This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1598.69 6998.20 899.93 199.98 296.82 22100.00 199.75 31100.00 199.99 23
NCCC99.37 299.25 299.71 1599.96 899.15 2299.97 2898.62 8298.02 1399.90 399.95 397.33 16100.00 199.54 42100.00 1100.00 1
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2898.64 7798.47 399.13 8999.92 1396.38 32100.00 199.74 33100.00 1100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5398.32 17697.28 3299.83 1399.91 1497.22 18100.00 199.99 5100.00 199.89 87
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3598.43 13597.27 3499.80 1799.94 496.71 25100.00 1100.00 1100.00 1100.00 1
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5398.43 13596.48 6399.80 1799.93 1197.44 13100.00 199.92 1399.98 32100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10698.44 12797.48 2799.64 4399.94 496.68 2799.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 6199.98 1598.86 5397.10 4099.80 1799.94 495.92 38100.00 199.51 43100.00 1100.00 1
MSP-MVS99.09 999.12 598.98 8099.93 2497.24 10399.95 5398.42 14797.50 2699.52 6099.88 2497.43 1599.71 14199.50 4499.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5398.56 9397.56 2599.44 6699.85 3395.38 49100.00 199.31 5499.99 2199.87 90
MVS_030499.06 1198.84 1799.72 1399.76 6699.21 2199.99 499.34 2598.70 299.44 6699.75 7293.24 11899.99 3699.94 1199.41 11799.95 74
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4599.91 8598.39 15997.20 3899.46 6499.85 3395.53 4699.79 12699.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SteuartSystems-ACMMP99.02 1398.97 1399.18 5298.72 14697.71 8399.98 1598.44 12796.85 4999.80 1799.91 1497.57 799.85 11199.44 4999.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
CHOSEN 280x42099.01 1499.03 1098.95 8399.38 10098.87 3398.46 32299.42 2197.03 4499.02 9599.09 15099.35 298.21 25199.73 3599.78 8499.77 104
fmvsm_l_conf0.5_n_a99.00 1598.91 1499.28 4599.21 10797.91 7899.98 1598.85 5698.25 599.92 299.75 7294.72 6799.97 5799.87 1999.64 9299.95 74
fmvsm_l_conf0.5_n98.94 1698.84 1799.25 4699.17 11097.81 8199.98 1598.86 5398.25 599.90 399.76 6694.21 9099.97 5799.87 1999.52 10599.98 51
TSAR-MVS + MP.98.93 1798.77 1999.41 3899.74 7098.67 4999.77 14798.38 16396.73 5699.88 699.74 7994.89 6299.59 15299.80 2599.98 3299.97 61
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS98.92 1898.70 2099.56 2599.70 7898.73 4699.94 6998.34 17396.38 6999.81 1599.76 6694.59 7099.98 4799.84 2299.96 4699.97 61
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MG-MVS98.91 1998.65 2499.68 1699.94 1399.07 2499.64 18899.44 1997.33 3199.00 9699.72 8494.03 9599.98 4798.73 90100.00 1100.00 1
train_agg98.88 2098.65 2499.59 2399.92 3198.92 2999.96 3598.43 13594.35 12899.71 3599.86 2995.94 3699.85 11199.69 3899.98 3299.99 23
MM98.83 2198.53 3099.76 1099.59 8599.33 899.99 499.76 698.39 499.39 7499.80 5490.49 18099.96 6599.89 1799.43 11599.98 51
DPM-MVS98.83 2198.46 3399.97 199.33 10299.92 199.96 3598.44 12797.96 1499.55 5599.94 497.18 20100.00 193.81 22499.94 5599.98 51
DeepC-MVS_fast96.59 198.81 2398.54 2999.62 2099.90 4298.85 3599.24 24998.47 11998.14 1099.08 9299.91 1493.09 122100.00 199.04 6799.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
reproduce-ours98.78 2498.67 2199.09 6899.70 7897.30 10199.74 15998.25 18797.10 4099.10 9099.90 1894.59 7099.99 3699.77 2899.91 6799.99 23
our_new_method98.78 2498.67 2199.09 6899.70 7897.30 10199.74 15998.25 18797.10 4099.10 9099.90 1894.59 7099.99 3699.77 2899.91 6799.99 23
SMA-MVScopyleft98.76 2698.48 3299.62 2099.87 5198.87 3399.86 11798.38 16393.19 17499.77 2799.94 495.54 44100.00 199.74 3399.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
reproduce_model98.75 2798.66 2399.03 7399.71 7697.10 11199.73 16698.23 19197.02 4599.18 8799.90 1894.54 7499.99 3699.77 2899.90 6999.99 23
MVS_111021_HR98.72 2898.62 2699.01 7799.36 10197.18 10699.93 7699.90 196.81 5498.67 11399.77 6493.92 9799.89 9999.27 5699.94 5599.96 67
XVS98.70 2998.55 2899.15 5999.94 1397.50 9399.94 6998.42 14796.22 7599.41 7099.78 6294.34 8299.96 6598.92 7699.95 5099.99 23
SF-MVS98.67 3098.40 3599.50 3099.77 6598.67 4999.90 9198.21 19393.53 16399.81 1599.89 2294.70 6999.86 11099.84 2299.93 6199.96 67
CDPH-MVS98.65 3198.36 4199.49 3299.94 1398.73 4699.87 10698.33 17493.97 14899.76 2899.87 2794.99 6099.75 13598.55 100100.00 199.98 51
APD-MVScopyleft98.62 3298.35 4299.41 3899.90 4298.51 5999.87 10698.36 16794.08 14199.74 3199.73 8194.08 9399.74 13799.42 5099.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + GP.98.60 3398.51 3198.86 8799.73 7396.63 12799.97 2897.92 22698.07 1198.76 10999.55 11195.00 5999.94 8199.91 1697.68 17099.99 23
PAPM98.60 3398.42 3499.14 6196.05 28698.96 2699.90 9199.35 2496.68 5898.35 13099.66 9996.45 3198.51 21899.45 4899.89 7099.96 67
HFP-MVS98.56 3598.37 3999.14 6199.96 897.43 9799.95 5398.61 8394.77 10999.31 7899.85 3394.22 88100.00 198.70 9199.98 3299.98 51
region2R98.54 3698.37 3999.05 7199.96 897.18 10699.96 3598.55 9994.87 10799.45 6599.85 3394.07 94100.00 198.67 93100.00 199.98 51
DELS-MVS98.54 3698.22 4799.50 3099.15 11298.65 53100.00 198.58 8897.70 2098.21 13799.24 14292.58 13799.94 8198.63 9899.94 5599.92 84
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPR98.52 3898.16 5299.58 2499.97 398.77 4299.95 5398.43 13595.35 9598.03 14199.75 7294.03 9599.98 4798.11 12299.83 7799.99 23
ACMMPR98.50 3998.32 4399.05 7199.96 897.18 10699.95 5398.60 8594.77 10999.31 7899.84 4493.73 104100.00 198.70 9199.98 3299.98 51
ACMMP_NAP98.49 4098.14 5399.54 2799.66 8298.62 5599.85 12098.37 16694.68 11499.53 5899.83 4692.87 128100.00 198.66 9599.84 7699.99 23
EPNet98.49 4098.40 3598.77 9199.62 8496.80 12399.90 9199.51 1697.60 2299.20 8499.36 13193.71 10599.91 9297.99 12998.71 14499.61 134
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SR-MVS98.46 4298.30 4698.93 8499.88 4997.04 11399.84 12598.35 16994.92 10599.32 7799.80 5493.35 11199.78 12899.30 5599.95 5099.96 67
CP-MVS98.45 4398.32 4398.87 8699.96 896.62 12899.97 2898.39 15994.43 12398.90 10099.87 2794.30 85100.00 199.04 6799.99 2199.99 23
test_fmvsm_n_192098.44 4498.61 2797.92 14899.27 10695.18 191100.00 198.90 4798.05 1299.80 1799.73 8192.64 13499.99 3699.58 4199.51 10898.59 231
PS-MVSNAJ98.44 4498.20 4999.16 5798.80 14298.92 2999.54 20698.17 19897.34 2999.85 999.85 3391.20 16299.89 9999.41 5199.67 9098.69 228
test_fmvsmconf_n98.43 4698.32 4398.78 8998.12 19396.41 13699.99 498.83 6098.22 799.67 3999.64 10291.11 16699.94 8199.67 3999.62 9599.98 51
MVS_111021_LR98.42 4798.38 3798.53 11299.39 9995.79 16199.87 10699.86 296.70 5798.78 10699.79 5892.03 15299.90 9499.17 6099.86 7599.88 88
DP-MVS Recon98.41 4898.02 6099.56 2599.97 398.70 4899.92 7998.44 12792.06 22398.40 12899.84 4495.68 42100.00 198.19 11799.71 8899.97 61
PHI-MVS98.41 4898.21 4899.03 7399.86 5397.10 11199.98 1598.80 6390.78 26499.62 4799.78 6295.30 50100.00 199.80 2599.93 6199.99 23
mPP-MVS98.39 5098.20 4998.97 8199.97 396.92 11899.95 5398.38 16395.04 10198.61 11799.80 5493.39 109100.00 198.64 96100.00 199.98 51
PGM-MVS98.34 5198.13 5498.99 7899.92 3197.00 11499.75 15699.50 1793.90 15499.37 7599.76 6693.24 118100.00 197.75 14699.96 4699.98 51
SR-MVS-dyc-post98.31 5298.17 5198.71 9399.79 6296.37 14099.76 15298.31 17894.43 12399.40 7299.75 7293.28 11699.78 12898.90 7999.92 6499.97 61
ZNCC-MVS98.31 5298.03 5999.17 5599.88 4997.59 8899.94 6998.44 12794.31 13198.50 12299.82 4993.06 12399.99 3698.30 11599.99 2199.93 79
MTAPA98.29 5497.96 6699.30 4499.85 5497.93 7799.39 22998.28 18395.76 8497.18 16799.88 2492.74 132100.00 198.67 9399.88 7399.99 23
balanced_conf0398.27 5597.99 6199.11 6698.64 15398.43 6299.47 21797.79 23794.56 11799.74 3198.35 22094.33 8499.25 17199.12 6199.96 4699.64 124
GST-MVS98.27 5597.97 6399.17 5599.92 3197.57 8999.93 7698.39 15994.04 14698.80 10599.74 7992.98 125100.00 198.16 11999.76 8599.93 79
CANet98.27 5597.82 7399.63 1799.72 7599.10 2399.98 1598.51 11097.00 4698.52 11999.71 8687.80 21299.95 7399.75 3199.38 11899.83 94
EI-MVSNet-Vis-set98.27 5598.11 5698.75 9299.83 5796.59 13199.40 22598.51 11095.29 9798.51 12199.76 6693.60 10899.71 14198.53 10399.52 10599.95 74
APD-MVS_3200maxsize98.25 5998.08 5898.78 8999.81 6096.60 12999.82 13598.30 18193.95 15099.37 7599.77 6492.84 12999.76 13498.95 7399.92 6499.97 61
patch_mono-298.24 6099.12 595.59 23499.67 8186.91 35499.95 5398.89 4997.60 2299.90 399.76 6696.54 3099.98 4799.94 1199.82 8199.88 88
xiu_mvs_v2_base98.23 6197.97 6399.02 7698.69 14798.66 5199.52 20898.08 21097.05 4399.86 799.86 2990.65 17599.71 14199.39 5398.63 14598.69 228
MP-MVScopyleft98.23 6197.97 6399.03 7399.94 1397.17 10999.95 5398.39 15994.70 11398.26 13599.81 5391.84 156100.00 198.85 8299.97 4299.93 79
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EI-MVSNet-UG-set98.14 6397.99 6198.60 10299.80 6196.27 14299.36 23498.50 11695.21 9998.30 13299.75 7293.29 11599.73 14098.37 11199.30 12299.81 97
PAPM_NR98.12 6497.93 6898.70 9499.94 1396.13 15299.82 13598.43 13594.56 11797.52 15599.70 8894.40 7799.98 4797.00 16199.98 3299.99 23
WTY-MVS98.10 6597.60 8199.60 2298.92 13099.28 1799.89 10099.52 1495.58 8998.24 13699.39 12893.33 11299.74 13797.98 13195.58 21899.78 103
MP-MVS-pluss98.07 6697.64 7999.38 4299.74 7098.41 6399.74 15998.18 19793.35 16896.45 18699.85 3392.64 13499.97 5798.91 7899.89 7099.77 104
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HPM-MVScopyleft97.96 6797.72 7598.68 9599.84 5696.39 13999.90 9198.17 19892.61 20198.62 11699.57 11091.87 15599.67 14898.87 8199.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet_Blended97.94 6897.64 7998.83 8899.59 8596.99 115100.00 199.10 3195.38 9498.27 13399.08 15189.00 20299.95 7399.12 6199.25 12499.57 145
PLCcopyleft95.54 397.93 6997.89 7198.05 14199.82 5894.77 20399.92 7998.46 12193.93 15197.20 16599.27 13795.44 4899.97 5797.41 15199.51 10899.41 173
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ETV-MVS97.92 7097.80 7498.25 12998.14 19196.48 13399.98 1597.63 24895.61 8899.29 8199.46 11992.55 13898.82 19699.02 7198.54 14799.46 166
SPE-MVS-test97.88 7197.94 6797.70 16399.28 10595.20 19099.98 1597.15 30495.53 9199.62 4799.79 5892.08 15198.38 23498.75 8999.28 12399.52 157
API-MVS97.86 7297.66 7898.47 11599.52 9295.41 18099.47 21798.87 5291.68 23498.84 10299.85 3392.34 14599.99 3698.44 10799.96 46100.00 1
lupinMVS97.85 7397.60 8198.62 10097.28 24897.70 8599.99 497.55 26095.50 9399.43 6899.67 9790.92 17098.71 20798.40 10899.62 9599.45 168
UBG97.84 7497.69 7798.29 12798.38 16996.59 13199.90 9198.53 10593.91 15398.52 11998.42 21896.77 2399.17 18098.54 10196.20 20099.11 204
MVSMamba_PlusPlus97.83 7597.45 8698.99 7898.60 15598.15 6599.58 19797.74 24090.34 27399.26 8398.32 22394.29 8699.23 17299.03 7099.89 7099.58 143
test_yl97.83 7597.37 9099.21 4999.18 10897.98 7499.64 18899.27 2791.43 24397.88 14798.99 16095.84 4099.84 11998.82 8395.32 22499.79 100
DCV-MVSNet97.83 7597.37 9099.21 4999.18 10897.98 7499.64 18899.27 2791.43 24397.88 14798.99 16095.84 4099.84 11998.82 8395.32 22499.79 100
mvsany_test197.82 7897.90 7097.55 17198.77 14493.04 24799.80 14197.93 22396.95 4899.61 5399.68 9690.92 17099.83 12199.18 5998.29 15699.80 99
alignmvs97.81 7997.33 9299.25 4698.77 14498.66 5199.99 498.44 12794.40 12798.41 12699.47 11793.65 10699.42 16798.57 9994.26 23899.67 118
fmvsm_s_conf0.5_n97.80 8097.85 7297.67 16499.06 11594.41 20999.98 1598.97 4097.34 2999.63 4499.69 9087.27 21999.97 5799.62 4099.06 13398.62 230
HPM-MVS_fast97.80 8097.50 8498.68 9599.79 6296.42 13599.88 10398.16 20291.75 23398.94 9899.54 11391.82 15799.65 15097.62 14999.99 2199.99 23
CS-MVS97.79 8297.91 6997.43 17999.10 11394.42 20899.99 497.10 30995.07 10099.68 3899.75 7292.95 12698.34 23898.38 10999.14 12999.54 151
HY-MVS92.50 797.79 8297.17 10099.63 1798.98 12299.32 997.49 35399.52 1495.69 8698.32 13197.41 25093.32 11399.77 13198.08 12595.75 21599.81 97
CNLPA97.76 8497.38 8998.92 8599.53 9196.84 12099.87 10698.14 20693.78 15796.55 18499.69 9092.28 14699.98 4797.13 15799.44 11499.93 79
test_fmvsmconf0.1_n97.74 8597.44 8798.64 9995.76 29796.20 14899.94 6998.05 21398.17 998.89 10199.42 12187.65 21499.90 9499.50 4499.60 10199.82 95
ACMMPcopyleft97.74 8597.44 8798.66 9799.92 3196.13 15299.18 25499.45 1894.84 10896.41 18999.71 8691.40 15999.99 3697.99 12998.03 16599.87 90
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_s_conf0.5_n_a97.73 8797.72 7597.77 15898.63 15494.26 21599.96 3598.92 4697.18 3999.75 2999.69 9087.00 22499.97 5799.46 4798.89 13799.08 207
DeepPCF-MVS95.94 297.71 8898.98 1293.92 29799.63 8381.76 38499.96 3598.56 9399.47 199.19 8699.99 194.16 92100.00 199.92 1399.93 61100.00 1
test_fmvsmvis_n_192097.67 8997.59 8397.91 15097.02 25595.34 18299.95 5398.45 12297.87 1597.02 17199.59 10789.64 19099.98 4799.41 5199.34 12198.42 234
CPTT-MVS97.64 9097.32 9398.58 10599.97 395.77 16299.96 3598.35 16989.90 28198.36 12999.79 5891.18 16599.99 3698.37 11199.99 2199.99 23
sss97.57 9197.03 10599.18 5298.37 17198.04 7199.73 16699.38 2293.46 16598.76 10999.06 15391.21 16199.89 9996.33 17397.01 18799.62 130
test250697.53 9297.19 9898.58 10598.66 15096.90 11998.81 29999.77 594.93 10397.95 14398.96 16692.51 13999.20 17794.93 19498.15 15899.64 124
EIA-MVS97.53 9297.46 8597.76 16098.04 19694.84 19999.98 1597.61 25494.41 12697.90 14599.59 10792.40 14398.87 19398.04 12699.13 13099.59 137
testing1197.48 9497.27 9498.10 13798.36 17296.02 15599.92 7998.45 12293.45 16798.15 13998.70 19295.48 4799.22 17397.85 13795.05 22899.07 208
xiu_mvs_v1_base_debu97.43 9597.06 10198.55 10797.74 21498.14 6699.31 23997.86 23296.43 6699.62 4799.69 9085.56 23799.68 14599.05 6498.31 15397.83 245
xiu_mvs_v1_base97.43 9597.06 10198.55 10797.74 21498.14 6699.31 23997.86 23296.43 6699.62 4799.69 9085.56 23799.68 14599.05 6498.31 15397.83 245
xiu_mvs_v1_base_debi97.43 9597.06 10198.55 10797.74 21498.14 6699.31 23997.86 23296.43 6699.62 4799.69 9085.56 23799.68 14599.05 6498.31 15397.83 245
MAR-MVS97.43 9597.19 9898.15 13599.47 9694.79 20299.05 27098.76 6492.65 19998.66 11499.82 4988.52 20799.98 4798.12 12199.63 9499.67 118
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
dcpmvs_297.42 9998.09 5795.42 23999.58 8987.24 35099.23 25096.95 32794.28 13498.93 9999.73 8194.39 8099.16 18299.89 1799.82 8199.86 92
thisisatest051597.41 10097.02 10698.59 10497.71 22197.52 9199.97 2898.54 10291.83 22997.45 15899.04 15497.50 899.10 18594.75 20296.37 19999.16 198
114514_t97.41 10096.83 11399.14 6199.51 9497.83 7999.89 10098.27 18588.48 30999.06 9399.66 9990.30 18399.64 15196.32 17499.97 4299.96 67
EC-MVSNet97.38 10297.24 9597.80 15397.41 23795.64 17199.99 497.06 31594.59 11699.63 4499.32 13389.20 20098.14 25498.76 8899.23 12699.62 130
fmvsm_s_conf0.1_n97.30 10397.21 9797.60 17097.38 23994.40 21199.90 9198.64 7796.47 6599.51 6299.65 10184.99 24599.93 8899.22 5899.09 13298.46 232
OMC-MVS97.28 10497.23 9697.41 18099.76 6693.36 24299.65 18497.95 22196.03 7997.41 16099.70 8889.61 19199.51 15696.73 17098.25 15799.38 175
PVSNet_Blended_VisFu97.27 10596.81 11498.66 9798.81 14196.67 12699.92 7998.64 7794.51 11996.38 19098.49 21189.05 20199.88 10597.10 15998.34 15199.43 171
jason97.24 10696.86 11298.38 12395.73 30097.32 10099.97 2897.40 27895.34 9698.60 11899.54 11387.70 21398.56 21597.94 13299.47 11099.25 193
jason: jason.
AdaColmapbinary97.23 10796.80 11598.51 11399.99 195.60 17399.09 25998.84 5993.32 17096.74 17999.72 8486.04 234100.00 198.01 12799.43 11599.94 78
VNet97.21 10896.57 12699.13 6598.97 12397.82 8099.03 27399.21 2994.31 13199.18 8798.88 17786.26 23399.89 9998.93 7594.32 23699.69 115
testing9997.17 10996.91 10897.95 14498.35 17495.70 16799.91 8598.43 13592.94 18297.36 16198.72 19094.83 6399.21 17497.00 16194.64 23098.95 213
testing9197.16 11096.90 10997.97 14398.35 17495.67 17099.91 8598.42 14792.91 18497.33 16298.72 19094.81 6499.21 17496.98 16394.63 23199.03 210
PVSNet91.05 1397.13 11196.69 12198.45 11799.52 9295.81 16099.95 5399.65 1294.73 11199.04 9499.21 14484.48 24999.95 7394.92 19598.74 14399.58 143
thisisatest053097.10 11296.72 11998.22 13097.60 22896.70 12499.92 7998.54 10291.11 25397.07 17098.97 16497.47 1199.03 18693.73 22996.09 20398.92 214
CSCG97.10 11297.04 10497.27 18999.89 4591.92 27399.90 9199.07 3488.67 30595.26 21299.82 4993.17 12199.98 4798.15 12099.47 11099.90 86
sasdasda97.09 11496.32 13299.39 4098.93 12798.95 2799.72 17097.35 28194.45 12097.88 14799.42 12186.71 22699.52 15498.48 10493.97 24299.72 110
fmvsm_s_conf0.1_n_a97.09 11496.90 10997.63 16895.65 30794.21 21799.83 13298.50 11696.27 7499.65 4199.64 10284.72 24699.93 8899.04 6798.84 14098.74 225
canonicalmvs97.09 11496.32 13299.39 4098.93 12798.95 2799.72 17097.35 28194.45 12097.88 14799.42 12186.71 22699.52 15498.48 10493.97 24299.72 110
testing22297.08 11796.75 11798.06 14098.56 15696.82 12199.85 12098.61 8392.53 20798.84 10298.84 18693.36 11098.30 24295.84 18294.30 23799.05 209
ETVMVS97.03 11896.64 12298.20 13198.67 14997.12 11099.89 10098.57 9091.10 25498.17 13898.59 20293.86 10198.19 25295.64 18595.24 22699.28 190
MGCFI-Net97.00 11996.22 13699.34 4398.86 13898.80 3999.67 18297.30 28894.31 13197.77 15199.41 12586.36 23299.50 15898.38 10993.90 24499.72 110
diffmvspermissive97.00 11996.64 12298.09 13897.64 22696.17 15199.81 13797.19 29894.67 11598.95 9799.28 13486.43 23098.76 20198.37 11197.42 17699.33 183
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
thres20096.96 12196.21 13799.22 4898.97 12398.84 3699.85 12099.71 793.17 17596.26 19298.88 17789.87 18899.51 15694.26 21494.91 22999.31 185
mvsmamba96.94 12296.73 11897.55 17197.99 19894.37 21299.62 19197.70 24293.13 17798.42 12597.92 23888.02 21198.75 20398.78 8699.01 13599.52 157
MVSFormer96.94 12296.60 12497.95 14497.28 24897.70 8599.55 20497.27 29391.17 25099.43 6899.54 11390.92 17096.89 32194.67 20599.62 9599.25 193
F-COLMAP96.93 12496.95 10796.87 19999.71 7691.74 27899.85 12097.95 22193.11 17995.72 20599.16 14892.35 14499.94 8195.32 18899.35 12098.92 214
DeepC-MVS94.51 496.92 12596.40 13198.45 11799.16 11195.90 15899.66 18398.06 21196.37 7294.37 22199.49 11683.29 25899.90 9497.63 14899.61 9999.55 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tttt051796.85 12696.49 12897.92 14897.48 23595.89 15999.85 12098.54 10290.72 26696.63 18198.93 17597.47 1199.02 18793.03 24195.76 21498.85 218
131496.84 12795.96 14899.48 3496.74 27398.52 5898.31 33198.86 5395.82 8289.91 27298.98 16287.49 21699.96 6597.80 13999.73 8799.96 67
CHOSEN 1792x268896.81 12896.53 12797.64 16698.91 13493.07 24499.65 18499.80 395.64 8795.39 20998.86 18284.35 25199.90 9496.98 16399.16 12899.95 74
UWE-MVS96.79 12996.72 11997.00 19498.51 16393.70 23099.71 17398.60 8592.96 18197.09 16898.34 22296.67 2998.85 19592.11 25096.50 19598.44 233
tfpn200view996.79 12995.99 14299.19 5198.94 12598.82 3799.78 14499.71 792.86 18596.02 19798.87 18089.33 19599.50 15893.84 22194.57 23299.27 191
thres40096.78 13195.99 14299.16 5798.94 12598.82 3799.78 14499.71 792.86 18596.02 19798.87 18089.33 19599.50 15893.84 22194.57 23299.16 198
CANet_DTU96.76 13296.15 13898.60 10298.78 14397.53 9099.84 12597.63 24897.25 3799.20 8499.64 10281.36 27399.98 4792.77 24498.89 13798.28 237
PMMVS96.76 13296.76 11696.76 20298.28 17992.10 26899.91 8597.98 21894.12 13999.53 5899.39 12886.93 22598.73 20496.95 16697.73 16899.45 168
thres100view90096.74 13495.92 15299.18 5298.90 13598.77 4299.74 15999.71 792.59 20395.84 20198.86 18289.25 19799.50 15893.84 22194.57 23299.27 191
TESTMET0.1,196.74 13496.26 13498.16 13297.36 24196.48 13399.96 3598.29 18291.93 22695.77 20498.07 23195.54 4498.29 24390.55 27698.89 13799.70 113
baseline296.71 13696.49 12897.37 18395.63 30995.96 15799.74 15998.88 5192.94 18291.61 25398.97 16497.72 698.62 21394.83 19998.08 16497.53 255
thres600view796.69 13795.87 15599.14 6198.90 13598.78 4199.74 15999.71 792.59 20395.84 20198.86 18289.25 19799.50 15893.44 23394.50 23599.16 198
EPP-MVSNet96.69 13796.60 12496.96 19697.74 21493.05 24699.37 23298.56 9388.75 30395.83 20399.01 15796.01 3498.56 21596.92 16797.20 18199.25 193
HyFIR lowres test96.66 13996.43 13097.36 18599.05 11693.91 22599.70 17799.80 390.54 26896.26 19298.08 23092.15 14998.23 25096.84 16995.46 21999.93 79
MVS96.60 14095.56 16499.72 1396.85 26699.22 2098.31 33198.94 4191.57 23690.90 26199.61 10686.66 22899.96 6597.36 15299.88 7399.99 23
test_cas_vis1_n_192096.59 14196.23 13597.65 16598.22 18394.23 21699.99 497.25 29597.77 1799.58 5499.08 15177.10 31099.97 5797.64 14799.45 11398.74 225
UA-Net96.54 14295.96 14898.27 12898.23 18295.71 16698.00 34698.45 12293.72 16098.41 12699.27 13788.71 20699.66 14991.19 26197.69 16999.44 170
EPMVS96.53 14396.01 14198.09 13898.43 16796.12 15496.36 37499.43 2093.53 16397.64 15395.04 33994.41 7698.38 23491.13 26298.11 16199.75 106
test-LLR96.47 14496.04 14097.78 15697.02 25595.44 17799.96 3598.21 19394.07 14295.55 20696.38 28493.90 9998.27 24790.42 27998.83 14199.64 124
MVS_Test96.46 14595.74 15798.61 10198.18 18797.23 10499.31 23997.15 30491.07 25598.84 10297.05 26388.17 21098.97 18894.39 20997.50 17399.61 134
casdiffmvs_mvgpermissive96.43 14695.94 15097.89 15297.44 23695.47 17699.86 11797.29 29193.35 16896.03 19699.19 14585.39 24098.72 20697.89 13697.04 18599.49 164
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline96.43 14695.98 14497.76 16097.34 24295.17 19299.51 21097.17 30193.92 15296.90 17499.28 13485.37 24198.64 21297.50 15096.86 19199.46 166
casdiffmvspermissive96.42 14895.97 14797.77 15897.30 24694.98 19499.84 12597.09 31293.75 15996.58 18399.26 14085.07 24398.78 19997.77 14497.04 18599.54 151
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf0.01_n96.39 14995.74 15798.32 12591.47 37795.56 17499.84 12597.30 28897.74 1897.89 14699.35 13279.62 29299.85 11199.25 5799.24 12599.55 147
test-mter96.39 14995.93 15197.78 15697.02 25595.44 17799.96 3598.21 19391.81 23195.55 20696.38 28495.17 5198.27 24790.42 27998.83 14199.64 124
CDS-MVSNet96.34 15196.07 13997.13 19197.37 24094.96 19599.53 20797.91 22791.55 23795.37 21098.32 22395.05 5697.13 30393.80 22595.75 21599.30 187
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Vis-MVSNet (Re-imp)96.32 15295.98 14497.35 18697.93 20294.82 20099.47 21798.15 20591.83 22995.09 21399.11 14991.37 16097.47 28593.47 23297.43 17499.74 107
3Dnovator+91.53 1196.31 15395.24 17299.52 2896.88 26598.64 5499.72 17098.24 18995.27 9888.42 31298.98 16282.76 26199.94 8197.10 15999.83 7799.96 67
Effi-MVS+96.30 15495.69 15998.16 13297.85 20796.26 14397.41 35597.21 29790.37 27198.65 11598.58 20586.61 22998.70 20897.11 15897.37 17899.52 157
IS-MVSNet96.29 15595.90 15397.45 17798.13 19294.80 20199.08 26197.61 25492.02 22595.54 20898.96 16690.64 17698.08 25893.73 22997.41 17799.47 165
3Dnovator91.47 1296.28 15695.34 16999.08 7096.82 26897.47 9699.45 22298.81 6195.52 9289.39 28799.00 15981.97 26599.95 7397.27 15499.83 7799.84 93
tpmrst96.27 15795.98 14497.13 19197.96 20093.15 24396.34 37598.17 19892.07 22198.71 11295.12 33693.91 9898.73 20494.91 19796.62 19299.50 162
RRT-MVS96.24 15895.68 16197.94 14797.65 22594.92 19799.27 24797.10 30992.79 19197.43 15997.99 23581.85 26799.37 16898.46 10698.57 14699.53 155
CostFormer96.10 15995.88 15496.78 20197.03 25492.55 26097.08 36397.83 23590.04 27998.72 11194.89 34695.01 5898.29 24396.54 17295.77 21399.50 162
PVSNet_BlendedMVS96.05 16095.82 15696.72 20499.59 8596.99 11599.95 5399.10 3194.06 14498.27 13395.80 30189.00 20299.95 7399.12 6187.53 29493.24 353
PatchMatch-RL96.04 16195.40 16697.95 14499.59 8595.22 18999.52 20899.07 3493.96 14996.49 18598.35 22082.28 26399.82 12390.15 28499.22 12798.81 221
1112_ss96.01 16295.20 17498.42 12097.80 21096.41 13699.65 18496.66 34992.71 19492.88 24199.40 12692.16 14899.30 16991.92 25393.66 24599.55 147
PatchmatchNetpermissive95.94 16395.45 16597.39 18297.83 20894.41 20996.05 38198.40 15692.86 18597.09 16895.28 33294.21 9098.07 26089.26 29298.11 16199.70 113
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
FA-MVS(test-final)95.86 16495.09 17898.15 13597.74 21495.62 17296.31 37698.17 19891.42 24596.26 19296.13 29490.56 17899.47 16592.18 24997.07 18399.35 180
TAMVS95.85 16595.58 16396.65 20797.07 25293.50 23699.17 25597.82 23691.39 24795.02 21498.01 23292.20 14797.30 29393.75 22895.83 21299.14 201
LS3D95.84 16695.11 17798.02 14299.85 5495.10 19398.74 30498.50 11687.22 32793.66 23099.86 2987.45 21799.95 7390.94 26899.81 8399.02 211
baseline195.78 16794.86 18598.54 11098.47 16698.07 6999.06 26697.99 21692.68 19794.13 22698.62 20193.28 11698.69 20993.79 22685.76 30298.84 219
Test_1112_low_res95.72 16894.83 18698.42 12097.79 21196.41 13699.65 18496.65 35092.70 19592.86 24296.13 29492.15 14999.30 16991.88 25493.64 24699.55 147
Vis-MVSNetpermissive95.72 16895.15 17697.45 17797.62 22794.28 21499.28 24598.24 18994.27 13696.84 17698.94 17379.39 29498.76 20193.25 23498.49 14899.30 187
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPNet_dtu95.71 17095.39 16796.66 20698.92 13093.41 23999.57 20098.90 4796.19 7797.52 15598.56 20792.65 13397.36 28777.89 37698.33 15299.20 196
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-w/o95.71 17095.38 16896.68 20598.49 16592.28 26499.84 12597.50 26892.12 22092.06 25198.79 18784.69 24798.67 21195.29 18999.66 9199.09 205
FE-MVS95.70 17295.01 18297.79 15598.21 18494.57 20495.03 38898.69 6988.90 29997.50 15796.19 29192.60 13699.49 16389.99 28697.94 16799.31 185
ECVR-MVScopyleft95.66 17395.05 18097.51 17598.66 15093.71 22998.85 29698.45 12294.93 10396.86 17598.96 16675.22 33399.20 17795.34 18798.15 15899.64 124
mvs_anonymous95.65 17495.03 18197.53 17398.19 18695.74 16499.33 23697.49 26990.87 25990.47 26597.10 25988.23 20997.16 30095.92 18097.66 17199.68 116
test111195.57 17594.98 18397.37 18398.56 15693.37 24198.86 29498.45 12294.95 10296.63 18198.95 17175.21 33499.11 18395.02 19298.14 16099.64 124
MVSTER95.53 17695.22 17396.45 21198.56 15697.72 8299.91 8597.67 24592.38 21491.39 25597.14 25797.24 1797.30 29394.80 20087.85 28994.34 290
tpm295.47 17795.18 17596.35 21696.91 26191.70 28296.96 36697.93 22388.04 31698.44 12495.40 32193.32 11397.97 26494.00 21795.61 21799.38 175
test_vis1_n_192095.44 17895.31 17095.82 23098.50 16488.74 33299.98 1597.30 28897.84 1699.85 999.19 14566.82 37199.97 5798.82 8399.46 11298.76 223
QAPM95.40 17994.17 20199.10 6796.92 26097.71 8399.40 22598.68 7189.31 28788.94 30098.89 17682.48 26299.96 6593.12 24099.83 7799.62 130
reproduce_monomvs95.38 18095.07 17996.32 21799.32 10496.60 12999.76 15298.85 5696.65 5987.83 31896.05 29899.52 198.11 25696.58 17181.07 34294.25 295
test_fmvs195.35 18195.68 16194.36 28298.99 12184.98 36499.96 3596.65 35097.60 2299.73 3398.96 16671.58 35099.93 8898.31 11499.37 11998.17 238
UGNet95.33 18294.57 19197.62 16998.55 15994.85 19898.67 31299.32 2695.75 8596.80 17896.27 28972.18 34799.96 6594.58 20799.05 13498.04 242
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
mamv495.24 18396.90 10990.25 35498.65 15272.11 40198.28 33397.64 24789.99 28095.93 19998.25 22594.74 6699.11 18399.01 7299.64 9299.53 155
BH-untuned95.18 18494.83 18696.22 21998.36 17291.22 29099.80 14197.32 28690.91 25891.08 25898.67 19483.51 25598.54 21794.23 21599.61 9998.92 214
BH-RMVSNet95.18 18494.31 19897.80 15398.17 18895.23 18899.76 15297.53 26492.52 20894.27 22499.25 14176.84 31598.80 19790.89 27099.54 10499.35 180
PCF-MVS94.20 595.18 18494.10 20298.43 11998.55 15995.99 15697.91 34897.31 28790.35 27289.48 28699.22 14385.19 24299.89 9990.40 28198.47 14999.41 173
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
dp95.05 18794.43 19396.91 19797.99 19892.73 25496.29 37797.98 21889.70 28495.93 19994.67 35293.83 10398.45 22386.91 32496.53 19499.54 151
Fast-Effi-MVS+95.02 18894.19 20097.52 17497.88 20494.55 20599.97 2897.08 31388.85 30194.47 22097.96 23784.59 24898.41 22689.84 28897.10 18299.59 137
IB-MVS92.85 694.99 18993.94 20898.16 13297.72 21995.69 16999.99 498.81 6194.28 13492.70 24396.90 26795.08 5499.17 18096.07 17773.88 38199.60 136
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
h-mvs3394.92 19094.36 19596.59 20898.85 13991.29 28998.93 28498.94 4195.90 8098.77 10798.42 21890.89 17399.77 13197.80 13970.76 38798.72 227
MonoMVSNet94.82 19194.43 19395.98 22494.54 32590.73 29999.03 27397.06 31593.16 17693.15 23695.47 31888.29 20897.57 28197.85 13791.33 25999.62 130
XVG-OURS94.82 19194.74 18995.06 25098.00 19789.19 32699.08 26197.55 26094.10 14094.71 21699.62 10580.51 28599.74 13796.04 17893.06 25496.25 264
SDMVSNet94.80 19393.96 20797.33 18798.92 13095.42 17999.59 19598.99 3792.41 21292.55 24597.85 24175.81 32798.93 19297.90 13591.62 25797.64 250
ADS-MVSNet94.79 19494.02 20597.11 19397.87 20593.79 22694.24 38998.16 20290.07 27796.43 18794.48 35790.29 18498.19 25287.44 31197.23 17999.36 178
XVG-OURS-SEG-HR94.79 19494.70 19095.08 24998.05 19589.19 32699.08 26197.54 26293.66 16194.87 21599.58 10978.78 30199.79 12697.31 15393.40 24996.25 264
OpenMVScopyleft90.15 1594.77 19693.59 21698.33 12496.07 28597.48 9599.56 20298.57 9090.46 26986.51 33698.95 17178.57 30499.94 8193.86 22099.74 8697.57 254
LFMVS94.75 19793.56 21898.30 12699.03 11795.70 16798.74 30497.98 21887.81 32098.47 12399.39 12867.43 36999.53 15398.01 12795.20 22799.67 118
SCA94.69 19893.81 21297.33 18797.10 25194.44 20698.86 29498.32 17693.30 17196.17 19595.59 31076.48 32097.95 26791.06 26497.43 17499.59 137
ab-mvs94.69 19893.42 22298.51 11398.07 19496.26 14396.49 37298.68 7190.31 27494.54 21797.00 26576.30 32299.71 14195.98 17993.38 25099.56 146
CVMVSNet94.68 20094.94 18493.89 30096.80 26986.92 35399.06 26698.98 3894.45 12094.23 22599.02 15585.60 23695.31 37090.91 26995.39 22299.43 171
cascas94.64 20193.61 21397.74 16297.82 20996.26 14399.96 3597.78 23985.76 34594.00 22797.54 24776.95 31499.21 17497.23 15595.43 22197.76 249
HQP-MVS94.61 20294.50 19294.92 25595.78 29391.85 27499.87 10697.89 22896.82 5193.37 23298.65 19780.65 28398.39 23097.92 13389.60 26294.53 272
TR-MVS94.54 20393.56 21897.49 17697.96 20094.34 21398.71 30797.51 26790.30 27594.51 21998.69 19375.56 32898.77 20092.82 24395.99 20599.35 180
DP-MVS94.54 20393.42 22297.91 15099.46 9894.04 22098.93 28497.48 27081.15 38090.04 26999.55 11187.02 22399.95 7388.97 29498.11 16199.73 108
Effi-MVS+-dtu94.53 20595.30 17192.22 33397.77 21282.54 37799.59 19597.06 31594.92 10595.29 21195.37 32585.81 23597.89 27094.80 20097.07 18396.23 266
WBMVS94.52 20694.03 20495.98 22498.38 16996.68 12599.92 7997.63 24890.75 26589.64 28295.25 33396.77 2396.90 32094.35 21283.57 32194.35 288
HQP_MVS94.49 20794.36 19594.87 25695.71 30391.74 27899.84 12597.87 23096.38 6993.01 23798.59 20280.47 28798.37 23697.79 14289.55 26594.52 274
myMVS_eth3d94.46 20894.76 18893.55 31097.68 22290.97 29299.71 17398.35 16990.79 26292.10 24998.67 19492.46 14293.09 39287.13 31795.95 20896.59 262
TAPA-MVS92.12 894.42 20993.60 21596.90 19899.33 10291.78 27799.78 14498.00 21589.89 28294.52 21899.47 11791.97 15399.18 17969.90 39599.52 10599.73 108
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
hse-mvs294.38 21094.08 20395.31 24498.27 18090.02 31699.29 24498.56 9395.90 8098.77 10798.00 23390.89 17398.26 24997.80 13969.20 39397.64 250
ET-MVSNet_ETH3D94.37 21193.28 22897.64 16698.30 17697.99 7399.99 497.61 25494.35 12871.57 39999.45 12096.23 3395.34 36996.91 16885.14 30999.59 137
MSDG94.37 21193.36 22697.40 18198.88 13793.95 22499.37 23297.38 27985.75 34790.80 26299.17 14784.11 25399.88 10586.35 32598.43 15098.36 236
GeoE94.36 21393.48 22096.99 19597.29 24793.54 23599.96 3596.72 34788.35 31293.43 23198.94 17382.05 26498.05 26188.12 30696.48 19799.37 177
miper_enhance_ethall94.36 21393.98 20695.49 23598.68 14895.24 18799.73 16697.29 29193.28 17289.86 27495.97 29994.37 8197.05 30992.20 24884.45 31494.19 300
tpmvs94.28 21593.57 21796.40 21398.55 15991.50 28795.70 38798.55 9987.47 32292.15 24894.26 36291.42 15898.95 19188.15 30495.85 21198.76 223
test_fmvs1_n94.25 21694.36 19593.92 29797.68 22283.70 37199.90 9196.57 35397.40 2899.67 3998.88 17761.82 38999.92 9198.23 11699.13 13098.14 241
FIs94.10 21793.43 22196.11 22194.70 32296.82 12199.58 19798.93 4592.54 20689.34 28997.31 25387.62 21597.10 30694.22 21686.58 29894.40 283
CLD-MVS94.06 21893.90 20994.55 27196.02 28790.69 30099.98 1597.72 24196.62 6291.05 26098.85 18577.21 30998.47 21998.11 12289.51 26794.48 276
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
testing393.92 21994.23 19992.99 32497.54 23090.23 31199.99 499.16 3090.57 26791.33 25798.63 20092.99 12492.52 39682.46 35295.39 22296.22 267
test0.0.03 193.86 22093.61 21394.64 26595.02 31892.18 26799.93 7698.58 8894.07 14287.96 31698.50 21093.90 9994.96 37481.33 35993.17 25196.78 259
X-MVStestdata93.83 22192.06 25499.15 5999.94 1397.50 9399.94 6998.42 14796.22 7599.41 7041.37 42294.34 8299.96 6598.92 7699.95 5099.99 23
GA-MVS93.83 22192.84 23496.80 20095.73 30093.57 23399.88 10397.24 29692.57 20592.92 23996.66 27678.73 30297.67 27887.75 30994.06 24199.17 197
FC-MVSNet-test93.81 22393.15 23095.80 23194.30 33096.20 14899.42 22498.89 4992.33 21689.03 29997.27 25587.39 21896.83 32693.20 23586.48 29994.36 285
ADS-MVSNet293.80 22493.88 21093.55 31097.87 20585.94 35894.24 38996.84 33890.07 27796.43 18794.48 35790.29 18495.37 36887.44 31197.23 17999.36 178
cl2293.77 22593.25 22995.33 24399.49 9594.43 20799.61 19398.09 20890.38 27089.16 29795.61 30890.56 17897.34 28991.93 25284.45 31494.21 299
VDD-MVS93.77 22592.94 23396.27 21898.55 15990.22 31298.77 30397.79 23790.85 26096.82 17799.42 12161.18 39299.77 13198.95 7394.13 23998.82 220
EI-MVSNet93.73 22793.40 22594.74 26196.80 26992.69 25599.06 26697.67 24588.96 29691.39 25599.02 15588.75 20597.30 29391.07 26387.85 28994.22 297
Fast-Effi-MVS+-dtu93.72 22893.86 21193.29 31597.06 25386.16 35699.80 14196.83 33992.66 19892.58 24497.83 24381.39 27297.67 27889.75 28996.87 19096.05 269
tpm93.70 22993.41 22494.58 26995.36 31387.41 34897.01 36496.90 33490.85 26096.72 18094.14 36390.40 18196.84 32490.75 27388.54 28199.51 160
PS-MVSNAJss93.64 23093.31 22794.61 26692.11 36892.19 26699.12 25797.38 27992.51 20988.45 30796.99 26691.20 16297.29 29694.36 21087.71 29194.36 285
test_vis1_n93.61 23193.03 23295.35 24195.86 29286.94 35299.87 10696.36 35996.85 4999.54 5798.79 18752.41 40299.83 12198.64 9698.97 13699.29 189
sd_testset93.55 23292.83 23595.74 23298.92 13090.89 29798.24 33598.85 5692.41 21292.55 24597.85 24171.07 35598.68 21093.93 21891.62 25797.64 250
gg-mvs-nofinetune93.51 23391.86 25998.47 11597.72 21997.96 7692.62 39798.51 11074.70 39997.33 16269.59 41398.91 497.79 27397.77 14499.56 10399.67 118
nrg03093.51 23392.53 24696.45 21194.36 32897.20 10599.81 13797.16 30391.60 23589.86 27497.46 24886.37 23197.68 27795.88 18180.31 35094.46 277
tpm cat193.51 23392.52 24796.47 20997.77 21291.47 28896.13 37998.06 21180.98 38192.91 24093.78 36689.66 18998.87 19387.03 32096.39 19899.09 205
CR-MVSNet93.45 23692.62 24095.94 22696.29 27992.66 25692.01 40096.23 36192.62 20096.94 17293.31 37191.04 16796.03 35879.23 36895.96 20699.13 202
AUN-MVS93.28 23792.60 24195.34 24298.29 17790.09 31599.31 23998.56 9391.80 23296.35 19198.00 23389.38 19498.28 24592.46 24569.22 39297.64 250
OPM-MVS93.21 23892.80 23694.44 27893.12 35090.85 29899.77 14797.61 25496.19 7791.56 25498.65 19775.16 33598.47 21993.78 22789.39 26893.99 322
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
dmvs_re93.20 23993.15 23093.34 31396.54 27783.81 37098.71 30798.51 11091.39 24792.37 24798.56 20778.66 30397.83 27293.89 21989.74 26198.38 235
kuosan93.17 24092.60 24194.86 25998.40 16889.54 32498.44 32498.53 10584.46 36088.49 30697.92 23890.57 17797.05 30983.10 34893.49 24797.99 243
miper_ehance_all_eth93.16 24192.60 24194.82 26097.57 22993.56 23499.50 21297.07 31488.75 30388.85 30195.52 31490.97 16996.74 32990.77 27284.45 31494.17 301
VDDNet93.12 24291.91 25796.76 20296.67 27692.65 25898.69 31098.21 19382.81 37397.75 15299.28 13461.57 39099.48 16498.09 12494.09 24098.15 239
Anonymous20240521193.10 24391.99 25596.40 21399.10 11389.65 32298.88 29097.93 22383.71 36594.00 22798.75 18968.79 36099.88 10595.08 19191.71 25699.68 116
UniMVSNet (Re)93.07 24492.13 25195.88 22794.84 31996.24 14799.88 10398.98 3892.49 21089.25 29195.40 32187.09 22297.14 30293.13 23978.16 36194.26 293
LPG-MVS_test92.96 24592.71 23993.71 30495.43 31188.67 33499.75 15697.62 25192.81 18890.05 26798.49 21175.24 33198.40 22895.84 18289.12 26994.07 314
UniMVSNet_NR-MVSNet92.95 24692.11 25295.49 23594.61 32495.28 18599.83 13299.08 3391.49 23889.21 29496.86 27087.14 22196.73 33093.20 23577.52 36694.46 277
WB-MVSnew92.90 24792.77 23893.26 31796.95 25993.63 23299.71 17398.16 20291.49 23894.28 22398.14 22881.33 27496.48 33979.47 36795.46 21989.68 393
ACMM91.95 1092.88 24892.52 24793.98 29695.75 29989.08 33099.77 14797.52 26693.00 18089.95 27197.99 23576.17 32498.46 22293.63 23188.87 27394.39 284
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_djsdf92.83 24992.29 25094.47 27691.90 37192.46 26199.55 20497.27 29391.17 25089.96 27096.07 29781.10 27696.89 32194.67 20588.91 27194.05 316
D2MVS92.76 25092.59 24593.27 31695.13 31489.54 32499.69 17899.38 2292.26 21787.59 32194.61 35485.05 24497.79 27391.59 25788.01 28792.47 366
ACMP92.05 992.74 25192.42 24993.73 30295.91 29188.72 33399.81 13797.53 26494.13 13887.00 33098.23 22674.07 34198.47 21996.22 17688.86 27493.99 322
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
VPA-MVSNet92.70 25291.55 26496.16 22095.09 31596.20 14898.88 29099.00 3691.02 25791.82 25295.29 33176.05 32697.96 26695.62 18681.19 33794.30 291
FMVSNet392.69 25391.58 26295.99 22398.29 17797.42 9899.26 24897.62 25189.80 28389.68 27895.32 32781.62 27196.27 34887.01 32185.65 30394.29 292
IterMVS-LS92.69 25392.11 25294.43 28096.80 26992.74 25299.45 22296.89 33588.98 29489.65 28195.38 32488.77 20496.34 34590.98 26782.04 33194.22 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmatch-test92.65 25591.50 26596.10 22296.85 26690.49 30691.50 40297.19 29882.76 37490.23 26695.59 31095.02 5798.00 26377.41 37896.98 18899.82 95
c3_l92.53 25691.87 25894.52 27297.40 23892.99 24899.40 22596.93 33287.86 31888.69 30495.44 31989.95 18796.44 34190.45 27880.69 34794.14 310
AllTest92.48 25791.64 26095.00 25299.01 11888.43 33898.94 28296.82 34186.50 33688.71 30298.47 21574.73 33799.88 10585.39 33396.18 20196.71 260
DU-MVS92.46 25891.45 26795.49 23594.05 33395.28 18599.81 13798.74 6592.25 21889.21 29496.64 27881.66 26996.73 33093.20 23577.52 36694.46 277
eth_miper_zixun_eth92.41 25991.93 25693.84 30197.28 24890.68 30198.83 29796.97 32688.57 30889.19 29695.73 30589.24 19996.69 33289.97 28781.55 33494.15 307
DIV-MVS_self_test92.32 26091.60 26194.47 27697.31 24592.74 25299.58 19796.75 34586.99 33187.64 32095.54 31289.55 19296.50 33888.58 29882.44 32894.17 301
cl____92.31 26191.58 26294.52 27297.33 24492.77 25099.57 20096.78 34486.97 33287.56 32295.51 31589.43 19396.62 33488.60 29782.44 32894.16 306
LCM-MVSNet-Re92.31 26192.60 24191.43 34297.53 23179.27 39499.02 27591.83 40992.07 22180.31 37494.38 36083.50 25695.48 36697.22 15697.58 17299.54 151
WR-MVS92.31 26191.25 26995.48 23894.45 32795.29 18499.60 19498.68 7190.10 27688.07 31596.89 26880.68 28296.80 32893.14 23879.67 35494.36 285
COLMAP_ROBcopyleft90.47 1492.18 26491.49 26694.25 28599.00 12088.04 34498.42 32896.70 34882.30 37688.43 31099.01 15776.97 31399.85 11186.11 32996.50 19594.86 271
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2024052992.10 26590.65 27796.47 20998.82 14090.61 30398.72 30698.67 7475.54 39693.90 22998.58 20566.23 37399.90 9494.70 20490.67 26098.90 217
pmmvs492.10 26591.07 27395.18 24792.82 35994.96 19599.48 21696.83 33987.45 32388.66 30596.56 28283.78 25496.83 32689.29 29184.77 31293.75 338
jajsoiax91.92 26791.18 27094.15 28691.35 37890.95 29599.00 27697.42 27592.61 20187.38 32697.08 26072.46 34697.36 28794.53 20888.77 27594.13 311
XXY-MVS91.82 26890.46 28095.88 22793.91 33695.40 18198.87 29397.69 24488.63 30787.87 31797.08 26074.38 34097.89 27091.66 25684.07 31894.35 288
miper_lstm_enhance91.81 26991.39 26893.06 32397.34 24289.18 32899.38 23096.79 34386.70 33587.47 32495.22 33490.00 18695.86 36288.26 30281.37 33694.15 307
mvs_tets91.81 26991.08 27294.00 29491.63 37590.58 30498.67 31297.43 27392.43 21187.37 32797.05 26371.76 34897.32 29194.75 20288.68 27794.11 312
VPNet91.81 26990.46 28095.85 22994.74 32195.54 17598.98 27798.59 8792.14 21990.77 26397.44 24968.73 36297.54 28394.89 19877.89 36394.46 277
RPSCF91.80 27292.79 23788.83 36598.15 19069.87 40398.11 34296.60 35283.93 36394.33 22299.27 13779.60 29399.46 16691.99 25193.16 25297.18 257
PVSNet_088.03 1991.80 27290.27 28696.38 21598.27 18090.46 30799.94 6999.61 1393.99 14786.26 34297.39 25271.13 35499.89 9998.77 8767.05 39898.79 222
anonymousdsp91.79 27490.92 27494.41 28190.76 38392.93 24998.93 28497.17 30189.08 28987.46 32595.30 32878.43 30796.92 31992.38 24688.73 27693.39 349
JIA-IIPM91.76 27590.70 27694.94 25496.11 28487.51 34793.16 39698.13 20775.79 39597.58 15477.68 41092.84 12997.97 26488.47 30196.54 19399.33 183
TranMVSNet+NR-MVSNet91.68 27690.61 27994.87 25693.69 34093.98 22399.69 17898.65 7591.03 25688.44 30896.83 27480.05 29096.18 35190.26 28376.89 37494.45 282
NR-MVSNet91.56 27790.22 28795.60 23394.05 33395.76 16398.25 33498.70 6891.16 25280.78 37396.64 27883.23 25996.57 33691.41 25877.73 36594.46 277
dongtai91.55 27891.13 27192.82 32798.16 18986.35 35599.47 21798.51 11083.24 36885.07 35197.56 24690.33 18294.94 37576.09 38491.73 25597.18 257
v2v48291.30 27990.07 29395.01 25193.13 34893.79 22699.77 14797.02 31988.05 31589.25 29195.37 32580.73 28197.15 30187.28 31580.04 35394.09 313
WR-MVS_H91.30 27990.35 28394.15 28694.17 33292.62 25999.17 25598.94 4188.87 30086.48 33894.46 35984.36 25096.61 33588.19 30378.51 35993.21 354
tt080591.28 28190.18 28994.60 26796.26 28187.55 34698.39 32998.72 6689.00 29389.22 29398.47 21562.98 38598.96 19090.57 27588.00 28897.28 256
V4291.28 28190.12 29294.74 26193.42 34593.46 23799.68 18097.02 31987.36 32489.85 27695.05 33881.31 27597.34 28987.34 31480.07 35293.40 348
CP-MVSNet91.23 28390.22 28794.26 28493.96 33592.39 26399.09 25998.57 9088.95 29786.42 33996.57 28179.19 29796.37 34390.29 28278.95 35694.02 317
XVG-ACMP-BASELINE91.22 28490.75 27592.63 33093.73 33985.61 35998.52 32197.44 27292.77 19289.90 27396.85 27166.64 37298.39 23092.29 24788.61 27893.89 330
v114491.09 28589.83 29494.87 25693.25 34793.69 23199.62 19196.98 32486.83 33489.64 28294.99 34380.94 27897.05 30985.08 33681.16 33893.87 332
FMVSNet291.02 28689.56 30095.41 24097.53 23195.74 16498.98 27797.41 27787.05 32888.43 31095.00 34271.34 35196.24 35085.12 33585.21 30894.25 295
MVP-Stereo90.93 28790.45 28292.37 33291.25 38088.76 33198.05 34596.17 36387.27 32684.04 35595.30 32878.46 30697.27 29883.78 34499.70 8991.09 377
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
IterMVS90.91 28890.17 29093.12 32096.78 27290.42 30998.89 28897.05 31889.03 29186.49 33795.42 32076.59 31895.02 37287.22 31684.09 31793.93 327
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GBi-Net90.88 28989.82 29594.08 28997.53 23191.97 26998.43 32596.95 32787.05 32889.68 27894.72 34871.34 35196.11 35387.01 32185.65 30394.17 301
test190.88 28989.82 29594.08 28997.53 23191.97 26998.43 32596.95 32787.05 32889.68 27894.72 34871.34 35196.11 35387.01 32185.65 30394.17 301
IterMVS-SCA-FT90.85 29190.16 29192.93 32596.72 27489.96 31798.89 28896.99 32288.95 29786.63 33495.67 30676.48 32095.00 37387.04 31984.04 32093.84 334
v14419290.79 29289.52 30294.59 26893.11 35192.77 25099.56 20296.99 32286.38 33889.82 27794.95 34580.50 28697.10 30683.98 34280.41 34893.90 329
v14890.70 29389.63 29893.92 29792.97 35490.97 29299.75 15696.89 33587.51 32188.27 31395.01 34081.67 26897.04 31287.40 31377.17 37193.75 338
MS-PatchMatch90.65 29490.30 28591.71 34194.22 33185.50 36198.24 33597.70 24288.67 30586.42 33996.37 28667.82 36798.03 26283.62 34599.62 9591.60 374
ACMH89.72 1790.64 29589.63 29893.66 30895.64 30888.64 33698.55 31797.45 27189.03 29181.62 36897.61 24569.75 35898.41 22689.37 29087.62 29393.92 328
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PS-CasMVS90.63 29689.51 30393.99 29593.83 33791.70 28298.98 27798.52 10788.48 30986.15 34396.53 28375.46 32996.31 34788.83 29578.86 35893.95 325
v119290.62 29789.25 30794.72 26393.13 34893.07 24499.50 21297.02 31986.33 33989.56 28595.01 34079.22 29697.09 30882.34 35481.16 33894.01 319
v890.54 29889.17 30894.66 26493.43 34493.40 24099.20 25296.94 33185.76 34587.56 32294.51 35581.96 26697.19 29984.94 33778.25 36093.38 350
v192192090.46 29989.12 30994.50 27492.96 35592.46 26199.49 21496.98 32486.10 34189.61 28495.30 32878.55 30597.03 31482.17 35580.89 34694.01 319
our_test_390.39 30089.48 30593.12 32092.40 36489.57 32399.33 23696.35 36087.84 31985.30 34894.99 34384.14 25296.09 35680.38 36384.56 31393.71 343
PatchT90.38 30188.75 31795.25 24695.99 28890.16 31391.22 40497.54 26276.80 39197.26 16486.01 40491.88 15496.07 35766.16 40395.91 21099.51 160
ACMH+89.98 1690.35 30289.54 30192.78 32995.99 28886.12 35798.81 29997.18 30089.38 28683.14 36197.76 24468.42 36498.43 22489.11 29386.05 30193.78 337
Baseline_NR-MVSNet90.33 30389.51 30392.81 32892.84 35789.95 31899.77 14793.94 39984.69 35989.04 29895.66 30781.66 26996.52 33790.99 26676.98 37291.97 372
MIMVSNet90.30 30488.67 31895.17 24896.45 27891.64 28492.39 39897.15 30485.99 34290.50 26493.19 37366.95 37094.86 37782.01 35693.43 24899.01 212
LTVRE_ROB88.28 1890.29 30589.05 31294.02 29295.08 31690.15 31497.19 35997.43 27384.91 35783.99 35797.06 26274.00 34298.28 24584.08 34087.71 29193.62 344
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v1090.25 30688.82 31594.57 27093.53 34293.43 23899.08 26196.87 33785.00 35487.34 32894.51 35580.93 27997.02 31682.85 35079.23 35593.26 352
v124090.20 30788.79 31694.44 27893.05 35392.27 26599.38 23096.92 33385.89 34389.36 28894.87 34777.89 30897.03 31480.66 36281.08 34194.01 319
PEN-MVS90.19 30889.06 31193.57 30993.06 35290.90 29699.06 26698.47 11988.11 31485.91 34596.30 28876.67 31695.94 36187.07 31876.91 37393.89 330
pmmvs590.17 30989.09 31093.40 31292.10 36989.77 32199.74 15995.58 37685.88 34487.24 32995.74 30373.41 34496.48 33988.54 29983.56 32293.95 325
EU-MVSNet90.14 31090.34 28489.54 36092.55 36281.06 38898.69 31098.04 21491.41 24686.59 33596.84 27380.83 28093.31 39186.20 32781.91 33294.26 293
UniMVSNet_ETH3D90.06 31188.58 31994.49 27594.67 32388.09 34397.81 35197.57 25983.91 36488.44 30897.41 25057.44 39697.62 28091.41 25888.59 28097.77 248
Syy-MVS90.00 31290.63 27888.11 37297.68 22274.66 39999.71 17398.35 16990.79 26292.10 24998.67 19479.10 29993.09 39263.35 40695.95 20896.59 262
USDC90.00 31288.96 31393.10 32294.81 32088.16 34298.71 30795.54 37793.66 16183.75 35997.20 25665.58 37598.31 24183.96 34387.49 29592.85 360
Anonymous2023121189.86 31488.44 32194.13 28898.93 12790.68 30198.54 31998.26 18676.28 39286.73 33295.54 31270.60 35697.56 28290.82 27180.27 35194.15 307
OurMVSNet-221017-089.81 31589.48 30590.83 34891.64 37481.21 38698.17 34095.38 38091.48 24085.65 34797.31 25372.66 34597.29 29688.15 30484.83 31193.97 324
RPMNet89.76 31687.28 33297.19 19096.29 27992.66 25692.01 40098.31 17870.19 40696.94 17285.87 40587.25 22099.78 12862.69 40795.96 20699.13 202
Patchmtry89.70 31788.49 32093.33 31496.24 28289.94 32091.37 40396.23 36178.22 38987.69 31993.31 37191.04 16796.03 35880.18 36682.10 33094.02 317
v7n89.65 31888.29 32393.72 30392.22 36690.56 30599.07 26597.10 30985.42 35286.73 33294.72 34880.06 28997.13 30381.14 36078.12 36293.49 346
ppachtmachnet_test89.58 31988.35 32293.25 31892.40 36490.44 30899.33 23696.73 34685.49 35085.90 34695.77 30281.09 27796.00 36076.00 38582.49 32793.30 351
test_fmvs289.47 32089.70 29788.77 36894.54 32575.74 39699.83 13294.70 39294.71 11291.08 25896.82 27554.46 39997.78 27592.87 24288.27 28492.80 361
DTE-MVSNet89.40 32188.24 32492.88 32692.66 36189.95 31899.10 25898.22 19287.29 32585.12 35096.22 29076.27 32395.30 37183.56 34675.74 37893.41 347
pm-mvs189.36 32287.81 32894.01 29393.40 34691.93 27298.62 31596.48 35786.25 34083.86 35896.14 29373.68 34397.04 31286.16 32875.73 37993.04 357
tfpnnormal89.29 32387.61 33094.34 28394.35 32994.13 21998.95 28198.94 4183.94 36284.47 35495.51 31574.84 33697.39 28677.05 38180.41 34891.48 376
LF4IMVS89.25 32488.85 31490.45 35392.81 36081.19 38798.12 34194.79 38991.44 24286.29 34197.11 25865.30 37898.11 25688.53 30085.25 30792.07 369
testgi89.01 32588.04 32691.90 33793.49 34384.89 36599.73 16695.66 37493.89 15685.14 34998.17 22759.68 39394.66 37977.73 37788.88 27296.16 268
SixPastTwentyTwo88.73 32688.01 32790.88 34591.85 37282.24 37998.22 33895.18 38588.97 29582.26 36496.89 26871.75 34996.67 33384.00 34182.98 32393.72 342
mmtdpeth88.52 32787.75 32990.85 34795.71 30383.47 37398.94 28294.85 38788.78 30297.19 16689.58 39063.29 38398.97 18898.54 10162.86 40690.10 389
FMVSNet188.50 32886.64 33594.08 28995.62 31091.97 26998.43 32596.95 32783.00 37186.08 34494.72 34859.09 39496.11 35381.82 35884.07 31894.17 301
FMVSNet588.32 32987.47 33190.88 34596.90 26488.39 34097.28 35795.68 37382.60 37584.67 35392.40 37979.83 29191.16 40176.39 38381.51 33593.09 355
DSMNet-mixed88.28 33088.24 32488.42 37089.64 39175.38 39898.06 34489.86 41385.59 34988.20 31492.14 38176.15 32591.95 39978.46 37496.05 20497.92 244
ttmdpeth88.23 33187.06 33491.75 34089.91 39087.35 34998.92 28795.73 37187.92 31784.02 35696.31 28768.23 36696.84 32486.33 32676.12 37691.06 378
K. test v388.05 33287.24 33390.47 35291.82 37382.23 38098.96 28097.42 27589.05 29076.93 38995.60 30968.49 36395.42 36785.87 33281.01 34493.75 338
KD-MVS_2432*160088.00 33386.10 33793.70 30696.91 26194.04 22097.17 36097.12 30784.93 35581.96 36592.41 37792.48 14094.51 38079.23 36852.68 41292.56 363
miper_refine_blended88.00 33386.10 33793.70 30696.91 26194.04 22097.17 36097.12 30784.93 35581.96 36592.41 37792.48 14094.51 38079.23 36852.68 41292.56 363
TinyColmap87.87 33586.51 33691.94 33695.05 31785.57 36097.65 35294.08 39684.40 36181.82 36796.85 27162.14 38898.33 23980.25 36586.37 30091.91 373
TransMVSNet (Re)87.25 33685.28 34393.16 31993.56 34191.03 29198.54 31994.05 39883.69 36681.09 37196.16 29275.32 33096.40 34276.69 38268.41 39492.06 370
Patchmatch-RL test86.90 33785.98 34189.67 35984.45 40275.59 39789.71 40892.43 40686.89 33377.83 38690.94 38594.22 8893.63 38887.75 30969.61 38999.79 100
test_vis1_rt86.87 33886.05 34089.34 36196.12 28378.07 39599.87 10683.54 42092.03 22478.21 38489.51 39145.80 40699.91 9296.25 17593.11 25390.03 390
Anonymous2023120686.32 33985.42 34289.02 36489.11 39380.53 39299.05 27095.28 38185.43 35182.82 36293.92 36474.40 33993.44 39066.99 40081.83 33393.08 356
MVS-HIRNet86.22 34083.19 35395.31 24496.71 27590.29 31092.12 39997.33 28562.85 40786.82 33170.37 41269.37 35997.49 28475.12 38697.99 16698.15 239
pmmvs685.69 34183.84 34891.26 34490.00 38984.41 36897.82 35096.15 36475.86 39481.29 37095.39 32361.21 39196.87 32383.52 34773.29 38292.50 365
test_040285.58 34283.94 34790.50 35193.81 33885.04 36398.55 31795.20 38476.01 39379.72 37895.13 33564.15 38196.26 34966.04 40486.88 29790.21 387
UnsupCasMVSNet_eth85.52 34383.99 34590.10 35689.36 39283.51 37296.65 37097.99 21689.14 28875.89 39393.83 36563.25 38493.92 38481.92 35767.90 39792.88 359
MDA-MVSNet_test_wron85.51 34483.32 35292.10 33490.96 38188.58 33799.20 25296.52 35579.70 38657.12 41292.69 37579.11 29893.86 38677.10 38077.46 36893.86 333
YYNet185.50 34583.33 35192.00 33590.89 38288.38 34199.22 25196.55 35479.60 38757.26 41192.72 37479.09 30093.78 38777.25 37977.37 36993.84 334
EG-PatchMatch MVS85.35 34683.81 34989.99 35890.39 38581.89 38298.21 33996.09 36581.78 37874.73 39593.72 36751.56 40497.12 30579.16 37188.61 27890.96 380
Anonymous2024052185.15 34783.81 34989.16 36388.32 39482.69 37598.80 30195.74 37079.72 38581.53 36990.99 38465.38 37794.16 38272.69 39081.11 34090.63 384
MVStest185.03 34882.76 35791.83 33892.95 35689.16 32998.57 31694.82 38871.68 40468.54 40495.11 33783.17 26095.66 36474.69 38765.32 40190.65 383
mvs5depth84.87 34982.90 35690.77 34985.59 40184.84 36691.10 40593.29 40483.14 36985.07 35194.33 36162.17 38797.32 29178.83 37372.59 38590.14 388
TDRefinement84.76 35082.56 35891.38 34374.58 41684.80 36797.36 35694.56 39384.73 35880.21 37596.12 29663.56 38298.39 23087.92 30763.97 40490.95 381
CMPMVSbinary61.59 2184.75 35185.14 34483.57 38090.32 38662.54 40896.98 36597.59 25874.33 40069.95 40196.66 27664.17 38098.32 24087.88 30888.41 28389.84 392
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0384.72 35283.99 34586.91 37488.19 39680.62 39198.88 29095.94 36788.36 31178.87 37994.62 35368.75 36189.11 40566.52 40275.82 37791.00 379
CL-MVSNet_self_test84.50 35383.15 35488.53 36986.00 39981.79 38398.82 29897.35 28185.12 35383.62 36090.91 38676.66 31791.40 40069.53 39660.36 40992.40 367
new_pmnet84.49 35482.92 35589.21 36290.03 38882.60 37696.89 36895.62 37580.59 38275.77 39489.17 39265.04 37994.79 37872.12 39281.02 34390.23 386
MDA-MVSNet-bldmvs84.09 35581.52 36291.81 33991.32 37988.00 34598.67 31295.92 36880.22 38455.60 41393.32 37068.29 36593.60 38973.76 38876.61 37593.82 336
pmmvs-eth3d84.03 35681.97 36090.20 35584.15 40387.09 35198.10 34394.73 39183.05 37074.10 39787.77 39965.56 37694.01 38381.08 36169.24 39189.49 396
dmvs_testset83.79 35786.07 33976.94 38792.14 36748.60 42296.75 36990.27 41289.48 28578.65 38198.55 20979.25 29586.65 41066.85 40182.69 32595.57 270
OpenMVS_ROBcopyleft79.82 2083.77 35881.68 36190.03 35788.30 39582.82 37498.46 32295.22 38373.92 40176.00 39291.29 38355.00 39896.94 31868.40 39888.51 28290.34 385
KD-MVS_self_test83.59 35982.06 35988.20 37186.93 39780.70 39097.21 35896.38 35882.87 37282.49 36388.97 39367.63 36892.32 39773.75 38962.30 40891.58 375
MIMVSNet182.58 36080.51 36688.78 36686.68 39884.20 36996.65 37095.41 37978.75 38878.59 38292.44 37651.88 40389.76 40465.26 40578.95 35692.38 368
mvsany_test382.12 36181.14 36385.06 37881.87 40770.41 40297.09 36292.14 40791.27 24977.84 38588.73 39439.31 40995.49 36590.75 27371.24 38689.29 398
new-patchmatchnet81.19 36279.34 36986.76 37582.86 40680.36 39397.92 34795.27 38282.09 37772.02 39886.87 40162.81 38690.74 40371.10 39363.08 40589.19 399
APD_test181.15 36380.92 36481.86 38392.45 36359.76 41296.04 38293.61 40273.29 40277.06 38796.64 27844.28 40896.16 35272.35 39182.52 32689.67 394
test_method80.79 36479.70 36884.08 37992.83 35867.06 40599.51 21095.42 37854.34 41181.07 37293.53 36844.48 40792.22 39878.90 37277.23 37092.94 358
PM-MVS80.47 36578.88 37085.26 37783.79 40572.22 40095.89 38591.08 41085.71 34876.56 39188.30 39536.64 41093.90 38582.39 35369.57 39089.66 395
pmmvs380.27 36677.77 37187.76 37380.32 41182.43 37898.23 33791.97 40872.74 40378.75 38087.97 39857.30 39790.99 40270.31 39462.37 40789.87 391
N_pmnet80.06 36780.78 36577.89 38691.94 37045.28 42498.80 30156.82 42678.10 39080.08 37693.33 36977.03 31195.76 36368.14 39982.81 32492.64 362
test_fmvs379.99 36880.17 36779.45 38584.02 40462.83 40699.05 27093.49 40388.29 31380.06 37786.65 40228.09 41488.00 40688.63 29673.27 38387.54 402
UnsupCasMVSNet_bld79.97 36977.03 37488.78 36685.62 40081.98 38193.66 39497.35 28175.51 39770.79 40083.05 40748.70 40594.91 37678.31 37560.29 41089.46 397
test_f78.40 37077.59 37280.81 38480.82 40962.48 40996.96 36693.08 40583.44 36774.57 39684.57 40627.95 41592.63 39584.15 33972.79 38487.32 403
WB-MVS76.28 37177.28 37373.29 39181.18 40854.68 41697.87 34994.19 39581.30 37969.43 40290.70 38777.02 31282.06 41435.71 41968.11 39683.13 405
SSC-MVS75.42 37276.40 37572.49 39580.68 41053.62 41797.42 35494.06 39780.42 38368.75 40390.14 38976.54 31981.66 41533.25 42066.34 40082.19 406
EGC-MVSNET69.38 37363.76 38386.26 37690.32 38681.66 38596.24 37893.85 4000.99 4233.22 42492.33 38052.44 40192.92 39459.53 41084.90 31084.21 404
test_vis3_rt68.82 37466.69 37975.21 39076.24 41560.41 41196.44 37368.71 42575.13 39850.54 41669.52 41416.42 42496.32 34680.27 36466.92 39968.89 412
FPMVS68.72 37568.72 37668.71 39765.95 42044.27 42695.97 38494.74 39051.13 41253.26 41490.50 38825.11 41783.00 41360.80 40880.97 34578.87 410
testf168.38 37666.92 37772.78 39378.80 41250.36 41990.95 40687.35 41855.47 40958.95 40888.14 39620.64 41987.60 40757.28 41164.69 40280.39 408
APD_test268.38 37666.92 37772.78 39378.80 41250.36 41990.95 40687.35 41855.47 40958.95 40888.14 39620.64 41987.60 40757.28 41164.69 40280.39 408
LCM-MVSNet67.77 37864.73 38176.87 38862.95 42256.25 41589.37 40993.74 40144.53 41461.99 40680.74 40820.42 42186.53 41169.37 39759.50 41187.84 400
PMMVS267.15 37964.15 38276.14 38970.56 41962.07 41093.89 39287.52 41758.09 40860.02 40778.32 40922.38 41884.54 41259.56 40947.03 41481.80 407
Gipumacopyleft66.95 38065.00 38072.79 39291.52 37667.96 40466.16 41595.15 38647.89 41358.54 41067.99 41529.74 41287.54 40950.20 41477.83 36462.87 415
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt65.23 38162.94 38472.13 39644.90 42550.03 42181.05 41289.42 41638.45 41548.51 41799.90 1854.09 40078.70 41791.84 25518.26 41987.64 401
ANet_high56.10 38252.24 38567.66 39849.27 42456.82 41483.94 41182.02 42170.47 40533.28 42164.54 41617.23 42369.16 41945.59 41623.85 41877.02 411
PMVScopyleft49.05 2353.75 38351.34 38760.97 40040.80 42634.68 42774.82 41489.62 41537.55 41628.67 42272.12 4117.09 42681.63 41643.17 41768.21 39566.59 414
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN52.30 38452.18 38652.67 40171.51 41745.40 42393.62 39576.60 42336.01 41743.50 41864.13 41727.11 41667.31 42031.06 42126.06 41645.30 419
MVEpermissive53.74 2251.54 38547.86 38962.60 39959.56 42350.93 41879.41 41377.69 42235.69 41836.27 42061.76 4195.79 42869.63 41837.97 41836.61 41567.24 413
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS51.44 38651.22 38852.11 40270.71 41844.97 42594.04 39175.66 42435.34 41942.40 41961.56 42028.93 41365.87 42127.64 42224.73 41745.49 418
testmvs40.60 38744.45 39029.05 40419.49 42814.11 43099.68 18018.47 42720.74 42064.59 40598.48 21410.95 42517.09 42456.66 41311.01 42055.94 417
test12337.68 38839.14 39133.31 40319.94 42724.83 42998.36 3309.75 42815.53 42151.31 41587.14 40019.62 42217.74 42347.10 4153.47 42257.36 416
cdsmvs_eth3d_5k23.43 38931.24 3920.00 4060.00 4290.00 4310.00 41798.09 2080.00 4240.00 42599.67 9783.37 2570.00 4250.00 4240.00 4230.00 421
wuyk23d20.37 39020.84 39318.99 40565.34 42127.73 42850.43 4167.67 4299.50 4228.01 4236.34 4236.13 42726.24 42223.40 42310.69 4212.99 420
ab-mvs-re8.28 39111.04 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42599.40 1260.00 4290.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas7.60 39210.13 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42591.20 1620.00 4250.00 4240.00 4230.00 421
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.02 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4250.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS90.97 29286.10 330
FOURS199.92 3197.66 8799.95 5398.36 16795.58 8999.52 60
MSC_two_6792asdad99.93 299.91 3999.80 298.41 152100.00 199.96 9100.00 1100.00 1
PC_three_145296.96 4799.80 1799.79 5897.49 9100.00 199.99 599.98 32100.00 1
No_MVS99.93 299.91 3999.80 298.41 152100.00 199.96 9100.00 1100.00 1
test_one_060199.94 1399.30 1298.41 15296.63 6099.75 2999.93 1197.49 9
eth-test20.00 429
eth-test0.00 429
ZD-MVS99.92 3198.57 5698.52 10792.34 21599.31 7899.83 4695.06 5599.80 12499.70 3799.97 42
RE-MVS-def98.13 5499.79 6296.37 14099.76 15298.31 17894.43 12399.40 7299.75 7292.95 12698.90 7999.92 6499.97 61
IU-MVS99.93 2499.31 1098.41 15297.71 1999.84 12100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 3599.80 5497.44 13100.00 1100.00 199.98 32100.00 1
test_241102_TWO98.43 13597.27 3499.80 1799.94 497.18 20100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 13597.26 3699.80 1799.88 2496.71 25100.00 1
9.1498.38 3799.87 5199.91 8598.33 17493.22 17399.78 2699.89 2294.57 7399.85 11199.84 2299.97 42
save fliter99.82 5898.79 4099.96 3598.40 15697.66 21
test_0728_THIRD96.48 6399.83 1399.91 1497.87 5100.00 199.92 13100.00 1100.00 1
test_0728_SECOND99.82 799.94 1399.47 799.95 5398.43 135100.00 199.99 5100.00 1100.00 1
test072699.93 2499.29 1599.96 3598.42 14797.28 3299.86 799.94 497.22 18
GSMVS99.59 137
test_part299.89 4599.25 1899.49 63
sam_mvs194.72 6799.59 137
sam_mvs94.25 87
ambc83.23 38177.17 41462.61 40787.38 41094.55 39476.72 39086.65 40230.16 41196.36 34484.85 33869.86 38890.73 382
MTGPAbinary98.28 183
test_post195.78 38659.23 42193.20 12097.74 27691.06 264
test_post63.35 41894.43 7598.13 255
patchmatchnet-post91.70 38295.12 5297.95 267
GG-mvs-BLEND98.54 11098.21 18498.01 7293.87 39398.52 10797.92 14497.92 23899.02 397.94 26998.17 11899.58 10299.67 118
MTMP99.87 10696.49 356
gm-plane-assit96.97 25893.76 22891.47 24198.96 16698.79 19894.92 195
test9_res99.71 3699.99 21100.00 1
TEST999.92 3198.92 2999.96 3598.43 13593.90 15499.71 3599.86 2995.88 3999.85 111
test_899.92 3198.88 3299.96 3598.43 13594.35 12899.69 3799.85 3395.94 3699.85 111
agg_prior299.48 46100.00 1100.00 1
agg_prior99.93 2498.77 4298.43 13599.63 4499.85 111
TestCases95.00 25299.01 11888.43 33896.82 34186.50 33688.71 30298.47 21574.73 33799.88 10585.39 33396.18 20196.71 260
test_prior498.05 7099.94 69
test_prior299.95 5395.78 8399.73 3399.76 6696.00 3599.78 27100.00 1
test_prior99.43 3599.94 1398.49 6098.65 7599.80 12499.99 23
旧先验299.46 22194.21 13799.85 999.95 7396.96 165
新几何299.40 225
新几何199.42 3799.75 6998.27 6498.63 8192.69 19699.55 5599.82 4994.40 77100.00 191.21 26099.94 5599.99 23
旧先验199.76 6697.52 9198.64 7799.85 3395.63 4399.94 5599.99 23
无先验99.49 21498.71 6793.46 165100.00 194.36 21099.99 23
原ACMM299.90 91
原ACMM198.96 8299.73 7396.99 11598.51 11094.06 14499.62 4799.85 3394.97 6199.96 6595.11 19099.95 5099.92 84
test22299.55 9097.41 9999.34 23598.55 9991.86 22899.27 8299.83 4693.84 10299.95 5099.99 23
testdata299.99 3690.54 277
segment_acmp96.68 27
testdata98.42 12099.47 9695.33 18398.56 9393.78 15799.79 2599.85 3393.64 10799.94 8194.97 19399.94 55100.00 1
testdata199.28 24596.35 73
test1299.43 3599.74 7098.56 5798.40 15699.65 4194.76 6599.75 13599.98 3299.99 23
plane_prior795.71 30391.59 286
plane_prior695.76 29791.72 28180.47 287
plane_prior597.87 23098.37 23697.79 14289.55 26594.52 274
plane_prior498.59 202
plane_prior391.64 28496.63 6093.01 237
plane_prior299.84 12596.38 69
plane_prior195.73 300
plane_prior91.74 27899.86 11796.76 5589.59 264
n20.00 430
nn0.00 430
door-mid89.69 414
lessismore_v090.53 35090.58 38480.90 38995.80 36977.01 38895.84 30066.15 37496.95 31783.03 34975.05 38093.74 341
LGP-MVS_train93.71 30495.43 31188.67 33497.62 25192.81 18890.05 26798.49 21175.24 33198.40 22895.84 18289.12 26994.07 314
test1198.44 127
door90.31 411
HQP5-MVS91.85 274
HQP-NCC95.78 29399.87 10696.82 5193.37 232
ACMP_Plane95.78 29399.87 10696.82 5193.37 232
BP-MVS97.92 133
HQP4-MVS93.37 23298.39 23094.53 272
HQP3-MVS97.89 22889.60 262
HQP2-MVS80.65 283
NP-MVS95.77 29691.79 27698.65 197
MDTV_nov1_ep13_2view96.26 14396.11 38091.89 22798.06 14094.40 7794.30 21399.67 118
MDTV_nov1_ep1395.69 15997.90 20394.15 21895.98 38398.44 12793.12 17897.98 14295.74 30395.10 5398.58 21490.02 28596.92 189
ACMMP++_ref87.04 296
ACMMP++88.23 285
Test By Simon92.82 131
ITE_SJBPF92.38 33195.69 30685.14 36295.71 37292.81 18889.33 29098.11 22970.23 35798.42 22585.91 33188.16 28693.59 345
DeepMVS_CXcopyleft82.92 38295.98 29058.66 41396.01 36692.72 19378.34 38395.51 31558.29 39598.08 25882.57 35185.29 30692.03 371