This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
PS-MVSNAJ88.14 1987.61 3089.71 692.06 9776.72 195.75 2093.26 9083.86 1589.55 3196.06 3653.55 21997.89 4391.10 3193.31 5394.54 106
DPM-MVS90.70 390.52 891.24 189.68 15376.68 297.29 195.35 1582.87 2191.58 1297.22 379.93 599.10 983.12 9897.64 297.94 1
xiu_mvs_v2_base87.92 2487.38 3489.55 1191.41 12176.43 395.74 2193.12 9883.53 1889.55 3195.95 3853.45 22397.68 5091.07 3292.62 6094.54 106
MG-MVS87.11 3586.27 4589.62 797.79 176.27 494.96 4494.49 4478.74 8883.87 7692.94 11964.34 8996.94 10675.19 15594.09 3895.66 51
CHOSEN 1792x268884.98 7383.45 8989.57 1089.94 14875.14 592.07 15692.32 12681.87 3175.68 16088.27 20460.18 14098.60 2780.46 11890.27 9494.96 83
MVS84.66 7782.86 10690.06 290.93 12974.56 687.91 27795.54 1368.55 26672.35 20194.71 7559.78 14698.90 1981.29 11394.69 3296.74 16
mamv488.66 1888.41 2089.39 1294.02 4674.04 794.94 4592.69 11480.90 4790.32 2290.30 17468.33 4997.28 8189.47 3994.74 3096.84 14
MVSMamba_pp88.94 1688.82 1789.29 1394.04 4574.01 894.81 4892.74 11185.13 1090.37 2190.13 18168.40 4897.38 7089.42 4094.34 3696.47 28
DELS-MVS90.05 790.09 1189.94 493.14 7073.88 997.01 494.40 5088.32 385.71 5694.91 7074.11 1998.91 1787.26 6295.94 897.03 11
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MCST-MVS91.08 191.46 389.94 497.66 273.37 1097.13 295.58 1189.33 185.77 5596.26 3072.84 2699.38 192.64 1995.93 997.08 10
LFMVS84.34 8282.73 10889.18 1494.76 3373.25 1194.99 4391.89 14671.90 20282.16 8793.49 11047.98 27097.05 9182.55 10284.82 14197.25 7
MSC_two_6792asdad89.60 897.31 473.22 1295.05 2699.07 1392.01 2494.77 2596.51 24
No_MVS89.60 897.31 473.22 1295.05 2699.07 1392.01 2494.77 2596.51 24
OPU-MVS89.97 397.52 373.15 1496.89 597.00 983.82 299.15 295.72 597.63 397.62 2
PAPM85.89 5785.46 6287.18 4888.20 19672.42 1592.41 14392.77 10982.11 2980.34 10893.07 11668.27 5095.02 18378.39 13693.59 4994.09 123
sasdasda86.85 3886.25 4788.66 2091.80 10871.92 1693.54 9791.71 15680.26 5687.55 3995.25 5863.59 10296.93 10888.18 5184.34 14597.11 8
canonicalmvs86.85 3886.25 4788.66 2091.80 10871.92 1693.54 9791.71 15680.26 5687.55 3995.25 5863.59 10296.93 10888.18 5184.34 14597.11 8
OpenMVScopyleft70.45 1178.54 19175.92 21086.41 7585.93 24771.68 1892.74 12592.51 12366.49 28264.56 28791.96 14243.88 29998.10 3754.61 30590.65 9089.44 229
testing9185.93 5585.31 6487.78 3293.59 5771.47 1993.50 10095.08 2580.26 5680.53 10591.93 14470.43 3796.51 12480.32 11982.13 16895.37 61
QAPM79.95 16477.39 19087.64 3489.63 15471.41 2093.30 10793.70 7365.34 29167.39 26691.75 14847.83 27298.96 1657.71 29589.81 9692.54 171
bld_raw_dy_0_6476.92 21674.65 22583.71 16784.96 26471.37 2173.29 36989.16 26050.14 37162.32 31084.19 25867.48 5895.61 16172.10 18388.25 10884.14 309
testing1186.71 4386.44 4487.55 4093.54 5971.35 2293.65 9195.58 1181.36 4180.69 10292.21 13972.30 2996.46 12785.18 8083.43 15494.82 93
3Dnovator73.91 682.69 11880.82 13388.31 2689.57 15571.26 2392.60 13594.39 5178.84 8567.89 25892.48 13148.42 26598.52 2868.80 21494.40 3595.15 76
testing9986.01 5385.47 6187.63 3893.62 5571.25 2493.47 10395.23 1880.42 5480.60 10491.95 14371.73 3496.50 12580.02 12182.22 16695.13 77
MVSFormer83.75 9982.88 10586.37 7689.24 16871.18 2589.07 25990.69 19665.80 28687.13 4294.34 8964.99 7992.67 27072.83 17191.80 7395.27 71
lupinMVS87.74 2687.77 2887.63 3889.24 16871.18 2596.57 1192.90 10682.70 2387.13 4295.27 5664.99 7995.80 14889.34 4391.80 7395.93 44
alignmvs87.28 3386.97 3888.24 2791.30 12371.14 2795.61 2593.56 7879.30 7487.07 4495.25 5868.43 4796.93 10887.87 5484.33 14796.65 17
MM90.87 291.52 288.92 1592.12 9671.10 2897.02 396.04 688.70 291.57 1396.19 3370.12 3998.91 1796.83 195.06 1696.76 15
MVS_030490.01 890.50 988.53 2390.14 14470.94 2996.47 1395.72 1087.33 489.60 3096.26 3068.44 4698.74 2495.82 494.72 3195.90 46
ET-MVSNet_ETH3D84.01 9283.15 10186.58 6890.78 13470.89 3094.74 5094.62 4081.44 3858.19 33093.64 10673.64 2392.35 28382.66 10078.66 20096.50 27
CSCG86.87 3786.26 4688.72 1795.05 3170.79 3193.83 8495.33 1668.48 26877.63 14194.35 8873.04 2498.45 3084.92 8493.71 4796.92 13
CNVR-MVS90.32 690.89 788.61 2296.76 870.65 3296.47 1394.83 3084.83 1289.07 3396.80 1970.86 3599.06 1592.64 1995.71 1096.12 39
API-MVS82.28 12280.53 14087.54 4196.13 2270.59 3393.63 9391.04 19165.72 28875.45 16592.83 12456.11 19098.89 2064.10 25889.75 9993.15 153
jason86.40 4586.17 4987.11 5086.16 24170.54 3495.71 2492.19 13482.00 3084.58 6894.34 8961.86 12495.53 16987.76 5590.89 8795.27 71
jason: jason.
test_0728_SECOND88.70 1896.45 1270.43 3596.64 994.37 5299.15 291.91 2794.90 2196.51 24
PatchmatchNetpermissive77.46 20774.63 22685.96 8689.55 15770.35 3679.97 34689.55 24472.23 19370.94 21476.91 34057.03 17392.79 26554.27 30781.17 17794.74 95
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
IB-MVS77.80 482.18 12380.46 14287.35 4589.14 17070.28 3795.59 2695.17 2178.85 8470.19 22585.82 24270.66 3697.67 5172.19 18266.52 28894.09 123
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
SCA75.82 23772.76 25385.01 12086.63 23070.08 3881.06 33489.19 25871.60 21970.01 22777.09 33845.53 29090.25 31460.43 28273.27 24094.68 97
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3996.64 994.52 4271.92 20090.55 1996.93 1173.77 2199.08 1191.91 2794.90 2196.29 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072696.40 1569.99 3996.76 794.33 5471.92 20091.89 1097.11 673.77 21
VNet86.20 4985.65 6087.84 3093.92 4869.99 3995.73 2395.94 778.43 9086.00 5393.07 11658.22 16297.00 9685.22 7884.33 14796.52 23
MS-PatchMatch77.90 20376.50 20182.12 20985.99 24369.95 4291.75 17692.70 11273.97 15262.58 30884.44 25641.11 30995.78 14963.76 26192.17 6780.62 352
testing22285.18 6984.69 7486.63 6592.91 7669.91 4392.61 13495.80 980.31 5580.38 10792.27 13668.73 4595.19 18075.94 15083.27 15694.81 94
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4393.96 7294.37 5272.48 18492.07 896.85 1683.82 299.15 291.53 2997.42 497.55 4
IU-MVS96.46 1169.91 4395.18 2080.75 4995.28 192.34 2195.36 1396.47 28
MVS_Test84.16 8983.20 9887.05 5391.56 11569.82 4689.99 24192.05 13777.77 9982.84 8186.57 23263.93 9496.09 13774.91 16089.18 10295.25 74
VDDNet80.50 15178.26 17387.21 4786.19 23869.79 4794.48 5391.31 17360.42 32979.34 12090.91 16238.48 32096.56 12182.16 10381.05 17895.27 71
MVS_111021_HR86.19 5085.80 5787.37 4493.17 6969.79 4793.99 7193.76 6979.08 8178.88 12893.99 9962.25 12198.15 3685.93 7591.15 8594.15 120
test_one_060196.32 1869.74 4994.18 5771.42 22590.67 1896.85 1674.45 18
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1293.78 6686.89 689.68 2995.78 4065.94 7099.10 992.99 1693.91 4296.58 21
EPMVS78.49 19275.98 20986.02 8491.21 12569.68 5180.23 34191.20 17875.25 13472.48 19778.11 32954.65 20593.69 24157.66 29683.04 15794.69 96
GG-mvs-BLEND86.53 7191.91 10569.67 5275.02 36794.75 3378.67 13290.85 16377.91 794.56 20372.25 17993.74 4595.36 63
Effi-MVS+83.82 9682.76 10786.99 5589.56 15669.40 5391.35 19386.12 32372.59 18183.22 7992.81 12559.60 14896.01 14581.76 10687.80 11495.56 55
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5496.89 594.44 4671.65 21492.11 697.21 476.79 999.11 692.34 2195.36 1397.62 2
test_241102_ONE96.45 1269.38 5494.44 4671.65 21492.11 697.05 776.79 999.11 6
WTY-MVS86.32 4785.81 5687.85 2992.82 7969.37 5695.20 3495.25 1782.71 2281.91 8894.73 7467.93 5597.63 5679.55 12482.25 16596.54 22
casdiffmvs_mvgpermissive85.66 6285.18 6687.09 5188.22 19569.35 5793.74 8891.89 14681.47 3580.10 11091.45 15364.80 8496.35 12887.23 6387.69 11595.58 54
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_yl84.28 8383.16 9987.64 3494.52 3769.24 5895.78 1895.09 2369.19 25881.09 9692.88 12257.00 17597.44 6681.11 11481.76 17296.23 37
DCV-MVSNet84.28 8383.16 9987.64 3494.52 3769.24 5895.78 1895.09 2369.19 25881.09 9692.88 12257.00 17597.44 6681.11 11481.76 17296.23 37
cascas78.18 19675.77 21285.41 10587.14 22169.11 6092.96 11891.15 18266.71 28070.47 21986.07 23937.49 33196.48 12670.15 19979.80 18890.65 209
casdiffmvspermissive85.37 6684.87 7286.84 5788.25 19369.07 6193.04 11591.76 15381.27 4280.84 10192.07 14164.23 9096.06 14184.98 8387.43 11995.39 59
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NCCC89.07 1589.46 1587.91 2896.60 1069.05 6296.38 1594.64 3984.42 1386.74 4796.20 3266.56 6698.76 2389.03 4894.56 3395.92 45
MVSTER82.47 11982.05 11683.74 16392.68 8469.01 6391.90 16693.21 9179.83 6272.14 20285.71 24474.72 1694.72 19475.72 15172.49 24887.50 250
FMVSNet377.73 20476.04 20882.80 18691.20 12668.99 6491.87 16791.99 14073.35 16667.04 26983.19 26956.62 18392.14 28659.80 28769.34 26587.28 258
MSLP-MVS++86.27 4885.91 5587.35 4592.01 10068.97 6595.04 4192.70 11279.04 8381.50 9196.50 2558.98 15696.78 11483.49 9693.93 4196.29 34
test1287.09 5194.60 3668.86 6692.91 10582.67 8565.44 7597.55 6293.69 4894.84 90
nrg03080.93 14479.86 14984.13 15683.69 28368.83 6793.23 10991.20 17875.55 12975.06 16888.22 20863.04 11394.74 19381.88 10566.88 28588.82 234
SD-MVS87.49 2987.49 3287.50 4293.60 5668.82 6893.90 7692.63 11976.86 11287.90 3795.76 4166.17 6797.63 5689.06 4791.48 7996.05 41
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
baseline85.01 7284.44 7686.71 6288.33 19068.73 6990.24 23291.82 15281.05 4581.18 9592.50 12863.69 9896.08 14084.45 8886.71 12995.32 66
SMA-MVScopyleft88.14 1988.29 2387.67 3393.21 6768.72 7093.85 7994.03 6274.18 14791.74 1196.67 2165.61 7498.42 3389.24 4596.08 795.88 47
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
xiu_mvs_v1_base_debu82.16 12481.12 12785.26 11386.42 23368.72 7092.59 13790.44 20673.12 17084.20 7194.36 8438.04 32595.73 15384.12 9186.81 12491.33 197
xiu_mvs_v1_base82.16 12481.12 12785.26 11386.42 23368.72 7092.59 13790.44 20673.12 17084.20 7194.36 8438.04 32595.73 15384.12 9186.81 12491.33 197
xiu_mvs_v1_base_debi82.16 12481.12 12785.26 11386.42 23368.72 7092.59 13790.44 20673.12 17084.20 7194.36 8438.04 32595.73 15384.12 9186.81 12491.33 197
iter_conf0583.65 10383.44 9084.28 15286.17 24068.61 7495.08 3989.82 23380.90 4778.08 13690.49 16969.08 4395.22 17984.29 8977.07 21689.02 230
MDTV_nov1_ep1372.61 25789.06 17168.48 7580.33 33990.11 22271.84 20771.81 20675.92 34853.01 22593.92 23548.04 33073.38 239
CostFormer82.33 12181.15 12685.86 9089.01 17368.46 7682.39 32393.01 10175.59 12880.25 10981.57 28972.03 3294.96 18679.06 12977.48 21194.16 119
mvs_anonymous81.36 13679.99 14785.46 10390.39 14068.40 7786.88 29390.61 20174.41 14270.31 22484.67 25263.79 9692.32 28473.13 16885.70 13695.67 50
gg-mvs-nofinetune77.18 21174.31 23385.80 9391.42 11968.36 7871.78 37194.72 3449.61 37277.12 14845.92 39577.41 893.98 23267.62 22493.16 5595.05 80
DeepC-MVS_fast79.48 287.95 2388.00 2687.79 3195.86 2768.32 7995.74 2194.11 6083.82 1683.49 7796.19 3364.53 8898.44 3183.42 9794.88 2496.61 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PAPR85.15 7084.47 7587.18 4896.02 2568.29 8091.85 16993.00 10376.59 11979.03 12495.00 6561.59 12797.61 5878.16 13789.00 10395.63 52
tpmrst80.57 14979.14 16484.84 12490.10 14568.28 8181.70 32789.72 24177.63 10475.96 15779.54 32164.94 8192.71 26775.43 15377.28 21493.55 142
thisisatest051583.41 10482.49 11286.16 8189.46 15968.26 8293.54 9794.70 3674.31 14575.75 15890.92 16172.62 2796.52 12369.64 20181.50 17593.71 138
tpm279.80 16677.95 17985.34 10988.28 19168.26 8281.56 32991.42 17070.11 24677.59 14380.50 30767.40 5994.26 21667.34 22677.35 21293.51 143
ETVMVS84.22 8783.71 8285.76 9592.58 8768.25 8492.45 14295.53 1479.54 6979.46 11891.64 15170.29 3894.18 21969.16 20982.76 16294.84 90
HPM-MVS++copyleft89.37 1489.95 1387.64 3495.10 3068.23 8595.24 3394.49 4482.43 2588.90 3496.35 2771.89 3398.63 2688.76 4996.40 696.06 40
dcpmvs_287.37 3287.55 3186.85 5695.04 3268.20 8690.36 22790.66 19979.37 7381.20 9493.67 10574.73 1596.55 12290.88 3492.00 7095.82 48
test_part296.29 1968.16 8790.78 16
HyFIR lowres test81.03 14379.56 15485.43 10487.81 20768.11 8890.18 23390.01 22870.65 24172.95 18886.06 24063.61 10194.50 20775.01 15879.75 18993.67 139
TSAR-MVS + MP.88.11 2188.64 1886.54 7091.73 11068.04 8990.36 22793.55 7982.89 2091.29 1592.89 12172.27 3096.03 14387.99 5394.77 2595.54 56
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
diffmvspermissive84.28 8383.83 8185.61 10087.40 21568.02 9090.88 21189.24 25580.54 5081.64 9092.52 12759.83 14594.52 20687.32 6185.11 13994.29 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CR-MVSNet73.79 26070.82 27582.70 18983.15 28967.96 9170.25 37484.00 34373.67 16269.97 22972.41 35857.82 16689.48 32552.99 31373.13 24190.64 210
RPMNet70.42 28765.68 30684.63 13883.15 28967.96 9170.25 37490.45 20346.83 38069.97 22965.10 37856.48 18795.30 17735.79 37573.13 24190.64 210
save fliter93.84 5067.89 9395.05 4092.66 11678.19 92
V4276.46 22574.55 22982.19 20679.14 33467.82 9490.26 23189.42 24973.75 15868.63 24781.89 28251.31 24094.09 22271.69 18764.84 30084.66 305
tpm cat175.30 24472.21 26284.58 14088.52 18167.77 9578.16 35588.02 30261.88 32168.45 25076.37 34460.65 13594.03 23053.77 31074.11 23491.93 189
HY-MVS76.49 584.28 8383.36 9787.02 5492.22 9367.74 9684.65 30394.50 4379.15 7882.23 8687.93 21366.88 6296.94 10680.53 11782.20 16796.39 32
VDD-MVS83.06 11081.81 12186.81 5990.86 13267.70 9795.40 2991.50 16775.46 13081.78 8992.34 13540.09 31297.13 8986.85 6882.04 16995.60 53
FMVSNet276.07 22874.01 23982.26 20388.85 17567.66 9891.33 19491.61 16270.84 23665.98 27682.25 27848.03 26792.00 29158.46 29268.73 27387.10 261
CLD-MVS82.73 11582.35 11583.86 16187.90 20367.65 9995.45 2892.18 13585.06 1172.58 19492.27 13652.46 23095.78 14984.18 9079.06 19588.16 245
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SDMVSNet80.26 15678.88 16684.40 14689.25 16567.63 10085.35 29993.02 10076.77 11670.84 21687.12 22647.95 27196.09 13785.04 8174.55 22889.48 227
DPE-MVScopyleft88.77 1789.21 1687.45 4396.26 2067.56 10194.17 6094.15 5968.77 26490.74 1797.27 276.09 1298.49 2990.58 3794.91 2096.30 33
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
131480.70 14878.95 16585.94 8787.77 20967.56 10187.91 27792.55 12272.17 19667.44 26393.09 11450.27 24897.04 9471.68 18887.64 11693.23 151
ACMMP_NAP86.05 5285.80 5786.80 6091.58 11467.53 10391.79 17193.49 8374.93 13884.61 6795.30 5359.42 15097.92 4186.13 7294.92 1994.94 85
PVSNet_BlendedMVS83.38 10583.43 9183.22 18093.76 5167.53 10394.06 6593.61 7679.13 7981.00 9985.14 24763.19 10997.29 7787.08 6573.91 23784.83 304
PVSNet_Blended86.73 4286.86 4186.31 7993.76 5167.53 10396.33 1693.61 7682.34 2781.00 9993.08 11563.19 10997.29 7787.08 6591.38 8194.13 121
SF-MVS87.03 3687.09 3686.84 5792.70 8367.45 10693.64 9293.76 6970.78 23986.25 4996.44 2666.98 6197.79 4788.68 5094.56 3395.28 70
test_prior86.42 7494.71 3567.35 10793.10 9996.84 11295.05 80
TEST994.18 4167.28 10894.16 6193.51 8071.75 21185.52 5895.33 5168.01 5397.27 82
train_agg87.21 3487.42 3386.60 6694.18 4167.28 10894.16 6193.51 8071.87 20585.52 5895.33 5168.19 5197.27 8289.09 4694.90 2195.25 74
test_894.19 4067.19 11094.15 6393.42 8671.87 20585.38 6195.35 5068.19 5196.95 105
CDPH-MVS85.71 6085.46 6286.46 7294.75 3467.19 11093.89 7792.83 10870.90 23583.09 8095.28 5463.62 10097.36 7280.63 11694.18 3794.84 90
test_prior467.18 11293.92 75
v2v48277.42 20875.65 21582.73 18880.38 31667.13 11391.85 16990.23 21775.09 13669.37 23383.39 26753.79 21794.44 20871.77 18565.00 29986.63 270
DP-MVS Recon82.73 11581.65 12285.98 8597.31 467.06 11495.15 3691.99 14069.08 26176.50 15593.89 10154.48 20998.20 3570.76 19485.66 13792.69 166
tpmvs72.88 26969.76 28582.22 20490.98 12867.05 11578.22 35488.30 29463.10 30964.35 29274.98 35155.09 20294.27 21443.25 35069.57 26485.34 299
gm-plane-assit88.42 18667.04 11678.62 8991.83 14697.37 7176.57 145
ETV-MVS86.01 5386.11 5085.70 9890.21 14367.02 11793.43 10591.92 14381.21 4384.13 7494.07 9860.93 13495.63 15989.28 4489.81 9694.46 112
agg_prior94.16 4366.97 11893.31 8984.49 6996.75 115
ADS-MVSNet68.54 30464.38 31981.03 23788.06 19866.90 11968.01 38184.02 34257.57 34364.48 28869.87 36838.68 31589.21 32740.87 36167.89 27986.97 262
CANet_DTU84.09 9083.52 8485.81 9290.30 14166.82 12091.87 16789.01 27085.27 986.09 5293.74 10347.71 27496.98 10077.90 13989.78 9893.65 140
v875.35 24373.26 24881.61 22080.67 31366.82 12089.54 24889.27 25471.65 21463.30 30080.30 31154.99 20394.06 22567.33 22762.33 32183.94 311
3Dnovator+73.60 782.10 12780.60 13986.60 6690.89 13166.80 12295.20 3493.44 8574.05 14967.42 26492.49 13049.46 25597.65 5570.80 19391.68 7595.33 64
PAPM_NR82.97 11281.84 12086.37 7694.10 4466.76 12387.66 28292.84 10769.96 24874.07 17993.57 10863.10 11297.50 6470.66 19690.58 9194.85 87
v1074.77 25072.54 25981.46 22380.33 31866.71 12489.15 25889.08 26770.94 23463.08 30379.86 31652.52 22994.04 22865.70 24662.17 32283.64 314
DeepC-MVS77.85 385.52 6585.24 6586.37 7688.80 17866.64 12592.15 15093.68 7481.07 4476.91 15193.64 10662.59 11798.44 3185.50 7692.84 5994.03 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
iter_conf05_1184.06 9183.37 9686.15 8293.04 7366.63 12687.84 27990.21 21971.10 23181.47 9289.48 18968.80 4496.96 10375.97 14992.39 6494.87 86
baseline181.84 13081.03 13184.28 15291.60 11366.62 12791.08 20591.66 16181.87 3174.86 17091.67 15069.98 4094.92 18971.76 18664.75 30291.29 202
v114476.73 22374.88 22282.27 20180.23 32066.60 12891.68 17890.21 21973.69 16069.06 23881.89 28252.73 22894.40 20969.21 20865.23 29685.80 288
PVSNet_Blended_VisFu83.97 9383.50 8685.39 10690.02 14666.59 12993.77 8691.73 15477.43 10877.08 15089.81 18663.77 9796.97 10279.67 12388.21 11092.60 169
v14419276.05 23174.03 23882.12 20979.50 32866.55 13091.39 18889.71 24272.30 19168.17 25181.33 29451.75 23594.03 23067.94 22064.19 30685.77 289
VPNet78.82 18377.53 18582.70 18984.52 27066.44 13193.93 7492.23 12980.46 5272.60 19388.38 20249.18 25993.13 25072.47 17863.97 31188.55 239
SteuartSystems-ACMMP86.82 4186.90 4086.58 6890.42 13866.38 13296.09 1793.87 6477.73 10084.01 7595.66 4363.39 10597.94 4087.40 6093.55 5095.42 57
Skip Steuart: Steuart Systems R&D Blog.
v192192075.63 24173.49 24682.06 21379.38 32966.35 13391.07 20789.48 24571.98 19967.99 25281.22 29749.16 26193.90 23666.56 23464.56 30585.92 287
MVP-Stereo77.12 21376.23 20579.79 26781.72 30366.34 13489.29 25390.88 19370.56 24262.01 31282.88 27149.34 25694.13 22065.55 24993.80 4378.88 366
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
GA-MVS78.33 19576.23 20584.65 13683.65 28466.30 13591.44 18290.14 22176.01 12470.32 22384.02 26042.50 30494.72 19470.98 19177.00 21792.94 161
APDe-MVScopyleft87.54 2887.84 2786.65 6496.07 2366.30 13594.84 4793.78 6669.35 25588.39 3596.34 2867.74 5697.66 5490.62 3693.44 5196.01 43
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
v119275.98 23373.92 24082.15 20779.73 32466.24 13791.22 20089.75 23672.67 18068.49 24981.42 29249.86 25294.27 21467.08 23065.02 29885.95 285
dp75.01 24872.09 26383.76 16289.28 16466.22 13879.96 34789.75 23671.16 22867.80 26077.19 33751.81 23492.54 27550.39 31871.44 25792.51 173
EPNet87.84 2588.38 2186.23 8093.30 6466.05 13995.26 3294.84 2987.09 588.06 3694.53 7966.79 6397.34 7483.89 9491.68 7595.29 68
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ppachtmachnet_test67.72 31063.70 32179.77 26878.92 33666.04 14088.68 26582.90 35360.11 33355.45 34275.96 34739.19 31490.55 31039.53 36552.55 36482.71 331
v124075.21 24672.98 25181.88 21579.20 33166.00 14190.75 21689.11 26571.63 21867.41 26581.22 29747.36 27593.87 23765.46 25064.72 30385.77 289
baseline283.68 10283.42 9384.48 14487.37 21666.00 14190.06 23695.93 879.71 6669.08 23790.39 17277.92 696.28 13078.91 13181.38 17691.16 204
PCF-MVS73.15 979.29 17377.63 18384.29 15186.06 24265.96 14387.03 28991.10 18469.86 25069.79 23290.64 16457.54 16996.59 11864.37 25782.29 16390.32 213
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MAR-MVS84.18 8883.43 9186.44 7396.25 2165.93 14494.28 5894.27 5674.41 14279.16 12395.61 4553.99 21498.88 2169.62 20393.26 5494.50 110
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Fast-Effi-MVS+81.14 13980.01 14684.51 14390.24 14265.86 14594.12 6489.15 26273.81 15775.37 16688.26 20557.26 17094.53 20566.97 23284.92 14093.15 153
AdaColmapbinary78.94 18077.00 19684.76 13096.34 1765.86 14592.66 13287.97 30562.18 31670.56 21892.37 13443.53 30097.35 7364.50 25682.86 15891.05 206
thres20079.66 16778.33 17183.66 17092.54 8865.82 14793.06 11396.31 374.90 13973.30 18588.66 19759.67 14795.61 16147.84 33378.67 19989.56 226
BH-RMVSNet79.46 17277.65 18284.89 12291.68 11265.66 14893.55 9688.09 30172.93 17473.37 18491.12 16046.20 28696.12 13556.28 30085.61 13892.91 162
ZNCC-MVS85.33 6785.08 6886.06 8393.09 7265.65 14993.89 7793.41 8773.75 15879.94 11294.68 7660.61 13798.03 3882.63 10193.72 4694.52 108
thisisatest053081.15 13880.07 14484.39 14788.26 19265.63 15091.40 18694.62 4071.27 22770.93 21589.18 19372.47 2896.04 14265.62 24776.89 21891.49 193
MP-MVS-pluss85.24 6885.13 6785.56 10191.42 11965.59 15191.54 18192.51 12374.56 14180.62 10395.64 4459.15 15497.00 9686.94 6793.80 4394.07 125
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FE-MVS75.97 23473.02 25084.82 12589.78 15065.56 15277.44 35791.07 18864.55 29472.66 19179.85 31746.05 28896.69 11654.97 30480.82 18192.21 184
PHI-MVS86.83 4086.85 4286.78 6193.47 6265.55 15395.39 3095.10 2271.77 21085.69 5796.52 2362.07 12298.77 2286.06 7495.60 1196.03 42
114514_t79.17 17577.67 18183.68 16895.32 2965.53 15492.85 12291.60 16363.49 30267.92 25590.63 16646.65 27995.72 15767.01 23183.54 15389.79 221
ZD-MVS96.63 965.50 15593.50 8270.74 24085.26 6395.19 6264.92 8297.29 7787.51 5893.01 56
ab-mvs80.18 15878.31 17285.80 9388.44 18565.49 15683.00 32092.67 11571.82 20877.36 14585.01 24854.50 20696.59 11876.35 14775.63 22595.32 66
TSAR-MVS + GP.87.96 2288.37 2286.70 6393.51 6165.32 15795.15 3693.84 6578.17 9385.93 5494.80 7375.80 1398.21 3489.38 4288.78 10496.59 19
GST-MVS84.63 7884.29 7885.66 9992.82 7965.27 15893.04 11593.13 9773.20 16778.89 12594.18 9559.41 15197.85 4581.45 10992.48 6393.86 135
pmmvs473.92 25871.81 26780.25 25179.17 33265.24 15987.43 28587.26 31167.64 27463.46 29883.91 26248.96 26391.53 30462.94 26765.49 29283.96 310
APD-MVScopyleft85.93 5585.99 5385.76 9595.98 2665.21 16093.59 9592.58 12166.54 28186.17 5195.88 3963.83 9597.00 9686.39 7192.94 5795.06 79
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
miper_enhance_ethall78.86 18277.97 17881.54 22288.00 20165.17 16191.41 18489.15 26275.19 13568.79 24483.98 26167.17 6092.82 26272.73 17465.30 29386.62 271
MTAPA83.91 9483.38 9585.50 10291.89 10665.16 16281.75 32692.23 12975.32 13380.53 10595.21 6156.06 19197.16 8784.86 8592.55 6294.18 117
GBi-Net75.65 23973.83 24181.10 23388.85 17565.11 16390.01 23890.32 20970.84 23667.04 26980.25 31248.03 26791.54 30159.80 28769.34 26586.64 267
test175.65 23973.83 24181.10 23388.85 17565.11 16390.01 23890.32 20970.84 23667.04 26980.25 31248.03 26791.54 30159.80 28769.34 26586.64 267
FMVSNet172.71 27269.91 28381.10 23383.60 28565.11 16390.01 23890.32 20963.92 29863.56 29780.25 31236.35 34091.54 30154.46 30666.75 28686.64 267
HFP-MVS84.73 7684.40 7785.72 9793.75 5365.01 16693.50 10093.19 9472.19 19479.22 12294.93 6859.04 15597.67 5181.55 10792.21 6594.49 111
PVSNet73.49 880.05 16178.63 16884.31 15090.92 13064.97 16792.47 14191.05 19079.18 7772.43 19990.51 16837.05 33794.06 22568.06 21886.00 13493.90 134
Anonymous2024052976.84 22074.15 23684.88 12391.02 12764.95 16893.84 8291.09 18553.57 35973.00 18687.42 22135.91 34197.32 7569.14 21072.41 25092.36 175
cl2277.94 20176.78 19881.42 22487.57 21064.93 16990.67 21888.86 27772.45 18667.63 26282.68 27464.07 9192.91 26071.79 18465.30 29386.44 272
our_test_368.29 30664.69 31479.11 28178.92 33664.85 17088.40 27085.06 33260.32 33152.68 35276.12 34640.81 31089.80 32444.25 34955.65 35482.67 334
tpm78.58 19077.03 19483.22 18085.94 24664.56 17183.21 31791.14 18378.31 9173.67 18279.68 31964.01 9292.09 28966.07 24271.26 25893.03 158
Anonymous20240521177.96 20075.33 21985.87 8993.73 5464.52 17294.85 4685.36 33062.52 31476.11 15690.18 17829.43 36597.29 7768.51 21677.24 21595.81 49
tfpn200view978.79 18577.43 18682.88 18592.21 9464.49 17392.05 15796.28 473.48 16471.75 20788.26 20560.07 14395.32 17445.16 34477.58 20888.83 232
thres40078.68 18777.43 18682.43 19592.21 9464.49 17392.05 15796.28 473.48 16471.75 20788.26 20560.07 14395.32 17445.16 34477.58 20887.48 251
VPA-MVSNet79.03 17778.00 17782.11 21285.95 24464.48 17593.22 11094.66 3875.05 13774.04 18084.95 24952.17 23293.52 24474.90 16167.04 28488.32 244
CDS-MVSNet81.43 13580.74 13483.52 17186.26 23764.45 17692.09 15490.65 20075.83 12673.95 18189.81 18663.97 9392.91 26071.27 18982.82 15993.20 152
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v14876.19 22674.47 23181.36 22580.05 32264.44 17791.75 17690.23 21773.68 16167.13 26880.84 30255.92 19393.86 23968.95 21261.73 32985.76 291
XXY-MVS77.94 20176.44 20282.43 19582.60 29564.44 17792.01 15991.83 15173.59 16370.00 22885.82 24254.43 21094.76 19169.63 20268.02 27888.10 246
MIMVSNet71.64 27968.44 29281.23 22881.97 30264.44 17773.05 37088.80 27969.67 25264.59 28674.79 35232.79 35187.82 33753.99 30876.35 22191.42 195
miper_ehance_all_eth77.60 20576.44 20281.09 23685.70 25164.41 18090.65 21988.64 28672.31 19067.37 26782.52 27564.77 8592.64 27370.67 19565.30 29386.24 276
Patchmtry67.53 31363.93 32078.34 28582.12 30064.38 18168.72 37884.00 34348.23 37759.24 32372.41 35857.82 16689.27 32646.10 34156.68 35381.36 343
fmvsm_l_conf0.5_n87.49 2988.19 2485.39 10686.95 22564.37 18294.30 5788.45 29080.51 5192.70 496.86 1569.98 4097.15 8895.83 388.08 11294.65 100
ACMMPR84.37 8084.06 7985.28 11193.56 5864.37 18293.50 10093.15 9672.19 19478.85 13094.86 7156.69 18297.45 6581.55 10792.20 6694.02 128
BH-w/o80.49 15279.30 16184.05 15890.83 13364.36 18493.60 9489.42 24974.35 14469.09 23690.15 18055.23 19995.61 16164.61 25586.43 13392.17 185
region2R84.36 8184.03 8085.36 10893.54 5964.31 18593.43 10592.95 10472.16 19778.86 12994.84 7256.97 17797.53 6381.38 11192.11 6894.24 115
新几何184.73 13192.32 9064.28 18691.46 16959.56 33679.77 11492.90 12056.95 17896.57 12063.40 26292.91 5893.34 147
原ACMM184.42 14593.21 6764.27 18793.40 8865.39 28979.51 11792.50 12858.11 16496.69 11665.27 25293.96 4092.32 177
MP-MVScopyleft85.02 7184.97 7085.17 11692.60 8664.27 18793.24 10892.27 12873.13 16979.63 11694.43 8261.90 12397.17 8585.00 8292.56 6194.06 126
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
fmvsm_l_conf0.5_n_a87.44 3188.15 2585.30 11087.10 22264.19 18994.41 5588.14 29980.24 5992.54 596.97 1069.52 4297.17 8595.89 288.51 10794.56 103
c3_l76.83 22175.47 21680.93 24085.02 26264.18 19090.39 22688.11 30071.66 21366.65 27581.64 28763.58 10492.56 27469.31 20762.86 31586.04 282
PGM-MVS83.25 10782.70 10984.92 12192.81 8164.07 19190.44 22392.20 13371.28 22677.23 14794.43 8255.17 20197.31 7679.33 12691.38 8193.37 146
MSP-MVS90.38 591.87 185.88 8892.83 7764.03 19293.06 11394.33 5482.19 2893.65 396.15 3585.89 197.19 8491.02 3397.75 196.43 30
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
FA-MVS(test-final)79.12 17677.23 19284.81 12890.54 13663.98 19381.35 33291.71 15671.09 23274.85 17182.94 27052.85 22697.05 9167.97 21981.73 17493.41 145
CP-MVS83.71 10083.40 9484.65 13693.14 7063.84 19494.59 5292.28 12771.03 23377.41 14494.92 6955.21 20096.19 13281.32 11290.70 8993.91 132
OPM-MVS79.00 17878.09 17581.73 21783.52 28663.83 19591.64 18090.30 21376.36 12271.97 20489.93 18546.30 28595.17 18175.10 15677.70 20686.19 277
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XVS83.87 9583.47 8885.05 11893.22 6563.78 19692.92 11992.66 11673.99 15078.18 13494.31 9155.25 19797.41 6879.16 12791.58 7793.95 130
X-MVStestdata76.86 21774.13 23785.05 11893.22 6563.78 19692.92 11992.66 11673.99 15078.18 13410.19 41055.25 19797.41 6879.16 12791.58 7793.95 130
TESTMET0.1,182.41 12081.98 11983.72 16688.08 19763.74 19892.70 12893.77 6879.30 7477.61 14287.57 21958.19 16394.08 22373.91 16686.68 13093.33 149
BH-untuned78.68 18777.08 19383.48 17589.84 14963.74 19892.70 12888.59 28771.57 22066.83 27388.65 19851.75 23595.39 17259.03 29084.77 14291.32 200
test_fmvsmvis_n_192083.80 9783.48 8784.77 12982.51 29663.72 20091.37 19183.99 34581.42 3977.68 14095.74 4258.37 16097.58 5993.38 1486.87 12393.00 160
MSDG69.54 29565.73 30580.96 23885.11 26163.71 20184.19 30583.28 35156.95 34854.50 34584.03 25931.50 35796.03 14342.87 35469.13 27083.14 325
patch_mono-289.71 1190.99 685.85 9196.04 2463.70 20295.04 4195.19 1986.74 791.53 1495.15 6373.86 2097.58 5993.38 1492.00 7096.28 36
thres600view778.00 19876.66 20082.03 21491.93 10363.69 20391.30 19696.33 172.43 18770.46 22087.89 21460.31 13894.92 18942.64 35676.64 21987.48 251
PatchT69.11 29865.37 31080.32 24782.07 30163.68 20467.96 38387.62 30750.86 36869.37 23365.18 37757.09 17288.53 33141.59 35966.60 28788.74 235
HQP5-MVS63.66 205
HQP-MVS81.14 13980.64 13782.64 19187.54 21163.66 20594.06 6591.70 15979.80 6374.18 17590.30 17451.63 23795.61 16177.63 14078.90 19688.63 236
fmvsm_s_conf0.5_n_a85.75 5986.09 5184.72 13285.73 25063.58 20793.79 8589.32 25281.42 3990.21 2496.91 1462.41 11997.67 5194.48 1080.56 18392.90 163
EI-MVSNet-Vis-set83.77 9883.67 8384.06 15792.79 8263.56 20891.76 17494.81 3179.65 6777.87 13894.09 9663.35 10797.90 4279.35 12579.36 19290.74 208
test_fmvsm_n_192087.69 2788.50 1985.27 11287.05 22463.55 20993.69 8991.08 18784.18 1490.17 2597.04 867.58 5797.99 3995.72 590.03 9594.26 114
fmvsm_s_conf0.5_n86.39 4686.91 3984.82 12587.36 21763.54 21094.74 5090.02 22782.52 2490.14 2696.92 1362.93 11497.84 4695.28 882.26 16493.07 157
fmvsm_s_conf0.1_n_a84.76 7584.84 7384.53 14180.23 32063.50 21192.79 12388.73 28180.46 5289.84 2896.65 2260.96 13397.57 6193.80 1380.14 18592.53 172
fmvsm_s_conf0.1_n85.61 6385.93 5484.68 13582.95 29463.48 21294.03 7089.46 24681.69 3389.86 2796.74 2061.85 12597.75 4994.74 982.01 17092.81 165
TAMVS80.37 15479.45 15783.13 18285.14 25963.37 21391.23 19990.76 19574.81 14072.65 19288.49 19960.63 13692.95 25569.41 20581.95 17193.08 156
Anonymous2023121173.08 26370.39 27981.13 23190.62 13563.33 21491.40 18690.06 22551.84 36464.46 29080.67 30536.49 33994.07 22463.83 26064.17 30785.98 284
ACMH63.93 1768.62 30264.81 31280.03 25885.22 25763.25 21587.72 28184.66 33660.83 32751.57 35779.43 32227.29 37094.96 18641.76 35764.84 30081.88 340
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
WB-MVSnew77.14 21276.18 20780.01 25986.18 23963.24 21691.26 19794.11 6071.72 21273.52 18387.29 22445.14 29493.00 25356.98 29779.42 19083.80 313
thres100view90078.37 19377.01 19582.46 19491.89 10663.21 21791.19 20396.33 172.28 19270.45 22187.89 21460.31 13895.32 17445.16 34477.58 20888.83 232
EI-MVSNet-UG-set83.14 10982.96 10283.67 16992.28 9163.19 21891.38 19094.68 3779.22 7676.60 15393.75 10262.64 11697.76 4878.07 13878.01 20390.05 217
test250683.29 10682.92 10484.37 14888.39 18863.18 21992.01 15991.35 17277.66 10278.49 13391.42 15464.58 8795.09 18273.19 16789.23 10094.85 87
NP-MVS87.41 21463.04 22090.30 174
eth_miper_zixun_eth75.96 23574.40 23280.66 24284.66 26763.02 22189.28 25488.27 29671.88 20465.73 27781.65 28659.45 14992.81 26368.13 21760.53 33886.14 278
D2MVS73.80 25972.02 26479.15 28079.15 33362.97 22288.58 26790.07 22372.94 17359.22 32478.30 32642.31 30692.70 26965.59 24872.00 25181.79 341
IterMVS72.65 27570.83 27378.09 29082.17 29962.96 22387.64 28386.28 31971.56 22160.44 31778.85 32445.42 29286.66 34763.30 26561.83 32684.65 306
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EG-PatchMatch MVS68.55 30365.41 30977.96 29178.69 34162.93 22489.86 24389.17 25960.55 32850.27 36277.73 33222.60 37994.06 22547.18 33672.65 24776.88 374
DP-MVS69.90 29266.48 29980.14 25495.36 2862.93 22489.56 24676.11 36650.27 37057.69 33685.23 24639.68 31395.73 15333.35 38071.05 25981.78 342
mPP-MVS82.96 11382.44 11384.52 14292.83 7762.92 22692.76 12491.85 15071.52 22275.61 16394.24 9353.48 22296.99 9978.97 13090.73 8893.64 141
ACMMPcopyleft81.49 13480.67 13683.93 16091.71 11162.90 22792.13 15192.22 13271.79 20971.68 20993.49 11050.32 24696.96 10378.47 13584.22 15191.93 189
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HPM-MVScopyleft83.25 10782.95 10384.17 15592.25 9262.88 22890.91 20891.86 14870.30 24477.12 14893.96 10056.75 18096.28 13082.04 10491.34 8393.34 147
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_LR82.02 12881.52 12383.51 17388.42 18662.88 22889.77 24488.93 27476.78 11575.55 16493.10 11350.31 24795.38 17383.82 9587.02 12292.26 183
IterMVS-LS76.49 22475.18 22180.43 24684.49 27162.74 23090.64 22088.80 27972.40 18865.16 28281.72 28560.98 13292.27 28567.74 22264.65 30486.29 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet78.97 17978.22 17481.25 22785.33 25462.73 23189.53 24993.21 9172.39 18972.14 20290.13 18160.99 13194.72 19467.73 22372.49 24886.29 274
CHOSEN 280x42077.35 20976.95 19778.55 28487.07 22362.68 23269.71 37782.95 35268.80 26371.48 21187.27 22566.03 6984.00 36276.47 14682.81 16088.95 231
test_fmvsmconf_n86.58 4487.17 3584.82 12585.28 25662.55 23394.26 5989.78 23483.81 1787.78 3896.33 2965.33 7696.98 10094.40 1187.55 11794.95 84
MGCFI-Net85.59 6485.73 5985.17 11691.41 12162.44 23492.87 12191.31 17379.65 6786.99 4695.14 6462.90 11596.12 13587.13 6484.13 15296.96 12
HQP_MVS80.34 15579.75 15182.12 20986.94 22662.42 23593.13 11191.31 17378.81 8672.53 19589.14 19550.66 24495.55 16776.74 14378.53 20188.39 242
plane_prior62.42 23593.85 7979.38 7278.80 198
EIA-MVS84.84 7484.88 7184.69 13491.30 12362.36 23793.85 7992.04 13879.45 7079.33 12194.28 9262.42 11896.35 12880.05 12091.25 8495.38 60
test_fmvsmconf0.1_n85.71 6086.08 5284.62 13980.83 31062.33 23893.84 8288.81 27883.50 1987.00 4596.01 3763.36 10696.93 10894.04 1287.29 12094.61 102
plane_prior687.23 21862.32 23950.66 244
PVSNet_068.08 1571.81 27868.32 29482.27 20184.68 26662.31 24088.68 26590.31 21275.84 12557.93 33580.65 30637.85 32894.19 21869.94 20029.05 39990.31 214
WR-MVS76.76 22275.74 21379.82 26684.60 26862.27 24192.60 13592.51 12376.06 12367.87 25985.34 24556.76 17990.24 31762.20 27363.69 31386.94 264
NR-MVSNet76.05 23174.59 22780.44 24582.96 29262.18 24290.83 21391.73 15477.12 11060.96 31586.35 23459.28 15391.80 29460.74 28061.34 33387.35 256
sd_testset77.08 21475.37 21782.20 20589.25 16562.11 24382.06 32489.09 26676.77 11670.84 21687.12 22641.43 30895.01 18467.23 22874.55 22889.48 227
GeoE78.90 18177.43 18683.29 17888.95 17462.02 24492.31 14486.23 32170.24 24571.34 21389.27 19254.43 21094.04 22863.31 26480.81 18293.81 137
h-mvs3383.01 11182.56 11184.35 14989.34 16062.02 24492.72 12693.76 6981.45 3682.73 8392.25 13860.11 14197.13 8987.69 5662.96 31493.91 132
ECVR-MVScopyleft81.29 13780.38 14384.01 15988.39 18861.96 24692.56 14086.79 31677.66 10276.63 15291.42 15446.34 28395.24 17874.36 16489.23 10094.85 87
plane_prior361.95 24779.09 8072.53 195
Vis-MVSNetpermissive80.92 14579.98 14883.74 16388.48 18361.80 24893.44 10488.26 29873.96 15377.73 13991.76 14749.94 25194.76 19165.84 24490.37 9394.65 100
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FOURS193.95 4761.77 24993.96 7291.92 14362.14 31786.57 48
cl____76.07 22874.67 22380.28 24985.15 25861.76 25090.12 23488.73 28171.16 22865.43 27981.57 28961.15 12992.95 25566.54 23562.17 32286.13 280
DIV-MVS_self_test76.07 22874.67 22380.28 24985.14 25961.75 25190.12 23488.73 28171.16 22865.42 28081.60 28861.15 12992.94 25966.54 23562.16 32486.14 278
test_fmvsmconf0.01_n83.70 10183.52 8484.25 15475.26 36261.72 25292.17 14987.24 31282.36 2684.91 6595.41 4855.60 19596.83 11392.85 1785.87 13594.21 116
CNLPA74.31 25372.30 26180.32 24791.49 11861.66 25390.85 21280.72 35856.67 35163.85 29590.64 16446.75 27890.84 30953.79 30975.99 22488.47 241
test22289.77 15161.60 25489.55 24789.42 24956.83 35077.28 14692.43 13252.76 22791.14 8693.09 155
plane_prior786.94 22661.51 255
UGNet79.87 16578.68 16783.45 17689.96 14761.51 25592.13 15190.79 19476.83 11478.85 13086.33 23638.16 32396.17 13367.93 22187.17 12192.67 167
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tttt051779.50 17078.53 17082.41 19887.22 21961.43 25789.75 24594.76 3269.29 25667.91 25688.06 21272.92 2595.63 15962.91 26873.90 23890.16 215
EC-MVSNet84.53 7985.04 6983.01 18389.34 16061.37 25894.42 5491.09 18577.91 9783.24 7894.20 9458.37 16095.40 17185.35 7791.41 8092.27 182
test-LLR80.10 16079.56 15481.72 21886.93 22861.17 25992.70 12891.54 16471.51 22375.62 16186.94 22853.83 21592.38 28072.21 18084.76 14391.60 191
test-mter79.96 16379.38 16081.72 21886.93 22861.17 25992.70 12891.54 16473.85 15575.62 16186.94 22849.84 25392.38 28072.21 18084.76 14391.60 191
SR-MVS82.81 11482.58 11083.50 17493.35 6361.16 26192.23 14891.28 17764.48 29581.27 9395.28 5453.71 21895.86 14782.87 9988.77 10593.49 144
KD-MVS_2432*160069.03 29966.37 30277.01 30385.56 25261.06 26281.44 33090.25 21567.27 27658.00 33376.53 34254.49 20787.63 34148.04 33035.77 39182.34 336
miper_refine_blended69.03 29966.37 30277.01 30385.56 25261.06 26281.44 33090.25 21567.27 27658.00 33376.53 34254.49 20787.63 34148.04 33035.77 39182.34 336
tfpnnormal70.10 28967.36 29778.32 28683.45 28760.97 26488.85 26292.77 10964.85 29360.83 31678.53 32543.52 30193.48 24531.73 38761.70 33080.52 353
TR-MVS78.77 18677.37 19182.95 18490.49 13760.88 26593.67 9090.07 22370.08 24774.51 17391.37 15745.69 28995.70 15860.12 28580.32 18492.29 178
UniMVSNet (Re)77.58 20676.78 19879.98 26084.11 27860.80 26691.76 17493.17 9576.56 12069.93 23184.78 25163.32 10892.36 28264.89 25462.51 32086.78 266
1112_ss80.56 15079.83 15082.77 18788.65 18060.78 26792.29 14588.36 29272.58 18272.46 19894.95 6665.09 7893.42 24766.38 23877.71 20594.10 122
v7n71.31 28268.65 28979.28 27676.40 35760.77 26886.71 29489.45 24764.17 29758.77 32978.24 32744.59 29793.54 24357.76 29461.75 32883.52 317
test111180.84 14680.02 14583.33 17787.87 20460.76 26992.62 13386.86 31577.86 9875.73 15991.39 15646.35 28294.70 19772.79 17388.68 10694.52 108
test_040264.54 32861.09 33474.92 31984.10 27960.75 27087.95 27679.71 36252.03 36252.41 35377.20 33632.21 35591.64 29723.14 39461.03 33472.36 382
旧先验191.94 10260.74 27191.50 16794.36 8465.23 7791.84 7294.55 104
dmvs_re76.93 21575.36 21881.61 22087.78 20860.71 27280.00 34587.99 30379.42 7169.02 23989.47 19046.77 27794.32 21063.38 26374.45 23189.81 220
ADS-MVSNet266.90 31663.44 32377.26 30188.06 19860.70 27368.01 38175.56 37057.57 34364.48 28869.87 36838.68 31584.10 35940.87 36167.89 27986.97 262
IterMVS-SCA-FT71.55 28169.97 28176.32 30981.48 30560.67 27487.64 28385.99 32466.17 28459.50 32278.88 32345.53 29083.65 36462.58 27161.93 32584.63 307
TranMVSNet+NR-MVSNet75.86 23674.52 23079.89 26482.44 29760.64 27591.37 19191.37 17176.63 11867.65 26186.21 23852.37 23191.55 30061.84 27560.81 33687.48 251
pmmvs573.35 26271.52 26978.86 28278.64 34260.61 27691.08 20586.90 31367.69 27163.32 29983.64 26344.33 29890.53 31162.04 27466.02 29085.46 296
MDA-MVSNet_test_wron63.78 33360.16 33774.64 32078.15 34860.41 27783.49 31084.03 34156.17 35439.17 39071.59 36437.22 33383.24 36942.87 35448.73 37080.26 356
Test_1112_low_res79.56 16978.60 16982.43 19588.24 19460.39 27892.09 15487.99 30372.10 19871.84 20587.42 22164.62 8693.04 25165.80 24577.30 21393.85 136
UniMVSNet_NR-MVSNet78.15 19777.55 18479.98 26084.46 27260.26 27992.25 14693.20 9377.50 10668.88 24286.61 23166.10 6892.13 28766.38 23862.55 31887.54 249
DU-MVS76.86 21775.84 21179.91 26382.96 29260.26 27991.26 19791.54 16476.46 12168.88 24286.35 23456.16 18892.13 28766.38 23862.55 31887.35 256
EPP-MVSNet81.79 13181.52 12382.61 19288.77 17960.21 28193.02 11793.66 7568.52 26772.90 18990.39 17272.19 3194.96 18674.93 15979.29 19492.67 167
YYNet163.76 33460.14 33874.62 32178.06 34960.19 28283.46 31283.99 34556.18 35339.25 38971.56 36537.18 33483.34 36742.90 35348.70 37180.32 355
IS-MVSNet80.14 15979.41 15882.33 19987.91 20260.08 28391.97 16388.27 29672.90 17771.44 21291.73 14961.44 12893.66 24262.47 27286.53 13193.24 150
HPM-MVS_fast80.25 15779.55 15682.33 19991.55 11659.95 28491.32 19589.16 26065.23 29274.71 17293.07 11647.81 27395.74 15274.87 16288.23 10991.31 201
MDTV_nov1_ep13_2view59.90 28580.13 34367.65 27372.79 19054.33 21259.83 28692.58 170
CPTT-MVS79.59 16879.16 16380.89 24191.54 11759.80 28692.10 15388.54 28960.42 32972.96 18793.28 11248.27 26692.80 26478.89 13286.50 13290.06 216
ACMP71.68 1075.58 24274.23 23579.62 27184.97 26359.64 28790.80 21489.07 26870.39 24362.95 30487.30 22338.28 32193.87 23772.89 17071.45 25685.36 298
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pmmvs-eth3d65.53 32562.32 33075.19 31669.39 38259.59 28882.80 32183.43 34862.52 31451.30 35972.49 35632.86 35087.16 34655.32 30350.73 36778.83 367
sss82.71 11782.38 11483.73 16589.25 16559.58 28992.24 14794.89 2877.96 9579.86 11392.38 13356.70 18197.05 9177.26 14280.86 18094.55 104
Fast-Effi-MVS+-dtu75.04 24773.37 24780.07 25680.86 30959.52 29091.20 20285.38 32971.90 20265.20 28184.84 25041.46 30792.97 25466.50 23772.96 24387.73 248
FIs79.47 17179.41 15879.67 26985.95 24459.40 29191.68 17893.94 6378.06 9468.96 24188.28 20366.61 6591.77 29566.20 24174.99 22787.82 247
LPG-MVS_test75.82 23774.58 22879.56 27384.31 27559.37 29290.44 22389.73 23969.49 25364.86 28388.42 20038.65 31794.30 21272.56 17672.76 24585.01 302
LGP-MVS_train79.56 27384.31 27559.37 29289.73 23969.49 25364.86 28388.42 20038.65 31794.30 21272.56 17672.76 24585.01 302
CS-MVS-test86.14 5187.01 3783.52 17192.63 8559.36 29495.49 2791.92 14380.09 6085.46 6095.53 4761.82 12695.77 15186.77 6993.37 5295.41 58
Baseline_NR-MVSNet73.99 25772.83 25277.48 29680.78 31159.29 29591.79 17184.55 33868.85 26268.99 24080.70 30356.16 18892.04 29062.67 27060.98 33581.11 346
PS-MVSNAJss77.26 21076.31 20480.13 25580.64 31459.16 29690.63 22291.06 18972.80 17868.58 24884.57 25453.55 21993.96 23372.97 16971.96 25287.27 259
mvsmamba76.85 21975.71 21480.25 25183.07 29159.16 29691.44 18280.64 35976.84 11367.95 25486.33 23646.17 28794.24 21776.06 14872.92 24487.36 255
TransMVSNet (Re)70.07 29067.66 29677.31 30080.62 31559.13 29891.78 17384.94 33465.97 28560.08 32080.44 30850.78 24391.87 29248.84 32645.46 37680.94 348
CS-MVS85.80 5886.65 4383.27 17992.00 10158.92 29995.31 3191.86 14879.97 6184.82 6695.40 4962.26 12095.51 17086.11 7392.08 6995.37 61
Patchmatch-test65.86 32160.94 33580.62 24483.75 28258.83 30058.91 39575.26 37244.50 38550.95 36177.09 33858.81 15787.90 33535.13 37664.03 30995.12 78
APD-MVS_3200maxsize81.64 13381.32 12582.59 19392.36 8958.74 30191.39 18891.01 19263.35 30479.72 11594.62 7851.82 23396.14 13479.71 12287.93 11392.89 164
PLCcopyleft68.80 1475.23 24573.68 24479.86 26592.93 7558.68 30290.64 22088.30 29460.90 32664.43 29190.53 16742.38 30594.57 20156.52 29876.54 22086.33 273
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SR-MVS-dyc-post81.06 14280.70 13582.15 20792.02 9858.56 30390.90 20990.45 20362.76 31178.89 12594.46 8051.26 24195.61 16178.77 13386.77 12792.28 179
RE-MVS-def80.48 14192.02 9858.56 30390.90 20990.45 20362.76 31178.89 12594.46 8049.30 25778.77 13386.77 12792.28 179
miper_lstm_enhance73.05 26571.73 26877.03 30283.80 28158.32 30581.76 32588.88 27569.80 25161.01 31478.23 32857.19 17187.51 34365.34 25159.53 34385.27 301
DeepPCF-MVS81.17 189.72 1091.38 484.72 13293.00 7458.16 30696.72 894.41 4886.50 890.25 2397.83 175.46 1498.67 2592.78 1895.49 1297.32 6
FMVSNet568.04 30865.66 30775.18 31784.43 27357.89 30783.54 30986.26 32061.83 32253.64 35073.30 35537.15 33585.08 35548.99 32561.77 32782.56 335
ACMM69.62 1374.34 25272.73 25579.17 27884.25 27757.87 30890.36 22789.93 22963.17 30865.64 27886.04 24137.79 32994.10 22165.89 24371.52 25585.55 294
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OpenMVS_ROBcopyleft61.12 1866.39 31862.92 32676.80 30776.51 35657.77 30989.22 25583.41 34955.48 35553.86 34977.84 33126.28 37393.95 23434.90 37768.76 27278.68 368
UA-Net80.02 16279.65 15281.11 23289.33 16257.72 31086.33 29689.00 27377.44 10781.01 9889.15 19459.33 15295.90 14661.01 27984.28 14989.73 223
testdata81.34 22689.02 17257.72 31089.84 23258.65 34085.32 6294.09 9657.03 17393.28 24869.34 20690.56 9293.03 158
pm-mvs172.89 26871.09 27278.26 28879.10 33557.62 31290.80 21489.30 25367.66 27262.91 30581.78 28449.11 26292.95 25560.29 28458.89 34684.22 308
XVG-OURS74.25 25472.46 26079.63 27078.45 34457.59 31380.33 33987.39 30863.86 29968.76 24589.62 18840.50 31191.72 29669.00 21174.25 23389.58 224
hse-mvs281.12 14181.11 13081.16 23086.52 23257.48 31489.40 25291.16 18081.45 3682.73 8390.49 16960.11 14194.58 19987.69 5660.41 34191.41 196
AUN-MVS78.37 19377.43 18681.17 22986.60 23157.45 31589.46 25191.16 18074.11 14874.40 17490.49 16955.52 19694.57 20174.73 16360.43 34091.48 194
OMC-MVS78.67 18977.91 18080.95 23985.76 24957.40 31688.49 26888.67 28473.85 15572.43 19992.10 14049.29 25894.55 20472.73 17477.89 20490.91 207
XVG-OURS-SEG-HR74.70 25173.08 24979.57 27278.25 34657.33 31780.49 33787.32 30963.22 30668.76 24590.12 18444.89 29691.59 29970.55 19774.09 23589.79 221
ACMH+65.35 1667.65 31164.55 31576.96 30584.59 26957.10 31888.08 27280.79 35758.59 34153.00 35181.09 30126.63 37292.95 25546.51 33861.69 33180.82 349
UWE-MVS80.81 14781.01 13280.20 25389.33 16257.05 31991.91 16594.71 3575.67 12775.01 16989.37 19163.13 11191.44 30667.19 22982.80 16192.12 187
tt080573.07 26470.73 27680.07 25678.37 34557.05 31987.78 28092.18 13561.23 32567.04 26986.49 23331.35 35994.58 19965.06 25367.12 28388.57 238
test_cas_vis1_n_192080.45 15380.61 13879.97 26278.25 34657.01 32194.04 6988.33 29379.06 8282.81 8293.70 10438.65 31791.63 29890.82 3579.81 18791.27 203
MDA-MVSNet-bldmvs61.54 34057.70 34573.05 33279.53 32757.00 32283.08 31881.23 35557.57 34334.91 39372.45 35732.79 35186.26 35035.81 37441.95 38175.89 376
UniMVSNet_ETH3D72.74 27170.53 27879.36 27578.62 34356.64 32385.01 30189.20 25763.77 30064.84 28584.44 25634.05 34891.86 29363.94 25970.89 26089.57 225
MVS-HIRNet60.25 34455.55 35174.35 32384.37 27456.57 32471.64 37274.11 37434.44 39345.54 37842.24 40031.11 36189.81 32240.36 36476.10 22376.67 375
PMMVS81.98 12982.04 11781.78 21689.76 15256.17 32591.13 20490.69 19677.96 9580.09 11193.57 10846.33 28494.99 18581.41 11087.46 11894.17 118
LS3D69.17 29766.40 30177.50 29591.92 10456.12 32685.12 30080.37 36046.96 37856.50 34087.51 22037.25 33293.71 24032.52 38679.40 19182.68 333
F-COLMAP70.66 28468.44 29277.32 29986.37 23655.91 32788.00 27586.32 31856.94 34957.28 33888.07 21133.58 34992.49 27751.02 31668.37 27583.55 315
CL-MVSNet_self_test69.92 29168.09 29575.41 31473.25 36955.90 32890.05 23789.90 23069.96 24861.96 31376.54 34151.05 24287.64 34049.51 32450.59 36882.70 332
PatchMatch-RL72.06 27769.98 28078.28 28789.51 15855.70 32983.49 31083.39 35061.24 32463.72 29682.76 27234.77 34593.03 25253.37 31277.59 20786.12 281
FC-MVSNet-test77.99 19978.08 17677.70 29284.89 26555.51 33090.27 23093.75 7276.87 11166.80 27487.59 21865.71 7390.23 31862.89 26973.94 23687.37 254
USDC67.43 31564.51 31676.19 31077.94 35055.29 33178.38 35285.00 33373.17 16848.36 37080.37 30921.23 38192.48 27852.15 31464.02 31080.81 350
Effi-MVS+-dtu76.14 22775.28 22078.72 28383.22 28855.17 33289.87 24287.78 30675.42 13167.98 25381.43 29145.08 29592.52 27675.08 15771.63 25388.48 240
test_vis1_n_192081.66 13282.01 11880.64 24382.24 29855.09 33394.76 4986.87 31481.67 3484.40 7094.63 7738.17 32294.67 19891.98 2683.34 15592.16 186
jajsoiax73.05 26571.51 27077.67 29377.46 35254.83 33488.81 26390.04 22669.13 26062.85 30683.51 26531.16 36092.75 26670.83 19269.80 26185.43 297
anonymousdsp71.14 28369.37 28776.45 30872.95 37054.71 33584.19 30588.88 27561.92 32062.15 31179.77 31838.14 32491.44 30668.90 21367.45 28283.21 323
mvs_tets72.71 27271.11 27177.52 29477.41 35354.52 33688.45 26989.76 23568.76 26562.70 30783.26 26829.49 36492.71 26770.51 19869.62 26385.34 299
JIA-IIPM66.06 32062.45 32976.88 30681.42 30754.45 33757.49 39688.67 28449.36 37363.86 29446.86 39456.06 19190.25 31449.53 32368.83 27185.95 285
Patchmatch-RL test68.17 30764.49 31779.19 27771.22 37453.93 33870.07 37671.54 38269.22 25756.79 33962.89 38256.58 18488.61 32869.53 20452.61 36395.03 82
test_djsdf73.76 26172.56 25877.39 29877.00 35553.93 33889.07 25990.69 19665.80 28663.92 29382.03 28143.14 30392.67 27072.83 17168.53 27485.57 293
pmmvs667.57 31264.76 31376.00 31272.82 37253.37 34088.71 26486.78 31753.19 36057.58 33778.03 33035.33 34492.41 27955.56 30254.88 35882.21 338
TinyColmap60.32 34356.42 35072.00 34478.78 33953.18 34178.36 35375.64 36952.30 36141.59 38875.82 34914.76 39388.35 33235.84 37354.71 35974.46 378
COLMAP_ROBcopyleft57.96 2062.98 33659.65 33972.98 33381.44 30653.00 34283.75 30875.53 37148.34 37648.81 36981.40 29324.14 37590.30 31332.95 38260.52 33975.65 377
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XVG-ACMP-BASELINE68.04 30865.53 30875.56 31374.06 36752.37 34378.43 35185.88 32562.03 31858.91 32881.21 29920.38 38491.15 30860.69 28168.18 27683.16 324
Vis-MVSNet (Re-imp)79.24 17479.57 15378.24 28988.46 18452.29 34490.41 22589.12 26474.24 14669.13 23591.91 14565.77 7290.09 32159.00 29188.09 11192.33 176
TAPA-MVS70.22 1274.94 24973.53 24579.17 27890.40 13952.07 34589.19 25789.61 24362.69 31370.07 22692.67 12648.89 26494.32 21038.26 37079.97 18691.12 205
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UnsupCasMVSNet_bld61.60 33957.71 34473.29 33168.73 38351.64 34678.61 35089.05 26957.20 34746.11 37361.96 38528.70 36788.60 32950.08 32138.90 38779.63 360
LTVRE_ROB59.60 1966.27 31963.54 32274.45 32284.00 28051.55 34767.08 38483.53 34758.78 33954.94 34480.31 31034.54 34693.23 24940.64 36368.03 27778.58 369
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WR-MVS_H70.59 28569.94 28272.53 33681.03 30851.43 34887.35 28692.03 13967.38 27560.23 31980.70 30355.84 19483.45 36646.33 34058.58 34882.72 330
AllTest61.66 33858.06 34372.46 33779.57 32551.42 34980.17 34268.61 38651.25 36645.88 37481.23 29519.86 38686.58 34838.98 36757.01 35179.39 361
TestCases72.46 33779.57 32551.42 34968.61 38651.25 36645.88 37481.23 29519.86 38686.58 34838.98 36757.01 35179.39 361
CP-MVSNet70.50 28669.91 28372.26 33980.71 31251.00 35187.23 28890.30 21367.84 27059.64 32182.69 27350.23 24982.30 37451.28 31559.28 34483.46 319
pmmvs355.51 35151.50 35767.53 35957.90 39750.93 35280.37 33873.66 37540.63 39144.15 38364.75 37916.30 38878.97 38344.77 34840.98 38572.69 380
PS-CasMVS69.86 29369.13 28872.07 34380.35 31750.57 35387.02 29089.75 23667.27 27659.19 32582.28 27746.58 28082.24 37550.69 31759.02 34583.39 321
CMPMVSbinary48.56 2166.77 31764.41 31873.84 32770.65 37850.31 35477.79 35685.73 32845.54 38244.76 38082.14 28035.40 34390.14 32063.18 26674.54 23081.07 347
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UnsupCasMVSNet_eth65.79 32263.10 32473.88 32670.71 37750.29 35581.09 33389.88 23172.58 18249.25 36774.77 35332.57 35387.43 34455.96 30141.04 38383.90 312
SixPastTwentyTwo64.92 32661.78 33374.34 32478.74 34049.76 35683.42 31379.51 36362.86 31050.27 36277.35 33330.92 36290.49 31245.89 34247.06 37382.78 327
PEN-MVS69.46 29668.56 29072.17 34179.27 33049.71 35786.90 29289.24 25567.24 27959.08 32682.51 27647.23 27683.54 36548.42 32857.12 34983.25 322
EPNet_dtu78.80 18479.26 16277.43 29788.06 19849.71 35791.96 16491.95 14277.67 10176.56 15491.28 15858.51 15890.20 31956.37 29980.95 17992.39 174
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WAC-MVS49.45 35931.56 389
myMVS_eth3d72.58 27672.74 25472.10 34287.87 20449.45 35988.07 27389.01 27072.91 17563.11 30188.10 20963.63 9985.54 35232.73 38469.23 26881.32 344
K. test v363.09 33559.61 34073.53 32976.26 35849.38 36183.27 31477.15 36564.35 29647.77 37272.32 36028.73 36687.79 33849.93 32236.69 38983.41 320
DTE-MVSNet68.46 30567.33 29871.87 34577.94 35049.00 36286.16 29788.58 28866.36 28358.19 33082.21 27946.36 28183.87 36344.97 34755.17 35682.73 329
Anonymous2024052162.09 33759.08 34171.10 34667.19 38548.72 36383.91 30785.23 33150.38 36947.84 37171.22 36720.74 38285.51 35446.47 33958.75 34779.06 364
LCM-MVSNet-Re72.93 26771.84 26676.18 31188.49 18248.02 36480.07 34470.17 38373.96 15352.25 35480.09 31549.98 25088.24 33367.35 22584.23 15092.28 179
test0.0.03 172.76 27072.71 25672.88 33480.25 31947.99 36591.22 20089.45 24771.51 22362.51 30987.66 21753.83 21585.06 35650.16 32067.84 28185.58 292
lessismore_v073.72 32872.93 37147.83 36661.72 39545.86 37673.76 35428.63 36889.81 32247.75 33531.37 39683.53 316
Anonymous2023120667.53 31365.78 30472.79 33574.95 36347.59 36788.23 27187.32 30961.75 32358.07 33277.29 33537.79 32987.29 34542.91 35263.71 31283.48 318
OurMVSNet-221017-064.68 32762.17 33172.21 34076.08 36047.35 36880.67 33681.02 35656.19 35251.60 35679.66 32027.05 37188.56 33053.60 31153.63 36180.71 351
test_fmvs174.07 25573.69 24375.22 31578.91 33847.34 36989.06 26174.69 37363.68 30179.41 11991.59 15224.36 37487.77 33985.22 7876.26 22290.55 212
test_vis1_n71.63 28070.73 27674.31 32569.63 38147.29 37086.91 29172.11 37863.21 30775.18 16790.17 17920.40 38385.76 35184.59 8774.42 23289.87 219
test_fmvs1_n72.69 27471.92 26574.99 31871.15 37547.08 37187.34 28775.67 36863.48 30378.08 13691.17 15920.16 38587.87 33684.65 8675.57 22690.01 218
ITE_SJBPF70.43 34874.44 36547.06 37277.32 36460.16 33254.04 34883.53 26423.30 37884.01 36143.07 35161.58 33280.21 358
EGC-MVSNET42.35 36238.09 36555.11 37374.57 36446.62 37371.63 37355.77 3970.04 4110.24 41262.70 38314.24 39474.91 38717.59 40046.06 37543.80 397
kuosan60.86 34260.24 33662.71 36681.57 30446.43 37475.70 36585.88 32557.98 34248.95 36869.53 37058.42 15976.53 38428.25 39135.87 39065.15 389
TDRefinement55.28 35251.58 35666.39 36259.53 39646.15 37576.23 36172.80 37644.60 38442.49 38676.28 34515.29 39182.39 37333.20 38143.75 37870.62 384
test_vis1_rt59.09 34857.31 34764.43 36368.44 38446.02 37683.05 31948.63 40551.96 36349.57 36563.86 38116.30 38880.20 38171.21 19062.79 31667.07 388
mvsany_test168.77 30168.56 29069.39 35173.57 36845.88 37780.93 33560.88 39659.65 33571.56 21090.26 17743.22 30275.05 38574.26 16562.70 31787.25 260
RPSCF64.24 33061.98 33271.01 34776.10 35945.00 37875.83 36475.94 36746.94 37958.96 32784.59 25331.40 35882.00 37647.76 33460.33 34286.04 282
new-patchmatchnet59.30 34756.48 34967.79 35765.86 38844.19 37982.47 32281.77 35459.94 33443.65 38466.20 37627.67 36981.68 37739.34 36641.40 38277.50 373
MIMVSNet160.16 34557.33 34668.67 35469.71 38044.13 38078.92 34984.21 33955.05 35644.63 38171.85 36223.91 37681.54 37832.63 38555.03 35780.35 354
CVMVSNet74.04 25674.27 23473.33 33085.33 25443.94 38189.53 24988.39 29154.33 35870.37 22290.13 18149.17 26084.05 36061.83 27679.36 19291.99 188
testing370.38 28870.83 27369.03 35385.82 24843.93 38290.72 21790.56 20268.06 26960.24 31886.82 23064.83 8384.12 35826.33 39264.10 30879.04 365
Syy-MVS69.65 29469.52 28670.03 34987.87 20443.21 38388.07 27389.01 27072.91 17563.11 30188.10 20945.28 29385.54 35222.07 39669.23 26881.32 344
PM-MVS59.40 34656.59 34867.84 35663.63 38941.86 38476.76 35863.22 39359.01 33851.07 36072.27 36111.72 39683.25 36861.34 27750.28 36978.39 370
test_fmvs265.78 32364.84 31168.60 35566.54 38641.71 38583.27 31469.81 38454.38 35767.91 25684.54 25515.35 39081.22 37975.65 15266.16 28982.88 326
ambc69.61 35061.38 39441.35 38649.07 40185.86 32750.18 36466.40 37510.16 39888.14 33445.73 34344.20 37779.32 363
new_pmnet49.31 35646.44 35957.93 36962.84 39140.74 38768.47 38062.96 39436.48 39235.09 39257.81 38914.97 39272.18 39032.86 38346.44 37460.88 391
testgi64.48 32962.87 32769.31 35271.24 37340.62 38885.49 29879.92 36165.36 29054.18 34783.49 26623.74 37784.55 35741.60 35860.79 33782.77 328
test20.0363.83 33262.65 32867.38 36070.58 37939.94 38986.57 29584.17 34063.29 30551.86 35577.30 33437.09 33682.47 37238.87 36954.13 36079.73 359
KD-MVS_self_test60.87 34158.60 34267.68 35866.13 38739.93 39075.63 36684.70 33557.32 34649.57 36568.45 37229.55 36382.87 37048.09 32947.94 37280.25 357
LF4IMVS54.01 35452.12 35559.69 36862.41 39239.91 39168.59 37968.28 38842.96 38944.55 38275.18 35014.09 39568.39 39441.36 36051.68 36570.78 383
Gipumacopyleft34.91 36931.44 37245.30 38470.99 37639.64 39219.85 40672.56 37720.10 40216.16 40621.47 4075.08 40771.16 39113.07 40443.70 37925.08 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EU-MVSNet64.01 33163.01 32567.02 36174.40 36638.86 39383.27 31486.19 32245.11 38354.27 34681.15 30036.91 33880.01 38248.79 32757.02 35082.19 339
dongtai55.18 35355.46 35254.34 37676.03 36136.88 39476.07 36284.61 33751.28 36543.41 38564.61 38056.56 18567.81 39518.09 39928.50 40058.32 392
FPMVS45.64 36043.10 36453.23 37751.42 40236.46 39564.97 38671.91 37929.13 39727.53 39761.55 3869.83 39965.01 40116.00 40355.58 35558.22 393
test_fmvs356.82 34954.86 35362.69 36753.59 39935.47 39675.87 36365.64 39143.91 38655.10 34371.43 3666.91 40474.40 38868.64 21552.63 36278.20 371
APD_test140.50 36437.31 36750.09 38051.88 40035.27 39759.45 39452.59 40121.64 40026.12 39857.80 3904.56 40866.56 39722.64 39539.09 38648.43 396
ANet_high40.27 36635.20 36955.47 37234.74 41334.47 39863.84 38871.56 38148.42 37518.80 40241.08 4019.52 40064.45 40220.18 3978.66 40967.49 387
test_vis3_rt40.46 36537.79 36648.47 38244.49 40733.35 39966.56 38532.84 41332.39 39529.65 39539.13 4033.91 41168.65 39350.17 31940.99 38443.40 398
test_f46.58 35843.45 36255.96 37145.18 40632.05 40061.18 39049.49 40433.39 39442.05 38762.48 3847.00 40365.56 39947.08 33743.21 38070.27 385
mvsany_test348.86 35746.35 36056.41 37046.00 40531.67 40162.26 38947.25 40643.71 38745.54 37868.15 37310.84 39764.44 40357.95 29335.44 39373.13 379
testf132.77 37029.47 37342.67 38641.89 40930.81 40252.07 39743.45 40715.45 40318.52 40344.82 3972.12 41258.38 40416.05 40130.87 39738.83 399
APD_test232.77 37029.47 37342.67 38641.89 40930.81 40252.07 39743.45 40715.45 40318.52 40344.82 3972.12 41258.38 40416.05 40130.87 39738.83 399
LCM-MVSNet40.54 36335.79 36854.76 37536.92 41230.81 40251.41 39969.02 38522.07 39924.63 39945.37 3964.56 40865.81 39833.67 37934.50 39467.67 386
DSMNet-mixed56.78 35054.44 35463.79 36463.21 39029.44 40564.43 38764.10 39242.12 39051.32 35871.60 36331.76 35675.04 38636.23 37265.20 29786.87 265
PMVScopyleft26.43 2231.84 37228.16 37542.89 38525.87 41527.58 40650.92 40049.78 40321.37 40114.17 40740.81 4022.01 41466.62 3969.61 40738.88 38834.49 403
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive24.84 2324.35 37419.77 38038.09 38834.56 41426.92 40726.57 40438.87 41111.73 40711.37 40827.44 4041.37 41550.42 40711.41 40514.60 40536.93 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS237.93 36833.61 37150.92 37846.31 40424.76 40860.55 39350.05 40228.94 39820.93 40047.59 3934.41 41065.13 40025.14 39318.55 40462.87 390
DeepMVS_CXcopyleft34.71 38951.45 40124.73 40928.48 41531.46 39617.49 40552.75 3915.80 40642.60 41018.18 39819.42 40336.81 402
dmvs_testset65.55 32466.45 30062.86 36579.87 32322.35 41076.55 35971.74 38077.42 10955.85 34187.77 21651.39 23980.69 38031.51 39065.92 29185.55 294
test_method38.59 36735.16 37048.89 38154.33 39821.35 41145.32 40253.71 4007.41 40828.74 39651.62 3928.70 40152.87 40633.73 37832.89 39572.47 381
WB-MVS46.23 35944.94 36150.11 37962.13 39321.23 41276.48 36055.49 39845.89 38135.78 39161.44 38735.54 34272.83 3899.96 40621.75 40156.27 394
wuyk23d11.30 37810.95 38112.33 39348.05 40319.89 41325.89 4051.92 4173.58 4093.12 4111.37 4110.64 41615.77 4126.23 4117.77 4101.35 408
SSC-MVS44.51 36143.35 36347.99 38361.01 39518.90 41474.12 36854.36 39943.42 38834.10 39460.02 38834.42 34770.39 3929.14 40819.57 40254.68 395
E-PMN24.61 37324.00 37726.45 39043.74 40818.44 41560.86 39139.66 40915.11 4059.53 40922.10 4066.52 40546.94 4088.31 40910.14 40613.98 406
EMVS23.76 37523.20 37925.46 39141.52 41116.90 41660.56 39238.79 41214.62 4068.99 41020.24 4097.35 40245.82 4097.25 4109.46 40713.64 407
tmp_tt22.26 37623.75 37817.80 3925.23 41612.06 41735.26 40339.48 4102.82 41018.94 40144.20 39922.23 38024.64 41136.30 3719.31 40816.69 405
N_pmnet50.55 35549.11 35854.88 37477.17 3544.02 41884.36 3042.00 41648.59 37445.86 37668.82 37132.22 35482.80 37131.58 38851.38 36677.81 372
test1236.92 3819.21 3840.08 3940.03 4180.05 41981.65 3280.01 4190.02 4130.14 4140.85 4130.03 4170.02 4130.12 4130.00 4120.16 409
testmvs7.23 3809.62 3830.06 3950.04 4170.02 42084.98 3020.02 4180.03 4120.18 4131.21 4120.01 4180.02 4130.14 4120.01 4110.13 410
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
cdsmvs_eth3d_5k19.86 37726.47 3760.00 3960.00 4190.00 4210.00 40793.45 840.00 4140.00 41595.27 5649.56 2540.00 4150.00 4140.00 4120.00 411
pcd_1.5k_mvsjas4.46 3825.95 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41453.55 2190.00 4150.00 4140.00 4120.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
ab-mvs-re7.91 37910.55 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41594.95 660.00 4190.00 4150.00 4140.00 4120.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4120.00 411
PC_three_145280.91 4694.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
eth-test20.00 419
eth-test0.00 419
test_241102_TWO94.41 4871.65 21492.07 897.21 474.58 1799.11 692.34 2195.36 1396.59 19
9.1487.63 2993.86 4994.41 5594.18 5772.76 17986.21 5096.51 2466.64 6497.88 4490.08 3894.04 39
test_0728_THIRD72.48 18490.55 1996.93 1176.24 1199.08 1191.53 2994.99 1796.43 30
GSMVS94.68 97
sam_mvs157.85 16594.68 97
sam_mvs54.91 204
MTGPAbinary92.23 129
test_post178.95 34820.70 40853.05 22491.50 30560.43 282
test_post23.01 40556.49 18692.67 270
patchmatchnet-post67.62 37457.62 16890.25 314
MTMP93.77 8632.52 414
test9_res89.41 4194.96 1895.29 68
agg_prior286.41 7094.75 2995.33 64
test_prior295.10 3875.40 13285.25 6495.61 4567.94 5487.47 5994.77 25
旧先验292.00 16259.37 33787.54 4193.47 24675.39 154
新几何291.41 184
无先验92.71 12792.61 12062.03 31897.01 9566.63 23393.97 129
原ACMM292.01 159
testdata296.09 13761.26 278
segment_acmp65.94 70
testdata189.21 25677.55 105
plane_prior591.31 17395.55 16776.74 14378.53 20188.39 242
plane_prior489.14 195
plane_prior293.13 11178.81 86
plane_prior187.15 220
n20.00 420
nn0.00 420
door-mid66.01 390
test1193.01 101
door66.57 389
HQP-NCC87.54 21194.06 6579.80 6374.18 175
ACMP_Plane87.54 21194.06 6579.80 6374.18 175
BP-MVS77.63 140
HQP4-MVS74.18 17595.61 16188.63 236
HQP3-MVS91.70 15978.90 196
HQP2-MVS51.63 237
ACMMP++_ref71.63 253
ACMMP++69.72 262
Test By Simon54.21 213