This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
9.1478.75 1483.10 6984.15 4288.26 159.90 10578.57 2390.36 2657.51 3086.86 6377.39 1989.52 21
SF-MVS78.82 1279.22 1177.60 4382.88 7457.83 7984.99 3188.13 261.86 7479.16 2090.75 1757.96 2587.09 5977.08 2290.18 1587.87 25
DVP-MVS++81.67 182.40 179.47 987.24 1459.15 5988.18 187.15 365.04 1584.26 591.86 667.01 190.84 379.48 591.38 288.42 10
test_0728_SECOND79.19 1587.82 359.11 6287.85 587.15 390.84 378.66 1490.61 1187.62 36
MCST-MVS77.48 2777.45 2677.54 4486.67 2058.36 7583.22 5486.93 556.91 15674.91 4288.19 6059.15 2287.68 4573.67 4187.45 4186.57 65
DeepC-MVS69.38 278.56 1778.14 2179.83 683.60 6361.62 2384.17 4186.85 663.23 4573.84 5790.25 3157.68 2789.96 1374.62 3389.03 2287.89 23
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_one_060187.58 959.30 5686.84 765.01 1983.80 1191.86 664.03 11
test072687.75 759.07 6387.86 486.83 864.26 2884.19 791.92 564.82 8
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1786.83 865.51 1183.81 1090.51 2263.71 1289.23 1981.51 288.44 2788.09 20
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SED-MVS81.56 282.30 279.32 1287.77 458.90 6887.82 786.78 1064.18 3185.97 191.84 866.87 390.83 578.63 1690.87 588.23 15
test_241102_ONE87.77 458.90 6886.78 1064.20 3085.97 191.34 1266.87 390.78 7
test_241102_TWO86.73 1264.18 3184.26 591.84 865.19 690.83 578.63 1690.70 787.65 34
CSCG76.92 3276.75 3077.41 4583.96 6259.60 5082.95 5786.50 1360.78 8675.27 3684.83 12360.76 1586.56 7267.86 7487.87 4086.06 84
DPE-MVScopyleft80.56 580.98 579.29 1487.27 1360.56 4185.71 2586.42 1463.28 4383.27 1391.83 1064.96 790.47 1076.41 2589.67 1886.84 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS80.16 780.59 678.86 2786.64 2160.02 4588.12 386.42 1462.94 5082.40 1492.12 259.64 1889.76 1478.70 1288.32 3186.79 60
3Dnovator+66.72 475.84 4474.57 5279.66 882.40 7659.92 4785.83 2186.32 1666.92 667.80 14789.24 5042.03 18789.38 1864.07 10686.50 5489.69 2
EC-MVSNet75.84 4475.87 4175.74 6878.86 14152.65 15883.73 4986.08 1763.47 4172.77 7487.25 7653.13 6587.93 3971.97 5185.57 5986.66 63
ZNCC-MVS78.82 1278.67 1679.30 1386.43 2862.05 1886.62 1186.01 1863.32 4275.08 3890.47 2553.96 5588.68 2676.48 2489.63 2087.16 50
SteuartSystems-ACMMP79.48 1079.31 1079.98 283.01 7262.18 1687.60 985.83 1966.69 878.03 2690.98 1554.26 5190.06 1278.42 1889.02 2387.69 32
Skip Steuart: Steuart Systems R&D Blog.
PHI-MVS75.87 4375.36 4477.41 4580.62 10655.91 11284.28 3885.78 2056.08 17473.41 6186.58 8950.94 9288.54 2770.79 5889.71 1787.79 30
SMA-MVScopyleft80.28 680.39 779.95 386.60 2361.95 1986.33 1385.75 2162.49 6182.20 1592.28 156.53 3389.70 1579.85 491.48 188.19 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPM-MVS75.47 4775.00 4876.88 5081.38 9159.16 5879.94 10185.71 2256.59 16472.46 7986.76 8056.89 3187.86 4266.36 8788.91 2583.64 173
MSC_two_6792asdad79.95 387.24 1461.04 3185.62 2390.96 179.31 890.65 887.85 26
No_MVS79.95 387.24 1461.04 3185.62 2390.96 179.31 890.65 887.85 26
IU-MVS87.77 459.15 5985.53 2553.93 21584.64 379.07 1090.87 588.37 12
MP-MVS-pluss78.35 1978.46 1778.03 3984.96 5259.52 5282.93 5885.39 2662.15 6676.41 3291.51 1152.47 7186.78 6680.66 389.64 1987.80 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DeepPCF-MVS69.58 179.03 1179.00 1279.13 1884.92 5660.32 4483.03 5685.33 2762.86 5380.17 1790.03 3761.76 1488.95 2374.21 3588.67 2688.12 19
CS-MVS-test75.62 4675.31 4676.56 5680.63 10555.13 12683.88 4785.22 2862.05 7071.49 8986.03 10253.83 5786.36 8067.74 7586.91 4888.19 17
GST-MVS78.14 2177.85 2378.99 2486.05 3861.82 2285.84 2085.21 2963.56 4074.29 5190.03 3752.56 6888.53 2874.79 3288.34 2986.63 64
ACMMP_NAP78.77 1478.78 1378.74 2885.44 4561.04 3183.84 4885.16 3062.88 5278.10 2491.26 1352.51 6988.39 2979.34 790.52 1386.78 61
HPM-MVScopyleft77.28 2876.85 2978.54 3185.00 5160.81 3882.91 5985.08 3162.57 5973.09 6989.97 4050.90 9387.48 4875.30 2886.85 4987.33 48
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
casdiffmvs_mvgpermissive76.14 4076.30 3575.66 7076.46 20951.83 17679.67 10885.08 3165.02 1875.84 3388.58 5959.42 2185.08 10772.75 4683.93 7190.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive74.80 5074.89 5074.53 9775.59 22150.37 19478.17 12785.06 3362.80 5774.40 4987.86 6757.88 2683.61 13769.46 6582.79 8489.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DVP-MVScopyleft80.84 481.64 378.42 3387.75 759.07 6387.85 585.03 3464.26 2883.82 892.00 364.82 890.75 878.66 1490.61 1185.45 110
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CNVR-MVS79.84 979.97 979.45 1087.90 262.17 1784.37 3585.03 3466.96 477.58 2790.06 3559.47 2089.13 2178.67 1389.73 1687.03 52
ETV-MVS74.46 5773.84 6076.33 5979.27 13155.24 12579.22 11485.00 3664.97 2072.65 7679.46 23853.65 6287.87 4167.45 8082.91 8085.89 90
test_prior76.69 5284.20 6157.27 8784.88 3786.43 7786.38 68
DeepC-MVS_fast68.24 377.25 2976.63 3279.12 1986.15 3460.86 3684.71 3284.85 3861.98 7373.06 7088.88 5453.72 5889.06 2268.27 6888.04 3787.42 42
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CLD-MVS73.33 6572.68 6975.29 7978.82 14353.33 14878.23 12684.79 3961.30 8070.41 9681.04 20652.41 7287.12 5764.61 10582.49 8785.41 114
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
baseline74.61 5474.70 5174.34 10175.70 21749.99 20277.54 14084.63 4062.73 5873.98 5487.79 6957.67 2883.82 13369.49 6382.74 8589.20 5
ACMMPcopyleft76.02 4275.33 4578.07 3785.20 4961.91 2085.49 2884.44 4163.04 4869.80 10989.74 4545.43 15687.16 5472.01 5082.87 8285.14 121
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
NCCC78.58 1678.31 1879.39 1187.51 1262.61 1385.20 3084.42 4266.73 774.67 4789.38 4855.30 4189.18 2074.19 3687.34 4286.38 68
APD-MVScopyleft78.02 2278.04 2277.98 4086.44 2760.81 3885.52 2684.36 4360.61 8879.05 2190.30 2955.54 4088.32 3173.48 4387.03 4484.83 131
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS78.01 2377.65 2479.10 2086.71 1962.81 886.29 1484.32 4462.82 5473.96 5590.50 2353.20 6488.35 3074.02 3887.05 4386.13 82
ACMMPR77.71 2477.23 2779.16 1686.75 1862.93 786.29 1484.24 4562.82 5473.55 6090.56 2149.80 9988.24 3274.02 3887.03 4486.32 76
DELS-MVS74.76 5174.46 5375.65 7177.84 17252.25 16875.59 18284.17 4663.76 3773.15 6682.79 16459.58 1986.80 6567.24 8186.04 5687.89 23
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
region2R77.67 2677.18 2879.15 1786.76 1762.95 686.29 1484.16 4762.81 5673.30 6290.58 2049.90 9788.21 3373.78 4087.03 4486.29 79
CDPH-MVS76.31 3775.67 4378.22 3685.35 4859.14 6181.31 8684.02 4856.32 16874.05 5388.98 5353.34 6387.92 4069.23 6688.42 2887.59 37
HQP_MVS74.31 5873.73 6176.06 6181.41 8956.31 10184.22 3984.01 4964.52 2469.27 11786.10 9945.26 16087.21 5268.16 7180.58 10284.65 136
plane_prior584.01 4987.21 5268.16 7180.58 10284.65 136
XVS77.17 3076.56 3379.00 2286.32 2962.62 1185.83 2183.92 5164.55 2272.17 8290.01 3947.95 11988.01 3771.55 5586.74 5186.37 70
X-MVStestdata70.21 11367.28 16179.00 2286.32 2962.62 1185.83 2183.92 5164.55 2272.17 826.49 38147.95 11988.01 3771.55 5586.74 5186.37 70
CS-MVS76.25 3975.98 3877.06 4980.15 11555.63 11784.51 3483.90 5363.24 4473.30 6287.27 7555.06 4386.30 8271.78 5284.58 6389.25 4
HQP3-MVS83.90 5380.35 106
HQP-MVS73.45 6472.80 6875.40 7580.66 10254.94 12782.31 7083.90 5362.10 6767.85 14285.54 11645.46 15486.93 6167.04 8380.35 10684.32 143
canonicalmvs74.67 5374.98 4973.71 11778.94 14050.56 19280.23 9583.87 5660.30 9977.15 2986.56 9059.65 1782.00 17366.01 9182.12 8888.58 9
SD-MVS77.70 2577.62 2577.93 4184.47 5961.88 2184.55 3383.87 5660.37 9579.89 1889.38 4854.97 4585.58 9676.12 2684.94 6186.33 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.78.44 1878.28 1978.90 2584.96 5261.41 2684.03 4483.82 5859.34 11679.37 1989.76 4459.84 1687.62 4676.69 2386.74 5187.68 33
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PGM-MVS76.77 3476.06 3778.88 2686.14 3562.73 982.55 6683.74 5961.71 7572.45 8190.34 2848.48 11588.13 3472.32 4886.85 4985.78 93
HPM-MVS++copyleft79.88 880.14 879.10 2088.17 164.80 186.59 1283.70 6065.37 1278.78 2290.64 1858.63 2487.24 5079.00 1190.37 1485.26 120
OPM-MVS74.73 5274.25 5576.19 6080.81 10159.01 6682.60 6583.64 6163.74 3872.52 7887.49 7047.18 13485.88 8969.47 6480.78 9883.66 171
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
FOURS186.12 3660.82 3788.18 183.61 6260.87 8381.50 16
FIs70.82 10271.43 8068.98 21778.33 15738.14 31576.96 15583.59 6361.02 8267.33 15586.73 8255.07 4281.64 17854.61 18279.22 12287.14 51
MP-MVScopyleft78.35 1978.26 2078.64 3086.54 2563.47 486.02 1983.55 6463.89 3673.60 5990.60 1954.85 4786.72 6777.20 2188.06 3685.74 99
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
QAPM70.05 11568.81 12573.78 11176.54 20753.43 14583.23 5383.48 6552.89 22565.90 18386.29 9541.55 19686.49 7651.01 21078.40 13681.42 211
test1183.47 66
CP-MVS77.12 3176.68 3178.43 3286.05 3863.18 587.55 1083.45 6762.44 6372.68 7590.50 2348.18 11787.34 4973.59 4285.71 5784.76 135
原ACMM174.69 8885.39 4759.40 5383.42 6851.47 24070.27 9886.61 8748.61 11386.51 7553.85 18787.96 3878.16 258
LPG-MVS_test72.74 7171.74 7675.76 6680.22 11057.51 8582.55 6683.40 6961.32 7866.67 16987.33 7339.15 21786.59 7067.70 7677.30 14883.19 183
LGP-MVS_train75.76 6680.22 11057.51 8583.40 6961.32 7866.67 16987.33 7339.15 21786.59 7067.70 7677.30 14883.19 183
test1277.76 4284.52 5858.41 7483.36 7172.93 7254.61 4988.05 3688.12 3586.81 59
PAPR71.72 8970.82 9374.41 10081.20 9651.17 17979.55 11183.33 7255.81 18066.93 16484.61 12950.95 9186.06 8355.79 16979.20 12386.00 85
CANet76.46 3675.93 3978.06 3881.29 9257.53 8482.35 6883.31 7367.78 270.09 9986.34 9454.92 4688.90 2472.68 4784.55 6487.76 31
APD-MVS_3200maxsize74.96 4874.39 5476.67 5382.20 7858.24 7683.67 5083.29 7458.41 13073.71 5890.14 3245.62 14985.99 8669.64 6282.85 8385.78 93
PAPM_NR72.63 7371.80 7575.13 8281.72 8453.42 14679.91 10383.28 7559.14 11866.31 17685.90 10751.86 7986.06 8357.45 15780.62 10085.91 88
EIA-MVS71.78 8670.60 9575.30 7879.85 11953.54 14277.27 14983.26 7657.92 14266.49 17179.39 23952.07 7786.69 6860.05 14279.14 12585.66 101
FC-MVSNet-test69.80 12370.58 9767.46 23377.61 18334.73 34476.05 17483.19 7760.84 8465.88 18586.46 9154.52 5080.76 20252.52 19678.12 13786.91 55
3Dnovator64.47 572.49 7571.39 8275.79 6577.70 17558.99 6780.66 9383.15 7862.24 6565.46 19286.59 8842.38 18585.52 9759.59 14884.72 6282.85 191
MVS_Test72.45 7672.46 7172.42 15374.88 22948.50 22376.28 16883.14 7959.40 11472.46 7984.68 12555.66 3981.12 19065.98 9279.66 11487.63 35
DP-MVS Recon72.15 8370.73 9476.40 5786.57 2457.99 7881.15 8882.96 8057.03 15366.78 16585.56 11344.50 16688.11 3551.77 20580.23 10983.10 186
UniMVSNet (Re)70.63 10570.20 10271.89 15778.55 14945.29 25875.94 17782.92 8163.68 3968.16 13583.59 15153.89 5683.49 14053.97 18571.12 21986.89 56
MAR-MVS71.51 9170.15 10475.60 7381.84 8359.39 5481.38 8582.90 8254.90 20468.08 13878.70 24747.73 12285.51 9851.68 20784.17 6981.88 207
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
nrg03072.96 6973.01 6672.84 14275.41 22450.24 19580.02 9982.89 8358.36 13274.44 4886.73 8258.90 2380.83 19965.84 9374.46 17087.44 41
ACMP63.53 672.30 7871.20 8775.59 7480.28 10857.54 8382.74 6282.84 8460.58 8965.24 20086.18 9639.25 21586.03 8566.95 8576.79 15583.22 181
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ZD-MVS86.64 2160.38 4382.70 8557.95 14178.10 2490.06 3556.12 3788.84 2574.05 3787.00 47
UniMVSNet_NR-MVSNet71.11 9671.00 9171.44 16879.20 13344.13 26776.02 17682.60 8666.48 1068.20 13284.60 13056.82 3282.82 15754.62 18070.43 22687.36 47
alignmvs73.86 6273.99 5773.45 12978.20 16050.50 19378.57 12282.43 8759.40 11476.57 3086.71 8456.42 3581.23 18965.84 9381.79 9288.62 7
Anonymous2023121169.28 13768.47 13271.73 16180.28 10847.18 23979.98 10082.37 8854.61 20767.24 15684.01 14239.43 21282.41 16855.45 17472.83 19785.62 104
mPP-MVS76.54 3575.93 3978.34 3586.47 2663.50 385.74 2482.28 8962.90 5171.77 8590.26 3046.61 14386.55 7371.71 5385.66 5884.97 128
SR-MVS76.13 4175.70 4277.40 4785.87 4061.20 2985.52 2682.19 9059.99 10475.10 3790.35 2747.66 12486.52 7471.64 5482.99 7784.47 141
PS-MVSNAJss72.24 7971.21 8675.31 7778.50 15055.93 11181.63 8082.12 9156.24 17170.02 10385.68 11247.05 13684.34 12365.27 9974.41 17285.67 100
WR-MVS_H67.02 18566.92 17067.33 23777.95 17037.75 31977.57 13882.11 9262.03 7262.65 23482.48 17550.57 9479.46 21842.91 28064.01 29184.79 133
ACMM61.98 770.80 10369.73 10974.02 10580.59 10758.59 7382.68 6382.02 9355.46 18867.18 15884.39 13538.51 22283.17 14560.65 13876.10 16080.30 235
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MSLP-MVS++73.77 6373.47 6374.66 9083.02 7159.29 5782.30 7381.88 9459.34 11671.59 8886.83 7845.94 14783.65 13665.09 10085.22 6081.06 224
MVS67.37 17566.33 18170.51 19175.46 22350.94 18273.95 21581.85 9541.57 33062.54 23778.57 25247.98 11885.47 10152.97 19482.05 8975.14 289
114514_t70.83 10169.56 11174.64 9286.21 3154.63 13282.34 6981.81 9648.22 27363.01 22985.83 10940.92 20487.10 5857.91 15479.79 11182.18 200
PCF-MVS61.88 870.95 9969.49 11475.35 7677.63 17855.71 11476.04 17581.81 9650.30 25469.66 11085.40 11952.51 6984.89 11351.82 20480.24 10885.45 110
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EPP-MVSNet72.16 8271.31 8574.71 8778.68 14749.70 20582.10 7581.65 9860.40 9265.94 18185.84 10851.74 8286.37 7955.93 16679.55 11788.07 22
PVSNet_BlendedMVS68.56 15367.72 14371.07 18177.03 19750.57 19074.50 20681.52 9953.66 21964.22 21979.72 23249.13 10782.87 15355.82 16773.92 17679.77 245
PVSNet_Blended68.59 14967.72 14371.19 17777.03 19750.57 19072.51 23881.52 9951.91 23364.22 21977.77 26449.13 10782.87 15355.82 16779.58 11580.14 238
DU-MVS70.01 11669.53 11371.44 16878.05 16644.13 26775.01 19581.51 10164.37 2768.20 13284.52 13149.12 10982.82 15754.62 18070.43 22687.37 45
dcpmvs_274.55 5675.23 4772.48 14982.34 7753.34 14777.87 13181.46 10257.80 14575.49 3586.81 7962.22 1377.75 24771.09 5782.02 9086.34 72
v114470.42 10969.31 11773.76 11373.22 25150.64 18977.83 13381.43 10358.58 12769.40 11581.16 20347.53 12785.29 10664.01 10870.64 22285.34 116
v1070.21 11369.02 12273.81 11073.51 25050.92 18478.74 11881.39 10460.05 10366.39 17481.83 19247.58 12685.41 10462.80 12068.86 25785.09 124
tt080567.77 16967.24 16569.34 21274.87 23040.08 29977.36 14481.37 10555.31 19066.33 17584.65 12737.35 23582.55 16455.65 17272.28 20885.39 115
SR-MVS-dyc-post74.57 5573.90 5876.58 5583.49 6559.87 4884.29 3681.36 10658.07 13673.14 6790.07 3344.74 16385.84 9068.20 6981.76 9384.03 151
RE-MVS-def73.71 6283.49 6559.87 4884.29 3681.36 10658.07 13673.14 6790.07 3343.06 17868.20 6981.76 9384.03 151
v119269.97 11868.68 12773.85 10873.19 25250.94 18277.68 13681.36 10657.51 14868.95 12380.85 21345.28 15985.33 10562.97 11970.37 22885.27 119
RPMNet61.53 25058.42 26170.86 18369.96 30052.07 17165.31 30081.36 10643.20 32059.36 26970.15 32735.37 25485.47 10136.42 32064.65 28875.06 290
OpenMVScopyleft61.03 968.85 14367.56 14772.70 14674.26 24553.99 13681.21 8781.34 11052.70 22662.75 23285.55 11538.86 22084.14 12548.41 23283.01 7679.97 240
MVS_030478.73 1578.75 1478.66 2980.82 10057.62 8285.31 2981.31 11170.51 174.17 5291.24 1454.99 4489.56 1682.29 188.13 3488.80 6
v7n69.01 14267.36 15873.98 10672.51 26752.65 15878.54 12481.30 11260.26 10062.67 23381.62 19543.61 17384.49 12057.01 15968.70 25984.79 133
MG-MVS73.96 6173.89 5974.16 10485.65 4249.69 20781.59 8381.29 11361.45 7771.05 9188.11 6151.77 8187.73 4461.05 13683.09 7585.05 125
TEST985.58 4361.59 2481.62 8181.26 11455.65 18574.93 4088.81 5553.70 5984.68 117
train_agg76.27 3876.15 3676.64 5485.58 4361.59 2481.62 8181.26 11455.86 17674.93 4088.81 5553.70 5984.68 11775.24 3088.33 3083.65 172
PAPM67.92 16666.69 17171.63 16578.09 16449.02 21577.09 15281.24 11651.04 24860.91 25383.98 14347.71 12384.99 10840.81 29279.32 12180.90 226
test_885.40 4660.96 3481.54 8481.18 11755.86 17674.81 4388.80 5753.70 5984.45 121
TranMVSNet+NR-MVSNet70.36 11070.10 10671.17 17878.64 14842.97 27976.53 16381.16 11866.95 568.53 12885.42 11851.61 8383.07 14652.32 19769.70 24487.46 40
HPM-MVS_fast74.30 5973.46 6476.80 5184.45 6059.04 6583.65 5181.05 11960.15 10170.43 9589.84 4241.09 20385.59 9567.61 7882.90 8185.77 96
agg_prior85.04 5059.96 4681.04 12074.68 4684.04 127
Anonymous2024052969.91 11969.02 12272.56 14780.19 11347.65 23377.56 13980.99 12155.45 18969.88 10786.76 8039.24 21682.18 17154.04 18477.10 15187.85 26
MTGPAbinary80.97 122
MTAPA76.90 3376.42 3478.35 3486.08 3763.57 274.92 19880.97 12265.13 1475.77 3490.88 1648.63 11286.66 6977.23 2088.17 3384.81 132
NR-MVSNet69.54 13168.85 12471.59 16678.05 16643.81 27174.20 21080.86 12465.18 1362.76 23184.52 13152.35 7483.59 13850.96 21270.78 22187.37 45
v870.33 11169.28 11873.49 12773.15 25350.22 19678.62 12180.78 12560.79 8566.45 17382.11 18749.35 10284.98 11063.58 11468.71 25885.28 118
v14419269.71 12468.51 12973.33 13473.10 25450.13 19877.54 14080.64 12656.65 15868.57 12780.55 21646.87 14184.96 11262.98 11869.66 24584.89 130
v192192069.47 13368.17 13773.36 13373.06 25550.10 19977.39 14380.56 12756.58 16568.59 12580.37 21844.72 16484.98 11062.47 12469.82 24085.00 126
v124069.24 13967.91 14173.25 13773.02 25749.82 20377.21 15080.54 12856.43 16768.34 13180.51 21743.33 17684.99 10862.03 12869.77 24384.95 129
v2v48270.50 10869.45 11673.66 11972.62 26350.03 20177.58 13780.51 12959.90 10569.52 11182.14 18547.53 12784.88 11565.07 10170.17 23286.09 83
PEN-MVS66.60 19466.45 17467.04 23877.11 19536.56 33277.03 15480.42 13062.95 4962.51 23984.03 14146.69 14279.07 22944.22 26463.08 30185.51 107
API-MVS72.17 8171.41 8174.45 9981.95 8257.22 8884.03 4480.38 13159.89 10868.40 12982.33 17849.64 10087.83 4351.87 20384.16 7078.30 256
PVSNet_Blended_VisFu71.45 9370.39 9974.65 9182.01 7958.82 7079.93 10280.35 13255.09 19665.82 18782.16 18449.17 10682.64 16260.34 14078.62 13482.50 196
test_yl69.69 12569.13 11971.36 17278.37 15545.74 25174.71 20280.20 13357.91 14370.01 10483.83 14642.44 18382.87 15354.97 17679.72 11285.48 108
DCV-MVSNet69.69 12569.13 11971.36 17278.37 15545.74 25174.71 20280.20 13357.91 14370.01 10483.83 14642.44 18382.87 15354.97 17679.72 11285.48 108
TAPA-MVS59.36 1066.60 19465.20 20070.81 18476.63 20448.75 21976.52 16480.04 13550.64 25165.24 20084.93 12239.15 21778.54 23636.77 31376.88 15485.14 121
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OMC-MVS71.40 9470.60 9573.78 11176.60 20553.15 15179.74 10779.78 13658.37 13168.75 12486.45 9245.43 15680.60 20362.58 12177.73 14187.58 38
ACMH55.70 1565.20 21363.57 21570.07 19778.07 16552.01 17479.48 11279.69 13755.75 18256.59 29280.98 20827.12 32580.94 19542.90 28171.58 21577.25 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPA-MVSNet69.02 14169.47 11567.69 23177.42 18741.00 29774.04 21279.68 13860.06 10269.26 11984.81 12451.06 9077.58 24954.44 18374.43 17184.48 140
save fliter86.17 3361.30 2883.98 4679.66 13959.00 119
Effi-MVS+73.31 6672.54 7075.62 7277.87 17153.64 13979.62 11079.61 14061.63 7672.02 8482.61 16956.44 3485.97 8763.99 10979.07 12687.25 49
PS-CasMVS66.42 19866.32 18266.70 24277.60 18536.30 33776.94 15679.61 14062.36 6462.43 24183.66 14945.69 14878.37 23745.35 26163.26 29985.42 113
CP-MVSNet66.49 19766.41 17866.72 24077.67 17736.33 33576.83 16079.52 14262.45 6262.54 23783.47 15746.32 14478.37 23745.47 25963.43 29885.45 110
V4268.65 14867.35 15972.56 14768.93 31250.18 19772.90 23179.47 14356.92 15569.45 11480.26 22246.29 14582.99 14764.07 10667.82 26484.53 138
Fast-Effi-MVS+70.28 11269.12 12173.73 11678.50 15051.50 17875.01 19579.46 14456.16 17368.59 12579.55 23653.97 5484.05 12653.34 19177.53 14485.65 102
DTE-MVSNet65.58 20665.34 19766.31 24576.06 21434.79 34176.43 16579.38 14562.55 6061.66 24883.83 14645.60 15079.15 22741.64 29160.88 31585.00 126
EI-MVSNet-Vis-set72.42 7771.59 7774.91 8378.47 15254.02 13577.05 15379.33 14665.03 1771.68 8779.35 24152.75 6784.89 11366.46 8674.23 17385.83 92
EI-MVSNet-UG-set71.92 8471.06 9074.52 9877.98 16953.56 14176.62 16179.16 14764.40 2671.18 9078.95 24652.19 7584.66 11965.47 9773.57 18385.32 117
SDMVSNet68.03 16268.10 13967.84 22977.13 19348.72 22165.32 29979.10 14858.02 13865.08 20382.55 17147.83 12173.40 27763.92 11073.92 17681.41 212
XVG-OURS-SEG-HR68.81 14467.47 15472.82 14474.40 24256.87 9870.59 26479.04 14954.77 20566.99 16186.01 10339.57 21178.21 24062.54 12273.33 18983.37 177
PS-MVSNAJ70.51 10769.70 11072.93 14081.52 8655.79 11374.92 19879.00 15055.04 20169.88 10778.66 24847.05 13682.19 17061.61 13179.58 11580.83 227
FA-MVS(test-final)69.82 12168.48 13073.84 10978.44 15350.04 20075.58 18478.99 15158.16 13467.59 15182.14 18542.66 18085.63 9356.60 16176.19 15985.84 91
xiu_mvs_v2_base70.52 10669.75 10872.84 14281.21 9555.63 11775.11 19278.92 15254.92 20369.96 10679.68 23347.00 14082.09 17261.60 13279.37 11880.81 228
EG-PatchMatch MVS64.71 21862.87 22470.22 19377.68 17653.48 14377.99 13078.82 15353.37 22156.03 29577.41 26724.75 34084.04 12746.37 24773.42 18873.14 308
XVG-OURS68.76 14767.37 15772.90 14174.32 24457.22 8870.09 27178.81 15455.24 19267.79 14885.81 11136.54 24778.28 23962.04 12775.74 16383.19 183
c3_l68.33 15667.56 14770.62 18870.87 28746.21 24774.47 20778.80 15556.22 17266.19 17778.53 25351.88 7881.40 18362.08 12569.04 25484.25 145
ambc65.13 26563.72 34237.07 32747.66 36078.78 15654.37 31471.42 31611.24 36780.94 19545.64 25453.85 34377.38 267
AdaColmapbinary69.99 11768.66 12873.97 10784.94 5457.83 7982.63 6478.71 15756.28 17064.34 21484.14 13841.57 19487.06 6046.45 24678.88 12777.02 273
IS-MVSNet71.57 9071.00 9173.27 13578.86 14145.63 25580.22 9678.69 15864.14 3466.46 17287.36 7249.30 10385.60 9450.26 21683.71 7388.59 8
miper_ehance_all_eth68.03 16267.24 16570.40 19270.54 29046.21 24773.98 21378.68 15955.07 19966.05 17977.80 26252.16 7681.31 18661.53 13569.32 24883.67 169
cdsmvs_eth3d_5k17.50 34923.34 3480.00 3690.00 3920.00 3920.00 38078.63 1600.00 3870.00 38882.18 18149.25 1050.00 3860.00 3860.00 3840.00 384
TSAR-MVS + GP.74.90 4974.15 5677.17 4882.00 8058.77 7181.80 7878.57 16158.58 12774.32 5084.51 13355.94 3887.22 5167.11 8284.48 6685.52 106
mvs_tets68.18 16066.36 18073.63 12275.61 22055.35 12480.77 9178.56 16252.48 22964.27 21784.10 14027.45 32381.84 17663.45 11670.56 22583.69 168
MVP-Stereo65.41 20963.80 21270.22 19377.62 18255.53 12076.30 16778.53 16350.59 25256.47 29378.65 24939.84 20882.68 16044.10 26872.12 21072.44 317
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
jajsoiax68.25 15866.45 17473.66 11975.62 21955.49 12180.82 9078.51 16452.33 23064.33 21584.11 13928.28 31781.81 17763.48 11570.62 22383.67 169
MVSFormer71.50 9270.38 10074.88 8478.76 14457.15 9382.79 6078.48 16551.26 24469.49 11283.22 15843.99 17183.24 14366.06 8979.37 11884.23 146
test_djsdf69.45 13467.74 14274.58 9574.57 23854.92 12982.79 6078.48 16551.26 24465.41 19383.49 15638.37 22483.24 14366.06 8969.25 25185.56 105
diffmvspermissive70.69 10470.43 9871.46 16769.45 30648.95 21772.93 23078.46 16757.27 15071.69 8683.97 14451.48 8477.92 24470.70 5977.95 14087.53 39
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet69.27 13868.44 13471.73 16174.47 23949.39 21275.20 19078.45 16859.60 11069.16 12176.51 27851.29 8582.50 16559.86 14771.45 21783.30 178
XVG-ACMP-BASELINE64.36 22362.23 23270.74 18672.35 26952.45 16670.80 26378.45 16853.84 21659.87 26281.10 20516.24 35679.32 22155.64 17371.76 21280.47 231
MVSTER67.16 18265.58 19571.88 15870.37 29449.70 20570.25 27078.45 16851.52 23869.16 12180.37 21838.45 22382.50 16560.19 14171.46 21683.44 176
miper_enhance_ethall67.11 18366.09 18770.17 19669.21 30945.98 24972.85 23278.41 17151.38 24165.65 18875.98 28651.17 8881.25 18760.82 13769.32 24883.29 180
MVS_111021_HR74.02 6073.46 6475.69 6983.01 7260.63 4077.29 14878.40 17261.18 8170.58 9485.97 10454.18 5384.00 13067.52 7982.98 7982.45 197
131464.61 22063.21 22168.80 21971.87 27647.46 23673.95 21578.39 17342.88 32359.97 26076.60 27738.11 22879.39 22054.84 17872.32 20679.55 246
Vis-MVSNetpermissive72.18 8071.37 8374.61 9381.29 9255.41 12280.90 8978.28 17460.73 8769.23 12088.09 6244.36 16882.65 16157.68 15581.75 9585.77 96
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
RRT_MVS69.42 13567.49 15375.21 8178.01 16852.56 16282.23 7478.15 17555.84 17865.65 18885.07 12030.86 29686.83 6461.56 13470.00 23586.24 81
GeoE71.01 9870.15 10473.60 12479.57 12452.17 16978.93 11678.12 17658.02 13867.76 15083.87 14552.36 7382.72 15956.90 16075.79 16285.92 87
ACMH+57.40 1166.12 20064.06 20772.30 15577.79 17452.83 15680.39 9478.03 17757.30 14957.47 28682.55 17127.68 32184.17 12445.54 25669.78 24179.90 241
eth_miper_zixun_eth67.63 17166.28 18471.67 16371.60 27848.33 22573.68 22377.88 17855.80 18165.91 18278.62 25147.35 13382.88 15259.45 14966.25 27683.81 161
CPTT-MVS72.78 7072.08 7474.87 8584.88 5761.41 2684.15 4277.86 17955.27 19167.51 15388.08 6341.93 18981.85 17569.04 6780.01 11081.35 217
GBi-Net67.21 17766.55 17269.19 21377.63 17843.33 27477.31 14577.83 18056.62 16165.04 20582.70 16541.85 19080.33 20947.18 24072.76 19883.92 156
test167.21 17766.55 17269.19 21377.63 17843.33 27477.31 14577.83 18056.62 16165.04 20582.70 16541.85 19080.33 20947.18 24072.76 19883.92 156
FMVSNet166.70 19265.87 18969.19 21377.49 18643.33 27477.31 14577.83 18056.45 16664.60 21382.70 16538.08 22980.33 20946.08 24972.31 20783.92 156
UA-Net73.13 6772.93 6773.76 11383.58 6451.66 17778.75 11777.66 18367.75 372.61 7789.42 4649.82 9883.29 14253.61 18983.14 7486.32 76
VDD-MVS72.50 7472.09 7373.75 11581.58 8549.69 20777.76 13577.63 18463.21 4673.21 6589.02 5242.14 18683.32 14161.72 13082.50 8688.25 14
IterMVS-LS69.22 14068.48 13071.43 17074.44 24149.40 21176.23 16977.55 18559.60 11065.85 18681.59 19851.28 8681.58 18159.87 14669.90 23983.30 178
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet266.93 18766.31 18368.79 22077.63 17842.98 27876.11 17177.47 18656.62 16165.22 20282.17 18341.85 19080.18 21247.05 24372.72 20183.20 182
PLCcopyleft56.13 1465.09 21463.21 22170.72 18781.04 9854.87 13078.57 12277.47 18648.51 26955.71 29681.89 19033.71 27079.71 21441.66 28970.37 22877.58 265
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
BH-untuned68.27 15767.29 16071.21 17679.74 12053.22 15076.06 17377.46 18857.19 15166.10 17881.61 19645.37 15883.50 13945.42 26076.68 15776.91 277
VNet69.68 12770.19 10368.16 22779.73 12141.63 29270.53 26577.38 18960.37 9570.69 9386.63 8651.08 8977.09 25753.61 18981.69 9785.75 98
cl2267.47 17466.45 17470.54 19069.85 30246.49 24373.85 22077.35 19055.07 19965.51 19177.92 25847.64 12581.10 19161.58 13369.32 24884.01 153
anonymousdsp67.00 18664.82 20373.57 12570.09 29856.13 10676.35 16677.35 19048.43 27164.99 20880.84 21433.01 27880.34 20864.66 10367.64 26684.23 146
cascas65.98 20163.42 21773.64 12177.26 19152.58 16172.26 24277.21 19248.56 26861.21 25274.60 29832.57 28985.82 9150.38 21576.75 15682.52 195
FMVSNet366.32 19965.61 19468.46 22376.48 20842.34 28274.98 19777.15 19355.83 17965.04 20581.16 20339.91 20780.14 21347.18 24072.76 19882.90 190
v14868.24 15967.19 16771.40 17170.43 29247.77 23275.76 18077.03 19458.91 12067.36 15480.10 22548.60 11481.89 17460.01 14366.52 27584.53 138
Fast-Effi-MVS+-dtu67.37 17565.33 19873.48 12872.94 25857.78 8177.47 14276.88 19557.60 14761.97 24476.85 27239.31 21380.49 20754.72 17970.28 23182.17 202
CANet_DTU68.18 16067.71 14569.59 20774.83 23146.24 24678.66 12076.85 19659.60 11063.45 22582.09 18835.25 25577.41 25259.88 14578.76 13185.14 121
cl____67.18 18066.26 18569.94 19970.20 29545.74 25173.30 22576.83 19755.10 19465.27 19679.57 23547.39 13180.53 20459.41 15169.22 25283.53 175
DIV-MVS_self_test67.18 18066.26 18569.94 19970.20 29545.74 25173.29 22676.83 19755.10 19465.27 19679.58 23447.38 13280.53 20459.43 15069.22 25283.54 174
h-mvs3372.71 7271.49 7976.40 5781.99 8159.58 5176.92 15776.74 19960.40 9274.81 4385.95 10645.54 15285.76 9270.41 6070.61 22483.86 160
BH-w/o66.85 18865.83 19069.90 20279.29 12952.46 16574.66 20476.65 20054.51 21164.85 20978.12 25445.59 15182.95 14943.26 27675.54 16574.27 302
LTVRE_ROB55.42 1663.15 23561.23 24468.92 21876.57 20647.80 23059.92 32876.39 20154.35 21358.67 27782.46 17629.44 30881.49 18242.12 28571.14 21877.46 266
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
BH-RMVSNet68.81 14467.42 15572.97 13980.11 11652.53 16374.26 20976.29 20258.48 12968.38 13084.20 13642.59 18183.83 13246.53 24575.91 16182.56 192
test_fmvsm_n_192071.73 8871.14 8873.50 12672.52 26656.53 10075.60 18176.16 20348.11 27577.22 2885.56 11353.10 6677.43 25174.86 3177.14 15086.55 66
F-COLMAP63.05 23660.87 24969.58 20976.99 19953.63 14078.12 12976.16 20347.97 27852.41 32681.61 19627.87 31978.11 24140.07 29566.66 27377.00 274
ab-mvs66.65 19366.42 17767.37 23576.17 21241.73 28970.41 26876.14 20553.99 21465.98 18083.51 15549.48 10176.24 26648.60 23073.46 18784.14 149
WR-MVS68.47 15468.47 13268.44 22480.20 11239.84 30173.75 22276.07 20664.68 2168.11 13783.63 15050.39 9679.14 22849.78 21769.66 24586.34 72
Effi-MVS+-dtu69.64 12967.53 15075.95 6376.10 21362.29 1580.20 9776.06 20759.83 10965.26 19977.09 26841.56 19584.02 12960.60 13971.09 22081.53 210
FE-MVS65.91 20263.33 21973.63 12277.36 18951.95 17572.62 23575.81 20853.70 21765.31 19478.96 24528.81 31486.39 7843.93 26973.48 18682.55 193
MSDG61.81 24859.23 25469.55 21072.64 26252.63 16070.45 26775.81 20851.38 24153.70 31876.11 28229.52 30681.08 19337.70 30765.79 28074.93 294
miper_lstm_enhance62.03 24560.88 24865.49 26166.71 32546.25 24556.29 34275.70 21050.68 24961.27 25175.48 29140.21 20668.03 30256.31 16465.25 28382.18 200
pm-mvs165.24 21264.97 20266.04 25372.38 26839.40 30672.62 23575.63 21155.53 18762.35 24383.18 16047.45 12976.47 26349.06 22766.54 27482.24 199
UniMVSNet_ETH3D67.60 17267.07 16969.18 21677.39 18842.29 28374.18 21175.59 21260.37 9566.77 16686.06 10137.64 23178.93 23552.16 19973.49 18586.32 76
HyFIR lowres test65.67 20563.01 22373.67 11879.97 11855.65 11669.07 27875.52 21342.68 32463.53 22477.95 25640.43 20581.64 17846.01 25071.91 21183.73 167
pmmvs663.69 22762.82 22666.27 24770.63 28939.27 30773.13 22875.47 21452.69 22759.75 26682.30 17939.71 21077.03 25847.40 23764.35 29082.53 194
UGNet68.81 14467.39 15673.06 13878.33 15754.47 13379.77 10575.40 21560.45 9163.22 22684.40 13432.71 28580.91 19851.71 20680.56 10483.81 161
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VDDNet71.81 8571.33 8473.26 13682.80 7547.60 23578.74 11875.27 21659.59 11372.94 7189.40 4741.51 19783.91 13158.75 15282.99 7788.26 13
hse-mvs271.04 9769.86 10774.60 9479.58 12357.12 9573.96 21475.25 21760.40 9274.81 4381.95 18945.54 15282.90 15070.41 6066.83 27283.77 165
AUN-MVS68.45 15566.41 17874.57 9679.53 12557.08 9673.93 21775.23 21854.44 21266.69 16881.85 19137.10 24282.89 15162.07 12666.84 27183.75 166
mvs_anonymous68.03 16267.51 15169.59 20772.08 27244.57 26571.99 24575.23 21851.67 23467.06 16082.57 17054.68 4877.94 24356.56 16275.71 16486.26 80
TR-MVS66.59 19665.07 20171.17 17879.18 13449.63 20973.48 22475.20 22052.95 22367.90 14080.33 22139.81 20983.68 13543.20 27773.56 18480.20 236
IB-MVS56.42 1265.40 21062.73 22773.40 13274.89 22852.78 15773.09 22975.13 22155.69 18358.48 28073.73 30332.86 28086.32 8150.63 21370.11 23381.10 223
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
mvsmamba71.15 9569.54 11275.99 6277.61 18353.46 14481.95 7775.11 22257.73 14666.95 16385.96 10537.14 24087.56 4767.94 7375.49 16686.97 53
xiu_mvs_v1_base_debu68.58 15067.28 16172.48 14978.19 16157.19 9075.28 18775.09 22351.61 23570.04 10081.41 20032.79 28179.02 23063.81 11177.31 14581.22 219
xiu_mvs_v1_base68.58 15067.28 16172.48 14978.19 16157.19 9075.28 18775.09 22351.61 23570.04 10081.41 20032.79 28179.02 23063.81 11177.31 14581.22 219
xiu_mvs_v1_base_debi68.58 15067.28 16172.48 14978.19 16157.19 9075.28 18775.09 22351.61 23570.04 10081.41 20032.79 28179.02 23063.81 11177.31 14581.22 219
TransMVSNet (Re)64.72 21764.33 20665.87 25775.22 22638.56 31274.66 20475.08 22658.90 12161.79 24782.63 16851.18 8778.07 24243.63 27355.87 33680.99 225
ET-MVSNet_ETH3D67.96 16565.72 19274.68 8976.67 20355.62 11975.11 19274.74 22752.91 22460.03 25980.12 22433.68 27182.64 16261.86 12976.34 15885.78 93
LS3D64.71 21862.50 22971.34 17479.72 12255.71 11479.82 10474.72 22848.50 27056.62 29184.62 12833.59 27382.34 16929.65 35475.23 16875.97 281
Baseline_NR-MVSNet67.05 18467.56 14765.50 26075.65 21837.70 32175.42 18574.65 22959.90 10568.14 13683.15 16149.12 10977.20 25552.23 19869.78 24181.60 209
HY-MVS56.14 1364.55 22163.89 20966.55 24374.73 23541.02 29469.96 27274.43 23049.29 26161.66 24880.92 21047.43 13076.68 26144.91 26371.69 21381.94 205
GA-MVS65.53 20763.70 21371.02 18270.87 28748.10 22770.48 26674.40 23156.69 15764.70 21176.77 27333.66 27281.10 19155.42 17570.32 23083.87 159
KD-MVS_self_test55.22 29153.89 29759.21 29657.80 36127.47 37057.75 33774.32 23247.38 28450.90 33270.00 32828.45 31670.30 29340.44 29457.92 32779.87 242
patch_mono-269.85 12071.09 8966.16 24979.11 13754.80 13171.97 24674.31 23353.50 22070.90 9284.17 13757.63 2963.31 32066.17 8882.02 9080.38 234
无先验79.66 10974.30 23448.40 27280.78 20153.62 18879.03 252
thisisatest053067.92 16665.78 19174.33 10276.29 21051.03 18176.89 15874.25 23553.67 21865.59 19081.76 19335.15 25685.50 9955.94 16572.47 20286.47 67
CHOSEN 1792x268865.08 21562.84 22571.82 15981.49 8856.26 10466.32 29074.20 23640.53 33563.16 22878.65 24941.30 19877.80 24645.80 25274.09 17481.40 214
MS-PatchMatch62.42 24061.46 24065.31 26475.21 22752.10 17072.05 24474.05 23746.41 29357.42 28874.36 29934.35 26577.57 25045.62 25573.67 18066.26 349
tttt051767.83 16865.66 19374.33 10276.69 20250.82 18677.86 13273.99 23854.54 21064.64 21282.53 17435.06 25785.50 9955.71 17069.91 23886.67 62
iter_conf_final69.82 12168.02 14075.23 8079.38 12852.91 15580.11 9873.96 23954.99 20268.04 13983.59 15129.05 31087.16 5465.41 9877.62 14285.63 103
USDC56.35 28354.24 29462.69 28164.74 33640.31 29865.05 30273.83 24043.93 31547.58 34377.71 26515.36 35875.05 27038.19 30661.81 31072.70 312
tfpnnormal62.47 23961.63 23864.99 26674.81 23239.01 30871.22 25573.72 24155.22 19360.21 25680.09 22641.26 20176.98 25930.02 35268.09 26278.97 253
iter_conf0569.40 13667.62 14674.73 8677.84 17251.13 18079.28 11373.71 24254.62 20668.17 13483.59 15128.68 31587.16 5465.74 9576.95 15285.91 88
jason69.65 12868.39 13573.43 13178.27 15956.88 9777.12 15173.71 24246.53 29269.34 11683.22 15843.37 17579.18 22364.77 10279.20 12384.23 146
jason: jason.
D2MVS62.30 24260.29 25168.34 22666.46 32848.42 22465.70 29373.42 24447.71 28058.16 28275.02 29430.51 29877.71 24853.96 18671.68 21478.90 254
COLMAP_ROBcopyleft52.97 1761.27 25458.81 25768.64 22174.63 23652.51 16478.42 12573.30 24549.92 25850.96 33181.51 19923.06 34479.40 21931.63 34365.85 27874.01 305
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
lupinMVS69.57 13068.28 13673.44 13078.76 14457.15 9376.57 16273.29 24646.19 29569.49 11282.18 18143.99 17179.23 22264.66 10379.37 11883.93 155
DP-MVS65.68 20463.66 21471.75 16084.93 5556.87 9880.74 9273.16 24753.06 22259.09 27382.35 17736.79 24685.94 8832.82 33569.96 23772.45 316
thisisatest051565.83 20363.50 21672.82 14473.75 24849.50 21071.32 25373.12 24849.39 26063.82 22176.50 28034.95 25984.84 11653.20 19375.49 16684.13 150
VPNet67.52 17368.11 13865.74 25879.18 13436.80 33072.17 24372.83 24962.04 7167.79 14885.83 10948.88 11176.60 26251.30 20872.97 19683.81 161
CL-MVSNet_self_test61.53 25060.94 24763.30 27668.95 31136.93 32967.60 28472.80 25055.67 18459.95 26176.63 27445.01 16272.22 28439.74 29962.09 30880.74 229
OurMVSNet-221017-061.37 25358.63 26069.61 20672.05 27348.06 22873.93 21772.51 25147.23 28854.74 30880.92 21021.49 35081.24 18848.57 23156.22 33579.53 247
EPNet73.09 6872.16 7275.90 6475.95 21556.28 10383.05 5572.39 25266.53 965.27 19687.00 7750.40 9585.47 10162.48 12386.32 5585.94 86
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
1112_ss64.00 22563.36 21865.93 25579.28 13042.58 28171.35 25272.36 25346.41 29360.55 25577.89 26046.27 14673.28 27846.18 24869.97 23681.92 206
test_fmvsmvis_n_192070.84 10070.38 10072.22 15671.16 28555.39 12375.86 17872.21 25449.03 26473.28 6486.17 9751.83 8077.29 25475.80 2778.05 13883.98 154
sd_testset64.46 22264.45 20564.51 26977.13 19342.25 28462.67 31272.11 25558.02 13865.08 20382.55 17141.22 20269.88 29547.32 23873.92 17681.41 212
test_040263.25 23361.01 24669.96 19880.00 11754.37 13476.86 15972.02 25654.58 20958.71 27680.79 21535.00 25884.36 12226.41 36364.71 28771.15 332
EU-MVSNet55.61 28854.41 29159.19 29765.41 33433.42 35272.44 23971.91 25728.81 35451.27 32973.87 30224.76 33969.08 29843.04 27858.20 32675.06 290
KD-MVS_2432*160053.45 29951.50 30759.30 29362.82 34337.14 32555.33 34371.79 25847.34 28655.09 30470.52 32321.91 34870.45 29135.72 32342.97 36170.31 337
miper_refine_blended53.45 29951.50 30759.30 29362.82 34337.14 32555.33 34371.79 25847.34 28655.09 30470.52 32321.91 34870.45 29135.72 32342.97 36170.31 337
Anonymous20240521166.84 18965.99 18869.40 21180.19 11342.21 28571.11 25971.31 26058.80 12267.90 14086.39 9329.83 30579.65 21549.60 22378.78 13086.33 74
LFMVS71.78 8671.59 7772.32 15483.40 6746.38 24479.75 10671.08 26164.18 3172.80 7388.64 5842.58 18283.72 13457.41 15884.49 6586.86 57
CDS-MVSNet66.80 19065.37 19671.10 18078.98 13953.13 15373.27 22771.07 26252.15 23264.72 21080.23 22343.56 17477.10 25645.48 25878.88 12783.05 187
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Anonymous2024052155.30 28954.41 29157.96 30660.92 35541.73 28971.09 26071.06 26341.18 33148.65 34173.31 30516.93 35459.25 33642.54 28264.01 29172.90 310
OpenMVS_ROBcopyleft52.78 1860.03 25858.14 26565.69 25970.47 29144.82 26075.33 18670.86 26445.04 30356.06 29476.00 28326.89 32879.65 21535.36 32567.29 26872.60 313
CNLPA65.43 20864.02 20869.68 20578.73 14658.07 7777.82 13470.71 26551.49 23961.57 25083.58 15438.23 22770.82 28843.90 27070.10 23480.16 237
CostFormer64.04 22462.51 22868.61 22271.88 27545.77 25071.30 25470.60 26647.55 28264.31 21676.61 27641.63 19379.62 21749.74 21969.00 25580.42 232
Test_1112_low_res62.32 24161.77 23664.00 27279.08 13839.53 30568.17 28070.17 26743.25 31959.03 27479.90 22744.08 16971.24 28743.79 27268.42 26081.25 218
MVS_111021_LR69.50 13268.78 12671.65 16478.38 15459.33 5574.82 20070.11 26858.08 13567.83 14684.68 12541.96 18876.34 26565.62 9677.54 14379.30 250
ANet_high41.38 32937.47 33653.11 33039.73 38024.45 37656.94 33969.69 26947.65 28126.04 37252.32 36412.44 36262.38 32421.80 36710.61 38172.49 315
SixPastTwentyTwo61.65 24958.80 25870.20 19575.80 21647.22 23875.59 18269.68 27054.61 20754.11 31579.26 24227.07 32682.96 14843.27 27549.79 35380.41 233
IterMVS-SCA-FT62.49 23861.52 23965.40 26271.99 27450.80 18771.15 25869.63 27145.71 30160.61 25477.93 25737.45 23365.99 31355.67 17163.50 29779.42 248
TAMVS66.78 19165.27 19971.33 17579.16 13653.67 13873.84 22169.59 27252.32 23165.28 19581.72 19444.49 16777.40 25342.32 28478.66 13382.92 188
CMPMVSbinary42.80 2157.81 27355.97 28063.32 27560.98 35347.38 23764.66 30469.50 27332.06 35146.83 34777.80 26229.50 30771.36 28648.68 22973.75 17971.21 331
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
tfpn200view963.18 23462.18 23366.21 24876.85 20039.62 30371.96 24769.44 27456.63 15962.61 23579.83 22837.18 23779.17 22431.84 33973.25 19179.83 243
thres40063.31 23062.18 23366.72 24076.85 20039.62 30371.96 24769.44 27456.63 15962.61 23579.83 22837.18 23779.17 22431.84 33973.25 19181.36 215
thres20062.20 24361.16 24565.34 26375.38 22539.99 30069.60 27469.29 27655.64 18661.87 24676.99 26937.07 24378.96 23431.28 34773.28 19077.06 272
UnsupCasMVSNet_eth53.16 30452.47 30255.23 31759.45 35733.39 35359.43 33069.13 27745.98 29750.35 33872.32 30929.30 30958.26 34042.02 28744.30 35974.05 304
thres100view90063.28 23262.41 23065.89 25677.31 19038.66 31172.65 23369.11 27857.07 15262.45 24081.03 20737.01 24479.17 22431.84 33973.25 19179.83 243
thres600view763.30 23162.27 23166.41 24477.18 19238.87 30972.35 24069.11 27856.98 15462.37 24280.96 20937.01 24479.00 23331.43 34673.05 19581.36 215
CVMVSNet59.63 26259.14 25561.08 29174.47 23938.84 31075.20 19068.74 28031.15 35258.24 28176.51 27832.39 29068.58 30049.77 21865.84 27975.81 283
TinyColmap54.14 29451.72 30561.40 28966.84 32441.97 28666.52 28868.51 28144.81 30442.69 35975.77 28711.66 36472.94 27931.96 33756.77 33369.27 345
baseline263.42 22961.26 24369.89 20372.55 26547.62 23471.54 25068.38 28250.11 25554.82 30775.55 29043.06 17880.96 19448.13 23367.16 27081.11 222
IterMVS62.79 23761.27 24267.35 23669.37 30752.04 17371.17 25668.24 28352.63 22859.82 26376.91 27137.32 23672.36 28152.80 19563.19 30077.66 264
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
旧先验183.04 7053.15 15167.52 28487.85 6844.08 16980.76 9978.03 263
AllTest57.08 27754.65 28864.39 27071.44 28049.03 21369.92 27367.30 28545.97 29847.16 34579.77 23017.47 35267.56 30433.65 33059.16 32376.57 278
TestCases64.39 27071.44 28049.03 21367.30 28545.97 29847.16 34579.77 23017.47 35267.56 30433.65 33059.16 32376.57 278
baseline163.81 22663.87 21163.62 27376.29 21036.36 33371.78 24967.29 28756.05 17564.23 21882.95 16347.11 13574.41 27347.30 23961.85 30980.10 239
tpmvs58.47 26656.95 27263.03 28070.20 29541.21 29367.90 28367.23 28849.62 25954.73 30970.84 32034.14 26676.24 26636.64 31761.29 31371.64 326
Gipumacopyleft34.77 33731.91 34143.33 34962.05 34837.87 31620.39 37667.03 28923.23 36418.41 37725.84 3774.24 37862.73 32214.71 37351.32 34829.38 376
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ECVR-MVScopyleft67.72 17067.51 15168.35 22579.46 12636.29 33874.79 20166.93 29058.72 12367.19 15788.05 6436.10 24881.38 18452.07 20084.25 6787.39 43
tpm262.07 24460.10 25267.99 22872.79 26043.86 27071.05 26166.85 29143.14 32162.77 23075.39 29238.32 22580.80 20041.69 28868.88 25679.32 249
XXY-MVS60.68 25561.67 23757.70 30970.43 29238.45 31364.19 30666.47 29248.05 27763.22 22680.86 21249.28 10460.47 32945.25 26267.28 26974.19 303
新几何170.76 18585.66 4161.13 3066.43 29344.68 30670.29 9786.64 8541.29 19975.23 26949.72 22081.75 9575.93 282
test_vis1_n_192058.86 26459.06 25658.25 30263.76 34043.14 27767.49 28566.36 29440.22 33765.89 18471.95 31331.04 29459.75 33459.94 14464.90 28571.85 325
ppachtmachnet_test58.06 27155.38 28466.10 25269.51 30448.99 21668.01 28266.13 29544.50 30854.05 31670.74 32132.09 29272.34 28236.68 31656.71 33476.99 276
tpm cat159.25 26356.95 27266.15 25072.19 27146.96 24068.09 28165.76 29640.03 33957.81 28470.56 32238.32 22574.51 27238.26 30561.50 31277.00 274
test111167.21 17767.14 16867.42 23479.24 13234.76 34373.89 21965.65 29758.71 12566.96 16287.95 6636.09 24980.53 20452.03 20183.79 7286.97 53
EPNet_dtu61.90 24661.97 23561.68 28672.89 25939.78 30275.85 17965.62 29855.09 19654.56 31179.36 24037.59 23267.02 30739.80 29876.95 15278.25 257
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs461.48 25259.39 25367.76 23071.57 27953.86 13771.42 25165.34 29944.20 31159.46 26877.92 25835.90 25074.71 27143.87 27164.87 28674.71 298
testdata64.66 26781.52 8652.93 15465.29 30046.09 29673.88 5687.46 7138.08 22966.26 31253.31 19278.48 13574.78 297
TDRefinement53.44 30150.72 31061.60 28764.31 33946.96 24070.89 26265.27 30141.78 32644.61 35477.98 25511.52 36666.36 31128.57 35851.59 34771.49 329
MIMVSNet155.17 29254.31 29357.77 30870.03 29932.01 35865.68 29464.81 30249.19 26246.75 34876.00 28325.53 33664.04 31828.65 35762.13 30777.26 270
pmmvs-eth3d58.81 26556.31 27966.30 24667.61 31952.42 16772.30 24164.76 30343.55 31754.94 30674.19 30128.95 31172.60 28043.31 27457.21 33073.88 306
MDTV_nov1_ep1357.00 27172.73 26138.26 31465.02 30364.73 30444.74 30555.46 29872.48 30832.61 28870.47 29037.47 30867.75 265
UnsupCasMVSNet_bld50.07 31548.87 31653.66 32660.97 35433.67 35157.62 33864.56 30539.47 34147.38 34464.02 35327.47 32259.32 33534.69 32743.68 36067.98 348
ITE_SJBPF62.09 28566.16 33044.55 26664.32 30647.36 28555.31 30180.34 22019.27 35162.68 32336.29 32162.39 30679.04 251
dmvs_re56.77 27956.83 27456.61 31269.23 30841.02 29458.37 33364.18 30750.59 25257.45 28771.42 31635.54 25358.94 33737.23 31067.45 26769.87 341
WTY-MVS59.75 26160.39 25057.85 30772.32 27037.83 31861.05 32464.18 30745.95 30061.91 24579.11 24447.01 13960.88 32842.50 28369.49 24774.83 295
MDA-MVSNet-bldmvs53.87 29750.81 30963.05 27966.25 32948.58 22256.93 34063.82 30948.09 27641.22 36070.48 32530.34 30068.00 30334.24 32845.92 35872.57 314
Vis-MVSNet (Re-imp)63.69 22763.88 21063.14 27874.75 23431.04 36171.16 25763.64 31056.32 16859.80 26484.99 12144.51 16575.46 26839.12 30180.62 10082.92 188
test22283.14 6858.68 7272.57 23763.45 31141.78 32667.56 15286.12 9837.13 24178.73 13274.98 293
PVSNet50.76 1958.40 26757.39 26861.42 28875.53 22244.04 26961.43 31863.45 31147.04 29056.91 28973.61 30427.00 32764.76 31639.12 30172.40 20375.47 287
SCA60.49 25658.38 26266.80 23974.14 24748.06 22863.35 30963.23 31349.13 26359.33 27272.10 31037.45 23374.27 27444.17 26562.57 30478.05 260
CR-MVSNet59.91 25957.90 26765.96 25469.96 30052.07 17165.31 30063.15 31442.48 32559.36 26974.84 29535.83 25170.75 28945.50 25764.65 28875.06 290
Patchmtry57.16 27656.47 27759.23 29569.17 31034.58 34562.98 31063.15 31444.53 30756.83 29074.84 29535.83 25168.71 29940.03 29660.91 31474.39 301
pmmvs556.47 28155.68 28258.86 29961.41 35036.71 33166.37 28962.75 31640.38 33653.70 31876.62 27534.56 26167.05 30640.02 29765.27 28272.83 311
K. test v360.47 25757.11 26970.56 18973.74 24948.22 22675.10 19462.55 31758.27 13353.62 32176.31 28127.81 32081.59 18047.42 23639.18 36681.88 207
FMVSNet555.86 28654.93 28658.66 30171.05 28636.35 33464.18 30762.48 31846.76 29150.66 33674.73 29725.80 33464.04 31833.11 33365.57 28175.59 286
PatchmatchNetpermissive59.84 26058.24 26364.65 26873.05 25646.70 24269.42 27662.18 31947.55 28258.88 27571.96 31234.49 26369.16 29742.99 27963.60 29578.07 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Anonymous2023120655.10 29355.30 28554.48 32169.81 30333.94 35062.91 31162.13 32041.08 33255.18 30375.65 28832.75 28456.59 34830.32 35167.86 26372.91 309
bld_raw_dy_0_6464.87 21663.22 22069.83 20474.79 23353.32 14978.15 12862.02 32151.20 24660.17 25783.12 16224.15 34274.20 27663.08 11772.33 20581.96 204
sss56.17 28556.57 27654.96 31866.93 32336.32 33657.94 33561.69 32241.67 32858.64 27875.32 29338.72 22156.25 34942.04 28666.19 27772.31 321
our_test_356.49 28054.42 29062.68 28269.51 30445.48 25666.08 29161.49 32344.11 31450.73 33569.60 33233.05 27768.15 30138.38 30456.86 33174.40 300
test_cas_vis1_n_192056.91 27856.71 27557.51 31059.13 35845.40 25763.58 30861.29 32436.24 34667.14 15971.85 31429.89 30456.69 34657.65 15663.58 29670.46 336
tpmrst58.24 26858.70 25956.84 31166.97 32234.32 34669.57 27561.14 32547.17 28958.58 27971.60 31541.28 20060.41 33049.20 22562.84 30275.78 284
MIMVSNet57.35 27457.07 27058.22 30374.21 24637.18 32462.46 31360.88 32648.88 26655.29 30275.99 28531.68 29362.04 32531.87 33872.35 20475.43 288
LCM-MVSNet40.30 33135.88 33753.57 32742.24 37529.15 36545.21 36560.53 32722.23 36828.02 37050.98 3683.72 38161.78 32631.22 34838.76 36769.78 342
ADS-MVSNet251.33 31048.76 31759.07 29866.02 33244.60 26450.90 35359.76 32836.90 34350.74 33366.18 34726.38 32963.11 32127.17 35954.76 33969.50 343
new-patchmatchnet47.56 32147.73 32147.06 34258.81 3599.37 38648.78 35759.21 32943.28 31844.22 35568.66 33625.67 33557.20 34431.57 34549.35 35474.62 299
test20.0353.87 29754.02 29653.41 32961.47 34928.11 36861.30 32059.21 32951.34 24352.09 32777.43 26633.29 27658.55 33929.76 35360.27 32073.58 307
JIA-IIPM51.56 30847.68 32263.21 27764.61 33750.73 18847.71 35958.77 33142.90 32248.46 34251.72 36524.97 33870.24 29436.06 32253.89 34268.64 347
testgi51.90 30652.37 30350.51 33960.39 35623.55 37858.42 33258.15 33249.03 26451.83 32879.21 24322.39 34555.59 35229.24 35662.64 30372.40 320
LCM-MVSNet-Re61.88 24761.35 24163.46 27474.58 23731.48 36061.42 31958.14 33358.71 12553.02 32579.55 23643.07 17776.80 26045.69 25377.96 13982.11 203
test-LLR58.15 27058.13 26658.22 30368.57 31344.80 26165.46 29657.92 33450.08 25655.44 29969.82 32932.62 28657.44 34249.66 22173.62 18172.41 318
test-mter56.42 28255.82 28158.22 30368.57 31344.80 26165.46 29657.92 33439.94 34055.44 29969.82 32921.92 34757.44 34249.66 22173.62 18172.41 318
RPSCF55.80 28754.22 29560.53 29265.13 33542.91 28064.30 30557.62 33636.84 34558.05 28382.28 18028.01 31856.24 35037.14 31158.61 32582.44 198
GG-mvs-BLEND62.34 28371.36 28437.04 32869.20 27757.33 33754.73 30965.48 34930.37 29977.82 24534.82 32674.93 16972.17 322
MDA-MVSNet_test_wron50.71 31348.95 31556.00 31661.17 35141.84 28751.90 35256.45 33840.96 33344.79 35367.84 33830.04 30355.07 35536.71 31550.69 35071.11 333
YYNet150.73 31248.96 31456.03 31561.10 35241.78 28851.94 35156.44 33940.94 33444.84 35267.80 33930.08 30255.08 35436.77 31350.71 34971.22 330
gg-mvs-nofinetune57.86 27256.43 27862.18 28472.62 26335.35 34066.57 28756.33 34050.65 25057.64 28557.10 36130.65 29776.36 26437.38 30978.88 12774.82 296
TESTMET0.1,155.28 29054.90 28756.42 31366.56 32643.67 27265.46 29656.27 34139.18 34253.83 31767.44 34124.21 34155.46 35348.04 23473.11 19470.13 339
PMMVS53.96 29553.26 30156.04 31462.60 34650.92 18461.17 32256.09 34232.81 35053.51 32366.84 34534.04 26759.93 33344.14 26768.18 26157.27 359
tpm57.34 27558.16 26454.86 31971.80 27734.77 34267.47 28656.04 34348.20 27460.10 25876.92 27037.17 23953.41 35840.76 29365.01 28476.40 280
PVSNet_043.31 2047.46 32245.64 32552.92 33167.60 32044.65 26354.06 34754.64 34441.59 32946.15 35058.75 35830.99 29558.66 33832.18 33624.81 37455.46 361
dp51.89 30751.60 30652.77 33268.44 31632.45 35762.36 31454.57 34544.16 31249.31 34067.91 33728.87 31356.61 34733.89 32954.89 33869.24 346
PatchT53.17 30353.44 30052.33 33468.29 31725.34 37558.21 33454.41 34644.46 30954.56 31169.05 33533.32 27560.94 32736.93 31261.76 31170.73 335
test0.0.03 153.32 30253.59 29952.50 33362.81 34529.45 36459.51 32954.11 34750.08 25654.40 31374.31 30032.62 28655.92 35130.50 35063.95 29372.15 323
PatchMatch-RL56.25 28454.55 28961.32 29077.06 19656.07 10865.57 29554.10 34844.13 31353.49 32471.27 31925.20 33766.78 30836.52 31963.66 29461.12 353
FPMVS42.18 32841.11 33045.39 34458.03 36041.01 29649.50 35553.81 34930.07 35333.71 36764.03 35111.69 36352.08 36314.01 37455.11 33743.09 370
test_fmvs1_n51.37 30950.35 31254.42 32352.85 36437.71 32061.16 32351.93 35028.15 35663.81 22269.73 33113.72 35953.95 35651.16 20960.65 31871.59 327
test250665.33 21164.61 20467.50 23279.46 12634.19 34874.43 20851.92 35158.72 12366.75 16788.05 6425.99 33380.92 19751.94 20284.25 6787.39 43
dmvs_testset50.16 31451.90 30444.94 34766.49 32711.78 38461.01 32551.50 35251.17 24750.30 33967.44 34139.28 21460.29 33122.38 36657.49 32962.76 352
test_fmvs151.32 31150.48 31153.81 32553.57 36337.51 32260.63 32751.16 35328.02 35863.62 22369.23 33416.41 35553.93 35751.01 21060.70 31769.99 340
EGC-MVSNET42.47 32738.48 33454.46 32274.33 24348.73 22070.33 26951.10 3540.03 3840.18 38567.78 34013.28 36166.49 31018.91 37050.36 35148.15 366
Patchmatch-RL test58.16 26955.49 28366.15 25067.92 31848.89 21860.66 32651.07 35547.86 27959.36 26962.71 35534.02 26872.27 28356.41 16359.40 32277.30 268
lessismore_v069.91 20171.42 28247.80 23050.90 35650.39 33775.56 28927.43 32481.33 18545.91 25134.10 37280.59 230
ADS-MVSNet48.48 31947.77 32050.63 33866.02 33229.92 36350.90 35350.87 35736.90 34350.74 33366.18 34726.38 32952.47 36027.17 35954.76 33969.50 343
EPMVS53.96 29553.69 29854.79 32066.12 33131.96 35962.34 31549.05 35844.42 31055.54 29771.33 31830.22 30156.70 34541.65 29062.54 30575.71 285
PMVScopyleft28.69 2236.22 33633.29 34045.02 34636.82 38235.98 33954.68 34648.74 35926.31 36021.02 37551.61 3662.88 38460.10 3329.99 38047.58 35638.99 375
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
LF4IMVS42.95 32642.26 32845.04 34548.30 37132.50 35654.80 34548.49 36028.03 35740.51 36270.16 3269.24 37143.89 37131.63 34349.18 35558.72 356
Patchmatch-test49.08 31748.28 31951.50 33764.40 33830.85 36245.68 36348.46 36135.60 34746.10 35172.10 31034.47 26446.37 36827.08 36160.65 31877.27 269
test_fmvs248.69 31847.49 32352.29 33548.63 37033.06 35557.76 33648.05 36225.71 36259.76 26569.60 33211.57 36552.23 36249.45 22456.86 33171.58 328
door47.60 363
test_vis1_n49.89 31648.69 31853.50 32853.97 36237.38 32361.53 31747.33 36428.54 35559.62 26767.10 34413.52 36052.27 36149.07 22657.52 32870.84 334
door-mid47.19 365
pmmvs344.92 32441.95 32953.86 32452.58 36643.55 27362.11 31646.90 36626.05 36140.63 36160.19 35711.08 36957.91 34131.83 34246.15 35760.11 354
test_fmvs344.30 32542.55 32749.55 34042.83 37427.15 37153.03 34944.93 36722.03 36953.69 32064.94 3504.21 37949.63 36447.47 23549.82 35271.88 324
MVS-HIRNet45.52 32344.48 32648.65 34168.49 31534.05 34959.41 33144.50 36827.03 35937.96 36650.47 36926.16 33264.10 31726.74 36259.52 32147.82 368
APD_test137.39 33534.94 33844.72 34848.88 36933.19 35452.95 35044.00 36919.49 37027.28 37158.59 3593.18 38352.84 35918.92 36941.17 36448.14 367
CHOSEN 280x42047.83 32046.36 32452.24 33667.37 32149.78 20438.91 37143.11 37035.00 34843.27 35863.30 35428.95 31149.19 36536.53 31860.80 31657.76 358
test_method19.68 34818.10 35124.41 36313.68 3883.11 38912.06 37942.37 3712.00 38211.97 38036.38 3745.77 37529.35 38215.06 37223.65 37540.76 373
PM-MVS52.33 30550.19 31358.75 30062.10 34745.14 25965.75 29240.38 37243.60 31653.52 32272.65 3079.16 37265.87 31450.41 21454.18 34165.24 351
test_vis1_rt41.35 33039.45 33247.03 34346.65 37337.86 31747.76 35838.65 37323.10 36544.21 35651.22 36711.20 36844.08 37039.27 30053.02 34459.14 355
testf131.46 34228.89 34539.16 35241.99 37728.78 36646.45 36137.56 37414.28 37721.10 37348.96 3701.48 38747.11 36613.63 37534.56 37041.60 371
APD_test231.46 34228.89 34539.16 35241.99 37728.78 36646.45 36137.56 37414.28 37721.10 37348.96 3701.48 38747.11 36613.63 37534.56 37041.60 371
E-PMN23.77 34522.73 34926.90 36142.02 37620.67 38042.66 36835.70 37617.43 37210.28 38225.05 3786.42 37442.39 37310.28 37914.71 37817.63 377
EMVS22.97 34621.84 35026.36 36240.20 37919.53 38241.95 36934.64 37717.09 3739.73 38322.83 3797.29 37342.22 3749.18 38113.66 37917.32 378
new_pmnet34.13 33834.29 33933.64 35852.63 36518.23 38344.43 36633.90 37822.81 36630.89 36953.18 36310.48 37035.72 37920.77 36839.51 36546.98 369
DSMNet-mixed39.30 33438.72 33341.03 35151.22 36719.66 38145.53 36431.35 37915.83 37639.80 36467.42 34322.19 34645.13 36922.43 36552.69 34558.31 357
test_f31.86 34131.05 34234.28 35732.33 38621.86 37932.34 37330.46 38016.02 37539.78 36555.45 3624.80 37732.36 38030.61 34937.66 36848.64 364
PMMVS227.40 34425.91 34731.87 36039.46 3816.57 38731.17 37428.52 38123.96 36320.45 37648.94 3724.20 38037.94 37616.51 37119.97 37651.09 363
test_vis3_rt32.09 34030.20 34437.76 35535.36 38427.48 36940.60 37028.29 38216.69 37432.52 36840.53 3731.96 38537.40 37733.64 33242.21 36348.39 365
mvsany_test139.38 33238.16 33543.02 35049.05 36834.28 34744.16 36725.94 38322.74 36746.57 34962.21 35623.85 34341.16 37533.01 33435.91 36953.63 362
MVEpermissive17.77 2321.41 34717.77 35232.34 35934.34 38525.44 37416.11 37724.11 38411.19 37913.22 37931.92 3751.58 38630.95 38110.47 37817.03 37740.62 374
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
mvsany_test332.62 33930.57 34338.77 35436.16 38324.20 37738.10 37220.63 38519.14 37140.36 36357.43 3605.06 37636.63 37829.59 35528.66 37355.49 360
MTMP86.03 1817.08 386
tmp_tt9.43 35111.14 3544.30 3662.38 3894.40 38813.62 37816.08 3870.39 38315.89 37813.06 38015.80 3575.54 38512.63 37710.46 3822.95 380
DeepMVS_CXcopyleft12.03 36517.97 38710.91 38510.60 3887.46 38011.07 38128.36 3763.28 38211.29 3848.01 3829.74 38313.89 379
wuyk23d13.32 35012.52 35315.71 36447.54 37226.27 37231.06 3751.98 3894.93 3815.18 3841.94 3840.45 38918.54 3836.81 38312.83 3802.33 381
N_pmnet39.35 33340.28 33136.54 35663.76 3401.62 39049.37 3560.76 39034.62 34943.61 35766.38 34626.25 33142.57 37226.02 36451.77 34665.44 350
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 3870.00 3910.00 3860.00 3860.00 3840.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 3870.00 3910.00 3860.00 3860.00 3840.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 3870.00 3910.00 3860.00 3860.00 3840.00 384
pcd_1.5k_mvsjas3.92 3555.23 3580.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 38747.05 1360.00 3860.00 3860.00 3840.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 3870.00 3910.00 3860.00 3860.00 3840.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 3870.00 3910.00 3860.00 3860.00 3840.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 3870.00 3910.00 3860.00 3860.00 3840.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 3870.00 3910.00 3860.00 3860.00 3840.00 384
testmvs4.52 3546.03 3570.01 3680.01 3900.00 39253.86 3480.00 3910.01 3850.04 3860.27 3850.00 3910.00 3860.04 3840.00 3840.03 383
test1234.73 3536.30 3560.02 3670.01 3900.01 39156.36 3410.00 3910.01 3850.04 3860.21 3860.01 3900.00 3860.03 3850.00 3840.04 382
n20.00 391
nn0.00 391
ab-mvs-re6.49 3528.65 3550.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 38877.89 2600.00 3910.00 3860.00 3860.00 3840.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 3870.00 3910.00 3860.00 3860.00 3840.00 384
PC_three_145255.09 19684.46 489.84 4266.68 589.41 1774.24 3491.38 288.42 10
eth-test20.00 392
eth-test0.00 392
OPU-MVS79.83 687.54 1160.93 3587.82 789.89 4167.01 190.33 1173.16 4491.15 488.23 15
test_0728_THIRD65.04 1583.82 892.00 364.69 1090.75 879.48 590.63 1088.09 20
GSMVS78.05 260
test_part287.58 960.47 4283.42 12
sam_mvs134.74 26078.05 260
sam_mvs33.43 274
test_post168.67 2793.64 38232.39 29069.49 29644.17 265
test_post3.55 38333.90 26966.52 309
patchmatchnet-post64.03 35134.50 26274.27 274
gm-plane-assit71.40 28341.72 29148.85 26773.31 30582.48 16748.90 228
test9_res75.28 2988.31 3283.81 161
agg_prior273.09 4587.93 3984.33 142
test_prior462.51 1482.08 76
test_prior281.75 7960.37 9575.01 3989.06 5156.22 3672.19 4988.96 24
旧先验276.08 17245.32 30276.55 3165.56 31558.75 152
新几何276.12 170
原ACMM279.02 115
testdata272.18 28546.95 244
segment_acmp54.23 52
testdata172.65 23360.50 90
plane_prior781.41 8955.96 110
plane_prior681.20 9656.24 10545.26 160
plane_prior486.10 99
plane_prior356.09 10763.92 3569.27 117
plane_prior284.22 3964.52 24
plane_prior181.27 94
plane_prior56.31 10183.58 5263.19 4780.48 105
HQP5-MVS54.94 127
HQP-NCC80.66 10282.31 7062.10 6767.85 142
ACMP_Plane80.66 10282.31 7062.10 6767.85 142
BP-MVS67.04 83
HQP4-MVS67.85 14286.93 6184.32 143
HQP2-MVS45.46 154
NP-MVS80.98 9956.05 10985.54 116
MDTV_nov1_ep13_2view25.89 37361.22 32140.10 33851.10 33032.97 27938.49 30378.61 255
ACMMP++_ref74.07 175
ACMMP++72.16 209
Test By Simon48.33 116