This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 998.69 5798.20 399.93 199.98 296.82 23100.00 199.75 28100.00 199.99 24
NCCC99.37 299.25 299.71 1399.96 899.15 2099.97 1898.62 6998.02 699.90 299.95 397.33 17100.00 199.54 39100.00 1100.00 1
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 1898.64 6598.47 299.13 8399.92 1396.38 30100.00 199.74 30100.00 1100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1199.93 2799.29 1499.95 4398.32 16097.28 1999.83 1199.91 1597.22 19100.00 199.99 5100.00 199.89 94
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS99.28 599.11 799.77 899.93 2799.30 1199.96 2598.43 12097.27 2199.80 1799.94 496.71 24100.00 1100.00 1100.00 1100.00 1
DVP-MVS++99.26 699.09 999.77 899.91 4499.31 999.95 4398.43 12096.48 4399.80 1799.93 1197.44 14100.00 199.92 1399.98 35100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1099.89 5099.24 1899.87 9398.44 11297.48 1699.64 3999.94 496.68 2699.99 4099.99 5100.00 199.99 24
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSLP-MVS++99.13 899.01 1199.49 3499.94 1498.46 6399.98 998.86 4797.10 2699.80 1799.94 495.92 37100.00 199.51 40100.00 1100.00 1
MSP-MVS99.09 999.12 598.98 8399.93 2797.24 10999.95 4398.42 13297.50 1599.52 5499.88 2497.43 1699.71 13499.50 4199.98 35100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft99.07 1098.88 1599.63 1599.90 4799.02 2399.95 4398.56 7997.56 1499.44 5999.85 3595.38 49100.00 199.31 4999.99 2299.87 98
APDe-MVS99.06 1198.91 1499.51 3199.94 1498.76 4499.91 7598.39 14397.20 2599.46 5799.85 3595.53 4699.79 11499.86 18100.00 199.99 24
SteuartSystems-ACMMP99.02 1298.97 1399.18 5798.72 14797.71 8699.98 998.44 11296.85 3199.80 1799.91 1597.57 899.85 9999.44 4499.99 2299.99 24
Skip Steuart: Steuart Systems R&D Blog.
CHOSEN 280x42099.01 1399.03 1098.95 8699.38 11198.87 3198.46 29499.42 2197.03 2899.02 8799.09 14599.35 198.21 22599.73 3399.78 9499.77 110
test_prior398.99 1498.84 1699.43 3899.94 1498.49 6199.95 4398.65 6295.78 6499.73 3099.76 7696.00 3399.80 11199.78 26100.00 199.99 24
xxxxxxxxxxxxxcwj98.98 1598.79 1799.54 2699.82 7098.79 3799.96 2597.52 24497.66 1099.81 1399.89 2194.70 6899.86 9599.84 1999.93 6799.96 74
TSAR-MVS + MP.98.93 1698.77 1899.41 4299.74 8298.67 4899.77 13298.38 14796.73 3799.88 499.74 8794.89 6599.59 14599.80 2499.98 3599.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS98.92 1798.70 1999.56 2499.70 9098.73 4599.94 6198.34 15796.38 4899.81 1399.76 7694.59 7099.98 4699.84 1999.96 5299.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MG-MVS98.91 1898.65 2299.68 1499.94 1499.07 2299.64 16899.44 1997.33 1899.00 9099.72 9194.03 9499.98 4698.73 81100.00 1100.00 1
testtj98.89 1998.69 2099.52 2999.94 1498.56 5799.90 8098.55 8595.14 8499.72 3399.84 4895.46 47100.00 199.65 3899.99 2299.99 24
train_agg98.88 2098.65 2299.59 2199.92 3698.92 2799.96 2598.43 12094.35 11599.71 3499.86 3195.94 3599.85 9999.69 3799.98 3599.99 24
agg_prior198.88 2098.66 2199.54 2699.93 2798.77 4099.96 2598.43 12094.63 10399.63 4099.85 3595.79 4199.85 9999.72 3499.99 2299.99 24
DPM-MVS98.83 2298.46 3299.97 199.33 11399.92 199.96 2598.44 11297.96 799.55 4999.94 497.18 21100.00 193.81 20399.94 6199.98 55
ETH3 D test640098.81 2398.54 2899.59 2199.93 2798.93 2699.93 6798.46 10794.56 10599.84 999.92 1394.32 8499.86 9599.96 999.98 35100.00 1
DeepC-MVS_fast96.59 198.81 2398.54 2899.62 1899.90 4798.85 3399.24 22498.47 10598.14 499.08 8499.91 1593.09 120100.00 199.04 6099.99 22100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Regformer-198.79 2598.60 2599.36 4899.85 6098.34 6699.87 9398.52 9296.05 5799.41 6299.79 6494.93 6399.76 12399.07 5599.90 7699.99 24
Regformer-298.78 2698.59 2699.36 4899.85 6098.32 6799.87 9398.52 9296.04 5899.41 6299.79 6494.92 6499.76 12399.05 5699.90 7699.98 55
SMA-MVScopyleft98.76 2798.48 3199.62 1899.87 5798.87 3199.86 10598.38 14793.19 16399.77 2699.94 495.54 44100.00 199.74 3099.99 22100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MVS_111021_HR98.72 2898.62 2499.01 8199.36 11297.18 11299.93 6799.90 196.81 3598.67 10599.77 7293.92 9699.89 8499.27 5199.94 6199.96 74
XVS98.70 2998.55 2799.15 6499.94 1497.50 9999.94 6198.42 13296.22 5399.41 6299.78 7094.34 8099.96 5898.92 6699.95 5599.99 24
ETH3D-3000-0.198.68 3098.42 3399.47 3799.83 6898.57 5599.90 8098.37 15093.81 14499.81 1399.90 1994.34 8099.86 9599.84 1999.98 3599.97 67
SF-MVS98.67 3198.40 3799.50 3299.77 7898.67 4899.90 8098.21 17793.53 15399.81 1399.89 2194.70 6899.86 9599.84 1999.93 6799.96 74
CDPH-MVS98.65 3298.36 4499.49 3499.94 1498.73 4599.87 9398.33 15893.97 13699.76 2799.87 2894.99 6199.75 12698.55 91100.00 199.98 55
APD-MVScopyleft98.62 3398.35 4599.41 4299.90 4798.51 6099.87 9398.36 15294.08 12899.74 2999.73 8994.08 9299.74 13099.42 4599.99 2299.99 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + GP.98.60 3498.51 3098.86 9099.73 8696.63 13099.97 1897.92 20798.07 598.76 10199.55 11295.00 6099.94 7399.91 1697.68 15999.99 24
PAPM98.60 3498.42 3399.14 6696.05 25998.96 2499.90 8099.35 2496.68 3998.35 12099.66 10496.45 2998.51 19399.45 4399.89 7899.96 74
#test#98.59 3698.41 3599.14 6699.96 897.43 10499.95 4398.61 7195.00 8799.31 7199.85 3594.22 87100.00 198.78 7799.98 3599.98 55
Regformer-398.58 3798.41 3599.10 7299.84 6597.57 9299.66 16098.52 9295.79 6399.01 8899.77 7294.40 7499.75 12698.82 7399.83 8599.98 55
HFP-MVS98.56 3898.37 4299.14 6699.96 897.43 10499.95 4398.61 7194.77 9699.31 7199.85 3594.22 87100.00 198.70 8299.98 3599.98 55
Regformer-498.56 3898.39 3999.08 7499.84 6597.52 9599.66 16098.52 9295.76 6699.01 8899.77 7294.33 8399.75 12698.80 7699.83 8599.98 55
region2R98.54 4098.37 4299.05 7699.96 897.18 11299.96 2598.55 8594.87 9499.45 5899.85 3594.07 93100.00 198.67 84100.00 199.98 55
DELS-MVS98.54 4098.22 5099.50 3299.15 11998.65 52100.00 198.58 7597.70 998.21 12799.24 13992.58 13399.94 7398.63 8999.94 6199.92 91
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPR98.52 4298.16 5599.58 2399.97 398.77 4099.95 4398.43 12095.35 7998.03 12999.75 8294.03 9499.98 4698.11 10699.83 8599.99 24
ACMMPR98.50 4398.32 4699.05 7699.96 897.18 11299.95 4398.60 7394.77 9699.31 7199.84 4893.73 102100.00 198.70 8299.98 3599.98 55
ACMMP_NAP98.49 4498.14 5699.54 2699.66 9398.62 5499.85 10898.37 15094.68 10099.53 5199.83 5192.87 125100.00 198.66 8799.84 8499.99 24
EPNet98.49 4498.40 3798.77 9399.62 9596.80 12799.90 8099.51 1697.60 1299.20 7899.36 12993.71 10399.91 7997.99 11398.71 13599.61 136
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SR-MVS98.46 4698.30 4898.93 8799.88 5497.04 11799.84 11298.35 15594.92 9199.32 7099.80 6093.35 10999.78 11699.30 5099.95 5599.96 74
CP-MVS98.45 4798.32 4698.87 8999.96 896.62 13199.97 1898.39 14394.43 11098.90 9499.87 2894.30 85100.00 199.04 6099.99 2299.99 24
PS-MVSNAJ98.44 4898.20 5299.16 6298.80 14498.92 2799.54 18498.17 18297.34 1799.85 799.85 3591.20 15799.89 8499.41 4699.67 10198.69 211
MVS_111021_LR98.42 4998.38 4098.53 11599.39 11095.79 16199.87 9399.86 296.70 3898.78 9899.79 6492.03 14799.90 8099.17 5299.86 8399.88 96
DP-MVS Recon98.41 5098.02 6499.56 2499.97 398.70 4799.92 7198.44 11292.06 20898.40 11899.84 4895.68 42100.00 198.19 10199.71 9999.97 67
PHI-MVS98.41 5098.21 5199.03 7899.86 5997.10 11699.98 998.80 5290.78 24199.62 4399.78 7095.30 50100.00 199.80 2499.93 6799.99 24
ETH3D cwj APD-0.1698.40 5298.07 6299.40 4499.59 9698.41 6499.86 10598.24 17392.18 20399.73 3099.87 2893.47 10799.85 9999.74 3099.95 5599.93 85
mPP-MVS98.39 5398.20 5298.97 8499.97 396.92 12399.95 4398.38 14795.04 8698.61 10999.80 6093.39 108100.00 198.64 88100.00 199.98 55
test117298.38 5498.25 4998.77 9399.88 5496.56 13499.80 12598.36 15294.68 10099.20 7899.80 6093.28 11499.78 11699.34 4899.92 7199.98 55
PGM-MVS98.34 5598.13 5798.99 8299.92 3697.00 11999.75 14099.50 1793.90 14199.37 6899.76 7693.24 117100.00 197.75 12699.96 5299.98 55
zzz-MVS98.33 5698.00 6599.30 5099.85 6097.93 8199.80 12598.28 16795.76 6697.18 14799.88 2492.74 129100.00 198.67 8499.88 8099.99 24
SR-MVS-dyc-post98.31 5798.17 5498.71 9699.79 7596.37 14199.76 13798.31 16294.43 11099.40 6699.75 8293.28 11499.78 11698.90 6999.92 7199.97 67
ZNCC-MVS98.31 5798.03 6399.17 6099.88 5497.59 9199.94 6198.44 11294.31 11898.50 11399.82 5593.06 12199.99 4098.30 10099.99 2299.93 85
MTAPA98.29 5997.96 7099.30 5099.85 6097.93 8199.39 20598.28 16795.76 6697.18 14799.88 2492.74 129100.00 198.67 8499.88 8099.99 24
GST-MVS98.27 6097.97 6799.17 6099.92 3697.57 9299.93 6798.39 14394.04 13498.80 9799.74 8792.98 122100.00 198.16 10399.76 9599.93 85
CANet98.27 6097.82 7599.63 1599.72 8899.10 2199.98 998.51 9997.00 2998.52 11199.71 9387.80 19999.95 6599.75 2899.38 11999.83 102
EI-MVSNet-Vis-set98.27 6098.11 5998.75 9599.83 6896.59 13399.40 20198.51 9995.29 8198.51 11299.76 7693.60 10699.71 13498.53 9299.52 11299.95 82
APD-MVS_3200maxsize98.25 6398.08 6198.78 9299.81 7396.60 13299.82 11998.30 16593.95 13899.37 6899.77 7292.84 12699.76 12398.95 6399.92 7199.97 67
patch_mono-298.24 6499.12 595.59 21399.67 9286.91 32999.95 4398.89 4397.60 1299.90 299.76 7696.54 2899.98 4699.94 1299.82 9199.88 96
xiu_mvs_v2_base98.23 6597.97 6799.02 8098.69 14898.66 5099.52 18698.08 19397.05 2799.86 599.86 3190.65 16899.71 13499.39 4798.63 13698.69 211
MP-MVScopyleft98.23 6597.97 6799.03 7899.94 1497.17 11599.95 4398.39 14394.70 9998.26 12599.81 5991.84 151100.00 198.85 7299.97 4899.93 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EI-MVSNet-UG-set98.14 6797.99 6698.60 10599.80 7496.27 14399.36 21098.50 10395.21 8398.30 12299.75 8293.29 11399.73 13398.37 9799.30 12199.81 104
PAPM_NR98.12 6897.93 7298.70 9799.94 1496.13 15299.82 11998.43 12094.56 10597.52 14099.70 9594.40 7499.98 4697.00 14399.98 3599.99 24
WTY-MVS98.10 6997.60 8199.60 2098.92 13499.28 1699.89 8899.52 1495.58 7398.24 12699.39 12693.33 11099.74 13097.98 11595.58 20199.78 109
MP-MVS-pluss98.07 7097.64 7999.38 4799.74 8298.41 6499.74 14398.18 18193.35 15796.45 16699.85 3592.64 13299.97 5698.91 6899.89 7899.77 110
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
112198.03 7197.57 8399.40 4499.74 8298.21 6998.31 30198.62 6992.78 17699.53 5199.83 5195.08 54100.00 194.36 19099.92 7199.99 24
HPM-MVScopyleft97.96 7297.72 7798.68 9899.84 6596.39 14099.90 8098.17 18292.61 18698.62 10899.57 11191.87 15099.67 14198.87 7199.99 2299.99 24
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet_Blended97.94 7397.64 7998.83 9199.59 9696.99 120100.00 199.10 2995.38 7898.27 12399.08 14689.00 19099.95 6599.12 5399.25 12399.57 146
PLCcopyleft95.54 397.93 7497.89 7498.05 13899.82 7094.77 19499.92 7198.46 10793.93 13997.20 14699.27 13495.44 4899.97 5697.41 13199.51 11499.41 169
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ETV-MVS97.92 7597.80 7698.25 13098.14 17796.48 13599.98 997.63 22795.61 7299.29 7599.46 12092.55 13498.82 17499.02 6298.54 13799.46 162
CS-MVS-test97.88 7697.94 7197.70 15299.28 11595.20 18399.98 997.15 27795.53 7599.62 4399.79 6492.08 14698.38 20998.75 8099.28 12299.52 155
API-MVS97.86 7797.66 7898.47 11899.52 10395.41 17499.47 19598.87 4691.68 21898.84 9599.85 3592.34 14099.99 4098.44 9499.96 52100.00 1
lupinMVS97.85 7897.60 8198.62 10397.28 22597.70 8899.99 397.55 23895.50 7799.43 6099.67 10290.92 16498.71 18398.40 9599.62 10499.45 164
test_yl97.83 7997.37 8899.21 5499.18 11697.98 7899.64 16899.27 2691.43 22697.88 13498.99 15495.84 3999.84 10898.82 7395.32 20599.79 106
DCV-MVSNet97.83 7997.37 8899.21 5499.18 11697.98 7899.64 16899.27 2691.43 22697.88 13498.99 15495.84 3999.84 10898.82 7395.32 20599.79 106
alignmvs97.81 8197.33 9199.25 5298.77 14698.66 5099.99 398.44 11294.40 11498.41 11699.47 11893.65 10499.42 15698.57 9094.26 21499.67 122
HPM-MVS_fast97.80 8297.50 8498.68 9899.79 7596.42 13799.88 9098.16 18591.75 21798.94 9299.54 11491.82 15299.65 14397.62 12899.99 2299.99 24
CS-MVS97.79 8397.91 7397.43 16299.10 12094.42 19899.99 397.10 28295.07 8599.68 3799.75 8292.95 12398.34 21398.38 9699.14 12799.54 151
HY-MVS92.50 797.79 8397.17 9799.63 1598.98 12799.32 897.49 32299.52 1495.69 7098.32 12197.41 22693.32 11199.77 12098.08 10995.75 19899.81 104
CNLPA97.76 8597.38 8798.92 8899.53 10296.84 12599.87 9398.14 18893.78 14696.55 16499.69 9892.28 14199.98 4697.13 13899.44 11799.93 85
ACMMPcopyleft97.74 8697.44 8698.66 10099.92 3696.13 15299.18 22999.45 1894.84 9596.41 16999.71 9391.40 15499.99 4097.99 11398.03 15599.87 98
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepPCF-MVS95.94 297.71 8798.98 1293.92 27799.63 9481.76 35599.96 2598.56 7999.47 199.19 8199.99 194.16 91100.00 199.92 1399.93 67100.00 1
abl_697.67 8897.34 9098.66 10099.68 9196.11 15599.68 15698.14 18893.80 14599.27 7699.70 9588.65 19599.98 4697.46 13099.72 9899.89 94
CPTT-MVS97.64 8997.32 9298.58 10899.97 395.77 16299.96 2598.35 15589.90 25498.36 11999.79 6491.18 16099.99 4098.37 9799.99 2299.99 24
sss97.57 9097.03 10299.18 5798.37 16398.04 7599.73 14899.38 2293.46 15598.76 10199.06 14791.21 15699.89 8496.33 15397.01 17499.62 133
test250697.53 9197.19 9598.58 10898.66 15096.90 12498.81 27399.77 594.93 8997.95 13198.96 16092.51 13599.20 16094.93 17398.15 14799.64 128
EIA-MVS97.53 9197.46 8597.76 14998.04 18194.84 19099.98 997.61 23294.41 11397.90 13399.59 10992.40 13898.87 17298.04 11099.13 12899.59 139
xiu_mvs_v1_base_debu97.43 9397.06 9898.55 11097.74 19998.14 7099.31 21597.86 21396.43 4599.62 4399.69 9885.56 22199.68 13899.05 5698.31 14397.83 220
xiu_mvs_v1_base97.43 9397.06 9898.55 11097.74 19998.14 7099.31 21597.86 21396.43 4599.62 4399.69 9885.56 22199.68 13899.05 5698.31 14397.83 220
xiu_mvs_v1_base_debi97.43 9397.06 9898.55 11097.74 19998.14 7099.31 21597.86 21396.43 4599.62 4399.69 9885.56 22199.68 13899.05 5698.31 14397.83 220
MAR-MVS97.43 9397.19 9598.15 13599.47 10794.79 19399.05 24698.76 5392.65 18498.66 10699.82 5588.52 19699.98 4698.12 10599.63 10399.67 122
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
dcpmvs_297.42 9798.09 6095.42 21899.58 10087.24 32699.23 22596.95 30094.28 12098.93 9399.73 8994.39 7899.16 16499.89 1799.82 9199.86 100
thisisatest051597.41 9897.02 10398.59 10797.71 20597.52 9599.97 1898.54 8991.83 21397.45 14299.04 14897.50 999.10 16694.75 18296.37 18599.16 190
114514_t97.41 9896.83 10699.14 6699.51 10597.83 8399.89 8898.27 17088.48 27899.06 8599.66 10490.30 17299.64 14496.32 15499.97 4899.96 74
DROMVSNet97.38 10097.24 9397.80 14497.41 21595.64 16999.99 397.06 28794.59 10499.63 4099.32 13089.20 18898.14 22798.76 7999.23 12499.62 133
OMC-MVS97.28 10197.23 9497.41 16399.76 7993.36 22699.65 16497.95 20396.03 5997.41 14399.70 9589.61 17999.51 14896.73 15098.25 14699.38 171
PVSNet_Blended_VisFu97.27 10296.81 10798.66 10098.81 14396.67 12999.92 7198.64 6594.51 10796.38 17098.49 19389.05 18999.88 9097.10 14098.34 14199.43 167
jason97.24 10396.86 10598.38 12695.73 27197.32 10899.97 1897.40 25795.34 8098.60 11099.54 11487.70 20098.56 19097.94 11699.47 11599.25 185
jason: jason.
AdaColmapbinary97.23 10496.80 10898.51 11699.99 195.60 17099.09 23598.84 4993.32 15996.74 15899.72 9186.04 217100.00 198.01 11199.43 11899.94 84
VNet97.21 10596.57 11599.13 7198.97 12897.82 8499.03 24899.21 2894.31 11899.18 8298.88 17086.26 21699.89 8498.93 6594.32 21399.69 119
PVSNet91.05 1397.13 10696.69 11198.45 12099.52 10395.81 16099.95 4399.65 1194.73 9899.04 8699.21 14184.48 23099.95 6594.92 17498.74 13499.58 145
thisisatest053097.10 10796.72 11098.22 13197.60 20896.70 12899.92 7198.54 8991.11 23397.07 15098.97 15897.47 1299.03 16793.73 20896.09 18898.92 200
CSCG97.10 10797.04 10197.27 17199.89 5091.92 25799.90 8099.07 3288.67 27495.26 18999.82 5593.17 11999.98 4698.15 10499.47 11599.90 93
canonicalmvs97.09 10996.32 12199.39 4698.93 13298.95 2599.72 15197.35 26094.45 10897.88 13499.42 12286.71 21099.52 14798.48 9393.97 21899.72 116
diffmvs97.00 11096.64 11298.09 13697.64 20696.17 15199.81 12197.19 27194.67 10298.95 9199.28 13186.43 21398.76 17998.37 9797.42 16599.33 178
thres20096.96 11196.21 12399.22 5398.97 12898.84 3499.85 10899.71 693.17 16496.26 17298.88 17089.87 17799.51 14894.26 19494.91 20899.31 180
MVSFormer96.94 11296.60 11397.95 14097.28 22597.70 8899.55 18297.27 26791.17 23099.43 6099.54 11490.92 16496.89 29594.67 18599.62 10499.25 185
F-COLMAP96.93 11396.95 10496.87 18099.71 8991.74 26299.85 10897.95 20393.11 16695.72 18299.16 14392.35 13999.94 7395.32 16699.35 12098.92 200
DeepC-MVS94.51 496.92 11496.40 12098.45 12099.16 11895.90 15899.66 16098.06 19496.37 5194.37 19899.49 11783.29 24099.90 8097.63 12799.61 10799.55 148
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tttt051796.85 11596.49 11797.92 14297.48 21495.89 15999.85 10898.54 8990.72 24296.63 16098.93 16897.47 1299.02 16893.03 22195.76 19798.85 204
131496.84 11695.96 13599.48 3696.74 24998.52 5998.31 30198.86 4795.82 6289.91 24698.98 15687.49 20299.96 5897.80 11999.73 9799.96 74
CHOSEN 1792x268896.81 11796.53 11697.64 15398.91 13693.07 22899.65 16499.80 395.64 7195.39 18698.86 17484.35 23399.90 8096.98 14499.16 12699.95 82
tfpn200view996.79 11895.99 12899.19 5698.94 13098.82 3599.78 12999.71 692.86 16996.02 17598.87 17289.33 18399.50 15093.84 20094.57 20999.27 183
thres40096.78 11995.99 12899.16 6298.94 13098.82 3599.78 12999.71 692.86 16996.02 17598.87 17289.33 18399.50 15093.84 20094.57 20999.16 190
CANet_DTU96.76 12096.15 12498.60 10598.78 14597.53 9499.84 11297.63 22797.25 2499.20 7899.64 10681.36 25599.98 4692.77 22398.89 13098.28 214
PMMVS96.76 12096.76 10996.76 18398.28 16892.10 25299.91 7597.98 20094.12 12699.53 5199.39 12686.93 20998.73 18196.95 14697.73 15799.45 164
thres100view90096.74 12295.92 14099.18 5798.90 13798.77 4099.74 14399.71 692.59 18895.84 17898.86 17489.25 18599.50 15093.84 20094.57 20999.27 183
TESTMET0.1,196.74 12296.26 12298.16 13297.36 21896.48 13599.96 2598.29 16691.93 21095.77 18198.07 20695.54 4498.29 21790.55 25298.89 13099.70 117
baseline296.71 12496.49 11797.37 16695.63 27895.96 15799.74 14398.88 4592.94 16891.61 22698.97 15897.72 798.62 18894.83 17898.08 15497.53 228
thres600view796.69 12595.87 14399.14 6698.90 13798.78 3999.74 14399.71 692.59 18895.84 17898.86 17489.25 18599.50 15093.44 21394.50 21299.16 190
EPP-MVSNet96.69 12596.60 11396.96 17797.74 19993.05 23099.37 20898.56 7988.75 27295.83 18099.01 15196.01 3298.56 19096.92 14797.20 17099.25 185
HyFIR lowres test96.66 12796.43 11997.36 16899.05 12293.91 21099.70 15399.80 390.54 24396.26 17298.08 20592.15 14498.23 22496.84 14995.46 20299.93 85
MVS96.60 12895.56 14999.72 1296.85 24299.22 1998.31 30198.94 3791.57 22090.90 23499.61 10886.66 21199.96 5897.36 13299.88 8099.99 24
UA-Net96.54 12995.96 13598.27 12998.23 17195.71 16698.00 31598.45 10993.72 14998.41 11699.27 13488.71 19499.66 14291.19 23897.69 15899.44 166
EPMVS96.53 13096.01 12798.09 13698.43 16096.12 15496.36 33899.43 2093.53 15397.64 13895.04 30794.41 7398.38 20991.13 23998.11 15099.75 112
test-LLR96.47 13196.04 12697.78 14697.02 23395.44 17299.96 2598.21 17794.07 12995.55 18396.38 25893.90 9898.27 22190.42 25598.83 13299.64 128
MVS_Test96.46 13295.74 14598.61 10498.18 17497.23 11099.31 21597.15 27791.07 23498.84 9597.05 23988.17 19898.97 17094.39 18997.50 16299.61 136
baseline96.43 13395.98 13097.76 14997.34 21995.17 18499.51 18897.17 27493.92 14096.90 15399.28 13185.37 22498.64 18797.50 12996.86 17899.46 162
casdiffmvs96.42 13495.97 13397.77 14897.30 22394.98 18699.84 11297.09 28493.75 14896.58 16299.26 13785.07 22698.78 17797.77 12497.04 17399.54 151
test-mter96.39 13595.93 13897.78 14697.02 23395.44 17299.96 2598.21 17791.81 21595.55 18396.38 25895.17 5198.27 22190.42 25598.83 13299.64 128
CDS-MVSNet96.34 13696.07 12597.13 17397.37 21794.96 18799.53 18597.91 20891.55 22195.37 18798.32 20195.05 5797.13 27693.80 20495.75 19899.30 181
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Vis-MVSNet (Re-imp)96.32 13795.98 13097.35 16997.93 18694.82 19199.47 19598.15 18791.83 21395.09 19099.11 14491.37 15597.47 25593.47 21297.43 16399.74 113
3Dnovator+91.53 1196.31 13895.24 15699.52 2996.88 24198.64 5399.72 15198.24 17395.27 8288.42 28598.98 15682.76 24299.94 7397.10 14099.83 8599.96 74
Effi-MVS+96.30 13995.69 14698.16 13297.85 19196.26 14497.41 32397.21 27090.37 24698.65 10798.58 18986.61 21298.70 18497.11 13997.37 16799.52 155
IS-MVSNet96.29 14095.90 14197.45 16098.13 17894.80 19299.08 23797.61 23292.02 20995.54 18598.96 16090.64 16998.08 23093.73 20897.41 16699.47 161
3Dnovator91.47 1296.28 14195.34 15499.08 7496.82 24497.47 10299.45 19898.81 5095.52 7689.39 26099.00 15381.97 24799.95 6597.27 13499.83 8599.84 101
tpmrst96.27 14295.98 13097.13 17397.96 18493.15 22796.34 33998.17 18292.07 20698.71 10495.12 30593.91 9798.73 18194.91 17696.62 17999.50 159
CostFormer96.10 14395.88 14296.78 18297.03 23292.55 24397.08 33097.83 21690.04 25398.72 10394.89 31495.01 5998.29 21796.54 15295.77 19699.50 159
iter_conf0596.07 14495.95 13796.44 19498.43 16097.52 9599.91 7596.85 31194.16 12492.49 22297.98 21198.20 497.34 25997.26 13588.29 25394.45 250
PVSNet_BlendedMVS96.05 14595.82 14496.72 18599.59 9696.99 12099.95 4399.10 2994.06 13198.27 12395.80 27289.00 19099.95 6599.12 5387.53 26693.24 327
PatchMatch-RL96.04 14695.40 15197.95 14099.59 9695.22 18299.52 18699.07 3293.96 13796.49 16598.35 20082.28 24599.82 11090.15 26099.22 12598.81 207
iter_conf_final96.01 14795.93 13896.28 20098.38 16297.03 11899.87 9397.03 29194.05 13392.61 22097.98 21198.01 597.34 25997.02 14288.39 25294.47 244
1112_ss96.01 14795.20 15898.42 12397.80 19496.41 13899.65 16496.66 32392.71 17992.88 21799.40 12492.16 14399.30 15791.92 23093.66 21999.55 148
PatchmatchNetpermissive95.94 14995.45 15097.39 16597.83 19294.41 19996.05 34498.40 14092.86 16997.09 14995.28 30294.21 9098.07 23289.26 26798.11 15099.70 117
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TAMVS95.85 15095.58 14896.65 18897.07 22993.50 21999.17 23097.82 21791.39 22995.02 19198.01 20792.20 14297.30 26493.75 20795.83 19599.14 193
LS3D95.84 15195.11 16198.02 13999.85 6095.10 18598.74 27898.50 10387.22 29493.66 20799.86 3187.45 20399.95 6590.94 24699.81 9399.02 198
baseline195.78 15294.86 16698.54 11398.47 15998.07 7399.06 24297.99 19892.68 18294.13 20298.62 18693.28 11498.69 18593.79 20585.76 27598.84 205
Test_1112_low_res95.72 15394.83 16798.42 12397.79 19596.41 13899.65 16496.65 32492.70 18092.86 21896.13 26792.15 14499.30 15791.88 23193.64 22099.55 148
Vis-MVSNetpermissive95.72 15395.15 16097.45 16097.62 20794.28 20199.28 22198.24 17394.27 12296.84 15598.94 16679.39 27498.76 17993.25 21498.49 13899.30 181
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPNet_dtu95.71 15595.39 15296.66 18798.92 13493.41 22399.57 17898.90 4296.19 5597.52 14098.56 19192.65 13197.36 25777.89 34298.33 14299.20 188
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-w/o95.71 15595.38 15396.68 18698.49 15892.28 24799.84 11297.50 24792.12 20592.06 22498.79 17884.69 22898.67 18695.29 16799.66 10299.09 196
ECVR-MVScopyleft95.66 15795.05 16297.51 15898.66 15093.71 21498.85 27098.45 10994.93 8996.86 15498.96 16075.22 30899.20 16095.34 16598.15 14799.64 128
mvs_anonymous95.65 15895.03 16397.53 15698.19 17395.74 16499.33 21297.49 24890.87 23890.47 23897.10 23588.23 19797.16 27395.92 15997.66 16099.68 120
test111195.57 15994.98 16497.37 16698.56 15293.37 22598.86 26898.45 10994.95 8896.63 16098.95 16475.21 30999.11 16595.02 17198.14 14999.64 128
mvs-test195.53 16095.97 13394.20 26497.77 19685.44 33799.95 4397.06 28794.92 9196.58 16298.72 18085.81 21898.98 16994.80 17998.11 15098.18 215
MVSTER95.53 16095.22 15796.45 19298.56 15297.72 8599.91 7597.67 22492.38 19791.39 22897.14 23397.24 1897.30 26494.80 17987.85 26094.34 262
tpm295.47 16295.18 15996.35 19996.91 23791.70 26696.96 33397.93 20588.04 28498.44 11595.40 29193.32 11197.97 23694.00 19795.61 20099.38 171
QAPM95.40 16394.17 17899.10 7296.92 23697.71 8699.40 20198.68 5889.31 25988.94 27398.89 16982.48 24399.96 5893.12 22099.83 8599.62 133
UGNet95.33 16494.57 17197.62 15598.55 15494.85 18998.67 28599.32 2595.75 6996.80 15796.27 26372.18 32299.96 5894.58 18799.05 12998.04 218
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
BH-untuned95.18 16594.83 16796.22 20298.36 16491.22 27499.80 12597.32 26490.91 23791.08 23298.67 18283.51 23798.54 19294.23 19599.61 10798.92 200
BH-RMVSNet95.18 16594.31 17697.80 14498.17 17595.23 18199.76 13797.53 24292.52 19394.27 20099.25 13876.84 29298.80 17590.89 24899.54 11199.35 176
PCF-MVS94.20 595.18 16594.10 17998.43 12298.55 15495.99 15697.91 31797.31 26590.35 24789.48 25999.22 14085.19 22599.89 8490.40 25798.47 13999.41 169
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
dp95.05 16894.43 17396.91 17897.99 18392.73 23796.29 34097.98 20089.70 25795.93 17794.67 32093.83 10198.45 19886.91 29796.53 18199.54 151
Fast-Effi-MVS+95.02 16994.19 17797.52 15797.88 18894.55 19599.97 1897.08 28588.85 27194.47 19797.96 21384.59 22998.41 20189.84 26397.10 17199.59 139
IB-MVS92.85 694.99 17093.94 18398.16 13297.72 20395.69 16899.99 398.81 5094.28 12092.70 21996.90 24395.08 5499.17 16396.07 15673.88 35099.60 138
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
h-mvs3394.92 17194.36 17496.59 18998.85 14191.29 27398.93 25998.94 3795.90 6098.77 9998.42 19990.89 16699.77 12097.80 11970.76 35298.72 210
XVG-OURS94.82 17294.74 16995.06 22998.00 18289.19 30699.08 23797.55 23894.10 12794.71 19399.62 10780.51 26699.74 13096.04 15793.06 22696.25 233
ADS-MVSNet94.79 17394.02 18197.11 17597.87 18993.79 21194.24 35098.16 18590.07 25196.43 16794.48 32590.29 17398.19 22687.44 28597.23 16899.36 174
XVG-OURS-SEG-HR94.79 17394.70 17095.08 22898.05 18089.19 30699.08 23797.54 24093.66 15094.87 19299.58 11078.78 27999.79 11497.31 13393.40 22296.25 233
OpenMVScopyleft90.15 1594.77 17593.59 19298.33 12796.07 25897.48 10199.56 18098.57 7790.46 24486.51 30898.95 16478.57 28199.94 7393.86 19999.74 9697.57 227
LFMVS94.75 17693.56 19498.30 12899.03 12395.70 16798.74 27897.98 20087.81 28798.47 11499.39 12667.43 34199.53 14698.01 11195.20 20799.67 122
SCA94.69 17793.81 18797.33 17097.10 22894.44 19698.86 26898.32 16093.30 16096.17 17495.59 28176.48 29697.95 23991.06 24197.43 16399.59 139
ab-mvs94.69 17793.42 19898.51 11698.07 17996.26 14496.49 33798.68 5890.31 24894.54 19497.00 24176.30 29899.71 13495.98 15893.38 22399.56 147
CVMVSNet94.68 17994.94 16593.89 27996.80 24586.92 32899.06 24298.98 3594.45 10894.23 20199.02 14985.60 22095.31 33990.91 24795.39 20499.43 167
cascas94.64 18093.61 18997.74 15197.82 19396.26 14499.96 2597.78 21985.76 31394.00 20397.54 22276.95 29199.21 15997.23 13695.43 20397.76 224
HQP-MVS94.61 18194.50 17294.92 23495.78 26591.85 25899.87 9397.89 20996.82 3293.37 20998.65 18380.65 26498.39 20597.92 11789.60 23094.53 239
TR-MVS94.54 18293.56 19497.49 15997.96 18494.34 20098.71 28197.51 24690.30 24994.51 19698.69 18175.56 30398.77 17892.82 22295.99 19099.35 176
DP-MVS94.54 18293.42 19897.91 14399.46 10994.04 20598.93 25997.48 24981.15 34490.04 24399.55 11287.02 20899.95 6588.97 26998.11 15099.73 114
Effi-MVS+-dtu94.53 18495.30 15592.22 30897.77 19682.54 34899.59 17497.06 28794.92 9195.29 18895.37 29585.81 21897.89 24294.80 17997.07 17296.23 235
HQP_MVS94.49 18594.36 17494.87 23595.71 27491.74 26299.84 11297.87 21196.38 4893.01 21398.59 18780.47 26898.37 21197.79 12289.55 23394.52 241
TAPA-MVS92.12 894.42 18693.60 19196.90 17999.33 11391.78 26199.78 12998.00 19789.89 25594.52 19599.47 11891.97 14899.18 16269.90 35899.52 11299.73 114
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
hse-mvs294.38 18794.08 18095.31 22298.27 16990.02 29799.29 22098.56 7995.90 6098.77 9998.00 20890.89 16698.26 22397.80 11969.20 35897.64 225
ET-MVSNet_ETH3D94.37 18893.28 20497.64 15398.30 16597.99 7799.99 397.61 23294.35 11571.57 36399.45 12196.23 3195.34 33896.91 14885.14 28299.59 139
MSDG94.37 18893.36 20297.40 16498.88 13993.95 20999.37 20897.38 25885.75 31590.80 23599.17 14284.11 23599.88 9086.35 29898.43 14098.36 213
GeoE94.36 19093.48 19696.99 17697.29 22493.54 21899.96 2596.72 32188.35 28193.43 20898.94 16682.05 24698.05 23388.12 28096.48 18399.37 173
miper_enhance_ethall94.36 19093.98 18295.49 21498.68 14995.24 18099.73 14897.29 26693.28 16189.86 24895.97 27094.37 7997.05 28292.20 22784.45 28794.19 272
tpmvs94.28 19293.57 19396.40 19698.55 15491.50 27195.70 34998.55 8587.47 28992.15 22394.26 32991.42 15398.95 17188.15 27895.85 19498.76 209
FIs94.10 19393.43 19796.11 20494.70 29196.82 12699.58 17598.93 4192.54 19189.34 26297.31 22987.62 20197.10 27994.22 19686.58 27194.40 252
mvsmamba94.10 19393.72 18895.25 22493.57 30894.13 20399.67 15996.45 33093.63 15291.34 23097.77 21786.29 21597.22 27096.65 15188.10 25694.40 252
CLD-MVS94.06 19593.90 18494.55 25096.02 26090.69 28099.98 997.72 22096.62 4291.05 23398.85 17777.21 28898.47 19498.11 10689.51 23594.48 243
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test0.0.03 193.86 19693.61 18994.64 24495.02 28792.18 25199.93 6798.58 7594.07 12987.96 28998.50 19293.90 9894.96 34381.33 32893.17 22496.78 230
X-MVStestdata93.83 19792.06 22899.15 6499.94 1497.50 9999.94 6198.42 13296.22 5399.41 6241.37 38094.34 8099.96 5898.92 6699.95 5599.99 24
GA-MVS93.83 19792.84 21096.80 18195.73 27193.57 21699.88 9097.24 26992.57 19092.92 21596.66 25178.73 28097.67 24887.75 28394.06 21799.17 189
FC-MVSNet-test93.81 19993.15 20695.80 21194.30 29796.20 14999.42 20098.89 4392.33 19989.03 27297.27 23187.39 20496.83 29993.20 21586.48 27294.36 257
ADS-MVSNet293.80 20093.88 18593.55 29097.87 18985.94 33394.24 35096.84 31290.07 25196.43 16794.48 32590.29 17395.37 33787.44 28597.23 16899.36 174
cl2293.77 20193.25 20595.33 22199.49 10694.43 19799.61 17298.09 19190.38 24589.16 27095.61 27990.56 17097.34 25991.93 22984.45 28794.21 271
VDD-MVS93.77 20192.94 20796.27 20198.55 15490.22 29298.77 27797.79 21890.85 23996.82 15699.42 12261.18 35999.77 12098.95 6394.13 21598.82 206
EI-MVSNet93.73 20393.40 20194.74 24096.80 24592.69 23899.06 24297.67 22488.96 26791.39 22899.02 14988.75 19397.30 26491.07 24087.85 26094.22 269
Fast-Effi-MVS+-dtu93.72 20493.86 18693.29 29397.06 23086.16 33199.80 12596.83 31392.66 18392.58 22197.83 21581.39 25497.67 24889.75 26496.87 17796.05 237
tpm93.70 20593.41 20094.58 24895.36 28287.41 32597.01 33196.90 30790.85 23996.72 15994.14 33090.40 17196.84 29890.75 25188.54 24999.51 157
PS-MVSNAJss93.64 20693.31 20394.61 24592.11 33792.19 25099.12 23297.38 25892.51 19488.45 28096.99 24291.20 15797.29 26794.36 19087.71 26394.36 257
gg-mvs-nofinetune93.51 20791.86 23498.47 11897.72 20397.96 8092.62 35898.51 9974.70 36197.33 14469.59 37298.91 397.79 24497.77 12499.56 11099.67 122
nrg03093.51 20792.53 21996.45 19294.36 29597.20 11199.81 12197.16 27691.60 21989.86 24897.46 22486.37 21497.68 24795.88 16080.31 31994.46 245
tpm cat193.51 20792.52 22096.47 19097.77 19691.47 27296.13 34298.06 19480.98 34592.91 21693.78 33389.66 17898.87 17287.03 29396.39 18499.09 196
CR-MVSNet93.45 21092.62 21495.94 20796.29 25492.66 23992.01 36196.23 33392.62 18596.94 15193.31 33891.04 16196.03 32979.23 33595.96 19199.13 194
AUN-MVS93.28 21192.60 21595.34 22098.29 16690.09 29599.31 21598.56 7991.80 21696.35 17198.00 20889.38 18298.28 21992.46 22469.22 35797.64 225
OPM-MVS93.21 21292.80 21194.44 25793.12 32190.85 27999.77 13297.61 23296.19 5591.56 22798.65 18375.16 31098.47 19493.78 20689.39 23693.99 295
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test_low_dy_conf_00193.16 21392.88 20994.01 27293.16 31890.65 28399.58 17597.66 22692.21 20291.34 23097.80 21682.45 24497.05 28293.64 21088.05 25794.32 263
miper_ehance_all_eth93.16 21392.60 21594.82 23997.57 20993.56 21799.50 19097.07 28688.75 27288.85 27595.52 28590.97 16396.74 30290.77 25084.45 28794.17 273
RRT_MVS93.14 21592.92 20893.78 28193.31 31690.04 29699.66 16097.69 22292.53 19288.91 27497.76 21884.36 23196.93 29395.10 16986.99 26994.37 255
VDDNet93.12 21691.91 23296.76 18396.67 25292.65 24198.69 28398.21 17782.81 33897.75 13799.28 13161.57 35799.48 15498.09 10894.09 21698.15 216
Anonymous20240521193.10 21791.99 23096.40 19699.10 12089.65 30398.88 26497.93 20583.71 33394.00 20398.75 17968.79 33399.88 9095.08 17091.71 22899.68 120
UniMVSNet (Re)93.07 21892.13 22595.88 20894.84 28896.24 14899.88 9098.98 3592.49 19589.25 26495.40 29187.09 20797.14 27593.13 21978.16 33194.26 266
LPG-MVS_test92.96 21992.71 21393.71 28495.43 28088.67 31299.75 14097.62 22992.81 17390.05 24198.49 19375.24 30698.40 20395.84 16189.12 23794.07 287
UniMVSNet_NR-MVSNet92.95 22092.11 22695.49 21494.61 29395.28 17899.83 11899.08 3191.49 22289.21 26796.86 24687.14 20696.73 30393.20 21577.52 33694.46 245
ACMM91.95 1092.88 22192.52 22093.98 27695.75 27089.08 30999.77 13297.52 24493.00 16789.95 24597.99 21076.17 30098.46 19793.63 21188.87 24194.39 254
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_djsdf92.83 22292.29 22394.47 25591.90 34092.46 24499.55 18297.27 26791.17 23089.96 24496.07 26981.10 25796.89 29594.67 18588.91 23994.05 289
bld_raw_conf00592.79 22392.18 22494.61 24593.38 31592.27 24898.99 25195.20 35693.34 15889.25 26497.67 22078.03 28697.21 27195.81 16387.99 25994.35 260
D2MVS92.76 22492.59 21893.27 29495.13 28389.54 30599.69 15499.38 2292.26 20087.59 29394.61 32285.05 22797.79 24491.59 23488.01 25892.47 339
bld_raw_dy_0_6492.74 22592.03 22994.87 23593.09 32393.46 22099.12 23295.41 35092.84 17290.44 23997.54 22278.08 28597.04 28593.94 19887.77 26294.11 284
ACMP92.05 992.74 22592.42 22293.73 28295.91 26488.72 31199.81 12197.53 24294.13 12587.00 30298.23 20274.07 31698.47 19496.22 15588.86 24293.99 295
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
VPA-MVSNet92.70 22791.55 23996.16 20395.09 28496.20 14998.88 26499.00 3491.02 23691.82 22595.29 30176.05 30297.96 23895.62 16481.19 30794.30 264
FMVSNet392.69 22891.58 23795.99 20698.29 16697.42 10699.26 22397.62 22989.80 25689.68 25295.32 29781.62 25396.27 32087.01 29485.65 27694.29 265
IterMVS-LS92.69 22892.11 22694.43 25996.80 24592.74 23599.45 19896.89 30888.98 26589.65 25595.38 29488.77 19296.34 31790.98 24582.04 30194.22 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmatch-test92.65 23091.50 24096.10 20596.85 24290.49 28791.50 36397.19 27182.76 33990.23 24095.59 28195.02 5898.00 23577.41 34496.98 17599.82 103
c3_l92.53 23191.87 23394.52 25197.40 21692.99 23199.40 20196.93 30587.86 28588.69 27895.44 28989.95 17696.44 31390.45 25480.69 31694.14 282
AllTest92.48 23291.64 23595.00 23199.01 12488.43 31698.94 25896.82 31586.50 30388.71 27698.47 19774.73 31299.88 9085.39 30496.18 18696.71 231
DU-MVS92.46 23391.45 24295.49 21494.05 30095.28 17899.81 12198.74 5492.25 20189.21 26796.64 25381.66 25196.73 30393.20 21577.52 33694.46 245
eth_miper_zixun_eth92.41 23491.93 23193.84 28097.28 22590.68 28198.83 27196.97 29988.57 27789.19 26995.73 27689.24 18796.69 30589.97 26281.55 30494.15 279
DIV-MVS_self_test92.32 23591.60 23694.47 25597.31 22292.74 23599.58 17596.75 31986.99 29887.64 29295.54 28389.55 18096.50 31188.58 27282.44 29894.17 273
cl____92.31 23691.58 23794.52 25197.33 22192.77 23399.57 17896.78 31886.97 29987.56 29495.51 28689.43 18196.62 30788.60 27182.44 29894.16 278
LCM-MVSNet-Re92.31 23692.60 21591.43 31697.53 21079.27 36599.02 24991.83 37292.07 20680.31 34494.38 32883.50 23895.48 33597.22 13797.58 16199.54 151
WR-MVS92.31 23691.25 24495.48 21794.45 29495.29 17799.60 17398.68 5890.10 25088.07 28896.89 24480.68 26396.80 30193.14 21879.67 32394.36 257
COLMAP_ROBcopyleft90.47 1492.18 23991.49 24194.25 26399.00 12688.04 32298.42 29996.70 32282.30 34188.43 28399.01 15176.97 29099.85 9986.11 30196.50 18294.86 238
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_part192.15 24090.72 25096.44 19498.87 14097.46 10398.99 25198.26 17185.89 31086.34 31396.34 26181.71 24997.48 25491.06 24178.99 32594.37 255
Anonymous2024052992.10 24190.65 25296.47 19098.82 14290.61 28498.72 28098.67 6175.54 35993.90 20598.58 18966.23 34499.90 8094.70 18490.67 22998.90 203
pmmvs492.10 24191.07 24795.18 22692.82 33094.96 18799.48 19496.83 31387.45 29088.66 27996.56 25683.78 23696.83 29989.29 26684.77 28593.75 312
jajsoiax91.92 24391.18 24594.15 26591.35 34690.95 27799.00 25097.42 25492.61 18687.38 29897.08 23672.46 32197.36 25794.53 18888.77 24394.13 283
XXY-MVS91.82 24490.46 25495.88 20893.91 30395.40 17598.87 26797.69 22288.63 27687.87 29097.08 23674.38 31597.89 24291.66 23384.07 29194.35 260
miper_lstm_enhance91.81 24591.39 24393.06 30097.34 21989.18 30899.38 20696.79 31786.70 30287.47 29695.22 30390.00 17595.86 33388.26 27681.37 30694.15 279
mvs_tets91.81 24591.08 24694.00 27491.63 34490.58 28598.67 28597.43 25292.43 19687.37 29997.05 23971.76 32397.32 26394.75 18288.68 24594.11 284
VPNet91.81 24590.46 25495.85 21094.74 29095.54 17198.98 25398.59 7492.14 20490.77 23697.44 22568.73 33597.54 25294.89 17777.89 33394.46 245
RPSCF91.80 24892.79 21288.83 33598.15 17669.87 36998.11 31196.60 32583.93 33194.33 19999.27 13479.60 27399.46 15591.99 22893.16 22597.18 229
PVSNet_088.03 1991.80 24890.27 26096.38 19898.27 16990.46 28899.94 6199.61 1293.99 13586.26 31597.39 22871.13 32899.89 8498.77 7867.05 36298.79 208
anonymousdsp91.79 25090.92 24894.41 26090.76 35192.93 23298.93 25997.17 27489.08 26187.46 29795.30 29878.43 28496.92 29492.38 22588.73 24493.39 323
JIA-IIPM91.76 25190.70 25194.94 23396.11 25787.51 32493.16 35798.13 19075.79 35897.58 13977.68 36992.84 12697.97 23688.47 27596.54 18099.33 178
TranMVSNet+NR-MVSNet91.68 25290.61 25394.87 23593.69 30793.98 20899.69 15498.65 6291.03 23588.44 28196.83 25080.05 27196.18 32390.26 25976.89 34494.45 250
NR-MVSNet91.56 25390.22 26195.60 21294.05 30095.76 16398.25 30498.70 5691.16 23280.78 34396.64 25383.23 24196.57 30991.41 23577.73 33594.46 245
v2v48291.30 25490.07 26695.01 23093.13 31993.79 21199.77 13297.02 29288.05 28389.25 26495.37 29580.73 26297.15 27487.28 28980.04 32294.09 286
WR-MVS_H91.30 25490.35 25794.15 26594.17 29992.62 24299.17 23098.94 3788.87 27086.48 31094.46 32784.36 23196.61 30888.19 27778.51 32993.21 328
V4291.28 25690.12 26594.74 24093.42 31393.46 22099.68 15697.02 29287.36 29189.85 25095.05 30681.31 25697.34 25987.34 28880.07 32193.40 322
CP-MVSNet91.23 25790.22 26194.26 26293.96 30292.39 24699.09 23598.57 7788.95 26886.42 31196.57 25579.19 27696.37 31590.29 25878.95 32694.02 290
XVG-ACMP-BASELINE91.22 25890.75 24992.63 30593.73 30685.61 33498.52 29397.44 25192.77 17789.90 24796.85 24766.64 34398.39 20592.29 22688.61 24693.89 303
v114491.09 25989.83 26794.87 23593.25 31793.69 21599.62 17196.98 29786.83 30189.64 25694.99 31180.94 25997.05 28285.08 30781.16 30893.87 305
FMVSNet291.02 26089.56 27295.41 21997.53 21095.74 16498.98 25397.41 25687.05 29588.43 28395.00 31071.34 32596.24 32285.12 30685.21 28194.25 268
MVP-Stereo90.93 26190.45 25692.37 30791.25 34888.76 31098.05 31496.17 33587.27 29384.04 32695.30 29878.46 28397.27 26983.78 31599.70 10091.09 350
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
IterMVS90.91 26290.17 26393.12 29796.78 24890.42 29098.89 26297.05 29089.03 26386.49 30995.42 29076.59 29595.02 34187.22 29084.09 29093.93 300
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GBi-Net90.88 26389.82 26894.08 26897.53 21091.97 25398.43 29696.95 30087.05 29589.68 25294.72 31671.34 32596.11 32487.01 29485.65 27694.17 273
test190.88 26389.82 26894.08 26897.53 21091.97 25398.43 29696.95 30087.05 29589.68 25294.72 31671.34 32596.11 32487.01 29485.65 27694.17 273
IterMVS-SCA-FT90.85 26590.16 26492.93 30196.72 25089.96 29898.89 26296.99 29588.95 26886.63 30695.67 27776.48 29695.00 34287.04 29284.04 29393.84 307
v14419290.79 26689.52 27494.59 24793.11 32292.77 23399.56 18096.99 29586.38 30589.82 25194.95 31380.50 26797.10 27983.98 31380.41 31793.90 302
v14890.70 26789.63 27093.92 27792.97 32690.97 27699.75 14096.89 30887.51 28888.27 28695.01 30881.67 25097.04 28587.40 28777.17 34193.75 312
MS-PatchMatch90.65 26890.30 25991.71 31594.22 29885.50 33698.24 30597.70 22188.67 27486.42 31196.37 26067.82 33998.03 23483.62 31699.62 10491.60 347
ACMH89.72 1790.64 26989.63 27093.66 28895.64 27788.64 31498.55 28997.45 25089.03 26381.62 33897.61 22169.75 33198.41 20189.37 26587.62 26593.92 301
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PS-CasMVS90.63 27089.51 27593.99 27593.83 30491.70 26698.98 25398.52 9288.48 27886.15 31696.53 25775.46 30496.31 31888.83 27078.86 32893.95 298
v119290.62 27189.25 27994.72 24293.13 31993.07 22899.50 19097.02 29286.33 30689.56 25895.01 30879.22 27597.09 28182.34 32381.16 30894.01 292
v890.54 27289.17 28094.66 24393.43 31293.40 22499.20 22796.94 30485.76 31387.56 29494.51 32381.96 24897.19 27284.94 30878.25 33093.38 324
v192192090.46 27389.12 28194.50 25392.96 32792.46 24499.49 19296.98 29786.10 30889.61 25795.30 29878.55 28297.03 28882.17 32480.89 31594.01 292
our_test_390.39 27489.48 27793.12 29792.40 33489.57 30499.33 21296.35 33287.84 28685.30 32194.99 31184.14 23496.09 32780.38 33284.56 28693.71 317
PatchT90.38 27588.75 28995.25 22495.99 26190.16 29391.22 36597.54 24076.80 35497.26 14586.01 36491.88 14996.07 32866.16 36595.91 19399.51 157
ACMH+89.98 1690.35 27689.54 27392.78 30495.99 26186.12 33298.81 27397.18 27389.38 25883.14 33197.76 21868.42 33798.43 19989.11 26886.05 27493.78 311
Baseline_NR-MVSNet90.33 27789.51 27592.81 30392.84 32889.95 29999.77 13293.94 36784.69 32889.04 27195.66 27881.66 25196.52 31090.99 24476.98 34291.97 345
MIMVSNet90.30 27888.67 29095.17 22796.45 25391.64 26892.39 35997.15 27785.99 30990.50 23793.19 34066.95 34294.86 34582.01 32593.43 22199.01 199
LTVRE_ROB88.28 1890.29 27989.05 28494.02 27195.08 28590.15 29497.19 32797.43 25284.91 32683.99 32797.06 23874.00 31798.28 21984.08 31187.71 26393.62 318
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v1090.25 28088.82 28794.57 24993.53 31093.43 22299.08 23796.87 31085.00 32387.34 30094.51 32380.93 26097.02 29082.85 32079.23 32493.26 326
v124090.20 28188.79 28894.44 25793.05 32592.27 24899.38 20696.92 30685.89 31089.36 26194.87 31577.89 28797.03 28880.66 33181.08 31194.01 292
PEN-MVS90.19 28289.06 28393.57 28993.06 32490.90 27899.06 24298.47 10588.11 28285.91 31896.30 26276.67 29395.94 33287.07 29176.91 34393.89 303
pmmvs590.17 28389.09 28293.40 29192.10 33889.77 30299.74 14395.58 34785.88 31287.24 30195.74 27473.41 31996.48 31288.54 27383.56 29493.95 298
EU-MVSNet90.14 28490.34 25889.54 33192.55 33381.06 35998.69 28398.04 19691.41 22886.59 30796.84 24980.83 26193.31 35986.20 29981.91 30294.26 266
UniMVSNet_ETH3D90.06 28588.58 29194.49 25494.67 29288.09 32197.81 31997.57 23783.91 33288.44 28197.41 22657.44 36397.62 25091.41 23588.59 24897.77 223
USDC90.00 28688.96 28593.10 29994.81 28988.16 32098.71 28195.54 34893.66 15083.75 32997.20 23265.58 34698.31 21683.96 31487.49 26792.85 334
Anonymous2023121189.86 28788.44 29394.13 26798.93 13290.68 28198.54 29198.26 17176.28 35586.73 30495.54 28370.60 32997.56 25190.82 24980.27 32094.15 279
OurMVSNet-221017-089.81 28889.48 27790.83 32191.64 34381.21 35798.17 30995.38 35291.48 22385.65 32097.31 22972.66 32097.29 26788.15 27884.83 28493.97 297
RPMNet89.76 28987.28 30497.19 17296.29 25492.66 23992.01 36198.31 16270.19 36696.94 15185.87 36587.25 20599.78 11662.69 36895.96 19199.13 194
Patchmtry89.70 29088.49 29293.33 29296.24 25689.94 30191.37 36496.23 33378.22 35287.69 29193.31 33891.04 16196.03 32980.18 33482.10 30094.02 290
v7n89.65 29188.29 29693.72 28392.22 33690.56 28699.07 24197.10 28285.42 32186.73 30494.72 31680.06 27097.13 27681.14 32978.12 33293.49 320
ppachtmachnet_test89.58 29288.35 29493.25 29592.40 33490.44 28999.33 21296.73 32085.49 31985.90 31995.77 27381.09 25896.00 33176.00 35082.49 29793.30 325
DTE-MVSNet89.40 29388.24 29792.88 30292.66 33289.95 29999.10 23498.22 17687.29 29285.12 32396.22 26476.27 29995.30 34083.56 31775.74 34793.41 321
pm-mvs189.36 29487.81 30194.01 27293.40 31491.93 25698.62 28896.48 32986.25 30783.86 32896.14 26673.68 31897.04 28586.16 30075.73 34893.04 331
tfpnnormal89.29 29587.61 30294.34 26194.35 29694.13 20398.95 25798.94 3783.94 33084.47 32595.51 28674.84 31197.39 25677.05 34780.41 31791.48 349
MVS_030489.28 29688.31 29592.21 30997.05 23186.53 33097.76 32099.57 1385.58 31893.86 20692.71 34251.04 37096.30 31984.49 31092.72 22793.79 310
LF4IMVS89.25 29788.85 28690.45 32592.81 33181.19 35898.12 31094.79 36091.44 22586.29 31497.11 23465.30 34998.11 22988.53 27485.25 28092.07 342
testgi89.01 29888.04 29991.90 31393.49 31184.89 34099.73 14895.66 34593.89 14385.14 32298.17 20359.68 36094.66 34777.73 34388.88 24096.16 236
SixPastTwentyTwo88.73 29988.01 30090.88 31991.85 34182.24 35098.22 30795.18 35888.97 26682.26 33496.89 24471.75 32496.67 30684.00 31282.98 29593.72 316
FMVSNet188.50 30086.64 30694.08 26895.62 27991.97 25398.43 29696.95 30083.00 33686.08 31794.72 31659.09 36196.11 32481.82 32784.07 29194.17 273
FMVSNet588.32 30187.47 30390.88 31996.90 24088.39 31897.28 32595.68 34482.60 34084.67 32492.40 34779.83 27291.16 36576.39 34981.51 30593.09 329
DSMNet-mixed88.28 30288.24 29788.42 33989.64 35875.38 36798.06 31389.86 37585.59 31788.20 28792.14 34976.15 30191.95 36378.46 34096.05 18997.92 219
K. test v388.05 30387.24 30590.47 32491.82 34282.23 35198.96 25697.42 25489.05 26276.93 35495.60 28068.49 33695.42 33685.87 30381.01 31393.75 312
KD-MVS_2432*160088.00 30486.10 30893.70 28696.91 23794.04 20597.17 32897.12 28084.93 32481.96 33592.41 34592.48 13694.51 34879.23 33552.68 37092.56 336
miper_refine_blended88.00 30486.10 30893.70 28696.91 23794.04 20597.17 32897.12 28084.93 32481.96 33592.41 34592.48 13694.51 34879.23 33552.68 37092.56 336
TinyColmap87.87 30686.51 30791.94 31295.05 28685.57 33597.65 32194.08 36584.40 32981.82 33796.85 24762.14 35698.33 21480.25 33386.37 27391.91 346
TransMVSNet (Re)87.25 30785.28 31293.16 29693.56 30991.03 27598.54 29194.05 36683.69 33481.09 34196.16 26575.32 30596.40 31476.69 34868.41 35992.06 343
Patchmatch-RL test86.90 30885.98 31089.67 33084.45 36875.59 36689.71 36692.43 37086.89 30077.83 35290.94 35394.22 8793.63 35687.75 28369.61 35499.79 106
Anonymous2023120686.32 30985.42 31189.02 33489.11 36080.53 36399.05 24695.28 35385.43 32082.82 33293.92 33174.40 31493.44 35866.99 36381.83 30393.08 330
MVS-HIRNet86.22 31083.19 32295.31 22296.71 25190.29 29192.12 36097.33 26362.85 36786.82 30370.37 37169.37 33297.49 25375.12 35197.99 15698.15 216
pmmvs685.69 31183.84 31791.26 31890.00 35784.41 34297.82 31896.15 33675.86 35781.29 34095.39 29361.21 35896.87 29783.52 31873.29 35192.50 338
test_040285.58 31283.94 31690.50 32393.81 30585.04 33998.55 28995.20 35676.01 35679.72 34795.13 30464.15 35296.26 32166.04 36686.88 27090.21 358
UnsupCasMVSNet_eth85.52 31383.99 31490.10 32789.36 35983.51 34496.65 33597.99 19889.14 26075.89 35893.83 33263.25 35493.92 35281.92 32667.90 36192.88 333
MDA-MVSNet_test_wron85.51 31483.32 32192.10 31090.96 34988.58 31599.20 22796.52 32779.70 34957.12 37192.69 34379.11 27793.86 35477.10 34677.46 33893.86 306
YYNet185.50 31583.33 32092.00 31190.89 35088.38 31999.22 22696.55 32679.60 35057.26 37092.72 34179.09 27893.78 35577.25 34577.37 33993.84 307
EG-PatchMatch MVS85.35 31683.81 31889.99 32990.39 35381.89 35398.21 30896.09 33781.78 34374.73 36093.72 33451.56 36997.12 27879.16 33888.61 24690.96 352
Anonymous2024052185.15 31783.81 31889.16 33388.32 36182.69 34698.80 27595.74 34279.72 34881.53 33990.99 35265.38 34894.16 35072.69 35481.11 31090.63 355
TDRefinement84.76 31882.56 32591.38 31774.58 37484.80 34197.36 32494.56 36384.73 32780.21 34596.12 26863.56 35398.39 20587.92 28163.97 36390.95 353
CMPMVSbinary61.59 2184.75 31985.14 31383.57 34790.32 35462.54 37396.98 33297.59 23674.33 36269.95 36596.66 25164.17 35198.32 21587.88 28288.41 25189.84 360
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0384.72 32083.99 31486.91 34288.19 36380.62 36298.88 26495.94 33988.36 28078.87 34894.62 32168.75 33489.11 36966.52 36475.82 34691.00 351
CL-MVSNet_self_test84.50 32183.15 32388.53 33886.00 36681.79 35498.82 27297.35 26085.12 32283.62 33090.91 35476.66 29491.40 36469.53 35960.36 36792.40 340
new_pmnet84.49 32282.92 32489.21 33290.03 35682.60 34796.89 33495.62 34680.59 34675.77 35989.17 35665.04 35094.79 34672.12 35581.02 31290.23 357
MDA-MVSNet-bldmvs84.09 32381.52 32991.81 31491.32 34788.00 32398.67 28595.92 34080.22 34755.60 37293.32 33768.29 33893.60 35773.76 35276.61 34593.82 309
pmmvs-eth3d84.03 32481.97 32790.20 32684.15 36987.09 32798.10 31294.73 36283.05 33574.10 36187.77 36065.56 34794.01 35181.08 33069.24 35689.49 362
OpenMVS_ROBcopyleft79.82 2083.77 32581.68 32890.03 32888.30 36282.82 34598.46 29495.22 35573.92 36376.00 35791.29 35155.00 36596.94 29268.40 36188.51 25090.34 356
KD-MVS_self_test83.59 32682.06 32688.20 34086.93 36480.70 36197.21 32696.38 33182.87 33782.49 33388.97 35767.63 34092.32 36173.75 35362.30 36691.58 348
MIMVSNet182.58 32780.51 33188.78 33686.68 36584.20 34396.65 33595.41 35078.75 35178.59 35092.44 34451.88 36889.76 36865.26 36778.95 32692.38 341
new-patchmatchnet81.19 32879.34 33386.76 34382.86 37180.36 36497.92 31695.27 35482.09 34272.02 36286.87 36262.81 35590.74 36771.10 35663.08 36489.19 364
test_method80.79 32979.70 33284.08 34692.83 32967.06 37199.51 18895.42 34954.34 36981.07 34293.53 33544.48 37292.22 36278.90 33977.23 34092.94 332
PM-MVS80.47 33078.88 33485.26 34583.79 37072.22 36895.89 34791.08 37385.71 31676.56 35688.30 35836.64 37393.90 35382.39 32269.57 35589.66 361
pmmvs380.27 33177.77 33587.76 34180.32 37282.43 34998.23 30691.97 37172.74 36478.75 34987.97 35957.30 36490.99 36670.31 35762.37 36589.87 359
N_pmnet80.06 33280.78 33077.89 35091.94 33945.28 38198.80 27556.82 38478.10 35380.08 34693.33 33677.03 28995.76 33468.14 36282.81 29692.64 335
UnsupCasMVSNet_bld79.97 33377.03 33688.78 33685.62 36781.98 35293.66 35597.35 26075.51 36070.79 36483.05 36648.70 37194.91 34478.31 34160.29 36889.46 363
EGC-MVSNET69.38 33463.76 34186.26 34490.32 35481.66 35696.24 34193.85 3680.99 3813.22 38292.33 34852.44 36792.92 36059.53 37184.90 28384.21 367
FPMVS68.72 33568.72 33768.71 35565.95 37844.27 38395.97 34694.74 36151.13 37053.26 37390.50 35525.11 37883.00 37360.80 36980.97 31478.87 369
LCM-MVSNet67.77 33664.73 33976.87 35162.95 38056.25 37789.37 36793.74 36944.53 37261.99 36780.74 36720.42 38086.53 37169.37 36059.50 36987.84 365
PMMVS267.15 33764.15 34076.14 35270.56 37762.07 37493.89 35387.52 37958.09 36860.02 36878.32 36822.38 37984.54 37259.56 37047.03 37281.80 368
Gipumacopyleft66.95 33865.00 33872.79 35391.52 34567.96 37066.16 37395.15 35947.89 37158.54 36967.99 37329.74 37587.54 37050.20 37377.83 33462.87 373
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt65.23 33962.94 34272.13 35444.90 38350.03 37981.05 37089.42 37838.45 37348.51 37599.90 1954.09 36678.70 37591.84 23218.26 37787.64 366
ANet_high56.10 34052.24 34367.66 35649.27 38256.82 37683.94 36982.02 38070.47 36533.28 37964.54 37417.23 38269.16 37745.59 37523.85 37677.02 370
PMVScopyleft49.05 2353.75 34151.34 34560.97 35840.80 38434.68 38474.82 37289.62 37737.55 37428.67 38072.12 3707.09 38481.63 37443.17 37668.21 36066.59 372
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN52.30 34252.18 34452.67 35971.51 37545.40 38093.62 35676.60 38236.01 37543.50 37664.13 37527.11 37767.31 37831.06 37826.06 37445.30 377
MVEpermissive53.74 2251.54 34347.86 34762.60 35759.56 38150.93 37879.41 37177.69 38135.69 37636.27 37861.76 3775.79 38669.63 37637.97 37736.61 37367.24 371
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS51.44 34451.22 34652.11 36070.71 37644.97 38294.04 35275.66 38335.34 37742.40 37761.56 37828.93 37665.87 37927.64 37924.73 37545.49 376
testmvs40.60 34544.45 34829.05 36219.49 38614.11 38799.68 15618.47 38520.74 37864.59 36698.48 19610.95 38317.09 38256.66 37211.01 37855.94 375
test12337.68 34639.14 34933.31 36119.94 38524.83 38698.36 3009.75 38615.53 37951.31 37487.14 36119.62 38117.74 38147.10 3743.47 38057.36 374
cdsmvs_eth3d_5k23.43 34731.24 3500.00 3640.00 3870.00 3880.00 37598.09 1910.00 3820.00 38399.67 10283.37 2390.00 3830.00 3810.00 3810.00 379
wuyk23d20.37 34820.84 35118.99 36365.34 37927.73 38550.43 3747.67 3879.50 3808.01 3816.34 3816.13 38526.24 38023.40 38010.69 3792.99 378
ab-mvs-re8.28 34911.04 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38399.40 1240.00 3870.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas7.60 35010.13 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38391.20 1570.00 3830.00 3810.00 3810.00 379
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.02 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3830.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3830.00 3870.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3830.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3830.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3830.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3830.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3830.00 3870.00 3830.00 3810.00 3810.00 379
FOURS199.92 3697.66 9099.95 4398.36 15295.58 7399.52 54
MSC_two_6792asdad99.93 299.91 4499.80 298.41 136100.00 199.96 9100.00 1100.00 1
PC_three_145296.96 3099.80 1799.79 6497.49 10100.00 199.99 599.98 35100.00 1
No_MVS99.93 299.91 4499.80 298.41 136100.00 199.96 9100.00 1100.00 1
test_one_060199.94 1499.30 1198.41 13696.63 4099.75 2899.93 1197.49 10
eth-test20.00 387
eth-test0.00 387
ZD-MVS99.92 3698.57 5598.52 9292.34 19899.31 7199.83 5195.06 5699.80 11199.70 3699.97 48
RE-MVS-def98.13 5799.79 7596.37 14199.76 13798.31 16294.43 11099.40 6699.75 8292.95 12398.90 6999.92 7199.97 67
IU-MVS99.93 2799.31 998.41 13697.71 899.84 9100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 5099.80 299.96 2599.80 6097.44 14100.00 1100.00 199.98 35100.00 1
test_241102_TWO98.43 12097.27 2199.80 1799.94 497.18 21100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2799.30 1198.43 12097.26 2399.80 1799.88 2496.71 24100.00 1
9.1498.38 4099.87 5799.91 7598.33 15893.22 16299.78 2599.89 2194.57 7199.85 9999.84 1999.97 48
save fliter99.82 7098.79 3799.96 2598.40 14097.66 10
test_0728_THIRD96.48 4399.83 1199.91 1597.87 6100.00 199.92 13100.00 1100.00 1
test_0728_SECOND99.82 799.94 1499.47 799.95 4398.43 120100.00 199.99 5100.00 1100.00 1
test072699.93 2799.29 1499.96 2598.42 13297.28 1999.86 599.94 497.22 19
GSMVS99.59 139
test_part299.89 5099.25 1799.49 56
sam_mvs194.72 6799.59 139
sam_mvs94.25 86
ambc83.23 34877.17 37362.61 37287.38 36894.55 36476.72 35586.65 36330.16 37496.36 31684.85 30969.86 35390.73 354
MTGPAbinary98.28 167
test_post195.78 34859.23 37993.20 11897.74 24691.06 241
test_post63.35 37694.43 7298.13 228
patchmatchnet-post91.70 35095.12 5297.95 239
GG-mvs-BLEND98.54 11398.21 17298.01 7693.87 35498.52 9297.92 13297.92 21499.02 297.94 24198.17 10299.58 10999.67 122
MTMP99.87 9396.49 328
gm-plane-assit96.97 23593.76 21391.47 22498.96 16098.79 17694.92 174
test9_res99.71 3599.99 22100.00 1
TEST999.92 3698.92 2799.96 2598.43 12093.90 14199.71 3499.86 3195.88 3899.85 99
test_899.92 3698.88 3099.96 2598.43 12094.35 11599.69 3699.85 3595.94 3599.85 99
agg_prior299.48 42100.00 1100.00 1
agg_prior99.93 2798.77 4098.43 12099.63 4099.85 99
TestCases95.00 23199.01 12488.43 31696.82 31586.50 30388.71 27698.47 19774.73 31299.88 9085.39 30496.18 18696.71 231
test_prior498.05 7499.94 61
test_prior299.95 4395.78 6499.73 3099.76 7696.00 3399.78 26100.00 1
test_prior99.43 3899.94 1498.49 6198.65 6299.80 11199.99 24
旧先验299.46 19794.21 12399.85 799.95 6596.96 145
新几何299.40 201
新几何199.42 4199.75 8198.27 6898.63 6892.69 18199.55 4999.82 5594.40 74100.00 191.21 23799.94 6199.99 24
旧先验199.76 7997.52 9598.64 6599.85 3595.63 4399.94 6199.99 24
无先验99.49 19298.71 5593.46 155100.00 194.36 19099.99 24
原ACMM299.90 80
原ACMM198.96 8599.73 8696.99 12098.51 9994.06 13199.62 4399.85 3594.97 6299.96 5895.11 16899.95 5599.92 91
test22299.55 10197.41 10799.34 21198.55 8591.86 21299.27 7699.83 5193.84 10099.95 5599.99 24
testdata299.99 4090.54 253
segment_acmp96.68 26
testdata98.42 12399.47 10795.33 17698.56 7993.78 14699.79 2499.85 3593.64 10599.94 7394.97 17299.94 61100.00 1
testdata199.28 22196.35 52
test1299.43 3899.74 8298.56 5798.40 14099.65 3894.76 6699.75 12699.98 3599.99 24
plane_prior795.71 27491.59 270
plane_prior695.76 26991.72 26580.47 268
plane_prior597.87 21198.37 21197.79 12289.55 23394.52 241
plane_prior498.59 187
plane_prior391.64 26896.63 4093.01 213
plane_prior299.84 11296.38 48
plane_prior195.73 271
plane_prior91.74 26299.86 10596.76 3689.59 232
n20.00 388
nn0.00 388
door-mid89.69 376
lessismore_v090.53 32290.58 35280.90 36095.80 34177.01 35395.84 27166.15 34596.95 29183.03 31975.05 34993.74 315
LGP-MVS_train93.71 28495.43 28088.67 31297.62 22992.81 17390.05 24198.49 19375.24 30698.40 20395.84 16189.12 23794.07 287
test1198.44 112
door90.31 374
HQP5-MVS91.85 258
HQP-NCC95.78 26599.87 9396.82 3293.37 209
ACMP_Plane95.78 26599.87 9396.82 3293.37 209
BP-MVS97.92 117
HQP4-MVS93.37 20998.39 20594.53 239
HQP3-MVS97.89 20989.60 230
HQP2-MVS80.65 264
NP-MVS95.77 26891.79 26098.65 183
MDTV_nov1_ep13_2view96.26 14496.11 34391.89 21198.06 12894.40 7494.30 19399.67 122
MDTV_nov1_ep1395.69 14697.90 18794.15 20295.98 34598.44 11293.12 16597.98 13095.74 27495.10 5398.58 18990.02 26196.92 176
ACMMP++_ref87.04 268
ACMMP++88.23 254
Test By Simon92.82 128
ITE_SJBPF92.38 30695.69 27685.14 33895.71 34392.81 17389.33 26398.11 20470.23 33098.42 20085.91 30288.16 25593.59 319
DeepMVS_CXcopyleft82.92 34995.98 26358.66 37596.01 33892.72 17878.34 35195.51 28658.29 36298.08 23082.57 32185.29 27992.03 344