This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
DeepPCF-MVS95.94 297.71 7598.98 1293.92 27199.63 7981.76 35099.96 2898.56 8199.47 199.19 7599.99 194.16 79100.00 199.92 1299.93 60100.00 1
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2198.64 6998.47 299.13 7799.92 1396.38 30100.00 199.74 27100.00 1100.00 1
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1198.69 6198.20 399.93 199.98 296.82 23100.00 199.75 25100.00 199.99 23
MVS_030498.87 1898.61 2199.67 1599.18 10199.13 2199.87 9199.65 1198.17 498.75 9599.75 6792.76 11599.94 7299.88 1799.44 10499.94 70
DeepC-MVS_fast96.59 198.81 2098.54 2499.62 1999.90 4298.85 3399.24 22098.47 10398.14 599.08 7899.91 1493.09 106100.00 199.04 5499.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + GP.98.60 2798.51 2598.86 7799.73 7296.63 11699.97 2197.92 20098.07 698.76 9399.55 10095.00 5699.94 7299.91 1597.68 15299.99 23
test_fmvsm_n_192098.44 3898.61 2197.92 12899.27 10095.18 172100.00 198.90 4398.05 799.80 1599.73 7592.64 11899.99 3699.58 3399.51 9898.59 205
NCCC99.37 299.25 299.71 1399.96 899.15 2099.97 2198.62 7398.02 899.90 299.95 397.33 17100.00 199.54 34100.00 1100.00 1
DPM-MVS98.83 1998.46 2799.97 199.33 9799.92 199.96 2898.44 11097.96 999.55 4899.94 497.18 21100.00 193.81 19999.94 5499.98 48
test_fmvsmvis_n_192097.67 7697.59 7297.91 13097.02 22695.34 16399.95 4598.45 10697.87 1097.02 14499.59 9689.64 16999.98 4399.41 4199.34 11098.42 206
test_vis1_n_192095.44 15495.31 14595.82 20398.50 14788.74 30299.98 1197.30 25797.84 1199.85 799.19 13066.82 33699.97 5398.82 6799.46 10298.76 199
test_cas_vis1_n_192096.59 11796.23 11197.65 14398.22 16294.23 19299.99 497.25 26297.77 1299.58 4799.08 13677.10 27899.97 5397.64 12399.45 10398.74 201
IU-MVS99.93 2499.31 998.41 13397.71 1399.84 10100.00 1100.00 1100.00 1
DELS-MVS98.54 3098.22 4099.50 2999.15 10598.65 50100.00 198.58 7797.70 1498.21 12099.24 12792.58 12199.94 7298.63 8199.94 5499.92 77
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
save fliter99.82 5898.79 3799.96 2898.40 13797.66 15
test_fmvs195.35 15695.68 13794.36 25698.99 11384.98 33299.96 2896.65 31797.60 1699.73 2998.96 15171.58 31699.93 7998.31 9299.37 10898.17 210
patch_mono-298.24 5299.12 595.59 20799.67 7786.91 32399.95 4598.89 4597.60 1699.90 299.76 6296.54 2899.98 4399.94 1199.82 7699.88 81
EPNet98.49 3498.40 2998.77 8099.62 8096.80 11399.90 7999.51 1697.60 1699.20 7399.36 11793.71 9199.91 8197.99 10798.71 12799.61 122
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HPM-MVS++copyleft99.07 1098.88 1599.63 1699.90 4299.02 2499.95 4598.56 8197.56 1999.44 5899.85 3095.38 46100.00 199.31 4499.99 2199.87 83
MSP-MVS99.09 999.12 598.98 7099.93 2497.24 9599.95 4598.42 12997.50 2099.52 5399.88 2197.43 1699.71 12899.50 3699.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft99.26 699.10 899.74 1099.89 4599.24 1899.87 9198.44 11097.48 2199.64 3799.94 496.68 2699.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_fmvs1_n94.25 18794.36 16793.92 27197.68 19883.70 33899.90 7996.57 32097.40 2299.67 3598.88 16261.82 35299.92 8098.23 9499.13 11898.14 213
PS-MVSNAJ98.44 3898.20 4299.16 5298.80 13298.92 2799.54 18098.17 17497.34 2399.85 799.85 3091.20 14599.89 8799.41 4199.67 8598.69 203
MG-MVS98.91 1698.65 1899.68 1499.94 1399.07 2399.64 16499.44 1997.33 2499.00 8299.72 7894.03 8299.98 4398.73 73100.00 1100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1199.93 2499.29 1499.95 4598.32 15597.28 2599.83 1199.91 1497.22 19100.00 199.99 5100.00 199.89 80
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.93 2499.29 1499.96 2898.42 12997.28 2599.86 599.94 497.22 19
SED-MVS99.28 599.11 799.77 899.93 2499.30 1199.96 2898.43 11897.27 2799.80 1599.94 496.71 24100.00 1100.00 1100.00 1100.00 1
test_241102_TWO98.43 11897.27 2799.80 1599.94 497.18 21100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1198.43 11897.26 2999.80 1599.88 2196.71 24100.00 1
CANet_DTU96.76 10896.15 11398.60 9098.78 13397.53 8399.84 11197.63 21997.25 3099.20 7399.64 9381.36 24399.98 4392.77 21998.89 12298.28 209
APDe-MVS99.06 1198.91 1499.51 2899.94 1398.76 4299.91 7498.39 14097.20 3199.46 5699.85 3095.53 4499.79 11399.86 18100.00 199.99 23
MSLP-MVS++99.13 899.01 1199.49 3199.94 1398.46 5899.98 1198.86 4997.10 3299.80 1599.94 495.92 36100.00 199.51 35100.00 1100.00 1
xiu_mvs_v2_base98.23 5397.97 5599.02 6798.69 13798.66 4899.52 18298.08 18597.05 3399.86 599.86 2690.65 15799.71 12899.39 4398.63 12898.69 203
CHOSEN 280x42099.01 1399.03 1098.95 7399.38 9598.87 3198.46 29099.42 2197.03 3499.02 8199.09 13599.35 198.21 22499.73 2999.78 7999.77 96
CANet98.27 4897.82 6499.63 1699.72 7499.10 2299.98 1198.51 9697.00 3598.52 10499.71 8087.80 18999.95 6499.75 2599.38 10799.83 87
PC_three_145296.96 3699.80 1599.79 5497.49 10100.00 199.99 599.98 32100.00 1
mvsany_test197.82 6897.90 6297.55 14798.77 13493.04 22299.80 12597.93 19796.95 3799.61 4699.68 8890.92 15299.83 10899.18 4798.29 13899.80 91
test_vis1_n93.61 20293.03 20395.35 21495.86 26286.94 32199.87 9196.36 32796.85 3899.54 5098.79 17152.41 36599.83 10898.64 7998.97 12199.29 172
SteuartSystems-ACMMP99.02 1298.97 1399.18 4798.72 13697.71 7699.98 1198.44 11096.85 3899.80 1599.91 1497.57 899.85 9999.44 3999.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
HQP-NCC95.78 26399.87 9196.82 4093.37 203
ACMP_Plane95.78 26399.87 9196.82 4093.37 203
HQP-MVS94.61 17594.50 16594.92 22995.78 26391.85 24999.87 9197.89 20296.82 4093.37 20398.65 17680.65 25298.39 20497.92 11189.60 22894.53 239
MVS_111021_HR98.72 2298.62 2099.01 6899.36 9697.18 9899.93 6799.90 196.81 4398.67 9899.77 6093.92 8499.89 8799.27 4699.94 5499.96 61
plane_prior91.74 25399.86 10496.76 4489.59 230
TSAR-MVS + MP.98.93 1498.77 1699.41 3799.74 6998.67 4699.77 13198.38 14496.73 4599.88 499.74 7394.89 5999.59 13999.80 2299.98 3299.97 55
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MVS_111021_LR98.42 4098.38 3198.53 10099.39 9495.79 14599.87 9199.86 296.70 4698.78 9099.79 5492.03 13599.90 8399.17 4899.86 7099.88 81
PAPM98.60 2798.42 2899.14 5696.05 25698.96 2599.90 7999.35 2496.68 4798.35 11399.66 9196.45 2998.51 19299.45 3899.89 6699.96 61
test_one_060199.94 1399.30 1198.41 13396.63 4899.75 2799.93 1197.49 10
plane_prior391.64 25996.63 4893.01 207
CLD-MVS94.06 19093.90 17994.55 24596.02 25790.69 27299.98 1197.72 21396.62 5091.05 23098.85 17077.21 27798.47 19398.11 10089.51 23394.48 243
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 999.95 4598.43 11896.48 5199.80 1599.93 1197.44 14100.00 199.92 1299.98 32100.00 1
test_0728_THIRD96.48 5199.83 1199.91 1497.87 6100.00 199.92 12100.00 1100.00 1
xiu_mvs_v1_base_debu97.43 8197.06 8698.55 9597.74 19098.14 6199.31 21197.86 20696.43 5399.62 4099.69 8485.56 21099.68 13299.05 5198.31 13597.83 216
xiu_mvs_v1_base97.43 8197.06 8698.55 9597.74 19098.14 6199.31 21197.86 20696.43 5399.62 4099.69 8485.56 21099.68 13299.05 5198.31 13597.83 216
xiu_mvs_v1_base_debi97.43 8197.06 8698.55 9597.74 19098.14 6199.31 21197.86 20696.43 5399.62 4099.69 8485.56 21099.68 13299.05 5198.31 13597.83 216
SD-MVS98.92 1598.70 1799.56 2499.70 7698.73 4399.94 6198.34 15296.38 5699.81 1399.76 6294.59 6399.98 4399.84 1999.96 4699.97 55
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HQP_MVS94.49 17994.36 16794.87 23095.71 27291.74 25399.84 11197.87 20496.38 5693.01 20798.59 18080.47 25698.37 21097.79 11889.55 23194.52 241
plane_prior299.84 11196.38 56
DeepC-MVS94.51 496.92 10296.40 10898.45 10599.16 10495.90 14299.66 15898.06 18696.37 5994.37 19399.49 10583.29 23099.90 8397.63 12499.61 9199.55 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testdata199.28 21796.35 60
XVS98.70 2398.55 2399.15 5499.94 1397.50 8799.94 6198.42 12996.22 6199.41 6199.78 5894.34 7299.96 5798.92 6099.95 4999.99 23
X-MVStestdata93.83 19292.06 22499.15 5499.94 1397.50 8799.94 6198.42 12996.22 6199.41 6141.37 38594.34 7299.96 5798.92 6099.95 4999.99 23
OPM-MVS93.21 20992.80 20894.44 25293.12 31890.85 27199.77 13197.61 22496.19 6391.56 22498.65 17675.16 30198.47 19393.78 20289.39 23493.99 292
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EPNet_dtu95.71 14695.39 14296.66 18098.92 12193.41 21499.57 17498.90 4396.19 6397.52 13398.56 18492.65 11797.36 25777.89 34398.33 13499.20 178
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OMC-MVS97.28 8997.23 8297.41 15599.76 6693.36 21799.65 16097.95 19596.03 6597.41 13799.70 8289.61 17099.51 14296.73 14698.25 13999.38 158
h-mvs3394.92 16494.36 16796.59 18298.85 12991.29 26498.93 25498.94 3895.90 6698.77 9198.42 19590.89 15599.77 11897.80 11570.76 35498.72 202
hse-mvs294.38 18194.08 17495.31 21798.27 15990.02 28899.29 21698.56 8195.90 6698.77 9198.00 20490.89 15598.26 22297.80 11569.20 36097.64 221
131496.84 10495.96 12399.48 3396.74 24398.52 5598.31 29898.86 4995.82 6889.91 24398.98 14787.49 19299.96 5797.80 11599.73 8299.96 61
test_prior299.95 4595.78 6999.73 2999.76 6296.00 3399.78 24100.00 1
MTAPA98.29 4797.96 5899.30 4199.85 5497.93 7299.39 20198.28 16295.76 7097.18 14199.88 2192.74 116100.00 198.67 7699.88 6899.99 23
UGNet95.33 15794.57 16497.62 14698.55 14394.85 17898.67 28199.32 2595.75 7196.80 15196.27 26072.18 31399.96 5794.58 18299.05 12098.04 214
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
HY-MVS92.50 797.79 7197.17 8599.63 1698.98 11499.32 897.49 31899.52 1495.69 7298.32 11497.41 22293.32 9899.77 11898.08 10395.75 19399.81 89
CHOSEN 1792x268896.81 10596.53 10497.64 14498.91 12593.07 21999.65 16099.80 395.64 7395.39 18198.86 16784.35 22399.90 8396.98 14099.16 11699.95 68
ETV-MVS97.92 6297.80 6598.25 11598.14 16996.48 12099.98 1197.63 21995.61 7499.29 7199.46 10892.55 12298.82 17199.02 5698.54 12999.46 149
FOURS199.92 3197.66 8099.95 4598.36 14895.58 7599.52 53
WTY-MVS98.10 5797.60 7099.60 2198.92 12199.28 1699.89 8699.52 1495.58 7598.24 11999.39 11493.33 9799.74 12497.98 10995.58 19699.78 95
CS-MVS-test97.88 6397.94 5997.70 14299.28 9995.20 17199.98 1197.15 27195.53 7799.62 4099.79 5492.08 13498.38 20898.75 7299.28 11299.52 141
3Dnovator91.47 1296.28 13195.34 14499.08 6296.82 23897.47 9099.45 19498.81 5395.52 7889.39 25799.00 14481.97 23699.95 6497.27 13099.83 7299.84 86
lupinMVS97.85 6597.60 7098.62 8897.28 21997.70 7899.99 497.55 23095.50 7999.43 5999.67 8990.92 15298.71 18198.40 8799.62 8899.45 151
PVSNet_Blended97.94 6097.64 6898.83 7899.59 8196.99 106100.00 199.10 2995.38 8098.27 11699.08 13689.00 18199.95 6499.12 4999.25 11399.57 132
PAPR98.52 3298.16 4599.58 2399.97 398.77 3999.95 4598.43 11895.35 8198.03 12299.75 6794.03 8299.98 4398.11 10099.83 7299.99 23
jason97.24 9196.86 9398.38 11195.73 26997.32 9499.97 2197.40 24895.34 8298.60 10399.54 10287.70 19098.56 18997.94 11099.47 10099.25 175
jason: jason.
EI-MVSNet-Vis-set98.27 4898.11 4998.75 8199.83 5796.59 11999.40 19798.51 9695.29 8398.51 10599.76 6293.60 9499.71 12898.53 8499.52 9699.95 68
3Dnovator+91.53 1196.31 12895.24 14799.52 2796.88 23598.64 5199.72 15098.24 16695.27 8488.42 28298.98 14782.76 23299.94 7297.10 13699.83 7299.96 61
EI-MVSNet-UG-set98.14 5597.99 5498.60 9099.80 6196.27 12899.36 20698.50 10195.21 8598.30 11599.75 6793.29 10099.73 12798.37 8999.30 11199.81 89
CS-MVS97.79 7197.91 6197.43 15499.10 10694.42 18899.99 497.10 27695.07 8699.68 3499.75 6792.95 10998.34 21298.38 8899.14 11799.54 137
mPP-MVS98.39 4398.20 4298.97 7199.97 396.92 10999.95 4598.38 14495.04 8798.61 10299.80 5193.39 95100.00 198.64 79100.00 199.98 48
test111195.57 15194.98 15797.37 15898.56 14193.37 21698.86 26398.45 10694.95 8896.63 15498.95 15675.21 30099.11 16195.02 16798.14 14299.64 114
test250697.53 7997.19 8398.58 9398.66 13996.90 11098.81 26899.77 594.93 8997.95 12498.96 15192.51 12399.20 15694.93 16998.15 14099.64 114
ECVR-MVScopyleft95.66 14995.05 15497.51 15098.66 13993.71 20598.85 26598.45 10694.93 8996.86 14898.96 15175.22 29999.20 15695.34 16198.15 14099.64 114
SR-MVS98.46 3698.30 3998.93 7499.88 4997.04 10399.84 11198.35 15094.92 9199.32 6799.80 5193.35 9699.78 11599.30 4599.95 4999.96 61
Effi-MVS+-dtu94.53 17895.30 14692.22 30497.77 18882.54 34399.59 17097.06 28194.92 9195.29 18395.37 29485.81 20897.89 24194.80 17597.07 16596.23 234
region2R98.54 3098.37 3399.05 6399.96 897.18 9899.96 2898.55 8794.87 9399.45 5799.85 3094.07 81100.00 198.67 76100.00 199.98 48
ACMMPcopyleft97.74 7497.44 7598.66 8699.92 3196.13 13799.18 22599.45 1894.84 9496.41 16299.71 8091.40 14299.99 3697.99 10798.03 14799.87 83
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HFP-MVS98.56 2998.37 3399.14 5699.96 897.43 9199.95 4598.61 7494.77 9599.31 6899.85 3094.22 76100.00 198.70 7499.98 3299.98 48
ACMMPR98.50 3398.32 3799.05 6399.96 897.18 9899.95 4598.60 7594.77 9599.31 6899.84 4193.73 90100.00 198.70 7499.98 3299.98 48
PVSNet91.05 1397.13 9496.69 9998.45 10599.52 8795.81 14499.95 4599.65 1194.73 9799.04 8099.21 12984.48 22099.95 6494.92 17098.74 12699.58 131
test_fmvs289.47 28989.70 26688.77 33494.54 29275.74 36299.83 11794.70 35894.71 9891.08 22896.82 24754.46 36297.78 24692.87 21788.27 25292.80 331
MP-MVScopyleft98.23 5397.97 5599.03 6599.94 1397.17 10199.95 4598.39 14094.70 9998.26 11899.81 5091.84 139100.00 198.85 6699.97 4299.93 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMMP_NAP98.49 3498.14 4699.54 2699.66 7898.62 5299.85 10798.37 14794.68 10099.53 5199.83 4392.87 111100.00 198.66 7899.84 7199.99 23
diffmvspermissive97.00 9896.64 10098.09 12297.64 19996.17 13699.81 12197.19 26594.67 10198.95 8399.28 11986.43 20398.76 17698.37 8997.42 15899.33 166
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EC-MVSNet97.38 8897.24 8197.80 13397.41 20995.64 15399.99 497.06 28194.59 10299.63 3899.32 11889.20 17998.14 22698.76 7199.23 11499.62 119
PAPM_NR98.12 5697.93 6098.70 8399.94 1396.13 13799.82 11998.43 11894.56 10397.52 13399.70 8294.40 6799.98 4397.00 13999.98 3299.99 23
PVSNet_Blended_VisFu97.27 9096.81 9598.66 8698.81 13196.67 11599.92 7098.64 6994.51 10496.38 16398.49 18889.05 18099.88 9397.10 13698.34 13399.43 154
canonicalmvs97.09 9796.32 10999.39 3998.93 11998.95 2699.72 15097.35 25194.45 10597.88 12799.42 11086.71 20099.52 14198.48 8593.97 21399.72 102
CVMVSNet94.68 17394.94 15893.89 27496.80 23986.92 32299.06 23898.98 3694.45 10594.23 19699.02 14085.60 20995.31 33990.91 24395.39 19999.43 154
SR-MVS-dyc-post98.31 4598.17 4498.71 8299.79 6296.37 12699.76 13698.31 15794.43 10799.40 6399.75 6793.28 10199.78 11598.90 6399.92 6399.97 55
RE-MVS-def98.13 4799.79 6296.37 12699.76 13698.31 15794.43 10799.40 6399.75 6792.95 10998.90 6399.92 6399.97 55
CP-MVS98.45 3798.32 3798.87 7699.96 896.62 11799.97 2198.39 14094.43 10798.90 8699.87 2494.30 74100.00 199.04 5499.99 2199.99 23
EIA-MVS97.53 7997.46 7497.76 13998.04 17394.84 17999.98 1197.61 22494.41 11097.90 12699.59 9692.40 12698.87 16998.04 10499.13 11899.59 125
alignmvs97.81 6997.33 7999.25 4298.77 13498.66 4899.99 498.44 11094.40 11198.41 10999.47 10693.65 9299.42 15298.57 8294.26 20999.67 108
ET-MVSNet_ETH3D94.37 18293.28 19997.64 14498.30 15597.99 6899.99 497.61 22494.35 11271.57 36599.45 10996.23 3195.34 33896.91 14485.14 28099.59 125
train_agg98.88 1798.65 1899.59 2299.92 3198.92 2799.96 2898.43 11894.35 11299.71 3199.86 2695.94 3499.85 9999.69 3299.98 3299.99 23
test_899.92 3198.88 3099.96 2898.43 11894.35 11299.69 3399.85 3095.94 3499.85 99
ZNCC-MVS98.31 4598.03 5299.17 5099.88 4997.59 8199.94 6198.44 11094.31 11598.50 10699.82 4693.06 10799.99 3698.30 9399.99 2199.93 72
VNet97.21 9396.57 10399.13 6098.97 11597.82 7499.03 24599.21 2894.31 11599.18 7698.88 16286.26 20699.89 8798.93 5994.32 20899.69 105
dcpmvs_297.42 8598.09 5095.42 21299.58 8487.24 31999.23 22196.95 29394.28 11798.93 8599.73 7594.39 7099.16 16099.89 1699.82 7699.86 85
IB-MVS92.85 694.99 16393.94 17898.16 11797.72 19595.69 15299.99 498.81 5394.28 11792.70 21396.90 23995.08 5199.17 15996.07 15373.88 34999.60 124
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Vis-MVSNetpermissive95.72 14495.15 15197.45 15297.62 20094.28 19199.28 21798.24 16694.27 11996.84 14998.94 15879.39 26298.76 17693.25 20998.49 13099.30 170
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
旧先验299.46 19394.21 12099.85 799.95 6496.96 141
iter_conf0596.07 13495.95 12596.44 18798.43 15097.52 8499.91 7496.85 30494.16 12192.49 21897.98 20798.20 497.34 25997.26 13188.29 25194.45 250
ACMP92.05 992.74 22192.42 21993.73 27795.91 26188.72 30399.81 12197.53 23494.13 12287.00 29998.23 19874.07 30798.47 19396.22 15288.86 24093.99 292
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PMMVS96.76 10896.76 9796.76 17698.28 15892.10 24399.91 7497.98 19294.12 12399.53 5199.39 11486.93 19998.73 17896.95 14297.73 15099.45 151
XVG-OURS94.82 16594.74 16295.06 22498.00 17489.19 29799.08 23397.55 23094.10 12494.71 18899.62 9480.51 25499.74 12496.04 15493.06 22296.25 232
APD-MVScopyleft98.62 2698.35 3699.41 3799.90 4298.51 5699.87 9198.36 14894.08 12599.74 2899.73 7594.08 8099.74 12499.42 4099.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test-LLR96.47 12096.04 11597.78 13697.02 22695.44 15899.96 2898.21 16994.07 12695.55 17896.38 25693.90 8698.27 22090.42 25398.83 12499.64 114
test0.0.03 193.86 19193.61 18494.64 23995.02 28592.18 24299.93 6798.58 7794.07 12687.96 28698.50 18793.90 8694.96 34381.33 32893.17 21996.78 229
原ACMM198.96 7299.73 7296.99 10698.51 9694.06 12899.62 4099.85 3094.97 5899.96 5795.11 16499.95 4999.92 77
PVSNet_BlendedMVS96.05 13595.82 13396.72 17899.59 8196.99 10699.95 4599.10 2994.06 12898.27 11695.80 27189.00 18199.95 6499.12 4987.53 26493.24 323
iter_conf_final96.01 13795.93 12796.28 19298.38 15297.03 10499.87 9197.03 28494.05 13092.61 21497.98 20798.01 597.34 25997.02 13888.39 25094.47 244
GST-MVS98.27 4897.97 5599.17 5099.92 3197.57 8299.93 6798.39 14094.04 13198.80 8999.74 7392.98 108100.00 198.16 9799.76 8099.93 72
PVSNet_088.03 1991.80 24390.27 25596.38 19098.27 15990.46 27999.94 6199.61 1393.99 13286.26 31197.39 22471.13 32099.89 8798.77 7067.05 36498.79 198
CDPH-MVS98.65 2598.36 3599.49 3199.94 1398.73 4399.87 9198.33 15393.97 13399.76 2699.87 2494.99 5799.75 12298.55 83100.00 199.98 48
PatchMatch-RL96.04 13695.40 14197.95 12699.59 8195.22 17099.52 18299.07 3293.96 13496.49 15898.35 19682.28 23499.82 11090.15 25899.22 11598.81 197
APD-MVS_3200maxsize98.25 5198.08 5198.78 7999.81 6096.60 11899.82 11998.30 16093.95 13599.37 6599.77 6092.84 11299.76 12198.95 5799.92 6399.97 55
PLCcopyleft95.54 397.93 6197.89 6398.05 12499.82 5894.77 18399.92 7098.46 10593.93 13697.20 14099.27 12295.44 4599.97 5397.41 12799.51 9899.41 156
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
baseline96.43 12295.98 11997.76 13997.34 21395.17 17399.51 18497.17 26893.92 13796.90 14799.28 11985.37 21498.64 18697.50 12696.86 17399.46 149
TEST999.92 3198.92 2799.96 2898.43 11893.90 13899.71 3199.86 2695.88 3799.85 99
PGM-MVS98.34 4498.13 4798.99 6999.92 3197.00 10599.75 13999.50 1793.90 13899.37 6599.76 6293.24 103100.00 197.75 12299.96 4699.98 48
testgi89.01 29488.04 29591.90 30893.49 31084.89 33399.73 14795.66 34193.89 14085.14 31898.17 19959.68 35694.66 34777.73 34488.88 23896.16 235
testdata98.42 10899.47 9195.33 16498.56 8193.78 14199.79 2399.85 3093.64 9399.94 7294.97 16899.94 54100.00 1
CNLPA97.76 7397.38 7698.92 7599.53 8696.84 11199.87 9198.14 18193.78 14196.55 15799.69 8492.28 12999.98 4397.13 13499.44 10499.93 72
casdiffmvspermissive96.42 12495.97 12297.77 13897.30 21794.98 17599.84 11197.09 27893.75 14396.58 15699.26 12585.07 21698.78 17497.77 12097.04 16799.54 137
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net96.54 11895.96 12398.27 11498.23 16195.71 15098.00 31298.45 10693.72 14498.41 10999.27 12288.71 18599.66 13691.19 23597.69 15199.44 153
XVG-OURS-SEG-HR94.79 16794.70 16395.08 22398.05 17289.19 29799.08 23397.54 23293.66 14594.87 18799.58 9878.78 26899.79 11397.31 12993.40 21796.25 232
USDC90.00 28288.96 28293.10 29594.81 28788.16 31298.71 27695.54 34493.66 14583.75 32597.20 22865.58 34098.31 21583.96 31487.49 26592.85 330
mvsmamba94.10 18893.72 18395.25 21993.57 30794.13 19499.67 15796.45 32593.63 14791.34 22797.77 21486.29 20597.22 27096.65 14788.10 25594.40 252
SF-MVS98.67 2498.40 2999.50 2999.77 6598.67 4699.90 7998.21 16993.53 14899.81 1399.89 1994.70 6299.86 9899.84 1999.93 6099.96 61
EPMVS96.53 11996.01 11698.09 12298.43 15096.12 13996.36 33899.43 2093.53 14897.64 13195.04 30694.41 6698.38 20891.13 23698.11 14399.75 98
无先验99.49 18898.71 5993.46 150100.00 194.36 18599.99 23
sss97.57 7897.03 9099.18 4798.37 15398.04 6699.73 14799.38 2293.46 15098.76 9399.06 13891.21 14499.89 8796.33 14997.01 16999.62 119
MP-MVS-pluss98.07 5897.64 6899.38 4099.74 6998.41 5999.74 14298.18 17393.35 15296.45 15999.85 3092.64 11899.97 5398.91 6299.89 6699.77 96
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
casdiffmvs_mvgpermissive96.43 12295.94 12697.89 13297.44 20895.47 15799.86 10497.29 25893.35 15296.03 16999.19 13085.39 21398.72 18097.89 11497.04 16799.49 147
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
AdaColmapbinary97.23 9296.80 9698.51 10199.99 195.60 15599.09 23198.84 5293.32 15496.74 15299.72 7886.04 207100.00 198.01 10599.43 10699.94 70
SCA94.69 17193.81 18297.33 16297.10 22294.44 18698.86 26398.32 15593.30 15596.17 16895.59 28076.48 28697.95 23891.06 23897.43 15699.59 125
miper_enhance_ethall94.36 18493.98 17695.49 20898.68 13895.24 16899.73 14797.29 25893.28 15689.86 24595.97 26994.37 7197.05 28192.20 22384.45 28594.19 269
9.1498.38 3199.87 5199.91 7498.33 15393.22 15799.78 2499.89 1994.57 6499.85 9999.84 1999.97 42
SMA-MVScopyleft98.76 2198.48 2699.62 1999.87 5198.87 3199.86 10498.38 14493.19 15899.77 2599.94 495.54 42100.00 199.74 2799.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
thres20096.96 9996.21 11299.22 4398.97 11598.84 3499.85 10799.71 693.17 15996.26 16598.88 16289.87 16799.51 14294.26 18894.91 20399.31 168
MDTV_nov1_ep1395.69 13597.90 17994.15 19395.98 34798.44 11093.12 16097.98 12395.74 27395.10 5098.58 18890.02 25996.92 171
F-COLMAP96.93 10196.95 9296.87 17399.71 7591.74 25399.85 10797.95 19593.11 16195.72 17799.16 13392.35 12799.94 7295.32 16299.35 10998.92 190
ACMM91.95 1092.88 21892.52 21793.98 27095.75 26889.08 30099.77 13197.52 23693.00 16289.95 24297.99 20676.17 29098.46 19693.63 20688.87 23994.39 254
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline296.71 11296.49 10597.37 15895.63 27695.96 14199.74 14298.88 4792.94 16391.61 22398.97 14997.72 798.62 18794.83 17498.08 14697.53 226
tfpn200view996.79 10695.99 11799.19 4698.94 11798.82 3599.78 12899.71 692.86 16496.02 17098.87 16589.33 17499.50 14493.84 19694.57 20499.27 173
thres40096.78 10795.99 11799.16 5298.94 11798.82 3599.78 12899.71 692.86 16496.02 17098.87 16589.33 17499.50 14493.84 19694.57 20499.16 180
PatchmatchNetpermissive95.94 13995.45 14097.39 15797.83 18494.41 18996.05 34598.40 13792.86 16497.09 14295.28 30194.21 7898.07 23189.26 26698.11 14399.70 103
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
bld_raw_dy_0_6492.74 22192.03 22594.87 23093.09 32093.46 21199.12 22895.41 34692.84 16790.44 23697.54 21878.08 27597.04 28393.94 19287.77 26094.11 281
LPG-MVS_test92.96 21692.71 21093.71 27995.43 27888.67 30499.75 13997.62 22192.81 16890.05 23898.49 18875.24 29798.40 20295.84 15889.12 23594.07 284
LGP-MVS_train93.71 27995.43 27888.67 30497.62 22192.81 16890.05 23898.49 18875.24 29798.40 20295.84 15889.12 23594.07 284
ITE_SJBPF92.38 30295.69 27485.14 33095.71 33992.81 16889.33 26098.11 20070.23 32398.42 19985.91 30288.16 25493.59 315
XVG-ACMP-BASELINE91.22 25490.75 24592.63 30193.73 30585.61 32798.52 28997.44 24292.77 17189.90 24496.85 24366.64 33798.39 20492.29 22288.61 24493.89 300
DeepMVS_CXcopyleft82.92 34795.98 26058.66 37796.01 33492.72 17278.34 34995.51 28558.29 35898.08 22982.57 32185.29 27792.03 341
1112_ss96.01 13795.20 14998.42 10897.80 18696.41 12399.65 16096.66 31692.71 17392.88 21199.40 11292.16 13199.30 15391.92 22793.66 21499.55 134
Test_1112_low_res95.72 14494.83 16098.42 10897.79 18796.41 12399.65 16096.65 31792.70 17492.86 21296.13 26592.15 13299.30 15391.88 22893.64 21599.55 134
新几何199.42 3699.75 6898.27 6098.63 7292.69 17599.55 4899.82 4694.40 67100.00 191.21 23499.94 5499.99 23
baseline195.78 14394.86 15998.54 9898.47 14998.07 6499.06 23897.99 19092.68 17694.13 19798.62 17993.28 10198.69 18393.79 20185.76 27398.84 195
Fast-Effi-MVS+-dtu93.72 19993.86 18193.29 28997.06 22486.16 32499.80 12596.83 30692.66 17792.58 21597.83 21381.39 24297.67 24989.75 26396.87 17296.05 236
MAR-MVS97.43 8197.19 8398.15 12099.47 9194.79 18299.05 24298.76 5692.65 17898.66 9999.82 4688.52 18699.98 4398.12 9999.63 8799.67 108
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CR-MVSNet93.45 20792.62 21195.94 19996.29 24992.66 23192.01 36496.23 32992.62 17996.94 14593.31 33791.04 14996.03 32879.23 33695.96 18699.13 184
jajsoiax91.92 23891.18 24194.15 26091.35 34590.95 26899.00 24797.42 24592.61 18087.38 29597.08 23272.46 31297.36 25794.53 18388.77 24194.13 280
HPM-MVScopyleft97.96 5997.72 6698.68 8499.84 5696.39 12599.90 7998.17 17492.61 18098.62 10199.57 9991.87 13899.67 13598.87 6599.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
thres100view90096.74 11095.92 12999.18 4798.90 12698.77 3999.74 14299.71 692.59 18295.84 17398.86 16789.25 17699.50 14493.84 19694.57 20499.27 173
thres600view796.69 11395.87 13299.14 5698.90 12698.78 3899.74 14299.71 692.59 18295.84 17398.86 16789.25 17699.50 14493.44 20894.50 20799.16 180
GA-MVS93.83 19292.84 20696.80 17495.73 26993.57 20799.88 8897.24 26392.57 18492.92 20996.66 24878.73 26997.67 24987.75 28394.06 21299.17 179
FIs94.10 18893.43 19296.11 19694.70 28996.82 11299.58 17298.93 4292.54 18589.34 25997.31 22587.62 19197.10 27894.22 19086.58 26994.40 252
RRT_MVS93.14 21292.92 20593.78 27693.31 31490.04 28799.66 15897.69 21592.53 18688.91 27197.76 21584.36 22196.93 29195.10 16586.99 26794.37 255
BH-RMVSNet95.18 15894.31 17097.80 13398.17 16795.23 16999.76 13697.53 23492.52 18794.27 19599.25 12676.84 28298.80 17290.89 24499.54 9599.35 163
PS-MVSNAJss93.64 20193.31 19894.61 24092.11 33692.19 24199.12 22897.38 24992.51 18888.45 27796.99 23891.20 14597.29 26794.36 18587.71 26194.36 256
UniMVSNet (Re)93.07 21592.13 22195.88 20094.84 28696.24 13399.88 8898.98 3692.49 18989.25 26195.40 29087.09 19797.14 27493.13 21478.16 33094.26 263
mvs_tets91.81 24091.08 24294.00 26891.63 34390.58 27698.67 28197.43 24392.43 19087.37 29697.05 23571.76 31497.32 26394.75 17788.68 24394.11 281
SDMVSNet94.80 16693.96 17797.33 16298.92 12195.42 16099.59 17098.99 3592.41 19192.55 21697.85 21175.81 29398.93 16897.90 11391.62 22497.64 221
sd_testset93.55 20392.83 20795.74 20598.92 12190.89 27098.24 30198.85 5192.41 19192.55 21697.85 21171.07 32198.68 18493.93 19391.62 22497.64 221
MVSTER95.53 15295.22 14896.45 18598.56 14197.72 7599.91 7497.67 21792.38 19391.39 22597.14 22997.24 1897.30 26494.80 17587.85 25894.34 260
ZD-MVS99.92 3198.57 5398.52 9392.34 19499.31 6899.83 4395.06 5299.80 11199.70 3199.97 42
FC-MVSNet-test93.81 19493.15 20195.80 20494.30 29696.20 13499.42 19698.89 4592.33 19589.03 26997.27 22787.39 19496.83 29793.20 21086.48 27094.36 256
D2MVS92.76 22092.59 21593.27 29095.13 28189.54 29699.69 15399.38 2292.26 19687.59 29094.61 32185.05 21797.79 24491.59 23188.01 25692.47 336
DU-MVS92.46 22991.45 23895.49 20894.05 29995.28 16699.81 12198.74 5792.25 19789.21 26496.64 25081.66 23996.73 30193.20 21077.52 33594.46 245
VPNet91.81 24090.46 24995.85 20294.74 28895.54 15698.98 24898.59 7692.14 19890.77 23397.44 22168.73 32897.54 25394.89 17377.89 33294.46 245
BH-w/o95.71 14695.38 14396.68 17998.49 14892.28 23999.84 11197.50 23892.12 19992.06 22198.79 17184.69 21898.67 18595.29 16399.66 8699.09 186
LCM-MVSNet-Re92.31 23292.60 21291.43 31197.53 20379.27 36099.02 24691.83 37292.07 20080.31 34094.38 32783.50 22895.48 33597.22 13397.58 15499.54 137
tpmrst96.27 13295.98 11997.13 16697.96 17693.15 21896.34 33998.17 17492.07 20098.71 9795.12 30493.91 8598.73 17894.91 17296.62 17499.50 145
DP-MVS Recon98.41 4198.02 5399.56 2499.97 398.70 4599.92 7098.44 11092.06 20298.40 11199.84 4195.68 40100.00 198.19 9599.71 8399.97 55
test_vis1_rt86.87 30586.05 30789.34 32796.12 25378.07 36199.87 9183.54 38392.03 20378.21 35089.51 35445.80 36999.91 8196.25 15193.11 22190.03 356
IS-MVSNet96.29 13095.90 13097.45 15298.13 17094.80 18199.08 23397.61 22492.02 20495.54 18098.96 15190.64 15898.08 22993.73 20497.41 15999.47 148
TESTMET0.1,196.74 11096.26 11098.16 11797.36 21296.48 12099.96 2898.29 16191.93 20595.77 17698.07 20295.54 4298.29 21690.55 25098.89 12299.70 103
MDTV_nov1_ep13_2view96.26 12996.11 34491.89 20698.06 12194.40 6794.30 18799.67 108
test22299.55 8597.41 9399.34 20798.55 8791.86 20799.27 7299.83 4393.84 8899.95 4999.99 23
thisisatest051597.41 8697.02 9198.59 9297.71 19797.52 8499.97 2198.54 9091.83 20897.45 13699.04 13997.50 999.10 16294.75 17796.37 18099.16 180
Vis-MVSNet (Re-imp)96.32 12795.98 11997.35 16197.93 17894.82 18099.47 19198.15 18091.83 20895.09 18599.11 13491.37 14397.47 25593.47 20797.43 15699.74 99
test-mter96.39 12595.93 12797.78 13697.02 22695.44 15899.96 2898.21 16991.81 21095.55 17896.38 25695.17 4898.27 22090.42 25398.83 12499.64 114
AUN-MVS93.28 20892.60 21295.34 21598.29 15690.09 28699.31 21198.56 8191.80 21196.35 16498.00 20489.38 17398.28 21892.46 22069.22 35997.64 221
HPM-MVS_fast97.80 7097.50 7398.68 8499.79 6296.42 12299.88 8898.16 17891.75 21298.94 8499.54 10291.82 14099.65 13797.62 12599.99 2199.99 23
API-MVS97.86 6497.66 6798.47 10399.52 8795.41 16199.47 19198.87 4891.68 21398.84 8799.85 3092.34 12899.99 3698.44 8699.96 46100.00 1
nrg03093.51 20492.53 21696.45 18594.36 29497.20 9799.81 12197.16 27091.60 21489.86 24597.46 22086.37 20497.68 24895.88 15780.31 31994.46 245
MVS96.60 11695.56 13999.72 1296.85 23699.22 1998.31 29898.94 3891.57 21590.90 23199.61 9586.66 20199.96 5797.36 12899.88 6899.99 23
CDS-MVSNet96.34 12696.07 11497.13 16697.37 21194.96 17699.53 18197.91 20191.55 21695.37 18298.32 19795.05 5397.13 27593.80 20095.75 19399.30 170
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UniMVSNet_NR-MVSNet92.95 21792.11 22295.49 20894.61 29195.28 16699.83 11799.08 3191.49 21789.21 26496.86 24287.14 19696.73 30193.20 21077.52 33594.46 245
OurMVSNet-221017-089.81 28489.48 27490.83 31691.64 34281.21 35298.17 30695.38 34891.48 21885.65 31697.31 22572.66 31197.29 26788.15 27884.83 28293.97 294
gm-plane-assit96.97 22993.76 20491.47 21998.96 15198.79 17394.92 170
LF4IMVS89.25 29388.85 28390.45 32092.81 32881.19 35398.12 30794.79 35591.44 22086.29 31097.11 23065.30 34398.11 22888.53 27485.25 27892.07 339
test_yl97.83 6697.37 7799.21 4499.18 10197.98 6999.64 16499.27 2691.43 22197.88 12798.99 14595.84 3899.84 10698.82 6795.32 20099.79 92
DCV-MVSNet97.83 6697.37 7799.21 4499.18 10197.98 6999.64 16499.27 2691.43 22197.88 12798.99 14595.84 3899.84 10698.82 6795.32 20099.79 92
FA-MVS(test-final)95.86 14095.09 15398.15 12097.74 19095.62 15496.31 34098.17 17491.42 22396.26 16596.13 26590.56 15999.47 15092.18 22497.07 16599.35 163
EU-MVSNet90.14 28090.34 25389.54 32692.55 33081.06 35498.69 27998.04 18891.41 22486.59 30496.84 24580.83 24993.31 35986.20 29981.91 30294.26 263
dmvs_re93.20 21093.15 20193.34 28796.54 24783.81 33798.71 27698.51 9691.39 22592.37 21998.56 18478.66 27097.83 24393.89 19489.74 22798.38 207
TAMVS95.85 14195.58 13896.65 18197.07 22393.50 21099.17 22697.82 21091.39 22595.02 18698.01 20392.20 13097.30 26493.75 20395.83 19099.14 183
mvsany_test382.12 32681.14 32885.06 34381.87 37270.41 36697.09 32692.14 37091.27 22777.84 35188.73 35739.31 37295.49 33490.75 24771.24 35389.29 363
MVSFormer96.94 10096.60 10197.95 12697.28 21997.70 7899.55 17897.27 26091.17 22899.43 5999.54 10290.92 15296.89 29394.67 18099.62 8899.25 175
test_djsdf92.83 21992.29 22094.47 25091.90 33992.46 23699.55 17897.27 26091.17 22889.96 24196.07 26881.10 24596.89 29394.67 18088.91 23794.05 286
NR-MVSNet91.56 24890.22 25695.60 20694.05 29995.76 14798.25 30098.70 6091.16 23080.78 33996.64 25083.23 23196.57 30791.41 23277.73 33494.46 245
thisisatest053097.10 9596.72 9898.22 11697.60 20196.70 11499.92 7098.54 9091.11 23197.07 14398.97 14997.47 1299.03 16393.73 20496.09 18398.92 190
MVS_Test96.46 12195.74 13498.61 8998.18 16697.23 9699.31 21197.15 27191.07 23298.84 8797.05 23588.17 18898.97 16594.39 18497.50 15599.61 122
TranMVSNet+NR-MVSNet91.68 24790.61 24894.87 23093.69 30693.98 19999.69 15398.65 6791.03 23388.44 27896.83 24680.05 25996.18 32190.26 25776.89 34394.45 250
VPA-MVSNet92.70 22391.55 23596.16 19595.09 28296.20 13498.88 25999.00 3491.02 23491.82 22295.29 30076.05 29297.96 23795.62 16081.19 30794.30 261
BH-untuned95.18 15894.83 16096.22 19498.36 15491.22 26599.80 12597.32 25590.91 23591.08 22898.67 17583.51 22798.54 19194.23 18999.61 9198.92 190
mvs_anonymous95.65 15095.03 15597.53 14898.19 16595.74 14899.33 20897.49 23990.87 23690.47 23597.10 23188.23 18797.16 27295.92 15697.66 15399.68 106
VDD-MVS93.77 19692.94 20496.27 19398.55 14390.22 28398.77 27297.79 21190.85 23796.82 15099.42 11061.18 35599.77 11898.95 5794.13 21098.82 196
tpm93.70 20093.41 19594.58 24395.36 28087.41 31897.01 32896.90 30090.85 23796.72 15394.14 32990.40 16196.84 29690.75 24788.54 24799.51 143
PHI-MVS98.41 4198.21 4199.03 6599.86 5397.10 10299.98 1198.80 5590.78 23999.62 4099.78 5895.30 47100.00 199.80 2299.93 6099.99 23
tttt051796.85 10396.49 10597.92 12897.48 20795.89 14399.85 10798.54 9090.72 24096.63 15498.93 16097.47 1299.02 16493.03 21695.76 19298.85 194
HyFIR lowres test96.66 11596.43 10797.36 16099.05 10893.91 20199.70 15299.80 390.54 24196.26 16598.08 20192.15 13298.23 22396.84 14595.46 19799.93 72
OpenMVScopyleft90.15 1594.77 16993.59 18798.33 11296.07 25597.48 8999.56 17698.57 7990.46 24286.51 30598.95 15678.57 27199.94 7293.86 19599.74 8197.57 225
cl2293.77 19693.25 20095.33 21699.49 9094.43 18799.61 16898.09 18390.38 24389.16 26795.61 27890.56 15997.34 25991.93 22684.45 28594.21 268
Effi-MVS+96.30 12995.69 13598.16 11797.85 18396.26 12997.41 31997.21 26490.37 24498.65 10098.58 18286.61 20298.70 18297.11 13597.37 16099.52 141
PCF-MVS94.20 595.18 15894.10 17398.43 10798.55 14395.99 14097.91 31497.31 25690.35 24589.48 25699.22 12885.19 21599.89 8790.40 25598.47 13199.41 156
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ab-mvs94.69 17193.42 19398.51 10198.07 17196.26 12996.49 33698.68 6390.31 24694.54 18997.00 23776.30 28899.71 12895.98 15593.38 21899.56 133
TR-MVS94.54 17693.56 18997.49 15197.96 17694.34 19098.71 27697.51 23790.30 24794.51 19198.69 17475.56 29498.77 17592.82 21895.99 18599.35 163
WR-MVS92.31 23291.25 24095.48 21194.45 29395.29 16599.60 16998.68 6390.10 24888.07 28596.89 24080.68 25196.80 29993.14 21379.67 32394.36 256
ADS-MVSNet293.80 19593.88 18093.55 28597.87 18185.94 32694.24 35396.84 30590.07 24996.43 16094.48 32490.29 16395.37 33787.44 28597.23 16199.36 161
ADS-MVSNet94.79 16794.02 17597.11 16897.87 18193.79 20294.24 35398.16 17890.07 24996.43 16094.48 32490.29 16398.19 22587.44 28597.23 16199.36 161
CostFormer96.10 13395.88 13196.78 17597.03 22592.55 23597.08 32797.83 20990.04 25198.72 9694.89 31395.01 5598.29 21696.54 14895.77 19199.50 145
CPTT-MVS97.64 7797.32 8098.58 9399.97 395.77 14699.96 2898.35 15089.90 25298.36 11299.79 5491.18 14899.99 3698.37 8999.99 2199.99 23
TAPA-MVS92.12 894.42 18093.60 18696.90 17299.33 9791.78 25299.78 12898.00 18989.89 25394.52 19099.47 10691.97 13699.18 15869.90 36099.52 9699.73 100
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FMVSNet392.69 22491.58 23395.99 19898.29 15697.42 9299.26 21997.62 22189.80 25489.68 24995.32 29681.62 24196.27 31887.01 29485.65 27494.29 262
dp95.05 16194.43 16696.91 17197.99 17592.73 22996.29 34197.98 19289.70 25595.93 17294.67 31993.83 8998.45 19786.91 29796.53 17699.54 137
dmvs_testset83.79 32286.07 30676.94 35292.14 33548.60 38496.75 33390.27 37589.48 25678.65 34798.55 18679.25 26386.65 37566.85 36682.69 29595.57 237
ACMH+89.98 1690.35 27289.54 27092.78 30095.99 25886.12 32598.81 26897.18 26789.38 25783.14 32797.76 21568.42 33098.43 19889.11 26786.05 27293.78 307
QAPM95.40 15594.17 17299.10 6196.92 23097.71 7699.40 19798.68 6389.31 25888.94 27098.89 16182.48 23399.96 5793.12 21599.83 7299.62 119
UnsupCasMVSNet_eth85.52 31083.99 31290.10 32289.36 35883.51 33996.65 33497.99 19089.14 25975.89 35993.83 33163.25 34893.92 35281.92 32667.90 36392.88 329
anonymousdsp91.79 24590.92 24494.41 25590.76 35092.93 22498.93 25497.17 26889.08 26087.46 29495.30 29778.43 27496.92 29292.38 22188.73 24293.39 319
K. test v388.05 29987.24 30190.47 31991.82 34182.23 34698.96 25197.42 24589.05 26176.93 35595.60 27968.49 32995.42 33685.87 30381.01 31393.75 308
IterMVS90.91 25890.17 25993.12 29396.78 24290.42 28198.89 25797.05 28389.03 26286.49 30695.42 28976.59 28595.02 34187.22 29084.09 28893.93 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH89.72 1790.64 26589.63 26793.66 28395.64 27588.64 30698.55 28597.45 24189.03 26281.62 33497.61 21769.75 32498.41 20089.37 26487.62 26393.92 298
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tt080591.28 25190.18 25894.60 24196.26 25187.55 31698.39 29698.72 5889.00 26489.22 26398.47 19262.98 34998.96 16690.57 24988.00 25797.28 227
IterMVS-LS92.69 22492.11 22294.43 25496.80 23992.74 22799.45 19496.89 30188.98 26589.65 25295.38 29388.77 18396.34 31590.98 24182.04 30194.22 266
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SixPastTwentyTwo88.73 29588.01 29690.88 31491.85 34082.24 34598.22 30495.18 35388.97 26682.26 33096.89 24071.75 31596.67 30484.00 31282.98 29393.72 312
EI-MVSNet93.73 19893.40 19694.74 23596.80 23992.69 23099.06 23897.67 21788.96 26791.39 22599.02 14088.75 18497.30 26491.07 23787.85 25894.22 266
IterMVS-SCA-FT90.85 26190.16 26092.93 29796.72 24489.96 28998.89 25796.99 28888.95 26886.63 30395.67 27676.48 28695.00 34287.04 29284.04 29193.84 304
CP-MVSNet91.23 25390.22 25694.26 25893.96 30192.39 23899.09 23198.57 7988.95 26886.42 30896.57 25379.19 26596.37 31390.29 25678.95 32594.02 287
FE-MVS95.70 14895.01 15697.79 13598.21 16394.57 18495.03 35298.69 6188.90 27097.50 13596.19 26292.60 12099.49 14889.99 26097.94 14999.31 168
WR-MVS_H91.30 24990.35 25294.15 26094.17 29892.62 23499.17 22698.94 3888.87 27186.48 30794.46 32684.36 22196.61 30688.19 27778.51 32893.21 324
Fast-Effi-MVS+95.02 16294.19 17197.52 14997.88 18094.55 18599.97 2197.08 27988.85 27294.47 19297.96 20984.59 21998.41 20089.84 26297.10 16499.59 125
miper_ehance_all_eth93.16 21192.60 21294.82 23497.57 20293.56 20899.50 18697.07 28088.75 27388.85 27295.52 28490.97 15196.74 30090.77 24684.45 28594.17 270
EPP-MVSNet96.69 11396.60 10196.96 17097.74 19093.05 22199.37 20498.56 8188.75 27395.83 17599.01 14296.01 3298.56 18996.92 14397.20 16399.25 175
MS-PatchMatch90.65 26490.30 25491.71 31094.22 29785.50 32998.24 30197.70 21488.67 27586.42 30896.37 25867.82 33298.03 23383.62 31699.62 8891.60 344
CSCG97.10 9597.04 8997.27 16499.89 4591.92 24899.90 7999.07 3288.67 27595.26 18499.82 4693.17 10599.98 4398.15 9899.47 10099.90 79
XXY-MVS91.82 23990.46 24995.88 20093.91 30295.40 16298.87 26297.69 21588.63 27787.87 28797.08 23274.38 30697.89 24191.66 23084.07 28994.35 259
eth_miper_zixun_eth92.41 23091.93 22793.84 27597.28 21990.68 27398.83 26696.97 29288.57 27889.19 26695.73 27589.24 17896.69 30389.97 26181.55 30494.15 276
PS-CasMVS90.63 26689.51 27293.99 26993.83 30391.70 25798.98 24898.52 9388.48 27986.15 31296.53 25575.46 29596.31 31788.83 26978.86 32793.95 295
114514_t97.41 8696.83 9499.14 5699.51 8997.83 7399.89 8698.27 16488.48 27999.06 7999.66 9190.30 16299.64 13896.32 15099.97 4299.96 61
test20.0384.72 31783.99 31286.91 33988.19 36280.62 35798.88 25995.94 33588.36 28178.87 34594.62 32068.75 32789.11 37066.52 36775.82 34591.00 348
GeoE94.36 18493.48 19196.99 16997.29 21893.54 20999.96 2896.72 31488.35 28293.43 20298.94 15882.05 23598.05 23288.12 28096.48 17899.37 160
test_fmvs379.99 33380.17 33279.45 35084.02 36962.83 37099.05 24293.49 36788.29 28380.06 34386.65 36528.09 37788.00 37188.63 27073.27 35187.54 367
PEN-MVS90.19 27889.06 28093.57 28493.06 32190.90 26999.06 23898.47 10388.11 28485.91 31496.30 25976.67 28395.94 33187.07 29176.91 34293.89 300
v2v48291.30 24990.07 26295.01 22593.13 31693.79 20299.77 13197.02 28588.05 28589.25 26195.37 29480.73 25097.15 27387.28 28980.04 32294.09 283
tpm295.47 15395.18 15096.35 19196.91 23191.70 25796.96 33097.93 19788.04 28698.44 10895.40 29093.32 9897.97 23594.00 19195.61 19599.38 158
c3_l92.53 22791.87 22994.52 24697.40 21092.99 22399.40 19796.93 29887.86 28788.69 27595.44 28889.95 16696.44 31190.45 25280.69 31694.14 279
our_test_390.39 27089.48 27493.12 29392.40 33289.57 29599.33 20896.35 32887.84 28885.30 31794.99 31084.14 22496.09 32680.38 33284.56 28493.71 313
LFMVS94.75 17093.56 18998.30 11399.03 10995.70 15198.74 27397.98 19287.81 28998.47 10799.39 11467.43 33499.53 14098.01 10595.20 20299.67 108
v14890.70 26389.63 26793.92 27192.97 32390.97 26799.75 13996.89 30187.51 29088.27 28395.01 30781.67 23897.04 28387.40 28777.17 34093.75 308
tpmvs94.28 18693.57 18896.40 18898.55 14391.50 26295.70 35198.55 8787.47 29192.15 22094.26 32891.42 14198.95 16788.15 27895.85 18998.76 199
pmmvs492.10 23691.07 24395.18 22192.82 32794.96 17699.48 19096.83 30687.45 29288.66 27696.56 25483.78 22696.83 29789.29 26584.77 28393.75 308
V4291.28 25190.12 26194.74 23593.42 31293.46 21199.68 15597.02 28587.36 29389.85 24795.05 30581.31 24497.34 25987.34 28880.07 32193.40 318
DTE-MVSNet89.40 29088.24 29392.88 29892.66 32989.95 29099.10 23098.22 16887.29 29485.12 31996.22 26176.27 28995.30 34083.56 31775.74 34693.41 317
MVP-Stereo90.93 25790.45 25192.37 30391.25 34788.76 30198.05 31196.17 33187.27 29584.04 32295.30 29778.46 27397.27 26983.78 31599.70 8491.09 347
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LS3D95.84 14295.11 15298.02 12599.85 5495.10 17498.74 27398.50 10187.22 29693.66 20199.86 2687.45 19399.95 6490.94 24299.81 7899.02 188
GBi-Net90.88 25989.82 26494.08 26397.53 20391.97 24498.43 29296.95 29387.05 29789.68 24994.72 31571.34 31796.11 32387.01 29485.65 27494.17 270
test190.88 25989.82 26494.08 26397.53 20391.97 24498.43 29296.95 29387.05 29789.68 24994.72 31571.34 31796.11 32387.01 29485.65 27494.17 270
FMVSNet291.02 25689.56 26995.41 21397.53 20395.74 14898.98 24897.41 24787.05 29788.43 28095.00 30971.34 31796.24 32085.12 30685.21 27994.25 265
DIV-MVS_self_test92.32 23191.60 23294.47 25097.31 21692.74 22799.58 17296.75 31286.99 30087.64 28995.54 28289.55 17196.50 30988.58 27282.44 29894.17 270
cl____92.31 23291.58 23394.52 24697.33 21592.77 22599.57 17496.78 31186.97 30187.56 29195.51 28589.43 17296.62 30588.60 27182.44 29894.16 275
Patchmatch-RL test86.90 30485.98 30889.67 32584.45 36775.59 36389.71 37192.43 36986.89 30277.83 35290.94 35194.22 7693.63 35687.75 28369.61 35699.79 92
v114491.09 25589.83 26394.87 23093.25 31593.69 20699.62 16796.98 29086.83 30389.64 25394.99 31080.94 24797.05 28185.08 30781.16 30893.87 302
miper_lstm_enhance91.81 24091.39 23993.06 29697.34 21389.18 29999.38 20296.79 31086.70 30487.47 29395.22 30290.00 16595.86 33288.26 27681.37 30694.15 276
AllTest92.48 22891.64 23195.00 22699.01 11088.43 30898.94 25396.82 30886.50 30588.71 27398.47 19274.73 30399.88 9385.39 30496.18 18196.71 230
TestCases95.00 22699.01 11088.43 30896.82 30886.50 30588.71 27398.47 19274.73 30399.88 9385.39 30496.18 18196.71 230
v14419290.79 26289.52 27194.59 24293.11 31992.77 22599.56 17696.99 28886.38 30789.82 24894.95 31280.50 25597.10 27883.98 31380.41 31793.90 299
v119290.62 26789.25 27694.72 23793.13 31693.07 21999.50 18697.02 28586.33 30889.56 25595.01 30779.22 26497.09 28082.34 32381.16 30894.01 289
pm-mvs189.36 29187.81 29794.01 26793.40 31391.93 24798.62 28496.48 32486.25 30983.86 32496.14 26473.68 30997.04 28386.16 30075.73 34793.04 327
v192192090.46 26989.12 27894.50 24892.96 32492.46 23699.49 18896.98 29086.10 31089.61 25495.30 29778.55 27297.03 28682.17 32480.89 31594.01 289
MIMVSNet90.30 27488.67 28795.17 22296.45 24891.64 25992.39 36297.15 27185.99 31190.50 23493.19 33966.95 33594.86 34582.01 32593.43 21699.01 189
v124090.20 27788.79 28594.44 25293.05 32292.27 24099.38 20296.92 29985.89 31289.36 25894.87 31477.89 27697.03 28680.66 33181.08 31194.01 289
pmmvs590.17 27989.09 27993.40 28692.10 33789.77 29399.74 14295.58 34385.88 31387.24 29895.74 27373.41 31096.48 31088.54 27383.56 29293.95 295
v890.54 26889.17 27794.66 23893.43 31193.40 21599.20 22396.94 29785.76 31487.56 29194.51 32281.96 23797.19 27184.94 30878.25 32993.38 320
cascas94.64 17493.61 18497.74 14197.82 18596.26 12999.96 2897.78 21285.76 31494.00 19897.54 21876.95 28199.21 15597.23 13295.43 19897.76 220
MSDG94.37 18293.36 19797.40 15698.88 12893.95 20099.37 20497.38 24985.75 31690.80 23299.17 13284.11 22599.88 9386.35 29898.43 13298.36 208
PM-MVS80.47 33078.88 33585.26 34283.79 37072.22 36595.89 34991.08 37385.71 31776.56 35788.30 35836.64 37393.90 35382.39 32269.57 35789.66 360
DSMNet-mixed88.28 29888.24 29388.42 33689.64 35775.38 36498.06 31089.86 37685.59 31888.20 28492.14 34776.15 29191.95 36478.46 34196.05 18497.92 215
ppachtmachnet_test89.58 28888.35 29193.25 29192.40 33290.44 28099.33 20896.73 31385.49 31985.90 31595.77 27281.09 24696.00 33076.00 35182.49 29793.30 321
Anonymous2023120686.32 30685.42 30989.02 33089.11 35980.53 35899.05 24295.28 34985.43 32082.82 32893.92 33074.40 30593.44 35866.99 36581.83 30393.08 326
v7n89.65 28788.29 29293.72 27892.22 33490.56 27799.07 23797.10 27685.42 32186.73 30194.72 31580.06 25897.13 27581.14 32978.12 33193.49 316
CL-MVSNet_self_test84.50 31883.15 32188.53 33586.00 36581.79 34998.82 26797.35 25185.12 32283.62 32690.91 35276.66 28491.40 36569.53 36160.36 37292.40 337
v1090.25 27688.82 28494.57 24493.53 30993.43 21399.08 23396.87 30385.00 32387.34 29794.51 32280.93 24897.02 28882.85 32079.23 32493.26 322
KD-MVS_2432*160088.00 30086.10 30493.70 28196.91 23194.04 19697.17 32497.12 27484.93 32481.96 33192.41 34392.48 12494.51 34879.23 33652.68 37592.56 333
miper_refine_blended88.00 30086.10 30493.70 28196.91 23194.04 19697.17 32497.12 27484.93 32481.96 33192.41 34392.48 12494.51 34879.23 33652.68 37592.56 333
LTVRE_ROB88.28 1890.29 27589.05 28194.02 26695.08 28390.15 28597.19 32397.43 24384.91 32683.99 32397.06 23474.00 30898.28 21884.08 31187.71 26193.62 314
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement84.76 31582.56 32391.38 31274.58 37984.80 33497.36 32094.56 35984.73 32780.21 34196.12 26763.56 34798.39 20487.92 28163.97 36890.95 350
Baseline_NR-MVSNet90.33 27389.51 27292.81 29992.84 32589.95 29099.77 13193.94 36384.69 32889.04 26895.66 27781.66 23996.52 30890.99 24076.98 34191.97 342
TinyColmap87.87 30286.51 30391.94 30795.05 28485.57 32897.65 31794.08 36184.40 32981.82 33396.85 24362.14 35198.33 21380.25 33486.37 27191.91 343
tfpnnormal89.29 29287.61 29894.34 25794.35 29594.13 19498.95 25298.94 3883.94 33084.47 32195.51 28574.84 30297.39 25677.05 34880.41 31791.48 346
RPSCF91.80 24392.79 20988.83 33198.15 16869.87 36798.11 30896.60 31983.93 33194.33 19499.27 12279.60 26199.46 15191.99 22593.16 22097.18 228
UniMVSNet_ETH3D90.06 28188.58 28894.49 24994.67 29088.09 31397.81 31697.57 22983.91 33288.44 27897.41 22257.44 35997.62 25191.41 23288.59 24697.77 219
Anonymous20240521193.10 21491.99 22696.40 18899.10 10689.65 29498.88 25997.93 19783.71 33394.00 19898.75 17368.79 32699.88 9395.08 16691.71 22399.68 106
TransMVSNet (Re)87.25 30385.28 31093.16 29293.56 30891.03 26698.54 28794.05 36283.69 33481.09 33796.16 26375.32 29696.40 31276.69 34968.41 36192.06 340
test_f78.40 33577.59 33780.81 34980.82 37362.48 37396.96 33093.08 36883.44 33574.57 36284.57 36927.95 37892.63 36184.15 31072.79 35287.32 368
pmmvs-eth3d84.03 32181.97 32590.20 32184.15 36887.09 32098.10 30994.73 35783.05 33674.10 36387.77 36265.56 34194.01 35181.08 33069.24 35889.49 361
FMVSNet188.50 29686.64 30294.08 26395.62 27791.97 24498.43 29296.95 29383.00 33786.08 31394.72 31559.09 35796.11 32381.82 32784.07 28994.17 270
KD-MVS_self_test83.59 32482.06 32488.20 33786.93 36380.70 35697.21 32296.38 32682.87 33882.49 32988.97 35667.63 33392.32 36273.75 35462.30 37191.58 345
VDDNet93.12 21391.91 22896.76 17696.67 24692.65 23398.69 27998.21 16982.81 33997.75 13099.28 11961.57 35399.48 14998.09 10294.09 21198.15 211
Patchmatch-test92.65 22691.50 23696.10 19796.85 23690.49 27891.50 36697.19 26582.76 34090.23 23795.59 28095.02 5498.00 23477.41 34596.98 17099.82 88
FMVSNet588.32 29787.47 29990.88 31496.90 23488.39 31097.28 32195.68 34082.60 34184.67 32092.40 34579.83 26091.16 36676.39 35081.51 30593.09 325
COLMAP_ROBcopyleft90.47 1492.18 23591.49 23794.25 25999.00 11288.04 31498.42 29596.70 31582.30 34288.43 28099.01 14276.97 28099.85 9986.11 30196.50 17794.86 238
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
new-patchmatchnet81.19 32779.34 33486.76 34082.86 37180.36 35997.92 31395.27 35082.09 34372.02 36486.87 36462.81 35090.74 36871.10 35863.08 36989.19 364
EG-PatchMatch MVS85.35 31383.81 31689.99 32490.39 35281.89 34898.21 30596.09 33381.78 34474.73 36193.72 33351.56 36797.12 27779.16 33988.61 24490.96 349
DP-MVS94.54 17693.42 19397.91 13099.46 9394.04 19698.93 25497.48 24081.15 34590.04 24099.55 10087.02 19899.95 6488.97 26898.11 14399.73 100
tpm cat193.51 20492.52 21796.47 18397.77 18891.47 26396.13 34398.06 18680.98 34692.91 21093.78 33289.66 16898.87 16987.03 29396.39 17999.09 186
new_pmnet84.49 31982.92 32289.21 32890.03 35582.60 34296.89 33295.62 34280.59 34775.77 36089.17 35565.04 34494.79 34672.12 35781.02 31290.23 354
MDA-MVSNet-bldmvs84.09 32081.52 32791.81 30991.32 34688.00 31598.67 28195.92 33680.22 34855.60 37693.32 33668.29 33193.60 35773.76 35376.61 34493.82 306
Anonymous2024052185.15 31483.81 31689.16 32988.32 36082.69 34198.80 27095.74 33879.72 34981.53 33590.99 35065.38 34294.16 35072.69 35581.11 31090.63 352
MDA-MVSNet_test_wron85.51 31183.32 31992.10 30590.96 34888.58 30799.20 22396.52 32279.70 35057.12 37592.69 34179.11 26693.86 35477.10 34777.46 33793.86 303
YYNet185.50 31283.33 31892.00 30690.89 34988.38 31199.22 22296.55 32179.60 35157.26 37492.72 34079.09 26793.78 35577.25 34677.37 33893.84 304
MIMVSNet182.58 32580.51 33188.78 33286.68 36484.20 33696.65 33495.41 34678.75 35278.59 34892.44 34251.88 36689.76 36965.26 37078.95 32592.38 338
Patchmtry89.70 28688.49 28993.33 28896.24 25289.94 29291.37 36796.23 32978.22 35387.69 28893.31 33791.04 14996.03 32880.18 33582.10 30094.02 287
N_pmnet80.06 33280.78 33077.89 35191.94 33845.28 38698.80 27056.82 38978.10 35480.08 34293.33 33577.03 27995.76 33368.14 36482.81 29492.64 332
PatchT90.38 27188.75 28695.25 21995.99 25890.16 28491.22 36897.54 23276.80 35597.26 13986.01 36791.88 13796.07 32766.16 36895.91 18899.51 143
Anonymous2023121189.86 28388.44 29094.13 26298.93 11990.68 27398.54 28798.26 16576.28 35686.73 30195.54 28270.60 32297.56 25290.82 24580.27 32094.15 276
test_040285.58 30983.94 31490.50 31893.81 30485.04 33198.55 28595.20 35276.01 35779.72 34495.13 30364.15 34696.26 31966.04 36986.88 26890.21 355
pmmvs685.69 30883.84 31591.26 31390.00 35684.41 33597.82 31596.15 33275.86 35881.29 33695.39 29261.21 35496.87 29583.52 31873.29 35092.50 335
JIA-IIPM91.76 24690.70 24694.94 22896.11 25487.51 31793.16 36098.13 18275.79 35997.58 13277.68 37392.84 11297.97 23588.47 27596.54 17599.33 166
Anonymous2024052992.10 23690.65 24796.47 18398.82 13090.61 27598.72 27598.67 6675.54 36093.90 20098.58 18266.23 33899.90 8394.70 17990.67 22698.90 193
UnsupCasMVSNet_bld79.97 33477.03 33888.78 33285.62 36681.98 34793.66 35897.35 25175.51 36170.79 36683.05 37048.70 36894.91 34478.31 34260.29 37389.46 362
test_vis3_rt68.82 33766.69 34275.21 35576.24 37860.41 37596.44 33768.71 38875.13 36250.54 37969.52 37716.42 38796.32 31680.27 33366.92 36568.89 375
gg-mvs-nofinetune93.51 20491.86 23098.47 10397.72 19597.96 7192.62 36198.51 9674.70 36397.33 13869.59 37698.91 397.79 24497.77 12099.56 9499.67 108
CMPMVSbinary61.59 2184.75 31685.14 31183.57 34590.32 35362.54 37296.98 32997.59 22874.33 36469.95 36796.66 24864.17 34598.32 21487.88 28288.41 24989.84 358
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
OpenMVS_ROBcopyleft79.82 2083.77 32381.68 32690.03 32388.30 36182.82 34098.46 29095.22 35173.92 36576.00 35891.29 34955.00 36196.94 29068.40 36388.51 24890.34 353
APD_test181.15 32880.92 32981.86 34892.45 33159.76 37696.04 34693.61 36673.29 36677.06 35396.64 25044.28 37196.16 32272.35 35682.52 29689.67 359
pmmvs380.27 33177.77 33687.76 33880.32 37482.43 34498.23 30391.97 37172.74 36778.75 34687.97 36157.30 36090.99 36770.31 35962.37 37089.87 357
ANet_high56.10 34552.24 34867.66 36149.27 38756.82 37883.94 37482.02 38470.47 36833.28 38464.54 37917.23 38669.16 38245.59 38023.85 38177.02 374
RPMNet89.76 28587.28 30097.19 16596.29 24992.66 23192.01 36498.31 15770.19 36996.94 14585.87 36887.25 19599.78 11562.69 37195.96 18699.13 184
MVS-HIRNet86.22 30783.19 32095.31 21796.71 24590.29 28292.12 36397.33 25462.85 37086.82 30070.37 37569.37 32597.49 25475.12 35297.99 14898.15 211
PMMVS267.15 34264.15 34576.14 35470.56 38262.07 37493.89 35687.52 38058.09 37160.02 37078.32 37222.38 38184.54 37759.56 37347.03 37781.80 370
testf168.38 33966.92 34072.78 35778.80 37550.36 38190.95 36987.35 38155.47 37258.95 37188.14 35920.64 38287.60 37257.28 37564.69 36680.39 371
APD_test268.38 33966.92 34072.78 35778.80 37550.36 38190.95 36987.35 38155.47 37258.95 37188.14 35920.64 38287.60 37257.28 37564.69 36680.39 371
test_method80.79 32979.70 33384.08 34492.83 32667.06 36999.51 18495.42 34554.34 37481.07 33893.53 33444.48 37092.22 36378.90 34077.23 33992.94 328
FPMVS68.72 33868.72 33968.71 36065.95 38344.27 38895.97 34894.74 35651.13 37553.26 37790.50 35325.11 38083.00 37860.80 37280.97 31478.87 373
Gipumacopyleft66.95 34365.00 34372.79 35691.52 34467.96 36866.16 37895.15 35447.89 37658.54 37367.99 37829.74 37587.54 37450.20 37877.83 33362.87 378
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet67.77 34164.73 34476.87 35362.95 38556.25 37989.37 37293.74 36544.53 37761.99 36980.74 37120.42 38486.53 37669.37 36259.50 37487.84 365
tmp_tt65.23 34462.94 34772.13 35944.90 38850.03 38381.05 37589.42 37938.45 37848.51 38099.90 1854.09 36378.70 38091.84 22918.26 38287.64 366
PMVScopyleft49.05 2353.75 34651.34 35060.97 36340.80 38934.68 38974.82 37789.62 37837.55 37928.67 38572.12 3747.09 38981.63 37943.17 38168.21 36266.59 377
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN52.30 34752.18 34952.67 36471.51 38045.40 38593.62 35976.60 38636.01 38043.50 38164.13 38027.11 37967.31 38331.06 38326.06 37945.30 382
MVEpermissive53.74 2251.54 34847.86 35262.60 36259.56 38650.93 38079.41 37677.69 38535.69 38136.27 38361.76 3825.79 39169.63 38137.97 38236.61 37867.24 376
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS51.44 34951.22 35152.11 36570.71 38144.97 38794.04 35575.66 38735.34 38242.40 38261.56 38328.93 37665.87 38427.64 38424.73 38045.49 381
testmvs40.60 35044.45 35329.05 36719.49 39114.11 39299.68 15518.47 39020.74 38364.59 36898.48 19110.95 38817.09 38756.66 37711.01 38355.94 380
test12337.68 35139.14 35433.31 36619.94 39024.83 39198.36 2979.75 39115.53 38451.31 37887.14 36319.62 38517.74 38647.10 3793.47 38557.36 379
wuyk23d20.37 35320.84 35618.99 36865.34 38427.73 39050.43 3797.67 3929.50 3858.01 3866.34 3866.13 39026.24 38523.40 38510.69 3842.99 383
EGC-MVSNET69.38 33663.76 34686.26 34190.32 35381.66 35196.24 34293.85 3640.99 3863.22 38792.33 34652.44 36492.92 36059.53 37484.90 28184.21 369
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.02 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3880.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3880.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k23.43 35231.24 3550.00 3690.00 3920.00 3930.00 38098.09 1830.00 3870.00 38899.67 8983.37 2290.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas7.60 35510.13 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38891.20 1450.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3880.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3880.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3880.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3880.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re8.28 35411.04 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38899.40 1120.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3880.00 3920.00 3880.00 3860.00 3860.00 384
MSC_two_6792asdad99.93 299.91 3999.80 298.41 133100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 3999.80 298.41 133100.00 199.96 9100.00 1100.00 1
eth-test20.00 392
eth-test0.00 392
OPU-MVS99.93 299.89 4599.80 299.96 2899.80 5197.44 14100.00 1100.00 199.98 32100.00 1
test_0728_SECOND99.82 799.94 1399.47 799.95 4598.43 118100.00 199.99 5100.00 1100.00 1
GSMVS99.59 125
test_part299.89 4599.25 1799.49 55
sam_mvs194.72 6199.59 125
sam_mvs94.25 75
ambc83.23 34677.17 37762.61 37187.38 37394.55 36076.72 35686.65 36530.16 37496.36 31484.85 30969.86 35590.73 351
MTGPAbinary98.28 162
test_post195.78 35059.23 38493.20 10497.74 24791.06 238
test_post63.35 38194.43 6598.13 227
patchmatchnet-post91.70 34895.12 4997.95 238
GG-mvs-BLEND98.54 9898.21 16398.01 6793.87 35798.52 9397.92 12597.92 21099.02 297.94 24098.17 9699.58 9399.67 108
MTMP99.87 9196.49 323
test9_res99.71 3099.99 21100.00 1
agg_prior299.48 37100.00 1100.00 1
agg_prior99.93 2498.77 3998.43 11899.63 3899.85 99
test_prior498.05 6599.94 61
test_prior99.43 3499.94 1398.49 5798.65 6799.80 11199.99 23
新几何299.40 197
旧先验199.76 6697.52 8498.64 6999.85 3095.63 4199.94 5499.99 23
原ACMM299.90 79
testdata299.99 3690.54 251
segment_acmp96.68 26
test1299.43 3499.74 6998.56 5498.40 13799.65 3694.76 6099.75 12299.98 3299.99 23
plane_prior795.71 27291.59 261
plane_prior695.76 26791.72 25680.47 256
plane_prior597.87 20498.37 21097.79 11889.55 23194.52 241
plane_prior498.59 180
plane_prior195.73 269
n20.00 393
nn0.00 393
door-mid89.69 377
lessismore_v090.53 31790.58 35180.90 35595.80 33777.01 35495.84 27066.15 33996.95 28983.03 31975.05 34893.74 311
test1198.44 110
door90.31 374
HQP5-MVS91.85 249
BP-MVS97.92 111
HQP4-MVS93.37 20398.39 20494.53 239
HQP3-MVS97.89 20289.60 228
HQP2-MVS80.65 252
NP-MVS95.77 26691.79 25198.65 176
ACMMP++_ref87.04 266
ACMMP++88.23 253
Test By Simon92.82 114