This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5995.06 194.23 378.38 3492.78 495.74 682.45 397.49 489.42 1296.68 294.95 11
FOURS195.00 1072.39 3995.06 193.84 1574.49 12291.30 15
CP-MVS87.11 3386.92 3787.68 3494.20 3473.86 793.98 392.82 6376.62 7583.68 9694.46 2867.93 9995.95 5784.20 6394.39 5593.23 96
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9591.06 1696.03 176.84 1497.03 1789.09 1495.65 2794.47 38
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 7272.96 2593.73 593.67 2080.19 1288.10 3094.80 2073.76 3397.11 1587.51 3495.82 2194.90 14
Skip Steuart: Steuart Systems R&D Blog.
test072695.27 571.25 5993.60 694.11 677.33 5192.81 395.79 380.98 9
SED-MVS90.08 290.85 287.77 2695.30 270.98 6693.57 794.06 1077.24 5493.10 195.72 882.99 197.44 789.07 1796.63 494.88 15
OPU-MVS89.06 394.62 1575.42 493.57 794.02 5082.45 396.87 2083.77 6796.48 894.88 15
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5993.49 992.73 6477.33 5192.12 995.78 480.98 997.40 989.08 1596.41 1293.33 93
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND87.71 3295.34 171.43 5893.49 994.23 397.49 489.08 1596.41 1294.21 49
3Dnovator+77.84 485.48 6184.47 7788.51 791.08 8673.49 1693.18 1193.78 1880.79 876.66 20693.37 6860.40 19996.75 2677.20 12893.73 6495.29 5
HFP-MVS87.58 2287.47 2687.94 1994.58 1673.54 1593.04 1293.24 3376.78 6984.91 6894.44 3170.78 6796.61 3284.53 5794.89 4293.66 74
ACMMPR87.44 2587.23 3188.08 1594.64 1373.59 1293.04 1293.20 3476.78 6984.66 7594.52 2468.81 9196.65 3084.53 5794.90 4194.00 57
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6785.24 6394.32 3571.76 5296.93 1985.53 4695.79 2294.32 45
region2R87.42 2787.20 3288.09 1494.63 1473.55 1393.03 1493.12 4076.73 7284.45 8094.52 2469.09 8596.70 2784.37 5994.83 4594.03 56
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 4378.35 1396.77 2489.59 1194.22 6094.67 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CS-MVS86.69 3986.95 3685.90 7190.76 9667.57 14792.83 1793.30 3279.67 1784.57 7992.27 9271.47 5795.02 9384.24 6293.46 6795.13 8
XVS87.18 3286.91 3888.00 1794.42 2073.33 1992.78 1892.99 4979.14 2283.67 9794.17 4267.45 10496.60 3383.06 7294.50 5194.07 54
X-MVStestdata80.37 15777.83 19388.00 1794.42 2073.33 1992.78 1892.99 4979.14 2283.67 9712.47 42367.45 10496.60 3383.06 7294.50 5194.07 54
mPP-MVS86.67 4186.32 4487.72 3094.41 2273.55 1392.74 2092.22 8876.87 6682.81 10994.25 3966.44 11496.24 4482.88 7794.28 5893.38 90
ACMMPcopyleft85.89 5585.39 6287.38 3993.59 4572.63 3392.74 2093.18 3976.78 6980.73 13393.82 5964.33 13496.29 4282.67 8390.69 10193.23 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 7077.57 4383.84 9394.40 3372.24 4696.28 4385.65 4495.30 3593.62 81
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MM89.16 689.23 788.97 490.79 9573.65 1092.66 2391.17 12586.57 187.39 4494.97 1971.70 5497.68 192.19 195.63 2895.57 1
SF-MVS88.46 1288.74 1287.64 3592.78 6471.95 4992.40 2494.74 275.71 9389.16 2095.10 1675.65 2196.19 4687.07 3796.01 1794.79 22
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 11692.29 795.97 274.28 2997.24 1388.58 2496.91 194.87 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GST-MVS87.42 2787.26 2987.89 2494.12 3672.97 2492.39 2693.43 2876.89 6584.68 7293.99 5470.67 6996.82 2284.18 6495.01 3793.90 63
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5980.26 1187.78 3694.27 3775.89 1996.81 2387.45 3596.44 993.05 108
SR-MVS86.73 3886.67 4086.91 4994.11 3772.11 4792.37 2892.56 7574.50 12186.84 5194.65 2367.31 10695.77 5984.80 5392.85 7292.84 116
SPE-MVS-test86.29 4786.48 4285.71 7391.02 8867.21 16092.36 2993.78 1878.97 2983.51 10091.20 12370.65 7095.15 8481.96 8694.89 4294.77 24
EC-MVSNet86.01 4886.38 4384.91 9689.31 13866.27 17392.32 3093.63 2179.37 2184.17 8691.88 10069.04 8995.43 7083.93 6693.77 6393.01 111
EPP-MVSNet83.40 9683.02 9584.57 10490.13 10664.47 21592.32 3090.73 13774.45 12479.35 14891.10 12669.05 8895.12 8572.78 17587.22 15294.13 51
PHI-MVS86.43 4386.17 4887.24 4190.88 9270.96 6892.27 3294.07 972.45 16685.22 6491.90 9969.47 8196.42 4083.28 7195.94 1994.35 43
HPM-MVScopyleft87.11 3386.98 3587.50 3893.88 3972.16 4592.19 3393.33 3176.07 8883.81 9493.95 5769.77 7996.01 5385.15 4794.66 4794.32 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MTMP92.18 3432.83 428
HPM-MVS_fast85.35 6584.95 7186.57 5693.69 4270.58 7892.15 3591.62 11173.89 13782.67 11194.09 4662.60 15395.54 6580.93 9592.93 7193.57 83
CPTT-MVS83.73 8583.33 9184.92 9593.28 4970.86 7292.09 3690.38 14668.75 24879.57 14592.83 8260.60 19593.04 18480.92 9691.56 9190.86 179
APD-MVS_3200maxsize85.97 5185.88 5486.22 6092.69 6669.53 9291.93 3792.99 4973.54 14685.94 5594.51 2765.80 12495.61 6283.04 7492.51 7693.53 87
SR-MVS-dyc-post85.77 5685.61 5986.23 5993.06 5870.63 7691.88 3892.27 8473.53 14785.69 5994.45 2965.00 13295.56 6382.75 7891.87 8492.50 127
RE-MVS-def85.48 6193.06 5870.63 7691.88 3892.27 8473.53 14785.69 5994.45 2963.87 13882.75 7891.87 8492.50 127
APD-MVScopyleft87.44 2587.52 2587.19 4294.24 3272.39 3991.86 4092.83 6073.01 16188.58 2594.52 2473.36 3496.49 3884.26 6095.01 3792.70 118
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SD-MVS88.06 1488.50 1486.71 5492.60 6972.71 2991.81 4193.19 3577.87 3790.32 1794.00 5274.83 2393.78 14187.63 3394.27 5993.65 78
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
reproduce_model87.28 3087.39 2886.95 4893.10 5671.24 6391.60 4293.19 3574.69 11788.80 2495.61 1170.29 7396.44 3986.20 4293.08 6993.16 101
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 9192.29 795.66 1081.67 697.38 1187.44 3696.34 1593.95 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
QAPM80.88 13879.50 15485.03 8988.01 19268.97 10791.59 4392.00 9566.63 27775.15 24992.16 9457.70 21395.45 6863.52 25588.76 13190.66 186
IS-MVSNet83.15 10082.81 9984.18 12389.94 11563.30 24091.59 4388.46 21479.04 2679.49 14692.16 9465.10 12994.28 11767.71 22291.86 8694.95 11
reproduce-ours87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10988.96 2195.54 1271.20 6296.54 3686.28 4093.49 6593.06 106
our_new_method87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10988.96 2195.54 1271.20 6296.54 3686.28 4093.49 6593.06 106
9.1488.26 1592.84 6391.52 4894.75 173.93 13688.57 2694.67 2275.57 2295.79 5886.77 3895.76 23
MVS_030487.69 2087.55 2488.12 1389.45 12971.76 5191.47 4989.54 17482.14 386.65 5294.28 3668.28 9697.46 690.81 395.31 3495.15 7
TSAR-MVS + MP.88.02 1788.11 1687.72 3093.68 4372.13 4691.41 5092.35 8274.62 12088.90 2393.85 5875.75 2096.00 5487.80 3194.63 4895.04 9
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DeepC-MVS_fast79.65 386.91 3686.62 4187.76 2793.52 4672.37 4191.26 5193.04 4176.62 7584.22 8493.36 6971.44 5896.76 2580.82 9795.33 3394.16 50
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HQP_MVS83.64 8883.14 9285.14 8590.08 10868.71 11691.25 5292.44 7779.12 2478.92 15491.00 13360.42 19795.38 7578.71 11386.32 16591.33 163
plane_prior291.25 5279.12 24
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5492.83 6081.50 585.79 5893.47 6673.02 4197.00 1884.90 4994.94 4094.10 52
API-MVS81.99 11881.23 12284.26 12190.94 9070.18 8591.10 5589.32 18171.51 18378.66 15988.28 19665.26 12795.10 9064.74 24991.23 9587.51 291
EPNet83.72 8682.92 9886.14 6584.22 27969.48 9491.05 5685.27 27181.30 676.83 20191.65 10666.09 11995.56 6376.00 14293.85 6293.38 90
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMMP_NAP88.05 1688.08 1787.94 1993.70 4173.05 2290.86 5793.59 2376.27 8588.14 2995.09 1771.06 6496.67 2987.67 3296.37 1494.09 53
CSCG86.41 4586.19 4787.07 4592.91 6172.48 3790.81 5893.56 2473.95 13483.16 10391.07 12875.94 1895.19 8279.94 10694.38 5693.55 85
MSLP-MVS++85.43 6385.76 5784.45 10991.93 7570.24 7990.71 5992.86 5877.46 4984.22 8492.81 8467.16 10892.94 18680.36 10194.35 5790.16 206
3Dnovator76.31 583.38 9782.31 10786.59 5587.94 19472.94 2890.64 6092.14 9277.21 5675.47 23192.83 8258.56 20694.72 10573.24 17192.71 7492.13 144
OpenMVScopyleft72.83 1079.77 16678.33 18184.09 12985.17 25969.91 8790.57 6190.97 13066.70 27172.17 29191.91 9854.70 23893.96 12861.81 27690.95 9888.41 274
balanced_conf0386.78 3786.99 3486.15 6391.24 8367.61 14590.51 6292.90 5677.26 5387.44 4391.63 10871.27 6196.06 4985.62 4595.01 3794.78 23
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6293.00 4680.90 788.06 3194.06 4876.43 1696.84 2188.48 2795.99 1894.34 44
MVSFormer82.85 10682.05 11285.24 8387.35 21570.21 8090.50 6490.38 14668.55 25181.32 12489.47 16361.68 16993.46 15878.98 11090.26 10792.05 146
test_djsdf80.30 15879.32 15983.27 16283.98 28565.37 19490.50 6490.38 14668.55 25176.19 21888.70 18256.44 22693.46 15878.98 11080.14 25290.97 176
save fliter93.80 4072.35 4290.47 6691.17 12574.31 127
nrg03083.88 8183.53 8684.96 9286.77 23269.28 10290.46 6792.67 6774.79 11582.95 10491.33 11972.70 4493.09 18080.79 9979.28 26292.50 127
sasdasda85.91 5385.87 5586.04 6789.84 11769.44 9890.45 6893.00 4676.70 7388.01 3391.23 12073.28 3693.91 13581.50 8988.80 12994.77 24
canonicalmvs85.91 5385.87 5586.04 6789.84 11769.44 9890.45 6893.00 4676.70 7388.01 3391.23 12073.28 3693.91 13581.50 8988.80 12994.77 24
plane_prior68.71 11690.38 7077.62 4186.16 169
DeepC-MVS79.81 287.08 3586.88 3987.69 3391.16 8472.32 4390.31 7193.94 1477.12 5982.82 10894.23 4072.13 4897.09 1684.83 5295.37 3193.65 78
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Vis-MVSNetpermissive83.46 9482.80 10085.43 7990.25 10468.74 11490.30 7290.13 15876.33 8480.87 13292.89 8061.00 18694.20 12272.45 18090.97 9793.35 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PGM-MVS86.68 4086.27 4587.90 2294.22 3373.38 1890.22 7393.04 4175.53 9783.86 9294.42 3267.87 10196.64 3182.70 8294.57 5093.66 74
LPG-MVS_test82.08 11581.27 12184.50 10689.23 14268.76 11290.22 7391.94 9975.37 10076.64 20791.51 11254.29 24194.91 9578.44 11583.78 19989.83 227
Anonymous2023121178.97 18977.69 20182.81 18690.54 9964.29 21990.11 7591.51 11565.01 29776.16 22288.13 20550.56 28593.03 18569.68 20577.56 28091.11 169
ACMM73.20 880.78 14679.84 14783.58 15289.31 13868.37 12689.99 7691.60 11270.28 20977.25 19089.66 15653.37 25193.53 15474.24 16082.85 21888.85 259
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP74.13 681.51 13080.57 13284.36 11289.42 13068.69 11989.97 7791.50 11874.46 12375.04 25390.41 14253.82 24694.54 10977.56 12482.91 21789.86 226
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LFMVS81.82 12181.23 12283.57 15391.89 7663.43 23889.84 7881.85 32377.04 6283.21 10193.10 7352.26 25993.43 16071.98 18189.95 11493.85 65
MCST-MVS87.37 2987.25 3087.73 2894.53 1772.46 3889.82 7993.82 1673.07 15984.86 7192.89 8076.22 1796.33 4184.89 5195.13 3694.40 41
MAR-MVS81.84 12080.70 13085.27 8291.32 8271.53 5689.82 7990.92 13169.77 22378.50 16386.21 25562.36 15994.52 11165.36 24392.05 8289.77 230
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MP-MVS-pluss87.67 2187.72 2087.54 3693.64 4472.04 4889.80 8193.50 2575.17 10686.34 5495.29 1570.86 6696.00 5488.78 2296.04 1694.58 33
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
UA-Net85.08 6984.96 7085.45 7892.07 7368.07 13489.78 8290.86 13582.48 284.60 7893.20 7269.35 8295.22 8171.39 18690.88 9993.07 105
alignmvs85.48 6185.32 6585.96 7089.51 12669.47 9589.74 8392.47 7676.17 8687.73 4091.46 11570.32 7293.78 14181.51 8888.95 12694.63 32
VDDNet81.52 12880.67 13184.05 13690.44 10164.13 22289.73 8485.91 26571.11 19083.18 10293.48 6450.54 28693.49 15573.40 16888.25 13994.54 36
CANet86.45 4286.10 5087.51 3790.09 10770.94 7089.70 8592.59 7481.78 481.32 12491.43 11670.34 7197.23 1484.26 6093.36 6894.37 42
test_fmvsmconf0.1_n85.61 6085.65 5885.50 7782.99 31269.39 10089.65 8690.29 15373.31 15387.77 3794.15 4471.72 5393.23 16790.31 590.67 10293.89 64
114514_t80.68 14779.51 15384.20 12294.09 3867.27 15689.64 8791.11 12858.75 36074.08 26790.72 13758.10 20995.04 9269.70 20489.42 12190.30 202
MVSMamba_PlusPlus85.99 4985.96 5386.05 6691.09 8567.64 14489.63 8892.65 7072.89 16484.64 7691.71 10471.85 5096.03 5084.77 5494.45 5494.49 37
test_fmvsmconf_n85.92 5286.04 5285.57 7685.03 26569.51 9389.62 8990.58 14073.42 15087.75 3894.02 5072.85 4293.24 16690.37 490.75 10093.96 58
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5392.24 7169.03 10389.57 9093.39 3077.53 4789.79 1994.12 4578.98 1296.58 3585.66 4395.72 2494.58 33
test_fmvsmconf0.01_n84.73 7484.52 7685.34 8080.25 35369.03 10389.47 9189.65 17173.24 15786.98 4994.27 3766.62 11093.23 16790.26 689.95 11493.78 71
fmvsm_s_conf0.5_n83.80 8383.71 8484.07 13186.69 23467.31 15489.46 9283.07 30671.09 19186.96 5093.70 6169.02 9091.47 24388.79 2184.62 18693.44 89
MGCFI-Net85.06 7085.51 6083.70 14989.42 13063.01 24689.43 9392.62 7376.43 7787.53 4191.34 11872.82 4393.42 16181.28 9288.74 13294.66 31
fmvsm_s_conf0.5_n_a83.63 8983.41 8884.28 11786.14 24268.12 13289.43 9382.87 31170.27 21087.27 4693.80 6069.09 8591.58 23488.21 2983.65 20693.14 103
UGNet80.83 14079.59 15284.54 10588.04 18968.09 13389.42 9588.16 21676.95 6376.22 21789.46 16549.30 30193.94 13168.48 21790.31 10591.60 153
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tt080578.73 19377.83 19381.43 21585.17 25960.30 28489.41 9690.90 13271.21 18877.17 19788.73 18146.38 32193.21 16972.57 17878.96 26490.79 180
fmvsm_s_conf0.1_n83.56 9183.38 8984.10 12584.86 26767.28 15589.40 9783.01 30770.67 19987.08 4793.96 5668.38 9491.45 24488.56 2584.50 18793.56 84
BP-MVS184.32 7683.71 8486.17 6187.84 19967.85 13889.38 9889.64 17277.73 3983.98 9092.12 9656.89 22395.43 7084.03 6591.75 8795.24 6
AdaColmapbinary80.58 15279.42 15584.06 13393.09 5768.91 10889.36 9988.97 19969.27 23275.70 22789.69 15557.20 22095.77 5963.06 26088.41 13887.50 292
fmvsm_s_conf0.1_n_a83.32 9882.99 9684.28 11783.79 28968.07 13489.34 10082.85 31269.80 22187.36 4594.06 4868.34 9591.56 23687.95 3083.46 21193.21 99
PS-MVSNAJss82.07 11681.31 12084.34 11486.51 23767.27 15689.27 10191.51 11571.75 17679.37 14790.22 14763.15 14794.27 11877.69 12382.36 22591.49 159
jajsoiax79.29 18077.96 18883.27 16284.68 27066.57 16989.25 10290.16 15769.20 23775.46 23389.49 16245.75 33293.13 17876.84 13380.80 24290.11 210
mvs_tets79.13 18477.77 19783.22 16684.70 26966.37 17189.17 10390.19 15669.38 23075.40 23689.46 16544.17 34293.15 17676.78 13580.70 24490.14 207
HQP-NCC89.33 13589.17 10376.41 7877.23 192
ACMP_Plane89.33 13589.17 10376.41 7877.23 192
HQP-MVS82.61 10982.02 11384.37 11189.33 13566.98 16389.17 10392.19 9076.41 7877.23 19290.23 14660.17 20095.11 8777.47 12585.99 17391.03 173
LS3D76.95 23574.82 25283.37 15990.45 10067.36 15389.15 10786.94 24761.87 33569.52 32090.61 13951.71 27394.53 11046.38 37886.71 16088.21 277
GDP-MVS83.52 9282.64 10286.16 6288.14 18368.45 12489.13 10892.69 6572.82 16583.71 9591.86 10255.69 22895.35 7980.03 10489.74 11794.69 27
OPM-MVS83.50 9382.95 9785.14 8588.79 15970.95 6989.13 10891.52 11477.55 4680.96 13191.75 10360.71 18994.50 11279.67 10886.51 16389.97 222
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
fmvsm_s_conf0.5_n_386.36 4687.46 2783.09 17187.08 22665.21 19689.09 11090.21 15579.67 1789.98 1895.02 1873.17 3891.71 23191.30 291.60 8892.34 132
TSAR-MVS + GP.85.71 5885.33 6486.84 5091.34 8172.50 3689.07 11187.28 23876.41 7885.80 5790.22 14774.15 3195.37 7881.82 8791.88 8392.65 122
test_prior472.60 3489.01 112
GeoE81.71 12381.01 12783.80 14889.51 12664.45 21688.97 11388.73 20971.27 18778.63 16089.76 15466.32 11693.20 17269.89 20286.02 17293.74 72
Anonymous2024052980.19 16178.89 16984.10 12590.60 9764.75 20988.95 11490.90 13265.97 28580.59 13491.17 12549.97 29193.73 14769.16 21082.70 22293.81 69
VDD-MVS83.01 10582.36 10684.96 9291.02 8866.40 17088.91 11588.11 21777.57 4384.39 8293.29 7052.19 26093.91 13577.05 13188.70 13394.57 35
Effi-MVS+83.62 9083.08 9385.24 8388.38 17567.45 14988.89 11689.15 19075.50 9882.27 11288.28 19669.61 8094.45 11477.81 12287.84 14393.84 67
ACMH+68.96 1476.01 25374.01 26282.03 20388.60 16665.31 19588.86 11787.55 23270.25 21167.75 33487.47 21841.27 35993.19 17458.37 30775.94 30387.60 288
test_prior288.85 11875.41 9984.91 6893.54 6274.28 2983.31 7095.86 20
DP-MVS Recon83.11 10382.09 11186.15 6394.44 1970.92 7188.79 11992.20 8970.53 20479.17 15091.03 13164.12 13696.03 5068.39 21990.14 10991.50 158
Effi-MVS+-dtu80.03 16378.57 17484.42 11085.13 26368.74 11488.77 12088.10 21874.99 10874.97 25483.49 31557.27 21993.36 16273.53 16580.88 24091.18 167
TEST993.26 5272.96 2588.75 12191.89 10168.44 25485.00 6693.10 7374.36 2895.41 73
train_agg86.43 4386.20 4687.13 4493.26 5272.96 2588.75 12191.89 10168.69 24985.00 6693.10 7374.43 2695.41 7384.97 4895.71 2593.02 110
ETV-MVS84.90 7384.67 7385.59 7589.39 13368.66 12088.74 12392.64 7279.97 1584.10 8785.71 26469.32 8395.38 7580.82 9791.37 9392.72 117
PVSNet_Blended_VisFu82.62 10881.83 11784.96 9290.80 9469.76 9088.74 12391.70 11069.39 22978.96 15288.46 19165.47 12694.87 10074.42 15788.57 13490.24 204
casdiffmvs_mvgpermissive85.99 4986.09 5185.70 7487.65 20967.22 15988.69 12593.04 4179.64 1985.33 6292.54 8973.30 3594.50 11283.49 6891.14 9695.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_893.13 5472.57 3588.68 12691.84 10568.69 24984.87 7093.10 7374.43 2695.16 83
test_fmvsm_n_192085.29 6685.34 6385.13 8786.12 24369.93 8688.65 12790.78 13669.97 21788.27 2793.98 5571.39 5991.54 23888.49 2690.45 10493.91 61
ACMH67.68 1675.89 25473.93 26481.77 20888.71 16366.61 16888.62 12889.01 19669.81 22066.78 34686.70 24041.95 35891.51 24155.64 32878.14 27387.17 299
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CDPH-MVS85.76 5785.29 6787.17 4393.49 4771.08 6488.58 12992.42 8068.32 25684.61 7793.48 6472.32 4596.15 4879.00 10995.43 3094.28 47
DP-MVS76.78 23874.57 25483.42 15693.29 4869.46 9788.55 13083.70 29263.98 31270.20 30888.89 17854.01 24594.80 10246.66 37581.88 23186.01 324
fmvsm_l_conf0.5_n84.47 7584.54 7484.27 11985.42 25568.81 10988.49 13187.26 24068.08 25888.03 3293.49 6372.04 4991.77 22788.90 2089.14 12592.24 139
WR-MVS_H78.51 19978.49 17578.56 27788.02 19056.38 33388.43 13292.67 6777.14 5873.89 26887.55 21566.25 11789.24 28858.92 30073.55 33690.06 216
F-COLMAP76.38 24874.33 26082.50 19689.28 14066.95 16688.41 13389.03 19464.05 31066.83 34588.61 18646.78 31892.89 18757.48 31478.55 26687.67 286
GBi-Net78.40 20077.40 20681.40 21787.60 21063.01 24688.39 13489.28 18271.63 17875.34 23987.28 22054.80 23491.11 25262.72 26279.57 25690.09 212
test178.40 20077.40 20681.40 21787.60 21063.01 24688.39 13489.28 18271.63 17875.34 23987.28 22054.80 23491.11 25262.72 26279.57 25690.09 212
FMVSNet177.44 22676.12 23381.40 21786.81 23163.01 24688.39 13489.28 18270.49 20574.39 26487.28 22049.06 30591.11 25260.91 28378.52 26790.09 212
tttt051779.40 17777.91 19083.90 14588.10 18663.84 22688.37 13784.05 28871.45 18476.78 20389.12 17249.93 29494.89 9870.18 19883.18 21592.96 114
fmvsm_l_conf0.5_n_a84.13 7884.16 7984.06 13385.38 25668.40 12588.34 13886.85 25067.48 26587.48 4293.40 6770.89 6591.61 23288.38 2889.22 12392.16 143
v7n78.97 18977.58 20483.14 16983.45 29765.51 18988.32 13991.21 12373.69 14172.41 28786.32 25457.93 21093.81 14069.18 20975.65 30690.11 210
COLMAP_ROBcopyleft66.92 1773.01 29070.41 30580.81 23487.13 22565.63 18788.30 14084.19 28762.96 32163.80 37187.69 21038.04 37692.56 19746.66 37574.91 32384.24 350
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FIs82.07 11682.42 10381.04 22888.80 15858.34 30088.26 14193.49 2676.93 6478.47 16591.04 12969.92 7792.34 20869.87 20384.97 18192.44 131
EIA-MVS83.31 9982.80 10084.82 9889.59 12265.59 18888.21 14292.68 6674.66 11978.96 15286.42 25169.06 8795.26 8075.54 14890.09 11093.62 81
PLCcopyleft70.83 1178.05 21176.37 23183.08 17391.88 7767.80 14088.19 14389.46 17764.33 30569.87 31788.38 19353.66 24793.58 14958.86 30182.73 22087.86 283
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MG-MVS83.41 9583.45 8783.28 16192.74 6562.28 25888.17 14489.50 17675.22 10281.49 12392.74 8866.75 10995.11 8772.85 17491.58 9092.45 130
TAPA-MVS73.13 979.15 18377.94 18982.79 18989.59 12262.99 25088.16 14591.51 11565.77 28677.14 19891.09 12760.91 18793.21 16950.26 35787.05 15492.17 142
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_fmvsmvis_n_192084.02 8083.87 8184.49 10884.12 28169.37 10188.15 14687.96 22270.01 21583.95 9193.23 7168.80 9291.51 24188.61 2389.96 11392.57 123
h-mvs3383.15 10082.19 10886.02 6990.56 9870.85 7388.15 14689.16 18976.02 8984.67 7391.39 11761.54 17295.50 6682.71 8075.48 31091.72 152
PS-CasMVS78.01 21378.09 18677.77 29287.71 20654.39 35888.02 14891.22 12277.50 4873.26 27588.64 18560.73 18888.41 30461.88 27473.88 33390.53 192
OMC-MVS82.69 10781.97 11584.85 9788.75 16167.42 15087.98 14990.87 13474.92 11179.72 14391.65 10662.19 16393.96 12875.26 15286.42 16493.16 101
v879.97 16579.02 16782.80 18784.09 28264.50 21487.96 15090.29 15374.13 13375.24 24686.81 23362.88 15293.89 13874.39 15875.40 31590.00 218
FC-MVSNet-test81.52 12882.02 11380.03 24988.42 17455.97 33987.95 15193.42 2977.10 6077.38 18790.98 13569.96 7691.79 22668.46 21884.50 18792.33 133
CP-MVSNet78.22 20478.34 18077.84 29087.83 20054.54 35687.94 15291.17 12577.65 4073.48 27388.49 19062.24 16288.43 30362.19 27074.07 32990.55 191
PAPM_NR83.02 10482.41 10484.82 9892.47 7066.37 17187.93 15391.80 10673.82 13877.32 18990.66 13867.90 10094.90 9770.37 19689.48 12093.19 100
PEN-MVS77.73 21977.69 20177.84 29087.07 22753.91 36187.91 15491.18 12477.56 4573.14 27788.82 18061.23 18189.17 28959.95 28972.37 34490.43 196
ECVR-MVScopyleft79.61 16879.26 16180.67 23790.08 10854.69 35487.89 15577.44 36374.88 11280.27 13692.79 8548.96 30792.45 20168.55 21692.50 7794.86 18
v1079.74 16778.67 17182.97 18084.06 28364.95 20387.88 15690.62 13973.11 15875.11 25086.56 24761.46 17594.05 12773.68 16375.55 30889.90 224
test250677.30 23076.49 22779.74 25590.08 10852.02 37187.86 15763.10 40974.88 11280.16 13992.79 8538.29 37592.35 20768.74 21592.50 7794.86 18
casdiffmvspermissive85.11 6885.14 6885.01 9087.20 22365.77 18587.75 15892.83 6077.84 3884.36 8392.38 9172.15 4793.93 13481.27 9390.48 10395.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TranMVSNet+NR-MVSNet80.84 13980.31 13882.42 19787.85 19862.33 25687.74 15991.33 12080.55 977.99 17789.86 15165.23 12892.62 19267.05 23175.24 32092.30 135
EI-MVSNet-Vis-set84.19 7783.81 8285.31 8188.18 18067.85 13887.66 16089.73 16980.05 1482.95 10489.59 16070.74 6894.82 10180.66 10084.72 18493.28 95
UniMVSNet (Re)81.60 12781.11 12483.09 17188.38 17564.41 21787.60 16193.02 4578.42 3378.56 16288.16 20069.78 7893.26 16569.58 20676.49 29291.60 153
CNLPA78.08 20976.79 22081.97 20590.40 10271.07 6587.59 16284.55 28066.03 28472.38 28889.64 15757.56 21586.04 32559.61 29383.35 21288.79 262
DTE-MVSNet76.99 23376.80 21977.54 29886.24 23953.06 37087.52 16390.66 13877.08 6172.50 28588.67 18460.48 19689.52 28257.33 31770.74 35690.05 217
无先验87.48 16488.98 19760.00 34794.12 12567.28 22788.97 254
mvsmamba80.60 14979.38 15684.27 11989.74 12067.24 15887.47 16586.95 24670.02 21475.38 23788.93 17651.24 27792.56 19775.47 15089.22 12393.00 112
FMVSNet278.20 20677.21 21081.20 22387.60 21062.89 25287.47 16589.02 19571.63 17875.29 24587.28 22054.80 23491.10 25562.38 26779.38 26089.61 234
RRT-MVS82.60 11182.10 11084.10 12587.98 19362.94 25187.45 16791.27 12177.42 5079.85 14190.28 14356.62 22594.70 10779.87 10788.15 14194.67 28
EI-MVSNet-UG-set83.81 8283.38 8985.09 8887.87 19767.53 14887.44 16889.66 17079.74 1682.23 11389.41 16970.24 7494.74 10479.95 10583.92 19892.99 113
thisisatest053079.40 17777.76 19884.31 11587.69 20865.10 20087.36 16984.26 28670.04 21377.42 18688.26 19849.94 29294.79 10370.20 19784.70 18593.03 109
CANet_DTU80.61 14879.87 14682.83 18485.60 25263.17 24587.36 16988.65 21076.37 8275.88 22488.44 19253.51 24993.07 18173.30 16989.74 11792.25 137
test111179.43 17579.18 16480.15 24789.99 11353.31 36787.33 17177.05 36775.04 10780.23 13892.77 8748.97 30692.33 20968.87 21392.40 7994.81 21
baseline84.93 7184.98 6984.80 10087.30 22165.39 19387.30 17292.88 5777.62 4184.04 8992.26 9371.81 5193.96 12881.31 9190.30 10695.03 10
UniMVSNet_ETH3D79.10 18578.24 18381.70 20986.85 22960.24 28587.28 17388.79 20374.25 12976.84 20090.53 14149.48 29791.56 23667.98 22082.15 22693.29 94
anonymousdsp78.60 19777.15 21182.98 17980.51 35167.08 16187.24 17489.53 17565.66 28875.16 24887.19 22652.52 25492.25 21177.17 12979.34 26189.61 234
UniMVSNet_NR-MVSNet81.88 11981.54 11982.92 18188.46 17163.46 23687.13 17592.37 8180.19 1278.38 16689.14 17171.66 5693.05 18270.05 19976.46 29392.25 137
DPM-MVS84.93 7184.29 7886.84 5090.20 10573.04 2387.12 17693.04 4169.80 22182.85 10791.22 12273.06 4096.02 5276.72 13694.63 4891.46 162
v114480.03 16379.03 16683.01 17783.78 29064.51 21287.11 17790.57 14271.96 17578.08 17586.20 25661.41 17693.94 13174.93 15377.23 28190.60 189
v2v48280.23 15979.29 16083.05 17583.62 29364.14 22187.04 17889.97 16273.61 14378.18 17287.22 22461.10 18493.82 13976.11 13976.78 29091.18 167
fmvsm_s_conf0.1_n_283.80 8383.79 8383.83 14685.62 25164.94 20487.03 17986.62 25474.32 12687.97 3594.33 3460.67 19192.60 19489.72 887.79 14493.96 58
DU-MVS81.12 13580.52 13482.90 18287.80 20163.46 23687.02 18091.87 10379.01 2778.38 16689.07 17365.02 13093.05 18270.05 19976.46 29392.20 140
fmvsm_s_conf0.5_n_284.04 7984.11 8083.81 14786.17 24165.00 20286.96 18187.28 23874.35 12588.25 2894.23 4061.82 16792.60 19489.85 788.09 14293.84 67
v14419279.47 17378.37 17982.78 19083.35 29863.96 22486.96 18190.36 14969.99 21677.50 18485.67 26760.66 19293.77 14374.27 15976.58 29190.62 187
Fast-Effi-MVS+-dtu78.02 21276.49 22782.62 19483.16 30666.96 16586.94 18387.45 23672.45 16671.49 29984.17 30154.79 23791.58 23467.61 22380.31 24989.30 242
v119279.59 17078.43 17883.07 17483.55 29564.52 21186.93 18490.58 14070.83 19577.78 18085.90 26059.15 20393.94 13173.96 16277.19 28390.76 182
EPNet_dtu75.46 26074.86 25177.23 30282.57 32154.60 35586.89 18583.09 30571.64 17766.25 35585.86 26255.99 22788.04 30854.92 33186.55 16289.05 249
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
原ACMM286.86 186
VPA-MVSNet80.60 14980.55 13380.76 23588.07 18860.80 27686.86 18691.58 11375.67 9680.24 13789.45 16763.34 14190.25 26970.51 19579.22 26391.23 166
v192192079.22 18178.03 18782.80 18783.30 30063.94 22586.80 18890.33 15069.91 21977.48 18585.53 27058.44 20793.75 14573.60 16476.85 28890.71 185
IterMVS-LS80.06 16279.38 15682.11 20185.89 24663.20 24386.79 18989.34 18074.19 13075.45 23486.72 23666.62 11092.39 20472.58 17776.86 28790.75 183
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TransMVSNet (Re)75.39 26474.56 25577.86 28985.50 25457.10 32186.78 19086.09 26472.17 17271.53 29887.34 21963.01 15189.31 28656.84 32261.83 38387.17 299
Baseline_NR-MVSNet78.15 20878.33 18177.61 29585.79 24756.21 33786.78 19085.76 26773.60 14477.93 17887.57 21365.02 13088.99 29267.14 23075.33 31787.63 287
PAPR81.66 12680.89 12983.99 14190.27 10364.00 22386.76 19291.77 10968.84 24777.13 19989.50 16167.63 10294.88 9967.55 22488.52 13693.09 104
Vis-MVSNet (Re-imp)78.36 20278.45 17678.07 28888.64 16551.78 37786.70 19379.63 34874.14 13275.11 25090.83 13661.29 18089.75 27858.10 31091.60 8892.69 120
pmmvs674.69 26873.39 27078.61 27481.38 34057.48 31686.64 19487.95 22364.99 29870.18 30986.61 24350.43 28789.52 28262.12 27270.18 35988.83 260
v124078.99 18877.78 19682.64 19383.21 30263.54 23386.62 19590.30 15269.74 22677.33 18885.68 26657.04 22193.76 14473.13 17276.92 28590.62 187
MTAPA87.23 3187.00 3387.90 2294.18 3574.25 586.58 19692.02 9379.45 2085.88 5694.80 2068.07 9796.21 4586.69 3995.34 3293.23 96
旧先验286.56 19758.10 36487.04 4888.98 29374.07 161
FMVSNet377.88 21676.85 21880.97 23186.84 23062.36 25586.52 19888.77 20471.13 18975.34 23986.66 24254.07 24491.10 25562.72 26279.57 25689.45 238
dcpmvs_285.63 5986.15 4984.06 13391.71 7864.94 20486.47 19991.87 10373.63 14286.60 5393.02 7876.57 1591.87 22583.36 6992.15 8095.35 3
pm-mvs177.25 23176.68 22578.93 27084.22 27958.62 29786.41 20088.36 21571.37 18573.31 27488.01 20661.22 18289.15 29064.24 25373.01 34189.03 250
EI-MVSNet80.52 15379.98 14382.12 20084.28 27763.19 24486.41 20088.95 20074.18 13178.69 15787.54 21666.62 11092.43 20272.57 17880.57 24690.74 184
CVMVSNet72.99 29172.58 28074.25 33284.28 27750.85 38586.41 20083.45 29844.56 40073.23 27687.54 21649.38 29985.70 32865.90 23978.44 26986.19 319
MonoMVSNet76.49 24575.80 23478.58 27681.55 33658.45 29886.36 20386.22 26074.87 11474.73 25883.73 31051.79 27288.73 29870.78 19072.15 34788.55 271
NR-MVSNet80.23 15979.38 15682.78 19087.80 20163.34 23986.31 20491.09 12979.01 2772.17 29189.07 17367.20 10792.81 19166.08 23875.65 30692.20 140
v14878.72 19477.80 19581.47 21482.73 31761.96 26286.30 20588.08 21973.26 15576.18 21985.47 27262.46 15792.36 20671.92 18273.82 33490.09 212
新几何286.29 206
test_yl81.17 13380.47 13583.24 16489.13 14663.62 22986.21 20789.95 16372.43 16981.78 12089.61 15857.50 21693.58 14970.75 19186.90 15692.52 125
DCV-MVSNet81.17 13380.47 13583.24 16489.13 14663.62 22986.21 20789.95 16372.43 16981.78 12089.61 15857.50 21693.58 14970.75 19186.90 15692.52 125
PVSNet_BlendedMVS80.60 14980.02 14282.36 19988.85 15365.40 19186.16 20992.00 9569.34 23178.11 17386.09 25966.02 12194.27 11871.52 18382.06 22887.39 293
MVS_Test83.15 10083.06 9483.41 15886.86 22863.21 24286.11 21092.00 9574.31 12782.87 10689.44 16870.03 7593.21 16977.39 12788.50 13793.81 69
BH-untuned79.47 17378.60 17382.05 20289.19 14465.91 18086.07 21188.52 21372.18 17175.42 23587.69 21061.15 18393.54 15360.38 28686.83 15886.70 312
MVS_111021_HR85.14 6784.75 7286.32 5891.65 7972.70 3085.98 21290.33 15076.11 8782.08 11491.61 11071.36 6094.17 12481.02 9492.58 7592.08 145
jason81.39 13180.29 13984.70 10286.63 23669.90 8885.95 21386.77 25163.24 31681.07 13089.47 16361.08 18592.15 21478.33 11890.07 11292.05 146
jason: jason.
test_040272.79 29370.44 30479.84 25388.13 18465.99 17885.93 21484.29 28465.57 28967.40 34085.49 27146.92 31792.61 19335.88 40374.38 32880.94 381
OurMVSNet-221017-074.26 27172.42 28279.80 25483.76 29159.59 29285.92 21586.64 25266.39 27966.96 34387.58 21239.46 36791.60 23365.76 24169.27 36288.22 276
hse-mvs281.72 12280.94 12884.07 13188.72 16267.68 14385.87 21687.26 24076.02 8984.67 7388.22 19961.54 17293.48 15682.71 8073.44 33891.06 171
EG-PatchMatch MVS74.04 27571.82 28780.71 23684.92 26667.42 15085.86 21788.08 21966.04 28364.22 36783.85 30535.10 38492.56 19757.44 31580.83 24182.16 375
AUN-MVS79.21 18277.60 20384.05 13688.71 16367.61 14585.84 21887.26 24069.08 24077.23 19288.14 20453.20 25393.47 15775.50 14973.45 33791.06 171
thres100view90076.50 24275.55 24179.33 26389.52 12556.99 32285.83 21983.23 30173.94 13576.32 21587.12 22851.89 26991.95 22048.33 36683.75 20289.07 244
CLD-MVS82.31 11281.65 11884.29 11688.47 17067.73 14285.81 22092.35 8275.78 9278.33 16886.58 24664.01 13794.35 11576.05 14187.48 14990.79 180
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SixPastTwentyTwo73.37 28371.26 29679.70 25685.08 26457.89 30885.57 22183.56 29571.03 19365.66 35785.88 26142.10 35692.57 19659.11 29863.34 38188.65 268
xiu_mvs_v1_base_debu80.80 14379.72 14984.03 13887.35 21570.19 8285.56 22288.77 20469.06 24181.83 11688.16 20050.91 28092.85 18878.29 11987.56 14689.06 246
xiu_mvs_v1_base80.80 14379.72 14984.03 13887.35 21570.19 8285.56 22288.77 20469.06 24181.83 11688.16 20050.91 28092.85 18878.29 11987.56 14689.06 246
xiu_mvs_v1_base_debi80.80 14379.72 14984.03 13887.35 21570.19 8285.56 22288.77 20469.06 24181.83 11688.16 20050.91 28092.85 18878.29 11987.56 14689.06 246
V4279.38 17978.24 18382.83 18481.10 34565.50 19085.55 22589.82 16571.57 18278.21 17086.12 25860.66 19293.18 17575.64 14575.46 31289.81 229
lupinMVS81.39 13180.27 14084.76 10187.35 21570.21 8085.55 22586.41 25662.85 32381.32 12488.61 18661.68 16992.24 21278.41 11790.26 10791.83 149
Fast-Effi-MVS+80.81 14179.92 14483.47 15488.85 15364.51 21285.53 22789.39 17970.79 19678.49 16485.06 28267.54 10393.58 14967.03 23286.58 16192.32 134
thres600view776.50 24275.44 24279.68 25789.40 13257.16 31985.53 22783.23 30173.79 13976.26 21687.09 22951.89 26991.89 22348.05 37183.72 20590.00 218
DELS-MVS85.41 6485.30 6685.77 7288.49 16967.93 13785.52 22993.44 2778.70 3083.63 9989.03 17574.57 2495.71 6180.26 10394.04 6193.66 74
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
tfpn200view976.42 24675.37 24679.55 26289.13 14657.65 31385.17 23083.60 29373.41 15176.45 21186.39 25252.12 26191.95 22048.33 36683.75 20289.07 244
thres40076.50 24275.37 24679.86 25289.13 14657.65 31385.17 23083.60 29373.41 15176.45 21186.39 25252.12 26191.95 22048.33 36683.75 20290.00 218
MVS_111021_LR82.61 10982.11 10984.11 12488.82 15671.58 5585.15 23286.16 26274.69 11780.47 13591.04 12962.29 16090.55 26680.33 10290.08 11190.20 205
baseline176.98 23476.75 22377.66 29388.13 18455.66 34485.12 23381.89 32173.04 16076.79 20288.90 17762.43 15887.78 31163.30 25971.18 35489.55 236
mmtdpeth74.16 27373.01 27577.60 29783.72 29261.13 27085.10 23485.10 27372.06 17477.21 19680.33 35443.84 34485.75 32777.14 13052.61 40185.91 327
WR-MVS79.49 17279.22 16380.27 24588.79 15958.35 29985.06 23588.61 21278.56 3177.65 18288.34 19463.81 14090.66 26564.98 24777.22 28291.80 151
ET-MVSNet_ETH3D78.63 19676.63 22684.64 10386.73 23369.47 9585.01 23684.61 27969.54 22766.51 35386.59 24450.16 28991.75 22876.26 13884.24 19592.69 120
OpenMVS_ROBcopyleft64.09 1970.56 31368.19 31977.65 29480.26 35259.41 29485.01 23682.96 31058.76 35965.43 35982.33 33437.63 37891.23 25145.34 38576.03 30282.32 372
BH-RMVSNet79.61 16878.44 17783.14 16989.38 13465.93 17984.95 23887.15 24373.56 14578.19 17189.79 15356.67 22493.36 16259.53 29486.74 15990.13 208
BH-w/o78.21 20577.33 20980.84 23388.81 15765.13 19984.87 23987.85 22769.75 22474.52 26284.74 28961.34 17893.11 17958.24 30985.84 17584.27 349
TDRefinement67.49 33764.34 34776.92 30473.47 39561.07 27284.86 24082.98 30959.77 34958.30 39085.13 28026.06 39987.89 30947.92 37260.59 38881.81 377
Anonymous20240521178.25 20377.01 21381.99 20491.03 8760.67 27884.77 24183.90 29070.65 20380.00 14091.20 12341.08 36191.43 24565.21 24485.26 17993.85 65
TAMVS78.89 19177.51 20583.03 17687.80 20167.79 14184.72 24285.05 27567.63 26176.75 20487.70 20962.25 16190.82 26158.53 30587.13 15390.49 194
131476.53 24175.30 24880.21 24683.93 28662.32 25784.66 24388.81 20260.23 34570.16 31184.07 30355.30 23190.73 26467.37 22683.21 21487.59 290
MVS78.19 20776.99 21581.78 20785.66 24966.99 16284.66 24390.47 14455.08 38072.02 29385.27 27563.83 13994.11 12666.10 23789.80 11684.24 350
tfpnnormal74.39 26973.16 27378.08 28786.10 24558.05 30384.65 24587.53 23370.32 20871.22 30185.63 26854.97 23289.86 27543.03 38975.02 32286.32 316
TR-MVS77.44 22676.18 23281.20 22388.24 17963.24 24184.61 24686.40 25767.55 26377.81 17986.48 25054.10 24393.15 17657.75 31382.72 22187.20 298
AllTest70.96 30768.09 32279.58 26085.15 26163.62 22984.58 24779.83 34562.31 33060.32 38386.73 23432.02 38988.96 29550.28 35571.57 35286.15 320
FA-MVS(test-final)80.96 13779.91 14584.10 12588.30 17865.01 20184.55 24890.01 16173.25 15679.61 14487.57 21358.35 20894.72 10571.29 18786.25 16792.56 124
EU-MVSNet68.53 33267.61 33271.31 35778.51 37247.01 39684.47 24984.27 28542.27 40366.44 35484.79 28840.44 36483.76 34558.76 30368.54 36783.17 362
VNet82.21 11382.41 10481.62 21090.82 9360.93 27384.47 24989.78 16676.36 8384.07 8891.88 10064.71 13390.26 26870.68 19388.89 12793.66 74
xiu_mvs_v2_base81.69 12481.05 12583.60 15189.15 14568.03 13684.46 25190.02 16070.67 19981.30 12786.53 24963.17 14694.19 12375.60 14788.54 13588.57 270
VPNet78.69 19578.66 17278.76 27288.31 17755.72 34384.45 25286.63 25376.79 6878.26 16990.55 14059.30 20289.70 28066.63 23377.05 28490.88 178
PVSNet_Blended80.98 13680.34 13782.90 18288.85 15365.40 19184.43 25392.00 9567.62 26278.11 17385.05 28366.02 12194.27 11871.52 18389.50 11989.01 251
MVP-Stereo76.12 25074.46 25881.13 22685.37 25769.79 8984.42 25487.95 22365.03 29667.46 33885.33 27453.28 25291.73 23058.01 31183.27 21381.85 376
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CDS-MVSNet79.07 18677.70 20083.17 16887.60 21068.23 13084.40 25586.20 26167.49 26476.36 21486.54 24861.54 17290.79 26261.86 27587.33 15090.49 194
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
K. test v371.19 30468.51 31679.21 26683.04 30957.78 31284.35 25676.91 36872.90 16362.99 37482.86 32739.27 36891.09 25761.65 27752.66 40088.75 264
PS-MVSNAJ81.69 12481.02 12683.70 14989.51 12668.21 13184.28 25790.09 15970.79 19681.26 12885.62 26963.15 14794.29 11675.62 14688.87 12888.59 269
patch_mono-283.65 8784.54 7480.99 22990.06 11265.83 18284.21 25888.74 20871.60 18185.01 6592.44 9074.51 2583.50 34882.15 8592.15 8093.64 80
test22291.50 8068.26 12984.16 25983.20 30454.63 38179.74 14291.63 10858.97 20491.42 9286.77 310
testdata184.14 26075.71 93
c3_l78.75 19277.91 19081.26 22182.89 31461.56 26784.09 26189.13 19269.97 21775.56 22984.29 29766.36 11592.09 21673.47 16775.48 31090.12 209
MVSTER79.01 18777.88 19282.38 19883.07 30764.80 20884.08 26288.95 20069.01 24478.69 15787.17 22754.70 23892.43 20274.69 15480.57 24689.89 225
ab-mvs79.51 17178.97 16881.14 22588.46 17160.91 27483.84 26389.24 18670.36 20679.03 15188.87 17963.23 14590.21 27065.12 24582.57 22392.28 136
reproduce_monomvs75.40 26374.38 25978.46 28283.92 28757.80 31183.78 26486.94 24773.47 14972.25 29084.47 29138.74 37189.27 28775.32 15170.53 35788.31 275
PAPM77.68 22376.40 23081.51 21387.29 22261.85 26383.78 26489.59 17364.74 29971.23 30088.70 18262.59 15493.66 14852.66 34287.03 15589.01 251
diffmvspermissive82.10 11481.88 11682.76 19283.00 31063.78 22883.68 26689.76 16772.94 16282.02 11589.85 15265.96 12390.79 26282.38 8487.30 15193.71 73
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
miper_ehance_all_eth78.59 19877.76 19881.08 22782.66 31961.56 26783.65 26789.15 19068.87 24675.55 23083.79 30866.49 11392.03 21773.25 17076.39 29589.64 233
1112_ss77.40 22876.43 22980.32 24489.11 15060.41 28383.65 26787.72 23062.13 33373.05 27886.72 23662.58 15589.97 27462.11 27380.80 24290.59 190
PCF-MVS73.52 780.38 15578.84 17085.01 9087.71 20668.99 10683.65 26791.46 11963.00 32077.77 18190.28 14366.10 11895.09 9161.40 27988.22 14090.94 177
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
XVG-ACMP-BASELINE76.11 25174.27 26181.62 21083.20 30364.67 21083.60 27089.75 16869.75 22471.85 29487.09 22932.78 38892.11 21569.99 20180.43 24888.09 279
cl2278.07 21077.01 21381.23 22282.37 32661.83 26483.55 27187.98 22168.96 24575.06 25283.87 30461.40 17791.88 22473.53 16576.39 29589.98 221
XVG-OURS-SEG-HR80.81 14179.76 14883.96 14385.60 25268.78 11183.54 27290.50 14370.66 20276.71 20591.66 10560.69 19091.26 24976.94 13281.58 23391.83 149
IB-MVS68.01 1575.85 25573.36 27183.31 16084.76 26866.03 17583.38 27385.06 27470.21 21269.40 32181.05 34545.76 33194.66 10865.10 24675.49 30989.25 243
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HY-MVS69.67 1277.95 21477.15 21180.36 24287.57 21460.21 28683.37 27487.78 22966.11 28175.37 23887.06 23163.27 14390.48 26761.38 28082.43 22490.40 198
test_vis1_n_192075.52 25975.78 23574.75 32879.84 35957.44 31783.26 27585.52 26962.83 32479.34 14986.17 25745.10 33779.71 36778.75 11281.21 23787.10 305
Anonymous2024052168.80 32867.22 33773.55 33774.33 38754.11 35983.18 27685.61 26858.15 36361.68 37880.94 34830.71 39481.27 36157.00 32073.34 34085.28 336
eth_miper_zixun_eth77.92 21576.69 22481.61 21283.00 31061.98 26183.15 27789.20 18869.52 22874.86 25684.35 29661.76 16892.56 19771.50 18572.89 34290.28 203
FE-MVS77.78 21875.68 23784.08 13088.09 18766.00 17783.13 27887.79 22868.42 25578.01 17685.23 27745.50 33595.12 8559.11 29885.83 17691.11 169
cl____77.72 22076.76 22180.58 23882.49 32360.48 28183.09 27987.87 22569.22 23574.38 26585.22 27862.10 16491.53 23971.09 18875.41 31489.73 232
DIV-MVS_self_test77.72 22076.76 22180.58 23882.48 32460.48 28183.09 27987.86 22669.22 23574.38 26585.24 27662.10 16491.53 23971.09 18875.40 31589.74 231
thres20075.55 25874.47 25778.82 27187.78 20457.85 30983.07 28183.51 29672.44 16875.84 22584.42 29252.08 26491.75 22847.41 37383.64 20786.86 308
testing368.56 33167.67 33171.22 35887.33 22042.87 40883.06 28271.54 38870.36 20669.08 32584.38 29430.33 39585.69 32937.50 40175.45 31385.09 342
XVG-OURS80.41 15479.23 16283.97 14285.64 25069.02 10583.03 28390.39 14571.09 19177.63 18391.49 11454.62 24091.35 24775.71 14483.47 21091.54 156
miper_enhance_ethall77.87 21776.86 21780.92 23281.65 33361.38 26982.68 28488.98 19765.52 29075.47 23182.30 33565.76 12592.00 21972.95 17376.39 29589.39 239
mvs_anonymous79.42 17679.11 16580.34 24384.45 27657.97 30682.59 28587.62 23167.40 26676.17 22188.56 18968.47 9389.59 28170.65 19486.05 17193.47 88
baseline275.70 25673.83 26781.30 22083.26 30161.79 26582.57 28680.65 33466.81 26866.88 34483.42 31657.86 21292.19 21363.47 25679.57 25689.91 223
cascas76.72 23974.64 25382.99 17885.78 24865.88 18182.33 28789.21 18760.85 34172.74 28181.02 34647.28 31493.75 14567.48 22585.02 18089.34 241
WB-MVSnew71.96 30171.65 28972.89 34384.67 27351.88 37582.29 28877.57 36062.31 33073.67 27183.00 32353.49 25081.10 36245.75 38282.13 22785.70 330
RPSCF73.23 28771.46 29178.54 27882.50 32259.85 28882.18 28982.84 31358.96 35771.15 30289.41 16945.48 33684.77 34058.82 30271.83 35091.02 175
thisisatest051577.33 22975.38 24583.18 16785.27 25863.80 22782.11 29083.27 30065.06 29575.91 22383.84 30649.54 29694.27 11867.24 22886.19 16891.48 160
pmmvs-eth3d70.50 31467.83 32778.52 28077.37 37666.18 17481.82 29181.51 32558.90 35863.90 37080.42 35342.69 35186.28 32358.56 30465.30 37783.11 364
MS-PatchMatch73.83 27872.67 27877.30 30183.87 28866.02 17681.82 29184.66 27861.37 33968.61 32982.82 32847.29 31388.21 30559.27 29584.32 19477.68 391
pmmvs571.55 30270.20 30875.61 31477.83 37356.39 33281.74 29380.89 33057.76 36667.46 33884.49 29049.26 30285.32 33557.08 31975.29 31885.11 341
Test_1112_low_res76.40 24775.44 24279.27 26489.28 14058.09 30281.69 29487.07 24459.53 35272.48 28686.67 24161.30 17989.33 28560.81 28580.15 25190.41 197
IterMVS74.29 27072.94 27678.35 28381.53 33763.49 23581.58 29582.49 31568.06 25969.99 31483.69 31251.66 27485.54 33165.85 24071.64 35186.01 324
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT75.43 26173.87 26680.11 24882.69 31864.85 20781.57 29683.47 29769.16 23870.49 30584.15 30251.95 26788.15 30669.23 20872.14 34887.34 295
test_vis1_n69.85 32169.21 31271.77 35172.66 40155.27 35081.48 29776.21 37252.03 38875.30 24483.20 32028.97 39676.22 38774.60 15578.41 27183.81 356
pmmvs474.03 27771.91 28680.39 24181.96 32968.32 12781.45 29882.14 31859.32 35369.87 31785.13 28052.40 25788.13 30760.21 28874.74 32584.73 346
GA-MVS76.87 23675.17 24981.97 20582.75 31662.58 25381.44 29986.35 25972.16 17374.74 25782.89 32646.20 32692.02 21868.85 21481.09 23891.30 165
UWE-MVS72.13 29971.49 29074.03 33486.66 23547.70 39381.40 30076.89 36963.60 31575.59 22884.22 30039.94 36685.62 33048.98 36386.13 17088.77 263
test_fmvs1_n70.86 30970.24 30772.73 34572.51 40255.28 34981.27 30179.71 34751.49 39178.73 15684.87 28527.54 39877.02 37976.06 14079.97 25485.88 328
testing9176.54 24075.66 23979.18 26788.43 17355.89 34081.08 30283.00 30873.76 14075.34 23984.29 29746.20 32690.07 27264.33 25184.50 18791.58 155
testing22274.04 27572.66 27978.19 28587.89 19655.36 34781.06 30379.20 35271.30 18674.65 26083.57 31439.11 37088.67 30051.43 34985.75 17790.53 192
test_fmvs170.93 30870.52 30272.16 34973.71 39155.05 35180.82 30478.77 35451.21 39278.58 16184.41 29331.20 39376.94 38075.88 14380.12 25384.47 348
CostFormer75.24 26573.90 26579.27 26482.65 32058.27 30180.80 30582.73 31461.57 33675.33 24383.13 32155.52 22991.07 25864.98 24778.34 27288.45 272
testing9976.09 25275.12 25079.00 26888.16 18155.50 34680.79 30681.40 32773.30 15475.17 24784.27 29944.48 34090.02 27364.28 25284.22 19691.48 160
MIMVSNet168.58 33066.78 34073.98 33580.07 35651.82 37680.77 30784.37 28164.40 30359.75 38682.16 33836.47 38083.63 34742.73 39070.33 35886.48 315
CL-MVSNet_self_test72.37 29671.46 29175.09 32379.49 36653.53 36380.76 30885.01 27669.12 23970.51 30482.05 33957.92 21184.13 34352.27 34466.00 37587.60 288
testing1175.14 26674.01 26278.53 27988.16 18156.38 33380.74 30980.42 33970.67 19972.69 28483.72 31143.61 34689.86 27562.29 26983.76 20189.36 240
MSDG73.36 28570.99 29880.49 24084.51 27565.80 18380.71 31086.13 26365.70 28765.46 35883.74 30944.60 33890.91 26051.13 35076.89 28684.74 345
tpm273.26 28671.46 29178.63 27383.34 29956.71 32780.65 31180.40 34056.63 37473.55 27282.02 34051.80 27191.24 25056.35 32678.42 27087.95 280
XXY-MVS75.41 26275.56 24074.96 32483.59 29457.82 31080.59 31283.87 29166.54 27874.93 25588.31 19563.24 14480.09 36662.16 27176.85 28886.97 306
test_cas_vis1_n_192073.76 27973.74 26873.81 33675.90 38059.77 28980.51 31382.40 31658.30 36281.62 12285.69 26544.35 34176.41 38576.29 13778.61 26585.23 337
EGC-MVSNET52.07 37647.05 38067.14 37783.51 29660.71 27780.50 31467.75 3990.07 4260.43 42775.85 38824.26 40481.54 35928.82 40962.25 38259.16 409
SDMVSNet80.38 15580.18 14180.99 22989.03 15164.94 20480.45 31589.40 17875.19 10476.61 20989.98 14960.61 19487.69 31276.83 13483.55 20890.33 200
HyFIR lowres test77.53 22575.40 24483.94 14489.59 12266.62 16780.36 31688.64 21156.29 37676.45 21185.17 27957.64 21493.28 16461.34 28183.10 21691.91 148
D2MVS74.82 26773.21 27279.64 25979.81 36062.56 25480.34 31787.35 23764.37 30468.86 32682.66 33046.37 32290.10 27167.91 22181.24 23686.25 317
TinyColmap67.30 34064.81 34574.76 32781.92 33156.68 32880.29 31881.49 32660.33 34356.27 39783.22 31824.77 40387.66 31345.52 38369.47 36179.95 386
LCM-MVSNet-Re77.05 23276.94 21677.36 29987.20 22351.60 37880.06 31980.46 33875.20 10367.69 33586.72 23662.48 15688.98 29363.44 25789.25 12291.51 157
test_fmvs268.35 33467.48 33470.98 36069.50 40551.95 37380.05 32076.38 37149.33 39474.65 26084.38 29423.30 40775.40 39574.51 15675.17 32185.60 331
FMVSNet569.50 32267.96 32374.15 33382.97 31355.35 34880.01 32182.12 31962.56 32863.02 37281.53 34236.92 37981.92 35748.42 36574.06 33085.17 340
SCA74.22 27272.33 28379.91 25184.05 28462.17 25979.96 32279.29 35166.30 28072.38 28880.13 35651.95 26788.60 30159.25 29677.67 27988.96 255
tpmrst72.39 29472.13 28573.18 34280.54 35049.91 38979.91 32379.08 35363.11 31871.69 29679.95 35855.32 23082.77 35365.66 24273.89 33286.87 307
PatchmatchNetpermissive73.12 28871.33 29478.49 28183.18 30460.85 27579.63 32478.57 35564.13 30671.73 29579.81 36151.20 27885.97 32657.40 31676.36 30088.66 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PatchMatch-RL72.38 29570.90 29976.80 30688.60 16667.38 15279.53 32576.17 37362.75 32669.36 32282.00 34145.51 33484.89 33953.62 33780.58 24578.12 390
CMPMVSbinary51.72 2170.19 31768.16 32076.28 30873.15 39857.55 31579.47 32683.92 28948.02 39656.48 39684.81 28743.13 34886.42 32262.67 26581.81 23284.89 343
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ETVMVS72.25 29871.05 29775.84 31187.77 20551.91 37479.39 32774.98 37669.26 23373.71 27082.95 32440.82 36386.14 32446.17 37984.43 19289.47 237
GG-mvs-BLEND75.38 32081.59 33555.80 34279.32 32869.63 39367.19 34173.67 39343.24 34788.90 29750.41 35284.50 18781.45 378
LTVRE_ROB69.57 1376.25 24974.54 25681.41 21688.60 16664.38 21879.24 32989.12 19370.76 19869.79 31987.86 20749.09 30493.20 17256.21 32780.16 25086.65 313
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tpm72.37 29671.71 28874.35 33182.19 32752.00 37279.22 33077.29 36564.56 30172.95 28083.68 31351.35 27583.26 35158.33 30875.80 30487.81 284
mvs5depth69.45 32367.45 33575.46 31973.93 38955.83 34179.19 33183.23 30166.89 26771.63 29783.32 31733.69 38785.09 33659.81 29155.34 39785.46 333
ppachtmachnet_test70.04 31867.34 33678.14 28679.80 36161.13 27079.19 33180.59 33559.16 35565.27 36079.29 36446.75 31987.29 31449.33 36166.72 37086.00 326
USDC70.33 31568.37 31776.21 30980.60 34956.23 33679.19 33186.49 25560.89 34061.29 37985.47 27231.78 39189.47 28453.37 33976.21 30182.94 368
sd_testset77.70 22277.40 20678.60 27589.03 15160.02 28779.00 33485.83 26675.19 10476.61 20989.98 14954.81 23385.46 33362.63 26683.55 20890.33 200
PM-MVS66.41 34664.14 34873.20 34173.92 39056.45 33078.97 33564.96 40763.88 31464.72 36480.24 35519.84 41183.44 34966.24 23464.52 37979.71 387
tpmvs71.09 30669.29 31176.49 30782.04 32856.04 33878.92 33681.37 32864.05 31067.18 34278.28 37349.74 29589.77 27749.67 36072.37 34483.67 358
test_post178.90 3375.43 42548.81 30985.44 33459.25 296
mamv476.81 23778.23 18572.54 34786.12 24365.75 18678.76 33882.07 32064.12 30772.97 27991.02 13267.97 9868.08 41183.04 7478.02 27483.80 357
CHOSEN 1792x268877.63 22475.69 23683.44 15589.98 11468.58 12278.70 33987.50 23456.38 37575.80 22686.84 23258.67 20591.40 24661.58 27885.75 17790.34 199
Syy-MVS68.05 33567.85 32568.67 37184.68 27040.97 41478.62 34073.08 38566.65 27566.74 34779.46 36252.11 26382.30 35532.89 40676.38 29882.75 369
myMVS_eth3d67.02 34166.29 34269.21 36684.68 27042.58 40978.62 34073.08 38566.65 27566.74 34779.46 36231.53 39282.30 35539.43 39876.38 29882.75 369
WBMVS73.43 28272.81 27775.28 32187.91 19550.99 38478.59 34281.31 32965.51 29274.47 26384.83 28646.39 32086.68 31858.41 30677.86 27588.17 278
test-LLR72.94 29272.43 28174.48 32981.35 34158.04 30478.38 34377.46 36166.66 27269.95 31579.00 36748.06 31079.24 36866.13 23584.83 18286.15 320
TESTMET0.1,169.89 32069.00 31472.55 34679.27 36956.85 32378.38 34374.71 38057.64 36768.09 33277.19 38037.75 37776.70 38163.92 25484.09 19784.10 353
test-mter71.41 30370.39 30674.48 32981.35 34158.04 30478.38 34377.46 36160.32 34469.95 31579.00 36736.08 38279.24 36866.13 23584.83 18286.15 320
UBG73.08 28972.27 28475.51 31788.02 19051.29 38278.35 34677.38 36465.52 29073.87 26982.36 33345.55 33386.48 32155.02 33084.39 19388.75 264
Anonymous2023120668.60 32967.80 32871.02 35980.23 35450.75 38678.30 34780.47 33756.79 37366.11 35682.63 33146.35 32378.95 37043.62 38875.70 30583.36 361
tpm cat170.57 31268.31 31877.35 30082.41 32557.95 30778.08 34880.22 34352.04 38768.54 33077.66 37852.00 26687.84 31051.77 34572.07 34986.25 317
our_test_369.14 32567.00 33875.57 31579.80 36158.80 29577.96 34977.81 35859.55 35162.90 37578.25 37447.43 31283.97 34451.71 34667.58 36983.93 355
KD-MVS_self_test68.81 32767.59 33372.46 34874.29 38845.45 39977.93 35087.00 24563.12 31763.99 36978.99 36942.32 35384.77 34056.55 32564.09 38087.16 301
WTY-MVS75.65 25775.68 23775.57 31586.40 23856.82 32477.92 35182.40 31665.10 29476.18 21987.72 20863.13 15080.90 36360.31 28781.96 22989.00 253
test20.0367.45 33866.95 33968.94 36775.48 38444.84 40477.50 35277.67 35966.66 27263.01 37383.80 30747.02 31678.40 37242.53 39268.86 36683.58 359
EPMVS69.02 32668.16 32071.59 35279.61 36449.80 39177.40 35366.93 40162.82 32570.01 31279.05 36545.79 33077.86 37656.58 32475.26 31987.13 302
test_fmvs363.36 35761.82 36067.98 37562.51 41446.96 39777.37 35474.03 38245.24 39967.50 33778.79 37012.16 41972.98 40372.77 17666.02 37483.99 354
gg-mvs-nofinetune69.95 31967.96 32375.94 31083.07 30754.51 35777.23 35570.29 39163.11 31870.32 30762.33 40443.62 34588.69 29953.88 33687.76 14584.62 347
MDTV_nov1_ep1369.97 30983.18 30453.48 36477.10 35680.18 34460.45 34269.33 32380.44 35248.89 30886.90 31651.60 34778.51 268
LF4IMVS64.02 35562.19 35969.50 36570.90 40353.29 36876.13 35777.18 36652.65 38658.59 38880.98 34723.55 40676.52 38353.06 34166.66 37178.68 389
sss73.60 28073.64 26973.51 33882.80 31555.01 35276.12 35881.69 32462.47 32974.68 25985.85 26357.32 21878.11 37460.86 28480.93 23987.39 293
testgi66.67 34466.53 34167.08 37875.62 38341.69 41375.93 35976.50 37066.11 28165.20 36386.59 24435.72 38374.71 39743.71 38773.38 33984.84 344
CR-MVSNet73.37 28371.27 29579.67 25881.32 34365.19 19775.92 36080.30 34159.92 34872.73 28281.19 34352.50 25586.69 31759.84 29077.71 27787.11 303
RPMNet73.51 28170.49 30382.58 19581.32 34365.19 19775.92 36092.27 8457.60 36872.73 28276.45 38352.30 25895.43 7048.14 37077.71 27787.11 303
MIMVSNet70.69 31169.30 31074.88 32584.52 27456.35 33575.87 36279.42 34964.59 30067.76 33382.41 33241.10 36081.54 35946.64 37781.34 23486.75 311
test0.0.03 168.00 33667.69 33068.90 36877.55 37447.43 39475.70 36372.95 38766.66 27266.56 34982.29 33648.06 31075.87 39044.97 38674.51 32783.41 360
dmvs_re71.14 30570.58 30172.80 34481.96 32959.68 29075.60 36479.34 35068.55 25169.27 32480.72 35149.42 29876.54 38252.56 34377.79 27682.19 374
dmvs_testset62.63 35864.11 34958.19 38878.55 37124.76 42675.28 36565.94 40467.91 26060.34 38276.01 38553.56 24873.94 40131.79 40767.65 36875.88 395
PMMVS69.34 32468.67 31571.35 35675.67 38262.03 26075.17 36673.46 38350.00 39368.68 32779.05 36552.07 26578.13 37361.16 28282.77 21973.90 397
UnsupCasMVSNet_eth67.33 33965.99 34371.37 35473.48 39451.47 38075.16 36785.19 27265.20 29360.78 38180.93 35042.35 35277.20 37857.12 31853.69 39985.44 334
MDTV_nov1_ep13_2view37.79 41675.16 36755.10 37966.53 35049.34 30053.98 33587.94 281
pmmvs357.79 36554.26 37068.37 37264.02 41356.72 32675.12 36965.17 40540.20 40552.93 40169.86 40120.36 41075.48 39345.45 38455.25 39872.90 399
dp66.80 34265.43 34470.90 36179.74 36348.82 39275.12 36974.77 37859.61 35064.08 36877.23 37942.89 34980.72 36448.86 36466.58 37283.16 363
Patchmtry70.74 31069.16 31375.49 31880.72 34754.07 36074.94 37180.30 34158.34 36170.01 31281.19 34352.50 25586.54 31953.37 33971.09 35585.87 329
ttmdpeth59.91 36357.10 36768.34 37367.13 40946.65 39874.64 37267.41 40048.30 39562.52 37785.04 28420.40 40975.93 38942.55 39145.90 41082.44 371
PVSNet64.34 1872.08 30070.87 30075.69 31386.21 24056.44 33174.37 37380.73 33362.06 33470.17 31082.23 33742.86 35083.31 35054.77 33284.45 19187.32 296
WB-MVS54.94 36854.72 36955.60 39473.50 39320.90 42874.27 37461.19 41159.16 35550.61 40374.15 39147.19 31575.78 39117.31 41935.07 41370.12 401
MDA-MVSNet-bldmvs66.68 34363.66 35275.75 31279.28 36860.56 28073.92 37578.35 35664.43 30250.13 40579.87 36044.02 34383.67 34646.10 38056.86 39183.03 366
SSC-MVS53.88 37153.59 37154.75 39672.87 39919.59 42973.84 37660.53 41357.58 36949.18 40773.45 39446.34 32475.47 39416.20 42232.28 41569.20 402
UnsupCasMVSNet_bld63.70 35661.53 36270.21 36373.69 39251.39 38172.82 37781.89 32155.63 37857.81 39271.80 39738.67 37278.61 37149.26 36252.21 40280.63 383
PatchT68.46 33367.85 32570.29 36280.70 34843.93 40672.47 37874.88 37760.15 34670.55 30376.57 38249.94 29281.59 35850.58 35174.83 32485.34 335
miper_lstm_enhance74.11 27473.11 27477.13 30380.11 35559.62 29172.23 37986.92 24966.76 27070.40 30682.92 32556.93 22282.92 35269.06 21172.63 34388.87 258
MVS-HIRNet59.14 36457.67 36663.57 38281.65 33343.50 40771.73 38065.06 40639.59 40751.43 40257.73 41038.34 37482.58 35439.53 39673.95 33164.62 406
MVStest156.63 36752.76 37368.25 37461.67 41553.25 36971.67 38168.90 39838.59 40850.59 40483.05 32225.08 40170.66 40536.76 40238.56 41180.83 382
APD_test153.31 37349.93 37863.42 38365.68 41050.13 38871.59 38266.90 40234.43 41340.58 41271.56 3988.65 42476.27 38634.64 40555.36 39663.86 407
Patchmatch-RL test70.24 31667.78 32977.61 29577.43 37559.57 29371.16 38370.33 39062.94 32268.65 32872.77 39550.62 28485.49 33269.58 20666.58 37287.77 285
test1236.12 3958.11 3980.14 4090.06 4330.09 43471.05 3840.03 4340.04 4280.25 4291.30 4280.05 4320.03 4290.21 4280.01 4270.29 424
ANet_high50.57 37846.10 38263.99 38148.67 42639.13 41570.99 38580.85 33161.39 33831.18 41557.70 41117.02 41473.65 40231.22 40815.89 42379.18 388
KD-MVS_2432*160066.22 34863.89 35073.21 33975.47 38553.42 36570.76 38684.35 28264.10 30866.52 35178.52 37134.55 38584.98 33750.40 35350.33 40481.23 379
miper_refine_blended66.22 34863.89 35073.21 33975.47 38553.42 36570.76 38684.35 28264.10 30866.52 35178.52 37134.55 38584.98 33750.40 35350.33 40481.23 379
test_vis1_rt60.28 36258.42 36565.84 37967.25 40855.60 34570.44 38860.94 41244.33 40159.00 38766.64 40224.91 40268.67 40962.80 26169.48 36073.25 398
testmvs6.04 3968.02 3990.10 4100.08 4320.03 43569.74 3890.04 4330.05 4270.31 4281.68 4270.02 4330.04 4280.24 4270.02 4260.25 425
N_pmnet52.79 37453.26 37251.40 39878.99 3707.68 43269.52 3903.89 43151.63 39057.01 39474.98 39040.83 36265.96 41337.78 40064.67 37880.56 385
FPMVS53.68 37251.64 37459.81 38765.08 41151.03 38369.48 39169.58 39441.46 40440.67 41172.32 39616.46 41570.00 40824.24 41565.42 37658.40 411
DSMNet-mixed57.77 36656.90 36860.38 38667.70 40735.61 41769.18 39253.97 41832.30 41657.49 39379.88 35940.39 36568.57 41038.78 39972.37 34476.97 392
new-patchmatchnet61.73 36061.73 36161.70 38472.74 40024.50 42769.16 39378.03 35761.40 33756.72 39575.53 38938.42 37376.48 38445.95 38157.67 39084.13 352
YYNet165.03 35162.91 35671.38 35375.85 38156.60 32969.12 39474.66 38157.28 37154.12 39977.87 37645.85 32974.48 39849.95 35861.52 38583.05 365
MDA-MVSNet_test_wron65.03 35162.92 35571.37 35475.93 37956.73 32569.09 39574.73 37957.28 37154.03 40077.89 37545.88 32874.39 39949.89 35961.55 38482.99 367
PVSNet_057.27 2061.67 36159.27 36468.85 36979.61 36457.44 31768.01 39673.44 38455.93 37758.54 38970.41 40044.58 33977.55 37747.01 37435.91 41271.55 400
dongtai45.42 38245.38 38345.55 40073.36 39626.85 42467.72 39734.19 42654.15 38249.65 40656.41 41325.43 40062.94 41619.45 41728.09 41746.86 416
ADS-MVSNet266.20 35063.33 35374.82 32679.92 35758.75 29667.55 39875.19 37553.37 38465.25 36175.86 38642.32 35380.53 36541.57 39368.91 36485.18 338
ADS-MVSNet64.36 35462.88 35768.78 37079.92 35747.17 39567.55 39871.18 38953.37 38465.25 36175.86 38642.32 35373.99 40041.57 39368.91 36485.18 338
mvsany_test162.30 35961.26 36365.41 38069.52 40454.86 35366.86 40049.78 42046.65 39768.50 33183.21 31949.15 30366.28 41256.93 32160.77 38675.11 396
LCM-MVSNet54.25 36949.68 37967.97 37653.73 42345.28 40266.85 40180.78 33235.96 41239.45 41362.23 4068.70 42378.06 37548.24 36951.20 40380.57 384
test_vis3_rt49.26 37947.02 38156.00 39154.30 42045.27 40366.76 40248.08 42136.83 41044.38 40953.20 4147.17 42664.07 41456.77 32355.66 39458.65 410
testf145.72 38041.96 38457.00 38956.90 41745.32 40066.14 40359.26 41426.19 41730.89 41660.96 4084.14 42770.64 40626.39 41346.73 40855.04 412
APD_test245.72 38041.96 38457.00 38956.90 41745.32 40066.14 40359.26 41426.19 41730.89 41660.96 4084.14 42770.64 40626.39 41346.73 40855.04 412
kuosan39.70 38640.40 38737.58 40364.52 41226.98 42265.62 40533.02 42746.12 39842.79 41048.99 41624.10 40546.56 42412.16 42526.30 41839.20 417
JIA-IIPM66.32 34762.82 35876.82 30577.09 37761.72 26665.34 40675.38 37458.04 36564.51 36562.32 40542.05 35786.51 32051.45 34869.22 36382.21 373
PMVScopyleft37.38 2244.16 38440.28 38855.82 39340.82 42842.54 41165.12 40763.99 40834.43 41324.48 41957.12 4123.92 42976.17 38817.10 42055.52 39548.75 414
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new_pmnet50.91 37750.29 37752.78 39768.58 40634.94 41963.71 40856.63 41739.73 40644.95 40865.47 40321.93 40858.48 41734.98 40456.62 39264.92 405
mvsany_test353.99 37051.45 37561.61 38555.51 41944.74 40563.52 40945.41 42443.69 40258.11 39176.45 38317.99 41263.76 41554.77 33247.59 40676.34 394
Patchmatch-test64.82 35363.24 35469.57 36479.42 36749.82 39063.49 41069.05 39651.98 38959.95 38580.13 35650.91 28070.98 40440.66 39573.57 33587.90 282
ambc75.24 32273.16 39750.51 38763.05 41187.47 23564.28 36677.81 37717.80 41389.73 27957.88 31260.64 38785.49 332
test_f52.09 37550.82 37655.90 39253.82 42242.31 41259.42 41258.31 41636.45 41156.12 39870.96 39912.18 41857.79 41853.51 33856.57 39367.60 403
CHOSEN 280x42066.51 34564.71 34671.90 35081.45 33863.52 23457.98 41368.95 39753.57 38362.59 37676.70 38146.22 32575.29 39655.25 32979.68 25576.88 393
E-PMN31.77 38730.64 39035.15 40452.87 42427.67 42157.09 41447.86 42224.64 41916.40 42433.05 42011.23 42054.90 42014.46 42318.15 42122.87 420
EMVS30.81 38929.65 39134.27 40550.96 42525.95 42556.58 41546.80 42324.01 42015.53 42530.68 42112.47 41754.43 42112.81 42417.05 42222.43 421
PMMVS240.82 38538.86 38946.69 39953.84 42116.45 43048.61 41649.92 41937.49 40931.67 41460.97 4078.14 42556.42 41928.42 41030.72 41667.19 404
wuyk23d16.82 39315.94 39619.46 40758.74 41631.45 42039.22 4173.74 4326.84 4236.04 4262.70 4261.27 43124.29 42610.54 42614.40 4252.63 423
tmp_tt18.61 39221.40 39510.23 4084.82 43110.11 43134.70 41830.74 4291.48 42523.91 42126.07 42228.42 39713.41 42727.12 41115.35 4247.17 422
Gipumacopyleft45.18 38341.86 38655.16 39577.03 37851.52 37932.50 41980.52 33632.46 41527.12 41835.02 4199.52 42275.50 39222.31 41660.21 38938.45 418
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVEpermissive26.22 2330.37 39025.89 39443.81 40144.55 42735.46 41828.87 42039.07 42518.20 42118.58 42340.18 4182.68 43047.37 42317.07 42123.78 42048.60 415
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method31.52 38829.28 39238.23 40227.03 4306.50 43320.94 42162.21 4104.05 42422.35 42252.50 41513.33 41647.58 42227.04 41234.04 41460.62 408
mmdepth0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
monomultidepth0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
test_blank0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
uanet_test0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
DCPMVS0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
cdsmvs_eth3d_5k19.96 39126.61 3930.00 4110.00 4340.00 4360.00 42289.26 1850.00 4290.00 43088.61 18661.62 1710.00 4300.00 4290.00 4280.00 426
pcd_1.5k_mvsjas5.26 3977.02 4000.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 42963.15 1470.00 4300.00 4290.00 4280.00 426
sosnet-low-res0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
sosnet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
uncertanet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
Regformer0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
ab-mvs-re7.23 3949.64 3970.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 43086.72 2360.00 4340.00 4300.00 4290.00 4280.00 426
uanet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
WAC-MVS42.58 40939.46 397
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4997.53 289.67 996.44 994.41 39
PC_three_145268.21 25792.02 1294.00 5282.09 595.98 5684.58 5696.68 294.95 11
No_MVS89.16 194.34 2775.53 292.99 4997.53 289.67 996.44 994.41 39
test_one_060195.07 771.46 5794.14 578.27 3692.05 1195.74 680.83 11
eth-test20.00 434
eth-test0.00 434
ZD-MVS94.38 2572.22 4492.67 6770.98 19487.75 3894.07 4774.01 3296.70 2784.66 5594.84 44
IU-MVS95.30 271.25 5992.95 5566.81 26892.39 688.94 1996.63 494.85 20
test_241102_TWO94.06 1077.24 5492.78 495.72 881.26 897.44 789.07 1796.58 694.26 48
test_241102_ONE95.30 270.98 6694.06 1077.17 5793.10 195.39 1482.99 197.27 12
test_0728_THIRD78.38 3492.12 995.78 481.46 797.40 989.42 1296.57 794.67 28
GSMVS88.96 255
test_part295.06 872.65 3291.80 13
sam_mvs151.32 27688.96 255
sam_mvs50.01 290
MTGPAbinary92.02 93
test_post5.46 42450.36 28884.24 342
patchmatchnet-post74.00 39251.12 27988.60 301
gm-plane-assit81.40 33953.83 36262.72 32780.94 34892.39 20463.40 258
test9_res84.90 4995.70 2692.87 115
agg_prior282.91 7695.45 2992.70 118
agg_prior92.85 6271.94 5091.78 10884.41 8194.93 94
TestCases79.58 26085.15 26163.62 22979.83 34562.31 33060.32 38386.73 23432.02 38988.96 29550.28 35571.57 35286.15 320
test_prior86.33 5792.61 6869.59 9192.97 5495.48 6793.91 61
新几何183.42 15693.13 5470.71 7485.48 27057.43 37081.80 11991.98 9763.28 14292.27 21064.60 25092.99 7087.27 297
旧先验191.96 7465.79 18486.37 25893.08 7769.31 8492.74 7388.74 266
原ACMM184.35 11393.01 6068.79 11092.44 7763.96 31381.09 12991.57 11166.06 12095.45 6867.19 22994.82 4688.81 261
testdata291.01 25962.37 268
segment_acmp73.08 39
testdata79.97 25090.90 9164.21 22084.71 27759.27 35485.40 6192.91 7962.02 16689.08 29168.95 21291.37 9386.63 314
test1286.80 5292.63 6770.70 7591.79 10782.71 11071.67 5596.16 4794.50 5193.54 86
plane_prior790.08 10868.51 123
plane_prior689.84 11768.70 11860.42 197
plane_prior592.44 7795.38 7578.71 11386.32 16591.33 163
plane_prior491.00 133
plane_prior368.60 12178.44 3278.92 154
plane_prior189.90 116
n20.00 435
nn0.00 435
door-mid69.98 392
lessismore_v078.97 26981.01 34657.15 32065.99 40361.16 38082.82 32839.12 36991.34 24859.67 29246.92 40788.43 273
LGP-MVS_train84.50 10689.23 14268.76 11291.94 9975.37 10076.64 20791.51 11254.29 24194.91 9578.44 11583.78 19989.83 227
test1192.23 87
door69.44 395
HQP5-MVS66.98 163
BP-MVS77.47 125
HQP4-MVS77.24 19195.11 8791.03 173
HQP3-MVS92.19 9085.99 173
HQP2-MVS60.17 200
NP-MVS89.62 12168.32 12790.24 145
ACMMP++_ref81.95 230
ACMMP++81.25 235
Test By Simon64.33 134
ITE_SJBPF78.22 28481.77 33260.57 27983.30 29969.25 23467.54 33687.20 22536.33 38187.28 31554.34 33474.62 32686.80 309
DeepMVS_CXcopyleft27.40 40640.17 42926.90 42324.59 43017.44 42223.95 42048.61 4179.77 42126.48 42518.06 41824.47 41928.83 419