This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1493.77 191.10 1075.95 477.10 3793.09 2954.15 3395.57 1285.80 1085.87 3793.31 13
MM82.69 283.29 380.89 2284.38 8355.40 5992.16 1089.85 2075.28 582.41 1193.86 1054.30 3093.98 2590.29 187.13 2193.30 14
DVP-MVS++82.44 382.38 582.62 491.77 457.49 1584.98 13788.88 3258.00 21483.60 693.39 2067.21 296.39 481.64 3291.98 493.98 5
DPM-MVS82.39 482.36 682.49 580.12 18959.50 592.24 990.72 1469.37 3383.22 994.47 263.81 593.18 3374.02 8493.25 294.80 1
DELS-MVS82.32 582.50 481.79 1386.80 4856.89 2992.77 386.30 8477.83 277.88 3492.13 4360.24 694.78 2078.97 4589.61 893.69 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MSP-MVS82.30 683.47 178.80 5682.99 11852.71 13185.04 13488.63 4366.08 7186.77 392.75 3472.05 191.46 6883.35 2193.53 192.23 36
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SED-MVS81.92 781.75 982.44 789.48 1756.89 2992.48 488.94 3057.50 22884.61 494.09 358.81 1196.37 682.28 2787.60 1894.06 3
CNVR-MVS81.76 881.90 881.33 1990.04 1057.70 1291.71 1188.87 3470.31 2677.64 3693.87 952.58 4093.91 2884.17 1487.92 1692.39 32
MVS_030481.58 982.05 780.20 3182.36 13554.70 8291.13 2088.95 2974.49 780.04 2593.64 1352.40 4193.27 3288.85 486.56 3192.61 28
DVP-MVScopyleft81.30 1081.00 1382.20 889.40 2057.45 1792.34 689.99 1857.71 22281.91 1493.64 1355.17 2596.44 281.68 3087.13 2192.72 26
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CANet80.90 1181.17 1280.09 3787.62 4254.21 9491.60 1486.47 8073.13 1079.89 2693.10 2749.88 6392.98 3484.09 1684.75 4993.08 19
patch_mono-280.84 1281.59 1078.62 6390.34 953.77 10188.08 5488.36 5076.17 379.40 2891.09 6455.43 2390.09 10885.01 1280.40 8191.99 46
DeepPCF-MVS69.37 180.65 1381.56 1177.94 8185.46 6449.56 19990.99 2286.66 7870.58 2480.07 2495.30 156.18 2090.97 8482.57 2686.22 3593.28 15
HPM-MVS++copyleft80.50 1480.71 1479.88 3987.34 4455.20 6689.93 3087.55 6566.04 7479.46 2793.00 3253.10 3791.76 6280.40 3889.56 992.68 27
CSCG80.41 1579.72 1582.49 589.12 2557.67 1389.29 4191.54 559.19 19071.82 8090.05 9259.72 996.04 1078.37 5188.40 1493.75 9
PS-MVSNAJ80.06 1679.52 1781.68 1585.58 6160.97 391.69 1287.02 7070.62 2380.75 2193.22 2637.77 19592.50 4682.75 2486.25 3491.57 57
xiu_mvs_v2_base79.86 1779.31 1881.53 1685.03 7360.73 491.65 1386.86 7370.30 2780.77 2093.07 3137.63 20092.28 5282.73 2585.71 3891.57 57
DPE-MVScopyleft79.82 1879.66 1680.29 2989.27 2455.08 7188.70 4787.92 5655.55 25881.21 1993.69 1256.51 1894.27 2478.36 5285.70 3991.51 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
NCCC79.57 1979.23 1980.59 2489.50 1556.99 2691.38 1688.17 5267.71 4873.81 5592.75 3446.88 8493.28 3178.79 4884.07 5491.50 61
iter_conf05_1179.47 2078.68 2381.84 1287.91 4057.01 2493.27 279.49 22774.74 683.40 894.00 621.51 34494.70 2184.07 1789.68 793.82 7
dcpmvs_279.33 2178.94 2080.49 2589.75 1256.54 3684.83 14483.68 14967.85 4569.36 10290.24 8460.20 792.10 5784.14 1580.40 8192.82 23
testing1179.18 2278.85 2180.16 3388.33 3056.99 2688.31 5292.06 172.82 1170.62 9888.37 12357.69 1492.30 5075.25 7476.24 12291.20 70
SMA-MVScopyleft79.10 2378.76 2280.12 3584.42 8155.87 5087.58 6886.76 7561.48 14880.26 2393.10 2746.53 8992.41 4879.97 3988.77 1192.08 40
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
LFMVS78.52 2477.14 4182.67 389.58 1358.90 791.27 1988.05 5463.22 11874.63 4790.83 7341.38 16294.40 2275.42 7279.90 9094.72 2
testing9978.45 2577.78 3280.45 2788.28 3356.81 3287.95 5991.49 671.72 1570.84 9388.09 13157.29 1592.63 4469.24 10775.13 13591.91 47
APDe-MVScopyleft78.44 2678.20 2679.19 4588.56 2654.55 8889.76 3487.77 6055.91 25378.56 3192.49 3948.20 7092.65 4279.49 4083.04 5890.39 87
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MG-MVS78.42 2776.99 4382.73 293.17 164.46 189.93 3088.51 4864.83 8973.52 5888.09 13148.07 7192.19 5362.24 15484.53 5191.53 59
lupinMVS78.38 2878.11 2879.19 4583.02 11655.24 6391.57 1584.82 12269.12 3476.67 3992.02 4744.82 11690.23 10580.83 3780.09 8592.08 40
EPNet78.36 2978.49 2477.97 7985.49 6352.04 14389.36 3984.07 14273.22 977.03 3891.72 5449.32 6790.17 10773.46 8882.77 5991.69 52
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TSAR-MVS + MP.78.31 3078.26 2578.48 6781.33 16456.31 4281.59 23586.41 8169.61 3181.72 1688.16 13055.09 2788.04 17674.12 8386.31 3391.09 73
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
testing9178.30 3177.54 3580.61 2388.16 3557.12 2387.94 6091.07 1371.43 1870.75 9488.04 13555.82 2292.65 4269.61 10475.00 13992.05 42
canonicalmvs78.17 3277.86 3179.12 5084.30 8454.22 9387.71 6384.57 13167.70 4977.70 3592.11 4650.90 5289.95 11178.18 5577.54 10893.20 17
alignmvs78.08 3377.98 2978.39 7183.53 9953.22 11989.77 3385.45 9866.11 6976.59 4191.99 4954.07 3489.05 13477.34 6077.00 11192.89 22
DeepC-MVS_fast67.50 378.00 3477.63 3379.13 4988.52 2755.12 6889.95 2985.98 8968.31 3771.33 8792.75 3445.52 10290.37 9871.15 9785.14 4591.91 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VNet77.99 3577.92 3078.19 7587.43 4350.12 18790.93 2391.41 867.48 5175.12 4390.15 9046.77 8691.00 8173.52 8778.46 10293.44 11
TSAR-MVS + GP.77.82 3677.59 3478.49 6685.25 6950.27 18690.02 2790.57 1556.58 24774.26 5291.60 5954.26 3192.16 5475.87 6679.91 8993.05 20
casdiffmvs_mvgpermissive77.75 3777.28 3879.16 4780.42 18554.44 9087.76 6285.46 9771.67 1671.38 8688.35 12551.58 4591.22 7479.02 4479.89 9191.83 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
testing22277.70 3877.22 4079.14 4886.95 4654.89 7787.18 7891.96 272.29 1371.17 9188.70 11755.19 2491.24 7365.18 13976.32 12191.29 68
SF-MVS77.64 3977.42 3778.32 7383.75 9652.47 13686.63 9287.80 5758.78 20274.63 4792.38 4047.75 7591.35 7078.18 5586.85 2691.15 72
PHI-MVS77.49 4077.00 4278.95 5185.33 6750.69 16988.57 4988.59 4658.14 21173.60 5693.31 2343.14 13993.79 2973.81 8588.53 1392.37 33
WTY-MVS77.47 4177.52 3677.30 9388.33 3046.25 27788.46 5090.32 1671.40 1972.32 7691.72 5453.44 3592.37 4966.28 12675.42 12993.28 15
casdiffmvspermissive77.36 4276.85 4478.88 5480.40 18654.66 8687.06 8185.88 9072.11 1471.57 8388.63 12250.89 5490.35 9976.00 6579.11 9791.63 54
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS-test77.20 4377.25 3977.05 9984.60 7849.04 21289.42 3785.83 9265.90 7572.85 6791.98 5145.10 10791.27 7175.02 7684.56 5090.84 79
ETV-MVS77.17 4476.74 4578.48 6781.80 14454.55 8886.13 10085.33 10368.20 3973.10 6390.52 7845.23 10690.66 9179.37 4180.95 7390.22 93
SteuartSystems-ACMMP77.08 4576.33 5079.34 4380.98 16855.31 6189.76 3486.91 7262.94 12371.65 8191.56 6042.33 14692.56 4577.14 6183.69 5690.15 97
Skip Steuart: Steuart Systems R&D Blog.
jason77.01 4676.45 4878.69 6079.69 19454.74 7990.56 2583.99 14568.26 3874.10 5390.91 7042.14 15089.99 11079.30 4279.12 9691.36 65
jason: jason.
train_agg76.91 4776.40 4978.45 6985.68 5755.42 5687.59 6684.00 14357.84 21972.99 6490.98 6744.99 11088.58 15378.19 5385.32 4391.34 67
MVS76.91 4775.48 6081.23 2084.56 7955.21 6580.23 26191.64 458.65 20465.37 13891.48 6245.72 9995.05 1672.11 9589.52 1093.44 11
DeepC-MVS67.15 476.90 4976.27 5178.80 5680.70 17855.02 7286.39 9486.71 7666.96 5667.91 11289.97 9448.03 7291.41 6975.60 6984.14 5389.96 103
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline76.86 5076.24 5278.71 5980.47 18454.20 9683.90 17084.88 12171.38 2071.51 8489.15 11050.51 5590.55 9575.71 6778.65 10091.39 63
CS-MVS76.77 5176.70 4676.99 10483.55 9848.75 22188.60 4885.18 11166.38 6472.47 7491.62 5845.53 10190.99 8374.48 7982.51 6191.23 69
PAPM76.76 5276.07 5478.81 5580.20 18759.11 686.86 8786.23 8568.60 3670.18 10188.84 11551.57 4687.16 20665.48 13286.68 2990.15 97
MAR-MVS76.76 5275.60 5880.21 3090.87 754.68 8489.14 4289.11 2662.95 12270.54 9992.33 4141.05 16394.95 1757.90 19886.55 3291.00 76
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PVSNet_Blended76.53 5476.54 4776.50 11485.91 5451.83 14988.89 4584.24 13967.82 4669.09 10489.33 10746.70 8788.13 17275.43 7081.48 7289.55 111
ACMMP_NAP76.43 5575.66 5778.73 5881.92 14154.67 8584.06 16685.35 10261.10 15472.99 6491.50 6140.25 17191.00 8176.84 6286.98 2490.51 86
MVS_111021_HR76.39 5675.38 6379.42 4285.33 6756.47 3888.15 5384.97 11865.15 8766.06 12989.88 9543.79 12792.16 5475.03 7580.03 8889.64 109
CHOSEN 1792x268876.24 5774.03 8182.88 183.09 11362.84 285.73 11185.39 10069.79 2964.87 14683.49 19541.52 16193.69 3070.55 10081.82 6892.12 39
SD-MVS76.18 5874.85 7180.18 3285.39 6556.90 2885.75 10982.45 17356.79 24274.48 5091.81 5243.72 13090.75 8974.61 7878.65 10092.91 21
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVScopyleft76.15 5975.68 5677.54 8788.52 2753.44 11087.26 7785.03 11753.79 27574.91 4591.68 5643.80 12690.31 10174.36 8081.82 6888.87 128
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
VDD-MVS76.08 6074.97 6979.44 4184.27 8653.33 11691.13 2085.88 9065.33 8472.37 7589.34 10532.52 26492.76 4077.90 5775.96 12392.22 38
CDPH-MVS76.05 6175.19 6578.62 6386.51 5054.98 7487.32 7284.59 13058.62 20570.75 9490.85 7243.10 14190.63 9370.50 10184.51 5290.24 92
fmvsm_l_conf0.5_n75.95 6276.16 5375.31 14776.01 26048.44 23284.98 13771.08 32963.50 11281.70 1793.52 1750.00 5987.18 20587.80 576.87 11390.32 90
EIA-MVS75.92 6375.18 6678.13 7685.14 7051.60 15487.17 7985.32 10464.69 9068.56 10890.53 7745.79 9891.58 6567.21 11982.18 6591.20 70
fmvsm_l_conf0.5_n_a75.88 6476.07 5475.31 14776.08 25648.34 23585.24 12570.62 33363.13 12081.45 1893.62 1649.98 6187.40 20187.76 676.77 11490.20 95
test_yl75.85 6574.83 7278.91 5288.08 3751.94 14591.30 1789.28 2357.91 21671.19 8989.20 10842.03 15392.77 3869.41 10575.07 13792.01 44
DCV-MVSNet75.85 6574.83 7278.91 5288.08 3751.94 14591.30 1789.28 2357.91 21671.19 8989.20 10842.03 15392.77 3869.41 10575.07 13792.01 44
MVS_Test75.85 6574.93 7078.62 6384.08 8855.20 6683.99 16885.17 11268.07 4273.38 6082.76 20550.44 5689.00 13765.90 12880.61 7791.64 53
ZNCC-MVS75.82 6875.02 6878.23 7483.88 9453.80 10086.91 8686.05 8859.71 17667.85 11390.55 7642.23 14891.02 8072.66 9385.29 4489.87 106
ETVMVS75.80 6975.44 6176.89 10886.23 5250.38 17985.55 11891.42 771.30 2168.80 10687.94 13756.42 1989.24 12756.54 21074.75 14191.07 74
CLD-MVS75.60 7075.39 6276.24 11880.69 17952.40 13790.69 2486.20 8674.40 865.01 14388.93 11242.05 15290.58 9476.57 6373.96 14585.73 194
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_fmvsm_n_192075.56 7175.54 5975.61 13574.60 27949.51 20281.82 22774.08 30466.52 6280.40 2293.46 1946.95 8389.72 11786.69 775.30 13087.61 157
MP-MVS-pluss75.54 7275.03 6777.04 10081.37 16352.65 13384.34 15784.46 13261.16 15269.14 10391.76 5339.98 17888.99 13978.19 5384.89 4889.48 114
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
bld_raw_dy_0_6475.36 7373.18 8681.89 1187.91 4057.01 2486.77 8967.69 35078.56 165.01 14393.99 722.18 33994.84 1984.07 1772.45 15893.82 7
EC-MVSNet75.30 7475.20 6475.62 13480.98 16849.00 21387.43 6984.68 12863.49 11370.97 9290.15 9042.86 14391.14 7874.33 8181.90 6786.71 176
Effi-MVS+75.24 7573.61 8380.16 3381.92 14157.42 1985.21 12676.71 28260.68 16573.32 6189.34 10547.30 7991.63 6468.28 11379.72 9291.42 62
ET-MVSNet_ETH3D75.23 7674.08 7978.67 6184.52 8055.59 5288.92 4489.21 2568.06 4353.13 29490.22 8649.71 6487.62 19572.12 9470.82 17492.82 23
PAPR75.20 7774.13 7778.41 7088.31 3255.10 7084.31 15885.66 9463.76 10567.55 11490.73 7443.48 13589.40 12466.36 12577.03 11090.73 81
baseline275.15 7874.54 7576.98 10581.67 15151.74 15183.84 17291.94 369.97 2858.98 22186.02 16359.73 891.73 6368.37 11270.40 17987.48 159
diffmvspermissive75.11 7974.65 7476.46 11578.52 21953.35 11483.28 19279.94 21570.51 2571.64 8288.72 11646.02 9586.08 24077.52 5875.75 12789.96 103
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MP-MVScopyleft74.99 8074.33 7676.95 10682.89 12253.05 12585.63 11483.50 15457.86 21867.25 11690.24 8443.38 13688.85 14776.03 6482.23 6488.96 125
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
GST-MVS74.87 8173.90 8277.77 8283.30 10653.45 10985.75 10985.29 10659.22 18966.50 12589.85 9640.94 16490.76 8870.94 9983.35 5789.10 123
fmvsm_s_conf0.5_n74.48 8274.12 7875.56 13776.96 24547.85 25285.32 12369.80 34064.16 9678.74 2993.48 1845.51 10389.29 12686.48 866.62 20689.55 111
3Dnovator64.70 674.46 8372.48 9680.41 2882.84 12455.40 5983.08 19788.61 4567.61 5059.85 20488.66 11834.57 24593.97 2658.42 18888.70 1291.85 50
test_fmvsmconf_n74.41 8474.05 8075.49 14174.16 28548.38 23382.66 20572.57 31767.05 5575.11 4492.88 3346.35 9087.81 18183.93 1971.71 16590.28 91
HFP-MVS74.37 8573.13 9178.10 7784.30 8453.68 10385.58 11584.36 13456.82 24065.78 13490.56 7540.70 16990.90 8569.18 10880.88 7489.71 107
VDDNet74.37 8572.13 10781.09 2179.58 19556.52 3790.02 2786.70 7752.61 28571.23 8887.20 14931.75 27493.96 2774.30 8275.77 12692.79 25
MSLP-MVS++74.21 8772.25 10280.11 3681.45 16156.47 3886.32 9679.65 22358.19 21066.36 12692.29 4236.11 22790.66 9167.39 11782.49 6293.18 18
API-MVS74.17 8872.07 10980.49 2590.02 1158.55 887.30 7484.27 13657.51 22765.77 13587.77 14041.61 15995.97 1151.71 24582.63 6086.94 167
IB-MVS68.87 274.01 8972.03 11279.94 3883.04 11555.50 5490.24 2688.65 4167.14 5361.38 19281.74 22853.21 3694.28 2360.45 17362.41 24890.03 101
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
h-mvs3373.95 9072.89 9277.15 9880.17 18850.37 18084.68 14883.33 15568.08 4071.97 7888.65 12142.50 14491.15 7778.82 4657.78 28889.91 105
HY-MVS67.03 573.90 9173.14 8976.18 12384.70 7747.36 25975.56 29186.36 8366.27 6670.66 9783.91 18751.05 5089.31 12567.10 12072.61 15791.88 49
CostFormer73.89 9272.30 10178.66 6282.36 13556.58 3375.56 29185.30 10566.06 7270.50 10076.88 28057.02 1689.06 13368.27 11468.74 19090.33 89
fmvsm_s_conf0.1_n73.80 9373.26 8575.43 14273.28 29447.80 25384.57 15369.43 34263.34 11578.40 3293.29 2444.73 11989.22 12985.99 966.28 21389.26 116
ACMMPR73.76 9472.61 9377.24 9783.92 9252.96 12885.58 11584.29 13556.82 24065.12 13990.45 7937.24 21190.18 10669.18 10880.84 7588.58 136
region2R73.75 9572.55 9577.33 9183.90 9352.98 12785.54 11984.09 14156.83 23965.10 14090.45 7937.34 20990.24 10468.89 11080.83 7688.77 132
CANet_DTU73.71 9673.14 8975.40 14382.61 13150.05 18884.67 15079.36 23269.72 3075.39 4290.03 9329.41 28885.93 24667.99 11579.11 9790.22 93
test_fmvsmconf0.1_n73.69 9773.15 8775.34 14570.71 32248.26 23882.15 21771.83 32166.75 5874.47 5192.59 3844.89 11387.78 18683.59 2071.35 16989.97 102
fmvsm_s_conf0.5_n_a73.68 9873.15 8775.29 15075.45 26748.05 24583.88 17168.84 34563.43 11478.60 3093.37 2245.32 10488.92 14485.39 1164.04 22688.89 127
thisisatest051573.64 9972.20 10477.97 7981.63 15253.01 12686.69 9188.81 3762.53 13064.06 15985.65 16752.15 4492.50 4658.43 18669.84 18288.39 141
MVSFormer73.53 10072.19 10577.57 8683.02 11655.24 6381.63 23281.44 19050.28 29976.67 3990.91 7044.82 11686.11 23560.83 16580.09 8591.36 65
iter_conf0573.51 10172.24 10377.33 9187.93 3955.97 4887.90 6170.81 33268.72 3564.04 16084.36 18247.54 7790.87 8671.11 9867.75 19885.13 204
PVSNet_BlendedMVS73.42 10273.30 8473.76 18885.91 5451.83 14986.18 9984.24 13965.40 8169.09 10480.86 23746.70 8788.13 17275.43 7065.92 21581.33 271
PVSNet_Blended_VisFu73.40 10372.44 9776.30 11681.32 16554.70 8285.81 10578.82 24263.70 10664.53 15285.38 17147.11 8287.38 20267.75 11677.55 10786.81 175
MVSTER73.25 10472.33 9976.01 12885.54 6253.76 10283.52 17787.16 6867.06 5463.88 16581.66 22952.77 3890.44 9664.66 14164.69 22283.84 229
EI-MVSNet-Vis-set73.19 10572.60 9474.99 15982.56 13249.80 19582.55 21089.00 2866.17 6865.89 13288.98 11143.83 12592.29 5165.38 13869.01 18882.87 247
PMMVS72.98 10672.05 11075.78 13283.57 9748.60 22484.08 16482.85 16861.62 14468.24 11090.33 8328.35 29287.78 18672.71 9276.69 11590.95 77
XVS72.92 10771.62 11476.81 10983.41 10152.48 13484.88 14283.20 16158.03 21263.91 16389.63 10035.50 23489.78 11465.50 13080.50 7988.16 142
test250672.91 10872.43 9874.32 17180.12 18944.18 30283.19 19484.77 12564.02 9865.97 13087.43 14647.67 7688.72 14859.08 17979.66 9390.08 99
TESTMET0.1,172.86 10972.33 9974.46 16581.98 14050.77 16785.13 12985.47 9666.09 7067.30 11583.69 19237.27 21083.57 27665.06 14078.97 9989.05 124
fmvsm_s_conf0.1_n_a72.82 11072.05 11075.12 15570.95 32147.97 24882.72 20468.43 34762.52 13178.17 3393.08 3044.21 12288.86 14584.82 1363.54 23288.54 138
Fast-Effi-MVS+72.73 11171.15 12377.48 8882.75 12654.76 7886.77 8980.64 20363.05 12165.93 13184.01 18544.42 12189.03 13556.45 21476.36 12088.64 134
MTAPA72.73 11171.22 12177.27 9581.54 15853.57 10567.06 34381.31 19259.41 18368.39 10990.96 6936.07 22989.01 13673.80 8682.45 6389.23 118
PGM-MVS72.60 11371.20 12276.80 11182.95 11952.82 13083.07 19882.14 17556.51 24863.18 17289.81 9735.68 23389.76 11667.30 11880.19 8487.83 151
HPM-MVScopyleft72.60 11371.50 11675.89 13082.02 13951.42 15980.70 25483.05 16356.12 25264.03 16189.53 10137.55 20388.37 16170.48 10280.04 8787.88 150
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS72.59 11571.46 11776.00 12982.93 12152.32 14086.93 8582.48 17255.15 26263.65 16790.44 8235.03 24188.53 15768.69 11177.83 10687.15 165
baseline172.51 11672.12 10873.69 19185.05 7144.46 29583.51 18186.13 8771.61 1764.64 14887.97 13655.00 2889.48 12259.07 18056.05 30187.13 166
EI-MVSNet-UG-set72.37 11771.73 11374.29 17281.60 15449.29 20781.85 22588.64 4265.29 8665.05 14188.29 12843.18 13791.83 6163.74 14467.97 19581.75 258
MS-PatchMatch72.34 11871.26 12075.61 13582.38 13455.55 5388.00 5589.95 1965.38 8256.51 26680.74 23932.28 26792.89 3557.95 19788.10 1578.39 306
HQP-MVS72.34 11871.44 11875.03 15779.02 20651.56 15588.00 5583.68 14965.45 7864.48 15385.13 17237.35 20788.62 15166.70 12173.12 15184.91 208
mvs_anonymous72.29 12070.74 12676.94 10782.85 12354.72 8178.43 27881.54 18863.77 10461.69 18979.32 24951.11 4985.31 25362.15 15675.79 12590.79 80
3Dnovator+62.71 772.29 12070.50 13077.65 8583.40 10451.29 16387.32 7286.40 8259.01 19758.49 23488.32 12732.40 26591.27 7157.04 20782.15 6690.38 88
nrg03072.27 12271.56 11574.42 16775.93 26150.60 17186.97 8383.21 16062.75 12567.15 11784.38 18050.07 5886.66 22171.19 9662.37 24985.99 188
UWE-MVS72.17 12372.15 10672.21 22182.26 13744.29 29986.83 8889.58 2165.58 7765.82 13385.06 17445.02 10984.35 26854.07 22775.18 13287.99 149
VPNet72.07 12471.42 11974.04 17878.64 21747.17 26489.91 3287.97 5572.56 1264.66 14785.04 17541.83 15788.33 16561.17 16360.97 25586.62 177
DP-MVS Recon71.99 12570.31 13577.01 10290.65 853.44 11089.37 3882.97 16656.33 25063.56 17089.47 10234.02 25092.15 5654.05 22872.41 15985.43 201
test_fmvsmconf0.01_n71.97 12670.95 12575.04 15666.21 34747.87 25180.35 25870.08 33765.85 7672.69 6991.68 5639.99 17787.67 19082.03 2969.66 18489.58 110
SDMVSNet71.89 12770.62 12975.70 13381.70 14851.61 15373.89 30388.72 4066.58 5961.64 19082.38 21837.63 20089.48 12277.44 5965.60 21686.01 186
QAPM71.88 12869.33 15179.52 4082.20 13854.30 9286.30 9788.77 3856.61 24659.72 20687.48 14433.90 25295.36 1347.48 27381.49 7188.90 126
ECVR-MVScopyleft71.81 12971.00 12474.26 17380.12 18943.49 30784.69 14782.16 17464.02 9864.64 14887.43 14635.04 24089.21 13061.24 16279.66 9390.08 99
PAPM_NR71.80 13069.98 14277.26 9681.54 15853.34 11578.60 27785.25 10953.46 27860.53 20088.66 11845.69 10089.24 12756.49 21179.62 9589.19 120
mPP-MVS71.79 13170.38 13376.04 12782.65 13052.06 14284.45 15481.78 18555.59 25762.05 18789.68 9933.48 25688.28 16965.45 13578.24 10587.77 153
xiu_mvs_v1_base_debu71.60 13270.29 13675.55 13877.26 23953.15 12085.34 12079.37 22955.83 25472.54 7090.19 8722.38 33586.66 22173.28 8976.39 11786.85 171
xiu_mvs_v1_base71.60 13270.29 13675.55 13877.26 23953.15 12085.34 12079.37 22955.83 25472.54 7090.19 8722.38 33586.66 22173.28 8976.39 11786.85 171
xiu_mvs_v1_base_debi71.60 13270.29 13675.55 13877.26 23953.15 12085.34 12079.37 22955.83 25472.54 7090.19 8722.38 33586.66 22173.28 8976.39 11786.85 171
hse-mvs271.44 13570.68 12773.73 19076.34 25047.44 25879.45 27079.47 22868.08 4071.97 7886.01 16542.50 14486.93 21478.82 4653.46 32586.83 174
test_fmvsmvis_n_192071.29 13670.38 13374.00 18071.04 32048.79 22079.19 27364.62 35662.75 12566.73 11891.99 4940.94 16488.35 16383.00 2273.18 15084.85 210
EPP-MVSNet71.14 13770.07 14174.33 17079.18 20346.52 27083.81 17386.49 7956.32 25157.95 24084.90 17854.23 3289.14 13258.14 19369.65 18587.33 162
VPA-MVSNet71.12 13870.66 12872.49 21578.75 21244.43 29787.64 6490.02 1763.97 10165.02 14281.58 23142.14 15087.42 20063.42 14663.38 23785.63 198
131471.11 13969.41 14876.22 11979.32 19950.49 17480.23 26185.14 11559.44 18258.93 22388.89 11433.83 25489.60 12161.49 16077.42 10988.57 137
test111171.06 14070.42 13272.97 20479.48 19641.49 32884.82 14582.74 16964.20 9562.98 17587.43 14635.20 23787.92 17858.54 18578.42 10389.49 113
tpmrst71.04 14169.77 14474.86 16083.19 11055.86 5175.64 29078.73 24667.88 4464.99 14573.73 30949.96 6279.56 31365.92 12767.85 19789.14 122
MVP-Stereo70.97 14270.44 13172.59 21276.03 25951.36 16085.02 13686.99 7160.31 16956.53 26578.92 25540.11 17590.00 10960.00 17790.01 676.41 328
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HQP_MVS70.96 14369.91 14374.12 17677.95 22749.57 19785.76 10782.59 17063.60 10962.15 18583.28 19936.04 23088.30 16765.46 13372.34 16084.49 212
SR-MVS70.92 14469.73 14574.50 16483.38 10550.48 17584.27 15979.35 23348.96 30966.57 12490.45 7933.65 25587.11 20766.42 12374.56 14285.91 191
tpm270.82 14568.44 16077.98 7880.78 17656.11 4474.21 30281.28 19460.24 17068.04 11175.27 29852.26 4388.50 15855.82 21868.03 19489.33 115
ACMMPcopyleft70.81 14669.29 15275.39 14481.52 16051.92 14783.43 18483.03 16456.67 24558.80 22888.91 11331.92 27288.58 15365.89 12973.39 14985.67 195
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
OPM-MVS70.75 14769.58 14674.26 17375.55 26651.34 16186.05 10283.29 15961.94 14062.95 17685.77 16634.15 24988.44 15965.44 13671.07 17182.99 244
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ab-mvs70.65 14869.11 15475.29 15080.87 17446.23 27873.48 30785.24 11059.99 17266.65 12080.94 23643.13 14088.69 14963.58 14568.07 19390.95 77
Vis-MVSNetpermissive70.61 14969.34 15074.42 16780.95 17348.49 22986.03 10377.51 26758.74 20365.55 13787.78 13934.37 24785.95 24552.53 24380.61 7788.80 130
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
sss70.49 15070.13 14071.58 24181.59 15539.02 33980.78 25384.71 12759.34 18566.61 12288.09 13137.17 21285.52 24961.82 15971.02 17290.20 95
CDS-MVSNet70.48 15169.43 14773.64 19277.56 23448.83 21983.51 18177.45 26863.27 11762.33 18285.54 17043.85 12483.29 28057.38 20674.00 14488.79 131
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
thisisatest053070.47 15268.56 15876.20 12179.78 19351.52 15783.49 18388.58 4757.62 22558.60 23082.79 20451.03 5191.48 6752.84 23762.36 25085.59 199
XXY-MVS70.18 15369.28 15372.89 20777.64 23142.88 31585.06 13387.50 6662.58 12962.66 18082.34 22143.64 13289.83 11358.42 18863.70 23185.96 190
Anonymous20240521170.11 15467.88 17076.79 11287.20 4547.24 26389.49 3677.38 27054.88 26766.14 12786.84 15420.93 34791.54 6656.45 21471.62 16691.59 55
PCF-MVS61.03 1070.10 15568.40 16175.22 15477.15 24351.99 14479.30 27282.12 17656.47 24961.88 18886.48 16143.98 12387.24 20455.37 21972.79 15686.43 181
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-RMVSNet70.08 15668.01 16776.27 11784.21 8751.22 16587.29 7579.33 23558.96 19963.63 16886.77 15533.29 25890.30 10344.63 29073.96 14587.30 164
1112_ss70.05 15769.37 14972.10 22380.77 17742.78 31685.12 13276.75 28059.69 17761.19 19492.12 4447.48 7883.84 27153.04 23568.21 19289.66 108
BH-w/o70.02 15868.51 15974.56 16382.77 12550.39 17886.60 9378.14 25759.77 17559.65 20785.57 16939.27 18387.30 20349.86 25674.94 14085.99 188
FIs70.00 15970.24 13969.30 27377.93 22938.55 34283.99 16887.72 6266.86 5757.66 24784.17 18452.28 4285.31 25352.72 24268.80 18984.02 220
OpenMVScopyleft61.00 1169.99 16067.55 17977.30 9378.37 22354.07 9884.36 15685.76 9357.22 23356.71 26287.67 14230.79 28092.83 3743.04 29784.06 5585.01 206
GeoE69.96 16167.88 17076.22 11981.11 16751.71 15284.15 16276.74 28159.83 17460.91 19584.38 18041.56 16088.10 17451.67 24670.57 17788.84 129
HyFIR lowres test69.94 16267.58 17777.04 10077.11 24457.29 2081.49 24079.11 23858.27 20958.86 22680.41 24042.33 14686.96 21261.91 15768.68 19186.87 169
114514_t69.87 16367.88 17075.85 13188.38 2952.35 13986.94 8483.68 14953.70 27655.68 27285.60 16830.07 28591.20 7555.84 21771.02 17283.99 222
miper_enhance_ethall69.77 16468.90 15672.38 21878.93 20949.91 19183.29 19178.85 24064.90 8859.37 21479.46 24752.77 3885.16 25863.78 14358.72 27082.08 253
Anonymous2024052969.71 16567.28 18477.00 10383.78 9550.36 18188.87 4685.10 11647.22 31764.03 16183.37 19727.93 29692.10 5757.78 20167.44 20088.53 139
TR-MVS69.71 16567.85 17375.27 15282.94 12048.48 23087.40 7180.86 20057.15 23564.61 15087.08 15132.67 26389.64 12046.38 28171.55 16887.68 156
EI-MVSNet69.70 16768.70 15772.68 21075.00 27348.90 21779.54 26787.16 6861.05 15563.88 16583.74 19045.87 9690.44 9657.42 20564.68 22378.70 299
test-LLR69.65 16869.01 15571.60 23978.67 21448.17 24085.13 12979.72 22059.18 19263.13 17382.58 21236.91 21680.24 30460.56 16975.17 13386.39 182
APD-MVS_3200maxsize69.62 16968.23 16573.80 18781.58 15648.22 23981.91 22379.50 22648.21 31264.24 15889.75 9831.91 27387.55 19763.08 14873.85 14785.64 197
v2v48269.55 17067.64 17675.26 15372.32 30753.83 9984.93 14181.94 17965.37 8360.80 19779.25 25141.62 15888.98 14063.03 14959.51 26382.98 245
TAMVS69.51 17168.16 16673.56 19576.30 25348.71 22382.57 20877.17 27362.10 13661.32 19384.23 18341.90 15583.46 27854.80 22373.09 15388.50 140
WB-MVSnew69.36 17268.24 16472.72 20979.26 20149.40 20485.72 11288.85 3561.33 14964.59 15182.38 21834.57 24587.53 19846.82 27970.63 17581.22 275
PVSNet62.49 869.27 17367.81 17473.64 19284.41 8251.85 14884.63 15177.80 26166.42 6359.80 20584.95 17722.14 34180.44 30255.03 22075.11 13688.62 135
MVS_111021_LR69.07 17467.91 16872.54 21377.27 23849.56 19979.77 26573.96 30759.33 18760.73 19887.82 13830.19 28481.53 28869.94 10372.19 16286.53 178
GA-MVS69.04 17566.70 19376.06 12675.11 26952.36 13883.12 19680.23 21063.32 11660.65 19979.22 25230.98 27988.37 16161.25 16166.41 20987.46 160
cascas69.01 17666.13 20577.66 8479.36 19755.41 5886.99 8283.75 14856.69 24458.92 22481.35 23324.31 32492.10 5753.23 23270.61 17685.46 200
FA-MVS(test-final)69.00 17766.60 19676.19 12283.48 10047.96 25074.73 29882.07 17757.27 23262.18 18478.47 25936.09 22892.89 3553.76 23171.32 17087.73 154
cl2268.85 17867.69 17572.35 21978.07 22649.98 19082.45 21378.48 25262.50 13258.46 23577.95 26149.99 6085.17 25762.55 15158.72 27081.90 256
FMVSNet368.84 17967.40 18273.19 20085.05 7148.53 22785.71 11385.36 10160.90 16157.58 24979.15 25342.16 14986.77 21747.25 27563.40 23484.27 216
UniMVSNet_NR-MVSNet68.82 18068.29 16370.40 25975.71 26442.59 31884.23 16086.78 7466.31 6558.51 23182.45 21551.57 4684.64 26653.11 23355.96 30283.96 226
v114468.81 18166.82 18974.80 16172.34 30653.46 10784.68 14881.77 18664.25 9460.28 20177.91 26240.23 17288.95 14160.37 17459.52 26281.97 254
IS-MVSNet68.80 18267.55 17972.54 21378.50 22043.43 30981.03 24679.35 23359.12 19557.27 25786.71 15646.05 9487.70 18944.32 29275.60 12886.49 179
PS-MVSNAJss68.78 18367.17 18673.62 19473.01 29748.33 23784.95 14084.81 12359.30 18858.91 22579.84 24537.77 19588.86 14562.83 15063.12 24383.67 232
thres20068.71 18467.27 18573.02 20284.73 7646.76 26785.03 13587.73 6162.34 13459.87 20383.45 19643.15 13888.32 16631.25 34567.91 19683.98 224
UGNet68.71 18467.11 18773.50 19680.55 18347.61 25584.08 16478.51 25159.45 18165.68 13682.73 20823.78 32685.08 26052.80 23876.40 11687.80 152
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
miper_ehance_all_eth68.70 18667.58 17772.08 22476.91 24649.48 20382.47 21278.45 25362.68 12758.28 23977.88 26350.90 5285.01 26161.91 15758.72 27081.75 258
test_vis1_n_192068.59 18768.31 16269.44 27269.16 33341.51 32784.63 15168.58 34658.80 20173.26 6288.37 12325.30 31580.60 29979.10 4367.55 19986.23 184
EPMVS68.45 18865.44 22477.47 8984.91 7456.17 4371.89 32381.91 18261.72 14360.85 19672.49 32336.21 22687.06 20947.32 27471.62 16689.17 121
test-mter68.36 18967.29 18371.60 23978.67 21448.17 24085.13 12979.72 22053.38 27963.13 17382.58 21227.23 30280.24 30460.56 16975.17 13386.39 182
tpm68.36 18967.48 18170.97 25179.93 19251.34 16176.58 28878.75 24567.73 4763.54 17174.86 30048.33 6972.36 35753.93 22963.71 23089.21 119
tttt051768.33 19166.29 20174.46 16578.08 22549.06 20980.88 25189.08 2754.40 27254.75 28080.77 23851.31 4890.33 10049.35 26058.01 28283.99 222
BH-untuned68.28 19266.40 19873.91 18281.62 15350.01 18985.56 11777.39 26957.63 22457.47 25483.69 19236.36 22587.08 20844.81 28873.08 15484.65 211
SR-MVS-dyc-post68.27 19366.87 18872.48 21680.96 17048.14 24281.54 23676.98 27646.42 32462.75 17889.42 10331.17 27886.09 23960.52 17172.06 16383.19 240
v14868.24 19466.35 19973.88 18371.76 31051.47 15884.23 16081.90 18363.69 10758.94 22276.44 28543.72 13087.78 18660.63 16755.86 30482.39 251
AUN-MVS68.20 19566.35 19973.76 18876.37 24947.45 25779.52 26979.52 22560.98 15762.34 18186.02 16336.59 22486.94 21362.32 15353.47 32486.89 168
c3_l67.97 19666.66 19471.91 23576.20 25549.31 20682.13 21978.00 25961.99 13857.64 24876.94 27749.41 6584.93 26260.62 16857.01 29281.49 262
v119267.96 19765.74 21674.63 16271.79 30953.43 11284.06 16680.99 19963.19 11959.56 21077.46 26937.50 20688.65 15058.20 19258.93 26981.79 257
v14419267.86 19865.76 21574.16 17571.68 31153.09 12384.14 16380.83 20162.85 12459.21 21977.28 27239.30 18288.00 17758.67 18457.88 28681.40 268
HPM-MVS_fast67.86 19866.28 20272.61 21180.67 18048.34 23581.18 24475.95 29150.81 29859.55 21188.05 13427.86 29785.98 24258.83 18273.58 14883.51 233
AdaColmapbinary67.86 19865.48 22175.00 15888.15 3654.99 7386.10 10176.63 28449.30 30657.80 24386.65 15829.39 28988.94 14345.10 28770.21 18081.06 276
sd_testset67.79 20165.95 21073.32 19781.70 14846.33 27568.99 33580.30 20966.58 5961.64 19082.38 21830.45 28287.63 19355.86 21665.60 21686.01 186
UniMVSNet (Re)67.71 20266.80 19070.45 25774.44 28042.93 31482.42 21484.90 12063.69 10759.63 20880.99 23547.18 8085.23 25651.17 25056.75 29383.19 240
V4267.66 20365.60 22073.86 18470.69 32453.63 10481.50 23878.61 24963.85 10359.49 21377.49 26837.98 19287.65 19162.33 15258.43 27380.29 286
dmvs_re67.61 20466.00 20872.42 21781.86 14343.45 30864.67 34880.00 21369.56 3260.07 20285.00 17634.71 24387.63 19351.48 24766.68 20486.17 185
WR-MVS67.58 20566.76 19170.04 26675.92 26245.06 29386.23 9885.28 10764.31 9358.50 23381.00 23444.80 11882.00 28749.21 26255.57 30783.06 243
tfpn200view967.57 20666.13 20571.89 23684.05 8945.07 29083.40 18687.71 6360.79 16257.79 24482.76 20543.53 13387.80 18328.80 35266.36 21082.78 249
FMVSNet267.57 20665.79 21472.90 20582.71 12747.97 24885.15 12884.93 11958.55 20656.71 26278.26 26036.72 22186.67 22046.15 28362.94 24584.07 219
FC-MVSNet-test67.49 20867.91 16866.21 30476.06 25733.06 36180.82 25287.18 6764.44 9254.81 27882.87 20250.40 5782.60 28248.05 27066.55 20882.98 245
v192192067.45 20965.23 22874.10 17771.51 31452.90 12983.75 17580.44 20662.48 13359.12 22077.13 27336.98 21487.90 17957.53 20358.14 28081.49 262
cl____67.43 21065.93 21171.95 23276.33 25148.02 24682.58 20779.12 23761.30 15156.72 26176.92 27846.12 9286.44 22857.98 19556.31 29681.38 270
DIV-MVS_self_test67.43 21065.93 21171.94 23376.33 25148.01 24782.57 20879.11 23861.31 15056.73 26076.92 27846.09 9386.43 22957.98 19556.31 29681.39 269
gg-mvs-nofinetune67.43 21064.53 23676.13 12485.95 5347.79 25464.38 34988.28 5139.34 35266.62 12141.27 38658.69 1389.00 13749.64 25886.62 3091.59 55
thres40067.40 21366.13 20571.19 24784.05 8945.07 29083.40 18687.71 6360.79 16257.79 24482.76 20543.53 13387.80 18328.80 35266.36 21080.71 281
UA-Net67.32 21466.23 20370.59 25578.85 21041.23 33173.60 30575.45 29561.54 14666.61 12284.53 17938.73 18886.57 22642.48 30274.24 14383.98 224
v867.25 21564.99 23174.04 17872.89 30053.31 11782.37 21580.11 21261.54 14654.29 28576.02 29442.89 14288.41 16058.43 18656.36 29480.39 285
NR-MVSNet67.25 21565.99 20971.04 25073.27 29543.91 30385.32 12384.75 12666.05 7353.65 29282.11 22445.05 10885.97 24447.55 27256.18 29983.24 238
Test_1112_low_res67.18 21766.23 20370.02 26778.75 21241.02 33283.43 18473.69 30957.29 23158.45 23682.39 21745.30 10580.88 29450.50 25266.26 21488.16 142
CPTT-MVS67.15 21865.84 21371.07 24980.96 17050.32 18381.94 22274.10 30346.18 32757.91 24187.64 14329.57 28781.31 29064.10 14270.18 18181.56 261
test_cas_vis1_n_192067.10 21966.60 19668.59 28565.17 35543.23 31183.23 19369.84 33955.34 26170.67 9687.71 14124.70 32276.66 33778.57 5064.20 22585.89 192
GBi-Net67.09 22065.47 22271.96 22982.71 12746.36 27283.52 17783.31 15658.55 20657.58 24976.23 28936.72 22186.20 23147.25 27563.40 23483.32 235
test167.09 22065.47 22271.96 22982.71 12746.36 27283.52 17783.31 15658.55 20657.58 24976.23 28936.72 22186.20 23147.25 27563.40 23483.32 235
PatchmatchNetpermissive67.07 22263.63 24277.40 9083.10 11158.03 972.11 32177.77 26258.85 20059.37 21470.83 33637.84 19484.93 26242.96 29869.83 18389.26 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v124066.99 22364.68 23473.93 18171.38 31752.66 13283.39 18879.98 21461.97 13958.44 23777.11 27435.25 23687.81 18156.46 21358.15 27881.33 271
eth_miper_zixun_eth66.98 22465.28 22772.06 22575.61 26550.40 17781.00 24776.97 27962.00 13756.99 25976.97 27644.84 11585.58 24858.75 18354.42 31680.21 287
TranMVSNet+NR-MVSNet66.94 22565.61 21970.93 25273.45 29143.38 31083.02 20084.25 13765.31 8558.33 23881.90 22739.92 17985.52 24949.43 25954.89 31283.89 228
mvsmamba66.93 22664.88 23373.09 20175.06 27147.26 26183.36 19069.21 34362.64 12855.68 27281.43 23229.72 28689.20 13163.35 14763.50 23382.79 248
thres100view90066.87 22765.42 22571.24 24583.29 10743.15 31281.67 23187.78 5859.04 19655.92 27082.18 22343.73 12887.80 18328.80 35266.36 21082.78 249
DU-MVS66.84 22865.74 21670.16 26273.27 29542.59 31881.50 23882.92 16763.53 11158.51 23182.11 22440.75 16684.64 26653.11 23355.96 30283.24 238
IterMVS-LS66.63 22965.36 22670.42 25875.10 27048.90 21781.45 24176.69 28361.05 15555.71 27177.10 27545.86 9783.65 27557.44 20457.88 28678.70 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v1066.61 23064.20 23973.83 18672.59 30353.37 11381.88 22479.91 21761.11 15354.09 28775.60 29640.06 17688.26 17056.47 21256.10 30079.86 291
Fast-Effi-MVS+-dtu66.53 23164.10 24073.84 18572.41 30552.30 14184.73 14675.66 29259.51 18056.34 26779.11 25428.11 29485.85 24757.74 20263.29 23883.35 234
thres600view766.46 23265.12 22970.47 25683.41 10143.80 30582.15 21787.78 5859.37 18456.02 26982.21 22243.73 12886.90 21526.51 36464.94 21980.71 281
LPG-MVS_test66.44 23364.58 23572.02 22674.42 28148.60 22483.07 19880.64 20354.69 26953.75 29083.83 18825.73 31386.98 21060.33 17564.71 22080.48 283
tpm cat166.28 23462.78 24476.77 11381.40 16257.14 2270.03 33077.19 27253.00 28258.76 22970.73 33946.17 9186.73 21943.27 29664.46 22486.44 180
EPNet_dtu66.25 23566.71 19264.87 31478.66 21634.12 35682.80 20375.51 29361.75 14264.47 15686.90 15337.06 21372.46 35643.65 29569.63 18688.02 148
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Effi-MVS+-dtu66.24 23664.96 23270.08 26475.17 26849.64 19682.01 22074.48 30162.15 13557.83 24276.08 29330.59 28183.79 27265.40 13760.93 25676.81 321
ACMP61.11 966.24 23664.33 23772.00 22874.89 27549.12 20883.18 19579.83 21855.41 26052.29 30082.68 20925.83 31186.10 23760.89 16463.94 22980.78 279
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2023121166.08 23863.67 24173.31 19883.07 11448.75 22186.01 10484.67 12945.27 33156.54 26476.67 28328.06 29588.95 14152.78 23959.95 25882.23 252
OMC-MVS65.97 23965.06 23068.71 28272.97 29842.58 32078.61 27675.35 29654.72 26859.31 21686.25 16233.30 25777.88 32657.99 19467.05 20285.66 196
X-MVStestdata65.85 24062.20 24876.81 10983.41 10152.48 13484.88 14283.20 16158.03 21263.91 1634.82 40535.50 23489.78 11465.50 13080.50 7988.16 142
Vis-MVSNet (Re-imp)65.52 24165.63 21865.17 31277.49 23530.54 36875.49 29477.73 26359.34 18552.26 30286.69 15749.38 6680.53 30137.07 31675.28 13184.42 214
Baseline_NR-MVSNet65.49 24264.27 23869.13 27474.37 28341.65 32583.39 18878.85 24059.56 17959.62 20976.88 28040.75 16687.44 19949.99 25455.05 31078.28 308
FMVSNet164.57 24362.11 24971.96 22977.32 23746.36 27283.52 17783.31 15652.43 28754.42 28376.23 28927.80 29886.20 23142.59 30161.34 25483.32 235
dp64.41 24461.58 25272.90 20582.40 13354.09 9772.53 31376.59 28560.39 16855.68 27270.39 34035.18 23876.90 33539.34 30861.71 25287.73 154
ACMM58.35 1264.35 24562.01 25071.38 24374.21 28448.51 22882.25 21679.66 22247.61 31554.54 28280.11 24125.26 31686.00 24151.26 24863.16 24179.64 292
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FE-MVS64.15 24660.43 26775.30 14980.85 17549.86 19368.28 33978.37 25450.26 30259.31 21673.79 30826.19 30991.92 6040.19 30566.67 20584.12 217
pm-mvs164.12 24762.56 24568.78 28071.68 31138.87 34082.89 20281.57 18755.54 25953.89 28977.82 26437.73 19886.74 21848.46 26853.49 32380.72 280
miper_lstm_enhance63.91 24862.30 24768.75 28175.06 27146.78 26669.02 33481.14 19559.68 17852.76 29772.39 32640.71 16877.99 32456.81 20953.09 32681.48 264
SCA63.84 24960.01 27175.32 14678.58 21857.92 1061.61 35977.53 26656.71 24357.75 24670.77 33731.97 27079.91 31048.80 26456.36 29488.13 145
test_djsdf63.84 24961.56 25370.70 25468.78 33544.69 29481.63 23281.44 19050.28 29952.27 30176.26 28826.72 30586.11 23560.83 16555.84 30581.29 274
IterMVS63.77 25161.67 25170.08 26472.68 30251.24 16480.44 25675.51 29360.51 16751.41 30573.70 31232.08 26978.91 31454.30 22554.35 31780.08 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
RRT_MVS63.68 25261.01 26171.70 23773.48 29045.98 28081.19 24376.08 28954.33 27352.84 29679.27 25022.21 33887.65 19154.13 22655.54 30881.46 265
myMVS_eth3d63.52 25363.56 24363.40 32181.73 14634.28 35480.97 24881.02 19760.93 15955.06 27682.64 21048.00 7480.81 29523.42 37458.32 27475.10 338
D2MVS63.49 25461.39 25569.77 26869.29 33248.93 21678.89 27577.71 26460.64 16649.70 31572.10 33127.08 30383.48 27754.48 22462.65 24676.90 320
tt080563.39 25561.31 25769.64 26969.36 33138.87 34078.00 27985.48 9548.82 31055.66 27581.66 22924.38 32386.37 23049.04 26359.36 26683.68 231
pmmvs463.34 25661.07 26070.16 26270.14 32650.53 17379.97 26471.41 32855.08 26354.12 28678.58 25732.79 26282.09 28650.33 25357.22 29177.86 312
jajsoiax63.21 25760.84 26270.32 26068.33 34044.45 29681.23 24281.05 19653.37 28050.96 31077.81 26517.49 36185.49 25159.31 17858.05 28181.02 277
MIMVSNet63.12 25860.29 26871.61 23875.92 26246.65 26865.15 34581.94 17959.14 19454.65 28169.47 34325.74 31280.63 29841.03 30469.56 18787.55 158
CL-MVSNet_self_test62.98 25961.14 25968.50 28765.86 35042.96 31384.37 15582.98 16560.98 15753.95 28872.70 32240.43 17083.71 27441.10 30347.93 34078.83 298
mvs_tets62.96 26060.55 26470.19 26168.22 34344.24 30180.90 25080.74 20252.99 28350.82 31277.56 26616.74 36485.44 25259.04 18157.94 28380.89 278
TransMVSNet (Re)62.82 26160.76 26369.02 27573.98 28741.61 32686.36 9579.30 23656.90 23752.53 29876.44 28541.85 15687.60 19638.83 30940.61 36477.86 312
pmmvs562.80 26261.18 25867.66 29169.53 33042.37 32382.65 20675.19 29754.30 27452.03 30378.51 25831.64 27580.67 29748.60 26658.15 27879.95 290
test0.0.03 162.54 26362.44 24662.86 32572.28 30829.51 37682.93 20178.78 24359.18 19253.07 29582.41 21636.91 21677.39 33037.45 31258.96 26881.66 260
UniMVSNet_ETH3D62.51 26460.49 26568.57 28668.30 34140.88 33473.89 30379.93 21651.81 29354.77 27979.61 24624.80 32081.10 29149.93 25561.35 25383.73 230
v7n62.50 26559.27 27672.20 22267.25 34649.83 19477.87 28180.12 21152.50 28648.80 32073.07 31732.10 26887.90 17946.83 27854.92 31178.86 297
CR-MVSNet62.47 26659.04 27872.77 20873.97 28856.57 3460.52 36271.72 32360.04 17157.49 25265.86 35338.94 18580.31 30342.86 29959.93 25981.42 266
tpmvs62.45 26759.42 27471.53 24283.93 9154.32 9170.03 33077.61 26551.91 29053.48 29368.29 34737.91 19386.66 22133.36 33558.27 27673.62 348
EG-PatchMatch MVS62.40 26859.59 27270.81 25373.29 29349.05 21085.81 10584.78 12451.85 29244.19 33973.48 31515.52 36989.85 11240.16 30667.24 20173.54 349
XVG-OURS-SEG-HR62.02 26959.54 27369.46 27165.30 35345.88 28165.06 34673.57 31146.45 32357.42 25583.35 19826.95 30478.09 32053.77 23064.03 22784.42 214
XVG-OURS61.88 27059.34 27569.49 27065.37 35246.27 27664.80 34773.49 31247.04 31957.41 25682.85 20325.15 31778.18 31853.00 23664.98 21884.01 221
TAPA-MVS56.12 1461.82 27160.18 27066.71 30078.48 22137.97 34575.19 29676.41 28746.82 32057.04 25886.52 16027.67 30077.03 33226.50 36567.02 20385.14 203
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Syy-MVS61.51 27261.35 25662.00 32881.73 14630.09 37180.97 24881.02 19760.93 15955.06 27682.64 21035.09 23980.81 29516.40 38958.32 27475.10 338
tfpnnormal61.47 27359.09 27768.62 28476.29 25441.69 32481.14 24585.16 11354.48 27151.32 30673.63 31332.32 26686.89 21621.78 37855.71 30677.29 318
PVSNet_057.04 1361.19 27457.24 28773.02 20277.45 23650.31 18479.43 27177.36 27163.96 10247.51 32972.45 32525.03 31883.78 27352.76 24119.22 39584.96 207
PLCcopyleft52.38 1860.89 27558.97 27966.68 30281.77 14545.70 28578.96 27474.04 30643.66 34247.63 32683.19 20123.52 32977.78 32937.47 31160.46 25776.55 327
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CVMVSNet60.85 27660.44 26662.07 32675.00 27332.73 36379.54 26773.49 31236.98 36056.28 26883.74 19029.28 29069.53 36546.48 28063.23 23983.94 227
CNLPA60.59 27758.44 28167.05 29779.21 20247.26 26179.75 26664.34 35842.46 34851.90 30483.94 18627.79 29975.41 34237.12 31459.49 26478.47 303
anonymousdsp60.46 27857.65 28468.88 27663.63 36345.09 28972.93 31178.63 24846.52 32251.12 30772.80 32121.46 34583.07 28157.79 20053.97 31878.47 303
testing359.97 27960.19 26959.32 34077.60 23230.01 37381.75 22981.79 18453.54 27750.34 31379.94 24248.99 6876.91 33317.19 38750.59 33371.03 363
ACMH53.70 1659.78 28055.94 29871.28 24476.59 24848.35 23480.15 26376.11 28849.74 30441.91 35073.45 31616.50 36690.31 10131.42 34357.63 28975.17 336
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs659.64 28157.15 28867.09 29566.01 34836.86 34980.50 25578.64 24745.05 33349.05 31873.94 30727.28 30186.10 23743.96 29449.94 33578.31 307
MSDG59.44 28255.14 30272.32 22074.69 27650.71 16874.39 30173.58 31044.44 33743.40 34477.52 26719.45 35190.87 8631.31 34457.49 29075.38 334
RPMNet59.29 28354.25 30674.42 16773.97 28856.57 3460.52 36276.98 27635.72 36457.49 25258.87 37237.73 19885.26 25527.01 36359.93 25981.42 266
DP-MVS59.24 28456.12 29668.63 28388.24 3450.35 18282.51 21164.43 35741.10 35046.70 33378.77 25624.75 32188.57 15622.26 37656.29 29866.96 369
OpenMVS_ROBcopyleft53.19 1759.20 28556.00 29768.83 27871.13 31944.30 29883.64 17675.02 29846.42 32446.48 33573.03 31818.69 35588.14 17127.74 36061.80 25174.05 345
IterMVS-SCA-FT59.12 28658.81 28060.08 33870.68 32545.07 29080.42 25774.25 30243.54 34350.02 31473.73 30931.97 27056.74 38051.06 25153.60 32278.42 305
our_test_359.11 28755.08 30371.18 24871.42 31553.29 11881.96 22174.52 30048.32 31142.08 34869.28 34528.14 29382.15 28434.35 33245.68 35478.11 311
Anonymous2023120659.08 28857.59 28563.55 31968.77 33632.14 36680.26 26079.78 21950.00 30349.39 31672.39 32626.64 30678.36 31733.12 33857.94 28380.14 288
KD-MVS_2432*160059.04 28956.44 29366.86 29879.07 20445.87 28272.13 31980.42 20755.03 26448.15 32271.01 33436.73 21978.05 32235.21 32630.18 38376.67 322
miper_refine_blended59.04 28956.44 29366.86 29879.07 20445.87 28272.13 31980.42 20755.03 26448.15 32271.01 33436.73 21978.05 32235.21 32630.18 38376.67 322
WR-MVS_H58.91 29158.04 28361.54 33269.07 33433.83 35876.91 28581.99 17851.40 29548.17 32174.67 30140.23 17274.15 34531.78 34248.10 33876.64 325
LCM-MVSNet-Re58.82 29256.54 29165.68 30679.31 20029.09 37961.39 36145.79 37760.73 16437.65 36572.47 32431.42 27681.08 29249.66 25770.41 17886.87 169
Patchmatch-RL test58.72 29354.32 30571.92 23463.91 36244.25 30061.73 35855.19 36957.38 23049.31 31754.24 37737.60 20280.89 29362.19 15547.28 34590.63 82
FMVSNet558.61 29456.45 29265.10 31377.20 24239.74 33674.77 29777.12 27450.27 30143.28 34567.71 34826.15 31076.90 33536.78 31954.78 31378.65 301
ppachtmachnet_test58.56 29554.34 30471.24 24571.42 31554.74 7981.84 22672.27 31949.02 30845.86 33868.99 34626.27 30783.30 27930.12 34743.23 35975.69 331
ACMH+54.58 1558.55 29655.24 30068.50 28774.68 27745.80 28480.27 25970.21 33647.15 31842.77 34775.48 29716.73 36585.98 24235.10 33054.78 31373.72 347
CP-MVSNet58.54 29757.57 28661.46 33368.50 33833.96 35776.90 28678.60 25051.67 29447.83 32476.60 28434.99 24272.79 35435.45 32347.58 34277.64 316
PEN-MVS58.35 29857.15 28861.94 32967.55 34534.39 35377.01 28478.35 25551.87 29147.72 32576.73 28233.91 25173.75 34934.03 33347.17 34677.68 314
PS-CasMVS58.12 29957.03 29061.37 33468.24 34233.80 35976.73 28778.01 25851.20 29647.54 32876.20 29232.85 26072.76 35535.17 32847.37 34477.55 317
dmvs_testset57.65 30058.21 28255.97 35174.62 2789.82 40763.75 35063.34 36067.23 5248.89 31983.68 19439.12 18476.14 33823.43 37359.80 26181.96 255
UnsupCasMVSNet_eth57.56 30155.15 30164.79 31564.57 36033.12 36073.17 31083.87 14758.98 19841.75 35170.03 34122.54 33479.92 30846.12 28435.31 37281.32 273
CHOSEN 280x42057.53 30256.38 29560.97 33674.01 28648.10 24446.30 38054.31 37148.18 31350.88 31177.43 27038.37 19159.16 37854.83 22163.14 24275.66 332
DTE-MVSNet57.03 30355.73 29960.95 33765.94 34932.57 36475.71 28977.09 27551.16 29746.65 33476.34 28732.84 26173.22 35330.94 34644.87 35577.06 319
PatchMatch-RL56.66 30453.75 30965.37 31177.91 23045.28 28869.78 33260.38 36441.35 34947.57 32773.73 30916.83 36376.91 33336.99 31759.21 26773.92 346
PatchT56.60 30552.97 31267.48 29272.94 29946.16 27957.30 37073.78 30838.77 35454.37 28457.26 37537.52 20478.06 32132.02 34052.79 32778.23 310
Patchmtry56.56 30652.95 31367.42 29372.53 30450.59 17259.05 36671.72 32337.86 35846.92 33165.86 35338.94 18580.06 30736.94 31846.72 35071.60 359
test_040256.45 30753.03 31166.69 30176.78 24750.31 18481.76 22869.61 34142.79 34643.88 34072.13 32922.82 33386.46 22716.57 38850.94 33263.31 377
LS3D56.40 30853.82 30864.12 31681.12 16645.69 28673.42 30866.14 35235.30 36843.24 34679.88 24322.18 33979.62 31219.10 38464.00 22867.05 368
ADS-MVSNet56.17 30951.95 31968.84 27780.60 18153.07 12455.03 37370.02 33844.72 33451.00 30861.19 36522.83 33178.88 31528.54 35553.63 32074.57 342
XVG-ACMP-BASELINE56.03 31052.85 31465.58 30761.91 36840.95 33363.36 35172.43 31845.20 33246.02 33674.09 3059.20 38078.12 31945.13 28658.27 27677.66 315
pmmvs-eth3d55.97 31152.78 31565.54 30861.02 37046.44 27175.36 29567.72 34949.61 30543.65 34267.58 34921.63 34377.04 33144.11 29344.33 35673.15 353
F-COLMAP55.96 31253.65 31062.87 32472.76 30142.77 31774.70 30070.37 33540.03 35141.11 35579.36 24817.77 36073.70 35032.80 33953.96 31972.15 355
CMPMVSbinary40.41 2155.34 31352.64 31663.46 32060.88 37143.84 30461.58 36071.06 33030.43 37636.33 36774.63 30224.14 32575.44 34148.05 27066.62 20671.12 362
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0355.22 31454.07 30758.68 34363.14 36525.00 38477.69 28274.78 29952.64 28443.43 34372.39 32626.21 30874.76 34429.31 35047.05 34876.28 329
ADS-MVSNet255.21 31551.44 32066.51 30380.60 18149.56 19955.03 37365.44 35344.72 33451.00 30861.19 36522.83 33175.41 34228.54 35553.63 32074.57 342
SixPastTwentyTwo54.37 31650.10 32567.21 29470.70 32341.46 32974.73 29864.69 35547.56 31639.12 36069.49 34218.49 35884.69 26531.87 34134.20 37875.48 333
USDC54.36 31751.23 32163.76 31864.29 36137.71 34662.84 35673.48 31456.85 23835.47 37071.94 3329.23 37978.43 31638.43 31048.57 33775.13 337
testgi54.25 31852.57 31759.29 34162.76 36621.65 39172.21 31870.47 33453.25 28141.94 34977.33 27114.28 37077.95 32529.18 35151.72 33178.28 308
K. test v354.04 31949.42 33067.92 29068.55 33742.57 32175.51 29363.07 36152.07 28839.21 35964.59 35719.34 35282.21 28337.11 31525.31 38878.97 296
UnsupCasMVSNet_bld53.86 32050.53 32463.84 31763.52 36434.75 35271.38 32481.92 18146.53 32138.95 36157.93 37320.55 34880.20 30639.91 30734.09 37976.57 326
YYNet153.82 32149.96 32665.41 31070.09 32848.95 21472.30 31671.66 32544.25 33931.89 37963.07 36123.73 32773.95 34733.26 33639.40 36673.34 350
MDA-MVSNet_test_wron53.82 32149.95 32765.43 30970.13 32749.05 21072.30 31671.65 32644.23 34031.85 38063.13 36023.68 32874.01 34633.25 33739.35 36773.23 352
test_fmvs153.60 32352.54 31856.78 34758.07 37330.26 36968.95 33642.19 38332.46 37163.59 16982.56 21411.55 37360.81 37258.25 19155.27 30979.28 293
Patchmatch-test53.33 32448.17 33368.81 27973.31 29242.38 32242.98 38358.23 36632.53 37038.79 36270.77 33739.66 18073.51 35125.18 36752.06 33090.55 83
LTVRE_ROB45.45 1952.73 32549.74 32861.69 33169.78 32934.99 35144.52 38167.60 35143.11 34543.79 34174.03 30618.54 35781.45 28928.39 35757.94 28368.62 366
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
EU-MVSNet52.63 32650.72 32358.37 34462.69 36728.13 38172.60 31275.97 29030.94 37540.76 35772.11 33020.16 34970.80 36135.11 32946.11 35276.19 330
test_fmvs1_n52.55 32751.19 32256.65 34851.90 38330.14 37067.66 34042.84 38232.27 37262.30 18382.02 2269.12 38160.84 37157.82 19954.75 31578.99 295
OurMVSNet-221017-052.39 32848.73 33163.35 32265.21 35438.42 34368.54 33864.95 35438.19 35539.57 35871.43 33313.23 37279.92 30837.16 31340.32 36571.72 358
JIA-IIPM52.33 32947.77 33666.03 30571.20 31846.92 26540.00 38876.48 28637.10 35946.73 33237.02 38832.96 25977.88 32635.97 32152.45 32973.29 351
Anonymous2024052151.65 33048.42 33261.34 33556.43 37739.65 33873.57 30673.47 31536.64 36236.59 36663.98 35810.75 37672.25 35835.35 32449.01 33672.11 356
MDA-MVSNet-bldmvs51.56 33147.75 33763.00 32371.60 31347.32 26069.70 33372.12 32043.81 34127.65 38763.38 35921.97 34275.96 33927.30 36232.19 38065.70 374
test_vis1_n51.19 33249.66 32955.76 35251.26 38429.85 37467.20 34238.86 38732.12 37359.50 21279.86 2448.78 38258.23 37956.95 20852.46 32879.19 294
COLMAP_ROBcopyleft43.60 2050.90 33348.05 33459.47 33967.81 34440.57 33571.25 32562.72 36336.49 36336.19 36873.51 31413.48 37173.92 34820.71 38050.26 33463.92 376
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet150.35 33447.81 33557.96 34561.53 36927.80 38267.40 34174.06 30543.25 34433.31 37865.38 35616.03 36771.34 35921.80 37747.55 34374.75 340
KD-MVS_self_test49.24 33546.85 33856.44 34954.32 37822.87 38757.39 36973.36 31644.36 33837.98 36459.30 37118.97 35471.17 36033.48 33442.44 36075.26 335
MVS-HIRNet49.01 33644.71 34061.92 33076.06 25746.61 26963.23 35354.90 37024.77 38233.56 37536.60 39021.28 34675.88 34029.49 34962.54 24763.26 378
new-patchmatchnet48.21 33746.55 33953.18 35557.73 37518.19 39970.24 32871.02 33145.70 32833.70 37460.23 36718.00 35969.86 36427.97 35934.35 37671.49 361
TinyColmap48.15 33844.49 34259.13 34265.73 35138.04 34463.34 35262.86 36238.78 35329.48 38267.23 3516.46 39073.30 35224.59 36941.90 36266.04 372
AllTest47.32 33944.66 34155.32 35365.08 35637.50 34762.96 35554.25 37235.45 36633.42 37672.82 3199.98 37759.33 37524.13 37043.84 35769.13 364
PM-MVS46.92 34043.76 34556.41 35052.18 38232.26 36563.21 35438.18 38837.99 35740.78 35666.20 3525.09 39365.42 36848.19 26941.99 36171.54 360
test_fmvs245.89 34144.32 34350.62 35845.85 39224.70 38558.87 36837.84 39025.22 38152.46 29974.56 3037.07 38554.69 38149.28 26147.70 34172.48 354
RPSCF45.77 34244.13 34450.68 35757.67 37629.66 37554.92 37545.25 37926.69 38045.92 33775.92 29517.43 36245.70 39127.44 36145.95 35376.67 322
pmmvs345.53 34341.55 34757.44 34648.97 38839.68 33770.06 32957.66 36728.32 37834.06 37357.29 3748.50 38366.85 36734.86 33134.26 37765.80 373
mvsany_test143.38 34442.57 34645.82 36250.96 38526.10 38355.80 37127.74 40027.15 37947.41 33074.39 30418.67 35644.95 39244.66 28936.31 37066.40 371
N_pmnet41.25 34539.77 34845.66 36368.50 3380.82 41372.51 3140.38 41235.61 36535.26 37161.51 36420.07 35067.74 36623.51 37240.63 36368.42 367
TDRefinement40.91 34638.37 35048.55 36050.45 38633.03 36258.98 36750.97 37528.50 37729.89 38167.39 3506.21 39254.51 38217.67 38635.25 37358.11 379
test_vis1_rt40.29 34738.64 34945.25 36448.91 38930.09 37159.44 36527.07 40124.52 38338.48 36351.67 3826.71 38849.44 38644.33 29146.59 35156.23 380
DSMNet-mixed38.35 34835.36 35347.33 36148.11 39014.91 40337.87 38936.60 39119.18 38734.37 37259.56 37015.53 36853.01 38420.14 38246.89 34974.07 344
test_fmvs337.95 34935.75 35244.55 36535.50 39818.92 39548.32 37734.00 39518.36 38941.31 35461.58 3632.29 40048.06 39042.72 30037.71 36966.66 370
WB-MVS37.41 35036.37 35140.54 36954.23 37910.43 40665.29 34443.75 38034.86 36927.81 38654.63 37624.94 31963.21 3696.81 40115.00 39647.98 388
FPMVS35.40 35133.67 35540.57 36846.34 39128.74 38041.05 38557.05 36820.37 38622.27 39053.38 3796.87 38744.94 3938.62 39547.11 34748.01 387
SSC-MVS35.20 35234.30 35437.90 37152.58 3818.65 40961.86 35741.64 38431.81 37425.54 38852.94 38123.39 33059.28 3776.10 40212.86 39745.78 390
ANet_high34.39 35329.59 35948.78 35930.34 40222.28 38855.53 37263.79 35938.11 35615.47 39436.56 3916.94 38659.98 37413.93 3915.64 40564.08 375
EGC-MVSNET33.75 35430.42 35843.75 36664.94 35836.21 35060.47 36440.70 3860.02 4060.10 40753.79 3787.39 38460.26 37311.09 39435.23 37434.79 392
new_pmnet33.56 35531.89 35738.59 37049.01 38720.42 39251.01 37637.92 38920.58 38423.45 38946.79 3846.66 38949.28 38820.00 38331.57 38246.09 389
LF4IMVS33.04 35632.55 35634.52 37440.96 39322.03 38944.45 38235.62 39220.42 38528.12 38562.35 3625.03 39431.88 40421.61 37934.42 37549.63 386
LCM-MVSNet28.07 35723.85 36540.71 36727.46 40718.93 39430.82 39546.19 37612.76 39416.40 39234.70 3931.90 40348.69 38920.25 38124.22 38954.51 382
mvsany_test328.00 35825.98 36034.05 37528.97 40315.31 40134.54 39218.17 40616.24 39029.30 38353.37 3802.79 39833.38 40330.01 34820.41 39453.45 383
Gipumacopyleft27.47 35924.26 36437.12 37360.55 37229.17 37811.68 40060.00 36514.18 39210.52 40115.12 4022.20 40263.01 3708.39 39635.65 37119.18 398
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_f27.12 36024.85 36133.93 37626.17 40815.25 40230.24 39622.38 40512.53 39528.23 38449.43 3832.59 39934.34 40225.12 36826.99 38652.20 384
PMMVS226.71 36122.98 36637.87 37236.89 3968.51 41042.51 38429.32 39919.09 38813.01 39637.54 3872.23 40153.11 38314.54 39011.71 39851.99 385
APD_test126.46 36224.41 36332.62 37937.58 39521.74 39040.50 38730.39 39711.45 39616.33 39343.76 3851.63 40541.62 39411.24 39326.82 38734.51 393
PMVScopyleft19.57 2225.07 36322.43 36832.99 37823.12 40922.98 38640.98 38635.19 39315.99 39111.95 40035.87 3921.47 40649.29 3875.41 40431.90 38126.70 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis3_rt24.79 36422.95 36730.31 38028.59 40418.92 39537.43 39017.27 40812.90 39321.28 39129.92 3971.02 40736.35 39728.28 35829.82 38535.65 391
test_method24.09 36521.07 36933.16 37727.67 4068.35 41126.63 39735.11 3943.40 40314.35 39536.98 3893.46 39735.31 39919.08 38522.95 39055.81 381
testf121.11 36619.08 37027.18 38230.56 40018.28 39733.43 39324.48 4028.02 40012.02 39833.50 3940.75 40935.09 4007.68 39721.32 39128.17 395
APD_test221.11 36619.08 37027.18 38230.56 40018.28 39733.43 39324.48 4028.02 40012.02 39833.50 3940.75 40935.09 4007.68 39721.32 39128.17 395
E-PMN19.16 36818.40 37221.44 38436.19 39713.63 40447.59 37830.89 39610.73 3975.91 40416.59 4003.66 39639.77 3955.95 4038.14 40010.92 400
EMVS18.42 36917.66 37320.71 38534.13 39912.64 40546.94 37929.94 39810.46 3995.58 40514.93 4034.23 39538.83 3965.24 4057.51 40210.67 401
cdsmvs_eth3d_5k18.33 37024.44 3620.00 3910.00 4130.00 4150.00 40289.40 220.00 4070.00 41092.02 4738.55 1890.00 4080.00 4090.00 4060.00 406
MVEpermissive16.60 2317.34 37113.39 37429.16 38128.43 40519.72 39313.73 39923.63 4047.23 4027.96 40221.41 3980.80 40836.08 3986.97 39910.39 39931.69 394
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt9.44 37210.68 3755.73 3882.49 4114.21 41210.48 40118.04 4070.34 40512.59 39720.49 39911.39 3747.03 40713.84 3926.46 4045.95 402
wuyk23d9.11 3738.77 37710.15 38740.18 39416.76 40020.28 3981.01 4112.58 4042.66 4060.98 4060.23 41112.49 4064.08 4066.90 4031.19 403
ab-mvs-re7.68 37410.24 3760.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 41092.12 440.00 4120.00 4080.00 4090.00 4060.00 406
testmvs6.14 3758.18 3780.01 3890.01 4120.00 41573.40 3090.00 4130.00 4070.02 4080.15 4070.00 4120.00 4080.02 4070.00 4060.02 404
test1236.01 3768.01 3790.01 3890.00 4130.01 41471.93 3220.00 4130.00 4070.02 4080.11 4080.00 4120.00 4080.02 4070.00 4060.02 404
pcd_1.5k_mvsjas3.15 3774.20 3800.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 40937.77 1950.00 4080.00 4090.00 4060.00 406
test_blank0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
sosnet0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
Regformer0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
uanet0.00 3780.00 3810.00 3910.00 4130.00 4150.00 4020.00 4130.00 4070.00 4100.00 4090.00 4120.00 4080.00 4090.00 4060.00 406
WAC-MVS34.28 35422.56 375
FOURS183.24 10849.90 19284.98 13778.76 24447.71 31473.42 59
MSC_two_6792asdad81.53 1691.77 456.03 4691.10 1096.22 881.46 3486.80 2792.34 34
PC_three_145266.58 5987.27 293.70 1166.82 494.95 1789.74 391.98 493.98 5
No_MVS81.53 1691.77 456.03 4691.10 1096.22 881.46 3486.80 2792.34 34
test_one_060189.39 2257.29 2088.09 5357.21 23482.06 1393.39 2054.94 29
eth-test20.00 413
eth-test0.00 413
ZD-MVS89.55 1453.46 10784.38 13357.02 23673.97 5491.03 6544.57 12091.17 7675.41 7381.78 70
RE-MVS-def66.66 19480.96 17048.14 24281.54 23676.98 27646.42 32462.75 17889.42 10329.28 29060.52 17172.06 16383.19 240
IU-MVS89.48 1757.49 1591.38 966.22 6788.26 182.83 2387.60 1892.44 31
OPU-MVS81.71 1492.05 355.97 4892.48 494.01 567.21 295.10 1589.82 292.55 394.06 3
test_241102_TWO88.76 3957.50 22883.60 694.09 356.14 2196.37 682.28 2787.43 2092.55 29
test_241102_ONE89.48 1756.89 2988.94 3057.53 22684.61 493.29 2458.81 1196.45 1
9.1478.19 2785.67 5988.32 5188.84 3659.89 17374.58 4992.62 3746.80 8592.66 4181.40 3685.62 40
save fliter85.35 6656.34 4189.31 4081.46 18961.55 145
test_0728_THIRD58.00 21481.91 1493.64 1356.54 1796.44 281.64 3286.86 2592.23 36
test_0728_SECOND82.20 889.50 1557.73 1192.34 688.88 3296.39 481.68 3087.13 2192.47 30
test072689.40 2057.45 1792.32 888.63 4357.71 22283.14 1093.96 855.17 25
GSMVS88.13 145
test_part289.33 2355.48 5582.27 12
sam_mvs138.86 18788.13 145
sam_mvs35.99 232
ambc62.06 32753.98 38029.38 37735.08 39179.65 22341.37 35259.96 3686.27 39182.15 28435.34 32538.22 36874.65 341
MTGPAbinary81.31 192
test_post170.84 32714.72 40434.33 24883.86 27048.80 264
test_post16.22 40137.52 20484.72 264
patchmatchnet-post59.74 36938.41 19079.91 310
GG-mvs-BLEND77.77 8286.68 4950.61 17068.67 33788.45 4968.73 10787.45 14559.15 1090.67 9054.83 22187.67 1792.03 43
MTMP87.27 7615.34 409
gm-plane-assit83.24 10854.21 9470.91 2288.23 12995.25 1466.37 124
test9_res78.72 4985.44 4291.39 63
TEST985.68 5755.42 5687.59 6684.00 14357.72 22172.99 6490.98 6744.87 11488.58 153
test_885.72 5655.31 6187.60 6583.88 14657.84 21972.84 6890.99 6644.99 11088.34 164
agg_prior275.65 6885.11 4691.01 75
agg_prior85.64 6054.92 7583.61 15372.53 7388.10 174
TestCases55.32 35365.08 35637.50 34754.25 37235.45 36633.42 37672.82 3199.98 37759.33 37524.13 37043.84 35769.13 364
test_prior456.39 4087.15 80
test_prior289.04 4361.88 14173.55 5791.46 6348.01 7374.73 7785.46 41
test_prior78.39 7186.35 5154.91 7685.45 9889.70 11890.55 83
旧先验281.73 23045.53 33074.66 4670.48 36358.31 190
新几何281.61 234
新几何173.30 19983.10 11153.48 10671.43 32745.55 32966.14 12787.17 15033.88 25380.54 30048.50 26780.33 8385.88 193
旧先验181.57 15747.48 25671.83 32188.66 11836.94 21578.34 10488.67 133
无先验85.19 12778.00 25949.08 30785.13 25952.78 23987.45 161
原ACMM283.77 174
原ACMM176.13 12484.89 7554.59 8785.26 10851.98 28966.70 11987.07 15240.15 17489.70 11851.23 24985.06 4784.10 218
test22279.36 19750.97 16677.99 28067.84 34842.54 34762.84 17786.53 15930.26 28376.91 11285.23 202
testdata277.81 32845.64 285
segment_acmp44.97 112
testdata67.08 29677.59 23345.46 28769.20 34444.47 33671.50 8588.34 12631.21 27770.76 36252.20 24475.88 12485.03 205
testdata177.55 28364.14 97
test1279.24 4486.89 4756.08 4585.16 11372.27 7747.15 8191.10 7985.93 3690.54 85
plane_prior777.95 22748.46 231
plane_prior678.42 22249.39 20536.04 230
plane_prior582.59 17088.30 16765.46 13372.34 16084.49 212
plane_prior483.28 199
plane_prior348.95 21464.01 10062.15 185
plane_prior285.76 10763.60 109
plane_prior178.31 224
plane_prior49.57 19787.43 6964.57 9172.84 155
n20.00 413
nn0.00 413
door-mid41.31 385
lessismore_v067.98 28964.76 35941.25 33045.75 37836.03 36965.63 35519.29 35384.11 26935.67 32221.24 39378.59 302
LGP-MVS_train72.02 22674.42 28148.60 22480.64 20354.69 26953.75 29083.83 18825.73 31386.98 21060.33 17564.71 22080.48 283
test1184.25 137
door43.27 381
HQP5-MVS51.56 155
HQP-NCC79.02 20688.00 5565.45 7864.48 153
ACMP_Plane79.02 20688.00 5565.45 7864.48 153
BP-MVS66.70 121
HQP4-MVS64.47 15688.61 15284.91 208
HQP3-MVS83.68 14973.12 151
HQP2-MVS37.35 207
NP-MVS78.76 21150.43 17685.12 173
MDTV_nov1_ep13_2view43.62 30671.13 32654.95 26659.29 21836.76 21846.33 28287.32 163
MDTV_nov1_ep1361.56 25381.68 15055.12 6872.41 31578.18 25659.19 19058.85 22769.29 34434.69 24486.16 23436.76 32062.96 244
ACMMP++_ref63.20 240
ACMMP++59.38 265
Test By Simon39.38 181
ITE_SJBPF51.84 35658.03 37431.94 36753.57 37436.67 36141.32 35375.23 29911.17 37551.57 38525.81 36648.04 33972.02 357
DeepMVS_CXcopyleft13.10 38621.34 4108.99 40810.02 41010.59 3987.53 40330.55 3961.82 40414.55 4056.83 4007.52 40115.75 399