This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
DeepPCF-MVS95.94 297.71 8298.98 1293.92 28799.63 7981.76 37099.96 3498.56 9299.47 199.19 8399.99 194.16 85100.00 199.92 1299.93 60100.00 1
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2798.64 7698.47 299.13 8599.92 1396.38 31100.00 199.74 30100.00 1100.00 1
MM98.83 2198.53 2799.76 1099.59 8199.33 899.99 499.76 698.39 399.39 7299.80 5190.49 17299.96 6199.89 1699.43 11099.98 48
fmvsm_l_conf0.5_n_a99.00 1498.91 1499.28 4399.21 10297.91 7499.98 1498.85 5698.25 499.92 299.75 6994.72 6599.97 5399.87 1999.64 8799.95 71
fmvsm_l_conf0.5_n98.94 1598.84 1799.25 4499.17 10697.81 7799.98 1498.86 5398.25 499.90 399.76 6394.21 8399.97 5399.87 1999.52 9999.98 48
test_fmvsmconf_n98.43 4398.32 4098.78 8298.12 18296.41 12899.99 498.83 5998.22 699.67 3899.64 9991.11 15999.94 7799.67 3699.62 8999.98 48
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1498.69 6898.20 799.93 199.98 296.82 23100.00 199.75 28100.00 199.99 23
test_fmvsmconf0.1_n97.74 7997.44 8198.64 9295.76 28496.20 14099.94 6898.05 20698.17 898.89 9599.42 11887.65 20399.90 9199.50 4199.60 9599.82 92
MVS_030498.87 2098.61 2399.67 1699.18 10399.13 2299.87 10499.65 1298.17 898.75 10599.75 6992.76 12499.94 7799.88 1899.44 10899.94 74
DeepC-MVS_fast96.59 198.81 2398.54 2699.62 2099.90 4298.85 3499.24 24098.47 11598.14 1099.08 8699.91 1493.09 114100.00 199.04 6399.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + GP.98.60 3098.51 2898.86 8099.73 7296.63 12199.97 2797.92 21998.07 1198.76 10399.55 10895.00 5899.94 7799.91 1597.68 16299.99 23
test_fmvsm_n_192098.44 4198.61 2397.92 13999.27 10195.18 183100.00 198.90 4798.05 1299.80 1799.73 7892.64 12799.99 3699.58 3899.51 10298.59 219
NCCC99.37 299.25 299.71 1499.96 899.15 2199.97 2798.62 8198.02 1399.90 399.95 397.33 17100.00 199.54 39100.00 1100.00 1
DPM-MVS98.83 2198.46 3099.97 199.33 9899.92 199.96 3498.44 12397.96 1499.55 5499.94 497.18 21100.00 193.81 21499.94 5499.98 48
test_fmvsmvis_n_192097.67 8397.59 7897.91 14197.02 24295.34 17499.95 5298.45 11897.87 1597.02 16099.59 10489.64 18199.98 4399.41 4899.34 11598.42 222
test_vis1_n_192095.44 17095.31 16195.82 21998.50 15588.74 32299.98 1497.30 27697.84 1699.85 999.19 14066.82 35899.97 5398.82 7799.46 10698.76 211
test_cas_vis1_n_192096.59 13296.23 12697.65 15698.22 17394.23 20699.99 497.25 28297.77 1799.58 5399.08 14677.10 29899.97 5397.64 13499.45 10798.74 213
test_fmvsmconf0.01_n96.39 14095.74 14998.32 11891.47 36495.56 16699.84 12597.30 27697.74 1897.89 13999.35 12779.62 27999.85 10899.25 5499.24 11999.55 139
IU-MVS99.93 2499.31 1098.41 14897.71 1999.84 12100.00 1100.00 1100.00 1
DELS-MVS98.54 3398.22 4499.50 3099.15 10898.65 51100.00 198.58 8797.70 2098.21 13099.24 13792.58 13099.94 7798.63 9199.94 5499.92 81
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
save fliter99.82 5898.79 3899.96 3498.40 15297.66 21
test_fmvs195.35 17295.68 15394.36 27298.99 11784.98 35299.96 3496.65 33797.60 2299.73 3298.96 16171.58 33899.93 8598.31 10299.37 11398.17 226
patch_mono-298.24 5699.12 595.59 22399.67 7786.91 34399.95 5298.89 4997.60 2299.90 399.76 6396.54 2999.98 4399.94 1199.82 7699.88 85
EPNet98.49 3798.40 3298.77 8499.62 8096.80 11899.90 9099.51 1797.60 2299.20 8199.36 12693.71 9899.91 8997.99 11798.71 13799.61 127
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5298.56 9297.56 2599.44 6599.85 3095.38 48100.00 199.31 5199.99 2199.87 87
MSP-MVS99.09 999.12 598.98 7399.93 2497.24 9899.95 5298.42 14397.50 2699.52 5999.88 2197.43 1699.71 13899.50 4199.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10498.44 12397.48 2799.64 4299.94 496.68 2699.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_fmvs1_n94.25 20494.36 18493.92 28797.68 21083.70 35899.90 9096.57 34097.40 2899.67 3898.88 17261.82 37499.92 8898.23 10499.13 12498.14 229
fmvsm_s_conf0.5_n97.80 7497.85 6897.67 15599.06 11194.41 20099.98 1498.97 4097.34 2999.63 4399.69 8787.27 20899.97 5399.62 3799.06 12798.62 218
PS-MVSNAJ98.44 4198.20 4699.16 5598.80 13698.92 2899.54 20098.17 19197.34 2999.85 999.85 3091.20 15599.89 9699.41 4899.67 8598.69 216
MG-MVS98.91 1898.65 2099.68 1599.94 1399.07 2499.64 18499.44 2097.33 3199.00 9099.72 8194.03 8899.98 4398.73 83100.00 1100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5298.32 17297.28 3299.83 1399.91 1497.22 19100.00 199.99 5100.00 199.89 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.93 2499.29 1599.96 3498.42 14397.28 3299.86 799.94 497.22 19
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3498.43 13197.27 3499.80 1799.94 496.71 24100.00 1100.00 1100.00 1100.00 1
test_241102_TWO98.43 13197.27 3499.80 1799.94 497.18 21100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 13197.26 3699.80 1799.88 2196.71 24100.00 1
CANet_DTU96.76 12396.15 12898.60 9598.78 13797.53 8699.84 12597.63 23897.25 3799.20 8199.64 9981.36 26099.98 4392.77 23498.89 13098.28 225
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4399.91 8398.39 15597.20 3899.46 6399.85 3095.53 4599.79 12399.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
fmvsm_s_conf0.5_n_a97.73 8197.72 7197.77 14998.63 14694.26 20599.96 3498.92 4697.18 3999.75 2999.69 8787.00 21399.97 5399.46 4498.89 13099.08 195
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 5999.98 1498.86 5397.10 4099.80 1799.94 495.92 37100.00 199.51 40100.00 1100.00 1
xiu_mvs_v2_base98.23 5797.97 5999.02 7098.69 14198.66 4999.52 20298.08 20397.05 4199.86 799.86 2690.65 16899.71 13899.39 5098.63 13898.69 216
CHOSEN 280x42099.01 1399.03 1098.95 7699.38 9698.87 3298.46 31099.42 2297.03 4299.02 8999.09 14599.35 198.21 23999.73 3299.78 7999.77 101
CANet98.27 5297.82 6999.63 1799.72 7499.10 2399.98 1498.51 10797.00 4398.52 11499.71 8387.80 20199.95 6999.75 2899.38 11299.83 91
PC_three_145296.96 4499.80 1799.79 5597.49 10100.00 199.99 599.98 32100.00 1
mvsany_test197.82 7297.90 6697.55 16298.77 13893.04 23999.80 14197.93 21696.95 4599.61 5299.68 9390.92 16399.83 11899.18 5698.29 14899.80 96
test_vis1_n93.61 22093.03 22195.35 23095.86 27986.94 34199.87 10496.36 34796.85 4699.54 5698.79 18252.41 38799.83 11898.64 8998.97 12999.29 178
SteuartSystems-ACMMP99.02 1298.97 1399.18 5098.72 14097.71 7999.98 1498.44 12396.85 4699.80 1799.91 1497.57 899.85 10899.44 4699.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
HQP-NCC95.78 28099.87 10496.82 4893.37 220
ACMP_Plane95.78 28099.87 10496.82 4893.37 220
HQP-MVS94.61 19194.50 18294.92 24595.78 28091.85 26699.87 10497.89 22196.82 4893.37 22098.65 19280.65 27098.39 21897.92 12189.60 24894.53 258
MVS_111021_HR98.72 2598.62 2299.01 7199.36 9797.18 10199.93 7599.90 196.81 5198.67 10899.77 6193.92 9099.89 9699.27 5399.94 5499.96 64
plane_prior91.74 27099.86 11796.76 5289.59 250
TSAR-MVS + MP.98.93 1698.77 1899.41 3899.74 6998.67 4799.77 14798.38 15996.73 5399.88 699.74 7694.89 6199.59 14999.80 2599.98 3299.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MVS_111021_LR98.42 4498.38 3498.53 10599.39 9595.79 15399.87 10499.86 296.70 5498.78 10099.79 5592.03 14599.90 9199.17 5799.86 7099.88 85
PAPM98.60 3098.42 3199.14 5996.05 27398.96 2699.90 9099.35 2596.68 5598.35 12399.66 9696.45 3098.51 20699.45 4599.89 6699.96 64
test_one_060199.94 1399.30 1298.41 14896.63 5699.75 2999.93 1197.49 10
plane_prior391.64 27696.63 5693.01 224
CLD-MVS94.06 20793.90 19794.55 26196.02 27490.69 29199.98 1497.72 23296.62 5891.05 25098.85 18077.21 29798.47 20798.11 11089.51 25394.48 262
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5298.43 13196.48 5999.80 1799.93 1197.44 14100.00 199.92 1299.98 32100.00 1
test_0728_THIRD96.48 5999.83 1399.91 1497.87 6100.00 199.92 12100.00 1100.00 1
fmvsm_s_conf0.1_n97.30 9797.21 9197.60 16197.38 22694.40 20299.90 9098.64 7696.47 6199.51 6199.65 9884.99 23399.93 8599.22 5599.09 12698.46 220
xiu_mvs_v1_base_debu97.43 8997.06 9598.55 10097.74 20298.14 6299.31 23197.86 22596.43 6299.62 4699.69 8785.56 22599.68 14299.05 6098.31 14597.83 232
xiu_mvs_v1_base97.43 8997.06 9598.55 10097.74 20298.14 6299.31 23197.86 22596.43 6299.62 4699.69 8785.56 22599.68 14299.05 6098.31 14597.83 232
xiu_mvs_v1_base_debi97.43 8997.06 9598.55 10097.74 20298.14 6299.31 23197.86 22596.43 6299.62 4699.69 8785.56 22599.68 14299.05 6098.31 14597.83 232
SD-MVS98.92 1798.70 1999.56 2599.70 7698.73 4499.94 6898.34 16996.38 6599.81 1599.76 6394.59 6899.98 4399.84 2299.96 4699.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HQP_MVS94.49 19594.36 18494.87 24695.71 29091.74 27099.84 12597.87 22396.38 6593.01 22498.59 19780.47 27498.37 22497.79 12989.55 25194.52 260
plane_prior299.84 12596.38 65
DeepC-MVS94.51 496.92 11696.40 12398.45 11099.16 10795.90 15099.66 17898.06 20496.37 6894.37 20999.49 11383.29 24799.90 9197.63 13599.61 9399.55 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testdata199.28 23796.35 69
fmvsm_s_conf0.1_n_a97.09 10896.90 10397.63 15995.65 29394.21 20799.83 13298.50 11296.27 7099.65 4099.64 9984.72 23499.93 8599.04 6398.84 13398.74 213
XVS98.70 2698.55 2599.15 5799.94 1397.50 9099.94 6898.42 14396.22 7199.41 6899.78 5994.34 7799.96 6198.92 7099.95 4999.99 23
X-MVStestdata93.83 21092.06 24399.15 5799.94 1397.50 9099.94 6898.42 14396.22 7199.41 6841.37 40794.34 7799.96 6198.92 7099.95 4999.99 23
OPM-MVS93.21 22792.80 22694.44 26893.12 33790.85 29099.77 14797.61 24396.19 7391.56 24398.65 19275.16 32398.47 20793.78 21789.39 25493.99 311
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EPNet_dtu95.71 16295.39 15896.66 19698.92 12593.41 23199.57 19498.90 4796.19 7397.52 14698.56 20292.65 12697.36 27377.89 36398.33 14499.20 185
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OMC-MVS97.28 9897.23 9097.41 17099.76 6693.36 23499.65 18097.95 21496.03 7597.41 15099.70 8589.61 18299.51 15296.73 15998.25 14999.38 164
h-mvs3394.92 18094.36 18496.59 19898.85 13391.29 28198.93 27498.94 4195.90 7698.77 10198.42 21390.89 16699.77 12897.80 12670.76 37498.72 215
hse-mvs294.38 19894.08 19295.31 23398.27 17090.02 30899.29 23698.56 9295.90 7698.77 10198.00 22490.89 16698.26 23797.80 12669.20 38097.64 237
131496.84 11895.96 13899.48 3496.74 26098.52 5698.31 31898.86 5395.82 7889.91 26398.98 15787.49 20599.96 6197.80 12699.73 8299.96 64
test_prior299.95 5295.78 7999.73 3299.76 6396.00 3499.78 27100.00 1
MTAPA98.29 5197.96 6299.30 4299.85 5497.93 7399.39 22198.28 17995.76 8097.18 15699.88 2192.74 125100.00 198.67 8699.88 6899.99 23
UGNet95.33 17394.57 18197.62 16098.55 15094.85 18998.67 30199.32 2695.75 8196.80 16796.27 28072.18 33599.96 6194.58 19799.05 12898.04 230
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
HY-MVS92.50 797.79 7697.17 9499.63 1798.98 11899.32 997.49 33999.52 1595.69 8298.32 12497.41 24293.32 10699.77 12898.08 11395.75 20699.81 94
CHOSEN 1792x268896.81 11996.53 11997.64 15798.91 12993.07 23699.65 18099.80 395.64 8395.39 19798.86 17784.35 24099.90 9196.98 15299.16 12299.95 71
ETV-MVS97.92 6697.80 7098.25 12198.14 18096.48 12599.98 1497.63 23895.61 8499.29 7999.46 11692.55 13198.82 18599.02 6698.54 13999.46 155
FOURS199.92 3197.66 8399.95 5298.36 16395.58 8599.52 59
WTY-MVS98.10 6197.60 7699.60 2298.92 12599.28 1799.89 9899.52 1595.58 8598.24 12999.39 12393.33 10599.74 13497.98 11995.58 20999.78 100
CS-MVS-test97.88 6797.94 6397.70 15499.28 10095.20 18299.98 1497.15 29195.53 8799.62 4699.79 5592.08 14498.38 22298.75 8299.28 11799.52 147
3Dnovator91.47 1296.28 14795.34 16099.08 6596.82 25597.47 9399.45 21498.81 6095.52 8889.39 27799.00 15481.97 25399.95 6997.27 14199.83 7299.84 90
lupinMVS97.85 6997.60 7698.62 9397.28 23597.70 8199.99 497.55 24995.50 8999.43 6699.67 9490.92 16398.71 19598.40 9799.62 8999.45 157
PVSNet_Blended97.94 6497.64 7498.83 8199.59 8196.99 110100.00 199.10 3195.38 9098.27 12699.08 14689.00 19399.95 6999.12 5899.25 11899.57 137
PAPR98.52 3598.16 4999.58 2499.97 398.77 4099.95 5298.43 13195.35 9198.03 13499.75 6994.03 8899.98 4398.11 11099.83 7299.99 23
jason97.24 10096.86 10598.38 11695.73 28797.32 9799.97 2797.40 26795.34 9298.60 11399.54 11087.70 20298.56 20397.94 12099.47 10499.25 182
jason: jason.
EI-MVSNet-Vis-set98.27 5298.11 5398.75 8599.83 5796.59 12499.40 21798.51 10795.29 9398.51 11599.76 6393.60 10199.71 13898.53 9499.52 9999.95 71
3Dnovator+91.53 1196.31 14495.24 16399.52 2896.88 25298.64 5299.72 16698.24 18395.27 9488.42 30298.98 15782.76 24999.94 7797.10 14799.83 7299.96 64
EI-MVSNet-UG-set98.14 5997.99 5898.60 9599.80 6196.27 13499.36 22698.50 11295.21 9598.30 12599.75 6993.29 10899.73 13798.37 9999.30 11699.81 94
CS-MVS97.79 7697.91 6597.43 16999.10 10994.42 19999.99 497.10 29695.07 9699.68 3799.75 6992.95 11898.34 22698.38 9899.14 12399.54 143
mPP-MVS98.39 4798.20 4698.97 7499.97 396.92 11399.95 5298.38 15995.04 9798.61 11299.80 5193.39 102100.00 198.64 89100.00 199.98 48
test111195.57 16794.98 17397.37 17398.56 14793.37 23398.86 28398.45 11894.95 9896.63 17098.95 16675.21 32299.11 17495.02 18298.14 15299.64 119
test250697.53 8697.19 9298.58 9898.66 14496.90 11498.81 28899.77 594.93 9997.95 13698.96 16192.51 13299.20 16994.93 18498.15 15099.64 119
ECVR-MVScopyleft95.66 16595.05 17097.51 16598.66 14493.71 22098.85 28598.45 11894.93 9996.86 16498.96 16175.22 32199.20 16995.34 17698.15 15099.64 119
SR-MVS98.46 3998.30 4398.93 7799.88 4997.04 10799.84 12598.35 16594.92 10199.32 7599.80 5193.35 10499.78 12599.30 5299.95 4999.96 64
Effi-MVS+-dtu94.53 19495.30 16292.22 32397.77 20082.54 36399.59 19097.06 30194.92 10195.29 19995.37 31485.81 22397.89 25794.80 19097.07 17596.23 252
region2R98.54 3398.37 3699.05 6699.96 897.18 10199.96 3498.55 9894.87 10399.45 6499.85 3094.07 87100.00 198.67 86100.00 199.98 48
ACMMPcopyleft97.74 7997.44 8198.66 9099.92 3196.13 14499.18 24599.45 1994.84 10496.41 17899.71 8391.40 15299.99 3697.99 11798.03 15799.87 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HFP-MVS98.56 3298.37 3699.14 5999.96 897.43 9499.95 5298.61 8294.77 10599.31 7699.85 3094.22 81100.00 198.70 8499.98 3299.98 48
ACMMPR98.50 3698.32 4099.05 6699.96 897.18 10199.95 5298.60 8494.77 10599.31 7699.84 4193.73 97100.00 198.70 8499.98 3299.98 48
PVSNet91.05 1397.13 10596.69 11398.45 11099.52 8895.81 15299.95 5299.65 1294.73 10799.04 8899.21 13984.48 23799.95 6994.92 18598.74 13699.58 136
test_fmvs289.47 30989.70 28688.77 35394.54 31175.74 38299.83 13294.70 37894.71 10891.08 24896.82 26754.46 38497.78 26292.87 23288.27 27292.80 350
MP-MVScopyleft98.23 5797.97 5999.03 6899.94 1397.17 10499.95 5298.39 15594.70 10998.26 12899.81 5091.84 149100.00 198.85 7699.97 4299.93 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMMP_NAP98.49 3798.14 5099.54 2799.66 7898.62 5399.85 12098.37 16294.68 11099.53 5799.83 4392.87 120100.00 198.66 8899.84 7199.99 23
diffmvspermissive97.00 11296.64 11498.09 13097.64 21396.17 14399.81 13797.19 28594.67 11198.95 9199.28 12986.43 21898.76 19098.37 9997.42 16899.33 172
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EC-MVSNet97.38 9697.24 8997.80 14497.41 22495.64 16399.99 497.06 30194.59 11299.63 4399.32 12889.20 19198.14 24298.76 8199.23 12099.62 124
PAPM_NR98.12 6097.93 6498.70 8799.94 1396.13 14499.82 13598.43 13194.56 11397.52 14699.70 8594.40 7299.98 4397.00 15099.98 3299.99 23
PVSNet_Blended_VisFu97.27 9996.81 10798.66 9098.81 13596.67 12099.92 7898.64 7694.51 11496.38 17998.49 20689.05 19299.88 10297.10 14798.34 14399.43 160
canonicalmvs97.09 10896.32 12499.39 4098.93 12398.95 2799.72 16697.35 27094.45 11597.88 14099.42 11886.71 21599.52 15198.48 9593.97 23399.72 107
CVMVSNet94.68 18994.94 17493.89 29096.80 25686.92 34299.06 25898.98 3894.45 11594.23 21399.02 15085.60 22495.31 35690.91 25995.39 21399.43 160
SR-MVS-dyc-post98.31 4998.17 4898.71 8699.79 6296.37 13299.76 15298.31 17494.43 11799.40 7099.75 6993.28 10999.78 12598.90 7399.92 6399.97 58
RE-MVS-def98.13 5199.79 6296.37 13299.76 15298.31 17494.43 11799.40 7099.75 6992.95 11898.90 7399.92 6399.97 58
CP-MVS98.45 4098.32 4098.87 7999.96 896.62 12299.97 2798.39 15594.43 11798.90 9499.87 2494.30 79100.00 199.04 6399.99 2199.99 23
EIA-MVS97.53 8697.46 8097.76 15198.04 18594.84 19099.98 1497.61 24394.41 12097.90 13899.59 10492.40 13698.87 18298.04 11499.13 12499.59 130
alignmvs97.81 7397.33 8699.25 4498.77 13898.66 4999.99 498.44 12394.40 12198.41 11999.47 11493.65 9999.42 16298.57 9294.26 22999.67 113
ET-MVSNet_ETH3D94.37 19993.28 21797.64 15798.30 16697.99 6999.99 497.61 24394.35 12271.57 38599.45 11796.23 3295.34 35596.91 15785.14 30099.59 130
train_agg98.88 1998.65 2099.59 2399.92 3198.92 2899.96 3498.43 13194.35 12299.71 3499.86 2695.94 3599.85 10899.69 3599.98 3299.99 23
test_899.92 3198.88 3199.96 3498.43 13194.35 12299.69 3699.85 3095.94 3599.85 108
ZNCC-MVS98.31 4998.03 5699.17 5399.88 4997.59 8499.94 6898.44 12394.31 12598.50 11699.82 4693.06 11599.99 3698.30 10399.99 2199.93 76
VNet97.21 10296.57 11899.13 6398.97 11997.82 7699.03 26599.21 2994.31 12599.18 8498.88 17286.26 22199.89 9698.93 6994.32 22799.69 110
dcpmvs_297.42 9398.09 5495.42 22899.58 8587.24 33999.23 24196.95 31394.28 12798.93 9399.73 7894.39 7599.16 17399.89 1699.82 7699.86 89
IB-MVS92.85 694.99 17993.94 19698.16 12497.72 20795.69 16199.99 498.81 6094.28 12792.70 23096.90 25995.08 5399.17 17296.07 16673.88 36999.60 129
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Vis-MVSNetpermissive95.72 16095.15 16797.45 16797.62 21494.28 20499.28 23798.24 18394.27 12996.84 16598.94 16879.39 28198.76 19093.25 22498.49 14099.30 176
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
旧先验299.46 21394.21 13099.85 999.95 6996.96 154
iter_conf0596.07 15095.95 14096.44 20398.43 15897.52 8799.91 8396.85 32494.16 13192.49 23597.98 22798.20 497.34 27597.26 14288.29 27194.45 269
ACMP92.05 992.74 24092.42 23893.73 29395.91 27888.72 32399.81 13797.53 25394.13 13287.00 31998.23 21774.07 32998.47 20796.22 16588.86 26093.99 311
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PMMVS96.76 12396.76 10996.76 19298.28 16992.10 26099.91 8397.98 21194.12 13399.53 5799.39 12386.93 21498.73 19296.95 15597.73 16099.45 157
XVG-OURS94.82 18194.74 17995.06 24098.00 18689.19 31799.08 25397.55 24994.10 13494.71 20499.62 10280.51 27299.74 13496.04 16793.06 24296.25 250
APD-MVScopyleft98.62 2998.35 3999.41 3899.90 4298.51 5799.87 10498.36 16394.08 13599.74 3199.73 7894.08 8699.74 13499.42 4799.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test-LLR96.47 13596.04 13097.78 14797.02 24295.44 16999.96 3498.21 18694.07 13695.55 19496.38 27693.90 9298.27 23590.42 26998.83 13499.64 119
test0.0.03 193.86 20993.61 20294.64 25595.02 30492.18 25999.93 7598.58 8794.07 13687.96 30698.50 20593.90 9294.96 36081.33 34793.17 23996.78 245
原ACMM198.96 7599.73 7296.99 11098.51 10794.06 13899.62 4699.85 3094.97 6099.96 6195.11 17999.95 4999.92 81
PVSNet_BlendedMVS96.05 15195.82 14896.72 19499.59 8196.99 11099.95 5299.10 3194.06 13898.27 12695.80 29189.00 19399.95 6999.12 5887.53 28493.24 342
iter_conf_final96.01 15395.93 14296.28 20898.38 16097.03 10899.87 10497.03 30494.05 14092.61 23197.98 22798.01 597.34 27597.02 14988.39 27094.47 263
GST-MVS98.27 5297.97 5999.17 5399.92 3197.57 8599.93 7598.39 15594.04 14198.80 9999.74 7692.98 117100.00 198.16 10799.76 8099.93 76
PVSNet_088.03 1991.80 26290.27 27596.38 20698.27 17090.46 29899.94 6899.61 1493.99 14286.26 33197.39 24471.13 34299.89 9698.77 8067.05 38598.79 210
CDPH-MVS98.65 2898.36 3899.49 3299.94 1398.73 4499.87 10498.33 17093.97 14399.76 2899.87 2494.99 5999.75 13298.55 93100.00 199.98 48
PatchMatch-RL96.04 15295.40 15797.95 13699.59 8195.22 18199.52 20299.07 3493.96 14496.49 17498.35 21482.28 25199.82 12090.15 27499.22 12198.81 209
APD-MVS_3200maxsize98.25 5598.08 5598.78 8299.81 6096.60 12399.82 13598.30 17793.95 14599.37 7399.77 6192.84 12199.76 13198.95 6799.92 6399.97 58
PLCcopyleft95.54 397.93 6597.89 6798.05 13399.82 5894.77 19499.92 7898.46 11793.93 14697.20 15599.27 13295.44 4799.97 5397.41 13899.51 10299.41 162
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
baseline96.43 13795.98 13497.76 15197.34 22995.17 18499.51 20497.17 28893.92 14796.90 16399.28 12985.37 22998.64 20097.50 13796.86 18399.46 155
TEST999.92 3198.92 2899.96 3498.43 13193.90 14899.71 3499.86 2695.88 3899.85 108
PGM-MVS98.34 4898.13 5198.99 7299.92 3197.00 10999.75 15599.50 1893.90 14899.37 7399.76 6393.24 111100.00 197.75 13399.96 4699.98 48
testgi89.01 31488.04 31591.90 32793.49 32984.89 35399.73 16395.66 36193.89 15085.14 33898.17 21859.68 37894.66 36477.73 36488.88 25896.16 254
testdata98.42 11399.47 9295.33 17598.56 9293.78 15199.79 2599.85 3093.64 10099.94 7794.97 18399.94 54100.00 1
CNLPA97.76 7897.38 8398.92 7899.53 8796.84 11599.87 10498.14 19993.78 15196.55 17399.69 8792.28 13999.98 4397.13 14599.44 10899.93 76
casdiffmvspermissive96.42 13995.97 13797.77 14997.30 23394.98 18699.84 12597.09 29893.75 15396.58 17299.26 13585.07 23198.78 18897.77 13197.04 17799.54 143
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net96.54 13395.96 13898.27 12098.23 17295.71 15898.00 33298.45 11893.72 15498.41 11999.27 13288.71 19799.66 14691.19 25197.69 16199.44 159
XVG-OURS-SEG-HR94.79 18394.70 18095.08 23998.05 18489.19 31799.08 25397.54 25193.66 15594.87 20399.58 10678.78 28899.79 12397.31 14093.40 23796.25 250
USDC90.00 30188.96 30293.10 31394.81 30688.16 33298.71 29695.54 36493.66 15583.75 34597.20 24865.58 36298.31 22983.96 33287.49 28592.85 349
mvsmamba94.10 20593.72 20195.25 23593.57 32694.13 20999.67 17796.45 34593.63 15791.34 24697.77 23486.29 22097.22 28696.65 16088.10 27594.40 271
SF-MVS98.67 2798.40 3299.50 3099.77 6598.67 4799.90 9098.21 18693.53 15899.81 1599.89 1994.70 6799.86 10799.84 2299.93 6099.96 64
EPMVS96.53 13496.01 13198.09 13098.43 15896.12 14696.36 36099.43 2193.53 15897.64 14495.04 32694.41 7198.38 22291.13 25298.11 15399.75 103
无先验99.49 20898.71 6693.46 160100.00 194.36 20099.99 23
sss97.57 8597.03 9999.18 5098.37 16198.04 6799.73 16399.38 2393.46 16098.76 10399.06 14891.21 15499.89 9696.33 16297.01 17999.62 124
testing1197.48 8897.27 8898.10 12998.36 16296.02 14799.92 7898.45 11893.45 16298.15 13298.70 18795.48 4699.22 16597.85 12595.05 21999.07 196
MP-MVS-pluss98.07 6297.64 7499.38 4199.74 6998.41 6099.74 15898.18 19093.35 16396.45 17599.85 3092.64 12799.97 5398.91 7299.89 6699.77 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
casdiffmvs_mvgpermissive96.43 13795.94 14197.89 14397.44 22395.47 16899.86 11797.29 27893.35 16396.03 18599.19 14085.39 22898.72 19497.89 12497.04 17799.49 153
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
AdaColmapbinary97.23 10196.80 10898.51 10699.99 195.60 16599.09 25198.84 5893.32 16596.74 16899.72 8186.04 222100.00 198.01 11599.43 11099.94 74
SCA94.69 18793.81 20097.33 17797.10 23894.44 19798.86 28398.32 17293.30 16696.17 18495.59 30076.48 30897.95 25491.06 25497.43 16699.59 130
miper_enhance_ethall94.36 20193.98 19495.49 22498.68 14295.24 17999.73 16397.29 27893.28 16789.86 26595.97 28994.37 7697.05 29792.20 23884.45 30594.19 288
9.1498.38 3499.87 5199.91 8398.33 17093.22 16899.78 2699.89 1994.57 6999.85 10899.84 2299.97 42
SMA-MVScopyleft98.76 2498.48 2999.62 2099.87 5198.87 3299.86 11798.38 15993.19 16999.77 2799.94 495.54 43100.00 199.74 3099.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
thres20096.96 11396.21 12799.22 4698.97 11998.84 3599.85 12099.71 793.17 17096.26 18198.88 17289.87 17999.51 15294.26 20394.91 22099.31 174
MDTV_nov1_ep1395.69 15197.90 19194.15 20895.98 36998.44 12393.12 17197.98 13595.74 29395.10 5298.58 20290.02 27596.92 181
F-COLMAP96.93 11596.95 10196.87 18999.71 7591.74 27099.85 12097.95 21493.11 17295.72 19399.16 14392.35 13799.94 7795.32 17799.35 11498.92 202
ACMM91.95 1092.88 23792.52 23693.98 28695.75 28689.08 32099.77 14797.52 25593.00 17389.95 26297.99 22676.17 31298.46 21093.63 22188.87 25994.39 273
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UWE-MVS96.79 12096.72 11197.00 18498.51 15493.70 22199.71 16898.60 8492.96 17497.09 15798.34 21596.67 2898.85 18492.11 24096.50 18798.44 221
testing9997.17 10396.91 10297.95 13698.35 16495.70 15999.91 8398.43 13192.94 17597.36 15198.72 18594.83 6299.21 16697.00 15094.64 22198.95 201
baseline296.71 12796.49 12097.37 17395.63 29595.96 14999.74 15898.88 5192.94 17591.61 24298.97 15997.72 798.62 20194.83 18998.08 15697.53 242
testing9197.16 10496.90 10397.97 13598.35 16495.67 16299.91 8398.42 14392.91 17797.33 15298.72 18594.81 6399.21 16696.98 15294.63 22299.03 198
tfpn200view996.79 12095.99 13299.19 4998.94 12198.82 3699.78 14499.71 792.86 17896.02 18698.87 17589.33 18699.50 15493.84 21194.57 22399.27 180
thres40096.78 12295.99 13299.16 5598.94 12198.82 3699.78 14499.71 792.86 17896.02 18698.87 17589.33 18699.50 15493.84 21194.57 22399.16 187
PatchmatchNetpermissive95.94 15595.45 15697.39 17297.83 19694.41 20096.05 36798.40 15292.86 17897.09 15795.28 32194.21 8398.07 24789.26 28298.11 15399.70 108
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
bld_raw_dy_0_6492.74 24092.03 24494.87 24693.09 33993.46 22899.12 24895.41 36692.84 18190.44 25697.54 23878.08 29597.04 29993.94 20787.77 28094.11 300
LPG-MVS_test92.96 23492.71 22993.71 29595.43 29788.67 32499.75 15597.62 24092.81 18290.05 25898.49 20675.24 31998.40 21695.84 17189.12 25594.07 303
LGP-MVS_train93.71 29595.43 29788.67 32497.62 24092.81 18290.05 25898.49 20675.24 31998.40 21695.84 17189.12 25594.07 303
ITE_SJBPF92.38 32195.69 29285.14 35095.71 35992.81 18289.33 28098.11 22070.23 34598.42 21385.91 32088.16 27493.59 334
XVG-ACMP-BASELINE91.22 27390.75 26492.63 32093.73 32485.61 34798.52 30997.44 26192.77 18589.90 26496.85 26366.64 35998.39 21892.29 23788.61 26493.89 319
DeepMVS_CXcopyleft82.92 36795.98 27758.66 39896.01 35492.72 18678.34 36995.51 30558.29 38098.08 24582.57 33985.29 29792.03 360
1112_ss96.01 15395.20 16598.42 11397.80 19896.41 12899.65 18096.66 33692.71 18792.88 22899.40 12192.16 14199.30 16391.92 24393.66 23499.55 139
Test_1112_low_res95.72 16094.83 17698.42 11397.79 19996.41 12899.65 18096.65 33792.70 18892.86 22996.13 28592.15 14299.30 16391.88 24493.64 23599.55 139
新几何199.42 3799.75 6898.27 6198.63 8092.69 18999.55 5499.82 4694.40 72100.00 191.21 25099.94 5499.99 23
baseline195.78 15994.86 17598.54 10398.47 15798.07 6599.06 25897.99 20992.68 19094.13 21498.62 19693.28 10998.69 19793.79 21685.76 29398.84 207
Fast-Effi-MVS+-dtu93.72 21793.86 19993.29 30697.06 24086.16 34499.80 14196.83 32692.66 19192.58 23297.83 23381.39 25997.67 26589.75 27996.87 18296.05 255
MAR-MVS97.43 8997.19 9298.15 12799.47 9294.79 19399.05 26298.76 6392.65 19298.66 10999.82 4688.52 19899.98 4398.12 10999.63 8899.67 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CR-MVSNet93.45 22592.62 23095.94 21596.29 26692.66 24892.01 38696.23 34992.62 19396.94 16193.31 35791.04 16096.03 34579.23 35695.96 19799.13 191
jajsoiax91.92 25791.18 26094.15 27691.35 36590.95 28799.00 26797.42 26492.61 19487.38 31597.08 25272.46 33497.36 27394.53 19888.77 26194.13 299
HPM-MVScopyleft97.96 6397.72 7198.68 8899.84 5696.39 13199.90 9098.17 19192.61 19498.62 11199.57 10791.87 14899.67 14598.87 7599.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
thres100view90096.74 12595.92 14499.18 5098.90 13098.77 4099.74 15899.71 792.59 19695.84 18998.86 17789.25 18899.50 15493.84 21194.57 22399.27 180
thres600view796.69 12895.87 14799.14 5998.90 13098.78 3999.74 15899.71 792.59 19695.84 18998.86 17789.25 18899.50 15493.44 22394.50 22699.16 187
GA-MVS93.83 21092.84 22496.80 19095.73 28793.57 22499.88 10197.24 28392.57 19892.92 22696.66 26878.73 28997.67 26587.75 29994.06 23299.17 186
FIs94.10 20593.43 21096.11 21294.70 30896.82 11699.58 19298.93 4592.54 19989.34 27997.31 24587.62 20497.10 29494.22 20586.58 28994.40 271
testing22297.08 11096.75 11098.06 13298.56 14796.82 11699.85 12098.61 8292.53 20098.84 9698.84 18193.36 10398.30 23095.84 17194.30 22899.05 197
RRT_MVS93.14 23092.92 22393.78 29293.31 33390.04 30799.66 17897.69 23492.53 20088.91 29197.76 23584.36 23896.93 30795.10 18086.99 28794.37 274
BH-RMVSNet95.18 17494.31 18797.80 14498.17 17895.23 18099.76 15297.53 25392.52 20294.27 21299.25 13676.84 30398.80 18690.89 26099.54 9899.35 169
PS-MVSNAJss93.64 21993.31 21694.61 25692.11 35592.19 25899.12 24897.38 26892.51 20388.45 29796.99 25891.20 15597.29 28394.36 20087.71 28194.36 275
UniMVSNet (Re)93.07 23392.13 24095.88 21694.84 30596.24 13999.88 10198.98 3892.49 20489.25 28195.40 31087.09 21197.14 29093.13 22978.16 35094.26 282
mvs_tets91.81 25991.08 26194.00 28491.63 36290.58 29598.67 30197.43 26292.43 20587.37 31697.05 25571.76 33697.32 27994.75 19288.68 26394.11 300
SDMVSNet94.80 18293.96 19597.33 17798.92 12595.42 17199.59 19098.99 3792.41 20692.55 23397.85 23175.81 31598.93 18197.90 12391.62 24497.64 237
sd_testset93.55 22192.83 22595.74 22198.92 12590.89 28998.24 32198.85 5692.41 20692.55 23397.85 23171.07 34398.68 19893.93 20891.62 24497.64 237
MVSTER95.53 16895.22 16496.45 20198.56 14797.72 7899.91 8397.67 23692.38 20891.39 24497.14 24997.24 1897.30 28094.80 19087.85 27894.34 279
ZD-MVS99.92 3198.57 5498.52 10492.34 20999.31 7699.83 4395.06 5499.80 12199.70 3499.97 42
FC-MVSNet-test93.81 21293.15 21995.80 22094.30 31596.20 14099.42 21698.89 4992.33 21089.03 28997.27 24787.39 20796.83 31393.20 22586.48 29094.36 275
D2MVS92.76 23992.59 23493.27 30795.13 30089.54 31699.69 17399.38 2392.26 21187.59 31094.61 34185.05 23297.79 26091.59 24788.01 27692.47 355
DU-MVS92.46 24891.45 25795.49 22494.05 31895.28 17799.81 13798.74 6492.25 21289.21 28496.64 27081.66 25696.73 31793.20 22577.52 35594.46 264
VPNet91.81 25990.46 26995.85 21894.74 30795.54 16798.98 26898.59 8692.14 21390.77 25397.44 24168.73 35097.54 26994.89 18877.89 35294.46 264
BH-w/o95.71 16295.38 15996.68 19598.49 15692.28 25699.84 12597.50 25792.12 21492.06 24098.79 18284.69 23598.67 19995.29 17899.66 8699.09 193
LCM-MVSNet-Re92.31 25192.60 23191.43 33097.53 21879.27 38099.02 26691.83 39492.07 21580.31 36094.38 34783.50 24595.48 35297.22 14497.58 16499.54 143
tpmrst96.27 14895.98 13497.13 18197.96 18893.15 23596.34 36198.17 19192.07 21598.71 10795.12 32493.91 9198.73 19294.91 18796.62 18499.50 151
DP-MVS Recon98.41 4598.02 5799.56 2599.97 398.70 4699.92 7898.44 12392.06 21798.40 12199.84 4195.68 41100.00 198.19 10599.71 8399.97 58
test_vis1_rt86.87 32586.05 32789.34 34696.12 27078.07 38199.87 10483.54 40592.03 21878.21 37089.51 37645.80 39199.91 8996.25 16493.11 24190.03 375
IS-MVSNet96.29 14695.90 14597.45 16798.13 18194.80 19299.08 25397.61 24392.02 21995.54 19698.96 16190.64 16998.08 24593.73 21997.41 16999.47 154
TESTMET0.1,196.74 12596.26 12598.16 12497.36 22896.48 12599.96 3498.29 17891.93 22095.77 19298.07 22295.54 4398.29 23190.55 26698.89 13099.70 108
MDTV_nov1_ep13_2view96.26 13596.11 36691.89 22198.06 13394.40 7294.30 20299.67 113
test22299.55 8697.41 9699.34 22798.55 9891.86 22299.27 8099.83 4393.84 9599.95 4999.99 23
thisisatest051597.41 9497.02 10098.59 9797.71 20997.52 8799.97 2798.54 10191.83 22397.45 14999.04 14997.50 999.10 17594.75 19296.37 19199.16 187
Vis-MVSNet (Re-imp)96.32 14395.98 13497.35 17697.93 19094.82 19199.47 21198.15 19891.83 22395.09 20199.11 14491.37 15397.47 27193.47 22297.43 16699.74 104
test-mter96.39 14095.93 14297.78 14797.02 24295.44 16999.96 3498.21 18691.81 22595.55 19496.38 27695.17 5098.27 23590.42 26998.83 13499.64 119
AUN-MVS93.28 22692.60 23195.34 23198.29 16790.09 30699.31 23198.56 9291.80 22696.35 18098.00 22489.38 18598.28 23392.46 23569.22 37997.64 237
HPM-MVS_fast97.80 7497.50 7998.68 8899.79 6296.42 12799.88 10198.16 19591.75 22798.94 9299.54 11091.82 15099.65 14797.62 13699.99 2199.99 23
API-MVS97.86 6897.66 7398.47 10899.52 8895.41 17299.47 21198.87 5291.68 22898.84 9699.85 3092.34 13899.99 3698.44 9699.96 46100.00 1
nrg03093.51 22292.53 23596.45 20194.36 31397.20 10099.81 13797.16 29091.60 22989.86 26597.46 24086.37 21997.68 26495.88 17080.31 33994.46 264
MVS96.60 13195.56 15599.72 1396.85 25399.22 2098.31 31898.94 4191.57 23090.90 25199.61 10386.66 21699.96 6197.36 13999.88 6899.99 23
CDS-MVSNet96.34 14296.07 12997.13 18197.37 22794.96 18799.53 20197.91 22091.55 23195.37 19898.32 21695.05 5597.13 29193.80 21595.75 20699.30 176
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
WB-MVSnew92.90 23692.77 22893.26 30896.95 24693.63 22399.71 16898.16 19591.49 23294.28 21198.14 21981.33 26196.48 32679.47 35595.46 21089.68 378
UniMVSNet_NR-MVSNet92.95 23592.11 24195.49 22494.61 31095.28 17799.83 13299.08 3391.49 23289.21 28496.86 26287.14 21096.73 31793.20 22577.52 35594.46 264
OurMVSNet-221017-089.81 30489.48 29490.83 33591.64 36181.21 37298.17 32695.38 36891.48 23485.65 33697.31 24572.66 33397.29 28388.15 29484.83 30293.97 313
gm-plane-assit96.97 24593.76 21991.47 23598.96 16198.79 18794.92 185
LF4IMVS89.25 31388.85 30390.45 33992.81 34781.19 37398.12 32794.79 37591.44 23686.29 33097.11 25065.30 36598.11 24488.53 29085.25 29892.07 358
test_yl97.83 7097.37 8499.21 4799.18 10397.98 7099.64 18499.27 2791.43 23797.88 14098.99 15595.84 3999.84 11698.82 7795.32 21599.79 97
DCV-MVSNet97.83 7097.37 8499.21 4799.18 10397.98 7099.64 18499.27 2791.43 23797.88 14098.99 15595.84 3999.84 11698.82 7795.32 21599.79 97
FA-MVS(test-final)95.86 15695.09 16998.15 12797.74 20295.62 16496.31 36298.17 19191.42 23996.26 18196.13 28590.56 17099.47 16092.18 23997.07 17599.35 169
EU-MVSNet90.14 29990.34 27389.54 34592.55 34981.06 37498.69 29998.04 20791.41 24086.59 32496.84 26580.83 26793.31 37686.20 31681.91 32294.26 282
dmvs_re93.20 22893.15 21993.34 30496.54 26483.81 35798.71 29698.51 10791.39 24192.37 23698.56 20278.66 29097.83 25993.89 20989.74 24798.38 223
TAMVS95.85 15795.58 15496.65 19797.07 23993.50 22799.17 24697.82 22991.39 24195.02 20298.01 22392.20 14097.30 28093.75 21895.83 20399.14 190
mvsany_test382.12 34681.14 34885.06 36381.87 39270.41 38797.09 34892.14 39291.27 24377.84 37188.73 37939.31 39495.49 35190.75 26371.24 37389.29 383
MVSFormer96.94 11496.60 11697.95 13697.28 23597.70 8199.55 19897.27 28091.17 24499.43 6699.54 11090.92 16396.89 30994.67 19599.62 8999.25 182
test_djsdf92.83 23892.29 23994.47 26691.90 35892.46 25399.55 19897.27 28091.17 24489.96 26196.07 28881.10 26396.89 30994.67 19588.91 25794.05 305
NR-MVSNet91.56 26790.22 27695.60 22294.05 31895.76 15598.25 32098.70 6791.16 24680.78 35996.64 27083.23 24896.57 32391.41 24877.73 35494.46 264
thisisatest053097.10 10696.72 11198.22 12297.60 21596.70 11999.92 7898.54 10191.11 24797.07 15998.97 15997.47 1299.03 17693.73 21996.09 19498.92 202
ETVMVS97.03 11196.64 11498.20 12398.67 14397.12 10599.89 9898.57 8991.10 24898.17 13198.59 19793.86 9498.19 24095.64 17495.24 21799.28 179
MVS_Test96.46 13695.74 14998.61 9498.18 17797.23 9999.31 23197.15 29191.07 24998.84 9697.05 25588.17 20098.97 17894.39 19997.50 16599.61 127
TranMVSNet+NR-MVSNet91.68 26690.61 26894.87 24693.69 32593.98 21499.69 17398.65 7491.03 25088.44 29896.83 26680.05 27796.18 33890.26 27376.89 36394.45 269
VPA-MVSNet92.70 24291.55 25496.16 21195.09 30196.20 14098.88 27999.00 3691.02 25191.82 24195.29 32076.05 31497.96 25395.62 17581.19 32794.30 280
BH-untuned95.18 17494.83 17696.22 21098.36 16291.22 28299.80 14197.32 27490.91 25291.08 24898.67 18983.51 24498.54 20594.23 20499.61 9398.92 202
mvs_anonymous95.65 16695.03 17197.53 16398.19 17695.74 15699.33 22897.49 25890.87 25390.47 25597.10 25188.23 19997.16 28895.92 16997.66 16399.68 111
VDD-MVS93.77 21492.94 22296.27 20998.55 15090.22 30398.77 29297.79 23090.85 25496.82 16699.42 11861.18 37799.77 12898.95 6794.13 23098.82 208
tpm93.70 21893.41 21394.58 25995.36 29987.41 33897.01 35096.90 32090.85 25496.72 16994.14 34990.40 17396.84 31290.75 26388.54 26799.51 149
Syy-MVS90.00 30190.63 26788.11 35797.68 21074.66 38599.71 16898.35 16590.79 25692.10 23898.67 18979.10 28693.09 37763.35 39195.95 19996.59 248
myMVS_eth3d94.46 19694.76 17893.55 30197.68 21090.97 28499.71 16898.35 16590.79 25692.10 23898.67 18992.46 13593.09 37787.13 30795.95 19996.59 248
PHI-MVS98.41 4598.21 4599.03 6899.86 5397.10 10699.98 1498.80 6290.78 25899.62 4699.78 5995.30 49100.00 199.80 2599.93 6099.99 23
tttt051796.85 11796.49 12097.92 13997.48 22295.89 15199.85 12098.54 10190.72 25996.63 17098.93 17097.47 1299.02 17793.03 23195.76 20598.85 206
testing393.92 20894.23 18892.99 31597.54 21790.23 30299.99 499.16 3090.57 26091.33 24798.63 19592.99 11692.52 38182.46 34095.39 21396.22 253
HyFIR lowres test96.66 13096.43 12297.36 17599.05 11293.91 21699.70 17299.80 390.54 26196.26 18198.08 22192.15 14298.23 23896.84 15895.46 21099.93 76
OpenMVScopyleft90.15 1594.77 18593.59 20598.33 11796.07 27297.48 9299.56 19698.57 8990.46 26286.51 32598.95 16678.57 29199.94 7793.86 21099.74 8197.57 241
cl2293.77 21493.25 21895.33 23299.49 9194.43 19899.61 18898.09 20190.38 26389.16 28795.61 29890.56 17097.34 27591.93 24284.45 30594.21 287
Effi-MVS+96.30 14595.69 15198.16 12497.85 19596.26 13597.41 34197.21 28490.37 26498.65 11098.58 20086.61 21798.70 19697.11 14697.37 17099.52 147
PCF-MVS94.20 595.18 17494.10 19198.43 11298.55 15095.99 14897.91 33497.31 27590.35 26589.48 27699.22 13885.19 23099.89 9690.40 27198.47 14199.41 162
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ab-mvs94.69 18793.42 21198.51 10698.07 18396.26 13596.49 35898.68 7090.31 26694.54 20597.00 25776.30 31099.71 13895.98 16893.38 23899.56 138
TR-MVS94.54 19293.56 20797.49 16697.96 18894.34 20398.71 29697.51 25690.30 26794.51 20798.69 18875.56 31698.77 18992.82 23395.99 19699.35 169
WR-MVS92.31 25191.25 25995.48 22794.45 31295.29 17699.60 18998.68 7090.10 26888.07 30596.89 26080.68 26996.80 31593.14 22879.67 34394.36 275
ADS-MVSNet293.80 21393.88 19893.55 30197.87 19385.94 34694.24 37596.84 32590.07 26996.43 17694.48 34490.29 17595.37 35487.44 30197.23 17199.36 167
ADS-MVSNet94.79 18394.02 19397.11 18397.87 19393.79 21794.24 37598.16 19590.07 26996.43 17694.48 34490.29 17598.19 24087.44 30197.23 17199.36 167
CostFormer96.10 14995.88 14696.78 19197.03 24192.55 25297.08 34997.83 22890.04 27198.72 10694.89 33395.01 5798.29 23196.54 16195.77 20499.50 151
CPTT-MVS97.64 8497.32 8798.58 9899.97 395.77 15499.96 3498.35 16589.90 27298.36 12299.79 5591.18 15899.99 3698.37 9999.99 2199.99 23
TAPA-MVS92.12 894.42 19793.60 20496.90 18899.33 9891.78 26999.78 14498.00 20889.89 27394.52 20699.47 11491.97 14699.18 17169.90 38099.52 9999.73 105
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FMVSNet392.69 24391.58 25295.99 21498.29 16797.42 9599.26 23997.62 24089.80 27489.68 26995.32 31681.62 25896.27 33587.01 31185.65 29494.29 281
dp95.05 17794.43 18396.91 18797.99 18792.73 24696.29 36397.98 21189.70 27595.93 18894.67 33993.83 9698.45 21186.91 31496.53 18699.54 143
dmvs_testset83.79 34286.07 32676.94 37292.14 35448.60 40796.75 35590.27 39789.48 27678.65 36798.55 20479.25 28286.65 39566.85 38682.69 31595.57 256
ACMH+89.98 1690.35 29189.54 29092.78 31995.99 27586.12 34598.81 28897.18 28789.38 27783.14 34797.76 23568.42 35298.43 21289.11 28386.05 29293.78 326
QAPM95.40 17194.17 19099.10 6496.92 24797.71 7999.40 21798.68 7089.31 27888.94 29098.89 17182.48 25099.96 6193.12 23099.83 7299.62 124
UnsupCasMVSNet_eth85.52 33083.99 33290.10 34189.36 37883.51 35996.65 35697.99 20989.14 27975.89 37993.83 35163.25 37093.92 36981.92 34567.90 38492.88 348
anonymousdsp91.79 26490.92 26394.41 27190.76 37092.93 24198.93 27497.17 28889.08 28087.46 31495.30 31778.43 29496.92 30892.38 23688.73 26293.39 338
K. test v388.05 31987.24 32190.47 33891.82 36082.23 36698.96 27197.42 26489.05 28176.93 37595.60 29968.49 35195.42 35385.87 32181.01 33393.75 327
IterMVS90.91 27790.17 27993.12 31196.78 25990.42 30098.89 27797.05 30389.03 28286.49 32695.42 30976.59 30695.02 35887.22 30684.09 30893.93 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH89.72 1790.64 28489.63 28793.66 29995.64 29488.64 32698.55 30597.45 26089.03 28281.62 35497.61 23769.75 34698.41 21489.37 28087.62 28393.92 317
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tt080591.28 27090.18 27894.60 25796.26 26887.55 33698.39 31698.72 6589.00 28489.22 28398.47 21062.98 37198.96 17990.57 26588.00 27797.28 243
IterMVS-LS92.69 24392.11 24194.43 27096.80 25692.74 24499.45 21496.89 32188.98 28589.65 27295.38 31388.77 19596.34 33290.98 25782.04 32194.22 285
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SixPastTwentyTwo88.73 31588.01 31690.88 33391.85 35982.24 36598.22 32495.18 37388.97 28682.26 35096.89 26071.75 33796.67 32084.00 33082.98 31393.72 331
EI-MVSNet93.73 21693.40 21494.74 25196.80 25692.69 24799.06 25897.67 23688.96 28791.39 24499.02 15088.75 19697.30 28091.07 25387.85 27894.22 285
IterMVS-SCA-FT90.85 28090.16 28092.93 31696.72 26189.96 30998.89 27796.99 30888.95 28886.63 32395.67 29676.48 30895.00 35987.04 30984.04 31193.84 323
CP-MVSNet91.23 27290.22 27694.26 27493.96 32092.39 25599.09 25198.57 8988.95 28886.42 32896.57 27379.19 28496.37 33090.29 27278.95 34594.02 306
FE-MVS95.70 16495.01 17297.79 14698.21 17494.57 19595.03 37498.69 6888.90 29097.50 14896.19 28292.60 12999.49 15889.99 27697.94 15999.31 174
WR-MVS_H91.30 26890.35 27294.15 27694.17 31792.62 25199.17 24698.94 4188.87 29186.48 32794.46 34684.36 23896.61 32288.19 29378.51 34893.21 343
Fast-Effi-MVS+95.02 17894.19 18997.52 16497.88 19294.55 19699.97 2797.08 29988.85 29294.47 20897.96 22984.59 23698.41 21489.84 27897.10 17499.59 130
miper_ehance_all_eth93.16 22992.60 23194.82 25097.57 21693.56 22599.50 20697.07 30088.75 29388.85 29295.52 30490.97 16296.74 31690.77 26284.45 30594.17 289
EPP-MVSNet96.69 12896.60 11696.96 18697.74 20293.05 23899.37 22498.56 9288.75 29395.83 19199.01 15296.01 3398.56 20396.92 15697.20 17399.25 182
MS-PatchMatch90.65 28390.30 27491.71 32994.22 31685.50 34998.24 32197.70 23388.67 29586.42 32896.37 27867.82 35498.03 24983.62 33499.62 8991.60 363
CSCG97.10 10697.04 9897.27 17999.89 4591.92 26599.90 9099.07 3488.67 29595.26 20099.82 4693.17 11399.98 4398.15 10899.47 10499.90 83
XXY-MVS91.82 25890.46 26995.88 21693.91 32195.40 17398.87 28297.69 23488.63 29787.87 30797.08 25274.38 32897.89 25791.66 24684.07 30994.35 278
eth_miper_zixun_eth92.41 24991.93 24693.84 29197.28 23590.68 29298.83 28696.97 31288.57 29889.19 28695.73 29589.24 19096.69 31989.97 27781.55 32494.15 295
PS-CasMVS90.63 28589.51 29293.99 28593.83 32291.70 27498.98 26898.52 10488.48 29986.15 33296.53 27575.46 31796.31 33488.83 28578.86 34793.95 314
114514_t97.41 9496.83 10699.14 5999.51 9097.83 7599.89 9898.27 18188.48 29999.06 8799.66 9690.30 17499.64 14896.32 16399.97 4299.96 64
test20.0384.72 33783.99 33286.91 35988.19 38280.62 37798.88 27995.94 35588.36 30178.87 36594.62 34068.75 34989.11 39066.52 38775.82 36591.00 367
GeoE94.36 20193.48 20996.99 18597.29 23493.54 22699.96 3496.72 33488.35 30293.43 21998.94 16882.05 25298.05 24888.12 29696.48 18999.37 166
test_fmvs379.99 35380.17 35279.45 37084.02 38962.83 39199.05 26293.49 38988.29 30380.06 36386.65 38728.09 39988.00 39188.63 28673.27 37187.54 387
PEN-MVS90.19 29789.06 30093.57 30093.06 34090.90 28899.06 25898.47 11588.11 30485.91 33496.30 27976.67 30495.94 34887.07 30876.91 36293.89 319
v2v48291.30 26890.07 28295.01 24193.13 33593.79 21799.77 14797.02 30588.05 30589.25 28195.37 31480.73 26897.15 28987.28 30580.04 34294.09 302
tpm295.47 16995.18 16696.35 20796.91 24891.70 27496.96 35297.93 21688.04 30698.44 11895.40 31093.32 10697.97 25194.00 20695.61 20899.38 164
c3_l92.53 24691.87 24894.52 26297.40 22592.99 24099.40 21796.93 31887.86 30788.69 29595.44 30889.95 17896.44 32890.45 26880.69 33694.14 298
our_test_390.39 28989.48 29493.12 31192.40 35189.57 31599.33 22896.35 34887.84 30885.30 33794.99 33084.14 24196.09 34380.38 35184.56 30493.71 332
LFMVS94.75 18693.56 20798.30 11999.03 11395.70 15998.74 29397.98 21187.81 30998.47 11799.39 12367.43 35699.53 15098.01 11595.20 21899.67 113
v14890.70 28289.63 28793.92 28792.97 34290.97 28499.75 15596.89 32187.51 31088.27 30395.01 32781.67 25597.04 29987.40 30377.17 36093.75 327
tpmvs94.28 20393.57 20696.40 20498.55 15091.50 27995.70 37398.55 9887.47 31192.15 23794.26 34891.42 15198.95 18088.15 29495.85 20298.76 211
pmmvs492.10 25591.07 26295.18 23792.82 34694.96 18799.48 21096.83 32687.45 31288.66 29696.56 27483.78 24396.83 31389.29 28184.77 30393.75 327
V4291.28 27090.12 28194.74 25193.42 33193.46 22899.68 17597.02 30587.36 31389.85 26795.05 32581.31 26297.34 27587.34 30480.07 34193.40 337
DTE-MVSNet89.40 31088.24 31392.88 31792.66 34889.95 31099.10 25098.22 18587.29 31485.12 33996.22 28176.27 31195.30 35783.56 33575.74 36693.41 336
MVP-Stereo90.93 27690.45 27192.37 32291.25 36788.76 32198.05 33196.17 35187.27 31584.04 34295.30 31778.46 29397.27 28583.78 33399.70 8491.09 366
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LS3D95.84 15895.11 16898.02 13499.85 5495.10 18598.74 29398.50 11287.22 31693.66 21899.86 2687.45 20699.95 6990.94 25899.81 7899.02 199
GBi-Net90.88 27889.82 28494.08 27997.53 21891.97 26198.43 31296.95 31387.05 31789.68 26994.72 33571.34 33996.11 34087.01 31185.65 29494.17 289
test190.88 27889.82 28494.08 27997.53 21891.97 26198.43 31296.95 31387.05 31789.68 26994.72 33571.34 33996.11 34087.01 31185.65 29494.17 289
FMVSNet291.02 27589.56 28995.41 22997.53 21895.74 15698.98 26897.41 26687.05 31788.43 30095.00 32971.34 33996.24 33785.12 32485.21 29994.25 284
DIV-MVS_self_test92.32 25091.60 25194.47 26697.31 23292.74 24499.58 19296.75 33286.99 32087.64 30995.54 30289.55 18396.50 32588.58 28882.44 31894.17 289
cl____92.31 25191.58 25294.52 26297.33 23192.77 24299.57 19496.78 33186.97 32187.56 31195.51 30589.43 18496.62 32188.60 28782.44 31894.16 294
Patchmatch-RL test86.90 32485.98 32889.67 34484.45 38775.59 38389.71 39392.43 39186.89 32277.83 37290.94 37194.22 8193.63 37387.75 29969.61 37699.79 97
v114491.09 27489.83 28394.87 24693.25 33493.69 22299.62 18796.98 31086.83 32389.64 27394.99 33080.94 26597.05 29785.08 32581.16 32893.87 321
miper_lstm_enhance91.81 25991.39 25893.06 31497.34 22989.18 31999.38 22296.79 33086.70 32487.47 31395.22 32290.00 17795.86 34988.26 29281.37 32694.15 295
AllTest92.48 24791.64 25095.00 24299.01 11488.43 32898.94 27396.82 32886.50 32588.71 29398.47 21074.73 32599.88 10285.39 32296.18 19296.71 246
TestCases95.00 24299.01 11488.43 32896.82 32886.50 32588.71 29398.47 21074.73 32599.88 10285.39 32296.18 19296.71 246
v14419290.79 28189.52 29194.59 25893.11 33892.77 24299.56 19696.99 30886.38 32789.82 26894.95 33280.50 27397.10 29483.98 33180.41 33793.90 318
v119290.62 28689.25 29694.72 25393.13 33593.07 23699.50 20697.02 30586.33 32889.56 27595.01 32779.22 28397.09 29682.34 34281.16 32894.01 308
pm-mvs189.36 31187.81 31794.01 28393.40 33291.93 26498.62 30496.48 34486.25 32983.86 34496.14 28473.68 33197.04 29986.16 31775.73 36793.04 346
v192192090.46 28889.12 29894.50 26492.96 34392.46 25399.49 20896.98 31086.10 33089.61 27495.30 31778.55 29297.03 30282.17 34380.89 33594.01 308
MIMVSNet90.30 29388.67 30795.17 23896.45 26591.64 27692.39 38497.15 29185.99 33190.50 25493.19 35966.95 35794.86 36282.01 34493.43 23699.01 200
v124090.20 29688.79 30594.44 26893.05 34192.27 25799.38 22296.92 31985.89 33289.36 27894.87 33477.89 29697.03 30280.66 35081.08 33194.01 308
pmmvs590.17 29889.09 29993.40 30392.10 35689.77 31399.74 15895.58 36385.88 33387.24 31895.74 29373.41 33296.48 32688.54 28983.56 31293.95 314
v890.54 28789.17 29794.66 25493.43 33093.40 23299.20 24396.94 31785.76 33487.56 31194.51 34281.96 25497.19 28784.94 32678.25 34993.38 339
cascas94.64 19093.61 20297.74 15397.82 19796.26 13599.96 3497.78 23185.76 33494.00 21597.54 23876.95 30299.21 16697.23 14395.43 21297.76 236
MSDG94.37 19993.36 21597.40 17198.88 13293.95 21599.37 22497.38 26885.75 33690.80 25299.17 14284.11 24299.88 10286.35 31598.43 14298.36 224
PM-MVS80.47 35078.88 35585.26 36283.79 39072.22 38695.89 37191.08 39585.71 33776.56 37788.30 38036.64 39593.90 37082.39 34169.57 37789.66 380
DSMNet-mixed88.28 31888.24 31388.42 35589.64 37775.38 38498.06 33089.86 39885.59 33888.20 30492.14 36776.15 31391.95 38478.46 36196.05 19597.92 231
ppachtmachnet_test89.58 30888.35 31193.25 30992.40 35190.44 29999.33 22896.73 33385.49 33985.90 33595.77 29281.09 26496.00 34776.00 37182.49 31793.30 340
Anonymous2023120686.32 32685.42 32989.02 34989.11 37980.53 37899.05 26295.28 36985.43 34082.82 34893.92 35074.40 32793.44 37566.99 38581.83 32393.08 345
v7n89.65 30788.29 31293.72 29492.22 35390.56 29699.07 25797.10 29685.42 34186.73 32194.72 33580.06 27697.13 29181.14 34878.12 35193.49 335
CL-MVSNet_self_test84.50 33883.15 34188.53 35486.00 38581.79 36998.82 28797.35 27085.12 34283.62 34690.91 37276.66 30591.40 38569.53 38160.36 39492.40 356
v1090.25 29588.82 30494.57 26093.53 32893.43 23099.08 25396.87 32385.00 34387.34 31794.51 34280.93 26697.02 30482.85 33879.23 34493.26 341
KD-MVS_2432*160088.00 32086.10 32493.70 29796.91 24894.04 21197.17 34697.12 29484.93 34481.96 35192.41 36392.48 13394.51 36579.23 35652.68 39792.56 352
miper_refine_blended88.00 32086.10 32493.70 29796.91 24894.04 21197.17 34697.12 29484.93 34481.96 35192.41 36392.48 13394.51 36579.23 35652.68 39792.56 352
LTVRE_ROB88.28 1890.29 29489.05 30194.02 28295.08 30290.15 30597.19 34597.43 26284.91 34683.99 34397.06 25474.00 33098.28 23384.08 32987.71 28193.62 333
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement84.76 33582.56 34391.38 33174.58 40184.80 35497.36 34294.56 37984.73 34780.21 36196.12 28763.56 36998.39 21887.92 29763.97 39090.95 369
Baseline_NR-MVSNet90.33 29289.51 29292.81 31892.84 34489.95 31099.77 14793.94 38584.69 34889.04 28895.66 29781.66 25696.52 32490.99 25676.98 36191.97 361
TinyColmap87.87 32286.51 32391.94 32695.05 30385.57 34897.65 33894.08 38284.40 34981.82 35396.85 26362.14 37398.33 22780.25 35386.37 29191.91 362
tfpnnormal89.29 31287.61 31894.34 27394.35 31494.13 20998.95 27298.94 4183.94 35084.47 34195.51 30574.84 32497.39 27277.05 36880.41 33791.48 365
RPSCF91.80 26292.79 22788.83 35098.15 17969.87 38898.11 32896.60 33983.93 35194.33 21099.27 13279.60 28099.46 16191.99 24193.16 24097.18 244
UniMVSNet_ETH3D90.06 30088.58 30894.49 26594.67 30988.09 33397.81 33797.57 24883.91 35288.44 29897.41 24257.44 38197.62 26791.41 24888.59 26697.77 235
Anonymous20240521193.10 23291.99 24596.40 20499.10 10989.65 31498.88 27997.93 21683.71 35394.00 21598.75 18468.79 34899.88 10295.08 18191.71 24399.68 111
TransMVSNet (Re)87.25 32385.28 33093.16 31093.56 32791.03 28398.54 30794.05 38483.69 35481.09 35796.16 28375.32 31896.40 32976.69 36968.41 38192.06 359
test_f78.40 35577.59 35780.81 36980.82 39462.48 39496.96 35293.08 39083.44 35574.57 38284.57 39127.95 40092.63 38084.15 32872.79 37287.32 388
pmmvs-eth3d84.03 34181.97 34590.20 34084.15 38887.09 34098.10 32994.73 37783.05 35674.10 38387.77 38465.56 36394.01 36881.08 34969.24 37889.49 381
FMVSNet188.50 31686.64 32294.08 27995.62 29691.97 26198.43 31296.95 31383.00 35786.08 33394.72 33559.09 37996.11 34081.82 34684.07 30994.17 289
KD-MVS_self_test83.59 34482.06 34488.20 35686.93 38380.70 37697.21 34496.38 34682.87 35882.49 34988.97 37867.63 35592.32 38273.75 37462.30 39391.58 364
VDDNet93.12 23191.91 24796.76 19296.67 26392.65 25098.69 29998.21 18682.81 35997.75 14399.28 12961.57 37599.48 15998.09 11294.09 23198.15 227
Patchmatch-test92.65 24591.50 25596.10 21396.85 25390.49 29791.50 38897.19 28582.76 36090.23 25795.59 30095.02 5698.00 25077.41 36596.98 18099.82 92
FMVSNet588.32 31787.47 31990.88 33396.90 25188.39 33097.28 34395.68 36082.60 36184.67 34092.40 36579.83 27891.16 38676.39 37081.51 32593.09 344
COLMAP_ROBcopyleft90.47 1492.18 25491.49 25694.25 27599.00 11688.04 33498.42 31596.70 33582.30 36288.43 30099.01 15276.97 30199.85 10886.11 31896.50 18794.86 257
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
new-patchmatchnet81.19 34779.34 35486.76 36082.86 39180.36 37997.92 33395.27 37082.09 36372.02 38486.87 38662.81 37290.74 38871.10 37863.08 39189.19 384
EG-PatchMatch MVS85.35 33383.81 33689.99 34390.39 37281.89 36898.21 32596.09 35381.78 36474.73 38193.72 35351.56 38997.12 29379.16 35988.61 26490.96 368
WB-MVS76.28 35677.28 35873.29 37681.18 39354.68 40197.87 33594.19 38181.30 36569.43 38890.70 37377.02 30082.06 39935.71 40468.11 38383.13 390
DP-MVS94.54 19293.42 21197.91 14199.46 9494.04 21198.93 27497.48 25981.15 36690.04 26099.55 10887.02 21299.95 6988.97 28498.11 15399.73 105
tpm cat193.51 22292.52 23696.47 19997.77 20091.47 28096.13 36598.06 20480.98 36792.91 22793.78 35289.66 18098.87 18287.03 31096.39 19099.09 193
new_pmnet84.49 33982.92 34289.21 34790.03 37582.60 36296.89 35495.62 36280.59 36875.77 38089.17 37765.04 36694.79 36372.12 37781.02 33290.23 373
SSC-MVS75.42 35776.40 36072.49 38080.68 39553.62 40297.42 34094.06 38380.42 36968.75 38990.14 37576.54 30781.66 40033.25 40566.34 38782.19 391
MDA-MVSNet-bldmvs84.09 34081.52 34791.81 32891.32 36688.00 33598.67 30195.92 35680.22 37055.60 39893.32 35668.29 35393.60 37473.76 37376.61 36493.82 325
Anonymous2024052185.15 33483.81 33689.16 34888.32 38082.69 36198.80 29095.74 35879.72 37181.53 35590.99 37065.38 36494.16 36772.69 37581.11 33090.63 371
MDA-MVSNet_test_wron85.51 33183.32 33992.10 32490.96 36888.58 32799.20 24396.52 34279.70 37257.12 39792.69 36179.11 28593.86 37177.10 36777.46 35793.86 322
YYNet185.50 33283.33 33892.00 32590.89 36988.38 33199.22 24296.55 34179.60 37357.26 39692.72 36079.09 28793.78 37277.25 36677.37 35893.84 323
MIMVSNet182.58 34580.51 35188.78 35186.68 38484.20 35696.65 35695.41 36678.75 37478.59 36892.44 36251.88 38889.76 38965.26 39078.95 34592.38 357
Patchmtry89.70 30688.49 30993.33 30596.24 26989.94 31291.37 38996.23 34978.22 37587.69 30893.31 35791.04 16096.03 34580.18 35482.10 32094.02 306
N_pmnet80.06 35280.78 35077.89 37191.94 35745.28 40998.80 29056.82 41178.10 37680.08 36293.33 35577.03 29995.76 35068.14 38482.81 31492.64 351
PatchT90.38 29088.75 30695.25 23595.99 27590.16 30491.22 39097.54 25176.80 37797.26 15486.01 38991.88 14796.07 34466.16 38895.91 20199.51 149
Anonymous2023121189.86 30388.44 31094.13 27898.93 12390.68 29298.54 30798.26 18276.28 37886.73 32195.54 30270.60 34497.56 26890.82 26180.27 34094.15 295
test_040285.58 32983.94 33490.50 33793.81 32385.04 35198.55 30595.20 37276.01 37979.72 36495.13 32364.15 36896.26 33666.04 38986.88 28890.21 374
pmmvs685.69 32883.84 33591.26 33290.00 37684.41 35597.82 33696.15 35275.86 38081.29 35695.39 31261.21 37696.87 31183.52 33673.29 37092.50 354
JIA-IIPM91.76 26590.70 26594.94 24496.11 27187.51 33793.16 38298.13 20075.79 38197.58 14577.68 39592.84 12197.97 25188.47 29196.54 18599.33 172
Anonymous2024052992.10 25590.65 26696.47 19998.82 13490.61 29498.72 29598.67 7375.54 38293.90 21798.58 20066.23 36099.90 9194.70 19490.67 24698.90 205
UnsupCasMVSNet_bld79.97 35477.03 35988.78 35185.62 38681.98 36793.66 38097.35 27075.51 38370.79 38683.05 39248.70 39094.91 36178.31 36260.29 39589.46 382
test_vis3_rt68.82 35966.69 36475.21 37576.24 40060.41 39696.44 35968.71 41075.13 38450.54 40169.52 39916.42 40996.32 33380.27 35266.92 38668.89 397
gg-mvs-nofinetune93.51 22291.86 24998.47 10897.72 20797.96 7292.62 38398.51 10774.70 38597.33 15269.59 39898.91 397.79 26097.77 13199.56 9799.67 113
CMPMVSbinary61.59 2184.75 33685.14 33183.57 36590.32 37362.54 39396.98 35197.59 24774.33 38669.95 38796.66 26864.17 36798.32 22887.88 29888.41 26989.84 377
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
OpenMVS_ROBcopyleft79.82 2083.77 34381.68 34690.03 34288.30 38182.82 36098.46 31095.22 37173.92 38776.00 37891.29 36955.00 38396.94 30668.40 38388.51 26890.34 372
APD_test181.15 34880.92 34981.86 36892.45 35059.76 39796.04 36893.61 38873.29 38877.06 37396.64 27044.28 39396.16 33972.35 37682.52 31689.67 379
pmmvs380.27 35177.77 35687.76 35880.32 39682.43 36498.23 32391.97 39372.74 38978.75 36687.97 38357.30 38290.99 38770.31 37962.37 39289.87 376
ANet_high56.10 36752.24 37067.66 38349.27 40956.82 39983.94 39682.02 40670.47 39033.28 40664.54 40117.23 40869.16 40445.59 40123.85 40377.02 396
RPMNet89.76 30587.28 32097.19 18096.29 26692.66 24892.01 38698.31 17470.19 39196.94 16185.87 39087.25 20999.78 12562.69 39295.96 19799.13 191
MVS-HIRNet86.22 32783.19 34095.31 23396.71 26290.29 30192.12 38597.33 27362.85 39286.82 32070.37 39769.37 34797.49 27075.12 37297.99 15898.15 227
PMMVS267.15 36464.15 36776.14 37470.56 40462.07 39593.89 37887.52 40258.09 39360.02 39278.32 39422.38 40384.54 39759.56 39447.03 39981.80 392
testf168.38 36166.92 36272.78 37878.80 39750.36 40490.95 39187.35 40355.47 39458.95 39388.14 38120.64 40487.60 39257.28 39664.69 38880.39 393
APD_test268.38 36166.92 36272.78 37878.80 39750.36 40490.95 39187.35 40355.47 39458.95 39388.14 38120.64 40487.60 39257.28 39664.69 38880.39 393
test_method80.79 34979.70 35384.08 36492.83 34567.06 39099.51 20495.42 36554.34 39681.07 35893.53 35444.48 39292.22 38378.90 36077.23 35992.94 347
FPMVS68.72 36068.72 36168.71 38265.95 40544.27 41195.97 37094.74 37651.13 39753.26 39990.50 37425.11 40283.00 39860.80 39380.97 33478.87 395
Gipumacopyleft66.95 36565.00 36572.79 37791.52 36367.96 38966.16 40095.15 37447.89 39858.54 39567.99 40029.74 39787.54 39450.20 39977.83 35362.87 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet67.77 36364.73 36676.87 37362.95 40756.25 40089.37 39493.74 38744.53 39961.99 39180.74 39320.42 40686.53 39669.37 38259.50 39687.84 385
tmp_tt65.23 36662.94 36972.13 38144.90 41050.03 40681.05 39789.42 40138.45 40048.51 40299.90 1854.09 38578.70 40291.84 24518.26 40487.64 386
PMVScopyleft49.05 2353.75 36851.34 37260.97 38540.80 41134.68 41274.82 39989.62 40037.55 40128.67 40772.12 3967.09 41181.63 40143.17 40268.21 38266.59 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN52.30 36952.18 37152.67 38671.51 40245.40 40893.62 38176.60 40836.01 40243.50 40364.13 40227.11 40167.31 40531.06 40626.06 40145.30 404
MVEpermissive53.74 2251.54 37047.86 37462.60 38459.56 40850.93 40379.41 39877.69 40735.69 40336.27 40561.76 4045.79 41369.63 40337.97 40336.61 40067.24 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS51.44 37151.22 37352.11 38770.71 40344.97 41094.04 37775.66 40935.34 40442.40 40461.56 40528.93 39865.87 40627.64 40724.73 40245.49 403
testmvs40.60 37244.45 37529.05 38919.49 41314.11 41599.68 17518.47 41220.74 40564.59 39098.48 20910.95 41017.09 40956.66 39811.01 40555.94 402
test12337.68 37339.14 37633.31 38819.94 41224.83 41498.36 3179.75 41315.53 40651.31 40087.14 38519.62 40717.74 40847.10 4003.47 40757.36 401
wuyk23d20.37 37520.84 37818.99 39065.34 40627.73 41350.43 4017.67 4149.50 4078.01 4086.34 4086.13 41226.24 40723.40 40810.69 4062.99 405
EGC-MVSNET69.38 35863.76 36886.26 36190.32 37381.66 37196.24 36493.85 3860.99 4083.22 40992.33 36652.44 38692.92 37959.53 39584.90 30184.21 389
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.02 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k23.43 37431.24 3770.00 3910.00 4140.00 4160.00 40298.09 2010.00 4090.00 41099.67 9483.37 2460.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas7.60 37710.13 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 41091.20 1550.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.28 37611.04 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41099.40 1210.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS90.97 28486.10 319
MSC_two_6792asdad99.93 299.91 3999.80 298.41 148100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 3999.80 298.41 148100.00 199.96 9100.00 1100.00 1
eth-test20.00 414
eth-test0.00 414
OPU-MVS99.93 299.89 4599.80 299.96 3499.80 5197.44 14100.00 1100.00 199.98 32100.00 1
test_0728_SECOND99.82 799.94 1399.47 799.95 5298.43 131100.00 199.99 5100.00 1100.00 1
GSMVS99.59 130
test_part299.89 4599.25 1899.49 62
sam_mvs194.72 6599.59 130
sam_mvs94.25 80
ambc83.23 36677.17 39962.61 39287.38 39594.55 38076.72 37686.65 38730.16 39696.36 33184.85 32769.86 37590.73 370
MTGPAbinary98.28 179
test_post195.78 37259.23 40693.20 11297.74 26391.06 254
test_post63.35 40394.43 7098.13 243
patchmatchnet-post91.70 36895.12 5197.95 254
GG-mvs-BLEND98.54 10398.21 17498.01 6893.87 37998.52 10497.92 13797.92 23099.02 297.94 25698.17 10699.58 9699.67 113
MTMP99.87 10496.49 343
test9_res99.71 3399.99 21100.00 1
agg_prior299.48 43100.00 1100.00 1
agg_prior99.93 2498.77 4098.43 13199.63 4399.85 108
test_prior498.05 6699.94 68
test_prior99.43 3599.94 1398.49 5898.65 7499.80 12199.99 23
新几何299.40 217
旧先验199.76 6697.52 8798.64 7699.85 3095.63 4299.94 5499.99 23
原ACMM299.90 90
testdata299.99 3690.54 267
segment_acmp96.68 26
test1299.43 3599.74 6998.56 5598.40 15299.65 4094.76 6499.75 13299.98 3299.99 23
plane_prior795.71 29091.59 278
plane_prior695.76 28491.72 27380.47 274
plane_prior597.87 22398.37 22497.79 12989.55 25194.52 260
plane_prior498.59 197
plane_prior195.73 287
n20.00 415
nn0.00 415
door-mid89.69 399
lessismore_v090.53 33690.58 37180.90 37595.80 35777.01 37495.84 29066.15 36196.95 30583.03 33775.05 36893.74 330
test1198.44 123
door90.31 396
HQP5-MVS91.85 266
BP-MVS97.92 121
HQP4-MVS93.37 22098.39 21894.53 258
HQP3-MVS97.89 22189.60 248
HQP2-MVS80.65 270
NP-MVS95.77 28391.79 26898.65 192
ACMMP++_ref87.04 286
ACMMP++88.23 273
Test By Simon92.82 123