This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
CHOSEN 1792x268897.12 11296.80 10798.08 12899.30 7794.56 22298.05 22999.71 193.57 21197.09 14698.91 10688.17 21499.89 3896.87 11099.56 8499.81 10
HyFIR lowres test96.90 12096.49 12598.14 12199.33 6795.56 17497.38 27999.65 292.34 25697.61 13498.20 18389.29 18499.10 19196.97 9697.60 18099.77 22
MVS_111021_LR98.34 4998.23 4398.67 8399.27 8596.90 11297.95 23899.58 397.14 4698.44 8099.01 9095.03 7699.62 13497.91 4699.75 4099.50 98
MVS_111021_HR98.47 3998.34 2998.88 7599.22 9697.32 9397.91 24299.58 397.20 4298.33 8799.00 9195.99 3899.64 12998.05 4199.76 3499.69 55
PGM-MVS98.49 3798.23 4399.27 4199.72 1398.08 6498.99 7299.49 595.43 11899.03 3799.32 3595.56 5099.94 396.80 11599.77 2899.78 15
ACMMPcopyleft98.23 5597.95 5799.09 6299.74 897.62 8499.03 6299.41 695.98 9497.60 13599.36 2894.45 9299.93 1897.14 9098.85 13199.70 52
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG97.85 7097.74 6698.20 11899.67 2795.16 18999.22 3099.32 793.04 23197.02 15298.92 10595.36 6199.91 3397.43 8199.64 6699.52 92
PVSNet_BlendedMVS96.73 12596.60 12097.12 18699.25 8895.35 18498.26 20399.26 894.28 17297.94 11297.46 24592.74 11499.81 7496.88 10793.32 25696.20 322
PVSNet_Blended97.38 9997.12 9398.14 12199.25 8895.35 18497.28 29099.26 893.13 22897.94 11298.21 18292.74 11499.81 7496.88 10799.40 10599.27 132
UniMVSNet_NR-MVSNet95.71 16795.15 17797.40 17496.84 28096.97 10898.74 12299.24 1095.16 13493.88 25197.72 22591.68 13698.31 28795.81 14987.25 33196.92 247
WR-MVS_H95.05 20594.46 20996.81 20696.86 27995.82 16799.24 2599.24 1093.87 19092.53 29796.84 29890.37 16598.24 29693.24 23087.93 32396.38 315
FC-MVSNet-test96.42 13796.05 13897.53 16896.95 27297.27 9699.36 1199.23 1295.83 9993.93 24898.37 16292.00 13098.32 28596.02 14392.72 26497.00 241
VPA-MVSNet95.75 16595.11 18097.69 15697.24 25297.27 9698.94 8299.23 1295.13 13695.51 19797.32 25485.73 26198.91 21997.33 8689.55 30296.89 255
FIs96.51 13496.12 13697.67 15897.13 26397.54 8799.36 1199.22 1495.89 9694.03 24698.35 16491.98 13198.44 26796.40 13192.76 26397.01 240
tfpnnormal93.66 27692.70 28596.55 23296.94 27395.94 15898.97 7699.19 1591.04 30091.38 31697.34 25284.94 27498.61 24885.45 33789.02 31295.11 343
UniMVSNet (Re)95.78 16495.19 17697.58 16496.99 27197.47 8998.79 11799.18 1695.60 10993.92 24997.04 27991.68 13698.48 26095.80 15187.66 32696.79 265
PVSNet_Blended_VisFu97.70 7697.46 8098.44 10299.27 8595.91 16398.63 14799.16 1794.48 16897.67 12898.88 10892.80 11399.91 3397.11 9199.12 11799.50 98
CHOSEN 280x42097.18 10997.18 9297.20 18098.81 13493.27 26695.78 34299.15 1895.25 13096.79 16598.11 18992.29 12099.07 19498.56 1099.85 399.25 134
D2MVS95.18 19895.08 18195.48 28297.10 26592.07 28298.30 19799.13 1994.02 18192.90 28596.73 30189.48 17998.73 23994.48 19393.60 25095.65 335
PHI-MVS98.34 4998.06 5199.18 5099.15 10698.12 6399.04 5899.09 2093.32 22098.83 5399.10 7596.54 1999.83 5997.70 6599.76 3499.59 85
UA-Net97.96 6097.62 6898.98 6898.86 12997.47 8998.89 9199.08 2196.67 6798.72 6199.54 193.15 11099.81 7494.87 17798.83 13299.65 71
PatchMatch-RL96.59 13096.03 14098.27 11299.31 7296.51 13097.91 24299.06 2293.72 19996.92 15798.06 19288.50 20899.65 12791.77 27299.00 12398.66 188
3Dnovator94.51 597.46 9096.93 10399.07 6397.78 21297.64 8299.35 1399.06 2297.02 5293.75 25899.16 6689.25 18599.92 2497.22 8899.75 4099.64 74
MSLP-MVS++98.56 2998.57 998.55 9099.26 8796.80 11698.71 13199.05 2497.28 3498.84 5199.28 4296.47 2199.40 16198.52 1799.70 5599.47 105
PS-CasMVS94.67 22993.99 23896.71 21196.68 28995.26 18799.13 4499.03 2593.68 20592.33 30497.95 20285.35 26898.10 30493.59 22188.16 32296.79 265
TranMVSNet+NR-MVSNet95.14 20094.48 20797.11 18796.45 30096.36 13899.03 6299.03 2595.04 14393.58 26197.93 20488.27 21198.03 31194.13 20486.90 33696.95 246
PEN-MVS94.42 24793.73 25896.49 23696.28 30694.84 20699.17 3899.00 2793.51 21292.23 30697.83 21786.10 25697.90 32092.55 25386.92 33596.74 271
Vis-MVSNetpermissive97.42 9697.11 9498.34 10998.66 14796.23 14399.22 3099.00 2796.63 6998.04 9999.21 5388.05 21999.35 16496.01 14499.21 11299.45 111
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DU-MVS95.42 18194.76 19497.40 17496.53 29596.97 10898.66 14498.99 2995.43 11893.88 25197.69 22688.57 20498.31 28795.81 14987.25 33196.92 247
VPNet94.99 20894.19 22397.40 17497.16 26196.57 12798.71 13198.97 3095.67 10694.84 20898.24 18180.36 31998.67 24496.46 12787.32 33096.96 244
OpenMVScopyleft93.04 1395.83 16295.00 18498.32 11097.18 26097.32 9399.21 3398.97 3089.96 31791.14 31899.05 8586.64 24699.92 2493.38 22599.47 9597.73 221
HFP-MVS98.63 1798.40 1999.32 3199.72 1398.29 5199.23 2698.96 3296.10 9298.94 4399.17 6196.06 3399.92 2497.62 6999.78 2599.75 30
#test#98.54 3398.27 3799.32 3199.72 1398.29 5198.98 7598.96 3295.65 10898.94 4399.17 6196.06 3399.92 2497.21 8999.78 2599.75 30
FOURS199.82 198.66 2699.69 198.95 3497.46 2299.39 15
ACMMPR98.59 2198.36 2399.29 3499.74 898.15 6199.23 2698.95 3496.10 9298.93 4799.19 6095.70 4799.94 397.62 6999.79 2199.78 15
CP-MVSNet94.94 21494.30 21896.83 20596.72 28795.56 17499.11 4798.95 3493.89 18892.42 30397.90 20687.19 23698.12 30394.32 19888.21 32096.82 264
NR-MVSNet94.98 21094.16 22697.44 17096.53 29597.22 10298.74 12298.95 3494.96 14789.25 33597.69 22689.32 18398.18 29894.59 18987.40 32996.92 247
region2R98.61 1898.38 2199.29 3499.74 898.16 6099.23 2698.93 3896.15 8798.94 4399.17 6195.91 4299.94 397.55 7699.79 2199.78 15
APDe-MVS99.02 498.84 399.55 999.57 3598.96 1699.39 898.93 3897.38 2899.41 1399.54 196.66 1699.84 5698.86 299.85 399.87 1
VNet97.79 7297.40 8498.96 7098.88 12797.55 8698.63 14798.93 3896.74 6499.02 3898.84 11390.33 16799.83 5998.53 1196.66 19699.50 98
UGNet96.78 12496.30 13098.19 12098.24 17895.89 16598.88 9498.93 3897.39 2796.81 16397.84 21482.60 30299.90 3696.53 12599.49 9398.79 178
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
sss97.39 9896.98 10298.61 8698.60 15396.61 12498.22 20598.93 3893.97 18598.01 10698.48 15091.98 13199.85 5396.45 12898.15 16099.39 116
QAPM96.29 14195.40 16198.96 7097.85 20997.60 8599.23 2698.93 3889.76 32193.11 28199.02 8689.11 19099.93 1891.99 26799.62 7099.34 119
DPE-MVScopyleft98.92 598.67 799.65 299.58 3499.20 998.42 17998.91 4497.58 1499.54 899.46 1197.10 1299.94 397.64 6899.84 899.83 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
114514_t96.93 11896.27 13198.92 7299.50 4397.63 8398.85 9998.90 4584.80 35197.77 12099.11 7392.84 11299.66 12694.85 17899.77 2899.47 105
LS3D97.16 11096.66 11998.68 8298.53 15797.19 10398.93 8498.90 4592.83 24195.99 19399.37 2492.12 12799.87 4793.67 21999.57 7998.97 166
DELS-MVS98.40 4398.20 4598.99 6699.00 11797.66 8197.75 25898.89 4797.71 898.33 8798.97 9394.97 7799.88 4698.42 2599.76 3499.42 115
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DP-MVS Recon97.86 6997.46 8099.06 6499.53 3898.35 4898.33 18998.89 4792.62 24598.05 9798.94 10295.34 6299.65 12796.04 14299.42 10299.19 140
AdaColmapbinary97.15 11196.70 11598.48 9999.16 10496.69 12198.01 23398.89 4794.44 17096.83 16098.68 13090.69 16199.76 10694.36 19599.29 11198.98 165
DVP-MVS++99.08 298.89 299.64 399.17 10099.23 799.69 198.88 5097.32 3199.53 999.47 897.81 399.94 398.47 1999.72 5299.74 35
test_0728_SECOND99.71 199.72 1399.35 198.97 7698.88 5099.94 398.47 1999.81 1099.84 6
test072699.72 1399.25 299.06 5598.88 5097.62 1199.56 699.50 497.42 9
MSP-MVS98.74 998.55 1199.29 3499.75 498.23 5499.26 2398.88 5097.52 1699.41 1398.78 12096.00 3799.79 9597.79 5699.59 7599.85 4
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
Anonymous2023121194.10 26793.26 27696.61 22299.11 10994.28 23199.01 6898.88 5086.43 34292.81 28797.57 23881.66 30898.68 24394.83 17989.02 31296.88 256
XVS98.70 1098.49 1799.34 2699.70 2498.35 4899.29 1998.88 5097.40 2598.46 7699.20 5795.90 4399.89 3897.85 5299.74 4399.78 15
X-MVStestdata94.06 27192.30 29199.34 2699.70 2498.35 4899.29 1998.88 5097.40 2598.46 7643.50 37195.90 4399.89 3897.85 5299.74 4399.78 15
SED-MVS99.09 198.91 199.63 499.71 2199.24 599.02 6698.87 5797.65 999.73 199.48 697.53 799.94 398.43 2399.81 1099.70 52
test_241102_TWO98.87 5797.65 999.53 999.48 697.34 1199.94 398.43 2399.80 1799.83 7
test_241102_ONE99.71 2199.24 598.87 5797.62 1199.73 199.39 1697.53 799.74 110
CP-MVS98.57 2798.36 2399.19 4699.66 2897.86 7399.34 1598.87 5795.96 9598.60 7199.13 7096.05 3599.94 397.77 5799.86 199.77 22
SteuartSystems-ACMMP98.90 698.75 599.36 2499.22 9698.43 3899.10 5098.87 5797.38 2899.35 1799.40 1597.78 599.87 4797.77 5799.85 399.78 15
Skip Steuart: Steuart Systems R&D Blog.
DeepPCF-MVS96.37 297.93 6698.48 1896.30 25299.00 11789.54 32597.43 27698.87 5798.16 299.26 2199.38 2396.12 3199.64 12998.30 3199.77 2899.72 44
test_one_060199.66 2899.25 298.86 6397.55 1599.20 2599.47 897.57 6
ZNCC-MVS98.49 3798.20 4599.35 2599.73 1298.39 3999.19 3698.86 6395.77 10198.31 8999.10 7595.46 5499.93 1897.57 7599.81 1099.74 35
testtj98.33 5197.95 5799.47 1499.49 4798.70 2398.83 10398.86 6395.48 11598.91 4999.17 6195.48 5399.93 1895.80 15199.53 8999.76 28
DTE-MVSNet93.98 27393.26 27696.14 25896.06 31594.39 22899.20 3498.86 6393.06 23091.78 31297.81 21985.87 26097.58 33190.53 28986.17 34096.46 312
SD-MVS98.64 1598.68 698.53 9499.33 6798.36 4798.90 8798.85 6797.28 3499.72 399.39 1696.63 1897.60 33098.17 3399.85 399.64 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ETH3D-3000-0.198.35 4798.00 5599.38 2099.47 5098.68 2598.67 14198.84 6894.66 16199.11 3299.25 4895.46 5499.81 7496.80 11599.73 4599.63 77
test_prior398.22 5697.90 6099.19 4699.31 7298.22 5597.80 25498.84 6896.12 9097.89 11798.69 12895.96 3999.70 11896.89 10499.60 7299.65 71
test_prior99.19 4699.31 7298.22 5598.84 6899.70 11899.65 71
test117298.56 2998.35 2599.16 5399.53 3897.94 7199.09 5198.83 7196.52 7399.05 3699.34 3395.34 6299.82 6797.86 5199.64 6699.73 40
Anonymous2024052995.10 20294.22 22197.75 15099.01 11694.26 23398.87 9698.83 7185.79 34896.64 16898.97 9378.73 32899.85 5396.27 13394.89 22699.12 151
9.1498.06 5199.47 5098.71 13198.82 7394.36 17199.16 3099.29 4196.05 3599.81 7497.00 9499.71 54
SR-MVS98.57 2798.35 2599.24 4399.53 3898.18 5899.09 5198.82 7396.58 7099.10 3399.32 3595.39 5899.82 6797.70 6599.63 6899.72 44
GST-MVS98.43 4198.12 4899.34 2699.72 1398.38 4099.09 5198.82 7395.71 10498.73 6099.06 8495.27 6799.93 1897.07 9399.63 6899.72 44
abl_698.30 5498.03 5399.13 5799.56 3697.76 8099.13 4498.82 7396.14 8899.26 2199.37 2493.33 10799.93 1896.96 9899.67 5899.69 55
HPM-MVS_fast98.38 4498.13 4799.12 6099.75 497.86 7399.44 798.82 7394.46 16998.94 4399.20 5795.16 7299.74 11097.58 7299.85 399.77 22
APD-MVScopyleft98.35 4798.00 5599.42 1899.51 4198.72 2198.80 11398.82 7394.52 16699.23 2399.25 4895.54 5299.80 8396.52 12699.77 2899.74 35
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SF-MVS98.59 2198.32 3499.41 1999.54 3798.71 2299.04 5898.81 7995.12 13799.32 1899.39 1696.22 2399.84 5697.72 6099.73 4599.67 65
ETH3 D test640097.59 8497.01 9999.34 2699.40 6198.56 3098.20 20998.81 7991.63 27998.44 8098.85 11193.98 10299.82 6794.11 20699.69 5699.64 74
test_part194.82 21893.82 24997.82 14498.84 13297.82 7799.03 6298.81 7992.31 26092.51 29997.89 20881.96 30598.67 24494.80 18288.24 31996.98 242
MVS_030492.81 29292.01 29495.23 28997.46 23791.33 29898.17 21898.81 7991.13 29993.80 25695.68 33666.08 36498.06 30990.79 28596.13 21896.32 319
ACMMP_NAP98.61 1898.30 3599.55 999.62 3298.95 1798.82 10698.81 7995.80 10099.16 3099.47 895.37 6099.92 2497.89 4999.75 4099.79 12
Regformer-298.69 1298.52 1399.19 4699.35 6298.01 6798.37 18398.81 7997.48 1999.21 2499.21 5396.13 3099.80 8398.40 2799.73 4599.75 30
APD-MVS_3200maxsize98.53 3598.33 3399.15 5699.50 4397.92 7299.15 4098.81 7996.24 8399.20 2599.37 2495.30 6599.80 8397.73 5999.67 5899.72 44
WR-MVS95.15 19994.46 20997.22 17996.67 29096.45 13398.21 20698.81 7994.15 17593.16 27797.69 22687.51 23098.30 28995.29 16988.62 31696.90 254
mPP-MVS98.51 3698.26 3899.25 4299.75 498.04 6599.28 2198.81 7996.24 8398.35 8699.23 5095.46 5499.94 397.42 8299.81 1099.77 22
CNVR-MVS98.78 798.56 1099.45 1799.32 7098.87 1998.47 17198.81 7997.72 698.76 5799.16 6697.05 1399.78 9998.06 3999.66 6199.69 55
CPTT-MVS97.72 7597.32 8798.92 7299.64 3097.10 10599.12 4698.81 7992.34 25698.09 9599.08 8293.01 11199.92 2496.06 14199.77 2899.75 30
SR-MVS-dyc-post98.54 3398.35 2599.13 5799.49 4797.86 7399.11 4798.80 9096.49 7499.17 2899.35 3095.34 6299.82 6797.72 6099.65 6299.71 48
RE-MVS-def98.34 2999.49 4797.86 7399.11 4798.80 9096.49 7499.17 2899.35 3095.29 6697.72 6099.65 6299.71 48
SMA-MVScopyleft98.58 2498.25 3999.56 899.51 4199.04 1598.95 8098.80 9093.67 20799.37 1699.52 396.52 2099.89 3898.06 3999.81 1099.76 28
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVScopyleft98.36 4698.10 5099.13 5799.74 897.82 7799.53 498.80 9094.63 16298.61 7098.97 9395.13 7399.77 10497.65 6799.83 999.79 12
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
RPMNet92.81 29291.34 30097.24 17897.00 26993.43 25994.96 34998.80 9082.27 35596.93 15592.12 35886.98 24199.82 6776.32 36396.65 19798.46 197
ZD-MVS99.46 5398.70 2398.79 9593.21 22498.67 6398.97 9395.70 4799.83 5996.07 13899.58 78
Regformer-498.64 1598.53 1298.99 6699.43 5997.37 9298.40 18198.79 9597.46 2299.09 3499.31 3795.86 4599.80 8398.64 499.76 3499.79 12
MP-MVScopyleft98.33 5198.01 5499.28 3899.75 498.18 5899.22 3098.79 9596.13 8997.92 11599.23 5094.54 8799.94 396.74 12099.78 2599.73 40
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CANet98.05 5897.76 6598.90 7498.73 13897.27 9698.35 18698.78 9897.37 3097.72 12598.96 9991.53 14399.92 2498.79 399.65 6299.51 96
MP-MVS-pluss98.31 5397.92 5999.49 1299.72 1398.88 1898.43 17798.78 9894.10 17797.69 12799.42 1495.25 6999.92 2498.09 3799.80 1799.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DeepC-MVS_fast96.70 198.55 3198.34 2999.18 5099.25 8898.04 6598.50 16898.78 9897.72 698.92 4899.28 4295.27 6799.82 6797.55 7699.77 2899.69 55
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS97.81 7197.60 6998.44 10299.12 10895.97 15597.75 25898.78 9896.89 5898.46 7699.22 5293.90 10399.68 12494.81 18199.52 9199.67 65
Regformer-198.66 1398.51 1499.12 6099.35 6297.81 7998.37 18398.76 10297.49 1899.20 2599.21 5396.08 3299.79 9598.42 2599.73 4599.75 30
NCCC98.61 1898.35 2599.38 2099.28 8498.61 2998.45 17298.76 10297.82 598.45 7998.93 10396.65 1799.83 5997.38 8499.41 10399.71 48
PLCcopyleft95.07 497.20 10896.78 11098.44 10299.29 8096.31 14298.14 22098.76 10292.41 25496.39 18398.31 17194.92 7999.78 9994.06 20898.77 13599.23 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
h-mvs3396.17 14695.62 15797.81 14599.03 11394.45 22498.64 14698.75 10597.48 1998.67 6398.72 12789.76 17499.86 5297.95 4381.59 35099.11 152
DeepC-MVS95.98 397.88 6897.58 7098.77 7899.25 8896.93 11098.83 10398.75 10596.96 5596.89 15999.50 490.46 16499.87 4797.84 5499.76 3499.52 92
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
zzz-MVS98.55 3198.25 3999.46 1599.76 298.64 2798.55 16198.74 10797.27 3898.02 10299.39 1694.81 8099.96 197.91 4699.79 2199.77 22
MTGPAbinary98.74 107
MTAPA98.58 2498.29 3699.46 1599.76 298.64 2798.90 8798.74 10797.27 3898.02 10299.39 1694.81 8099.96 197.91 4699.79 2199.77 22
ab-mvs96.42 13795.71 15198.55 9098.63 15096.75 11997.88 24798.74 10793.84 19196.54 17698.18 18585.34 26999.75 10895.93 14596.35 20699.15 147
TEST999.31 7298.50 3497.92 24098.73 11192.63 24497.74 12398.68 13096.20 2699.80 83
train_agg97.97 5997.52 7599.33 3099.31 7298.50 3497.92 24098.73 11192.98 23397.74 12398.68 13096.20 2699.80 8396.59 12299.57 7999.68 61
test_899.29 8098.44 3697.89 24698.72 11392.98 23397.70 12698.66 13396.20 2699.80 83
agg_prior197.95 6397.51 7799.28 3899.30 7798.38 4097.81 25398.72 11393.16 22797.57 13698.66 13396.14 2999.81 7496.63 12199.56 8499.66 69
agg_prior99.30 7798.38 4098.72 11397.57 13699.81 74
无先验97.58 27098.72 11391.38 28599.87 4793.36 22799.60 83
save fliter99.46 5398.38 4098.21 20698.71 11797.95 3
WTY-MVS97.37 10096.92 10498.72 8098.86 12996.89 11498.31 19598.71 11795.26 12997.67 12898.56 14492.21 12499.78 9995.89 14696.85 19199.48 103
3Dnovator+94.38 697.43 9596.78 11099.38 2097.83 21098.52 3299.37 1098.71 11797.09 5092.99 28499.13 7089.36 18299.89 3896.97 9699.57 7999.71 48
旧先验199.29 8097.48 8898.70 12099.09 8095.56 5099.47 9599.61 80
EI-MVSNet-Vis-set98.47 3998.39 2098.69 8199.46 5396.49 13198.30 19798.69 12197.21 4198.84 5199.36 2895.41 5799.78 9998.62 699.65 6299.80 11
新几何199.16 5399.34 6498.01 6798.69 12190.06 31698.13 9298.95 10194.60 8599.89 3891.97 26899.47 9599.59 85
API-MVS97.41 9797.25 8997.91 13898.70 14396.80 11698.82 10698.69 12194.53 16498.11 9398.28 17594.50 9199.57 13894.12 20599.49 9397.37 231
ETH3D cwj APD-0.1697.96 6097.52 7599.29 3499.05 11098.52 3298.33 18998.68 12493.18 22598.68 6299.13 7094.62 8499.83 5996.45 12899.55 8799.52 92
EI-MVSNet-UG-set98.41 4298.34 2998.61 8699.45 5796.32 14098.28 20098.68 12497.17 4498.74 5899.37 2495.25 6999.79 9598.57 999.54 8899.73 40
Regformer-398.59 2198.50 1598.86 7699.43 5997.05 10698.40 18198.68 12497.43 2499.06 3599.31 3795.80 4699.77 10498.62 699.76 3499.78 15
testdata98.26 11499.20 9995.36 18298.68 12491.89 27198.60 7199.10 7594.44 9399.82 6794.27 20099.44 10099.58 89
112197.37 10096.77 11499.16 5399.34 6497.99 7098.19 21398.68 12490.14 31598.01 10698.97 9394.80 8299.87 4793.36 22799.46 9899.61 80
MCST-MVS98.65 1498.37 2299.48 1399.60 3398.87 1998.41 18098.68 12497.04 5198.52 7498.80 11896.78 1599.83 5997.93 4599.61 7199.74 35
PVSNet91.96 1896.35 13996.15 13596.96 19699.17 10092.05 28396.08 33598.68 12493.69 20397.75 12297.80 22088.86 19999.69 12394.26 20199.01 12299.15 147
MAR-MVS96.91 11996.40 12798.45 10198.69 14596.90 11298.66 14498.68 12492.40 25597.07 14997.96 20191.54 14299.75 10893.68 21798.92 12598.69 184
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
原ACMM198.65 8499.32 7096.62 12298.67 13293.27 22397.81 11998.97 9395.18 7199.83 5993.84 21399.46 9899.50 98
CDPH-MVS97.94 6497.49 7899.28 3899.47 5098.44 3697.91 24298.67 13292.57 24898.77 5698.85 11195.93 4199.72 11295.56 16199.69 5699.68 61
UnsupCasMVSNet_eth90.99 30889.92 31194.19 32094.08 35089.83 31997.13 30198.67 13293.69 20385.83 35196.19 32375.15 34996.74 34589.14 31379.41 35596.00 327
TSAR-MVS + MP.98.78 798.62 899.24 4399.69 2698.28 5399.14 4198.66 13596.84 5999.56 699.31 3796.34 2299.70 11898.32 3099.73 4599.73 40
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft98.58 2498.25 3999.55 999.50 4399.08 1198.72 13098.66 13597.51 1798.15 9198.83 11595.70 4799.92 2497.53 7899.67 5899.66 69
test22299.23 9597.17 10497.40 27798.66 13588.68 33298.05 9798.96 9994.14 9899.53 8999.61 80
test1198.66 135
XXY-MVS95.20 19794.45 21197.46 16996.75 28596.56 12898.86 9898.65 13993.30 22293.27 27498.27 17884.85 27698.87 22694.82 18091.26 28196.96 244
IU-MVS99.71 2199.23 798.64 14095.28 12899.63 498.35 2999.81 1099.83 7
TAPA-MVS93.98 795.35 18894.56 20397.74 15199.13 10794.83 20898.33 18998.64 14086.62 34096.29 18598.61 13694.00 10199.29 16880.00 35599.41 10399.09 154
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MSC_two_6792asdad99.62 699.17 10099.08 1198.63 14299.94 398.53 1199.80 1799.86 2
No_MVS99.62 699.17 10099.08 1198.63 14299.94 398.53 1199.80 1799.86 2
F-COLMAP97.09 11496.80 10797.97 13599.45 5794.95 20398.55 16198.62 14493.02 23296.17 18898.58 14194.01 10099.81 7493.95 21098.90 12699.14 149
EIA-MVS97.75 7397.58 7098.27 11298.38 16496.44 13499.01 6898.60 14595.88 9797.26 14197.53 24194.97 7799.33 16697.38 8499.20 11399.05 159
PAPM_NR97.46 9097.11 9498.50 9699.50 4396.41 13698.63 14798.60 14595.18 13397.06 15098.06 19294.26 9799.57 13893.80 21598.87 13099.52 92
cdsmvs_eth3d_5k23.98 34131.98 3430.00 3590.00 3820.00 3830.00 37098.59 1470.00 3770.00 37898.61 13690.60 1620.00 3780.00 3760.00 3760.00 374
131496.25 14595.73 14797.79 14697.13 26395.55 17698.19 21398.59 14793.47 21492.03 31097.82 21891.33 14799.49 15194.62 18698.44 15098.32 204
CVMVSNet95.43 18096.04 13993.57 32497.93 20483.62 35998.12 22398.59 14795.68 10596.56 17299.02 8687.51 23097.51 33493.56 22397.44 18299.60 83
OMC-MVS97.55 8897.34 8698.20 11899.33 6795.92 16298.28 20098.59 14795.52 11497.97 10999.10 7593.28 10999.49 15195.09 17498.88 12899.19 140
LTVRE_ROB92.95 1594.60 23293.90 24496.68 21597.41 24594.42 22698.52 16398.59 14791.69 27791.21 31798.35 16484.87 27599.04 19991.06 28193.44 25496.60 289
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DVP-MVScopyleft99.03 398.83 499.63 499.72 1399.25 298.97 7698.58 15297.62 1199.45 1199.46 1197.42 999.94 398.47 1999.81 1099.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
UniMVSNet_ETH3D94.24 25793.33 27396.97 19597.19 25993.38 26398.74 12298.57 15391.21 29793.81 25598.58 14172.85 35798.77 23795.05 17593.93 24398.77 180
PAPR96.84 12296.24 13398.65 8498.72 14296.92 11197.36 28398.57 15393.33 21996.67 16797.57 23894.30 9699.56 14091.05 28398.59 14299.47 105
HQP_MVS96.14 14795.90 14396.85 20497.42 24294.60 22098.80 11398.56 15597.28 3495.34 19898.28 17587.09 23899.03 20096.07 13894.27 22996.92 247
plane_prior598.56 15599.03 20096.07 13894.27 22996.92 247
ETV-MVS97.96 6097.81 6398.40 10698.42 16297.27 9698.73 12698.55 15796.84 5998.38 8397.44 24895.39 5899.35 16497.62 6998.89 12798.58 194
mvs_tets95.41 18395.00 18496.65 21695.58 32994.42 22699.00 7098.55 15795.73 10393.21 27698.38 16183.45 30098.63 24797.09 9294.00 24096.91 252
LPG-MVS_test95.62 17395.34 16796.47 23897.46 23793.54 25498.99 7298.54 15994.67 15994.36 22898.77 12285.39 26699.11 18895.71 15694.15 23596.76 269
LGP-MVS_train96.47 23897.46 23793.54 25498.54 15994.67 15994.36 22898.77 12285.39 26699.11 18895.71 15694.15 23596.76 269
test1299.18 5099.16 10498.19 5798.53 16198.07 9695.13 7399.72 11299.56 8499.63 77
CNLPA97.45 9397.03 9898.73 7999.05 11097.44 9198.07 22798.53 16195.32 12696.80 16498.53 14593.32 10899.72 11294.31 19999.31 11099.02 161
xxxxxxxxxxxxxcwj98.70 1098.50 1599.30 3399.46 5398.38 4098.21 20698.52 16397.95 399.32 1899.39 1696.22 2399.84 5697.72 6099.73 4599.67 65
jajsoiax95.45 17995.03 18396.73 21095.42 33694.63 21599.14 4198.52 16395.74 10293.22 27598.36 16383.87 29698.65 24696.95 9994.04 23896.91 252
XVG-OURS96.55 13396.41 12696.99 19298.75 13793.76 24597.50 27398.52 16395.67 10696.83 16099.30 4088.95 19899.53 14695.88 14796.26 21397.69 223
xiu_mvs_v1_base_debu97.60 8197.56 7297.72 15298.35 16695.98 15097.86 24998.51 16697.13 4799.01 3998.40 15891.56 13999.80 8398.53 1198.68 13697.37 231
xiu_mvs_v1_base97.60 8197.56 7297.72 15298.35 16695.98 15097.86 24998.51 16697.13 4799.01 3998.40 15891.56 13999.80 8398.53 1198.68 13697.37 231
xiu_mvs_v1_base_debi97.60 8197.56 7297.72 15298.35 16695.98 15097.86 24998.51 16697.13 4799.01 3998.40 15891.56 13999.80 8398.53 1198.68 13697.37 231
PS-MVSNAJ97.73 7497.77 6497.62 16298.68 14695.58 17397.34 28598.51 16697.29 3398.66 6797.88 20994.51 8899.90 3697.87 5099.17 11697.39 229
cascas94.63 23193.86 24796.93 19896.91 27694.27 23296.00 33998.51 16685.55 34994.54 21796.23 32084.20 28998.87 22695.80 15196.98 19097.66 224
PS-MVSNAJss96.43 13696.26 13296.92 20195.84 32395.08 19599.16 3998.50 17195.87 9893.84 25498.34 16894.51 8898.61 24896.88 10793.45 25397.06 238
MVS94.67 22993.54 26798.08 12896.88 27896.56 12898.19 21398.50 17178.05 36092.69 29298.02 19491.07 15499.63 13290.09 29498.36 15598.04 212
XVG-OURS-SEG-HR96.51 13496.34 12897.02 19198.77 13693.76 24597.79 25698.50 17195.45 11796.94 15499.09 8087.87 22499.55 14596.76 11995.83 22297.74 220
PVSNet_088.72 1991.28 30490.03 31095.00 29797.99 20187.29 35394.84 35298.50 17192.06 26789.86 32995.19 33979.81 32299.39 16292.27 25969.79 36498.33 203
ACMH92.88 1694.55 23793.95 24096.34 25097.63 22293.26 26798.81 11298.49 17593.43 21689.74 33098.53 14581.91 30699.08 19393.69 21693.30 25796.70 278
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
xiu_mvs_v2_base97.66 7897.70 6797.56 16698.61 15295.46 17997.44 27498.46 17697.15 4598.65 6898.15 18694.33 9599.80 8397.84 5498.66 14097.41 227
HQP3-MVS98.46 17694.18 233
HQP-MVS95.72 16695.40 16196.69 21497.20 25694.25 23498.05 22998.46 17696.43 7694.45 22197.73 22386.75 24498.96 21295.30 16794.18 23396.86 260
CLD-MVS95.62 17395.34 16796.46 24197.52 23493.75 24797.27 29198.46 17695.53 11294.42 22698.00 19786.21 25498.97 20896.25 13594.37 22796.66 284
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XVG-ACMP-BASELINE94.54 23894.14 22895.75 27696.55 29491.65 29298.11 22598.44 18094.96 14794.22 23697.90 20679.18 32699.11 18894.05 20993.85 24496.48 310
ACMP93.49 1095.34 18994.98 18696.43 24397.67 21993.48 25898.73 12698.44 18094.94 15092.53 29798.53 14584.50 28399.14 18395.48 16494.00 24096.66 284
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM93.85 995.69 17095.38 16596.61 22297.61 22393.84 24398.91 8698.44 18095.25 13094.28 23298.47 15186.04 25999.12 18595.50 16393.95 24296.87 258
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Effi-MVS+97.12 11296.69 11698.39 10798.19 18496.72 12097.37 28198.43 18393.71 20097.65 13198.02 19492.20 12599.25 17096.87 11097.79 17299.19 140
DROMVSNet98.21 5798.11 4998.49 9898.34 17197.26 10099.61 398.43 18396.78 6198.87 5098.84 11393.72 10499.01 20698.91 199.50 9299.19 140
RRT_test8_iter0594.56 23694.19 22395.67 27897.60 22491.34 29698.93 8498.42 18594.75 15493.39 27097.87 21079.00 32798.61 24896.78 11790.99 28597.07 237
anonymousdsp95.42 18194.91 18996.94 19795.10 33895.90 16499.14 4198.41 18693.75 19593.16 27797.46 24587.50 23298.41 27695.63 16094.03 23996.50 308
PMMVS96.60 12896.33 12997.41 17297.90 20693.93 24097.35 28498.41 18692.84 24097.76 12197.45 24791.10 15399.20 17696.26 13497.91 16799.11 152
CS-MVS-test97.90 6797.83 6298.11 12698.14 19096.49 13199.35 1398.40 18896.31 8298.27 9098.31 17194.42 9499.05 19598.07 3899.20 11398.80 177
MVSFormer97.57 8697.49 7897.84 14198.07 19495.76 16999.47 598.40 18894.98 14598.79 5498.83 11592.34 11898.41 27696.91 10099.59 7599.34 119
test_djsdf96.00 15295.69 15496.93 19895.72 32595.49 17899.47 598.40 18894.98 14594.58 21697.86 21189.16 18898.41 27696.91 10094.12 23796.88 256
CS-MVS97.94 6497.90 6098.06 13098.04 19896.85 11599.04 5898.39 19196.17 8698.50 7598.29 17494.60 8599.02 20398.61 899.43 10198.30 205
OPM-MVS95.69 17095.33 16996.76 20896.16 31294.63 21598.43 17798.39 19196.64 6895.02 20498.78 12085.15 27199.05 19595.21 17394.20 23296.60 289
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
canonicalmvs97.67 7797.23 9098.98 6898.70 14398.38 4099.34 1598.39 19196.76 6397.67 12897.40 25192.26 12199.49 15198.28 3296.28 21299.08 157
DP-MVS96.59 13095.93 14298.57 8899.34 6496.19 14698.70 13598.39 19189.45 32694.52 21899.35 3091.85 13399.85 5392.89 24498.88 12899.68 61
diffmvs97.58 8597.40 8498.13 12398.32 17595.81 16898.06 22898.37 19596.20 8598.74 5898.89 10791.31 14899.25 17098.16 3498.52 14599.34 119
ACMH+92.99 1494.30 25393.77 25495.88 27197.81 21192.04 28498.71 13198.37 19593.99 18490.60 32498.47 15180.86 31699.05 19592.75 24692.40 26696.55 297
MSDG95.93 15795.30 17297.83 14298.90 12595.36 18296.83 32298.37 19591.32 29094.43 22598.73 12690.27 16899.60 13590.05 29798.82 13398.52 195
DPM-MVS97.55 8896.99 10199.23 4599.04 11298.55 3197.17 29898.35 19894.85 15297.93 11498.58 14195.07 7599.71 11792.60 24899.34 10899.43 113
CMPMVSbinary66.06 2189.70 31789.67 31389.78 34193.19 35676.56 36697.00 30698.35 19880.97 35781.57 35897.75 22274.75 35198.61 24889.85 30093.63 24894.17 352
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
v7n94.19 26093.43 27196.47 23895.90 32094.38 22999.26 2398.34 20091.99 26892.76 28997.13 26588.31 21098.52 25889.48 30987.70 32596.52 303
CDS-MVSNet96.99 11696.69 11697.90 13998.05 19795.98 15098.20 20998.33 20193.67 20796.95 15398.49 14993.54 10598.42 26995.24 17297.74 17599.31 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
casdiffmvs97.63 8097.41 8398.28 11198.33 17396.14 14798.82 10698.32 20296.38 7997.95 11099.21 5391.23 15099.23 17398.12 3598.37 15399.48 103
baseline97.64 7997.44 8298.25 11598.35 16696.20 14499.00 7098.32 20296.33 8198.03 10099.17 6191.35 14699.16 17998.10 3698.29 15899.39 116
cl2294.68 22694.19 22396.13 25998.11 19293.60 25296.94 30998.31 20492.43 25393.32 27396.87 29686.51 24798.28 29494.10 20791.16 28296.51 306
test_yl97.22 10596.78 11098.54 9298.73 13896.60 12598.45 17298.31 20494.70 15598.02 10298.42 15690.80 15899.70 11896.81 11396.79 19399.34 119
DCV-MVSNet97.22 10596.78 11098.54 9298.73 13896.60 12598.45 17298.31 20494.70 15598.02 10298.42 15690.80 15899.70 11896.81 11396.79 19399.34 119
nrg03096.28 14395.72 14897.96 13796.90 27798.15 6199.39 898.31 20495.47 11694.42 22698.35 16492.09 12898.69 24097.50 8089.05 31097.04 239
TAMVS97.02 11596.79 10997.70 15598.06 19695.31 18698.52 16398.31 20493.95 18697.05 15198.61 13693.49 10698.52 25895.33 16697.81 17199.29 130
EPP-MVSNet97.46 9097.28 8897.99 13498.64 14995.38 18199.33 1898.31 20493.61 21097.19 14399.07 8394.05 9999.23 17396.89 10498.43 15299.37 118
UnsupCasMVSNet_bld87.17 32585.12 32993.31 32991.94 36088.77 33794.92 35198.30 21084.30 35382.30 35790.04 35963.96 36697.25 33785.85 33474.47 36393.93 357
Vis-MVSNet (Re-imp)96.87 12196.55 12297.83 14298.73 13895.46 17999.20 3498.30 21094.96 14796.60 17198.87 10990.05 17098.59 25293.67 21998.60 14199.46 109
TSAR-MVS + GP.98.38 4498.24 4298.81 7799.22 9697.25 10198.11 22598.29 21297.19 4398.99 4299.02 8696.22 2399.67 12598.52 1798.56 14499.51 96
MS-PatchMatch93.84 27593.63 26394.46 31696.18 30989.45 32697.76 25798.27 21392.23 26292.13 30897.49 24379.50 32398.69 24089.75 30299.38 10695.25 339
EI-MVSNet95.96 15395.83 14596.36 24897.93 20493.70 25198.12 22398.27 21393.70 20295.07 20299.02 8692.23 12398.54 25694.68 18393.46 25196.84 261
MVSTER96.06 14995.72 14897.08 18998.23 17995.93 16198.73 12698.27 21394.86 15195.07 20298.09 19088.21 21298.54 25696.59 12293.46 25196.79 265
FMVSNet294.47 24493.61 26497.04 19098.21 18196.43 13598.79 11798.27 21392.46 24993.50 26797.09 27081.16 31198.00 31491.09 27991.93 27096.70 278
FMVSNet394.97 21194.26 22097.11 18798.18 18696.62 12298.56 15998.26 21793.67 20794.09 24297.10 26684.25 28698.01 31292.08 26292.14 26796.70 278
Fast-Effi-MVS+96.28 14395.70 15398.03 13298.29 17795.97 15598.58 15398.25 21891.74 27495.29 20197.23 26091.03 15599.15 18292.90 24297.96 16698.97 166
PAPM94.95 21294.00 23697.78 14797.04 26895.65 17196.03 33898.25 21891.23 29594.19 23897.80 22091.27 14998.86 22882.61 34997.61 17998.84 175
CANet_DTU96.96 11796.55 12298.21 11798.17 18896.07 14997.98 23698.21 22097.24 4097.13 14598.93 10386.88 24399.91 3395.00 17699.37 10798.66 188
HY-MVS93.96 896.82 12396.23 13498.57 8898.46 16197.00 10798.14 22098.21 22093.95 18696.72 16697.99 19891.58 13899.76 10694.51 19296.54 20198.95 169
PCF-MVS93.45 1194.68 22693.43 27198.42 10598.62 15196.77 11895.48 34798.20 22284.63 35293.34 27298.32 17088.55 20699.81 7484.80 34298.96 12498.68 185
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v894.47 24493.77 25496.57 22896.36 30394.83 20899.05 5798.19 22391.92 27093.16 27796.97 28688.82 20198.48 26091.69 27487.79 32496.39 314
v1094.29 25493.55 26696.51 23596.39 30294.80 21098.99 7298.19 22391.35 28893.02 28396.99 28488.09 21798.41 27690.50 29088.41 31896.33 318
mvs_anonymous96.70 12696.53 12497.18 18298.19 18493.78 24498.31 19598.19 22394.01 18294.47 22098.27 17892.08 12998.46 26497.39 8397.91 16799.31 125
AllTest95.24 19494.65 19996.99 19299.25 8893.21 26998.59 15198.18 22691.36 28693.52 26498.77 12284.67 27999.72 11289.70 30497.87 16998.02 213
TestCases96.99 19299.25 8893.21 26998.18 22691.36 28693.52 26498.77 12284.67 27999.72 11289.70 30497.87 16998.02 213
GBi-Net94.49 24293.80 25196.56 22998.21 18195.00 19798.82 10698.18 22692.46 24994.09 24297.07 27381.16 31197.95 31692.08 26292.14 26796.72 274
test194.49 24293.80 25196.56 22998.21 18195.00 19798.82 10698.18 22692.46 24994.09 24297.07 27381.16 31197.95 31692.08 26292.14 26796.72 274
FMVSNet193.19 28892.07 29396.56 22997.54 23195.00 19798.82 10698.18 22690.38 31092.27 30597.07 27373.68 35597.95 31689.36 31191.30 27996.72 274
v119294.32 25293.58 26596.53 23396.10 31394.45 22498.50 16898.17 23191.54 28194.19 23897.06 27686.95 24298.43 26890.14 29389.57 30096.70 278
v124094.06 27193.29 27596.34 25096.03 31793.90 24198.44 17598.17 23191.18 29894.13 24197.01 28386.05 25798.42 26989.13 31489.50 30496.70 278
v14419294.39 24993.70 26096.48 23796.06 31594.35 23098.58 15398.16 23391.45 28394.33 23097.02 28187.50 23298.45 26591.08 28089.11 30996.63 286
Fast-Effi-MVS+-dtu95.87 15995.85 14495.91 26897.74 21691.74 29098.69 13798.15 23495.56 11194.92 20697.68 22988.98 19698.79 23593.19 23297.78 17397.20 235
v192192094.20 25993.47 27096.40 24695.98 31894.08 23798.52 16398.15 23491.33 28994.25 23497.20 26386.41 25198.42 26990.04 29889.39 30696.69 283
v114494.59 23493.92 24196.60 22496.21 30794.78 21298.59 15198.14 23691.86 27394.21 23797.02 28187.97 22098.41 27691.72 27389.57 30096.61 288
IterMVS-LS95.46 17795.21 17596.22 25598.12 19193.72 25098.32 19498.13 23793.71 20094.26 23397.31 25592.24 12298.10 30494.63 18490.12 29396.84 261
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GeoE96.58 13296.07 13798.10 12798.35 16695.89 16599.34 1598.12 23893.12 22996.09 18998.87 10989.71 17698.97 20892.95 24098.08 16399.43 113
EU-MVSNet93.66 27694.14 22892.25 33795.96 31983.38 36098.52 16398.12 23894.69 15792.61 29498.13 18887.36 23596.39 35391.82 27090.00 29596.98 242
IterMVS94.09 26893.85 24894.80 30597.99 20190.35 31597.18 29698.12 23893.68 20592.46 30297.34 25284.05 29197.41 33592.51 25591.33 27896.62 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT94.11 26693.87 24694.85 30297.98 20390.56 31397.18 29698.11 24193.75 19592.58 29597.48 24483.97 29397.41 33592.48 25791.30 27996.58 291
COLMAP_ROBcopyleft93.27 1295.33 19094.87 19196.71 21199.29 8093.24 26898.58 15398.11 24189.92 31893.57 26299.10 7586.37 25299.79 9590.78 28698.10 16297.09 236
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
hse-mvs295.71 16795.30 17296.93 19898.50 15893.53 25698.36 18598.10 24397.48 1998.67 6397.99 19889.76 17499.02 20397.95 4380.91 35498.22 207
AUN-MVS94.53 23993.73 25896.92 20198.50 15893.52 25798.34 18798.10 24393.83 19395.94 19597.98 20085.59 26499.03 20094.35 19680.94 35398.22 207
Effi-MVS+-dtu96.29 14196.56 12195.51 28197.89 20790.22 31698.80 11398.10 24396.57 7196.45 18296.66 30490.81 15698.91 21995.72 15497.99 16597.40 228
mvs-test196.60 12896.68 11896.37 24797.89 20791.81 28698.56 15998.10 24396.57 7196.52 17897.94 20390.81 15699.45 15995.72 15498.01 16497.86 217
1112_ss96.63 12796.00 14198.50 9698.56 15496.37 13798.18 21798.10 24392.92 23694.84 20898.43 15492.14 12699.58 13794.35 19696.51 20299.56 91
RRT_MVS96.04 15095.53 15897.56 16697.07 26797.32 9398.57 15898.09 24895.15 13595.02 20498.44 15388.20 21398.58 25496.17 13793.09 26096.79 265
V4294.78 22294.14 22896.70 21396.33 30595.22 18898.97 7698.09 24892.32 25894.31 23197.06 27688.39 20998.55 25592.90 24288.87 31496.34 316
miper_enhance_ethall95.10 20294.75 19596.12 26097.53 23393.73 24996.61 32998.08 25092.20 26593.89 25096.65 30692.44 11798.30 28994.21 20291.16 28296.34 316
v2v48294.69 22494.03 23296.65 21696.17 31094.79 21198.67 14198.08 25092.72 24294.00 24797.16 26487.69 22998.45 26592.91 24188.87 31496.72 274
CL-MVSNet_self_test90.11 31489.14 31793.02 33291.86 36188.23 34696.51 33298.07 25290.49 30590.49 32594.41 34584.75 27895.34 35880.79 35374.95 36195.50 336
miper_ehance_all_eth95.01 20694.69 19895.97 26597.70 21893.31 26597.02 30598.07 25292.23 26293.51 26696.96 28891.85 13398.15 30093.68 21791.16 28296.44 313
eth_miper_zixun_eth94.68 22694.41 21495.47 28397.64 22191.71 29196.73 32698.07 25292.71 24393.64 25997.21 26290.54 16398.17 29993.38 22589.76 29796.54 298
MVS_Test97.28 10397.00 10098.13 12398.33 17395.97 15598.74 12298.07 25294.27 17398.44 8098.07 19192.48 11699.26 16996.43 13098.19 15999.16 146
Test_1112_low_res96.34 14095.66 15698.36 10898.56 15495.94 15897.71 26098.07 25292.10 26694.79 21297.29 25691.75 13599.56 14094.17 20396.50 20399.58 89
alignmvs97.56 8797.07 9799.01 6598.66 14798.37 4698.83 10398.06 25796.74 6498.00 10897.65 23090.80 15899.48 15598.37 2896.56 20099.19 140
RPSCF94.87 21795.40 16193.26 33098.89 12682.06 36498.33 18998.06 25790.30 31296.56 17299.26 4587.09 23899.49 15193.82 21496.32 20898.24 206
miper_lstm_enhance94.33 25194.07 23195.11 29497.75 21390.97 30497.22 29398.03 25991.67 27892.76 28996.97 28690.03 17197.78 32692.51 25589.64 29996.56 295
c3_l94.79 22194.43 21395.89 27097.75 21393.12 27297.16 29998.03 25992.23 26293.46 26997.05 27891.39 14498.01 31293.58 22289.21 30896.53 300
pm-mvs193.94 27493.06 27896.59 22596.49 29895.16 18998.95 8098.03 25992.32 25891.08 31997.84 21484.54 28298.41 27692.16 26086.13 34296.19 323
v14894.29 25493.76 25695.91 26896.10 31392.93 27498.58 15397.97 26292.59 24793.47 26896.95 29088.53 20798.32 28592.56 25287.06 33396.49 309
IS-MVSNet97.22 10596.88 10598.25 11598.85 13196.36 13899.19 3697.97 26295.39 12097.23 14298.99 9291.11 15298.93 21794.60 18798.59 14299.47 105
cl____94.51 24194.01 23596.02 26297.58 22693.40 26297.05 30397.96 26491.73 27692.76 28997.08 27289.06 19298.13 30292.61 24790.29 29296.52 303
KD-MVS_self_test90.38 31289.38 31593.40 32792.85 35888.94 33697.95 23897.94 26590.35 31190.25 32693.96 35079.82 32195.94 35584.62 34476.69 35995.33 338
DIV-MVS_self_test94.52 24094.03 23295.99 26397.57 23093.38 26397.05 30397.94 26591.74 27492.81 28797.10 26689.12 18998.07 30892.60 24890.30 29196.53 300
pmmvs691.77 30090.63 30495.17 29294.69 34691.24 30198.67 14197.92 26786.14 34489.62 33197.56 24075.79 34798.34 28390.75 28784.56 34495.94 329
jason97.32 10297.08 9698.06 13097.45 24195.59 17297.87 24897.91 26894.79 15398.55 7398.83 11591.12 15199.23 17397.58 7299.60 7299.34 119
jason: jason.
ppachtmachnet_test93.22 28692.63 28694.97 29895.45 33490.84 30696.88 31897.88 26990.60 30492.08 30997.26 25788.08 21897.86 32585.12 33990.33 29096.22 321
tpm cat193.36 28092.80 28295.07 29697.58 22687.97 34896.76 32497.86 27082.17 35693.53 26396.04 32686.13 25599.13 18489.24 31295.87 22198.10 211
EG-PatchMatch MVS91.13 30690.12 30994.17 32194.73 34589.00 33498.13 22297.81 27189.22 32985.32 35396.46 31267.71 36198.42 26987.89 32393.82 24595.08 344
BH-untuned95.95 15495.72 14896.65 21698.55 15692.26 27998.23 20497.79 27293.73 19894.62 21598.01 19688.97 19799.00 20793.04 23798.51 14698.68 185
lupinMVS97.44 9497.22 9198.12 12598.07 19495.76 16997.68 26297.76 27394.50 16798.79 5498.61 13692.34 11899.30 16797.58 7299.59 7599.31 125
VDDNet95.36 18794.53 20497.86 14098.10 19395.13 19398.85 9997.75 27490.46 30798.36 8499.39 1673.27 35699.64 12997.98 4296.58 19998.81 176
ADS-MVSNet95.00 20794.45 21196.63 22098.00 19991.91 28596.04 33697.74 27590.15 31396.47 18096.64 30787.89 22298.96 21290.08 29597.06 18799.02 161
tpmvs94.60 23294.36 21695.33 28897.46 23788.60 34096.88 31897.68 27691.29 29293.80 25696.42 31588.58 20399.24 17291.06 28196.04 22098.17 209
pmmvs494.69 22493.99 23896.81 20695.74 32495.94 15897.40 27797.67 27790.42 30993.37 27197.59 23689.08 19198.20 29792.97 23991.67 27496.30 320
our_test_393.65 27893.30 27494.69 30795.45 33489.68 32396.91 31297.65 27891.97 26991.66 31496.88 29489.67 17797.93 31988.02 32191.49 27696.48 310
MVP-Stereo94.28 25693.92 24195.35 28794.95 34092.60 27797.97 23797.65 27891.61 28090.68 32397.09 27086.32 25398.42 26989.70 30499.34 10895.02 346
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
KD-MVS_2432*160089.61 31987.96 32394.54 31194.06 35191.59 29395.59 34597.63 28089.87 31988.95 33794.38 34778.28 33196.82 34384.83 34068.05 36595.21 340
miper_refine_blended89.61 31987.96 32394.54 31194.06 35191.59 29395.59 34597.63 28089.87 31988.95 33794.38 34778.28 33196.82 34384.83 34068.05 36595.21 340
SCA95.46 17795.13 17896.46 24197.67 21991.29 30097.33 28697.60 28294.68 15896.92 15797.10 26683.97 29398.89 22392.59 25098.32 15799.20 137
GA-MVS94.81 22094.03 23297.14 18497.15 26293.86 24296.76 32497.58 28394.00 18394.76 21397.04 27980.91 31498.48 26091.79 27196.25 21499.09 154
Anonymous2024052191.18 30590.44 30693.42 32593.70 35488.47 34298.94 8297.56 28488.46 33389.56 33395.08 34277.15 34396.97 34183.92 34589.55 30294.82 348
test20.0390.89 30990.38 30792.43 33493.48 35588.14 34798.33 18997.56 28493.40 21787.96 34296.71 30380.69 31894.13 36479.15 35886.17 34095.01 347
CR-MVSNet94.76 22394.15 22796.59 22597.00 26993.43 25994.96 34997.56 28492.46 24996.93 15596.24 31888.15 21597.88 32487.38 32496.65 19798.46 197
Patchmtry93.22 28692.35 29095.84 27296.77 28293.09 27394.66 35497.56 28487.37 33892.90 28596.24 31888.15 21597.90 32087.37 32590.10 29496.53 300
tpmrst95.63 17295.69 15495.44 28597.54 23188.54 34196.97 30797.56 28493.50 21397.52 13896.93 29289.49 17899.16 17995.25 17196.42 20598.64 190
FMVSNet591.81 29990.92 30294.49 31397.21 25592.09 28198.00 23597.55 28989.31 32890.86 32195.61 33774.48 35295.32 35985.57 33589.70 29896.07 326
testgi93.06 29092.45 28994.88 30196.43 30189.90 31898.75 11997.54 29095.60 10991.63 31597.91 20574.46 35397.02 34086.10 33193.67 24697.72 222
PatchmatchNetpermissive95.71 16795.52 15996.29 25397.58 22690.72 31096.84 32197.52 29194.06 17897.08 14796.96 28889.24 18698.90 22292.03 26698.37 15399.26 133
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDA-MVSNet-bldmvs89.97 31688.35 32194.83 30495.21 33791.34 29697.64 26597.51 29288.36 33471.17 36696.13 32479.22 32596.63 35083.65 34686.27 33996.52 303
USDC93.33 28392.71 28495.21 29096.83 28190.83 30796.91 31297.50 29393.84 19190.72 32298.14 18777.69 33698.82 23289.51 30893.21 25995.97 328
ITE_SJBPF95.44 28597.42 24291.32 29997.50 29395.09 14193.59 26098.35 16481.70 30798.88 22589.71 30393.39 25596.12 324
Patchmatch-test94.42 24793.68 26296.63 22097.60 22491.76 28894.83 35397.49 29589.45 32694.14 24097.10 26688.99 19398.83 23185.37 33898.13 16199.29 130
YYNet190.70 31189.39 31494.62 31094.79 34490.65 31197.20 29497.46 29687.54 33772.54 36495.74 32986.51 24796.66 34986.00 33286.76 33896.54 298
MDA-MVSNet_test_wron90.71 31089.38 31594.68 30894.83 34290.78 30997.19 29597.46 29687.60 33672.41 36595.72 33386.51 24796.71 34885.92 33386.80 33796.56 295
BH-RMVSNet95.92 15895.32 17097.69 15698.32 17594.64 21498.19 21397.45 29894.56 16396.03 19198.61 13685.02 27299.12 18590.68 28899.06 11899.30 128
MIMVSNet189.67 31888.28 32293.82 32292.81 35991.08 30398.01 23397.45 29887.95 33587.90 34395.87 32867.63 36294.56 36378.73 36088.18 32195.83 331
OurMVSNet-221017-094.21 25894.00 23694.85 30295.60 32889.22 33098.89 9197.43 30095.29 12792.18 30798.52 14882.86 30198.59 25293.46 22491.76 27296.74 271
BH-w/o95.38 18495.08 18196.26 25498.34 17191.79 28797.70 26197.43 30092.87 23994.24 23597.22 26188.66 20298.84 22991.55 27697.70 17798.16 210
VDD-MVS95.82 16395.23 17497.61 16398.84 13293.98 23998.68 13897.40 30295.02 14497.95 11099.34 3374.37 35499.78 9998.64 496.80 19299.08 157
Gipumacopyleft78.40 33076.75 33383.38 34795.54 33080.43 36579.42 36897.40 30264.67 36573.46 36380.82 36645.65 37093.14 36566.32 36787.43 32876.56 368
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
new-patchmatchnet88.50 32387.45 32691.67 33990.31 36585.89 35697.16 29997.33 30489.47 32583.63 35692.77 35476.38 34495.06 36182.70 34877.29 35894.06 355
ADS-MVSNet294.58 23594.40 21595.11 29498.00 19988.74 33896.04 33697.30 30590.15 31396.47 18096.64 30787.89 22297.56 33290.08 29597.06 18799.02 161
MDTV_nov1_ep1395.40 16197.48 23588.34 34496.85 32097.29 30693.74 19797.48 13997.26 25789.18 18799.05 19591.92 26997.43 183
pmmvs593.65 27892.97 28095.68 27795.49 33292.37 27898.20 20997.28 30789.66 32392.58 29597.26 25782.14 30398.09 30693.18 23390.95 28696.58 291
EPNet_dtu95.21 19694.95 18895.99 26396.17 31090.45 31498.16 21997.27 30896.77 6293.14 28098.33 16990.34 16698.42 26985.57 33598.81 13499.09 154
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2023120691.66 30191.10 30193.33 32894.02 35387.35 35298.58 15397.26 30990.48 30690.16 32796.31 31683.83 29796.53 35179.36 35789.90 29696.12 324
test_040291.32 30390.27 30894.48 31496.60 29291.12 30298.50 16897.22 31086.10 34588.30 34196.98 28577.65 33897.99 31578.13 36192.94 26294.34 350
dp94.15 26393.90 24494.90 30097.31 24986.82 35596.97 30797.19 31191.22 29696.02 19296.61 30985.51 26599.02 20390.00 29994.30 22898.85 173
thres20095.25 19394.57 20297.28 17798.81 13494.92 20498.20 20997.11 31295.24 13296.54 17696.22 32284.58 28199.53 14687.93 32296.50 20397.39 229
PatchT93.06 29091.97 29596.35 24996.69 28892.67 27694.48 35597.08 31386.62 34097.08 14792.23 35787.94 22197.90 32078.89 35996.69 19598.49 196
TDRefinement91.06 30789.68 31295.21 29085.35 36991.49 29598.51 16797.07 31491.47 28288.83 33997.84 21477.31 34099.09 19292.79 24577.98 35795.04 345
LF4IMVS93.14 28992.79 28394.20 31995.88 32188.67 33997.66 26497.07 31493.81 19491.71 31397.65 23077.96 33598.81 23391.47 27791.92 27195.12 342
Anonymous20240521195.28 19294.49 20697.67 15899.00 11793.75 24798.70 13597.04 31690.66 30396.49 17998.80 11878.13 33399.83 5996.21 13695.36 22599.44 112
baseline195.84 16195.12 17998.01 13398.49 16095.98 15098.73 12697.03 31795.37 12396.22 18698.19 18489.96 17299.16 17994.60 18787.48 32798.90 172
MIMVSNet93.26 28592.21 29296.41 24497.73 21793.13 27195.65 34497.03 31791.27 29494.04 24596.06 32575.33 34897.19 33886.56 32896.23 21598.92 171
EPNet97.28 10396.87 10698.51 9594.98 33996.14 14798.90 8797.02 31998.28 195.99 19399.11 7391.36 14599.89 3896.98 9599.19 11599.50 98
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TR-MVS94.94 21494.20 22297.17 18397.75 21394.14 23697.59 26997.02 31992.28 26195.75 19697.64 23283.88 29598.96 21289.77 30196.15 21798.40 199
JIA-IIPM93.35 28192.49 28895.92 26796.48 29990.65 31195.01 34896.96 32185.93 34696.08 19087.33 36287.70 22898.78 23691.35 27895.58 22498.34 202
pmmvs-eth3d90.36 31389.05 31894.32 31891.10 36392.12 28097.63 26896.95 32288.86 33184.91 35493.13 35378.32 33096.74 34588.70 31681.81 34994.09 354
tfpn200view995.32 19194.62 20097.43 17198.94 12394.98 20098.68 13896.93 32395.33 12496.55 17496.53 31084.23 28799.56 14088.11 31896.29 20997.76 218
thres40095.38 18494.62 20097.65 16198.94 12394.98 20098.68 13896.93 32395.33 12496.55 17496.53 31084.23 28799.56 14088.11 31896.29 20998.40 199
thres100view90095.38 18494.70 19797.41 17298.98 12194.92 20498.87 9696.90 32595.38 12196.61 17096.88 29484.29 28499.56 14088.11 31896.29 20997.76 218
thres600view795.49 17694.77 19397.67 15898.98 12195.02 19698.85 9996.90 32595.38 12196.63 16996.90 29384.29 28499.59 13688.65 31796.33 20798.40 199
test_method79.03 32878.17 33181.63 34886.06 36854.40 37882.75 36796.89 32739.54 37180.98 35995.57 33858.37 36794.73 36284.74 34378.61 35695.75 332
CostFormer94.95 21294.73 19695.60 28097.28 25089.06 33297.53 27296.89 32789.66 32396.82 16296.72 30286.05 25798.95 21695.53 16296.13 21898.79 178
new_pmnet90.06 31589.00 31993.22 33194.18 34888.32 34596.42 33496.89 32786.19 34385.67 35293.62 35177.18 34297.10 33981.61 35189.29 30794.23 351
OpenMVS_ROBcopyleft86.42 2089.00 32287.43 32793.69 32393.08 35789.42 32797.91 24296.89 32778.58 35985.86 35094.69 34469.48 35998.29 29277.13 36293.29 25893.36 359
tpm294.19 26093.76 25695.46 28497.23 25389.04 33397.31 28896.85 33187.08 33996.21 18796.79 30083.75 29998.74 23892.43 25896.23 21598.59 192
TransMVSNet (Re)92.67 29491.51 29996.15 25796.58 29394.65 21398.90 8796.73 33290.86 30289.46 33497.86 21185.62 26398.09 30686.45 32981.12 35195.71 333
ambc89.49 34286.66 36775.78 36792.66 36096.72 33386.55 34892.50 35646.01 36997.90 32090.32 29182.09 34694.80 349
LCM-MVSNet78.70 32976.24 33486.08 34477.26 37571.99 37094.34 35696.72 33361.62 36676.53 36189.33 36033.91 37592.78 36681.85 35074.60 36293.46 358
TinyColmap92.31 29791.53 29894.65 30996.92 27489.75 32096.92 31096.68 33590.45 30889.62 33197.85 21376.06 34698.81 23386.74 32792.51 26595.41 337
Baseline_NR-MVSNet94.35 25093.81 25095.96 26696.20 30894.05 23898.61 15096.67 33691.44 28493.85 25397.60 23588.57 20498.14 30194.39 19486.93 33495.68 334
SixPastTwentyTwo93.34 28292.86 28194.75 30695.67 32689.41 32898.75 11996.67 33693.89 18890.15 32898.25 18080.87 31598.27 29590.90 28490.64 28896.57 293
DWT-MVSNet_test94.82 21894.36 21696.20 25697.35 24790.79 30898.34 18796.57 33892.91 23795.33 20096.44 31482.00 30499.12 18594.52 19195.78 22398.70 183
EGC-MVSNET75.22 33369.54 33692.28 33694.81 34389.58 32497.64 26596.50 3391.82 3765.57 37795.74 32968.21 36096.26 35473.80 36591.71 27390.99 361
LFMVS95.86 16094.98 18698.47 10098.87 12896.32 14098.84 10296.02 34093.40 21798.62 6999.20 5774.99 35099.63 13297.72 6097.20 18699.46 109
IB-MVS91.98 1793.27 28491.97 29597.19 18197.47 23693.41 26197.09 30295.99 34193.32 22092.47 30195.73 33178.06 33499.53 14694.59 18982.98 34598.62 191
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test0.0.03 194.08 26993.51 26895.80 27395.53 33192.89 27597.38 27995.97 34295.11 13892.51 29996.66 30487.71 22696.94 34287.03 32693.67 24697.57 225
FPMVS77.62 33277.14 33279.05 35079.25 37360.97 37495.79 34195.94 34365.96 36467.93 36794.40 34637.73 37388.88 36968.83 36688.46 31787.29 363
Patchmatch-RL test91.49 30290.85 30393.41 32691.37 36284.40 35792.81 35995.93 34491.87 27287.25 34494.87 34388.99 19396.53 35192.54 25482.00 34799.30 128
tpm94.13 26493.80 25195.12 29396.50 29787.91 34997.44 27495.89 34592.62 24596.37 18496.30 31784.13 29098.30 28993.24 23091.66 27599.14 149
LCM-MVSNet-Re95.22 19595.32 17094.91 29998.18 18687.85 35098.75 11995.66 34695.11 13888.96 33696.85 29790.26 16997.65 32895.65 15998.44 15099.22 136
bset_n11_16_dypcd94.89 21694.27 21996.76 20894.41 34795.15 19195.67 34395.64 34795.53 11294.65 21497.52 24287.10 23798.29 29296.58 12491.35 27796.83 263
ET-MVSNet_ETH3D94.13 26492.98 27997.58 16498.22 18096.20 14497.31 28895.37 34894.53 16479.56 36097.63 23486.51 24797.53 33396.91 10090.74 28799.02 161
test-LLR95.10 20294.87 19195.80 27396.77 28289.70 32196.91 31295.21 34995.11 13894.83 21095.72 33387.71 22698.97 20893.06 23598.50 14798.72 181
test-mter94.08 26993.51 26895.80 27396.77 28289.70 32196.91 31295.21 34992.89 23894.83 21095.72 33377.69 33698.97 20893.06 23598.50 14798.72 181
PM-MVS87.77 32486.55 32891.40 34091.03 36483.36 36196.92 31095.18 35191.28 29386.48 34993.42 35253.27 36896.74 34589.43 31081.97 34894.11 353
DeepMVS_CXcopyleft86.78 34397.09 26672.30 36995.17 35275.92 36184.34 35595.19 33970.58 35895.35 35779.98 35689.04 31192.68 360
K. test v392.55 29591.91 29794.48 31495.64 32789.24 32999.07 5494.88 35394.04 17986.78 34697.59 23677.64 33997.64 32992.08 26289.43 30596.57 293
TESTMET0.1,194.18 26293.69 26195.63 27996.92 27489.12 33196.91 31294.78 35493.17 22694.88 20796.45 31378.52 32998.92 21893.09 23498.50 14798.85 173
pmmvs386.67 32784.86 33092.11 33888.16 36687.19 35496.63 32894.75 35579.88 35887.22 34592.75 35566.56 36395.20 36081.24 35276.56 36093.96 356
door94.64 356
thisisatest051595.61 17594.89 19097.76 14998.15 18995.15 19196.77 32394.41 35792.95 23597.18 14497.43 24984.78 27799.45 15994.63 18497.73 17698.68 185
door-mid94.37 358
tttt051796.07 14895.51 16097.78 14798.41 16394.84 20699.28 2194.33 35994.26 17497.64 13298.64 13584.05 29199.47 15795.34 16597.60 18099.03 160
DSMNet-mixed92.52 29692.58 28792.33 33594.15 34982.65 36298.30 19794.26 36089.08 33092.65 29395.73 33185.01 27395.76 35686.24 33097.76 17498.59 192
thisisatest053096.01 15195.36 16697.97 13598.38 16495.52 17798.88 9494.19 36194.04 17997.64 13298.31 17183.82 29899.46 15895.29 16997.70 17798.93 170
MTMP98.89 9194.14 362
baseline295.11 20194.52 20596.87 20396.65 29193.56 25398.27 20294.10 36393.45 21592.02 31197.43 24987.45 23499.19 17793.88 21297.41 18497.87 216
PMVScopyleft61.03 2365.95 33663.57 34073.09 35357.90 37851.22 37985.05 36693.93 36454.45 36744.32 37383.57 36313.22 37789.15 36858.68 36981.00 35278.91 367
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS277.95 33175.44 33585.46 34582.54 37074.95 36894.23 35793.08 36572.80 36374.68 36287.38 36136.36 37491.56 36773.95 36463.94 36789.87 362
MVS-HIRNet89.46 32188.40 32092.64 33397.58 22682.15 36394.16 35893.05 36675.73 36290.90 32082.52 36479.42 32498.33 28483.53 34798.68 13697.43 226
test111195.94 15695.78 14696.41 24498.99 12090.12 31799.04 5892.45 36796.99 5498.03 10099.27 4481.40 30999.48 15596.87 11099.04 11999.63 77
ECVR-MVScopyleft95.95 15495.71 15196.65 21699.02 11490.86 30599.03 6291.80 36896.96 5598.10 9499.26 4581.31 31099.51 15096.90 10399.04 11999.59 85
EPMVS94.99 20894.48 20796.52 23497.22 25491.75 28997.23 29291.66 36994.11 17697.28 14096.81 29985.70 26298.84 22993.04 23797.28 18598.97 166
lessismore_v094.45 31794.93 34188.44 34391.03 37086.77 34797.64 23276.23 34598.42 26990.31 29285.64 34396.51 306
ANet_high69.08 33465.37 33880.22 34965.99 37771.96 37190.91 36390.09 37182.62 35449.93 37278.39 36729.36 37681.75 37062.49 36838.52 37186.95 365
gg-mvs-nofinetune92.21 29890.58 30597.13 18596.75 28595.09 19495.85 34089.40 37285.43 35094.50 21981.98 36580.80 31798.40 28292.16 26098.33 15697.88 215
GG-mvs-BLEND96.59 22596.34 30494.98 20096.51 33288.58 37393.10 28294.34 34980.34 32098.05 31089.53 30796.99 18996.74 271
E-PMN64.94 33764.25 33967.02 35482.28 37159.36 37691.83 36285.63 37452.69 36860.22 36977.28 36841.06 37280.12 37246.15 37141.14 36961.57 370
EMVS64.07 33863.26 34166.53 35581.73 37258.81 37791.85 36184.75 37551.93 37059.09 37075.13 36943.32 37179.09 37342.03 37239.47 37061.69 369
tmp_tt68.90 33566.97 33774.68 35250.78 37959.95 37587.13 36483.47 37638.80 37262.21 36896.23 32064.70 36576.91 37488.91 31530.49 37287.19 364
MVEpermissive62.14 2263.28 33959.38 34274.99 35174.33 37665.47 37285.55 36580.50 37752.02 36951.10 37175.00 37010.91 38080.50 37151.60 37053.40 36878.99 366
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test250694.44 24693.91 24396.04 26199.02 11488.99 33599.06 5579.47 37896.96 5598.36 8499.26 4577.21 34199.52 14996.78 11799.04 11999.59 85
N_pmnet87.12 32687.77 32585.17 34695.46 33361.92 37397.37 28170.66 37985.83 34788.73 34096.04 32685.33 27097.76 32780.02 35490.48 28995.84 330
wuyk23d30.17 34030.18 34430.16 35678.61 37443.29 38066.79 36914.21 38017.31 37314.82 37611.93 37611.55 37941.43 37537.08 37319.30 3735.76 373
testmvs21.48 34224.95 34511.09 35814.89 3806.47 38296.56 3309.87 3817.55 37417.93 37439.02 3729.43 3815.90 37716.56 37512.72 37420.91 372
test12320.95 34323.72 34612.64 35713.54 3818.19 38196.55 3316.13 3827.48 37516.74 37537.98 37312.97 3786.05 37616.69 3745.43 37523.68 371
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas7.88 34510.50 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37794.51 880.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
n20.00 383
nn0.00 383
ab-mvs-re8.20 34410.94 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37898.43 1540.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
PC_three_145295.08 14299.60 599.16 6697.86 298.47 26397.52 7999.72 5299.74 35
eth-test20.00 382
eth-test0.00 382
OPU-MVS99.37 2399.24 9499.05 1499.02 6699.16 6697.81 399.37 16397.24 8799.73 4599.70 52
test_0728_THIRD97.32 3199.45 1199.46 1197.88 199.94 398.47 1999.86 199.85 4
GSMVS99.20 137
test_part299.63 3199.18 1099.27 20
sam_mvs189.45 18099.20 137
sam_mvs88.99 193
test_post196.68 32730.43 37587.85 22598.69 24092.59 250
test_post31.83 37488.83 20098.91 219
patchmatchnet-post95.10 34189.42 18198.89 223
gm-plane-assit95.88 32187.47 35189.74 32296.94 29199.19 17793.32 229
test9_res96.39 13299.57 7999.69 55
agg_prior295.87 14899.57 7999.68 61
test_prior498.01 6797.86 249
test_prior297.80 25496.12 9097.89 11798.69 12895.96 3996.89 10499.60 72
旧先验297.57 27191.30 29198.67 6399.80 8395.70 158
新几何297.64 265
原ACMM297.67 263
testdata299.89 3891.65 275
segment_acmp96.85 14
testdata197.32 28796.34 80
plane_prior797.42 24294.63 215
plane_prior697.35 24794.61 21887.09 238
plane_prior498.28 175
plane_prior394.61 21897.02 5295.34 198
plane_prior298.80 11397.28 34
plane_prior197.37 246
plane_prior94.60 22098.44 17596.74 6494.22 231
HQP5-MVS94.25 234
HQP-NCC97.20 25698.05 22996.43 7694.45 221
ACMP_Plane97.20 25698.05 22996.43 7694.45 221
BP-MVS95.30 167
HQP4-MVS94.45 22198.96 21296.87 258
HQP2-MVS86.75 244
NP-MVS97.28 25094.51 22397.73 223
MDTV_nov1_ep13_2view84.26 35896.89 31790.97 30197.90 11689.89 17393.91 21199.18 145
ACMMP++_ref92.97 261
ACMMP++93.61 249
Test By Simon94.64 83