This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MG-MVS87.11 3086.27 3789.62 797.79 176.27 494.96 4294.49 3778.74 7083.87 6292.94 10764.34 7596.94 9575.19 13794.09 3595.66 46
MCST-MVS91.08 191.46 289.94 497.66 273.37 897.13 295.58 989.33 185.77 4296.26 2372.84 2699.38 192.64 995.93 997.08 9
OPU-MVS89.97 397.52 373.15 1296.89 497.00 983.82 299.15 295.72 297.63 397.62 2
DVP-MVS++90.53 391.09 488.87 1397.31 469.91 3693.96 6494.37 4572.48 16392.07 696.85 1283.82 299.15 291.53 1997.42 497.55 4
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2099.07 1392.01 1494.77 2496.51 20
No_MVS89.60 897.31 473.22 1095.05 2099.07 1392.01 1494.77 2496.51 20
DP-MVS Recon82.73 9581.65 10285.98 7697.31 467.06 10595.15 3591.99 13069.08 23976.50 13493.89 8954.48 18498.20 3470.76 17585.66 12792.69 147
CNVR-MVS90.32 590.89 688.61 1896.76 870.65 2596.47 1294.83 2484.83 1089.07 2496.80 1570.86 3499.06 1592.64 995.71 1096.12 34
ZD-MVS96.63 965.50 14593.50 7470.74 21785.26 5095.19 5164.92 6997.29 7187.51 4593.01 53
NCCC89.07 1489.46 1487.91 2496.60 1069.05 5596.38 1494.64 3284.42 1186.74 3496.20 2566.56 5498.76 2289.03 3694.56 3195.92 40
IU-MVS96.46 1169.91 3695.18 1580.75 3995.28 192.34 1195.36 1396.47 24
SED-MVS89.94 890.36 988.70 1596.45 1269.38 4696.89 494.44 3971.65 19292.11 497.21 476.79 999.11 692.34 1195.36 1397.62 2
test_241102_ONE96.45 1269.38 4694.44 3971.65 19292.11 497.05 776.79 999.11 6
test_0728_SECOND88.70 1596.45 1270.43 2896.64 894.37 4599.15 291.91 1794.90 2096.51 20
DVP-MVScopyleft89.41 1289.73 1388.45 2196.40 1569.99 3296.64 894.52 3571.92 17990.55 1696.93 1073.77 2199.08 1191.91 1794.90 2096.29 29
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072696.40 1569.99 3296.76 694.33 4771.92 17991.89 897.11 673.77 21
AdaColmapbinary78.94 16077.00 17684.76 11696.34 1765.86 13592.66 11787.97 28062.18 29470.56 19792.37 12243.53 27397.35 6764.50 23782.86 14491.05 185
test_one_060196.32 1869.74 4194.18 5071.42 20390.67 1596.85 1274.45 18
test_part296.29 1968.16 7890.78 13
DPE-MVScopyleft88.77 1589.21 1587.45 3696.26 2067.56 9294.17 5294.15 5268.77 24290.74 1497.27 276.09 1298.49 2890.58 2794.91 1996.30 28
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MAR-MVS84.18 7083.43 7186.44 6596.25 2165.93 13494.28 5194.27 4974.41 12379.16 10395.61 3653.99 18998.88 2069.62 18693.26 5194.50 95
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS82.28 10280.53 12087.54 3496.13 2270.59 2693.63 8291.04 17965.72 26675.45 14492.83 11256.11 16698.89 1964.10 23989.75 9593.15 137
APDe-MVS87.54 2587.84 2286.65 5796.07 2366.30 12594.84 4493.78 5869.35 23388.39 2696.34 2267.74 4597.66 5090.62 2693.44 4896.01 38
patch_mono-289.71 1090.99 585.85 8296.04 2463.70 19095.04 3995.19 1486.74 691.53 1195.15 5273.86 2097.58 5593.38 592.00 6696.28 31
PAPR85.15 5484.47 5887.18 4196.02 2568.29 7291.85 15093.00 9576.59 10179.03 10495.00 5361.59 10697.61 5478.16 12189.00 9995.63 47
APD-MVScopyleft85.93 4585.99 4285.76 8695.98 2665.21 15093.59 8492.58 11166.54 25986.17 3895.88 3063.83 8197.00 8786.39 5792.94 5495.06 72
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast79.48 287.95 2088.00 2187.79 2795.86 2768.32 7195.74 2094.11 5383.82 1483.49 6396.19 2664.53 7498.44 3083.42 8194.88 2396.61 14
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DP-MVS69.90 27066.48 27680.14 23395.36 2862.93 20789.56 22676.11 34050.27 34657.69 31385.23 22239.68 28695.73 13533.35 36071.05 23781.78 322
114514_t79.17 15577.67 16183.68 14895.32 2965.53 14492.85 10891.60 15263.49 28067.92 23490.63 14946.65 25495.72 13967.01 21283.54 14189.79 200
HPM-MVS++copyleft89.37 1389.95 1287.64 2995.10 3068.23 7695.24 3294.49 3782.43 2188.90 2596.35 2171.89 3398.63 2588.76 3796.40 696.06 35
CSCG86.87 3286.26 3888.72 1495.05 3170.79 2493.83 7595.33 1268.48 24677.63 12094.35 7673.04 2498.45 2984.92 6993.71 4496.92 11
dcpmvs_287.37 2787.55 2686.85 4995.04 3268.20 7790.36 20690.66 18779.37 5481.20 7993.67 9374.73 1596.55 10890.88 2492.00 6695.82 43
LFMVS84.34 6582.73 8789.18 1294.76 3373.25 994.99 4191.89 13671.90 18182.16 7393.49 9847.98 24597.05 8282.55 8684.82 13197.25 7
CDPH-MVS85.71 4885.46 4886.46 6494.75 3467.19 10193.89 6992.83 10070.90 21283.09 6695.28 4463.62 8597.36 6680.63 10194.18 3494.84 81
test_prior86.42 6694.71 3567.35 9893.10 9196.84 9995.05 73
test1287.09 4494.60 3668.86 5992.91 9782.67 7165.44 6397.55 5793.69 4594.84 81
test_yl84.28 6683.16 7887.64 2994.52 3769.24 5095.78 1795.09 1869.19 23681.09 8192.88 11057.00 15297.44 6181.11 9981.76 15296.23 32
DCV-MVSNet84.28 6683.16 7887.64 2994.52 3769.24 5095.78 1795.09 1869.19 23681.09 8192.88 11057.00 15297.44 6181.11 9981.76 15296.23 32
CANet89.61 1189.99 1188.46 2094.39 3969.71 4296.53 1193.78 5886.89 589.68 2095.78 3165.94 5899.10 992.99 793.91 3996.58 17
test_894.19 4067.19 10194.15 5693.42 7871.87 18485.38 4895.35 4068.19 4096.95 94
TEST994.18 4167.28 9994.16 5393.51 7271.75 19085.52 4595.33 4168.01 4297.27 75
train_agg87.21 2987.42 2886.60 5894.18 4167.28 9994.16 5393.51 7271.87 18485.52 4595.33 4168.19 4097.27 7589.09 3494.90 2095.25 68
agg_prior94.16 4366.97 10993.31 8184.49 5596.75 101
PAPM_NR82.97 9281.84 10086.37 6894.10 4466.76 11487.66 26092.84 9969.96 22674.07 15893.57 9663.10 9497.50 5970.66 17790.58 8794.85 78
FOURS193.95 4561.77 22993.96 6491.92 13362.14 29586.57 35
VNet86.20 4085.65 4787.84 2693.92 4669.99 3295.73 2295.94 678.43 7286.00 4093.07 10458.22 13997.00 8785.22 6484.33 13696.52 19
9.1487.63 2493.86 4794.41 5094.18 5072.76 15886.21 3796.51 1866.64 5297.88 4390.08 2894.04 36
save fliter93.84 4867.89 8495.05 3892.66 10678.19 74
PVSNet_BlendedMVS83.38 8483.43 7183.22 16093.76 4967.53 9494.06 5893.61 6879.13 6081.00 8485.14 22363.19 9297.29 7187.08 5173.91 21584.83 286
PVSNet_Blended86.73 3686.86 3486.31 7193.76 4967.53 9496.33 1593.61 6882.34 2281.00 8493.08 10363.19 9297.29 7187.08 5191.38 7794.13 105
HFP-MVS84.73 5984.40 6085.72 8793.75 5165.01 15693.50 8893.19 8672.19 17379.22 10294.93 5659.04 13397.67 4881.55 9292.21 6194.49 96
Anonymous20240521177.96 18075.33 19885.87 8093.73 5264.52 16294.85 4385.36 30362.52 29276.11 13590.18 15929.43 33897.29 7168.51 19877.24 19295.81 44
SD-MVS87.49 2687.49 2787.50 3593.60 5368.82 6193.90 6892.63 10976.86 9487.90 2895.76 3266.17 5597.63 5289.06 3591.48 7596.05 36
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMMPR84.37 6384.06 6285.28 9993.56 5464.37 17293.50 8893.15 8872.19 17378.85 11094.86 5956.69 15997.45 6081.55 9292.20 6294.02 112
region2R84.36 6484.03 6385.36 9793.54 5564.31 17493.43 9192.95 9672.16 17678.86 10994.84 6056.97 15497.53 5881.38 9692.11 6494.24 100
TSAR-MVS + GP.87.96 1988.37 1986.70 5693.51 5665.32 14795.15 3593.84 5778.17 7585.93 4194.80 6175.80 1398.21 3389.38 3088.78 10096.59 15
PHI-MVS86.83 3486.85 3586.78 5493.47 5765.55 14395.39 2995.10 1771.77 18985.69 4496.52 1762.07 10198.77 2186.06 6095.60 1196.03 37
SR-MVS82.81 9482.58 9083.50 15493.35 5861.16 24092.23 13191.28 16564.48 27381.27 7895.28 4453.71 19395.86 12982.87 8388.77 10193.49 128
iter_conf0583.27 8682.70 8884.98 10893.32 5971.84 1594.16 5381.76 32882.74 1873.83 16188.40 18072.77 2794.61 17882.10 8875.21 20488.48 219
EPNet87.84 2288.38 1886.23 7293.30 6066.05 12995.26 3194.84 2387.09 488.06 2794.53 6766.79 5197.34 6883.89 7891.68 7195.29 62
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XVS83.87 7683.47 6985.05 10593.22 6163.78 18492.92 10692.66 10673.99 13178.18 11494.31 7955.25 17297.41 6379.16 11191.58 7393.95 114
X-MVStestdata76.86 19574.13 21585.05 10593.22 6163.78 18492.92 10692.66 10673.99 13178.18 11410.19 38355.25 17297.41 6379.16 11191.58 7393.95 114
SMA-MVScopyleft88.14 1688.29 2087.67 2893.21 6368.72 6393.85 7194.03 5474.18 12891.74 996.67 1665.61 6298.42 3289.24 3396.08 795.88 42
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
原ACMM184.42 12793.21 6364.27 17693.40 8065.39 26779.51 9892.50 11658.11 14196.69 10265.27 23393.96 3792.32 157
MVS_111021_HR86.19 4185.80 4587.37 3793.17 6569.79 3993.99 6393.76 6179.08 6278.88 10893.99 8762.25 10098.15 3585.93 6191.15 8194.15 104
CP-MVS83.71 8183.40 7484.65 12093.14 6663.84 18294.59 4792.28 11771.03 21077.41 12394.92 5755.21 17596.19 11581.32 9790.70 8593.91 116
DELS-MVS90.05 690.09 1089.94 493.14 6673.88 797.01 394.40 4388.32 285.71 4394.91 5874.11 1998.91 1787.26 4995.94 897.03 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ZNCC-MVS85.33 5285.08 5386.06 7493.09 6865.65 13993.89 6993.41 7973.75 13979.94 9394.68 6460.61 11598.03 3782.63 8593.72 4394.52 93
DeepPCF-MVS81.17 189.72 991.38 384.72 11893.00 6958.16 28596.72 794.41 4186.50 790.25 1897.83 175.46 1498.67 2492.78 895.49 1297.32 6
PLCcopyleft68.80 1475.23 22373.68 22279.86 24392.93 7058.68 28190.64 19988.30 27060.90 30464.43 27190.53 15042.38 27894.57 18256.52 27876.54 19686.33 253
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MSP-MVS90.38 491.87 185.88 7992.83 7164.03 18093.06 9994.33 4782.19 2393.65 396.15 2785.89 197.19 7791.02 2397.75 196.43 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mPP-MVS82.96 9382.44 9384.52 12492.83 7162.92 20992.76 10991.85 14071.52 20075.61 14294.24 8153.48 19796.99 9078.97 11490.73 8493.64 125
GST-MVS84.63 6184.29 6185.66 8992.82 7365.27 14893.04 10193.13 8973.20 14878.89 10594.18 8359.41 12997.85 4481.45 9492.48 6093.86 119
WTY-MVS86.32 3885.81 4487.85 2592.82 7369.37 4895.20 3395.25 1382.71 1981.91 7494.73 6267.93 4497.63 5279.55 10782.25 14896.54 18
PGM-MVS83.25 8782.70 8884.92 10992.81 7564.07 17990.44 20292.20 12371.28 20477.23 12694.43 7055.17 17697.31 7079.33 11091.38 7793.37 130
EI-MVSNet-Vis-set83.77 7983.67 6584.06 13892.79 7663.56 19591.76 15594.81 2579.65 5077.87 11794.09 8463.35 9097.90 4179.35 10979.36 16990.74 187
SF-MVS87.03 3187.09 3086.84 5092.70 7767.45 9793.64 8193.76 6170.78 21686.25 3696.44 2066.98 4997.79 4588.68 3894.56 3195.28 64
MVSTER82.47 9982.05 9683.74 14492.68 7869.01 5691.90 14793.21 8379.83 4572.14 18185.71 22074.72 1694.72 17375.72 13372.49 22687.50 230
iter_conf_final81.74 11280.93 11284.18 13592.66 7969.10 5392.94 10582.80 32679.01 6574.85 14988.40 18061.83 10494.61 17879.36 10876.52 19788.83 210
CS-MVS-test86.14 4287.01 3183.52 15192.63 8059.36 27395.49 2691.92 13380.09 4385.46 4795.53 3861.82 10595.77 13386.77 5593.37 4995.41 53
MP-MVScopyleft85.02 5584.97 5585.17 10492.60 8164.27 17693.24 9492.27 11873.13 15079.63 9794.43 7061.90 10297.17 7885.00 6792.56 5894.06 110
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
thres20079.66 14778.33 15183.66 15092.54 8265.82 13793.06 9996.31 374.90 12073.30 16488.66 17559.67 12595.61 14347.84 31378.67 17689.56 205
APD-MVS_3200maxsize81.64 11481.32 10582.59 17392.36 8358.74 28091.39 16991.01 18063.35 28279.72 9694.62 6651.82 20896.14 11779.71 10587.93 10692.89 146
新几何184.73 11792.32 8464.28 17591.46 15859.56 31479.77 9592.90 10856.95 15596.57 10663.40 24392.91 5593.34 131
EI-MVSNet-UG-set83.14 8982.96 8183.67 14992.28 8563.19 20191.38 17194.68 3079.22 5776.60 13293.75 9062.64 9697.76 4678.07 12278.01 18090.05 196
HPM-MVScopyleft83.25 8782.95 8284.17 13692.25 8662.88 21190.91 18891.86 13870.30 22277.12 12793.96 8856.75 15796.28 11382.04 8991.34 7993.34 131
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HY-MVS76.49 584.28 6683.36 7687.02 4792.22 8767.74 8784.65 28194.50 3679.15 5982.23 7287.93 19166.88 5096.94 9580.53 10282.20 14996.39 27
tfpn200view978.79 16577.43 16682.88 16592.21 8864.49 16392.05 13996.28 473.48 14571.75 18688.26 18560.07 12195.32 15545.16 32477.58 18588.83 210
thres40078.68 16777.43 16682.43 17592.21 8864.49 16392.05 13996.28 473.48 14571.75 18688.26 18560.07 12195.32 15545.16 32477.58 18587.48 231
PS-MVSNAJ88.14 1687.61 2589.71 692.06 9076.72 195.75 1993.26 8283.86 1389.55 2296.06 2853.55 19497.89 4291.10 2193.31 5094.54 91
SR-MVS-dyc-post81.06 12380.70 11582.15 18792.02 9158.56 28290.90 18990.45 19062.76 28978.89 10594.46 6851.26 21695.61 14378.77 11786.77 11892.28 159
RE-MVS-def80.48 12192.02 9158.56 28290.90 18990.45 19062.76 28978.89 10594.46 6849.30 23278.77 11786.77 11892.28 159
MSLP-MVS++86.27 3985.91 4387.35 3892.01 9368.97 5895.04 3992.70 10379.04 6481.50 7796.50 1958.98 13496.78 10083.49 8093.93 3896.29 29
CS-MVS85.80 4786.65 3683.27 15992.00 9458.92 27895.31 3091.86 13879.97 4484.82 5295.40 3962.26 9995.51 15186.11 5992.08 6595.37 56
旧先验191.94 9560.74 25091.50 15694.36 7265.23 6491.84 6894.55 89
thres600view778.00 17876.66 18082.03 19491.93 9663.69 19191.30 17796.33 172.43 16670.46 19987.89 19260.31 11694.92 16842.64 33676.64 19587.48 231
LS3D69.17 27466.40 27877.50 27491.92 9756.12 30685.12 27880.37 33446.96 35356.50 31787.51 19837.25 30693.71 22032.52 36579.40 16882.68 313
GG-mvs-BLEND86.53 6391.91 9869.67 4475.02 34294.75 2778.67 11290.85 14677.91 794.56 18472.25 16193.74 4295.36 57
thres100view90078.37 17377.01 17582.46 17491.89 9963.21 20091.19 18396.33 172.28 17170.45 20087.89 19260.31 11695.32 15545.16 32477.58 18588.83 210
MTAPA83.91 7583.38 7585.50 9291.89 9965.16 15281.75 30492.23 11975.32 11480.53 8895.21 5056.06 16797.16 7984.86 7092.55 5994.18 101
canonicalmvs86.85 3386.25 3988.66 1791.80 10171.92 1493.54 8691.71 14680.26 4287.55 2995.25 4863.59 8796.93 9788.18 3984.34 13597.11 8
TSAR-MVS + MP.88.11 1888.64 1686.54 6291.73 10268.04 8090.36 20693.55 7182.89 1691.29 1292.89 10972.27 3096.03 12587.99 4094.77 2495.54 51
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMPcopyleft81.49 11580.67 11683.93 14191.71 10362.90 21092.13 13392.22 12271.79 18871.68 18893.49 9850.32 22196.96 9378.47 11984.22 14091.93 168
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
BH-RMVSNet79.46 15277.65 16284.89 11091.68 10465.66 13893.55 8588.09 27672.93 15573.37 16391.12 14346.20 26196.12 11856.28 28085.61 12892.91 145
baseline181.84 11081.03 11184.28 13491.60 10566.62 11791.08 18591.66 15081.87 2674.86 14891.67 13469.98 3694.92 16871.76 16764.75 28091.29 181
ACMMP_NAP86.05 4385.80 4586.80 5391.58 10667.53 9491.79 15293.49 7574.93 11984.61 5395.30 4359.42 12897.92 4086.13 5894.92 1894.94 77
MVS_Test84.16 7183.20 7787.05 4691.56 10769.82 3889.99 22092.05 12777.77 8182.84 6786.57 20863.93 8096.09 11974.91 14289.18 9895.25 68
HPM-MVS_fast80.25 13779.55 13682.33 17991.55 10859.95 26391.32 17689.16 24165.23 27074.71 15193.07 10447.81 24895.74 13474.87 14488.23 10391.31 180
CPTT-MVS79.59 14879.16 14380.89 22191.54 10959.80 26592.10 13588.54 26660.42 30772.96 16693.28 10048.27 24192.80 24378.89 11686.50 12390.06 195
CNLPA74.31 23272.30 23980.32 22791.49 11061.66 23290.85 19280.72 33256.67 32863.85 27590.64 14746.75 25390.84 28853.79 28975.99 20188.47 221
MP-MVS-pluss85.24 5385.13 5285.56 9191.42 11165.59 14191.54 16292.51 11374.56 12280.62 8795.64 3559.15 13297.00 8786.94 5393.80 4094.07 109
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
gg-mvs-nofinetune77.18 19174.31 21185.80 8491.42 11168.36 7071.78 34494.72 2849.61 34777.12 12745.92 36877.41 893.98 21267.62 20693.16 5295.05 73
xiu_mvs_v2_base87.92 2187.38 2989.55 1191.41 11376.43 395.74 2093.12 9083.53 1589.55 2295.95 2953.45 19897.68 4791.07 2292.62 5794.54 91
EIA-MVS84.84 5884.88 5684.69 11991.30 11462.36 21893.85 7192.04 12879.45 5179.33 10194.28 8062.42 9896.35 11180.05 10491.25 8095.38 55
alignmvs87.28 2886.97 3288.24 2391.30 11471.14 2195.61 2493.56 7079.30 5587.07 3395.25 4868.43 3896.93 9787.87 4184.33 13696.65 13
EPMVS78.49 17275.98 18886.02 7591.21 11669.68 4380.23 31991.20 16675.25 11572.48 17678.11 30654.65 18093.69 22157.66 27783.04 14394.69 84
FMVSNet377.73 18476.04 18782.80 16691.20 11768.99 5791.87 14891.99 13073.35 14767.04 24883.19 24656.62 16092.14 26659.80 26869.34 24487.28 238
Anonymous2024052976.84 19874.15 21484.88 11191.02 11864.95 15893.84 7491.09 17353.57 33673.00 16587.42 19935.91 31597.32 6969.14 19272.41 22892.36 155
tpmvs72.88 24869.76 26282.22 18490.98 11967.05 10678.22 33288.30 27063.10 28764.35 27274.98 32855.09 17794.27 19543.25 33069.57 24385.34 280
MVS84.66 6082.86 8590.06 290.93 12074.56 687.91 25595.54 1068.55 24472.35 18094.71 6359.78 12498.90 1881.29 9894.69 3096.74 12
PVSNet73.49 880.05 14178.63 14884.31 13290.92 12164.97 15792.47 12591.05 17879.18 5872.43 17890.51 15137.05 31194.06 20568.06 20086.00 12593.90 118
3Dnovator+73.60 782.10 10780.60 11986.60 5890.89 12266.80 11395.20 3393.44 7774.05 13067.42 24392.49 11849.46 23097.65 5170.80 17491.68 7195.33 58
VDD-MVS83.06 9081.81 10186.81 5290.86 12367.70 8895.40 2891.50 15675.46 11181.78 7592.34 12340.09 28597.13 8086.85 5482.04 15095.60 48
BH-w/o80.49 13279.30 14184.05 13990.83 12464.36 17393.60 8389.42 23174.35 12569.09 21590.15 16155.23 17495.61 14364.61 23686.43 12492.17 165
ET-MVSNet_ETH3D84.01 7383.15 8086.58 6090.78 12570.89 2394.74 4694.62 3381.44 3258.19 30793.64 9473.64 2392.35 26382.66 8478.66 17796.50 23
Anonymous2023121173.08 24270.39 25681.13 21190.62 12663.33 19891.40 16790.06 21151.84 34164.46 27080.67 28236.49 31394.07 20463.83 24164.17 28585.98 265
FA-MVS(test-final)79.12 15677.23 17284.81 11490.54 12763.98 18181.35 31091.71 14671.09 20974.85 14982.94 24752.85 20197.05 8267.97 20181.73 15493.41 129
TR-MVS78.77 16677.37 17182.95 16490.49 12860.88 24493.67 8090.07 20970.08 22574.51 15291.37 14045.69 26495.70 14060.12 26680.32 16392.29 158
SteuartSystems-ACMMP86.82 3586.90 3386.58 6090.42 12966.38 12296.09 1693.87 5677.73 8284.01 6195.66 3463.39 8997.94 3987.40 4793.55 4795.42 52
Skip Steuart: Steuart Systems R&D Blog.
TAPA-MVS70.22 1274.94 22773.53 22379.17 25690.40 13052.07 32589.19 23789.61 22662.69 29170.07 20592.67 11448.89 23994.32 19138.26 35079.97 16491.12 184
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
mvs_anonymous81.36 11779.99 12785.46 9390.39 13168.40 6986.88 27190.61 18974.41 12370.31 20384.67 22963.79 8292.32 26473.13 15085.70 12695.67 45
CANet_DTU84.09 7283.52 6685.81 8390.30 13266.82 11191.87 14889.01 25085.27 886.09 3993.74 9147.71 24996.98 9177.90 12389.78 9493.65 124
Fast-Effi-MVS+81.14 12080.01 12684.51 12590.24 13365.86 13594.12 5789.15 24273.81 13875.37 14588.26 18557.26 14794.53 18666.97 21384.92 13093.15 137
ETV-MVS86.01 4486.11 4185.70 8890.21 13467.02 10893.43 9191.92 13381.21 3584.13 6094.07 8660.93 11295.63 14189.28 3289.81 9294.46 97
MVS_030490.01 790.50 888.53 1990.14 13570.94 2296.47 1295.72 887.33 389.60 2196.26 2368.44 3798.74 2395.82 194.72 2995.90 41
tpmrst80.57 12979.14 14484.84 11290.10 13668.28 7381.70 30589.72 22477.63 8675.96 13679.54 29864.94 6892.71 24675.43 13577.28 19193.55 126
PVSNet_Blended_VisFu83.97 7483.50 6785.39 9690.02 13766.59 11993.77 7691.73 14477.43 9077.08 12989.81 16663.77 8396.97 9279.67 10688.21 10492.60 150
UGNet79.87 14578.68 14783.45 15689.96 13861.51 23492.13 13390.79 18276.83 9678.85 11086.33 21238.16 29796.17 11667.93 20387.17 11292.67 148
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CHOSEN 1792x268884.98 5783.45 7089.57 1089.94 13975.14 592.07 13892.32 11681.87 2675.68 13988.27 18460.18 11898.60 2680.46 10390.27 9094.96 76
BH-untuned78.68 16777.08 17383.48 15589.84 14063.74 18692.70 11388.59 26471.57 19866.83 25288.65 17651.75 21095.39 15359.03 27184.77 13291.32 179
FE-MVS75.97 21273.02 22884.82 11389.78 14165.56 14277.44 33591.07 17664.55 27272.66 17079.85 29446.05 26396.69 10254.97 28480.82 16192.21 164
test22289.77 14261.60 23389.55 22789.42 23156.83 32777.28 12592.43 12052.76 20291.14 8293.09 139
PMMVS81.98 10982.04 9781.78 19689.76 14356.17 30591.13 18490.69 18477.96 7780.09 9293.57 9646.33 25994.99 16481.41 9587.46 11094.17 102
DPM-MVS90.70 290.52 791.24 189.68 14476.68 297.29 195.35 1182.87 1791.58 1097.22 379.93 599.10 983.12 8297.64 297.94 1
QAPM79.95 14477.39 17087.64 2989.63 14571.41 1793.30 9393.70 6565.34 26967.39 24591.75 13247.83 24798.96 1657.71 27689.81 9292.54 152
3Dnovator73.91 682.69 9880.82 11388.31 2289.57 14671.26 1892.60 11994.39 4478.84 6767.89 23792.48 11948.42 24098.52 2768.80 19694.40 3395.15 70
Effi-MVS+83.82 7782.76 8686.99 4889.56 14769.40 4591.35 17486.12 29772.59 16083.22 6592.81 11359.60 12696.01 12781.76 9187.80 10795.56 50
PatchmatchNetpermissive77.46 18774.63 20485.96 7789.55 14870.35 2979.97 32489.55 22772.23 17270.94 19376.91 31757.03 15092.79 24454.27 28781.17 15794.74 83
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PatchMatch-RL72.06 25569.98 25778.28 26689.51 14955.70 30983.49 28883.39 32261.24 30263.72 27682.76 24934.77 31893.03 23253.37 29277.59 18486.12 262
thisisatest051583.41 8382.49 9286.16 7389.46 15068.26 7493.54 8694.70 2974.31 12675.75 13790.92 14472.62 2896.52 10969.64 18481.50 15593.71 122
h-mvs3383.01 9182.56 9184.35 13189.34 15162.02 22492.72 11193.76 6181.45 3082.73 6992.25 12560.11 11997.13 8087.69 4362.96 29193.91 116
EC-MVSNet84.53 6285.04 5483.01 16389.34 15161.37 23794.42 4991.09 17377.91 7983.24 6494.20 8258.37 13795.40 15285.35 6391.41 7692.27 162
UA-Net80.02 14279.65 13281.11 21289.33 15357.72 29086.33 27489.00 25177.44 8981.01 8389.15 17259.33 13095.90 12861.01 26084.28 13889.73 202
dp75.01 22672.09 24183.76 14389.28 15466.22 12879.96 32589.75 21971.16 20667.80 23977.19 31451.81 20992.54 25550.39 29871.44 23592.51 153
SDMVSNet80.26 13678.88 14684.40 12889.25 15567.63 9185.35 27793.02 9276.77 9870.84 19587.12 20347.95 24696.09 11985.04 6674.55 20689.48 206
sd_testset77.08 19375.37 19682.20 18589.25 15562.11 22382.06 30289.09 24676.77 9870.84 19587.12 20341.43 28195.01 16367.23 21074.55 20689.48 206
sss82.71 9782.38 9483.73 14689.25 15559.58 26892.24 13094.89 2277.96 7779.86 9492.38 12156.70 15897.05 8277.26 12680.86 16094.55 89
MVSFormer83.75 8082.88 8486.37 6889.24 15871.18 1989.07 23990.69 18465.80 26487.13 3194.34 7764.99 6692.67 24972.83 15391.80 6995.27 65
lupinMVS87.74 2387.77 2387.63 3389.24 15871.18 1996.57 1092.90 9882.70 2087.13 3195.27 4664.99 6695.80 13089.34 3191.80 6995.93 39
IB-MVS77.80 482.18 10380.46 12287.35 3889.14 16070.28 3095.59 2595.17 1678.85 6670.19 20485.82 21870.66 3597.67 4872.19 16466.52 26594.09 107
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MDTV_nov1_ep1372.61 23589.06 16168.48 6780.33 31790.11 20871.84 18671.81 18575.92 32553.01 20093.92 21548.04 31073.38 217
testdata81.34 20689.02 16257.72 29089.84 21758.65 31885.32 4994.09 8457.03 15093.28 22869.34 18990.56 8893.03 141
CostFormer82.33 10181.15 10685.86 8189.01 16368.46 6882.39 30193.01 9375.59 10980.25 9081.57 26672.03 3294.96 16579.06 11377.48 18894.16 103
GeoE78.90 16177.43 16683.29 15888.95 16462.02 22492.31 12786.23 29570.24 22371.34 19289.27 17054.43 18594.04 20863.31 24580.81 16293.81 121
GBi-Net75.65 21773.83 21981.10 21388.85 16565.11 15390.01 21790.32 19670.84 21367.04 24880.25 28948.03 24291.54 28159.80 26869.34 24486.64 247
test175.65 21773.83 21981.10 21388.85 16565.11 15390.01 21790.32 19670.84 21367.04 24880.25 28948.03 24291.54 28159.80 26869.34 24486.64 247
FMVSNet276.07 20674.01 21782.26 18388.85 16567.66 8991.33 17591.61 15170.84 21365.98 25582.25 25548.03 24292.00 27158.46 27368.73 25087.10 241
DeepC-MVS77.85 385.52 5085.24 5086.37 6888.80 16866.64 11692.15 13293.68 6681.07 3676.91 13093.64 9462.59 9798.44 3085.50 6292.84 5694.03 111
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EPP-MVSNet81.79 11181.52 10382.61 17288.77 16960.21 26093.02 10393.66 6768.52 24572.90 16890.39 15472.19 3194.96 16574.93 14179.29 17192.67 148
1112_ss80.56 13079.83 13082.77 16788.65 17060.78 24692.29 12888.36 26872.58 16172.46 17794.95 5465.09 6593.42 22766.38 21977.71 18294.10 106
tpm cat175.30 22272.21 24084.58 12388.52 17167.77 8678.16 33388.02 27761.88 29968.45 22976.37 32160.65 11394.03 21053.77 29074.11 21291.93 168
LCM-MVSNet-Re72.93 24671.84 24476.18 29188.49 17248.02 34280.07 32270.17 35873.96 13452.25 33180.09 29249.98 22588.24 31367.35 20784.23 13992.28 159
Vis-MVSNetpermissive80.92 12679.98 12883.74 14488.48 17361.80 22893.44 9088.26 27473.96 13477.73 11891.76 13149.94 22694.76 17065.84 22590.37 8994.65 88
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Vis-MVSNet (Re-imp)79.24 15479.57 13378.24 26888.46 17452.29 32490.41 20489.12 24474.24 12769.13 21491.91 12965.77 6090.09 30059.00 27288.09 10592.33 156
ab-mvs80.18 13878.31 15285.80 8488.44 17565.49 14683.00 29892.67 10571.82 18777.36 12485.01 22454.50 18196.59 10476.35 13175.63 20295.32 60
gm-plane-assit88.42 17667.04 10778.62 7191.83 13097.37 6576.57 129
MVS_111021_LR82.02 10881.52 10383.51 15388.42 17662.88 21189.77 22488.93 25276.78 9775.55 14393.10 10150.31 22295.38 15483.82 7987.02 11392.26 163
test250683.29 8582.92 8384.37 13088.39 17863.18 20292.01 14191.35 16177.66 8478.49 11391.42 13764.58 7395.09 16173.19 14989.23 9694.85 78
ECVR-MVScopyleft81.29 11880.38 12384.01 14088.39 17861.96 22692.56 12486.79 29077.66 8476.63 13191.42 13746.34 25895.24 15974.36 14689.23 9694.85 78
baseline85.01 5684.44 5986.71 5588.33 18068.73 6290.24 21191.82 14281.05 3781.18 8092.50 11663.69 8496.08 12284.45 7386.71 12095.32 60
tpm279.80 14677.95 15985.34 9888.28 18168.26 7481.56 30791.42 15970.11 22477.59 12280.50 28467.40 4794.26 19767.34 20877.35 18993.51 127
thisisatest053081.15 11980.07 12484.39 12988.26 18265.63 14091.40 16794.62 3371.27 20570.93 19489.18 17172.47 2996.04 12465.62 22876.89 19491.49 172
casdiffmvspermissive85.37 5184.87 5786.84 5088.25 18369.07 5493.04 10191.76 14381.27 3480.84 8692.07 12764.23 7696.06 12384.98 6887.43 11195.39 54
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Test_1112_low_res79.56 14978.60 14982.43 17588.24 18460.39 25792.09 13687.99 27872.10 17771.84 18487.42 19964.62 7293.04 23165.80 22677.30 19093.85 120
casdiffmvs_mvgpermissive85.66 4985.18 5187.09 4488.22 18569.35 4993.74 7891.89 13681.47 2980.10 9191.45 13664.80 7096.35 11187.23 5087.69 10895.58 49
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PAPM85.89 4685.46 4887.18 4188.20 18672.42 1392.41 12692.77 10182.11 2480.34 8993.07 10468.27 3995.02 16278.39 12093.59 4694.09 107
TESTMET0.1,182.41 10081.98 9983.72 14788.08 18763.74 18692.70 11393.77 6079.30 5577.61 12187.57 19758.19 14094.08 20373.91 14886.68 12193.33 133
ADS-MVSNet266.90 29363.44 30077.26 28088.06 18860.70 25268.01 35475.56 34457.57 32064.48 26869.87 34538.68 28984.10 33640.87 34167.89 25686.97 242
ADS-MVSNet68.54 28164.38 29681.03 21788.06 18866.90 11068.01 35484.02 31457.57 32064.48 26869.87 34538.68 28989.21 30640.87 34167.89 25686.97 242
EPNet_dtu78.80 16479.26 14277.43 27688.06 18849.71 33791.96 14691.95 13277.67 8376.56 13391.28 14158.51 13690.20 29856.37 27980.95 15992.39 154
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_enhance_ethall78.86 16277.97 15881.54 20288.00 19165.17 15191.41 16589.15 24275.19 11668.79 22383.98 23867.17 4892.82 24172.73 15665.30 27186.62 251
IS-MVSNet80.14 13979.41 13882.33 17987.91 19260.08 26291.97 14588.27 27272.90 15671.44 19191.73 13361.44 10793.66 22262.47 25386.53 12293.24 134
CLD-MVS82.73 9582.35 9583.86 14287.90 19367.65 9095.45 2792.18 12585.06 972.58 17392.27 12452.46 20595.78 13184.18 7479.06 17288.16 225
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test111180.84 12780.02 12583.33 15787.87 19460.76 24892.62 11886.86 28977.86 8075.73 13891.39 13946.35 25794.70 17672.79 15588.68 10294.52 93
HyFIR lowres test81.03 12479.56 13485.43 9487.81 19568.11 7990.18 21290.01 21370.65 21872.95 16786.06 21663.61 8694.50 18875.01 14079.75 16793.67 123
dmvs_re76.93 19475.36 19781.61 20087.78 19660.71 25180.00 32387.99 27879.42 5269.02 21889.47 16946.77 25294.32 19163.38 24474.45 20989.81 199
131480.70 12878.95 14585.94 7887.77 19767.56 9287.91 25592.55 11272.17 17567.44 24293.09 10250.27 22397.04 8571.68 16987.64 10993.23 135
cl2277.94 18176.78 17881.42 20487.57 19864.93 15990.67 19788.86 25572.45 16567.63 24182.68 25164.07 7792.91 23971.79 16565.30 27186.44 252
HQP-NCC87.54 19994.06 5879.80 4674.18 154
ACMP_Plane87.54 19994.06 5879.80 4674.18 154
HQP-MVS81.14 12080.64 11782.64 17187.54 19963.66 19394.06 5891.70 14879.80 4674.18 15490.30 15651.63 21295.61 14377.63 12478.90 17388.63 215
NP-MVS87.41 20263.04 20390.30 156
diffmvspermissive84.28 6683.83 6485.61 9087.40 20368.02 8190.88 19189.24 23680.54 4081.64 7692.52 11559.83 12394.52 18787.32 4885.11 12994.29 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline283.68 8283.42 7384.48 12687.37 20466.00 13190.06 21595.93 779.71 4969.08 21690.39 15477.92 696.28 11378.91 11581.38 15691.16 183
plane_prior687.23 20562.32 21950.66 219
tttt051779.50 15078.53 15082.41 17887.22 20661.43 23689.75 22594.76 2669.29 23467.91 23588.06 19072.92 2595.63 14162.91 24973.90 21690.16 194
plane_prior187.15 207
cascas78.18 17675.77 19185.41 9587.14 20869.11 5292.96 10491.15 17066.71 25870.47 19886.07 21537.49 30596.48 11070.15 18079.80 16690.65 188
CHOSEN 280x42077.35 18976.95 17778.55 26387.07 20962.68 21569.71 35082.95 32468.80 24171.48 19087.27 20266.03 5784.00 33976.47 13082.81 14688.95 209
test_fmvsm_n_192087.69 2488.50 1785.27 10087.05 21063.55 19693.69 7991.08 17584.18 1290.17 1997.04 867.58 4697.99 3895.72 290.03 9194.26 99
HQP_MVS80.34 13579.75 13182.12 18986.94 21162.42 21693.13 9791.31 16278.81 6872.53 17489.14 17350.66 21995.55 14876.74 12778.53 17888.39 222
plane_prior786.94 21161.51 234
test-LLR80.10 14079.56 13481.72 19886.93 21361.17 23892.70 11391.54 15371.51 20175.62 14086.94 20553.83 19092.38 26072.21 16284.76 13391.60 170
test-mter79.96 14379.38 14081.72 19886.93 21361.17 23892.70 11391.54 15373.85 13675.62 14086.94 20549.84 22892.38 26072.21 16284.76 13391.60 170
SCA75.82 21572.76 23285.01 10786.63 21570.08 3181.06 31289.19 23971.60 19770.01 20677.09 31545.53 26590.25 29360.43 26373.27 21894.68 85
AUN-MVS78.37 17377.43 16681.17 20986.60 21657.45 29689.46 23191.16 16874.11 12974.40 15390.49 15255.52 17194.57 18274.73 14560.43 31791.48 173
hse-mvs281.12 12281.11 11081.16 21086.52 21757.48 29589.40 23291.16 16881.45 3082.73 6990.49 15260.11 11994.58 18087.69 4360.41 31891.41 175
xiu_mvs_v1_base_debu82.16 10481.12 10785.26 10186.42 21868.72 6392.59 12190.44 19373.12 15184.20 5794.36 7238.04 29995.73 13584.12 7586.81 11591.33 176
xiu_mvs_v1_base82.16 10481.12 10785.26 10186.42 21868.72 6392.59 12190.44 19373.12 15184.20 5794.36 7238.04 29995.73 13584.12 7586.81 11591.33 176
xiu_mvs_v1_base_debi82.16 10481.12 10785.26 10186.42 21868.72 6392.59 12190.44 19373.12 15184.20 5794.36 7238.04 29995.73 13584.12 7586.81 11591.33 176
F-COLMAP70.66 26368.44 26977.32 27886.37 22155.91 30788.00 25386.32 29256.94 32657.28 31588.07 18933.58 32292.49 25751.02 29668.37 25283.55 295
CDS-MVSNet81.43 11680.74 11483.52 15186.26 22264.45 16692.09 13690.65 18875.83 10873.95 16089.81 16663.97 7992.91 23971.27 17082.82 14593.20 136
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
VDDNet80.50 13178.26 15387.21 4086.19 22369.79 3994.48 4891.31 16260.42 30779.34 10090.91 14538.48 29496.56 10782.16 8781.05 15895.27 65
jason86.40 3786.17 4087.11 4386.16 22470.54 2795.71 2392.19 12482.00 2584.58 5494.34 7761.86 10395.53 15087.76 4290.89 8395.27 65
jason: jason.
PCF-MVS73.15 979.29 15377.63 16384.29 13386.06 22565.96 13387.03 26791.10 17269.86 22869.79 21190.64 14757.54 14696.59 10464.37 23882.29 14790.32 192
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MS-PatchMatch77.90 18376.50 18182.12 18985.99 22669.95 3591.75 15792.70 10373.97 13362.58 28684.44 23341.11 28295.78 13163.76 24292.17 6380.62 330
FIs79.47 15179.41 13879.67 24785.95 22759.40 27091.68 15993.94 5578.06 7668.96 22088.28 18366.61 5391.77 27566.20 22274.99 20587.82 227
VPA-MVSNet79.03 15778.00 15782.11 19285.95 22764.48 16593.22 9694.66 3175.05 11874.04 15984.95 22552.17 20793.52 22474.90 14367.04 26188.32 224
tpm78.58 17077.03 17483.22 16085.94 22964.56 16183.21 29591.14 17178.31 7373.67 16279.68 29664.01 7892.09 26966.07 22371.26 23693.03 141
OpenMVScopyleft70.45 1178.54 17175.92 18986.41 6785.93 23071.68 1692.74 11092.51 11366.49 26064.56 26791.96 12843.88 27298.10 3654.61 28590.65 8689.44 208
OMC-MVS78.67 16977.91 16080.95 21985.76 23157.40 29788.49 24888.67 26173.85 13672.43 17892.10 12649.29 23394.55 18572.73 15677.89 18190.91 186
miper_ehance_all_eth77.60 18576.44 18281.09 21685.70 23264.41 17090.65 19888.64 26372.31 16967.37 24682.52 25264.77 7192.64 25370.67 17665.30 27186.24 256
KD-MVS_2432*160069.03 27666.37 27977.01 28385.56 23361.06 24181.44 30890.25 20267.27 25458.00 31076.53 31954.49 18287.63 32148.04 31035.77 36782.34 316
miper_refine_blended69.03 27666.37 27977.01 28385.56 23361.06 24181.44 30890.25 20267.27 25458.00 31076.53 31954.49 18287.63 32148.04 31035.77 36782.34 316
EI-MVSNet78.97 15978.22 15481.25 20785.33 23562.73 21489.53 22993.21 8372.39 16872.14 18190.13 16260.99 11094.72 17367.73 20572.49 22686.29 254
CVMVSNet74.04 23574.27 21273.33 31085.33 23543.94 35889.53 22988.39 26754.33 33570.37 20190.13 16249.17 23584.05 33761.83 25779.36 16991.99 167
ACMH63.93 1768.62 27964.81 28980.03 23785.22 23763.25 19987.72 25884.66 30960.83 30551.57 33479.43 29927.29 34394.96 16541.76 33764.84 27881.88 320
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cl____76.07 20674.67 20280.28 22985.15 23861.76 23090.12 21388.73 25971.16 20665.43 25881.57 26661.15 10892.95 23466.54 21662.17 29986.13 261
DIV-MVS_self_test76.07 20674.67 20280.28 22985.14 23961.75 23190.12 21388.73 25971.16 20665.42 25981.60 26561.15 10892.94 23866.54 21662.16 30186.14 259
TAMVS80.37 13479.45 13783.13 16285.14 23963.37 19791.23 17990.76 18374.81 12172.65 17188.49 17760.63 11492.95 23469.41 18881.95 15193.08 140
MSDG69.54 27265.73 28280.96 21885.11 24163.71 18984.19 28383.28 32356.95 32554.50 32284.03 23631.50 33096.03 12542.87 33469.13 24783.14 305
c3_l76.83 19975.47 19580.93 22085.02 24264.18 17890.39 20588.11 27571.66 19166.65 25481.64 26463.58 8892.56 25469.31 19062.86 29286.04 263
ACMP71.68 1075.58 22074.23 21379.62 24984.97 24359.64 26690.80 19489.07 24870.39 22162.95 28287.30 20138.28 29593.87 21772.89 15271.45 23485.36 279
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
FC-MVSNet-test77.99 17978.08 15677.70 27184.89 24455.51 31090.27 20993.75 6476.87 9366.80 25387.59 19665.71 6190.23 29762.89 25073.94 21487.37 234
PVSNet_068.08 1571.81 25668.32 27182.27 18184.68 24562.31 22088.68 24590.31 19975.84 10757.93 31280.65 28337.85 30294.19 19969.94 18229.05 37590.31 193
eth_miper_zixun_eth75.96 21374.40 21080.66 22284.66 24663.02 20489.28 23488.27 27271.88 18365.73 25681.65 26359.45 12792.81 24268.13 19960.53 31586.14 259
WR-MVS76.76 20075.74 19279.82 24484.60 24762.27 22192.60 11992.51 11376.06 10567.87 23885.34 22156.76 15690.24 29662.20 25463.69 29086.94 244
ACMH+65.35 1667.65 28864.55 29276.96 28584.59 24857.10 29988.08 25280.79 33158.59 31953.00 32881.09 27826.63 34592.95 23446.51 31861.69 30880.82 327
VPNet78.82 16377.53 16582.70 16984.52 24966.44 12193.93 6692.23 11980.46 4172.60 17288.38 18249.18 23493.13 23072.47 16063.97 28888.55 218
IterMVS-LS76.49 20275.18 20080.43 22684.49 25062.74 21390.64 19988.80 25672.40 16765.16 26181.72 26260.98 11192.27 26567.74 20464.65 28286.29 254
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_NR-MVSNet78.15 17777.55 16479.98 23884.46 25160.26 25892.25 12993.20 8577.50 8868.88 22186.61 20766.10 5692.13 26766.38 21962.55 29587.54 229
FMVSNet568.04 28565.66 28475.18 29784.43 25257.89 28783.54 28786.26 29461.83 30053.64 32773.30 33237.15 30985.08 33348.99 30561.77 30482.56 315
MVS-HIRNet60.25 32055.55 32774.35 30384.37 25356.57 30471.64 34574.11 34834.44 36645.54 35442.24 37331.11 33489.81 30140.36 34476.10 20076.67 352
LPG-MVS_test75.82 21574.58 20679.56 25184.31 25459.37 27190.44 20289.73 22269.49 23164.86 26288.42 17838.65 29194.30 19372.56 15872.76 22385.01 284
LGP-MVS_train79.56 25184.31 25459.37 27189.73 22269.49 23164.86 26288.42 17838.65 29194.30 19372.56 15872.76 22385.01 284
ACMM69.62 1374.34 23172.73 23379.17 25684.25 25657.87 28890.36 20689.93 21463.17 28665.64 25786.04 21737.79 30394.10 20165.89 22471.52 23385.55 275
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet (Re)77.58 18676.78 17879.98 23884.11 25760.80 24591.76 15593.17 8776.56 10269.93 21084.78 22863.32 9192.36 26264.89 23562.51 29786.78 246
test_040264.54 30561.09 31174.92 29984.10 25860.75 24987.95 25479.71 33652.03 33952.41 33077.20 31332.21 32891.64 27723.14 37061.03 31172.36 359
LTVRE_ROB59.60 1966.27 29663.54 29974.45 30284.00 25951.55 32767.08 35783.53 31958.78 31754.94 32180.31 28734.54 31993.23 22940.64 34368.03 25478.58 346
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
miper_lstm_enhance73.05 24471.73 24677.03 28283.80 26058.32 28481.76 30388.88 25369.80 22961.01 29278.23 30557.19 14887.51 32365.34 23259.53 32085.27 282
Patchmatch-test65.86 29860.94 31280.62 22483.75 26158.83 27958.91 36875.26 34644.50 35950.95 33877.09 31558.81 13587.90 31535.13 35664.03 28695.12 71
nrg03080.93 12579.86 12984.13 13783.69 26268.83 6093.23 9591.20 16675.55 11075.06 14788.22 18863.04 9594.74 17281.88 9066.88 26288.82 213
GA-MVS78.33 17576.23 18584.65 12083.65 26366.30 12591.44 16390.14 20776.01 10670.32 20284.02 23742.50 27794.72 17370.98 17277.00 19392.94 144
FMVSNet172.71 25169.91 26081.10 21383.60 26465.11 15390.01 21790.32 19663.92 27663.56 27780.25 28936.35 31491.54 28154.46 28666.75 26386.64 247
OPM-MVS79.00 15878.09 15581.73 19783.52 26563.83 18391.64 16190.30 20076.36 10471.97 18389.93 16546.30 26095.17 16075.10 13877.70 18386.19 258
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tfpnnormal70.10 26767.36 27478.32 26583.45 26660.97 24388.85 24292.77 10164.85 27160.83 29478.53 30243.52 27493.48 22531.73 36661.70 30780.52 331
Effi-MVS+-dtu76.14 20575.28 19978.72 26283.22 26755.17 31289.87 22187.78 28175.42 11267.98 23281.43 26845.08 26892.52 25675.08 13971.63 23188.48 219
CR-MVSNet73.79 23970.82 25282.70 16983.15 26867.96 8270.25 34784.00 31573.67 14369.97 20872.41 33557.82 14389.48 30452.99 29373.13 21990.64 189
RPMNet70.42 26665.68 28384.63 12283.15 26867.96 8270.25 34790.45 19046.83 35569.97 20865.10 35456.48 16395.30 15835.79 35573.13 21990.64 189
mvsmamba76.85 19775.71 19380.25 23183.07 27059.16 27591.44 16380.64 33376.84 9567.95 23386.33 21246.17 26294.24 19876.06 13272.92 22287.36 235
DU-MVS76.86 19575.84 19079.91 24182.96 27160.26 25891.26 17891.54 15376.46 10368.88 22186.35 21056.16 16492.13 26766.38 21962.55 29587.35 236
NR-MVSNet76.05 20974.59 20580.44 22582.96 27162.18 22290.83 19391.73 14477.12 9260.96 29386.35 21059.28 13191.80 27460.74 26161.34 31087.35 236
XXY-MVS77.94 18176.44 18282.43 17582.60 27364.44 16792.01 14191.83 14173.59 14470.00 20785.82 21854.43 18594.76 17069.63 18568.02 25588.10 226
test_fmvsmvis_n_192083.80 7883.48 6884.77 11582.51 27463.72 18891.37 17283.99 31781.42 3377.68 11995.74 3358.37 13797.58 5593.38 586.87 11493.00 143
TranMVSNet+NR-MVSNet75.86 21474.52 20879.89 24282.44 27560.64 25491.37 17291.37 16076.63 10067.65 24086.21 21452.37 20691.55 28061.84 25660.81 31387.48 231
RRT_MVS74.44 23072.97 23078.84 26182.36 27657.66 29289.83 22388.79 25870.61 21964.58 26684.89 22639.24 28792.65 25270.11 18166.34 26686.21 257
test_vis1_n_192081.66 11382.01 9880.64 22382.24 27755.09 31394.76 4586.87 28881.67 2884.40 5694.63 6538.17 29694.67 17791.98 1683.34 14292.16 166
IterMVS72.65 25470.83 25178.09 26982.17 27862.96 20687.64 26186.28 29371.56 19960.44 29578.85 30145.42 26786.66 32763.30 24661.83 30384.65 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmtry67.53 29063.93 29778.34 26482.12 27964.38 17168.72 35184.00 31548.23 35259.24 30072.41 33557.82 14389.27 30546.10 32156.68 33081.36 323
PatchT69.11 27565.37 28780.32 22782.07 28063.68 19267.96 35687.62 28250.86 34469.37 21265.18 35357.09 14988.53 31041.59 33966.60 26488.74 214
MIMVSNet71.64 25768.44 26981.23 20881.97 28164.44 16773.05 34388.80 25669.67 23064.59 26574.79 32932.79 32487.82 31753.99 28876.35 19891.42 174
MVP-Stereo77.12 19276.23 18579.79 24581.72 28266.34 12489.29 23390.88 18170.56 22062.01 28982.88 24849.34 23194.13 20065.55 23093.80 4078.88 343
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
IterMVS-SCA-FT71.55 26069.97 25876.32 28981.48 28360.67 25387.64 26185.99 29866.17 26259.50 29978.88 30045.53 26583.65 34162.58 25261.93 30284.63 289
COLMAP_ROBcopyleft57.96 2062.98 31359.65 31572.98 31381.44 28453.00 32283.75 28675.53 34548.34 35148.81 34581.40 27024.14 34890.30 29232.95 36260.52 31675.65 354
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
JIA-IIPM66.06 29762.45 30676.88 28681.42 28554.45 31757.49 36988.67 26149.36 34863.86 27446.86 36756.06 16790.25 29349.53 30368.83 24885.95 266
WR-MVS_H70.59 26469.94 25972.53 31681.03 28651.43 32887.35 26492.03 12967.38 25360.23 29680.70 28055.84 17083.45 34346.33 32058.58 32582.72 310
Fast-Effi-MVS+-dtu75.04 22573.37 22580.07 23580.86 28759.52 26991.20 18285.38 30271.90 18165.20 26084.84 22741.46 28092.97 23366.50 21872.96 22187.73 228
Baseline_NR-MVSNet73.99 23672.83 23177.48 27580.78 28859.29 27491.79 15284.55 31068.85 24068.99 21980.70 28056.16 16492.04 27062.67 25160.98 31281.11 324
CP-MVSNet70.50 26569.91 26072.26 31980.71 28951.00 33187.23 26690.30 20067.84 24859.64 29882.69 25050.23 22482.30 35151.28 29559.28 32183.46 299
v875.35 22173.26 22681.61 20080.67 29066.82 11189.54 22889.27 23571.65 19263.30 28080.30 28854.99 17894.06 20567.33 20962.33 29883.94 292
PS-MVSNAJss77.26 19076.31 18480.13 23480.64 29159.16 27590.63 20191.06 17772.80 15768.58 22784.57 23153.55 19493.96 21372.97 15171.96 23087.27 239
TransMVSNet (Re)70.07 26867.66 27377.31 27980.62 29259.13 27791.78 15484.94 30765.97 26360.08 29780.44 28550.78 21891.87 27248.84 30645.46 35380.94 326
v2v48277.42 18875.65 19482.73 16880.38 29367.13 10491.85 15090.23 20475.09 11769.37 21283.39 24453.79 19294.44 18971.77 16665.00 27786.63 250
PS-CasMVS69.86 27169.13 26572.07 32280.35 29450.57 33387.02 26889.75 21967.27 25459.19 30282.28 25446.58 25582.24 35250.69 29759.02 32283.39 301
v1074.77 22872.54 23781.46 20380.33 29566.71 11589.15 23889.08 24770.94 21163.08 28179.86 29352.52 20494.04 20865.70 22762.17 29983.64 294
test0.0.03 172.76 24972.71 23472.88 31480.25 29647.99 34391.22 18089.45 22971.51 20162.51 28787.66 19553.83 19085.06 33450.16 30067.84 25885.58 273
v114476.73 20174.88 20182.27 18180.23 29766.60 11891.68 15990.21 20673.69 14169.06 21781.89 25952.73 20394.40 19069.21 19165.23 27485.80 269
v14876.19 20474.47 20981.36 20580.05 29864.44 16791.75 15790.23 20473.68 14267.13 24780.84 27955.92 16993.86 21968.95 19461.73 30685.76 272
dmvs_testset65.55 30166.45 27762.86 34279.87 29922.35 38476.55 33771.74 35577.42 9155.85 31887.77 19451.39 21480.69 35731.51 36865.92 26985.55 275
v119275.98 21173.92 21882.15 18779.73 30066.24 12791.22 18089.75 21972.67 15968.49 22881.42 26949.86 22794.27 19567.08 21165.02 27685.95 266
AllTest61.66 31558.06 31972.46 31779.57 30151.42 32980.17 32068.61 36151.25 34245.88 35081.23 27219.86 35986.58 32838.98 34757.01 32879.39 339
TestCases72.46 31779.57 30151.42 32968.61 36151.25 34245.88 35081.23 27219.86 35986.58 32838.98 34757.01 32879.39 339
MDA-MVSNet-bldmvs61.54 31757.70 32173.05 31279.53 30357.00 30283.08 29681.23 32957.57 32034.91 36772.45 33432.79 32486.26 33035.81 35441.95 35875.89 353
v14419276.05 20974.03 21682.12 18979.50 30466.55 12091.39 16989.71 22572.30 17068.17 23081.33 27151.75 21094.03 21067.94 20264.19 28485.77 270
v192192075.63 21973.49 22482.06 19379.38 30566.35 12391.07 18789.48 22871.98 17867.99 23181.22 27449.16 23693.90 21666.56 21564.56 28385.92 268
PEN-MVS69.46 27368.56 26772.17 32179.27 30649.71 33786.90 27089.24 23667.24 25759.08 30382.51 25347.23 25183.54 34248.42 30857.12 32683.25 302
v124075.21 22472.98 22981.88 19579.20 30766.00 13190.75 19689.11 24571.63 19667.41 24481.22 27447.36 25093.87 21765.46 23164.72 28185.77 270
pmmvs473.92 23771.81 24580.25 23179.17 30865.24 14987.43 26387.26 28667.64 25263.46 27883.91 23948.96 23891.53 28462.94 24865.49 27083.96 291
D2MVS73.80 23872.02 24279.15 25879.15 30962.97 20588.58 24790.07 20972.94 15459.22 30178.30 30342.31 27992.70 24865.59 22972.00 22981.79 321
V4276.46 20374.55 20782.19 18679.14 31067.82 8590.26 21089.42 23173.75 13968.63 22681.89 25951.31 21594.09 20271.69 16864.84 27884.66 287
pm-mvs172.89 24771.09 25078.26 26779.10 31157.62 29390.80 19489.30 23467.66 25062.91 28381.78 26149.11 23792.95 23460.29 26558.89 32384.22 290
our_test_368.29 28364.69 29179.11 25978.92 31264.85 16088.40 25085.06 30560.32 30952.68 32976.12 32340.81 28389.80 30344.25 32955.65 33182.67 314
ppachtmachnet_test67.72 28763.70 29879.77 24678.92 31266.04 13088.68 24582.90 32560.11 31155.45 31975.96 32439.19 28890.55 28939.53 34552.55 34182.71 311
test_fmvs174.07 23473.69 22175.22 29578.91 31447.34 34789.06 24174.69 34763.68 27979.41 9991.59 13524.36 34787.77 31985.22 6476.26 19990.55 191
TinyColmap60.32 31956.42 32672.00 32378.78 31553.18 32178.36 33175.64 34352.30 33841.59 36375.82 32614.76 36688.35 31235.84 35354.71 33674.46 355
SixPastTwentyTwo64.92 30361.78 31074.34 30478.74 31649.76 33683.42 29179.51 33762.86 28850.27 33977.35 31030.92 33590.49 29145.89 32247.06 35082.78 307
EG-PatchMatch MVS68.55 28065.41 28677.96 27078.69 31762.93 20789.86 22289.17 24060.55 30650.27 33977.73 30922.60 35294.06 20547.18 31672.65 22576.88 351
pmmvs573.35 24171.52 24778.86 26078.64 31860.61 25591.08 18586.90 28767.69 24963.32 27983.64 24044.33 27190.53 29062.04 25566.02 26885.46 277
UniMVSNet_ETH3D72.74 25070.53 25579.36 25378.62 31956.64 30385.01 27989.20 23863.77 27864.84 26484.44 23334.05 32091.86 27363.94 24070.89 23889.57 204
XVG-OURS74.25 23372.46 23879.63 24878.45 32057.59 29480.33 31787.39 28363.86 27768.76 22489.62 16840.50 28491.72 27669.00 19374.25 21189.58 203
tt080573.07 24370.73 25380.07 23578.37 32157.05 30087.78 25792.18 12561.23 30367.04 24886.49 20931.35 33294.58 18065.06 23467.12 26088.57 217
test_cas_vis1_n_192080.45 13380.61 11879.97 24078.25 32257.01 30194.04 6288.33 26979.06 6382.81 6893.70 9238.65 29191.63 27890.82 2579.81 16591.27 182
XVG-OURS-SEG-HR74.70 22973.08 22779.57 25078.25 32257.33 29880.49 31587.32 28463.22 28468.76 22490.12 16444.89 26991.59 27970.55 17874.09 21389.79 200
MDA-MVSNet_test_wron63.78 31060.16 31374.64 30078.15 32460.41 25683.49 28884.03 31356.17 33139.17 36571.59 34137.22 30783.24 34642.87 33448.73 34780.26 334
YYNet163.76 31160.14 31474.62 30178.06 32560.19 26183.46 29083.99 31756.18 33039.25 36471.56 34237.18 30883.34 34442.90 33348.70 34880.32 333
DTE-MVSNet68.46 28267.33 27571.87 32477.94 32649.00 34086.16 27588.58 26566.36 26158.19 30782.21 25646.36 25683.87 34044.97 32755.17 33382.73 309
USDC67.43 29264.51 29376.19 29077.94 32655.29 31178.38 33085.00 30673.17 14948.36 34680.37 28621.23 35492.48 25852.15 29464.02 28780.81 328
bld_raw_dy_0_6471.59 25969.71 26377.22 28177.82 32858.12 28687.71 25973.66 34968.01 24761.90 29184.29 23533.68 32188.43 31169.91 18370.43 23985.11 283
jajsoiax73.05 24471.51 24877.67 27277.46 32954.83 31488.81 24390.04 21269.13 23862.85 28483.51 24231.16 33392.75 24570.83 17369.80 24085.43 278
mvs_tets72.71 25171.11 24977.52 27377.41 33054.52 31688.45 24989.76 21868.76 24362.70 28583.26 24529.49 33792.71 24670.51 17969.62 24285.34 280
N_pmnet50.55 33049.11 33354.88 35077.17 3314.02 39084.36 2822.00 38948.59 34945.86 35268.82 34732.22 32782.80 34831.58 36751.38 34377.81 349
test_djsdf73.76 24072.56 23677.39 27777.00 33253.93 31889.07 23990.69 18465.80 26463.92 27382.03 25843.14 27692.67 24972.83 15368.53 25185.57 274
OpenMVS_ROBcopyleft61.12 1866.39 29562.92 30376.80 28776.51 33357.77 28989.22 23583.41 32155.48 33253.86 32677.84 30826.28 34693.95 21434.90 35768.76 24978.68 345
v7n71.31 26168.65 26679.28 25476.40 33460.77 24786.71 27289.45 22964.17 27558.77 30678.24 30444.59 27093.54 22357.76 27561.75 30583.52 297
K. test v363.09 31259.61 31673.53 30976.26 33549.38 33983.27 29277.15 33964.35 27447.77 34872.32 33728.73 33987.79 31849.93 30236.69 36683.41 300
RPSCF64.24 30761.98 30971.01 32676.10 33645.00 35575.83 34075.94 34146.94 35458.96 30484.59 23031.40 33182.00 35347.76 31460.33 31986.04 263
OurMVSNet-221017-064.68 30462.17 30872.21 32076.08 33747.35 34680.67 31481.02 33056.19 32951.60 33379.66 29727.05 34488.56 30953.60 29153.63 33880.71 329
Anonymous2023120667.53 29065.78 28172.79 31574.95 33847.59 34588.23 25187.32 28461.75 30158.07 30977.29 31237.79 30387.29 32542.91 33263.71 28983.48 298
EGC-MVSNET42.35 33538.09 33855.11 34974.57 33946.62 35171.63 34655.77 3720.04 3840.24 38562.70 35814.24 36774.91 36317.59 37446.06 35243.80 370
ITE_SJBPF70.43 32774.44 34047.06 35077.32 33860.16 31054.04 32583.53 24123.30 35184.01 33843.07 33161.58 30980.21 336
EU-MVSNet64.01 30863.01 30267.02 33874.40 34138.86 36883.27 29286.19 29645.11 35754.27 32381.15 27736.91 31280.01 35948.79 30757.02 32782.19 319
XVG-ACMP-BASELINE68.04 28565.53 28575.56 29374.06 34252.37 32378.43 32985.88 29962.03 29658.91 30581.21 27620.38 35791.15 28760.69 26268.18 25383.16 304
mvsany_test168.77 27868.56 26769.39 32973.57 34345.88 35480.93 31360.88 37159.65 31371.56 18990.26 15843.22 27575.05 36174.26 14762.70 29487.25 240
CL-MVSNet_self_test69.92 26968.09 27275.41 29473.25 34455.90 30890.05 21689.90 21569.96 22661.96 29076.54 31851.05 21787.64 32049.51 30450.59 34582.70 312
anonymousdsp71.14 26269.37 26476.45 28872.95 34554.71 31584.19 28388.88 25361.92 29862.15 28879.77 29538.14 29891.44 28668.90 19567.45 25983.21 303
lessismore_v073.72 30872.93 34647.83 34461.72 37045.86 35273.76 33128.63 34189.81 30147.75 31531.37 37283.53 296
pmmvs667.57 28964.76 29076.00 29272.82 34753.37 32088.71 24486.78 29153.19 33757.58 31478.03 30735.33 31792.41 25955.56 28254.88 33582.21 318
testgi64.48 30662.87 30469.31 33071.24 34840.62 36385.49 27679.92 33565.36 26854.18 32483.49 24323.74 35084.55 33541.60 33860.79 31482.77 308
Patchmatch-RL test68.17 28464.49 29479.19 25571.22 34953.93 31870.07 34971.54 35769.22 23556.79 31662.89 35756.58 16188.61 30769.53 18752.61 34095.03 75
test_fmvs1_n72.69 25371.92 24374.99 29871.15 35047.08 34987.34 26575.67 34263.48 28178.08 11691.17 14220.16 35887.87 31684.65 7175.57 20390.01 197
Gipumacopyleft34.91 34231.44 34545.30 35770.99 35139.64 36719.85 37972.56 35220.10 37516.16 37921.47 3805.08 38071.16 36613.07 37843.70 35625.08 377
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
UnsupCasMVSNet_eth65.79 29963.10 30173.88 30670.71 35250.29 33581.09 31189.88 21672.58 16149.25 34474.77 33032.57 32687.43 32455.96 28141.04 36083.90 293
CMPMVSbinary48.56 2166.77 29464.41 29573.84 30770.65 35350.31 33477.79 33485.73 30145.54 35644.76 35682.14 25735.40 31690.14 29963.18 24774.54 20881.07 325
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0363.83 30962.65 30567.38 33770.58 35439.94 36486.57 27384.17 31263.29 28351.86 33277.30 31137.09 31082.47 34938.87 34954.13 33779.73 337
MIMVSNet160.16 32157.33 32268.67 33169.71 35544.13 35778.92 32784.21 31155.05 33344.63 35771.85 33923.91 34981.54 35532.63 36455.03 33480.35 332
test_vis1_n71.63 25870.73 25374.31 30569.63 35647.29 34886.91 26972.11 35363.21 28575.18 14690.17 16020.40 35685.76 33184.59 7274.42 21089.87 198
pmmvs-eth3d65.53 30262.32 30775.19 29669.39 35759.59 26782.80 29983.43 32062.52 29251.30 33672.49 33332.86 32387.16 32655.32 28350.73 34478.83 344
UnsupCasMVSNet_bld61.60 31657.71 32073.29 31168.73 35851.64 32678.61 32889.05 24957.20 32446.11 34961.96 36028.70 34088.60 30850.08 30138.90 36479.63 338
test_vis1_rt59.09 32457.31 32364.43 34068.44 35946.02 35383.05 29748.63 37851.96 34049.57 34263.86 35616.30 36180.20 35871.21 17162.79 29367.07 365
Anonymous2024052162.09 31459.08 31771.10 32567.19 36048.72 34183.91 28585.23 30450.38 34547.84 34771.22 34420.74 35585.51 33246.47 31958.75 32479.06 342
test_fmvs265.78 30064.84 28868.60 33266.54 36141.71 36083.27 29269.81 35954.38 33467.91 23584.54 23215.35 36381.22 35675.65 13466.16 26782.88 306
KD-MVS_self_test60.87 31858.60 31867.68 33566.13 36239.93 36575.63 34184.70 30857.32 32349.57 34268.45 34829.55 33682.87 34748.09 30947.94 34980.25 335
new-patchmatchnet59.30 32356.48 32567.79 33465.86 36344.19 35682.47 30081.77 32759.94 31243.65 36066.20 35227.67 34281.68 35439.34 34641.40 35977.50 350
PM-MVS59.40 32256.59 32467.84 33363.63 36441.86 35976.76 33663.22 36859.01 31651.07 33772.27 33811.72 36983.25 34561.34 25850.28 34678.39 347
DSMNet-mixed56.78 32654.44 32963.79 34163.21 36529.44 37964.43 36064.10 36742.12 36351.32 33571.60 34031.76 32975.04 36236.23 35265.20 27586.87 245
new_pmnet49.31 33146.44 33457.93 34562.84 36640.74 36268.47 35362.96 36936.48 36535.09 36657.81 36214.97 36572.18 36532.86 36346.44 35160.88 367
LF4IMVS54.01 32952.12 33059.69 34462.41 36739.91 36668.59 35268.28 36342.96 36244.55 35875.18 32714.09 36868.39 36841.36 34051.68 34270.78 360
ambc69.61 32861.38 36841.35 36149.07 37485.86 30050.18 34166.40 35110.16 37188.14 31445.73 32344.20 35479.32 341
TDRefinement55.28 32851.58 33166.39 33959.53 36946.15 35276.23 33872.80 35144.60 35842.49 36176.28 32215.29 36482.39 35033.20 36143.75 35570.62 361
pmmvs355.51 32751.50 33267.53 33657.90 37050.93 33280.37 31673.66 34940.63 36444.15 35964.75 35516.30 36178.97 36044.77 32840.98 36272.69 357
test_method38.59 34035.16 34348.89 35554.33 37121.35 38545.32 37553.71 3737.41 38128.74 36951.62 3658.70 37452.87 37933.73 35832.89 37172.47 358
test_fmvs356.82 32554.86 32862.69 34353.59 37235.47 37075.87 33965.64 36643.91 36055.10 32071.43 3436.91 37774.40 36468.64 19752.63 33978.20 348
APD_test140.50 33737.31 34050.09 35451.88 37335.27 37159.45 36752.59 37421.64 37326.12 37157.80 3634.56 38166.56 37022.64 37139.09 36348.43 369
DeepMVS_CXcopyleft34.71 36251.45 37424.73 38328.48 38831.46 36917.49 37852.75 3645.80 37942.60 38318.18 37319.42 37636.81 375
FPMVS45.64 33443.10 33753.23 35251.42 37536.46 36964.97 35971.91 35429.13 37027.53 37061.55 3619.83 37265.01 37416.00 37755.58 33258.22 368
wuyk23d11.30 35110.95 35412.33 36648.05 37619.89 38625.89 3781.92 3903.58 3823.12 3841.37 3840.64 38915.77 3856.23 3837.77 3831.35 381
PMMVS237.93 34133.61 34450.92 35346.31 37724.76 38260.55 36650.05 37528.94 37120.93 37347.59 3664.41 38365.13 37325.14 36918.55 37762.87 366
mvsany_test348.86 33246.35 33556.41 34646.00 37831.67 37562.26 36247.25 37943.71 36145.54 35468.15 34910.84 37064.44 37657.95 27435.44 36973.13 356
test_f46.58 33343.45 33655.96 34745.18 37932.05 37461.18 36349.49 37733.39 36742.05 36262.48 3597.00 37665.56 37247.08 31743.21 35770.27 362
test_vis3_rt40.46 33837.79 33948.47 35644.49 38033.35 37366.56 35832.84 38632.39 36829.65 36839.13 3763.91 38468.65 36750.17 29940.99 36143.40 371
E-PMN24.61 34624.00 35026.45 36343.74 38118.44 38760.86 36439.66 38215.11 3789.53 38222.10 3796.52 37846.94 3818.31 38110.14 37913.98 379
testf132.77 34329.47 34642.67 35941.89 38230.81 37652.07 37043.45 38015.45 37618.52 37644.82 3702.12 38558.38 37716.05 37530.87 37338.83 372
APD_test232.77 34329.47 34642.67 35941.89 38230.81 37652.07 37043.45 38015.45 37618.52 37644.82 3702.12 38558.38 37716.05 37530.87 37338.83 372
EMVS23.76 34823.20 35225.46 36441.52 38416.90 38860.56 36538.79 38514.62 3798.99 38320.24 3827.35 37545.82 3827.25 3829.46 38013.64 380
LCM-MVSNet40.54 33635.79 34154.76 35136.92 38530.81 37651.41 37269.02 36022.07 37224.63 37245.37 3694.56 38165.81 37133.67 35934.50 37067.67 363
ANet_high40.27 33935.20 34255.47 34834.74 38634.47 37263.84 36171.56 35648.42 35018.80 37541.08 3749.52 37364.45 37520.18 3728.66 38267.49 364
MVEpermissive24.84 2324.35 34719.77 35338.09 36134.56 38726.92 38126.57 37738.87 38411.73 38011.37 38127.44 3771.37 38850.42 38011.41 37914.60 37836.93 374
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft26.43 2231.84 34528.16 34842.89 35825.87 38827.58 38050.92 37349.78 37621.37 37414.17 38040.81 3752.01 38766.62 3699.61 38038.88 36534.49 376
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt22.26 34923.75 35117.80 3655.23 38912.06 38935.26 37639.48 3832.82 38318.94 37444.20 37222.23 35324.64 38436.30 3519.31 38116.69 378
testmvs7.23 3539.62 3560.06 3680.04 3900.02 39284.98 2800.02 3910.03 3850.18 3861.21 3850.01 3910.02 3860.14 3840.01 3840.13 383
test1236.92 3549.21 3570.08 3670.03 3910.05 39181.65 3060.01 3920.02 3860.14 3870.85 3860.03 3900.02 3860.12 3850.00 3850.16 382
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3850.00 384
eth-test20.00 392
eth-test0.00 392
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3850.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3850.00 384
cdsmvs_eth3d_5k19.86 35026.47 3490.00 3690.00 3920.00 3930.00 38093.45 760.00 3870.00 38895.27 4649.56 2290.00 3880.00 3860.00 3850.00 384
pcd_1.5k_mvsjas4.46 3555.95 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38753.55 1940.00 3880.00 3860.00 3850.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3850.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3850.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3850.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3850.00 384
ab-mvs-re7.91 35210.55 3550.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38894.95 540.00 3920.00 3880.00 3860.00 3850.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3850.00 384
PC_three_145280.91 3894.07 296.83 1483.57 499.12 595.70 497.42 497.55 4
test_241102_TWO94.41 4171.65 19292.07 697.21 474.58 1799.11 692.34 1195.36 1396.59 15
test_0728_THIRD72.48 16390.55 1696.93 1076.24 1199.08 1191.53 1994.99 1696.43 25
GSMVS94.68 85
sam_mvs157.85 14294.68 85
sam_mvs54.91 179
MTGPAbinary92.23 119
test_post178.95 32620.70 38153.05 19991.50 28560.43 263
test_post23.01 37856.49 16292.67 249
patchmatchnet-post67.62 35057.62 14590.25 293
MTMP93.77 7632.52 387
test9_res89.41 2994.96 1795.29 62
agg_prior286.41 5694.75 2895.33 58
test_prior467.18 10393.92 67
test_prior295.10 3775.40 11385.25 5195.61 3667.94 4387.47 4694.77 24
旧先验292.00 14459.37 31587.54 3093.47 22675.39 136
新几何291.41 165
无先验92.71 11292.61 11062.03 29697.01 8666.63 21493.97 113
原ACMM292.01 141
testdata296.09 11961.26 259
segment_acmp65.94 58
testdata189.21 23677.55 87
plane_prior591.31 16295.55 14876.74 12778.53 17888.39 222
plane_prior489.14 173
plane_prior361.95 22779.09 6172.53 174
plane_prior293.13 9778.81 68
plane_prior62.42 21693.85 7179.38 5378.80 175
n20.00 393
nn0.00 393
door-mid66.01 365
test1193.01 93
door66.57 364
HQP5-MVS63.66 193
BP-MVS77.63 124
HQP4-MVS74.18 15495.61 14388.63 215
HQP3-MVS91.70 14878.90 173
HQP2-MVS51.63 212
MDTV_nov1_ep13_2view59.90 26480.13 32167.65 25172.79 16954.33 18759.83 26792.58 151
ACMMP++_ref71.63 231
ACMMP++69.72 241
Test By Simon54.21 188