This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS96.30 196.54 195.55 1499.31 587.69 2199.06 1197.12 2694.66 496.79 1398.78 986.42 2999.95 397.59 1599.18 799.00 26
DPM-MVS96.21 295.53 1298.26 196.26 9895.09 199.15 596.98 3293.39 1296.45 1998.79 890.17 1099.99 189.33 11399.25 699.70 3
MCST-MVS96.17 396.12 696.32 799.42 289.36 998.94 1797.10 2895.17 292.11 6998.46 2287.33 2499.97 297.21 1999.31 499.63 7
DVP-MVS++96.05 496.41 394.96 2199.05 985.34 4898.13 4196.77 5288.38 6397.70 698.77 1092.06 399.84 1297.47 1699.37 199.70 3
SED-MVS95.88 596.22 494.87 2299.03 1585.03 6099.12 796.78 4688.72 5697.79 498.91 288.48 1799.82 1898.15 698.97 1799.74 1
NCCC95.63 695.94 894.69 2799.21 685.15 5899.16 496.96 3494.11 895.59 2598.64 1785.07 3399.91 495.61 3599.10 999.00 26
MSP-MVS95.62 796.54 192.86 8498.31 4880.10 15997.42 9296.78 4692.20 1997.11 1298.29 2793.46 199.10 9196.01 2899.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVScopyleft95.58 895.91 994.57 2999.05 985.18 5399.06 1196.46 9388.75 5496.69 1498.76 1287.69 2299.76 2797.90 1198.85 2198.77 33
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MVS_030495.36 995.20 1495.85 1094.89 13889.22 1198.83 1897.88 1094.68 395.14 3097.99 4580.80 5899.81 2198.60 397.95 5698.50 49
DPE-MVScopyleft95.32 1095.55 1194.64 2898.79 2384.87 6597.77 6296.74 5786.11 10796.54 1898.89 688.39 1999.74 3497.67 1499.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HPM-MVS++copyleft95.32 1095.48 1394.85 2398.62 3486.04 3597.81 6096.93 3792.45 1795.69 2498.50 2085.38 3199.85 1094.75 4499.18 798.65 42
patch_mono-295.14 1296.08 792.33 10498.44 4377.84 22598.43 2997.21 2192.58 1697.68 897.65 6786.88 2699.83 1698.25 597.60 6699.33 17
DELS-MVS94.98 1394.49 2196.44 696.42 9590.59 799.21 397.02 3094.40 791.46 7697.08 9483.32 4599.69 4292.83 6998.70 3099.04 24
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet94.89 1494.64 1995.63 1297.55 7588.12 1599.06 1196.39 10394.07 995.34 2797.80 5876.83 11099.87 897.08 2097.64 6598.89 29
SD-MVS94.84 1595.02 1694.29 3597.87 6484.61 6897.76 6496.19 11989.59 4696.66 1698.17 3484.33 3699.60 5196.09 2798.50 3698.66 41
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_fmvsm_n_192094.81 1695.60 1092.45 9895.29 12380.96 13699.29 297.21 2194.50 697.29 1198.44 2382.15 5299.78 2698.56 497.68 6496.61 155
TSAR-MVS + MP.94.79 1795.17 1593.64 5497.66 6984.10 7595.85 19696.42 9891.26 2597.49 1096.80 10686.50 2898.49 12195.54 3799.03 1398.33 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SMA-MVScopyleft94.70 1894.68 1894.76 2598.02 5985.94 3897.47 8596.77 5285.32 12297.92 398.70 1583.09 4799.84 1295.79 3299.08 1098.49 50
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DeepPCF-MVS89.82 194.61 1996.17 589.91 18497.09 9070.21 31698.99 1696.69 6495.57 195.08 3299.23 186.40 3099.87 897.84 1398.66 3199.65 6
APDe-MVS94.56 2094.75 1793.96 4598.84 2283.40 8998.04 4996.41 9985.79 11495.00 3498.28 2884.32 3999.18 8497.35 1898.77 2799.28 19
DeepC-MVS_fast89.06 294.48 2194.30 2595.02 1998.86 2185.68 4398.06 4796.64 7293.64 1191.74 7498.54 1880.17 6699.90 592.28 7498.75 2899.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + GP.94.35 2294.50 2093.89 4697.38 8483.04 9698.10 4395.29 17291.57 2293.81 4897.45 7586.64 2799.43 6696.28 2694.01 12099.20 22
train_agg94.28 2394.45 2293.74 5098.64 3183.71 8197.82 5896.65 6984.50 14595.16 2898.09 3884.33 3699.36 7195.91 3198.96 1998.16 70
MSLP-MVS++94.28 2394.39 2493.97 4498.30 4984.06 7698.64 2496.93 3790.71 3193.08 5898.70 1579.98 6799.21 7894.12 5299.07 1198.63 43
MG-MVS94.25 2593.72 2995.85 1099.38 389.35 1097.98 5198.09 889.99 4192.34 6596.97 9881.30 5698.99 9788.54 11998.88 2099.20 22
SF-MVS94.17 2694.05 2894.55 3097.56 7485.95 3697.73 6696.43 9784.02 15995.07 3398.74 1482.93 4899.38 6895.42 3998.51 3498.32 59
PS-MVSNAJ94.17 2693.52 3496.10 895.65 11392.35 298.21 3695.79 14392.42 1896.24 2098.18 3171.04 19399.17 8596.77 2397.39 7496.79 148
SteuartSystems-ACMMP94.13 2894.44 2393.20 7295.41 11981.35 12899.02 1596.59 7989.50 4794.18 4698.36 2683.68 4499.45 6594.77 4398.45 3998.81 32
Skip Steuart: Steuart Systems R&D Blog.
EPNet94.06 2994.15 2793.76 4997.27 8784.35 7198.29 3397.64 1494.57 595.36 2696.88 10179.96 6899.12 9091.30 8296.11 9897.82 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
xiu_mvs_v2_base93.92 3093.26 3895.91 995.07 13192.02 698.19 3795.68 14892.06 2096.01 2398.14 3570.83 19698.96 9996.74 2596.57 9296.76 151
lupinMVS93.87 3193.58 3394.75 2693.00 19288.08 1699.15 595.50 15791.03 2894.90 3597.66 6378.84 7997.56 15994.64 4797.46 6998.62 44
APD-MVScopyleft93.61 3293.59 3293.69 5398.76 2483.26 9297.21 10196.09 12482.41 19894.65 4098.21 3081.96 5498.81 10994.65 4698.36 4599.01 25
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PHI-MVS93.59 3393.63 3193.48 6498.05 5881.76 12098.64 2497.13 2582.60 19694.09 4798.49 2180.35 6199.85 1094.74 4598.62 3298.83 31
ACMMP_NAP93.46 3493.23 3994.17 4097.16 8884.28 7396.82 13896.65 6986.24 10594.27 4497.99 4577.94 9199.83 1693.39 5998.57 3398.39 56
MVS_111021_HR93.41 3593.39 3793.47 6697.34 8582.83 9897.56 7898.27 689.16 5189.71 10197.14 9079.77 6999.56 5793.65 5797.94 5798.02 78
PVSNet_Blended93.13 3692.98 4093.57 5897.47 7683.86 7899.32 196.73 5891.02 2989.53 10696.21 11776.42 11699.57 5594.29 4995.81 10597.29 132
CDPH-MVS93.12 3792.91 4193.74 5098.65 3083.88 7797.67 7196.26 11283.00 18693.22 5698.24 2981.31 5599.21 7889.12 11498.74 2998.14 72
dcpmvs_293.10 3893.46 3692.02 11897.77 6579.73 16994.82 23593.86 24686.91 9791.33 8096.76 10785.20 3298.06 13896.90 2297.60 6698.27 65
CS-MVS-test92.98 3993.67 3090.90 15496.52 9476.87 24498.68 2194.73 19690.36 3894.84 3797.89 5377.94 9197.15 19094.28 5197.80 6198.70 40
alignmvs92.97 4092.26 5495.12 1895.54 11687.77 1998.67 2296.38 10488.04 7093.01 5997.45 7579.20 7598.60 11593.25 6488.76 16798.99 28
HFP-MVS92.89 4192.86 4392.98 8098.71 2581.12 13197.58 7696.70 6285.20 12791.75 7397.97 5078.47 8499.71 3990.95 8598.41 4198.12 74
PAPM92.87 4292.40 5094.30 3492.25 21687.85 1896.40 16596.38 10491.07 2788.72 11696.90 9982.11 5397.37 17690.05 10497.70 6397.67 107
ZNCC-MVS92.75 4392.60 4893.23 7198.24 5181.82 11897.63 7296.50 8985.00 13391.05 8597.74 6078.38 8599.80 2590.48 9498.34 4698.07 76
PAPR92.74 4492.17 5794.45 3198.89 2084.87 6597.20 10396.20 11787.73 7888.40 12098.12 3678.71 8299.76 2787.99 12696.28 9498.74 34
CS-MVS92.73 4593.48 3590.48 16696.27 9775.93 26398.55 2794.93 18389.32 4894.54 4297.67 6278.91 7897.02 19493.80 5497.32 7698.49 50
jason92.73 4592.23 5594.21 3990.50 25687.30 2598.65 2395.09 17790.61 3292.76 6297.13 9175.28 14297.30 17993.32 6296.75 9098.02 78
jason: jason.
ETV-MVS92.72 4792.87 4292.28 10794.54 14681.89 11497.98 5195.21 17589.77 4593.11 5796.83 10377.23 10697.50 16795.74 3395.38 10797.44 123
region2R92.72 4792.70 4592.79 8698.68 2680.53 14997.53 8096.51 8785.22 12591.94 7197.98 4877.26 10299.67 4690.83 8998.37 4498.18 68
XVS92.69 4992.71 4492.63 9398.52 3780.29 15297.37 9596.44 9587.04 9591.38 7797.83 5777.24 10499.59 5290.46 9598.07 5298.02 78
ACMMPR92.69 4992.67 4692.75 8798.66 2880.57 14597.58 7696.69 6485.20 12791.57 7597.92 5177.01 10799.67 4690.95 8598.41 4198.00 83
WTY-MVS92.65 5191.68 6595.56 1396.00 10588.90 1298.23 3597.65 1388.57 5989.82 10097.22 8879.29 7299.06 9489.57 10988.73 16898.73 38
MP-MVScopyleft92.61 5292.67 4692.42 10198.13 5679.73 16997.33 9796.20 11785.63 11690.53 9297.66 6378.14 8999.70 4192.12 7698.30 4897.85 94
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MP-MVS-pluss92.58 5392.35 5193.29 6897.30 8682.53 10296.44 16196.04 12984.68 14089.12 11098.37 2577.48 10099.74 3493.31 6398.38 4397.59 114
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CP-MVS92.54 5492.60 4892.34 10398.50 4079.90 16298.40 3096.40 10184.75 13690.48 9498.09 3877.40 10199.21 7891.15 8498.23 5097.92 89
MTAPA92.45 5592.31 5292.86 8497.90 6180.85 13992.88 28096.33 10887.92 7390.20 9798.18 3176.71 11399.76 2792.57 7398.09 5197.96 88
GST-MVS92.43 5692.22 5693.04 7898.17 5481.64 12497.40 9496.38 10484.71 13990.90 8897.40 8077.55 9999.76 2789.75 10797.74 6297.72 103
canonicalmvs92.27 5791.22 7195.41 1595.80 11088.31 1397.09 11894.64 20488.49 6192.99 6097.31 8272.68 17498.57 11793.38 6188.58 16999.36 16
SR-MVS92.16 5892.27 5391.83 12698.37 4578.41 20396.67 14995.76 14482.19 20291.97 7098.07 4276.44 11598.64 11393.71 5697.27 7798.45 53
test_fmvsmvis_n_192092.12 5992.10 5992.17 11190.87 24981.04 13298.34 3293.90 24392.71 1587.24 13397.90 5274.83 14899.72 3796.96 2196.20 9595.76 177
VNet92.11 6091.22 7194.79 2496.91 9186.98 2697.91 5397.96 986.38 10493.65 5095.74 12670.16 20198.95 10193.39 5988.87 16698.43 54
CSCG92.02 6191.65 6693.12 7498.53 3680.59 14497.47 8597.18 2477.06 28584.64 15897.98 4883.98 4199.52 5990.72 9197.33 7599.23 21
PGM-MVS91.93 6291.80 6392.32 10698.27 5079.74 16895.28 21597.27 1983.83 16790.89 8997.78 5976.12 12299.56 5788.82 11797.93 5997.66 108
mPP-MVS91.88 6391.82 6292.07 11598.38 4478.63 19797.29 9896.09 12485.12 12988.45 11997.66 6375.53 13299.68 4489.83 10598.02 5597.88 90
EI-MVSNet-Vis-set91.84 6491.77 6492.04 11797.60 7181.17 13096.61 15096.87 4088.20 6789.19 10997.55 7478.69 8399.14 8790.29 10190.94 15395.80 175
EIA-MVS91.73 6592.05 6090.78 15994.52 14776.40 25298.06 4795.34 17089.19 5088.90 11397.28 8677.56 9897.73 15190.77 9096.86 8798.20 67
EC-MVSNet91.73 6592.11 5890.58 16393.54 17577.77 22898.07 4694.40 21987.44 8492.99 6097.11 9374.59 15496.87 20493.75 5597.08 8097.11 137
DP-MVS Recon91.72 6790.85 7694.34 3399.50 185.00 6298.51 2895.96 13380.57 22488.08 12597.63 6976.84 10999.89 785.67 14394.88 11098.13 73
CHOSEN 280x42091.71 6891.85 6191.29 14194.94 13582.69 9987.89 32496.17 12085.94 11187.27 13294.31 16690.27 995.65 25994.04 5395.86 10395.53 182
HY-MVS84.06 691.63 6990.37 8795.39 1696.12 10288.25 1490.22 30797.58 1588.33 6590.50 9391.96 20479.26 7399.06 9490.29 10189.07 16398.88 30
HPM-MVScopyleft91.62 7091.53 6891.89 12297.88 6379.22 18196.99 12295.73 14682.07 20489.50 10897.19 8975.59 13198.93 10490.91 8797.94 5797.54 115
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_LR91.60 7191.64 6791.47 13795.74 11178.79 19496.15 18096.77 5288.49 6188.64 11797.07 9572.33 17899.19 8393.13 6796.48 9396.43 160
DeepC-MVS86.58 391.53 7291.06 7592.94 8294.52 14781.89 11495.95 18895.98 13190.76 3083.76 16996.76 10773.24 17099.71 3991.67 8196.96 8297.22 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_yl91.46 7390.53 8294.24 3797.41 8085.18 5398.08 4497.72 1180.94 21689.85 9896.14 11875.61 12998.81 10990.42 9988.56 17098.74 34
DCV-MVSNet91.46 7390.53 8294.24 3797.41 8085.18 5398.08 4497.72 1180.94 21689.85 9896.14 11875.61 12998.81 10990.42 9988.56 17098.74 34
PAPM_NR91.46 7390.82 7793.37 6798.50 4081.81 11995.03 23196.13 12184.65 14186.10 14397.65 6779.24 7499.75 3283.20 17296.88 8598.56 46
MVSFormer91.36 7690.57 8193.73 5293.00 19288.08 1694.80 23794.48 21280.74 22094.90 3597.13 9178.84 7995.10 28783.77 16197.46 6998.02 78
EI-MVSNet-UG-set91.35 7791.22 7191.73 12897.39 8280.68 14296.47 15896.83 4387.92 7388.30 12397.36 8177.84 9499.13 8989.43 11289.45 16095.37 186
SR-MVS-dyc-post91.29 7891.45 6990.80 15797.76 6776.03 25896.20 17895.44 16280.56 22590.72 9097.84 5575.76 12898.61 11491.99 7896.79 8897.75 101
PVSNet_Blended_VisFu91.24 7990.77 7892.66 9195.09 12982.40 10697.77 6295.87 14088.26 6686.39 13993.94 17776.77 11199.27 7488.80 11894.00 12196.31 166
APD-MVS_3200maxsize91.23 8091.35 7090.89 15597.89 6276.35 25396.30 17195.52 15679.82 24391.03 8697.88 5474.70 15098.54 11892.11 7796.89 8497.77 100
diffmvspermissive91.17 8190.74 7992.44 10093.11 19182.50 10496.25 17493.62 26187.79 7690.40 9595.93 12273.44 16897.42 17193.62 5892.55 13897.41 125
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive91.13 8290.45 8493.17 7392.99 19583.58 8597.46 8794.56 20987.69 7987.19 13494.98 15574.50 15597.60 15691.88 8092.79 13598.34 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CHOSEN 1792x268891.07 8390.21 9093.64 5495.18 12783.53 8696.26 17396.13 12188.92 5384.90 15393.10 18972.86 17299.62 5088.86 11695.67 10697.79 99
CANet_DTU90.98 8490.04 9493.83 4794.76 14186.23 3396.32 17093.12 28393.11 1393.71 4996.82 10563.08 23899.48 6384.29 15395.12 10995.77 176
test250690.96 8590.39 8592.65 9293.54 17582.46 10596.37 16697.35 1786.78 10187.55 12895.25 13977.83 9597.50 16784.07 15594.80 11197.98 85
thisisatest051590.95 8690.26 8893.01 7994.03 16684.27 7497.91 5396.67 6683.18 17986.87 13795.51 13688.66 1697.85 14780.46 18989.01 16496.92 144
casdiffmvspermissive90.95 8690.39 8592.63 9392.82 19982.53 10296.83 13694.47 21487.69 7988.47 11895.56 13574.04 16097.54 16390.90 8892.74 13697.83 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
sss90.87 8889.96 9793.60 5794.15 15883.84 8097.14 11198.13 785.93 11289.68 10296.09 12071.67 18599.30 7387.69 12989.16 16297.66 108
baseline90.76 8990.10 9392.74 8892.90 19882.56 10194.60 23994.56 20987.69 7989.06 11295.67 13073.76 16397.51 16690.43 9892.23 14498.16 70
Effi-MVS+90.70 9089.90 10093.09 7693.61 17283.48 8795.20 22192.79 28883.22 17891.82 7295.70 12871.82 18497.48 16991.25 8393.67 12598.32 59
MAR-MVS90.63 9190.22 8991.86 12398.47 4278.20 21397.18 10596.61 7583.87 16688.18 12498.18 3168.71 20599.75 3283.66 16697.15 7997.63 111
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVS90.60 9288.64 11796.50 594.25 15590.53 893.33 26997.21 2177.59 27678.88 22397.31 8271.52 18899.69 4289.60 10898.03 5499.27 20
xiu_mvs_v1_base_debu90.54 9389.54 10493.55 5992.31 20987.58 2296.99 12294.87 18787.23 9093.27 5397.56 7157.43 27998.32 13092.72 7093.46 12994.74 197
xiu_mvs_v1_base90.54 9389.54 10493.55 5992.31 20987.58 2296.99 12294.87 18787.23 9093.27 5397.56 7157.43 27998.32 13092.72 7093.46 12994.74 197
xiu_mvs_v1_base_debi90.54 9389.54 10493.55 5992.31 20987.58 2296.99 12294.87 18787.23 9093.27 5397.56 7157.43 27998.32 13092.72 7093.46 12994.74 197
baseline290.39 9690.21 9090.93 15290.86 25080.99 13495.20 22197.41 1686.03 11080.07 21494.61 16190.58 697.47 17087.29 13389.86 15894.35 203
ACMMPcopyleft90.39 9689.97 9691.64 13197.58 7378.21 21296.78 14196.72 6084.73 13884.72 15697.23 8771.22 19099.63 4988.37 12492.41 14197.08 139
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HPM-MVS_fast90.38 9890.17 9291.03 15097.61 7077.35 23797.15 11095.48 15879.51 24988.79 11496.90 9971.64 18798.81 10987.01 13797.44 7196.94 141
MVS_Test90.29 9989.18 10993.62 5695.23 12484.93 6394.41 24294.66 20184.31 15090.37 9691.02 21975.13 14497.82 14883.11 17494.42 11598.12 74
API-MVS90.18 10088.97 11293.80 4898.66 2882.95 9797.50 8495.63 15175.16 29786.31 14097.69 6172.49 17699.90 581.26 18496.07 9998.56 46
iter_conf0590.14 10189.79 10291.17 14695.85 10986.93 2797.68 7088.67 34089.93 4281.73 19692.80 19190.37 896.03 23290.44 9780.65 23290.56 238
PVSNet_BlendedMVS90.05 10289.96 9790.33 17197.47 7683.86 7898.02 5096.73 5887.98 7189.53 10689.61 24176.42 11699.57 5594.29 4979.59 23887.57 307
ET-MVSNet_ETH3D90.01 10389.03 11092.95 8194.38 15286.77 2998.14 3896.31 11089.30 4963.33 33696.72 11090.09 1193.63 31890.70 9282.29 22398.46 52
test_vis1_n_192089.95 10490.59 8088.03 22392.36 20868.98 32599.12 794.34 22293.86 1093.64 5197.01 9751.54 31099.59 5296.76 2496.71 9195.53 182
test_cas_vis1_n_192089.90 10590.02 9589.54 19290.14 26474.63 27598.71 2094.43 21793.04 1492.40 6396.35 11553.41 30699.08 9395.59 3696.16 9694.90 192
TESTMET0.1,189.83 10689.34 10791.31 13992.54 20680.19 15797.11 11496.57 8186.15 10686.85 13891.83 20879.32 7196.95 19881.30 18392.35 14296.77 150
EPP-MVSNet89.76 10789.72 10389.87 18593.78 16876.02 26097.22 9996.51 8779.35 25185.11 14995.01 15384.82 3497.10 19287.46 13288.21 17496.50 158
CPTT-MVS89.72 10889.87 10189.29 19598.33 4773.30 28697.70 6895.35 16975.68 29387.40 12997.44 7870.43 19898.25 13389.56 11096.90 8396.33 165
thisisatest053089.65 10989.02 11191.53 13593.46 18180.78 14096.52 15596.67 6681.69 20983.79 16894.90 15688.85 1597.68 15277.80 21287.49 18096.14 169
3Dnovator+82.88 889.63 11087.85 13094.99 2094.49 15186.76 3097.84 5795.74 14586.10 10875.47 26896.02 12165.00 22899.51 6182.91 17697.07 8198.72 39
iter_conf_final89.51 11189.21 10890.39 16895.60 11484.44 7097.22 9989.09 33389.11 5282.07 19092.80 19187.03 2596.03 23289.10 11580.89 22890.70 236
CDS-MVSNet89.50 11288.96 11391.14 14891.94 23180.93 13797.09 11895.81 14284.26 15584.72 15694.20 17180.31 6295.64 26083.37 17188.96 16596.85 147
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PMMVS89.46 11389.92 9988.06 22194.64 14269.57 32296.22 17594.95 18287.27 8991.37 7996.54 11365.88 22097.39 17488.54 11993.89 12297.23 133
HyFIR lowres test89.36 11488.60 11891.63 13394.91 13780.76 14195.60 20595.53 15482.56 19784.03 16291.24 21678.03 9096.81 20887.07 13688.41 17297.32 129
3Dnovator82.32 1089.33 11587.64 13594.42 3293.73 17185.70 4297.73 6696.75 5686.73 10376.21 25695.93 12262.17 24299.68 4481.67 18297.81 6097.88 90
h-mvs3389.30 11688.95 11490.36 17095.07 13176.04 25796.96 12897.11 2790.39 3692.22 6795.10 15074.70 15098.86 10693.14 6565.89 33096.16 168
LFMVS89.27 11787.64 13594.16 4297.16 8885.52 4697.18 10594.66 20179.17 25789.63 10496.57 11255.35 29698.22 13489.52 11189.54 15998.74 34
MVSTER89.25 11888.92 11590.24 17395.98 10684.66 6796.79 14095.36 16787.19 9380.33 20990.61 22790.02 1295.97 23785.38 14678.64 24790.09 250
CostFormer89.08 11988.39 12291.15 14793.13 18979.15 18488.61 31896.11 12383.14 18089.58 10586.93 27883.83 4396.87 20488.22 12585.92 19397.42 124
PVSNet82.34 989.02 12087.79 13292.71 9095.49 11781.50 12697.70 6897.29 1887.76 7785.47 14795.12 14956.90 28598.90 10580.33 19094.02 11997.71 105
test-mter88.95 12188.60 11889.98 18092.26 21477.23 23997.11 11495.96 13385.32 12286.30 14191.38 21276.37 11896.78 21080.82 18691.92 14695.94 172
131488.94 12287.20 14894.17 4093.21 18485.73 4193.33 26996.64 7282.89 18875.98 25996.36 11466.83 21699.39 6783.52 17096.02 10197.39 127
UA-Net88.92 12388.48 12190.24 17394.06 16377.18 24193.04 27794.66 20187.39 8691.09 8493.89 17874.92 14798.18 13775.83 23991.43 15095.35 187
thres20088.92 12387.65 13492.73 8996.30 9685.62 4497.85 5698.86 184.38 14984.82 15493.99 17675.12 14598.01 13970.86 27986.67 18394.56 202
Vis-MVSNet (Re-imp)88.88 12588.87 11688.91 20293.89 16774.43 27896.93 13194.19 22984.39 14883.22 17495.67 13078.24 8794.70 29778.88 20794.40 11697.61 113
baseline188.85 12687.49 14192.93 8395.21 12686.85 2895.47 20994.61 20687.29 8883.11 17694.99 15480.70 5996.89 20282.28 17873.72 27295.05 191
AdaColmapbinary88.81 12787.61 13892.39 10299.33 479.95 16096.70 14895.58 15277.51 27783.05 17796.69 11161.90 24899.72 3784.29 15393.47 12897.50 120
OMC-MVS88.80 12888.16 12690.72 16095.30 12277.92 22294.81 23694.51 21186.80 10084.97 15296.85 10267.53 20998.60 11585.08 14787.62 17795.63 179
114514_t88.79 12987.57 13992.45 9898.21 5381.74 12196.99 12295.45 16175.16 29782.48 18095.69 12968.59 20698.50 12080.33 19095.18 10897.10 138
mvs_anonymous88.68 13087.62 13791.86 12394.80 14081.69 12393.53 26594.92 18482.03 20578.87 22490.43 23075.77 12795.34 27385.04 14893.16 13298.55 48
Vis-MVSNetpermissive88.67 13187.82 13191.24 14392.68 20078.82 19196.95 12993.85 24787.55 8287.07 13695.13 14863.43 23697.21 18477.58 21996.15 9797.70 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
IS-MVSNet88.67 13188.16 12690.20 17593.61 17276.86 24596.77 14393.07 28484.02 15983.62 17095.60 13374.69 15396.24 22778.43 21193.66 12697.49 121
IB-MVS85.34 488.67 13187.14 15193.26 6993.12 19084.32 7298.76 1997.27 1987.19 9379.36 22090.45 22983.92 4298.53 11984.41 15269.79 29896.93 142
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
1112_ss88.60 13487.47 14392.00 11993.21 18480.97 13596.47 15892.46 29183.64 17380.86 20297.30 8480.24 6497.62 15577.60 21885.49 19897.40 126
tttt051788.57 13588.19 12589.71 19193.00 19275.99 26195.67 20196.67 6680.78 21981.82 19494.40 16588.97 1497.58 15876.05 23786.31 18795.57 181
tfpn200view988.48 13687.15 14992.47 9796.21 9985.30 5197.44 8898.85 283.37 17683.99 16393.82 17975.36 13997.93 14169.04 28786.24 19094.17 204
test-LLR88.48 13687.98 12889.98 18092.26 21477.23 23997.11 11495.96 13383.76 17086.30 14191.38 21272.30 17996.78 21080.82 18691.92 14695.94 172
TAMVS88.48 13687.79 13290.56 16491.09 24479.18 18296.45 16095.88 13883.64 17383.12 17593.33 18575.94 12595.74 25582.40 17788.27 17396.75 152
thres40088.42 13987.15 14992.23 10896.21 9985.30 5197.44 8898.85 283.37 17683.99 16393.82 17975.36 13997.93 14169.04 28786.24 19093.45 220
tpmrst88.36 14087.38 14591.31 13994.36 15379.92 16187.32 32895.26 17485.32 12288.34 12186.13 29480.60 6096.70 21283.78 16085.34 20197.30 131
ECVR-MVScopyleft88.35 14187.25 14791.65 13093.54 17579.40 17696.56 15490.78 31986.78 10185.57 14695.25 13957.25 28397.56 15984.73 15194.80 11197.98 85
thres100view90088.30 14286.95 15592.33 10496.10 10384.90 6497.14 11198.85 282.69 19483.41 17193.66 18375.43 13697.93 14169.04 28786.24 19094.17 204
VDD-MVS88.28 14387.02 15492.06 11695.09 12980.18 15897.55 7994.45 21683.09 18289.10 11195.92 12447.97 32298.49 12193.08 6886.91 18297.52 119
BH-w/o88.24 14487.47 14390.54 16595.03 13478.54 19897.41 9393.82 24884.08 15778.23 22994.51 16469.34 20497.21 18480.21 19494.58 11495.87 174
hse-mvs288.22 14588.21 12488.25 21793.54 17573.41 28395.41 21295.89 13790.39 3692.22 6794.22 16974.70 15096.66 21593.14 6564.37 33594.69 201
test111188.11 14687.04 15391.35 13893.15 18778.79 19496.57 15290.78 31986.88 9985.04 15095.20 14357.23 28497.39 17483.88 15894.59 11397.87 92
thres600view788.06 14786.70 15992.15 11396.10 10385.17 5797.14 11198.85 282.70 19383.41 17193.66 18375.43 13697.82 14867.13 29685.88 19493.45 220
Test_1112_low_res88.03 14886.73 15791.94 12193.15 18780.88 13896.44 16192.41 29383.59 17580.74 20491.16 21780.18 6597.59 15777.48 22185.40 19997.36 128
PLCcopyleft83.97 788.00 14987.38 14589.83 18798.02 5976.46 25097.16 10994.43 21779.26 25681.98 19196.28 11669.36 20399.27 7477.71 21692.25 14393.77 214
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CLD-MVS87.97 15087.48 14289.44 19392.16 22180.54 14898.14 3894.92 18491.41 2379.43 21995.40 13862.34 24197.27 18290.60 9382.90 21790.50 240
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Fast-Effi-MVS+87.93 15186.94 15690.92 15394.04 16479.16 18398.26 3493.72 25781.29 21283.94 16692.90 19069.83 20296.68 21376.70 22991.74 14896.93 142
HQP-MVS87.91 15287.55 14088.98 20192.08 22378.48 19997.63 7294.80 19290.52 3382.30 18394.56 16265.40 22497.32 17787.67 13083.01 21491.13 231
test_fmvs187.79 15388.52 12085.62 27392.98 19664.31 33997.88 5592.42 29287.95 7292.24 6695.82 12547.94 32398.44 12795.31 4094.09 11794.09 208
UGNet87.73 15486.55 16091.27 14295.16 12879.11 18596.35 16896.23 11488.14 6887.83 12790.48 22850.65 31299.09 9280.13 19594.03 11895.60 180
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FA-MVS(test-final)87.71 15586.23 16292.17 11194.19 15780.55 14687.16 33096.07 12782.12 20385.98 14488.35 25672.04 18398.49 12180.26 19289.87 15797.48 122
EPNet_dtu87.65 15687.89 12986.93 25094.57 14471.37 31096.72 14496.50 8988.56 6087.12 13595.02 15275.91 12694.01 31166.62 29890.00 15695.42 185
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
mvsany_test187.58 15788.22 12385.67 27189.78 26867.18 33295.25 21887.93 34283.96 16288.79 11497.06 9672.52 17594.53 30292.21 7586.45 18695.30 189
HQP_MVS87.50 15887.09 15288.74 20691.86 23277.96 21997.18 10594.69 19789.89 4381.33 19794.15 17264.77 23097.30 17987.08 13482.82 21890.96 233
EPMVS87.47 15985.90 16592.18 11095.41 11982.26 10987.00 33196.28 11185.88 11384.23 16085.57 30075.07 14696.26 22571.14 27792.50 13998.03 77
tpm287.35 16086.26 16190.62 16292.93 19778.67 19688.06 32395.99 13079.33 25287.40 12986.43 28980.28 6396.40 22080.23 19385.73 19796.79 148
ab-mvs87.08 16184.94 18193.48 6493.34 18383.67 8388.82 31595.70 14781.18 21384.55 15990.14 23662.72 23998.94 10385.49 14582.54 22297.85 94
SDMVSNet87.02 16285.61 16791.24 14394.14 15983.30 9193.88 25795.98 13184.30 15279.63 21792.01 20058.23 27197.68 15290.28 10382.02 22492.75 223
CNLPA86.96 16385.37 17291.72 12997.59 7279.34 17997.21 10191.05 31474.22 30378.90 22296.75 10967.21 21398.95 10174.68 24990.77 15496.88 146
BH-untuned86.95 16485.94 16489.99 17994.52 14777.46 23496.78 14193.37 27381.80 20776.62 24693.81 18166.64 21797.02 19476.06 23693.88 12395.48 184
QAPM86.88 16584.51 18693.98 4394.04 16485.89 3997.19 10496.05 12873.62 30875.12 27195.62 13262.02 24599.74 3470.88 27896.06 10096.30 167
BH-RMVSNet86.84 16685.28 17391.49 13695.35 12180.26 15596.95 12992.21 29582.86 19081.77 19595.46 13759.34 26397.64 15469.79 28593.81 12496.57 157
PatchmatchNetpermissive86.83 16785.12 17891.95 12094.12 16182.27 10886.55 33595.64 15084.59 14382.98 17884.99 31277.26 10295.96 24068.61 29091.34 15197.64 110
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
nrg03086.79 16885.43 17090.87 15688.76 28185.34 4897.06 12094.33 22384.31 15080.45 20791.98 20372.36 17796.36 22288.48 12271.13 28590.93 235
PCF-MVS84.09 586.77 16985.00 18092.08 11492.06 22683.07 9592.14 28894.47 21479.63 24776.90 24294.78 15871.15 19199.20 8272.87 26391.05 15293.98 210
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
FIs86.73 17086.10 16388.61 20890.05 26580.21 15696.14 18196.95 3585.56 11978.37 22892.30 19776.73 11295.28 27779.51 19979.27 24190.35 242
cascas86.50 17184.48 18892.55 9692.64 20485.95 3697.04 12195.07 17975.32 29580.50 20591.02 21954.33 30397.98 14086.79 13987.62 17793.71 215
VDDNet86.44 17284.51 18692.22 10991.56 23581.83 11797.10 11794.64 20469.50 33487.84 12695.19 14448.01 32197.92 14689.82 10686.92 18196.89 145
GeoE86.36 17385.20 17489.83 18793.17 18676.13 25597.53 8092.11 29679.58 24880.99 20094.01 17566.60 21896.17 23073.48 26189.30 16197.20 135
test_fmvs1_n86.34 17486.72 15885.17 28087.54 29763.64 34496.91 13292.37 29487.49 8391.33 8095.58 13440.81 34898.46 12495.00 4293.49 12793.41 222
TR-MVS86.30 17584.93 18290.42 16794.63 14377.58 23296.57 15293.82 24880.30 23382.42 18295.16 14658.74 26797.55 16174.88 24787.82 17696.13 170
X-MVStestdata86.26 17684.14 19592.63 9398.52 3780.29 15297.37 9596.44 9587.04 9591.38 7720.73 38377.24 10499.59 5290.46 9598.07 5298.02 78
AUN-MVS86.25 17785.57 16888.26 21693.57 17473.38 28495.45 21095.88 13883.94 16385.47 14794.21 17073.70 16696.67 21483.54 16864.41 33494.73 200
OpenMVScopyleft79.58 1486.09 17883.62 20293.50 6290.95 24686.71 3197.44 8895.83 14175.35 29472.64 29095.72 12757.42 28299.64 4871.41 27295.85 10494.13 207
FE-MVS86.06 17984.15 19491.78 12794.33 15479.81 16384.58 34496.61 7576.69 28785.00 15187.38 26970.71 19798.37 12970.39 28291.70 14997.17 136
FC-MVSNet-test85.96 18085.39 17187.66 23089.38 27878.02 21695.65 20396.87 4085.12 12977.34 23591.94 20676.28 12094.74 29677.09 22478.82 24590.21 245
miper_enhance_ethall85.95 18185.20 17488.19 22094.85 13979.76 16596.00 18594.06 23782.98 18777.74 23388.76 24979.42 7095.46 26980.58 18872.42 27989.36 264
OPM-MVS85.84 18285.10 17988.06 22188.34 28777.83 22695.72 19994.20 22887.89 7580.45 20794.05 17458.57 26897.26 18383.88 15882.76 22089.09 272
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EI-MVSNet85.80 18385.20 17487.59 23391.55 23677.41 23595.13 22595.36 16780.43 23080.33 20994.71 15973.72 16495.97 23776.96 22778.64 24789.39 259
GA-MVS85.79 18484.04 19691.02 15189.47 27680.27 15496.90 13394.84 19085.57 11780.88 20189.08 24456.56 28996.47 21977.72 21585.35 20096.34 163
XVG-OURS-SEG-HR85.74 18585.16 17787.49 23890.22 26071.45 30991.29 29994.09 23581.37 21183.90 16795.22 14160.30 25697.53 16585.58 14484.42 20593.50 218
SCA85.63 18683.64 20191.60 13492.30 21281.86 11692.88 28095.56 15384.85 13482.52 17985.12 31058.04 27395.39 27073.89 25787.58 17997.54 115
test_vis1_n85.60 18785.70 16685.33 27784.79 32964.98 33796.83 13691.61 30587.36 8791.00 8794.84 15736.14 35497.18 18695.66 3493.03 13393.82 213
tpm85.55 18884.47 18988.80 20590.19 26175.39 26888.79 31694.69 19784.83 13583.96 16585.21 30678.22 8894.68 29876.32 23578.02 25696.34 163
UniMVSNet_NR-MVSNet85.49 18984.59 18488.21 21989.44 27779.36 17796.71 14696.41 9985.22 12578.11 23090.98 22176.97 10895.14 28479.14 20468.30 31290.12 247
gg-mvs-nofinetune85.48 19082.90 21393.24 7094.51 15085.82 4079.22 35696.97 3361.19 35687.33 13153.01 37290.58 696.07 23186.07 14197.23 7897.81 98
VPA-MVSNet85.32 19183.83 19789.77 19090.25 25982.63 10096.36 16797.07 2983.03 18581.21 19989.02 24661.58 24996.31 22485.02 14970.95 28790.36 241
UniMVSNet (Re)85.31 19284.23 19288.55 20989.75 26980.55 14696.72 14496.89 3985.42 12078.40 22788.93 24775.38 13895.52 26778.58 20968.02 31589.57 258
XVG-OURS85.18 19384.38 19087.59 23390.42 25871.73 30691.06 30294.07 23682.00 20683.29 17395.08 15156.42 29097.55 16183.70 16583.42 21093.49 219
mvsmamba85.17 19484.54 18587.05 24887.94 29175.11 27196.22 17587.79 34486.91 9778.55 22591.77 20964.93 22995.91 24386.94 13879.80 23490.12 247
cl2285.11 19584.17 19387.92 22495.06 13378.82 19195.51 20794.22 22779.74 24576.77 24387.92 26375.96 12495.68 25679.93 19772.42 27989.27 266
TAPA-MVS81.61 1285.02 19683.67 19989.06 19896.79 9273.27 28995.92 19094.79 19474.81 30080.47 20696.83 10371.07 19298.19 13649.82 35992.57 13795.71 178
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PatchMatch-RL85.00 19783.66 20089.02 20095.86 10874.55 27792.49 28493.60 26279.30 25479.29 22191.47 21058.53 26998.45 12570.22 28392.17 14594.07 209
PS-MVSNAJss84.91 19884.30 19186.74 25185.89 31674.40 27994.95 23294.16 23183.93 16476.45 24990.11 23771.04 19395.77 25083.16 17379.02 24490.06 252
CVMVSNet84.83 19985.57 16882.63 31291.55 23660.38 35495.13 22595.03 18080.60 22382.10 18994.71 15966.40 21990.19 35174.30 25490.32 15597.31 130
FMVSNet384.71 20082.71 21790.70 16194.55 14587.71 2095.92 19094.67 20081.73 20875.82 26388.08 26166.99 21494.47 30371.23 27475.38 26589.91 254
VPNet84.69 20182.92 21290.01 17889.01 28083.45 8896.71 14695.46 16085.71 11579.65 21692.18 19956.66 28896.01 23683.05 17567.84 31890.56 238
sd_testset84.62 20283.11 21089.17 19694.14 15977.78 22791.54 29894.38 22084.30 15279.63 21792.01 20052.28 30896.98 19677.67 21782.02 22492.75 223
Effi-MVS+-dtu84.61 20384.90 18383.72 30291.96 22963.14 34694.95 23293.34 27485.57 11779.79 21587.12 27561.99 24695.61 26383.55 16785.83 19592.41 227
miper_ehance_all_eth84.57 20483.60 20387.50 23792.64 20478.25 20895.40 21393.47 26679.28 25576.41 25087.64 26676.53 11495.24 27978.58 20972.42 27989.01 277
DU-MVS84.57 20483.33 20788.28 21588.76 28179.36 17796.43 16395.41 16685.42 12078.11 23090.82 22367.61 20795.14 28479.14 20468.30 31290.33 243
F-COLMAP84.50 20683.44 20687.67 22995.22 12572.22 29595.95 18893.78 25375.74 29276.30 25395.18 14559.50 26198.45 12572.67 26586.59 18592.35 228
Anonymous20240521184.41 20781.93 22791.85 12596.78 9378.41 20397.44 8891.34 30970.29 33084.06 16194.26 16841.09 34698.96 9979.46 20082.65 22198.17 69
WR-MVS84.32 20882.96 21188.41 21189.38 27880.32 15196.59 15196.25 11383.97 16176.63 24590.36 23167.53 20994.86 29475.82 24070.09 29690.06 252
dp84.30 20982.31 22290.28 17294.24 15677.97 21886.57 33495.53 15479.94 24280.75 20385.16 30871.49 18996.39 22163.73 31383.36 21196.48 159
LPG-MVS_test84.20 21083.49 20586.33 25790.88 24773.06 29095.28 21594.13 23282.20 20076.31 25193.20 18654.83 30196.95 19883.72 16380.83 23088.98 278
dmvs_re84.10 21182.90 21387.70 22891.41 24073.28 28790.59 30593.19 27885.02 13177.96 23293.68 18257.92 27796.18 22975.50 24280.87 22993.63 216
ACMP81.66 1184.00 21283.22 20986.33 25791.53 23872.95 29395.91 19293.79 25283.70 17273.79 27892.22 19854.31 30496.89 20283.98 15679.74 23789.16 269
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
IterMVS-LS83.93 21382.80 21687.31 24291.46 23977.39 23695.66 20293.43 26880.44 22875.51 26787.26 27273.72 16495.16 28376.99 22570.72 28989.39 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
RRT_MVS83.88 21483.27 20885.71 26987.53 29872.12 29895.35 21494.33 22383.81 16875.86 26291.28 21560.55 25495.09 28983.93 15776.76 25989.90 255
XXY-MVS83.84 21582.00 22689.35 19487.13 30081.38 12795.72 19994.26 22680.15 23775.92 26190.63 22661.96 24796.52 21778.98 20673.28 27790.14 246
c3_l83.80 21682.65 21887.25 24492.10 22277.74 23095.25 21893.04 28578.58 26676.01 25887.21 27475.25 14395.11 28677.54 22068.89 30688.91 283
LCM-MVSNet-Re83.75 21783.54 20484.39 29593.54 17564.14 34192.51 28384.03 35983.90 16566.14 32586.59 28367.36 21192.68 32584.89 15092.87 13496.35 162
ACMM80.70 1383.72 21882.85 21586.31 26091.19 24272.12 29895.88 19394.29 22580.44 22877.02 24091.96 20455.24 29797.14 19179.30 20280.38 23389.67 257
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpm cat183.63 21981.38 23590.39 16893.53 18078.19 21485.56 34195.09 17770.78 32878.51 22683.28 32574.80 14997.03 19366.77 29784.05 20695.95 171
CR-MVSNet83.53 22081.36 23690.06 17790.16 26279.75 16679.02 35891.12 31184.24 15682.27 18780.35 33975.45 13493.67 31763.37 31686.25 18896.75 152
v2v48283.46 22181.86 22888.25 21786.19 31079.65 17196.34 16994.02 23881.56 21077.32 23688.23 25865.62 22196.03 23277.77 21369.72 30089.09 272
NR-MVSNet83.35 22281.52 23488.84 20388.76 28181.31 12994.45 24195.16 17684.65 14167.81 31490.82 22370.36 19994.87 29374.75 24866.89 32790.33 243
Fast-Effi-MVS+-dtu83.33 22382.60 21985.50 27589.55 27469.38 32396.09 18491.38 30682.30 19975.96 26091.41 21156.71 28695.58 26575.13 24684.90 20391.54 229
cl____83.27 22482.12 22386.74 25192.20 21775.95 26295.11 22793.27 27678.44 26974.82 27387.02 27774.19 15895.19 28174.67 25069.32 30289.09 272
DIV-MVS_self_test83.27 22482.12 22386.74 25192.19 21875.92 26495.11 22793.26 27778.44 26974.81 27487.08 27674.19 15895.19 28174.66 25169.30 30389.11 271
TranMVSNet+NR-MVSNet83.24 22681.71 23087.83 22587.71 29478.81 19396.13 18394.82 19184.52 14476.18 25790.78 22564.07 23394.60 29974.60 25266.59 32990.09 250
Anonymous2024052983.15 22780.60 24690.80 15795.74 11178.27 20796.81 13994.92 18460.10 36181.89 19392.54 19545.82 33098.82 10879.25 20378.32 25495.31 188
eth_miper_zixun_eth83.12 22882.01 22586.47 25691.85 23474.80 27394.33 24693.18 28079.11 25875.74 26687.25 27372.71 17395.32 27576.78 22867.13 32489.27 266
MS-PatchMatch83.05 22981.82 22986.72 25589.64 27279.10 18694.88 23494.59 20879.70 24670.67 30289.65 24050.43 31496.82 20770.82 28195.99 10284.25 342
V4283.04 23081.53 23387.57 23586.27 30979.09 18795.87 19494.11 23480.35 23277.22 23886.79 28165.32 22696.02 23577.74 21470.14 29287.61 306
tpmvs83.04 23080.77 24189.84 18695.43 11877.96 21985.59 34095.32 17175.31 29676.27 25483.70 32273.89 16197.41 17259.53 32781.93 22694.14 206
test_djsdf83.00 23282.45 22184.64 28884.07 33769.78 31994.80 23794.48 21280.74 22075.41 26987.70 26561.32 25295.10 28783.77 16179.76 23589.04 275
v114482.90 23381.27 23787.78 22786.29 30879.07 18896.14 18193.93 24080.05 23977.38 23486.80 28065.50 22295.93 24275.21 24570.13 29388.33 293
test0.0.03 182.79 23482.48 22083.74 30186.81 30272.22 29596.52 15595.03 18083.76 17073.00 28693.20 18672.30 17988.88 35464.15 31177.52 25790.12 247
FMVSNet282.79 23480.44 24889.83 18792.66 20185.43 4795.42 21194.35 22179.06 26074.46 27587.28 27056.38 29194.31 30669.72 28674.68 26989.76 256
D2MVS82.67 23681.55 23286.04 26587.77 29376.47 24995.21 22096.58 8082.66 19570.26 30585.46 30360.39 25595.80 24976.40 23379.18 24285.83 332
MVP-Stereo82.65 23781.67 23185.59 27486.10 31378.29 20693.33 26992.82 28777.75 27469.17 31287.98 26259.28 26495.76 25171.77 26996.88 8582.73 350
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs482.54 23880.79 24087.79 22686.11 31280.49 15093.55 26493.18 28077.29 28073.35 28289.40 24365.26 22795.05 29175.32 24473.61 27387.83 301
v14419282.43 23980.73 24387.54 23685.81 31778.22 20995.98 18693.78 25379.09 25977.11 23986.49 28564.66 23295.91 24374.20 25569.42 30188.49 287
GBi-Net82.42 24080.43 24988.39 21292.66 20181.95 11094.30 24893.38 27079.06 26075.82 26385.66 29656.38 29193.84 31371.23 27475.38 26589.38 261
test182.42 24080.43 24988.39 21292.66 20181.95 11094.30 24893.38 27079.06 26075.82 26385.66 29656.38 29193.84 31371.23 27475.38 26589.38 261
v14882.41 24280.89 23986.99 24986.18 31176.81 24696.27 17293.82 24880.49 22775.28 27086.11 29567.32 21295.75 25275.48 24367.03 32688.42 291
v119282.31 24380.55 24787.60 23285.94 31478.47 20295.85 19693.80 25179.33 25276.97 24186.51 28463.33 23795.87 24573.11 26270.13 29388.46 289
LS3D82.22 24479.94 25789.06 19897.43 7974.06 28293.20 27592.05 29761.90 35173.33 28395.21 14259.35 26299.21 7854.54 34792.48 14093.90 212
bld_raw_dy_0_6482.13 24580.76 24286.24 26285.78 31875.03 27294.40 24582.62 36483.12 18176.46 24890.96 22253.83 30594.55 30081.04 18578.60 25089.14 270
jajsoiax82.12 24681.15 23885.03 28284.19 33570.70 31294.22 25293.95 23983.07 18373.48 28089.75 23949.66 31795.37 27282.24 17979.76 23589.02 276
v192192082.02 24780.23 25187.41 23985.62 31977.92 22295.79 19893.69 25878.86 26376.67 24486.44 28762.50 24095.83 24772.69 26469.77 29988.47 288
v881.88 24880.06 25587.32 24186.63 30379.04 18994.41 24293.65 26078.77 26473.19 28585.57 30066.87 21595.81 24873.84 25967.61 32087.11 314
mvs_tets81.74 24980.71 24484.84 28384.22 33470.29 31593.91 25693.78 25382.77 19273.37 28189.46 24247.36 32795.31 27681.99 18079.55 24088.92 282
v124081.70 25079.83 25987.30 24385.50 32077.70 23195.48 20893.44 26778.46 26876.53 24786.44 28760.85 25395.84 24671.59 27170.17 29188.35 292
PVSNet_077.72 1581.70 25078.95 26689.94 18390.77 25376.72 24895.96 18796.95 3585.01 13270.24 30688.53 25452.32 30798.20 13586.68 14044.08 37194.89 193
miper_lstm_enhance81.66 25280.66 24584.67 28791.19 24271.97 30291.94 29093.19 27877.86 27372.27 29385.26 30473.46 16793.42 32173.71 26067.05 32588.61 285
DP-MVS81.47 25378.28 26991.04 14998.14 5578.48 19995.09 23086.97 34661.14 35771.12 29992.78 19459.59 25999.38 6853.11 35186.61 18495.27 190
v1081.43 25479.53 26187.11 24686.38 30578.87 19094.31 24793.43 26877.88 27273.24 28485.26 30465.44 22395.75 25272.14 26867.71 31986.72 318
pmmvs581.34 25579.54 26086.73 25485.02 32776.91 24396.22 17591.65 30377.65 27573.55 27988.61 25155.70 29494.43 30474.12 25673.35 27688.86 284
ADS-MVSNet81.26 25678.36 26889.96 18293.78 16879.78 16479.48 35493.60 26273.09 31480.14 21179.99 34162.15 24395.24 27959.49 32883.52 20894.85 194
Baseline_NR-MVSNet81.22 25780.07 25484.68 28685.32 32575.12 27096.48 15788.80 33676.24 29177.28 23786.40 29067.61 20794.39 30575.73 24166.73 32884.54 339
tt080581.20 25879.06 26587.61 23186.50 30472.97 29293.66 26095.48 15874.11 30476.23 25591.99 20241.36 34597.40 17377.44 22274.78 26892.45 226
WR-MVS_H81.02 25980.09 25283.79 29988.08 29071.26 31194.46 24096.54 8480.08 23872.81 28986.82 27970.36 19992.65 32664.18 31067.50 32187.46 311
CP-MVSNet81.01 26080.08 25383.79 29987.91 29270.51 31394.29 25195.65 14980.83 21872.54 29288.84 24863.71 23492.32 32968.58 29168.36 31188.55 286
anonymousdsp80.98 26179.97 25684.01 29681.73 34670.44 31492.49 28493.58 26477.10 28472.98 28786.31 29157.58 27894.90 29279.32 20178.63 24986.69 319
UniMVSNet_ETH3D80.86 26278.75 26787.22 24586.31 30772.02 30091.95 28993.76 25673.51 30975.06 27290.16 23543.04 33995.66 25776.37 23478.55 25193.98 210
IterMVS80.67 26379.16 26385.20 27989.79 26776.08 25692.97 27991.86 29980.28 23471.20 29885.14 30957.93 27691.34 34172.52 26670.74 28888.18 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG80.62 26477.77 27389.14 19793.43 18277.24 23891.89 29190.18 32369.86 33368.02 31391.94 20652.21 30998.84 10759.32 33083.12 21291.35 230
IterMVS-SCA-FT80.51 26579.10 26484.73 28589.63 27374.66 27492.98 27891.81 30180.05 23971.06 30085.18 30758.04 27391.40 34072.48 26770.70 29088.12 297
PS-CasMVS80.27 26679.18 26283.52 30587.56 29669.88 31894.08 25495.29 17280.27 23572.08 29488.51 25559.22 26592.23 33167.49 29368.15 31488.45 290
pm-mvs180.05 26778.02 27186.15 26385.42 32175.81 26595.11 22792.69 29077.13 28270.36 30487.43 26858.44 27095.27 27871.36 27364.25 33687.36 312
RPMNet79.85 26875.92 28691.64 13190.16 26279.75 16679.02 35895.44 16258.43 36582.27 18772.55 36273.03 17198.41 12846.10 36586.25 18896.75 152
PatchT79.75 26976.85 28088.42 21089.55 27475.49 26777.37 36294.61 20663.07 34782.46 18173.32 36075.52 13393.41 32251.36 35484.43 20496.36 161
Anonymous2023121179.72 27077.19 27787.33 24095.59 11577.16 24295.18 22494.18 23059.31 36372.57 29186.20 29347.89 32495.66 25774.53 25369.24 30489.18 268
test_fmvs279.59 27179.90 25878.67 33082.86 34455.82 36395.20 22189.55 32781.09 21480.12 21389.80 23834.31 35993.51 32087.82 12778.36 25386.69 319
ADS-MVSNet279.57 27277.53 27485.71 26993.78 16872.13 29779.48 35486.11 35273.09 31480.14 21179.99 34162.15 24390.14 35259.49 32883.52 20894.85 194
FMVSNet179.50 27376.54 28288.39 21288.47 28681.95 11094.30 24893.38 27073.14 31372.04 29585.66 29643.86 33393.84 31365.48 30572.53 27889.38 261
PEN-MVS79.47 27478.26 27083.08 30886.36 30668.58 32693.85 25894.77 19579.76 24471.37 29688.55 25259.79 25792.46 32764.50 30965.40 33188.19 295
XVG-ACMP-BASELINE79.38 27577.90 27283.81 29884.98 32867.14 33489.03 31493.18 28080.26 23672.87 28888.15 26038.55 35096.26 22576.05 23778.05 25588.02 298
v7n79.32 27677.34 27585.28 27884.05 33872.89 29493.38 26793.87 24575.02 29970.68 30184.37 31659.58 26095.62 26267.60 29267.50 32187.32 313
MIMVSNet79.18 27775.99 28588.72 20787.37 29980.66 14379.96 35391.82 30077.38 27974.33 27681.87 33141.78 34290.74 34766.36 30383.10 21394.76 196
JIA-IIPM79.00 27877.20 27684.40 29489.74 27164.06 34275.30 36695.44 16262.15 35081.90 19259.08 37078.92 7795.59 26466.51 30185.78 19693.54 217
USDC78.65 27976.25 28385.85 26687.58 29574.60 27689.58 31090.58 32284.05 15863.13 33788.23 25840.69 34996.86 20666.57 30075.81 26386.09 328
DTE-MVSNet78.37 28077.06 27882.32 31585.22 32667.17 33393.40 26693.66 25978.71 26570.53 30388.29 25759.06 26692.23 33161.38 32363.28 34087.56 308
Patchmatch-test78.25 28174.72 29488.83 20491.20 24174.10 28173.91 36988.70 33959.89 36266.82 32085.12 31078.38 8594.54 30148.84 36179.58 23997.86 93
tfpnnormal78.14 28275.42 28886.31 26088.33 28879.24 18094.41 24296.22 11573.51 30969.81 30885.52 30255.43 29595.75 25247.65 36367.86 31783.95 345
ACMH75.40 1777.99 28374.96 29087.10 24790.67 25476.41 25193.19 27691.64 30472.47 32063.44 33587.61 26743.34 33697.16 18758.34 33273.94 27187.72 302
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB73.68 1877.99 28375.74 28784.74 28490.45 25772.02 30086.41 33691.12 31172.57 31966.63 32287.27 27154.95 30096.98 19656.29 34275.98 26085.21 336
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
our_test_377.90 28575.37 28985.48 27685.39 32276.74 24793.63 26191.67 30273.39 31265.72 32784.65 31558.20 27293.13 32457.82 33467.87 31686.57 321
RPSCF77.73 28676.63 28181.06 32088.66 28555.76 36487.77 32587.88 34364.82 34674.14 27792.79 19349.22 31896.81 20867.47 29476.88 25890.62 237
KD-MVS_2432*160077.63 28774.92 29285.77 26790.86 25079.44 17488.08 32193.92 24176.26 28967.05 31882.78 32772.15 18191.92 33461.53 32041.62 37485.94 330
miper_refine_blended77.63 28774.92 29285.77 26790.86 25079.44 17488.08 32193.92 24176.26 28967.05 31882.78 32772.15 18191.92 33461.53 32041.62 37485.94 330
ACMH+76.62 1677.47 28974.94 29185.05 28191.07 24571.58 30893.26 27390.01 32471.80 32364.76 33088.55 25241.62 34396.48 21862.35 31971.00 28687.09 315
Patchmtry77.36 29074.59 29585.67 27189.75 26975.75 26677.85 36191.12 31160.28 35971.23 29780.35 33975.45 13493.56 31957.94 33367.34 32387.68 304
ppachtmachnet_test77.19 29174.22 29986.13 26485.39 32278.22 20993.98 25591.36 30871.74 32467.11 31784.87 31356.67 28793.37 32352.21 35264.59 33386.80 317
OurMVSNet-221017-077.18 29276.06 28480.55 32383.78 34160.00 35690.35 30691.05 31477.01 28666.62 32387.92 26347.73 32594.03 31071.63 27068.44 31087.62 305
TransMVSNet (Re)76.94 29374.38 29784.62 28985.92 31575.25 26995.28 21589.18 33273.88 30767.22 31586.46 28659.64 25894.10 30959.24 33152.57 36084.50 340
EU-MVSNet76.92 29476.95 27976.83 33684.10 33654.73 36691.77 29392.71 28972.74 31769.57 30988.69 25058.03 27587.43 36064.91 30870.00 29788.33 293
Patchmatch-RL test76.65 29574.01 30284.55 29077.37 36064.23 34078.49 36082.84 36378.48 26764.63 33173.40 35976.05 12391.70 33976.99 22557.84 34997.72 103
FMVSNet576.46 29674.16 30083.35 30790.05 26576.17 25489.58 31089.85 32571.39 32665.29 32980.42 33850.61 31387.70 35961.05 32569.24 30486.18 326
SixPastTwentyTwo76.04 29774.32 29881.22 31984.54 33161.43 35291.16 30089.30 33177.89 27164.04 33286.31 29148.23 31994.29 30763.54 31563.84 33887.93 300
AllTest75.92 29873.06 30684.47 29192.18 21967.29 33091.07 30184.43 35767.63 33763.48 33390.18 23338.20 35197.16 18757.04 33873.37 27488.97 280
CL-MVSNet_self_test75.81 29974.14 30180.83 32278.33 35667.79 32994.22 25293.52 26577.28 28169.82 30781.54 33361.47 25189.22 35357.59 33653.51 35685.48 334
COLMAP_ROBcopyleft73.24 1975.74 30073.00 30783.94 29792.38 20769.08 32491.85 29286.93 34761.48 35465.32 32890.27 23242.27 34196.93 20150.91 35675.63 26485.80 333
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CMPMVSbinary54.94 2175.71 30174.56 29679.17 32979.69 35255.98 36189.59 30993.30 27560.28 35953.85 36389.07 24547.68 32696.33 22376.55 23081.02 22785.22 335
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous2023120675.29 30273.64 30380.22 32480.75 34763.38 34593.36 26890.71 32173.09 31467.12 31683.70 32250.33 31590.85 34653.63 35070.10 29586.44 322
EG-PatchMatch MVS74.92 30372.02 31083.62 30383.76 34273.28 28793.62 26292.04 29868.57 33658.88 35383.80 32131.87 36395.57 26656.97 34078.67 24682.00 356
testgi74.88 30473.40 30479.32 32880.13 35161.75 34993.21 27486.64 35079.49 25066.56 32491.06 21835.51 35788.67 35556.79 34171.25 28487.56 308
pmmvs674.65 30571.67 31183.60 30479.13 35469.94 31793.31 27290.88 31861.05 35865.83 32684.15 31943.43 33594.83 29566.62 29860.63 34586.02 329
test_vis1_rt73.96 30672.40 30978.64 33183.91 33961.16 35395.63 20468.18 37876.32 28860.09 35174.77 35429.01 36797.54 16387.74 12875.94 26177.22 364
K. test v373.62 30771.59 31279.69 32682.98 34359.85 35790.85 30488.83 33577.13 28258.90 35282.11 32943.62 33491.72 33865.83 30454.10 35587.50 310
pmmvs-eth3d73.59 30870.66 31582.38 31376.40 36473.38 28489.39 31389.43 32972.69 31860.34 35077.79 34746.43 32991.26 34366.42 30257.06 35082.51 351
MDA-MVSNet_test_wron73.54 30970.43 31782.86 30984.55 33071.85 30391.74 29491.32 31067.63 33746.73 36781.09 33655.11 29890.42 35055.91 34459.76 34686.31 324
YYNet173.53 31070.43 31782.85 31084.52 33271.73 30691.69 29591.37 30767.63 33746.79 36681.21 33555.04 29990.43 34955.93 34359.70 34786.38 323
UnsupCasMVSNet_eth73.25 31170.57 31681.30 31877.53 35866.33 33587.24 32993.89 24480.38 23157.90 35781.59 33242.91 34090.56 34865.18 30748.51 36587.01 316
DSMNet-mixed73.13 31272.45 30875.19 34277.51 35946.82 37185.09 34382.01 36567.61 34169.27 31181.33 33450.89 31186.28 36254.54 34783.80 20792.46 225
OpenMVS_ROBcopyleft68.52 2073.02 31369.57 32083.37 30680.54 35071.82 30493.60 26388.22 34162.37 34961.98 34383.15 32635.31 35895.47 26845.08 36675.88 26282.82 348
test_040272.68 31469.54 32182.09 31688.67 28471.81 30592.72 28286.77 34961.52 35362.21 34283.91 32043.22 33793.76 31634.60 37272.23 28280.72 360
TinyColmap72.41 31568.99 32482.68 31188.11 28969.59 32188.41 31985.20 35465.55 34357.91 35684.82 31430.80 36595.94 24151.38 35368.70 30782.49 353
test20.0372.36 31671.15 31375.98 34077.79 35759.16 35892.40 28689.35 33074.09 30561.50 34584.32 31748.09 32085.54 36550.63 35762.15 34383.24 346
LF4IMVS72.36 31670.82 31476.95 33579.18 35356.33 36086.12 33786.11 35269.30 33563.06 33886.66 28233.03 36192.25 33065.33 30668.64 30882.28 354
Anonymous2024052172.06 31869.91 31978.50 33277.11 36161.67 35191.62 29790.97 31665.52 34462.37 34179.05 34436.32 35390.96 34557.75 33568.52 30982.87 347
dmvs_testset72.00 31973.36 30567.91 34783.83 34031.90 38485.30 34277.12 37282.80 19163.05 33992.46 19661.54 25082.55 37042.22 36971.89 28389.29 265
MDA-MVSNet-bldmvs71.45 32067.94 32581.98 31785.33 32468.50 32792.35 28788.76 33770.40 32942.99 36881.96 33046.57 32891.31 34248.75 36254.39 35486.11 327
MVS-HIRNet71.36 32167.00 32684.46 29390.58 25569.74 32079.15 35787.74 34546.09 36961.96 34450.50 37345.14 33195.64 26053.74 34988.11 17588.00 299
KD-MVS_self_test70.97 32269.31 32275.95 34176.24 36655.39 36587.45 32690.94 31770.20 33162.96 34077.48 34844.01 33288.09 35661.25 32453.26 35784.37 341
test_fmvs369.56 32369.19 32370.67 34569.01 37047.05 37090.87 30386.81 34871.31 32766.79 32177.15 34916.40 37483.17 36881.84 18162.51 34281.79 358
MIMVSNet169.44 32466.65 32877.84 33376.48 36362.84 34787.42 32788.97 33466.96 34257.75 35879.72 34332.77 36285.83 36446.32 36463.42 33984.85 338
PM-MVS69.32 32566.93 32776.49 33773.60 36855.84 36285.91 33879.32 37074.72 30161.09 34778.18 34621.76 37091.10 34470.86 27956.90 35182.51 351
TDRefinement69.20 32665.78 33079.48 32766.04 37462.21 34888.21 32086.12 35162.92 34861.03 34885.61 29933.23 36094.16 30855.82 34553.02 35882.08 355
new-patchmatchnet68.85 32765.93 32977.61 33473.57 36963.94 34390.11 30888.73 33871.62 32555.08 36173.60 35840.84 34787.22 36151.35 35548.49 36681.67 359
UnsupCasMVSNet_bld68.60 32864.50 33280.92 32174.63 36767.80 32883.97 34692.94 28665.12 34554.63 36268.23 36635.97 35592.17 33360.13 32644.83 36982.78 349
mvsany_test367.19 32965.34 33172.72 34463.08 37548.57 36983.12 34978.09 37172.07 32161.21 34677.11 35022.94 36987.78 35878.59 20851.88 36181.80 357
new_pmnet66.18 33063.18 33375.18 34376.27 36561.74 35083.79 34784.66 35656.64 36651.57 36471.85 36531.29 36487.93 35749.98 35862.55 34175.86 365
pmmvs365.75 33162.18 33476.45 33867.12 37364.54 33888.68 31785.05 35554.77 36857.54 35973.79 35729.40 36686.21 36355.49 34647.77 36778.62 362
test_f64.01 33262.13 33569.65 34663.00 37645.30 37683.66 34880.68 36761.30 35555.70 36072.62 36114.23 37684.64 36669.84 28458.11 34879.00 361
N_pmnet61.30 33360.20 33664.60 35284.32 33317.00 39091.67 29610.98 38961.77 35258.45 35578.55 34549.89 31691.83 33742.27 36863.94 33784.97 337
test_method56.77 33454.53 33763.49 35476.49 36240.70 37975.68 36574.24 37419.47 38048.73 36571.89 36419.31 37165.80 38057.46 33747.51 36883.97 344
APD_test156.56 33553.58 33865.50 34967.93 37246.51 37377.24 36472.95 37538.09 37142.75 36975.17 35313.38 37782.78 36940.19 37054.53 35367.23 370
FPMVS55.09 33652.93 33961.57 35655.98 37840.51 38083.11 35083.41 36237.61 37234.95 37371.95 36314.40 37576.95 37229.81 37365.16 33267.25 369
test_vis3_rt54.10 33751.04 34063.27 35558.16 37746.08 37584.17 34549.32 38856.48 36736.56 37249.48 3758.03 38491.91 33667.29 29549.87 36251.82 374
LCM-MVSNet52.52 33848.24 34165.35 35047.63 38541.45 37872.55 37083.62 36131.75 37337.66 37157.92 3719.19 38376.76 37349.26 36044.60 37077.84 363
EGC-MVSNET52.46 33947.56 34267.15 34881.98 34560.11 35582.54 35172.44 3760.11 3860.70 38774.59 35525.11 36883.26 36729.04 37461.51 34458.09 371
PMMVS250.90 34046.31 34364.67 35155.53 37946.67 37277.30 36371.02 37740.89 37034.16 37459.32 3699.83 38276.14 37540.09 37128.63 37771.21 366
ANet_high46.22 34141.28 34861.04 35739.91 38746.25 37470.59 37176.18 37358.87 36423.09 37948.00 37612.58 37966.54 37928.65 37513.62 38070.35 367
testf145.70 34242.41 34455.58 35853.29 38240.02 38168.96 37262.67 38227.45 37529.85 37561.58 3675.98 38573.83 37728.49 37643.46 37252.90 372
APD_test245.70 34242.41 34455.58 35853.29 38240.02 38168.96 37262.67 38227.45 37529.85 37561.58 3675.98 38573.83 37728.49 37643.46 37252.90 372
Gipumacopyleft45.11 34442.05 34654.30 36080.69 34851.30 36835.80 37883.81 36028.13 37427.94 37834.53 37811.41 38176.70 37421.45 37854.65 35234.90 378
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt41.54 34541.93 34740.38 36320.10 38926.84 38661.93 37559.09 38414.81 38228.51 37780.58 33735.53 35648.33 38463.70 31413.11 38145.96 377
PMVScopyleft34.80 2339.19 34635.53 34950.18 36129.72 38830.30 38559.60 37666.20 38126.06 37717.91 38149.53 3743.12 38774.09 37618.19 38049.40 36346.14 375
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive35.65 2233.85 34729.49 35246.92 36241.86 38636.28 38350.45 37756.52 38518.75 38118.28 38037.84 3772.41 38858.41 38118.71 37920.62 37846.06 376
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN32.70 34832.39 35033.65 36453.35 38125.70 38774.07 36853.33 38621.08 37817.17 38233.63 38011.85 38054.84 38212.98 38114.04 37920.42 379
EMVS31.70 34931.45 35132.48 36550.72 38423.95 38874.78 36752.30 38720.36 37916.08 38331.48 38112.80 37853.60 38311.39 38213.10 38219.88 380
cdsmvs_eth3d_5k21.43 35028.57 3530.00 3690.00 3920.00 3930.00 38095.93 1360.00 3870.00 38897.66 6363.57 2350.00 3880.00 3860.00 3860.00 384
wuyk23d14.10 35113.89 35414.72 36655.23 38022.91 38933.83 3793.56 3904.94 3834.11 3842.28 3862.06 38919.66 38510.23 3838.74 3831.59 383
testmvs9.92 35212.94 3550.84 3680.65 3900.29 39293.78 2590.39 3910.42 3842.85 38515.84 3840.17 3910.30 3872.18 3840.21 3841.91 382
test1239.07 35311.73 3561.11 3670.50 3910.77 39189.44 3120.20 3920.34 3852.15 38610.72 3850.34 3900.32 3861.79 3850.08 3852.23 381
ab-mvs-re8.11 35410.81 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38897.30 840.00 3920.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas5.92 3557.89 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38771.04 1930.00 3880.00 3860.00 3860.00 384
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
FOURS198.51 3978.01 21798.13 4196.21 11683.04 18494.39 43
MSC_two_6792asdad97.14 399.05 992.19 496.83 4399.81 2198.08 998.81 2499.43 11
PC_three_145291.12 2698.33 298.42 2492.51 299.81 2198.96 299.37 199.70 3
No_MVS97.14 399.05 992.19 496.83 4399.81 2198.08 998.81 2499.43 11
test_one_060198.91 1884.56 6996.70 6288.06 6996.57 1798.77 1088.04 20
eth-test20.00 392
eth-test0.00 392
ZD-MVS99.09 883.22 9396.60 7882.88 18993.61 5298.06 4382.93 4899.14 8795.51 3898.49 37
RE-MVS-def91.18 7497.76 6776.03 25896.20 17895.44 16280.56 22590.72 9097.84 5573.36 16991.99 7896.79 8897.75 101
IU-MVS99.03 1585.34 4896.86 4292.05 2198.74 198.15 698.97 1799.42 13
OPU-MVS97.30 299.19 792.31 399.12 798.54 1892.06 399.84 1299.11 199.37 199.74 1
test_241102_TWO96.78 4688.72 5697.70 698.91 287.86 2199.82 1898.15 699.00 1599.47 9
test_241102_ONE99.03 1585.03 6096.78 4688.72 5697.79 498.90 588.48 1799.82 18
9.1494.26 2698.10 5798.14 3896.52 8684.74 13794.83 3898.80 782.80 5099.37 7095.95 3098.42 40
save fliter98.24 5183.34 9098.61 2696.57 8191.32 24
test_0728_THIRD88.38 6396.69 1498.76 1289.64 1399.76 2797.47 1698.84 2399.38 14
test_0728_SECOND95.14 1799.04 1486.14 3499.06 1196.77 5299.84 1297.90 1198.85 2199.45 10
test072699.05 985.18 5399.11 1096.78 4688.75 5497.65 998.91 287.69 22
GSMVS97.54 115
test_part298.90 1985.14 5996.07 22
sam_mvs177.59 9797.54 115
sam_mvs75.35 141
ambc76.02 33968.11 37151.43 36764.97 37489.59 32660.49 34974.49 35617.17 37392.46 32761.50 32252.85 35984.17 343
MTGPAbinary96.33 108
test_post185.88 33930.24 38273.77 16295.07 29073.89 257
test_post33.80 37976.17 12195.97 237
patchmatchnet-post77.09 35177.78 9695.39 270
GG-mvs-BLEND93.49 6394.94 13586.26 3281.62 35297.00 3188.32 12294.30 16791.23 596.21 22888.49 12197.43 7298.00 83
MTMP97.53 8068.16 379
gm-plane-assit92.27 21379.64 17284.47 14795.15 14797.93 14185.81 142
test9_res96.00 2999.03 1398.31 61
TEST998.64 3183.71 8197.82 5896.65 6984.29 15495.16 2898.09 3884.39 3599.36 71
test_898.63 3383.64 8497.81 6096.63 7484.50 14595.10 3198.11 3784.33 3699.23 76
agg_prior294.30 4899.00 1598.57 45
agg_prior98.59 3583.13 9496.56 8394.19 4599.16 86
TestCases84.47 29192.18 21967.29 33084.43 35767.63 33763.48 33390.18 23338.20 35197.16 18757.04 33873.37 27488.97 280
test_prior482.34 10797.75 65
test_prior298.37 3186.08 10994.57 4198.02 4483.14 4695.05 4198.79 26
test_prior93.09 7698.68 2681.91 11396.40 10199.06 9498.29 63
旧先验296.97 12774.06 30696.10 2197.76 15088.38 123
新几何296.42 164
新几何193.12 7497.44 7881.60 12596.71 6174.54 30291.22 8397.57 7079.13 7699.51 6177.40 22398.46 3898.26 66
旧先验197.39 8279.58 17396.54 8498.08 4184.00 4097.42 7397.62 112
无先验96.87 13496.78 4677.39 27899.52 5979.95 19698.43 54
原ACMM296.84 135
原ACMM191.22 14597.77 6578.10 21596.61 7581.05 21591.28 8297.42 7977.92 9398.98 9879.85 19898.51 3496.59 156
test22296.15 10178.41 20395.87 19496.46 9371.97 32289.66 10397.45 7576.33 11998.24 4998.30 62
testdata299.48 6376.45 232
segment_acmp82.69 51
testdata90.13 17695.92 10774.17 28096.49 9273.49 31194.82 3997.99 4578.80 8197.93 14183.53 16997.52 6898.29 63
testdata195.57 20687.44 84
test1294.25 3698.34 4685.55 4596.35 10792.36 6480.84 5799.22 7798.31 4797.98 85
plane_prior791.86 23277.55 233
plane_prior691.98 22877.92 22264.77 230
plane_prior594.69 19797.30 17987.08 13482.82 21890.96 233
plane_prior494.15 172
plane_prior377.75 22990.17 4081.33 197
plane_prior297.18 10589.89 43
plane_prior191.95 230
plane_prior77.96 21997.52 8390.36 3882.96 216
n20.00 393
nn0.00 393
door-mid79.75 369
lessismore_v079.98 32580.59 34958.34 35980.87 36658.49 35483.46 32443.10 33893.89 31263.11 31748.68 36487.72 302
LGP-MVS_train86.33 25790.88 24773.06 29094.13 23282.20 20076.31 25193.20 18654.83 30196.95 19883.72 16380.83 23088.98 278
test1196.50 89
door80.13 368
HQP5-MVS78.48 199
HQP-NCC92.08 22397.63 7290.52 3382.30 183
ACMP_Plane92.08 22397.63 7290.52 3382.30 183
BP-MVS87.67 130
HQP4-MVS82.30 18397.32 17791.13 231
HQP3-MVS94.80 19283.01 214
HQP2-MVS65.40 224
NP-MVS92.04 22778.22 20994.56 162
MDTV_nov1_ep13_2view81.74 12186.80 33280.65 22285.65 14574.26 15776.52 23196.98 140
MDTV_nov1_ep1383.69 19894.09 16281.01 13386.78 33396.09 12483.81 16884.75 15584.32 31774.44 15696.54 21663.88 31285.07 202
ACMMP++_ref78.45 252
ACMMP++79.05 243
Test By Simon71.65 186
ITE_SJBPF82.38 31387.00 30165.59 33689.55 32779.99 24169.37 31091.30 21441.60 34495.33 27462.86 31874.63 27086.24 325
DeepMVS_CXcopyleft64.06 35378.53 35543.26 37768.11 38069.94 33238.55 37076.14 35218.53 37279.34 37143.72 36741.62 37469.57 368