This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1493.77 191.10 675.95 377.10 3493.09 2554.15 2895.57 1285.80 885.87 3693.31 11
DVP-MVS++82.44 282.38 482.62 491.77 457.49 1584.98 12788.88 2658.00 20483.60 693.39 1667.21 296.39 481.64 2891.98 493.98 5
DPM-MVS82.39 382.36 582.49 580.12 18159.50 592.24 890.72 969.37 2683.22 894.47 263.81 593.18 3174.02 7993.25 294.80 1
DELS-MVS82.32 482.50 381.79 1186.80 4256.89 2592.77 286.30 7777.83 177.88 3192.13 3960.24 694.78 1978.97 4189.61 793.69 8
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MSP-MVS82.30 583.47 178.80 5082.99 11152.71 12685.04 12488.63 3666.08 6486.77 392.75 3072.05 191.46 6383.35 1793.53 192.23 34
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SED-MVS81.92 681.75 882.44 789.48 1756.89 2592.48 388.94 2457.50 21884.61 494.09 358.81 1196.37 682.28 2387.60 1794.06 3
CNVR-MVS81.76 781.90 781.33 1790.04 1057.70 1291.71 1088.87 2870.31 1977.64 3393.87 752.58 3593.91 2684.17 1287.92 1592.39 30
MVS_030481.58 882.05 680.20 2782.36 12854.70 7691.13 1988.95 2374.49 580.04 2293.64 1152.40 3693.27 3088.85 486.56 3092.61 26
DVP-MVScopyleft81.30 981.00 1282.20 889.40 2057.45 1792.34 589.99 1357.71 21281.91 1393.64 1155.17 2096.44 281.68 2687.13 2092.72 24
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CANet80.90 1081.17 1180.09 3287.62 3754.21 8891.60 1386.47 7373.13 879.89 2393.10 2349.88 5692.98 3284.09 1484.75 4893.08 17
patch_mono-280.84 1181.59 978.62 5790.34 953.77 9588.08 5288.36 4376.17 279.40 2591.09 6055.43 1990.09 10385.01 1080.40 8091.99 43
DeepPCF-MVS69.37 180.65 1281.56 1077.94 7585.46 5849.56 19390.99 2186.66 7170.58 1780.07 2195.30 156.18 1790.97 7882.57 2286.22 3493.28 13
HPM-MVS++copyleft80.50 1380.71 1379.88 3487.34 3955.20 6189.93 2987.55 5866.04 6779.46 2493.00 2853.10 3291.76 5780.40 3489.56 892.68 25
CSCG80.41 1479.72 1482.49 589.12 2557.67 1389.29 4091.54 359.19 18071.82 7790.05 8859.72 996.04 1078.37 4788.40 1393.75 7
PS-MVSNAJ80.06 1579.52 1681.68 1385.58 5560.97 391.69 1187.02 6370.62 1680.75 1893.22 2237.77 18792.50 4282.75 2086.25 3391.57 53
xiu_mvs_v2_base79.86 1679.31 1781.53 1485.03 6760.73 491.65 1286.86 6670.30 2080.77 1793.07 2737.63 19292.28 4782.73 2185.71 3791.57 53
DPE-MVScopyleft79.82 1779.66 1580.29 2589.27 2455.08 6688.70 4687.92 4955.55 24881.21 1693.69 1056.51 1694.27 2278.36 4885.70 3891.51 56
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
NCCC79.57 1879.23 1880.59 2189.50 1556.99 2391.38 1588.17 4567.71 4173.81 5292.75 3046.88 7793.28 2978.79 4484.07 5391.50 57
dcpmvs_279.33 1978.94 1980.49 2289.75 1256.54 3184.83 13383.68 14267.85 3869.36 9590.24 8060.20 792.10 5284.14 1380.40 8092.82 21
SMA-MVScopyleft79.10 2078.76 2080.12 3084.42 7555.87 4587.58 6486.76 6861.48 13880.26 2093.10 2346.53 8292.41 4479.97 3588.77 1092.08 38
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
LFMVS78.52 2177.14 3582.67 389.58 1358.90 791.27 1888.05 4763.22 10974.63 4490.83 6941.38 15494.40 2075.42 6879.90 8994.72 2
APDe-MVScopyleft78.44 2278.20 2379.19 4088.56 2654.55 8289.76 3387.77 5355.91 24378.56 2892.49 3548.20 6392.65 4079.49 3683.04 5790.39 80
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MG-MVS78.42 2376.99 3782.73 293.17 164.46 189.93 2988.51 4164.83 8173.52 5588.09 12548.07 6492.19 4862.24 14784.53 5091.53 55
lupinMVS78.38 2478.11 2579.19 4083.02 10955.24 5891.57 1484.82 11569.12 2776.67 3692.02 4344.82 10890.23 10080.83 3380.09 8492.08 38
EPNet78.36 2578.49 2177.97 7385.49 5752.04 13889.36 3884.07 13573.22 777.03 3591.72 5049.32 6090.17 10273.46 8382.77 5891.69 48
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TSAR-MVS + MP.78.31 2678.26 2278.48 6181.33 15656.31 3781.59 22586.41 7469.61 2481.72 1588.16 12455.09 2288.04 17074.12 7886.31 3291.09 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
canonicalmvs78.17 2777.86 2879.12 4484.30 7754.22 8787.71 5984.57 12467.70 4277.70 3292.11 4250.90 4789.95 10678.18 5177.54 10793.20 15
alignmvs78.08 2877.98 2678.39 6583.53 9253.22 11489.77 3285.45 9166.11 6276.59 3891.99 4554.07 2989.05 12877.34 5677.00 11092.89 20
DeepC-MVS_fast67.50 378.00 2977.63 2979.13 4388.52 2755.12 6389.95 2885.98 8268.31 3071.33 8492.75 3045.52 9590.37 9371.15 9285.14 4491.91 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VNet77.99 3077.92 2778.19 6987.43 3850.12 18190.93 2291.41 467.48 4475.12 4090.15 8646.77 7991.00 7573.52 8278.46 10193.44 9
TSAR-MVS + GP.77.82 3177.59 3078.49 6085.25 6350.27 18090.02 2690.57 1056.58 23774.26 4991.60 5554.26 2692.16 4975.87 6279.91 8893.05 18
casdiffmvs_mvgpermissive77.75 3277.28 3379.16 4280.42 17754.44 8487.76 5885.46 9071.67 1171.38 8388.35 11951.58 4091.22 6879.02 4079.89 9091.83 47
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SF-MVS77.64 3377.42 3278.32 6783.75 8952.47 13186.63 8587.80 5058.78 19274.63 4492.38 3647.75 6891.35 6578.18 5186.85 2591.15 66
PHI-MVS77.49 3477.00 3678.95 4585.33 6150.69 16488.57 4888.59 3958.14 20173.60 5393.31 1943.14 13193.79 2773.81 8088.53 1292.37 31
WTY-MVS77.47 3577.52 3177.30 8788.33 3046.25 26888.46 4990.32 1171.40 1372.32 7391.72 5053.44 3092.37 4566.28 11975.42 12493.28 13
casdiffmvspermissive77.36 3676.85 3878.88 4880.40 17854.66 8087.06 7685.88 8372.11 1071.57 8088.63 11750.89 4990.35 9476.00 6179.11 9691.63 50
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS-test77.20 3777.25 3477.05 9384.60 7249.04 20589.42 3685.83 8565.90 6872.85 6491.98 4745.10 10091.27 6675.02 7184.56 4990.84 72
ETV-MVS77.17 3876.74 3978.48 6181.80 13654.55 8286.13 9385.33 9668.20 3273.10 6090.52 7445.23 9990.66 8679.37 3780.95 7290.22 85
SteuartSystems-ACMMP77.08 3976.33 4479.34 3880.98 16055.31 5689.76 3386.91 6562.94 11371.65 7891.56 5642.33 13892.56 4177.14 5783.69 5590.15 88
Skip Steuart: Steuart Systems R&D Blog.
jason77.01 4076.45 4278.69 5479.69 18654.74 7390.56 2483.99 13868.26 3174.10 5090.91 6642.14 14289.99 10579.30 3879.12 9591.36 61
jason: jason.
train_agg76.91 4176.40 4378.45 6385.68 5155.42 5187.59 6284.00 13657.84 20972.99 6190.98 6344.99 10288.58 14778.19 4985.32 4291.34 63
MVS76.91 4175.48 5281.23 1884.56 7355.21 6080.23 25191.64 258.65 19465.37 13091.48 5845.72 9295.05 1672.11 9089.52 993.44 9
DeepC-MVS67.15 476.90 4376.27 4578.80 5080.70 17055.02 6786.39 8786.71 6966.96 4967.91 10489.97 9048.03 6591.41 6475.60 6584.14 5289.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline76.86 4476.24 4678.71 5380.47 17654.20 9083.90 16084.88 11471.38 1471.51 8189.15 10650.51 5090.55 9075.71 6378.65 9991.39 59
CS-MVS76.77 4576.70 4076.99 9883.55 9148.75 21488.60 4785.18 10466.38 5772.47 7191.62 5445.53 9490.99 7774.48 7482.51 6091.23 64
PAPM76.76 4676.07 4778.81 4980.20 17959.11 686.86 8286.23 7868.60 2970.18 9488.84 11151.57 4187.16 19765.48 12586.68 2890.15 88
MAR-MVS76.76 4675.60 5080.21 2690.87 754.68 7889.14 4189.11 2062.95 11270.54 9292.33 3741.05 15594.95 1757.90 19186.55 3191.00 69
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PVSNet_Blended76.53 4876.54 4176.50 10885.91 4851.83 14488.89 4484.24 13267.82 3969.09 9789.33 10346.70 8088.13 16675.43 6681.48 7189.55 102
ACMMP_NAP76.43 4975.66 4978.73 5281.92 13354.67 7984.06 15685.35 9561.10 14372.99 6191.50 5740.25 16391.00 7576.84 5886.98 2390.51 79
MVS_111021_HR76.39 5075.38 5479.42 3785.33 6156.47 3388.15 5184.97 11165.15 7966.06 12289.88 9143.79 11992.16 4975.03 7080.03 8789.64 100
CHOSEN 1792x268876.24 5174.03 7282.88 183.09 10662.84 285.73 10485.39 9369.79 2264.87 13783.49 18641.52 15393.69 2870.55 9581.82 6792.12 37
SD-MVS76.18 5274.85 6280.18 2885.39 5956.90 2485.75 10282.45 16656.79 23274.48 4791.81 4843.72 12290.75 8474.61 7378.65 9992.91 19
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVScopyleft76.15 5375.68 4877.54 8188.52 2753.44 10587.26 7385.03 11053.79 26574.91 4291.68 5243.80 11890.31 9674.36 7581.82 6788.87 119
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
VDD-MVS76.08 5474.97 6079.44 3684.27 7953.33 11191.13 1985.88 8365.33 7672.37 7289.34 10132.52 25692.76 3877.90 5375.96 11892.22 36
CDPH-MVS76.05 5575.19 5678.62 5786.51 4454.98 6987.32 6884.59 12358.62 19570.75 8990.85 6843.10 13390.63 8870.50 9684.51 5190.24 84
EIA-MVS75.92 5675.18 5778.13 7085.14 6451.60 14987.17 7485.32 9764.69 8268.56 10090.53 7345.79 9191.58 6067.21 11282.18 6491.20 65
test_yl75.85 5774.83 6378.91 4688.08 3451.94 14091.30 1689.28 1757.91 20671.19 8689.20 10442.03 14592.77 3669.41 9975.07 13092.01 41
DCV-MVSNet75.85 5774.83 6378.91 4688.08 3451.94 14091.30 1689.28 1757.91 20671.19 8689.20 10442.03 14592.77 3669.41 9975.07 13092.01 41
MVS_Test75.85 5774.93 6178.62 5784.08 8155.20 6183.99 15885.17 10568.07 3573.38 5782.76 19650.44 5189.00 13165.90 12180.61 7691.64 49
ZNCC-MVS75.82 6075.02 5978.23 6883.88 8753.80 9486.91 8186.05 8159.71 16667.85 10590.55 7242.23 14091.02 7472.66 8885.29 4389.87 97
CLD-MVS75.60 6175.39 5376.24 11280.69 17152.40 13290.69 2386.20 7974.40 665.01 13588.93 10842.05 14490.58 8976.57 5973.96 13685.73 185
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_fmvsm_n_192075.56 6275.54 5175.61 12974.60 26849.51 19681.82 21774.08 29766.52 5580.40 1993.46 1546.95 7689.72 11286.69 575.30 12587.61 147
MP-MVS-pluss75.54 6375.03 5877.04 9481.37 15552.65 12884.34 14784.46 12561.16 14169.14 9691.76 4939.98 17088.99 13378.19 4984.89 4789.48 105
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EC-MVSNet75.30 6475.20 5575.62 12880.98 16049.00 20687.43 6584.68 12163.49 10470.97 8890.15 8642.86 13591.14 7274.33 7681.90 6686.71 166
Effi-MVS+75.24 6573.61 7480.16 2981.92 13357.42 1985.21 11676.71 27460.68 15473.32 5889.34 10147.30 7291.63 5968.28 10679.72 9191.42 58
ET-MVSNet_ETH3D75.23 6674.08 7078.67 5584.52 7455.59 4788.92 4389.21 1968.06 3653.13 28490.22 8249.71 5787.62 18972.12 8970.82 16492.82 21
PAPR75.20 6774.13 6878.41 6488.31 3155.10 6584.31 14885.66 8763.76 9767.55 10690.73 7043.48 12789.40 11966.36 11877.03 10990.73 74
baseline275.15 6874.54 6676.98 9981.67 14351.74 14683.84 16291.94 169.97 2158.98 21186.02 15459.73 891.73 5868.37 10570.40 16987.48 149
diffmvspermissive75.11 6974.65 6576.46 10978.52 21053.35 10983.28 18279.94 20870.51 1871.64 7988.72 11246.02 8886.08 23177.52 5475.75 12289.96 94
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MP-MVScopyleft74.99 7074.33 6776.95 10082.89 11553.05 12085.63 10683.50 14757.86 20867.25 10890.24 8043.38 12888.85 14176.03 6082.23 6388.96 116
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
GST-MVS74.87 7173.90 7377.77 7683.30 9953.45 10485.75 10285.29 9959.22 17966.50 11789.85 9240.94 15690.76 8370.94 9483.35 5689.10 114
fmvsm_s_conf0.5_n74.48 7274.12 6975.56 13176.96 23647.85 24385.32 11469.80 33164.16 8878.74 2693.48 1445.51 9689.29 12186.48 666.62 19689.55 102
3Dnovator64.70 674.46 7372.48 8680.41 2482.84 11755.40 5483.08 18788.61 3867.61 4359.85 19488.66 11334.57 23893.97 2458.42 18188.70 1191.85 46
test_fmvsmconf_n74.41 7474.05 7175.49 13574.16 27448.38 22582.66 19572.57 31067.05 4875.11 4192.88 2946.35 8387.81 17583.93 1571.71 15590.28 83
HFP-MVS74.37 7573.13 8178.10 7184.30 7753.68 9785.58 10784.36 12756.82 23065.78 12690.56 7140.70 16190.90 7969.18 10180.88 7389.71 98
VDDNet74.37 7572.13 9681.09 1979.58 18756.52 3290.02 2686.70 7052.61 27571.23 8587.20 14031.75 26693.96 2574.30 7775.77 12192.79 23
MSLP-MVS++74.21 7772.25 9280.11 3181.45 15356.47 3386.32 8979.65 21658.19 20066.36 11892.29 3836.11 21990.66 8667.39 11082.49 6193.18 16
API-MVS74.17 7872.07 9880.49 2290.02 1158.55 887.30 7084.27 12957.51 21765.77 12787.77 13141.61 15195.97 1151.71 23782.63 5986.94 157
IB-MVS68.87 274.01 7972.03 10179.94 3383.04 10855.50 4990.24 2588.65 3467.14 4661.38 18281.74 21853.21 3194.28 2160.45 16662.41 23890.03 92
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
h-mvs3373.95 8072.89 8277.15 9280.17 18050.37 17484.68 13883.33 14868.08 3371.97 7588.65 11642.50 13691.15 7178.82 4257.78 27989.91 96
HY-MVS67.03 573.90 8173.14 7976.18 11784.70 7147.36 25075.56 28286.36 7666.27 5970.66 9183.91 17851.05 4589.31 12067.10 11372.61 14891.88 45
CostFormer73.89 8272.30 9178.66 5682.36 12856.58 2875.56 28285.30 9866.06 6570.50 9376.88 27157.02 1489.06 12768.27 10768.74 18090.33 82
fmvsm_s_conf0.1_n73.80 8373.26 7675.43 13673.28 28347.80 24484.57 14369.43 33363.34 10678.40 2993.29 2044.73 11189.22 12385.99 766.28 20389.26 107
ACMMPR73.76 8472.61 8377.24 9183.92 8552.96 12385.58 10784.29 12856.82 23065.12 13190.45 7537.24 20390.18 10169.18 10180.84 7488.58 127
region2R73.75 8572.55 8577.33 8583.90 8652.98 12285.54 11084.09 13456.83 22965.10 13290.45 7537.34 20190.24 9968.89 10380.83 7588.77 123
CANet_DTU73.71 8673.14 7975.40 13782.61 12450.05 18284.67 14079.36 22469.72 2375.39 3990.03 8929.41 28085.93 23767.99 10879.11 9690.22 85
test_fmvsmconf0.1_n73.69 8773.15 7775.34 13970.71 31148.26 22982.15 20771.83 31466.75 5174.47 4892.59 3444.89 10587.78 18083.59 1671.35 15989.97 93
fmvsm_s_conf0.5_n_a73.68 8873.15 7775.29 14275.45 25648.05 23683.88 16168.84 33663.43 10578.60 2793.37 1845.32 9788.92 13885.39 964.04 21688.89 118
thisisatest051573.64 8972.20 9477.97 7381.63 14453.01 12186.69 8488.81 3062.53 12064.06 14985.65 15852.15 3992.50 4258.43 17969.84 17288.39 132
MVSFormer73.53 9072.19 9577.57 8083.02 10955.24 5881.63 22281.44 18350.28 29076.67 3690.91 6644.82 10886.11 22660.83 15880.09 8491.36 61
iter_conf0573.51 9172.24 9377.33 8587.93 3655.97 4387.90 5770.81 32468.72 2864.04 15084.36 17247.54 7090.87 8071.11 9367.75 18885.13 195
PVSNet_BlendedMVS73.42 9273.30 7573.76 18085.91 4851.83 14486.18 9284.24 13265.40 7369.09 9780.86 22746.70 8088.13 16675.43 6665.92 20581.33 262
PVSNet_Blended_VisFu73.40 9372.44 8776.30 11081.32 15754.70 7685.81 9878.82 23463.70 9864.53 14285.38 16247.11 7587.38 19467.75 10977.55 10686.81 165
MVSTER73.25 9472.33 8976.01 12285.54 5653.76 9683.52 16787.16 6167.06 4763.88 15581.66 21952.77 3390.44 9164.66 13464.69 21283.84 220
EI-MVSNet-Vis-set73.19 9572.60 8474.99 15182.56 12549.80 18982.55 20089.00 2266.17 6165.89 12588.98 10743.83 11792.29 4665.38 13269.01 17882.87 238
PMMVS72.98 9672.05 9975.78 12683.57 9048.60 21784.08 15482.85 16161.62 13468.24 10290.33 7928.35 28487.78 18072.71 8776.69 11290.95 70
XVS72.92 9771.62 10376.81 10283.41 9452.48 12984.88 13183.20 15458.03 20263.91 15389.63 9635.50 22689.78 10965.50 12380.50 7888.16 133
test250672.91 9872.43 8874.32 16380.12 18144.18 29383.19 18484.77 11864.02 9065.97 12387.43 13747.67 6988.72 14259.08 17279.66 9290.08 90
TESTMET0.1,172.86 9972.33 8974.46 15781.98 13250.77 16285.13 11985.47 8966.09 6367.30 10783.69 18337.27 20283.57 26665.06 13378.97 9889.05 115
fmvsm_s_conf0.1_n_a72.82 10072.05 9975.12 14770.95 31047.97 23982.72 19468.43 33862.52 12178.17 3093.08 2644.21 11488.86 13984.82 1163.54 22288.54 129
Fast-Effi-MVS+72.73 10171.15 11277.48 8282.75 11954.76 7286.77 8380.64 19663.05 11165.93 12484.01 17644.42 11389.03 12956.45 20776.36 11788.64 125
MTAPA72.73 10171.22 11077.27 8981.54 15053.57 9967.06 33481.31 18559.41 17368.39 10190.96 6536.07 22189.01 13073.80 8182.45 6289.23 109
PGM-MVS72.60 10371.20 11176.80 10582.95 11252.82 12583.07 18882.14 16856.51 23863.18 16289.81 9335.68 22589.76 11167.30 11180.19 8387.83 141
HPM-MVScopyleft72.60 10371.50 10575.89 12482.02 13151.42 15480.70 24483.05 15656.12 24264.03 15189.53 9737.55 19588.37 15570.48 9780.04 8687.88 140
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS72.59 10571.46 10676.00 12382.93 11452.32 13586.93 8082.48 16555.15 25263.65 15790.44 7835.03 23488.53 15168.69 10477.83 10587.15 155
baseline172.51 10672.12 9773.69 18385.05 6544.46 28783.51 17186.13 8071.61 1264.64 13987.97 12855.00 2389.48 11759.07 17356.05 29287.13 156
EI-MVSNet-UG-set72.37 10771.73 10274.29 16481.60 14649.29 20081.85 21588.64 3565.29 7865.05 13388.29 12243.18 12991.83 5663.74 13767.97 18581.75 249
MS-PatchMatch72.34 10871.26 10975.61 12982.38 12755.55 4888.00 5389.95 1465.38 7456.51 25680.74 22932.28 25992.89 3357.95 19088.10 1478.39 297
HQP-MVS72.34 10871.44 10775.03 14979.02 19751.56 15088.00 5383.68 14265.45 7064.48 14385.13 16337.35 19988.62 14566.70 11473.12 14284.91 199
mvs_anonymous72.29 11070.74 11576.94 10182.85 11654.72 7578.43 26881.54 18163.77 9661.69 17979.32 23951.11 4485.31 24462.15 14975.79 12090.79 73
3Dnovator+62.71 772.29 11070.50 11977.65 7983.40 9751.29 15887.32 6886.40 7559.01 18758.49 22488.32 12132.40 25791.27 6657.04 20082.15 6590.38 81
nrg03072.27 11271.56 10474.42 15975.93 25050.60 16686.97 7883.21 15362.75 11567.15 10984.38 17050.07 5386.66 21271.19 9162.37 23985.99 179
VPNet72.07 11371.42 10874.04 17078.64 20847.17 25589.91 3187.97 4872.56 964.66 13885.04 16541.83 14988.33 15961.17 15660.97 24586.62 167
DP-MVS Recon71.99 11470.31 12477.01 9690.65 853.44 10589.37 3782.97 15956.33 24063.56 16089.47 9834.02 24292.15 5154.05 22072.41 14985.43 192
test_fmvsmconf0.01_n71.97 11570.95 11475.04 14866.21 33747.87 24280.35 24870.08 32865.85 6972.69 6691.68 5239.99 16987.67 18482.03 2569.66 17489.58 101
SDMVSNet71.89 11670.62 11875.70 12781.70 14051.61 14873.89 29488.72 3366.58 5261.64 18082.38 20937.63 19289.48 11777.44 5565.60 20686.01 177
QAPM71.88 11769.33 14179.52 3582.20 13054.30 8686.30 9088.77 3156.61 23659.72 19687.48 13533.90 24495.36 1347.48 26581.49 7088.90 117
ECVR-MVScopyleft71.81 11871.00 11374.26 16580.12 18143.49 29884.69 13782.16 16764.02 9064.64 13987.43 13735.04 23389.21 12461.24 15579.66 9290.08 90
PAPM_NR71.80 11969.98 13177.26 9081.54 15053.34 11078.60 26785.25 10253.46 26860.53 19088.66 11345.69 9389.24 12256.49 20479.62 9489.19 111
mPP-MVS71.79 12070.38 12276.04 12182.65 12352.06 13784.45 14481.78 17855.59 24762.05 17789.68 9533.48 24888.28 16365.45 12878.24 10487.77 143
xiu_mvs_v1_base_debu71.60 12170.29 12575.55 13277.26 23053.15 11585.34 11179.37 22155.83 24472.54 6790.19 8322.38 32786.66 21273.28 8476.39 11486.85 161
xiu_mvs_v1_base71.60 12170.29 12575.55 13277.26 23053.15 11585.34 11179.37 22155.83 24472.54 6790.19 8322.38 32786.66 21273.28 8476.39 11486.85 161
xiu_mvs_v1_base_debi71.60 12170.29 12575.55 13277.26 23053.15 11585.34 11179.37 22155.83 24472.54 6790.19 8322.38 32786.66 21273.28 8476.39 11486.85 161
iter_conf_final71.46 12469.68 13576.81 10286.03 4653.49 10084.73 13574.37 29460.27 15966.28 11984.36 17235.14 23190.87 8065.41 13070.51 16786.05 176
hse-mvs271.44 12570.68 11673.73 18276.34 24147.44 24979.45 26079.47 22068.08 3371.97 7586.01 15642.50 13686.93 20578.82 4253.46 31686.83 164
test_fmvsmvis_n_192071.29 12670.38 12274.00 17271.04 30948.79 21379.19 26364.62 34662.75 11566.73 11091.99 4540.94 15688.35 15783.00 1873.18 14184.85 201
EPP-MVSNet71.14 12770.07 13074.33 16279.18 19446.52 26183.81 16386.49 7256.32 24157.95 23084.90 16854.23 2789.14 12658.14 18669.65 17587.33 152
VPA-MVSNet71.12 12870.66 11772.49 20678.75 20344.43 28987.64 6090.02 1263.97 9365.02 13481.58 22142.14 14287.42 19363.42 13963.38 22785.63 189
131471.11 12969.41 13876.22 11379.32 19150.49 16980.23 25185.14 10859.44 17258.93 21388.89 11033.83 24689.60 11661.49 15377.42 10888.57 128
test111171.06 13070.42 12172.97 19679.48 18841.49 31984.82 13482.74 16264.20 8762.98 16587.43 13735.20 22987.92 17258.54 17878.42 10289.49 104
tpmrst71.04 13169.77 13374.86 15283.19 10355.86 4675.64 28178.73 23867.88 3764.99 13673.73 30049.96 5579.56 30365.92 12067.85 18789.14 113
MVP-Stereo70.97 13270.44 12072.59 20376.03 24951.36 15585.02 12686.99 6460.31 15856.53 25578.92 24540.11 16790.00 10460.00 17090.01 676.41 319
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HQP_MVS70.96 13369.91 13274.12 16877.95 21849.57 19185.76 10082.59 16363.60 10162.15 17583.28 19036.04 22288.30 16165.46 12672.34 15084.49 203
SR-MVS70.92 13469.73 13474.50 15683.38 9850.48 17084.27 14979.35 22548.96 30066.57 11690.45 7533.65 24787.11 19866.42 11674.56 13385.91 182
tpm270.82 13568.44 15077.98 7280.78 16856.11 3974.21 29381.28 18760.24 16068.04 10375.27 28952.26 3888.50 15255.82 21168.03 18489.33 106
ACMMPcopyleft70.81 13669.29 14275.39 13881.52 15251.92 14283.43 17483.03 15756.67 23558.80 21888.91 10931.92 26488.58 14765.89 12273.39 14085.67 186
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
OPM-MVS70.75 13769.58 13674.26 16575.55 25551.34 15686.05 9583.29 15261.94 13062.95 16685.77 15734.15 24188.44 15365.44 12971.07 16182.99 235
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ab-mvs70.65 13869.11 14475.29 14280.87 16646.23 26973.48 29885.24 10359.99 16266.65 11280.94 22643.13 13288.69 14363.58 13868.07 18390.95 70
Vis-MVSNetpermissive70.61 13969.34 14074.42 15980.95 16548.49 22286.03 9677.51 25958.74 19365.55 12987.78 13034.37 23985.95 23652.53 23580.61 7688.80 121
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
sss70.49 14070.13 12971.58 23181.59 14739.02 33080.78 24384.71 12059.34 17566.61 11488.09 12537.17 20485.52 24061.82 15271.02 16290.20 87
CDS-MVSNet70.48 14169.43 13773.64 18477.56 22548.83 21283.51 17177.45 26063.27 10862.33 17285.54 16143.85 11683.29 27057.38 19974.00 13588.79 122
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
thisisatest053070.47 14268.56 14876.20 11579.78 18551.52 15283.49 17388.58 4057.62 21558.60 22082.79 19551.03 4691.48 6252.84 22962.36 24085.59 190
XXY-MVS70.18 14369.28 14372.89 19977.64 22242.88 30685.06 12387.50 5962.58 11962.66 17082.34 21143.64 12489.83 10858.42 18163.70 22185.96 181
Anonymous20240521170.11 14467.88 15976.79 10687.20 4047.24 25489.49 3577.38 26254.88 25766.14 12086.84 14520.93 33791.54 6156.45 20771.62 15691.59 51
PCF-MVS61.03 1070.10 14568.40 15175.22 14677.15 23451.99 13979.30 26282.12 16956.47 23961.88 17886.48 15243.98 11587.24 19655.37 21272.79 14786.43 171
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-RMVSNet70.08 14668.01 15676.27 11184.21 8051.22 16087.29 7179.33 22758.96 18963.63 15886.77 14633.29 25090.30 9844.63 28173.96 13687.30 154
1112_ss70.05 14769.37 13972.10 21380.77 16942.78 30785.12 12276.75 27259.69 16761.19 18492.12 4047.48 7183.84 26153.04 22768.21 18289.66 99
BH-w/o70.02 14868.51 14974.56 15582.77 11850.39 17386.60 8678.14 24959.77 16559.65 19785.57 16039.27 17587.30 19549.86 24874.94 13285.99 179
FIs70.00 14970.24 12869.30 26377.93 22038.55 33383.99 15887.72 5566.86 5057.66 23784.17 17552.28 3785.31 24452.72 23468.80 17984.02 211
OpenMVScopyleft61.00 1169.99 15067.55 16877.30 8778.37 21454.07 9284.36 14685.76 8657.22 22356.71 25287.67 13330.79 27292.83 3543.04 28884.06 5485.01 197
GeoE69.96 15167.88 15976.22 11381.11 15951.71 14784.15 15276.74 27359.83 16460.91 18584.38 17041.56 15288.10 16851.67 23870.57 16688.84 120
HyFIR lowres test69.94 15267.58 16677.04 9477.11 23557.29 2081.49 23079.11 23058.27 19958.86 21680.41 23042.33 13886.96 20361.91 15068.68 18186.87 159
114514_t69.87 15367.88 15975.85 12588.38 2952.35 13486.94 7983.68 14253.70 26655.68 26285.60 15930.07 27791.20 6955.84 21071.02 16283.99 213
miper_enhance_ethall69.77 15468.90 14672.38 20978.93 20049.91 18583.29 18178.85 23264.90 8059.37 20479.46 23752.77 3385.16 24963.78 13658.72 26182.08 244
Anonymous2024052969.71 15567.28 17377.00 9783.78 8850.36 17588.87 4585.10 10947.22 30864.03 15183.37 18827.93 28892.10 5257.78 19467.44 19088.53 130
TR-MVS69.71 15567.85 16275.27 14482.94 11348.48 22387.40 6780.86 19357.15 22564.61 14187.08 14232.67 25589.64 11546.38 27271.55 15887.68 146
EI-MVSNet69.70 15768.70 14772.68 20175.00 26248.90 21079.54 25787.16 6161.05 14463.88 15583.74 18145.87 8990.44 9157.42 19864.68 21378.70 290
test-LLR69.65 15869.01 14571.60 22978.67 20548.17 23185.13 11979.72 21359.18 18263.13 16382.58 20336.91 20880.24 29460.56 16275.17 12786.39 172
APD-MVS_3200maxsize69.62 15968.23 15473.80 17981.58 14848.22 23081.91 21379.50 21948.21 30364.24 14889.75 9431.91 26587.55 19163.08 14173.85 13885.64 188
v2v48269.55 16067.64 16575.26 14572.32 29653.83 9384.93 13081.94 17265.37 7560.80 18779.25 24141.62 15088.98 13463.03 14259.51 25482.98 236
TAMVS69.51 16168.16 15573.56 18776.30 24448.71 21682.57 19877.17 26562.10 12661.32 18384.23 17441.90 14783.46 26854.80 21673.09 14488.50 131
PVSNet62.49 869.27 16267.81 16373.64 18484.41 7651.85 14384.63 14177.80 25366.42 5659.80 19584.95 16722.14 33280.44 29255.03 21375.11 12988.62 126
MVS_111021_LR69.07 16367.91 15772.54 20477.27 22949.56 19379.77 25573.96 30059.33 17760.73 18887.82 12930.19 27681.53 27869.94 9872.19 15286.53 168
GA-MVS69.04 16466.70 18276.06 12075.11 25852.36 13383.12 18680.23 20363.32 10760.65 18979.22 24230.98 27188.37 15561.25 15466.41 19987.46 150
cascas69.01 16566.13 19477.66 7879.36 18955.41 5386.99 7783.75 14156.69 23458.92 21481.35 22324.31 31692.10 5253.23 22470.61 16585.46 191
FA-MVS(test-final)69.00 16666.60 18576.19 11683.48 9347.96 24174.73 28982.07 17057.27 22262.18 17478.47 24936.09 22092.89 3353.76 22371.32 16087.73 144
cl2268.85 16767.69 16472.35 21078.07 21749.98 18482.45 20378.48 24462.50 12258.46 22577.95 25149.99 5485.17 24862.55 14458.72 26181.90 247
FMVSNet368.84 16867.40 17173.19 19285.05 6548.53 22085.71 10585.36 9460.90 15057.58 23979.15 24342.16 14186.77 20847.25 26763.40 22484.27 207
UniMVSNet_NR-MVSNet68.82 16968.29 15370.40 24975.71 25342.59 30984.23 15086.78 6766.31 5858.51 22182.45 20651.57 4184.64 25753.11 22555.96 29383.96 217
v114468.81 17066.82 17874.80 15372.34 29553.46 10284.68 13881.77 17964.25 8660.28 19177.91 25240.23 16488.95 13560.37 16759.52 25381.97 245
IS-MVSNet68.80 17167.55 16872.54 20478.50 21143.43 30081.03 23679.35 22559.12 18557.27 24786.71 14746.05 8787.70 18344.32 28375.60 12386.49 169
PS-MVSNAJss68.78 17267.17 17573.62 18673.01 28648.33 22884.95 12984.81 11659.30 17858.91 21579.84 23537.77 18788.86 13962.83 14363.12 23383.67 223
thres20068.71 17367.27 17473.02 19484.73 7046.76 25885.03 12587.73 5462.34 12459.87 19383.45 18743.15 13088.32 16031.25 33667.91 18683.98 215
UGNet68.71 17367.11 17673.50 18880.55 17547.61 24684.08 15478.51 24359.45 17165.68 12882.73 19923.78 31885.08 25152.80 23076.40 11387.80 142
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
miper_ehance_all_eth68.70 17567.58 16672.08 21476.91 23749.48 19782.47 20278.45 24562.68 11758.28 22977.88 25350.90 4785.01 25261.91 15058.72 26181.75 249
test_vis1_n_192068.59 17668.31 15269.44 26269.16 32241.51 31884.63 14168.58 33758.80 19173.26 5988.37 11825.30 30780.60 28979.10 3967.55 18986.23 174
EPMVS68.45 17765.44 21377.47 8384.91 6856.17 3871.89 31481.91 17561.72 13360.85 18672.49 31436.21 21887.06 20047.32 26671.62 15689.17 112
test-mter68.36 17867.29 17271.60 22978.67 20548.17 23185.13 11979.72 21353.38 26963.13 16382.58 20327.23 29480.24 29460.56 16275.17 12786.39 172
tpm68.36 17867.48 17070.97 24179.93 18451.34 15676.58 27978.75 23767.73 4063.54 16174.86 29148.33 6272.36 34853.93 22163.71 22089.21 110
tttt051768.33 18066.29 19074.46 15778.08 21649.06 20280.88 24189.08 2154.40 26254.75 27080.77 22851.31 4390.33 9549.35 25258.01 27383.99 213
BH-untuned68.28 18166.40 18773.91 17481.62 14550.01 18385.56 10977.39 26157.63 21457.47 24483.69 18336.36 21787.08 19944.81 27973.08 14584.65 202
SR-MVS-dyc-post68.27 18266.87 17772.48 20780.96 16248.14 23381.54 22676.98 26846.42 31562.75 16889.42 9931.17 27086.09 23060.52 16472.06 15383.19 231
v14868.24 18366.35 18873.88 17571.76 29951.47 15384.23 15081.90 17663.69 9958.94 21276.44 27643.72 12287.78 18060.63 16055.86 29582.39 242
AUN-MVS68.20 18466.35 18873.76 18076.37 24047.45 24879.52 25979.52 21860.98 14662.34 17186.02 15436.59 21686.94 20462.32 14653.47 31586.89 158
c3_l67.97 18566.66 18371.91 22576.20 24649.31 19982.13 20978.00 25161.99 12857.64 23876.94 26849.41 5884.93 25360.62 16157.01 28381.49 253
v119267.96 18665.74 20574.63 15471.79 29853.43 10784.06 15680.99 19263.19 11059.56 20077.46 25937.50 19888.65 14458.20 18558.93 26081.79 248
v14419267.86 18765.76 20474.16 16771.68 30053.09 11884.14 15380.83 19462.85 11459.21 20977.28 26239.30 17488.00 17158.67 17757.88 27781.40 259
HPM-MVS_fast67.86 18766.28 19172.61 20280.67 17248.34 22781.18 23475.95 28350.81 28859.55 20188.05 12727.86 28985.98 23358.83 17573.58 13983.51 224
AdaColmapbinary67.86 18765.48 21075.00 15088.15 3354.99 6886.10 9476.63 27649.30 29757.80 23386.65 14929.39 28188.94 13745.10 27870.21 17081.06 266
sd_testset67.79 19065.95 19973.32 18981.70 14046.33 26668.99 32680.30 20266.58 5261.64 18082.38 20930.45 27487.63 18755.86 20965.60 20686.01 177
UniMVSNet (Re)67.71 19166.80 17970.45 24774.44 26942.93 30582.42 20484.90 11363.69 9959.63 19880.99 22547.18 7385.23 24751.17 24256.75 28483.19 231
V4267.66 19265.60 20973.86 17670.69 31353.63 9881.50 22878.61 24163.85 9559.49 20377.49 25837.98 18487.65 18562.33 14558.43 26480.29 276
dmvs_re67.61 19366.00 19772.42 20881.86 13543.45 29964.67 33980.00 20669.56 2560.07 19285.00 16634.71 23687.63 18751.48 23966.68 19486.17 175
WR-MVS67.58 19466.76 18070.04 25675.92 25145.06 28586.23 9185.28 10064.31 8558.50 22381.00 22444.80 11082.00 27749.21 25455.57 29883.06 234
tfpn200view967.57 19566.13 19471.89 22684.05 8245.07 28283.40 17687.71 5660.79 15157.79 23482.76 19643.53 12587.80 17728.80 34366.36 20082.78 240
FMVSNet267.57 19565.79 20372.90 19782.71 12047.97 23985.15 11884.93 11258.55 19656.71 25278.26 25036.72 21386.67 21146.15 27462.94 23584.07 210
FC-MVSNet-test67.49 19767.91 15766.21 29576.06 24733.06 35280.82 24287.18 6064.44 8454.81 26882.87 19350.40 5282.60 27248.05 26266.55 19882.98 236
v192192067.45 19865.23 21774.10 16971.51 30352.90 12483.75 16580.44 19962.48 12359.12 21077.13 26336.98 20687.90 17357.53 19658.14 27181.49 253
cl____67.43 19965.93 20071.95 22276.33 24248.02 23782.58 19779.12 22961.30 14056.72 25176.92 26946.12 8586.44 21957.98 18856.31 28781.38 261
DIV-MVS_self_test67.43 19965.93 20071.94 22376.33 24248.01 23882.57 19879.11 23061.31 13956.73 25076.92 26946.09 8686.43 22057.98 18856.31 28781.39 260
gg-mvs-nofinetune67.43 19964.53 22576.13 11885.95 4747.79 24564.38 34088.28 4439.34 34366.62 11341.27 37758.69 1389.00 13149.64 25086.62 2991.59 51
thres40067.40 20266.13 19471.19 23784.05 8245.07 28283.40 17687.71 5660.79 15157.79 23482.76 19643.53 12587.80 17728.80 34366.36 20080.71 271
UA-Net67.32 20366.23 19270.59 24578.85 20141.23 32273.60 29675.45 28761.54 13666.61 11484.53 16938.73 18086.57 21742.48 29374.24 13483.98 215
v867.25 20464.99 22074.04 17072.89 28953.31 11282.37 20580.11 20561.54 13654.29 27576.02 28542.89 13488.41 15458.43 17956.36 28580.39 275
NR-MVSNet67.25 20465.99 19871.04 24073.27 28443.91 29485.32 11484.75 11966.05 6653.65 28282.11 21445.05 10185.97 23547.55 26456.18 29083.24 229
Test_1112_low_res67.18 20666.23 19270.02 25778.75 20341.02 32383.43 17473.69 30257.29 22158.45 22682.39 20845.30 9880.88 28450.50 24466.26 20488.16 133
CPTT-MVS67.15 20765.84 20271.07 23980.96 16250.32 17781.94 21274.10 29646.18 31857.91 23187.64 13429.57 27981.31 28064.10 13570.18 17181.56 252
test_cas_vis1_n_192067.10 20866.60 18568.59 27565.17 34543.23 30283.23 18369.84 33055.34 25170.67 9087.71 13224.70 31476.66 32878.57 4664.20 21585.89 183
GBi-Net67.09 20965.47 21171.96 21982.71 12046.36 26383.52 16783.31 14958.55 19657.58 23976.23 28036.72 21386.20 22247.25 26763.40 22483.32 226
test167.09 20965.47 21171.96 21982.71 12046.36 26383.52 16783.31 14958.55 19657.58 23976.23 28036.72 21386.20 22247.25 26763.40 22483.32 226
PatchmatchNetpermissive67.07 21163.63 23177.40 8483.10 10458.03 972.11 31277.77 25458.85 19059.37 20470.83 32737.84 18684.93 25342.96 28969.83 17389.26 107
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v124066.99 21264.68 22373.93 17371.38 30652.66 12783.39 17879.98 20761.97 12958.44 22777.11 26435.25 22887.81 17556.46 20658.15 26981.33 262
eth_miper_zixun_eth66.98 21365.28 21672.06 21575.61 25450.40 17281.00 23776.97 27162.00 12756.99 24976.97 26744.84 10785.58 23958.75 17654.42 30780.21 277
TranMVSNet+NR-MVSNet66.94 21465.61 20870.93 24273.45 28043.38 30183.02 19084.25 13065.31 7758.33 22881.90 21739.92 17185.52 24049.43 25154.89 30383.89 219
mvsmamba66.93 21564.88 22273.09 19375.06 26047.26 25283.36 18069.21 33462.64 11855.68 26281.43 22229.72 27889.20 12563.35 14063.50 22382.79 239
thres100view90066.87 21665.42 21471.24 23583.29 10043.15 30381.67 22187.78 5159.04 18655.92 26082.18 21343.73 12087.80 17728.80 34366.36 20082.78 240
DU-MVS66.84 21765.74 20570.16 25273.27 28442.59 30981.50 22882.92 16063.53 10358.51 22182.11 21440.75 15884.64 25753.11 22555.96 29383.24 229
IterMVS-LS66.63 21865.36 21570.42 24875.10 25948.90 21081.45 23176.69 27561.05 14455.71 26177.10 26545.86 9083.65 26557.44 19757.88 27778.70 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v1066.61 21964.20 22873.83 17872.59 29253.37 10881.88 21479.91 21061.11 14254.09 27775.60 28740.06 16888.26 16456.47 20556.10 29179.86 281
Fast-Effi-MVS+-dtu66.53 22064.10 22973.84 17772.41 29452.30 13684.73 13575.66 28459.51 17056.34 25779.11 24428.11 28685.85 23857.74 19563.29 22883.35 225
thres600view766.46 22165.12 21870.47 24683.41 9443.80 29682.15 20787.78 5159.37 17456.02 25982.21 21243.73 12086.90 20626.51 35564.94 20980.71 271
LPG-MVS_test66.44 22264.58 22472.02 21674.42 27048.60 21783.07 18880.64 19654.69 25953.75 28083.83 17925.73 30586.98 20160.33 16864.71 21080.48 273
tpm cat166.28 22362.78 23376.77 10781.40 15457.14 2270.03 32177.19 26453.00 27258.76 21970.73 33046.17 8486.73 21043.27 28764.46 21486.44 170
EPNet_dtu66.25 22466.71 18164.87 30578.66 20734.12 34782.80 19375.51 28561.75 13264.47 14686.90 14437.06 20572.46 34743.65 28669.63 17688.02 139
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Effi-MVS+-dtu66.24 22564.96 22170.08 25475.17 25749.64 19082.01 21074.48 29362.15 12557.83 23276.08 28430.59 27383.79 26265.40 13160.93 24676.81 312
ACMP61.11 966.24 22564.33 22672.00 21874.89 26449.12 20183.18 18579.83 21155.41 25052.29 29082.68 20025.83 30386.10 22860.89 15763.94 21980.78 269
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2023121166.08 22763.67 23073.31 19083.07 10748.75 21486.01 9784.67 12245.27 32256.54 25476.67 27428.06 28788.95 13552.78 23159.95 24882.23 243
OMC-MVS65.97 22865.06 21968.71 27272.97 28742.58 31178.61 26675.35 28854.72 25859.31 20686.25 15333.30 24977.88 31757.99 18767.05 19285.66 187
X-MVStestdata65.85 22962.20 23776.81 10283.41 9452.48 12984.88 13183.20 15458.03 20263.91 1534.82 39635.50 22689.78 10965.50 12380.50 7888.16 133
Vis-MVSNet (Re-imp)65.52 23065.63 20765.17 30377.49 22630.54 35975.49 28577.73 25559.34 17552.26 29286.69 14849.38 5980.53 29137.07 30775.28 12684.42 205
Baseline_NR-MVSNet65.49 23164.27 22769.13 26474.37 27241.65 31683.39 17878.85 23259.56 16959.62 19976.88 27140.75 15887.44 19249.99 24655.05 30178.28 299
FMVSNet164.57 23262.11 23871.96 21977.32 22846.36 26383.52 16783.31 14952.43 27754.42 27376.23 28027.80 29086.20 22242.59 29261.34 24483.32 226
dp64.41 23361.58 24172.90 19782.40 12654.09 9172.53 30476.59 27760.39 15755.68 26270.39 33135.18 23076.90 32639.34 29961.71 24287.73 144
ACMM58.35 1264.35 23462.01 23971.38 23374.21 27348.51 22182.25 20679.66 21547.61 30654.54 27280.11 23125.26 30886.00 23251.26 24063.16 23179.64 282
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FE-MVS64.15 23560.43 25675.30 14180.85 16749.86 18768.28 33078.37 24650.26 29359.31 20673.79 29926.19 30191.92 5540.19 29666.67 19584.12 208
pm-mvs164.12 23662.56 23468.78 27071.68 30038.87 33182.89 19281.57 18055.54 24953.89 27977.82 25437.73 19086.74 20948.46 26053.49 31480.72 270
miper_lstm_enhance63.91 23762.30 23668.75 27175.06 26046.78 25769.02 32581.14 18859.68 16852.76 28772.39 31740.71 16077.99 31556.81 20353.09 31781.48 255
SCA63.84 23860.01 26075.32 14078.58 20957.92 1061.61 35077.53 25856.71 23357.75 23670.77 32831.97 26279.91 30048.80 25656.36 28588.13 136
test_djsdf63.84 23861.56 24270.70 24468.78 32444.69 28681.63 22281.44 18350.28 29052.27 29176.26 27926.72 29786.11 22660.83 15855.84 29681.29 265
IterMVS63.77 24061.67 24070.08 25472.68 29151.24 15980.44 24675.51 28560.51 15651.41 29573.70 30332.08 26178.91 30554.30 21854.35 30880.08 279
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
RRT_MVS63.68 24161.01 25071.70 22773.48 27945.98 27181.19 23376.08 28154.33 26352.84 28679.27 24022.21 33087.65 18554.13 21955.54 29981.46 256
myMVS_eth3d63.52 24263.56 23263.40 31281.73 13834.28 34580.97 23881.02 19060.93 14855.06 26682.64 20148.00 6780.81 28523.42 36558.32 26575.10 329
D2MVS63.49 24361.39 24469.77 25869.29 32148.93 20978.89 26577.71 25660.64 15549.70 30572.10 32227.08 29583.48 26754.48 21762.65 23676.90 311
tt080563.39 24461.31 24669.64 25969.36 32038.87 33178.00 26985.48 8848.82 30155.66 26581.66 21924.38 31586.37 22149.04 25559.36 25783.68 222
pmmvs463.34 24561.07 24970.16 25270.14 31550.53 16879.97 25471.41 32155.08 25354.12 27678.58 24732.79 25482.09 27650.33 24557.22 28277.86 303
jajsoiax63.21 24660.84 25170.32 25068.33 32944.45 28881.23 23281.05 18953.37 27050.96 30077.81 25517.49 35185.49 24259.31 17158.05 27281.02 267
MIMVSNet63.12 24760.29 25771.61 22875.92 25146.65 25965.15 33681.94 17259.14 18454.65 27169.47 33425.74 30480.63 28841.03 29569.56 17787.55 148
CL-MVSNet_self_test62.98 24861.14 24868.50 27765.86 34042.96 30484.37 14582.98 15860.98 14653.95 27872.70 31340.43 16283.71 26441.10 29447.93 33178.83 289
mvs_tets62.96 24960.55 25370.19 25168.22 33244.24 29280.90 24080.74 19552.99 27350.82 30277.56 25616.74 35585.44 24359.04 17457.94 27480.89 268
TransMVSNet (Re)62.82 25060.76 25269.02 26573.98 27641.61 31786.36 8879.30 22856.90 22752.53 28876.44 27641.85 14887.60 19038.83 30040.61 35577.86 303
pmmvs562.80 25161.18 24767.66 28269.53 31942.37 31482.65 19675.19 28954.30 26452.03 29378.51 24831.64 26780.67 28748.60 25858.15 26979.95 280
test0.0.03 162.54 25262.44 23562.86 31672.28 29729.51 36782.93 19178.78 23559.18 18253.07 28582.41 20736.91 20877.39 32137.45 30358.96 25981.66 251
UniMVSNet_ETH3D62.51 25360.49 25468.57 27668.30 33040.88 32573.89 29479.93 20951.81 28354.77 26979.61 23624.80 31281.10 28149.93 24761.35 24383.73 221
v7n62.50 25459.27 26572.20 21267.25 33549.83 18877.87 27180.12 20452.50 27648.80 31073.07 30832.10 26087.90 17346.83 27054.92 30278.86 288
CR-MVSNet62.47 25559.04 26772.77 20073.97 27756.57 2960.52 35371.72 31660.04 16157.49 24265.86 34438.94 17780.31 29342.86 29059.93 24981.42 257
tpmvs62.45 25659.42 26371.53 23283.93 8454.32 8570.03 32177.61 25751.91 28053.48 28368.29 33837.91 18586.66 21233.36 32658.27 26773.62 339
EG-PatchMatch MVS62.40 25759.59 26170.81 24373.29 28249.05 20385.81 9884.78 11751.85 28244.19 33073.48 30615.52 36089.85 10740.16 29767.24 19173.54 340
XVG-OURS-SEG-HR62.02 25859.54 26269.46 26165.30 34345.88 27265.06 33773.57 30446.45 31457.42 24583.35 18926.95 29678.09 31153.77 22264.03 21784.42 205
XVG-OURS61.88 25959.34 26469.49 26065.37 34246.27 26764.80 33873.49 30547.04 31057.41 24682.85 19425.15 30978.18 30953.00 22864.98 20884.01 212
TAPA-MVS56.12 1461.82 26060.18 25966.71 29178.48 21237.97 33675.19 28776.41 27946.82 31157.04 24886.52 15127.67 29277.03 32326.50 35667.02 19385.14 194
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Syy-MVS61.51 26161.35 24562.00 31981.73 13830.09 36280.97 23881.02 19060.93 14855.06 26682.64 20135.09 23280.81 28516.40 38058.32 26575.10 329
tfpnnormal61.47 26259.09 26668.62 27476.29 24541.69 31581.14 23585.16 10654.48 26151.32 29673.63 30432.32 25886.89 20721.78 36955.71 29777.29 309
PVSNet_057.04 1361.19 26357.24 27673.02 19477.45 22750.31 17879.43 26177.36 26363.96 9447.51 31972.45 31625.03 31083.78 26352.76 23319.22 38684.96 198
PLCcopyleft52.38 1860.89 26458.97 26866.68 29381.77 13745.70 27678.96 26474.04 29943.66 33347.63 31683.19 19223.52 32177.78 32037.47 30260.46 24776.55 318
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CVMVSNet60.85 26560.44 25562.07 31775.00 26232.73 35479.54 25773.49 30536.98 35156.28 25883.74 18129.28 28269.53 35646.48 27163.23 22983.94 218
CNLPA60.59 26658.44 27067.05 28879.21 19347.26 25279.75 25664.34 34842.46 33951.90 29483.94 17727.79 29175.41 33337.12 30559.49 25578.47 294
anonymousdsp60.46 26757.65 27368.88 26663.63 35345.09 28172.93 30278.63 24046.52 31351.12 29772.80 31221.46 33583.07 27157.79 19353.97 30978.47 294
testing359.97 26860.19 25859.32 33177.60 22330.01 36481.75 21981.79 17753.54 26750.34 30379.94 23248.99 6176.91 32417.19 37850.59 32471.03 354
ACMH53.70 1659.78 26955.94 28871.28 23476.59 23948.35 22680.15 25376.11 28049.74 29541.91 34173.45 30716.50 35790.31 9631.42 33457.63 28075.17 327
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
bld_raw_dy_0_6459.75 27057.01 28067.96 28066.73 33645.30 27977.59 27359.97 35650.49 28947.15 32177.03 26617.45 35279.06 30456.92 20259.76 25279.51 283
pmmvs659.64 27157.15 27767.09 28666.01 33836.86 34080.50 24578.64 23945.05 32449.05 30873.94 29827.28 29386.10 22843.96 28549.94 32678.31 298
MSDG59.44 27255.14 29272.32 21174.69 26550.71 16374.39 29273.58 30344.44 32843.40 33577.52 25719.45 34190.87 8031.31 33557.49 28175.38 325
RPMNet59.29 27354.25 29674.42 15973.97 27756.57 2960.52 35376.98 26835.72 35557.49 24258.87 36337.73 19085.26 24627.01 35459.93 24981.42 257
DP-MVS59.24 27456.12 28668.63 27388.24 3250.35 17682.51 20164.43 34741.10 34146.70 32478.77 24624.75 31388.57 15022.26 36756.29 28966.96 360
OpenMVS_ROBcopyleft53.19 1759.20 27556.00 28768.83 26871.13 30844.30 29083.64 16675.02 29046.42 31546.48 32673.03 30918.69 34588.14 16527.74 35161.80 24174.05 336
IterMVS-SCA-FT59.12 27658.81 26960.08 32970.68 31445.07 28280.42 24774.25 29543.54 33450.02 30473.73 30031.97 26256.74 37151.06 24353.60 31378.42 296
our_test_359.11 27755.08 29371.18 23871.42 30453.29 11381.96 21174.52 29248.32 30242.08 33969.28 33628.14 28582.15 27434.35 32345.68 34578.11 302
Anonymous2023120659.08 27857.59 27463.55 31068.77 32532.14 35780.26 25079.78 21250.00 29449.39 30672.39 31726.64 29878.36 30833.12 32957.94 27480.14 278
KD-MVS_2432*160059.04 27956.44 28366.86 28979.07 19545.87 27372.13 31080.42 20055.03 25448.15 31271.01 32536.73 21178.05 31335.21 31730.18 37476.67 313
miper_refine_blended59.04 27956.44 28366.86 28979.07 19545.87 27372.13 31080.42 20055.03 25448.15 31271.01 32536.73 21178.05 31335.21 31730.18 37476.67 313
WR-MVS_H58.91 28158.04 27261.54 32369.07 32333.83 34976.91 27681.99 17151.40 28548.17 31174.67 29240.23 16474.15 33631.78 33348.10 32976.64 316
LCM-MVSNet-Re58.82 28256.54 28165.68 29779.31 19229.09 37061.39 35245.79 36860.73 15337.65 35672.47 31531.42 26881.08 28249.66 24970.41 16886.87 159
Patchmatch-RL test58.72 28354.32 29571.92 22463.91 35244.25 29161.73 34955.19 36057.38 22049.31 30754.24 36837.60 19480.89 28362.19 14847.28 33690.63 75
FMVSNet558.61 28456.45 28265.10 30477.20 23339.74 32774.77 28877.12 26650.27 29243.28 33667.71 33926.15 30276.90 32636.78 31054.78 30478.65 292
ppachtmachnet_test58.56 28554.34 29471.24 23571.42 30454.74 7381.84 21672.27 31249.02 29945.86 32968.99 33726.27 29983.30 26930.12 33843.23 35075.69 322
ACMH+54.58 1558.55 28655.24 29068.50 27774.68 26645.80 27580.27 24970.21 32747.15 30942.77 33875.48 28816.73 35685.98 23335.10 32154.78 30473.72 338
CP-MVSNet58.54 28757.57 27561.46 32468.50 32733.96 34876.90 27778.60 24251.67 28447.83 31476.60 27534.99 23572.79 34535.45 31447.58 33377.64 307
PEN-MVS58.35 28857.15 27761.94 32067.55 33434.39 34477.01 27578.35 24751.87 28147.72 31576.73 27333.91 24373.75 34034.03 32447.17 33777.68 305
PS-CasMVS58.12 28957.03 27961.37 32568.24 33133.80 35076.73 27878.01 25051.20 28647.54 31876.20 28332.85 25272.76 34635.17 31947.37 33577.55 308
dmvs_testset57.65 29058.21 27155.97 34274.62 2679.82 39863.75 34163.34 35067.23 4548.89 30983.68 18539.12 17676.14 32923.43 36459.80 25181.96 246
UnsupCasMVSNet_eth57.56 29155.15 29164.79 30664.57 35033.12 35173.17 30183.87 14058.98 18841.75 34270.03 33222.54 32679.92 29846.12 27535.31 36381.32 264
CHOSEN 280x42057.53 29256.38 28560.97 32774.01 27548.10 23546.30 37154.31 36248.18 30450.88 30177.43 26038.37 18359.16 36954.83 21463.14 23275.66 323
DTE-MVSNet57.03 29355.73 28960.95 32865.94 33932.57 35575.71 28077.09 26751.16 28746.65 32576.34 27832.84 25373.22 34430.94 33744.87 34677.06 310
PatchMatch-RL56.66 29453.75 29965.37 30277.91 22145.28 28069.78 32360.38 35441.35 34047.57 31773.73 30016.83 35476.91 32436.99 30859.21 25873.92 337
PatchT56.60 29552.97 30267.48 28372.94 28846.16 27057.30 36173.78 30138.77 34554.37 27457.26 36637.52 19678.06 31232.02 33152.79 31878.23 301
Patchmtry56.56 29652.95 30367.42 28472.53 29350.59 16759.05 35771.72 31637.86 34946.92 32265.86 34438.94 17780.06 29736.94 30946.72 34171.60 350
test_040256.45 29753.03 30166.69 29276.78 23850.31 17881.76 21869.61 33242.79 33743.88 33172.13 32022.82 32586.46 21816.57 37950.94 32363.31 368
LS3D56.40 29853.82 29864.12 30781.12 15845.69 27773.42 29966.14 34235.30 35943.24 33779.88 23322.18 33179.62 30219.10 37564.00 21867.05 359
ADS-MVSNet56.17 29951.95 30968.84 26780.60 17353.07 11955.03 36470.02 32944.72 32551.00 29861.19 35622.83 32378.88 30628.54 34653.63 31174.57 333
XVG-ACMP-BASELINE56.03 30052.85 30465.58 29861.91 35840.95 32463.36 34272.43 31145.20 32346.02 32774.09 2969.20 37178.12 31045.13 27758.27 26777.66 306
pmmvs-eth3d55.97 30152.78 30565.54 29961.02 36046.44 26275.36 28667.72 34049.61 29643.65 33367.58 34021.63 33477.04 32244.11 28444.33 34773.15 344
F-COLMAP55.96 30253.65 30062.87 31572.76 29042.77 30874.70 29170.37 32640.03 34241.11 34679.36 23817.77 35073.70 34132.80 33053.96 31072.15 346
CMPMVSbinary40.41 2155.34 30352.64 30663.46 31160.88 36143.84 29561.58 35171.06 32230.43 36736.33 35874.63 29324.14 31775.44 33248.05 26266.62 19671.12 353
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0355.22 30454.07 29758.68 33463.14 35525.00 37577.69 27274.78 29152.64 27443.43 33472.39 31726.21 30074.76 33529.31 34147.05 33976.28 320
ADS-MVSNet255.21 30551.44 31066.51 29480.60 17349.56 19355.03 36465.44 34344.72 32551.00 29861.19 35622.83 32375.41 33328.54 34653.63 31174.57 333
SixPastTwentyTwo54.37 30650.10 31567.21 28570.70 31241.46 32074.73 28964.69 34547.56 30739.12 35169.49 33318.49 34884.69 25631.87 33234.20 36975.48 324
USDC54.36 30751.23 31163.76 30964.29 35137.71 33762.84 34773.48 30756.85 22835.47 36171.94 3239.23 37078.43 30738.43 30148.57 32875.13 328
testgi54.25 30852.57 30759.29 33262.76 35621.65 38272.21 30970.47 32553.25 27141.94 34077.33 26114.28 36177.95 31629.18 34251.72 32278.28 299
K. test v354.04 30949.42 32067.92 28168.55 32642.57 31275.51 28463.07 35152.07 27839.21 35064.59 34819.34 34282.21 27337.11 30625.31 37978.97 287
UnsupCasMVSNet_bld53.86 31050.53 31463.84 30863.52 35434.75 34371.38 31581.92 17446.53 31238.95 35257.93 36420.55 33880.20 29639.91 29834.09 37076.57 317
YYNet153.82 31149.96 31665.41 30170.09 31748.95 20772.30 30771.66 31844.25 33031.89 37063.07 35223.73 31973.95 33833.26 32739.40 35773.34 341
MDA-MVSNet_test_wron53.82 31149.95 31765.43 30070.13 31649.05 20372.30 30771.65 31944.23 33131.85 37163.13 35123.68 32074.01 33733.25 32839.35 35873.23 343
test_fmvs153.60 31352.54 30856.78 33858.07 36330.26 36068.95 32742.19 37432.46 36263.59 15982.56 20511.55 36460.81 36358.25 18455.27 30079.28 284
Patchmatch-test53.33 31448.17 32368.81 26973.31 28142.38 31342.98 37458.23 35732.53 36138.79 35370.77 32839.66 17273.51 34225.18 35852.06 32190.55 76
LTVRE_ROB45.45 1952.73 31549.74 31861.69 32269.78 31834.99 34244.52 37267.60 34143.11 33643.79 33274.03 29718.54 34781.45 27928.39 34857.94 27468.62 357
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
EU-MVSNet52.63 31650.72 31358.37 33562.69 35728.13 37272.60 30375.97 28230.94 36640.76 34872.11 32120.16 33970.80 35235.11 32046.11 34376.19 321
test_fmvs1_n52.55 31751.19 31256.65 33951.90 37330.14 36167.66 33142.84 37332.27 36362.30 17382.02 2169.12 37260.84 36257.82 19254.75 30678.99 286
OurMVSNet-221017-052.39 31848.73 32163.35 31365.21 34438.42 33468.54 32964.95 34438.19 34639.57 34971.43 32413.23 36379.92 29837.16 30440.32 35671.72 349
JIA-IIPM52.33 31947.77 32666.03 29671.20 30746.92 25640.00 37976.48 27837.10 35046.73 32337.02 37932.96 25177.88 31735.97 31252.45 32073.29 342
Anonymous2024052151.65 32048.42 32261.34 32656.43 36739.65 32973.57 29773.47 30836.64 35336.59 35763.98 34910.75 36772.25 34935.35 31549.01 32772.11 347
MDA-MVSNet-bldmvs51.56 32147.75 32763.00 31471.60 30247.32 25169.70 32472.12 31343.81 33227.65 37863.38 35021.97 33375.96 33027.30 35332.19 37165.70 365
test_vis1_n51.19 32249.66 31955.76 34351.26 37429.85 36567.20 33338.86 37832.12 36459.50 20279.86 2348.78 37358.23 37056.95 20152.46 31979.19 285
COLMAP_ROBcopyleft43.60 2050.90 32348.05 32459.47 33067.81 33340.57 32671.25 31662.72 35336.49 35436.19 35973.51 30513.48 36273.92 33920.71 37150.26 32563.92 367
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet150.35 32447.81 32557.96 33661.53 35927.80 37367.40 33274.06 29843.25 33533.31 36965.38 34716.03 35871.34 35021.80 36847.55 33474.75 331
KD-MVS_self_test49.24 32546.85 32856.44 34054.32 36822.87 37857.39 36073.36 30944.36 32937.98 35559.30 36218.97 34471.17 35133.48 32542.44 35175.26 326
MVS-HIRNet49.01 32644.71 33061.92 32176.06 24746.61 26063.23 34454.90 36124.77 37333.56 36636.60 38121.28 33675.88 33129.49 34062.54 23763.26 369
new-patchmatchnet48.21 32746.55 32953.18 34657.73 36518.19 39070.24 31971.02 32345.70 31933.70 36560.23 35818.00 34969.86 35527.97 35034.35 36771.49 352
TinyColmap48.15 32844.49 33259.13 33365.73 34138.04 33563.34 34362.86 35238.78 34429.48 37367.23 3426.46 38173.30 34324.59 36041.90 35366.04 363
AllTest47.32 32944.66 33155.32 34465.08 34637.50 33862.96 34654.25 36335.45 35733.42 36772.82 3109.98 36859.33 36624.13 36143.84 34869.13 355
PM-MVS46.92 33043.76 33556.41 34152.18 37232.26 35663.21 34538.18 37937.99 34840.78 34766.20 3435.09 38465.42 35948.19 26141.99 35271.54 351
test_fmvs245.89 33144.32 33350.62 34945.85 38224.70 37658.87 35937.84 38125.22 37252.46 28974.56 2947.07 37654.69 37249.28 25347.70 33272.48 345
RPSCF45.77 33244.13 33450.68 34857.67 36629.66 36654.92 36645.25 37026.69 37145.92 32875.92 28617.43 35345.70 38227.44 35245.95 34476.67 313
pmmvs345.53 33341.55 33757.44 33748.97 37839.68 32870.06 32057.66 35828.32 36934.06 36457.29 3658.50 37466.85 35834.86 32234.26 36865.80 364
mvsany_test143.38 33442.57 33645.82 35350.96 37526.10 37455.80 36227.74 39127.15 37047.41 32074.39 29518.67 34644.95 38344.66 28036.31 36166.40 362
N_pmnet41.25 33539.77 33845.66 35468.50 3270.82 40472.51 3050.38 40335.61 35635.26 36261.51 35520.07 34067.74 35723.51 36340.63 35468.42 358
TDRefinement40.91 33638.37 34048.55 35150.45 37633.03 35358.98 35850.97 36628.50 36829.89 37267.39 3416.21 38354.51 37317.67 37735.25 36458.11 370
test_vis1_rt40.29 33738.64 33945.25 35548.91 37930.09 36259.44 35627.07 39224.52 37438.48 35451.67 3736.71 37949.44 37744.33 28246.59 34256.23 371
DSMNet-mixed38.35 33835.36 34347.33 35248.11 38014.91 39437.87 38036.60 38219.18 37834.37 36359.56 36115.53 35953.01 37520.14 37346.89 34074.07 335
test_fmvs337.95 33935.75 34244.55 35635.50 38818.92 38648.32 36834.00 38618.36 38041.31 34561.58 3542.29 39148.06 38142.72 29137.71 36066.66 361
WB-MVS37.41 34036.37 34140.54 36054.23 36910.43 39765.29 33543.75 37134.86 36027.81 37754.63 36724.94 31163.21 3606.81 39215.00 38747.98 379
FPMVS35.40 34133.67 34540.57 35946.34 38128.74 37141.05 37657.05 35920.37 37722.27 38153.38 3706.87 37844.94 3848.62 38647.11 33848.01 378
SSC-MVS35.20 34234.30 34437.90 36252.58 3718.65 40061.86 34841.64 37531.81 36525.54 37952.94 37223.39 32259.28 3686.10 39312.86 38845.78 381
ANet_high34.39 34329.59 34948.78 35030.34 39222.28 37955.53 36363.79 34938.11 34715.47 38536.56 3826.94 37759.98 36513.93 3825.64 39664.08 366
EGC-MVSNET33.75 34430.42 34843.75 35764.94 34836.21 34160.47 35540.70 3770.02 3970.10 39853.79 3697.39 37560.26 36411.09 38535.23 36534.79 383
new_pmnet33.56 34531.89 34738.59 36149.01 37720.42 38351.01 36737.92 38020.58 37523.45 38046.79 3756.66 38049.28 37920.00 37431.57 37346.09 380
LF4IMVS33.04 34632.55 34634.52 36540.96 38322.03 38044.45 37335.62 38320.42 37628.12 37662.35 3535.03 38531.88 39521.61 37034.42 36649.63 377
LCM-MVSNet28.07 34723.85 35540.71 35827.46 39718.93 38530.82 38646.19 36712.76 38516.40 38334.70 3841.90 39448.69 38020.25 37224.22 38054.51 373
mvsany_test328.00 34825.98 35034.05 36628.97 39315.31 39234.54 38318.17 39716.24 38129.30 37453.37 3712.79 38933.38 39430.01 33920.41 38553.45 374
Gipumacopyleft27.47 34924.26 35437.12 36460.55 36229.17 36911.68 39160.00 35514.18 38310.52 39215.12 3932.20 39363.01 3618.39 38735.65 36219.18 389
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_f27.12 35024.85 35133.93 36726.17 39815.25 39330.24 38722.38 39612.53 38628.23 37549.43 3742.59 39034.34 39325.12 35926.99 37752.20 375
PMMVS226.71 35122.98 35637.87 36336.89 3868.51 40142.51 37529.32 39019.09 37913.01 38737.54 3782.23 39253.11 37414.54 38111.71 38951.99 376
APD_test126.46 35224.41 35332.62 37037.58 38521.74 38140.50 37830.39 38811.45 38716.33 38443.76 3761.63 39641.62 38511.24 38426.82 37834.51 384
PMVScopyleft19.57 2225.07 35322.43 35832.99 36923.12 39922.98 37740.98 37735.19 38415.99 38211.95 39135.87 3831.47 39749.29 3785.41 39531.90 37226.70 388
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis3_rt24.79 35422.95 35730.31 37128.59 39418.92 38637.43 38117.27 39912.90 38421.28 38229.92 3881.02 39836.35 38828.28 34929.82 37635.65 382
test_method24.09 35521.07 35933.16 36827.67 3968.35 40226.63 38835.11 3853.40 39414.35 38636.98 3803.46 38835.31 39019.08 37622.95 38155.81 372
testf121.11 35619.08 36027.18 37330.56 39018.28 38833.43 38424.48 3938.02 39112.02 38933.50 3850.75 40035.09 3917.68 38821.32 38228.17 386
APD_test221.11 35619.08 36027.18 37330.56 39018.28 38833.43 38424.48 3938.02 39112.02 38933.50 3850.75 40035.09 3917.68 38821.32 38228.17 386
E-PMN19.16 35818.40 36221.44 37536.19 38713.63 39547.59 36930.89 38710.73 3885.91 39516.59 3913.66 38739.77 3865.95 3948.14 39110.92 391
EMVS18.42 35917.66 36320.71 37634.13 38912.64 39646.94 37029.94 38910.46 3905.58 39614.93 3944.23 38638.83 3875.24 3967.51 39310.67 392
cdsmvs_eth3d_5k18.33 36024.44 3520.00 3820.00 4030.00 4060.00 39389.40 160.00 3980.00 40192.02 4338.55 1810.00 3990.00 4000.00 3970.00 397
MVEpermissive16.60 2317.34 36113.39 36429.16 37228.43 39519.72 38413.73 39023.63 3957.23 3937.96 39321.41 3890.80 39936.08 3896.97 39010.39 39031.69 385
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt9.44 36210.68 3655.73 3792.49 4014.21 40310.48 39218.04 3980.34 39612.59 38820.49 39011.39 3657.03 39813.84 3836.46 3955.95 393
wuyk23d9.11 3638.77 36710.15 37840.18 38416.76 39120.28 3891.01 4022.58 3952.66 3970.98 3970.23 40212.49 3974.08 3976.90 3941.19 394
ab-mvs-re7.68 36410.24 3660.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 40192.12 400.00 4030.00 3990.00 4000.00 3970.00 397
testmvs6.14 3658.18 3680.01 3800.01 4020.00 40673.40 3000.00 4040.00 3980.02 3990.15 3980.00 4030.00 3990.02 3980.00 3970.02 395
test1236.01 3668.01 3690.01 3800.00 4030.01 40571.93 3130.00 4040.00 3980.02 3990.11 3990.00 4030.00 3990.02 3980.00 3970.02 395
pcd_1.5k_mvsjas3.15 3674.20 3700.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 40037.77 1870.00 3990.00 4000.00 3970.00 397
test_blank0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
sosnet0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
Regformer0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
uanet0.00 3680.00 3710.00 3820.00 4030.00 4060.00 3930.00 4040.00 3980.00 4010.00 4000.00 4030.00 3990.00 4000.00 3970.00 397
MM80.89 2055.40 5492.16 989.85 1575.28 482.41 1093.86 854.30 2593.98 2390.29 187.13 2093.30 12
WAC-MVS34.28 34522.56 366
FOURS183.24 10149.90 18684.98 12778.76 23647.71 30573.42 56
MSC_two_6792asdad81.53 1491.77 456.03 4191.10 696.22 881.46 3086.80 2692.34 32
PC_three_145266.58 5287.27 293.70 966.82 494.95 1789.74 391.98 493.98 5
No_MVS81.53 1491.77 456.03 4191.10 696.22 881.46 3086.80 2692.34 32
test_one_060189.39 2257.29 2088.09 4657.21 22482.06 1293.39 1654.94 24
eth-test20.00 403
eth-test0.00 403
ZD-MVS89.55 1453.46 10284.38 12657.02 22673.97 5191.03 6144.57 11291.17 7075.41 6981.78 69
RE-MVS-def66.66 18380.96 16248.14 23381.54 22676.98 26846.42 31562.75 16889.42 9929.28 28260.52 16472.06 15383.19 231
IU-MVS89.48 1757.49 1591.38 566.22 6088.26 182.83 1987.60 1792.44 29
OPU-MVS81.71 1292.05 355.97 4392.48 394.01 567.21 295.10 1589.82 292.55 394.06 3
test_241102_TWO88.76 3257.50 21883.60 694.09 356.14 1896.37 682.28 2387.43 1992.55 27
test_241102_ONE89.48 1756.89 2588.94 2457.53 21684.61 493.29 2058.81 1196.45 1
9.1478.19 2485.67 5388.32 5088.84 2959.89 16374.58 4692.62 3346.80 7892.66 3981.40 3285.62 39
save fliter85.35 6056.34 3689.31 3981.46 18261.55 135
test_0728_THIRD58.00 20481.91 1393.64 1156.54 1596.44 281.64 2886.86 2492.23 34
test_0728_SECOND82.20 889.50 1557.73 1192.34 588.88 2696.39 481.68 2687.13 2092.47 28
test072689.40 2057.45 1792.32 788.63 3657.71 21283.14 993.96 655.17 20
GSMVS88.13 136
test_part289.33 2355.48 5082.27 11
sam_mvs138.86 17988.13 136
sam_mvs35.99 224
ambc62.06 31853.98 37029.38 36835.08 38279.65 21641.37 34359.96 3596.27 38282.15 27435.34 31638.22 35974.65 332
MTGPAbinary81.31 185
test_post170.84 31814.72 39534.33 24083.86 26048.80 256
test_post16.22 39237.52 19684.72 255
patchmatchnet-post59.74 36038.41 18279.91 300
GG-mvs-BLEND77.77 7686.68 4350.61 16568.67 32888.45 4268.73 9987.45 13659.15 1090.67 8554.83 21487.67 1692.03 40
MTMP87.27 7215.34 400
gm-plane-assit83.24 10154.21 8870.91 1588.23 12395.25 1466.37 117
test9_res78.72 4585.44 4191.39 59
TEST985.68 5155.42 5187.59 6284.00 13657.72 21172.99 6190.98 6344.87 10688.58 147
test_885.72 5055.31 5687.60 6183.88 13957.84 20972.84 6590.99 6244.99 10288.34 158
agg_prior275.65 6485.11 4591.01 68
agg_prior85.64 5454.92 7083.61 14672.53 7088.10 168
TestCases55.32 34465.08 34637.50 33854.25 36335.45 35733.42 36772.82 3109.98 36859.33 36624.13 36143.84 34869.13 355
test_prior456.39 3587.15 75
test_prior289.04 4261.88 13173.55 5491.46 5948.01 6674.73 7285.46 40
test_prior78.39 6586.35 4554.91 7185.45 9189.70 11390.55 76
旧先验281.73 22045.53 32174.66 4370.48 35458.31 183
新几何281.61 224
新几何173.30 19183.10 10453.48 10171.43 32045.55 32066.14 12087.17 14133.88 24580.54 29048.50 25980.33 8285.88 184
旧先验181.57 14947.48 24771.83 31488.66 11336.94 20778.34 10388.67 124
无先验85.19 11778.00 25149.08 29885.13 25052.78 23187.45 151
原ACMM283.77 164
原ACMM176.13 11884.89 6954.59 8185.26 10151.98 27966.70 11187.07 14340.15 16689.70 11351.23 24185.06 4684.10 209
test22279.36 18950.97 16177.99 27067.84 33942.54 33862.84 16786.53 15030.26 27576.91 11185.23 193
testdata277.81 31945.64 276
segment_acmp44.97 104
testdata67.08 28777.59 22445.46 27869.20 33544.47 32771.50 8288.34 12031.21 26970.76 35352.20 23675.88 11985.03 196
testdata177.55 27464.14 89
test1279.24 3986.89 4156.08 4085.16 10672.27 7447.15 7491.10 7385.93 3590.54 78
plane_prior777.95 21848.46 224
plane_prior678.42 21349.39 19836.04 222
plane_prior582.59 16388.30 16165.46 12672.34 15084.49 203
plane_prior483.28 190
plane_prior348.95 20764.01 9262.15 175
plane_prior285.76 10063.60 101
plane_prior178.31 215
plane_prior49.57 19187.43 6564.57 8372.84 146
n20.00 404
nn0.00 404
door-mid41.31 376
lessismore_v067.98 27964.76 34941.25 32145.75 36936.03 36065.63 34619.29 34384.11 25935.67 31321.24 38478.59 293
LGP-MVS_train72.02 21674.42 27048.60 21780.64 19654.69 25953.75 28083.83 17925.73 30586.98 20160.33 16864.71 21080.48 273
test1184.25 130
door43.27 372
HQP5-MVS51.56 150
HQP-NCC79.02 19788.00 5365.45 7064.48 143
ACMP_Plane79.02 19788.00 5365.45 7064.48 143
BP-MVS66.70 114
HQP4-MVS64.47 14688.61 14684.91 199
HQP3-MVS83.68 14273.12 142
HQP2-MVS37.35 199
NP-MVS78.76 20250.43 17185.12 164
MDTV_nov1_ep13_2view43.62 29771.13 31754.95 25659.29 20836.76 21046.33 27387.32 153
MDTV_nov1_ep1361.56 24281.68 14255.12 6372.41 30678.18 24859.19 18058.85 21769.29 33534.69 23786.16 22536.76 31162.96 234
ACMMP++_ref63.20 230
ACMMP++59.38 256
Test By Simon39.38 173
ITE_SJBPF51.84 34758.03 36431.94 35853.57 36536.67 35241.32 34475.23 29011.17 36651.57 37625.81 35748.04 33072.02 348
DeepMVS_CXcopyleft13.10 37721.34 4008.99 39910.02 40110.59 3897.53 39430.55 3871.82 39514.55 3966.83 3917.52 39215.75 390