This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 998.69 5898.20 399.93 199.98 296.82 23100.00 199.75 24100.00 199.99 23
NCCC99.37 299.25 299.71 1399.96 899.15 2099.97 1998.62 7098.02 699.90 299.95 397.33 17100.00 199.54 32100.00 1100.00 1
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 1998.64 6698.47 299.13 7599.92 1396.38 30100.00 199.74 26100.00 1100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1199.93 2499.29 1499.95 4398.32 15097.28 2199.83 1199.91 1497.22 19100.00 199.99 5100.00 199.89 79
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS99.28 599.11 799.77 899.93 2499.30 1199.96 2698.43 11397.27 2399.80 1599.94 496.71 24100.00 1100.00 1100.00 1100.00 1
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 999.95 4398.43 11396.48 4799.80 1599.93 1197.44 14100.00 199.92 1299.98 32100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1099.89 4599.24 1899.87 8898.44 10597.48 1799.64 3699.94 496.68 2699.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSLP-MVS++99.13 899.01 1199.49 3099.94 1398.46 5799.98 998.86 4797.10 2899.80 1599.94 495.92 36100.00 199.51 33100.00 1100.00 1
MSP-MVS99.09 999.12 598.98 6999.93 2497.24 9499.95 4398.42 12497.50 1699.52 5199.88 2197.43 1699.71 12499.50 3499.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft99.07 1098.88 1599.63 1599.90 4299.02 2399.95 4398.56 7897.56 1599.44 5699.85 3095.38 46100.00 199.31 4199.99 2199.87 82
APDe-MVS99.06 1198.91 1499.51 2799.94 1398.76 4199.91 7198.39 13597.20 2799.46 5499.85 3095.53 4499.79 10999.86 17100.00 199.99 23
SteuartSystems-ACMMP99.02 1298.97 1399.18 4698.72 13297.71 7599.98 998.44 10596.85 3499.80 1599.91 1497.57 899.85 9599.44 3799.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
CHOSEN 280x42099.01 1399.03 1098.95 7299.38 9598.87 3098.46 28499.42 2197.03 3099.02 7999.09 13299.35 198.21 21899.73 2899.78 7999.77 95
TSAR-MVS + MP.98.93 1498.77 1699.41 3699.74 6998.67 4599.77 12798.38 13996.73 4199.88 499.74 7294.89 5999.59 13599.80 2199.98 3299.97 55
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS98.92 1598.70 1799.56 2399.70 7698.73 4299.94 5898.34 14796.38 5299.81 1399.76 6294.59 6399.98 4299.84 1899.96 4699.97 55
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MG-MVS98.91 1698.65 1899.68 1499.94 1399.07 2299.64 16099.44 1997.33 2099.00 8099.72 7694.03 8299.98 4298.73 70100.00 1100.00 1
train_agg98.88 1798.65 1899.59 2199.92 3198.92 2699.96 2698.43 11394.35 10899.71 3099.86 2695.94 3499.85 9599.69 3199.98 3299.99 23
DPM-MVS98.83 1898.46 2599.97 199.33 9799.92 199.96 2698.44 10597.96 799.55 4699.94 497.18 21100.00 193.81 19299.94 5499.98 48
DeepC-MVS_fast96.59 198.81 1998.54 2299.62 1899.90 4298.85 3299.24 21598.47 9998.14 499.08 7699.91 1493.09 106100.00 199.04 5199.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SMA-MVScopyleft98.76 2098.48 2499.62 1899.87 5198.87 3099.86 10098.38 13993.19 15499.77 2499.94 495.54 42100.00 199.74 2699.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MVS_111021_HR98.72 2198.62 2099.01 6799.36 9697.18 9799.93 6499.90 196.81 3998.67 9599.77 6093.92 8499.89 8399.27 4399.94 5499.96 61
XVS98.70 2298.55 2199.15 5399.94 1397.50 8699.94 5898.42 12496.22 5799.41 5999.78 5894.34 7299.96 5498.92 5799.95 4999.99 23
SF-MVS98.67 2398.40 2799.50 2899.77 6598.67 4599.90 7698.21 16493.53 14499.81 1399.89 1994.70 6299.86 9499.84 1899.93 6099.96 61
CDPH-MVS98.65 2498.36 3399.49 3099.94 1398.73 4299.87 8898.33 14893.97 12999.76 2599.87 2494.99 5799.75 11898.55 80100.00 199.98 48
APD-MVScopyleft98.62 2598.35 3499.41 3699.90 4298.51 5599.87 8898.36 14394.08 12199.74 2799.73 7494.08 8099.74 12099.42 3899.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + GP.98.60 2698.51 2398.86 7699.73 7296.63 11599.97 1997.92 19598.07 598.76 9199.55 9795.00 5699.94 6999.91 1597.68 14899.99 23
PAPM98.60 2698.42 2699.14 5596.05 25098.96 2499.90 7699.35 2496.68 4398.35 11099.66 8996.45 2998.51 18699.45 3699.89 6699.96 61
HFP-MVS98.56 2898.37 3199.14 5599.96 897.43 9099.95 4398.61 7194.77 9199.31 6699.85 3094.22 76100.00 198.70 7199.98 3299.98 48
region2R98.54 2998.37 3199.05 6299.96 897.18 9799.96 2698.55 8494.87 8999.45 5599.85 3094.07 81100.00 198.67 73100.00 199.98 48
DELS-MVS98.54 2998.22 3899.50 2899.15 10398.65 49100.00 198.58 7497.70 1098.21 11799.24 12492.58 11999.94 6998.63 7899.94 5499.92 76
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPR98.52 3198.16 4399.58 2299.97 398.77 3899.95 4398.43 11395.35 7798.03 11999.75 6794.03 8299.98 4298.11 9799.83 7299.99 23
ACMMPR98.50 3298.32 3599.05 6299.96 897.18 9799.95 4398.60 7294.77 9199.31 6699.84 4193.73 90100.00 198.70 7199.98 3299.98 48
ACMMP_NAP98.49 3398.14 4499.54 2599.66 7898.62 5199.85 10398.37 14294.68 9699.53 4999.83 4392.87 111100.00 198.66 7599.84 7199.99 23
EPNet98.49 3398.40 2798.77 7999.62 8096.80 11299.90 7699.51 1697.60 1299.20 7199.36 11493.71 9199.91 7797.99 10498.71 12399.61 121
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SR-MVS98.46 3598.30 3798.93 7399.88 4997.04 10299.84 10798.35 14594.92 8799.32 6599.80 5193.35 9699.78 11199.30 4299.95 4999.96 61
CP-MVS98.45 3698.32 3598.87 7599.96 896.62 11699.97 1998.39 13594.43 10398.90 8499.87 2494.30 74100.00 199.04 5199.99 2199.99 23
PS-MVSNAJ98.44 3798.20 4099.16 5198.80 12898.92 2699.54 17598.17 16997.34 1999.85 799.85 3091.20 14399.89 8399.41 3999.67 8598.69 201
MVS_111021_LR98.42 3898.38 2998.53 9999.39 9495.79 14499.87 8899.86 296.70 4298.78 8899.79 5492.03 13399.90 7999.17 4599.86 7099.88 80
DP-MVS Recon98.41 3998.02 5199.56 2399.97 398.70 4499.92 6798.44 10592.06 19698.40 10899.84 4195.68 40100.00 198.19 9299.71 8399.97 55
PHI-MVS98.41 3998.21 3999.03 6499.86 5397.10 10199.98 998.80 5290.78 23299.62 3999.78 5895.30 47100.00 199.80 2199.93 6099.99 23
mPP-MVS98.39 4198.20 4098.97 7099.97 396.92 10899.95 4398.38 13995.04 8398.61 9999.80 5193.39 95100.00 198.64 76100.00 199.98 48
PGM-MVS98.34 4298.13 4598.99 6899.92 3197.00 10499.75 13599.50 1793.90 13499.37 6399.76 6293.24 103100.00 197.75 11899.96 4699.98 48
SR-MVS-dyc-post98.31 4398.17 4298.71 8199.79 6296.37 12599.76 13298.31 15294.43 10399.40 6199.75 6793.28 10199.78 11198.90 6099.92 6399.97 55
ZNCC-MVS98.31 4398.03 5099.17 4999.88 4997.59 8099.94 5898.44 10594.31 11198.50 10399.82 4693.06 10799.99 3698.30 9099.99 2199.93 71
MTAPA98.29 4597.96 5699.30 4099.85 5497.93 7199.39 19698.28 15795.76 6697.18 13899.88 2192.74 115100.00 198.67 7399.88 6899.99 23
GST-MVS98.27 4697.97 5399.17 4999.92 3197.57 8199.93 6498.39 13594.04 12798.80 8799.74 7292.98 108100.00 198.16 9499.76 8099.93 71
CANet98.27 4697.82 6299.63 1599.72 7499.10 2199.98 998.51 9397.00 3198.52 10199.71 7887.80 18699.95 6199.75 2499.38 10499.83 86
EI-MVSNet-Vis-set98.27 4698.11 4798.75 8099.83 5796.59 11899.40 19298.51 9395.29 7998.51 10299.76 6293.60 9499.71 12498.53 8199.52 9699.95 68
APD-MVS_3200maxsize98.25 4998.08 4998.78 7899.81 6096.60 11799.82 11598.30 15593.95 13199.37 6399.77 6092.84 11299.76 11798.95 5499.92 6399.97 55
patch_mono-298.24 5099.12 595.59 20199.67 7786.91 31799.95 4398.89 4397.60 1299.90 299.76 6296.54 2899.98 4299.94 1199.82 7699.88 80
xiu_mvs_v2_base98.23 5197.97 5399.02 6698.69 13398.66 4799.52 17798.08 18097.05 2999.86 599.86 2690.65 15599.71 12499.39 4098.63 12498.69 201
MP-MVScopyleft98.23 5197.97 5399.03 6499.94 1397.17 10099.95 4398.39 13594.70 9598.26 11599.81 5091.84 137100.00 198.85 6399.97 4299.93 71
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EI-MVSNet-UG-set98.14 5397.99 5298.60 8999.80 6196.27 12799.36 20198.50 9795.21 8198.30 11299.75 6793.29 10099.73 12398.37 8699.30 10799.81 88
PAPM_NR98.12 5497.93 5898.70 8299.94 1396.13 13699.82 11598.43 11394.56 9997.52 13099.70 8094.40 6799.98 4297.00 13499.98 3299.99 23
WTY-MVS98.10 5597.60 6899.60 2098.92 11999.28 1699.89 8399.52 1495.58 7198.24 11699.39 11193.33 9799.74 12097.98 10695.58 19299.78 94
MP-MVS-pluss98.07 5697.64 6699.38 3999.74 6998.41 5899.74 13898.18 16893.35 14896.45 15599.85 3092.64 11799.97 5198.91 5999.89 6699.77 95
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HPM-MVScopyleft97.96 5797.72 6498.68 8399.84 5696.39 12499.90 7698.17 16992.61 17698.62 9899.57 9691.87 13699.67 13198.87 6299.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet_Blended97.94 5897.64 6698.83 7799.59 8196.99 105100.00 199.10 2995.38 7698.27 11399.08 13389.00 17899.95 6199.12 4699.25 10999.57 131
PLCcopyleft95.54 397.93 5997.89 6198.05 12399.82 5894.77 17999.92 6798.46 10193.93 13297.20 13799.27 11995.44 4599.97 5197.41 12299.51 9899.41 155
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ETV-MVS97.92 6097.80 6398.25 11498.14 16496.48 11999.98 997.63 21495.61 7099.29 6999.46 10592.55 12098.82 16699.02 5398.54 12599.46 148
CS-MVS-test97.88 6197.94 5797.70 13999.28 9995.20 16899.98 997.15 26595.53 7399.62 3999.79 5492.08 13298.38 20298.75 6999.28 10899.52 140
API-MVS97.86 6297.66 6598.47 10299.52 8795.41 15999.47 18698.87 4691.68 20798.84 8599.85 3092.34 12699.99 3698.44 8399.96 46100.00 1
lupinMVS97.85 6397.60 6898.62 8797.28 21497.70 7799.99 397.55 22595.50 7599.43 5799.67 8790.92 15098.71 17698.40 8499.62 8899.45 150
test_yl97.83 6497.37 7499.21 4399.18 10097.98 6899.64 16099.27 2691.43 21597.88 12498.99 14195.84 3899.84 10298.82 6495.32 19699.79 91
DCV-MVSNet97.83 6497.37 7499.21 4399.18 10097.98 6899.64 16099.27 2691.43 21597.88 12498.99 14195.84 3899.84 10298.82 6495.32 19699.79 91
mvsany_test197.82 6697.90 6097.55 14398.77 13093.04 21799.80 12197.93 19296.95 3399.61 4599.68 8690.92 15099.83 10499.18 4498.29 13499.80 90
alignmvs97.81 6797.33 7699.25 4198.77 13098.66 4799.99 398.44 10594.40 10798.41 10699.47 10393.65 9299.42 14898.57 7994.26 20599.67 107
HPM-MVS_fast97.80 6897.50 7098.68 8399.79 6296.42 12199.88 8598.16 17391.75 20698.94 8299.54 9991.82 13899.65 13397.62 12099.99 2199.99 23
CS-MVS97.79 6997.91 5997.43 15099.10 10494.42 18499.99 397.10 27095.07 8299.68 3399.75 6792.95 10998.34 20698.38 8599.14 11399.54 136
HY-MVS92.50 797.79 6997.17 8299.63 1598.98 11299.32 897.49 31299.52 1495.69 6898.32 11197.41 21493.32 9899.77 11498.08 10095.75 18999.81 88
CNLPA97.76 7197.38 7398.92 7499.53 8696.84 11099.87 8898.14 17693.78 13796.55 15399.69 8292.28 12799.98 4297.13 12999.44 10299.93 71
ACMMPcopyleft97.74 7297.44 7298.66 8599.92 3196.13 13699.18 22099.45 1894.84 9096.41 15899.71 7891.40 14099.99 3697.99 10498.03 14399.87 82
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepPCF-MVS95.94 297.71 7398.98 1293.92 26599.63 7981.76 34499.96 2698.56 7899.47 199.19 7399.99 194.16 79100.00 199.92 1299.93 60100.00 1
CPTT-MVS97.64 7497.32 7798.58 9299.97 395.77 14599.96 2698.35 14589.90 24598.36 10999.79 5491.18 14699.99 3698.37 8699.99 2199.99 23
sss97.57 7597.03 8799.18 4698.37 14998.04 6599.73 14399.38 2293.46 14698.76 9199.06 13491.21 14299.89 8396.33 14497.01 16599.62 118
test250697.53 7697.19 8098.58 9298.66 13596.90 10998.81 26399.77 594.93 8597.95 12198.96 14792.51 12199.20 15294.93 16498.15 13699.64 113
EIA-MVS97.53 7697.46 7197.76 13698.04 16894.84 17599.98 997.61 21994.41 10697.90 12399.59 9492.40 12498.87 16498.04 10199.13 11499.59 124
xiu_mvs_v1_base_debu97.43 7897.06 8398.55 9497.74 18598.14 6099.31 20697.86 20196.43 4999.62 3999.69 8285.56 20799.68 12899.05 4898.31 13197.83 211
xiu_mvs_v1_base97.43 7897.06 8398.55 9497.74 18598.14 6099.31 20697.86 20196.43 4999.62 3999.69 8285.56 20799.68 12899.05 4898.31 13197.83 211
xiu_mvs_v1_base_debi97.43 7897.06 8398.55 9497.74 18598.14 6099.31 20697.86 20196.43 4999.62 3999.69 8285.56 20799.68 12899.05 4898.31 13197.83 211
MAR-MVS97.43 7897.19 8098.15 11999.47 9194.79 17899.05 23798.76 5392.65 17498.66 9699.82 4688.52 18399.98 4298.12 9699.63 8799.67 107
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
dcpmvs_297.42 8298.09 4895.42 20699.58 8487.24 31399.23 21696.95 28794.28 11398.93 8399.73 7494.39 7099.16 15699.89 1699.82 7699.86 84
thisisatest051597.41 8397.02 8898.59 9197.71 19297.52 8399.97 1998.54 8791.83 20297.45 13399.04 13597.50 999.10 15894.75 17296.37 17699.16 179
114514_t97.41 8396.83 9199.14 5599.51 8997.83 7299.89 8398.27 15988.48 27199.06 7799.66 8990.30 16099.64 13496.32 14599.97 4299.96 61
DROMVSNet97.38 8597.24 7897.80 13097.41 20495.64 15299.99 397.06 27594.59 9899.63 3799.32 11589.20 17698.14 22098.76 6899.23 11099.62 118
OMC-MVS97.28 8697.23 7997.41 15199.76 6693.36 21299.65 15697.95 19096.03 6197.41 13499.70 8089.61 16799.51 13896.73 14198.25 13599.38 157
PVSNet_Blended_VisFu97.27 8796.81 9298.66 8598.81 12796.67 11499.92 6798.64 6694.51 10096.38 15998.49 18289.05 17799.88 8997.10 13198.34 12999.43 153
jason97.24 8896.86 9098.38 11095.73 26397.32 9399.97 1997.40 24395.34 7898.60 10099.54 9987.70 18798.56 18397.94 10799.47 9999.25 174
jason: jason.
AdaColmapbinary97.23 8996.80 9398.51 10099.99 195.60 15499.09 22698.84 4993.32 15096.74 14899.72 7686.04 204100.00 198.01 10299.43 10399.94 70
VNet97.21 9096.57 10099.13 5998.97 11397.82 7399.03 24099.21 2894.31 11199.18 7498.88 15886.26 20399.89 8398.93 5694.32 20499.69 104
PVSNet91.05 1397.13 9196.69 9698.45 10499.52 8795.81 14399.95 4399.65 1194.73 9399.04 7899.21 12684.48 21799.95 6194.92 16598.74 12299.58 130
thisisatest053097.10 9296.72 9598.22 11597.60 19696.70 11399.92 6798.54 8791.11 22497.07 14098.97 14597.47 1299.03 15993.73 19796.09 17998.92 189
CSCG97.10 9297.04 8697.27 15999.89 4591.92 24399.90 7699.07 3288.67 26795.26 18099.82 4693.17 10599.98 4298.15 9599.47 9999.90 78
canonicalmvs97.09 9496.32 10699.39 3898.93 11798.95 2599.72 14697.35 24694.45 10197.88 12499.42 10786.71 19799.52 13798.48 8293.97 20999.72 101
diffmvspermissive97.00 9596.64 9798.09 12197.64 19496.17 13599.81 11797.19 25994.67 9798.95 8199.28 11686.43 20098.76 17198.37 8697.42 15499.33 165
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
thres20096.96 9696.21 10899.22 4298.97 11398.84 3399.85 10399.71 693.17 15596.26 16198.88 15889.87 16599.51 13894.26 18394.91 19999.31 167
MVSFormer96.94 9796.60 9897.95 12597.28 21497.70 7799.55 17397.27 25591.17 22199.43 5799.54 9990.92 15096.89 28694.67 17599.62 8899.25 174
F-COLMAP96.93 9896.95 8996.87 16899.71 7591.74 24899.85 10397.95 19093.11 15795.72 17399.16 13092.35 12599.94 6995.32 15799.35 10698.92 189
DeepC-MVS94.51 496.92 9996.40 10598.45 10499.16 10295.90 14199.66 15498.06 18196.37 5594.37 18999.49 10283.29 22799.90 7997.63 11999.61 9199.55 133
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tttt051796.85 10096.49 10297.92 12797.48 20295.89 14299.85 10398.54 8790.72 23396.63 15098.93 15697.47 1299.02 16093.03 20995.76 18898.85 193
131496.84 10195.96 11999.48 3296.74 23898.52 5498.31 29298.86 4795.82 6489.91 23798.98 14387.49 18999.96 5497.80 11199.73 8299.96 61
CHOSEN 1792x268896.81 10296.53 10197.64 14098.91 12193.07 21499.65 15699.80 395.64 6995.39 17798.86 16384.35 22099.90 7996.98 13599.16 11299.95 68
tfpn200view996.79 10395.99 11399.19 4598.94 11598.82 3499.78 12499.71 692.86 16096.02 16698.87 16189.33 17199.50 14093.84 18994.57 20099.27 172
thres40096.78 10495.99 11399.16 5198.94 11598.82 3499.78 12499.71 692.86 16096.02 16698.87 16189.33 17199.50 14093.84 18994.57 20099.16 179
CANet_DTU96.76 10596.15 10998.60 8998.78 12997.53 8299.84 10797.63 21497.25 2699.20 7199.64 9181.36 24099.98 4292.77 21298.89 11898.28 204
PMMVS96.76 10596.76 9496.76 17198.28 15492.10 23899.91 7197.98 18794.12 11999.53 4999.39 11186.93 19698.73 17396.95 13797.73 14699.45 150
thres100view90096.74 10795.92 12599.18 4698.90 12298.77 3899.74 13899.71 692.59 17895.84 16998.86 16389.25 17399.50 14093.84 18994.57 20099.27 172
TESTMET0.1,196.74 10796.26 10798.16 11697.36 20796.48 11999.96 2698.29 15691.93 19995.77 17298.07 19695.54 4298.29 21090.55 24398.89 11899.70 102
baseline296.71 10996.49 10297.37 15495.63 27095.96 14099.74 13898.88 4592.94 15991.61 21798.97 14597.72 798.62 18194.83 16998.08 14297.53 219
thres600view796.69 11095.87 12899.14 5598.90 12298.78 3799.74 13899.71 692.59 17895.84 16998.86 16389.25 17399.50 14093.44 20194.50 20399.16 179
EPP-MVSNet96.69 11096.60 9896.96 16597.74 18593.05 21699.37 19998.56 7888.75 26595.83 17199.01 13896.01 3298.56 18396.92 13897.20 15999.25 174
HyFIR lowres test96.66 11296.43 10497.36 15699.05 10693.91 19699.70 14899.80 390.54 23496.26 16198.08 19592.15 13098.23 21796.84 14095.46 19399.93 71
MVS96.60 11395.56 13599.72 1296.85 23199.22 1998.31 29298.94 3791.57 20990.90 22599.61 9386.66 19899.96 5497.36 12399.88 6899.99 23
UA-Net96.54 11495.96 11998.27 11398.23 15795.71 14998.00 30598.45 10293.72 14098.41 10699.27 11988.71 18299.66 13291.19 22897.69 14799.44 152
EPMVS96.53 11596.01 11298.09 12198.43 14696.12 13896.36 33199.43 2093.53 14497.64 12895.04 29894.41 6698.38 20291.13 22998.11 13999.75 97
test-LLR96.47 11696.04 11197.78 13397.02 22295.44 15799.96 2698.21 16494.07 12295.55 17496.38 24893.90 8698.27 21490.42 24698.83 12099.64 113
MVS_Test96.46 11795.74 13098.61 8898.18 16197.23 9599.31 20697.15 26591.07 22598.84 8597.05 22788.17 18598.97 16194.39 17997.50 15199.61 121
casdiffmvs_mvgpermissive96.43 11895.94 12297.89 12997.44 20395.47 15699.86 10097.29 25393.35 14896.03 16599.19 12785.39 21098.72 17597.89 11097.04 16399.49 146
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline96.43 11895.98 11597.76 13697.34 20895.17 16999.51 17997.17 26293.92 13396.90 14399.28 11685.37 21198.64 18097.50 12196.86 16999.46 148
casdiffmvspermissive96.42 12095.97 11897.77 13597.30 21294.98 17199.84 10797.09 27293.75 13996.58 15299.26 12285.07 21398.78 16997.77 11697.04 16399.54 136
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test-mter96.39 12195.93 12397.78 13397.02 22295.44 15799.96 2698.21 16491.81 20495.55 17496.38 24895.17 4898.27 21490.42 24698.83 12099.64 113
CDS-MVSNet96.34 12296.07 11097.13 16197.37 20694.96 17299.53 17697.91 19691.55 21095.37 17898.32 19195.05 5397.13 26893.80 19395.75 18999.30 169
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Vis-MVSNet (Re-imp)96.32 12395.98 11597.35 15797.93 17394.82 17699.47 18698.15 17591.83 20295.09 18199.11 13191.37 14197.47 24893.47 20097.43 15299.74 98
3Dnovator+91.53 1196.31 12495.24 14399.52 2696.88 23098.64 5099.72 14698.24 16195.27 8088.42 27698.98 14382.76 22999.94 6997.10 13199.83 7299.96 61
Effi-MVS+96.30 12595.69 13198.16 11697.85 17896.26 12897.41 31397.21 25890.37 23798.65 9798.58 17886.61 19998.70 17797.11 13097.37 15699.52 140
IS-MVSNet96.29 12695.90 12697.45 14898.13 16594.80 17799.08 22897.61 21992.02 19895.54 17698.96 14790.64 15698.08 22393.73 19797.41 15599.47 147
3Dnovator91.47 1296.28 12795.34 14099.08 6196.82 23397.47 8999.45 18998.81 5095.52 7489.39 25199.00 14081.97 23399.95 6197.27 12599.83 7299.84 85
tpmrst96.27 12895.98 11597.13 16197.96 17193.15 21396.34 33298.17 16992.07 19498.71 9495.12 29693.91 8598.73 17394.91 16796.62 17099.50 144
CostFormer96.10 12995.88 12796.78 17097.03 22192.55 23097.08 32197.83 20490.04 24498.72 9394.89 30595.01 5598.29 21096.54 14395.77 18799.50 144
iter_conf0596.07 13095.95 12196.44 18298.43 14697.52 8399.91 7196.85 29894.16 11792.49 21397.98 20198.20 497.34 25297.26 12688.29 24594.45 242
PVSNet_BlendedMVS96.05 13195.82 12996.72 17399.59 8196.99 10599.95 4399.10 2994.06 12498.27 11395.80 26389.00 17899.95 6199.12 4687.53 25893.24 316
PatchMatch-RL96.04 13295.40 13797.95 12599.59 8195.22 16799.52 17799.07 3293.96 13096.49 15498.35 19082.28 23199.82 10690.15 25199.22 11198.81 196
iter_conf_final96.01 13395.93 12396.28 18798.38 14897.03 10399.87 8897.03 27894.05 12692.61 21197.98 20198.01 597.34 25297.02 13388.39 24494.47 236
1112_ss96.01 13395.20 14598.42 10797.80 18196.41 12299.65 15696.66 31092.71 16992.88 20899.40 10992.16 12999.30 14991.92 22093.66 21099.55 133
PatchmatchNetpermissive95.94 13595.45 13697.39 15397.83 17994.41 18596.05 33898.40 13292.86 16097.09 13995.28 29394.21 7898.07 22589.26 25998.11 13999.70 102
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
FA-MVS(test-final)95.86 13695.09 14998.15 11997.74 18595.62 15396.31 33398.17 16991.42 21796.26 16196.13 25790.56 15799.47 14692.18 21797.07 16199.35 162
TAMVS95.85 13795.58 13496.65 17697.07 21893.50 20599.17 22197.82 20591.39 21995.02 18298.01 19792.20 12897.30 25793.75 19695.83 18699.14 182
LS3D95.84 13895.11 14898.02 12499.85 5495.10 17098.74 26898.50 9787.22 28893.66 19899.86 2687.45 19099.95 6190.94 23599.81 7899.02 187
baseline195.78 13994.86 15598.54 9798.47 14598.07 6399.06 23397.99 18592.68 17294.13 19398.62 17593.28 10198.69 17893.79 19485.76 26798.84 194
Test_1112_low_res95.72 14094.83 15698.42 10797.79 18296.41 12299.65 15696.65 31192.70 17092.86 20996.13 25792.15 13099.30 14991.88 22193.64 21199.55 133
Vis-MVSNetpermissive95.72 14095.15 14797.45 14897.62 19594.28 18799.28 21298.24 16194.27 11596.84 14598.94 15479.39 25998.76 17193.25 20298.49 12699.30 169
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPNet_dtu95.71 14295.39 13896.66 17598.92 11993.41 20999.57 16998.90 4296.19 5997.52 13098.56 18092.65 11697.36 25077.89 33798.33 13099.20 177
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-w/o95.71 14295.38 13996.68 17498.49 14492.28 23499.84 10797.50 23392.12 19392.06 21598.79 16784.69 21598.67 17995.29 15899.66 8699.09 185
FE-MVS95.70 14495.01 15297.79 13298.21 15894.57 18095.03 34598.69 5888.90 26297.50 13296.19 25492.60 11899.49 14489.99 25397.94 14599.31 167
ECVR-MVScopyleft95.66 14595.05 15097.51 14698.66 13593.71 20098.85 26098.45 10294.93 8596.86 14498.96 14775.22 29299.20 15295.34 15698.15 13699.64 113
mvs_anonymous95.65 14695.03 15197.53 14498.19 16095.74 14799.33 20397.49 23490.87 22990.47 22997.10 22388.23 18497.16 26595.92 15197.66 14999.68 105
test111195.57 14794.98 15397.37 15498.56 13793.37 21198.86 25898.45 10294.95 8496.63 15098.95 15275.21 29399.11 15795.02 16298.14 13899.64 113
MVSTER95.53 14895.22 14496.45 18098.56 13797.72 7499.91 7197.67 21292.38 18791.39 21997.14 22197.24 1897.30 25794.80 17087.85 25294.34 252
tpm295.47 14995.18 14696.35 18696.91 22691.70 25296.96 32497.93 19288.04 27898.44 10595.40 28293.32 9897.97 22994.00 18695.61 19199.38 157
test_vis1_n_192095.44 15095.31 14195.82 19898.50 14388.74 29699.98 997.30 25297.84 899.85 799.19 12766.82 32899.97 5198.82 6499.46 10198.76 198
QAPM95.40 15194.17 16899.10 6096.92 22597.71 7599.40 19298.68 6089.31 25088.94 26498.89 15782.48 23099.96 5493.12 20899.83 7299.62 118
test_fmvs195.35 15295.68 13394.36 25098.99 11184.98 32799.96 2696.65 31197.60 1299.73 2898.96 14771.58 30999.93 7598.31 8999.37 10598.17 205
UGNet95.33 15394.57 16097.62 14298.55 13994.85 17498.67 27599.32 2595.75 6796.80 14796.27 25272.18 30699.96 5494.58 17799.05 11698.04 209
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
BH-untuned95.18 15494.83 15696.22 18998.36 15091.22 26099.80 12197.32 25090.91 22891.08 22298.67 17183.51 22498.54 18594.23 18499.61 9198.92 189
BH-RMVSNet95.18 15494.31 16697.80 13098.17 16295.23 16699.76 13297.53 22992.52 18394.27 19199.25 12376.84 27698.80 16790.89 23799.54 9599.35 162
PCF-MVS94.20 595.18 15494.10 16998.43 10698.55 13995.99 13997.91 30797.31 25190.35 23889.48 25099.22 12585.19 21299.89 8390.40 24898.47 12799.41 155
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
dp95.05 15794.43 16296.91 16697.99 17092.73 22496.29 33497.98 18789.70 24895.93 16894.67 31193.83 8998.45 19186.91 29096.53 17299.54 136
Fast-Effi-MVS+95.02 15894.19 16797.52 14597.88 17594.55 18199.97 1997.08 27388.85 26494.47 18897.96 20384.59 21698.41 19489.84 25597.10 16099.59 124
IB-MVS92.85 694.99 15993.94 17398.16 11697.72 19095.69 15199.99 398.81 5094.28 11392.70 21096.90 23195.08 5199.17 15596.07 14873.88 34299.60 123
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
h-mvs3394.92 16094.36 16396.59 17798.85 12591.29 25998.93 24998.94 3795.90 6298.77 8998.42 18990.89 15399.77 11497.80 11170.76 34798.72 200
XVG-OURS94.82 16194.74 15895.06 21898.00 16989.19 29199.08 22897.55 22594.10 12094.71 18499.62 9280.51 25199.74 12096.04 14993.06 21896.25 225
ADS-MVSNet94.79 16294.02 17197.11 16397.87 17693.79 19794.24 34698.16 17390.07 24296.43 15694.48 31690.29 16198.19 21987.44 27897.23 15799.36 160
XVG-OURS-SEG-HR94.79 16294.70 15995.08 21798.05 16789.19 29199.08 22897.54 22793.66 14194.87 18399.58 9578.78 26499.79 10997.31 12493.40 21396.25 225
OpenMVScopyleft90.15 1594.77 16493.59 18298.33 11196.07 24997.48 8899.56 17198.57 7690.46 23586.51 29998.95 15278.57 26699.94 6993.86 18899.74 8197.57 218
LFMVS94.75 16593.56 18498.30 11299.03 10795.70 15098.74 26897.98 18787.81 28198.47 10499.39 11167.43 32699.53 13698.01 10295.20 19899.67 107
SCA94.69 16693.81 17797.33 15897.10 21794.44 18298.86 25898.32 15093.30 15196.17 16495.59 27276.48 28097.95 23291.06 23197.43 15299.59 124
ab-mvs94.69 16693.42 18898.51 10098.07 16696.26 12896.49 32998.68 6090.31 23994.54 18597.00 22976.30 28299.71 12495.98 15093.38 21499.56 132
CVMVSNet94.68 16894.94 15493.89 26896.80 23486.92 31699.06 23398.98 3594.45 10194.23 19299.02 13685.60 20695.31 33390.91 23695.39 19599.43 153
cascas94.64 16993.61 17997.74 13897.82 18096.26 12899.96 2697.78 20785.76 30694.00 19497.54 21076.95 27599.21 15197.23 12795.43 19497.76 215
HQP-MVS94.61 17094.50 16194.92 22395.78 25791.85 24499.87 8897.89 19796.82 3693.37 20098.65 17280.65 24998.39 19897.92 10889.60 22294.53 231
TR-MVS94.54 17193.56 18497.49 14797.96 17194.34 18698.71 27197.51 23290.30 24094.51 18798.69 17075.56 28798.77 17092.82 21195.99 18199.35 162
DP-MVS94.54 17193.42 18897.91 12899.46 9394.04 19198.93 24997.48 23581.15 33890.04 23499.55 9787.02 19599.95 6188.97 26198.11 13999.73 99
Effi-MVS+-dtu94.53 17395.30 14292.22 29797.77 18382.54 33799.59 16697.06 27594.92 8795.29 17995.37 28685.81 20597.89 23594.80 17097.07 16196.23 227
HQP_MVS94.49 17494.36 16394.87 22495.71 26691.74 24899.84 10797.87 19996.38 5293.01 20498.59 17680.47 25398.37 20497.79 11489.55 22594.52 233
TAPA-MVS92.12 894.42 17593.60 18196.90 16799.33 9791.78 24799.78 12498.00 18489.89 24694.52 18699.47 10391.97 13499.18 15469.90 35499.52 9699.73 99
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
hse-mvs294.38 17694.08 17095.31 21198.27 15590.02 28299.29 21198.56 7895.90 6298.77 8998.00 19890.89 15398.26 21697.80 11169.20 35397.64 216
ET-MVSNet_ETH3D94.37 17793.28 19497.64 14098.30 15197.99 6799.99 397.61 21994.35 10871.57 35899.45 10696.23 3195.34 33296.91 13985.14 27499.59 124
MSDG94.37 17793.36 19297.40 15298.88 12493.95 19599.37 19997.38 24485.75 30890.80 22699.17 12984.11 22299.88 8986.35 29198.43 12898.36 203
GeoE94.36 17993.48 18696.99 16497.29 21393.54 20499.96 2696.72 30888.35 27493.43 19998.94 15482.05 23298.05 22688.12 27396.48 17499.37 159
miper_enhance_ethall94.36 17993.98 17295.49 20298.68 13495.24 16599.73 14397.29 25393.28 15289.86 23995.97 26194.37 7197.05 27492.20 21684.45 27994.19 261
tpmvs94.28 18193.57 18396.40 18398.55 13991.50 25795.70 34498.55 8487.47 28392.15 21494.26 32091.42 13998.95 16388.15 27195.85 18598.76 198
test_fmvs1_n94.25 18294.36 16393.92 26597.68 19383.70 33299.90 7696.57 31497.40 1899.67 3498.88 15861.82 34499.92 7698.23 9199.13 11498.14 208
FIs94.10 18393.43 18796.11 19194.70 28396.82 11199.58 16798.93 4192.54 18189.34 25397.31 21787.62 18897.10 27194.22 18586.58 26394.40 244
mvsmamba94.10 18393.72 17895.25 21393.57 30194.13 18999.67 15396.45 31993.63 14391.34 22197.77 20686.29 20297.22 26396.65 14288.10 24994.40 244
CLD-MVS94.06 18593.90 17494.55 23996.02 25190.69 26699.98 997.72 20896.62 4691.05 22498.85 16677.21 27298.47 18798.11 9789.51 22794.48 235
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test0.0.03 193.86 18693.61 17994.64 23395.02 27992.18 23799.93 6498.58 7494.07 12287.96 28098.50 18193.90 8694.96 33781.33 32293.17 21596.78 222
X-MVStestdata93.83 18792.06 21799.15 5399.94 1397.50 8699.94 5898.42 12496.22 5799.41 5941.37 37894.34 7299.96 5498.92 5799.95 4999.99 23
GA-MVS93.83 18792.84 20096.80 16995.73 26393.57 20299.88 8597.24 25792.57 18092.92 20696.66 24078.73 26597.67 24287.75 27694.06 20899.17 178
FC-MVSNet-test93.81 18993.15 19695.80 19994.30 29096.20 13399.42 19198.89 4392.33 18989.03 26397.27 21987.39 19196.83 29093.20 20386.48 26494.36 248
ADS-MVSNet293.80 19093.88 17593.55 27997.87 17685.94 32194.24 34696.84 29990.07 24296.43 15694.48 31690.29 16195.37 33187.44 27897.23 15799.36 160
cl2293.77 19193.25 19595.33 21099.49 9094.43 18399.61 16498.09 17890.38 23689.16 26195.61 27090.56 15797.34 25291.93 21984.45 27994.21 260
VDD-MVS93.77 19192.94 19896.27 18898.55 13990.22 27798.77 26797.79 20690.85 23096.82 14699.42 10761.18 34799.77 11498.95 5494.13 20698.82 195
EI-MVSNet93.73 19393.40 19194.74 22996.80 23492.69 22599.06 23397.67 21288.96 25991.39 21999.02 13688.75 18197.30 25791.07 23087.85 25294.22 258
Fast-Effi-MVS+-dtu93.72 19493.86 17693.29 28297.06 21986.16 31999.80 12196.83 30092.66 17392.58 21297.83 20581.39 23997.67 24289.75 25696.87 16896.05 229
tpm93.70 19593.41 19094.58 23795.36 27487.41 31297.01 32296.90 29490.85 23096.72 14994.14 32190.40 15996.84 28990.75 24088.54 24199.51 142
PS-MVSNAJss93.64 19693.31 19394.61 23492.11 32992.19 23699.12 22397.38 24492.51 18488.45 27196.99 23091.20 14397.29 26094.36 18087.71 25594.36 248
test_vis1_n93.61 19793.03 19795.35 20895.86 25686.94 31599.87 8896.36 32196.85 3499.54 4898.79 16752.41 35799.83 10498.64 7698.97 11799.29 171
gg-mvs-nofinetune93.51 19891.86 22398.47 10297.72 19097.96 7092.62 35498.51 9374.70 35697.33 13569.59 36998.91 397.79 23797.77 11699.56 9499.67 107
nrg03093.51 19892.53 20996.45 18094.36 28897.20 9699.81 11797.16 26491.60 20889.86 23997.46 21286.37 20197.68 24195.88 15280.31 31294.46 237
tpm cat193.51 19892.52 21096.47 17897.77 18391.47 25896.13 33698.06 18180.98 33992.91 20793.78 32489.66 16698.87 16487.03 28696.39 17599.09 185
CR-MVSNet93.45 20192.62 20495.94 19496.29 24392.66 22692.01 35796.23 32392.62 17596.94 14193.31 32991.04 14796.03 32279.23 33095.96 18299.13 183
AUN-MVS93.28 20292.60 20595.34 20998.29 15290.09 28099.31 20698.56 7891.80 20596.35 16098.00 19889.38 17098.28 21292.46 21369.22 35297.64 216
OPM-MVS93.21 20392.80 20194.44 24693.12 31290.85 26599.77 12797.61 21996.19 5991.56 21898.65 17275.16 29498.47 18793.78 19589.39 22893.99 284
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
miper_ehance_all_eth93.16 20492.60 20594.82 22897.57 19793.56 20399.50 18197.07 27488.75 26588.85 26695.52 27690.97 14996.74 29390.77 23984.45 27994.17 262
RRT_MVS93.14 20592.92 19993.78 27093.31 30890.04 28199.66 15497.69 21092.53 18288.91 26597.76 20784.36 21896.93 28495.10 16086.99 26194.37 247
VDDNet93.12 20691.91 22196.76 17196.67 24192.65 22898.69 27398.21 16482.81 33297.75 12799.28 11661.57 34599.48 14598.09 9994.09 20798.15 206
Anonymous20240521193.10 20791.99 21996.40 18399.10 10489.65 28898.88 25497.93 19283.71 32694.00 19498.75 16968.79 31899.88 8995.08 16191.71 22099.68 105
UniMVSNet (Re)93.07 20892.13 21495.88 19594.84 28096.24 13299.88 8598.98 3592.49 18589.25 25595.40 28287.09 19497.14 26793.13 20778.16 32394.26 255
LPG-MVS_test92.96 20992.71 20393.71 27395.43 27288.67 29899.75 13597.62 21692.81 16490.05 23298.49 18275.24 29098.40 19695.84 15389.12 22994.07 276
UniMVSNet_NR-MVSNet92.95 21092.11 21595.49 20294.61 28595.28 16399.83 11399.08 3191.49 21189.21 25896.86 23487.14 19396.73 29493.20 20377.52 32894.46 237
ACMM91.95 1092.88 21192.52 21093.98 26495.75 26289.08 29499.77 12797.52 23193.00 15889.95 23697.99 20076.17 28498.46 19093.63 19988.87 23394.39 246
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_djsdf92.83 21292.29 21394.47 24491.90 33292.46 23199.55 17397.27 25591.17 22189.96 23596.07 26081.10 24296.89 28694.67 17588.91 23194.05 278
D2MVS92.76 21392.59 20893.27 28395.13 27589.54 29099.69 14999.38 2292.26 19087.59 28494.61 31385.05 21497.79 23791.59 22488.01 25092.47 329
bld_raw_dy_0_6492.74 21492.03 21894.87 22493.09 31493.46 20699.12 22395.41 34092.84 16390.44 23097.54 21078.08 27097.04 27693.94 18787.77 25494.11 273
ACMP92.05 992.74 21492.42 21293.73 27195.91 25588.72 29799.81 11797.53 22994.13 11887.00 29398.23 19274.07 30098.47 18796.22 14788.86 23493.99 284
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
VPA-MVSNet92.70 21691.55 22896.16 19095.09 27696.20 13398.88 25499.00 3491.02 22791.82 21695.29 29276.05 28697.96 23195.62 15581.19 30094.30 253
FMVSNet392.69 21791.58 22695.99 19398.29 15297.42 9199.26 21497.62 21689.80 24789.68 24395.32 28881.62 23896.27 31287.01 28785.65 26894.29 254
IterMVS-LS92.69 21792.11 21594.43 24896.80 23492.74 22299.45 18996.89 29588.98 25789.65 24695.38 28588.77 18096.34 30890.98 23482.04 29494.22 258
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmatch-test92.65 21991.50 22996.10 19296.85 23190.49 27291.50 35997.19 25982.76 33390.23 23195.59 27295.02 5498.00 22877.41 33996.98 16699.82 87
c3_l92.53 22091.87 22294.52 24097.40 20592.99 21899.40 19296.93 29287.86 27988.69 26995.44 28089.95 16496.44 30490.45 24580.69 30994.14 271
AllTest92.48 22191.64 22495.00 22099.01 10888.43 30298.94 24896.82 30286.50 29788.71 26798.47 18674.73 29699.88 8985.39 29796.18 17796.71 223
DU-MVS92.46 22291.45 23195.49 20294.05 29395.28 16399.81 11798.74 5492.25 19189.21 25896.64 24281.66 23696.73 29493.20 20377.52 32894.46 237
eth_miper_zixun_eth92.41 22391.93 22093.84 26997.28 21490.68 26798.83 26196.97 28688.57 27089.19 26095.73 26789.24 17596.69 29689.97 25481.55 29794.15 268
DIV-MVS_self_test92.32 22491.60 22594.47 24497.31 21192.74 22299.58 16796.75 30686.99 29287.64 28395.54 27489.55 16896.50 30288.58 26582.44 29194.17 262
cl____92.31 22591.58 22694.52 24097.33 21092.77 22099.57 16996.78 30586.97 29387.56 28595.51 27789.43 16996.62 29888.60 26482.44 29194.16 267
LCM-MVSNet-Re92.31 22592.60 20591.43 30597.53 19879.27 35499.02 24191.83 36692.07 19480.31 33494.38 31983.50 22595.48 32997.22 12897.58 15099.54 136
WR-MVS92.31 22591.25 23395.48 20594.45 28795.29 16299.60 16598.68 6090.10 24188.07 27996.89 23280.68 24896.80 29293.14 20679.67 31694.36 248
COLMAP_ROBcopyleft90.47 1492.18 22891.49 23094.25 25399.00 11088.04 30898.42 28996.70 30982.30 33588.43 27499.01 13876.97 27499.85 9586.11 29496.50 17394.86 230
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2024052992.10 22990.65 24096.47 17898.82 12690.61 26998.72 27098.67 6375.54 35393.90 19698.58 17866.23 33099.90 7994.70 17490.67 22198.90 192
pmmvs492.10 22991.07 23695.18 21592.82 32194.96 17299.48 18596.83 30087.45 28488.66 27096.56 24683.78 22396.83 29089.29 25884.77 27793.75 301
jajsoiax91.92 23191.18 23494.15 25491.35 33890.95 26399.00 24297.42 24092.61 17687.38 28997.08 22472.46 30597.36 25094.53 17888.77 23594.13 272
XXY-MVS91.82 23290.46 24295.88 19593.91 29695.40 16098.87 25797.69 21088.63 26987.87 28197.08 22474.38 29997.89 23591.66 22384.07 28394.35 251
miper_lstm_enhance91.81 23391.39 23293.06 28997.34 20889.18 29399.38 19796.79 30486.70 29687.47 28795.22 29490.00 16395.86 32688.26 26981.37 29994.15 268
mvs_tets91.81 23391.08 23594.00 26291.63 33690.58 27098.67 27597.43 23892.43 18687.37 29097.05 22771.76 30797.32 25694.75 17288.68 23794.11 273
VPNet91.81 23390.46 24295.85 19794.74 28295.54 15598.98 24398.59 7392.14 19290.77 22797.44 21368.73 32097.54 24694.89 16877.89 32594.46 237
RPSCF91.80 23692.79 20288.83 32598.15 16369.87 36198.11 30196.60 31383.93 32494.33 19099.27 11979.60 25899.46 14791.99 21893.16 21697.18 221
PVSNet_088.03 1991.80 23690.27 24896.38 18598.27 15590.46 27399.94 5899.61 1293.99 12886.26 30597.39 21671.13 31399.89 8398.77 6767.05 35798.79 197
anonymousdsp91.79 23890.92 23794.41 24990.76 34392.93 21998.93 24997.17 26289.08 25287.46 28895.30 28978.43 26996.92 28592.38 21488.73 23693.39 312
JIA-IIPM91.76 23990.70 23994.94 22296.11 24887.51 31193.16 35398.13 17775.79 35297.58 12977.68 36692.84 11297.97 22988.47 26896.54 17199.33 165
TranMVSNet+NR-MVSNet91.68 24090.61 24194.87 22493.69 30093.98 19499.69 14998.65 6491.03 22688.44 27296.83 23880.05 25696.18 31590.26 25076.89 33694.45 242
NR-MVSNet91.56 24190.22 24995.60 20094.05 29395.76 14698.25 29498.70 5791.16 22380.78 33396.64 24283.23 22896.57 30091.41 22577.73 32794.46 237
v2v48291.30 24290.07 25595.01 21993.13 31093.79 19799.77 12797.02 27988.05 27789.25 25595.37 28680.73 24797.15 26687.28 28280.04 31594.09 275
WR-MVS_H91.30 24290.35 24594.15 25494.17 29292.62 22999.17 22198.94 3788.87 26386.48 30194.46 31884.36 21896.61 29988.19 27078.51 32193.21 317
tt080591.28 24490.18 25194.60 23596.26 24587.55 31098.39 29098.72 5589.00 25689.22 25798.47 18662.98 34198.96 16290.57 24288.00 25197.28 220
V4291.28 24490.12 25494.74 22993.42 30693.46 20699.68 15197.02 27987.36 28589.85 24195.05 29781.31 24197.34 25287.34 28180.07 31493.40 311
CP-MVSNet91.23 24690.22 24994.26 25293.96 29592.39 23399.09 22698.57 7688.95 26086.42 30296.57 24579.19 26196.37 30690.29 24978.95 31894.02 279
XVG-ACMP-BASELINE91.22 24790.75 23892.63 29493.73 29985.61 32298.52 28397.44 23792.77 16789.90 23896.85 23566.64 32998.39 19892.29 21588.61 23893.89 292
v114491.09 24889.83 25694.87 22493.25 30993.69 20199.62 16396.98 28486.83 29589.64 24794.99 30280.94 24497.05 27485.08 30081.16 30193.87 294
FMVSNet291.02 24989.56 26295.41 20797.53 19895.74 14798.98 24397.41 24287.05 28988.43 27495.00 30171.34 31096.24 31485.12 29985.21 27394.25 257
MVP-Stereo90.93 25090.45 24492.37 29691.25 34088.76 29598.05 30496.17 32587.27 28784.04 31695.30 28978.46 26897.27 26283.78 30999.70 8491.09 340
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
IterMVS90.91 25190.17 25293.12 28696.78 23790.42 27598.89 25297.05 27789.03 25486.49 30095.42 28176.59 27995.02 33587.22 28384.09 28293.93 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GBi-Net90.88 25289.82 25794.08 25797.53 19891.97 23998.43 28696.95 28787.05 28989.68 24394.72 30771.34 31096.11 31787.01 28785.65 26894.17 262
test190.88 25289.82 25794.08 25797.53 19891.97 23998.43 28696.95 28787.05 28989.68 24394.72 30771.34 31096.11 31787.01 28785.65 26894.17 262
IterMVS-SCA-FT90.85 25490.16 25392.93 29096.72 23989.96 28398.89 25296.99 28288.95 26086.63 29795.67 26876.48 28095.00 33687.04 28584.04 28593.84 296
v14419290.79 25589.52 26494.59 23693.11 31392.77 22099.56 17196.99 28286.38 29989.82 24294.95 30480.50 25297.10 27183.98 30780.41 31093.90 291
v14890.70 25689.63 26093.92 26592.97 31790.97 26299.75 13596.89 29587.51 28288.27 27795.01 29981.67 23597.04 27687.40 28077.17 33393.75 301
MS-PatchMatch90.65 25790.30 24791.71 30494.22 29185.50 32498.24 29597.70 20988.67 26786.42 30296.37 25067.82 32498.03 22783.62 31099.62 8891.60 337
ACMH89.72 1790.64 25889.63 26093.66 27795.64 26988.64 30098.55 27997.45 23689.03 25481.62 32897.61 20969.75 31698.41 19489.37 25787.62 25793.92 290
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PS-CasMVS90.63 25989.51 26593.99 26393.83 29791.70 25298.98 24398.52 9088.48 27186.15 30696.53 24775.46 28896.31 31088.83 26278.86 32093.95 287
v119290.62 26089.25 26994.72 23193.13 31093.07 21499.50 18197.02 27986.33 30089.56 24995.01 29979.22 26097.09 27382.34 31781.16 30194.01 281
v890.54 26189.17 27094.66 23293.43 30593.40 21099.20 21896.94 29185.76 30687.56 28594.51 31481.96 23497.19 26484.94 30178.25 32293.38 313
v192192090.46 26289.12 27194.50 24292.96 31892.46 23199.49 18396.98 28486.10 30289.61 24895.30 28978.55 26797.03 27982.17 31880.89 30894.01 281
our_test_390.39 26389.48 26793.12 28692.40 32689.57 28999.33 20396.35 32287.84 28085.30 31194.99 30284.14 22196.09 32080.38 32684.56 27893.71 306
PatchT90.38 26488.75 27995.25 21395.99 25290.16 27891.22 36197.54 22776.80 34897.26 13686.01 36091.88 13596.07 32166.16 36195.91 18499.51 142
ACMH+89.98 1690.35 26589.54 26392.78 29395.99 25286.12 32098.81 26397.18 26189.38 24983.14 32197.76 20768.42 32298.43 19289.11 26086.05 26693.78 300
Baseline_NR-MVSNet90.33 26689.51 26592.81 29292.84 31989.95 28499.77 12793.94 35784.69 32189.04 26295.66 26981.66 23696.52 30190.99 23376.98 33491.97 335
MIMVSNet90.30 26788.67 28095.17 21696.45 24291.64 25492.39 35597.15 26585.99 30390.50 22893.19 33166.95 32794.86 33982.01 31993.43 21299.01 188
LTVRE_ROB88.28 1890.29 26889.05 27494.02 26095.08 27790.15 27997.19 31797.43 23884.91 31983.99 31797.06 22674.00 30198.28 21284.08 30587.71 25593.62 307
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v1090.25 26988.82 27794.57 23893.53 30393.43 20899.08 22896.87 29785.00 31687.34 29194.51 31480.93 24597.02 28182.85 31479.23 31793.26 315
v124090.20 27088.79 27894.44 24693.05 31692.27 23599.38 19796.92 29385.89 30489.36 25294.87 30677.89 27197.03 27980.66 32581.08 30494.01 281
PEN-MVS90.19 27189.06 27393.57 27893.06 31590.90 26499.06 23398.47 9988.11 27685.91 30896.30 25176.67 27795.94 32587.07 28476.91 33593.89 292
pmmvs590.17 27289.09 27293.40 28092.10 33089.77 28799.74 13895.58 33785.88 30587.24 29295.74 26573.41 30396.48 30388.54 26683.56 28693.95 287
EU-MVSNet90.14 27390.34 24689.54 32092.55 32481.06 34898.69 27398.04 18391.41 21886.59 29896.84 23780.83 24693.31 35386.20 29281.91 29594.26 255
UniMVSNet_ETH3D90.06 27488.58 28194.49 24394.67 28488.09 30797.81 30997.57 22483.91 32588.44 27297.41 21457.44 35197.62 24491.41 22588.59 24097.77 214
USDC90.00 27588.96 27593.10 28894.81 28188.16 30698.71 27195.54 33893.66 14183.75 31997.20 22065.58 33298.31 20983.96 30887.49 25992.85 323
Anonymous2023121189.86 27688.44 28394.13 25698.93 11790.68 26798.54 28198.26 16076.28 34986.73 29595.54 27470.60 31497.56 24590.82 23880.27 31394.15 268
OurMVSNet-221017-089.81 27789.48 26790.83 31091.64 33581.21 34698.17 29995.38 34291.48 21285.65 31097.31 21772.66 30497.29 26088.15 27184.83 27693.97 286
RPMNet89.76 27887.28 29497.19 16096.29 24392.66 22692.01 35798.31 15270.19 36296.94 14185.87 36187.25 19299.78 11162.69 36495.96 18299.13 183
Patchmtry89.70 27988.49 28293.33 28196.24 24689.94 28691.37 36096.23 32378.22 34687.69 28293.31 32991.04 14796.03 32280.18 32982.10 29394.02 279
v7n89.65 28088.29 28693.72 27292.22 32890.56 27199.07 23297.10 27085.42 31486.73 29594.72 30780.06 25597.13 26881.14 32378.12 32493.49 309
ppachtmachnet_test89.58 28188.35 28493.25 28492.40 32690.44 27499.33 20396.73 30785.49 31285.90 30995.77 26481.09 24396.00 32476.00 34582.49 29093.30 314
test_fmvs289.47 28289.70 25988.77 32894.54 28675.74 35699.83 11394.70 35294.71 9491.08 22296.82 23954.46 35497.78 23992.87 21088.27 24692.80 324
DTE-MVSNet89.40 28388.24 28792.88 29192.66 32389.95 28499.10 22598.22 16387.29 28685.12 31396.22 25376.27 28395.30 33483.56 31175.74 33993.41 310
pm-mvs189.36 28487.81 29194.01 26193.40 30791.93 24298.62 27896.48 31886.25 30183.86 31896.14 25673.68 30297.04 27686.16 29375.73 34093.04 320
tfpnnormal89.29 28587.61 29294.34 25194.35 28994.13 18998.95 24798.94 3783.94 32384.47 31595.51 27774.84 29597.39 24977.05 34280.41 31091.48 339
MVS_030489.28 28688.31 28592.21 29897.05 22086.53 31897.76 31099.57 1385.58 31193.86 19792.71 33351.04 36096.30 31184.49 30392.72 21993.79 299
LF4IMVS89.25 28788.85 27690.45 31492.81 32281.19 34798.12 30094.79 34991.44 21486.29 30497.11 22265.30 33598.11 22288.53 26785.25 27292.07 332
testgi89.01 28888.04 28991.90 30293.49 30484.89 32899.73 14395.66 33593.89 13685.14 31298.17 19359.68 34894.66 34177.73 33888.88 23296.16 228
SixPastTwentyTwo88.73 28988.01 29090.88 30891.85 33382.24 33998.22 29795.18 34788.97 25882.26 32496.89 23271.75 30896.67 29784.00 30682.98 28793.72 305
FMVSNet188.50 29086.64 29694.08 25795.62 27191.97 23998.43 28696.95 28783.00 33086.08 30794.72 30759.09 34996.11 31781.82 32184.07 28394.17 262
FMVSNet588.32 29187.47 29390.88 30896.90 22988.39 30497.28 31595.68 33482.60 33484.67 31492.40 33879.83 25791.16 36076.39 34481.51 29893.09 318
DSMNet-mixed88.28 29288.24 28788.42 33089.64 35075.38 35898.06 30389.86 36985.59 31088.20 27892.14 34076.15 28591.95 35878.46 33596.05 18097.92 210
K. test v388.05 29387.24 29590.47 31391.82 33482.23 34098.96 24697.42 24089.05 25376.93 34895.60 27168.49 32195.42 33085.87 29681.01 30693.75 301
KD-MVS_2432*160088.00 29486.10 29893.70 27596.91 22694.04 19197.17 31897.12 26884.93 31781.96 32592.41 33692.48 12294.51 34279.23 33052.68 36892.56 326
miper_refine_blended88.00 29486.10 29893.70 27596.91 22694.04 19197.17 31897.12 26884.93 31781.96 32592.41 33692.48 12294.51 34279.23 33052.68 36892.56 326
TinyColmap87.87 29686.51 29791.94 30195.05 27885.57 32397.65 31194.08 35584.40 32281.82 32796.85 23562.14 34398.33 20780.25 32886.37 26591.91 336
TransMVSNet (Re)87.25 29785.28 30393.16 28593.56 30291.03 26198.54 28194.05 35683.69 32781.09 33196.16 25575.32 28996.40 30576.69 34368.41 35492.06 333
Patchmatch-RL test86.90 29885.98 30189.67 31984.45 36075.59 35789.71 36492.43 36386.89 29477.83 34590.94 34494.22 7693.63 35087.75 27669.61 34999.79 91
test_vis1_rt86.87 29986.05 30089.34 32196.12 24778.07 35599.87 8883.54 37692.03 19778.21 34389.51 34745.80 36299.91 7796.25 14693.11 21790.03 349
Anonymous2023120686.32 30085.42 30289.02 32489.11 35280.53 35299.05 23795.28 34385.43 31382.82 32293.92 32274.40 29893.44 35266.99 35981.83 29693.08 319
MVS-HIRNet86.22 30183.19 31395.31 21196.71 24090.29 27692.12 35697.33 24962.85 36386.82 29470.37 36869.37 31797.49 24775.12 34697.99 14498.15 206
pmmvs685.69 30283.84 30891.26 30790.00 34984.41 33097.82 30896.15 32675.86 35181.29 33095.39 28461.21 34696.87 28883.52 31273.29 34392.50 328
test_040285.58 30383.94 30790.50 31293.81 29885.04 32698.55 27995.20 34676.01 35079.72 33895.13 29564.15 33896.26 31366.04 36286.88 26290.21 348
UnsupCasMVSNet_eth85.52 30483.99 30590.10 31689.36 35183.51 33396.65 32797.99 18589.14 25175.89 35293.83 32363.25 34093.92 34681.92 32067.90 35692.88 322
MDA-MVSNet_test_wron85.51 30583.32 31292.10 29990.96 34188.58 30199.20 21896.52 31679.70 34357.12 36892.69 33479.11 26293.86 34877.10 34177.46 33093.86 295
YYNet185.50 30683.33 31192.00 30090.89 34288.38 30599.22 21796.55 31579.60 34457.26 36792.72 33279.09 26393.78 34977.25 34077.37 33193.84 296
EG-PatchMatch MVS85.35 30783.81 30989.99 31890.39 34581.89 34298.21 29896.09 32781.78 33774.73 35493.72 32551.56 35997.12 27079.16 33388.61 23890.96 342
Anonymous2024052185.15 30883.81 30989.16 32388.32 35382.69 33598.80 26595.74 33279.72 34281.53 32990.99 34365.38 33494.16 34472.69 34981.11 30390.63 345
TDRefinement84.76 30982.56 31691.38 30674.58 37284.80 32997.36 31494.56 35384.73 32080.21 33596.12 25963.56 33998.39 19887.92 27463.97 36190.95 343
CMPMVSbinary61.59 2184.75 31085.14 30483.57 33990.32 34662.54 36696.98 32397.59 22374.33 35769.95 36096.66 24064.17 33798.32 20887.88 27588.41 24389.84 351
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0384.72 31183.99 30586.91 33388.19 35580.62 35198.88 25495.94 32988.36 27378.87 33994.62 31268.75 31989.11 36466.52 36075.82 33891.00 341
CL-MVSNet_self_test84.50 31283.15 31488.53 32986.00 35881.79 34398.82 26297.35 24685.12 31583.62 32090.91 34576.66 27891.40 35969.53 35560.36 36592.40 330
new_pmnet84.49 31382.92 31589.21 32290.03 34882.60 33696.89 32695.62 33680.59 34075.77 35389.17 34865.04 33694.79 34072.12 35181.02 30590.23 347
MDA-MVSNet-bldmvs84.09 31481.52 32091.81 30391.32 33988.00 30998.67 27595.92 33080.22 34155.60 36993.32 32868.29 32393.60 35173.76 34776.61 33793.82 298
pmmvs-eth3d84.03 31581.97 31890.20 31584.15 36187.09 31498.10 30294.73 35183.05 32974.10 35687.77 35565.56 33394.01 34581.08 32469.24 35189.49 354
OpenMVS_ROBcopyleft79.82 2083.77 31681.68 31990.03 31788.30 35482.82 33498.46 28495.22 34573.92 35876.00 35191.29 34255.00 35396.94 28368.40 35788.51 24290.34 346
KD-MVS_self_test83.59 31782.06 31788.20 33186.93 35680.70 35097.21 31696.38 32082.87 33182.49 32388.97 34967.63 32592.32 35673.75 34862.30 36491.58 338
MIMVSNet182.58 31880.51 32488.78 32686.68 35784.20 33196.65 32795.41 34078.75 34578.59 34192.44 33551.88 35889.76 36365.26 36378.95 31892.38 331
mvsany_test382.12 31981.14 32185.06 33781.87 36570.41 36097.09 32092.14 36491.27 22077.84 34488.73 35039.31 36595.49 32890.75 24071.24 34689.29 356
new-patchmatchnet81.19 32079.34 32786.76 33482.86 36480.36 35397.92 30695.27 34482.09 33672.02 35786.87 35762.81 34290.74 36271.10 35263.08 36289.19 357
APD_test181.15 32180.92 32281.86 34292.45 32559.76 37096.04 33993.61 36073.29 35977.06 34696.64 24244.28 36496.16 31672.35 35082.52 28989.67 352
test_method80.79 32279.70 32684.08 33892.83 32067.06 36399.51 17995.42 33954.34 36781.07 33293.53 32644.48 36392.22 35778.90 33477.23 33292.94 321
PM-MVS80.47 32378.88 32885.26 33683.79 36372.22 35995.89 34291.08 36785.71 30976.56 35088.30 35136.64 36693.90 34782.39 31669.57 35089.66 353
pmmvs380.27 32477.77 32987.76 33280.32 36782.43 33898.23 29691.97 36572.74 36078.75 34087.97 35457.30 35290.99 36170.31 35362.37 36389.87 350
N_pmnet80.06 32580.78 32377.89 34591.94 33145.28 37998.80 26556.82 38278.10 34780.08 33693.33 32777.03 27395.76 32768.14 35882.81 28892.64 325
test_fmvs379.99 32680.17 32579.45 34484.02 36262.83 36499.05 23793.49 36188.29 27580.06 33786.65 35828.09 37088.00 36588.63 26373.27 34487.54 360
UnsupCasMVSNet_bld79.97 32777.03 33188.78 32685.62 35981.98 34193.66 35197.35 24675.51 35470.79 35983.05 36348.70 36194.91 33878.31 33660.29 36689.46 355
test_f78.40 32877.59 33080.81 34380.82 36662.48 36796.96 32493.08 36283.44 32874.57 35584.57 36227.95 37192.63 35584.15 30472.79 34587.32 361
EGC-MVSNET69.38 32963.76 33986.26 33590.32 34681.66 34596.24 33593.85 3580.99 3793.22 38092.33 33952.44 35692.92 35459.53 36784.90 27584.21 362
test_vis3_rt68.82 33066.69 33575.21 34876.24 37160.41 36996.44 33068.71 38175.13 35550.54 37269.52 37016.42 38096.32 30980.27 32766.92 35868.89 368
FPMVS68.72 33168.72 33268.71 35365.95 37644.27 38195.97 34194.74 35051.13 36853.26 37090.50 34625.11 37383.00 37160.80 36580.97 30778.87 366
testf168.38 33266.92 33372.78 35078.80 36850.36 37590.95 36287.35 37455.47 36558.95 36488.14 35220.64 37587.60 36657.28 36864.69 35980.39 364
APD_test268.38 33266.92 33372.78 35078.80 36850.36 37590.95 36287.35 37455.47 36558.95 36488.14 35220.64 37587.60 36657.28 36864.69 35980.39 364
LCM-MVSNet67.77 33464.73 33776.87 34662.95 37856.25 37389.37 36593.74 35944.53 37061.99 36280.74 36420.42 37786.53 36969.37 35659.50 36787.84 358
PMMVS267.15 33564.15 33876.14 34770.56 37562.07 36893.89 34987.52 37358.09 36460.02 36378.32 36522.38 37484.54 37059.56 36647.03 37081.80 363
Gipumacopyleft66.95 33665.00 33672.79 34991.52 33767.96 36266.16 37195.15 34847.89 36958.54 36667.99 37129.74 36887.54 36850.20 37177.83 32662.87 371
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt65.23 33762.94 34072.13 35244.90 38150.03 37781.05 36889.42 37238.45 37148.51 37399.90 1854.09 35578.70 37391.84 22218.26 37587.64 359
ANet_high56.10 33852.24 34167.66 35449.27 38056.82 37283.94 36782.02 37770.47 36133.28 37764.54 37217.23 37969.16 37545.59 37323.85 37477.02 367
PMVScopyleft49.05 2353.75 33951.34 34360.97 35640.80 38234.68 38274.82 37089.62 37137.55 37228.67 37872.12 3677.09 38281.63 37243.17 37468.21 35566.59 370
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN52.30 34052.18 34252.67 35771.51 37345.40 37893.62 35276.60 37936.01 37343.50 37464.13 37327.11 37267.31 37631.06 37626.06 37245.30 375
MVEpermissive53.74 2251.54 34147.86 34562.60 35559.56 37950.93 37479.41 36977.69 37835.69 37436.27 37661.76 3755.79 38469.63 37437.97 37536.61 37167.24 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS51.44 34251.22 34452.11 35870.71 37444.97 38094.04 34875.66 38035.34 37542.40 37561.56 37628.93 36965.87 37727.64 37724.73 37345.49 374
testmvs40.60 34344.45 34629.05 36019.49 38414.11 38599.68 15118.47 38320.74 37664.59 36198.48 18510.95 38117.09 38056.66 37011.01 37655.94 373
test12337.68 34439.14 34733.31 35919.94 38324.83 38498.36 2919.75 38415.53 37751.31 37187.14 35619.62 37817.74 37947.10 3723.47 37857.36 372
cdsmvs_eth3d_5k23.43 34531.24 3480.00 3620.00 3850.00 3860.00 37398.09 1780.00 3800.00 38199.67 8783.37 2260.00 3810.00 3790.00 3790.00 377
wuyk23d20.37 34620.84 34918.99 36165.34 37727.73 38350.43 3727.67 3859.50 3788.01 3796.34 3796.13 38326.24 37823.40 37810.69 3772.99 376
ab-mvs-re8.28 34711.04 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38199.40 1090.00 3850.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas7.60 34810.13 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38191.20 1430.00 3810.00 3790.00 3790.00 377
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.02 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3810.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3810.00 3850.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3810.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3810.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3810.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3810.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3810.00 3850.00 3810.00 3790.00 3790.00 377
FOURS199.92 3197.66 7999.95 4398.36 14395.58 7199.52 51
MSC_two_6792asdad99.93 299.91 3999.80 298.41 128100.00 199.96 9100.00 1100.00 1
PC_three_145296.96 3299.80 1599.79 5497.49 10100.00 199.99 599.98 32100.00 1
No_MVS99.93 299.91 3999.80 298.41 128100.00 199.96 9100.00 1100.00 1
test_one_060199.94 1399.30 1198.41 12896.63 4499.75 2699.93 1197.49 10
eth-test20.00 385
eth-test0.00 385
ZD-MVS99.92 3198.57 5298.52 9092.34 18899.31 6699.83 4395.06 5299.80 10799.70 3099.97 42
RE-MVS-def98.13 4599.79 6296.37 12599.76 13298.31 15294.43 10399.40 6199.75 6792.95 10998.90 6099.92 6399.97 55
IU-MVS99.93 2499.31 998.41 12897.71 999.84 10100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 2699.80 5197.44 14100.00 1100.00 199.98 32100.00 1
test_241102_TWO98.43 11397.27 2399.80 1599.94 497.18 21100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1198.43 11397.26 2599.80 1599.88 2196.71 24100.00 1
9.1498.38 2999.87 5199.91 7198.33 14893.22 15399.78 2399.89 1994.57 6499.85 9599.84 1899.97 42
save fliter99.82 5898.79 3699.96 2698.40 13297.66 11
test_0728_THIRD96.48 4799.83 1199.91 1497.87 6100.00 199.92 12100.00 1100.00 1
test_0728_SECOND99.82 799.94 1399.47 799.95 4398.43 113100.00 199.99 5100.00 1100.00 1
test072699.93 2499.29 1499.96 2698.42 12497.28 2199.86 599.94 497.22 19
GSMVS99.59 124
test_part299.89 4599.25 1799.49 53
sam_mvs194.72 6199.59 124
sam_mvs94.25 75
ambc83.23 34077.17 37062.61 36587.38 36694.55 35476.72 34986.65 35830.16 36796.36 30784.85 30269.86 34890.73 344
MTGPAbinary98.28 157
test_post195.78 34359.23 37793.20 10497.74 24091.06 231
test_post63.35 37494.43 6598.13 221
patchmatchnet-post91.70 34195.12 4997.95 232
GG-mvs-BLEND98.54 9798.21 15898.01 6693.87 35098.52 9097.92 12297.92 20499.02 297.94 23498.17 9399.58 9399.67 107
MTMP99.87 8896.49 317
gm-plane-assit96.97 22493.76 19991.47 21398.96 14798.79 16894.92 165
test9_res99.71 2999.99 21100.00 1
TEST999.92 3198.92 2699.96 2698.43 11393.90 13499.71 3099.86 2695.88 3799.85 95
test_899.92 3198.88 2999.96 2698.43 11394.35 10899.69 3299.85 3095.94 3499.85 95
agg_prior299.48 35100.00 1100.00 1
agg_prior99.93 2498.77 3898.43 11399.63 3799.85 95
TestCases95.00 22099.01 10888.43 30296.82 30286.50 29788.71 26798.47 18674.73 29699.88 8985.39 29796.18 17796.71 223
test_prior498.05 6499.94 58
test_prior299.95 4395.78 6599.73 2899.76 6296.00 3399.78 23100.00 1
test_prior99.43 3399.94 1398.49 5698.65 6499.80 10799.99 23
旧先验299.46 18894.21 11699.85 799.95 6196.96 136
新几何299.40 192
新几何199.42 3599.75 6898.27 5998.63 6992.69 17199.55 4699.82 4694.40 67100.00 191.21 22799.94 5499.99 23
旧先验199.76 6697.52 8398.64 6699.85 3095.63 4199.94 5499.99 23
无先验99.49 18398.71 5693.46 146100.00 194.36 18099.99 23
原ACMM299.90 76
原ACMM198.96 7199.73 7296.99 10598.51 9394.06 12499.62 3999.85 3094.97 5899.96 5495.11 15999.95 4999.92 76
test22299.55 8597.41 9299.34 20298.55 8491.86 20199.27 7099.83 4393.84 8899.95 4999.99 23
testdata299.99 3690.54 244
segment_acmp96.68 26
testdata98.42 10799.47 9195.33 16198.56 7893.78 13799.79 2299.85 3093.64 9399.94 6994.97 16399.94 54100.00 1
testdata199.28 21296.35 56
test1299.43 3399.74 6998.56 5398.40 13299.65 3594.76 6099.75 11899.98 3299.99 23
plane_prior795.71 26691.59 256
plane_prior695.76 26191.72 25180.47 253
plane_prior597.87 19998.37 20497.79 11489.55 22594.52 233
plane_prior498.59 176
plane_prior391.64 25496.63 4493.01 204
plane_prior299.84 10796.38 52
plane_prior195.73 263
plane_prior91.74 24899.86 10096.76 4089.59 224
n20.00 386
nn0.00 386
door-mid89.69 370
lessismore_v090.53 31190.58 34480.90 34995.80 33177.01 34795.84 26266.15 33196.95 28283.03 31375.05 34193.74 304
LGP-MVS_train93.71 27395.43 27288.67 29897.62 21692.81 16490.05 23298.49 18275.24 29098.40 19695.84 15389.12 22994.07 276
test1198.44 105
door90.31 368
HQP5-MVS91.85 244
HQP-NCC95.78 25799.87 8896.82 3693.37 200
ACMP_Plane95.78 25799.87 8896.82 3693.37 200
BP-MVS97.92 108
HQP4-MVS93.37 20098.39 19894.53 231
HQP3-MVS97.89 19789.60 222
HQP2-MVS80.65 249
NP-MVS95.77 26091.79 24698.65 172
MDTV_nov1_ep13_2view96.26 12896.11 33791.89 20098.06 11894.40 6794.30 18299.67 107
MDTV_nov1_ep1395.69 13197.90 17494.15 18895.98 34098.44 10593.12 15697.98 12095.74 26595.10 5098.58 18290.02 25296.92 167
ACMMP++_ref87.04 260
ACMMP++88.23 247
Test By Simon92.82 114
ITE_SJBPF92.38 29595.69 26885.14 32595.71 33392.81 16489.33 25498.11 19470.23 31598.42 19385.91 29588.16 24893.59 308
DeepMVS_CXcopyleft82.92 34195.98 25458.66 37196.01 32892.72 16878.34 34295.51 27758.29 35098.08 22382.57 31585.29 27192.03 334