This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
DELS-MVS82.32 582.50 581.79 1286.80 4756.89 2992.77 286.30 8977.83 177.88 3392.13 4160.24 794.78 1978.97 4489.61 893.69 8
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
patch_mono-280.84 1281.59 1078.62 6690.34 953.77 10488.08 5488.36 5176.17 279.40 2791.09 6455.43 2790.09 10885.01 1280.40 8291.99 48
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1693.77 191.10 1175.95 377.10 3793.09 2754.15 3795.57 1285.80 1085.87 3893.31 11
MM82.69 283.29 380.89 2284.38 8655.40 5992.16 1089.85 2175.28 482.41 1193.86 854.30 3493.98 2390.29 187.13 2193.30 12
MVS_030482.10 782.64 480.47 2786.63 4954.69 8492.20 986.66 8174.48 582.63 1093.80 950.83 5993.70 2890.11 286.44 3393.01 21
CLD-MVS75.60 7275.39 6476.24 12080.69 18852.40 14090.69 2386.20 9174.40 665.01 15088.93 11542.05 15990.58 9476.57 6373.96 15485.73 203
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
EPNet78.36 3078.49 2577.97 8285.49 6552.04 14789.36 3984.07 14973.22 777.03 3891.72 5449.32 7290.17 10773.46 9082.77 6091.69 55
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet80.90 1181.17 1280.09 3787.62 4154.21 9691.60 1486.47 8573.13 879.89 2593.10 2549.88 6892.98 3384.09 1784.75 5093.08 19
UBG78.86 2478.86 2278.86 5787.80 4055.43 5587.67 6491.21 1072.83 972.10 7988.40 12658.53 1689.08 13573.21 9477.98 10792.08 41
testing1179.18 2278.85 2380.16 3388.33 3056.99 2688.31 5292.06 172.82 1070.62 10188.37 12757.69 1792.30 5075.25 7476.24 12891.20 73
VPNet72.07 12871.42 12274.04 18578.64 22647.17 27289.91 3187.97 5672.56 1164.66 15385.04 18041.83 16488.33 17061.17 17260.97 26286.62 186
testing22277.70 4077.22 4279.14 4886.95 4554.89 7887.18 7991.96 272.29 1271.17 9388.70 12055.19 2891.24 7465.18 14676.32 12791.29 71
casdiffmvspermissive77.36 4476.85 4678.88 5680.40 19554.66 8787.06 8285.88 9672.11 1371.57 8588.63 12550.89 5890.35 9976.00 6579.11 9891.63 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
testing9978.45 2677.78 3480.45 2888.28 3356.81 3287.95 5991.49 671.72 1470.84 9688.09 13557.29 1992.63 4469.24 11175.13 14391.91 49
casdiffmvs_mvgpermissive77.75 3977.28 4079.16 4780.42 19454.44 9187.76 6185.46 10371.67 1571.38 8888.35 12951.58 4891.22 7579.02 4379.89 9291.83 53
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline172.51 12072.12 11173.69 19985.05 7344.46 30283.51 18286.13 9371.61 1664.64 15487.97 14055.00 3289.48 12359.07 18956.05 30887.13 175
testing9178.30 3277.54 3780.61 2388.16 3557.12 2587.94 6091.07 1471.43 1770.75 9788.04 13955.82 2692.65 4269.61 10875.00 14792.05 44
WTY-MVS77.47 4377.52 3877.30 9588.33 3046.25 28588.46 5090.32 1771.40 1872.32 7791.72 5453.44 3992.37 4966.28 13175.42 13793.28 13
baseline76.86 5276.24 5478.71 6280.47 19354.20 9883.90 17184.88 12771.38 1971.51 8689.15 11350.51 6090.55 9575.71 6778.65 10191.39 66
ETVMVS75.80 7175.44 6376.89 11086.23 5450.38 18385.55 11891.42 771.30 2068.80 11187.94 14156.42 2389.24 13056.54 22074.75 15091.07 77
gm-plane-assit83.24 11254.21 9670.91 2188.23 13395.25 1466.37 129
PS-MVSNAJ80.06 1779.52 1881.68 1485.58 6360.97 391.69 1287.02 7370.62 2280.75 2193.22 2437.77 20492.50 4682.75 2386.25 3591.57 60
DeepPCF-MVS69.37 180.65 1381.56 1177.94 8485.46 6649.56 20390.99 2186.66 8170.58 2380.07 2495.30 156.18 2490.97 8582.57 2586.22 3693.28 13
diffmvspermissive75.11 8174.65 7676.46 11778.52 22853.35 11783.28 19279.94 22670.51 2471.64 8488.72 11946.02 10086.08 24677.52 5875.75 13589.96 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CNVR-MVS81.76 981.90 881.33 1890.04 1057.70 1491.71 1188.87 3570.31 2577.64 3693.87 752.58 4493.91 2684.17 1587.92 1692.39 33
xiu_mvs_v2_base79.86 1879.31 1981.53 1585.03 7560.73 491.65 1386.86 7670.30 2680.77 2093.07 2937.63 20992.28 5282.73 2485.71 3991.57 60
baseline275.15 8074.54 7876.98 10781.67 15851.74 15583.84 17391.94 369.97 2758.98 22886.02 16859.73 991.73 6468.37 11770.40 18787.48 167
CHOSEN 1792x268876.24 5974.03 8482.88 183.09 11762.84 285.73 11185.39 10669.79 2864.87 15283.49 19941.52 16893.69 2970.55 10381.82 6992.12 40
balanced_conf0380.28 1679.73 1581.90 1186.47 5159.34 680.45 25889.51 2369.76 2971.05 9486.66 16258.68 1593.24 3184.64 1490.40 693.14 18
CANet_DTU73.71 10073.14 9375.40 14882.61 13750.05 19284.67 15079.36 24269.72 3075.39 4290.03 9629.41 30285.93 25267.99 12079.11 9890.22 97
TSAR-MVS + MP.78.31 3178.26 2678.48 7081.33 17256.31 4281.59 23886.41 8669.61 3181.72 1688.16 13455.09 3188.04 18174.12 8386.31 3491.09 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
dmvs_re67.61 21366.00 21772.42 22581.86 15043.45 31564.67 35880.00 22369.56 3260.07 20985.00 18134.71 25887.63 19751.48 25666.68 21186.17 194
DPM-MVS82.39 482.36 782.49 580.12 19859.50 592.24 890.72 1569.37 3383.22 894.47 263.81 593.18 3274.02 8493.25 294.80 1
lupinMVS78.38 2978.11 2979.19 4583.02 12055.24 6391.57 1584.82 12869.12 3476.67 3992.02 4644.82 12190.23 10580.83 3680.09 8692.08 41
PAPM76.76 5476.07 5678.81 5880.20 19659.11 786.86 8886.23 9068.60 3570.18 10488.84 11851.57 4987.16 21065.48 13986.68 3090.15 101
DeepC-MVS_fast67.50 378.00 3677.63 3579.13 4988.52 2755.12 6989.95 2885.98 9568.31 3671.33 8992.75 3245.52 10790.37 9871.15 10185.14 4691.91 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
jason77.01 4876.45 5078.69 6379.69 20354.74 8090.56 2483.99 15268.26 3774.10 5490.91 7242.14 15789.99 11079.30 4179.12 9791.36 68
jason: jason.
ETV-MVS77.17 4676.74 4778.48 7081.80 15154.55 8986.13 10085.33 10968.20 3873.10 6490.52 8145.23 11190.66 9179.37 4080.95 7490.22 97
h-mvs3373.95 9372.89 9677.15 10080.17 19750.37 18484.68 14883.33 16268.08 3971.97 8088.65 12442.50 15191.15 7878.82 4557.78 29589.91 109
hse-mvs271.44 14170.68 13173.73 19876.34 25947.44 26779.45 27479.47 23868.08 3971.97 8086.01 17042.50 15186.93 21878.82 4553.46 33286.83 183
MVS_Test75.85 6774.93 7278.62 6684.08 9255.20 6783.99 16885.17 11868.07 4173.38 6182.76 21050.44 6189.00 14065.90 13580.61 7891.64 56
ET-MVSNet_ETH3D75.23 7874.08 8278.67 6484.52 8355.59 5188.92 4489.21 2768.06 4253.13 30390.22 8949.71 6987.62 19972.12 9770.82 18292.82 25
reproduce_monomvs69.71 17268.52 16673.29 20886.43 5248.21 24783.91 17086.17 9268.02 4354.91 28577.46 27542.96 14888.86 14868.44 11648.38 34582.80 257
tpmrst71.04 14869.77 15074.86 16783.19 11455.86 5075.64 29678.73 25667.88 4464.99 15173.73 31749.96 6779.56 32365.92 13467.85 20589.14 126
dcpmvs_279.33 2178.94 2180.49 2589.75 1256.54 3684.83 14483.68 15667.85 4569.36 10590.24 8760.20 892.10 5884.14 1680.40 8292.82 25
PVSNet_Blended76.53 5676.54 4976.50 11685.91 5651.83 15388.89 4584.24 14667.82 4669.09 10989.33 11046.70 9288.13 17775.43 7081.48 7389.55 115
tpm68.36 19867.48 19070.97 25979.93 20151.34 16576.58 29378.75 25567.73 4763.54 17774.86 30748.33 7472.36 36753.93 23863.71 23789.21 123
NCCC79.57 2079.23 2080.59 2489.50 1556.99 2691.38 1688.17 5367.71 4873.81 5692.75 3246.88 8993.28 3078.79 4784.07 5591.50 64
sasdasda78.17 3377.86 3279.12 5084.30 8754.22 9487.71 6284.57 13767.70 4977.70 3492.11 4450.90 5589.95 11178.18 5477.54 11193.20 15
canonicalmvs78.17 3377.86 3279.12 5084.30 8754.22 9487.71 6284.57 13767.70 4977.70 3492.11 4450.90 5589.95 11178.18 5477.54 11193.20 15
3Dnovator64.70 674.46 8572.48 10080.41 2982.84 13055.40 5983.08 19788.61 4667.61 5159.85 21188.66 12134.57 26093.97 2458.42 19788.70 1291.85 52
VNet77.99 3777.92 3178.19 7887.43 4250.12 19190.93 2291.41 867.48 5275.12 4390.15 9346.77 9191.00 8273.52 8978.46 10393.44 9
WBMVS73.93 9473.39 8775.55 14287.82 3955.21 6589.37 3787.29 6967.27 5363.70 17280.30 24760.32 686.47 23161.58 16862.85 25284.97 215
dmvs_testset57.65 30958.21 29055.97 36174.62 2879.82 42263.75 36163.34 37267.23 5448.89 32883.68 19839.12 19376.14 34823.43 38459.80 26881.96 264
IB-MVS68.87 274.01 9272.03 11579.94 3883.04 11955.50 5390.24 2588.65 4267.14 5561.38 19881.74 23553.21 4094.28 2160.45 18262.41 25590.03 105
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVSTER73.25 10872.33 10376.01 13085.54 6453.76 10583.52 17887.16 7167.06 5663.88 17081.66 23652.77 4290.44 9664.66 15064.69 22983.84 238
test_fmvsmconf_n74.41 8674.05 8375.49 14674.16 29448.38 24082.66 20572.57 32967.05 5775.11 4492.88 3146.35 9587.81 18683.93 1871.71 17390.28 95
DeepC-MVS67.15 476.90 5176.27 5378.80 5980.70 18755.02 7386.39 9486.71 7966.96 5867.91 11889.97 9748.03 7791.41 7075.60 6984.14 5489.96 107
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FIs70.00 16670.24 14569.30 28177.93 23838.55 35183.99 16887.72 6366.86 5957.66 25484.17 18852.28 4585.31 25952.72 25168.80 19784.02 229
test_fmvsmconf0.1_n73.69 10173.15 9175.34 15070.71 33248.26 24582.15 21971.83 33466.75 6074.47 5292.59 3644.89 11887.78 19183.59 1971.35 17789.97 106
SDMVSNet71.89 13170.62 13375.70 13781.70 15551.61 15773.89 31088.72 4166.58 6161.64 19682.38 22337.63 20989.48 12377.44 5965.60 22386.01 195
sd_testset67.79 21065.95 21973.32 20581.70 15546.33 28368.99 34380.30 21966.58 6161.64 19682.38 22330.45 29787.63 19755.86 22665.60 22386.01 195
PC_three_145266.58 6187.27 293.70 1066.82 494.95 1789.74 491.98 493.98 5
test_fmvsm_n_192075.56 7375.54 6175.61 13974.60 28849.51 20881.82 22974.08 31666.52 6480.40 2293.46 1746.95 8889.72 11886.69 775.30 13887.61 165
PVSNet62.49 869.27 18267.81 18273.64 20084.41 8551.85 15284.63 15177.80 27266.42 6559.80 21284.95 18222.14 35380.44 31155.03 23075.11 14488.62 139
CS-MVS76.77 5376.70 4876.99 10683.55 10248.75 22888.60 4885.18 11766.38 6672.47 7591.62 5845.53 10690.99 8474.48 7982.51 6291.23 72
UniMVSNet_NR-MVSNet68.82 18968.29 17170.40 26775.71 27442.59 32784.23 16086.78 7766.31 6758.51 23882.45 22051.57 4984.64 27253.11 24255.96 30983.96 235
HY-MVS67.03 573.90 9573.14 9376.18 12584.70 7947.36 26875.56 29786.36 8866.27 6870.66 10083.91 19151.05 5389.31 12867.10 12572.61 16691.88 51
IU-MVS89.48 1757.49 1791.38 966.22 6988.26 182.83 2287.60 1892.44 32
EI-MVSNet-Vis-set73.19 10972.60 9874.99 16582.56 13849.80 19982.55 21089.00 3066.17 7065.89 13888.98 11443.83 13092.29 5165.38 14569.01 19682.87 256
alignmvs78.08 3577.98 3078.39 7483.53 10353.22 12289.77 3285.45 10466.11 7176.59 4191.99 4854.07 3889.05 13777.34 6077.00 11692.89 23
TESTMET0.1,172.86 11372.33 10374.46 17281.98 14550.77 17185.13 12985.47 10266.09 7267.30 12183.69 19637.27 21983.57 28365.06 14878.97 10089.05 128
MSP-MVS82.30 683.47 178.80 5982.99 12252.71 13485.04 13488.63 4466.08 7386.77 392.75 3272.05 191.46 6983.35 2093.53 192.23 37
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CostFormer73.89 9672.30 10578.66 6582.36 14156.58 3375.56 29785.30 11166.06 7470.50 10376.88 28757.02 2089.06 13668.27 11968.74 19890.33 93
NR-MVSNet67.25 22465.99 21871.04 25873.27 30343.91 31085.32 12384.75 13266.05 7553.65 30182.11 23045.05 11385.97 25047.55 28156.18 30683.24 247
HPM-MVS++copyleft80.50 1480.71 1479.88 3987.34 4355.20 6789.93 2987.55 6766.04 7679.46 2693.00 3053.10 4191.76 6380.40 3789.56 992.68 29
SPE-MVS-test77.20 4577.25 4177.05 10184.60 8149.04 21889.42 3685.83 9865.90 7772.85 6891.98 5045.10 11291.27 7275.02 7684.56 5190.84 82
test_fmvsmconf0.01_n71.97 13070.95 12975.04 16266.21 35747.87 26080.35 26170.08 34965.85 7872.69 7091.68 5639.99 18687.67 19582.03 2869.66 19289.58 114
MGCFI-Net74.07 9174.64 7772.34 22882.90 12643.33 31980.04 26779.96 22565.61 7974.93 4591.85 5148.01 7880.86 30371.41 9977.10 11492.84 24
UWE-MVS72.17 12772.15 10972.21 23082.26 14244.29 30686.83 8989.58 2265.58 8065.82 13985.06 17945.02 11484.35 27454.07 23675.18 14087.99 157
HQP-NCC79.02 21588.00 5565.45 8164.48 159
ACMP_Plane79.02 21588.00 5565.45 8164.48 159
HQP-MVS72.34 12271.44 12175.03 16379.02 21551.56 15988.00 5583.68 15665.45 8164.48 15985.13 17737.35 21688.62 15566.70 12673.12 16084.91 217
PVSNet_BlendedMVS73.42 10573.30 8973.76 19685.91 5651.83 15386.18 9984.24 14665.40 8469.09 10980.86 24346.70 9288.13 17775.43 7065.92 22281.33 279
MS-PatchMatch72.34 12271.26 12475.61 13982.38 14055.55 5288.00 5589.95 2065.38 8556.51 27480.74 24532.28 28292.89 3457.95 20688.10 1578.39 314
v2v48269.55 17867.64 18475.26 15972.32 31653.83 10284.93 14181.94 18665.37 8660.80 20379.25 25741.62 16588.98 14363.03 15759.51 27082.98 254
VDD-MVS76.08 6274.97 7179.44 4184.27 9053.33 11991.13 2085.88 9665.33 8772.37 7689.34 10832.52 27992.76 4077.90 5775.96 13192.22 39
TranMVSNet+NR-MVSNet66.94 23465.61 22870.93 26073.45 29943.38 31783.02 20084.25 14465.31 8858.33 24581.90 23439.92 18885.52 25549.43 26854.89 31883.89 237
EI-MVSNet-UG-set72.37 12171.73 11674.29 17981.60 16149.29 21381.85 22788.64 4365.29 8965.05 14888.29 13243.18 14391.83 6263.74 15367.97 20381.75 267
MVS_111021_HR76.39 5875.38 6579.42 4285.33 6956.47 3888.15 5384.97 12465.15 9066.06 13589.88 9843.79 13292.16 5575.03 7580.03 8989.64 113
miper_enhance_ethall69.77 17168.90 16372.38 22678.93 21849.91 19583.29 19178.85 25064.90 9159.37 22179.46 25452.77 4285.16 26463.78 15258.72 27782.08 262
MG-MVS78.42 2876.99 4582.73 293.17 164.46 189.93 2988.51 4964.83 9273.52 5988.09 13548.07 7692.19 5462.24 16284.53 5291.53 62
EIA-MVS75.92 6575.18 6878.13 7985.14 7251.60 15887.17 8085.32 11064.69 9368.56 11390.53 8045.79 10391.58 6667.21 12482.18 6691.20 73
plane_prior49.57 20187.43 7064.57 9472.84 164
FC-MVSNet-test67.49 21767.91 17666.21 31376.06 26733.06 37280.82 25487.18 7064.44 9554.81 28682.87 20750.40 6282.60 29048.05 27966.55 21582.98 254
MonoMVSNet66.80 23764.41 24573.96 18876.21 26448.07 25376.56 29478.26 26664.34 9654.32 29374.02 31437.21 22286.36 23664.85 14953.96 32587.45 169
WR-MVS67.58 21466.76 20070.04 27475.92 27245.06 30086.23 9885.28 11364.31 9758.50 24081.00 24044.80 12382.00 29549.21 27155.57 31483.06 252
v114468.81 19066.82 19874.80 16872.34 31553.46 11084.68 14881.77 19364.25 9860.28 20777.91 26840.23 18188.95 14460.37 18359.52 26981.97 263
test111171.06 14770.42 13872.97 21279.48 20541.49 33784.82 14582.74 17664.20 9962.98 18187.43 15035.20 25287.92 18358.54 19478.42 10489.49 117
fmvsm_s_conf0.5_n74.48 8474.12 8175.56 14176.96 25447.85 26185.32 12369.80 35264.16 10078.74 2893.48 1645.51 10889.29 12986.48 866.62 21389.55 115
testdata177.55 28864.14 101
test250672.91 11272.43 10274.32 17880.12 19844.18 30983.19 19484.77 13164.02 10265.97 13687.43 15047.67 8288.72 15259.08 18879.66 9490.08 103
ECVR-MVScopyleft71.81 13371.00 12874.26 18080.12 19843.49 31484.69 14782.16 18164.02 10264.64 15487.43 15035.04 25589.21 13361.24 17179.66 9490.08 103
plane_prior348.95 22064.01 10462.15 191
VPA-MVSNet71.12 14470.66 13272.49 22378.75 22144.43 30487.64 6590.02 1863.97 10565.02 14981.58 23842.14 15787.42 20463.42 15563.38 24385.63 207
PVSNet_057.04 1361.19 28257.24 29573.02 21077.45 24550.31 18879.43 27577.36 28263.96 10647.51 33972.45 33325.03 33283.78 28052.76 25019.22 40884.96 216
V4267.66 21265.60 22973.86 19270.69 33453.63 10781.50 24178.61 25963.85 10759.49 22077.49 27437.98 20187.65 19662.33 16058.43 28080.29 294
mvs_anonymous72.29 12470.74 13076.94 10982.85 12954.72 8278.43 28281.54 19563.77 10861.69 19579.32 25651.11 5285.31 25962.15 16475.79 13390.79 84
PAPR75.20 7974.13 8078.41 7388.31 3255.10 7184.31 15885.66 10063.76 10967.55 12090.73 7743.48 14089.40 12566.36 13077.03 11590.73 85
PVSNet_Blended_VisFu73.40 10672.44 10176.30 11881.32 17354.70 8385.81 10578.82 25263.70 11064.53 15885.38 17647.11 8787.38 20667.75 12177.55 11086.81 184
v14868.24 20366.35 20873.88 19171.76 32051.47 16284.23 16081.90 19063.69 11158.94 22976.44 29243.72 13587.78 19160.63 17655.86 31182.39 260
UniMVSNet (Re)67.71 21166.80 19970.45 26574.44 28942.93 32382.42 21684.90 12663.69 11159.63 21580.99 24147.18 8585.23 26251.17 25956.75 30083.19 249
HQP_MVS70.96 15069.91 14974.12 18377.95 23649.57 20185.76 10782.59 17763.60 11362.15 19183.28 20436.04 24588.30 17265.46 14072.34 16884.49 221
plane_prior285.76 10763.60 113
DU-MVS66.84 23665.74 22570.16 27073.27 30342.59 32781.50 24182.92 17463.53 11558.51 23882.11 23040.75 17484.64 27253.11 24255.96 30983.24 247
fmvsm_l_conf0.5_n75.95 6476.16 5575.31 15276.01 27048.44 23984.98 13771.08 34263.50 11681.70 1793.52 1550.00 6487.18 20987.80 576.87 11990.32 94
EC-MVSNet75.30 7575.20 6675.62 13880.98 17649.00 21987.43 7084.68 13463.49 11770.97 9590.15 9342.86 15091.14 7974.33 8181.90 6886.71 185
fmvsm_s_conf0.5_n_a73.68 10273.15 9175.29 15575.45 27748.05 25483.88 17268.84 35763.43 11878.60 2993.37 2045.32 10988.92 14785.39 1164.04 23388.89 131
fmvsm_s_conf0.1_n73.80 9773.26 9075.43 14773.28 30247.80 26284.57 15369.43 35463.34 11978.40 3193.29 2244.73 12489.22 13285.99 966.28 22089.26 120
GA-MVS69.04 18466.70 20276.06 12875.11 27952.36 14183.12 19680.23 22063.32 12060.65 20579.22 25830.98 29488.37 16661.25 17066.41 21687.46 168
CDS-MVSNet70.48 15869.43 15473.64 20077.56 24348.83 22583.51 18277.45 27963.27 12162.33 18885.54 17543.85 12983.29 28857.38 21674.00 15388.79 135
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
LFMVS78.52 2577.14 4382.67 389.58 1358.90 891.27 1988.05 5563.22 12274.63 4890.83 7541.38 16994.40 2075.42 7279.90 9194.72 2
v119267.96 20665.74 22574.63 16971.79 31953.43 11584.06 16680.99 20863.19 12359.56 21777.46 27537.50 21588.65 15458.20 20158.93 27681.79 266
fmvsm_l_conf0.5_n_a75.88 6676.07 5675.31 15276.08 26648.34 24285.24 12570.62 34563.13 12481.45 1893.62 1449.98 6687.40 20587.76 676.77 12090.20 99
Fast-Effi-MVS+72.73 11571.15 12777.48 9182.75 13254.76 7986.77 9080.64 21263.05 12565.93 13784.01 18944.42 12689.03 13856.45 22476.36 12688.64 138
MAR-MVS76.76 5475.60 6080.21 3190.87 754.68 8589.14 4289.11 2862.95 12670.54 10292.33 3941.05 17094.95 1757.90 20886.55 3291.00 79
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
SteuartSystems-ACMMP77.08 4776.33 5279.34 4380.98 17655.31 6189.76 3386.91 7562.94 12771.65 8391.56 6042.33 15392.56 4577.14 6183.69 5790.15 101
Skip Steuart: Steuart Systems R&D Blog.
v14419267.86 20765.76 22474.16 18271.68 32153.09 12684.14 16380.83 21062.85 12859.21 22677.28 27939.30 19188.00 18258.67 19357.88 29381.40 276
test_fmvsmvis_n_192071.29 14270.38 13974.00 18771.04 33048.79 22779.19 27764.62 36862.75 12966.73 12491.99 4840.94 17288.35 16883.00 2173.18 15984.85 219
nrg03072.27 12671.56 11874.42 17475.93 27150.60 17586.97 8483.21 16762.75 12967.15 12384.38 18550.07 6386.66 22571.19 10062.37 25685.99 197
miper_ehance_all_eth68.70 19567.58 18572.08 23376.91 25549.48 20982.47 21478.45 26362.68 13158.28 24677.88 26950.90 5585.01 26761.91 16558.72 27781.75 267
XXY-MVS70.18 16069.28 16072.89 21577.64 24042.88 32485.06 13387.50 6862.58 13262.66 18682.34 22743.64 13789.83 11458.42 19763.70 23885.96 199
thisisatest051573.64 10372.20 10777.97 8281.63 15953.01 12986.69 9188.81 3862.53 13364.06 16585.65 17252.15 4792.50 4658.43 19569.84 19088.39 147
fmvsm_s_conf0.1_n_a72.82 11472.05 11375.12 16170.95 33147.97 25782.72 20468.43 35962.52 13478.17 3293.08 2844.21 12788.86 14884.82 1363.54 23988.54 142
cl2268.85 18767.69 18372.35 22778.07 23549.98 19482.45 21578.48 26262.50 13558.46 24277.95 26749.99 6585.17 26362.55 15958.72 27781.90 265
v192192067.45 21865.23 23774.10 18471.51 32452.90 13283.75 17680.44 21662.48 13659.12 22777.13 28036.98 22887.90 18457.53 21358.14 28781.49 271
thres20068.71 19367.27 19473.02 21084.73 7846.76 27585.03 13587.73 6262.34 13759.87 21083.45 20043.15 14488.32 17131.25 35667.91 20483.98 233
Effi-MVS+-dtu66.24 24564.96 24170.08 27275.17 27849.64 20082.01 22274.48 31362.15 13857.83 24976.08 30030.59 29683.79 27965.40 14460.93 26376.81 329
TAMVS69.51 17968.16 17473.56 20376.30 26248.71 23082.57 20877.17 28462.10 13961.32 19984.23 18741.90 16283.46 28554.80 23373.09 16288.50 144
eth_miper_zixun_eth66.98 23365.28 23672.06 23475.61 27550.40 18181.00 24976.97 29062.00 14056.99 26676.97 28344.84 12085.58 25458.75 19254.42 32280.21 295
c3_l67.97 20566.66 20371.91 24476.20 26549.31 21282.13 22178.00 27061.99 14157.64 25576.94 28449.41 7084.93 26860.62 17757.01 29981.49 271
v124066.99 23264.68 24273.93 18971.38 32752.66 13583.39 18979.98 22461.97 14258.44 24477.11 28135.25 25187.81 18656.46 22358.15 28581.33 279
OPM-MVS70.75 15469.58 15374.26 18075.55 27651.34 16586.05 10283.29 16661.94 14362.95 18285.77 17134.15 26488.44 16465.44 14371.07 17982.99 253
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test_prior289.04 4361.88 14473.55 5891.46 6348.01 7874.73 7785.46 42
EPNet_dtu66.25 24466.71 20164.87 32378.66 22534.12 36782.80 20375.51 30461.75 14564.47 16286.90 15737.06 22672.46 36643.65 30569.63 19488.02 156
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPMVS68.45 19765.44 23377.47 9284.91 7656.17 4371.89 33181.91 18961.72 14660.85 20272.49 33136.21 24187.06 21347.32 28371.62 17489.17 125
RRT-MVS73.29 10771.37 12379.07 5284.63 8054.16 9978.16 28386.64 8361.67 14760.17 20882.35 22640.63 17892.26 5370.19 10677.87 10890.81 83
PMMVS72.98 11072.05 11375.78 13483.57 10148.60 23184.08 16482.85 17561.62 14868.24 11690.33 8628.35 30687.78 19172.71 9576.69 12190.95 80
save fliter85.35 6856.34 4189.31 4081.46 19661.55 149
UA-Net67.32 22366.23 21270.59 26378.85 21941.23 34073.60 31275.45 30661.54 15066.61 12884.53 18438.73 19786.57 23042.48 31274.24 15283.98 233
v867.25 22464.99 24074.04 18572.89 30953.31 12082.37 21780.11 22261.54 15054.29 29476.02 30142.89 14988.41 16558.43 19556.36 30180.39 293
SMA-MVScopyleft79.10 2378.76 2480.12 3584.42 8455.87 4987.58 6986.76 7861.48 15280.26 2393.10 2546.53 9492.41 4879.97 3888.77 1192.08 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
WB-MVSnew69.36 18168.24 17272.72 21779.26 21049.40 21085.72 11288.85 3661.33 15364.59 15782.38 22334.57 26087.53 20246.82 28870.63 18381.22 283
DIV-MVS_self_test67.43 21965.93 22071.94 24276.33 26048.01 25682.57 20879.11 24861.31 15456.73 26876.92 28546.09 9886.43 23457.98 20456.31 30381.39 277
cl____67.43 21965.93 22071.95 24176.33 26048.02 25582.58 20779.12 24761.30 15556.72 26976.92 28546.12 9786.44 23357.98 20456.31 30381.38 278
MP-MVS-pluss75.54 7475.03 6977.04 10281.37 17152.65 13684.34 15784.46 13961.16 15669.14 10891.76 5339.98 18788.99 14278.19 5284.89 4989.48 118
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mvsmamba69.38 18067.52 18974.95 16682.86 12852.22 14567.36 35076.75 29161.14 15749.43 32482.04 23237.26 22084.14 27573.93 8576.91 11788.50 144
v1066.61 23964.20 24873.83 19472.59 31253.37 11681.88 22679.91 22861.11 15854.09 29675.60 30340.06 18588.26 17556.47 22256.10 30779.86 299
ACMMP_NAP76.43 5775.66 5978.73 6181.92 14854.67 8684.06 16685.35 10861.10 15972.99 6591.50 6140.25 18091.00 8276.84 6286.98 2590.51 90
EI-MVSNet69.70 17568.70 16472.68 21875.00 28248.90 22379.54 27187.16 7161.05 16063.88 17083.74 19445.87 10190.44 9657.42 21564.68 23078.70 307
IterMVS-LS66.63 23865.36 23570.42 26675.10 28048.90 22381.45 24476.69 29561.05 16055.71 27977.10 28245.86 10283.65 28257.44 21457.88 29378.70 307
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CL-MVSNet_self_test62.98 26761.14 26868.50 29565.86 36042.96 32284.37 15582.98 17260.98 16253.95 29772.70 33040.43 17983.71 28141.10 31347.93 34878.83 306
AUN-MVS68.20 20466.35 20873.76 19676.37 25847.45 26679.52 27379.52 23660.98 16262.34 18786.02 16836.59 23886.94 21762.32 16153.47 33186.89 177
Syy-MVS61.51 28061.35 26562.00 33881.73 15330.09 38380.97 25081.02 20460.93 16455.06 28382.64 21535.09 25480.81 30416.40 40258.32 28175.10 347
myMVS_eth3d63.52 26163.56 25263.40 33081.73 15334.28 36480.97 25081.02 20460.93 16455.06 28382.64 21548.00 8080.81 30423.42 38558.32 28175.10 347
FMVSNet368.84 18867.40 19173.19 20985.05 7348.53 23485.71 11385.36 10760.90 16657.58 25679.15 25942.16 15686.77 22147.25 28463.40 24084.27 225
tfpn200view967.57 21566.13 21471.89 24584.05 9345.07 29783.40 18787.71 6460.79 16757.79 25182.76 21043.53 13887.80 18828.80 36366.36 21782.78 258
thres40067.40 22266.13 21471.19 25584.05 9345.07 29783.40 18787.71 6460.79 16757.79 25182.76 21043.53 13887.80 18828.80 36366.36 21780.71 289
LCM-MVSNet-Re58.82 30056.54 29965.68 31579.31 20929.09 39161.39 37345.79 39160.73 16937.65 37872.47 33231.42 29181.08 30049.66 26670.41 18686.87 178
Effi-MVS+75.24 7773.61 8680.16 3381.92 14857.42 2185.21 12676.71 29460.68 17073.32 6289.34 10847.30 8491.63 6568.28 11879.72 9391.42 65
D2MVS63.49 26261.39 26469.77 27669.29 34248.93 22278.89 27977.71 27560.64 17149.70 32372.10 33927.08 31783.48 28454.48 23462.65 25376.90 328
IterMVS63.77 26061.67 26070.08 27272.68 31151.24 16880.44 25975.51 30460.51 17251.41 31373.70 32032.08 28478.91 32454.30 23554.35 32380.08 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dp64.41 25361.58 26172.90 21382.40 13954.09 10072.53 32176.59 29760.39 17355.68 28070.39 34835.18 25376.90 34539.34 31861.71 25987.73 162
MVP-Stereo70.97 14970.44 13572.59 22076.03 26951.36 16485.02 13686.99 7460.31 17456.53 27378.92 26140.11 18490.00 10960.00 18690.01 776.41 336
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tpm270.82 15268.44 16877.98 8180.78 18556.11 4474.21 30981.28 20160.24 17568.04 11775.27 30552.26 4688.50 16355.82 22868.03 20289.33 119
CR-MVSNet62.47 27459.04 28672.77 21673.97 29756.57 3460.52 37471.72 33660.04 17657.49 25965.86 36338.94 19480.31 31242.86 30959.93 26681.42 274
ab-mvs70.65 15569.11 16175.29 15580.87 18246.23 28673.48 31485.24 11659.99 17766.65 12680.94 24243.13 14688.69 15363.58 15468.07 20190.95 80
9.1478.19 2885.67 6188.32 5188.84 3759.89 17874.58 5092.62 3546.80 9092.66 4181.40 3585.62 41
GeoE69.96 16867.88 17876.22 12181.11 17551.71 15684.15 16276.74 29359.83 17960.91 20184.38 18541.56 16788.10 17951.67 25570.57 18588.84 133
BH-w/o70.02 16568.51 16774.56 17082.77 13150.39 18286.60 9378.14 26859.77 18059.65 21485.57 17439.27 19287.30 20749.86 26574.94 14885.99 197
ZNCC-MVS75.82 7075.02 7078.23 7783.88 9853.80 10386.91 8786.05 9459.71 18167.85 11990.55 7942.23 15591.02 8172.66 9685.29 4589.87 110
1112_ss70.05 16469.37 15672.10 23280.77 18642.78 32585.12 13276.75 29159.69 18261.19 20092.12 4247.48 8383.84 27853.04 24468.21 20089.66 112
miper_lstm_enhance63.91 25762.30 25668.75 28975.06 28146.78 27469.02 34281.14 20259.68 18352.76 30572.39 33440.71 17677.99 33456.81 21953.09 33381.48 273
Baseline_NR-MVSNet65.49 25164.27 24769.13 28274.37 29241.65 33483.39 18978.85 25059.56 18459.62 21676.88 28740.75 17487.44 20349.99 26355.05 31678.28 316
Fast-Effi-MVS+-dtu66.53 24064.10 24973.84 19372.41 31452.30 14484.73 14675.66 30359.51 18556.34 27579.11 26028.11 30885.85 25357.74 21263.29 24483.35 243
UGNet68.71 19367.11 19673.50 20480.55 19247.61 26484.08 16478.51 26159.45 18665.68 14282.73 21323.78 34085.08 26652.80 24776.40 12287.80 160
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
131471.11 14569.41 15576.22 12179.32 20850.49 17880.23 26485.14 12159.44 18758.93 23088.89 11733.83 26989.60 12261.49 16977.42 11388.57 141
MTAPA72.73 11571.22 12577.27 9781.54 16553.57 10867.06 35281.31 19959.41 18868.39 11490.96 6936.07 24489.01 13973.80 8882.45 6489.23 122
thres600view766.46 24165.12 23870.47 26483.41 10543.80 31282.15 21987.78 5959.37 18956.02 27782.21 22843.73 13386.90 21926.51 37564.94 22680.71 289
sss70.49 15770.13 14671.58 24981.59 16239.02 34880.78 25584.71 13359.34 19066.61 12888.09 13537.17 22385.52 25561.82 16771.02 18090.20 99
Vis-MVSNet (Re-imp)65.52 25065.63 22765.17 32177.49 24430.54 37975.49 30077.73 27459.34 19052.26 31086.69 16149.38 7180.53 31037.07 32675.28 13984.42 223
MVS_111021_LR69.07 18367.91 17672.54 22177.27 24749.56 20379.77 26973.96 31959.33 19260.73 20487.82 14230.19 29981.53 29669.94 10772.19 17086.53 187
PS-MVSNAJss68.78 19267.17 19573.62 20273.01 30648.33 24484.95 14084.81 12959.30 19358.91 23279.84 25237.77 20488.86 14862.83 15863.12 24983.67 241
GST-MVS74.87 8373.90 8577.77 8583.30 11053.45 11285.75 10985.29 11259.22 19466.50 13189.85 9940.94 17290.76 8870.94 10283.35 5889.10 127
MDTV_nov1_ep1361.56 26281.68 15755.12 6972.41 32378.18 26759.19 19558.85 23469.29 35334.69 25986.16 24036.76 33062.96 250
CSCG80.41 1579.72 1682.49 589.12 2557.67 1589.29 4191.54 559.19 19571.82 8290.05 9559.72 1096.04 1078.37 5088.40 1493.75 7
test-LLR69.65 17669.01 16271.60 24778.67 22348.17 24885.13 12979.72 23159.18 19763.13 17982.58 21736.91 23080.24 31360.56 17875.17 14186.39 191
test0.0.03 162.54 27162.44 25562.86 33572.28 31829.51 38882.93 20178.78 25359.18 19753.07 30482.41 22136.91 23077.39 34037.45 32258.96 27581.66 269
MIMVSNet63.12 26660.29 27671.61 24675.92 27246.65 27665.15 35581.94 18659.14 19954.65 28969.47 35125.74 32680.63 30741.03 31469.56 19587.55 166
IS-MVSNet68.80 19167.55 18772.54 22178.50 22943.43 31681.03 24879.35 24359.12 20057.27 26486.71 16046.05 9987.70 19444.32 30275.60 13686.49 188
thres100view90066.87 23565.42 23471.24 25383.29 11143.15 32181.67 23487.78 5959.04 20155.92 27882.18 22943.73 13387.80 18828.80 36366.36 21782.78 258
3Dnovator+62.71 772.29 12470.50 13477.65 8883.40 10851.29 16787.32 7386.40 8759.01 20258.49 24188.32 13132.40 28091.27 7257.04 21782.15 6790.38 92
UnsupCasMVSNet_eth57.56 31055.15 30964.79 32464.57 37033.12 37173.17 31783.87 15458.98 20341.75 36170.03 34922.54 34879.92 31746.12 29435.31 38181.32 281
BH-RMVSNet70.08 16368.01 17576.27 11984.21 9151.22 16987.29 7679.33 24558.96 20463.63 17486.77 15933.29 27390.30 10344.63 30073.96 15487.30 173
PatchmatchNetpermissive67.07 23163.63 25177.40 9383.10 11558.03 1172.11 32977.77 27358.85 20559.37 22170.83 34437.84 20384.93 26842.96 30869.83 19189.26 120
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_vis1_n_192068.59 19668.31 17069.44 28069.16 34341.51 33684.63 15168.58 35858.80 20673.26 6388.37 12725.30 32980.60 30879.10 4267.55 20686.23 193
SF-MVS77.64 4177.42 3978.32 7683.75 10052.47 13986.63 9287.80 5858.78 20774.63 4892.38 3847.75 8191.35 7178.18 5486.85 2791.15 75
Vis-MVSNetpermissive70.61 15669.34 15774.42 17480.95 18148.49 23686.03 10377.51 27858.74 20865.55 14387.78 14334.37 26285.95 25152.53 25280.61 7888.80 134
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS76.91 4975.48 6281.23 1984.56 8255.21 6580.23 26491.64 458.65 20965.37 14491.48 6245.72 10495.05 1672.11 9889.52 1093.44 9
CDPH-MVS76.05 6375.19 6778.62 6686.51 5054.98 7587.32 7384.59 13658.62 21070.75 9790.85 7443.10 14790.63 9370.50 10484.51 5390.24 96
GBi-Net67.09 22965.47 23171.96 23882.71 13346.36 28083.52 17883.31 16358.55 21157.58 25676.23 29636.72 23586.20 23747.25 28463.40 24083.32 244
test167.09 22965.47 23171.96 23882.71 13346.36 28083.52 17883.31 16358.55 21157.58 25676.23 29636.72 23586.20 23747.25 28463.40 24083.32 244
FMVSNet267.57 21565.79 22372.90 21382.71 13347.97 25785.15 12884.93 12558.55 21156.71 27078.26 26636.72 23586.67 22446.15 29362.94 25184.07 228
HyFIR lowres test69.94 16967.58 18577.04 10277.11 25357.29 2281.49 24379.11 24858.27 21458.86 23380.41 24642.33 15386.96 21661.91 16568.68 19986.87 178
MSLP-MVS++74.21 8972.25 10680.11 3681.45 16956.47 3886.32 9679.65 23458.19 21566.36 13292.29 4036.11 24290.66 9167.39 12282.49 6393.18 17
PHI-MVS77.49 4277.00 4478.95 5385.33 6950.69 17388.57 4988.59 4758.14 21673.60 5793.31 2143.14 14593.79 2773.81 8788.53 1392.37 34
XVS72.92 11171.62 11776.81 11183.41 10552.48 13784.88 14283.20 16858.03 21763.91 16889.63 10335.50 24989.78 11565.50 13780.50 8088.16 150
X-MVStestdata65.85 24962.20 25776.81 11183.41 10552.48 13784.88 14283.20 16858.03 21763.91 1684.82 42035.50 24989.78 11565.50 13780.50 8088.16 150
DVP-MVS++82.44 382.38 682.62 491.77 457.49 1784.98 13788.88 3358.00 21983.60 693.39 1867.21 296.39 481.64 3191.98 493.98 5
test_0728_THIRD58.00 21981.91 1493.64 1256.54 2196.44 281.64 3186.86 2692.23 37
test_yl75.85 6774.83 7478.91 5488.08 3751.94 14991.30 1789.28 2557.91 22171.19 9189.20 11142.03 16092.77 3869.41 10975.07 14592.01 46
DCV-MVSNet75.85 6774.83 7478.91 5488.08 3751.94 14991.30 1789.28 2557.91 22171.19 9189.20 11142.03 16092.77 3869.41 10975.07 14592.01 46
MP-MVScopyleft74.99 8274.33 7976.95 10882.89 12753.05 12885.63 11483.50 16157.86 22367.25 12290.24 8743.38 14288.85 15176.03 6482.23 6588.96 129
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
train_agg76.91 4976.40 5178.45 7285.68 5955.42 5687.59 6784.00 15057.84 22472.99 6590.98 6744.99 11588.58 15878.19 5285.32 4491.34 70
test_885.72 5855.31 6187.60 6683.88 15357.84 22472.84 6990.99 6644.99 11588.34 169
TEST985.68 5955.42 5687.59 6784.00 15057.72 22672.99 6590.98 6744.87 11988.58 158
DVP-MVScopyleft81.30 1081.00 1382.20 889.40 2057.45 1992.34 589.99 1957.71 22781.91 1493.64 1255.17 2996.44 281.68 2987.13 2192.72 28
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072689.40 2057.45 1992.32 788.63 4457.71 22783.14 993.96 655.17 29
BH-untuned68.28 20166.40 20773.91 19081.62 16050.01 19385.56 11777.39 28057.63 22957.47 26183.69 19636.36 24087.08 21244.81 29873.08 16384.65 220
thisisatest053070.47 15968.56 16576.20 12379.78 20251.52 16183.49 18488.58 4857.62 23058.60 23782.79 20951.03 5491.48 6852.84 24662.36 25785.59 208
test_241102_ONE89.48 1756.89 2988.94 3157.53 23184.61 493.29 2258.81 1296.45 1
API-MVS74.17 9072.07 11280.49 2590.02 1158.55 987.30 7584.27 14357.51 23265.77 14187.77 14441.61 16695.97 1151.71 25482.63 6186.94 176
SED-MVS81.92 881.75 982.44 789.48 1756.89 2992.48 388.94 3157.50 23384.61 494.09 358.81 1296.37 682.28 2687.60 1894.06 3
test_241102_TWO88.76 4057.50 23383.60 694.09 356.14 2596.37 682.28 2687.43 2092.55 30
Patchmatch-RL test58.72 30154.32 31471.92 24363.91 37244.25 30761.73 37055.19 38257.38 23549.31 32654.24 39237.60 21180.89 30162.19 16347.28 35390.63 86
Test_1112_low_res67.18 22666.23 21270.02 27578.75 22141.02 34183.43 18573.69 32157.29 23658.45 24382.39 22245.30 11080.88 30250.50 26166.26 22188.16 150
FA-MVS(test-final)69.00 18666.60 20576.19 12483.48 10447.96 25974.73 30482.07 18457.27 23762.18 19078.47 26536.09 24392.89 3453.76 24071.32 17887.73 162
OpenMVScopyleft61.00 1169.99 16767.55 18777.30 9578.37 23254.07 10184.36 15685.76 9957.22 23856.71 27087.67 14630.79 29592.83 3643.04 30784.06 5685.01 214
test_one_060189.39 2257.29 2288.09 5457.21 23982.06 1393.39 1854.94 33
TR-MVS69.71 17267.85 18175.27 15882.94 12448.48 23787.40 7280.86 20957.15 24064.61 15687.08 15532.67 27889.64 12146.38 29171.55 17687.68 164
ZD-MVS89.55 1453.46 11084.38 14057.02 24173.97 5591.03 6544.57 12591.17 7775.41 7381.78 71
TransMVSNet (Re)62.82 26960.76 27169.02 28373.98 29641.61 33586.36 9579.30 24656.90 24252.53 30676.44 29241.85 16387.60 20038.83 31940.61 37277.86 320
USDC54.36 32651.23 33063.76 32764.29 37137.71 35662.84 36773.48 32656.85 24335.47 38371.94 3409.23 39378.43 32638.43 32048.57 34475.13 346
region2R73.75 9972.55 9977.33 9483.90 9752.98 13085.54 11984.09 14856.83 24465.10 14790.45 8237.34 21890.24 10468.89 11480.83 7788.77 136
HFP-MVS74.37 8773.13 9578.10 8084.30 8753.68 10685.58 11584.36 14156.82 24565.78 14090.56 7840.70 17790.90 8669.18 11280.88 7589.71 111
ACMMPR73.76 9872.61 9777.24 9983.92 9652.96 13185.58 11584.29 14256.82 24565.12 14690.45 8237.24 22190.18 10669.18 11280.84 7688.58 140
SD-MVS76.18 6074.85 7380.18 3285.39 6756.90 2885.75 10982.45 18056.79 24774.48 5191.81 5243.72 13590.75 8974.61 7878.65 10192.91 22
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SCA63.84 25860.01 27975.32 15178.58 22757.92 1261.61 37177.53 27756.71 24857.75 25370.77 34531.97 28579.91 31948.80 27356.36 30188.13 153
cascas69.01 18566.13 21477.66 8779.36 20655.41 5886.99 8383.75 15556.69 24958.92 23181.35 23924.31 33892.10 5853.23 24170.61 18485.46 209
ACMMPcopyleft70.81 15369.29 15975.39 14981.52 16751.92 15183.43 18583.03 17156.67 25058.80 23588.91 11631.92 28788.58 15865.89 13673.39 15885.67 204
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
QAPM71.88 13269.33 15879.52 4082.20 14354.30 9386.30 9788.77 3956.61 25159.72 21387.48 14833.90 26795.36 1347.48 28281.49 7288.90 130
TSAR-MVS + GP.77.82 3877.59 3678.49 6985.25 7150.27 19090.02 2690.57 1656.58 25274.26 5391.60 5954.26 3592.16 5575.87 6679.91 9093.05 20
PGM-MVS72.60 11771.20 12676.80 11382.95 12352.82 13383.07 19882.14 18256.51 25363.18 17889.81 10035.68 24889.76 11767.30 12380.19 8587.83 159
PCF-MVS61.03 1070.10 16268.40 16975.22 16077.15 25251.99 14879.30 27682.12 18356.47 25461.88 19486.48 16643.98 12887.24 20855.37 22972.79 16586.43 190
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DP-MVS Recon71.99 12970.31 14177.01 10490.65 853.44 11389.37 3782.97 17356.33 25563.56 17689.47 10534.02 26592.15 5754.05 23772.41 16785.43 210
EPP-MVSNet71.14 14370.07 14774.33 17779.18 21246.52 27883.81 17486.49 8456.32 25657.95 24784.90 18354.23 3689.14 13458.14 20269.65 19387.33 171
HPM-MVScopyleft72.60 11771.50 11975.89 13282.02 14451.42 16380.70 25683.05 17056.12 25764.03 16689.53 10437.55 21288.37 16670.48 10580.04 8887.88 158
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APDe-MVScopyleft78.44 2778.20 2779.19 4588.56 2654.55 8989.76 3387.77 6155.91 25878.56 3092.49 3748.20 7592.65 4279.49 3983.04 5990.39 91
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
xiu_mvs_v1_base_debu71.60 13870.29 14275.55 14277.26 24853.15 12385.34 12079.37 23955.83 25972.54 7190.19 9022.38 34986.66 22573.28 9176.39 12386.85 180
xiu_mvs_v1_base71.60 13870.29 14275.55 14277.26 24853.15 12385.34 12079.37 23955.83 25972.54 7190.19 9022.38 34986.66 22573.28 9176.39 12386.85 180
xiu_mvs_v1_base_debi71.60 13870.29 14275.55 14277.26 24853.15 12385.34 12079.37 23955.83 25972.54 7190.19 9022.38 34986.66 22573.28 9176.39 12386.85 180
mPP-MVS71.79 13570.38 13976.04 12982.65 13652.06 14684.45 15481.78 19255.59 26262.05 19389.68 10233.48 27188.28 17465.45 14278.24 10687.77 161
DPE-MVScopyleft79.82 1979.66 1780.29 3089.27 2455.08 7288.70 4787.92 5755.55 26381.21 1993.69 1156.51 2294.27 2278.36 5185.70 4091.51 63
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
pm-mvs164.12 25662.56 25468.78 28871.68 32138.87 34982.89 20281.57 19455.54 26453.89 29877.82 27037.73 20786.74 22248.46 27753.49 33080.72 288
ACMP61.11 966.24 24564.33 24672.00 23774.89 28449.12 21483.18 19579.83 22955.41 26552.29 30882.68 21425.83 32586.10 24360.89 17363.94 23680.78 287
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_cas_vis1_n_192067.10 22866.60 20568.59 29365.17 36543.23 32083.23 19369.84 35155.34 26670.67 9987.71 14524.70 33676.66 34778.57 4964.20 23285.89 201
CP-MVS72.59 11971.46 12076.00 13182.93 12552.32 14386.93 8682.48 17955.15 26763.65 17390.44 8535.03 25688.53 16268.69 11577.83 10987.15 174
pmmvs463.34 26461.07 26970.16 27070.14 33650.53 17779.97 26871.41 34155.08 26854.12 29578.58 26332.79 27782.09 29450.33 26257.22 29877.86 320
KD-MVS_2432*160059.04 29756.44 30166.86 30779.07 21345.87 28972.13 32780.42 21755.03 26948.15 33171.01 34236.73 23378.05 33235.21 33730.18 39476.67 330
miper_refine_blended59.04 29756.44 30166.86 30779.07 21345.87 28972.13 32780.42 21755.03 26948.15 33171.01 34236.73 23378.05 33235.21 33730.18 39476.67 330
MDTV_nov1_ep13_2view43.62 31371.13 33454.95 27159.29 22536.76 23246.33 29287.32 172
Anonymous20240521170.11 16167.88 17876.79 11487.20 4447.24 27189.49 3577.38 28154.88 27266.14 13386.84 15820.93 35891.54 6756.45 22471.62 17491.59 58
OMC-MVS65.97 24865.06 23968.71 29072.97 30742.58 32978.61 28075.35 30754.72 27359.31 22386.25 16733.30 27277.88 33657.99 20367.05 20985.66 205
LPG-MVS_test66.44 24264.58 24372.02 23574.42 29048.60 23183.07 19880.64 21254.69 27453.75 29983.83 19225.73 32786.98 21460.33 18464.71 22780.48 291
LGP-MVS_train72.02 23574.42 29048.60 23180.64 21254.69 27453.75 29983.83 19225.73 32786.98 21460.33 18464.71 22780.48 291
tfpnnormal61.47 28159.09 28568.62 29276.29 26341.69 33381.14 24785.16 11954.48 27651.32 31473.63 32132.32 28186.89 22021.78 38955.71 31377.29 326
mmtdpeth57.93 30854.78 31267.39 30272.32 31643.38 31772.72 31968.93 35654.45 27756.85 26762.43 37417.02 37483.46 28557.95 20630.31 39375.31 343
tttt051768.33 20066.29 21074.46 17278.08 23449.06 21580.88 25389.08 2954.40 27854.75 28880.77 24451.31 5190.33 10049.35 26958.01 28983.99 231
pmmvs562.80 27061.18 26767.66 29969.53 34042.37 33282.65 20675.19 30854.30 27952.03 31178.51 26431.64 29080.67 30648.60 27558.15 28579.95 298
APD-MVScopyleft76.15 6175.68 5877.54 9088.52 2753.44 11387.26 7885.03 12353.79 28074.91 4691.68 5643.80 13190.31 10174.36 8081.82 6988.87 132
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
114514_t69.87 17067.88 17875.85 13388.38 2952.35 14286.94 8583.68 15653.70 28155.68 28085.60 17330.07 30091.20 7655.84 22771.02 18083.99 231
testing359.97 28760.19 27759.32 35077.60 24130.01 38581.75 23181.79 19153.54 28250.34 32179.94 24948.99 7376.91 34317.19 40050.59 34071.03 373
PAPM_NR71.80 13469.98 14877.26 9881.54 16553.34 11878.60 28185.25 11553.46 28360.53 20688.66 12145.69 10589.24 13056.49 22179.62 9689.19 124
test-mter68.36 19867.29 19271.60 24778.67 22348.17 24885.13 12979.72 23153.38 28463.13 17982.58 21727.23 31680.24 31360.56 17875.17 14186.39 191
jajsoiax63.21 26560.84 27070.32 26868.33 35044.45 30381.23 24581.05 20353.37 28550.96 31877.81 27117.49 37285.49 25759.31 18758.05 28881.02 285
testgi54.25 32752.57 32659.29 35162.76 37721.65 40672.21 32670.47 34653.25 28641.94 35977.33 27814.28 38277.95 33529.18 36251.72 33878.28 316
tpm cat166.28 24362.78 25376.77 11581.40 17057.14 2470.03 33877.19 28353.00 28758.76 23670.73 34746.17 9686.73 22343.27 30664.46 23186.44 189
mvs_tets62.96 26860.55 27270.19 26968.22 35344.24 30880.90 25280.74 21152.99 28850.82 32077.56 27216.74 37685.44 25859.04 19057.94 29080.89 286
test20.0355.22 32354.07 31658.68 35363.14 37625.00 39777.69 28774.78 31152.64 28943.43 35372.39 33426.21 32274.76 35429.31 36147.05 35676.28 337
VDDNet74.37 8772.13 11081.09 2079.58 20456.52 3790.02 2686.70 8052.61 29071.23 9087.20 15331.75 28993.96 2574.30 8275.77 13492.79 27
v7n62.50 27359.27 28472.20 23167.25 35649.83 19877.87 28680.12 22152.50 29148.80 32973.07 32532.10 28387.90 18446.83 28754.92 31778.86 305
FMVSNet164.57 25262.11 25871.96 23877.32 24646.36 28083.52 17883.31 16352.43 29254.42 29176.23 29627.80 31286.20 23742.59 31161.34 26183.32 244
K. test v354.04 32849.42 34067.92 29868.55 34742.57 33075.51 29963.07 37352.07 29339.21 37264.59 36919.34 36382.21 29137.11 32525.31 39978.97 304
原ACMM176.13 12684.89 7754.59 8885.26 11451.98 29466.70 12587.07 15640.15 18389.70 11951.23 25885.06 4884.10 227
tpmvs62.45 27559.42 28271.53 25083.93 9554.32 9270.03 33877.61 27651.91 29553.48 30268.29 35737.91 20286.66 22533.36 34658.27 28373.62 358
PEN-MVS58.35 30657.15 29661.94 33967.55 35534.39 36377.01 28978.35 26551.87 29647.72 33576.73 28933.91 26673.75 35934.03 34447.17 35477.68 322
EG-PatchMatch MVS62.40 27659.59 28070.81 26173.29 30149.05 21685.81 10584.78 13051.85 29744.19 34973.48 32315.52 38189.85 11340.16 31667.24 20873.54 359
UniMVSNet_ETH3D62.51 27260.49 27368.57 29468.30 35140.88 34373.89 31079.93 22751.81 29854.77 28779.61 25324.80 33481.10 29949.93 26461.35 26083.73 239
CP-MVSNet58.54 30557.57 29461.46 34368.50 34833.96 36876.90 29178.60 26051.67 29947.83 33476.60 29134.99 25772.79 36435.45 33447.58 35077.64 324
WR-MVS_H58.91 29958.04 29161.54 34269.07 34433.83 36976.91 29081.99 18551.40 30048.17 33074.67 30840.23 18174.15 35531.78 35348.10 34676.64 333
PS-CasMVS58.12 30757.03 29861.37 34468.24 35233.80 37076.73 29278.01 26951.20 30147.54 33876.20 29932.85 27572.76 36535.17 33947.37 35277.55 325
DTE-MVSNet57.03 31255.73 30760.95 34765.94 35932.57 37575.71 29577.09 28651.16 30246.65 34476.34 29432.84 27673.22 36330.94 35744.87 36377.06 327
HPM-MVS_fast67.86 20766.28 21172.61 21980.67 18948.34 24281.18 24675.95 30250.81 30359.55 21888.05 13827.86 31185.98 24858.83 19173.58 15783.51 242
MVSMamba_PlusPlus75.28 7673.39 8780.96 2180.85 18358.25 1074.47 30787.61 6650.53 30465.24 14583.41 20157.38 1892.83 3673.92 8687.13 2191.80 54
MVSFormer73.53 10472.19 10877.57 8983.02 12055.24 6381.63 23581.44 19750.28 30576.67 3990.91 7244.82 12186.11 24160.83 17480.09 8691.36 68
test_djsdf63.84 25861.56 26270.70 26268.78 34544.69 30181.63 23581.44 19750.28 30552.27 30976.26 29526.72 31986.11 24160.83 17455.84 31281.29 282
FMVSNet558.61 30256.45 30065.10 32277.20 25139.74 34574.77 30377.12 28550.27 30743.28 35567.71 35826.15 32476.90 34536.78 32954.78 31978.65 309
FE-MVS64.15 25560.43 27575.30 15480.85 18349.86 19768.28 34778.37 26450.26 30859.31 22373.79 31626.19 32391.92 6140.19 31566.67 21284.12 226
Anonymous2023120659.08 29657.59 29363.55 32868.77 34632.14 37780.26 26379.78 23050.00 30949.39 32572.39 33426.64 32078.36 32733.12 34957.94 29080.14 296
ACMH53.70 1659.78 28855.94 30671.28 25276.59 25748.35 24180.15 26676.11 30049.74 31041.91 36073.45 32416.50 37890.31 10131.42 35457.63 29675.17 345
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs-eth3d55.97 32052.78 32465.54 31761.02 38146.44 27975.36 30167.72 36149.61 31143.65 35267.58 35921.63 35577.04 34144.11 30344.33 36473.15 363
AdaColmapbinary67.86 20765.48 23075.00 16488.15 3654.99 7486.10 10176.63 29649.30 31257.80 25086.65 16329.39 30388.94 14645.10 29770.21 18881.06 284
无先验85.19 12778.00 27049.08 31385.13 26552.78 24887.45 169
ppachtmachnet_test58.56 30354.34 31371.24 25371.42 32554.74 8081.84 22872.27 33149.02 31445.86 34868.99 35526.27 32183.30 28730.12 35843.23 36775.69 339
SR-MVS70.92 15169.73 15174.50 17183.38 10950.48 17984.27 15979.35 24348.96 31566.57 13090.45 8233.65 27087.11 21166.42 12874.56 15185.91 200
tt080563.39 26361.31 26669.64 27769.36 34138.87 34978.00 28485.48 10148.82 31655.66 28281.66 23624.38 33786.37 23549.04 27259.36 27383.68 240
reproduce-ours71.77 13670.43 13675.78 13481.96 14649.54 20682.54 21181.01 20648.77 31769.21 10690.96 6937.13 22489.40 12566.28 13176.01 12988.39 147
our_new_method71.77 13670.43 13675.78 13481.96 14649.54 20682.54 21181.01 20648.77 31769.21 10690.96 6937.13 22489.40 12566.28 13176.01 12988.39 147
our_test_359.11 29555.08 31171.18 25671.42 32553.29 12181.96 22374.52 31248.32 31942.08 35869.28 35428.14 30782.15 29234.35 34345.68 36278.11 319
kuosan50.20 34550.09 33550.52 36973.09 30529.09 39165.25 35474.89 31048.27 32041.34 36360.85 38043.45 14167.48 37718.59 39825.07 40055.01 394
APD-MVS_3200maxsize69.62 17768.23 17373.80 19581.58 16348.22 24681.91 22579.50 23748.21 32164.24 16489.75 10131.91 28887.55 20163.08 15673.85 15685.64 206
CHOSEN 280x42057.53 31156.38 30360.97 34674.01 29548.10 25246.30 39454.31 38448.18 32250.88 31977.43 27738.37 20059.16 39054.83 23163.14 24875.66 340
reproduce_model71.07 14669.67 15275.28 15781.51 16848.82 22681.73 23280.57 21547.81 32368.26 11590.78 7636.49 23988.60 15765.12 14774.76 14988.42 146
FOURS183.24 11249.90 19684.98 13778.76 25447.71 32473.42 60
ACMM58.35 1264.35 25462.01 25971.38 25174.21 29348.51 23582.25 21879.66 23347.61 32554.54 29080.11 24825.26 33086.00 24751.26 25763.16 24779.64 300
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SixPastTwentyTwo54.37 32550.10 33467.21 30370.70 33341.46 33874.73 30464.69 36747.56 32639.12 37369.49 35018.49 36984.69 27131.87 35234.20 38775.48 341
Anonymous2024052969.71 17267.28 19377.00 10583.78 9950.36 18588.87 4685.10 12247.22 32764.03 16683.37 20227.93 31092.10 5857.78 21167.44 20788.53 143
ACMH+54.58 1558.55 30455.24 30868.50 29574.68 28645.80 29180.27 26270.21 34847.15 32842.77 35775.48 30416.73 37785.98 24835.10 34154.78 31973.72 357
XVG-OURS61.88 27859.34 28369.49 27865.37 36246.27 28464.80 35773.49 32447.04 32957.41 26382.85 20825.15 33178.18 32853.00 24564.98 22584.01 230
TAPA-MVS56.12 1461.82 27960.18 27866.71 30978.48 23037.97 35575.19 30276.41 29946.82 33057.04 26586.52 16527.67 31477.03 34226.50 37667.02 21085.14 212
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UnsupCasMVSNet_bld53.86 32950.53 33363.84 32663.52 37534.75 36271.38 33281.92 18846.53 33138.95 37457.93 38720.55 35980.20 31539.91 31734.09 38876.57 334
anonymousdsp60.46 28657.65 29268.88 28463.63 37445.09 29672.93 31878.63 25846.52 33251.12 31572.80 32921.46 35683.07 28957.79 21053.97 32478.47 311
XVG-OURS-SEG-HR62.02 27759.54 28169.46 27965.30 36345.88 28865.06 35673.57 32346.45 33357.42 26283.35 20326.95 31878.09 33053.77 23964.03 23484.42 223
SR-MVS-dyc-post68.27 20266.87 19772.48 22480.96 17848.14 25081.54 23976.98 28746.42 33462.75 18489.42 10631.17 29386.09 24560.52 18072.06 17183.19 249
RE-MVS-def66.66 20380.96 17848.14 25081.54 23976.98 28746.42 33462.75 18489.42 10629.28 30460.52 18072.06 17183.19 249
OpenMVS_ROBcopyleft53.19 1759.20 29356.00 30568.83 28671.13 32944.30 30583.64 17775.02 30946.42 33446.48 34573.03 32618.69 36688.14 17627.74 37161.80 25874.05 355
CPTT-MVS67.15 22765.84 22271.07 25780.96 17850.32 18781.94 22474.10 31546.18 33757.91 24887.64 14729.57 30181.31 29864.10 15170.18 18981.56 270
new-patchmatchnet48.21 34846.55 35053.18 36557.73 38718.19 41470.24 33671.02 34445.70 33833.70 38760.23 38118.00 37069.86 37427.97 37034.35 38571.49 371
新几何173.30 20783.10 11553.48 10971.43 34045.55 33966.14 13387.17 15433.88 26880.54 30948.50 27680.33 8485.88 202
旧先验281.73 23245.53 34074.66 4770.48 37358.31 199
Anonymous2023121166.08 24763.67 25073.31 20683.07 11848.75 22886.01 10484.67 13545.27 34156.54 27276.67 29028.06 30988.95 14452.78 24859.95 26582.23 261
XVG-ACMP-BASELINE56.03 31952.85 32365.58 31661.91 37940.95 34263.36 36272.43 33045.20 34246.02 34674.09 3129.20 39478.12 32945.13 29658.27 28377.66 323
pmmvs659.64 28957.15 29667.09 30466.01 35836.86 35980.50 25778.64 25745.05 34349.05 32773.94 31527.28 31586.10 24343.96 30449.94 34278.31 315
mvs5depth50.97 34246.98 34862.95 33356.63 38934.23 36662.73 36867.35 36345.03 34448.00 33365.41 36710.40 39079.88 32136.00 33131.27 39274.73 350
ADS-MVSNet255.21 32451.44 32966.51 31280.60 19049.56 20355.03 38665.44 36544.72 34551.00 31661.19 37822.83 34575.41 35228.54 36653.63 32774.57 352
ADS-MVSNet56.17 31851.95 32868.84 28580.60 19053.07 12755.03 38670.02 35044.72 34551.00 31661.19 37822.83 34578.88 32528.54 36653.63 32774.57 352
testdata67.08 30577.59 24245.46 29469.20 35544.47 34771.50 8788.34 13031.21 29270.76 37252.20 25375.88 13285.03 213
MSDG59.44 29055.14 31072.32 22974.69 28550.71 17274.39 30873.58 32244.44 34843.40 35477.52 27319.45 36290.87 8731.31 35557.49 29775.38 342
KD-MVS_self_test49.24 34646.85 34956.44 35954.32 39122.87 40057.39 38173.36 32844.36 34937.98 37759.30 38518.97 36571.17 37033.48 34542.44 36875.26 344
YYNet153.82 33049.96 33665.41 31970.09 33848.95 22072.30 32471.66 33844.25 35031.89 39363.07 37323.73 34173.95 35733.26 34739.40 37473.34 360
MDA-MVSNet_test_wron53.82 33049.95 33765.43 31870.13 33749.05 21672.30 32471.65 33944.23 35131.85 39463.13 37223.68 34274.01 35633.25 34839.35 37573.23 362
MDA-MVSNet-bldmvs51.56 34047.75 34763.00 33271.60 32347.32 26969.70 34172.12 33243.81 35227.65 40163.38 37121.97 35475.96 34927.30 37332.19 38965.70 384
PLCcopyleft52.38 1860.89 28358.97 28766.68 31181.77 15245.70 29278.96 27874.04 31843.66 35347.63 33683.19 20623.52 34377.78 33937.47 32160.46 26476.55 335
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
IterMVS-SCA-FT59.12 29458.81 28860.08 34870.68 33545.07 29780.42 26074.25 31443.54 35450.02 32273.73 31731.97 28556.74 39451.06 26053.60 32978.42 313
MIMVSNet150.35 34447.81 34557.96 35561.53 38027.80 39567.40 34974.06 31743.25 35533.31 39265.38 36816.03 37971.34 36921.80 38847.55 35174.75 349
LTVRE_ROB45.45 1952.73 33449.74 33861.69 34169.78 33934.99 36144.52 39567.60 36243.11 35643.79 35174.03 31318.54 36881.45 29728.39 36857.94 29068.62 376
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_040256.45 31653.03 32066.69 31076.78 25650.31 18881.76 23069.61 35342.79 35743.88 35072.13 33722.82 34786.46 23216.57 40150.94 33963.31 388
test22279.36 20650.97 17077.99 28567.84 36042.54 35862.84 18386.53 16430.26 29876.91 11785.23 211
CNLPA60.59 28558.44 28967.05 30679.21 21147.26 27079.75 27064.34 37042.46 35951.90 31283.94 19027.79 31375.41 35237.12 32459.49 27178.47 311
PatchMatch-RL56.66 31353.75 31865.37 32077.91 23945.28 29569.78 34060.38 37641.35 36047.57 33773.73 31716.83 37576.91 34336.99 32759.21 27473.92 356
DP-MVS59.24 29256.12 30468.63 29188.24 3450.35 18682.51 21364.43 36941.10 36146.70 34378.77 26224.75 33588.57 16122.26 38756.29 30566.96 379
F-COLMAP55.96 32153.65 31962.87 33472.76 31042.77 32674.70 30670.37 34740.03 36241.11 36679.36 25517.77 37173.70 36032.80 35053.96 32572.15 365
dongtai43.51 35544.07 35641.82 38063.75 37321.90 40463.80 36072.05 33339.59 36333.35 39154.54 39141.04 17157.30 39210.75 40917.77 40946.26 403
gg-mvs-nofinetune67.43 21964.53 24476.13 12685.95 5547.79 26364.38 35988.28 5239.34 36466.62 12741.27 40158.69 1489.00 14049.64 26786.62 3191.59 58
TinyColmap48.15 34944.49 35359.13 35265.73 36138.04 35363.34 36362.86 37438.78 36529.48 39667.23 3616.46 40473.30 36224.59 38041.90 37066.04 382
PatchT56.60 31452.97 32167.48 30072.94 30846.16 28757.30 38273.78 32038.77 36654.37 29257.26 38937.52 21378.06 33132.02 35152.79 33478.23 318
OurMVSNet-221017-052.39 33748.73 34163.35 33165.21 36438.42 35268.54 34664.95 36638.19 36739.57 37171.43 34113.23 38479.92 31737.16 32340.32 37371.72 368
ANet_high34.39 36829.59 37448.78 37230.34 41722.28 40255.53 38563.79 37138.11 36815.47 40936.56 4066.94 40059.98 38613.93 4055.64 42064.08 386
PM-MVS46.92 35143.76 35856.41 36052.18 39532.26 37663.21 36538.18 40337.99 36940.78 36766.20 3625.09 40865.42 37948.19 27841.99 36971.54 370
Patchmtry56.56 31552.95 32267.42 30172.53 31350.59 17659.05 37871.72 33637.86 37046.92 34165.86 36338.94 19480.06 31636.94 32846.72 35871.60 369
JIA-IIPM52.33 33847.77 34666.03 31471.20 32846.92 27340.00 40376.48 29837.10 37146.73 34237.02 40332.96 27477.88 33635.97 33252.45 33673.29 361
CVMVSNet60.85 28460.44 27462.07 33675.00 28232.73 37479.54 27173.49 32436.98 37256.28 27683.74 19429.28 30469.53 37546.48 29063.23 24583.94 236
ITE_SJBPF51.84 36658.03 38631.94 37853.57 38736.67 37341.32 36475.23 30611.17 38851.57 39925.81 37748.04 34772.02 367
Anonymous2024052151.65 33948.42 34261.34 34556.43 39039.65 34773.57 31373.47 32736.64 37436.59 37963.98 37010.75 38972.25 36835.35 33549.01 34372.11 366
COLMAP_ROBcopyleft43.60 2050.90 34348.05 34459.47 34967.81 35440.57 34471.25 33362.72 37536.49 37536.19 38173.51 32213.48 38373.92 35820.71 39150.26 34163.92 387
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RPMNet59.29 29154.25 31574.42 17473.97 29756.57 3460.52 37476.98 28735.72 37657.49 25958.87 38637.73 20785.26 26127.01 37459.93 26681.42 274
N_pmnet41.25 35839.77 36145.66 37668.50 3480.82 42872.51 3220.38 42735.61 37735.26 38461.51 37720.07 36167.74 37623.51 38340.63 37168.42 377
AllTest47.32 35044.66 35255.32 36365.08 36637.50 35762.96 36654.25 38535.45 37833.42 38972.82 3279.98 39159.33 38724.13 38143.84 36569.13 374
TestCases55.32 36365.08 36637.50 35754.25 38535.45 37833.42 38972.82 3279.98 39159.33 38724.13 38143.84 36569.13 374
LS3D56.40 31753.82 31764.12 32581.12 17445.69 29373.42 31566.14 36435.30 38043.24 35679.88 25022.18 35279.62 32219.10 39664.00 23567.05 378
WB-MVS37.41 36536.37 36540.54 38354.23 39210.43 42165.29 35343.75 39434.86 38127.81 40054.63 39024.94 33363.21 3806.81 41615.00 41147.98 402
Patchmatch-test53.33 33348.17 34368.81 28773.31 30042.38 33142.98 39858.23 37832.53 38238.79 37570.77 34539.66 18973.51 36125.18 37852.06 33790.55 87
test_fmvs153.60 33252.54 32756.78 35758.07 38530.26 38168.95 34442.19 39732.46 38363.59 17582.56 21911.55 38660.81 38458.25 20055.27 31579.28 301
test_fmvs1_n52.55 33651.19 33156.65 35851.90 39630.14 38267.66 34842.84 39632.27 38462.30 18982.02 2339.12 39560.84 38357.82 20954.75 32178.99 303
test_vis1_n51.19 34149.66 33955.76 36251.26 39829.85 38667.20 35138.86 40232.12 38559.50 21979.86 2518.78 39658.23 39156.95 21852.46 33579.19 302
SSC-MVS35.20 36734.30 36937.90 38652.58 3948.65 42461.86 36941.64 39831.81 38625.54 40352.94 39623.39 34459.28 3896.10 41712.86 41245.78 405
EU-MVSNet52.63 33550.72 33258.37 35462.69 37828.13 39472.60 32075.97 30130.94 38740.76 36872.11 33820.16 36070.80 37135.11 34046.11 36076.19 338
CMPMVSbinary40.41 2155.34 32252.64 32563.46 32960.88 38243.84 31161.58 37271.06 34330.43 38836.33 38074.63 30924.14 33975.44 35148.05 27966.62 21371.12 372
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TDRefinement40.91 35938.37 36348.55 37350.45 40033.03 37358.98 37950.97 38828.50 38929.89 39567.39 3606.21 40654.51 39617.67 39935.25 38258.11 391
ttmdpeth40.58 36037.50 36449.85 37049.40 40122.71 40156.65 38346.78 38928.35 39040.29 37069.42 3525.35 40761.86 38220.16 39321.06 40664.96 385
pmmvs345.53 35441.55 36057.44 35648.97 40339.68 34670.06 33757.66 37928.32 39134.06 38657.29 3888.50 39766.85 37834.86 34234.26 38665.80 383
mvsany_test143.38 35642.57 35945.82 37550.96 39926.10 39655.80 38427.74 41527.15 39247.41 34074.39 31118.67 36744.95 40644.66 29936.31 37966.40 381
RPSCF45.77 35344.13 35550.68 36757.67 38829.66 38754.92 38845.25 39326.69 39345.92 34775.92 30217.43 37345.70 40527.44 37245.95 36176.67 330
test_fmvs245.89 35244.32 35450.62 36845.85 40724.70 39858.87 38037.84 40525.22 39452.46 30774.56 3107.07 39954.69 39549.28 27047.70 34972.48 364
mamv442.60 35744.05 35738.26 38559.21 38438.00 35444.14 39739.03 40125.03 39540.61 36968.39 35637.01 22724.28 41946.62 28936.43 37852.50 397
MVS-HIRNet49.01 34744.71 35161.92 34076.06 26746.61 27763.23 36454.90 38324.77 39633.56 38836.60 40521.28 35775.88 35029.49 36062.54 25463.26 389
test_vis1_rt40.29 36138.64 36245.25 37748.91 40430.09 38359.44 37727.07 41624.52 39738.48 37651.67 3976.71 40249.44 40044.33 30146.59 35956.23 392
new_pmnet33.56 37031.89 37238.59 38449.01 40220.42 40751.01 38937.92 40420.58 39823.45 40446.79 3996.66 40349.28 40220.00 39531.57 39146.09 404
LF4IMVS33.04 37132.55 37134.52 38940.96 40822.03 40344.45 39635.62 40720.42 39928.12 39962.35 3755.03 40931.88 41821.61 39034.42 38449.63 400
FPMVS35.40 36633.67 37040.57 38246.34 40628.74 39341.05 40057.05 38020.37 40022.27 40553.38 3946.87 40144.94 4078.62 41047.11 35548.01 401
DSMNet-mixed38.35 36235.36 36747.33 37448.11 40514.91 41837.87 40436.60 40619.18 40134.37 38559.56 38415.53 38053.01 39820.14 39446.89 35774.07 354
PMMVS226.71 37622.98 38137.87 38736.89 4118.51 42542.51 39929.32 41419.09 40213.01 41137.54 4022.23 41653.11 39714.54 40411.71 41351.99 399
test_fmvs337.95 36435.75 36644.55 37835.50 41318.92 41048.32 39134.00 41018.36 40341.31 36561.58 3762.29 41548.06 40442.72 31037.71 37766.66 380
MVStest138.35 36234.53 36849.82 37151.43 39730.41 38050.39 39055.25 38117.56 40426.45 40265.85 36511.72 38557.00 39314.79 40317.31 41062.05 390
mvsany_test328.00 37325.98 37534.05 39028.97 41815.31 41634.54 40718.17 42116.24 40529.30 39753.37 3952.79 41333.38 41730.01 35920.41 40753.45 396
PMVScopyleft19.57 2225.07 37822.43 38332.99 39323.12 42422.98 39940.98 40135.19 40815.99 40611.95 41535.87 4071.47 42149.29 4015.41 41931.90 39026.70 412
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft27.47 37424.26 37937.12 38860.55 38329.17 39011.68 41560.00 37714.18 40710.52 41615.12 4172.20 41763.01 3818.39 41135.65 38019.18 413
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_vis3_rt24.79 37922.95 38230.31 39528.59 41918.92 41037.43 40517.27 42312.90 40821.28 40629.92 4121.02 42236.35 41128.28 36929.82 39635.65 406
LCM-MVSNet28.07 37223.85 38040.71 38127.46 42218.93 40930.82 41046.19 39012.76 40916.40 40734.70 4081.90 41848.69 40320.25 39224.22 40154.51 395
test_f27.12 37524.85 37633.93 39126.17 42315.25 41730.24 41122.38 42012.53 41028.23 39849.43 3982.59 41434.34 41625.12 37926.99 39752.20 398
APD_test126.46 37724.41 37832.62 39437.58 41021.74 40540.50 40230.39 41211.45 41116.33 40843.76 4001.63 42041.62 40811.24 40726.82 39834.51 408
E-PMN19.16 38318.40 38721.44 39936.19 41213.63 41947.59 39230.89 41110.73 4125.91 41916.59 4153.66 41139.77 4095.95 4188.14 41510.92 415
DeepMVS_CXcopyleft13.10 40121.34 4258.99 42310.02 42510.59 4137.53 41830.55 4111.82 41914.55 4206.83 4157.52 41615.75 414
EMVS18.42 38417.66 38820.71 40034.13 41412.64 42046.94 39329.94 41310.46 4145.58 42014.93 4184.23 41038.83 4105.24 4207.51 41710.67 416
testf121.11 38119.08 38527.18 39730.56 41518.28 41233.43 40824.48 4178.02 41512.02 41333.50 4090.75 42435.09 4147.68 41221.32 40328.17 410
APD_test221.11 38119.08 38527.18 39730.56 41518.28 41233.43 40824.48 4178.02 41512.02 41333.50 4090.75 42435.09 4147.68 41221.32 40328.17 410
MVEpermissive16.60 2317.34 38613.39 38929.16 39628.43 42019.72 40813.73 41423.63 4197.23 4177.96 41721.41 4130.80 42336.08 4126.97 41410.39 41431.69 409
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method24.09 38021.07 38433.16 39227.67 4218.35 42626.63 41235.11 4093.40 41814.35 41036.98 4043.46 41235.31 41319.08 39722.95 40255.81 393
wuyk23d9.11 3888.77 39210.15 40240.18 40916.76 41520.28 4131.01 4262.58 4192.66 4210.98 4210.23 42612.49 4214.08 4216.90 4181.19 418
tmp_tt9.44 38710.68 3905.73 4032.49 4264.21 42710.48 41618.04 4220.34 42012.59 41220.49 41411.39 3877.03 42213.84 4066.46 4195.95 417
EGC-MVSNET33.75 36930.42 37343.75 37964.94 36836.21 36060.47 37640.70 4000.02 4210.10 42253.79 3937.39 39860.26 38511.09 40835.23 38334.79 407
mmdepth0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
test_blank0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
cdsmvs_eth3d_5k18.33 38524.44 3770.00 4060.00 4280.00 4300.00 41789.40 240.00 4220.00 42592.02 4638.55 1980.00 4230.00 4240.00 4210.00 421
pcd_1.5k_mvsjas3.15 3924.20 3950.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 42437.77 2040.00 4230.00 4240.00 4210.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
sosnet0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
Regformer0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
testmvs6.14 3908.18 3930.01 4040.01 4270.00 43073.40 3160.00 4280.00 4220.02 4230.15 4220.00 4270.00 4230.02 4220.00 4210.02 419
test1236.01 3918.01 3940.01 4040.00 4280.01 42971.93 3300.00 4280.00 4220.02 4230.11 4230.00 4270.00 4230.02 4220.00 4210.02 419
ab-mvs-re7.68 38910.24 3910.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 42592.12 420.00 4270.00 4230.00 4240.00 4210.00 421
uanet0.00 3930.00 3960.00 4060.00 4280.00 4300.00 4170.00 4280.00 4220.00 4250.00 4240.00 4270.00 4230.00 4240.00 4210.00 421
WAC-MVS34.28 36422.56 386
MSC_two_6792asdad81.53 1591.77 456.03 4691.10 1196.22 881.46 3386.80 2892.34 35
No_MVS81.53 1591.77 456.03 4691.10 1196.22 881.46 3386.80 2892.34 35
eth-test20.00 428
eth-test0.00 428
OPU-MVS81.71 1392.05 355.97 4892.48 394.01 567.21 295.10 1589.82 392.55 394.06 3
test_0728_SECOND82.20 889.50 1557.73 1392.34 588.88 3396.39 481.68 2987.13 2192.47 31
GSMVS88.13 153
test_part289.33 2355.48 5482.27 12
sam_mvs138.86 19688.13 153
sam_mvs35.99 247
ambc62.06 33753.98 39329.38 38935.08 40679.65 23441.37 36259.96 3826.27 40582.15 29235.34 33638.22 37674.65 351
MTGPAbinary81.31 199
test_post170.84 33514.72 41934.33 26383.86 27748.80 273
test_post16.22 41637.52 21384.72 270
patchmatchnet-post59.74 38338.41 19979.91 319
GG-mvs-BLEND77.77 8586.68 4850.61 17468.67 34588.45 5068.73 11287.45 14959.15 1190.67 9054.83 23187.67 1792.03 45
MTMP87.27 7715.34 424
test9_res78.72 4885.44 4391.39 66
agg_prior275.65 6885.11 4791.01 78
agg_prior85.64 6254.92 7683.61 16072.53 7488.10 179
test_prior456.39 4087.15 81
test_prior78.39 7486.35 5354.91 7785.45 10489.70 11990.55 87
新几何281.61 237
旧先验181.57 16447.48 26571.83 33488.66 12136.94 22978.34 10588.67 137
原ACMM283.77 175
testdata277.81 33845.64 295
segment_acmp44.97 117
test1279.24 4486.89 4656.08 4585.16 11972.27 7847.15 8691.10 8085.93 3790.54 89
plane_prior777.95 23648.46 238
plane_prior678.42 23149.39 21136.04 245
plane_prior582.59 17788.30 17265.46 14072.34 16884.49 221
plane_prior483.28 204
plane_prior178.31 233
n20.00 428
nn0.00 428
door-mid41.31 399
lessismore_v067.98 29764.76 36941.25 33945.75 39236.03 38265.63 36619.29 36484.11 27635.67 33321.24 40578.59 310
test1184.25 144
door43.27 395
HQP5-MVS51.56 159
BP-MVS66.70 126
HQP4-MVS64.47 16288.61 15684.91 217
HQP3-MVS83.68 15673.12 160
HQP2-MVS37.35 216
NP-MVS78.76 22050.43 18085.12 178
ACMMP++_ref63.20 246
ACMMP++59.38 272
Test By Simon39.38 190