This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
test_fmvsm_n_192097.55 1197.89 396.53 8198.41 7491.73 11198.01 5999.02 196.37 499.30 198.92 1092.39 3799.79 3399.16 599.46 4298.08 172
PGM-MVS96.81 4296.53 5097.65 4299.35 2093.53 6097.65 10698.98 292.22 13397.14 5398.44 4491.17 6299.85 1894.35 11899.46 4299.57 26
MVS_111021_HR96.68 5196.58 4996.99 7098.46 7092.31 9396.20 24698.90 394.30 6295.86 10797.74 10492.33 3899.38 11396.04 6999.42 4999.28 65
test_fmvsmconf_n97.49 1297.56 997.29 5597.44 14492.37 9097.91 7698.88 495.83 898.92 1299.05 591.45 5399.80 3099.12 699.46 4299.69 12
ACMMPcopyleft96.27 6395.93 6697.28 5799.24 2892.62 8298.25 3698.81 592.99 10894.56 13698.39 4888.96 9099.85 1894.57 11797.63 13699.36 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS_111021_LR96.24 6496.19 6396.39 9998.23 9191.35 13196.24 24498.79 693.99 6995.80 10997.65 11189.92 8099.24 12495.87 7399.20 7498.58 127
patch_mono-296.83 4197.44 1395.01 17799.05 3985.39 30596.98 17898.77 794.70 4597.99 3298.66 2793.61 1999.91 197.67 1899.50 3699.72 11
fmvsm_s_conf0.5_n96.85 3997.13 1696.04 12498.07 10590.28 17397.97 6998.76 894.93 3098.84 1699.06 488.80 9399.65 5899.06 798.63 10398.18 161
fmvsm_l_conf0.5_n97.65 797.75 697.34 5298.21 9292.75 7897.83 8598.73 995.04 2899.30 198.84 2093.34 2299.78 3599.32 399.13 8099.50 40
fmvsm_s_conf0.5_n_a96.75 4696.93 2996.20 11697.64 12990.72 16198.00 6198.73 994.55 5098.91 1399.08 388.22 10699.63 6798.91 998.37 11598.25 156
FC-MVSNet-test93.94 13493.57 12795.04 17595.48 25191.45 12898.12 5098.71 1193.37 9290.23 23696.70 16687.66 11597.85 28891.49 17490.39 27795.83 257
UniMVSNet (Re)93.31 15692.55 16895.61 14995.39 25693.34 6697.39 13898.71 1193.14 10490.10 24594.83 26387.71 11498.03 26291.67 17283.99 34495.46 277
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 5998.25 8692.59 8497.81 8998.68 1394.93 3099.24 398.87 1593.52 2099.79 3399.32 399.21 7299.40 54
FIs94.09 12793.70 12395.27 16595.70 24192.03 10398.10 5198.68 1393.36 9490.39 23396.70 16687.63 11897.94 27992.25 15490.50 27695.84 256
WR-MVS_H92.00 21091.35 20693.95 23995.09 28289.47 19898.04 5798.68 1391.46 15788.34 29294.68 27085.86 14697.56 31385.77 28784.24 34294.82 319
VPA-MVSNet93.24 15892.48 17395.51 15595.70 24192.39 8997.86 8098.66 1692.30 13292.09 19595.37 24180.49 23698.40 21693.95 12485.86 31695.75 266
UniMVSNet_NR-MVSNet93.37 15492.67 16395.47 16095.34 26292.83 7697.17 16498.58 1792.98 11390.13 24195.80 21888.37 10597.85 28891.71 16983.93 34595.73 268
CSCG96.05 6995.91 6896.46 9399.24 2890.47 16898.30 2998.57 1889.01 23693.97 15097.57 11992.62 3399.76 3894.66 11299.27 6599.15 75
MSLP-MVS++96.94 3397.06 1996.59 7998.72 5591.86 10897.67 10398.49 1994.66 4897.24 5098.41 4792.31 4098.94 16596.61 4399.46 4298.96 94
HyFIR lowres test93.66 14592.92 15195.87 13298.24 8789.88 18594.58 31198.49 1985.06 33093.78 15395.78 22282.86 19498.67 19491.77 16795.71 18299.07 85
CHOSEN 1792x268894.15 12293.51 13396.06 12298.27 8389.38 20395.18 29798.48 2185.60 32093.76 15497.11 14583.15 18599.61 6991.33 17798.72 10099.19 71
PHI-MVS96.77 4496.46 5697.71 4098.40 7594.07 4898.21 4398.45 2289.86 20997.11 5598.01 8392.52 3599.69 5296.03 7099.53 3099.36 60
fmvsm_s_conf0.1_n96.58 5496.77 4096.01 12896.67 18790.25 17497.91 7698.38 2394.48 5498.84 1699.14 188.06 10899.62 6898.82 1198.60 10598.15 165
PVSNet_BlendedMVS94.06 12893.92 11894.47 20898.27 8389.46 20096.73 19798.36 2490.17 20294.36 13995.24 24788.02 10999.58 7793.44 13590.72 27294.36 339
PVSNet_Blended94.87 10694.56 10395.81 13598.27 8389.46 20095.47 28398.36 2488.84 24494.36 13996.09 20788.02 10999.58 7793.44 13598.18 12398.40 148
3Dnovator91.36 595.19 9694.44 11197.44 4996.56 19593.36 6598.65 1198.36 2494.12 6589.25 27498.06 7782.20 21099.77 3793.41 13799.32 6299.18 72
FOURS199.55 193.34 6699.29 198.35 2794.98 2998.49 23
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 16198.35 2795.16 2298.71 2098.80 2295.05 1099.89 396.70 4199.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
fmvsm_s_conf0.1_n_a96.40 5896.47 5396.16 11895.48 25190.69 16297.91 7698.33 2994.07 6698.93 999.14 187.44 12499.61 6998.63 1398.32 11798.18 161
HFP-MVS97.14 2396.92 3097.83 2699.42 794.12 4698.52 1698.32 3093.21 9797.18 5198.29 6392.08 4299.83 2695.63 8699.59 2099.54 33
ACMMPR97.07 2696.84 3397.79 3099.44 693.88 5298.52 1698.31 3193.21 9797.15 5298.33 5791.35 5799.86 895.63 8699.59 2099.62 18
test_fmvsmvis_n_192096.70 4796.84 3396.31 10496.62 18891.73 11197.98 6398.30 3296.19 596.10 9898.95 889.42 8399.76 3898.90 1099.08 8497.43 204
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2898.81 798.30 3294.76 4398.30 2698.90 1293.77 1799.68 5497.93 1499.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test072699.45 395.36 1398.31 2898.29 3494.92 3298.99 798.92 1095.08 8
MSP-MVS97.59 1097.54 1097.73 3799.40 1193.77 5698.53 1598.29 3495.55 1398.56 2297.81 9993.90 1599.65 5896.62 4299.21 7299.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3694.78 4198.93 998.87 1596.04 299.86 897.45 2699.58 2499.59 22
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 3699.86 897.52 2299.67 699.75 6
CP-MVS97.02 2996.81 3797.64 4499.33 2193.54 5998.80 898.28 3692.99 10896.45 8598.30 6291.90 4599.85 1895.61 8899.68 499.54 33
test_fmvsmconf0.1_n97.09 2497.06 1997.19 6495.67 24392.21 9697.95 7298.27 3995.78 1098.40 2599.00 689.99 7899.78 3599.06 799.41 5299.59 22
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3995.13 2399.19 498.89 1395.54 599.85 1897.52 2299.66 1199.56 29
test_241102_TWO98.27 3995.13 2398.93 998.89 1394.99 1199.85 1897.52 2299.65 1399.74 8
test_241102_ONE99.42 795.30 1798.27 3995.09 2699.19 498.81 2195.54 599.65 58
SF-MVS97.39 1597.13 1698.17 1599.02 4295.28 1998.23 4098.27 3992.37 12998.27 2798.65 2993.33 2399.72 4596.49 4899.52 3199.51 37
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 7794.25 4098.43 2398.27 3995.34 1798.11 2898.56 3194.53 1299.71 4696.57 4599.62 1899.65 15
Skip Steuart: Steuart Systems R&D Blog.
test_one_060199.32 2295.20 2098.25 4595.13 2398.48 2498.87 1595.16 7
PVSNet_Blended_VisFu95.27 9194.91 9496.38 10098.20 9390.86 15397.27 15298.25 4590.21 20194.18 14497.27 13487.48 12399.73 4293.53 13297.77 13498.55 129
region2R97.07 2696.84 3397.77 3399.46 293.79 5498.52 1698.24 4793.19 10097.14 5398.34 5491.59 5299.87 795.46 9399.59 2099.64 16
PS-CasMVS91.55 22990.84 22893.69 25494.96 28788.28 23897.84 8498.24 4791.46 15788.04 30295.80 21879.67 25297.48 32187.02 26784.54 33995.31 289
DU-MVS92.90 17692.04 18395.49 15794.95 28892.83 7697.16 16598.24 4793.02 10790.13 24195.71 22583.47 17897.85 28891.71 16983.93 34595.78 261
9.1496.75 4198.93 4797.73 9698.23 5091.28 16597.88 3598.44 4493.00 2699.65 5895.76 7999.47 41
D2MVS91.30 24490.95 22292.35 29794.71 30485.52 30196.18 24798.21 5188.89 24286.60 32993.82 31379.92 24897.95 27889.29 21890.95 26993.56 352
SDMVSNet94.17 12093.61 12695.86 13398.09 10191.37 13097.35 14298.20 5293.18 10191.79 20197.28 13279.13 26098.93 16694.61 11592.84 23397.28 212
XVS97.18 2196.96 2897.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7698.29 6391.70 4899.80 3095.66 8199.40 5399.62 18
X-MVStestdata91.71 21889.67 27997.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7632.69 40891.70 4899.80 3095.66 8199.40 5399.62 18
ACMMP_NAP97.20 2096.86 3198.23 1199.09 3495.16 2297.60 11598.19 5592.82 11897.93 3498.74 2691.60 5199.86 896.26 5499.52 3199.67 13
CP-MVSNet91.89 21491.24 21393.82 24695.05 28488.57 22897.82 8798.19 5591.70 15088.21 29895.76 22381.96 21497.52 31987.86 24284.65 33495.37 285
ZNCC-MVS96.96 3196.67 4597.85 2599.37 1694.12 4698.49 2098.18 5792.64 12496.39 8798.18 7091.61 5099.88 495.59 9199.55 2799.57 26
SMA-MVScopyleft97.35 1697.03 2498.30 899.06 3895.42 1097.94 7398.18 5790.57 19698.85 1598.94 993.33 2399.83 2696.72 4099.68 499.63 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PEN-MVS91.20 24890.44 24493.48 26394.49 31287.91 25297.76 9298.18 5791.29 16287.78 30695.74 22480.35 23997.33 33285.46 29182.96 35595.19 300
DELS-MVS96.61 5296.38 5997.30 5497.79 12093.19 6995.96 25798.18 5795.23 1995.87 10697.65 11191.45 5399.70 5195.87 7399.44 4899.00 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
tfpnnormal89.70 29788.40 30293.60 25795.15 27890.10 17697.56 11898.16 6187.28 29486.16 33394.63 27377.57 28798.05 25874.48 37184.59 33792.65 365
VNet95.89 7795.45 7897.21 6298.07 10592.94 7597.50 12498.15 6293.87 7397.52 4097.61 11785.29 15299.53 9195.81 7895.27 19099.16 73
DeepPCF-MVS93.97 196.61 5297.09 1895.15 16998.09 10186.63 28296.00 25598.15 6295.43 1497.95 3398.56 3193.40 2199.36 11496.77 3899.48 4099.45 47
SD-MVS97.41 1497.53 1197.06 6898.57 6994.46 3397.92 7598.14 6494.82 3899.01 698.55 3394.18 1497.41 32896.94 3499.64 1499.32 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GST-MVS96.85 3996.52 5197.82 2799.36 1894.14 4598.29 3098.13 6592.72 12196.70 6898.06 7791.35 5799.86 894.83 10699.28 6499.47 46
UA-Net95.95 7595.53 7597.20 6397.67 12592.98 7497.65 10698.13 6594.81 3996.61 7498.35 5188.87 9199.51 9690.36 19497.35 14699.11 81
QAPM93.45 15292.27 17896.98 7196.77 18292.62 8298.39 2598.12 6784.50 33888.27 29697.77 10282.39 20799.81 2985.40 29298.81 9798.51 134
Vis-MVSNetpermissive95.23 9394.81 9596.51 8697.18 15191.58 12198.26 3598.12 6794.38 6094.90 12998.15 7282.28 20898.92 16791.45 17698.58 10799.01 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OpenMVScopyleft89.19 1292.86 17891.68 19696.40 9795.34 26292.73 8098.27 3398.12 6784.86 33385.78 33597.75 10378.89 26999.74 4187.50 25798.65 10296.73 229
TranMVSNet+NR-MVSNet92.50 18791.63 19795.14 17094.76 30092.07 10197.53 12298.11 7092.90 11689.56 26296.12 20283.16 18497.60 31189.30 21783.20 35495.75 266
CPTT-MVS95.57 8595.19 8896.70 7399.27 2691.48 12598.33 2798.11 7087.79 27995.17 12698.03 8087.09 13099.61 6993.51 13399.42 4999.02 86
APD-MVScopyleft96.95 3296.60 4798.01 1999.03 4194.93 2797.72 9998.10 7291.50 15598.01 3198.32 5992.33 3899.58 7794.85 10599.51 3499.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
mPP-MVS96.86 3796.60 4797.64 4499.40 1193.44 6198.50 1998.09 7393.27 9695.95 10598.33 5791.04 6499.88 495.20 9699.57 2699.60 21
ZD-MVS99.05 3994.59 3198.08 7489.22 22997.03 5898.10 7392.52 3599.65 5894.58 11699.31 63
MTGPAbinary98.08 74
MTAPA97.08 2596.78 3997.97 2299.37 1694.42 3597.24 15598.08 7495.07 2796.11 9798.59 3090.88 6899.90 296.18 6599.50 3699.58 25
CNVR-MVS97.68 697.44 1398.37 798.90 5095.86 697.27 15298.08 7495.81 997.87 3698.31 6094.26 1399.68 5497.02 3399.49 3999.57 26
DP-MVS Recon95.68 8195.12 9197.37 5199.19 3194.19 4297.03 17198.08 7488.35 26295.09 12897.65 11189.97 7999.48 10192.08 16198.59 10698.44 145
SR-MVS97.01 3096.86 3197.47 4899.09 3493.27 6897.98 6398.07 7993.75 7697.45 4298.48 4191.43 5599.59 7496.22 5799.27 6599.54 33
MCST-MVS97.18 2196.84 3398.20 1499.30 2495.35 1597.12 16898.07 7993.54 8596.08 9997.69 10693.86 1699.71 4696.50 4799.39 5599.55 32
NR-MVSNet92.34 19591.27 21295.53 15494.95 28893.05 7297.39 13898.07 7992.65 12384.46 34695.71 22585.00 15697.77 29789.71 20683.52 35195.78 261
MP-MVS-pluss96.70 4796.27 6197.98 2199.23 3094.71 2996.96 18098.06 8290.67 18795.55 11898.78 2591.07 6399.86 896.58 4499.55 2799.38 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
APD-MVS_3200maxsize96.81 4296.71 4497.12 6699.01 4592.31 9397.98 6398.06 8293.11 10597.44 4398.55 3390.93 6699.55 8796.06 6699.25 6999.51 37
MP-MVScopyleft96.77 4496.45 5797.72 3899.39 1393.80 5398.41 2498.06 8293.37 9295.54 12098.34 5490.59 7299.88 494.83 10699.54 2999.49 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVS_fast96.51 5596.27 6197.22 6199.32 2292.74 7998.74 998.06 8290.57 19696.77 6598.35 5190.21 7599.53 9194.80 10999.63 1799.38 58
HPM-MVScopyleft96.69 4996.45 5797.40 5099.36 1893.11 7198.87 698.06 8291.17 17096.40 8697.99 8490.99 6599.58 7795.61 8899.61 1999.49 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
sss94.51 11293.80 12196.64 7497.07 15791.97 10596.32 23698.06 8288.94 24094.50 13796.78 16184.60 16099.27 12291.90 16296.02 17398.68 123
DeepC-MVS93.07 396.06 6795.66 7397.29 5597.96 10993.17 7097.30 14998.06 8293.92 7193.38 16398.66 2786.83 13299.73 4295.60 9099.22 7198.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
NCCC97.30 1897.03 2498.11 1798.77 5395.06 2597.34 14398.04 8995.96 697.09 5697.88 9293.18 2599.71 4695.84 7799.17 7699.56 29
DeepC-MVS_fast93.89 296.93 3496.64 4697.78 3198.64 6494.30 3797.41 13398.04 8994.81 3996.59 7698.37 4991.24 5999.64 6695.16 9799.52 3199.42 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post96.88 3696.80 3897.11 6799.02 4292.34 9197.98 6398.03 9193.52 8797.43 4598.51 3691.40 5699.56 8596.05 6799.26 6799.43 51
RE-MVS-def96.72 4399.02 4292.34 9197.98 6398.03 9193.52 8797.43 4598.51 3690.71 7096.05 6799.26 6799.43 51
RPMNet88.98 30287.05 31694.77 19594.45 31487.19 26790.23 38398.03 9177.87 38592.40 18087.55 38880.17 24399.51 9668.84 38993.95 22097.60 198
save fliter98.91 4994.28 3897.02 17398.02 9495.35 16
TEST998.70 5694.19 4296.41 22598.02 9488.17 26696.03 10097.56 12192.74 3099.59 74
train_agg96.30 6295.83 7297.72 3898.70 5694.19 4296.41 22598.02 9488.58 25396.03 10097.56 12192.73 3199.59 7495.04 10099.37 5999.39 56
test_898.67 5894.06 4996.37 23298.01 9788.58 25395.98 10497.55 12392.73 3199.58 77
agg_prior98.67 5893.79 5498.00 9895.68 11499.57 84
test_prior97.23 6098.67 5892.99 7398.00 9899.41 10999.29 63
WR-MVS92.34 19591.53 20194.77 19595.13 28090.83 15596.40 22997.98 10091.88 14689.29 27195.54 23682.50 20397.80 29389.79 20585.27 32595.69 269
HPM-MVS++copyleft97.34 1796.97 2798.47 599.08 3696.16 497.55 12197.97 10195.59 1196.61 7497.89 9092.57 3499.84 2395.95 7299.51 3499.40 54
CANet96.39 5996.02 6597.50 4797.62 13293.38 6397.02 17397.96 10295.42 1594.86 13097.81 9987.38 12699.82 2896.88 3699.20 7499.29 63
114514_t93.95 13393.06 14796.63 7699.07 3791.61 11897.46 13297.96 10277.99 38393.00 17197.57 11986.14 14499.33 11589.22 22199.15 7898.94 97
IU-MVS99.42 795.39 1197.94 10490.40 20098.94 897.41 2999.66 1199.74 8
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
No_MVS98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
Anonymous2023121190.63 27189.42 28694.27 22298.24 8789.19 21598.05 5697.89 10779.95 37588.25 29794.96 25572.56 32598.13 24189.70 20785.14 32795.49 273
原ACMM196.38 10098.59 6691.09 14597.89 10787.41 29095.22 12597.68 10790.25 7499.54 8987.95 24199.12 8298.49 137
CDPH-MVS95.97 7495.38 8397.77 3398.93 4794.44 3496.35 23397.88 10986.98 29896.65 7297.89 9091.99 4499.47 10292.26 15299.46 4299.39 56
test1197.88 109
EIA-MVS95.53 8695.47 7795.71 14397.06 16089.63 18997.82 8797.87 11193.57 8193.92 15195.04 25390.61 7198.95 16494.62 11498.68 10198.54 130
CS-MVS96.86 3797.06 1996.26 11098.16 9891.16 14399.09 397.87 11195.30 1897.06 5798.03 8091.72 4698.71 19197.10 3199.17 7698.90 104
无先验95.79 26797.87 11183.87 34699.65 5887.68 25198.89 107
3Dnovator+91.43 495.40 8794.48 10998.16 1696.90 17195.34 1698.48 2197.87 11194.65 4988.53 28998.02 8283.69 17499.71 4693.18 14098.96 9299.44 49
VPNet92.23 20391.31 20994.99 17895.56 24790.96 14897.22 16097.86 11592.96 11490.96 22596.62 17875.06 30798.20 23491.90 16283.65 35095.80 259
test_vis1_n_192094.17 12094.58 10292.91 28397.42 14582.02 34497.83 8597.85 11694.68 4698.10 2998.49 3870.15 34099.32 11797.91 1598.82 9697.40 206
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4397.85 11694.92 3298.73 1898.87 1595.08 899.84 2397.52 2299.67 699.48 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
TSAR-MVS + MP.97.42 1397.33 1597.69 4199.25 2794.24 4198.07 5497.85 11693.72 7798.57 2198.35 5193.69 1899.40 11097.06 3299.46 4299.44 49
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CS-MVS-test96.89 3597.04 2396.45 9498.29 8291.66 11799.03 497.85 11695.84 796.90 6097.97 8691.24 5998.75 18596.92 3599.33 6198.94 97
test_fmvsmconf0.01_n96.15 6695.85 7097.03 6992.66 36091.83 10997.97 6997.84 12095.57 1297.53 3999.00 684.20 16899.76 3898.82 1199.08 8499.48 44
AdaColmapbinary94.34 11593.68 12496.31 10498.59 6691.68 11696.59 21697.81 12189.87 20892.15 19197.06 14983.62 17799.54 8989.34 21698.07 12697.70 191
iter_conf05_1196.17 6596.16 6496.21 11497.48 14390.74 16098.14 4997.80 12292.80 11997.34 4897.29 13188.54 10099.10 14196.40 5099.64 1498.80 115
mamv496.02 7095.84 7196.53 8197.05 16291.97 10597.30 14997.79 12392.32 13096.58 7997.14 14488.51 10299.06 15496.27 5299.64 1498.57 128
MVSMamba_pp96.06 6795.92 6796.50 8997.00 16791.81 11097.33 14697.77 12492.49 12696.78 6497.19 13988.50 10399.07 15196.54 4699.67 698.60 126
ETV-MVS96.02 7095.89 6996.40 9797.16 15292.44 8897.47 13097.77 12494.55 5096.48 8294.51 27891.23 6198.92 16795.65 8498.19 12297.82 186
新几何197.32 5398.60 6593.59 5897.75 12681.58 36695.75 11197.85 9690.04 7799.67 5686.50 27399.13 8098.69 122
旧先验198.38 7893.38 6397.75 12698.09 7592.30 4199.01 8999.16 73
EC-MVSNet96.42 5796.47 5396.26 11097.01 16691.52 12398.89 597.75 12694.42 5696.64 7397.68 10789.32 8498.60 20197.45 2699.11 8398.67 124
EI-MVSNet-Vis-set96.51 5596.47 5396.63 7698.24 8791.20 13896.89 18497.73 12994.74 4496.49 8198.49 3890.88 6899.58 7796.44 4998.32 11799.13 77
PAPM_NR95.01 9894.59 10196.26 11098.89 5190.68 16397.24 15597.73 12991.80 14792.93 17696.62 17889.13 8799.14 13789.21 22297.78 13398.97 93
Anonymous2024052991.98 21190.73 23495.73 14198.14 9989.40 20297.99 6297.72 13179.63 37793.54 15897.41 12769.94 34299.56 8591.04 18491.11 26598.22 158
CHOSEN 280x42093.12 16492.72 16294.34 21696.71 18687.27 26390.29 38297.72 13186.61 30591.34 21295.29 24384.29 16798.41 21593.25 13998.94 9397.35 209
EI-MVSNet-UG-set96.34 6196.30 6096.47 9198.20 9390.93 15196.86 18697.72 13194.67 4796.16 9698.46 4290.43 7399.58 7796.23 5697.96 12998.90 104
LS3D93.57 14892.61 16696.47 9197.59 13691.61 11897.67 10397.72 13185.17 32890.29 23598.34 5484.60 16099.73 4283.85 31398.27 11998.06 173
PAPR94.18 11993.42 14096.48 9097.64 12991.42 12995.55 27897.71 13588.99 23792.34 18695.82 21789.19 8599.11 14086.14 27997.38 14498.90 104
UGNet94.04 13093.28 14396.31 10496.85 17391.19 13997.88 7997.68 13694.40 5893.00 17196.18 19773.39 32299.61 6991.72 16898.46 11298.13 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
testdata95.46 16198.18 9788.90 22197.66 13782.73 35697.03 5898.07 7690.06 7698.85 17489.67 20898.98 9198.64 125
test1297.65 4298.46 7094.26 3997.66 13795.52 12190.89 6799.46 10399.25 6999.22 70
DTE-MVSNet90.56 27289.75 27793.01 27993.95 32787.25 26497.64 11097.65 13990.74 18287.12 31895.68 22879.97 24797.00 34483.33 31481.66 36194.78 326
TAPA-MVS90.10 792.30 19891.22 21595.56 15198.33 8089.60 19196.79 19297.65 13981.83 36391.52 20797.23 13787.94 11198.91 16971.31 38498.37 11598.17 164
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
sd_testset93.10 16592.45 17495.05 17498.09 10189.21 21296.89 18497.64 14193.18 10191.79 20197.28 13275.35 30698.65 19688.99 22792.84 23397.28 212
test_cas_vis1_n_192094.48 11394.55 10694.28 22196.78 18086.45 28697.63 11297.64 14193.32 9597.68 3898.36 5073.75 32099.08 14796.73 3999.05 8697.31 211
cdsmvs_eth3d_5k23.24 37830.99 3800.00 3960.00 4190.00 4210.00 40797.63 1430.00 4140.00 41596.88 15884.38 1640.00 4150.00 4140.00 4130.00 411
DPM-MVS95.69 8094.92 9398.01 1998.08 10495.71 995.27 29397.62 14490.43 19995.55 11897.07 14891.72 4699.50 9989.62 21098.94 9398.82 113
sasdasda96.02 7095.45 7897.75 3597.59 13695.15 2398.28 3197.60 14594.52 5296.27 9196.12 20287.65 11699.18 13096.20 6294.82 19898.91 101
canonicalmvs96.02 7095.45 7897.75 3597.59 13695.15 2398.28 3197.60 14594.52 5296.27 9196.12 20287.65 11699.18 13096.20 6294.82 19898.91 101
test22298.24 8792.21 9695.33 28897.60 14579.22 37995.25 12397.84 9888.80 9399.15 7898.72 119
cascas91.20 24890.08 26194.58 20494.97 28689.16 21693.65 34897.59 14879.90 37689.40 26692.92 33775.36 30598.36 22292.14 15794.75 20196.23 239
h-mvs3394.15 12293.52 13296.04 12497.81 11990.22 17597.62 11497.58 14995.19 2096.74 6697.45 12483.67 17599.61 6995.85 7579.73 36898.29 155
MGCFI-Net95.94 7695.40 8297.56 4697.59 13694.62 3098.21 4397.57 15094.41 5796.17 9596.16 20087.54 12099.17 13296.19 6494.73 20398.91 101
MVSFormer95.37 8895.16 8995.99 12996.34 21391.21 13698.22 4197.57 15091.42 15996.22 9397.32 12986.20 14297.92 28294.07 12199.05 8698.85 110
test_djsdf93.07 16792.76 15794.00 23493.49 34388.70 22598.22 4197.57 15091.42 15990.08 24795.55 23582.85 19597.92 28294.07 12191.58 25595.40 282
OMC-MVS95.09 9794.70 9996.25 11398.46 7091.28 13296.43 22397.57 15092.04 14294.77 13297.96 8787.01 13199.09 14591.31 17896.77 16098.36 152
PS-MVSNAJss93.74 14393.51 13394.44 21093.91 32989.28 21097.75 9397.56 15492.50 12589.94 24996.54 18188.65 9698.18 23793.83 13090.90 27095.86 253
casdiffmvs_mvgpermissive95.81 7995.57 7496.51 8696.87 17291.49 12497.50 12497.56 15493.99 6995.13 12797.92 8987.89 11298.78 18095.97 7197.33 14799.26 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
jajsoiax92.42 19191.89 19094.03 23393.33 34988.50 23297.73 9697.53 15692.00 14488.85 28196.50 18375.62 30498.11 24593.88 12891.56 25695.48 274
mvs_tets92.31 19791.76 19293.94 24193.41 34688.29 23797.63 11297.53 15692.04 14288.76 28496.45 18574.62 31298.09 25093.91 12691.48 25795.45 278
dcpmvs_296.37 6097.05 2294.31 21998.96 4684.11 32397.56 11897.51 15893.92 7197.43 4598.52 3592.75 2999.32 11797.32 3099.50 3699.51 37
HQP_MVS93.78 14293.43 13894.82 18896.21 21789.99 18097.74 9497.51 15894.85 3491.34 21296.64 17181.32 22498.60 20193.02 14692.23 24295.86 253
plane_prior597.51 15898.60 20193.02 14692.23 24295.86 253
PS-MVSNAJ95.37 8895.33 8595.49 15797.35 14690.66 16495.31 29097.48 16193.85 7496.51 8095.70 22788.65 9699.65 5894.80 10998.27 11996.17 243
API-MVS94.84 10794.49 10895.90 13197.90 11592.00 10497.80 9097.48 16189.19 23094.81 13196.71 16488.84 9299.17 13288.91 22998.76 9996.53 232
MG-MVS95.61 8395.38 8396.31 10498.42 7390.53 16696.04 25297.48 16193.47 8995.67 11598.10 7389.17 8699.25 12391.27 17998.77 9899.13 77
bld_raw_dy_0_6494.33 11693.90 11995.62 14897.64 12990.95 14995.17 29897.47 16482.34 35991.28 21996.84 16089.10 8899.04 15996.27 5299.00 9096.85 225
MAR-MVS94.22 11893.46 13596.51 8698.00 10892.19 9997.67 10397.47 16488.13 26993.00 17195.84 21584.86 15899.51 9687.99 24098.17 12497.83 185
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CLD-MVS92.98 17192.53 17094.32 21796.12 22789.20 21395.28 29197.47 16492.66 12289.90 25095.62 23180.58 23498.40 21692.73 15092.40 24095.38 284
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_ETH3D91.34 24290.22 25794.68 19894.86 29687.86 25397.23 15997.46 16787.99 27089.90 25096.92 15666.35 36598.23 23190.30 19590.99 26897.96 176
nrg03094.05 12993.31 14296.27 10995.22 27394.59 3198.34 2697.46 16792.93 11591.21 22396.64 17187.23 12998.22 23294.99 10385.80 31795.98 252
XVG-OURS93.72 14493.35 14194.80 19397.07 15788.61 22694.79 30697.46 16791.97 14593.99 14897.86 9581.74 21998.88 17192.64 15192.67 23896.92 223
LPG-MVS_test92.94 17492.56 16794.10 22796.16 22288.26 23997.65 10697.46 16791.29 16290.12 24397.16 14179.05 26298.73 18792.25 15491.89 25095.31 289
LGP-MVS_train94.10 22796.16 22288.26 23997.46 16791.29 16290.12 24397.16 14179.05 26298.73 18792.25 15491.89 25095.31 289
MVS91.71 21890.44 24495.51 15595.20 27591.59 12096.04 25297.45 17273.44 39287.36 31595.60 23285.42 15199.10 14185.97 28497.46 13995.83 257
XVG-OURS-SEG-HR93.86 13893.55 12894.81 19097.06 16088.53 23195.28 29197.45 17291.68 15194.08 14797.68 10782.41 20698.90 17093.84 12992.47 23996.98 219
baseline95.58 8495.42 8196.08 12096.78 18090.41 17197.16 16597.45 17293.69 8095.65 11697.85 9687.29 12798.68 19395.66 8197.25 15199.13 77
ab-mvs93.57 14892.55 16896.64 7497.28 14791.96 10795.40 28597.45 17289.81 21393.22 16996.28 19379.62 25499.46 10390.74 18893.11 23098.50 135
xiu_mvs_v2_base95.32 9095.29 8695.40 16297.22 14890.50 16795.44 28497.44 17693.70 7996.46 8496.18 19788.59 9999.53 9194.79 11197.81 13296.17 243
131492.81 18292.03 18495.14 17095.33 26589.52 19796.04 25297.44 17687.72 28386.25 33295.33 24283.84 17298.79 17989.26 21997.05 15697.11 217
casdiffmvspermissive95.64 8295.49 7696.08 12096.76 18590.45 16997.29 15197.44 17694.00 6895.46 12297.98 8587.52 12298.73 18795.64 8597.33 14799.08 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XXY-MVS92.16 20591.23 21494.95 18394.75 30190.94 15097.47 13097.43 17989.14 23188.90 27896.43 18679.71 25198.24 23089.56 21187.68 30095.67 270
anonymousdsp92.16 20591.55 20093.97 23792.58 36289.55 19497.51 12397.42 18089.42 22488.40 29194.84 26280.66 23397.88 28791.87 16491.28 26194.48 334
Effi-MVS+94.93 10394.45 11096.36 10296.61 18991.47 12696.41 22597.41 18191.02 17694.50 13795.92 21187.53 12198.78 18093.89 12796.81 15998.84 112
HQP3-MVS97.39 18292.10 247
HQP-MVS93.19 16192.74 16094.54 20695.86 23489.33 20696.65 20797.39 18293.55 8290.14 23795.87 21380.95 22798.50 20992.13 15892.10 24795.78 261
PLCcopyleft91.00 694.11 12693.43 13896.13 11998.58 6891.15 14496.69 20397.39 18287.29 29391.37 21196.71 16488.39 10499.52 9587.33 26097.13 15597.73 189
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v7n90.76 26589.86 27093.45 26593.54 34087.60 25997.70 10297.37 18588.85 24387.65 30894.08 30581.08 22698.10 24684.68 30083.79 34994.66 331
UnsupCasMVSNet_eth85.99 33584.45 33990.62 33989.97 38082.40 34193.62 34997.37 18589.86 20978.59 38092.37 34665.25 37295.35 37382.27 32770.75 38994.10 345
ACMM89.79 892.96 17292.50 17294.35 21496.30 21588.71 22497.58 11697.36 18791.40 16190.53 23096.65 17079.77 25098.75 18591.24 18091.64 25395.59 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
xiu_mvs_v1_base_debu95.01 9894.76 9695.75 13896.58 19291.71 11396.25 24197.35 18892.99 10896.70 6896.63 17582.67 19899.44 10696.22 5797.46 13996.11 248
xiu_mvs_v1_base95.01 9894.76 9695.75 13896.58 19291.71 11396.25 24197.35 18892.99 10896.70 6896.63 17582.67 19899.44 10696.22 5797.46 13996.11 248
xiu_mvs_v1_base_debi95.01 9894.76 9695.75 13896.58 19291.71 11396.25 24197.35 18892.99 10896.70 6896.63 17582.67 19899.44 10696.22 5797.46 13996.11 248
diffmvspermissive95.25 9295.13 9095.63 14696.43 20989.34 20595.99 25697.35 18892.83 11796.31 8897.37 12886.44 13798.67 19496.26 5497.19 15398.87 109
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WTY-MVS94.71 11194.02 11596.79 7297.71 12492.05 10296.59 21697.35 18890.61 19394.64 13496.93 15386.41 13899.39 11191.20 18194.71 20498.94 97
F-COLMAP93.58 14792.98 14995.37 16398.40 7588.98 21997.18 16397.29 19387.75 28290.49 23197.10 14685.21 15399.50 9986.70 27096.72 16397.63 193
XVG-ACMP-BASELINE90.93 26190.21 25893.09 27794.31 32085.89 29695.33 28897.26 19491.06 17589.38 26795.44 24068.61 34998.60 20189.46 21391.05 26694.79 324
PCF-MVS89.48 1191.56 22889.95 26796.36 10296.60 19092.52 8692.51 36897.26 19479.41 37888.90 27896.56 18084.04 17199.55 8777.01 36297.30 14997.01 218
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ACMP89.59 1092.62 18692.14 18194.05 23096.40 21088.20 24297.36 14197.25 19691.52 15488.30 29496.64 17178.46 27498.72 19091.86 16591.48 25795.23 296
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OPM-MVS93.28 15792.76 15794.82 18894.63 30790.77 15896.65 20797.18 19793.72 7791.68 20597.26 13579.33 25898.63 19892.13 15892.28 24195.07 302
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PatchMatch-RL92.90 17692.02 18595.56 15198.19 9590.80 15695.27 29397.18 19787.96 27191.86 20095.68 22880.44 23798.99 16284.01 30897.54 13896.89 224
alignmvs95.87 7895.23 8797.78 3197.56 14195.19 2197.86 8097.17 19994.39 5996.47 8396.40 18885.89 14599.20 12796.21 6195.11 19498.95 96
MVS_Test94.89 10594.62 10095.68 14496.83 17689.55 19496.70 20197.17 19991.17 17095.60 11796.11 20687.87 11398.76 18493.01 14897.17 15498.72 119
Fast-Effi-MVS+93.46 15192.75 15995.59 15096.77 18290.03 17796.81 19197.13 20188.19 26591.30 21594.27 29486.21 14198.63 19887.66 25296.46 17098.12 167
EI-MVSNet93.03 16992.88 15393.48 26395.77 23986.98 27296.44 22197.12 20290.66 18991.30 21597.64 11486.56 13498.05 25889.91 20190.55 27495.41 279
MVSTER93.20 16092.81 15694.37 21396.56 19589.59 19297.06 17097.12 20291.24 16691.30 21595.96 20982.02 21398.05 25893.48 13490.55 27495.47 276
test_yl94.78 10994.23 11396.43 9597.74 12291.22 13496.85 18797.10 20491.23 16795.71 11296.93 15384.30 16599.31 11993.10 14195.12 19298.75 116
DCV-MVSNet94.78 10994.23 11396.43 9597.74 12291.22 13496.85 18797.10 20491.23 16795.71 11296.93 15384.30 16599.31 11993.10 14195.12 19298.75 116
LTVRE_ROB88.41 1390.99 25789.92 26994.19 22396.18 22089.55 19496.31 23797.09 20687.88 27485.67 33695.91 21278.79 27098.57 20581.50 33089.98 27994.44 337
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_fmvs1_n92.73 18492.88 15392.29 30096.08 23081.05 35297.98 6397.08 20790.72 18496.79 6398.18 7063.07 37698.45 21397.62 2098.42 11497.36 207
v1091.04 25590.23 25593.49 26294.12 32388.16 24597.32 14797.08 20788.26 26488.29 29594.22 29982.17 21197.97 27086.45 27484.12 34394.33 340
v14419291.06 25490.28 25193.39 26693.66 33887.23 26696.83 19097.07 20987.43 28989.69 25794.28 29381.48 22298.00 26587.18 26484.92 33394.93 310
v119291.07 25390.23 25593.58 25993.70 33587.82 25596.73 19797.07 20987.77 28089.58 26094.32 29180.90 23197.97 27086.52 27285.48 32094.95 306
v891.29 24590.53 24393.57 26094.15 32288.12 24697.34 14397.06 21188.99 23788.32 29394.26 29683.08 18798.01 26487.62 25483.92 34794.57 333
mvs_anonymous93.82 14093.74 12294.06 22996.44 20885.41 30395.81 26597.05 21289.85 21190.09 24696.36 19087.44 12497.75 29893.97 12396.69 16499.02 86
IterMVS-LS92.29 19991.94 18893.34 26896.25 21686.97 27396.57 21997.05 21290.67 18789.50 26594.80 26586.59 13397.64 30689.91 20186.11 31595.40 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192090.85 26390.03 26693.29 27093.55 33986.96 27496.74 19697.04 21487.36 29189.52 26494.34 28880.23 24297.97 27086.27 27585.21 32694.94 308
CDS-MVSNet94.14 12593.54 12995.93 13096.18 22091.46 12796.33 23597.04 21488.97 23993.56 15696.51 18287.55 11997.89 28689.80 20495.95 17598.44 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v114491.37 23990.60 23993.68 25593.89 33088.23 24196.84 18997.03 21688.37 26189.69 25794.39 28582.04 21297.98 26787.80 24485.37 32294.84 316
v124090.70 26989.85 27193.23 27293.51 34286.80 27596.61 21397.02 21787.16 29689.58 26094.31 29279.55 25597.98 26785.52 29085.44 32194.90 313
EPP-MVSNet95.22 9495.04 9295.76 13697.49 14289.56 19398.67 1097.00 21890.69 18594.24 14297.62 11689.79 8198.81 17893.39 13896.49 16898.92 100
V4291.58 22790.87 22493.73 25094.05 32688.50 23297.32 14796.97 21988.80 24989.71 25594.33 28982.54 20298.05 25889.01 22685.07 32994.64 332
test_fmvs193.21 15993.53 13092.25 30296.55 19781.20 35197.40 13796.96 22090.68 18696.80 6298.04 7969.25 34598.40 21697.58 2198.50 10897.16 216
FMVSNet291.31 24390.08 26194.99 17896.51 20292.21 9697.41 13396.95 22188.82 24688.62 28694.75 26773.87 31697.42 32785.20 29588.55 29495.35 286
ACMH87.59 1690.53 27389.42 28693.87 24496.21 21787.92 25097.24 15596.94 22288.45 25983.91 35696.27 19471.92 32698.62 20084.43 30389.43 28595.05 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GBi-Net91.35 24090.27 25294.59 20096.51 20291.18 14097.50 12496.93 22388.82 24689.35 26894.51 27873.87 31697.29 33486.12 28088.82 28995.31 289
test191.35 24090.27 25294.59 20096.51 20291.18 14097.50 12496.93 22388.82 24689.35 26894.51 27873.87 31697.29 33486.12 28088.82 28995.31 289
FMVSNet391.78 21690.69 23795.03 17696.53 20092.27 9597.02 17396.93 22389.79 21489.35 26894.65 27277.01 29097.47 32286.12 28088.82 28995.35 286
FMVSNet189.88 29288.31 30394.59 20095.41 25591.18 14097.50 12496.93 22386.62 30487.41 31394.51 27865.94 36997.29 33483.04 31787.43 30395.31 289
GeoE93.89 13693.28 14395.72 14296.96 17089.75 18898.24 3996.92 22789.47 22292.12 19397.21 13884.42 16398.39 22087.71 24796.50 16799.01 89
miper_enhance_ethall91.54 23091.01 22193.15 27595.35 26187.07 27193.97 33496.90 22886.79 30289.17 27593.43 33286.55 13597.64 30689.97 20086.93 30794.74 328
eth_miper_zixun_eth91.02 25690.59 24092.34 29995.33 26584.35 31994.10 33196.90 22888.56 25588.84 28294.33 28984.08 17097.60 31188.77 23284.37 34195.06 303
TAMVS94.01 13193.46 13595.64 14596.16 22290.45 16996.71 20096.89 23089.27 22893.46 16196.92 15687.29 12797.94 27988.70 23395.74 18098.53 131
miper_ehance_all_eth91.59 22591.13 21892.97 28195.55 24886.57 28394.47 31596.88 23187.77 28088.88 28094.01 30686.22 14097.54 31589.49 21286.93 30794.79 324
v2v48291.59 22590.85 22793.80 24793.87 33188.17 24496.94 18196.88 23189.54 21989.53 26394.90 25981.70 22098.02 26389.25 22085.04 33195.20 297
CNLPA94.28 11793.53 13096.52 8398.38 7892.55 8596.59 21696.88 23190.13 20591.91 19797.24 13685.21 15399.09 14587.64 25397.83 13197.92 178
PAPM91.52 23190.30 25095.20 16795.30 26889.83 18693.38 35496.85 23486.26 31188.59 28795.80 21884.88 15798.15 23975.67 36795.93 17697.63 193
c3_l91.38 23790.89 22392.88 28595.58 24686.30 28994.68 30896.84 23588.17 26688.83 28394.23 29785.65 14997.47 32289.36 21584.63 33594.89 314
pm-mvs190.72 26889.65 28193.96 23894.29 32189.63 18997.79 9196.82 23689.07 23386.12 33495.48 23978.61 27297.78 29586.97 26881.67 36094.46 335
test_vis1_n92.37 19492.26 17992.72 29094.75 30182.64 33698.02 5896.80 23791.18 16997.77 3797.93 8858.02 38498.29 22897.63 1998.21 12197.23 215
CMPMVSbinary62.92 2185.62 33984.92 33687.74 36089.14 38573.12 39094.17 32996.80 23773.98 39073.65 38994.93 25766.36 36497.61 31083.95 31091.28 26192.48 369
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MS-PatchMatch90.27 28089.77 27591.78 31594.33 31884.72 31795.55 27896.73 23986.17 31386.36 33195.28 24571.28 33197.80 29384.09 30798.14 12592.81 362
Effi-MVS+-dtu93.08 16693.21 14592.68 29396.02 23183.25 33397.14 16796.72 24093.85 7491.20 22493.44 32983.08 18798.30 22791.69 17195.73 18196.50 234
TSAR-MVS + GP.96.69 4996.49 5297.27 5898.31 8193.39 6296.79 19296.72 24094.17 6497.44 4397.66 11092.76 2899.33 11596.86 3797.76 13599.08 83
1112_ss93.37 15492.42 17596.21 11497.05 16290.99 14696.31 23796.72 24086.87 30189.83 25396.69 16886.51 13699.14 13788.12 23893.67 22498.50 135
PVSNet86.66 1892.24 20291.74 19593.73 25097.77 12183.69 33092.88 36396.72 24087.91 27393.00 17194.86 26178.51 27399.05 15686.53 27197.45 14398.47 140
miper_lstm_enhance90.50 27690.06 26591.83 31195.33 26583.74 32793.86 34096.70 24487.56 28787.79 30593.81 31483.45 18096.92 34687.39 25884.62 33694.82 319
v14890.99 25790.38 24692.81 28893.83 33285.80 29796.78 19496.68 24589.45 22388.75 28593.93 31082.96 19397.82 29287.83 24383.25 35294.80 322
ACMH+87.92 1490.20 28489.18 29193.25 27196.48 20586.45 28696.99 17796.68 24588.83 24584.79 34596.22 19670.16 33998.53 20784.42 30488.04 29794.77 327
CANet_DTU94.37 11493.65 12596.55 8096.46 20792.13 10096.21 24596.67 24794.38 6093.53 15997.03 15079.34 25799.71 4690.76 18798.45 11397.82 186
cl____90.96 26090.32 24892.89 28495.37 25986.21 29294.46 31796.64 24887.82 27688.15 30094.18 30082.98 19197.54 31587.70 24885.59 31894.92 312
HY-MVS89.66 993.87 13792.95 15096.63 7697.10 15692.49 8795.64 27696.64 24889.05 23593.00 17195.79 22185.77 14899.45 10589.16 22594.35 20697.96 176
Test_1112_low_res92.84 18091.84 19195.85 13497.04 16489.97 18395.53 28096.64 24885.38 32389.65 25995.18 24885.86 14699.10 14187.70 24893.58 22998.49 137
DIV-MVS_self_test90.97 25990.33 24792.88 28595.36 26086.19 29394.46 31796.63 25187.82 27688.18 29994.23 29782.99 19097.53 31787.72 24585.57 31994.93 310
Fast-Effi-MVS+-dtu92.29 19991.99 18693.21 27495.27 26985.52 30197.03 17196.63 25192.09 14089.11 27795.14 25080.33 24098.08 25187.54 25694.74 20296.03 251
UnsupCasMVSNet_bld82.13 35279.46 35790.14 34588.00 39182.47 33990.89 38096.62 25378.94 38075.61 38484.40 39456.63 38796.31 35577.30 35966.77 39691.63 376
cl2291.21 24790.56 24293.14 27696.09 22986.80 27594.41 31996.58 25487.80 27888.58 28893.99 30880.85 23297.62 30989.87 20386.93 30794.99 305
iter_conf0594.01 13194.00 11694.04 23195.06 28388.46 23497.27 15296.57 25592.32 13092.26 18897.10 14688.54 10098.10 24695.10 9991.82 25295.57 272
jason94.84 10794.39 11296.18 11795.52 24990.93 15196.09 25096.52 25689.28 22796.01 10397.32 12984.70 15998.77 18395.15 9898.91 9598.85 110
jason: jason.
tt080591.09 25290.07 26494.16 22595.61 24488.31 23697.56 11896.51 25789.56 21889.17 27595.64 23067.08 36398.38 22191.07 18388.44 29595.80 259
AUN-MVS91.76 21790.75 23294.81 19097.00 16788.57 22896.65 20796.49 25889.63 21692.15 19196.12 20278.66 27198.50 20990.83 18579.18 37197.36 207
hse-mvs293.45 15292.99 14894.81 19097.02 16588.59 22796.69 20396.47 25995.19 2096.74 6696.16 20083.67 17598.48 21295.85 7579.13 37297.35 209
EG-PatchMatch MVS87.02 32585.44 32991.76 31792.67 35985.00 31296.08 25196.45 26083.41 35279.52 37693.49 32657.10 38697.72 30079.34 35090.87 27192.56 366
KD-MVS_self_test85.95 33684.95 33588.96 35589.55 38479.11 37595.13 29996.42 26185.91 31684.07 35490.48 36670.03 34194.82 37580.04 34272.94 38692.94 360
pmmvs687.81 31786.19 32492.69 29291.32 37286.30 28997.34 14396.41 26280.59 37484.05 35594.37 28767.37 35897.67 30384.75 29979.51 37094.09 347
PMMVS92.86 17892.34 17694.42 21294.92 29186.73 27894.53 31396.38 26384.78 33594.27 14195.12 25283.13 18698.40 21691.47 17596.49 16898.12 167
RPSCF90.75 26690.86 22590.42 34296.84 17476.29 38395.61 27796.34 26483.89 34491.38 21097.87 9376.45 29598.78 18087.16 26592.23 24296.20 241
MSDG91.42 23590.24 25494.96 18297.15 15488.91 22093.69 34696.32 26585.72 31986.93 32696.47 18480.24 24198.98 16380.57 33995.05 19596.98 219
OurMVSNet-221017-090.51 27590.19 25991.44 32393.41 34681.25 34996.98 17896.28 26691.68 15186.55 33096.30 19274.20 31597.98 26788.96 22887.40 30595.09 301
MVP-Stereo90.74 26790.08 26192.71 29193.19 35188.20 24295.86 26296.27 26786.07 31484.86 34494.76 26677.84 28597.75 29883.88 31298.01 12792.17 374
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
lupinMVS94.99 10294.56 10396.29 10896.34 21391.21 13695.83 26496.27 26788.93 24196.22 9396.88 15886.20 14298.85 17495.27 9599.05 8698.82 113
BH-untuned92.94 17492.62 16593.92 24397.22 14886.16 29496.40 22996.25 26990.06 20689.79 25496.17 19983.19 18398.35 22387.19 26397.27 15097.24 214
CL-MVSNet_self_test86.31 33185.15 33389.80 34988.83 38781.74 34793.93 33796.22 27086.67 30385.03 34290.80 36578.09 28194.50 37674.92 37071.86 38893.15 358
IS-MVSNet94.90 10494.52 10796.05 12397.67 12590.56 16598.44 2296.22 27093.21 9793.99 14897.74 10485.55 15098.45 21389.98 19997.86 13099.14 76
FA-MVS(test-final)93.52 15092.92 15195.31 16496.77 18288.54 23094.82 30596.21 27289.61 21794.20 14395.25 24683.24 18299.14 13790.01 19896.16 17298.25 156
GA-MVS91.38 23790.31 24994.59 20094.65 30687.62 25894.34 32296.19 27390.73 18390.35 23493.83 31171.84 32797.96 27487.22 26293.61 22798.21 159
IterMVS-SCA-FT90.31 27889.81 27391.82 31295.52 24984.20 32294.30 32596.15 27490.61 19387.39 31494.27 29475.80 30196.44 35387.34 25986.88 31194.82 319
IterMVS90.15 28689.67 27991.61 31995.48 25183.72 32894.33 32396.12 27589.99 20787.31 31794.15 30275.78 30396.27 35686.97 26886.89 31094.83 317
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS92.76 18391.51 20496.52 8398.77 5390.99 14697.38 14096.08 27682.38 35889.29 27197.87 9383.77 17399.69 5281.37 33596.69 16498.89 107
pmmvs490.93 26189.85 27194.17 22493.34 34890.79 15794.60 31096.02 27784.62 33687.45 31195.15 24981.88 21797.45 32487.70 24887.87 29994.27 344
ppachtmachnet_test88.35 31287.29 31191.53 32092.45 36583.57 33193.75 34395.97 27884.28 33985.32 34194.18 30079.00 26896.93 34575.71 36684.99 33294.10 345
Anonymous2024052186.42 32985.44 32989.34 35390.33 37779.79 36796.73 19795.92 27983.71 34883.25 35991.36 36263.92 37496.01 35778.39 35485.36 32392.22 372
ITE_SJBPF92.43 29695.34 26285.37 30695.92 27991.47 15687.75 30796.39 18971.00 33397.96 27482.36 32689.86 28193.97 348
test_fmvs289.77 29689.93 26889.31 35493.68 33776.37 38297.64 11095.90 28189.84 21291.49 20896.26 19558.77 38397.10 33894.65 11391.13 26494.46 335
USDC88.94 30387.83 30892.27 30194.66 30584.96 31393.86 34095.90 28187.34 29283.40 35895.56 23467.43 35798.19 23682.64 32589.67 28393.66 351
COLMAP_ROBcopyleft87.81 1590.40 27789.28 28993.79 24897.95 11087.13 27096.92 18295.89 28382.83 35586.88 32897.18 14073.77 31999.29 12178.44 35393.62 22694.95 306
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
VDD-MVS93.82 14093.08 14696.02 12697.88 11689.96 18497.72 9995.85 28492.43 12795.86 10798.44 4468.42 35399.39 11196.31 5194.85 19698.71 121
VDDNet93.05 16892.07 18296.02 12696.84 17490.39 17298.08 5395.85 28486.22 31295.79 11098.46 4267.59 35699.19 12894.92 10494.85 19698.47 140
Vis-MVSNet (Re-imp)94.15 12293.88 12094.95 18397.61 13387.92 25098.10 5195.80 28692.22 13393.02 17097.45 12484.53 16297.91 28588.24 23797.97 12899.02 86
MM97.29 1996.98 2698.23 1198.01 10795.03 2698.07 5495.76 28797.78 197.52 4098.80 2288.09 10799.86 899.44 199.37 5999.80 1
KD-MVS_2432*160084.81 34382.64 34791.31 32591.07 37485.34 30791.22 37595.75 28885.56 32183.09 36090.21 36967.21 35995.89 35977.18 36062.48 39992.69 363
miper_refine_blended84.81 34382.64 34791.31 32591.07 37485.34 30791.22 37595.75 28885.56 32183.09 36090.21 36967.21 35995.89 35977.18 36062.48 39992.69 363
FE-MVS92.05 20991.05 21995.08 17396.83 17687.93 24993.91 33995.70 29086.30 30994.15 14594.97 25476.59 29399.21 12684.10 30696.86 15798.09 171
tpm cat188.36 31187.21 31491.81 31395.13 28080.55 35892.58 36795.70 29074.97 38987.45 31191.96 35678.01 28498.17 23880.39 34188.74 29296.72 230
our_test_388.78 30787.98 30791.20 32992.45 36582.53 33893.61 35095.69 29285.77 31884.88 34393.71 31679.99 24696.78 35179.47 34786.24 31294.28 343
BH-w/o92.14 20791.75 19393.31 26996.99 16985.73 29895.67 27295.69 29288.73 25189.26 27394.82 26482.97 19298.07 25585.26 29496.32 17196.13 247
CR-MVSNet90.82 26489.77 27593.95 23994.45 31487.19 26790.23 38395.68 29486.89 30092.40 18092.36 34980.91 22997.05 34081.09 33893.95 22097.60 198
Patchmtry88.64 30987.25 31292.78 28994.09 32486.64 27989.82 38795.68 29480.81 37187.63 30992.36 34980.91 22997.03 34178.86 35185.12 32894.67 330
testing9191.90 21391.02 22094.53 20796.54 19886.55 28595.86 26295.64 29691.77 14891.89 19893.47 32869.94 34298.86 17290.23 19793.86 22298.18 161
BH-RMVSNet92.72 18591.97 18794.97 18197.16 15287.99 24896.15 24895.60 29790.62 19291.87 19997.15 14378.41 27598.57 20583.16 31597.60 13798.36 152
PVSNet_082.17 1985.46 34083.64 34390.92 33295.27 26979.49 37190.55 38195.60 29783.76 34783.00 36289.95 37171.09 33297.97 27082.75 32360.79 40195.31 289
SCA91.84 21591.18 21793.83 24595.59 24584.95 31494.72 30795.58 29990.82 17992.25 18993.69 31775.80 30198.10 24686.20 27795.98 17498.45 142
AllTest90.23 28288.98 29493.98 23597.94 11186.64 27996.51 22095.54 30085.38 32385.49 33896.77 16270.28 33799.15 13580.02 34392.87 23196.15 245
TestCases93.98 23597.94 11186.64 27995.54 30085.38 32385.49 33896.77 16270.28 33799.15 13580.02 34392.87 23196.15 245
mvsmamba93.83 13993.46 13594.93 18694.88 29590.85 15498.55 1495.49 30294.24 6391.29 21896.97 15283.04 18998.14 24095.56 9291.17 26395.78 261
tpmvs89.83 29589.15 29291.89 30994.92 29180.30 36293.11 35995.46 30386.28 31088.08 30192.65 33980.44 23798.52 20881.47 33189.92 28096.84 226
pmmvs589.86 29488.87 29792.82 28792.86 35586.23 29196.26 24095.39 30484.24 34087.12 31894.51 27874.27 31497.36 33187.61 25587.57 30194.86 315
PatchmatchNetpermissive91.91 21291.35 20693.59 25895.38 25784.11 32393.15 35895.39 30489.54 21992.10 19493.68 31982.82 19698.13 24184.81 29895.32 18998.52 132
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst91.44 23491.32 20891.79 31495.15 27879.20 37493.42 35395.37 30688.55 25693.49 16093.67 32082.49 20498.27 22990.41 19289.34 28697.90 179
Anonymous2023120687.09 32486.14 32589.93 34891.22 37380.35 36096.11 24995.35 30783.57 35084.16 35093.02 33573.54 32195.61 36772.16 38186.14 31493.84 350
MIMVSNet184.93 34283.05 34490.56 34089.56 38384.84 31695.40 28595.35 30783.91 34380.38 37292.21 35357.23 38593.34 38870.69 38782.75 35893.50 353
TDRefinement86.53 32784.76 33891.85 31082.23 40284.25 32096.38 23195.35 30784.97 33284.09 35394.94 25665.76 37098.34 22684.60 30274.52 38292.97 359
TR-MVS91.48 23390.59 24094.16 22596.40 21087.33 26095.67 27295.34 31087.68 28491.46 20995.52 23776.77 29298.35 22382.85 32093.61 22796.79 228
EPNet_dtu91.71 21891.28 21192.99 28093.76 33483.71 32996.69 20395.28 31193.15 10387.02 32295.95 21083.37 18197.38 33079.46 34896.84 15897.88 181
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FMVSNet587.29 32185.79 32791.78 31594.80 29987.28 26295.49 28295.28 31184.09 34283.85 35791.82 35762.95 37794.17 38078.48 35285.34 32493.91 349
MDTV_nov1_ep1390.76 23195.22 27380.33 36193.03 36195.28 31188.14 26892.84 17793.83 31181.34 22398.08 25182.86 31894.34 207
LF4IMVS87.94 31587.25 31289.98 34792.38 36780.05 36694.38 32095.25 31487.59 28684.34 34794.74 26864.31 37397.66 30584.83 29787.45 30292.23 371
TransMVSNet (Re)88.94 30387.56 30993.08 27894.35 31788.45 23597.73 9695.23 31587.47 28884.26 34995.29 24379.86 24997.33 33279.44 34974.44 38393.45 355
test20.0386.14 33485.40 33188.35 35690.12 37880.06 36595.90 26195.20 31688.59 25281.29 36793.62 32271.43 33092.65 39071.26 38581.17 36392.34 370
new-patchmatchnet83.18 34981.87 35287.11 36386.88 39375.99 38493.70 34495.18 31785.02 33177.30 38388.40 38165.99 36893.88 38574.19 37570.18 39091.47 380
MDA-MVSNet_test_wron85.87 33784.23 34190.80 33792.38 36782.57 33793.17 35695.15 31882.15 36067.65 39492.33 35278.20 27795.51 37077.33 35779.74 36794.31 342
YYNet185.87 33784.23 34190.78 33892.38 36782.46 34093.17 35695.14 31982.12 36167.69 39292.36 34978.16 28095.50 37177.31 35879.73 36894.39 338
Baseline_NR-MVSNet91.20 24890.62 23892.95 28293.83 33288.03 24797.01 17695.12 32088.42 26089.70 25695.13 25183.47 17897.44 32589.66 20983.24 35393.37 356
thres20092.23 20391.39 20594.75 19797.61 13389.03 21896.60 21595.09 32192.08 14193.28 16694.00 30778.39 27699.04 15981.26 33794.18 21196.19 242
ADS-MVSNet89.89 29188.68 29993.53 26195.86 23484.89 31590.93 37895.07 32283.23 35391.28 21991.81 35879.01 26697.85 28879.52 34591.39 25997.84 183
pmmvs-eth3d86.22 33284.45 33991.53 32088.34 39087.25 26494.47 31595.01 32383.47 35179.51 37789.61 37469.75 34495.71 36483.13 31676.73 37991.64 375
Anonymous20240521192.07 20890.83 22995.76 13698.19 9588.75 22397.58 11695.00 32486.00 31593.64 15597.45 12466.24 36799.53 9190.68 19092.71 23699.01 89
MDA-MVSNet-bldmvs85.00 34182.95 34691.17 33093.13 35383.33 33294.56 31295.00 32484.57 33765.13 39892.65 33970.45 33695.85 36173.57 37777.49 37594.33 340
ambc86.56 36683.60 39970.00 39385.69 39794.97 32680.60 37188.45 38037.42 40196.84 34982.69 32475.44 38192.86 361
testgi87.97 31487.21 31490.24 34492.86 35580.76 35396.67 20694.97 32691.74 14985.52 33795.83 21662.66 37894.47 37876.25 36488.36 29695.48 274
dp88.90 30588.26 30590.81 33594.58 31076.62 38192.85 36494.93 32885.12 32990.07 24893.07 33475.81 30098.12 24480.53 34087.42 30497.71 190
test_fmvs383.21 34883.02 34583.78 37086.77 39468.34 39696.76 19594.91 32986.49 30684.14 35289.48 37536.04 40291.73 39291.86 16580.77 36591.26 382
test_040286.46 32884.79 33791.45 32295.02 28585.55 30096.29 23994.89 33080.90 36882.21 36493.97 30968.21 35497.29 33462.98 39388.68 29391.51 378
tfpn200view992.38 19391.52 20294.95 18397.85 11789.29 20897.41 13394.88 33192.19 13793.27 16794.46 28378.17 27899.08 14781.40 33294.08 21596.48 235
CVMVSNet91.23 24691.75 19389.67 35095.77 23974.69 38596.44 22194.88 33185.81 31792.18 19097.64 11479.07 26195.58 36988.06 23995.86 17898.74 118
thres40092.42 19191.52 20295.12 17297.85 11789.29 20897.41 13394.88 33192.19 13793.27 16794.46 28378.17 27899.08 14781.40 33294.08 21596.98 219
EPNet95.20 9594.56 10397.14 6592.80 35792.68 8197.85 8394.87 33496.64 392.46 17997.80 10186.23 13999.65 5893.72 13198.62 10499.10 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testing9991.62 22390.72 23594.32 21796.48 20586.11 29595.81 26594.76 33591.55 15391.75 20393.44 32968.55 35198.82 17690.43 19193.69 22398.04 174
SixPastTwentyTwo89.15 30188.54 30190.98 33193.49 34380.28 36396.70 20194.70 33690.78 18084.15 35195.57 23371.78 32897.71 30184.63 30185.07 32994.94 308
thres100view90092.43 19091.58 19994.98 18097.92 11389.37 20497.71 10194.66 33792.20 13593.31 16594.90 25978.06 28299.08 14781.40 33294.08 21596.48 235
thres600view792.49 18991.60 19895.18 16897.91 11489.47 19897.65 10694.66 33792.18 13993.33 16494.91 25878.06 28299.10 14181.61 32994.06 21996.98 219
PatchT88.87 30687.42 31093.22 27394.08 32585.10 31189.51 38894.64 33981.92 36292.36 18388.15 38480.05 24597.01 34372.43 38093.65 22597.54 201
baseline192.82 18191.90 18995.55 15397.20 15090.77 15897.19 16294.58 34092.20 13592.36 18396.34 19184.16 16998.21 23389.20 22383.90 34897.68 192
Gipumacopyleft67.86 36865.41 37075.18 38392.66 36073.45 38866.50 40494.52 34153.33 40357.80 40466.07 40430.81 40489.20 39648.15 40278.88 37462.90 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testing1191.68 22190.75 23294.47 20896.53 20086.56 28495.76 26994.51 34291.10 17491.24 22293.59 32368.59 35098.86 17291.10 18294.29 20898.00 175
CostFormer91.18 25190.70 23692.62 29494.84 29781.76 34694.09 33294.43 34384.15 34192.72 17893.77 31579.43 25698.20 23490.70 18992.18 24597.90 179
tpm289.96 28889.21 29092.23 30394.91 29381.25 34993.78 34294.42 34480.62 37391.56 20693.44 32976.44 29697.94 27985.60 28992.08 24997.49 202
JIA-IIPM88.26 31387.04 31791.91 30893.52 34181.42 34889.38 38994.38 34580.84 37090.93 22680.74 39679.22 25997.92 28282.76 32291.62 25496.38 238
dmvs_re90.21 28389.50 28492.35 29795.47 25485.15 30995.70 27194.37 34690.94 17888.42 29093.57 32474.63 31195.67 36682.80 32189.57 28496.22 240
Patchmatch-test89.42 29987.99 30693.70 25395.27 26985.11 31088.98 39094.37 34681.11 36787.10 32093.69 31782.28 20897.50 32074.37 37394.76 20098.48 139
LCM-MVSNet72.55 36169.39 36582.03 37270.81 41265.42 40190.12 38594.36 34855.02 40265.88 39681.72 39524.16 41089.96 39374.32 37468.10 39490.71 385
ADS-MVSNet289.45 29888.59 30092.03 30695.86 23482.26 34290.93 37894.32 34983.23 35391.28 21991.81 35879.01 26695.99 35879.52 34591.39 25997.84 183
EU-MVSNet88.72 30888.90 29688.20 35893.15 35274.21 38696.63 21294.22 35085.18 32787.32 31695.97 20876.16 29894.98 37485.27 29386.17 31395.41 279
MVS_030497.04 2896.73 4297.96 2397.60 13594.36 3698.01 5994.09 35197.33 296.29 8998.79 2489.73 8299.86 899.36 299.42 4999.67 13
MIMVSNet88.50 31086.76 32093.72 25294.84 29787.77 25691.39 37394.05 35286.41 30887.99 30392.59 34263.27 37595.82 36377.44 35692.84 23397.57 200
OpenMVS_ROBcopyleft81.14 2084.42 34582.28 35190.83 33390.06 37984.05 32595.73 27094.04 35373.89 39180.17 37591.53 36159.15 38297.64 30666.92 39189.05 28890.80 384
TinyColmap86.82 32685.35 33291.21 32794.91 29382.99 33593.94 33694.02 35483.58 34981.56 36694.68 27062.34 37998.13 24175.78 36587.35 30692.52 368
ETVMVS90.52 27489.14 29394.67 19996.81 17987.85 25495.91 26093.97 35589.71 21592.34 18692.48 34465.41 37197.96 27481.37 33594.27 20998.21 159
IB-MVS87.33 1789.91 28988.28 30494.79 19495.26 27287.70 25795.12 30093.95 35689.35 22687.03 32192.49 34370.74 33599.19 12889.18 22481.37 36297.49 202
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Syy-MVS87.13 32387.02 31887.47 36195.16 27673.21 38995.00 30193.93 35788.55 25686.96 32391.99 35475.90 29994.00 38261.59 39594.11 21295.20 297
myMVS_eth3d87.18 32286.38 32289.58 35195.16 27679.53 36995.00 30193.93 35788.55 25686.96 32391.99 35456.23 38894.00 38275.47 36994.11 21295.20 297
testing22290.31 27888.96 29594.35 21496.54 19887.29 26195.50 28193.84 35990.97 17791.75 20392.96 33662.18 38098.00 26582.86 31894.08 21597.76 188
test_f80.57 35479.62 35683.41 37183.38 40067.80 39893.57 35193.72 36080.80 37277.91 38287.63 38733.40 40392.08 39187.14 26679.04 37390.34 386
LCM-MVSNet-Re92.50 18792.52 17192.44 29596.82 17881.89 34596.92 18293.71 36192.41 12884.30 34894.60 27485.08 15597.03 34191.51 17397.36 14598.40 148
tpm90.25 28189.74 27891.76 31793.92 32879.73 36893.98 33393.54 36288.28 26391.99 19693.25 33377.51 28897.44 32587.30 26187.94 29898.12 167
ET-MVSNet_ETH3D91.49 23290.11 26095.63 14696.40 21091.57 12295.34 28793.48 36390.60 19575.58 38595.49 23880.08 24496.79 35094.25 11989.76 28298.52 132
LFMVS93.60 14692.63 16496.52 8398.13 10091.27 13397.94 7393.39 36490.57 19696.29 8998.31 6069.00 34699.16 13494.18 12095.87 17799.12 80
Patchmatch-RL test87.38 32086.24 32390.81 33588.74 38978.40 37888.12 39593.17 36587.11 29782.17 36589.29 37681.95 21595.60 36888.64 23477.02 37698.41 147
test-LLR91.42 23591.19 21692.12 30494.59 30880.66 35594.29 32692.98 36691.11 17290.76 22892.37 34679.02 26498.07 25588.81 23096.74 16197.63 193
test-mter90.19 28589.54 28392.12 30494.59 30880.66 35594.29 32692.98 36687.68 28490.76 22892.37 34667.67 35598.07 25588.81 23096.74 16197.63 193
WB-MVSnew89.88 29289.56 28290.82 33494.57 31183.06 33495.65 27592.85 36887.86 27590.83 22794.10 30379.66 25396.88 34776.34 36394.19 21092.54 367
testing387.67 31886.88 31990.05 34696.14 22580.71 35497.10 16992.85 36890.15 20487.54 31094.55 27655.70 38994.10 38173.77 37694.10 21495.35 286
test_method66.11 36964.89 37169.79 38672.62 41035.23 41865.19 40592.83 37020.35 40865.20 39788.08 38543.14 39982.70 40373.12 37963.46 39891.45 381
test0.0.03 189.37 30088.70 29891.41 32492.47 36485.63 29995.22 29692.70 37191.11 17286.91 32793.65 32179.02 26493.19 38978.00 35589.18 28795.41 279
new_pmnet82.89 35081.12 35588.18 35989.63 38280.18 36491.77 37292.57 37276.79 38775.56 38688.23 38361.22 38194.48 37771.43 38382.92 35689.87 387
mvsany_test193.93 13593.98 11793.78 24994.94 29086.80 27594.62 30992.55 37388.77 25096.85 6198.49 3888.98 8998.08 25195.03 10195.62 18496.46 237
thisisatest051592.29 19991.30 21095.25 16696.60 19088.90 22194.36 32192.32 37487.92 27293.43 16294.57 27577.28 28999.00 16189.42 21495.86 17897.86 182
thisisatest053093.03 16992.21 18095.49 15797.07 15789.11 21797.49 12992.19 37590.16 20394.09 14696.41 18776.43 29799.05 15690.38 19395.68 18398.31 154
tttt051792.96 17292.33 17794.87 18797.11 15587.16 26997.97 6992.09 37690.63 19193.88 15297.01 15176.50 29499.06 15490.29 19695.45 18798.38 150
K. test v387.64 31986.75 32190.32 34393.02 35479.48 37296.61 21392.08 37790.66 18980.25 37494.09 30467.21 35996.65 35285.96 28580.83 36494.83 317
TESTMET0.1,190.06 28789.42 28691.97 30794.41 31680.62 35794.29 32691.97 37887.28 29490.44 23292.47 34568.79 34797.67 30388.50 23696.60 16697.61 197
PM-MVS83.48 34781.86 35388.31 35787.83 39277.59 38093.43 35291.75 37986.91 29980.63 37089.91 37244.42 39895.84 36285.17 29676.73 37991.50 379
baseline291.63 22290.86 22593.94 24194.33 31886.32 28895.92 25991.64 38089.37 22586.94 32594.69 26981.62 22198.69 19288.64 23494.57 20596.81 227
APD_test179.31 35677.70 35984.14 36989.11 38669.07 39592.36 37191.50 38169.07 39473.87 38892.63 34139.93 40094.32 37970.54 38880.25 36689.02 389
FPMVS71.27 36269.85 36475.50 38274.64 40759.03 40791.30 37491.50 38158.80 39957.92 40388.28 38229.98 40685.53 40253.43 40082.84 35781.95 395
door91.13 383
door-mid91.06 384
EGC-MVSNET68.77 36763.01 37386.07 36892.49 36382.24 34393.96 33590.96 3850.71 4132.62 41490.89 36453.66 39093.46 38657.25 39884.55 33882.51 394
mvsany_test383.59 34682.44 35087.03 36483.80 39773.82 38793.70 34490.92 38686.42 30782.51 36390.26 36846.76 39795.71 36490.82 18676.76 37891.57 377
pmmvs379.97 35577.50 36087.39 36282.80 40179.38 37392.70 36690.75 38770.69 39378.66 37987.47 38951.34 39393.40 38773.39 37869.65 39189.38 388
UWE-MVS89.91 28989.48 28591.21 32795.88 23378.23 37994.91 30490.26 38889.11 23292.35 18594.52 27768.76 34897.96 27483.95 31095.59 18597.42 205
DSMNet-mixed86.34 33086.12 32687.00 36589.88 38170.43 39194.93 30390.08 38977.97 38485.42 34092.78 33874.44 31393.96 38474.43 37295.14 19196.62 231
MVS-HIRNet82.47 35181.21 35486.26 36795.38 25769.21 39488.96 39189.49 39066.28 39680.79 36974.08 40168.48 35297.39 32971.93 38295.47 18692.18 373
WB-MVS76.77 35876.63 36177.18 37785.32 39556.82 40994.53 31389.39 39182.66 35771.35 39089.18 37775.03 30888.88 39735.42 40666.79 39585.84 391
test111193.19 16192.82 15594.30 22097.58 14084.56 31898.21 4389.02 39293.53 8694.58 13598.21 6772.69 32399.05 15693.06 14498.48 11199.28 65
SSC-MVS76.05 35975.83 36276.72 38184.77 39656.22 41094.32 32488.96 39381.82 36470.52 39188.91 37874.79 31088.71 39833.69 40764.71 39785.23 392
ECVR-MVScopyleft93.19 16192.73 16194.57 20597.66 12785.41 30398.21 4388.23 39493.43 9094.70 13398.21 6772.57 32499.07 15193.05 14598.49 10999.25 68
EPMVS90.70 26989.81 27393.37 26794.73 30384.21 32193.67 34788.02 39589.50 22192.38 18293.49 32677.82 28697.78 29586.03 28392.68 23798.11 170
ANet_high63.94 37159.58 37477.02 37861.24 41466.06 39985.66 39887.93 39678.53 38242.94 40671.04 40325.42 40980.71 40552.60 40130.83 40784.28 393
PMMVS270.19 36366.92 36780.01 37376.35 40665.67 40086.22 39687.58 39764.83 39862.38 39980.29 39826.78 40888.49 40063.79 39254.07 40385.88 390
lessismore_v090.45 34191.96 37079.09 37687.19 39880.32 37394.39 28566.31 36697.55 31484.00 30976.84 37794.70 329
PMVScopyleft53.92 2258.58 37255.40 37568.12 38751.00 41548.64 41278.86 40187.10 39946.77 40435.84 41074.28 4008.76 41486.34 40142.07 40473.91 38469.38 401
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis1_rt86.16 33385.06 33489.46 35293.47 34580.46 35996.41 22586.61 40085.22 32679.15 37888.64 37952.41 39297.06 33993.08 14390.57 27390.87 383
testf169.31 36566.76 36876.94 37978.61 40461.93 40388.27 39386.11 40155.62 40059.69 40085.31 39220.19 41289.32 39457.62 39669.44 39279.58 396
APD_test269.31 36566.76 36876.94 37978.61 40461.93 40388.27 39386.11 40155.62 40059.69 40085.31 39220.19 41289.32 39457.62 39669.44 39279.58 396
gg-mvs-nofinetune87.82 31685.61 32894.44 21094.46 31389.27 21191.21 37784.61 40380.88 36989.89 25274.98 39971.50 32997.53 31785.75 28897.21 15296.51 233
dmvs_testset81.38 35382.60 34977.73 37691.74 37151.49 41193.03 36184.21 40489.07 23378.28 38191.25 36376.97 29188.53 39956.57 39982.24 35993.16 357
GG-mvs-BLEND93.62 25693.69 33689.20 21392.39 37083.33 40587.98 30489.84 37371.00 33396.87 34882.08 32895.40 18894.80 322
MTMP97.86 8082.03 406
DeepMVS_CXcopyleft74.68 38490.84 37664.34 40281.61 40765.34 39767.47 39588.01 38648.60 39680.13 40662.33 39473.68 38579.58 396
E-PMN53.28 37352.56 37755.43 39074.43 40847.13 41383.63 40076.30 40842.23 40542.59 40762.22 40628.57 40774.40 40731.53 40831.51 40644.78 405
test250691.60 22490.78 23094.04 23197.66 12783.81 32698.27 3375.53 40993.43 9095.23 12498.21 6767.21 35999.07 15193.01 14898.49 10999.25 68
EMVS52.08 37551.31 37854.39 39172.62 41045.39 41583.84 39975.51 41041.13 40640.77 40859.65 40730.08 40573.60 40828.31 41029.90 40844.18 406
test_vis3_rt72.73 36070.55 36379.27 37480.02 40368.13 39793.92 33874.30 41176.90 38658.99 40273.58 40220.29 41195.37 37284.16 30572.80 38774.31 399
MVEpermissive50.73 2353.25 37448.81 37966.58 38965.34 41357.50 40872.49 40370.94 41240.15 40739.28 40963.51 4056.89 41673.48 40938.29 40542.38 40568.76 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt51.94 37653.82 37646.29 39233.73 41645.30 41678.32 40267.24 41318.02 40950.93 40587.05 39052.99 39153.11 41170.76 38625.29 40940.46 407
kuosan65.27 37064.66 37267.11 38883.80 39761.32 40688.53 39260.77 41468.22 39567.67 39380.52 39749.12 39570.76 41029.67 40953.64 40469.26 402
dongtai69.99 36469.33 36671.98 38588.78 38861.64 40589.86 38659.93 41575.67 38874.96 38785.45 39150.19 39481.66 40443.86 40355.27 40272.63 400
N_pmnet78.73 35778.71 35878.79 37592.80 35746.50 41494.14 33043.71 41678.61 38180.83 36891.66 36074.94 30996.36 35467.24 39084.45 34093.50 353
wuyk23d25.11 37724.57 38126.74 39373.98 40939.89 41757.88 4069.80 41712.27 41010.39 4116.97 4137.03 41536.44 41225.43 41117.39 4103.89 410
testmvs13.36 37916.33 3824.48 3955.04 4172.26 42093.18 3553.28 4182.70 4118.24 41221.66 4092.29 4182.19 4137.58 4122.96 4119.00 409
test12313.04 38015.66 3835.18 3944.51 4183.45 41992.50 3691.81 4192.50 4127.58 41320.15 4103.67 4172.18 4147.13 4131.07 4129.90 408
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.39 3829.85 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41488.65 960.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
n20.00 420
nn0.00 420
ab-mvs-re8.06 38110.74 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41596.69 1680.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS79.53 36975.56 368
PC_three_145290.77 18198.89 1498.28 6596.24 198.35 22395.76 7999.58 2499.59 22
eth-test20.00 419
eth-test0.00 419
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 6696.04 299.24 12495.36 9499.59 2099.56 29
test_0728_THIRD94.78 4198.73 1898.87 1595.87 499.84 2397.45 2699.72 299.77 2
GSMVS98.45 142
test_part299.28 2595.74 898.10 29
sam_mvs182.76 19798.45 142
sam_mvs81.94 216
test_post192.81 36516.58 41280.53 23597.68 30286.20 277
test_post17.58 41181.76 21898.08 251
patchmatchnet-post90.45 36782.65 20198.10 246
gm-plane-assit93.22 35078.89 37784.82 33493.52 32598.64 19787.72 245
test9_res94.81 10899.38 5699.45 47
agg_prior293.94 12599.38 5699.50 40
test_prior493.66 5796.42 224
test_prior296.35 23392.80 11996.03 10097.59 11892.01 4395.01 10299.38 56
旧先验295.94 25881.66 36597.34 4898.82 17692.26 152
新几何295.79 267
原ACMM295.67 272
testdata299.67 5685.96 285
segment_acmp92.89 27
testdata195.26 29593.10 106
plane_prior796.21 21789.98 182
plane_prior696.10 22890.00 17881.32 224
plane_prior496.64 171
plane_prior390.00 17894.46 5591.34 212
plane_prior297.74 9494.85 34
plane_prior196.14 225
plane_prior89.99 18097.24 15594.06 6792.16 246
HQP5-MVS89.33 206
HQP-NCC95.86 23496.65 20793.55 8290.14 237
ACMP_Plane95.86 23496.65 20793.55 8290.14 237
BP-MVS92.13 158
HQP4-MVS90.14 23798.50 20995.78 261
HQP2-MVS80.95 227
NP-MVS95.99 23289.81 18795.87 213
MDTV_nov1_ep13_2view70.35 39293.10 36083.88 34593.55 15782.47 20586.25 27698.38 150
ACMMP++_ref90.30 278
ACMMP++91.02 267
Test By Simon88.73 95