DPM-MVS | | | 90.70 2 | 90.52 7 | 91.24 1 | 89.68 143 | 76.68 2 | 97.29 1 | 95.35 10 | 82.87 15 | 91.58 10 | 97.22 3 | 79.93 5 | 99.10 9 | 83.12 76 | 97.64 2 | 97.94 1 |
|
SED-MVS | | | 89.94 7 | 90.36 8 | 88.70 15 | 96.45 12 | 69.38 45 | 96.89 4 | 94.44 38 | 71.65 183 | 92.11 4 | 97.21 4 | 76.79 9 | 99.11 6 | 92.34 8 | 95.36 13 | 97.62 2 |
|
OPU-MVS | | | | | 89.97 3 | 97.52 3 | 73.15 12 | 96.89 4 | | | | 97.00 8 | 83.82 2 | 99.15 2 | 95.72 1 | 97.63 3 | 97.62 2 |
|
DVP-MVS++ | | | 90.53 3 | 91.09 4 | 88.87 13 | 97.31 4 | 69.91 35 | 93.96 61 | 94.37 44 | 72.48 154 | 92.07 6 | 96.85 11 | 83.82 2 | 99.15 2 | 91.53 15 | 97.42 4 | 97.55 4 |
|
PC_three_1452 | | | | | | | | | | 80.91 34 | 94.07 2 | 96.83 13 | 83.57 4 | 99.12 5 | 95.70 2 | 97.42 4 | 97.55 4 |
|
DeepPCF-MVS | | 81.17 1 | 89.72 8 | 91.38 3 | 84.72 115 | 93.00 69 | 58.16 279 | 96.72 7 | 94.41 40 | 86.50 6 | 90.25 18 | 97.83 1 | 75.46 14 | 98.67 23 | 92.78 5 | 95.49 12 | 97.32 6 |
|
LFMVS | | | 84.34 63 | 82.73 84 | 89.18 12 | 94.76 33 | 73.25 9 | 94.99 40 | 91.89 134 | 71.90 172 | 82.16 69 | 93.49 93 | 47.98 241 | 97.05 79 | 82.55 80 | 84.82 128 | 97.25 7 |
|
canonicalmvs | | | 86.85 31 | 86.25 37 | 88.66 17 | 91.80 101 | 71.92 14 | 93.54 82 | 91.71 144 | 80.26 38 | 87.55 27 | 95.25 45 | 63.59 85 | 96.93 94 | 88.18 34 | 84.34 132 | 97.11 8 |
|
MCST-MVS | | | 91.08 1 | 91.46 2 | 89.94 4 | 97.66 2 | 73.37 8 | 97.13 2 | 95.58 8 | 89.33 1 | 85.77 40 | 96.26 22 | 72.84 26 | 99.38 1 | 92.64 6 | 95.93 9 | 97.08 9 |
|
DELS-MVS | | | 90.05 6 | 90.09 9 | 89.94 4 | 93.14 66 | 73.88 7 | 97.01 3 | 94.40 42 | 88.32 2 | 85.71 41 | 94.91 55 | 74.11 19 | 98.91 17 | 87.26 44 | 95.94 8 | 97.03 10 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
CSCG | | | 86.87 30 | 86.26 36 | 88.72 14 | 95.05 31 | 70.79 23 | 93.83 72 | 95.33 11 | 68.48 237 | 77.63 115 | 94.35 72 | 73.04 24 | 98.45 28 | 84.92 63 | 93.71 43 | 96.92 11 |
|
MVS | | | 84.66 58 | 82.86 82 | 90.06 2 | 90.93 120 | 74.56 6 | 87.91 250 | 95.54 9 | 68.55 235 | 72.35 175 | 94.71 60 | 59.78 122 | 98.90 18 | 81.29 92 | 94.69 29 | 96.74 12 |
|
alignmvs | | | 87.28 26 | 86.97 30 | 88.24 22 | 91.30 114 | 71.14 21 | 95.61 23 | 93.56 69 | 79.30 50 | 87.07 31 | 95.25 45 | 68.43 37 | 96.93 94 | 87.87 36 | 84.33 133 | 96.65 13 |
|
DeepC-MVS_fast | | 79.48 2 | 87.95 19 | 88.00 19 | 87.79 26 | 95.86 27 | 68.32 70 | 95.74 19 | 94.11 52 | 83.82 12 | 83.49 60 | 96.19 24 | 64.53 72 | 98.44 29 | 83.42 75 | 94.88 23 | 96.61 14 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
test_241102_TWO | | | | | | | | | 94.41 40 | 71.65 183 | 92.07 6 | 97.21 4 | 74.58 17 | 99.11 6 | 92.34 8 | 95.36 13 | 96.59 15 |
|
TSAR-MVS + GP. | | | 87.96 18 | 88.37 17 | 86.70 55 | 93.51 56 | 65.32 145 | 95.15 34 | 93.84 56 | 78.17 69 | 85.93 39 | 94.80 58 | 75.80 13 | 98.21 32 | 89.38 25 | 88.78 98 | 96.59 15 |
|
CANet | | | 89.61 10 | 89.99 10 | 88.46 19 | 94.39 39 | 69.71 41 | 96.53 11 | 93.78 57 | 86.89 4 | 89.68 19 | 95.78 29 | 65.94 56 | 99.10 9 | 92.99 4 | 93.91 38 | 96.58 17 |
|
WTY-MVS | | | 86.32 36 | 85.81 42 | 87.85 24 | 92.82 73 | 69.37 47 | 95.20 32 | 95.25 12 | 82.71 17 | 81.91 70 | 94.73 59 | 67.93 43 | 97.63 50 | 79.55 101 | 82.25 144 | 96.54 18 |
|
VNet | | | 86.20 38 | 85.65 45 | 87.84 25 | 93.92 46 | 69.99 31 | 95.73 21 | 95.94 6 | 78.43 66 | 86.00 38 | 93.07 99 | 58.22 136 | 97.00 84 | 85.22 59 | 84.33 133 | 96.52 19 |
|
MSC_two_6792asdad | | | | | 89.60 8 | 97.31 4 | 73.22 10 | | 95.05 19 | | | | | 99.07 13 | 92.01 11 | 94.77 24 | 96.51 20 |
|
No_MVS | | | | | 89.60 8 | 97.31 4 | 73.22 10 | | 95.05 19 | | | | | 99.07 13 | 92.01 11 | 94.77 24 | 96.51 20 |
|
test_0728_SECOND | | | | | 88.70 15 | 96.45 12 | 70.43 27 | 96.64 8 | 94.37 44 | | | | | 99.15 2 | 91.91 13 | 94.90 20 | 96.51 20 |
|
ET-MVSNet_ETH3D | | | 84.01 71 | 83.15 77 | 86.58 59 | 90.78 125 | 70.89 22 | 94.74 44 | 94.62 32 | 81.44 29 | 58.19 300 | 93.64 89 | 73.64 23 | 92.35 256 | 82.66 78 | 78.66 172 | 96.50 23 |
|
IU-MVS | | | | | | 96.46 11 | 69.91 35 | | 95.18 14 | 80.75 35 | 95.28 1 | | | | 92.34 8 | 95.36 13 | 96.47 24 |
|
test_0728_THIRD | | | | | | | | | | 72.48 154 | 90.55 16 | 96.93 9 | 76.24 11 | 99.08 11 | 91.53 15 | 94.99 16 | 96.43 25 |
|
MSP-MVS | | | 90.38 4 | 91.87 1 | 85.88 78 | 92.83 71 | 64.03 178 | 93.06 95 | 94.33 46 | 82.19 21 | 93.65 3 | 96.15 25 | 85.89 1 | 97.19 74 | 91.02 19 | 97.75 1 | 96.43 25 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
HY-MVS | | 76.49 5 | 84.28 64 | 83.36 73 | 87.02 46 | 92.22 87 | 67.74 86 | 84.65 276 | 94.50 35 | 79.15 54 | 82.23 68 | 87.93 185 | 66.88 48 | 96.94 92 | 80.53 96 | 82.20 145 | 96.39 27 |
|
DPE-MVS |  | | 88.77 14 | 89.21 14 | 87.45 35 | 96.26 20 | 67.56 90 | 94.17 50 | 94.15 51 | 68.77 233 | 90.74 14 | 97.27 2 | 76.09 12 | 98.49 27 | 90.58 22 | 94.91 19 | 96.30 28 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
DVP-MVS |  | | 89.41 11 | 89.73 12 | 88.45 20 | 96.40 15 | 69.99 31 | 96.64 8 | 94.52 34 | 71.92 170 | 90.55 16 | 96.93 9 | 73.77 21 | 99.08 11 | 91.91 13 | 94.90 20 | 96.29 29 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
MSLP-MVS++ | | | 86.27 37 | 85.91 41 | 87.35 37 | 92.01 93 | 68.97 57 | 95.04 38 | 92.70 101 | 79.04 58 | 81.50 73 | 96.50 18 | 58.98 132 | 96.78 97 | 83.49 74 | 93.93 37 | 96.29 29 |
|
patch_mono-2 | | | 89.71 9 | 90.99 5 | 85.85 81 | 96.04 24 | 63.70 187 | 95.04 38 | 95.19 13 | 86.74 5 | 91.53 11 | 95.15 49 | 73.86 20 | 97.58 53 | 93.38 3 | 92.00 65 | 96.28 31 |
|
test_yl | | | 84.28 64 | 83.16 75 | 87.64 28 | 94.52 37 | 69.24 49 | 95.78 16 | 95.09 17 | 69.19 227 | 81.09 77 | 92.88 105 | 57.00 149 | 97.44 58 | 81.11 93 | 81.76 148 | 96.23 32 |
|
DCV-MVSNet | | | 84.28 64 | 83.16 75 | 87.64 28 | 94.52 37 | 69.24 49 | 95.78 16 | 95.09 17 | 69.19 227 | 81.09 77 | 92.88 105 | 57.00 149 | 97.44 58 | 81.11 93 | 81.76 148 | 96.23 32 |
|
CNVR-MVS | | | 90.32 5 | 90.89 6 | 88.61 18 | 96.76 8 | 70.65 24 | 96.47 12 | 94.83 23 | 84.83 9 | 89.07 22 | 96.80 14 | 70.86 34 | 99.06 15 | 92.64 6 | 95.71 10 | 96.12 34 |
|
HPM-MVS++ |  | | 89.37 12 | 89.95 11 | 87.64 28 | 95.10 30 | 68.23 75 | 95.24 31 | 94.49 36 | 82.43 19 | 88.90 23 | 96.35 20 | 71.89 33 | 98.63 24 | 88.76 32 | 96.40 6 | 96.06 35 |
|
SD-MVS | | | 87.49 24 | 87.49 25 | 87.50 34 | 93.60 53 | 68.82 60 | 93.90 65 | 92.63 107 | 76.86 87 | 87.90 26 | 95.76 30 | 66.17 53 | 97.63 50 | 89.06 30 | 91.48 74 | 96.05 36 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
PHI-MVS | | | 86.83 32 | 86.85 33 | 86.78 53 | 93.47 57 | 65.55 141 | 95.39 28 | 95.10 16 | 71.77 180 | 85.69 42 | 96.52 16 | 62.07 99 | 98.77 21 | 86.06 55 | 95.60 11 | 96.03 37 |
|
APDe-MVS | | | 87.54 23 | 87.84 20 | 86.65 56 | 96.07 23 | 66.30 123 | 94.84 43 | 93.78 57 | 69.35 224 | 88.39 24 | 96.34 21 | 67.74 44 | 97.66 48 | 90.62 21 | 93.44 47 | 96.01 38 |
|
lupinMVS | | | 87.74 22 | 87.77 21 | 87.63 32 | 89.24 155 | 71.18 19 | 96.57 10 | 92.90 96 | 82.70 18 | 87.13 29 | 95.27 43 | 64.99 64 | 95.80 126 | 89.34 26 | 91.80 68 | 95.93 39 |
|
NCCC | | | 89.07 13 | 89.46 13 | 87.91 23 | 96.60 10 | 69.05 54 | 96.38 13 | 94.64 31 | 84.42 10 | 86.74 32 | 96.20 23 | 66.56 52 | 98.76 22 | 89.03 31 | 94.56 30 | 95.92 40 |
|
SMA-MVS |  | | 88.14 15 | 88.29 18 | 87.67 27 | 93.21 63 | 68.72 62 | 93.85 68 | 94.03 53 | 74.18 119 | 91.74 9 | 96.67 15 | 65.61 60 | 98.42 31 | 89.24 28 | 96.08 7 | 95.88 41 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
dcpmvs_2 | | | 87.37 25 | 87.55 24 | 86.85 48 | 95.04 32 | 68.20 76 | 90.36 201 | 90.66 184 | 79.37 49 | 81.20 75 | 93.67 88 | 74.73 15 | 96.55 105 | 90.88 20 | 92.00 65 | 95.82 42 |
|
Anonymous202405211 | | | 77.96 174 | 75.33 190 | 85.87 79 | 93.73 52 | 64.52 160 | 94.85 42 | 85.36 297 | 62.52 283 | 76.11 130 | 90.18 154 | 29.43 329 | 97.29 68 | 68.51 192 | 77.24 187 | 95.81 43 |
|
mvs_anonymous | | | 81.36 113 | 79.99 122 | 85.46 92 | 90.39 131 | 68.40 68 | 86.88 267 | 90.61 186 | 74.41 114 | 70.31 196 | 84.67 220 | 63.79 80 | 92.32 257 | 73.13 144 | 85.70 123 | 95.67 44 |
|
MG-MVS | | | 87.11 28 | 86.27 35 | 89.62 7 | 97.79 1 | 76.27 4 | 94.96 41 | 94.49 36 | 78.74 64 | 83.87 59 | 92.94 102 | 64.34 73 | 96.94 92 | 75.19 131 | 94.09 34 | 95.66 45 |
|
PAPR | | | 85.15 52 | 84.47 56 | 87.18 40 | 96.02 25 | 68.29 71 | 91.85 146 | 93.00 93 | 76.59 92 | 79.03 100 | 95.00 50 | 61.59 104 | 97.61 52 | 78.16 115 | 89.00 97 | 95.63 46 |
|
VDD-MVS | | | 83.06 87 | 81.81 97 | 86.81 51 | 90.86 123 | 67.70 87 | 95.40 27 | 91.50 154 | 75.46 102 | 81.78 71 | 92.34 118 | 40.09 278 | 97.13 77 | 86.85 49 | 82.04 146 | 95.60 47 |
|
casdiffmvs_mvg |  | | 85.66 47 | 85.18 49 | 87.09 43 | 88.22 182 | 69.35 48 | 93.74 75 | 91.89 134 | 81.47 26 | 80.10 87 | 91.45 131 | 64.80 68 | 96.35 108 | 87.23 45 | 87.69 106 | 95.58 48 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
Effi-MVS+ | | | 83.82 75 | 82.76 83 | 86.99 47 | 89.56 146 | 69.40 44 | 91.35 169 | 86.12 291 | 72.59 151 | 83.22 62 | 92.81 108 | 59.60 124 | 96.01 123 | 81.76 85 | 87.80 105 | 95.56 49 |
|
TSAR-MVS + MP. | | | 88.11 17 | 88.64 15 | 86.54 61 | 91.73 102 | 68.04 79 | 90.36 201 | 93.55 70 | 82.89 14 | 91.29 12 | 92.89 104 | 72.27 30 | 96.03 121 | 87.99 35 | 94.77 24 | 95.54 50 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
SteuartSystems-ACMMP | | | 86.82 33 | 86.90 31 | 86.58 59 | 90.42 129 | 66.38 120 | 96.09 15 | 93.87 55 | 77.73 76 | 84.01 58 | 95.66 31 | 63.39 87 | 97.94 37 | 87.40 42 | 93.55 46 | 95.42 51 |
Skip Steuart: Steuart Systems R&D Blog. |
CS-MVS-test | | | 86.14 40 | 87.01 29 | 83.52 147 | 92.63 80 | 59.36 267 | 95.49 25 | 91.92 131 | 80.09 39 | 85.46 45 | 95.53 35 | 61.82 103 | 95.77 129 | 86.77 50 | 93.37 48 | 95.41 52 |
|
casdiffmvs |  | | 85.37 49 | 84.87 55 | 86.84 49 | 88.25 180 | 69.07 53 | 93.04 97 | 91.76 141 | 81.27 30 | 80.84 82 | 92.07 122 | 64.23 74 | 96.06 119 | 84.98 62 | 87.43 109 | 95.39 53 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
EIA-MVS | | | 84.84 56 | 84.88 54 | 84.69 116 | 91.30 114 | 62.36 214 | 93.85 68 | 92.04 126 | 79.45 47 | 79.33 97 | 94.28 76 | 62.42 96 | 96.35 108 | 80.05 98 | 91.25 79 | 95.38 54 |
|
CS-MVS | | | 85.80 45 | 86.65 34 | 83.27 155 | 92.00 94 | 58.92 272 | 95.31 29 | 91.86 136 | 79.97 40 | 84.82 50 | 95.40 36 | 62.26 97 | 95.51 147 | 86.11 54 | 92.08 64 | 95.37 55 |
|
GG-mvs-BLEND | | | | | 86.53 62 | 91.91 98 | 69.67 43 | 75.02 334 | 94.75 26 | | 78.67 108 | 90.85 141 | 77.91 7 | 94.56 178 | 72.25 155 | 93.74 41 | 95.36 56 |
|
agg_prior2 | | | | | | | | | | | | | | | 86.41 51 | 94.75 28 | 95.33 57 |
|
3Dnovator+ | | 73.60 7 | 82.10 104 | 80.60 114 | 86.60 57 | 90.89 122 | 66.80 111 | 95.20 32 | 93.44 76 | 74.05 121 | 67.42 235 | 92.49 113 | 49.46 226 | 97.65 49 | 70.80 168 | 91.68 70 | 95.33 57 |
|
baseline | | | 85.01 54 | 84.44 57 | 86.71 54 | 88.33 177 | 68.73 61 | 90.24 206 | 91.82 140 | 81.05 33 | 81.18 76 | 92.50 111 | 63.69 82 | 96.08 118 | 84.45 67 | 86.71 117 | 95.32 59 |
|
ab-mvs | | | 80.18 132 | 78.31 146 | 85.80 83 | 88.44 172 | 65.49 144 | 83.00 293 | 92.67 103 | 71.82 178 | 77.36 119 | 85.01 215 | 54.50 178 | 96.59 101 | 76.35 125 | 75.63 197 | 95.32 59 |
|
test9_res | | | | | | | | | | | | | | | 89.41 24 | 94.96 17 | 95.29 61 |
|
EPNet | | | 87.84 21 | 88.38 16 | 86.23 71 | 93.30 60 | 66.05 127 | 95.26 30 | 94.84 22 | 87.09 3 | 88.06 25 | 94.53 63 | 66.79 49 | 97.34 65 | 83.89 72 | 91.68 70 | 95.29 61 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
SF-MVS | | | 87.03 29 | 87.09 28 | 86.84 49 | 92.70 77 | 67.45 95 | 93.64 77 | 93.76 60 | 70.78 207 | 86.25 34 | 96.44 19 | 66.98 47 | 97.79 43 | 88.68 33 | 94.56 30 | 95.28 63 |
|
VDDNet | | | 80.50 127 | 78.26 147 | 87.21 39 | 86.19 218 | 69.79 38 | 94.48 46 | 91.31 160 | 60.42 298 | 79.34 96 | 90.91 140 | 38.48 286 | 96.56 104 | 82.16 81 | 81.05 154 | 95.27 64 |
|
MVSFormer | | | 83.75 77 | 82.88 81 | 86.37 67 | 89.24 155 | 71.18 19 | 89.07 234 | 90.69 181 | 65.80 255 | 87.13 29 | 94.34 73 | 64.99 64 | 92.67 242 | 72.83 147 | 91.80 68 | 95.27 64 |
|
jason | | | 86.40 35 | 86.17 38 | 87.11 42 | 86.16 219 | 70.54 26 | 95.71 22 | 92.19 122 | 82.00 23 | 84.58 52 | 94.34 73 | 61.86 101 | 95.53 146 | 87.76 37 | 90.89 82 | 95.27 64 |
jason: jason. |
train_agg | | | 87.21 27 | 87.42 26 | 86.60 57 | 94.18 41 | 67.28 97 | 94.16 51 | 93.51 71 | 71.87 175 | 85.52 43 | 95.33 38 | 68.19 39 | 97.27 72 | 89.09 29 | 94.90 20 | 95.25 67 |
|
MVS_Test | | | 84.16 69 | 83.20 74 | 87.05 45 | 91.56 107 | 69.82 37 | 89.99 215 | 92.05 125 | 77.77 75 | 82.84 64 | 86.57 199 | 63.93 78 | 96.09 116 | 74.91 136 | 89.18 96 | 95.25 67 |
|
3Dnovator | | 73.91 6 | 82.69 95 | 80.82 109 | 88.31 21 | 89.57 145 | 71.26 18 | 92.60 115 | 94.39 43 | 78.84 61 | 67.89 229 | 92.48 114 | 48.42 236 | 98.52 26 | 68.80 190 | 94.40 32 | 95.15 69 |
|
Patchmatch-test | | | 65.86 291 | 60.94 304 | 80.62 217 | 83.75 256 | 58.83 273 | 58.91 360 | 75.26 339 | 44.50 351 | 50.95 330 | 77.09 306 | 58.81 133 | 87.90 308 | 35.13 349 | 64.03 278 | 95.12 70 |
|
APD-MVS |  | | 85.93 43 | 85.99 40 | 85.76 85 | 95.98 26 | 65.21 148 | 93.59 80 | 92.58 109 | 66.54 250 | 86.17 36 | 95.88 28 | 63.83 79 | 97.00 84 | 86.39 52 | 92.94 53 | 95.06 71 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
gg-mvs-nofinetune | | | 77.18 185 | 74.31 203 | 85.80 83 | 91.42 111 | 68.36 69 | 71.78 336 | 94.72 27 | 49.61 339 | 77.12 122 | 45.92 360 | 77.41 8 | 93.98 205 | 67.62 200 | 93.16 51 | 95.05 72 |
|
test_prior | | | | | 86.42 65 | 94.71 35 | 67.35 96 | | 93.10 90 | | | | | 96.84 96 | | | 95.05 72 |
|
Patchmatch-RL test | | | 68.17 277 | 64.49 286 | 79.19 247 | 71.22 341 | 53.93 310 | 70.07 341 | 71.54 349 | 69.22 226 | 56.79 309 | 62.89 349 | 56.58 158 | 88.61 299 | 69.53 181 | 52.61 332 | 95.03 74 |
|
CHOSEN 1792x2688 | | | 84.98 55 | 83.45 67 | 89.57 10 | 89.94 138 | 75.14 5 | 92.07 134 | 92.32 114 | 81.87 24 | 75.68 134 | 88.27 178 | 60.18 116 | 98.60 25 | 80.46 97 | 90.27 89 | 94.96 75 |
|
ACMMP_NAP | | | 86.05 41 | 85.80 43 | 86.80 52 | 91.58 106 | 67.53 92 | 91.79 148 | 93.49 74 | 74.93 110 | 84.61 51 | 95.30 40 | 59.42 126 | 97.92 38 | 86.13 53 | 94.92 18 | 94.94 76 |
|
test2506 | | | 83.29 82 | 82.92 80 | 84.37 126 | 88.39 175 | 63.18 198 | 92.01 137 | 91.35 159 | 77.66 78 | 78.49 109 | 91.42 132 | 64.58 71 | 95.09 157 | 73.19 143 | 89.23 94 | 94.85 77 |
|
ECVR-MVS |  | | 81.29 114 | 80.38 118 | 84.01 136 | 88.39 175 | 61.96 221 | 92.56 120 | 86.79 283 | 77.66 78 | 76.63 126 | 91.42 132 | 46.34 252 | 95.24 155 | 74.36 140 | 89.23 94 | 94.85 77 |
|
PAPM_NR | | | 82.97 89 | 81.84 96 | 86.37 67 | 94.10 44 | 66.76 112 | 87.66 255 | 92.84 97 | 69.96 217 | 74.07 153 | 93.57 91 | 63.10 92 | 97.50 56 | 70.66 171 | 90.58 86 | 94.85 77 |
|
CDPH-MVS | | | 85.71 46 | 85.46 46 | 86.46 63 | 94.75 34 | 67.19 99 | 93.89 66 | 92.83 98 | 70.90 203 | 83.09 63 | 95.28 41 | 63.62 83 | 97.36 63 | 80.63 95 | 94.18 33 | 94.84 80 |
|
test12 | | | | | 87.09 43 | 94.60 36 | 68.86 58 | | 92.91 95 | | 82.67 67 | | 65.44 61 | 97.55 54 | | 93.69 44 | 94.84 80 |
|
PatchmatchNet |  | | 77.46 181 | 74.63 196 | 85.96 76 | 89.55 147 | 70.35 28 | 79.97 317 | 89.55 224 | 72.23 163 | 70.94 188 | 76.91 308 | 57.03 147 | 92.79 237 | 54.27 280 | 81.17 153 | 94.74 82 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
EPMVS | | | 78.49 166 | 75.98 182 | 86.02 74 | 91.21 116 | 69.68 42 | 80.23 313 | 91.20 164 | 75.25 106 | 72.48 171 | 78.11 297 | 54.65 177 | 93.69 214 | 57.66 269 | 83.04 139 | 94.69 83 |
|
GSMVS | | | | | | | | | | | | | | | | | 94.68 84 |
|
sam_mvs1 | | | | | | | | | | | | | 57.85 139 | | | | 94.68 84 |
|
SCA | | | 75.82 207 | 72.76 224 | 85.01 105 | 86.63 210 | 70.08 30 | 81.06 306 | 89.19 236 | 71.60 188 | 70.01 199 | 77.09 306 | 45.53 259 | 90.25 285 | 60.43 255 | 73.27 210 | 94.68 84 |
|
Vis-MVSNet |  | | 80.92 122 | 79.98 123 | 83.74 140 | 88.48 170 | 61.80 223 | 93.44 86 | 88.26 269 | 73.96 125 | 77.73 114 | 91.76 126 | 49.94 222 | 94.76 165 | 65.84 218 | 90.37 88 | 94.65 87 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
旧先验1 | | | | | | 91.94 95 | 60.74 245 | | 91.50 154 | | | 94.36 68 | 65.23 62 | | | 91.84 67 | 94.55 88 |
|
sss | | | 82.71 94 | 82.38 91 | 83.73 142 | 89.25 154 | 59.58 262 | 92.24 126 | 94.89 21 | 77.96 71 | 79.86 90 | 92.38 116 | 56.70 155 | 97.05 79 | 77.26 120 | 80.86 156 | 94.55 88 |
|
xiu_mvs_v2_base | | | 87.92 20 | 87.38 27 | 89.55 11 | 91.41 113 | 76.43 3 | 95.74 19 | 93.12 89 | 83.53 13 | 89.55 20 | 95.95 27 | 53.45 195 | 97.68 45 | 91.07 18 | 92.62 56 | 94.54 90 |
|
PS-MVSNAJ | | | 88.14 15 | 87.61 23 | 89.71 6 | 92.06 90 | 76.72 1 | 95.75 18 | 93.26 81 | 83.86 11 | 89.55 20 | 96.06 26 | 53.55 191 | 97.89 40 | 91.10 17 | 93.31 49 | 94.54 90 |
|
test1111 | | | 80.84 123 | 80.02 120 | 83.33 153 | 87.87 191 | 60.76 243 | 92.62 114 | 86.86 282 | 77.86 74 | 75.73 133 | 91.39 134 | 46.35 251 | 94.70 171 | 72.79 149 | 88.68 100 | 94.52 92 |
|
ZNCC-MVS | | | 85.33 50 | 85.08 51 | 86.06 73 | 93.09 68 | 65.65 137 | 93.89 66 | 93.41 78 | 73.75 130 | 79.94 89 | 94.68 61 | 60.61 113 | 98.03 36 | 82.63 79 | 93.72 42 | 94.52 92 |
|
MAR-MVS | | | 84.18 68 | 83.43 68 | 86.44 64 | 96.25 21 | 65.93 132 | 94.28 49 | 94.27 48 | 74.41 114 | 79.16 99 | 95.61 33 | 53.99 186 | 98.88 20 | 69.62 180 | 93.26 50 | 94.50 94 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
HFP-MVS | | | 84.73 57 | 84.40 58 | 85.72 86 | 93.75 51 | 65.01 154 | 93.50 84 | 93.19 85 | 72.19 164 | 79.22 98 | 94.93 53 | 59.04 131 | 97.67 46 | 81.55 86 | 92.21 60 | 94.49 95 |
|
ETV-MVS | | | 86.01 42 | 86.11 39 | 85.70 87 | 90.21 134 | 67.02 106 | 93.43 87 | 91.92 131 | 81.21 31 | 84.13 57 | 94.07 82 | 60.93 110 | 95.63 137 | 89.28 27 | 89.81 90 | 94.46 96 |
|
diffmvs |  | | 84.28 64 | 83.83 62 | 85.61 89 | 87.40 199 | 68.02 80 | 90.88 186 | 89.24 233 | 80.54 36 | 81.64 72 | 92.52 110 | 59.83 121 | 94.52 181 | 87.32 43 | 85.11 126 | 94.29 97 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
region2R | | | 84.36 62 | 84.03 61 | 85.36 96 | 93.54 55 | 64.31 172 | 93.43 87 | 92.95 94 | 72.16 167 | 78.86 105 | 94.84 57 | 56.97 151 | 97.53 55 | 81.38 90 | 92.11 63 | 94.24 98 |
|
MTAPA | | | 83.91 73 | 83.38 72 | 85.50 91 | 91.89 99 | 65.16 150 | 81.75 298 | 92.23 117 | 75.32 105 | 80.53 84 | 95.21 47 | 56.06 164 | 97.16 76 | 84.86 64 | 92.55 58 | 94.18 99 |
|
PMMVS | | | 81.98 106 | 82.04 94 | 81.78 191 | 89.76 142 | 56.17 298 | 91.13 179 | 90.69 181 | 77.96 71 | 80.09 88 | 93.57 91 | 46.33 253 | 94.99 159 | 81.41 89 | 87.46 108 | 94.17 100 |
|
CostFormer | | | 82.33 98 | 81.15 102 | 85.86 80 | 89.01 160 | 68.46 67 | 82.39 296 | 93.01 91 | 75.59 100 | 80.25 86 | 81.57 257 | 72.03 32 | 94.96 160 | 79.06 107 | 77.48 183 | 94.16 101 |
|
MVS_111021_HR | | | 86.19 39 | 85.80 43 | 87.37 36 | 93.17 65 | 69.79 38 | 93.99 60 | 93.76 60 | 79.08 57 | 78.88 104 | 93.99 83 | 62.25 98 | 98.15 34 | 85.93 56 | 91.15 80 | 94.15 102 |
|
PVSNet_Blended | | | 86.73 34 | 86.86 32 | 86.31 70 | 93.76 49 | 67.53 92 | 96.33 14 | 93.61 67 | 82.34 20 | 81.00 80 | 93.08 98 | 63.19 90 | 97.29 68 | 87.08 46 | 91.38 76 | 94.13 103 |
|
1112_ss | | | 80.56 126 | 79.83 125 | 82.77 163 | 88.65 167 | 60.78 241 | 92.29 124 | 88.36 264 | 72.58 152 | 72.46 172 | 94.95 51 | 65.09 63 | 93.42 220 | 66.38 212 | 77.71 177 | 94.10 104 |
|
IB-MVS | | 77.80 4 | 82.18 100 | 80.46 117 | 87.35 37 | 89.14 157 | 70.28 29 | 95.59 24 | 95.17 15 | 78.85 60 | 70.19 197 | 85.82 209 | 70.66 35 | 97.67 46 | 72.19 158 | 66.52 258 | 94.09 105 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
PAPM | | | 85.89 44 | 85.46 46 | 87.18 40 | 88.20 183 | 72.42 13 | 92.41 122 | 92.77 99 | 82.11 22 | 80.34 85 | 93.07 99 | 68.27 38 | 95.02 158 | 78.39 114 | 93.59 45 | 94.09 105 |
|
MP-MVS-pluss | | | 85.24 51 | 85.13 50 | 85.56 90 | 91.42 111 | 65.59 139 | 91.54 158 | 92.51 111 | 74.56 113 | 80.62 83 | 95.64 32 | 59.15 130 | 97.00 84 | 86.94 48 | 93.80 39 | 94.07 107 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
MP-MVS |  | | 85.02 53 | 84.97 53 | 85.17 102 | 92.60 81 | 64.27 174 | 93.24 90 | 92.27 116 | 73.13 141 | 79.63 93 | 94.43 66 | 61.90 100 | 97.17 75 | 85.00 61 | 92.56 57 | 94.06 108 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
DeepC-MVS | | 77.85 3 | 85.52 48 | 85.24 48 | 86.37 67 | 88.80 165 | 66.64 114 | 92.15 128 | 93.68 65 | 81.07 32 | 76.91 125 | 93.64 89 | 62.59 95 | 98.44 29 | 85.50 57 | 92.84 55 | 94.03 109 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ACMMPR | | | 84.37 61 | 84.06 60 | 85.28 98 | 93.56 54 | 64.37 170 | 93.50 84 | 93.15 87 | 72.19 164 | 78.85 106 | 94.86 56 | 56.69 156 | 97.45 57 | 81.55 86 | 92.20 61 | 94.02 110 |
|
æ— å…ˆéªŒ | | | | | | | | 92.71 108 | 92.61 108 | 62.03 287 | | | | 97.01 83 | 66.63 207 | | 93.97 111 |
|
XVS | | | 83.87 74 | 83.47 66 | 85.05 103 | 93.22 61 | 63.78 182 | 92.92 102 | 92.66 104 | 73.99 122 | 78.18 110 | 94.31 75 | 55.25 169 | 97.41 60 | 79.16 105 | 91.58 72 | 93.95 112 |
|
X-MVStestdata | | | 76.86 187 | 74.13 207 | 85.05 103 | 93.22 61 | 63.78 182 | 92.92 102 | 92.66 104 | 73.99 122 | 78.18 110 | 10.19 375 | 55.25 169 | 97.41 60 | 79.16 105 | 91.58 72 | 93.95 112 |
|
h-mvs33 | | | 83.01 88 | 82.56 88 | 84.35 127 | 89.34 150 | 62.02 219 | 92.72 107 | 93.76 60 | 81.45 27 | 82.73 65 | 92.25 120 | 60.11 117 | 97.13 77 | 87.69 38 | 62.96 283 | 93.91 114 |
|
CP-MVS | | | 83.71 78 | 83.40 71 | 84.65 117 | 93.14 66 | 63.84 180 | 94.59 45 | 92.28 115 | 71.03 201 | 77.41 118 | 94.92 54 | 55.21 172 | 96.19 112 | 81.32 91 | 90.70 84 | 93.91 114 |
|
PVSNet | | 73.49 8 | 80.05 135 | 78.63 142 | 84.31 128 | 90.92 121 | 64.97 155 | 92.47 121 | 91.05 175 | 79.18 53 | 72.43 173 | 90.51 146 | 37.05 302 | 94.06 198 | 68.06 194 | 86.00 122 | 93.90 116 |
|
GST-MVS | | | 84.63 59 | 84.29 59 | 85.66 88 | 92.82 73 | 65.27 146 | 93.04 97 | 93.13 88 | 73.20 139 | 78.89 101 | 94.18 79 | 59.41 127 | 97.85 42 | 81.45 88 | 92.48 59 | 93.86 117 |
|
Test_1112_low_res | | | 79.56 143 | 78.60 143 | 82.43 171 | 88.24 181 | 60.39 251 | 92.09 132 | 87.99 273 | 72.10 168 | 71.84 179 | 87.42 192 | 64.62 70 | 93.04 224 | 65.80 219 | 77.30 185 | 93.85 118 |
|
GeoE | | | 78.90 155 | 77.43 160 | 83.29 154 | 88.95 161 | 62.02 219 | 92.31 123 | 86.23 289 | 70.24 214 | 71.34 187 | 89.27 164 | 54.43 182 | 94.04 201 | 63.31 237 | 80.81 158 | 93.81 119 |
|
thisisatest0515 | | | 83.41 80 | 82.49 89 | 86.16 72 | 89.46 149 | 68.26 73 | 93.54 82 | 94.70 28 | 74.31 117 | 75.75 132 | 90.92 139 | 72.62 28 | 96.52 106 | 69.64 178 | 81.50 151 | 93.71 120 |
|
HyFIR lowres test | | | 81.03 120 | 79.56 129 | 85.43 93 | 87.81 192 | 68.11 78 | 90.18 207 | 90.01 210 | 70.65 209 | 72.95 162 | 86.06 207 | 63.61 84 | 94.50 182 | 75.01 134 | 79.75 162 | 93.67 121 |
|
CANet_DTU | | | 84.09 70 | 83.52 64 | 85.81 82 | 90.30 132 | 66.82 109 | 91.87 144 | 89.01 246 | 85.27 7 | 86.09 37 | 93.74 87 | 47.71 244 | 96.98 88 | 77.90 117 | 89.78 92 | 93.65 122 |
|
mPP-MVS | | | 82.96 90 | 82.44 90 | 84.52 121 | 92.83 71 | 62.92 205 | 92.76 105 | 91.85 138 | 71.52 191 | 75.61 137 | 94.24 77 | 53.48 194 | 96.99 87 | 78.97 108 | 90.73 83 | 93.64 123 |
|
tpmrst | | | 80.57 125 | 79.14 139 | 84.84 110 | 90.10 135 | 68.28 72 | 81.70 299 | 89.72 221 | 77.63 80 | 75.96 131 | 79.54 289 | 64.94 66 | 92.71 239 | 75.43 129 | 77.28 186 | 93.55 124 |
|
tpm2 | | | 79.80 140 | 77.95 153 | 85.34 97 | 88.28 178 | 68.26 73 | 81.56 301 | 91.42 157 | 70.11 215 | 77.59 117 | 80.50 275 | 67.40 45 | 94.26 190 | 67.34 202 | 77.35 184 | 93.51 125 |
|
SR-MVS | | | 82.81 91 | 82.58 87 | 83.50 150 | 93.35 58 | 61.16 235 | 92.23 127 | 91.28 163 | 64.48 264 | 81.27 74 | 95.28 41 | 53.71 190 | 95.86 125 | 82.87 77 | 88.77 99 | 93.49 126 |
|
FA-MVS(test-final) | | | 79.12 150 | 77.23 166 | 84.81 112 | 90.54 127 | 63.98 179 | 81.35 304 | 91.71 144 | 71.09 200 | 74.85 144 | 82.94 238 | 52.85 198 | 97.05 79 | 67.97 195 | 81.73 150 | 93.41 127 |
|
PGM-MVS | | | 83.25 84 | 82.70 85 | 84.92 107 | 92.81 75 | 64.07 177 | 90.44 197 | 92.20 121 | 71.28 195 | 77.23 121 | 94.43 66 | 55.17 173 | 97.31 67 | 79.33 104 | 91.38 76 | 93.37 128 |
|
æ–°å‡ ä½•1 | | | | | 84.73 114 | 92.32 84 | 64.28 173 | | 91.46 156 | 59.56 306 | 79.77 91 | 92.90 103 | 56.95 152 | 96.57 103 | 63.40 236 | 92.91 54 | 93.34 129 |
|
HPM-MVS |  | | 83.25 84 | 82.95 79 | 84.17 132 | 92.25 86 | 62.88 207 | 90.91 183 | 91.86 136 | 70.30 213 | 77.12 122 | 93.96 84 | 56.75 154 | 96.28 110 | 82.04 83 | 91.34 78 | 93.34 129 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
TESTMET0.1,1 | | | 82.41 97 | 81.98 95 | 83.72 143 | 88.08 184 | 63.74 184 | 92.70 109 | 93.77 59 | 79.30 50 | 77.61 116 | 87.57 190 | 58.19 137 | 94.08 196 | 73.91 142 | 86.68 118 | 93.33 131 |
|
IS-MVSNet | | | 80.14 133 | 79.41 133 | 82.33 175 | 87.91 189 | 60.08 256 | 91.97 141 | 88.27 267 | 72.90 147 | 71.44 186 | 91.73 128 | 61.44 105 | 93.66 215 | 62.47 245 | 86.53 119 | 93.24 132 |
|
1314 | | | 80.70 124 | 78.95 140 | 85.94 77 | 87.77 193 | 67.56 90 | 87.91 250 | 92.55 110 | 72.17 166 | 67.44 234 | 93.09 97 | 50.27 219 | 97.04 82 | 71.68 163 | 87.64 107 | 93.23 133 |
|
CDS-MVSNet | | | 81.43 112 | 80.74 110 | 83.52 147 | 86.26 217 | 64.45 164 | 92.09 132 | 90.65 185 | 75.83 99 | 73.95 155 | 89.81 161 | 63.97 77 | 92.91 232 | 71.27 164 | 82.82 141 | 93.20 134 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
Fast-Effi-MVS+ | | | 81.14 116 | 80.01 121 | 84.51 122 | 90.24 133 | 65.86 133 | 94.12 55 | 89.15 239 | 73.81 129 | 75.37 140 | 88.26 179 | 57.26 144 | 94.53 180 | 66.97 206 | 84.92 127 | 93.15 135 |
|
API-MVS | | | 82.28 99 | 80.53 115 | 87.54 33 | 96.13 22 | 70.59 25 | 93.63 78 | 91.04 176 | 65.72 257 | 75.45 139 | 92.83 107 | 56.11 163 | 98.89 19 | 64.10 232 | 89.75 93 | 93.15 135 |
|
test222 | | | | | | 89.77 141 | 61.60 228 | 89.55 222 | 89.42 228 | 56.83 319 | 77.28 120 | 92.43 115 | 52.76 199 | | | 91.14 81 | 93.09 137 |
|
TAMVS | | | 80.37 129 | 79.45 132 | 83.13 158 | 85.14 234 | 63.37 193 | 91.23 174 | 90.76 180 | 74.81 112 | 72.65 166 | 88.49 171 | 60.63 112 | 92.95 227 | 69.41 182 | 81.95 147 | 93.08 138 |
|
testdata | | | | | 81.34 200 | 89.02 159 | 57.72 284 | | 89.84 214 | 58.65 310 | 85.32 47 | 94.09 80 | 57.03 147 | 93.28 221 | 69.34 183 | 90.56 87 | 93.03 139 |
|
tpm | | | 78.58 164 | 77.03 168 | 83.22 156 | 85.94 224 | 64.56 159 | 83.21 290 | 91.14 169 | 78.31 67 | 73.67 157 | 79.68 287 | 64.01 76 | 92.09 262 | 66.07 216 | 71.26 228 | 93.03 139 |
|
GA-MVS | | | 78.33 169 | 76.23 179 | 84.65 117 | 83.65 258 | 66.30 123 | 91.44 159 | 90.14 204 | 76.01 97 | 70.32 195 | 84.02 228 | 42.50 271 | 94.72 168 | 70.98 166 | 77.00 188 | 92.94 141 |
|
BH-RMVSNet | | | 79.46 146 | 77.65 156 | 84.89 108 | 91.68 104 | 65.66 136 | 93.55 81 | 88.09 271 | 72.93 146 | 73.37 158 | 91.12 138 | 46.20 255 | 96.12 115 | 56.28 273 | 85.61 125 | 92.91 142 |
|
APD-MVS_3200maxsize | | | 81.64 110 | 81.32 101 | 82.59 169 | 92.36 83 | 58.74 274 | 91.39 165 | 91.01 177 | 63.35 273 | 79.72 92 | 94.62 62 | 51.82 205 | 96.14 114 | 79.71 99 | 87.93 104 | 92.89 143 |
|
DP-MVS Recon | | | 82.73 92 | 81.65 98 | 85.98 75 | 97.31 4 | 67.06 103 | 95.15 34 | 91.99 128 | 69.08 230 | 76.50 129 | 93.89 85 | 54.48 181 | 98.20 33 | 70.76 169 | 85.66 124 | 92.69 144 |
|
UGNet | | | 79.87 139 | 78.68 141 | 83.45 152 | 89.96 137 | 61.51 229 | 92.13 129 | 90.79 179 | 76.83 89 | 78.85 106 | 86.33 203 | 38.16 288 | 96.17 113 | 67.93 197 | 87.17 110 | 92.67 145 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
EPP-MVSNet | | | 81.79 108 | 81.52 99 | 82.61 168 | 88.77 166 | 60.21 254 | 93.02 99 | 93.66 66 | 68.52 236 | 72.90 163 | 90.39 149 | 72.19 31 | 94.96 160 | 74.93 135 | 79.29 166 | 92.67 145 |
|
PVSNet_Blended_VisFu | | | 83.97 72 | 83.50 65 | 85.39 95 | 90.02 136 | 66.59 117 | 93.77 73 | 91.73 142 | 77.43 84 | 77.08 124 | 89.81 161 | 63.77 81 | 96.97 89 | 79.67 100 | 88.21 102 | 92.60 147 |
|
MDTV_nov1_ep13_2view | | | | | | | 59.90 258 | 80.13 315 | | 67.65 242 | 72.79 164 | | 54.33 184 | | 59.83 259 | | 92.58 148 |
|
QAPM | | | 79.95 138 | 77.39 164 | 87.64 28 | 89.63 144 | 71.41 17 | 93.30 89 | 93.70 64 | 65.34 260 | 67.39 237 | 91.75 127 | 47.83 242 | 98.96 16 | 57.71 268 | 89.81 90 | 92.54 149 |
|
dp | | | 75.01 218 | 72.09 233 | 83.76 139 | 89.28 153 | 66.22 126 | 79.96 318 | 89.75 216 | 71.16 197 | 67.80 231 | 77.19 305 | 51.81 206 | 92.54 248 | 50.39 291 | 71.44 227 | 92.51 150 |
|
EPNet_dtu | | | 78.80 158 | 79.26 137 | 77.43 268 | 88.06 185 | 49.71 330 | 91.96 142 | 91.95 130 | 77.67 77 | 76.56 128 | 91.28 136 | 58.51 134 | 90.20 290 | 56.37 272 | 80.95 155 | 92.39 151 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Anonymous20240529 | | | 76.84 190 | 74.15 206 | 84.88 109 | 91.02 118 | 64.95 156 | 93.84 71 | 91.09 171 | 53.57 328 | 73.00 160 | 87.42 192 | 35.91 306 | 97.32 66 | 69.14 186 | 72.41 220 | 92.36 152 |
|
Vis-MVSNet (Re-imp) | | | 79.24 148 | 79.57 128 | 78.24 260 | 88.46 171 | 52.29 317 | 90.41 199 | 89.12 241 | 74.24 118 | 69.13 207 | 91.91 124 | 65.77 58 | 90.09 292 | 59.00 264 | 88.09 103 | 92.33 153 |
|
原ACMM1 | | | | | 84.42 124 | 93.21 63 | 64.27 174 | | 93.40 79 | 65.39 258 | 79.51 94 | 92.50 111 | 58.11 138 | 96.69 99 | 65.27 226 | 93.96 36 | 92.32 154 |
|
TR-MVS | | | 78.77 160 | 77.37 165 | 82.95 160 | 90.49 128 | 60.88 239 | 93.67 76 | 90.07 206 | 70.08 216 | 74.51 147 | 91.37 135 | 45.69 258 | 95.70 136 | 60.12 258 | 80.32 159 | 92.29 155 |
|
SR-MVS-dyc-post | | | 81.06 119 | 80.70 111 | 82.15 182 | 92.02 91 | 58.56 276 | 90.90 184 | 90.45 187 | 62.76 280 | 78.89 101 | 94.46 64 | 51.26 212 | 95.61 139 | 78.77 111 | 86.77 115 | 92.28 156 |
|
RE-MVS-def | | | | 80.48 116 | | 92.02 91 | 58.56 276 | 90.90 184 | 90.45 187 | 62.76 280 | 78.89 101 | 94.46 64 | 49.30 228 | | 78.77 111 | 86.77 115 | 92.28 156 |
|
LCM-MVSNet-Re | | | 72.93 238 | 71.84 236 | 76.18 283 | 88.49 169 | 48.02 335 | 80.07 316 | 70.17 350 | 73.96 125 | 52.25 323 | 80.09 283 | 49.98 221 | 88.24 305 | 67.35 201 | 84.23 136 | 92.28 156 |
|
DROMVSNet | | | 84.53 60 | 85.04 52 | 83.01 159 | 89.34 150 | 61.37 232 | 94.42 47 | 91.09 171 | 77.91 73 | 83.24 61 | 94.20 78 | 58.37 135 | 95.40 148 | 85.35 58 | 91.41 75 | 92.27 159 |
|
MVS_111021_LR | | | 82.02 105 | 81.52 99 | 83.51 149 | 88.42 173 | 62.88 207 | 89.77 219 | 88.93 248 | 76.78 90 | 75.55 138 | 93.10 96 | 50.31 218 | 95.38 150 | 83.82 73 | 87.02 111 | 92.26 160 |
|
FE-MVS | | | 75.97 204 | 73.02 220 | 84.82 111 | 89.78 140 | 65.56 140 | 77.44 328 | 91.07 173 | 64.55 263 | 72.66 165 | 79.85 285 | 46.05 257 | 96.69 99 | 54.97 277 | 80.82 157 | 92.21 161 |
|
BH-w/o | | | 80.49 128 | 79.30 136 | 84.05 135 | 90.83 124 | 64.36 171 | 93.60 79 | 89.42 228 | 74.35 116 | 69.09 208 | 90.15 156 | 55.23 171 | 95.61 139 | 64.61 229 | 86.43 121 | 92.17 162 |
|
CVMVSNet | | | 74.04 227 | 74.27 204 | 73.33 303 | 85.33 230 | 43.94 351 | 89.53 224 | 88.39 263 | 54.33 327 | 70.37 194 | 90.13 157 | 49.17 231 | 84.05 330 | 61.83 249 | 79.36 164 | 91.99 163 |
|
tpm cat1 | | | 75.30 214 | 72.21 232 | 84.58 120 | 88.52 168 | 67.77 85 | 78.16 326 | 88.02 272 | 61.88 290 | 68.45 221 | 76.37 312 | 60.65 111 | 94.03 203 | 53.77 283 | 74.11 204 | 91.93 164 |
|
ACMMP |  | | 81.49 111 | 80.67 112 | 83.93 137 | 91.71 103 | 62.90 206 | 92.13 129 | 92.22 120 | 71.79 179 | 71.68 183 | 93.49 93 | 50.32 217 | 96.96 90 | 78.47 113 | 84.22 137 | 91.93 164 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
test-LLR | | | 80.10 134 | 79.56 129 | 81.72 193 | 86.93 208 | 61.17 233 | 92.70 109 | 91.54 151 | 71.51 192 | 75.62 135 | 86.94 196 | 53.83 187 | 92.38 253 | 72.21 156 | 84.76 130 | 91.60 166 |
|
test-mter | | | 79.96 137 | 79.38 135 | 81.72 193 | 86.93 208 | 61.17 233 | 92.70 109 | 91.54 151 | 73.85 127 | 75.62 135 | 86.94 196 | 49.84 224 | 92.38 253 | 72.21 156 | 84.76 130 | 91.60 166 |
|
thisisatest0530 | | | 81.15 115 | 80.07 119 | 84.39 125 | 88.26 179 | 65.63 138 | 91.40 163 | 94.62 32 | 71.27 196 | 70.93 189 | 89.18 165 | 72.47 29 | 96.04 120 | 65.62 221 | 76.89 189 | 91.49 168 |
|
AUN-MVS | | | 78.37 167 | 77.43 160 | 81.17 203 | 86.60 211 | 57.45 290 | 89.46 226 | 91.16 166 | 74.11 120 | 74.40 148 | 90.49 147 | 55.52 168 | 94.57 176 | 74.73 139 | 60.43 309 | 91.48 169 |
|
MIMVSNet | | | 71.64 249 | 68.44 261 | 81.23 202 | 81.97 274 | 64.44 165 | 73.05 335 | 88.80 252 | 69.67 221 | 64.59 258 | 74.79 320 | 32.79 315 | 87.82 310 | 53.99 281 | 76.35 193 | 91.42 170 |
|
hse-mvs2 | | | 81.12 118 | 81.11 106 | 81.16 204 | 86.52 212 | 57.48 289 | 89.40 227 | 91.16 166 | 81.45 27 | 82.73 65 | 90.49 147 | 60.11 117 | 94.58 174 | 87.69 38 | 60.41 310 | 91.41 171 |
|
xiu_mvs_v1_base_debu | | | 82.16 101 | 81.12 103 | 85.26 99 | 86.42 213 | 68.72 62 | 92.59 117 | 90.44 190 | 73.12 142 | 84.20 54 | 94.36 68 | 38.04 290 | 95.73 131 | 84.12 69 | 86.81 112 | 91.33 172 |
|
xiu_mvs_v1_base | | | 82.16 101 | 81.12 103 | 85.26 99 | 86.42 213 | 68.72 62 | 92.59 117 | 90.44 190 | 73.12 142 | 84.20 54 | 94.36 68 | 38.04 290 | 95.73 131 | 84.12 69 | 86.81 112 | 91.33 172 |
|
xiu_mvs_v1_base_debi | | | 82.16 101 | 81.12 103 | 85.26 99 | 86.42 213 | 68.72 62 | 92.59 117 | 90.44 190 | 73.12 142 | 84.20 54 | 94.36 68 | 38.04 290 | 95.73 131 | 84.12 69 | 86.81 112 | 91.33 172 |
|
BH-untuned | | | 78.68 161 | 77.08 167 | 83.48 151 | 89.84 139 | 63.74 184 | 92.70 109 | 88.59 260 | 71.57 189 | 66.83 244 | 88.65 170 | 51.75 207 | 95.39 149 | 59.03 263 | 84.77 129 | 91.32 175 |
|
HPM-MVS_fast | | | 80.25 131 | 79.55 131 | 82.33 175 | 91.55 108 | 59.95 257 | 91.32 171 | 89.16 238 | 65.23 261 | 74.71 146 | 93.07 99 | 47.81 243 | 95.74 130 | 74.87 138 | 88.23 101 | 91.31 176 |
|
baseline1 | | | 81.84 107 | 81.03 107 | 84.28 130 | 91.60 105 | 66.62 115 | 91.08 180 | 91.66 148 | 81.87 24 | 74.86 143 | 91.67 129 | 69.98 36 | 94.92 163 | 71.76 161 | 64.75 272 | 91.29 177 |
|
baseline2 | | | 83.68 79 | 83.42 70 | 84.48 123 | 87.37 200 | 66.00 129 | 90.06 210 | 95.93 7 | 79.71 45 | 69.08 209 | 90.39 149 | 77.92 6 | 96.28 110 | 78.91 109 | 81.38 152 | 91.16 178 |
|
TAPA-MVS | | 70.22 12 | 74.94 219 | 73.53 215 | 79.17 248 | 90.40 130 | 52.07 318 | 89.19 232 | 89.61 223 | 62.69 282 | 70.07 198 | 92.67 109 | 48.89 235 | 94.32 185 | 38.26 343 | 79.97 160 | 91.12 179 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
AdaColmap |  | | 78.94 154 | 77.00 170 | 84.76 113 | 96.34 17 | 65.86 133 | 92.66 113 | 87.97 274 | 62.18 285 | 70.56 190 | 92.37 117 | 43.53 267 | 97.35 64 | 64.50 230 | 82.86 140 | 91.05 180 |
|
OMC-MVS | | | 78.67 163 | 77.91 154 | 80.95 213 | 85.76 226 | 57.40 291 | 88.49 243 | 88.67 257 | 73.85 127 | 72.43 173 | 92.10 121 | 49.29 229 | 94.55 179 | 72.73 150 | 77.89 176 | 90.91 181 |
|
EI-MVSNet-Vis-set | | | 83.77 76 | 83.67 63 | 84.06 134 | 92.79 76 | 63.56 192 | 91.76 151 | 94.81 24 | 79.65 46 | 77.87 113 | 94.09 80 | 63.35 88 | 97.90 39 | 79.35 103 | 79.36 164 | 90.74 182 |
|
cascas | | | 78.18 170 | 75.77 185 | 85.41 94 | 87.14 204 | 69.11 51 | 92.96 100 | 91.15 168 | 66.71 249 | 70.47 191 | 86.07 206 | 37.49 296 | 96.48 107 | 70.15 174 | 79.80 161 | 90.65 183 |
|
CR-MVSNet | | | 73.79 231 | 70.82 244 | 82.70 165 | 83.15 263 | 67.96 81 | 70.25 339 | 84.00 309 | 73.67 134 | 69.97 201 | 72.41 327 | 57.82 140 | 89.48 296 | 52.99 286 | 73.13 211 | 90.64 184 |
|
RPMNet | | | 70.42 258 | 65.68 275 | 84.63 119 | 83.15 263 | 67.96 81 | 70.25 339 | 90.45 187 | 46.83 347 | 69.97 201 | 65.10 346 | 56.48 160 | 95.30 154 | 35.79 348 | 73.13 211 | 90.64 184 |
|
test_fmvs1 | | | 74.07 226 | 73.69 213 | 75.22 287 | 78.91 307 | 47.34 340 | 89.06 236 | 74.69 340 | 63.68 270 | 79.41 95 | 91.59 130 | 24.36 338 | 87.77 312 | 85.22 59 | 76.26 194 | 90.55 186 |
|
PCF-MVS | | 73.15 9 | 79.29 147 | 77.63 157 | 84.29 129 | 86.06 220 | 65.96 131 | 87.03 262 | 91.10 170 | 69.86 219 | 69.79 204 | 90.64 142 | 57.54 143 | 96.59 101 | 64.37 231 | 82.29 143 | 90.32 187 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
PVSNet_0 | | 68.08 15 | 71.81 248 | 68.32 263 | 82.27 177 | 84.68 240 | 62.31 216 | 88.68 240 | 90.31 196 | 75.84 98 | 57.93 305 | 80.65 274 | 37.85 293 | 94.19 192 | 69.94 176 | 29.05 367 | 90.31 188 |
|
tttt0517 | | | 79.50 144 | 78.53 144 | 82.41 174 | 87.22 202 | 61.43 231 | 89.75 220 | 94.76 25 | 69.29 225 | 67.91 227 | 88.06 184 | 72.92 25 | 95.63 137 | 62.91 241 | 73.90 208 | 90.16 189 |
|
CPTT-MVS | | | 79.59 142 | 79.16 138 | 80.89 215 | 91.54 109 | 59.80 259 | 92.10 131 | 88.54 262 | 60.42 298 | 72.96 161 | 93.28 95 | 48.27 237 | 92.80 236 | 78.89 110 | 86.50 120 | 90.06 190 |
|
EI-MVSNet-UG-set | | | 83.14 86 | 82.96 78 | 83.67 145 | 92.28 85 | 63.19 197 | 91.38 167 | 94.68 29 | 79.22 52 | 76.60 127 | 93.75 86 | 62.64 94 | 97.76 44 | 78.07 116 | 78.01 175 | 90.05 191 |
|
test_fmvs1_n | | | 72.69 245 | 71.92 235 | 74.99 290 | 71.15 342 | 47.08 342 | 87.34 260 | 75.67 335 | 63.48 272 | 78.08 112 | 91.17 137 | 20.16 350 | 87.87 309 | 84.65 65 | 75.57 198 | 90.01 192 |
|
test_vis1_n | | | 71.63 250 | 70.73 245 | 74.31 297 | 69.63 348 | 47.29 341 | 86.91 265 | 72.11 346 | 63.21 276 | 75.18 141 | 90.17 155 | 20.40 348 | 85.76 324 | 84.59 66 | 74.42 202 | 89.87 193 |
|
XVG-OURS-SEG-HR | | | 74.70 221 | 73.08 219 | 79.57 242 | 78.25 315 | 57.33 292 | 80.49 309 | 87.32 278 | 63.22 275 | 68.76 216 | 90.12 159 | 44.89 263 | 91.59 271 | 70.55 172 | 74.09 205 | 89.79 194 |
|
114514_t | | | 79.17 149 | 77.67 155 | 83.68 144 | 95.32 29 | 65.53 142 | 92.85 104 | 91.60 150 | 63.49 271 | 67.92 226 | 90.63 144 | 46.65 248 | 95.72 135 | 67.01 205 | 83.54 138 | 89.79 194 |
|
UA-Net | | | 80.02 136 | 79.65 127 | 81.11 206 | 89.33 152 | 57.72 284 | 86.33 270 | 89.00 247 | 77.44 83 | 81.01 79 | 89.15 166 | 59.33 128 | 95.90 124 | 61.01 252 | 84.28 135 | 89.73 196 |
|
XVG-OURS | | | 74.25 225 | 72.46 230 | 79.63 240 | 78.45 313 | 57.59 288 | 80.33 311 | 87.39 277 | 63.86 268 | 68.76 216 | 89.62 163 | 40.50 277 | 91.72 269 | 69.00 187 | 74.25 203 | 89.58 197 |
|
UniMVSNet_ETH3D | | | 72.74 242 | 70.53 247 | 79.36 245 | 78.62 312 | 56.64 296 | 85.01 274 | 89.20 235 | 63.77 269 | 64.84 257 | 84.44 224 | 34.05 311 | 91.86 266 | 63.94 233 | 70.89 230 | 89.57 198 |
|
thres200 | | | 79.66 141 | 78.33 145 | 83.66 146 | 92.54 82 | 65.82 135 | 93.06 95 | 96.31 3 | 74.90 111 | 73.30 159 | 88.66 169 | 59.67 123 | 95.61 139 | 47.84 306 | 78.67 171 | 89.56 199 |
|
OpenMVS |  | 70.45 11 | 78.54 165 | 75.92 183 | 86.41 66 | 85.93 225 | 71.68 16 | 92.74 106 | 92.51 111 | 66.49 251 | 64.56 260 | 91.96 123 | 43.88 266 | 98.10 35 | 54.61 278 | 90.65 85 | 89.44 200 |
|
CHOSEN 280x420 | | | 77.35 183 | 76.95 171 | 78.55 255 | 87.07 205 | 62.68 211 | 69.71 342 | 82.95 317 | 68.80 232 | 71.48 185 | 87.27 195 | 66.03 55 | 84.00 332 | 76.47 124 | 82.81 142 | 88.95 201 |
|
iter_conf_final | | | 81.74 109 | 80.93 108 | 84.18 131 | 92.66 79 | 69.10 52 | 92.94 101 | 82.80 319 | 79.01 59 | 74.85 144 | 88.40 174 | 61.83 102 | 94.61 172 | 79.36 102 | 76.52 192 | 88.83 202 |
|
thres100view900 | | | 78.37 167 | 77.01 169 | 82.46 170 | 91.89 99 | 63.21 196 | 91.19 178 | 96.33 1 | 72.28 162 | 70.45 193 | 87.89 186 | 60.31 114 | 95.32 151 | 45.16 317 | 77.58 180 | 88.83 202 |
|
tfpn200view9 | | | 78.79 159 | 77.43 160 | 82.88 161 | 92.21 88 | 64.49 161 | 92.05 135 | 96.28 4 | 73.48 136 | 71.75 181 | 88.26 179 | 60.07 119 | 95.32 151 | 45.16 317 | 77.58 180 | 88.83 202 |
|
nrg030 | | | 80.93 121 | 79.86 124 | 84.13 133 | 83.69 257 | 68.83 59 | 93.23 91 | 91.20 164 | 75.55 101 | 75.06 142 | 88.22 182 | 63.04 93 | 94.74 167 | 81.88 84 | 66.88 255 | 88.82 205 |
|
PatchT | | | 69.11 267 | 65.37 279 | 80.32 220 | 82.07 273 | 63.68 189 | 67.96 348 | 87.62 276 | 50.86 336 | 69.37 205 | 65.18 345 | 57.09 146 | 88.53 302 | 41.59 332 | 66.60 257 | 88.74 206 |
|
HQP4-MVS | | | | | | | | | | | 74.18 149 | | | 95.61 139 | | | 88.63 207 |
|
HQP-MVS | | | 81.14 116 | 80.64 113 | 82.64 167 | 87.54 195 | 63.66 190 | 94.06 56 | 91.70 146 | 79.80 42 | 74.18 149 | 90.30 151 | 51.63 209 | 95.61 139 | 77.63 118 | 78.90 168 | 88.63 207 |
|
tt0805 | | | 73.07 235 | 70.73 245 | 80.07 228 | 78.37 314 | 57.05 294 | 87.78 252 | 92.18 123 | 61.23 294 | 67.04 240 | 86.49 200 | 31.35 323 | 94.58 174 | 65.06 227 | 67.12 253 | 88.57 209 |
|
VPNet | | | 78.82 157 | 77.53 159 | 82.70 165 | 84.52 244 | 66.44 119 | 93.93 63 | 92.23 117 | 80.46 37 | 72.60 167 | 88.38 176 | 49.18 230 | 93.13 223 | 72.47 154 | 63.97 280 | 88.55 210 |
|
Effi-MVS+-dtu | | | 76.14 197 | 75.28 191 | 78.72 254 | 83.22 262 | 55.17 305 | 89.87 216 | 87.78 275 | 75.42 103 | 67.98 224 | 81.43 259 | 45.08 262 | 92.52 249 | 75.08 133 | 71.63 223 | 88.48 211 |
|
iter_conf05 | | | 83.27 83 | 82.70 85 | 84.98 106 | 93.32 59 | 71.84 15 | 94.16 51 | 81.76 321 | 82.74 16 | 73.83 156 | 88.40 174 | 72.77 27 | 94.61 172 | 82.10 82 | 75.21 199 | 88.48 211 |
|
CNLPA | | | 74.31 224 | 72.30 231 | 80.32 220 | 91.49 110 | 61.66 227 | 90.85 187 | 80.72 325 | 56.67 320 | 63.85 268 | 90.64 142 | 46.75 247 | 90.84 280 | 53.79 282 | 75.99 196 | 88.47 213 |
|
HQP_MVS | | | 80.34 130 | 79.75 126 | 82.12 184 | 86.94 206 | 62.42 212 | 93.13 93 | 91.31 160 | 78.81 62 | 72.53 169 | 89.14 167 | 50.66 215 | 95.55 144 | 76.74 121 | 78.53 173 | 88.39 214 |
|
plane_prior5 | | | | | | | | | 91.31 160 | | | | | 95.55 144 | 76.74 121 | 78.53 173 | 88.39 214 |
|
VPA-MVSNet | | | 79.03 151 | 78.00 151 | 82.11 187 | 85.95 222 | 64.48 163 | 93.22 92 | 94.66 30 | 75.05 109 | 74.04 154 | 84.95 216 | 52.17 204 | 93.52 217 | 74.90 137 | 67.04 254 | 88.32 216 |
|
CLD-MVS | | | 82.73 92 | 82.35 92 | 83.86 138 | 87.90 190 | 67.65 89 | 95.45 26 | 92.18 123 | 85.06 8 | 72.58 168 | 92.27 119 | 52.46 202 | 95.78 127 | 84.18 68 | 79.06 167 | 88.16 217 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
XXY-MVS | | | 77.94 175 | 76.44 176 | 82.43 171 | 82.60 268 | 64.44 165 | 92.01 137 | 91.83 139 | 73.59 135 | 70.00 200 | 85.82 209 | 54.43 182 | 94.76 165 | 69.63 179 | 68.02 248 | 88.10 218 |
|
FIs | | | 79.47 145 | 79.41 133 | 79.67 239 | 85.95 222 | 59.40 264 | 91.68 155 | 93.94 54 | 78.06 70 | 68.96 212 | 88.28 177 | 66.61 51 | 91.77 268 | 66.20 215 | 74.99 200 | 87.82 219 |
|
Fast-Effi-MVS+-dtu | | | 75.04 217 | 73.37 217 | 80.07 228 | 80.86 280 | 59.52 263 | 91.20 177 | 85.38 296 | 71.90 172 | 65.20 253 | 84.84 218 | 41.46 274 | 92.97 226 | 66.50 211 | 72.96 213 | 87.73 220 |
|
UniMVSNet_NR-MVSNet | | | 78.15 171 | 77.55 158 | 79.98 231 | 84.46 246 | 60.26 252 | 92.25 125 | 93.20 84 | 77.50 82 | 68.88 213 | 86.61 198 | 66.10 54 | 92.13 260 | 66.38 212 | 62.55 287 | 87.54 221 |
|
MVSTER | | | 82.47 96 | 82.05 93 | 83.74 140 | 92.68 78 | 69.01 55 | 91.90 143 | 93.21 82 | 79.83 41 | 72.14 176 | 85.71 211 | 74.72 16 | 94.72 168 | 75.72 127 | 72.49 218 | 87.50 222 |
|
thres600view7 | | | 78.00 172 | 76.66 174 | 82.03 189 | 91.93 96 | 63.69 188 | 91.30 172 | 96.33 1 | 72.43 157 | 70.46 192 | 87.89 186 | 60.31 114 | 94.92 163 | 42.64 329 | 76.64 190 | 87.48 223 |
|
thres400 | | | 78.68 161 | 77.43 160 | 82.43 171 | 92.21 88 | 64.49 161 | 92.05 135 | 96.28 4 | 73.48 136 | 71.75 181 | 88.26 179 | 60.07 119 | 95.32 151 | 45.16 317 | 77.58 180 | 87.48 223 |
|
TranMVSNet+NR-MVSNet | | | 75.86 206 | 74.52 200 | 79.89 234 | 82.44 269 | 60.64 248 | 91.37 168 | 91.37 158 | 76.63 91 | 67.65 232 | 86.21 205 | 52.37 203 | 91.55 272 | 61.84 248 | 60.81 305 | 87.48 223 |
|
FC-MVSNet-test | | | 77.99 173 | 78.08 150 | 77.70 263 | 84.89 239 | 55.51 303 | 90.27 204 | 93.75 63 | 76.87 86 | 66.80 245 | 87.59 189 | 65.71 59 | 90.23 289 | 62.89 242 | 73.94 206 | 87.37 226 |
|
mvsmamba | | | 76.85 189 | 75.71 187 | 80.25 224 | 83.07 265 | 59.16 269 | 91.44 159 | 80.64 326 | 76.84 88 | 67.95 225 | 86.33 203 | 46.17 256 | 94.24 191 | 76.06 126 | 72.92 214 | 87.36 227 |
|
DU-MVS | | | 76.86 187 | 75.84 184 | 79.91 233 | 82.96 266 | 60.26 252 | 91.26 173 | 91.54 151 | 76.46 94 | 68.88 213 | 86.35 201 | 56.16 161 | 92.13 260 | 66.38 212 | 62.55 287 | 87.35 228 |
|
NR-MVSNet | | | 76.05 201 | 74.59 197 | 80.44 218 | 82.96 266 | 62.18 218 | 90.83 188 | 91.73 142 | 77.12 85 | 60.96 286 | 86.35 201 | 59.28 129 | 91.80 267 | 60.74 253 | 61.34 302 | 87.35 228 |
|
FMVSNet3 | | | 77.73 178 | 76.04 181 | 82.80 162 | 91.20 117 | 68.99 56 | 91.87 144 | 91.99 128 | 73.35 138 | 67.04 240 | 83.19 237 | 56.62 157 | 92.14 259 | 59.80 260 | 69.34 237 | 87.28 230 |
|
PS-MVSNAJss | | | 77.26 184 | 76.31 178 | 80.13 227 | 80.64 284 | 59.16 269 | 90.63 196 | 91.06 174 | 72.80 148 | 68.58 219 | 84.57 222 | 53.55 191 | 93.96 206 | 72.97 145 | 71.96 222 | 87.27 231 |
|
mvsany_test1 | | | 68.77 271 | 68.56 259 | 69.39 322 | 73.57 335 | 45.88 347 | 80.93 307 | 60.88 363 | 59.65 305 | 71.56 184 | 90.26 153 | 43.22 269 | 75.05 353 | 74.26 141 | 62.70 286 | 87.25 232 |
|
FMVSNet2 | | | 76.07 198 | 74.01 209 | 82.26 179 | 88.85 162 | 67.66 88 | 91.33 170 | 91.61 149 | 70.84 204 | 65.98 248 | 82.25 246 | 48.03 238 | 92.00 264 | 58.46 265 | 68.73 243 | 87.10 233 |
|
ADS-MVSNet2 | | | 66.90 286 | 63.44 292 | 77.26 272 | 88.06 185 | 60.70 246 | 68.01 346 | 75.56 337 | 57.57 312 | 64.48 261 | 69.87 337 | 38.68 282 | 84.10 329 | 40.87 334 | 67.89 249 | 86.97 234 |
|
ADS-MVSNet | | | 68.54 274 | 64.38 288 | 81.03 211 | 88.06 185 | 66.90 108 | 68.01 346 | 84.02 308 | 57.57 312 | 64.48 261 | 69.87 337 | 38.68 282 | 89.21 298 | 40.87 334 | 67.89 249 | 86.97 234 |
|
WR-MVS | | | 76.76 192 | 75.74 186 | 79.82 236 | 84.60 242 | 62.27 217 | 92.60 115 | 92.51 111 | 76.06 96 | 67.87 230 | 85.34 212 | 56.76 153 | 90.24 288 | 62.20 246 | 63.69 282 | 86.94 236 |
|
DSMNet-mixed | | | 56.78 318 | 54.44 321 | 63.79 334 | 63.21 357 | 29.44 372 | 64.43 352 | 64.10 359 | 42.12 355 | 51.32 327 | 71.60 332 | 31.76 320 | 75.04 354 | 36.23 345 | 65.20 267 | 86.87 237 |
|
UniMVSNet (Re) | | | 77.58 180 | 76.78 172 | 79.98 231 | 84.11 252 | 60.80 240 | 91.76 151 | 93.17 86 | 76.56 93 | 69.93 203 | 84.78 219 | 63.32 89 | 92.36 255 | 64.89 228 | 62.51 289 | 86.78 238 |
|
GBi-Net | | | 75.65 209 | 73.83 211 | 81.10 207 | 88.85 162 | 65.11 151 | 90.01 212 | 90.32 193 | 70.84 204 | 67.04 240 | 80.25 280 | 48.03 238 | 91.54 273 | 59.80 260 | 69.34 237 | 86.64 239 |
|
test1 | | | 75.65 209 | 73.83 211 | 81.10 207 | 88.85 162 | 65.11 151 | 90.01 212 | 90.32 193 | 70.84 204 | 67.04 240 | 80.25 280 | 48.03 238 | 91.54 273 | 59.80 260 | 69.34 237 | 86.64 239 |
|
FMVSNet1 | | | 72.71 243 | 69.91 252 | 81.10 207 | 83.60 259 | 65.11 151 | 90.01 212 | 90.32 193 | 63.92 267 | 63.56 270 | 80.25 280 | 36.35 305 | 91.54 273 | 54.46 279 | 66.75 256 | 86.64 239 |
|
v2v482 | | | 77.42 182 | 75.65 188 | 82.73 164 | 80.38 286 | 67.13 102 | 91.85 146 | 90.23 201 | 75.09 108 | 69.37 205 | 83.39 235 | 53.79 189 | 94.44 183 | 71.77 160 | 65.00 269 | 86.63 242 |
|
miper_enhance_ethall | | | 78.86 156 | 77.97 152 | 81.54 196 | 88.00 188 | 65.17 149 | 91.41 161 | 89.15 239 | 75.19 107 | 68.79 215 | 83.98 229 | 67.17 46 | 92.82 234 | 72.73 150 | 65.30 263 | 86.62 243 |
|
cl22 | | | 77.94 175 | 76.78 172 | 81.42 198 | 87.57 194 | 64.93 157 | 90.67 192 | 88.86 251 | 72.45 156 | 67.63 233 | 82.68 242 | 64.07 75 | 92.91 232 | 71.79 159 | 65.30 263 | 86.44 244 |
|
PLC |  | 68.80 14 | 75.23 215 | 73.68 214 | 79.86 235 | 92.93 70 | 58.68 275 | 90.64 194 | 88.30 265 | 60.90 295 | 64.43 264 | 90.53 145 | 42.38 272 | 94.57 176 | 56.52 271 | 76.54 191 | 86.33 245 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
EI-MVSNet | | | 78.97 153 | 78.22 148 | 81.25 201 | 85.33 230 | 62.73 210 | 89.53 224 | 93.21 82 | 72.39 159 | 72.14 176 | 90.13 157 | 60.99 108 | 94.72 168 | 67.73 199 | 72.49 218 | 86.29 246 |
|
IterMVS-LS | | | 76.49 194 | 75.18 192 | 80.43 219 | 84.49 245 | 62.74 209 | 90.64 194 | 88.80 252 | 72.40 158 | 65.16 254 | 81.72 253 | 60.98 109 | 92.27 258 | 67.74 198 | 64.65 274 | 86.29 246 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
miper_ehance_all_eth | | | 77.60 179 | 76.44 176 | 81.09 210 | 85.70 227 | 64.41 168 | 90.65 193 | 88.64 259 | 72.31 160 | 67.37 238 | 82.52 243 | 64.77 69 | 92.64 246 | 70.67 170 | 65.30 263 | 86.24 248 |
|
RRT_MVS | | | 74.44 222 | 72.97 222 | 78.84 253 | 82.36 270 | 57.66 286 | 89.83 218 | 88.79 254 | 70.61 210 | 64.58 259 | 84.89 217 | 39.24 280 | 92.65 245 | 70.11 175 | 66.34 259 | 86.21 249 |
|
OPM-MVS | | | 79.00 152 | 78.09 149 | 81.73 192 | 83.52 260 | 63.83 181 | 91.64 157 | 90.30 197 | 76.36 95 | 71.97 178 | 89.93 160 | 46.30 254 | 95.17 156 | 75.10 132 | 77.70 178 | 86.19 250 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
DIV-MVS_self_test | | | 76.07 198 | 74.67 194 | 80.28 222 | 85.14 234 | 61.75 226 | 90.12 208 | 88.73 255 | 71.16 197 | 65.42 252 | 81.60 256 | 61.15 106 | 92.94 231 | 66.54 209 | 62.16 293 | 86.14 251 |
|
eth_miper_zixun_eth | | | 75.96 205 | 74.40 202 | 80.66 216 | 84.66 241 | 63.02 200 | 89.28 229 | 88.27 267 | 71.88 174 | 65.73 249 | 81.65 254 | 59.45 125 | 92.81 235 | 68.13 193 | 60.53 307 | 86.14 251 |
|
cl____ | | | 76.07 198 | 74.67 194 | 80.28 222 | 85.15 233 | 61.76 225 | 90.12 208 | 88.73 255 | 71.16 197 | 65.43 251 | 81.57 257 | 61.15 106 | 92.95 227 | 66.54 209 | 62.17 291 | 86.13 253 |
|
PatchMatch-RL | | | 72.06 247 | 69.98 249 | 78.28 258 | 89.51 148 | 55.70 302 | 83.49 283 | 83.39 315 | 61.24 293 | 63.72 269 | 82.76 240 | 34.77 309 | 93.03 225 | 53.37 285 | 77.59 179 | 86.12 254 |
|
c3_l | | | 76.83 191 | 75.47 189 | 80.93 214 | 85.02 237 | 64.18 176 | 90.39 200 | 88.11 270 | 71.66 182 | 66.65 246 | 81.64 255 | 63.58 86 | 92.56 247 | 69.31 184 | 62.86 284 | 86.04 255 |
|
RPSCF | | | 64.24 299 | 61.98 301 | 71.01 319 | 76.10 328 | 45.00 348 | 75.83 332 | 75.94 334 | 46.94 346 | 58.96 297 | 84.59 221 | 31.40 322 | 82.00 346 | 47.76 307 | 60.33 311 | 86.04 255 |
|
Anonymous20231211 | | | 73.08 234 | 70.39 248 | 81.13 205 | 90.62 126 | 63.33 194 | 91.40 163 | 90.06 208 | 51.84 333 | 64.46 263 | 80.67 273 | 36.49 304 | 94.07 197 | 63.83 234 | 64.17 277 | 85.98 257 |
|
v1192 | | | 75.98 203 | 73.92 210 | 82.15 182 | 79.73 293 | 66.24 125 | 91.22 175 | 89.75 216 | 72.67 150 | 68.49 220 | 81.42 260 | 49.86 223 | 94.27 188 | 67.08 204 | 65.02 268 | 85.95 258 |
|
JIA-IIPM | | | 66.06 290 | 62.45 298 | 76.88 278 | 81.42 278 | 54.45 309 | 57.49 361 | 88.67 257 | 49.36 340 | 63.86 267 | 46.86 359 | 56.06 164 | 90.25 285 | 49.53 296 | 68.83 241 | 85.95 258 |
|
v1921920 | | | 75.63 211 | 73.49 216 | 82.06 188 | 79.38 298 | 66.35 121 | 91.07 182 | 89.48 225 | 71.98 169 | 67.99 223 | 81.22 265 | 49.16 232 | 93.90 209 | 66.56 208 | 64.56 275 | 85.92 260 |
|
v1144 | | | 76.73 193 | 74.88 193 | 82.27 177 | 80.23 291 | 66.60 116 | 91.68 155 | 90.21 203 | 73.69 132 | 69.06 210 | 81.89 250 | 52.73 200 | 94.40 184 | 69.21 185 | 65.23 266 | 85.80 261 |
|
v144192 | | | 76.05 201 | 74.03 208 | 82.12 184 | 79.50 297 | 66.55 118 | 91.39 165 | 89.71 222 | 72.30 161 | 68.17 222 | 81.33 262 | 51.75 207 | 94.03 203 | 67.94 196 | 64.19 276 | 85.77 262 |
|
v1240 | | | 75.21 216 | 72.98 221 | 81.88 190 | 79.20 300 | 66.00 129 | 90.75 191 | 89.11 242 | 71.63 187 | 67.41 236 | 81.22 265 | 47.36 245 | 93.87 210 | 65.46 224 | 64.72 273 | 85.77 262 |
|
v148 | | | 76.19 196 | 74.47 201 | 81.36 199 | 80.05 292 | 64.44 165 | 91.75 153 | 90.23 201 | 73.68 133 | 67.13 239 | 80.84 270 | 55.92 166 | 93.86 212 | 68.95 188 | 61.73 298 | 85.76 264 |
|
test0.0.03 1 | | | 72.76 241 | 72.71 226 | 72.88 307 | 80.25 290 | 47.99 336 | 91.22 175 | 89.45 226 | 71.51 192 | 62.51 280 | 87.66 188 | 53.83 187 | 85.06 327 | 50.16 293 | 67.84 251 | 85.58 265 |
|
test_djsdf | | | 73.76 232 | 72.56 228 | 77.39 269 | 77.00 324 | 53.93 310 | 89.07 234 | 90.69 181 | 65.80 255 | 63.92 266 | 82.03 249 | 43.14 270 | 92.67 242 | 72.83 147 | 68.53 244 | 85.57 266 |
|
ACMM | | 69.62 13 | 74.34 223 | 72.73 225 | 79.17 248 | 84.25 251 | 57.87 282 | 90.36 201 | 89.93 211 | 63.17 277 | 65.64 250 | 86.04 208 | 37.79 294 | 94.10 194 | 65.89 217 | 71.52 225 | 85.55 267 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
pmmvs5 | | | 73.35 233 | 71.52 239 | 78.86 252 | 78.64 311 | 60.61 249 | 91.08 180 | 86.90 281 | 67.69 240 | 63.32 272 | 83.64 231 | 44.33 265 | 90.53 282 | 62.04 247 | 66.02 261 | 85.46 268 |
|
jajsoiax | | | 73.05 236 | 71.51 240 | 77.67 264 | 77.46 321 | 54.83 306 | 88.81 238 | 90.04 209 | 69.13 229 | 62.85 277 | 83.51 233 | 31.16 324 | 92.75 238 | 70.83 167 | 69.80 233 | 85.43 269 |
|
ACMP | | 71.68 10 | 75.58 212 | 74.23 205 | 79.62 241 | 84.97 238 | 59.64 260 | 90.80 189 | 89.07 244 | 70.39 212 | 62.95 275 | 87.30 194 | 38.28 287 | 93.87 210 | 72.89 146 | 71.45 226 | 85.36 270 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
mvs_tets | | | 72.71 243 | 71.11 241 | 77.52 265 | 77.41 322 | 54.52 308 | 88.45 244 | 89.76 215 | 68.76 234 | 62.70 278 | 83.26 236 | 29.49 328 | 92.71 239 | 70.51 173 | 69.62 235 | 85.34 271 |
|
tpmvs | | | 72.88 240 | 69.76 254 | 82.22 180 | 90.98 119 | 67.05 104 | 78.22 325 | 88.30 265 | 63.10 278 | 64.35 265 | 74.98 319 | 55.09 174 | 94.27 188 | 43.25 323 | 69.57 236 | 85.34 271 |
|
miper_lstm_enhance | | | 73.05 236 | 71.73 238 | 77.03 274 | 83.80 255 | 58.32 278 | 81.76 297 | 88.88 249 | 69.80 220 | 61.01 285 | 78.23 296 | 57.19 145 | 87.51 316 | 65.34 225 | 59.53 312 | 85.27 273 |
|
bld_raw_dy_0_64 | | | 71.59 251 | 69.71 255 | 77.22 273 | 77.82 320 | 58.12 280 | 87.71 254 | 73.66 342 | 68.01 238 | 61.90 284 | 84.29 226 | 33.68 312 | 88.43 303 | 69.91 177 | 70.43 231 | 85.11 274 |
|
LPG-MVS_test | | | 75.82 207 | 74.58 198 | 79.56 243 | 84.31 249 | 59.37 265 | 90.44 197 | 89.73 219 | 69.49 222 | 64.86 255 | 88.42 172 | 38.65 284 | 94.30 186 | 72.56 152 | 72.76 215 | 85.01 275 |
|
LGP-MVS_train | | | | | 79.56 243 | 84.31 249 | 59.37 265 | | 89.73 219 | 69.49 222 | 64.86 255 | 88.42 172 | 38.65 284 | 94.30 186 | 72.56 152 | 72.76 215 | 85.01 275 |
|
PVSNet_BlendedMVS | | | 83.38 81 | 83.43 68 | 83.22 156 | 93.76 49 | 67.53 92 | 94.06 56 | 93.61 67 | 79.13 55 | 81.00 80 | 85.14 214 | 63.19 90 | 97.29 68 | 87.08 46 | 73.91 207 | 84.83 277 |
|
V42 | | | 76.46 195 | 74.55 199 | 82.19 181 | 79.14 303 | 67.82 84 | 90.26 205 | 89.42 228 | 73.75 130 | 68.63 218 | 81.89 250 | 51.31 211 | 94.09 195 | 71.69 162 | 64.84 270 | 84.66 278 |
|
IterMVS | | | 72.65 246 | 70.83 243 | 78.09 261 | 82.17 271 | 62.96 202 | 87.64 256 | 86.28 287 | 71.56 190 | 60.44 288 | 78.85 292 | 45.42 261 | 86.66 320 | 63.30 238 | 61.83 295 | 84.65 279 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 71.55 252 | 69.97 250 | 76.32 281 | 81.48 276 | 60.67 247 | 87.64 256 | 85.99 292 | 66.17 253 | 59.50 292 | 78.88 291 | 45.53 259 | 83.65 334 | 62.58 244 | 61.93 294 | 84.63 280 |
|
pm-mvs1 | | | 72.89 239 | 71.09 242 | 78.26 259 | 79.10 304 | 57.62 287 | 90.80 189 | 89.30 231 | 67.66 241 | 62.91 276 | 81.78 252 | 49.11 233 | 92.95 227 | 60.29 257 | 58.89 315 | 84.22 281 |
|
pmmvs4 | | | 73.92 229 | 71.81 237 | 80.25 224 | 79.17 301 | 65.24 147 | 87.43 258 | 87.26 280 | 67.64 243 | 63.46 271 | 83.91 230 | 48.96 234 | 91.53 276 | 62.94 240 | 65.49 262 | 83.96 282 |
|
v8 | | | 75.35 213 | 73.26 218 | 81.61 195 | 80.67 283 | 66.82 109 | 89.54 223 | 89.27 232 | 71.65 183 | 63.30 273 | 80.30 279 | 54.99 175 | 94.06 198 | 67.33 203 | 62.33 290 | 83.94 283 |
|
UnsupCasMVSNet_eth | | | 65.79 292 | 63.10 293 | 73.88 299 | 70.71 344 | 50.29 328 | 81.09 305 | 89.88 213 | 72.58 152 | 49.25 336 | 74.77 321 | 32.57 317 | 87.43 317 | 55.96 274 | 41.04 352 | 83.90 284 |
|
v10 | | | 74.77 220 | 72.54 229 | 81.46 197 | 80.33 289 | 66.71 113 | 89.15 233 | 89.08 243 | 70.94 202 | 63.08 274 | 79.86 284 | 52.52 201 | 94.04 201 | 65.70 220 | 62.17 291 | 83.64 285 |
|
F-COLMAP | | | 70.66 255 | 68.44 261 | 77.32 270 | 86.37 216 | 55.91 300 | 88.00 248 | 86.32 286 | 56.94 318 | 57.28 308 | 88.07 183 | 33.58 313 | 92.49 250 | 51.02 289 | 68.37 245 | 83.55 286 |
|
lessismore_v0 | | | | | 73.72 301 | 72.93 338 | 47.83 337 | | 61.72 362 | | 45.86 344 | 73.76 322 | 28.63 332 | 89.81 293 | 47.75 308 | 31.37 364 | 83.53 287 |
|
v7n | | | 71.31 253 | 68.65 258 | 79.28 246 | 76.40 326 | 60.77 242 | 86.71 268 | 89.45 226 | 64.17 266 | 58.77 299 | 78.24 295 | 44.59 264 | 93.54 216 | 57.76 267 | 61.75 297 | 83.52 288 |
|
Anonymous20231206 | | | 67.53 283 | 65.78 273 | 72.79 308 | 74.95 330 | 47.59 338 | 88.23 246 | 87.32 278 | 61.75 292 | 58.07 302 | 77.29 303 | 37.79 294 | 87.29 318 | 42.91 325 | 63.71 281 | 83.48 289 |
|
CP-MVSNet | | | 70.50 257 | 69.91 252 | 72.26 312 | 80.71 282 | 51.00 324 | 87.23 261 | 90.30 197 | 67.84 239 | 59.64 291 | 82.69 241 | 50.23 220 | 82.30 344 | 51.28 288 | 59.28 313 | 83.46 290 |
|
K. test v3 | | | 63.09 304 | 59.61 308 | 73.53 302 | 76.26 327 | 49.38 332 | 83.27 287 | 77.15 332 | 64.35 265 | 47.77 340 | 72.32 329 | 28.73 330 | 87.79 311 | 49.93 295 | 36.69 358 | 83.41 291 |
|
PS-CasMVS | | | 69.86 263 | 69.13 257 | 72.07 315 | 80.35 288 | 50.57 326 | 87.02 263 | 89.75 216 | 67.27 245 | 59.19 295 | 82.28 245 | 46.58 249 | 82.24 345 | 50.69 290 | 59.02 314 | 83.39 292 |
|
PEN-MVS | | | 69.46 265 | 68.56 259 | 72.17 314 | 79.27 299 | 49.71 330 | 86.90 266 | 89.24 233 | 67.24 248 | 59.08 296 | 82.51 244 | 47.23 246 | 83.54 335 | 48.42 301 | 57.12 318 | 83.25 293 |
|
anonymousdsp | | | 71.14 254 | 69.37 256 | 76.45 280 | 72.95 337 | 54.71 307 | 84.19 278 | 88.88 249 | 61.92 289 | 62.15 281 | 79.77 286 | 38.14 289 | 91.44 278 | 68.90 189 | 67.45 252 | 83.21 294 |
|
XVG-ACMP-BASELINE | | | 68.04 278 | 65.53 277 | 75.56 285 | 74.06 334 | 52.37 316 | 78.43 322 | 85.88 293 | 62.03 287 | 58.91 298 | 81.21 267 | 20.38 349 | 91.15 279 | 60.69 254 | 68.18 246 | 83.16 295 |
|
MSDG | | | 69.54 264 | 65.73 274 | 80.96 212 | 85.11 236 | 63.71 186 | 84.19 278 | 83.28 316 | 56.95 317 | 54.50 314 | 84.03 227 | 31.50 321 | 96.03 121 | 42.87 327 | 69.13 240 | 83.14 296 |
|
test_fmvs2 | | | 65.78 293 | 64.84 280 | 68.60 325 | 66.54 353 | 41.71 353 | 83.27 287 | 69.81 351 | 54.38 326 | 67.91 227 | 84.54 223 | 15.35 355 | 81.22 349 | 75.65 128 | 66.16 260 | 82.88 297 |
|
SixPastTwentyTwo | | | 64.92 295 | 61.78 302 | 74.34 296 | 78.74 309 | 49.76 329 | 83.42 286 | 79.51 330 | 62.86 279 | 50.27 331 | 77.35 301 | 30.92 326 | 90.49 283 | 45.89 315 | 47.06 342 | 82.78 298 |
|
testgi | | | 64.48 298 | 62.87 296 | 69.31 323 | 71.24 340 | 40.62 356 | 85.49 272 | 79.92 328 | 65.36 259 | 54.18 316 | 83.49 234 | 23.74 342 | 84.55 328 | 41.60 331 | 60.79 306 | 82.77 299 |
|
DTE-MVSNet | | | 68.46 275 | 67.33 267 | 71.87 317 | 77.94 318 | 49.00 333 | 86.16 271 | 88.58 261 | 66.36 252 | 58.19 300 | 82.21 247 | 46.36 250 | 83.87 333 | 44.97 320 | 55.17 325 | 82.73 300 |
|
WR-MVS_H | | | 70.59 256 | 69.94 251 | 72.53 309 | 81.03 279 | 51.43 321 | 87.35 259 | 92.03 127 | 67.38 244 | 60.23 289 | 80.70 271 | 55.84 167 | 83.45 336 | 46.33 313 | 58.58 317 | 82.72 301 |
|
ppachtmachnet_test | | | 67.72 280 | 63.70 290 | 79.77 238 | 78.92 305 | 66.04 128 | 88.68 240 | 82.90 318 | 60.11 302 | 55.45 311 | 75.96 315 | 39.19 281 | 90.55 281 | 39.53 338 | 52.55 333 | 82.71 302 |
|
CL-MVSNet_self_test | | | 69.92 261 | 68.09 264 | 75.41 286 | 73.25 336 | 55.90 301 | 90.05 211 | 89.90 212 | 69.96 217 | 61.96 283 | 76.54 309 | 51.05 213 | 87.64 313 | 49.51 297 | 50.59 337 | 82.70 303 |
|
LS3D | | | 69.17 266 | 66.40 270 | 77.50 266 | 91.92 97 | 56.12 299 | 85.12 273 | 80.37 327 | 46.96 345 | 56.50 310 | 87.51 191 | 37.25 297 | 93.71 213 | 32.52 358 | 79.40 163 | 82.68 304 |
|
our_test_3 | | | 68.29 276 | 64.69 283 | 79.11 251 | 78.92 305 | 64.85 158 | 88.40 245 | 85.06 299 | 60.32 300 | 52.68 321 | 76.12 314 | 40.81 276 | 89.80 295 | 44.25 322 | 55.65 323 | 82.67 305 |
|
FMVSNet5 | | | 68.04 278 | 65.66 276 | 75.18 289 | 84.43 247 | 57.89 281 | 83.54 282 | 86.26 288 | 61.83 291 | 53.64 319 | 73.30 324 | 37.15 300 | 85.08 326 | 48.99 298 | 61.77 296 | 82.56 306 |
|
KD-MVS_2432*1600 | | | 69.03 268 | 66.37 271 | 77.01 275 | 85.56 228 | 61.06 236 | 81.44 302 | 90.25 199 | 67.27 245 | 58.00 303 | 76.53 310 | 54.49 179 | 87.63 314 | 48.04 303 | 35.77 359 | 82.34 307 |
|
miper_refine_blended | | | 69.03 268 | 66.37 271 | 77.01 275 | 85.56 228 | 61.06 236 | 81.44 302 | 90.25 199 | 67.27 245 | 58.00 303 | 76.53 310 | 54.49 179 | 87.63 314 | 48.04 303 | 35.77 359 | 82.34 307 |
|
MVS_0304 | | | 68.99 270 | 67.23 268 | 74.28 298 | 80.36 287 | 52.54 315 | 87.01 264 | 86.36 285 | 59.89 304 | 66.22 247 | 73.56 323 | 24.25 339 | 88.03 307 | 57.34 270 | 70.11 232 | 82.27 309 |
|
pmmvs6 | | | 67.57 282 | 64.76 282 | 76.00 284 | 72.82 339 | 53.37 312 | 88.71 239 | 86.78 284 | 53.19 329 | 57.58 307 | 78.03 298 | 35.33 308 | 92.41 252 | 55.56 275 | 54.88 327 | 82.21 310 |
|
EU-MVSNet | | | 64.01 300 | 63.01 294 | 67.02 331 | 74.40 333 | 38.86 361 | 83.27 287 | 86.19 290 | 45.11 349 | 54.27 315 | 81.15 268 | 36.91 303 | 80.01 351 | 48.79 300 | 57.02 319 | 82.19 311 |
|
ACMH | | 63.93 17 | 68.62 272 | 64.81 281 | 80.03 230 | 85.22 232 | 63.25 195 | 87.72 253 | 84.66 303 | 60.83 296 | 51.57 326 | 79.43 290 | 27.29 334 | 94.96 160 | 41.76 330 | 64.84 270 | 81.88 312 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
D2MVS | | | 73.80 230 | 72.02 234 | 79.15 250 | 79.15 302 | 62.97 201 | 88.58 242 | 90.07 206 | 72.94 145 | 59.22 294 | 78.30 294 | 42.31 273 | 92.70 241 | 65.59 222 | 72.00 221 | 81.79 313 |
|
DP-MVS | | | 69.90 262 | 66.48 269 | 80.14 226 | 95.36 28 | 62.93 203 | 89.56 221 | 76.11 333 | 50.27 338 | 57.69 306 | 85.23 213 | 39.68 279 | 95.73 131 | 33.35 353 | 71.05 229 | 81.78 314 |
|
Patchmtry | | | 67.53 283 | 63.93 289 | 78.34 256 | 82.12 272 | 64.38 169 | 68.72 343 | 84.00 309 | 48.23 344 | 59.24 293 | 72.41 327 | 57.82 140 | 89.27 297 | 46.10 314 | 56.68 322 | 81.36 315 |
|
Baseline_NR-MVSNet | | | 73.99 228 | 72.83 223 | 77.48 267 | 80.78 281 | 59.29 268 | 91.79 148 | 84.55 304 | 68.85 231 | 68.99 211 | 80.70 271 | 56.16 161 | 92.04 263 | 62.67 243 | 60.98 304 | 81.11 316 |
|
CMPMVS |  | 48.56 21 | 66.77 287 | 64.41 287 | 73.84 300 | 70.65 345 | 50.31 327 | 77.79 327 | 85.73 295 | 45.54 348 | 44.76 348 | 82.14 248 | 35.40 307 | 90.14 291 | 63.18 239 | 74.54 201 | 81.07 317 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
TransMVSNet (Re) | | | 70.07 260 | 67.66 265 | 77.31 271 | 80.62 285 | 59.13 271 | 91.78 150 | 84.94 301 | 65.97 254 | 60.08 290 | 80.44 276 | 50.78 214 | 91.87 265 | 48.84 299 | 45.46 345 | 80.94 318 |
|
ACMH+ | | 65.35 16 | 67.65 281 | 64.55 284 | 76.96 277 | 84.59 243 | 57.10 293 | 88.08 247 | 80.79 324 | 58.59 311 | 53.00 320 | 81.09 269 | 26.63 336 | 92.95 227 | 46.51 311 | 61.69 300 | 80.82 319 |
|
USDC | | | 67.43 285 | 64.51 285 | 76.19 282 | 77.94 318 | 55.29 304 | 78.38 323 | 85.00 300 | 73.17 140 | 48.36 338 | 80.37 277 | 21.23 346 | 92.48 251 | 52.15 287 | 64.02 279 | 80.81 320 |
|
OurMVSNet-221017-0 | | | 64.68 296 | 62.17 300 | 72.21 313 | 76.08 329 | 47.35 339 | 80.67 308 | 81.02 323 | 56.19 321 | 51.60 325 | 79.66 288 | 27.05 335 | 88.56 301 | 53.60 284 | 53.63 330 | 80.71 321 |
|
MS-PatchMatch | | | 77.90 177 | 76.50 175 | 82.12 184 | 85.99 221 | 69.95 34 | 91.75 153 | 92.70 101 | 73.97 124 | 62.58 279 | 84.44 224 | 41.11 275 | 95.78 127 | 63.76 235 | 92.17 62 | 80.62 322 |
|
tfpnnormal | | | 70.10 259 | 67.36 266 | 78.32 257 | 83.45 261 | 60.97 238 | 88.85 237 | 92.77 99 | 64.85 262 | 60.83 287 | 78.53 293 | 43.52 268 | 93.48 218 | 31.73 359 | 61.70 299 | 80.52 323 |
|
MIMVSNet1 | | | 60.16 313 | 57.33 314 | 68.67 324 | 69.71 347 | 44.13 350 | 78.92 320 | 84.21 305 | 55.05 325 | 44.63 349 | 71.85 331 | 23.91 341 | 81.54 348 | 32.63 357 | 55.03 326 | 80.35 324 |
|
YYNet1 | | | 63.76 303 | 60.14 306 | 74.62 293 | 78.06 317 | 60.19 255 | 83.46 285 | 83.99 311 | 56.18 322 | 39.25 356 | 71.56 334 | 37.18 299 | 83.34 337 | 42.90 326 | 48.70 340 | 80.32 325 |
|
MDA-MVSNet_test_wron | | | 63.78 302 | 60.16 305 | 74.64 292 | 78.15 316 | 60.41 250 | 83.49 283 | 84.03 307 | 56.17 323 | 39.17 357 | 71.59 333 | 37.22 298 | 83.24 339 | 42.87 327 | 48.73 339 | 80.26 326 |
|
KD-MVS_self_test | | | 60.87 310 | 58.60 310 | 67.68 328 | 66.13 354 | 39.93 358 | 75.63 333 | 84.70 302 | 57.32 315 | 49.57 334 | 68.45 340 | 29.55 327 | 82.87 340 | 48.09 302 | 47.94 341 | 80.25 327 |
|
ITE_SJBPF | | | | | 70.43 320 | 74.44 332 | 47.06 343 | | 77.32 331 | 60.16 301 | 54.04 317 | 83.53 232 | 23.30 343 | 84.01 331 | 43.07 324 | 61.58 301 | 80.21 328 |
|
test20.03 | | | 63.83 301 | 62.65 297 | 67.38 330 | 70.58 346 | 39.94 357 | 86.57 269 | 84.17 306 | 63.29 274 | 51.86 324 | 77.30 302 | 37.09 301 | 82.47 342 | 38.87 342 | 54.13 329 | 79.73 329 |
|
UnsupCasMVSNet_bld | | | 61.60 308 | 57.71 312 | 73.29 304 | 68.73 350 | 51.64 319 | 78.61 321 | 89.05 245 | 57.20 316 | 46.11 341 | 61.96 352 | 28.70 331 | 88.60 300 | 50.08 294 | 38.90 356 | 79.63 330 |
|
AllTest | | | 61.66 307 | 58.06 311 | 72.46 310 | 79.57 294 | 51.42 322 | 80.17 314 | 68.61 353 | 51.25 334 | 45.88 342 | 81.23 263 | 19.86 351 | 86.58 321 | 38.98 340 | 57.01 320 | 79.39 331 |
|
TestCases | | | | | 72.46 310 | 79.57 294 | 51.42 322 | | 68.61 353 | 51.25 334 | 45.88 342 | 81.23 263 | 19.86 351 | 86.58 321 | 38.98 340 | 57.01 320 | 79.39 331 |
|
ambc | | | | | 69.61 321 | 61.38 360 | 41.35 354 | 49.07 366 | 85.86 294 | | 50.18 333 | 66.40 343 | 10.16 363 | 88.14 306 | 45.73 316 | 44.20 346 | 79.32 333 |
|
Anonymous20240521 | | | 62.09 306 | 59.08 309 | 71.10 318 | 67.19 352 | 48.72 334 | 83.91 280 | 85.23 298 | 50.38 337 | 47.84 339 | 71.22 336 | 20.74 347 | 85.51 325 | 46.47 312 | 58.75 316 | 79.06 334 |
|
MVP-Stereo | | | 77.12 186 | 76.23 179 | 79.79 237 | 81.72 275 | 66.34 122 | 89.29 228 | 90.88 178 | 70.56 211 | 62.01 282 | 82.88 239 | 49.34 227 | 94.13 193 | 65.55 223 | 93.80 39 | 78.88 335 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
pmmvs-eth3d | | | 65.53 294 | 62.32 299 | 75.19 288 | 69.39 349 | 59.59 261 | 82.80 294 | 83.43 313 | 62.52 283 | 51.30 328 | 72.49 325 | 32.86 314 | 87.16 319 | 55.32 276 | 50.73 336 | 78.83 336 |
|
OpenMVS_ROB |  | 61.12 18 | 66.39 288 | 62.92 295 | 76.80 279 | 76.51 325 | 57.77 283 | 89.22 230 | 83.41 314 | 55.48 324 | 53.86 318 | 77.84 299 | 26.28 337 | 93.95 207 | 34.90 350 | 68.76 242 | 78.68 337 |
|
LTVRE_ROB | | 59.60 19 | 66.27 289 | 63.54 291 | 74.45 294 | 84.00 254 | 51.55 320 | 67.08 349 | 83.53 312 | 58.78 309 | 54.94 313 | 80.31 278 | 34.54 310 | 93.23 222 | 40.64 336 | 68.03 247 | 78.58 338 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
PM-MVS | | | 59.40 314 | 56.59 316 | 67.84 326 | 63.63 356 | 41.86 352 | 76.76 329 | 63.22 360 | 59.01 308 | 51.07 329 | 72.27 330 | 11.72 361 | 83.25 338 | 61.34 250 | 50.28 338 | 78.39 339 |
|
test_fmvs3 | | | 56.82 317 | 54.86 320 | 62.69 335 | 53.59 364 | 35.47 363 | 75.87 331 | 65.64 358 | 43.91 352 | 55.10 312 | 71.43 335 | 6.91 369 | 74.40 356 | 68.64 191 | 52.63 331 | 78.20 340 |
|
N_pmnet | | | 50.55 322 | 49.11 325 | 54.88 342 | 77.17 323 | 4.02 382 | 84.36 277 | 2.00 381 | 48.59 341 | 45.86 344 | 68.82 339 | 32.22 318 | 82.80 341 | 31.58 360 | 51.38 335 | 77.81 341 |
|
new-patchmatchnet | | | 59.30 315 | 56.48 317 | 67.79 327 | 65.86 355 | 44.19 349 | 82.47 295 | 81.77 320 | 59.94 303 | 43.65 352 | 66.20 344 | 27.67 333 | 81.68 347 | 39.34 339 | 41.40 351 | 77.50 342 |
|
EG-PatchMatch MVS | | | 68.55 273 | 65.41 278 | 77.96 262 | 78.69 310 | 62.93 203 | 89.86 217 | 89.17 237 | 60.55 297 | 50.27 331 | 77.73 300 | 22.60 344 | 94.06 198 | 47.18 309 | 72.65 217 | 76.88 343 |
|
MVS-HIRNet | | | 60.25 312 | 55.55 319 | 74.35 295 | 84.37 248 | 56.57 297 | 71.64 337 | 74.11 341 | 34.44 358 | 45.54 346 | 42.24 365 | 31.11 325 | 89.81 293 | 40.36 337 | 76.10 195 | 76.67 344 |
|
MDA-MVSNet-bldmvs | | | 61.54 309 | 57.70 313 | 73.05 305 | 79.53 296 | 57.00 295 | 83.08 291 | 81.23 322 | 57.57 312 | 34.91 359 | 72.45 326 | 32.79 315 | 86.26 323 | 35.81 347 | 41.95 350 | 75.89 345 |
|
COLMAP_ROB |  | 57.96 20 | 62.98 305 | 59.65 307 | 72.98 306 | 81.44 277 | 53.00 314 | 83.75 281 | 75.53 338 | 48.34 343 | 48.81 337 | 81.40 261 | 24.14 340 | 90.30 284 | 32.95 355 | 60.52 308 | 75.65 346 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
TinyColmap | | | 60.32 311 | 56.42 318 | 72.00 316 | 78.78 308 | 53.18 313 | 78.36 324 | 75.64 336 | 52.30 330 | 41.59 355 | 75.82 317 | 14.76 358 | 88.35 304 | 35.84 346 | 54.71 328 | 74.46 347 |
|
mvsany_test3 | | | 48.86 324 | 46.35 327 | 56.41 338 | 46.00 370 | 31.67 368 | 62.26 354 | 47.25 371 | 43.71 353 | 45.54 346 | 68.15 341 | 10.84 362 | 64.44 368 | 57.95 266 | 35.44 361 | 73.13 348 |
|
pmmvs3 | | | 55.51 319 | 51.50 324 | 67.53 329 | 57.90 362 | 50.93 325 | 80.37 310 | 73.66 342 | 40.63 356 | 44.15 351 | 64.75 347 | 16.30 353 | 78.97 352 | 44.77 321 | 40.98 354 | 72.69 349 |
|
test_method | | | 38.59 332 | 35.16 335 | 48.89 347 | 54.33 363 | 21.35 377 | 45.32 367 | 53.71 365 | 7.41 373 | 28.74 361 | 51.62 357 | 8.70 366 | 52.87 371 | 33.73 351 | 32.89 363 | 72.47 350 |
|
test_0402 | | | 64.54 297 | 61.09 303 | 74.92 291 | 84.10 253 | 60.75 244 | 87.95 249 | 79.71 329 | 52.03 331 | 52.41 322 | 77.20 304 | 32.21 319 | 91.64 270 | 23.14 362 | 61.03 303 | 72.36 351 |
|
LF4IMVS | | | 54.01 321 | 52.12 322 | 59.69 336 | 62.41 359 | 39.91 359 | 68.59 344 | 68.28 355 | 42.96 354 | 44.55 350 | 75.18 318 | 14.09 360 | 68.39 360 | 41.36 333 | 51.68 334 | 70.78 352 |
|
TDRefinement | | | 55.28 320 | 51.58 323 | 66.39 332 | 59.53 361 | 46.15 345 | 76.23 330 | 72.80 344 | 44.60 350 | 42.49 353 | 76.28 313 | 15.29 356 | 82.39 343 | 33.20 354 | 43.75 347 | 70.62 353 |
|
test_f | | | 46.58 325 | 43.45 328 | 55.96 339 | 45.18 371 | 32.05 367 | 61.18 355 | 49.49 369 | 33.39 359 | 42.05 354 | 62.48 351 | 7.00 368 | 65.56 364 | 47.08 310 | 43.21 349 | 70.27 354 |
|
LCM-MVSNet | | | 40.54 328 | 35.79 333 | 54.76 343 | 36.92 377 | 30.81 369 | 51.41 364 | 69.02 352 | 22.07 364 | 24.63 364 | 45.37 361 | 4.56 373 | 65.81 363 | 33.67 352 | 34.50 362 | 67.67 355 |
|
ANet_high | | | 40.27 331 | 35.20 334 | 55.47 340 | 34.74 378 | 34.47 365 | 63.84 353 | 71.56 348 | 48.42 342 | 18.80 367 | 41.08 366 | 9.52 365 | 64.45 367 | 20.18 364 | 8.66 374 | 67.49 356 |
|
test_vis1_rt | | | 59.09 316 | 57.31 315 | 64.43 333 | 68.44 351 | 46.02 346 | 83.05 292 | 48.63 370 | 51.96 332 | 49.57 334 | 63.86 348 | 16.30 353 | 80.20 350 | 71.21 165 | 62.79 285 | 67.07 357 |
|
PMMVS2 | | | 37.93 333 | 33.61 336 | 50.92 345 | 46.31 369 | 24.76 375 | 60.55 358 | 50.05 367 | 28.94 363 | 20.93 365 | 47.59 358 | 4.41 375 | 65.13 365 | 25.14 361 | 18.55 369 | 62.87 358 |
|
new_pmnet | | | 49.31 323 | 46.44 326 | 57.93 337 | 62.84 358 | 40.74 355 | 68.47 345 | 62.96 361 | 36.48 357 | 35.09 358 | 57.81 354 | 14.97 357 | 72.18 357 | 32.86 356 | 46.44 343 | 60.88 359 |
|
FPMVS | | | 45.64 326 | 43.10 329 | 53.23 344 | 51.42 367 | 36.46 362 | 64.97 351 | 71.91 347 | 29.13 362 | 27.53 362 | 61.55 353 | 9.83 364 | 65.01 366 | 16.00 369 | 55.58 324 | 58.22 360 |
|
APD_test1 | | | 40.50 329 | 37.31 332 | 50.09 346 | 51.88 365 | 35.27 364 | 59.45 359 | 52.59 366 | 21.64 365 | 26.12 363 | 57.80 355 | 4.56 373 | 66.56 362 | 22.64 363 | 39.09 355 | 48.43 361 |
|
EGC-MVSNET | | | 42.35 327 | 38.09 330 | 55.11 341 | 74.57 331 | 46.62 344 | 71.63 338 | 55.77 364 | 0.04 376 | 0.24 377 | 62.70 350 | 14.24 359 | 74.91 355 | 17.59 366 | 46.06 344 | 43.80 362 |
|
test_vis3_rt | | | 40.46 330 | 37.79 331 | 48.47 348 | 44.49 372 | 33.35 366 | 66.56 350 | 32.84 378 | 32.39 360 | 29.65 360 | 39.13 368 | 3.91 376 | 68.65 359 | 50.17 292 | 40.99 353 | 43.40 363 |
|
testf1 | | | 32.77 335 | 29.47 338 | 42.67 351 | 41.89 374 | 30.81 369 | 52.07 362 | 43.45 372 | 15.45 368 | 18.52 368 | 44.82 362 | 2.12 377 | 58.38 369 | 16.05 367 | 30.87 365 | 38.83 364 |
|
APD_test2 | | | 32.77 335 | 29.47 338 | 42.67 351 | 41.89 374 | 30.81 369 | 52.07 362 | 43.45 372 | 15.45 368 | 18.52 368 | 44.82 362 | 2.12 377 | 58.38 369 | 16.05 367 | 30.87 365 | 38.83 364 |
|
MVE |  | 24.84 23 | 24.35 339 | 19.77 345 | 38.09 353 | 34.56 379 | 26.92 374 | 26.57 369 | 38.87 376 | 11.73 372 | 11.37 373 | 27.44 369 | 1.37 380 | 50.42 372 | 11.41 371 | 14.60 370 | 36.93 366 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
DeepMVS_CX |  | | | | 34.71 354 | 51.45 366 | 24.73 376 | | 28.48 380 | 31.46 361 | 17.49 370 | 52.75 356 | 5.80 371 | 42.60 375 | 18.18 365 | 19.42 368 | 36.81 367 |
|
PMVS |  | 26.43 22 | 31.84 337 | 28.16 340 | 42.89 350 | 25.87 380 | 27.58 373 | 50.92 365 | 49.78 368 | 21.37 366 | 14.17 372 | 40.81 367 | 2.01 379 | 66.62 361 | 9.61 372 | 38.88 357 | 34.49 368 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
Gipuma |  | | 34.91 334 | 31.44 337 | 45.30 349 | 70.99 343 | 39.64 360 | 19.85 371 | 72.56 345 | 20.10 367 | 16.16 371 | 21.47 372 | 5.08 372 | 71.16 358 | 13.07 370 | 43.70 348 | 25.08 369 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
tmp_tt | | | 22.26 341 | 23.75 343 | 17.80 357 | 5.23 381 | 12.06 381 | 35.26 368 | 39.48 375 | 2.82 375 | 18.94 366 | 44.20 364 | 22.23 345 | 24.64 376 | 36.30 344 | 9.31 373 | 16.69 370 |
|
E-PMN | | | 24.61 338 | 24.00 342 | 26.45 355 | 43.74 373 | 18.44 379 | 60.86 356 | 39.66 374 | 15.11 370 | 9.53 374 | 22.10 371 | 6.52 370 | 46.94 373 | 8.31 373 | 10.14 371 | 13.98 371 |
|
EMVS | | | 23.76 340 | 23.20 344 | 25.46 356 | 41.52 376 | 16.90 380 | 60.56 357 | 38.79 377 | 14.62 371 | 8.99 375 | 20.24 374 | 7.35 367 | 45.82 374 | 7.25 374 | 9.46 372 | 13.64 372 |
|
wuyk23d | | | 11.30 343 | 10.95 346 | 12.33 358 | 48.05 368 | 19.89 378 | 25.89 370 | 1.92 382 | 3.58 374 | 3.12 376 | 1.37 376 | 0.64 381 | 15.77 377 | 6.23 375 | 7.77 375 | 1.35 373 |
|
test123 | | | 6.92 346 | 9.21 349 | 0.08 359 | 0.03 383 | 0.05 383 | 81.65 300 | 0.01 384 | 0.02 378 | 0.14 379 | 0.85 378 | 0.03 382 | 0.02 378 | 0.12 377 | 0.00 377 | 0.16 374 |
|
testmvs | | | 7.23 345 | 9.62 348 | 0.06 360 | 0.04 382 | 0.02 384 | 84.98 275 | 0.02 383 | 0.03 377 | 0.18 378 | 1.21 377 | 0.01 383 | 0.02 378 | 0.14 376 | 0.01 376 | 0.13 375 |
|
test_blank | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 377 | 0.00 376 |
|
uanet_test | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 377 | 0.00 376 |
|
DCPMVS | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 377 | 0.00 376 |
|
cdsmvs_eth3d_5k | | | 19.86 342 | 26.47 341 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 93.45 75 | 0.00 379 | 0.00 380 | 95.27 43 | 49.56 225 | 0.00 380 | 0.00 378 | 0.00 377 | 0.00 376 |
|
pcd_1.5k_mvsjas | | | 4.46 347 | 5.95 350 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 53.55 191 | 0.00 380 | 0.00 378 | 0.00 377 | 0.00 376 |
|
sosnet-low-res | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 377 | 0.00 376 |
|
sosnet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 377 | 0.00 376 |
|
uncertanet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 377 | 0.00 376 |
|
Regformer | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 377 | 0.00 376 |
|
ab-mvs-re | | | 7.91 344 | 10.55 347 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 94.95 51 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 377 | 0.00 376 |
|
uanet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 377 | 0.00 376 |
|
FOURS1 | | | | | | 93.95 45 | 61.77 224 | 93.96 61 | 91.92 131 | 62.14 286 | 86.57 33 | | | | | | |
|
test_one_0601 | | | | | | 96.32 18 | 69.74 40 | | 94.18 49 | 71.42 194 | 90.67 15 | 96.85 11 | 74.45 18 | | | | |
|
eth-test2 | | | | | | 0.00 384 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 384 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 96.63 9 | 65.50 143 | | 93.50 73 | 70.74 208 | 85.26 48 | 95.19 48 | 64.92 67 | 97.29 68 | 87.51 40 | 93.01 52 | |
|
test_241102_ONE | | | | | | 96.45 12 | 69.38 45 | | 94.44 38 | 71.65 183 | 92.11 4 | 97.05 7 | 76.79 9 | 99.11 6 | | | |
|
9.14 | | | | 87.63 22 | | 93.86 47 | | 94.41 48 | 94.18 49 | 72.76 149 | 86.21 35 | 96.51 17 | 66.64 50 | 97.88 41 | 90.08 23 | 94.04 35 | |
|
save fliter | | | | | | 93.84 48 | 67.89 83 | 95.05 37 | 92.66 104 | 78.19 68 | | | | | | | |
|
test0726 | | | | | | 96.40 15 | 69.99 31 | 96.76 6 | 94.33 46 | 71.92 170 | 91.89 8 | 97.11 6 | 73.77 21 | | | | |
|
test_part2 | | | | | | 96.29 19 | 68.16 77 | | | | 90.78 13 | | | | | | |
|
sam_mvs | | | | | | | | | | | | | 54.91 176 | | | | |
|
MTGPA |  | | | | | | | | 92.23 117 | | | | | | | | |
|
test_post1 | | | | | | | | 78.95 319 | | | | 20.70 373 | 53.05 196 | 91.50 277 | 60.43 255 | | |
|
test_post | | | | | | | | | | | | 23.01 370 | 56.49 159 | 92.67 242 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 67.62 342 | 57.62 142 | 90.25 285 | | | |
|
MTMP | | | | | | | | 93.77 73 | 32.52 379 | | | | | | | | |
|
gm-plane-assit | | | | | | 88.42 173 | 67.04 105 | | | 78.62 65 | | 91.83 125 | | 97.37 62 | 76.57 123 | | |
|
TEST9 | | | | | | 94.18 41 | 67.28 97 | 94.16 51 | 93.51 71 | 71.75 181 | 85.52 43 | 95.33 38 | 68.01 41 | 97.27 72 | | | |
|
test_8 | | | | | | 94.19 40 | 67.19 99 | 94.15 54 | 93.42 77 | 71.87 175 | 85.38 46 | 95.35 37 | 68.19 39 | 96.95 91 | | | |
|
agg_prior | | | | | | 94.16 43 | 66.97 107 | | 93.31 80 | | 84.49 53 | | | 96.75 98 | | | |
|
test_prior4 | | | | | | | 67.18 101 | 93.92 64 | | | | | | | | | |
|
test_prior2 | | | | | | | | 95.10 36 | | 75.40 104 | 85.25 49 | 95.61 33 | 67.94 42 | | 87.47 41 | 94.77 24 | |
|
旧先验2 | | | | | | | | 92.00 140 | | 59.37 307 | 87.54 28 | | | 93.47 219 | 75.39 130 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 91.41 161 | | | | | | | | | |
|
原ACMM2 | | | | | | | | 92.01 137 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 96.09 116 | 61.26 251 | | |
|
segment_acmp | | | | | | | | | | | | | 65.94 56 | | | | |
|
testdata1 | | | | | | | | 89.21 231 | | 77.55 81 | | | | | | | |
|
plane_prior7 | | | | | | 86.94 206 | 61.51 229 | | | | | | | | | | |
|
plane_prior6 | | | | | | 87.23 201 | 62.32 215 | | | | | | 50.66 215 | | | | |
|
plane_prior4 | | | | | | | | | | | | 89.14 167 | | | | | |
|
plane_prior3 | | | | | | | 61.95 222 | | | 79.09 56 | 72.53 169 | | | | | | |
|
plane_prior2 | | | | | | | | 93.13 93 | | 78.81 62 | | | | | | | |
|
plane_prior1 | | | | | | 87.15 203 | | | | | | | | | | | |
|
plane_prior | | | | | | | 62.42 212 | 93.85 68 | | 79.38 48 | | | | | | 78.80 170 | |
|
n2 | | | | | | | | | 0.00 385 | | | | | | | | |
|
nn | | | | | | | | | 0.00 385 | | | | | | | | |
|
door-mid | | | | | | | | | 66.01 357 | | | | | | | | |
|
test11 | | | | | | | | | 93.01 91 | | | | | | | | |
|
door | | | | | | | | | 66.57 356 | | | | | | | | |
|
HQP5-MVS | | | | | | | 63.66 190 | | | | | | | | | | |
|
HQP-NCC | | | | | | 87.54 195 | | 94.06 56 | | 79.80 42 | 74.18 149 | | | | | | |
|
ACMP_Plane | | | | | | 87.54 195 | | 94.06 56 | | 79.80 42 | 74.18 149 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.63 118 | | |
|
HQP3-MVS | | | | | | | | | 91.70 146 | | | | | | | 78.90 168 | |
|
HQP2-MVS | | | | | | | | | | | | | 51.63 209 | | | | |
|
NP-MVS | | | | | | 87.41 198 | 63.04 199 | | | | | 90.30 151 | | | | | |
|
MDTV_nov1_ep13 | | | | 72.61 227 | | 89.06 158 | 68.48 66 | 80.33 311 | 90.11 205 | 71.84 177 | 71.81 180 | 75.92 316 | 53.01 197 | 93.92 208 | 48.04 303 | 73.38 209 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 71.63 223 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 69.72 234 | |
|
Test By Simon | | | | | | | | | | | | | 54.21 185 | | | | |
|