This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MG-MVS87.11 3386.27 4389.62 797.79 176.27 494.96 4394.49 4478.74 8583.87 7292.94 11764.34 8596.94 10375.19 15194.09 3695.66 47
MCST-MVS91.08 191.46 389.94 497.66 273.37 897.13 295.58 1189.33 185.77 5196.26 3072.84 2699.38 192.64 1995.93 997.08 9
OPU-MVS89.97 397.52 373.15 1296.89 597.00 983.82 299.15 295.72 597.63 397.62 2
DVP-MVS++90.53 491.09 588.87 1497.31 469.91 4093.96 7094.37 5272.48 18192.07 896.85 1683.82 299.15 291.53 2997.42 497.55 4
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2699.07 1392.01 2494.77 2596.51 21
No_MVS89.60 897.31 473.22 1095.05 2699.07 1392.01 2494.77 2596.51 21
DP-MVS Recon82.73 11081.65 11785.98 8197.31 467.06 11195.15 3691.99 13869.08 25876.50 14993.89 9954.48 20298.20 3570.76 18985.66 13392.69 161
CNVR-MVS90.32 690.89 788.61 1996.76 870.65 2996.47 1394.83 3084.83 1189.07 3196.80 1970.86 3699.06 1592.64 1995.71 1096.12 35
ZD-MVS96.63 965.50 15193.50 8270.74 23685.26 5995.19 6164.92 7897.29 7687.51 5593.01 54
NCCC89.07 1589.46 1587.91 2596.60 1069.05 6096.38 1594.64 3984.42 1286.74 4396.20 3266.56 6298.76 2389.03 4694.56 3295.92 41
IU-MVS96.46 1169.91 4095.18 2080.75 4795.28 192.34 2195.36 1396.47 25
SED-MVS89.94 990.36 1088.70 1696.45 1269.38 5196.89 594.44 4671.65 21192.11 697.21 476.79 999.11 692.34 2195.36 1397.62 2
test_241102_ONE96.45 1269.38 5194.44 4671.65 21192.11 697.05 776.79 999.11 6
test_0728_SECOND88.70 1696.45 1270.43 3296.64 994.37 5299.15 291.91 2794.90 2196.51 21
DVP-MVScopyleft89.41 1389.73 1488.45 2296.40 1569.99 3696.64 994.52 4271.92 19790.55 1996.93 1173.77 2199.08 1191.91 2794.90 2196.29 30
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072696.40 1569.99 3696.76 794.33 5471.92 19791.89 1097.11 673.77 21
AdaColmapbinary78.94 17677.00 19284.76 12696.34 1765.86 14192.66 12987.97 29962.18 31470.56 21492.37 13243.53 29397.35 7264.50 25382.86 15291.05 201
test_one_060196.32 1869.74 4694.18 5771.42 22290.67 1896.85 1674.45 18
test_part296.29 1968.16 8490.78 16
DPE-MVScopyleft88.77 1689.21 1687.45 4096.26 2067.56 9894.17 5794.15 5968.77 26190.74 1797.27 276.09 1298.49 2990.58 3794.91 2096.30 29
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MAR-MVS84.18 8483.43 8686.44 7096.25 2165.93 14094.28 5594.27 5674.41 13979.16 11895.61 4553.99 20798.88 2169.62 20093.26 5294.50 105
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS82.28 11780.53 13687.54 3896.13 2270.59 3093.63 9191.04 18765.72 28675.45 15992.83 12256.11 18398.89 2064.10 25589.75 9693.15 148
APDe-MVScopyleft87.54 2687.84 2586.65 6196.07 2366.30 13194.84 4593.78 6669.35 25288.39 3396.34 2867.74 5397.66 5490.62 3693.44 4996.01 39
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
patch_mono-289.71 1190.99 685.85 8796.04 2463.70 19895.04 4095.19 1986.74 791.53 1495.15 6273.86 2097.58 5993.38 1492.00 6796.28 32
PAPR85.15 6684.47 7187.18 4596.02 2568.29 7791.85 16693.00 10376.59 11679.03 11995.00 6361.59 12297.61 5878.16 13489.00 10095.63 48
APD-MVScopyleft85.93 5285.99 5085.76 9195.98 2665.21 15693.59 9392.58 11966.54 27986.17 4795.88 3963.83 9197.00 9486.39 6792.94 5595.06 75
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast79.48 287.95 2188.00 2487.79 2895.86 2768.32 7695.74 2194.11 6083.82 1583.49 7396.19 3364.53 8498.44 3183.42 9294.88 2496.61 15
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DP-MVS69.90 28966.48 29680.14 24995.36 2862.93 22089.56 24476.11 36050.27 36657.69 33385.23 24239.68 30695.73 14833.35 37771.05 25481.78 339
114514_t79.17 17177.67 17783.68 16395.32 2965.53 15092.85 11991.60 16063.49 30067.92 25190.63 16446.65 27295.72 15267.01 22883.54 14789.79 216
HPM-MVS++copyleft89.37 1489.95 1387.64 3195.10 3068.23 8295.24 3394.49 4482.43 2588.90 3296.35 2771.89 3498.63 2688.76 4796.40 696.06 36
CSCG86.87 3586.26 4488.72 1595.05 3170.79 2893.83 8295.33 1668.48 26577.63 13594.35 8673.04 2498.45 3084.92 8093.71 4596.92 11
dcpmvs_287.37 3087.55 2986.85 5395.04 3268.20 8390.36 22490.66 19579.37 6981.20 8993.67 10374.73 1596.55 11890.88 3492.00 6795.82 44
LFMVS84.34 7882.73 10289.18 1294.76 3373.25 994.99 4291.89 14471.90 19982.16 8393.49 10847.98 26397.05 8982.55 9784.82 13797.25 7
CDPH-MVS85.71 5785.46 5886.46 6994.75 3467.19 10793.89 7592.83 10870.90 23183.09 7695.28 5463.62 9697.36 7180.63 11294.18 3594.84 85
test_prior86.42 7194.71 3567.35 10493.10 9996.84 10895.05 76
test1287.09 4894.60 3668.86 6492.91 10582.67 8165.44 7197.55 6293.69 4694.84 85
test_yl84.28 7983.16 9387.64 3194.52 3769.24 5595.78 1895.09 2369.19 25581.09 9192.88 12057.00 16997.44 6681.11 11081.76 16696.23 33
DCV-MVSNet84.28 7983.16 9387.64 3194.52 3769.24 5595.78 1895.09 2369.19 25581.09 9192.88 12057.00 16997.44 6681.11 11081.76 16696.23 33
CANet89.61 1289.99 1288.46 2194.39 3969.71 4796.53 1293.78 6686.89 689.68 2795.78 4065.94 6699.10 992.99 1693.91 4096.58 18
test_894.19 4067.19 10794.15 6193.42 8671.87 20285.38 5795.35 5068.19 4896.95 102
TEST994.18 4167.28 10594.16 5893.51 8071.75 20885.52 5495.33 5168.01 5097.27 80
train_agg87.21 3287.42 3186.60 6394.18 4167.28 10594.16 5893.51 8071.87 20285.52 5495.33 5168.19 4897.27 8089.09 4494.90 2195.25 70
agg_prior94.16 4366.97 11593.31 8984.49 6596.75 111
PAPM_NR82.97 10781.84 11586.37 7394.10 4466.76 12087.66 28092.84 10769.96 24574.07 17493.57 10663.10 10797.50 6470.66 19190.58 8894.85 82
FOURS193.95 4561.77 24493.96 7091.92 14162.14 31586.57 44
VNet86.20 4685.65 5687.84 2793.92 4669.99 3695.73 2395.94 778.43 8786.00 4993.07 11458.22 15697.00 9485.22 7484.33 14296.52 20
9.1487.63 2793.86 4794.41 5294.18 5772.76 17686.21 4696.51 2466.64 6097.88 4490.08 3894.04 37
save fliter93.84 4867.89 9095.05 3992.66 11478.19 89
PVSNet_BlendedMVS83.38 9983.43 8683.22 17593.76 4967.53 10094.06 6393.61 7679.13 7581.00 9485.14 24363.19 10497.29 7687.08 6173.91 23284.83 302
PVSNet_Blended86.73 3986.86 3986.31 7693.76 4967.53 10096.33 1693.61 7682.34 2781.00 9493.08 11363.19 10497.29 7687.08 6191.38 7894.13 116
HFP-MVS84.73 7284.40 7385.72 9393.75 5165.01 16293.50 9793.19 9472.19 19179.22 11794.93 6659.04 15097.67 5181.55 10392.21 6294.49 106
Anonymous20240521177.96 19675.33 21585.87 8593.73 5264.52 16894.85 4485.36 32362.52 31276.11 15090.18 17429.43 36097.29 7668.51 21377.24 20995.81 45
testing9986.01 5085.47 5787.63 3593.62 5371.25 2193.47 10095.23 1880.42 5280.60 9991.95 14171.73 3596.50 12180.02 11782.22 16095.13 73
SD-MVS87.49 2787.49 3087.50 3993.60 5468.82 6693.90 7492.63 11776.86 10987.90 3595.76 4166.17 6397.63 5689.06 4591.48 7696.05 37
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
testing9185.93 5285.31 6087.78 2993.59 5571.47 1793.50 9795.08 2580.26 5480.53 10091.93 14270.43 3896.51 12080.32 11582.13 16295.37 57
ACMMPR84.37 7684.06 7585.28 10793.56 5664.37 17893.50 9793.15 9672.19 19178.85 12594.86 6956.69 17697.45 6581.55 10392.20 6394.02 123
testing1186.71 4086.44 4287.55 3793.54 5771.35 1993.65 8995.58 1181.36 4180.69 9792.21 13772.30 3096.46 12385.18 7683.43 14894.82 88
region2R84.36 7784.03 7685.36 10493.54 5764.31 18193.43 10292.95 10472.16 19478.86 12494.84 7056.97 17197.53 6381.38 10792.11 6594.24 110
TSAR-MVS + GP.87.96 2088.37 2086.70 6093.51 5965.32 15395.15 3693.84 6578.17 9085.93 5094.80 7175.80 1398.21 3489.38 4088.78 10196.59 16
PHI-MVS86.83 3786.85 4086.78 5893.47 6065.55 14995.39 3095.10 2271.77 20785.69 5396.52 2362.07 11698.77 2286.06 7095.60 1196.03 38
SR-MVS82.81 10982.58 10583.50 16993.35 6161.16 25692.23 14591.28 17364.48 29381.27 8895.28 5453.71 21195.86 14282.87 9488.77 10293.49 139
iter_conf0583.27 10182.70 10384.98 11693.32 6271.84 1594.16 5881.76 34882.74 2173.83 17788.40 19672.77 2794.61 19282.10 9975.21 22188.48 235
EPNet87.84 2388.38 1986.23 7793.30 6366.05 13595.26 3294.84 2987.09 588.06 3494.53 7766.79 5997.34 7383.89 8991.68 7295.29 64
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XVS83.87 9083.47 8485.05 11393.22 6463.78 19292.92 11792.66 11473.99 14778.18 12994.31 8955.25 19097.41 6879.16 12491.58 7493.95 125
X-MVStestdata76.86 21274.13 23285.05 11393.22 6463.78 19292.92 11792.66 11473.99 14778.18 12910.19 40555.25 19097.41 6879.16 12491.58 7493.95 125
SMA-MVScopyleft88.14 1788.29 2187.67 3093.21 6668.72 6893.85 7794.03 6274.18 14491.74 1196.67 2165.61 7098.42 3389.24 4396.08 795.88 43
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
原ACMM184.42 14193.21 6664.27 18393.40 8865.39 28779.51 11292.50 12658.11 15896.69 11265.27 24993.96 3892.32 172
MVS_111021_HR86.19 4785.80 5487.37 4193.17 6869.79 4493.99 6993.76 6979.08 7778.88 12393.99 9762.25 11598.15 3685.93 7191.15 8294.15 115
CP-MVS83.71 9583.40 8984.65 13293.14 6963.84 19094.59 4992.28 12571.03 22977.41 13894.92 6755.21 19396.19 12881.32 10890.70 8693.91 127
DELS-MVS90.05 790.09 1189.94 493.14 6973.88 797.01 494.40 5088.32 385.71 5294.91 6874.11 1998.91 1787.26 5995.94 897.03 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ZNCC-MVS85.33 6385.08 6486.06 7993.09 7165.65 14593.89 7593.41 8773.75 15579.94 10794.68 7460.61 13298.03 3882.63 9693.72 4494.52 103
DeepPCF-MVS81.17 189.72 1091.38 484.72 12893.00 7258.16 30196.72 894.41 4886.50 890.25 2197.83 175.46 1498.67 2592.78 1895.49 1297.32 6
PLCcopyleft68.80 1475.23 24073.68 23979.86 26092.93 7358.68 29790.64 21788.30 28860.90 32464.43 28890.53 16542.38 29894.57 19656.52 29576.54 21386.33 269
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
testing22285.18 6584.69 7086.63 6292.91 7469.91 4092.61 13195.80 980.31 5380.38 10292.27 13468.73 4495.19 17375.94 14683.27 15094.81 89
MSP-MVS90.38 591.87 185.88 8492.83 7564.03 18893.06 11094.33 5482.19 2893.65 396.15 3585.89 197.19 8291.02 3397.75 196.43 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mPP-MVS82.96 10882.44 10884.52 13892.83 7562.92 22292.76 12191.85 14871.52 21975.61 15794.24 9153.48 21596.99 9778.97 12790.73 8593.64 136
GST-MVS84.63 7484.29 7485.66 9592.82 7765.27 15493.04 11293.13 9773.20 16478.89 12094.18 9359.41 14697.85 4581.45 10592.48 6193.86 130
WTY-MVS86.32 4485.81 5387.85 2692.82 7769.37 5395.20 3495.25 1782.71 2281.91 8494.73 7267.93 5297.63 5679.55 12082.25 15996.54 19
PGM-MVS83.25 10282.70 10384.92 11792.81 7964.07 18790.44 22092.20 13171.28 22377.23 14194.43 8055.17 19497.31 7579.33 12391.38 7893.37 141
EI-MVSNet-Vis-set83.77 9383.67 7984.06 15392.79 8063.56 20491.76 17194.81 3179.65 6477.87 13294.09 9463.35 10297.90 4279.35 12279.36 18690.74 203
SF-MVS87.03 3487.09 3486.84 5492.70 8167.45 10393.64 9093.76 6970.78 23586.25 4596.44 2666.98 5797.79 4788.68 4894.56 3295.28 66
MVSTER82.47 11482.05 11183.74 15992.68 8269.01 6191.90 16393.21 9179.83 5972.14 19885.71 24074.72 1694.72 18775.72 14772.49 24387.50 246
iter_conf_final81.74 12780.93 12884.18 15092.66 8369.10 5892.94 11682.80 34679.01 8074.85 16588.40 19661.83 12094.61 19279.36 12176.52 21488.83 226
CS-MVS-test86.14 4887.01 3583.52 16692.63 8459.36 28995.49 2791.92 14180.09 5785.46 5695.53 4761.82 12195.77 14686.77 6593.37 5095.41 54
MP-MVScopyleft85.02 6784.97 6685.17 11292.60 8564.27 18393.24 10592.27 12673.13 16679.63 11194.43 8061.90 11797.17 8385.00 7892.56 5994.06 121
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ETVMVS84.22 8383.71 7885.76 9192.58 8668.25 8192.45 13995.53 1479.54 6579.46 11391.64 14970.29 3994.18 21469.16 20682.76 15694.84 85
thres20079.66 16378.33 16783.66 16592.54 8765.82 14393.06 11096.31 374.90 13673.30 18188.66 19159.67 14295.61 15647.84 33078.67 19389.56 221
APD-MVS_3200maxsize81.64 12981.32 12082.59 18892.36 8858.74 29691.39 18591.01 18863.35 30279.72 11094.62 7651.82 22696.14 13079.71 11887.93 10992.89 159
新几何184.73 12792.32 8964.28 18291.46 16659.56 33479.77 10992.90 11856.95 17296.57 11663.40 25992.91 5693.34 142
EI-MVSNet-UG-set83.14 10482.96 9683.67 16492.28 9063.19 21491.38 18794.68 3779.22 7276.60 14793.75 10062.64 11097.76 4878.07 13578.01 19790.05 212
HPM-MVScopyleft83.25 10282.95 9784.17 15192.25 9162.88 22490.91 20591.86 14670.30 24177.12 14293.96 9856.75 17496.28 12682.04 10091.34 8093.34 142
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HY-MVS76.49 584.28 7983.36 9187.02 5192.22 9267.74 9384.65 30194.50 4379.15 7482.23 8287.93 20966.88 5896.94 10380.53 11382.20 16196.39 28
tfpn200view978.79 18177.43 18282.88 18092.21 9364.49 16992.05 15496.28 473.48 16171.75 20388.26 20160.07 13895.32 16845.16 34177.58 20288.83 226
thres40078.68 18377.43 18282.43 19092.21 9364.49 16992.05 15496.28 473.48 16171.75 20388.26 20160.07 13895.32 16845.16 34177.58 20287.48 247
MM90.87 291.52 288.92 1392.12 9571.10 2597.02 396.04 688.70 291.57 1396.19 3370.12 4098.91 1796.83 195.06 1696.76 12
PS-MVSNAJ88.14 1787.61 2889.71 692.06 9676.72 195.75 2093.26 9083.86 1489.55 2996.06 3653.55 21297.89 4391.10 3193.31 5194.54 101
SR-MVS-dyc-post81.06 13880.70 13182.15 20292.02 9758.56 29890.90 20690.45 19962.76 30978.89 12094.46 7851.26 23495.61 15678.77 13086.77 12392.28 174
RE-MVS-def80.48 13792.02 9758.56 29890.90 20690.45 19962.76 30978.89 12094.46 7849.30 25078.77 13086.77 12392.28 174
MSLP-MVS++86.27 4585.91 5287.35 4292.01 9968.97 6395.04 4092.70 11179.04 7981.50 8796.50 2558.98 15196.78 11083.49 9193.93 3996.29 30
CS-MVS85.80 5586.65 4183.27 17492.00 10058.92 29495.31 3191.86 14679.97 5884.82 6295.40 4962.26 11495.51 16486.11 6992.08 6695.37 57
旧先验191.94 10160.74 26691.50 16494.36 8265.23 7391.84 6994.55 99
thres600view778.00 19476.66 19682.03 20991.93 10263.69 19991.30 19396.33 172.43 18470.46 21687.89 21060.31 13394.92 18242.64 35376.64 21287.48 247
LS3D69.17 29466.40 29877.50 29191.92 10356.12 32385.12 29880.37 35446.96 37356.50 33787.51 21637.25 32693.71 23532.52 38379.40 18582.68 330
GG-mvs-BLEND86.53 6891.91 10469.67 4975.02 36394.75 3378.67 12790.85 16177.91 794.56 19872.25 17593.74 4395.36 59
thres100view90078.37 18977.01 19182.46 18991.89 10563.21 21391.19 20096.33 172.28 18970.45 21787.89 21060.31 13395.32 16845.16 34177.58 20288.83 226
MTAPA83.91 8983.38 9085.50 9891.89 10565.16 15881.75 32492.23 12775.32 13080.53 10095.21 6056.06 18497.16 8584.86 8192.55 6094.18 112
canonicalmvs86.85 3686.25 4588.66 1891.80 10771.92 1493.54 9591.71 15480.26 5487.55 3795.25 5863.59 9896.93 10588.18 4984.34 14197.11 8
TSAR-MVS + MP.88.11 1988.64 1786.54 6791.73 10868.04 8690.36 22493.55 7982.89 1991.29 1592.89 11972.27 3196.03 13887.99 5094.77 2595.54 52
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMPcopyleft81.49 13080.67 13283.93 15691.71 10962.90 22392.13 14892.22 13071.79 20671.68 20593.49 10850.32 23996.96 10178.47 13284.22 14691.93 184
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
BH-RMVSNet79.46 16877.65 17884.89 11891.68 11065.66 14493.55 9488.09 29572.93 17173.37 18091.12 15846.20 27996.12 13156.28 29785.61 13492.91 157
baseline181.84 12581.03 12684.28 14891.60 11166.62 12391.08 20291.66 15881.87 3174.86 16491.67 14869.98 4194.92 18271.76 18164.75 29991.29 197
ACMMP_NAP86.05 4985.80 5486.80 5791.58 11267.53 10091.79 16893.49 8374.93 13584.61 6395.30 5359.42 14597.92 4186.13 6894.92 1994.94 81
MVS_Test84.16 8583.20 9287.05 5091.56 11369.82 4389.99 23892.05 13577.77 9682.84 7786.57 22863.93 9096.09 13274.91 15689.18 9995.25 70
HPM-MVS_fast80.25 15379.55 15282.33 19491.55 11459.95 27991.32 19289.16 25465.23 29074.71 16793.07 11447.81 26695.74 14774.87 15888.23 10591.31 196
CPTT-MVS79.59 16479.16 15980.89 23691.54 11559.80 28192.10 15088.54 28360.42 32772.96 18393.28 11048.27 25992.80 25978.89 12986.50 12890.06 211
CNLPA74.31 24972.30 25780.32 24291.49 11661.66 24890.85 20980.72 35256.67 34863.85 29290.64 16246.75 27190.84 30553.79 30675.99 21888.47 237
MP-MVS-pluss85.24 6485.13 6385.56 9791.42 11765.59 14791.54 17892.51 12174.56 13880.62 9895.64 4459.15 14997.00 9486.94 6393.80 4194.07 120
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
gg-mvs-nofinetune77.18 20774.31 22885.80 8991.42 11768.36 7571.78 36694.72 3449.61 36777.12 14245.92 39077.41 893.98 22767.62 22193.16 5395.05 76
xiu_mvs_v2_base87.92 2287.38 3289.55 1191.41 11976.43 395.74 2193.12 9883.53 1789.55 2995.95 3853.45 21697.68 5091.07 3292.62 5894.54 101
EIA-MVS84.84 7084.88 6784.69 13091.30 12062.36 23293.85 7792.04 13679.45 6679.33 11694.28 9062.42 11296.35 12480.05 11691.25 8195.38 56
alignmvs87.28 3186.97 3688.24 2491.30 12071.14 2495.61 2593.56 7879.30 7087.07 4195.25 5868.43 4696.93 10587.87 5184.33 14296.65 14
EPMVS78.49 18875.98 20586.02 8091.21 12269.68 4880.23 33991.20 17475.25 13172.48 19378.11 32654.65 19893.69 23657.66 29383.04 15194.69 91
FMVSNet377.73 20076.04 20482.80 18191.20 12368.99 6291.87 16491.99 13873.35 16367.04 26583.19 26656.62 17792.14 28259.80 28469.34 26187.28 254
Anonymous2024052976.84 21574.15 23184.88 11991.02 12464.95 16493.84 8091.09 18153.57 35673.00 18287.42 21735.91 33597.32 7469.14 20772.41 24592.36 170
tpmvs72.88 26569.76 28182.22 19990.98 12567.05 11278.22 35288.30 28863.10 30764.35 28974.98 34855.09 19594.27 20943.25 34769.57 26085.34 296
MVS84.66 7382.86 10090.06 290.93 12674.56 687.91 27595.54 1368.55 26372.35 19794.71 7359.78 14198.90 1981.29 10994.69 3196.74 13
PVSNet73.49 880.05 15778.63 16484.31 14690.92 12764.97 16392.47 13891.05 18679.18 7372.43 19590.51 16637.05 33194.06 22068.06 21586.00 13093.90 129
3Dnovator+73.60 782.10 12280.60 13586.60 6390.89 12866.80 11995.20 3493.44 8574.05 14667.42 26092.49 12849.46 24897.65 5570.80 18891.68 7295.33 60
VDD-MVS83.06 10581.81 11686.81 5690.86 12967.70 9495.40 2991.50 16475.46 12781.78 8592.34 13340.09 30597.13 8786.85 6482.04 16395.60 49
BH-w/o80.49 14879.30 15784.05 15490.83 13064.36 18093.60 9289.42 24374.35 14169.09 23290.15 17655.23 19295.61 15664.61 25286.43 12992.17 180
ET-MVSNet_ETH3D84.01 8783.15 9586.58 6590.78 13170.89 2794.74 4794.62 4081.44 3858.19 32793.64 10473.64 2392.35 27982.66 9578.66 19496.50 24
Anonymous2023121173.08 25970.39 27581.13 22690.62 13263.33 21091.40 18390.06 22051.84 36164.46 28780.67 30236.49 33394.07 21963.83 25764.17 30485.98 281
FA-MVS(test-final)79.12 17277.23 18884.81 12490.54 13363.98 18981.35 33091.71 15471.09 22874.85 16582.94 26752.85 21997.05 8967.97 21681.73 16893.41 140
TR-MVS78.77 18277.37 18782.95 17990.49 13460.88 26093.67 8890.07 21870.08 24474.51 16891.37 15545.69 28295.70 15360.12 28280.32 17892.29 173
SteuartSystems-ACMMP86.82 3886.90 3886.58 6590.42 13566.38 12896.09 1793.87 6477.73 9784.01 7195.66 4363.39 10097.94 4087.40 5793.55 4895.42 53
Skip Steuart: Steuart Systems R&D Blog.
TAPA-MVS70.22 1274.94 24473.53 24079.17 27390.40 13652.07 34289.19 25589.61 23762.69 31170.07 22292.67 12448.89 25794.32 20538.26 36779.97 18091.12 200
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
mvs_anonymous81.36 13279.99 14385.46 9990.39 13768.40 7486.88 29190.61 19774.41 13970.31 22084.67 24963.79 9292.32 28073.13 16485.70 13295.67 46
CANet_DTU84.09 8683.52 8085.81 8890.30 13866.82 11791.87 16489.01 26385.27 986.09 4893.74 10147.71 26796.98 9877.90 13689.78 9593.65 135
Fast-Effi-MVS+81.14 13580.01 14284.51 13990.24 13965.86 14194.12 6289.15 25573.81 15475.37 16088.26 20157.26 16494.53 20066.97 22984.92 13693.15 148
ETV-MVS86.01 5086.11 4785.70 9490.21 14067.02 11493.43 10291.92 14181.21 4384.13 7094.07 9660.93 12995.63 15489.28 4289.81 9394.46 107
MVS_030490.01 890.50 988.53 2090.14 14170.94 2696.47 1395.72 1087.33 489.60 2896.26 3068.44 4598.74 2495.82 494.72 3095.90 42
tpmrst80.57 14579.14 16084.84 12090.10 14268.28 7881.70 32589.72 23577.63 10175.96 15179.54 31864.94 7792.71 26275.43 14977.28 20893.55 137
PVSNet_Blended_VisFu83.97 8883.50 8285.39 10290.02 14366.59 12593.77 8491.73 15277.43 10577.08 14489.81 18163.77 9396.97 10079.67 11988.21 10692.60 164
UGNet79.87 16178.68 16383.45 17189.96 14461.51 25092.13 14890.79 19076.83 11178.85 12586.33 23238.16 31796.17 12967.93 21887.17 11792.67 162
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CHOSEN 1792x268884.98 6983.45 8589.57 1089.94 14575.14 592.07 15392.32 12481.87 3175.68 15488.27 20060.18 13598.60 2780.46 11490.27 9194.96 79
BH-untuned78.68 18377.08 18983.48 17089.84 14663.74 19492.70 12588.59 28171.57 21766.83 26988.65 19251.75 22895.39 16659.03 28784.77 13891.32 195
FE-MVS75.97 22973.02 24584.82 12189.78 14765.56 14877.44 35591.07 18464.55 29272.66 18779.85 31446.05 28196.69 11254.97 30180.82 17592.21 179
test22289.77 14861.60 24989.55 24589.42 24356.83 34777.28 14092.43 13052.76 22091.14 8393.09 150
PMMVS81.98 12482.04 11281.78 21189.76 14956.17 32291.13 20190.69 19277.96 9280.09 10693.57 10646.33 27794.99 17881.41 10687.46 11494.17 113
DPM-MVS90.70 390.52 891.24 189.68 15076.68 297.29 195.35 1582.87 2091.58 1297.22 379.93 599.10 983.12 9397.64 297.94 1
QAPM79.95 16077.39 18687.64 3189.63 15171.41 1893.30 10493.70 7365.34 28967.39 26291.75 14647.83 26598.96 1657.71 29289.81 9392.54 166
3Dnovator73.91 682.69 11380.82 12988.31 2389.57 15271.26 2092.60 13294.39 5178.84 8267.89 25492.48 12948.42 25898.52 2868.80 21194.40 3495.15 72
Effi-MVS+83.82 9182.76 10186.99 5289.56 15369.40 5091.35 19086.12 31772.59 17883.22 7592.81 12359.60 14396.01 14081.76 10287.80 11095.56 51
PatchmatchNetpermissive77.46 20374.63 22185.96 8289.55 15470.35 3379.97 34489.55 23872.23 19070.94 21076.91 33757.03 16792.79 26054.27 30481.17 17194.74 90
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PatchMatch-RL72.06 27369.98 27678.28 28389.51 15555.70 32683.49 30883.39 34261.24 32263.72 29382.76 26934.77 33993.03 24753.37 30977.59 20186.12 278
thisisatest051583.41 9882.49 10786.16 7889.46 15668.26 7993.54 9594.70 3674.31 14275.75 15290.92 15972.62 2896.52 11969.64 19881.50 16993.71 133
h-mvs3383.01 10682.56 10684.35 14589.34 15762.02 23992.72 12393.76 6981.45 3682.73 7992.25 13660.11 13697.13 8787.69 5362.96 31193.91 127
EC-MVSNet84.53 7585.04 6583.01 17889.34 15761.37 25394.42 5191.09 18177.91 9483.24 7494.20 9258.37 15495.40 16585.35 7391.41 7792.27 177
UWE-MVS80.81 14381.01 12780.20 24889.33 15957.05 31691.91 16294.71 3575.67 12475.01 16389.37 18563.13 10691.44 30267.19 22682.80 15592.12 182
UA-Net80.02 15879.65 14881.11 22789.33 15957.72 30686.33 29489.00 26677.44 10481.01 9389.15 18859.33 14795.90 14161.01 27684.28 14489.73 218
dp75.01 24372.09 25983.76 15889.28 16166.22 13479.96 34589.75 23071.16 22567.80 25677.19 33451.81 22792.54 27150.39 31571.44 25292.51 168
SDMVSNet80.26 15278.88 16284.40 14289.25 16267.63 9785.35 29793.02 10076.77 11370.84 21287.12 22247.95 26496.09 13285.04 7774.55 22389.48 222
sd_testset77.08 21075.37 21382.20 20089.25 16262.11 23882.06 32289.09 25976.77 11370.84 21287.12 22241.43 30195.01 17767.23 22574.55 22389.48 222
sss82.71 11282.38 10983.73 16189.25 16259.58 28492.24 14494.89 2877.96 9279.86 10892.38 13156.70 17597.05 8977.26 13980.86 17494.55 99
MVSFormer83.75 9482.88 9986.37 7389.24 16571.18 2289.07 25790.69 19265.80 28487.13 3994.34 8764.99 7592.67 26572.83 16791.80 7095.27 67
lupinMVS87.74 2487.77 2687.63 3589.24 16571.18 2296.57 1192.90 10682.70 2387.13 3995.27 5664.99 7595.80 14389.34 4191.80 7095.93 40
IB-MVS77.80 482.18 11880.46 13887.35 4289.14 16770.28 3495.59 2695.17 2178.85 8170.19 22185.82 23870.66 3797.67 5172.19 17866.52 28494.09 118
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MDTV_nov1_ep1372.61 25389.06 16868.48 7280.33 33790.11 21771.84 20471.81 20275.92 34553.01 21893.92 23048.04 32773.38 234
testdata81.34 22189.02 16957.72 30689.84 22758.65 33885.32 5894.09 9457.03 16793.28 24369.34 20390.56 8993.03 153
CostFormer82.33 11681.15 12185.86 8689.01 17068.46 7382.39 32193.01 10175.59 12580.25 10481.57 28672.03 3394.96 17979.06 12677.48 20594.16 114
GeoE78.90 17777.43 18283.29 17388.95 17162.02 23992.31 14186.23 31570.24 24271.34 20989.27 18654.43 20394.04 22363.31 26180.81 17693.81 132
GBi-Net75.65 23473.83 23681.10 22888.85 17265.11 15990.01 23590.32 20570.84 23267.04 26580.25 30948.03 26091.54 29759.80 28469.34 26186.64 263
test175.65 23473.83 23681.10 22888.85 17265.11 15990.01 23590.32 20570.84 23267.04 26580.25 30948.03 26091.54 29759.80 28469.34 26186.64 263
FMVSNet276.07 22374.01 23482.26 19888.85 17267.66 9591.33 19191.61 15970.84 23265.98 27282.25 27548.03 26092.00 28758.46 28968.73 26987.10 257
DeepC-MVS77.85 385.52 6185.24 6186.37 7388.80 17566.64 12292.15 14793.68 7481.07 4476.91 14593.64 10462.59 11198.44 3185.50 7292.84 5794.03 122
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EPP-MVSNet81.79 12681.52 11882.61 18788.77 17660.21 27693.02 11493.66 7568.52 26472.90 18590.39 16972.19 3294.96 17974.93 15579.29 18892.67 162
1112_ss80.56 14679.83 14682.77 18288.65 17760.78 26292.29 14288.36 28672.58 17972.46 19494.95 6465.09 7493.42 24266.38 23577.71 19994.10 117
tpm cat175.30 23972.21 25884.58 13688.52 17867.77 9278.16 35388.02 29661.88 31968.45 24676.37 34160.65 13094.03 22553.77 30774.11 22991.93 184
LCM-MVSNet-Re72.93 26371.84 26276.18 30888.49 17948.02 36180.07 34270.17 37873.96 15052.25 35180.09 31249.98 24388.24 33067.35 22284.23 14592.28 174
Vis-MVSNetpermissive80.92 14179.98 14483.74 15988.48 18061.80 24393.44 10188.26 29273.96 15077.73 13391.76 14549.94 24494.76 18465.84 24190.37 9094.65 95
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Vis-MVSNet (Re-imp)79.24 17079.57 14978.24 28588.46 18152.29 34190.41 22289.12 25774.24 14369.13 23191.91 14365.77 6890.09 31759.00 28888.09 10792.33 171
ab-mvs80.18 15478.31 16885.80 8988.44 18265.49 15283.00 31892.67 11371.82 20577.36 13985.01 24454.50 19996.59 11476.35 14475.63 21995.32 62
gm-plane-assit88.42 18367.04 11378.62 8691.83 14497.37 7076.57 142
MVS_111021_LR82.02 12381.52 11883.51 16888.42 18362.88 22489.77 24288.93 26776.78 11275.55 15893.10 11150.31 24095.38 16783.82 9087.02 11892.26 178
test250683.29 10082.92 9884.37 14488.39 18563.18 21592.01 15691.35 16977.66 9978.49 12891.42 15264.58 8395.09 17573.19 16389.23 9794.85 82
ECVR-MVScopyleft81.29 13380.38 13984.01 15588.39 18561.96 24192.56 13786.79 31077.66 9976.63 14691.42 15246.34 27695.24 17274.36 16089.23 9794.85 82
baseline85.01 6884.44 7286.71 5988.33 18768.73 6790.24 22991.82 15081.05 4581.18 9092.50 12663.69 9496.08 13584.45 8486.71 12595.32 62
tpm279.80 16277.95 17585.34 10588.28 18868.26 7981.56 32791.42 16770.11 24377.59 13780.50 30467.40 5594.26 21167.34 22377.35 20693.51 138
thisisatest053081.15 13480.07 14084.39 14388.26 18965.63 14691.40 18394.62 4071.27 22470.93 21189.18 18772.47 2996.04 13765.62 24476.89 21191.49 188
casdiffmvspermissive85.37 6284.87 6886.84 5488.25 19069.07 5993.04 11291.76 15181.27 4280.84 9692.07 13964.23 8696.06 13684.98 7987.43 11595.39 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Test_1112_low_res79.56 16578.60 16582.43 19088.24 19160.39 27392.09 15187.99 29772.10 19571.84 20187.42 21764.62 8293.04 24665.80 24277.30 20793.85 131
casdiffmvs_mvgpermissive85.66 5985.18 6287.09 4888.22 19269.35 5493.74 8691.89 14481.47 3580.10 10591.45 15164.80 8096.35 12487.23 6087.69 11195.58 50
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PAPM85.89 5485.46 5887.18 4588.20 19372.42 1392.41 14092.77 10982.11 2980.34 10393.07 11468.27 4795.02 17678.39 13393.59 4794.09 118
TESTMET0.1,182.41 11581.98 11483.72 16288.08 19463.74 19492.70 12593.77 6879.30 7077.61 13687.57 21558.19 15794.08 21873.91 16286.68 12693.33 144
ADS-MVSNet266.90 31363.44 32077.26 29788.06 19560.70 26868.01 37675.56 36457.57 34064.48 28569.87 36538.68 30984.10 35640.87 35867.89 27586.97 258
ADS-MVSNet68.54 30164.38 31681.03 23288.06 19566.90 11668.01 37684.02 33457.57 34064.48 28569.87 36538.68 30989.21 32340.87 35867.89 27586.97 258
EPNet_dtu78.80 18079.26 15877.43 29388.06 19549.71 35491.96 16191.95 14077.67 9876.56 14891.28 15658.51 15390.20 31556.37 29680.95 17392.39 169
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_enhance_ethall78.86 17877.97 17481.54 21788.00 19865.17 15791.41 18189.15 25575.19 13268.79 24083.98 25867.17 5692.82 25772.73 17065.30 29086.62 267
IS-MVSNet80.14 15579.41 15482.33 19487.91 19960.08 27891.97 16088.27 29072.90 17471.44 20891.73 14761.44 12393.66 23762.47 26986.53 12793.24 145
CLD-MVS82.73 11082.35 11083.86 15787.90 20067.65 9695.45 2892.18 13385.06 1072.58 19092.27 13452.46 22395.78 14484.18 8579.06 18988.16 241
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Syy-MVS69.65 29169.52 28370.03 34687.87 20143.21 37988.07 27189.01 26372.91 17263.11 29888.10 20545.28 28685.54 34922.07 39269.23 26481.32 341
myMVS_eth3d72.58 27272.74 25072.10 33987.87 20149.45 35688.07 27189.01 26372.91 17263.11 29888.10 20563.63 9585.54 34932.73 38169.23 26481.32 341
test111180.84 14280.02 14183.33 17287.87 20160.76 26492.62 13086.86 30977.86 9575.73 15391.39 15446.35 27594.70 19072.79 16988.68 10394.52 103
HyFIR lowres test81.03 13979.56 15085.43 10087.81 20468.11 8590.18 23090.01 22370.65 23772.95 18486.06 23663.61 9794.50 20275.01 15479.75 18393.67 134
dmvs_re76.93 21175.36 21481.61 21587.78 20560.71 26780.00 34387.99 29779.42 6769.02 23589.47 18446.77 27094.32 20563.38 26074.45 22689.81 215
131480.70 14478.95 16185.94 8387.77 20667.56 9887.91 27592.55 12072.17 19367.44 25993.09 11250.27 24197.04 9271.68 18387.64 11293.23 146
cl2277.94 19776.78 19481.42 21987.57 20764.93 16590.67 21588.86 27072.45 18367.63 25882.68 27164.07 8792.91 25571.79 17965.30 29086.44 268
HQP-NCC87.54 20894.06 6379.80 6074.18 170
ACMP_Plane87.54 20894.06 6379.80 6074.18 170
HQP-MVS81.14 13580.64 13382.64 18687.54 20863.66 20194.06 6391.70 15679.80 6074.18 17090.30 17151.63 23095.61 15677.63 13778.90 19088.63 231
NP-MVS87.41 21163.04 21690.30 171
diffmvspermissive84.28 7983.83 7785.61 9687.40 21268.02 8790.88 20889.24 24980.54 4881.64 8692.52 12559.83 14094.52 20187.32 5885.11 13594.29 108
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline283.68 9783.42 8884.48 14087.37 21366.00 13790.06 23395.93 879.71 6369.08 23390.39 16977.92 696.28 12678.91 12881.38 17091.16 199
fmvsm_s_conf0.5_n86.39 4386.91 3784.82 12187.36 21463.54 20694.74 4790.02 22282.52 2490.14 2496.92 1362.93 10997.84 4695.28 882.26 15893.07 152
plane_prior687.23 21562.32 23450.66 237
tttt051779.50 16678.53 16682.41 19387.22 21661.43 25289.75 24394.76 3269.29 25367.91 25288.06 20872.92 2595.63 15462.91 26573.90 23390.16 210
plane_prior187.15 217
cascas78.18 19275.77 20885.41 10187.14 21869.11 5792.96 11591.15 17866.71 27870.47 21586.07 23537.49 32596.48 12270.15 19479.80 18290.65 204
fmvsm_l_conf0.5_n_a87.44 2988.15 2385.30 10687.10 21964.19 18594.41 5288.14 29380.24 5692.54 596.97 1069.52 4397.17 8395.89 288.51 10494.56 98
CHOSEN 280x42077.35 20576.95 19378.55 28087.07 22062.68 22869.71 37282.95 34468.80 26071.48 20787.27 22166.03 6584.00 35976.47 14382.81 15488.95 225
test_fmvsm_n_192087.69 2588.50 1885.27 10887.05 22163.55 20593.69 8791.08 18384.18 1390.17 2397.04 867.58 5497.99 3995.72 590.03 9294.26 109
fmvsm_l_conf0.5_n87.49 2788.19 2285.39 10286.95 22264.37 17894.30 5488.45 28480.51 4992.70 496.86 1569.98 4197.15 8695.83 388.08 10894.65 95
HQP_MVS80.34 15179.75 14782.12 20486.94 22362.42 23093.13 10891.31 17078.81 8372.53 19189.14 18950.66 23795.55 16176.74 14078.53 19588.39 238
plane_prior786.94 22361.51 250
test-LLR80.10 15679.56 15081.72 21386.93 22561.17 25492.70 12591.54 16171.51 22075.62 15586.94 22453.83 20892.38 27672.21 17684.76 13991.60 186
test-mter79.96 15979.38 15681.72 21386.93 22561.17 25492.70 12591.54 16173.85 15275.62 15586.94 22449.84 24692.38 27672.21 17684.76 13991.60 186
SCA75.82 23272.76 24985.01 11586.63 22770.08 3581.06 33289.19 25271.60 21670.01 22377.09 33545.53 28390.25 31060.43 27973.27 23594.68 92
AUN-MVS78.37 18977.43 18281.17 22486.60 22857.45 31289.46 24991.16 17674.11 14574.40 16990.49 16755.52 18994.57 19674.73 15960.43 33791.48 189
hse-mvs281.12 13781.11 12581.16 22586.52 22957.48 31189.40 25091.16 17681.45 3682.73 7990.49 16760.11 13694.58 19487.69 5360.41 33891.41 191
xiu_mvs_v1_base_debu82.16 11981.12 12285.26 10986.42 23068.72 6892.59 13490.44 20273.12 16784.20 6794.36 8238.04 31995.73 14884.12 8686.81 12091.33 192
xiu_mvs_v1_base82.16 11981.12 12285.26 10986.42 23068.72 6892.59 13490.44 20273.12 16784.20 6794.36 8238.04 31995.73 14884.12 8686.81 12091.33 192
xiu_mvs_v1_base_debi82.16 11981.12 12285.26 10986.42 23068.72 6892.59 13490.44 20273.12 16784.20 6794.36 8238.04 31995.73 14884.12 8686.81 12091.33 192
F-COLMAP70.66 28168.44 28977.32 29586.37 23355.91 32488.00 27386.32 31256.94 34657.28 33588.07 20733.58 34492.49 27351.02 31368.37 27183.55 312
CDS-MVSNet81.43 13180.74 13083.52 16686.26 23464.45 17292.09 15190.65 19675.83 12373.95 17689.81 18163.97 8992.91 25571.27 18482.82 15393.20 147
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
VDDNet80.50 14778.26 16987.21 4486.19 23569.79 4494.48 5091.31 17060.42 32779.34 11590.91 16038.48 31496.56 11782.16 9881.05 17295.27 67
WB-MVSnew77.14 20876.18 20380.01 25486.18 23663.24 21291.26 19494.11 6071.72 20973.52 17987.29 22045.14 28793.00 24856.98 29479.42 18483.80 310
jason86.40 4286.17 4687.11 4786.16 23770.54 3195.71 2492.19 13282.00 3084.58 6494.34 8761.86 11895.53 16387.76 5290.89 8495.27 67
jason: jason.
PCF-MVS73.15 979.29 16977.63 17984.29 14786.06 23865.96 13987.03 28791.10 18069.86 24769.79 22890.64 16257.54 16396.59 11464.37 25482.29 15790.32 208
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MS-PatchMatch77.90 19976.50 19782.12 20485.99 23969.95 3991.75 17392.70 11173.97 14962.58 30584.44 25341.11 30295.78 14463.76 25892.17 6480.62 349
FIs79.47 16779.41 15479.67 26485.95 24059.40 28691.68 17593.94 6378.06 9168.96 23788.28 19966.61 6191.77 29166.20 23874.99 22287.82 243
VPA-MVSNet79.03 17378.00 17382.11 20785.95 24064.48 17193.22 10794.66 3875.05 13474.04 17584.95 24552.17 22593.52 23974.90 15767.04 28088.32 240
tpm78.58 18677.03 19083.22 17585.94 24264.56 16783.21 31591.14 17978.31 8873.67 17879.68 31664.01 8892.09 28566.07 23971.26 25393.03 153
OpenMVScopyleft70.45 1178.54 18775.92 20686.41 7285.93 24371.68 1692.74 12292.51 12166.49 28064.56 28491.96 14043.88 29298.10 3754.61 30290.65 8789.44 224
testing370.38 28570.83 26969.03 35085.82 24443.93 37890.72 21490.56 19868.06 26660.24 31586.82 22664.83 7984.12 35526.33 38864.10 30579.04 362
OMC-MVS78.67 18577.91 17680.95 23485.76 24557.40 31388.49 26688.67 27873.85 15272.43 19592.10 13849.29 25194.55 19972.73 17077.89 19890.91 202
fmvsm_s_conf0.5_n_a85.75 5686.09 4884.72 12885.73 24663.58 20393.79 8389.32 24681.42 3990.21 2296.91 1462.41 11397.67 5194.48 1080.56 17792.90 158
miper_ehance_all_eth77.60 20176.44 19881.09 23185.70 24764.41 17690.65 21688.64 28072.31 18767.37 26382.52 27264.77 8192.64 26970.67 19065.30 29086.24 272
KD-MVS_2432*160069.03 29666.37 29977.01 30085.56 24861.06 25781.44 32890.25 21167.27 27458.00 33076.53 33954.49 20087.63 33848.04 32735.77 38782.34 333
miper_refine_blended69.03 29666.37 29977.01 30085.56 24861.06 25781.44 32890.25 21167.27 27458.00 33076.53 33954.49 20087.63 33848.04 32735.77 38782.34 333
EI-MVSNet78.97 17578.22 17081.25 22285.33 25062.73 22789.53 24793.21 9172.39 18672.14 19890.13 17760.99 12694.72 18767.73 22072.49 24386.29 270
CVMVSNet74.04 25274.27 22973.33 32785.33 25043.94 37789.53 24788.39 28554.33 35570.37 21890.13 17749.17 25384.05 35761.83 27379.36 18691.99 183
test_fmvsmconf_n86.58 4187.17 3384.82 12185.28 25262.55 22994.26 5689.78 22883.81 1687.78 3696.33 2965.33 7296.98 9894.40 1187.55 11394.95 80
ACMH63.93 1768.62 29964.81 30980.03 25385.22 25363.25 21187.72 27884.66 32960.83 32551.57 35479.43 31927.29 36594.96 17941.76 35464.84 29781.88 337
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cl____76.07 22374.67 21980.28 24485.15 25461.76 24590.12 23188.73 27571.16 22565.43 27581.57 28661.15 12492.95 25066.54 23262.17 31986.13 277
DIV-MVS_self_test76.07 22374.67 21980.28 24485.14 25561.75 24690.12 23188.73 27571.16 22565.42 27681.60 28561.15 12492.94 25466.54 23262.16 32186.14 275
TAMVS80.37 15079.45 15383.13 17785.14 25563.37 20991.23 19690.76 19174.81 13772.65 18888.49 19360.63 13192.95 25069.41 20281.95 16593.08 151
MSDG69.54 29265.73 30280.96 23385.11 25763.71 19784.19 30383.28 34356.95 34554.50 34284.03 25631.50 35296.03 13842.87 35169.13 26683.14 322
c3_l76.83 21675.47 21280.93 23585.02 25864.18 18690.39 22388.11 29471.66 21066.65 27181.64 28463.58 9992.56 27069.31 20462.86 31286.04 279
ACMP71.68 1075.58 23774.23 23079.62 26684.97 25959.64 28290.80 21189.07 26170.39 24062.95 30187.30 21938.28 31593.87 23272.89 16671.45 25185.36 295
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
FC-MVSNet-test77.99 19578.08 17277.70 28884.89 26055.51 32790.27 22793.75 7276.87 10866.80 27087.59 21465.71 6990.23 31462.89 26673.94 23187.37 250
PVSNet_068.08 1571.81 27468.32 29182.27 19684.68 26162.31 23588.68 26390.31 20875.84 12257.93 33280.65 30337.85 32294.19 21369.94 19629.05 39590.31 209
eth_miper_zixun_eth75.96 23074.40 22780.66 23784.66 26263.02 21789.28 25288.27 29071.88 20165.73 27381.65 28359.45 14492.81 25868.13 21460.53 33586.14 275
WR-MVS76.76 21775.74 20979.82 26184.60 26362.27 23692.60 13292.51 12176.06 12067.87 25585.34 24156.76 17390.24 31362.20 27063.69 31086.94 260
ACMH+65.35 1667.65 30864.55 31276.96 30284.59 26457.10 31588.08 27080.79 35158.59 33953.00 34881.09 29826.63 36792.95 25046.51 33561.69 32880.82 346
VPNet78.82 17977.53 18182.70 18484.52 26566.44 12793.93 7292.23 12780.46 5072.60 18988.38 19849.18 25293.13 24572.47 17463.97 30888.55 234
IterMVS-LS76.49 21975.18 21780.43 24184.49 26662.74 22690.64 21788.80 27272.40 18565.16 27881.72 28260.98 12792.27 28167.74 21964.65 30186.29 270
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_NR-MVSNet78.15 19377.55 18079.98 25584.46 26760.26 27492.25 14393.20 9377.50 10368.88 23886.61 22766.10 6492.13 28366.38 23562.55 31587.54 245
FMVSNet568.04 30565.66 30475.18 31484.43 26857.89 30383.54 30786.26 31461.83 32053.64 34773.30 35237.15 32985.08 35248.99 32261.77 32482.56 332
MVS-HIRNet60.25 34055.55 34774.35 32084.37 26956.57 32171.64 36774.11 36834.44 38845.54 37442.24 39531.11 35689.81 31840.36 36176.10 21776.67 372
LPG-MVS_test75.82 23274.58 22379.56 26884.31 27059.37 28790.44 22089.73 23369.49 25064.86 27988.42 19438.65 31194.30 20772.56 17272.76 24085.01 300
LGP-MVS_train79.56 26884.31 27059.37 28789.73 23369.49 25064.86 27988.42 19438.65 31194.30 20772.56 17272.76 24085.01 300
ACMM69.62 1374.34 24872.73 25179.17 27384.25 27257.87 30490.36 22489.93 22463.17 30665.64 27486.04 23737.79 32394.10 21665.89 24071.52 25085.55 291
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet (Re)77.58 20276.78 19479.98 25584.11 27360.80 26191.76 17193.17 9576.56 11769.93 22784.78 24863.32 10392.36 27864.89 25162.51 31786.78 262
test_040264.54 32561.09 33174.92 31684.10 27460.75 26587.95 27479.71 35652.03 35952.41 35077.20 33332.21 35091.64 29323.14 39061.03 33172.36 379
LTVRE_ROB59.60 1966.27 31663.54 31974.45 31984.00 27551.55 34467.08 37983.53 33958.78 33754.94 34180.31 30734.54 34093.23 24440.64 36068.03 27378.58 366
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
miper_lstm_enhance73.05 26171.73 26477.03 29983.80 27658.32 30081.76 32388.88 26869.80 24861.01 31178.23 32557.19 16587.51 34065.34 24859.53 34085.27 298
Patchmatch-test65.86 31860.94 33280.62 23983.75 27758.83 29558.91 39075.26 36644.50 38050.95 35877.09 33558.81 15287.90 33235.13 37364.03 30695.12 74
nrg03080.93 14079.86 14584.13 15283.69 27868.83 6593.23 10691.20 17475.55 12675.06 16288.22 20463.04 10894.74 18681.88 10166.88 28188.82 229
GA-MVS78.33 19176.23 20184.65 13283.65 27966.30 13191.44 17990.14 21676.01 12170.32 21984.02 25742.50 29794.72 18770.98 18677.00 21092.94 156
FMVSNet172.71 26869.91 27981.10 22883.60 28065.11 15990.01 23590.32 20563.92 29663.56 29480.25 30936.35 33491.54 29754.46 30366.75 28286.64 263
OPM-MVS79.00 17478.09 17181.73 21283.52 28163.83 19191.64 17790.30 20976.36 11971.97 20089.93 18046.30 27895.17 17475.10 15277.70 20086.19 274
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tfpnnormal70.10 28667.36 29478.32 28283.45 28260.97 25988.85 26092.77 10964.85 29160.83 31378.53 32243.52 29493.48 24031.73 38461.70 32780.52 350
Effi-MVS+-dtu76.14 22275.28 21678.72 27983.22 28355.17 32989.87 23987.78 30075.42 12867.98 24981.43 28845.08 28892.52 27275.08 15371.63 24888.48 235
CR-MVSNet73.79 25670.82 27182.70 18483.15 28467.96 8870.25 36984.00 33573.67 15969.97 22572.41 35557.82 16089.48 32152.99 31073.13 23690.64 205
RPMNet70.42 28465.68 30384.63 13483.15 28467.96 8870.25 36990.45 19946.83 37569.97 22565.10 37456.48 18095.30 17135.79 37273.13 23690.64 205
mvsmamba76.85 21475.71 21080.25 24683.07 28659.16 29191.44 17980.64 35376.84 11067.95 25086.33 23246.17 28094.24 21276.06 14572.92 23987.36 251
DU-MVS76.86 21275.84 20779.91 25882.96 28760.26 27491.26 19491.54 16176.46 11868.88 23886.35 23056.16 18192.13 28366.38 23562.55 31587.35 252
NR-MVSNet76.05 22674.59 22280.44 24082.96 28762.18 23790.83 21091.73 15277.12 10760.96 31286.35 23059.28 14891.80 29060.74 27761.34 33087.35 252
fmvsm_s_conf0.1_n85.61 6085.93 5184.68 13182.95 28963.48 20894.03 6889.46 24081.69 3389.86 2596.74 2061.85 11997.75 4994.74 982.01 16492.81 160
XXY-MVS77.94 19776.44 19882.43 19082.60 29064.44 17392.01 15691.83 14973.59 16070.00 22485.82 23854.43 20394.76 18469.63 19968.02 27488.10 242
test_fmvsmvis_n_192083.80 9283.48 8384.77 12582.51 29163.72 19691.37 18883.99 33781.42 3977.68 13495.74 4258.37 15497.58 5993.38 1486.87 11993.00 155
TranMVSNet+NR-MVSNet75.86 23174.52 22579.89 25982.44 29260.64 27091.37 18891.37 16876.63 11567.65 25786.21 23452.37 22491.55 29661.84 27260.81 33387.48 247
RRT_MVS74.44 24772.97 24778.84 27882.36 29357.66 30889.83 24188.79 27470.61 23864.58 28384.89 24639.24 30792.65 26870.11 19566.34 28586.21 273
test_vis1_n_192081.66 12882.01 11380.64 23882.24 29455.09 33094.76 4686.87 30881.67 3484.40 6694.63 7538.17 31694.67 19191.98 2683.34 14992.16 181
IterMVS72.65 27170.83 26978.09 28682.17 29562.96 21987.64 28186.28 31371.56 21860.44 31478.85 32145.42 28586.66 34463.30 26261.83 32384.65 304
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmtry67.53 31063.93 31778.34 28182.12 29664.38 17768.72 37384.00 33548.23 37259.24 32072.41 35557.82 16089.27 32246.10 33856.68 35081.36 340
PatchT69.11 29565.37 30780.32 24282.07 29763.68 20067.96 37887.62 30150.86 36469.37 22965.18 37357.09 16688.53 32741.59 35666.60 28388.74 230
MIMVSNet71.64 27568.44 28981.23 22381.97 29864.44 17373.05 36588.80 27269.67 24964.59 28274.79 34932.79 34687.82 33453.99 30576.35 21591.42 190
MVP-Stereo77.12 20976.23 20179.79 26281.72 29966.34 13089.29 25190.88 18970.56 23962.01 30882.88 26849.34 24994.13 21565.55 24693.80 4178.88 363
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
IterMVS-SCA-FT71.55 27869.97 27776.32 30681.48 30060.67 26987.64 28185.99 31866.17 28259.50 31978.88 32045.53 28383.65 36162.58 26861.93 32284.63 305
COLMAP_ROBcopyleft57.96 2062.98 33359.65 33572.98 33081.44 30153.00 33983.75 30675.53 36548.34 37148.81 36581.40 29024.14 37090.30 30932.95 37960.52 33675.65 374
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
JIA-IIPM66.06 31762.45 32676.88 30381.42 30254.45 33457.49 39188.67 27849.36 36863.86 29146.86 38956.06 18490.25 31049.53 32068.83 26785.95 282
WR-MVS_H70.59 28269.94 27872.53 33381.03 30351.43 34587.35 28492.03 13767.38 27360.23 31680.70 30055.84 18783.45 36346.33 33758.58 34582.72 327
Fast-Effi-MVS+-dtu75.04 24273.37 24280.07 25180.86 30459.52 28591.20 19985.38 32271.90 19965.20 27784.84 24741.46 30092.97 24966.50 23472.96 23887.73 244
test_fmvsmconf0.1_n85.71 5786.08 4984.62 13580.83 30562.33 23393.84 8088.81 27183.50 1887.00 4296.01 3763.36 10196.93 10594.04 1287.29 11694.61 97
Baseline_NR-MVSNet73.99 25372.83 24877.48 29280.78 30659.29 29091.79 16884.55 33068.85 25968.99 23680.70 30056.16 18192.04 28662.67 26760.98 33281.11 343
CP-MVSNet70.50 28369.91 27972.26 33680.71 30751.00 34887.23 28690.30 20967.84 26859.64 31882.69 27050.23 24282.30 37151.28 31259.28 34183.46 316
v875.35 23873.26 24381.61 21580.67 30866.82 11789.54 24689.27 24871.65 21163.30 29780.30 30854.99 19694.06 22067.33 22462.33 31883.94 308
PS-MVSNAJss77.26 20676.31 20080.13 25080.64 30959.16 29190.63 21991.06 18572.80 17568.58 24484.57 25153.55 21293.96 22872.97 16571.96 24787.27 255
TransMVSNet (Re)70.07 28767.66 29377.31 29680.62 31059.13 29391.78 17084.94 32765.97 28360.08 31780.44 30550.78 23691.87 28848.84 32345.46 37380.94 345
v2v48277.42 20475.65 21182.73 18380.38 31167.13 11091.85 16690.23 21375.09 13369.37 22983.39 26453.79 21094.44 20371.77 18065.00 29686.63 266
PS-CasMVS69.86 29069.13 28572.07 34080.35 31250.57 35087.02 28889.75 23067.27 27459.19 32282.28 27446.58 27382.24 37250.69 31459.02 34283.39 318
v1074.77 24572.54 25581.46 21880.33 31366.71 12189.15 25689.08 26070.94 23063.08 30079.86 31352.52 22294.04 22365.70 24362.17 31983.64 311
test0.0.03 172.76 26672.71 25272.88 33180.25 31447.99 36291.22 19789.45 24171.51 22062.51 30687.66 21353.83 20885.06 35350.16 31767.84 27785.58 289
fmvsm_s_conf0.1_n_a84.76 7184.84 6984.53 13780.23 31563.50 20792.79 12088.73 27580.46 5089.84 2696.65 2260.96 12897.57 6193.80 1380.14 17992.53 167
v114476.73 21874.88 21882.27 19680.23 31566.60 12491.68 17590.21 21573.69 15769.06 23481.89 27952.73 22194.40 20469.21 20565.23 29385.80 285
v14876.19 22174.47 22681.36 22080.05 31764.44 17391.75 17390.23 21373.68 15867.13 26480.84 29955.92 18693.86 23468.95 20961.73 32685.76 288
dmvs_testset65.55 32166.45 29762.86 36279.87 31822.35 40576.55 35771.74 37577.42 10655.85 33887.77 21251.39 23280.69 37731.51 38765.92 28885.55 291
v119275.98 22873.92 23582.15 20279.73 31966.24 13391.22 19789.75 23072.67 17768.49 24581.42 28949.86 24594.27 20967.08 22765.02 29585.95 282
AllTest61.66 33558.06 33972.46 33479.57 32051.42 34680.17 34068.61 38151.25 36245.88 37081.23 29219.86 38186.58 34538.98 36457.01 34879.39 358
TestCases72.46 33479.57 32051.42 34668.61 38151.25 36245.88 37081.23 29219.86 38186.58 34538.98 36457.01 34879.39 358
MDA-MVSNet-bldmvs61.54 33757.70 34173.05 32979.53 32257.00 31983.08 31681.23 34957.57 34034.91 38872.45 35432.79 34686.26 34735.81 37141.95 37875.89 373
v14419276.05 22674.03 23382.12 20479.50 32366.55 12691.39 18589.71 23672.30 18868.17 24781.33 29151.75 22894.03 22567.94 21764.19 30385.77 286
v192192075.63 23673.49 24182.06 20879.38 32466.35 12991.07 20489.48 23971.98 19667.99 24881.22 29449.16 25493.90 23166.56 23164.56 30285.92 284
PEN-MVS69.46 29368.56 28772.17 33879.27 32549.71 35486.90 29089.24 24967.24 27759.08 32382.51 27347.23 26983.54 36248.42 32557.12 34683.25 319
v124075.21 24172.98 24681.88 21079.20 32666.00 13790.75 21389.11 25871.63 21567.41 26181.22 29447.36 26893.87 23265.46 24764.72 30085.77 286
pmmvs473.92 25471.81 26380.25 24679.17 32765.24 15587.43 28387.26 30567.64 27263.46 29583.91 25948.96 25691.53 30062.94 26465.49 28983.96 307
D2MVS73.80 25572.02 26079.15 27579.15 32862.97 21888.58 26590.07 21872.94 17059.22 32178.30 32342.31 29992.70 26465.59 24572.00 24681.79 338
V4276.46 22074.55 22482.19 20179.14 32967.82 9190.26 22889.42 24373.75 15568.63 24381.89 27951.31 23394.09 21771.69 18264.84 29784.66 303
pm-mvs172.89 26471.09 26878.26 28479.10 33057.62 30990.80 21189.30 24767.66 27062.91 30281.78 28149.11 25592.95 25060.29 28158.89 34384.22 306
our_test_368.29 30364.69 31179.11 27678.92 33164.85 16688.40 26885.06 32560.32 32952.68 34976.12 34340.81 30389.80 32044.25 34655.65 35182.67 331
ppachtmachnet_test67.72 30763.70 31879.77 26378.92 33166.04 13688.68 26382.90 34560.11 33155.45 33975.96 34439.19 30890.55 30639.53 36252.55 36182.71 328
test_fmvs174.07 25173.69 23875.22 31278.91 33347.34 36689.06 25974.69 36763.68 29979.41 11491.59 15024.36 36987.77 33685.22 7476.26 21690.55 207
TinyColmap60.32 33956.42 34672.00 34178.78 33453.18 33878.36 35175.64 36352.30 35841.59 38375.82 34614.76 38888.35 32935.84 37054.71 35674.46 375
SixPastTwentyTwo64.92 32361.78 33074.34 32178.74 33549.76 35383.42 31179.51 35762.86 30850.27 35977.35 33030.92 35790.49 30845.89 33947.06 37082.78 324
EG-PatchMatch MVS68.55 30065.41 30677.96 28778.69 33662.93 22089.86 24089.17 25360.55 32650.27 35977.73 32922.60 37494.06 22047.18 33372.65 24276.88 371
pmmvs573.35 25871.52 26578.86 27778.64 33760.61 27191.08 20286.90 30767.69 26963.32 29683.64 26044.33 29190.53 30762.04 27166.02 28785.46 293
UniMVSNet_ETH3D72.74 26770.53 27479.36 27078.62 33856.64 32085.01 29989.20 25163.77 29864.84 28184.44 25334.05 34291.86 28963.94 25670.89 25589.57 220
XVG-OURS74.25 25072.46 25679.63 26578.45 33957.59 31080.33 33787.39 30263.86 29768.76 24189.62 18340.50 30491.72 29269.00 20874.25 22889.58 219
tt080573.07 26070.73 27280.07 25178.37 34057.05 31687.78 27792.18 13361.23 32367.04 26586.49 22931.35 35494.58 19465.06 25067.12 27988.57 233
test_cas_vis1_n_192080.45 14980.61 13479.97 25778.25 34157.01 31894.04 6788.33 28779.06 7882.81 7893.70 10238.65 31191.63 29490.82 3579.81 18191.27 198
XVG-OURS-SEG-HR74.70 24673.08 24479.57 26778.25 34157.33 31480.49 33587.32 30363.22 30468.76 24190.12 17944.89 28991.59 29570.55 19274.09 23089.79 216
MDA-MVSNet_test_wron63.78 33060.16 33374.64 31778.15 34360.41 27283.49 30884.03 33356.17 35139.17 38571.59 36137.22 32783.24 36642.87 35148.73 36780.26 353
YYNet163.76 33160.14 33474.62 31878.06 34460.19 27783.46 31083.99 33756.18 35039.25 38471.56 36237.18 32883.34 36442.90 35048.70 36880.32 352
DTE-MVSNet68.46 30267.33 29571.87 34277.94 34549.00 35986.16 29588.58 28266.36 28158.19 32782.21 27646.36 27483.87 36044.97 34455.17 35382.73 326
USDC67.43 31264.51 31376.19 30777.94 34555.29 32878.38 35085.00 32673.17 16548.36 36680.37 30621.23 37692.48 27452.15 31164.02 30780.81 347
bld_raw_dy_0_6471.59 27769.71 28277.22 29877.82 34758.12 30287.71 27973.66 36968.01 26761.90 31084.29 25533.68 34388.43 32869.91 19770.43 25685.11 299
jajsoiax73.05 26171.51 26677.67 28977.46 34854.83 33188.81 26190.04 22169.13 25762.85 30383.51 26231.16 35592.75 26170.83 18769.80 25785.43 294
mvs_tets72.71 26871.11 26777.52 29077.41 34954.52 33388.45 26789.76 22968.76 26262.70 30483.26 26529.49 35992.71 26270.51 19369.62 25985.34 296
N_pmnet50.55 35049.11 35354.88 37077.17 3504.02 41384.36 3022.00 41148.59 36945.86 37268.82 36732.22 34982.80 36831.58 38551.38 36377.81 369
test_djsdf73.76 25772.56 25477.39 29477.00 35153.93 33589.07 25790.69 19265.80 28463.92 29082.03 27843.14 29692.67 26572.83 16768.53 27085.57 290
OpenMVS_ROBcopyleft61.12 1866.39 31562.92 32376.80 30476.51 35257.77 30589.22 25383.41 34155.48 35253.86 34677.84 32826.28 36893.95 22934.90 37468.76 26878.68 365
v7n71.31 27968.65 28679.28 27176.40 35360.77 26386.71 29289.45 24164.17 29558.77 32678.24 32444.59 29093.54 23857.76 29161.75 32583.52 314
K. test v363.09 33259.61 33673.53 32676.26 35449.38 35883.27 31277.15 35964.35 29447.77 36872.32 35728.73 36187.79 33549.93 31936.69 38683.41 317
RPSCF64.24 32761.98 32971.01 34476.10 35545.00 37475.83 36175.94 36146.94 37458.96 32484.59 25031.40 35382.00 37347.76 33160.33 33986.04 279
OurMVSNet-221017-064.68 32462.17 32872.21 33776.08 35647.35 36580.67 33481.02 35056.19 34951.60 35379.66 31727.05 36688.56 32653.60 30853.63 35880.71 348
test_fmvsmconf0.01_n83.70 9683.52 8084.25 14975.26 35761.72 24792.17 14687.24 30682.36 2684.91 6195.41 4855.60 18896.83 10992.85 1785.87 13194.21 111
Anonymous2023120667.53 31065.78 30172.79 33274.95 35847.59 36488.23 26987.32 30361.75 32158.07 32977.29 33237.79 32387.29 34242.91 34963.71 30983.48 315
EGC-MVSNET42.35 35738.09 36055.11 36974.57 35946.62 37071.63 36855.77 3920.04 4060.24 40762.70 37814.24 38974.91 38317.59 39546.06 37243.80 392
ITE_SJBPF70.43 34574.44 36047.06 36977.32 35860.16 33054.04 34583.53 26123.30 37384.01 35843.07 34861.58 32980.21 355
EU-MVSNet64.01 32863.01 32267.02 35874.40 36138.86 38983.27 31286.19 31645.11 37854.27 34381.15 29736.91 33280.01 37948.79 32457.02 34782.19 336
XVG-ACMP-BASELINE68.04 30565.53 30575.56 31074.06 36252.37 34078.43 34985.88 31962.03 31658.91 32581.21 29620.38 37991.15 30460.69 27868.18 27283.16 321
mvsany_test168.77 29868.56 28769.39 34873.57 36345.88 37380.93 33360.88 39159.65 33371.56 20690.26 17343.22 29575.05 38174.26 16162.70 31487.25 256
CL-MVSNet_self_test69.92 28868.09 29275.41 31173.25 36455.90 32590.05 23489.90 22569.96 24561.96 30976.54 33851.05 23587.64 33749.51 32150.59 36582.70 329
anonymousdsp71.14 28069.37 28476.45 30572.95 36554.71 33284.19 30388.88 26861.92 31862.15 30779.77 31538.14 31891.44 30268.90 21067.45 27883.21 320
lessismore_v073.72 32572.93 36647.83 36361.72 39045.86 37273.76 35128.63 36389.81 31847.75 33231.37 39283.53 313
pmmvs667.57 30964.76 31076.00 30972.82 36753.37 33788.71 26286.78 31153.19 35757.58 33478.03 32735.33 33892.41 27555.56 29954.88 35582.21 335
testgi64.48 32662.87 32469.31 34971.24 36840.62 38485.49 29679.92 35565.36 28854.18 34483.49 26323.74 37284.55 35441.60 35560.79 33482.77 325
Patchmatch-RL test68.17 30464.49 31479.19 27271.22 36953.93 33570.07 37171.54 37769.22 25456.79 33662.89 37756.58 17888.61 32469.53 20152.61 36095.03 78
test_fmvs1_n72.69 27071.92 26174.99 31571.15 37047.08 36887.34 28575.67 36263.48 30178.08 13191.17 15720.16 38087.87 33384.65 8275.57 22090.01 213
Gipumacopyleft34.91 36431.44 36745.30 37970.99 37139.64 38819.85 40172.56 37220.10 39716.16 40121.47 4025.08 40271.16 38713.07 39943.70 37625.08 399
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
UnsupCasMVSNet_eth65.79 31963.10 32173.88 32370.71 37250.29 35281.09 33189.88 22672.58 17949.25 36474.77 35032.57 34887.43 34155.96 29841.04 38083.90 309
CMPMVSbinary48.56 2166.77 31464.41 31573.84 32470.65 37350.31 35177.79 35485.73 32145.54 37744.76 37682.14 27735.40 33790.14 31663.18 26374.54 22581.07 344
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0363.83 32962.65 32567.38 35770.58 37439.94 38586.57 29384.17 33263.29 30351.86 35277.30 33137.09 33082.47 36938.87 36654.13 35779.73 356
MIMVSNet160.16 34157.33 34268.67 35169.71 37544.13 37678.92 34784.21 33155.05 35344.63 37771.85 35923.91 37181.54 37532.63 38255.03 35480.35 351
test_vis1_n71.63 27670.73 27274.31 32269.63 37647.29 36786.91 28972.11 37363.21 30575.18 16190.17 17520.40 37885.76 34884.59 8374.42 22789.87 214
pmmvs-eth3d65.53 32262.32 32775.19 31369.39 37759.59 28382.80 31983.43 34062.52 31251.30 35672.49 35332.86 34587.16 34355.32 30050.73 36478.83 364
UnsupCasMVSNet_bld61.60 33657.71 34073.29 32868.73 37851.64 34378.61 34889.05 26257.20 34446.11 36961.96 38028.70 36288.60 32550.08 31838.90 38479.63 357
test_vis1_rt59.09 34457.31 34364.43 36068.44 37946.02 37283.05 31748.63 40051.96 36049.57 36263.86 37616.30 38380.20 37871.21 18562.79 31367.07 385
Anonymous2024052162.09 33459.08 33771.10 34367.19 38048.72 36083.91 30585.23 32450.38 36547.84 36771.22 36420.74 37785.51 35146.47 33658.75 34479.06 361
test_fmvs265.78 32064.84 30868.60 35266.54 38141.71 38183.27 31269.81 37954.38 35467.91 25284.54 25215.35 38581.22 37675.65 14866.16 28682.88 323
KD-MVS_self_test60.87 33858.60 33867.68 35566.13 38239.93 38675.63 36284.70 32857.32 34349.57 36268.45 36829.55 35882.87 36748.09 32647.94 36980.25 354
new-patchmatchnet59.30 34356.48 34567.79 35465.86 38344.19 37582.47 32081.77 34759.94 33243.65 38066.20 37227.67 36481.68 37439.34 36341.40 37977.50 370
PM-MVS59.40 34256.59 34467.84 35363.63 38441.86 38076.76 35663.22 38859.01 33651.07 35772.27 35811.72 39183.25 36561.34 27450.28 36678.39 367
DSMNet-mixed56.78 34654.44 34963.79 36163.21 38529.44 40064.43 38264.10 38742.12 38551.32 35571.60 36031.76 35175.04 38236.23 36965.20 29486.87 261
new_pmnet49.31 35146.44 35457.93 36562.84 38640.74 38368.47 37562.96 38936.48 38735.09 38757.81 38414.97 38772.18 38632.86 38046.44 37160.88 387
LF4IMVS54.01 34952.12 35059.69 36462.41 38739.91 38768.59 37468.28 38342.96 38444.55 37875.18 34714.09 39068.39 39041.36 35751.68 36270.78 380
WB-MVS46.23 35444.94 35650.11 37462.13 38821.23 40776.48 35855.49 39345.89 37635.78 38661.44 38235.54 33672.83 3859.96 40121.75 39656.27 389
ambc69.61 34761.38 38941.35 38249.07 39685.86 32050.18 36166.40 37110.16 39388.14 33145.73 34044.20 37479.32 360
SSC-MVS44.51 35643.35 35847.99 37861.01 39018.90 40974.12 36454.36 39443.42 38334.10 38960.02 38334.42 34170.39 3889.14 40319.57 39754.68 390
TDRefinement55.28 34851.58 35166.39 35959.53 39146.15 37176.23 35972.80 37144.60 37942.49 38176.28 34215.29 38682.39 37033.20 37843.75 37570.62 381
pmmvs355.51 34751.50 35267.53 35657.90 39250.93 34980.37 33673.66 36940.63 38644.15 37964.75 37516.30 38378.97 38044.77 34540.98 38272.69 377
test_method38.59 36235.16 36548.89 37654.33 39321.35 40645.32 39753.71 3957.41 40328.74 39151.62 3878.70 39652.87 40133.73 37532.89 39172.47 378
test_fmvs356.82 34554.86 34862.69 36353.59 39435.47 39175.87 36065.64 38643.91 38155.10 34071.43 3636.91 39974.40 38468.64 21252.63 35978.20 368
APD_test140.50 35937.31 36250.09 37551.88 39535.27 39259.45 38952.59 39621.64 39526.12 39357.80 3854.56 40366.56 39222.64 39139.09 38348.43 391
DeepMVS_CXcopyleft34.71 38451.45 39624.73 40428.48 41031.46 39117.49 40052.75 3865.80 40142.60 40518.18 39419.42 39836.81 397
FPMVS45.64 35543.10 35953.23 37251.42 39736.46 39064.97 38171.91 37429.13 39227.53 39261.55 3819.83 39465.01 39616.00 39855.58 35258.22 388
wuyk23d11.30 37310.95 37612.33 38848.05 39819.89 40825.89 4001.92 4123.58 4043.12 4061.37 4060.64 41115.77 4076.23 4067.77 4051.35 403
PMMVS237.93 36333.61 36650.92 37346.31 39924.76 40360.55 38850.05 39728.94 39320.93 39547.59 3884.41 40565.13 39525.14 38918.55 39962.87 386
mvsany_test348.86 35246.35 35556.41 36646.00 40031.67 39662.26 38447.25 40143.71 38245.54 37468.15 36910.84 39264.44 39857.95 29035.44 38973.13 376
test_f46.58 35343.45 35755.96 36745.18 40132.05 39561.18 38549.49 39933.39 38942.05 38262.48 3797.00 39865.56 39447.08 33443.21 37770.27 382
test_vis3_rt40.46 36037.79 36148.47 37744.49 40233.35 39466.56 38032.84 40832.39 39029.65 39039.13 3983.91 40668.65 38950.17 31640.99 38143.40 393
E-PMN24.61 36824.00 37226.45 38543.74 40318.44 41060.86 38639.66 40415.11 4009.53 40422.10 4016.52 40046.94 4038.31 40410.14 40113.98 401
testf132.77 36529.47 36842.67 38141.89 40430.81 39752.07 39243.45 40215.45 39818.52 39844.82 3922.12 40758.38 39916.05 39630.87 39338.83 394
APD_test232.77 36529.47 36842.67 38141.89 40430.81 39752.07 39243.45 40215.45 39818.52 39844.82 3922.12 40758.38 39916.05 39630.87 39338.83 394
EMVS23.76 37023.20 37425.46 38641.52 40616.90 41160.56 38738.79 40714.62 4018.99 40520.24 4047.35 39745.82 4047.25 4059.46 40213.64 402
LCM-MVSNet40.54 35835.79 36354.76 37136.92 40730.81 39751.41 39469.02 38022.07 39424.63 39445.37 3914.56 40365.81 39333.67 37634.50 39067.67 383
ANet_high40.27 36135.20 36455.47 36834.74 40834.47 39363.84 38371.56 37648.42 37018.80 39741.08 3969.52 39564.45 39720.18 3938.66 40467.49 384
MVEpermissive24.84 2324.35 36919.77 37538.09 38334.56 40926.92 40226.57 39938.87 40611.73 40211.37 40327.44 3991.37 41050.42 40211.41 40014.60 40036.93 396
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft26.43 2231.84 36728.16 37042.89 38025.87 41027.58 40150.92 39549.78 39821.37 39614.17 40240.81 3972.01 40966.62 3919.61 40238.88 38534.49 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt22.26 37123.75 37317.80 3875.23 41112.06 41235.26 39839.48 4052.82 40518.94 39644.20 39422.23 37524.64 40636.30 3689.31 40316.69 400
testmvs7.23 3759.62 3780.06 3900.04 4120.02 41584.98 3000.02 4130.03 4070.18 4081.21 4070.01 4130.02 4080.14 4070.01 4060.13 405
test1236.92 3769.21 3790.08 3890.03 4130.05 41481.65 3260.01 4140.02 4080.14 4090.85 4080.03 4120.02 4080.12 4080.00 4070.16 404
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
eth-test20.00 414
eth-test0.00 414
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
cdsmvs_eth3d_5k19.86 37226.47 3710.00 3910.00 4140.00 4160.00 40293.45 840.00 4090.00 41095.27 5649.56 2470.00 4100.00 4090.00 4070.00 406
pcd_1.5k_mvsjas4.46 3775.95 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40953.55 2120.00 4100.00 4090.00 4070.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
ab-mvs-re7.91 37410.55 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41094.95 640.00 4140.00 4100.00 4090.00 4070.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
WAC-MVS49.45 35631.56 386
PC_three_145280.91 4694.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
test_241102_TWO94.41 4871.65 21192.07 897.21 474.58 1799.11 692.34 2195.36 1396.59 16
test_0728_THIRD72.48 18190.55 1996.93 1176.24 1199.08 1191.53 2994.99 1796.43 26
GSMVS94.68 92
sam_mvs157.85 15994.68 92
sam_mvs54.91 197
MTGPAbinary92.23 127
test_post178.95 34620.70 40353.05 21791.50 30160.43 279
test_post23.01 40056.49 17992.67 265
patchmatchnet-post67.62 37057.62 16290.25 310
MTMP93.77 8432.52 409
test9_res89.41 3994.96 1895.29 64
agg_prior286.41 6694.75 2995.33 60
test_prior467.18 10993.92 73
test_prior295.10 3875.40 12985.25 6095.61 4567.94 5187.47 5694.77 25
旧先验292.00 15959.37 33587.54 3893.47 24175.39 150
新几何291.41 181
无先验92.71 12492.61 11862.03 31697.01 9366.63 23093.97 124
原ACMM292.01 156
testdata296.09 13261.26 275
segment_acmp65.94 66
testdata189.21 25477.55 102
plane_prior591.31 17095.55 16176.74 14078.53 19588.39 238
plane_prior489.14 189
plane_prior361.95 24279.09 7672.53 191
plane_prior293.13 10878.81 83
plane_prior62.42 23093.85 7779.38 6878.80 192
n20.00 415
nn0.00 415
door-mid66.01 385
test1193.01 101
door66.57 384
HQP5-MVS63.66 201
BP-MVS77.63 137
HQP4-MVS74.18 17095.61 15688.63 231
HQP3-MVS91.70 15678.90 190
HQP2-MVS51.63 230
MDTV_nov1_ep13_2view59.90 28080.13 34167.65 27172.79 18654.33 20559.83 28392.58 165
ACMMP++_ref71.63 248
ACMMP++69.72 258
Test By Simon54.21 206