This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1598.69 6898.20 799.93 199.98 296.82 22100.00 199.75 28100.00 199.99 23
NCCC99.37 299.25 299.71 1499.96 899.15 2199.97 2898.62 8198.02 1399.90 399.95 397.33 16100.00 199.54 39100.00 1100.00 1
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2898.64 7698.47 299.13 8699.92 1396.38 30100.00 199.74 30100.00 1100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5398.32 17297.28 3299.83 1399.91 1497.22 18100.00 199.99 5100.00 199.89 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3598.43 13197.27 3499.80 1899.94 496.71 23100.00 1100.00 1100.00 1100.00 1
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5398.43 13196.48 6199.80 1899.93 1197.44 13100.00 199.92 1299.98 32100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10698.44 12397.48 2799.64 4399.94 496.68 2599.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 5999.98 1598.86 5397.10 4099.80 1899.94 495.92 36100.00 199.51 40100.00 1100.00 1
MSP-MVS99.09 999.12 598.98 7399.93 2497.24 9899.95 5398.42 14397.50 2699.52 6099.88 2197.43 1599.71 13899.50 4199.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5398.56 9297.56 2599.44 6699.85 3095.38 47100.00 199.31 5199.99 2199.87 87
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4399.91 8498.39 15597.20 3899.46 6499.85 3095.53 4499.79 12399.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SteuartSystems-ACMMP99.02 1298.97 1399.18 5098.72 14097.71 7999.98 1598.44 12396.85 4699.80 1899.91 1497.57 799.85 10899.44 4699.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
CHOSEN 280x42099.01 1399.03 1098.95 7699.38 9698.87 3298.46 31099.42 2297.03 4299.02 9099.09 14799.35 198.21 24199.73 3299.78 8099.77 101
fmvsm_l_conf0.5_n_a99.00 1498.91 1499.28 4399.21 10297.91 7499.98 1598.85 5698.25 499.92 299.75 7194.72 6499.97 5399.87 1999.64 8899.95 71
fmvsm_l_conf0.5_n98.94 1598.84 1799.25 4499.17 10697.81 7799.98 1598.86 5398.25 499.90 399.76 6594.21 8299.97 5399.87 1999.52 10099.98 48
TSAR-MVS + MP.98.93 1698.77 1899.41 3899.74 6998.67 4799.77 14898.38 15996.73 5399.88 699.74 7894.89 6099.59 14999.80 2599.98 3299.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS98.92 1798.70 1999.56 2599.70 7698.73 4499.94 6998.34 16996.38 6799.81 1599.76 6594.59 6799.98 4399.84 2299.96 4699.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MG-MVS98.91 1898.65 2099.68 1599.94 1399.07 2499.64 18599.44 2097.33 3199.00 9199.72 8394.03 8799.98 4398.73 85100.00 1100.00 1
train_agg98.88 1998.65 2099.59 2399.92 3198.92 2899.96 3598.43 13194.35 12499.71 3599.86 2695.94 3499.85 10899.69 3599.98 3299.99 23
MVS_030498.87 2098.61 2399.67 1699.18 10399.13 2299.87 10699.65 1298.17 898.75 10699.75 7192.76 12399.94 7799.88 1899.44 10999.94 74
MM98.83 2198.53 2799.76 1099.59 8199.33 899.99 599.76 698.39 399.39 7399.80 5190.49 17199.96 6199.89 1699.43 11199.98 48
DPM-MVS98.83 2198.46 3099.97 199.33 9899.92 199.96 3598.44 12397.96 1499.55 5599.94 497.18 20100.00 193.81 21499.94 5499.98 48
DeepC-MVS_fast96.59 198.81 2398.54 2699.62 2099.90 4298.85 3499.24 24198.47 11598.14 1099.08 8799.91 1493.09 113100.00 199.04 6399.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SMA-MVScopyleft98.76 2498.48 2999.62 2099.87 5198.87 3299.86 11898.38 15993.19 17099.77 2899.94 495.54 42100.00 199.74 3099.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MVS_111021_HR98.72 2598.62 2299.01 7199.36 9797.18 10199.93 7699.90 196.81 5198.67 10999.77 6393.92 8999.89 9699.27 5399.94 5499.96 64
XVS98.70 2698.55 2599.15 5799.94 1397.50 9099.94 6998.42 14396.22 7399.41 6999.78 6194.34 7699.96 6198.92 7099.95 4999.99 23
SF-MVS98.67 2798.40 3299.50 3099.77 6598.67 4799.90 9198.21 18693.53 15999.81 1599.89 1994.70 6699.86 10799.84 2299.93 6099.96 64
CDPH-MVS98.65 2898.36 3899.49 3299.94 1398.73 4499.87 10698.33 17093.97 14499.76 2999.87 2494.99 5899.75 13298.55 95100.00 199.98 48
APD-MVScopyleft98.62 2998.35 3999.41 3899.90 4298.51 5799.87 10698.36 16394.08 13799.74 3299.73 8094.08 8599.74 13499.42 4799.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + GP.98.60 3098.51 2898.86 8099.73 7296.63 12099.97 2897.92 21998.07 1198.76 10499.55 11095.00 5799.94 7799.91 1597.68 16399.99 23
PAPM98.60 3098.42 3199.14 5996.05 27498.96 2699.90 9199.35 2596.68 5598.35 12499.66 9896.45 2998.51 20899.45 4599.89 6799.96 64
HFP-MVS98.56 3298.37 3699.14 5999.96 897.43 9499.95 5398.61 8294.77 10799.31 7799.85 3094.22 80100.00 198.70 8699.98 3299.98 48
region2R98.54 3398.37 3699.05 6699.96 897.18 10199.96 3598.55 9894.87 10599.45 6599.85 3094.07 86100.00 198.67 88100.00 199.98 48
DELS-MVS98.54 3398.22 4499.50 3099.15 10898.65 51100.00 198.58 8797.70 2098.21 13199.24 13992.58 12999.94 7798.63 9399.94 5499.92 81
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPR98.52 3598.16 4999.58 2499.97 398.77 4099.95 5398.43 13195.35 9398.03 13599.75 7194.03 8799.98 4398.11 11299.83 7399.99 23
ACMMPR98.50 3698.32 4099.05 6699.96 897.18 10199.95 5398.60 8494.77 10799.31 7799.84 4193.73 96100.00 198.70 8699.98 3299.98 48
ACMMP_NAP98.49 3798.14 5099.54 2799.66 7898.62 5399.85 12198.37 16294.68 11299.53 5899.83 4392.87 119100.00 198.66 9099.84 7299.99 23
EPNet98.49 3798.40 3298.77 8499.62 8096.80 11799.90 9199.51 1797.60 2299.20 8299.36 12893.71 9799.91 8997.99 11998.71 13899.61 129
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SR-MVS98.46 3998.30 4398.93 7799.88 4997.04 10799.84 12698.35 16594.92 10399.32 7699.80 5193.35 10399.78 12599.30 5299.95 4999.96 64
CP-MVS98.45 4098.32 4098.87 7999.96 896.62 12199.97 2898.39 15594.43 11998.90 9599.87 2494.30 78100.00 199.04 6399.99 2199.99 23
test_fmvsm_n_192098.44 4198.61 2397.92 14199.27 10195.18 183100.00 198.90 4798.05 1299.80 1899.73 8092.64 12699.99 3699.58 3899.51 10398.59 221
PS-MVSNAJ98.44 4198.20 4699.16 5598.80 13698.92 2899.54 20198.17 19197.34 2999.85 999.85 3091.20 15499.89 9699.41 4899.67 8698.69 218
test_fmvsmconf_n98.43 4398.32 4098.78 8298.12 18396.41 12799.99 598.83 5998.22 699.67 3999.64 10191.11 15899.94 7799.67 3699.62 9099.98 48
MVS_111021_LR98.42 4498.38 3498.53 10599.39 9595.79 15299.87 10699.86 296.70 5498.78 10199.79 5792.03 14499.90 9199.17 5799.86 7199.88 85
DP-MVS Recon98.41 4598.02 5799.56 2599.97 398.70 4699.92 7998.44 12392.06 21798.40 12299.84 4195.68 40100.00 198.19 10799.71 8499.97 58
PHI-MVS98.41 4598.21 4599.03 6899.86 5397.10 10699.98 1598.80 6290.78 25899.62 4799.78 6195.30 48100.00 199.80 2599.93 6099.99 23
mPP-MVS98.39 4798.20 4698.97 7499.97 396.92 11299.95 5398.38 15995.04 9998.61 11399.80 5193.39 101100.00 198.64 91100.00 199.98 48
PGM-MVS98.34 4898.13 5198.99 7299.92 3197.00 10899.75 15699.50 1893.90 14999.37 7499.76 6593.24 110100.00 197.75 13599.96 4699.98 48
SR-MVS-dyc-post98.31 4998.17 4898.71 8699.79 6296.37 13199.76 15398.31 17494.43 11999.40 7199.75 7193.28 10899.78 12598.90 7599.92 6399.97 58
ZNCC-MVS98.31 4998.03 5699.17 5399.88 4997.59 8499.94 6998.44 12394.31 12798.50 11799.82 4693.06 11499.99 3698.30 10599.99 2199.93 76
MTAPA98.29 5197.96 6299.30 4299.85 5497.93 7399.39 22298.28 17995.76 8297.18 15799.88 2192.74 124100.00 198.67 8899.88 6999.99 23
GST-MVS98.27 5297.97 5999.17 5399.92 3197.57 8599.93 7698.39 15594.04 14298.80 10099.74 7892.98 116100.00 198.16 10999.76 8199.93 76
CANet98.27 5297.82 6999.63 1799.72 7499.10 2399.98 1598.51 10797.00 4398.52 11599.71 8587.80 20099.95 6999.75 2899.38 11399.83 91
EI-MVSNet-Vis-set98.27 5298.11 5398.75 8599.83 5796.59 12399.40 21898.51 10795.29 9598.51 11699.76 6593.60 10099.71 13898.53 9699.52 10099.95 71
APD-MVS_3200maxsize98.25 5598.08 5598.78 8299.81 6096.60 12299.82 13698.30 17793.95 14699.37 7499.77 6392.84 12099.76 13198.95 6799.92 6399.97 58
patch_mono-298.24 5699.12 595.59 22499.67 7786.91 34399.95 5398.89 4997.60 2299.90 399.76 6596.54 2899.98 4399.94 1199.82 7799.88 85
xiu_mvs_v2_base98.23 5797.97 5999.02 7098.69 14198.66 4999.52 20398.08 20397.05 4199.86 799.86 2690.65 16799.71 13899.39 5098.63 13998.69 218
MP-MVScopyleft98.23 5797.97 5999.03 6899.94 1397.17 10499.95 5398.39 15594.70 11198.26 12999.81 5091.84 148100.00 198.85 7899.97 4299.93 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EI-MVSNet-UG-set98.14 5997.99 5898.60 9599.80 6196.27 13399.36 22798.50 11295.21 9798.30 12699.75 7193.29 10799.73 13798.37 10199.30 11799.81 94
PAPM_NR98.12 6097.93 6498.70 8799.94 1396.13 14399.82 13698.43 13194.56 11597.52 14799.70 8794.40 7199.98 4397.00 15199.98 3299.99 23
WTY-MVS98.10 6197.60 7699.60 2298.92 12599.28 1799.89 9999.52 1595.58 8798.24 13099.39 12593.33 10499.74 13497.98 12195.58 21099.78 100
MP-MVS-pluss98.07 6297.64 7499.38 4199.74 6998.41 6099.74 15998.18 19093.35 16496.45 17699.85 3092.64 12699.97 5398.91 7499.89 6799.77 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HPM-MVScopyleft97.96 6397.72 7198.68 8899.84 5696.39 13099.90 9198.17 19192.61 19498.62 11299.57 10991.87 14799.67 14598.87 7799.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet_Blended97.94 6497.64 7498.83 8199.59 8196.99 109100.00 199.10 3195.38 9298.27 12799.08 14889.00 19299.95 6999.12 5899.25 11999.57 139
PLCcopyleft95.54 397.93 6597.89 6798.05 13499.82 5894.77 19599.92 7998.46 11793.93 14797.20 15699.27 13495.44 4699.97 5397.41 14099.51 10399.41 164
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ETV-MVS97.92 6697.80 7098.25 12198.14 18196.48 12499.98 1597.63 23895.61 8699.29 8099.46 11892.55 13098.82 18799.02 6698.54 14099.46 157
CS-MVS-test97.88 6797.94 6397.70 15699.28 10095.20 18299.98 1597.15 29195.53 8999.62 4799.79 5792.08 14398.38 22498.75 8499.28 11899.52 149
API-MVS97.86 6897.66 7398.47 10899.52 8895.41 17299.47 21298.87 5291.68 22898.84 9799.85 3092.34 13799.99 3698.44 9899.96 46100.00 1
lupinMVS97.85 6997.60 7698.62 9397.28 23697.70 8199.99 597.55 24995.50 9199.43 6799.67 9690.92 16298.71 19798.40 9999.62 9099.45 159
test_yl97.83 7097.37 8499.21 4799.18 10397.98 7099.64 18599.27 2791.43 23797.88 14198.99 15795.84 3899.84 11698.82 7995.32 21699.79 97
DCV-MVSNet97.83 7097.37 8499.21 4799.18 10397.98 7099.64 18599.27 2791.43 23797.88 14198.99 15795.84 3899.84 11698.82 7995.32 21699.79 97
mvsany_test197.82 7297.90 6697.55 16498.77 13893.04 23999.80 14297.93 21696.95 4599.61 5399.68 9590.92 16299.83 11899.18 5698.29 14999.80 96
alignmvs97.81 7397.33 8699.25 4498.77 13898.66 4999.99 598.44 12394.40 12398.41 12099.47 11693.65 9899.42 16298.57 9494.26 23099.67 115
fmvsm_s_conf0.5_n97.80 7497.85 6897.67 15799.06 11194.41 20199.98 1598.97 4097.34 2999.63 4499.69 8987.27 20799.97 5399.62 3799.06 12898.62 220
HPM-MVS_fast97.80 7497.50 7998.68 8899.79 6296.42 12699.88 10398.16 19591.75 22798.94 9399.54 11291.82 14999.65 14797.62 13899.99 2199.99 23
CS-MVS97.79 7697.91 6597.43 17199.10 10994.42 20099.99 597.10 29695.07 9899.68 3899.75 7192.95 11798.34 22898.38 10099.14 12499.54 145
HY-MVS92.50 797.79 7697.17 9499.63 1798.98 11899.32 997.49 33999.52 1595.69 8498.32 12597.41 24293.32 10599.77 12898.08 11595.75 20799.81 94
CNLPA97.76 7897.38 8398.92 7899.53 8796.84 11499.87 10698.14 19993.78 15296.55 17499.69 8992.28 13899.98 4397.13 14799.44 10999.93 76
test_fmvsmconf0.1_n97.74 7997.44 8198.64 9295.76 28596.20 13999.94 6998.05 20698.17 898.89 9699.42 12087.65 20299.90 9199.50 4199.60 9699.82 92
ACMMPcopyleft97.74 7997.44 8198.66 9099.92 3196.13 14399.18 24699.45 1994.84 10696.41 17999.71 8591.40 15199.99 3697.99 11998.03 15899.87 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_s_conf0.5_n_a97.73 8197.72 7197.77 15198.63 14694.26 20699.96 3598.92 4697.18 3999.75 3099.69 8987.00 21299.97 5399.46 4498.89 13199.08 197
DeepPCF-MVS95.94 297.71 8298.98 1293.92 28799.63 7981.76 37099.96 3598.56 9299.47 199.19 8499.99 194.16 84100.00 199.92 1299.93 60100.00 1
test_fmvsmvis_n_192097.67 8397.59 7897.91 14397.02 24395.34 17499.95 5398.45 11897.87 1597.02 16199.59 10689.64 18099.98 4399.41 4899.34 11698.42 224
CPTT-MVS97.64 8497.32 8798.58 9899.97 395.77 15399.96 3598.35 16589.90 27298.36 12399.79 5791.18 15799.99 3698.37 10199.99 2199.99 23
sss97.57 8597.03 9999.18 5098.37 16298.04 6799.73 16499.38 2393.46 16198.76 10499.06 15091.21 15399.89 9696.33 16397.01 18099.62 126
test250697.53 8697.19 9298.58 9898.66 14496.90 11398.81 28899.77 594.93 10197.95 13798.96 16392.51 13199.20 16994.93 18598.15 15199.64 121
EIA-MVS97.53 8697.46 8097.76 15398.04 18694.84 19199.98 1597.61 24394.41 12297.90 13999.59 10692.40 13598.87 18498.04 11699.13 12599.59 132
testing1197.48 8897.27 8898.10 12998.36 16396.02 14699.92 7998.45 11893.45 16398.15 13398.70 18995.48 4599.22 16597.85 12795.05 22099.07 198
xiu_mvs_v1_base_debu97.43 8997.06 9598.55 10097.74 20398.14 6299.31 23297.86 22596.43 6499.62 4799.69 8985.56 22499.68 14299.05 6098.31 14697.83 234
xiu_mvs_v1_base97.43 8997.06 9598.55 10097.74 20398.14 6299.31 23297.86 22596.43 6499.62 4799.69 8985.56 22499.68 14299.05 6098.31 14697.83 234
xiu_mvs_v1_base_debi97.43 8997.06 9598.55 10097.74 20398.14 6299.31 23297.86 22596.43 6499.62 4799.69 8985.56 22499.68 14299.05 6098.31 14697.83 234
MAR-MVS97.43 8997.19 9298.15 12799.47 9294.79 19499.05 26298.76 6392.65 19298.66 11099.82 4688.52 19799.98 4398.12 11199.63 8999.67 115
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
dcpmvs_297.42 9398.09 5495.42 22999.58 8587.24 33999.23 24296.95 31294.28 12998.93 9499.73 8094.39 7499.16 17499.89 1699.82 7799.86 89
thisisatest051597.41 9497.02 10098.59 9797.71 21097.52 8799.97 2898.54 10191.83 22397.45 15099.04 15197.50 899.10 17694.75 19396.37 19299.16 189
114514_t97.41 9496.83 10699.14 5999.51 9097.83 7599.89 9998.27 18188.48 29999.06 8899.66 9890.30 17399.64 14896.32 16499.97 4299.96 64
EC-MVSNet97.38 9697.24 8997.80 14697.41 22595.64 16299.99 597.06 30194.59 11499.63 4499.32 13089.20 19098.14 24498.76 8399.23 12199.62 126
fmvsm_s_conf0.1_n97.30 9797.21 9197.60 16397.38 22794.40 20399.90 9198.64 7696.47 6399.51 6299.65 10084.99 23299.93 8599.22 5599.09 12798.46 222
OMC-MVS97.28 9897.23 9097.41 17299.76 6693.36 23499.65 18197.95 21496.03 7797.41 15199.70 8789.61 18199.51 15296.73 16098.25 15099.38 166
PVSNet_Blended_VisFu97.27 9996.81 10798.66 9098.81 13596.67 11999.92 7998.64 7694.51 11696.38 18098.49 20889.05 19199.88 10297.10 14998.34 14499.43 162
jason97.24 10096.86 10598.38 11695.73 28897.32 9799.97 2897.40 26795.34 9498.60 11499.54 11287.70 20198.56 20597.94 12299.47 10599.25 184
jason: jason.
AdaColmapbinary97.23 10196.80 10898.51 10699.99 195.60 16499.09 25198.84 5893.32 16696.74 16999.72 8386.04 221100.00 198.01 11799.43 11199.94 74
VNet97.21 10296.57 11899.13 6398.97 11997.82 7699.03 26599.21 2994.31 12799.18 8598.88 17486.26 22099.89 9698.93 6994.32 22899.69 110
testing9997.17 10396.91 10297.95 13898.35 16595.70 15899.91 8498.43 13192.94 17697.36 15298.72 18794.83 6199.21 16697.00 15194.64 22298.95 203
testing9197.16 10496.90 10397.97 13798.35 16595.67 16199.91 8498.42 14392.91 17897.33 15398.72 18794.81 6299.21 16696.98 15394.63 22399.03 200
PVSNet91.05 1397.13 10596.69 11398.45 11099.52 8895.81 15199.95 5399.65 1294.73 10999.04 8999.21 14184.48 23699.95 6994.92 18698.74 13799.58 138
thisisatest053097.10 10696.72 11198.22 12297.60 21696.70 11899.92 7998.54 10191.11 24797.07 16098.97 16197.47 1199.03 17893.73 21996.09 19598.92 204
CSCG97.10 10697.04 9897.27 18199.89 4591.92 26599.90 9199.07 3488.67 29595.26 20199.82 4693.17 11299.98 4398.15 11099.47 10599.90 83
fmvsm_s_conf0.1_n_a97.09 10896.90 10397.63 16195.65 29494.21 20899.83 13398.50 11296.27 7299.65 4199.64 10184.72 23399.93 8599.04 6398.84 13498.74 215
canonicalmvs97.09 10896.32 12499.39 4098.93 12398.95 2799.72 16797.35 27094.45 11797.88 14199.42 12086.71 21499.52 15198.48 9793.97 23499.72 107
testing22297.08 11096.75 11098.06 13398.56 14996.82 11599.85 12198.61 8292.53 20098.84 9798.84 18393.36 10298.30 23295.84 17294.30 22999.05 199
ETVMVS97.03 11196.64 11498.20 12398.67 14397.12 10599.89 9998.57 8991.10 24898.17 13298.59 19993.86 9398.19 24295.64 17595.24 21899.28 181
diffmvspermissive97.00 11296.64 11498.09 13197.64 21496.17 14299.81 13897.19 28594.67 11398.95 9299.28 13186.43 21798.76 19298.37 10197.42 16999.33 174
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
thres20096.96 11396.21 12799.22 4698.97 11998.84 3599.85 12199.71 793.17 17196.26 18298.88 17489.87 17899.51 15294.26 20494.91 22199.31 176
MVSFormer96.94 11496.60 11697.95 13897.28 23697.70 8199.55 19997.27 28091.17 24499.43 6799.54 11290.92 16296.89 30994.67 19699.62 9099.25 184
F-COLMAP96.93 11596.95 10196.87 19199.71 7591.74 27099.85 12197.95 21493.11 17395.72 19499.16 14592.35 13699.94 7795.32 17899.35 11598.92 204
DeepC-MVS94.51 496.92 11696.40 12398.45 11099.16 10795.90 14999.66 17998.06 20496.37 7094.37 21099.49 11583.29 24699.90 9197.63 13799.61 9499.55 141
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tttt051796.85 11796.49 12097.92 14197.48 22395.89 15099.85 12198.54 10190.72 25996.63 17198.93 17297.47 1199.02 17993.03 23195.76 20698.85 208
131496.84 11895.96 13899.48 3496.74 26198.52 5698.31 31898.86 5395.82 8089.91 26398.98 15987.49 20499.96 6197.80 12899.73 8399.96 64
CHOSEN 1792x268896.81 11996.53 11997.64 15998.91 12993.07 23699.65 18199.80 395.64 8595.39 19898.86 17984.35 23999.90 9196.98 15399.16 12399.95 71
UWE-MVS96.79 12096.72 11197.00 18698.51 15693.70 22299.71 16998.60 8492.96 17597.09 15898.34 21796.67 2798.85 18692.11 24096.50 18898.44 223
tfpn200view996.79 12095.99 13299.19 4998.94 12198.82 3699.78 14599.71 792.86 17996.02 18798.87 17789.33 18599.50 15493.84 21194.57 22499.27 182
thres40096.78 12295.99 13299.16 5598.94 12198.82 3699.78 14599.71 792.86 17996.02 18798.87 17789.33 18599.50 15493.84 21194.57 22499.16 189
CANet_DTU96.76 12396.15 12898.60 9598.78 13797.53 8699.84 12697.63 23897.25 3799.20 8299.64 10181.36 25999.98 4392.77 23498.89 13198.28 227
PMMVS96.76 12396.76 10996.76 19498.28 17092.10 26099.91 8497.98 21194.12 13599.53 5899.39 12586.93 21398.73 19496.95 15697.73 16199.45 159
thres100view90096.74 12595.92 14399.18 5098.90 13098.77 4099.74 15999.71 792.59 19695.84 19098.86 17989.25 18799.50 15493.84 21194.57 22499.27 182
TESTMET0.1,196.74 12596.26 12598.16 12497.36 22996.48 12499.96 3598.29 17891.93 22095.77 19398.07 22495.54 4298.29 23390.55 26698.89 13199.70 108
baseline296.71 12796.49 12097.37 17595.63 29695.96 14899.74 15998.88 5192.94 17691.61 24398.97 16197.72 698.62 20394.83 19098.08 15797.53 244
thres600view796.69 12895.87 14699.14 5998.90 13098.78 3999.74 15999.71 792.59 19695.84 19098.86 17989.25 18799.50 15493.44 22394.50 22799.16 189
EPP-MVSNet96.69 12896.60 11696.96 18897.74 20393.05 23899.37 22598.56 9288.75 29395.83 19299.01 15496.01 3298.56 20596.92 15797.20 17499.25 184
HyFIR lowres test96.66 13096.43 12297.36 17799.05 11293.91 21799.70 17399.80 390.54 26196.26 18298.08 22392.15 14198.23 24096.84 15995.46 21199.93 76
MVS96.60 13195.56 15499.72 1396.85 25499.22 2098.31 31898.94 4191.57 23090.90 25299.61 10586.66 21599.96 6197.36 14199.88 6999.99 23
test_cas_vis1_n_192096.59 13296.23 12697.65 15898.22 17494.23 20799.99 597.25 28297.77 1799.58 5499.08 14877.10 29699.97 5397.64 13699.45 10898.74 215
UA-Net96.54 13395.96 13898.27 12098.23 17395.71 15798.00 33298.45 11893.72 15598.41 12099.27 13488.71 19699.66 14691.19 25197.69 16299.44 161
EPMVS96.53 13496.01 13198.09 13198.43 16096.12 14596.36 36099.43 2193.53 15997.64 14595.04 32694.41 7098.38 22491.13 25298.11 15499.75 103
test-LLR96.47 13596.04 13097.78 14997.02 24395.44 16999.96 3598.21 18694.07 13895.55 19596.38 27693.90 9198.27 23790.42 26998.83 13599.64 121
MVS_Test96.46 13695.74 14898.61 9498.18 17897.23 9999.31 23297.15 29191.07 24998.84 9797.05 25588.17 19998.97 18094.39 20097.50 16699.61 129
casdiffmvs_mvgpermissive96.43 13795.94 14197.89 14597.44 22495.47 16899.86 11897.29 27893.35 16496.03 18699.19 14285.39 22798.72 19697.89 12697.04 17899.49 155
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline96.43 13795.98 13497.76 15397.34 23095.17 18499.51 20597.17 28893.92 14896.90 16499.28 13185.37 22898.64 20297.50 13996.86 18499.46 157
casdiffmvspermissive96.42 13995.97 13797.77 15197.30 23494.98 18799.84 12697.09 29893.75 15496.58 17399.26 13785.07 23098.78 19097.77 13397.04 17899.54 145
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf0.01_n96.39 14095.74 14898.32 11891.47 36495.56 16599.84 12697.30 27697.74 1897.89 14099.35 12979.62 27899.85 10899.25 5499.24 12099.55 141
test-mter96.39 14095.93 14297.78 14997.02 24395.44 16999.96 3598.21 18691.81 22595.55 19596.38 27695.17 4998.27 23790.42 26998.83 13599.64 121
CDS-MVSNet96.34 14296.07 12997.13 18397.37 22894.96 18899.53 20297.91 22091.55 23195.37 19998.32 21895.05 5497.13 29293.80 21595.75 20799.30 178
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Vis-MVSNet (Re-imp)96.32 14395.98 13497.35 17897.93 19194.82 19299.47 21298.15 19891.83 22395.09 20299.11 14691.37 15297.47 27393.47 22297.43 16799.74 104
3Dnovator+91.53 1196.31 14495.24 16399.52 2896.88 25398.64 5299.72 16798.24 18395.27 9688.42 30298.98 15982.76 24899.94 7797.10 14999.83 7399.96 64
Effi-MVS+96.30 14595.69 15098.16 12497.85 19696.26 13497.41 34197.21 28490.37 26498.65 11198.58 20286.61 21698.70 19897.11 14897.37 17199.52 149
IS-MVSNet96.29 14695.90 14497.45 16998.13 18294.80 19399.08 25397.61 24392.02 21995.54 19798.96 16390.64 16898.08 24793.73 21997.41 17099.47 156
3Dnovator91.47 1296.28 14795.34 16099.08 6596.82 25697.47 9399.45 21598.81 6095.52 9089.39 27799.00 15681.97 25299.95 6997.27 14399.83 7399.84 90
tpmrst96.27 14895.98 13497.13 18397.96 18993.15 23596.34 36198.17 19192.07 21598.71 10895.12 32493.91 9098.73 19494.91 18896.62 18599.50 153
iter_conf05_1196.12 14995.46 15598.10 12998.62 14795.52 167100.00 196.30 34896.54 6099.81 1599.80 5169.19 34699.10 17698.92 7099.91 6699.68 111
CostFormer96.10 15095.88 14596.78 19397.03 24292.55 25297.08 34997.83 22890.04 27198.72 10794.89 33395.01 5698.29 23396.54 16295.77 20599.50 153
iter_conf0596.07 15195.95 14096.44 20598.43 16097.52 8799.91 8496.85 32394.16 13392.49 23697.98 22998.20 497.34 27797.26 14488.29 27294.45 270
PVSNet_BlendedMVS96.05 15295.82 14796.72 19699.59 8196.99 10999.95 5399.10 3194.06 14098.27 12795.80 29189.00 19299.95 6999.12 5887.53 28493.24 342
PatchMatch-RL96.04 15395.40 15797.95 13899.59 8195.22 18199.52 20399.07 3493.96 14596.49 17598.35 21682.28 25099.82 12090.15 27499.22 12298.81 211
1112_ss96.01 15495.20 16598.42 11397.80 19996.41 12799.65 18196.66 33592.71 18792.88 22999.40 12392.16 14099.30 16391.92 24393.66 23599.55 141
PatchmatchNetpermissive95.94 15595.45 15697.39 17497.83 19794.41 20196.05 36798.40 15292.86 17997.09 15895.28 32194.21 8298.07 24989.26 28298.11 15499.70 108
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
FA-MVS(test-final)95.86 15695.09 16998.15 12797.74 20395.62 16396.31 36298.17 19191.42 23996.26 18296.13 28590.56 16999.47 16092.18 23997.07 17699.35 171
TAMVS95.85 15795.58 15396.65 19997.07 24093.50 22899.17 24797.82 22991.39 24195.02 20398.01 22592.20 13997.30 28193.75 21895.83 20499.14 192
LS3D95.84 15895.11 16898.02 13599.85 5495.10 18598.74 29398.50 11287.22 31693.66 21999.86 2687.45 20599.95 6990.94 25899.81 7999.02 201
baseline195.78 15994.86 17598.54 10398.47 15998.07 6599.06 25897.99 20992.68 19094.13 21598.62 19893.28 10898.69 19993.79 21685.76 29398.84 209
Test_1112_low_res95.72 16094.83 17698.42 11397.79 20096.41 12799.65 18196.65 33692.70 18892.86 23096.13 28592.15 14199.30 16391.88 24493.64 23699.55 141
Vis-MVSNetpermissive95.72 16095.15 16797.45 16997.62 21594.28 20599.28 23898.24 18394.27 13196.84 16698.94 17079.39 28098.76 19293.25 22498.49 14199.30 178
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPNet_dtu95.71 16295.39 15896.66 19898.92 12593.41 23199.57 19598.90 4796.19 7597.52 14798.56 20492.65 12597.36 27577.89 36398.33 14599.20 187
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-w/o95.71 16295.38 15996.68 19798.49 15892.28 25699.84 12697.50 25792.12 21492.06 24198.79 18484.69 23498.67 20195.29 17999.66 8799.09 195
FE-MVS95.70 16495.01 17297.79 14898.21 17594.57 19695.03 37498.69 6888.90 29097.50 14996.19 28292.60 12899.49 15889.99 27697.94 16099.31 176
ECVR-MVScopyleft95.66 16595.05 17097.51 16798.66 14493.71 22198.85 28598.45 11894.93 10196.86 16598.96 16375.22 31999.20 16995.34 17798.15 15199.64 121
mvs_anonymous95.65 16695.03 17197.53 16598.19 17795.74 15599.33 22997.49 25890.87 25390.47 25697.10 25188.23 19897.16 28995.92 17097.66 16499.68 111
test111195.57 16794.98 17397.37 17598.56 14993.37 23398.86 28398.45 11894.95 10096.63 17198.95 16875.21 32099.11 17595.02 18398.14 15399.64 121
MVSTER95.53 16895.22 16496.45 20398.56 14997.72 7899.91 8497.67 23692.38 20891.39 24597.14 24997.24 1797.30 28194.80 19187.85 27994.34 280
tpm295.47 16995.18 16696.35 20996.91 24991.70 27496.96 35297.93 21688.04 30698.44 11995.40 31093.32 10597.97 25394.00 20795.61 20999.38 166
test_vis1_n_192095.44 17095.31 16195.82 22098.50 15788.74 32299.98 1597.30 27697.84 1699.85 999.19 14266.82 35899.97 5398.82 7999.46 10798.76 213
QAPM95.40 17194.17 19099.10 6496.92 24897.71 7999.40 21898.68 7089.31 27888.94 29098.89 17382.48 24999.96 6193.12 23099.83 7399.62 126
test_fmvs195.35 17295.68 15294.36 27298.99 11784.98 35299.96 3596.65 33697.60 2299.73 3398.96 16371.58 33699.93 8598.31 10499.37 11498.17 228
UGNet95.33 17394.57 18197.62 16298.55 15294.85 19098.67 30199.32 2695.75 8396.80 16896.27 28072.18 33399.96 6194.58 19899.05 12998.04 232
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
BH-untuned95.18 17494.83 17696.22 21198.36 16391.22 28299.80 14297.32 27490.91 25291.08 24998.67 19183.51 24398.54 20794.23 20599.61 9498.92 204
BH-RMVSNet95.18 17494.31 18797.80 14698.17 17995.23 18099.76 15397.53 25392.52 20294.27 21399.25 13876.84 30198.80 18890.89 26099.54 9999.35 171
PCF-MVS94.20 595.18 17494.10 19198.43 11298.55 15295.99 14797.91 33497.31 27590.35 26589.48 27699.22 14085.19 22999.89 9690.40 27198.47 14299.41 164
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
dp95.05 17794.43 18396.91 18997.99 18892.73 24696.29 36397.98 21189.70 27595.93 18994.67 33993.83 9598.45 21386.91 31496.53 18799.54 145
Fast-Effi-MVS+95.02 17894.19 18997.52 16697.88 19394.55 19799.97 2897.08 29988.85 29294.47 20997.96 23084.59 23598.41 21689.84 27897.10 17599.59 132
IB-MVS92.85 694.99 17993.94 19698.16 12497.72 20895.69 16099.99 598.81 6094.28 12992.70 23196.90 25995.08 5299.17 17396.07 16773.88 36999.60 131
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
h-mvs3394.92 18094.36 18496.59 20098.85 13391.29 28198.93 27498.94 4195.90 7898.77 10298.42 21590.89 16599.77 12897.80 12870.76 37498.72 217
XVG-OURS94.82 18194.74 17995.06 24198.00 18789.19 31799.08 25397.55 24994.10 13694.71 20599.62 10480.51 27199.74 13496.04 16893.06 24396.25 252
SDMVSNet94.80 18293.96 19597.33 17998.92 12595.42 17199.59 19198.99 3792.41 20692.55 23497.85 23275.81 31398.93 18397.90 12591.62 24597.64 239
ADS-MVSNet94.79 18394.02 19397.11 18597.87 19493.79 21894.24 37598.16 19590.07 26996.43 17794.48 34490.29 17498.19 24287.44 30197.23 17299.36 169
XVG-OURS-SEG-HR94.79 18394.70 18095.08 24098.05 18589.19 31799.08 25397.54 25193.66 15694.87 20499.58 10878.78 28799.79 12397.31 14293.40 23896.25 252
OpenMVScopyleft90.15 1594.77 18593.59 20598.33 11796.07 27397.48 9299.56 19798.57 8990.46 26286.51 32598.95 16878.57 29099.94 7793.86 21099.74 8297.57 243
LFMVS94.75 18693.56 20798.30 11999.03 11395.70 15898.74 29397.98 21187.81 30998.47 11899.39 12567.43 35699.53 15098.01 11795.20 21999.67 115
SCA94.69 18793.81 20097.33 17997.10 23994.44 19898.86 28398.32 17293.30 16796.17 18595.59 30076.48 30697.95 25691.06 25497.43 16799.59 132
ab-mvs94.69 18793.42 21198.51 10698.07 18496.26 13496.49 35898.68 7090.31 26694.54 20697.00 25776.30 30899.71 13895.98 16993.38 23999.56 140
CVMVSNet94.68 18994.94 17493.89 29096.80 25786.92 34299.06 25898.98 3894.45 11794.23 21499.02 15285.60 22395.31 35690.91 25995.39 21499.43 162
cascas94.64 19093.61 20297.74 15597.82 19896.26 13499.96 3597.78 23185.76 33494.00 21697.54 23976.95 30099.21 16697.23 14595.43 21397.76 238
HQP-MVS94.61 19194.50 18294.92 24695.78 28191.85 26699.87 10697.89 22196.82 4893.37 22198.65 19480.65 26998.39 22097.92 12389.60 24994.53 260
TR-MVS94.54 19293.56 20797.49 16897.96 18994.34 20498.71 29697.51 25690.30 26794.51 20898.69 19075.56 31498.77 19192.82 23395.99 19799.35 171
DP-MVS94.54 19293.42 21197.91 14399.46 9494.04 21298.93 27497.48 25981.15 36690.04 26099.55 11087.02 21199.95 6988.97 28498.11 15499.73 105
Effi-MVS+-dtu94.53 19495.30 16292.22 32397.77 20182.54 36399.59 19197.06 30194.92 10395.29 20095.37 31485.81 22297.89 25994.80 19197.07 17696.23 254
HQP_MVS94.49 19594.36 18494.87 24795.71 29191.74 27099.84 12697.87 22396.38 6793.01 22598.59 19980.47 27398.37 22697.79 13189.55 25294.52 262
myMVS_eth3d94.46 19694.76 17893.55 30197.68 21190.97 28499.71 16998.35 16590.79 25692.10 23998.67 19192.46 13493.09 37787.13 30795.95 20096.59 250
TAPA-MVS92.12 894.42 19793.60 20496.90 19099.33 9891.78 26999.78 14598.00 20889.89 27394.52 20799.47 11691.97 14599.18 17269.90 38099.52 10099.73 105
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
hse-mvs294.38 19894.08 19295.31 23498.27 17190.02 30899.29 23798.56 9295.90 7898.77 10298.00 22690.89 16598.26 23997.80 12869.20 38097.64 239
ET-MVSNet_ETH3D94.37 19993.28 21797.64 15998.30 16797.99 6999.99 597.61 24394.35 12471.57 38599.45 11996.23 3195.34 35596.91 15885.14 30099.59 132
MSDG94.37 19993.36 21597.40 17398.88 13293.95 21699.37 22597.38 26885.75 33690.80 25399.17 14484.11 24199.88 10286.35 31598.43 14398.36 226
GeoE94.36 20193.48 20996.99 18797.29 23593.54 22799.96 3596.72 33388.35 30293.43 22098.94 17082.05 25198.05 25088.12 29696.48 19099.37 168
miper_enhance_ethall94.36 20193.98 19495.49 22598.68 14295.24 17999.73 16497.29 27893.28 16889.86 26595.97 28994.37 7597.05 29892.20 23884.45 30594.19 289
tpmvs94.28 20393.57 20696.40 20698.55 15291.50 27995.70 37398.55 9887.47 31192.15 23894.26 34891.42 15098.95 18288.15 29495.85 20398.76 213
test_fmvs1_n94.25 20494.36 18493.92 28797.68 21183.70 35899.90 9196.57 33997.40 2899.67 3998.88 17461.82 37499.92 8898.23 10699.13 12598.14 231
bld_raw_dy_0_6494.22 20592.97 22297.98 13698.62 14795.09 18699.89 9993.09 38996.55 5992.59 23299.80 5168.57 35099.19 17198.92 7088.69 26499.68 111
FIs94.10 20693.43 21096.11 21394.70 30996.82 11599.58 19398.93 4592.54 19989.34 27997.31 24587.62 20397.10 29594.22 20686.58 28994.40 272
mvsmamba94.10 20693.72 20195.25 23693.57 32794.13 21099.67 17896.45 34493.63 15891.34 24797.77 23586.29 21997.22 28796.65 16188.10 27694.40 272
CLD-MVS94.06 20893.90 19794.55 26196.02 27590.69 29199.98 1597.72 23296.62 5891.05 25198.85 18277.21 29598.47 20998.11 11289.51 25494.48 264
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
testing393.92 20994.23 18892.99 31597.54 21890.23 30299.99 599.16 3090.57 26091.33 24898.63 19792.99 11592.52 38182.46 34095.39 21496.22 255
test0.0.03 193.86 21093.61 20294.64 25595.02 30592.18 25999.93 7698.58 8794.07 13887.96 30698.50 20793.90 9194.96 36081.33 34793.17 24096.78 247
X-MVStestdata93.83 21192.06 24499.15 5799.94 1397.50 9099.94 6998.42 14396.22 7399.41 6941.37 40794.34 7699.96 6198.92 7099.95 4999.99 23
GA-MVS93.83 21192.84 22596.80 19295.73 28893.57 22599.88 10397.24 28392.57 19892.92 22796.66 26878.73 28897.67 26787.75 29994.06 23399.17 188
FC-MVSNet-test93.81 21393.15 21995.80 22194.30 31696.20 13999.42 21798.89 4992.33 21089.03 28997.27 24787.39 20696.83 31393.20 22586.48 29094.36 276
ADS-MVSNet293.80 21493.88 19893.55 30197.87 19485.94 34694.24 37596.84 32490.07 26996.43 17794.48 34490.29 17495.37 35487.44 30197.23 17299.36 169
cl2293.77 21593.25 21895.33 23399.49 9194.43 19999.61 18998.09 20190.38 26389.16 28795.61 29890.56 16997.34 27791.93 24284.45 30594.21 288
VDD-MVS93.77 21592.94 22396.27 21098.55 15290.22 30398.77 29297.79 23090.85 25496.82 16799.42 12061.18 37799.77 12898.95 6794.13 23198.82 210
EI-MVSNet93.73 21793.40 21494.74 25196.80 25792.69 24799.06 25897.67 23688.96 28791.39 24599.02 15288.75 19597.30 28191.07 25387.85 27994.22 286
Fast-Effi-MVS+-dtu93.72 21893.86 19993.29 30697.06 24186.16 34499.80 14296.83 32592.66 19192.58 23397.83 23481.39 25897.67 26789.75 27996.87 18396.05 257
tpm93.70 21993.41 21394.58 25995.36 30087.41 33897.01 35096.90 31990.85 25496.72 17094.14 34990.40 17296.84 31290.75 26388.54 26999.51 151
PS-MVSNAJss93.64 22093.31 21694.61 25692.11 35592.19 25899.12 24997.38 26892.51 20388.45 29796.99 25891.20 15497.29 28494.36 20187.71 28194.36 276
test_vis1_n93.61 22193.03 22195.35 23195.86 28086.94 34199.87 10696.36 34696.85 4699.54 5798.79 18452.41 38799.83 11898.64 9198.97 13099.29 180
sd_testset93.55 22292.83 22695.74 22298.92 12590.89 28998.24 32198.85 5692.41 20692.55 23497.85 23271.07 34198.68 20093.93 20891.62 24597.64 239
gg-mvs-nofinetune93.51 22391.86 24998.47 10897.72 20897.96 7292.62 38398.51 10774.70 38597.33 15369.59 39898.91 397.79 26297.77 13399.56 9899.67 115
nrg03093.51 22392.53 23696.45 20394.36 31497.20 10099.81 13897.16 29091.60 22989.86 26597.46 24086.37 21897.68 26695.88 17180.31 33994.46 265
tpm cat193.51 22392.52 23796.47 20197.77 20191.47 28096.13 36598.06 20480.98 36792.91 22893.78 35289.66 17998.87 18487.03 31096.39 19199.09 195
CR-MVSNet93.45 22692.62 23195.94 21696.29 26792.66 24892.01 38696.23 34992.62 19396.94 16293.31 35791.04 15996.03 34579.23 35695.96 19899.13 193
AUN-MVS93.28 22792.60 23295.34 23298.29 16890.09 30699.31 23298.56 9291.80 22696.35 18198.00 22689.38 18498.28 23592.46 23569.22 37997.64 239
OPM-MVS93.21 22892.80 22794.44 26893.12 33890.85 29099.77 14897.61 24396.19 7591.56 24498.65 19475.16 32198.47 20993.78 21789.39 25593.99 311
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
dmvs_re93.20 22993.15 21993.34 30496.54 26583.81 35798.71 29698.51 10791.39 24192.37 23798.56 20478.66 28997.83 26193.89 20989.74 24898.38 225
miper_ehance_all_eth93.16 23092.60 23294.82 25097.57 21793.56 22699.50 20797.07 30088.75 29388.85 29295.52 30490.97 16196.74 31690.77 26284.45 30594.17 290
RRT_MVS93.14 23192.92 22493.78 29293.31 33490.04 30799.66 17997.69 23492.53 20088.91 29197.76 23684.36 23796.93 30795.10 18186.99 28794.37 275
VDDNet93.12 23291.91 24796.76 19496.67 26492.65 25098.69 29998.21 18682.81 35997.75 14499.28 13161.57 37599.48 15998.09 11494.09 23298.15 229
Anonymous20240521193.10 23391.99 24596.40 20699.10 10989.65 31498.88 27997.93 21683.71 35394.00 21698.75 18668.79 34799.88 10295.08 18291.71 24499.68 111
UniMVSNet (Re)93.07 23492.13 24195.88 21794.84 30696.24 13899.88 10398.98 3892.49 20489.25 28195.40 31087.09 21097.14 29193.13 22978.16 35094.26 283
LPG-MVS_test92.96 23592.71 23093.71 29595.43 29888.67 32499.75 15697.62 24092.81 18290.05 25898.49 20875.24 31798.40 21895.84 17289.12 25694.07 303
UniMVSNet_NR-MVSNet92.95 23692.11 24295.49 22594.61 31195.28 17799.83 13399.08 3391.49 23289.21 28496.86 26287.14 20996.73 31793.20 22577.52 35594.46 265
WB-MVSnew92.90 23792.77 22993.26 30896.95 24793.63 22499.71 16998.16 19591.49 23294.28 21298.14 22181.33 26096.48 32679.47 35595.46 21189.68 378
ACMM91.95 1092.88 23892.52 23793.98 28695.75 28789.08 32099.77 14897.52 25593.00 17489.95 26297.99 22876.17 31098.46 21293.63 22188.87 26094.39 274
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_djsdf92.83 23992.29 24094.47 26691.90 35892.46 25399.55 19997.27 28091.17 24489.96 26196.07 28881.10 26296.89 30994.67 19688.91 25894.05 305
D2MVS92.76 24092.59 23593.27 30795.13 30189.54 31699.69 17499.38 2392.26 21187.59 31094.61 34185.05 23197.79 26291.59 24788.01 27792.47 355
ACMP92.05 992.74 24192.42 23993.73 29395.91 27988.72 32399.81 13897.53 25394.13 13487.00 31998.23 21974.07 32798.47 20996.22 16688.86 26193.99 311
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
VPA-MVSNet92.70 24291.55 25496.16 21295.09 30296.20 13998.88 27999.00 3691.02 25191.82 24295.29 32076.05 31297.96 25595.62 17681.19 32794.30 281
FMVSNet392.69 24391.58 25295.99 21598.29 16897.42 9599.26 24097.62 24089.80 27489.68 26995.32 31681.62 25796.27 33587.01 31185.65 29494.29 282
IterMVS-LS92.69 24392.11 24294.43 27096.80 25792.74 24499.45 21596.89 32088.98 28589.65 27295.38 31388.77 19496.34 33290.98 25782.04 32194.22 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmatch-test92.65 24591.50 25596.10 21496.85 25490.49 29791.50 38897.19 28582.76 36090.23 25795.59 30095.02 5598.00 25277.41 36596.98 18199.82 92
c3_l92.53 24691.87 24894.52 26297.40 22692.99 24099.40 21896.93 31787.86 30788.69 29595.44 30889.95 17796.44 32890.45 26880.69 33694.14 299
AllTest92.48 24791.64 25095.00 24399.01 11488.43 32898.94 27396.82 32786.50 32588.71 29398.47 21274.73 32399.88 10285.39 32296.18 19396.71 248
DU-MVS92.46 24891.45 25795.49 22594.05 31995.28 17799.81 13898.74 6492.25 21289.21 28496.64 27081.66 25596.73 31793.20 22577.52 35594.46 265
eth_miper_zixun_eth92.41 24991.93 24693.84 29197.28 23690.68 29298.83 28696.97 31188.57 29889.19 28695.73 29589.24 18996.69 31989.97 27781.55 32494.15 296
DIV-MVS_self_test92.32 25091.60 25194.47 26697.31 23392.74 24499.58 19396.75 33186.99 32087.64 30995.54 30289.55 18296.50 32588.58 28882.44 31894.17 290
cl____92.31 25191.58 25294.52 26297.33 23292.77 24299.57 19596.78 33086.97 32187.56 31195.51 30589.43 18396.62 32188.60 28782.44 31894.16 295
LCM-MVSNet-Re92.31 25192.60 23291.43 33097.53 21979.27 38099.02 26691.83 39492.07 21580.31 36094.38 34783.50 24495.48 35297.22 14697.58 16599.54 145
WR-MVS92.31 25191.25 25995.48 22894.45 31395.29 17699.60 19098.68 7090.10 26888.07 30596.89 26080.68 26896.80 31593.14 22879.67 34394.36 276
COLMAP_ROBcopyleft90.47 1492.18 25491.49 25694.25 27599.00 11688.04 33498.42 31596.70 33482.30 36288.43 30099.01 15476.97 29999.85 10886.11 31896.50 18894.86 259
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2024052992.10 25590.65 26696.47 20198.82 13490.61 29498.72 29598.67 7375.54 38293.90 21898.58 20266.23 36099.90 9194.70 19590.67 24798.90 207
pmmvs492.10 25591.07 26295.18 23892.82 34694.96 18899.48 21196.83 32587.45 31288.66 29696.56 27483.78 24296.83 31389.29 28184.77 30393.75 327
jajsoiax91.92 25791.18 26094.15 27691.35 36590.95 28799.00 26797.42 26492.61 19487.38 31597.08 25272.46 33297.36 27594.53 19988.77 26294.13 300
XXY-MVS91.82 25890.46 26995.88 21793.91 32295.40 17398.87 28297.69 23488.63 29787.87 30797.08 25274.38 32697.89 25991.66 24684.07 30994.35 279
miper_lstm_enhance91.81 25991.39 25893.06 31497.34 23089.18 31999.38 22396.79 32986.70 32487.47 31395.22 32290.00 17695.86 34988.26 29281.37 32694.15 296
mvs_tets91.81 25991.08 26194.00 28491.63 36290.58 29598.67 30197.43 26292.43 20587.37 31697.05 25571.76 33497.32 28094.75 19388.68 26594.11 301
VPNet91.81 25990.46 26995.85 21994.74 30895.54 16698.98 26898.59 8692.14 21390.77 25497.44 24168.73 34997.54 27194.89 18977.89 35294.46 265
RPSCF91.80 26292.79 22888.83 35098.15 18069.87 38898.11 32896.60 33883.93 35194.33 21199.27 13479.60 27999.46 16191.99 24193.16 24197.18 246
PVSNet_088.03 1991.80 26290.27 27596.38 20898.27 17190.46 29899.94 6999.61 1493.99 14386.26 33197.39 24471.13 34099.89 9698.77 8267.05 38598.79 212
anonymousdsp91.79 26490.92 26394.41 27190.76 37092.93 24198.93 27497.17 28889.08 28087.46 31495.30 31778.43 29396.92 30892.38 23688.73 26393.39 338
JIA-IIPM91.76 26590.70 26594.94 24596.11 27287.51 33793.16 38298.13 20075.79 38197.58 14677.68 39592.84 12097.97 25388.47 29196.54 18699.33 174
TranMVSNet+NR-MVSNet91.68 26690.61 26894.87 24793.69 32693.98 21599.69 17498.65 7491.03 25088.44 29896.83 26680.05 27696.18 33890.26 27376.89 36394.45 270
NR-MVSNet91.56 26790.22 27695.60 22394.05 31995.76 15498.25 32098.70 6791.16 24680.78 35996.64 27083.23 24796.57 32391.41 24877.73 35494.46 265
v2v48291.30 26890.07 28295.01 24293.13 33693.79 21899.77 14897.02 30488.05 30589.25 28195.37 31480.73 26797.15 29087.28 30580.04 34294.09 302
WR-MVS_H91.30 26890.35 27294.15 27694.17 31892.62 25199.17 24798.94 4188.87 29186.48 32794.46 34684.36 23796.61 32288.19 29378.51 34893.21 343
tt080591.28 27090.18 27894.60 25796.26 26987.55 33698.39 31698.72 6589.00 28489.22 28398.47 21262.98 37198.96 18190.57 26588.00 27897.28 245
V4291.28 27090.12 28194.74 25193.42 33293.46 22999.68 17697.02 30487.36 31389.85 26795.05 32581.31 26197.34 27787.34 30480.07 34193.40 337
CP-MVSNet91.23 27290.22 27694.26 27493.96 32192.39 25599.09 25198.57 8988.95 28886.42 32896.57 27379.19 28396.37 33090.29 27278.95 34594.02 306
XVG-ACMP-BASELINE91.22 27390.75 26492.63 32093.73 32585.61 34798.52 30997.44 26192.77 18589.90 26496.85 26366.64 35998.39 22092.29 23788.61 26693.89 319
v114491.09 27489.83 28394.87 24793.25 33593.69 22399.62 18896.98 30986.83 32389.64 27394.99 33080.94 26497.05 29885.08 32581.16 32893.87 321
FMVSNet291.02 27589.56 28995.41 23097.53 21995.74 15598.98 26897.41 26687.05 31788.43 30095.00 32971.34 33796.24 33785.12 32485.21 29994.25 285
MVP-Stereo90.93 27690.45 27192.37 32291.25 36788.76 32198.05 33196.17 35187.27 31584.04 34295.30 31778.46 29297.27 28683.78 33399.70 8591.09 366
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
IterMVS90.91 27790.17 27993.12 31196.78 26090.42 30098.89 27797.05 30389.03 28286.49 32695.42 30976.59 30495.02 35887.22 30684.09 30893.93 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GBi-Net90.88 27889.82 28494.08 27997.53 21991.97 26198.43 31296.95 31287.05 31789.68 26994.72 33571.34 33796.11 34087.01 31185.65 29494.17 290
test190.88 27889.82 28494.08 27997.53 21991.97 26198.43 31296.95 31287.05 31789.68 26994.72 33571.34 33796.11 34087.01 31185.65 29494.17 290
IterMVS-SCA-FT90.85 28090.16 28092.93 31696.72 26289.96 30998.89 27796.99 30788.95 28886.63 32395.67 29676.48 30695.00 35987.04 30984.04 31193.84 323
v14419290.79 28189.52 29194.59 25893.11 33992.77 24299.56 19796.99 30786.38 32789.82 26894.95 33280.50 27297.10 29583.98 33180.41 33793.90 318
v14890.70 28289.63 28793.92 28792.97 34290.97 28499.75 15696.89 32087.51 31088.27 30395.01 32781.67 25497.04 30087.40 30377.17 36093.75 327
MS-PatchMatch90.65 28390.30 27491.71 32994.22 31785.50 34998.24 32197.70 23388.67 29586.42 32896.37 27867.82 35498.03 25183.62 33499.62 9091.60 363
ACMH89.72 1790.64 28489.63 28793.66 29995.64 29588.64 32698.55 30597.45 26089.03 28281.62 35497.61 23869.75 34498.41 21689.37 28087.62 28393.92 317
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PS-CasMVS90.63 28589.51 29293.99 28593.83 32391.70 27498.98 26898.52 10488.48 29986.15 33296.53 27575.46 31596.31 33488.83 28578.86 34793.95 314
v119290.62 28689.25 29694.72 25393.13 33693.07 23699.50 20797.02 30486.33 32889.56 27595.01 32779.22 28297.09 29782.34 34281.16 32894.01 308
v890.54 28789.17 29794.66 25493.43 33193.40 23299.20 24496.94 31685.76 33487.56 31194.51 34281.96 25397.19 28884.94 32678.25 34993.38 339
v192192090.46 28889.12 29894.50 26492.96 34392.46 25399.49 20996.98 30986.10 33089.61 27495.30 31778.55 29197.03 30282.17 34380.89 33594.01 308
our_test_390.39 28989.48 29493.12 31192.40 35189.57 31599.33 22996.35 34787.84 30885.30 33794.99 33084.14 24096.09 34380.38 35184.56 30493.71 332
PatchT90.38 29088.75 30695.25 23695.99 27690.16 30491.22 39097.54 25176.80 37797.26 15586.01 38991.88 14696.07 34466.16 38895.91 20299.51 151
ACMH+89.98 1690.35 29189.54 29092.78 31995.99 27686.12 34598.81 28897.18 28789.38 27783.14 34797.76 23668.42 35298.43 21489.11 28386.05 29293.78 326
Baseline_NR-MVSNet90.33 29289.51 29292.81 31892.84 34489.95 31099.77 14893.94 38484.69 34889.04 28895.66 29781.66 25596.52 32490.99 25676.98 36191.97 361
MIMVSNet90.30 29388.67 30795.17 23996.45 26691.64 27692.39 38497.15 29185.99 33190.50 25593.19 35966.95 35794.86 36282.01 34493.43 23799.01 202
LTVRE_ROB88.28 1890.29 29489.05 30194.02 28295.08 30390.15 30597.19 34597.43 26284.91 34683.99 34397.06 25474.00 32898.28 23584.08 32987.71 28193.62 333
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v1090.25 29588.82 30494.57 26093.53 32993.43 23099.08 25396.87 32285.00 34387.34 31794.51 34280.93 26597.02 30482.85 33879.23 34493.26 341
v124090.20 29688.79 30594.44 26893.05 34192.27 25799.38 22396.92 31885.89 33289.36 27894.87 33477.89 29497.03 30280.66 35081.08 33194.01 308
PEN-MVS90.19 29789.06 30093.57 30093.06 34090.90 28899.06 25898.47 11588.11 30485.91 33496.30 27976.67 30295.94 34887.07 30876.91 36293.89 319
pmmvs590.17 29889.09 29993.40 30392.10 35689.77 31399.74 15995.58 36385.88 33387.24 31895.74 29373.41 33096.48 32688.54 28983.56 31293.95 314
EU-MVSNet90.14 29990.34 27389.54 34592.55 34981.06 37498.69 29998.04 20791.41 24086.59 32496.84 26580.83 26693.31 37686.20 31681.91 32294.26 283
UniMVSNet_ETH3D90.06 30088.58 30894.49 26594.67 31088.09 33397.81 33797.57 24883.91 35288.44 29897.41 24257.44 38197.62 26991.41 24888.59 26897.77 237
Syy-MVS90.00 30190.63 26788.11 35797.68 21174.66 38599.71 16998.35 16590.79 25692.10 23998.67 19179.10 28593.09 37763.35 39195.95 20096.59 250
USDC90.00 30188.96 30293.10 31394.81 30788.16 33298.71 29695.54 36493.66 15683.75 34597.20 24865.58 36298.31 23183.96 33287.49 28592.85 349
Anonymous2023121189.86 30388.44 31094.13 27898.93 12390.68 29298.54 30798.26 18276.28 37886.73 32195.54 30270.60 34297.56 27090.82 26180.27 34094.15 296
OurMVSNet-221017-089.81 30489.48 29490.83 33591.64 36181.21 37298.17 32695.38 36791.48 23485.65 33697.31 24572.66 33197.29 28488.15 29484.83 30293.97 313
RPMNet89.76 30587.28 32097.19 18296.29 26792.66 24892.01 38698.31 17470.19 39196.94 16285.87 39087.25 20899.78 12562.69 39295.96 19899.13 193
Patchmtry89.70 30688.49 30993.33 30596.24 27089.94 31291.37 38996.23 34978.22 37587.69 30893.31 35791.04 15996.03 34580.18 35482.10 32094.02 306
v7n89.65 30788.29 31293.72 29492.22 35390.56 29699.07 25797.10 29685.42 34186.73 32194.72 33580.06 27597.13 29281.14 34878.12 35193.49 335
ppachtmachnet_test89.58 30888.35 31193.25 30992.40 35190.44 29999.33 22996.73 33285.49 33985.90 33595.77 29281.09 26396.00 34776.00 37182.49 31793.30 340
test_fmvs289.47 30989.70 28688.77 35394.54 31275.74 38299.83 13394.70 37794.71 11091.08 24996.82 26754.46 38497.78 26492.87 23288.27 27392.80 350
DTE-MVSNet89.40 31088.24 31392.88 31792.66 34889.95 31099.10 25098.22 18587.29 31485.12 33996.22 28176.27 30995.30 35783.56 33575.74 36693.41 336
pm-mvs189.36 31187.81 31794.01 28393.40 33391.93 26498.62 30496.48 34386.25 32983.86 34496.14 28473.68 32997.04 30086.16 31775.73 36793.04 346
tfpnnormal89.29 31287.61 31894.34 27394.35 31594.13 21098.95 27298.94 4183.94 35084.47 34195.51 30574.84 32297.39 27477.05 36880.41 33791.48 365
LF4IMVS89.25 31388.85 30390.45 33992.81 34781.19 37398.12 32794.79 37491.44 23686.29 33097.11 25065.30 36598.11 24688.53 29085.25 29892.07 358
testgi89.01 31488.04 31591.90 32793.49 33084.89 35399.73 16495.66 36193.89 15185.14 33898.17 22059.68 37894.66 36477.73 36488.88 25996.16 256
SixPastTwentyTwo88.73 31588.01 31690.88 33391.85 35982.24 36598.22 32495.18 37288.97 28682.26 35096.89 26071.75 33596.67 32084.00 33082.98 31393.72 331
FMVSNet188.50 31686.64 32294.08 27995.62 29791.97 26198.43 31296.95 31283.00 35786.08 33394.72 33559.09 37996.11 34081.82 34684.07 30994.17 290
FMVSNet588.32 31787.47 31990.88 33396.90 25288.39 33097.28 34395.68 36082.60 36184.67 34092.40 36579.83 27791.16 38676.39 37081.51 32593.09 344
DSMNet-mixed88.28 31888.24 31388.42 35589.64 37775.38 38498.06 33089.86 39885.59 33888.20 30492.14 36776.15 31191.95 38478.46 36196.05 19697.92 233
K. test v388.05 31987.24 32190.47 33891.82 36082.23 36698.96 27197.42 26489.05 28176.93 37595.60 29968.49 35195.42 35385.87 32181.01 33393.75 327
KD-MVS_2432*160088.00 32086.10 32493.70 29796.91 24994.04 21297.17 34697.12 29484.93 34481.96 35192.41 36392.48 13294.51 36579.23 35652.68 39792.56 352
miper_refine_blended88.00 32086.10 32493.70 29796.91 24994.04 21297.17 34697.12 29484.93 34481.96 35192.41 36392.48 13294.51 36579.23 35652.68 39792.56 352
TinyColmap87.87 32286.51 32391.94 32695.05 30485.57 34897.65 33894.08 38184.40 34981.82 35396.85 26362.14 37398.33 22980.25 35386.37 29191.91 362
TransMVSNet (Re)87.25 32385.28 33093.16 31093.56 32891.03 28398.54 30794.05 38383.69 35481.09 35796.16 28375.32 31696.40 32976.69 36968.41 38192.06 359
Patchmatch-RL test86.90 32485.98 32889.67 34484.45 38775.59 38389.71 39392.43 39186.89 32277.83 37290.94 37194.22 8093.63 37387.75 29969.61 37699.79 97
test_vis1_rt86.87 32586.05 32789.34 34696.12 27178.07 38199.87 10683.54 40592.03 21878.21 37089.51 37645.80 39199.91 8996.25 16593.11 24290.03 375
Anonymous2023120686.32 32685.42 32989.02 34989.11 37980.53 37899.05 26295.28 36885.43 34082.82 34893.92 35074.40 32593.44 37566.99 38581.83 32393.08 345
MVS-HIRNet86.22 32783.19 34095.31 23496.71 26390.29 30192.12 38597.33 27362.85 39286.82 32070.37 39769.37 34597.49 27275.12 37297.99 15998.15 229
pmmvs685.69 32883.84 33591.26 33290.00 37684.41 35597.82 33696.15 35275.86 38081.29 35695.39 31261.21 37696.87 31183.52 33673.29 37092.50 354
test_040285.58 32983.94 33490.50 33793.81 32485.04 35198.55 30595.20 37176.01 37979.72 36495.13 32364.15 36896.26 33666.04 38986.88 28890.21 374
UnsupCasMVSNet_eth85.52 33083.99 33290.10 34189.36 37883.51 35996.65 35697.99 20989.14 27975.89 37993.83 35163.25 37093.92 36981.92 34567.90 38492.88 348
MDA-MVSNet_test_wron85.51 33183.32 33992.10 32490.96 36888.58 32799.20 24496.52 34179.70 37257.12 39792.69 36179.11 28493.86 37177.10 36777.46 35793.86 322
YYNet185.50 33283.33 33892.00 32590.89 36988.38 33199.22 24396.55 34079.60 37357.26 39692.72 36079.09 28693.78 37277.25 36677.37 35893.84 323
EG-PatchMatch MVS85.35 33383.81 33689.99 34390.39 37281.89 36898.21 32596.09 35381.78 36474.73 38193.72 35351.56 38997.12 29479.16 35988.61 26690.96 368
Anonymous2024052185.15 33483.81 33689.16 34888.32 38082.69 36198.80 29095.74 35879.72 37181.53 35590.99 37065.38 36494.16 36772.69 37581.11 33090.63 371
TDRefinement84.76 33582.56 34391.38 33174.58 40184.80 35497.36 34294.56 37884.73 34780.21 36196.12 28763.56 36998.39 22087.92 29763.97 39090.95 369
CMPMVSbinary61.59 2184.75 33685.14 33183.57 36590.32 37362.54 39396.98 35197.59 24774.33 38669.95 38796.66 26864.17 36798.32 23087.88 29888.41 27189.84 377
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0384.72 33783.99 33286.91 35988.19 38280.62 37798.88 27995.94 35588.36 30178.87 36594.62 34068.75 34889.11 39066.52 38775.82 36591.00 367
CL-MVSNet_self_test84.50 33883.15 34188.53 35486.00 38581.79 36998.82 28797.35 27085.12 34283.62 34690.91 37276.66 30391.40 38569.53 38160.36 39492.40 356
new_pmnet84.49 33982.92 34289.21 34790.03 37582.60 36296.89 35495.62 36280.59 36875.77 38089.17 37765.04 36694.79 36372.12 37781.02 33290.23 373
MDA-MVSNet-bldmvs84.09 34081.52 34791.81 32891.32 36688.00 33598.67 30195.92 35680.22 37055.60 39893.32 35668.29 35393.60 37473.76 37376.61 36493.82 325
pmmvs-eth3d84.03 34181.97 34590.20 34084.15 38887.09 34098.10 32994.73 37683.05 35674.10 38387.77 38465.56 36394.01 36881.08 34969.24 37889.49 381
dmvs_testset83.79 34286.07 32676.94 37292.14 35448.60 40796.75 35590.27 39789.48 27678.65 36798.55 20679.25 28186.65 39566.85 38682.69 31595.57 258
OpenMVS_ROBcopyleft79.82 2083.77 34381.68 34690.03 34288.30 38182.82 36098.46 31095.22 37073.92 38776.00 37891.29 36955.00 38396.94 30668.40 38388.51 27090.34 372
KD-MVS_self_test83.59 34482.06 34488.20 35686.93 38380.70 37697.21 34496.38 34582.87 35882.49 34988.97 37867.63 35592.32 38273.75 37462.30 39391.58 364
MIMVSNet182.58 34580.51 35188.78 35186.68 38484.20 35696.65 35695.41 36678.75 37478.59 36892.44 36251.88 38889.76 38965.26 39078.95 34592.38 357
mvsany_test382.12 34681.14 34885.06 36381.87 39270.41 38797.09 34892.14 39291.27 24377.84 37188.73 37939.31 39495.49 35190.75 26371.24 37389.29 383
new-patchmatchnet81.19 34779.34 35486.76 36082.86 39180.36 37997.92 33395.27 36982.09 36372.02 38486.87 38662.81 37290.74 38871.10 37863.08 39189.19 384
APD_test181.15 34880.92 34981.86 36892.45 35059.76 39796.04 36893.61 38773.29 38877.06 37396.64 27044.28 39396.16 33972.35 37682.52 31689.67 379
test_method80.79 34979.70 35384.08 36492.83 34567.06 39099.51 20595.42 36554.34 39681.07 35893.53 35444.48 39292.22 38378.90 36077.23 35992.94 347
PM-MVS80.47 35078.88 35585.26 36283.79 39072.22 38695.89 37191.08 39585.71 33776.56 37788.30 38036.64 39593.90 37082.39 34169.57 37789.66 380
pmmvs380.27 35177.77 35687.76 35880.32 39682.43 36498.23 32391.97 39372.74 38978.75 36687.97 38357.30 38290.99 38770.31 37962.37 39289.87 376
N_pmnet80.06 35280.78 35077.89 37191.94 35745.28 40998.80 29056.82 41178.10 37680.08 36293.33 35577.03 29795.76 35068.14 38482.81 31492.64 351
test_fmvs379.99 35380.17 35279.45 37084.02 38962.83 39199.05 26293.49 38888.29 30380.06 36386.65 38728.09 39988.00 39188.63 28673.27 37187.54 387
UnsupCasMVSNet_bld79.97 35477.03 35988.78 35185.62 38681.98 36793.66 38097.35 27075.51 38370.79 38683.05 39248.70 39094.91 36178.31 36260.29 39589.46 382
test_f78.40 35577.59 35780.81 36980.82 39462.48 39496.96 35293.08 39083.44 35574.57 38284.57 39127.95 40092.63 38084.15 32872.79 37287.32 388
WB-MVS76.28 35677.28 35873.29 37681.18 39354.68 40197.87 33594.19 38081.30 36569.43 38890.70 37377.02 29882.06 39935.71 40468.11 38383.13 390
SSC-MVS75.42 35776.40 36072.49 38080.68 39553.62 40297.42 34094.06 38280.42 36968.75 38990.14 37576.54 30581.66 40033.25 40566.34 38782.19 391
EGC-MVSNET69.38 35863.76 36886.26 36190.32 37381.66 37196.24 36493.85 3850.99 4083.22 40992.33 36652.44 38692.92 37959.53 39584.90 30184.21 389
test_vis3_rt68.82 35966.69 36475.21 37576.24 40060.41 39696.44 35968.71 41075.13 38450.54 40169.52 39916.42 40996.32 33380.27 35266.92 38668.89 397
FPMVS68.72 36068.72 36168.71 38265.95 40544.27 41195.97 37094.74 37551.13 39753.26 39990.50 37425.11 40283.00 39860.80 39380.97 33478.87 395
testf168.38 36166.92 36272.78 37878.80 39750.36 40490.95 39187.35 40355.47 39458.95 39388.14 38120.64 40487.60 39257.28 39664.69 38880.39 393
APD_test268.38 36166.92 36272.78 37878.80 39750.36 40490.95 39187.35 40355.47 39458.95 39388.14 38120.64 40487.60 39257.28 39664.69 38880.39 393
LCM-MVSNet67.77 36364.73 36676.87 37362.95 40756.25 40089.37 39493.74 38644.53 39961.99 39180.74 39320.42 40686.53 39669.37 38259.50 39687.84 385
PMMVS267.15 36464.15 36776.14 37470.56 40462.07 39593.89 37887.52 40258.09 39360.02 39278.32 39422.38 40384.54 39759.56 39447.03 39981.80 392
Gipumacopyleft66.95 36565.00 36572.79 37791.52 36367.96 38966.16 40095.15 37347.89 39858.54 39567.99 40029.74 39787.54 39450.20 39977.83 35362.87 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt65.23 36662.94 36972.13 38144.90 41050.03 40681.05 39789.42 40138.45 40048.51 40299.90 1854.09 38578.70 40291.84 24518.26 40487.64 386
ANet_high56.10 36752.24 37067.66 38349.27 40956.82 39983.94 39682.02 40670.47 39033.28 40664.54 40117.23 40869.16 40445.59 40123.85 40377.02 396
PMVScopyleft49.05 2353.75 36851.34 37260.97 38540.80 41134.68 41274.82 39989.62 40037.55 40128.67 40772.12 3967.09 41181.63 40143.17 40268.21 38266.59 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN52.30 36952.18 37152.67 38671.51 40245.40 40893.62 38176.60 40836.01 40243.50 40364.13 40227.11 40167.31 40531.06 40626.06 40145.30 404
MVEpermissive53.74 2251.54 37047.86 37462.60 38459.56 40850.93 40379.41 39877.69 40735.69 40336.27 40561.76 4045.79 41369.63 40337.97 40336.61 40067.24 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS51.44 37151.22 37352.11 38770.71 40344.97 41094.04 37775.66 40935.34 40442.40 40461.56 40528.93 39865.87 40627.64 40724.73 40245.49 403
testmvs40.60 37244.45 37529.05 38919.49 41314.11 41599.68 17618.47 41220.74 40564.59 39098.48 21110.95 41017.09 40956.66 39811.01 40555.94 402
test12337.68 37339.14 37633.31 38819.94 41224.83 41498.36 3179.75 41315.53 40651.31 40087.14 38519.62 40717.74 40847.10 4003.47 40757.36 401
cdsmvs_eth3d_5k23.43 37431.24 3770.00 3910.00 4140.00 4160.00 40298.09 2010.00 4090.00 41099.67 9683.37 2450.00 4100.00 4090.00 4080.00 406
wuyk23d20.37 37520.84 37818.99 39065.34 40627.73 41350.43 4017.67 4149.50 4078.01 4086.34 4086.13 41226.24 40723.40 40810.69 4062.99 405
ab-mvs-re8.28 37611.04 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41099.40 1230.00 4140.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas7.60 37710.13 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 41091.20 1540.00 4100.00 4090.00 4080.00 406
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.02 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS90.97 28486.10 319
FOURS199.92 3197.66 8399.95 5398.36 16395.58 8799.52 60
MSC_two_6792asdad99.93 299.91 3999.80 298.41 148100.00 199.96 9100.00 1100.00 1
PC_three_145296.96 4499.80 1899.79 5797.49 9100.00 199.99 599.98 32100.00 1
No_MVS99.93 299.91 3999.80 298.41 148100.00 199.96 9100.00 1100.00 1
test_one_060199.94 1399.30 1298.41 14896.63 5699.75 3099.93 1197.49 9
eth-test20.00 414
eth-test0.00 414
ZD-MVS99.92 3198.57 5498.52 10492.34 20999.31 7799.83 4395.06 5399.80 12199.70 3499.97 42
RE-MVS-def98.13 5199.79 6296.37 13199.76 15398.31 17494.43 11999.40 7199.75 7192.95 11798.90 7599.92 6399.97 58
IU-MVS99.93 2499.31 1098.41 14897.71 1999.84 12100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 3599.80 5197.44 13100.00 1100.00 199.98 32100.00 1
test_241102_TWO98.43 13197.27 3499.80 1899.94 497.18 20100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 13197.26 3699.80 1899.88 2196.71 23100.00 1
9.1498.38 3499.87 5199.91 8498.33 17093.22 16999.78 2799.89 1994.57 6899.85 10899.84 2299.97 42
save fliter99.82 5898.79 3899.96 3598.40 15297.66 21
test_0728_THIRD96.48 6199.83 1399.91 1497.87 5100.00 199.92 12100.00 1100.00 1
test_0728_SECOND99.82 799.94 1399.47 799.95 5398.43 131100.00 199.99 5100.00 1100.00 1
test072699.93 2499.29 1599.96 3598.42 14397.28 3299.86 799.94 497.22 18
GSMVS99.59 132
test_part299.89 4599.25 1899.49 63
sam_mvs194.72 6499.59 132
sam_mvs94.25 79
ambc83.23 36677.17 39962.61 39287.38 39594.55 37976.72 37686.65 38730.16 39696.36 33184.85 32769.86 37590.73 370
MTGPAbinary98.28 179
test_post195.78 37259.23 40693.20 11197.74 26591.06 254
test_post63.35 40394.43 6998.13 245
patchmatchnet-post91.70 36895.12 5097.95 256
GG-mvs-BLEND98.54 10398.21 17598.01 6893.87 37998.52 10497.92 13897.92 23199.02 297.94 25898.17 10899.58 9799.67 115
MTMP99.87 10696.49 342
gm-plane-assit96.97 24693.76 22091.47 23598.96 16398.79 18994.92 186
test9_res99.71 3399.99 21100.00 1
TEST999.92 3198.92 2899.96 3598.43 13193.90 14999.71 3599.86 2695.88 3799.85 108
test_899.92 3198.88 3199.96 3598.43 13194.35 12499.69 3799.85 3095.94 3499.85 108
agg_prior299.48 43100.00 1100.00 1
agg_prior99.93 2498.77 4098.43 13199.63 4499.85 108
TestCases95.00 24399.01 11488.43 32896.82 32786.50 32588.71 29398.47 21274.73 32399.88 10285.39 32296.18 19396.71 248
test_prior498.05 6699.94 69
test_prior299.95 5395.78 8199.73 3399.76 6596.00 3399.78 27100.00 1
test_prior99.43 3599.94 1398.49 5898.65 7499.80 12199.99 23
旧先验299.46 21494.21 13299.85 999.95 6996.96 155
新几何299.40 218
新几何199.42 3799.75 6898.27 6198.63 8092.69 18999.55 5599.82 4694.40 71100.00 191.21 25099.94 5499.99 23
旧先验199.76 6697.52 8798.64 7699.85 3095.63 4199.94 5499.99 23
无先验99.49 20998.71 6693.46 161100.00 194.36 20199.99 23
原ACMM299.90 91
原ACMM198.96 7599.73 7296.99 10998.51 10794.06 14099.62 4799.85 3094.97 5999.96 6195.11 18099.95 4999.92 81
test22299.55 8697.41 9699.34 22898.55 9891.86 22299.27 8199.83 4393.84 9499.95 4999.99 23
testdata299.99 3690.54 267
segment_acmp96.68 25
testdata98.42 11399.47 9295.33 17598.56 9293.78 15299.79 2699.85 3093.64 9999.94 7794.97 18499.94 54100.00 1
testdata199.28 23896.35 71
test1299.43 3599.74 6998.56 5598.40 15299.65 4194.76 6399.75 13299.98 3299.99 23
plane_prior795.71 29191.59 278
plane_prior695.76 28591.72 27380.47 273
plane_prior597.87 22398.37 22697.79 13189.55 25294.52 262
plane_prior498.59 199
plane_prior391.64 27696.63 5693.01 225
plane_prior299.84 12696.38 67
plane_prior195.73 288
plane_prior91.74 27099.86 11896.76 5289.59 251
n20.00 415
nn0.00 415
door-mid89.69 399
lessismore_v090.53 33690.58 37180.90 37595.80 35777.01 37495.84 29066.15 36196.95 30583.03 33775.05 36893.74 330
LGP-MVS_train93.71 29595.43 29888.67 32497.62 24092.81 18290.05 25898.49 20875.24 31798.40 21895.84 17289.12 25694.07 303
test1198.44 123
door90.31 396
HQP5-MVS91.85 266
HQP-NCC95.78 28199.87 10696.82 4893.37 221
ACMP_Plane95.78 28199.87 10696.82 4893.37 221
BP-MVS97.92 123
HQP4-MVS93.37 22198.39 22094.53 260
HQP3-MVS97.89 22189.60 249
HQP2-MVS80.65 269
NP-MVS95.77 28491.79 26898.65 194
MDTV_nov1_ep13_2view96.26 13496.11 36691.89 22198.06 13494.40 7194.30 20399.67 115
MDTV_nov1_ep1395.69 15097.90 19294.15 20995.98 36998.44 12393.12 17297.98 13695.74 29395.10 5198.58 20490.02 27596.92 182
ACMMP++_ref87.04 286
ACMMP++88.23 274
Test By Simon92.82 122
ITE_SJBPF92.38 32195.69 29385.14 35095.71 35992.81 18289.33 28098.11 22270.23 34398.42 21585.91 32088.16 27593.59 334
DeepMVS_CXcopyleft82.92 36795.98 27858.66 39896.01 35492.72 18678.34 36995.51 30558.29 38098.08 24782.57 33985.29 29792.03 360