PS-MVSNAJ | | | 88.14 16 | 87.61 25 | 89.71 6 | 92.06 90 | 76.72 1 | 95.75 19 | 93.26 82 | 83.86 13 | 89.55 22 | 96.06 28 | 53.55 194 | 97.89 42 | 91.10 21 | 93.31 50 | 94.54 91 |
|
DPM-MVS | | | 90.70 2 | 90.52 7 | 91.24 1 | 89.68 144 | 76.68 2 | 97.29 1 | 95.35 11 | 82.87 17 | 91.58 10 | 97.22 3 | 79.93 5 | 99.10 9 | 83.12 82 | 97.64 2 | 97.94 1 |
|
xiu_mvs_v2_base | | | 87.92 21 | 87.38 29 | 89.55 11 | 91.41 113 | 76.43 3 | 95.74 20 | 93.12 90 | 83.53 15 | 89.55 22 | 95.95 29 | 53.45 198 | 97.68 47 | 91.07 22 | 92.62 57 | 94.54 91 |
|
MG-MVS | | | 87.11 30 | 86.27 37 | 89.62 7 | 97.79 1 | 76.27 4 | 94.96 42 | 94.49 37 | 78.74 70 | 83.87 62 | 92.94 107 | 64.34 75 | 96.94 95 | 75.19 137 | 94.09 35 | 95.66 46 |
|
CHOSEN 1792x2688 | | | 84.98 57 | 83.45 70 | 89.57 10 | 89.94 139 | 75.14 5 | 92.07 138 | 92.32 116 | 81.87 26 | 75.68 139 | 88.27 184 | 60.18 118 | 98.60 26 | 80.46 103 | 90.27 90 | 94.96 76 |
|
MVS | | | 84.66 60 | 82.86 85 | 90.06 2 | 90.93 120 | 74.56 6 | 87.91 255 | 95.54 10 | 68.55 244 | 72.35 180 | 94.71 63 | 59.78 124 | 98.90 18 | 81.29 98 | 94.69 30 | 96.74 12 |
|
DELS-MVS | | | 90.05 6 | 90.09 10 | 89.94 4 | 93.14 66 | 73.88 7 | 97.01 3 | 94.40 43 | 88.32 2 | 85.71 43 | 94.91 58 | 74.11 19 | 98.91 17 | 87.26 49 | 95.94 8 | 97.03 10 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MCST-MVS | | | 91.08 1 | 91.46 2 | 89.94 4 | 97.66 2 | 73.37 8 | 97.13 2 | 95.58 9 | 89.33 1 | 85.77 42 | 96.26 23 | 72.84 26 | 99.38 1 | 92.64 9 | 95.93 9 | 97.08 9 |
|
LFMVS | | | 84.34 65 | 82.73 87 | 89.18 12 | 94.76 33 | 73.25 9 | 94.99 41 | 91.89 136 | 71.90 181 | 82.16 73 | 93.49 98 | 47.98 245 | 97.05 82 | 82.55 86 | 84.82 131 | 97.25 7 |
|
MSC_two_6792asdad | | | | | 89.60 8 | 97.31 4 | 73.22 10 | | 95.05 20 | | | | | 99.07 13 | 92.01 14 | 94.77 24 | 96.51 20 |
|
No_MVS | | | | | 89.60 8 | 97.31 4 | 73.22 10 | | 95.05 20 | | | | | 99.07 13 | 92.01 14 | 94.77 24 | 96.51 20 |
|
OPU-MVS | | | | | 89.97 3 | 97.52 3 | 73.15 12 | 96.89 4 | | | | 97.00 9 | 83.82 2 | 99.15 2 | 95.72 2 | 97.63 3 | 97.62 2 |
|
PAPM | | | 85.89 46 | 85.46 48 | 87.18 41 | 88.20 186 | 72.42 13 | 92.41 126 | 92.77 101 | 82.11 24 | 80.34 89 | 93.07 104 | 68.27 39 | 95.02 162 | 78.39 120 | 93.59 46 | 94.09 107 |
|
canonicalmvs | | | 86.85 33 | 86.25 39 | 88.66 17 | 91.80 101 | 71.92 14 | 93.54 86 | 91.71 146 | 80.26 42 | 87.55 29 | 95.25 48 | 63.59 87 | 96.93 97 | 88.18 39 | 84.34 135 | 97.11 8 |
|
iter_conf05 | | | 83.27 86 | 82.70 88 | 84.98 108 | 93.32 59 | 71.84 15 | 94.16 53 | 81.76 328 | 82.74 18 | 73.83 161 | 88.40 180 | 72.77 27 | 94.61 178 | 82.10 88 | 75.21 204 | 88.48 219 |
|
OpenMVS |  | 70.45 11 | 78.54 171 | 75.92 189 | 86.41 67 | 85.93 230 | 71.68 16 | 92.74 110 | 92.51 113 | 66.49 260 | 64.56 267 | 91.96 128 | 43.88 272 | 98.10 36 | 54.61 285 | 90.65 86 | 89.44 208 |
|
QAPM | | | 79.95 144 | 77.39 170 | 87.64 29 | 89.63 145 | 71.41 17 | 93.30 93 | 93.70 65 | 65.34 269 | 67.39 245 | 91.75 132 | 47.83 247 | 98.96 16 | 57.71 276 | 89.81 92 | 92.54 152 |
|
3Dnovator | | 73.91 6 | 82.69 98 | 80.82 113 | 88.31 22 | 89.57 146 | 71.26 18 | 92.60 119 | 94.39 44 | 78.84 67 | 67.89 237 | 92.48 119 | 48.42 240 | 98.52 27 | 68.80 196 | 94.40 33 | 95.15 70 |
|
MVSFormer | | | 83.75 80 | 82.88 84 | 86.37 68 | 89.24 158 | 71.18 19 | 89.07 239 | 90.69 184 | 65.80 264 | 87.13 31 | 94.34 77 | 64.99 66 | 92.67 249 | 72.83 153 | 91.80 69 | 95.27 65 |
|
lupinMVS | | | 87.74 23 | 87.77 23 | 87.63 33 | 89.24 158 | 71.18 19 | 96.57 10 | 92.90 98 | 82.70 20 | 87.13 31 | 95.27 46 | 64.99 66 | 95.80 130 | 89.34 31 | 91.80 69 | 95.93 39 |
|
alignmvs | | | 87.28 28 | 86.97 32 | 88.24 23 | 91.30 114 | 71.14 21 | 95.61 24 | 93.56 70 | 79.30 55 | 87.07 33 | 95.25 48 | 68.43 38 | 96.93 97 | 87.87 41 | 84.33 136 | 96.65 13 |
|
MVS_0304 | | | 90.01 7 | 90.50 8 | 88.53 19 | 90.14 135 | 70.94 22 | 96.47 12 | 95.72 8 | 87.33 3 | 89.60 21 | 96.26 23 | 68.44 37 | 98.74 23 | 95.82 1 | 94.72 29 | 95.90 41 |
|
ET-MVSNet_ETH3D | | | 84.01 73 | 83.15 80 | 86.58 60 | 90.78 125 | 70.89 23 | 94.74 46 | 94.62 33 | 81.44 32 | 58.19 307 | 93.64 94 | 73.64 23 | 92.35 263 | 82.66 84 | 78.66 177 | 96.50 23 |
|
CSCG | | | 86.87 32 | 86.26 38 | 88.72 14 | 95.05 31 | 70.79 24 | 93.83 75 | 95.33 12 | 68.48 246 | 77.63 120 | 94.35 76 | 73.04 24 | 98.45 29 | 84.92 69 | 93.71 44 | 96.92 11 |
|
CNVR-MVS | | | 90.32 5 | 90.89 6 | 88.61 18 | 96.76 8 | 70.65 25 | 96.47 12 | 94.83 24 | 84.83 10 | 89.07 24 | 96.80 15 | 70.86 34 | 99.06 15 | 92.64 9 | 95.71 10 | 96.12 34 |
|
API-MVS | | | 82.28 102 | 80.53 120 | 87.54 34 | 96.13 22 | 70.59 26 | 93.63 82 | 91.04 179 | 65.72 266 | 75.45 144 | 92.83 112 | 56.11 166 | 98.89 19 | 64.10 239 | 89.75 95 | 93.15 137 |
|
jason | | | 86.40 37 | 86.17 40 | 87.11 43 | 86.16 224 | 70.54 27 | 95.71 23 | 92.19 124 | 82.00 25 | 84.58 54 | 94.34 77 | 61.86 103 | 95.53 150 | 87.76 42 | 90.89 83 | 95.27 65 |
jason: jason. |
test_0728_SECOND | | | | | 88.70 15 | 96.45 12 | 70.43 28 | 96.64 8 | 94.37 45 | | | | | 99.15 2 | 91.91 17 | 94.90 20 | 96.51 20 |
|
PatchmatchNet |  | | 77.46 187 | 74.63 204 | 85.96 77 | 89.55 148 | 70.35 29 | 79.97 324 | 89.55 227 | 72.23 172 | 70.94 193 | 76.91 317 | 57.03 150 | 92.79 244 | 54.27 287 | 81.17 157 | 94.74 83 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
IB-MVS | | 77.80 4 | 82.18 103 | 80.46 122 | 87.35 38 | 89.14 160 | 70.28 30 | 95.59 25 | 95.17 16 | 78.85 66 | 70.19 204 | 85.82 218 | 70.66 35 | 97.67 48 | 72.19 164 | 66.52 265 | 94.09 107 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
SCA | | | 75.82 215 | 72.76 232 | 85.01 107 | 86.63 215 | 70.08 31 | 81.06 312 | 89.19 239 | 71.60 197 | 70.01 206 | 77.09 315 | 45.53 265 | 90.25 293 | 60.43 263 | 73.27 218 | 94.68 85 |
|
DVP-MVS |  | | 89.41 12 | 89.73 13 | 88.45 21 | 96.40 15 | 69.99 32 | 96.64 8 | 94.52 35 | 71.92 179 | 90.55 16 | 96.93 10 | 73.77 21 | 99.08 11 | 91.91 17 | 94.90 20 | 96.29 29 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 96.40 15 | 69.99 32 | 96.76 6 | 94.33 47 | 71.92 179 | 91.89 8 | 97.11 6 | 73.77 21 | | | | |
|
VNet | | | 86.20 40 | 85.65 47 | 87.84 26 | 93.92 46 | 69.99 32 | 95.73 22 | 95.94 6 | 78.43 72 | 86.00 40 | 93.07 104 | 58.22 139 | 97.00 87 | 85.22 64 | 84.33 136 | 96.52 19 |
|
MS-PatchMatch | | | 77.90 183 | 76.50 181 | 82.12 189 | 85.99 226 | 69.95 35 | 91.75 157 | 92.70 103 | 73.97 133 | 62.58 286 | 84.44 233 | 41.11 282 | 95.78 131 | 63.76 242 | 92.17 63 | 80.62 330 |
|
DVP-MVS++ | | | 90.53 3 | 91.09 4 | 88.87 13 | 97.31 4 | 69.91 36 | 93.96 64 | 94.37 45 | 72.48 163 | 92.07 6 | 96.85 12 | 83.82 2 | 99.15 2 | 91.53 19 | 97.42 4 | 97.55 4 |
|
IU-MVS | | | | | | 96.46 11 | 69.91 36 | | 95.18 15 | 80.75 39 | 95.28 1 | | | | 92.34 11 | 95.36 13 | 96.47 24 |
|
MVS_Test | | | 84.16 71 | 83.20 77 | 87.05 46 | 91.56 107 | 69.82 38 | 89.99 220 | 92.05 127 | 77.77 81 | 82.84 67 | 86.57 208 | 63.93 80 | 96.09 119 | 74.91 142 | 89.18 98 | 95.25 68 |
|
VDDNet | | | 80.50 131 | 78.26 153 | 87.21 40 | 86.19 223 | 69.79 39 | 94.48 48 | 91.31 162 | 60.42 307 | 79.34 100 | 90.91 145 | 38.48 294 | 96.56 107 | 82.16 87 | 81.05 158 | 95.27 65 |
|
MVS_111021_HR | | | 86.19 41 | 85.80 45 | 87.37 37 | 93.17 65 | 69.79 39 | 93.99 63 | 93.76 61 | 79.08 62 | 78.88 108 | 93.99 87 | 62.25 100 | 98.15 35 | 85.93 61 | 91.15 81 | 94.15 104 |
|
test_one_0601 | | | | | | 96.32 18 | 69.74 41 | | 94.18 50 | 71.42 203 | 90.67 15 | 96.85 12 | 74.45 18 | | | | |
|
CANet | | | 89.61 11 | 89.99 11 | 88.46 20 | 94.39 39 | 69.71 42 | 96.53 11 | 93.78 58 | 86.89 5 | 89.68 20 | 95.78 31 | 65.94 58 | 99.10 9 | 92.99 7 | 93.91 39 | 96.58 17 |
|
EPMVS | | | 78.49 172 | 75.98 188 | 86.02 75 | 91.21 116 | 69.68 43 | 80.23 319 | 91.20 166 | 75.25 115 | 72.48 176 | 78.11 306 | 54.65 180 | 93.69 221 | 57.66 277 | 83.04 143 | 94.69 84 |
|
GG-mvs-BLEND | | | | | 86.53 63 | 91.91 98 | 69.67 44 | 75.02 342 | 94.75 27 | | 78.67 112 | 90.85 146 | 77.91 7 | 94.56 184 | 72.25 161 | 93.74 42 | 95.36 57 |
|
Effi-MVS+ | | | 83.82 77 | 82.76 86 | 86.99 48 | 89.56 147 | 69.40 45 | 91.35 174 | 86.12 297 | 72.59 160 | 83.22 65 | 92.81 113 | 59.60 126 | 96.01 127 | 81.76 91 | 87.80 107 | 95.56 50 |
|
SED-MVS | | | 89.94 8 | 90.36 9 | 88.70 15 | 96.45 12 | 69.38 46 | 96.89 4 | 94.44 39 | 71.65 192 | 92.11 4 | 97.21 4 | 76.79 9 | 99.11 6 | 92.34 11 | 95.36 13 | 97.62 2 |
|
test_241102_ONE | | | | | | 96.45 12 | 69.38 46 | | 94.44 39 | 71.65 192 | 92.11 4 | 97.05 7 | 76.79 9 | 99.11 6 | | | |
|
WTY-MVS | | | 86.32 38 | 85.81 44 | 87.85 25 | 92.82 73 | 69.37 48 | 95.20 33 | 95.25 13 | 82.71 19 | 81.91 74 | 94.73 62 | 67.93 44 | 97.63 52 | 79.55 107 | 82.25 148 | 96.54 18 |
|
casdiffmvs_mvg |  | | 85.66 49 | 85.18 51 | 87.09 44 | 88.22 185 | 69.35 49 | 93.74 78 | 91.89 136 | 81.47 29 | 80.10 91 | 91.45 136 | 64.80 70 | 96.35 111 | 87.23 50 | 87.69 108 | 95.58 49 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
test_yl | | | 84.28 66 | 83.16 78 | 87.64 29 | 94.52 37 | 69.24 50 | 95.78 17 | 95.09 18 | 69.19 236 | 81.09 81 | 92.88 110 | 57.00 152 | 97.44 61 | 81.11 99 | 81.76 152 | 96.23 32 |
|
DCV-MVSNet | | | 84.28 66 | 83.16 78 | 87.64 29 | 94.52 37 | 69.24 50 | 95.78 17 | 95.09 18 | 69.19 236 | 81.09 81 | 92.88 110 | 57.00 152 | 97.44 61 | 81.11 99 | 81.76 152 | 96.23 32 |
|
cascas | | | 78.18 176 | 75.77 191 | 85.41 95 | 87.14 208 | 69.11 52 | 92.96 104 | 91.15 170 | 66.71 258 | 70.47 198 | 86.07 215 | 37.49 305 | 96.48 110 | 70.15 180 | 79.80 166 | 90.65 188 |
|
iter_conf_final | | | 81.74 112 | 80.93 112 | 84.18 135 | 92.66 79 | 69.10 53 | 92.94 105 | 82.80 326 | 79.01 65 | 74.85 149 | 88.40 180 | 61.83 104 | 94.61 178 | 79.36 108 | 76.52 197 | 88.83 210 |
|
casdiffmvs |  | | 85.37 51 | 84.87 57 | 86.84 50 | 88.25 183 | 69.07 54 | 93.04 101 | 91.76 143 | 81.27 34 | 80.84 86 | 92.07 127 | 64.23 76 | 96.06 123 | 84.98 68 | 87.43 111 | 95.39 54 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
NCCC | | | 89.07 14 | 89.46 14 | 87.91 24 | 96.60 10 | 69.05 55 | 96.38 14 | 94.64 32 | 84.42 11 | 86.74 34 | 96.20 25 | 66.56 54 | 98.76 22 | 89.03 36 | 94.56 31 | 95.92 40 |
|
MVSTER | | | 82.47 99 | 82.05 96 | 83.74 144 | 92.68 78 | 69.01 56 | 91.90 147 | 93.21 83 | 79.83 45 | 72.14 181 | 85.71 220 | 74.72 16 | 94.72 173 | 75.72 133 | 72.49 226 | 87.50 230 |
|
FMVSNet3 | | | 77.73 184 | 76.04 187 | 82.80 166 | 91.20 117 | 68.99 57 | 91.87 148 | 91.99 130 | 73.35 147 | 67.04 248 | 83.19 246 | 56.62 160 | 92.14 266 | 59.80 268 | 69.34 244 | 87.28 238 |
|
MSLP-MVS++ | | | 86.27 39 | 85.91 43 | 87.35 38 | 92.01 93 | 68.97 58 | 95.04 39 | 92.70 103 | 79.04 64 | 81.50 77 | 96.50 19 | 58.98 134 | 96.78 100 | 83.49 80 | 93.93 38 | 96.29 29 |
|
test12 | | | | | 87.09 44 | 94.60 36 | 68.86 59 | | 92.91 97 | | 82.67 71 | | 65.44 63 | 97.55 57 | | 93.69 45 | 94.84 81 |
|
nrg030 | | | 80.93 125 | 79.86 129 | 84.13 137 | 83.69 262 | 68.83 60 | 93.23 95 | 91.20 166 | 75.55 110 | 75.06 147 | 88.22 188 | 63.04 95 | 94.74 172 | 81.88 90 | 66.88 262 | 88.82 213 |
|
SD-MVS | | | 87.49 26 | 87.49 27 | 87.50 35 | 93.60 53 | 68.82 61 | 93.90 68 | 92.63 109 | 76.86 94 | 87.90 28 | 95.76 32 | 66.17 55 | 97.63 52 | 89.06 35 | 91.48 75 | 96.05 36 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
baseline | | | 85.01 56 | 84.44 59 | 86.71 55 | 88.33 180 | 68.73 62 | 90.24 211 | 91.82 142 | 81.05 37 | 81.18 80 | 92.50 116 | 63.69 84 | 96.08 122 | 84.45 73 | 86.71 120 | 95.32 60 |
|
SMA-MVS |  | | 88.14 16 | 88.29 20 | 87.67 28 | 93.21 63 | 68.72 63 | 93.85 71 | 94.03 54 | 74.18 128 | 91.74 9 | 96.67 16 | 65.61 62 | 98.42 32 | 89.24 33 | 96.08 7 | 95.88 42 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
xiu_mvs_v1_base_debu | | | 82.16 104 | 81.12 107 | 85.26 101 | 86.42 218 | 68.72 63 | 92.59 121 | 90.44 193 | 73.12 151 | 84.20 57 | 94.36 72 | 38.04 299 | 95.73 135 | 84.12 75 | 86.81 115 | 91.33 176 |
|
xiu_mvs_v1_base | | | 82.16 104 | 81.12 107 | 85.26 101 | 86.42 218 | 68.72 63 | 92.59 121 | 90.44 193 | 73.12 151 | 84.20 57 | 94.36 72 | 38.04 299 | 95.73 135 | 84.12 75 | 86.81 115 | 91.33 176 |
|
xiu_mvs_v1_base_debi | | | 82.16 104 | 81.12 107 | 85.26 101 | 86.42 218 | 68.72 63 | 92.59 121 | 90.44 193 | 73.12 151 | 84.20 57 | 94.36 72 | 38.04 299 | 95.73 135 | 84.12 75 | 86.81 115 | 91.33 176 |
|
MDTV_nov1_ep13 | | | | 72.61 235 | | 89.06 161 | 68.48 67 | 80.33 317 | 90.11 208 | 71.84 186 | 71.81 185 | 75.92 325 | 53.01 200 | 93.92 215 | 48.04 310 | 73.38 217 | |
|
CostFormer | | | 82.33 101 | 81.15 106 | 85.86 81 | 89.01 163 | 68.46 68 | 82.39 301 | 93.01 93 | 75.59 109 | 80.25 90 | 81.57 266 | 72.03 32 | 94.96 165 | 79.06 113 | 77.48 188 | 94.16 103 |
|
mvs_anonymous | | | 81.36 117 | 79.99 127 | 85.46 93 | 90.39 131 | 68.40 69 | 86.88 271 | 90.61 189 | 74.41 123 | 70.31 203 | 84.67 229 | 63.79 82 | 92.32 264 | 73.13 150 | 85.70 126 | 95.67 45 |
|
gg-mvs-nofinetune | | | 77.18 191 | 74.31 211 | 85.80 84 | 91.42 111 | 68.36 70 | 71.78 344 | 94.72 28 | 49.61 347 | 77.12 127 | 45.92 368 | 77.41 8 | 93.98 212 | 67.62 206 | 93.16 52 | 95.05 73 |
|
DeepC-MVS_fast | | 79.48 2 | 87.95 20 | 88.00 21 | 87.79 27 | 95.86 27 | 68.32 71 | 95.74 20 | 94.11 53 | 83.82 14 | 83.49 63 | 96.19 26 | 64.53 74 | 98.44 30 | 83.42 81 | 94.88 23 | 96.61 14 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PAPR | | | 85.15 54 | 84.47 58 | 87.18 41 | 96.02 25 | 68.29 72 | 91.85 150 | 93.00 95 | 76.59 101 | 79.03 104 | 95.00 53 | 61.59 106 | 97.61 54 | 78.16 121 | 89.00 99 | 95.63 47 |
|
tpmrst | | | 80.57 129 | 79.14 144 | 84.84 112 | 90.10 136 | 68.28 73 | 81.70 305 | 89.72 224 | 77.63 86 | 75.96 136 | 79.54 298 | 64.94 68 | 92.71 246 | 75.43 135 | 77.28 191 | 93.55 126 |
|
thisisatest0515 | | | 83.41 83 | 82.49 92 | 86.16 73 | 89.46 150 | 68.26 74 | 93.54 86 | 94.70 29 | 74.31 126 | 75.75 137 | 90.92 144 | 72.62 28 | 96.52 109 | 69.64 184 | 81.50 155 | 93.71 122 |
|
tpm2 | | | 79.80 146 | 77.95 159 | 85.34 98 | 88.28 181 | 68.26 74 | 81.56 307 | 91.42 159 | 70.11 224 | 77.59 122 | 80.50 284 | 67.40 47 | 94.26 197 | 67.34 208 | 77.35 189 | 93.51 127 |
|
HPM-MVS++ |  | | 89.37 13 | 89.95 12 | 87.64 29 | 95.10 30 | 68.23 76 | 95.24 32 | 94.49 37 | 82.43 21 | 88.90 25 | 96.35 21 | 71.89 33 | 98.63 25 | 88.76 37 | 96.40 6 | 96.06 35 |
|
dcpmvs_2 | | | 87.37 27 | 87.55 26 | 86.85 49 | 95.04 32 | 68.20 77 | 90.36 206 | 90.66 187 | 79.37 54 | 81.20 79 | 93.67 93 | 74.73 15 | 96.55 108 | 90.88 24 | 92.00 66 | 95.82 43 |
|
test_part2 | | | | | | 96.29 19 | 68.16 78 | | | | 90.78 13 | | | | | | |
|
HyFIR lowres test | | | 81.03 124 | 79.56 134 | 85.43 94 | 87.81 195 | 68.11 79 | 90.18 212 | 90.01 213 | 70.65 218 | 72.95 167 | 86.06 216 | 63.61 86 | 94.50 188 | 75.01 140 | 79.75 167 | 93.67 123 |
|
TSAR-MVS + MP. | | | 88.11 18 | 88.64 16 | 86.54 62 | 91.73 102 | 68.04 80 | 90.36 206 | 93.55 71 | 82.89 16 | 91.29 12 | 92.89 109 | 72.27 30 | 96.03 125 | 87.99 40 | 94.77 24 | 95.54 51 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
diffmvs |  | | 84.28 66 | 83.83 64 | 85.61 90 | 87.40 203 | 68.02 81 | 90.88 191 | 89.24 236 | 80.54 40 | 81.64 76 | 92.52 115 | 59.83 123 | 94.52 187 | 87.32 48 | 85.11 129 | 94.29 98 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
CR-MVSNet | | | 73.79 239 | 70.82 252 | 82.70 169 | 83.15 268 | 67.96 82 | 70.25 347 | 84.00 315 | 73.67 143 | 69.97 208 | 72.41 335 | 57.82 143 | 89.48 304 | 52.99 293 | 73.13 219 | 90.64 189 |
|
RPMNet | | | 70.42 266 | 65.68 283 | 84.63 122 | 83.15 268 | 67.96 82 | 70.25 347 | 90.45 190 | 46.83 355 | 69.97 208 | 65.10 354 | 56.48 163 | 95.30 158 | 35.79 355 | 73.13 219 | 90.64 189 |
|
save fliter | | | | | | 93.84 48 | 67.89 84 | 95.05 38 | 92.66 106 | 78.19 74 | | | | | | | |
|
V42 | | | 76.46 203 | 74.55 207 | 82.19 186 | 79.14 310 | 67.82 85 | 90.26 210 | 89.42 231 | 73.75 139 | 68.63 226 | 81.89 259 | 51.31 215 | 94.09 202 | 71.69 168 | 64.84 278 | 84.66 287 |
|
tpm cat1 | | | 75.30 222 | 72.21 240 | 84.58 123 | 88.52 171 | 67.77 86 | 78.16 333 | 88.02 277 | 61.88 299 | 68.45 229 | 76.37 321 | 60.65 113 | 94.03 210 | 53.77 290 | 74.11 212 | 91.93 168 |
|
HY-MVS | | 76.49 5 | 84.28 66 | 83.36 76 | 87.02 47 | 92.22 87 | 67.74 87 | 84.65 281 | 94.50 36 | 79.15 59 | 82.23 72 | 87.93 191 | 66.88 50 | 96.94 95 | 80.53 102 | 82.20 149 | 96.39 27 |
|
VDD-MVS | | | 83.06 90 | 81.81 101 | 86.81 52 | 90.86 123 | 67.70 88 | 95.40 28 | 91.50 156 | 75.46 111 | 81.78 75 | 92.34 123 | 40.09 285 | 97.13 80 | 86.85 54 | 82.04 150 | 95.60 48 |
|
FMVSNet2 | | | 76.07 206 | 74.01 217 | 82.26 183 | 88.85 165 | 67.66 89 | 91.33 175 | 91.61 151 | 70.84 213 | 65.98 255 | 82.25 255 | 48.03 242 | 92.00 271 | 58.46 273 | 68.73 250 | 87.10 241 |
|
CLD-MVS | | | 82.73 95 | 82.35 95 | 83.86 142 | 87.90 193 | 67.65 90 | 95.45 27 | 92.18 125 | 85.06 9 | 72.58 173 | 92.27 124 | 52.46 205 | 95.78 131 | 84.18 74 | 79.06 172 | 88.16 225 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
SDMVSNet | | | 80.26 136 | 78.88 146 | 84.40 128 | 89.25 155 | 67.63 91 | 85.35 277 | 93.02 92 | 76.77 98 | 70.84 195 | 87.12 203 | 47.95 246 | 96.09 119 | 85.04 66 | 74.55 206 | 89.48 206 |
|
DPE-MVS |  | | 88.77 15 | 89.21 15 | 87.45 36 | 96.26 20 | 67.56 92 | 94.17 52 | 94.15 52 | 68.77 242 | 90.74 14 | 97.27 2 | 76.09 12 | 98.49 28 | 90.58 27 | 94.91 19 | 96.30 28 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
1314 | | | 80.70 128 | 78.95 145 | 85.94 78 | 87.77 197 | 67.56 92 | 87.91 255 | 92.55 112 | 72.17 175 | 67.44 242 | 93.09 102 | 50.27 223 | 97.04 85 | 71.68 169 | 87.64 109 | 93.23 135 |
|
ACMMP_NAP | | | 86.05 43 | 85.80 45 | 86.80 53 | 91.58 106 | 67.53 94 | 91.79 152 | 93.49 75 | 74.93 119 | 84.61 53 | 95.30 43 | 59.42 128 | 97.92 40 | 86.13 58 | 94.92 18 | 94.94 77 |
|
PVSNet_BlendedMVS | | | 83.38 84 | 83.43 71 | 83.22 160 | 93.76 49 | 67.53 94 | 94.06 58 | 93.61 68 | 79.13 60 | 81.00 84 | 85.14 223 | 63.19 92 | 97.29 71 | 87.08 51 | 73.91 215 | 84.83 286 |
|
PVSNet_Blended | | | 86.73 36 | 86.86 34 | 86.31 71 | 93.76 49 | 67.53 94 | 96.33 15 | 93.61 68 | 82.34 22 | 81.00 84 | 93.08 103 | 63.19 92 | 97.29 71 | 87.08 51 | 91.38 77 | 94.13 105 |
|
SF-MVS | | | 87.03 31 | 87.09 30 | 86.84 50 | 92.70 77 | 67.45 97 | 93.64 81 | 93.76 61 | 70.78 216 | 86.25 36 | 96.44 20 | 66.98 49 | 97.79 45 | 88.68 38 | 94.56 31 | 95.28 64 |
|
test_prior | | | | | 86.42 66 | 94.71 35 | 67.35 98 | | 93.10 91 | | | | | 96.84 99 | | | 95.05 73 |
|
TEST9 | | | | | | 94.18 41 | 67.28 99 | 94.16 53 | 93.51 72 | 71.75 190 | 85.52 45 | 95.33 41 | 68.01 42 | 97.27 75 | | | |
|
train_agg | | | 87.21 29 | 87.42 28 | 86.60 58 | 94.18 41 | 67.28 99 | 94.16 53 | 93.51 72 | 71.87 184 | 85.52 45 | 95.33 41 | 68.19 40 | 97.27 75 | 89.09 34 | 94.90 20 | 95.25 68 |
|
test_8 | | | | | | 94.19 40 | 67.19 101 | 94.15 56 | 93.42 78 | 71.87 184 | 85.38 48 | 95.35 40 | 68.19 40 | 96.95 94 | | | |
|
CDPH-MVS | | | 85.71 48 | 85.46 48 | 86.46 64 | 94.75 34 | 67.19 101 | 93.89 69 | 92.83 100 | 70.90 212 | 83.09 66 | 95.28 44 | 63.62 85 | 97.36 66 | 80.63 101 | 94.18 34 | 94.84 81 |
|
test_prior4 | | | | | | | 67.18 103 | 93.92 67 | | | | | | | | | |
|
v2v482 | | | 77.42 188 | 75.65 194 | 82.73 168 | 80.38 293 | 67.13 104 | 91.85 150 | 90.23 204 | 75.09 117 | 69.37 212 | 83.39 244 | 53.79 192 | 94.44 189 | 71.77 166 | 65.00 277 | 86.63 250 |
|
DP-MVS Recon | | | 82.73 95 | 81.65 102 | 85.98 76 | 97.31 4 | 67.06 105 | 95.15 35 | 91.99 130 | 69.08 239 | 76.50 134 | 93.89 89 | 54.48 184 | 98.20 34 | 70.76 175 | 85.66 127 | 92.69 147 |
|
tpmvs | | | 72.88 248 | 69.76 262 | 82.22 184 | 90.98 119 | 67.05 106 | 78.22 332 | 88.30 270 | 63.10 287 | 64.35 272 | 74.98 328 | 55.09 177 | 94.27 195 | 43.25 330 | 69.57 243 | 85.34 280 |
|
gm-plane-assit | | | | | | 88.42 176 | 67.04 107 | | | 78.62 71 | | 91.83 130 | | 97.37 65 | 76.57 129 | | |
|
ETV-MVS | | | 86.01 44 | 86.11 41 | 85.70 88 | 90.21 134 | 67.02 108 | 93.43 91 | 91.92 133 | 81.21 35 | 84.13 60 | 94.07 86 | 60.93 112 | 95.63 141 | 89.28 32 | 89.81 92 | 94.46 97 |
|
agg_prior | | | | | | 94.16 43 | 66.97 109 | | 93.31 81 | | 84.49 55 | | | 96.75 101 | | | |
|
ADS-MVSNet | | | 68.54 281 | 64.38 296 | 81.03 217 | 88.06 188 | 66.90 110 | 68.01 354 | 84.02 314 | 57.57 320 | 64.48 268 | 69.87 345 | 38.68 289 | 89.21 306 | 40.87 341 | 67.89 256 | 86.97 242 |
|
CANet_DTU | | | 84.09 72 | 83.52 66 | 85.81 83 | 90.30 132 | 66.82 111 | 91.87 148 | 89.01 250 | 85.27 8 | 86.09 39 | 93.74 91 | 47.71 249 | 96.98 91 | 77.90 123 | 89.78 94 | 93.65 124 |
|
v8 | | | 75.35 221 | 73.26 226 | 81.61 200 | 80.67 290 | 66.82 111 | 89.54 228 | 89.27 235 | 71.65 192 | 63.30 280 | 80.30 288 | 54.99 178 | 94.06 205 | 67.33 209 | 62.33 298 | 83.94 292 |
|
3Dnovator+ | | 73.60 7 | 82.10 107 | 80.60 119 | 86.60 58 | 90.89 122 | 66.80 113 | 95.20 33 | 93.44 77 | 74.05 130 | 67.42 243 | 92.49 118 | 49.46 230 | 97.65 51 | 70.80 174 | 91.68 71 | 95.33 58 |
|
PAPM_NR | | | 82.97 92 | 81.84 100 | 86.37 68 | 94.10 44 | 66.76 114 | 87.66 260 | 92.84 99 | 69.96 226 | 74.07 158 | 93.57 96 | 63.10 94 | 97.50 59 | 70.66 177 | 90.58 87 | 94.85 78 |
|
v10 | | | 74.77 228 | 72.54 237 | 81.46 203 | 80.33 295 | 66.71 115 | 89.15 238 | 89.08 247 | 70.94 211 | 63.08 281 | 79.86 293 | 52.52 204 | 94.04 208 | 65.70 227 | 62.17 299 | 83.64 294 |
|
DeepC-MVS | | 77.85 3 | 85.52 50 | 85.24 50 | 86.37 68 | 88.80 168 | 66.64 116 | 92.15 132 | 93.68 66 | 81.07 36 | 76.91 130 | 93.64 94 | 62.59 97 | 98.44 30 | 85.50 62 | 92.84 56 | 94.03 111 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
baseline1 | | | 81.84 110 | 81.03 111 | 84.28 134 | 91.60 105 | 66.62 117 | 91.08 185 | 91.66 150 | 81.87 26 | 74.86 148 | 91.67 134 | 69.98 36 | 94.92 168 | 71.76 167 | 64.75 280 | 91.29 181 |
|
v1144 | | | 76.73 201 | 74.88 201 | 82.27 181 | 80.23 297 | 66.60 118 | 91.68 159 | 90.21 206 | 73.69 141 | 69.06 217 | 81.89 259 | 52.73 203 | 94.40 190 | 69.21 191 | 65.23 274 | 85.80 269 |
|
PVSNet_Blended_VisFu | | | 83.97 74 | 83.50 67 | 85.39 96 | 90.02 137 | 66.59 119 | 93.77 76 | 91.73 144 | 77.43 90 | 77.08 129 | 89.81 166 | 63.77 83 | 96.97 92 | 79.67 106 | 88.21 104 | 92.60 150 |
|
v144192 | | | 76.05 209 | 74.03 216 | 82.12 189 | 79.50 304 | 66.55 120 | 91.39 169 | 89.71 225 | 72.30 170 | 68.17 230 | 81.33 271 | 51.75 210 | 94.03 210 | 67.94 202 | 64.19 284 | 85.77 270 |
|
VPNet | | | 78.82 163 | 77.53 165 | 82.70 169 | 84.52 249 | 66.44 121 | 93.93 66 | 92.23 119 | 80.46 41 | 72.60 172 | 88.38 182 | 49.18 234 | 93.13 230 | 72.47 160 | 63.97 288 | 88.55 218 |
|
SteuartSystems-ACMMP | | | 86.82 35 | 86.90 33 | 86.58 60 | 90.42 129 | 66.38 122 | 96.09 16 | 93.87 56 | 77.73 82 | 84.01 61 | 95.66 34 | 63.39 89 | 97.94 39 | 87.40 47 | 93.55 47 | 95.42 52 |
Skip Steuart: Steuart Systems R&D Blog. |
v1921920 | | | 75.63 219 | 73.49 224 | 82.06 193 | 79.38 305 | 66.35 123 | 91.07 187 | 89.48 228 | 71.98 178 | 67.99 231 | 81.22 274 | 49.16 236 | 93.90 216 | 66.56 215 | 64.56 283 | 85.92 268 |
|
MVP-Stereo | | | 77.12 192 | 76.23 185 | 79.79 245 | 81.72 282 | 66.34 124 | 89.29 233 | 90.88 181 | 70.56 220 | 62.01 289 | 82.88 248 | 49.34 231 | 94.13 200 | 65.55 230 | 93.80 40 | 78.88 343 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
GA-MVS | | | 78.33 175 | 76.23 185 | 84.65 120 | 83.65 263 | 66.30 125 | 91.44 163 | 90.14 207 | 76.01 106 | 70.32 202 | 84.02 237 | 42.50 277 | 94.72 173 | 70.98 172 | 77.00 193 | 92.94 144 |
|
APDe-MVS | | | 87.54 25 | 87.84 22 | 86.65 57 | 96.07 23 | 66.30 125 | 94.84 44 | 93.78 58 | 69.35 233 | 88.39 26 | 96.34 22 | 67.74 45 | 97.66 50 | 90.62 26 | 93.44 48 | 96.01 38 |
|
v1192 | | | 75.98 211 | 73.92 218 | 82.15 187 | 79.73 300 | 66.24 127 | 91.22 180 | 89.75 219 | 72.67 159 | 68.49 228 | 81.42 269 | 49.86 227 | 94.27 195 | 67.08 211 | 65.02 276 | 85.95 266 |
|
dp | | | 75.01 226 | 72.09 241 | 83.76 143 | 89.28 154 | 66.22 128 | 79.96 325 | 89.75 219 | 71.16 206 | 67.80 239 | 77.19 314 | 51.81 209 | 92.54 255 | 50.39 298 | 71.44 235 | 92.51 153 |
|
EPNet | | | 87.84 22 | 88.38 18 | 86.23 72 | 93.30 60 | 66.05 129 | 95.26 31 | 94.84 23 | 87.09 4 | 88.06 27 | 94.53 67 | 66.79 51 | 97.34 68 | 83.89 78 | 91.68 71 | 95.29 62 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
ppachtmachnet_test | | | 67.72 287 | 63.70 298 | 79.77 246 | 78.92 312 | 66.04 130 | 88.68 245 | 82.90 325 | 60.11 311 | 55.45 319 | 75.96 324 | 39.19 288 | 90.55 289 | 39.53 345 | 52.55 341 | 82.71 311 |
|
v1240 | | | 75.21 224 | 72.98 229 | 81.88 195 | 79.20 307 | 66.00 131 | 90.75 196 | 89.11 245 | 71.63 196 | 67.41 244 | 81.22 274 | 47.36 250 | 93.87 217 | 65.46 231 | 64.72 281 | 85.77 270 |
|
baseline2 | | | 83.68 82 | 83.42 73 | 84.48 126 | 87.37 204 | 66.00 131 | 90.06 215 | 95.93 7 | 79.71 49 | 69.08 216 | 90.39 154 | 77.92 6 | 96.28 113 | 78.91 115 | 81.38 156 | 91.16 183 |
|
PCF-MVS | | 73.15 9 | 79.29 153 | 77.63 163 | 84.29 133 | 86.06 225 | 65.96 133 | 87.03 267 | 91.10 172 | 69.86 228 | 69.79 211 | 90.64 147 | 57.54 146 | 96.59 104 | 64.37 238 | 82.29 147 | 90.32 192 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
MAR-MVS | | | 84.18 70 | 83.43 71 | 86.44 65 | 96.25 21 | 65.93 134 | 94.28 51 | 94.27 49 | 74.41 123 | 79.16 103 | 95.61 36 | 53.99 189 | 98.88 20 | 69.62 186 | 93.26 51 | 94.50 95 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
Fast-Effi-MVS+ | | | 81.14 120 | 80.01 126 | 84.51 125 | 90.24 133 | 65.86 135 | 94.12 57 | 89.15 242 | 73.81 138 | 75.37 145 | 88.26 185 | 57.26 147 | 94.53 186 | 66.97 213 | 84.92 130 | 93.15 137 |
|
AdaColmap |  | | 78.94 160 | 77.00 176 | 84.76 116 | 96.34 17 | 65.86 135 | 92.66 117 | 87.97 280 | 62.18 294 | 70.56 197 | 92.37 122 | 43.53 273 | 97.35 67 | 64.50 237 | 82.86 144 | 91.05 185 |
|
thres200 | | | 79.66 147 | 78.33 151 | 83.66 150 | 92.54 82 | 65.82 137 | 93.06 99 | 96.31 3 | 74.90 120 | 73.30 164 | 88.66 175 | 59.67 125 | 95.61 143 | 47.84 313 | 78.67 176 | 89.56 205 |
|
BH-RMVSNet | | | 79.46 152 | 77.65 162 | 84.89 110 | 91.68 104 | 65.66 138 | 93.55 85 | 88.09 276 | 72.93 155 | 73.37 163 | 91.12 143 | 46.20 261 | 96.12 118 | 56.28 280 | 85.61 128 | 92.91 145 |
|
ZNCC-MVS | | | 85.33 52 | 85.08 53 | 86.06 74 | 93.09 68 | 65.65 139 | 93.89 69 | 93.41 79 | 73.75 139 | 79.94 93 | 94.68 64 | 60.61 115 | 98.03 37 | 82.63 85 | 93.72 43 | 94.52 93 |
|
thisisatest0530 | | | 81.15 119 | 80.07 124 | 84.39 129 | 88.26 182 | 65.63 140 | 91.40 167 | 94.62 33 | 71.27 205 | 70.93 194 | 89.18 171 | 72.47 29 | 96.04 124 | 65.62 228 | 76.89 194 | 91.49 172 |
|
MP-MVS-pluss | | | 85.24 53 | 85.13 52 | 85.56 91 | 91.42 111 | 65.59 141 | 91.54 162 | 92.51 113 | 74.56 122 | 80.62 87 | 95.64 35 | 59.15 132 | 97.00 87 | 86.94 53 | 93.80 40 | 94.07 109 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
FE-MVS | | | 75.97 212 | 73.02 228 | 84.82 113 | 89.78 141 | 65.56 142 | 77.44 335 | 91.07 176 | 64.55 272 | 72.66 170 | 79.85 294 | 46.05 263 | 96.69 102 | 54.97 284 | 80.82 161 | 92.21 164 |
|
PHI-MVS | | | 86.83 34 | 86.85 35 | 86.78 54 | 93.47 57 | 65.55 143 | 95.39 29 | 95.10 17 | 71.77 189 | 85.69 44 | 96.52 17 | 62.07 101 | 98.77 21 | 86.06 60 | 95.60 11 | 96.03 37 |
|
114514_t | | | 79.17 155 | 77.67 161 | 83.68 148 | 95.32 29 | 65.53 144 | 92.85 108 | 91.60 152 | 63.49 280 | 67.92 234 | 90.63 149 | 46.65 254 | 95.72 139 | 67.01 212 | 83.54 141 | 89.79 200 |
|
ZD-MVS | | | | | | 96.63 9 | 65.50 145 | | 93.50 74 | 70.74 217 | 85.26 50 | 95.19 51 | 64.92 69 | 97.29 71 | 87.51 45 | 93.01 53 | |
|
ab-mvs | | | 80.18 138 | 78.31 152 | 85.80 84 | 88.44 175 | 65.49 146 | 83.00 298 | 92.67 105 | 71.82 187 | 77.36 124 | 85.01 224 | 54.50 181 | 96.59 104 | 76.35 131 | 75.63 202 | 95.32 60 |
|
TSAR-MVS + GP. | | | 87.96 19 | 88.37 19 | 86.70 56 | 93.51 56 | 65.32 147 | 95.15 35 | 93.84 57 | 78.17 75 | 85.93 41 | 94.80 61 | 75.80 13 | 98.21 33 | 89.38 30 | 88.78 100 | 96.59 15 |
|
GST-MVS | | | 84.63 61 | 84.29 61 | 85.66 89 | 92.82 73 | 65.27 148 | 93.04 101 | 93.13 89 | 73.20 148 | 78.89 105 | 94.18 83 | 59.41 129 | 97.85 44 | 81.45 94 | 92.48 60 | 93.86 119 |
|
pmmvs4 | | | 73.92 237 | 71.81 245 | 80.25 231 | 79.17 308 | 65.24 149 | 87.43 263 | 87.26 286 | 67.64 252 | 63.46 278 | 83.91 239 | 48.96 238 | 91.53 284 | 62.94 248 | 65.49 270 | 83.96 291 |
|
APD-MVS |  | | 85.93 45 | 85.99 42 | 85.76 86 | 95.98 26 | 65.21 150 | 93.59 84 | 92.58 111 | 66.54 259 | 86.17 38 | 95.88 30 | 63.83 81 | 97.00 87 | 86.39 57 | 92.94 54 | 95.06 72 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
miper_enhance_ethall | | | 78.86 162 | 77.97 158 | 81.54 202 | 88.00 191 | 65.17 151 | 91.41 165 | 89.15 242 | 75.19 116 | 68.79 223 | 83.98 238 | 67.17 48 | 92.82 241 | 72.73 156 | 65.30 271 | 86.62 251 |
|
MTAPA | | | 83.91 75 | 83.38 75 | 85.50 92 | 91.89 99 | 65.16 152 | 81.75 304 | 92.23 119 | 75.32 114 | 80.53 88 | 95.21 50 | 56.06 167 | 97.16 79 | 84.86 70 | 92.55 59 | 94.18 101 |
|
GBi-Net | | | 75.65 217 | 73.83 219 | 81.10 213 | 88.85 165 | 65.11 153 | 90.01 217 | 90.32 196 | 70.84 213 | 67.04 248 | 80.25 289 | 48.03 242 | 91.54 281 | 59.80 268 | 69.34 244 | 86.64 247 |
|
test1 | | | 75.65 217 | 73.83 219 | 81.10 213 | 88.85 165 | 65.11 153 | 90.01 217 | 90.32 196 | 70.84 213 | 67.04 248 | 80.25 289 | 48.03 242 | 91.54 281 | 59.80 268 | 69.34 244 | 86.64 247 |
|
FMVSNet1 | | | 72.71 251 | 69.91 260 | 81.10 213 | 83.60 264 | 65.11 153 | 90.01 217 | 90.32 196 | 63.92 276 | 63.56 277 | 80.25 289 | 36.35 314 | 91.54 281 | 54.46 286 | 66.75 263 | 86.64 247 |
|
HFP-MVS | | | 84.73 59 | 84.40 60 | 85.72 87 | 93.75 51 | 65.01 156 | 93.50 88 | 93.19 86 | 72.19 173 | 79.22 102 | 94.93 56 | 59.04 133 | 97.67 48 | 81.55 92 | 92.21 61 | 94.49 96 |
|
PVSNet | | 73.49 8 | 80.05 141 | 78.63 148 | 84.31 132 | 90.92 121 | 64.97 157 | 92.47 125 | 91.05 178 | 79.18 58 | 72.43 178 | 90.51 151 | 37.05 311 | 94.06 205 | 68.06 200 | 86.00 125 | 93.90 118 |
|
Anonymous20240529 | | | 76.84 198 | 74.15 214 | 84.88 111 | 91.02 118 | 64.95 158 | 93.84 74 | 91.09 173 | 53.57 336 | 73.00 165 | 87.42 199 | 35.91 315 | 97.32 69 | 69.14 192 | 72.41 228 | 92.36 155 |
|
cl22 | | | 77.94 181 | 76.78 178 | 81.42 204 | 87.57 198 | 64.93 159 | 90.67 197 | 88.86 255 | 72.45 165 | 67.63 241 | 82.68 251 | 64.07 77 | 92.91 239 | 71.79 165 | 65.30 271 | 86.44 252 |
|
our_test_3 | | | 68.29 283 | 64.69 291 | 79.11 259 | 78.92 312 | 64.85 160 | 88.40 250 | 85.06 305 | 60.32 309 | 52.68 329 | 76.12 323 | 40.81 283 | 89.80 303 | 44.25 329 | 55.65 331 | 82.67 314 |
|
tpm | | | 78.58 170 | 77.03 174 | 83.22 160 | 85.94 229 | 64.56 161 | 83.21 295 | 91.14 171 | 78.31 73 | 73.67 162 | 79.68 296 | 64.01 78 | 92.09 269 | 66.07 223 | 71.26 236 | 93.03 141 |
|
Anonymous202405211 | | | 77.96 180 | 75.33 198 | 85.87 80 | 93.73 52 | 64.52 162 | 94.85 43 | 85.36 303 | 62.52 292 | 76.11 135 | 90.18 159 | 29.43 338 | 97.29 71 | 68.51 198 | 77.24 192 | 95.81 44 |
|
tfpn200view9 | | | 78.79 165 | 77.43 166 | 82.88 165 | 92.21 88 | 64.49 163 | 92.05 139 | 96.28 4 | 73.48 145 | 71.75 186 | 88.26 185 | 60.07 121 | 95.32 155 | 45.16 324 | 77.58 185 | 88.83 210 |
|
thres400 | | | 78.68 167 | 77.43 166 | 82.43 175 | 92.21 88 | 64.49 163 | 92.05 139 | 96.28 4 | 73.48 145 | 71.75 186 | 88.26 185 | 60.07 121 | 95.32 155 | 45.16 324 | 77.58 185 | 87.48 231 |
|
VPA-MVSNet | | | 79.03 157 | 78.00 157 | 82.11 192 | 85.95 227 | 64.48 165 | 93.22 96 | 94.66 31 | 75.05 118 | 74.04 159 | 84.95 225 | 52.17 207 | 93.52 224 | 74.90 143 | 67.04 261 | 88.32 224 |
|
CDS-MVSNet | | | 81.43 116 | 80.74 114 | 83.52 151 | 86.26 222 | 64.45 166 | 92.09 136 | 90.65 188 | 75.83 108 | 73.95 160 | 89.81 166 | 63.97 79 | 92.91 239 | 71.27 170 | 82.82 145 | 93.20 136 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
v148 | | | 76.19 204 | 74.47 209 | 81.36 205 | 80.05 298 | 64.44 167 | 91.75 157 | 90.23 204 | 73.68 142 | 67.13 247 | 80.84 279 | 55.92 169 | 93.86 219 | 68.95 194 | 61.73 306 | 85.76 272 |
|
XXY-MVS | | | 77.94 181 | 76.44 182 | 82.43 175 | 82.60 273 | 64.44 167 | 92.01 141 | 91.83 141 | 73.59 144 | 70.00 207 | 85.82 218 | 54.43 185 | 94.76 170 | 69.63 185 | 68.02 255 | 88.10 226 |
|
MIMVSNet | | | 71.64 257 | 68.44 269 | 81.23 208 | 81.97 281 | 64.44 167 | 73.05 343 | 88.80 256 | 69.67 230 | 64.59 265 | 74.79 329 | 32.79 324 | 87.82 317 | 53.99 288 | 76.35 198 | 91.42 174 |
|
miper_ehance_all_eth | | | 77.60 185 | 76.44 182 | 81.09 216 | 85.70 232 | 64.41 170 | 90.65 198 | 88.64 263 | 72.31 169 | 67.37 246 | 82.52 252 | 64.77 71 | 92.64 253 | 70.67 176 | 65.30 271 | 86.24 256 |
|
Patchmtry | | | 67.53 290 | 63.93 297 | 78.34 264 | 82.12 279 | 64.38 171 | 68.72 351 | 84.00 315 | 48.23 352 | 59.24 300 | 72.41 335 | 57.82 143 | 89.27 305 | 46.10 321 | 56.68 330 | 81.36 323 |
|
ACMMPR | | | 84.37 63 | 84.06 62 | 85.28 99 | 93.56 54 | 64.37 172 | 93.50 88 | 93.15 88 | 72.19 173 | 78.85 110 | 94.86 59 | 56.69 159 | 97.45 60 | 81.55 92 | 92.20 62 | 94.02 112 |
|
BH-w/o | | | 80.49 132 | 79.30 141 | 84.05 139 | 90.83 124 | 64.36 173 | 93.60 83 | 89.42 231 | 74.35 125 | 69.09 215 | 90.15 161 | 55.23 174 | 95.61 143 | 64.61 236 | 86.43 124 | 92.17 165 |
|
region2R | | | 84.36 64 | 84.03 63 | 85.36 97 | 93.54 55 | 64.31 174 | 93.43 91 | 92.95 96 | 72.16 176 | 78.86 109 | 94.84 60 | 56.97 154 | 97.53 58 | 81.38 96 | 92.11 64 | 94.24 100 |
|
新几何1 | | | | | 84.73 117 | 92.32 84 | 64.28 175 | | 91.46 158 | 59.56 314 | 79.77 95 | 92.90 108 | 56.95 155 | 96.57 106 | 63.40 243 | 92.91 55 | 93.34 131 |
|
原ACMM1 | | | | | 84.42 127 | 93.21 63 | 64.27 176 | | 93.40 80 | 65.39 267 | 79.51 98 | 92.50 116 | 58.11 141 | 96.69 102 | 65.27 233 | 93.96 37 | 92.32 157 |
|
MP-MVS |  | | 85.02 55 | 84.97 55 | 85.17 104 | 92.60 81 | 64.27 176 | 93.24 94 | 92.27 118 | 73.13 150 | 79.63 97 | 94.43 70 | 61.90 102 | 97.17 78 | 85.00 67 | 92.56 58 | 94.06 110 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
c3_l | | | 76.83 199 | 75.47 195 | 80.93 220 | 85.02 242 | 64.18 178 | 90.39 205 | 88.11 275 | 71.66 191 | 66.65 254 | 81.64 264 | 63.58 88 | 92.56 254 | 69.31 190 | 62.86 292 | 86.04 263 |
|
PGM-MVS | | | 83.25 87 | 82.70 88 | 84.92 109 | 92.81 75 | 64.07 179 | 90.44 202 | 92.20 123 | 71.28 204 | 77.23 126 | 94.43 70 | 55.17 176 | 97.31 70 | 79.33 110 | 91.38 77 | 93.37 130 |
|
MSP-MVS | | | 90.38 4 | 91.87 1 | 85.88 79 | 92.83 71 | 64.03 180 | 93.06 99 | 94.33 47 | 82.19 23 | 93.65 3 | 96.15 27 | 85.89 1 | 97.19 77 | 91.02 23 | 97.75 1 | 96.43 25 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
FA-MVS(test-final) | | | 79.12 156 | 77.23 172 | 84.81 114 | 90.54 127 | 63.98 181 | 81.35 310 | 91.71 146 | 71.09 209 | 74.85 149 | 82.94 247 | 52.85 201 | 97.05 82 | 67.97 201 | 81.73 154 | 93.41 129 |
|
CP-MVS | | | 83.71 81 | 83.40 74 | 84.65 120 | 93.14 66 | 63.84 182 | 94.59 47 | 92.28 117 | 71.03 210 | 77.41 123 | 94.92 57 | 55.21 175 | 96.19 115 | 81.32 97 | 90.70 85 | 93.91 116 |
|
OPM-MVS | | | 79.00 158 | 78.09 155 | 81.73 197 | 83.52 265 | 63.83 183 | 91.64 161 | 90.30 200 | 76.36 104 | 71.97 183 | 89.93 165 | 46.30 260 | 95.17 160 | 75.10 138 | 77.70 183 | 86.19 258 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
XVS | | | 83.87 76 | 83.47 69 | 85.05 105 | 93.22 61 | 63.78 184 | 92.92 106 | 92.66 106 | 73.99 131 | 78.18 114 | 94.31 79 | 55.25 172 | 97.41 63 | 79.16 111 | 91.58 73 | 93.95 114 |
|
X-MVStestdata | | | 76.86 195 | 74.13 215 | 85.05 105 | 93.22 61 | 63.78 184 | 92.92 106 | 92.66 106 | 73.99 131 | 78.18 114 | 10.19 383 | 55.25 172 | 97.41 63 | 79.16 111 | 91.58 73 | 93.95 114 |
|
TESTMET0.1,1 | | | 82.41 100 | 81.98 99 | 83.72 147 | 88.08 187 | 63.74 186 | 92.70 113 | 93.77 60 | 79.30 55 | 77.61 121 | 87.57 197 | 58.19 140 | 94.08 203 | 73.91 148 | 86.68 121 | 93.33 133 |
|
BH-untuned | | | 78.68 167 | 77.08 173 | 83.48 155 | 89.84 140 | 63.74 186 | 92.70 113 | 88.59 264 | 71.57 198 | 66.83 252 | 88.65 176 | 51.75 210 | 95.39 153 | 59.03 271 | 84.77 132 | 91.32 179 |
|
test_fmvsmvis_n_1920 | | | 83.80 78 | 83.48 68 | 84.77 115 | 82.51 274 | 63.72 188 | 91.37 172 | 83.99 317 | 81.42 33 | 77.68 119 | 95.74 33 | 58.37 137 | 97.58 55 | 93.38 5 | 86.87 114 | 93.00 143 |
|
MSDG | | | 69.54 272 | 65.73 282 | 80.96 218 | 85.11 241 | 63.71 189 | 84.19 283 | 83.28 323 | 56.95 325 | 54.50 322 | 84.03 236 | 31.50 330 | 96.03 125 | 42.87 334 | 69.13 247 | 83.14 305 |
|
patch_mono-2 | | | 89.71 10 | 90.99 5 | 85.85 82 | 96.04 24 | 63.70 190 | 95.04 39 | 95.19 14 | 86.74 6 | 91.53 11 | 95.15 52 | 73.86 20 | 97.58 55 | 93.38 5 | 92.00 66 | 96.28 31 |
|
thres600view7 | | | 78.00 178 | 76.66 180 | 82.03 194 | 91.93 96 | 63.69 191 | 91.30 177 | 96.33 1 | 72.43 166 | 70.46 199 | 87.89 192 | 60.31 116 | 94.92 168 | 42.64 336 | 76.64 195 | 87.48 231 |
|
PatchT | | | 69.11 275 | 65.37 287 | 80.32 227 | 82.07 280 | 63.68 192 | 67.96 356 | 87.62 282 | 50.86 344 | 69.37 212 | 65.18 353 | 57.09 149 | 88.53 310 | 41.59 339 | 66.60 264 | 88.74 214 |
|
HQP5-MVS | | | | | | | 63.66 193 | | | | | | | | | | |
|
HQP-MVS | | | 81.14 120 | 80.64 117 | 82.64 171 | 87.54 199 | 63.66 193 | 94.06 58 | 91.70 148 | 79.80 46 | 74.18 154 | 90.30 156 | 51.63 212 | 95.61 143 | 77.63 124 | 78.90 173 | 88.63 215 |
|
EI-MVSNet-Vis-set | | | 83.77 79 | 83.67 65 | 84.06 138 | 92.79 76 | 63.56 195 | 91.76 155 | 94.81 25 | 79.65 50 | 77.87 117 | 94.09 84 | 63.35 90 | 97.90 41 | 79.35 109 | 79.36 169 | 90.74 187 |
|
test_fmvsm_n_1920 | | | 87.69 24 | 88.50 17 | 85.27 100 | 87.05 210 | 63.55 196 | 93.69 79 | 91.08 175 | 84.18 12 | 90.17 19 | 97.04 8 | 67.58 46 | 97.99 38 | 95.72 2 | 90.03 91 | 94.26 99 |
|
TAMVS | | | 80.37 134 | 79.45 137 | 83.13 162 | 85.14 239 | 63.37 197 | 91.23 179 | 90.76 183 | 74.81 121 | 72.65 171 | 88.49 177 | 60.63 114 | 92.95 234 | 69.41 188 | 81.95 151 | 93.08 140 |
|
Anonymous20231211 | | | 73.08 242 | 70.39 256 | 81.13 211 | 90.62 126 | 63.33 198 | 91.40 167 | 90.06 211 | 51.84 341 | 64.46 270 | 80.67 282 | 36.49 313 | 94.07 204 | 63.83 241 | 64.17 285 | 85.98 265 |
|
ACMH | | 63.93 17 | 68.62 279 | 64.81 289 | 80.03 237 | 85.22 237 | 63.25 199 | 87.72 258 | 84.66 309 | 60.83 305 | 51.57 334 | 79.43 299 | 27.29 343 | 94.96 165 | 41.76 337 | 64.84 278 | 81.88 320 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
thres100view900 | | | 78.37 173 | 77.01 175 | 82.46 174 | 91.89 99 | 63.21 200 | 91.19 183 | 96.33 1 | 72.28 171 | 70.45 200 | 87.89 192 | 60.31 116 | 95.32 155 | 45.16 324 | 77.58 185 | 88.83 210 |
|
EI-MVSNet-UG-set | | | 83.14 89 | 82.96 81 | 83.67 149 | 92.28 85 | 63.19 201 | 91.38 171 | 94.68 30 | 79.22 57 | 76.60 132 | 93.75 90 | 62.64 96 | 97.76 46 | 78.07 122 | 78.01 180 | 90.05 196 |
|
test2506 | | | 83.29 85 | 82.92 83 | 84.37 130 | 88.39 178 | 63.18 202 | 92.01 141 | 91.35 161 | 77.66 84 | 78.49 113 | 91.42 137 | 64.58 73 | 95.09 161 | 73.19 149 | 89.23 96 | 94.85 78 |
|
NP-MVS | | | | | | 87.41 202 | 63.04 203 | | | | | 90.30 156 | | | | | |
|
eth_miper_zixun_eth | | | 75.96 213 | 74.40 210 | 80.66 222 | 84.66 246 | 63.02 204 | 89.28 234 | 88.27 272 | 71.88 183 | 65.73 256 | 81.65 263 | 59.45 127 | 92.81 242 | 68.13 199 | 60.53 315 | 86.14 259 |
|
D2MVS | | | 73.80 238 | 72.02 242 | 79.15 258 | 79.15 309 | 62.97 205 | 88.58 247 | 90.07 209 | 72.94 154 | 59.22 301 | 78.30 303 | 42.31 279 | 92.70 248 | 65.59 229 | 72.00 229 | 81.79 321 |
|
IterMVS | | | 72.65 254 | 70.83 251 | 78.09 269 | 82.17 278 | 62.96 206 | 87.64 261 | 86.28 293 | 71.56 199 | 60.44 295 | 78.85 301 | 45.42 267 | 86.66 327 | 63.30 246 | 61.83 303 | 84.65 288 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EG-PatchMatch MVS | | | 68.55 280 | 65.41 286 | 77.96 270 | 78.69 317 | 62.93 207 | 89.86 222 | 89.17 240 | 60.55 306 | 50.27 339 | 77.73 309 | 22.60 352 | 94.06 205 | 47.18 316 | 72.65 225 | 76.88 351 |
|
DP-MVS | | | 69.90 270 | 66.48 276 | 80.14 233 | 95.36 28 | 62.93 207 | 89.56 226 | 76.11 340 | 50.27 346 | 57.69 313 | 85.23 222 | 39.68 286 | 95.73 135 | 33.35 360 | 71.05 237 | 81.78 322 |
|
mPP-MVS | | | 82.96 93 | 82.44 93 | 84.52 124 | 92.83 71 | 62.92 209 | 92.76 109 | 91.85 140 | 71.52 200 | 75.61 142 | 94.24 81 | 53.48 197 | 96.99 90 | 78.97 114 | 90.73 84 | 93.64 125 |
|
ACMMP |  | | 81.49 115 | 80.67 116 | 83.93 141 | 91.71 103 | 62.90 210 | 92.13 133 | 92.22 122 | 71.79 188 | 71.68 188 | 93.49 98 | 50.32 221 | 96.96 93 | 78.47 119 | 84.22 140 | 91.93 168 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
HPM-MVS |  | | 83.25 87 | 82.95 82 | 84.17 136 | 92.25 86 | 62.88 211 | 90.91 188 | 91.86 138 | 70.30 222 | 77.12 127 | 93.96 88 | 56.75 157 | 96.28 113 | 82.04 89 | 91.34 79 | 93.34 131 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
MVS_111021_LR | | | 82.02 108 | 81.52 103 | 83.51 153 | 88.42 176 | 62.88 211 | 89.77 224 | 88.93 252 | 76.78 97 | 75.55 143 | 93.10 101 | 50.31 222 | 95.38 154 | 83.82 79 | 87.02 113 | 92.26 163 |
|
IterMVS-LS | | | 76.49 202 | 75.18 200 | 80.43 226 | 84.49 250 | 62.74 213 | 90.64 199 | 88.80 256 | 72.40 167 | 65.16 261 | 81.72 262 | 60.98 111 | 92.27 265 | 67.74 204 | 64.65 282 | 86.29 254 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EI-MVSNet | | | 78.97 159 | 78.22 154 | 81.25 207 | 85.33 235 | 62.73 214 | 89.53 229 | 93.21 83 | 72.39 168 | 72.14 181 | 90.13 162 | 60.99 110 | 94.72 173 | 67.73 205 | 72.49 226 | 86.29 254 |
|
CHOSEN 280x420 | | | 77.35 189 | 76.95 177 | 78.55 263 | 87.07 209 | 62.68 215 | 69.71 350 | 82.95 324 | 68.80 241 | 71.48 190 | 87.27 202 | 66.03 57 | 84.00 339 | 76.47 130 | 82.81 146 | 88.95 209 |
|
HQP_MVS | | | 80.34 135 | 79.75 131 | 82.12 189 | 86.94 211 | 62.42 216 | 93.13 97 | 91.31 162 | 78.81 68 | 72.53 174 | 89.14 173 | 50.66 219 | 95.55 148 | 76.74 127 | 78.53 178 | 88.39 222 |
|
plane_prior | | | | | | | 62.42 216 | 93.85 71 | | 79.38 53 | | | | | | 78.80 175 | |
|
EIA-MVS | | | 84.84 58 | 84.88 56 | 84.69 119 | 91.30 114 | 62.36 218 | 93.85 71 | 92.04 128 | 79.45 51 | 79.33 101 | 94.28 80 | 62.42 98 | 96.35 111 | 80.05 104 | 91.25 80 | 95.38 55 |
|
plane_prior6 | | | | | | 87.23 205 | 62.32 219 | | | | | | 50.66 219 | | | | |
|
PVSNet_0 | | 68.08 15 | 71.81 256 | 68.32 271 | 82.27 181 | 84.68 245 | 62.31 220 | 88.68 245 | 90.31 199 | 75.84 107 | 57.93 312 | 80.65 283 | 37.85 302 | 94.19 199 | 69.94 182 | 29.05 375 | 90.31 193 |
|
WR-MVS | | | 76.76 200 | 75.74 192 | 79.82 244 | 84.60 247 | 62.27 221 | 92.60 119 | 92.51 113 | 76.06 105 | 67.87 238 | 85.34 221 | 56.76 156 | 90.24 296 | 62.20 254 | 63.69 290 | 86.94 244 |
|
NR-MVSNet | | | 76.05 209 | 74.59 205 | 80.44 225 | 82.96 271 | 62.18 222 | 90.83 193 | 91.73 144 | 77.12 92 | 60.96 293 | 86.35 210 | 59.28 131 | 91.80 274 | 60.74 261 | 61.34 310 | 87.35 236 |
|
sd_testset | | | 77.08 193 | 75.37 196 | 82.20 185 | 89.25 155 | 62.11 223 | 82.06 302 | 89.09 246 | 76.77 98 | 70.84 195 | 87.12 203 | 41.43 281 | 95.01 163 | 67.23 210 | 74.55 206 | 89.48 206 |
|
GeoE | | | 78.90 161 | 77.43 166 | 83.29 158 | 88.95 164 | 62.02 224 | 92.31 127 | 86.23 295 | 70.24 223 | 71.34 192 | 89.27 170 | 54.43 185 | 94.04 208 | 63.31 245 | 80.81 162 | 93.81 121 |
|
h-mvs33 | | | 83.01 91 | 82.56 91 | 84.35 131 | 89.34 151 | 62.02 224 | 92.72 111 | 93.76 61 | 81.45 30 | 82.73 69 | 92.25 125 | 60.11 119 | 97.13 80 | 87.69 43 | 62.96 291 | 93.91 116 |
|
ECVR-MVS |  | | 81.29 118 | 80.38 123 | 84.01 140 | 88.39 178 | 61.96 226 | 92.56 124 | 86.79 290 | 77.66 84 | 76.63 131 | 91.42 137 | 46.34 258 | 95.24 159 | 74.36 146 | 89.23 96 | 94.85 78 |
|
plane_prior3 | | | | | | | 61.95 227 | | | 79.09 61 | 72.53 174 | | | | | | |
|
Vis-MVSNet |  | | 80.92 126 | 79.98 128 | 83.74 144 | 88.48 173 | 61.80 228 | 93.44 90 | 88.26 274 | 73.96 134 | 77.73 118 | 91.76 131 | 49.94 226 | 94.76 170 | 65.84 225 | 90.37 89 | 94.65 88 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
FOURS1 | | | | | | 93.95 45 | 61.77 229 | 93.96 64 | 91.92 133 | 62.14 295 | 86.57 35 | | | | | | |
|
cl____ | | | 76.07 206 | 74.67 202 | 80.28 229 | 85.15 238 | 61.76 230 | 90.12 213 | 88.73 259 | 71.16 206 | 65.43 258 | 81.57 266 | 61.15 108 | 92.95 234 | 66.54 216 | 62.17 299 | 86.13 261 |
|
DIV-MVS_self_test | | | 76.07 206 | 74.67 202 | 80.28 229 | 85.14 239 | 61.75 231 | 90.12 213 | 88.73 259 | 71.16 206 | 65.42 259 | 81.60 265 | 61.15 108 | 92.94 238 | 66.54 216 | 62.16 301 | 86.14 259 |
|
CNLPA | | | 74.31 232 | 72.30 239 | 80.32 227 | 91.49 110 | 61.66 232 | 90.85 192 | 80.72 332 | 56.67 328 | 63.85 275 | 90.64 147 | 46.75 253 | 90.84 288 | 53.79 289 | 75.99 201 | 88.47 221 |
|
test222 | | | | | | 89.77 142 | 61.60 233 | 89.55 227 | 89.42 231 | 56.83 327 | 77.28 125 | 92.43 120 | 52.76 202 | | | 91.14 82 | 93.09 139 |
|
plane_prior7 | | | | | | 86.94 211 | 61.51 234 | | | | | | | | | | |
|
UGNet | | | 79.87 145 | 78.68 147 | 83.45 156 | 89.96 138 | 61.51 234 | 92.13 133 | 90.79 182 | 76.83 96 | 78.85 110 | 86.33 212 | 38.16 297 | 96.17 116 | 67.93 203 | 87.17 112 | 92.67 148 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
tttt0517 | | | 79.50 150 | 78.53 150 | 82.41 178 | 87.22 206 | 61.43 236 | 89.75 225 | 94.76 26 | 69.29 234 | 67.91 235 | 88.06 190 | 72.92 25 | 95.63 141 | 62.91 249 | 73.90 216 | 90.16 194 |
|
EC-MVSNet | | | 84.53 62 | 85.04 54 | 83.01 163 | 89.34 151 | 61.37 237 | 94.42 49 | 91.09 173 | 77.91 79 | 83.24 64 | 94.20 82 | 58.37 137 | 95.40 152 | 85.35 63 | 91.41 76 | 92.27 162 |
|
test-LLR | | | 80.10 140 | 79.56 134 | 81.72 198 | 86.93 213 | 61.17 238 | 92.70 113 | 91.54 153 | 71.51 201 | 75.62 140 | 86.94 205 | 53.83 190 | 92.38 260 | 72.21 162 | 84.76 133 | 91.60 170 |
|
test-mter | | | 79.96 143 | 79.38 140 | 81.72 198 | 86.93 213 | 61.17 238 | 92.70 113 | 91.54 153 | 73.85 136 | 75.62 140 | 86.94 205 | 49.84 228 | 92.38 260 | 72.21 162 | 84.76 133 | 91.60 170 |
|
SR-MVS | | | 82.81 94 | 82.58 90 | 83.50 154 | 93.35 58 | 61.16 240 | 92.23 131 | 91.28 165 | 64.48 273 | 81.27 78 | 95.28 44 | 53.71 193 | 95.86 129 | 82.87 83 | 88.77 101 | 93.49 128 |
|
KD-MVS_2432*1600 | | | 69.03 276 | 66.37 279 | 77.01 283 | 85.56 233 | 61.06 241 | 81.44 308 | 90.25 202 | 67.27 254 | 58.00 310 | 76.53 319 | 54.49 182 | 87.63 321 | 48.04 310 | 35.77 367 | 82.34 316 |
|
miper_refine_blended | | | 69.03 276 | 66.37 279 | 77.01 283 | 85.56 233 | 61.06 241 | 81.44 308 | 90.25 202 | 67.27 254 | 58.00 310 | 76.53 319 | 54.49 182 | 87.63 321 | 48.04 310 | 35.77 367 | 82.34 316 |
|
tfpnnormal | | | 70.10 267 | 67.36 274 | 78.32 265 | 83.45 266 | 60.97 243 | 88.85 242 | 92.77 101 | 64.85 271 | 60.83 294 | 78.53 302 | 43.52 274 | 93.48 225 | 31.73 366 | 61.70 307 | 80.52 331 |
|
TR-MVS | | | 78.77 166 | 77.37 171 | 82.95 164 | 90.49 128 | 60.88 244 | 93.67 80 | 90.07 209 | 70.08 225 | 74.51 152 | 91.37 140 | 45.69 264 | 95.70 140 | 60.12 266 | 80.32 163 | 92.29 158 |
|
UniMVSNet (Re) | | | 77.58 186 | 76.78 178 | 79.98 238 | 84.11 257 | 60.80 245 | 91.76 155 | 93.17 87 | 76.56 102 | 69.93 210 | 84.78 228 | 63.32 91 | 92.36 262 | 64.89 235 | 62.51 297 | 86.78 246 |
|
1112_ss | | | 80.56 130 | 79.83 130 | 82.77 167 | 88.65 170 | 60.78 246 | 92.29 128 | 88.36 268 | 72.58 161 | 72.46 177 | 94.95 54 | 65.09 65 | 93.42 227 | 66.38 219 | 77.71 182 | 94.10 106 |
|
v7n | | | 71.31 261 | 68.65 266 | 79.28 254 | 76.40 334 | 60.77 247 | 86.71 272 | 89.45 229 | 64.17 275 | 58.77 306 | 78.24 304 | 44.59 270 | 93.54 223 | 57.76 275 | 61.75 305 | 83.52 297 |
|
test1111 | | | 80.84 127 | 80.02 125 | 83.33 157 | 87.87 194 | 60.76 248 | 92.62 118 | 86.86 289 | 77.86 80 | 75.73 138 | 91.39 139 | 46.35 257 | 94.70 176 | 72.79 155 | 88.68 102 | 94.52 93 |
|
test_0402 | | | 64.54 305 | 61.09 311 | 74.92 299 | 84.10 258 | 60.75 249 | 87.95 254 | 79.71 336 | 52.03 339 | 52.41 330 | 77.20 313 | 32.21 328 | 91.64 277 | 23.14 370 | 61.03 311 | 72.36 359 |
|
旧先验1 | | | | | | 91.94 95 | 60.74 250 | | 91.50 156 | | | 94.36 72 | 65.23 64 | | | 91.84 68 | 94.55 89 |
|
dmvs_re | | | 76.93 194 | 75.36 197 | 81.61 200 | 87.78 196 | 60.71 251 | 80.00 323 | 87.99 278 | 79.42 52 | 69.02 218 | 89.47 169 | 46.77 252 | 94.32 191 | 63.38 244 | 74.45 209 | 89.81 199 |
|
ADS-MVSNet2 | | | 66.90 293 | 63.44 300 | 77.26 280 | 88.06 188 | 60.70 252 | 68.01 354 | 75.56 344 | 57.57 320 | 64.48 268 | 69.87 345 | 38.68 289 | 84.10 336 | 40.87 341 | 67.89 256 | 86.97 242 |
|
IterMVS-SCA-FT | | | 71.55 260 | 69.97 258 | 76.32 289 | 81.48 283 | 60.67 253 | 87.64 261 | 85.99 298 | 66.17 262 | 59.50 299 | 78.88 300 | 45.53 265 | 83.65 341 | 62.58 252 | 61.93 302 | 84.63 289 |
|
TranMVSNet+NR-MVSNet | | | 75.86 214 | 74.52 208 | 79.89 242 | 82.44 275 | 60.64 254 | 91.37 172 | 91.37 160 | 76.63 100 | 67.65 240 | 86.21 214 | 52.37 206 | 91.55 280 | 61.84 256 | 60.81 313 | 87.48 231 |
|
pmmvs5 | | | 73.35 241 | 71.52 247 | 78.86 260 | 78.64 318 | 60.61 255 | 91.08 185 | 86.90 287 | 67.69 249 | 63.32 279 | 83.64 240 | 44.33 271 | 90.53 290 | 62.04 255 | 66.02 268 | 85.46 277 |
|
MDA-MVSNet_test_wron | | | 63.78 310 | 60.16 313 | 74.64 300 | 78.15 324 | 60.41 256 | 83.49 288 | 84.03 313 | 56.17 331 | 39.17 365 | 71.59 341 | 37.22 307 | 83.24 346 | 42.87 334 | 48.73 347 | 80.26 334 |
|
Test_1112_low_res | | | 79.56 149 | 78.60 149 | 82.43 175 | 88.24 184 | 60.39 257 | 92.09 136 | 87.99 278 | 72.10 177 | 71.84 184 | 87.42 199 | 64.62 72 | 93.04 231 | 65.80 226 | 77.30 190 | 93.85 120 |
|
UniMVSNet_NR-MVSNet | | | 78.15 177 | 77.55 164 | 79.98 238 | 84.46 251 | 60.26 258 | 92.25 129 | 93.20 85 | 77.50 88 | 68.88 221 | 86.61 207 | 66.10 56 | 92.13 267 | 66.38 219 | 62.55 295 | 87.54 229 |
|
DU-MVS | | | 76.86 195 | 75.84 190 | 79.91 241 | 82.96 271 | 60.26 258 | 91.26 178 | 91.54 153 | 76.46 103 | 68.88 221 | 86.35 210 | 56.16 164 | 92.13 267 | 66.38 219 | 62.55 295 | 87.35 236 |
|
EPP-MVSNet | | | 81.79 111 | 81.52 103 | 82.61 172 | 88.77 169 | 60.21 260 | 93.02 103 | 93.66 67 | 68.52 245 | 72.90 168 | 90.39 154 | 72.19 31 | 94.96 165 | 74.93 141 | 79.29 171 | 92.67 148 |
|
YYNet1 | | | 63.76 311 | 60.14 314 | 74.62 301 | 78.06 325 | 60.19 261 | 83.46 290 | 83.99 317 | 56.18 330 | 39.25 364 | 71.56 342 | 37.18 308 | 83.34 344 | 42.90 333 | 48.70 348 | 80.32 333 |
|
IS-MVSNet | | | 80.14 139 | 79.41 138 | 82.33 179 | 87.91 192 | 60.08 262 | 91.97 145 | 88.27 272 | 72.90 156 | 71.44 191 | 91.73 133 | 61.44 107 | 93.66 222 | 62.47 253 | 86.53 122 | 93.24 134 |
|
HPM-MVS_fast | | | 80.25 137 | 79.55 136 | 82.33 179 | 91.55 108 | 59.95 263 | 91.32 176 | 89.16 241 | 65.23 270 | 74.71 151 | 93.07 104 | 47.81 248 | 95.74 134 | 74.87 144 | 88.23 103 | 91.31 180 |
|
MDTV_nov1_ep13_2view | | | | | | | 59.90 264 | 80.13 321 | | 67.65 251 | 72.79 169 | | 54.33 187 | | 59.83 267 | | 92.58 151 |
|
CPTT-MVS | | | 79.59 148 | 79.16 143 | 80.89 221 | 91.54 109 | 59.80 265 | 92.10 135 | 88.54 266 | 60.42 307 | 72.96 166 | 93.28 100 | 48.27 241 | 92.80 243 | 78.89 116 | 86.50 123 | 90.06 195 |
|
ACMP | | 71.68 10 | 75.58 220 | 74.23 213 | 79.62 249 | 84.97 243 | 59.64 266 | 90.80 194 | 89.07 248 | 70.39 221 | 62.95 282 | 87.30 201 | 38.28 295 | 93.87 217 | 72.89 152 | 71.45 234 | 85.36 279 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
pmmvs-eth3d | | | 65.53 302 | 62.32 307 | 75.19 296 | 69.39 357 | 59.59 267 | 82.80 299 | 83.43 320 | 62.52 292 | 51.30 336 | 72.49 333 | 32.86 323 | 87.16 326 | 55.32 283 | 50.73 344 | 78.83 344 |
|
sss | | | 82.71 97 | 82.38 94 | 83.73 146 | 89.25 155 | 59.58 268 | 92.24 130 | 94.89 22 | 77.96 77 | 79.86 94 | 92.38 121 | 56.70 158 | 97.05 82 | 77.26 126 | 80.86 160 | 94.55 89 |
|
Fast-Effi-MVS+-dtu | | | 75.04 225 | 73.37 225 | 80.07 235 | 80.86 287 | 59.52 269 | 91.20 182 | 85.38 302 | 71.90 181 | 65.20 260 | 84.84 227 | 41.46 280 | 92.97 233 | 66.50 218 | 72.96 221 | 87.73 228 |
|
FIs | | | 79.47 151 | 79.41 138 | 79.67 247 | 85.95 227 | 59.40 270 | 91.68 159 | 93.94 55 | 78.06 76 | 68.96 220 | 88.28 183 | 66.61 53 | 91.77 275 | 66.20 222 | 74.99 205 | 87.82 227 |
|
LPG-MVS_test | | | 75.82 215 | 74.58 206 | 79.56 251 | 84.31 254 | 59.37 271 | 90.44 202 | 89.73 222 | 69.49 231 | 64.86 262 | 88.42 178 | 38.65 291 | 94.30 193 | 72.56 158 | 72.76 223 | 85.01 284 |
|
LGP-MVS_train | | | | | 79.56 251 | 84.31 254 | 59.37 271 | | 89.73 222 | 69.49 231 | 64.86 262 | 88.42 178 | 38.65 291 | 94.30 193 | 72.56 158 | 72.76 223 | 85.01 284 |
|
CS-MVS-test | | | 86.14 42 | 87.01 31 | 83.52 151 | 92.63 80 | 59.36 273 | 95.49 26 | 91.92 133 | 80.09 43 | 85.46 47 | 95.53 38 | 61.82 105 | 95.77 133 | 86.77 55 | 93.37 49 | 95.41 53 |
|
Baseline_NR-MVSNet | | | 73.99 236 | 72.83 231 | 77.48 275 | 80.78 288 | 59.29 274 | 91.79 152 | 84.55 310 | 68.85 240 | 68.99 219 | 80.70 280 | 56.16 164 | 92.04 270 | 62.67 251 | 60.98 312 | 81.11 324 |
|
PS-MVSNAJss | | | 77.26 190 | 76.31 184 | 80.13 234 | 80.64 291 | 59.16 275 | 90.63 201 | 91.06 177 | 72.80 157 | 68.58 227 | 84.57 231 | 53.55 194 | 93.96 213 | 72.97 151 | 71.96 230 | 87.27 239 |
|
mvsmamba | | | 76.85 197 | 75.71 193 | 80.25 231 | 83.07 270 | 59.16 275 | 91.44 163 | 80.64 333 | 76.84 95 | 67.95 233 | 86.33 212 | 46.17 262 | 94.24 198 | 76.06 132 | 72.92 222 | 87.36 235 |
|
TransMVSNet (Re) | | | 70.07 268 | 67.66 273 | 77.31 279 | 80.62 292 | 59.13 277 | 91.78 154 | 84.94 307 | 65.97 263 | 60.08 297 | 80.44 285 | 50.78 218 | 91.87 272 | 48.84 306 | 45.46 353 | 80.94 326 |
|
CS-MVS | | | 85.80 47 | 86.65 36 | 83.27 159 | 92.00 94 | 58.92 278 | 95.31 30 | 91.86 138 | 79.97 44 | 84.82 52 | 95.40 39 | 62.26 99 | 95.51 151 | 86.11 59 | 92.08 65 | 95.37 56 |
|
Patchmatch-test | | | 65.86 298 | 60.94 312 | 80.62 224 | 83.75 261 | 58.83 279 | 58.91 368 | 75.26 346 | 44.50 359 | 50.95 338 | 77.09 315 | 58.81 135 | 87.90 315 | 35.13 356 | 64.03 286 | 95.12 71 |
|
APD-MVS_3200maxsize | | | 81.64 114 | 81.32 105 | 82.59 173 | 92.36 83 | 58.74 280 | 91.39 169 | 91.01 180 | 63.35 282 | 79.72 96 | 94.62 66 | 51.82 208 | 96.14 117 | 79.71 105 | 87.93 106 | 92.89 146 |
|
PLC |  | 68.80 14 | 75.23 223 | 73.68 222 | 79.86 243 | 92.93 70 | 58.68 281 | 90.64 199 | 88.30 270 | 60.90 304 | 64.43 271 | 90.53 150 | 42.38 278 | 94.57 182 | 56.52 278 | 76.54 196 | 86.33 253 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
SR-MVS-dyc-post | | | 81.06 123 | 80.70 115 | 82.15 187 | 92.02 91 | 58.56 282 | 90.90 189 | 90.45 190 | 62.76 289 | 78.89 105 | 94.46 68 | 51.26 216 | 95.61 143 | 78.77 117 | 86.77 118 | 92.28 159 |
|
RE-MVS-def | | | | 80.48 121 | | 92.02 91 | 58.56 282 | 90.90 189 | 90.45 190 | 62.76 289 | 78.89 105 | 94.46 68 | 49.30 232 | | 78.77 117 | 86.77 118 | 92.28 159 |
|
miper_lstm_enhance | | | 73.05 244 | 71.73 246 | 77.03 282 | 83.80 260 | 58.32 284 | 81.76 303 | 88.88 253 | 69.80 229 | 61.01 292 | 78.23 305 | 57.19 148 | 87.51 323 | 65.34 232 | 59.53 320 | 85.27 282 |
|
DeepPCF-MVS | | 81.17 1 | 89.72 9 | 91.38 3 | 84.72 118 | 93.00 69 | 58.16 285 | 96.72 7 | 94.41 41 | 86.50 7 | 90.25 18 | 97.83 1 | 75.46 14 | 98.67 24 | 92.78 8 | 95.49 12 | 97.32 6 |
|
bld_raw_dy_0_64 | | | 71.59 259 | 69.71 263 | 77.22 281 | 77.82 328 | 58.12 286 | 87.71 259 | 73.66 349 | 68.01 247 | 61.90 291 | 84.29 235 | 33.68 321 | 88.43 311 | 69.91 183 | 70.43 239 | 85.11 283 |
|
FMVSNet5 | | | 68.04 285 | 65.66 284 | 75.18 297 | 84.43 252 | 57.89 287 | 83.54 287 | 86.26 294 | 61.83 300 | 53.64 327 | 73.30 332 | 37.15 309 | 85.08 333 | 48.99 305 | 61.77 304 | 82.56 315 |
|
ACMM | | 69.62 13 | 74.34 231 | 72.73 233 | 79.17 256 | 84.25 256 | 57.87 288 | 90.36 206 | 89.93 214 | 63.17 286 | 65.64 257 | 86.04 217 | 37.79 303 | 94.10 201 | 65.89 224 | 71.52 233 | 85.55 275 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
OpenMVS_ROB |  | 61.12 18 | 66.39 295 | 62.92 303 | 76.80 287 | 76.51 333 | 57.77 289 | 89.22 235 | 83.41 321 | 55.48 332 | 53.86 326 | 77.84 308 | 26.28 346 | 93.95 214 | 34.90 357 | 68.76 249 | 78.68 345 |
|
UA-Net | | | 80.02 142 | 79.65 132 | 81.11 212 | 89.33 153 | 57.72 290 | 86.33 274 | 89.00 251 | 77.44 89 | 81.01 83 | 89.15 172 | 59.33 130 | 95.90 128 | 61.01 260 | 84.28 138 | 89.73 202 |
|
testdata | | | | | 81.34 206 | 89.02 162 | 57.72 290 | | 89.84 217 | 58.65 318 | 85.32 49 | 94.09 84 | 57.03 150 | 93.28 228 | 69.34 189 | 90.56 88 | 93.03 141 |
|
RRT_MVS | | | 74.44 230 | 72.97 230 | 78.84 261 | 82.36 276 | 57.66 292 | 89.83 223 | 88.79 258 | 70.61 219 | 64.58 266 | 84.89 226 | 39.24 287 | 92.65 252 | 70.11 181 | 66.34 266 | 86.21 257 |
|
pm-mvs1 | | | 72.89 247 | 71.09 250 | 78.26 267 | 79.10 311 | 57.62 293 | 90.80 194 | 89.30 234 | 67.66 250 | 62.91 283 | 81.78 261 | 49.11 237 | 92.95 234 | 60.29 265 | 58.89 323 | 84.22 290 |
|
XVG-OURS | | | 74.25 233 | 72.46 238 | 79.63 248 | 78.45 320 | 57.59 294 | 80.33 317 | 87.39 283 | 63.86 277 | 68.76 224 | 89.62 168 | 40.50 284 | 91.72 276 | 69.00 193 | 74.25 211 | 89.58 203 |
|
hse-mvs2 | | | 81.12 122 | 81.11 110 | 81.16 210 | 86.52 217 | 57.48 295 | 89.40 232 | 91.16 168 | 81.45 30 | 82.73 69 | 90.49 152 | 60.11 119 | 94.58 180 | 87.69 43 | 60.41 318 | 91.41 175 |
|
AUN-MVS | | | 78.37 173 | 77.43 166 | 81.17 209 | 86.60 216 | 57.45 296 | 89.46 231 | 91.16 168 | 74.11 129 | 74.40 153 | 90.49 152 | 55.52 171 | 94.57 182 | 74.73 145 | 60.43 317 | 91.48 173 |
|
OMC-MVS | | | 78.67 169 | 77.91 160 | 80.95 219 | 85.76 231 | 57.40 297 | 88.49 248 | 88.67 261 | 73.85 136 | 72.43 178 | 92.10 126 | 49.29 233 | 94.55 185 | 72.73 156 | 77.89 181 | 90.91 186 |
|
XVG-OURS-SEG-HR | | | 74.70 229 | 73.08 227 | 79.57 250 | 78.25 322 | 57.33 298 | 80.49 315 | 87.32 284 | 63.22 284 | 68.76 224 | 90.12 164 | 44.89 269 | 91.59 279 | 70.55 178 | 74.09 213 | 89.79 200 |
|
ACMH+ | | 65.35 16 | 67.65 288 | 64.55 292 | 76.96 285 | 84.59 248 | 57.10 299 | 88.08 252 | 80.79 331 | 58.59 319 | 53.00 328 | 81.09 278 | 26.63 345 | 92.95 234 | 46.51 318 | 61.69 308 | 80.82 327 |
|
tt0805 | | | 73.07 243 | 70.73 253 | 80.07 235 | 78.37 321 | 57.05 300 | 87.78 257 | 92.18 125 | 61.23 303 | 67.04 248 | 86.49 209 | 31.35 332 | 94.58 180 | 65.06 234 | 67.12 260 | 88.57 217 |
|
test_cas_vis1_n_1920 | | | 80.45 133 | 80.61 118 | 79.97 240 | 78.25 322 | 57.01 301 | 94.04 62 | 88.33 269 | 79.06 63 | 82.81 68 | 93.70 92 | 38.65 291 | 91.63 278 | 90.82 25 | 79.81 165 | 91.27 182 |
|
MDA-MVSNet-bldmvs | | | 61.54 317 | 57.70 321 | 73.05 312 | 79.53 303 | 57.00 302 | 83.08 296 | 81.23 329 | 57.57 320 | 34.91 367 | 72.45 334 | 32.79 324 | 86.26 330 | 35.81 354 | 41.95 358 | 75.89 353 |
|
UniMVSNet_ETH3D | | | 72.74 250 | 70.53 255 | 79.36 253 | 78.62 319 | 56.64 303 | 85.01 279 | 89.20 238 | 63.77 278 | 64.84 264 | 84.44 233 | 34.05 320 | 91.86 273 | 63.94 240 | 70.89 238 | 89.57 204 |
|
MVS-HIRNet | | | 60.25 320 | 55.55 327 | 74.35 303 | 84.37 253 | 56.57 304 | 71.64 345 | 74.11 348 | 34.44 366 | 45.54 354 | 42.24 373 | 31.11 334 | 89.81 301 | 40.36 344 | 76.10 200 | 76.67 352 |
|
PMMVS | | | 81.98 109 | 82.04 97 | 81.78 196 | 89.76 143 | 56.17 305 | 91.13 184 | 90.69 184 | 77.96 77 | 80.09 92 | 93.57 96 | 46.33 259 | 94.99 164 | 81.41 95 | 87.46 110 | 94.17 102 |
|
LS3D | | | 69.17 274 | 66.40 278 | 77.50 274 | 91.92 97 | 56.12 306 | 85.12 278 | 80.37 334 | 46.96 353 | 56.50 317 | 87.51 198 | 37.25 306 | 93.71 220 | 32.52 365 | 79.40 168 | 82.68 313 |
|
F-COLMAP | | | 70.66 263 | 68.44 269 | 77.32 278 | 86.37 221 | 55.91 307 | 88.00 253 | 86.32 292 | 56.94 326 | 57.28 315 | 88.07 189 | 33.58 322 | 92.49 257 | 51.02 296 | 68.37 252 | 83.55 295 |
|
CL-MVSNet_self_test | | | 69.92 269 | 68.09 272 | 75.41 294 | 73.25 344 | 55.90 308 | 90.05 216 | 89.90 215 | 69.96 226 | 61.96 290 | 76.54 318 | 51.05 217 | 87.64 320 | 49.51 304 | 50.59 345 | 82.70 312 |
|
PatchMatch-RL | | | 72.06 255 | 69.98 257 | 78.28 266 | 89.51 149 | 55.70 309 | 83.49 288 | 83.39 322 | 61.24 302 | 63.72 276 | 82.76 249 | 34.77 318 | 93.03 232 | 53.37 292 | 77.59 184 | 86.12 262 |
|
FC-MVSNet-test | | | 77.99 179 | 78.08 156 | 77.70 271 | 84.89 244 | 55.51 310 | 90.27 209 | 93.75 64 | 76.87 93 | 66.80 253 | 87.59 196 | 65.71 61 | 90.23 297 | 62.89 250 | 73.94 214 | 87.37 234 |
|
USDC | | | 67.43 292 | 64.51 293 | 76.19 290 | 77.94 326 | 55.29 311 | 78.38 330 | 85.00 306 | 73.17 149 | 48.36 346 | 80.37 286 | 21.23 354 | 92.48 258 | 52.15 294 | 64.02 287 | 80.81 328 |
|
Effi-MVS+-dtu | | | 76.14 205 | 75.28 199 | 78.72 262 | 83.22 267 | 55.17 312 | 89.87 221 | 87.78 281 | 75.42 112 | 67.98 232 | 81.43 268 | 45.08 268 | 92.52 256 | 75.08 139 | 71.63 231 | 88.48 219 |
|
test_vis1_n_1920 | | | 81.66 113 | 82.01 98 | 80.64 223 | 82.24 277 | 55.09 313 | 94.76 45 | 86.87 288 | 81.67 28 | 84.40 56 | 94.63 65 | 38.17 296 | 94.67 177 | 91.98 16 | 83.34 142 | 92.16 166 |
|
jajsoiax | | | 73.05 244 | 71.51 248 | 77.67 272 | 77.46 329 | 54.83 314 | 88.81 243 | 90.04 212 | 69.13 238 | 62.85 284 | 83.51 242 | 31.16 333 | 92.75 245 | 70.83 173 | 69.80 240 | 85.43 278 |
|
anonymousdsp | | | 71.14 262 | 69.37 264 | 76.45 288 | 72.95 345 | 54.71 315 | 84.19 283 | 88.88 253 | 61.92 298 | 62.15 288 | 79.77 295 | 38.14 298 | 91.44 286 | 68.90 195 | 67.45 259 | 83.21 303 |
|
mvs_tets | | | 72.71 251 | 71.11 249 | 77.52 273 | 77.41 330 | 54.52 316 | 88.45 249 | 89.76 218 | 68.76 243 | 62.70 285 | 83.26 245 | 29.49 337 | 92.71 246 | 70.51 179 | 69.62 242 | 85.34 280 |
|
JIA-IIPM | | | 66.06 297 | 62.45 306 | 76.88 286 | 81.42 285 | 54.45 317 | 57.49 369 | 88.67 261 | 49.36 348 | 63.86 274 | 46.86 367 | 56.06 167 | 90.25 293 | 49.53 303 | 68.83 248 | 85.95 266 |
|
Patchmatch-RL test | | | 68.17 284 | 64.49 294 | 79.19 255 | 71.22 349 | 53.93 318 | 70.07 349 | 71.54 357 | 69.22 235 | 56.79 316 | 62.89 357 | 56.58 161 | 88.61 307 | 69.53 187 | 52.61 340 | 95.03 75 |
|
test_djsdf | | | 73.76 240 | 72.56 236 | 77.39 277 | 77.00 332 | 53.93 318 | 89.07 239 | 90.69 184 | 65.80 264 | 63.92 273 | 82.03 258 | 43.14 276 | 92.67 249 | 72.83 153 | 68.53 251 | 85.57 274 |
|
pmmvs6 | | | 67.57 289 | 64.76 290 | 76.00 292 | 72.82 347 | 53.37 320 | 88.71 244 | 86.78 291 | 53.19 337 | 57.58 314 | 78.03 307 | 35.33 317 | 92.41 259 | 55.56 282 | 54.88 335 | 82.21 318 |
|
TinyColmap | | | 60.32 319 | 56.42 326 | 72.00 323 | 78.78 315 | 53.18 321 | 78.36 331 | 75.64 343 | 52.30 338 | 41.59 363 | 75.82 326 | 14.76 366 | 88.35 312 | 35.84 353 | 54.71 336 | 74.46 355 |
|
COLMAP_ROB |  | 57.96 20 | 62.98 313 | 59.65 315 | 72.98 313 | 81.44 284 | 53.00 322 | 83.75 286 | 75.53 345 | 48.34 351 | 48.81 345 | 81.40 270 | 24.14 348 | 90.30 292 | 32.95 362 | 60.52 316 | 75.65 354 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
XVG-ACMP-BASELINE | | | 68.04 285 | 65.53 285 | 75.56 293 | 74.06 342 | 52.37 323 | 78.43 329 | 85.88 299 | 62.03 296 | 58.91 305 | 81.21 276 | 20.38 357 | 91.15 287 | 60.69 262 | 68.18 253 | 83.16 304 |
|
Vis-MVSNet (Re-imp) | | | 79.24 154 | 79.57 133 | 78.24 268 | 88.46 174 | 52.29 324 | 90.41 204 | 89.12 244 | 74.24 127 | 69.13 214 | 91.91 129 | 65.77 60 | 90.09 300 | 59.00 272 | 88.09 105 | 92.33 156 |
|
TAPA-MVS | | 70.22 12 | 74.94 227 | 73.53 223 | 79.17 256 | 90.40 130 | 52.07 325 | 89.19 237 | 89.61 226 | 62.69 291 | 70.07 205 | 92.67 114 | 48.89 239 | 94.32 191 | 38.26 350 | 79.97 164 | 91.12 184 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
UnsupCasMVSNet_bld | | | 61.60 316 | 57.71 320 | 73.29 311 | 68.73 358 | 51.64 326 | 78.61 328 | 89.05 249 | 57.20 324 | 46.11 349 | 61.96 360 | 28.70 340 | 88.60 308 | 50.08 301 | 38.90 364 | 79.63 338 |
|
LTVRE_ROB | | 59.60 19 | 66.27 296 | 63.54 299 | 74.45 302 | 84.00 259 | 51.55 327 | 67.08 357 | 83.53 319 | 58.78 317 | 54.94 321 | 80.31 287 | 34.54 319 | 93.23 229 | 40.64 343 | 68.03 254 | 78.58 346 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
WR-MVS_H | | | 70.59 264 | 69.94 259 | 72.53 316 | 81.03 286 | 51.43 328 | 87.35 264 | 92.03 129 | 67.38 253 | 60.23 296 | 80.70 280 | 55.84 170 | 83.45 343 | 46.33 320 | 58.58 325 | 82.72 310 |
|
AllTest | | | 61.66 315 | 58.06 319 | 72.46 317 | 79.57 301 | 51.42 329 | 80.17 320 | 68.61 361 | 51.25 342 | 45.88 350 | 81.23 272 | 19.86 359 | 86.58 328 | 38.98 347 | 57.01 328 | 79.39 339 |
|
TestCases | | | | | 72.46 317 | 79.57 301 | 51.42 329 | | 68.61 361 | 51.25 342 | 45.88 350 | 81.23 272 | 19.86 359 | 86.58 328 | 38.98 347 | 57.01 328 | 79.39 339 |
|
CP-MVSNet | | | 70.50 265 | 69.91 260 | 72.26 319 | 80.71 289 | 51.00 331 | 87.23 266 | 90.30 200 | 67.84 248 | 59.64 298 | 82.69 250 | 50.23 224 | 82.30 351 | 51.28 295 | 59.28 321 | 83.46 299 |
|
pmmvs3 | | | 55.51 327 | 51.50 332 | 67.53 336 | 57.90 370 | 50.93 332 | 80.37 316 | 73.66 349 | 40.63 364 | 44.15 359 | 64.75 355 | 16.30 361 | 78.97 360 | 44.77 328 | 40.98 362 | 72.69 357 |
|
PS-CasMVS | | | 69.86 271 | 69.13 265 | 72.07 322 | 80.35 294 | 50.57 333 | 87.02 268 | 89.75 219 | 67.27 254 | 59.19 302 | 82.28 254 | 46.58 255 | 82.24 352 | 50.69 297 | 59.02 322 | 83.39 301 |
|
CMPMVS |  | 48.56 21 | 66.77 294 | 64.41 295 | 73.84 307 | 70.65 353 | 50.31 334 | 77.79 334 | 85.73 301 | 45.54 356 | 44.76 356 | 82.14 257 | 35.40 316 | 90.14 299 | 63.18 247 | 74.54 208 | 81.07 325 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
UnsupCasMVSNet_eth | | | 65.79 299 | 63.10 301 | 73.88 306 | 70.71 352 | 50.29 335 | 81.09 311 | 89.88 216 | 72.58 161 | 49.25 344 | 74.77 330 | 32.57 326 | 87.43 324 | 55.96 281 | 41.04 360 | 83.90 293 |
|
SixPastTwentyTwo | | | 64.92 303 | 61.78 310 | 74.34 304 | 78.74 316 | 49.76 336 | 83.42 291 | 79.51 337 | 62.86 288 | 50.27 339 | 77.35 310 | 30.92 335 | 90.49 291 | 45.89 322 | 47.06 350 | 82.78 307 |
|
PEN-MVS | | | 69.46 273 | 68.56 267 | 72.17 321 | 79.27 306 | 49.71 337 | 86.90 270 | 89.24 236 | 67.24 257 | 59.08 303 | 82.51 253 | 47.23 251 | 83.54 342 | 48.42 308 | 57.12 326 | 83.25 302 |
|
EPNet_dtu | | | 78.80 164 | 79.26 142 | 77.43 276 | 88.06 188 | 49.71 337 | 91.96 146 | 91.95 132 | 77.67 83 | 76.56 133 | 91.28 141 | 58.51 136 | 90.20 298 | 56.37 279 | 80.95 159 | 92.39 154 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
K. test v3 | | | 63.09 312 | 59.61 316 | 73.53 309 | 76.26 335 | 49.38 339 | 83.27 292 | 77.15 339 | 64.35 274 | 47.77 348 | 72.32 337 | 28.73 339 | 87.79 318 | 49.93 302 | 36.69 366 | 83.41 300 |
|
DTE-MVSNet | | | 68.46 282 | 67.33 275 | 71.87 324 | 77.94 326 | 49.00 340 | 86.16 275 | 88.58 265 | 66.36 261 | 58.19 307 | 82.21 256 | 46.36 256 | 83.87 340 | 44.97 327 | 55.17 333 | 82.73 309 |
|
Anonymous20240521 | | | 62.09 314 | 59.08 317 | 71.10 325 | 67.19 360 | 48.72 341 | 83.91 285 | 85.23 304 | 50.38 345 | 47.84 347 | 71.22 344 | 20.74 355 | 85.51 332 | 46.47 319 | 58.75 324 | 79.06 342 |
|
LCM-MVSNet-Re | | | 72.93 246 | 71.84 244 | 76.18 291 | 88.49 172 | 48.02 342 | 80.07 322 | 70.17 358 | 73.96 134 | 52.25 331 | 80.09 292 | 49.98 225 | 88.24 313 | 67.35 207 | 84.23 139 | 92.28 159 |
|
test0.0.03 1 | | | 72.76 249 | 72.71 234 | 72.88 314 | 80.25 296 | 47.99 343 | 91.22 180 | 89.45 229 | 71.51 201 | 62.51 287 | 87.66 195 | 53.83 190 | 85.06 334 | 50.16 300 | 67.84 258 | 85.58 273 |
|
lessismore_v0 | | | | | 73.72 308 | 72.93 346 | 47.83 344 | | 61.72 370 | | 45.86 352 | 73.76 331 | 28.63 341 | 89.81 301 | 47.75 315 | 31.37 372 | 83.53 296 |
|
Anonymous20231206 | | | 67.53 290 | 65.78 281 | 72.79 315 | 74.95 338 | 47.59 345 | 88.23 251 | 87.32 284 | 61.75 301 | 58.07 309 | 77.29 312 | 37.79 303 | 87.29 325 | 42.91 332 | 63.71 289 | 83.48 298 |
|
OurMVSNet-221017-0 | | | 64.68 304 | 62.17 308 | 72.21 320 | 76.08 337 | 47.35 346 | 80.67 314 | 81.02 330 | 56.19 329 | 51.60 333 | 79.66 297 | 27.05 344 | 88.56 309 | 53.60 291 | 53.63 338 | 80.71 329 |
|
test_fmvs1 | | | 74.07 234 | 73.69 221 | 75.22 295 | 78.91 314 | 47.34 347 | 89.06 241 | 74.69 347 | 63.68 279 | 79.41 99 | 91.59 135 | 24.36 347 | 87.77 319 | 85.22 64 | 76.26 199 | 90.55 191 |
|
test_vis1_n | | | 71.63 258 | 70.73 253 | 74.31 305 | 69.63 356 | 47.29 348 | 86.91 269 | 72.11 353 | 63.21 285 | 75.18 146 | 90.17 160 | 20.40 356 | 85.76 331 | 84.59 72 | 74.42 210 | 89.87 198 |
|
test_fmvs1_n | | | 72.69 253 | 71.92 243 | 74.99 298 | 71.15 350 | 47.08 349 | 87.34 265 | 75.67 342 | 63.48 281 | 78.08 116 | 91.17 142 | 20.16 358 | 87.87 316 | 84.65 71 | 75.57 203 | 90.01 197 |
|
ITE_SJBPF | | | | | 70.43 327 | 74.44 340 | 47.06 350 | | 77.32 338 | 60.16 310 | 54.04 325 | 83.53 241 | 23.30 351 | 84.01 338 | 43.07 331 | 61.58 309 | 80.21 336 |
|
EGC-MVSNET | | | 42.35 335 | 38.09 338 | 55.11 349 | 74.57 339 | 46.62 351 | 71.63 346 | 55.77 372 | 0.04 384 | 0.24 385 | 62.70 358 | 14.24 367 | 74.91 363 | 17.59 374 | 46.06 352 | 43.80 370 |
|
TDRefinement | | | 55.28 328 | 51.58 331 | 66.39 339 | 59.53 369 | 46.15 352 | 76.23 338 | 72.80 351 | 44.60 358 | 42.49 361 | 76.28 322 | 15.29 364 | 82.39 350 | 33.20 361 | 43.75 355 | 70.62 361 |
|
test_vis1_rt | | | 59.09 324 | 57.31 323 | 64.43 340 | 68.44 359 | 46.02 353 | 83.05 297 | 48.63 378 | 51.96 340 | 49.57 342 | 63.86 356 | 16.30 361 | 80.20 358 | 71.21 171 | 62.79 293 | 67.07 365 |
|
mvsany_test1 | | | 68.77 278 | 68.56 267 | 69.39 329 | 73.57 343 | 45.88 354 | 80.93 313 | 60.88 371 | 59.65 313 | 71.56 189 | 90.26 158 | 43.22 275 | 75.05 361 | 74.26 147 | 62.70 294 | 87.25 240 |
|
RPSCF | | | 64.24 307 | 61.98 309 | 71.01 326 | 76.10 336 | 45.00 355 | 75.83 340 | 75.94 341 | 46.94 354 | 58.96 304 | 84.59 230 | 31.40 331 | 82.00 353 | 47.76 314 | 60.33 319 | 86.04 263 |
|
new-patchmatchnet | | | 59.30 323 | 56.48 325 | 67.79 334 | 65.86 363 | 44.19 356 | 82.47 300 | 81.77 327 | 59.94 312 | 43.65 360 | 66.20 352 | 27.67 342 | 81.68 354 | 39.34 346 | 41.40 359 | 77.50 350 |
|
MIMVSNet1 | | | 60.16 321 | 57.33 322 | 68.67 331 | 69.71 355 | 44.13 357 | 78.92 327 | 84.21 311 | 55.05 333 | 44.63 357 | 71.85 339 | 23.91 349 | 81.54 355 | 32.63 364 | 55.03 334 | 80.35 332 |
|
CVMVSNet | | | 74.04 235 | 74.27 212 | 73.33 310 | 85.33 235 | 43.94 358 | 89.53 229 | 88.39 267 | 54.33 335 | 70.37 201 | 90.13 162 | 49.17 235 | 84.05 337 | 61.83 257 | 79.36 169 | 91.99 167 |
|
PM-MVS | | | 59.40 322 | 56.59 324 | 67.84 333 | 63.63 364 | 41.86 359 | 76.76 336 | 63.22 368 | 59.01 316 | 51.07 337 | 72.27 338 | 11.72 369 | 83.25 345 | 61.34 258 | 50.28 346 | 78.39 347 |
|
test_fmvs2 | | | 65.78 300 | 64.84 288 | 68.60 332 | 66.54 361 | 41.71 360 | 83.27 292 | 69.81 359 | 54.38 334 | 67.91 235 | 84.54 232 | 15.35 363 | 81.22 356 | 75.65 134 | 66.16 267 | 82.88 306 |
|
ambc | | | | | 69.61 328 | 61.38 368 | 41.35 361 | 49.07 374 | 85.86 300 | | 50.18 341 | 66.40 351 | 10.16 371 | 88.14 314 | 45.73 323 | 44.20 354 | 79.32 341 |
|
new_pmnet | | | 49.31 331 | 46.44 334 | 57.93 345 | 62.84 366 | 40.74 362 | 68.47 353 | 62.96 369 | 36.48 365 | 35.09 366 | 57.81 362 | 14.97 365 | 72.18 365 | 32.86 363 | 46.44 351 | 60.88 367 |
|
testgi | | | 64.48 306 | 62.87 304 | 69.31 330 | 71.24 348 | 40.62 363 | 85.49 276 | 79.92 335 | 65.36 268 | 54.18 324 | 83.49 243 | 23.74 350 | 84.55 335 | 41.60 338 | 60.79 314 | 82.77 308 |
|
test20.03 | | | 63.83 309 | 62.65 305 | 67.38 337 | 70.58 354 | 39.94 364 | 86.57 273 | 84.17 312 | 63.29 283 | 51.86 332 | 77.30 311 | 37.09 310 | 82.47 349 | 38.87 349 | 54.13 337 | 79.73 337 |
|
KD-MVS_self_test | | | 60.87 318 | 58.60 318 | 67.68 335 | 66.13 362 | 39.93 365 | 75.63 341 | 84.70 308 | 57.32 323 | 49.57 342 | 68.45 348 | 29.55 336 | 82.87 347 | 48.09 309 | 47.94 349 | 80.25 335 |
|
LF4IMVS | | | 54.01 329 | 52.12 330 | 59.69 344 | 62.41 367 | 39.91 366 | 68.59 352 | 68.28 363 | 42.96 362 | 44.55 358 | 75.18 327 | 14.09 368 | 68.39 368 | 41.36 340 | 51.68 342 | 70.78 360 |
|
Gipuma |  | | 34.91 342 | 31.44 345 | 45.30 357 | 70.99 351 | 39.64 367 | 19.85 379 | 72.56 352 | 20.10 375 | 16.16 379 | 21.47 380 | 5.08 380 | 71.16 366 | 13.07 378 | 43.70 356 | 25.08 377 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
EU-MVSNet | | | 64.01 308 | 63.01 302 | 67.02 338 | 74.40 341 | 38.86 368 | 83.27 292 | 86.19 296 | 45.11 357 | 54.27 323 | 81.15 277 | 36.91 312 | 80.01 359 | 48.79 307 | 57.02 327 | 82.19 319 |
|
FPMVS | | | 45.64 334 | 43.10 337 | 53.23 352 | 51.42 375 | 36.46 369 | 64.97 359 | 71.91 354 | 29.13 370 | 27.53 370 | 61.55 361 | 9.83 372 | 65.01 374 | 16.00 377 | 55.58 332 | 58.22 368 |
|
test_fmvs3 | | | 56.82 325 | 54.86 328 | 62.69 343 | 53.59 372 | 35.47 370 | 75.87 339 | 65.64 366 | 43.91 360 | 55.10 320 | 71.43 343 | 6.91 377 | 74.40 364 | 68.64 197 | 52.63 339 | 78.20 348 |
|
APD_test1 | | | 40.50 337 | 37.31 340 | 50.09 354 | 51.88 373 | 35.27 371 | 59.45 367 | 52.59 374 | 21.64 373 | 26.12 371 | 57.80 363 | 4.56 381 | 66.56 370 | 22.64 371 | 39.09 363 | 48.43 369 |
|
ANet_high | | | 40.27 339 | 35.20 342 | 55.47 348 | 34.74 386 | 34.47 372 | 63.84 361 | 71.56 356 | 48.42 350 | 18.80 375 | 41.08 374 | 9.52 373 | 64.45 375 | 20.18 372 | 8.66 382 | 67.49 364 |
|
test_vis3_rt | | | 40.46 338 | 37.79 339 | 48.47 356 | 44.49 380 | 33.35 373 | 66.56 358 | 32.84 386 | 32.39 368 | 29.65 368 | 39.13 376 | 3.91 384 | 68.65 367 | 50.17 299 | 40.99 361 | 43.40 371 |
|
test_f | | | 46.58 333 | 43.45 336 | 55.96 347 | 45.18 379 | 32.05 374 | 61.18 363 | 49.49 377 | 33.39 367 | 42.05 362 | 62.48 359 | 7.00 376 | 65.56 372 | 47.08 317 | 43.21 357 | 70.27 362 |
|
mvsany_test3 | | | 48.86 332 | 46.35 335 | 56.41 346 | 46.00 378 | 31.67 375 | 62.26 362 | 47.25 379 | 43.71 361 | 45.54 354 | 68.15 349 | 10.84 370 | 64.44 376 | 57.95 274 | 35.44 369 | 73.13 356 |
|
testf1 | | | 32.77 343 | 29.47 346 | 42.67 359 | 41.89 382 | 30.81 376 | 52.07 370 | 43.45 380 | 15.45 376 | 18.52 376 | 44.82 370 | 2.12 385 | 58.38 377 | 16.05 375 | 30.87 373 | 38.83 372 |
|
APD_test2 | | | 32.77 343 | 29.47 346 | 42.67 359 | 41.89 382 | 30.81 376 | 52.07 370 | 43.45 380 | 15.45 376 | 18.52 376 | 44.82 370 | 2.12 385 | 58.38 377 | 16.05 375 | 30.87 373 | 38.83 372 |
|
LCM-MVSNet | | | 40.54 336 | 35.79 341 | 54.76 351 | 36.92 385 | 30.81 376 | 51.41 372 | 69.02 360 | 22.07 372 | 24.63 372 | 45.37 369 | 4.56 381 | 65.81 371 | 33.67 359 | 34.50 370 | 67.67 363 |
|
DSMNet-mixed | | | 56.78 326 | 54.44 329 | 63.79 341 | 63.21 365 | 29.44 379 | 64.43 360 | 64.10 367 | 42.12 363 | 51.32 335 | 71.60 340 | 31.76 329 | 75.04 362 | 36.23 352 | 65.20 275 | 86.87 245 |
|
PMVS |  | 26.43 22 | 31.84 345 | 28.16 348 | 42.89 358 | 25.87 388 | 27.58 380 | 50.92 373 | 49.78 376 | 21.37 374 | 14.17 380 | 40.81 375 | 2.01 387 | 66.62 369 | 9.61 380 | 38.88 365 | 34.49 376 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVE |  | 24.84 23 | 24.35 347 | 19.77 353 | 38.09 361 | 34.56 387 | 26.92 381 | 26.57 377 | 38.87 384 | 11.73 380 | 11.37 381 | 27.44 377 | 1.37 388 | 50.42 380 | 11.41 379 | 14.60 378 | 36.93 374 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
PMMVS2 | | | 37.93 341 | 33.61 344 | 50.92 353 | 46.31 377 | 24.76 382 | 60.55 366 | 50.05 375 | 28.94 371 | 20.93 373 | 47.59 366 | 4.41 383 | 65.13 373 | 25.14 369 | 18.55 377 | 62.87 366 |
|
DeepMVS_CX |  | | | | 34.71 362 | 51.45 374 | 24.73 383 | | 28.48 388 | 31.46 369 | 17.49 378 | 52.75 364 | 5.80 379 | 42.60 383 | 18.18 373 | 19.42 376 | 36.81 375 |
|
dmvs_testset | | | 65.55 301 | 66.45 277 | 62.86 342 | 79.87 299 | 22.35 384 | 76.55 337 | 71.74 355 | 77.42 91 | 55.85 318 | 87.77 194 | 51.39 214 | 80.69 357 | 31.51 368 | 65.92 269 | 85.55 275 |
|
test_method | | | 38.59 340 | 35.16 343 | 48.89 355 | 54.33 371 | 21.35 385 | 45.32 375 | 53.71 373 | 7.41 381 | 28.74 369 | 51.62 365 | 8.70 374 | 52.87 379 | 33.73 358 | 32.89 371 | 72.47 358 |
|
wuyk23d | | | 11.30 351 | 10.95 354 | 12.33 366 | 48.05 376 | 19.89 386 | 25.89 378 | 1.92 390 | 3.58 382 | 3.12 384 | 1.37 384 | 0.64 389 | 15.77 385 | 6.23 383 | 7.77 383 | 1.35 381 |
|
E-PMN | | | 24.61 346 | 24.00 350 | 26.45 363 | 43.74 381 | 18.44 387 | 60.86 364 | 39.66 382 | 15.11 378 | 9.53 382 | 22.10 379 | 6.52 378 | 46.94 381 | 8.31 381 | 10.14 379 | 13.98 379 |
|
EMVS | | | 23.76 348 | 23.20 352 | 25.46 364 | 41.52 384 | 16.90 388 | 60.56 365 | 38.79 385 | 14.62 379 | 8.99 383 | 20.24 382 | 7.35 375 | 45.82 382 | 7.25 382 | 9.46 380 | 13.64 380 |
|
tmp_tt | | | 22.26 349 | 23.75 351 | 17.80 365 | 5.23 389 | 12.06 389 | 35.26 376 | 39.48 383 | 2.82 383 | 18.94 374 | 44.20 372 | 22.23 353 | 24.64 384 | 36.30 351 | 9.31 381 | 16.69 378 |
|
N_pmnet | | | 50.55 330 | 49.11 333 | 54.88 350 | 77.17 331 | 4.02 390 | 84.36 282 | 2.00 389 | 48.59 349 | 45.86 352 | 68.82 347 | 32.22 327 | 82.80 348 | 31.58 367 | 51.38 343 | 77.81 349 |
|
test123 | | | 6.92 354 | 9.21 357 | 0.08 367 | 0.03 391 | 0.05 391 | 81.65 306 | 0.01 392 | 0.02 386 | 0.14 387 | 0.85 386 | 0.03 390 | 0.02 386 | 0.12 385 | 0.00 385 | 0.16 382 |
|
testmvs | | | 7.23 353 | 9.62 356 | 0.06 368 | 0.04 390 | 0.02 392 | 84.98 280 | 0.02 391 | 0.03 385 | 0.18 386 | 1.21 385 | 0.01 391 | 0.02 386 | 0.14 384 | 0.01 384 | 0.13 383 |
|
test_blank | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 385 | 0.00 384 |
|
uanet_test | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 385 | 0.00 384 |
|
DCPMVS | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 385 | 0.00 384 |
|
cdsmvs_eth3d_5k | | | 19.86 350 | 26.47 349 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 93.45 76 | 0.00 387 | 0.00 388 | 95.27 46 | 49.56 229 | 0.00 388 | 0.00 386 | 0.00 385 | 0.00 384 |
|
pcd_1.5k_mvsjas | | | 4.46 355 | 5.95 358 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 53.55 194 | 0.00 388 | 0.00 386 | 0.00 385 | 0.00 384 |
|
sosnet-low-res | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 385 | 0.00 384 |
|
sosnet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 385 | 0.00 384 |
|
uncertanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 385 | 0.00 384 |
|
Regformer | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 385 | 0.00 384 |
|
ab-mvs-re | | | 7.91 352 | 10.55 355 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 94.95 54 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 385 | 0.00 384 |
|
uanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 385 | 0.00 384 |
|
PC_three_1452 | | | | | | | | | | 80.91 38 | 94.07 2 | 96.83 14 | 83.57 4 | 99.12 5 | 95.70 4 | 97.42 4 | 97.55 4 |
|
eth-test2 | | | | | | 0.00 392 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 392 | | | | | | | | | | | |
|
test_241102_TWO | | | | | | | | | 94.41 41 | 71.65 192 | 92.07 6 | 97.21 4 | 74.58 17 | 99.11 6 | 92.34 11 | 95.36 13 | 96.59 15 |
|
9.14 | | | | 87.63 24 | | 93.86 47 | | 94.41 50 | 94.18 50 | 72.76 158 | 86.21 37 | 96.51 18 | 66.64 52 | 97.88 43 | 90.08 28 | 94.04 36 | |
|
test_0728_THIRD | | | | | | | | | | 72.48 163 | 90.55 16 | 96.93 10 | 76.24 11 | 99.08 11 | 91.53 19 | 94.99 16 | 96.43 25 |
|
GSMVS | | | | | | | | | | | | | | | | | 94.68 85 |
|
sam_mvs1 | | | | | | | | | | | | | 57.85 142 | | | | 94.68 85 |
|
sam_mvs | | | | | | | | | | | | | 54.91 179 | | | | |
|
MTGPA |  | | | | | | | | 92.23 119 | | | | | | | | |
|
test_post1 | | | | | | | | 78.95 326 | | | | 20.70 381 | 53.05 199 | 91.50 285 | 60.43 263 | | |
|
test_post | | | | | | | | | | | | 23.01 378 | 56.49 162 | 92.67 249 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 67.62 350 | 57.62 145 | 90.25 293 | | | |
|
MTMP | | | | | | | | 93.77 76 | 32.52 387 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 89.41 29 | 94.96 17 | 95.29 62 |
|
agg_prior2 | | | | | | | | | | | | | | | 86.41 56 | 94.75 28 | 95.33 58 |
|
test_prior2 | | | | | | | | 95.10 37 | | 75.40 113 | 85.25 51 | 95.61 36 | 67.94 43 | | 87.47 46 | 94.77 24 | |
|
旧先验2 | | | | | | | | 92.00 144 | | 59.37 315 | 87.54 30 | | | 93.47 226 | 75.39 136 | | |
|
新几何2 | | | | | | | | 91.41 165 | | | | | | | | | |
|
无先验 | | | | | | | | 92.71 112 | 92.61 110 | 62.03 296 | | | | 97.01 86 | 66.63 214 | | 93.97 113 |
|
原ACMM2 | | | | | | | | 92.01 141 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 96.09 119 | 61.26 259 | | |
|
segment_acmp | | | | | | | | | | | | | 65.94 58 | | | | |
|
testdata1 | | | | | | | | 89.21 236 | | 77.55 87 | | | | | | | |
|
plane_prior5 | | | | | | | | | 91.31 162 | | | | | 95.55 148 | 76.74 127 | 78.53 178 | 88.39 222 |
|
plane_prior4 | | | | | | | | | | | | 89.14 173 | | | | | |
|
plane_prior2 | | | | | | | | 93.13 97 | | 78.81 68 | | | | | | | |
|
plane_prior1 | | | | | | 87.15 207 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 393 | | | | | | | | |
|
nn | | | | | | | | | 0.00 393 | | | | | | | | |
|
door-mid | | | | | | | | | 66.01 365 | | | | | | | | |
|
test11 | | | | | | | | | 93.01 93 | | | | | | | | |
|
door | | | | | | | | | 66.57 364 | | | | | | | | |
|
HQP-NCC | | | | | | 87.54 199 | | 94.06 58 | | 79.80 46 | 74.18 154 | | | | | | |
|
ACMP_Plane | | | | | | 87.54 199 | | 94.06 58 | | 79.80 46 | 74.18 154 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.63 124 | | |
|
HQP4-MVS | | | | | | | | | | | 74.18 154 | | | 95.61 143 | | | 88.63 215 |
|
HQP3-MVS | | | | | | | | | 91.70 148 | | | | | | | 78.90 173 | |
|
HQP2-MVS | | | | | | | | | | | | | 51.63 212 | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 71.63 231 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 69.72 241 | |
|
Test By Simon | | | | | | | | | | | | | 54.21 188 | | | | |
|