08 10091.61 9871.36 5594.17 12081.02 8092.58 7092.08 129
jason81.39 11680.29 12484.70 9486.63 21969.90 8585.95 20186.77 23663.24 29281.07 11689.47 14961.08 17392.15 20578.33 10590.07 10592.05 130
jason: jason.
test_040272.79 27170.44 27979.84 24288.13 17265.99 16985.93 20284.29 26965.57 26967.40 31585.49 25946.92 30092.61 18735.88 37674.38 30780.94 355
OurMVSNet-221017-074.26 25372.42 26179.80 24383.76 26859.59 27985.92 20386.64 23766.39 25966.96 31887.58 20039.46 34591.60 22165.76 22669.27 33988.22 256
hse-mvs281.72 10680.94 11284.07 12288.72 15467.68 13685.87 20487.26 22976.02 8384.67 6288.22 18761.54 16093.48 15182.71 6873.44 31791.06 157
EG-PatchMatch MVS74.04 25671.82 26580.71 22584.92 24567.42 14185.86 20588.08 20966.04 26364.22 34283.85 28735.10 36092.56 18957.44 29580.83 22182.16 349
AUN-MVS79.21 16977.60 18984.05 12688.71 15567.61 13785.84 20687.26 22969.08 22377.23 18088.14 19253.20 23793.47 15275.50 13773.45 31691.06 157
thres100view90076.50 22875.55 22679.33 25289.52 11856.99 30785.83 20783.23 28673.94 12476.32 20387.12 21651.89 25391.95 21148.33 34383.75 18189.07 228
CLD-MVS82.31 9681.65 10284.29 11088.47 16267.73 13485.81 20892.35 7475.78 8678.33 15486.58 23464.01 12694.35 11076.05 12987.48 13390.79 166
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SixPastTwentyTwo73.37 26271.26 27279.70 24585.08 24257.89 29485.57 20983.56 28071.03 17865.66 33285.88 24942.10 33692.57 18859.11 27963.34 35888.65 250
xiu_mvs_v1_base_debu80.80 12879.72 13484.03 12887.35 20070.19 7985.56 21088.77 19469.06 22481.83 10288.16 18850.91 26292.85 18278.29 10687.56 13089.06 230
xiu_mvs_v1_base80.80 12879.72 13484.03 12887.35 20070.19 7985.56 21088.77 19469.06 22481.83 10288.16 18850.91 26292.85 18278.29 10687.56 13089.06 230
xiu_mvs_v1_base_debi80.80 12879.72 13484.03 12887.35 20070.19 7985.56 21088.77 19469.06 22481.83 10288.16 18850.91 26292.85 18278.29 10687.56 13089.06 230
V4279.38 16678.24 17082.83 17281.10 32065.50 18185.55 21389.82 15571.57 16878.21 15886.12 24660.66 17993.18 16975.64 13375.46 29189.81 214
lupinMVS81.39 11680.27 12584.76 9387.35 20070.21 7785.55 21386.41 24062.85 29981.32 11088.61 17461.68 15792.24 20378.41 10490.26 10091.83 134
Fast-Effi-MVS+80.81 12679.92 12983.47 14388.85 14564.51 20285.53 21589.39 16770.79 18178.49 15085.06 27067.54 9293.58 14467.03 21786.58 14592.32 120
thres600view776.50 22875.44 22779.68 24689.40 12357.16 30485.53 21583.23 28673.79 12976.26 20487.09 21751.89 25391.89 21448.05 34883.72 18490.00 203
DELS-MVS85.41 5685.30 5785.77 6488.49 16167.93 13085.52 21793.44 2778.70 2983.63 8589.03 16274.57 2495.71 5680.26 9094.04 5993.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
tfpn200view976.42 23175.37 23179.55 25189.13 13857.65 29885.17 21883.60 27873.41 13976.45 19886.39 24052.12 24591.95 21148.33 34383.75 18189.07 228
thres40076.50 22875.37 23179.86 24189.13 13857.65 29885.17 21883.60 27873.41 13976.45 19886.39 24052.12 24591.95 21148.33 34383.75 18190.00 203
MVS_111021_LR82.61 9482.11 9484.11 11688.82 14871.58 5385.15 22086.16 24574.69 10880.47 12191.04 11562.29 14990.55 25480.33 8990.08 10490.20 190
baseline176.98 22276.75 20977.66 27688.13 17255.66 32685.12 22181.89 30373.04 14876.79 18988.90 16562.43 14787.78 29463.30 24271.18 33289.55 221
WR-MVS79.49 15979.22 14880.27 23488.79 15158.35 28585.06 22288.61 20278.56 3077.65 17088.34 18263.81 12990.66 25364.98 23277.22 26191.80 136
ET-MVSNet_ETH3D78.63 18376.63 21284.64 9586.73 21769.47 9285.01 22384.61 26369.54 21066.51 32886.59 23250.16 27191.75 21876.26 12684.24 17692.69 107
OpenMVS_ROBcopyleft64.09 1970.56 28868.19 29477.65 27780.26 32759.41 28185.01 22382.96 29358.76 33465.43 33482.33 30837.63 35491.23 23945.34 36076.03 28182.32 346
BH-RMVSNet79.61 15578.44 16483.14 15889.38 12565.93 17084.95 22587.15 23173.56 13478.19 15989.79 13956.67 21093.36 15659.53 27586.74 14390.13 193
BH-w/o78.21 19277.33 19580.84 22288.81 14965.13 19184.87 22687.85 21769.75 20774.52 24484.74 27561.34 16693.11 17358.24 28985.84 15884.27 325
TDRefinement67.49 31164.34 32176.92 28673.47 36961.07 25984.86 22782.98 29259.77 32458.30 36485.13 26826.06 37487.89 29247.92 34960.59 36581.81 351
Anonymous20240521178.25 19077.01 19981.99 19291.03 8260.67 26584.77 22883.90 27570.65 18780.00 12691.20 10941.08 34191.43 23365.21 22985.26 16193.85 57
TAMVS78.89 17877.51 19183.03 16487.80 18567.79 13384.72 22985.05 25867.63 24376.75 19187.70 19762.25 15090.82 24958.53 28687.13 13790.49 179
131476.53 22775.30 23380.21 23583.93 26462.32 24584.66 23088.81 19260.23 32070.16 28684.07 28555.30 21590.73 25267.37 21183.21 19487.59 269
MVS78.19 19476.99 20181.78 19585.66 23066.99 15284.66 23090.47 13555.08 35572.02 26985.27 26363.83 12894.11 12266.10 22289.80 10984.24 326
tfpnnormal74.39 25173.16 25578.08 27086.10 22658.05 28984.65 23287.53 22370.32 19271.22 27685.63 25654.97 21689.86 26143.03 36475.02 30186.32 295
TR-MVS77.44 21376.18 21881.20 21288.24 17063.24 23184.61 23386.40 24167.55 24577.81 16786.48 23854.10 22893.15 17057.75 29382.72 20187.20 277
AllTest70.96 28268.09 29779.58 24985.15 23963.62 21984.58 23479.83 32462.31 30660.32 35786.73 22232.02 36488.96 27950.28 33371.57 33086.15 299
FA-MVS(test-final)80.96 12279.91 13084.10 11788.30 16965.01 19384.55 23590.01 15173.25 14379.61 12987.57 20158.35 19594.72 9971.29 17386.25 15192.56 111
EU-MVSNet68.53 30667.61 30771.31 33278.51 34747.01 37084.47 23684.27 27042.27 37566.44 32984.79 27440.44 34383.76 32258.76 28468.54 34483.17 337
VNet82.21 9782.41 8981.62 19890.82 8860.93 26084.47 23689.78 15676.36 7784.07 7691.88 9164.71 12290.26 25670.68 17888.89 11693.66 65
xiu_mvs_v2_base81.69 10881.05 10983.60 14089.15 13768.03 12984.46 23890.02 15070.67 18481.30 11386.53 23763.17 13594.19 11975.60 13588.54 12288.57 252
VPNet78.69 18278.66 15978.76 25988.31 16855.72 32584.45 23986.63 23876.79 6478.26 15690.55 12659.30 18989.70 26566.63 21877.05 26390.88 164
PVSNet_Blended80.98 12180.34 12282.90 17088.85 14565.40 18484.43 24092.00 8767.62 24478.11 16185.05 27166.02 11094.27 11371.52 16989.50 11189.01 235
MVP-Stereo76.12 23574.46 24281.13 21585.37 23569.79 8684.42 24187.95 21365.03 27467.46 31385.33 26253.28 23691.73 22058.01 29183.27 19381.85 350
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CDS-MVSNet79.07 17377.70 18683.17 15787.60 19468.23 12384.40 24286.20 24467.49 24676.36 20286.54 23661.54 16090.79 25061.86 25787.33 13490.49 179
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
K. test v371.19 27968.51 29179.21 25583.04 28557.78 29784.35 24376.91 34572.90 15162.99 34982.86 30239.27 34691.09 24561.65 25952.66 37688.75 247
PS-MVSNAJ81.69 10881.02 11083.70 13989.51 11968.21 12484.28 24490.09 14970.79 18181.26 11485.62 25763.15 13694.29 11175.62 13488.87 11788.59 251
patch_mono-283.65 7384.54 6580.99 21890.06 10665.83 17384.21 24588.74 19871.60 16785.01 5392.44 8274.51 2583.50 32582.15 7392.15 7593.64 71
test22291.50 7768.26 12284.16 24683.20 28854.63 35679.74 12791.63 9758.97 19191.42 8586.77 289
testdata184.14 24775.71 87
c3_l78.75 17977.91 17681.26 20982.89 29061.56 25584.09 24889.13 18169.97 20075.56 21684.29 28266.36 10492.09 20773.47 15375.48 28990.12 194
MVSTER79.01 17477.88 17882.38 18683.07 28364.80 19884.08 24988.95 18969.01 22778.69 14387.17 21554.70 22292.43 19374.69 14080.57 22689.89 210
ab-mvs79.51 15878.97 15481.14 21488.46 16360.91 26183.84 25089.24 17570.36 19079.03 13688.87 16763.23 13490.21 25865.12 23082.57 20392.28 122
PAPM77.68 21076.40 21681.51 20187.29 20761.85 25183.78 25189.59 16264.74 27771.23 27588.70 17062.59 14393.66 14352.66 32187.03 13989.01 235
diffmvspermissive82.10 9881.88 10082.76 18083.00 28663.78 21883.68 25289.76 15772.94 15082.02 10189.85 13865.96 11290.79 25082.38 7287.30 13593.71 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
miper_ehance_all_eth78.59 18577.76 18481.08 21682.66 29561.56 25583.65 25389.15 17968.87 22975.55 21783.79 29066.49 10292.03 20873.25 15676.39 27489.64 218
1112_ss77.40 21576.43 21580.32 23389.11 14260.41 27083.65 25387.72 22062.13 30873.05 25786.72 22462.58 14489.97 26062.11 25580.80 22290.59 176
PCF-MVS73.52 780.38 14078.84 15685.01 8287.71 18968.99 10283.65 25391.46 11163.00 29677.77 16990.28 12966.10 10795.09 8461.40 26188.22 12790.94 163
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
XVG-ACMP-BASELINE76.11 23674.27 24481.62 19883.20 27964.67 20083.60 25689.75 15869.75 20771.85 27087.09 21732.78 36392.11 20669.99 18680.43 22888.09 258
cl2278.07 19777.01 19981.23 21082.37 30261.83 25283.55 25787.98 21168.96 22875.06 23683.87 28661.40 16591.88 21573.53 15176.39 27489.98 206
XVG-OURS-SEG-HR80.81 12679.76 13383.96 13385.60 23268.78 10683.54 25890.50 13470.66 18676.71 19291.66 9460.69 17891.26 23776.94 11881.58 21391.83 134
IB-MVS68.01 1575.85 23973.36 25383.31 14984.76 24766.03 16683.38 25985.06 25770.21 19669.40 29681.05 31945.76 31394.66 10165.10 23175.49 28889.25 227
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HY-MVS69.67 1277.95 20177.15 19780.36 23187.57 19860.21 27383.37 26087.78 21966.11 26175.37 22487.06 21963.27 13290.48 25561.38 26282.43 20490.40 183
test_vis1_n_192075.52 24375.78 22174.75 30679.84 33457.44 30283.26 26185.52 25362.83 30079.34 13486.17 24545.10 31879.71 34378.75 9981.21 21787.10 284
Anonymous2024052168.80 30267.22 31173.55 31474.33 36254.11 33983.18 26285.61 25258.15 33861.68 35280.94 32230.71 36981.27 33857.00 30073.34 31985.28 312
eth_miper_zixun_eth77.92 20276.69 21081.61 20083.00 28661.98 24983.15 26389.20 17769.52 21174.86 24084.35 28161.76 15692.56 18971.50 17172.89 32190.28 188
FE-MVS77.78 20575.68 22384.08 12188.09 17566.00 16883.13 26487.79 21868.42 23878.01 16485.23 26545.50 31695.12 7859.11 27985.83 15991.11 154
cl____77.72 20776.76 20780.58 22782.49 29960.48 26883.09 26587.87 21569.22 21774.38 24685.22 26662.10 15391.53 22771.09 17475.41 29389.73 217
DIV-MVS_self_test77.72 20776.76 20780.58 22782.48 30060.48 26883.09 26587.86 21669.22 21774.38 24685.24 26462.10 15391.53 22771.09 17475.40 29489.74 216
thres20075.55 24274.47 24178.82 25887.78 18857.85 29583.07 26783.51 28172.44 15475.84 21384.42 27752.08 24891.75 21847.41 35083.64 18686.86 287
testing368.56 30567.67 30671.22 33387.33 20542.87 38183.06 26871.54 36370.36 19069.08 30084.38 27930.33 37085.69 30837.50 37575.45 29285.09 318
XVG-OURS80.41 13979.23 14783.97 13285.64 23169.02 10183.03 26990.39 13671.09 17677.63 17191.49 10254.62 22491.35 23575.71 13283.47 19091.54 140
miper_enhance_ethall77.87 20476.86 20380.92 22181.65 30961.38 25782.68 27088.98 18665.52 27075.47 21882.30 30965.76 11492.00 21072.95 15976.39 27489.39 223
mvs_anonymous79.42 16379.11 15180.34 23284.45 25457.97 29282.59 27187.62 22167.40 24776.17 20988.56 17768.47 8489.59 26670.65 17986.05 15493.47 79
baseline275.70 24073.83 24981.30 20883.26 27761.79 25382.57 27280.65 31466.81 24866.88 31983.42 29557.86 19992.19 20463.47 23979.57 23689.91 208
cascas76.72 22674.64 23782.99 16685.78 22965.88 17282.33 27389.21 17660.85 31672.74 25981.02 32047.28 29793.75 14067.48 21085.02 16289.34 224
RPSCF73.23 26671.46 26778.54 26482.50 29859.85 27582.18 27482.84 29658.96 33271.15 27789.41 15545.48 31784.77 31758.82 28371.83 32891.02 161
thisisatest051577.33 21675.38 23083.18 15685.27 23663.80 21782.11 27583.27 28565.06 27375.91 21183.84 28849.54 27894.27 11367.24 21386.19 15291.48 145
pmmvs-eth3d70.50 28967.83 30278.52 26577.37 35166.18 16581.82 27681.51 30758.90 33363.90 34580.42 32742.69 33086.28 30458.56 28565.30 35483.11 339
MS-PatchMatch73.83 25872.67 25877.30 28383.87 26566.02 16781.82 27684.66 26261.37 31468.61 30482.82 30347.29 29688.21 28859.27 27684.32 17477.68 364
pmmvs571.55 27770.20 28375.61 29577.83 34856.39 31781.74 27880.89 31057.76 34167.46 31384.49 27649.26 28485.32 31357.08 29975.29 29785.11 317
Test_1112_low_res76.40 23275.44 22779.27 25389.28 13258.09 28881.69 27987.07 23259.53 32772.48 26386.67 22961.30 16789.33 27060.81 26780.15 23190.41 182
IterMVS74.29 25272.94 25778.35 26781.53 31263.49 22581.58 28082.49 29868.06 24169.99 28983.69 29251.66 25785.54 30965.85 22571.64 32986.01 303
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT75.43 24573.87 24880.11 23782.69 29464.85 19781.57 28183.47 28269.16 22170.49 28084.15 28451.95 25188.15 28969.23 19372.14 32687.34 274
test_vis1_n69.85 29669.21 28771.77 32672.66 37455.27 33081.48 28276.21 34852.03 36275.30 22983.20 29828.97 37176.22 36374.60 14178.41 25283.81 332
pmmvs474.03 25771.91 26480.39 23081.96 30568.32 12081.45 28382.14 30159.32 32869.87 29285.13 26852.40 24188.13 29060.21 27074.74 30484.73 322
GA-MVS76.87 22475.17 23481.97 19382.75 29262.58 24181.44 28486.35 24372.16 15974.74 24182.89 30146.20 30892.02 20968.85 19981.09 21891.30 150
test_fmvs1_n70.86 28470.24 28272.73 32172.51 37555.28 32981.27 28579.71 32651.49 36578.73 14184.87 27227.54 37377.02 35576.06 12879.97 23485.88 306
test_fmvs170.93 28370.52 27772.16 32473.71 36555.05 33180.82 28678.77 33251.21 36678.58 14784.41 27831.20 36876.94 35675.88 13180.12 23384.47 324
CostFormer75.24 24873.90 24779.27 25382.65 29658.27 28780.80 28782.73 29761.57 31175.33 22883.13 29955.52 21391.07 24664.98 23278.34 25388.45 253
MIMVSNet168.58 30466.78 31473.98 31280.07 33151.82 35380.77 28884.37 26664.40 28159.75 36082.16 31236.47 35683.63 32442.73 36570.33 33586.48 294
CL-MVSNet_self_test72.37 27471.46 26775.09 30179.49 34153.53 34380.76 28985.01 25969.12 22270.51 27982.05 31357.92 19884.13 32052.27 32366.00 35287.60 267
MSDG73.36 26470.99 27380.49 22984.51 25365.80 17580.71 29086.13 24665.70 26765.46 33383.74 29144.60 31990.91 24851.13 32876.89 26584.74 321
tpm273.26 26571.46 26778.63 26083.34 27556.71 31280.65 29180.40 31956.63 34973.55 25182.02 31451.80 25591.24 23856.35 30678.42 25187.95 259
XXY-MVS75.41 24675.56 22574.96 30283.59 27057.82 29680.59 29283.87 27666.54 25874.93 23988.31 18363.24 13380.09 34262.16 25376.85 26786.97 285
test_cas_vis1_n_192073.76 25973.74 25073.81 31375.90 35559.77 27680.51 29382.40 29958.30 33781.62 10885.69 25344.35 32176.41 36176.29 12578.61 24685.23 313
EGC-MVSNET52.07 34847.05 35267.14 35083.51 27260.71 26480.50 29467.75 3730.07 3970.43 39875.85 36124.26 37781.54 33628.82 38262.25 35959.16 382
SDMVSNet80.38 14080.18 12680.99 21889.03 14364.94 19580.45 29589.40 16675.19 9876.61 19689.98 13560.61 18187.69 29576.83 12183.55 18790.33 185
HyFIR lowres test77.53 21275.40 22983.94 13489.59 11566.62 15880.36 29688.64 20156.29 35176.45 19885.17 26757.64 20193.28 15861.34 26383.10 19691.91 133
D2MVS74.82 24973.21 25479.64 24879.81 33562.56 24280.34 29787.35 22764.37 28268.86 30182.66 30546.37 30490.10 25967.91 20681.24 21686.25 296
TinyColmap67.30 31464.81 31974.76 30581.92 30756.68 31380.29 29881.49 30860.33 31856.27 37183.22 29624.77 37687.66 29645.52 35869.47 33879.95 359
LCM-MVSNet-Re77.05 22076.94 20277.36 28187.20 20851.60 35580.06 29980.46 31875.20 9767.69 31086.72 22462.48 14588.98 27763.44 24089.25 11491.51 141
test_fmvs268.35 30867.48 30970.98 33569.50 37851.95 35280.05 30076.38 34749.33 36874.65 24384.38 27923.30 37975.40 37074.51 14275.17 30085.60 308
FMVSNet569.50 29767.96 29874.15 31182.97 28955.35 32880.01 30182.12 30262.56 30463.02 34781.53 31636.92 35581.92 33448.42 34274.06 30985.17 316
SCA74.22 25472.33 26279.91 24084.05 26262.17 24779.96 30279.29 33066.30 26072.38 26580.13 32951.95 25188.60 28459.25 27777.67 25888.96 239
tpmrst72.39 27272.13 26373.18 31980.54 32549.91 36479.91 30379.08 33163.11 29471.69 27279.95 33155.32 21482.77 33065.66 22773.89 31186.87 286
PatchmatchNetpermissive73.12 26771.33 27078.49 26683.18 28060.85 26279.63 30478.57 33364.13 28471.73 27179.81 33451.20 26085.97 30657.40 29676.36 27988.66 249
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PatchMatch-RL72.38 27370.90 27476.80 28888.60 15867.38 14379.53 30576.17 34962.75 30269.36 29782.00 31545.51 31584.89 31653.62 31680.58 22578.12 363
CMPMVSbinary51.72 2170.19 29268.16 29576.28 29073.15 37157.55 30079.47 30683.92 27448.02 36956.48 37084.81 27343.13 32786.42 30362.67 24881.81 21184.89 319
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
GG-mvs-BLEND75.38 29981.59 31155.80 32479.32 30769.63 36867.19 31673.67 36643.24 32688.90 28150.41 33084.50 16981.45 352
LTVRE_ROB69.57 1376.25 23474.54 24081.41 20488.60 15864.38 20879.24 30889.12 18270.76 18369.79 29487.86 19549.09 28693.20 16656.21 30780.16 23086.65 292
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tpm72.37 27471.71 26674.35 30982.19 30352.00 35179.22 30977.29 34264.56 27972.95 25883.68 29351.35 25883.26 32858.33 28875.80 28387.81 263
ppachtmachnet_test70.04 29367.34 31078.14 26979.80 33661.13 25879.19 31080.59 31559.16 33065.27 33579.29 33746.75 30287.29 29749.33 33966.72 34786.00 305
USDC70.33 29068.37 29276.21 29180.60 32456.23 32079.19 31086.49 23960.89 31561.29 35385.47 26031.78 36689.47 26953.37 31876.21 28082.94 343
sd_testset77.70 20977.40 19278.60 26289.03 14360.02 27479.00 31285.83 25075.19 9876.61 19689.98 13554.81 21785.46 31162.63 24983.55 18790.33 185
PM-MVS66.41 32064.14 32273.20 31873.92 36456.45 31578.97 31364.96 38063.88 29164.72 33980.24 32819.84 38283.44 32666.24 21964.52 35679.71 360
tpmvs71.09 28169.29 28676.49 28982.04 30456.04 32278.92 31481.37 30964.05 28767.18 31778.28 34649.74 27789.77 26249.67 33872.37 32383.67 333
test_post178.90 3155.43 39648.81 29285.44 31259.25 277
CHOSEN 1792x268877.63 21175.69 22283.44 14489.98 10868.58 11778.70 31687.50 22456.38 35075.80 21486.84 22058.67 19291.40 23461.58 26085.75 16090.34 184
Syy-MVS68.05 30967.85 30068.67 34684.68 24940.97 38778.62 31773.08 36066.65 25566.74 32279.46 33552.11 24782.30 33232.89 37976.38 27782.75 344
myMVS_eth3d67.02 31566.29 31669.21 34184.68 24942.58 38278.62 31773.08 36066.65 25566.74 32279.46 33531.53 36782.30 33239.43 37276.38 27782.75 344
test-LLR72.94 27072.43 26074.48 30781.35 31658.04 29078.38 31977.46 33966.66 25269.95 29079.00 34048.06 29379.24 34466.13 22084.83 16486.15 299
TESTMET0.1,169.89 29569.00 28972.55 32279.27 34456.85 30878.38 31974.71 35557.64 34268.09 30777.19 35337.75 35376.70 35763.92 23784.09 17784.10 329
test-mter71.41 27870.39 28174.48 30781.35 31658.04 29078.38 31977.46 33960.32 31969.95 29079.00 34036.08 35879.24 34466.13 22084.83 16486.15 299
Anonymous2023120668.60 30367.80 30371.02 33480.23 32950.75 36178.30 32280.47 31756.79 34866.11 33182.63 30646.35 30578.95 34643.62 36375.70 28483.36 336
tpm cat170.57 28768.31 29377.35 28282.41 30157.95 29378.08 32380.22 32252.04 36168.54 30577.66 35152.00 25087.84 29351.77 32472.07 32786.25 296
our_test_369.14 29967.00 31275.57 29679.80 33658.80 28277.96 32477.81 33659.55 32662.90 35078.25 34747.43 29583.97 32151.71 32567.58 34683.93 331
KD-MVS_self_test68.81 30167.59 30872.46 32374.29 36345.45 37277.93 32587.00 23363.12 29363.99 34478.99 34242.32 33284.77 31756.55 30564.09 35787.16 280
WTY-MVS75.65 24175.68 22375.57 29686.40 22156.82 30977.92 32682.40 29965.10 27276.18 20787.72 19663.13 13980.90 33960.31 26981.96 20889.00 237
test20.0367.45 31266.95 31368.94 34275.48 35944.84 37777.50 32777.67 33766.66 25263.01 34883.80 28947.02 29978.40 34842.53 36668.86 34383.58 334
EPMVS69.02 30068.16 29571.59 32779.61 33949.80 36677.40 32866.93 37462.82 30170.01 28779.05 33845.79 31277.86 35256.58 30475.26 29887.13 281
test_fmvs363.36 33161.82 33467.98 34862.51 38546.96 37177.37 32974.03 35745.24 37167.50 31278.79 34312.16 39072.98 37872.77 16266.02 35183.99 330
gg-mvs-nofinetune69.95 29467.96 29875.94 29283.07 28354.51 33777.23 33070.29 36663.11 29470.32 28262.33 37743.62 32588.69 28353.88 31587.76 12984.62 323
MDTV_nov1_ep1369.97 28483.18 28053.48 34477.10 33180.18 32360.45 31769.33 29880.44 32648.89 29186.90 29951.60 32678.51 249
LF4IMVS64.02 32962.19 33369.50 34070.90 37653.29 34876.13 33277.18 34352.65 36058.59 36280.98 32123.55 37876.52 35953.06 32066.66 34878.68 362
sss73.60 26073.64 25173.51 31582.80 29155.01 33276.12 33381.69 30662.47 30574.68 24285.85 25157.32 20578.11 35060.86 26680.93 21987.39 272
testgi66.67 31866.53 31567.08 35175.62 35841.69 38675.93 33476.50 34666.11 26165.20 33886.59 23235.72 35974.71 37243.71 36273.38 31884.84 320
CR-MVSNet73.37 26271.27 27179.67 24781.32 31865.19 18975.92 33580.30 32059.92 32372.73 26081.19 31752.50 23986.69 30059.84 27277.71 25687.11 282
RPMNet73.51 26170.49 27882.58 18381.32 31865.19 18975.92 33592.27 7657.60 34372.73 26076.45 35652.30 24295.43 6548.14 34777.71 25687.11 282
MIMVSNet70.69 28669.30 28574.88 30384.52 25256.35 31975.87 33779.42 32864.59 27867.76 30882.41 30741.10 34081.54 33646.64 35481.34 21486.75 290
test0.0.03 168.00 31067.69 30568.90 34377.55 34947.43 36875.70 33872.95 36266.66 25266.56 32482.29 31048.06 29375.87 36544.97 36174.51 30683.41 335
dmvs_re71.14 28070.58 27672.80 32081.96 30559.68 27775.60 33979.34 32968.55 23469.27 29980.72 32549.42 28076.54 35852.56 32277.79 25582.19 348
dmvs_testset62.63 33264.11 32358.19 36178.55 34624.76 39775.28 34065.94 37767.91 24260.34 35676.01 35853.56 23373.94 37631.79 38067.65 34575.88 368
PMMVS69.34 29868.67 29071.35 33175.67 35762.03 24875.17 34173.46 35850.00 36768.68 30279.05 33852.07 24978.13 34961.16 26482.77 19973.90 370
UnsupCasMVSNet_eth67.33 31365.99 31771.37 32973.48 36851.47 35775.16 34285.19 25665.20 27160.78 35580.93 32442.35 33177.20 35457.12 29853.69 37585.44 310
MDTV_nov1_ep13_2view37.79 38975.16 34255.10 35466.53 32549.34 28253.98 31487.94 260
pmmvs357.79 33854.26 34368.37 34764.02 38456.72 31175.12 34465.17 37840.20 37752.93 37569.86 37420.36 38175.48 36845.45 35955.25 37472.90 372
dp66.80 31665.43 31870.90 33679.74 33848.82 36775.12 34474.77 35359.61 32564.08 34377.23 35242.89 32880.72 34048.86 34166.58 34983.16 338
Patchmtry70.74 28569.16 28875.49 29880.72 32254.07 34074.94 34680.30 32058.34 33670.01 28781.19 31752.50 23986.54 30153.37 31871.09 33385.87 307
PVSNet64.34 1872.08 27670.87 27575.69 29486.21 22356.44 31674.37 34780.73 31362.06 30970.17 28582.23 31142.86 32983.31 32754.77 31184.45 17387.32 275
WB-MVS54.94 34054.72 34255.60 36773.50 36720.90 39974.27 34861.19 38459.16 33050.61 37774.15 36447.19 29875.78 36617.31 39135.07 38670.12 374
MDA-MVSNet-bldmvs66.68 31763.66 32675.75 29379.28 34360.56 26773.92 34978.35 33464.43 28050.13 37879.87 33344.02 32383.67 32346.10 35656.86 36883.03 341
SSC-MVS53.88 34353.59 34454.75 36972.87 37219.59 40073.84 35060.53 38657.58 34449.18 37973.45 36746.34 30675.47 36916.20 39432.28 38869.20 375
UnsupCasMVSNet_bld63.70 33061.53 33670.21 33873.69 36651.39 35872.82 35181.89 30355.63 35357.81 36671.80 37038.67 34878.61 34749.26 34052.21 37780.63 356
PatchT68.46 30767.85 30070.29 33780.70 32343.93 37972.47 35274.88 35260.15 32170.55 27876.57 35549.94 27481.59 33550.58 32974.83 30385.34 311
miper_lstm_enhance74.11 25573.11 25677.13 28580.11 33059.62 27872.23 35386.92 23566.76 25070.40 28182.92 30056.93 20982.92 32969.06 19672.63 32288.87 242
MVS-HIRNet59.14 33757.67 34063.57 35581.65 30943.50 38071.73 35465.06 37939.59 37951.43 37657.73 38338.34 35082.58 33139.53 37073.95 31064.62 379
APD_test153.31 34549.93 35063.42 35665.68 38250.13 36371.59 35566.90 37534.43 38440.58 38371.56 3718.65 39576.27 36234.64 37855.36 37363.86 380
Patchmatch-RL test70.24 29167.78 30477.61 27877.43 35059.57 28071.16 35670.33 36562.94 29868.65 30372.77 36850.62 26685.49 31069.58 19166.58 34987.77 264
test1236.12 3658.11 3680.14 3800.06 4030.09 40571.05 3570.03 4050.04 3990.25 4001.30 3990.05 4030.03 4000.21 3990.01 3980.29 395
ANet_high50.57 35046.10 35463.99 35448.67 39639.13 38870.99 35880.85 31161.39 31331.18 38657.70 38417.02 38573.65 37731.22 38115.89 39479.18 361
KD-MVS_2432*160066.22 32263.89 32473.21 31675.47 36053.42 34570.76 35984.35 26764.10 28566.52 32678.52 34434.55 36184.98 31450.40 33150.33 37981.23 353
miper_refine_blended66.22 32263.89 32473.21 31675.47 36053.42 34570.76 35984.35 26764.10 28566.52 32678.52 34434.55 36184.98 31450.40 33150.33 37981.23 353
test_vis1_rt60.28 33658.42 33965.84 35267.25 38155.60 32770.44 36160.94 38544.33 37359.00 36166.64 37524.91 37568.67 38362.80 24469.48 33773.25 371
testmvs6.04 3668.02 3690.10 3810.08 4020.03 40669.74 3620.04 4040.05 3980.31 3991.68 3980.02 4040.04 3990.24 3980.02 3970.25 396
N_pmnet52.79 34653.26 34551.40 37178.99 3457.68 40369.52 3633.89 40251.63 36457.01 36874.98 36340.83 34265.96 38637.78 37464.67 35580.56 358
FPMVS53.68 34451.64 34659.81 36065.08 38351.03 35969.48 36469.58 36941.46 37640.67 38272.32 36916.46 38670.00 38224.24 38865.42 35358.40 384
DSMNet-mixed57.77 33956.90 34160.38 35967.70 38035.61 39069.18 36553.97 39132.30 38757.49 36779.88 33240.39 34468.57 38438.78 37372.37 32376.97 365
new-patchmatchnet61.73 33461.73 33561.70 35772.74 37324.50 39869.16 36678.03 33561.40 31256.72 36975.53 36238.42 34976.48 36045.95 35757.67 36784.13 328
YYNet165.03 32562.91 33071.38 32875.85 35656.60 31469.12 36774.66 35657.28 34654.12 37377.87 34945.85 31174.48 37349.95 33661.52 36283.05 340
MDA-MVSNet_test_wron65.03 32562.92 32971.37 32975.93 35456.73 31069.09 36874.73 35457.28 34654.03 37477.89 34845.88 31074.39 37449.89 33761.55 36182.99 342
PVSNet_057.27 2061.67 33559.27 33868.85 34479.61 33957.44 30268.01 36973.44 35955.93 35258.54 36370.41 37344.58 32077.55 35347.01 35135.91 38571.55 373
ADS-MVSNet266.20 32463.33 32774.82 30479.92 33258.75 28367.55 37075.19 35153.37 35865.25 33675.86 35942.32 33280.53 34141.57 36768.91 34185.18 314
ADS-MVSNet64.36 32862.88 33168.78 34579.92 33247.17 36967.55 37071.18 36453.37 35865.25 33675.86 35942.32 33273.99 37541.57 36768.91 34185.18 314
mvsany_test162.30 33361.26 33765.41 35369.52 37754.86 33366.86 37249.78 39346.65 37068.50 30683.21 29749.15 28566.28 38556.93 30160.77 36375.11 369
LCM-MVSNet54.25 34149.68 35167.97 34953.73 39345.28 37566.85 37380.78 31235.96 38339.45 38462.23 3798.70 39478.06 35148.24 34651.20 37880.57 357
test_vis3_rt49.26 35147.02 35356.00 36454.30 39045.27 37666.76 37448.08 39436.83 38144.38 38153.20 3867.17 39764.07 38756.77 30355.66 37158.65 383
testf145.72 35241.96 35557.00 36256.90 38745.32 37366.14 37559.26 38726.19 38830.89 38760.96 3814.14 39870.64 38026.39 38646.73 38355.04 385
APD_test245.72 35241.96 35557.00 36256.90 38745.32 37366.14 37559.26 38726.19 38830.89 38760.96 3814.14 39870.64 38026.39 38646.73 38355.04 385
JIA-IIPM66.32 32162.82 33276.82 28777.09 35261.72 25465.34 37775.38 35058.04 34064.51 34062.32 37842.05 33786.51 30251.45 32769.22 34082.21 347
PMVScopyleft37.38 2244.16 35540.28 35855.82 36640.82 39842.54 38465.12 37863.99 38134.43 38424.48 39057.12 3853.92 40076.17 36417.10 39255.52 37248.75 387
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new_pmnet50.91 34950.29 34952.78 37068.58 37934.94 39263.71 37956.63 39039.73 37844.95 38065.47 37621.93 38058.48 38934.98 37756.62 36964.92 378
mvsany_test353.99 34251.45 34761.61 35855.51 38944.74 37863.52 38045.41 39743.69 37458.11 36576.45 35617.99 38363.76 38854.77 31147.59 38176.34 367
Patchmatch-test64.82 32763.24 32869.57 33979.42 34249.82 36563.49 38169.05 37151.98 36359.95 35980.13 32950.91 26270.98 37940.66 36973.57 31487.90 261
ambc75.24 30073.16 37050.51 36263.05 38287.47 22564.28 34177.81 35017.80 38489.73 26457.88 29260.64 36485.49 309
test_f52.09 34750.82 34855.90 36553.82 39242.31 38559.42 38358.31 38936.45 38256.12 37270.96 37212.18 38957.79 39053.51 31756.57 37067.60 376
CHOSEN 280x42066.51 31964.71 32071.90 32581.45 31363.52 22457.98 38468.95 37253.57 35762.59 35176.70 35446.22 30775.29 37155.25 30979.68 23576.88 366
E-PMN31.77 35730.64 36035.15 37552.87 39427.67 39457.09 38547.86 39524.64 39016.40 39533.05 39111.23 39154.90 39214.46 39518.15 39222.87 391
EMVS30.81 35929.65 36134.27 37650.96 39525.95 39656.58 38646.80 39624.01 39115.53 39630.68 39212.47 38854.43 39312.81 39617.05 39322.43 392
PMMVS240.82 35638.86 35946.69 37253.84 39116.45 40148.61 38749.92 39237.49 38031.67 38560.97 3808.14 39656.42 39128.42 38330.72 38967.19 377
wuyk23d16.82 36315.94 36619.46 37858.74 38631.45 39339.22 3883.74 4036.84 3946.04 3972.70 3971.27 40224.29 39710.54 39714.40 3962.63 394
tmp_tt18.61 36221.40 36510.23 3794.82 40110.11 40234.70 38930.74 4001.48 39623.91 39226.07 39328.42 37213.41 39827.12 38415.35 3957.17 393
Gipumacopyleft45.18 35441.86 35755.16 36877.03 35351.52 35632.50 39080.52 31632.46 38627.12 38935.02 3909.52 39375.50 36722.31 38960.21 36638.45 389
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVEpermissive26.22 2330.37 36025.89 36443.81 37344.55 39735.46 39128.87 39139.07 39818.20 39218.58 39440.18 3892.68 40147.37 39517.07 39323.78 39148.60 388
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method31.52 35829.28 36238.23 37427.03 4006.50 40420.94 39262.21 3834.05 39522.35 39352.50 38713.33 38747.58 39427.04 38534.04 38760.62 381
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k19.96 36126.61 3630.00 3820.00 4040.00 4070.00 39389.26 1730.00 4000.00 40188.61 17461.62 1590.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas5.26 3677.02 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40063.15 1360.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re7.23 3649.64 3670.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40186.72 2240.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
WAC-MVS42.58 38239.46 371
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
PC_three_145268.21 24092.02 1294.00 4682.09 595.98 5184.58 4696.68 294.95 10
No_MVS89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 404
eth-test0.00 404
ZD-MVS94.38 2572.22 4492.67 6170.98 17987.75 3094.07 4174.01 3296.70 2784.66 4594.84 43
IU-MVS95.30 271.25 5792.95 5166.81 24892.39 688.94 1696.63 494.85 19
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 41
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 24
GSMVS88.96 239
test_part295.06 872.65 3291.80 13
sam_mvs151.32 25988.96 239
sam_mvs50.01 272
MTGPAbinary92.02 85
test_post5.46 39550.36 27084.24 319
patchmatchnet-post74.00 36551.12 26188.60 284
gm-plane-assit81.40 31453.83 34262.72 30380.94 32292.39 19563.40 241
test9_res84.90 4095.70 2692.87 102
agg_prior282.91 6495.45 3092.70 105
agg_prior92.85 5971.94 5191.78 10084.41 6994.93 87
TestCases79.58 24985.15 23963.62 21979.83 32462.31 30660.32 35786.73 22232.02 36488.96 27950.28 33371.57 33086.15 299
test_prior86.33 5492.61 6569.59 8892.97 5095.48 6293.91 53
新几何183.42 14593.13 5270.71 7185.48 25457.43 34581.80 10591.98 8863.28 13192.27 20164.60 23592.99 6587.27 276
旧先验191.96 7165.79 17686.37 24293.08 6969.31 7592.74 6888.74 248
原ACMM184.35 10793.01 5768.79 10592.44 6963.96 29081.09 11591.57 9966.06 10995.45 6367.19 21494.82 4588.81 245
testdata291.01 24762.37 251
segment_acmp73.08 37
testdata79.97 23990.90 8664.21 21084.71 26159.27 32985.40 4992.91 7162.02 15589.08 27568.95 19791.37 8686.63 293
test1286.80 4992.63 6470.70 7291.79 9982.71 9671.67 5096.16 4494.50 5093.54 77
plane_prior790.08 10268.51 118
plane_prior689.84 11168.70 11360.42 184
plane_prior592.44 6995.38 6978.71 10086.32 14991.33 147
plane_prior491.00 118
plane_prior368.60 11678.44 3178.92 139
plane_prior189.90 110
n20.00 406
nn0.00 406
door-mid69.98 367
lessismore_v078.97 25681.01 32157.15 30565.99 37661.16 35482.82 30339.12 34791.34 23659.67 27346.92 38288.43 254
LGP-MVS_train84.50 9989.23 13468.76 10791.94 9175.37 9476.64 19491.51 10054.29 22694.91 8878.44 10283.78 17989.83 212
test1192.23 79
door69.44 370
HQP5-MVS66.98 153
BP-MVS77.47 112
HQP4-MVS77.24 17995.11 8091.03 159
HQP3-MVS92.19 8285.99 156
HQP2-MVS60.17 187
NP-MVS89.62 11468.32 12090.24 130
ACMMP++_ref81.95 209
ACMMP++81.25 215
Test By Simon64.33 123
ITE_SJBPF78.22 26881.77 30860.57 26683.30 28469.25 21667.54 31187.20 21336.33 35787.28 29854.34 31374.62 30586.80 288
DeepMVS_CXcopyleft27.40 37740.17 39926.90 39524.59 40117.44 39323.95 39148.61 3889.77 39226.48 39618.06 39024.47 39028.83 390