This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
DPM-MVS90.70 390.52 991.24 189.68 16076.68 297.29 195.35 1682.87 2291.58 1397.22 379.93 599.10 983.12 10297.64 297.94 1
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5596.89 694.44 4771.65 21892.11 797.21 476.79 999.11 692.34 2295.36 1497.62 2
OPU-MVS89.97 397.52 373.15 1496.89 697.00 983.82 299.15 295.72 597.63 397.62 2
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4293.96 7094.37 5372.48 18892.07 996.85 1683.82 299.15 291.53 3097.42 497.55 4
PC_three_145280.91 4894.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
DeepPCF-MVS81.17 189.72 1091.38 484.72 13493.00 7558.16 31296.72 994.41 4986.50 890.25 2297.83 175.46 1498.67 2592.78 1995.49 1397.32 6
balanced_conf0389.08 1588.84 1789.81 693.66 5475.15 590.61 22593.43 8884.06 1486.20 4990.17 18272.42 3296.98 10193.09 1695.92 1097.29 7
LFMVS84.34 8482.73 11189.18 1394.76 3373.25 1194.99 4291.89 15471.90 20682.16 9093.49 11447.98 27897.05 9282.55 10884.82 14697.25 8
sasdasda86.85 3786.25 4888.66 2091.80 11371.92 1693.54 9591.71 16480.26 5687.55 3795.25 6163.59 10396.93 10988.18 5084.34 15097.11 9
canonicalmvs86.85 3786.25 4888.66 2091.80 11371.92 1693.54 9591.71 16480.26 5687.55 3795.25 6163.59 10396.93 10988.18 5084.34 15097.11 9
MCST-MVS91.08 191.46 389.94 497.66 273.37 1097.13 295.58 1189.33 185.77 5496.26 3072.84 2999.38 192.64 2095.93 997.08 11
DELS-MVS90.05 890.09 1189.94 493.14 7073.88 997.01 494.40 5188.32 385.71 5594.91 7374.11 2198.91 1887.26 6295.94 897.03 12
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MGCFI-Net85.59 6585.73 6085.17 11891.41 12762.44 23792.87 12191.31 18179.65 6886.99 4495.14 6762.90 11696.12 14087.13 6484.13 15796.96 13
CSCG86.87 3686.26 4788.72 1795.05 3170.79 2993.83 8295.33 1768.48 27177.63 14494.35 9173.04 2798.45 3084.92 8493.71 4796.92 14
MM90.87 291.52 288.92 1592.12 10071.10 2797.02 396.04 688.70 291.57 1496.19 3270.12 4498.91 1896.83 195.06 1796.76 15
MVS84.66 7982.86 10990.06 290.93 13674.56 787.91 28195.54 1468.55 26972.35 20594.71 7859.78 14798.90 2081.29 11994.69 3296.74 16
alignmvs87.28 3286.97 3788.24 2791.30 12971.14 2695.61 2593.56 8079.30 7587.07 4295.25 6168.43 4996.93 10987.87 5384.33 15296.65 17
DeepC-MVS_fast79.48 287.95 2288.00 2587.79 3195.86 2768.32 8095.74 2194.11 6183.82 1683.49 7696.19 3264.53 8998.44 3183.42 10194.88 2596.61 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_241102_TWO94.41 4971.65 21892.07 997.21 474.58 1899.11 692.34 2295.36 1496.59 19
TSAR-MVS + GP.87.96 2188.37 2186.70 6593.51 6165.32 15995.15 3693.84 6678.17 9685.93 5394.80 7675.80 1398.21 3489.38 4188.78 10796.59 19
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1393.78 6786.89 689.68 2895.78 4065.94 7199.10 992.99 1793.91 4296.58 21
WTY-MVS86.32 4885.81 5787.85 2992.82 8169.37 5795.20 3495.25 1882.71 2381.91 9194.73 7767.93 5597.63 5679.55 13182.25 17096.54 22
VNet86.20 5085.65 6187.84 3093.92 4769.99 3895.73 2395.94 778.43 9386.00 5293.07 12058.22 16797.00 9785.22 7884.33 15296.52 23
MSC_two_6792asdad89.60 997.31 473.22 1295.05 2799.07 1392.01 2594.77 2696.51 24
No_MVS89.60 997.31 473.22 1295.05 2799.07 1392.01 2594.77 2696.51 24
test_0728_SECOND88.70 1896.45 1270.43 3396.64 1094.37 5399.15 291.91 2894.90 2296.51 24
ET-MVSNet_ETH3D84.01 9383.15 10386.58 7090.78 14170.89 2894.74 4794.62 4181.44 4058.19 33893.64 11073.64 2592.35 28782.66 10678.66 20596.50 27
MVSMamba_PlusPlus84.97 7583.65 8588.93 1490.17 15174.04 887.84 28392.69 11862.18 32381.47 9687.64 22071.47 3996.28 13384.69 8694.74 3196.47 28
IU-MVS96.46 1169.91 4295.18 2180.75 4995.28 192.34 2295.36 1496.47 28
MVS_030490.32 690.90 788.55 2394.05 4570.23 3697.00 593.73 7487.30 492.15 696.15 3466.38 6698.94 1796.71 294.67 3396.47 28
test_0728_THIRD72.48 18890.55 2096.93 1176.24 1199.08 1191.53 3094.99 1896.43 31
MSP-MVS90.38 591.87 185.88 9092.83 7964.03 19493.06 11294.33 5582.19 2993.65 396.15 3485.89 197.19 8491.02 3497.75 196.43 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HY-MVS76.49 584.28 8583.36 9787.02 5592.22 9567.74 9784.65 30994.50 4479.15 7982.23 8987.93 21566.88 6196.94 10780.53 12482.20 17296.39 33
DPE-MVScopyleft88.77 1789.21 1687.45 4396.26 2067.56 10294.17 5894.15 6068.77 26790.74 1897.27 276.09 1298.49 2990.58 3894.91 2196.30 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3896.64 1094.52 4371.92 20490.55 2096.93 1173.77 2399.08 1191.91 2894.90 2296.29 35
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSLP-MVS++86.27 4985.91 5687.35 4592.01 10568.97 6695.04 4092.70 11679.04 8581.50 9496.50 2558.98 16096.78 11583.49 10093.93 4196.29 35
patch_mono-289.71 1190.99 685.85 9396.04 2463.70 20495.04 4095.19 2086.74 791.53 1595.15 6673.86 2297.58 5993.38 1492.00 6996.28 37
test_yl84.28 8583.16 10187.64 3494.52 3769.24 5995.78 1895.09 2469.19 26181.09 10092.88 12657.00 18097.44 6681.11 12181.76 17796.23 38
DCV-MVSNet84.28 8583.16 10187.64 3494.52 3769.24 5995.78 1895.09 2469.19 26181.09 10092.88 12657.00 18097.44 6681.11 12181.76 17796.23 38
CNVR-MVS90.32 690.89 888.61 2296.76 870.65 3096.47 1494.83 3184.83 1189.07 3196.80 1970.86 4099.06 1592.64 2095.71 1196.12 40
HPM-MVS++copyleft89.37 1489.95 1387.64 3495.10 3068.23 8695.24 3394.49 4582.43 2688.90 3296.35 2771.89 3798.63 2688.76 4896.40 696.06 41
SD-MVS87.49 2887.49 3187.50 4293.60 5668.82 6993.90 7492.63 12376.86 11687.90 3595.76 4166.17 6897.63 5689.06 4691.48 7896.05 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PHI-MVS86.83 3986.85 4186.78 6393.47 6265.55 15595.39 3095.10 2371.77 21485.69 5696.52 2362.07 12398.77 2386.06 7495.60 1296.03 43
APDe-MVScopyleft87.54 2787.84 2686.65 6696.07 2366.30 13794.84 4593.78 6769.35 25888.39 3396.34 2867.74 5697.66 5490.62 3793.44 5196.01 44
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
lupinMVS87.74 2587.77 2787.63 3889.24 17571.18 2496.57 1292.90 11182.70 2487.13 4095.27 5964.99 8095.80 15389.34 4291.80 7295.93 45
NCCC89.07 1689.46 1587.91 2896.60 1069.05 6396.38 1594.64 4084.42 1286.74 4596.20 3166.56 6598.76 2489.03 4794.56 3495.92 46
SMA-MVScopyleft88.14 1888.29 2287.67 3393.21 6768.72 7293.85 7794.03 6374.18 15191.74 1296.67 2165.61 7598.42 3389.24 4496.08 795.88 47
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
dcpmvs_287.37 3187.55 3086.85 5895.04 3268.20 8790.36 23190.66 20779.37 7481.20 9893.67 10974.73 1696.55 12390.88 3592.00 6995.82 48
Anonymous20240521177.96 20775.33 22585.87 9193.73 5364.52 17494.85 4485.36 33762.52 32176.11 15990.18 18129.43 37397.29 7668.51 22477.24 22095.81 49
RRT-MVS82.61 12281.16 12986.96 5791.10 13368.75 7087.70 28692.20 13776.97 11472.68 19487.10 23151.30 24796.41 13083.56 9987.84 11795.74 50
mvs_anonymous81.36 14279.99 15385.46 10590.39 14768.40 7886.88 29890.61 20974.41 14670.31 23084.67 25763.79 9792.32 28973.13 17685.70 14095.67 51
MG-MVS87.11 3486.27 4689.62 897.79 176.27 494.96 4394.49 4578.74 9083.87 7592.94 12364.34 9096.94 10775.19 16294.09 3895.66 52
PAPR85.15 7184.47 7687.18 4996.02 2568.29 8191.85 16993.00 10876.59 12379.03 12895.00 6861.59 12897.61 5878.16 14589.00 10595.63 53
VDD-MVS83.06 11381.81 12486.81 6190.86 13967.70 9895.40 2991.50 17575.46 13481.78 9292.34 13940.09 31997.13 9086.85 6882.04 17495.60 54
casdiffmvs_mvgpermissive85.66 6385.18 6787.09 5288.22 20269.35 5893.74 8691.89 15481.47 3780.10 11491.45 15864.80 8596.35 13187.23 6387.69 11995.58 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Effi-MVS+83.82 9782.76 11086.99 5689.56 16369.40 5391.35 19286.12 33072.59 18583.22 8092.81 12959.60 14996.01 15081.76 11287.80 11895.56 56
TSAR-MVS + MP.88.11 2088.64 1886.54 7291.73 11568.04 9090.36 23193.55 8182.89 2191.29 1692.89 12572.27 3496.03 14887.99 5294.77 2695.54 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
UBG86.83 3986.70 4287.20 4893.07 7369.81 4693.43 10395.56 1381.52 3681.50 9492.12 14473.58 2696.28 13384.37 9085.20 14395.51 58
SteuartSystems-ACMMP86.82 4186.90 3986.58 7090.42 14566.38 13496.09 1793.87 6577.73 10384.01 7495.66 4363.39 10697.94 4087.40 6093.55 5095.42 59
Skip Steuart: Steuart Systems R&D Blog.
SPE-MVS-test86.14 5287.01 3683.52 17692.63 8759.36 30195.49 2791.92 15180.09 6085.46 5995.53 4961.82 12795.77 15686.77 6993.37 5295.41 60
casdiffmvspermissive85.37 6784.87 7386.84 5988.25 20069.07 6293.04 11491.76 16181.27 4480.84 10592.07 14664.23 9196.06 14684.98 8387.43 12395.39 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EIA-MVS84.84 7684.88 7284.69 13691.30 12962.36 24093.85 7792.04 14479.45 7179.33 12594.28 9562.42 11996.35 13180.05 12791.25 8395.38 62
testing9185.93 5685.31 6587.78 3293.59 5771.47 1993.50 9895.08 2680.26 5680.53 10991.93 14970.43 4296.51 12580.32 12682.13 17395.37 63
CS-MVS85.80 5986.65 4483.27 18492.00 10658.92 30595.31 3191.86 15679.97 6184.82 6595.40 5262.26 12195.51 17486.11 7392.08 6895.37 63
GG-mvs-BLEND86.53 7391.91 11069.67 5275.02 37594.75 3478.67 13690.85 16877.91 794.56 20772.25 18893.74 4595.36 65
agg_prior286.41 7094.75 3095.33 66
3Dnovator+73.60 782.10 13180.60 14586.60 6890.89 13866.80 12595.20 3493.44 8774.05 15367.42 27092.49 13449.46 26397.65 5570.80 20191.68 7495.33 66
baseline85.01 7384.44 7786.71 6488.33 19768.73 7190.24 23691.82 16081.05 4781.18 9992.50 13263.69 9996.08 14584.45 8986.71 13395.32 68
ab-mvs80.18 16478.31 17985.80 9588.44 19265.49 15883.00 32892.67 11971.82 21277.36 14885.01 25354.50 21196.59 11976.35 15575.63 22995.32 68
test9_res89.41 4094.96 1995.29 70
EPNet87.84 2488.38 2086.23 8293.30 6466.05 14195.26 3294.84 3087.09 588.06 3494.53 8266.79 6297.34 7383.89 9591.68 7495.29 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SF-MVS87.03 3587.09 3586.84 5992.70 8567.45 10793.64 9093.76 7070.78 24286.25 4796.44 2666.98 6097.79 4788.68 4994.56 3495.28 72
VDDNet80.50 15778.26 18087.21 4786.19 24669.79 4794.48 5091.31 18160.42 33779.34 12490.91 16738.48 32796.56 12282.16 10981.05 18395.27 73
MVSFormer83.75 10082.88 10886.37 7889.24 17571.18 2489.07 26390.69 20465.80 29087.13 4094.34 9264.99 8092.67 27472.83 17991.80 7295.27 73
jason86.40 4686.17 5087.11 5186.16 24870.54 3295.71 2492.19 13982.00 3184.58 6794.34 9261.86 12595.53 17387.76 5490.89 8695.27 73
jason: jason.
train_agg87.21 3387.42 3286.60 6894.18 4167.28 10994.16 5993.51 8271.87 20985.52 5795.33 5468.19 5197.27 8089.09 4594.90 2295.25 76
MVS_Test84.16 9183.20 10087.05 5491.56 12069.82 4589.99 24592.05 14377.77 10282.84 8386.57 23763.93 9596.09 14274.91 16789.18 10295.25 76
3Dnovator73.91 682.69 12180.82 13888.31 2689.57 16271.26 2292.60 13594.39 5278.84 8767.89 26392.48 13548.42 27398.52 2868.80 22294.40 3695.15 78
testing9986.01 5485.47 6287.63 3893.62 5571.25 2393.47 10195.23 1980.42 5480.60 10891.95 14871.73 3896.50 12680.02 12882.22 17195.13 79
Patchmatch-test65.86 32860.94 34380.62 25183.75 28858.83 30658.91 40675.26 38044.50 39450.95 37177.09 34658.81 16187.90 34335.13 38564.03 31595.12 80
mvsmamba81.55 13980.72 14084.03 16291.42 12466.93 12183.08 32589.13 26978.55 9267.50 26887.02 23251.79 24090.07 32887.48 5890.49 9295.10 81
APD-MVScopyleft85.93 5685.99 5485.76 9795.98 2665.21 16293.59 9392.58 12566.54 28586.17 5095.88 3963.83 9697.00 9786.39 7192.94 5795.06 82
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
gg-mvs-nofinetune77.18 21874.31 23985.80 9591.42 12468.36 7971.78 38094.72 3549.61 38077.12 15145.92 40677.41 893.98 23567.62 23293.16 5595.05 83
test_prior86.42 7694.71 3567.35 10893.10 10396.84 11395.05 83
Patchmatch-RL test68.17 31464.49 32579.19 28371.22 38253.93 34470.07 38571.54 39169.22 26056.79 34862.89 39356.58 18988.61 33569.53 21252.61 37095.03 85
CHOSEN 1792x268884.98 7483.45 9189.57 1189.94 15575.14 692.07 15692.32 13081.87 3275.68 16388.27 20660.18 14198.60 2780.46 12590.27 9494.96 86
test_fmvsmconf_n86.58 4487.17 3484.82 12785.28 26362.55 23694.26 5789.78 24083.81 1787.78 3696.33 2965.33 7796.98 10194.40 1187.55 12194.95 87
ACMMP_NAP86.05 5385.80 5886.80 6291.58 11967.53 10491.79 17193.49 8574.93 14284.61 6695.30 5659.42 15197.92 4186.13 7294.92 2094.94 88
test250683.29 10882.92 10784.37 15088.39 19563.18 22292.01 15991.35 18077.66 10578.49 13791.42 15964.58 8895.09 18573.19 17589.23 10094.85 89
ECVR-MVScopyleft81.29 14380.38 14984.01 16388.39 19561.96 24992.56 14086.79 32277.66 10576.63 15591.42 15946.34 29195.24 18274.36 17189.23 10094.85 89
PAPM_NR82.97 11581.84 12386.37 7894.10 4466.76 12687.66 28792.84 11269.96 25174.07 18293.57 11263.10 11397.50 6470.66 20490.58 9094.85 89
ETVMVS84.22 8983.71 8385.76 9792.58 8968.25 8592.45 14295.53 1579.54 7079.46 12291.64 15670.29 4394.18 22269.16 21782.76 16794.84 92
CDPH-MVS85.71 6185.46 6386.46 7494.75 3467.19 11193.89 7592.83 11370.90 23883.09 8195.28 5763.62 10197.36 7180.63 12394.18 3794.84 92
test1287.09 5294.60 3668.86 6792.91 11082.67 8865.44 7697.55 6293.69 4894.84 92
testing1186.71 4386.44 4587.55 4093.54 5971.35 2193.65 8995.58 1181.36 4380.69 10692.21 14372.30 3396.46 12885.18 8083.43 15994.82 95
testing22285.18 7084.69 7586.63 6792.91 7769.91 4292.61 13495.80 980.31 5580.38 11192.27 14068.73 4895.19 18375.94 15683.27 16194.81 96
BP-MVS186.54 4586.68 4386.13 8487.80 21567.18 11392.97 11795.62 1079.92 6282.84 8394.14 9974.95 1596.46 12882.91 10488.96 10694.74 97
PatchmatchNetpermissive77.46 21474.63 23285.96 8889.55 16470.35 3479.97 35489.55 25072.23 19770.94 22076.91 34857.03 17892.79 26954.27 31581.17 18294.74 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS78.49 19975.98 21686.02 8691.21 13169.68 5180.23 34991.20 18675.25 13872.48 20178.11 33654.65 21093.69 24557.66 30483.04 16294.69 99
GSMVS94.68 100
sam_mvs157.85 17094.68 100
SCA75.82 24372.76 25985.01 12286.63 23870.08 3781.06 34289.19 26471.60 22370.01 23377.09 34645.53 29790.25 32060.43 29073.27 24494.68 100
fmvsm_l_conf0.5_n87.49 2888.19 2385.39 10886.95 23364.37 18494.30 5588.45 29680.51 5192.70 496.86 1569.98 4597.15 8995.83 488.08 11594.65 103
Vis-MVSNetpermissive80.92 15179.98 15483.74 16788.48 19061.80 25193.44 10288.26 30473.96 15777.73 14291.76 15249.94 25894.76 19465.84 25290.37 9394.65 103
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvsmconf0.1_n85.71 6186.08 5384.62 14180.83 31762.33 24193.84 8088.81 28483.50 1987.00 4396.01 3763.36 10796.93 10994.04 1287.29 12494.61 105
fmvsm_l_conf0.5_n_a87.44 3088.15 2485.30 11287.10 23064.19 19194.41 5288.14 30580.24 5992.54 596.97 1069.52 4797.17 8595.89 388.51 11094.56 106
旧先验191.94 10760.74 27591.50 17594.36 8765.23 7891.84 7194.55 107
sss82.71 12082.38 11783.73 16989.25 17259.58 29692.24 14794.89 2977.96 9879.86 11792.38 13756.70 18697.05 9277.26 15080.86 18594.55 107
xiu_mvs_v2_base87.92 2387.38 3389.55 1291.41 12776.43 395.74 2193.12 10283.53 1889.55 2995.95 3853.45 22897.68 5091.07 3392.62 6094.54 109
PS-MVSNAJ88.14 1887.61 2989.71 792.06 10176.72 195.75 2093.26 9483.86 1589.55 2996.06 3653.55 22497.89 4391.10 3293.31 5394.54 109
test111180.84 15280.02 15183.33 18287.87 21160.76 27392.62 13386.86 32177.86 10175.73 16291.39 16146.35 29094.70 20072.79 18188.68 10994.52 111
ZNCC-MVS85.33 6885.08 6986.06 8593.09 7265.65 15193.89 7593.41 9073.75 16279.94 11694.68 7960.61 13898.03 3882.63 10793.72 4694.52 111
MAR-MVS84.18 9083.43 9286.44 7596.25 2165.93 14694.28 5694.27 5774.41 14679.16 12795.61 4553.99 21998.88 2269.62 21193.26 5494.50 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HFP-MVS84.73 7884.40 7885.72 9993.75 5265.01 16893.50 9893.19 9872.19 19879.22 12694.93 7159.04 15897.67 5181.55 11392.21 6494.49 114
ETV-MVS86.01 5486.11 5185.70 10090.21 15067.02 11993.43 10391.92 15181.21 4584.13 7394.07 10260.93 13595.63 16489.28 4389.81 9694.46 115
reproduce-ours83.51 10483.33 9884.06 15892.18 9860.49 28190.74 21792.04 14464.35 30083.24 7795.59 4759.05 15697.27 8083.61 9789.17 10394.41 116
our_new_method83.51 10483.33 9884.06 15892.18 9860.49 28190.74 21792.04 14464.35 30083.24 7795.59 4759.05 15697.27 8083.61 9789.17 10394.41 116
diffmvspermissive84.28 8583.83 8285.61 10287.40 22368.02 9190.88 21189.24 26180.54 5081.64 9392.52 13159.83 14694.52 21087.32 6185.11 14494.29 118
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
reproduce_model83.15 11182.96 10483.73 16992.02 10259.74 29390.37 23092.08 14263.70 30782.86 8295.48 5058.62 16297.17 8583.06 10388.42 11194.26 119
test_fmvsm_n_192087.69 2688.50 1985.27 11487.05 23263.55 21193.69 8791.08 19584.18 1390.17 2497.04 867.58 5797.99 3995.72 590.03 9594.26 119
region2R84.36 8384.03 8185.36 11093.54 5964.31 18793.43 10392.95 10972.16 20178.86 13394.84 7556.97 18297.53 6381.38 11792.11 6794.24 121
test_fmvsmconf0.01_n83.70 10283.52 8684.25 15575.26 37061.72 25592.17 14987.24 31882.36 2784.91 6495.41 5155.60 20096.83 11492.85 1885.87 13994.21 122
MTAPA83.91 9583.38 9685.50 10491.89 11165.16 16481.75 33492.23 13375.32 13780.53 10995.21 6456.06 19697.16 8884.86 8592.55 6294.18 123
PMMVS81.98 13382.04 12081.78 22289.76 15956.17 33191.13 20490.69 20477.96 9880.09 11593.57 11246.33 29294.99 18881.41 11687.46 12294.17 124
CostFormer82.33 12581.15 13085.86 9289.01 18068.46 7782.39 33193.01 10675.59 13280.25 11381.57 29572.03 3694.96 18979.06 13777.48 21694.16 125
MVS_111021_HR86.19 5185.80 5887.37 4493.17 6969.79 4793.99 6993.76 7079.08 8278.88 13293.99 10362.25 12298.15 3685.93 7591.15 8494.15 126
PVSNet_Blended86.73 4286.86 4086.31 8193.76 5067.53 10496.33 1693.61 7882.34 2881.00 10393.08 11963.19 11097.29 7687.08 6591.38 8094.13 127
1112_ss80.56 15679.83 15682.77 19288.65 18760.78 27192.29 14588.36 29872.58 18672.46 20294.95 6965.09 7993.42 25166.38 24677.71 21094.10 128
IB-MVS77.80 482.18 12780.46 14887.35 4589.14 17770.28 3595.59 2695.17 2278.85 8670.19 23185.82 24670.66 4197.67 5172.19 19166.52 29294.09 129
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PAPM85.89 5885.46 6387.18 4988.20 20372.42 1592.41 14392.77 11482.11 3080.34 11293.07 12068.27 5095.02 18678.39 14493.59 4994.09 129
MP-MVS-pluss85.24 6985.13 6885.56 10391.42 12465.59 15391.54 18192.51 12774.56 14580.62 10795.64 4459.15 15597.00 9786.94 6793.80 4394.07 131
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft85.02 7284.97 7185.17 11892.60 8864.27 18993.24 10792.27 13273.13 17379.63 12094.43 8561.90 12497.17 8585.00 8292.56 6194.06 132
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS77.85 385.52 6685.24 6686.37 7888.80 18566.64 12892.15 15093.68 7681.07 4676.91 15493.64 11062.59 11898.44 3185.50 7692.84 5994.03 133
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPR84.37 8284.06 8085.28 11393.56 5864.37 18493.50 9893.15 10072.19 19878.85 13494.86 7456.69 18797.45 6581.55 11392.20 6594.02 134
无先验92.71 12792.61 12462.03 32697.01 9666.63 24193.97 135
XVS83.87 9683.47 9085.05 12093.22 6563.78 19892.92 11992.66 12073.99 15478.18 13894.31 9455.25 20297.41 6879.16 13591.58 7693.95 136
X-MVStestdata76.86 22474.13 24385.05 12093.22 6563.78 19892.92 11992.66 12073.99 15478.18 13810.19 42155.25 20297.41 6879.16 13591.58 7693.95 136
h-mvs3383.01 11482.56 11484.35 15189.34 16762.02 24792.72 12693.76 7081.45 3882.73 8692.25 14260.11 14297.13 9087.69 5562.96 32093.91 138
CP-MVS83.71 10183.40 9584.65 13893.14 7063.84 19694.59 4992.28 13171.03 23677.41 14794.92 7255.21 20596.19 13781.32 11890.70 8893.91 138
PVSNet73.49 880.05 16778.63 17584.31 15290.92 13764.97 16992.47 14191.05 19879.18 7872.43 20390.51 17337.05 34494.06 22868.06 22686.00 13893.90 140
GST-MVS84.63 8084.29 7985.66 10192.82 8165.27 16093.04 11493.13 10173.20 17178.89 12994.18 9859.41 15297.85 4581.45 11592.48 6393.86 141
Test_1112_low_res79.56 17578.60 17682.43 20188.24 20160.39 28492.09 15487.99 30972.10 20271.84 21087.42 22464.62 8793.04 25565.80 25377.30 21893.85 142
GeoE78.90 18877.43 19383.29 18388.95 18162.02 24792.31 14486.23 32870.24 24871.34 21989.27 19454.43 21594.04 23163.31 27280.81 18793.81 143
thisisatest051583.41 10682.49 11586.16 8389.46 16668.26 8393.54 9594.70 3774.31 14975.75 16190.92 16672.62 3096.52 12469.64 20981.50 18093.71 144
HyFIR lowres test81.03 14979.56 16085.43 10687.81 21468.11 8990.18 23790.01 23570.65 24472.95 19186.06 24463.61 10294.50 21175.01 16579.75 19493.67 145
CANet_DTU84.09 9283.52 8685.81 9490.30 14866.82 12391.87 16789.01 27685.27 986.09 5193.74 10747.71 28296.98 10177.90 14789.78 9893.65 146
mPP-MVS82.96 11682.44 11684.52 14492.83 7962.92 22992.76 12491.85 15871.52 22675.61 16694.24 9653.48 22796.99 10078.97 13890.73 8793.64 147
tpmrst80.57 15579.14 17084.84 12690.10 15268.28 8281.70 33589.72 24777.63 10775.96 16079.54 32764.94 8292.71 27175.43 16077.28 21993.55 148
tpm279.80 17277.95 18685.34 11188.28 19868.26 8381.56 33791.42 17870.11 24977.59 14680.50 31367.40 5894.26 22067.34 23477.35 21793.51 149
SR-MVS82.81 11782.58 11383.50 17993.35 6361.16 26592.23 14891.28 18564.48 29981.27 9795.28 5753.71 22395.86 15282.87 10588.77 10893.49 150
FA-MVS(test-final)79.12 18377.23 19984.81 13090.54 14363.98 19581.35 34091.71 16471.09 23574.85 17482.94 27552.85 23197.05 9267.97 22781.73 17993.41 151
PGM-MVS83.25 10982.70 11284.92 12392.81 8364.07 19390.44 22692.20 13771.28 23077.23 15094.43 8555.17 20697.31 7579.33 13491.38 8093.37 152
新几何184.73 13392.32 9264.28 18891.46 17759.56 34479.77 11892.90 12456.95 18396.57 12163.40 27092.91 5893.34 153
HPM-MVScopyleft83.25 10982.95 10684.17 15692.25 9462.88 23190.91 20891.86 15670.30 24777.12 15193.96 10456.75 18596.28 13382.04 11091.34 8293.34 153
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TESTMET0.1,182.41 12481.98 12283.72 17188.08 20463.74 20092.70 12893.77 6979.30 7577.61 14587.57 22258.19 16894.08 22673.91 17386.68 13493.33 155
IS-MVSNet80.14 16579.41 16482.33 20587.91 20960.08 28991.97 16388.27 30272.90 18171.44 21891.73 15461.44 12993.66 24662.47 28086.53 13593.24 156
MonoMVSNet76.99 22275.08 22882.73 19383.32 29463.24 21886.47 30186.37 32479.08 8266.31 28279.30 32949.80 26191.72 30179.37 13265.70 29693.23 157
131480.70 15478.95 17285.94 8987.77 21767.56 10287.91 28192.55 12672.17 20067.44 26993.09 11850.27 25597.04 9571.68 19687.64 12093.23 157
CDS-MVSNet81.43 14180.74 13983.52 17686.26 24564.45 17892.09 15490.65 20875.83 13073.95 18489.81 18963.97 9492.91 26471.27 19782.82 16493.20 159
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+81.14 14580.01 15284.51 14590.24 14965.86 14794.12 6289.15 26773.81 16175.37 16988.26 20757.26 17594.53 20966.97 24084.92 14593.15 160
API-MVS82.28 12680.53 14687.54 4196.13 2270.59 3193.63 9191.04 19965.72 29275.45 16892.83 12856.11 19598.89 2164.10 26689.75 9993.15 160
test22289.77 15861.60 25789.55 25189.42 25556.83 35977.28 14992.43 13652.76 23291.14 8593.09 162
TAMVS80.37 16079.45 16383.13 18785.14 26663.37 21591.23 19890.76 20374.81 14472.65 19688.49 20160.63 13792.95 25969.41 21381.95 17693.08 163
fmvsm_s_conf0.5_n86.39 4786.91 3884.82 12787.36 22563.54 21294.74 4790.02 23482.52 2590.14 2596.92 1362.93 11597.84 4695.28 882.26 16993.07 164
testdata81.34 23289.02 17957.72 31689.84 23958.65 34885.32 6194.09 10057.03 17893.28 25269.34 21490.56 9193.03 165
tpm78.58 19777.03 20183.22 18585.94 25364.56 17383.21 32491.14 19178.31 9473.67 18579.68 32564.01 9392.09 29466.07 25071.26 26193.03 165
test_fmvsmvis_n_192083.80 9883.48 8984.77 13182.51 30363.72 20291.37 19083.99 35281.42 4177.68 14395.74 4258.37 16597.58 5993.38 1486.87 12793.00 167
GA-MVS78.33 20276.23 21284.65 13883.65 29066.30 13791.44 18290.14 22876.01 12870.32 22984.02 26542.50 31194.72 19770.98 19977.00 22192.94 168
BH-RMVSNet79.46 17977.65 18984.89 12491.68 11765.66 15093.55 9488.09 30772.93 17873.37 18791.12 16546.20 29496.12 14056.28 30885.61 14292.91 169
fmvsm_s_conf0.5_n_a85.75 6086.09 5284.72 13485.73 25763.58 20993.79 8389.32 25881.42 4190.21 2396.91 1462.41 12097.67 5194.48 1080.56 18892.90 170
APD-MVS_3200maxsize81.64 13881.32 12882.59 19992.36 9158.74 30791.39 18791.01 20063.35 31179.72 11994.62 8151.82 23896.14 13979.71 12987.93 11692.89 171
fmvsm_s_conf0.1_n85.61 6485.93 5584.68 13782.95 30063.48 21494.03 6889.46 25281.69 3489.86 2696.74 2061.85 12697.75 4994.74 982.01 17592.81 172
DP-MVS Recon82.73 11881.65 12585.98 8797.31 467.06 11695.15 3691.99 14869.08 26476.50 15893.89 10554.48 21498.20 3570.76 20285.66 14192.69 173
UGNet79.87 17178.68 17483.45 18189.96 15461.51 25892.13 15190.79 20276.83 11878.85 13486.33 24138.16 33096.17 13867.93 22987.17 12592.67 174
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EPP-MVSNet81.79 13581.52 12682.61 19888.77 18660.21 28793.02 11693.66 7768.52 27072.90 19290.39 17672.19 3594.96 18974.93 16679.29 19992.67 174
PVSNet_Blended_VisFu83.97 9483.50 8885.39 10890.02 15366.59 13193.77 8491.73 16277.43 11177.08 15389.81 18963.77 9896.97 10479.67 13088.21 11392.60 176
MDTV_nov1_ep13_2view59.90 29180.13 35167.65 27672.79 19354.33 21759.83 29492.58 177
QAPM79.95 17077.39 19787.64 3489.63 16171.41 2093.30 10693.70 7565.34 29567.39 27291.75 15347.83 28098.96 1657.71 30389.81 9692.54 178
fmvsm_s_conf0.1_n_a84.76 7784.84 7484.53 14380.23 32763.50 21392.79 12388.73 28780.46 5289.84 2796.65 2260.96 13497.57 6193.80 1380.14 19092.53 179
dp75.01 25472.09 26983.76 16689.28 17166.22 14079.96 35589.75 24271.16 23267.80 26577.19 34551.81 23992.54 27950.39 32671.44 26092.51 180
EPNet_dtu78.80 19179.26 16877.43 30388.06 20549.71 36591.96 16491.95 15077.67 10476.56 15791.28 16358.51 16390.20 32556.37 30780.95 18492.39 181
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2024052976.84 22674.15 24284.88 12591.02 13464.95 17093.84 8091.09 19353.57 36873.00 18987.42 22435.91 34897.32 7469.14 21872.41 25392.36 182
Vis-MVSNet (Re-imp)79.24 18179.57 15978.24 29588.46 19152.29 35090.41 22889.12 27074.24 15069.13 24191.91 15065.77 7390.09 32759.00 29988.09 11492.33 183
原ACMM184.42 14793.21 6764.27 18993.40 9165.39 29379.51 12192.50 13258.11 16996.69 11765.27 26093.96 4092.32 184
TR-MVS78.77 19377.37 19882.95 18990.49 14460.88 26993.67 8890.07 23070.08 25074.51 17691.37 16245.69 29695.70 16360.12 29380.32 18992.29 185
SR-MVS-dyc-post81.06 14880.70 14182.15 21392.02 10258.56 30990.90 20990.45 21162.76 31878.89 12994.46 8351.26 24895.61 16678.77 14186.77 13192.28 186
RE-MVS-def80.48 14792.02 10258.56 30990.90 20990.45 21162.76 31878.89 12994.46 8349.30 26578.77 14186.77 13192.28 186
LCM-MVSNet-Re72.93 27371.84 27276.18 31788.49 18948.02 37380.07 35270.17 39373.96 15752.25 36380.09 32149.98 25788.24 34167.35 23384.23 15592.28 186
EC-MVSNet84.53 8185.04 7083.01 18889.34 16761.37 26294.42 5191.09 19377.91 10083.24 7794.20 9758.37 16595.40 17585.35 7791.41 7992.27 189
MVS_111021_LR82.02 13281.52 12683.51 17888.42 19362.88 23189.77 24888.93 28076.78 11975.55 16793.10 11750.31 25495.38 17783.82 9687.02 12692.26 190
FE-MVS75.97 24073.02 25684.82 12789.78 15765.56 15477.44 36591.07 19664.55 29872.66 19579.85 32346.05 29596.69 11754.97 31280.82 18692.21 191
BH-w/o80.49 15879.30 16784.05 16190.83 14064.36 18693.60 9289.42 25574.35 14869.09 24290.15 18455.23 20495.61 16664.61 26386.43 13792.17 192
test_vis1_n_192081.66 13782.01 12180.64 24982.24 30555.09 33994.76 4686.87 32081.67 3584.40 6994.63 8038.17 32994.67 20191.98 2783.34 16092.16 193
UWE-MVS80.81 15381.01 13680.20 25989.33 16957.05 32591.91 16594.71 3675.67 13175.01 17289.37 19363.13 11291.44 31267.19 23782.80 16692.12 194
CVMVSNet74.04 26274.27 24073.33 33785.33 26143.94 39189.53 25388.39 29754.33 36770.37 22890.13 18549.17 26884.05 36861.83 28479.36 19791.99 195
tpm cat175.30 25072.21 26884.58 14288.52 18867.77 9678.16 36388.02 30861.88 32968.45 25676.37 35260.65 13694.03 23353.77 31874.11 23891.93 196
ACMMPcopyleft81.49 14080.67 14283.93 16491.71 11662.90 23092.13 15192.22 13671.79 21371.68 21493.49 11450.32 25396.96 10578.47 14384.22 15691.93 196
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test-LLR80.10 16679.56 16081.72 22486.93 23661.17 26392.70 12891.54 17271.51 22775.62 16486.94 23353.83 22092.38 28472.21 18984.76 14891.60 198
test-mter79.96 16979.38 16681.72 22486.93 23661.17 26392.70 12891.54 17273.85 15975.62 16486.94 23349.84 26092.38 28472.21 18984.76 14891.60 198
thisisatest053081.15 14480.07 15084.39 14988.26 19965.63 15291.40 18594.62 4171.27 23170.93 22189.18 19572.47 3196.04 14765.62 25576.89 22291.49 200
AUN-MVS78.37 20077.43 19381.17 23586.60 23957.45 32189.46 25591.16 18874.11 15274.40 17790.49 17455.52 20194.57 20474.73 17060.43 34691.48 201
MIMVSNet71.64 28568.44 29881.23 23481.97 30964.44 17973.05 37788.80 28569.67 25564.59 29374.79 36132.79 35887.82 34553.99 31676.35 22591.42 202
hse-mvs281.12 14781.11 13481.16 23686.52 24057.48 32089.40 25691.16 18881.45 3882.73 8690.49 17460.11 14294.58 20287.69 5560.41 34791.41 203
xiu_mvs_v1_base_debu82.16 12881.12 13185.26 11586.42 24168.72 7292.59 13790.44 21473.12 17484.20 7094.36 8738.04 33295.73 15884.12 9286.81 12891.33 204
xiu_mvs_v1_base82.16 12881.12 13185.26 11586.42 24168.72 7292.59 13790.44 21473.12 17484.20 7094.36 8738.04 33295.73 15884.12 9286.81 12891.33 204
xiu_mvs_v1_base_debi82.16 12881.12 13185.26 11586.42 24168.72 7292.59 13790.44 21473.12 17484.20 7094.36 8738.04 33295.73 15884.12 9286.81 12891.33 204
BH-untuned78.68 19477.08 20083.48 18089.84 15663.74 20092.70 12888.59 29371.57 22466.83 27988.65 20051.75 24195.39 17659.03 29884.77 14791.32 207
HPM-MVS_fast80.25 16379.55 16282.33 20591.55 12159.95 29091.32 19489.16 26665.23 29674.71 17593.07 12047.81 28195.74 15774.87 16988.23 11291.31 208
baseline181.84 13481.03 13584.28 15491.60 11866.62 12991.08 20591.66 16981.87 3274.86 17391.67 15569.98 4594.92 19271.76 19464.75 30791.29 209
test_cas_vis1_n_192080.45 15980.61 14479.97 26878.25 35357.01 32794.04 6788.33 29979.06 8482.81 8593.70 10838.65 32491.63 30490.82 3679.81 19291.27 210
baseline283.68 10383.42 9484.48 14687.37 22466.00 14390.06 24095.93 879.71 6769.08 24390.39 17677.92 696.28 13378.91 13981.38 18191.16 211
TAPA-MVS70.22 1274.94 25573.53 25179.17 28490.40 14652.07 35189.19 26189.61 24962.69 32070.07 23292.67 13048.89 27294.32 21438.26 37979.97 19191.12 212
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
AdaColmapbinary78.94 18777.00 20384.76 13296.34 1765.86 14792.66 13287.97 31162.18 32370.56 22492.37 13843.53 30797.35 7264.50 26482.86 16391.05 213
OMC-MVS78.67 19677.91 18780.95 24585.76 25657.40 32288.49 27288.67 29073.85 15972.43 20392.10 14549.29 26694.55 20872.73 18377.89 20990.91 214
EI-MVSNet-Vis-set83.77 9983.67 8484.06 15892.79 8463.56 21091.76 17494.81 3279.65 6877.87 14194.09 10063.35 10897.90 4279.35 13379.36 19790.74 215
cascas78.18 20375.77 21985.41 10787.14 22969.11 6192.96 11891.15 19066.71 28470.47 22586.07 24337.49 33896.48 12770.15 20779.80 19390.65 216
CR-MVSNet73.79 26670.82 28182.70 19583.15 29667.96 9270.25 38384.00 35073.67 16669.97 23572.41 36857.82 17189.48 33252.99 32173.13 24590.64 217
RPMNet70.42 29365.68 31484.63 14083.15 29667.96 9270.25 38390.45 21146.83 38969.97 23565.10 38956.48 19295.30 18135.79 38473.13 24590.64 217
test_fmvs174.07 26173.69 24975.22 32178.91 34547.34 37889.06 26574.69 38163.68 30879.41 12391.59 15724.36 38387.77 34785.22 7876.26 22690.55 219
PCF-MVS73.15 979.29 18077.63 19084.29 15386.06 24965.96 14587.03 29491.10 19269.86 25369.79 23890.64 16957.54 17496.59 11964.37 26582.29 16890.32 220
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_068.08 1571.81 28468.32 30082.27 20784.68 27262.31 24388.68 26990.31 22075.84 12957.93 34380.65 31237.85 33594.19 22169.94 20829.05 40990.31 221
tttt051779.50 17678.53 17782.41 20487.22 22761.43 26189.75 24994.76 3369.29 25967.91 26188.06 21472.92 2895.63 16462.91 27673.90 24290.16 222
CPTT-MVS79.59 17479.16 16980.89 24791.54 12259.80 29292.10 15388.54 29560.42 33772.96 19093.28 11648.27 27492.80 26878.89 14086.50 13690.06 223
EI-MVSNet-UG-set83.14 11282.96 10483.67 17492.28 9363.19 22191.38 18994.68 3879.22 7776.60 15693.75 10662.64 11797.76 4878.07 14678.01 20890.05 224
test_fmvs1_n72.69 28071.92 27174.99 32471.15 38347.08 38087.34 29275.67 37663.48 31078.08 14091.17 16420.16 39587.87 34484.65 8775.57 23090.01 225
test_vis1_n71.63 28670.73 28274.31 33169.63 38947.29 37986.91 29672.11 38763.21 31475.18 17090.17 18220.40 39385.76 35984.59 8874.42 23689.87 226
dmvs_re76.93 22375.36 22481.61 22687.78 21660.71 27680.00 35387.99 30979.42 7269.02 24589.47 19246.77 28594.32 21463.38 27174.45 23589.81 227
XVG-OURS-SEG-HR74.70 25773.08 25579.57 27878.25 35357.33 32380.49 34587.32 31563.22 31368.76 25190.12 18744.89 30391.59 30570.55 20574.09 23989.79 228
114514_t79.17 18277.67 18883.68 17395.32 2965.53 15692.85 12291.60 17163.49 30967.92 26090.63 17146.65 28795.72 16267.01 23983.54 15889.79 228
UA-Net80.02 16879.65 15881.11 23889.33 16957.72 31686.33 30289.00 27977.44 11081.01 10289.15 19659.33 15395.90 15161.01 28784.28 15489.73 230
XVG-OURS74.25 26072.46 26679.63 27678.45 35157.59 31980.33 34787.39 31463.86 30568.76 25189.62 19140.50 31891.72 30169.00 21974.25 23789.58 231
UniMVSNet_ETH3D72.74 27770.53 28479.36 28178.62 35056.64 32985.01 30789.20 26363.77 30664.84 29284.44 26134.05 35591.86 29863.94 26770.89 26389.57 232
thres20079.66 17378.33 17883.66 17592.54 9065.82 14993.06 11296.31 374.90 14373.30 18888.66 19959.67 14895.61 16647.84 34278.67 20489.56 233
SDMVSNet80.26 16278.88 17384.40 14889.25 17267.63 10185.35 30593.02 10576.77 12070.84 22287.12 22947.95 27996.09 14285.04 8174.55 23289.48 234
sd_testset77.08 22175.37 22382.20 21189.25 17262.11 24682.06 33289.09 27276.77 12070.84 22287.12 22941.43 31595.01 18767.23 23674.55 23289.48 234
OpenMVScopyleft70.45 1178.54 19875.92 21786.41 7785.93 25471.68 1892.74 12592.51 12766.49 28664.56 29491.96 14743.88 30698.10 3754.61 31390.65 8989.44 236
CHOSEN 280x42077.35 21676.95 20478.55 29087.07 23162.68 23569.71 38682.95 35968.80 26671.48 21787.27 22866.03 7084.00 37076.47 15482.81 16588.95 237
thres100view90078.37 20077.01 20282.46 20091.89 11163.21 22091.19 20296.33 172.28 19670.45 22787.89 21660.31 13995.32 17845.16 35377.58 21388.83 238
tfpn200view978.79 19277.43 19382.88 19092.21 9664.49 17592.05 15796.28 473.48 16871.75 21288.26 20760.07 14495.32 17845.16 35377.58 21388.83 238
nrg03080.93 15079.86 15584.13 15783.69 28968.83 6893.23 10891.20 18675.55 13375.06 17188.22 21063.04 11494.74 19681.88 11166.88 28988.82 240
PatchT69.11 30465.37 31880.32 25482.07 30863.68 20667.96 39387.62 31350.86 37769.37 23965.18 38857.09 17788.53 33841.59 36866.60 29188.74 241
HQP4-MVS74.18 17895.61 16688.63 242
HQP-MVS81.14 14580.64 14382.64 19787.54 21963.66 20794.06 6391.70 16779.80 6474.18 17890.30 17851.63 24395.61 16677.63 14878.90 20188.63 242
tt080573.07 27070.73 28280.07 26278.37 35257.05 32587.78 28492.18 14061.23 33367.04 27586.49 23831.35 36694.58 20265.06 26167.12 28788.57 244
VPNet78.82 19077.53 19282.70 19584.52 27666.44 13393.93 7292.23 13380.46 5272.60 19788.38 20449.18 26793.13 25472.47 18763.97 31788.55 245
Effi-MVS+-dtu76.14 23375.28 22678.72 28983.22 29555.17 33889.87 24687.78 31275.42 13567.98 25981.43 29745.08 30292.52 28075.08 16471.63 25688.48 246
CNLPA74.31 25972.30 26780.32 25491.49 12361.66 25690.85 21280.72 36556.67 36063.85 30390.64 16946.75 28690.84 31553.79 31775.99 22888.47 247
HQP_MVS80.34 16179.75 15782.12 21586.94 23462.42 23893.13 11091.31 18178.81 8872.53 19989.14 19750.66 25195.55 17176.74 15178.53 20688.39 248
plane_prior591.31 18195.55 17176.74 15178.53 20688.39 248
VPA-MVSNet79.03 18478.00 18482.11 21885.95 25164.48 17793.22 10994.66 3975.05 14174.04 18384.95 25452.17 23793.52 24874.90 16867.04 28888.32 250
CLD-MVS82.73 11882.35 11883.86 16587.90 21067.65 10095.45 2892.18 14085.06 1072.58 19892.27 14052.46 23595.78 15484.18 9179.06 20088.16 251
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XXY-MVS77.94 20876.44 20982.43 20182.60 30264.44 17992.01 15991.83 15973.59 16770.00 23485.82 24654.43 21594.76 19469.63 21068.02 28288.10 252
WBMVS81.67 13680.98 13783.72 17193.07 7369.40 5394.33 5493.05 10476.84 11772.05 20884.14 26374.49 1993.88 24072.76 18268.09 28087.88 253
FIs79.47 17879.41 16479.67 27585.95 25159.40 29891.68 17893.94 6478.06 9768.96 24788.28 20566.61 6491.77 30066.20 24974.99 23187.82 254
Fast-Effi-MVS+-dtu75.04 25373.37 25380.07 26280.86 31659.52 29791.20 20185.38 33671.90 20665.20 28884.84 25541.46 31492.97 25866.50 24572.96 24787.73 255
UniMVSNet_NR-MVSNet78.15 20477.55 19179.98 26684.46 27860.26 28592.25 14693.20 9777.50 10968.88 24886.61 23666.10 6992.13 29266.38 24662.55 32487.54 256
MVSTER82.47 12382.05 11983.74 16792.68 8669.01 6491.90 16693.21 9579.83 6372.14 20685.71 24874.72 1794.72 19775.72 15872.49 25187.50 257
thres600view778.00 20576.66 20782.03 22091.93 10863.69 20591.30 19596.33 172.43 19170.46 22687.89 21660.31 13994.92 19242.64 36576.64 22387.48 258
thres40078.68 19477.43 19382.43 20192.21 9664.49 17592.05 15796.28 473.48 16871.75 21288.26 20760.07 14495.32 17845.16 35377.58 21387.48 258
TranMVSNet+NR-MVSNet75.86 24274.52 23679.89 27082.44 30460.64 27991.37 19091.37 17976.63 12267.65 26686.21 24252.37 23691.55 30661.84 28360.81 34287.48 258
FC-MVSNet-test77.99 20678.08 18377.70 29884.89 27155.51 33690.27 23493.75 7376.87 11566.80 28087.59 22165.71 7490.23 32462.89 27773.94 24087.37 261
DU-MVS76.86 22475.84 21879.91 26982.96 29860.26 28591.26 19691.54 17276.46 12568.88 24886.35 23956.16 19392.13 29266.38 24662.55 32487.35 262
NR-MVSNet76.05 23774.59 23380.44 25282.96 29862.18 24590.83 21391.73 16277.12 11360.96 32286.35 23959.28 15491.80 29960.74 28861.34 33987.35 262
FMVSNet377.73 21176.04 21582.80 19191.20 13268.99 6591.87 16791.99 14873.35 17067.04 27583.19 27456.62 18892.14 29159.80 29569.34 26887.28 264
PS-MVSNAJss77.26 21776.31 21180.13 26180.64 32159.16 30390.63 22491.06 19772.80 18268.58 25484.57 25953.55 22493.96 23672.97 17771.96 25587.27 265
mvsany_test168.77 30768.56 29669.39 35973.57 37645.88 38780.93 34360.88 40759.65 34371.56 21590.26 18043.22 30975.05 39474.26 17262.70 32387.25 266
FMVSNet276.07 23474.01 24582.26 20988.85 18267.66 9991.33 19391.61 17070.84 23965.98 28382.25 28448.03 27592.00 29658.46 30068.73 27687.10 267
ADS-MVSNet266.90 32363.44 33177.26 30788.06 20560.70 27768.01 39175.56 37857.57 35164.48 29569.87 37838.68 32284.10 36740.87 37067.89 28386.97 268
ADS-MVSNet68.54 31064.38 32781.03 24388.06 20566.90 12268.01 39184.02 34957.57 35164.48 29569.87 37838.68 32289.21 33440.87 37067.89 28386.97 268
WR-MVS76.76 22875.74 22079.82 27284.60 27462.27 24492.60 13592.51 12776.06 12767.87 26485.34 25056.76 18490.24 32362.20 28163.69 31986.94 270
DSMNet-mixed56.78 35954.44 36363.79 37363.21 40029.44 41664.43 39864.10 40342.12 40051.32 36871.60 37331.76 36375.04 39536.23 38165.20 30286.87 271
UniMVSNet (Re)77.58 21376.78 20579.98 26684.11 28460.80 27091.76 17493.17 9976.56 12469.93 23784.78 25663.32 10992.36 28664.89 26262.51 32686.78 272
GBi-Net75.65 24573.83 24781.10 23988.85 18265.11 16590.01 24290.32 21770.84 23967.04 27580.25 31848.03 27591.54 30759.80 29569.34 26886.64 273
test175.65 24573.83 24781.10 23988.85 18265.11 16590.01 24290.32 21770.84 23967.04 27580.25 31848.03 27591.54 30759.80 29569.34 26886.64 273
FMVSNet172.71 27869.91 28981.10 23983.60 29165.11 16590.01 24290.32 21763.92 30463.56 30580.25 31836.35 34791.54 30754.46 31466.75 29086.64 273
v2v48277.42 21575.65 22182.73 19380.38 32367.13 11591.85 16990.23 22575.09 14069.37 23983.39 27253.79 22294.44 21271.77 19365.00 30486.63 276
miper_enhance_ethall78.86 18977.97 18581.54 22888.00 20865.17 16391.41 18389.15 26775.19 13968.79 25083.98 26667.17 5992.82 26672.73 18365.30 29886.62 277
cl2277.94 20876.78 20581.42 23087.57 21864.93 17190.67 22088.86 28372.45 19067.63 26782.68 27964.07 9292.91 26471.79 19265.30 29886.44 278
PLCcopyleft68.80 1475.23 25173.68 25079.86 27192.93 7658.68 30890.64 22288.30 30060.90 33464.43 29890.53 17242.38 31294.57 20456.52 30676.54 22486.33 279
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EI-MVSNet78.97 18678.22 18181.25 23385.33 26162.73 23489.53 25393.21 9572.39 19372.14 20690.13 18560.99 13294.72 19767.73 23172.49 25186.29 280
IterMVS-LS76.49 23075.18 22780.43 25384.49 27762.74 23390.64 22288.80 28572.40 19265.16 28981.72 29160.98 13392.27 29067.74 23064.65 30986.29 280
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_ehance_all_eth77.60 21276.44 20981.09 24285.70 25864.41 18290.65 22188.64 29272.31 19467.37 27382.52 28064.77 8692.64 27770.67 20365.30 29886.24 282
OPM-MVS79.00 18578.09 18281.73 22383.52 29263.83 19791.64 18090.30 22176.36 12671.97 20989.93 18846.30 29395.17 18475.10 16377.70 21186.19 283
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DIV-MVS_self_test76.07 23474.67 23080.28 25685.14 26661.75 25490.12 23888.73 28771.16 23265.42 28781.60 29461.15 13092.94 26366.54 24362.16 33086.14 284
eth_miper_zixun_eth75.96 24174.40 23880.66 24884.66 27363.02 22489.28 25888.27 30271.88 20865.73 28481.65 29259.45 15092.81 26768.13 22560.53 34486.14 284
cl____76.07 23474.67 23080.28 25685.15 26561.76 25390.12 23888.73 28771.16 23265.43 28681.57 29561.15 13092.95 25966.54 24362.17 32886.13 286
PatchMatch-RL72.06 28369.98 28678.28 29389.51 16555.70 33583.49 31783.39 35761.24 33263.72 30482.76 27734.77 35293.03 25653.37 32077.59 21286.12 287
c3_l76.83 22775.47 22280.93 24685.02 26964.18 19290.39 22988.11 30671.66 21766.65 28181.64 29363.58 10592.56 27869.31 21562.86 32186.04 288
RPSCF64.24 33861.98 34071.01 35576.10 36745.00 38875.83 37275.94 37546.94 38858.96 33584.59 25831.40 36582.00 38447.76 34360.33 34886.04 288
Anonymous2023121173.08 26970.39 28581.13 23790.62 14263.33 21691.40 18590.06 23251.84 37364.46 29780.67 31136.49 34694.07 22763.83 26864.17 31385.98 290
v119275.98 23973.92 24682.15 21379.73 33166.24 13991.22 19989.75 24272.67 18468.49 25581.42 29849.86 25994.27 21867.08 23865.02 30385.95 291
JIA-IIPM66.06 32762.45 33776.88 31281.42 31454.45 34357.49 40788.67 29049.36 38163.86 30246.86 40556.06 19690.25 32049.53 33168.83 27485.95 291
v192192075.63 24773.49 25282.06 21979.38 33666.35 13591.07 20789.48 25171.98 20367.99 25881.22 30349.16 26993.90 23966.56 24264.56 31085.92 293
reproduce_monomvs79.49 17779.11 17180.64 24992.91 7761.47 26091.17 20393.28 9383.09 2064.04 30082.38 28266.19 6794.57 20481.19 12057.71 35585.88 294
v114476.73 22974.88 22982.27 20780.23 32766.60 13091.68 17890.21 22773.69 16469.06 24481.89 28852.73 23394.40 21369.21 21665.23 30185.80 295
v14419276.05 23774.03 24482.12 21579.50 33566.55 13291.39 18789.71 24872.30 19568.17 25781.33 30051.75 24194.03 23367.94 22864.19 31285.77 296
v124075.21 25272.98 25781.88 22179.20 33866.00 14390.75 21689.11 27171.63 22267.41 27181.22 30347.36 28393.87 24165.46 25864.72 30885.77 296
v14876.19 23274.47 23781.36 23180.05 32964.44 17991.75 17690.23 22573.68 16567.13 27480.84 30855.92 19893.86 24368.95 22061.73 33585.76 298
test0.0.03 172.76 27672.71 26272.88 34180.25 32647.99 37491.22 19989.45 25371.51 22762.51 31787.66 21953.83 22085.06 36450.16 32867.84 28585.58 299
test_djsdf73.76 26772.56 26477.39 30477.00 36353.93 34489.07 26390.69 20465.80 29063.92 30182.03 28743.14 31092.67 27472.83 17968.53 27785.57 300
dmvs_testset65.55 33166.45 30762.86 37579.87 33022.35 42176.55 36771.74 38977.42 11255.85 35087.77 21851.39 24580.69 38831.51 40065.92 29585.55 301
ACMM69.62 1374.34 25872.73 26179.17 28484.25 28357.87 31490.36 23189.93 23663.17 31565.64 28586.04 24537.79 33694.10 22465.89 25171.52 25885.55 301
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs573.35 26871.52 27578.86 28878.64 34960.61 28091.08 20586.90 31967.69 27463.32 30783.64 26844.33 30590.53 31762.04 28266.02 29485.46 303
jajsoiax73.05 27171.51 27677.67 29977.46 36054.83 34088.81 26790.04 23369.13 26362.85 31483.51 27031.16 36792.75 27070.83 20069.80 26485.43 304
ACMP71.68 1075.58 24874.23 24179.62 27784.97 27059.64 29490.80 21489.07 27470.39 24662.95 31287.30 22638.28 32893.87 24172.89 17871.45 25985.36 305
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
mvs_tets72.71 27871.11 27777.52 30077.41 36154.52 34288.45 27389.76 24168.76 26862.70 31583.26 27329.49 37292.71 27170.51 20669.62 26685.34 306
tpmvs72.88 27569.76 29182.22 21090.98 13567.05 11778.22 36288.30 30063.10 31664.35 29974.98 35955.09 20794.27 21843.25 35969.57 26785.34 306
miper_lstm_enhance73.05 27171.73 27477.03 30883.80 28758.32 31181.76 33388.88 28169.80 25461.01 32178.23 33557.19 17687.51 35165.34 25959.53 34985.27 308
LPG-MVS_test75.82 24374.58 23479.56 27984.31 28159.37 29990.44 22689.73 24569.49 25664.86 29088.42 20238.65 32494.30 21672.56 18572.76 24885.01 309
LGP-MVS_train79.56 27984.31 28159.37 29989.73 24569.49 25664.86 29088.42 20238.65 32494.30 21672.56 18572.76 24885.01 309
PVSNet_BlendedMVS83.38 10783.43 9283.22 18593.76 5067.53 10494.06 6393.61 7879.13 8081.00 10385.14 25263.19 11097.29 7687.08 6573.91 24184.83 311
V4276.46 23174.55 23582.19 21279.14 34167.82 9590.26 23589.42 25573.75 16268.63 25381.89 28851.31 24694.09 22571.69 19564.84 30584.66 312
IterMVS72.65 28170.83 27978.09 29682.17 30662.96 22687.64 28886.28 32671.56 22560.44 32578.85 33145.42 29986.66 35563.30 27361.83 33284.65 313
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT71.55 28769.97 28776.32 31581.48 31260.67 27887.64 28885.99 33166.17 28859.50 33078.88 33045.53 29783.65 37262.58 27961.93 33184.63 314
pm-mvs172.89 27471.09 27878.26 29479.10 34257.62 31890.80 21489.30 25967.66 27562.91 31381.78 29049.11 27092.95 25960.29 29258.89 35284.22 315
pmmvs473.92 26471.81 27380.25 25879.17 33965.24 16187.43 29087.26 31767.64 27763.46 30683.91 26748.96 27191.53 31062.94 27565.49 29783.96 316
v875.35 24973.26 25481.61 22680.67 32066.82 12389.54 25289.27 26071.65 21863.30 30880.30 31754.99 20894.06 22867.33 23562.33 32783.94 317
UnsupCasMVSNet_eth65.79 32963.10 33273.88 33370.71 38550.29 36381.09 34189.88 23872.58 18649.25 37774.77 36232.57 36087.43 35255.96 30941.04 39083.90 318
WB-MVSnew77.14 21976.18 21480.01 26586.18 24763.24 21891.26 19694.11 6171.72 21673.52 18687.29 22745.14 30193.00 25756.98 30579.42 19583.80 319
v1074.77 25672.54 26581.46 22980.33 32566.71 12789.15 26289.08 27370.94 23763.08 31179.86 32252.52 23494.04 23165.70 25462.17 32883.64 320
F-COLMAP70.66 29068.44 29877.32 30586.37 24455.91 33388.00 27986.32 32556.94 35857.28 34788.07 21333.58 35692.49 28151.02 32468.37 27883.55 321
lessismore_v073.72 33572.93 37947.83 37561.72 40645.86 38673.76 36328.63 37689.81 32947.75 34431.37 40583.53 322
v7n71.31 28868.65 29579.28 28276.40 36560.77 27286.71 29989.45 25364.17 30358.77 33778.24 33444.59 30493.54 24757.76 30261.75 33483.52 323
Anonymous2023120667.53 32065.78 31272.79 34274.95 37147.59 37688.23 27587.32 31561.75 33158.07 34077.29 34337.79 33687.29 35342.91 36163.71 31883.48 324
CP-MVSNet70.50 29269.91 28972.26 34680.71 31951.00 35987.23 29390.30 22167.84 27359.64 32982.69 27850.23 25682.30 38251.28 32359.28 35083.46 325
K. test v363.09 34359.61 34873.53 33676.26 36649.38 36983.27 32177.15 37364.35 30047.77 38272.32 37028.73 37487.79 34649.93 33036.69 39783.41 326
PS-CasMVS69.86 29969.13 29472.07 35080.35 32450.57 36187.02 29589.75 24267.27 27959.19 33382.28 28346.58 28882.24 38350.69 32559.02 35183.39 327
PEN-MVS69.46 30268.56 29672.17 34879.27 33749.71 36586.90 29789.24 26167.24 28259.08 33482.51 28147.23 28483.54 37348.42 33757.12 35683.25 328
anonymousdsp71.14 28969.37 29376.45 31472.95 37854.71 34184.19 31288.88 28161.92 32862.15 31879.77 32438.14 33191.44 31268.90 22167.45 28683.21 329
XVG-ACMP-BASELINE68.04 31565.53 31675.56 31974.06 37552.37 34978.43 35985.88 33262.03 32658.91 33681.21 30520.38 39491.15 31460.69 28968.18 27983.16 330
MSDG69.54 30165.73 31380.96 24485.11 26863.71 20384.19 31283.28 35856.95 35754.50 35484.03 26431.50 36496.03 14842.87 36369.13 27383.14 331
test_fmvs265.78 33064.84 31968.60 36366.54 39541.71 39583.27 32169.81 39454.38 36667.91 26184.54 26015.35 40081.22 38775.65 15966.16 29382.88 332
SixPastTwentyTwo64.92 33461.78 34174.34 33078.74 34749.76 36483.42 32079.51 37062.86 31750.27 37277.35 34130.92 36990.49 31845.89 35147.06 38082.78 333
testgi64.48 33762.87 33569.31 36071.24 38140.62 39885.49 30479.92 36865.36 29454.18 35683.49 27123.74 38684.55 36541.60 36760.79 34382.77 334
DTE-MVSNet68.46 31167.33 30571.87 35277.94 35749.00 37186.16 30388.58 29466.36 28758.19 33882.21 28546.36 28983.87 37144.97 35655.17 36382.73 335
WR-MVS_H70.59 29169.94 28872.53 34381.03 31551.43 35587.35 29192.03 14767.38 27860.23 32780.70 30955.84 19983.45 37446.33 34958.58 35482.72 336
ppachtmachnet_test67.72 31763.70 32979.77 27478.92 34366.04 14288.68 26982.90 36060.11 34155.45 35175.96 35539.19 32190.55 31639.53 37452.55 37182.71 337
CL-MVSNet_self_test69.92 29768.09 30175.41 32073.25 37755.90 33490.05 24189.90 23769.96 25161.96 32076.54 34951.05 24987.64 34849.51 33250.59 37582.70 338
LS3D69.17 30366.40 30877.50 30191.92 10956.12 33285.12 30680.37 36746.96 38756.50 34987.51 22337.25 33993.71 24432.52 39679.40 19682.68 339
our_test_368.29 31364.69 32279.11 28778.92 34364.85 17288.40 27485.06 33960.32 33952.68 36176.12 35440.81 31789.80 33144.25 35855.65 36182.67 340
FMVSNet568.04 31565.66 31575.18 32384.43 27957.89 31383.54 31686.26 32761.83 33053.64 35973.30 36437.15 34285.08 36348.99 33461.77 33382.56 341
KD-MVS_2432*160069.03 30566.37 30977.01 30985.56 25961.06 26681.44 33890.25 22367.27 27958.00 34176.53 35054.49 21287.63 34948.04 33935.77 40082.34 342
miper_refine_blended69.03 30566.37 30977.01 30985.56 25961.06 26681.44 33890.25 22367.27 27958.00 34176.53 35054.49 21287.63 34948.04 33935.77 40082.34 342
pmmvs667.57 31964.76 32176.00 31872.82 38053.37 34688.71 26886.78 32353.19 36957.58 34678.03 33735.33 35192.41 28355.56 31054.88 36582.21 344
EU-MVSNet64.01 33963.01 33367.02 36974.40 37438.86 40483.27 32186.19 32945.11 39254.27 35581.15 30636.91 34580.01 39048.79 33657.02 35782.19 345
ACMH63.93 1768.62 30864.81 32080.03 26485.22 26463.25 21787.72 28584.66 34360.83 33551.57 36779.43 32827.29 37994.96 18941.76 36664.84 30581.88 346
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
D2MVS73.80 26572.02 27079.15 28679.15 34062.97 22588.58 27190.07 23072.94 17759.22 33278.30 33342.31 31392.70 27365.59 25672.00 25481.79 347
DP-MVS69.90 29866.48 30680.14 26095.36 2862.93 22789.56 25076.11 37450.27 37957.69 34585.23 25139.68 32095.73 15833.35 38971.05 26281.78 348
Patchmtry67.53 32063.93 32878.34 29182.12 30764.38 18368.72 38884.00 35048.23 38659.24 33172.41 36857.82 17189.27 33346.10 35056.68 36081.36 349
Syy-MVS69.65 30069.52 29270.03 35787.87 21143.21 39388.07 27789.01 27672.91 17963.11 30988.10 21145.28 30085.54 36022.07 40769.23 27181.32 350
myMVS_eth3d72.58 28272.74 26072.10 34987.87 21149.45 36788.07 27789.01 27672.91 17963.11 30988.10 21163.63 10085.54 36032.73 39469.23 27181.32 350
Baseline_NR-MVSNet73.99 26372.83 25877.48 30280.78 31859.29 30291.79 17184.55 34568.85 26568.99 24680.70 30956.16 19392.04 29562.67 27860.98 34181.11 352
CMPMVSbinary48.56 2166.77 32464.41 32673.84 33470.65 38650.31 36277.79 36485.73 33545.54 39144.76 39082.14 28635.40 35090.14 32663.18 27474.54 23481.07 353
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TransMVSNet (Re)70.07 29667.66 30277.31 30680.62 32259.13 30491.78 17384.94 34165.97 28960.08 32880.44 31450.78 25091.87 29748.84 33545.46 38380.94 354
ACMH+65.35 1667.65 31864.55 32376.96 31184.59 27557.10 32488.08 27680.79 36458.59 34953.00 36081.09 30726.63 38192.95 25946.51 34761.69 33780.82 355
USDC67.43 32264.51 32476.19 31677.94 35755.29 33778.38 36085.00 34073.17 17248.36 38080.37 31521.23 39192.48 28252.15 32264.02 31680.81 356
OurMVSNet-221017-064.68 33562.17 33972.21 34776.08 36847.35 37780.67 34481.02 36356.19 36151.60 36679.66 32627.05 38088.56 33753.60 31953.63 36880.71 357
MS-PatchMatch77.90 21076.50 20882.12 21585.99 25069.95 4191.75 17692.70 11673.97 15662.58 31684.44 26141.11 31695.78 15463.76 26992.17 6680.62 358
tfpnnormal70.10 29567.36 30478.32 29283.45 29360.97 26888.85 26692.77 11464.85 29760.83 32378.53 33243.52 30893.48 24931.73 39761.70 33680.52 359
MIMVSNet160.16 35457.33 35568.67 36269.71 38844.13 39078.92 35784.21 34655.05 36544.63 39171.85 37223.91 38581.54 38632.63 39555.03 36480.35 360
YYNet163.76 34260.14 34674.62 32778.06 35660.19 28883.46 31983.99 35256.18 36239.25 39971.56 37537.18 34183.34 37542.90 36248.70 37880.32 361
MDA-MVSNet_test_wron63.78 34160.16 34574.64 32678.15 35560.41 28383.49 31784.03 34856.17 36339.17 40071.59 37437.22 34083.24 37742.87 36348.73 37780.26 362
KD-MVS_self_test60.87 35058.60 35067.68 36666.13 39639.93 40175.63 37484.70 34257.32 35549.57 37568.45 38329.55 37182.87 37848.09 33847.94 37980.25 363
ITE_SJBPF70.43 35674.44 37347.06 38177.32 37260.16 34054.04 35783.53 26923.30 38784.01 36943.07 36061.58 33880.21 364
test20.0363.83 34062.65 33667.38 36870.58 38739.94 40086.57 30084.17 34763.29 31251.86 36577.30 34237.09 34382.47 38038.87 37854.13 36779.73 365
UnsupCasMVSNet_bld61.60 34757.71 35273.29 33868.73 39151.64 35378.61 35889.05 27557.20 35646.11 38361.96 39628.70 37588.60 33650.08 32938.90 39579.63 366
AllTest61.66 34658.06 35172.46 34479.57 33251.42 35680.17 35068.61 39651.25 37545.88 38481.23 30119.86 39686.58 35638.98 37657.01 35879.39 367
TestCases72.46 34479.57 33251.42 35668.61 39651.25 37545.88 38481.23 30119.86 39686.58 35638.98 37657.01 35879.39 367
ambc69.61 35861.38 40541.35 39649.07 41285.86 33450.18 37466.40 38610.16 40988.14 34245.73 35244.20 38479.32 369
Anonymous2024052162.09 34559.08 34971.10 35467.19 39348.72 37283.91 31485.23 33850.38 37847.84 38171.22 37720.74 39285.51 36246.47 34858.75 35379.06 370
testing370.38 29470.83 27969.03 36185.82 25543.93 39290.72 21990.56 21068.06 27260.24 32686.82 23564.83 8484.12 36626.33 40264.10 31479.04 371
MVP-Stereo77.12 22076.23 21279.79 27381.72 31066.34 13689.29 25790.88 20170.56 24562.01 31982.88 27649.34 26494.13 22365.55 25793.80 4378.88 372
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs-eth3d65.53 33262.32 33875.19 32269.39 39059.59 29582.80 32983.43 35562.52 32151.30 36972.49 36632.86 35787.16 35455.32 31150.73 37478.83 373
OpenMVS_ROBcopyleft61.12 1866.39 32562.92 33476.80 31376.51 36457.77 31589.22 25983.41 35655.48 36453.86 35877.84 33826.28 38293.95 23734.90 38668.76 27578.68 374
LTVRE_ROB59.60 1966.27 32663.54 33074.45 32884.00 28651.55 35467.08 39583.53 35458.78 34754.94 35380.31 31634.54 35393.23 25340.64 37268.03 28178.58 375
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mmtdpeth68.33 31266.37 30974.21 33282.81 30151.73 35284.34 31180.42 36667.01 28371.56 21568.58 38230.52 37092.35 28775.89 15736.21 39878.56 376
PM-MVS59.40 35556.59 35767.84 36463.63 39941.86 39476.76 36663.22 40459.01 34651.07 37072.27 37111.72 40783.25 37661.34 28550.28 37678.39 377
test_fmvs356.82 35854.86 36262.69 37753.59 41035.47 40775.87 37165.64 40143.91 39555.10 35271.43 3766.91 41574.40 39768.64 22352.63 36978.20 378
mvs5depth61.03 34957.65 35471.18 35367.16 39447.04 38272.74 37877.49 37157.47 35460.52 32472.53 36522.84 38888.38 33949.15 33338.94 39478.11 379
N_pmnet50.55 36649.11 36854.88 38577.17 3624.02 42984.36 3102.00 42748.59 38245.86 38668.82 38132.22 36182.80 37931.58 39851.38 37377.81 380
new-patchmatchnet59.30 35656.48 35867.79 36565.86 39744.19 38982.47 33081.77 36159.94 34243.65 39466.20 38727.67 37881.68 38539.34 37541.40 38977.50 381
EG-PatchMatch MVS68.55 30965.41 31777.96 29778.69 34862.93 22789.86 24789.17 26560.55 33650.27 37277.73 34022.60 38994.06 22847.18 34572.65 25076.88 382
MVS-HIRNet60.25 35355.55 36074.35 32984.37 28056.57 33071.64 38174.11 38234.44 40345.54 38842.24 41131.11 36889.81 32940.36 37376.10 22776.67 383
MDA-MVSNet-bldmvs61.54 34857.70 35373.05 33979.53 33457.00 32883.08 32581.23 36257.57 35134.91 40472.45 36732.79 35886.26 35835.81 38341.95 38875.89 384
COLMAP_ROBcopyleft57.96 2062.98 34459.65 34772.98 34081.44 31353.00 34883.75 31575.53 37948.34 38448.81 37981.40 29924.14 38490.30 31932.95 39160.52 34575.65 385
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TinyColmap60.32 35256.42 35972.00 35178.78 34653.18 34778.36 36175.64 37752.30 37041.59 39875.82 35714.76 40388.35 34035.84 38254.71 36674.46 386
mamv465.18 33367.43 30358.44 37977.88 35949.36 37069.40 38770.99 39248.31 38557.78 34485.53 24959.01 15951.88 41773.67 17464.32 31174.07 387
ttmdpeth53.34 36449.96 36763.45 37462.07 40440.04 39972.06 37965.64 40142.54 39951.88 36477.79 33913.94 40676.48 39332.93 39230.82 40873.84 388
MVStest151.35 36546.89 36964.74 37165.06 39851.10 35867.33 39472.58 38530.20 40735.30 40274.82 36027.70 37769.89 40224.44 40424.57 41173.22 389
mvsany_test348.86 36846.35 37156.41 38146.00 41631.67 41262.26 40047.25 41743.71 39645.54 38868.15 38410.84 40864.44 41357.95 30135.44 40273.13 390
pmmvs355.51 36051.50 36667.53 36757.90 40850.93 36080.37 34673.66 38340.63 40144.15 39364.75 39016.30 39878.97 39144.77 35740.98 39272.69 391
test_method38.59 37835.16 38148.89 39254.33 40921.35 42245.32 41353.71 4117.41 41928.74 40751.62 4038.70 41252.87 41633.73 38732.89 40472.47 392
test_040264.54 33661.09 34274.92 32584.10 28560.75 27487.95 28079.71 36952.03 37152.41 36277.20 34432.21 36291.64 30323.14 40561.03 34072.36 393
LF4IMVS54.01 36352.12 36459.69 37862.41 40239.91 40268.59 38968.28 39842.96 39844.55 39275.18 35814.09 40568.39 40441.36 36951.68 37270.78 394
TDRefinement55.28 36151.58 36566.39 37059.53 40746.15 38576.23 36972.80 38444.60 39342.49 39676.28 35315.29 40182.39 38133.20 39043.75 38570.62 395
test_f46.58 36943.45 37355.96 38245.18 41732.05 41161.18 40149.49 41533.39 40442.05 39762.48 3957.00 41465.56 40947.08 34643.21 38770.27 396
LCM-MVSNet40.54 37435.79 37954.76 38636.92 42330.81 41351.41 41069.02 39522.07 41024.63 41045.37 4074.56 41965.81 40833.67 38834.50 40367.67 397
ANet_high40.27 37735.20 38055.47 38334.74 42434.47 40963.84 39971.56 39048.42 38318.80 41341.08 4129.52 41164.45 41220.18 4088.66 42067.49 398
test_vis1_rt59.09 35757.31 35664.43 37268.44 39246.02 38683.05 32748.63 41651.96 37249.57 37563.86 39216.30 39880.20 38971.21 19862.79 32267.07 399
kuosan60.86 35160.24 34462.71 37681.57 31146.43 38475.70 37385.88 33257.98 35048.95 37869.53 38058.42 16476.53 39228.25 40135.87 39965.15 400
PMMVS237.93 37933.61 38250.92 38946.31 41524.76 41960.55 40450.05 41328.94 40920.93 41147.59 4044.41 42165.13 41025.14 40318.55 41562.87 401
new_pmnet49.31 36746.44 37057.93 38062.84 40140.74 39768.47 39062.96 40536.48 40235.09 40357.81 40014.97 40272.18 39932.86 39346.44 38160.88 402
dongtai55.18 36255.46 36154.34 38776.03 36936.88 40576.07 37084.61 34451.28 37443.41 39564.61 39156.56 19067.81 40518.09 41028.50 41058.32 403
FPMVS45.64 37143.10 37553.23 38851.42 41336.46 40664.97 39771.91 38829.13 40827.53 40861.55 3979.83 41065.01 41116.00 41455.58 36258.22 404
WB-MVS46.23 37044.94 37250.11 39062.13 40321.23 42376.48 36855.49 40945.89 39035.78 40161.44 39835.54 34972.83 3989.96 41721.75 41256.27 405
SSC-MVS44.51 37243.35 37447.99 39461.01 40618.90 42574.12 37654.36 41043.42 39734.10 40560.02 39934.42 35470.39 4019.14 41919.57 41354.68 406
APD_test140.50 37537.31 37850.09 39151.88 41135.27 40859.45 40552.59 41221.64 41126.12 40957.80 4014.56 41966.56 40722.64 40639.09 39348.43 407
EGC-MVSNET42.35 37338.09 37655.11 38474.57 37246.62 38371.63 38255.77 4080.04 4220.24 42362.70 39414.24 40474.91 39617.59 41146.06 38243.80 408
test_vis3_rt40.46 37637.79 37748.47 39344.49 41833.35 41066.56 39632.84 42432.39 40529.65 40639.13 4143.91 42268.65 40350.17 32740.99 39143.40 409
testf132.77 38129.47 38442.67 39741.89 42030.81 41352.07 40843.45 41815.45 41418.52 41444.82 4082.12 42358.38 41416.05 41230.87 40638.83 410
APD_test232.77 38129.47 38442.67 39741.89 42030.81 41352.07 40843.45 41815.45 41418.52 41444.82 4082.12 42358.38 41416.05 41230.87 40638.83 410
MVEpermissive24.84 2324.35 38519.77 39138.09 39934.56 42526.92 41826.57 41538.87 42211.73 41811.37 41927.44 4151.37 42650.42 41811.41 41614.60 41636.93 412
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft34.71 40051.45 41224.73 42028.48 42631.46 40617.49 41652.75 4025.80 41742.60 42118.18 40919.42 41436.81 413
PMVScopyleft26.43 2231.84 38328.16 38642.89 39625.87 42627.58 41750.92 41149.78 41421.37 41214.17 41840.81 4132.01 42566.62 4069.61 41838.88 39634.49 414
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft34.91 38031.44 38345.30 39570.99 38439.64 40319.85 41772.56 38620.10 41316.16 41721.47 4185.08 41871.16 40013.07 41543.70 38625.08 415
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt22.26 38723.75 38917.80 4035.23 42712.06 42835.26 41439.48 4212.82 42118.94 41244.20 41022.23 39024.64 42236.30 3809.31 41916.69 416
E-PMN24.61 38424.00 38826.45 40143.74 41918.44 42660.86 40239.66 42015.11 4169.53 42022.10 4176.52 41646.94 4198.31 42010.14 41713.98 417
EMVS23.76 38623.20 39025.46 40241.52 42216.90 42760.56 40338.79 42314.62 4178.99 42120.24 4207.35 41345.82 4207.25 4219.46 41813.64 418
wuyk23d11.30 38910.95 39212.33 40448.05 41419.89 42425.89 4161.92 4283.58 4203.12 4221.37 4220.64 42715.77 4236.23 4227.77 4211.35 419
test1236.92 3929.21 3950.08 4050.03 4290.05 43081.65 3360.01 4300.02 4240.14 4250.85 4240.03 4280.02 4240.12 4240.00 4230.16 420
testmvs7.23 3919.62 3940.06 4060.04 4280.02 43184.98 3080.02 4290.03 4230.18 4241.21 4230.01 4290.02 4240.14 4230.01 4220.13 421
mmdepth0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
monomultidepth0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
test_blank0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
uanet_test0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
DCPMVS0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
cdsmvs_eth3d_5k19.86 38826.47 3870.00 4070.00 4300.00 4320.00 41893.45 860.00 4250.00 42695.27 5949.56 2620.00 4260.00 4250.00 4230.00 422
pcd_1.5k_mvsjas4.46 3935.95 3960.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 42553.55 2240.00 4260.00 4250.00 4230.00 422
sosnet-low-res0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
sosnet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
uncertanet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
Regformer0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
ab-mvs-re7.91 39010.55 3930.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 42694.95 690.00 4300.00 4260.00 4250.00 4230.00 422
uanet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4230.00 422
WAC-MVS49.45 36731.56 399
FOURS193.95 4661.77 25293.96 7091.92 15162.14 32586.57 46
test_one_060196.32 1869.74 4994.18 5871.42 22990.67 1996.85 1674.45 20
eth-test20.00 430
eth-test0.00 430
ZD-MVS96.63 965.50 15793.50 8470.74 24385.26 6295.19 6564.92 8397.29 7687.51 5793.01 56
test_241102_ONE96.45 1269.38 5594.44 4771.65 21892.11 797.05 776.79 999.11 6
9.1487.63 2893.86 4894.41 5294.18 5872.76 18386.21 4896.51 2466.64 6397.88 4490.08 3994.04 39
save fliter93.84 4967.89 9495.05 3992.66 12078.19 95
test072696.40 1569.99 3896.76 894.33 5571.92 20491.89 1197.11 673.77 23
test_part296.29 1968.16 8890.78 17
sam_mvs54.91 209
MTGPAbinary92.23 133
test_post178.95 35620.70 41953.05 22991.50 31160.43 290
test_post23.01 41656.49 19192.67 274
patchmatchnet-post67.62 38557.62 17390.25 320
MTMP93.77 8432.52 425
gm-plane-assit88.42 19367.04 11878.62 9191.83 15197.37 7076.57 153
TEST994.18 4167.28 10994.16 5993.51 8271.75 21585.52 5795.33 5468.01 5397.27 80
test_894.19 4067.19 11194.15 6193.42 8971.87 20985.38 6095.35 5368.19 5196.95 106
agg_prior94.16 4366.97 12093.31 9284.49 6896.75 116
test_prior467.18 11393.92 73
test_prior295.10 3875.40 13685.25 6395.61 4567.94 5487.47 5994.77 26
旧先验292.00 16259.37 34587.54 3993.47 25075.39 161
新几何291.41 183
原ACMM292.01 159
testdata296.09 14261.26 286
segment_acmp65.94 71
testdata189.21 26077.55 108
plane_prior786.94 23461.51 258
plane_prior687.23 22662.32 24250.66 251
plane_prior489.14 197
plane_prior361.95 25079.09 8172.53 199
plane_prior293.13 11078.81 88
plane_prior187.15 228
plane_prior62.42 23893.85 7779.38 7378.80 203
n20.00 431
nn0.00 431
door-mid66.01 400
test1193.01 106
door66.57 399
HQP5-MVS63.66 207
HQP-NCC87.54 21994.06 6379.80 6474.18 178
ACMP_Plane87.54 21994.06 6379.80 6474.18 178
BP-MVS77.63 148
HQP3-MVS91.70 16778.90 201
HQP2-MVS51.63 243
NP-MVS87.41 22263.04 22390.30 178
MDTV_nov1_ep1372.61 26389.06 17868.48 7680.33 34790.11 22971.84 21171.81 21175.92 35653.01 23093.92 23848.04 33973.38 243
ACMMP++_ref71.63 256
ACMMP++69.72 265
Test By Simon54.21 218