CNVR-MVS | | | 96.30 1 | 96.54 1 | 95.55 14 | 99.31 5 | 87.69 21 | 99.06 11 | 97.12 26 | 94.66 4 | 96.79 13 | 98.78 9 | 86.42 29 | 99.95 3 | 97.59 15 | 99.18 7 | 99.00 26 |
|
DPM-MVS | | | 96.21 2 | 95.53 12 | 98.26 1 | 96.26 98 | 95.09 1 | 99.15 5 | 96.98 32 | 93.39 12 | 96.45 19 | 98.79 8 | 90.17 10 | 99.99 1 | 89.33 113 | 99.25 6 | 99.70 3 |
|
MCST-MVS | | | 96.17 3 | 96.12 6 | 96.32 7 | 99.42 2 | 89.36 9 | 98.94 17 | 97.10 28 | 95.17 2 | 92.11 69 | 98.46 22 | 87.33 24 | 99.97 2 | 97.21 19 | 99.31 4 | 99.63 7 |
|
DVP-MVS++ | | | 96.05 4 | 96.41 3 | 94.96 21 | 99.05 9 | 85.34 48 | 98.13 41 | 96.77 52 | 88.38 63 | 97.70 6 | 98.77 10 | 92.06 3 | 99.84 12 | 97.47 16 | 99.37 1 | 99.70 3 |
|
SED-MVS | | | 95.88 5 | 96.22 4 | 94.87 22 | 99.03 15 | 85.03 60 | 99.12 7 | 96.78 46 | 88.72 56 | 97.79 4 | 98.91 2 | 88.48 17 | 99.82 18 | 98.15 6 | 98.97 17 | 99.74 1 |
|
NCCC | | | 95.63 6 | 95.94 8 | 94.69 27 | 99.21 6 | 85.15 58 | 99.16 4 | 96.96 34 | 94.11 8 | 95.59 25 | 98.64 17 | 85.07 33 | 99.91 4 | 95.61 35 | 99.10 9 | 99.00 26 |
|
MSP-MVS | | | 95.62 7 | 96.54 1 | 92.86 84 | 98.31 48 | 80.10 159 | 97.42 92 | 96.78 46 | 92.20 19 | 97.11 12 | 98.29 27 | 93.46 1 | 99.10 91 | 96.01 28 | 99.30 5 | 99.38 14 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DVP-MVS |  | | 95.58 8 | 95.91 9 | 94.57 29 | 99.05 9 | 85.18 53 | 99.06 11 | 96.46 93 | 88.75 54 | 96.69 14 | 98.76 12 | 87.69 22 | 99.76 27 | 97.90 11 | 98.85 21 | 98.77 33 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
MVS_0304 | | | 95.36 9 | 95.20 14 | 95.85 10 | 94.89 138 | 89.22 11 | 98.83 18 | 97.88 10 | 94.68 3 | 95.14 30 | 97.99 45 | 80.80 58 | 99.81 21 | 98.60 3 | 97.95 56 | 98.50 49 |
|
DPE-MVS |  | | 95.32 10 | 95.55 11 | 94.64 28 | 98.79 23 | 84.87 65 | 97.77 62 | 96.74 57 | 86.11 107 | 96.54 18 | 98.89 6 | 88.39 19 | 99.74 34 | 97.67 14 | 99.05 12 | 99.31 18 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
HPM-MVS++ |  | | 95.32 10 | 95.48 13 | 94.85 23 | 98.62 34 | 86.04 35 | 97.81 60 | 96.93 37 | 92.45 17 | 95.69 24 | 98.50 20 | 85.38 31 | 99.85 10 | 94.75 44 | 99.18 7 | 98.65 42 |
|
patch_mono-2 | | | 95.14 12 | 96.08 7 | 92.33 104 | 98.44 43 | 77.84 225 | 98.43 29 | 97.21 21 | 92.58 16 | 97.68 8 | 97.65 67 | 86.88 26 | 99.83 16 | 98.25 5 | 97.60 66 | 99.33 17 |
|
DELS-MVS | | | 94.98 13 | 94.49 21 | 96.44 6 | 96.42 95 | 90.59 7 | 99.21 3 | 97.02 30 | 94.40 7 | 91.46 76 | 97.08 94 | 83.32 45 | 99.69 42 | 92.83 69 | 98.70 30 | 99.04 24 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
CANet | | | 94.89 14 | 94.64 19 | 95.63 12 | 97.55 75 | 88.12 15 | 99.06 11 | 96.39 103 | 94.07 9 | 95.34 27 | 97.80 58 | 76.83 110 | 99.87 8 | 97.08 20 | 97.64 65 | 98.89 29 |
|
SD-MVS | | | 94.84 15 | 95.02 16 | 94.29 35 | 97.87 64 | 84.61 68 | 97.76 64 | 96.19 119 | 89.59 46 | 96.66 16 | 98.17 34 | 84.33 36 | 99.60 51 | 96.09 27 | 98.50 36 | 98.66 41 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
test_fmvsm_n_1920 | | | 94.81 16 | 95.60 10 | 92.45 98 | 95.29 123 | 80.96 136 | 99.29 2 | 97.21 21 | 94.50 6 | 97.29 11 | 98.44 23 | 82.15 52 | 99.78 26 | 98.56 4 | 97.68 64 | 96.61 155 |
|
TSAR-MVS + MP. | | | 94.79 17 | 95.17 15 | 93.64 54 | 97.66 69 | 84.10 75 | 95.85 196 | 96.42 98 | 91.26 25 | 97.49 10 | 96.80 106 | 86.50 28 | 98.49 121 | 95.54 37 | 99.03 13 | 98.33 58 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
SMA-MVS |  | | 94.70 18 | 94.68 18 | 94.76 25 | 98.02 59 | 85.94 38 | 97.47 85 | 96.77 52 | 85.32 122 | 97.92 3 | 98.70 15 | 83.09 47 | 99.84 12 | 95.79 32 | 99.08 10 | 98.49 50 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
DeepPCF-MVS | | 89.82 1 | 94.61 19 | 96.17 5 | 89.91 184 | 97.09 90 | 70.21 316 | 98.99 16 | 96.69 64 | 95.57 1 | 95.08 32 | 99.23 1 | 86.40 30 | 99.87 8 | 97.84 13 | 98.66 31 | 99.65 6 |
|
APDe-MVS | | | 94.56 20 | 94.75 17 | 93.96 45 | 98.84 22 | 83.40 89 | 98.04 49 | 96.41 99 | 85.79 114 | 95.00 34 | 98.28 28 | 84.32 39 | 99.18 84 | 97.35 18 | 98.77 27 | 99.28 19 |
|
DeepC-MVS_fast | | 89.06 2 | 94.48 21 | 94.30 25 | 95.02 19 | 98.86 21 | 85.68 43 | 98.06 47 | 96.64 72 | 93.64 11 | 91.74 74 | 98.54 18 | 80.17 66 | 99.90 5 | 92.28 74 | 98.75 28 | 99.49 8 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TSAR-MVS + GP. | | | 94.35 22 | 94.50 20 | 93.89 46 | 97.38 84 | 83.04 96 | 98.10 43 | 95.29 172 | 91.57 22 | 93.81 48 | 97.45 75 | 86.64 27 | 99.43 66 | 96.28 26 | 94.01 120 | 99.20 22 |
|
train_agg | | | 94.28 23 | 94.45 22 | 93.74 50 | 98.64 31 | 83.71 81 | 97.82 58 | 96.65 69 | 84.50 145 | 95.16 28 | 98.09 38 | 84.33 36 | 99.36 71 | 95.91 31 | 98.96 19 | 98.16 70 |
|
MSLP-MVS++ | | | 94.28 23 | 94.39 24 | 93.97 44 | 98.30 49 | 84.06 76 | 98.64 24 | 96.93 37 | 90.71 31 | 93.08 58 | 98.70 15 | 79.98 67 | 99.21 78 | 94.12 52 | 99.07 11 | 98.63 43 |
|
MG-MVS | | | 94.25 25 | 93.72 29 | 95.85 10 | 99.38 3 | 89.35 10 | 97.98 51 | 98.09 8 | 89.99 41 | 92.34 65 | 96.97 98 | 81.30 56 | 98.99 97 | 88.54 119 | 98.88 20 | 99.20 22 |
|
SF-MVS | | | 94.17 26 | 94.05 28 | 94.55 30 | 97.56 74 | 85.95 36 | 97.73 66 | 96.43 97 | 84.02 159 | 95.07 33 | 98.74 14 | 82.93 48 | 99.38 68 | 95.42 39 | 98.51 34 | 98.32 59 |
|
PS-MVSNAJ | | | 94.17 26 | 93.52 34 | 96.10 8 | 95.65 113 | 92.35 2 | 98.21 36 | 95.79 143 | 92.42 18 | 96.24 20 | 98.18 31 | 71.04 193 | 99.17 85 | 96.77 23 | 97.39 74 | 96.79 148 |
|
SteuartSystems-ACMMP | | | 94.13 28 | 94.44 23 | 93.20 72 | 95.41 119 | 81.35 128 | 99.02 15 | 96.59 79 | 89.50 47 | 94.18 46 | 98.36 26 | 83.68 44 | 99.45 65 | 94.77 43 | 98.45 39 | 98.81 32 |
Skip Steuart: Steuart Systems R&D Blog. |
EPNet | | | 94.06 29 | 94.15 27 | 93.76 49 | 97.27 87 | 84.35 71 | 98.29 33 | 97.64 14 | 94.57 5 | 95.36 26 | 96.88 101 | 79.96 68 | 99.12 90 | 91.30 82 | 96.11 98 | 97.82 97 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
xiu_mvs_v2_base | | | 93.92 30 | 93.26 38 | 95.91 9 | 95.07 131 | 92.02 6 | 98.19 37 | 95.68 148 | 92.06 20 | 96.01 23 | 98.14 35 | 70.83 196 | 98.96 99 | 96.74 25 | 96.57 92 | 96.76 151 |
|
lupinMVS | | | 93.87 31 | 93.58 33 | 94.75 26 | 93.00 192 | 88.08 16 | 99.15 5 | 95.50 157 | 91.03 28 | 94.90 35 | 97.66 63 | 78.84 79 | 97.56 159 | 94.64 47 | 97.46 69 | 98.62 44 |
|
APD-MVS |  | | 93.61 32 | 93.59 32 | 93.69 53 | 98.76 24 | 83.26 92 | 97.21 101 | 96.09 124 | 82.41 198 | 94.65 40 | 98.21 30 | 81.96 54 | 98.81 109 | 94.65 46 | 98.36 45 | 99.01 25 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
PHI-MVS | | | 93.59 33 | 93.63 31 | 93.48 64 | 98.05 58 | 81.76 120 | 98.64 24 | 97.13 25 | 82.60 196 | 94.09 47 | 98.49 21 | 80.35 61 | 99.85 10 | 94.74 45 | 98.62 32 | 98.83 31 |
|
ACMMP_NAP | | | 93.46 34 | 93.23 39 | 94.17 40 | 97.16 88 | 84.28 73 | 96.82 138 | 96.65 69 | 86.24 105 | 94.27 44 | 97.99 45 | 77.94 91 | 99.83 16 | 93.39 59 | 98.57 33 | 98.39 56 |
|
MVS_111021_HR | | | 93.41 35 | 93.39 37 | 93.47 66 | 97.34 85 | 82.83 98 | 97.56 78 | 98.27 6 | 89.16 51 | 89.71 101 | 97.14 90 | 79.77 69 | 99.56 57 | 93.65 57 | 97.94 57 | 98.02 78 |
|
PVSNet_Blended | | | 93.13 36 | 92.98 40 | 93.57 58 | 97.47 76 | 83.86 78 | 99.32 1 | 96.73 58 | 91.02 29 | 89.53 106 | 96.21 117 | 76.42 116 | 99.57 55 | 94.29 49 | 95.81 105 | 97.29 132 |
|
CDPH-MVS | | | 93.12 37 | 92.91 41 | 93.74 50 | 98.65 30 | 83.88 77 | 97.67 71 | 96.26 112 | 83.00 186 | 93.22 56 | 98.24 29 | 81.31 55 | 99.21 78 | 89.12 114 | 98.74 29 | 98.14 72 |
|
dcpmvs_2 | | | 93.10 38 | 93.46 36 | 92.02 118 | 97.77 65 | 79.73 169 | 94.82 235 | 93.86 246 | 86.91 97 | 91.33 80 | 96.76 107 | 85.20 32 | 98.06 138 | 96.90 22 | 97.60 66 | 98.27 65 |
|
CS-MVS-test | | | 92.98 39 | 93.67 30 | 90.90 154 | 96.52 94 | 76.87 244 | 98.68 21 | 94.73 196 | 90.36 38 | 94.84 37 | 97.89 53 | 77.94 91 | 97.15 190 | 94.28 51 | 97.80 61 | 98.70 40 |
|
alignmvs | | | 92.97 40 | 92.26 54 | 95.12 18 | 95.54 116 | 87.77 19 | 98.67 22 | 96.38 104 | 88.04 70 | 93.01 59 | 97.45 75 | 79.20 75 | 98.60 115 | 93.25 64 | 88.76 167 | 98.99 28 |
|
HFP-MVS | | | 92.89 41 | 92.86 43 | 92.98 80 | 98.71 25 | 81.12 131 | 97.58 76 | 96.70 62 | 85.20 127 | 91.75 73 | 97.97 50 | 78.47 84 | 99.71 39 | 90.95 85 | 98.41 41 | 98.12 74 |
|
PAPM | | | 92.87 42 | 92.40 50 | 94.30 34 | 92.25 216 | 87.85 18 | 96.40 165 | 96.38 104 | 91.07 27 | 88.72 116 | 96.90 99 | 82.11 53 | 97.37 176 | 90.05 104 | 97.70 63 | 97.67 107 |
|
ZNCC-MVS | | | 92.75 43 | 92.60 48 | 93.23 71 | 98.24 51 | 81.82 118 | 97.63 72 | 96.50 89 | 85.00 133 | 91.05 85 | 97.74 60 | 78.38 85 | 99.80 25 | 90.48 94 | 98.34 46 | 98.07 76 |
|
PAPR | | | 92.74 44 | 92.17 57 | 94.45 31 | 98.89 20 | 84.87 65 | 97.20 103 | 96.20 117 | 87.73 78 | 88.40 120 | 98.12 36 | 78.71 82 | 99.76 27 | 87.99 126 | 96.28 94 | 98.74 34 |
|
CS-MVS | | | 92.73 45 | 93.48 35 | 90.48 166 | 96.27 97 | 75.93 263 | 98.55 27 | 94.93 183 | 89.32 48 | 94.54 42 | 97.67 62 | 78.91 78 | 97.02 194 | 93.80 54 | 97.32 76 | 98.49 50 |
|
jason | | | 92.73 45 | 92.23 55 | 94.21 39 | 90.50 256 | 87.30 25 | 98.65 23 | 95.09 177 | 90.61 32 | 92.76 62 | 97.13 91 | 75.28 142 | 97.30 179 | 93.32 62 | 96.75 90 | 98.02 78 |
jason: jason. |
ETV-MVS | | | 92.72 47 | 92.87 42 | 92.28 107 | 94.54 146 | 81.89 114 | 97.98 51 | 95.21 175 | 89.77 45 | 93.11 57 | 96.83 103 | 77.23 106 | 97.50 167 | 95.74 33 | 95.38 107 | 97.44 123 |
|
region2R | | | 92.72 47 | 92.70 45 | 92.79 86 | 98.68 26 | 80.53 149 | 97.53 80 | 96.51 87 | 85.22 125 | 91.94 71 | 97.98 48 | 77.26 102 | 99.67 46 | 90.83 89 | 98.37 44 | 98.18 68 |
|
XVS | | | 92.69 49 | 92.71 44 | 92.63 93 | 98.52 37 | 80.29 152 | 97.37 95 | 96.44 95 | 87.04 95 | 91.38 77 | 97.83 57 | 77.24 104 | 99.59 52 | 90.46 95 | 98.07 52 | 98.02 78 |
|
ACMMPR | | | 92.69 49 | 92.67 46 | 92.75 87 | 98.66 28 | 80.57 145 | 97.58 76 | 96.69 64 | 85.20 127 | 91.57 75 | 97.92 51 | 77.01 107 | 99.67 46 | 90.95 85 | 98.41 41 | 98.00 83 |
|
WTY-MVS | | | 92.65 51 | 91.68 65 | 95.56 13 | 96.00 105 | 88.90 12 | 98.23 35 | 97.65 13 | 88.57 59 | 89.82 100 | 97.22 88 | 79.29 72 | 99.06 94 | 89.57 109 | 88.73 168 | 98.73 38 |
|
MP-MVS |  | | 92.61 52 | 92.67 46 | 92.42 101 | 98.13 56 | 79.73 169 | 97.33 97 | 96.20 117 | 85.63 116 | 90.53 92 | 97.66 63 | 78.14 89 | 99.70 41 | 92.12 76 | 98.30 48 | 97.85 94 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
MP-MVS-pluss | | | 92.58 53 | 92.35 51 | 93.29 68 | 97.30 86 | 82.53 102 | 96.44 161 | 96.04 129 | 84.68 140 | 89.12 110 | 98.37 25 | 77.48 100 | 99.74 34 | 93.31 63 | 98.38 43 | 97.59 114 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
CP-MVS | | | 92.54 54 | 92.60 48 | 92.34 103 | 98.50 40 | 79.90 162 | 98.40 30 | 96.40 101 | 84.75 136 | 90.48 94 | 98.09 38 | 77.40 101 | 99.21 78 | 91.15 84 | 98.23 50 | 97.92 89 |
|
MTAPA | | | 92.45 55 | 92.31 52 | 92.86 84 | 97.90 61 | 80.85 139 | 92.88 280 | 96.33 108 | 87.92 73 | 90.20 97 | 98.18 31 | 76.71 113 | 99.76 27 | 92.57 73 | 98.09 51 | 97.96 88 |
|
GST-MVS | | | 92.43 56 | 92.22 56 | 93.04 78 | 98.17 54 | 81.64 124 | 97.40 94 | 96.38 104 | 84.71 139 | 90.90 88 | 97.40 80 | 77.55 99 | 99.76 27 | 89.75 107 | 97.74 62 | 97.72 103 |
|
canonicalmvs | | | 92.27 57 | 91.22 71 | 95.41 15 | 95.80 110 | 88.31 13 | 97.09 118 | 94.64 204 | 88.49 61 | 92.99 60 | 97.31 82 | 72.68 174 | 98.57 117 | 93.38 61 | 88.58 169 | 99.36 16 |
|
SR-MVS | | | 92.16 58 | 92.27 53 | 91.83 126 | 98.37 45 | 78.41 203 | 96.67 149 | 95.76 144 | 82.19 202 | 91.97 70 | 98.07 42 | 76.44 115 | 98.64 113 | 93.71 56 | 97.27 77 | 98.45 53 |
|
test_fmvsmvis_n_1920 | | | 92.12 59 | 92.10 59 | 92.17 111 | 90.87 249 | 81.04 132 | 98.34 32 | 93.90 243 | 92.71 15 | 87.24 133 | 97.90 52 | 74.83 148 | 99.72 37 | 96.96 21 | 96.20 95 | 95.76 177 |
|
VNet | | | 92.11 60 | 91.22 71 | 94.79 24 | 96.91 91 | 86.98 26 | 97.91 53 | 97.96 9 | 86.38 104 | 93.65 50 | 95.74 126 | 70.16 201 | 98.95 101 | 93.39 59 | 88.87 166 | 98.43 54 |
|
CSCG | | | 92.02 61 | 91.65 66 | 93.12 74 | 98.53 36 | 80.59 144 | 97.47 85 | 97.18 24 | 77.06 285 | 84.64 158 | 97.98 48 | 83.98 41 | 99.52 59 | 90.72 91 | 97.33 75 | 99.23 21 |
|
PGM-MVS | | | 91.93 62 | 91.80 63 | 92.32 106 | 98.27 50 | 79.74 168 | 95.28 215 | 97.27 19 | 83.83 167 | 90.89 89 | 97.78 59 | 76.12 122 | 99.56 57 | 88.82 117 | 97.93 59 | 97.66 108 |
|
mPP-MVS | | | 91.88 63 | 91.82 62 | 92.07 115 | 98.38 44 | 78.63 197 | 97.29 98 | 96.09 124 | 85.12 129 | 88.45 119 | 97.66 63 | 75.53 132 | 99.68 44 | 89.83 105 | 98.02 55 | 97.88 90 |
|
EI-MVSNet-Vis-set | | | 91.84 64 | 91.77 64 | 92.04 117 | 97.60 71 | 81.17 130 | 96.61 150 | 96.87 40 | 88.20 67 | 89.19 109 | 97.55 74 | 78.69 83 | 99.14 87 | 90.29 101 | 90.94 153 | 95.80 175 |
|
EIA-MVS | | | 91.73 65 | 92.05 60 | 90.78 159 | 94.52 147 | 76.40 252 | 98.06 47 | 95.34 170 | 89.19 50 | 88.90 113 | 97.28 86 | 77.56 98 | 97.73 151 | 90.77 90 | 96.86 87 | 98.20 67 |
|
EC-MVSNet | | | 91.73 65 | 92.11 58 | 90.58 163 | 93.54 175 | 77.77 228 | 98.07 46 | 94.40 219 | 87.44 84 | 92.99 60 | 97.11 93 | 74.59 154 | 96.87 204 | 93.75 55 | 97.08 80 | 97.11 137 |
|
DP-MVS Recon | | | 91.72 67 | 90.85 76 | 94.34 33 | 99.50 1 | 85.00 62 | 98.51 28 | 95.96 133 | 80.57 224 | 88.08 125 | 97.63 69 | 76.84 109 | 99.89 7 | 85.67 143 | 94.88 110 | 98.13 73 |
|
CHOSEN 280x420 | | | 91.71 68 | 91.85 61 | 91.29 141 | 94.94 135 | 82.69 99 | 87.89 324 | 96.17 120 | 85.94 111 | 87.27 132 | 94.31 166 | 90.27 9 | 95.65 259 | 94.04 53 | 95.86 103 | 95.53 182 |
|
HY-MVS | | 84.06 6 | 91.63 69 | 90.37 87 | 95.39 16 | 96.12 102 | 88.25 14 | 90.22 307 | 97.58 15 | 88.33 65 | 90.50 93 | 91.96 204 | 79.26 73 | 99.06 94 | 90.29 101 | 89.07 163 | 98.88 30 |
|
HPM-MVS |  | | 91.62 70 | 91.53 68 | 91.89 122 | 97.88 63 | 79.22 181 | 96.99 122 | 95.73 146 | 82.07 204 | 89.50 108 | 97.19 89 | 75.59 131 | 98.93 104 | 90.91 87 | 97.94 57 | 97.54 115 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
MVS_111021_LR | | | 91.60 71 | 91.64 67 | 91.47 137 | 95.74 111 | 78.79 194 | 96.15 180 | 96.77 52 | 88.49 61 | 88.64 117 | 97.07 95 | 72.33 178 | 99.19 83 | 93.13 67 | 96.48 93 | 96.43 160 |
|
DeepC-MVS | | 86.58 3 | 91.53 72 | 91.06 75 | 92.94 82 | 94.52 147 | 81.89 114 | 95.95 188 | 95.98 131 | 90.76 30 | 83.76 169 | 96.76 107 | 73.24 170 | 99.71 39 | 91.67 81 | 96.96 82 | 97.22 134 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
test_yl | | | 91.46 73 | 90.53 82 | 94.24 37 | 97.41 80 | 85.18 53 | 98.08 44 | 97.72 11 | 80.94 216 | 89.85 98 | 96.14 118 | 75.61 129 | 98.81 109 | 90.42 99 | 88.56 170 | 98.74 34 |
|
DCV-MVSNet | | | 91.46 73 | 90.53 82 | 94.24 37 | 97.41 80 | 85.18 53 | 98.08 44 | 97.72 11 | 80.94 216 | 89.85 98 | 96.14 118 | 75.61 129 | 98.81 109 | 90.42 99 | 88.56 170 | 98.74 34 |
|
PAPM_NR | | | 91.46 73 | 90.82 77 | 93.37 67 | 98.50 40 | 81.81 119 | 95.03 231 | 96.13 121 | 84.65 141 | 86.10 143 | 97.65 67 | 79.24 74 | 99.75 32 | 83.20 172 | 96.88 85 | 98.56 46 |
|
MVSFormer | | | 91.36 76 | 90.57 81 | 93.73 52 | 93.00 192 | 88.08 16 | 94.80 237 | 94.48 212 | 80.74 220 | 94.90 35 | 97.13 91 | 78.84 79 | 95.10 287 | 83.77 161 | 97.46 69 | 98.02 78 |
|
EI-MVSNet-UG-set | | | 91.35 77 | 91.22 71 | 91.73 128 | 97.39 82 | 80.68 142 | 96.47 158 | 96.83 43 | 87.92 73 | 88.30 123 | 97.36 81 | 77.84 94 | 99.13 89 | 89.43 112 | 89.45 160 | 95.37 186 |
|
SR-MVS-dyc-post | | | 91.29 78 | 91.45 69 | 90.80 157 | 97.76 67 | 76.03 258 | 96.20 178 | 95.44 162 | 80.56 225 | 90.72 90 | 97.84 55 | 75.76 128 | 98.61 114 | 91.99 78 | 96.79 88 | 97.75 101 |
|
PVSNet_Blended_VisFu | | | 91.24 79 | 90.77 78 | 92.66 91 | 95.09 129 | 82.40 106 | 97.77 62 | 95.87 140 | 88.26 66 | 86.39 139 | 93.94 177 | 76.77 111 | 99.27 74 | 88.80 118 | 94.00 121 | 96.31 166 |
|
APD-MVS_3200maxsize | | | 91.23 80 | 91.35 70 | 90.89 155 | 97.89 62 | 76.35 253 | 96.30 171 | 95.52 156 | 79.82 243 | 91.03 86 | 97.88 54 | 74.70 150 | 98.54 118 | 92.11 77 | 96.89 84 | 97.77 100 |
|
diffmvs |  | | 91.17 81 | 90.74 79 | 92.44 100 | 93.11 191 | 82.50 104 | 96.25 174 | 93.62 261 | 87.79 76 | 90.40 95 | 95.93 122 | 73.44 168 | 97.42 171 | 93.62 58 | 92.55 138 | 97.41 125 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
casdiffmvs_mvg |  | | 91.13 82 | 90.45 84 | 93.17 73 | 92.99 195 | 83.58 85 | 97.46 87 | 94.56 209 | 87.69 79 | 87.19 134 | 94.98 155 | 74.50 155 | 97.60 156 | 91.88 80 | 92.79 135 | 98.34 57 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
CHOSEN 1792x2688 | | | 91.07 83 | 90.21 90 | 93.64 54 | 95.18 127 | 83.53 86 | 96.26 173 | 96.13 121 | 88.92 53 | 84.90 153 | 93.10 189 | 72.86 172 | 99.62 50 | 88.86 116 | 95.67 106 | 97.79 99 |
|
CANet_DTU | | | 90.98 84 | 90.04 94 | 93.83 47 | 94.76 141 | 86.23 33 | 96.32 170 | 93.12 283 | 93.11 13 | 93.71 49 | 96.82 105 | 63.08 238 | 99.48 63 | 84.29 153 | 95.12 109 | 95.77 176 |
|
test2506 | | | 90.96 85 | 90.39 85 | 92.65 92 | 93.54 175 | 82.46 105 | 96.37 166 | 97.35 17 | 86.78 101 | 87.55 128 | 95.25 139 | 77.83 95 | 97.50 167 | 84.07 155 | 94.80 111 | 97.98 85 |
|
thisisatest0515 | | | 90.95 86 | 90.26 88 | 93.01 79 | 94.03 166 | 84.27 74 | 97.91 53 | 96.67 66 | 83.18 179 | 86.87 137 | 95.51 136 | 88.66 16 | 97.85 147 | 80.46 189 | 89.01 164 | 96.92 144 |
|
casdiffmvs |  | | 90.95 86 | 90.39 85 | 92.63 93 | 92.82 199 | 82.53 102 | 96.83 136 | 94.47 214 | 87.69 79 | 88.47 118 | 95.56 135 | 74.04 160 | 97.54 163 | 90.90 88 | 92.74 136 | 97.83 96 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
sss | | | 90.87 88 | 89.96 97 | 93.60 57 | 94.15 158 | 83.84 80 | 97.14 111 | 98.13 7 | 85.93 112 | 89.68 102 | 96.09 120 | 71.67 185 | 99.30 73 | 87.69 129 | 89.16 162 | 97.66 108 |
|
baseline | | | 90.76 89 | 90.10 93 | 92.74 88 | 92.90 198 | 82.56 101 | 94.60 239 | 94.56 209 | 87.69 79 | 89.06 112 | 95.67 130 | 73.76 163 | 97.51 166 | 90.43 98 | 92.23 144 | 98.16 70 |
|
Effi-MVS+ | | | 90.70 90 | 89.90 100 | 93.09 76 | 93.61 172 | 83.48 87 | 95.20 221 | 92.79 288 | 83.22 178 | 91.82 72 | 95.70 128 | 71.82 184 | 97.48 169 | 91.25 83 | 93.67 125 | 98.32 59 |
|
MAR-MVS | | | 90.63 91 | 90.22 89 | 91.86 123 | 98.47 42 | 78.20 213 | 97.18 105 | 96.61 75 | 83.87 166 | 88.18 124 | 98.18 31 | 68.71 205 | 99.75 32 | 83.66 166 | 97.15 79 | 97.63 111 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
MVS | | | 90.60 92 | 88.64 117 | 96.50 5 | 94.25 155 | 90.53 8 | 93.33 269 | 97.21 21 | 77.59 276 | 78.88 223 | 97.31 82 | 71.52 188 | 99.69 42 | 89.60 108 | 98.03 54 | 99.27 20 |
|
xiu_mvs_v1_base_debu | | | 90.54 93 | 89.54 104 | 93.55 59 | 92.31 209 | 87.58 22 | 96.99 122 | 94.87 187 | 87.23 90 | 93.27 53 | 97.56 71 | 57.43 279 | 98.32 130 | 92.72 70 | 93.46 129 | 94.74 197 |
|
xiu_mvs_v1_base | | | 90.54 93 | 89.54 104 | 93.55 59 | 92.31 209 | 87.58 22 | 96.99 122 | 94.87 187 | 87.23 90 | 93.27 53 | 97.56 71 | 57.43 279 | 98.32 130 | 92.72 70 | 93.46 129 | 94.74 197 |
|
xiu_mvs_v1_base_debi | | | 90.54 93 | 89.54 104 | 93.55 59 | 92.31 209 | 87.58 22 | 96.99 122 | 94.87 187 | 87.23 90 | 93.27 53 | 97.56 71 | 57.43 279 | 98.32 130 | 92.72 70 | 93.46 129 | 94.74 197 |
|
baseline2 | | | 90.39 96 | 90.21 90 | 90.93 152 | 90.86 250 | 80.99 134 | 95.20 221 | 97.41 16 | 86.03 110 | 80.07 214 | 94.61 161 | 90.58 6 | 97.47 170 | 87.29 133 | 89.86 158 | 94.35 203 |
|
ACMMP |  | | 90.39 96 | 89.97 96 | 91.64 131 | 97.58 73 | 78.21 212 | 96.78 141 | 96.72 60 | 84.73 138 | 84.72 156 | 97.23 87 | 71.22 190 | 99.63 49 | 88.37 124 | 92.41 141 | 97.08 139 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
HPM-MVS_fast | | | 90.38 98 | 90.17 92 | 91.03 150 | 97.61 70 | 77.35 237 | 97.15 110 | 95.48 158 | 79.51 249 | 88.79 114 | 96.90 99 | 71.64 187 | 98.81 109 | 87.01 137 | 97.44 71 | 96.94 141 |
|
MVS_Test | | | 90.29 99 | 89.18 109 | 93.62 56 | 95.23 124 | 84.93 63 | 94.41 242 | 94.66 201 | 84.31 150 | 90.37 96 | 91.02 219 | 75.13 144 | 97.82 148 | 83.11 174 | 94.42 115 | 98.12 74 |
|
API-MVS | | | 90.18 100 | 88.97 112 | 93.80 48 | 98.66 28 | 82.95 97 | 97.50 84 | 95.63 151 | 75.16 297 | 86.31 140 | 97.69 61 | 72.49 176 | 99.90 5 | 81.26 184 | 96.07 99 | 98.56 46 |
|
iter_conf05 | | | 90.14 101 | 89.79 102 | 91.17 146 | 95.85 109 | 86.93 27 | 97.68 70 | 88.67 340 | 89.93 42 | 81.73 196 | 92.80 191 | 90.37 8 | 96.03 232 | 90.44 97 | 80.65 232 | 90.56 238 |
|
PVSNet_BlendedMVS | | | 90.05 102 | 89.96 97 | 90.33 171 | 97.47 76 | 83.86 78 | 98.02 50 | 96.73 58 | 87.98 71 | 89.53 106 | 89.61 241 | 76.42 116 | 99.57 55 | 94.29 49 | 79.59 238 | 87.57 307 |
|
ET-MVSNet_ETH3D | | | 90.01 103 | 89.03 110 | 92.95 81 | 94.38 152 | 86.77 29 | 98.14 38 | 96.31 110 | 89.30 49 | 63.33 336 | 96.72 110 | 90.09 11 | 93.63 318 | 90.70 92 | 82.29 223 | 98.46 52 |
|
test_vis1_n_1920 | | | 89.95 104 | 90.59 80 | 88.03 223 | 92.36 208 | 68.98 325 | 99.12 7 | 94.34 222 | 93.86 10 | 93.64 51 | 97.01 97 | 51.54 310 | 99.59 52 | 96.76 24 | 96.71 91 | 95.53 182 |
|
test_cas_vis1_n_1920 | | | 89.90 105 | 90.02 95 | 89.54 192 | 90.14 264 | 74.63 275 | 98.71 20 | 94.43 217 | 93.04 14 | 92.40 63 | 96.35 115 | 53.41 306 | 99.08 93 | 95.59 36 | 96.16 96 | 94.90 192 |
|
TESTMET0.1,1 | | | 89.83 106 | 89.34 107 | 91.31 139 | 92.54 206 | 80.19 157 | 97.11 114 | 96.57 81 | 86.15 106 | 86.85 138 | 91.83 208 | 79.32 71 | 96.95 198 | 81.30 183 | 92.35 142 | 96.77 150 |
|
EPP-MVSNet | | | 89.76 107 | 89.72 103 | 89.87 185 | 93.78 168 | 76.02 260 | 97.22 99 | 96.51 87 | 79.35 251 | 85.11 149 | 95.01 153 | 84.82 34 | 97.10 192 | 87.46 132 | 88.21 174 | 96.50 158 |
|
CPTT-MVS | | | 89.72 108 | 89.87 101 | 89.29 195 | 98.33 47 | 73.30 286 | 97.70 68 | 95.35 169 | 75.68 293 | 87.40 129 | 97.44 78 | 70.43 198 | 98.25 133 | 89.56 110 | 96.90 83 | 96.33 165 |
|
thisisatest0530 | | | 89.65 109 | 89.02 111 | 91.53 135 | 93.46 181 | 80.78 140 | 96.52 155 | 96.67 66 | 81.69 209 | 83.79 168 | 94.90 156 | 88.85 15 | 97.68 152 | 77.80 212 | 87.49 180 | 96.14 169 |
|
3Dnovator+ | | 82.88 8 | 89.63 110 | 87.85 130 | 94.99 20 | 94.49 151 | 86.76 30 | 97.84 57 | 95.74 145 | 86.10 108 | 75.47 268 | 96.02 121 | 65.00 228 | 99.51 61 | 82.91 176 | 97.07 81 | 98.72 39 |
|
iter_conf_final | | | 89.51 111 | 89.21 108 | 90.39 168 | 95.60 114 | 84.44 70 | 97.22 99 | 89.09 333 | 89.11 52 | 82.07 190 | 92.80 191 | 87.03 25 | 96.03 232 | 89.10 115 | 80.89 228 | 90.70 236 |
|
CDS-MVSNet | | | 89.50 112 | 88.96 113 | 91.14 148 | 91.94 231 | 80.93 137 | 97.09 118 | 95.81 142 | 84.26 155 | 84.72 156 | 94.20 171 | 80.31 62 | 95.64 260 | 83.37 171 | 88.96 165 | 96.85 147 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
PMMVS | | | 89.46 113 | 89.92 99 | 88.06 221 | 94.64 142 | 69.57 322 | 96.22 175 | 94.95 182 | 87.27 89 | 91.37 79 | 96.54 113 | 65.88 220 | 97.39 174 | 88.54 119 | 93.89 122 | 97.23 133 |
|
HyFIR lowres test | | | 89.36 114 | 88.60 118 | 91.63 133 | 94.91 137 | 80.76 141 | 95.60 205 | 95.53 154 | 82.56 197 | 84.03 162 | 91.24 216 | 78.03 90 | 96.81 208 | 87.07 136 | 88.41 172 | 97.32 129 |
|
3Dnovator | | 82.32 10 | 89.33 115 | 87.64 135 | 94.42 32 | 93.73 171 | 85.70 42 | 97.73 66 | 96.75 56 | 86.73 103 | 76.21 256 | 95.93 122 | 62.17 242 | 99.68 44 | 81.67 182 | 97.81 60 | 97.88 90 |
|
h-mvs33 | | | 89.30 116 | 88.95 114 | 90.36 170 | 95.07 131 | 76.04 257 | 96.96 128 | 97.11 27 | 90.39 36 | 92.22 67 | 95.10 150 | 74.70 150 | 98.86 106 | 93.14 65 | 65.89 330 | 96.16 168 |
|
LFMVS | | | 89.27 117 | 87.64 135 | 94.16 42 | 97.16 88 | 85.52 46 | 97.18 105 | 94.66 201 | 79.17 257 | 89.63 104 | 96.57 112 | 55.35 296 | 98.22 134 | 89.52 111 | 89.54 159 | 98.74 34 |
|
MVSTER | | | 89.25 118 | 88.92 115 | 90.24 173 | 95.98 106 | 84.66 67 | 96.79 140 | 95.36 167 | 87.19 93 | 80.33 209 | 90.61 227 | 90.02 12 | 95.97 237 | 85.38 146 | 78.64 247 | 90.09 250 |
|
CostFormer | | | 89.08 119 | 88.39 122 | 91.15 147 | 93.13 189 | 79.15 184 | 88.61 318 | 96.11 123 | 83.14 180 | 89.58 105 | 86.93 278 | 83.83 43 | 96.87 204 | 88.22 125 | 85.92 193 | 97.42 124 |
|
PVSNet | | 82.34 9 | 89.02 120 | 87.79 132 | 92.71 90 | 95.49 117 | 81.50 126 | 97.70 68 | 97.29 18 | 87.76 77 | 85.47 147 | 95.12 149 | 56.90 285 | 98.90 105 | 80.33 190 | 94.02 119 | 97.71 105 |
|
test-mter | | | 88.95 121 | 88.60 118 | 89.98 180 | 92.26 214 | 77.23 239 | 97.11 114 | 95.96 133 | 85.32 122 | 86.30 141 | 91.38 212 | 76.37 118 | 96.78 210 | 80.82 186 | 91.92 146 | 95.94 172 |
|
1314 | | | 88.94 122 | 87.20 148 | 94.17 40 | 93.21 184 | 85.73 41 | 93.33 269 | 96.64 72 | 82.89 188 | 75.98 259 | 96.36 114 | 66.83 216 | 99.39 67 | 83.52 170 | 96.02 101 | 97.39 127 |
|
UA-Net | | | 88.92 123 | 88.48 121 | 90.24 173 | 94.06 163 | 77.18 241 | 93.04 277 | 94.66 201 | 87.39 86 | 91.09 84 | 93.89 178 | 74.92 147 | 98.18 137 | 75.83 239 | 91.43 150 | 95.35 187 |
|
thres200 | | | 88.92 123 | 87.65 134 | 92.73 89 | 96.30 96 | 85.62 44 | 97.85 56 | 98.86 1 | 84.38 149 | 84.82 154 | 93.99 176 | 75.12 145 | 98.01 139 | 70.86 279 | 86.67 183 | 94.56 202 |
|
Vis-MVSNet (Re-imp) | | | 88.88 125 | 88.87 116 | 88.91 202 | 93.89 167 | 74.43 278 | 96.93 131 | 94.19 229 | 84.39 148 | 83.22 174 | 95.67 130 | 78.24 87 | 94.70 297 | 78.88 207 | 94.40 116 | 97.61 113 |
|
baseline1 | | | 88.85 126 | 87.49 141 | 92.93 83 | 95.21 126 | 86.85 28 | 95.47 209 | 94.61 206 | 87.29 88 | 83.11 176 | 94.99 154 | 80.70 59 | 96.89 202 | 82.28 178 | 73.72 272 | 95.05 191 |
|
AdaColmap |  | | 88.81 127 | 87.61 138 | 92.39 102 | 99.33 4 | 79.95 160 | 96.70 148 | 95.58 152 | 77.51 277 | 83.05 177 | 96.69 111 | 61.90 248 | 99.72 37 | 84.29 153 | 93.47 128 | 97.50 120 |
|
OMC-MVS | | | 88.80 128 | 88.16 126 | 90.72 160 | 95.30 122 | 77.92 222 | 94.81 236 | 94.51 211 | 86.80 100 | 84.97 152 | 96.85 102 | 67.53 209 | 98.60 115 | 85.08 147 | 87.62 177 | 95.63 179 |
|
114514_t | | | 88.79 129 | 87.57 139 | 92.45 98 | 98.21 53 | 81.74 121 | 96.99 122 | 95.45 161 | 75.16 297 | 82.48 180 | 95.69 129 | 68.59 206 | 98.50 120 | 80.33 190 | 95.18 108 | 97.10 138 |
|
mvs_anonymous | | | 88.68 130 | 87.62 137 | 91.86 123 | 94.80 140 | 81.69 123 | 93.53 265 | 94.92 184 | 82.03 205 | 78.87 224 | 90.43 230 | 75.77 127 | 95.34 273 | 85.04 148 | 93.16 132 | 98.55 48 |
|
Vis-MVSNet |  | | 88.67 131 | 87.82 131 | 91.24 143 | 92.68 200 | 78.82 191 | 96.95 129 | 93.85 247 | 87.55 82 | 87.07 136 | 95.13 148 | 63.43 236 | 97.21 184 | 77.58 219 | 96.15 97 | 97.70 106 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
IS-MVSNet | | | 88.67 131 | 88.16 126 | 90.20 175 | 93.61 172 | 76.86 245 | 96.77 143 | 93.07 284 | 84.02 159 | 83.62 170 | 95.60 133 | 74.69 153 | 96.24 227 | 78.43 211 | 93.66 126 | 97.49 121 |
|
IB-MVS | | 85.34 4 | 88.67 131 | 87.14 151 | 93.26 69 | 93.12 190 | 84.32 72 | 98.76 19 | 97.27 19 | 87.19 93 | 79.36 220 | 90.45 229 | 83.92 42 | 98.53 119 | 84.41 152 | 69.79 298 | 96.93 142 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
1112_ss | | | 88.60 134 | 87.47 143 | 92.00 119 | 93.21 184 | 80.97 135 | 96.47 158 | 92.46 291 | 83.64 173 | 80.86 202 | 97.30 84 | 80.24 64 | 97.62 155 | 77.60 218 | 85.49 198 | 97.40 126 |
|
tttt0517 | | | 88.57 135 | 88.19 125 | 89.71 191 | 93.00 192 | 75.99 261 | 95.67 201 | 96.67 66 | 80.78 219 | 81.82 194 | 94.40 165 | 88.97 14 | 97.58 158 | 76.05 237 | 86.31 187 | 95.57 181 |
|
tfpn200view9 | | | 88.48 136 | 87.15 149 | 92.47 97 | 96.21 99 | 85.30 51 | 97.44 88 | 98.85 2 | 83.37 176 | 83.99 163 | 93.82 179 | 75.36 139 | 97.93 141 | 69.04 287 | 86.24 190 | 94.17 204 |
|
test-LLR | | | 88.48 136 | 87.98 128 | 89.98 180 | 92.26 214 | 77.23 239 | 97.11 114 | 95.96 133 | 83.76 170 | 86.30 141 | 91.38 212 | 72.30 179 | 96.78 210 | 80.82 186 | 91.92 146 | 95.94 172 |
|
TAMVS | | | 88.48 136 | 87.79 132 | 90.56 164 | 91.09 244 | 79.18 182 | 96.45 160 | 95.88 138 | 83.64 173 | 83.12 175 | 93.33 185 | 75.94 125 | 95.74 255 | 82.40 177 | 88.27 173 | 96.75 152 |
|
thres400 | | | 88.42 139 | 87.15 149 | 92.23 108 | 96.21 99 | 85.30 51 | 97.44 88 | 98.85 2 | 83.37 176 | 83.99 163 | 93.82 179 | 75.36 139 | 97.93 141 | 69.04 287 | 86.24 190 | 93.45 220 |
|
tpmrst | | | 88.36 140 | 87.38 145 | 91.31 139 | 94.36 153 | 79.92 161 | 87.32 328 | 95.26 174 | 85.32 122 | 88.34 121 | 86.13 294 | 80.60 60 | 96.70 212 | 83.78 160 | 85.34 201 | 97.30 131 |
|
ECVR-MVS |  | | 88.35 141 | 87.25 147 | 91.65 130 | 93.54 175 | 79.40 176 | 96.56 154 | 90.78 319 | 86.78 101 | 85.57 146 | 95.25 139 | 57.25 283 | 97.56 159 | 84.73 151 | 94.80 111 | 97.98 85 |
|
thres100view900 | | | 88.30 142 | 86.95 155 | 92.33 104 | 96.10 103 | 84.90 64 | 97.14 111 | 98.85 2 | 82.69 194 | 83.41 171 | 93.66 183 | 75.43 136 | 97.93 141 | 69.04 287 | 86.24 190 | 94.17 204 |
|
VDD-MVS | | | 88.28 143 | 87.02 154 | 92.06 116 | 95.09 129 | 80.18 158 | 97.55 79 | 94.45 216 | 83.09 182 | 89.10 111 | 95.92 124 | 47.97 322 | 98.49 121 | 93.08 68 | 86.91 182 | 97.52 119 |
|
BH-w/o | | | 88.24 144 | 87.47 143 | 90.54 165 | 95.03 134 | 78.54 198 | 97.41 93 | 93.82 248 | 84.08 157 | 78.23 229 | 94.51 164 | 69.34 204 | 97.21 184 | 80.21 194 | 94.58 114 | 95.87 174 |
|
hse-mvs2 | | | 88.22 145 | 88.21 124 | 88.25 217 | 93.54 175 | 73.41 283 | 95.41 212 | 95.89 137 | 90.39 36 | 92.22 67 | 94.22 169 | 74.70 150 | 96.66 215 | 93.14 65 | 64.37 335 | 94.69 201 |
|
test1111 | | | 88.11 146 | 87.04 153 | 91.35 138 | 93.15 187 | 78.79 194 | 96.57 152 | 90.78 319 | 86.88 99 | 85.04 150 | 95.20 143 | 57.23 284 | 97.39 174 | 83.88 158 | 94.59 113 | 97.87 92 |
|
thres600view7 | | | 88.06 147 | 86.70 159 | 92.15 113 | 96.10 103 | 85.17 57 | 97.14 111 | 98.85 2 | 82.70 193 | 83.41 171 | 93.66 183 | 75.43 136 | 97.82 148 | 67.13 296 | 85.88 194 | 93.45 220 |
|
Test_1112_low_res | | | 88.03 148 | 86.73 157 | 91.94 121 | 93.15 187 | 80.88 138 | 96.44 161 | 92.41 293 | 83.59 175 | 80.74 204 | 91.16 217 | 80.18 65 | 97.59 157 | 77.48 221 | 85.40 199 | 97.36 128 |
|
PLC |  | 83.97 7 | 88.00 149 | 87.38 145 | 89.83 187 | 98.02 59 | 76.46 250 | 97.16 109 | 94.43 217 | 79.26 256 | 81.98 191 | 96.28 116 | 69.36 203 | 99.27 74 | 77.71 216 | 92.25 143 | 93.77 214 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
CLD-MVS | | | 87.97 150 | 87.48 142 | 89.44 193 | 92.16 221 | 80.54 148 | 98.14 38 | 94.92 184 | 91.41 23 | 79.43 219 | 95.40 138 | 62.34 241 | 97.27 182 | 90.60 93 | 82.90 217 | 90.50 240 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
Fast-Effi-MVS+ | | | 87.93 151 | 86.94 156 | 90.92 153 | 94.04 164 | 79.16 183 | 98.26 34 | 93.72 257 | 81.29 212 | 83.94 166 | 92.90 190 | 69.83 202 | 96.68 213 | 76.70 229 | 91.74 148 | 96.93 142 |
|
HQP-MVS | | | 87.91 152 | 87.55 140 | 88.98 201 | 92.08 223 | 78.48 199 | 97.63 72 | 94.80 192 | 90.52 33 | 82.30 183 | 94.56 162 | 65.40 224 | 97.32 177 | 87.67 130 | 83.01 214 | 91.13 231 |
|
test_fmvs1 | | | 87.79 153 | 88.52 120 | 85.62 273 | 92.98 196 | 64.31 339 | 97.88 55 | 92.42 292 | 87.95 72 | 92.24 66 | 95.82 125 | 47.94 323 | 98.44 127 | 95.31 40 | 94.09 117 | 94.09 208 |
|
UGNet | | | 87.73 154 | 86.55 160 | 91.27 142 | 95.16 128 | 79.11 185 | 96.35 168 | 96.23 114 | 88.14 68 | 87.83 127 | 90.48 228 | 50.65 312 | 99.09 92 | 80.13 195 | 94.03 118 | 95.60 180 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
FA-MVS(test-final) | | | 87.71 155 | 86.23 162 | 92.17 111 | 94.19 157 | 80.55 146 | 87.16 330 | 96.07 127 | 82.12 203 | 85.98 144 | 88.35 256 | 72.04 183 | 98.49 121 | 80.26 192 | 89.87 157 | 97.48 122 |
|
EPNet_dtu | | | 87.65 156 | 87.89 129 | 86.93 250 | 94.57 144 | 71.37 310 | 96.72 144 | 96.50 89 | 88.56 60 | 87.12 135 | 95.02 152 | 75.91 126 | 94.01 311 | 66.62 298 | 90.00 156 | 95.42 185 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
mvsany_test1 | | | 87.58 157 | 88.22 123 | 85.67 271 | 89.78 268 | 67.18 332 | 95.25 218 | 87.93 342 | 83.96 162 | 88.79 114 | 97.06 96 | 72.52 175 | 94.53 302 | 92.21 75 | 86.45 186 | 95.30 189 |
|
HQP_MVS | | | 87.50 158 | 87.09 152 | 88.74 206 | 91.86 232 | 77.96 219 | 97.18 105 | 94.69 197 | 89.89 43 | 81.33 197 | 94.15 172 | 64.77 230 | 97.30 179 | 87.08 134 | 82.82 218 | 90.96 233 |
|
EPMVS | | | 87.47 159 | 85.90 165 | 92.18 110 | 95.41 119 | 82.26 109 | 87.00 331 | 96.28 111 | 85.88 113 | 84.23 160 | 85.57 300 | 75.07 146 | 96.26 225 | 71.14 277 | 92.50 139 | 98.03 77 |
|
tpm2 | | | 87.35 160 | 86.26 161 | 90.62 162 | 92.93 197 | 78.67 196 | 88.06 323 | 95.99 130 | 79.33 252 | 87.40 129 | 86.43 289 | 80.28 63 | 96.40 220 | 80.23 193 | 85.73 197 | 96.79 148 |
|
ab-mvs | | | 87.08 161 | 84.94 181 | 93.48 64 | 93.34 183 | 83.67 83 | 88.82 315 | 95.70 147 | 81.18 213 | 84.55 159 | 90.14 236 | 62.72 239 | 98.94 103 | 85.49 145 | 82.54 222 | 97.85 94 |
|
SDMVSNet | | | 87.02 162 | 85.61 167 | 91.24 143 | 94.14 159 | 83.30 91 | 93.88 257 | 95.98 131 | 84.30 152 | 79.63 217 | 92.01 200 | 58.23 271 | 97.68 152 | 90.28 103 | 82.02 224 | 92.75 223 |
|
CNLPA | | | 86.96 163 | 85.37 172 | 91.72 129 | 97.59 72 | 79.34 179 | 97.21 101 | 91.05 314 | 74.22 303 | 78.90 222 | 96.75 109 | 67.21 213 | 98.95 101 | 74.68 249 | 90.77 154 | 96.88 146 |
|
BH-untuned | | | 86.95 164 | 85.94 164 | 89.99 179 | 94.52 147 | 77.46 234 | 96.78 141 | 93.37 273 | 81.80 207 | 76.62 246 | 93.81 181 | 66.64 217 | 97.02 194 | 76.06 236 | 93.88 123 | 95.48 184 |
|
QAPM | | | 86.88 165 | 84.51 186 | 93.98 43 | 94.04 164 | 85.89 39 | 97.19 104 | 96.05 128 | 73.62 308 | 75.12 271 | 95.62 132 | 62.02 245 | 99.74 34 | 70.88 278 | 96.06 100 | 96.30 167 |
|
BH-RMVSNet | | | 86.84 166 | 85.28 173 | 91.49 136 | 95.35 121 | 80.26 155 | 96.95 129 | 92.21 295 | 82.86 190 | 81.77 195 | 95.46 137 | 59.34 263 | 97.64 154 | 69.79 285 | 93.81 124 | 96.57 157 |
|
PatchmatchNet |  | | 86.83 167 | 85.12 178 | 91.95 120 | 94.12 161 | 82.27 108 | 86.55 335 | 95.64 150 | 84.59 143 | 82.98 178 | 84.99 312 | 77.26 102 | 95.96 240 | 68.61 290 | 91.34 151 | 97.64 110 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
nrg030 | | | 86.79 168 | 85.43 170 | 90.87 156 | 88.76 281 | 85.34 48 | 97.06 120 | 94.33 223 | 84.31 150 | 80.45 207 | 91.98 203 | 72.36 177 | 96.36 222 | 88.48 122 | 71.13 285 | 90.93 235 |
|
PCF-MVS | | 84.09 5 | 86.77 169 | 85.00 180 | 92.08 114 | 92.06 226 | 83.07 95 | 92.14 288 | 94.47 214 | 79.63 247 | 76.90 242 | 94.78 158 | 71.15 191 | 99.20 82 | 72.87 263 | 91.05 152 | 93.98 210 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
FIs | | | 86.73 170 | 86.10 163 | 88.61 208 | 90.05 265 | 80.21 156 | 96.14 181 | 96.95 35 | 85.56 119 | 78.37 228 | 92.30 197 | 76.73 112 | 95.28 277 | 79.51 199 | 79.27 241 | 90.35 242 |
|
cascas | | | 86.50 171 | 84.48 188 | 92.55 96 | 92.64 204 | 85.95 36 | 97.04 121 | 95.07 179 | 75.32 295 | 80.50 205 | 91.02 219 | 54.33 303 | 97.98 140 | 86.79 139 | 87.62 177 | 93.71 215 |
|
VDDNet | | | 86.44 172 | 84.51 186 | 92.22 109 | 91.56 235 | 81.83 117 | 97.10 117 | 94.64 204 | 69.50 334 | 87.84 126 | 95.19 144 | 48.01 321 | 97.92 146 | 89.82 106 | 86.92 181 | 96.89 145 |
|
GeoE | | | 86.36 173 | 85.20 174 | 89.83 187 | 93.17 186 | 76.13 255 | 97.53 80 | 92.11 296 | 79.58 248 | 80.99 200 | 94.01 175 | 66.60 218 | 96.17 230 | 73.48 261 | 89.30 161 | 97.20 135 |
|
test_fmvs1_n | | | 86.34 174 | 86.72 158 | 85.17 280 | 87.54 297 | 63.64 344 | 96.91 132 | 92.37 294 | 87.49 83 | 91.33 80 | 95.58 134 | 40.81 348 | 98.46 124 | 95.00 42 | 93.49 127 | 93.41 222 |
|
TR-MVS | | | 86.30 175 | 84.93 182 | 90.42 167 | 94.63 143 | 77.58 232 | 96.57 152 | 93.82 248 | 80.30 233 | 82.42 182 | 95.16 146 | 58.74 267 | 97.55 161 | 74.88 247 | 87.82 176 | 96.13 170 |
|
X-MVStestdata | | | 86.26 176 | 84.14 195 | 92.63 93 | 98.52 37 | 80.29 152 | 97.37 95 | 96.44 95 | 87.04 95 | 91.38 77 | 20.73 383 | 77.24 104 | 99.59 52 | 90.46 95 | 98.07 52 | 98.02 78 |
|
AUN-MVS | | | 86.25 177 | 85.57 168 | 88.26 216 | 93.57 174 | 73.38 284 | 95.45 210 | 95.88 138 | 83.94 163 | 85.47 147 | 94.21 170 | 73.70 166 | 96.67 214 | 83.54 168 | 64.41 334 | 94.73 200 |
|
OpenMVS |  | 79.58 14 | 86.09 178 | 83.62 202 | 93.50 62 | 90.95 246 | 86.71 31 | 97.44 88 | 95.83 141 | 75.35 294 | 72.64 290 | 95.72 127 | 57.42 282 | 99.64 48 | 71.41 272 | 95.85 104 | 94.13 207 |
|
FE-MVS | | | 86.06 179 | 84.15 194 | 91.78 127 | 94.33 154 | 79.81 163 | 84.58 344 | 96.61 75 | 76.69 287 | 85.00 151 | 87.38 269 | 70.71 197 | 98.37 129 | 70.39 282 | 91.70 149 | 97.17 136 |
|
FC-MVSNet-test | | | 85.96 180 | 85.39 171 | 87.66 230 | 89.38 278 | 78.02 216 | 95.65 203 | 96.87 40 | 85.12 129 | 77.34 235 | 91.94 206 | 76.28 120 | 94.74 296 | 77.09 224 | 78.82 245 | 90.21 245 |
|
miper_enhance_ethall | | | 85.95 181 | 85.20 174 | 88.19 220 | 94.85 139 | 79.76 165 | 96.00 185 | 94.06 237 | 82.98 187 | 77.74 233 | 88.76 249 | 79.42 70 | 95.46 269 | 80.58 188 | 72.42 279 | 89.36 264 |
|
OPM-MVS | | | 85.84 182 | 85.10 179 | 88.06 221 | 88.34 287 | 77.83 226 | 95.72 199 | 94.20 228 | 87.89 75 | 80.45 207 | 94.05 174 | 58.57 268 | 97.26 183 | 83.88 158 | 82.76 220 | 89.09 272 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
EI-MVSNet | | | 85.80 183 | 85.20 174 | 87.59 233 | 91.55 236 | 77.41 235 | 95.13 225 | 95.36 167 | 80.43 230 | 80.33 209 | 94.71 159 | 73.72 164 | 95.97 237 | 76.96 227 | 78.64 247 | 89.39 259 |
|
GA-MVS | | | 85.79 184 | 84.04 196 | 91.02 151 | 89.47 276 | 80.27 154 | 96.90 133 | 94.84 190 | 85.57 117 | 80.88 201 | 89.08 244 | 56.56 289 | 96.47 219 | 77.72 215 | 85.35 200 | 96.34 163 |
|
XVG-OURS-SEG-HR | | | 85.74 185 | 85.16 177 | 87.49 238 | 90.22 260 | 71.45 309 | 91.29 299 | 94.09 235 | 81.37 211 | 83.90 167 | 95.22 141 | 60.30 256 | 97.53 165 | 85.58 144 | 84.42 205 | 93.50 218 |
|
SCA | | | 85.63 186 | 83.64 201 | 91.60 134 | 92.30 212 | 81.86 116 | 92.88 280 | 95.56 153 | 84.85 134 | 82.52 179 | 85.12 310 | 58.04 273 | 95.39 270 | 73.89 257 | 87.58 179 | 97.54 115 |
|
test_vis1_n | | | 85.60 187 | 85.70 166 | 85.33 277 | 84.79 329 | 64.98 337 | 96.83 136 | 91.61 305 | 87.36 87 | 91.00 87 | 94.84 157 | 36.14 354 | 97.18 186 | 95.66 34 | 93.03 133 | 93.82 213 |
|
tpm | | | 85.55 188 | 84.47 189 | 88.80 205 | 90.19 261 | 75.39 268 | 88.79 316 | 94.69 197 | 84.83 135 | 83.96 165 | 85.21 306 | 78.22 88 | 94.68 298 | 76.32 235 | 78.02 256 | 96.34 163 |
|
UniMVSNet_NR-MVSNet | | | 85.49 189 | 84.59 184 | 88.21 219 | 89.44 277 | 79.36 177 | 96.71 146 | 96.41 99 | 85.22 125 | 78.11 230 | 90.98 221 | 76.97 108 | 95.14 284 | 79.14 204 | 68.30 312 | 90.12 247 |
|
gg-mvs-nofinetune | | | 85.48 190 | 82.90 213 | 93.24 70 | 94.51 150 | 85.82 40 | 79.22 356 | 96.97 33 | 61.19 356 | 87.33 131 | 53.01 372 | 90.58 6 | 96.07 231 | 86.07 141 | 97.23 78 | 97.81 98 |
|
VPA-MVSNet | | | 85.32 191 | 83.83 197 | 89.77 190 | 90.25 259 | 82.63 100 | 96.36 167 | 97.07 29 | 83.03 185 | 81.21 199 | 89.02 246 | 61.58 249 | 96.31 224 | 85.02 149 | 70.95 287 | 90.36 241 |
|
UniMVSNet (Re) | | | 85.31 192 | 84.23 192 | 88.55 209 | 89.75 269 | 80.55 146 | 96.72 144 | 96.89 39 | 85.42 120 | 78.40 227 | 88.93 247 | 75.38 138 | 95.52 267 | 78.58 209 | 68.02 315 | 89.57 258 |
|
XVG-OURS | | | 85.18 193 | 84.38 190 | 87.59 233 | 90.42 258 | 71.73 306 | 91.06 302 | 94.07 236 | 82.00 206 | 83.29 173 | 95.08 151 | 56.42 290 | 97.55 161 | 83.70 165 | 83.42 210 | 93.49 219 |
|
mvsmamba | | | 85.17 194 | 84.54 185 | 87.05 248 | 87.94 291 | 75.11 271 | 96.22 175 | 87.79 344 | 86.91 97 | 78.55 225 | 91.77 209 | 64.93 229 | 95.91 243 | 86.94 138 | 79.80 234 | 90.12 247 |
|
cl22 | | | 85.11 195 | 84.17 193 | 87.92 224 | 95.06 133 | 78.82 191 | 95.51 207 | 94.22 227 | 79.74 245 | 76.77 243 | 87.92 263 | 75.96 124 | 95.68 256 | 79.93 197 | 72.42 279 | 89.27 266 |
|
TAPA-MVS | | 81.61 12 | 85.02 196 | 83.67 199 | 89.06 198 | 96.79 92 | 73.27 289 | 95.92 190 | 94.79 194 | 74.81 300 | 80.47 206 | 96.83 103 | 71.07 192 | 98.19 136 | 49.82 359 | 92.57 137 | 95.71 178 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PatchMatch-RL | | | 85.00 197 | 83.66 200 | 89.02 200 | 95.86 108 | 74.55 277 | 92.49 284 | 93.60 262 | 79.30 254 | 79.29 221 | 91.47 210 | 58.53 269 | 98.45 125 | 70.22 283 | 92.17 145 | 94.07 209 |
|
PS-MVSNAJss | | | 84.91 198 | 84.30 191 | 86.74 251 | 85.89 316 | 74.40 279 | 94.95 232 | 94.16 231 | 83.93 164 | 76.45 249 | 90.11 237 | 71.04 193 | 95.77 250 | 83.16 173 | 79.02 244 | 90.06 252 |
|
CVMVSNet | | | 84.83 199 | 85.57 168 | 82.63 312 | 91.55 236 | 60.38 354 | 95.13 225 | 95.03 180 | 80.60 223 | 82.10 189 | 94.71 159 | 66.40 219 | 90.19 351 | 74.30 254 | 90.32 155 | 97.31 130 |
|
FMVSNet3 | | | 84.71 200 | 82.71 217 | 90.70 161 | 94.55 145 | 87.71 20 | 95.92 190 | 94.67 200 | 81.73 208 | 75.82 263 | 88.08 261 | 66.99 214 | 94.47 303 | 71.23 274 | 75.38 265 | 89.91 254 |
|
VPNet | | | 84.69 201 | 82.92 212 | 90.01 178 | 89.01 280 | 83.45 88 | 96.71 146 | 95.46 160 | 85.71 115 | 79.65 216 | 92.18 199 | 56.66 288 | 96.01 236 | 83.05 175 | 67.84 318 | 90.56 238 |
|
sd_testset | | | 84.62 202 | 83.11 210 | 89.17 196 | 94.14 159 | 77.78 227 | 91.54 298 | 94.38 220 | 84.30 152 | 79.63 217 | 92.01 200 | 52.28 308 | 96.98 196 | 77.67 217 | 82.02 224 | 92.75 223 |
|
Effi-MVS+-dtu | | | 84.61 203 | 84.90 183 | 83.72 302 | 91.96 229 | 63.14 346 | 94.95 232 | 93.34 274 | 85.57 117 | 79.79 215 | 87.12 275 | 61.99 246 | 95.61 263 | 83.55 167 | 85.83 195 | 92.41 227 |
|
miper_ehance_all_eth | | | 84.57 204 | 83.60 203 | 87.50 237 | 92.64 204 | 78.25 208 | 95.40 213 | 93.47 266 | 79.28 255 | 76.41 250 | 87.64 266 | 76.53 114 | 95.24 279 | 78.58 209 | 72.42 279 | 89.01 277 |
|
DU-MVS | | | 84.57 204 | 83.33 207 | 88.28 215 | 88.76 281 | 79.36 177 | 96.43 163 | 95.41 166 | 85.42 120 | 78.11 230 | 90.82 223 | 67.61 207 | 95.14 284 | 79.14 204 | 68.30 312 | 90.33 243 |
|
F-COLMAP | | | 84.50 206 | 83.44 206 | 87.67 229 | 95.22 125 | 72.22 295 | 95.95 188 | 93.78 253 | 75.74 292 | 76.30 253 | 95.18 145 | 59.50 261 | 98.45 125 | 72.67 265 | 86.59 185 | 92.35 228 |
|
Anonymous202405211 | | | 84.41 207 | 81.93 227 | 91.85 125 | 96.78 93 | 78.41 203 | 97.44 88 | 91.34 309 | 70.29 330 | 84.06 161 | 94.26 168 | 41.09 346 | 98.96 99 | 79.46 200 | 82.65 221 | 98.17 69 |
|
WR-MVS | | | 84.32 208 | 82.96 211 | 88.41 211 | 89.38 278 | 80.32 151 | 96.59 151 | 96.25 113 | 83.97 161 | 76.63 245 | 90.36 231 | 67.53 209 | 94.86 294 | 75.82 240 | 70.09 296 | 90.06 252 |
|
dp | | | 84.30 209 | 82.31 222 | 90.28 172 | 94.24 156 | 77.97 218 | 86.57 334 | 95.53 154 | 79.94 242 | 80.75 203 | 85.16 308 | 71.49 189 | 96.39 221 | 63.73 313 | 83.36 211 | 96.48 159 |
|
LPG-MVS_test | | | 84.20 210 | 83.49 205 | 86.33 257 | 90.88 247 | 73.06 290 | 95.28 215 | 94.13 232 | 82.20 200 | 76.31 251 | 93.20 186 | 54.83 301 | 96.95 198 | 83.72 163 | 80.83 230 | 88.98 278 |
|
dmvs_re | | | 84.10 211 | 82.90 213 | 87.70 228 | 91.41 240 | 73.28 287 | 90.59 305 | 93.19 278 | 85.02 131 | 77.96 232 | 93.68 182 | 57.92 277 | 96.18 229 | 75.50 242 | 80.87 229 | 93.63 216 |
|
ACMP | | 81.66 11 | 84.00 212 | 83.22 209 | 86.33 257 | 91.53 238 | 72.95 293 | 95.91 192 | 93.79 252 | 83.70 172 | 73.79 278 | 92.22 198 | 54.31 304 | 96.89 202 | 83.98 156 | 79.74 237 | 89.16 269 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
IterMVS-LS | | | 83.93 213 | 82.80 216 | 87.31 242 | 91.46 239 | 77.39 236 | 95.66 202 | 93.43 268 | 80.44 228 | 75.51 267 | 87.26 272 | 73.72 164 | 95.16 283 | 76.99 225 | 70.72 289 | 89.39 259 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
RRT_MVS | | | 83.88 214 | 83.27 208 | 85.71 269 | 87.53 298 | 72.12 298 | 95.35 214 | 94.33 223 | 83.81 168 | 75.86 262 | 91.28 215 | 60.55 254 | 95.09 289 | 83.93 157 | 76.76 259 | 89.90 255 |
|
XXY-MVS | | | 83.84 215 | 82.00 226 | 89.35 194 | 87.13 300 | 81.38 127 | 95.72 199 | 94.26 226 | 80.15 237 | 75.92 261 | 90.63 226 | 61.96 247 | 96.52 217 | 78.98 206 | 73.28 277 | 90.14 246 |
|
c3_l | | | 83.80 216 | 82.65 218 | 87.25 244 | 92.10 222 | 77.74 230 | 95.25 218 | 93.04 285 | 78.58 266 | 76.01 258 | 87.21 274 | 75.25 143 | 95.11 286 | 77.54 220 | 68.89 306 | 88.91 283 |
|
LCM-MVSNet-Re | | | 83.75 217 | 83.54 204 | 84.39 295 | 93.54 175 | 64.14 341 | 92.51 283 | 84.03 359 | 83.90 165 | 66.14 325 | 86.59 283 | 67.36 211 | 92.68 325 | 84.89 150 | 92.87 134 | 96.35 162 |
|
ACMM | | 80.70 13 | 83.72 218 | 82.85 215 | 86.31 260 | 91.19 242 | 72.12 298 | 95.88 193 | 94.29 225 | 80.44 228 | 77.02 240 | 91.96 204 | 55.24 297 | 97.14 191 | 79.30 202 | 80.38 233 | 89.67 257 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
tpm cat1 | | | 83.63 219 | 81.38 235 | 90.39 168 | 93.53 180 | 78.19 214 | 85.56 341 | 95.09 177 | 70.78 328 | 78.51 226 | 83.28 325 | 74.80 149 | 97.03 193 | 66.77 297 | 84.05 206 | 95.95 171 |
|
CR-MVSNet | | | 83.53 220 | 81.36 236 | 90.06 177 | 90.16 262 | 79.75 166 | 79.02 358 | 91.12 311 | 84.24 156 | 82.27 187 | 80.35 339 | 75.45 134 | 93.67 317 | 63.37 316 | 86.25 188 | 96.75 152 |
|
v2v482 | | | 83.46 221 | 81.86 228 | 88.25 217 | 86.19 310 | 79.65 171 | 96.34 169 | 94.02 238 | 81.56 210 | 77.32 236 | 88.23 258 | 65.62 221 | 96.03 232 | 77.77 213 | 69.72 300 | 89.09 272 |
|
NR-MVSNet | | | 83.35 222 | 81.52 234 | 88.84 203 | 88.76 281 | 81.31 129 | 94.45 241 | 95.16 176 | 84.65 141 | 67.81 314 | 90.82 223 | 70.36 199 | 94.87 293 | 74.75 248 | 66.89 327 | 90.33 243 |
|
Fast-Effi-MVS+-dtu | | | 83.33 223 | 82.60 219 | 85.50 275 | 89.55 274 | 69.38 323 | 96.09 184 | 91.38 306 | 82.30 199 | 75.96 260 | 91.41 211 | 56.71 286 | 95.58 265 | 75.13 246 | 84.90 203 | 91.54 229 |
|
cl____ | | | 83.27 224 | 82.12 223 | 86.74 251 | 92.20 217 | 75.95 262 | 95.11 227 | 93.27 276 | 78.44 269 | 74.82 273 | 87.02 277 | 74.19 158 | 95.19 281 | 74.67 250 | 69.32 302 | 89.09 272 |
|
DIV-MVS_self_test | | | 83.27 224 | 82.12 223 | 86.74 251 | 92.19 218 | 75.92 264 | 95.11 227 | 93.26 277 | 78.44 269 | 74.81 274 | 87.08 276 | 74.19 158 | 95.19 281 | 74.66 251 | 69.30 303 | 89.11 271 |
|
TranMVSNet+NR-MVSNet | | | 83.24 226 | 81.71 230 | 87.83 225 | 87.71 294 | 78.81 193 | 96.13 183 | 94.82 191 | 84.52 144 | 76.18 257 | 90.78 225 | 64.07 233 | 94.60 299 | 74.60 252 | 66.59 329 | 90.09 250 |
|
Anonymous20240529 | | | 83.15 227 | 80.60 246 | 90.80 157 | 95.74 111 | 78.27 207 | 96.81 139 | 94.92 184 | 60.10 361 | 81.89 193 | 92.54 195 | 45.82 330 | 98.82 108 | 79.25 203 | 78.32 254 | 95.31 188 |
|
eth_miper_zixun_eth | | | 83.12 228 | 82.01 225 | 86.47 256 | 91.85 234 | 74.80 273 | 94.33 246 | 93.18 280 | 79.11 258 | 75.74 266 | 87.25 273 | 72.71 173 | 95.32 275 | 76.78 228 | 67.13 324 | 89.27 266 |
|
MS-PatchMatch | | | 83.05 229 | 81.82 229 | 86.72 255 | 89.64 272 | 79.10 186 | 94.88 234 | 94.59 208 | 79.70 246 | 70.67 302 | 89.65 240 | 50.43 314 | 96.82 207 | 70.82 281 | 95.99 102 | 84.25 342 |
|
V42 | | | 83.04 230 | 81.53 233 | 87.57 235 | 86.27 309 | 79.09 187 | 95.87 194 | 94.11 234 | 80.35 232 | 77.22 238 | 86.79 281 | 65.32 226 | 96.02 235 | 77.74 214 | 70.14 292 | 87.61 306 |
|
tpmvs | | | 83.04 230 | 80.77 241 | 89.84 186 | 95.43 118 | 77.96 219 | 85.59 340 | 95.32 171 | 75.31 296 | 76.27 254 | 83.70 322 | 73.89 161 | 97.41 172 | 59.53 327 | 81.93 226 | 94.14 206 |
|
test_djsdf | | | 83.00 232 | 82.45 221 | 84.64 288 | 84.07 337 | 69.78 319 | 94.80 237 | 94.48 212 | 80.74 220 | 75.41 269 | 87.70 265 | 61.32 252 | 95.10 287 | 83.77 161 | 79.76 235 | 89.04 275 |
|
v1144 | | | 82.90 233 | 81.27 237 | 87.78 227 | 86.29 308 | 79.07 188 | 96.14 181 | 93.93 240 | 80.05 239 | 77.38 234 | 86.80 280 | 65.50 222 | 95.93 242 | 75.21 245 | 70.13 293 | 88.33 293 |
|
test0.0.03 1 | | | 82.79 234 | 82.48 220 | 83.74 301 | 86.81 302 | 72.22 295 | 96.52 155 | 95.03 180 | 83.76 170 | 73.00 286 | 93.20 186 | 72.30 179 | 88.88 354 | 64.15 311 | 77.52 257 | 90.12 247 |
|
FMVSNet2 | | | 82.79 234 | 80.44 248 | 89.83 187 | 92.66 201 | 85.43 47 | 95.42 211 | 94.35 221 | 79.06 260 | 74.46 275 | 87.28 270 | 56.38 291 | 94.31 306 | 69.72 286 | 74.68 269 | 89.76 256 |
|
D2MVS | | | 82.67 236 | 81.55 232 | 86.04 265 | 87.77 293 | 76.47 249 | 95.21 220 | 96.58 80 | 82.66 195 | 70.26 305 | 85.46 303 | 60.39 255 | 95.80 249 | 76.40 233 | 79.18 242 | 85.83 332 |
|
MVP-Stereo | | | 82.65 237 | 81.67 231 | 85.59 274 | 86.10 313 | 78.29 206 | 93.33 269 | 92.82 287 | 77.75 274 | 69.17 312 | 87.98 262 | 59.28 264 | 95.76 251 | 71.77 269 | 96.88 85 | 82.73 350 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
pmmvs4 | | | 82.54 238 | 80.79 240 | 87.79 226 | 86.11 312 | 80.49 150 | 93.55 264 | 93.18 280 | 77.29 280 | 73.35 282 | 89.40 243 | 65.26 227 | 95.05 291 | 75.32 244 | 73.61 273 | 87.83 301 |
|
v144192 | | | 82.43 239 | 80.73 243 | 87.54 236 | 85.81 317 | 78.22 209 | 95.98 186 | 93.78 253 | 79.09 259 | 77.11 239 | 86.49 285 | 64.66 232 | 95.91 243 | 74.20 255 | 69.42 301 | 88.49 287 |
|
GBi-Net | | | 82.42 240 | 80.43 249 | 88.39 212 | 92.66 201 | 81.95 110 | 94.30 248 | 93.38 270 | 79.06 260 | 75.82 263 | 85.66 296 | 56.38 291 | 93.84 313 | 71.23 274 | 75.38 265 | 89.38 261 |
|
test1 | | | 82.42 240 | 80.43 249 | 88.39 212 | 92.66 201 | 81.95 110 | 94.30 248 | 93.38 270 | 79.06 260 | 75.82 263 | 85.66 296 | 56.38 291 | 93.84 313 | 71.23 274 | 75.38 265 | 89.38 261 |
|
v148 | | | 82.41 242 | 80.89 239 | 86.99 249 | 86.18 311 | 76.81 246 | 96.27 172 | 93.82 248 | 80.49 227 | 75.28 270 | 86.11 295 | 67.32 212 | 95.75 252 | 75.48 243 | 67.03 326 | 88.42 291 |
|
v1192 | | | 82.31 243 | 80.55 247 | 87.60 232 | 85.94 314 | 78.47 202 | 95.85 196 | 93.80 251 | 79.33 252 | 76.97 241 | 86.51 284 | 63.33 237 | 95.87 245 | 73.11 262 | 70.13 293 | 88.46 289 |
|
LS3D | | | 82.22 244 | 79.94 257 | 89.06 198 | 97.43 79 | 74.06 282 | 93.20 275 | 92.05 297 | 61.90 351 | 73.33 283 | 95.21 142 | 59.35 262 | 99.21 78 | 54.54 347 | 92.48 140 | 93.90 212 |
|
bld_raw_dy_0_64 | | | 82.13 245 | 80.76 242 | 86.24 262 | 85.78 318 | 75.03 272 | 94.40 245 | 82.62 364 | 83.12 181 | 76.46 248 | 90.96 222 | 53.83 305 | 94.55 300 | 81.04 185 | 78.60 250 | 89.14 270 |
|
jajsoiax | | | 82.12 246 | 81.15 238 | 85.03 282 | 84.19 335 | 70.70 312 | 94.22 252 | 93.95 239 | 83.07 183 | 73.48 280 | 89.75 239 | 49.66 317 | 95.37 272 | 82.24 179 | 79.76 235 | 89.02 276 |
|
v1921920 | | | 82.02 247 | 80.23 251 | 87.41 239 | 85.62 319 | 77.92 222 | 95.79 198 | 93.69 258 | 78.86 263 | 76.67 244 | 86.44 287 | 62.50 240 | 95.83 247 | 72.69 264 | 69.77 299 | 88.47 288 |
|
v8 | | | 81.88 248 | 80.06 255 | 87.32 241 | 86.63 303 | 79.04 189 | 94.41 242 | 93.65 260 | 78.77 264 | 73.19 285 | 85.57 300 | 66.87 215 | 95.81 248 | 73.84 259 | 67.61 320 | 87.11 314 |
|
mvs_tets | | | 81.74 249 | 80.71 244 | 84.84 283 | 84.22 334 | 70.29 315 | 93.91 256 | 93.78 253 | 82.77 192 | 73.37 281 | 89.46 242 | 47.36 327 | 95.31 276 | 81.99 180 | 79.55 240 | 88.92 282 |
|
v1240 | | | 81.70 250 | 79.83 259 | 87.30 243 | 85.50 320 | 77.70 231 | 95.48 208 | 93.44 267 | 78.46 268 | 76.53 247 | 86.44 287 | 60.85 253 | 95.84 246 | 71.59 271 | 70.17 291 | 88.35 292 |
|
PVSNet_0 | | 77.72 15 | 81.70 250 | 78.95 266 | 89.94 183 | 90.77 253 | 76.72 248 | 95.96 187 | 96.95 35 | 85.01 132 | 70.24 306 | 88.53 254 | 52.32 307 | 98.20 135 | 86.68 140 | 44.08 371 | 94.89 193 |
|
miper_lstm_enhance | | | 81.66 252 | 80.66 245 | 84.67 287 | 91.19 242 | 71.97 302 | 91.94 290 | 93.19 278 | 77.86 273 | 72.27 293 | 85.26 304 | 73.46 167 | 93.42 321 | 73.71 260 | 67.05 325 | 88.61 285 |
|
DP-MVS | | | 81.47 253 | 78.28 269 | 91.04 149 | 98.14 55 | 78.48 199 | 95.09 230 | 86.97 346 | 61.14 357 | 71.12 299 | 92.78 194 | 59.59 259 | 99.38 68 | 53.11 351 | 86.61 184 | 95.27 190 |
|
v10 | | | 81.43 254 | 79.53 261 | 87.11 246 | 86.38 305 | 78.87 190 | 94.31 247 | 93.43 268 | 77.88 272 | 73.24 284 | 85.26 304 | 65.44 223 | 95.75 252 | 72.14 268 | 67.71 319 | 86.72 318 |
|
pmmvs5 | | | 81.34 255 | 79.54 260 | 86.73 254 | 85.02 327 | 76.91 243 | 96.22 175 | 91.65 303 | 77.65 275 | 73.55 279 | 88.61 251 | 55.70 294 | 94.43 304 | 74.12 256 | 73.35 276 | 88.86 284 |
|
ADS-MVSNet | | | 81.26 256 | 78.36 268 | 89.96 182 | 93.78 168 | 79.78 164 | 79.48 354 | 93.60 262 | 73.09 314 | 80.14 211 | 79.99 341 | 62.15 243 | 95.24 279 | 59.49 328 | 83.52 208 | 94.85 194 |
|
Baseline_NR-MVSNet | | | 81.22 257 | 80.07 254 | 84.68 286 | 85.32 325 | 75.12 270 | 96.48 157 | 88.80 336 | 76.24 291 | 77.28 237 | 86.40 290 | 67.61 207 | 94.39 305 | 75.73 241 | 66.73 328 | 84.54 339 |
|
tt0805 | | | 81.20 258 | 79.06 265 | 87.61 231 | 86.50 304 | 72.97 292 | 93.66 260 | 95.48 158 | 74.11 304 | 76.23 255 | 91.99 202 | 41.36 345 | 97.40 173 | 77.44 222 | 74.78 268 | 92.45 226 |
|
WR-MVS_H | | | 81.02 259 | 80.09 252 | 83.79 299 | 88.08 290 | 71.26 311 | 94.46 240 | 96.54 84 | 80.08 238 | 72.81 289 | 86.82 279 | 70.36 199 | 92.65 326 | 64.18 310 | 67.50 321 | 87.46 311 |
|
CP-MVSNet | | | 81.01 260 | 80.08 253 | 83.79 299 | 87.91 292 | 70.51 313 | 94.29 251 | 95.65 149 | 80.83 218 | 72.54 292 | 88.84 248 | 63.71 234 | 92.32 329 | 68.58 291 | 68.36 311 | 88.55 286 |
|
anonymousdsp | | | 80.98 261 | 79.97 256 | 84.01 296 | 81.73 346 | 70.44 314 | 92.49 284 | 93.58 264 | 77.10 284 | 72.98 287 | 86.31 291 | 57.58 278 | 94.90 292 | 79.32 201 | 78.63 249 | 86.69 319 |
|
UniMVSNet_ETH3D | | | 80.86 262 | 78.75 267 | 87.22 245 | 86.31 307 | 72.02 300 | 91.95 289 | 93.76 256 | 73.51 309 | 75.06 272 | 90.16 235 | 43.04 339 | 95.66 257 | 76.37 234 | 78.55 251 | 93.98 210 |
|
IterMVS | | | 80.67 263 | 79.16 263 | 85.20 279 | 89.79 267 | 76.08 256 | 92.97 279 | 91.86 299 | 80.28 234 | 71.20 298 | 85.14 309 | 57.93 276 | 91.34 341 | 72.52 266 | 70.74 288 | 88.18 296 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MSDG | | | 80.62 264 | 77.77 273 | 89.14 197 | 93.43 182 | 77.24 238 | 91.89 291 | 90.18 323 | 69.86 333 | 68.02 313 | 91.94 206 | 52.21 309 | 98.84 107 | 59.32 330 | 83.12 212 | 91.35 230 |
|
IterMVS-SCA-FT | | | 80.51 265 | 79.10 264 | 84.73 285 | 89.63 273 | 74.66 274 | 92.98 278 | 91.81 301 | 80.05 239 | 71.06 300 | 85.18 307 | 58.04 273 | 91.40 340 | 72.48 267 | 70.70 290 | 88.12 297 |
|
PS-CasMVS | | | 80.27 266 | 79.18 262 | 83.52 305 | 87.56 296 | 69.88 318 | 94.08 254 | 95.29 172 | 80.27 235 | 72.08 294 | 88.51 255 | 59.22 265 | 92.23 331 | 67.49 293 | 68.15 314 | 88.45 290 |
|
pm-mvs1 | | | 80.05 267 | 78.02 271 | 86.15 263 | 85.42 321 | 75.81 265 | 95.11 227 | 92.69 290 | 77.13 282 | 70.36 304 | 87.43 268 | 58.44 270 | 95.27 278 | 71.36 273 | 64.25 336 | 87.36 312 |
|
RPMNet | | | 79.85 268 | 75.92 286 | 91.64 131 | 90.16 262 | 79.75 166 | 79.02 358 | 95.44 162 | 58.43 365 | 82.27 187 | 72.55 362 | 73.03 171 | 98.41 128 | 46.10 365 | 86.25 188 | 96.75 152 |
|
PatchT | | | 79.75 269 | 76.85 280 | 88.42 210 | 89.55 274 | 75.49 267 | 77.37 362 | 94.61 206 | 63.07 347 | 82.46 181 | 73.32 360 | 75.52 133 | 93.41 322 | 51.36 354 | 84.43 204 | 96.36 161 |
|
Anonymous20231211 | | | 79.72 270 | 77.19 277 | 87.33 240 | 95.59 115 | 77.16 242 | 95.18 224 | 94.18 230 | 59.31 363 | 72.57 291 | 86.20 293 | 47.89 324 | 95.66 257 | 74.53 253 | 69.24 304 | 89.18 268 |
|
test_fmvs2 | | | 79.59 271 | 79.90 258 | 78.67 330 | 82.86 344 | 55.82 363 | 95.20 221 | 89.55 327 | 81.09 214 | 80.12 213 | 89.80 238 | 34.31 359 | 93.51 320 | 87.82 127 | 78.36 253 | 86.69 319 |
|
ADS-MVSNet2 | | | 79.57 272 | 77.53 274 | 85.71 269 | 93.78 168 | 72.13 297 | 79.48 354 | 86.11 352 | 73.09 314 | 80.14 211 | 79.99 341 | 62.15 243 | 90.14 352 | 59.49 328 | 83.52 208 | 94.85 194 |
|
FMVSNet1 | | | 79.50 273 | 76.54 282 | 88.39 212 | 88.47 286 | 81.95 110 | 94.30 248 | 93.38 270 | 73.14 313 | 72.04 295 | 85.66 296 | 43.86 333 | 93.84 313 | 65.48 305 | 72.53 278 | 89.38 261 |
|
PEN-MVS | | | 79.47 274 | 78.26 270 | 83.08 308 | 86.36 306 | 68.58 326 | 93.85 258 | 94.77 195 | 79.76 244 | 71.37 296 | 88.55 252 | 59.79 257 | 92.46 327 | 64.50 309 | 65.40 331 | 88.19 295 |
|
XVG-ACMP-BASELINE | | | 79.38 275 | 77.90 272 | 83.81 298 | 84.98 328 | 67.14 334 | 89.03 314 | 93.18 280 | 80.26 236 | 72.87 288 | 88.15 260 | 38.55 350 | 96.26 225 | 76.05 237 | 78.05 255 | 88.02 298 |
|
v7n | | | 79.32 276 | 77.34 275 | 85.28 278 | 84.05 338 | 72.89 294 | 93.38 267 | 93.87 245 | 75.02 299 | 70.68 301 | 84.37 316 | 59.58 260 | 95.62 262 | 67.60 292 | 67.50 321 | 87.32 313 |
|
MIMVSNet | | | 79.18 277 | 75.99 285 | 88.72 207 | 87.37 299 | 80.66 143 | 79.96 353 | 91.82 300 | 77.38 279 | 74.33 276 | 81.87 331 | 41.78 342 | 90.74 347 | 66.36 303 | 83.10 213 | 94.76 196 |
|
JIA-IIPM | | | 79.00 278 | 77.20 276 | 84.40 294 | 89.74 271 | 64.06 342 | 75.30 366 | 95.44 162 | 62.15 350 | 81.90 192 | 59.08 370 | 78.92 77 | 95.59 264 | 66.51 301 | 85.78 196 | 93.54 217 |
|
USDC | | | 78.65 279 | 76.25 283 | 85.85 266 | 87.58 295 | 74.60 276 | 89.58 310 | 90.58 322 | 84.05 158 | 63.13 337 | 88.23 258 | 40.69 349 | 96.86 206 | 66.57 300 | 75.81 263 | 86.09 328 |
|
DTE-MVSNet | | | 78.37 280 | 77.06 278 | 82.32 315 | 85.22 326 | 67.17 333 | 93.40 266 | 93.66 259 | 78.71 265 | 70.53 303 | 88.29 257 | 59.06 266 | 92.23 331 | 61.38 323 | 63.28 340 | 87.56 308 |
|
Patchmatch-test | | | 78.25 281 | 74.72 294 | 88.83 204 | 91.20 241 | 74.10 281 | 73.91 369 | 88.70 339 | 59.89 362 | 66.82 320 | 85.12 310 | 78.38 85 | 94.54 301 | 48.84 361 | 79.58 239 | 97.86 93 |
|
tfpnnormal | | | 78.14 282 | 75.42 288 | 86.31 260 | 88.33 288 | 79.24 180 | 94.41 242 | 96.22 115 | 73.51 309 | 69.81 308 | 85.52 302 | 55.43 295 | 95.75 252 | 47.65 363 | 67.86 317 | 83.95 345 |
|
ACMH | | 75.40 17 | 77.99 283 | 74.96 290 | 87.10 247 | 90.67 254 | 76.41 251 | 93.19 276 | 91.64 304 | 72.47 320 | 63.44 335 | 87.61 267 | 43.34 336 | 97.16 187 | 58.34 332 | 73.94 271 | 87.72 302 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
LTVRE_ROB | | 73.68 18 | 77.99 283 | 75.74 287 | 84.74 284 | 90.45 257 | 72.02 300 | 86.41 336 | 91.12 311 | 72.57 319 | 66.63 322 | 87.27 271 | 54.95 300 | 96.98 196 | 56.29 342 | 75.98 260 | 85.21 336 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
our_test_3 | | | 77.90 285 | 75.37 289 | 85.48 276 | 85.39 322 | 76.74 247 | 93.63 261 | 91.67 302 | 73.39 312 | 65.72 327 | 84.65 315 | 58.20 272 | 93.13 324 | 57.82 334 | 67.87 316 | 86.57 321 |
|
RPSCF | | | 77.73 286 | 76.63 281 | 81.06 320 | 88.66 285 | 55.76 364 | 87.77 325 | 87.88 343 | 64.82 346 | 74.14 277 | 92.79 193 | 49.22 318 | 96.81 208 | 67.47 294 | 76.88 258 | 90.62 237 |
|
KD-MVS_2432*1600 | | | 77.63 287 | 74.92 292 | 85.77 267 | 90.86 250 | 79.44 174 | 88.08 321 | 93.92 241 | 76.26 289 | 67.05 318 | 82.78 327 | 72.15 181 | 91.92 334 | 61.53 320 | 41.62 374 | 85.94 330 |
|
miper_refine_blended | | | 77.63 287 | 74.92 292 | 85.77 267 | 90.86 250 | 79.44 174 | 88.08 321 | 93.92 241 | 76.26 289 | 67.05 318 | 82.78 327 | 72.15 181 | 91.92 334 | 61.53 320 | 41.62 374 | 85.94 330 |
|
ACMH+ | | 76.62 16 | 77.47 289 | 74.94 291 | 85.05 281 | 91.07 245 | 71.58 308 | 93.26 273 | 90.01 324 | 71.80 323 | 64.76 330 | 88.55 252 | 41.62 343 | 96.48 218 | 62.35 319 | 71.00 286 | 87.09 315 |
|
Patchmtry | | | 77.36 290 | 74.59 295 | 85.67 271 | 89.75 269 | 75.75 266 | 77.85 361 | 91.12 311 | 60.28 359 | 71.23 297 | 80.35 339 | 75.45 134 | 93.56 319 | 57.94 333 | 67.34 323 | 87.68 304 |
|
ppachtmachnet_test | | | 77.19 291 | 74.22 299 | 86.13 264 | 85.39 322 | 78.22 209 | 93.98 255 | 91.36 308 | 71.74 324 | 67.11 317 | 84.87 313 | 56.67 287 | 93.37 323 | 52.21 352 | 64.59 333 | 86.80 317 |
|
OurMVSNet-221017-0 | | | 77.18 292 | 76.06 284 | 80.55 323 | 83.78 341 | 60.00 356 | 90.35 306 | 91.05 314 | 77.01 286 | 66.62 323 | 87.92 263 | 47.73 325 | 94.03 310 | 71.63 270 | 68.44 310 | 87.62 305 |
|
TransMVSNet (Re) | | | 76.94 293 | 74.38 297 | 84.62 289 | 85.92 315 | 75.25 269 | 95.28 215 | 89.18 332 | 73.88 307 | 67.22 315 | 86.46 286 | 59.64 258 | 94.10 309 | 59.24 331 | 52.57 360 | 84.50 340 |
|
EU-MVSNet | | | 76.92 294 | 76.95 279 | 76.83 336 | 84.10 336 | 54.73 366 | 91.77 293 | 92.71 289 | 72.74 317 | 69.57 309 | 88.69 250 | 58.03 275 | 87.43 360 | 64.91 308 | 70.00 297 | 88.33 293 |
|
Patchmatch-RL test | | | 76.65 295 | 74.01 302 | 84.55 290 | 77.37 360 | 64.23 340 | 78.49 360 | 82.84 363 | 78.48 267 | 64.63 331 | 73.40 359 | 76.05 123 | 91.70 339 | 76.99 225 | 57.84 349 | 97.72 103 |
|
FMVSNet5 | | | 76.46 296 | 74.16 300 | 83.35 307 | 90.05 265 | 76.17 254 | 89.58 310 | 89.85 325 | 71.39 326 | 65.29 329 | 80.42 338 | 50.61 313 | 87.70 359 | 61.05 325 | 69.24 304 | 86.18 326 |
|
SixPastTwentyTwo | | | 76.04 297 | 74.32 298 | 81.22 319 | 84.54 331 | 61.43 352 | 91.16 300 | 89.30 331 | 77.89 271 | 64.04 332 | 86.31 291 | 48.23 319 | 94.29 307 | 63.54 315 | 63.84 338 | 87.93 300 |
|
AllTest | | | 75.92 298 | 73.06 306 | 84.47 291 | 92.18 219 | 67.29 330 | 91.07 301 | 84.43 357 | 67.63 337 | 63.48 333 | 90.18 233 | 38.20 351 | 97.16 187 | 57.04 338 | 73.37 274 | 88.97 280 |
|
CL-MVSNet_self_test | | | 75.81 299 | 74.14 301 | 80.83 322 | 78.33 356 | 67.79 329 | 94.22 252 | 93.52 265 | 77.28 281 | 69.82 307 | 81.54 333 | 61.47 251 | 89.22 353 | 57.59 336 | 53.51 356 | 85.48 334 |
|
COLMAP_ROB |  | 73.24 19 | 75.74 300 | 73.00 307 | 83.94 297 | 92.38 207 | 69.08 324 | 91.85 292 | 86.93 347 | 61.48 354 | 65.32 328 | 90.27 232 | 42.27 341 | 96.93 201 | 50.91 356 | 75.63 264 | 85.80 333 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
CMPMVS |  | 54.94 21 | 75.71 301 | 74.56 296 | 79.17 329 | 79.69 352 | 55.98 361 | 89.59 309 | 93.30 275 | 60.28 359 | 53.85 363 | 89.07 245 | 47.68 326 | 96.33 223 | 76.55 230 | 81.02 227 | 85.22 335 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
Anonymous20231206 | | | 75.29 302 | 73.64 303 | 80.22 324 | 80.75 347 | 63.38 345 | 93.36 268 | 90.71 321 | 73.09 314 | 67.12 316 | 83.70 322 | 50.33 315 | 90.85 346 | 53.63 350 | 70.10 295 | 86.44 322 |
|
EG-PatchMatch MVS | | | 74.92 303 | 72.02 310 | 83.62 303 | 83.76 342 | 73.28 287 | 93.62 262 | 92.04 298 | 68.57 336 | 58.88 353 | 83.80 321 | 31.87 363 | 95.57 266 | 56.97 340 | 78.67 246 | 82.00 356 |
|
testgi | | | 74.88 304 | 73.40 304 | 79.32 328 | 80.13 351 | 61.75 349 | 93.21 274 | 86.64 350 | 79.49 250 | 66.56 324 | 91.06 218 | 35.51 357 | 88.67 355 | 56.79 341 | 71.25 284 | 87.56 308 |
|
pmmvs6 | | | 74.65 305 | 71.67 311 | 83.60 304 | 79.13 354 | 69.94 317 | 93.31 272 | 90.88 318 | 61.05 358 | 65.83 326 | 84.15 319 | 43.43 335 | 94.83 295 | 66.62 298 | 60.63 345 | 86.02 329 |
|
test_vis1_rt | | | 73.96 306 | 72.40 309 | 78.64 331 | 83.91 339 | 61.16 353 | 95.63 204 | 68.18 378 | 76.32 288 | 60.09 351 | 74.77 354 | 29.01 367 | 97.54 163 | 87.74 128 | 75.94 261 | 77.22 364 |
|
K. test v3 | | | 73.62 307 | 71.59 312 | 79.69 326 | 82.98 343 | 59.85 357 | 90.85 304 | 88.83 335 | 77.13 282 | 58.90 352 | 82.11 329 | 43.62 334 | 91.72 338 | 65.83 304 | 54.10 355 | 87.50 310 |
|
pmmvs-eth3d | | | 73.59 308 | 70.66 315 | 82.38 313 | 76.40 364 | 73.38 284 | 89.39 313 | 89.43 329 | 72.69 318 | 60.34 350 | 77.79 347 | 46.43 329 | 91.26 343 | 66.42 302 | 57.06 350 | 82.51 351 |
|
MDA-MVSNet_test_wron | | | 73.54 309 | 70.43 317 | 82.86 309 | 84.55 330 | 71.85 303 | 91.74 294 | 91.32 310 | 67.63 337 | 46.73 367 | 81.09 336 | 55.11 298 | 90.42 350 | 55.91 344 | 59.76 346 | 86.31 324 |
|
YYNet1 | | | 73.53 310 | 70.43 317 | 82.85 310 | 84.52 332 | 71.73 306 | 91.69 295 | 91.37 307 | 67.63 337 | 46.79 366 | 81.21 335 | 55.04 299 | 90.43 349 | 55.93 343 | 59.70 347 | 86.38 323 |
|
UnsupCasMVSNet_eth | | | 73.25 311 | 70.57 316 | 81.30 318 | 77.53 358 | 66.33 335 | 87.24 329 | 93.89 244 | 80.38 231 | 57.90 357 | 81.59 332 | 42.91 340 | 90.56 348 | 65.18 307 | 48.51 365 | 87.01 316 |
|
DSMNet-mixed | | | 73.13 312 | 72.45 308 | 75.19 342 | 77.51 359 | 46.82 371 | 85.09 343 | 82.01 365 | 67.61 341 | 69.27 311 | 81.33 334 | 50.89 311 | 86.28 362 | 54.54 347 | 83.80 207 | 92.46 225 |
|
OpenMVS_ROB |  | 68.52 20 | 73.02 313 | 69.57 320 | 83.37 306 | 80.54 350 | 71.82 304 | 93.60 263 | 88.22 341 | 62.37 349 | 61.98 343 | 83.15 326 | 35.31 358 | 95.47 268 | 45.08 366 | 75.88 262 | 82.82 348 |
|
test_0402 | | | 72.68 314 | 69.54 321 | 82.09 316 | 88.67 284 | 71.81 305 | 92.72 282 | 86.77 349 | 61.52 353 | 62.21 342 | 83.91 320 | 43.22 337 | 93.76 316 | 34.60 372 | 72.23 282 | 80.72 360 |
|
TinyColmap | | | 72.41 315 | 68.99 324 | 82.68 311 | 88.11 289 | 69.59 321 | 88.41 319 | 85.20 354 | 65.55 343 | 57.91 356 | 84.82 314 | 30.80 365 | 95.94 241 | 51.38 353 | 68.70 307 | 82.49 353 |
|
test20.03 | | | 72.36 316 | 71.15 313 | 75.98 340 | 77.79 357 | 59.16 358 | 92.40 286 | 89.35 330 | 74.09 305 | 61.50 345 | 84.32 317 | 48.09 320 | 85.54 365 | 50.63 357 | 62.15 343 | 83.24 346 |
|
LF4IMVS | | | 72.36 316 | 70.82 314 | 76.95 335 | 79.18 353 | 56.33 360 | 86.12 337 | 86.11 352 | 69.30 335 | 63.06 338 | 86.66 282 | 33.03 361 | 92.25 330 | 65.33 306 | 68.64 308 | 82.28 354 |
|
Anonymous20240521 | | | 72.06 318 | 69.91 319 | 78.50 332 | 77.11 361 | 61.67 351 | 91.62 297 | 90.97 316 | 65.52 344 | 62.37 341 | 79.05 344 | 36.32 353 | 90.96 345 | 57.75 335 | 68.52 309 | 82.87 347 |
|
dmvs_testset | | | 72.00 319 | 73.36 305 | 67.91 347 | 83.83 340 | 31.90 384 | 85.30 342 | 77.12 372 | 82.80 191 | 63.05 339 | 92.46 196 | 61.54 250 | 82.55 370 | 42.22 369 | 71.89 283 | 89.29 265 |
|
MDA-MVSNet-bldmvs | | | 71.45 320 | 67.94 325 | 81.98 317 | 85.33 324 | 68.50 327 | 92.35 287 | 88.76 337 | 70.40 329 | 42.99 368 | 81.96 330 | 46.57 328 | 91.31 342 | 48.75 362 | 54.39 354 | 86.11 327 |
|
MVS-HIRNet | | | 71.36 321 | 67.00 326 | 84.46 293 | 90.58 255 | 69.74 320 | 79.15 357 | 87.74 345 | 46.09 369 | 61.96 344 | 50.50 373 | 45.14 331 | 95.64 260 | 53.74 349 | 88.11 175 | 88.00 299 |
|
KD-MVS_self_test | | | 70.97 322 | 69.31 322 | 75.95 341 | 76.24 366 | 55.39 365 | 87.45 326 | 90.94 317 | 70.20 331 | 62.96 340 | 77.48 348 | 44.01 332 | 88.09 356 | 61.25 324 | 53.26 357 | 84.37 341 |
|
test_fmvs3 | | | 69.56 323 | 69.19 323 | 70.67 345 | 69.01 370 | 47.05 370 | 90.87 303 | 86.81 348 | 71.31 327 | 66.79 321 | 77.15 349 | 16.40 374 | 83.17 368 | 81.84 181 | 62.51 342 | 81.79 358 |
|
MIMVSNet1 | | | 69.44 324 | 66.65 328 | 77.84 333 | 76.48 363 | 62.84 347 | 87.42 327 | 88.97 334 | 66.96 342 | 57.75 358 | 79.72 343 | 32.77 362 | 85.83 364 | 46.32 364 | 63.42 339 | 84.85 338 |
|
PM-MVS | | | 69.32 325 | 66.93 327 | 76.49 337 | 73.60 368 | 55.84 362 | 85.91 338 | 79.32 370 | 74.72 301 | 61.09 347 | 78.18 346 | 21.76 370 | 91.10 344 | 70.86 279 | 56.90 351 | 82.51 351 |
|
TDRefinement | | | 69.20 326 | 65.78 330 | 79.48 327 | 66.04 374 | 62.21 348 | 88.21 320 | 86.12 351 | 62.92 348 | 61.03 348 | 85.61 299 | 33.23 360 | 94.16 308 | 55.82 345 | 53.02 358 | 82.08 355 |
|
new-patchmatchnet | | | 68.85 327 | 65.93 329 | 77.61 334 | 73.57 369 | 63.94 343 | 90.11 308 | 88.73 338 | 71.62 325 | 55.08 361 | 73.60 358 | 40.84 347 | 87.22 361 | 51.35 355 | 48.49 366 | 81.67 359 |
|
UnsupCasMVSNet_bld | | | 68.60 328 | 64.50 332 | 80.92 321 | 74.63 367 | 67.80 328 | 83.97 346 | 92.94 286 | 65.12 345 | 54.63 362 | 68.23 366 | 35.97 355 | 92.17 333 | 60.13 326 | 44.83 369 | 82.78 349 |
|
mvsany_test3 | | | 67.19 329 | 65.34 331 | 72.72 344 | 63.08 375 | 48.57 369 | 83.12 349 | 78.09 371 | 72.07 321 | 61.21 346 | 77.11 350 | 22.94 369 | 87.78 358 | 78.59 208 | 51.88 361 | 81.80 357 |
|
new_pmnet | | | 66.18 330 | 63.18 333 | 75.18 343 | 76.27 365 | 61.74 350 | 83.79 347 | 84.66 356 | 56.64 366 | 51.57 364 | 71.85 365 | 31.29 364 | 87.93 357 | 49.98 358 | 62.55 341 | 75.86 365 |
|
pmmvs3 | | | 65.75 331 | 62.18 334 | 76.45 338 | 67.12 373 | 64.54 338 | 88.68 317 | 85.05 355 | 54.77 368 | 57.54 359 | 73.79 357 | 29.40 366 | 86.21 363 | 55.49 346 | 47.77 367 | 78.62 362 |
|
test_f | | | 64.01 332 | 62.13 335 | 69.65 346 | 63.00 376 | 45.30 376 | 83.66 348 | 80.68 367 | 61.30 355 | 55.70 360 | 72.62 361 | 14.23 376 | 84.64 366 | 69.84 284 | 58.11 348 | 79.00 361 |
|
N_pmnet | | | 61.30 333 | 60.20 336 | 64.60 352 | 84.32 333 | 17.00 390 | 91.67 296 | 10.98 389 | 61.77 352 | 58.45 355 | 78.55 345 | 49.89 316 | 91.83 337 | 42.27 368 | 63.94 337 | 84.97 337 |
|
test_method | | | 56.77 334 | 54.53 337 | 63.49 354 | 76.49 362 | 40.70 379 | 75.68 365 | 74.24 374 | 19.47 380 | 48.73 365 | 71.89 364 | 19.31 371 | 65.80 380 | 57.46 337 | 47.51 368 | 83.97 344 |
|
APD_test1 | | | 56.56 335 | 53.58 338 | 65.50 349 | 67.93 372 | 46.51 373 | 77.24 364 | 72.95 375 | 38.09 371 | 42.75 369 | 75.17 353 | 13.38 377 | 82.78 369 | 40.19 370 | 54.53 353 | 67.23 370 |
|
FPMVS | | | 55.09 336 | 52.93 339 | 61.57 356 | 55.98 378 | 40.51 380 | 83.11 350 | 83.41 362 | 37.61 372 | 34.95 373 | 71.95 363 | 14.40 375 | 76.95 372 | 29.81 373 | 65.16 332 | 67.25 369 |
|
test_vis3_rt | | | 54.10 337 | 51.04 340 | 63.27 355 | 58.16 377 | 46.08 375 | 84.17 345 | 49.32 388 | 56.48 367 | 36.56 372 | 49.48 375 | 8.03 384 | 91.91 336 | 67.29 295 | 49.87 362 | 51.82 374 |
|
LCM-MVSNet | | | 52.52 338 | 48.24 341 | 65.35 350 | 47.63 385 | 41.45 378 | 72.55 370 | 83.62 361 | 31.75 373 | 37.66 371 | 57.92 371 | 9.19 383 | 76.76 373 | 49.26 360 | 44.60 370 | 77.84 363 |
|
EGC-MVSNET | | | 52.46 339 | 47.56 342 | 67.15 348 | 81.98 345 | 60.11 355 | 82.54 351 | 72.44 376 | 0.11 386 | 0.70 387 | 74.59 355 | 25.11 368 | 83.26 367 | 29.04 374 | 61.51 344 | 58.09 371 |
|
PMMVS2 | | | 50.90 340 | 46.31 343 | 64.67 351 | 55.53 379 | 46.67 372 | 77.30 363 | 71.02 377 | 40.89 370 | 34.16 374 | 59.32 369 | 9.83 382 | 76.14 375 | 40.09 371 | 28.63 377 | 71.21 366 |
|
ANet_high | | | 46.22 341 | 41.28 348 | 61.04 357 | 39.91 387 | 46.25 374 | 70.59 371 | 76.18 373 | 58.87 364 | 23.09 379 | 48.00 376 | 12.58 379 | 66.54 379 | 28.65 375 | 13.62 380 | 70.35 367 |
|
testf1 | | | 45.70 342 | 42.41 344 | 55.58 358 | 53.29 382 | 40.02 381 | 68.96 372 | 62.67 382 | 27.45 375 | 29.85 375 | 61.58 367 | 5.98 385 | 73.83 377 | 28.49 376 | 43.46 372 | 52.90 372 |
|
APD_test2 | | | 45.70 342 | 42.41 344 | 55.58 358 | 53.29 382 | 40.02 381 | 68.96 372 | 62.67 382 | 27.45 375 | 29.85 375 | 61.58 367 | 5.98 385 | 73.83 377 | 28.49 376 | 43.46 372 | 52.90 372 |
|
Gipuma |  | | 45.11 344 | 42.05 346 | 54.30 360 | 80.69 348 | 51.30 368 | 35.80 378 | 83.81 360 | 28.13 374 | 27.94 378 | 34.53 378 | 11.41 381 | 76.70 374 | 21.45 378 | 54.65 352 | 34.90 378 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
tmp_tt | | | 41.54 345 | 41.93 347 | 40.38 363 | 20.10 389 | 26.84 386 | 61.93 375 | 59.09 384 | 14.81 382 | 28.51 377 | 80.58 337 | 35.53 356 | 48.33 384 | 63.70 314 | 13.11 381 | 45.96 377 |
|
PMVS |  | 34.80 23 | 39.19 346 | 35.53 349 | 50.18 361 | 29.72 388 | 30.30 385 | 59.60 376 | 66.20 381 | 26.06 377 | 17.91 381 | 49.53 374 | 3.12 387 | 74.09 376 | 18.19 380 | 49.40 363 | 46.14 375 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVE |  | 35.65 22 | 33.85 347 | 29.49 352 | 46.92 362 | 41.86 386 | 36.28 383 | 50.45 377 | 56.52 385 | 18.75 381 | 18.28 380 | 37.84 377 | 2.41 388 | 58.41 381 | 18.71 379 | 20.62 378 | 46.06 376 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 32.70 348 | 32.39 350 | 33.65 364 | 53.35 381 | 25.70 387 | 74.07 368 | 53.33 386 | 21.08 378 | 17.17 382 | 33.63 380 | 11.85 380 | 54.84 382 | 12.98 381 | 14.04 379 | 20.42 379 |
|
EMVS | | | 31.70 349 | 31.45 351 | 32.48 365 | 50.72 384 | 23.95 388 | 74.78 367 | 52.30 387 | 20.36 379 | 16.08 383 | 31.48 381 | 12.80 378 | 53.60 383 | 11.39 382 | 13.10 382 | 19.88 380 |
|
cdsmvs_eth3d_5k | | | 21.43 350 | 28.57 353 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 95.93 136 | 0.00 387 | 0.00 388 | 97.66 63 | 63.57 235 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
wuyk23d | | | 14.10 351 | 13.89 354 | 14.72 366 | 55.23 380 | 22.91 389 | 33.83 379 | 3.56 390 | 4.94 383 | 4.11 384 | 2.28 386 | 2.06 389 | 19.66 385 | 10.23 383 | 8.74 383 | 1.59 383 |
|
testmvs | | | 9.92 352 | 12.94 355 | 0.84 368 | 0.65 390 | 0.29 392 | 93.78 259 | 0.39 391 | 0.42 384 | 2.85 385 | 15.84 384 | 0.17 391 | 0.30 387 | 2.18 384 | 0.21 384 | 1.91 382 |
|
test123 | | | 9.07 353 | 11.73 356 | 1.11 367 | 0.50 391 | 0.77 391 | 89.44 312 | 0.20 392 | 0.34 385 | 2.15 386 | 10.72 385 | 0.34 390 | 0.32 386 | 1.79 385 | 0.08 385 | 2.23 381 |
|
ab-mvs-re | | | 8.11 354 | 10.81 357 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 97.30 84 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
pcd_1.5k_mvsjas | | | 5.92 355 | 7.89 358 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 71.04 193 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
test_blank | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet_test | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
DCPMVS | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet-low-res | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uncertanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
Regformer | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
FOURS1 | | | | | | 98.51 39 | 78.01 217 | 98.13 41 | 96.21 116 | 83.04 184 | 94.39 43 | | | | | | |
|
MSC_two_6792asdad | | | | | 97.14 3 | 99.05 9 | 92.19 4 | | 96.83 43 | | | | | 99.81 21 | 98.08 9 | 98.81 24 | 99.43 11 |
|
PC_three_1452 | | | | | | | | | | 91.12 26 | 98.33 2 | 98.42 24 | 92.51 2 | 99.81 21 | 98.96 2 | 99.37 1 | 99.70 3 |
|
No_MVS | | | | | 97.14 3 | 99.05 9 | 92.19 4 | | 96.83 43 | | | | | 99.81 21 | 98.08 9 | 98.81 24 | 99.43 11 |
|
test_one_0601 | | | | | | 98.91 18 | 84.56 69 | | 96.70 62 | 88.06 69 | 96.57 17 | 98.77 10 | 88.04 20 | | | | |
|
eth-test2 | | | | | | 0.00 392 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 392 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 99.09 8 | 83.22 93 | | 96.60 78 | 82.88 189 | 93.61 52 | 98.06 43 | 82.93 48 | 99.14 87 | 95.51 38 | 98.49 37 | |
|
RE-MVS-def | | | | 91.18 74 | | 97.76 67 | 76.03 258 | 96.20 178 | 95.44 162 | 80.56 225 | 90.72 90 | 97.84 55 | 73.36 169 | | 91.99 78 | 96.79 88 | 97.75 101 |
|
IU-MVS | | | | | | 99.03 15 | 85.34 48 | | 96.86 42 | 92.05 21 | 98.74 1 | | | | 98.15 6 | 98.97 17 | 99.42 13 |
|
OPU-MVS | | | | | 97.30 2 | 99.19 7 | 92.31 3 | 99.12 7 | | | | 98.54 18 | 92.06 3 | 99.84 12 | 99.11 1 | 99.37 1 | 99.74 1 |
|
test_241102_TWO | | | | | | | | | 96.78 46 | 88.72 56 | 97.70 6 | 98.91 2 | 87.86 21 | 99.82 18 | 98.15 6 | 99.00 15 | 99.47 9 |
|
test_241102_ONE | | | | | | 99.03 15 | 85.03 60 | | 96.78 46 | 88.72 56 | 97.79 4 | 98.90 5 | 88.48 17 | 99.82 18 | | | |
|
9.14 | | | | 94.26 26 | | 98.10 57 | | 98.14 38 | 96.52 86 | 84.74 137 | 94.83 38 | 98.80 7 | 82.80 50 | 99.37 70 | 95.95 30 | 98.42 40 | |
|
save fliter | | | | | | 98.24 51 | 83.34 90 | 98.61 26 | 96.57 81 | 91.32 24 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 88.38 63 | 96.69 14 | 98.76 12 | 89.64 13 | 99.76 27 | 97.47 16 | 98.84 23 | 99.38 14 |
|
test_0728_SECOND | | | | | 95.14 17 | 99.04 14 | 86.14 34 | 99.06 11 | 96.77 52 | | | | | 99.84 12 | 97.90 11 | 98.85 21 | 99.45 10 |
|
test0726 | | | | | | 99.05 9 | 85.18 53 | 99.11 10 | 96.78 46 | 88.75 54 | 97.65 9 | 98.91 2 | 87.69 22 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 97.54 115 |
|
test_part2 | | | | | | 98.90 19 | 85.14 59 | | | | 96.07 22 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 77.59 97 | | | | 97.54 115 |
|
sam_mvs | | | | | | | | | | | | | 75.35 141 | | | | |
|
ambc | | | | | 76.02 339 | 68.11 371 | 51.43 367 | 64.97 374 | 89.59 326 | | 60.49 349 | 74.49 356 | 17.17 373 | 92.46 327 | 61.50 322 | 52.85 359 | 84.17 343 |
|
MTGPA |  | | | | | | | | 96.33 108 | | | | | | | | |
|
test_post1 | | | | | | | | 85.88 339 | | | | 30.24 382 | 73.77 162 | 95.07 290 | 73.89 257 | | |
|
test_post | | | | | | | | | | | | 33.80 379 | 76.17 121 | 95.97 237 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 77.09 351 | 77.78 96 | 95.39 270 | | | |
|
GG-mvs-BLEND | | | | | 93.49 63 | 94.94 135 | 86.26 32 | 81.62 352 | 97.00 31 | | 88.32 122 | 94.30 167 | 91.23 5 | 96.21 228 | 88.49 121 | 97.43 72 | 98.00 83 |
|
MTMP | | | | | | | | 97.53 80 | 68.16 379 | | | | | | | | |
|
gm-plane-assit | | | | | | 92.27 213 | 79.64 172 | | | 84.47 147 | | 95.15 147 | | 97.93 141 | 85.81 142 | | |
|
test9_res | | | | | | | | | | | | | | | 96.00 29 | 99.03 13 | 98.31 61 |
|
TEST9 | | | | | | 98.64 31 | 83.71 81 | 97.82 58 | 96.65 69 | 84.29 154 | 95.16 28 | 98.09 38 | 84.39 35 | 99.36 71 | | | |
|
test_8 | | | | | | 98.63 33 | 83.64 84 | 97.81 60 | 96.63 74 | 84.50 145 | 95.10 31 | 98.11 37 | 84.33 36 | 99.23 76 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 94.30 48 | 99.00 15 | 98.57 45 |
|
agg_prior | | | | | | 98.59 35 | 83.13 94 | | 96.56 83 | | 94.19 45 | | | 99.16 86 | | | |
|
TestCases | | | | | 84.47 291 | 92.18 219 | 67.29 330 | | 84.43 357 | 67.63 337 | 63.48 333 | 90.18 233 | 38.20 351 | 97.16 187 | 57.04 338 | 73.37 274 | 88.97 280 |
|
test_prior4 | | | | | | | 82.34 107 | 97.75 65 | | | | | | | | | |
|
test_prior2 | | | | | | | | 98.37 31 | | 86.08 109 | 94.57 41 | 98.02 44 | 83.14 46 | | 95.05 41 | 98.79 26 | |
|
test_prior | | | | | 93.09 76 | 98.68 26 | 81.91 113 | | 96.40 101 | | | | | 99.06 94 | | | 98.29 63 |
|
旧先验2 | | | | | | | | 96.97 127 | | 74.06 306 | 96.10 21 | | | 97.76 150 | 88.38 123 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 96.42 164 | | | | | | | | | |
|
æ–°å‡ ä½•1 | | | | | 93.12 74 | 97.44 78 | 81.60 125 | | 96.71 61 | 74.54 302 | 91.22 83 | 97.57 70 | 79.13 76 | 99.51 61 | 77.40 223 | 98.46 38 | 98.26 66 |
|
旧先验1 | | | | | | 97.39 82 | 79.58 173 | | 96.54 84 | | | 98.08 41 | 84.00 40 | | | 97.42 73 | 97.62 112 |
|
æ— å…ˆéªŒ | | | | | | | | 96.87 134 | 96.78 46 | 77.39 278 | | | | 99.52 59 | 79.95 196 | | 98.43 54 |
|
原ACMM2 | | | | | | | | 96.84 135 | | | | | | | | | |
|
原ACMM1 | | | | | 91.22 145 | 97.77 65 | 78.10 215 | | 96.61 75 | 81.05 215 | 91.28 82 | 97.42 79 | 77.92 93 | 98.98 98 | 79.85 198 | 98.51 34 | 96.59 156 |
|
test222 | | | | | | 96.15 101 | 78.41 203 | 95.87 194 | 96.46 93 | 71.97 322 | 89.66 103 | 97.45 75 | 76.33 119 | | | 98.24 49 | 98.30 62 |
|
testdata2 | | | | | | | | | | | | | | 99.48 63 | 76.45 232 | | |
|
segment_acmp | | | | | | | | | | | | | 82.69 51 | | | | |
|
testdata | | | | | 90.13 176 | 95.92 107 | 74.17 280 | | 96.49 92 | 73.49 311 | 94.82 39 | 97.99 45 | 78.80 81 | 97.93 141 | 83.53 169 | 97.52 68 | 98.29 63 |
|
testdata1 | | | | | | | | 95.57 206 | | 87.44 84 | | | | | | | |
|
test12 | | | | | 94.25 36 | 98.34 46 | 85.55 45 | | 96.35 107 | | 92.36 64 | | 80.84 57 | 99.22 77 | | 98.31 47 | 97.98 85 |
|
plane_prior7 | | | | | | 91.86 232 | 77.55 233 | | | | | | | | | | |
|
plane_prior6 | | | | | | 91.98 228 | 77.92 222 | | | | | | 64.77 230 | | | | |
|
plane_prior5 | | | | | | | | | 94.69 197 | | | | | 97.30 179 | 87.08 134 | 82.82 218 | 90.96 233 |
|
plane_prior4 | | | | | | | | | | | | 94.15 172 | | | | | |
|
plane_prior3 | | | | | | | 77.75 229 | | | 90.17 40 | 81.33 197 | | | | | | |
|
plane_prior2 | | | | | | | | 97.18 105 | | 89.89 43 | | | | | | | |
|
plane_prior1 | | | | | | 91.95 230 | | | | | | | | | | | |
|
plane_prior | | | | | | | 77.96 219 | 97.52 83 | | 90.36 38 | | | | | | 82.96 216 | |
|
n2 | | | | | | | | | 0.00 393 | | | | | | | | |
|
nn | | | | | | | | | 0.00 393 | | | | | | | | |
|
door-mid | | | | | | | | | 79.75 369 | | | | | | | | |
|
lessismore_v0 | | | | | 79.98 325 | 80.59 349 | 58.34 359 | | 80.87 366 | | 58.49 354 | 83.46 324 | 43.10 338 | 93.89 312 | 63.11 317 | 48.68 364 | 87.72 302 |
|
LGP-MVS_train | | | | | 86.33 257 | 90.88 247 | 73.06 290 | | 94.13 232 | 82.20 200 | 76.31 251 | 93.20 186 | 54.83 301 | 96.95 198 | 83.72 163 | 80.83 230 | 88.98 278 |
|
test11 | | | | | | | | | 96.50 89 | | | | | | | | |
|
door | | | | | | | | | 80.13 368 | | | | | | | | |
|
HQP5-MVS | | | | | | | 78.48 199 | | | | | | | | | | |
|
HQP-NCC | | | | | | 92.08 223 | | 97.63 72 | | 90.52 33 | 82.30 183 | | | | | | |
|
ACMP_Plane | | | | | | 92.08 223 | | 97.63 72 | | 90.52 33 | 82.30 183 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 87.67 130 | | |
|
HQP4-MVS | | | | | | | | | | | 82.30 183 | | | 97.32 177 | | | 91.13 231 |
|
HQP3-MVS | | | | | | | | | 94.80 192 | | | | | | | 83.01 214 | |
|
HQP2-MVS | | | | | | | | | | | | | 65.40 224 | | | | |
|
NP-MVS | | | | | | 92.04 227 | 78.22 209 | | | | | 94.56 162 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 81.74 121 | 86.80 332 | | 80.65 222 | 85.65 145 | | 74.26 157 | | 76.52 231 | | 96.98 140 |
|
MDTV_nov1_ep13 | | | | 83.69 198 | | 94.09 162 | 81.01 133 | 86.78 333 | 96.09 124 | 83.81 168 | 84.75 155 | 84.32 317 | 74.44 156 | 96.54 216 | 63.88 312 | 85.07 202 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 78.45 252 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 79.05 243 | |
|
Test By Simon | | | | | | | | | | | | | 71.65 186 | | | | |
|
ITE_SJBPF | | | | | 82.38 313 | 87.00 301 | 65.59 336 | | 89.55 327 | 79.99 241 | 69.37 310 | 91.30 214 | 41.60 344 | 95.33 274 | 62.86 318 | 74.63 270 | 86.24 325 |
|
DeepMVS_CX |  | | | | 64.06 353 | 78.53 355 | 43.26 377 | | 68.11 380 | 69.94 332 | 38.55 370 | 76.14 352 | 18.53 372 | 79.34 371 | 43.72 367 | 41.62 374 | 69.57 368 |
|