This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
ETH3D-3000-0.178.58 1678.91 1477.61 4883.06 7957.86 9284.14 4588.31 160.37 10179.14 2290.35 2957.76 2887.00 6577.16 2289.90 1887.97 20
9.1478.75 1683.10 7884.15 4388.26 259.90 11378.57 2790.36 2857.51 3186.86 6877.39 1889.52 25
SF-MVS78.82 1379.22 1277.60 4982.88 8457.83 9384.99 3288.13 361.86 7879.16 2090.75 1757.96 2587.09 6277.08 2390.18 1587.87 23
ETH3 D test640079.14 1179.32 1078.61 3286.34 3158.11 8984.65 3487.66 458.56 14178.87 2489.54 5363.67 1389.57 1674.60 3689.98 1788.14 15
ETH3D cwj APD-0.1678.02 2578.13 2577.71 4782.10 8958.65 8282.72 7087.55 558.33 14678.05 3090.06 4058.35 2487.65 5176.15 2889.86 1986.82 62
DVP-MVS++81.67 182.40 179.47 987.24 1459.15 6888.18 187.15 665.04 2084.26 591.86 667.01 190.84 379.48 491.38 288.42 7
test_0728_SECOND79.19 1587.82 359.11 7187.85 587.15 690.84 378.66 1390.61 1187.62 36
test_part174.74 6174.42 6275.70 8181.69 9651.26 18683.98 4887.05 865.31 1673.10 7886.20 10453.94 6288.06 3965.32 10673.17 19787.77 30
MCST-MVS77.48 3377.45 3077.54 5086.67 2258.36 8683.22 6086.93 956.91 16574.91 4888.19 6959.15 2187.68 5073.67 4587.45 4786.57 69
DeepC-MVS69.38 278.56 1878.14 2479.83 683.60 7261.62 2684.17 4286.85 1063.23 4973.84 6790.25 3557.68 2989.96 1374.62 3589.03 2687.89 21
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_one_060187.58 959.30 6586.84 1165.01 2383.80 1191.86 664.03 11
test072687.75 759.07 7287.86 486.83 1264.26 3284.19 791.92 564.82 8
MSP-MVS81.06 381.40 480.02 186.21 3462.73 1286.09 1786.83 1265.51 1483.81 1090.51 2363.71 1289.23 2081.51 188.44 3288.09 17
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SED-MVS81.56 282.30 279.32 1287.77 458.90 7787.82 786.78 1464.18 3585.97 191.84 866.87 390.83 578.63 1590.87 588.23 12
test_241102_ONE87.77 458.90 7786.78 1464.20 3485.97 191.34 1266.87 390.78 7
test_241102_TWO86.73 1664.18 3584.26 591.84 865.19 690.83 578.63 1590.70 787.65 34
CSCG76.92 3876.75 3777.41 5283.96 7159.60 5982.95 6386.50 1760.78 9175.27 4184.83 12760.76 1586.56 7967.86 8487.87 4686.06 87
DPE-MVScopyleft80.56 580.98 579.29 1487.27 1360.56 4885.71 2686.42 1863.28 4783.27 1391.83 1064.96 790.47 1076.41 2789.67 2286.84 61
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS80.16 780.59 678.86 2886.64 2360.02 5388.12 386.42 1862.94 5482.40 1492.12 259.64 1889.76 1478.70 1188.32 3686.79 64
3Dnovator+66.72 475.84 5074.57 6079.66 882.40 8759.92 5685.83 2286.32 2066.92 867.80 15789.24 5842.03 19489.38 1864.07 11586.50 6189.69 1
CS-MVS-test74.96 5674.82 5775.40 8779.45 14152.03 18182.95 6386.18 2163.24 4870.07 11084.50 13755.21 4788.77 2767.89 8383.85 7885.40 117
CS-MVS74.01 7274.24 6573.32 14376.47 21448.51 22879.19 12486.17 2260.56 9571.62 9883.71 15355.16 4887.94 4369.21 7486.11 6383.51 180
DROMVSNet75.84 5075.87 4775.74 7878.86 15352.65 16683.73 5386.08 2363.47 4572.77 8487.25 8453.13 7487.93 4471.97 5685.57 6786.66 67
ZNCC-MVS78.82 1378.67 1779.30 1386.43 3062.05 2186.62 1186.01 2463.32 4675.08 4390.47 2753.96 6188.68 2876.48 2689.63 2487.16 53
SteuartSystems-ACMMP79.48 1079.31 1179.98 283.01 8262.18 1987.60 985.83 2566.69 1078.03 3190.98 1454.26 5790.06 1278.42 1789.02 2787.69 32
Skip Steuart: Steuart Systems R&D Blog.
PHI-MVS75.87 4975.36 5077.41 5280.62 11655.91 12784.28 3985.78 2656.08 18673.41 7286.58 9750.94 9988.54 2970.79 6389.71 2187.79 29
SMA-MVScopyleft80.28 680.39 779.95 386.60 2561.95 2286.33 1385.75 2762.49 6582.20 1592.28 156.53 3489.70 1579.85 391.48 188.19 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPM-MVS75.47 5375.00 5276.88 5981.38 10359.16 6779.94 11085.71 2856.59 17372.46 8986.76 8756.89 3287.86 4766.36 9688.91 3083.64 177
MSC_two_6792asdad79.95 387.24 1461.04 3685.62 2990.96 179.31 790.65 887.85 25
No_MVS79.95 387.24 1461.04 3685.62 2990.96 179.31 790.65 887.85 25
IU-MVS87.77 459.15 6885.53 3153.93 22384.64 379.07 990.87 588.37 9
MP-MVS-pluss78.35 2278.46 1878.03 4384.96 6059.52 6182.93 6585.39 3262.15 7076.41 3691.51 1152.47 7986.78 7180.66 289.64 2387.80 28
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
testtj78.47 1978.43 1978.61 3286.82 1760.67 4686.07 1885.38 3362.12 7178.65 2690.29 3355.76 4289.31 1973.55 4787.22 4985.84 93
DeepPCF-MVS69.58 179.03 1279.00 1379.13 1884.92 6460.32 5183.03 6285.33 3462.86 5780.17 1790.03 4361.76 1488.95 2474.21 3888.67 3188.12 16
GST-MVS78.14 2477.85 2778.99 2586.05 4361.82 2585.84 2185.21 3563.56 4474.29 5990.03 4352.56 7688.53 3074.79 3488.34 3486.63 68
ACMMP_NAP78.77 1578.78 1578.74 3085.44 5261.04 3683.84 5285.16 3662.88 5678.10 2891.26 1352.51 7788.39 3179.34 690.52 1386.78 65
HPM-MVScopyleft77.28 3476.85 3678.54 3485.00 5960.81 4382.91 6685.08 3762.57 6373.09 7989.97 4650.90 10087.48 5375.30 3086.85 5687.33 50
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
casdiffmvs74.80 5974.89 5674.53 10875.59 22950.37 20178.17 13985.06 3862.80 6174.40 5787.86 7657.88 2783.61 14769.46 7282.79 9189.59 2
DVP-MVScopyleft80.84 481.64 378.42 3687.75 759.07 7287.85 585.03 3964.26 3283.82 892.00 364.82 890.75 878.66 1390.61 1185.45 112
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CNVR-MVS79.84 979.97 979.45 1087.90 262.17 2084.37 3685.03 3966.96 577.58 3290.06 4059.47 2089.13 2278.67 1289.73 2087.03 56
ETV-MVS74.46 6673.84 7076.33 7079.27 14455.24 13979.22 12385.00 4164.97 2472.65 8679.46 24353.65 7087.87 4667.45 8982.91 8785.89 92
test_prior376.89 4076.96 3576.69 6284.20 6957.27 10181.75 8584.88 4260.37 10175.01 4489.06 5956.22 3886.43 8472.19 5388.96 2886.38 71
test_prior76.69 6284.20 6957.27 10184.88 4286.43 8486.38 71
DeepC-MVS_fast68.24 377.25 3576.63 3979.12 1986.15 3860.86 4184.71 3384.85 4461.98 7773.06 8088.88 6453.72 6689.06 2368.27 7788.04 4287.42 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CLD-MVS73.33 7872.68 8275.29 9278.82 15553.33 15878.23 13884.79 4561.30 8570.41 10581.04 20652.41 8087.12 6064.61 11482.49 9585.41 116
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
baseline74.61 6474.70 5974.34 11275.70 22549.99 20877.54 15084.63 4662.73 6273.98 6187.79 7857.67 3083.82 14369.49 7082.74 9289.20 3
ACMMPcopyleft76.02 4775.33 5178.07 4185.20 5661.91 2385.49 3084.44 4763.04 5269.80 12089.74 5245.43 16387.16 5972.01 5582.87 8985.14 123
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
NCCC78.58 1678.31 2079.39 1187.51 1262.61 1685.20 3184.42 4866.73 974.67 5489.38 5655.30 4689.18 2174.19 3987.34 4886.38 71
APD-MVScopyleft78.02 2578.04 2677.98 4486.44 2960.81 4385.52 2884.36 4960.61 9379.05 2390.30 3255.54 4588.32 3473.48 4887.03 5284.83 133
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS78.01 2777.65 2879.10 2086.71 2062.81 1086.29 1484.32 5062.82 5873.96 6290.50 2453.20 7288.35 3274.02 4187.05 5086.13 84
#test#77.83 2877.41 3179.10 2086.71 2062.81 1085.69 2784.32 5061.61 8173.96 6290.50 2453.20 7288.35 3273.68 4487.05 5086.13 84
ACMMPR77.71 2977.23 3379.16 1686.75 1962.93 986.29 1484.24 5262.82 5873.55 7190.56 2249.80 10688.24 3574.02 4187.03 5286.32 79
DELS-MVS74.76 6074.46 6175.65 8377.84 18252.25 17575.59 19084.17 5363.76 4173.15 7582.79 16659.58 1986.80 6967.24 9086.04 6487.89 21
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
region2R77.67 3177.18 3479.15 1786.76 1862.95 886.29 1484.16 5462.81 6073.30 7390.58 2149.90 10488.21 3673.78 4387.03 5286.29 82
CDPH-MVS76.31 4475.67 4978.22 4085.35 5559.14 7081.31 9484.02 5556.32 17874.05 6088.98 6253.34 7187.92 4569.23 7388.42 3387.59 37
HQP_MVS74.31 6873.73 7176.06 7281.41 10156.31 11684.22 4084.01 5664.52 2869.27 12886.10 10745.26 16787.21 5768.16 8080.58 11084.65 139
plane_prior584.01 5687.21 5768.16 8080.58 11084.65 139
XVS77.17 3676.56 4079.00 2386.32 3262.62 1485.83 2283.92 5864.55 2672.17 9290.01 4547.95 12788.01 4171.55 5986.74 5886.37 74
X-MVStestdata70.21 12467.28 16679.00 2386.32 3262.62 1485.83 2283.92 5864.55 2672.17 926.49 37147.95 12788.01 4171.55 5986.74 5886.37 74
HQP3-MVS83.90 6080.35 116
HQP-MVS73.45 7772.80 8175.40 8780.66 11354.94 14082.31 7883.90 6062.10 7267.85 15285.54 12145.46 16186.93 6667.04 9280.35 11684.32 147
canonicalmvs74.67 6374.98 5473.71 12778.94 15250.56 19980.23 10583.87 6260.30 10777.15 3386.56 9859.65 1782.00 18366.01 9982.12 9688.58 6
SD-MVS77.70 3077.62 2977.93 4584.47 6761.88 2484.55 3583.87 6260.37 10179.89 1889.38 5654.97 5085.58 10376.12 2984.94 6986.33 77
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.78.44 2078.28 2178.90 2684.96 6061.41 2984.03 4683.82 6459.34 12679.37 1989.76 5159.84 1687.62 5276.69 2586.74 5887.68 33
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PGM-MVS76.77 4176.06 4378.88 2786.14 3962.73 1282.55 7483.74 6561.71 7972.45 9190.34 3148.48 12388.13 3772.32 5286.85 5685.78 95
HPM-MVS++copyleft79.88 880.14 879.10 2088.17 164.80 186.59 1283.70 6665.37 1578.78 2590.64 1958.63 2387.24 5579.00 1090.37 1485.26 122
OPM-MVS74.73 6274.25 6476.19 7180.81 11259.01 7582.60 7383.64 6763.74 4272.52 8887.49 7947.18 14185.88 9669.47 7180.78 10683.66 175
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
FOURS186.12 4060.82 4288.18 183.61 6860.87 8881.50 16
FIs70.82 11271.43 9368.98 22578.33 16838.14 31976.96 16483.59 6961.02 8767.33 16486.73 8955.07 4981.64 18954.61 18679.22 13287.14 54
MP-MVScopyleft78.35 2278.26 2278.64 3186.54 2763.47 586.02 2083.55 7063.89 4073.60 7090.60 2054.85 5386.72 7277.20 2188.06 4185.74 101
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
QAPM70.05 12668.81 13473.78 12176.54 21253.43 15683.23 5983.48 7152.89 23265.90 19186.29 10341.55 20586.49 8351.01 21478.40 14681.42 217
test1183.47 72
CP-MVS77.12 3776.68 3878.43 3586.05 4363.18 787.55 1083.45 7362.44 6772.68 8590.50 2448.18 12587.34 5473.59 4685.71 6584.76 138
原ACMM174.69 9985.39 5459.40 6283.42 7451.47 24770.27 10886.61 9548.61 12186.51 8253.85 19187.96 4378.16 263
LPG-MVS_test72.74 8471.74 8975.76 7680.22 12257.51 9982.55 7483.40 7561.32 8366.67 17687.33 8239.15 22586.59 7767.70 8577.30 15683.19 189
LGP-MVS_train75.76 7680.22 12257.51 9983.40 7561.32 8366.67 17687.33 8239.15 22586.59 7767.70 8577.30 15683.19 189
test1277.76 4684.52 6658.41 8583.36 7772.93 8254.61 5588.05 4088.12 4086.81 63
PAPR71.72 10170.82 10474.41 11181.20 10851.17 18779.55 11983.33 7855.81 19166.93 17184.61 13250.95 9886.06 8955.79 17479.20 13386.00 88
CANet76.46 4375.93 4578.06 4281.29 10457.53 9882.35 7683.31 7967.78 370.09 10986.34 10254.92 5188.90 2572.68 5184.55 7187.76 31
APD-MVS_3200maxsize74.96 5674.39 6376.67 6482.20 8858.24 8883.67 5483.29 8058.41 14373.71 6890.14 3745.62 15685.99 9269.64 6982.85 9085.78 95
PAPM_NR72.63 8671.80 8875.13 9381.72 9553.42 15779.91 11283.28 8159.14 12866.31 18485.90 11351.86 8786.06 8957.45 16380.62 10885.91 91
EIA-MVS71.78 9970.60 10675.30 9179.85 13053.54 15477.27 15883.26 8257.92 15366.49 17979.39 24452.07 8586.69 7360.05 15079.14 13585.66 103
FC-MVSNet-test69.80 13170.58 10867.46 24177.61 19234.73 34476.05 18483.19 8360.84 8965.88 19286.46 9954.52 5680.76 21452.52 20178.12 14786.91 58
3Dnovator64.47 572.49 8871.39 9575.79 7577.70 18458.99 7680.66 10183.15 8462.24 6965.46 19886.59 9642.38 19285.52 10559.59 15584.72 7082.85 198
MVS_Test72.45 8972.46 8472.42 16274.88 23748.50 22976.28 17883.14 8559.40 12472.46 8984.68 12955.66 4481.12 20165.98 10079.66 12487.63 35
DP-MVS Recon72.15 9670.73 10576.40 6886.57 2657.99 9181.15 9682.96 8657.03 16266.78 17285.56 11944.50 17488.11 3851.77 21080.23 11983.10 193
Regformer-275.63 5274.99 5377.54 5080.43 11858.32 8779.50 12082.92 8767.84 175.94 3780.75 21655.73 4386.80 6971.44 6180.38 11487.50 40
UniMVSNet (Re)70.63 11570.20 11271.89 16678.55 16145.29 26575.94 18782.92 8763.68 4368.16 14683.59 15653.89 6483.49 15053.97 18971.12 22286.89 59
MAR-MVS71.51 10370.15 11475.60 8581.84 9459.39 6381.38 9382.90 8954.90 21368.08 14978.70 25147.73 12985.51 10651.68 21284.17 7681.88 213
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
nrg03072.96 8273.01 7972.84 15175.41 23250.24 20280.02 10882.89 9058.36 14574.44 5686.73 8958.90 2280.83 21065.84 10174.46 17687.44 43
ACMP63.53 672.30 9171.20 10075.59 8680.28 12057.54 9782.74 6982.84 9160.58 9465.24 20586.18 10539.25 22386.03 9166.95 9476.79 16383.22 187
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ZD-MVS86.64 2360.38 5082.70 9257.95 15278.10 2890.06 4056.12 4088.84 2674.05 4087.00 55
UniMVSNet_NR-MVSNet71.11 10771.00 10271.44 17779.20 14644.13 27476.02 18682.60 9366.48 1368.20 14384.60 13356.82 3382.82 16854.62 18470.43 22987.36 49
alignmvs73.86 7573.99 6773.45 13778.20 17150.50 20078.57 13282.43 9459.40 12476.57 3486.71 9156.42 3781.23 20065.84 10181.79 9888.62 4
Anonymous2023121169.28 14368.47 14071.73 17080.28 12047.18 24579.98 10982.37 9554.61 21567.24 16584.01 14539.43 22182.41 17855.45 17872.83 20185.62 106
mPP-MVS76.54 4275.93 4578.34 3986.47 2863.50 485.74 2582.28 9662.90 5571.77 9590.26 3446.61 15086.55 8071.71 5785.66 6684.97 130
SR-MVS76.13 4675.70 4877.40 5485.87 4561.20 3385.52 2882.19 9759.99 11275.10 4290.35 2947.66 13186.52 8171.64 5882.99 8484.47 144
Regformer-175.47 5374.93 5577.09 5780.43 11857.70 9679.50 12082.13 9867.84 175.73 4080.75 21656.50 3586.07 8871.07 6280.38 11487.50 40
PS-MVSNAJss72.24 9271.21 9975.31 9078.50 16255.93 12681.63 8782.12 9956.24 18170.02 11485.68 11847.05 14384.34 13165.27 10774.41 17885.67 102
WR-MVS_H67.02 19266.92 17567.33 24577.95 18037.75 32277.57 14882.11 10062.03 7662.65 23682.48 17550.57 10179.46 23042.91 27964.01 29684.79 136
ACMM61.98 770.80 11369.73 11974.02 11680.59 11758.59 8382.68 7182.02 10155.46 19967.18 16784.39 13938.51 23083.17 15560.65 14576.10 16780.30 238
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MSLP-MVS++73.77 7673.47 7574.66 10183.02 8159.29 6682.30 8181.88 10259.34 12671.59 9986.83 8645.94 15483.65 14665.09 10985.22 6881.06 228
abl_674.34 6773.50 7376.86 6082.43 8660.16 5283.48 5781.86 10358.81 13373.95 6489.86 4841.87 19786.62 7667.98 8281.23 10583.80 168
MVS67.37 18266.33 18870.51 20175.46 23150.94 18973.95 22281.85 10441.57 33562.54 23978.57 25647.98 12685.47 10952.97 19982.05 9775.14 295
RRT_test8_iter0568.17 17066.86 17672.07 16575.81 22346.33 25176.41 17581.81 10556.43 17666.52 17881.30 20231.90 29884.25 13263.77 12267.83 26985.64 105
114514_t70.83 11169.56 12174.64 10386.21 3454.63 14482.34 7781.81 10548.22 27863.01 23185.83 11540.92 21387.10 6157.91 16179.79 12182.18 207
PCF-MVS61.88 870.95 11069.49 12375.35 8977.63 18755.71 12976.04 18581.81 10550.30 25969.66 12185.40 12452.51 7784.89 12051.82 20980.24 11885.45 112
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EPP-MVSNet72.16 9571.31 9874.71 9878.68 15949.70 21182.10 8281.65 10860.40 9865.94 18985.84 11451.74 8986.37 8655.93 17179.55 12788.07 19
test117275.36 5574.81 5877.02 5885.47 5160.79 4583.94 5181.63 10959.52 12374.66 5590.18 3644.74 17085.84 9770.63 6582.52 9384.42 145
PVSNet_BlendedMVS68.56 16067.72 15071.07 19177.03 20250.57 19774.50 21381.52 11053.66 22664.22 22379.72 23749.13 11482.87 16455.82 17273.92 18279.77 250
PVSNet_Blended68.59 15667.72 15071.19 18677.03 20250.57 19772.51 24581.52 11051.91 24064.22 22377.77 26849.13 11482.87 16455.82 17279.58 12580.14 241
DU-MVS70.01 12769.53 12271.44 17778.05 17744.13 27475.01 20281.51 11264.37 3168.20 14384.52 13449.12 11682.82 16854.62 18470.43 22987.37 47
Regformer-474.25 7073.48 7476.57 6779.75 13156.54 11578.54 13481.49 11366.93 773.90 6580.30 22453.84 6585.98 9369.76 6876.84 16187.17 52
v114470.42 12069.31 12673.76 12373.22 25750.64 19677.83 14381.43 11458.58 13969.40 12681.16 20347.53 13485.29 11464.01 11770.64 22585.34 118
v1070.21 12469.02 13173.81 12073.51 25650.92 19178.74 12881.39 11560.05 11166.39 18281.83 19147.58 13385.41 11262.80 12868.86 26085.09 126
SR-MVS-dyc-post74.57 6573.90 6876.58 6683.49 7459.87 5784.29 3781.36 11658.07 14973.14 7690.07 3844.74 17085.84 9768.20 7881.76 10084.03 155
RE-MVS-def73.71 7283.49 7459.87 5784.29 3781.36 11658.07 14973.14 7690.07 3843.06 18668.20 7881.76 10084.03 155
v119269.97 12968.68 13673.85 11973.19 25850.94 18977.68 14681.36 11657.51 15768.95 13480.85 21345.28 16685.33 11362.97 12770.37 23185.27 121
RPMNet61.53 25658.42 26670.86 19369.96 30752.07 17865.31 30781.36 11643.20 32559.36 26870.15 33135.37 25985.47 10936.42 31864.65 29375.06 296
OpenMVScopyleft61.03 968.85 14967.56 15372.70 15574.26 25153.99 14881.21 9581.34 12052.70 23362.75 23485.55 12038.86 22884.14 13448.41 23483.01 8379.97 244
v7n69.01 14867.36 16373.98 11772.51 27252.65 16678.54 13481.30 12160.26 10862.67 23581.62 19443.61 18184.49 12857.01 16568.70 26284.79 136
MG-MVS73.96 7373.89 6974.16 11585.65 4749.69 21381.59 9081.29 12261.45 8271.05 10188.11 7051.77 8887.73 4961.05 14383.09 8285.05 127
TEST985.58 4961.59 2781.62 8881.26 12355.65 19674.93 4688.81 6553.70 6784.68 124
train_agg76.27 4576.15 4276.64 6585.58 4961.59 2781.62 8881.26 12355.86 18874.93 4688.81 6553.70 6784.68 12475.24 3288.33 3583.65 176
PAPM67.92 17466.69 17871.63 17478.09 17549.02 22177.09 16181.24 12551.04 25360.91 25583.98 14647.71 13084.99 11540.81 29279.32 13180.90 230
test_885.40 5360.96 3981.54 9181.18 12655.86 18874.81 4988.80 6753.70 6784.45 129
TranMVSNet+NR-MVSNet70.36 12170.10 11671.17 18878.64 16042.97 28576.53 17281.16 12766.95 668.53 13985.42 12351.61 9083.07 15652.32 20269.70 24687.46 42
HPM-MVS_fast74.30 6973.46 7676.80 6184.45 6859.04 7483.65 5581.05 12860.15 10970.43 10489.84 4941.09 21285.59 10267.61 8782.90 8885.77 98
agg_prior175.94 4876.01 4475.72 7985.04 5759.96 5481.44 9281.04 12956.14 18474.68 5288.90 6353.91 6384.04 13675.01 3387.92 4583.16 192
agg_prior85.04 5759.96 5481.04 12974.68 5284.04 136
Anonymous2024052969.91 13069.02 13172.56 15780.19 12547.65 23977.56 14980.99 13155.45 20069.88 11886.76 8739.24 22482.18 18154.04 18877.10 15887.85 25
zzz-MVS77.61 3277.36 3278.35 3786.08 4163.57 283.37 5880.97 13265.13 1875.77 3890.88 1548.63 11986.66 7477.23 1988.17 3884.81 134
MTGPAbinary80.97 132
MTAPA76.90 3976.42 4178.35 3786.08 4163.57 274.92 20580.97 13265.13 1875.77 3890.88 1548.63 11986.66 7477.23 1988.17 3884.81 134
NR-MVSNet69.54 13968.85 13371.59 17578.05 17743.81 27874.20 21780.86 13565.18 1762.76 23384.52 13452.35 8283.59 14850.96 21570.78 22487.37 47
v870.33 12269.28 12773.49 13573.15 25950.22 20378.62 13180.78 13660.79 9066.45 18182.11 18649.35 10984.98 11763.58 12368.71 26185.28 120
v14419269.71 13268.51 13873.33 14273.10 26050.13 20577.54 15080.64 13756.65 16768.57 13880.55 21846.87 14884.96 11962.98 12669.66 24784.89 132
v192192069.47 14168.17 14673.36 14173.06 26150.10 20677.39 15380.56 13856.58 17468.59 13680.37 22044.72 17284.98 11762.47 13269.82 24285.00 128
v124069.24 14567.91 14873.25 14673.02 26349.82 20977.21 15980.54 13956.43 17668.34 14280.51 21943.33 18484.99 11562.03 13669.77 24584.95 131
v2v48270.50 11869.45 12573.66 12972.62 26950.03 20777.58 14780.51 14059.90 11369.52 12282.14 18547.53 13484.88 12265.07 11070.17 23586.09 86
PEN-MVS66.60 20166.45 18167.04 24677.11 20036.56 33277.03 16380.42 14162.95 5362.51 24184.03 14446.69 14979.07 24144.22 26463.08 30585.51 109
API-MVS72.17 9471.41 9474.45 11081.95 9357.22 10384.03 4680.38 14259.89 11668.40 14082.33 17849.64 10787.83 4851.87 20884.16 7778.30 261
PVSNet_Blended_VisFu71.45 10570.39 11074.65 10282.01 9058.82 7979.93 11180.35 14355.09 20665.82 19482.16 18449.17 11382.64 17360.34 14878.62 14482.50 203
test_yl69.69 13369.13 12871.36 18178.37 16645.74 25974.71 20980.20 14457.91 15470.01 11583.83 14942.44 19082.87 16454.97 18079.72 12285.48 110
DCV-MVSNet69.69 13369.13 12871.36 18178.37 16645.74 25974.71 20980.20 14457.91 15470.01 11583.83 14942.44 19082.87 16454.97 18079.72 12285.48 110
TAPA-MVS59.36 1066.60 20165.20 20770.81 19476.63 20948.75 22576.52 17380.04 14650.64 25765.24 20584.93 12639.15 22578.54 24836.77 31176.88 16085.14 123
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
xxxxxxxxxxxxxcwj78.37 2178.25 2378.76 2986.17 3661.30 3183.98 4879.95 14759.00 12979.16 2090.75 1757.96 2587.09 6277.08 2390.18 1587.87 23
Regformer-373.89 7473.28 7875.71 8079.75 13155.48 13678.54 13479.93 14866.58 1173.62 6980.30 22454.87 5284.54 12769.09 7576.84 16187.10 55
OMC-MVS71.40 10670.60 10673.78 12176.60 21053.15 16079.74 11679.78 14958.37 14468.75 13586.45 10045.43 16380.60 21562.58 12977.73 15087.58 38
ACMH55.70 1565.20 22063.57 22270.07 20778.07 17652.01 18279.48 12279.69 15055.75 19356.59 29180.98 20827.12 32880.94 20642.90 28071.58 21877.25 276
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPA-MVSNet69.02 14769.47 12467.69 23977.42 19541.00 30274.04 21979.68 15160.06 11069.26 13084.81 12851.06 9777.58 26154.44 18774.43 17784.48 143
save fliter86.17 3661.30 3183.98 4879.66 15259.00 129
Effi-MVS+73.31 7972.54 8375.62 8477.87 18153.64 15179.62 11879.61 15361.63 8072.02 9482.61 17156.44 3685.97 9463.99 11879.07 13687.25 51
PS-CasMVS66.42 20566.32 18966.70 25077.60 19336.30 33776.94 16579.61 15362.36 6862.43 24383.66 15445.69 15578.37 24945.35 26163.26 30385.42 115
CP-MVSNet66.49 20466.41 18566.72 24877.67 18636.33 33576.83 16979.52 15562.45 6662.54 23983.47 16046.32 15178.37 24945.47 25963.43 30285.45 112
V4268.65 15567.35 16472.56 15768.93 31850.18 20472.90 23979.47 15656.92 16469.45 12580.26 22646.29 15282.99 15764.07 11567.82 27084.53 141
Fast-Effi-MVS+70.28 12369.12 13073.73 12678.50 16251.50 18575.01 20279.46 15756.16 18368.59 13679.55 24153.97 6084.05 13553.34 19677.53 15285.65 104
DTE-MVSNet65.58 21265.34 20466.31 25376.06 22034.79 34176.43 17479.38 15862.55 6461.66 25083.83 14945.60 15779.15 23941.64 29160.88 31985.00 128
EI-MVSNet-Vis-set72.42 9071.59 9074.91 9578.47 16454.02 14777.05 16279.33 15965.03 2271.68 9779.35 24652.75 7584.89 12066.46 9574.23 17985.83 94
EI-MVSNet-UG-set71.92 9771.06 10174.52 10977.98 17953.56 15376.62 17079.16 16064.40 3071.18 10078.95 25052.19 8384.66 12665.47 10573.57 18785.32 119
XVG-OURS-SEG-HR68.81 15067.47 15972.82 15374.40 24856.87 11370.59 27279.04 16154.77 21466.99 16986.01 11039.57 22078.21 25262.54 13073.33 19283.37 182
PS-MVSNAJ70.51 11769.70 12072.93 14981.52 9855.79 12874.92 20579.00 16255.04 21169.88 11878.66 25247.05 14382.19 18061.61 13979.58 12580.83 231
xiu_mvs_v2_base70.52 11669.75 11872.84 15181.21 10755.63 13275.11 19978.92 16354.92 21269.96 11779.68 23847.00 14782.09 18261.60 14079.37 12880.81 232
EG-PatchMatch MVS64.71 22462.87 22970.22 20377.68 18553.48 15577.99 14178.82 16453.37 22756.03 29477.41 27124.75 34384.04 13646.37 24773.42 19173.14 315
XVG-OURS68.76 15467.37 16272.90 15074.32 25057.22 10370.09 27978.81 16555.24 20267.79 15885.81 11736.54 25378.28 25162.04 13575.74 17083.19 189
c3_l68.33 16467.56 15370.62 19870.87 29246.21 25474.47 21478.80 16656.22 18266.19 18578.53 25751.88 8681.40 19462.08 13369.04 25684.25 149
ambc65.13 27263.72 34637.07 32747.66 35678.78 16754.37 31371.42 32011.24 36580.94 20645.64 25453.85 34277.38 272
AdaColmapbinary69.99 12868.66 13773.97 11884.94 6257.83 9382.63 7278.71 16856.28 18064.34 21884.14 14141.57 20287.06 6446.45 24678.88 13777.02 278
IS-MVSNet71.57 10271.00 10273.27 14478.86 15345.63 26380.22 10678.69 16964.14 3866.46 18087.36 8149.30 11085.60 10150.26 21983.71 8088.59 5
miper_ehance_all_eth68.03 17167.24 17070.40 20270.54 29646.21 25473.98 22078.68 17055.07 20966.05 18777.80 26652.16 8481.31 19761.53 14269.32 25083.67 173
cdsmvs_eth3d_5k17.50 33923.34 3380.00 3590.00 3820.00 3820.00 37078.63 1710.00 3770.00 37882.18 18149.25 1120.00 3760.00 3760.00 3740.00 374
TSAR-MVS + GP.74.90 5874.15 6677.17 5682.00 9158.77 8081.80 8478.57 17258.58 13974.32 5884.51 13655.94 4187.22 5667.11 9184.48 7385.52 108
mvs_tets68.18 16866.36 18773.63 13275.61 22855.35 13880.77 9978.56 17352.48 23664.27 22184.10 14327.45 32681.84 18663.45 12570.56 22883.69 172
MVP-Stereo65.41 21663.80 21870.22 20377.62 19155.53 13476.30 17778.53 17450.59 25856.47 29278.65 25339.84 21782.68 17144.10 26872.12 21372.44 324
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
jajsoiax68.25 16666.45 18173.66 12975.62 22755.49 13580.82 9878.51 17552.33 23764.33 21984.11 14228.28 32081.81 18763.48 12470.62 22683.67 173
MVSFormer71.50 10470.38 11174.88 9678.76 15657.15 10882.79 6778.48 17651.26 25169.49 12383.22 16143.99 17983.24 15366.06 9779.37 12884.23 150
test_djsdf69.45 14267.74 14974.58 10674.57 24454.92 14282.79 6778.48 17651.26 25165.41 19983.49 15938.37 23283.24 15366.06 9769.25 25385.56 107
diffmvs70.69 11470.43 10971.46 17669.45 31348.95 22372.93 23878.46 17857.27 15971.69 9683.97 14751.48 9177.92 25670.70 6477.95 14987.53 39
EI-MVSNet69.27 14468.44 14271.73 17074.47 24549.39 21875.20 19778.45 17959.60 11969.16 13276.51 28251.29 9282.50 17559.86 15471.45 22083.30 184
XVG-ACMP-BASELINE64.36 22862.23 23770.74 19672.35 27452.45 17370.80 27178.45 17953.84 22459.87 26381.10 20516.24 35779.32 23355.64 17771.76 21580.47 235
MVSTER67.16 18965.58 20271.88 16770.37 30049.70 21170.25 27878.45 17951.52 24569.16 13280.37 22038.45 23182.50 17560.19 14971.46 21983.44 181
miper_enhance_ethall67.11 19066.09 19470.17 20669.21 31545.98 25772.85 24078.41 18251.38 24865.65 19575.98 29151.17 9581.25 19860.82 14469.32 25083.29 186
MVS_111021_HR74.02 7173.46 7675.69 8283.01 8260.63 4777.29 15778.40 18361.18 8670.58 10385.97 11154.18 5984.00 14067.52 8882.98 8682.45 204
131464.61 22663.21 22668.80 22771.87 28247.46 24273.95 22278.39 18442.88 32859.97 26176.60 28138.11 23679.39 23254.84 18272.32 21079.55 251
Vis-MVSNetpermissive72.18 9371.37 9674.61 10481.29 10455.41 13780.90 9778.28 18560.73 9269.23 13188.09 7144.36 17682.65 17257.68 16281.75 10285.77 98
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
GeoE71.01 10970.15 11473.60 13379.57 13752.17 17678.93 12678.12 18658.02 15167.76 16083.87 14852.36 8182.72 17056.90 16675.79 16985.92 90
ACMH+57.40 1166.12 20764.06 21372.30 16477.79 18352.83 16480.39 10478.03 18757.30 15857.47 28682.55 17327.68 32484.17 13345.54 25669.78 24379.90 245
eth_miper_zixun_eth67.63 17866.28 19171.67 17271.60 28448.33 23173.68 23177.88 18855.80 19265.91 19078.62 25547.35 14082.88 16359.45 15666.25 28183.81 164
CPTT-MVS72.78 8372.08 8774.87 9784.88 6561.41 2984.15 4377.86 18955.27 20167.51 16288.08 7241.93 19681.85 18569.04 7680.01 12081.35 221
GBi-Net67.21 18466.55 17969.19 22177.63 18743.33 28177.31 15477.83 19056.62 17065.04 20982.70 16741.85 19880.33 22147.18 24072.76 20383.92 159
test167.21 18466.55 17969.19 22177.63 18743.33 28177.31 15477.83 19056.62 17065.04 20982.70 16741.85 19880.33 22147.18 24072.76 20383.92 159
FMVSNet166.70 19965.87 19669.19 22177.49 19443.33 28177.31 15477.83 19056.45 17564.60 21782.70 16738.08 23780.33 22146.08 24972.31 21183.92 159
UA-Net73.13 8072.93 8073.76 12383.58 7351.66 18478.75 12777.66 19367.75 472.61 8789.42 5449.82 10583.29 15253.61 19483.14 8186.32 79
VDD-MVS72.50 8772.09 8673.75 12581.58 9749.69 21377.76 14577.63 19463.21 5073.21 7489.02 6142.14 19383.32 15161.72 13882.50 9488.25 11
IterMVS-LS69.22 14668.48 13971.43 17974.44 24749.40 21776.23 17977.55 19559.60 11965.85 19381.59 19751.28 9381.58 19259.87 15369.90 24183.30 184
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet266.93 19466.31 19068.79 22877.63 18742.98 28476.11 18177.47 19656.62 17065.22 20782.17 18341.85 19880.18 22447.05 24372.72 20683.20 188
PLCcopyleft56.13 1465.09 22163.21 22670.72 19781.04 11054.87 14378.57 13277.47 19648.51 27455.71 29581.89 18933.71 27579.71 22641.66 28970.37 23177.58 270
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
BH-untuned68.27 16567.29 16571.21 18579.74 13353.22 15976.06 18377.46 19857.19 16066.10 18681.61 19545.37 16583.50 14945.42 26076.68 16576.91 282
VNet69.68 13570.19 11368.16 23579.73 13441.63 29870.53 27377.38 19960.37 10170.69 10286.63 9451.08 9677.09 26753.61 19481.69 10485.75 100
cl2267.47 18166.45 18170.54 20069.85 30946.49 24973.85 22877.35 20055.07 20965.51 19777.92 26247.64 13281.10 20261.58 14169.32 25084.01 157
anonymousdsp67.00 19364.82 21073.57 13470.09 30456.13 12176.35 17677.35 20048.43 27664.99 21280.84 21433.01 28380.34 22064.66 11267.64 27284.23 150
cascas65.98 20863.42 22473.64 13177.26 19852.58 16972.26 24977.21 20248.56 27361.21 25474.60 30332.57 29485.82 9950.38 21876.75 16482.52 202
FMVSNet366.32 20665.61 20168.46 23176.48 21342.34 28874.98 20477.15 20355.83 19065.04 20981.16 20339.91 21680.14 22547.18 24072.76 20382.90 197
v14868.24 16767.19 17171.40 18070.43 29847.77 23875.76 18977.03 20458.91 13167.36 16380.10 22948.60 12281.89 18460.01 15166.52 28084.53 141
Fast-Effi-MVS+-dtu67.37 18265.33 20573.48 13672.94 26457.78 9577.47 15276.88 20557.60 15661.97 24676.85 27639.31 22280.49 21954.72 18370.28 23482.17 209
CANet_DTU68.18 16867.71 15269.59 21674.83 23846.24 25378.66 13076.85 20659.60 11963.45 22782.09 18735.25 26077.41 26359.88 15278.76 14185.14 123
cl____67.18 18766.26 19269.94 20970.20 30145.74 25973.30 23376.83 20755.10 20465.27 20179.57 24047.39 13880.53 21659.41 15869.22 25483.53 179
DIV-MVS_self_test67.18 18766.26 19269.94 20970.20 30145.74 25973.29 23476.83 20755.10 20465.27 20179.58 23947.38 13980.53 21659.43 15769.22 25483.54 178
h-mvs3372.71 8571.49 9276.40 6881.99 9259.58 6076.92 16676.74 20960.40 9874.81 4985.95 11245.54 15985.76 10070.41 6670.61 22783.86 163
BH-w/o66.85 19565.83 19769.90 21279.29 14252.46 17274.66 21176.65 21054.51 21964.85 21378.12 25845.59 15882.95 16043.26 27575.54 17274.27 308
LTVRE_ROB55.42 1663.15 24061.23 24968.92 22676.57 21147.80 23659.92 32976.39 21154.35 22158.67 27682.46 17629.44 31381.49 19342.12 28571.14 22177.46 271
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
BH-RMVSNet68.81 15067.42 16072.97 14880.11 12752.53 17074.26 21676.29 21258.48 14268.38 14184.20 14042.59 18883.83 14246.53 24575.91 16882.56 200
F-COLMAP63.05 24160.87 25469.58 21876.99 20453.63 15278.12 14076.16 21347.97 28252.41 32581.61 19527.87 32278.11 25340.07 29566.66 27877.00 279
ab-mvs66.65 20066.42 18467.37 24376.17 21741.73 29570.41 27676.14 21453.99 22265.98 18883.51 15849.48 10876.24 27648.60 23273.46 19084.14 153
WR-MVS68.47 16268.47 14068.44 23280.20 12439.84 30573.75 23076.07 21564.68 2568.11 14883.63 15550.39 10379.14 24049.78 22069.66 24786.34 76
Effi-MVS+-dtu69.64 13767.53 15675.95 7376.10 21862.29 1880.20 10776.06 21659.83 11765.26 20477.09 27241.56 20384.02 13960.60 14671.09 22381.53 216
mvs-test170.44 11968.19 14577.18 5576.10 21863.22 680.59 10276.06 21659.83 11766.32 18379.87 23241.56 20385.53 10460.60 14672.77 20282.80 199
RRT_MVS68.77 15366.71 17774.95 9475.93 22258.55 8480.50 10375.84 21856.09 18568.17 14583.74 15228.50 31882.98 15865.67 10365.91 28383.33 183
MSDG61.81 25459.23 26069.55 21972.64 26852.63 16870.45 27575.81 21951.38 24853.70 31776.11 28729.52 31181.08 20437.70 30665.79 28674.93 300
miper_lstm_enhance62.03 25060.88 25365.49 26866.71 33146.25 25256.29 34175.70 22050.68 25561.27 25375.48 29640.21 21568.03 31056.31 16965.25 28982.18 207
pm-mvs165.24 21964.97 20966.04 26072.38 27339.40 31072.62 24375.63 22155.53 19862.35 24583.18 16347.45 13676.47 27349.06 22966.54 27982.24 206
UniMVSNet_ETH3D67.60 17967.07 17469.18 22477.39 19642.29 28974.18 21875.59 22260.37 10166.77 17386.06 10937.64 23978.93 24752.16 20473.49 18986.32 79
HyFIR lowres test65.67 21163.01 22873.67 12879.97 12955.65 13169.07 28775.52 22342.68 32963.53 22677.95 26040.43 21481.64 18946.01 25071.91 21483.73 171
pmmvs663.69 23262.82 23166.27 25570.63 29539.27 31173.13 23675.47 22452.69 23459.75 26682.30 17939.71 21977.03 26847.40 23864.35 29582.53 201
UGNet68.81 15067.39 16173.06 14778.33 16854.47 14579.77 11475.40 22560.45 9763.22 22884.40 13832.71 29080.91 20951.71 21180.56 11283.81 164
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VDDNet71.81 9871.33 9773.26 14582.80 8547.60 24178.74 12875.27 22659.59 12272.94 8189.40 5541.51 20683.91 14158.75 15982.99 8488.26 10
hse-mvs271.04 10869.86 11774.60 10579.58 13657.12 11073.96 22175.25 22760.40 9874.81 4981.95 18845.54 15982.90 16170.41 6666.83 27783.77 169
AUN-MVS68.45 16366.41 18574.57 10779.53 13857.08 11173.93 22575.23 22854.44 22066.69 17581.85 19037.10 24882.89 16262.07 13466.84 27683.75 170
mvs_anonymous68.03 17167.51 15769.59 21672.08 27744.57 27271.99 25275.23 22851.67 24167.06 16882.57 17254.68 5477.94 25556.56 16775.71 17186.26 83
TR-MVS66.59 20365.07 20871.17 18879.18 14749.63 21573.48 23275.20 23052.95 23067.90 15080.33 22339.81 21883.68 14543.20 27673.56 18880.20 239
IB-MVS56.42 1265.40 21762.73 23273.40 14074.89 23652.78 16573.09 23775.13 23155.69 19458.48 28073.73 30932.86 28586.32 8750.63 21670.11 23681.10 227
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
xiu_mvs_v1_base_debu68.58 15767.28 16672.48 15978.19 17257.19 10575.28 19475.09 23251.61 24270.04 11181.41 19932.79 28679.02 24263.81 11977.31 15381.22 223
xiu_mvs_v1_base68.58 15767.28 16672.48 15978.19 17257.19 10575.28 19475.09 23251.61 24270.04 11181.41 19932.79 28679.02 24263.81 11977.31 15381.22 223
xiu_mvs_v1_base_debi68.58 15767.28 16672.48 15978.19 17257.19 10575.28 19475.09 23251.61 24270.04 11181.41 19932.79 28679.02 24263.81 11977.31 15381.22 223
TransMVSNet (Re)64.72 22364.33 21265.87 26475.22 23438.56 31674.66 21175.08 23558.90 13261.79 24982.63 17051.18 9478.07 25443.63 27255.87 33580.99 229
ET-MVSNet_ETH3D67.96 17365.72 19974.68 10076.67 20855.62 13375.11 19974.74 23652.91 23160.03 26080.12 22833.68 27682.64 17361.86 13776.34 16685.78 95
LS3D64.71 22462.50 23471.34 18379.72 13555.71 12979.82 11374.72 23748.50 27556.62 29084.62 13133.59 27882.34 17929.65 34975.23 17475.97 286
Baseline_NR-MVSNet67.05 19167.56 15365.50 26775.65 22637.70 32375.42 19274.65 23859.90 11368.14 14783.15 16449.12 11677.20 26552.23 20369.78 24381.60 215
HY-MVS56.14 1364.55 22763.89 21566.55 25174.73 24141.02 30069.96 28074.43 23949.29 26761.66 25080.92 21047.43 13776.68 27144.91 26371.69 21681.94 211
GA-MVS65.53 21463.70 21971.02 19270.87 29248.10 23370.48 27474.40 24056.69 16664.70 21576.77 27733.66 27781.10 20255.42 17970.32 23383.87 162
KD-MVS_self_test55.22 29553.89 30159.21 30357.80 36427.47 36457.75 33674.32 24147.38 28850.90 33170.00 33228.45 31970.30 30140.44 29457.92 32979.87 246
无先验79.66 11774.30 24248.40 27780.78 21253.62 19279.03 257
thisisatest053067.92 17465.78 19874.33 11376.29 21551.03 18876.89 16774.25 24353.67 22565.59 19681.76 19235.15 26185.50 10755.94 17072.47 20786.47 70
CHOSEN 1792x268865.08 22262.84 23071.82 16881.49 10056.26 11966.32 29874.20 24440.53 34063.16 23078.65 25341.30 20877.80 25845.80 25274.09 18081.40 218
MS-PatchMatch62.42 24561.46 24565.31 27175.21 23552.10 17772.05 25174.05 24546.41 29757.42 28774.36 30434.35 27077.57 26245.62 25573.67 18466.26 348
tttt051767.83 17665.66 20074.33 11376.69 20750.82 19377.86 14273.99 24654.54 21864.64 21682.53 17435.06 26285.50 10755.71 17569.91 24086.67 66
USDC56.35 28754.24 29862.69 28764.74 34140.31 30365.05 30973.83 24743.93 32047.58 34177.71 26915.36 35975.05 28038.19 30561.81 31472.70 319
tfpnnormal62.47 24461.63 24364.99 27374.81 23939.01 31271.22 26273.72 24855.22 20360.21 25880.09 23041.26 21176.98 26930.02 34768.09 26678.97 258
jason69.65 13668.39 14373.43 13978.27 17056.88 11277.12 16073.71 24946.53 29669.34 12783.22 16143.37 18379.18 23564.77 11179.20 13384.23 150
jason: jason.
D2MVS62.30 24760.29 25668.34 23466.46 33348.42 23065.70 30173.42 25047.71 28458.16 28275.02 29930.51 30377.71 25953.96 19071.68 21778.90 259
COLMAP_ROBcopyleft52.97 1761.27 26058.81 26268.64 22974.63 24252.51 17178.42 13773.30 25149.92 26450.96 33081.51 19823.06 34579.40 23131.63 33965.85 28474.01 311
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
lupinMVS69.57 13868.28 14473.44 13878.76 15657.15 10876.57 17173.29 25246.19 29969.49 12382.18 18143.99 17979.23 23464.66 11279.37 12883.93 158
DP-MVS65.68 21063.66 22171.75 16984.93 6356.87 11380.74 10073.16 25353.06 22959.09 27282.35 17736.79 25285.94 9532.82 33169.96 23972.45 323
thisisatest051565.83 20963.50 22372.82 15373.75 25449.50 21671.32 26073.12 25449.39 26663.82 22576.50 28434.95 26484.84 12353.20 19875.49 17384.13 154
VPNet67.52 18068.11 14765.74 26579.18 14736.80 33072.17 25072.83 25562.04 7567.79 15885.83 11548.88 11876.60 27251.30 21372.97 20083.81 164
CL-MVSNet_self_test61.53 25660.94 25263.30 28268.95 31736.93 32967.60 29372.80 25655.67 19559.95 26276.63 27845.01 16972.22 29239.74 29962.09 31280.74 233
OurMVSNet-221017-061.37 25958.63 26569.61 21572.05 27848.06 23473.93 22572.51 25747.23 29254.74 30780.92 21021.49 35281.24 19948.57 23356.22 33479.53 252
EPNet73.09 8172.16 8575.90 7475.95 22156.28 11883.05 6172.39 25866.53 1265.27 20187.00 8550.40 10285.47 10962.48 13186.32 6285.94 89
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
1112_ss64.00 23063.36 22565.93 26279.28 14342.58 28771.35 25972.36 25946.41 29760.55 25777.89 26446.27 15373.28 28646.18 24869.97 23881.92 212
test_040263.25 23861.01 25169.96 20880.00 12854.37 14676.86 16872.02 26054.58 21758.71 27580.79 21535.00 26384.36 13026.41 35764.71 29271.15 335
EU-MVSNet55.61 29254.41 29559.19 30465.41 33933.42 35172.44 24671.91 26128.81 35751.27 32873.87 30824.76 34269.08 30643.04 27758.20 32875.06 296
KD-MVS_2432*160053.45 30351.50 31059.30 30062.82 34737.14 32555.33 34271.79 26247.34 29055.09 30370.52 32721.91 35070.45 29935.72 32142.97 35870.31 338
miper_refine_blended53.45 30351.50 31059.30 30062.82 34737.14 32555.33 34271.79 26247.34 29055.09 30370.52 32721.91 35070.45 29935.72 32142.97 35870.31 338
Anonymous20240521166.84 19665.99 19569.40 22080.19 12542.21 29071.11 26671.31 26458.80 13467.90 15086.39 10129.83 31079.65 22749.60 22678.78 14086.33 77
LFMVS71.78 9971.59 9072.32 16383.40 7646.38 25079.75 11571.08 26564.18 3572.80 8388.64 6842.58 18983.72 14457.41 16484.49 7286.86 60
CDS-MVSNet66.80 19765.37 20371.10 19078.98 15153.13 16273.27 23571.07 26652.15 23964.72 21480.23 22743.56 18277.10 26645.48 25878.88 13783.05 194
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Anonymous2024052155.30 29354.41 29557.96 31260.92 35941.73 29571.09 26771.06 26741.18 33648.65 33973.31 31116.93 35659.25 34142.54 28164.01 29672.90 317
OpenMVS_ROBcopyleft52.78 1860.03 26458.14 27065.69 26670.47 29744.82 26775.33 19370.86 26845.04 30756.06 29376.00 28826.89 33179.65 22735.36 32367.29 27372.60 320
CNLPA65.43 21564.02 21469.68 21478.73 15858.07 9077.82 14470.71 26951.49 24661.57 25283.58 15738.23 23570.82 29643.90 26970.10 23780.16 240
CostFormer64.04 22962.51 23368.61 23071.88 28145.77 25871.30 26170.60 27047.55 28664.31 22076.61 28041.63 20179.62 22949.74 22269.00 25880.42 236
bset_n11_16_dypcd65.57 21363.69 22071.19 18670.84 29451.79 18371.37 25870.48 27153.33 22865.19 20876.41 28531.46 30081.76 18865.12 10869.04 25680.01 243
Test_1112_low_res62.32 24661.77 24164.00 27879.08 15039.53 30968.17 28970.17 27243.25 32459.03 27379.90 23144.08 17771.24 29543.79 27168.42 26481.25 222
MVS_111021_LR69.50 14068.78 13571.65 17378.38 16559.33 6474.82 20770.11 27358.08 14867.83 15684.68 12941.96 19576.34 27565.62 10477.54 15179.30 255
DWT-MVSNet_test61.90 25159.93 25867.83 23771.98 28046.09 25671.03 26969.71 27450.09 26158.51 27970.62 32530.21 30777.63 26049.28 22767.91 26779.78 249
ANet_high41.38 32737.47 33253.11 33139.73 37324.45 36956.94 33869.69 27547.65 28526.04 36452.32 35812.44 36162.38 33121.80 36010.61 37172.49 322
SixPastTwentyTwo61.65 25558.80 26370.20 20575.80 22447.22 24475.59 19069.68 27654.61 21554.11 31479.26 24727.07 32982.96 15943.27 27449.79 35080.41 237
IterMVS-SCA-FT62.49 24361.52 24465.40 26971.99 27950.80 19471.15 26569.63 27745.71 30560.61 25677.93 26137.45 24165.99 32155.67 17663.50 30179.42 253
TAMVS66.78 19865.27 20671.33 18479.16 14953.67 15073.84 22969.59 27852.32 23865.28 20081.72 19344.49 17577.40 26442.32 28378.66 14382.92 195
CMPMVSbinary42.80 2157.81 27955.97 28463.32 28160.98 35747.38 24364.66 31169.50 27932.06 35446.83 34577.80 26629.50 31271.36 29448.68 23173.75 18371.21 334
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
tfpn200view963.18 23962.18 23866.21 25676.85 20539.62 30771.96 25369.44 28056.63 16862.61 23779.83 23337.18 24479.17 23631.84 33573.25 19479.83 247
thres40063.31 23562.18 23866.72 24876.85 20539.62 30771.96 25369.44 28056.63 16862.61 23779.83 23337.18 24479.17 23631.84 33573.25 19481.36 219
thres20062.20 24861.16 25065.34 27075.38 23339.99 30469.60 28269.29 28255.64 19761.87 24876.99 27337.07 24978.96 24631.28 34373.28 19377.06 277
UnsupCasMVSNet_eth53.16 30852.47 30655.23 32159.45 36133.39 35259.43 33169.13 28345.98 30150.35 33772.32 31529.30 31458.26 34442.02 28744.30 35674.05 310
thres100view90063.28 23762.41 23565.89 26377.31 19738.66 31572.65 24169.11 28457.07 16162.45 24281.03 20737.01 25079.17 23631.84 33573.25 19479.83 247
thres600view763.30 23662.27 23666.41 25277.18 19938.87 31372.35 24769.11 28456.98 16362.37 24480.96 20937.01 25079.00 24531.43 34273.05 19981.36 219
CVMVSNet59.63 26859.14 26161.08 29874.47 24538.84 31475.20 19768.74 28631.15 35558.24 28176.51 28232.39 29568.58 30849.77 22165.84 28575.81 289
TinyColmap54.14 29851.72 30861.40 29666.84 33041.97 29166.52 29668.51 28744.81 30842.69 35575.77 29211.66 36372.94 28731.96 33356.77 33269.27 344
baseline263.42 23461.26 24869.89 21372.55 27147.62 24071.54 25668.38 28850.11 26054.82 30675.55 29543.06 18680.96 20548.13 23567.16 27581.11 226
IterMVS62.79 24261.27 24767.35 24469.37 31452.04 18071.17 26368.24 28952.63 23559.82 26476.91 27537.32 24372.36 28952.80 20063.19 30477.66 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
旧先验183.04 8053.15 16067.52 29087.85 7744.08 17780.76 10778.03 268
AllTest57.08 28354.65 29264.39 27671.44 28649.03 21969.92 28167.30 29145.97 30247.16 34379.77 23517.47 35467.56 31233.65 32859.16 32576.57 283
TestCases64.39 27671.44 28649.03 21967.30 29145.97 30247.16 34379.77 23517.47 35467.56 31233.65 32859.16 32576.57 283
baseline163.81 23163.87 21763.62 27976.29 21536.36 33371.78 25567.29 29356.05 18764.23 22282.95 16547.11 14274.41 28347.30 23961.85 31380.10 242
tpmvs58.47 27256.95 27863.03 28670.20 30141.21 29967.90 29267.23 29449.62 26554.73 30870.84 32334.14 27176.24 27636.64 31561.29 31771.64 331
Gipumacopyleft34.77 33231.91 33643.33 34562.05 35237.87 32020.39 36667.03 29523.23 36318.41 36725.84 3674.24 37362.73 32914.71 36551.32 34629.38 366
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ECVR-MVScopyleft67.72 17767.51 15768.35 23379.46 13936.29 33874.79 20866.93 29658.72 13567.19 16688.05 7336.10 25481.38 19552.07 20584.25 7487.39 45
tpm262.07 24960.10 25767.99 23672.79 26643.86 27771.05 26866.85 29743.14 32662.77 23275.39 29738.32 23380.80 21141.69 28868.88 25979.32 254
XXY-MVS60.68 26161.67 24257.70 31570.43 29838.45 31764.19 31366.47 29848.05 28163.22 22880.86 21249.28 11160.47 33645.25 26267.28 27474.19 309
112168.53 16167.16 17272.63 15685.64 4861.14 3473.95 22266.46 29944.61 31170.28 10786.68 9241.42 20780.78 21253.62 19281.79 9875.97 286
新几何170.76 19585.66 4661.13 3566.43 30044.68 31070.29 10686.64 9341.29 20975.23 27949.72 22381.75 10275.93 288
ppachtmachnet_test58.06 27755.38 28866.10 25969.51 31148.99 22268.01 29166.13 30144.50 31354.05 31570.74 32432.09 29772.34 29036.68 31456.71 33376.99 281
tpm cat159.25 26956.95 27866.15 25772.19 27646.96 24668.09 29065.76 30240.03 34357.81 28470.56 32638.32 23374.51 28238.26 30461.50 31677.00 279
test111167.21 18467.14 17367.42 24279.24 14534.76 34373.89 22765.65 30358.71 13766.96 17087.95 7536.09 25580.53 21652.03 20683.79 7986.97 57
EPNet_dtu61.90 25161.97 24061.68 29372.89 26539.78 30675.85 18865.62 30455.09 20654.56 31079.36 24537.59 24067.02 31539.80 29876.95 15978.25 262
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_030458.51 27157.36 27461.96 29270.04 30541.83 29369.40 28565.46 30550.73 25453.30 32374.06 30722.65 34670.18 30342.16 28468.44 26373.86 313
pmmvs461.48 25859.39 25967.76 23871.57 28553.86 14971.42 25765.34 30644.20 31659.46 26777.92 26235.90 25674.71 28143.87 27064.87 29174.71 304
testdata64.66 27481.52 9852.93 16365.29 30746.09 30073.88 6687.46 8038.08 23766.26 32053.31 19778.48 14574.78 303
TDRefinement53.44 30550.72 31361.60 29464.31 34446.96 24670.89 27065.27 30841.78 33144.61 35177.98 25911.52 36466.36 31928.57 35251.59 34571.49 332
MIMVSNet155.17 29654.31 29757.77 31470.03 30632.01 35565.68 30264.81 30949.19 26846.75 34676.00 28825.53 33964.04 32628.65 35162.13 31177.26 275
pmmvs-eth3d58.81 27056.31 28366.30 25467.61 32552.42 17472.30 24864.76 31043.55 32254.94 30574.19 30628.95 31572.60 28843.31 27357.21 33073.88 312
MDTV_nov1_ep1357.00 27772.73 26738.26 31865.02 31064.73 31144.74 30955.46 29772.48 31432.61 29370.47 29837.47 30767.75 271
UnsupCasMVSNet_bld50.07 31648.87 31753.66 32860.97 35833.67 35057.62 33764.56 31239.47 34547.38 34264.02 35127.47 32559.32 34034.69 32543.68 35767.98 347
ITE_SJBPF62.09 29166.16 33544.55 27364.32 31347.36 28955.31 30080.34 22219.27 35362.68 33036.29 31962.39 31079.04 256
WTY-MVS59.75 26760.39 25557.85 31372.32 27537.83 32161.05 32764.18 31445.95 30461.91 24779.11 24947.01 14660.88 33542.50 28269.49 24974.83 301
MDA-MVSNet-bldmvs53.87 30150.81 31263.05 28566.25 33448.58 22756.93 33963.82 31548.09 28041.22 35670.48 32930.34 30568.00 31134.24 32645.92 35572.57 321
Vis-MVSNet (Re-imp)63.69 23263.88 21663.14 28474.75 24031.04 35871.16 26463.64 31656.32 17859.80 26584.99 12544.51 17375.46 27839.12 30080.62 10882.92 195
test22283.14 7758.68 8172.57 24463.45 31741.78 33167.56 16186.12 10637.13 24778.73 14274.98 299
PVSNet50.76 1958.40 27357.39 27361.42 29575.53 23044.04 27661.43 32263.45 31747.04 29456.91 28873.61 31027.00 33064.76 32439.12 30072.40 20875.47 293
SCA60.49 26258.38 26766.80 24774.14 25348.06 23463.35 31563.23 31949.13 26959.33 27172.10 31637.45 24174.27 28444.17 26562.57 30878.05 265
CR-MVSNet59.91 26557.90 27265.96 26169.96 30752.07 17865.31 30763.15 32042.48 33059.36 26874.84 30035.83 25770.75 29745.50 25764.65 29375.06 296
Patchmtry57.16 28256.47 28159.23 30269.17 31634.58 34562.98 31663.15 32044.53 31256.83 28974.84 30035.83 25768.71 30740.03 29660.91 31874.39 307
pmmvs556.47 28555.68 28658.86 30661.41 35436.71 33166.37 29762.75 32240.38 34153.70 31776.62 27934.56 26667.05 31440.02 29765.27 28872.83 318
K. test v360.47 26357.11 27570.56 19973.74 25548.22 23275.10 20162.55 32358.27 14753.62 31976.31 28627.81 32381.59 19147.42 23739.18 36181.88 213
FMVSNet555.86 29054.93 29058.66 30871.05 29136.35 33464.18 31462.48 32446.76 29550.66 33574.73 30225.80 33764.04 32633.11 33065.57 28775.59 292
PatchmatchNetpermissive59.84 26658.24 26864.65 27573.05 26246.70 24869.42 28462.18 32547.55 28658.88 27471.96 31834.49 26869.16 30542.99 27863.60 30078.07 264
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Anonymous2023120655.10 29755.30 28954.48 32569.81 31033.94 34962.91 31762.13 32641.08 33755.18 30275.65 29332.75 28956.59 35130.32 34667.86 26872.91 316
sss56.17 28956.57 28054.96 32266.93 32936.32 33657.94 33561.69 32741.67 33358.64 27775.32 29838.72 22956.25 35242.04 28666.19 28272.31 328
our_test_356.49 28454.42 29462.68 28869.51 31145.48 26466.08 29961.49 32844.11 31950.73 33469.60 33533.05 28268.15 30938.38 30356.86 33174.40 306
tpmrst58.24 27458.70 26456.84 31666.97 32834.32 34669.57 28361.14 32947.17 29358.58 27871.60 31941.28 21060.41 33749.20 22862.84 30675.78 290
MIMVSNet57.35 28057.07 27658.22 30974.21 25237.18 32462.46 31860.88 33048.88 27155.29 30175.99 29031.68 29962.04 33231.87 33472.35 20975.43 294
LCM-MVSNet40.30 32835.88 33353.57 32942.24 37029.15 36245.21 35960.53 33122.23 36528.02 36350.98 3613.72 37561.78 33331.22 34438.76 36269.78 341
ADS-MVSNet251.33 31348.76 31859.07 30566.02 33744.60 27150.90 35059.76 33236.90 34750.74 33266.18 34626.38 33263.11 32827.17 35354.76 33869.50 342
new-patchmatchnet47.56 32047.73 32147.06 34158.81 3629.37 37648.78 35459.21 33343.28 32344.22 35268.66 33725.67 33857.20 34831.57 34149.35 35174.62 305
test20.0353.87 30154.02 30053.41 33061.47 35328.11 36361.30 32459.21 33351.34 25052.09 32677.43 27033.29 28158.55 34329.76 34860.27 32273.58 314
JIA-IIPM51.56 31247.68 32263.21 28364.61 34250.73 19547.71 35558.77 33542.90 32748.46 34051.72 35924.97 34170.24 30236.06 32053.89 34168.64 346
testgi51.90 31052.37 30750.51 33960.39 36023.55 37058.42 33358.15 33649.03 27051.83 32779.21 24822.39 34755.59 35529.24 35062.64 30772.40 327
LCM-MVSNet-Re61.88 25361.35 24663.46 28074.58 24331.48 35761.42 32358.14 33758.71 13753.02 32479.55 24143.07 18576.80 27045.69 25377.96 14882.11 210
test-LLR58.15 27658.13 27158.22 30968.57 31944.80 26865.46 30457.92 33850.08 26255.44 29869.82 33332.62 29157.44 34649.66 22473.62 18572.41 325
test-mter56.42 28655.82 28558.22 30968.57 31944.80 26865.46 30457.92 33839.94 34455.44 29869.82 33321.92 34957.44 34649.66 22473.62 18572.41 325
RPSCF55.80 29154.22 29960.53 29965.13 34042.91 28664.30 31257.62 34036.84 34958.05 28382.28 18028.01 32156.24 35337.14 30958.61 32782.44 205
GG-mvs-BLEND62.34 28971.36 29037.04 32869.20 28657.33 34154.73 30865.48 34830.37 30477.82 25734.82 32474.93 17572.17 329
MDA-MVSNet_test_wron50.71 31548.95 31656.00 32061.17 35541.84 29251.90 34956.45 34240.96 33844.79 35067.84 33930.04 30955.07 35836.71 31350.69 34871.11 336
YYNet150.73 31448.96 31556.03 31961.10 35641.78 29451.94 34856.44 34340.94 33944.84 34967.80 34030.08 30855.08 35736.77 31150.71 34771.22 333
gg-mvs-nofinetune57.86 27856.43 28262.18 29072.62 26935.35 34066.57 29556.33 34450.65 25657.64 28557.10 35630.65 30276.36 27437.38 30878.88 13774.82 302
TESTMET0.1,155.28 29454.90 29156.42 31766.56 33243.67 27965.46 30456.27 34539.18 34653.83 31667.44 34224.21 34455.46 35648.04 23673.11 19870.13 340
PMMVS53.96 29953.26 30556.04 31862.60 35050.92 19161.17 32656.09 34632.81 35353.51 32166.84 34434.04 27259.93 33944.14 26768.18 26557.27 356
tpm57.34 28158.16 26954.86 32371.80 28334.77 34267.47 29456.04 34748.20 27960.10 25976.92 27437.17 24653.41 35940.76 29365.01 29076.40 285
PVSNet_043.31 2047.46 32145.64 32452.92 33267.60 32644.65 27054.06 34654.64 34841.59 33446.15 34758.75 35530.99 30158.66 34232.18 33224.81 36455.46 357
dp51.89 31151.60 30952.77 33368.44 32232.45 35462.36 31954.57 34944.16 31749.31 33867.91 33828.87 31756.61 35033.89 32754.89 33769.24 345
PatchT53.17 30753.44 30452.33 33568.29 32325.34 36858.21 33454.41 35044.46 31454.56 31069.05 33633.32 28060.94 33436.93 31061.76 31570.73 337
test0.0.03 153.32 30653.59 30352.50 33462.81 34929.45 36159.51 33054.11 35150.08 26254.40 31274.31 30532.62 29155.92 35430.50 34563.95 29872.15 330
PatchMatch-RL56.25 28854.55 29361.32 29777.06 20156.07 12365.57 30354.10 35244.13 31853.49 32271.27 32225.20 34066.78 31636.52 31763.66 29961.12 351
FPMVS42.18 32641.11 32845.39 34258.03 36341.01 30149.50 35253.81 35330.07 35633.71 36164.03 34911.69 36252.08 36114.01 36655.11 33643.09 362
test250665.33 21864.61 21167.50 24079.46 13934.19 34774.43 21551.92 35458.72 13566.75 17488.05 7325.99 33680.92 20851.94 20784.25 7487.39 45
EGC-MVSNET42.47 32538.48 33154.46 32674.33 24948.73 22670.33 27751.10 3550.03 3740.18 37567.78 34113.28 36066.49 31818.91 36250.36 34948.15 359
Patchmatch-RL test58.16 27555.49 28766.15 25767.92 32448.89 22460.66 32851.07 35647.86 28359.36 26862.71 35334.02 27372.27 29156.41 16859.40 32477.30 273
lessismore_v069.91 21171.42 28847.80 23650.90 35750.39 33675.56 29427.43 32781.33 19645.91 25134.10 36380.59 234
ADS-MVSNet48.48 31847.77 32050.63 33866.02 33729.92 36050.90 35050.87 35836.90 34750.74 33266.18 34626.38 33252.47 36027.17 35354.76 33869.50 342
EPMVS53.96 29953.69 30254.79 32466.12 33631.96 35662.34 32049.05 35944.42 31555.54 29671.33 32130.22 30656.70 34941.65 29062.54 30975.71 291
PMVScopyleft28.69 2236.22 33133.29 33545.02 34436.82 37535.98 33954.68 34548.74 36026.31 36021.02 36551.61 3602.88 37760.10 3389.99 37047.58 35338.99 365
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
LF4IMVS42.95 32442.26 32645.04 34348.30 36832.50 35354.80 34448.49 36128.03 35840.51 35870.16 3309.24 36843.89 36531.63 33949.18 35258.72 353
Patchmatch-test49.08 31748.28 31951.50 33764.40 34330.85 35945.68 35748.46 36235.60 35046.10 34872.10 31634.47 26946.37 36327.08 35560.65 32177.27 274
door47.60 363
door-mid47.19 364
pmmvs344.92 32341.95 32753.86 32752.58 36643.55 28062.11 32146.90 36526.05 36140.63 35760.19 35411.08 36657.91 34531.83 33846.15 35460.11 352
MVS-HIRNet45.52 32244.48 32548.65 34068.49 32134.05 34859.41 33244.50 36627.03 35937.96 36050.47 36226.16 33564.10 32526.74 35659.52 32347.82 360
CHOSEN 280x42047.83 31946.36 32352.24 33667.37 32749.78 21038.91 36343.11 36735.00 35143.27 35463.30 35228.95 31549.19 36236.53 31660.80 32057.76 355
test_method19.68 33818.10 34124.41 35313.68 3783.11 37912.06 36942.37 3682.00 37211.97 37036.38 3645.77 37229.35 37215.06 36423.65 36540.76 363
PM-MVS52.33 30950.19 31458.75 30762.10 35145.14 26665.75 30040.38 36943.60 32153.52 32072.65 3139.16 36965.87 32250.41 21754.18 34065.24 350
E-PMN23.77 33522.73 33926.90 35142.02 37120.67 37142.66 36135.70 37017.43 36610.28 37225.05 3686.42 37142.39 36710.28 36914.71 36817.63 367
EMVS22.97 33621.84 34026.36 35240.20 37219.53 37341.95 36234.64 37117.09 3679.73 37322.83 3697.29 37042.22 3689.18 37113.66 36917.32 368
new_pmnet34.13 33334.29 33433.64 34852.63 36518.23 37444.43 36033.90 37222.81 36430.89 36253.18 35710.48 36735.72 37020.77 36139.51 36046.98 361
DSMNet-mixed39.30 33038.72 33041.03 34651.22 36719.66 37245.53 35831.35 37315.83 36839.80 35967.42 34322.19 34845.13 36422.43 35952.69 34358.31 354
PMMVS227.40 33425.91 33731.87 35039.46 3746.57 37731.17 36428.52 37423.96 36220.45 36648.94 3634.20 37437.94 36916.51 36319.97 36651.09 358
MVEpermissive17.77 2321.41 33717.77 34232.34 34934.34 37625.44 36716.11 36724.11 37511.19 36913.22 36931.92 3651.58 37830.95 37110.47 36817.03 36740.62 364
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MTMP86.03 1917.08 376
tmp_tt9.43 34111.14 3444.30 3562.38 3794.40 37813.62 36816.08 3770.39 37315.89 36813.06 37015.80 3585.54 37512.63 36710.46 3722.95 370
DeepMVS_CXcopyleft12.03 35517.97 37710.91 37510.60 3787.46 37011.07 37128.36 3663.28 37611.29 3748.01 3729.74 37313.89 369
wuyk23d13.32 34012.52 34315.71 35447.54 36926.27 36531.06 3651.98 3794.93 3715.18 3741.94 3740.45 37918.54 3736.81 37312.83 3702.33 371
N_pmnet39.35 32940.28 32936.54 34763.76 3451.62 38049.37 3530.76 38034.62 35243.61 35366.38 34526.25 33442.57 36626.02 35851.77 34465.44 349
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3820.00 3700.00 3810.00 3770.00 3780.00 3770.00 3810.00 3760.00 3760.00 3740.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3820.00 3700.00 3810.00 3770.00 3780.00 3770.00 3810.00 3760.00 3760.00 3740.00 374
pcd_1.5k_mvsjas3.92 3455.23 3480.00 3590.00 3820.00 3820.00 3700.00 3810.00 3770.00 3780.00 37747.05 1430.00 3760.00 3760.00 3740.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3820.00 3700.00 3810.00 3770.00 3780.00 3770.00 3810.00 3760.00 3760.00 3740.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3820.00 3700.00 3810.00 3770.00 3780.00 3770.00 3810.00 3760.00 3760.00 3740.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3820.00 3700.00 3810.00 3770.00 3780.00 3770.00 3810.00 3760.00 3760.00 3740.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3820.00 3700.00 3810.00 3770.00 3780.00 3770.00 3810.00 3760.00 3760.00 3740.00 374
testmvs4.52 3446.03 3470.01 3580.01 3800.00 38253.86 3470.00 3810.01 3750.04 3760.27 3750.00 3810.00 3760.04 3740.00 3740.03 373
test1234.73 3436.30 3460.02 3570.01 3800.01 38156.36 3400.00 3810.01 3750.04 3760.21 3760.01 3800.00 3760.03 3750.00 3740.04 372
n20.00 381
nn0.00 381
ab-mvs-re6.49 3428.65 3450.00 3590.00 3820.00 3820.00 3700.00 3810.00 3770.00 37877.89 2640.00 3810.00 3760.00 3760.00 3740.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3820.00 3700.00 3810.00 3770.00 3780.00 3770.00 3810.00 3760.00 3760.00 3740.00 374
PC_three_145255.09 20684.46 489.84 4966.68 589.41 1774.24 3791.38 288.42 7
eth-test20.00 382
eth-test0.00 382
OPU-MVS79.83 687.54 1160.93 4087.82 789.89 4767.01 190.33 1173.16 4991.15 488.23 12
test_0728_THIRD65.04 2083.82 892.00 364.69 1090.75 879.48 490.63 1088.09 17
GSMVS78.05 265
test_part287.58 960.47 4983.42 12
sam_mvs134.74 26578.05 265
sam_mvs33.43 279
test_post168.67 2883.64 37232.39 29569.49 30444.17 265
test_post3.55 37333.90 27466.52 317
patchmatchnet-post64.03 34934.50 26774.27 284
gm-plane-assit71.40 28941.72 29748.85 27273.31 31182.48 17748.90 230
test9_res75.28 3188.31 3783.81 164
agg_prior273.09 5087.93 4484.33 146
test_prior462.51 1782.08 83
test_prior281.75 8560.37 10175.01 4489.06 5956.22 3872.19 5388.96 28
旧先验276.08 18245.32 30676.55 3565.56 32358.75 159
新几何276.12 180
原ACMM279.02 125
testdata272.18 29346.95 244
segment_acmp54.23 58
testdata172.65 24160.50 96
plane_prior781.41 10155.96 125
plane_prior681.20 10856.24 12045.26 167
plane_prior486.10 107
plane_prior356.09 12263.92 3969.27 128
plane_prior284.22 4064.52 28
plane_prior181.27 106
plane_prior56.31 11683.58 5663.19 5180.48 113
HQP5-MVS54.94 140
HQP-NCC80.66 11382.31 7862.10 7267.85 152
ACMP_Plane80.66 11382.31 7862.10 7267.85 152
BP-MVS67.04 92
HQP4-MVS67.85 15286.93 6684.32 147
HQP2-MVS45.46 161
NP-MVS80.98 11156.05 12485.54 121
MDTV_nov1_ep13_2view25.89 36661.22 32540.10 34251.10 32932.97 28438.49 30278.61 260
ACMMP++_ref74.07 181
ACMMP++72.16 212
Test By Simon48.33 124