This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
DeepPCF-MVS93.56 196.55 4497.84 1092.68 23698.71 8978.11 35899.70 2797.71 8798.18 197.36 6599.76 190.37 5099.94 3599.27 1699.54 5499.99 1
MM97.76 1197.39 2098.86 598.30 9796.83 799.81 1299.13 997.66 298.29 4198.96 7085.84 13499.90 5099.72 398.80 9699.85 30
MVS_030497.81 997.51 1598.74 998.97 7396.57 1199.91 298.17 3697.45 398.76 2698.97 6586.69 11499.96 2899.72 398.92 9099.69 58
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2797.98 5397.18 495.96 9999.33 2292.62 25100.00 198.99 2599.93 199.98 6
test_fmvsm_n_192097.08 2797.55 1495.67 13997.94 11089.61 16599.93 198.48 2397.08 599.08 1499.13 4788.17 8099.93 3999.11 2399.06 8097.47 210
CNVR-MVS98.46 198.38 198.72 1099.80 496.19 1599.80 1697.99 5297.05 699.41 499.59 292.89 24100.00 198.99 2599.90 799.96 10
test_fmvsmvis_n_192095.47 7995.40 7695.70 13794.33 26290.22 14499.70 2796.98 19896.80 792.75 16098.89 8182.46 19299.92 4198.36 4498.33 11496.97 227
fmvsm_l_conf0.5_n97.65 1497.72 1297.41 5097.51 12892.78 9099.85 898.05 4696.78 899.60 199.23 2990.42 4899.92 4199.55 1398.50 10899.55 77
test_vis1_n_192093.08 15693.42 13092.04 24996.31 18379.36 34599.83 1096.06 25896.72 998.53 3498.10 13258.57 35699.91 4697.86 5798.79 9996.85 229
fmvsm_l_conf0.5_n_a97.70 1397.80 1197.42 4997.59 12392.91 8899.86 598.04 4896.70 1099.58 299.26 2490.90 3999.94 3599.57 1298.66 10399.40 93
test_fmvsmconf_n96.78 3596.84 2996.61 9095.99 20090.25 14199.90 398.13 4296.68 1198.42 3698.92 7785.34 14499.88 5499.12 2299.08 7899.70 55
DPM-MVS97.86 897.25 2299.68 198.25 9899.10 199.76 2197.78 7596.61 1298.15 4399.53 793.62 16100.00 191.79 17299.80 2699.94 18
EPNet96.82 3396.68 3797.25 5798.65 9093.10 8099.48 5398.76 1496.54 1397.84 5698.22 12787.49 9299.66 9795.35 11397.78 12599.00 129
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
NCCC98.12 598.11 398.13 2599.76 694.46 5199.81 1297.88 5896.54 1398.84 2499.46 1092.55 2699.98 998.25 5099.93 199.94 18
test_fmvsmconf0.1_n95.94 6395.79 6696.40 10492.42 30789.92 15799.79 1796.85 20396.53 1597.22 6898.67 10082.71 18599.84 6998.92 2798.98 8599.43 92
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2599.61 2494.45 5298.85 13597.64 10596.51 1695.88 10299.39 1887.35 9999.99 596.61 8599.69 3899.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_cas_vis1_n_192093.86 13093.74 12394.22 19595.39 22286.08 25599.73 2396.07 25796.38 1797.19 7197.78 13965.46 33199.86 6396.71 8098.92 9096.73 231
DELS-MVS97.12 2596.60 3898.68 1198.03 10896.57 1199.84 997.84 6296.36 1895.20 11998.24 12688.17 8099.83 7396.11 9799.60 5099.64 68
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet97.00 2896.49 4098.55 1298.86 8496.10 1699.83 1097.52 13395.90 1997.21 6998.90 7982.66 18699.93 3998.71 2998.80 9699.63 70
PS-MVSNAJ96.87 3196.40 4398.29 1997.35 13497.29 599.03 11997.11 18495.83 2098.97 1999.14 4582.48 18999.60 10698.60 3399.08 7898.00 197
test_fmvsmconf0.01_n94.14 12093.51 12896.04 12286.79 37989.19 16999.28 8395.94 26795.70 2195.50 11398.49 11373.27 26799.79 8598.28 4998.32 11699.15 116
save fliter99.34 5093.85 6599.65 3697.63 10995.69 22
fmvsm_s_conf0.5_n96.19 5396.49 4095.30 15497.37 13389.16 17099.86 598.47 2495.68 2398.87 2299.15 4282.44 19399.92 4199.14 2197.43 13496.83 230
HPM-MVS++copyleft97.72 1297.59 1398.14 2499.53 4094.76 4599.19 9097.75 7895.66 2498.21 4299.29 2391.10 3499.99 597.68 6099.87 999.68 60
CANet_DTU94.31 11793.35 13297.20 5997.03 15594.71 4798.62 16395.54 30295.61 2597.21 6998.47 11771.88 28099.84 6988.38 21197.46 13397.04 224
IU-MVS99.63 1895.38 2497.73 8295.54 2699.54 399.69 799.81 2399.99 1
xiu_mvs_v2_base96.66 3796.17 5298.11 2897.11 15096.96 699.01 12297.04 19195.51 2798.86 2399.11 5382.19 19799.36 13398.59 3598.14 11898.00 197
fmvsm_s_conf0.5_n_a95.97 6096.19 4795.31 15396.51 17389.01 17899.81 1298.39 2695.46 2899.19 1399.16 3981.44 20899.91 4698.83 2896.97 14397.01 226
MSP-MVS97.77 1098.18 296.53 9799.54 3690.14 14699.41 6897.70 8895.46 2898.60 3199.19 3395.71 599.49 11598.15 5299.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
patch_mono-297.10 2697.97 894.49 18399.21 6183.73 29999.62 3898.25 3195.28 3099.38 698.91 7892.28 2999.94 3599.61 1099.22 7499.78 41
test_fmvs192.35 16992.94 14490.57 28197.19 14375.43 37099.55 4494.97 32795.20 3196.82 8297.57 15259.59 35499.84 6997.30 6798.29 11796.46 241
TSAR-MVS + GP.96.95 2996.91 2697.07 6198.88 8391.62 10799.58 4196.54 22495.09 3296.84 7998.63 10491.16 3299.77 8899.04 2496.42 15299.81 35
reproduce_monomvs92.11 17891.82 16892.98 22698.25 9890.55 13698.38 20197.93 5594.81 3380.46 31192.37 28896.46 397.17 25494.06 13973.61 34391.23 316
test_fmvs1_n91.07 19791.41 17790.06 29594.10 26974.31 37499.18 9294.84 33194.81 3396.37 9497.46 15650.86 38799.82 7697.14 7197.90 12096.04 248
fmvsm_s_conf0.1_n95.56 7895.68 6995.20 15794.35 26189.10 17299.50 5197.67 9694.76 3598.68 2999.03 5981.13 21199.86 6398.63 3297.36 13696.63 233
MSLP-MVS++97.50 1797.45 1897.63 4199.65 1693.21 7799.70 2798.13 4294.61 3697.78 5899.46 1089.85 5799.81 7997.97 5499.91 699.88 26
PC_three_145294.60 3799.41 499.12 4995.50 799.96 2899.84 299.92 399.97 7
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2399.29 8097.72 8394.50 3898.64 3099.54 393.32 1899.97 2199.58 1199.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
fmvsm_s_conf0.1_n_a95.16 8895.15 8295.18 15892.06 31388.94 18299.29 8097.53 12994.46 3998.98 1898.99 6379.99 21799.85 6798.24 5196.86 14696.73 231
TSAR-MVS + MP.97.44 1897.46 1797.39 5299.12 6593.49 7298.52 17797.50 13894.46 3998.99 1798.64 10291.58 3199.08 15198.49 4099.83 1599.60 73
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MG-MVS97.24 2096.83 3198.47 1599.79 595.71 1999.07 11399.06 1094.45 4196.42 9398.70 9888.81 7199.74 9195.35 11399.86 1299.97 7
test_vis1_n90.40 21090.27 20090.79 27691.55 32476.48 36499.12 10994.44 34394.31 4297.34 6696.95 18443.60 39899.42 12697.57 6297.60 12796.47 240
PAPM96.35 4795.94 5897.58 4394.10 26995.25 2698.93 12998.17 3694.26 4393.94 14398.72 9489.68 6097.88 21296.36 9099.29 6999.62 72
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2799.77 1897.72 8394.17 4499.30 899.54 393.32 1899.98 999.70 599.81 2399.99 1
test_241102_TWO97.72 8394.17 4499.23 1099.54 393.14 2399.98 999.70 599.82 1999.99 1
test_241102_ONE99.63 1895.24 2797.72 8394.16 4699.30 899.49 993.32 1899.98 9
CLD-MVS91.06 19890.71 19392.10 24794.05 27386.10 25499.55 4496.29 24094.16 4684.70 25297.17 17369.62 29697.82 21694.74 12986.08 26092.39 272
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SteuartSystems-ACMMP97.25 1997.34 2197.01 6497.38 13291.46 11199.75 2297.66 9794.14 4898.13 4499.26 2492.16 3099.66 9797.91 5699.64 4299.90 22
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3299.72 2497.47 14393.95 4999.07 1599.46 1093.18 2199.97 2199.64 899.82 1999.69 58
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.66 1295.20 3299.77 1897.70 8893.95 4999.35 799.54 393.18 21
HQP-NCC93.95 27499.16 9693.92 5187.57 226
ACMP_Plane93.95 27499.16 9693.92 5187.57 226
HQP-MVS91.50 18591.23 18092.29 24193.95 27486.39 24399.16 9696.37 23393.92 5187.57 22696.67 20173.34 26497.77 22093.82 14686.29 25592.72 267
DeepC-MVS91.02 494.56 11293.92 11696.46 9997.16 14690.76 13098.39 19997.11 18493.92 5188.66 21898.33 12278.14 23799.85 6795.02 12298.57 10698.78 155
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_111021_HR96.69 3696.69 3696.72 8498.58 9291.00 12599.14 10499.45 193.86 5595.15 12098.73 9288.48 7599.76 8997.23 7099.56 5299.40 93
h-mvs3392.47 16891.95 16594.05 20397.13 14885.01 28198.36 20298.08 4493.85 5696.27 9596.73 19883.19 17399.43 12595.81 10268.09 37297.70 203
hse-mvs291.67 18491.51 17592.15 24696.22 18782.61 31797.74 25197.53 12993.85 5696.27 9596.15 21583.19 17397.44 24595.81 10266.86 37996.40 243
lupinMVS96.32 4995.94 5897.44 4795.05 24294.87 3999.86 596.50 22693.82 5898.04 5098.77 8885.52 13698.09 19996.98 7598.97 8699.37 96
plane_prior86.07 25799.14 10493.81 5986.26 257
SD-MVS97.51 1697.40 1997.81 3699.01 7293.79 6699.33 7897.38 15693.73 6098.83 2599.02 6190.87 4199.88 5498.69 3099.74 2999.77 46
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SPE-MVS-test95.98 5996.34 4594.90 16898.06 10787.66 21399.69 3496.10 25393.66 6198.35 4099.05 5786.28 12597.66 23096.96 7698.90 9299.37 96
plane_prior385.91 26193.65 6286.99 233
PVSNet_Blended95.94 6395.66 7096.75 8098.77 8791.61 10899.88 498.04 4893.64 6394.21 13797.76 14083.50 16499.87 5897.41 6497.75 12698.79 153
APDe-MVScopyleft97.53 1597.47 1697.70 3999.58 3093.63 6799.56 4397.52 13393.59 6498.01 5299.12 4990.80 4299.55 10999.26 1799.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
jason95.40 8394.86 9097.03 6392.91 30194.23 5899.70 2796.30 23793.56 6596.73 8798.52 10981.46 20797.91 20996.08 9898.47 11198.96 133
jason: jason.
reproduce-ours96.66 3796.80 3296.22 11198.95 7789.03 17698.62 16397.38 15693.42 6696.80 8499.36 1988.92 6899.80 8198.51 3899.26 7199.82 32
our_new_method96.66 3796.80 3296.22 11198.95 7789.03 17698.62 16397.38 15693.42 6696.80 8499.36 1988.92 6899.80 8198.51 3899.26 7199.82 32
MVS_111021_LR95.78 6995.94 5895.28 15598.19 10387.69 21098.80 14199.26 793.39 6895.04 12298.69 9984.09 15899.76 8996.96 7699.06 8098.38 176
HQP_MVS91.26 19290.95 18692.16 24593.84 28186.07 25799.02 12096.30 23793.38 6986.99 23396.52 20372.92 27097.75 22693.46 15386.17 25892.67 269
plane_prior299.02 12093.38 69
ETV-MVS96.00 5796.00 5796.00 12696.56 16991.05 12399.63 3796.61 21693.26 7197.39 6498.30 12486.62 11698.13 19698.07 5397.57 12898.82 150
reproduce_model96.57 4296.75 3496.02 12498.93 8088.46 19898.56 17497.34 16293.18 7296.96 7599.35 2188.69 7399.80 8198.53 3799.21 7799.79 38
test_one_060199.59 2894.89 3797.64 10593.14 7398.93 2199.45 1493.45 17
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2499.55 4497.68 9293.01 7499.23 1099.45 1495.12 899.98 999.25 1899.92 399.97 7
test_0728_THIRD93.01 7499.07 1599.46 1094.66 1399.97 2199.25 1899.82 1999.95 15
balanced_conf0396.83 3296.51 3997.81 3697.60 12295.15 3498.40 19596.77 20893.00 7698.69 2896.19 21489.75 5998.76 16598.45 4299.72 3299.51 82
xiu_mvs_v1_base_debu94.73 10393.98 11096.99 6695.19 22895.24 2798.62 16396.50 22692.99 7797.52 6098.83 8572.37 27599.15 14497.03 7296.74 14796.58 236
xiu_mvs_v1_base94.73 10393.98 11096.99 6695.19 22895.24 2798.62 16396.50 22692.99 7797.52 6098.83 8572.37 27599.15 14497.03 7296.74 14796.58 236
xiu_mvs_v1_base_debi94.73 10393.98 11096.99 6695.19 22895.24 2798.62 16396.50 22692.99 7797.52 6098.83 8572.37 27599.15 14497.03 7296.74 14796.58 236
EPNet_dtu92.28 17292.15 16092.70 23597.29 13784.84 28498.64 16097.82 6692.91 8093.02 15897.02 18185.48 14195.70 33172.25 35594.89 17597.55 209
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OPM-MVS89.76 22489.15 21891.57 26090.53 33785.58 26998.11 22595.93 27092.88 8186.05 24096.47 20667.06 31897.87 21389.29 20486.08 26091.26 315
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
mvsany_test194.57 11195.09 8692.98 22695.84 20582.07 32198.76 14795.24 32092.87 8296.45 9298.71 9784.81 15199.15 14497.68 6095.49 17097.73 202
CS-MVS95.75 7296.19 4794.40 18797.88 11286.22 24999.66 3596.12 25292.69 8398.07 4898.89 8187.09 10397.59 23696.71 8098.62 10499.39 95
MTAPA96.09 5595.80 6596.96 7199.29 5591.19 11597.23 27497.45 14692.58 8494.39 13499.24 2886.43 12399.99 596.22 9299.40 6499.71 54
EIA-MVS95.11 8995.27 7994.64 18096.34 18286.51 23899.59 4096.62 21592.51 8594.08 14098.64 10286.05 13098.24 19195.07 12198.50 10899.18 114
CHOSEN 280x42096.80 3496.85 2896.66 8997.85 11394.42 5494.76 34098.36 2892.50 8695.62 11297.52 15397.92 197.38 24898.31 4898.80 9698.20 191
testdata197.89 23892.43 87
PAPR96.35 4795.82 6297.94 3399.63 1894.19 6099.42 6797.55 12592.43 8793.82 14799.12 4987.30 10099.91 4694.02 14099.06 8099.74 50
HY-MVS88.56 795.29 8594.23 10098.48 1497.72 11596.41 1394.03 34998.74 1592.42 8995.65 11194.76 24486.52 12099.49 11595.29 11692.97 19299.53 79
XVS96.47 4596.37 4496.77 7899.62 2290.66 13499.43 6597.58 12092.41 9096.86 7798.96 7087.37 9599.87 5895.65 10499.43 6199.78 41
X-MVStestdata90.69 20688.66 22996.77 7899.62 2290.66 13499.43 6597.58 12092.41 9096.86 7729.59 42287.37 9599.87 5895.65 10499.43 6199.78 41
UGNet91.91 18190.85 18895.10 16097.06 15388.69 19298.01 23398.24 3392.41 9092.39 16793.61 26660.52 35199.68 9588.14 21497.25 13796.92 228
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS95.97 6095.11 8598.54 1397.62 11996.65 999.44 6298.74 1592.25 9395.21 11898.46 11986.56 11999.46 12195.00 12492.69 19699.50 84
OMC-MVS93.90 12893.62 12594.73 17698.63 9187.00 23298.04 23296.56 22292.19 9492.46 16498.73 9279.49 22499.14 14892.16 16994.34 18098.03 196
ET-MVSNet_ETH3D92.56 16691.45 17695.88 13196.39 18094.13 6199.46 5996.97 19992.18 9566.94 39098.29 12594.65 1494.28 36094.34 13683.82 27899.24 109
CHOSEN 1792x268894.35 11693.82 12195.95 12997.40 13188.74 19198.41 19298.27 3092.18 9591.43 18296.40 20778.88 22899.81 7993.59 14997.81 12299.30 104
PVSNet_Blended_VisFu94.67 10794.11 10596.34 10897.14 14791.10 12099.32 7997.43 15192.10 9791.53 18196.38 21083.29 17099.68 9593.42 15596.37 15398.25 185
Effi-MVS+-dtu89.97 22290.68 19487.81 33295.15 23271.98 38597.87 24195.40 31191.92 9887.57 22691.44 30874.27 25896.84 26889.45 19893.10 19194.60 257
EI-MVSNet-Vis-set95.76 7195.63 7496.17 11799.14 6490.33 13998.49 18397.82 6691.92 9894.75 12698.88 8387.06 10599.48 11995.40 11297.17 14198.70 160
sasdasda95.02 9293.96 11398.20 2197.53 12695.92 1798.71 14996.19 24691.78 10095.86 10498.49 11379.53 22299.03 15296.12 9591.42 22799.66 64
canonicalmvs95.02 9293.96 11398.20 2197.53 12695.92 1798.71 14996.19 24691.78 10095.86 10498.49 11379.53 22299.03 15296.12 9591.42 22799.66 64
EI-MVSNet-UG-set95.43 8095.29 7895.86 13299.07 7089.87 15898.43 18997.80 7191.78 10094.11 13998.77 8886.25 12799.48 11994.95 12696.45 15198.22 189
diffmvspermissive94.59 11094.19 10295.81 13395.54 21590.69 13298.70 15295.68 29491.61 10395.96 9997.81 13680.11 21698.06 20196.52 8895.76 16598.67 162
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive92.64 16291.85 16695.03 16595.12 23588.23 20098.48 18596.81 20491.61 10392.16 17097.22 16871.58 28598.00 20785.85 24297.81 12298.88 143
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MGCFI-Net94.89 9493.84 12098.06 2997.49 12995.55 2198.64 16096.10 25391.60 10595.75 10898.46 11979.31 22698.98 15695.95 10191.24 23199.65 67
3Dnovator87.35 1193.17 15491.77 17097.37 5395.41 22093.07 8198.82 13897.85 6191.53 10682.56 27897.58 15171.97 27999.82 7691.01 17899.23 7399.22 112
alignmvs95.77 7095.00 8898.06 2997.35 13495.68 2099.71 2697.50 13891.50 10796.16 9798.61 10686.28 12599.00 15496.19 9391.74 21599.51 82
EC-MVSNet95.09 9095.17 8194.84 17195.42 21988.17 20199.48 5395.92 27291.47 10897.34 6698.36 12182.77 18197.41 24797.24 6998.58 10598.94 138
PVSNet_BlendedMVS93.36 14693.20 13793.84 21198.77 8791.61 10899.47 5598.04 4891.44 10994.21 13792.63 28683.50 16499.87 5897.41 6483.37 28390.05 348
test_prior299.57 4291.43 11098.12 4698.97 6590.43 4798.33 4699.81 23
PVSNet87.13 1293.69 13492.83 14696.28 11097.99 10990.22 14499.38 7198.93 1291.42 11193.66 14997.68 14571.29 28799.64 10387.94 21797.20 13898.98 131
3Dnovator+87.72 893.43 14291.84 16798.17 2395.73 20995.08 3598.92 13197.04 19191.42 11181.48 30297.60 14974.60 25299.79 8590.84 18198.97 8699.64 68
FOURS199.50 4288.94 18299.55 4497.47 14391.32 11398.12 46
UBG95.73 7495.41 7596.69 8696.97 15693.23 7699.13 10797.79 7391.28 11494.38 13596.78 19592.37 2898.56 17696.17 9493.84 18498.26 184
PMMVS93.62 13993.90 11892.79 23196.79 16481.40 32798.85 13596.81 20491.25 11596.82 8298.15 13177.02 24398.13 19693.15 15996.30 15698.83 149
IB-MVS89.43 692.12 17690.83 19195.98 12895.40 22190.78 12999.81 1298.06 4591.23 11685.63 24693.66 26590.63 4498.78 16291.22 17571.85 36198.36 180
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
mvsmamba94.27 11893.91 11795.35 15096.42 17788.61 19397.77 24796.38 23291.17 11794.05 14195.27 23678.41 23597.96 20897.36 6698.40 11299.48 86
baseline93.91 12793.30 13495.72 13695.10 23990.07 15097.48 26295.91 27791.03 11893.54 15197.68 14579.58 22098.02 20594.27 13795.14 17399.08 125
casdiffmvspermissive93.98 12593.43 12995.61 14395.07 24189.86 15998.80 14195.84 28590.98 11992.74 16197.66 14779.71 21998.10 19894.72 13095.37 17198.87 145
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net93.30 14892.62 15195.34 15196.27 18588.53 19795.88 32396.97 19990.90 12095.37 11697.07 17782.38 19499.10 15083.91 26794.86 17698.38 176
test111192.12 17691.19 18194.94 16796.15 19287.36 22398.12 22394.84 33190.85 12190.97 18997.26 16465.60 32998.37 18389.74 19697.14 14299.07 127
test250694.80 10094.21 10196.58 9396.41 17892.18 10098.01 23398.96 1190.82 12293.46 15297.28 16285.92 13198.45 18189.82 19397.19 13999.12 120
ECVR-MVScopyleft92.29 17191.33 17895.15 15996.41 17887.84 20898.10 22694.84 33190.82 12291.42 18497.28 16265.61 32898.49 17990.33 18797.19 13999.12 120
dcpmvs_295.67 7696.18 4994.12 19998.82 8584.22 29297.37 26795.45 30790.70 12495.77 10798.63 10490.47 4698.68 17199.20 2099.22 7499.45 89
ACMMP_NAP96.59 4196.18 4997.81 3698.82 8593.55 6998.88 13497.59 11890.66 12597.98 5399.14 4586.59 117100.00 196.47 8999.46 5799.89 25
mPP-MVS95.90 6595.75 6796.38 10599.58 3089.41 16899.26 8597.41 15390.66 12594.82 12498.95 7386.15 12999.98 995.24 11899.64 4299.74 50
PAPM_NR95.43 8095.05 8796.57 9599.42 4790.14 14698.58 17397.51 13590.65 12792.44 16598.90 7987.77 8999.90 5090.88 18099.32 6699.68 60
MP-MVScopyleft96.00 5795.82 6296.54 9699.47 4690.13 14899.36 7597.41 15390.64 12895.49 11498.95 7385.51 13899.98 996.00 10099.59 5199.52 80
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testing1195.33 8494.98 8996.37 10697.20 14192.31 9799.29 8097.68 9290.59 12994.43 13197.20 16990.79 4398.60 17495.25 11792.38 20198.18 192
casdiffmvs_mvgpermissive94.00 12393.33 13396.03 12395.22 22690.90 12899.09 11195.99 26090.58 13091.55 18097.37 16079.91 21898.06 20195.01 12395.22 17299.13 119
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MonoMVSNet90.69 20689.78 20693.45 21791.78 32084.97 28396.51 30094.44 34390.56 13185.96 24290.97 31778.61 23496.27 30695.35 11383.79 27999.11 122
region2R96.30 5096.17 5296.70 8599.70 790.31 14099.46 5997.66 9790.55 13297.07 7399.07 5486.85 10999.97 2195.43 11199.74 2999.81 35
HFP-MVS96.42 4696.26 4696.90 7399.69 890.96 12699.47 5597.81 6990.54 13396.88 7699.05 5787.57 9099.96 2895.65 10499.72 3299.78 41
ACMMPR96.28 5196.14 5696.73 8299.68 990.47 13899.47 5597.80 7190.54 13396.83 8199.03 5986.51 12199.95 3295.65 10499.72 3299.75 49
test_fmvs285.10 30285.45 28084.02 36489.85 34565.63 39898.49 18392.59 37190.45 13585.43 24993.32 27143.94 39696.59 27890.81 18284.19 27389.85 352
SR-MVS96.13 5496.16 5496.07 12199.42 4789.04 17498.59 17197.33 16390.44 13696.84 7999.12 4986.75 11199.41 12997.47 6399.44 6099.76 48
EPMVS92.59 16591.59 17395.59 14497.22 14090.03 15491.78 37098.04 4890.42 13791.66 17690.65 32886.49 12297.46 24381.78 28896.31 15599.28 106
ACMMPcopyleft94.67 10794.30 9895.79 13499.25 5788.13 20398.41 19298.67 2190.38 13891.43 18298.72 9482.22 19699.95 3293.83 14595.76 16599.29 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
VNet95.08 9194.26 9997.55 4698.07 10693.88 6498.68 15498.73 1790.33 13997.16 7297.43 15879.19 22799.53 11296.91 7891.85 21399.24 109
test-LLR93.11 15592.68 14894.40 18794.94 24787.27 22799.15 10197.25 16690.21 14091.57 17794.04 25084.89 14997.58 23785.94 23996.13 15898.36 180
test0.0.03 188.96 23488.61 23090.03 29991.09 33184.43 28998.97 12797.02 19590.21 14080.29 31396.31 21284.89 14991.93 38572.98 35085.70 26393.73 259
train_agg97.20 2397.08 2397.57 4599.57 3393.17 7899.38 7197.66 9790.18 14298.39 3799.18 3690.94 3799.66 9798.58 3699.85 1399.88 26
test_899.55 3593.07 8199.37 7497.64 10590.18 14298.36 3999.19 3390.94 3799.64 103
131493.44 14191.98 16497.84 3495.24 22494.38 5596.22 31297.92 5690.18 14282.28 28597.71 14477.63 24099.80 8191.94 17198.67 10299.34 101
CVMVSNet90.30 21390.91 18788.46 32894.32 26373.58 37897.61 25997.59 11890.16 14588.43 22197.10 17576.83 24492.86 37182.64 27993.54 18798.93 139
MVSTER92.71 16092.32 15593.86 21097.29 13792.95 8799.01 12296.59 21890.09 14685.51 24794.00 25494.61 1596.56 28090.77 18483.03 28592.08 287
APD-MVScopyleft96.95 2996.72 3597.63 4199.51 4193.58 6899.16 9697.44 14990.08 14798.59 3299.07 5489.06 6599.42 12697.92 5599.66 3999.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS96.22 5296.15 5596.42 10299.67 1089.62 16499.70 2797.61 11290.07 14896.00 9899.16 3987.43 9399.92 4196.03 9999.72 3299.70 55
SCA90.64 20889.25 21694.83 17294.95 24688.83 18696.26 30997.21 17290.06 14990.03 20590.62 33066.61 32096.81 27083.16 27394.36 17998.84 146
testing9994.88 9694.45 9596.17 11797.20 14191.91 10299.20 8997.66 9789.95 15093.68 14897.06 17890.28 5298.50 17793.52 15091.54 22198.12 194
testing9194.88 9694.44 9696.21 11397.19 14391.90 10399.23 8797.66 9789.91 15193.66 14997.05 18090.21 5398.50 17793.52 15091.53 22498.25 185
baseline294.04 12293.80 12294.74 17593.07 30090.25 14198.12 22398.16 3989.86 15286.53 23996.95 18495.56 698.05 20391.44 17494.53 17795.93 249
baseline192.61 16491.28 17996.58 9397.05 15494.63 4997.72 25296.20 24489.82 15388.56 21996.85 19186.85 10997.82 21688.42 21080.10 30097.30 214
PVSNet_083.28 1687.31 26885.16 28393.74 21494.78 25284.59 28798.91 13298.69 2089.81 15478.59 33493.23 27561.95 34599.34 13794.75 12855.72 40197.30 214
ZNCC-MVS96.09 5595.81 6496.95 7299.42 4791.19 11599.55 4497.53 12989.72 15595.86 10498.94 7686.59 11799.97 2195.13 11999.56 5299.68 60
GST-MVS95.97 6095.66 7096.90 7399.49 4591.22 11399.45 6197.48 14189.69 15695.89 10198.72 9486.37 12499.95 3294.62 13399.22 7499.52 80
GA-MVS90.10 21988.69 22894.33 19092.44 30687.97 20799.08 11296.26 24189.65 15786.92 23593.11 27868.09 30796.96 26382.54 28190.15 23998.05 195
SR-MVS-dyc-post95.75 7295.86 6195.41 14899.22 5987.26 22998.40 19597.21 17289.63 15896.67 8998.97 6586.73 11399.36 13396.62 8399.31 6799.60 73
RE-MVS-def95.70 6899.22 5987.26 22998.40 19597.21 17289.63 15896.67 8998.97 6585.24 14596.62 8399.31 6799.60 73
SF-MVS97.22 2296.92 2598.12 2799.11 6694.88 3899.44 6297.45 14689.60 16098.70 2799.42 1790.42 4899.72 9298.47 4199.65 4099.77 46
MDTV_nov1_ep1390.47 19996.14 19488.55 19591.34 37797.51 13589.58 16192.24 16890.50 33886.99 10897.61 23577.64 31692.34 203
TEST999.57 3393.17 7899.38 7197.66 9789.57 16298.39 3799.18 3690.88 4099.66 97
PatchmatchNetpermissive92.05 18091.04 18495.06 16296.17 19189.04 17491.26 37897.26 16589.56 16390.64 19590.56 33488.35 7797.11 25779.53 30196.07 16299.03 128
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SMA-MVScopyleft97.24 2096.99 2498.00 3199.30 5494.20 5999.16 9697.65 10489.55 16499.22 1299.52 890.34 5199.99 598.32 4799.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
UWE-MVS93.18 15293.40 13192.50 23996.56 16983.55 30198.09 22997.84 6289.50 16591.72 17496.23 21391.08 3596.70 27486.28 23493.33 18897.26 216
sss94.85 9993.94 11597.58 4396.43 17694.09 6298.93 12999.16 889.50 16595.27 11797.85 13481.50 20599.65 10192.79 16494.02 18298.99 130
RRT-MVS93.39 14492.64 15095.64 14096.11 19888.75 19097.40 26395.77 28889.46 16792.70 16295.42 23372.98 26998.81 16196.91 7896.97 14399.37 96
ACMP87.39 1088.71 24588.24 23890.12 29493.91 27981.06 33598.50 18195.67 29589.43 16880.37 31295.55 22965.67 32697.83 21590.55 18684.51 26991.47 304
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
9.1496.87 2799.34 5099.50 5197.49 14089.41 16998.59 3299.43 1689.78 5899.69 9498.69 3099.62 46
thres20093.69 13492.59 15296.97 7097.76 11494.74 4699.35 7699.36 289.23 17091.21 18896.97 18383.42 16798.77 16385.08 24790.96 23297.39 212
testing22294.48 11494.00 10995.95 12997.30 13692.27 9898.82 13897.92 5689.20 17194.82 12497.26 16487.13 10297.32 25191.95 17091.56 21998.25 185
PGM-MVS95.85 6695.65 7296.45 10099.50 4289.77 16198.22 21398.90 1389.19 17296.74 8698.95 7385.91 13399.92 4193.94 14199.46 5799.66 64
TESTMET0.1,193.82 13193.26 13695.49 14595.21 22790.25 14199.15 10197.54 12889.18 17391.79 17294.87 24289.13 6497.63 23386.21 23596.29 15798.60 166
UniMVSNet (Re)89.50 22988.32 23793.03 22492.21 31090.96 12698.90 13398.39 2689.13 17483.22 26492.03 29281.69 20296.34 29986.79 22972.53 35491.81 292
FIs90.70 20589.87 20593.18 22292.29 30891.12 11898.17 21998.25 3189.11 17583.44 26394.82 24382.26 19596.17 31087.76 21882.76 28792.25 277
tpmrst92.78 15992.16 15994.65 17896.27 18587.45 22091.83 36997.10 18789.10 17694.68 12890.69 32588.22 7997.73 22889.78 19491.80 21498.77 156
CDPH-MVS96.56 4396.18 4997.70 3999.59 2893.92 6399.13 10797.44 14989.02 17797.90 5599.22 3088.90 7099.49 11594.63 13299.79 2799.68 60
原ACMM196.18 11599.03 7190.08 14997.63 10988.98 17897.00 7498.97 6588.14 8399.71 9388.23 21399.62 4698.76 157
XVG-OURS90.83 20290.49 19791.86 25195.23 22581.25 33195.79 32895.92 27288.96 17990.02 20698.03 13371.60 28499.35 13691.06 17787.78 24894.98 255
MP-MVS-pluss95.80 6895.30 7797.29 5498.95 7792.66 9198.59 17197.14 18088.95 18093.12 15699.25 2685.62 13599.94 3596.56 8799.48 5699.28 106
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test-mter93.27 15092.89 14594.40 18794.94 24787.27 22799.15 10197.25 16688.95 18091.57 17794.04 25088.03 8597.58 23785.94 23996.13 15898.36 180
APD-MVS_3200maxsize95.64 7795.65 7295.62 14299.24 5887.80 20998.42 19097.22 17188.93 18296.64 9198.98 6485.49 13999.36 13396.68 8299.27 7099.70 55
CR-MVSNet88.83 24087.38 25193.16 22393.47 29086.24 24784.97 39994.20 35288.92 18390.76 19386.88 37584.43 15494.82 35270.64 35992.17 20998.41 173
DU-MVS88.83 24087.51 24892.79 23191.46 32690.07 15098.71 14997.62 11188.87 18483.21 26593.68 26374.63 25095.93 32086.95 22572.47 35592.36 273
FC-MVSNet-test90.22 21589.40 21392.67 23791.78 32089.86 15997.89 23898.22 3488.81 18582.96 27194.66 24581.90 20195.96 31885.89 24182.52 29092.20 282
USDC84.74 30582.93 31190.16 29391.73 32283.54 30295.00 33893.30 36588.77 18673.19 36593.30 27353.62 37797.65 23275.88 32981.54 29489.30 359
testgi82.29 32881.00 33186.17 34787.24 37674.84 37397.39 26491.62 38688.63 18775.85 35095.42 23346.07 39591.55 38666.87 37679.94 30192.12 285
VPNet88.30 25286.57 26293.49 21691.95 31691.35 11298.18 21797.20 17688.61 18884.52 25594.89 24162.21 34496.76 27389.34 20172.26 35892.36 273
miper_enhance_ethall90.33 21289.70 20792.22 24297.12 14988.93 18498.35 20395.96 26488.60 18983.14 26992.33 28987.38 9496.18 30986.49 23277.89 30991.55 302
IS-MVSNet93.00 15792.51 15394.49 18396.14 19487.36 22398.31 20795.70 29288.58 19090.17 20397.50 15483.02 17797.22 25387.06 22296.07 16298.90 142
PS-MVSNAJss89.54 22889.05 22091.00 26988.77 35984.36 29097.39 26495.97 26288.47 19181.88 29593.80 26182.48 18996.50 28489.34 20183.34 28492.15 284
jajsoiax87.35 26786.51 26489.87 30087.75 37381.74 32397.03 28195.98 26188.47 19180.15 31593.80 26161.47 34696.36 29389.44 19984.47 27191.50 303
Fast-Effi-MVS+-dtu88.84 23888.59 23289.58 31093.44 29378.18 35698.65 15894.62 34088.46 19384.12 25995.37 23568.91 29996.52 28382.06 28591.70 21794.06 258
tfpn200view993.43 14292.27 15796.90 7397.68 11794.84 4199.18 9299.36 288.45 19490.79 19196.90 18783.31 16898.75 16684.11 26390.69 23497.12 219
thres40093.39 14492.27 15796.73 8297.68 11794.84 4199.18 9299.36 288.45 19490.79 19196.90 18783.31 16898.75 16684.11 26390.69 23496.61 234
LCM-MVSNet-Re88.59 24988.61 23088.51 32795.53 21672.68 38396.85 28888.43 40388.45 19473.14 36690.63 32975.82 24594.38 35992.95 16095.71 16798.48 171
PLCcopyleft91.07 394.23 11994.01 10894.87 16999.17 6387.49 21899.25 8696.55 22388.43 19791.26 18698.21 12985.92 13199.86 6389.77 19597.57 12897.24 217
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
XVG-OURS-SEG-HR90.95 20090.66 19591.83 25295.18 23181.14 33495.92 32095.92 27288.40 19890.33 20297.85 13470.66 29099.38 13192.83 16388.83 24494.98 255
UniMVSNet_NR-MVSNet89.60 22688.55 23392.75 23392.17 31190.07 15098.74 14898.15 4088.37 19983.21 26593.98 25582.86 17995.93 32086.95 22572.47 35592.25 277
MAR-MVS94.43 11594.09 10695.45 14699.10 6887.47 21998.39 19997.79 7388.37 19994.02 14299.17 3878.64 23399.91 4692.48 16698.85 9498.96 133
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
SDMVSNet91.09 19689.91 20494.65 17896.80 16290.54 13797.78 24597.81 6988.34 20185.73 24395.26 23766.44 32398.26 18994.25 13886.75 25295.14 252
sd_testset89.23 23088.05 24392.74 23496.80 16285.33 27495.85 32697.03 19388.34 20185.73 24395.26 23761.12 34997.76 22585.61 24386.75 25295.14 252
Vis-MVSNet (Re-imp)93.26 15193.00 14394.06 20296.14 19486.71 23798.68 15496.70 21188.30 20389.71 21297.64 14885.43 14296.39 29188.06 21696.32 15499.08 125
1112_ss92.71 16091.55 17496.20 11495.56 21491.12 11898.48 18594.69 33888.29 20486.89 23698.50 11187.02 10698.66 17284.75 25289.77 24298.81 151
Test_1112_low_res92.27 17390.97 18596.18 11595.53 21691.10 12098.47 18794.66 33988.28 20586.83 23793.50 27087.00 10798.65 17384.69 25389.74 24398.80 152
gm-plane-assit94.69 25488.14 20288.22 20697.20 16998.29 18790.79 183
mvs_tets87.09 27086.22 26789.71 30687.87 36981.39 32896.73 29595.90 27888.19 20779.99 31793.61 26659.96 35396.31 30189.40 20084.34 27291.43 307
BH-w/o92.32 17091.79 16993.91 20996.85 15986.18 25199.11 11095.74 29088.13 20884.81 25197.00 18277.26 24297.91 20989.16 20698.03 11997.64 204
nrg03090.23 21488.87 22394.32 19191.53 32593.54 7098.79 14595.89 28088.12 20984.55 25494.61 24678.80 23196.88 26792.35 16875.21 32592.53 271
ETVMVS94.50 11393.90 11896.31 10997.48 13092.98 8499.07 11397.86 6088.09 21094.40 13396.90 18788.35 7797.28 25290.72 18592.25 20798.66 165
AUN-MVS90.17 21789.50 21092.19 24496.21 18882.67 31597.76 25097.53 12988.05 21191.67 17596.15 21583.10 17597.47 24288.11 21566.91 37896.43 242
D2MVS87.96 25687.39 25089.70 30791.84 31983.40 30398.31 20798.49 2288.04 21278.23 33890.26 34073.57 26296.79 27284.21 26083.53 28188.90 364
NR-MVSNet87.74 26386.00 27192.96 22891.46 32690.68 13396.65 29797.42 15288.02 21373.42 36393.68 26377.31 24195.83 32684.26 25971.82 36292.36 273
dmvs_re88.69 24688.06 24290.59 28093.83 28378.68 35295.75 32996.18 24887.99 21484.48 25696.32 21167.52 31396.94 26584.98 25085.49 26496.14 246
thres100view90093.34 14792.15 16096.90 7397.62 11994.84 4199.06 11699.36 287.96 21590.47 19996.78 19583.29 17098.75 16684.11 26390.69 23497.12 219
thres600view793.18 15292.00 16396.75 8097.62 11994.92 3699.07 11399.36 287.96 21590.47 19996.78 19583.29 17098.71 17082.93 27790.47 23896.61 234
CDS-MVSNet93.47 14093.04 14194.76 17394.75 25389.45 16798.82 13897.03 19387.91 21790.97 18996.48 20589.06 6596.36 29389.50 19792.81 19598.49 170
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMM86.95 1388.77 24388.22 23990.43 28693.61 28781.34 32998.50 18195.92 27287.88 21883.85 26195.20 23967.20 31697.89 21186.90 22884.90 26792.06 288
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpm89.67 22588.95 22291.82 25392.54 30581.43 32692.95 35895.92 27287.81 21990.50 19889.44 35484.99 14795.65 33283.67 27082.71 28898.38 176
ZD-MVS99.67 1093.28 7597.61 11287.78 22097.41 6399.16 3990.15 5499.56 10898.35 4599.70 37
TranMVSNet+NR-MVSNet87.75 26086.31 26692.07 24890.81 33488.56 19498.33 20497.18 17787.76 22181.87 29693.90 25872.45 27495.43 33883.13 27571.30 36592.23 279
PatchMatch-RL91.47 18690.54 19694.26 19398.20 10186.36 24596.94 28497.14 18087.75 22288.98 21695.75 22671.80 28299.40 13080.92 29397.39 13597.02 225
BH-RMVSNet91.25 19489.99 20395.03 16596.75 16588.55 19598.65 15894.95 32887.74 22387.74 22597.80 13768.27 30598.14 19580.53 29897.49 13298.41 173
LPG-MVS_test88.86 23788.47 23590.06 29593.35 29580.95 33698.22 21395.94 26787.73 22483.17 26796.11 21766.28 32497.77 22090.19 18985.19 26591.46 305
LGP-MVS_train90.06 29593.35 29580.95 33695.94 26787.73 22483.17 26796.11 21766.28 32497.77 22090.19 18985.19 26591.46 305
MVS_Test93.67 13792.67 14996.69 8696.72 16692.66 9197.22 27596.03 25987.69 22695.12 12194.03 25281.55 20398.28 18889.17 20596.46 15099.14 117
ITE_SJBPF87.93 33092.26 30976.44 36593.47 36487.67 22779.95 31895.49 23256.50 36397.38 24875.24 33282.33 29189.98 350
HyFIR lowres test93.68 13693.29 13594.87 16997.57 12588.04 20598.18 21798.47 2487.57 22891.24 18795.05 24085.49 13997.46 24393.22 15792.82 19399.10 123
thisisatest051594.75 10294.19 10296.43 10196.13 19792.64 9499.47 5597.60 11487.55 22993.17 15597.59 15094.71 1298.42 18288.28 21293.20 18998.24 188
TAMVS92.62 16392.09 16294.20 19694.10 26987.68 21198.41 19296.97 19987.53 23089.74 21096.04 22084.77 15396.49 28688.97 20792.31 20498.42 172
MDTV_nov1_ep13_2view91.17 11791.38 37687.45 23193.08 15786.67 11587.02 22398.95 137
WBMVS91.35 19190.49 19793.94 20796.97 15693.40 7499.27 8496.71 21087.40 23283.10 27091.76 30292.38 2796.23 30788.95 20877.89 30992.17 283
XVG-ACMP-BASELINE85.86 29184.95 28788.57 32689.90 34377.12 36294.30 34495.60 29987.40 23282.12 28892.99 28153.42 37897.66 23085.02 24983.83 27690.92 324
HPM-MVScopyleft95.41 8295.22 8095.99 12799.29 5589.14 17199.17 9597.09 18887.28 23495.40 11598.48 11684.93 14899.38 13195.64 10899.65 4099.47 88
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
无先验98.52 17797.82 6687.20 23599.90 5087.64 22099.85 30
WB-MVSnew88.69 24688.34 23689.77 30594.30 26785.99 26098.14 22097.31 16487.15 23687.85 22496.07 21969.91 29195.52 33572.83 35291.47 22587.80 372
FA-MVS(test-final)92.22 17591.08 18395.64 14096.05 19988.98 17991.60 37397.25 16686.99 23791.84 17192.12 29083.03 17699.00 15486.91 22793.91 18398.93 139
VDD-MVS91.24 19590.18 20194.45 18697.08 15285.84 26598.40 19596.10 25386.99 23793.36 15398.16 13054.27 37499.20 14196.59 8690.63 23798.31 183
WR-MVS88.54 25087.22 25592.52 23891.93 31889.50 16698.56 17497.84 6286.99 23781.87 29693.81 26074.25 25995.92 32285.29 24574.43 33492.12 285
Effi-MVS+93.87 12993.15 13896.02 12495.79 20690.76 13096.70 29695.78 28686.98 24095.71 10997.17 17379.58 22098.01 20694.57 13496.09 16099.31 103
CostFormer92.89 15892.48 15494.12 19994.99 24485.89 26292.89 35997.00 19786.98 24095.00 12390.78 32190.05 5697.51 24192.92 16291.73 21698.96 133
VPA-MVSNet89.10 23287.66 24793.45 21792.56 30491.02 12497.97 23698.32 2986.92 24286.03 24192.01 29468.84 30197.10 25990.92 17975.34 32492.23 279
MVSFormer94.71 10694.08 10796.61 9095.05 24294.87 3997.77 24796.17 24986.84 24398.04 5098.52 10985.52 13695.99 31689.83 19198.97 8698.96 133
test_djsdf88.26 25487.73 24589.84 30288.05 36882.21 31997.77 24796.17 24986.84 24382.41 28391.95 29872.07 27895.99 31689.83 19184.50 27091.32 312
AdaColmapbinary93.82 13193.06 13996.10 12099.88 189.07 17398.33 20497.55 12586.81 24590.39 20198.65 10175.09 24999.98 993.32 15697.53 13199.26 108
test_yl95.27 8694.60 9397.28 5598.53 9392.98 8499.05 11798.70 1886.76 24694.65 12997.74 14287.78 8799.44 12295.57 10992.61 19799.44 90
DCV-MVSNet95.27 8694.60 9397.28 5598.53 9392.98 8499.05 11798.70 1886.76 24694.65 12997.74 14287.78 8799.44 12295.57 10992.61 19799.44 90
mvs_anonymous92.50 16791.65 17295.06 16296.60 16889.64 16397.06 28096.44 23086.64 24884.14 25893.93 25782.49 18896.17 31091.47 17396.08 16199.35 99
thisisatest053094.00 12393.52 12795.43 14795.76 20890.02 15598.99 12497.60 11486.58 24991.74 17397.36 16194.78 1198.34 18486.37 23392.48 20097.94 199
DP-MVS Recon95.85 6695.15 8297.95 3299.87 294.38 5599.60 3997.48 14186.58 24994.42 13299.13 4787.36 9899.98 993.64 14898.33 11499.48 86
F-COLMAP92.07 17991.75 17193.02 22598.16 10482.89 31198.79 14595.97 26286.54 25187.92 22397.80 13778.69 23299.65 10185.97 23795.93 16496.53 239
Syy-MVS84.10 31984.53 29782.83 37095.14 23365.71 39797.68 25596.66 21386.52 25282.63 27596.84 19268.15 30689.89 39345.62 40891.54 22192.87 265
myMVS_eth3d88.68 24889.07 21987.50 33695.14 23379.74 34397.68 25596.66 21386.52 25282.63 27596.84 19285.22 14689.89 39369.43 36491.54 22192.87 265
PHI-MVS96.65 4096.46 4297.21 5899.34 5091.77 10499.70 2798.05 4686.48 25498.05 4999.20 3289.33 6399.96 2898.38 4399.62 4699.90 22
DeepMVS_CXcopyleft76.08 38190.74 33651.65 41490.84 39286.47 25557.89 40287.98 36235.88 40692.60 37565.77 37965.06 38383.97 397
BH-untuned91.46 18790.84 18993.33 22096.51 17384.83 28598.84 13795.50 30486.44 25683.50 26296.70 19975.49 24897.77 22086.78 23097.81 12297.40 211
CNLPA93.64 13892.74 14796.36 10798.96 7690.01 15699.19 9095.89 28086.22 25789.40 21398.85 8480.66 21599.84 6988.57 20996.92 14599.24 109
OurMVSNet-221017-084.13 31883.59 30785.77 35287.81 37070.24 39094.89 33993.65 36186.08 25876.53 34393.28 27461.41 34796.14 31280.95 29277.69 31590.93 323
testing387.75 26088.22 23986.36 34594.66 25677.41 36199.52 5097.95 5486.05 25981.12 30496.69 20086.18 12889.31 39761.65 39090.12 24092.35 276
tttt051793.30 14893.01 14294.17 19795.57 21386.47 24098.51 18097.60 11485.99 26090.55 19697.19 17194.80 1098.31 18585.06 24891.86 21297.74 201
FMVSNet388.81 24287.08 25693.99 20696.52 17294.59 5098.08 23096.20 24485.85 26182.12 28891.60 30574.05 26095.40 34079.04 30580.24 29791.99 290
HPM-MVS_fast94.89 9494.62 9295.70 13799.11 6688.44 19999.14 10497.11 18485.82 26295.69 11098.47 11783.46 16699.32 13893.16 15899.63 4599.35 99
dmvs_testset77.17 35778.99 34271.71 38687.25 37538.55 42391.44 37581.76 41485.77 26369.49 37995.94 22369.71 29584.37 40652.71 40476.82 31992.21 281
test_vis1_rt81.31 33580.05 33885.11 35591.29 32970.66 38998.98 12677.39 41885.76 26468.80 38182.40 38936.56 40599.44 12292.67 16586.55 25485.24 393
旧先验298.67 15685.75 26598.96 2098.97 15793.84 144
ab-mvs91.05 19989.17 21796.69 8695.96 20191.72 10692.62 36397.23 17085.61 26689.74 21093.89 25968.55 30299.42 12691.09 17687.84 24798.92 141
新几何197.40 5198.92 8192.51 9697.77 7785.52 26796.69 8899.06 5688.08 8499.89 5384.88 25199.62 4699.79 38
TR-MVS90.77 20389.44 21294.76 17396.31 18388.02 20697.92 23795.96 26485.52 26788.22 22297.23 16766.80 31998.09 19984.58 25592.38 20198.17 193
CP-MVSNet86.54 28085.45 28089.79 30491.02 33382.78 31497.38 26697.56 12485.37 26979.53 32493.03 27971.86 28195.25 34379.92 30073.43 34991.34 311
EU-MVSNet84.19 31684.42 30083.52 36888.64 36267.37 39696.04 31895.76 28985.29 27078.44 33593.18 27670.67 28991.48 38775.79 33075.98 32091.70 293
testdata95.26 15698.20 10187.28 22697.60 11485.21 27198.48 3599.15 4288.15 8298.72 16990.29 18899.45 5999.78 41
IterMVS-LS88.34 25187.44 24991.04 26894.10 26985.85 26498.10 22695.48 30585.12 27282.03 29291.21 31381.35 20995.63 33383.86 26875.73 32291.63 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet89.87 22389.38 21491.36 26394.32 26385.87 26397.61 25996.59 21885.10 27385.51 24797.10 17581.30 21096.56 28083.85 26983.03 28591.64 294
IterMVS85.81 29384.67 29489.22 31793.51 28983.67 30096.32 30694.80 33485.09 27478.69 33090.17 34766.57 32293.17 37079.48 30377.42 31690.81 326
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PCF-MVS89.78 591.26 19289.63 20896.16 11995.44 21891.58 11095.29 33596.10 25385.07 27582.75 27297.45 15778.28 23699.78 8780.60 29795.65 16897.12 219
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
cl2289.57 22788.79 22691.91 25097.94 11087.62 21497.98 23596.51 22585.03 27682.37 28491.79 29983.65 16296.50 28485.96 23877.89 30991.61 299
IterMVS-SCA-FT85.73 29684.64 29589.00 32293.46 29282.90 31096.27 30794.70 33785.02 27778.62 33290.35 33966.61 32093.33 36779.38 30477.36 31790.76 330
Fast-Effi-MVS+91.72 18390.79 19294.49 18395.89 20287.40 22299.54 4995.70 29285.01 27889.28 21595.68 22877.75 23997.57 24083.22 27295.06 17498.51 169
WR-MVS_H86.53 28185.49 27989.66 30991.04 33283.31 30597.53 26198.20 3584.95 27979.64 32190.90 31978.01 23895.33 34176.29 32672.81 35190.35 340
MVS93.92 12692.28 15698.83 795.69 21096.82 896.22 31298.17 3684.89 28084.34 25798.61 10679.32 22599.83 7393.88 14399.43 6199.86 29
PS-CasMVS85.81 29384.58 29689.49 31490.77 33582.11 32097.20 27697.36 16084.83 28179.12 32992.84 28267.42 31595.16 34578.39 31373.25 35091.21 317
dp90.16 21888.83 22594.14 19896.38 18186.42 24191.57 37497.06 19084.76 28288.81 21790.19 34684.29 15697.43 24675.05 33391.35 23098.56 167
UnsupCasMVSNet_eth78.90 34776.67 35285.58 35382.81 39574.94 37291.98 36896.31 23684.64 28365.84 39487.71 36451.33 38392.23 38172.89 35156.50 40089.56 357
v2v48287.27 26985.76 27491.78 25889.59 34887.58 21598.56 17495.54 30284.53 28482.51 27991.78 30073.11 26896.47 28782.07 28474.14 34091.30 313
EPP-MVSNet93.75 13393.67 12494.01 20595.86 20485.70 26798.67 15697.66 9784.46 28591.36 18597.18 17291.16 3297.79 21892.93 16193.75 18598.53 168
PEN-MVS85.21 30183.93 30589.07 32189.89 34481.31 33097.09 27997.24 16984.45 28678.66 33192.68 28568.44 30494.87 35075.98 32870.92 36691.04 321
SixPastTwentyTwo82.63 32781.58 32585.79 35188.12 36771.01 38895.17 33692.54 37284.33 28772.93 37092.08 29160.41 35295.61 33474.47 33874.15 33990.75 331
miper_ehance_all_eth88.94 23588.12 24191.40 26195.32 22386.93 23397.85 24295.55 30184.19 28881.97 29391.50 30784.16 15795.91 32384.69 25377.89 30991.36 310
eth_miper_zixun_eth87.76 25987.00 25890.06 29594.67 25582.65 31697.02 28395.37 31384.19 28881.86 29891.58 30681.47 20695.90 32483.24 27173.61 34391.61 299
XXY-MVS87.75 26086.02 27092.95 22990.46 33889.70 16297.71 25495.90 27884.02 29080.95 30594.05 24967.51 31497.10 25985.16 24678.41 30692.04 289
tpm291.77 18291.09 18293.82 21294.83 25185.56 27092.51 36497.16 17984.00 29193.83 14690.66 32787.54 9197.17 25487.73 21991.55 22098.72 158
anonymousdsp86.69 27685.75 27589.53 31186.46 38182.94 30896.39 30395.71 29183.97 29279.63 32290.70 32468.85 30095.94 31986.01 23684.02 27589.72 354
GeoE90.60 20989.56 20993.72 21595.10 23985.43 27199.41 6894.94 32983.96 29387.21 23296.83 19474.37 25697.05 26180.50 29993.73 18698.67 162
mvsany_test375.85 36174.52 36279.83 37873.53 41060.64 40291.73 37187.87 40583.91 29470.55 37582.52 38831.12 40793.66 36486.66 23162.83 38585.19 394
v14886.38 28485.06 28490.37 29089.47 35384.10 29498.52 17795.48 30583.80 29580.93 30690.22 34474.60 25296.31 30180.92 29371.55 36390.69 334
MS-PatchMatch86.75 27585.92 27289.22 31791.97 31482.47 31896.91 28596.14 25183.74 29677.73 34093.53 26958.19 35897.37 25076.75 32398.35 11387.84 370
test22298.32 9691.21 11498.08 23097.58 12083.74 29695.87 10399.02 6186.74 11299.64 4299.81 35
K. test v381.04 33679.77 33984.83 35987.41 37470.23 39195.60 33293.93 35683.70 29867.51 38889.35 35655.76 36493.58 36676.67 32468.03 37390.67 335
V4287.00 27185.68 27690.98 27089.91 34286.08 25598.32 20695.61 29883.67 29982.72 27390.67 32674.00 26196.53 28281.94 28774.28 33790.32 341
API-MVS94.78 10194.18 10496.59 9299.21 6190.06 15398.80 14197.78 7583.59 30093.85 14599.21 3183.79 16199.97 2192.37 16799.00 8499.74 50
DTE-MVSNet84.14 31782.80 31388.14 32988.95 35879.87 34296.81 28996.24 24283.50 30177.60 34192.52 28767.89 31194.24 36172.64 35369.05 37090.32 341
c3_l88.19 25587.23 25491.06 26794.97 24586.17 25297.72 25295.38 31283.43 30281.68 30091.37 30982.81 18095.72 33084.04 26673.70 34291.29 314
LFMVS92.23 17490.84 18996.42 10298.24 10091.08 12298.24 21296.22 24383.39 30394.74 12798.31 12361.12 34998.85 15994.45 13592.82 19399.32 102
LF4IMVS81.94 33181.17 33084.25 36387.23 37768.87 39593.35 35591.93 38183.35 30475.40 35293.00 28049.25 39296.65 27678.88 30878.11 30887.22 378
v114486.83 27485.31 28291.40 26189.75 34687.21 23198.31 20795.45 30783.22 30582.70 27490.78 32173.36 26396.36 29379.49 30274.69 33190.63 336
CPTT-MVS94.60 10994.43 9795.09 16199.66 1286.85 23499.44 6297.47 14383.22 30594.34 13698.96 7082.50 18799.55 10994.81 12799.50 5598.88 143
Patchmatch-RL test81.90 33280.13 33687.23 33980.71 39970.12 39284.07 40388.19 40483.16 30770.57 37482.18 39187.18 10192.59 37682.28 28362.78 38698.98 131
MVSMamba_PlusPlus95.73 7495.15 8297.44 4797.28 13994.35 5798.26 21096.75 20983.09 30897.84 5695.97 22289.59 6198.48 18097.86 5799.73 3199.49 85
ADS-MVSNet287.62 26586.88 25989.86 30196.21 18879.14 34887.15 39192.99 36683.01 30989.91 20787.27 37178.87 22992.80 37474.20 34192.27 20597.64 204
ADS-MVSNet88.99 23387.30 25294.07 20196.21 18887.56 21687.15 39196.78 20783.01 30989.91 20787.27 37178.87 22997.01 26274.20 34192.27 20597.64 204
FE-MVS91.38 19090.16 20295.05 16496.46 17587.53 21789.69 38797.84 6282.97 31192.18 16992.00 29684.07 15998.93 15880.71 29595.52 16998.68 161
GBi-Net86.67 27784.96 28591.80 25495.11 23688.81 18796.77 29095.25 31782.94 31282.12 28890.25 34162.89 34194.97 34779.04 30580.24 29791.62 296
test186.67 27784.96 28591.80 25495.11 23688.81 18796.77 29095.25 31782.94 31282.12 28890.25 34162.89 34194.97 34779.04 30580.24 29791.62 296
FMVSNet286.90 27284.79 29193.24 22195.11 23692.54 9597.67 25795.86 28482.94 31280.55 30991.17 31462.89 34195.29 34277.23 31779.71 30391.90 291
DIV-MVS_self_test87.82 25786.81 26090.87 27494.87 25085.39 27397.81 24395.22 32582.92 31580.76 30791.31 31181.99 19895.81 32781.36 28975.04 32791.42 308
cl____87.82 25786.79 26190.89 27394.88 24985.43 27197.81 24395.24 32082.91 31680.71 30891.22 31281.97 20095.84 32581.34 29075.06 32691.40 309
mmtdpeth83.69 32182.59 32086.99 34192.82 30376.98 36396.16 31591.63 38582.89 31792.41 16682.90 38654.95 37198.19 19396.27 9153.27 40485.81 386
CSCG94.87 9894.71 9195.36 14999.54 3686.49 23999.34 7798.15 4082.71 31890.15 20499.25 2689.48 6299.86 6394.97 12598.82 9599.72 53
OpenMVScopyleft85.28 1490.75 20488.84 22496.48 9893.58 28893.51 7198.80 14197.41 15382.59 31978.62 33297.49 15568.00 30999.82 7684.52 25798.55 10796.11 247
114514_t94.06 12193.05 14097.06 6299.08 6992.26 9998.97 12797.01 19682.58 32092.57 16398.22 12780.68 21499.30 13989.34 20199.02 8399.63 70
pmmvs487.58 26686.17 26991.80 25489.58 34988.92 18597.25 27295.28 31682.54 32180.49 31093.17 27775.62 24796.05 31582.75 27878.90 30490.42 339
v119286.32 28584.71 29391.17 26589.53 35186.40 24298.13 22195.44 30982.52 32282.42 28290.62 33071.58 28596.33 30077.23 31774.88 32890.79 328
test_fmvs375.09 36275.19 35874.81 38377.45 40654.08 40995.93 31990.64 39382.51 32373.29 36481.19 39422.29 41286.29 40585.50 24467.89 37484.06 396
v14419286.40 28384.89 28890.91 27189.48 35285.59 26898.21 21595.43 31082.45 32482.62 27790.58 33372.79 27396.36 29378.45 31274.04 34190.79 328
TAPA-MVS87.50 990.35 21189.05 22094.25 19498.48 9585.17 27898.42 19096.58 22182.44 32587.24 23198.53 10882.77 18198.84 16059.09 39697.88 12198.72 158
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
miper_lstm_enhance86.90 27286.20 26889.00 32294.53 25881.19 33296.74 29495.24 32082.33 32680.15 31590.51 33781.99 19894.68 35680.71 29573.58 34591.12 319
tt080586.50 28284.79 29191.63 25991.97 31481.49 32596.49 30197.38 15682.24 32782.44 28095.82 22551.22 38498.25 19084.55 25680.96 29695.13 254
v192192086.02 28884.44 29990.77 27789.32 35485.20 27698.10 22695.35 31582.19 32882.25 28690.71 32370.73 28896.30 30476.85 32274.49 33390.80 327
MVP-Stereo86.61 27985.83 27388.93 32488.70 36183.85 29896.07 31794.41 34882.15 32975.64 35191.96 29767.65 31296.45 28977.20 31998.72 10086.51 382
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
mamv491.41 18893.57 12684.91 35897.11 15058.11 40595.68 33195.93 27082.09 33089.78 20995.71 22790.09 5598.24 19197.26 6898.50 10898.38 176
v886.11 28784.45 29891.10 26689.99 34186.85 23497.24 27395.36 31481.99 33179.89 31989.86 35074.53 25496.39 29178.83 30972.32 35790.05 348
tpmvs89.16 23187.76 24493.35 21997.19 14384.75 28690.58 38597.36 16081.99 33184.56 25389.31 35783.98 16098.17 19474.85 33690.00 24197.12 219
pm-mvs184.68 30782.78 31590.40 28789.58 34985.18 27797.31 26894.73 33681.93 33376.05 34692.01 29465.48 33096.11 31378.75 31069.14 36989.91 351
v124085.77 29584.11 30290.73 27889.26 35585.15 27997.88 24095.23 32481.89 33482.16 28790.55 33569.60 29796.31 30175.59 33174.87 32990.72 333
test20.0378.51 35177.48 34781.62 37583.07 39371.03 38796.11 31692.83 36981.66 33569.31 38089.68 35257.53 35987.29 40358.65 39768.47 37186.53 381
pmmvs585.87 29084.40 30190.30 29188.53 36384.23 29198.60 16993.71 35981.53 33680.29 31392.02 29364.51 33495.52 33582.04 28678.34 30791.15 318
MIMVSNet84.48 31181.83 32392.42 24091.73 32287.36 22385.52 39494.42 34781.40 33781.91 29487.58 36551.92 38192.81 37373.84 34488.15 24697.08 223
our_test_384.47 31282.80 31389.50 31289.01 35683.90 29797.03 28194.56 34181.33 33875.36 35390.52 33671.69 28394.54 35868.81 36776.84 31890.07 346
v1085.73 29684.01 30490.87 27490.03 34086.73 23697.20 27695.22 32581.25 33979.85 32089.75 35173.30 26696.28 30576.87 32172.64 35389.61 356
CL-MVSNet_self_test79.89 34278.34 34384.54 36281.56 39775.01 37196.88 28795.62 29781.10 34075.86 34985.81 38068.49 30390.26 39163.21 38556.51 39988.35 367
ACMH+83.78 1584.21 31582.56 32189.15 31993.73 28679.16 34796.43 30294.28 35081.09 34174.00 35994.03 25254.58 37397.67 22976.10 32778.81 30590.63 336
ACMH83.09 1784.60 30882.61 31990.57 28193.18 29882.94 30896.27 30794.92 33081.01 34272.61 37293.61 26656.54 36297.79 21874.31 33981.07 29590.99 322
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PM-MVS74.88 36372.85 36680.98 37778.98 40464.75 39990.81 38285.77 40780.95 34368.23 38582.81 38729.08 40992.84 37276.54 32562.46 38885.36 391
QAPM91.41 18889.49 21197.17 6095.66 21293.42 7398.60 16997.51 13580.92 34481.39 30397.41 15972.89 27299.87 5882.33 28298.68 10198.21 190
v7n84.42 31382.75 31689.43 31588.15 36681.86 32296.75 29395.67 29580.53 34578.38 33689.43 35569.89 29296.35 29873.83 34572.13 35990.07 346
cascas90.93 20189.33 21595.76 13595.69 21093.03 8398.99 12496.59 21880.49 34686.79 23894.45 24765.23 33298.60 17493.52 15092.18 20895.66 251
KD-MVS_2432*160082.98 32580.52 33490.38 28894.32 26388.98 17992.87 36095.87 28280.46 34773.79 36087.49 36882.76 18393.29 36870.56 36046.53 41288.87 365
miper_refine_blended82.98 32580.52 33490.38 28894.32 26388.98 17992.87 36095.87 28280.46 34773.79 36087.49 36882.76 18393.29 36870.56 36046.53 41288.87 365
Baseline_NR-MVSNet85.83 29284.82 29088.87 32588.73 36083.34 30498.63 16291.66 38480.41 34982.44 28091.35 31074.63 25095.42 33984.13 26271.39 36487.84 370
Anonymous2023120680.76 33779.42 34184.79 36084.78 38772.98 38096.53 29892.97 36779.56 35074.33 35688.83 35861.27 34892.15 38260.59 39275.92 32189.24 361
DSMNet-mixed81.60 33381.43 32782.10 37384.36 38860.79 40193.63 35386.74 40679.00 35179.32 32687.15 37363.87 33789.78 39566.89 37591.92 21195.73 250
LTVRE_ROB81.71 1984.59 30982.72 31790.18 29292.89 30283.18 30693.15 35694.74 33578.99 35275.14 35492.69 28465.64 32797.63 23369.46 36381.82 29389.74 353
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ppachtmachnet_test83.63 32381.57 32689.80 30389.01 35685.09 28097.13 27894.50 34278.84 35376.14 34591.00 31669.78 29394.61 35763.40 38474.36 33589.71 355
TransMVSNet (Re)81.97 33079.61 34089.08 32089.70 34784.01 29597.26 27191.85 38278.84 35373.07 36991.62 30467.17 31795.21 34467.50 37259.46 39588.02 369
UniMVSNet_ETH3D85.65 29883.79 30691.21 26490.41 33980.75 33995.36 33395.78 28678.76 35581.83 29994.33 24849.86 38996.66 27584.30 25883.52 28296.22 245
tfpnnormal83.65 32281.35 32890.56 28391.37 32888.06 20497.29 26997.87 5978.51 35676.20 34490.91 31864.78 33396.47 28761.71 38973.50 34687.13 379
FMVSNet183.94 32081.32 32991.80 25491.94 31788.81 18796.77 29095.25 31777.98 35778.25 33790.25 34150.37 38894.97 34773.27 34877.81 31491.62 296
pmmvs-eth3d78.71 34976.16 35486.38 34480.25 40281.19 33294.17 34792.13 37877.97 35866.90 39182.31 39055.76 36492.56 37773.63 34762.31 38985.38 390
AllTest84.97 30483.12 31090.52 28496.82 16078.84 35095.89 32192.17 37677.96 35975.94 34795.50 23055.48 36699.18 14271.15 35687.14 24993.55 261
TestCases90.52 28496.82 16078.84 35092.17 37677.96 35975.94 34795.50 23055.48 36699.18 14271.15 35687.14 24993.55 261
MSDG88.29 25386.37 26594.04 20496.90 15886.15 25396.52 29994.36 34977.89 36179.22 32796.95 18469.72 29499.59 10773.20 34992.58 19996.37 244
new-patchmatchnet74.80 36472.40 36781.99 37478.36 40572.20 38494.44 34292.36 37477.06 36263.47 39679.98 39951.04 38588.85 39960.53 39354.35 40284.92 395
KD-MVS_self_test77.47 35675.88 35582.24 37181.59 39668.93 39492.83 36294.02 35577.03 36373.14 36683.39 38555.44 36890.42 39067.95 37057.53 39887.38 374
FMVSNet582.29 32880.54 33387.52 33593.79 28584.01 29593.73 35192.47 37376.92 36474.27 35786.15 37963.69 33989.24 39869.07 36674.79 33089.29 360
ttmdpeth79.80 34377.91 34585.47 35483.34 39275.75 36795.32 33491.45 38976.84 36574.81 35591.71 30353.98 37694.13 36272.42 35461.29 39086.51 382
Anonymous20240521188.84 23887.03 25794.27 19298.14 10584.18 29398.44 18895.58 30076.79 36689.34 21496.88 19053.42 37899.54 11187.53 22187.12 25199.09 124
mvs5depth78.17 35275.56 35685.97 34980.43 40176.44 36585.46 39589.24 40176.39 36778.17 33988.26 36151.73 38295.73 32969.31 36561.09 39185.73 387
VDDNet90.08 22088.54 23494.69 17794.41 26087.68 21198.21 21596.40 23176.21 36893.33 15497.75 14154.93 37298.77 16394.71 13190.96 23297.61 208
tpm cat188.89 23687.27 25393.76 21395.79 20685.32 27590.76 38397.09 18876.14 36985.72 24588.59 36082.92 17898.04 20476.96 32091.43 22697.90 200
kuosan84.40 31483.34 30887.60 33495.87 20379.21 34692.39 36596.87 20276.12 37073.79 36093.98 25581.51 20490.63 38964.13 38275.42 32392.95 264
MDA-MVSNet-bldmvs77.82 35574.75 36187.03 34088.33 36478.52 35496.34 30592.85 36875.57 37148.87 40887.89 36357.32 36192.49 37960.79 39164.80 38490.08 345
test_f71.94 36770.82 36875.30 38272.77 41153.28 41091.62 37289.66 39975.44 37264.47 39578.31 40220.48 41389.56 39678.63 31166.02 38183.05 401
TinyColmap80.42 33977.94 34487.85 33192.09 31278.58 35393.74 35089.94 39674.99 37369.77 37891.78 30046.09 39497.58 23765.17 38177.89 30987.38 374
LS3D90.19 21688.72 22794.59 18298.97 7386.33 24696.90 28696.60 21774.96 37484.06 26098.74 9175.78 24699.83 7374.93 33497.57 12897.62 207
EG-PatchMatch MVS79.92 34077.59 34686.90 34287.06 37877.90 36096.20 31494.06 35474.61 37566.53 39288.76 35940.40 40396.20 30867.02 37483.66 28086.61 380
TDRefinement78.01 35375.31 35786.10 34870.06 41373.84 37693.59 35491.58 38774.51 37673.08 36891.04 31549.63 39197.12 25674.88 33559.47 39487.33 376
RPSCF85.33 30085.55 27884.67 36194.63 25762.28 40093.73 35193.76 35774.38 37785.23 25097.06 17864.09 33598.31 18580.98 29186.08 26093.41 263
MDA-MVSNet_test_wron79.65 34477.05 34987.45 33787.79 37280.13 34096.25 31094.44 34373.87 37851.80 40687.47 37068.04 30892.12 38366.02 37767.79 37590.09 344
YYNet179.64 34577.04 35087.43 33887.80 37179.98 34196.23 31194.44 34373.83 37951.83 40587.53 36667.96 31092.07 38466.00 37867.75 37690.23 343
dongtai81.36 33480.61 33283.62 36794.25 26873.32 37995.15 33796.81 20473.56 38069.79 37792.81 28381.00 21286.80 40452.08 40570.06 36890.75 331
Anonymous2024052178.63 35076.90 35183.82 36582.82 39472.86 38195.72 33093.57 36273.55 38172.17 37384.79 38249.69 39092.51 37865.29 38074.50 33286.09 385
MIMVSNet175.92 36073.30 36583.81 36681.29 39875.57 36992.26 36692.05 37973.09 38267.48 38986.18 37840.87 40287.64 40255.78 40070.68 36788.21 368
Patchmatch-test86.25 28684.06 30392.82 23094.42 25982.88 31282.88 40694.23 35171.58 38379.39 32590.62 33089.00 6796.42 29063.03 38691.37 22999.16 115
COLMAP_ROBcopyleft82.69 1884.54 31082.82 31289.70 30796.72 16678.85 34995.89 32192.83 36971.55 38477.54 34295.89 22459.40 35599.14 14867.26 37388.26 24591.11 320
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WB-MVS66.44 37166.29 37466.89 39174.84 40744.93 41893.00 35784.09 41271.15 38555.82 40381.63 39263.79 33880.31 41321.85 41750.47 40975.43 404
PatchT85.44 29983.19 30992.22 24293.13 29983.00 30783.80 40596.37 23370.62 38690.55 19679.63 40084.81 15194.87 35058.18 39891.59 21898.79 153
DP-MVS88.75 24486.56 26395.34 15198.92 8187.45 22097.64 25893.52 36370.55 38781.49 30197.25 16674.43 25599.88 5471.14 35894.09 18198.67 162
new_pmnet76.02 35973.71 36382.95 36983.88 39072.85 38291.26 37892.26 37570.44 38862.60 39781.37 39347.64 39392.32 38061.85 38872.10 36083.68 398
N_pmnet70.19 36869.87 37071.12 38888.24 36530.63 42795.85 32628.70 42670.18 38968.73 38286.55 37764.04 33693.81 36353.12 40373.46 34788.94 363
UnsupCasMVSNet_bld73.85 36570.14 36984.99 35779.44 40375.73 36888.53 38895.24 32070.12 39061.94 39874.81 40541.41 40193.62 36568.65 36851.13 40885.62 388
SSC-MVS65.42 37265.20 37566.06 39273.96 40843.83 41992.08 36783.54 41369.77 39154.73 40480.92 39663.30 34079.92 41420.48 41848.02 41174.44 405
JIA-IIPM85.97 28984.85 28989.33 31693.23 29773.68 37785.05 39897.13 18269.62 39291.56 17968.03 40888.03 8596.96 26377.89 31593.12 19097.34 213
Patchmtry83.61 32481.64 32489.50 31293.36 29482.84 31384.10 40294.20 35269.47 39379.57 32386.88 37584.43 15494.78 35368.48 36974.30 33690.88 325
test_040278.81 34876.33 35386.26 34691.18 33078.44 35595.88 32391.34 39068.55 39470.51 37689.91 34952.65 38094.99 34647.14 40779.78 30285.34 392
CMPMVSbinary58.40 2180.48 33880.11 33781.59 37685.10 38659.56 40394.14 34895.95 26668.54 39560.71 39993.31 27255.35 36997.87 21383.06 27684.85 26887.33 376
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
gg-mvs-nofinetune90.00 22187.71 24696.89 7796.15 19294.69 4885.15 39797.74 7968.32 39692.97 15960.16 41096.10 496.84 26893.89 14298.87 9399.14 117
pmmvs679.90 34177.31 34887.67 33384.17 38978.13 35795.86 32593.68 36067.94 39772.67 37189.62 35350.98 38695.75 32874.80 33766.04 38089.14 362
OpenMVS_ROBcopyleft73.86 2077.99 35475.06 36086.77 34383.81 39177.94 35996.38 30491.53 38867.54 39868.38 38387.13 37443.94 39696.08 31455.03 40181.83 29286.29 384
test_vis3_rt61.29 37458.75 37768.92 39067.41 41452.84 41291.18 38059.23 42566.96 39941.96 41358.44 41311.37 42194.72 35574.25 34057.97 39759.20 412
Anonymous2023121184.72 30682.65 31890.91 27197.71 11684.55 28897.28 27096.67 21266.88 40079.18 32890.87 32058.47 35796.60 27782.61 28074.20 33891.59 301
Anonymous2024052987.66 26485.58 27793.92 20897.59 12385.01 28198.13 22197.13 18266.69 40188.47 22096.01 22155.09 37099.51 11387.00 22484.12 27497.23 218
ANet_high50.71 38246.17 38564.33 39444.27 42452.30 41376.13 41178.73 41664.95 40227.37 41755.23 41414.61 41967.74 41736.01 41318.23 41772.95 407
RPMNet85.07 30381.88 32294.64 18093.47 29086.24 24784.97 39997.21 17264.85 40390.76 19378.80 40180.95 21399.27 14053.76 40292.17 20998.41 173
pmmvs372.86 36669.76 37182.17 37273.86 40974.19 37594.20 34689.01 40264.23 40467.72 38680.91 39741.48 40088.65 40062.40 38754.02 40383.68 398
MVStest176.56 35873.43 36485.96 35086.30 38380.88 33894.26 34591.74 38361.98 40558.53 40189.96 34869.30 29891.47 38859.26 39549.56 41085.52 389
MVS-HIRNet79.01 34675.13 35990.66 27993.82 28481.69 32485.16 39693.75 35854.54 40674.17 35859.15 41257.46 36096.58 27963.74 38394.38 17893.72 260
APD_test168.93 37066.98 37374.77 38480.62 40053.15 41187.97 38985.01 40953.76 40759.26 40087.52 36725.19 41089.95 39256.20 39967.33 37781.19 402
PMMVS258.97 37755.07 38070.69 38962.72 41755.37 40885.97 39380.52 41549.48 40845.94 40968.31 40715.73 41880.78 41149.79 40637.12 41475.91 403
FPMVS61.57 37360.32 37665.34 39360.14 42042.44 42191.02 38189.72 39844.15 40942.63 41280.93 39519.02 41480.59 41242.50 40972.76 35273.00 406
testf156.38 37853.73 38164.31 39564.84 41545.11 41680.50 40875.94 42038.87 41042.74 41075.07 40311.26 42281.19 40941.11 41053.27 40466.63 409
APD_test256.38 37853.73 38164.31 39564.84 41545.11 41680.50 40875.94 42038.87 41042.74 41075.07 40311.26 42281.19 40941.11 41053.27 40466.63 409
LCM-MVSNet60.07 37656.37 37871.18 38754.81 42248.67 41582.17 40789.48 40037.95 41249.13 40769.12 40613.75 42081.76 40759.28 39451.63 40783.10 400
Gipumacopyleft54.77 38052.22 38462.40 39786.50 38059.37 40450.20 41590.35 39536.52 41341.20 41449.49 41518.33 41681.29 40832.10 41465.34 38246.54 415
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method70.10 36968.66 37274.41 38586.30 38355.84 40794.47 34189.82 39735.18 41466.15 39384.75 38330.54 40877.96 41570.40 36260.33 39389.44 358
PMVScopyleft41.42 2345.67 38342.50 38655.17 39934.28 42532.37 42566.24 41378.71 41730.72 41522.04 42059.59 4114.59 42477.85 41627.49 41558.84 39655.29 413
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN41.02 38540.93 38741.29 40161.97 41833.83 42484.00 40465.17 42327.17 41627.56 41646.72 41717.63 41760.41 42019.32 41918.82 41629.61 416
EMVS39.96 38639.88 38840.18 40259.57 42132.12 42684.79 40164.57 42426.27 41726.14 41844.18 42018.73 41559.29 42117.03 42017.67 41829.12 417
MVEpermissive44.00 2241.70 38437.64 38953.90 40049.46 42343.37 42065.09 41466.66 42226.19 41825.77 41948.53 4163.58 42663.35 41926.15 41627.28 41554.97 414
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt53.66 38152.86 38356.05 39832.75 42641.97 42273.42 41276.12 41921.91 41939.68 41596.39 20942.59 39965.10 41878.00 31414.92 41961.08 411
wuyk23d16.71 38916.73 39316.65 40360.15 41925.22 42841.24 4165.17 4276.56 4205.48 4233.61 4233.64 42522.72 42215.20 4219.52 4201.99 420
testmvs18.81 38823.05 3916.10 4054.48 4272.29 43097.78 2453.00 4283.27 42118.60 42162.71 4091.53 4282.49 42414.26 4221.80 42113.50 419
test12316.58 39019.47 3927.91 4043.59 4285.37 42994.32 3431.39 4292.49 42213.98 42244.60 4192.91 4272.65 42311.35 4230.57 42215.70 418
EGC-MVSNET60.70 37555.37 37976.72 38086.35 38271.08 38689.96 38684.44 4110.38 4231.50 42484.09 38437.30 40488.10 40140.85 41273.44 34870.97 408
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k22.52 38730.03 3900.00 4060.00 4290.00 4310.00 41797.17 1780.00 4240.00 42598.77 8874.35 2570.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas6.87 3929.16 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42482.48 1890.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re8.21 39110.94 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42598.50 1110.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS79.74 34367.75 371
MSC_two_6792asdad99.51 299.61 2498.60 297.69 9099.98 999.55 1399.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 9099.98 999.55 1399.83 1599.96 10
eth-test20.00 429
eth-test0.00 429
OPU-MVS99.49 499.64 1798.51 499.77 1899.19 3395.12 899.97 2199.90 199.92 399.99 1
test_0728_SECOND98.77 899.66 1296.37 1499.72 2497.68 9299.98 999.64 899.82 1999.96 10
GSMVS98.84 146
test_part299.54 3695.42 2298.13 44
sam_mvs188.39 7698.84 146
sam_mvs87.08 104
ambc79.60 37972.76 41256.61 40676.20 41092.01 38068.25 38480.23 39823.34 41194.73 35473.78 34660.81 39287.48 373
MTGPAbinary97.45 146
test_post190.74 38441.37 42185.38 14396.36 29383.16 273
test_post46.00 41887.37 9597.11 257
patchmatchnet-post84.86 38188.73 7296.81 270
GG-mvs-BLEND96.98 6996.53 17194.81 4487.20 39097.74 7993.91 14496.40 20796.56 296.94 26595.08 12098.95 8999.20 113
MTMP99.21 8891.09 391
test9_res98.60 3399.87 999.90 22
agg_prior297.84 5999.87 999.91 21
agg_prior99.54 3692.66 9197.64 10597.98 5399.61 105
test_prior492.00 10199.41 68
test_prior97.01 6499.58 3091.77 10497.57 12399.49 11599.79 38
新几何298.26 210
旧先验198.97 7392.90 8997.74 7999.15 4291.05 3699.33 6599.60 73
原ACMM298.69 153
testdata299.88 5484.16 261
segment_acmp90.56 45
test1297.83 3599.33 5394.45 5297.55 12597.56 5988.60 7499.50 11499.71 3699.55 77
plane_prior793.84 28185.73 266
plane_prior693.92 27886.02 25972.92 270
plane_prior596.30 23797.75 22693.46 15386.17 25892.67 269
plane_prior496.52 203
plane_prior193.90 280
n20.00 430
nn0.00 430
door-mid84.90 410
lessismore_v085.08 35685.59 38569.28 39390.56 39467.68 38790.21 34554.21 37595.46 33773.88 34362.64 38790.50 338
test1197.68 92
door85.30 408
HQP5-MVS86.39 243
BP-MVS93.82 146
HQP4-MVS87.57 22697.77 22092.72 267
HQP3-MVS96.37 23386.29 255
HQP2-MVS73.34 264
NP-MVS93.94 27786.22 24996.67 201
ACMMP++_ref82.64 289
ACMMP++83.83 276
Test By Simon83.62 163