This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
DPM-MVS90.70 290.52 791.24 189.68 15976.68 297.29 195.35 1082.87 1591.58 1097.22 479.93 599.10 983.12 8297.64 297.94 1
SED-MVS89.94 890.36 988.70 1696.45 1469.38 4796.89 494.44 4371.65 19692.11 497.21 576.79 999.11 692.34 895.36 1497.62 2
OPU-MVS89.97 397.52 373.15 1396.89 497.00 983.82 299.15 295.72 197.63 397.62 2
DVP-MVS++90.53 391.09 488.87 1497.31 469.91 3793.96 6894.37 5072.48 16592.07 696.85 1283.82 299.15 291.53 1697.42 497.55 4
PC_three_145280.91 3694.07 296.83 1483.57 499.12 595.70 297.42 497.55 4
DeepPCF-MVS81.17 189.72 991.38 384.72 12793.00 8058.16 29296.72 794.41 4686.50 690.25 1897.83 175.46 1498.67 2392.78 595.49 1397.32 6
LFMVS84.34 7582.73 9789.18 1394.76 3773.25 1094.99 4391.89 14771.90 18482.16 7893.49 10747.98 25597.05 9082.55 8984.82 14197.25 7
canonicalmvs86.85 3986.25 4688.66 1891.80 11771.92 1593.54 9191.71 15680.26 4187.55 2895.25 5463.59 9696.93 10588.18 3984.34 14797.11 8
MCST-MVS91.08 191.46 289.94 497.66 273.37 997.13 295.58 889.33 185.77 4496.26 2772.84 2799.38 192.64 695.93 1097.08 9
DELS-MVS90.05 790.09 1089.94 493.14 7773.88 897.01 394.40 4888.32 285.71 4694.91 6974.11 2098.91 1787.26 5195.94 997.03 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CSCG86.87 3886.26 4588.72 1595.05 3570.79 2493.83 8295.33 1168.48 24977.63 12994.35 8673.04 2598.45 2984.92 7093.71 4996.92 11
MVS84.66 7082.86 9490.06 290.93 13674.56 687.91 26595.54 968.55 24772.35 18594.71 7459.78 13398.90 1881.29 10194.69 3296.74 12
alignmvs87.28 2986.97 3888.24 2391.30 13071.14 2295.61 2493.56 7879.30 5387.07 3395.25 5468.43 3996.93 10587.87 4184.33 14896.65 13
DeepC-MVS_fast79.48 287.95 2088.00 2087.79 2795.86 2968.32 7095.74 2094.11 6083.82 1283.49 6996.19 2964.53 8298.44 3083.42 8194.88 2496.61 14
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_241102_TWO94.41 4671.65 19692.07 697.21 574.58 1799.11 692.34 895.36 1496.59 15
TSAR-MVS + GP.87.96 1988.37 1886.70 5993.51 6765.32 15295.15 3593.84 6478.17 7285.93 4394.80 7275.80 1398.21 3589.38 2788.78 10896.59 15
CANet89.61 1189.99 1188.46 2094.39 4469.71 4396.53 1193.78 6586.89 489.68 1995.78 3465.94 6599.10 992.99 493.91 4496.58 17
WTY-MVS86.32 4585.81 5287.85 2592.82 8569.37 4995.20 3395.25 1282.71 1681.91 7994.73 7367.93 4797.63 6079.55 11082.25 15996.54 18
VNet86.20 4785.65 5687.84 2693.92 5469.99 3395.73 2295.94 678.43 6886.00 4293.07 11458.22 14897.00 9585.22 6784.33 14896.52 19
MSC_two_6792asdad89.60 997.31 473.22 1195.05 2199.07 1392.01 1294.77 2596.51 20
No_MVS89.60 997.31 473.22 1195.05 2199.07 1392.01 1294.77 2596.51 20
test_0728_SECOND88.70 1696.45 1470.43 2896.64 894.37 5099.15 291.91 1494.90 2196.51 20
ET-MVSNet_ETH3D84.01 8383.15 8986.58 6390.78 14270.89 2394.74 4794.62 3781.44 3058.19 30893.64 10373.64 2492.35 26982.66 8678.66 18696.50 23
IU-MVS96.46 1369.91 3795.18 1480.75 3795.28 192.34 895.36 1496.47 24
ETH3 D test640090.27 690.44 889.75 696.82 974.33 795.89 1694.80 2977.13 8889.13 2297.38 274.49 1898.48 2892.32 1195.98 896.46 25
test_0728_THIRD72.48 16590.55 1696.93 1076.24 1199.08 1191.53 1694.99 1796.43 26
MSP-MVS90.38 491.87 185.88 8692.83 8364.03 19193.06 10594.33 5282.19 2093.65 396.15 3085.89 197.19 8491.02 2097.75 196.43 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HY-MVS76.49 584.28 7683.36 8587.02 4792.22 10067.74 8784.65 28894.50 4079.15 5782.23 7787.93 19666.88 5696.94 10380.53 10582.20 16096.39 28
DPE-MVScopyleft88.77 1589.21 1587.45 3696.26 2267.56 9194.17 5594.15 5868.77 24590.74 1497.27 376.09 1298.49 2790.58 2394.91 2096.30 29
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft89.41 1289.73 1388.45 2196.40 1769.99 3396.64 894.52 3971.92 18290.55 1696.93 1073.77 2299.08 1191.91 1494.90 2196.29 30
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSLP-MVS++86.27 4685.91 5187.35 3992.01 10668.97 5795.04 4192.70 11479.04 6181.50 8396.50 2058.98 14496.78 10983.49 8093.93 4396.29 30
patch_mono-289.71 1090.99 585.85 8996.04 2663.70 19995.04 4195.19 1386.74 591.53 1195.15 5973.86 2197.58 6393.38 392.00 7596.28 32
test_yl84.28 7683.16 8787.64 2994.52 4269.24 5095.78 1795.09 1969.19 23981.09 8892.88 12157.00 16297.44 6881.11 10281.76 16396.23 33
DCV-MVSNet84.28 7683.16 8787.64 2994.52 4269.24 5095.78 1795.09 1969.19 23981.09 8892.88 12157.00 16297.44 6881.11 10281.76 16396.23 33
CNVR-MVS90.32 590.89 688.61 1996.76 1070.65 2596.47 1294.83 2684.83 989.07 2396.80 1570.86 3499.06 1592.64 695.71 1196.12 35
HPM-MVS++copyleft89.37 1389.95 1287.64 2995.10 3468.23 7595.24 3294.49 4182.43 1888.90 2496.35 2471.89 3398.63 2488.76 3696.40 696.06 36
SD-MVS87.49 2687.49 2987.50 3593.60 6368.82 6093.90 7592.63 12076.86 9287.90 2795.76 3566.17 6297.63 6089.06 3291.48 8496.05 37
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PHI-MVS86.83 4086.85 4186.78 5593.47 6865.55 14895.39 2995.10 1871.77 19385.69 4796.52 1862.07 11098.77 2186.06 6195.60 1296.03 38
APDe-MVS87.54 2587.84 2286.65 6096.07 2566.30 12994.84 4693.78 6569.35 23688.39 2596.34 2567.74 5097.66 5890.62 2293.44 5396.01 39
DWT-MVSNet_test83.95 8582.80 9587.41 3792.90 8270.07 3289.12 24794.42 4582.15 2177.64 12891.77 14270.81 3596.22 12465.03 23481.36 16795.94 40
lupinMVS87.74 2387.77 2387.63 3389.24 17171.18 2096.57 1092.90 10982.70 1787.13 3095.27 5264.99 7595.80 13989.34 2891.80 7895.93 41
NCCC89.07 1489.46 1487.91 2496.60 1269.05 5496.38 1394.64 3684.42 1086.74 3496.20 2866.56 6198.76 2289.03 3494.56 3395.92 42
testtj86.62 4386.66 4286.50 6796.95 865.70 14394.41 5193.45 8467.74 25186.19 3996.39 2364.38 8397.91 4687.33 4993.14 5895.90 43
SMA-MVScopyleft88.14 1688.29 1987.67 2893.21 7468.72 6293.85 7894.03 6174.18 12791.74 996.67 1665.61 7098.42 3289.24 3096.08 795.88 44
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
dcpmvs_287.37 2887.55 2886.85 5095.04 3668.20 7690.36 21590.66 19879.37 5281.20 8693.67 10274.73 1596.55 11890.88 2192.00 7595.82 45
Anonymous20240521177.96 19075.33 20685.87 8793.73 6264.52 17294.85 4585.36 31362.52 29376.11 14490.18 16829.43 34197.29 7868.51 19977.24 20295.81 46
mvs_anonymous81.36 12579.99 13585.46 10390.39 14768.40 6886.88 27990.61 20074.41 12170.31 20784.67 23163.79 9192.32 27073.13 15485.70 13595.67 47
MG-MVS87.11 3386.27 4489.62 897.79 176.27 494.96 4494.49 4178.74 6683.87 6892.94 11764.34 8496.94 10375.19 14094.09 4095.66 48
PAPR85.15 6284.47 6787.18 4296.02 2768.29 7191.85 15893.00 10676.59 9679.03 11395.00 6261.59 11497.61 6278.16 12489.00 10795.63 49
VDD-MVS83.06 9981.81 11086.81 5390.86 14067.70 8895.40 2891.50 16575.46 10681.78 8092.34 13440.09 29397.13 8886.85 5582.04 16195.60 50
Effi-MVS+83.82 8882.76 9686.99 4889.56 16269.40 4691.35 18286.12 30772.59 16183.22 7192.81 12459.60 13596.01 13681.76 9387.80 11895.56 51
TSAR-MVS + MP.88.11 1888.64 1686.54 6591.73 11868.04 7990.36 21593.55 7982.89 1491.29 1292.89 12072.27 3096.03 13487.99 4094.77 2595.54 52
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP86.82 4186.90 3986.58 6390.42 14566.38 12696.09 1593.87 6377.73 7984.01 6795.66 3863.39 9897.94 4387.40 4893.55 5295.42 53
Skip Steuart: Steuart Systems R&D Blog.
CS-MVS-test86.14 4987.01 3783.52 15992.63 9159.36 28195.49 2691.92 14480.09 4285.46 5095.53 4361.82 11395.77 14286.77 5693.37 5495.41 54
casdiffmvs85.37 5984.87 6586.84 5188.25 19669.07 5393.04 10791.76 15381.27 3180.84 9392.07 13864.23 8596.06 13284.98 6987.43 12195.39 55
EIA-MVS84.84 6784.88 6484.69 12891.30 13062.36 22893.85 7892.04 13979.45 5079.33 10994.28 9062.42 10796.35 12180.05 10791.25 8995.38 56
CS-MVS85.74 5586.65 4382.98 17192.00 10758.07 29395.32 3091.87 14879.98 4384.86 5695.38 4562.27 10895.52 16186.12 6092.08 7495.36 57
GG-mvs-BLEND86.53 6691.91 11269.67 4575.02 34094.75 3178.67 12190.85 15577.91 794.56 19172.25 16593.74 4795.36 57
agg_prior286.41 5794.75 3095.33 59
3Dnovator+73.60 782.10 11680.60 12686.60 6190.89 13966.80 11795.20 3393.44 8674.05 12967.42 24692.49 12949.46 24097.65 5970.80 17891.68 8095.33 59
baseline85.01 6484.44 6986.71 5788.33 19368.73 6190.24 22091.82 15281.05 3581.18 8792.50 12763.69 9396.08 13184.45 7386.71 12995.32 61
ab-mvs80.18 14678.31 16185.80 9188.44 18865.49 15183.00 30392.67 11671.82 19177.36 13385.01 22654.50 19296.59 11476.35 13675.63 21095.32 61
test9_res89.41 2694.96 1895.29 63
EPNet87.84 2288.38 1786.23 7893.30 7066.05 13395.26 3194.84 2587.09 388.06 2694.53 7766.79 5897.34 7583.89 7891.68 8095.29 63
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
xxxxxxxxxxxxxcwj87.14 3287.19 3486.99 4893.84 5667.89 8395.05 3984.72 31878.19 7086.25 3696.44 2166.98 5497.79 5188.68 3794.56 3395.28 65
SF-MVS87.03 3587.09 3686.84 5192.70 8967.45 9793.64 8693.76 6870.78 22086.25 3696.44 2166.98 5497.79 5188.68 3794.56 3395.28 65
VDDNet80.50 14178.26 16287.21 4186.19 23369.79 4094.48 4991.31 17260.42 30779.34 10890.91 15438.48 30096.56 11782.16 9081.05 16995.27 67
MVSFormer83.75 9082.88 9386.37 7389.24 17171.18 2089.07 24890.69 19565.80 26787.13 3094.34 8764.99 7592.67 25572.83 15791.80 7895.27 67
jason86.40 4486.17 4787.11 4486.16 23470.54 2795.71 2392.19 13682.00 2484.58 5894.34 8761.86 11295.53 16087.76 4290.89 9295.27 67
jason: jason.
train_agg87.21 3187.42 3186.60 6194.18 4667.28 10094.16 5693.51 8071.87 18785.52 4895.33 4768.19 4197.27 8289.09 3194.90 2195.25 70
MVS_Test84.16 8183.20 8687.05 4691.56 12369.82 3989.99 22992.05 13877.77 7882.84 7386.57 21163.93 8996.09 12974.91 14689.18 10695.25 70
3Dnovator73.91 682.69 10780.82 12188.31 2289.57 16171.26 1992.60 12794.39 4978.84 6367.89 24092.48 13048.42 25098.52 2668.80 19894.40 3795.15 72
agg_prior187.02 3687.26 3386.28 7794.16 5066.97 11194.08 6293.31 9071.85 18984.49 5995.39 4468.91 3896.75 11188.84 3594.32 3895.13 73
Patchmatch-test65.86 30060.94 31280.62 23383.75 27158.83 28558.91 36275.26 35244.50 35850.95 33777.09 31458.81 14587.90 32135.13 35264.03 28595.12 74
ETH3D-3000-0.187.61 2487.89 2186.75 5693.58 6467.21 10294.31 5394.14 5972.92 15687.13 3096.62 1767.81 4997.94 4390.13 2494.42 3695.09 75
APD-MVScopyleft85.93 5285.99 4985.76 9395.98 2865.21 15593.59 8992.58 12266.54 26286.17 4095.88 3363.83 9097.00 9586.39 5892.94 6095.06 76
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
gg-mvs-nofinetune77.18 20274.31 21985.80 9191.42 12768.36 6971.78 34294.72 3249.61 34677.12 13645.92 36377.41 893.98 21867.62 20693.16 5795.05 77
test_prior387.38 2787.70 2486.42 7094.71 3967.35 9895.10 3793.10 10275.40 10985.25 5495.61 4067.94 4596.84 10787.47 4694.77 2595.05 77
test_prior86.42 7094.71 3967.35 9893.10 10296.84 10795.05 77
Patchmatch-RL test68.17 28664.49 29479.19 26271.22 35253.93 32370.07 34771.54 35969.22 23856.79 31762.89 35456.58 17188.61 31369.53 18952.61 33895.03 80
CHOSEN 1792x268884.98 6583.45 7989.57 1189.94 15475.14 592.07 14692.32 12781.87 2575.68 14888.27 18960.18 12698.60 2580.46 10690.27 9994.96 81
ACMMP_NAP86.05 5085.80 5386.80 5491.58 12267.53 9391.79 16093.49 8374.93 11784.61 5795.30 4959.42 13797.92 4586.13 5994.92 1994.94 82
test250683.29 9582.92 9284.37 13888.39 19163.18 21292.01 14991.35 17177.66 8178.49 12291.42 14764.58 8195.09 17273.19 15389.23 10494.85 83
ECVR-MVScopyleft81.29 12680.38 13084.01 14788.39 19161.96 23592.56 13286.79 29977.66 8176.63 14091.42 14746.34 26795.24 17074.36 15089.23 10494.85 83
PAPM_NR82.97 10181.84 10886.37 7394.10 5266.76 11887.66 26992.84 11069.96 22974.07 16493.57 10563.10 10397.50 6670.66 18190.58 9694.85 83
CDPH-MVS85.71 5685.46 5786.46 6894.75 3867.19 10393.89 7692.83 11170.90 21683.09 7295.28 5063.62 9497.36 7380.63 10494.18 3994.84 86
test1287.09 4594.60 4168.86 5892.91 10882.67 7665.44 7197.55 6493.69 5094.84 86
PatchmatchNetpermissive77.46 19774.63 21285.96 8489.55 16370.35 2979.97 32589.55 23972.23 17570.94 19876.91 31657.03 16092.79 25054.27 28581.17 16894.74 88
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS78.49 18275.98 19986.02 8291.21 13269.68 4480.23 32191.20 17675.25 11372.48 18178.11 30554.65 19193.69 22757.66 27583.04 15494.69 89
GSMVS94.68 90
sam_mvs157.85 15194.68 90
SCA75.82 22372.76 23885.01 11786.63 22570.08 3181.06 31589.19 25171.60 20170.01 21077.09 31445.53 27290.25 29860.43 26273.27 22094.68 90
ETH3D cwj APD-0.1687.06 3487.18 3586.71 5791.99 10867.48 9692.97 11094.21 5571.48 20785.72 4596.32 2668.13 4398.00 4289.06 3294.70 3194.65 93
Vis-MVSNetpermissive80.92 13579.98 13683.74 15188.48 18661.80 23793.44 9588.26 28373.96 13377.73 12691.76 14349.94 23694.76 18165.84 22590.37 9894.65 93
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
旧先验191.94 10960.74 25991.50 16594.36 8265.23 7291.84 7794.55 95
sss82.71 10682.38 10383.73 15389.25 17059.58 27692.24 13894.89 2477.96 7479.86 10392.38 13256.70 16897.05 9077.26 13080.86 17194.55 95
xiu_mvs_v2_base87.92 2187.38 3289.55 1291.41 12976.43 395.74 2093.12 10183.53 1389.55 2095.95 3253.45 20997.68 5491.07 1992.62 6494.54 97
PS-MVSNAJ88.14 1687.61 2689.71 792.06 10376.72 195.75 1993.26 9283.86 1189.55 2096.06 3153.55 20597.89 4891.10 1893.31 5594.54 97
test111180.84 13680.02 13383.33 16587.87 20660.76 25792.62 12686.86 29877.86 7775.73 14791.39 14946.35 26694.70 18772.79 15988.68 11094.52 99
ZNCC-MVS85.33 6085.08 6186.06 8193.09 7965.65 14593.89 7693.41 8873.75 13879.94 10194.68 7560.61 12398.03 4182.63 8893.72 4894.52 99
MAR-MVS84.18 8083.43 8086.44 6996.25 2365.93 13894.28 5494.27 5474.41 12179.16 11295.61 4053.99 20098.88 2069.62 18893.26 5694.50 101
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HFP-MVS84.73 6884.40 7085.72 9493.75 6065.01 16493.50 9393.19 9672.19 17679.22 11094.93 6659.04 14297.67 5581.55 9592.21 6994.49 102
#test#84.98 6584.74 6685.72 9493.75 6065.01 16494.09 6193.19 9673.55 14479.22 11094.93 6659.04 14297.67 5582.66 8692.21 6994.49 102
ETV-MVS86.01 5186.11 4885.70 9790.21 15067.02 11093.43 9691.92 14481.21 3284.13 6594.07 9660.93 12095.63 15089.28 2989.81 10094.46 104
diffmvs84.28 7683.83 7485.61 9987.40 21468.02 8090.88 20089.24 24880.54 3981.64 8292.52 12659.83 13294.52 19587.32 5085.11 13994.29 105
Regformer-187.24 3087.60 2786.15 8095.14 3265.83 14193.95 7195.12 1682.11 2284.25 6195.73 3667.88 4898.35 3385.60 6388.64 11194.26 106
region2R84.36 7484.03 7385.36 10893.54 6664.31 18493.43 9692.95 10772.16 17978.86 11894.84 7156.97 16497.53 6581.38 9992.11 7394.24 107
Regformer-287.00 3787.43 3085.71 9695.14 3264.73 17093.95 7194.95 2381.69 2784.03 6695.73 3667.35 5298.19 3785.40 6588.64 11194.20 108
zzz-MVS84.73 6884.47 6785.50 10191.89 11365.16 15791.55 17192.23 13075.32 11180.53 9595.21 5656.06 17797.16 8684.86 7192.55 6694.18 109
MTAPA83.91 8683.38 8485.50 10191.89 11365.16 15781.75 30892.23 13075.32 11180.53 9595.21 5656.06 17797.16 8684.86 7192.55 6694.18 109
PMMVS81.98 11882.04 10681.78 20489.76 15856.17 31191.13 19390.69 19577.96 7480.09 10093.57 10546.33 26894.99 17581.41 9887.46 12094.17 111
CostFormer82.33 11081.15 11585.86 8889.01 17668.46 6782.39 30693.01 10475.59 10480.25 9881.57 26672.03 3294.96 17679.06 11577.48 19894.16 112
MVS_111021_HR86.19 4885.80 5387.37 3893.17 7669.79 4093.99 6793.76 6879.08 6078.88 11793.99 9762.25 10998.15 3885.93 6291.15 9094.15 113
PVSNet_Blended86.73 4286.86 4086.31 7693.76 5867.53 9396.33 1493.61 7682.34 1981.00 9193.08 11263.19 10197.29 7887.08 5291.38 8694.13 114
1112_ss80.56 14079.83 13882.77 17588.65 18360.78 25592.29 13688.36 27872.58 16272.46 18294.95 6465.09 7493.42 23366.38 21977.71 19194.10 115
IB-MVS77.80 482.18 11280.46 12987.35 3989.14 17370.28 3095.59 2595.17 1578.85 6270.19 20885.82 21970.66 3697.67 5572.19 16866.52 26694.09 116
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PAPM85.89 5385.46 5787.18 4288.20 19872.42 1492.41 13492.77 11282.11 2280.34 9793.07 11468.27 4095.02 17478.39 12293.59 5194.09 116
MP-MVS-pluss85.24 6185.13 6085.56 10091.42 12765.59 14791.54 17292.51 12474.56 12080.62 9495.64 3959.15 14197.00 9586.94 5493.80 4594.07 118
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft85.02 6384.97 6385.17 11492.60 9264.27 18793.24 10092.27 12973.13 15079.63 10694.43 8061.90 11197.17 8585.00 6892.56 6594.06 119
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS77.85 385.52 5785.24 5986.37 7388.80 18166.64 12092.15 14093.68 7381.07 3476.91 13993.64 10362.59 10698.44 3085.50 6492.84 6294.03 120
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPR84.37 7384.06 7285.28 11093.56 6564.37 18293.50 9393.15 9972.19 17678.85 11994.86 7056.69 16997.45 6781.55 9592.20 7194.02 121
无先验92.71 12092.61 12162.03 29797.01 9366.63 21393.97 122
XVS83.87 8783.47 7885.05 11593.22 7263.78 19492.92 11492.66 11773.99 13078.18 12394.31 8955.25 18397.41 7079.16 11391.58 8293.95 123
X-MVStestdata76.86 20474.13 22485.05 11593.22 7263.78 19492.92 11492.66 11773.99 13078.18 12310.19 37555.25 18397.41 7079.16 11391.58 8293.95 123
h-mvs3383.01 10082.56 10084.35 13989.34 16662.02 23392.72 11993.76 6881.45 2882.73 7492.25 13660.11 12797.13 8887.69 4362.96 29093.91 125
CP-MVS83.71 9183.40 8384.65 12993.14 7763.84 19294.59 4892.28 12871.03 21477.41 13294.92 6855.21 18696.19 12581.32 10090.70 9493.91 125
PVSNet73.49 880.05 14978.63 15784.31 14090.92 13764.97 16692.47 13391.05 18779.18 5672.43 18390.51 16137.05 31694.06 21168.06 20186.00 13493.90 127
GST-MVS84.63 7184.29 7185.66 9892.82 8565.27 15393.04 10793.13 10073.20 14878.89 11494.18 9359.41 13897.85 5081.45 9792.48 6893.86 128
Test_1112_low_res79.56 15978.60 15882.43 18388.24 19760.39 26592.09 14487.99 28772.10 18071.84 19087.42 20364.62 8093.04 23765.80 22677.30 20093.85 129
GeoE78.90 17077.43 17783.29 16688.95 17762.02 23392.31 13586.23 30570.24 22671.34 19789.27 17754.43 19694.04 21463.31 24480.81 17293.81 130
thisisatest051583.41 9382.49 10186.16 7989.46 16568.26 7393.54 9194.70 3374.31 12475.75 14690.92 15372.62 2896.52 11969.64 18681.50 16593.71 131
HyFIR lowres test81.03 13379.56 14385.43 10587.81 20768.11 7890.18 22190.01 22570.65 22272.95 17286.06 21763.61 9594.50 19675.01 14479.75 17693.67 132
CANet_DTU84.09 8283.52 7685.81 9090.30 14866.82 11591.87 15689.01 26185.27 786.09 4193.74 10147.71 25896.98 9977.90 12789.78 10293.65 133
mPP-MVS82.96 10282.44 10284.52 13392.83 8362.92 21992.76 11791.85 15071.52 20475.61 15194.24 9153.48 20896.99 9878.97 11690.73 9393.64 134
tpmrst80.57 13979.14 15484.84 12390.10 15168.28 7281.70 30989.72 23677.63 8375.96 14579.54 29764.94 7792.71 25275.43 13877.28 20193.55 135
tpm279.80 15577.95 16885.34 10988.28 19468.26 7381.56 31191.42 16870.11 22777.59 13180.50 28467.40 5194.26 20467.34 20877.35 19993.51 136
SR-MVS82.81 10382.58 9983.50 16293.35 6961.16 24992.23 13991.28 17564.48 27581.27 8595.28 5053.71 20495.86 13882.87 8488.77 10993.49 137
PGM-MVS83.25 9682.70 9884.92 11992.81 8764.07 19090.44 21192.20 13571.28 20977.23 13594.43 8055.17 18797.31 7779.33 11291.38 8693.37 138
新几何184.73 12592.32 9664.28 18691.46 16759.56 31479.77 10492.90 11956.95 16596.57 11663.40 24392.91 6193.34 139
HPM-MVScopyleft83.25 9682.95 9184.17 14392.25 9962.88 22190.91 19791.86 14970.30 22577.12 13693.96 9856.75 16796.28 12282.04 9191.34 8893.34 139
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TESTMET0.1,182.41 10981.98 10783.72 15488.08 19963.74 19692.70 12193.77 6779.30 5377.61 13087.57 20158.19 14994.08 20973.91 15186.68 13093.33 141
112181.25 12780.05 13284.87 12292.30 9764.31 18487.91 26591.39 16959.44 31579.94 10192.91 11857.09 15897.01 9366.63 21392.81 6393.29 142
test117281.90 11981.83 10982.13 19693.23 7157.52 30191.61 17090.98 19064.32 27780.20 9995.00 6251.26 22595.61 15281.73 9488.13 11593.26 143
IS-MVSNet80.14 14779.41 14782.33 18787.91 20460.08 27091.97 15388.27 28172.90 15771.44 19691.73 14561.44 11593.66 22862.47 25286.53 13193.24 144
131480.70 13778.95 15585.94 8587.77 20867.56 9187.91 26592.55 12372.17 17867.44 24593.09 11150.27 23397.04 9271.68 17487.64 11993.23 145
CDS-MVSNet81.43 12480.74 12283.52 15986.26 23264.45 17692.09 14490.65 19975.83 10373.95 16689.81 17463.97 8892.91 24571.27 17582.82 15693.20 146
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+81.14 12980.01 13484.51 13490.24 14965.86 13994.12 6089.15 25473.81 13775.37 15488.26 19057.26 15694.53 19466.97 21284.92 14093.15 147
API-MVS82.28 11180.53 12787.54 3496.13 2470.59 2693.63 8791.04 18865.72 26975.45 15392.83 12356.11 17698.89 1964.10 23989.75 10393.15 147
test22289.77 15761.60 24289.55 23589.42 24356.83 32877.28 13492.43 13152.76 21291.14 9193.09 149
TAMVS80.37 14379.45 14683.13 16985.14 24963.37 20691.23 18790.76 19474.81 11972.65 17688.49 18460.63 12292.95 24069.41 19081.95 16293.08 150
testdata81.34 21489.02 17557.72 29789.84 22958.65 31985.32 5294.09 9457.03 16093.28 23469.34 19190.56 9793.03 151
tpm78.58 18077.03 18483.22 16785.94 23964.56 17183.21 30191.14 18178.31 6973.67 16779.68 29564.01 8792.09 27566.07 22371.26 23793.03 151
Regformer-385.80 5485.92 5085.46 10394.17 4865.09 16392.95 11295.11 1781.13 3381.68 8195.04 6065.82 6798.32 3483.02 8384.36 14592.97 153
GA-MVS78.33 18576.23 19684.65 12983.65 27366.30 12991.44 17390.14 21876.01 10170.32 20684.02 23742.50 28594.72 18470.98 17677.00 20392.94 154
BH-RMVSNet79.46 16277.65 17384.89 12091.68 12065.66 14493.55 9088.09 28572.93 15573.37 16891.12 15246.20 27096.12 12856.28 27985.61 13792.91 155
APD-MVS_3200maxsize81.64 12281.32 11482.59 18192.36 9558.74 28691.39 17891.01 18963.35 28379.72 10594.62 7651.82 21896.14 12779.71 10887.93 11792.89 156
Regformer-485.45 5885.69 5584.73 12594.17 4863.23 20992.95 11294.83 2680.66 3881.29 8495.04 6065.12 7398.08 4082.74 8584.36 14592.88 157
DP-MVS Recon82.73 10481.65 11185.98 8397.31 467.06 10795.15 3591.99 14169.08 24276.50 14393.89 9954.48 19598.20 3670.76 17985.66 13692.69 158
UGNet79.87 15378.68 15683.45 16489.96 15361.51 24392.13 14190.79 19376.83 9378.85 11986.33 21438.16 30296.17 12667.93 20387.17 12292.67 159
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EPP-MVSNet81.79 12181.52 11282.61 18088.77 18260.21 26893.02 10993.66 7568.52 24872.90 17390.39 16472.19 3194.96 17674.93 14579.29 18092.67 159
PVSNet_Blended_VisFu83.97 8483.50 7785.39 10790.02 15266.59 12393.77 8391.73 15477.43 8777.08 13889.81 17463.77 9296.97 10079.67 10988.21 11492.60 161
MDTV_nov1_ep13_2view59.90 27280.13 32367.65 25472.79 17454.33 19859.83 26692.58 162
QAPM79.95 15277.39 18187.64 2989.63 16071.41 1893.30 9993.70 7265.34 27267.39 24891.75 14447.83 25698.96 1657.71 27489.81 10092.54 163
dp75.01 23472.09 24783.76 15089.28 16966.22 13279.96 32689.75 23171.16 21167.80 24277.19 31351.81 21992.54 26050.39 29671.44 23692.51 164
EPNet_dtu78.80 17379.26 15177.43 28288.06 20049.71 34391.96 15491.95 14377.67 8076.56 14291.28 15158.51 14690.20 30356.37 27880.95 17092.39 165
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2024052976.84 20674.15 22384.88 12191.02 13464.95 16793.84 8191.09 18353.57 33673.00 17087.42 20335.91 32097.32 7669.14 19472.41 22992.36 166
Vis-MVSNet (Re-imp)79.24 16479.57 14278.24 27488.46 18752.29 33090.41 21389.12 25674.24 12669.13 21991.91 14065.77 6890.09 30559.00 27188.09 11692.33 167
原ACMM184.42 13693.21 7464.27 18793.40 8965.39 27079.51 10792.50 12758.11 15096.69 11365.27 23393.96 4292.32 168
TR-MVS78.77 17577.37 18282.95 17290.49 14460.88 25393.67 8590.07 22070.08 22874.51 15891.37 15045.69 27195.70 14960.12 26580.32 17392.29 169
SR-MVS-dyc-post81.06 13280.70 12382.15 19492.02 10458.56 28890.90 19890.45 20162.76 28978.89 11494.46 7851.26 22595.61 15278.77 11986.77 12792.28 170
RE-MVS-def80.48 12892.02 10458.56 28890.90 19890.45 20162.76 28978.89 11494.46 7849.30 24278.77 11986.77 12792.28 170
LCM-MVSNet-Re72.93 25171.84 24976.18 29688.49 18548.02 34880.07 32470.17 36073.96 13352.25 33080.09 29249.98 23588.24 31867.35 20784.23 15192.28 170
DROMVSNet84.53 7285.04 6283.01 17089.34 16661.37 24694.42 5091.09 18377.91 7683.24 7094.20 9258.37 14795.40 16385.35 6691.41 8592.27 173
MVS_111021_LR82.02 11781.52 11283.51 16188.42 18962.88 22189.77 23288.93 26376.78 9475.55 15293.10 11050.31 23295.38 16583.82 7987.02 12392.26 174
BH-w/o80.49 14279.30 15084.05 14690.83 14164.36 18393.60 8889.42 24374.35 12369.09 22090.15 16955.23 18595.61 15264.61 23686.43 13392.17 175
CVMVSNet74.04 24174.27 22073.33 31385.33 24543.94 35989.53 23788.39 27754.33 33570.37 20590.13 17049.17 24584.05 34061.83 25679.36 17891.99 176
tpm cat175.30 23072.21 24684.58 13288.52 18467.77 8678.16 33488.02 28661.88 30068.45 23476.37 32060.65 12194.03 21653.77 28874.11 21491.93 177
ACMMPcopyleft81.49 12380.67 12483.93 14891.71 11962.90 22092.13 14192.22 13471.79 19271.68 19493.49 10750.32 23196.96 10178.47 12184.22 15291.93 177
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
mvs-test178.74 17677.95 16881.14 22083.22 27757.13 30693.96 6887.78 28975.42 10772.68 17590.80 15645.08 27594.54 19375.08 14277.49 19791.74 179
test-LLR80.10 14879.56 14381.72 20686.93 22361.17 24792.70 12191.54 16271.51 20575.62 14986.94 20853.83 20192.38 26672.21 16684.76 14391.60 180
test-mter79.96 15179.38 14981.72 20686.93 22361.17 24792.70 12191.54 16273.85 13575.62 14986.94 20849.84 23892.38 26672.21 16684.76 14391.60 180
thisisatest053081.15 12880.07 13184.39 13788.26 19565.63 14691.40 17694.62 3771.27 21070.93 19989.18 17872.47 2996.04 13365.62 22876.89 20491.49 182
AUN-MVS78.37 18377.43 17781.17 21886.60 22657.45 30389.46 23991.16 17874.11 12874.40 15990.49 16255.52 18294.57 18974.73 14960.43 31691.48 183
MIMVSNet71.64 26168.44 27081.23 21781.97 28864.44 17773.05 34188.80 26769.67 23364.59 26874.79 32832.79 32887.82 32253.99 28676.35 20791.42 184
hse-mvs281.12 13181.11 11981.16 21986.52 22757.48 30289.40 24091.16 17881.45 2882.73 7490.49 16260.11 12794.58 18887.69 4360.41 31791.41 185
xiu_mvs_v1_base_debu82.16 11381.12 11685.26 11186.42 22868.72 6292.59 12990.44 20473.12 15184.20 6294.36 8238.04 30495.73 14484.12 7586.81 12491.33 186
xiu_mvs_v1_base82.16 11381.12 11685.26 11186.42 22868.72 6292.59 12990.44 20473.12 15184.20 6294.36 8238.04 30495.73 14484.12 7586.81 12491.33 186
xiu_mvs_v1_base_debi82.16 11381.12 11685.26 11186.42 22868.72 6292.59 12990.44 20473.12 15184.20 6294.36 8238.04 30495.73 14484.12 7586.81 12491.33 186
BH-untuned78.68 17777.08 18383.48 16389.84 15663.74 19692.70 12188.59 27471.57 20266.83 25488.65 18351.75 22095.39 16459.03 27084.77 14291.32 189
HPM-MVS_fast80.25 14579.55 14582.33 18791.55 12459.95 27191.32 18489.16 25365.23 27374.71 15793.07 11447.81 25795.74 14374.87 14888.23 11391.31 190
baseline181.84 12081.03 12084.28 14291.60 12166.62 12191.08 19491.66 15981.87 2574.86 15691.67 14669.98 3794.92 17971.76 17264.75 27991.29 191
baseline283.68 9283.42 8284.48 13587.37 21566.00 13590.06 22495.93 779.71 4869.08 22190.39 16477.92 696.28 12278.91 11781.38 16691.16 192
TAPA-MVS70.22 1274.94 23573.53 23179.17 26390.40 14652.07 33189.19 24589.61 23862.69 29170.07 20992.67 12548.89 24994.32 19938.26 34679.97 17491.12 193
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
AdaColmapbinary78.94 16977.00 18684.76 12496.34 1965.86 13992.66 12587.97 28862.18 29570.56 20192.37 13343.53 28297.35 7464.50 23782.86 15591.05 194
OMC-MVS78.67 17977.91 17080.95 22985.76 24157.40 30488.49 25788.67 27173.85 13572.43 18392.10 13749.29 24394.55 19272.73 16077.89 19090.91 195
EI-MVSNet-Vis-set83.77 8983.67 7584.06 14592.79 8863.56 20591.76 16394.81 2879.65 4977.87 12594.09 9463.35 9997.90 4779.35 11179.36 17890.74 196
cascas78.18 18675.77 20285.41 10687.14 21969.11 5292.96 11191.15 18066.71 26170.47 20286.07 21637.49 31096.48 12070.15 18479.80 17590.65 197
CR-MVSNet73.79 24570.82 25782.70 17783.15 27967.96 8170.25 34584.00 32673.67 14269.97 21272.41 33557.82 15289.48 30952.99 29173.13 22190.64 198
RPMNet70.42 26865.68 28484.63 13183.15 27967.96 8170.25 34590.45 20146.83 35469.97 21265.10 35256.48 17395.30 16935.79 35173.13 22190.64 198
PCF-MVS73.15 979.29 16377.63 17484.29 14186.06 23565.96 13787.03 27591.10 18269.86 23169.79 21690.64 15757.54 15596.59 11464.37 23882.29 15890.32 200
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_068.08 1571.81 26068.32 27282.27 18984.68 25562.31 23088.68 25490.31 21075.84 10257.93 31380.65 28337.85 30794.19 20569.94 18529.05 36790.31 201
tttt051779.50 16078.53 15982.41 18687.22 21761.43 24589.75 23394.76 3069.29 23767.91 23988.06 19572.92 2695.63 15062.91 24873.90 21890.16 202
CPTT-MVS79.59 15879.16 15380.89 23191.54 12559.80 27392.10 14388.54 27660.42 30772.96 17193.28 10948.27 25192.80 24978.89 11886.50 13290.06 203
EI-MVSNet-UG-set83.14 9882.96 9083.67 15692.28 9863.19 21191.38 18094.68 3479.22 5576.60 14193.75 10062.64 10597.76 5378.07 12578.01 18990.05 204
abl_679.82 15479.20 15281.70 20889.85 15558.34 29088.47 25890.07 22062.56 29277.71 12793.08 11247.65 25996.78 10977.94 12685.45 13889.99 205
XVG-OURS-SEG-HR74.70 23773.08 23579.57 25778.25 32757.33 30580.49 31787.32 29463.22 28568.76 22990.12 17244.89 27791.59 28470.55 18274.09 21589.79 206
114514_t79.17 16577.67 17283.68 15595.32 3165.53 14992.85 11691.60 16163.49 28267.92 23890.63 15946.65 26395.72 14867.01 21183.54 15389.79 206
UA-Net80.02 15079.65 14081.11 22289.33 16857.72 29786.33 28289.00 26277.44 8681.01 9089.15 17959.33 13995.90 13761.01 25984.28 15089.73 208
XVG-OURS74.25 24072.46 24479.63 25578.45 32657.59 30080.33 31987.39 29363.86 28068.76 22989.62 17640.50 29291.72 28269.00 19574.25 21389.58 209
UniMVSNet_ETH3D72.74 25570.53 25879.36 26078.62 32556.64 30985.01 28689.20 25063.77 28164.84 26784.44 23434.05 32591.86 27963.94 24070.89 23989.57 210
thres20079.66 15678.33 16083.66 15792.54 9365.82 14293.06 10596.31 374.90 11873.30 16988.66 18259.67 13495.61 15247.84 31078.67 18589.56 211
OpenMVScopyleft70.45 1178.54 18175.92 20086.41 7285.93 24071.68 1692.74 11892.51 12466.49 26364.56 26991.96 13943.88 28198.10 3954.61 28390.65 9589.44 212
CHOSEN 280x42077.35 20076.95 18778.55 26987.07 22062.68 22569.71 34882.95 33468.80 24471.48 19587.27 20766.03 6484.00 34276.47 13482.81 15788.95 213
thres100view90078.37 18377.01 18582.46 18291.89 11363.21 21091.19 19196.33 172.28 17370.45 20487.89 19760.31 12495.32 16645.16 32077.58 19488.83 214
tfpn200view978.79 17477.43 17782.88 17392.21 10164.49 17392.05 14796.28 473.48 14571.75 19288.26 19060.07 12995.32 16645.16 32077.58 19488.83 214
nrg03080.93 13479.86 13784.13 14483.69 27268.83 5993.23 10191.20 17675.55 10575.06 15588.22 19363.04 10494.74 18381.88 9266.88 26388.82 216
PatchT69.11 27765.37 28880.32 23682.07 28763.68 20167.96 35487.62 29150.86 34369.37 21765.18 35157.09 15888.53 31641.59 33566.60 26588.74 217
HQP4-MVS74.18 16095.61 15288.63 218
HQP-MVS81.14 12980.64 12582.64 17987.54 21063.66 20294.06 6391.70 15779.80 4574.18 16090.30 16651.63 22295.61 15277.63 12878.90 18288.63 218
VPNet78.82 17277.53 17682.70 17784.52 25966.44 12593.93 7392.23 13080.46 4072.60 17788.38 18749.18 24493.13 23672.47 16463.97 28788.55 220
Effi-MVS+-dtu76.14 21375.28 20778.72 26883.22 27755.17 31889.87 23087.78 28975.42 10767.98 23781.43 26845.08 27592.52 26175.08 14271.63 23288.48 221
RRT_test8_iter0580.61 13879.62 14183.60 15891.87 11666.90 11393.42 9893.68 7377.09 9068.83 22785.63 22266.82 5795.42 16276.46 13562.74 29388.48 221
CNLPA74.31 23972.30 24580.32 23691.49 12661.66 24190.85 20180.72 34056.67 32963.85 27790.64 15746.75 26290.84 29353.79 28775.99 20988.47 223
HQP_MVS80.34 14479.75 13982.12 19786.94 22162.42 22693.13 10391.31 17278.81 6472.53 17989.14 18050.66 22995.55 15876.74 13178.53 18788.39 224
plane_prior591.31 17295.55 15876.74 13178.53 18788.39 224
VPA-MVSNet79.03 16678.00 16682.11 20085.95 23764.48 17593.22 10294.66 3575.05 11674.04 16584.95 22852.17 21793.52 23074.90 14767.04 26288.32 226
test_part179.63 15777.86 17184.93 11892.50 9471.43 1794.15 5891.08 18572.51 16470.66 20084.98 22759.84 13195.07 17372.07 16962.94 29188.30 227
CLD-MVS82.73 10482.35 10483.86 14987.90 20567.65 9095.45 2792.18 13785.06 872.58 17892.27 13552.46 21595.78 14084.18 7479.06 18188.16 228
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XXY-MVS77.94 19176.44 19382.43 18382.60 28364.44 17792.01 14991.83 15173.59 14370.00 21185.82 21954.43 19694.76 18169.63 18768.02 25688.10 229
FIs79.47 16179.41 14779.67 25485.95 23759.40 27891.68 16793.94 6278.06 7368.96 22488.28 18866.61 6091.77 28166.20 22274.99 21187.82 230
Fast-Effi-MVS+-dtu75.04 23373.37 23380.07 24380.86 29459.52 27791.20 19085.38 31271.90 18465.20 26384.84 22941.46 28992.97 23966.50 21872.96 22387.73 231
UniMVSNet_NR-MVSNet78.15 18777.55 17579.98 24584.46 26160.26 26692.25 13793.20 9577.50 8568.88 22586.61 21066.10 6392.13 27366.38 21962.55 29487.54 232
MVSTER82.47 10882.05 10583.74 15192.68 9069.01 5591.90 15593.21 9379.83 4472.14 18685.71 22174.72 1694.72 18475.72 13772.49 22787.50 233
thres600view778.00 18876.66 19082.03 20291.93 11063.69 20091.30 18596.33 172.43 16870.46 20387.89 19760.31 12494.92 17942.64 33276.64 20587.48 234
thres40078.68 17777.43 17782.43 18392.21 10164.49 17392.05 14796.28 473.48 14571.75 19288.26 19060.07 12995.32 16645.16 32077.58 19487.48 234
TranMVSNet+NR-MVSNet75.86 22274.52 21679.89 24882.44 28460.64 26291.37 18191.37 17076.63 9567.65 24386.21 21552.37 21691.55 28561.84 25560.81 31287.48 234
FC-MVSNet-test77.99 18978.08 16577.70 27784.89 25455.51 31690.27 21893.75 7176.87 9166.80 25587.59 20065.71 6990.23 30262.89 24973.94 21687.37 237
DU-MVS76.86 20475.84 20179.91 24782.96 28160.26 26691.26 18691.54 16276.46 9868.88 22586.35 21256.16 17492.13 27366.38 21962.55 29487.35 238
NR-MVSNet76.05 21774.59 21380.44 23482.96 28162.18 23290.83 20291.73 15477.12 8960.96 29486.35 21259.28 14091.80 28060.74 26061.34 30987.35 238
FMVSNet377.73 19476.04 19882.80 17491.20 13368.99 5691.87 15691.99 14173.35 14767.04 25183.19 24756.62 17092.14 27259.80 26769.34 24587.28 240
PS-MVSNAJss77.26 20176.31 19580.13 24280.64 29859.16 28390.63 21091.06 18672.80 15868.58 23284.57 23353.55 20593.96 21972.97 15571.96 23187.27 241
FMVSNet276.07 21474.01 22682.26 19188.85 17867.66 8991.33 18391.61 16070.84 21765.98 25882.25 25548.03 25292.00 27758.46 27268.73 25187.10 242
ADS-MVSNet266.90 29563.44 30077.26 28688.06 20060.70 26068.01 35275.56 35057.57 32164.48 27069.87 34438.68 29684.10 33940.87 33767.89 25786.97 243
ADS-MVSNet68.54 28364.38 29681.03 22788.06 20066.90 11368.01 35284.02 32557.57 32164.48 27069.87 34438.68 29689.21 31140.87 33767.89 25786.97 243
WR-MVS76.76 20875.74 20379.82 25084.60 25762.27 23192.60 12792.51 12476.06 10067.87 24185.34 22356.76 16690.24 30162.20 25363.69 28986.94 245
DSMNet-mixed56.78 32454.44 32763.79 34163.21 36429.44 37264.43 35764.10 36742.12 36051.32 33471.60 34031.76 33375.04 36136.23 34865.20 27486.87 246
UniMVSNet (Re)77.58 19676.78 18879.98 24584.11 26760.80 25491.76 16393.17 9876.56 9769.93 21484.78 23063.32 10092.36 26864.89 23562.51 29686.78 247
RRT_MVS77.38 19976.59 19179.77 25290.91 13863.61 20491.15 19290.91 19172.28 17372.06 18887.28 20643.92 28089.04 31273.32 15267.47 26086.67 248
GBi-Net75.65 22573.83 22881.10 22388.85 17865.11 16090.01 22690.32 20770.84 21767.04 25180.25 28948.03 25291.54 28659.80 26769.34 24586.64 249
test175.65 22573.83 22881.10 22388.85 17865.11 16090.01 22690.32 20770.84 21767.04 25180.25 28948.03 25291.54 28659.80 26769.34 24586.64 249
FMVSNet172.71 25669.91 26381.10 22383.60 27465.11 16090.01 22690.32 20763.92 27963.56 27980.25 28936.35 31991.54 28654.46 28466.75 26486.64 249
v2v48277.42 19875.65 20482.73 17680.38 30067.13 10691.85 15890.23 21575.09 11569.37 21783.39 24553.79 20394.44 19771.77 17165.00 27686.63 252
miper_enhance_ethall78.86 17177.97 16781.54 21088.00 20365.17 15691.41 17489.15 25475.19 11468.79 22883.98 23867.17 5392.82 24772.73 16065.30 27086.62 253
cl2277.94 19176.78 18881.42 21287.57 20964.93 16890.67 20688.86 26672.45 16767.63 24482.68 25164.07 8692.91 24571.79 17065.30 27086.44 254
PLCcopyleft68.80 1475.23 23173.68 23079.86 24992.93 8158.68 28790.64 20888.30 27960.90 30464.43 27390.53 16042.38 28694.57 18956.52 27776.54 20686.33 255
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
bset_n11_16_dypcd75.95 22174.16 22281.30 21576.91 33665.14 15988.89 25087.48 29274.30 12569.90 21583.40 24442.16 28892.42 26478.39 12266.03 26786.32 256
EI-MVSNet78.97 16878.22 16381.25 21685.33 24562.73 22489.53 23793.21 9372.39 17072.14 18690.13 17060.99 11894.72 18467.73 20572.49 22786.29 257
IterMVS-LS76.49 21075.18 20880.43 23584.49 26062.74 22390.64 20888.80 26772.40 16965.16 26481.72 26260.98 11992.27 27167.74 20464.65 28186.29 257
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_ehance_all_eth77.60 19576.44 19381.09 22685.70 24264.41 18090.65 20788.64 27372.31 17167.37 24982.52 25264.77 7992.64 25870.67 18065.30 27086.24 259
OPM-MVS79.00 16778.09 16481.73 20583.52 27563.83 19391.64 16990.30 21176.36 9971.97 18989.93 17346.30 26995.17 17175.10 14177.70 19286.19 260
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DIV-MVS_self_test76.07 21474.67 21080.28 23885.14 24961.75 24090.12 22288.73 26971.16 21165.42 26281.60 26561.15 11692.94 24466.54 21662.16 30086.14 261
eth_miper_zixun_eth75.96 22074.40 21880.66 23284.66 25663.02 21489.28 24288.27 28171.88 18665.73 25981.65 26359.45 13692.81 24868.13 20060.53 31486.14 261
cl____76.07 21474.67 21080.28 23885.15 24861.76 23990.12 22288.73 26971.16 21165.43 26181.57 26661.15 11692.95 24066.54 21662.17 29886.13 263
PatchMatch-RL72.06 25969.98 26078.28 27289.51 16455.70 31583.49 29583.39 33261.24 30363.72 27882.76 24934.77 32393.03 23853.37 29077.59 19386.12 264
c3_l76.83 20775.47 20580.93 23085.02 25264.18 18990.39 21488.11 28471.66 19566.65 25681.64 26463.58 9792.56 25969.31 19262.86 29286.04 265
RPSCF64.24 30761.98 30971.01 32976.10 34045.00 35675.83 33875.94 34846.94 35358.96 30584.59 23231.40 33582.00 35647.76 31160.33 31886.04 265
Anonymous2023121173.08 24870.39 25981.13 22190.62 14363.33 20791.40 17690.06 22351.84 34064.46 27280.67 28236.49 31894.07 21063.83 24164.17 28485.98 267
v119275.98 21973.92 22782.15 19479.73 30766.24 13191.22 18889.75 23172.67 16068.49 23381.42 26949.86 23794.27 20267.08 21065.02 27585.95 268
JIA-IIPM66.06 29962.45 30676.88 29181.42 29254.45 32257.49 36388.67 27149.36 34763.86 27646.86 36256.06 17790.25 29849.53 30068.83 24985.95 268
v192192075.63 22773.49 23282.06 20179.38 31266.35 12791.07 19689.48 24071.98 18167.99 23681.22 27449.16 24693.90 22266.56 21564.56 28285.92 270
v114476.73 20974.88 20982.27 18980.23 30566.60 12291.68 16790.21 21773.69 14069.06 22281.89 25952.73 21394.40 19869.21 19365.23 27385.80 271
v14419276.05 21774.03 22582.12 19779.50 31166.55 12491.39 17889.71 23772.30 17268.17 23581.33 27151.75 22094.03 21667.94 20264.19 28385.77 272
v124075.21 23272.98 23681.88 20379.20 31466.00 13590.75 20589.11 25771.63 20067.41 24781.22 27447.36 26093.87 22365.46 23164.72 28085.77 272
v14876.19 21274.47 21781.36 21380.05 30664.44 17791.75 16590.23 21573.68 14167.13 25080.84 27955.92 18093.86 22568.95 19661.73 30585.76 274
test0.0.03 172.76 25472.71 24072.88 31780.25 30447.99 34991.22 18889.45 24171.51 20562.51 28987.66 19953.83 20185.06 33750.16 29767.84 25985.58 275
test_djsdf73.76 24672.56 24277.39 28377.00 33553.93 32389.07 24890.69 19565.80 26763.92 27582.03 25843.14 28492.67 25572.83 15768.53 25285.57 276
ACMM69.62 1374.34 23872.73 23979.17 26384.25 26657.87 29590.36 21589.93 22663.17 28665.64 26086.04 21837.79 30894.10 20765.89 22471.52 23485.55 277
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs573.35 24771.52 25278.86 26778.64 32460.61 26391.08 19486.90 29767.69 25263.32 28183.64 24044.33 27990.53 29562.04 25466.02 26885.46 278
jajsoiax73.05 24971.51 25377.67 27877.46 33254.83 31988.81 25290.04 22469.13 24162.85 28683.51 24231.16 33692.75 25170.83 17769.80 24185.43 279
ACMP71.68 1075.58 22874.23 22179.62 25684.97 25359.64 27490.80 20389.07 25970.39 22462.95 28487.30 20538.28 30193.87 22372.89 15671.45 23585.36 280
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
mvs_tets72.71 25671.11 25477.52 27977.41 33354.52 32188.45 25989.76 23068.76 24662.70 28783.26 24629.49 34092.71 25270.51 18369.62 24385.34 281
tpmvs72.88 25369.76 26582.22 19290.98 13567.05 10878.22 33388.30 27963.10 28764.35 27474.98 32755.09 18894.27 20243.25 32669.57 24485.34 281
miper_lstm_enhance73.05 24971.73 25177.03 28783.80 27058.32 29181.76 30788.88 26469.80 23261.01 29378.23 30457.19 15787.51 32765.34 23259.53 31985.27 283
LPG-MVS_test75.82 22374.58 21479.56 25884.31 26459.37 27990.44 21189.73 23469.49 23464.86 26588.42 18538.65 29894.30 20072.56 16272.76 22485.01 284
LGP-MVS_train79.56 25884.31 26459.37 27989.73 23469.49 23464.86 26588.42 18538.65 29894.30 20072.56 16272.76 22485.01 284
PVSNet_BlendedMVS83.38 9483.43 8083.22 16793.76 5867.53 9394.06 6393.61 7679.13 5881.00 9185.14 22563.19 10197.29 7887.08 5273.91 21784.83 286
V4276.46 21174.55 21582.19 19379.14 31767.82 8590.26 21989.42 24373.75 13868.63 23181.89 25951.31 22494.09 20871.69 17364.84 27784.66 287
IterMVS72.65 25870.83 25678.09 27582.17 28562.96 21687.64 27086.28 30371.56 20360.44 29678.85 30045.42 27486.66 33163.30 24561.83 30284.65 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT71.55 26269.97 26176.32 29481.48 29060.67 26187.64 27085.99 30866.17 26559.50 30078.88 29945.53 27283.65 34462.58 25161.93 30184.63 289
pm-mvs172.89 25271.09 25578.26 27379.10 31857.62 29990.80 20389.30 24667.66 25362.91 28581.78 26149.11 24792.95 24060.29 26458.89 32284.22 290
pmmvs473.92 24371.81 25080.25 24079.17 31565.24 15487.43 27287.26 29667.64 25563.46 28083.91 23948.96 24891.53 28962.94 24765.49 26983.96 291
v875.35 22973.26 23481.61 20980.67 29766.82 11589.54 23689.27 24771.65 19663.30 28280.30 28854.99 18994.06 21167.33 20962.33 29783.94 292
UnsupCasMVSNet_eth65.79 30163.10 30173.88 30970.71 35450.29 34181.09 31489.88 22872.58 16249.25 34274.77 32932.57 33087.43 32855.96 28041.04 35783.90 293
v1074.77 23672.54 24381.46 21180.33 30366.71 11989.15 24689.08 25870.94 21563.08 28379.86 29352.52 21494.04 21465.70 22762.17 29883.64 294
F-COLMAP70.66 26568.44 27077.32 28486.37 23155.91 31388.00 26386.32 30256.94 32757.28 31688.07 19433.58 32692.49 26251.02 29468.37 25383.55 295
lessismore_v073.72 31172.93 34947.83 35061.72 37045.86 35073.76 33028.63 34489.81 30647.75 31231.37 36683.53 296
v7n71.31 26368.65 26879.28 26176.40 33860.77 25686.71 28089.45 24164.17 27858.77 30778.24 30344.59 27893.54 22957.76 27361.75 30483.52 297
Anonymous2023120667.53 29265.78 28272.79 31874.95 34247.59 35188.23 26187.32 29461.75 30258.07 31077.29 31137.79 30887.29 32942.91 32863.71 28883.48 298
CP-MVSNet70.50 26769.91 26372.26 32280.71 29651.00 33787.23 27490.30 21167.84 25059.64 29982.69 25050.23 23482.30 35451.28 29359.28 32083.46 299
K. test v363.09 31259.61 31673.53 31276.26 33949.38 34583.27 29977.15 34664.35 27647.77 34672.32 33728.73 34287.79 32349.93 29936.69 36183.41 300
PS-CasMVS69.86 27369.13 26772.07 32580.35 30250.57 33987.02 27689.75 23167.27 25759.19 30382.28 25446.58 26482.24 35550.69 29559.02 32183.39 301
PEN-MVS69.46 27568.56 26972.17 32479.27 31349.71 34386.90 27889.24 24867.24 26059.08 30482.51 25347.23 26183.54 34548.42 30557.12 32583.25 302
anonymousdsp71.14 26469.37 26676.45 29372.95 34854.71 32084.19 29088.88 26461.92 29962.15 29079.77 29438.14 30391.44 29168.90 19767.45 26183.21 303
XVG-ACMP-BASELINE68.04 28765.53 28675.56 29874.06 34652.37 32978.43 33085.88 30962.03 29758.91 30681.21 27620.38 35991.15 29260.69 26168.18 25483.16 304
MSDG69.54 27465.73 28380.96 22885.11 25163.71 19884.19 29083.28 33356.95 32654.50 32184.03 23631.50 33496.03 13442.87 33069.13 24883.14 305
SixPastTwentyTwo64.92 30361.78 31074.34 30778.74 32249.76 34283.42 29879.51 34462.86 28850.27 33877.35 30930.92 33890.49 29645.89 31847.06 34882.78 306
testgi64.48 30662.87 30469.31 33271.24 35140.62 36385.49 28479.92 34265.36 27154.18 32383.49 24323.74 35384.55 33841.60 33460.79 31382.77 307
DTE-MVSNet68.46 28467.33 27671.87 32777.94 33049.00 34686.16 28388.58 27566.36 26458.19 30882.21 25646.36 26583.87 34344.97 32355.17 33282.73 308
WR-MVS_H70.59 26669.94 26272.53 31981.03 29351.43 33487.35 27392.03 14067.38 25660.23 29780.70 28055.84 18183.45 34646.33 31658.58 32482.72 309
ppachtmachnet_test67.72 28963.70 29879.77 25278.92 31966.04 13488.68 25482.90 33560.11 31155.45 31975.96 32339.19 29590.55 29439.53 34152.55 33982.71 310
CL-MVSNet_self_test69.92 27168.09 27375.41 29973.25 34755.90 31490.05 22589.90 22769.96 22961.96 29276.54 31751.05 22787.64 32449.51 30150.59 34382.70 311
LS3D69.17 27666.40 27977.50 28091.92 11156.12 31285.12 28580.37 34146.96 35256.50 31887.51 20237.25 31193.71 22632.52 36179.40 17782.68 312
our_test_368.29 28564.69 29179.11 26678.92 31964.85 16988.40 26085.06 31560.32 30952.68 32876.12 32240.81 29189.80 30844.25 32555.65 33082.67 313
FMVSNet568.04 28765.66 28575.18 30184.43 26257.89 29483.54 29486.26 30461.83 30153.64 32673.30 33237.15 31485.08 33648.99 30261.77 30382.56 314
KD-MVS_2432*160069.03 27866.37 28077.01 28885.56 24361.06 25081.44 31290.25 21367.27 25758.00 31176.53 31854.49 19387.63 32548.04 30735.77 36282.34 315
miper_refine_blended69.03 27866.37 28077.01 28885.56 24361.06 25081.44 31290.25 21367.27 25758.00 31176.53 31854.49 19387.63 32548.04 30735.77 36282.34 315
MVS_030468.99 28067.23 27774.28 30880.36 30152.54 32887.01 27786.36 30159.89 31366.22 25773.56 33124.25 35088.03 32057.34 27670.11 24082.27 317
pmmvs667.57 29164.76 29076.00 29772.82 35053.37 32588.71 25386.78 30053.19 33757.58 31578.03 30635.33 32292.41 26555.56 28154.88 33482.21 318
EU-MVSNet64.01 30863.01 30267.02 33974.40 34538.86 36883.27 29986.19 30645.11 35654.27 32281.15 27736.91 31780.01 35948.79 30457.02 32682.19 319
ACMH63.93 1768.62 28164.81 28980.03 24485.22 24763.25 20887.72 26884.66 32060.83 30551.57 33379.43 29827.29 34694.96 17641.76 33364.84 27781.88 320
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
D2MVS73.80 24472.02 24879.15 26579.15 31662.97 21588.58 25690.07 22072.94 15459.22 30278.30 30242.31 28792.70 25465.59 22972.00 23081.79 321
DP-MVS69.90 27266.48 27880.14 24195.36 3062.93 21789.56 23476.11 34750.27 34557.69 31485.23 22439.68 29495.73 14433.35 35671.05 23881.78 322
Patchmtry67.53 29263.93 29778.34 27082.12 28664.38 18168.72 34984.00 32648.23 35159.24 30172.41 33557.82 15289.27 31046.10 31756.68 32981.36 323
Baseline_NR-MVSNet73.99 24272.83 23777.48 28180.78 29559.29 28291.79 16084.55 32168.85 24368.99 22380.70 28056.16 17492.04 27662.67 25060.98 31181.11 324
CMPMVSbinary48.56 2166.77 29664.41 29573.84 31070.65 35550.31 34077.79 33585.73 31145.54 35544.76 35382.14 25735.40 32190.14 30463.18 24674.54 21281.07 325
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TransMVSNet (Re)70.07 27067.66 27477.31 28580.62 29959.13 28491.78 16284.94 31765.97 26660.08 29880.44 28550.78 22891.87 27848.84 30345.46 35180.94 326
ACMH+65.35 1667.65 29064.55 29276.96 29084.59 25857.10 30788.08 26280.79 33958.59 32053.00 32781.09 27826.63 34892.95 24046.51 31461.69 30780.82 327
USDC67.43 29464.51 29376.19 29577.94 33055.29 31778.38 33185.00 31673.17 14948.36 34480.37 28621.23 35792.48 26352.15 29264.02 28680.81 328
OurMVSNet-221017-064.68 30462.17 30872.21 32376.08 34147.35 35280.67 31681.02 33856.19 33051.60 33279.66 29627.05 34788.56 31553.60 28953.63 33780.71 329
MS-PatchMatch77.90 19376.50 19282.12 19785.99 23669.95 3691.75 16592.70 11473.97 13262.58 28884.44 23441.11 29095.78 14063.76 24292.17 7280.62 330
tfpnnormal70.10 26967.36 27578.32 27183.45 27660.97 25288.85 25192.77 11264.85 27460.83 29578.53 30143.52 28393.48 23131.73 36261.70 30680.52 331
MIMVSNet160.16 32157.33 32268.67 33369.71 35744.13 35878.92 32884.21 32255.05 33444.63 35471.85 33923.91 35281.54 35832.63 36055.03 33380.35 332
YYNet163.76 31160.14 31474.62 30478.06 32960.19 26983.46 29783.99 32856.18 33139.25 36071.56 34237.18 31383.34 34742.90 32948.70 34680.32 333
MDA-MVSNet_test_wron63.78 31060.16 31374.64 30378.15 32860.41 26483.49 29584.03 32456.17 33239.17 36171.59 34137.22 31283.24 34942.87 33048.73 34580.26 334
KD-MVS_self_test60.87 31858.60 31867.68 33666.13 36139.93 36575.63 33984.70 31957.32 32449.57 34168.45 34729.55 33982.87 35048.09 30647.94 34780.25 335
ITE_SJBPF70.43 33074.44 34447.06 35377.32 34560.16 31054.04 32483.53 24123.30 35484.01 34143.07 32761.58 30880.21 336
test20.0363.83 30962.65 30567.38 33870.58 35639.94 36486.57 28184.17 32363.29 28451.86 33177.30 31037.09 31582.47 35238.87 34554.13 33679.73 337
UnsupCasMVSNet_bld61.60 31657.71 32073.29 31468.73 35951.64 33278.61 32989.05 26057.20 32546.11 34761.96 35628.70 34388.60 31450.08 29838.90 35979.63 338
AllTest61.66 31558.06 31972.46 32079.57 30851.42 33580.17 32268.61 36251.25 34145.88 34881.23 27219.86 36086.58 33238.98 34357.01 32779.39 339
TestCases72.46 32079.57 30851.42 33568.61 36251.25 34145.88 34881.23 27219.86 36086.58 33238.98 34357.01 32779.39 339
ambc69.61 33161.38 36741.35 36149.07 36685.86 31050.18 34066.40 34910.16 36988.14 31945.73 31944.20 35279.32 341
Anonymous2024052162.09 31459.08 31771.10 32867.19 36048.72 34783.91 29285.23 31450.38 34447.84 34571.22 34320.74 35885.51 33546.47 31558.75 32379.06 342
MVP-Stereo77.12 20376.23 19679.79 25181.72 28966.34 12889.29 24190.88 19270.56 22362.01 29182.88 24849.34 24194.13 20665.55 23093.80 4578.88 343
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs-eth3d65.53 30262.32 30775.19 30069.39 35859.59 27582.80 30483.43 33062.52 29351.30 33572.49 33332.86 32787.16 33055.32 28250.73 34278.83 344
OpenMVS_ROBcopyleft61.12 1866.39 29762.92 30376.80 29276.51 33757.77 29689.22 24383.41 33155.48 33353.86 32577.84 30726.28 34993.95 22034.90 35368.76 25078.68 345
LTVRE_ROB59.60 1966.27 29863.54 29974.45 30584.00 26951.55 33367.08 35583.53 32958.78 31854.94 32080.31 28734.54 32493.23 23540.64 33968.03 25578.58 346
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PM-MVS59.40 32256.59 32367.84 33463.63 36341.86 36076.76 33663.22 36859.01 31751.07 33672.27 33811.72 36883.25 34861.34 25750.28 34478.39 347
N_pmnet50.55 32849.11 33154.88 34677.17 3344.02 38284.36 2892.00 38148.59 34845.86 35068.82 34632.22 33182.80 35131.58 36351.38 34177.81 348
new-patchmatchnet59.30 32356.48 32467.79 33565.86 36244.19 35782.47 30581.77 33659.94 31243.65 35766.20 35027.67 34581.68 35739.34 34241.40 35677.50 349
EG-PatchMatch MVS68.55 28265.41 28777.96 27678.69 32362.93 21789.86 23189.17 25260.55 30650.27 33877.73 30822.60 35594.06 21147.18 31372.65 22676.88 350
MVS-HIRNet60.25 32055.55 32674.35 30684.37 26356.57 31071.64 34374.11 35334.44 36345.54 35242.24 36631.11 33789.81 30640.36 34076.10 20876.67 351
MDA-MVSNet-bldmvs61.54 31757.70 32173.05 31579.53 31057.00 30883.08 30281.23 33757.57 32134.91 36372.45 33432.79 32886.26 33435.81 35041.95 35575.89 352
COLMAP_ROBcopyleft57.96 2062.98 31359.65 31572.98 31681.44 29153.00 32783.75 29375.53 35148.34 35048.81 34381.40 27024.14 35190.30 29732.95 35860.52 31575.65 353
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TinyColmap60.32 31956.42 32572.00 32678.78 32153.18 32678.36 33275.64 34952.30 33841.59 35975.82 32514.76 36588.35 31735.84 34954.71 33574.46 354
pmmvs355.51 32551.50 33067.53 33757.90 36950.93 33880.37 31873.66 35440.63 36144.15 35664.75 35316.30 36278.97 36044.77 32440.98 35872.69 355
test_method38.59 33435.16 33748.89 35054.33 37021.35 37745.32 36753.71 3727.41 37328.74 36451.62 3608.70 37252.87 37133.73 35432.89 36572.47 356
test_040264.54 30561.09 31174.92 30284.10 26860.75 25887.95 26479.71 34352.03 33952.41 32977.20 31232.21 33291.64 28323.14 36561.03 31072.36 357
LF4IMVS54.01 32752.12 32859.69 34262.41 36639.91 36668.59 35068.28 36442.96 35944.55 35575.18 32614.09 36768.39 36541.36 33651.68 34070.78 358
TDRefinement55.28 32651.58 32966.39 34059.53 36846.15 35576.23 33772.80 35544.60 35742.49 35876.28 32115.29 36382.39 35333.20 35743.75 35370.62 359
LCM-MVSNet40.54 33235.79 33554.76 34736.92 37730.81 37151.41 36469.02 36122.07 36724.63 36645.37 3644.56 37765.81 36733.67 35534.50 36467.67 360
ANet_high40.27 33335.20 33655.47 34434.74 37834.47 37063.84 35871.56 35848.42 34918.80 36941.08 3679.52 37164.45 37020.18 3668.66 37467.49 361
PMMVS237.93 33533.61 33850.92 34946.31 37424.76 37560.55 36150.05 37328.94 36620.93 36747.59 3614.41 37865.13 36825.14 36418.55 36962.87 362
new_pmnet49.31 32946.44 33257.93 34362.84 36540.74 36268.47 35162.96 36936.48 36235.09 36257.81 35814.97 36472.18 36332.86 35946.44 34960.88 363
FPMVS45.64 33043.10 33353.23 34851.42 37236.46 36964.97 35671.91 35729.13 36527.53 36561.55 3579.83 37065.01 36916.00 36955.58 33158.22 364
EGC-MVSNET42.35 33138.09 33455.11 34574.57 34346.62 35471.63 34455.77 3710.04 3760.24 37762.70 35514.24 36674.91 36217.59 36846.06 35043.80 365
MVEpermissive24.84 2324.35 33919.77 34538.09 35334.56 37926.92 37426.57 36938.87 37711.73 37211.37 37327.44 3691.37 38050.42 37211.41 37114.60 37036.93 366
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft34.71 35451.45 37124.73 37628.48 38031.46 36417.49 37052.75 3595.80 37542.60 37518.18 36719.42 36836.81 367
PMVScopyleft26.43 2231.84 33728.16 34042.89 35225.87 38027.58 37350.92 36549.78 37421.37 36814.17 37240.81 3682.01 37966.62 3669.61 37238.88 36034.49 368
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft34.91 33631.44 33945.30 35170.99 35339.64 36719.85 37172.56 35620.10 36916.16 37121.47 3725.08 37671.16 36413.07 37043.70 35425.08 369
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt22.26 34123.75 34317.80 3575.23 38112.06 38135.26 36839.48 3762.82 37518.94 36844.20 36522.23 35624.64 37636.30 3479.31 37316.69 370
E-PMN24.61 33824.00 34226.45 35543.74 37518.44 37960.86 35939.66 37515.11 3709.53 37422.10 3716.52 37446.94 3738.31 37310.14 37113.98 371
EMVS23.76 34023.20 34425.46 35641.52 37616.90 38060.56 36038.79 37814.62 3718.99 37520.24 3747.35 37345.82 3747.25 3749.46 37213.64 372
wuyk23d11.30 34310.95 34612.33 35848.05 37319.89 37825.89 3701.92 3823.58 3743.12 3761.37 3760.64 38115.77 3776.23 3757.77 3751.35 373
test1236.92 3469.21 3490.08 3590.03 3830.05 38381.65 3100.01 3840.02 3780.14 3790.85 3780.03 3820.02 3780.12 3770.00 3770.16 374
testmvs7.23 3459.62 3480.06 3600.04 3820.02 38484.98 2870.02 3830.03 3770.18 3781.21 3770.01 3830.02 3780.14 3760.01 3760.13 375
test_blank0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3770.00 376
uanet_test0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3770.00 376
DCPMVS0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3770.00 376
cdsmvs_eth3d_5k19.86 34226.47 3410.00 3610.00 3840.00 3850.00 37293.45 840.00 3790.00 38095.27 5249.56 2390.00 3800.00 3780.00 3770.00 376
pcd_1.5k_mvsjas4.46 3475.95 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 37953.55 2050.00 3800.00 3780.00 3770.00 376
sosnet-low-res0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3770.00 376
sosnet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3770.00 376
uncertanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3770.00 376
Regformer0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3770.00 376
ab-mvs-re7.91 34410.55 3470.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38094.95 640.00 3840.00 3800.00 3780.00 3770.00 376
uanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3770.00 376
FOURS193.95 5361.77 23893.96 6891.92 14462.14 29686.57 35
test_one_060196.32 2069.74 4294.18 5671.42 20890.67 1596.85 1274.45 19
eth-test20.00 384
eth-test0.00 384
ZD-MVS96.63 1165.50 15093.50 8270.74 22185.26 5395.19 5864.92 7897.29 7887.51 4593.01 59
test_241102_ONE96.45 1469.38 4794.44 4371.65 19692.11 497.05 876.79 999.11 6
9.1487.63 2593.86 5594.41 5194.18 5672.76 15986.21 3896.51 1966.64 5997.88 4990.08 2594.04 41
save fliter93.84 5667.89 8395.05 3992.66 11778.19 70
test072696.40 1769.99 3396.76 694.33 5271.92 18291.89 897.11 773.77 22
test_part296.29 2168.16 7790.78 13
sam_mvs54.91 190
MTGPAbinary92.23 130
test_post178.95 32720.70 37353.05 21091.50 29060.43 262
test_post23.01 37056.49 17292.67 255
patchmatchnet-post67.62 34857.62 15490.25 298
MTMP93.77 8332.52 379
gm-plane-assit88.42 18967.04 10978.62 6791.83 14197.37 7276.57 133
TEST994.18 4667.28 10094.16 5693.51 8071.75 19485.52 4895.33 4768.01 4497.27 82
test_894.19 4567.19 10394.15 5893.42 8771.87 18785.38 5195.35 4668.19 4196.95 102
agg_prior94.16 5066.97 11193.31 9084.49 5996.75 111
test_prior467.18 10593.92 74
test_prior295.10 3775.40 10985.25 5495.61 4067.94 4587.47 4694.77 25
旧先验292.00 15259.37 31687.54 2993.47 23275.39 139
新几何291.41 174
原ACMM292.01 149
testdata296.09 12961.26 258
segment_acmp65.94 65
testdata189.21 24477.55 84
plane_prior786.94 22161.51 243
plane_prior687.23 21662.32 22950.66 229
plane_prior489.14 180
plane_prior361.95 23679.09 5972.53 179
plane_prior293.13 10378.81 64
plane_prior187.15 218
plane_prior62.42 22693.85 7879.38 5178.80 184
n20.00 385
nn0.00 385
door-mid66.01 366
test1193.01 104
door66.57 365
HQP5-MVS63.66 202
HQP-NCC87.54 21094.06 6379.80 4574.18 160
ACMP_Plane87.54 21094.06 6379.80 4574.18 160
BP-MVS77.63 128
HQP3-MVS91.70 15778.90 182
HQP2-MVS51.63 222
NP-MVS87.41 21363.04 21390.30 166
MDTV_nov1_ep1372.61 24189.06 17468.48 6680.33 31990.11 21971.84 19071.81 19175.92 32453.01 21193.92 22148.04 30773.38 219
ACMMP++_ref71.63 232
ACMMP++69.72 242
Test By Simon54.21 199