This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
CHOSEN 1792x268899.19 6799.10 6999.45 11399.89 898.52 19899.39 20699.94 198.73 6799.11 20699.89 2395.50 17999.94 6199.50 2699.97 599.89 10
PVSNet_Blended_VisFu99.36 4899.28 4999.61 7499.86 2099.07 13199.47 17299.93 297.66 18299.71 5899.86 4297.73 10799.96 2599.47 3399.82 8099.79 64
PVSNet_BlendedMVS98.86 11898.80 11399.03 17099.76 6098.79 17499.28 23899.91 397.42 20899.67 6899.37 27097.53 11099.88 12198.98 8097.29 26398.42 323
PVSNet_Blended99.08 9598.97 9199.42 11899.76 6098.79 17498.78 33299.91 396.74 26099.67 6899.49 23797.53 11099.88 12198.98 8099.85 5999.60 136
HyFIR lowres test99.11 8998.92 9799.65 6399.90 499.37 9199.02 29799.91 397.67 18199.59 9999.75 12895.90 16699.73 19299.53 2299.02 17299.86 23
MVS_111021_LR99.41 4199.33 3299.65 6399.77 5799.51 7898.94 31699.85 698.82 5799.65 7999.74 13398.51 7599.80 16998.83 10899.89 3899.64 126
MVS_111021_HR99.41 4199.32 3499.66 5999.72 8699.47 8298.95 31499.85 698.82 5799.54 10999.73 13998.51 7599.74 18698.91 8999.88 4199.77 72
PHI-MVS99.30 5499.17 6399.70 5799.56 14999.52 7799.58 10799.80 897.12 23399.62 9099.73 13998.58 6999.90 10698.61 13699.91 2199.68 109
PatchMatch-RL98.84 12898.62 13799.52 10199.71 9199.28 10199.06 28799.77 997.74 17499.50 11699.53 22595.41 18199.84 14197.17 26599.64 12199.44 178
3Dnovator97.25 999.24 6599.05 7499.81 3699.12 26499.66 5399.84 1399.74 1099.09 2498.92 23999.90 1995.94 16399.98 1098.95 8399.92 1699.79 64
QAPM98.67 14698.30 16499.80 3899.20 24699.67 5199.77 3499.72 1194.74 33598.73 26499.90 1995.78 17099.98 1096.96 27599.88 4199.76 77
OpenMVScopyleft96.50 1698.47 15698.12 17699.52 10199.04 28299.53 7499.82 1799.72 1194.56 33898.08 31299.88 2994.73 21299.98 1097.47 24599.76 10099.06 214
CHOSEN 280x42099.12 8599.13 6699.08 16399.66 11397.89 23698.43 35699.71 1398.88 5199.62 9099.76 12596.63 14099.70 20899.46 3499.99 199.66 115
MSLP-MVS++99.46 2599.47 1499.44 11799.60 13999.16 11599.41 19499.71 1398.98 4099.45 12499.78 11199.19 999.54 24099.28 5399.84 6799.63 130
UA-Net99.42 3699.29 4799.80 3899.62 13099.55 6999.50 15399.70 1598.79 6299.77 4299.96 197.45 11299.96 2598.92 8899.90 2999.89 10
PVSNet_094.43 1996.09 30895.47 31497.94 29399.31 22294.34 34497.81 37099.70 1597.12 23397.46 32998.75 34189.71 32699.79 17297.69 22581.69 37299.68 109
AdaColmapbinary99.01 10598.80 11399.66 5999.56 14999.54 7199.18 26499.70 1598.18 12199.35 15799.63 18896.32 15099.90 10697.48 24399.77 9799.55 148
test_fmvsm_n_192099.69 199.66 199.78 4399.84 3199.44 8599.58 10799.69 1899.43 299.98 499.91 1398.62 68100.00 199.97 199.95 999.90 7
ACMMPcopyleft99.45 2799.32 3499.82 3399.89 899.67 5199.62 8699.69 1898.12 12899.63 8699.84 5798.73 5899.96 2598.55 15199.83 7699.81 51
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
XVS99.53 1199.42 1799.87 1199.85 2599.83 1699.69 5399.68 2098.98 4099.37 15099.74 13398.81 4499.94 6198.79 11399.86 5299.84 30
X-MVStestdata96.55 29795.45 31599.87 1199.85 2599.83 1699.69 5399.68 2098.98 4099.37 15064.01 38598.81 4499.94 6198.79 11399.86 5299.84 30
UGNet98.87 11598.69 12499.40 12099.22 24398.72 17899.44 18199.68 2099.24 1199.18 19799.42 25592.74 26999.96 2599.34 4599.94 1399.53 155
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ZNCC-MVS99.47 2399.33 3299.87 1199.87 1599.81 2599.64 7699.67 2398.08 13799.55 10899.64 18298.91 3499.96 2598.72 12099.90 2999.82 44
GST-MVS99.40 4499.24 5699.85 2599.86 2099.79 3099.60 9399.67 2397.97 14999.63 8699.68 16498.52 7499.95 5298.38 16399.86 5299.81 51
HFP-MVS99.49 1699.37 2499.86 2099.87 1599.80 2799.66 6799.67 2398.15 12399.68 6499.69 15899.06 1699.96 2598.69 12599.87 4499.84 30
ACMMPR99.49 1699.36 2699.86 2099.87 1599.79 3099.66 6799.67 2398.15 12399.67 6899.69 15898.95 2799.96 2598.69 12599.87 4499.84 30
region2R99.48 2099.35 2899.87 1199.88 1199.80 2799.65 7399.66 2798.13 12799.66 7399.68 16498.96 2499.96 2598.62 13399.87 4499.84 30
EU-MVSNet97.98 21298.03 18897.81 30498.72 32396.65 29299.66 6799.66 2798.09 13398.35 30199.82 6895.25 19098.01 35897.41 25095.30 30998.78 235
DELS-MVS99.48 2099.42 1799.65 6399.72 8699.40 9099.05 28999.66 2799.14 1599.57 10399.80 9498.46 7899.94 6199.57 1799.84 6799.60 136
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Vis-MVSNetpermissive99.12 8598.97 9199.56 8499.78 5199.10 12599.68 5999.66 2798.49 8399.86 1999.87 3794.77 20999.84 14199.19 6199.41 13899.74 82
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CSCG99.32 5299.32 3499.32 13299.85 2598.29 21399.71 4999.66 2798.11 13099.41 13799.80 9498.37 8599.96 2598.99 7999.96 899.72 93
SDMVSNet99.11 8998.90 10099.75 4999.81 4299.59 6299.81 2099.65 3298.78 6599.64 8399.88 2994.56 22099.93 7499.67 1198.26 21199.72 93
PGM-MVS99.45 2799.31 4199.86 2099.87 1599.78 3699.58 10799.65 3297.84 16199.71 5899.80 9499.12 1399.97 1798.33 16999.87 4499.83 39
test_cas_vis1_n_192099.16 7399.01 8599.61 7499.81 4298.86 16599.65 7399.64 3499.39 599.97 799.94 493.20 25999.98 1099.55 1999.91 2199.99 1
patch_mono-299.26 6199.62 298.16 27899.81 4294.59 33999.52 14199.64 3499.33 799.73 5299.90 1999.00 2299.99 499.69 999.98 299.89 10
test_fmvsmvis_n_192099.65 399.61 399.77 4699.38 20399.37 9199.58 10799.62 3699.41 499.87 1899.92 1198.81 44100.00 199.97 199.93 1499.94 5
sd_testset98.75 13698.57 14699.29 14199.81 4298.26 21599.56 12099.62 3698.78 6599.64 8399.88 2992.02 29099.88 12199.54 2098.26 21199.72 93
test_vis1_n_192098.63 15098.40 15799.31 13399.86 2097.94 23599.67 6299.62 3699.43 299.99 299.91 1387.29 350100.00 199.92 499.92 1699.98 2
SR-MVS99.43 3499.29 4799.86 2099.75 6899.83 1699.59 9999.62 3698.21 11499.73 5299.79 10598.68 6299.96 2598.44 16099.77 9799.79 64
sss99.17 7199.05 7499.53 9599.62 13098.97 14399.36 21799.62 3697.83 16299.67 6899.65 17697.37 11699.95 5299.19 6199.19 15499.68 109
ZD-MVS99.71 9199.79 3099.61 4196.84 25699.56 10499.54 22198.58 6999.96 2596.93 27899.75 102
D2MVS98.41 16298.50 15198.15 28199.26 23496.62 29399.40 20299.61 4197.71 17698.98 23099.36 27396.04 15799.67 21598.70 12297.41 25898.15 339
tfpnnormal97.84 23397.47 24798.98 17899.20 24699.22 10999.64 7699.61 4196.32 29298.27 30699.70 14893.35 25599.44 25095.69 31195.40 30798.27 333
AllTest98.87 11598.72 12099.31 13399.86 2098.48 20499.56 12099.61 4197.85 15999.36 15499.85 4795.95 16199.85 13596.66 29199.83 7699.59 140
TestCases99.31 13399.86 2098.48 20499.61 4197.85 15999.36 15499.85 4795.95 16199.85 13596.66 29199.83 7699.59 140
FC-MVSNet-test98.75 13698.62 13799.15 16099.08 27499.45 8499.86 1299.60 4698.23 11198.70 27299.82 6896.80 13499.22 29499.07 7396.38 28298.79 234
PVSNet96.02 1798.85 12598.84 11098.89 19799.73 8297.28 25698.32 36299.60 4697.86 15799.50 11699.57 21096.75 13799.86 12998.56 14899.70 11299.54 150
LTVRE_ROB97.16 1298.02 20597.90 20298.40 25999.23 24096.80 28799.70 5099.60 4697.12 23398.18 30999.70 14891.73 29899.72 19698.39 16297.45 25398.68 264
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
FIs98.78 13398.63 13299.23 15199.18 25199.54 7199.83 1699.59 4998.28 10398.79 25999.81 8196.75 13799.37 26399.08 7296.38 28298.78 235
WR-MVS_H98.13 18797.87 20798.90 19499.02 28498.84 16799.70 5099.59 4997.27 21998.40 29899.19 30795.53 17899.23 29198.34 16893.78 33598.61 303
114514_t98.93 11098.67 12699.72 5599.85 2599.53 7499.62 8699.59 4992.65 35599.71 5899.78 11198.06 9999.90 10698.84 10599.91 2199.74 82
COLMAP_ROBcopyleft97.56 698.86 11898.75 11999.17 15699.88 1198.53 19499.34 22599.59 4997.55 19198.70 27299.89 2395.83 16899.90 10698.10 18499.90 2999.08 208
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CS-MVS-test99.49 1699.48 1299.54 8799.78 5199.30 9999.89 299.58 5398.56 7799.73 5299.69 15898.55 7299.82 15899.69 999.85 5999.48 167
VPA-MVSNet98.29 17397.95 19799.30 13899.16 25999.54 7199.50 15399.58 5398.27 10599.35 15799.37 27092.53 27999.65 22399.35 4194.46 32498.72 248
EC-MVSNet99.44 3199.39 2199.58 8099.56 14999.49 7999.88 499.58 5398.38 9299.73 5299.69 15898.20 9299.70 20899.64 1499.82 8099.54 150
CANet99.25 6499.14 6599.59 7799.41 19499.16 11599.35 22299.57 5698.82 5799.51 11599.61 19796.46 14599.95 5299.59 1599.98 299.65 119
Anonymous2023121197.88 22597.54 24098.90 19499.71 9198.53 19499.48 16799.57 5694.16 34198.81 25599.68 16493.23 25699.42 25598.84 10594.42 32698.76 240
VPNet97.84 23397.44 25599.01 17299.21 24498.94 15599.48 16799.57 5698.38 9299.28 17099.73 13988.89 33399.39 25799.19 6193.27 34098.71 250
DP-MVS Recon99.12 8598.95 9599.65 6399.74 7599.70 4699.27 24399.57 5696.40 29099.42 13399.68 16498.75 5599.80 16997.98 19599.72 10899.44 178
LS3D99.27 5999.12 6799.74 5299.18 25199.75 3999.56 12099.57 5698.45 8699.49 11999.85 4797.77 10699.94 6198.33 16999.84 6799.52 156
FOURS199.91 199.93 199.87 999.56 6199.10 2099.81 29
test_prior99.68 5899.67 10599.48 8199.56 6199.83 15299.74 82
APDe-MVS99.66 299.57 599.92 199.77 5799.89 499.75 4099.56 6199.02 3099.88 1399.85 4799.18 1099.96 2599.22 5999.92 1699.90 7
HPM-MVS_fast99.51 1399.40 2099.85 2599.91 199.79 3099.76 3799.56 6197.72 17599.76 4799.75 12899.13 1299.92 8599.07 7399.92 1699.85 26
casdiffmvs_mvgpermissive99.15 7599.02 8199.55 8699.66 11399.09 12699.64 7699.56 6198.26 10699.45 12499.87 3796.03 15899.81 16399.54 2099.15 15899.73 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WTY-MVS99.06 9798.88 10499.61 7499.62 13099.16 11599.37 21399.56 6198.04 14499.53 11199.62 19396.84 13399.94 6198.85 10298.49 20299.72 93
API-MVS99.04 9999.03 7899.06 16699.40 19999.31 9899.55 13099.56 6198.54 7999.33 16199.39 26698.76 5299.78 17796.98 27399.78 9498.07 342
ACMH97.28 898.10 19097.99 19298.44 25599.41 19496.96 28199.60 9399.56 6198.09 13398.15 31099.91 1390.87 31499.70 20898.88 9297.45 25398.67 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CS-MVS99.50 1499.48 1299.54 8799.76 6099.42 8799.90 199.55 6998.56 7799.78 3999.70 14898.65 6699.79 17299.65 1399.78 9499.41 182
CVMVSNet98.57 15298.67 12698.30 26899.35 20995.59 31799.50 15399.55 6998.60 7599.39 14599.83 6194.48 22499.45 24598.75 11698.56 19899.85 26
XVG-OURS98.73 13998.68 12598.88 19999.70 9697.73 24398.92 31899.55 6998.52 8199.45 12499.84 5795.27 18799.91 9598.08 18998.84 18499.00 219
LPG-MVS_test98.22 17698.13 17598.49 24499.33 21597.05 27099.58 10799.55 6997.46 20099.24 18099.83 6192.58 27799.72 19698.09 18597.51 24598.68 264
LGP-MVS_train98.49 24499.33 21597.05 27099.55 6997.46 20099.24 18099.83 6192.58 27799.72 19698.09 18597.51 24598.68 264
XXY-MVS98.38 16698.09 18199.24 14999.26 23499.32 9599.56 12099.55 6997.45 20398.71 26699.83 6193.23 25699.63 23198.88 9296.32 28498.76 240
DeepC-MVS98.35 299.30 5499.19 6199.64 6899.82 3899.23 10899.62 8699.55 6998.94 4699.63 8699.95 295.82 16999.94 6199.37 4099.97 599.73 87
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSDG98.98 10698.80 11399.53 9599.76 6099.19 11098.75 33599.55 6997.25 22199.47 12199.77 11997.82 10499.87 12696.93 27899.90 2999.54 150
SF-MVS99.38 4699.24 5699.79 4199.79 4999.68 4899.57 11499.54 7797.82 16699.71 5899.80 9498.95 2799.93 7498.19 17899.84 6799.74 82
PS-MVSNAJss98.92 11198.92 9798.90 19498.78 31598.53 19499.78 3299.54 7798.07 13899.00 22899.76 12599.01 1899.37 26399.13 6697.23 26698.81 232
新几何199.75 4999.75 6899.59 6299.54 7796.76 25999.29 16999.64 18298.43 8099.94 6196.92 28099.66 11899.72 93
旧先验199.74 7599.59 6299.54 7799.69 15898.47 7799.68 11699.73 87
APD-MVS_3200maxsize99.48 2099.35 2899.85 2599.76 6099.83 1699.63 8099.54 7798.36 9699.79 3499.82 6898.86 3899.95 5298.62 13399.81 8399.78 70
XVG-OURS-SEG-HR98.69 14398.62 13798.89 19799.71 9197.74 24299.12 27499.54 7798.44 8999.42 13399.71 14494.20 23299.92 8598.54 15298.90 18099.00 219
HPM-MVScopyleft99.42 3699.28 4999.83 3299.90 499.72 4299.81 2099.54 7797.59 18699.68 6499.63 18898.91 3499.94 6198.58 14299.91 2199.84 30
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ab-mvs98.86 11898.63 13299.54 8799.64 12199.19 11099.44 18199.54 7797.77 16999.30 16699.81 8194.20 23299.93 7499.17 6498.82 18699.49 166
F-COLMAP99.19 6799.04 7699.64 6899.78 5199.27 10399.42 19299.54 7797.29 21899.41 13799.59 20298.42 8299.93 7498.19 17899.69 11399.73 87
ACMH+97.24 1097.92 22197.78 21498.32 26699.46 18396.68 29199.56 12099.54 7798.41 9097.79 32599.87 3790.18 32399.66 21898.05 19397.18 26998.62 294
MAR-MVS98.86 11898.63 13299.54 8799.37 20699.66 5399.45 17699.54 7796.61 27299.01 22499.40 26297.09 12499.86 12997.68 22699.53 13199.10 203
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
UniMVSNet_ETH3D97.32 28396.81 29098.87 20399.40 19997.46 25299.51 14799.53 8895.86 31898.54 29199.77 11982.44 36699.66 21898.68 12797.52 24399.50 165
EIA-MVS99.18 6999.09 7199.45 11399.49 17399.18 11299.67 6299.53 8897.66 18299.40 14299.44 25198.10 9699.81 16398.94 8499.62 12499.35 188
jajsoiax98.43 15998.28 16598.88 19998.60 33698.43 20899.82 1799.53 8898.19 11798.63 28399.80 9493.22 25899.44 25099.22 5997.50 24798.77 238
mvs_tets98.40 16598.23 16798.91 19298.67 32998.51 20099.66 6799.53 8898.19 11798.65 28199.81 8192.75 26799.44 25099.31 4897.48 25198.77 238
UniMVSNet_NR-MVSNet98.22 17697.97 19498.96 18198.92 29698.98 14099.48 16799.53 8897.76 17098.71 26699.46 24996.43 14899.22 29498.57 14592.87 34598.69 259
SR-MVS-dyc-post99.45 2799.31 4199.85 2599.76 6099.82 2299.63 8099.52 9398.38 9299.76 4799.82 6898.53 7399.95 5298.61 13699.81 8399.77 72
RE-MVS-def99.34 3099.76 6099.82 2299.63 8099.52 9398.38 9299.76 4799.82 6898.75 5598.61 13699.81 8399.77 72
dcpmvs_299.23 6699.58 498.16 27899.83 3694.68 33799.76 3799.52 9399.07 2799.98 499.88 2998.56 7199.93 7499.67 1199.98 299.87 21
ETV-MVS99.26 6199.21 5999.40 12099.46 18399.30 9999.56 12099.52 9398.52 8199.44 12999.27 29798.41 8399.86 12999.10 6999.59 12699.04 215
MP-MVS-pluss99.37 4799.20 6099.88 599.90 499.87 1299.30 23299.52 9397.18 22799.60 9699.79 10598.79 4799.95 5298.83 10899.91 2199.83 39
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SD-MVS99.41 4199.52 899.05 16899.74 7599.68 4899.46 17599.52 9399.11 1999.88 1399.91 1399.43 197.70 36598.72 12099.93 1499.77 72
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PS-CasMVS97.93 21897.59 23698.95 18398.99 28799.06 13299.68 5999.52 9397.13 23198.31 30399.68 16492.44 28599.05 31898.51 15394.08 33298.75 242
XVG-ACMP-BASELINE97.83 23597.71 22598.20 27599.11 26696.33 30399.41 19499.52 9398.06 14299.05 22099.50 23489.64 32899.73 19297.73 21997.38 26198.53 311
CNVR-MVS99.42 3699.30 4399.78 4399.62 13099.71 4499.26 25199.52 9398.82 5799.39 14599.71 14498.96 2499.85 13598.59 14199.80 8799.77 72
CP-MVS99.45 2799.32 3499.85 2599.83 3699.75 3999.69 5399.52 9398.07 13899.53 11199.63 18898.93 3399.97 1798.74 11799.91 2199.83 39
RPMNet96.72 29595.90 30799.19 15499.18 25198.49 20299.22 26099.52 9388.72 36899.56 10497.38 36294.08 23899.95 5286.87 37398.58 19599.14 200
FMVSNet596.43 30196.19 30097.15 32199.11 26695.89 31299.32 22899.52 9394.47 34098.34 30299.07 31887.54 34997.07 36992.61 35295.72 30098.47 317
OMC-MVS99.08 9599.04 7699.20 15399.67 10598.22 21799.28 23899.52 9398.07 13899.66 7399.81 8197.79 10599.78 17797.79 21099.81 8399.60 136
PLCcopyleft97.94 499.02 10298.85 10999.53 9599.66 11399.01 13899.24 25599.52 9396.85 25599.27 17499.48 24298.25 9099.91 9597.76 21599.62 12499.65 119
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DVP-MVS++99.59 599.50 1099.88 599.51 16299.88 899.87 999.51 10798.99 3799.88 1399.81 8199.27 599.96 2598.85 10299.80 8799.81 51
GeoE98.85 12598.62 13799.53 9599.61 13499.08 12999.80 2599.51 10797.10 23799.31 16499.78 11195.23 19199.77 17998.21 17699.03 17099.75 78
9.1499.10 6999.72 8699.40 20299.51 10797.53 19599.64 8399.78 11198.84 4199.91 9597.63 22799.82 80
test_0728_SECOND99.91 299.84 3199.89 499.57 11499.51 10799.96 2598.93 8699.86 5299.88 16
DPE-MVScopyleft99.46 2599.32 3499.91 299.78 5199.88 899.36 21799.51 10798.73 6799.88 1399.84 5798.72 5999.96 2598.16 18299.87 4499.88 16
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
xiu_mvs_v1_base_debu99.29 5699.27 5199.34 12699.63 12498.97 14399.12 27499.51 10798.86 5299.84 2199.47 24598.18 9399.99 499.50 2699.31 14799.08 208
xiu_mvs_v1_base99.29 5699.27 5199.34 12699.63 12498.97 14399.12 27499.51 10798.86 5299.84 2199.47 24598.18 9399.99 499.50 2699.31 14799.08 208
xiu_mvs_v1_base_debi99.29 5699.27 5199.34 12699.63 12498.97 14399.12 27499.51 10798.86 5299.84 2199.47 24598.18 9399.99 499.50 2699.31 14799.08 208
cdsmvs_eth3d_5k24.64 35332.85 3560.00 3690.00 3920.00 3930.00 38099.51 1070.00 3870.00 38899.56 21396.58 1410.00 3880.00 3860.00 3860.00 384
HPM-MVS++copyleft99.39 4599.23 5899.87 1199.75 6899.84 1599.43 18599.51 10798.68 7199.27 17499.53 22598.64 6799.96 2598.44 16099.80 8799.79 64
无先验98.99 30499.51 10796.89 25399.93 7497.53 23999.72 93
testdata99.54 8799.75 6898.95 15299.51 10797.07 23999.43 13099.70 14898.87 3799.94 6197.76 21599.64 12199.72 93
PEN-MVS97.76 24597.44 25598.72 22498.77 31898.54 19399.78 3299.51 10797.06 24198.29 30599.64 18292.63 27698.89 34198.09 18593.16 34198.72 248
UniMVSNet (Re)98.29 17398.00 19199.13 16199.00 28699.36 9399.49 16399.51 10797.95 15098.97 23299.13 31396.30 15199.38 25898.36 16793.34 33898.66 279
mvsmamba98.92 11198.87 10599.08 16399.07 27599.16 11599.88 499.51 10798.15 12399.40 14299.89 2397.12 12299.33 27399.38 3897.40 25998.73 247
SteuartSystems-ACMMP99.54 1099.42 1799.87 1199.82 3899.81 2599.59 9999.51 10798.62 7399.79 3499.83 6199.28 499.97 1798.48 15599.90 2999.84 30
Skip Steuart: Steuart Systems R&D Blog.
UnsupCasMVSNet_eth96.44 30096.12 30197.40 31798.65 33095.65 31599.36 21799.51 10797.13 23196.04 35098.99 32788.40 34098.17 35496.71 28790.27 35898.40 326
3Dnovator+97.12 1399.18 6998.97 9199.82 3399.17 25799.68 4899.81 2099.51 10799.20 1298.72 26599.89 2395.68 17599.97 1798.86 10099.86 5299.81 51
TAPA-MVS97.07 1597.74 25197.34 27098.94 18499.70 9697.53 25099.25 25399.51 10791.90 35799.30 16699.63 18898.78 4899.64 22688.09 36899.87 4499.65 119
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test072699.85 2599.89 499.62 8699.50 12699.10 2099.86 1999.82 6898.94 29
MSP-MVS99.42 3699.27 5199.88 599.89 899.80 2799.67 6299.50 12698.70 6999.77 4299.49 23798.21 9199.95 5298.46 15999.77 9799.88 16
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
Effi-MVS+98.81 12998.59 14499.48 10799.46 18399.12 12498.08 36899.50 12697.50 19899.38 14899.41 25996.37 14999.81 16399.11 6898.54 19999.51 162
anonymousdsp98.44 15898.28 16598.94 18498.50 34198.96 14799.77 3499.50 12697.07 23998.87 24899.77 11994.76 21099.28 28298.66 12997.60 23698.57 309
casdiffmvspermissive99.13 7998.98 9099.56 8499.65 11999.16 11599.56 12099.50 12698.33 10099.41 13799.86 4295.92 16499.83 15299.45 3599.16 15599.70 103
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVScopyleft99.27 5999.08 7299.84 3199.75 6899.79 3099.50 15399.50 12697.16 22999.77 4299.82 6898.78 4899.94 6197.56 23699.86 5299.80 60
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MIMVSNet195.51 31495.04 31996.92 33097.38 35895.60 31699.52 14199.50 12693.65 34696.97 34299.17 30885.28 35896.56 37388.36 36795.55 30498.60 306
DP-MVS99.16 7398.95 9599.78 4399.77 5799.53 7499.41 19499.50 12697.03 24399.04 22199.88 2997.39 11399.92 8598.66 12999.90 2999.87 21
test_vis1_n97.92 22197.44 25599.34 12699.53 15698.08 22499.74 4399.49 13499.15 14100.00 199.94 479.51 36999.98 1099.88 599.76 10099.97 3
test_fmvs1_n98.41 16298.14 17399.21 15299.82 3897.71 24799.74 4399.49 13499.32 899.99 299.95 285.32 35799.97 1799.82 699.84 6799.96 4
test_fmvs198.88 11498.79 11699.16 15799.69 10097.61 24999.55 13099.49 13499.32 899.98 499.91 1391.41 30699.96 2599.82 699.92 1699.90 7
test_one_060199.81 4299.88 899.49 13498.97 4399.65 7999.81 8199.09 14
Fast-Effi-MVS+-dtu98.77 13598.83 11298.60 23099.41 19496.99 27799.52 14199.49 13498.11 13099.24 18099.34 28096.96 13199.79 17297.95 19799.45 13599.02 218
IterMVS-SCA-FT97.82 23897.75 22198.06 28499.57 14596.36 30299.02 29799.49 13497.18 22798.71 26699.72 14392.72 27099.14 30497.44 24895.86 29698.67 271
test22299.75 6899.49 7998.91 32099.49 13496.42 28899.34 16099.65 17698.28 8999.69 11399.72 93
131498.68 14598.54 14999.11 16298.89 29998.65 18399.27 24399.49 13496.89 25397.99 31799.56 21397.72 10899.83 15297.74 21899.27 15098.84 231
diffmvspermissive99.14 7799.02 8199.51 10399.61 13498.96 14799.28 23899.49 13498.46 8599.72 5799.71 14496.50 14499.88 12199.31 4899.11 16199.67 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TranMVSNet+NR-MVSNet97.93 21897.66 22998.76 22298.78 31598.62 18699.65 7399.49 13497.76 17098.49 29499.60 20094.23 23198.97 33598.00 19492.90 34398.70 255
CPTT-MVS99.11 8998.90 10099.74 5299.80 4899.46 8399.59 9999.49 13497.03 24399.63 8699.69 15897.27 11999.96 2597.82 20899.84 6799.81 51
ACMP97.20 1198.06 19597.94 19998.45 25299.37 20697.01 27599.44 18199.49 13497.54 19498.45 29699.79 10591.95 29299.72 19697.91 19997.49 25098.62 294
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
mvsany_test199.50 1499.46 1699.62 7399.61 13499.09 12698.94 31699.48 14699.10 2099.96 899.91 1398.85 3999.96 2599.72 899.58 12799.82 44
SED-MVS99.61 499.52 899.88 599.84 3199.90 299.60 9399.48 14699.08 2599.91 999.81 8199.20 799.96 2598.91 8999.85 5999.79 64
test_241102_TWO99.48 14699.08 2599.88 1399.81 8198.94 2999.96 2598.91 8999.84 6799.88 16
test_241102_ONE99.84 3199.90 299.48 14699.07 2799.91 999.74 13399.20 799.76 183
ACMMP_NAP99.47 2399.34 3099.88 599.87 1599.86 1399.47 17299.48 14698.05 14399.76 4799.86 4298.82 4399.93 7498.82 11299.91 2199.84 30
canonicalmvs99.02 10298.86 10899.51 10399.42 19199.32 9599.80 2599.48 14698.63 7299.31 16498.81 33897.09 12499.75 18599.27 5697.90 22799.47 173
testgi97.65 26697.50 24498.13 28299.36 20896.45 29999.42 19299.48 14697.76 17097.87 32199.45 25091.09 31198.81 34294.53 32998.52 20099.13 202
DTE-MVSNet97.51 27497.19 28298.46 25198.63 33298.13 22299.84 1399.48 14696.68 26497.97 31999.67 17092.92 26398.56 34796.88 28292.60 34898.70 255
mPP-MVS99.44 3199.30 4399.86 2099.88 1199.79 3099.69 5399.48 14698.12 12899.50 11699.75 12898.78 4899.97 1798.57 14599.89 3899.83 39
baseline99.15 7599.02 8199.53 9599.66 11399.14 12199.72 4799.48 14698.35 9799.42 13399.84 5796.07 15699.79 17299.51 2599.14 15999.67 112
NCCC99.34 5099.19 6199.79 4199.61 13499.65 5699.30 23299.48 14698.86 5299.21 18899.63 18898.72 5999.90 10698.25 17499.63 12399.80 60
GBi-Net97.68 26197.48 24598.29 26999.51 16297.26 25999.43 18599.48 14696.49 28099.07 21499.32 28790.26 31998.98 32897.10 26696.65 27598.62 294
UnsupCasMVSNet_bld93.53 33192.51 33496.58 33697.38 35893.82 34798.24 36499.48 14691.10 36193.10 36596.66 36774.89 37198.37 35094.03 33787.71 36497.56 361
test197.68 26197.48 24598.29 26999.51 16297.26 25999.43 18599.48 14696.49 28099.07 21499.32 28790.26 31998.98 32897.10 26696.65 27598.62 294
FMVSNet196.84 29396.36 29798.29 26999.32 22197.26 25999.43 18599.48 14695.11 32798.55 29099.32 28783.95 36298.98 32895.81 30796.26 28598.62 294
1112_ss98.98 10698.77 11799.59 7799.68 10499.02 13699.25 25399.48 14697.23 22499.13 20299.58 20696.93 13299.90 10698.87 9598.78 18999.84 30
IterMVS97.83 23597.77 21698.02 28799.58 14396.27 30599.02 29799.48 14697.22 22598.71 26699.70 14892.75 26799.13 30797.46 24696.00 29098.67 271
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CMPMVSbinary69.68 2394.13 32894.90 32091.84 35197.24 36280.01 37898.52 35299.48 14689.01 36691.99 36799.67 17085.67 35599.13 30795.44 31697.03 27196.39 368
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
SMA-MVScopyleft99.44 3199.30 4399.85 2599.73 8299.83 1699.56 12099.47 16497.45 20399.78 3999.82 6899.18 1099.91 9598.79 11399.89 3899.81 51
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MTGPAbinary99.47 164
pmmvs696.53 29896.09 30397.82 30398.69 32795.47 32299.37 21399.47 16493.46 34997.41 33099.78 11187.06 35199.33 27396.92 28092.70 34798.65 281
Fast-Effi-MVS+98.70 14198.43 15499.51 10399.51 16299.28 10199.52 14199.47 16496.11 31099.01 22499.34 28096.20 15499.84 14197.88 20198.82 18699.39 185
MTAPA99.52 1299.39 2199.89 499.90 499.86 1399.66 6799.47 16498.79 6299.68 6499.81 8198.43 8099.97 1798.88 9299.90 2999.83 39
原ACMM199.65 6399.73 8299.33 9499.47 16497.46 20099.12 20499.66 17598.67 6499.91 9597.70 22499.69 11399.71 102
HQP_MVS98.27 17598.22 16898.44 25599.29 22796.97 27999.39 20699.47 16498.97 4399.11 20699.61 19792.71 27299.69 21397.78 21197.63 23398.67 271
plane_prior599.47 16499.69 21397.78 21197.63 23398.67 271
Test_1112_low_res98.89 11398.66 12999.57 8299.69 10098.95 15299.03 29499.47 16496.98 24599.15 20099.23 30296.77 13699.89 11698.83 10898.78 18999.86 23
ppachtmachnet_test97.49 27897.45 25097.61 31198.62 33395.24 32798.80 33099.46 17396.11 31098.22 30799.62 19396.45 14698.97 33593.77 33895.97 29498.61 303
nrg03098.64 14998.42 15599.28 14499.05 28199.69 4799.81 2099.46 17398.04 14499.01 22499.82 6896.69 13999.38 25899.34 4594.59 32398.78 235
v7n97.87 22797.52 24198.92 18898.76 31998.58 19099.84 1399.46 17396.20 30198.91 24099.70 14894.89 20099.44 25096.03 30393.89 33498.75 242
PS-MVSNAJ99.32 5299.32 3499.30 13899.57 14598.94 15598.97 31099.46 17398.92 4999.71 5899.24 30199.01 1899.98 1099.35 4199.66 11898.97 223
MP-MVScopyleft99.33 5199.15 6499.87 1199.88 1199.82 2299.66 6799.46 17398.09 13399.48 12099.74 13398.29 8899.96 2597.93 19899.87 4499.82 44
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVSNet98.09 19197.78 21499.01 17298.97 29299.24 10799.67 6299.46 17397.25 22198.48 29599.64 18293.79 24799.06 31798.63 13294.10 33198.74 245
MVSFormer99.17 7199.12 6799.29 14199.51 16298.94 15599.88 499.46 17397.55 19199.80 3299.65 17697.39 11399.28 28299.03 7599.85 5999.65 119
test_djsdf98.67 14698.57 14698.98 17898.70 32698.91 15999.88 499.46 17397.55 19199.22 18599.88 2995.73 17299.28 28299.03 7597.62 23598.75 242
CDS-MVSNet99.09 9499.03 7899.25 14799.42 19198.73 17799.45 17699.46 17398.11 13099.46 12399.77 11998.01 10099.37 26398.70 12298.92 17899.66 115
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS99.12 8599.08 7299.24 14999.46 18398.55 19299.51 14799.46 17398.09 13399.45 12499.82 6898.34 8699.51 24198.70 12298.93 17699.67 112
DeepC-MVS_fast98.69 199.49 1699.39 2199.77 4699.63 12499.59 6299.36 21799.46 17399.07 2799.79 3499.82 6898.85 3999.92 8598.68 12799.87 4499.82 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
h-mvs3397.70 25897.28 27798.97 18099.70 9697.27 25799.36 21799.45 18498.94 4699.66 7399.64 18294.93 19699.99 499.48 3184.36 36899.65 119
xiu_mvs_v2_base99.26 6199.25 5599.29 14199.53 15698.91 15999.02 29799.45 18498.80 6199.71 5899.26 29998.94 2999.98 1099.34 4599.23 15198.98 222
EI-MVSNet-UG-set99.58 699.57 599.64 6899.78 5199.14 12199.60 9399.45 18499.01 3299.90 1199.83 6198.98 2399.93 7499.59 1599.95 999.86 23
EI-MVSNet-Vis-set99.58 699.56 799.64 6899.78 5199.15 12099.61 9299.45 18499.01 3299.89 1299.82 6899.01 1899.92 8599.56 1899.95 999.85 26
pm-mvs197.68 26197.28 27798.88 19999.06 27898.62 18699.50 15399.45 18496.32 29297.87 32199.79 10592.47 28199.35 27097.54 23893.54 33798.67 271
DU-MVS98.08 19397.79 21198.96 18198.87 30498.98 14099.41 19499.45 18497.87 15698.71 26699.50 23494.82 20299.22 29498.57 14592.87 34598.68 264
ACMM97.58 598.37 16798.34 16098.48 24699.41 19497.10 26499.56 12099.45 18498.53 8099.04 22199.85 4793.00 26199.71 20298.74 11797.45 25398.64 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Gipumacopyleft90.99 33690.15 34193.51 34698.73 32190.12 36693.98 37699.45 18479.32 37492.28 36694.91 37169.61 37297.98 35987.42 37095.67 30192.45 374
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
KD-MVS_self_test95.00 32094.34 32596.96 32897.07 36695.39 32599.56 12099.44 19295.11 32797.13 33897.32 36491.86 29497.27 36890.35 36081.23 37398.23 337
RPSCF98.22 17698.62 13796.99 32699.82 3891.58 36399.72 4799.44 19296.61 27299.66 7399.89 2395.92 16499.82 15897.46 24699.10 16499.57 145
Vis-MVSNet (Re-imp)98.87 11598.72 12099.31 13399.71 9198.88 16199.80 2599.44 19297.91 15499.36 15499.78 11195.49 18099.43 25497.91 19999.11 16199.62 132
CNLPA99.14 7798.99 8799.59 7799.58 14399.41 8999.16 26699.44 19298.45 8699.19 19499.49 23798.08 9899.89 11697.73 21999.75 10299.48 167
DeepPCF-MVS98.18 398.81 12999.37 2497.12 32499.60 13991.75 36298.61 34699.44 19299.35 699.83 2699.85 4798.70 6199.81 16399.02 7799.91 2199.81 51
CLD-MVS98.16 18498.10 17898.33 26499.29 22796.82 28698.75 33599.44 19297.83 16299.13 20299.55 21692.92 26399.67 21598.32 17197.69 23298.48 315
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous2024052998.09 19197.68 22799.34 12699.66 11398.44 20799.40 20299.43 19893.67 34599.22 18599.89 2390.23 32299.93 7499.26 5798.33 20599.66 115
IterMVS-LS98.46 15798.42 15598.58 23499.59 14198.00 22799.37 21399.43 19896.94 25199.07 21499.59 20297.87 10299.03 32198.32 17195.62 30298.71 250
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
iter_conf0598.55 15398.44 15398.87 20399.34 21398.60 18999.55 13099.42 20098.21 11499.37 15099.77 11993.55 25299.38 25899.30 5197.48 25198.63 291
NR-MVSNet97.97 21597.61 23499.02 17198.87 30499.26 10599.47 17299.42 20097.63 18497.08 33999.50 23495.07 19499.13 30797.86 20493.59 33698.68 264
FMVSNet297.72 25497.36 26598.80 21899.51 16298.84 16799.45 17699.42 20096.49 28098.86 25299.29 29290.26 31998.98 32896.44 29696.56 27898.58 308
iter_conf_final98.71 14098.61 14398.99 17699.49 17398.96 14799.63 8099.41 20398.19 11799.39 14599.77 11994.82 20299.38 25899.30 5197.52 24398.64 283
bld_raw_dy_0_6498.69 14398.58 14598.99 17698.88 30098.96 14799.80 2599.41 20397.91 15499.32 16299.87 3795.70 17499.31 27999.09 7097.27 26498.71 250
TEST999.67 10599.65 5699.05 28999.41 20396.22 30098.95 23499.49 23798.77 5199.91 95
train_agg99.02 10298.77 11799.77 4699.67 10599.65 5699.05 28999.41 20396.28 29498.95 23499.49 23798.76 5299.91 9597.63 22799.72 10899.75 78
test_899.67 10599.61 6099.03 29499.41 20396.28 29498.93 23899.48 24298.76 5299.91 95
v897.95 21797.63 23398.93 18698.95 29498.81 17399.80 2599.41 20396.03 31599.10 20999.42 25594.92 19899.30 28096.94 27794.08 33298.66 279
v1097.85 23097.52 24198.86 20798.99 28798.67 18199.75 4099.41 20395.70 31998.98 23099.41 25994.75 21199.23 29196.01 30494.63 32298.67 271
CDPH-MVS99.13 7998.91 9999.80 3899.75 6899.71 4499.15 26999.41 20396.60 27499.60 9699.55 21698.83 4299.90 10697.48 24399.83 7699.78 70
save fliter99.76 6099.59 6299.14 27199.40 21199.00 35
agg_prior99.67 10599.62 5999.40 21198.87 24899.91 95
MCST-MVS99.43 3499.30 4399.82 3399.79 4999.74 4199.29 23699.40 21198.79 6299.52 11399.62 19398.91 3499.90 10698.64 13199.75 10299.82 44
TSAR-MVS + MP.99.58 699.50 1099.81 3699.91 199.66 5399.63 8099.39 21498.91 5099.78 3999.85 4799.36 299.94 6198.84 10599.88 4199.82 44
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MVS97.28 28496.55 29499.48 10798.78 31598.95 15299.27 24399.39 21483.53 37298.08 31299.54 22196.97 13099.87 12694.23 33499.16 15599.63 130
VNet99.11 8998.90 10099.73 5499.52 16099.56 6799.41 19499.39 21499.01 3299.74 5199.78 11195.56 17799.92 8599.52 2498.18 21899.72 93
HQP3-MVS99.39 21497.58 238
cascas97.69 25997.43 25998.48 24698.60 33697.30 25598.18 36799.39 21492.96 35398.41 29798.78 34093.77 24899.27 28598.16 18298.61 19298.86 229
HQP-MVS98.02 20597.90 20298.37 26299.19 24896.83 28498.98 30799.39 21498.24 10898.66 27599.40 26292.47 28199.64 22697.19 26297.58 23898.64 283
CL-MVSNet_self_test94.49 32593.97 32896.08 33996.16 36893.67 35298.33 36199.38 22095.13 32597.33 33298.15 35592.69 27496.57 37288.67 36579.87 37497.99 349
OPM-MVS98.19 18098.10 17898.45 25298.88 30097.07 26899.28 23899.38 22098.57 7699.22 18599.81 8192.12 28899.66 21898.08 18997.54 24298.61 303
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EI-MVSNet98.67 14698.67 12698.68 22799.35 20997.97 22999.50 15399.38 22096.93 25299.20 19199.83 6197.87 10299.36 26798.38 16397.56 24098.71 250
test20.0396.12 30795.96 30696.63 33497.44 35795.45 32399.51 14799.38 22096.55 27796.16 34899.25 30093.76 24996.17 37487.35 37194.22 32998.27 333
mvs_anonymous99.03 10198.99 8799.16 15799.38 20398.52 19899.51 14799.38 22097.79 16799.38 14899.81 8197.30 11799.45 24599.35 4198.99 17399.51 162
MVSTER98.49 15498.32 16299.00 17499.35 20999.02 13699.54 13499.38 22097.41 20999.20 19199.73 13993.86 24599.36 26798.87 9597.56 24098.62 294
FMVSNet398.03 20397.76 22098.84 21199.39 20298.98 14099.40 20299.38 22096.67 26599.07 21499.28 29492.93 26298.98 32897.10 26696.65 27598.56 310
PAPM_NR99.04 9998.84 11099.66 5999.74 7599.44 8599.39 20699.38 22097.70 17799.28 17099.28 29498.34 8699.85 13596.96 27599.45 13599.69 105
DVP-MVScopyleft99.57 999.47 1499.88 599.85 2599.89 499.57 11499.37 22899.10 2099.81 2999.80 9498.94 2999.96 2598.93 8699.86 5299.81 51
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
miper_lstm_enhance98.00 21097.91 20198.28 27299.34 21397.43 25398.88 32299.36 22996.48 28398.80 25799.55 21695.98 15998.91 33997.27 25595.50 30698.51 313
v124097.69 25997.32 27398.79 21998.85 30898.43 20899.48 16799.36 22996.11 31099.27 17499.36 27393.76 24999.24 29094.46 33095.23 31098.70 255
v2v48298.06 19597.77 21698.92 18898.90 29798.82 17199.57 11499.36 22996.65 26799.19 19499.35 27694.20 23299.25 28797.72 22194.97 31698.69 259
HY-MVS97.30 798.85 12598.64 13199.47 11099.42 19199.08 12999.62 8699.36 22997.39 21199.28 17099.68 16496.44 14799.92 8598.37 16598.22 21399.40 184
PAPR98.63 15098.34 16099.51 10399.40 19999.03 13598.80 33099.36 22996.33 29199.00 22899.12 31698.46 7899.84 14195.23 32199.37 14699.66 115
DIV-MVS_self_test98.01 20897.85 20898.48 24699.24 23997.95 23398.71 33999.35 23496.50 27998.60 28899.54 22195.72 17399.03 32197.21 25895.77 29798.46 320
v114497.98 21297.69 22698.85 21098.87 30498.66 18299.54 13499.35 23496.27 29699.23 18499.35 27694.67 21599.23 29196.73 28695.16 31298.68 264
WR-MVS98.06 19597.73 22399.06 16698.86 30799.25 10699.19 26399.35 23497.30 21798.66 27599.43 25393.94 24299.21 29998.58 14294.28 32898.71 250
test1199.35 234
cl____98.01 20897.84 20998.55 24099.25 23897.97 22998.71 33999.34 23896.47 28598.59 28999.54 22195.65 17699.21 29997.21 25895.77 29798.46 320
v14419297.92 22197.60 23598.87 20398.83 31098.65 18399.55 13099.34 23896.20 30199.32 16299.40 26294.36 22799.26 28696.37 29995.03 31598.70 255
v192192097.80 24297.45 25098.84 21198.80 31198.53 19499.52 14199.34 23896.15 30799.24 18099.47 24593.98 24199.29 28195.40 31895.13 31398.69 259
v119297.81 24097.44 25598.91 19298.88 30098.68 18099.51 14799.34 23896.18 30399.20 19199.34 28094.03 23999.36 26795.32 32095.18 31198.69 259
V4298.06 19597.79 21198.86 20798.98 29098.84 16799.69 5399.34 23896.53 27899.30 16699.37 27094.67 21599.32 27697.57 23594.66 32198.42 323
MVS_Test99.10 9398.97 9199.48 10799.49 17399.14 12199.67 6299.34 23897.31 21699.58 10099.76 12597.65 10999.82 15898.87 9599.07 16799.46 175
MG-MVS99.13 7999.02 8199.45 11399.57 14598.63 18599.07 28499.34 23898.99 3799.61 9399.82 6897.98 10199.87 12697.00 27199.80 8799.85 26
MSC_two_6792asdad99.87 1199.51 16299.76 3799.33 24599.96 2598.87 9599.84 6799.89 10
No_MVS99.87 1199.51 16299.76 3799.33 24599.96 2598.87 9599.84 6799.89 10
cl2297.85 23097.64 23298.48 24699.09 27297.87 23798.60 34899.33 24597.11 23698.87 24899.22 30392.38 28699.17 30398.21 17695.99 29198.42 323
c3_l98.12 18998.04 18798.38 26199.30 22397.69 24898.81 32999.33 24596.67 26598.83 25399.34 28097.11 12398.99 32797.58 23195.34 30898.48 315
v14897.79 24397.55 23798.50 24398.74 32097.72 24499.54 13499.33 24596.26 29798.90 24299.51 23194.68 21499.14 30497.83 20793.15 34298.63 291
MDA-MVSNet-bldmvs94.96 32193.98 32797.92 29498.24 34697.27 25799.15 26999.33 24593.80 34480.09 37999.03 32388.31 34197.86 36293.49 34294.36 32798.62 294
TSAR-MVS + GP.99.36 4899.36 2699.36 12599.67 10598.61 18899.07 28499.33 24599.00 3599.82 2799.81 8199.06 1699.84 14199.09 7099.42 13799.65 119
CR-MVSNet98.17 18397.93 20098.87 20399.18 25198.49 20299.22 26099.33 24596.96 24799.56 10499.38 26794.33 22899.00 32694.83 32798.58 19599.14 200
Patchmtry97.75 24997.40 26298.81 21699.10 26998.87 16299.11 28099.33 24594.83 33398.81 25599.38 26794.33 22899.02 32396.10 30195.57 30398.53 311
EPP-MVSNet99.13 7998.99 8799.53 9599.65 11999.06 13299.81 2099.33 24597.43 20699.60 9699.88 2997.14 12199.84 14199.13 6698.94 17599.69 105
APD_test195.87 31096.49 29594.00 34499.53 15684.01 37199.54 13499.32 25595.91 31797.99 31799.85 4785.49 35699.88 12191.96 35498.84 18498.12 340
IU-MVS99.84 3199.88 899.32 25598.30 10299.84 2198.86 10099.85 5999.89 10
miper_enhance_ethall98.16 18498.08 18298.41 25798.96 29397.72 24498.45 35599.32 25596.95 24998.97 23299.17 30897.06 12699.22 29497.86 20495.99 29198.29 332
MS-PatchMatch97.24 28797.32 27396.99 32698.45 34393.51 35498.82 32899.32 25597.41 20998.13 31199.30 29088.99 33299.56 23795.68 31299.80 8797.90 355
miper_ehance_all_eth98.18 18298.10 17898.41 25799.23 24097.72 24498.72 33899.31 25996.60 27498.88 24599.29 29297.29 11899.13 30797.60 22995.99 29198.38 328
eth_miper_zixun_eth98.05 20097.96 19598.33 26499.26 23497.38 25498.56 35199.31 25996.65 26798.88 24599.52 22896.58 14199.12 31197.39 25195.53 30598.47 317
tpm cat197.39 28197.36 26597.50 31599.17 25793.73 34999.43 18599.31 25991.27 35998.71 26699.08 31794.31 23099.77 17996.41 29898.50 20199.00 219
PMMVS98.80 13298.62 13799.34 12699.27 23298.70 17998.76 33499.31 25997.34 21399.21 18899.07 31897.20 12099.82 15898.56 14898.87 18199.52 156
our_test_397.65 26697.68 22797.55 31398.62 33394.97 33398.84 32699.30 26396.83 25898.19 30899.34 28097.01 12899.02 32395.00 32596.01 28998.64 283
Effi-MVS+-dtu98.78 13398.89 10398.47 25099.33 21596.91 28399.57 11499.30 26398.47 8499.41 13798.99 32796.78 13599.74 18698.73 11999.38 13998.74 245
CANet_DTU98.97 10898.87 10599.25 14799.33 21598.42 21099.08 28399.30 26399.16 1399.43 13099.75 12895.27 18799.97 1798.56 14899.95 999.36 187
VDDNet97.55 27097.02 28799.16 15799.49 17398.12 22399.38 21199.30 26395.35 32399.68 6499.90 1982.62 36599.93 7499.31 4898.13 22299.42 180
Anonymous2024052196.20 30595.89 30897.13 32397.72 35594.96 33499.79 3199.29 26793.01 35297.20 33699.03 32389.69 32798.36 35191.16 35796.13 28798.07 342
test1299.75 4999.64 12199.61 6099.29 26799.21 18898.38 8499.89 11699.74 10599.74 82
EGC-MVSNET82.80 34377.86 34997.62 31097.91 34996.12 30899.33 22799.28 2698.40 38625.05 38799.27 29784.11 36199.33 27389.20 36398.22 21397.42 363
new-patchmatchnet94.48 32694.08 32695.67 34195.08 37592.41 35999.18 26499.28 26994.55 33993.49 36497.37 36387.86 34797.01 37091.57 35588.36 36297.61 359
RRT_MVS98.70 14198.66 12998.83 21398.90 29798.45 20699.89 299.28 26997.76 17098.94 23699.92 1196.98 12999.25 28799.28 5397.00 27298.80 233
jason99.13 7999.03 7899.45 11399.46 18398.87 16299.12 27499.26 27298.03 14699.79 3499.65 17697.02 12799.85 13599.02 7799.90 2999.65 119
jason: jason.
test_040296.64 29696.24 29997.85 29898.85 30896.43 30099.44 18199.26 27293.52 34796.98 34199.52 22888.52 33999.20 30192.58 35397.50 24797.93 353
test_method91.10 33591.36 33790.31 35695.85 36973.72 38694.89 37599.25 27468.39 37895.82 35199.02 32580.50 36898.95 33793.64 34094.89 32098.25 335
PCF-MVS97.08 1497.66 26597.06 28699.47 11099.61 13499.09 12698.04 36999.25 27491.24 36098.51 29299.70 14894.55 22299.91 9592.76 35199.85 5999.42 180
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MDA-MVSNet_test_wron95.45 31594.60 32298.01 28898.16 34797.21 26299.11 28099.24 27693.49 34880.73 37898.98 32993.02 26098.18 35394.22 33594.45 32598.64 283
YYNet195.36 31794.51 32497.92 29497.89 35097.10 26499.10 28299.23 27793.26 35180.77 37799.04 32292.81 26698.02 35794.30 33194.18 33098.64 283
hse-mvs297.50 27597.14 28398.59 23199.49 17397.05 27099.28 23899.22 27898.94 4699.66 7399.42 25594.93 19699.65 22399.48 3183.80 37099.08 208
AUN-MVS96.88 29296.31 29898.59 23199.48 18197.04 27399.27 24399.22 27897.44 20598.51 29299.41 25991.97 29199.66 21897.71 22283.83 36999.07 213
DeepMVS_CXcopyleft93.34 34799.29 22782.27 37499.22 27885.15 37096.33 34699.05 32190.97 31399.73 19293.57 34197.77 23098.01 346
pmmvs498.13 18797.90 20298.81 21698.61 33598.87 16298.99 30499.21 28196.44 28699.06 21899.58 20695.90 16699.11 31297.18 26496.11 28898.46 320
KD-MVS_2432*160094.62 32393.72 32997.31 31897.19 36495.82 31398.34 35999.20 28295.00 33097.57 32798.35 35187.95 34598.10 35592.87 34977.00 37698.01 346
miper_refine_blended94.62 32393.72 32997.31 31897.19 36495.82 31398.34 35999.20 28295.00 33097.57 32798.35 35187.95 34598.10 35592.87 34977.00 37698.01 346
tpmvs97.98 21298.02 19097.84 30099.04 28294.73 33699.31 23099.20 28296.10 31498.76 26299.42 25594.94 19599.81 16396.97 27498.45 20398.97 223
new_pmnet96.38 30296.03 30497.41 31698.13 34895.16 33199.05 28999.20 28293.94 34297.39 33198.79 33991.61 30499.04 31990.43 35995.77 29798.05 344
IS-MVSNet99.05 9898.87 10599.57 8299.73 8299.32 9599.75 4099.20 28298.02 14799.56 10499.86 4296.54 14399.67 21598.09 18599.13 16099.73 87
lupinMVS99.13 7999.01 8599.46 11299.51 16298.94 15599.05 28999.16 28797.86 15799.80 3299.56 21397.39 11399.86 12998.94 8499.85 5999.58 144
GA-MVS97.85 23097.47 24799.00 17499.38 20397.99 22898.57 34999.15 28897.04 24298.90 24299.30 29089.83 32599.38 25896.70 28898.33 20599.62 132
ADS-MVSNet98.20 17998.08 18298.56 23899.33 21596.48 29899.23 25699.15 28896.24 29899.10 20999.67 17094.11 23699.71 20296.81 28399.05 16899.48 167
Patchmatch-test97.93 21897.65 23098.77 22199.18 25197.07 26899.03 29499.14 29096.16 30598.74 26399.57 21094.56 22099.72 19693.36 34399.11 16199.52 156
BH-untuned98.42 16098.36 15898.59 23199.49 17396.70 28999.27 24399.13 29197.24 22398.80 25799.38 26795.75 17199.74 18697.07 26999.16 15599.33 191
tpmrst98.33 16998.48 15297.90 29699.16 25994.78 33599.31 23099.11 29297.27 21999.45 12499.59 20295.33 18599.84 14198.48 15598.61 19299.09 207
DPM-MVS98.95 10998.71 12299.66 5999.63 12499.55 6998.64 34599.10 29397.93 15299.42 13399.55 21698.67 6499.80 16995.80 30899.68 11699.61 134
pmmvs-eth3d95.34 31894.73 32197.15 32195.53 37395.94 31199.35 22299.10 29395.13 32593.55 36397.54 36088.15 34497.91 36094.58 32889.69 36197.61 359
PAPM97.59 26997.09 28599.07 16599.06 27898.26 21598.30 36399.10 29394.88 33298.08 31299.34 28096.27 15299.64 22689.87 36198.92 17899.31 193
tt080597.97 21597.77 21698.57 23599.59 14196.61 29499.45 17699.08 29698.21 11498.88 24599.80 9488.66 33699.70 20898.58 14297.72 23199.39 185
Anonymous2023120696.22 30396.03 30496.79 33397.31 36194.14 34599.63 8099.08 29696.17 30497.04 34099.06 32093.94 24297.76 36486.96 37295.06 31498.47 317
ADS-MVSNet298.02 20598.07 18597.87 29799.33 21595.19 32999.23 25699.08 29696.24 29899.10 20999.67 17094.11 23698.93 33896.81 28399.05 16899.48 167
test_yl98.86 11898.63 13299.54 8799.49 17399.18 11299.50 15399.07 29998.22 11299.61 9399.51 23195.37 18399.84 14198.60 13998.33 20599.59 140
DCV-MVSNet98.86 11898.63 13299.54 8799.49 17399.18 11299.50 15399.07 29998.22 11299.61 9399.51 23195.37 18399.84 14198.60 13998.33 20599.59 140
PatchT97.03 29196.44 29698.79 21998.99 28798.34 21299.16 26699.07 29992.13 35699.52 11397.31 36594.54 22398.98 32888.54 36698.73 19199.03 216
USDC97.34 28297.20 28197.75 30699.07 27595.20 32898.51 35399.04 30297.99 14898.31 30399.86 4289.02 33199.55 23995.67 31397.36 26298.49 314
CostFormer97.72 25497.73 22397.71 30899.15 26294.02 34699.54 13499.02 30394.67 33699.04 22199.35 27692.35 28799.77 17998.50 15497.94 22699.34 190
FA-MVS(test-final)98.75 13698.53 15099.41 11999.55 15399.05 13499.80 2599.01 30496.59 27699.58 10099.59 20295.39 18299.90 10697.78 21199.49 13399.28 195
OurMVSNet-221017-097.88 22597.77 21698.19 27698.71 32596.53 29699.88 499.00 30597.79 16798.78 26099.94 491.68 29999.35 27097.21 25896.99 27398.69 259
LCM-MVSNet86.80 34185.22 34591.53 35387.81 38380.96 37698.23 36698.99 30671.05 37690.13 37196.51 36848.45 38496.88 37190.51 35885.30 36796.76 366
MIMVSNet97.73 25297.45 25098.57 23599.45 18897.50 25199.02 29798.98 30796.11 31099.41 13799.14 31290.28 31898.74 34595.74 30998.93 17699.47 173
SCA98.19 18098.16 17098.27 27399.30 22395.55 31899.07 28498.97 30897.57 18999.43 13099.57 21092.72 27099.74 18697.58 23199.20 15399.52 156
JIA-IIPM97.50 27597.02 28798.93 18698.73 32197.80 24199.30 23298.97 30891.73 35898.91 24094.86 37295.10 19399.71 20297.58 23197.98 22599.28 195
alignmvs98.81 12998.56 14899.58 8099.43 18999.42 8799.51 14798.96 31098.61 7499.35 15798.92 33494.78 20699.77 17999.35 4198.11 22399.54 150
tpm297.44 28097.34 27097.74 30799.15 26294.36 34399.45 17698.94 31193.45 35098.90 24299.44 25191.35 30899.59 23597.31 25398.07 22499.29 194
baseline198.31 17097.95 19799.38 12499.50 17198.74 17699.59 9998.93 31298.41 9099.14 20199.60 20094.59 21899.79 17298.48 15593.29 33999.61 134
EG-PatchMatch MVS95.97 30995.69 31196.81 33297.78 35292.79 35899.16 26698.93 31296.16 30594.08 36199.22 30382.72 36499.47 24395.67 31397.50 24798.17 338
dmvs_re98.08 19398.16 17097.85 29899.55 15394.67 33899.70 5098.92 31498.15 12399.06 21899.35 27693.67 25199.25 28797.77 21497.25 26599.64 126
PatchmatchNetpermissive98.31 17098.36 15898.19 27699.16 25995.32 32699.27 24398.92 31497.37 21299.37 15099.58 20694.90 19999.70 20897.43 24999.21 15299.54 150
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ITE_SJBPF98.08 28399.29 22796.37 30198.92 31498.34 9898.83 25399.75 12891.09 31199.62 23295.82 30697.40 25998.25 335
FPMVS84.93 34285.65 34382.75 36386.77 38463.39 38898.35 35898.92 31474.11 37583.39 37498.98 32950.85 38292.40 38084.54 37794.97 31692.46 373
TransMVSNet (Re)97.15 28896.58 29398.86 20799.12 26498.85 16699.49 16398.91 31895.48 32297.16 33799.80 9493.38 25499.11 31294.16 33691.73 35098.62 294
EPNet98.86 11898.71 12299.30 13897.20 36398.18 21899.62 8698.91 31899.28 1098.63 28399.81 8195.96 16099.99 499.24 5899.72 10899.73 87
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs597.52 27297.30 27598.16 27898.57 33896.73 28899.27 24398.90 32096.14 30898.37 30099.53 22591.54 30599.14 30497.51 24095.87 29598.63 291
BH-w/o98.00 21097.89 20698.32 26699.35 20996.20 30799.01 30298.90 32096.42 28898.38 29999.00 32695.26 18999.72 19696.06 30298.61 19299.03 216
MTMP99.54 13498.88 322
dp97.75 24997.80 21097.59 31299.10 26993.71 35099.32 22898.88 32296.48 28399.08 21399.55 21692.67 27599.82 15896.52 29498.58 19599.24 197
test_fmvs297.25 28597.30 27597.09 32599.43 18993.31 35599.73 4698.87 32498.83 5699.28 17099.80 9484.45 36099.66 21897.88 20197.45 25398.30 331
MVP-Stereo97.81 24097.75 22197.99 29197.53 35696.60 29598.96 31198.85 32597.22 22597.23 33499.36 27395.28 18699.46 24495.51 31599.78 9497.92 354
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
VDD-MVS97.73 25297.35 26798.88 19999.47 18297.12 26399.34 22598.85 32598.19 11799.67 6899.85 4782.98 36399.92 8599.49 3098.32 20999.60 136
Baseline_NR-MVSNet97.76 24597.45 25098.68 22799.09 27298.29 21399.41 19498.85 32595.65 32098.63 28399.67 17094.82 20299.10 31498.07 19292.89 34498.64 283
LF4IMVS97.52 27297.46 24997.70 30998.98 29095.55 31899.29 23698.82 32898.07 13898.66 27599.64 18289.97 32499.61 23397.01 27096.68 27497.94 352
testf190.42 33790.68 33989.65 35797.78 35273.97 38499.13 27298.81 32989.62 36491.80 36898.93 33262.23 37798.80 34386.61 37491.17 35296.19 369
APD_test290.42 33790.68 33989.65 35797.78 35273.97 38499.13 27298.81 32989.62 36491.80 36898.93 33262.23 37798.80 34386.61 37491.17 35296.19 369
FE-MVS98.48 15598.17 16999.40 12099.54 15598.96 14799.68 5998.81 32995.54 32199.62 9099.70 14893.82 24699.93 7497.35 25299.46 13499.32 192
BH-RMVSNet98.41 16298.08 18299.40 12099.41 19498.83 17099.30 23298.77 33297.70 17798.94 23699.65 17692.91 26599.74 18696.52 29499.55 13099.64 126
EPNet_dtu98.03 20397.96 19598.23 27498.27 34595.54 32099.23 25698.75 33399.02 3097.82 32399.71 14496.11 15599.48 24293.04 34799.65 12099.69 105
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TDRefinement95.42 31694.57 32397.97 29289.83 38296.11 30999.48 16798.75 33396.74 26096.68 34399.88 2988.65 33799.71 20298.37 16582.74 37198.09 341
OpenMVS_ROBcopyleft92.34 2094.38 32793.70 33196.41 33797.38 35893.17 35699.06 28798.75 33386.58 36994.84 35998.26 35481.53 36799.32 27689.01 36497.87 22896.76 366
thres100view90097.76 24597.45 25098.69 22699.72 8697.86 23999.59 9998.74 33697.93 15299.26 17898.62 34491.75 29699.83 15293.22 34498.18 21898.37 329
thres600view797.86 22997.51 24398.92 18899.72 8697.95 23399.59 9998.74 33697.94 15199.27 17498.62 34491.75 29699.86 12993.73 33998.19 21798.96 225
thres20097.61 26897.28 27798.62 22999.64 12198.03 22599.26 25198.74 33697.68 17999.09 21298.32 35391.66 30299.81 16392.88 34898.22 21398.03 345
MDTV_nov1_ep1398.32 16299.11 26694.44 34199.27 24398.74 33697.51 19799.40 14299.62 19394.78 20699.76 18397.59 23098.81 188
TinyColmap97.12 28996.89 28997.83 30199.07 27595.52 32198.57 34998.74 33697.58 18897.81 32499.79 10588.16 34399.56 23795.10 32297.21 26798.39 327
tfpn200view997.72 25497.38 26398.72 22499.69 10097.96 23199.50 15398.73 34197.83 16299.17 19898.45 34991.67 30099.83 15293.22 34498.18 21898.37 329
ambc93.06 34992.68 37882.36 37398.47 35498.73 34195.09 35797.41 36155.55 37999.10 31496.42 29791.32 35197.71 356
thres40097.77 24497.38 26398.92 18899.69 10097.96 23199.50 15398.73 34197.83 16299.17 19898.45 34991.67 30099.83 15293.22 34498.18 21898.96 225
SixPastTwentyTwo97.50 27597.33 27298.03 28598.65 33096.23 30699.77 3498.68 34497.14 23097.90 32099.93 790.45 31799.18 30297.00 27196.43 28198.67 271
test0.0.03 197.71 25797.42 26098.56 23898.41 34497.82 24098.78 33298.63 34597.34 21398.05 31698.98 32994.45 22598.98 32895.04 32497.15 27098.89 228
test_fmvs392.10 33391.77 33693.08 34896.19 36786.25 36999.82 1798.62 34696.65 26795.19 35696.90 36655.05 38195.93 37696.63 29390.92 35697.06 365
TR-MVS97.76 24597.41 26198.82 21499.06 27897.87 23798.87 32498.56 34796.63 27198.68 27499.22 30392.49 28099.65 22395.40 31897.79 22998.95 227
Anonymous20240521198.30 17297.98 19399.26 14699.57 14598.16 21999.41 19498.55 34896.03 31599.19 19499.74 13391.87 29399.92 8599.16 6598.29 21099.70 103
tpm97.67 26497.55 23798.03 28599.02 28495.01 33299.43 18598.54 34996.44 28699.12 20499.34 28091.83 29599.60 23497.75 21796.46 28099.48 167
test_f91.90 33491.26 33893.84 34595.52 37485.92 37099.69 5398.53 35095.31 32493.87 36296.37 36955.33 38098.27 35295.70 31090.98 35597.32 364
Patchmatch-RL test95.84 31195.81 31095.95 34095.61 37190.57 36598.24 36498.39 35195.10 32995.20 35598.67 34394.78 20697.77 36396.28 30090.02 35999.51 162
LCM-MVSNet-Re97.83 23598.15 17296.87 33199.30 22392.25 36099.59 9998.26 35297.43 20696.20 34799.13 31396.27 15298.73 34698.17 18198.99 17399.64 126
mvsany_test393.77 33093.45 33294.74 34395.78 37088.01 36899.64 7698.25 35398.28 10394.31 36097.97 35868.89 37398.51 34997.50 24190.37 35797.71 356
LFMVS97.90 22497.35 26799.54 8799.52 16099.01 13899.39 20698.24 35497.10 23799.65 7999.79 10584.79 35999.91 9599.28 5398.38 20499.69 105
PM-MVS92.96 33292.23 33595.14 34295.61 37189.98 36799.37 21398.21 35594.80 33495.04 35897.69 35965.06 37497.90 36194.30 33189.98 36097.54 362
PMVScopyleft70.75 2275.98 34974.97 35079.01 36570.98 38855.18 38993.37 37798.21 35565.08 38261.78 38393.83 37321.74 39092.53 37978.59 37891.12 35489.34 378
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
pmmvs394.09 32993.25 33396.60 33594.76 37694.49 34098.92 31898.18 35789.66 36396.48 34598.06 35786.28 35297.33 36789.68 36287.20 36597.97 351
door-mid98.05 358
tmp_tt82.80 34381.52 34686.66 35966.61 38968.44 38792.79 37897.92 35968.96 37780.04 38099.85 4785.77 35496.15 37597.86 20443.89 38295.39 372
door97.92 359
dmvs_testset95.02 31996.12 30191.72 35299.10 26980.43 37799.58 10797.87 36197.47 19995.22 35498.82 33793.99 24095.18 37788.09 36894.91 31999.56 147
test-LLR98.06 19597.90 20298.55 24098.79 31297.10 26498.67 34197.75 36297.34 21398.61 28698.85 33594.45 22599.45 24597.25 25699.38 13999.10 203
test-mter97.49 27897.13 28498.55 24098.79 31297.10 26498.67 34197.75 36296.65 26798.61 28698.85 33588.23 34299.45 24597.25 25699.38 13999.10 203
IB-MVS95.67 1896.22 30395.44 31698.57 23599.21 24496.70 28998.65 34497.74 36496.71 26297.27 33398.54 34786.03 35399.92 8598.47 15886.30 36699.10 203
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TESTMET0.1,197.55 27097.27 28098.40 25998.93 29596.53 29698.67 34197.61 36596.96 24798.64 28299.28 29488.63 33899.45 24597.30 25499.38 13999.21 199
MVS_030499.42 3699.32 3499.72 5599.70 9699.27 10399.52 14197.57 36699.51 199.82 2799.78 11198.09 9799.96 2599.97 199.97 599.94 5
ET-MVSNet_ETH3D96.49 29995.64 31399.05 16899.53 15698.82 17198.84 32697.51 36797.63 18484.77 37299.21 30692.09 28998.91 33998.98 8092.21 34999.41 182
PMMVS286.87 34085.37 34491.35 35490.21 38183.80 37298.89 32197.45 36883.13 37391.67 37095.03 37048.49 38394.70 37885.86 37677.62 37595.54 371
K. test v397.10 29096.79 29198.01 28898.72 32396.33 30399.87 997.05 36997.59 18696.16 34899.80 9488.71 33499.04 31996.69 28996.55 27998.65 281
tttt051798.42 16098.14 17399.28 14499.66 11398.38 21199.74 4396.85 37097.68 17999.79 3499.74 13391.39 30799.89 11698.83 10899.56 12899.57 145
thisisatest051598.14 18697.79 21199.19 15499.50 17198.50 20198.61 34696.82 37196.95 24999.54 10999.43 25391.66 30299.86 12998.08 18999.51 13299.22 198
thisisatest053098.35 16898.03 18899.31 13399.63 12498.56 19199.54 13496.75 37297.53 19599.73 5299.65 17691.25 31099.89 11698.62 13399.56 12899.48 167
test_vis1_rt95.81 31295.65 31296.32 33899.67 10591.35 36499.49 16396.74 37398.25 10795.24 35398.10 35674.96 37099.90 10699.53 2298.85 18397.70 358
DSMNet-mixed97.25 28597.35 26796.95 32997.84 35193.61 35399.57 11496.63 37496.13 30998.87 24898.61 34694.59 21897.70 36595.08 32398.86 18299.55 148
baseline297.87 22797.55 23798.82 21499.18 25198.02 22699.41 19496.58 37596.97 24696.51 34499.17 30893.43 25399.57 23697.71 22299.03 17098.86 229
MVS-HIRNet95.75 31395.16 31897.51 31499.30 22393.69 35198.88 32295.78 37685.09 37198.78 26092.65 37491.29 30999.37 26394.85 32699.85 5999.46 175
E-PMN80.61 34579.88 34782.81 36290.75 38076.38 38297.69 37195.76 37766.44 38083.52 37392.25 37562.54 37687.16 38268.53 38161.40 37984.89 380
test111198.04 20198.11 17797.83 30199.74 7593.82 34799.58 10795.40 37899.12 1899.65 7999.93 790.73 31599.84 14199.43 3699.38 13999.82 44
ECVR-MVScopyleft98.04 20198.05 18698.00 29099.74 7594.37 34299.59 9994.98 37999.13 1699.66 7399.93 790.67 31699.84 14199.40 3799.38 13999.80 60
lessismore_v097.79 30598.69 32795.44 32494.75 38095.71 35299.87 3788.69 33599.32 27695.89 30594.93 31898.62 294
EPMVS97.82 23897.65 23098.35 26398.88 30095.98 31099.49 16394.71 38197.57 18999.26 17899.48 24292.46 28499.71 20297.87 20399.08 16699.35 188
gg-mvs-nofinetune96.17 30695.32 31798.73 22398.79 31298.14 22199.38 21194.09 38291.07 36298.07 31591.04 37889.62 32999.35 27096.75 28599.09 16598.68 264
GG-mvs-BLEND98.45 25298.55 33998.16 21999.43 18593.68 38397.23 33498.46 34889.30 33099.22 29495.43 31798.22 21397.98 350
MVEpermissive76.82 2176.91 34874.31 35284.70 36085.38 38676.05 38396.88 37493.17 38467.39 37971.28 38189.01 38021.66 39187.69 38171.74 38072.29 37890.35 377
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high77.30 34774.86 35184.62 36175.88 38777.61 38097.63 37293.15 38588.81 36764.27 38289.29 37936.51 38683.93 38475.89 37952.31 38192.33 375
N_pmnet94.95 32295.83 30992.31 35098.47 34279.33 37999.12 27492.81 38693.87 34397.68 32699.13 31393.87 24499.01 32591.38 35696.19 28698.59 307
EMVS80.02 34679.22 34882.43 36491.19 37976.40 38197.55 37392.49 38766.36 38183.01 37591.27 37764.63 37585.79 38365.82 38260.65 38085.08 379
test_vis3_rt87.04 33985.81 34290.73 35593.99 37781.96 37599.76 3790.23 38892.81 35481.35 37691.56 37640.06 38599.07 31694.27 33388.23 36391.15 376
test250696.81 29496.65 29297.29 32099.74 7592.21 36199.60 9385.06 38999.13 1699.77 4299.93 787.82 34899.85 13599.38 3899.38 13999.80 60
testmvs39.17 35143.78 35325.37 36836.04 39116.84 39298.36 35726.56 39020.06 38438.51 38567.32 38129.64 38815.30 38737.59 38439.90 38343.98 382
wuyk23d40.18 35041.29 35536.84 36686.18 38549.12 39079.73 37922.81 39127.64 38325.46 38628.45 38621.98 38948.89 38555.80 38323.56 38512.51 383
test12339.01 35242.50 35428.53 36739.17 39020.91 39198.75 33519.17 39219.83 38538.57 38466.67 38233.16 38715.42 38637.50 38529.66 38449.26 381
test_blank0.13 3560.17 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3881.57 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.02 3570.03 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 3880.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.02 3570.03 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 3880.00 3920.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas8.27 35511.03 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 38899.01 180.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.02 3570.03 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 3880.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.02 3570.03 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 3880.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.02 3570.03 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 3880.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.02 3570.03 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 3880.00 3920.00 3880.00 3860.00 3860.00 384
n20.00 393
nn0.00 393
ab-mvs-re8.30 35411.06 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38899.58 2060.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.02 3570.03 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 3880.00 3920.00 3880.00 3860.00 3860.00 384
PC_three_145298.18 12199.84 2199.70 14899.31 398.52 34898.30 17399.80 8799.81 51
eth-test20.00 392
eth-test0.00 392
OPU-MVS99.64 6899.56 14999.72 4299.60 9399.70 14899.27 599.42 25598.24 17599.80 8799.79 64
test_0728_THIRD98.99 3799.81 2999.80 9499.09 1499.96 2598.85 10299.90 2999.88 16
GSMVS99.52 156
test_part299.81 4299.83 1699.77 42
sam_mvs194.86 20199.52 156
sam_mvs94.72 213
test_post199.23 25665.14 38494.18 23599.71 20297.58 231
test_post65.99 38394.65 21799.73 192
patchmatchnet-post98.70 34294.79 20599.74 186
gm-plane-assit98.54 34092.96 35794.65 33799.15 31199.64 22697.56 236
test9_res97.49 24299.72 10899.75 78
agg_prior297.21 25899.73 10799.75 78
test_prior499.56 6798.99 304
test_prior298.96 31198.34 9899.01 22499.52 22898.68 6297.96 19699.74 105
旧先验298.96 31196.70 26399.47 12199.94 6198.19 178
新几何299.01 302
原ACMM298.95 314
testdata299.95 5296.67 290
segment_acmp98.96 24
testdata198.85 32598.32 101
plane_prior799.29 22797.03 274
plane_prior699.27 23296.98 27892.71 272
plane_prior499.61 197
plane_prior397.00 27698.69 7099.11 206
plane_prior299.39 20698.97 43
plane_prior199.26 234
plane_prior96.97 27999.21 26298.45 8697.60 236
HQP5-MVS96.83 284
HQP-NCC99.19 24898.98 30798.24 10898.66 275
ACMP_Plane99.19 24898.98 30798.24 10898.66 275
BP-MVS97.19 262
HQP4-MVS98.66 27599.64 22698.64 283
HQP2-MVS92.47 281
NP-MVS99.23 24096.92 28299.40 262
MDTV_nov1_ep13_2view95.18 33099.35 22296.84 25699.58 10095.19 19297.82 20899.46 175
ACMMP++_ref97.19 268
ACMMP++97.43 257
Test By Simon98.75 55