This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
MM90.87 291.52 288.92 1392.12 9571.10 2597.02 396.04 688.70 291.57 1396.19 3370.12 4098.91 1796.83 195.06 1696.76 12
fmvsm_l_conf0.5_n_a87.44 2988.15 2385.30 10687.10 21964.19 18594.41 5288.14 29380.24 5692.54 596.97 1069.52 4397.17 8395.89 288.51 10494.56 98
fmvsm_l_conf0.5_n87.49 2788.19 2285.39 10286.95 22264.37 17894.30 5488.45 28480.51 4992.70 496.86 1569.98 4197.15 8695.83 388.08 10894.65 95
MVS_030490.01 890.50 988.53 2090.14 14170.94 2696.47 1395.72 1087.33 489.60 2896.26 3068.44 4598.74 2495.82 494.72 3095.90 42
test_fmvsm_n_192087.69 2588.50 1885.27 10887.05 22163.55 20593.69 8791.08 18384.18 1390.17 2397.04 867.58 5497.99 3995.72 590.03 9294.26 109
OPU-MVS89.97 397.52 373.15 1296.89 597.00 983.82 299.15 295.72 597.63 397.62 2
PC_three_145280.91 4694.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
fmvsm_s_conf0.5_n86.39 4386.91 3784.82 12187.36 21463.54 20694.74 4790.02 22282.52 2490.14 2496.92 1362.93 10997.84 4695.28 882.26 15893.07 152
fmvsm_s_conf0.1_n85.61 6085.93 5184.68 13182.95 28963.48 20894.03 6889.46 24081.69 3389.86 2596.74 2061.85 11997.75 4994.74 982.01 16492.81 160
fmvsm_s_conf0.5_n_a85.75 5686.09 4884.72 12885.73 24663.58 20393.79 8389.32 24681.42 3990.21 2296.91 1462.41 11397.67 5194.48 1080.56 17792.90 158
test_fmvsmconf_n86.58 4187.17 3384.82 12185.28 25262.55 22994.26 5689.78 22883.81 1687.78 3696.33 2965.33 7296.98 9894.40 1187.55 11394.95 80
test_fmvsmconf0.1_n85.71 5786.08 4984.62 13580.83 30562.33 23393.84 8088.81 27183.50 1887.00 4296.01 3763.36 10196.93 10594.04 1287.29 11694.61 97
fmvsm_s_conf0.1_n_a84.76 7184.84 6984.53 13780.23 31563.50 20792.79 12088.73 27580.46 5089.84 2696.65 2260.96 12897.57 6193.80 1380.14 17992.53 167
test_fmvsmvis_n_192083.80 9283.48 8384.77 12582.51 29163.72 19691.37 18883.99 33781.42 3977.68 13495.74 4258.37 15497.58 5993.38 1486.87 11993.00 155
patch_mono-289.71 1190.99 685.85 8796.04 2463.70 19895.04 4095.19 1986.74 791.53 1495.15 6273.86 2097.58 5993.38 1492.00 6796.28 32
CANet89.61 1289.99 1288.46 2194.39 3969.71 4796.53 1293.78 6686.89 689.68 2795.78 4065.94 6699.10 992.99 1693.91 4096.58 18
test_fmvsmconf0.01_n83.70 9683.52 8084.25 14975.26 35761.72 24792.17 14687.24 30682.36 2684.91 6195.41 4855.60 18896.83 10992.85 1785.87 13194.21 111
DeepPCF-MVS81.17 189.72 1091.38 484.72 12893.00 7258.16 30196.72 894.41 4886.50 890.25 2197.83 175.46 1498.67 2592.78 1895.49 1297.32 6
MCST-MVS91.08 191.46 389.94 497.66 273.37 897.13 295.58 1189.33 185.77 5196.26 3072.84 2699.38 192.64 1995.93 997.08 9
CNVR-MVS90.32 690.89 788.61 1996.76 870.65 2996.47 1394.83 3084.83 1189.07 3196.80 1970.86 3699.06 1592.64 1995.71 1096.12 35
SED-MVS89.94 990.36 1088.70 1696.45 1269.38 5196.89 594.44 4671.65 21192.11 697.21 476.79 999.11 692.34 2195.36 1397.62 2
IU-MVS96.46 1169.91 4095.18 2080.75 4795.28 192.34 2195.36 1396.47 25
test_241102_TWO94.41 4871.65 21192.07 897.21 474.58 1799.11 692.34 2195.36 1396.59 16
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2699.07 1392.01 2494.77 2596.51 21
No_MVS89.60 897.31 473.22 1095.05 2699.07 1392.01 2494.77 2596.51 21
test_vis1_n_192081.66 12882.01 11380.64 23882.24 29455.09 33094.76 4686.87 30881.67 3484.40 6694.63 7538.17 31694.67 19191.98 2683.34 14992.16 181
DVP-MVScopyleft89.41 1389.73 1488.45 2296.40 1569.99 3696.64 994.52 4271.92 19790.55 1996.93 1173.77 2199.08 1191.91 2794.90 2196.29 30
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND88.70 1696.45 1270.43 3296.64 994.37 5299.15 291.91 2794.90 2196.51 21
DVP-MVS++90.53 491.09 588.87 1497.31 469.91 4093.96 7094.37 5272.48 18192.07 896.85 1683.82 299.15 291.53 2997.42 497.55 4
test_0728_THIRD72.48 18190.55 1996.93 1176.24 1199.08 1191.53 2994.99 1796.43 26
PS-MVSNAJ88.14 1787.61 2889.71 692.06 9676.72 195.75 2093.26 9083.86 1489.55 2996.06 3653.55 21297.89 4391.10 3193.31 5194.54 101
xiu_mvs_v2_base87.92 2287.38 3289.55 1191.41 11976.43 395.74 2193.12 9883.53 1789.55 2995.95 3853.45 21697.68 5091.07 3292.62 5894.54 101
MSP-MVS90.38 591.87 185.88 8492.83 7564.03 18893.06 11094.33 5482.19 2893.65 396.15 3585.89 197.19 8291.02 3397.75 196.43 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
dcpmvs_287.37 3087.55 2986.85 5395.04 3268.20 8390.36 22490.66 19579.37 6981.20 8993.67 10374.73 1596.55 11890.88 3492.00 6795.82 44
test_cas_vis1_n_192080.45 14980.61 13479.97 25778.25 34157.01 31894.04 6788.33 28779.06 7882.81 7893.70 10238.65 31191.63 29490.82 3579.81 18191.27 198
APDe-MVScopyleft87.54 2687.84 2586.65 6196.07 2366.30 13194.84 4593.78 6669.35 25288.39 3396.34 2867.74 5397.66 5490.62 3693.44 4996.01 39
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DPE-MVScopyleft88.77 1689.21 1687.45 4096.26 2067.56 9894.17 5794.15 5968.77 26190.74 1797.27 276.09 1298.49 2990.58 3794.91 2096.30 29
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
9.1487.63 2793.86 4794.41 5294.18 5772.76 17686.21 4696.51 2466.64 6097.88 4490.08 3894.04 37
test9_res89.41 3994.96 1895.29 64
TSAR-MVS + GP.87.96 2088.37 2086.70 6093.51 5965.32 15395.15 3693.84 6578.17 9085.93 5094.80 7175.80 1398.21 3489.38 4088.78 10196.59 16
lupinMVS87.74 2487.77 2687.63 3589.24 16571.18 2296.57 1192.90 10682.70 2387.13 3995.27 5664.99 7595.80 14389.34 4191.80 7095.93 40
ETV-MVS86.01 5086.11 4785.70 9490.21 14067.02 11493.43 10291.92 14181.21 4384.13 7094.07 9660.93 12995.63 15489.28 4289.81 9394.46 107
SMA-MVScopyleft88.14 1788.29 2187.67 3093.21 6668.72 6893.85 7794.03 6274.18 14491.74 1196.67 2165.61 7098.42 3389.24 4396.08 795.88 43
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
train_agg87.21 3287.42 3186.60 6394.18 4167.28 10594.16 5893.51 8071.87 20285.52 5495.33 5168.19 4897.27 8089.09 4494.90 2195.25 70
SD-MVS87.49 2787.49 3087.50 3993.60 5468.82 6693.90 7492.63 11776.86 10987.90 3595.76 4166.17 6397.63 5689.06 4591.48 7696.05 37
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
NCCC89.07 1589.46 1587.91 2596.60 1069.05 6096.38 1594.64 3984.42 1286.74 4396.20 3266.56 6298.76 2389.03 4694.56 3295.92 41
HPM-MVS++copyleft89.37 1489.95 1387.64 3195.10 3068.23 8295.24 3394.49 4482.43 2588.90 3296.35 2771.89 3498.63 2688.76 4796.40 696.06 36
SF-MVS87.03 3487.09 3486.84 5492.70 8167.45 10393.64 9093.76 6970.78 23586.25 4596.44 2666.98 5797.79 4788.68 4894.56 3295.28 66
canonicalmvs86.85 3686.25 4588.66 1891.80 10771.92 1493.54 9591.71 15480.26 5487.55 3795.25 5863.59 9896.93 10588.18 4984.34 14197.11 8
TSAR-MVS + MP.88.11 1988.64 1786.54 6791.73 10868.04 8690.36 22493.55 7982.89 1991.29 1592.89 11972.27 3196.03 13887.99 5094.77 2595.54 52
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
alignmvs87.28 3186.97 3688.24 2491.30 12071.14 2495.61 2593.56 7879.30 7087.07 4195.25 5868.43 4696.93 10587.87 5184.33 14296.65 14
jason86.40 4286.17 4687.11 4786.16 23770.54 3195.71 2492.19 13282.00 3084.58 6494.34 8761.86 11895.53 16387.76 5290.89 8495.27 67
jason: jason.
h-mvs3383.01 10682.56 10684.35 14589.34 15762.02 23992.72 12393.76 6981.45 3682.73 7992.25 13660.11 13697.13 8787.69 5362.96 31193.91 127
hse-mvs281.12 13781.11 12581.16 22586.52 22957.48 31189.40 25091.16 17681.45 3682.73 7990.49 16760.11 13694.58 19487.69 5360.41 33891.41 191
ZD-MVS96.63 965.50 15193.50 8270.74 23685.26 5995.19 6164.92 7897.29 7687.51 5593.01 54
test_prior295.10 3875.40 12985.25 6095.61 4567.94 5187.47 5694.77 25
SteuartSystems-ACMMP86.82 3886.90 3886.58 6590.42 13566.38 12896.09 1793.87 6477.73 9784.01 7195.66 4363.39 10097.94 4087.40 5793.55 4895.42 53
Skip Steuart: Steuart Systems R&D Blog.
diffmvspermissive84.28 7983.83 7785.61 9687.40 21268.02 8790.88 20889.24 24980.54 4881.64 8692.52 12559.83 14094.52 20187.32 5885.11 13594.29 108
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DELS-MVS90.05 790.09 1189.94 493.14 6973.88 797.01 494.40 5088.32 385.71 5294.91 6874.11 1998.91 1787.26 5995.94 897.03 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
casdiffmvs_mvgpermissive85.66 5985.18 6287.09 4888.22 19269.35 5493.74 8691.89 14481.47 3580.10 10591.45 15164.80 8096.35 12487.23 6087.69 11195.58 50
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_BlendedMVS83.38 9983.43 8683.22 17593.76 4967.53 10094.06 6393.61 7679.13 7581.00 9485.14 24363.19 10497.29 7687.08 6173.91 23284.83 302
PVSNet_Blended86.73 3986.86 3986.31 7693.76 4967.53 10096.33 1693.61 7682.34 2781.00 9493.08 11363.19 10497.29 7687.08 6191.38 7894.13 116
MP-MVS-pluss85.24 6485.13 6385.56 9791.42 11765.59 14791.54 17892.51 12174.56 13880.62 9895.64 4459.15 14997.00 9486.94 6393.80 4194.07 120
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
VDD-MVS83.06 10581.81 11686.81 5690.86 12967.70 9495.40 2991.50 16475.46 12781.78 8592.34 13340.09 30597.13 8786.85 6482.04 16395.60 49
CS-MVS-test86.14 4887.01 3583.52 16692.63 8459.36 28995.49 2791.92 14180.09 5785.46 5695.53 4761.82 12195.77 14686.77 6593.37 5095.41 54
agg_prior286.41 6694.75 2995.33 60
APD-MVScopyleft85.93 5285.99 5085.76 9195.98 2665.21 15693.59 9392.58 11966.54 27986.17 4795.88 3963.83 9197.00 9486.39 6792.94 5595.06 75
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMP_NAP86.05 4985.80 5486.80 5791.58 11267.53 10091.79 16893.49 8374.93 13584.61 6395.30 5359.42 14597.92 4186.13 6894.92 1994.94 81
CS-MVS85.80 5586.65 4183.27 17492.00 10058.92 29495.31 3191.86 14679.97 5884.82 6295.40 4962.26 11495.51 16486.11 6992.08 6695.37 57
PHI-MVS86.83 3786.85 4086.78 5893.47 6065.55 14995.39 3095.10 2271.77 20785.69 5396.52 2362.07 11698.77 2286.06 7095.60 1196.03 38
MVS_111021_HR86.19 4785.80 5487.37 4193.17 6869.79 4493.99 6993.76 6979.08 7778.88 12393.99 9762.25 11598.15 3685.93 7191.15 8294.15 115
DeepC-MVS77.85 385.52 6185.24 6186.37 7388.80 17566.64 12292.15 14793.68 7481.07 4476.91 14593.64 10462.59 11198.44 3185.50 7292.84 5794.03 122
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EC-MVSNet84.53 7585.04 6583.01 17889.34 15761.37 25394.42 5191.09 18177.91 9483.24 7494.20 9258.37 15495.40 16585.35 7391.41 7792.27 177
test_fmvs174.07 25173.69 23875.22 31278.91 33347.34 36689.06 25974.69 36763.68 29979.41 11491.59 15024.36 36987.77 33685.22 7476.26 21690.55 207
VNet86.20 4685.65 5687.84 2793.92 4669.99 3695.73 2395.94 778.43 8786.00 4993.07 11458.22 15697.00 9485.22 7484.33 14296.52 20
testing1186.71 4086.44 4287.55 3793.54 5771.35 1993.65 8995.58 1181.36 4180.69 9792.21 13772.30 3096.46 12385.18 7683.43 14894.82 88
SDMVSNet80.26 15278.88 16284.40 14289.25 16267.63 9785.35 29793.02 10076.77 11370.84 21287.12 22247.95 26496.09 13285.04 7774.55 22389.48 222
MP-MVScopyleft85.02 6784.97 6685.17 11292.60 8564.27 18393.24 10592.27 12673.13 16679.63 11194.43 8061.90 11797.17 8385.00 7892.56 5994.06 121
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
casdiffmvspermissive85.37 6284.87 6886.84 5488.25 19069.07 5993.04 11291.76 15181.27 4280.84 9692.07 13964.23 8696.06 13684.98 7987.43 11595.39 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CSCG86.87 3586.26 4488.72 1595.05 3170.79 2893.83 8295.33 1668.48 26577.63 13594.35 8673.04 2498.45 3084.92 8093.71 4596.92 11
MTAPA83.91 8983.38 9085.50 9891.89 10565.16 15881.75 32492.23 12775.32 13080.53 10095.21 6056.06 18497.16 8584.86 8192.55 6094.18 112
test_fmvs1_n72.69 27071.92 26174.99 31571.15 37047.08 36887.34 28575.67 36263.48 30178.08 13191.17 15720.16 38087.87 33384.65 8275.57 22090.01 213
test_vis1_n71.63 27670.73 27274.31 32269.63 37647.29 36786.91 28972.11 37363.21 30575.18 16190.17 17520.40 37885.76 34884.59 8374.42 22789.87 214
baseline85.01 6884.44 7286.71 5988.33 18768.73 6790.24 22991.82 15081.05 4581.18 9092.50 12663.69 9496.08 13584.45 8486.71 12595.32 62
CLD-MVS82.73 11082.35 11083.86 15787.90 20067.65 9695.45 2892.18 13385.06 1072.58 19092.27 13452.46 22395.78 14484.18 8579.06 18988.16 241
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
xiu_mvs_v1_base_debu82.16 11981.12 12285.26 10986.42 23068.72 6892.59 13490.44 20273.12 16784.20 6794.36 8238.04 31995.73 14884.12 8686.81 12091.33 192
xiu_mvs_v1_base82.16 11981.12 12285.26 10986.42 23068.72 6892.59 13490.44 20273.12 16784.20 6794.36 8238.04 31995.73 14884.12 8686.81 12091.33 192
xiu_mvs_v1_base_debi82.16 11981.12 12285.26 10986.42 23068.72 6892.59 13490.44 20273.12 16784.20 6794.36 8238.04 31995.73 14884.12 8686.81 12091.33 192
EPNet87.84 2388.38 1986.23 7793.30 6366.05 13595.26 3294.84 2987.09 588.06 3494.53 7766.79 5997.34 7383.89 8991.68 7295.29 64
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_111021_LR82.02 12381.52 11883.51 16888.42 18362.88 22489.77 24288.93 26776.78 11275.55 15893.10 11150.31 24095.38 16783.82 9087.02 11892.26 178
MSLP-MVS++86.27 4585.91 5287.35 4292.01 9968.97 6395.04 4092.70 11179.04 7981.50 8796.50 2558.98 15196.78 11083.49 9193.93 3996.29 30
DeepC-MVS_fast79.48 287.95 2188.00 2487.79 2895.86 2768.32 7695.74 2194.11 6083.82 1583.49 7396.19 3364.53 8498.44 3183.42 9294.88 2496.61 15
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DPM-MVS90.70 390.52 891.24 189.68 15076.68 297.29 195.35 1582.87 2091.58 1297.22 379.93 599.10 983.12 9397.64 297.94 1
SR-MVS82.81 10982.58 10583.50 16993.35 6161.16 25692.23 14591.28 17364.48 29381.27 8895.28 5453.71 21195.86 14282.87 9488.77 10293.49 139
ET-MVSNet_ETH3D84.01 8783.15 9586.58 6590.78 13170.89 2794.74 4794.62 4081.44 3858.19 32793.64 10473.64 2392.35 27982.66 9578.66 19496.50 24
ZNCC-MVS85.33 6385.08 6486.06 7993.09 7165.65 14593.89 7593.41 8773.75 15579.94 10794.68 7460.61 13298.03 3882.63 9693.72 4494.52 103
LFMVS84.34 7882.73 10289.18 1294.76 3373.25 994.99 4291.89 14471.90 19982.16 8393.49 10847.98 26397.05 8982.55 9784.82 13797.25 7
VDDNet80.50 14778.26 16987.21 4486.19 23569.79 4494.48 5091.31 17060.42 32779.34 11590.91 16038.48 31496.56 11782.16 9881.05 17295.27 67
iter_conf0583.27 10182.70 10384.98 11693.32 6271.84 1594.16 5881.76 34882.74 2173.83 17788.40 19672.77 2794.61 19282.10 9975.21 22188.48 235
HPM-MVScopyleft83.25 10282.95 9784.17 15192.25 9162.88 22490.91 20591.86 14670.30 24177.12 14293.96 9856.75 17496.28 12682.04 10091.34 8093.34 142
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
nrg03080.93 14079.86 14584.13 15283.69 27868.83 6593.23 10691.20 17475.55 12675.06 16288.22 20463.04 10894.74 18681.88 10166.88 28188.82 229
Effi-MVS+83.82 9182.76 10186.99 5289.56 15369.40 5091.35 19086.12 31772.59 17883.22 7592.81 12359.60 14396.01 14081.76 10287.80 11095.56 51
HFP-MVS84.73 7284.40 7385.72 9393.75 5165.01 16293.50 9793.19 9472.19 19179.22 11794.93 6659.04 15097.67 5181.55 10392.21 6294.49 106
ACMMPR84.37 7684.06 7585.28 10793.56 5664.37 17893.50 9793.15 9672.19 19178.85 12594.86 6956.69 17697.45 6581.55 10392.20 6394.02 123
GST-MVS84.63 7484.29 7485.66 9592.82 7765.27 15493.04 11293.13 9773.20 16478.89 12094.18 9359.41 14697.85 4581.45 10592.48 6193.86 130
PMMVS81.98 12482.04 11281.78 21189.76 14956.17 32291.13 20190.69 19277.96 9280.09 10693.57 10646.33 27794.99 17881.41 10687.46 11494.17 113
region2R84.36 7784.03 7685.36 10493.54 5764.31 18193.43 10292.95 10472.16 19478.86 12494.84 7056.97 17197.53 6381.38 10792.11 6594.24 110
CP-MVS83.71 9583.40 8984.65 13293.14 6963.84 19094.59 4992.28 12571.03 22977.41 13894.92 6755.21 19396.19 12881.32 10890.70 8693.91 127
MVS84.66 7382.86 10090.06 290.93 12674.56 687.91 27595.54 1368.55 26372.35 19794.71 7359.78 14198.90 1981.29 10994.69 3196.74 13
test_yl84.28 7983.16 9387.64 3194.52 3769.24 5595.78 1895.09 2369.19 25581.09 9192.88 12057.00 16997.44 6681.11 11081.76 16696.23 33
DCV-MVSNet84.28 7983.16 9387.64 3194.52 3769.24 5595.78 1895.09 2369.19 25581.09 9192.88 12057.00 16997.44 6681.11 11081.76 16696.23 33
CDPH-MVS85.71 5785.46 5886.46 6994.75 3467.19 10793.89 7592.83 10870.90 23183.09 7695.28 5463.62 9697.36 7180.63 11294.18 3594.84 85
HY-MVS76.49 584.28 7983.36 9187.02 5192.22 9267.74 9384.65 30194.50 4379.15 7482.23 8287.93 20966.88 5896.94 10380.53 11382.20 16196.39 28
CHOSEN 1792x268884.98 6983.45 8589.57 1089.94 14575.14 592.07 15392.32 12481.87 3175.68 15488.27 20060.18 13598.60 2780.46 11490.27 9194.96 79
testing9185.93 5285.31 6087.78 2993.59 5571.47 1793.50 9795.08 2580.26 5480.53 10091.93 14270.43 3896.51 12080.32 11582.13 16295.37 57
EIA-MVS84.84 7084.88 6784.69 13091.30 12062.36 23293.85 7792.04 13679.45 6679.33 11694.28 9062.42 11296.35 12480.05 11691.25 8195.38 56
testing9986.01 5085.47 5787.63 3593.62 5371.25 2193.47 10095.23 1880.42 5280.60 9991.95 14171.73 3596.50 12180.02 11782.22 16095.13 73
APD-MVS_3200maxsize81.64 12981.32 12082.59 18892.36 8858.74 29691.39 18591.01 18863.35 30279.72 11094.62 7651.82 22696.14 13079.71 11887.93 10992.89 159
PVSNet_Blended_VisFu83.97 8883.50 8285.39 10290.02 14366.59 12593.77 8491.73 15277.43 10577.08 14489.81 18163.77 9396.97 10079.67 11988.21 10692.60 164
WTY-MVS86.32 4485.81 5387.85 2692.82 7769.37 5395.20 3495.25 1782.71 2281.91 8494.73 7267.93 5297.63 5679.55 12082.25 15996.54 19
iter_conf_final81.74 12780.93 12884.18 15092.66 8369.10 5892.94 11682.80 34679.01 8074.85 16588.40 19661.83 12094.61 19279.36 12176.52 21488.83 226
EI-MVSNet-Vis-set83.77 9383.67 7984.06 15392.79 8063.56 20491.76 17194.81 3179.65 6477.87 13294.09 9463.35 10297.90 4279.35 12279.36 18690.74 203
PGM-MVS83.25 10282.70 10384.92 11792.81 7964.07 18790.44 22092.20 13171.28 22377.23 14194.43 8055.17 19497.31 7579.33 12391.38 7893.37 141
XVS83.87 9083.47 8485.05 11393.22 6463.78 19292.92 11792.66 11473.99 14778.18 12994.31 8955.25 19097.41 6879.16 12491.58 7493.95 125
X-MVStestdata76.86 21274.13 23285.05 11393.22 6463.78 19292.92 11792.66 11473.99 14778.18 12910.19 40555.25 19097.41 6879.16 12491.58 7493.95 125
CostFormer82.33 11681.15 12185.86 8689.01 17068.46 7382.39 32193.01 10175.59 12580.25 10481.57 28672.03 3394.96 17979.06 12677.48 20594.16 114
mPP-MVS82.96 10882.44 10884.52 13892.83 7562.92 22292.76 12191.85 14871.52 21975.61 15794.24 9153.48 21596.99 9778.97 12790.73 8593.64 136
baseline283.68 9783.42 8884.48 14087.37 21366.00 13790.06 23395.93 879.71 6369.08 23390.39 16977.92 696.28 12678.91 12881.38 17091.16 199
CPTT-MVS79.59 16479.16 15980.89 23691.54 11559.80 28192.10 15088.54 28360.42 32772.96 18393.28 11048.27 25992.80 25978.89 12986.50 12890.06 211
SR-MVS-dyc-post81.06 13880.70 13182.15 20292.02 9758.56 29890.90 20690.45 19962.76 30978.89 12094.46 7851.26 23495.61 15678.77 13086.77 12392.28 174
RE-MVS-def80.48 13792.02 9758.56 29890.90 20690.45 19962.76 30978.89 12094.46 7849.30 25078.77 13086.77 12392.28 174
ACMMPcopyleft81.49 13080.67 13283.93 15691.71 10962.90 22392.13 14892.22 13071.79 20671.68 20593.49 10850.32 23996.96 10178.47 13284.22 14691.93 184
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PAPM85.89 5485.46 5887.18 4588.20 19372.42 1392.41 14092.77 10982.11 2980.34 10393.07 11468.27 4795.02 17678.39 13393.59 4794.09 118
PAPR85.15 6684.47 7187.18 4596.02 2568.29 7791.85 16693.00 10376.59 11679.03 11995.00 6361.59 12297.61 5878.16 13489.00 10095.63 48
EI-MVSNet-UG-set83.14 10482.96 9683.67 16492.28 9063.19 21491.38 18794.68 3779.22 7276.60 14793.75 10062.64 11097.76 4878.07 13578.01 19790.05 212
CANet_DTU84.09 8683.52 8085.81 8890.30 13866.82 11791.87 16489.01 26385.27 986.09 4893.74 10147.71 26796.98 9877.90 13689.78 9593.65 135
BP-MVS77.63 137
HQP-MVS81.14 13580.64 13382.64 18687.54 20863.66 20194.06 6391.70 15679.80 6074.18 17090.30 17151.63 23095.61 15677.63 13778.90 19088.63 231
sss82.71 11282.38 10983.73 16189.25 16259.58 28492.24 14494.89 2877.96 9279.86 10892.38 13156.70 17597.05 8977.26 13980.86 17494.55 99
HQP_MVS80.34 15179.75 14782.12 20486.94 22362.42 23093.13 10891.31 17078.81 8372.53 19189.14 18950.66 23795.55 16176.74 14078.53 19588.39 238
plane_prior591.31 17095.55 16176.74 14078.53 19588.39 238
gm-plane-assit88.42 18367.04 11378.62 8691.83 14497.37 7076.57 142
CHOSEN 280x42077.35 20576.95 19378.55 28087.07 22062.68 22869.71 37282.95 34468.80 26071.48 20787.27 22166.03 6584.00 35976.47 14382.81 15488.95 225
ab-mvs80.18 15478.31 16885.80 8988.44 18265.49 15283.00 31892.67 11371.82 20577.36 13985.01 24454.50 19996.59 11476.35 14475.63 21995.32 62
mvsmamba76.85 21475.71 21080.25 24683.07 28659.16 29191.44 17980.64 35376.84 11067.95 25086.33 23246.17 28094.24 21276.06 14572.92 23987.36 251
testing22285.18 6584.69 7086.63 6292.91 7469.91 4092.61 13195.80 980.31 5380.38 10292.27 13468.73 4495.19 17375.94 14683.27 15094.81 89
MVSTER82.47 11482.05 11183.74 15992.68 8269.01 6191.90 16393.21 9179.83 5972.14 19885.71 24074.72 1694.72 18775.72 14772.49 24387.50 246
test_fmvs265.78 32064.84 30868.60 35266.54 38141.71 38183.27 31269.81 37954.38 35467.91 25284.54 25215.35 38581.22 37675.65 14866.16 28682.88 323
tpmrst80.57 14579.14 16084.84 12090.10 14268.28 7881.70 32589.72 23577.63 10175.96 15179.54 31864.94 7792.71 26275.43 14977.28 20893.55 137
旧先验292.00 15959.37 33587.54 3893.47 24175.39 150
MG-MVS87.11 3386.27 4389.62 797.79 176.27 494.96 4394.49 4478.74 8583.87 7292.94 11764.34 8596.94 10375.19 15194.09 3695.66 47
OPM-MVS79.00 17478.09 17181.73 21283.52 28163.83 19191.64 17790.30 20976.36 11971.97 20089.93 18046.30 27895.17 17475.10 15277.70 20086.19 274
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Effi-MVS+-dtu76.14 22275.28 21678.72 27983.22 28355.17 32989.87 23987.78 30075.42 12867.98 24981.43 28845.08 28892.52 27275.08 15371.63 24888.48 235
HyFIR lowres test81.03 13979.56 15085.43 10087.81 20468.11 8590.18 23090.01 22370.65 23772.95 18486.06 23663.61 9794.50 20275.01 15479.75 18393.67 134
EPP-MVSNet81.79 12681.52 11882.61 18788.77 17660.21 27693.02 11493.66 7568.52 26472.90 18590.39 16972.19 3294.96 17974.93 15579.29 18892.67 162
MVS_Test84.16 8583.20 9287.05 5091.56 11369.82 4389.99 23892.05 13577.77 9682.84 7786.57 22863.93 9096.09 13274.91 15689.18 9995.25 70
VPA-MVSNet79.03 17378.00 17382.11 20785.95 24064.48 17193.22 10794.66 3875.05 13474.04 17584.95 24552.17 22593.52 23974.90 15767.04 28088.32 240
HPM-MVS_fast80.25 15379.55 15282.33 19491.55 11459.95 27991.32 19289.16 25465.23 29074.71 16793.07 11447.81 26695.74 14774.87 15888.23 10591.31 196
AUN-MVS78.37 18977.43 18281.17 22486.60 22857.45 31289.46 24991.16 17674.11 14574.40 16990.49 16755.52 18994.57 19674.73 15960.43 33791.48 189
ECVR-MVScopyleft81.29 13380.38 13984.01 15588.39 18561.96 24192.56 13786.79 31077.66 9976.63 14691.42 15246.34 27695.24 17274.36 16089.23 9794.85 82
mvsany_test168.77 29868.56 28769.39 34873.57 36345.88 37380.93 33360.88 39159.65 33371.56 20690.26 17343.22 29575.05 38174.26 16162.70 31487.25 256
TESTMET0.1,182.41 11581.98 11483.72 16288.08 19463.74 19492.70 12593.77 6879.30 7077.61 13687.57 21558.19 15794.08 21873.91 16286.68 12693.33 144
test250683.29 10082.92 9884.37 14488.39 18563.18 21592.01 15691.35 16977.66 9978.49 12891.42 15264.58 8395.09 17573.19 16389.23 9794.85 82
mvs_anonymous81.36 13279.99 14385.46 9990.39 13768.40 7486.88 29190.61 19774.41 13970.31 22084.67 24963.79 9292.32 28073.13 16485.70 13295.67 46
PS-MVSNAJss77.26 20676.31 20080.13 25080.64 30959.16 29190.63 21991.06 18572.80 17568.58 24484.57 25153.55 21293.96 22872.97 16571.96 24787.27 255
ACMP71.68 1075.58 23774.23 23079.62 26684.97 25959.64 28290.80 21189.07 26170.39 24062.95 30187.30 21938.28 31593.87 23272.89 16671.45 25185.36 295
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVSFormer83.75 9482.88 9986.37 7389.24 16571.18 2289.07 25790.69 19265.80 28487.13 3994.34 8764.99 7592.67 26572.83 16791.80 7095.27 67
test_djsdf73.76 25772.56 25477.39 29477.00 35153.93 33589.07 25790.69 19265.80 28463.92 29082.03 27843.14 29692.67 26572.83 16768.53 27085.57 290
test111180.84 14280.02 14183.33 17287.87 20160.76 26492.62 13086.86 30977.86 9575.73 15391.39 15446.35 27594.70 19072.79 16988.68 10394.52 103
miper_enhance_ethall78.86 17877.97 17481.54 21788.00 19865.17 15791.41 18189.15 25575.19 13268.79 24083.98 25867.17 5692.82 25772.73 17065.30 29086.62 267
OMC-MVS78.67 18577.91 17680.95 23485.76 24557.40 31388.49 26688.67 27873.85 15272.43 19592.10 13849.29 25194.55 19972.73 17077.89 19890.91 202
LPG-MVS_test75.82 23274.58 22379.56 26884.31 27059.37 28790.44 22089.73 23369.49 25064.86 27988.42 19438.65 31194.30 20772.56 17272.76 24085.01 300
LGP-MVS_train79.56 26884.31 27059.37 28789.73 23369.49 25064.86 27988.42 19438.65 31194.30 20772.56 17272.76 24085.01 300
VPNet78.82 17977.53 18182.70 18484.52 26566.44 12793.93 7292.23 12780.46 5072.60 18988.38 19849.18 25293.13 24572.47 17463.97 30888.55 234
GG-mvs-BLEND86.53 6891.91 10469.67 4975.02 36394.75 3378.67 12790.85 16177.91 794.56 19872.25 17593.74 4395.36 59
test-LLR80.10 15679.56 15081.72 21386.93 22561.17 25492.70 12591.54 16171.51 22075.62 15586.94 22453.83 20892.38 27672.21 17684.76 13991.60 186
test-mter79.96 15979.38 15681.72 21386.93 22561.17 25492.70 12591.54 16173.85 15275.62 15586.94 22449.84 24692.38 27672.21 17684.76 13991.60 186
IB-MVS77.80 482.18 11880.46 13887.35 4289.14 16770.28 3495.59 2695.17 2178.85 8170.19 22185.82 23870.66 3797.67 5172.19 17866.52 28494.09 118
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cl2277.94 19776.78 19481.42 21987.57 20764.93 16590.67 21588.86 27072.45 18367.63 25882.68 27164.07 8792.91 25571.79 17965.30 29086.44 268
v2v48277.42 20475.65 21182.73 18380.38 31167.13 11091.85 16690.23 21375.09 13369.37 22983.39 26453.79 21094.44 20371.77 18065.00 29686.63 266
baseline181.84 12581.03 12684.28 14891.60 11166.62 12391.08 20291.66 15881.87 3174.86 16491.67 14869.98 4194.92 18271.76 18164.75 29991.29 197
V4276.46 22074.55 22482.19 20179.14 32967.82 9190.26 22889.42 24373.75 15568.63 24381.89 27951.31 23394.09 21771.69 18264.84 29784.66 303
131480.70 14478.95 16185.94 8387.77 20667.56 9887.91 27592.55 12072.17 19367.44 25993.09 11250.27 24197.04 9271.68 18387.64 11293.23 146
CDS-MVSNet81.43 13180.74 13083.52 16686.26 23464.45 17292.09 15190.65 19675.83 12373.95 17689.81 18163.97 8992.91 25571.27 18482.82 15393.20 147
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test_vis1_rt59.09 34457.31 34364.43 36068.44 37946.02 37283.05 31748.63 40051.96 36049.57 36263.86 37616.30 38380.20 37871.21 18562.79 31367.07 385
GA-MVS78.33 19176.23 20184.65 13283.65 27966.30 13191.44 17990.14 21676.01 12170.32 21984.02 25742.50 29794.72 18770.98 18677.00 21092.94 156
jajsoiax73.05 26171.51 26677.67 28977.46 34854.83 33188.81 26190.04 22169.13 25762.85 30383.51 26231.16 35592.75 26170.83 18769.80 25785.43 294
3Dnovator+73.60 782.10 12280.60 13586.60 6390.89 12866.80 11995.20 3493.44 8574.05 14667.42 26092.49 12849.46 24897.65 5570.80 18891.68 7295.33 60
DP-MVS Recon82.73 11081.65 11785.98 8197.31 467.06 11195.15 3691.99 13869.08 25876.50 14993.89 9954.48 20298.20 3570.76 18985.66 13392.69 161
miper_ehance_all_eth77.60 20176.44 19881.09 23185.70 24764.41 17690.65 21688.64 28072.31 18767.37 26382.52 27264.77 8192.64 26970.67 19065.30 29086.24 272
PAPM_NR82.97 10781.84 11586.37 7394.10 4466.76 12087.66 28092.84 10769.96 24574.07 17493.57 10663.10 10797.50 6470.66 19190.58 8894.85 82
XVG-OURS-SEG-HR74.70 24673.08 24479.57 26778.25 34157.33 31480.49 33587.32 30363.22 30468.76 24190.12 17944.89 28991.59 29570.55 19274.09 23089.79 216
mvs_tets72.71 26871.11 26777.52 29077.41 34954.52 33388.45 26789.76 22968.76 26262.70 30483.26 26529.49 35992.71 26270.51 19369.62 25985.34 296
cascas78.18 19275.77 20885.41 10187.14 21869.11 5792.96 11591.15 17866.71 27870.47 21586.07 23537.49 32596.48 12270.15 19479.80 18290.65 204
RRT_MVS74.44 24772.97 24778.84 27882.36 29357.66 30889.83 24188.79 27470.61 23864.58 28384.89 24639.24 30792.65 26870.11 19566.34 28586.21 273
PVSNet_068.08 1571.81 27468.32 29182.27 19684.68 26162.31 23588.68 26390.31 20875.84 12257.93 33280.65 30337.85 32294.19 21369.94 19629.05 39590.31 209
bld_raw_dy_0_6471.59 27769.71 28277.22 29877.82 34758.12 30287.71 27973.66 36968.01 26761.90 31084.29 25533.68 34388.43 32869.91 19770.43 25685.11 299
thisisatest051583.41 9882.49 10786.16 7889.46 15668.26 7993.54 9594.70 3674.31 14275.75 15290.92 15972.62 2896.52 11969.64 19881.50 16993.71 133
XXY-MVS77.94 19776.44 19882.43 19082.60 29064.44 17392.01 15691.83 14973.59 16070.00 22485.82 23854.43 20394.76 18469.63 19968.02 27488.10 242
MAR-MVS84.18 8483.43 8686.44 7096.25 2165.93 14094.28 5594.27 5674.41 13979.16 11895.61 4553.99 20798.88 2169.62 20093.26 5294.50 105
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Patchmatch-RL test68.17 30464.49 31479.19 27271.22 36953.93 33570.07 37171.54 37769.22 25456.79 33662.89 37756.58 17888.61 32469.53 20152.61 36095.03 78
TAMVS80.37 15079.45 15383.13 17785.14 25563.37 20991.23 19690.76 19174.81 13772.65 18888.49 19360.63 13192.95 25069.41 20281.95 16593.08 151
testdata81.34 22189.02 16957.72 30689.84 22758.65 33885.32 5894.09 9457.03 16793.28 24369.34 20390.56 8993.03 153
c3_l76.83 21675.47 21280.93 23585.02 25864.18 18690.39 22388.11 29471.66 21066.65 27181.64 28463.58 9992.56 27069.31 20462.86 31286.04 279
v114476.73 21874.88 21882.27 19680.23 31566.60 12491.68 17590.21 21573.69 15769.06 23481.89 27952.73 22194.40 20469.21 20565.23 29385.80 285
ETVMVS84.22 8383.71 7885.76 9192.58 8668.25 8192.45 13995.53 1479.54 6579.46 11391.64 14970.29 3994.18 21469.16 20682.76 15694.84 85
Anonymous2024052976.84 21574.15 23184.88 11991.02 12464.95 16493.84 8091.09 18153.57 35673.00 18287.42 21735.91 33597.32 7469.14 20772.41 24592.36 170
XVG-OURS74.25 25072.46 25679.63 26578.45 33957.59 31080.33 33787.39 30263.86 29768.76 24189.62 18340.50 30491.72 29269.00 20874.25 22889.58 219
v14876.19 22174.47 22681.36 22080.05 31764.44 17391.75 17390.23 21373.68 15867.13 26480.84 29955.92 18693.86 23468.95 20961.73 32685.76 288
anonymousdsp71.14 28069.37 28476.45 30572.95 36554.71 33284.19 30388.88 26861.92 31862.15 30779.77 31538.14 31891.44 30268.90 21067.45 27883.21 320
3Dnovator73.91 682.69 11380.82 12988.31 2389.57 15271.26 2092.60 13294.39 5178.84 8267.89 25492.48 12948.42 25898.52 2868.80 21194.40 3495.15 72
test_fmvs356.82 34554.86 34862.69 36353.59 39435.47 39175.87 36065.64 38643.91 38155.10 34071.43 3636.91 39974.40 38468.64 21252.63 35978.20 368
Anonymous20240521177.96 19675.33 21585.87 8593.73 5264.52 16894.85 4485.36 32362.52 31276.11 15090.18 17429.43 36097.29 7668.51 21377.24 20995.81 45
eth_miper_zixun_eth75.96 23074.40 22780.66 23784.66 26263.02 21789.28 25288.27 29071.88 20165.73 27381.65 28359.45 14492.81 25868.13 21460.53 33586.14 275
PVSNet73.49 880.05 15778.63 16484.31 14690.92 12764.97 16392.47 13891.05 18679.18 7372.43 19590.51 16637.05 33194.06 22068.06 21586.00 13093.90 129
FA-MVS(test-final)79.12 17277.23 18884.81 12490.54 13363.98 18981.35 33091.71 15471.09 22874.85 16582.94 26752.85 21997.05 8967.97 21681.73 16893.41 140
v14419276.05 22674.03 23382.12 20479.50 32366.55 12691.39 18589.71 23672.30 18868.17 24781.33 29151.75 22894.03 22567.94 21764.19 30385.77 286
UGNet79.87 16178.68 16383.45 17189.96 14461.51 25092.13 14890.79 19076.83 11178.85 12586.33 23238.16 31796.17 12967.93 21887.17 11792.67 162
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IterMVS-LS76.49 21975.18 21780.43 24184.49 26662.74 22690.64 21788.80 27272.40 18565.16 27881.72 28260.98 12792.27 28167.74 21964.65 30186.29 270
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet78.97 17578.22 17081.25 22285.33 25062.73 22789.53 24793.21 9172.39 18672.14 19890.13 17760.99 12694.72 18767.73 22072.49 24386.29 270
gg-mvs-nofinetune77.18 20774.31 22885.80 8991.42 11768.36 7571.78 36694.72 3449.61 36777.12 14245.92 39077.41 893.98 22767.62 22193.16 5395.05 76
LCM-MVSNet-Re72.93 26371.84 26276.18 30888.49 17948.02 36180.07 34270.17 37873.96 15052.25 35180.09 31249.98 24388.24 33067.35 22284.23 14592.28 174
tpm279.80 16277.95 17585.34 10588.28 18868.26 7981.56 32791.42 16770.11 24377.59 13780.50 30467.40 5594.26 21167.34 22377.35 20693.51 138
v875.35 23873.26 24381.61 21580.67 30866.82 11789.54 24689.27 24871.65 21163.30 29780.30 30854.99 19694.06 22067.33 22462.33 31883.94 308
sd_testset77.08 21075.37 21382.20 20089.25 16262.11 23882.06 32289.09 25976.77 11370.84 21287.12 22241.43 30195.01 17767.23 22574.55 22389.48 222
UWE-MVS80.81 14381.01 12780.20 24889.33 15957.05 31691.91 16294.71 3575.67 12475.01 16389.37 18563.13 10691.44 30267.19 22682.80 15592.12 182
v119275.98 22873.92 23582.15 20279.73 31966.24 13391.22 19789.75 23072.67 17768.49 24581.42 28949.86 24594.27 20967.08 22765.02 29585.95 282
114514_t79.17 17177.67 17783.68 16395.32 2965.53 15092.85 11991.60 16063.49 30067.92 25190.63 16446.65 27295.72 15267.01 22883.54 14789.79 216
Fast-Effi-MVS+81.14 13580.01 14284.51 13990.24 13965.86 14194.12 6289.15 25573.81 15475.37 16088.26 20157.26 16494.53 20066.97 22984.92 13693.15 148
无先验92.71 12492.61 11862.03 31697.01 9366.63 23093.97 124
v192192075.63 23673.49 24182.06 20879.38 32466.35 12991.07 20489.48 23971.98 19667.99 24881.22 29449.16 25493.90 23166.56 23164.56 30285.92 284
cl____76.07 22374.67 21980.28 24485.15 25461.76 24590.12 23188.73 27571.16 22565.43 27581.57 28661.15 12492.95 25066.54 23262.17 31986.13 277
DIV-MVS_self_test76.07 22374.67 21980.28 24485.14 25561.75 24690.12 23188.73 27571.16 22565.42 27681.60 28561.15 12492.94 25466.54 23262.16 32186.14 275
Fast-Effi-MVS+-dtu75.04 24273.37 24280.07 25180.86 30459.52 28591.20 19985.38 32271.90 19965.20 27784.84 24741.46 30092.97 24966.50 23472.96 23887.73 244
UniMVSNet_NR-MVSNet78.15 19377.55 18079.98 25584.46 26760.26 27492.25 14393.20 9377.50 10368.88 23886.61 22766.10 6492.13 28366.38 23562.55 31587.54 245
DU-MVS76.86 21275.84 20779.91 25882.96 28760.26 27491.26 19491.54 16176.46 11868.88 23886.35 23056.16 18192.13 28366.38 23562.55 31587.35 252
1112_ss80.56 14679.83 14682.77 18288.65 17760.78 26292.29 14288.36 28672.58 17972.46 19494.95 6465.09 7493.42 24266.38 23577.71 19994.10 117
FIs79.47 16779.41 15479.67 26485.95 24059.40 28691.68 17593.94 6378.06 9168.96 23788.28 19966.61 6191.77 29166.20 23874.99 22287.82 243
tpm78.58 18677.03 19083.22 17585.94 24264.56 16783.21 31591.14 17978.31 8873.67 17879.68 31664.01 8892.09 28566.07 23971.26 25393.03 153
ACMM69.62 1374.34 24872.73 25179.17 27384.25 27257.87 30490.36 22489.93 22463.17 30665.64 27486.04 23737.79 32394.10 21665.89 24071.52 25085.55 291
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Vis-MVSNetpermissive80.92 14179.98 14483.74 15988.48 18061.80 24393.44 10188.26 29273.96 15077.73 13391.76 14549.94 24494.76 18465.84 24190.37 9094.65 95
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Test_1112_low_res79.56 16578.60 16582.43 19088.24 19160.39 27392.09 15187.99 29772.10 19571.84 20187.42 21764.62 8293.04 24665.80 24277.30 20793.85 131
v1074.77 24572.54 25581.46 21880.33 31366.71 12189.15 25689.08 26070.94 23063.08 30079.86 31352.52 22294.04 22365.70 24362.17 31983.64 311
thisisatest053081.15 13480.07 14084.39 14388.26 18965.63 14691.40 18394.62 4071.27 22470.93 21189.18 18772.47 2996.04 13765.62 24476.89 21191.49 188
D2MVS73.80 25572.02 26079.15 27579.15 32862.97 21888.58 26590.07 21872.94 17059.22 32178.30 32342.31 29992.70 26465.59 24572.00 24681.79 338
MVP-Stereo77.12 20976.23 20179.79 26281.72 29966.34 13089.29 25190.88 18970.56 23962.01 30882.88 26849.34 24994.13 21565.55 24693.80 4178.88 363
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v124075.21 24172.98 24681.88 21079.20 32666.00 13790.75 21389.11 25871.63 21567.41 26181.22 29447.36 26893.87 23265.46 24764.72 30085.77 286
miper_lstm_enhance73.05 26171.73 26477.03 29983.80 27658.32 30081.76 32388.88 26869.80 24861.01 31178.23 32557.19 16587.51 34065.34 24859.53 34085.27 298
原ACMM184.42 14193.21 6664.27 18393.40 8865.39 28779.51 11292.50 12658.11 15896.69 11265.27 24993.96 3892.32 172
tt080573.07 26070.73 27280.07 25178.37 34057.05 31687.78 27792.18 13361.23 32367.04 26586.49 22931.35 35494.58 19465.06 25067.12 27988.57 233
UniMVSNet (Re)77.58 20276.78 19479.98 25584.11 27360.80 26191.76 17193.17 9576.56 11769.93 22784.78 24863.32 10392.36 27864.89 25162.51 31786.78 262
BH-w/o80.49 14879.30 15784.05 15490.83 13064.36 18093.60 9289.42 24374.35 14169.09 23290.15 17655.23 19295.61 15664.61 25286.43 12992.17 180
AdaColmapbinary78.94 17677.00 19284.76 12696.34 1765.86 14192.66 12987.97 29962.18 31470.56 21492.37 13243.53 29397.35 7264.50 25382.86 15291.05 201
PCF-MVS73.15 979.29 16977.63 17984.29 14786.06 23865.96 13987.03 28791.10 18069.86 24769.79 22890.64 16257.54 16396.59 11464.37 25482.29 15790.32 208
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
API-MVS82.28 11780.53 13687.54 3896.13 2270.59 3093.63 9191.04 18765.72 28675.45 15992.83 12256.11 18398.89 2064.10 25589.75 9693.15 148
UniMVSNet_ETH3D72.74 26770.53 27479.36 27078.62 33856.64 32085.01 29989.20 25163.77 29864.84 28184.44 25334.05 34291.86 28963.94 25670.89 25589.57 220
Anonymous2023121173.08 25970.39 27581.13 22690.62 13263.33 21091.40 18390.06 22051.84 36164.46 28780.67 30236.49 33394.07 21963.83 25764.17 30485.98 281
MS-PatchMatch77.90 19976.50 19782.12 20485.99 23969.95 3991.75 17392.70 11173.97 14962.58 30584.44 25341.11 30295.78 14463.76 25892.17 6480.62 349
新几何184.73 12792.32 8964.28 18291.46 16659.56 33479.77 10992.90 11856.95 17296.57 11663.40 25992.91 5693.34 142
dmvs_re76.93 21175.36 21481.61 21587.78 20560.71 26780.00 34387.99 29779.42 6769.02 23589.47 18446.77 27094.32 20563.38 26074.45 22689.81 215
GeoE78.90 17777.43 18283.29 17388.95 17162.02 23992.31 14186.23 31570.24 24271.34 20989.27 18654.43 20394.04 22363.31 26180.81 17693.81 132
IterMVS72.65 27170.83 26978.09 28682.17 29562.96 21987.64 28186.28 31371.56 21860.44 31478.85 32145.42 28586.66 34463.30 26261.83 32384.65 304
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CMPMVSbinary48.56 2166.77 31464.41 31573.84 32470.65 37350.31 35177.79 35485.73 32145.54 37744.76 37682.14 27735.40 33790.14 31663.18 26374.54 22581.07 344
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs473.92 25471.81 26380.25 24679.17 32765.24 15587.43 28387.26 30567.64 27263.46 29583.91 25948.96 25691.53 30062.94 26465.49 28983.96 307
tttt051779.50 16678.53 16682.41 19387.22 21661.43 25289.75 24394.76 3269.29 25367.91 25288.06 20872.92 2595.63 15462.91 26573.90 23390.16 210
FC-MVSNet-test77.99 19578.08 17277.70 28884.89 26055.51 32790.27 22793.75 7276.87 10866.80 27087.59 21465.71 6990.23 31462.89 26673.94 23187.37 250
Baseline_NR-MVSNet73.99 25372.83 24877.48 29280.78 30659.29 29091.79 16884.55 33068.85 25968.99 23680.70 30056.16 18192.04 28662.67 26760.98 33281.11 343
IterMVS-SCA-FT71.55 27869.97 27776.32 30681.48 30060.67 26987.64 28185.99 31866.17 28259.50 31978.88 32045.53 28383.65 36162.58 26861.93 32284.63 305
IS-MVSNet80.14 15579.41 15482.33 19487.91 19960.08 27891.97 16088.27 29072.90 17471.44 20891.73 14761.44 12393.66 23762.47 26986.53 12793.24 145
WR-MVS76.76 21775.74 20979.82 26184.60 26362.27 23692.60 13292.51 12176.06 12067.87 25585.34 24156.76 17390.24 31362.20 27063.69 31086.94 260
pmmvs573.35 25871.52 26578.86 27778.64 33760.61 27191.08 20286.90 30767.69 26963.32 29683.64 26044.33 29190.53 30762.04 27166.02 28785.46 293
TranMVSNet+NR-MVSNet75.86 23174.52 22579.89 25982.44 29260.64 27091.37 18891.37 16876.63 11567.65 25786.21 23452.37 22491.55 29661.84 27260.81 33387.48 247
CVMVSNet74.04 25274.27 22973.33 32785.33 25043.94 37789.53 24788.39 28554.33 35570.37 21890.13 17749.17 25384.05 35761.83 27379.36 18691.99 183
PM-MVS59.40 34256.59 34467.84 35363.63 38441.86 38076.76 35663.22 38859.01 33651.07 35772.27 35811.72 39183.25 36561.34 27450.28 36678.39 367
testdata296.09 13261.26 275
UA-Net80.02 15879.65 14881.11 22789.33 15957.72 30686.33 29489.00 26677.44 10481.01 9389.15 18859.33 14795.90 14161.01 27684.28 14489.73 218
NR-MVSNet76.05 22674.59 22280.44 24082.96 28762.18 23790.83 21091.73 15277.12 10760.96 31286.35 23059.28 14891.80 29060.74 27761.34 33087.35 252
XVG-ACMP-BASELINE68.04 30565.53 30575.56 31074.06 36252.37 34078.43 34985.88 31962.03 31658.91 32581.21 29620.38 37991.15 30460.69 27868.18 27283.16 321
test_post178.95 34620.70 40353.05 21791.50 30160.43 279
SCA75.82 23272.76 24985.01 11586.63 22770.08 3581.06 33289.19 25271.60 21670.01 22377.09 33545.53 28390.25 31060.43 27973.27 23594.68 92
pm-mvs172.89 26471.09 26878.26 28479.10 33057.62 30990.80 21189.30 24767.66 27062.91 30281.78 28149.11 25592.95 25060.29 28158.89 34384.22 306
TR-MVS78.77 18277.37 18782.95 17990.49 13460.88 26093.67 8890.07 21870.08 24474.51 16891.37 15545.69 28295.70 15360.12 28280.32 17892.29 173
MDTV_nov1_ep13_2view59.90 28080.13 34167.65 27172.79 18654.33 20559.83 28392.58 165
GBi-Net75.65 23473.83 23681.10 22888.85 17265.11 15990.01 23590.32 20570.84 23267.04 26580.25 30948.03 26091.54 29759.80 28469.34 26186.64 263
test175.65 23473.83 23681.10 22888.85 17265.11 15990.01 23590.32 20570.84 23267.04 26580.25 30948.03 26091.54 29759.80 28469.34 26186.64 263
FMVSNet377.73 20076.04 20482.80 18191.20 12368.99 6291.87 16491.99 13873.35 16367.04 26583.19 26656.62 17792.14 28259.80 28469.34 26187.28 254
BH-untuned78.68 18377.08 18983.48 17089.84 14663.74 19492.70 12588.59 28171.57 21766.83 26988.65 19251.75 22895.39 16659.03 28784.77 13891.32 195
Vis-MVSNet (Re-imp)79.24 17079.57 14978.24 28588.46 18152.29 34190.41 22289.12 25774.24 14369.13 23191.91 14365.77 6890.09 31759.00 28888.09 10792.33 171
FMVSNet276.07 22374.01 23482.26 19888.85 17267.66 9591.33 19191.61 15970.84 23265.98 27282.25 27548.03 26092.00 28758.46 28968.73 26987.10 257
mvsany_test348.86 35246.35 35556.41 36646.00 40031.67 39662.26 38447.25 40143.71 38245.54 37468.15 36910.84 39264.44 39857.95 29035.44 38973.13 376
v7n71.31 27968.65 28679.28 27176.40 35360.77 26386.71 29289.45 24164.17 29558.77 32678.24 32444.59 29093.54 23857.76 29161.75 32583.52 314
QAPM79.95 16077.39 18687.64 3189.63 15171.41 1893.30 10493.70 7365.34 28967.39 26291.75 14647.83 26598.96 1657.71 29289.81 9392.54 166
EPMVS78.49 18875.98 20586.02 8091.21 12269.68 4880.23 33991.20 17475.25 13172.48 19378.11 32654.65 19893.69 23657.66 29383.04 15194.69 91
WB-MVSnew77.14 20876.18 20380.01 25486.18 23663.24 21291.26 19494.11 6071.72 20973.52 17987.29 22045.14 28793.00 24856.98 29479.42 18483.80 310
PLCcopyleft68.80 1475.23 24073.68 23979.86 26092.93 7358.68 29790.64 21788.30 28860.90 32464.43 28890.53 16542.38 29894.57 19656.52 29576.54 21386.33 269
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EPNet_dtu78.80 18079.26 15877.43 29388.06 19549.71 35491.96 16191.95 14077.67 9876.56 14891.28 15658.51 15390.20 31556.37 29680.95 17392.39 169
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-RMVSNet79.46 16877.65 17884.89 11891.68 11065.66 14493.55 9488.09 29572.93 17173.37 18091.12 15846.20 27996.12 13156.28 29785.61 13492.91 157
UnsupCasMVSNet_eth65.79 31963.10 32173.88 32370.71 37250.29 35281.09 33189.88 22672.58 17949.25 36474.77 35032.57 34887.43 34155.96 29841.04 38083.90 309
pmmvs667.57 30964.76 31076.00 30972.82 36753.37 33788.71 26286.78 31153.19 35757.58 33478.03 32735.33 33892.41 27555.56 29954.88 35582.21 335
pmmvs-eth3d65.53 32262.32 32775.19 31369.39 37759.59 28382.80 31983.43 34062.52 31251.30 35672.49 35332.86 34587.16 34355.32 30050.73 36478.83 364
FE-MVS75.97 22973.02 24584.82 12189.78 14765.56 14877.44 35591.07 18464.55 29272.66 18779.85 31446.05 28196.69 11254.97 30180.82 17592.21 179
OpenMVScopyleft70.45 1178.54 18775.92 20686.41 7285.93 24371.68 1692.74 12292.51 12166.49 28064.56 28491.96 14043.88 29298.10 3754.61 30290.65 8789.44 224
FMVSNet172.71 26869.91 27981.10 22883.60 28065.11 15990.01 23590.32 20563.92 29663.56 29480.25 30936.35 33491.54 29754.46 30366.75 28286.64 263
PatchmatchNetpermissive77.46 20374.63 22185.96 8289.55 15470.35 3379.97 34489.55 23872.23 19070.94 21076.91 33757.03 16792.79 26054.27 30481.17 17194.74 90
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MIMVSNet71.64 27568.44 28981.23 22381.97 29864.44 17373.05 36588.80 27269.67 24964.59 28274.79 34932.79 34687.82 33453.99 30576.35 21591.42 190
CNLPA74.31 24972.30 25780.32 24291.49 11661.66 24890.85 20980.72 35256.67 34863.85 29290.64 16246.75 27190.84 30553.79 30675.99 21888.47 237
tpm cat175.30 23972.21 25884.58 13688.52 17867.77 9278.16 35388.02 29661.88 31968.45 24676.37 34160.65 13094.03 22553.77 30774.11 22991.93 184
OurMVSNet-221017-064.68 32462.17 32872.21 33776.08 35647.35 36580.67 33481.02 35056.19 34951.60 35379.66 31727.05 36688.56 32653.60 30853.63 35880.71 348
PatchMatch-RL72.06 27369.98 27678.28 28389.51 15555.70 32683.49 30883.39 34261.24 32263.72 29382.76 26934.77 33993.03 24753.37 30977.59 20186.12 278
CR-MVSNet73.79 25670.82 27182.70 18483.15 28467.96 8870.25 36984.00 33573.67 15969.97 22572.41 35557.82 16089.48 32152.99 31073.13 23690.64 205
USDC67.43 31264.51 31376.19 30777.94 34555.29 32878.38 35085.00 32673.17 16548.36 36680.37 30621.23 37692.48 27452.15 31164.02 30780.81 347
CP-MVSNet70.50 28369.91 27972.26 33680.71 30751.00 34887.23 28690.30 20967.84 26859.64 31882.69 27050.23 24282.30 37151.28 31259.28 34183.46 316
F-COLMAP70.66 28168.44 28977.32 29586.37 23355.91 32488.00 27386.32 31256.94 34657.28 33588.07 20733.58 34492.49 27351.02 31368.37 27183.55 312
PS-CasMVS69.86 29069.13 28572.07 34080.35 31250.57 35087.02 28889.75 23067.27 27459.19 32282.28 27446.58 27382.24 37250.69 31459.02 34283.39 318
dp75.01 24372.09 25983.76 15889.28 16166.22 13479.96 34589.75 23071.16 22567.80 25677.19 33451.81 22792.54 27150.39 31571.44 25292.51 168
test_vis3_rt40.46 36037.79 36148.47 37744.49 40233.35 39466.56 38032.84 40832.39 39029.65 39039.13 3983.91 40668.65 38950.17 31640.99 38143.40 393
test0.0.03 172.76 26672.71 25272.88 33180.25 31447.99 36291.22 19789.45 24171.51 22062.51 30687.66 21353.83 20885.06 35350.16 31767.84 27785.58 289
UnsupCasMVSNet_bld61.60 33657.71 34073.29 32868.73 37851.64 34378.61 34889.05 26257.20 34446.11 36961.96 38028.70 36288.60 32550.08 31838.90 38479.63 357
K. test v363.09 33259.61 33673.53 32676.26 35449.38 35883.27 31277.15 35964.35 29447.77 36872.32 35728.73 36187.79 33549.93 31936.69 38683.41 317
JIA-IIPM66.06 31762.45 32676.88 30381.42 30254.45 33457.49 39188.67 27849.36 36863.86 29146.86 38956.06 18490.25 31049.53 32068.83 26785.95 282
CL-MVSNet_self_test69.92 28868.09 29275.41 31173.25 36455.90 32590.05 23489.90 22569.96 24561.96 30976.54 33851.05 23587.64 33749.51 32150.59 36582.70 329
FMVSNet568.04 30565.66 30475.18 31484.43 26857.89 30383.54 30786.26 31461.83 32053.64 34773.30 35237.15 32985.08 35248.99 32261.77 32482.56 332
TransMVSNet (Re)70.07 28767.66 29377.31 29680.62 31059.13 29391.78 17084.94 32765.97 28360.08 31780.44 30550.78 23691.87 28848.84 32345.46 37380.94 345
EU-MVSNet64.01 32863.01 32267.02 35874.40 36138.86 38983.27 31286.19 31645.11 37854.27 34381.15 29736.91 33280.01 37948.79 32457.02 34782.19 336
PEN-MVS69.46 29368.56 28772.17 33879.27 32549.71 35486.90 29089.24 24967.24 27759.08 32382.51 27347.23 26983.54 36248.42 32557.12 34683.25 319
KD-MVS_self_test60.87 33858.60 33867.68 35566.13 38239.93 38675.63 36284.70 32857.32 34349.57 36268.45 36829.55 35882.87 36748.09 32647.94 36980.25 354
KD-MVS_2432*160069.03 29666.37 29977.01 30085.56 24861.06 25781.44 32890.25 21167.27 27458.00 33076.53 33954.49 20087.63 33848.04 32735.77 38782.34 333
miper_refine_blended69.03 29666.37 29977.01 30085.56 24861.06 25781.44 32890.25 21167.27 27458.00 33076.53 33954.49 20087.63 33848.04 32735.77 38782.34 333
MDTV_nov1_ep1372.61 25389.06 16868.48 7280.33 33790.11 21771.84 20471.81 20275.92 34553.01 21893.92 23048.04 32773.38 234
thres20079.66 16378.33 16783.66 16592.54 8765.82 14393.06 11096.31 374.90 13673.30 18188.66 19159.67 14295.61 15647.84 33078.67 19389.56 221
RPSCF64.24 32761.98 32971.01 34476.10 35545.00 37475.83 36175.94 36146.94 37458.96 32484.59 25031.40 35382.00 37347.76 33160.33 33986.04 279
lessismore_v073.72 32572.93 36647.83 36361.72 39045.86 37273.76 35128.63 36389.81 31847.75 33231.37 39283.53 313
EG-PatchMatch MVS68.55 30065.41 30677.96 28778.69 33662.93 22089.86 24089.17 25360.55 32650.27 35977.73 32922.60 37494.06 22047.18 33372.65 24276.88 371
test_f46.58 35343.45 35755.96 36745.18 40132.05 39561.18 38549.49 39933.39 38942.05 38262.48 3797.00 39865.56 39447.08 33443.21 37770.27 382
ACMH+65.35 1667.65 30864.55 31276.96 30284.59 26457.10 31588.08 27080.79 35158.59 33953.00 34881.09 29826.63 36792.95 25046.51 33561.69 32880.82 346
Anonymous2024052162.09 33459.08 33771.10 34367.19 38048.72 36083.91 30585.23 32450.38 36547.84 36771.22 36420.74 37785.51 35146.47 33658.75 34479.06 361
WR-MVS_H70.59 28269.94 27872.53 33381.03 30351.43 34587.35 28492.03 13767.38 27360.23 31680.70 30055.84 18783.45 36346.33 33758.58 34582.72 327
Patchmtry67.53 31063.93 31778.34 28182.12 29664.38 17768.72 37384.00 33548.23 37259.24 32072.41 35557.82 16089.27 32246.10 33856.68 35081.36 340
SixPastTwentyTwo64.92 32361.78 33074.34 32178.74 33549.76 35383.42 31179.51 35762.86 30850.27 35977.35 33030.92 35790.49 30845.89 33947.06 37082.78 324
ambc69.61 34761.38 38941.35 38249.07 39685.86 32050.18 36166.40 37110.16 39388.14 33145.73 34044.20 37479.32 360
thres100view90078.37 18977.01 19182.46 18991.89 10563.21 21391.19 20096.33 172.28 18970.45 21787.89 21060.31 13395.32 16845.16 34177.58 20288.83 226
tfpn200view978.79 18177.43 18282.88 18092.21 9364.49 16992.05 15496.28 473.48 16171.75 20388.26 20160.07 13895.32 16845.16 34177.58 20288.83 226
thres40078.68 18377.43 18282.43 19092.21 9364.49 16992.05 15496.28 473.48 16171.75 20388.26 20160.07 13895.32 16845.16 34177.58 20287.48 247
DTE-MVSNet68.46 30267.33 29571.87 34277.94 34549.00 35986.16 29588.58 28266.36 28158.19 32782.21 27646.36 27483.87 36044.97 34455.17 35382.73 326
pmmvs355.51 34751.50 35267.53 35657.90 39250.93 34980.37 33673.66 36940.63 38644.15 37964.75 37516.30 38378.97 38044.77 34540.98 38272.69 377
our_test_368.29 30364.69 31179.11 27678.92 33164.85 16688.40 26885.06 32560.32 32952.68 34976.12 34340.81 30389.80 32044.25 34655.65 35182.67 331
tpmvs72.88 26569.76 28182.22 19990.98 12567.05 11278.22 35288.30 28863.10 30764.35 28974.98 34855.09 19594.27 20943.25 34769.57 26085.34 296
ITE_SJBPF70.43 34574.44 36047.06 36977.32 35860.16 33054.04 34583.53 26123.30 37384.01 35843.07 34861.58 32980.21 355
Anonymous2023120667.53 31065.78 30172.79 33274.95 35847.59 36488.23 26987.32 30361.75 32158.07 32977.29 33237.79 32387.29 34242.91 34963.71 30983.48 315
YYNet163.76 33160.14 33474.62 31878.06 34460.19 27783.46 31083.99 33756.18 35039.25 38471.56 36237.18 32883.34 36442.90 35048.70 36880.32 352
MDA-MVSNet_test_wron63.78 33060.16 33374.64 31778.15 34360.41 27283.49 30884.03 33356.17 35139.17 38571.59 36137.22 32783.24 36642.87 35148.73 36780.26 353
MSDG69.54 29265.73 30280.96 23385.11 25763.71 19784.19 30383.28 34356.95 34554.50 34284.03 25631.50 35296.03 13842.87 35169.13 26683.14 322
thres600view778.00 19476.66 19682.03 20991.93 10263.69 19991.30 19396.33 172.43 18470.46 21687.89 21060.31 13394.92 18242.64 35376.64 21287.48 247
ACMH63.93 1768.62 29964.81 30980.03 25385.22 25363.25 21187.72 27884.66 32960.83 32551.57 35479.43 31927.29 36594.96 17941.76 35464.84 29781.88 337
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
testgi64.48 32662.87 32469.31 34971.24 36840.62 38485.49 29679.92 35565.36 28854.18 34483.49 26323.74 37284.55 35441.60 35560.79 33482.77 325
PatchT69.11 29565.37 30780.32 24282.07 29763.68 20067.96 37887.62 30150.86 36469.37 22965.18 37357.09 16688.53 32741.59 35666.60 28388.74 230
LF4IMVS54.01 34952.12 35059.69 36462.41 38739.91 38768.59 37468.28 38342.96 38444.55 37875.18 34714.09 39068.39 39041.36 35751.68 36270.78 380
ADS-MVSNet266.90 31363.44 32077.26 29788.06 19560.70 26868.01 37675.56 36457.57 34064.48 28569.87 36538.68 30984.10 35640.87 35867.89 27586.97 258
ADS-MVSNet68.54 30164.38 31681.03 23288.06 19566.90 11668.01 37684.02 33457.57 34064.48 28569.87 36538.68 30989.21 32340.87 35867.89 27586.97 258
LTVRE_ROB59.60 1966.27 31663.54 31974.45 31984.00 27551.55 34467.08 37983.53 33958.78 33754.94 34180.31 30734.54 34093.23 24440.64 36068.03 27378.58 366
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVS-HIRNet60.25 34055.55 34774.35 32084.37 26956.57 32171.64 36774.11 36834.44 38845.54 37442.24 39531.11 35689.81 31840.36 36176.10 21776.67 372
ppachtmachnet_test67.72 30763.70 31879.77 26378.92 33166.04 13688.68 26382.90 34560.11 33155.45 33975.96 34439.19 30890.55 30639.53 36252.55 36182.71 328
new-patchmatchnet59.30 34356.48 34567.79 35465.86 38344.19 37582.47 32081.77 34759.94 33243.65 38066.20 37227.67 36481.68 37439.34 36341.40 37977.50 370
AllTest61.66 33558.06 33972.46 33479.57 32051.42 34680.17 34068.61 38151.25 36245.88 37081.23 29219.86 38186.58 34538.98 36457.01 34879.39 358
TestCases72.46 33479.57 32051.42 34668.61 38151.25 36245.88 37081.23 29219.86 38186.58 34538.98 36457.01 34879.39 358
test20.0363.83 32962.65 32567.38 35770.58 37439.94 38586.57 29384.17 33263.29 30351.86 35277.30 33137.09 33082.47 36938.87 36654.13 35779.73 356
TAPA-MVS70.22 1274.94 24473.53 24079.17 27390.40 13652.07 34289.19 25589.61 23762.69 31170.07 22292.67 12448.89 25794.32 20538.26 36779.97 18091.12 200
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tmp_tt22.26 37123.75 37317.80 3875.23 41112.06 41235.26 39839.48 4052.82 40518.94 39644.20 39422.23 37524.64 40636.30 3689.31 40316.69 400
DSMNet-mixed56.78 34654.44 34963.79 36163.21 38529.44 40064.43 38264.10 38742.12 38551.32 35571.60 36031.76 35175.04 38236.23 36965.20 29486.87 261
TinyColmap60.32 33956.42 34672.00 34178.78 33453.18 33878.36 35175.64 36352.30 35841.59 38375.82 34614.76 38888.35 32935.84 37054.71 35674.46 375
MDA-MVSNet-bldmvs61.54 33757.70 34173.05 32979.53 32257.00 31983.08 31681.23 34957.57 34034.91 38872.45 35432.79 34686.26 34735.81 37141.95 37875.89 373
RPMNet70.42 28465.68 30384.63 13483.15 28467.96 8870.25 36990.45 19946.83 37569.97 22565.10 37456.48 18095.30 17135.79 37273.13 23690.64 205
Patchmatch-test65.86 31860.94 33280.62 23983.75 27758.83 29558.91 39075.26 36644.50 38050.95 35877.09 33558.81 15287.90 33235.13 37364.03 30695.12 74
OpenMVS_ROBcopyleft61.12 1866.39 31562.92 32376.80 30476.51 35257.77 30589.22 25383.41 34155.48 35253.86 34677.84 32826.28 36893.95 22934.90 37468.76 26878.68 365
test_method38.59 36235.16 36548.89 37654.33 39321.35 40645.32 39753.71 3957.41 40328.74 39151.62 3878.70 39652.87 40133.73 37532.89 39172.47 378
LCM-MVSNet40.54 35835.79 36354.76 37136.92 40730.81 39751.41 39469.02 38022.07 39424.63 39445.37 3914.56 40365.81 39333.67 37634.50 39067.67 383
DP-MVS69.90 28966.48 29680.14 24995.36 2862.93 22089.56 24476.11 36050.27 36657.69 33385.23 24239.68 30695.73 14833.35 37771.05 25481.78 339
TDRefinement55.28 34851.58 35166.39 35959.53 39146.15 37176.23 35972.80 37144.60 37942.49 38176.28 34215.29 38682.39 37033.20 37843.75 37570.62 381
COLMAP_ROBcopyleft57.96 2062.98 33359.65 33572.98 33081.44 30153.00 33983.75 30675.53 36548.34 37148.81 36581.40 29024.14 37090.30 30932.95 37960.52 33675.65 374
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
new_pmnet49.31 35146.44 35457.93 36562.84 38640.74 38368.47 37562.96 38936.48 38735.09 38757.81 38414.97 38772.18 38632.86 38046.44 37160.88 387
myMVS_eth3d72.58 27272.74 25072.10 33987.87 20149.45 35688.07 27189.01 26372.91 17263.11 29888.10 20563.63 9585.54 34932.73 38169.23 26481.32 341
MIMVSNet160.16 34157.33 34268.67 35169.71 37544.13 37678.92 34784.21 33155.05 35344.63 37771.85 35923.91 37181.54 37532.63 38255.03 35480.35 351
LS3D69.17 29466.40 29877.50 29191.92 10356.12 32385.12 29880.37 35446.96 37356.50 33787.51 21637.25 32693.71 23532.52 38379.40 18582.68 330
tfpnnormal70.10 28667.36 29478.32 28283.45 28260.97 25988.85 26092.77 10964.85 29160.83 31378.53 32243.52 29493.48 24031.73 38461.70 32780.52 350
N_pmnet50.55 35049.11 35354.88 37077.17 3504.02 41384.36 3022.00 41148.59 36945.86 37268.82 36732.22 34982.80 36831.58 38551.38 36377.81 369
WAC-MVS49.45 35631.56 386
dmvs_testset65.55 32166.45 29762.86 36279.87 31822.35 40576.55 35771.74 37577.42 10655.85 33887.77 21251.39 23280.69 37731.51 38765.92 28885.55 291
testing370.38 28570.83 26969.03 35085.82 24443.93 37890.72 21490.56 19868.06 26660.24 31586.82 22664.83 7984.12 35526.33 38864.10 30579.04 362
PMMVS237.93 36333.61 36650.92 37346.31 39924.76 40360.55 38850.05 39728.94 39320.93 39547.59 3884.41 40565.13 39525.14 38918.55 39962.87 386
test_040264.54 32561.09 33174.92 31684.10 27460.75 26587.95 27479.71 35652.03 35952.41 35077.20 33332.21 35091.64 29323.14 39061.03 33172.36 379
APD_test140.50 35937.31 36250.09 37551.88 39535.27 39259.45 38952.59 39621.64 39526.12 39357.80 3854.56 40366.56 39222.64 39139.09 38348.43 391
Syy-MVS69.65 29169.52 28370.03 34687.87 20143.21 37988.07 27189.01 26372.91 17263.11 29888.10 20545.28 28685.54 34922.07 39269.23 26481.32 341
ANet_high40.27 36135.20 36455.47 36834.74 40834.47 39363.84 38371.56 37648.42 37018.80 39741.08 3969.52 39564.45 39720.18 3938.66 40467.49 384
DeepMVS_CXcopyleft34.71 38451.45 39624.73 40428.48 41031.46 39117.49 40052.75 3865.80 40142.60 40518.18 39419.42 39836.81 397
EGC-MVSNET42.35 35738.09 36055.11 36974.57 35946.62 37071.63 36855.77 3920.04 4060.24 40762.70 37814.24 38974.91 38317.59 39546.06 37243.80 392
testf132.77 36529.47 36842.67 38141.89 40430.81 39752.07 39243.45 40215.45 39818.52 39844.82 3922.12 40758.38 39916.05 39630.87 39338.83 394
APD_test232.77 36529.47 36842.67 38141.89 40430.81 39752.07 39243.45 40215.45 39818.52 39844.82 3922.12 40758.38 39916.05 39630.87 39338.83 394
FPMVS45.64 35543.10 35953.23 37251.42 39736.46 39064.97 38171.91 37429.13 39227.53 39261.55 3819.83 39465.01 39616.00 39855.58 35258.22 388
Gipumacopyleft34.91 36431.44 36745.30 37970.99 37139.64 38819.85 40172.56 37220.10 39716.16 40121.47 4025.08 40271.16 38713.07 39943.70 37625.08 399
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVEpermissive24.84 2324.35 36919.77 37538.09 38334.56 40926.92 40226.57 39938.87 40611.73 40211.37 40327.44 3991.37 41050.42 40211.41 40014.60 40036.93 396
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
WB-MVS46.23 35444.94 35650.11 37462.13 38821.23 40776.48 35855.49 39345.89 37635.78 38661.44 38235.54 33672.83 3859.96 40121.75 39656.27 389
PMVScopyleft26.43 2231.84 36728.16 37042.89 38025.87 41027.58 40150.92 39549.78 39821.37 39614.17 40240.81 3972.01 40966.62 3919.61 40238.88 38534.49 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
SSC-MVS44.51 35643.35 35847.99 37861.01 39018.90 40974.12 36454.36 39443.42 38334.10 38960.02 38334.42 34170.39 3889.14 40319.57 39754.68 390
E-PMN24.61 36824.00 37226.45 38543.74 40318.44 41060.86 38639.66 40415.11 4009.53 40422.10 4016.52 40046.94 4038.31 40410.14 40113.98 401
EMVS23.76 37023.20 37425.46 38641.52 40616.90 41160.56 38738.79 40714.62 4018.99 40520.24 4047.35 39745.82 4047.25 4059.46 40213.64 402
wuyk23d11.30 37310.95 37612.33 38848.05 39819.89 40825.89 4001.92 4123.58 4043.12 4061.37 4060.64 41115.77 4076.23 4067.77 4051.35 403
testmvs7.23 3759.62 3780.06 3900.04 4120.02 41584.98 3000.02 4130.03 4070.18 4081.21 4070.01 4130.02 4080.14 4070.01 4060.13 405
test1236.92 3769.21 3790.08 3890.03 4130.05 41481.65 3260.01 4140.02 4080.14 4090.85 4080.03 4120.02 4080.12 4080.00 4070.16 404
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
cdsmvs_eth3d_5k19.86 37226.47 3710.00 3910.00 4140.00 4160.00 40293.45 840.00 4090.00 41095.27 5649.56 2470.00 4100.00 4090.00 4070.00 406
pcd_1.5k_mvsjas4.46 3775.95 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40953.55 2120.00 4100.00 4090.00 4070.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
ab-mvs-re7.91 37410.55 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41094.95 640.00 4140.00 4100.00 4090.00 4070.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
FOURS193.95 4561.77 24493.96 7091.92 14162.14 31586.57 44
test_one_060196.32 1869.74 4694.18 5771.42 22290.67 1896.85 1674.45 18
eth-test20.00 414
eth-test0.00 414
test_241102_ONE96.45 1269.38 5194.44 4671.65 21192.11 697.05 776.79 999.11 6
save fliter93.84 4867.89 9095.05 3992.66 11478.19 89
test072696.40 1569.99 3696.76 794.33 5471.92 19791.89 1097.11 673.77 21
GSMVS94.68 92
test_part296.29 1968.16 8490.78 16
sam_mvs157.85 15994.68 92
sam_mvs54.91 197
MTGPAbinary92.23 127
test_post23.01 40056.49 17992.67 265
patchmatchnet-post67.62 37057.62 16290.25 310
MTMP93.77 8432.52 409
TEST994.18 4167.28 10594.16 5893.51 8071.75 20885.52 5495.33 5168.01 5097.27 80
test_894.19 4067.19 10794.15 6193.42 8671.87 20285.38 5795.35 5068.19 4896.95 102
agg_prior94.16 4366.97 11593.31 8984.49 6596.75 111
test_prior467.18 10993.92 73
test_prior86.42 7194.71 3567.35 10493.10 9996.84 10895.05 76
新几何291.41 181
旧先验191.94 10160.74 26691.50 16494.36 8265.23 7391.84 6994.55 99
原ACMM292.01 156
test22289.77 14861.60 24989.55 24589.42 24356.83 34777.28 14092.43 13052.76 22091.14 8393.09 150
segment_acmp65.94 66
testdata189.21 25477.55 102
test1287.09 4894.60 3668.86 6492.91 10582.67 8165.44 7197.55 6293.69 4694.84 85
plane_prior786.94 22361.51 250
plane_prior687.23 21562.32 23450.66 237
plane_prior489.14 189
plane_prior361.95 24279.09 7672.53 191
plane_prior293.13 10878.81 83
plane_prior187.15 217
plane_prior62.42 23093.85 7779.38 6878.80 192
n20.00 415
nn0.00 415
door-mid66.01 385
test1193.01 101
door66.57 384
HQP5-MVS63.66 201
HQP-NCC87.54 20894.06 6379.80 6074.18 170
ACMP_Plane87.54 20894.06 6379.80 6074.18 170
HQP4-MVS74.18 17095.61 15688.63 231
HQP3-MVS91.70 15678.90 190
HQP2-MVS51.63 230
NP-MVS87.41 21163.04 21690.30 171
ACMMP++_ref71.63 248
ACMMP++69.72 258
Test By Simon54.21 206