This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS98.46 198.38 198.72 999.80 496.19 1599.80 1397.99 5097.05 699.41 299.59 292.89 25100.00 198.99 2399.90 799.96 10
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2299.55 4297.68 8593.01 6899.23 899.45 1495.12 899.98 999.25 1699.92 399.97 7
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2599.77 1597.72 7694.17 4199.30 699.54 393.32 1999.98 999.70 499.81 2399.99 1
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2497.98 5197.18 395.96 9299.33 1992.62 26100.00 198.99 2399.93 199.98 6
NCCC98.12 598.11 398.13 2499.76 694.46 4899.81 997.88 5496.54 1198.84 2299.46 1092.55 2799.98 998.25 4499.93 199.94 18
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2199.29 7997.72 7694.50 3598.64 2699.54 393.32 1999.97 2199.58 1099.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3099.72 2197.47 13393.95 4699.07 1399.46 1093.18 2299.97 2199.64 799.82 1999.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPM-MVS97.86 897.25 1899.68 198.25 9399.10 199.76 1897.78 6896.61 1098.15 3999.53 793.62 17100.00 191.79 15599.80 2699.94 18
MSP-MVS97.77 998.18 296.53 9099.54 3690.14 13499.41 6697.70 8195.46 2698.60 2799.19 2895.71 499.49 11098.15 4699.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft97.72 1097.59 1198.14 2399.53 4094.76 4299.19 8597.75 7195.66 2298.21 3899.29 2091.10 3399.99 597.68 5399.87 999.68 56
MVS_030497.53 1197.15 1998.67 1197.30 12496.52 1299.60 3698.88 1497.14 497.21 6498.94 7086.89 9499.91 4399.43 1398.91 8699.59 71
APDe-MVScopyleft97.53 1197.47 1397.70 3699.58 3093.63 6499.56 4197.52 12393.59 6198.01 4899.12 4490.80 3999.55 10499.26 1599.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SD-MVS97.51 1397.40 1697.81 3499.01 7293.79 6399.33 7697.38 14693.73 5798.83 2399.02 5690.87 3899.88 5298.69 2899.74 2999.77 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSLP-MVS++97.50 1497.45 1597.63 3899.65 1693.21 7299.70 2498.13 4294.61 3397.78 5399.46 1089.85 4999.81 7797.97 4899.91 699.88 26
TSAR-MVS + MP.97.44 1597.46 1497.39 4699.12 6593.49 6998.52 16597.50 12894.46 3698.99 1598.64 9791.58 3099.08 14698.49 3599.83 1599.60 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP97.25 1697.34 1797.01 5897.38 12091.46 10099.75 1997.66 8994.14 4598.13 4099.26 2192.16 2999.66 9297.91 5099.64 4099.90 22
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVScopyleft97.24 1796.99 2198.00 2999.30 5494.20 5599.16 9197.65 9489.55 15299.22 1099.52 890.34 4699.99 598.32 4199.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MG-MVS97.24 1796.83 2898.47 1599.79 595.71 1899.07 10799.06 1094.45 3896.42 8698.70 9388.81 5999.74 8695.35 9999.86 1299.97 7
SF-MVS97.22 1996.92 2298.12 2699.11 6694.88 3599.44 6097.45 13689.60 14898.70 2499.42 1790.42 4499.72 8798.47 3699.65 3899.77 43
train_agg97.20 2097.08 2097.57 4299.57 3393.17 7399.38 6997.66 8990.18 13298.39 3399.18 3190.94 3599.66 9298.58 3499.85 1399.88 26
DeepC-MVS_fast93.52 297.16 2196.84 2698.13 2499.61 2494.45 4998.85 12997.64 9596.51 1495.88 9599.39 1887.35 8599.99 596.61 7599.69 3699.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DELS-MVS97.12 2296.60 3298.68 1098.03 10296.57 1199.84 697.84 5796.36 1695.20 11098.24 11988.17 6699.83 7196.11 8499.60 4899.64 62
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
patch_mono-297.10 2397.97 894.49 16699.21 6183.73 28299.62 3598.25 3295.28 2899.38 498.91 7392.28 2899.94 3499.61 999.22 7099.78 38
test_fmvsm_n_192097.08 2497.55 1295.67 12497.94 10489.61 15399.93 198.48 2497.08 599.08 1299.13 4288.17 6699.93 3799.11 2199.06 7597.47 191
CANet97.00 2596.49 3398.55 1298.86 8096.10 1699.83 797.52 12395.90 1797.21 6498.90 7482.66 17199.93 3798.71 2798.80 9199.63 64
TSAR-MVS + GP.96.95 2696.91 2397.07 5598.88 7991.62 9699.58 3996.54 20595.09 3096.84 7498.63 9991.16 3199.77 8399.04 2296.42 14299.81 33
APD-MVScopyleft96.95 2696.72 2997.63 3899.51 4193.58 6599.16 9197.44 13990.08 13798.59 2899.07 4989.06 5599.42 12197.92 4999.66 3799.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PS-MVSNAJ96.87 2896.40 3698.29 1997.35 12297.29 599.03 11397.11 17095.83 1898.97 1799.14 4082.48 17499.60 10198.60 3199.08 7398.00 178
EPNet96.82 2996.68 3197.25 5198.65 8693.10 7599.48 5198.76 1596.54 1197.84 5298.22 12087.49 7899.66 9295.35 9997.78 11699.00 117
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 280x42096.80 3096.85 2596.66 8297.85 10794.42 5194.76 31998.36 2992.50 7995.62 10397.52 14697.92 197.38 23198.31 4298.80 9198.20 174
test_fmvsmconf_n96.78 3196.84 2696.61 8395.99 18090.25 12999.90 298.13 4296.68 998.42 3298.92 7285.34 12999.88 5299.12 2099.08 7399.70 52
MVS_111021_HR96.69 3296.69 3096.72 7898.58 8891.00 11499.14 9999.45 193.86 5295.15 11198.73 8788.48 6299.76 8497.23 6199.56 5099.40 84
xiu_mvs_v2_base96.66 3396.17 4598.11 2797.11 13596.96 699.01 11697.04 17795.51 2598.86 2199.11 4882.19 18299.36 12898.59 3398.14 10998.00 178
PHI-MVS96.65 3496.46 3597.21 5299.34 5091.77 9399.70 2498.05 4686.48 23898.05 4599.20 2789.33 5399.96 2898.38 3799.62 4499.90 22
ACMMP_NAP96.59 3596.18 4297.81 3498.82 8193.55 6698.88 12897.59 10890.66 11797.98 4999.14 4086.59 102100.00 196.47 7999.46 5599.89 25
CDPH-MVS96.56 3696.18 4297.70 3699.59 2893.92 6099.13 10297.44 13989.02 16497.90 5199.22 2588.90 5899.49 11094.63 11799.79 2799.68 56
DeepPCF-MVS93.56 196.55 3797.84 1092.68 21898.71 8578.11 33999.70 2497.71 8098.18 197.36 6099.76 190.37 4599.94 3499.27 1499.54 5299.99 1
XVS96.47 3896.37 3796.77 7299.62 2290.66 12399.43 6397.58 11092.41 8396.86 7298.96 6487.37 8199.87 5695.65 9099.43 5999.78 38
HFP-MVS96.42 3996.26 3996.90 6799.69 890.96 11599.47 5397.81 6390.54 12396.88 7199.05 5287.57 7699.96 2895.65 9099.72 3199.78 38
PAPR96.35 4095.82 5597.94 3199.63 1894.19 5699.42 6597.55 11592.43 8093.82 13399.12 4487.30 8699.91 4394.02 12499.06 7599.74 47
PAPM96.35 4095.94 5197.58 4094.10 24695.25 2498.93 12398.17 3794.26 4093.94 12998.72 8989.68 5197.88 19596.36 8099.29 6799.62 66
lupinMVS96.32 4295.94 5197.44 4495.05 22194.87 3699.86 496.50 20793.82 5598.04 4698.77 8385.52 12198.09 18396.98 6698.97 8199.37 86
region2R96.30 4396.17 4596.70 7999.70 790.31 12899.46 5797.66 8990.55 12297.07 6999.07 4986.85 9599.97 2195.43 9799.74 2999.81 33
ACMMPR96.28 4496.14 4996.73 7699.68 990.47 12699.47 5397.80 6590.54 12396.83 7699.03 5486.51 10699.95 3195.65 9099.72 3199.75 46
CP-MVS96.22 4596.15 4896.42 9599.67 1089.62 15299.70 2497.61 10290.07 13896.00 9199.16 3487.43 7999.92 3996.03 8699.72 3199.70 52
fmvsm_s_conf0.5_n96.19 4696.49 3395.30 13797.37 12189.16 15899.86 498.47 2595.68 2198.87 2099.15 3782.44 17899.92 3999.14 1997.43 12596.83 210
SR-MVS96.13 4796.16 4796.07 10899.42 4789.04 16298.59 16097.33 15090.44 12696.84 7499.12 4486.75 9799.41 12497.47 5699.44 5899.76 45
ZNCC-MVS96.09 4895.81 5796.95 6699.42 4791.19 10499.55 4297.53 11989.72 14395.86 9798.94 7086.59 10299.97 2195.13 10399.56 5099.68 56
MTAPA96.09 4895.80 5896.96 6599.29 5591.19 10497.23 25897.45 13692.58 7794.39 12299.24 2486.43 10899.99 596.22 8199.40 6299.71 51
ETV-MVS96.00 5096.00 5096.00 11296.56 15291.05 11299.63 3496.61 19793.26 6697.39 5998.30 11786.62 10198.13 18098.07 4797.57 11998.82 138
MP-MVScopyleft96.00 5095.82 5596.54 8999.47 4690.13 13699.36 7397.41 14390.64 12095.49 10598.95 6785.51 12399.98 996.00 8799.59 4999.52 74
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CS-MVS-test95.98 5296.34 3894.90 15198.06 10187.66 19699.69 3196.10 23393.66 5898.35 3699.05 5286.28 11097.66 21396.96 6798.90 8799.37 86
fmvsm_s_conf0.5_n_a95.97 5396.19 4095.31 13696.51 15589.01 16499.81 998.39 2795.46 2699.19 1199.16 3481.44 19299.91 4398.83 2696.97 13497.01 206
GST-MVS95.97 5395.66 6396.90 6799.49 4591.22 10299.45 5997.48 13189.69 14495.89 9498.72 8986.37 10999.95 3194.62 11899.22 7099.52 74
WTY-MVS95.97 5395.11 7698.54 1397.62 11396.65 999.44 6098.74 1692.25 8795.21 10998.46 11386.56 10499.46 11695.00 10892.69 18499.50 77
test_fmvsmconf0.1_n95.94 5695.79 5996.40 9792.42 28389.92 14599.79 1496.85 18896.53 1397.22 6398.67 9582.71 17099.84 6798.92 2598.98 8099.43 83
PVSNet_Blended95.94 5695.66 6396.75 7498.77 8391.61 9799.88 398.04 4793.64 6094.21 12497.76 13383.50 14999.87 5697.41 5797.75 11798.79 141
mPP-MVS95.90 5895.75 6096.38 9899.58 3089.41 15699.26 8297.41 14390.66 11794.82 11598.95 6786.15 11499.98 995.24 10299.64 4099.74 47
PGM-MVS95.85 5995.65 6596.45 9399.50 4289.77 14998.22 19998.90 1389.19 15996.74 7998.95 6785.91 11899.92 3993.94 12699.46 5599.66 60
DP-MVS Recon95.85 5995.15 7497.95 3099.87 294.38 5299.60 3697.48 13186.58 23394.42 12199.13 4287.36 8499.98 993.64 13398.33 10599.48 78
MP-MVS-pluss95.80 6195.30 6997.29 4898.95 7692.66 8398.59 16097.14 16688.95 16793.12 14099.25 2285.62 12099.94 3496.56 7799.48 5499.28 95
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MVS_111021_LR95.78 6295.94 5195.28 13898.19 9787.69 19398.80 13499.26 793.39 6395.04 11398.69 9484.09 14399.76 8496.96 6799.06 7598.38 163
alignmvs95.77 6395.00 7998.06 2897.35 12295.68 1999.71 2397.50 12891.50 10096.16 9098.61 10186.28 11099.00 14896.19 8291.74 20199.51 76
EI-MVSNet-Vis-set95.76 6495.63 6796.17 10599.14 6490.33 12798.49 17197.82 6091.92 9394.75 11698.88 7887.06 9099.48 11495.40 9897.17 13298.70 148
SR-MVS-dyc-post95.75 6595.86 5495.41 13299.22 5987.26 21298.40 18397.21 15889.63 14696.67 8298.97 6086.73 9999.36 12896.62 7399.31 6599.60 67
CS-MVS95.75 6596.19 4094.40 17097.88 10686.22 23399.66 3296.12 23292.69 7698.07 4498.89 7687.09 8897.59 21996.71 7098.62 9899.39 85
dcpmvs_295.67 6796.18 4294.12 18398.82 8184.22 27597.37 25095.45 28490.70 11695.77 9998.63 9990.47 4298.68 16299.20 1899.22 7099.45 80
APD-MVS_3200maxsize95.64 6895.65 6595.62 12699.24 5887.80 19298.42 17897.22 15788.93 16996.64 8498.98 5985.49 12499.36 12896.68 7299.27 6899.70 52
fmvsm_s_conf0.1_n95.56 6995.68 6295.20 14094.35 24089.10 16099.50 4997.67 8894.76 3298.68 2599.03 5481.13 19599.86 6198.63 3097.36 12796.63 213
test_fmvsmvis_n_192095.47 7095.40 6895.70 12294.33 24190.22 13299.70 2496.98 18496.80 792.75 14498.89 7682.46 17799.92 3998.36 3898.33 10596.97 207
EI-MVSNet-UG-set95.43 7195.29 7095.86 11799.07 7089.87 14698.43 17797.80 6591.78 9594.11 12698.77 8386.25 11299.48 11494.95 11096.45 14198.22 172
PAPM_NR95.43 7195.05 7896.57 8899.42 4790.14 13498.58 16297.51 12590.65 11992.44 14898.90 7487.77 7599.90 4890.88 16399.32 6499.68 56
HPM-MVScopyleft95.41 7395.22 7295.99 11399.29 5589.14 15999.17 9097.09 17487.28 21995.40 10698.48 11084.93 13399.38 12695.64 9499.65 3899.47 79
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
jason95.40 7494.86 8097.03 5792.91 27894.23 5499.70 2496.30 21893.56 6296.73 8098.52 10481.46 19197.91 19296.08 8598.47 10398.96 121
jason: jason.
HY-MVS88.56 795.29 7594.23 8898.48 1497.72 10996.41 1394.03 32798.74 1692.42 8295.65 10294.76 22886.52 10599.49 11095.29 10192.97 18099.53 73
test_yl95.27 7694.60 8397.28 4998.53 8992.98 7999.05 11098.70 1986.76 23094.65 11997.74 13587.78 7399.44 11795.57 9592.61 18599.44 81
DCV-MVSNet95.27 7694.60 8397.28 4998.53 8992.98 7999.05 11098.70 1986.76 23094.65 11997.74 13587.78 7399.44 11795.57 9592.61 18599.44 81
fmvsm_s_conf0.1_n_a95.16 7895.15 7495.18 14192.06 28988.94 16899.29 7997.53 11994.46 3698.98 1698.99 5879.99 20099.85 6598.24 4596.86 13696.73 211
EIA-MVS95.11 7995.27 7194.64 16396.34 16386.51 22199.59 3896.62 19692.51 7894.08 12798.64 9786.05 11598.24 17795.07 10598.50 10299.18 103
EC-MVSNet95.09 8095.17 7394.84 15495.42 19888.17 18499.48 5195.92 25091.47 10197.34 6198.36 11482.77 16697.41 23097.24 6098.58 9998.94 126
VNet95.08 8194.26 8797.55 4398.07 10093.88 6198.68 14698.73 1890.33 12997.16 6897.43 15179.19 20899.53 10796.91 6991.85 19999.24 98
canonicalmvs95.02 8293.96 10098.20 2197.53 11895.92 1798.71 14296.19 22791.78 9595.86 9798.49 10879.53 20599.03 14796.12 8391.42 20999.66 60
HPM-MVS_fast94.89 8394.62 8295.70 12299.11 6688.44 18299.14 9997.11 17085.82 24695.69 10198.47 11183.46 15199.32 13393.16 14199.63 4399.35 88
CSCG94.87 8494.71 8195.36 13399.54 3686.49 22299.34 7598.15 4082.71 30090.15 18599.25 2289.48 5299.86 6194.97 10998.82 9099.72 50
sss94.85 8593.94 10197.58 4096.43 15894.09 5998.93 12399.16 889.50 15395.27 10897.85 12781.50 18999.65 9692.79 14894.02 17298.99 118
test250694.80 8694.21 8996.58 8696.41 15992.18 9198.01 21898.96 1190.82 11493.46 13697.28 15585.92 11698.45 16789.82 17697.19 13099.12 109
API-MVS94.78 8794.18 9296.59 8599.21 6190.06 14198.80 13497.78 6883.59 28493.85 13199.21 2683.79 14699.97 2192.37 15199.00 7999.74 47
thisisatest051594.75 8894.19 9096.43 9496.13 17892.64 8699.47 5397.60 10487.55 21593.17 13997.59 14394.71 1398.42 16888.28 19493.20 17798.24 171
xiu_mvs_v1_base_debu94.73 8993.98 9796.99 6095.19 20795.24 2598.62 15496.50 20792.99 7097.52 5598.83 8072.37 25599.15 13997.03 6396.74 13796.58 216
xiu_mvs_v1_base94.73 8993.98 9796.99 6095.19 20795.24 2598.62 15496.50 20792.99 7097.52 5598.83 8072.37 25599.15 13997.03 6396.74 13796.58 216
xiu_mvs_v1_base_debi94.73 8993.98 9796.99 6095.19 20795.24 2598.62 15496.50 20792.99 7097.52 5598.83 8072.37 25599.15 13997.03 6396.74 13796.58 216
MVSFormer94.71 9294.08 9596.61 8395.05 22194.87 3697.77 23296.17 22986.84 22798.04 4698.52 10485.52 12195.99 29889.83 17498.97 8198.96 121
PVSNet_Blended_VisFu94.67 9394.11 9396.34 10097.14 13291.10 10999.32 7797.43 14192.10 9291.53 16296.38 19783.29 15599.68 9093.42 13896.37 14398.25 170
ACMMPcopyleft94.67 9394.30 8695.79 11999.25 5788.13 18698.41 18098.67 2290.38 12891.43 16398.72 8982.22 18199.95 3193.83 13095.76 15599.29 94
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CPTT-MVS94.60 9594.43 8595.09 14499.66 1286.85 21799.44 6097.47 13383.22 28994.34 12398.96 6482.50 17299.55 10494.81 11199.50 5398.88 131
diffmvspermissive94.59 9694.19 9095.81 11895.54 19490.69 12198.70 14495.68 27191.61 9795.96 9297.81 12980.11 19998.06 18596.52 7895.76 15598.67 150
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
mvsany_test194.57 9795.09 7792.98 20995.84 18482.07 30398.76 14095.24 29792.87 7596.45 8598.71 9284.81 13699.15 13997.68 5395.49 16097.73 183
DeepC-MVS91.02 494.56 9893.92 10296.46 9297.16 13090.76 11998.39 18797.11 17093.92 4888.66 19898.33 11578.14 21699.85 6595.02 10698.57 10098.78 143
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MAR-MVS94.43 9994.09 9495.45 13099.10 6887.47 20298.39 18797.79 6788.37 18694.02 12899.17 3378.64 21499.91 4392.48 15098.85 8998.96 121
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CHOSEN 1792x268894.35 10093.82 10495.95 11597.40 11988.74 17698.41 18098.27 3192.18 8991.43 16396.40 19478.88 20999.81 7793.59 13497.81 11399.30 93
CANet_DTU94.31 10193.35 11397.20 5397.03 13994.71 4498.62 15495.54 27995.61 2397.21 6498.47 11171.88 26099.84 6788.38 19397.46 12497.04 204
PLCcopyleft91.07 394.23 10294.01 9694.87 15299.17 6387.49 20199.25 8396.55 20488.43 18491.26 16798.21 12285.92 11699.86 6189.77 17897.57 11997.24 197
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_fmvsmconf0.01_n94.14 10393.51 11096.04 10986.79 35789.19 15799.28 8195.94 24695.70 1995.50 10498.49 10873.27 24799.79 8098.28 4398.32 10799.15 105
114514_t94.06 10493.05 12297.06 5699.08 6992.26 8998.97 12197.01 18282.58 30292.57 14698.22 12080.68 19799.30 13489.34 18499.02 7899.63 64
baseline294.04 10593.80 10594.74 15893.07 27790.25 12998.12 20898.16 3989.86 14086.53 22096.95 17395.56 698.05 18791.44 15794.53 16795.93 229
thisisatest053094.00 10693.52 10995.43 13195.76 18790.02 14398.99 11897.60 10486.58 23391.74 15597.36 15494.78 1298.34 17086.37 21692.48 18897.94 180
casdiffmvs_mvgpermissive94.00 10693.33 11496.03 11095.22 20590.90 11799.09 10595.99 23990.58 12191.55 16197.37 15379.91 20198.06 18595.01 10795.22 16299.13 108
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive93.98 10893.43 11195.61 12795.07 22089.86 14798.80 13495.84 26390.98 11192.74 14597.66 14079.71 20298.10 18294.72 11495.37 16198.87 133
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS93.92 10992.28 13898.83 795.69 18996.82 896.22 29598.17 3784.89 26484.34 23898.61 10179.32 20799.83 7193.88 12899.43 5999.86 29
baseline93.91 11093.30 11595.72 12195.10 21890.07 13897.48 24695.91 25591.03 10993.54 13597.68 13879.58 20398.02 18994.27 12295.14 16399.08 113
OMC-MVS93.90 11193.62 10894.73 15998.63 8787.00 21598.04 21796.56 20392.19 8892.46 14798.73 8779.49 20699.14 14392.16 15394.34 17098.03 177
Effi-MVS+93.87 11293.15 12096.02 11195.79 18590.76 11996.70 28095.78 26486.98 22495.71 10097.17 16479.58 20398.01 19094.57 11996.09 15099.31 92
test_cas_vis1_n_192093.86 11393.74 10694.22 17995.39 20186.08 23999.73 2096.07 23696.38 1597.19 6797.78 13265.46 31099.86 6196.71 7098.92 8596.73 211
TESTMET0.1,193.82 11493.26 11795.49 12995.21 20690.25 12999.15 9697.54 11889.18 16091.79 15494.87 22589.13 5497.63 21686.21 21796.29 14798.60 153
AdaColmapbinary93.82 11493.06 12196.10 10799.88 189.07 16198.33 19197.55 11586.81 22990.39 18298.65 9675.09 22999.98 993.32 13997.53 12299.26 97
EPP-MVSNet93.75 11693.67 10794.01 18995.86 18385.70 25098.67 14897.66 8984.46 26991.36 16697.18 16391.16 3197.79 20192.93 14493.75 17498.53 155
thres20093.69 11792.59 13496.97 6497.76 10894.74 4399.35 7499.36 289.23 15891.21 16996.97 17283.42 15298.77 15585.08 22990.96 21297.39 193
PVSNet87.13 1293.69 11792.83 12996.28 10197.99 10390.22 13299.38 6998.93 1291.42 10493.66 13497.68 13871.29 26799.64 9887.94 20097.20 12998.98 119
HyFIR lowres test93.68 11993.29 11694.87 15297.57 11788.04 18898.18 20398.47 2587.57 21491.24 16895.05 22285.49 12497.46 22693.22 14092.82 18199.10 111
MVS_Test93.67 12092.67 13296.69 8096.72 14992.66 8397.22 25996.03 23887.69 21295.12 11294.03 23781.55 18898.28 17489.17 18896.46 14099.14 106
CNLPA93.64 12192.74 13096.36 9998.96 7590.01 14499.19 8595.89 25886.22 24189.40 19398.85 7980.66 19899.84 6788.57 19196.92 13599.24 98
PMMVS93.62 12293.90 10392.79 21396.79 14781.40 31098.85 12996.81 18991.25 10796.82 7798.15 12477.02 22298.13 18093.15 14296.30 14698.83 137
iter_conf0593.48 12393.18 11994.39 17397.15 13194.17 5799.30 7892.97 34492.38 8686.70 21995.42 21595.67 596.59 25794.67 11684.32 25492.39 252
CDS-MVSNet93.47 12493.04 12394.76 15694.75 23289.45 15598.82 13297.03 17987.91 20390.97 17096.48 19289.06 5596.36 27589.50 18092.81 18398.49 157
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
131493.44 12591.98 14697.84 3295.24 20394.38 5296.22 29597.92 5390.18 13282.28 26797.71 13777.63 21999.80 7991.94 15498.67 9799.34 90
tfpn200view993.43 12692.27 13996.90 6797.68 11194.84 3899.18 8799.36 288.45 18190.79 17296.90 17683.31 15398.75 15784.11 24590.69 21497.12 199
3Dnovator+87.72 893.43 12691.84 14998.17 2295.73 18895.08 3298.92 12597.04 17791.42 10481.48 28497.60 14274.60 23299.79 8090.84 16498.97 8199.64 62
thres40093.39 12892.27 13996.73 7697.68 11194.84 3899.18 8799.36 288.45 18190.79 17296.90 17683.31 15398.75 15784.11 24590.69 21496.61 214
PVSNet_BlendedMVS93.36 12993.20 11893.84 19498.77 8391.61 9799.47 5398.04 4791.44 10294.21 12492.63 26983.50 14999.87 5697.41 5783.37 26590.05 329
thres100view90093.34 13092.15 14296.90 6797.62 11394.84 3899.06 10999.36 287.96 20190.47 18096.78 18383.29 15598.75 15784.11 24590.69 21497.12 199
tttt051793.30 13193.01 12594.17 18195.57 19286.47 22398.51 16897.60 10485.99 24490.55 17797.19 16294.80 1198.31 17185.06 23091.86 19897.74 182
UA-Net93.30 13192.62 13395.34 13496.27 16688.53 18195.88 30596.97 18590.90 11295.37 10797.07 16882.38 17999.10 14583.91 24994.86 16698.38 163
test-mter93.27 13392.89 12894.40 17094.94 22687.27 21099.15 9697.25 15288.95 16791.57 15894.04 23588.03 7197.58 22085.94 22196.13 14898.36 166
Vis-MVSNet (Re-imp)93.26 13493.00 12694.06 18696.14 17586.71 22098.68 14696.70 19288.30 19089.71 19297.64 14185.43 12796.39 27388.06 19896.32 14499.08 113
iter_conf_final93.22 13593.04 12393.76 19697.03 13992.22 9099.05 11093.31 34192.11 9186.93 21495.42 21595.01 1096.59 25793.98 12584.48 25192.46 251
thres600view793.18 13692.00 14596.75 7497.62 11394.92 3399.07 10799.36 287.96 20190.47 18096.78 18383.29 15598.71 16182.93 25990.47 21896.61 214
3Dnovator87.35 1193.17 13791.77 15197.37 4795.41 19993.07 7698.82 13297.85 5691.53 9982.56 25997.58 14471.97 25999.82 7491.01 16199.23 6999.22 101
test-LLR93.11 13892.68 13194.40 17094.94 22687.27 21099.15 9697.25 15290.21 13091.57 15894.04 23584.89 13497.58 22085.94 22196.13 14898.36 166
test_vis1_n_192093.08 13993.42 11292.04 23096.31 16479.36 32799.83 796.06 23796.72 898.53 3098.10 12558.57 33599.91 4397.86 5198.79 9496.85 209
IS-MVSNet93.00 14092.51 13594.49 16696.14 17587.36 20698.31 19495.70 26988.58 17790.17 18497.50 14783.02 16297.22 23487.06 20596.07 15298.90 130
CostFormer92.89 14192.48 13694.12 18394.99 22385.89 24592.89 33797.00 18386.98 22495.00 11490.78 30090.05 4897.51 22492.92 14591.73 20298.96 121
tpmrst92.78 14292.16 14194.65 16196.27 16687.45 20391.83 34697.10 17389.10 16394.68 11890.69 30488.22 6597.73 21189.78 17791.80 20098.77 144
MVSTER92.71 14392.32 13793.86 19397.29 12592.95 8199.01 11696.59 19990.09 13685.51 22794.00 23994.61 1696.56 26190.77 16783.03 26892.08 269
1112_ss92.71 14391.55 15596.20 10295.56 19391.12 10798.48 17394.69 31588.29 19186.89 21698.50 10687.02 9198.66 16384.75 23489.77 22298.81 139
Vis-MVSNetpermissive92.64 14591.85 14895.03 14895.12 21488.23 18398.48 17396.81 18991.61 9792.16 15297.22 16071.58 26598.00 19185.85 22497.81 11398.88 131
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAMVS92.62 14692.09 14494.20 18094.10 24687.68 19498.41 18096.97 18587.53 21689.74 19096.04 20484.77 13896.49 26888.97 19092.31 19198.42 159
baseline192.61 14791.28 16096.58 8697.05 13894.63 4697.72 23696.20 22589.82 14188.56 19996.85 17986.85 9597.82 19988.42 19280.10 28497.30 195
EPMVS92.59 14891.59 15495.59 12897.22 12790.03 14291.78 34798.04 4790.42 12791.66 15790.65 30786.49 10797.46 22681.78 27096.31 14599.28 95
ET-MVSNet_ETH3D92.56 14991.45 15795.88 11696.39 16194.13 5899.46 5796.97 18592.18 8966.94 36798.29 11894.65 1594.28 34094.34 12183.82 26199.24 98
mvs_anonymous92.50 15091.65 15395.06 14596.60 15189.64 15197.06 26496.44 21186.64 23284.14 23993.93 24182.49 17396.17 29191.47 15696.08 15199.35 88
h-mvs3392.47 15191.95 14794.05 18797.13 13385.01 26598.36 18998.08 4493.85 5396.27 8896.73 18583.19 15899.43 12095.81 8868.09 35297.70 184
test_fmvs192.35 15292.94 12790.57 26497.19 12875.43 34899.55 4294.97 30495.20 2996.82 7797.57 14559.59 33399.84 6797.30 5998.29 10896.46 221
BH-w/o92.32 15391.79 15093.91 19296.85 14286.18 23599.11 10495.74 26788.13 19584.81 23197.00 17177.26 22197.91 19289.16 18998.03 11097.64 185
ECVR-MVScopyleft92.29 15491.33 15995.15 14296.41 15987.84 19198.10 21194.84 30890.82 11491.42 16597.28 15565.61 30798.49 16690.33 17097.19 13099.12 109
EPNet_dtu92.28 15592.15 14292.70 21797.29 12584.84 26798.64 15297.82 6092.91 7393.02 14297.02 17085.48 12695.70 31272.25 33594.89 16597.55 190
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Test_1112_low_res92.27 15690.97 16696.18 10395.53 19591.10 10998.47 17594.66 31688.28 19286.83 21793.50 25487.00 9298.65 16484.69 23589.74 22398.80 140
LFMVS92.23 15790.84 17096.42 9598.24 9491.08 11198.24 19896.22 22483.39 28794.74 11798.31 11661.12 32898.85 15294.45 12092.82 18199.32 91
FA-MVS(test-final)92.22 15891.08 16495.64 12596.05 17988.98 16591.60 35097.25 15286.99 22191.84 15392.12 27283.03 16199.00 14886.91 21093.91 17398.93 127
test111192.12 15991.19 16294.94 15096.15 17387.36 20698.12 20894.84 30890.85 11390.97 17097.26 15765.60 30898.37 16989.74 17997.14 13399.07 115
IB-MVS89.43 692.12 15990.83 17295.98 11495.40 20090.78 11899.81 998.06 4591.23 10885.63 22693.66 24990.63 4098.78 15491.22 15871.85 34298.36 166
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
F-COLMAP92.07 16191.75 15293.02 20898.16 9882.89 29398.79 13895.97 24186.54 23587.92 20397.80 13078.69 21399.65 9685.97 21995.93 15496.53 219
PatchmatchNetpermissive92.05 16291.04 16595.06 14596.17 17289.04 16291.26 35597.26 15189.56 15190.64 17690.56 31388.35 6497.11 23779.53 28396.07 15299.03 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
UGNet91.91 16390.85 16995.10 14397.06 13788.69 17798.01 21898.24 3492.41 8392.39 14993.61 25060.52 33099.68 9088.14 19697.25 12896.92 208
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tpm291.77 16491.09 16393.82 19594.83 23085.56 25492.51 34297.16 16584.00 27593.83 13290.66 30687.54 7797.17 23587.73 20291.55 20598.72 146
Fast-Effi-MVS+91.72 16590.79 17394.49 16695.89 18287.40 20599.54 4795.70 26985.01 26289.28 19595.68 21077.75 21897.57 22383.22 25495.06 16498.51 156
hse-mvs291.67 16691.51 15692.15 22796.22 16882.61 29997.74 23597.53 11993.85 5396.27 8896.15 20083.19 15897.44 22895.81 8866.86 35996.40 223
HQP-MVS91.50 16791.23 16192.29 22293.95 25186.39 22699.16 9196.37 21493.92 4887.57 20596.67 18873.34 24497.77 20393.82 13186.29 23592.72 246
PatchMatch-RL91.47 16890.54 17794.26 17798.20 9586.36 22896.94 26897.14 16687.75 20888.98 19695.75 20971.80 26299.40 12580.92 27597.39 12697.02 205
BH-untuned91.46 16990.84 17093.33 20396.51 15584.83 26898.84 13195.50 28186.44 24083.50 24396.70 18675.49 22897.77 20386.78 21397.81 11397.40 192
QAPM91.41 17089.49 19097.17 5495.66 19193.42 7098.60 15897.51 12580.92 32581.39 28597.41 15272.89 25299.87 5682.33 26498.68 9698.21 173
FE-MVS91.38 17190.16 18295.05 14796.46 15787.53 20089.69 36497.84 5782.97 29492.18 15192.00 27884.07 14498.93 15180.71 27795.52 15998.68 149
HQP_MVS91.26 17290.95 16792.16 22693.84 25886.07 24199.02 11496.30 21893.38 6486.99 21296.52 19072.92 25097.75 20993.46 13686.17 23892.67 248
PCF-MVS89.78 591.26 17289.63 18796.16 10695.44 19791.58 9995.29 31596.10 23385.07 25982.75 25397.45 15078.28 21599.78 8280.60 27995.65 15897.12 199
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-RMVSNet91.25 17489.99 18395.03 14896.75 14888.55 17998.65 15094.95 30587.74 20987.74 20497.80 13068.27 28398.14 17980.53 28097.49 12398.41 160
VDD-MVS91.24 17590.18 18194.45 16997.08 13685.84 24898.40 18396.10 23386.99 22193.36 13798.16 12354.27 35299.20 13696.59 7690.63 21798.31 169
SDMVSNet91.09 17689.91 18494.65 16196.80 14590.54 12597.78 23097.81 6388.34 18885.73 22395.26 21966.44 30198.26 17594.25 12386.75 23295.14 232
test_fmvs1_n91.07 17791.41 15890.06 27894.10 24674.31 35299.18 8794.84 30894.81 3196.37 8797.46 14950.86 36399.82 7497.14 6297.90 11196.04 228
CLD-MVS91.06 17890.71 17492.10 22894.05 25086.10 23899.55 4296.29 22194.16 4384.70 23397.17 16469.62 27597.82 19994.74 11386.08 24092.39 252
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ab-mvs91.05 17989.17 19796.69 8095.96 18191.72 9592.62 34197.23 15685.61 25089.74 19093.89 24368.55 28099.42 12191.09 15987.84 22798.92 129
XVG-OURS-SEG-HR90.95 18090.66 17691.83 23395.18 21081.14 31795.92 30295.92 25088.40 18590.33 18397.85 12770.66 27099.38 12692.83 14688.83 22494.98 235
cascas90.93 18189.33 19595.76 12095.69 18993.03 7898.99 11896.59 19980.49 32786.79 21894.45 23265.23 31198.60 16593.52 13592.18 19495.66 231
XVG-OURS90.83 18290.49 17891.86 23295.23 20481.25 31495.79 31095.92 25088.96 16690.02 18798.03 12671.60 26499.35 13191.06 16087.78 22894.98 235
TR-MVS90.77 18389.44 19194.76 15696.31 16488.02 18997.92 22295.96 24385.52 25188.22 20297.23 15966.80 29798.09 18384.58 23792.38 18998.17 175
OpenMVScopyleft85.28 1490.75 18488.84 20496.48 9193.58 26593.51 6898.80 13497.41 14382.59 30178.62 31397.49 14868.00 28799.82 7484.52 23998.55 10196.11 227
FIs90.70 18589.87 18593.18 20592.29 28491.12 10798.17 20598.25 3289.11 16283.44 24494.82 22782.26 18096.17 29187.76 20182.76 27092.25 258
X-MVStestdata90.69 18688.66 20996.77 7299.62 2290.66 12399.43 6397.58 11092.41 8396.86 7229.59 39887.37 8199.87 5695.65 9099.43 5999.78 38
SCA90.64 18789.25 19694.83 15594.95 22588.83 17296.26 29297.21 15890.06 13990.03 18690.62 30966.61 29896.81 25083.16 25594.36 16998.84 134
GeoE90.60 18889.56 18893.72 19995.10 21885.43 25599.41 6694.94 30683.96 27787.21 21196.83 18274.37 23697.05 24180.50 28193.73 17598.67 150
test_vis1_n90.40 18990.27 18090.79 25991.55 29976.48 34499.12 10394.44 32094.31 3997.34 6196.95 17343.60 37499.42 12197.57 5597.60 11896.47 220
TAPA-MVS87.50 990.35 19089.05 20094.25 17898.48 9185.17 26298.42 17896.58 20282.44 30787.24 21098.53 10382.77 16698.84 15359.09 37397.88 11298.72 146
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
miper_enhance_ethall90.33 19189.70 18692.22 22397.12 13488.93 17098.35 19095.96 24388.60 17683.14 25192.33 27187.38 8096.18 28986.49 21577.89 29391.55 285
CVMVSNet90.30 19290.91 16888.46 31194.32 24273.58 35697.61 24397.59 10890.16 13588.43 20197.10 16676.83 22392.86 35082.64 26193.54 17698.93 127
nrg03090.23 19388.87 20394.32 17591.53 30093.54 6798.79 13895.89 25888.12 19684.55 23594.61 23078.80 21296.88 24792.35 15275.21 30792.53 250
FC-MVSNet-test90.22 19489.40 19392.67 21991.78 29689.86 14797.89 22398.22 3588.81 17282.96 25294.66 22981.90 18695.96 30085.89 22382.52 27392.20 264
LS3D90.19 19588.72 20794.59 16598.97 7386.33 23096.90 27096.60 19874.96 35284.06 24198.74 8675.78 22699.83 7174.93 31697.57 11997.62 188
AUN-MVS90.17 19689.50 18992.19 22596.21 16982.67 29797.76 23497.53 11988.05 19791.67 15696.15 20083.10 16097.47 22588.11 19766.91 35896.43 222
dp90.16 19788.83 20594.14 18296.38 16286.42 22491.57 35197.06 17684.76 26688.81 19790.19 32584.29 14197.43 22975.05 31591.35 21198.56 154
GA-MVS90.10 19888.69 20894.33 17492.44 28287.97 19099.08 10696.26 22289.65 14586.92 21593.11 26268.09 28596.96 24382.54 26390.15 21998.05 176
VDDNet90.08 19988.54 21594.69 16094.41 23987.68 19498.21 20196.40 21276.21 34793.33 13897.75 13454.93 35098.77 15594.71 11590.96 21297.61 189
gg-mvs-nofinetune90.00 20087.71 22696.89 7196.15 17394.69 4585.15 37397.74 7268.32 37392.97 14360.16 38696.10 396.84 24893.89 12798.87 8899.14 106
mvsmamba89.99 20189.42 19291.69 24090.64 31286.34 22998.40 18392.27 35391.01 11084.80 23294.93 22376.12 22496.51 26592.81 14783.84 25892.21 262
Effi-MVS+-dtu89.97 20290.68 17587.81 31595.15 21171.98 36297.87 22695.40 28891.92 9387.57 20591.44 28874.27 23896.84 24889.45 18193.10 17994.60 237
EI-MVSNet89.87 20389.38 19491.36 24594.32 24285.87 24697.61 24396.59 19985.10 25785.51 22797.10 16681.30 19496.56 26183.85 25183.03 26891.64 277
OPM-MVS89.76 20489.15 19891.57 24290.53 31385.58 25398.11 21095.93 24992.88 7486.05 22196.47 19367.06 29697.87 19689.29 18786.08 24091.26 298
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tpm89.67 20588.95 20291.82 23492.54 28181.43 30992.95 33695.92 25087.81 20590.50 17989.44 33284.99 13295.65 31383.67 25282.71 27198.38 163
UniMVSNet_NR-MVSNet89.60 20688.55 21492.75 21592.17 28790.07 13898.74 14198.15 4088.37 18683.21 24793.98 24082.86 16495.93 30286.95 20872.47 33692.25 258
cl2289.57 20788.79 20691.91 23197.94 10487.62 19797.98 22096.51 20685.03 26082.37 26691.79 28183.65 14796.50 26685.96 22077.89 29391.61 282
PS-MVSNAJss89.54 20889.05 20091.00 25288.77 33784.36 27397.39 24795.97 24188.47 17881.88 27793.80 24582.48 17496.50 26689.34 18483.34 26792.15 265
UniMVSNet (Re)89.50 20988.32 21793.03 20792.21 28690.96 11598.90 12798.39 2789.13 16183.22 24692.03 27481.69 18796.34 28186.79 21272.53 33591.81 274
sd_testset89.23 21088.05 22392.74 21696.80 14585.33 25895.85 30897.03 17988.34 18885.73 22395.26 21961.12 32897.76 20885.61 22586.75 23295.14 232
tpmvs89.16 21187.76 22493.35 20297.19 12884.75 26990.58 36297.36 14881.99 31284.56 23489.31 33583.98 14598.17 17874.85 31890.00 22197.12 199
VPA-MVSNet89.10 21287.66 22793.45 20192.56 28091.02 11397.97 22198.32 3086.92 22686.03 22292.01 27668.84 27997.10 23990.92 16275.34 30692.23 260
ADS-MVSNet88.99 21387.30 23294.07 18596.21 16987.56 19987.15 36896.78 19183.01 29289.91 18887.27 34878.87 21097.01 24274.20 32392.27 19297.64 185
test0.0.03 188.96 21488.61 21090.03 28291.09 30684.43 27298.97 12197.02 18190.21 13080.29 29496.31 19984.89 13491.93 36472.98 33285.70 24393.73 239
miper_ehance_all_eth88.94 21588.12 22191.40 24395.32 20286.93 21697.85 22795.55 27884.19 27281.97 27591.50 28784.16 14295.91 30584.69 23577.89 29391.36 293
RRT_MVS88.91 21688.56 21389.93 28390.31 31681.61 30798.08 21496.38 21389.30 15682.41 26494.84 22673.15 24896.04 29790.38 16982.23 27592.15 265
tpm cat188.89 21787.27 23393.76 19695.79 18585.32 25990.76 36097.09 17476.14 34885.72 22588.59 33882.92 16398.04 18876.96 30291.43 20897.90 181
LPG-MVS_test88.86 21888.47 21690.06 27893.35 27280.95 31998.22 19995.94 24687.73 21083.17 24996.11 20266.28 30297.77 20390.19 17285.19 24591.46 288
Anonymous20240521188.84 21987.03 23794.27 17698.14 9984.18 27698.44 17695.58 27776.79 34689.34 19496.88 17853.42 35599.54 10687.53 20487.12 23199.09 112
Fast-Effi-MVS+-dtu88.84 21988.59 21289.58 29393.44 27078.18 33798.65 15094.62 31788.46 18084.12 24095.37 21868.91 27796.52 26482.06 26791.70 20394.06 238
DU-MVS88.83 22187.51 22892.79 21391.46 30190.07 13898.71 14297.62 10188.87 17183.21 24793.68 24774.63 23095.93 30286.95 20872.47 33692.36 254
CR-MVSNet88.83 22187.38 23193.16 20693.47 26786.24 23184.97 37594.20 32888.92 17090.76 17486.88 35284.43 13994.82 33270.64 33992.17 19598.41 160
FMVSNet388.81 22387.08 23693.99 19096.52 15494.59 4798.08 21496.20 22585.85 24582.12 27091.60 28574.05 24095.40 32079.04 28780.24 28191.99 272
ACMM86.95 1388.77 22488.22 21990.43 26993.61 26481.34 31298.50 16995.92 25087.88 20483.85 24295.20 22167.20 29497.89 19486.90 21184.90 24792.06 270
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DP-MVS88.75 22586.56 24495.34 13498.92 7787.45 20397.64 24293.52 33970.55 36481.49 28397.25 15874.43 23599.88 5271.14 33894.09 17198.67 150
ACMP87.39 1088.71 22688.24 21890.12 27793.91 25681.06 31898.50 16995.67 27289.43 15480.37 29395.55 21165.67 30597.83 19890.55 16884.51 24991.47 287
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
dmvs_re88.69 22788.06 22290.59 26393.83 26078.68 33395.75 31196.18 22887.99 20084.48 23796.32 19867.52 29196.94 24584.98 23285.49 24496.14 226
myMVS_eth3d88.68 22889.07 19987.50 31895.14 21279.74 32597.68 23996.66 19486.52 23682.63 25696.84 18085.22 13189.89 37069.43 34491.54 20692.87 244
LCM-MVSNet-Re88.59 22988.61 21088.51 31095.53 19572.68 36096.85 27288.43 37988.45 18173.14 34490.63 30875.82 22594.38 33992.95 14395.71 15798.48 158
WR-MVS88.54 23087.22 23592.52 22091.93 29489.50 15498.56 16397.84 5786.99 22181.87 27893.81 24474.25 23995.92 30485.29 22774.43 31692.12 267
IterMVS-LS88.34 23187.44 22991.04 25194.10 24685.85 24798.10 21195.48 28285.12 25682.03 27491.21 29381.35 19395.63 31483.86 25075.73 30591.63 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VPNet88.30 23286.57 24393.49 20091.95 29291.35 10198.18 20397.20 16288.61 17584.52 23694.89 22462.21 32396.76 25389.34 18472.26 33992.36 254
MSDG88.29 23386.37 24694.04 18896.90 14186.15 23796.52 28394.36 32577.89 34279.22 30896.95 17369.72 27399.59 10273.20 33192.58 18796.37 224
test_djsdf88.26 23487.73 22589.84 28688.05 34682.21 30197.77 23296.17 22986.84 22782.41 26491.95 28072.07 25895.99 29889.83 17484.50 25091.32 295
c3_l88.19 23587.23 23491.06 25094.97 22486.17 23697.72 23695.38 28983.43 28681.68 28291.37 28982.81 16595.72 31184.04 24873.70 32491.29 297
D2MVS87.96 23687.39 23089.70 29091.84 29583.40 28598.31 19498.49 2388.04 19878.23 31990.26 31973.57 24296.79 25284.21 24283.53 26388.90 345
bld_raw_dy_0_6487.82 23786.71 24291.15 24889.54 32885.61 25197.37 25089.16 37789.26 15783.42 24594.50 23165.79 30496.18 28988.00 19983.37 26591.67 276
cl____87.82 23786.79 24190.89 25694.88 22885.43 25597.81 22895.24 29782.91 29980.71 29091.22 29281.97 18595.84 30781.34 27275.06 30891.40 292
DIV-MVS_self_test87.82 23786.81 24090.87 25794.87 22985.39 25797.81 22895.22 30282.92 29880.76 28991.31 29181.99 18395.81 30981.36 27175.04 30991.42 291
eth_miper_zixun_eth87.76 24087.00 23890.06 27894.67 23482.65 29897.02 26795.37 29084.19 27281.86 28091.58 28681.47 19095.90 30683.24 25373.61 32591.61 282
testing387.75 24188.22 21986.36 32694.66 23577.41 34299.52 4897.95 5286.05 24381.12 28696.69 18786.18 11389.31 37461.65 36890.12 22092.35 257
TranMVSNet+NR-MVSNet87.75 24186.31 24792.07 22990.81 30988.56 17898.33 19197.18 16387.76 20781.87 27893.90 24272.45 25495.43 31883.13 25771.30 34692.23 260
XXY-MVS87.75 24186.02 25192.95 21190.46 31489.70 15097.71 23895.90 25684.02 27480.95 28794.05 23467.51 29297.10 23985.16 22878.41 29092.04 271
NR-MVSNet87.74 24486.00 25292.96 21091.46 30190.68 12296.65 28197.42 14288.02 19973.42 34193.68 24777.31 22095.83 30884.26 24171.82 34392.36 254
Anonymous2024052987.66 24585.58 25893.92 19197.59 11685.01 26598.13 20697.13 16866.69 37888.47 20096.01 20555.09 34999.51 10887.00 20784.12 25697.23 198
ADS-MVSNet287.62 24686.88 23989.86 28596.21 16979.14 32987.15 36892.99 34383.01 29289.91 18887.27 34878.87 21092.80 35374.20 32392.27 19297.64 185
pmmvs487.58 24786.17 25091.80 23589.58 32688.92 17197.25 25695.28 29382.54 30380.49 29293.17 26175.62 22796.05 29682.75 26078.90 28890.42 320
jajsoiax87.35 24886.51 24589.87 28487.75 35181.74 30597.03 26595.98 24088.47 17880.15 29693.80 24561.47 32596.36 27589.44 18284.47 25291.50 286
PVSNet_083.28 1687.31 24985.16 26493.74 19894.78 23184.59 27098.91 12698.69 2189.81 14278.59 31593.23 25961.95 32499.34 13294.75 11255.72 37997.30 195
v2v48287.27 25085.76 25591.78 23989.59 32587.58 19898.56 16395.54 27984.53 26882.51 26091.78 28273.11 24996.47 26982.07 26674.14 32291.30 296
mvs_tets87.09 25186.22 24889.71 28987.87 34781.39 31196.73 27995.90 25688.19 19479.99 29893.61 25059.96 33296.31 28389.40 18384.34 25391.43 290
V4287.00 25285.68 25790.98 25389.91 31986.08 23998.32 19395.61 27583.67 28382.72 25490.67 30574.00 24196.53 26381.94 26974.28 31990.32 322
miper_lstm_enhance86.90 25386.20 24989.00 30594.53 23781.19 31596.74 27895.24 29782.33 30880.15 29690.51 31681.99 18394.68 33680.71 27773.58 32691.12 301
FMVSNet286.90 25384.79 27293.24 20495.11 21592.54 8797.67 24195.86 26282.94 29580.55 29191.17 29462.89 32095.29 32277.23 29979.71 28791.90 273
v114486.83 25585.31 26391.40 24389.75 32387.21 21498.31 19495.45 28483.22 28982.70 25590.78 30073.36 24396.36 27579.49 28474.69 31390.63 317
MS-PatchMatch86.75 25685.92 25389.22 30091.97 29082.47 30096.91 26996.14 23183.74 28077.73 32093.53 25358.19 33797.37 23376.75 30598.35 10487.84 351
anonymousdsp86.69 25785.75 25689.53 29486.46 35982.94 29096.39 28695.71 26883.97 27679.63 30390.70 30368.85 27895.94 30186.01 21884.02 25789.72 335
GBi-Net86.67 25884.96 26691.80 23595.11 21588.81 17396.77 27495.25 29482.94 29582.12 27090.25 32062.89 32094.97 32779.04 28780.24 28191.62 279
test186.67 25884.96 26691.80 23595.11 21588.81 17396.77 27495.25 29482.94 29582.12 27090.25 32062.89 32094.97 32779.04 28780.24 28191.62 279
MVP-Stereo86.61 26085.83 25488.93 30788.70 33983.85 28196.07 29994.41 32482.15 31175.64 33191.96 27967.65 29096.45 27177.20 30198.72 9586.51 362
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CP-MVSNet86.54 26185.45 26189.79 28891.02 30882.78 29697.38 24997.56 11485.37 25379.53 30593.03 26371.86 26195.25 32379.92 28273.43 33091.34 294
WR-MVS_H86.53 26285.49 26089.66 29291.04 30783.31 28797.53 24598.20 3684.95 26379.64 30290.90 29878.01 21795.33 32176.29 30872.81 33290.35 321
tt080586.50 26384.79 27291.63 24191.97 29081.49 30896.49 28497.38 14682.24 30982.44 26195.82 20851.22 36098.25 17684.55 23880.96 28095.13 234
v14419286.40 26484.89 26990.91 25489.48 33085.59 25298.21 20195.43 28782.45 30682.62 25890.58 31272.79 25396.36 27578.45 29474.04 32390.79 310
v14886.38 26585.06 26590.37 27389.47 33184.10 27798.52 16595.48 28283.80 27980.93 28890.22 32374.60 23296.31 28380.92 27571.55 34490.69 315
v119286.32 26684.71 27491.17 24789.53 32986.40 22598.13 20695.44 28682.52 30482.42 26390.62 30971.58 26596.33 28277.23 29974.88 31090.79 310
Patchmatch-test86.25 26784.06 28492.82 21294.42 23882.88 29482.88 38294.23 32771.58 36079.39 30690.62 30989.00 5796.42 27263.03 36491.37 21099.16 104
v886.11 26884.45 27991.10 24989.99 31886.85 21797.24 25795.36 29181.99 31279.89 30089.86 32874.53 23496.39 27378.83 29172.32 33890.05 329
v192192086.02 26984.44 28090.77 26089.32 33285.20 26098.10 21195.35 29282.19 31082.25 26890.71 30270.73 26896.30 28676.85 30474.49 31590.80 309
JIA-IIPM85.97 27084.85 27089.33 29993.23 27473.68 35585.05 37497.13 16869.62 36991.56 16068.03 38488.03 7196.96 24377.89 29793.12 17897.34 194
pmmvs585.87 27184.40 28290.30 27488.53 34184.23 27498.60 15893.71 33581.53 31780.29 29492.02 27564.51 31395.52 31682.04 26878.34 29191.15 300
XVG-ACMP-BASELINE85.86 27284.95 26888.57 30989.90 32077.12 34394.30 32395.60 27687.40 21882.12 27092.99 26553.42 35597.66 21385.02 23183.83 25990.92 306
Baseline_NR-MVSNet85.83 27384.82 27188.87 30888.73 33883.34 28698.63 15391.66 36280.41 33082.44 26191.35 29074.63 23095.42 31984.13 24471.39 34587.84 351
PS-CasMVS85.81 27484.58 27789.49 29790.77 31082.11 30297.20 26097.36 14884.83 26579.12 31092.84 26667.42 29395.16 32578.39 29573.25 33191.21 299
IterMVS85.81 27484.67 27589.22 30093.51 26683.67 28396.32 28994.80 31185.09 25878.69 31190.17 32666.57 30093.17 34979.48 28577.42 29990.81 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v124085.77 27684.11 28390.73 26189.26 33385.15 26397.88 22595.23 30181.89 31582.16 26990.55 31469.60 27696.31 28375.59 31374.87 31190.72 314
IterMVS-SCA-FT85.73 27784.64 27689.00 30593.46 26982.90 29296.27 29094.70 31485.02 26178.62 31390.35 31866.61 29893.33 34679.38 28677.36 30090.76 312
v1085.73 27784.01 28590.87 25790.03 31786.73 21997.20 26095.22 30281.25 32079.85 30189.75 32973.30 24696.28 28776.87 30372.64 33489.61 337
UniMVSNet_ETH3D85.65 27983.79 28791.21 24690.41 31580.75 32195.36 31495.78 26478.76 33681.83 28194.33 23349.86 36596.66 25484.30 24083.52 26496.22 225
PatchT85.44 28083.19 28992.22 22393.13 27683.00 28983.80 38196.37 21470.62 36390.55 17779.63 37684.81 13694.87 33058.18 37591.59 20498.79 141
RPSCF85.33 28185.55 25984.67 33894.63 23662.28 37793.73 32993.76 33374.38 35585.23 23097.06 16964.09 31498.31 17180.98 27386.08 24093.41 243
PEN-MVS85.21 28283.93 28689.07 30489.89 32181.31 31397.09 26397.24 15584.45 27078.66 31292.68 26868.44 28294.87 33075.98 31070.92 34791.04 303
test_fmvs285.10 28385.45 26184.02 34189.85 32265.63 37598.49 17192.59 34990.45 12585.43 22993.32 25543.94 37296.59 25790.81 16584.19 25589.85 333
RPMNet85.07 28481.88 30194.64 16393.47 26786.24 23184.97 37597.21 15864.85 38090.76 17478.80 37780.95 19699.27 13553.76 37992.17 19598.41 160
AllTest84.97 28583.12 29090.52 26796.82 14378.84 33195.89 30392.17 35577.96 34075.94 32795.50 21255.48 34599.18 13771.15 33687.14 22993.55 241
USDC84.74 28682.93 29190.16 27691.73 29783.54 28495.00 31793.30 34288.77 17373.19 34393.30 25753.62 35497.65 21575.88 31181.54 27889.30 340
Anonymous2023121184.72 28782.65 29890.91 25497.71 11084.55 27197.28 25496.67 19366.88 37779.18 30990.87 29958.47 33696.60 25682.61 26274.20 32091.59 284
pm-mvs184.68 28882.78 29590.40 27089.58 32685.18 26197.31 25294.73 31381.93 31476.05 32692.01 27665.48 30996.11 29478.75 29269.14 34989.91 332
ACMH83.09 1784.60 28982.61 29990.57 26493.18 27582.94 29096.27 29094.92 30781.01 32372.61 35093.61 25056.54 34197.79 20174.31 32181.07 27990.99 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB81.71 1984.59 29082.72 29790.18 27592.89 27983.18 28893.15 33494.74 31278.99 33375.14 33492.69 26765.64 30697.63 21669.46 34381.82 27789.74 334
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
COLMAP_ROBcopyleft82.69 1884.54 29182.82 29289.70 29096.72 14978.85 33095.89 30392.83 34771.55 36177.54 32295.89 20759.40 33499.14 14367.26 35288.26 22591.11 302
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet84.48 29281.83 30292.42 22191.73 29787.36 20685.52 37194.42 32381.40 31881.91 27687.58 34251.92 35892.81 35273.84 32688.15 22697.08 203
our_test_384.47 29382.80 29389.50 29589.01 33483.90 28097.03 26594.56 31881.33 31975.36 33390.52 31571.69 26394.54 33868.81 34676.84 30190.07 327
v7n84.42 29482.75 29689.43 29888.15 34481.86 30496.75 27795.67 27280.53 32678.38 31789.43 33369.89 27196.35 28073.83 32772.13 34090.07 327
ACMH+83.78 1584.21 29582.56 30089.15 30293.73 26379.16 32896.43 28594.28 32681.09 32274.00 33894.03 23754.58 35197.67 21276.10 30978.81 28990.63 317
EU-MVSNet84.19 29684.42 28183.52 34488.64 34067.37 37396.04 30095.76 26685.29 25478.44 31693.18 26070.67 26991.48 36675.79 31275.98 30391.70 275
DTE-MVSNet84.14 29782.80 29388.14 31288.95 33679.87 32496.81 27396.24 22383.50 28577.60 32192.52 27067.89 28994.24 34172.64 33469.05 35090.32 322
OurMVSNet-221017-084.13 29883.59 28885.77 33187.81 34870.24 36794.89 31893.65 33786.08 24276.53 32393.28 25861.41 32696.14 29380.95 27477.69 29890.93 305
Syy-MVS84.10 29984.53 27882.83 34695.14 21265.71 37497.68 23996.66 19486.52 23682.63 25696.84 18068.15 28489.89 37045.62 38491.54 20692.87 244
FMVSNet183.94 30081.32 30891.80 23591.94 29388.81 17396.77 27495.25 29477.98 33878.25 31890.25 32050.37 36494.97 32773.27 33077.81 29791.62 279
tfpnnormal83.65 30181.35 30790.56 26691.37 30388.06 18797.29 25397.87 5578.51 33776.20 32490.91 29764.78 31296.47 26961.71 36773.50 32787.13 359
ppachtmachnet_test83.63 30281.57 30589.80 28789.01 33485.09 26497.13 26294.50 31978.84 33476.14 32591.00 29669.78 27294.61 33763.40 36274.36 31789.71 336
Patchmtry83.61 30381.64 30389.50 29593.36 27182.84 29584.10 37894.20 32869.47 37079.57 30486.88 35284.43 13994.78 33368.48 34874.30 31890.88 307
KD-MVS_2432*160082.98 30480.52 31290.38 27194.32 24288.98 16592.87 33895.87 26080.46 32873.79 33987.49 34582.76 16893.29 34770.56 34046.53 38888.87 346
miper_refine_blended82.98 30480.52 31290.38 27194.32 24288.98 16592.87 33895.87 26080.46 32873.79 33987.49 34582.76 16893.29 34770.56 34046.53 38888.87 346
SixPastTwentyTwo82.63 30681.58 30485.79 33088.12 34571.01 36595.17 31692.54 35084.33 27172.93 34892.08 27360.41 33195.61 31574.47 32074.15 32190.75 313
testgi82.29 30781.00 31086.17 32887.24 35474.84 35197.39 24791.62 36388.63 17475.85 33095.42 21546.07 37191.55 36566.87 35579.94 28592.12 267
FMVSNet582.29 30780.54 31187.52 31793.79 26284.01 27893.73 32992.47 35176.92 34574.27 33686.15 35663.69 31889.24 37569.07 34574.79 31289.29 341
TransMVSNet (Re)81.97 30979.61 31889.08 30389.70 32484.01 27897.26 25591.85 36178.84 33473.07 34791.62 28467.17 29595.21 32467.50 35159.46 37388.02 350
LF4IMVS81.94 31081.17 30984.25 34087.23 35568.87 37293.35 33391.93 36083.35 28875.40 33293.00 26449.25 36896.65 25578.88 29078.11 29287.22 358
Patchmatch-RL test81.90 31180.13 31487.23 32180.71 37570.12 36984.07 37988.19 38083.16 29170.57 35282.18 36787.18 8792.59 35582.28 26562.78 36698.98 119
DSMNet-mixed81.60 31281.43 30682.10 34984.36 36560.79 37893.63 33186.74 38279.00 33279.32 30787.15 35063.87 31689.78 37266.89 35491.92 19795.73 230
test_vis1_rt81.31 31380.05 31685.11 33391.29 30470.66 36698.98 12077.39 39485.76 24868.80 35882.40 36536.56 38199.44 11792.67 14986.55 23485.24 369
K. test v381.04 31479.77 31784.83 33687.41 35270.23 36895.60 31393.93 33283.70 28267.51 36589.35 33455.76 34393.58 34576.67 30668.03 35390.67 316
Anonymous2023120680.76 31579.42 31984.79 33784.78 36472.98 35796.53 28292.97 34479.56 33174.33 33588.83 33661.27 32792.15 36160.59 37075.92 30489.24 342
CMPMVSbinary58.40 2180.48 31680.11 31581.59 35285.10 36359.56 38094.14 32695.95 24568.54 37260.71 37693.31 25655.35 34897.87 19683.06 25884.85 24887.33 356
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TinyColmap80.42 31777.94 32287.85 31492.09 28878.58 33493.74 32889.94 37274.99 35169.77 35591.78 28246.09 37097.58 22065.17 36077.89 29387.38 354
EG-PatchMatch MVS79.92 31877.59 32386.90 32387.06 35677.90 34196.20 29794.06 33074.61 35366.53 36988.76 33740.40 37996.20 28867.02 35383.66 26286.61 360
pmmvs679.90 31977.31 32587.67 31684.17 36678.13 33895.86 30793.68 33667.94 37472.67 34989.62 33150.98 36295.75 31074.80 31966.04 36089.14 343
CL-MVSNet_self_test79.89 32078.34 32184.54 33981.56 37375.01 34996.88 27195.62 27481.10 32175.86 32985.81 35768.49 28190.26 36863.21 36356.51 37788.35 348
MDA-MVSNet_test_wron79.65 32177.05 32687.45 31987.79 35080.13 32296.25 29394.44 32073.87 35651.80 38287.47 34768.04 28692.12 36266.02 35667.79 35590.09 325
YYNet179.64 32277.04 32787.43 32087.80 34979.98 32396.23 29494.44 32073.83 35751.83 38187.53 34367.96 28892.07 36366.00 35767.75 35690.23 324
MVS-HIRNet79.01 32375.13 33590.66 26293.82 26181.69 30685.16 37293.75 33454.54 38274.17 33759.15 38857.46 33996.58 26063.74 36194.38 16893.72 240
UnsupCasMVSNet_eth78.90 32476.67 32985.58 33282.81 37174.94 35091.98 34596.31 21784.64 26765.84 37187.71 34151.33 35992.23 36072.89 33356.50 37889.56 338
test_040278.81 32576.33 33086.26 32791.18 30578.44 33695.88 30591.34 36668.55 37170.51 35489.91 32752.65 35794.99 32647.14 38379.78 28685.34 368
pmmvs-eth3d78.71 32676.16 33186.38 32580.25 37781.19 31594.17 32592.13 35777.97 33966.90 36882.31 36655.76 34392.56 35673.63 32962.31 36985.38 366
Anonymous2024052178.63 32776.90 32883.82 34282.82 37072.86 35895.72 31293.57 33873.55 35872.17 35184.79 35949.69 36692.51 35765.29 35974.50 31486.09 364
test20.0378.51 32877.48 32481.62 35183.07 36971.03 36496.11 29892.83 34781.66 31669.31 35789.68 33057.53 33887.29 38058.65 37468.47 35186.53 361
TDRefinement78.01 32975.31 33386.10 32970.06 38873.84 35493.59 33291.58 36474.51 35473.08 34691.04 29549.63 36797.12 23674.88 31759.47 37287.33 356
OpenMVS_ROBcopyleft73.86 2077.99 33075.06 33686.77 32483.81 36877.94 34096.38 28791.53 36567.54 37568.38 36087.13 35143.94 37296.08 29555.03 37881.83 27686.29 363
MDA-MVSNet-bldmvs77.82 33174.75 33787.03 32288.33 34278.52 33596.34 28892.85 34675.57 34948.87 38487.89 34057.32 34092.49 35860.79 36964.80 36490.08 326
KD-MVS_self_test77.47 33275.88 33282.24 34781.59 37268.93 37192.83 34094.02 33177.03 34473.14 34483.39 36255.44 34790.42 36767.95 34957.53 37687.38 354
dmvs_testset77.17 33378.99 32071.71 36287.25 35338.55 39991.44 35281.76 39085.77 24769.49 35695.94 20669.71 27484.37 38252.71 38176.82 30292.21 262
new_pmnet76.02 33473.71 33982.95 34583.88 36772.85 35991.26 35592.26 35470.44 36562.60 37481.37 36947.64 36992.32 35961.85 36672.10 34183.68 374
MIMVSNet175.92 33573.30 34083.81 34381.29 37475.57 34792.26 34392.05 35873.09 35967.48 36686.18 35540.87 37887.64 37955.78 37770.68 34888.21 349
mvsany_test375.85 33674.52 33879.83 35473.53 38560.64 37991.73 34887.87 38183.91 27870.55 35382.52 36431.12 38393.66 34386.66 21462.83 36585.19 370
test_fmvs375.09 33775.19 33474.81 35977.45 38154.08 38595.93 30190.64 36982.51 30573.29 34281.19 37022.29 38886.29 38185.50 22667.89 35484.06 372
PM-MVS74.88 33872.85 34180.98 35378.98 37964.75 37690.81 35985.77 38380.95 32468.23 36282.81 36329.08 38592.84 35176.54 30762.46 36885.36 367
new-patchmatchnet74.80 33972.40 34281.99 35078.36 38072.20 36194.44 32192.36 35277.06 34363.47 37379.98 37551.04 36188.85 37660.53 37154.35 38084.92 371
UnsupCasMVSNet_bld73.85 34070.14 34484.99 33579.44 37875.73 34688.53 36595.24 29770.12 36761.94 37574.81 38141.41 37793.62 34468.65 34751.13 38585.62 365
pmmvs372.86 34169.76 34682.17 34873.86 38474.19 35394.20 32489.01 37864.23 38167.72 36380.91 37341.48 37688.65 37762.40 36554.02 38183.68 374
test_f71.94 34270.82 34375.30 35872.77 38653.28 38691.62 34989.66 37575.44 35064.47 37278.31 37820.48 38989.56 37378.63 29366.02 36183.05 377
N_pmnet70.19 34369.87 34571.12 36488.24 34330.63 40395.85 30828.70 40270.18 36668.73 35986.55 35464.04 31593.81 34253.12 38073.46 32888.94 344
test_method70.10 34468.66 34774.41 36186.30 36155.84 38394.47 32089.82 37335.18 39066.15 37084.75 36030.54 38477.96 39170.40 34260.33 37189.44 339
APD_test168.93 34566.98 34874.77 36080.62 37653.15 38787.97 36685.01 38553.76 38359.26 37787.52 34425.19 38689.95 36956.20 37667.33 35781.19 378
WB-MVS66.44 34666.29 34966.89 36774.84 38244.93 39493.00 33584.09 38871.15 36255.82 37981.63 36863.79 31780.31 38921.85 39350.47 38675.43 380
SSC-MVS65.42 34765.20 35066.06 36873.96 38343.83 39592.08 34483.54 38969.77 36854.73 38080.92 37263.30 31979.92 39020.48 39448.02 38774.44 381
FPMVS61.57 34860.32 35165.34 36960.14 39542.44 39791.02 35889.72 37444.15 38542.63 38880.93 37119.02 39080.59 38842.50 38572.76 33373.00 382
test_vis3_rt61.29 34958.75 35268.92 36667.41 38952.84 38891.18 35759.23 40166.96 37641.96 38958.44 38911.37 39794.72 33574.25 32257.97 37559.20 388
EGC-MVSNET60.70 35055.37 35476.72 35686.35 36071.08 36389.96 36384.44 3870.38 3991.50 40084.09 36137.30 38088.10 37840.85 38873.44 32970.97 384
LCM-MVSNet60.07 35156.37 35371.18 36354.81 39748.67 39182.17 38389.48 37637.95 38849.13 38369.12 38213.75 39681.76 38359.28 37251.63 38483.10 376
PMMVS258.97 35255.07 35570.69 36562.72 39255.37 38485.97 37080.52 39149.48 38445.94 38568.31 38315.73 39480.78 38749.79 38237.12 39075.91 379
testf156.38 35353.73 35664.31 37164.84 39045.11 39280.50 38475.94 39638.87 38642.74 38675.07 37911.26 39881.19 38541.11 38653.27 38266.63 385
APD_test256.38 35353.73 35664.31 37164.84 39045.11 39280.50 38475.94 39638.87 38642.74 38675.07 37911.26 39881.19 38541.11 38653.27 38266.63 385
Gipumacopyleft54.77 35552.22 35962.40 37386.50 35859.37 38150.20 39190.35 37136.52 38941.20 39049.49 39118.33 39281.29 38432.10 39065.34 36246.54 391
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt53.66 35652.86 35856.05 37432.75 40141.97 39873.42 38876.12 39521.91 39539.68 39196.39 19642.59 37565.10 39478.00 29614.92 39561.08 387
ANet_high50.71 35746.17 36064.33 37044.27 39952.30 38976.13 38778.73 39264.95 37927.37 39355.23 39014.61 39567.74 39336.01 38918.23 39372.95 383
PMVScopyleft41.42 2345.67 35842.50 36155.17 37534.28 40032.37 40166.24 38978.71 39330.72 39122.04 39659.59 3874.59 40077.85 39227.49 39158.84 37455.29 389
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive44.00 2241.70 35937.64 36453.90 37649.46 39843.37 39665.09 39066.66 39826.19 39425.77 39548.53 3923.58 40263.35 39526.15 39227.28 39154.97 390
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN41.02 36040.93 36241.29 37761.97 39333.83 40084.00 38065.17 39927.17 39227.56 39246.72 39317.63 39360.41 39619.32 39518.82 39229.61 392
EMVS39.96 36139.88 36340.18 37859.57 39632.12 40284.79 37764.57 40026.27 39326.14 39444.18 39618.73 39159.29 39717.03 39617.67 39429.12 393
cdsmvs_eth3d_5k22.52 36230.03 3650.00 3820.00 4040.00 4070.00 39397.17 1640.00 4000.00 40198.77 8374.35 2370.00 4010.00 4000.00 3990.00 397
testmvs18.81 36323.05 3666.10 3814.48 4022.29 40697.78 2303.00 4043.27 39718.60 39762.71 3851.53 4042.49 40014.26 3981.80 39713.50 395
wuyk23d16.71 36416.73 36816.65 37960.15 39425.22 40441.24 3925.17 4036.56 3965.48 3993.61 3993.64 40122.72 39815.20 3979.52 3961.99 396
test12316.58 36519.47 3677.91 3803.59 4035.37 40594.32 3221.39 4052.49 39813.98 39844.60 3952.91 4032.65 39911.35 3990.57 39815.70 394
ab-mvs-re8.21 36610.94 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40198.50 1060.00 4050.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas6.87 3679.16 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40082.48 1740.00 4010.00 4000.00 3990.00 397
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
MM98.86 596.83 799.81 999.13 997.66 298.29 3798.96 6485.84 11999.90 4899.72 398.80 9199.85 30
WAC-MVS79.74 32567.75 350
FOURS199.50 4288.94 16899.55 4297.47 13391.32 10698.12 42
MSC_two_6792asdad99.51 299.61 2498.60 297.69 8399.98 999.55 1199.83 1599.96 10
PC_three_145294.60 3499.41 299.12 4495.50 799.96 2899.84 299.92 399.97 7
No_MVS99.51 299.61 2498.60 297.69 8399.98 999.55 1199.83 1599.96 10
test_one_060199.59 2894.89 3497.64 9593.14 6798.93 1999.45 1493.45 18
eth-test20.00 404
eth-test0.00 404
ZD-MVS99.67 1093.28 7197.61 10287.78 20697.41 5899.16 3490.15 4799.56 10398.35 3999.70 35
RE-MVS-def95.70 6199.22 5987.26 21298.40 18397.21 15889.63 14696.67 8298.97 6085.24 13096.62 7399.31 6599.60 67
IU-MVS99.63 1895.38 2297.73 7595.54 2499.54 199.69 699.81 2399.99 1
OPU-MVS99.49 499.64 1798.51 499.77 1599.19 2895.12 899.97 2199.90 199.92 399.99 1
test_241102_TWO97.72 7694.17 4199.23 899.54 393.14 2499.98 999.70 499.82 1999.99 1
test_241102_ONE99.63 1895.24 2597.72 7694.16 4399.30 699.49 993.32 1999.98 9
9.1496.87 2499.34 5099.50 4997.49 13089.41 15598.59 2899.43 1689.78 5099.69 8998.69 2899.62 44
save fliter99.34 5093.85 6299.65 3397.63 9995.69 20
test_0728_THIRD93.01 6899.07 1399.46 1094.66 1499.97 2199.25 1699.82 1999.95 15
test_0728_SECOND98.77 899.66 1296.37 1499.72 2197.68 8599.98 999.64 799.82 1999.96 10
test072699.66 1295.20 3099.77 1597.70 8193.95 4699.35 599.54 393.18 22
GSMVS98.84 134
test_part299.54 3695.42 2098.13 40
sam_mvs188.39 6398.84 134
sam_mvs87.08 89
ambc79.60 35572.76 38756.61 38276.20 38692.01 35968.25 36180.23 37423.34 38794.73 33473.78 32860.81 37087.48 353
MTGPAbinary97.45 136
test_post190.74 36141.37 39785.38 12896.36 27583.16 255
test_post46.00 39487.37 8197.11 237
patchmatchnet-post84.86 35888.73 6096.81 250
GG-mvs-BLEND96.98 6396.53 15394.81 4187.20 36797.74 7293.91 13096.40 19496.56 296.94 24595.08 10498.95 8499.20 102
MTMP99.21 8491.09 367
gm-plane-assit94.69 23388.14 18588.22 19397.20 16198.29 17390.79 166
test9_res98.60 3199.87 999.90 22
TEST999.57 3393.17 7399.38 6997.66 8989.57 15098.39 3399.18 3190.88 3799.66 92
test_899.55 3593.07 7699.37 7297.64 9590.18 13298.36 3599.19 2890.94 3599.64 98
agg_prior297.84 5299.87 999.91 21
agg_prior99.54 3692.66 8397.64 9597.98 4999.61 100
TestCases90.52 26796.82 14378.84 33192.17 35577.96 34075.94 32795.50 21255.48 34599.18 13771.15 33687.14 22993.55 241
test_prior492.00 9299.41 66
test_prior299.57 4091.43 10398.12 4298.97 6090.43 4398.33 4099.81 23
test_prior97.01 5899.58 3091.77 9397.57 11399.49 11099.79 36
旧先验298.67 14885.75 24998.96 1898.97 15093.84 129
新几何298.26 197
新几何197.40 4598.92 7792.51 8897.77 7085.52 25196.69 8199.06 5188.08 7099.89 5184.88 23399.62 4499.79 36
旧先验198.97 7392.90 8297.74 7299.15 3791.05 3499.33 6399.60 67
无先验98.52 16597.82 6087.20 22099.90 4887.64 20399.85 30
原ACMM298.69 145
原ACMM196.18 10399.03 7190.08 13797.63 9988.98 16597.00 7098.97 6088.14 6999.71 8888.23 19599.62 4498.76 145
test22298.32 9291.21 10398.08 21497.58 11083.74 28095.87 9699.02 5686.74 9899.64 4099.81 33
testdata299.88 5284.16 243
segment_acmp90.56 41
testdata95.26 13998.20 9587.28 20997.60 10485.21 25598.48 3199.15 3788.15 6898.72 16090.29 17199.45 5799.78 38
testdata197.89 22392.43 80
test1297.83 3399.33 5394.45 4997.55 11597.56 5488.60 6199.50 10999.71 3499.55 72
plane_prior793.84 25885.73 249
plane_prior693.92 25586.02 24372.92 250
plane_prior596.30 21897.75 20993.46 13686.17 23892.67 248
plane_prior496.52 190
plane_prior385.91 24493.65 5986.99 212
plane_prior299.02 11493.38 64
plane_prior193.90 257
plane_prior86.07 24199.14 9993.81 5686.26 237
n20.00 406
nn0.00 406
door-mid84.90 386
lessismore_v085.08 33485.59 36269.28 37090.56 37067.68 36490.21 32454.21 35395.46 31773.88 32562.64 36790.50 319
LGP-MVS_train90.06 27893.35 27280.95 31995.94 24687.73 21083.17 24996.11 20266.28 30297.77 20390.19 17285.19 24591.46 288
test1197.68 85
door85.30 384
HQP5-MVS86.39 226
HQP-NCC93.95 25199.16 9193.92 4887.57 205
ACMP_Plane93.95 25199.16 9193.92 4887.57 205
BP-MVS93.82 131
HQP4-MVS87.57 20597.77 20392.72 246
HQP3-MVS96.37 21486.29 235
HQP2-MVS73.34 244
NP-MVS93.94 25486.22 23396.67 188
MDTV_nov1_ep13_2view91.17 10691.38 35387.45 21793.08 14186.67 10087.02 20698.95 125
MDTV_nov1_ep1390.47 17996.14 17588.55 17991.34 35497.51 12589.58 14992.24 15090.50 31786.99 9397.61 21877.64 29892.34 190
ACMMP++_ref82.64 272
ACMMP++83.83 259
Test By Simon83.62 148
ITE_SJBPF87.93 31392.26 28576.44 34593.47 34087.67 21379.95 29995.49 21456.50 34297.38 23175.24 31482.33 27489.98 331
DeepMVS_CXcopyleft76.08 35790.74 31151.65 39090.84 36886.47 23957.89 37887.98 33935.88 38292.60 35465.77 35865.06 36383.97 373