This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
PS-MVSNAJ88.14 1687.61 2589.71 692.06 9076.72 195.75 1993.26 8283.86 1389.55 2296.06 2853.55 19497.89 4291.10 2193.31 5094.54 91
DPM-MVS90.70 290.52 791.24 189.68 14476.68 297.29 195.35 1182.87 1791.58 1097.22 379.93 599.10 983.12 8297.64 297.94 1
xiu_mvs_v2_base87.92 2187.38 2989.55 1191.41 11376.43 395.74 2093.12 9083.53 1589.55 2295.95 2953.45 19897.68 4791.07 2292.62 5794.54 91
MG-MVS87.11 3086.27 3789.62 797.79 176.27 494.96 4294.49 3778.74 7083.87 6292.94 10764.34 7596.94 9575.19 13794.09 3595.66 46
CHOSEN 1792x268884.98 5783.45 7089.57 1089.94 13975.14 592.07 13892.32 11681.87 2675.68 13988.27 18460.18 11898.60 2680.46 10390.27 9094.96 76
MVS84.66 6082.86 8590.06 290.93 12074.56 687.91 25595.54 1068.55 24472.35 18094.71 6359.78 12498.90 1881.29 9894.69 3096.74 12
DELS-MVS90.05 690.09 1089.94 493.14 6673.88 797.01 394.40 4388.32 285.71 4394.91 5874.11 1998.91 1787.26 4995.94 897.03 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MCST-MVS91.08 191.46 289.94 497.66 273.37 897.13 295.58 989.33 185.77 4296.26 2372.84 2699.38 192.64 995.93 997.08 9
LFMVS84.34 6582.73 8789.18 1294.76 3373.25 994.99 4191.89 13671.90 18182.16 7393.49 9847.98 24597.05 8282.55 8684.82 13197.25 7
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2099.07 1392.01 1494.77 2496.51 20
No_MVS89.60 897.31 473.22 1095.05 2099.07 1392.01 1494.77 2496.51 20
OPU-MVS89.97 397.52 373.15 1296.89 497.00 983.82 299.15 295.72 297.63 397.62 2
PAPM85.89 4685.46 4887.18 4188.20 18672.42 1392.41 12692.77 10182.11 2480.34 8993.07 10468.27 3995.02 16278.39 12093.59 4694.09 107
canonicalmvs86.85 3386.25 3988.66 1791.80 10171.92 1493.54 8691.71 14680.26 4287.55 2995.25 4863.59 8796.93 9788.18 3984.34 13597.11 8
iter_conf0583.27 8682.70 8884.98 10893.32 5971.84 1594.16 5381.76 32882.74 1873.83 16188.40 18072.77 2794.61 17882.10 8875.21 20488.48 219
OpenMVScopyleft70.45 1178.54 17175.92 18986.41 6785.93 23071.68 1692.74 11092.51 11366.49 26064.56 26791.96 12843.88 27298.10 3654.61 28590.65 8689.44 208
QAPM79.95 14477.39 17087.64 2989.63 14571.41 1793.30 9393.70 6565.34 26967.39 24591.75 13247.83 24798.96 1657.71 27689.81 9292.54 152
3Dnovator73.91 682.69 9880.82 11388.31 2289.57 14671.26 1892.60 11994.39 4478.84 6767.89 23792.48 11948.42 24098.52 2768.80 19694.40 3395.15 70
MVSFormer83.75 8082.88 8486.37 6889.24 15871.18 1989.07 23990.69 18465.80 26487.13 3194.34 7764.99 6692.67 24972.83 15391.80 6995.27 65
lupinMVS87.74 2387.77 2387.63 3389.24 15871.18 1996.57 1092.90 9882.70 2087.13 3195.27 4664.99 6695.80 13089.34 3191.80 6995.93 39
alignmvs87.28 2886.97 3288.24 2391.30 11471.14 2195.61 2493.56 7079.30 5587.07 3395.25 4868.43 3896.93 9787.87 4184.33 13696.65 13
MVS_030490.01 790.50 888.53 1990.14 13570.94 2296.47 1295.72 887.33 389.60 2196.26 2368.44 3798.74 2395.82 194.72 2995.90 41
ET-MVSNet_ETH3D84.01 7383.15 8086.58 6090.78 12570.89 2394.74 4694.62 3381.44 3258.19 30793.64 9473.64 2392.35 26382.66 8478.66 17796.50 23
CSCG86.87 3286.26 3888.72 1495.05 3170.79 2493.83 7595.33 1268.48 24677.63 12094.35 7673.04 2498.45 2984.92 6993.71 4496.92 11
CNVR-MVS90.32 590.89 688.61 1896.76 870.65 2596.47 1294.83 2484.83 1089.07 2496.80 1570.86 3499.06 1592.64 995.71 1096.12 34
API-MVS82.28 10280.53 12087.54 3496.13 2270.59 2693.63 8291.04 17965.72 26675.45 14492.83 11256.11 16698.89 1964.10 23989.75 9593.15 137
jason86.40 3786.17 4087.11 4386.16 22470.54 2795.71 2392.19 12482.00 2584.58 5494.34 7761.86 10395.53 15087.76 4290.89 8395.27 65
jason: jason.
test_0728_SECOND88.70 1596.45 1270.43 2896.64 894.37 4599.15 291.91 1794.90 2096.51 20
PatchmatchNetpermissive77.46 18774.63 20485.96 7789.55 14870.35 2979.97 32489.55 22772.23 17270.94 19376.91 31757.03 15092.79 24454.27 28781.17 15794.74 83
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
IB-MVS77.80 482.18 10380.46 12287.35 3889.14 16070.28 3095.59 2595.17 1678.85 6670.19 20485.82 21870.66 3597.67 4872.19 16466.52 26594.09 107
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
SCA75.82 21572.76 23285.01 10786.63 21570.08 3181.06 31289.19 23971.60 19770.01 20677.09 31545.53 26590.25 29360.43 26373.27 21894.68 85
DVP-MVScopyleft89.41 1289.73 1388.45 2196.40 1569.99 3296.64 894.52 3571.92 17990.55 1696.93 1073.77 2199.08 1191.91 1794.90 2096.29 29
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072696.40 1569.99 3296.76 694.33 4771.92 17991.89 897.11 673.77 21
VNet86.20 4085.65 4787.84 2693.92 4669.99 3295.73 2295.94 678.43 7286.00 4093.07 10458.22 13997.00 8785.22 6484.33 13696.52 19
MS-PatchMatch77.90 18376.50 18182.12 18985.99 22669.95 3591.75 15792.70 10373.97 13362.58 28684.44 23341.11 28295.78 13163.76 24292.17 6380.62 330
DVP-MVS++90.53 391.09 488.87 1397.31 469.91 3693.96 6494.37 4572.48 16392.07 696.85 1283.82 299.15 291.53 1997.42 497.55 4
IU-MVS96.46 1169.91 3695.18 1580.75 3995.28 192.34 1195.36 1396.47 24
MVS_Test84.16 7183.20 7787.05 4691.56 10769.82 3889.99 22092.05 12777.77 8182.84 6786.57 20863.93 8096.09 11974.91 14289.18 9895.25 68
VDDNet80.50 13178.26 15387.21 4086.19 22369.79 3994.48 4891.31 16260.42 30779.34 10090.91 14538.48 29496.56 10782.16 8781.05 15895.27 65
MVS_111021_HR86.19 4185.80 4587.37 3793.17 6569.79 3993.99 6393.76 6179.08 6278.88 10893.99 8762.25 10098.15 3585.93 6191.15 8194.15 104
test_one_060196.32 1869.74 4194.18 5071.42 20390.67 1596.85 1274.45 18
CANet89.61 1189.99 1188.46 2094.39 3969.71 4296.53 1193.78 5886.89 589.68 2095.78 3165.94 5899.10 992.99 793.91 3996.58 17
EPMVS78.49 17275.98 18886.02 7591.21 11669.68 4380.23 31991.20 16675.25 11572.48 17678.11 30654.65 18093.69 22157.66 27783.04 14394.69 84
GG-mvs-BLEND86.53 6391.91 9869.67 4475.02 34294.75 2778.67 11290.85 14677.91 794.56 18472.25 16193.74 4295.36 57
Effi-MVS+83.82 7782.76 8686.99 4889.56 14769.40 4591.35 17486.12 29772.59 16083.22 6592.81 11359.60 12696.01 12781.76 9187.80 10795.56 50
SED-MVS89.94 890.36 988.70 1596.45 1269.38 4696.89 494.44 3971.65 19292.11 497.21 476.79 999.11 692.34 1195.36 1397.62 2
test_241102_ONE96.45 1269.38 4694.44 3971.65 19292.11 497.05 776.79 999.11 6
WTY-MVS86.32 3885.81 4487.85 2592.82 7369.37 4895.20 3395.25 1382.71 1981.91 7494.73 6267.93 4497.63 5279.55 10782.25 14896.54 18
casdiffmvs_mvgpermissive85.66 4985.18 5187.09 4488.22 18569.35 4993.74 7891.89 13681.47 2980.10 9191.45 13664.80 7096.35 11187.23 5087.69 10895.58 49
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_yl84.28 6683.16 7887.64 2994.52 3769.24 5095.78 1795.09 1869.19 23681.09 8192.88 11057.00 15297.44 6181.11 9981.76 15296.23 32
DCV-MVSNet84.28 6683.16 7887.64 2994.52 3769.24 5095.78 1795.09 1869.19 23681.09 8192.88 11057.00 15297.44 6181.11 9981.76 15296.23 32
cascas78.18 17675.77 19185.41 9587.14 20869.11 5292.96 10491.15 17066.71 25870.47 19886.07 21537.49 30596.48 11070.15 18079.80 16690.65 188
iter_conf_final81.74 11280.93 11284.18 13592.66 7969.10 5392.94 10582.80 32679.01 6574.85 14988.40 18061.83 10494.61 17879.36 10876.52 19788.83 210
casdiffmvspermissive85.37 5184.87 5786.84 5088.25 18369.07 5493.04 10191.76 14381.27 3480.84 8692.07 12764.23 7696.06 12384.98 6887.43 11195.39 54
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NCCC89.07 1489.46 1487.91 2496.60 1069.05 5596.38 1494.64 3284.42 1186.74 3496.20 2566.56 5498.76 2289.03 3694.56 3195.92 40
MVSTER82.47 9982.05 9683.74 14492.68 7869.01 5691.90 14793.21 8379.83 4572.14 18185.71 22074.72 1694.72 17375.72 13372.49 22687.50 230
FMVSNet377.73 18476.04 18782.80 16691.20 11768.99 5791.87 14891.99 13073.35 14767.04 24883.19 24656.62 16092.14 26659.80 26869.34 24487.28 238
MSLP-MVS++86.27 3985.91 4387.35 3892.01 9368.97 5895.04 3992.70 10379.04 6481.50 7796.50 1958.98 13496.78 10083.49 8093.93 3896.29 29
test1287.09 4494.60 3668.86 5992.91 9782.67 7165.44 6397.55 5793.69 4594.84 81
nrg03080.93 12579.86 12984.13 13783.69 26268.83 6093.23 9591.20 16675.55 11075.06 14788.22 18863.04 9594.74 17281.88 9066.88 26288.82 213
SD-MVS87.49 2687.49 2787.50 3593.60 5368.82 6193.90 6892.63 10976.86 9487.90 2895.76 3266.17 5597.63 5289.06 3591.48 7596.05 36
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
baseline85.01 5684.44 5986.71 5588.33 18068.73 6290.24 21191.82 14281.05 3781.18 8092.50 11663.69 8496.08 12284.45 7386.71 12095.32 60
SMA-MVScopyleft88.14 1688.29 2087.67 2893.21 6368.72 6393.85 7194.03 5474.18 12891.74 996.67 1665.61 6298.42 3289.24 3396.08 795.88 42
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
xiu_mvs_v1_base_debu82.16 10481.12 10785.26 10186.42 21868.72 6392.59 12190.44 19373.12 15184.20 5794.36 7238.04 29995.73 13584.12 7586.81 11591.33 176
xiu_mvs_v1_base82.16 10481.12 10785.26 10186.42 21868.72 6392.59 12190.44 19373.12 15184.20 5794.36 7238.04 29995.73 13584.12 7586.81 11591.33 176
xiu_mvs_v1_base_debi82.16 10481.12 10785.26 10186.42 21868.72 6392.59 12190.44 19373.12 15184.20 5794.36 7238.04 29995.73 13584.12 7586.81 11591.33 176
MDTV_nov1_ep1372.61 23589.06 16168.48 6780.33 31790.11 20871.84 18671.81 18575.92 32553.01 20093.92 21548.04 31073.38 217
CostFormer82.33 10181.15 10685.86 8189.01 16368.46 6882.39 30193.01 9375.59 10980.25 9081.57 26672.03 3294.96 16579.06 11377.48 18894.16 103
mvs_anonymous81.36 11779.99 12785.46 9390.39 13168.40 6986.88 27190.61 18974.41 12370.31 20384.67 22963.79 8292.32 26473.13 15085.70 12695.67 45
gg-mvs-nofinetune77.18 19174.31 21185.80 8491.42 11168.36 7071.78 34494.72 2849.61 34777.12 12745.92 36877.41 893.98 21267.62 20693.16 5295.05 73
DeepC-MVS_fast79.48 287.95 2088.00 2187.79 2795.86 2768.32 7195.74 2094.11 5383.82 1483.49 6396.19 2664.53 7498.44 3083.42 8194.88 2396.61 14
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PAPR85.15 5484.47 5887.18 4196.02 2568.29 7291.85 15093.00 9576.59 10179.03 10495.00 5361.59 10697.61 5478.16 12189.00 9995.63 47
tpmrst80.57 12979.14 14484.84 11290.10 13668.28 7381.70 30589.72 22477.63 8675.96 13679.54 29864.94 6892.71 24675.43 13577.28 19193.55 126
thisisatest051583.41 8382.49 9286.16 7389.46 15068.26 7493.54 8694.70 2974.31 12675.75 13790.92 14472.62 2896.52 10969.64 18481.50 15593.71 122
tpm279.80 14677.95 15985.34 9888.28 18168.26 7481.56 30791.42 15970.11 22477.59 12280.50 28467.40 4794.26 19767.34 20877.35 18993.51 127
HPM-MVS++copyleft89.37 1389.95 1287.64 2995.10 3068.23 7695.24 3294.49 3782.43 2188.90 2596.35 2171.89 3398.63 2588.76 3796.40 696.06 35
dcpmvs_287.37 2787.55 2686.85 4995.04 3268.20 7790.36 20690.66 18779.37 5481.20 7993.67 9374.73 1596.55 10890.88 2492.00 6695.82 43
test_part296.29 1968.16 7890.78 13
HyFIR lowres test81.03 12479.56 13485.43 9487.81 19568.11 7990.18 21290.01 21370.65 21872.95 16786.06 21663.61 8694.50 18875.01 14079.75 16793.67 123
TSAR-MVS + MP.88.11 1888.64 1686.54 6291.73 10268.04 8090.36 20693.55 7182.89 1691.29 1292.89 10972.27 3096.03 12587.99 4094.77 2495.54 51
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
diffmvspermissive84.28 6683.83 6485.61 9087.40 20368.02 8190.88 19189.24 23680.54 4081.64 7692.52 11559.83 12394.52 18787.32 4885.11 12994.29 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CR-MVSNet73.79 23970.82 25282.70 16983.15 26867.96 8270.25 34784.00 31573.67 14369.97 20872.41 33557.82 14389.48 30452.99 29373.13 21990.64 189
RPMNet70.42 26665.68 28384.63 12283.15 26867.96 8270.25 34790.45 19046.83 35569.97 20865.10 35456.48 16395.30 15835.79 35573.13 21990.64 189
save fliter93.84 4867.89 8495.05 3892.66 10678.19 74
V4276.46 20374.55 20782.19 18679.14 31067.82 8590.26 21089.42 23173.75 13968.63 22681.89 25951.31 21594.09 20271.69 16864.84 27884.66 287
tpm cat175.30 22272.21 24084.58 12388.52 17167.77 8678.16 33388.02 27761.88 29968.45 22976.37 32160.65 11394.03 21053.77 29074.11 21291.93 168
HY-MVS76.49 584.28 6683.36 7687.02 4792.22 8767.74 8784.65 28194.50 3679.15 5982.23 7287.93 19166.88 5096.94 9580.53 10282.20 14996.39 27
VDD-MVS83.06 9081.81 10186.81 5290.86 12367.70 8895.40 2891.50 15675.46 11181.78 7592.34 12340.09 28597.13 8086.85 5482.04 15095.60 48
FMVSNet276.07 20674.01 21782.26 18388.85 16567.66 8991.33 17591.61 15170.84 21365.98 25582.25 25548.03 24292.00 27158.46 27368.73 25087.10 241
CLD-MVS82.73 9582.35 9583.86 14287.90 19367.65 9095.45 2792.18 12585.06 972.58 17392.27 12452.46 20595.78 13184.18 7479.06 17288.16 225
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SDMVSNet80.26 13678.88 14684.40 12889.25 15567.63 9185.35 27793.02 9276.77 9870.84 19587.12 20347.95 24696.09 11985.04 6674.55 20689.48 206
DPE-MVScopyleft88.77 1589.21 1587.45 3696.26 2067.56 9294.17 5294.15 5268.77 24290.74 1497.27 276.09 1298.49 2890.58 2794.91 1996.30 28
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
131480.70 12878.95 14585.94 7887.77 19767.56 9287.91 25592.55 11272.17 17567.44 24293.09 10250.27 22397.04 8571.68 16987.64 10993.23 135
ACMMP_NAP86.05 4385.80 4586.80 5391.58 10667.53 9491.79 15293.49 7574.93 11984.61 5395.30 4359.42 12897.92 4086.13 5894.92 1894.94 77
PVSNet_BlendedMVS83.38 8483.43 7183.22 16093.76 4967.53 9494.06 5893.61 6879.13 6081.00 8485.14 22363.19 9297.29 7187.08 5173.91 21584.83 286
PVSNet_Blended86.73 3686.86 3486.31 7193.76 4967.53 9496.33 1593.61 6882.34 2281.00 8493.08 10363.19 9297.29 7187.08 5191.38 7794.13 105
SF-MVS87.03 3187.09 3086.84 5092.70 7767.45 9793.64 8193.76 6170.78 21686.25 3696.44 2066.98 4997.79 4588.68 3894.56 3195.28 64
test_prior86.42 6694.71 3567.35 9893.10 9196.84 9995.05 73
TEST994.18 4167.28 9994.16 5393.51 7271.75 19085.52 4595.33 4168.01 4297.27 75
train_agg87.21 2987.42 2886.60 5894.18 4167.28 9994.16 5393.51 7271.87 18485.52 4595.33 4168.19 4097.27 7589.09 3494.90 2095.25 68
test_894.19 4067.19 10194.15 5693.42 7871.87 18485.38 4895.35 4068.19 4096.95 94
CDPH-MVS85.71 4885.46 4886.46 6494.75 3467.19 10193.89 6992.83 10070.90 21283.09 6695.28 4463.62 8597.36 6680.63 10194.18 3494.84 81
test_prior467.18 10393.92 67
v2v48277.42 18875.65 19482.73 16880.38 29367.13 10491.85 15090.23 20475.09 11769.37 21283.39 24453.79 19294.44 18971.77 16665.00 27786.63 250
DP-MVS Recon82.73 9581.65 10285.98 7697.31 467.06 10595.15 3591.99 13069.08 23976.50 13493.89 8954.48 18498.20 3470.76 17585.66 12792.69 147
tpmvs72.88 24869.76 26282.22 18490.98 11967.05 10678.22 33288.30 27063.10 28764.35 27274.98 32855.09 17794.27 19543.25 33069.57 24385.34 280
gm-plane-assit88.42 17667.04 10778.62 7191.83 13097.37 6576.57 129
ETV-MVS86.01 4486.11 4185.70 8890.21 13467.02 10893.43 9191.92 13381.21 3584.13 6094.07 8660.93 11295.63 14189.28 3289.81 9294.46 97
agg_prior94.16 4366.97 10993.31 8184.49 5596.75 101
ADS-MVSNet68.54 28164.38 29681.03 21788.06 18866.90 11068.01 35484.02 31457.57 32064.48 26869.87 34538.68 28989.21 30640.87 34167.89 25686.97 242
CANet_DTU84.09 7283.52 6685.81 8390.30 13266.82 11191.87 14889.01 25085.27 886.09 3993.74 9147.71 24996.98 9177.90 12389.78 9493.65 124
v875.35 22173.26 22681.61 20080.67 29066.82 11189.54 22889.27 23571.65 19263.30 28080.30 28854.99 17894.06 20567.33 20962.33 29883.94 292
3Dnovator+73.60 782.10 10780.60 11986.60 5890.89 12266.80 11395.20 3393.44 7774.05 13067.42 24392.49 11849.46 23097.65 5170.80 17491.68 7195.33 58
PAPM_NR82.97 9281.84 10086.37 6894.10 4466.76 11487.66 26092.84 9969.96 22674.07 15893.57 9663.10 9497.50 5970.66 17790.58 8794.85 78
v1074.77 22872.54 23781.46 20380.33 29566.71 11589.15 23889.08 24770.94 21163.08 28179.86 29352.52 20494.04 20865.70 22762.17 29983.64 294
DeepC-MVS77.85 385.52 5085.24 5086.37 6888.80 16866.64 11692.15 13293.68 6681.07 3676.91 13093.64 9462.59 9798.44 3085.50 6292.84 5694.03 111
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline181.84 11081.03 11184.28 13491.60 10566.62 11791.08 18591.66 15081.87 2674.86 14891.67 13469.98 3694.92 16871.76 16764.75 28091.29 181
v114476.73 20174.88 20182.27 18180.23 29766.60 11891.68 15990.21 20673.69 14169.06 21781.89 25952.73 20394.40 19069.21 19165.23 27485.80 269
PVSNet_Blended_VisFu83.97 7483.50 6785.39 9690.02 13766.59 11993.77 7691.73 14477.43 9077.08 12989.81 16663.77 8396.97 9279.67 10688.21 10492.60 150
v14419276.05 20974.03 21682.12 18979.50 30466.55 12091.39 16989.71 22572.30 17068.17 23081.33 27151.75 21094.03 21067.94 20264.19 28485.77 270
VPNet78.82 16377.53 16582.70 16984.52 24966.44 12193.93 6692.23 11980.46 4172.60 17288.38 18249.18 23493.13 23072.47 16063.97 28888.55 218
SteuartSystems-ACMMP86.82 3586.90 3386.58 6090.42 12966.38 12296.09 1693.87 5677.73 8284.01 6195.66 3463.39 8997.94 3987.40 4793.55 4795.42 52
Skip Steuart: Steuart Systems R&D Blog.
v192192075.63 21973.49 22482.06 19379.38 30566.35 12391.07 18789.48 22871.98 17867.99 23181.22 27449.16 23693.90 21666.56 21564.56 28385.92 268
MVP-Stereo77.12 19276.23 18579.79 24581.72 28266.34 12489.29 23390.88 18170.56 22062.01 28982.88 24849.34 23194.13 20065.55 23093.80 4078.88 343
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
GA-MVS78.33 17576.23 18584.65 12083.65 26366.30 12591.44 16390.14 20776.01 10670.32 20284.02 23742.50 27794.72 17370.98 17277.00 19392.94 144
APDe-MVS87.54 2587.84 2286.65 5796.07 2366.30 12594.84 4493.78 5869.35 23388.39 2696.34 2267.74 4597.66 5090.62 2693.44 4896.01 38
v119275.98 21173.92 21882.15 18779.73 30066.24 12791.22 18089.75 21972.67 15968.49 22881.42 26949.86 22794.27 19567.08 21165.02 27685.95 266
dp75.01 22672.09 24183.76 14389.28 15466.22 12879.96 32589.75 21971.16 20667.80 23977.19 31451.81 20992.54 25550.39 29871.44 23592.51 153
EPNet87.84 2288.38 1886.23 7293.30 6066.05 12995.26 3194.84 2387.09 488.06 2794.53 6766.79 5197.34 6883.89 7891.68 7195.29 62
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ppachtmachnet_test67.72 28763.70 29879.77 24678.92 31266.04 13088.68 24582.90 32560.11 31155.45 31975.96 32439.19 28890.55 28939.53 34552.55 34182.71 311
v124075.21 22472.98 22981.88 19579.20 30766.00 13190.75 19689.11 24571.63 19667.41 24481.22 27447.36 25093.87 21765.46 23164.72 28185.77 270
baseline283.68 8283.42 7384.48 12687.37 20466.00 13190.06 21595.93 779.71 4969.08 21690.39 15477.92 696.28 11378.91 11581.38 15691.16 183
PCF-MVS73.15 979.29 15377.63 16384.29 13386.06 22565.96 13387.03 26791.10 17269.86 22869.79 21190.64 14757.54 14696.59 10464.37 23882.29 14790.32 192
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MAR-MVS84.18 7083.43 7186.44 6596.25 2165.93 13494.28 5194.27 4974.41 12379.16 10395.61 3653.99 18998.88 2069.62 18693.26 5194.50 95
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Fast-Effi-MVS+81.14 12080.01 12684.51 12590.24 13365.86 13594.12 5789.15 24273.81 13875.37 14588.26 18557.26 14794.53 18666.97 21384.92 13093.15 137
AdaColmapbinary78.94 16077.00 17684.76 11696.34 1765.86 13592.66 11787.97 28062.18 29470.56 19792.37 12243.53 27397.35 6764.50 23782.86 14491.05 185
thres20079.66 14778.33 15183.66 15092.54 8265.82 13793.06 9996.31 374.90 12073.30 16488.66 17559.67 12595.61 14347.84 31378.67 17689.56 205
BH-RMVSNet79.46 15277.65 16284.89 11091.68 10465.66 13893.55 8588.09 27672.93 15573.37 16391.12 14346.20 26196.12 11856.28 28085.61 12892.91 145
ZNCC-MVS85.33 5285.08 5386.06 7493.09 6865.65 13993.89 6993.41 7973.75 13979.94 9394.68 6460.61 11598.03 3782.63 8593.72 4394.52 93
thisisatest053081.15 11980.07 12484.39 12988.26 18265.63 14091.40 16794.62 3371.27 20570.93 19489.18 17172.47 2996.04 12465.62 22876.89 19491.49 172
MP-MVS-pluss85.24 5385.13 5285.56 9191.42 11165.59 14191.54 16292.51 11374.56 12280.62 8795.64 3559.15 13297.00 8786.94 5393.80 4094.07 109
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FE-MVS75.97 21273.02 22884.82 11389.78 14165.56 14277.44 33591.07 17664.55 27272.66 17079.85 29446.05 26396.69 10254.97 28480.82 16192.21 164
PHI-MVS86.83 3486.85 3586.78 5493.47 5765.55 14395.39 2995.10 1771.77 18985.69 4496.52 1762.07 10198.77 2186.06 6095.60 1196.03 37
114514_t79.17 15577.67 16183.68 14895.32 2965.53 14492.85 10891.60 15263.49 28067.92 23490.63 14946.65 25495.72 13967.01 21283.54 14189.79 200
ZD-MVS96.63 965.50 14593.50 7470.74 21785.26 5095.19 5164.92 6997.29 7187.51 4593.01 53
ab-mvs80.18 13878.31 15285.80 8488.44 17565.49 14683.00 29892.67 10571.82 18777.36 12485.01 22454.50 18196.59 10476.35 13175.63 20295.32 60
TSAR-MVS + GP.87.96 1988.37 1986.70 5693.51 5665.32 14795.15 3593.84 5778.17 7585.93 4194.80 6175.80 1398.21 3389.38 3088.78 10096.59 15
GST-MVS84.63 6184.29 6185.66 8992.82 7365.27 14893.04 10193.13 8973.20 14878.89 10594.18 8359.41 12997.85 4481.45 9492.48 6093.86 119
pmmvs473.92 23771.81 24580.25 23179.17 30865.24 14987.43 26387.26 28667.64 25263.46 27883.91 23948.96 23891.53 28462.94 24865.49 27083.96 291
APD-MVScopyleft85.93 4585.99 4285.76 8695.98 2665.21 15093.59 8492.58 11166.54 25986.17 3895.88 3063.83 8197.00 8786.39 5792.94 5495.06 72
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
miper_enhance_ethall78.86 16277.97 15881.54 20288.00 19165.17 15191.41 16589.15 24275.19 11668.79 22383.98 23867.17 4892.82 24172.73 15665.30 27186.62 251
MTAPA83.91 7583.38 7585.50 9291.89 9965.16 15281.75 30492.23 11975.32 11480.53 8895.21 5056.06 16797.16 7984.86 7092.55 5994.18 101
GBi-Net75.65 21773.83 21981.10 21388.85 16565.11 15390.01 21790.32 19670.84 21367.04 24880.25 28948.03 24291.54 28159.80 26869.34 24486.64 247
test175.65 21773.83 21981.10 21388.85 16565.11 15390.01 21790.32 19670.84 21367.04 24880.25 28948.03 24291.54 28159.80 26869.34 24486.64 247
FMVSNet172.71 25169.91 26081.10 21383.60 26465.11 15390.01 21790.32 19663.92 27663.56 27780.25 28936.35 31491.54 28154.46 28666.75 26386.64 247
HFP-MVS84.73 5984.40 6085.72 8793.75 5165.01 15693.50 8893.19 8672.19 17379.22 10294.93 5659.04 13397.67 4881.55 9292.21 6194.49 96
PVSNet73.49 880.05 14178.63 14884.31 13290.92 12164.97 15792.47 12591.05 17879.18 5872.43 17890.51 15137.05 31194.06 20568.06 20086.00 12593.90 118
Anonymous2024052976.84 19874.15 21484.88 11191.02 11864.95 15893.84 7491.09 17353.57 33673.00 16587.42 19935.91 31597.32 6969.14 19272.41 22892.36 155
cl2277.94 18176.78 17881.42 20487.57 19864.93 15990.67 19788.86 25572.45 16567.63 24182.68 25164.07 7792.91 23971.79 16565.30 27186.44 252
our_test_368.29 28364.69 29179.11 25978.92 31264.85 16088.40 25085.06 30560.32 30952.68 32976.12 32340.81 28389.80 30344.25 32955.65 33182.67 314
tpm78.58 17077.03 17483.22 16085.94 22964.56 16183.21 29591.14 17178.31 7373.67 16279.68 29664.01 7892.09 26966.07 22371.26 23693.03 141
Anonymous20240521177.96 18075.33 19885.87 8093.73 5264.52 16294.85 4385.36 30362.52 29276.11 13590.18 15929.43 33897.29 7168.51 19877.24 19295.81 44
tfpn200view978.79 16577.43 16682.88 16592.21 8864.49 16392.05 13996.28 473.48 14571.75 18688.26 18560.07 12195.32 15545.16 32477.58 18588.83 210
thres40078.68 16777.43 16682.43 17592.21 8864.49 16392.05 13996.28 473.48 14571.75 18688.26 18560.07 12195.32 15545.16 32477.58 18587.48 231
VPA-MVSNet79.03 15778.00 15782.11 19285.95 22764.48 16593.22 9694.66 3175.05 11874.04 15984.95 22552.17 20793.52 22474.90 14367.04 26188.32 224
CDS-MVSNet81.43 11680.74 11483.52 15186.26 22264.45 16692.09 13690.65 18875.83 10873.95 16089.81 16663.97 7992.91 23971.27 17082.82 14593.20 136
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v14876.19 20474.47 20981.36 20580.05 29864.44 16791.75 15790.23 20473.68 14267.13 24780.84 27955.92 16993.86 21968.95 19461.73 30685.76 272
XXY-MVS77.94 18176.44 18282.43 17582.60 27364.44 16792.01 14191.83 14173.59 14470.00 20785.82 21854.43 18594.76 17069.63 18568.02 25588.10 226
MIMVSNet71.64 25768.44 26981.23 20881.97 28164.44 16773.05 34388.80 25669.67 23064.59 26574.79 32932.79 32487.82 31753.99 28876.35 19891.42 174
miper_ehance_all_eth77.60 18576.44 18281.09 21685.70 23264.41 17090.65 19888.64 26372.31 16967.37 24682.52 25264.77 7192.64 25370.67 17665.30 27186.24 256
Patchmtry67.53 29063.93 29778.34 26482.12 27964.38 17168.72 35184.00 31548.23 35259.24 30072.41 33557.82 14389.27 30546.10 32156.68 33081.36 323
ACMMPR84.37 6384.06 6285.28 9993.56 5464.37 17293.50 8893.15 8872.19 17378.85 11094.86 5956.69 15997.45 6081.55 9292.20 6294.02 112
BH-w/o80.49 13279.30 14184.05 13990.83 12464.36 17393.60 8389.42 23174.35 12569.09 21590.15 16155.23 17495.61 14364.61 23686.43 12492.17 165
region2R84.36 6484.03 6385.36 9793.54 5564.31 17493.43 9192.95 9672.16 17678.86 10994.84 6056.97 15497.53 5881.38 9692.11 6494.24 100
新几何184.73 11792.32 8464.28 17591.46 15859.56 31479.77 9592.90 10856.95 15596.57 10663.40 24392.91 5593.34 131
原ACMM184.42 12793.21 6364.27 17693.40 8065.39 26779.51 9892.50 11658.11 14196.69 10265.27 23393.96 3792.32 157
MP-MVScopyleft85.02 5584.97 5585.17 10492.60 8164.27 17693.24 9492.27 11873.13 15079.63 9794.43 7061.90 10297.17 7885.00 6792.56 5894.06 110
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
c3_l76.83 19975.47 19580.93 22085.02 24264.18 17890.39 20588.11 27571.66 19166.65 25481.64 26463.58 8892.56 25469.31 19062.86 29286.04 263
PGM-MVS83.25 8782.70 8884.92 10992.81 7564.07 17990.44 20292.20 12371.28 20477.23 12694.43 7055.17 17697.31 7079.33 11091.38 7793.37 130
MSP-MVS90.38 491.87 185.88 7992.83 7164.03 18093.06 9994.33 4782.19 2393.65 396.15 2785.89 197.19 7791.02 2397.75 196.43 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
FA-MVS(test-final)79.12 15677.23 17284.81 11490.54 12763.98 18181.35 31091.71 14671.09 20974.85 14982.94 24752.85 20197.05 8267.97 20181.73 15493.41 129
CP-MVS83.71 8183.40 7484.65 12093.14 6663.84 18294.59 4792.28 11771.03 21077.41 12394.92 5755.21 17596.19 11581.32 9790.70 8593.91 116
OPM-MVS79.00 15878.09 15581.73 19783.52 26563.83 18391.64 16190.30 20076.36 10471.97 18389.93 16546.30 26095.17 16075.10 13877.70 18386.19 258
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XVS83.87 7683.47 6985.05 10593.22 6163.78 18492.92 10692.66 10673.99 13178.18 11494.31 7955.25 17297.41 6379.16 11191.58 7393.95 114
X-MVStestdata76.86 19574.13 21585.05 10593.22 6163.78 18492.92 10692.66 10673.99 13178.18 11410.19 38355.25 17297.41 6379.16 11191.58 7393.95 114
TESTMET0.1,182.41 10081.98 9983.72 14788.08 18763.74 18692.70 11393.77 6079.30 5577.61 12187.57 19758.19 14094.08 20373.91 14886.68 12193.33 133
BH-untuned78.68 16777.08 17383.48 15589.84 14063.74 18692.70 11388.59 26471.57 19866.83 25288.65 17651.75 21095.39 15359.03 27184.77 13291.32 179
test_fmvsmvis_n_192083.80 7883.48 6884.77 11582.51 27463.72 18891.37 17283.99 31781.42 3377.68 11995.74 3358.37 13797.58 5593.38 586.87 11493.00 143
MSDG69.54 27265.73 28280.96 21885.11 24163.71 18984.19 28383.28 32356.95 32554.50 32284.03 23631.50 33096.03 12542.87 33469.13 24783.14 305
patch_mono-289.71 1090.99 585.85 8296.04 2463.70 19095.04 3995.19 1486.74 691.53 1195.15 5273.86 2097.58 5593.38 592.00 6696.28 31
thres600view778.00 17876.66 18082.03 19491.93 9663.69 19191.30 17796.33 172.43 16670.46 19987.89 19260.31 11694.92 16842.64 33676.64 19587.48 231
PatchT69.11 27565.37 28780.32 22782.07 28063.68 19267.96 35687.62 28250.86 34469.37 21265.18 35357.09 14988.53 31041.59 33966.60 26488.74 214
HQP5-MVS63.66 193
HQP-MVS81.14 12080.64 11782.64 17187.54 19963.66 19394.06 5891.70 14879.80 4674.18 15490.30 15651.63 21295.61 14377.63 12478.90 17388.63 215
EI-MVSNet-Vis-set83.77 7983.67 6584.06 13892.79 7663.56 19591.76 15594.81 2579.65 5077.87 11794.09 8463.35 9097.90 4179.35 10979.36 16990.74 187
test_fmvsm_n_192087.69 2488.50 1785.27 10087.05 21063.55 19693.69 7991.08 17584.18 1290.17 1997.04 867.58 4697.99 3895.72 290.03 9194.26 99
TAMVS80.37 13479.45 13783.13 16285.14 23963.37 19791.23 17990.76 18374.81 12172.65 17188.49 17760.63 11492.95 23469.41 18881.95 15193.08 140
Anonymous2023121173.08 24270.39 25681.13 21190.62 12663.33 19891.40 16790.06 21151.84 34164.46 27080.67 28236.49 31394.07 20463.83 24164.17 28585.98 265
ACMH63.93 1768.62 27964.81 28980.03 23785.22 23763.25 19987.72 25884.66 30960.83 30551.57 33479.43 29927.29 34394.96 16541.76 33764.84 27881.88 320
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thres100view90078.37 17377.01 17582.46 17491.89 9963.21 20091.19 18396.33 172.28 17170.45 20087.89 19260.31 11695.32 15545.16 32477.58 18588.83 210
EI-MVSNet-UG-set83.14 8982.96 8183.67 14992.28 8563.19 20191.38 17194.68 3079.22 5776.60 13293.75 9062.64 9697.76 4678.07 12278.01 18090.05 196
test250683.29 8582.92 8384.37 13088.39 17863.18 20292.01 14191.35 16177.66 8478.49 11391.42 13764.58 7395.09 16173.19 14989.23 9694.85 78
NP-MVS87.41 20263.04 20390.30 156
eth_miper_zixun_eth75.96 21374.40 21080.66 22284.66 24663.02 20489.28 23488.27 27271.88 18365.73 25681.65 26359.45 12792.81 24268.13 19960.53 31586.14 259
D2MVS73.80 23872.02 24279.15 25879.15 30962.97 20588.58 24790.07 20972.94 15459.22 30178.30 30342.31 27992.70 24865.59 22972.00 22981.79 321
IterMVS72.65 25470.83 25178.09 26982.17 27862.96 20687.64 26186.28 29371.56 19960.44 29578.85 30145.42 26786.66 32763.30 24661.83 30384.65 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EG-PatchMatch MVS68.55 28065.41 28677.96 27078.69 31762.93 20789.86 22289.17 24060.55 30650.27 33977.73 30922.60 35294.06 20547.18 31672.65 22576.88 351
DP-MVS69.90 27066.48 27680.14 23395.36 2862.93 20789.56 22676.11 34050.27 34657.69 31385.23 22239.68 28695.73 13533.35 36071.05 23781.78 322
mPP-MVS82.96 9382.44 9384.52 12492.83 7162.92 20992.76 10991.85 14071.52 20075.61 14294.24 8153.48 19796.99 9078.97 11490.73 8493.64 125
ACMMPcopyleft81.49 11580.67 11683.93 14191.71 10362.90 21092.13 13392.22 12271.79 18871.68 18893.49 9850.32 22196.96 9378.47 11984.22 14091.93 168
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HPM-MVScopyleft83.25 8782.95 8284.17 13692.25 8662.88 21190.91 18891.86 13870.30 22277.12 12793.96 8856.75 15796.28 11382.04 8991.34 7993.34 131
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_LR82.02 10881.52 10383.51 15388.42 17662.88 21189.77 22488.93 25276.78 9775.55 14393.10 10150.31 22295.38 15483.82 7987.02 11392.26 163
IterMVS-LS76.49 20275.18 20080.43 22684.49 25062.74 21390.64 19988.80 25672.40 16765.16 26181.72 26260.98 11192.27 26567.74 20464.65 28286.29 254
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet78.97 15978.22 15481.25 20785.33 23562.73 21489.53 22993.21 8372.39 16872.14 18190.13 16260.99 11094.72 17367.73 20572.49 22686.29 254
CHOSEN 280x42077.35 18976.95 17778.55 26387.07 20962.68 21569.71 35082.95 32468.80 24171.48 19087.27 20266.03 5784.00 33976.47 13082.81 14688.95 209
HQP_MVS80.34 13579.75 13182.12 18986.94 21162.42 21693.13 9791.31 16278.81 6872.53 17489.14 17350.66 21995.55 14876.74 12778.53 17888.39 222
plane_prior62.42 21693.85 7179.38 5378.80 175
EIA-MVS84.84 5884.88 5684.69 11991.30 11462.36 21893.85 7192.04 12879.45 5179.33 10194.28 8062.42 9896.35 11180.05 10491.25 8095.38 55
plane_prior687.23 20562.32 21950.66 219
PVSNet_068.08 1571.81 25668.32 27182.27 18184.68 24562.31 22088.68 24590.31 19975.84 10757.93 31280.65 28337.85 30294.19 19969.94 18229.05 37590.31 193
WR-MVS76.76 20075.74 19279.82 24484.60 24762.27 22192.60 11992.51 11376.06 10567.87 23885.34 22156.76 15690.24 29662.20 25463.69 29086.94 244
NR-MVSNet76.05 20974.59 20580.44 22582.96 27162.18 22290.83 19391.73 14477.12 9260.96 29386.35 21059.28 13191.80 27460.74 26161.34 31087.35 236
sd_testset77.08 19375.37 19682.20 18589.25 15562.11 22382.06 30289.09 24676.77 9870.84 19587.12 20341.43 28195.01 16367.23 21074.55 20689.48 206
GeoE78.90 16177.43 16683.29 15888.95 16462.02 22492.31 12786.23 29570.24 22371.34 19289.27 17054.43 18594.04 20863.31 24580.81 16293.81 121
h-mvs3383.01 9182.56 9184.35 13189.34 15162.02 22492.72 11193.76 6181.45 3082.73 6992.25 12560.11 11997.13 8087.69 4362.96 29193.91 116
ECVR-MVScopyleft81.29 11880.38 12384.01 14088.39 17861.96 22692.56 12486.79 29077.66 8476.63 13191.42 13746.34 25895.24 15974.36 14689.23 9694.85 78
plane_prior361.95 22779.09 6172.53 174
Vis-MVSNetpermissive80.92 12679.98 12883.74 14488.48 17361.80 22893.44 9088.26 27473.96 13477.73 11891.76 13149.94 22694.76 17065.84 22590.37 8994.65 88
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FOURS193.95 4561.77 22993.96 6491.92 13362.14 29586.57 35
cl____76.07 20674.67 20280.28 22985.15 23861.76 23090.12 21388.73 25971.16 20665.43 25881.57 26661.15 10892.95 23466.54 21662.17 29986.13 261
DIV-MVS_self_test76.07 20674.67 20280.28 22985.14 23961.75 23190.12 21388.73 25971.16 20665.42 25981.60 26561.15 10892.94 23866.54 21662.16 30186.14 259
CNLPA74.31 23272.30 23980.32 22791.49 11061.66 23290.85 19280.72 33256.67 32863.85 27590.64 14746.75 25390.84 28853.79 28975.99 20188.47 221
test22289.77 14261.60 23389.55 22789.42 23156.83 32777.28 12592.43 12052.76 20291.14 8293.09 139
plane_prior786.94 21161.51 234
UGNet79.87 14578.68 14783.45 15689.96 13861.51 23492.13 13390.79 18276.83 9678.85 11086.33 21238.16 29796.17 11667.93 20387.17 11292.67 148
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tttt051779.50 15078.53 15082.41 17887.22 20661.43 23689.75 22594.76 2669.29 23467.91 23588.06 19072.92 2595.63 14162.91 24973.90 21690.16 194
EC-MVSNet84.53 6285.04 5483.01 16389.34 15161.37 23794.42 4991.09 17377.91 7983.24 6494.20 8258.37 13795.40 15285.35 6391.41 7692.27 162
test-LLR80.10 14079.56 13481.72 19886.93 21361.17 23892.70 11391.54 15371.51 20175.62 14086.94 20553.83 19092.38 26072.21 16284.76 13391.60 170
test-mter79.96 14379.38 14081.72 19886.93 21361.17 23892.70 11391.54 15373.85 13675.62 14086.94 20549.84 22892.38 26072.21 16284.76 13391.60 170
SR-MVS82.81 9482.58 9083.50 15493.35 5861.16 24092.23 13191.28 16564.48 27381.27 7895.28 4453.71 19395.86 12982.87 8388.77 10193.49 128
KD-MVS_2432*160069.03 27666.37 27977.01 28385.56 23361.06 24181.44 30890.25 20267.27 25458.00 31076.53 31954.49 18287.63 32148.04 31035.77 36782.34 316
miper_refine_blended69.03 27666.37 27977.01 28385.56 23361.06 24181.44 30890.25 20267.27 25458.00 31076.53 31954.49 18287.63 32148.04 31035.77 36782.34 316
tfpnnormal70.10 26767.36 27478.32 26583.45 26660.97 24388.85 24292.77 10164.85 27160.83 29478.53 30243.52 27493.48 22531.73 36661.70 30780.52 331
TR-MVS78.77 16677.37 17182.95 16490.49 12860.88 24493.67 8090.07 20970.08 22574.51 15291.37 14045.69 26495.70 14060.12 26680.32 16392.29 158
UniMVSNet (Re)77.58 18676.78 17879.98 23884.11 25760.80 24591.76 15593.17 8776.56 10269.93 21084.78 22863.32 9192.36 26264.89 23562.51 29786.78 246
1112_ss80.56 13079.83 13082.77 16788.65 17060.78 24692.29 12888.36 26872.58 16172.46 17794.95 5465.09 6593.42 22766.38 21977.71 18294.10 106
v7n71.31 26168.65 26679.28 25476.40 33460.77 24786.71 27289.45 22964.17 27558.77 30678.24 30444.59 27093.54 22357.76 27561.75 30583.52 297
test111180.84 12780.02 12583.33 15787.87 19460.76 24892.62 11886.86 28977.86 8075.73 13891.39 13946.35 25794.70 17672.79 15588.68 10294.52 93
test_040264.54 30561.09 31174.92 29984.10 25860.75 24987.95 25479.71 33652.03 33952.41 33077.20 31332.21 32891.64 27723.14 37061.03 31172.36 359
旧先验191.94 9560.74 25091.50 15694.36 7265.23 6491.84 6894.55 89
dmvs_re76.93 19475.36 19781.61 20087.78 19660.71 25180.00 32387.99 27879.42 5269.02 21889.47 16946.77 25294.32 19163.38 24474.45 20989.81 199
ADS-MVSNet266.90 29363.44 30077.26 28088.06 18860.70 25268.01 35475.56 34457.57 32064.48 26869.87 34538.68 28984.10 33640.87 34167.89 25686.97 242
IterMVS-SCA-FT71.55 26069.97 25876.32 28981.48 28360.67 25387.64 26185.99 29866.17 26259.50 29978.88 30045.53 26583.65 34162.58 25261.93 30284.63 289
TranMVSNet+NR-MVSNet75.86 21474.52 20879.89 24282.44 27560.64 25491.37 17291.37 16076.63 10067.65 24086.21 21452.37 20691.55 28061.84 25660.81 31387.48 231
pmmvs573.35 24171.52 24778.86 26078.64 31860.61 25591.08 18586.90 28767.69 24963.32 27983.64 24044.33 27190.53 29062.04 25566.02 26885.46 277
MDA-MVSNet_test_wron63.78 31060.16 31374.64 30078.15 32460.41 25683.49 28884.03 31356.17 33139.17 36571.59 34137.22 30783.24 34642.87 33448.73 34780.26 334
Test_1112_low_res79.56 14978.60 14982.43 17588.24 18460.39 25792.09 13687.99 27872.10 17771.84 18487.42 19964.62 7293.04 23165.80 22677.30 19093.85 120
UniMVSNet_NR-MVSNet78.15 17777.55 16479.98 23884.46 25160.26 25892.25 12993.20 8577.50 8868.88 22186.61 20766.10 5692.13 26766.38 21962.55 29587.54 229
DU-MVS76.86 19575.84 19079.91 24182.96 27160.26 25891.26 17891.54 15376.46 10368.88 22186.35 21056.16 16492.13 26766.38 21962.55 29587.35 236
EPP-MVSNet81.79 11181.52 10382.61 17288.77 16960.21 26093.02 10393.66 6768.52 24572.90 16890.39 15472.19 3194.96 16574.93 14179.29 17192.67 148
YYNet163.76 31160.14 31474.62 30178.06 32560.19 26183.46 29083.99 31756.18 33039.25 36471.56 34237.18 30883.34 34442.90 33348.70 34880.32 333
IS-MVSNet80.14 13979.41 13882.33 17987.91 19260.08 26291.97 14588.27 27272.90 15671.44 19191.73 13361.44 10793.66 22262.47 25386.53 12293.24 134
HPM-MVS_fast80.25 13779.55 13682.33 17991.55 10859.95 26391.32 17689.16 24165.23 27074.71 15193.07 10447.81 24895.74 13474.87 14488.23 10391.31 180
MDTV_nov1_ep13_2view59.90 26480.13 32167.65 25172.79 16954.33 18759.83 26792.58 151
CPTT-MVS79.59 14879.16 14380.89 22191.54 10959.80 26592.10 13588.54 26660.42 30772.96 16693.28 10048.27 24192.80 24378.89 11686.50 12390.06 195
ACMP71.68 1075.58 22074.23 21379.62 24984.97 24359.64 26690.80 19489.07 24870.39 22162.95 28287.30 20138.28 29593.87 21772.89 15271.45 23485.36 279
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pmmvs-eth3d65.53 30262.32 30775.19 29669.39 35759.59 26782.80 29983.43 32062.52 29251.30 33672.49 33332.86 32387.16 32655.32 28350.73 34478.83 344
sss82.71 9782.38 9483.73 14689.25 15559.58 26892.24 13094.89 2277.96 7779.86 9492.38 12156.70 15897.05 8277.26 12680.86 16094.55 89
Fast-Effi-MVS+-dtu75.04 22573.37 22580.07 23580.86 28759.52 26991.20 18285.38 30271.90 18165.20 26084.84 22741.46 28092.97 23366.50 21872.96 22187.73 228
FIs79.47 15179.41 13879.67 24785.95 22759.40 27091.68 15993.94 5578.06 7668.96 22088.28 18366.61 5391.77 27566.20 22274.99 20587.82 227
LPG-MVS_test75.82 21574.58 20679.56 25184.31 25459.37 27190.44 20289.73 22269.49 23164.86 26288.42 17838.65 29194.30 19372.56 15872.76 22385.01 284
LGP-MVS_train79.56 25184.31 25459.37 27189.73 22269.49 23164.86 26288.42 17838.65 29194.30 19372.56 15872.76 22385.01 284
CS-MVS-test86.14 4287.01 3183.52 15192.63 8059.36 27395.49 2691.92 13380.09 4385.46 4795.53 3861.82 10595.77 13386.77 5593.37 4995.41 53
Baseline_NR-MVSNet73.99 23672.83 23177.48 27580.78 28859.29 27491.79 15284.55 31068.85 24068.99 21980.70 28056.16 16492.04 27062.67 25160.98 31281.11 324
PS-MVSNAJss77.26 19076.31 18480.13 23480.64 29159.16 27590.63 20191.06 17772.80 15768.58 22784.57 23153.55 19493.96 21372.97 15171.96 23087.27 239
mvsmamba76.85 19775.71 19380.25 23183.07 27059.16 27591.44 16380.64 33376.84 9567.95 23386.33 21246.17 26294.24 19876.06 13272.92 22287.36 235
TransMVSNet (Re)70.07 26867.66 27377.31 27980.62 29259.13 27791.78 15484.94 30765.97 26360.08 29780.44 28550.78 21891.87 27248.84 30645.46 35380.94 326
CS-MVS85.80 4786.65 3683.27 15992.00 9458.92 27895.31 3091.86 13879.97 4484.82 5295.40 3962.26 9995.51 15186.11 5992.08 6595.37 56
Patchmatch-test65.86 29860.94 31280.62 22483.75 26158.83 27958.91 36875.26 34644.50 35950.95 33877.09 31558.81 13587.90 31535.13 35664.03 28695.12 71
APD-MVS_3200maxsize81.64 11481.32 10582.59 17392.36 8358.74 28091.39 16991.01 18063.35 28279.72 9694.62 6651.82 20896.14 11779.71 10587.93 10692.89 146
PLCcopyleft68.80 1475.23 22373.68 22279.86 24392.93 7058.68 28190.64 19988.30 27060.90 30464.43 27190.53 15042.38 27894.57 18256.52 27876.54 19686.33 253
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SR-MVS-dyc-post81.06 12380.70 11582.15 18792.02 9158.56 28290.90 18990.45 19062.76 28978.89 10594.46 6851.26 21695.61 14378.77 11786.77 11892.28 159
RE-MVS-def80.48 12192.02 9158.56 28290.90 18990.45 19062.76 28978.89 10594.46 6849.30 23278.77 11786.77 11892.28 159
miper_lstm_enhance73.05 24471.73 24677.03 28283.80 26058.32 28481.76 30388.88 25369.80 22961.01 29278.23 30557.19 14887.51 32365.34 23259.53 32085.27 282
DeepPCF-MVS81.17 189.72 991.38 384.72 11893.00 6958.16 28596.72 794.41 4186.50 790.25 1897.83 175.46 1498.67 2492.78 895.49 1297.32 6
bld_raw_dy_0_6471.59 25969.71 26377.22 28177.82 32858.12 28687.71 25973.66 34968.01 24761.90 29184.29 23533.68 32188.43 31169.91 18370.43 23985.11 283
FMVSNet568.04 28565.66 28475.18 29784.43 25257.89 28783.54 28786.26 29461.83 30053.64 32773.30 33237.15 30985.08 33348.99 30561.77 30482.56 315
ACMM69.62 1374.34 23172.73 23379.17 25684.25 25657.87 28890.36 20689.93 21463.17 28665.64 25786.04 21737.79 30394.10 20165.89 22471.52 23385.55 275
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OpenMVS_ROBcopyleft61.12 1866.39 29562.92 30376.80 28776.51 33357.77 28989.22 23583.41 32155.48 33253.86 32677.84 30826.28 34693.95 21434.90 35768.76 24978.68 345
UA-Net80.02 14279.65 13281.11 21289.33 15357.72 29086.33 27489.00 25177.44 8981.01 8389.15 17259.33 13095.90 12861.01 26084.28 13889.73 202
testdata81.34 20689.02 16257.72 29089.84 21758.65 31885.32 4994.09 8457.03 15093.28 22869.34 18990.56 8893.03 141
RRT_MVS74.44 23072.97 23078.84 26182.36 27657.66 29289.83 22388.79 25870.61 21964.58 26684.89 22639.24 28792.65 25270.11 18166.34 26686.21 257
pm-mvs172.89 24771.09 25078.26 26779.10 31157.62 29390.80 19489.30 23467.66 25062.91 28381.78 26149.11 23792.95 23460.29 26558.89 32384.22 290
XVG-OURS74.25 23372.46 23879.63 24878.45 32057.59 29480.33 31787.39 28363.86 27768.76 22489.62 16840.50 28491.72 27669.00 19374.25 21189.58 203
hse-mvs281.12 12281.11 11081.16 21086.52 21757.48 29589.40 23291.16 16881.45 3082.73 6990.49 15260.11 11994.58 18087.69 4360.41 31891.41 175
AUN-MVS78.37 17377.43 16681.17 20986.60 21657.45 29689.46 23191.16 16874.11 12974.40 15390.49 15255.52 17194.57 18274.73 14560.43 31791.48 173
OMC-MVS78.67 16977.91 16080.95 21985.76 23157.40 29788.49 24888.67 26173.85 13672.43 17892.10 12649.29 23394.55 18572.73 15677.89 18190.91 186
XVG-OURS-SEG-HR74.70 22973.08 22779.57 25078.25 32257.33 29880.49 31587.32 28463.22 28468.76 22490.12 16444.89 26991.59 27970.55 17874.09 21389.79 200
ACMH+65.35 1667.65 28864.55 29276.96 28584.59 24857.10 29988.08 25280.79 33158.59 31953.00 32881.09 27826.63 34592.95 23446.51 31861.69 30880.82 327
tt080573.07 24370.73 25380.07 23578.37 32157.05 30087.78 25792.18 12561.23 30367.04 24886.49 20931.35 33294.58 18065.06 23467.12 26088.57 217
test_cas_vis1_n_192080.45 13380.61 11879.97 24078.25 32257.01 30194.04 6288.33 26979.06 6382.81 6893.70 9238.65 29191.63 27890.82 2579.81 16591.27 182
MDA-MVSNet-bldmvs61.54 31757.70 32173.05 31279.53 30357.00 30283.08 29681.23 32957.57 32034.91 36772.45 33432.79 32486.26 33035.81 35441.95 35875.89 353
UniMVSNet_ETH3D72.74 25070.53 25579.36 25378.62 31956.64 30385.01 27989.20 23863.77 27864.84 26484.44 23334.05 32091.86 27363.94 24070.89 23889.57 204
MVS-HIRNet60.25 32055.55 32774.35 30384.37 25356.57 30471.64 34574.11 34834.44 36645.54 35442.24 37331.11 33489.81 30140.36 34476.10 20076.67 352
PMMVS81.98 10982.04 9781.78 19689.76 14356.17 30591.13 18490.69 18477.96 7780.09 9293.57 9646.33 25994.99 16481.41 9587.46 11094.17 102
LS3D69.17 27466.40 27877.50 27491.92 9756.12 30685.12 27880.37 33446.96 35356.50 31787.51 19837.25 30693.71 22032.52 36579.40 16882.68 313
F-COLMAP70.66 26368.44 26977.32 27886.37 22155.91 30788.00 25386.32 29256.94 32657.28 31588.07 18933.58 32292.49 25751.02 29668.37 25283.55 295
CL-MVSNet_self_test69.92 26968.09 27275.41 29473.25 34455.90 30890.05 21689.90 21569.96 22661.96 29076.54 31851.05 21787.64 32049.51 30450.59 34582.70 312
PatchMatch-RL72.06 25569.98 25778.28 26689.51 14955.70 30983.49 28883.39 32261.24 30263.72 27682.76 24934.77 31893.03 23253.37 29277.59 18486.12 262
FC-MVSNet-test77.99 17978.08 15677.70 27184.89 24455.51 31090.27 20993.75 6476.87 9366.80 25387.59 19665.71 6190.23 29762.89 25073.94 21487.37 234
USDC67.43 29264.51 29376.19 29077.94 32655.29 31178.38 33085.00 30673.17 14948.36 34680.37 28621.23 35492.48 25852.15 29464.02 28780.81 328
Effi-MVS+-dtu76.14 20575.28 19978.72 26283.22 26755.17 31289.87 22187.78 28175.42 11267.98 23281.43 26845.08 26892.52 25675.08 13971.63 23188.48 219
test_vis1_n_192081.66 11382.01 9880.64 22382.24 27755.09 31394.76 4586.87 28881.67 2884.40 5694.63 6538.17 29694.67 17791.98 1683.34 14292.16 166
jajsoiax73.05 24471.51 24877.67 27277.46 32954.83 31488.81 24390.04 21269.13 23862.85 28483.51 24231.16 33392.75 24570.83 17369.80 24085.43 278
anonymousdsp71.14 26269.37 26476.45 28872.95 34554.71 31584.19 28388.88 25361.92 29862.15 28879.77 29538.14 29891.44 28668.90 19567.45 25983.21 303
mvs_tets72.71 25171.11 24977.52 27377.41 33054.52 31688.45 24989.76 21868.76 24362.70 28583.26 24529.49 33792.71 24670.51 17969.62 24285.34 280
JIA-IIPM66.06 29762.45 30676.88 28681.42 28554.45 31757.49 36988.67 26149.36 34863.86 27446.86 36756.06 16790.25 29349.53 30368.83 24885.95 266
Patchmatch-RL test68.17 28464.49 29479.19 25571.22 34953.93 31870.07 34971.54 35769.22 23556.79 31662.89 35756.58 16188.61 30769.53 18752.61 34095.03 75
test_djsdf73.76 24072.56 23677.39 27777.00 33253.93 31889.07 23990.69 18465.80 26463.92 27382.03 25843.14 27692.67 24972.83 15368.53 25185.57 274
pmmvs667.57 28964.76 29076.00 29272.82 34753.37 32088.71 24486.78 29153.19 33757.58 31478.03 30735.33 31792.41 25955.56 28254.88 33582.21 318
TinyColmap60.32 31956.42 32672.00 32378.78 31553.18 32178.36 33175.64 34352.30 33841.59 36375.82 32614.76 36688.35 31235.84 35354.71 33674.46 355
COLMAP_ROBcopyleft57.96 2062.98 31359.65 31572.98 31381.44 28453.00 32283.75 28675.53 34548.34 35148.81 34581.40 27024.14 34890.30 29232.95 36260.52 31675.65 354
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XVG-ACMP-BASELINE68.04 28565.53 28575.56 29374.06 34252.37 32378.43 32985.88 29962.03 29658.91 30581.21 27620.38 35791.15 28760.69 26268.18 25383.16 304
Vis-MVSNet (Re-imp)79.24 15479.57 13378.24 26888.46 17452.29 32490.41 20489.12 24474.24 12769.13 21491.91 12965.77 6090.09 30059.00 27288.09 10592.33 156
TAPA-MVS70.22 1274.94 22773.53 22379.17 25690.40 13052.07 32589.19 23789.61 22662.69 29170.07 20592.67 11448.89 23994.32 19138.26 35079.97 16491.12 184
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UnsupCasMVSNet_bld61.60 31657.71 32073.29 31168.73 35851.64 32678.61 32889.05 24957.20 32446.11 34961.96 36028.70 34088.60 30850.08 30138.90 36479.63 338
LTVRE_ROB59.60 1966.27 29663.54 29974.45 30284.00 25951.55 32767.08 35783.53 31958.78 31754.94 32180.31 28734.54 31993.23 22940.64 34368.03 25478.58 346
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WR-MVS_H70.59 26469.94 25972.53 31681.03 28651.43 32887.35 26492.03 12967.38 25360.23 29680.70 28055.84 17083.45 34346.33 32058.58 32582.72 310
AllTest61.66 31558.06 31972.46 31779.57 30151.42 32980.17 32068.61 36151.25 34245.88 35081.23 27219.86 35986.58 32838.98 34757.01 32879.39 339
TestCases72.46 31779.57 30151.42 32968.61 36151.25 34245.88 35081.23 27219.86 35986.58 32838.98 34757.01 32879.39 339
CP-MVSNet70.50 26569.91 26072.26 31980.71 28951.00 33187.23 26690.30 20067.84 24859.64 29882.69 25050.23 22482.30 35151.28 29559.28 32183.46 299
pmmvs355.51 32751.50 33267.53 33657.90 37050.93 33280.37 31673.66 34940.63 36444.15 35964.75 35516.30 36178.97 36044.77 32840.98 36272.69 357
PS-CasMVS69.86 27169.13 26572.07 32280.35 29450.57 33387.02 26889.75 21967.27 25459.19 30282.28 25446.58 25582.24 35250.69 29759.02 32283.39 301
CMPMVSbinary48.56 2166.77 29464.41 29573.84 30770.65 35350.31 33477.79 33485.73 30145.54 35644.76 35682.14 25735.40 31690.14 29963.18 24774.54 20881.07 325
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UnsupCasMVSNet_eth65.79 29963.10 30173.88 30670.71 35250.29 33581.09 31189.88 21672.58 16149.25 34474.77 33032.57 32687.43 32455.96 28141.04 36083.90 293
SixPastTwentyTwo64.92 30361.78 31074.34 30478.74 31649.76 33683.42 29179.51 33762.86 28850.27 33977.35 31030.92 33590.49 29145.89 32247.06 35082.78 307
PEN-MVS69.46 27368.56 26772.17 32179.27 30649.71 33786.90 27089.24 23667.24 25759.08 30382.51 25347.23 25183.54 34248.42 30857.12 32683.25 302
EPNet_dtu78.80 16479.26 14277.43 27688.06 18849.71 33791.96 14691.95 13277.67 8376.56 13391.28 14158.51 13690.20 29856.37 27980.95 15992.39 154
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
K. test v363.09 31259.61 31673.53 30976.26 33549.38 33983.27 29277.15 33964.35 27447.77 34872.32 33728.73 33987.79 31849.93 30236.69 36683.41 300
DTE-MVSNet68.46 28267.33 27571.87 32477.94 32649.00 34086.16 27588.58 26566.36 26158.19 30782.21 25646.36 25683.87 34044.97 32755.17 33382.73 309
Anonymous2024052162.09 31459.08 31771.10 32567.19 36048.72 34183.91 28585.23 30450.38 34547.84 34771.22 34420.74 35585.51 33246.47 31958.75 32479.06 342
LCM-MVSNet-Re72.93 24671.84 24476.18 29188.49 17248.02 34280.07 32270.17 35873.96 13452.25 33180.09 29249.98 22588.24 31367.35 20784.23 13992.28 159
test0.0.03 172.76 24972.71 23472.88 31480.25 29647.99 34391.22 18089.45 22971.51 20162.51 28787.66 19553.83 19085.06 33450.16 30067.84 25885.58 273
lessismore_v073.72 30872.93 34647.83 34461.72 37045.86 35273.76 33128.63 34189.81 30147.75 31531.37 37283.53 296
Anonymous2023120667.53 29065.78 28172.79 31574.95 33847.59 34588.23 25187.32 28461.75 30158.07 30977.29 31237.79 30387.29 32542.91 33263.71 28983.48 298
OurMVSNet-221017-064.68 30462.17 30872.21 32076.08 33747.35 34680.67 31481.02 33056.19 32951.60 33379.66 29727.05 34488.56 30953.60 29153.63 33880.71 329
test_fmvs174.07 23473.69 22175.22 29578.91 31447.34 34789.06 24174.69 34763.68 27979.41 9991.59 13524.36 34787.77 31985.22 6476.26 19990.55 191
test_vis1_n71.63 25870.73 25374.31 30569.63 35647.29 34886.91 26972.11 35363.21 28575.18 14690.17 16020.40 35685.76 33184.59 7274.42 21089.87 198
test_fmvs1_n72.69 25371.92 24374.99 29871.15 35047.08 34987.34 26575.67 34263.48 28178.08 11691.17 14220.16 35887.87 31684.65 7175.57 20390.01 197
ITE_SJBPF70.43 32774.44 34047.06 35077.32 33860.16 31054.04 32583.53 24123.30 35184.01 33843.07 33161.58 30980.21 336
EGC-MVSNET42.35 33538.09 33855.11 34974.57 33946.62 35171.63 34655.77 3720.04 3840.24 38562.70 35814.24 36774.91 36317.59 37446.06 35243.80 370
TDRefinement55.28 32851.58 33166.39 33959.53 36946.15 35276.23 33872.80 35144.60 35842.49 36176.28 32215.29 36482.39 35033.20 36143.75 35570.62 361
test_vis1_rt59.09 32457.31 32364.43 34068.44 35946.02 35383.05 29748.63 37851.96 34049.57 34263.86 35616.30 36180.20 35871.21 17162.79 29367.07 365
mvsany_test168.77 27868.56 26769.39 32973.57 34345.88 35480.93 31360.88 37159.65 31371.56 18990.26 15843.22 27575.05 36174.26 14762.70 29487.25 240
RPSCF64.24 30761.98 30971.01 32676.10 33645.00 35575.83 34075.94 34146.94 35458.96 30484.59 23031.40 33182.00 35347.76 31460.33 31986.04 263
new-patchmatchnet59.30 32356.48 32567.79 33465.86 36344.19 35682.47 30081.77 32759.94 31243.65 36066.20 35227.67 34281.68 35439.34 34641.40 35977.50 350
MIMVSNet160.16 32157.33 32268.67 33169.71 35544.13 35778.92 32784.21 31155.05 33344.63 35771.85 33923.91 34981.54 35532.63 36455.03 33480.35 332
CVMVSNet74.04 23574.27 21273.33 31085.33 23543.94 35889.53 22988.39 26754.33 33570.37 20190.13 16249.17 23584.05 33761.83 25779.36 16991.99 167
PM-MVS59.40 32256.59 32467.84 33363.63 36441.86 35976.76 33663.22 36859.01 31651.07 33772.27 33811.72 36983.25 34561.34 25850.28 34678.39 347
test_fmvs265.78 30064.84 28868.60 33266.54 36141.71 36083.27 29269.81 35954.38 33467.91 23584.54 23215.35 36381.22 35675.65 13466.16 26782.88 306
ambc69.61 32861.38 36841.35 36149.07 37485.86 30050.18 34166.40 35110.16 37188.14 31445.73 32344.20 35479.32 341
new_pmnet49.31 33146.44 33457.93 34562.84 36640.74 36268.47 35362.96 36936.48 36535.09 36657.81 36214.97 36572.18 36532.86 36346.44 35160.88 367
testgi64.48 30662.87 30469.31 33071.24 34840.62 36385.49 27679.92 33565.36 26854.18 32483.49 24323.74 35084.55 33541.60 33860.79 31482.77 308
test20.0363.83 30962.65 30567.38 33770.58 35439.94 36486.57 27384.17 31263.29 28351.86 33277.30 31137.09 31082.47 34938.87 34954.13 33779.73 337
KD-MVS_self_test60.87 31858.60 31867.68 33566.13 36239.93 36575.63 34184.70 30857.32 32349.57 34268.45 34829.55 33682.87 34748.09 30947.94 34980.25 335
LF4IMVS54.01 32952.12 33059.69 34462.41 36739.91 36668.59 35268.28 36342.96 36244.55 35875.18 32714.09 36868.39 36841.36 34051.68 34270.78 360
Gipumacopyleft34.91 34231.44 34545.30 35770.99 35139.64 36719.85 37972.56 35220.10 37516.16 37921.47 3805.08 38071.16 36613.07 37843.70 35625.08 377
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EU-MVSNet64.01 30863.01 30267.02 33874.40 34138.86 36883.27 29286.19 29645.11 35754.27 32381.15 27736.91 31280.01 35948.79 30757.02 32782.19 319
FPMVS45.64 33443.10 33753.23 35251.42 37536.46 36964.97 35971.91 35429.13 37027.53 37061.55 3619.83 37265.01 37416.00 37755.58 33258.22 368
test_fmvs356.82 32554.86 32862.69 34353.59 37235.47 37075.87 33965.64 36643.91 36055.10 32071.43 3436.91 37774.40 36468.64 19752.63 33978.20 348
APD_test140.50 33737.31 34050.09 35451.88 37335.27 37159.45 36752.59 37421.64 37326.12 37157.80 3634.56 38166.56 37022.64 37139.09 36348.43 369
ANet_high40.27 33935.20 34255.47 34834.74 38634.47 37263.84 36171.56 35648.42 35018.80 37541.08 3749.52 37364.45 37520.18 3728.66 38267.49 364
test_vis3_rt40.46 33837.79 33948.47 35644.49 38033.35 37366.56 35832.84 38632.39 36829.65 36839.13 3763.91 38468.65 36750.17 29940.99 36143.40 371
test_f46.58 33343.45 33655.96 34745.18 37932.05 37461.18 36349.49 37733.39 36742.05 36262.48 3597.00 37665.56 37247.08 31743.21 35770.27 362
mvsany_test348.86 33246.35 33556.41 34646.00 37831.67 37562.26 36247.25 37943.71 36145.54 35468.15 34910.84 37064.44 37657.95 27435.44 36973.13 356
testf132.77 34329.47 34642.67 35941.89 38230.81 37652.07 37043.45 38015.45 37618.52 37644.82 3702.12 38558.38 37716.05 37530.87 37338.83 372
APD_test232.77 34329.47 34642.67 35941.89 38230.81 37652.07 37043.45 38015.45 37618.52 37644.82 3702.12 38558.38 37716.05 37530.87 37338.83 372
LCM-MVSNet40.54 33635.79 34154.76 35136.92 38530.81 37651.41 37269.02 36022.07 37224.63 37245.37 3694.56 38165.81 37133.67 35934.50 37067.67 363
DSMNet-mixed56.78 32654.44 32963.79 34163.21 36529.44 37964.43 36064.10 36742.12 36351.32 33571.60 34031.76 32975.04 36236.23 35265.20 27586.87 245
PMVScopyleft26.43 2231.84 34528.16 34842.89 35825.87 38827.58 38050.92 37349.78 37621.37 37414.17 38040.81 3752.01 38766.62 3699.61 38038.88 36534.49 376
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive24.84 2324.35 34719.77 35338.09 36134.56 38726.92 38126.57 37738.87 38411.73 38011.37 38127.44 3771.37 38850.42 38011.41 37914.60 37836.93 374
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS237.93 34133.61 34450.92 35346.31 37724.76 38260.55 36650.05 37528.94 37120.93 37347.59 3664.41 38365.13 37325.14 36918.55 37762.87 366
DeepMVS_CXcopyleft34.71 36251.45 37424.73 38328.48 38831.46 36917.49 37852.75 3645.80 37942.60 38318.18 37319.42 37636.81 375
dmvs_testset65.55 30166.45 27762.86 34279.87 29922.35 38476.55 33771.74 35577.42 9155.85 31887.77 19451.39 21480.69 35731.51 36865.92 26985.55 275
test_method38.59 34035.16 34348.89 35554.33 37121.35 38545.32 37553.71 3737.41 38128.74 36951.62 3658.70 37452.87 37933.73 35832.89 37172.47 358
wuyk23d11.30 35110.95 35412.33 36648.05 37619.89 38625.89 3781.92 3903.58 3823.12 3841.37 3840.64 38915.77 3856.23 3837.77 3831.35 381
E-PMN24.61 34624.00 35026.45 36343.74 38118.44 38760.86 36439.66 38215.11 3789.53 38222.10 3796.52 37846.94 3818.31 38110.14 37913.98 379
EMVS23.76 34823.20 35225.46 36441.52 38416.90 38860.56 36538.79 38514.62 3798.99 38320.24 3827.35 37545.82 3827.25 3829.46 38013.64 380
tmp_tt22.26 34923.75 35117.80 3655.23 38912.06 38935.26 37639.48 3832.82 38318.94 37444.20 37222.23 35324.64 38436.30 3519.31 38116.69 378
N_pmnet50.55 33049.11 33354.88 35077.17 3314.02 39084.36 2822.00 38948.59 34945.86 35268.82 34732.22 32782.80 34831.58 36751.38 34377.81 349
test1236.92 3549.21 3570.08 3670.03 3910.05 39181.65 3060.01 3920.02 3860.14 3870.85 3860.03 3900.02 3860.12 3850.00 3850.16 382
testmvs7.23 3539.62 3560.06 3680.04 3900.02 39284.98 2800.02 3910.03 3850.18 3861.21 3850.01 3910.02 3860.14 3840.01 3840.13 383
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3850.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3850.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3850.00 384
cdsmvs_eth3d_5k19.86 35026.47 3490.00 3690.00 3920.00 3930.00 38093.45 760.00 3870.00 38895.27 4649.56 2290.00 3880.00 3860.00 3850.00 384
pcd_1.5k_mvsjas4.46 3555.95 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38753.55 1940.00 3880.00 3860.00 3850.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3850.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3850.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3850.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3850.00 384
ab-mvs-re7.91 35210.55 3550.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38894.95 540.00 3920.00 3880.00 3860.00 3850.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3850.00 384
PC_three_145280.91 3894.07 296.83 1483.57 499.12 595.70 497.42 497.55 4
eth-test20.00 392
eth-test0.00 392
test_241102_TWO94.41 4171.65 19292.07 697.21 474.58 1799.11 692.34 1195.36 1396.59 15
9.1487.63 2493.86 4794.41 5094.18 5072.76 15886.21 3796.51 1866.64 5297.88 4390.08 2894.04 36
test_0728_THIRD72.48 16390.55 1696.93 1076.24 1199.08 1191.53 1994.99 1696.43 25
GSMVS94.68 85
sam_mvs157.85 14294.68 85
sam_mvs54.91 179
MTGPAbinary92.23 119
test_post178.95 32620.70 38153.05 19991.50 28560.43 263
test_post23.01 37856.49 16292.67 249
patchmatchnet-post67.62 35057.62 14590.25 293
MTMP93.77 7632.52 387
test9_res89.41 2994.96 1795.29 62
agg_prior286.41 5694.75 2895.33 58
test_prior295.10 3775.40 11385.25 5195.61 3667.94 4387.47 4694.77 24
旧先验292.00 14459.37 31587.54 3093.47 22675.39 136
新几何291.41 165
无先验92.71 11292.61 11062.03 29697.01 8666.63 21493.97 113
原ACMM292.01 141
testdata296.09 11961.26 259
segment_acmp65.94 58
testdata189.21 23677.55 87
plane_prior591.31 16295.55 14876.74 12778.53 17888.39 222
plane_prior489.14 173
plane_prior293.13 9778.81 68
plane_prior187.15 207
n20.00 393
nn0.00 393
door-mid66.01 365
test1193.01 93
door66.57 364
HQP-NCC87.54 19994.06 5879.80 4674.18 154
ACMP_Plane87.54 19994.06 5879.80 4674.18 154
BP-MVS77.63 124
HQP4-MVS74.18 15495.61 14388.63 215
HQP3-MVS91.70 14878.90 173
HQP2-MVS51.63 212
ACMMP++_ref71.63 231
ACMMP++69.72 241
Test By Simon54.21 188