This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1498.69 6698.20 599.93 199.98 296.82 23100.00 199.75 26100.00 199.99 23
NCCC99.37 299.25 299.71 1499.96 899.15 2199.97 2598.62 7998.02 1199.90 299.95 397.33 17100.00 199.54 37100.00 1100.00 1
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2598.64 7498.47 299.13 8399.92 1396.38 30100.00 199.74 28100.00 1100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5098.32 16497.28 3099.83 1199.91 1497.22 19100.00 199.99 5100.00 199.89 82
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3298.43 12597.27 3299.80 1599.94 496.71 24100.00 1100.00 1100.00 1100.00 1
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5098.43 12596.48 5799.80 1599.93 1197.44 14100.00 199.92 1299.98 32100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 9898.44 11797.48 2599.64 4099.94 496.68 2699.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 5999.98 1498.86 5397.10 3899.80 1599.94 495.92 36100.00 199.51 38100.00 1100.00 1
MSP-MVS99.09 999.12 598.98 7199.93 2497.24 9699.95 5098.42 13697.50 2499.52 5799.88 2197.43 1699.71 13699.50 3999.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft99.07 1098.88 1599.63 1799.90 4299.02 2599.95 5098.56 8797.56 2399.44 6399.85 3095.38 46100.00 199.31 4999.99 2199.87 85
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4399.91 8098.39 14797.20 3699.46 6199.85 3095.53 4499.79 12199.86 19100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SteuartSystems-ACMMP99.02 1298.97 1399.18 4898.72 13797.71 7799.98 1498.44 11796.85 4499.80 1599.91 1497.57 899.85 10699.44 4499.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
CHOSEN 280x42099.01 1399.03 1098.95 7499.38 9598.87 3298.46 30199.42 2297.03 4099.02 8799.09 14399.35 198.21 23299.73 3099.78 7999.77 99
TSAR-MVS + MP.98.93 1498.77 1699.41 3899.74 6998.67 4799.77 14098.38 15196.73 5199.88 499.74 7494.89 5999.59 14799.80 2399.98 3299.97 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS98.92 1598.70 1799.56 2599.70 7698.73 4499.94 6698.34 16196.38 6399.81 1399.76 6394.59 6399.98 4399.84 2099.96 4699.97 57
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MG-MVS98.91 1698.65 1899.68 1599.94 1399.07 2499.64 17599.44 2097.33 2999.00 8899.72 7994.03 8299.98 4398.73 81100.00 1100.00 1
train_agg98.88 1798.65 1899.59 2399.92 3198.92 2899.96 3298.43 12594.35 12099.71 3299.86 2695.94 3499.85 10699.69 3399.98 3299.99 23
MVS_030498.87 1898.61 2199.67 1699.18 10199.13 2299.87 9899.65 1298.17 698.75 10299.75 6892.76 11699.94 7599.88 1899.44 10699.94 72
DPM-MVS98.83 1998.46 2799.97 199.33 9799.92 199.96 3298.44 11797.96 1299.55 5299.94 497.18 21100.00 193.81 20799.94 5499.98 48
DeepC-MVS_fast96.59 198.81 2098.54 2499.62 2099.90 4298.85 3499.24 23198.47 11098.14 899.08 8499.91 1493.09 106100.00 199.04 6199.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SMA-MVScopyleft98.76 2198.48 2699.62 2099.87 5198.87 3299.86 11198.38 15193.19 16699.77 2599.94 495.54 42100.00 199.74 2899.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MVS_111021_HR98.72 2298.62 2099.01 6999.36 9697.18 9999.93 7399.90 196.81 4998.67 10599.77 6193.92 8499.89 9499.27 5199.94 5499.96 63
XVS98.70 2398.55 2399.15 5599.94 1397.50 8899.94 6698.42 13696.22 6999.41 6699.78 5994.34 7299.96 5998.92 6899.95 4999.99 23
SF-MVS98.67 2498.40 2999.50 3099.77 6598.67 4799.90 8598.21 17893.53 15699.81 1399.89 1994.70 6299.86 10599.84 2099.93 6099.96 63
CDPH-MVS98.65 2598.36 3599.49 3299.94 1398.73 4499.87 9898.33 16293.97 14199.76 2699.87 2494.99 5799.75 13098.55 91100.00 199.98 48
APD-MVScopyleft98.62 2698.35 3699.41 3899.90 4298.51 5799.87 9898.36 15594.08 13399.74 2999.73 7694.08 8099.74 13299.42 4599.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + GP.98.60 2798.51 2598.86 7899.73 7296.63 11799.97 2597.92 21098.07 998.76 10099.55 10695.00 5699.94 7599.91 1597.68 16099.99 23
PAPM98.60 2798.42 2899.14 5796.05 26398.96 2699.90 8599.35 2596.68 5398.35 12099.66 9496.45 2998.51 20099.45 4399.89 6699.96 63
HFP-MVS98.56 2998.37 3399.14 5799.96 897.43 9299.95 5098.61 8094.77 10399.31 7499.85 3094.22 76100.00 198.70 8299.98 3299.98 48
region2R98.54 3098.37 3399.05 6499.96 897.18 9999.96 3298.55 9394.87 10199.45 6299.85 3094.07 81100.00 198.67 84100.00 199.98 48
DELS-MVS98.54 3098.22 4199.50 3099.15 10598.65 51100.00 198.58 8397.70 1898.21 12799.24 13592.58 12299.94 7598.63 8999.94 5499.92 79
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPR98.52 3298.16 4699.58 2499.97 398.77 4099.95 5098.43 12595.35 8998.03 12999.75 6894.03 8299.98 4398.11 10899.83 7299.99 23
ACMMPR98.50 3398.32 3799.05 6499.96 897.18 9999.95 5098.60 8194.77 10399.31 7499.84 4193.73 90100.00 198.70 8299.98 3299.98 48
ACMMP_NAP98.49 3498.14 4799.54 2799.66 7898.62 5399.85 11498.37 15494.68 10899.53 5599.83 4392.87 112100.00 198.66 8699.84 7199.99 23
EPNet98.49 3498.40 2998.77 8299.62 8096.80 11499.90 8599.51 1797.60 2099.20 7999.36 12493.71 9199.91 8797.99 11598.71 13599.61 125
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SR-MVS98.46 3698.30 4098.93 7599.88 4997.04 10499.84 11898.35 15794.92 9999.32 7399.80 5193.35 9699.78 12399.30 5099.95 4999.96 63
CP-MVS98.45 3798.32 3798.87 7799.96 896.62 11899.97 2598.39 14794.43 11598.90 9299.87 2494.30 74100.00 199.04 6199.99 2199.99 23
test_fmvsm_n_192098.44 3898.61 2197.92 13299.27 10095.18 176100.00 198.90 4798.05 1099.80 1599.73 7692.64 11999.99 3699.58 3699.51 10098.59 212
PS-MVSNAJ98.44 3898.20 4399.16 5398.80 13398.92 2899.54 19198.17 18397.34 2799.85 799.85 3091.20 14799.89 9499.41 4699.67 8598.69 209
test_fmvsmconf_n98.43 4098.32 3798.78 8098.12 17396.41 12499.99 498.83 5798.22 499.67 3699.64 9791.11 15199.94 7599.67 3499.62 8899.98 48
MVS_111021_LR98.42 4198.38 3198.53 10399.39 9495.79 14899.87 9899.86 296.70 5298.78 9799.79 5592.03 13799.90 8999.17 5599.86 7099.88 83
DP-MVS Recon98.41 4298.02 5499.56 2599.97 398.70 4699.92 7698.44 11792.06 21098.40 11899.84 4195.68 40100.00 198.19 10399.71 8399.97 57
PHI-MVS98.41 4298.21 4299.03 6699.86 5397.10 10399.98 1498.80 6090.78 24999.62 4499.78 5995.30 47100.00 199.80 2399.93 6099.99 23
mPP-MVS98.39 4498.20 4398.97 7299.97 396.92 11099.95 5098.38 15195.04 9598.61 10999.80 5193.39 95100.00 198.64 87100.00 199.98 48
PGM-MVS98.34 4598.13 4898.99 7099.92 3197.00 10699.75 14899.50 1893.90 14699.37 7199.76 6393.24 103100.00 197.75 13099.96 4699.98 48
SR-MVS-dyc-post98.31 4698.17 4598.71 8499.79 6296.37 12899.76 14598.31 16694.43 11599.40 6899.75 6893.28 10199.78 12398.90 7199.92 6399.97 57
ZNCC-MVS98.31 4698.03 5399.17 5199.88 4997.59 8299.94 6698.44 11794.31 12398.50 11399.82 4693.06 10799.99 3698.30 10199.99 2199.93 74
MTAPA98.29 4897.96 5999.30 4299.85 5497.93 7399.39 21298.28 17195.76 7897.18 14999.88 2192.74 117100.00 198.67 8499.88 6899.99 23
GST-MVS98.27 4997.97 5699.17 5199.92 3197.57 8399.93 7398.39 14794.04 13998.80 9699.74 7492.98 109100.00 198.16 10599.76 8099.93 74
CANet98.27 4997.82 6699.63 1799.72 7499.10 2399.98 1498.51 10297.00 4198.52 11199.71 8187.80 19399.95 6799.75 2699.38 11099.83 89
EI-MVSNet-Vis-set98.27 4998.11 5098.75 8399.83 5796.59 12099.40 20898.51 10295.29 9198.51 11299.76 6393.60 9499.71 13698.53 9299.52 9899.95 70
APD-MVS_3200maxsize98.25 5298.08 5298.78 8099.81 6096.60 11999.82 12898.30 16993.95 14399.37 7199.77 6192.84 11399.76 12998.95 6599.92 6399.97 57
patch_mono-298.24 5399.12 595.59 21599.67 7786.91 33499.95 5098.89 4997.60 2099.90 299.76 6396.54 2899.98 4399.94 1199.82 7699.88 83
xiu_mvs_v2_base98.23 5497.97 5699.02 6898.69 13898.66 4999.52 19398.08 19497.05 3999.86 599.86 2690.65 16099.71 13699.39 4898.63 13698.69 209
MP-MVScopyleft98.23 5497.97 5699.03 6699.94 1397.17 10299.95 5098.39 14794.70 10798.26 12599.81 5091.84 141100.00 198.85 7499.97 4299.93 74
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EI-MVSNet-UG-set98.14 5697.99 5598.60 9399.80 6196.27 13099.36 21798.50 10795.21 9398.30 12299.75 6893.29 10099.73 13598.37 9799.30 11499.81 92
PAPM_NR98.12 5797.93 6198.70 8599.94 1396.13 14099.82 12898.43 12594.56 11197.52 14199.70 8394.40 6799.98 4397.00 14799.98 3299.99 23
WTY-MVS98.10 5897.60 7399.60 2298.92 12299.28 1799.89 9399.52 1595.58 8398.24 12699.39 12193.33 9799.74 13297.98 11795.58 20699.78 98
MP-MVS-pluss98.07 5997.64 7199.38 4199.74 6998.41 6099.74 15198.18 18293.35 16096.45 16799.85 3092.64 11999.97 5398.91 7099.89 6699.77 99
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HPM-MVScopyleft97.96 6097.72 6898.68 8699.84 5696.39 12799.90 8598.17 18392.61 18898.62 10899.57 10591.87 14099.67 14398.87 7399.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet_Blended97.94 6197.64 7198.83 7999.59 8196.99 107100.00 199.10 3195.38 8898.27 12399.08 14489.00 18599.95 6799.12 5699.25 11699.57 135
PLCcopyleft95.54 397.93 6297.89 6498.05 12899.82 5894.77 18799.92 7698.46 11293.93 14497.20 14899.27 13095.44 4599.97 5397.41 13599.51 10099.41 160
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ETV-MVS97.92 6397.80 6798.25 11998.14 17196.48 12199.98 1497.63 22995.61 8299.29 7799.46 11492.55 12398.82 17999.02 6498.54 13799.46 153
CS-MVS-test97.88 6497.94 6097.70 14799.28 9995.20 17599.98 1497.15 28295.53 8599.62 4499.79 5592.08 13698.38 21698.75 8099.28 11599.52 145
API-MVS97.86 6597.66 7098.47 10699.52 8795.41 16599.47 20298.87 5291.68 22198.84 9499.85 3092.34 13099.99 3698.44 9499.96 46100.00 1
lupinMVS97.85 6697.60 7398.62 9197.28 22697.70 7999.99 497.55 24095.50 8799.43 6499.67 9290.92 15598.71 18998.40 9599.62 8899.45 155
test_yl97.83 6797.37 8199.21 4599.18 10197.98 7099.64 17599.27 2791.43 22997.88 13598.99 15395.84 3899.84 11498.82 7595.32 21199.79 95
DCV-MVSNet97.83 6797.37 8199.21 4599.18 10197.98 7099.64 17599.27 2791.43 22997.88 13598.99 15395.84 3899.84 11498.82 7595.32 21199.79 95
mvsany_test197.82 6997.90 6397.55 15598.77 13593.04 23099.80 13497.93 20796.95 4399.61 5099.68 9190.92 15599.83 11699.18 5498.29 14699.80 94
alignmvs97.81 7097.33 8399.25 4398.77 13598.66 4999.99 498.44 11794.40 11998.41 11699.47 11293.65 9299.42 16098.57 9094.26 22099.67 111
fmvsm_s_conf0.5_n97.80 7197.85 6597.67 14899.06 10894.41 19399.98 1498.97 4097.34 2799.63 4199.69 8587.27 20099.97 5399.62 3599.06 12598.62 211
HPM-MVS_fast97.80 7197.50 7698.68 8699.79 6296.42 12399.88 9598.16 18791.75 22098.94 9099.54 10891.82 14299.65 14597.62 13399.99 2199.99 23
CS-MVS97.79 7397.91 6297.43 16299.10 10694.42 19299.99 497.10 28795.07 9499.68 3599.75 6892.95 11098.34 22098.38 9699.14 12199.54 141
HY-MVS92.50 797.79 7397.17 9099.63 1798.98 11599.32 997.49 33099.52 1595.69 8098.32 12197.41 23393.32 9899.77 12698.08 11195.75 20399.81 92
CNLPA97.76 7597.38 8098.92 7699.53 8696.84 11299.87 9898.14 19093.78 14996.55 16599.69 8592.28 13199.98 4397.13 14299.44 10699.93 74
test_fmvsmconf0.1_n97.74 7697.44 7898.64 9095.76 27496.20 13699.94 6698.05 19798.17 698.89 9399.42 11687.65 19599.90 8999.50 3999.60 9499.82 90
ACMMPcopyleft97.74 7697.44 7898.66 8899.92 3196.13 14099.18 23699.45 1994.84 10296.41 17099.71 8191.40 14499.99 3697.99 11598.03 15599.87 85
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_s_conf0.5_n_a97.73 7897.72 6897.77 14298.63 14294.26 19899.96 3298.92 4697.18 3799.75 2799.69 8587.00 20599.97 5399.46 4298.89 12899.08 192
DeepPCF-MVS95.94 297.71 7998.98 1293.92 27999.63 7981.76 36199.96 3298.56 8799.47 199.19 8199.99 194.16 79100.00 199.92 1299.93 60100.00 1
test_fmvsmvis_n_192097.67 8097.59 7597.91 13497.02 23395.34 16799.95 5098.45 11397.87 1397.02 15299.59 10289.64 17399.98 4399.41 4699.34 11398.42 214
CPTT-MVS97.64 8197.32 8498.58 9699.97 395.77 14999.96 3298.35 15789.90 26398.36 11999.79 5591.18 15099.99 3698.37 9799.99 2199.99 23
sss97.57 8297.03 9599.18 4898.37 15598.04 6799.73 15699.38 2393.46 15898.76 10099.06 14691.21 14699.89 9496.33 15797.01 17799.62 122
test250697.53 8397.19 8898.58 9698.66 14096.90 11198.81 27999.77 594.93 9797.95 13198.96 15992.51 12499.20 16494.93 17798.15 14899.64 117
EIA-MVS97.53 8397.46 7797.76 14498.04 17694.84 18399.98 1497.61 23494.41 11897.90 13399.59 10292.40 12898.87 17798.04 11299.13 12299.59 128
xiu_mvs_v1_base_debu97.43 8597.06 9198.55 9897.74 19398.14 6299.31 22297.86 21696.43 6099.62 4499.69 8585.56 21799.68 14099.05 5898.31 14397.83 224
xiu_mvs_v1_base97.43 8597.06 9198.55 9897.74 19398.14 6299.31 22297.86 21696.43 6099.62 4499.69 8585.56 21799.68 14099.05 5898.31 14397.83 224
xiu_mvs_v1_base_debi97.43 8597.06 9198.55 9897.74 19398.14 6299.31 22297.86 21696.43 6099.62 4499.69 8585.56 21799.68 14099.05 5898.31 14397.83 224
MAR-MVS97.43 8597.19 8898.15 12499.47 9194.79 18699.05 25398.76 6192.65 18698.66 10699.82 4688.52 19099.98 4398.12 10799.63 8799.67 111
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
dcpmvs_297.42 8998.09 5195.42 22099.58 8487.24 33099.23 23296.95 30494.28 12598.93 9199.73 7694.39 7099.16 16899.89 1699.82 7699.86 87
thisisatest051597.41 9097.02 9698.59 9597.71 20097.52 8599.97 2598.54 9691.83 21697.45 14499.04 14797.50 999.10 17094.75 18596.37 18899.16 184
114514_t97.41 9096.83 10099.14 5799.51 8997.83 7499.89 9398.27 17388.48 29099.06 8599.66 9490.30 16699.64 14696.32 15899.97 4299.96 63
EC-MVSNet97.38 9297.24 8597.80 13797.41 21595.64 15699.99 497.06 29294.59 11099.63 4199.32 12689.20 18398.14 23498.76 7999.23 11899.62 122
fmvsm_s_conf0.1_n97.30 9397.21 8797.60 15497.38 21794.40 19599.90 8598.64 7496.47 5999.51 5999.65 9684.99 22599.93 8399.22 5399.09 12498.46 213
OMC-MVS97.28 9497.23 8697.41 16399.76 6693.36 22599.65 17197.95 20596.03 7397.41 14599.70 8389.61 17499.51 15096.73 15498.25 14799.38 162
PVSNet_Blended_VisFu97.27 9596.81 10198.66 8898.81 13296.67 11699.92 7698.64 7494.51 11296.38 17198.49 19989.05 18499.88 10097.10 14498.34 14199.43 158
jason97.24 9696.86 9998.38 11495.73 27797.32 9599.97 2597.40 25895.34 9098.60 11099.54 10887.70 19498.56 19797.94 11899.47 10299.25 179
jason: jason.
AdaColmapbinary97.23 9796.80 10298.51 10499.99 195.60 15899.09 24298.84 5693.32 16296.74 16099.72 7986.04 214100.00 198.01 11399.43 10899.94 72
VNet97.21 9896.57 10999.13 6198.97 11697.82 7599.03 25699.21 2994.31 12399.18 8298.88 17086.26 21399.89 9498.93 6794.32 21999.69 108
PVSNet91.05 1397.13 9996.69 10598.45 10899.52 8795.81 14799.95 5099.65 1294.73 10599.04 8699.21 13784.48 22999.95 6794.92 17898.74 13499.58 134
thisisatest053097.10 10096.72 10498.22 12097.60 20696.70 11599.92 7698.54 9691.11 23997.07 15198.97 15797.47 1299.03 17193.73 21296.09 19198.92 195
CSCG97.10 10097.04 9497.27 17299.89 4591.92 25699.90 8599.07 3488.67 28695.26 19299.82 4693.17 10599.98 4398.15 10699.47 10299.90 81
fmvsm_s_conf0.1_n_a97.09 10296.90 9897.63 15295.65 28394.21 20099.83 12598.50 10796.27 6899.65 3899.64 9784.72 22699.93 8399.04 6198.84 13198.74 206
canonicalmvs97.09 10296.32 11599.39 4098.93 12098.95 2799.72 15997.35 26194.45 11397.88 13599.42 11686.71 20799.52 14998.48 9393.97 22499.72 105
diffmvspermissive97.00 10496.64 10698.09 12697.64 20496.17 13999.81 13097.19 27694.67 10998.95 8999.28 12786.43 21098.76 18498.37 9797.42 16699.33 170
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
thres20096.96 10596.21 11899.22 4498.97 11698.84 3599.85 11499.71 793.17 16796.26 17398.88 17089.87 17199.51 15094.26 19694.91 21499.31 172
MVSFormer96.94 10696.60 10797.95 13097.28 22697.70 7999.55 18997.27 27191.17 23699.43 6499.54 10890.92 15596.89 30194.67 18899.62 8899.25 179
F-COLMAP96.93 10796.95 9796.87 18199.71 7591.74 26199.85 11497.95 20593.11 16995.72 18599.16 14192.35 12999.94 7595.32 17099.35 11298.92 195
DeepC-MVS94.51 496.92 10896.40 11498.45 10899.16 10495.90 14599.66 16998.06 19596.37 6694.37 20199.49 11183.29 23999.90 8997.63 13299.61 9299.55 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tttt051796.85 10996.49 11197.92 13297.48 21395.89 14699.85 11498.54 9690.72 25096.63 16298.93 16897.47 1299.02 17293.03 22495.76 20298.85 199
131496.84 11095.96 12999.48 3496.74 25098.52 5698.31 30998.86 5395.82 7689.91 25498.98 15587.49 19799.96 5997.80 12399.73 8299.96 63
CHOSEN 1792x268896.81 11196.53 11097.64 15098.91 12693.07 22799.65 17199.80 395.64 8195.39 18998.86 17584.35 23299.90 8996.98 14899.16 12099.95 70
tfpn200view996.79 11295.99 12399.19 4798.94 11898.82 3699.78 13799.71 792.86 17296.02 17898.87 17389.33 17899.50 15293.84 20494.57 21599.27 177
thres40096.78 11395.99 12399.16 5398.94 11898.82 3699.78 13799.71 792.86 17296.02 17898.87 17389.33 17899.50 15293.84 20494.57 21599.16 184
CANet_DTU96.76 11496.15 11998.60 9398.78 13497.53 8499.84 11897.63 22997.25 3599.20 7999.64 9781.36 25299.98 4392.77 22798.89 12898.28 217
PMMVS96.76 11496.76 10396.76 18498.28 16092.10 25199.91 8097.98 20294.12 13199.53 5599.39 12186.93 20698.73 18696.95 15097.73 15899.45 155
thres100view90096.74 11695.92 13599.18 4898.90 12798.77 4099.74 15199.71 792.59 19095.84 18198.86 17589.25 18099.50 15293.84 20494.57 21599.27 177
TESTMET0.1,196.74 11696.26 11698.16 12197.36 21996.48 12199.96 3298.29 17091.93 21395.77 18498.07 21395.54 4298.29 22490.55 25898.89 12899.70 106
baseline296.71 11896.49 11197.37 16695.63 28595.96 14499.74 15198.88 5192.94 17191.61 23398.97 15797.72 798.62 19594.83 18298.08 15497.53 234
thres600view796.69 11995.87 13899.14 5798.90 12798.78 3999.74 15199.71 792.59 19095.84 18198.86 17589.25 18099.50 15293.44 21694.50 21899.16 184
EPP-MVSNet96.69 11996.60 10796.96 17897.74 19393.05 22999.37 21598.56 8788.75 28495.83 18399.01 15096.01 3298.56 19796.92 15197.20 17199.25 179
HyFIR lowres test96.66 12196.43 11397.36 16899.05 10993.91 20999.70 16399.80 390.54 25296.26 17398.08 21292.15 13498.23 23196.84 15395.46 20799.93 74
MVS96.60 12295.56 14699.72 1396.85 24399.22 2098.31 30998.94 4191.57 22390.90 24299.61 10186.66 20899.96 5997.36 13699.88 6899.99 23
test_cas_vis1_n_192096.59 12396.23 11797.65 14998.22 16494.23 19999.99 497.25 27397.77 1599.58 5199.08 14477.10 28999.97 5397.64 13199.45 10598.74 206
UA-Net96.54 12495.96 12998.27 11898.23 16395.71 15398.00 32398.45 11393.72 15298.41 11699.27 13088.71 18999.66 14491.19 24397.69 15999.44 157
EPMVS96.53 12596.01 12298.09 12698.43 15296.12 14296.36 35199.43 2193.53 15697.64 13995.04 31794.41 6698.38 21691.13 24498.11 15199.75 101
test-LLR96.47 12696.04 12197.78 14097.02 23395.44 16299.96 3298.21 17894.07 13495.55 18696.38 26793.90 8698.27 22890.42 26198.83 13299.64 117
MVS_Test96.46 12795.74 14098.61 9298.18 16897.23 9799.31 22297.15 28291.07 24098.84 9497.05 24688.17 19298.97 17394.39 19297.50 16399.61 125
casdiffmvs_mvgpermissive96.43 12895.94 13297.89 13697.44 21495.47 16199.86 11197.29 26993.35 16096.03 17799.19 13885.39 22098.72 18897.89 12297.04 17599.49 151
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline96.43 12895.98 12597.76 14497.34 22095.17 17799.51 19597.17 27993.92 14596.90 15599.28 12785.37 22198.64 19497.50 13496.86 18199.46 153
casdiffmvspermissive96.42 13095.97 12897.77 14297.30 22494.98 17999.84 11897.09 28993.75 15196.58 16499.26 13385.07 22398.78 18297.77 12897.04 17599.54 141
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf0.01_n96.39 13195.74 14098.32 11691.47 35495.56 15999.84 11897.30 26797.74 1697.89 13499.35 12579.62 27099.85 10699.25 5299.24 11799.55 137
test-mter96.39 13195.93 13397.78 14097.02 23395.44 16299.96 3298.21 17891.81 21895.55 18696.38 26795.17 4898.27 22890.42 26198.83 13299.64 117
CDS-MVSNet96.34 13396.07 12097.13 17497.37 21894.96 18099.53 19297.91 21191.55 22495.37 19098.32 20895.05 5397.13 28393.80 20895.75 20399.30 174
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Vis-MVSNet (Re-imp)96.32 13495.98 12597.35 16997.93 18194.82 18499.47 20298.15 18991.83 21695.09 19399.11 14291.37 14597.47 26393.47 21597.43 16499.74 102
3Dnovator+91.53 1196.31 13595.24 15499.52 2896.88 24298.64 5299.72 15998.24 17595.27 9288.42 29398.98 15582.76 24199.94 7597.10 14499.83 7299.96 63
Effi-MVS+96.30 13695.69 14298.16 12197.85 18696.26 13197.41 33297.21 27590.37 25598.65 10798.58 19386.61 20998.70 19097.11 14397.37 16899.52 145
IS-MVSNet96.29 13795.90 13697.45 16098.13 17294.80 18599.08 24497.61 23492.02 21295.54 18898.96 15990.64 16198.08 23793.73 21297.41 16799.47 152
3Dnovator91.47 1296.28 13895.34 15199.08 6396.82 24597.47 9199.45 20598.81 5895.52 8689.39 26899.00 15281.97 24599.95 6797.27 13899.83 7299.84 88
tpmrst96.27 13995.98 12597.13 17497.96 17993.15 22696.34 35298.17 18392.07 20898.71 10495.12 31593.91 8598.73 18694.91 18096.62 18299.50 149
CostFormer96.10 14095.88 13796.78 18397.03 23292.55 24397.08 34097.83 21990.04 26298.72 10394.89 32495.01 5598.29 22496.54 15695.77 20199.50 149
iter_conf0596.07 14195.95 13196.44 19598.43 15297.52 8599.91 8096.85 31594.16 12992.49 22697.98 21898.20 497.34 26797.26 13988.29 26294.45 261
PVSNet_BlendedMVS96.05 14295.82 13996.72 18699.59 8196.99 10799.95 5099.10 3194.06 13698.27 12395.80 28289.00 18599.95 6799.12 5687.53 27593.24 334
PatchMatch-RL96.04 14395.40 14897.95 13099.59 8195.22 17499.52 19399.07 3493.96 14296.49 16698.35 20782.28 24399.82 11890.15 26699.22 11998.81 202
iter_conf_final96.01 14495.93 13396.28 20098.38 15497.03 10599.87 9897.03 29594.05 13892.61 22297.98 21898.01 597.34 26797.02 14688.39 26194.47 255
1112_ss96.01 14495.20 15698.42 11197.80 18996.41 12499.65 17196.66 32792.71 18192.88 21999.40 11992.16 13399.30 16191.92 23593.66 22599.55 137
PatchmatchNetpermissive95.94 14695.45 14797.39 16597.83 18794.41 19396.05 35898.40 14492.86 17297.09 15095.28 31294.21 7898.07 23989.26 27498.11 15199.70 106
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
FA-MVS(test-final)95.86 14795.09 16098.15 12497.74 19395.62 15796.31 35398.17 18391.42 23196.26 17396.13 27690.56 16299.47 15892.18 23297.07 17399.35 167
TAMVS95.85 14895.58 14596.65 18997.07 23093.50 21899.17 23797.82 22091.39 23395.02 19498.01 21492.20 13297.30 27293.75 21195.83 20099.14 187
LS3D95.84 14995.11 15998.02 12999.85 5495.10 17898.74 28498.50 10787.22 30793.66 20999.86 2687.45 19899.95 6790.94 25099.81 7899.02 193
baseline195.78 15094.86 16698.54 10198.47 15198.07 6599.06 24997.99 20092.68 18494.13 20598.62 19093.28 10198.69 19193.79 20985.76 28498.84 200
Test_1112_low_res95.72 15194.83 16798.42 11197.79 19096.41 12499.65 17196.65 32892.70 18292.86 22096.13 27692.15 13499.30 16191.88 23693.64 22699.55 137
Vis-MVSNetpermissive95.72 15195.15 15897.45 16097.62 20594.28 19799.28 22898.24 17594.27 12796.84 15798.94 16679.39 27298.76 18493.25 21798.49 13899.30 174
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPNet_dtu95.71 15395.39 14996.66 18898.92 12293.41 22299.57 18598.90 4796.19 7197.52 14198.56 19592.65 11897.36 26577.89 35498.33 14299.20 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-w/o95.71 15395.38 15096.68 18798.49 15092.28 24799.84 11897.50 24892.12 20792.06 23198.79 17984.69 22798.67 19395.29 17199.66 8699.09 190
FE-MVS95.70 15595.01 16397.79 13998.21 16594.57 18895.03 36598.69 6688.90 28197.50 14396.19 27392.60 12199.49 15689.99 26897.94 15799.31 172
ECVR-MVScopyleft95.66 15695.05 16197.51 15898.66 14093.71 21398.85 27698.45 11394.93 9796.86 15698.96 15975.22 31299.20 16495.34 16998.15 14899.64 117
mvs_anonymous95.65 15795.03 16297.53 15698.19 16795.74 15199.33 21997.49 24990.87 24490.47 24697.10 24288.23 19197.16 28095.92 16497.66 16199.68 109
test111195.57 15894.98 16497.37 16698.56 14393.37 22498.86 27498.45 11394.95 9696.63 16298.95 16475.21 31399.11 16995.02 17598.14 15099.64 117
MVSTER95.53 15995.22 15596.45 19398.56 14397.72 7699.91 8097.67 22792.38 20191.39 23597.14 24097.24 1897.30 27294.80 18387.85 26994.34 271
tpm295.47 16095.18 15796.35 19996.91 23891.70 26596.96 34397.93 20788.04 29798.44 11595.40 30193.32 9897.97 24394.00 19995.61 20599.38 162
test_vis1_n_192095.44 16195.31 15295.82 21198.50 14988.74 31399.98 1497.30 26797.84 1499.85 799.19 13866.82 34999.97 5398.82 7599.46 10498.76 204
QAPM95.40 16294.17 18199.10 6296.92 23797.71 7799.40 20898.68 6889.31 26988.94 28198.89 16982.48 24299.96 5993.12 22399.83 7299.62 122
test_fmvs195.35 16395.68 14494.36 26498.99 11484.98 34399.96 3296.65 32897.60 2099.73 3098.96 15971.58 32999.93 8398.31 10099.37 11198.17 218
UGNet95.33 16494.57 17297.62 15398.55 14594.85 18298.67 29299.32 2695.75 7996.80 15996.27 27172.18 32699.96 5994.58 19099.05 12698.04 222
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
BH-untuned95.18 16594.83 16796.22 20298.36 15691.22 27399.80 13497.32 26590.91 24391.08 23998.67 18383.51 23698.54 19994.23 19799.61 9298.92 195
BH-RMVSNet95.18 16594.31 17897.80 13798.17 16995.23 17399.76 14597.53 24492.52 19594.27 20399.25 13476.84 29498.80 18090.89 25299.54 9799.35 167
PCF-MVS94.20 595.18 16594.10 18298.43 11098.55 14595.99 14397.91 32597.31 26690.35 25689.48 26799.22 13685.19 22299.89 9490.40 26398.47 13999.41 160
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
dp95.05 16894.43 17496.91 17997.99 17892.73 23796.29 35497.98 20289.70 26695.93 18094.67 33093.83 8998.45 20586.91 30696.53 18499.54 141
Fast-Effi-MVS+95.02 16994.19 18097.52 15797.88 18394.55 18999.97 2597.08 29088.85 28394.47 20097.96 22084.59 22898.41 20889.84 27097.10 17299.59 128
IB-MVS92.85 694.99 17093.94 18798.16 12197.72 19895.69 15599.99 498.81 5894.28 12592.70 22196.90 25095.08 5199.17 16796.07 16173.88 36099.60 127
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
h-mvs3394.92 17194.36 17596.59 19098.85 13091.29 27298.93 26598.94 4195.90 7498.77 9898.42 20690.89 15899.77 12697.80 12370.76 36598.72 208
XVG-OURS94.82 17294.74 17095.06 23298.00 17789.19 30899.08 24497.55 24094.10 13294.71 19699.62 10080.51 26399.74 13296.04 16293.06 23396.25 242
SDMVSNet94.80 17393.96 18697.33 17098.92 12295.42 16499.59 18198.99 3792.41 19992.55 22497.85 22275.81 30698.93 17697.90 12191.62 23597.64 229
ADS-MVSNet94.79 17494.02 18497.11 17697.87 18493.79 21094.24 36698.16 18790.07 26096.43 16894.48 33590.29 16798.19 23387.44 29397.23 16999.36 165
XVG-OURS-SEG-HR94.79 17494.70 17195.08 23198.05 17589.19 30899.08 24497.54 24293.66 15394.87 19599.58 10478.78 27999.79 12197.31 13793.40 22896.25 242
OpenMVScopyleft90.15 1594.77 17693.59 19698.33 11596.07 26297.48 9099.56 18798.57 8590.46 25386.51 31698.95 16478.57 28299.94 7593.86 20399.74 8197.57 233
LFMVS94.75 17793.56 19898.30 11799.03 11095.70 15498.74 28497.98 20287.81 30098.47 11499.39 12167.43 34799.53 14898.01 11395.20 21399.67 111
SCA94.69 17893.81 19197.33 17097.10 22994.44 19098.86 27498.32 16493.30 16396.17 17695.59 29176.48 29997.95 24691.06 24697.43 16499.59 128
ab-mvs94.69 17893.42 20298.51 10498.07 17496.26 13196.49 34998.68 6890.31 25794.54 19797.00 24876.30 30199.71 13695.98 16393.38 22999.56 136
CVMVSNet94.68 18094.94 16593.89 28296.80 24686.92 33399.06 24998.98 3894.45 11394.23 20499.02 14885.60 21695.31 34790.91 25195.39 20999.43 158
cascas94.64 18193.61 19397.74 14697.82 18896.26 13199.96 3297.78 22285.76 32594.00 20697.54 22976.95 29399.21 16397.23 14095.43 20897.76 228
HQP-MVS94.61 18294.50 17394.92 23795.78 27091.85 25799.87 9897.89 21296.82 4693.37 21198.65 18680.65 26198.39 21297.92 11989.60 23994.53 250
TR-MVS94.54 18393.56 19897.49 15997.96 17994.34 19698.71 28797.51 24790.30 25894.51 19998.69 18275.56 30798.77 18392.82 22695.99 19399.35 167
DP-MVS94.54 18393.42 20297.91 13499.46 9394.04 20498.93 26597.48 25081.15 35790.04 25199.55 10687.02 20499.95 6788.97 27698.11 15199.73 103
Effi-MVS+-dtu94.53 18595.30 15392.22 31497.77 19182.54 35499.59 18197.06 29294.92 9995.29 19195.37 30585.81 21597.89 24994.80 18397.07 17396.23 244
HQP_MVS94.49 18694.36 17594.87 23895.71 28091.74 26199.84 11897.87 21496.38 6393.01 21598.59 19180.47 26598.37 21897.79 12689.55 24294.52 252
myMVS_eth3d94.46 18794.76 16993.55 29397.68 20190.97 27599.71 16198.35 15790.79 24792.10 22998.67 18392.46 12793.09 36887.13 29995.95 19696.59 240
TAPA-MVS92.12 894.42 18893.60 19596.90 18099.33 9791.78 26099.78 13798.00 19989.89 26494.52 19899.47 11291.97 13899.18 16669.90 37199.52 9899.73 103
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
hse-mvs294.38 18994.08 18395.31 22598.27 16190.02 29999.29 22798.56 8795.90 7498.77 9898.00 21590.89 15898.26 23097.80 12369.20 37197.64 229
ET-MVSNet_ETH3D94.37 19093.28 20897.64 15098.30 15797.99 6999.99 497.61 23494.35 12071.57 37699.45 11596.23 3195.34 34696.91 15285.14 29199.59 128
MSDG94.37 19093.36 20697.40 16498.88 12993.95 20899.37 21597.38 25985.75 32790.80 24399.17 14084.11 23499.88 10086.35 30798.43 14098.36 216
GeoE94.36 19293.48 20096.99 17797.29 22593.54 21799.96 3296.72 32588.35 29393.43 21098.94 16682.05 24498.05 24088.12 28896.48 18699.37 164
miper_enhance_ethall94.36 19293.98 18595.49 21698.68 13995.24 17299.73 15697.29 26993.28 16489.86 25695.97 28094.37 7197.05 28992.20 23184.45 29694.19 280
tpmvs94.28 19493.57 19796.40 19698.55 14591.50 27095.70 36498.55 9387.47 30292.15 22894.26 33991.42 14398.95 17588.15 28695.85 19998.76 204
test_fmvs1_n94.25 19594.36 17593.92 27997.68 20183.70 34999.90 8596.57 33197.40 2699.67 3698.88 17061.82 36599.92 8698.23 10299.13 12298.14 221
FIs94.10 19693.43 20196.11 20494.70 29896.82 11399.58 18398.93 4592.54 19389.34 27097.31 23687.62 19697.10 28694.22 19886.58 28094.40 263
mvsmamba94.10 19693.72 19295.25 22793.57 31694.13 20299.67 16896.45 33693.63 15591.34 23797.77 22586.29 21297.22 27896.65 15588.10 26694.40 263
CLD-MVS94.06 19893.90 18894.55 25396.02 26490.69 28299.98 1497.72 22396.62 5691.05 24198.85 17877.21 28898.47 20198.11 10889.51 24494.48 254
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
testing393.92 19994.23 17992.99 30697.54 20890.23 29399.99 499.16 3090.57 25191.33 23898.63 18992.99 10892.52 37282.46 33295.39 20996.22 245
test0.0.03 193.86 20093.61 19394.64 24795.02 29492.18 25099.93 7398.58 8394.07 13487.96 29798.50 19893.90 8694.96 35181.33 33993.17 23096.78 237
X-MVStestdata93.83 20192.06 23399.15 5599.94 1397.50 8899.94 6698.42 13696.22 6999.41 6641.37 39894.34 7299.96 5998.92 6899.95 4999.99 23
GA-MVS93.83 20192.84 21596.80 18295.73 27793.57 21599.88 9597.24 27492.57 19292.92 21796.66 25978.73 28097.67 25787.75 29194.06 22399.17 183
FC-MVSNet-test93.81 20393.15 21095.80 21294.30 30596.20 13699.42 20798.89 4992.33 20389.03 28097.27 23887.39 19996.83 30593.20 21886.48 28194.36 267
ADS-MVSNet293.80 20493.88 18993.55 29397.87 18485.94 33794.24 36696.84 31690.07 26096.43 16894.48 33590.29 16795.37 34587.44 29397.23 16999.36 165
cl2293.77 20593.25 20995.33 22499.49 9094.43 19199.61 17998.09 19290.38 25489.16 27895.61 28990.56 16297.34 26791.93 23484.45 29694.21 279
VDD-MVS93.77 20592.94 21396.27 20198.55 14590.22 29498.77 28397.79 22190.85 24596.82 15899.42 11661.18 36899.77 12698.95 6594.13 22198.82 201
EI-MVSNet93.73 20793.40 20594.74 24396.80 24692.69 23899.06 24997.67 22788.96 27891.39 23599.02 14888.75 18897.30 27291.07 24587.85 26994.22 277
Fast-Effi-MVS+-dtu93.72 20893.86 19093.29 29897.06 23186.16 33599.80 13496.83 31792.66 18592.58 22397.83 22481.39 25197.67 25789.75 27196.87 18096.05 247
tpm93.70 20993.41 20494.58 25195.36 28987.41 32997.01 34196.90 31190.85 24596.72 16194.14 34090.40 16596.84 30490.75 25588.54 25899.51 147
PS-MVSNAJss93.64 21093.31 20794.61 24892.11 34592.19 24999.12 23997.38 25992.51 19688.45 28896.99 24991.20 14797.29 27594.36 19387.71 27294.36 267
test_vis1_n93.61 21193.03 21295.35 22295.86 26986.94 33299.87 9896.36 33896.85 4499.54 5498.79 17952.41 37899.83 11698.64 8798.97 12799.29 176
sd_testset93.55 21292.83 21695.74 21398.92 12290.89 28098.24 31298.85 5592.41 19992.55 22497.85 22271.07 33498.68 19293.93 20191.62 23597.64 229
gg-mvs-nofinetune93.51 21391.86 23998.47 10697.72 19897.96 7292.62 37498.51 10274.70 37697.33 14669.59 38998.91 397.79 25297.77 12899.56 9699.67 111
nrg03093.51 21392.53 22596.45 19394.36 30397.20 9899.81 13097.16 28191.60 22289.86 25697.46 23186.37 21197.68 25695.88 16580.31 33094.46 256
tpm cat193.51 21392.52 22696.47 19197.77 19191.47 27196.13 35698.06 19580.98 35892.91 21893.78 34389.66 17298.87 17787.03 30296.39 18799.09 190
CR-MVSNet93.45 21692.62 22095.94 20796.29 25692.66 23992.01 37796.23 34092.62 18796.94 15393.31 34891.04 15296.03 33679.23 34795.96 19499.13 188
AUN-MVS93.28 21792.60 22195.34 22398.29 15890.09 29799.31 22298.56 8791.80 21996.35 17298.00 21589.38 17798.28 22692.46 22869.22 37097.64 229
OPM-MVS93.21 21892.80 21794.44 26093.12 32790.85 28199.77 14097.61 23496.19 7191.56 23498.65 18675.16 31498.47 20193.78 21089.39 24593.99 303
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
dmvs_re93.20 21993.15 21093.34 29696.54 25483.81 34898.71 28798.51 10291.39 23392.37 22798.56 19578.66 28197.83 25193.89 20289.74 23898.38 215
miper_ehance_all_eth93.16 22092.60 22194.82 24297.57 20793.56 21699.50 19797.07 29188.75 28488.85 28395.52 29590.97 15496.74 30890.77 25484.45 29694.17 281
RRT_MVS93.14 22192.92 21493.78 28493.31 32390.04 29899.66 16997.69 22592.53 19488.91 28297.76 22684.36 23096.93 29995.10 17386.99 27894.37 266
VDDNet93.12 22291.91 23796.76 18496.67 25392.65 24198.69 29098.21 17882.81 35097.75 13899.28 12761.57 36699.48 15798.09 11094.09 22298.15 219
Anonymous20240521193.10 22391.99 23596.40 19699.10 10689.65 30598.88 27097.93 20783.71 34494.00 20698.75 18168.79 33999.88 10095.08 17491.71 23499.68 109
UniMVSNet (Re)93.07 22492.13 23095.88 20894.84 29596.24 13599.88 9598.98 3892.49 19789.25 27295.40 30187.09 20397.14 28293.13 22278.16 34194.26 274
LPG-MVS_test92.96 22592.71 21993.71 28795.43 28788.67 31599.75 14897.62 23192.81 17690.05 24998.49 19975.24 31098.40 21095.84 16689.12 24694.07 295
UniMVSNet_NR-MVSNet92.95 22692.11 23195.49 21694.61 30095.28 17099.83 12599.08 3391.49 22589.21 27596.86 25387.14 20296.73 30993.20 21877.52 34694.46 256
ACMM91.95 1092.88 22792.52 22693.98 27895.75 27689.08 31199.77 14097.52 24693.00 17089.95 25397.99 21776.17 30398.46 20493.63 21488.87 25094.39 265
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_djsdf92.83 22892.29 22994.47 25891.90 34892.46 24499.55 18997.27 27191.17 23689.96 25296.07 27981.10 25496.89 30194.67 18888.91 24894.05 297
D2MVS92.76 22992.59 22493.27 29995.13 29089.54 30799.69 16499.38 2392.26 20487.59 30194.61 33285.05 22497.79 25291.59 23988.01 26792.47 347
bld_raw_dy_0_6492.74 23092.03 23494.87 23893.09 32993.46 21999.12 23995.41 35792.84 17590.44 24797.54 22978.08 28697.04 29193.94 20087.77 27194.11 292
ACMP92.05 992.74 23092.42 22893.73 28595.91 26888.72 31499.81 13097.53 24494.13 13087.00 31098.23 20974.07 32098.47 20196.22 16088.86 25193.99 303
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
VPA-MVSNet92.70 23291.55 24496.16 20395.09 29196.20 13698.88 27099.00 3691.02 24291.82 23295.29 31176.05 30597.96 24595.62 16881.19 31894.30 272
FMVSNet392.69 23391.58 24295.99 20698.29 15897.42 9399.26 23097.62 23189.80 26589.68 26095.32 30781.62 25096.27 32687.01 30385.65 28594.29 273
IterMVS-LS92.69 23392.11 23194.43 26296.80 24692.74 23599.45 20596.89 31288.98 27689.65 26395.38 30488.77 18796.34 32390.98 24982.04 31294.22 277
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmatch-test92.65 23591.50 24596.10 20596.85 24390.49 28891.50 37997.19 27682.76 35190.23 24895.59 29195.02 5498.00 24277.41 35696.98 17899.82 90
c3_l92.53 23691.87 23894.52 25497.40 21692.99 23199.40 20896.93 30987.86 29888.69 28695.44 29989.95 17096.44 31990.45 26080.69 32794.14 290
AllTest92.48 23791.64 24095.00 23499.01 11188.43 31998.94 26496.82 31986.50 31688.71 28498.47 20374.73 31699.88 10085.39 31496.18 18996.71 238
DU-MVS92.46 23891.45 24795.49 21694.05 30895.28 17099.81 13098.74 6292.25 20589.21 27596.64 26181.66 24896.73 30993.20 21877.52 34694.46 256
eth_miper_zixun_eth92.41 23991.93 23693.84 28397.28 22690.68 28398.83 27796.97 30388.57 28989.19 27795.73 28689.24 18296.69 31189.97 26981.55 31594.15 287
DIV-MVS_self_test92.32 24091.60 24194.47 25897.31 22392.74 23599.58 18396.75 32386.99 31187.64 30095.54 29389.55 17596.50 31788.58 28082.44 30994.17 281
cl____92.31 24191.58 24294.52 25497.33 22292.77 23399.57 18596.78 32286.97 31287.56 30295.51 29689.43 17696.62 31388.60 27982.44 30994.16 286
LCM-MVSNet-Re92.31 24192.60 22191.43 32197.53 20979.27 37199.02 25791.83 38592.07 20880.31 35194.38 33883.50 23795.48 34397.22 14197.58 16299.54 141
WR-MVS92.31 24191.25 24995.48 21994.45 30295.29 16999.60 18098.68 6890.10 25988.07 29696.89 25180.68 26096.80 30793.14 22179.67 33494.36 267
COLMAP_ROBcopyleft90.47 1492.18 24491.49 24694.25 26799.00 11388.04 32598.42 30696.70 32682.30 35388.43 29199.01 15076.97 29299.85 10686.11 31096.50 18594.86 249
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2024052992.10 24590.65 25696.47 19198.82 13190.61 28598.72 28698.67 7175.54 37393.90 20898.58 19366.23 35199.90 8994.70 18790.67 23798.90 198
pmmvs492.10 24591.07 25295.18 22992.82 33694.96 18099.48 20196.83 31787.45 30388.66 28796.56 26583.78 23596.83 30589.29 27384.77 29493.75 319
jajsoiax91.92 24791.18 25094.15 26891.35 35590.95 27899.00 25897.42 25592.61 18887.38 30697.08 24372.46 32597.36 26594.53 19188.77 25294.13 291
XXY-MVS91.82 24890.46 25995.88 20893.91 31195.40 16698.87 27397.69 22588.63 28887.87 29897.08 24374.38 31997.89 24991.66 23884.07 30094.35 270
miper_lstm_enhance91.81 24991.39 24893.06 30597.34 22089.18 31099.38 21396.79 32186.70 31587.47 30495.22 31390.00 16995.86 34088.26 28481.37 31794.15 287
mvs_tets91.81 24991.08 25194.00 27691.63 35290.58 28698.67 29297.43 25392.43 19887.37 30797.05 24671.76 32797.32 27194.75 18588.68 25494.11 292
VPNet91.81 24990.46 25995.85 21094.74 29795.54 16098.98 25998.59 8292.14 20690.77 24497.44 23268.73 34197.54 26194.89 18177.89 34394.46 256
RPSCF91.80 25292.79 21888.83 34198.15 17069.87 37998.11 31996.60 33083.93 34294.33 20299.27 13079.60 27199.46 15991.99 23393.16 23197.18 236
PVSNet_088.03 1991.80 25290.27 26596.38 19898.27 16190.46 28999.94 6699.61 1493.99 14086.26 32297.39 23571.13 33399.89 9498.77 7867.05 37698.79 203
anonymousdsp91.79 25490.92 25394.41 26390.76 36092.93 23298.93 26597.17 27989.08 27187.46 30595.30 30878.43 28596.92 30092.38 22988.73 25393.39 330
JIA-IIPM91.76 25590.70 25594.94 23696.11 26187.51 32893.16 37398.13 19175.79 37297.58 14077.68 38692.84 11397.97 24388.47 28396.54 18399.33 170
TranMVSNet+NR-MVSNet91.68 25690.61 25894.87 23893.69 31593.98 20799.69 16498.65 7291.03 24188.44 28996.83 25780.05 26896.18 32990.26 26576.89 35494.45 261
NR-MVSNet91.56 25790.22 26695.60 21494.05 30895.76 15098.25 31198.70 6591.16 23880.78 35096.64 26183.23 24096.57 31591.41 24077.73 34594.46 256
v2v48291.30 25890.07 27295.01 23393.13 32593.79 21099.77 14097.02 29688.05 29689.25 27295.37 30580.73 25997.15 28187.28 29780.04 33394.09 294
WR-MVS_H91.30 25890.35 26294.15 26894.17 30792.62 24299.17 23798.94 4188.87 28286.48 31894.46 33784.36 23096.61 31488.19 28578.51 33993.21 335
tt080591.28 26090.18 26894.60 24996.26 25887.55 32798.39 30798.72 6389.00 27589.22 27498.47 20362.98 36298.96 17490.57 25788.00 26897.28 235
V4291.28 26090.12 27194.74 24393.42 32193.46 21999.68 16697.02 29687.36 30489.85 25895.05 31681.31 25397.34 26787.34 29680.07 33293.40 329
CP-MVSNet91.23 26290.22 26694.26 26693.96 31092.39 24699.09 24298.57 8588.95 27986.42 31996.57 26479.19 27596.37 32190.29 26478.95 33694.02 298
XVG-ACMP-BASELINE91.22 26390.75 25492.63 31193.73 31485.61 33898.52 30097.44 25292.77 17989.90 25596.85 25466.64 35098.39 21292.29 23088.61 25593.89 311
v114491.09 26489.83 27394.87 23893.25 32493.69 21499.62 17896.98 30186.83 31489.64 26494.99 32180.94 25697.05 28985.08 31781.16 31993.87 313
FMVSNet291.02 26589.56 27995.41 22197.53 20995.74 15198.98 25997.41 25787.05 30888.43 29195.00 32071.34 33096.24 32885.12 31685.21 29094.25 276
MVP-Stereo90.93 26690.45 26192.37 31391.25 35788.76 31298.05 32296.17 34287.27 30684.04 33395.30 30878.46 28497.27 27783.78 32599.70 8491.09 358
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
IterMVS90.91 26790.17 26993.12 30296.78 24990.42 29198.89 26897.05 29489.03 27386.49 31795.42 30076.59 29795.02 34987.22 29884.09 29993.93 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GBi-Net90.88 26889.82 27494.08 27197.53 20991.97 25298.43 30396.95 30487.05 30889.68 26094.72 32671.34 33096.11 33187.01 30385.65 28594.17 281
test190.88 26889.82 27494.08 27197.53 20991.97 25298.43 30396.95 30487.05 30889.68 26094.72 32671.34 33096.11 33187.01 30385.65 28594.17 281
IterMVS-SCA-FT90.85 27090.16 27092.93 30796.72 25189.96 30098.89 26896.99 29988.95 27986.63 31495.67 28776.48 29995.00 35087.04 30184.04 30293.84 315
v14419290.79 27189.52 28194.59 25093.11 32892.77 23399.56 18796.99 29986.38 31889.82 25994.95 32380.50 26497.10 28683.98 32380.41 32893.90 310
v14890.70 27289.63 27793.92 27992.97 33290.97 27599.75 14896.89 31287.51 30188.27 29495.01 31881.67 24797.04 29187.40 29577.17 35193.75 319
MS-PatchMatch90.65 27390.30 26491.71 32094.22 30685.50 34098.24 31297.70 22488.67 28686.42 31996.37 26967.82 34598.03 24183.62 32699.62 8891.60 355
ACMH89.72 1790.64 27489.63 27793.66 29195.64 28488.64 31798.55 29697.45 25189.03 27381.62 34597.61 22869.75 33798.41 20889.37 27287.62 27493.92 309
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PS-CasMVS90.63 27589.51 28293.99 27793.83 31291.70 26598.98 25998.52 9988.48 29086.15 32396.53 26675.46 30896.31 32588.83 27778.86 33893.95 306
v119290.62 27689.25 28694.72 24593.13 32593.07 22799.50 19797.02 29686.33 31989.56 26695.01 31879.22 27497.09 28882.34 33481.16 31994.01 300
v890.54 27789.17 28794.66 24693.43 32093.40 22399.20 23496.94 30885.76 32587.56 30294.51 33381.96 24697.19 27984.94 31878.25 34093.38 331
v192192090.46 27889.12 28894.50 25692.96 33392.46 24499.49 19996.98 30186.10 32189.61 26595.30 30878.55 28397.03 29482.17 33580.89 32694.01 300
our_test_390.39 27989.48 28493.12 30292.40 34189.57 30699.33 21996.35 33987.84 29985.30 32894.99 32184.14 23396.09 33480.38 34384.56 29593.71 324
PatchT90.38 28088.75 29695.25 22795.99 26590.16 29591.22 38197.54 24276.80 36897.26 14786.01 38091.88 13996.07 33566.16 37995.91 19899.51 147
ACMH+89.98 1690.35 28189.54 28092.78 31095.99 26586.12 33698.81 27997.18 27889.38 26883.14 33897.76 22668.42 34398.43 20689.11 27586.05 28393.78 318
Baseline_NR-MVSNet90.33 28289.51 28292.81 30992.84 33489.95 30199.77 14093.94 37684.69 33989.04 27995.66 28881.66 24896.52 31690.99 24876.98 35291.97 353
MIMVSNet90.30 28388.67 29795.17 23096.45 25591.64 26792.39 37597.15 28285.99 32290.50 24593.19 35066.95 34894.86 35382.01 33693.43 22799.01 194
LTVRE_ROB88.28 1890.29 28489.05 29194.02 27495.08 29290.15 29697.19 33697.43 25384.91 33783.99 33497.06 24574.00 32198.28 22684.08 32187.71 27293.62 325
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v1090.25 28588.82 29494.57 25293.53 31893.43 22199.08 24496.87 31485.00 33487.34 30894.51 33380.93 25797.02 29682.85 33079.23 33593.26 333
v124090.20 28688.79 29594.44 26093.05 33192.27 24899.38 21396.92 31085.89 32389.36 26994.87 32577.89 28797.03 29480.66 34281.08 32294.01 300
PEN-MVS90.19 28789.06 29093.57 29293.06 33090.90 27999.06 24998.47 11088.11 29585.91 32596.30 27076.67 29595.94 33987.07 30076.91 35393.89 311
pmmvs590.17 28889.09 28993.40 29592.10 34689.77 30499.74 15195.58 35485.88 32487.24 30995.74 28473.41 32396.48 31888.54 28183.56 30393.95 306
EU-MVSNet90.14 28990.34 26389.54 33692.55 33981.06 36598.69 29098.04 19891.41 23286.59 31596.84 25680.83 25893.31 36786.20 30881.91 31394.26 274
UniMVSNet_ETH3D90.06 29088.58 29894.49 25794.67 29988.09 32497.81 32897.57 23983.91 34388.44 28997.41 23357.44 37297.62 25991.41 24088.59 25797.77 227
Syy-MVS90.00 29190.63 25788.11 34897.68 20174.66 37699.71 16198.35 15790.79 24792.10 22998.67 18379.10 27793.09 36863.35 38295.95 19696.59 240
USDC90.00 29188.96 29293.10 30494.81 29688.16 32398.71 28795.54 35593.66 15383.75 33697.20 23965.58 35398.31 22383.96 32487.49 27692.85 341
Anonymous2023121189.86 29388.44 30094.13 27098.93 12090.68 28398.54 29898.26 17476.28 36986.73 31295.54 29370.60 33597.56 26090.82 25380.27 33194.15 287
OurMVSNet-221017-089.81 29489.48 28490.83 32691.64 35181.21 36398.17 31795.38 35991.48 22685.65 32797.31 23672.66 32497.29 27588.15 28684.83 29393.97 305
RPMNet89.76 29587.28 31097.19 17396.29 25692.66 23992.01 37798.31 16670.19 38296.94 15385.87 38187.25 20199.78 12362.69 38395.96 19499.13 188
Patchmtry89.70 29688.49 29993.33 29796.24 25989.94 30391.37 38096.23 34078.22 36687.69 29993.31 34891.04 15296.03 33680.18 34682.10 31194.02 298
v7n89.65 29788.29 30293.72 28692.22 34390.56 28799.07 24897.10 28785.42 33286.73 31294.72 32680.06 26797.13 28381.14 34078.12 34293.49 327
ppachtmachnet_test89.58 29888.35 30193.25 30092.40 34190.44 29099.33 21996.73 32485.49 33085.90 32695.77 28381.09 25596.00 33876.00 36282.49 30893.30 332
test_fmvs289.47 29989.70 27688.77 34494.54 30175.74 37399.83 12594.70 36994.71 10691.08 23996.82 25854.46 37597.78 25492.87 22588.27 26392.80 342
DTE-MVSNet89.40 30088.24 30392.88 30892.66 33889.95 30199.10 24198.22 17787.29 30585.12 33096.22 27276.27 30295.30 34883.56 32775.74 35793.41 328
pm-mvs189.36 30187.81 30794.01 27593.40 32291.93 25598.62 29596.48 33586.25 32083.86 33596.14 27573.68 32297.04 29186.16 30975.73 35893.04 338
tfpnnormal89.29 30287.61 30894.34 26594.35 30494.13 20298.95 26398.94 4183.94 34184.47 33295.51 29674.84 31597.39 26477.05 35980.41 32891.48 357
LF4IMVS89.25 30388.85 29390.45 33092.81 33781.19 36498.12 31894.79 36691.44 22886.29 32197.11 24165.30 35698.11 23688.53 28285.25 28992.07 350
testgi89.01 30488.04 30591.90 31893.49 31984.89 34499.73 15695.66 35293.89 14885.14 32998.17 21059.68 36994.66 35577.73 35588.88 24996.16 246
SixPastTwentyTwo88.73 30588.01 30690.88 32491.85 34982.24 35698.22 31595.18 36488.97 27782.26 34196.89 25171.75 32896.67 31284.00 32282.98 30493.72 323
FMVSNet188.50 30686.64 31294.08 27195.62 28691.97 25298.43 30396.95 30483.00 34886.08 32494.72 32659.09 37096.11 33181.82 33884.07 30094.17 281
FMVSNet588.32 30787.47 30990.88 32496.90 24188.39 32197.28 33495.68 35182.60 35284.67 33192.40 35679.83 26991.16 37776.39 36181.51 31693.09 336
DSMNet-mixed88.28 30888.24 30388.42 34689.64 36775.38 37598.06 32189.86 38985.59 32988.20 29592.14 35876.15 30491.95 37578.46 35296.05 19297.92 223
K. test v388.05 30987.24 31190.47 32991.82 35082.23 35798.96 26297.42 25589.05 27276.93 36695.60 29068.49 34295.42 34485.87 31381.01 32493.75 319
KD-MVS_2432*160088.00 31086.10 31493.70 28996.91 23894.04 20497.17 33797.12 28584.93 33581.96 34292.41 35492.48 12594.51 35679.23 34752.68 38892.56 344
miper_refine_blended88.00 31086.10 31493.70 28996.91 23894.04 20497.17 33797.12 28584.93 33581.96 34292.41 35492.48 12594.51 35679.23 34752.68 38892.56 344
TinyColmap87.87 31286.51 31391.94 31795.05 29385.57 33997.65 32994.08 37384.40 34081.82 34496.85 25462.14 36498.33 22180.25 34586.37 28291.91 354
TransMVSNet (Re)87.25 31385.28 32093.16 30193.56 31791.03 27498.54 29894.05 37583.69 34581.09 34896.16 27475.32 30996.40 32076.69 36068.41 37292.06 351
Patchmatch-RL test86.90 31485.98 31889.67 33584.45 37775.59 37489.71 38492.43 38286.89 31377.83 36390.94 36294.22 7693.63 36487.75 29169.61 36799.79 95
test_vis1_rt86.87 31586.05 31789.34 33796.12 26078.07 37299.87 9883.54 39692.03 21178.21 36189.51 36745.80 38299.91 8796.25 15993.11 23290.03 367
Anonymous2023120686.32 31685.42 31989.02 34089.11 36980.53 36999.05 25395.28 36085.43 33182.82 33993.92 34174.40 31893.44 36666.99 37681.83 31493.08 337
MVS-HIRNet86.22 31783.19 33095.31 22596.71 25290.29 29292.12 37697.33 26462.85 38386.82 31170.37 38869.37 33897.49 26275.12 36397.99 15698.15 219
pmmvs685.69 31883.84 32591.26 32390.00 36684.41 34697.82 32796.15 34375.86 37181.29 34795.39 30361.21 36796.87 30383.52 32873.29 36192.50 346
test_040285.58 31983.94 32490.50 32893.81 31385.04 34298.55 29695.20 36376.01 37079.72 35595.13 31464.15 35996.26 32766.04 38086.88 27990.21 366
UnsupCasMVSNet_eth85.52 32083.99 32290.10 33289.36 36883.51 35096.65 34797.99 20089.14 27075.89 37093.83 34263.25 36193.92 36081.92 33767.90 37592.88 340
MDA-MVSNet_test_wron85.51 32183.32 32992.10 31590.96 35888.58 31899.20 23496.52 33379.70 36357.12 38892.69 35279.11 27693.86 36277.10 35877.46 34893.86 314
YYNet185.50 32283.33 32892.00 31690.89 35988.38 32299.22 23396.55 33279.60 36457.26 38792.72 35179.09 27893.78 36377.25 35777.37 34993.84 315
EG-PatchMatch MVS85.35 32383.81 32689.99 33490.39 36281.89 35998.21 31696.09 34481.78 35574.73 37293.72 34451.56 38097.12 28579.16 35088.61 25590.96 360
Anonymous2024052185.15 32483.81 32689.16 33988.32 37082.69 35298.80 28195.74 34979.72 36281.53 34690.99 36165.38 35594.16 35872.69 36681.11 32190.63 363
TDRefinement84.76 32582.56 33391.38 32274.58 39184.80 34597.36 33394.56 37084.73 33880.21 35296.12 27863.56 36098.39 21287.92 28963.97 38190.95 361
CMPMVSbinary61.59 2184.75 32685.14 32183.57 35690.32 36362.54 38496.98 34297.59 23874.33 37769.95 37896.66 25964.17 35898.32 22287.88 29088.41 26089.84 369
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0384.72 32783.99 32286.91 35088.19 37280.62 36898.88 27095.94 34688.36 29278.87 35694.62 33168.75 34089.11 38166.52 37875.82 35691.00 359
CL-MVSNet_self_test84.50 32883.15 33188.53 34586.00 37581.79 36098.82 27897.35 26185.12 33383.62 33790.91 36376.66 29691.40 37669.53 37260.36 38592.40 348
new_pmnet84.49 32982.92 33289.21 33890.03 36582.60 35396.89 34595.62 35380.59 35975.77 37189.17 36865.04 35794.79 35472.12 36881.02 32390.23 365
MDA-MVSNet-bldmvs84.09 33081.52 33791.81 31991.32 35688.00 32698.67 29295.92 34780.22 36155.60 38993.32 34768.29 34493.60 36573.76 36476.61 35593.82 317
pmmvs-eth3d84.03 33181.97 33590.20 33184.15 37887.09 33198.10 32094.73 36883.05 34774.10 37487.77 37565.56 35494.01 35981.08 34169.24 36989.49 372
dmvs_testset83.79 33286.07 31676.94 36392.14 34448.60 39896.75 34690.27 38889.48 26778.65 35898.55 19779.25 27386.65 38666.85 37782.69 30695.57 248
OpenMVS_ROBcopyleft79.82 2083.77 33381.68 33690.03 33388.30 37182.82 35198.46 30195.22 36273.92 37876.00 36991.29 36055.00 37496.94 29868.40 37488.51 25990.34 364
KD-MVS_self_test83.59 33482.06 33488.20 34786.93 37380.70 36797.21 33596.38 33782.87 34982.49 34088.97 36967.63 34692.32 37373.75 36562.30 38491.58 356
MIMVSNet182.58 33580.51 34188.78 34286.68 37484.20 34796.65 34795.41 35778.75 36578.59 35992.44 35351.88 37989.76 38065.26 38178.95 33692.38 349
mvsany_test382.12 33681.14 33885.06 35481.87 38270.41 37897.09 33992.14 38391.27 23577.84 36288.73 37039.31 38595.49 34290.75 25571.24 36489.29 374
new-patchmatchnet81.19 33779.34 34486.76 35182.86 38180.36 37097.92 32495.27 36182.09 35472.02 37586.87 37762.81 36390.74 37971.10 36963.08 38289.19 375
APD_test181.15 33880.92 33981.86 35992.45 34059.76 38896.04 35993.61 37973.29 37977.06 36496.64 26144.28 38496.16 33072.35 36782.52 30789.67 370
test_method80.79 33979.70 34384.08 35592.83 33567.06 38199.51 19595.42 35654.34 38781.07 34993.53 34544.48 38392.22 37478.90 35177.23 35092.94 339
PM-MVS80.47 34078.88 34585.26 35383.79 38072.22 37795.89 36291.08 38685.71 32876.56 36888.30 37136.64 38693.90 36182.39 33369.57 36889.66 371
pmmvs380.27 34177.77 34687.76 34980.32 38682.43 35598.23 31491.97 38472.74 38078.75 35787.97 37457.30 37390.99 37870.31 37062.37 38389.87 368
N_pmnet80.06 34280.78 34077.89 36291.94 34745.28 40098.80 28156.82 40278.10 36780.08 35393.33 34677.03 29095.76 34168.14 37582.81 30592.64 343
test_fmvs379.99 34380.17 34279.45 36184.02 37962.83 38299.05 25393.49 38088.29 29480.06 35486.65 37828.09 39088.00 38288.63 27873.27 36287.54 378
UnsupCasMVSNet_bld79.97 34477.03 34988.78 34285.62 37681.98 35893.66 37197.35 26175.51 37470.79 37783.05 38348.70 38194.91 35278.31 35360.29 38689.46 373
test_f78.40 34577.59 34780.81 36080.82 38462.48 38596.96 34393.08 38183.44 34674.57 37384.57 38227.95 39192.63 37184.15 32072.79 36387.32 379
WB-MVS76.28 34677.28 34873.29 36781.18 38354.68 39297.87 32694.19 37281.30 35669.43 37990.70 36477.02 29182.06 39035.71 39568.11 37483.13 381
SSC-MVS75.42 34776.40 35072.49 37180.68 38553.62 39397.42 33194.06 37480.42 36068.75 38090.14 36676.54 29881.66 39133.25 39666.34 37882.19 382
EGC-MVSNET69.38 34863.76 35886.26 35290.32 36381.66 36296.24 35593.85 3770.99 3993.22 40092.33 35752.44 37792.92 37059.53 38684.90 29284.21 380
test_vis3_rt68.82 34966.69 35475.21 36676.24 39060.41 38796.44 35068.71 40175.13 37550.54 39269.52 39016.42 40096.32 32480.27 34466.92 37768.89 388
FPMVS68.72 35068.72 35168.71 37365.95 39544.27 40295.97 36194.74 36751.13 38853.26 39090.50 36525.11 39383.00 38960.80 38480.97 32578.87 386
testf168.38 35166.92 35272.78 36978.80 38750.36 39590.95 38287.35 39455.47 38558.95 38488.14 37220.64 39587.60 38357.28 38764.69 37980.39 384
APD_test268.38 35166.92 35272.78 36978.80 38750.36 39590.95 38287.35 39455.47 38558.95 38488.14 37220.64 39587.60 38357.28 38764.69 37980.39 384
LCM-MVSNet67.77 35364.73 35676.87 36462.95 39756.25 39189.37 38593.74 37844.53 39061.99 38280.74 38420.42 39786.53 38769.37 37359.50 38787.84 376
PMMVS267.15 35464.15 35776.14 36570.56 39462.07 38693.89 36987.52 39358.09 38460.02 38378.32 38522.38 39484.54 38859.56 38547.03 39081.80 383
Gipumacopyleft66.95 35565.00 35572.79 36891.52 35367.96 38066.16 39195.15 36547.89 38958.54 38667.99 39129.74 38887.54 38550.20 39077.83 34462.87 391
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt65.23 35662.94 35972.13 37244.90 40050.03 39781.05 38889.42 39238.45 39148.51 39399.90 1854.09 37678.70 39391.84 23718.26 39587.64 377
ANet_high56.10 35752.24 36067.66 37449.27 39956.82 39083.94 38782.02 39770.47 38133.28 39764.54 39217.23 39969.16 39545.59 39223.85 39477.02 387
PMVScopyleft49.05 2353.75 35851.34 36260.97 37640.80 40134.68 40374.82 39089.62 39137.55 39228.67 39872.12 3877.09 40281.63 39243.17 39368.21 37366.59 390
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN52.30 35952.18 36152.67 37771.51 39245.40 39993.62 37276.60 39936.01 39343.50 39464.13 39327.11 39267.31 39631.06 39726.06 39245.30 395
MVEpermissive53.74 2251.54 36047.86 36462.60 37559.56 39850.93 39479.41 38977.69 39835.69 39436.27 39661.76 3955.79 40469.63 39437.97 39436.61 39167.24 389
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS51.44 36151.22 36352.11 37870.71 39344.97 40194.04 36875.66 40035.34 39542.40 39561.56 39628.93 38965.87 39727.64 39824.73 39345.49 394
testmvs40.60 36244.45 36529.05 38019.49 40314.11 40699.68 16618.47 40320.74 39664.59 38198.48 20210.95 40117.09 40056.66 38911.01 39655.94 393
test12337.68 36339.14 36633.31 37919.94 40224.83 40598.36 3089.75 40415.53 39751.31 39187.14 37619.62 39817.74 39947.10 3913.47 39857.36 392
cdsmvs_eth3d_5k23.43 36431.24 3670.00 3820.00 4040.00 4070.00 39398.09 1920.00 4000.00 40199.67 9283.37 2380.00 4010.00 4000.00 3990.00 397
wuyk23d20.37 36520.84 36818.99 38165.34 39627.73 40450.43 3927.67 4059.50 3988.01 3996.34 3996.13 40326.24 39823.40 39910.69 3972.99 396
ab-mvs-re8.28 36611.04 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40199.40 1190.00 4050.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas7.60 36710.13 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40191.20 1470.00 4010.00 4000.00 3990.00 397
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.02 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4010.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4010.00 4050.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4010.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4010.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4010.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4010.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4010.00 4050.00 4010.00 4000.00 3990.00 397
MM99.76 1099.33 899.99 499.76 698.39 399.39 7099.80 5190.49 16499.96 5999.89 1699.43 10899.98 48
WAC-MVS90.97 27586.10 311
FOURS199.92 3197.66 8199.95 5098.36 15595.58 8399.52 57
MSC_two_6792asdad99.93 299.91 3999.80 298.41 140100.00 199.96 9100.00 1100.00 1
PC_three_145296.96 4299.80 1599.79 5597.49 10100.00 199.99 599.98 32100.00 1
No_MVS99.93 299.91 3999.80 298.41 140100.00 199.96 9100.00 1100.00 1
test_one_060199.94 1399.30 1298.41 14096.63 5499.75 2799.93 1197.49 10
eth-test20.00 404
eth-test0.00 404
ZD-MVS99.92 3198.57 5498.52 9992.34 20299.31 7499.83 4395.06 5299.80 11999.70 3299.97 42
RE-MVS-def98.13 4899.79 6296.37 12899.76 14598.31 16694.43 11599.40 6899.75 6892.95 11098.90 7199.92 6399.97 57
IU-MVS99.93 2499.31 1098.41 14097.71 1799.84 10100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 3299.80 5197.44 14100.00 1100.00 199.98 32100.00 1
test_241102_TWO98.43 12597.27 3299.80 1599.94 497.18 21100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 12597.26 3499.80 1599.88 2196.71 24100.00 1
9.1498.38 3199.87 5199.91 8098.33 16293.22 16599.78 2499.89 1994.57 6499.85 10699.84 2099.97 42
save fliter99.82 5898.79 3899.96 3298.40 14497.66 19
test_0728_THIRD96.48 5799.83 1199.91 1497.87 6100.00 199.92 12100.00 1100.00 1
test_0728_SECOND99.82 799.94 1399.47 799.95 5098.43 125100.00 199.99 5100.00 1100.00 1
test072699.93 2499.29 1599.96 3298.42 13697.28 3099.86 599.94 497.22 19
GSMVS99.59 128
test_part299.89 4599.25 1899.49 60
sam_mvs194.72 6199.59 128
sam_mvs94.25 75
ambc83.23 35777.17 38962.61 38387.38 38694.55 37176.72 36786.65 37830.16 38796.36 32284.85 31969.86 36690.73 362
MTGPAbinary98.28 171
test_post195.78 36359.23 39793.20 10497.74 25591.06 246
test_post63.35 39494.43 6598.13 235
patchmatchnet-post91.70 35995.12 4997.95 246
GG-mvs-BLEND98.54 10198.21 16598.01 6893.87 37098.52 9997.92 13297.92 22199.02 297.94 24898.17 10499.58 9599.67 111
MTMP99.87 9896.49 334
gm-plane-assit96.97 23693.76 21291.47 22798.96 15998.79 18194.92 178
test9_res99.71 3199.99 21100.00 1
TEST999.92 3198.92 2899.96 3298.43 12593.90 14699.71 3299.86 2695.88 3799.85 106
test_899.92 3198.88 3199.96 3298.43 12594.35 12099.69 3499.85 3095.94 3499.85 106
agg_prior299.48 41100.00 1100.00 1
agg_prior99.93 2498.77 4098.43 12599.63 4199.85 106
TestCases95.00 23499.01 11188.43 31996.82 31986.50 31688.71 28498.47 20374.73 31699.88 10085.39 31496.18 18996.71 238
test_prior498.05 6699.94 66
test_prior299.95 5095.78 7799.73 3099.76 6396.00 3399.78 25100.00 1
test_prior99.43 3599.94 1398.49 5898.65 7299.80 11999.99 23
旧先验299.46 20494.21 12899.85 799.95 6796.96 149
新几何299.40 208
新几何199.42 3799.75 6898.27 6198.63 7892.69 18399.55 5299.82 4694.40 67100.00 191.21 24299.94 5499.99 23
旧先验199.76 6697.52 8598.64 7499.85 3095.63 4199.94 5499.99 23
无先验99.49 19998.71 6493.46 158100.00 194.36 19399.99 23
原ACMM299.90 85
原ACMM198.96 7399.73 7296.99 10798.51 10294.06 13699.62 4499.85 3094.97 5899.96 5995.11 17299.95 4999.92 79
test22299.55 8597.41 9499.34 21898.55 9391.86 21599.27 7899.83 4393.84 8899.95 4999.99 23
testdata299.99 3690.54 259
segment_acmp96.68 26
testdata98.42 11199.47 9195.33 16898.56 8793.78 14999.79 2399.85 3093.64 9399.94 7594.97 17699.94 54100.00 1
testdata199.28 22896.35 67
test1299.43 3599.74 6998.56 5598.40 14499.65 3894.76 6099.75 13099.98 3299.99 23
plane_prior795.71 28091.59 269
plane_prior695.76 27491.72 26480.47 265
plane_prior597.87 21498.37 21897.79 12689.55 24294.52 252
plane_prior498.59 191
plane_prior391.64 26796.63 5493.01 215
plane_prior299.84 11896.38 63
plane_prior195.73 277
plane_prior91.74 26199.86 11196.76 5089.59 241
n20.00 406
nn0.00 406
door-mid89.69 390
lessismore_v090.53 32790.58 36180.90 36695.80 34877.01 36595.84 28166.15 35296.95 29783.03 32975.05 35993.74 322
LGP-MVS_train93.71 28795.43 28788.67 31597.62 23192.81 17690.05 24998.49 19975.24 31098.40 21095.84 16689.12 24694.07 295
test1198.44 117
door90.31 387
HQP5-MVS91.85 257
HQP-NCC95.78 27099.87 9896.82 4693.37 211
ACMP_Plane95.78 27099.87 9896.82 4693.37 211
BP-MVS97.92 119
HQP4-MVS93.37 21198.39 21294.53 250
HQP3-MVS97.89 21289.60 239
HQP2-MVS80.65 261
NP-MVS95.77 27391.79 25998.65 186
MDTV_nov1_ep13_2view96.26 13196.11 35791.89 21498.06 12894.40 6794.30 19599.67 111
MDTV_nov1_ep1395.69 14297.90 18294.15 20195.98 36098.44 11793.12 16897.98 13095.74 28495.10 5098.58 19690.02 26796.92 179
ACMMP++_ref87.04 277
ACMMP++88.23 264
Test By Simon92.82 115
ITE_SJBPF92.38 31295.69 28285.14 34195.71 35092.81 17689.33 27198.11 21170.23 33698.42 20785.91 31288.16 26593.59 326
DeepMVS_CXcopyleft82.92 35895.98 26758.66 38996.01 34592.72 18078.34 36095.51 29658.29 37198.08 23782.57 33185.29 28892.03 352