This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
DPM-MVS90.70 290.52 791.24 189.68 14376.68 297.29 195.35 1082.87 1591.58 1097.22 379.93 599.10 983.12 7697.64 297.94 1
SED-MVS89.94 790.36 888.70 1596.45 1269.38 4596.89 494.44 3871.65 18392.11 497.21 476.79 999.11 692.34 895.36 1397.62 2
OPU-MVS89.97 397.52 373.15 1296.89 497.00 883.82 299.15 295.72 197.63 397.62 2
DVP-MVS++90.53 391.09 488.87 1397.31 469.91 3593.96 6194.37 4472.48 15492.07 696.85 1183.82 299.15 291.53 1597.42 497.55 4
PC_three_145280.91 3494.07 296.83 1383.57 499.12 595.70 297.42 497.55 4
DeepPCF-MVS81.17 189.72 891.38 384.72 11593.00 6958.16 27996.72 794.41 4086.50 690.25 1897.83 175.46 1498.67 2392.78 595.49 1297.32 6
LFMVS84.34 6382.73 8489.18 1294.76 3373.25 994.99 4091.89 13471.90 17282.16 6993.49 9347.98 24197.05 7982.55 8084.82 12897.25 7
canonicalmvs86.85 3186.25 3788.66 1791.80 10171.92 1493.54 8291.71 14480.26 3887.55 2795.25 4563.59 8596.93 9488.18 3484.34 13297.11 8
MCST-MVS91.08 191.46 289.94 497.66 273.37 897.13 295.58 889.33 185.77 4096.26 2272.84 2699.38 192.64 695.93 997.08 9
DELS-MVS90.05 690.09 989.94 493.14 6673.88 797.01 394.40 4288.32 285.71 4194.91 5574.11 1998.91 1787.26 4495.94 897.03 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CSCG86.87 3086.26 3688.72 1495.05 3170.79 2393.83 7295.33 1168.48 23777.63 11594.35 7273.04 2498.45 2884.92 6393.71 4396.92 11
MVS84.66 5882.86 8290.06 290.93 12074.56 687.91 25095.54 968.55 23572.35 17594.71 6059.78 12298.90 1881.29 9294.69 2996.74 12
alignmvs87.28 2686.97 3088.24 2291.30 11471.14 2195.61 2393.56 6979.30 5087.07 3195.25 4568.43 3796.93 9487.87 3684.33 13396.65 13
DeepC-MVS_fast79.48 287.95 1988.00 1987.79 2695.86 2768.32 7095.74 1994.11 5283.82 1283.49 6096.19 2464.53 7298.44 2983.42 7594.88 2396.61 14
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_241102_TWO94.41 4071.65 18392.07 697.21 474.58 1799.11 692.34 895.36 1396.59 15
TSAR-MVS + GP.87.96 1888.37 1786.70 5593.51 5665.32 14595.15 3493.84 5678.17 6985.93 3994.80 5875.80 1398.21 3289.38 2588.78 9896.59 15
CANet89.61 1089.99 1088.46 1994.39 3969.71 4196.53 1193.78 5786.89 489.68 1995.78 2965.94 5699.10 992.99 493.91 3896.58 17
WTY-MVS86.32 3685.81 4287.85 2492.82 7369.37 4795.20 3295.25 1282.71 1781.91 7094.73 5967.93 4397.63 5079.55 10182.25 14496.54 18
VNet86.20 3885.65 4587.84 2593.92 4669.99 3195.73 2195.94 678.43 6686.00 3893.07 9958.22 13697.00 8485.22 5984.33 13396.52 19
MSC_two_6792asdad89.60 897.31 473.22 1095.05 1999.07 1392.01 1194.77 2496.51 20
No_MVS89.60 897.31 473.22 1095.05 1999.07 1392.01 1194.77 2496.51 20
test_0728_SECOND88.70 1596.45 1270.43 2796.64 894.37 4499.15 291.91 1394.90 2096.51 20
ET-MVSNet_ETH3D84.01 7183.15 7786.58 5990.78 12570.89 2294.74 4494.62 3281.44 2958.19 30093.64 8973.64 2392.35 25682.66 7878.66 17296.50 23
IU-MVS96.46 1169.91 3595.18 1480.75 3595.28 192.34 895.36 1396.47 24
test_0728_THIRD72.48 15490.55 1696.93 976.24 1199.08 1191.53 1594.99 1696.43 25
MSP-MVS90.38 491.87 185.88 7892.83 7164.03 17893.06 9594.33 4682.19 2193.65 396.15 2585.89 197.19 7491.02 1997.75 196.43 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HY-MVS76.49 584.28 6483.36 7387.02 4692.22 8767.74 8684.65 27694.50 3579.15 5482.23 6887.93 18566.88 4896.94 9280.53 9682.20 14596.39 27
DPE-MVScopyleft88.77 1489.21 1487.45 3596.26 2067.56 9094.17 5094.15 5168.77 23390.74 1497.27 276.09 1298.49 2790.58 2294.91 1996.30 28
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft89.41 1189.73 1288.45 2096.40 1569.99 3196.64 894.52 3471.92 17090.55 1696.93 973.77 2199.08 1191.91 1394.90 2096.29 29
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSLP-MVS++86.27 3785.91 4187.35 3792.01 9368.97 5795.04 3892.70 10179.04 5881.50 7396.50 1858.98 13296.78 9783.49 7493.93 3796.29 29
patch_mono-289.71 990.99 585.85 8196.04 2463.70 18795.04 3895.19 1386.74 591.53 1195.15 4973.86 2097.58 5393.38 392.00 6596.28 31
test_yl84.28 6483.16 7587.64 2894.52 3769.24 4995.78 1695.09 1769.19 22781.09 7792.88 10557.00 14997.44 5881.11 9381.76 14896.23 32
DCV-MVSNet84.28 6483.16 7587.64 2894.52 3769.24 4995.78 1695.09 1769.19 22781.09 7792.88 10557.00 14997.44 5881.11 9381.76 14896.23 32
CNVR-MVS90.32 590.89 688.61 1896.76 870.65 2496.47 1294.83 2384.83 989.07 2296.80 1470.86 3499.06 1592.64 695.71 1096.12 34
HPM-MVS++copyleft89.37 1289.95 1187.64 2895.10 3068.23 7595.24 3194.49 3682.43 1988.90 2396.35 2071.89 3398.63 2488.76 3296.40 696.06 35
SD-MVS87.49 2487.49 2587.50 3493.60 5368.82 6093.90 6592.63 10776.86 8787.90 2695.76 3066.17 5397.63 5089.06 3091.48 7496.05 36
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PHI-MVS86.83 3286.85 3386.78 5393.47 5765.55 14195.39 2895.10 1671.77 18085.69 4296.52 1662.07 9998.77 2186.06 5595.60 1196.03 37
APDe-MVS87.54 2387.84 2086.65 5696.07 2366.30 12394.84 4393.78 5769.35 22488.39 2496.34 2167.74 4497.66 4890.62 2193.44 4796.01 38
lupinMVS87.74 2287.77 2187.63 3289.24 15571.18 1996.57 1092.90 9682.70 1887.13 2995.27 4364.99 6495.80 12689.34 2691.80 6895.93 39
NCCC89.07 1389.46 1387.91 2396.60 1069.05 5496.38 1394.64 3184.42 1086.74 3296.20 2366.56 5298.76 2289.03 3194.56 3095.92 40
SMA-MVScopyleft88.14 1588.29 1887.67 2793.21 6368.72 6293.85 6894.03 5374.18 11991.74 996.67 1565.61 6098.42 3189.24 2896.08 795.88 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
dcpmvs_287.37 2587.55 2486.85 4895.04 3268.20 7690.36 20190.66 18479.37 4981.20 7593.67 8874.73 1596.55 10590.88 2092.00 6595.82 42
Anonymous20240521177.96 17475.33 19085.87 7993.73 5264.52 16094.85 4285.36 29762.52 28376.11 13090.18 15429.43 32997.29 6868.51 19277.24 18795.81 43
mvs_anonymous81.36 11379.99 12285.46 9290.39 13168.40 6886.88 26790.61 18674.41 11470.31 19684.67 22063.79 8092.32 25773.13 14485.70 12395.67 44
MG-MVS87.11 2886.27 3589.62 797.79 176.27 494.96 4194.49 3678.74 6483.87 5992.94 10264.34 7396.94 9275.19 13194.09 3495.66 45
PAPR85.15 5284.47 5687.18 4096.02 2568.29 7191.85 14693.00 9376.59 9279.03 10095.00 5061.59 10497.61 5278.16 11589.00 9795.63 46
VDD-MVS83.06 8781.81 9786.81 5190.86 12367.70 8795.40 2791.50 15475.46 10281.78 7192.34 11840.09 27897.13 7786.85 4982.04 14695.60 47
casdiffmvs_mvgpermissive85.66 4785.18 4987.09 4388.22 18269.35 4893.74 7591.89 13481.47 2680.10 8791.45 13164.80 6896.35 10887.23 4587.69 10695.58 48
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Effi-MVS+83.82 7582.76 8386.99 4789.56 14669.40 4491.35 16986.12 29172.59 15183.22 6292.81 10859.60 12496.01 12381.76 8587.80 10595.56 49
TSAR-MVS + MP.88.11 1788.64 1586.54 6191.73 10268.04 7990.36 20193.55 7082.89 1491.29 1292.89 10472.27 3096.03 12187.99 3594.77 2495.54 50
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP86.82 3386.90 3186.58 5990.42 12966.38 12096.09 1593.87 5577.73 7684.01 5895.66 3163.39 8797.94 3787.40 4293.55 4695.42 51
Skip Steuart: Steuart Systems R&D Blog.
CS-MVS-test86.14 4087.01 2983.52 14792.63 8059.36 26795.49 2591.92 13180.09 3985.46 4595.53 3561.82 10395.77 12986.77 5093.37 4895.41 52
casdiffmvspermissive85.37 4984.87 5586.84 4988.25 18069.07 5393.04 9791.76 14181.27 3080.84 8292.07 12264.23 7496.06 11984.98 6287.43 10995.39 53
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EIA-MVS84.84 5684.88 5484.69 11691.30 11462.36 21493.85 6892.04 12679.45 4779.33 9794.28 7662.42 9696.35 10880.05 9891.25 7995.38 54
CS-MVS85.80 4586.65 3483.27 15592.00 9458.92 27295.31 2991.86 13679.97 4084.82 5095.40 3662.26 9795.51 14786.11 5492.08 6495.37 55
GG-mvs-BLEND86.53 6291.91 9869.67 4375.02 33494.75 2678.67 10890.85 14177.91 794.56 17872.25 15593.74 4195.36 56
agg_prior286.41 5194.75 2895.33 57
3Dnovator+73.60 782.10 10480.60 11486.60 5790.89 12266.80 11195.20 3293.44 7674.05 12167.42 23592.49 11349.46 22697.65 4970.80 16891.68 7095.33 57
baseline85.01 5484.44 5786.71 5488.33 17768.73 6190.24 20691.82 14081.05 3381.18 7692.50 11163.69 8296.08 11884.45 6786.71 11795.32 59
ab-mvs80.18 13278.31 14685.80 8388.44 17265.49 14483.00 29392.67 10371.82 17877.36 11985.01 21554.50 17896.59 10176.35 12575.63 19795.32 59
test9_res89.41 2494.96 1795.29 61
EPNet87.84 2188.38 1686.23 7193.30 6066.05 12795.26 3094.84 2287.09 388.06 2594.53 6366.79 4997.34 6583.89 7291.68 7095.29 61
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SF-MVS87.03 2987.09 2886.84 4992.70 7767.45 9593.64 7793.76 6070.78 20786.25 3496.44 1966.98 4797.79 4388.68 3394.56 3095.28 63
VDDNet80.50 12778.26 14787.21 3986.19 21869.79 3894.48 4691.31 16060.42 29879.34 9690.91 14038.48 28696.56 10482.16 8181.05 15495.27 64
MVSFormer83.75 7782.88 8186.37 6789.24 15571.18 1989.07 23490.69 18165.80 25587.13 2994.34 7364.99 6492.67 24272.83 14791.80 6895.27 64
jason86.40 3586.17 3887.11 4286.16 21970.54 2695.71 2292.19 12282.00 2384.58 5294.34 7361.86 10195.53 14687.76 3790.89 8295.27 64
jason: jason.
train_agg87.21 2787.42 2686.60 5794.18 4167.28 9794.16 5193.51 7171.87 17585.52 4395.33 3868.19 3997.27 7289.09 2994.90 2095.25 67
MVS_Test84.16 6983.20 7487.05 4591.56 10769.82 3789.99 21592.05 12577.77 7582.84 6486.57 19963.93 7896.09 11674.91 13689.18 9695.25 67
3Dnovator73.91 682.69 9580.82 10988.31 2189.57 14571.26 1892.60 11594.39 4378.84 6167.89 22992.48 11448.42 23698.52 2668.80 19094.40 3295.15 69
Patchmatch-test65.86 29160.94 30480.62 21783.75 25658.83 27358.91 36075.26 33944.50 35150.95 33077.09 30658.81 13387.90 30835.13 34964.03 27895.12 70
APD-MVScopyleft85.93 4385.99 4085.76 8595.98 2665.21 14893.59 8092.58 10966.54 25086.17 3695.88 2863.83 7997.00 8486.39 5292.94 5395.06 71
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
gg-mvs-nofinetune77.18 18574.31 20385.80 8391.42 11168.36 6971.78 33694.72 2749.61 33977.12 12245.92 36077.41 893.98 20567.62 20093.16 5195.05 72
test_prior86.42 6594.71 3567.35 9693.10 9096.84 9695.05 72
Patchmatch-RL test68.17 27764.49 28679.19 24771.22 34153.93 31070.07 34171.54 34969.22 22656.79 30962.89 34956.58 15888.61 29969.53 18152.61 33295.03 74
CHOSEN 1792x268884.98 5583.45 6789.57 1089.94 13875.14 592.07 13492.32 11481.87 2475.68 13488.27 17860.18 11698.60 2580.46 9790.27 8994.96 75
ACMMP_NAP86.05 4185.80 4386.80 5291.58 10667.53 9291.79 14893.49 7474.93 11084.61 5195.30 4059.42 12697.92 3886.13 5394.92 1894.94 76
test250683.29 8282.92 8084.37 12688.39 17563.18 19892.01 13791.35 15977.66 7878.49 10991.42 13264.58 7195.09 15773.19 14389.23 9494.85 77
ECVR-MVScopyleft81.29 11480.38 11884.01 13688.39 17561.96 22192.56 12086.79 28377.66 7876.63 12691.42 13246.34 25295.24 15574.36 14089.23 9494.85 77
PAPM_NR82.97 8981.84 9686.37 6794.10 4466.76 11287.66 25592.84 9769.96 21774.07 15393.57 9163.10 9297.50 5670.66 17190.58 8694.85 77
CDPH-MVS85.71 4685.46 4686.46 6394.75 3467.19 9993.89 6692.83 9870.90 20383.09 6395.28 4163.62 8397.36 6380.63 9594.18 3394.84 80
test1287.09 4394.60 3668.86 5892.91 9582.67 6765.44 6197.55 5493.69 4494.84 80
PatchmatchNetpermissive77.46 18174.63 19685.96 7689.55 14770.35 2879.97 31789.55 22472.23 16370.94 18876.91 30857.03 14792.79 23754.27 28081.17 15394.74 82
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS78.49 16675.98 18286.02 7491.21 11669.68 4280.23 31391.20 16475.25 10672.48 17178.11 29754.65 17793.69 21457.66 26983.04 13994.69 83
GSMVS94.68 84
sam_mvs157.85 13994.68 84
SCA75.82 20772.76 22485.01 10586.63 21070.08 3081.06 30689.19 23671.60 18870.01 19977.09 30645.53 25990.25 28560.43 25573.27 21094.68 84
Vis-MVSNetpermissive80.92 12279.98 12383.74 14088.48 17061.80 22393.44 8688.26 26973.96 12577.73 11491.76 12649.94 22294.76 16565.84 21890.37 8894.65 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
旧先验191.94 9560.74 24591.50 15494.36 6865.23 6291.84 6794.55 88
sss82.71 9482.38 9183.73 14289.25 15459.58 26292.24 12694.89 2177.96 7179.86 9092.38 11656.70 15597.05 7977.26 12080.86 15694.55 88
xiu_mvs_v2_base87.92 2087.38 2789.55 1191.41 11376.43 395.74 1993.12 8983.53 1389.55 2095.95 2753.45 19597.68 4591.07 1892.62 5694.54 90
PS-MVSNAJ88.14 1587.61 2389.71 692.06 9076.72 195.75 1893.26 8183.86 1189.55 2096.06 2653.55 19197.89 4091.10 1793.31 4994.54 90
test111180.84 12380.02 12083.33 15387.87 19160.76 24392.62 11486.86 28277.86 7475.73 13391.39 13446.35 25194.70 17172.79 14988.68 10094.52 92
ZNCC-MVS85.33 5085.08 5186.06 7393.09 6865.65 13793.89 6693.41 7873.75 13079.94 8994.68 6160.61 11398.03 3682.63 7993.72 4294.52 92
MAR-MVS84.18 6883.43 6886.44 6496.25 2165.93 13294.28 4994.27 4874.41 11479.16 9995.61 3353.99 18698.88 2069.62 18093.26 5094.50 94
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HFP-MVS84.73 5784.40 5885.72 8693.75 5165.01 15493.50 8493.19 8572.19 16479.22 9894.93 5359.04 13197.67 4681.55 8692.21 6094.49 95
ETV-MVS86.01 4286.11 3985.70 8790.21 13467.02 10693.43 8791.92 13181.21 3184.13 5794.07 8260.93 11095.63 13789.28 2789.81 9094.46 96
diffmvspermissive84.28 6483.83 6285.61 8987.40 19968.02 8090.88 18689.24 23380.54 3681.64 7292.52 11059.83 12194.52 18187.32 4385.11 12694.29 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
region2R84.36 6284.03 6185.36 9693.54 5564.31 17293.43 8792.95 9472.16 16778.86 10594.84 5756.97 15197.53 5581.38 9092.11 6394.24 98
MTAPA83.91 7383.38 7285.50 9191.89 9965.16 15081.75 29892.23 11775.32 10580.53 8495.21 4756.06 16497.16 7684.86 6492.55 5894.18 99
PMMVS81.98 10682.04 9481.78 19189.76 14256.17 29891.13 17990.69 18177.96 7180.09 8893.57 9146.33 25394.99 15981.41 8987.46 10894.17 100
CostFormer82.33 9881.15 10285.86 8089.01 16068.46 6782.39 29693.01 9175.59 10080.25 8681.57 25772.03 3294.96 16079.06 10777.48 18394.16 101
MVS_111021_HR86.19 3985.80 4387.37 3693.17 6569.79 3893.99 6093.76 6079.08 5778.88 10493.99 8362.25 9898.15 3485.93 5691.15 8094.15 102
PVSNet_Blended86.73 3486.86 3286.31 7093.76 4967.53 9296.33 1493.61 6782.34 2081.00 8093.08 9863.19 9097.29 6887.08 4691.38 7694.13 103
1112_ss80.56 12679.83 12582.77 16388.65 16760.78 24192.29 12488.36 26472.58 15272.46 17294.95 5165.09 6393.42 22066.38 21277.71 17794.10 104
IB-MVS77.80 482.18 10080.46 11787.35 3789.14 15770.28 2995.59 2495.17 1578.85 6070.19 19785.82 20970.66 3597.67 4672.19 15866.52 25894.09 105
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PAPM85.89 4485.46 4687.18 4088.20 18372.42 1392.41 12292.77 9982.11 2280.34 8593.07 9968.27 3895.02 15878.39 11493.59 4594.09 105
MP-MVS-pluss85.24 5185.13 5085.56 9091.42 11165.59 13991.54 15892.51 11174.56 11380.62 8395.64 3259.15 13097.00 8486.94 4893.80 3994.07 107
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft85.02 5384.97 5385.17 10292.60 8164.27 17493.24 9092.27 11673.13 14179.63 9394.43 6661.90 10097.17 7585.00 6192.56 5794.06 108
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS77.85 385.52 4885.24 4886.37 6788.80 16566.64 11492.15 12893.68 6581.07 3276.91 12593.64 8962.59 9598.44 2985.50 5792.84 5594.03 109
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPR84.37 6184.06 6085.28 9893.56 5464.37 17093.50 8493.15 8772.19 16478.85 10694.86 5656.69 15697.45 5781.55 8692.20 6194.02 110
无先验92.71 10892.61 10862.03 28797.01 8366.63 20793.97 111
XVS83.87 7483.47 6685.05 10393.22 6163.78 18292.92 10292.66 10473.99 12278.18 11094.31 7555.25 16997.41 6079.16 10591.58 7293.95 112
X-MVStestdata76.86 18774.13 20785.05 10393.22 6163.78 18292.92 10292.66 10473.99 12278.18 11010.19 37555.25 16997.41 6079.16 10591.58 7293.95 112
h-mvs3383.01 8882.56 8884.35 12789.34 15062.02 21992.72 10793.76 6081.45 2782.73 6592.25 12060.11 11797.13 7787.69 3862.96 28393.91 114
CP-MVS83.71 7883.40 7184.65 11793.14 6663.84 18094.59 4592.28 11571.03 20177.41 11894.92 5455.21 17296.19 11281.32 9190.70 8493.91 114
PVSNet73.49 880.05 13578.63 14284.31 12890.92 12164.97 15592.47 12191.05 17579.18 5372.43 17390.51 14637.05 30294.06 19868.06 19486.00 12293.90 116
GST-MVS84.63 5984.29 5985.66 8892.82 7365.27 14693.04 9793.13 8873.20 13978.89 10194.18 7959.41 12797.85 4281.45 8892.48 5993.86 117
Test_1112_low_res79.56 14378.60 14382.43 17188.24 18160.39 25192.09 13287.99 27372.10 16871.84 17987.42 19264.62 7093.04 22465.80 21977.30 18593.85 118
GeoE78.90 15577.43 16083.29 15488.95 16162.02 21992.31 12386.23 28970.24 21471.34 18789.27 16454.43 18294.04 20163.31 23780.81 15893.81 119
thisisatest051583.41 8082.49 8986.16 7289.46 14968.26 7393.54 8294.70 2874.31 11775.75 13290.92 13972.62 2896.52 10669.64 17881.50 15193.71 120
HyFIR lowres test81.03 12079.56 12985.43 9387.81 19268.11 7890.18 20790.01 21070.65 20972.95 16286.06 20763.61 8494.50 18275.01 13479.75 16293.67 121
CANet_DTU84.09 7083.52 6485.81 8290.30 13266.82 10991.87 14489.01 24685.27 786.09 3793.74 8747.71 24496.98 8877.90 11789.78 9293.65 122
mPP-MVS82.96 9082.44 9084.52 12192.83 7162.92 20592.76 10591.85 13871.52 19175.61 13794.24 7753.48 19496.99 8778.97 10890.73 8393.64 123
tpmrst80.57 12579.14 13984.84 11090.10 13568.28 7281.70 29989.72 22177.63 8075.96 13179.54 28964.94 6692.71 23975.43 12977.28 18693.55 124
tpm279.80 14077.95 15385.34 9788.28 17868.26 7381.56 30191.42 15770.11 21577.59 11780.50 27567.40 4594.26 19067.34 20277.35 18493.51 125
SR-MVS82.81 9182.58 8783.50 15093.35 5861.16 23592.23 12791.28 16364.48 26481.27 7495.28 4153.71 19095.86 12582.87 7788.77 9993.49 126
FA-MVS(test-final)79.12 15077.23 16684.81 11290.54 12763.98 17981.35 30491.71 14471.09 20074.85 14482.94 23852.85 19897.05 7967.97 19581.73 15093.41 127
PGM-MVS83.25 8482.70 8584.92 10792.81 7564.07 17790.44 19792.20 12171.28 19577.23 12194.43 6655.17 17397.31 6779.33 10491.38 7693.37 128
新几何184.73 11492.32 8464.28 17391.46 15659.56 30679.77 9192.90 10356.95 15296.57 10363.40 23692.91 5493.34 129
HPM-MVScopyleft83.25 8482.95 7984.17 13292.25 8662.88 20790.91 18391.86 13670.30 21377.12 12293.96 8456.75 15496.28 11082.04 8391.34 7893.34 129
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TESTMET0.1,182.41 9781.98 9583.72 14388.08 18463.74 18492.70 10993.77 5979.30 5077.61 11687.57 19058.19 13794.08 19673.91 14286.68 11893.33 131
IS-MVSNet80.14 13379.41 13382.33 17587.91 18960.08 25691.97 14188.27 26772.90 14771.44 18691.73 12861.44 10593.66 21562.47 24586.53 11993.24 132
131480.70 12478.95 14085.94 7787.77 19367.56 9087.91 25092.55 11072.17 16667.44 23493.09 9750.27 21997.04 8271.68 16387.64 10793.23 133
CDS-MVSNet81.43 11280.74 11083.52 14786.26 21764.45 16492.09 13290.65 18575.83 9973.95 15589.81 16163.97 7792.91 23271.27 16482.82 14193.20 134
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+81.14 11680.01 12184.51 12290.24 13365.86 13394.12 5589.15 23973.81 12975.37 14088.26 17957.26 14494.53 18066.97 20684.92 12793.15 135
API-MVS82.28 9980.53 11587.54 3396.13 2270.59 2593.63 7891.04 17665.72 25775.45 13992.83 10756.11 16398.89 1964.10 23289.75 9393.15 135
test22289.77 14161.60 22889.55 22289.42 22856.83 31977.28 12092.43 11552.76 19991.14 8193.09 137
TAMVS80.37 12979.45 13283.13 15885.14 23463.37 19391.23 17490.76 18074.81 11272.65 16688.49 17160.63 11292.95 22769.41 18281.95 14793.08 138
testdata81.34 20089.02 15957.72 28489.84 21458.65 31085.32 4794.09 8057.03 14793.28 22169.34 18390.56 8793.03 139
tpm78.58 16477.03 16883.22 15685.94 22464.56 15983.21 29091.14 16978.31 6773.67 15779.68 28764.01 7692.09 26266.07 21671.26 22893.03 139
GA-MVS78.33 16976.23 17984.65 11783.65 25866.30 12391.44 15990.14 20476.01 9770.32 19584.02 22842.50 27194.72 16870.98 16677.00 18892.94 141
BH-RMVSNet79.46 14677.65 15684.89 10891.68 10465.66 13693.55 8188.09 27172.93 14673.37 15891.12 13846.20 25596.12 11556.28 27385.61 12592.91 142
APD-MVS_3200maxsize81.64 11081.32 10182.59 16992.36 8358.74 27491.39 16591.01 17763.35 27379.72 9294.62 6251.82 20596.14 11479.71 9987.93 10492.89 143
DP-MVS Recon82.73 9281.65 9885.98 7597.31 467.06 10395.15 3491.99 12869.08 23076.50 12993.89 8554.48 18198.20 3370.76 16985.66 12492.69 144
UGNet79.87 13978.68 14183.45 15289.96 13761.51 22992.13 12990.79 17976.83 8978.85 10686.33 20338.16 28896.17 11367.93 19787.17 11092.67 145
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EPP-MVSNet81.79 10881.52 9982.61 16888.77 16660.21 25493.02 9993.66 6668.52 23672.90 16390.39 14972.19 3194.96 16074.93 13579.29 16692.67 145
PVSNet_Blended_VisFu83.97 7283.50 6585.39 9590.02 13666.59 11793.77 7391.73 14277.43 8477.08 12489.81 16163.77 8196.97 8979.67 10088.21 10292.60 147
MDTV_nov1_ep13_2view59.90 25880.13 31567.65 24272.79 16454.33 18459.83 25992.58 148
QAPM79.95 13877.39 16487.64 2889.63 14471.41 1793.30 8993.70 6465.34 26067.39 23791.75 12747.83 24298.96 1657.71 26889.81 9092.54 149
dp75.01 21872.09 23383.76 13989.28 15366.22 12679.96 31889.75 21671.16 19767.80 23177.19 30551.81 20692.54 24850.39 29171.44 22792.51 150
EPNet_dtu78.80 15879.26 13777.43 26888.06 18549.71 33091.96 14291.95 13077.67 7776.56 12891.28 13658.51 13490.20 29056.37 27280.95 15592.39 151
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2024052976.84 19074.15 20684.88 10991.02 11864.95 15693.84 7191.09 17153.57 32873.00 16087.42 19235.91 30697.32 6669.14 18672.41 22092.36 152
Vis-MVSNet (Re-imp)79.24 14879.57 12878.24 26088.46 17152.29 31790.41 19989.12 24174.24 11869.13 20791.91 12465.77 5890.09 29259.00 26488.09 10392.33 153
原ACMM184.42 12493.21 6364.27 17493.40 7965.39 25879.51 9492.50 11158.11 13896.69 9965.27 22693.96 3692.32 154
TR-MVS78.77 16077.37 16582.95 16090.49 12860.88 23993.67 7690.07 20670.08 21674.51 14791.37 13545.69 25895.70 13660.12 25880.32 15992.29 155
SR-MVS-dyc-post81.06 11980.70 11182.15 18292.02 9158.56 27690.90 18490.45 18762.76 28078.89 10194.46 6451.26 21295.61 13978.77 11186.77 11592.28 156
RE-MVS-def80.48 11692.02 9158.56 27690.90 18490.45 18762.76 28078.89 10194.46 6449.30 22878.77 11186.77 11592.28 156
LCM-MVSNet-Re72.93 23871.84 23676.18 28388.49 16948.02 33580.07 31670.17 35073.96 12552.25 32380.09 28349.98 22188.24 30567.35 20184.23 13692.28 156
DROMVSNet84.53 6085.04 5283.01 15989.34 15061.37 23294.42 4791.09 17177.91 7383.24 6194.20 7858.37 13595.40 14885.35 5891.41 7592.27 159
MVS_111021_LR82.02 10581.52 9983.51 14988.42 17362.88 20789.77 21988.93 24876.78 9075.55 13893.10 9650.31 21895.38 15083.82 7387.02 11192.26 160
FE-MVS75.97 20473.02 22084.82 11189.78 14065.56 14077.44 32891.07 17364.55 26372.66 16579.85 28546.05 25796.69 9954.97 27780.82 15792.21 161
BH-w/o80.49 12879.30 13684.05 13590.83 12464.36 17193.60 7989.42 22874.35 11669.09 20890.15 15655.23 17195.61 13964.61 22986.43 12192.17 162
CVMVSNet74.04 22774.27 20473.33 30385.33 23043.94 35189.53 22488.39 26354.33 32770.37 19490.13 15749.17 23184.05 33061.83 24979.36 16491.99 163
tpm cat175.30 21472.21 23284.58 12088.52 16867.77 8578.16 32688.02 27261.88 29068.45 22176.37 31260.65 11194.03 20353.77 28374.11 20491.93 164
ACMMPcopyleft81.49 11180.67 11283.93 13791.71 10362.90 20692.13 12992.22 12071.79 17971.68 18393.49 9350.32 21796.96 9078.47 11384.22 13791.93 164
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test-LLR80.10 13479.56 12981.72 19386.93 20861.17 23392.70 10991.54 15171.51 19275.62 13586.94 19653.83 18792.38 25372.21 15684.76 13091.60 166
test-mter79.96 13779.38 13581.72 19386.93 20861.17 23392.70 10991.54 15173.85 12775.62 13586.94 19649.84 22492.38 25372.21 15684.76 13091.60 166
thisisatest053081.15 11580.07 11984.39 12588.26 17965.63 13891.40 16394.62 3271.27 19670.93 18989.18 16572.47 2996.04 12065.62 22176.89 18991.49 168
AUN-MVS78.37 16777.43 16081.17 20386.60 21157.45 29089.46 22691.16 16674.11 12074.40 14890.49 14755.52 16894.57 17674.73 13960.43 30991.48 169
MIMVSNet71.64 24968.44 26181.23 20281.97 27464.44 16573.05 33588.80 25269.67 22164.59 25874.79 32032.79 31587.82 31053.99 28176.35 19391.42 170
hse-mvs281.12 11881.11 10681.16 20486.52 21257.48 28989.40 22791.16 16681.45 2782.73 6590.49 14760.11 11794.58 17487.69 3860.41 31091.41 171
xiu_mvs_v1_base_debu82.16 10181.12 10385.26 9986.42 21368.72 6292.59 11790.44 19073.12 14284.20 5494.36 6838.04 29095.73 13184.12 6986.81 11291.33 172
xiu_mvs_v1_base82.16 10181.12 10385.26 9986.42 21368.72 6292.59 11790.44 19073.12 14284.20 5494.36 6838.04 29095.73 13184.12 6986.81 11291.33 172
xiu_mvs_v1_base_debi82.16 10181.12 10385.26 9986.42 21368.72 6292.59 11790.44 19073.12 14284.20 5494.36 6838.04 29095.73 13184.12 6986.81 11291.33 172
BH-untuned78.68 16177.08 16783.48 15189.84 13963.74 18492.70 10988.59 26071.57 18966.83 24488.65 17051.75 20795.39 14959.03 26384.77 12991.32 175
HPM-MVS_fast80.25 13179.55 13182.33 17591.55 10859.95 25791.32 17189.16 23865.23 26174.71 14693.07 9947.81 24395.74 13074.87 13888.23 10191.31 176
baseline181.84 10781.03 10784.28 13091.60 10566.62 11591.08 18091.66 14881.87 2474.86 14391.67 12969.98 3694.92 16371.76 16164.75 27291.29 177
baseline283.68 7983.42 7084.48 12387.37 20066.00 12990.06 21095.93 779.71 4569.08 20990.39 14977.92 696.28 11078.91 10981.38 15291.16 178
TAPA-MVS70.22 1274.94 21973.53 21579.17 24890.40 13052.07 31889.19 23289.61 22362.69 28270.07 19892.67 10948.89 23594.32 18538.26 34379.97 16091.12 179
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
AdaColmapbinary78.94 15477.00 17084.76 11396.34 1765.86 13392.66 11387.97 27462.18 28570.56 19092.37 11743.53 26797.35 6464.50 23082.86 14091.05 180
OMC-MVS78.67 16377.91 15480.95 21385.76 22657.40 29188.49 24388.67 25773.85 12772.43 17392.10 12149.29 22994.55 17972.73 15077.89 17690.91 181
EI-MVSNet-Vis-set83.77 7683.67 6384.06 13492.79 7663.56 19291.76 15194.81 2479.65 4677.87 11394.09 8063.35 8897.90 3979.35 10379.36 16490.74 182
cascas78.18 17075.77 18585.41 9487.14 20469.11 5192.96 10091.15 16866.71 24970.47 19186.07 20637.49 29696.48 10770.15 17479.80 16190.65 183
CR-MVSNet73.79 23170.82 24482.70 16583.15 26367.96 8170.25 33984.00 30973.67 13469.97 20172.41 32757.82 14089.48 29652.99 28673.13 21190.64 184
RPMNet70.42 25865.68 27584.63 11983.15 26367.96 8170.25 33990.45 18746.83 34769.97 20165.10 34656.48 16095.30 15435.79 34873.13 21190.64 184
test_fmvs174.07 22673.69 21375.22 28778.91 30747.34 34089.06 23674.69 34063.68 27079.41 9591.59 13024.36 33887.77 31285.22 5976.26 19490.55 186
PCF-MVS73.15 979.29 14777.63 15784.29 12986.06 22065.96 13187.03 26291.10 17069.86 21969.79 20490.64 14257.54 14396.59 10164.37 23182.29 14390.32 187
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_068.08 1571.81 24868.32 26382.27 17784.68 24062.31 21688.68 24090.31 19675.84 9857.93 30580.65 27437.85 29394.19 19269.94 17629.05 36790.31 188
tttt051779.50 14478.53 14482.41 17487.22 20261.43 23189.75 22094.76 2569.29 22567.91 22788.06 18472.92 2595.63 13762.91 24173.90 20890.16 189
CPTT-MVS79.59 14279.16 13880.89 21591.54 10959.80 25992.10 13188.54 26260.42 29872.96 16193.28 9548.27 23792.80 23678.89 11086.50 12090.06 190
EI-MVSNet-UG-set83.14 8682.96 7883.67 14592.28 8563.19 19791.38 16794.68 2979.22 5276.60 12793.75 8662.64 9497.76 4478.07 11678.01 17590.05 191
test_fmvs1_n72.69 24571.92 23574.99 29071.15 34247.08 34287.34 26075.67 33563.48 27278.08 11291.17 13720.16 35087.87 30984.65 6575.57 19890.01 192
test_vis1_n71.63 25070.73 24574.31 29769.63 34847.29 34186.91 26572.11 34663.21 27675.18 14190.17 15520.40 34885.76 32484.59 6674.42 20289.87 193
XVG-OURS-SEG-HR74.70 22173.08 21979.57 24278.25 31557.33 29280.49 30987.32 27863.22 27568.76 21690.12 15944.89 26391.59 27170.55 17274.09 20589.79 194
114514_t79.17 14977.67 15583.68 14495.32 2965.53 14292.85 10491.60 15063.49 27167.92 22690.63 14446.65 24895.72 13567.01 20583.54 13889.79 194
UA-Net80.02 13679.65 12781.11 20689.33 15257.72 28486.33 27089.00 24777.44 8381.01 7989.15 16659.33 12895.90 12461.01 25284.28 13589.73 196
XVG-OURS74.25 22572.46 23079.63 24078.45 31357.59 28880.33 31187.39 27763.86 26868.76 21689.62 16340.50 27791.72 26969.00 18774.25 20389.58 197
UniMVSNet_ETH3D72.74 24270.53 24779.36 24578.62 31256.64 29685.01 27489.20 23563.77 26964.84 25784.44 22434.05 31191.86 26663.94 23370.89 23089.57 198
thres20079.66 14178.33 14583.66 14692.54 8265.82 13593.06 9596.31 374.90 11173.30 15988.66 16959.67 12395.61 13947.84 30678.67 17189.56 199
OpenMVScopyleft70.45 1178.54 16575.92 18386.41 6685.93 22571.68 1692.74 10692.51 11166.49 25164.56 26091.96 12343.88 26698.10 3554.61 27890.65 8589.44 200
CHOSEN 280x42077.35 18376.95 17178.55 25587.07 20562.68 21169.71 34282.95 31768.80 23271.48 18587.27 19566.03 5584.00 33276.47 12482.81 14288.95 201
iter_conf_final81.74 10980.93 10884.18 13192.66 7969.10 5292.94 10182.80 31979.01 5974.85 14488.40 17461.83 10294.61 17279.36 10276.52 19288.83 202
thres100view90078.37 16777.01 16982.46 17091.89 9963.21 19691.19 17896.33 172.28 16270.45 19387.89 18660.31 11495.32 15145.16 31777.58 18088.83 202
tfpn200view978.79 15977.43 16082.88 16192.21 8864.49 16192.05 13596.28 473.48 13671.75 18188.26 17960.07 11995.32 15145.16 31777.58 18088.83 202
nrg03080.93 12179.86 12484.13 13383.69 25768.83 5993.23 9191.20 16475.55 10175.06 14288.22 18263.04 9394.74 16781.88 8466.88 25588.82 205
PatchT69.11 26765.37 27980.32 22082.07 27363.68 18967.96 34887.62 27650.86 33669.37 20565.18 34557.09 14688.53 30241.59 33266.60 25788.74 206
HQP4-MVS74.18 14995.61 13988.63 207
HQP-MVS81.14 11680.64 11382.64 16787.54 19563.66 19094.06 5691.70 14679.80 4274.18 14990.30 15151.63 20995.61 13977.63 11878.90 16888.63 207
tt080573.07 23570.73 24580.07 22878.37 31457.05 29487.78 25292.18 12361.23 29467.04 24086.49 20031.35 32394.58 17465.06 22767.12 25388.57 209
VPNet78.82 15777.53 15982.70 16584.52 24466.44 11993.93 6392.23 11780.46 3772.60 16788.38 17649.18 23093.13 22372.47 15463.97 28088.55 210
Effi-MVS+-dtu76.14 19775.28 19178.72 25483.22 26255.17 30589.87 21687.78 27575.42 10367.98 22481.43 25945.08 26292.52 24975.08 13371.63 22388.48 211
iter_conf0583.27 8382.70 8584.98 10693.32 5971.84 1594.16 5181.76 32182.74 1673.83 15688.40 17472.77 2794.61 17282.10 8275.21 19988.48 211
CNLPA74.31 22472.30 23180.32 22091.49 11061.66 22790.85 18780.72 32556.67 32063.85 26890.64 14246.75 24790.84 28053.79 28275.99 19688.47 213
HQP_MVS80.34 13079.75 12682.12 18486.94 20662.42 21293.13 9391.31 16078.81 6272.53 16989.14 16750.66 21595.55 14476.74 12178.53 17388.39 214
plane_prior591.31 16095.55 14476.74 12178.53 17388.39 214
VPA-MVSNet79.03 15178.00 15182.11 18785.95 22264.48 16393.22 9294.66 3075.05 10974.04 15484.95 21652.17 20493.52 21774.90 13767.04 25488.32 216
CLD-MVS82.73 9282.35 9283.86 13887.90 19067.65 8995.45 2692.18 12385.06 872.58 16892.27 11952.46 20295.78 12784.18 6879.06 16788.16 217
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XXY-MVS77.94 17576.44 17682.43 17182.60 26864.44 16592.01 13791.83 13973.59 13570.00 20085.82 20954.43 18294.76 16569.63 17968.02 24888.10 218
FIs79.47 14579.41 13379.67 23985.95 22259.40 26491.68 15593.94 5478.06 7068.96 21288.28 17766.61 5191.77 26866.20 21574.99 20087.82 219
Fast-Effi-MVS+-dtu75.04 21773.37 21780.07 22880.86 28059.52 26391.20 17785.38 29671.90 17265.20 25384.84 21841.46 27492.97 22666.50 21172.96 21387.73 220
UniMVSNet_NR-MVSNet78.15 17177.55 15879.98 23184.46 24660.26 25292.25 12593.20 8477.50 8268.88 21386.61 19866.10 5492.13 26066.38 21262.55 28787.54 221
MVSTER82.47 9682.05 9383.74 14092.68 7869.01 5591.90 14393.21 8279.83 4172.14 17685.71 21174.72 1694.72 16875.72 12772.49 21887.50 222
thres600view778.00 17276.66 17482.03 18991.93 9663.69 18891.30 17296.33 172.43 15770.46 19287.89 18660.31 11494.92 16342.64 32976.64 19087.48 223
thres40078.68 16177.43 16082.43 17192.21 8864.49 16192.05 13596.28 473.48 13671.75 18188.26 17960.07 11995.32 15145.16 31777.58 18087.48 223
TranMVSNet+NR-MVSNet75.86 20674.52 20079.89 23482.44 26960.64 24891.37 16891.37 15876.63 9167.65 23286.21 20552.37 20391.55 27261.84 24860.81 30587.48 223
FC-MVSNet-test77.99 17378.08 15077.70 26384.89 23955.51 30390.27 20493.75 6376.87 8666.80 24587.59 18965.71 5990.23 28962.89 24273.94 20687.37 226
mvsmamba76.85 18975.71 18780.25 22483.07 26559.16 26991.44 15980.64 32676.84 8867.95 22586.33 20346.17 25694.24 19176.06 12672.92 21487.36 227
DU-MVS76.86 18775.84 18479.91 23382.96 26660.26 25291.26 17391.54 15176.46 9468.88 21386.35 20156.16 16192.13 26066.38 21262.55 28787.35 228
NR-MVSNet76.05 20174.59 19780.44 21882.96 26662.18 21890.83 18891.73 14277.12 8560.96 28686.35 20159.28 12991.80 26760.74 25361.34 30287.35 228
FMVSNet377.73 17876.04 18182.80 16291.20 11768.99 5691.87 14491.99 12873.35 13867.04 24083.19 23756.62 15792.14 25959.80 26069.34 23787.28 230
PS-MVSNAJss77.26 18476.31 17880.13 22780.64 28459.16 26990.63 19691.06 17472.80 14868.58 21984.57 22253.55 19193.96 20672.97 14571.96 22287.27 231
mvsany_test168.77 27168.56 25969.39 32273.57 33545.88 34780.93 30760.88 36359.65 30571.56 18490.26 15343.22 26975.05 35374.26 14162.70 28687.25 232
FMVSNet276.07 19874.01 20982.26 17988.85 16267.66 8891.33 17091.61 14970.84 20465.98 24882.25 24648.03 23892.00 26458.46 26568.73 24387.10 233
ADS-MVSNet266.90 28663.44 29277.26 27288.06 18560.70 24668.01 34675.56 33757.57 31264.48 26169.87 33738.68 28284.10 32940.87 33467.89 24986.97 234
ADS-MVSNet68.54 27464.38 28881.03 21188.06 18566.90 10868.01 34684.02 30857.57 31264.48 26169.87 33738.68 28289.21 29840.87 33467.89 24986.97 234
WR-MVS76.76 19275.74 18679.82 23684.60 24262.27 21792.60 11592.51 11176.06 9667.87 23085.34 21256.76 15390.24 28862.20 24663.69 28286.94 236
DSMNet-mixed56.78 31854.44 32163.79 33463.21 35729.44 37264.43 35264.10 35942.12 35551.32 32771.60 33231.76 32075.04 35436.23 34565.20 26786.87 237
UniMVSNet (Re)77.58 18076.78 17279.98 23184.11 25260.80 24091.76 15193.17 8676.56 9369.93 20384.78 21963.32 8992.36 25564.89 22862.51 28986.78 238
GBi-Net75.65 20973.83 21181.10 20788.85 16265.11 15190.01 21290.32 19370.84 20467.04 24080.25 28048.03 23891.54 27359.80 26069.34 23786.64 239
test175.65 20973.83 21181.10 20788.85 16265.11 15190.01 21290.32 19370.84 20467.04 24080.25 28048.03 23891.54 27359.80 26069.34 23786.64 239
FMVSNet172.71 24369.91 25281.10 20783.60 25965.11 15190.01 21290.32 19363.92 26763.56 27080.25 28036.35 30591.54 27354.46 27966.75 25686.64 239
v2v48277.42 18275.65 18882.73 16480.38 28667.13 10291.85 14690.23 20175.09 10869.37 20583.39 23553.79 18994.44 18371.77 16065.00 26986.63 242
miper_enhance_ethall78.86 15677.97 15281.54 19688.00 18865.17 14991.41 16189.15 23975.19 10768.79 21583.98 22967.17 4692.82 23472.73 15065.30 26386.62 243
cl2277.94 17576.78 17281.42 19887.57 19464.93 15790.67 19288.86 25172.45 15667.63 23382.68 24264.07 7592.91 23271.79 15965.30 26386.44 244
PLCcopyleft68.80 1475.23 21573.68 21479.86 23592.93 7058.68 27590.64 19488.30 26560.90 29564.43 26490.53 14542.38 27294.57 17656.52 27176.54 19186.33 245
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EI-MVSNet78.97 15378.22 14881.25 20185.33 23062.73 21089.53 22493.21 8272.39 15972.14 17690.13 15760.99 10894.72 16867.73 19972.49 21886.29 246
IterMVS-LS76.49 19475.18 19280.43 21984.49 24562.74 20990.64 19488.80 25272.40 15865.16 25481.72 25360.98 10992.27 25867.74 19864.65 27486.29 246
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_ehance_all_eth77.60 17976.44 17681.09 21085.70 22764.41 16890.65 19388.64 25972.31 16067.37 23882.52 24364.77 6992.64 24670.67 17065.30 26386.24 248
RRT_MVS74.44 22272.97 22278.84 25382.36 27057.66 28689.83 21888.79 25470.61 21064.58 25984.89 21739.24 28092.65 24570.11 17566.34 25986.21 249
OPM-MVS79.00 15278.09 14981.73 19283.52 26063.83 18191.64 15790.30 19776.36 9571.97 17889.93 16046.30 25495.17 15675.10 13277.70 17886.19 250
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DIV-MVS_self_test76.07 19874.67 19480.28 22285.14 23461.75 22690.12 20888.73 25571.16 19765.42 25281.60 25661.15 10692.94 23166.54 20962.16 29386.14 251
eth_miper_zixun_eth75.96 20574.40 20280.66 21684.66 24163.02 20089.28 22988.27 26771.88 17465.73 24981.65 25459.45 12592.81 23568.13 19360.53 30786.14 251
cl____76.07 19874.67 19480.28 22285.15 23361.76 22590.12 20888.73 25571.16 19765.43 25181.57 25761.15 10692.95 22766.54 20962.17 29186.13 253
PatchMatch-RL72.06 24769.98 24978.28 25889.51 14855.70 30283.49 28383.39 31561.24 29363.72 26982.76 24034.77 30993.03 22553.37 28577.59 17986.12 254
c3_l76.83 19175.47 18980.93 21485.02 23764.18 17690.39 20088.11 27071.66 18266.65 24681.64 25563.58 8692.56 24769.31 18462.86 28486.04 255
RPSCF64.24 29961.98 30171.01 31976.10 32845.00 34875.83 33275.94 33446.94 34658.96 29784.59 22131.40 32282.00 34647.76 30760.33 31186.04 255
Anonymous2023121173.08 23470.39 24881.13 20590.62 12663.33 19491.40 16390.06 20851.84 33364.46 26380.67 27336.49 30494.07 19763.83 23464.17 27785.98 257
v119275.98 20373.92 21082.15 18279.73 29366.24 12591.22 17589.75 21672.67 15068.49 22081.42 26049.86 22394.27 18867.08 20465.02 26885.95 258
JIA-IIPM66.06 29062.45 29876.88 27881.42 27854.45 30957.49 36188.67 25749.36 34063.86 26746.86 35956.06 16490.25 28549.53 29668.83 24185.95 258
v192192075.63 21173.49 21682.06 18879.38 29866.35 12191.07 18289.48 22571.98 16967.99 22381.22 26549.16 23293.90 20966.56 20864.56 27585.92 260
v114476.73 19374.88 19382.27 17780.23 29166.60 11691.68 15590.21 20373.69 13269.06 21081.89 25052.73 20094.40 18469.21 18565.23 26685.80 261
v14419276.05 20174.03 20882.12 18479.50 29766.55 11891.39 16589.71 22272.30 16168.17 22281.33 26251.75 20794.03 20367.94 19664.19 27685.77 262
v124075.21 21672.98 22181.88 19079.20 30066.00 12990.75 19189.11 24271.63 18767.41 23681.22 26547.36 24593.87 21065.46 22464.72 27385.77 262
v14876.19 19674.47 20181.36 19980.05 29264.44 16591.75 15390.23 20173.68 13367.13 23980.84 27055.92 16693.86 21268.95 18861.73 29885.76 264
test0.0.03 172.76 24172.71 22672.88 30780.25 29047.99 33691.22 17589.45 22671.51 19262.51 28087.66 18853.83 18785.06 32750.16 29367.84 25185.58 265
test_djsdf73.76 23272.56 22877.39 26977.00 32453.93 31089.07 23490.69 18165.80 25563.92 26682.03 24943.14 27092.67 24272.83 14768.53 24485.57 266
ACMM69.62 1374.34 22372.73 22579.17 24884.25 25157.87 28290.36 20189.93 21163.17 27765.64 25086.04 20837.79 29494.10 19465.89 21771.52 22585.55 267
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs573.35 23371.52 23978.86 25278.64 31160.61 24991.08 18086.90 28167.69 24063.32 27283.64 23144.33 26590.53 28262.04 24766.02 26185.46 268
jajsoiax73.05 23671.51 24077.67 26477.46 32154.83 30688.81 23890.04 20969.13 22962.85 27783.51 23331.16 32492.75 23870.83 16769.80 23385.43 269
ACMP71.68 1075.58 21274.23 20579.62 24184.97 23859.64 26090.80 18989.07 24470.39 21262.95 27587.30 19438.28 28793.87 21072.89 14671.45 22685.36 270
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
mvs_tets72.71 24371.11 24177.52 26577.41 32254.52 30888.45 24489.76 21568.76 23462.70 27883.26 23629.49 32892.71 23970.51 17369.62 23585.34 271
tpmvs72.88 24069.76 25482.22 18090.98 11967.05 10478.22 32588.30 26563.10 27864.35 26574.98 31955.09 17494.27 18843.25 32369.57 23685.34 271
miper_lstm_enhance73.05 23671.73 23877.03 27483.80 25558.32 27881.76 29788.88 24969.80 22061.01 28578.23 29657.19 14587.51 31665.34 22559.53 31285.27 273
bld_raw_dy_0_6471.59 25169.71 25577.22 27377.82 32058.12 28087.71 25473.66 34268.01 23861.90 28484.29 22633.68 31288.43 30369.91 17770.43 23185.11 274
LPG-MVS_test75.82 20774.58 19879.56 24384.31 24959.37 26590.44 19789.73 21969.49 22264.86 25588.42 17238.65 28494.30 18672.56 15272.76 21585.01 275
LGP-MVS_train79.56 24384.31 24959.37 26589.73 21969.49 22264.86 25588.42 17238.65 28494.30 18672.56 15272.76 21585.01 275
PVSNet_BlendedMVS83.38 8183.43 6883.22 15693.76 4967.53 9294.06 5693.61 6779.13 5581.00 8085.14 21463.19 9097.29 6887.08 4673.91 20784.83 277
V4276.46 19574.55 19982.19 18179.14 30367.82 8490.26 20589.42 22873.75 13068.63 21881.89 25051.31 21194.09 19571.69 16264.84 27084.66 278
IterMVS72.65 24670.83 24378.09 26182.17 27162.96 20287.64 25686.28 28771.56 19060.44 28878.85 29245.42 26186.66 32063.30 23861.83 29584.65 279
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT71.55 25269.97 25076.32 28181.48 27660.67 24787.64 25685.99 29266.17 25359.50 29278.88 29145.53 25983.65 33462.58 24461.93 29484.63 280
pm-mvs172.89 23971.09 24278.26 25979.10 30457.62 28790.80 18989.30 23167.66 24162.91 27681.78 25249.11 23392.95 22760.29 25758.89 31584.22 281
pmmvs473.92 22971.81 23780.25 22479.17 30165.24 14787.43 25887.26 28067.64 24363.46 27183.91 23048.96 23491.53 27662.94 24065.49 26283.96 282
v875.35 21373.26 21881.61 19580.67 28366.82 10989.54 22389.27 23271.65 18363.30 27380.30 27954.99 17594.06 19867.33 20362.33 29083.94 283
UnsupCasMVSNet_eth65.79 29263.10 29373.88 29970.71 34450.29 32881.09 30589.88 21372.58 15249.25 33674.77 32132.57 31787.43 31755.96 27441.04 35283.90 284
v1074.77 22072.54 22981.46 19780.33 28966.71 11389.15 23389.08 24370.94 20263.08 27479.86 28452.52 20194.04 20165.70 22062.17 29183.64 285
F-COLMAP70.66 25568.44 26177.32 27086.37 21655.91 30088.00 24886.32 28656.94 31857.28 30888.07 18333.58 31392.49 25051.02 28968.37 24583.55 286
lessismore_v073.72 30172.93 33847.83 33761.72 36245.86 34473.76 32228.63 33289.81 29347.75 30831.37 36483.53 287
v7n71.31 25368.65 25879.28 24676.40 32660.77 24286.71 26889.45 22664.17 26658.77 29978.24 29544.59 26493.54 21657.76 26761.75 29783.52 288
Anonymous2023120667.53 28365.78 27372.79 30874.95 33047.59 33888.23 24687.32 27861.75 29258.07 30277.29 30337.79 29487.29 31842.91 32563.71 28183.48 289
CP-MVSNet70.50 25769.91 25272.26 31280.71 28251.00 32487.23 26190.30 19767.84 23959.64 29182.69 24150.23 22082.30 34451.28 28859.28 31383.46 290
K. test v363.09 30459.61 30873.53 30276.26 32749.38 33283.27 28777.15 33264.35 26547.77 34072.32 32928.73 33087.79 31149.93 29536.69 35883.41 291
PS-CasMVS69.86 26369.13 25772.07 31580.35 28850.57 32687.02 26389.75 21667.27 24559.19 29582.28 24546.58 24982.24 34550.69 29059.02 31483.39 292
PEN-MVS69.46 26568.56 25972.17 31479.27 29949.71 33086.90 26689.24 23367.24 24859.08 29682.51 24447.23 24683.54 33548.42 30157.12 31883.25 293
anonymousdsp71.14 25469.37 25676.45 28072.95 33754.71 30784.19 27888.88 24961.92 28962.15 28179.77 28638.14 28991.44 27868.90 18967.45 25283.21 294
XVG-ACMP-BASELINE68.04 27865.53 27775.56 28574.06 33452.37 31678.43 32285.88 29362.03 28758.91 29881.21 26720.38 34991.15 27960.69 25468.18 24683.16 295
MSDG69.54 26465.73 27480.96 21285.11 23663.71 18684.19 27883.28 31656.95 31754.50 31484.03 22731.50 32196.03 12142.87 32769.13 24083.14 296
test_fmvs265.78 29364.84 28068.60 32566.54 35341.71 35383.27 28769.81 35154.38 32667.91 22784.54 22315.35 35581.22 34975.65 12866.16 26082.88 297
SixPastTwentyTwo64.92 29561.78 30274.34 29678.74 30949.76 32983.42 28679.51 33062.86 27950.27 33177.35 30130.92 32690.49 28345.89 31547.06 34282.78 298
testgi64.48 29862.87 29669.31 32371.24 34040.62 35685.49 27279.92 32865.36 25954.18 31683.49 23423.74 34284.55 32841.60 33160.79 30682.77 299
DTE-MVSNet68.46 27567.33 26771.87 31777.94 31849.00 33386.16 27188.58 26166.36 25258.19 30082.21 24746.36 25083.87 33344.97 32055.17 32582.73 300
WR-MVS_H70.59 25669.94 25172.53 30981.03 27951.43 32187.35 25992.03 12767.38 24460.23 28980.70 27155.84 16783.45 33646.33 31358.58 31782.72 301
ppachtmachnet_test67.72 28063.70 29079.77 23878.92 30566.04 12888.68 24082.90 31860.11 30255.45 31175.96 31539.19 28190.55 28139.53 33852.55 33382.71 302
CL-MVSNet_self_test69.92 26168.09 26475.41 28673.25 33655.90 30190.05 21189.90 21269.96 21761.96 28376.54 30951.05 21387.64 31349.51 29750.59 33782.70 303
LS3D69.17 26666.40 27077.50 26691.92 9756.12 29985.12 27380.37 32746.96 34556.50 31087.51 19137.25 29793.71 21332.52 35879.40 16382.68 304
our_test_368.29 27664.69 28379.11 25178.92 30564.85 15888.40 24585.06 29960.32 30052.68 32176.12 31440.81 27689.80 29544.25 32255.65 32382.67 305
FMVSNet568.04 27865.66 27675.18 28984.43 24757.89 28183.54 28286.26 28861.83 29153.64 31973.30 32437.15 30085.08 32648.99 29861.77 29682.56 306
KD-MVS_2432*160069.03 26866.37 27177.01 27585.56 22861.06 23681.44 30290.25 19967.27 24558.00 30376.53 31054.49 17987.63 31448.04 30335.77 35982.34 307
miper_refine_blended69.03 26866.37 27177.01 27585.56 22861.06 23681.44 30290.25 19967.27 24558.00 30376.53 31054.49 17987.63 31448.04 30335.77 35982.34 307
MVS_030468.99 27067.23 26874.28 29880.36 28752.54 31587.01 26486.36 28559.89 30466.22 24773.56 32324.25 33988.03 30757.34 27070.11 23282.27 309
pmmvs667.57 28264.76 28276.00 28472.82 33953.37 31288.71 23986.78 28453.19 32957.58 30778.03 29835.33 30892.41 25255.56 27554.88 32782.21 310
EU-MVSNet64.01 30063.01 29467.02 33174.40 33338.86 36183.27 28786.19 29045.11 34954.27 31581.15 26836.91 30380.01 35148.79 30057.02 31982.19 311
ACMH63.93 1768.62 27264.81 28180.03 23085.22 23263.25 19587.72 25384.66 30360.83 29651.57 32679.43 29027.29 33494.96 16041.76 33064.84 27081.88 312
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
D2MVS73.80 23072.02 23479.15 25079.15 30262.97 20188.58 24290.07 20672.94 14559.22 29478.30 29442.31 27392.70 24165.59 22272.00 22181.79 313
DP-MVS69.90 26266.48 26980.14 22695.36 2862.93 20389.56 22176.11 33350.27 33857.69 30685.23 21339.68 27995.73 13133.35 35371.05 22981.78 314
Patchmtry67.53 28363.93 28978.34 25682.12 27264.38 16968.72 34384.00 30948.23 34459.24 29372.41 32757.82 14089.27 29746.10 31456.68 32281.36 315
Baseline_NR-MVSNet73.99 22872.83 22377.48 26780.78 28159.29 26891.79 14884.55 30468.85 23168.99 21180.70 27156.16 16192.04 26362.67 24360.98 30481.11 316
CMPMVSbinary48.56 2166.77 28764.41 28773.84 30070.65 34550.31 32777.79 32785.73 29545.54 34844.76 34882.14 24835.40 30790.14 29163.18 23974.54 20181.07 317
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TransMVSNet (Re)70.07 26067.66 26577.31 27180.62 28559.13 27191.78 15084.94 30165.97 25460.08 29080.44 27650.78 21491.87 26548.84 29945.46 34580.94 318
ACMH+65.35 1667.65 28164.55 28476.96 27784.59 24357.10 29388.08 24780.79 32458.59 31153.00 32081.09 26926.63 33692.95 22746.51 31161.69 30080.82 319
USDC67.43 28564.51 28576.19 28277.94 31855.29 30478.38 32385.00 30073.17 14048.36 33880.37 27721.23 34692.48 25152.15 28764.02 27980.81 320
OurMVSNet-221017-064.68 29662.17 30072.21 31376.08 32947.35 33980.67 30881.02 32356.19 32151.60 32579.66 28827.05 33588.56 30153.60 28453.63 33080.71 321
MS-PatchMatch77.90 17776.50 17582.12 18485.99 22169.95 3491.75 15392.70 10173.97 12462.58 27984.44 22441.11 27595.78 12763.76 23592.17 6280.62 322
tfpnnormal70.10 25967.36 26678.32 25783.45 26160.97 23888.85 23792.77 9964.85 26260.83 28778.53 29343.52 26893.48 21831.73 35961.70 29980.52 323
MIMVSNet160.16 31357.33 31468.67 32469.71 34744.13 35078.92 32084.21 30555.05 32544.63 34971.85 33123.91 34181.54 34832.63 35755.03 32680.35 324
YYNet163.76 30360.14 30674.62 29378.06 31760.19 25583.46 28583.99 31156.18 32239.25 35671.56 33437.18 29983.34 33742.90 32648.70 34080.32 325
MDA-MVSNet_test_wron63.78 30260.16 30574.64 29278.15 31660.41 25083.49 28384.03 30756.17 32339.17 35771.59 33337.22 29883.24 33942.87 32748.73 33980.26 326
KD-MVS_self_test60.87 31058.60 31067.68 32866.13 35439.93 35875.63 33384.70 30257.32 31549.57 33468.45 34029.55 32782.87 34048.09 30247.94 34180.25 327
ITE_SJBPF70.43 32074.44 33247.06 34377.32 33160.16 30154.04 31783.53 23223.30 34384.01 33143.07 32461.58 30180.21 328
test20.0363.83 30162.65 29767.38 33070.58 34639.94 35786.57 26984.17 30663.29 27451.86 32477.30 30237.09 30182.47 34238.87 34254.13 32979.73 329
UnsupCasMVSNet_bld61.60 30857.71 31273.29 30468.73 35051.64 31978.61 32189.05 24557.20 31646.11 34161.96 35228.70 33188.60 30050.08 29438.90 35679.63 330
AllTest61.66 30758.06 31172.46 31079.57 29451.42 32280.17 31468.61 35351.25 33445.88 34281.23 26319.86 35186.58 32138.98 34057.01 32079.39 331
TestCases72.46 31079.57 29451.42 32268.61 35351.25 33445.88 34281.23 26319.86 35186.58 32138.98 34057.01 32079.39 331
ambc69.61 32161.38 36041.35 35449.07 36685.86 29450.18 33366.40 34310.16 36388.14 30645.73 31644.20 34679.32 333
Anonymous2024052162.09 30659.08 30971.10 31867.19 35248.72 33483.91 28085.23 29850.38 33747.84 33971.22 33620.74 34785.51 32546.47 31258.75 31679.06 334
MVP-Stereo77.12 18676.23 17979.79 23781.72 27566.34 12289.29 22890.88 17870.56 21162.01 28282.88 23949.34 22794.13 19365.55 22393.80 3978.88 335
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs-eth3d65.53 29462.32 29975.19 28869.39 34959.59 26182.80 29483.43 31362.52 28351.30 32872.49 32532.86 31487.16 31955.32 27650.73 33678.83 336
OpenMVS_ROBcopyleft61.12 1866.39 28862.92 29576.80 27976.51 32557.77 28389.22 23083.41 31455.48 32453.86 31877.84 29926.28 33793.95 20734.90 35068.76 24278.68 337
LTVRE_ROB59.60 1966.27 28963.54 29174.45 29484.00 25451.55 32067.08 34983.53 31258.78 30954.94 31380.31 27834.54 31093.23 22240.64 33668.03 24778.58 338
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PM-MVS59.40 31456.59 31667.84 32663.63 35641.86 35276.76 32963.22 36059.01 30851.07 32972.27 33011.72 36183.25 33861.34 25050.28 33878.39 339
test_fmvs356.82 31754.86 32062.69 33553.59 36435.47 36375.87 33165.64 35843.91 35255.10 31271.43 3356.91 36974.40 35668.64 19152.63 33178.20 340
N_pmnet50.55 32249.11 32554.88 34277.17 3234.02 38284.36 2772.00 38148.59 34145.86 34468.82 33932.22 31882.80 34131.58 36051.38 33577.81 341
new-patchmatchnet59.30 31556.48 31767.79 32765.86 35544.19 34982.47 29581.77 32059.94 30343.65 35266.20 34427.67 33381.68 34739.34 33941.40 35177.50 342
EG-PatchMatch MVS68.55 27365.41 27877.96 26278.69 31062.93 20389.86 21789.17 23760.55 29750.27 33177.73 30022.60 34494.06 19847.18 30972.65 21776.88 343
MVS-HIRNet60.25 31255.55 31974.35 29584.37 24856.57 29771.64 33774.11 34134.44 35845.54 34642.24 36531.11 32589.81 29340.36 33776.10 19576.67 344
MDA-MVSNet-bldmvs61.54 30957.70 31373.05 30579.53 29657.00 29583.08 29181.23 32257.57 31234.91 35972.45 32632.79 31586.26 32335.81 34741.95 35075.89 345
COLMAP_ROBcopyleft57.96 2062.98 30559.65 30772.98 30681.44 27753.00 31483.75 28175.53 33848.34 34348.81 33781.40 26124.14 34090.30 28432.95 35560.52 30875.65 346
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TinyColmap60.32 31156.42 31872.00 31678.78 30853.18 31378.36 32475.64 33652.30 33041.59 35575.82 31714.76 35888.35 30435.84 34654.71 32874.46 347
mvsany_test348.86 32446.35 32756.41 33846.00 37031.67 36862.26 35447.25 37143.71 35345.54 34668.15 34110.84 36264.44 36857.95 26635.44 36173.13 348
pmmvs355.51 31951.50 32467.53 32957.90 36250.93 32580.37 31073.66 34240.63 35644.15 35164.75 34716.30 35378.97 35244.77 32140.98 35472.69 349
test_method38.59 33235.16 33548.89 34754.33 36321.35 37745.32 36753.71 3657.41 37328.74 36151.62 3578.70 36652.87 37133.73 35132.89 36372.47 350
test_040264.54 29761.09 30374.92 29184.10 25360.75 24487.95 24979.71 32952.03 33152.41 32277.20 30432.21 31991.64 27023.14 36261.03 30372.36 351
LF4IMVS54.01 32152.12 32259.69 33662.41 35939.91 35968.59 34468.28 35542.96 35444.55 35075.18 31814.09 36068.39 36041.36 33351.68 33470.78 352
TDRefinement55.28 32051.58 32366.39 33259.53 36146.15 34576.23 33072.80 34444.60 35042.49 35376.28 31315.29 35682.39 34333.20 35443.75 34770.62 353
test_f46.58 32543.45 32855.96 33945.18 37132.05 36761.18 35549.49 36933.39 35942.05 35462.48 3517.00 36865.56 36447.08 31043.21 34970.27 354
LCM-MVSNet40.54 32835.79 33354.76 34336.92 37730.81 36951.41 36469.02 35222.07 36424.63 36445.37 3614.56 37365.81 36333.67 35234.50 36267.67 355
ANet_high40.27 33135.20 33455.47 34034.74 37834.47 36563.84 35371.56 34848.42 34218.80 36741.08 3669.52 36564.45 36720.18 3648.66 37467.49 356
test_vis1_rt59.09 31657.31 31564.43 33368.44 35146.02 34683.05 29248.63 37051.96 33249.57 33463.86 34816.30 35380.20 35071.21 16562.79 28567.07 357
PMMVS237.93 33333.61 33650.92 34546.31 36924.76 37560.55 35850.05 36728.94 36320.93 36547.59 3584.41 37565.13 36525.14 36118.55 36962.87 358
new_pmnet49.31 32346.44 32657.93 33762.84 35840.74 35568.47 34562.96 36136.48 35735.09 35857.81 35414.97 35772.18 35732.86 35646.44 34360.88 359
FPMVS45.64 32643.10 32953.23 34451.42 36736.46 36264.97 35171.91 34729.13 36227.53 36261.55 3539.83 36465.01 36616.00 36955.58 32458.22 360
APD_test140.50 32937.31 33250.09 34651.88 36535.27 36459.45 35952.59 36621.64 36526.12 36357.80 3554.56 37366.56 36222.64 36339.09 35548.43 361
EGC-MVSNET42.35 32738.09 33055.11 34174.57 33146.62 34471.63 33855.77 3640.04 3760.24 37762.70 35014.24 35974.91 35517.59 36646.06 34443.80 362
test_vis3_rt40.46 33037.79 33148.47 34844.49 37233.35 36666.56 35032.84 37832.39 36029.65 36039.13 3683.91 37668.65 35950.17 29240.99 35343.40 363
testf132.77 33529.47 33842.67 35141.89 37430.81 36952.07 36243.45 37215.45 36818.52 36844.82 3622.12 37758.38 36916.05 36730.87 36538.83 364
APD_test232.77 33529.47 33842.67 35141.89 37430.81 36952.07 36243.45 37215.45 36818.52 36844.82 3622.12 37758.38 36916.05 36730.87 36538.83 364
MVEpermissive24.84 2324.35 33919.77 34538.09 35334.56 37926.92 37426.57 36938.87 37611.73 37211.37 37327.44 3691.37 38050.42 37211.41 37114.60 37036.93 366
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft34.71 35451.45 36624.73 37628.48 38031.46 36117.49 37052.75 3565.80 37142.60 37518.18 36519.42 36836.81 367
PMVScopyleft26.43 2231.84 33728.16 34042.89 35025.87 38027.58 37350.92 36549.78 36821.37 36614.17 37240.81 3672.01 37966.62 3619.61 37238.88 35734.49 368
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft34.91 33431.44 33745.30 34970.99 34339.64 36019.85 37172.56 34520.10 36716.16 37121.47 3725.08 37271.16 35813.07 37043.70 34825.08 369
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt22.26 34123.75 34317.80 3575.23 38112.06 38135.26 36839.48 3752.82 37518.94 36644.20 36422.23 34524.64 37636.30 3449.31 37316.69 370
E-PMN24.61 33824.00 34226.45 35543.74 37318.44 37960.86 35639.66 37415.11 3709.53 37422.10 3716.52 37046.94 3738.31 37310.14 37113.98 371
EMVS23.76 34023.20 34425.46 35641.52 37616.90 38060.56 35738.79 37714.62 3718.99 37520.24 3747.35 36745.82 3747.25 3749.46 37213.64 372
wuyk23d11.30 34310.95 34612.33 35848.05 36819.89 37825.89 3701.92 3823.58 3743.12 3761.37 3760.64 38115.77 3776.23 3757.77 3751.35 373
test1236.92 3469.21 3490.08 3590.03 3830.05 38381.65 3000.01 3840.02 3780.14 3790.85 3780.03 3820.02 3780.12 3770.00 3770.16 374
testmvs7.23 3459.62 3480.06 3600.04 3820.02 38484.98 2750.02 3830.03 3770.18 3781.21 3770.01 3830.02 3780.14 3760.01 3760.13 375
test_blank0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3770.00 376
uanet_test0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3770.00 376
DCPMVS0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3770.00 376
cdsmvs_eth3d_5k19.86 34226.47 3410.00 3610.00 3840.00 3850.00 37293.45 750.00 3790.00 38095.27 4349.56 2250.00 3800.00 3780.00 3770.00 376
pcd_1.5k_mvsjas4.46 3475.95 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 37953.55 1910.00 3800.00 3780.00 3770.00 376
sosnet-low-res0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3770.00 376
sosnet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3770.00 376
uncertanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3770.00 376
Regformer0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3770.00 376
ab-mvs-re7.91 34410.55 3470.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38094.95 510.00 3840.00 3800.00 3780.00 3770.00 376
uanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3770.00 376
FOURS193.95 4561.77 22493.96 6191.92 13162.14 28686.57 33
test_one_060196.32 1869.74 4094.18 4971.42 19490.67 1596.85 1174.45 18
eth-test20.00 384
eth-test0.00 384
ZD-MVS96.63 965.50 14393.50 7370.74 20885.26 4895.19 4864.92 6797.29 6887.51 4093.01 52
test_241102_ONE96.45 1269.38 4594.44 3871.65 18392.11 497.05 776.79 999.11 6
9.1487.63 2293.86 4794.41 4894.18 4972.76 14986.21 3596.51 1766.64 5097.88 4190.08 2394.04 35
save fliter93.84 4867.89 8395.05 3792.66 10478.19 68
test072696.40 1569.99 3196.76 694.33 4671.92 17091.89 897.11 673.77 21
test_part296.29 1968.16 7790.78 13
sam_mvs54.91 176
MTGPAbinary92.23 117
test_post178.95 31920.70 37353.05 19691.50 27760.43 255
test_post23.01 37056.49 15992.67 242
patchmatchnet-post67.62 34257.62 14290.25 285
MTMP93.77 7332.52 379
gm-plane-assit88.42 17367.04 10578.62 6591.83 12597.37 6276.57 123
TEST994.18 4167.28 9794.16 5193.51 7171.75 18185.52 4395.33 3868.01 4197.27 72
test_894.19 4067.19 9994.15 5493.42 7771.87 17585.38 4695.35 3768.19 3996.95 91
agg_prior94.16 4366.97 10793.31 8084.49 5396.75 98
test_prior467.18 10193.92 64
test_prior295.10 3675.40 10485.25 4995.61 3367.94 4287.47 4194.77 24
旧先验292.00 14059.37 30787.54 2893.47 21975.39 130
新几何291.41 161
原ACMM292.01 137
testdata296.09 11661.26 251
segment_acmp65.94 56
testdata189.21 23177.55 81
plane_prior786.94 20661.51 229
plane_prior687.23 20162.32 21550.66 215
plane_prior489.14 167
plane_prior361.95 22279.09 5672.53 169
plane_prior293.13 9378.81 62
plane_prior187.15 203
plane_prior62.42 21293.85 6879.38 4878.80 170
n20.00 385
nn0.00 385
door-mid66.01 357
test1193.01 91
door66.57 356
HQP5-MVS63.66 190
HQP-NCC87.54 19594.06 5679.80 4274.18 149
ACMP_Plane87.54 19594.06 5679.80 4274.18 149
BP-MVS77.63 118
HQP3-MVS91.70 14678.90 168
HQP2-MVS51.63 209
NP-MVS87.41 19863.04 19990.30 151
MDTV_nov1_ep1372.61 22789.06 15868.48 6680.33 31190.11 20571.84 17771.81 18075.92 31653.01 19793.92 20848.04 30373.38 209
ACMMP++_ref71.63 223
ACMMP++69.72 234
Test By Simon54.21 185