This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
DPM-MVS90.70 390.52 891.24 189.68 15276.68 297.29 295.35 1582.87 2291.58 1397.22 379.93 599.10 983.12 9697.64 297.94 1
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5496.89 694.44 4671.65 21392.11 797.21 476.79 999.11 692.34 2195.36 1497.62 2
OPU-MVS89.97 397.52 373.15 1296.89 697.00 983.82 299.15 295.72 597.63 397.62 2
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4393.96 7194.37 5272.48 18392.07 996.85 1683.82 299.15 291.53 3197.42 497.55 4
PC_three_145280.91 4894.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
iter_conf05_1186.99 3586.27 4389.15 1393.74 5272.45 1397.56 187.04 30888.32 492.60 596.57 2332.61 34797.45 6692.21 2495.80 1097.53 6
bld_raw_dy_0_6482.84 11180.75 13189.09 1493.74 5272.16 1593.16 11077.36 35989.69 174.55 16996.48 2732.35 34997.56 6292.21 2477.24 21197.53 6
DeepPCF-MVS81.17 189.72 1091.38 484.72 13193.00 7458.16 30396.72 994.41 4886.50 1090.25 2297.83 175.46 1498.67 2592.78 1895.49 1397.32 8
LFMVS84.34 8082.73 10489.18 1294.76 3373.25 994.99 4391.89 14471.90 20182.16 8593.49 11147.98 26397.05 9182.55 10084.82 13897.25 9
sasdasda86.85 3786.25 4688.66 2091.80 10871.92 1693.54 9691.71 15480.26 5687.55 3895.25 6063.59 9896.93 10788.18 5184.34 14297.11 10
canonicalmvs86.85 3786.25 4688.66 2091.80 10871.92 1693.54 9691.71 15480.26 5687.55 3895.25 6063.59 9896.93 10788.18 5184.34 14297.11 10
MCST-MVS91.08 191.46 389.94 497.66 273.37 897.13 395.58 1189.33 285.77 5396.26 3272.84 2699.38 192.64 1995.93 997.08 12
DELS-MVS90.05 790.09 1189.94 493.14 7173.88 797.01 594.40 5088.32 485.71 5494.91 7174.11 1998.91 1787.26 6295.94 897.03 13
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CSCG86.87 3686.26 4588.72 1795.05 3170.79 3193.83 8395.33 1668.48 26777.63 13794.35 8973.04 2498.45 3084.92 8393.71 4696.92 14
MM90.87 291.52 288.92 1592.12 9671.10 2897.02 496.04 688.70 391.57 1496.19 3570.12 4098.91 1796.83 195.06 1796.76 15
MVS84.66 7582.86 10290.06 290.93 12874.56 687.91 27795.54 1368.55 26572.35 19994.71 7659.78 14198.90 1981.29 11294.69 3296.74 16
alignmvs87.28 3186.97 3688.24 2791.30 12271.14 2795.61 2693.56 7879.30 7387.07 4395.25 6068.43 4696.93 10787.87 5484.33 14496.65 17
DeepC-MVS_fast79.48 287.95 2188.00 2487.79 3195.86 2768.32 7895.74 2294.11 6083.82 1783.49 7596.19 3564.53 8498.44 3183.42 9594.88 2596.61 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_241102_TWO94.41 4871.65 21392.07 997.21 474.58 1799.11 692.34 2195.36 1496.59 19
TSAR-MVS + GP.87.96 2088.37 2086.70 6393.51 6165.32 15595.15 3793.84 6578.17 9285.93 5294.80 7475.80 1398.21 3489.38 4288.78 10296.59 19
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1393.78 6686.89 889.68 2895.78 4265.94 6699.10 992.99 1693.91 4196.58 21
WTY-MVS86.32 4685.81 5587.85 2992.82 7969.37 5695.20 3595.25 1782.71 2481.91 8694.73 7567.93 5297.63 5679.55 12382.25 16196.54 22
VNet86.20 4885.65 5887.84 3093.92 4669.99 3995.73 2495.94 778.43 8986.00 5193.07 11758.22 15697.00 9685.22 7784.33 14496.52 23
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2699.07 1392.01 2694.77 2696.51 24
No_MVS89.60 897.31 473.22 1095.05 2699.07 1392.01 2694.77 2696.51 24
test_0728_SECOND88.70 1896.45 1270.43 3596.64 1094.37 5299.15 291.91 2994.90 2296.51 24
ET-MVSNet_ETH3D84.01 8983.15 9786.58 6890.78 13370.89 3094.74 4894.62 4081.44 4058.19 32893.64 10773.64 2392.35 28182.66 9878.66 19696.50 27
IU-MVS96.46 1169.91 4395.18 2080.75 4995.28 192.34 2195.36 1496.47 28
test_0728_THIRD72.48 18390.55 2096.93 1176.24 1199.08 1191.53 3194.99 1896.43 29
MSP-MVS90.38 591.87 185.88 8792.83 7764.03 19093.06 11394.33 5482.19 3093.65 396.15 3785.89 197.19 8491.02 3597.75 196.43 29
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HY-MVS76.49 584.28 8183.36 9387.02 5492.22 9367.74 9584.65 30294.50 4379.15 7782.23 8487.93 21166.88 5896.94 10580.53 11682.20 16396.39 31
DPE-MVScopyleft88.77 1689.21 1687.45 4396.26 2067.56 10094.17 5894.15 5968.77 26390.74 1897.27 276.09 1298.49 2990.58 3994.91 2196.30 32
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3996.64 1094.52 4271.92 19990.55 2096.93 1173.77 2199.08 1191.91 2994.90 2296.29 33
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSLP-MVS++86.27 4785.91 5487.35 4592.01 10068.97 6595.04 4192.70 11179.04 8281.50 8996.50 2658.98 15196.78 11383.49 9493.93 4096.29 33
patch_mono-289.71 1190.99 685.85 9096.04 2463.70 20095.04 4195.19 1986.74 991.53 1595.15 6573.86 2097.58 5993.38 1492.00 6896.28 35
test_yl84.28 8183.16 9587.64 3494.52 3769.24 5895.78 1995.09 2369.19 25781.09 9392.88 12357.00 16997.44 6881.11 11381.76 16896.23 36
DCV-MVSNet84.28 8183.16 9587.64 3494.52 3769.24 5895.78 1995.09 2369.19 25781.09 9392.88 12357.00 16997.44 6881.11 11381.76 16896.23 36
CNVR-MVS90.32 690.89 788.61 2296.76 870.65 3296.47 1494.83 3084.83 1389.07 3296.80 1970.86 3699.06 1592.64 1995.71 1196.12 38
HPM-MVS++copyleft89.37 1489.95 1387.64 3495.10 3068.23 8495.24 3494.49 4482.43 2788.90 3396.35 2971.89 3498.63 2688.76 4996.40 696.06 39
SD-MVS87.49 2787.49 3087.50 4293.60 5668.82 6893.90 7592.63 11776.86 11187.90 3695.76 4366.17 6397.63 5689.06 4791.48 7796.05 40
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PHI-MVS86.83 3986.85 4086.78 6193.47 6265.55 15195.39 3195.10 2271.77 20985.69 5596.52 2462.07 11798.77 2286.06 7395.60 1296.03 41
APDe-MVScopyleft87.54 2687.84 2586.65 6496.07 2366.30 13394.84 4693.78 6669.35 25488.39 3496.34 3067.74 5397.66 5490.62 3893.44 5096.01 42
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
lupinMVS87.74 2487.77 2687.63 3889.24 16771.18 2596.57 1292.90 10682.70 2587.13 4195.27 5864.99 7595.80 14689.34 4391.80 7195.93 43
NCCC89.07 1589.46 1587.91 2896.60 1069.05 6296.38 1694.64 3984.42 1486.74 4596.20 3466.56 6298.76 2389.03 4894.56 3395.92 44
MVS_030490.01 890.50 988.53 2390.14 14370.94 2996.47 1495.72 1087.33 689.60 2996.26 3268.44 4598.74 2495.82 494.72 3195.90 45
SMA-MVScopyleft88.14 1788.29 2187.67 3393.21 6868.72 7093.85 7894.03 6274.18 14691.74 1296.67 2165.61 7098.42 3389.24 4596.08 795.88 46
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
dcpmvs_287.37 3087.55 2986.85 5695.04 3268.20 8590.36 22690.66 19679.37 7281.20 9193.67 10674.73 1596.55 12190.88 3692.00 6895.82 47
Anonymous20240521177.96 19875.33 21785.87 8893.73 5464.52 17094.85 4585.36 32562.52 31376.11 15290.18 17729.43 36197.29 7868.51 21477.24 21195.81 48
mvs_anonymous81.36 13479.99 14585.46 10290.39 13968.40 7686.88 29290.61 19874.41 14170.31 22284.67 25163.79 9292.32 28273.13 16685.70 13395.67 49
MG-MVS87.11 3386.27 4389.62 797.79 176.27 494.96 4494.49 4478.74 8783.87 7492.94 12064.34 8596.94 10575.19 15394.09 3795.66 50
PAPR85.15 6884.47 7387.18 4896.02 2568.29 7991.85 16893.00 10376.59 11879.03 12195.00 6661.59 12297.61 5878.16 13689.00 10195.63 51
VDD-MVS83.06 10781.81 11886.81 5990.86 13167.70 9695.40 3091.50 16575.46 12981.78 8792.34 13640.09 30597.13 8986.85 6782.04 16595.60 52
casdiffmvs_mvgpermissive85.66 6185.18 6487.09 5188.22 19469.35 5793.74 8791.89 14481.47 3780.10 10791.45 15464.80 8096.35 12787.23 6387.69 11295.58 53
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Effi-MVS+83.82 9382.76 10386.99 5589.56 15569.40 5391.35 19286.12 31972.59 18083.22 7792.81 12659.60 14396.01 14381.76 10587.80 11195.56 54
TSAR-MVS + MP.88.11 1988.64 1786.54 7091.73 11068.04 8890.36 22693.55 7982.89 2191.29 1692.89 12272.27 3196.03 14187.99 5394.77 2695.54 55
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP86.82 4086.90 3886.58 6890.42 13766.38 13096.09 1893.87 6477.73 9984.01 7395.66 4563.39 10197.94 4087.40 6093.55 4995.42 56
Skip Steuart: Steuart Systems R&D Blog.
CS-MVS-test86.14 5087.01 3583.52 16892.63 8559.36 29195.49 2891.92 14180.09 6085.46 5895.53 4961.82 12195.77 14986.77 6893.37 5195.41 57
casdiffmvspermissive85.37 6484.87 7086.84 5788.25 19269.07 6193.04 11591.76 15181.27 4480.84 9892.07 14264.23 8696.06 13984.98 8287.43 11695.39 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EIA-MVS84.84 7284.88 6984.69 13391.30 12262.36 23493.85 7892.04 13679.45 6979.33 11894.28 9362.42 11396.35 12780.05 11991.25 8295.38 59
testing9185.93 5485.31 6287.78 3293.59 5771.47 2093.50 9995.08 2580.26 5680.53 10291.93 14570.43 3896.51 12380.32 11882.13 16495.37 60
CS-MVS85.80 5786.65 4183.27 17692.00 10158.92 29695.31 3291.86 14679.97 6184.82 6495.40 5162.26 11595.51 16786.11 7292.08 6795.37 60
GG-mvs-BLEND86.53 7191.91 10569.67 5275.02 36494.75 3378.67 12990.85 16477.91 794.56 20072.25 17793.74 4495.36 62
agg_prior286.41 6994.75 3095.33 63
3Dnovator+73.60 782.10 12580.60 13786.60 6690.89 13066.80 12195.20 3593.44 8574.05 14867.42 26292.49 13149.46 24897.65 5570.80 19091.68 7395.33 63
baseline85.01 7084.44 7486.71 6288.33 18968.73 6990.24 23191.82 15081.05 4781.18 9292.50 12963.69 9496.08 13884.45 8786.71 12695.32 65
ab-mvs80.18 15678.31 17085.80 9288.44 18465.49 15483.00 31992.67 11371.82 20777.36 14185.01 24654.50 19996.59 11776.35 14675.63 22195.32 65
test9_res89.41 4194.96 1995.29 67
EPNet87.84 2388.38 1986.23 8093.30 6566.05 13795.26 3394.84 2987.09 788.06 3594.53 8066.79 5997.34 7583.89 9291.68 7395.29 67
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SF-MVS87.03 3487.09 3486.84 5792.70 8367.45 10593.64 9193.76 6970.78 23786.25 4796.44 2866.98 5797.79 4788.68 5094.56 3395.28 69
VDDNet80.50 14978.26 17187.21 4786.19 23769.79 4794.48 5191.31 17160.42 32879.34 11790.91 16338.48 31496.56 12082.16 10181.05 17495.27 70
MVSFormer83.75 9682.88 10186.37 7689.24 16771.18 2589.07 25990.69 19365.80 28587.13 4194.34 9064.99 7592.67 26772.83 16991.80 7195.27 70
jason86.40 4486.17 4887.11 5086.16 23970.54 3495.71 2592.19 13282.00 3284.58 6694.34 9061.86 11995.53 16687.76 5590.89 8595.27 70
jason: jason.
train_agg87.21 3287.42 3186.60 6694.18 4167.28 10794.16 5993.51 8071.87 20485.52 5695.33 5368.19 4897.27 8289.09 4694.90 2295.25 73
MVS_Test84.16 8783.20 9487.05 5391.56 11569.82 4689.99 24092.05 13577.77 9882.84 7986.57 23063.93 9096.09 13574.91 15889.18 10095.25 73
3Dnovator73.91 682.69 11680.82 13088.31 2689.57 15471.26 2392.60 13494.39 5178.84 8467.89 25692.48 13248.42 25898.52 2868.80 21294.40 3595.15 75
testing9986.01 5285.47 5987.63 3893.62 5571.25 2493.47 10295.23 1880.42 5480.60 10191.95 14471.73 3596.50 12480.02 12082.22 16295.13 76
Patchmatch-test65.86 31960.94 33380.62 24183.75 27958.83 29758.91 39175.26 36844.50 38150.95 35977.09 33658.81 15287.90 33335.13 37464.03 30795.12 77
APD-MVScopyleft85.93 5485.99 5285.76 9495.98 2665.21 15893.59 9492.58 11966.54 28086.17 4995.88 4163.83 9197.00 9686.39 7092.94 5695.06 78
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
gg-mvs-nofinetune77.18 20974.31 23085.80 9291.42 11968.36 7771.78 36794.72 3449.61 36877.12 14445.92 39177.41 893.98 22967.62 22293.16 5495.05 79
test_prior86.42 7494.71 3567.35 10693.10 9996.84 11195.05 79
Patchmatch-RL test68.17 30564.49 31579.19 27471.22 37053.93 33670.07 37271.54 37869.22 25656.79 33762.89 37856.58 17888.61 32669.53 20252.61 36195.03 81
CHOSEN 1792x268884.98 7183.45 8789.57 1089.94 14775.14 592.07 15592.32 12481.87 3375.68 15688.27 20260.18 13598.60 2780.46 11790.27 9294.96 82
test_fmvsmconf_n86.58 4387.17 3384.82 12485.28 25462.55 23194.26 5789.78 22983.81 1887.78 3796.33 3165.33 7296.98 10094.40 1187.55 11494.95 83
ACMMP_NAP86.05 5185.80 5686.80 6091.58 11467.53 10291.79 17093.49 8374.93 13784.61 6595.30 5559.42 14597.92 4186.13 7194.92 2094.94 84
test250683.29 10282.92 10084.37 14788.39 18763.18 21792.01 15891.35 17077.66 10178.49 13091.42 15564.58 8395.09 17873.19 16589.23 9894.85 85
ECVR-MVScopyleft81.29 13580.38 14184.01 15788.39 18761.96 24392.56 13986.79 31277.66 10176.63 14891.42 15546.34 27695.24 17574.36 16289.23 9894.85 85
PAPM_NR82.97 10981.84 11786.37 7694.10 4466.76 12287.66 28192.84 10769.96 24774.07 17693.57 10963.10 10897.50 6570.66 19390.58 8994.85 85
ETVMVS84.22 8583.71 8085.76 9492.58 8768.25 8392.45 14195.53 1479.54 6879.46 11591.64 15270.29 3994.18 21669.16 20782.76 15894.84 88
CDPH-MVS85.71 5985.46 6086.46 7294.75 3467.19 10993.89 7692.83 10870.90 23383.09 7895.28 5663.62 9697.36 7380.63 11594.18 3694.84 88
test1287.09 5194.60 3668.86 6692.91 10582.67 8365.44 7197.55 6393.69 4794.84 88
testing1186.71 4286.44 4287.55 4093.54 5971.35 2293.65 9095.58 1181.36 4380.69 9992.21 14072.30 3096.46 12685.18 7983.43 15094.82 91
testing22285.18 6784.69 7286.63 6592.91 7669.91 4392.61 13395.80 980.31 5580.38 10492.27 13768.73 4495.19 17675.94 14883.27 15294.81 92
PatchmatchNetpermissive77.46 20574.63 22385.96 8589.55 15670.35 3679.97 34589.55 23972.23 19270.94 21276.91 33857.03 16792.79 26254.27 30581.17 17394.74 93
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS78.49 19075.98 20786.02 8391.21 12469.68 5180.23 34091.20 17575.25 13372.48 19578.11 32754.65 19893.69 23857.66 29483.04 15394.69 94
GSMVS94.68 95
sam_mvs157.85 15994.68 95
SCA75.82 23472.76 25185.01 11886.63 22970.08 3881.06 33389.19 25371.60 21870.01 22577.09 33645.53 28390.25 31260.43 28073.27 23794.68 95
fmvsm_l_conf0.5_n87.49 2788.19 2285.39 10586.95 22464.37 18094.30 5588.45 28580.51 5192.70 496.86 1569.98 4197.15 8895.83 388.08 10994.65 98
Vis-MVSNetpermissive80.92 14379.98 14683.74 16188.48 18261.80 24593.44 10388.26 29373.96 15277.73 13591.76 14849.94 24494.76 18765.84 24290.37 9194.65 98
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvsmconf0.1_n85.71 5986.08 5184.62 13880.83 30762.33 23593.84 8188.81 27283.50 2087.00 4496.01 3963.36 10296.93 10794.04 1287.29 11794.61 100
fmvsm_l_conf0.5_n_a87.44 2988.15 2385.30 10987.10 22164.19 18794.41 5388.14 29480.24 5992.54 696.97 1069.52 4397.17 8595.89 288.51 10594.56 101
旧先验191.94 10260.74 26891.50 16594.36 8565.23 7391.84 7094.55 102
sss82.71 11582.38 11183.73 16389.25 16459.58 28692.24 14694.89 2877.96 9479.86 11092.38 13456.70 17597.05 9177.26 14180.86 17694.55 102
xiu_mvs_v2_base87.92 2287.38 3289.55 1191.41 12176.43 395.74 2293.12 9883.53 1989.55 3095.95 4053.45 21697.68 5091.07 3492.62 5994.54 104
PS-MVSNAJ88.14 1787.61 2889.71 692.06 9776.72 195.75 2193.26 9083.86 1689.55 3096.06 3853.55 21297.89 4391.10 3393.31 5294.54 104
test111180.84 14480.02 14383.33 17487.87 20360.76 26692.62 13286.86 31177.86 9775.73 15591.39 15746.35 27594.70 19372.79 17188.68 10494.52 106
ZNCC-MVS85.33 6585.08 6686.06 8293.09 7365.65 14793.89 7693.41 8773.75 15779.94 10994.68 7760.61 13298.03 3882.63 9993.72 4594.52 106
MAR-MVS84.18 8683.43 8886.44 7396.25 2165.93 14294.28 5694.27 5674.41 14179.16 12095.61 4753.99 20798.88 2169.62 20193.26 5394.50 108
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HFP-MVS84.73 7484.40 7585.72 9693.75 5165.01 16493.50 9993.19 9472.19 19379.22 11994.93 6959.04 15097.67 5181.55 10692.21 6394.49 109
ETV-MVS86.01 5286.11 4985.70 9790.21 14267.02 11693.43 10491.92 14181.21 4584.13 7294.07 9960.93 12995.63 15789.28 4489.81 9494.46 110
diffmvspermissive84.28 8183.83 7985.61 9987.40 21468.02 8990.88 21089.24 25080.54 5081.64 8892.52 12859.83 14094.52 20387.32 6185.11 13694.29 111
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsm_n_192087.69 2588.50 1885.27 11187.05 22363.55 20793.69 8891.08 18484.18 1590.17 2497.04 867.58 5497.99 3995.72 590.03 9394.26 112
region2R84.36 7984.03 7885.36 10793.54 5964.31 18393.43 10492.95 10472.16 19678.86 12694.84 7356.97 17197.53 6481.38 11092.11 6694.24 113
test_fmvsmconf0.01_n83.70 9883.52 8284.25 15275.26 35861.72 24992.17 14887.24 30782.36 2884.91 6395.41 5055.60 18896.83 11292.85 1785.87 13294.21 114
MTAPA83.91 9183.38 9285.50 10191.89 10665.16 16081.75 32592.23 12775.32 13280.53 10295.21 6356.06 18497.16 8784.86 8492.55 6194.18 115
PMMVS81.98 12782.04 11481.78 21389.76 15156.17 32391.13 20390.69 19377.96 9480.09 10893.57 10946.33 27794.99 18181.41 10987.46 11594.17 116
CostFormer82.33 11981.15 12385.86 8989.01 17268.46 7582.39 32293.01 10175.59 12780.25 10681.57 28772.03 3394.96 18279.06 12877.48 20794.16 117
MVS_111021_HR86.19 4985.80 5687.37 4493.17 7069.79 4793.99 7093.76 6979.08 8078.88 12593.99 10062.25 11698.15 3685.93 7491.15 8394.15 118
PVSNet_Blended86.73 4186.86 3986.31 7993.76 4967.53 10296.33 1793.61 7682.34 2981.00 9693.08 11663.19 10597.29 7887.08 6491.38 7994.13 119
1112_ss80.56 14879.83 14882.77 18488.65 17960.78 26492.29 14488.36 28772.58 18172.46 19694.95 6765.09 7493.42 24466.38 23677.71 20194.10 120
IB-MVS77.80 482.18 12180.46 14087.35 4589.14 16970.28 3795.59 2795.17 2178.85 8370.19 22385.82 24070.66 3797.67 5172.19 18066.52 28594.09 121
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PAPM85.89 5685.46 6087.18 4888.20 19572.42 1492.41 14292.77 10982.11 3180.34 10593.07 11768.27 4795.02 17978.39 13593.59 4894.09 121
MP-MVS-pluss85.24 6685.13 6585.56 10091.42 11965.59 14991.54 18092.51 12174.56 14080.62 10095.64 4659.15 14997.00 9686.94 6693.80 4294.07 123
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft85.02 6984.97 6885.17 11592.60 8664.27 18593.24 10792.27 12673.13 16879.63 11394.43 8361.90 11897.17 8585.00 8192.56 6094.06 124
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS77.85 385.52 6385.24 6386.37 7688.80 17766.64 12492.15 14993.68 7481.07 4676.91 14793.64 10762.59 11298.44 3185.50 7592.84 5894.03 125
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPR84.37 7884.06 7785.28 11093.56 5864.37 18093.50 9993.15 9672.19 19378.85 12794.86 7256.69 17697.45 6681.55 10692.20 6494.02 126
无先验92.71 12692.61 11862.03 31797.01 9566.63 23193.97 127
XVS83.87 9283.47 8685.05 11693.22 6663.78 19492.92 11992.66 11473.99 14978.18 13194.31 9255.25 19097.41 7079.16 12691.58 7593.95 128
X-MVStestdata76.86 21474.13 23485.05 11693.22 6663.78 19492.92 11992.66 11473.99 14978.18 13110.19 40655.25 19097.41 7079.16 12691.58 7593.95 128
h-mvs3383.01 10882.56 10884.35 14889.34 15962.02 24192.72 12593.76 6981.45 3882.73 8192.25 13960.11 13697.13 8987.69 5662.96 31293.91 130
CP-MVS83.71 9783.40 9184.65 13593.14 7163.84 19294.59 5092.28 12571.03 23177.41 14094.92 7055.21 19396.19 13181.32 11190.70 8793.91 130
PVSNet73.49 880.05 15978.63 16684.31 14990.92 12964.97 16592.47 14091.05 18779.18 7672.43 19790.51 16937.05 33194.06 22268.06 21686.00 13193.90 132
GST-MVS84.63 7684.29 7685.66 9892.82 7965.27 15693.04 11593.13 9773.20 16678.89 12294.18 9659.41 14697.85 4581.45 10892.48 6293.86 133
Test_1112_low_res79.56 16778.60 16782.43 19288.24 19360.39 27592.09 15387.99 29872.10 19771.84 20387.42 21964.62 8293.04 24865.80 24377.30 20993.85 134
GeoE78.90 17977.43 18483.29 17588.95 17362.02 24192.31 14386.23 31770.24 24471.34 21189.27 18954.43 20394.04 22563.31 26280.81 17893.81 135
thisisatest051583.41 10082.49 10986.16 8189.46 15868.26 8193.54 9694.70 3674.31 14475.75 15490.92 16272.62 2896.52 12269.64 19981.50 17193.71 136
HyFIR lowres test81.03 14179.56 15285.43 10387.81 20668.11 8790.18 23290.01 22470.65 23972.95 18686.06 23863.61 9794.50 20475.01 15679.75 18593.67 137
CANet_DTU84.09 8883.52 8285.81 9190.30 14066.82 11991.87 16689.01 26485.27 1186.09 5093.74 10447.71 26796.98 10077.90 13889.78 9693.65 138
mPP-MVS82.96 11082.44 11084.52 14192.83 7762.92 22492.76 12391.85 14871.52 22175.61 15994.24 9453.48 21596.99 9978.97 12990.73 8693.64 139
tpmrst80.57 14779.14 16284.84 12390.10 14468.28 8081.70 32689.72 23677.63 10375.96 15379.54 31964.94 7792.71 26475.43 15177.28 21093.55 140
tpm279.80 16477.95 17785.34 10888.28 19068.26 8181.56 32891.42 16870.11 24577.59 13980.50 30567.40 5594.26 21367.34 22477.35 20893.51 141
SR-MVS82.81 11282.58 10783.50 17193.35 6361.16 25892.23 14791.28 17464.48 29481.27 9095.28 5653.71 21195.86 14582.87 9788.77 10393.49 142
FA-MVS(test-final)79.12 17477.23 19084.81 12790.54 13563.98 19181.35 33191.71 15471.09 23074.85 16782.94 26852.85 21997.05 9167.97 21781.73 17093.41 143
PGM-MVS83.25 10482.70 10584.92 12092.81 8164.07 18990.44 22292.20 13171.28 22577.23 14394.43 8355.17 19497.31 7779.33 12591.38 7993.37 144
新几何184.73 13092.32 9064.28 18491.46 16759.56 33579.77 11192.90 12156.95 17296.57 11963.40 26092.91 5793.34 145
HPM-MVScopyleft83.25 10482.95 9984.17 15392.25 9262.88 22690.91 20791.86 14670.30 24377.12 14493.96 10156.75 17496.28 12982.04 10391.34 8193.34 145
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TESTMET0.1,182.41 11881.98 11683.72 16488.08 19663.74 19692.70 12793.77 6879.30 7377.61 13887.57 21758.19 15794.08 22073.91 16486.68 12793.33 147
IS-MVSNet80.14 15779.41 15682.33 19687.91 20160.08 28091.97 16288.27 29172.90 17671.44 21091.73 15061.44 12393.66 23962.47 27086.53 12893.24 148
131480.70 14678.95 16385.94 8687.77 20867.56 10087.91 27792.55 12072.17 19567.44 26193.09 11550.27 24197.04 9471.68 18587.64 11393.23 149
CDS-MVSNet81.43 13380.74 13283.52 16886.26 23664.45 17492.09 15390.65 19775.83 12573.95 17889.81 18463.97 8992.91 25771.27 18682.82 15593.20 150
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+81.14 13780.01 14484.51 14290.24 14165.86 14394.12 6389.15 25673.81 15675.37 16288.26 20357.26 16494.53 20266.97 23084.92 13793.15 151
API-MVS82.28 12080.53 13887.54 4196.13 2270.59 3393.63 9291.04 18865.72 28775.45 16192.83 12556.11 18398.89 2064.10 25689.75 9793.15 151
test22289.77 15061.60 25189.55 24789.42 24456.83 34877.28 14292.43 13352.76 22091.14 8493.09 153
TAMVS80.37 15279.45 15583.13 17985.14 25763.37 21191.23 19890.76 19274.81 13972.65 19088.49 19660.63 13192.95 25269.41 20381.95 16793.08 154
fmvsm_s_conf0.5_n86.39 4586.91 3784.82 12487.36 21663.54 20894.74 4890.02 22382.52 2690.14 2596.92 1362.93 11097.84 4695.28 882.26 16093.07 155
testdata81.34 22389.02 17157.72 30789.84 22858.65 33985.32 6094.09 9757.03 16793.28 24569.34 20490.56 9093.03 156
tpm78.58 18877.03 19283.22 17785.94 24464.56 16983.21 31691.14 18078.31 9073.67 18079.68 31764.01 8892.09 28766.07 24071.26 25593.03 156
test_fmvsmvis_n_192083.80 9483.48 8584.77 12882.51 29363.72 19891.37 19083.99 33981.42 4177.68 13695.74 4458.37 15497.58 5993.38 1486.87 12093.00 158
GA-MVS78.33 19376.23 20384.65 13583.65 28166.30 13391.44 18190.14 21776.01 12370.32 22184.02 25842.50 29794.72 19070.98 18877.00 21392.94 159
BH-RMVSNet79.46 17077.65 18084.89 12191.68 11265.66 14693.55 9588.09 29672.93 17373.37 18291.12 16146.20 27996.12 13456.28 29885.61 13592.91 160
fmvsm_s_conf0.5_n_a85.75 5886.09 5084.72 13185.73 24863.58 20593.79 8489.32 24781.42 4190.21 2396.91 1462.41 11497.67 5194.48 1080.56 17992.90 161
APD-MVS_3200maxsize81.64 13181.32 12282.59 19092.36 8958.74 29891.39 18791.01 18963.35 30379.72 11294.62 7951.82 22696.14 13379.71 12187.93 11092.89 162
fmvsm_s_conf0.1_n85.61 6285.93 5384.68 13482.95 29163.48 21094.03 6989.46 24181.69 3589.86 2696.74 2061.85 12097.75 4994.74 982.01 16692.81 163
DP-MVS Recon82.73 11381.65 11985.98 8497.31 467.06 11395.15 3791.99 13869.08 26076.50 15193.89 10254.48 20298.20 3570.76 19185.66 13492.69 164
UGNet79.87 16378.68 16583.45 17389.96 14661.51 25292.13 15090.79 19176.83 11378.85 12786.33 23438.16 31796.17 13267.93 21987.17 11892.67 165
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EPP-MVSNet81.79 12981.52 12082.61 18988.77 17860.21 27893.02 11793.66 7568.52 26672.90 18790.39 17272.19 3294.96 18274.93 15779.29 19092.67 165
PVSNet_Blended_VisFu83.97 9083.50 8485.39 10590.02 14566.59 12793.77 8591.73 15277.43 10777.08 14689.81 18463.77 9396.97 10279.67 12288.21 10792.60 167
MDTV_nov1_ep13_2view59.90 28280.13 34267.65 27272.79 18854.33 20559.83 28492.58 168
QAPM79.95 16277.39 18887.64 3489.63 15371.41 2193.30 10693.70 7365.34 29067.39 26491.75 14947.83 26598.96 1657.71 29389.81 9492.54 169
fmvsm_s_conf0.1_n_a84.76 7384.84 7184.53 14080.23 31763.50 20992.79 12288.73 27680.46 5289.84 2796.65 2260.96 12897.57 6193.80 1380.14 18192.53 170
dp75.01 24572.09 26183.76 16089.28 16366.22 13679.96 34689.75 23171.16 22767.80 25877.19 33551.81 22792.54 27350.39 31671.44 25492.51 171
EPNet_dtu78.80 18279.26 16077.43 29588.06 19749.71 35591.96 16391.95 14077.67 10076.56 15091.28 15958.51 15390.20 31756.37 29780.95 17592.39 172
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2024052976.84 21774.15 23384.88 12291.02 12664.95 16693.84 8191.09 18253.57 35773.00 18487.42 21935.91 33597.32 7669.14 20872.41 24792.36 173
Vis-MVSNet (Re-imp)79.24 17279.57 15178.24 28788.46 18352.29 34290.41 22489.12 25874.24 14569.13 23391.91 14665.77 6890.09 31959.00 28988.09 10892.33 174
原ACMM184.42 14493.21 6864.27 18593.40 8865.39 28879.51 11492.50 12958.11 15896.69 11565.27 25093.96 3992.32 175
TR-MVS78.77 18477.37 18982.95 18190.49 13660.88 26293.67 8990.07 21970.08 24674.51 17091.37 15845.69 28295.70 15660.12 28380.32 18092.29 176
SR-MVS-dyc-post81.06 14080.70 13382.15 20492.02 9858.56 30090.90 20890.45 20062.76 31078.89 12294.46 8151.26 23495.61 15978.77 13286.77 12492.28 177
RE-MVS-def80.48 13992.02 9858.56 30090.90 20890.45 20062.76 31078.89 12294.46 8149.30 25078.77 13286.77 12492.28 177
LCM-MVSNet-Re72.93 26571.84 26476.18 30988.49 18148.02 36280.07 34370.17 37973.96 15252.25 35280.09 31349.98 24388.24 33167.35 22384.23 14792.28 177
EC-MVSNet84.53 7785.04 6783.01 18089.34 15961.37 25594.42 5291.09 18277.91 9683.24 7694.20 9558.37 15495.40 16885.35 7691.41 7892.27 180
MVS_111021_LR82.02 12681.52 12083.51 17088.42 18562.88 22689.77 24488.93 26876.78 11475.55 16093.10 11450.31 24095.38 17083.82 9387.02 11992.26 181
FE-MVS75.97 23173.02 24784.82 12489.78 14965.56 15077.44 35691.07 18564.55 29372.66 18979.85 31546.05 28196.69 11554.97 30280.82 17792.21 182
BH-w/o80.49 15079.30 15984.05 15690.83 13264.36 18293.60 9389.42 24474.35 14369.09 23490.15 17955.23 19295.61 15964.61 25386.43 13092.17 183
test_vis1_n_192081.66 13082.01 11580.64 24082.24 29655.09 33194.76 4786.87 31081.67 3684.40 6894.63 7838.17 31694.67 19491.98 2883.34 15192.16 184
UWE-MVS80.81 14581.01 12980.20 25089.33 16157.05 31791.91 16494.71 3575.67 12675.01 16589.37 18863.13 10791.44 30467.19 22782.80 15792.12 185
CVMVSNet74.04 25474.27 23173.33 32885.33 25243.94 37889.53 24988.39 28654.33 35670.37 22090.13 18049.17 25384.05 35861.83 27479.36 18891.99 186
tpm cat175.30 24172.21 26084.58 13988.52 18067.77 9478.16 35488.02 29761.88 32068.45 24876.37 34260.65 13094.03 22753.77 30874.11 23191.93 187
ACMMPcopyleft81.49 13280.67 13483.93 15891.71 11162.90 22592.13 15092.22 13071.79 20871.68 20793.49 11150.32 23996.96 10378.47 13484.22 14891.93 187
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test-LLR80.10 15879.56 15281.72 21586.93 22761.17 25692.70 12791.54 16271.51 22275.62 15786.94 22653.83 20892.38 27872.21 17884.76 14091.60 189
test-mter79.96 16179.38 15881.72 21586.93 22761.17 25692.70 12791.54 16273.85 15475.62 15786.94 22649.84 24692.38 27872.21 17884.76 14091.60 189
thisisatest053081.15 13680.07 14284.39 14688.26 19165.63 14891.40 18594.62 4071.27 22670.93 21389.18 19072.47 2996.04 14065.62 24576.89 21491.49 191
AUN-MVS78.37 19177.43 18481.17 22686.60 23057.45 31389.46 25191.16 17774.11 14774.40 17190.49 17055.52 18994.57 19874.73 16160.43 33891.48 192
MIMVSNet71.64 27768.44 29081.23 22581.97 30064.44 17573.05 36688.80 27369.67 25164.59 28474.79 35032.79 34587.82 33553.99 30676.35 21791.42 193
hse-mvs281.12 13981.11 12781.16 22786.52 23157.48 31289.40 25291.16 17781.45 3882.73 8190.49 17060.11 13694.58 19687.69 5660.41 33991.41 194
xiu_mvs_v1_base_debu82.16 12281.12 12485.26 11286.42 23268.72 7092.59 13690.44 20373.12 16984.20 6994.36 8538.04 31995.73 15184.12 8986.81 12191.33 195
xiu_mvs_v1_base82.16 12281.12 12485.26 11286.42 23268.72 7092.59 13690.44 20373.12 16984.20 6994.36 8538.04 31995.73 15184.12 8986.81 12191.33 195
xiu_mvs_v1_base_debi82.16 12281.12 12485.26 11286.42 23268.72 7092.59 13690.44 20373.12 16984.20 6994.36 8538.04 31995.73 15184.12 8986.81 12191.33 195
BH-untuned78.68 18577.08 19183.48 17289.84 14863.74 19692.70 12788.59 28271.57 21966.83 27188.65 19551.75 22895.39 16959.03 28884.77 13991.32 198
HPM-MVS_fast80.25 15579.55 15482.33 19691.55 11659.95 28191.32 19489.16 25565.23 29174.71 16893.07 11747.81 26695.74 15074.87 16088.23 10691.31 199
baseline181.84 12881.03 12884.28 15191.60 11366.62 12591.08 20491.66 15981.87 3374.86 16691.67 15169.98 4194.92 18571.76 18364.75 30091.29 200
test_cas_vis1_n_192080.45 15180.61 13679.97 25978.25 34357.01 31994.04 6888.33 28879.06 8182.81 8093.70 10538.65 31191.63 29690.82 3779.81 18391.27 201
baseline283.68 9983.42 9084.48 14387.37 21566.00 13990.06 23595.93 879.71 6669.08 23590.39 17277.92 696.28 12978.91 13081.38 17291.16 202
TAPA-MVS70.22 1274.94 24673.53 24279.17 27590.40 13852.07 34389.19 25789.61 23862.69 31270.07 22492.67 12748.89 25794.32 20738.26 36879.97 18291.12 203
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
AdaColmapbinary78.94 17877.00 19484.76 12996.34 1765.86 14392.66 13187.97 30062.18 31570.56 21692.37 13543.53 29397.35 7464.50 25482.86 15491.05 204
OMC-MVS78.67 18777.91 17880.95 23685.76 24757.40 31488.49 26888.67 27973.85 15472.43 19792.10 14149.29 25194.55 20172.73 17277.89 20090.91 205
EI-MVSNet-Vis-set83.77 9583.67 8184.06 15592.79 8263.56 20691.76 17394.81 3179.65 6777.87 13494.09 9763.35 10397.90 4279.35 12479.36 18890.74 206
cascas78.18 19475.77 21085.41 10487.14 22069.11 6092.96 11891.15 17966.71 27970.47 21786.07 23737.49 32596.48 12570.15 19679.80 18490.65 207
CR-MVSNet73.79 25870.82 27382.70 18683.15 28667.96 9070.25 37084.00 33773.67 16169.97 22772.41 35657.82 16089.48 32352.99 31173.13 23890.64 208
RPMNet70.42 28565.68 30484.63 13783.15 28667.96 9070.25 37090.45 20046.83 37669.97 22765.10 37556.48 18095.30 17435.79 37373.13 23890.64 208
test_fmvs174.07 25373.69 24075.22 31378.91 33547.34 36789.06 26174.69 36963.68 30079.41 11691.59 15324.36 37087.77 33785.22 7776.26 21890.55 210
PCF-MVS73.15 979.29 17177.63 18184.29 15086.06 24065.96 14187.03 28891.10 18169.86 24969.79 23090.64 16557.54 16396.59 11764.37 25582.29 15990.32 211
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_068.08 1571.81 27668.32 29282.27 19884.68 26362.31 23788.68 26590.31 20975.84 12457.93 33380.65 30437.85 32294.19 21569.94 19829.05 39690.31 212
tttt051779.50 16878.53 16882.41 19587.22 21861.43 25489.75 24594.76 3269.29 25567.91 25488.06 21072.92 2595.63 15762.91 26673.90 23590.16 213
CPTT-MVS79.59 16679.16 16180.89 23891.54 11759.80 28392.10 15288.54 28460.42 32872.96 18593.28 11348.27 25992.80 26178.89 13186.50 12990.06 214
EI-MVSNet-UG-set83.14 10682.96 9883.67 16692.28 9163.19 21691.38 18994.68 3779.22 7576.60 14993.75 10362.64 11197.76 4878.07 13778.01 19990.05 215
test_fmvs1_n72.69 27271.92 26374.99 31671.15 37147.08 36987.34 28675.67 36463.48 30278.08 13391.17 16020.16 38187.87 33484.65 8575.57 22290.01 216
test_vis1_n71.63 27870.73 27474.31 32369.63 37747.29 36886.91 29072.11 37463.21 30675.18 16390.17 17820.40 37985.76 34984.59 8674.42 22989.87 217
dmvs_re76.93 21375.36 21681.61 21787.78 20760.71 26980.00 34487.99 29879.42 7069.02 23789.47 18746.77 27094.32 20763.38 26174.45 22889.81 218
XVG-OURS-SEG-HR74.70 24873.08 24679.57 26978.25 34357.33 31580.49 33687.32 30463.22 30568.76 24390.12 18244.89 28991.59 29770.55 19474.09 23289.79 219
114514_t79.17 17377.67 17983.68 16595.32 2965.53 15292.85 12191.60 16163.49 30167.92 25390.63 16746.65 27295.72 15567.01 22983.54 14989.79 219
UA-Net80.02 16079.65 15081.11 22989.33 16157.72 30786.33 29589.00 26777.44 10681.01 9589.15 19159.33 14795.90 14461.01 27784.28 14689.73 221
XVG-OURS74.25 25272.46 25879.63 26778.45 34157.59 31180.33 33887.39 30363.86 29868.76 24389.62 18640.50 30491.72 29469.00 20974.25 23089.58 222
UniMVSNet_ETH3D72.74 26970.53 27679.36 27278.62 34056.64 32185.01 30089.20 25263.77 29964.84 28384.44 25534.05 34291.86 29163.94 25770.89 25789.57 223
thres20079.66 16578.33 16983.66 16792.54 8865.82 14593.06 11396.31 374.90 13873.30 18388.66 19459.67 14295.61 15947.84 33178.67 19589.56 224
SDMVSNet80.26 15478.88 16484.40 14589.25 16467.63 9985.35 29893.02 10076.77 11570.84 21487.12 22447.95 26496.09 13585.04 8074.55 22589.48 225
sd_testset77.08 21275.37 21582.20 20289.25 16462.11 24082.06 32389.09 26076.77 11570.84 21487.12 22441.43 30195.01 18067.23 22674.55 22589.48 225
OpenMVScopyleft70.45 1178.54 18975.92 20886.41 7585.93 24571.68 1992.74 12492.51 12166.49 28164.56 28691.96 14343.88 29298.10 3754.61 30390.65 8889.44 227
CHOSEN 280x42077.35 20776.95 19578.55 28287.07 22262.68 23069.71 37382.95 34668.80 26271.48 20987.27 22366.03 6584.00 36076.47 14582.81 15688.95 228
thres100view90078.37 19177.01 19382.46 19191.89 10663.21 21591.19 20296.33 172.28 19170.45 21987.89 21260.31 13395.32 17145.16 34277.58 20488.83 229
tfpn200view978.79 18377.43 18482.88 18292.21 9464.49 17192.05 15696.28 473.48 16371.75 20588.26 20360.07 13895.32 17145.16 34277.58 20488.83 229
nrg03080.93 14279.86 14784.13 15483.69 28068.83 6793.23 10891.20 17575.55 12875.06 16488.22 20663.04 10994.74 18981.88 10466.88 28288.82 231
PatchT69.11 29665.37 30880.32 24482.07 29963.68 20267.96 37987.62 30250.86 36569.37 23165.18 37457.09 16688.53 32941.59 35766.60 28488.74 232
HQP4-MVS74.18 17295.61 15988.63 233
HQP-MVS81.14 13780.64 13582.64 18887.54 21063.66 20394.06 6491.70 15779.80 6374.18 17290.30 17451.63 23095.61 15977.63 13978.90 19288.63 233
tt080573.07 26270.73 27480.07 25378.37 34257.05 31787.78 27992.18 13361.23 32467.04 26786.49 23131.35 35594.58 19665.06 25167.12 28088.57 235
VPNet78.82 18177.53 18382.70 18684.52 26766.44 12993.93 7392.23 12780.46 5272.60 19188.38 20049.18 25293.13 24772.47 17663.97 30988.55 236
Effi-MVS+-dtu76.14 22475.28 21878.72 28183.22 28555.17 33089.87 24187.78 30175.42 13067.98 25181.43 28945.08 28892.52 27475.08 15571.63 25088.48 237
iter_conf0583.27 10382.70 10584.98 11993.32 6471.84 1894.16 5981.76 34982.74 2373.83 17988.40 19972.77 2794.61 19582.10 10275.21 22388.48 237
CNLPA74.31 25172.30 25980.32 24491.49 11861.66 25090.85 21180.72 35356.67 34963.85 29490.64 16546.75 27190.84 30753.79 30775.99 22088.47 239
HQP_MVS80.34 15379.75 14982.12 20686.94 22562.42 23293.13 11191.31 17178.81 8572.53 19389.14 19250.66 23795.55 16476.74 14278.53 19788.39 240
plane_prior591.31 17195.55 16476.74 14278.53 19788.39 240
VPA-MVSNet79.03 17578.00 17582.11 20985.95 24264.48 17393.22 10994.66 3875.05 13674.04 17784.95 24752.17 22593.52 24174.90 15967.04 28188.32 242
CLD-MVS82.73 11382.35 11283.86 15987.90 20267.65 9895.45 2992.18 13385.06 1272.58 19292.27 13752.46 22395.78 14784.18 8879.06 19188.16 243
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XXY-MVS77.94 19976.44 20082.43 19282.60 29264.44 17592.01 15891.83 14973.59 16270.00 22685.82 24054.43 20394.76 18769.63 20068.02 27588.10 244
FIs79.47 16979.41 15679.67 26685.95 24259.40 28891.68 17793.94 6378.06 9368.96 23988.28 20166.61 6191.77 29366.20 23974.99 22487.82 245
Fast-Effi-MVS+-dtu75.04 24473.37 24480.07 25380.86 30659.52 28791.20 20185.38 32471.90 20165.20 27984.84 24941.46 30092.97 25166.50 23572.96 24087.73 246
UniMVSNet_NR-MVSNet78.15 19577.55 18279.98 25784.46 26960.26 27692.25 14593.20 9377.50 10568.88 24086.61 22966.10 6492.13 28566.38 23662.55 31687.54 247
MVSTER82.47 11782.05 11383.74 16192.68 8469.01 6391.90 16593.21 9179.83 6272.14 20085.71 24274.72 1694.72 19075.72 14972.49 24587.50 248
thres600view778.00 19676.66 19882.03 21191.93 10363.69 20191.30 19596.33 172.43 18670.46 21887.89 21260.31 13394.92 18542.64 35476.64 21587.48 249
thres40078.68 18577.43 18482.43 19292.21 9464.49 17192.05 15696.28 473.48 16371.75 20588.26 20360.07 13895.32 17145.16 34277.58 20487.48 249
TranMVSNet+NR-MVSNet75.86 23374.52 22779.89 26182.44 29460.64 27291.37 19091.37 16976.63 11767.65 25986.21 23652.37 22491.55 29861.84 27360.81 33487.48 249
FC-MVSNet-test77.99 19778.08 17477.70 29084.89 26255.51 32890.27 22993.75 7276.87 11066.80 27287.59 21665.71 6990.23 31662.89 26773.94 23387.37 252
mvsmamba76.85 21675.71 21280.25 24883.07 28859.16 29391.44 18180.64 35476.84 11267.95 25286.33 23446.17 28094.24 21476.06 14772.92 24187.36 253
DU-MVS76.86 21475.84 20979.91 26082.96 28960.26 27691.26 19691.54 16276.46 12068.88 24086.35 23256.16 18192.13 28566.38 23662.55 31687.35 254
NR-MVSNet76.05 22874.59 22480.44 24282.96 28962.18 23990.83 21291.73 15277.12 10960.96 31386.35 23259.28 14891.80 29260.74 27861.34 33187.35 254
FMVSNet377.73 20276.04 20682.80 18391.20 12568.99 6491.87 16691.99 13873.35 16567.04 26783.19 26756.62 17792.14 28459.80 28569.34 26287.28 256
PS-MVSNAJss77.26 20876.31 20280.13 25280.64 31159.16 29390.63 22191.06 18672.80 17768.58 24684.57 25353.55 21293.96 23072.97 16771.96 24987.27 257
mvsany_test168.77 29968.56 28869.39 34973.57 36445.88 37480.93 33460.88 39259.65 33471.56 20890.26 17643.22 29575.05 38274.26 16362.70 31587.25 258
FMVSNet276.07 22574.01 23682.26 20088.85 17467.66 9791.33 19391.61 16070.84 23465.98 27482.25 27648.03 26092.00 28958.46 29068.73 27087.10 259
ADS-MVSNet266.90 31463.44 32177.26 29988.06 19760.70 27068.01 37775.56 36657.57 34164.48 28769.87 36638.68 30984.10 35740.87 35967.89 27686.97 260
ADS-MVSNet68.54 30264.38 31781.03 23488.06 19766.90 11868.01 37784.02 33657.57 34164.48 28769.87 36638.68 30989.21 32540.87 35967.89 27686.97 260
WR-MVS76.76 21975.74 21179.82 26384.60 26562.27 23892.60 13492.51 12176.06 12267.87 25785.34 24356.76 17390.24 31562.20 27163.69 31186.94 262
DSMNet-mixed56.78 34754.44 35063.79 36263.21 38629.44 40164.43 38364.10 38842.12 38651.32 35671.60 36131.76 35275.04 38336.23 37065.20 29586.87 263
UniMVSNet (Re)77.58 20476.78 19679.98 25784.11 27560.80 26391.76 17393.17 9576.56 11969.93 22984.78 25063.32 10492.36 28064.89 25262.51 31886.78 264
GBi-Net75.65 23673.83 23881.10 23088.85 17465.11 16190.01 23790.32 20670.84 23467.04 26780.25 31048.03 26091.54 29959.80 28569.34 26286.64 265
test175.65 23673.83 23881.10 23088.85 17465.11 16190.01 23790.32 20670.84 23467.04 26780.25 31048.03 26091.54 29959.80 28569.34 26286.64 265
FMVSNet172.71 27069.91 28181.10 23083.60 28265.11 16190.01 23790.32 20663.92 29763.56 29680.25 31036.35 33491.54 29954.46 30466.75 28386.64 265
v2v48277.42 20675.65 21382.73 18580.38 31367.13 11291.85 16890.23 21475.09 13569.37 23183.39 26553.79 21094.44 20571.77 18265.00 29786.63 268
miper_enhance_ethall78.86 18077.97 17681.54 21988.00 20065.17 15991.41 18389.15 25675.19 13468.79 24283.98 25967.17 5692.82 25972.73 17265.30 29186.62 269
cl2277.94 19976.78 19681.42 22187.57 20964.93 16790.67 21788.86 27172.45 18567.63 26082.68 27264.07 8792.91 25771.79 18165.30 29186.44 270
PLCcopyleft68.80 1475.23 24273.68 24179.86 26292.93 7558.68 29990.64 21988.30 28960.90 32564.43 29090.53 16842.38 29894.57 19856.52 29676.54 21686.33 271
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EI-MVSNet78.97 17778.22 17281.25 22485.33 25262.73 22989.53 24993.21 9172.39 18872.14 20090.13 18060.99 12694.72 19067.73 22172.49 24586.29 272
IterMVS-LS76.49 22175.18 21980.43 24384.49 26862.74 22890.64 21988.80 27372.40 18765.16 28081.72 28360.98 12792.27 28367.74 22064.65 30286.29 272
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_ehance_all_eth77.60 20376.44 20081.09 23385.70 24964.41 17890.65 21888.64 28172.31 18967.37 26582.52 27364.77 8192.64 27170.67 19265.30 29186.24 274
RRT_MVS74.44 24972.97 24978.84 28082.36 29557.66 30989.83 24388.79 27570.61 24064.58 28584.89 24839.24 30792.65 27070.11 19766.34 28686.21 275
OPM-MVS79.00 17678.09 17381.73 21483.52 28363.83 19391.64 17990.30 21076.36 12171.97 20289.93 18346.30 27895.17 17775.10 15477.70 20286.19 276
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DIV-MVS_self_test76.07 22574.67 22180.28 24685.14 25761.75 24890.12 23388.73 27671.16 22765.42 27881.60 28661.15 12492.94 25666.54 23362.16 32286.14 277
eth_miper_zixun_eth75.96 23274.40 22980.66 23984.66 26463.02 21989.28 25488.27 29171.88 20365.73 27581.65 28459.45 14492.81 26068.13 21560.53 33686.14 277
cl____76.07 22574.67 22180.28 24685.15 25661.76 24790.12 23388.73 27671.16 22765.43 27781.57 28761.15 12492.95 25266.54 23362.17 32086.13 279
PatchMatch-RL72.06 27569.98 27878.28 28589.51 15755.70 32783.49 30983.39 34461.24 32363.72 29582.76 27034.77 33993.03 24953.37 31077.59 20386.12 280
c3_l76.83 21875.47 21480.93 23785.02 26064.18 18890.39 22588.11 29571.66 21266.65 27381.64 28563.58 10092.56 27269.31 20562.86 31386.04 281
RPSCF64.24 32861.98 33071.01 34576.10 35645.00 37575.83 36275.94 36346.94 37558.96 32584.59 25231.40 35482.00 37447.76 33260.33 34086.04 281
Anonymous2023121173.08 26170.39 27781.13 22890.62 13463.33 21291.40 18590.06 22151.84 36264.46 28980.67 30336.49 33394.07 22163.83 25864.17 30585.98 283
v119275.98 23073.92 23782.15 20479.73 32166.24 13591.22 19989.75 23172.67 17968.49 24781.42 29049.86 24594.27 21167.08 22865.02 29685.95 284
JIA-IIPM66.06 31862.45 32776.88 30481.42 30454.45 33557.49 39288.67 27949.36 36963.86 29346.86 39056.06 18490.25 31249.53 32168.83 26885.95 284
v192192075.63 23873.49 24382.06 21079.38 32666.35 13191.07 20689.48 24071.98 19867.99 25081.22 29549.16 25493.90 23366.56 23264.56 30385.92 286
v114476.73 22074.88 22082.27 19880.23 31766.60 12691.68 17790.21 21673.69 15969.06 23681.89 28052.73 22194.40 20669.21 20665.23 29485.80 287
v14419276.05 22874.03 23582.12 20679.50 32566.55 12891.39 18789.71 23772.30 19068.17 24981.33 29251.75 22894.03 22767.94 21864.19 30485.77 288
v124075.21 24372.98 24881.88 21279.20 32866.00 13990.75 21589.11 25971.63 21767.41 26381.22 29547.36 26893.87 23465.46 24864.72 30185.77 288
v14876.19 22374.47 22881.36 22280.05 31964.44 17591.75 17590.23 21473.68 16067.13 26680.84 30055.92 18693.86 23668.95 21061.73 32785.76 290
test0.0.03 172.76 26872.71 25472.88 33280.25 31647.99 36391.22 19989.45 24271.51 22262.51 30887.66 21553.83 20885.06 35450.16 31867.84 27885.58 291
test_djsdf73.76 25972.56 25677.39 29677.00 35253.93 33689.07 25990.69 19365.80 28563.92 29282.03 27943.14 29692.67 26772.83 16968.53 27185.57 292
dmvs_testset65.55 32266.45 29862.86 36379.87 32022.35 40676.55 35871.74 37677.42 10855.85 33987.77 21451.39 23280.69 37831.51 38865.92 28985.55 293
ACMM69.62 1374.34 25072.73 25379.17 27584.25 27457.87 30590.36 22689.93 22563.17 30765.64 27686.04 23937.79 32394.10 21865.89 24171.52 25285.55 293
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs573.35 26071.52 26778.86 27978.64 33960.61 27391.08 20486.90 30967.69 27063.32 29883.64 26144.33 29190.53 30962.04 27266.02 28885.46 295
jajsoiax73.05 26371.51 26877.67 29177.46 34954.83 33288.81 26390.04 22269.13 25962.85 30583.51 26331.16 35692.75 26370.83 18969.80 25885.43 296
ACMP71.68 1075.58 23974.23 23279.62 26884.97 26159.64 28490.80 21389.07 26270.39 24262.95 30387.30 22138.28 31593.87 23472.89 16871.45 25385.36 297
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
mvs_tets72.71 27071.11 26977.52 29277.41 35054.52 33488.45 26989.76 23068.76 26462.70 30683.26 26629.49 36092.71 26470.51 19569.62 26085.34 298
tpmvs72.88 26769.76 28382.22 20190.98 12767.05 11478.22 35388.30 28963.10 30864.35 29174.98 34955.09 19594.27 21143.25 34869.57 26185.34 298
miper_lstm_enhance73.05 26371.73 26677.03 30083.80 27858.32 30281.76 32488.88 26969.80 25061.01 31278.23 32657.19 16587.51 34165.34 24959.53 34185.27 300
LPG-MVS_test75.82 23474.58 22579.56 27084.31 27259.37 28990.44 22289.73 23469.49 25264.86 28188.42 19738.65 31194.30 20972.56 17472.76 24285.01 301
LGP-MVS_train79.56 27084.31 27259.37 28989.73 23469.49 25264.86 28188.42 19738.65 31194.30 20972.56 17472.76 24285.01 301
PVSNet_BlendedMVS83.38 10183.43 8883.22 17793.76 4967.53 10294.06 6493.61 7679.13 7881.00 9685.14 24563.19 10597.29 7887.08 6473.91 23484.83 303
V4276.46 22274.55 22682.19 20379.14 33167.82 9390.26 23089.42 24473.75 15768.63 24581.89 28051.31 23394.09 21971.69 18464.84 29884.66 304
IterMVS72.65 27370.83 27178.09 28882.17 29762.96 22187.64 28286.28 31571.56 22060.44 31578.85 32245.42 28586.66 34563.30 26361.83 32484.65 305
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT71.55 27969.97 27976.32 30781.48 30260.67 27187.64 28285.99 32066.17 28359.50 32078.88 32145.53 28383.65 36262.58 26961.93 32384.63 306
pm-mvs172.89 26671.09 27078.26 28679.10 33257.62 31090.80 21389.30 24867.66 27162.91 30481.78 28249.11 25592.95 25260.29 28258.89 34484.22 307
pmmvs473.92 25671.81 26580.25 24879.17 32965.24 15787.43 28487.26 30667.64 27363.46 29783.91 26048.96 25691.53 30262.94 26565.49 29083.96 308
v875.35 24073.26 24581.61 21780.67 31066.82 11989.54 24889.27 24971.65 21363.30 29980.30 30954.99 19694.06 22267.33 22562.33 31983.94 309
UnsupCasMVSNet_eth65.79 32063.10 32273.88 32470.71 37350.29 35381.09 33289.88 22772.58 18149.25 36574.77 35132.57 34887.43 34255.96 29941.04 38183.90 310
WB-MVSnew77.14 21076.18 20580.01 25686.18 23863.24 21491.26 19694.11 6071.72 21173.52 18187.29 22245.14 28793.00 25056.98 29579.42 18683.80 311
v1074.77 24772.54 25781.46 22080.33 31566.71 12389.15 25889.08 26170.94 23263.08 30279.86 31452.52 22294.04 22565.70 24462.17 32083.64 312
F-COLMAP70.66 28268.44 29077.32 29786.37 23555.91 32588.00 27586.32 31456.94 34757.28 33688.07 20933.58 34392.49 27551.02 31468.37 27283.55 313
lessismore_v073.72 32672.93 36747.83 36461.72 39145.86 37373.76 35228.63 36489.81 32047.75 33331.37 39383.53 314
v7n71.31 28068.65 28779.28 27376.40 35460.77 26586.71 29389.45 24264.17 29658.77 32778.24 32544.59 29093.54 24057.76 29261.75 32683.52 315
Anonymous2023120667.53 31165.78 30272.79 33374.95 35947.59 36588.23 27187.32 30461.75 32258.07 33077.29 33337.79 32387.29 34342.91 35063.71 31083.48 316
CP-MVSNet70.50 28469.91 28172.26 33780.71 30951.00 34987.23 28790.30 21067.84 26959.64 31982.69 27150.23 24282.30 37251.28 31359.28 34283.46 317
K. test v363.09 33359.61 33773.53 32776.26 35549.38 35983.27 31377.15 36164.35 29547.77 36972.32 35828.73 36287.79 33649.93 32036.69 38783.41 318
PS-CasMVS69.86 29169.13 28672.07 34180.35 31450.57 35187.02 28989.75 23167.27 27559.19 32382.28 27546.58 27382.24 37350.69 31559.02 34383.39 319
PEN-MVS69.46 29468.56 28872.17 33979.27 32749.71 35586.90 29189.24 25067.24 27859.08 32482.51 27447.23 26983.54 36348.42 32657.12 34783.25 320
anonymousdsp71.14 28169.37 28576.45 30672.95 36654.71 33384.19 30488.88 26961.92 31962.15 30979.77 31638.14 31891.44 30468.90 21167.45 27983.21 321
XVG-ACMP-BASELINE68.04 30665.53 30675.56 31174.06 36352.37 34178.43 35085.88 32162.03 31758.91 32681.21 29720.38 38091.15 30660.69 27968.18 27383.16 322
MSDG69.54 29365.73 30380.96 23585.11 25963.71 19984.19 30483.28 34556.95 34654.50 34384.03 25731.50 35396.03 14142.87 35269.13 26783.14 323
test_fmvs265.78 32164.84 30968.60 35366.54 38241.71 38283.27 31369.81 38054.38 35567.91 25484.54 25415.35 38681.22 37775.65 15066.16 28782.88 324
SixPastTwentyTwo64.92 32461.78 33174.34 32278.74 33749.76 35483.42 31279.51 35862.86 30950.27 36077.35 33130.92 35890.49 31045.89 34047.06 37182.78 325
testgi64.48 32762.87 32569.31 35071.24 36940.62 38585.49 29779.92 35665.36 28954.18 34583.49 26423.74 37384.55 35541.60 35660.79 33582.77 326
DTE-MVSNet68.46 30367.33 29671.87 34377.94 34749.00 36086.16 29688.58 28366.36 28258.19 32882.21 27746.36 27483.87 36144.97 34555.17 35482.73 327
WR-MVS_H70.59 28369.94 28072.53 33481.03 30551.43 34687.35 28592.03 13767.38 27460.23 31780.70 30155.84 18783.45 36446.33 33858.58 34682.72 328
ppachtmachnet_test67.72 30863.70 31979.77 26578.92 33366.04 13888.68 26582.90 34760.11 33255.45 34075.96 34539.19 30890.55 30839.53 36352.55 36282.71 329
CL-MVSNet_self_test69.92 28968.09 29375.41 31273.25 36555.90 32690.05 23689.90 22669.96 24761.96 31176.54 33951.05 23587.64 33849.51 32250.59 36682.70 330
LS3D69.17 29566.40 29977.50 29391.92 10456.12 32485.12 29980.37 35546.96 37456.50 33887.51 21837.25 32693.71 23732.52 38479.40 18782.68 331
our_test_368.29 30464.69 31279.11 27878.92 33364.85 16888.40 27085.06 32760.32 33052.68 35076.12 34440.81 30389.80 32244.25 34755.65 35282.67 332
FMVSNet568.04 30665.66 30575.18 31584.43 27057.89 30483.54 30886.26 31661.83 32153.64 34873.30 35337.15 32985.08 35348.99 32361.77 32582.56 333
KD-MVS_2432*160069.03 29766.37 30077.01 30185.56 25061.06 25981.44 32990.25 21267.27 27558.00 33176.53 34054.49 20087.63 33948.04 32835.77 38882.34 334
miper_refine_blended69.03 29766.37 30077.01 30185.56 25061.06 25981.44 32990.25 21267.27 27558.00 33176.53 34054.49 20087.63 33948.04 32835.77 38882.34 334
pmmvs667.57 31064.76 31176.00 31072.82 36853.37 33888.71 26486.78 31353.19 35857.58 33578.03 32835.33 33892.41 27755.56 30054.88 35682.21 336
EU-MVSNet64.01 32963.01 32367.02 35974.40 36238.86 39083.27 31386.19 31845.11 37954.27 34481.15 29836.91 33280.01 38048.79 32557.02 34882.19 337
ACMH63.93 1768.62 30064.81 31080.03 25585.22 25563.25 21387.72 28084.66 33160.83 32651.57 35579.43 32027.29 36694.96 18241.76 35564.84 29881.88 338
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
D2MVS73.80 25772.02 26279.15 27779.15 33062.97 22088.58 26790.07 21972.94 17259.22 32278.30 32442.31 29992.70 26665.59 24672.00 24881.79 339
DP-MVS69.90 29066.48 29780.14 25195.36 2862.93 22289.56 24676.11 36250.27 36757.69 33485.23 24439.68 30695.73 15133.35 37871.05 25681.78 340
Patchmtry67.53 31163.93 31878.34 28382.12 29864.38 17968.72 37484.00 33748.23 37359.24 32172.41 35657.82 16089.27 32446.10 33956.68 35181.36 341
Syy-MVS69.65 29269.52 28470.03 34787.87 20343.21 38088.07 27389.01 26472.91 17463.11 30088.10 20745.28 28685.54 35022.07 39369.23 26581.32 342
myMVS_eth3d72.58 27472.74 25272.10 34087.87 20349.45 35788.07 27389.01 26472.91 17463.11 30088.10 20763.63 9585.54 35032.73 38269.23 26581.32 342
Baseline_NR-MVSNet73.99 25572.83 25077.48 29480.78 30859.29 29291.79 17084.55 33268.85 26168.99 23880.70 30156.16 18192.04 28862.67 26860.98 33381.11 344
CMPMVSbinary48.56 2166.77 31564.41 31673.84 32570.65 37450.31 35277.79 35585.73 32345.54 37844.76 37782.14 27835.40 33790.14 31863.18 26474.54 22781.07 345
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TransMVSNet (Re)70.07 28867.66 29477.31 29880.62 31259.13 29591.78 17284.94 32965.97 28460.08 31880.44 30650.78 23691.87 29048.84 32445.46 37480.94 346
ACMH+65.35 1667.65 30964.55 31376.96 30384.59 26657.10 31688.08 27280.79 35258.59 34053.00 34981.09 29926.63 36892.95 25246.51 33661.69 32980.82 347
USDC67.43 31364.51 31476.19 30877.94 34755.29 32978.38 35185.00 32873.17 16748.36 36780.37 30721.23 37792.48 27652.15 31264.02 30880.81 348
OurMVSNet-221017-064.68 32562.17 32972.21 33876.08 35747.35 36680.67 33581.02 35156.19 35051.60 35479.66 31827.05 36788.56 32853.60 30953.63 35980.71 349
MS-PatchMatch77.90 20176.50 19982.12 20685.99 24169.95 4291.75 17592.70 11173.97 15162.58 30784.44 25541.11 30295.78 14763.76 25992.17 6580.62 350
tfpnnormal70.10 28767.36 29578.32 28483.45 28460.97 26188.85 26292.77 10964.85 29260.83 31478.53 32343.52 29493.48 24231.73 38561.70 32880.52 351
MIMVSNet160.16 34257.33 34368.67 35269.71 37644.13 37778.92 34884.21 33355.05 35444.63 37871.85 36023.91 37281.54 37632.63 38355.03 35580.35 352
YYNet163.76 33260.14 33574.62 31978.06 34660.19 27983.46 31183.99 33956.18 35139.25 38571.56 36337.18 32883.34 36542.90 35148.70 36980.32 353
MDA-MVSNet_test_wron63.78 33160.16 33474.64 31878.15 34560.41 27483.49 30984.03 33556.17 35239.17 38671.59 36237.22 32783.24 36742.87 35248.73 36880.26 354
KD-MVS_self_test60.87 33958.60 33967.68 35666.13 38339.93 38775.63 36384.70 33057.32 34449.57 36368.45 36929.55 35982.87 36848.09 32747.94 37080.25 355
ITE_SJBPF70.43 34674.44 36147.06 37077.32 36060.16 33154.04 34683.53 26223.30 37484.01 35943.07 34961.58 33080.21 356
test20.0363.83 33062.65 32667.38 35870.58 37539.94 38686.57 29484.17 33463.29 30451.86 35377.30 33237.09 33082.47 37038.87 36754.13 35879.73 357
UnsupCasMVSNet_bld61.60 33757.71 34173.29 32968.73 37951.64 34478.61 34989.05 26357.20 34546.11 37061.96 38128.70 36388.60 32750.08 31938.90 38579.63 358
AllTest61.66 33658.06 34072.46 33579.57 32251.42 34780.17 34168.61 38251.25 36345.88 37181.23 29319.86 38286.58 34638.98 36557.01 34979.39 359
TestCases72.46 33579.57 32251.42 34768.61 38251.25 36345.88 37181.23 29319.86 38286.58 34638.98 36557.01 34979.39 359
ambc69.61 34861.38 39041.35 38349.07 39785.86 32250.18 36266.40 37210.16 39488.14 33245.73 34144.20 37579.32 361
Anonymous2024052162.09 33559.08 33871.10 34467.19 38148.72 36183.91 30685.23 32650.38 36647.84 36871.22 36520.74 37885.51 35246.47 33758.75 34579.06 362
testing370.38 28670.83 27169.03 35185.82 24643.93 37990.72 21690.56 19968.06 26860.24 31686.82 22864.83 7984.12 35626.33 38964.10 30679.04 363
MVP-Stereo77.12 21176.23 20379.79 26481.72 30166.34 13289.29 25390.88 19070.56 24162.01 31082.88 26949.34 24994.13 21765.55 24793.80 4278.88 364
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs-eth3d65.53 32362.32 32875.19 31469.39 37859.59 28582.80 32083.43 34262.52 31351.30 35772.49 35432.86 34487.16 34455.32 30150.73 36578.83 365
OpenMVS_ROBcopyleft61.12 1866.39 31662.92 32476.80 30576.51 35357.77 30689.22 25583.41 34355.48 35353.86 34777.84 32926.28 36993.95 23134.90 37568.76 26978.68 366
LTVRE_ROB59.60 1966.27 31763.54 32074.45 32084.00 27751.55 34567.08 38083.53 34158.78 33854.94 34280.31 30834.54 34093.23 24640.64 36168.03 27478.58 367
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PM-MVS59.40 34356.59 34567.84 35463.63 38541.86 38176.76 35763.22 38959.01 33751.07 35872.27 35911.72 39283.25 36661.34 27550.28 36778.39 368
test_fmvs356.82 34654.86 34962.69 36453.59 39535.47 39275.87 36165.64 38743.91 38255.10 34171.43 3646.91 40074.40 38568.64 21352.63 36078.20 369
N_pmnet50.55 35149.11 35454.88 37177.17 3514.02 41484.36 3032.00 41248.59 37045.86 37368.82 36832.22 35082.80 36931.58 38651.38 36477.81 370
new-patchmatchnet59.30 34456.48 34667.79 35565.86 38444.19 37682.47 32181.77 34859.94 33343.65 38166.20 37327.67 36581.68 37539.34 36441.40 38077.50 371
EG-PatchMatch MVS68.55 30165.41 30777.96 28978.69 33862.93 22289.86 24289.17 25460.55 32750.27 36077.73 33022.60 37594.06 22247.18 33472.65 24476.88 372
MVS-HIRNet60.25 34155.55 34874.35 32184.37 27156.57 32271.64 36874.11 37034.44 38945.54 37542.24 39631.11 35789.81 32040.36 36276.10 21976.67 373
MDA-MVSNet-bldmvs61.54 33857.70 34273.05 33079.53 32457.00 32083.08 31781.23 35057.57 34134.91 38972.45 35532.79 34586.26 34835.81 37241.95 37975.89 374
COLMAP_ROBcopyleft57.96 2062.98 33459.65 33672.98 33181.44 30353.00 34083.75 30775.53 36748.34 37248.81 36681.40 29124.14 37190.30 31132.95 38060.52 33775.65 375
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TinyColmap60.32 34056.42 34772.00 34278.78 33653.18 33978.36 35275.64 36552.30 35941.59 38475.82 34714.76 38988.35 33035.84 37154.71 35774.46 376
mvsany_test348.86 35346.35 35656.41 36746.00 40131.67 39762.26 38547.25 40243.71 38345.54 37568.15 37010.84 39364.44 39957.95 29135.44 39073.13 377
pmmvs355.51 34851.50 35367.53 35757.90 39350.93 35080.37 33773.66 37140.63 38744.15 38064.75 37616.30 38478.97 38144.77 34640.98 38372.69 378
test_method38.59 36335.16 36648.89 37754.33 39421.35 40745.32 39853.71 3967.41 40428.74 39251.62 3888.70 39752.87 40233.73 37632.89 39272.47 379
test_040264.54 32661.09 33274.92 31784.10 27660.75 26787.95 27679.71 35752.03 36052.41 35177.20 33432.21 35191.64 29523.14 39161.03 33272.36 380
LF4IMVS54.01 35052.12 35159.69 36562.41 38839.91 38868.59 37568.28 38442.96 38544.55 37975.18 34814.09 39168.39 39141.36 35851.68 36370.78 381
TDRefinement55.28 34951.58 35266.39 36059.53 39246.15 37276.23 36072.80 37244.60 38042.49 38276.28 34315.29 38782.39 37133.20 37943.75 37670.62 382
test_f46.58 35443.45 35855.96 36845.18 40232.05 39661.18 38649.49 40033.39 39042.05 38362.48 3807.00 39965.56 39547.08 33543.21 37870.27 383
LCM-MVSNet40.54 35935.79 36454.76 37236.92 40830.81 39851.41 39569.02 38122.07 39524.63 39545.37 3924.56 40465.81 39433.67 37734.50 39167.67 384
ANet_high40.27 36235.20 36555.47 36934.74 40934.47 39463.84 38471.56 37748.42 37118.80 39841.08 3979.52 39664.45 39820.18 3948.66 40567.49 385
test_vis1_rt59.09 34557.31 34464.43 36168.44 38046.02 37383.05 31848.63 40151.96 36149.57 36363.86 37716.30 38480.20 37971.21 18762.79 31467.07 386
PMMVS237.93 36433.61 36750.92 37446.31 40024.76 40460.55 38950.05 39828.94 39420.93 39647.59 3894.41 40665.13 39625.14 39018.55 40062.87 387
new_pmnet49.31 35246.44 35557.93 36662.84 38740.74 38468.47 37662.96 39036.48 38835.09 38857.81 38514.97 38872.18 38732.86 38146.44 37260.88 388
FPMVS45.64 35643.10 36053.23 37351.42 39836.46 39164.97 38271.91 37529.13 39327.53 39361.55 3829.83 39565.01 39716.00 39955.58 35358.22 389
WB-MVS46.23 35544.94 35750.11 37562.13 38921.23 40876.48 35955.49 39445.89 37735.78 38761.44 38335.54 33672.83 3869.96 40221.75 39756.27 390
SSC-MVS44.51 35743.35 35947.99 37961.01 39118.90 41074.12 36554.36 39543.42 38434.10 39060.02 38434.42 34170.39 3899.14 40419.57 39854.68 391
APD_test140.50 36037.31 36350.09 37651.88 39635.27 39359.45 39052.59 39721.64 39626.12 39457.80 3864.56 40466.56 39322.64 39239.09 38448.43 392
EGC-MVSNET42.35 35838.09 36155.11 37074.57 36046.62 37171.63 36955.77 3930.04 4070.24 40862.70 37914.24 39074.91 38417.59 39646.06 37343.80 393
test_vis3_rt40.46 36137.79 36248.47 37844.49 40333.35 39566.56 38132.84 40932.39 39129.65 39139.13 3993.91 40768.65 39050.17 31740.99 38243.40 394
testf132.77 36629.47 36942.67 38241.89 40530.81 39852.07 39343.45 40315.45 39918.52 39944.82 3932.12 40858.38 40016.05 39730.87 39438.83 395
APD_test232.77 36629.47 36942.67 38241.89 40530.81 39852.07 39343.45 40315.45 39918.52 39944.82 3932.12 40858.38 40016.05 39730.87 39438.83 395
MVEpermissive24.84 2324.35 37019.77 37638.09 38434.56 41026.92 40326.57 40038.87 40711.73 40311.37 40427.44 4001.37 41150.42 40311.41 40114.60 40136.93 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft34.71 38551.45 39724.73 40528.48 41131.46 39217.49 40152.75 3875.80 40242.60 40618.18 39519.42 39936.81 398
PMVScopyleft26.43 2231.84 36828.16 37142.89 38125.87 41127.58 40250.92 39649.78 39921.37 39714.17 40340.81 3982.01 41066.62 3929.61 40338.88 38634.49 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft34.91 36531.44 36845.30 38070.99 37239.64 38919.85 40272.56 37320.10 39816.16 40221.47 4035.08 40371.16 38813.07 40043.70 37725.08 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt22.26 37223.75 37417.80 3885.23 41212.06 41335.26 39939.48 4062.82 40618.94 39744.20 39522.23 37624.64 40736.30 3699.31 40416.69 401
E-PMN24.61 36924.00 37326.45 38643.74 40418.44 41160.86 38739.66 40515.11 4019.53 40522.10 4026.52 40146.94 4048.31 40510.14 40213.98 402
EMVS23.76 37123.20 37525.46 38741.52 40716.90 41260.56 38838.79 40814.62 4028.99 40620.24 4057.35 39845.82 4057.25 4069.46 40313.64 403
wuyk23d11.30 37410.95 37712.33 38948.05 39919.89 40925.89 4011.92 4133.58 4053.12 4071.37 4070.64 41215.77 4086.23 4077.77 4061.35 404
test1236.92 3779.21 3800.08 3900.03 4140.05 41581.65 3270.01 4150.02 4090.14 4100.85 4090.03 4130.02 4090.12 4090.00 4080.16 405
testmvs7.23 3769.62 3790.06 3910.04 4130.02 41684.98 3010.02 4140.03 4080.18 4091.21 4080.01 4140.02 4090.14 4080.01 4070.13 406
test_blank0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4080.00 407
uanet_test0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4080.00 407
DCPMVS0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4080.00 407
cdsmvs_eth3d_5k19.86 37326.47 3720.00 3920.00 4150.00 4170.00 40393.45 840.00 4100.00 41195.27 5849.56 2470.00 4110.00 4100.00 4080.00 407
pcd_1.5k_mvsjas4.46 3785.95 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 41053.55 2120.00 4110.00 4100.00 4080.00 407
sosnet-low-res0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4080.00 407
sosnet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4080.00 407
uncertanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4080.00 407
Regformer0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4080.00 407
ab-mvs-re7.91 37510.55 3780.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 41194.95 670.00 4150.00 4110.00 4100.00 4080.00 407
uanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4080.00 407
WAC-MVS49.45 35731.56 387
FOURS193.95 4561.77 24693.96 7191.92 14162.14 31686.57 46
test_one_060196.32 1869.74 4994.18 5771.42 22490.67 1996.85 1674.45 18
eth-test20.00 415
eth-test0.00 415
ZD-MVS96.63 965.50 15393.50 8270.74 23885.26 6195.19 6464.92 7897.29 7887.51 5893.01 55
test_241102_ONE96.45 1269.38 5494.44 4671.65 21392.11 797.05 776.79 999.11 6
9.1487.63 2793.86 4794.41 5394.18 5772.76 17886.21 4896.51 2566.64 6097.88 4490.08 4094.04 38
save fliter93.84 4867.89 9295.05 4092.66 11478.19 91
test072696.40 1569.99 3996.76 894.33 5471.92 19991.89 1197.11 673.77 21
test_part296.29 1968.16 8690.78 17
sam_mvs54.91 197
MTGPAbinary92.23 127
test_post178.95 34720.70 40453.05 21791.50 30360.43 280
test_post23.01 40156.49 17992.67 267
patchmatchnet-post67.62 37157.62 16290.25 312
MTMP93.77 8532.52 410
gm-plane-assit88.42 18567.04 11578.62 8891.83 14797.37 7276.57 144
TEST994.18 4167.28 10794.16 5993.51 8071.75 21085.52 5695.33 5368.01 5097.27 82
test_894.19 4067.19 10994.15 6293.42 8671.87 20485.38 5995.35 5268.19 4896.95 104
agg_prior94.16 4366.97 11793.31 8984.49 6796.75 114
test_prior467.18 11193.92 74
test_prior295.10 3975.40 13185.25 6295.61 4767.94 5187.47 5994.77 26
旧先验292.00 16159.37 33687.54 4093.47 24375.39 152
新几何291.41 183
原ACMM292.01 158
testdata296.09 13561.26 276
segment_acmp65.94 66
testdata189.21 25677.55 104
plane_prior786.94 22561.51 252
plane_prior687.23 21762.32 23650.66 237
plane_prior489.14 192
plane_prior361.95 24479.09 7972.53 193
plane_prior293.13 11178.81 85
plane_prior187.15 219
plane_prior62.42 23293.85 7879.38 7178.80 194
n20.00 416
nn0.00 416
door-mid66.01 386
test1193.01 101
door66.57 385
HQP5-MVS63.66 203
HQP-NCC87.54 21094.06 6479.80 6374.18 172
ACMP_Plane87.54 21094.06 6479.80 6374.18 172
BP-MVS77.63 139
HQP3-MVS91.70 15778.90 192
HQP2-MVS51.63 230
NP-MVS87.41 21363.04 21890.30 174
MDTV_nov1_ep1372.61 25589.06 17068.48 7480.33 33890.11 21871.84 20671.81 20475.92 34653.01 21893.92 23248.04 32873.38 236
ACMMP++_ref71.63 250
ACMMP++69.72 259
Test By Simon54.21 206