This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MCST-MVS91.08 191.46 289.94 497.66 273.37 897.13 295.58 989.33 185.77 4296.26 2372.84 2699.38 192.64 995.93 997.08 9
DPM-MVS90.70 290.52 791.24 189.68 14476.68 297.29 195.35 1182.87 1791.58 1097.22 379.93 599.10 983.12 8297.64 297.94 1
DVP-MVS++90.53 391.09 488.87 1397.31 469.91 3693.96 6494.37 4572.48 16392.07 696.85 1283.82 299.15 291.53 1997.42 497.55 4
MSP-MVS90.38 491.87 185.88 7992.83 7164.03 18093.06 9994.33 4782.19 2393.65 396.15 2785.89 197.19 7791.02 2397.75 196.43 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS90.32 590.89 688.61 1896.76 870.65 2596.47 1294.83 2484.83 1089.07 2496.80 1570.86 3499.06 1592.64 995.71 1096.12 34
DELS-MVS90.05 690.09 1089.94 493.14 6673.88 797.01 394.40 4388.32 285.71 4394.91 5874.11 1998.91 1787.26 4995.94 897.03 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_030490.01 790.50 888.53 1990.14 13570.94 2296.47 1295.72 887.33 389.60 2196.26 2368.44 3798.74 2395.82 194.72 2995.90 41
SED-MVS89.94 890.36 988.70 1596.45 1269.38 4696.89 494.44 3971.65 19292.11 497.21 476.79 999.11 692.34 1195.36 1397.62 2
DeepPCF-MVS81.17 189.72 991.38 384.72 11893.00 6958.16 28596.72 794.41 4186.50 790.25 1897.83 175.46 1498.67 2492.78 895.49 1297.32 6
patch_mono-289.71 1090.99 585.85 8296.04 2463.70 19095.04 3995.19 1486.74 691.53 1195.15 5273.86 2097.58 5593.38 592.00 6696.28 31
CANet89.61 1189.99 1188.46 2094.39 3969.71 4296.53 1193.78 5886.89 589.68 2095.78 3165.94 5899.10 992.99 793.91 3996.58 17
DVP-MVScopyleft89.41 1289.73 1388.45 2196.40 1569.99 3296.64 894.52 3571.92 17990.55 1696.93 1073.77 2199.08 1191.91 1794.90 2096.29 29
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
HPM-MVS++copyleft89.37 1389.95 1287.64 2995.10 3068.23 7695.24 3294.49 3782.43 2188.90 2596.35 2171.89 3398.63 2588.76 3796.40 696.06 35
NCCC89.07 1489.46 1487.91 2496.60 1069.05 5596.38 1494.64 3284.42 1186.74 3496.20 2566.56 5498.76 2289.03 3694.56 3195.92 40
DPE-MVScopyleft88.77 1589.21 1587.45 3696.26 2067.56 9294.17 5294.15 5268.77 24290.74 1497.27 276.09 1298.49 2890.58 2794.91 1996.30 28
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SMA-MVScopyleft88.14 1688.29 2087.67 2893.21 6368.72 6393.85 7194.03 5474.18 12891.74 996.67 1665.61 6298.42 3289.24 3396.08 795.88 42
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PS-MVSNAJ88.14 1687.61 2589.71 692.06 9076.72 195.75 1993.26 8283.86 1389.55 2296.06 2853.55 19497.89 4291.10 2193.31 5094.54 91
TSAR-MVS + MP.88.11 1888.64 1686.54 6291.73 10268.04 8090.36 20693.55 7182.89 1691.29 1292.89 10972.27 3096.03 12587.99 4094.77 2495.54 51
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
TSAR-MVS + GP.87.96 1988.37 1986.70 5693.51 5665.32 14795.15 3593.84 5778.17 7585.93 4194.80 6175.80 1398.21 3389.38 3088.78 10096.59 15
DeepC-MVS_fast79.48 287.95 2088.00 2187.79 2795.86 2768.32 7195.74 2094.11 5383.82 1483.49 6396.19 2664.53 7498.44 3083.42 8194.88 2396.61 14
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
xiu_mvs_v2_base87.92 2187.38 2989.55 1191.41 11376.43 395.74 2093.12 9083.53 1589.55 2295.95 2953.45 19897.68 4791.07 2292.62 5794.54 91
EPNet87.84 2288.38 1886.23 7293.30 6066.05 12995.26 3194.84 2387.09 488.06 2794.53 6766.79 5197.34 6883.89 7891.68 7195.29 62
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
lupinMVS87.74 2387.77 2387.63 3389.24 15871.18 1996.57 1092.90 9882.70 2087.13 3195.27 4664.99 6695.80 13089.34 3191.80 6995.93 39
test_fmvsm_n_192087.69 2488.50 1785.27 10087.05 21063.55 19693.69 7991.08 17584.18 1290.17 1997.04 867.58 4697.99 3895.72 290.03 9194.26 99
APDe-MVS87.54 2587.84 2286.65 5796.07 2366.30 12594.84 4493.78 5869.35 23388.39 2696.34 2267.74 4597.66 5090.62 2693.44 4896.01 38
SD-MVS87.49 2687.49 2787.50 3593.60 5368.82 6193.90 6892.63 10976.86 9487.90 2895.76 3266.17 5597.63 5289.06 3591.48 7596.05 36
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
dcpmvs_287.37 2787.55 2686.85 4995.04 3268.20 7790.36 20690.66 18779.37 5481.20 7993.67 9374.73 1596.55 10890.88 2492.00 6695.82 43
alignmvs87.28 2886.97 3288.24 2391.30 11471.14 2195.61 2493.56 7079.30 5587.07 3395.25 4868.43 3896.93 9787.87 4184.33 13696.65 13
train_agg87.21 2987.42 2886.60 5894.18 4167.28 9994.16 5393.51 7271.87 18485.52 4595.33 4168.19 4097.27 7589.09 3494.90 2095.25 68
MG-MVS87.11 3086.27 3789.62 797.79 176.27 494.96 4294.49 3778.74 7083.87 6292.94 10764.34 7596.94 9575.19 13794.09 3595.66 46
SF-MVS87.03 3187.09 3086.84 5092.70 7767.45 9793.64 8193.76 6170.78 21686.25 3696.44 2066.98 4997.79 4588.68 3894.56 3195.28 64
CSCG86.87 3286.26 3888.72 1495.05 3170.79 2493.83 7595.33 1268.48 24677.63 12094.35 7673.04 2498.45 2984.92 6993.71 4496.92 11
canonicalmvs86.85 3386.25 3988.66 1791.80 10171.92 1493.54 8691.71 14680.26 4287.55 2995.25 4863.59 8796.93 9788.18 3984.34 13597.11 8
PHI-MVS86.83 3486.85 3586.78 5493.47 5765.55 14395.39 2995.10 1771.77 18985.69 4496.52 1762.07 10198.77 2186.06 6095.60 1196.03 37
SteuartSystems-ACMMP86.82 3586.90 3386.58 6090.42 12966.38 12296.09 1693.87 5677.73 8284.01 6195.66 3463.39 8997.94 3987.40 4793.55 4795.42 52
Skip Steuart: Steuart Systems R&D Blog.
PVSNet_Blended86.73 3686.86 3486.31 7193.76 4967.53 9496.33 1593.61 6882.34 2281.00 8493.08 10363.19 9297.29 7187.08 5191.38 7794.13 105
jason86.40 3786.17 4087.11 4386.16 22470.54 2795.71 2392.19 12482.00 2584.58 5494.34 7761.86 10395.53 15087.76 4290.89 8395.27 65
jason: jason.
WTY-MVS86.32 3885.81 4487.85 2592.82 7369.37 4895.20 3395.25 1382.71 1981.91 7494.73 6267.93 4497.63 5279.55 10782.25 14896.54 18
MSLP-MVS++86.27 3985.91 4387.35 3892.01 9368.97 5895.04 3992.70 10379.04 6481.50 7796.50 1958.98 13496.78 10083.49 8093.93 3896.29 29
VNet86.20 4085.65 4787.84 2693.92 4669.99 3295.73 2295.94 678.43 7286.00 4093.07 10458.22 13997.00 8785.22 6484.33 13696.52 19
MVS_111021_HR86.19 4185.80 4587.37 3793.17 6569.79 3993.99 6393.76 6179.08 6278.88 10893.99 8762.25 10098.15 3585.93 6191.15 8194.15 104
CS-MVS-test86.14 4287.01 3183.52 15192.63 8059.36 27395.49 2691.92 13380.09 4385.46 4795.53 3861.82 10595.77 13386.77 5593.37 4995.41 53
ACMMP_NAP86.05 4385.80 4586.80 5391.58 10667.53 9491.79 15293.49 7574.93 11984.61 5395.30 4359.42 12897.92 4086.13 5894.92 1894.94 77
ETV-MVS86.01 4486.11 4185.70 8890.21 13467.02 10893.43 9191.92 13381.21 3584.13 6094.07 8660.93 11295.63 14189.28 3289.81 9294.46 97
APD-MVScopyleft85.93 4585.99 4285.76 8695.98 2665.21 15093.59 8492.58 11166.54 25986.17 3895.88 3063.83 8197.00 8786.39 5792.94 5495.06 72
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PAPM85.89 4685.46 4887.18 4188.20 18672.42 1392.41 12692.77 10182.11 2480.34 8993.07 10468.27 3995.02 16278.39 12093.59 4694.09 107
CS-MVS85.80 4786.65 3683.27 15992.00 9458.92 27895.31 3091.86 13879.97 4484.82 5295.40 3962.26 9995.51 15186.11 5992.08 6595.37 56
CDPH-MVS85.71 4885.46 4886.46 6494.75 3467.19 10193.89 6992.83 10070.90 21283.09 6695.28 4463.62 8597.36 6680.63 10194.18 3494.84 81
casdiffmvs_mvgpermissive85.66 4985.18 5187.09 4488.22 18569.35 4993.74 7891.89 13681.47 2980.10 9191.45 13664.80 7096.35 11187.23 5087.69 10895.58 49
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepC-MVS77.85 385.52 5085.24 5086.37 6888.80 16866.64 11692.15 13293.68 6681.07 3676.91 13093.64 9462.59 9798.44 3085.50 6292.84 5694.03 111
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
casdiffmvspermissive85.37 5184.87 5786.84 5088.25 18369.07 5493.04 10191.76 14381.27 3480.84 8692.07 12764.23 7696.06 12384.98 6887.43 11195.39 54
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ZNCC-MVS85.33 5285.08 5386.06 7493.09 6865.65 13993.89 6993.41 7973.75 13979.94 9394.68 6460.61 11598.03 3782.63 8593.72 4394.52 93
MP-MVS-pluss85.24 5385.13 5285.56 9191.42 11165.59 14191.54 16292.51 11374.56 12280.62 8795.64 3559.15 13297.00 8786.94 5393.80 4094.07 109
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PAPR85.15 5484.47 5887.18 4196.02 2568.29 7291.85 15093.00 9576.59 10179.03 10495.00 5361.59 10697.61 5478.16 12189.00 9995.63 47
MP-MVScopyleft85.02 5584.97 5585.17 10492.60 8164.27 17693.24 9492.27 11873.13 15079.63 9794.43 7061.90 10297.17 7885.00 6792.56 5894.06 110
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
baseline85.01 5684.44 5986.71 5588.33 18068.73 6290.24 21191.82 14281.05 3781.18 8092.50 11663.69 8496.08 12284.45 7386.71 12095.32 60
CHOSEN 1792x268884.98 5783.45 7089.57 1089.94 13975.14 592.07 13892.32 11681.87 2675.68 13988.27 18460.18 11898.60 2680.46 10390.27 9094.96 76
EIA-MVS84.84 5884.88 5684.69 11991.30 11462.36 21893.85 7192.04 12879.45 5179.33 10194.28 8062.42 9896.35 11180.05 10491.25 8095.38 55
HFP-MVS84.73 5984.40 6085.72 8793.75 5165.01 15693.50 8893.19 8672.19 17379.22 10294.93 5659.04 13397.67 4881.55 9292.21 6194.49 96
MVS84.66 6082.86 8590.06 290.93 12074.56 687.91 25595.54 1068.55 24472.35 18094.71 6359.78 12498.90 1881.29 9894.69 3096.74 12
GST-MVS84.63 6184.29 6185.66 8992.82 7365.27 14893.04 10193.13 8973.20 14878.89 10594.18 8359.41 12997.85 4481.45 9492.48 6093.86 119
EC-MVSNet84.53 6285.04 5483.01 16389.34 15161.37 23794.42 4991.09 17377.91 7983.24 6494.20 8258.37 13795.40 15285.35 6391.41 7692.27 162
ACMMPR84.37 6384.06 6285.28 9993.56 5464.37 17293.50 8893.15 8872.19 17378.85 11094.86 5956.69 15997.45 6081.55 9292.20 6294.02 112
region2R84.36 6484.03 6385.36 9793.54 5564.31 17493.43 9192.95 9672.16 17678.86 10994.84 6056.97 15497.53 5881.38 9692.11 6494.24 100
LFMVS84.34 6582.73 8789.18 1294.76 3373.25 994.99 4191.89 13671.90 18182.16 7393.49 9847.98 24597.05 8282.55 8684.82 13197.25 7
test_yl84.28 6683.16 7887.64 2994.52 3769.24 5095.78 1795.09 1869.19 23681.09 8192.88 11057.00 15297.44 6181.11 9981.76 15296.23 32
DCV-MVSNet84.28 6683.16 7887.64 2994.52 3769.24 5095.78 1795.09 1869.19 23681.09 8192.88 11057.00 15297.44 6181.11 9981.76 15296.23 32
diffmvspermissive84.28 6683.83 6485.61 9087.40 20368.02 8190.88 19189.24 23680.54 4081.64 7692.52 11559.83 12394.52 18787.32 4885.11 12994.29 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HY-MVS76.49 584.28 6683.36 7687.02 4792.22 8767.74 8784.65 28194.50 3679.15 5982.23 7287.93 19166.88 5096.94 9580.53 10282.20 14996.39 27
MAR-MVS84.18 7083.43 7186.44 6596.25 2165.93 13494.28 5194.27 4974.41 12379.16 10395.61 3653.99 18998.88 2069.62 18693.26 5194.50 95
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVS_Test84.16 7183.20 7787.05 4691.56 10769.82 3889.99 22092.05 12777.77 8182.84 6786.57 20863.93 8096.09 11974.91 14289.18 9895.25 68
CANet_DTU84.09 7283.52 6685.81 8390.30 13266.82 11191.87 14889.01 25085.27 886.09 3993.74 9147.71 24996.98 9177.90 12389.78 9493.65 124
ET-MVSNet_ETH3D84.01 7383.15 8086.58 6090.78 12570.89 2394.74 4694.62 3381.44 3258.19 30793.64 9473.64 2392.35 26382.66 8478.66 17796.50 23
PVSNet_Blended_VisFu83.97 7483.50 6785.39 9690.02 13766.59 11993.77 7691.73 14477.43 9077.08 12989.81 16663.77 8396.97 9279.67 10688.21 10492.60 150
MTAPA83.91 7583.38 7585.50 9291.89 9965.16 15281.75 30492.23 11975.32 11480.53 8895.21 5056.06 16797.16 7984.86 7092.55 5994.18 101
XVS83.87 7683.47 6985.05 10593.22 6163.78 18492.92 10692.66 10673.99 13178.18 11494.31 7955.25 17297.41 6379.16 11191.58 7393.95 114
Effi-MVS+83.82 7782.76 8686.99 4889.56 14769.40 4591.35 17486.12 29772.59 16083.22 6592.81 11359.60 12696.01 12781.76 9187.80 10795.56 50
test_fmvsmvis_n_192083.80 7883.48 6884.77 11582.51 27463.72 18891.37 17283.99 31781.42 3377.68 11995.74 3358.37 13797.58 5593.38 586.87 11493.00 143
EI-MVSNet-Vis-set83.77 7983.67 6584.06 13892.79 7663.56 19591.76 15594.81 2579.65 5077.87 11794.09 8463.35 9097.90 4179.35 10979.36 16990.74 187
MVSFormer83.75 8082.88 8486.37 6889.24 15871.18 1989.07 23990.69 18465.80 26487.13 3194.34 7764.99 6692.67 24972.83 15391.80 6995.27 65
CP-MVS83.71 8183.40 7484.65 12093.14 6663.84 18294.59 4792.28 11771.03 21077.41 12394.92 5755.21 17596.19 11581.32 9790.70 8593.91 116
baseline283.68 8283.42 7384.48 12687.37 20466.00 13190.06 21595.93 779.71 4969.08 21690.39 15477.92 696.28 11378.91 11581.38 15691.16 183
thisisatest051583.41 8382.49 9286.16 7389.46 15068.26 7493.54 8694.70 2974.31 12675.75 13790.92 14472.62 2896.52 10969.64 18481.50 15593.71 122
PVSNet_BlendedMVS83.38 8483.43 7183.22 16093.76 4967.53 9494.06 5893.61 6879.13 6081.00 8485.14 22363.19 9297.29 7187.08 5173.91 21584.83 286
test250683.29 8582.92 8384.37 13088.39 17863.18 20292.01 14191.35 16177.66 8478.49 11391.42 13764.58 7395.09 16173.19 14989.23 9694.85 78
iter_conf0583.27 8682.70 8884.98 10893.32 5971.84 1594.16 5381.76 32882.74 1873.83 16188.40 18072.77 2794.61 17882.10 8875.21 20488.48 219
PGM-MVS83.25 8782.70 8884.92 10992.81 7564.07 17990.44 20292.20 12371.28 20477.23 12694.43 7055.17 17697.31 7079.33 11091.38 7793.37 130
HPM-MVScopyleft83.25 8782.95 8284.17 13692.25 8662.88 21190.91 18891.86 13870.30 22277.12 12793.96 8856.75 15796.28 11382.04 8991.34 7993.34 131
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EI-MVSNet-UG-set83.14 8982.96 8183.67 14992.28 8563.19 20191.38 17194.68 3079.22 5776.60 13293.75 9062.64 9697.76 4678.07 12278.01 18090.05 196
VDD-MVS83.06 9081.81 10186.81 5290.86 12367.70 8895.40 2891.50 15675.46 11181.78 7592.34 12340.09 28597.13 8086.85 5482.04 15095.60 48
h-mvs3383.01 9182.56 9184.35 13189.34 15162.02 22492.72 11193.76 6181.45 3082.73 6992.25 12560.11 11997.13 8087.69 4362.96 29193.91 116
PAPM_NR82.97 9281.84 10086.37 6894.10 4466.76 11487.66 26092.84 9969.96 22674.07 15893.57 9663.10 9497.50 5970.66 17790.58 8794.85 78
mPP-MVS82.96 9382.44 9384.52 12492.83 7162.92 20992.76 10991.85 14071.52 20075.61 14294.24 8153.48 19796.99 9078.97 11490.73 8493.64 125
SR-MVS82.81 9482.58 9083.50 15493.35 5861.16 24092.23 13191.28 16564.48 27381.27 7895.28 4453.71 19395.86 12982.87 8388.77 10193.49 128
DP-MVS Recon82.73 9581.65 10285.98 7697.31 467.06 10595.15 3591.99 13069.08 23976.50 13493.89 8954.48 18498.20 3470.76 17585.66 12792.69 147
CLD-MVS82.73 9582.35 9583.86 14287.90 19367.65 9095.45 2792.18 12585.06 972.58 17392.27 12452.46 20595.78 13184.18 7479.06 17288.16 225
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
sss82.71 9782.38 9483.73 14689.25 15559.58 26892.24 13094.89 2277.96 7779.86 9492.38 12156.70 15897.05 8277.26 12680.86 16094.55 89
3Dnovator73.91 682.69 9880.82 11388.31 2289.57 14671.26 1892.60 11994.39 4478.84 6767.89 23792.48 11948.42 24098.52 2768.80 19694.40 3395.15 70
MVSTER82.47 9982.05 9683.74 14492.68 7869.01 5691.90 14793.21 8379.83 4572.14 18185.71 22074.72 1694.72 17375.72 13372.49 22687.50 230
TESTMET0.1,182.41 10081.98 9983.72 14788.08 18763.74 18692.70 11393.77 6079.30 5577.61 12187.57 19758.19 14094.08 20373.91 14886.68 12193.33 133
CostFormer82.33 10181.15 10685.86 8189.01 16368.46 6882.39 30193.01 9375.59 10980.25 9081.57 26672.03 3294.96 16579.06 11377.48 18894.16 103
API-MVS82.28 10280.53 12087.54 3496.13 2270.59 2693.63 8291.04 17965.72 26675.45 14492.83 11256.11 16698.89 1964.10 23989.75 9593.15 137
IB-MVS77.80 482.18 10380.46 12287.35 3889.14 16070.28 3095.59 2595.17 1678.85 6670.19 20485.82 21870.66 3597.67 4872.19 16466.52 26594.09 107
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
xiu_mvs_v1_base_debu82.16 10481.12 10785.26 10186.42 21868.72 6392.59 12190.44 19373.12 15184.20 5794.36 7238.04 29995.73 13584.12 7586.81 11591.33 176
xiu_mvs_v1_base82.16 10481.12 10785.26 10186.42 21868.72 6392.59 12190.44 19373.12 15184.20 5794.36 7238.04 29995.73 13584.12 7586.81 11591.33 176
xiu_mvs_v1_base_debi82.16 10481.12 10785.26 10186.42 21868.72 6392.59 12190.44 19373.12 15184.20 5794.36 7238.04 29995.73 13584.12 7586.81 11591.33 176
3Dnovator+73.60 782.10 10780.60 11986.60 5890.89 12266.80 11395.20 3393.44 7774.05 13067.42 24392.49 11849.46 23097.65 5170.80 17491.68 7195.33 58
MVS_111021_LR82.02 10881.52 10383.51 15388.42 17662.88 21189.77 22488.93 25276.78 9775.55 14393.10 10150.31 22295.38 15483.82 7987.02 11392.26 163
PMMVS81.98 10982.04 9781.78 19689.76 14356.17 30591.13 18490.69 18477.96 7780.09 9293.57 9646.33 25994.99 16481.41 9587.46 11094.17 102
baseline181.84 11081.03 11184.28 13491.60 10566.62 11791.08 18591.66 15081.87 2674.86 14891.67 13469.98 3694.92 16871.76 16764.75 28091.29 181
EPP-MVSNet81.79 11181.52 10382.61 17288.77 16960.21 26093.02 10393.66 6768.52 24572.90 16890.39 15472.19 3194.96 16574.93 14179.29 17192.67 148
iter_conf_final81.74 11280.93 11284.18 13592.66 7969.10 5392.94 10582.80 32679.01 6574.85 14988.40 18061.83 10494.61 17879.36 10876.52 19788.83 210
test_vis1_n_192081.66 11382.01 9880.64 22382.24 27755.09 31394.76 4586.87 28881.67 2884.40 5694.63 6538.17 29694.67 17791.98 1683.34 14292.16 166
APD-MVS_3200maxsize81.64 11481.32 10582.59 17392.36 8358.74 28091.39 16991.01 18063.35 28279.72 9694.62 6651.82 20896.14 11779.71 10587.93 10692.89 146
ACMMPcopyleft81.49 11580.67 11683.93 14191.71 10362.90 21092.13 13392.22 12271.79 18871.68 18893.49 9850.32 22196.96 9378.47 11984.22 14091.93 168
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CDS-MVSNet81.43 11680.74 11483.52 15186.26 22264.45 16692.09 13690.65 18875.83 10873.95 16089.81 16663.97 7992.91 23971.27 17082.82 14593.20 136
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mvs_anonymous81.36 11779.99 12785.46 9390.39 13168.40 6986.88 27190.61 18974.41 12370.31 20384.67 22963.79 8292.32 26473.13 15085.70 12695.67 45
ECVR-MVScopyleft81.29 11880.38 12384.01 14088.39 17861.96 22692.56 12486.79 29077.66 8476.63 13191.42 13746.34 25895.24 15974.36 14689.23 9694.85 78
thisisatest053081.15 11980.07 12484.39 12988.26 18265.63 14091.40 16794.62 3371.27 20570.93 19489.18 17172.47 2996.04 12465.62 22876.89 19491.49 172
Fast-Effi-MVS+81.14 12080.01 12684.51 12590.24 13365.86 13594.12 5789.15 24273.81 13875.37 14588.26 18557.26 14794.53 18666.97 21384.92 13093.15 137
HQP-MVS81.14 12080.64 11782.64 17187.54 19963.66 19394.06 5891.70 14879.80 4674.18 15490.30 15651.63 21295.61 14377.63 12478.90 17388.63 215
hse-mvs281.12 12281.11 11081.16 21086.52 21757.48 29589.40 23291.16 16881.45 3082.73 6990.49 15260.11 11994.58 18087.69 4360.41 31891.41 175
SR-MVS-dyc-post81.06 12380.70 11582.15 18792.02 9158.56 28290.90 18990.45 19062.76 28978.89 10594.46 6851.26 21695.61 14378.77 11786.77 11892.28 159
HyFIR lowres test81.03 12479.56 13485.43 9487.81 19568.11 7990.18 21290.01 21370.65 21872.95 16786.06 21663.61 8694.50 18875.01 14079.75 16793.67 123
nrg03080.93 12579.86 12984.13 13783.69 26268.83 6093.23 9591.20 16675.55 11075.06 14788.22 18863.04 9594.74 17281.88 9066.88 26288.82 213
Vis-MVSNetpermissive80.92 12679.98 12883.74 14488.48 17361.80 22893.44 9088.26 27473.96 13477.73 11891.76 13149.94 22694.76 17065.84 22590.37 8994.65 88
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test111180.84 12780.02 12583.33 15787.87 19460.76 24892.62 11886.86 28977.86 8075.73 13891.39 13946.35 25794.70 17672.79 15588.68 10294.52 93
131480.70 12878.95 14585.94 7887.77 19767.56 9287.91 25592.55 11272.17 17567.44 24293.09 10250.27 22397.04 8571.68 16987.64 10993.23 135
tpmrst80.57 12979.14 14484.84 11290.10 13668.28 7381.70 30589.72 22477.63 8675.96 13679.54 29864.94 6892.71 24675.43 13577.28 19193.55 126
1112_ss80.56 13079.83 13082.77 16788.65 17060.78 24692.29 12888.36 26872.58 16172.46 17794.95 5465.09 6593.42 22766.38 21977.71 18294.10 106
VDDNet80.50 13178.26 15387.21 4086.19 22369.79 3994.48 4891.31 16260.42 30779.34 10090.91 14538.48 29496.56 10782.16 8781.05 15895.27 65
BH-w/o80.49 13279.30 14184.05 13990.83 12464.36 17393.60 8389.42 23174.35 12569.09 21590.15 16155.23 17495.61 14364.61 23686.43 12492.17 165
test_cas_vis1_n_192080.45 13380.61 11879.97 24078.25 32257.01 30194.04 6288.33 26979.06 6382.81 6893.70 9238.65 29191.63 27890.82 2579.81 16591.27 182
TAMVS80.37 13479.45 13783.13 16285.14 23963.37 19791.23 17990.76 18374.81 12172.65 17188.49 17760.63 11492.95 23469.41 18881.95 15193.08 140
HQP_MVS80.34 13579.75 13182.12 18986.94 21162.42 21693.13 9791.31 16278.81 6872.53 17489.14 17350.66 21995.55 14876.74 12778.53 17888.39 222
SDMVSNet80.26 13678.88 14684.40 12889.25 15567.63 9185.35 27793.02 9276.77 9870.84 19587.12 20347.95 24696.09 11985.04 6674.55 20689.48 206
HPM-MVS_fast80.25 13779.55 13682.33 17991.55 10859.95 26391.32 17689.16 24165.23 27074.71 15193.07 10447.81 24895.74 13474.87 14488.23 10391.31 180
ab-mvs80.18 13878.31 15285.80 8488.44 17565.49 14683.00 29892.67 10571.82 18777.36 12485.01 22454.50 18196.59 10476.35 13175.63 20295.32 60
IS-MVSNet80.14 13979.41 13882.33 17987.91 19260.08 26291.97 14588.27 27272.90 15671.44 19191.73 13361.44 10793.66 22262.47 25386.53 12293.24 134
test-LLR80.10 14079.56 13481.72 19886.93 21361.17 23892.70 11391.54 15371.51 20175.62 14086.94 20553.83 19092.38 26072.21 16284.76 13391.60 170
PVSNet73.49 880.05 14178.63 14884.31 13290.92 12164.97 15792.47 12591.05 17879.18 5872.43 17890.51 15137.05 31194.06 20568.06 20086.00 12593.90 118
UA-Net80.02 14279.65 13281.11 21289.33 15357.72 29086.33 27489.00 25177.44 8981.01 8389.15 17259.33 13095.90 12861.01 26084.28 13889.73 202
test-mter79.96 14379.38 14081.72 19886.93 21361.17 23892.70 11391.54 15373.85 13675.62 14086.94 20549.84 22892.38 26072.21 16284.76 13391.60 170
QAPM79.95 14477.39 17087.64 2989.63 14571.41 1793.30 9393.70 6565.34 26967.39 24591.75 13247.83 24798.96 1657.71 27689.81 9292.54 152
UGNet79.87 14578.68 14783.45 15689.96 13861.51 23492.13 13390.79 18276.83 9678.85 11086.33 21238.16 29796.17 11667.93 20387.17 11292.67 148
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tpm279.80 14677.95 15985.34 9888.28 18168.26 7481.56 30791.42 15970.11 22477.59 12280.50 28467.40 4794.26 19767.34 20877.35 18993.51 127
thres20079.66 14778.33 15183.66 15092.54 8265.82 13793.06 9996.31 374.90 12073.30 16488.66 17559.67 12595.61 14347.84 31378.67 17689.56 205
CPTT-MVS79.59 14879.16 14380.89 22191.54 10959.80 26592.10 13588.54 26660.42 30772.96 16693.28 10048.27 24192.80 24378.89 11686.50 12390.06 195
Test_1112_low_res79.56 14978.60 14982.43 17588.24 18460.39 25792.09 13687.99 27872.10 17771.84 18487.42 19964.62 7293.04 23165.80 22677.30 19093.85 120
tttt051779.50 15078.53 15082.41 17887.22 20661.43 23689.75 22594.76 2669.29 23467.91 23588.06 19072.92 2595.63 14162.91 24973.90 21690.16 194
FIs79.47 15179.41 13879.67 24785.95 22759.40 27091.68 15993.94 5578.06 7668.96 22088.28 18366.61 5391.77 27566.20 22274.99 20587.82 227
BH-RMVSNet79.46 15277.65 16284.89 11091.68 10465.66 13893.55 8588.09 27672.93 15573.37 16391.12 14346.20 26196.12 11856.28 28085.61 12892.91 145
PCF-MVS73.15 979.29 15377.63 16384.29 13386.06 22565.96 13387.03 26791.10 17269.86 22869.79 21190.64 14757.54 14696.59 10464.37 23882.29 14790.32 192
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Vis-MVSNet (Re-imp)79.24 15479.57 13378.24 26888.46 17452.29 32490.41 20489.12 24474.24 12769.13 21491.91 12965.77 6090.09 30059.00 27288.09 10592.33 156
114514_t79.17 15577.67 16183.68 14895.32 2965.53 14492.85 10891.60 15263.49 28067.92 23490.63 14946.65 25495.72 13967.01 21283.54 14189.79 200
FA-MVS(test-final)79.12 15677.23 17284.81 11490.54 12763.98 18181.35 31091.71 14671.09 20974.85 14982.94 24752.85 20197.05 8267.97 20181.73 15493.41 129
VPA-MVSNet79.03 15778.00 15782.11 19285.95 22764.48 16593.22 9694.66 3175.05 11874.04 15984.95 22552.17 20793.52 22474.90 14367.04 26188.32 224
OPM-MVS79.00 15878.09 15581.73 19783.52 26563.83 18391.64 16190.30 20076.36 10471.97 18389.93 16546.30 26095.17 16075.10 13877.70 18386.19 258
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EI-MVSNet78.97 15978.22 15481.25 20785.33 23562.73 21489.53 22993.21 8372.39 16872.14 18190.13 16260.99 11094.72 17367.73 20572.49 22686.29 254
AdaColmapbinary78.94 16077.00 17684.76 11696.34 1765.86 13592.66 11787.97 28062.18 29470.56 19792.37 12243.53 27397.35 6764.50 23782.86 14491.05 185
GeoE78.90 16177.43 16683.29 15888.95 16462.02 22492.31 12786.23 29570.24 22371.34 19289.27 17054.43 18594.04 20863.31 24580.81 16293.81 121
miper_enhance_ethall78.86 16277.97 15881.54 20288.00 19165.17 15191.41 16589.15 24275.19 11668.79 22383.98 23867.17 4892.82 24172.73 15665.30 27186.62 251
VPNet78.82 16377.53 16582.70 16984.52 24966.44 12193.93 6692.23 11980.46 4172.60 17288.38 18249.18 23493.13 23072.47 16063.97 28888.55 218
EPNet_dtu78.80 16479.26 14277.43 27688.06 18849.71 33791.96 14691.95 13277.67 8376.56 13391.28 14158.51 13690.20 29856.37 27980.95 15992.39 154
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tfpn200view978.79 16577.43 16682.88 16592.21 8864.49 16392.05 13996.28 473.48 14571.75 18688.26 18560.07 12195.32 15545.16 32477.58 18588.83 210
TR-MVS78.77 16677.37 17182.95 16490.49 12860.88 24493.67 8090.07 20970.08 22574.51 15291.37 14045.69 26495.70 14060.12 26680.32 16392.29 158
thres40078.68 16777.43 16682.43 17592.21 8864.49 16392.05 13996.28 473.48 14571.75 18688.26 18560.07 12195.32 15545.16 32477.58 18587.48 231
BH-untuned78.68 16777.08 17383.48 15589.84 14063.74 18692.70 11388.59 26471.57 19866.83 25288.65 17651.75 21095.39 15359.03 27184.77 13291.32 179
OMC-MVS78.67 16977.91 16080.95 21985.76 23157.40 29788.49 24888.67 26173.85 13672.43 17892.10 12649.29 23394.55 18572.73 15677.89 18190.91 186
tpm78.58 17077.03 17483.22 16085.94 22964.56 16183.21 29591.14 17178.31 7373.67 16279.68 29664.01 7892.09 26966.07 22371.26 23693.03 141
OpenMVScopyleft70.45 1178.54 17175.92 18986.41 6785.93 23071.68 1692.74 11092.51 11366.49 26064.56 26791.96 12843.88 27298.10 3654.61 28590.65 8689.44 208
EPMVS78.49 17275.98 18886.02 7591.21 11669.68 4380.23 31991.20 16675.25 11572.48 17678.11 30654.65 18093.69 22157.66 27783.04 14394.69 84
AUN-MVS78.37 17377.43 16681.17 20986.60 21657.45 29689.46 23191.16 16874.11 12974.40 15390.49 15255.52 17194.57 18274.73 14560.43 31791.48 173
thres100view90078.37 17377.01 17582.46 17491.89 9963.21 20091.19 18396.33 172.28 17170.45 20087.89 19260.31 11695.32 15545.16 32477.58 18588.83 210
GA-MVS78.33 17576.23 18584.65 12083.65 26366.30 12591.44 16390.14 20776.01 10670.32 20284.02 23742.50 27794.72 17370.98 17277.00 19392.94 144
cascas78.18 17675.77 19185.41 9587.14 20869.11 5292.96 10491.15 17066.71 25870.47 19886.07 21537.49 30596.48 11070.15 18079.80 16690.65 188
UniMVSNet_NR-MVSNet78.15 17777.55 16479.98 23884.46 25160.26 25892.25 12993.20 8577.50 8868.88 22186.61 20766.10 5692.13 26766.38 21962.55 29587.54 229
thres600view778.00 17876.66 18082.03 19491.93 9663.69 19191.30 17796.33 172.43 16670.46 19987.89 19260.31 11694.92 16842.64 33676.64 19587.48 231
FC-MVSNet-test77.99 17978.08 15677.70 27184.89 24455.51 31090.27 20993.75 6476.87 9366.80 25387.59 19665.71 6190.23 29762.89 25073.94 21487.37 234
Anonymous20240521177.96 18075.33 19885.87 8093.73 5264.52 16294.85 4385.36 30362.52 29276.11 13590.18 15929.43 33897.29 7168.51 19877.24 19295.81 44
cl2277.94 18176.78 17881.42 20487.57 19864.93 15990.67 19788.86 25572.45 16567.63 24182.68 25164.07 7792.91 23971.79 16565.30 27186.44 252
XXY-MVS77.94 18176.44 18282.43 17582.60 27364.44 16792.01 14191.83 14173.59 14470.00 20785.82 21854.43 18594.76 17069.63 18568.02 25588.10 226
MS-PatchMatch77.90 18376.50 18182.12 18985.99 22669.95 3591.75 15792.70 10373.97 13362.58 28684.44 23341.11 28295.78 13163.76 24292.17 6380.62 330
FMVSNet377.73 18476.04 18782.80 16691.20 11768.99 5791.87 14891.99 13073.35 14767.04 24883.19 24656.62 16092.14 26659.80 26869.34 24487.28 238
miper_ehance_all_eth77.60 18576.44 18281.09 21685.70 23264.41 17090.65 19888.64 26372.31 16967.37 24682.52 25264.77 7192.64 25370.67 17665.30 27186.24 256
UniMVSNet (Re)77.58 18676.78 17879.98 23884.11 25760.80 24591.76 15593.17 8776.56 10269.93 21084.78 22863.32 9192.36 26264.89 23562.51 29786.78 246
PatchmatchNetpermissive77.46 18774.63 20485.96 7789.55 14870.35 2979.97 32489.55 22772.23 17270.94 19376.91 31757.03 15092.79 24454.27 28781.17 15794.74 83
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v2v48277.42 18875.65 19482.73 16880.38 29367.13 10491.85 15090.23 20475.09 11769.37 21283.39 24453.79 19294.44 18971.77 16665.00 27786.63 250
CHOSEN 280x42077.35 18976.95 17778.55 26387.07 20962.68 21569.71 35082.95 32468.80 24171.48 19087.27 20266.03 5784.00 33976.47 13082.81 14688.95 209
PS-MVSNAJss77.26 19076.31 18480.13 23480.64 29159.16 27590.63 20191.06 17772.80 15768.58 22784.57 23153.55 19493.96 21372.97 15171.96 23087.27 239
gg-mvs-nofinetune77.18 19174.31 21185.80 8491.42 11168.36 7071.78 34494.72 2849.61 34777.12 12745.92 36877.41 893.98 21267.62 20693.16 5295.05 73
MVP-Stereo77.12 19276.23 18579.79 24581.72 28266.34 12489.29 23390.88 18170.56 22062.01 28982.88 24849.34 23194.13 20065.55 23093.80 4078.88 343
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
sd_testset77.08 19375.37 19682.20 18589.25 15562.11 22382.06 30289.09 24676.77 9870.84 19587.12 20341.43 28195.01 16367.23 21074.55 20689.48 206
dmvs_re76.93 19475.36 19781.61 20087.78 19660.71 25180.00 32387.99 27879.42 5269.02 21889.47 16946.77 25294.32 19163.38 24474.45 20989.81 199
X-MVStestdata76.86 19574.13 21585.05 10593.22 6163.78 18492.92 10692.66 10673.99 13178.18 11410.19 38355.25 17297.41 6379.16 11191.58 7393.95 114
DU-MVS76.86 19575.84 19079.91 24182.96 27160.26 25891.26 17891.54 15376.46 10368.88 22186.35 21056.16 16492.13 26766.38 21962.55 29587.35 236
mvsmamba76.85 19775.71 19380.25 23183.07 27059.16 27591.44 16380.64 33376.84 9567.95 23386.33 21246.17 26294.24 19876.06 13272.92 22287.36 235
Anonymous2024052976.84 19874.15 21484.88 11191.02 11864.95 15893.84 7491.09 17353.57 33673.00 16587.42 19935.91 31597.32 6969.14 19272.41 22892.36 155
c3_l76.83 19975.47 19580.93 22085.02 24264.18 17890.39 20588.11 27571.66 19166.65 25481.64 26463.58 8892.56 25469.31 19062.86 29286.04 263
WR-MVS76.76 20075.74 19279.82 24484.60 24762.27 22192.60 11992.51 11376.06 10567.87 23885.34 22156.76 15690.24 29662.20 25463.69 29086.94 244
v114476.73 20174.88 20182.27 18180.23 29766.60 11891.68 15990.21 20673.69 14169.06 21781.89 25952.73 20394.40 19069.21 19165.23 27485.80 269
IterMVS-LS76.49 20275.18 20080.43 22684.49 25062.74 21390.64 19988.80 25672.40 16765.16 26181.72 26260.98 11192.27 26567.74 20464.65 28286.29 254
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
V4276.46 20374.55 20782.19 18679.14 31067.82 8590.26 21089.42 23173.75 13968.63 22681.89 25951.31 21594.09 20271.69 16864.84 27884.66 287
v14876.19 20474.47 20981.36 20580.05 29864.44 16791.75 15790.23 20473.68 14267.13 24780.84 27955.92 16993.86 21968.95 19461.73 30685.76 272
Effi-MVS+-dtu76.14 20575.28 19978.72 26283.22 26755.17 31289.87 22187.78 28175.42 11267.98 23281.43 26845.08 26892.52 25675.08 13971.63 23188.48 219
cl____76.07 20674.67 20280.28 22985.15 23861.76 23090.12 21388.73 25971.16 20665.43 25881.57 26661.15 10892.95 23466.54 21662.17 29986.13 261
DIV-MVS_self_test76.07 20674.67 20280.28 22985.14 23961.75 23190.12 21388.73 25971.16 20665.42 25981.60 26561.15 10892.94 23866.54 21662.16 30186.14 259
FMVSNet276.07 20674.01 21782.26 18388.85 16567.66 8991.33 17591.61 15170.84 21365.98 25582.25 25548.03 24292.00 27158.46 27368.73 25087.10 241
v14419276.05 20974.03 21682.12 18979.50 30466.55 12091.39 16989.71 22572.30 17068.17 23081.33 27151.75 21094.03 21067.94 20264.19 28485.77 270
NR-MVSNet76.05 20974.59 20580.44 22582.96 27162.18 22290.83 19391.73 14477.12 9260.96 29386.35 21059.28 13191.80 27460.74 26161.34 31087.35 236
v119275.98 21173.92 21882.15 18779.73 30066.24 12791.22 18089.75 21972.67 15968.49 22881.42 26949.86 22794.27 19567.08 21165.02 27685.95 266
FE-MVS75.97 21273.02 22884.82 11389.78 14165.56 14277.44 33591.07 17664.55 27272.66 17079.85 29446.05 26396.69 10254.97 28480.82 16192.21 164
eth_miper_zixun_eth75.96 21374.40 21080.66 22284.66 24663.02 20489.28 23488.27 27271.88 18365.73 25681.65 26359.45 12792.81 24268.13 19960.53 31586.14 259
TranMVSNet+NR-MVSNet75.86 21474.52 20879.89 24282.44 27560.64 25491.37 17291.37 16076.63 10067.65 24086.21 21452.37 20691.55 28061.84 25660.81 31387.48 231
SCA75.82 21572.76 23285.01 10786.63 21570.08 3181.06 31289.19 23971.60 19770.01 20677.09 31545.53 26590.25 29360.43 26373.27 21894.68 85
LPG-MVS_test75.82 21574.58 20679.56 25184.31 25459.37 27190.44 20289.73 22269.49 23164.86 26288.42 17838.65 29194.30 19372.56 15872.76 22385.01 284
GBi-Net75.65 21773.83 21981.10 21388.85 16565.11 15390.01 21790.32 19670.84 21367.04 24880.25 28948.03 24291.54 28159.80 26869.34 24486.64 247
test175.65 21773.83 21981.10 21388.85 16565.11 15390.01 21790.32 19670.84 21367.04 24880.25 28948.03 24291.54 28159.80 26869.34 24486.64 247
v192192075.63 21973.49 22482.06 19379.38 30566.35 12391.07 18789.48 22871.98 17867.99 23181.22 27449.16 23693.90 21666.56 21564.56 28385.92 268
ACMP71.68 1075.58 22074.23 21379.62 24984.97 24359.64 26690.80 19489.07 24870.39 22162.95 28287.30 20138.28 29593.87 21772.89 15271.45 23485.36 279
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v875.35 22173.26 22681.61 20080.67 29066.82 11189.54 22889.27 23571.65 19263.30 28080.30 28854.99 17894.06 20567.33 20962.33 29883.94 292
tpm cat175.30 22272.21 24084.58 12388.52 17167.77 8678.16 33388.02 27761.88 29968.45 22976.37 32160.65 11394.03 21053.77 29074.11 21291.93 168
PLCcopyleft68.80 1475.23 22373.68 22279.86 24392.93 7058.68 28190.64 19988.30 27060.90 30464.43 27190.53 15042.38 27894.57 18256.52 27876.54 19686.33 253
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v124075.21 22472.98 22981.88 19579.20 30766.00 13190.75 19689.11 24571.63 19667.41 24481.22 27447.36 25093.87 21765.46 23164.72 28185.77 270
Fast-Effi-MVS+-dtu75.04 22573.37 22580.07 23580.86 28759.52 26991.20 18285.38 30271.90 18165.20 26084.84 22741.46 28092.97 23366.50 21872.96 22187.73 228
dp75.01 22672.09 24183.76 14389.28 15466.22 12879.96 32589.75 21971.16 20667.80 23977.19 31451.81 20992.54 25550.39 29871.44 23592.51 153
TAPA-MVS70.22 1274.94 22773.53 22379.17 25690.40 13052.07 32589.19 23789.61 22662.69 29170.07 20592.67 11448.89 23994.32 19138.26 35079.97 16491.12 184
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v1074.77 22872.54 23781.46 20380.33 29566.71 11589.15 23889.08 24770.94 21163.08 28179.86 29352.52 20494.04 20865.70 22762.17 29983.64 294
XVG-OURS-SEG-HR74.70 22973.08 22779.57 25078.25 32257.33 29880.49 31587.32 28463.22 28468.76 22490.12 16444.89 26991.59 27970.55 17874.09 21389.79 200
RRT_MVS74.44 23072.97 23078.84 26182.36 27657.66 29289.83 22388.79 25870.61 21964.58 26684.89 22639.24 28792.65 25270.11 18166.34 26686.21 257
ACMM69.62 1374.34 23172.73 23379.17 25684.25 25657.87 28890.36 20689.93 21463.17 28665.64 25786.04 21737.79 30394.10 20165.89 22471.52 23385.55 275
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CNLPA74.31 23272.30 23980.32 22791.49 11061.66 23290.85 19280.72 33256.67 32863.85 27590.64 14746.75 25390.84 28853.79 28975.99 20188.47 221
XVG-OURS74.25 23372.46 23879.63 24878.45 32057.59 29480.33 31787.39 28363.86 27768.76 22489.62 16840.50 28491.72 27669.00 19374.25 21189.58 203
test_fmvs174.07 23473.69 22175.22 29578.91 31447.34 34789.06 24174.69 34763.68 27979.41 9991.59 13524.36 34787.77 31985.22 6476.26 19990.55 191
CVMVSNet74.04 23574.27 21273.33 31085.33 23543.94 35889.53 22988.39 26754.33 33570.37 20190.13 16249.17 23584.05 33761.83 25779.36 16991.99 167
Baseline_NR-MVSNet73.99 23672.83 23177.48 27580.78 28859.29 27491.79 15284.55 31068.85 24068.99 21980.70 28056.16 16492.04 27062.67 25160.98 31281.11 324
pmmvs473.92 23771.81 24580.25 23179.17 30865.24 14987.43 26387.26 28667.64 25263.46 27883.91 23948.96 23891.53 28462.94 24865.49 27083.96 291
D2MVS73.80 23872.02 24279.15 25879.15 30962.97 20588.58 24790.07 20972.94 15459.22 30178.30 30342.31 27992.70 24865.59 22972.00 22981.79 321
CR-MVSNet73.79 23970.82 25282.70 16983.15 26867.96 8270.25 34784.00 31573.67 14369.97 20872.41 33557.82 14389.48 30452.99 29373.13 21990.64 189
test_djsdf73.76 24072.56 23677.39 27777.00 33253.93 31889.07 23990.69 18465.80 26463.92 27382.03 25843.14 27692.67 24972.83 15368.53 25185.57 274
pmmvs573.35 24171.52 24778.86 26078.64 31860.61 25591.08 18586.90 28767.69 24963.32 27983.64 24044.33 27190.53 29062.04 25566.02 26885.46 277
Anonymous2023121173.08 24270.39 25681.13 21190.62 12663.33 19891.40 16790.06 21151.84 34164.46 27080.67 28236.49 31394.07 20463.83 24164.17 28585.98 265
tt080573.07 24370.73 25380.07 23578.37 32157.05 30087.78 25792.18 12561.23 30367.04 24886.49 20931.35 33294.58 18065.06 23467.12 26088.57 217
miper_lstm_enhance73.05 24471.73 24677.03 28283.80 26058.32 28481.76 30388.88 25369.80 22961.01 29278.23 30557.19 14887.51 32365.34 23259.53 32085.27 282
jajsoiax73.05 24471.51 24877.67 27277.46 32954.83 31488.81 24390.04 21269.13 23862.85 28483.51 24231.16 33392.75 24570.83 17369.80 24085.43 278
LCM-MVSNet-Re72.93 24671.84 24476.18 29188.49 17248.02 34280.07 32270.17 35873.96 13452.25 33180.09 29249.98 22588.24 31367.35 20784.23 13992.28 159
pm-mvs172.89 24771.09 25078.26 26779.10 31157.62 29390.80 19489.30 23467.66 25062.91 28381.78 26149.11 23792.95 23460.29 26558.89 32384.22 290
tpmvs72.88 24869.76 26282.22 18490.98 11967.05 10678.22 33288.30 27063.10 28764.35 27274.98 32855.09 17794.27 19543.25 33069.57 24385.34 280
test0.0.03 172.76 24972.71 23472.88 31480.25 29647.99 34391.22 18089.45 22971.51 20162.51 28787.66 19553.83 19085.06 33450.16 30067.84 25885.58 273
UniMVSNet_ETH3D72.74 25070.53 25579.36 25378.62 31956.64 30385.01 27989.20 23863.77 27864.84 26484.44 23334.05 32091.86 27363.94 24070.89 23889.57 204
mvs_tets72.71 25171.11 24977.52 27377.41 33054.52 31688.45 24989.76 21868.76 24362.70 28583.26 24529.49 33792.71 24670.51 17969.62 24285.34 280
FMVSNet172.71 25169.91 26081.10 21383.60 26465.11 15390.01 21790.32 19663.92 27663.56 27780.25 28936.35 31491.54 28154.46 28666.75 26386.64 247
test_fmvs1_n72.69 25371.92 24374.99 29871.15 35047.08 34987.34 26575.67 34263.48 28178.08 11691.17 14220.16 35887.87 31684.65 7175.57 20390.01 197
IterMVS72.65 25470.83 25178.09 26982.17 27862.96 20687.64 26186.28 29371.56 19960.44 29578.85 30145.42 26786.66 32763.30 24661.83 30384.65 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PatchMatch-RL72.06 25569.98 25778.28 26689.51 14955.70 30983.49 28883.39 32261.24 30263.72 27682.76 24934.77 31893.03 23253.37 29277.59 18486.12 262
PVSNet_068.08 1571.81 25668.32 27182.27 18184.68 24562.31 22088.68 24590.31 19975.84 10757.93 31280.65 28337.85 30294.19 19969.94 18229.05 37590.31 193
MIMVSNet71.64 25768.44 26981.23 20881.97 28164.44 16773.05 34388.80 25669.67 23064.59 26574.79 32932.79 32487.82 31753.99 28876.35 19891.42 174
test_vis1_n71.63 25870.73 25374.31 30569.63 35647.29 34886.91 26972.11 35363.21 28575.18 14690.17 16020.40 35685.76 33184.59 7274.42 21089.87 198
bld_raw_dy_0_6471.59 25969.71 26377.22 28177.82 32858.12 28687.71 25973.66 34968.01 24761.90 29184.29 23533.68 32188.43 31169.91 18370.43 23985.11 283
IterMVS-SCA-FT71.55 26069.97 25876.32 28981.48 28360.67 25387.64 26185.99 29866.17 26259.50 29978.88 30045.53 26583.65 34162.58 25261.93 30284.63 289
v7n71.31 26168.65 26679.28 25476.40 33460.77 24786.71 27289.45 22964.17 27558.77 30678.24 30444.59 27093.54 22357.76 27561.75 30583.52 297
anonymousdsp71.14 26269.37 26476.45 28872.95 34554.71 31584.19 28388.88 25361.92 29862.15 28879.77 29538.14 29891.44 28668.90 19567.45 25983.21 303
F-COLMAP70.66 26368.44 26977.32 27886.37 22155.91 30788.00 25386.32 29256.94 32657.28 31588.07 18933.58 32292.49 25751.02 29668.37 25283.55 295
WR-MVS_H70.59 26469.94 25972.53 31681.03 28651.43 32887.35 26492.03 12967.38 25360.23 29680.70 28055.84 17083.45 34346.33 32058.58 32582.72 310
CP-MVSNet70.50 26569.91 26072.26 31980.71 28951.00 33187.23 26690.30 20067.84 24859.64 29882.69 25050.23 22482.30 35151.28 29559.28 32183.46 299
RPMNet70.42 26665.68 28384.63 12283.15 26867.96 8270.25 34790.45 19046.83 35569.97 20865.10 35456.48 16395.30 15835.79 35573.13 21990.64 189
tfpnnormal70.10 26767.36 27478.32 26583.45 26660.97 24388.85 24292.77 10164.85 27160.83 29478.53 30243.52 27493.48 22531.73 36661.70 30780.52 331
TransMVSNet (Re)70.07 26867.66 27377.31 27980.62 29259.13 27791.78 15484.94 30765.97 26360.08 29780.44 28550.78 21891.87 27248.84 30645.46 35380.94 326
CL-MVSNet_self_test69.92 26968.09 27275.41 29473.25 34455.90 30890.05 21689.90 21569.96 22661.96 29076.54 31851.05 21787.64 32049.51 30450.59 34582.70 312
DP-MVS69.90 27066.48 27680.14 23395.36 2862.93 20789.56 22676.11 34050.27 34657.69 31385.23 22239.68 28695.73 13533.35 36071.05 23781.78 322
PS-CasMVS69.86 27169.13 26572.07 32280.35 29450.57 33387.02 26889.75 21967.27 25459.19 30282.28 25446.58 25582.24 35250.69 29759.02 32283.39 301
MSDG69.54 27265.73 28280.96 21885.11 24163.71 18984.19 28383.28 32356.95 32554.50 32284.03 23631.50 33096.03 12542.87 33469.13 24783.14 305
PEN-MVS69.46 27368.56 26772.17 32179.27 30649.71 33786.90 27089.24 23667.24 25759.08 30382.51 25347.23 25183.54 34248.42 30857.12 32683.25 302
LS3D69.17 27466.40 27877.50 27491.92 9756.12 30685.12 27880.37 33446.96 35356.50 31787.51 19837.25 30693.71 22032.52 36579.40 16882.68 313
PatchT69.11 27565.37 28780.32 22782.07 28063.68 19267.96 35687.62 28250.86 34469.37 21265.18 35357.09 14988.53 31041.59 33966.60 26488.74 214
KD-MVS_2432*160069.03 27666.37 27977.01 28385.56 23361.06 24181.44 30890.25 20267.27 25458.00 31076.53 31954.49 18287.63 32148.04 31035.77 36782.34 316
miper_refine_blended69.03 27666.37 27977.01 28385.56 23361.06 24181.44 30890.25 20267.27 25458.00 31076.53 31954.49 18287.63 32148.04 31035.77 36782.34 316
mvsany_test168.77 27868.56 26769.39 32973.57 34345.88 35480.93 31360.88 37159.65 31371.56 18990.26 15843.22 27575.05 36174.26 14762.70 29487.25 240
ACMH63.93 1768.62 27964.81 28980.03 23785.22 23763.25 19987.72 25884.66 30960.83 30551.57 33479.43 29927.29 34394.96 16541.76 33764.84 27881.88 320
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EG-PatchMatch MVS68.55 28065.41 28677.96 27078.69 31762.93 20789.86 22289.17 24060.55 30650.27 33977.73 30922.60 35294.06 20547.18 31672.65 22576.88 351
ADS-MVSNet68.54 28164.38 29681.03 21788.06 18866.90 11068.01 35484.02 31457.57 32064.48 26869.87 34538.68 28989.21 30640.87 34167.89 25686.97 242
DTE-MVSNet68.46 28267.33 27571.87 32477.94 32649.00 34086.16 27588.58 26566.36 26158.19 30782.21 25646.36 25683.87 34044.97 32755.17 33382.73 309
our_test_368.29 28364.69 29179.11 25978.92 31264.85 16088.40 25085.06 30560.32 30952.68 32976.12 32340.81 28389.80 30344.25 32955.65 33182.67 314
Patchmatch-RL test68.17 28464.49 29479.19 25571.22 34953.93 31870.07 34971.54 35769.22 23556.79 31662.89 35756.58 16188.61 30769.53 18752.61 34095.03 75
XVG-ACMP-BASELINE68.04 28565.53 28575.56 29374.06 34252.37 32378.43 32985.88 29962.03 29658.91 30581.21 27620.38 35791.15 28760.69 26268.18 25383.16 304
FMVSNet568.04 28565.66 28475.18 29784.43 25257.89 28783.54 28786.26 29461.83 30053.64 32773.30 33237.15 30985.08 33348.99 30561.77 30482.56 315
ppachtmachnet_test67.72 28763.70 29879.77 24678.92 31266.04 13088.68 24582.90 32560.11 31155.45 31975.96 32439.19 28890.55 28939.53 34552.55 34182.71 311
ACMH+65.35 1667.65 28864.55 29276.96 28584.59 24857.10 29988.08 25280.79 33158.59 31953.00 32881.09 27826.63 34592.95 23446.51 31861.69 30880.82 327
pmmvs667.57 28964.76 29076.00 29272.82 34753.37 32088.71 24486.78 29153.19 33757.58 31478.03 30735.33 31792.41 25955.56 28254.88 33582.21 318
Anonymous2023120667.53 29065.78 28172.79 31574.95 33847.59 34588.23 25187.32 28461.75 30158.07 30977.29 31237.79 30387.29 32542.91 33263.71 28983.48 298
Patchmtry67.53 29063.93 29778.34 26482.12 27964.38 17168.72 35184.00 31548.23 35259.24 30072.41 33557.82 14389.27 30546.10 32156.68 33081.36 323
USDC67.43 29264.51 29376.19 29077.94 32655.29 31178.38 33085.00 30673.17 14948.36 34680.37 28621.23 35492.48 25852.15 29464.02 28780.81 328
ADS-MVSNet266.90 29363.44 30077.26 28088.06 18860.70 25268.01 35475.56 34457.57 32064.48 26869.87 34538.68 28984.10 33640.87 34167.89 25686.97 242
CMPMVSbinary48.56 2166.77 29464.41 29573.84 30770.65 35350.31 33477.79 33485.73 30145.54 35644.76 35682.14 25735.40 31690.14 29963.18 24774.54 20881.07 325
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
OpenMVS_ROBcopyleft61.12 1866.39 29562.92 30376.80 28776.51 33357.77 28989.22 23583.41 32155.48 33253.86 32677.84 30826.28 34693.95 21434.90 35768.76 24978.68 345
LTVRE_ROB59.60 1966.27 29663.54 29974.45 30284.00 25951.55 32767.08 35783.53 31958.78 31754.94 32180.31 28734.54 31993.23 22940.64 34368.03 25478.58 346
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
JIA-IIPM66.06 29762.45 30676.88 28681.42 28554.45 31757.49 36988.67 26149.36 34863.86 27446.86 36756.06 16790.25 29349.53 30368.83 24885.95 266
Patchmatch-test65.86 29860.94 31280.62 22483.75 26158.83 27958.91 36875.26 34644.50 35950.95 33877.09 31558.81 13587.90 31535.13 35664.03 28695.12 71
UnsupCasMVSNet_eth65.79 29963.10 30173.88 30670.71 35250.29 33581.09 31189.88 21672.58 16149.25 34474.77 33032.57 32687.43 32455.96 28141.04 36083.90 293
test_fmvs265.78 30064.84 28868.60 33266.54 36141.71 36083.27 29269.81 35954.38 33467.91 23584.54 23215.35 36381.22 35675.65 13466.16 26782.88 306
dmvs_testset65.55 30166.45 27762.86 34279.87 29922.35 38476.55 33771.74 35577.42 9155.85 31887.77 19451.39 21480.69 35731.51 36865.92 26985.55 275
pmmvs-eth3d65.53 30262.32 30775.19 29669.39 35759.59 26782.80 29983.43 32062.52 29251.30 33672.49 33332.86 32387.16 32655.32 28350.73 34478.83 344
SixPastTwentyTwo64.92 30361.78 31074.34 30478.74 31649.76 33683.42 29179.51 33762.86 28850.27 33977.35 31030.92 33590.49 29145.89 32247.06 35082.78 307
OurMVSNet-221017-064.68 30462.17 30872.21 32076.08 33747.35 34680.67 31481.02 33056.19 32951.60 33379.66 29727.05 34488.56 30953.60 29153.63 33880.71 329
test_040264.54 30561.09 31174.92 29984.10 25860.75 24987.95 25479.71 33652.03 33952.41 33077.20 31332.21 32891.64 27723.14 37061.03 31172.36 359
testgi64.48 30662.87 30469.31 33071.24 34840.62 36385.49 27679.92 33565.36 26854.18 32483.49 24323.74 35084.55 33541.60 33860.79 31482.77 308
RPSCF64.24 30761.98 30971.01 32676.10 33645.00 35575.83 34075.94 34146.94 35458.96 30484.59 23031.40 33182.00 35347.76 31460.33 31986.04 263
EU-MVSNet64.01 30863.01 30267.02 33874.40 34138.86 36883.27 29286.19 29645.11 35754.27 32381.15 27736.91 31280.01 35948.79 30757.02 32782.19 319
test20.0363.83 30962.65 30567.38 33770.58 35439.94 36486.57 27384.17 31263.29 28351.86 33277.30 31137.09 31082.47 34938.87 34954.13 33779.73 337
MDA-MVSNet_test_wron63.78 31060.16 31374.64 30078.15 32460.41 25683.49 28884.03 31356.17 33139.17 36571.59 34137.22 30783.24 34642.87 33448.73 34780.26 334
YYNet163.76 31160.14 31474.62 30178.06 32560.19 26183.46 29083.99 31756.18 33039.25 36471.56 34237.18 30883.34 34442.90 33348.70 34880.32 333
K. test v363.09 31259.61 31673.53 30976.26 33549.38 33983.27 29277.15 33964.35 27447.77 34872.32 33728.73 33987.79 31849.93 30236.69 36683.41 300
COLMAP_ROBcopyleft57.96 2062.98 31359.65 31572.98 31381.44 28453.00 32283.75 28675.53 34548.34 35148.81 34581.40 27024.14 34890.30 29232.95 36260.52 31675.65 354
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2024052162.09 31459.08 31771.10 32567.19 36048.72 34183.91 28585.23 30450.38 34547.84 34771.22 34420.74 35585.51 33246.47 31958.75 32479.06 342
AllTest61.66 31558.06 31972.46 31779.57 30151.42 32980.17 32068.61 36151.25 34245.88 35081.23 27219.86 35986.58 32838.98 34757.01 32879.39 339
UnsupCasMVSNet_bld61.60 31657.71 32073.29 31168.73 35851.64 32678.61 32889.05 24957.20 32446.11 34961.96 36028.70 34088.60 30850.08 30138.90 36479.63 338
MDA-MVSNet-bldmvs61.54 31757.70 32173.05 31279.53 30357.00 30283.08 29681.23 32957.57 32034.91 36772.45 33432.79 32486.26 33035.81 35441.95 35875.89 353
KD-MVS_self_test60.87 31858.60 31867.68 33566.13 36239.93 36575.63 34184.70 30857.32 32349.57 34268.45 34829.55 33682.87 34748.09 30947.94 34980.25 335
TinyColmap60.32 31956.42 32672.00 32378.78 31553.18 32178.36 33175.64 34352.30 33841.59 36375.82 32614.76 36688.35 31235.84 35354.71 33674.46 355
MVS-HIRNet60.25 32055.55 32774.35 30384.37 25356.57 30471.64 34574.11 34834.44 36645.54 35442.24 37331.11 33489.81 30140.36 34476.10 20076.67 352
MIMVSNet160.16 32157.33 32268.67 33169.71 35544.13 35778.92 32784.21 31155.05 33344.63 35771.85 33923.91 34981.54 35532.63 36455.03 33480.35 332
PM-MVS59.40 32256.59 32467.84 33363.63 36441.86 35976.76 33663.22 36859.01 31651.07 33772.27 33811.72 36983.25 34561.34 25850.28 34678.39 347
new-patchmatchnet59.30 32356.48 32567.79 33465.86 36344.19 35682.47 30081.77 32759.94 31243.65 36066.20 35227.67 34281.68 35439.34 34641.40 35977.50 350
test_vis1_rt59.09 32457.31 32364.43 34068.44 35946.02 35383.05 29748.63 37851.96 34049.57 34263.86 35616.30 36180.20 35871.21 17162.79 29367.07 365
test_fmvs356.82 32554.86 32862.69 34353.59 37235.47 37075.87 33965.64 36643.91 36055.10 32071.43 3436.91 37774.40 36468.64 19752.63 33978.20 348
DSMNet-mixed56.78 32654.44 32963.79 34163.21 36529.44 37964.43 36064.10 36742.12 36351.32 33571.60 34031.76 32975.04 36236.23 35265.20 27586.87 245
pmmvs355.51 32751.50 33267.53 33657.90 37050.93 33280.37 31673.66 34940.63 36444.15 35964.75 35516.30 36178.97 36044.77 32840.98 36272.69 357
TDRefinement55.28 32851.58 33166.39 33959.53 36946.15 35276.23 33872.80 35144.60 35842.49 36176.28 32215.29 36482.39 35033.20 36143.75 35570.62 361
LF4IMVS54.01 32952.12 33059.69 34462.41 36739.91 36668.59 35268.28 36342.96 36244.55 35875.18 32714.09 36868.39 36841.36 34051.68 34270.78 360
N_pmnet50.55 33049.11 33354.88 35077.17 3314.02 39084.36 2822.00 38948.59 34945.86 35268.82 34732.22 32782.80 34831.58 36751.38 34377.81 349
new_pmnet49.31 33146.44 33457.93 34562.84 36640.74 36268.47 35362.96 36936.48 36535.09 36657.81 36214.97 36572.18 36532.86 36346.44 35160.88 367
mvsany_test348.86 33246.35 33556.41 34646.00 37831.67 37562.26 36247.25 37943.71 36145.54 35468.15 34910.84 37064.44 37657.95 27435.44 36973.13 356
test_f46.58 33343.45 33655.96 34745.18 37932.05 37461.18 36349.49 37733.39 36742.05 36262.48 3597.00 37665.56 37247.08 31743.21 35770.27 362
FPMVS45.64 33443.10 33753.23 35251.42 37536.46 36964.97 35971.91 35429.13 37027.53 37061.55 3619.83 37265.01 37416.00 37755.58 33258.22 368
EGC-MVSNET42.35 33538.09 33855.11 34974.57 33946.62 35171.63 34655.77 3720.04 3840.24 38562.70 35814.24 36774.91 36317.59 37446.06 35243.80 370
LCM-MVSNet40.54 33635.79 34154.76 35136.92 38530.81 37651.41 37269.02 36022.07 37224.63 37245.37 3694.56 38165.81 37133.67 35934.50 37067.67 363
APD_test140.50 33737.31 34050.09 35451.88 37335.27 37159.45 36752.59 37421.64 37326.12 37157.80 3634.56 38166.56 37022.64 37139.09 36348.43 369
test_vis3_rt40.46 33837.79 33948.47 35644.49 38033.35 37366.56 35832.84 38632.39 36829.65 36839.13 3763.91 38468.65 36750.17 29940.99 36143.40 371
ANet_high40.27 33935.20 34255.47 34834.74 38634.47 37263.84 36171.56 35648.42 35018.80 37541.08 3749.52 37364.45 37520.18 3728.66 38267.49 364
test_method38.59 34035.16 34348.89 35554.33 37121.35 38545.32 37553.71 3737.41 38128.74 36951.62 3658.70 37452.87 37933.73 35832.89 37172.47 358
PMMVS237.93 34133.61 34450.92 35346.31 37724.76 38260.55 36650.05 37528.94 37120.93 37347.59 3664.41 38365.13 37325.14 36918.55 37762.87 366
Gipumacopyleft34.91 34231.44 34545.30 35770.99 35139.64 36719.85 37972.56 35220.10 37516.16 37921.47 3805.08 38071.16 36613.07 37843.70 35625.08 377
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf132.77 34329.47 34642.67 35941.89 38230.81 37652.07 37043.45 38015.45 37618.52 37644.82 3702.12 38558.38 37716.05 37530.87 37338.83 372
APD_test232.77 34329.47 34642.67 35941.89 38230.81 37652.07 37043.45 38015.45 37618.52 37644.82 3702.12 38558.38 37716.05 37530.87 37338.83 372
PMVScopyleft26.43 2231.84 34528.16 34842.89 35825.87 38827.58 38050.92 37349.78 37621.37 37414.17 38040.81 3752.01 38766.62 3699.61 38038.88 36534.49 376
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN24.61 34624.00 35026.45 36343.74 38118.44 38760.86 36439.66 38215.11 3789.53 38222.10 3796.52 37846.94 3818.31 38110.14 37913.98 379
MVEpermissive24.84 2324.35 34719.77 35338.09 36134.56 38726.92 38126.57 37738.87 38411.73 38011.37 38127.44 3771.37 38850.42 38011.41 37914.60 37836.93 374
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS23.76 34823.20 35225.46 36441.52 38416.90 38860.56 36538.79 38514.62 3798.99 38320.24 3827.35 37545.82 3827.25 3829.46 38013.64 380
tmp_tt22.26 34923.75 35117.80 3655.23 38912.06 38935.26 37639.48 3832.82 38318.94 37444.20 37222.23 35324.64 38436.30 3519.31 38116.69 378
cdsmvs_eth3d_5k19.86 35026.47 3490.00 3690.00 3920.00 3930.00 38093.45 760.00 3870.00 38895.27 4649.56 2290.00 3880.00 3860.00 3850.00 384
wuyk23d11.30 35110.95 35412.33 36648.05 37619.89 38625.89 3781.92 3903.58 3823.12 3841.37 3840.64 38915.77 3856.23 3837.77 3831.35 381
ab-mvs-re7.91 35210.55 3550.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38894.95 540.00 3920.00 3880.00 3860.00 3850.00 384
testmvs7.23 3539.62 3560.06 3680.04 3900.02 39284.98 2800.02 3910.03 3850.18 3861.21 3850.01 3910.02 3860.14 3840.01 3840.13 383
test1236.92 3549.21 3570.08 3670.03 3910.05 39181.65 3060.01 3920.02 3860.14 3870.85 3860.03 3900.02 3860.12 3850.00 3850.16 382
pcd_1.5k_mvsjas4.46 3555.95 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38753.55 1940.00 3880.00 3860.00 3850.00 384
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3850.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3850.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3850.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3850.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3850.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3850.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3850.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3850.00 384
FOURS193.95 4561.77 22993.96 6491.92 13362.14 29586.57 35
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2099.07 1392.01 1494.77 2496.51 20
PC_three_145280.91 3894.07 296.83 1483.57 499.12 595.70 497.42 497.55 4
No_MVS89.60 897.31 473.22 1095.05 2099.07 1392.01 1494.77 2496.51 20
test_one_060196.32 1869.74 4194.18 5071.42 20390.67 1596.85 1274.45 18
eth-test20.00 392
eth-test0.00 392
ZD-MVS96.63 965.50 14593.50 7470.74 21785.26 5095.19 5164.92 6997.29 7187.51 4593.01 53
RE-MVS-def80.48 12192.02 9158.56 28290.90 18990.45 19062.76 28978.89 10594.46 6849.30 23278.77 11786.77 11892.28 159
IU-MVS96.46 1169.91 3695.18 1580.75 3995.28 192.34 1195.36 1396.47 24
OPU-MVS89.97 397.52 373.15 1296.89 497.00 983.82 299.15 295.72 297.63 397.62 2
test_241102_TWO94.41 4171.65 19292.07 697.21 474.58 1799.11 692.34 1195.36 1396.59 15
test_241102_ONE96.45 1269.38 4694.44 3971.65 19292.11 497.05 776.79 999.11 6
9.1487.63 2493.86 4794.41 5094.18 5072.76 15886.21 3796.51 1866.64 5297.88 4390.08 2894.04 36
save fliter93.84 4867.89 8495.05 3892.66 10678.19 74
test_0728_THIRD72.48 16390.55 1696.93 1076.24 1199.08 1191.53 1994.99 1696.43 25
test_0728_SECOND88.70 1596.45 1270.43 2896.64 894.37 4599.15 291.91 1794.90 2096.51 20
test072696.40 1569.99 3296.76 694.33 4771.92 17991.89 897.11 673.77 21
GSMVS94.68 85
test_part296.29 1968.16 7890.78 13
sam_mvs157.85 14294.68 85
sam_mvs54.91 179
ambc69.61 32861.38 36841.35 36149.07 37485.86 30050.18 34166.40 35110.16 37188.14 31445.73 32344.20 35479.32 341
MTGPAbinary92.23 119
test_post178.95 32620.70 38153.05 19991.50 28560.43 263
test_post23.01 37856.49 16292.67 249
patchmatchnet-post67.62 35057.62 14590.25 293
GG-mvs-BLEND86.53 6391.91 9869.67 4475.02 34294.75 2778.67 11290.85 14677.91 794.56 18472.25 16193.74 4295.36 57
MTMP93.77 7632.52 387
gm-plane-assit88.42 17667.04 10778.62 7191.83 13097.37 6576.57 129
test9_res89.41 2994.96 1795.29 62
TEST994.18 4167.28 9994.16 5393.51 7271.75 19085.52 4595.33 4168.01 4297.27 75
test_894.19 4067.19 10194.15 5693.42 7871.87 18485.38 4895.35 4068.19 4096.95 94
agg_prior286.41 5694.75 2895.33 58
agg_prior94.16 4366.97 10993.31 8184.49 5596.75 101
TestCases72.46 31779.57 30151.42 32968.61 36151.25 34245.88 35081.23 27219.86 35986.58 32838.98 34757.01 32879.39 339
test_prior467.18 10393.92 67
test_prior295.10 3775.40 11385.25 5195.61 3667.94 4387.47 4694.77 24
test_prior86.42 6694.71 3567.35 9893.10 9196.84 9995.05 73
旧先验292.00 14459.37 31587.54 3093.47 22675.39 136
新几何291.41 165
新几何184.73 11792.32 8464.28 17591.46 15859.56 31479.77 9592.90 10856.95 15596.57 10663.40 24392.91 5593.34 131
旧先验191.94 9560.74 25091.50 15694.36 7265.23 6491.84 6894.55 89
无先验92.71 11292.61 11062.03 29697.01 8666.63 21493.97 113
原ACMM292.01 141
原ACMM184.42 12793.21 6364.27 17693.40 8065.39 26779.51 9892.50 11658.11 14196.69 10265.27 23393.96 3792.32 157
test22289.77 14261.60 23389.55 22789.42 23156.83 32777.28 12592.43 12052.76 20291.14 8293.09 139
testdata296.09 11961.26 259
segment_acmp65.94 58
testdata81.34 20689.02 16257.72 29089.84 21758.65 31885.32 4994.09 8457.03 15093.28 22869.34 18990.56 8893.03 141
testdata189.21 23677.55 87
test1287.09 4494.60 3668.86 5992.91 9782.67 7165.44 6397.55 5793.69 4594.84 81
plane_prior786.94 21161.51 234
plane_prior687.23 20562.32 21950.66 219
plane_prior591.31 16295.55 14876.74 12778.53 17888.39 222
plane_prior489.14 173
plane_prior361.95 22779.09 6172.53 174
plane_prior293.13 9778.81 68
plane_prior187.15 207
plane_prior62.42 21693.85 7179.38 5378.80 175
n20.00 393
nn0.00 393
door-mid66.01 365
lessismore_v073.72 30872.93 34647.83 34461.72 37045.86 35273.76 33128.63 34189.81 30147.75 31531.37 37283.53 296
LGP-MVS_train79.56 25184.31 25459.37 27189.73 22269.49 23164.86 26288.42 17838.65 29194.30 19372.56 15872.76 22385.01 284
test1193.01 93
door66.57 364
HQP5-MVS63.66 193
HQP-NCC87.54 19994.06 5879.80 4674.18 154
ACMP_Plane87.54 19994.06 5879.80 4674.18 154
BP-MVS77.63 124
HQP4-MVS74.18 15495.61 14388.63 215
HQP3-MVS91.70 14878.90 173
HQP2-MVS51.63 212
NP-MVS87.41 20263.04 20390.30 156
MDTV_nov1_ep13_2view59.90 26480.13 32167.65 25172.79 16954.33 18759.83 26792.58 151
MDTV_nov1_ep1372.61 23589.06 16168.48 6780.33 31790.11 20871.84 18671.81 18575.92 32553.01 20093.92 21548.04 31073.38 217
ACMMP++_ref71.63 231
ACMMP++69.72 241
Test By Simon54.21 188
ITE_SJBPF70.43 32774.44 34047.06 35077.32 33860.16 31054.04 32583.53 24123.30 35184.01 33843.07 33161.58 30980.21 336
DeepMVS_CXcopyleft34.71 36251.45 37424.73 38328.48 38831.46 36917.49 37852.75 3645.80 37942.60 38318.18 37319.42 37636.81 375