This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
PGM-MVS93.96 4393.72 5094.68 4198.43 2186.22 5295.30 9697.78 187.45 11793.26 5897.33 2684.62 7299.51 2490.75 9498.57 5198.32 49
FC-MVSNet-test90.27 11490.18 10590.53 19993.71 21679.85 22495.77 7497.59 289.31 5786.27 19094.67 14581.93 10597.01 24484.26 16888.09 23694.71 206
FIs90.51 11190.35 10190.99 18893.99 20680.98 18995.73 7697.54 389.15 6286.72 18194.68 14481.83 10697.24 22985.18 15688.31 23294.76 205
DPE-MVScopyleft95.57 495.67 495.25 998.36 2787.28 1795.56 8697.51 489.13 6397.14 897.91 1191.64 799.62 194.61 1499.17 298.86 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS++95.98 196.36 194.82 3497.78 5786.00 5598.29 197.49 590.75 2297.62 598.06 692.59 299.61 395.64 699.02 1298.86 10
FOURS198.86 185.54 7398.29 197.49 589.79 4596.29 15
test_0728_SECOND95.01 1798.79 286.43 4397.09 1697.49 599.61 395.62 899.08 798.99 8
PHI-MVS93.89 4693.65 5394.62 4596.84 8686.43 4396.69 3297.49 585.15 17093.56 5596.28 8485.60 5799.31 4192.45 4798.79 2398.12 70
SF-MVS94.97 1194.90 1395.20 1097.84 5287.76 1096.65 3497.48 987.76 10895.71 1997.70 1388.28 2399.35 3493.89 2298.78 2598.48 30
test072698.78 385.93 6097.19 1197.47 1090.27 3397.64 498.13 191.47 8
MSP-MVS95.42 695.56 694.98 2198.49 1886.52 4096.91 2597.47 1091.73 996.10 1796.69 6389.90 1299.30 4294.70 1298.04 7399.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
UniMVSNet (Re)89.80 12889.07 13292.01 13393.60 22084.52 8894.78 13597.47 1089.26 5886.44 18792.32 22882.10 10097.39 21784.81 16280.84 31194.12 236
ACMMPcopyleft93.24 6592.88 6994.30 5798.09 4285.33 7696.86 2797.45 1388.33 8490.15 12497.03 4881.44 10799.51 2490.85 9395.74 11798.04 77
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_one_060198.58 1285.83 6697.44 1491.05 1796.78 1398.06 691.45 11
SED-MVS95.91 296.28 294.80 3698.77 585.99 5797.13 1497.44 1490.31 3197.71 198.07 492.31 499.58 895.66 499.13 398.84 13
test_241102_TWO97.44 1490.31 3197.62 598.07 491.46 1099.58 895.66 499.12 698.98 9
test_241102_ONE98.77 585.99 5797.44 1490.26 3597.71 197.96 1092.31 499.38 32
9.1494.47 1897.79 5496.08 5897.44 1486.13 14895.10 2697.40 2388.34 2299.22 4993.25 3598.70 36
ETH3D-3000-0.194.61 1794.44 1995.12 1397.70 6087.71 1195.98 6597.44 1486.67 13595.25 2597.31 2787.73 3099.24 4793.11 3898.76 3098.40 41
APDe-MVS95.46 595.64 594.91 2498.26 3086.29 5197.46 697.40 2089.03 6696.20 1698.10 289.39 1699.34 3695.88 399.03 1199.10 4
CSCG93.23 6693.05 6493.76 7298.04 4484.07 10296.22 4997.37 2184.15 18790.05 12595.66 11187.77 2899.15 5689.91 10198.27 6398.07 74
ACMMP_NAP94.74 1594.56 1795.28 898.02 4587.70 1295.68 7997.34 2288.28 8895.30 2497.67 1585.90 5499.54 1993.91 2198.95 1598.60 23
HFP-MVS94.52 1894.40 2194.86 2798.61 1086.81 2696.94 2097.34 2288.63 7693.65 4997.21 3486.10 5099.49 2692.35 5298.77 2898.30 50
#test#94.32 2994.14 3694.86 2798.61 1086.81 2696.43 3797.34 2287.51 11493.65 4997.21 3486.10 5099.49 2691.68 7698.77 2898.30 50
MSLP-MVS++93.72 5094.08 3892.65 10897.31 7483.43 12095.79 7397.33 2590.03 3893.58 5396.96 5084.87 6997.76 17792.19 5798.66 4496.76 133
VPA-MVSNet89.62 13188.96 13491.60 15793.86 21082.89 13995.46 8897.33 2587.91 10088.43 14693.31 19574.17 19197.40 21487.32 13282.86 28494.52 216
ZNCC-MVS94.47 1994.28 2695.03 1698.52 1686.96 1996.85 2897.32 2788.24 8993.15 6297.04 4686.17 4999.62 192.40 5098.81 2298.52 26
ACMMPR94.43 2394.28 2694.91 2498.63 986.69 3296.94 2097.32 2788.63 7693.53 5697.26 3185.04 6599.54 1992.35 5298.78 2598.50 28
WR-MVS_H87.80 18787.37 17789.10 25793.23 22978.12 26395.61 8497.30 2987.90 10183.72 25892.01 24479.65 12896.01 29676.36 27380.54 31593.16 284
SteuartSystems-ACMMP95.20 895.32 994.85 2996.99 8386.33 4797.33 797.30 2991.38 1395.39 2297.46 1988.98 1999.40 3194.12 1898.89 1898.82 15
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVScopyleft95.20 895.07 1095.59 598.14 3888.48 896.26 4697.28 3185.90 15097.67 398.10 288.41 2099.56 1094.66 1399.19 198.71 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ETH3 D test640093.64 5393.22 6094.92 2297.79 5486.84 2495.31 9397.26 3282.67 22293.81 4596.29 8387.29 3799.27 4589.87 10298.67 4198.65 21
CP-MVS94.34 2794.21 3194.74 4098.39 2586.64 3697.60 497.24 3388.53 8092.73 7797.23 3285.20 6399.32 4092.15 5898.83 2198.25 59
MVS_111021_HR93.45 5793.31 5893.84 6696.99 8384.84 7993.24 22697.24 3388.76 7391.60 10495.85 10386.07 5298.66 10591.91 6998.16 6698.03 78
testtj94.39 2694.18 3495.00 1898.24 3386.77 3096.16 5197.23 3587.28 12094.85 2997.04 4686.99 4299.52 2391.54 7898.33 6198.71 18
region2R94.43 2394.27 2894.92 2298.65 886.67 3496.92 2497.23 3588.60 7893.58 5397.27 2985.22 6299.54 1992.21 5598.74 3398.56 25
ETH3D cwj APD-0.1693.91 4493.53 5595.06 1596.76 8887.78 994.92 12597.21 3784.33 18593.89 4497.09 4287.20 3899.29 4491.90 7298.44 5698.12 70
patch_mono-293.74 4994.32 2292.01 13397.54 6478.37 25793.40 21497.19 3888.02 9794.99 2897.21 3488.35 2198.44 12594.07 1998.09 7099.23 1
GST-MVS94.21 3493.97 4394.90 2698.41 2486.82 2596.54 3697.19 3888.24 8993.26 5896.83 5685.48 5999.59 791.43 8298.40 5898.30 50
XVS94.45 2194.32 2294.85 2998.54 1486.60 3896.93 2297.19 3890.66 2792.85 7097.16 4085.02 6699.49 2691.99 6498.56 5298.47 34
X-MVStestdata88.31 17486.13 21794.85 2998.54 1486.60 3896.93 2297.19 3890.66 2792.85 7023.41 37685.02 6699.49 2691.99 6498.56 5298.47 34
MP-MVS-pluss94.21 3494.00 4294.85 2998.17 3686.65 3594.82 13297.17 4286.26 14392.83 7297.87 1285.57 5899.56 1094.37 1798.92 1798.34 45
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DELS-MVS93.43 6093.25 5993.97 6295.42 13985.04 7893.06 23397.13 4390.74 2491.84 9795.09 12786.32 4899.21 5091.22 8398.45 5597.65 97
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MCST-MVS94.45 2194.20 3295.19 1198.46 2087.50 1595.00 12097.12 4487.13 12292.51 8496.30 8289.24 1799.34 3693.46 2898.62 4898.73 16
UniMVSNet_NR-MVSNet89.92 12589.29 12791.81 15193.39 22583.72 11194.43 15897.12 4489.80 4286.46 18493.32 19483.16 8497.23 23084.92 15981.02 30794.49 222
SD-MVS94.96 1295.33 893.88 6597.25 8086.69 3296.19 5097.11 4690.42 3096.95 1297.27 2989.53 1496.91 25094.38 1698.85 1998.03 78
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepPCF-MVS89.96 194.20 3694.77 1492.49 11696.52 9980.00 22094.00 19197.08 4790.05 3795.65 2197.29 2889.66 1398.97 8393.95 2098.71 3498.50 28
ZD-MVS98.15 3786.62 3797.07 4883.63 19894.19 3696.91 5287.57 3499.26 4691.99 6498.44 56
HPM-MVScopyleft94.02 3993.88 4494.43 5398.39 2585.78 6897.25 1097.07 4886.90 13092.62 8196.80 6084.85 7099.17 5392.43 4898.65 4698.33 46
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
3Dnovator86.66 591.73 8690.82 9794.44 5194.59 17886.37 4597.18 1297.02 5089.20 6084.31 24896.66 6673.74 20099.17 5386.74 13997.96 7697.79 94
DeepC-MVS88.79 393.31 6292.99 6694.26 5896.07 11485.83 6694.89 12796.99 5189.02 6889.56 12997.37 2582.51 9299.38 3292.20 5698.30 6297.57 102
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft94.25 3094.07 3994.77 3898.47 1986.31 4996.71 3196.98 5289.04 6591.98 9397.19 3785.43 6099.56 1092.06 6398.79 2398.44 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
zzz-MVS94.47 1994.30 2495.00 1898.42 2286.95 2095.06 11896.97 5391.07 1593.14 6397.56 1684.30 7499.56 1093.43 2998.75 3198.47 34
MTGPAbinary96.97 53
MTAPA94.42 2594.22 2995.00 1898.42 2286.95 2094.36 16796.97 5391.07 1593.14 6397.56 1684.30 7499.56 1093.43 2998.75 3198.47 34
HPM-MVS++copyleft95.14 1094.91 1295.83 498.25 3189.65 495.92 6896.96 5691.75 894.02 4196.83 5688.12 2599.55 1593.41 3198.94 1698.28 54
CNVR-MVS95.40 795.37 795.50 798.11 3988.51 795.29 9896.96 5692.09 495.32 2397.08 4389.49 1599.33 3995.10 1198.85 1998.66 20
CS-MVS94.12 3794.44 1993.17 8396.55 9683.08 13197.63 396.95 5891.71 1093.50 5796.21 8785.61 5698.24 13993.64 2598.17 6598.19 62
APD-MVScopyleft94.24 3194.07 3994.75 3998.06 4386.90 2395.88 6996.94 5985.68 15695.05 2797.18 3887.31 3699.07 6191.90 7298.61 5098.28 54
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NCCC94.81 1494.69 1695.17 1297.83 5387.46 1695.66 8196.93 6092.34 293.94 4296.58 7387.74 2999.44 3092.83 4198.40 5898.62 22
CS-MVS-test94.02 3994.29 2593.24 7996.69 9083.24 12497.49 596.92 6192.14 392.90 6895.77 10785.02 6698.33 13493.03 3998.62 4898.13 68
mPP-MVS93.99 4193.78 4894.63 4498.50 1785.90 6596.87 2696.91 6288.70 7491.83 9997.17 3983.96 8099.55 1591.44 8198.64 4798.43 40
SR-MVS94.23 3294.17 3594.43 5398.21 3585.78 6896.40 4096.90 6388.20 9394.33 3397.40 2384.75 7199.03 6793.35 3297.99 7498.48 30
DeepC-MVS_fast89.43 294.04 3893.79 4794.80 3697.48 6986.78 2895.65 8396.89 6489.40 5592.81 7396.97 4985.37 6199.24 4790.87 9298.69 3798.38 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_prior393.60 5493.53 5593.82 6797.29 7684.49 8994.12 17796.88 6587.67 11192.63 7996.39 8086.62 4498.87 9191.50 7998.67 4198.11 72
test_prior93.82 6797.29 7684.49 8996.88 6598.87 9198.11 72
APD-MVS_3200maxsize93.78 4893.77 4993.80 7197.92 4784.19 10096.30 4296.87 6786.96 12693.92 4397.47 1883.88 8198.96 8692.71 4597.87 7998.26 58
MSC_two_6792asdad96.52 197.78 5790.86 196.85 6899.61 396.03 199.06 999.07 5
No_MVS96.52 197.78 5790.86 196.85 6899.61 396.03 199.06 999.07 5
test117293.97 4294.07 3993.66 7498.11 3983.45 11996.26 4696.84 7088.33 8494.19 3697.43 2084.24 7699.01 7393.26 3497.98 7598.52 26
IU-MVS98.77 586.00 5596.84 7081.26 25697.26 795.50 1099.13 399.03 7
PVSNet_BlendedMVS89.98 12089.70 11590.82 19296.12 10981.25 18193.92 19596.83 7283.49 20389.10 13692.26 23181.04 11198.85 9786.72 14187.86 24092.35 310
PVSNet_Blended90.73 10390.32 10291.98 13796.12 10981.25 18192.55 24896.83 7282.04 23489.10 13692.56 22181.04 11198.85 9786.72 14195.91 11595.84 168
save fliter97.85 5085.63 7195.21 10496.82 7489.44 52
原ACMM192.01 13397.34 7381.05 18796.81 7578.89 28390.45 11795.92 10082.65 9098.84 9980.68 22898.26 6496.14 152
HPM-MVS_fast93.40 6193.22 6093.94 6498.36 2784.83 8097.15 1396.80 7685.77 15392.47 8597.13 4182.38 9399.07 6190.51 9898.40 5897.92 86
TEST997.53 6586.49 4194.07 18496.78 7781.61 24992.77 7496.20 8987.71 3199.12 58
train_agg93.44 5893.08 6394.52 4897.53 6586.49 4194.07 18496.78 7781.86 24292.77 7496.20 8987.63 3299.12 5892.14 5998.69 3797.94 83
3Dnovator+87.14 492.42 7791.37 8595.55 695.63 13188.73 697.07 1896.77 7990.84 1984.02 25296.62 7175.95 16499.34 3687.77 12397.68 8498.59 24
SR-MVS-dyc-post93.82 4793.82 4593.82 6797.92 4784.57 8596.28 4496.76 8087.46 11593.75 4697.43 2084.24 7699.01 7392.73 4297.80 8197.88 88
RE-MVS-def93.68 5297.92 4784.57 8596.28 4496.76 8087.46 11593.75 4697.43 2082.94 8792.73 4297.80 8197.88 88
test_897.49 6886.30 5094.02 18996.76 8081.86 24292.70 7896.20 8987.63 3299.02 71
RPMNet83.95 27781.53 28791.21 17390.58 31679.34 23685.24 34796.76 8071.44 34985.55 20382.97 35670.87 23398.91 8961.01 35689.36 21195.40 182
EIA-MVS91.95 8191.94 7991.98 13795.16 15080.01 21995.36 9096.73 8488.44 8189.34 13392.16 23383.82 8298.45 12489.35 10697.06 9497.48 105
DVP-MVScopyleft95.67 396.02 394.64 4398.78 385.93 6097.09 1696.73 8490.27 3397.04 1098.05 891.47 899.55 1595.62 899.08 798.45 38
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
agg_prior193.29 6392.97 6794.26 5897.38 7185.92 6293.92 19596.72 8681.96 23692.16 8996.23 8687.85 2798.97 8391.95 6898.55 5497.90 87
agg_prior97.38 7185.92 6296.72 8692.16 8998.97 83
DROMVSNet93.44 5893.71 5192.63 10995.21 14882.43 15297.27 996.71 8890.57 2992.88 6995.80 10583.16 8498.16 14593.68 2498.14 6797.31 109
Regformer-294.33 2894.22 2994.68 4195.54 13586.75 3194.57 14896.70 8991.84 794.41 3196.56 7587.19 3999.13 5793.50 2797.65 8698.16 65
QAPM89.51 13588.15 16093.59 7594.92 16284.58 8496.82 2996.70 8978.43 29283.41 26796.19 9273.18 20899.30 4277.11 26896.54 10896.89 131
CANet93.54 5593.20 6294.55 4795.65 13085.73 7094.94 12396.69 9191.89 690.69 11595.88 10281.99 10499.54 1993.14 3797.95 7798.39 42
abl_693.18 6793.05 6493.57 7697.52 6784.27 9995.53 8796.67 9287.85 10593.20 6197.22 3380.35 11499.18 5291.91 6997.21 9197.26 112
CDPH-MVS92.83 7092.30 7694.44 5197.79 5486.11 5494.06 18696.66 9380.09 26992.77 7496.63 7086.62 4499.04 6687.40 12998.66 4498.17 64
PVSNet_Blended_VisFu91.38 9190.91 9592.80 9996.39 10283.17 12794.87 12996.66 9383.29 20889.27 13494.46 15280.29 11699.17 5387.57 12795.37 12596.05 161
DP-MVS Recon91.95 8191.28 8793.96 6398.33 2985.92 6294.66 14396.66 9382.69 22190.03 12695.82 10482.30 9699.03 6784.57 16596.48 11196.91 130
TSAR-MVS + MP.94.85 1394.94 1194.58 4698.25 3186.33 4796.11 5796.62 9688.14 9596.10 1796.96 5089.09 1898.94 8794.48 1598.68 3998.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PS-CasMVS87.32 21186.88 18788.63 26992.99 23976.33 29895.33 9296.61 9788.22 9183.30 27193.07 20673.03 21195.79 30778.36 25481.00 30993.75 260
DU-MVS89.34 14688.50 14991.85 14893.04 23683.72 11194.47 15596.59 9889.50 5186.46 18493.29 19777.25 15097.23 23084.92 15981.02 30794.59 211
CP-MVSNet87.63 19587.26 18288.74 26693.12 23276.59 29395.29 9896.58 9988.43 8283.49 26692.98 20875.28 17495.83 30478.97 25081.15 30393.79 254
test1196.57 100
DPM-MVS92.58 7491.74 8295.08 1496.19 10789.31 592.66 24396.56 10183.44 20491.68 10395.04 12886.60 4798.99 8085.60 15397.92 7896.93 129
ETV-MVS92.74 7292.66 7192.97 9395.20 14984.04 10495.07 11596.51 10290.73 2592.96 6791.19 26784.06 7898.34 13291.72 7596.54 10896.54 142
CPTT-MVS91.99 8091.80 8192.55 11398.24 3381.98 16296.76 3096.49 10381.89 24190.24 12096.44 7978.59 13898.61 11189.68 10397.85 8097.06 121
Regformer-194.22 3394.13 3794.51 4995.54 13586.36 4694.57 14896.44 10491.69 1194.32 3496.56 7587.05 4199.03 6793.35 3297.65 8698.15 66
VNet92.24 7991.91 8093.24 7996.59 9483.43 12094.84 13196.44 10489.19 6194.08 4095.90 10177.85 14998.17 14488.90 11293.38 16098.13 68
OpenMVScopyleft83.78 1188.74 16487.29 17993.08 8792.70 24685.39 7596.57 3596.43 10678.74 28880.85 29696.07 9669.64 25199.01 7378.01 25996.65 10594.83 202
canonicalmvs93.27 6492.75 7094.85 2995.70 12987.66 1396.33 4196.41 10790.00 3994.09 3994.60 14882.33 9598.62 11092.40 5092.86 17198.27 56
Regformer-493.91 4493.81 4694.19 6095.36 14085.47 7494.68 14096.41 10791.60 1293.75 4696.71 6185.95 5399.10 6093.21 3696.65 10598.01 80
UA-Net92.83 7092.54 7393.68 7396.10 11284.71 8295.66 8196.39 10991.92 593.22 6096.49 7783.16 8498.87 9184.47 16695.47 12297.45 107
PEN-MVS86.80 22886.27 21488.40 27292.32 25375.71 30495.18 10796.38 11087.97 9882.82 27593.15 20273.39 20695.92 29976.15 27779.03 33293.59 266
114514_t89.51 13588.50 14992.54 11498.11 3981.99 16195.16 11096.36 11170.19 35485.81 19695.25 12176.70 15698.63 10982.07 20196.86 10197.00 126
TranMVSNet+NR-MVSNet88.84 16187.95 16691.49 16292.68 24783.01 13494.92 12596.31 11289.88 4185.53 20693.85 18176.63 15896.96 24681.91 20579.87 32594.50 220
dcpmvs_293.49 5694.19 3391.38 16797.69 6176.78 29094.25 17096.29 11388.33 8494.46 3096.88 5388.07 2698.64 10793.62 2698.09 7098.73 16
test1294.34 5697.13 8186.15 5396.29 11391.04 11385.08 6499.01 7398.13 6897.86 90
baseline92.39 7892.29 7792.69 10794.46 18681.77 16794.14 17696.27 11589.22 5991.88 9596.00 9782.35 9497.99 16691.05 8595.27 12998.30 50
nrg03091.08 9890.39 10093.17 8393.07 23486.91 2296.41 3896.26 11688.30 8788.37 14794.85 13682.19 9997.64 18891.09 8482.95 27994.96 195
无先验93.28 22296.26 11673.95 33299.05 6380.56 23096.59 139
NR-MVSNet88.58 16987.47 17591.93 14193.04 23684.16 10194.77 13696.25 11889.05 6480.04 31093.29 19779.02 13297.05 24281.71 21280.05 32294.59 211
PAPM_NR91.22 9590.78 9892.52 11597.60 6381.46 17694.37 16696.24 11986.39 14187.41 16494.80 13982.06 10298.48 11882.80 19095.37 12597.61 99
casdiffmvs92.51 7592.43 7592.74 10394.41 18981.98 16294.54 15096.23 12089.57 5091.96 9496.17 9382.58 9198.01 16490.95 9095.45 12498.23 60
HQP_MVS90.60 11090.19 10491.82 14994.70 17482.73 14495.85 7096.22 12190.81 2086.91 17794.86 13474.23 18898.12 14688.15 11889.99 19894.63 208
plane_prior596.22 12198.12 14688.15 11889.99 19894.63 208
PAPR90.02 11989.27 12992.29 12795.78 12580.95 19192.68 24296.22 12181.91 23986.66 18293.75 18682.23 9798.44 12579.40 24894.79 13297.48 105
TAPA-MVS84.62 688.16 17887.01 18691.62 15696.64 9280.65 19894.39 16296.21 12476.38 30886.19 19295.44 11579.75 12298.08 15862.75 35295.29 12796.13 153
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Anonymous2023121186.59 23685.13 24690.98 19096.52 9981.50 17296.14 5496.16 12573.78 33383.65 26192.15 23463.26 30897.37 21882.82 18981.74 29694.06 241
LPG-MVS_test89.45 13888.90 13891.12 17794.47 18481.49 17495.30 9696.14 12686.73 13385.45 21395.16 12469.89 24798.10 14887.70 12589.23 21493.77 258
LGP-MVS_train91.12 17794.47 18481.49 17496.14 12686.73 13385.45 21395.16 12469.89 24798.10 14887.70 12589.23 21493.77 258
ACMM84.12 989.14 14888.48 15291.12 17794.65 17781.22 18395.31 9396.12 12885.31 16685.92 19594.34 15470.19 24598.06 16085.65 15288.86 22194.08 240
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVS_111021_LR92.47 7692.29 7792.98 9295.99 11884.43 9693.08 23196.09 12988.20 9391.12 11295.72 11081.33 10997.76 17791.74 7497.37 9096.75 134
CLD-MVS89.47 13788.90 13891.18 17594.22 19582.07 16092.13 26196.09 12987.90 10185.37 22292.45 22474.38 18697.56 19387.15 13490.43 19393.93 245
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
alignmvs93.08 6892.50 7494.81 3595.62 13287.61 1495.99 6396.07 13189.77 4694.12 3894.87 13380.56 11398.66 10592.42 4993.10 16698.15 66
XVG-OURS89.40 14488.70 14191.52 16094.06 19981.46 17691.27 27996.07 13186.14 14788.89 14095.77 10768.73 26797.26 22787.39 13089.96 20095.83 169
XVG-OURS-SEG-HR89.95 12389.45 12091.47 16494.00 20581.21 18491.87 26696.06 13385.78 15288.55 14395.73 10974.67 18497.27 22588.71 11489.64 20795.91 164
test_part189.00 15887.99 16492.04 13295.94 12183.81 10996.14 5496.05 13486.44 13985.69 19993.73 18771.57 22397.66 18385.80 15180.54 31594.66 207
HQP3-MVS96.04 13589.77 205
HQP-MVS89.80 12889.28 12891.34 16994.17 19681.56 17094.39 16296.04 13588.81 7085.43 21693.97 17373.83 19897.96 16887.11 13689.77 20594.50 220
PS-MVSNAJss89.97 12189.62 11691.02 18591.90 26480.85 19495.26 10195.98 13786.26 14386.21 19194.29 15879.70 12497.65 18588.87 11388.10 23494.57 213
Vis-MVSNetpermissive91.75 8591.23 8893.29 7795.32 14383.78 11096.14 5495.98 13789.89 4090.45 11796.58 7375.09 17698.31 13784.75 16396.90 9897.78 95
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
WR-MVS88.38 17187.67 17190.52 20193.30 22880.18 20993.26 22395.96 13988.57 7985.47 21292.81 21476.12 16096.91 25081.24 21782.29 28794.47 225
OMC-MVS91.23 9490.62 9993.08 8796.27 10584.07 10293.52 21095.93 14086.95 12789.51 13096.13 9578.50 14098.35 13185.84 15092.90 17096.83 132
v7n86.81 22785.76 23589.95 23190.72 31279.25 24295.07 11595.92 14184.45 18482.29 27990.86 27872.60 21697.53 19779.42 24780.52 31893.08 288
AdaColmapbinary89.89 12689.07 13292.37 12297.41 7083.03 13294.42 15995.92 14182.81 21986.34 18994.65 14673.89 19699.02 7180.69 22795.51 12095.05 190
cascas86.43 24284.98 24990.80 19392.10 25980.92 19290.24 29695.91 14373.10 33983.57 26488.39 32065.15 29797.46 20284.90 16191.43 18394.03 243
MVSFormer91.68 8891.30 8692.80 9993.86 21083.88 10795.96 6695.90 14484.66 18191.76 10094.91 13177.92 14697.30 22189.64 10497.11 9297.24 113
test_djsdf89.03 15588.64 14390.21 21690.74 31179.28 24095.96 6695.90 14484.66 18185.33 22492.94 20974.02 19497.30 22189.64 10488.53 22594.05 242
ACMP84.23 889.01 15788.35 15390.99 18894.73 17181.27 18095.07 11595.89 14686.48 13783.67 26094.30 15769.33 25697.99 16687.10 13888.55 22493.72 262
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PCF-MVS84.11 1087.74 18986.08 22192.70 10694.02 20184.43 9689.27 31295.87 14773.62 33584.43 24094.33 15578.48 14198.86 9470.27 31294.45 14194.81 203
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CHOSEN 1792x268888.84 16187.69 17092.30 12696.14 10881.42 17890.01 30295.86 14874.52 32887.41 16493.94 17475.46 17398.36 12980.36 23395.53 11997.12 120
Anonymous2024052988.09 18086.59 20292.58 11296.53 9881.92 16495.99 6395.84 14974.11 33189.06 13895.21 12361.44 31898.81 10083.67 17887.47 24397.01 125
Regformer-393.68 5193.64 5493.81 7095.36 14084.61 8394.68 14095.83 15091.27 1493.60 5296.71 6185.75 5598.86 9492.87 4096.65 10597.96 82
tfpnnormal84.72 27083.23 27489.20 25492.79 24580.05 21694.48 15295.81 15182.38 22681.08 29491.21 26669.01 26396.95 24761.69 35480.59 31490.58 341
MVS_Test91.31 9391.11 9091.93 14194.37 19080.14 21193.46 21395.80 15286.46 13891.35 10993.77 18482.21 9898.09 15687.57 12794.95 13197.55 104
HyFIR lowres test88.09 18086.81 19091.93 14196.00 11780.63 19990.01 30295.79 15373.42 33687.68 16092.10 23973.86 19797.96 16880.75 22691.70 18197.19 116
EI-MVSNet-Vis-set93.01 6992.92 6893.29 7795.01 15583.51 11894.48 15295.77 15490.87 1892.52 8396.67 6584.50 7399.00 7891.99 6494.44 14297.36 108
cdsmvs_eth3d_5k22.14 34529.52 3480.00 3640.00 3870.00 3880.00 37595.76 1550.00 3820.00 38394.29 15875.66 1710.00 3830.00 3810.00 3810.00 379
DTE-MVSNet86.11 24585.48 23987.98 28491.65 27674.92 30894.93 12495.75 15687.36 11882.26 28093.04 20772.85 21295.82 30574.04 29477.46 33893.20 282
OPM-MVS90.12 11689.56 11791.82 14993.14 23183.90 10694.16 17595.74 15788.96 6987.86 15495.43 11772.48 21797.91 17288.10 12190.18 19793.65 265
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EI-MVSNet-UG-set92.74 7292.62 7293.12 8594.86 16683.20 12694.40 16095.74 15790.71 2692.05 9296.60 7284.00 7998.99 8091.55 7793.63 15197.17 117
D2MVS85.90 24885.09 24788.35 27490.79 30877.42 28291.83 26795.70 15980.77 26380.08 30990.02 29666.74 28496.37 28181.88 20687.97 23891.26 328
PS-MVSNAJ91.18 9690.92 9491.96 13995.26 14682.60 15192.09 26395.70 15986.27 14291.84 9792.46 22379.70 12498.99 8089.08 11095.86 11694.29 230
旧先验196.79 8781.81 16695.67 16196.81 5886.69 4397.66 8596.97 127
MAR-MVS90.30 11389.37 12493.07 8996.61 9384.48 9195.68 7995.67 16182.36 22787.85 15592.85 21076.63 15898.80 10180.01 23896.68 10495.91 164
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
mvs_tets88.06 18287.28 18090.38 21190.94 30179.88 22295.22 10395.66 16385.10 17184.21 25093.94 17463.53 30697.40 21488.50 11688.40 23093.87 249
MVS87.44 20686.10 22091.44 16592.61 24883.62 11592.63 24495.66 16367.26 35881.47 28892.15 23477.95 14598.22 14279.71 24195.48 12192.47 305
jajsoiax88.24 17687.50 17390.48 20590.89 30580.14 21195.31 9395.65 16584.97 17484.24 24994.02 16965.31 29697.42 20788.56 11588.52 22693.89 246
xiu_mvs_v2_base91.13 9790.89 9691.86 14694.97 15882.42 15392.24 25795.64 16686.11 14991.74 10293.14 20379.67 12798.89 9089.06 11195.46 12394.28 231
UniMVSNet_ETH3D87.53 20286.37 20891.00 18792.44 25078.96 24594.74 13795.61 16784.07 18985.36 22394.52 15159.78 33197.34 21982.93 18587.88 23996.71 136
ab-mvs89.41 14288.35 15392.60 11095.15 15282.65 14992.20 25995.60 16883.97 19188.55 14393.70 18874.16 19298.21 14382.46 19589.37 21096.94 128
新几何193.10 8697.30 7584.35 9895.56 16971.09 35191.26 11096.24 8582.87 8998.86 9479.19 24998.10 6996.07 159
anonymousdsp87.84 18587.09 18390.12 22289.13 33680.54 20294.67 14295.55 17082.05 23283.82 25692.12 23671.47 22697.15 23487.15 13487.80 24292.67 299
XVG-ACMP-BASELINE86.00 24684.84 25489.45 25091.20 28878.00 26591.70 27195.55 17085.05 17382.97 27392.25 23254.49 34997.48 20082.93 18587.45 24592.89 294
VPNet88.20 17787.47 17590.39 20993.56 22179.46 23194.04 18795.54 17288.67 7586.96 17494.58 15069.33 25697.15 23484.05 17180.53 31794.56 214
h-mvs3390.80 10090.15 10692.75 10296.01 11682.66 14895.43 8995.53 17389.80 4293.08 6595.64 11275.77 16599.00 7892.07 6178.05 33496.60 138
diffmvs91.37 9291.23 8891.77 15293.09 23380.27 20692.36 25395.52 17487.03 12591.40 10894.93 13080.08 11897.44 20592.13 6094.56 13897.61 99
112190.42 11289.49 11993.20 8197.27 7884.46 9292.63 24495.51 17571.01 35291.20 11196.21 8782.92 8899.05 6380.56 23098.07 7296.10 157
v119287.25 21486.33 21090.00 23090.76 31079.04 24493.80 19995.48 17682.57 22385.48 21191.18 26973.38 20797.42 20782.30 19782.06 28993.53 268
xxxxxxxxxxxxxcwj94.65 1694.70 1594.48 5097.85 5085.63 7195.21 10495.47 17789.44 5295.71 1997.70 1388.28 2399.35 3493.89 2298.78 2598.48 30
xiu_mvs_v1_base_debu90.64 10790.05 10992.40 11993.97 20784.46 9293.32 21695.46 17885.17 16792.25 8694.03 16670.59 23798.57 11490.97 8794.67 13394.18 232
xiu_mvs_v1_base90.64 10790.05 10992.40 11993.97 20784.46 9293.32 21695.46 17885.17 16792.25 8694.03 16670.59 23798.57 11490.97 8794.67 13394.18 232
xiu_mvs_v1_base_debi90.64 10790.05 10992.40 11993.97 20784.46 9293.32 21695.46 17885.17 16792.25 8694.03 16670.59 23798.57 11490.97 8794.67 13394.18 232
v1087.25 21486.38 20789.85 23391.19 28979.50 23094.48 15295.45 18183.79 19583.62 26291.19 26775.13 17597.42 20781.94 20480.60 31392.63 301
F-COLMAP87.95 18386.80 19191.40 16696.35 10480.88 19394.73 13895.45 18179.65 27582.04 28494.61 14771.13 22898.50 11776.24 27691.05 18994.80 204
PLCcopyleft84.53 789.06 15488.03 16392.15 13097.27 7882.69 14794.29 16895.44 18379.71 27484.01 25394.18 16376.68 15798.75 10377.28 26593.41 15995.02 191
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v14419287.19 22086.35 20989.74 23990.64 31478.24 26193.92 19595.43 18481.93 23885.51 20891.05 27574.21 19097.45 20382.86 18781.56 29793.53 268
v192192086.97 22586.06 22289.69 24390.53 31978.11 26493.80 19995.43 18481.90 24085.33 22491.05 27572.66 21497.41 21282.05 20281.80 29493.53 268
v114487.61 19886.79 19290.06 22591.01 29679.34 23693.95 19395.42 18683.36 20785.66 20191.31 26574.98 17897.42 20783.37 17982.06 28993.42 274
v887.50 20586.71 19589.89 23291.37 28379.40 23394.50 15195.38 18784.81 17883.60 26391.33 26276.05 16197.42 20782.84 18880.51 31992.84 296
sss88.93 15988.26 15990.94 19194.05 20080.78 19691.71 27095.38 18781.55 25088.63 14293.91 17875.04 17795.47 31982.47 19491.61 18296.57 140
v124086.78 22985.85 23089.56 24590.45 32077.79 27393.61 20795.37 18981.65 24685.43 21691.15 27171.50 22597.43 20681.47 21582.05 29193.47 272
testdata90.49 20396.40 10177.89 26995.37 18972.51 34493.63 5196.69 6382.08 10197.65 18583.08 18297.39 8995.94 163
131487.51 20386.57 20390.34 21492.42 25179.74 22692.63 24495.35 19178.35 29380.14 30791.62 25674.05 19397.15 23481.05 21893.53 15494.12 236
V4287.68 19086.86 18890.15 22090.58 31680.14 21194.24 17295.28 19283.66 19785.67 20091.33 26274.73 18297.41 21284.43 16781.83 29392.89 294
EPP-MVSNet91.70 8791.56 8492.13 13195.88 12280.50 20397.33 795.25 19386.15 14689.76 12895.60 11383.42 8398.32 13687.37 13193.25 16397.56 103
UGNet89.95 12388.95 13592.95 9494.51 18383.31 12395.70 7895.23 19489.37 5687.58 16193.94 17464.00 30298.78 10283.92 17396.31 11396.74 135
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XXY-MVS87.65 19286.85 18990.03 22692.14 25680.60 20193.76 20195.23 19482.94 21684.60 23394.02 16974.27 18795.49 31881.04 21983.68 27294.01 244
API-MVS90.66 10690.07 10892.45 11896.36 10384.57 8596.06 6195.22 19682.39 22589.13 13594.27 16180.32 11598.46 12180.16 23796.71 10394.33 227
MG-MVS91.77 8491.70 8392.00 13697.08 8280.03 21893.60 20895.18 19787.85 10590.89 11496.47 7882.06 10298.36 12985.07 15797.04 9597.62 98
v2v48287.84 18587.06 18490.17 21890.99 29779.23 24394.00 19195.13 19884.87 17585.53 20692.07 24274.45 18597.45 20384.71 16481.75 29593.85 252
test_yl90.69 10490.02 11292.71 10495.72 12782.41 15594.11 17995.12 19985.63 15891.49 10594.70 14274.75 18098.42 12786.13 14692.53 17597.31 109
DCV-MVSNet90.69 10490.02 11292.71 10495.72 12782.41 15594.11 17995.12 19985.63 15891.49 10594.70 14274.75 18098.42 12786.13 14692.53 17597.31 109
Effi-MVS+91.59 8991.11 9093.01 9194.35 19383.39 12294.60 14595.10 20187.10 12390.57 11693.10 20581.43 10898.07 15989.29 10894.48 14097.59 101
Fast-Effi-MVS+89.41 14288.64 14391.71 15494.74 17080.81 19593.54 20995.10 20183.11 21186.82 18090.67 28479.74 12397.75 18080.51 23293.55 15396.57 140
IterMVS-LS88.36 17387.91 16889.70 24293.80 21378.29 26093.73 20295.08 20385.73 15484.75 23191.90 24779.88 12096.92 24983.83 17482.51 28593.89 246
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test22296.55 9681.70 16892.22 25895.01 20468.36 35790.20 12196.14 9480.26 11797.80 8196.05 161
EI-MVSNet89.10 14988.86 14089.80 23891.84 26678.30 25993.70 20595.01 20485.73 15487.15 16995.28 11979.87 12197.21 23283.81 17587.36 24693.88 248
MVSTER88.84 16188.29 15790.51 20292.95 24080.44 20493.73 20295.01 20484.66 18187.15 16993.12 20472.79 21397.21 23287.86 12287.36 24693.87 249
GBi-Net87.26 21285.98 22591.08 18194.01 20283.10 12895.14 11194.94 20783.57 19984.37 24191.64 25266.59 28696.34 28478.23 25685.36 25893.79 254
test187.26 21285.98 22591.08 18194.01 20283.10 12895.14 11194.94 20783.57 19984.37 24191.64 25266.59 28696.34 28478.23 25685.36 25893.79 254
FMVSNet287.19 22085.82 23191.30 17194.01 20283.67 11394.79 13494.94 20783.57 19983.88 25592.05 24366.59 28696.51 27277.56 26385.01 26193.73 261
FMVSNet185.85 25084.11 26391.08 18192.81 24483.10 12895.14 11194.94 20781.64 24782.68 27691.64 25259.01 33596.34 28475.37 28383.78 26993.79 254
LS3D87.89 18486.32 21192.59 11196.07 11482.92 13895.23 10294.92 21175.66 31582.89 27495.98 9872.48 21799.21 5068.43 32695.23 13095.64 176
eth_miper_zixun_eth86.50 23985.77 23488.68 26791.94 26375.81 30390.47 29194.89 21282.05 23284.05 25190.46 28775.96 16396.77 25482.76 19179.36 32993.46 273
LTVRE_ROB82.13 1386.26 24484.90 25290.34 21494.44 18881.50 17292.31 25694.89 21283.03 21379.63 31592.67 21769.69 25097.79 17571.20 30786.26 25491.72 319
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UnsupCasMVSNet_eth80.07 31378.27 31785.46 32385.24 36272.63 33088.45 32694.87 21482.99 21571.64 35788.07 32656.34 34191.75 35873.48 29963.36 36492.01 316
pm-mvs186.61 23485.54 23789.82 23591.44 27880.18 20995.28 10094.85 21583.84 19481.66 28792.62 21972.45 21996.48 27479.67 24278.06 33392.82 297
ACMH80.38 1785.36 25783.68 26990.39 20994.45 18780.63 19994.73 13894.85 21582.09 23177.24 32892.65 21860.01 32997.58 19172.25 30484.87 26292.96 291
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvs_anonymous89.37 14589.32 12689.51 24993.47 22374.22 31491.65 27394.83 21782.91 21785.45 21393.79 18281.23 11096.36 28386.47 14394.09 14597.94 83
miper_enhance_ethall86.90 22686.18 21689.06 25891.66 27577.58 28090.22 29894.82 21879.16 28084.48 23789.10 30979.19 13196.66 25884.06 17082.94 28092.94 292
miper_ehance_all_eth87.22 21786.62 20189.02 26092.13 25777.40 28390.91 28594.81 21981.28 25584.32 24690.08 29579.26 13096.62 26183.81 17582.94 28093.04 289
FMVSNet387.40 20886.11 21991.30 17193.79 21583.64 11494.20 17494.81 21983.89 19384.37 24191.87 24868.45 27096.56 26978.23 25685.36 25893.70 264
WTY-MVS89.60 13288.92 13691.67 15595.47 13881.15 18592.38 25294.78 22183.11 21189.06 13894.32 15678.67 13796.61 26481.57 21390.89 19197.24 113
PAPM86.68 23385.39 24190.53 19993.05 23579.33 23989.79 30594.77 22278.82 28581.95 28593.24 19976.81 15397.30 22166.94 33593.16 16594.95 198
FA-MVS(test-final)89.66 13088.91 13791.93 14194.57 18080.27 20691.36 27794.74 22384.87 17589.82 12792.61 22074.72 18398.47 12083.97 17293.53 15497.04 123
c3_l87.14 22286.50 20689.04 25992.20 25477.26 28491.22 28194.70 22482.01 23584.34 24590.43 28878.81 13496.61 26483.70 17781.09 30493.25 279
CDS-MVSNet89.45 13888.51 14892.29 12793.62 21983.61 11693.01 23494.68 22581.95 23787.82 15793.24 19978.69 13696.99 24580.34 23493.23 16496.28 148
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
GeoE90.05 11889.43 12291.90 14595.16 15080.37 20595.80 7294.65 22683.90 19287.55 16394.75 14178.18 14497.62 19081.28 21693.63 15197.71 96
1112_ss88.42 17087.33 17891.72 15394.92 16280.98 18992.97 23694.54 22778.16 29783.82 25693.88 17978.78 13597.91 17279.45 24489.41 20996.26 149
HY-MVS83.01 1289.03 15587.94 16792.29 12794.86 16682.77 14092.08 26494.49 22881.52 25186.93 17592.79 21678.32 14398.23 14079.93 23990.55 19295.88 166
CANet_DTU90.26 11589.41 12392.81 9893.46 22483.01 13493.48 21194.47 22989.43 5487.76 15994.23 16270.54 24199.03 6784.97 15896.39 11296.38 145
v14887.04 22486.32 21189.21 25390.94 30177.26 28493.71 20494.43 23084.84 17784.36 24490.80 28176.04 16297.05 24282.12 20079.60 32793.31 276
RRT_MVS89.09 15188.62 14690.49 20392.85 24379.65 22896.41 3894.41 23188.22 9185.50 20994.77 14069.36 25597.31 22089.33 10786.73 25394.51 217
OurMVSNet-221017-085.35 25884.64 25887.49 29490.77 30972.59 33194.01 19094.40 23284.72 18079.62 31693.17 20161.91 31596.72 25581.99 20381.16 30193.16 284
Effi-MVS+-dtu88.65 16688.35 15389.54 24693.33 22676.39 29694.47 15594.36 23387.70 10985.43 21689.56 30673.45 20397.26 22785.57 15491.28 18494.97 192
mvs-test189.45 13889.14 13090.38 21193.33 22677.63 27894.95 12294.36 23387.70 10987.10 17292.81 21473.45 20398.03 16385.57 15493.04 16795.48 179
EG-PatchMatch MVS82.37 29080.34 29688.46 27190.27 32279.35 23592.80 24194.33 23577.14 30473.26 35190.18 29247.47 36596.72 25570.25 31387.32 24889.30 348
cl____86.52 23885.78 23288.75 26492.03 26176.46 29490.74 28794.30 23681.83 24483.34 26990.78 28275.74 17096.57 26781.74 21081.54 29893.22 281
DIV-MVS_self_test86.53 23785.78 23288.75 26492.02 26276.45 29590.74 28794.30 23681.83 24483.34 26990.82 28075.75 16896.57 26781.73 21181.52 29993.24 280
Test_1112_low_res87.65 19286.51 20591.08 18194.94 16179.28 24091.77 26894.30 23676.04 31383.51 26592.37 22677.86 14897.73 18178.69 25289.13 21696.22 150
pmmvs683.42 28281.60 28688.87 26288.01 34977.87 27094.96 12194.24 23974.67 32778.80 31991.09 27460.17 32896.49 27377.06 27075.40 34592.23 313
MVP-Stereo85.97 24784.86 25389.32 25190.92 30382.19 15892.11 26294.19 24078.76 28778.77 32091.63 25568.38 27196.56 26975.01 28893.95 14689.20 350
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TAMVS89.21 14788.29 15791.96 13993.71 21682.62 15093.30 22094.19 24082.22 22987.78 15893.94 17478.83 13396.95 24777.70 26192.98 16996.32 146
jason90.80 10090.10 10792.90 9693.04 23683.53 11793.08 23194.15 24280.22 26691.41 10794.91 13176.87 15297.93 17190.28 10096.90 9897.24 113
jason: jason.
BH-untuned88.60 16888.13 16190.01 22995.24 14778.50 25393.29 22194.15 24284.75 17984.46 23893.40 19175.76 16797.40 21477.59 26294.52 13994.12 236
cl2286.78 22985.98 22589.18 25592.34 25277.62 27990.84 28694.13 24481.33 25483.97 25490.15 29373.96 19596.60 26684.19 16982.94 28093.33 275
ACMH+81.04 1485.05 26583.46 27289.82 23594.66 17679.37 23494.44 15794.12 24582.19 23078.04 32392.82 21358.23 33797.54 19673.77 29782.90 28392.54 302
miper_lstm_enhance85.27 26184.59 25987.31 29791.28 28774.63 30987.69 33394.09 24681.20 25981.36 29189.85 30174.97 17994.30 33381.03 22179.84 32693.01 290
Fast-Effi-MVS+-dtu87.44 20686.72 19489.63 24492.04 26077.68 27794.03 18893.94 24785.81 15182.42 27891.32 26470.33 24397.06 24180.33 23590.23 19694.14 235
KD-MVS_self_test80.20 31279.24 30983.07 33885.64 36065.29 36591.01 28493.93 24878.71 28976.32 33486.40 34159.20 33492.93 35072.59 30269.35 35491.00 336
AUN-MVS87.78 18886.54 20491.48 16394.82 16981.05 18793.91 19893.93 24883.00 21486.93 17593.53 19069.50 25397.67 18286.14 14477.12 34095.73 174
TSAR-MVS + GP.93.66 5293.41 5794.41 5596.59 9486.78 2894.40 16093.93 24889.77 4694.21 3595.59 11487.35 3598.61 11192.72 4496.15 11497.83 92
hse-mvs289.88 12789.34 12591.51 16194.83 16881.12 18693.94 19493.91 25189.80 4293.08 6593.60 18975.77 16597.66 18392.07 6177.07 34195.74 173
VDD-MVS90.74 10289.92 11493.20 8196.27 10583.02 13395.73 7693.86 25288.42 8392.53 8296.84 5562.09 31398.64 10790.95 9092.62 17497.93 85
lupinMVS90.92 9990.21 10393.03 9093.86 21083.88 10792.81 24093.86 25279.84 27291.76 10094.29 15877.92 14698.04 16190.48 9997.11 9297.17 117
CMPMVSbinary59.16 2180.52 30979.20 31184.48 33183.98 36467.63 36089.95 30493.84 25464.79 36166.81 36291.14 27257.93 33895.17 32276.25 27588.10 23490.65 337
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
GA-MVS86.61 23485.27 24490.66 19591.33 28678.71 24790.40 29293.81 25585.34 16585.12 22689.57 30561.25 32097.11 23880.99 22289.59 20896.15 151
MVS_030483.46 28181.92 28488.10 28290.63 31577.49 28193.26 22393.75 25680.04 27080.44 30387.24 33747.94 36395.55 31275.79 27988.16 23391.26 328
FE-MVS87.40 20886.02 22391.57 15994.56 18179.69 22790.27 29393.72 25780.57 26488.80 14191.62 25665.32 29598.59 11374.97 28994.33 14496.44 143
IS-MVSNet91.43 9091.09 9292.46 11795.87 12481.38 17996.95 1993.69 25889.72 4889.50 13195.98 9878.57 13997.77 17683.02 18496.50 11098.22 61
MS-PatchMatch85.05 26584.16 26287.73 28891.42 28178.51 25291.25 28093.53 25977.50 29980.15 30691.58 25861.99 31495.51 31575.69 28094.35 14389.16 351
BH-w/o87.57 20187.05 18589.12 25694.90 16477.90 26892.41 25093.51 26082.89 21883.70 25991.34 26175.75 16897.07 24075.49 28193.49 15692.39 308
UnsupCasMVSNet_bld76.23 32873.27 33185.09 32883.79 36572.92 32485.65 34693.47 26171.52 34868.84 36079.08 36149.77 35993.21 34666.81 33960.52 36689.13 353
USDC82.76 28581.26 29087.26 29991.17 29074.55 31089.27 31293.39 26278.26 29575.30 34192.08 24054.43 35096.63 26071.64 30585.79 25790.61 338
CNLPA89.07 15387.98 16592.34 12396.87 8584.78 8194.08 18393.24 26381.41 25284.46 23895.13 12675.57 17296.62 26177.21 26693.84 14995.61 177
Anonymous2024052180.44 31079.21 31084.11 33585.75 35967.89 35792.86 23993.23 26475.61 31775.59 34087.47 33450.03 35894.33 33271.14 31081.21 30090.12 343
VDDNet89.56 13488.49 15192.76 10195.07 15482.09 15996.30 4293.19 26581.05 26191.88 9596.86 5461.16 32398.33 13488.43 11792.49 17797.84 91
MSDG84.86 26883.09 27590.14 22193.80 21380.05 21689.18 31593.09 26678.89 28378.19 32191.91 24665.86 29497.27 22568.47 32588.45 22893.11 286
CL-MVSNet_self_test81.74 29580.53 29385.36 32485.96 35772.45 33390.25 29593.07 26781.24 25779.85 31387.29 33670.93 23292.52 35266.95 33469.23 35591.11 334
BH-RMVSNet88.37 17287.48 17491.02 18595.28 14479.45 23292.89 23893.07 26785.45 16386.91 17794.84 13870.35 24297.76 17773.97 29594.59 13795.85 167
ITE_SJBPF88.24 27891.88 26577.05 28792.92 26985.54 16180.13 30893.30 19657.29 33996.20 28872.46 30384.71 26391.49 323
ambc83.06 33979.99 37063.51 36877.47 36592.86 27074.34 34784.45 35028.74 37295.06 32673.06 30168.89 35890.61 338
TR-MVS86.78 22985.76 23589.82 23594.37 19078.41 25592.47 24992.83 27181.11 26086.36 18892.40 22568.73 26797.48 20073.75 29889.85 20493.57 267
TransMVSNet (Re)84.43 27383.06 27688.54 27091.72 27078.44 25495.18 10792.82 27282.73 22079.67 31492.12 23673.49 20295.96 29871.10 31168.73 35991.21 330
CHOSEN 280x42085.15 26383.99 26588.65 26892.47 24978.40 25679.68 36492.76 27374.90 32581.41 29089.59 30469.85 24995.51 31579.92 24095.29 12792.03 315
MIMVSNet179.38 31877.28 32085.69 32286.35 35473.67 31891.61 27492.75 27478.11 29872.64 35388.12 32548.16 36291.97 35760.32 35777.49 33791.43 325
PVSNet78.82 1885.55 25484.65 25788.23 27994.72 17271.93 33587.12 33792.75 27478.80 28684.95 22990.53 28664.43 30196.71 25774.74 29093.86 14896.06 160
pmmvs485.43 25683.86 26790.16 21990.02 32882.97 13690.27 29392.67 27675.93 31480.73 29791.74 25171.05 22995.73 30978.85 25183.46 27691.78 318
IterMVS-SCA-FT85.45 25584.53 26088.18 28091.71 27276.87 28990.19 29992.65 27785.40 16481.44 28990.54 28566.79 28295.00 32781.04 21981.05 30592.66 300
Baseline_NR-MVSNet87.07 22386.63 20088.40 27291.44 27877.87 27094.23 17392.57 27884.12 18885.74 19892.08 24077.25 15096.04 29382.29 19879.94 32391.30 327
RPSCF85.07 26484.27 26187.48 29592.91 24170.62 34791.69 27292.46 27976.20 31282.67 27795.22 12263.94 30397.29 22477.51 26485.80 25694.53 215
IterMVS84.88 26783.98 26687.60 29091.44 27876.03 30090.18 30092.41 28083.24 21081.06 29590.42 28966.60 28594.28 33479.46 24380.98 31092.48 304
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mvsmamba89.96 12289.50 11891.33 17092.90 24281.82 16596.68 3392.37 28189.03 6687.00 17394.85 13673.05 20997.65 18591.03 8688.63 22394.51 217
KD-MVS_2432*160078.50 32276.02 32785.93 31986.22 35574.47 31184.80 34992.33 28279.29 27776.98 33085.92 34453.81 35393.97 33767.39 33257.42 36789.36 346
miper_refine_blended78.50 32276.02 32785.93 31986.22 35574.47 31184.80 34992.33 28279.29 27776.98 33085.92 34453.81 35393.97 33767.39 33257.42 36789.36 346
PatchMatch-RL86.77 23285.54 23790.47 20795.88 12282.71 14690.54 29092.31 28479.82 27384.32 24691.57 26068.77 26696.39 28073.16 30093.48 15892.32 311
COLMAP_ROBcopyleft80.39 1683.96 27682.04 28389.74 23995.28 14479.75 22594.25 17092.28 28575.17 32178.02 32493.77 18458.60 33697.84 17465.06 34585.92 25591.63 321
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet581.52 30079.60 30687.27 29891.17 29077.95 26691.49 27592.26 28676.87 30576.16 33587.91 32951.67 35692.34 35367.74 33181.16 30191.52 322
EPNet_dtu86.49 24185.94 22888.14 28190.24 32372.82 32694.11 17992.20 28786.66 13679.42 31792.36 22773.52 20195.81 30671.26 30693.66 15095.80 171
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ppachtmachnet_test81.84 29380.07 30187.15 30588.46 34374.43 31389.04 31892.16 28875.33 31977.75 32588.99 31066.20 29095.37 32065.12 34477.60 33691.65 320
iter_conf0588.85 16088.08 16291.17 17694.27 19481.64 16995.18 10792.15 28986.23 14587.28 16894.07 16463.89 30597.55 19490.63 9589.00 21994.32 228
iter_conf_final89.42 14188.69 14291.60 15795.12 15382.93 13795.75 7592.14 29087.32 11987.12 17194.07 16467.09 27797.55 19490.61 9689.01 21894.32 228
thres20087.21 21886.24 21590.12 22295.36 14078.53 25193.26 22392.10 29186.42 14088.00 15391.11 27369.24 26098.00 16569.58 32091.04 19093.83 253
Anonymous2023120681.03 30679.77 30484.82 32987.85 35170.26 34991.42 27692.08 29273.67 33477.75 32589.25 30862.43 31293.08 34861.50 35582.00 29291.12 333
EPNet91.79 8391.02 9394.10 6190.10 32585.25 7796.03 6292.05 29392.83 187.39 16795.78 10679.39 12999.01 7388.13 12097.48 8898.05 76
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TDRefinement79.81 31577.34 31987.22 30379.24 37175.48 30693.12 22892.03 29476.45 30775.01 34291.58 25849.19 36196.44 27870.22 31569.18 35689.75 345
DP-MVS87.25 21485.36 24392.90 9697.65 6283.24 12494.81 13392.00 29574.99 32381.92 28695.00 12972.66 21499.05 6366.92 33792.33 17896.40 144
SixPastTwentyTwo83.91 27882.90 27886.92 30890.99 29770.67 34693.48 21191.99 29685.54 16177.62 32792.11 23860.59 32596.87 25276.05 27877.75 33593.20 282
tfpn200view987.58 20086.64 19890.41 20895.99 11878.64 24894.58 14691.98 29786.94 12888.09 14891.77 24969.18 26198.10 14870.13 31691.10 18594.48 223
thres40087.62 19786.64 19890.57 19795.99 11878.64 24894.58 14691.98 29786.94 12888.09 14891.77 24969.18 26198.10 14870.13 31691.10 18594.96 195
CR-MVSNet85.35 25883.76 26890.12 22290.58 31679.34 23685.24 34791.96 29978.27 29485.55 20387.87 33071.03 23095.61 31073.96 29689.36 21195.40 182
Patchmtry82.71 28680.93 29288.06 28390.05 32776.37 29784.74 35191.96 29972.28 34681.32 29287.87 33071.03 23095.50 31768.97 32280.15 32192.32 311
pmmvs584.21 27482.84 28088.34 27588.95 33876.94 28892.41 25091.91 30175.63 31680.28 30491.18 26964.59 30095.57 31177.09 26983.47 27592.53 303
test_040281.30 30479.17 31287.67 28993.19 23078.17 26292.98 23591.71 30275.25 32076.02 33890.31 29059.23 33396.37 28150.22 36783.63 27388.47 357
tpmvs83.35 28482.07 28287.20 30491.07 29571.00 34488.31 32791.70 30378.91 28280.49 30287.18 33869.30 25997.08 23968.12 33083.56 27493.51 271
SCA86.32 24385.18 24589.73 24192.15 25576.60 29291.12 28291.69 30483.53 20285.50 20988.81 31366.79 28296.48 27476.65 27190.35 19596.12 154
pmmvs-eth3d80.97 30778.72 31687.74 28784.99 36379.97 22190.11 30191.65 30575.36 31873.51 34986.03 34359.45 33293.96 33975.17 28572.21 35089.29 349
thres100view90087.63 19586.71 19590.38 21196.12 10978.55 25095.03 11991.58 30687.15 12188.06 15192.29 23068.91 26498.10 14870.13 31691.10 18594.48 223
thres600view787.65 19286.67 19790.59 19696.08 11378.72 24694.88 12891.58 30687.06 12488.08 15092.30 22968.91 26498.10 14870.05 31991.10 18594.96 195
MDTV_nov1_ep1383.56 27191.69 27469.93 35187.75 33291.54 30878.60 29084.86 23088.90 31269.54 25296.03 29470.25 31388.93 220
tpm cat181.96 29180.27 29787.01 30691.09 29471.02 34387.38 33691.53 30966.25 35980.17 30586.35 34268.22 27296.15 29169.16 32182.29 28793.86 251
Anonymous20240521187.68 19086.13 21792.31 12596.66 9180.74 19794.87 12991.49 31080.47 26589.46 13295.44 11554.72 34898.23 14082.19 19989.89 20297.97 81
CVMVSNet84.69 27184.79 25584.37 33291.84 26664.92 36693.70 20591.47 31166.19 36086.16 19395.28 11967.18 27693.33 34580.89 22490.42 19494.88 200
tpmrst85.35 25884.99 24886.43 31490.88 30667.88 35888.71 32191.43 31280.13 26886.08 19488.80 31573.05 20996.02 29582.48 19383.40 27895.40 182
EU-MVSNet81.32 30380.95 29182.42 34188.50 34263.67 36793.32 21691.33 31364.02 36280.57 30192.83 21261.21 32292.27 35476.34 27480.38 32091.32 326
PatchmatchNetpermissive85.85 25084.70 25689.29 25291.76 26975.54 30588.49 32491.30 31481.63 24885.05 22788.70 31771.71 22196.24 28774.61 29289.05 21796.08 158
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
baseline188.10 17987.28 18090.57 19794.96 15980.07 21494.27 16991.29 31586.74 13287.41 16494.00 17176.77 15596.20 28880.77 22579.31 33095.44 180
IB-MVS80.51 1585.24 26283.26 27391.19 17492.13 25779.86 22391.75 26991.29 31583.28 20980.66 29988.49 31961.28 31998.46 12180.99 22279.46 32895.25 186
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
our_test_381.93 29280.46 29586.33 31688.46 34373.48 32188.46 32591.11 31776.46 30676.69 33288.25 32366.89 28094.36 33168.75 32379.08 33191.14 332
new-patchmatchnet76.41 32775.17 32980.13 34382.65 36959.61 36987.66 33491.08 31878.23 29669.85 35883.22 35454.76 34791.63 36064.14 34864.89 36289.16 351
test20.0379.95 31479.08 31382.55 34085.79 35867.74 35991.09 28391.08 31881.23 25874.48 34689.96 29961.63 31690.15 36260.08 35876.38 34289.76 344
LF4IMVS80.37 31179.07 31484.27 33486.64 35369.87 35289.39 31191.05 32076.38 30874.97 34390.00 29747.85 36494.25 33574.55 29380.82 31288.69 355
CostFormer85.77 25284.94 25188.26 27791.16 29272.58 33289.47 31091.04 32176.26 31186.45 18689.97 29870.74 23596.86 25382.35 19687.07 25195.34 185
LCM-MVSNet-Re88.30 17588.32 15688.27 27694.71 17372.41 33493.15 22790.98 32287.77 10779.25 31891.96 24578.35 14295.75 30883.04 18395.62 11896.65 137
ET-MVSNet_ETH3D87.51 20385.91 22992.32 12493.70 21883.93 10592.33 25490.94 32384.16 18672.09 35492.52 22269.90 24695.85 30389.20 10988.36 23197.17 117
LCM-MVSNet66.00 33362.16 33777.51 34864.51 37858.29 37083.87 35590.90 32448.17 36954.69 36773.31 36516.83 38186.75 36765.47 34161.67 36587.48 360
AllTest83.42 28281.39 28889.52 24795.01 15577.79 27393.12 22890.89 32577.41 30076.12 33693.34 19254.08 35197.51 19868.31 32784.27 26693.26 277
TestCases89.52 24795.01 15577.79 27390.89 32577.41 30076.12 33693.34 19254.08 35197.51 19868.31 32784.27 26693.26 277
Vis-MVSNet (Re-imp)89.59 13389.44 12190.03 22695.74 12675.85 30295.61 8490.80 32787.66 11387.83 15695.40 11876.79 15496.46 27778.37 25396.73 10297.80 93
OpenMVS_ROBcopyleft74.94 1979.51 31777.03 32386.93 30787.00 35276.23 29992.33 25490.74 32868.93 35674.52 34588.23 32449.58 36096.62 26157.64 36284.29 26587.94 359
testgi80.94 30880.20 29983.18 33787.96 35066.29 36191.28 27890.70 32983.70 19678.12 32292.84 21151.37 35790.82 36163.34 34982.46 28692.43 306
MDA-MVSNet-bldmvs78.85 32176.31 32486.46 31389.76 33273.88 31788.79 32090.42 33079.16 28059.18 36688.33 32260.20 32794.04 33662.00 35368.96 35791.48 324
tpm284.08 27582.94 27787.48 29591.39 28271.27 33989.23 31490.37 33171.95 34784.64 23289.33 30767.30 27396.55 27175.17 28587.09 25094.63 208
TinyColmap79.76 31677.69 31885.97 31891.71 27273.12 32389.55 30690.36 33275.03 32272.03 35590.19 29146.22 36696.19 29063.11 35081.03 30688.59 356
Gipumacopyleft57.99 33854.91 34067.24 35388.51 34165.59 36352.21 37290.33 33343.58 37142.84 37251.18 37320.29 37885.07 36934.77 37370.45 35251.05 372
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PatchT82.68 28781.27 28986.89 31090.09 32670.94 34584.06 35390.15 33474.91 32485.63 20283.57 35369.37 25494.87 32865.19 34288.50 22794.84 201
MIMVSNet82.59 28880.53 29388.76 26391.51 27778.32 25886.57 34090.13 33579.32 27680.70 29888.69 31852.98 35593.07 34966.03 34088.86 22194.90 199
dp81.47 30180.23 29885.17 32789.92 33065.49 36486.74 33890.10 33676.30 31081.10 29387.12 33962.81 31095.92 29968.13 32979.88 32494.09 239
MDA-MVSNet_test_wron79.21 32077.19 32285.29 32588.22 34772.77 32785.87 34390.06 33774.34 32962.62 36587.56 33366.14 29191.99 35666.90 33873.01 34791.10 335
PMMVS85.71 25384.96 25087.95 28588.90 33977.09 28688.68 32290.06 33772.32 34586.47 18390.76 28372.15 22094.40 33081.78 20993.49 15692.36 309
YYNet179.22 31977.20 32185.28 32688.20 34872.66 32985.87 34390.05 33974.33 33062.70 36487.61 33266.09 29292.03 35566.94 33572.97 34891.15 331
tpm84.73 26984.02 26486.87 31190.33 32168.90 35489.06 31789.94 34080.85 26285.75 19789.86 30068.54 26995.97 29777.76 26084.05 26895.75 172
LFMVS90.08 11789.13 13192.95 9496.71 8982.32 15796.08 5889.91 34186.79 13192.15 9196.81 5862.60 31198.34 13287.18 13393.90 14798.19 62
thisisatest053088.67 16587.61 17291.86 14694.87 16580.07 21494.63 14489.90 34284.00 19088.46 14593.78 18366.88 28198.46 12183.30 18092.65 17397.06 121
test-LLR85.87 24985.41 24087.25 30090.95 29971.67 33789.55 30689.88 34383.41 20584.54 23587.95 32767.25 27495.11 32481.82 20793.37 16194.97 192
test-mter84.54 27283.64 27087.25 30090.95 29971.67 33789.55 30689.88 34379.17 27984.54 23587.95 32755.56 34395.11 32481.82 20793.37 16194.97 192
tttt051788.61 16787.78 16991.11 18094.96 15977.81 27295.35 9189.69 34585.09 17288.05 15294.59 14966.93 27998.48 11883.27 18192.13 18097.03 124
PVSNet_073.20 2077.22 32574.83 33084.37 33290.70 31371.10 34283.09 35889.67 34672.81 34373.93 34883.13 35560.79 32493.70 34168.54 32450.84 37088.30 358
JIA-IIPM81.04 30578.98 31587.25 30088.64 34073.48 32181.75 36189.61 34773.19 33882.05 28373.71 36466.07 29395.87 30271.18 30984.60 26492.41 307
thisisatest051587.33 21085.99 22491.37 16893.49 22279.55 22990.63 28989.56 34880.17 26787.56 16290.86 27867.07 27898.28 13881.50 21493.02 16896.29 147
ADS-MVSNet81.56 29979.78 30386.90 30991.35 28471.82 33683.33 35689.16 34972.90 34182.24 28185.77 34664.98 29893.76 34064.57 34683.74 27095.12 188
bld_raw_dy_0_6487.60 19986.73 19390.21 21691.72 27080.26 20895.09 11488.61 35085.68 15685.55 20394.38 15363.93 30496.66 25887.73 12487.84 24193.72 262
baseline286.50 23985.39 24189.84 23491.12 29376.70 29191.88 26588.58 35182.35 22879.95 31190.95 27773.42 20597.63 18980.27 23689.95 20195.19 187
ADS-MVSNet281.66 29779.71 30587.50 29391.35 28474.19 31583.33 35688.48 35272.90 34182.24 28185.77 34664.98 29893.20 34764.57 34683.74 27095.12 188
TESTMET0.1,183.74 28082.85 27986.42 31589.96 32971.21 34189.55 30687.88 35377.41 30083.37 26887.31 33556.71 34093.65 34280.62 22992.85 17294.40 226
test0.0.03 182.41 28981.69 28584.59 33088.23 34672.89 32590.24 29687.83 35483.41 20579.86 31289.78 30267.25 27488.99 36565.18 34383.42 27791.90 317
K. test v381.59 29880.15 30085.91 32189.89 33169.42 35392.57 24787.71 35585.56 16073.44 35089.71 30355.58 34295.52 31477.17 26769.76 35392.78 298
Patchmatch-test81.37 30279.30 30887.58 29190.92 30374.16 31680.99 36287.68 35670.52 35376.63 33388.81 31371.21 22792.76 35160.01 36086.93 25295.83 169
Patchmatch-RL test81.67 29679.96 30286.81 31285.42 36171.23 34082.17 36087.50 35778.47 29177.19 32982.50 35770.81 23493.48 34382.66 19272.89 34995.71 175
ANet_high58.88 33754.22 34172.86 34956.50 38156.67 37280.75 36386.00 35873.09 34037.39 37364.63 37022.17 37679.49 37343.51 37023.96 37582.43 365
door-mid85.49 359
door85.33 360
PM-MVS78.11 32476.12 32684.09 33683.54 36670.08 35088.97 31985.27 36179.93 27174.73 34486.43 34034.70 37193.48 34379.43 24672.06 35188.72 354
test111189.10 14988.64 14390.48 20595.53 13774.97 30796.08 5884.89 36288.13 9690.16 12396.65 6763.29 30798.10 14886.14 14496.90 9898.39 42
FPMVS64.63 33462.55 33670.88 35070.80 37456.71 37184.42 35284.42 36351.78 36849.57 36881.61 35823.49 37581.48 37140.61 37276.25 34374.46 367
ECVR-MVScopyleft89.09 15188.53 14790.77 19495.62 13275.89 30196.16 5184.22 36487.89 10390.20 12196.65 6763.19 30998.10 14885.90 14996.94 9698.33 46
pmmvs371.81 33168.71 33481.11 34275.86 37270.42 34886.74 33883.66 36558.95 36568.64 36180.89 35936.93 37089.52 36463.10 35163.59 36383.39 361
EGC-MVSNET61.97 33556.37 33978.77 34589.63 33473.50 32089.12 31682.79 3660.21 3811.24 38284.80 34939.48 36990.04 36344.13 36975.94 34472.79 368
MVS-HIRNet73.70 32972.20 33278.18 34791.81 26856.42 37382.94 35982.58 36755.24 36668.88 35966.48 36855.32 34595.13 32358.12 36188.42 22983.01 362
new_pmnet72.15 33070.13 33378.20 34682.95 36865.68 36283.91 35482.40 36862.94 36364.47 36379.82 36042.85 36886.26 36857.41 36374.44 34682.65 364
EPMVS83.90 27982.70 28187.51 29290.23 32472.67 32888.62 32381.96 36981.37 25385.01 22888.34 32166.31 28994.45 32975.30 28487.12 24995.43 181
test_method50.52 34048.47 34256.66 35652.26 38218.98 38541.51 37481.40 37010.10 37644.59 37175.01 36328.51 37368.16 37453.54 36549.31 37182.83 363
lessismore_v086.04 31788.46 34368.78 35580.59 37173.01 35290.11 29455.39 34496.43 27975.06 28765.06 36192.90 293
DSMNet-mixed76.94 32676.29 32578.89 34483.10 36756.11 37487.78 33179.77 37260.65 36475.64 33988.71 31661.56 31788.34 36660.07 35989.29 21392.21 314
gg-mvs-nofinetune81.77 29479.37 30788.99 26190.85 30777.73 27686.29 34179.63 37374.88 32683.19 27269.05 36760.34 32696.11 29275.46 28294.64 13693.11 286
PMVScopyleft47.18 2252.22 33948.46 34363.48 35445.72 38346.20 37973.41 36878.31 37441.03 37230.06 37565.68 3696.05 38283.43 37030.04 37465.86 36060.80 369
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
GG-mvs-BLEND87.94 28689.73 33377.91 26787.80 33078.23 37580.58 30083.86 35159.88 33095.33 32171.20 30792.22 17990.60 340
PMMVS259.60 33656.40 33869.21 35268.83 37546.58 37873.02 36977.48 37655.07 36749.21 36972.95 36617.43 38080.04 37249.32 36844.33 37280.99 366
test250687.21 21886.28 21390.02 22895.62 13273.64 31996.25 4871.38 37787.89 10390.45 11796.65 6755.29 34698.09 15686.03 14896.94 9698.33 46
E-PMN43.23 34242.29 34446.03 35865.58 37737.41 38073.51 36764.62 37833.99 37328.47 37747.87 37419.90 37967.91 37522.23 37624.45 37432.77 373
EMVS42.07 34341.12 34544.92 35963.45 37935.56 38273.65 36663.48 37933.05 37426.88 37845.45 37521.27 37767.14 37619.80 37723.02 37632.06 374
MTMP96.16 5160.64 380
MVEpermissive39.65 2343.39 34138.59 34757.77 35556.52 38048.77 37755.38 37158.64 38129.33 37528.96 37652.65 3724.68 38364.62 37728.11 37533.07 37359.93 370
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft56.31 35774.23 37351.81 37656.67 38244.85 37048.54 37075.16 36227.87 37458.74 37840.92 37152.22 36958.39 371
tmp_tt35.64 34439.24 34624.84 36014.87 38423.90 38462.71 37051.51 3836.58 37836.66 37462.08 37144.37 36730.34 38052.40 36622.00 37720.27 375
N_pmnet68.89 33268.44 33570.23 35189.07 33728.79 38388.06 32819.50 38469.47 35571.86 35684.93 34861.24 32191.75 35854.70 36477.15 33990.15 342
wuyk23d21.27 34620.48 34923.63 36168.59 37636.41 38149.57 3736.85 3859.37 3777.89 3794.46 3814.03 38431.37 37917.47 37816.07 3783.12 376
testmvs8.92 34711.52 3501.12 3631.06 3850.46 38786.02 3420.65 3860.62 3792.74 3809.52 3790.31 3860.45 3822.38 3790.39 3792.46 378
test1238.76 34811.22 3511.39 3620.85 3860.97 38685.76 3450.35 3870.54 3802.45 3818.14 3800.60 3850.48 3812.16 3800.17 3802.71 377
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas6.64 3508.86 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38279.70 1240.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
n20.00 388
nn0.00 388
ab-mvs-re7.82 34910.43 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38393.88 1790.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
PC_three_145282.47 22497.09 997.07 4592.72 198.04 16192.70 4699.02 1298.86 10
eth-test20.00 387
eth-test0.00 387
OPU-MVS96.21 398.00 4690.85 397.13 1497.08 4392.59 298.94 8792.25 5498.99 1498.84 13
test_0728_THIRD90.75 2297.04 1098.05 892.09 699.55 1595.64 699.13 399.13 2
GSMVS96.12 154
test_part298.55 1387.22 1896.40 14
sam_mvs171.70 22296.12 154
sam_mvs70.60 236
test_post188.00 3299.81 37869.31 25895.53 31376.65 271
test_post10.29 37770.57 24095.91 301
patchmatchnet-post83.76 35271.53 22496.48 274
gm-plane-assit89.60 33568.00 35677.28 30388.99 31097.57 19279.44 245
test9_res91.91 6998.71 3498.07 74
agg_prior290.54 9798.68 3998.27 56
test_prior485.96 5994.11 179
test_prior294.12 17787.67 11192.63 7996.39 8086.62 4491.50 7998.67 41
旧先验293.36 21571.25 35094.37 3297.13 23786.74 139
新几何293.11 230
原ACMM292.94 237
testdata298.75 10378.30 255
segment_acmp87.16 40
testdata192.15 26087.94 99
plane_prior794.70 17482.74 143
plane_prior694.52 18282.75 14174.23 188
plane_prior494.86 134
plane_prior382.75 14190.26 3586.91 177
plane_prior295.85 7090.81 20
plane_prior194.59 178
plane_prior82.73 14495.21 10489.66 4989.88 203
HQP5-MVS81.56 170
HQP-NCC94.17 19694.39 16288.81 7085.43 216
ACMP_Plane94.17 19694.39 16288.81 7085.43 216
BP-MVS87.11 136
HQP4-MVS85.43 21697.96 16894.51 217
HQP2-MVS73.83 198
NP-MVS94.37 19082.42 15393.98 172
MDTV_nov1_ep13_2view55.91 37587.62 33573.32 33784.59 23470.33 24374.65 29195.50 178
ACMMP++_ref87.47 243
ACMMP++88.01 237
Test By Simon80.02 119