This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
DeepPCF-MVS93.56 196.55 4097.84 1092.68 22698.71 8578.11 34899.70 2797.71 8598.18 197.36 6399.76 190.37 4899.94 3499.27 1699.54 5399.99 1
MM97.76 1097.39 1998.86 598.30 9396.83 799.81 1299.13 997.66 298.29 4098.96 6885.84 12699.90 5099.72 398.80 9299.85 30
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2797.98 5397.18 395.96 9599.33 1992.62 25100.00 198.99 2599.93 199.98 6
MVS_030497.53 1497.15 2298.67 1197.30 13096.52 1299.60 3998.88 1497.14 497.21 6798.94 7486.89 10199.91 4599.43 1598.91 8799.59 71
test_fmvsm_n_192097.08 2797.55 1495.67 13397.94 10589.61 16199.93 298.48 2497.08 599.08 1599.13 4688.17 7299.93 3899.11 2399.06 7697.47 200
CNVR-MVS98.46 198.38 198.72 999.80 496.19 1599.80 1697.99 5297.05 699.41 499.59 292.89 24100.00 198.99 2599.90 799.96 10
test_fmvsmvis_n_192095.47 7395.40 7195.70 13194.33 25190.22 14099.70 2796.98 19396.80 792.75 15298.89 8082.46 18499.92 4098.36 4098.33 10896.97 217
fmvsm_l_conf0.5_n97.65 1397.72 1297.41 4697.51 12192.78 8599.85 898.05 4696.78 899.60 199.23 2690.42 4699.92 4099.55 1298.50 10499.55 72
test_vis1_n_192093.08 14893.42 12192.04 23996.31 17479.36 33699.83 1096.06 24696.72 998.53 3398.10 12958.57 34299.91 4597.86 5598.79 9596.85 219
fmvsm_l_conf0.5_n_a97.70 1297.80 1197.42 4597.59 11792.91 8399.86 598.04 4896.70 1099.58 299.26 2190.90 3799.94 3499.57 1198.66 9999.40 87
test_fmvsmconf_n96.78 3496.84 2996.61 8595.99 19090.25 13799.90 398.13 4296.68 1198.42 3598.92 7685.34 13699.88 5499.12 2299.08 7499.70 52
DPM-MVS97.86 897.25 2199.68 198.25 9499.10 199.76 2197.78 7396.61 1298.15 4299.53 793.62 16100.00 191.79 16299.80 2699.94 18
EPNet96.82 3296.68 3497.25 5398.65 8693.10 7599.48 5498.76 1596.54 1397.84 5598.22 12487.49 8499.66 9495.35 10397.78 11999.00 121
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
NCCC98.12 598.11 398.13 2499.76 694.46 4899.81 1297.88 5796.54 1398.84 2599.46 1092.55 2699.98 998.25 4699.93 199.94 18
test_fmvsmconf0.1_n95.94 5995.79 6296.40 10092.42 29489.92 15399.79 1796.85 19796.53 1597.22 6698.67 9982.71 17799.84 6998.92 2798.98 8199.43 86
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2499.61 2494.45 4998.85 13697.64 10396.51 1695.88 9899.39 1887.35 9199.99 596.61 7999.69 3699.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_cas_vis1_n_192093.86 12293.74 11494.22 18895.39 21186.08 24799.73 2396.07 24596.38 1797.19 7097.78 13665.46 31799.86 6396.71 7498.92 8696.73 221
DELS-MVS97.12 2596.60 3598.68 1098.03 10396.57 1199.84 997.84 6196.36 1895.20 11398.24 12388.17 7299.83 7396.11 8899.60 4999.64 62
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet97.00 2896.49 3698.55 1298.86 8096.10 1699.83 1097.52 13195.90 1997.21 6798.90 7882.66 17899.93 3898.71 2998.80 9299.63 64
PS-MVSNAJ96.87 3196.40 3998.29 1997.35 12897.29 599.03 12097.11 17995.83 2098.97 2099.14 4482.48 18199.60 10398.60 3399.08 7498.00 187
test_fmvsmconf0.01_n94.14 11293.51 11896.04 11786.79 36789.19 16599.28 8595.94 25595.70 2195.50 10798.49 11273.27 25499.79 8298.28 4598.32 11099.15 109
save fliter99.34 5093.85 6299.65 3697.63 10795.69 22
fmvsm_s_conf0.5_n96.19 4996.49 3695.30 14697.37 12789.16 16699.86 598.47 2595.68 2398.87 2399.15 4182.44 18599.92 4099.14 2197.43 12896.83 220
HPM-MVS++copyleft97.72 1197.59 1398.14 2399.53 4094.76 4299.19 9197.75 7695.66 2498.21 4199.29 2091.10 3299.99 597.68 5799.87 999.68 56
bld_raw_dy_0_6491.37 18189.75 19596.23 10797.51 12190.58 13299.16 9788.98 38795.64 2587.18 22299.20 3057.19 34998.66 16598.00 5084.86 25899.46 81
iter_conf05_1194.23 11093.49 11996.46 9497.51 12191.32 10899.96 194.31 33595.62 2699.32 899.22 2757.79 34598.59 17098.00 5099.64 4099.46 81
CANet_DTU94.31 10993.35 12397.20 5597.03 14994.71 4498.62 16295.54 28895.61 2797.21 6798.47 11571.88 26799.84 6988.38 20197.46 12797.04 214
IU-MVS99.63 1895.38 2297.73 8095.54 2899.54 399.69 699.81 2399.99 1
xiu_mvs_v2_base96.66 3696.17 4898.11 2797.11 14596.96 699.01 12397.04 18695.51 2998.86 2499.11 5282.19 18999.36 13098.59 3598.14 11298.00 187
fmvsm_s_conf0.5_n_a95.97 5696.19 4395.31 14596.51 16589.01 17299.81 1298.39 2795.46 3099.19 1499.16 3881.44 19999.91 4598.83 2896.97 13797.01 216
MSP-MVS97.77 998.18 296.53 9299.54 3690.14 14299.41 6997.70 8695.46 3098.60 3099.19 3295.71 499.49 11298.15 4899.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
patch_mono-297.10 2697.97 894.49 17599.21 6183.73 29099.62 3898.25 3295.28 3299.38 698.91 7792.28 2799.94 3499.61 999.22 7199.78 38
test_fmvs192.35 16192.94 13690.57 27297.19 13775.43 35799.55 4594.97 31395.20 3396.82 8097.57 14959.59 34099.84 6997.30 6398.29 11196.46 231
TSAR-MVS + GP.96.95 2996.91 2697.07 5798.88 7991.62 10299.58 4296.54 21495.09 3496.84 7798.63 10391.16 3099.77 8599.04 2496.42 14599.81 33
test_fmvs1_n91.07 18791.41 16790.06 28694.10 25774.31 36199.18 9394.84 31794.81 3596.37 9097.46 15350.86 37299.82 7697.14 6697.90 11496.04 238
fmvsm_s_conf0.1_n95.56 7295.68 6595.20 14994.35 25089.10 16899.50 5297.67 9494.76 3698.68 2899.03 5881.13 20299.86 6398.63 3297.36 13096.63 223
MSLP-MVS++97.50 1797.45 1797.63 3899.65 1693.21 7299.70 2798.13 4294.61 3797.78 5699.46 1089.85 5499.81 7997.97 5299.91 699.88 26
PC_three_145294.60 3899.41 499.12 4895.50 799.96 2899.84 299.92 399.97 7
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2199.29 8297.72 8194.50 3998.64 2999.54 393.32 1899.97 2199.58 1099.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
fmvsm_s_conf0.1_n_a95.16 8295.15 7795.18 15092.06 30088.94 17699.29 8297.53 12794.46 4098.98 1998.99 6279.99 20799.85 6798.24 4796.86 13996.73 221
TSAR-MVS + MP.97.44 1897.46 1697.39 4899.12 6593.49 6998.52 17397.50 13694.46 4098.99 1898.64 10191.58 2999.08 14898.49 3799.83 1599.60 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MG-MVS97.24 2096.83 3198.47 1599.79 595.71 1899.07 11499.06 1094.45 4296.42 8998.70 9788.81 6499.74 8895.35 10399.86 1299.97 7
test_vis1_n90.40 19990.27 18990.79 26791.55 31076.48 35399.12 11094.44 32994.31 4397.34 6496.95 18143.60 38399.42 12397.57 5997.60 12196.47 230
PAPM96.35 4395.94 5497.58 4094.10 25795.25 2498.93 13098.17 3794.26 4493.94 13598.72 9389.68 5697.88 20296.36 8499.29 6899.62 66
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2599.77 1897.72 8194.17 4599.30 999.54 393.32 1899.98 999.70 499.81 2399.99 1
test_241102_TWO97.72 8194.17 4599.23 1199.54 393.14 2399.98 999.70 499.82 1999.99 1
test_241102_ONE99.63 1895.24 2597.72 8194.16 4799.30 999.49 993.32 1899.98 9
CLD-MVS91.06 18890.71 18392.10 23794.05 26186.10 24699.55 4596.29 23094.16 4784.70 24397.17 17069.62 28397.82 20694.74 11886.08 25092.39 261
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SteuartSystems-ACMMP97.25 1997.34 2097.01 6097.38 12691.46 10699.75 2297.66 9594.14 4998.13 4399.26 2192.16 2899.66 9497.91 5499.64 4099.90 22
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3099.72 2497.47 14193.95 5099.07 1699.46 1093.18 2199.97 2199.64 799.82 1999.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.66 1295.20 3099.77 1897.70 8693.95 5099.35 799.54 393.18 21
HQP-NCC93.95 26299.16 9793.92 5287.57 215
ACMP_Plane93.95 26299.16 9793.92 5287.57 215
HQP-MVS91.50 17691.23 17092.29 23193.95 26286.39 23499.16 9796.37 22393.92 5287.57 21596.67 19773.34 25197.77 21093.82 13586.29 24592.72 256
DeepC-MVS91.02 494.56 10493.92 10996.46 9497.16 14090.76 12698.39 19597.11 17993.92 5288.66 20798.33 11978.14 22399.85 6795.02 11198.57 10298.78 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_111021_HR96.69 3596.69 3396.72 8098.58 8891.00 12199.14 10699.45 193.86 5695.15 11498.73 9188.48 6799.76 8697.23 6599.56 5199.40 87
h-mvs3392.47 16091.95 15694.05 19697.13 14385.01 27398.36 19798.08 4493.85 5796.27 9196.73 19483.19 16599.43 12295.81 9268.09 36197.70 193
hse-mvs291.67 17591.51 16592.15 23696.22 17882.61 30897.74 24597.53 12793.85 5796.27 9196.15 21083.19 16597.44 23595.81 9266.86 36896.40 233
lupinMVS96.32 4595.94 5497.44 4495.05 23194.87 3699.86 596.50 21693.82 5998.04 4998.77 8785.52 12898.09 19096.98 7098.97 8299.37 90
plane_prior86.07 24999.14 10693.81 6086.26 247
SD-MVS97.51 1697.40 1897.81 3499.01 7293.79 6399.33 7997.38 15493.73 6198.83 2699.02 6090.87 3999.88 5498.69 3099.74 2999.77 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CS-MVS-test95.98 5596.34 4194.90 16098.06 10287.66 20499.69 3496.10 24293.66 6298.35 3999.05 5686.28 11797.66 22096.96 7198.90 8899.37 90
plane_prior385.91 25393.65 6386.99 223
PVSNet_Blended95.94 5995.66 6696.75 7698.77 8391.61 10399.88 498.04 4893.64 6494.21 13097.76 13783.50 15699.87 5897.41 6197.75 12098.79 145
APDe-MVScopyleft97.53 1497.47 1597.70 3699.58 3093.63 6499.56 4497.52 13193.59 6598.01 5199.12 4890.80 4099.55 10699.26 1799.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
jason95.40 7794.86 8497.03 5992.91 28994.23 5499.70 2796.30 22793.56 6696.73 8398.52 10881.46 19897.91 19996.08 8998.47 10698.96 125
jason: jason.
MVS_111021_LR95.78 6595.94 5495.28 14798.19 9887.69 20198.80 14299.26 793.39 6795.04 11698.69 9884.09 15099.76 8696.96 7199.06 7698.38 168
HQP_MVS91.26 18290.95 17692.16 23593.84 26986.07 24999.02 12196.30 22793.38 6886.99 22396.52 19972.92 25797.75 21693.46 14286.17 24892.67 258
plane_prior299.02 12193.38 68
ETV-MVS96.00 5396.00 5396.00 12096.56 16191.05 11999.63 3796.61 20693.26 7097.39 6298.30 12186.62 10898.13 18798.07 4997.57 12298.82 142
test_one_060199.59 2894.89 3497.64 10393.14 7198.93 2299.45 1493.45 17
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2299.55 4597.68 9093.01 7299.23 1199.45 1495.12 899.98 999.25 1899.92 399.97 7
test_0728_THIRD93.01 7299.07 1699.46 1094.66 1399.97 2199.25 1899.82 1999.95 15
xiu_mvs_v1_base_debu94.73 9593.98 10496.99 6295.19 21795.24 2598.62 16296.50 21692.99 7497.52 5898.83 8472.37 26299.15 14197.03 6796.74 14096.58 226
xiu_mvs_v1_base94.73 9593.98 10496.99 6295.19 21795.24 2598.62 16296.50 21692.99 7497.52 5898.83 8472.37 26299.15 14197.03 6796.74 14096.58 226
xiu_mvs_v1_base_debi94.73 9593.98 10496.99 6295.19 21795.24 2598.62 16296.50 21692.99 7497.52 5898.83 8472.37 26299.15 14197.03 6796.74 14096.58 226
EPNet_dtu92.28 16492.15 15192.70 22597.29 13284.84 27598.64 16097.82 6592.91 7793.02 15097.02 17885.48 13395.70 32072.25 34494.89 16897.55 199
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OPM-MVS89.76 21489.15 20891.57 25190.53 32485.58 26198.11 21995.93 25892.88 7886.05 23196.47 20267.06 30497.87 20389.29 19586.08 25091.26 306
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
mvsany_test194.57 10395.09 8092.98 21795.84 19482.07 31298.76 14895.24 30692.87 7996.45 8898.71 9684.81 14399.15 14197.68 5795.49 16397.73 192
CS-MVS95.75 6896.19 4394.40 17997.88 10786.22 24199.66 3596.12 24192.69 8098.07 4798.89 8087.09 9597.59 22696.71 7498.62 10099.39 89
MTAPA96.09 5195.80 6196.96 6799.29 5591.19 11197.23 26797.45 14492.58 8194.39 12899.24 2586.43 11599.99 596.22 8599.40 6399.71 51
EIA-MVS95.11 8395.27 7494.64 17296.34 17386.51 22999.59 4196.62 20592.51 8294.08 13398.64 10186.05 12298.24 18495.07 11098.50 10499.18 107
CHOSEN 280x42096.80 3396.85 2896.66 8497.85 10894.42 5194.76 32898.36 2992.50 8395.62 10697.52 15097.92 197.38 23898.31 4498.80 9298.20 181
testdata197.89 23392.43 84
PAPR96.35 4395.82 5897.94 3199.63 1894.19 5699.42 6897.55 12392.43 8493.82 13999.12 4887.30 9299.91 4594.02 12999.06 7699.74 47
HY-MVS88.56 795.29 7994.23 9498.48 1497.72 11096.41 1394.03 33698.74 1692.42 8695.65 10594.76 23886.52 11299.49 11295.29 10592.97 18499.53 74
XVS96.47 4196.37 4096.77 7499.62 2290.66 13099.43 6697.58 11892.41 8796.86 7598.96 6887.37 8799.87 5895.65 9499.43 6099.78 38
X-MVStestdata90.69 19688.66 21996.77 7499.62 2290.66 13099.43 6697.58 11892.41 8796.86 7529.59 40787.37 8799.87 5895.65 9499.43 6099.78 38
UGNet91.91 17290.85 17895.10 15297.06 14788.69 18598.01 22898.24 3492.41 8792.39 15793.61 25960.52 33799.68 9288.14 20497.25 13196.92 218
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
iter_conf0593.48 13293.18 12994.39 18297.15 14194.17 5799.30 8192.97 35392.38 9086.70 22995.42 22695.67 596.59 26794.67 12184.32 26492.39 261
WTY-MVS95.97 5695.11 7998.54 1397.62 11496.65 999.44 6398.74 1692.25 9195.21 11298.46 11786.56 11199.46 11895.00 11392.69 18899.50 78
OMC-MVS93.90 12093.62 11694.73 16898.63 8787.00 22398.04 22796.56 21292.19 9292.46 15598.73 9179.49 21399.14 14592.16 15994.34 17398.03 186
ET-MVSNet_ETH3D92.56 15891.45 16695.88 12596.39 17194.13 5899.46 6096.97 19492.18 9366.94 37698.29 12294.65 1494.28 34994.34 12683.82 27199.24 102
CHOSEN 1792x268894.35 10893.82 11295.95 12397.40 12588.74 18498.41 18898.27 3192.18 9391.43 17296.40 20378.88 21699.81 7993.59 13897.81 11699.30 97
PVSNet_Blended_VisFu94.67 9994.11 9996.34 10497.14 14291.10 11699.32 8097.43 14992.10 9591.53 17196.38 20683.29 16299.68 9293.42 14496.37 14698.25 175
Effi-MVS+-dtu89.97 21290.68 18487.81 32495.15 22171.98 37197.87 23695.40 29791.92 9687.57 21591.44 29774.27 24596.84 25789.45 18993.10 18394.60 247
EI-MVSNet-Vis-set95.76 6795.63 7096.17 11299.14 6490.33 13598.49 17997.82 6591.92 9694.75 12098.88 8287.06 9799.48 11695.40 10297.17 13598.70 152
canonicalmvs95.02 8693.96 10798.20 2197.53 12095.92 1798.71 15096.19 23691.78 9895.86 10098.49 11279.53 21299.03 14996.12 8791.42 21999.66 60
EI-MVSNet-UG-set95.43 7495.29 7395.86 12699.07 7089.87 15498.43 18597.80 7091.78 9894.11 13298.77 8786.25 11999.48 11694.95 11596.45 14498.22 179
diffmvspermissive94.59 10294.19 9695.81 12795.54 20490.69 12898.70 15295.68 28091.61 10095.96 9597.81 13380.11 20698.06 19296.52 8295.76 15898.67 154
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive92.64 15491.85 15795.03 15795.12 22488.23 19198.48 18196.81 19891.61 10092.16 16097.22 16571.58 27298.00 19885.85 23297.81 11698.88 135
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator87.35 1193.17 14691.77 16097.37 4995.41 20993.07 7698.82 13997.85 6091.53 10282.56 26897.58 14871.97 26699.82 7691.01 16899.23 7099.22 105
alignmvs95.77 6695.00 8298.06 2897.35 12895.68 1999.71 2697.50 13691.50 10396.16 9398.61 10586.28 11799.00 15096.19 8691.74 20799.51 77
EC-MVSNet95.09 8495.17 7694.84 16395.42 20888.17 19299.48 5495.92 25991.47 10497.34 6498.36 11882.77 17397.41 23797.24 6498.58 10198.94 130
PVSNet_BlendedMVS93.36 13893.20 12893.84 20398.77 8391.61 10399.47 5698.04 4891.44 10594.21 13092.63 27883.50 15699.87 5897.41 6183.37 27590.05 337
test_prior299.57 4391.43 10698.12 4598.97 6490.43 4598.33 4299.81 23
PVSNet87.13 1293.69 12692.83 13896.28 10697.99 10490.22 14099.38 7298.93 1291.42 10793.66 14197.68 14271.29 27499.64 10087.94 20797.20 13298.98 123
3Dnovator+87.72 893.43 13591.84 15898.17 2295.73 19895.08 3298.92 13297.04 18691.42 10781.48 29397.60 14674.60 23999.79 8290.84 17198.97 8299.64 62
FOURS199.50 4288.94 17699.55 4597.47 14191.32 10998.12 45
PMMVS93.62 13193.90 11092.79 22196.79 15681.40 31998.85 13696.81 19891.25 11096.82 8098.15 12877.02 22998.13 18793.15 14896.30 14998.83 141
IB-MVS89.43 692.12 16890.83 18195.98 12295.40 21090.78 12599.81 1298.06 4591.23 11185.63 23693.66 25890.63 4298.78 15691.22 16571.85 35198.36 171
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
baseline93.91 11993.30 12595.72 13095.10 22890.07 14697.48 25695.91 26491.03 11293.54 14397.68 14279.58 21098.02 19694.27 12795.14 16699.08 117
mvsmamba89.99 21189.42 20291.69 24990.64 32386.34 23798.40 19192.27 36291.01 11384.80 24294.93 23376.12 23196.51 27492.81 15383.84 26892.21 271
casdiffmvspermissive93.98 11793.43 12095.61 13695.07 23089.86 15598.80 14295.84 27290.98 11492.74 15397.66 14479.71 20998.10 18994.72 11995.37 16498.87 137
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net93.30 14092.62 14295.34 14396.27 17688.53 18995.88 31496.97 19490.90 11595.37 11097.07 17482.38 18699.10 14783.91 25794.86 16998.38 168
test111192.12 16891.19 17194.94 15996.15 18387.36 21498.12 21794.84 31790.85 11690.97 17997.26 16165.60 31598.37 17689.74 18797.14 13699.07 119
test250694.80 9294.21 9596.58 8896.41 16992.18 9598.01 22898.96 1190.82 11793.46 14497.28 15985.92 12398.45 17489.82 18497.19 13399.12 113
ECVR-MVScopyleft92.29 16391.33 16895.15 15196.41 16987.84 19998.10 22094.84 31790.82 11791.42 17497.28 15965.61 31498.49 17390.33 17897.19 13399.12 113
dcpmvs_295.67 7096.18 4594.12 19298.82 8184.22 28397.37 26095.45 29390.70 11995.77 10298.63 10390.47 4498.68 16499.20 2099.22 7199.45 83
ACMMP_NAP96.59 3896.18 4597.81 3498.82 8193.55 6698.88 13597.59 11690.66 12097.98 5299.14 4486.59 109100.00 196.47 8399.46 5699.89 25
mPP-MVS95.90 6195.75 6396.38 10199.58 3089.41 16499.26 8697.41 15190.66 12094.82 11898.95 7186.15 12199.98 995.24 10799.64 4099.74 47
PAPM_NR95.43 7495.05 8196.57 9099.42 4790.14 14298.58 17097.51 13390.65 12292.44 15698.90 7887.77 8199.90 5090.88 17099.32 6599.68 56
MP-MVScopyleft96.00 5395.82 5896.54 9199.47 4690.13 14499.36 7697.41 15190.64 12395.49 10898.95 7185.51 13099.98 996.00 9199.59 5099.52 75
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testing1195.33 7894.98 8396.37 10297.20 13592.31 9299.29 8297.68 9090.59 12494.43 12597.20 16690.79 4198.60 16895.25 10692.38 19398.18 182
casdiffmvs_mvgpermissive94.00 11593.33 12496.03 11895.22 21590.90 12499.09 11295.99 24890.58 12591.55 17097.37 15779.91 20898.06 19295.01 11295.22 16599.13 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
region2R96.30 4696.17 4896.70 8199.70 790.31 13699.46 6097.66 9590.55 12697.07 7299.07 5386.85 10299.97 2195.43 10199.74 2999.81 33
HFP-MVS96.42 4296.26 4296.90 6999.69 890.96 12299.47 5697.81 6890.54 12796.88 7499.05 5687.57 8299.96 2895.65 9499.72 3199.78 38
ACMMPR96.28 4796.14 5296.73 7899.68 990.47 13499.47 5697.80 7090.54 12796.83 7999.03 5886.51 11399.95 3195.65 9499.72 3199.75 46
test_fmvs285.10 29385.45 27184.02 35089.85 33365.63 38498.49 17992.59 35890.45 12985.43 23993.32 26443.94 38196.59 26790.81 17284.19 26589.85 341
SR-MVS96.13 5096.16 5096.07 11699.42 4789.04 17098.59 16897.33 15890.44 13096.84 7799.12 4886.75 10499.41 12697.47 6099.44 5999.76 45
EPMVS92.59 15791.59 16395.59 13797.22 13490.03 15091.78 35698.04 4890.42 13191.66 16690.65 31686.49 11497.46 23381.78 27896.31 14899.28 99
ACMMPcopyleft94.67 9994.30 9295.79 12899.25 5788.13 19498.41 18898.67 2290.38 13291.43 17298.72 9382.22 18899.95 3193.83 13495.76 15899.29 98
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
VNet95.08 8594.26 9397.55 4398.07 10193.88 6198.68 15498.73 1890.33 13397.16 7197.43 15579.19 21599.53 10996.91 7391.85 20599.24 102
test-LLR93.11 14792.68 14094.40 17994.94 23687.27 21899.15 10397.25 16190.21 13491.57 16794.04 24484.89 14197.58 22785.94 22996.13 15198.36 171
test0.0.03 188.96 22488.61 22090.03 29091.09 31784.43 28098.97 12897.02 19090.21 13480.29 30396.31 20884.89 14191.93 37372.98 34085.70 25393.73 249
train_agg97.20 2397.08 2397.57 4299.57 3393.17 7399.38 7297.66 9590.18 13698.39 3699.18 3590.94 3599.66 9498.58 3699.85 1399.88 26
test_899.55 3593.07 7699.37 7597.64 10390.18 13698.36 3899.19 3290.94 3599.64 100
131493.44 13491.98 15597.84 3295.24 21394.38 5296.22 30497.92 5590.18 13682.28 27697.71 14177.63 22699.80 8191.94 16198.67 9899.34 94
CVMVSNet90.30 20290.91 17788.46 32094.32 25273.58 36597.61 25397.59 11690.16 13988.43 21097.10 17276.83 23092.86 35982.64 26993.54 17998.93 131
MVSTER92.71 15292.32 14693.86 20297.29 13292.95 8299.01 12396.59 20890.09 14085.51 23794.00 24894.61 1596.56 27090.77 17483.03 27792.08 278
APD-MVScopyleft96.95 2996.72 3297.63 3899.51 4193.58 6599.16 9797.44 14790.08 14198.59 3199.07 5389.06 6099.42 12397.92 5399.66 3799.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS96.22 4896.15 5196.42 9899.67 1089.62 16099.70 2797.61 11090.07 14296.00 9499.16 3887.43 8599.92 4096.03 9099.72 3199.70 52
SCA90.64 19789.25 20694.83 16494.95 23588.83 18096.26 30197.21 16790.06 14390.03 19590.62 31866.61 30696.81 25983.16 26394.36 17298.84 138
testing9994.88 8894.45 8996.17 11297.20 13591.91 9799.20 9097.66 9589.95 14493.68 14097.06 17590.28 5098.50 17193.52 13991.54 21398.12 184
testing9194.88 8894.44 9096.21 10897.19 13791.90 9899.23 8897.66 9589.91 14593.66 14197.05 17790.21 5198.50 17193.52 13991.53 21698.25 175
baseline294.04 11493.80 11394.74 16793.07 28890.25 13798.12 21798.16 3989.86 14686.53 23096.95 18195.56 698.05 19491.44 16494.53 17095.93 239
baseline192.61 15691.28 16996.58 8897.05 14894.63 4697.72 24696.20 23489.82 14788.56 20896.85 18886.85 10297.82 20688.42 20080.10 29397.30 204
PVSNet_083.28 1687.31 25985.16 27493.74 20694.78 24184.59 27898.91 13398.69 2189.81 14878.59 32493.23 26861.95 33199.34 13494.75 11755.72 38897.30 204
ZNCC-MVS96.09 5195.81 6096.95 6899.42 4791.19 11199.55 4597.53 12789.72 14995.86 10098.94 7486.59 10999.97 2195.13 10899.56 5199.68 56
GST-MVS95.97 5695.66 6696.90 6999.49 4591.22 10999.45 6297.48 13989.69 15095.89 9798.72 9386.37 11699.95 3194.62 12399.22 7199.52 75
GA-MVS90.10 20888.69 21894.33 18392.44 29387.97 19899.08 11396.26 23189.65 15186.92 22593.11 27168.09 29396.96 25282.54 27190.15 22998.05 185
SR-MVS-dyc-post95.75 6895.86 5795.41 14199.22 5987.26 22098.40 19197.21 16789.63 15296.67 8598.97 6486.73 10699.36 13096.62 7799.31 6699.60 67
RE-MVS-def95.70 6499.22 5987.26 22098.40 19197.21 16789.63 15296.67 8598.97 6485.24 13796.62 7799.31 6699.60 67
SF-MVS97.22 2296.92 2598.12 2699.11 6694.88 3599.44 6397.45 14489.60 15498.70 2799.42 1790.42 4699.72 8998.47 3899.65 3899.77 43
MDTV_nov1_ep1390.47 18896.14 18588.55 18791.34 36397.51 13389.58 15592.24 15890.50 32686.99 10097.61 22577.64 30692.34 195
TEST999.57 3393.17 7399.38 7297.66 9589.57 15698.39 3699.18 3590.88 3899.66 94
PatchmatchNetpermissive92.05 17191.04 17495.06 15496.17 18289.04 17091.26 36497.26 16089.56 15790.64 18590.56 32288.35 6997.11 24679.53 29196.07 15599.03 120
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SMA-MVScopyleft97.24 2096.99 2498.00 2999.30 5494.20 5599.16 9797.65 10289.55 15899.22 1399.52 890.34 4999.99 598.32 4399.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
UWE-MVS93.18 14493.40 12292.50 22996.56 16183.55 29298.09 22397.84 6189.50 15991.72 16496.23 20991.08 3396.70 26386.28 22493.33 18097.26 206
sss94.85 9193.94 10897.58 4096.43 16894.09 5998.93 13099.16 889.50 15995.27 11197.85 13181.50 19699.65 9892.79 15494.02 17598.99 122
ACMP87.39 1088.71 23688.24 22990.12 28593.91 26781.06 32798.50 17795.67 28189.43 16180.37 30295.55 22265.67 31297.83 20590.55 17684.51 26091.47 295
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
9.1496.87 2799.34 5099.50 5297.49 13889.41 16298.59 3199.43 1689.78 5599.69 9198.69 3099.62 45
RRT_MVS88.91 22688.56 22389.93 29190.31 32781.61 31698.08 22496.38 22289.30 16382.41 27394.84 23673.15 25596.04 30590.38 17782.23 28492.15 274
thres20093.69 12692.59 14396.97 6697.76 10994.74 4399.35 7799.36 289.23 16491.21 17896.97 18083.42 15998.77 15785.08 23790.96 22297.39 202
testing22294.48 10694.00 10395.95 12397.30 13092.27 9398.82 13997.92 5589.20 16594.82 11897.26 16187.13 9497.32 24191.95 16091.56 21198.25 175
PGM-MVS95.85 6295.65 6896.45 9699.50 4289.77 15798.22 20798.90 1389.19 16696.74 8298.95 7185.91 12599.92 4093.94 13099.46 5699.66 60
TESTMET0.1,193.82 12393.26 12795.49 13895.21 21690.25 13799.15 10397.54 12689.18 16791.79 16294.87 23589.13 5997.63 22386.21 22596.29 15098.60 158
UniMVSNet (Re)89.50 21988.32 22893.03 21592.21 29790.96 12298.90 13498.39 2789.13 16883.22 25592.03 28381.69 19496.34 29086.79 21972.53 34491.81 283
FIs90.70 19589.87 19493.18 21392.29 29591.12 11498.17 21398.25 3289.11 16983.44 25494.82 23782.26 18796.17 29987.76 20882.76 27992.25 267
tpmrst92.78 15192.16 15094.65 17096.27 17687.45 21191.83 35597.10 18289.10 17094.68 12290.69 31388.22 7197.73 21889.78 18591.80 20698.77 148
CDPH-MVS96.56 3996.18 4597.70 3699.59 2893.92 6099.13 10997.44 14789.02 17197.90 5499.22 2788.90 6399.49 11294.63 12299.79 2799.68 56
原ACMM196.18 11099.03 7190.08 14597.63 10788.98 17297.00 7398.97 6488.14 7599.71 9088.23 20399.62 4598.76 149
XVG-OURS90.83 19290.49 18791.86 24195.23 21481.25 32395.79 31995.92 25988.96 17390.02 19698.03 13071.60 27199.35 13391.06 16787.78 23894.98 245
MP-MVS-pluss95.80 6495.30 7297.29 5098.95 7692.66 8698.59 16897.14 17588.95 17493.12 14899.25 2385.62 12799.94 3496.56 8199.48 5599.28 99
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test-mter93.27 14292.89 13794.40 17994.94 23687.27 21899.15 10397.25 16188.95 17491.57 16794.04 24488.03 7797.58 22785.94 22996.13 15198.36 171
APD-MVS_3200maxsize95.64 7195.65 6895.62 13599.24 5887.80 20098.42 18697.22 16688.93 17696.64 8798.98 6385.49 13199.36 13096.68 7699.27 6999.70 52
CR-MVSNet88.83 23187.38 24293.16 21493.47 27886.24 23984.97 38494.20 33888.92 17790.76 18386.88 36184.43 14694.82 34170.64 34892.17 20198.41 165
DU-MVS88.83 23187.51 23992.79 22191.46 31290.07 14698.71 15097.62 10988.87 17883.21 25693.68 25674.63 23795.93 31086.95 21572.47 34592.36 263
FC-MVSNet-test90.22 20489.40 20392.67 22791.78 30789.86 15597.89 23398.22 3588.81 17982.96 26194.66 23981.90 19395.96 30885.89 23182.52 28292.20 273
USDC84.74 29682.93 30190.16 28491.73 30883.54 29395.00 32693.30 35188.77 18073.19 35293.30 26653.62 36397.65 22275.88 31981.54 28789.30 348
testgi82.29 31781.00 32086.17 33787.24 36474.84 36097.39 25791.62 37288.63 18175.85 33995.42 22646.07 38091.55 37466.87 36479.94 29492.12 276
VPNet88.30 24386.57 25393.49 20891.95 30391.35 10798.18 21197.20 17188.61 18284.52 24694.89 23462.21 33096.76 26289.34 19272.26 34892.36 263
miper_enhance_ethall90.33 20189.70 19692.22 23297.12 14488.93 17898.35 19895.96 25288.60 18383.14 26092.33 28087.38 8696.18 29886.49 22277.89 30291.55 293
IS-MVSNet93.00 14992.51 14494.49 17596.14 18587.36 21498.31 20295.70 27888.58 18490.17 19397.50 15183.02 16997.22 24387.06 21296.07 15598.90 134
PS-MVSNAJss89.54 21889.05 21091.00 26088.77 34784.36 28197.39 25795.97 25088.47 18581.88 28693.80 25482.48 18196.50 27589.34 19283.34 27692.15 274
jajsoiax87.35 25886.51 25589.87 29287.75 36181.74 31497.03 27495.98 24988.47 18580.15 30593.80 25461.47 33296.36 28489.44 19084.47 26291.50 294
Fast-Effi-MVS+-dtu88.84 22988.59 22289.58 30293.44 28178.18 34698.65 15894.62 32688.46 18784.12 25095.37 22868.91 28596.52 27382.06 27591.70 20994.06 248
tfpn200view993.43 13592.27 14896.90 6997.68 11294.84 3899.18 9399.36 288.45 18890.79 18196.90 18483.31 16098.75 15984.11 25390.69 22497.12 209
thres40093.39 13792.27 14896.73 7897.68 11294.84 3899.18 9399.36 288.45 18890.79 18196.90 18483.31 16098.75 15984.11 25390.69 22496.61 224
LCM-MVSNet-Re88.59 24088.61 22088.51 31995.53 20572.68 36996.85 28188.43 38888.45 18873.14 35390.63 31775.82 23294.38 34892.95 14995.71 16098.48 163
PLCcopyleft91.07 394.23 11094.01 10294.87 16199.17 6387.49 20999.25 8796.55 21388.43 19191.26 17698.21 12685.92 12399.86 6389.77 18697.57 12297.24 207
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
XVG-OURS-SEG-HR90.95 19090.66 18591.83 24295.18 22081.14 32695.92 31195.92 25988.40 19290.33 19297.85 13170.66 27799.38 12892.83 15288.83 23494.98 245
UniMVSNet_NR-MVSNet89.60 21688.55 22492.75 22392.17 29890.07 14698.74 14998.15 4088.37 19383.21 25693.98 24982.86 17195.93 31086.95 21572.47 34592.25 267
MAR-MVS94.43 10794.09 10095.45 13999.10 6887.47 21098.39 19597.79 7288.37 19394.02 13499.17 3778.64 22199.91 4592.48 15698.85 9098.96 125
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
SDMVSNet91.09 18689.91 19394.65 17096.80 15490.54 13397.78 24097.81 6888.34 19585.73 23395.26 22966.44 30998.26 18294.25 12886.75 24295.14 242
sd_testset89.23 22088.05 23492.74 22496.80 15485.33 26695.85 31797.03 18888.34 19585.73 23395.26 22961.12 33597.76 21585.61 23386.75 24295.14 242
Vis-MVSNet (Re-imp)93.26 14393.00 13594.06 19596.14 18586.71 22898.68 15496.70 20188.30 19789.71 20197.64 14585.43 13496.39 28288.06 20696.32 14799.08 117
1112_ss92.71 15291.55 16496.20 10995.56 20391.12 11498.48 18194.69 32488.29 19886.89 22698.50 11087.02 9898.66 16584.75 24289.77 23298.81 143
Test_1112_low_res92.27 16590.97 17596.18 11095.53 20591.10 11698.47 18394.66 32588.28 19986.83 22793.50 26387.00 9998.65 16784.69 24389.74 23398.80 144
gm-plane-assit94.69 24388.14 19388.22 20097.20 16698.29 18090.79 173
mvs_tets87.09 26186.22 25889.71 29887.87 35781.39 32096.73 28895.90 26588.19 20179.99 30793.61 25959.96 33996.31 29289.40 19184.34 26391.43 298
BH-w/o92.32 16291.79 15993.91 20196.85 15186.18 24399.11 11195.74 27688.13 20284.81 24197.00 17977.26 22897.91 19989.16 19798.03 11397.64 194
nrg03090.23 20388.87 21394.32 18491.53 31193.54 6798.79 14695.89 26788.12 20384.55 24594.61 24078.80 21996.88 25692.35 15875.21 31692.53 260
ETVMVS94.50 10593.90 11096.31 10597.48 12492.98 7999.07 11497.86 5988.09 20494.40 12796.90 18488.35 6997.28 24290.72 17592.25 19998.66 157
AUN-MVS90.17 20689.50 19992.19 23496.21 17982.67 30697.76 24497.53 12788.05 20591.67 16596.15 21083.10 16797.47 23288.11 20566.91 36796.43 232
D2MVS87.96 24787.39 24189.70 29991.84 30683.40 29498.31 20298.49 2388.04 20678.23 32890.26 32873.57 24996.79 26184.21 25083.53 27388.90 353
NR-MVSNet87.74 25486.00 26292.96 21891.46 31290.68 12996.65 29097.42 15088.02 20773.42 35093.68 25677.31 22795.83 31684.26 24971.82 35292.36 263
dmvs_re88.69 23788.06 23390.59 27193.83 27178.68 34295.75 32096.18 23787.99 20884.48 24796.32 20767.52 29996.94 25484.98 24085.49 25496.14 236
thres100view90093.34 13992.15 15196.90 6997.62 11494.84 3899.06 11799.36 287.96 20990.47 18996.78 19283.29 16298.75 15984.11 25390.69 22497.12 209
thres600view793.18 14492.00 15496.75 7697.62 11494.92 3399.07 11499.36 287.96 20990.47 18996.78 19283.29 16298.71 16382.93 26790.47 22896.61 224
CDS-MVSNet93.47 13393.04 13394.76 16594.75 24289.45 16398.82 13997.03 18887.91 21190.97 17996.48 20189.06 6096.36 28489.50 18892.81 18798.49 162
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMM86.95 1388.77 23488.22 23090.43 27793.61 27581.34 32198.50 17795.92 25987.88 21283.85 25295.20 23167.20 30297.89 20186.90 21884.90 25792.06 279
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpm89.67 21588.95 21291.82 24392.54 29281.43 31892.95 34595.92 25987.81 21390.50 18889.44 34184.99 13995.65 32183.67 26082.71 28098.38 168
ZD-MVS99.67 1093.28 7197.61 11087.78 21497.41 6199.16 3890.15 5299.56 10598.35 4199.70 35
TranMVSNet+NR-MVSNet87.75 25186.31 25792.07 23890.81 32088.56 18698.33 19997.18 17287.76 21581.87 28793.90 25172.45 26195.43 32783.13 26571.30 35592.23 269
PatchMatch-RL91.47 17790.54 18694.26 18698.20 9686.36 23696.94 27797.14 17587.75 21688.98 20595.75 22071.80 26999.40 12780.92 28397.39 12997.02 215
BH-RMVSNet91.25 18489.99 19295.03 15796.75 15788.55 18798.65 15894.95 31487.74 21787.74 21497.80 13468.27 29198.14 18680.53 28897.49 12698.41 165
LPG-MVS_test88.86 22888.47 22690.06 28693.35 28380.95 32898.22 20795.94 25587.73 21883.17 25896.11 21266.28 31097.77 21090.19 18085.19 25591.46 296
LGP-MVS_train90.06 28693.35 28380.95 32895.94 25587.73 21883.17 25896.11 21266.28 31097.77 21090.19 18085.19 25591.46 296
MVS_Test93.67 12992.67 14196.69 8296.72 15892.66 8697.22 26896.03 24787.69 22095.12 11594.03 24681.55 19598.28 18189.17 19696.46 14399.14 110
ITE_SJBPF87.93 32292.26 29676.44 35493.47 35087.67 22179.95 30895.49 22556.50 35197.38 23875.24 32282.33 28389.98 339
HyFIR lowres test93.68 12893.29 12694.87 16197.57 11988.04 19698.18 21198.47 2587.57 22291.24 17795.05 23285.49 13197.46 23393.22 14692.82 18599.10 115
thisisatest051594.75 9494.19 9696.43 9796.13 18892.64 8999.47 5697.60 11287.55 22393.17 14797.59 14794.71 1298.42 17588.28 20293.20 18198.24 178
TAMVS92.62 15592.09 15394.20 18994.10 25787.68 20298.41 18896.97 19487.53 22489.74 19996.04 21584.77 14596.49 27788.97 19892.31 19698.42 164
MDTV_nov1_ep13_2view91.17 11391.38 36287.45 22593.08 14986.67 10787.02 21398.95 129
XVG-ACMP-BASELINE85.86 28284.95 27888.57 31889.90 33177.12 35294.30 33295.60 28587.40 22682.12 27992.99 27453.42 36497.66 22085.02 23983.83 26990.92 314
HPM-MVScopyleft95.41 7695.22 7595.99 12199.29 5589.14 16799.17 9697.09 18387.28 22795.40 10998.48 11484.93 14099.38 12895.64 9899.65 3899.47 80
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
无先验98.52 17397.82 6587.20 22899.90 5087.64 21099.85 30
WB-MVSnew88.69 23788.34 22789.77 29794.30 25685.99 25298.14 21497.31 15987.15 22987.85 21396.07 21469.91 27895.52 32472.83 34291.47 21787.80 361
FA-MVS(test-final)92.22 16791.08 17395.64 13496.05 18988.98 17391.60 35997.25 16186.99 23091.84 16192.12 28183.03 16899.00 15086.91 21793.91 17698.93 131
VDD-MVS91.24 18590.18 19094.45 17897.08 14685.84 25798.40 19196.10 24286.99 23093.36 14598.16 12754.27 36199.20 13896.59 8090.63 22798.31 174
WR-MVS88.54 24187.22 24692.52 22891.93 30589.50 16298.56 17197.84 6186.99 23081.87 28793.81 25374.25 24695.92 31285.29 23574.43 32592.12 276
Effi-MVS+93.87 12193.15 13096.02 11995.79 19590.76 12696.70 28995.78 27386.98 23395.71 10397.17 17079.58 21098.01 19794.57 12496.09 15399.31 96
CostFormer92.89 15092.48 14594.12 19294.99 23385.89 25492.89 34697.00 19286.98 23395.00 11790.78 30990.05 5397.51 23192.92 15191.73 20898.96 125
VPA-MVSNet89.10 22287.66 23893.45 20992.56 29191.02 12097.97 23198.32 3086.92 23586.03 23292.01 28568.84 28797.10 24890.92 16975.34 31592.23 269
MVSFormer94.71 9894.08 10196.61 8595.05 23194.87 3697.77 24296.17 23886.84 23698.04 4998.52 10885.52 12895.99 30689.83 18298.97 8298.96 125
test_djsdf88.26 24587.73 23689.84 29488.05 35682.21 31097.77 24296.17 23886.84 23682.41 27391.95 28972.07 26595.99 30689.83 18284.50 26191.32 303
AdaColmapbinary93.82 12393.06 13196.10 11599.88 189.07 16998.33 19997.55 12386.81 23890.39 19198.65 10075.09 23699.98 993.32 14597.53 12599.26 101
test_yl95.27 8094.60 8797.28 5198.53 8992.98 7999.05 11898.70 1986.76 23994.65 12397.74 13987.78 7999.44 11995.57 9992.61 18999.44 84
DCV-MVSNet95.27 8094.60 8797.28 5198.53 8992.98 7999.05 11898.70 1986.76 23994.65 12397.74 13987.78 7999.44 11995.57 9992.61 18999.44 84
mvs_anonymous92.50 15991.65 16295.06 15496.60 16089.64 15997.06 27396.44 22086.64 24184.14 24993.93 25082.49 18096.17 29991.47 16396.08 15499.35 92
thisisatest053094.00 11593.52 11795.43 14095.76 19790.02 15198.99 12597.60 11286.58 24291.74 16397.36 15894.78 1198.34 17786.37 22392.48 19297.94 189
DP-MVS Recon95.85 6295.15 7797.95 3099.87 294.38 5299.60 3997.48 13986.58 24294.42 12699.13 4687.36 9099.98 993.64 13798.33 10899.48 79
F-COLMAP92.07 17091.75 16193.02 21698.16 9982.89 30298.79 14695.97 25086.54 24487.92 21297.80 13478.69 22099.65 9885.97 22795.93 15796.53 229
Syy-MVS84.10 30984.53 28882.83 35595.14 22265.71 38397.68 24996.66 20386.52 24582.63 26596.84 18968.15 29289.89 37945.62 39391.54 21392.87 254
myMVS_eth3d88.68 23989.07 20987.50 32795.14 22279.74 33497.68 24996.66 20386.52 24582.63 26596.84 18985.22 13889.89 37969.43 35391.54 21392.87 254
PHI-MVS96.65 3796.46 3897.21 5499.34 5091.77 9999.70 2798.05 4686.48 24798.05 4899.20 3089.33 5899.96 2898.38 3999.62 4599.90 22
DeepMVS_CXcopyleft76.08 36690.74 32251.65 39990.84 37786.47 24857.89 38787.98 34835.88 39192.60 36365.77 36765.06 37283.97 382
BH-untuned91.46 17890.84 17993.33 21196.51 16584.83 27698.84 13895.50 29086.44 24983.50 25396.70 19575.49 23597.77 21086.78 22097.81 11697.40 201
CNLPA93.64 13092.74 13996.36 10398.96 7590.01 15299.19 9195.89 26786.22 25089.40 20298.85 8380.66 20599.84 6988.57 19996.92 13899.24 102
OurMVSNet-221017-084.13 30883.59 29885.77 34087.81 35870.24 37694.89 32793.65 34786.08 25176.53 33293.28 26761.41 33396.14 30180.95 28277.69 30790.93 313
testing387.75 25188.22 23086.36 33594.66 24577.41 35199.52 5197.95 5486.05 25281.12 29596.69 19686.18 12089.31 38361.65 37790.12 23092.35 266
tttt051793.30 14093.01 13494.17 19095.57 20286.47 23198.51 17697.60 11285.99 25390.55 18697.19 16894.80 1098.31 17885.06 23891.86 20497.74 191
FMVSNet388.81 23387.08 24793.99 19996.52 16494.59 4798.08 22496.20 23485.85 25482.12 27991.60 29474.05 24795.40 32979.04 29580.24 29091.99 281
HPM-MVS_fast94.89 8794.62 8695.70 13199.11 6688.44 19099.14 10697.11 17985.82 25595.69 10498.47 11583.46 15899.32 13593.16 14799.63 4499.35 92
dmvs_testset77.17 34378.99 33071.71 37187.25 36338.55 40891.44 36181.76 39985.77 25669.49 36595.94 21769.71 28284.37 39152.71 39076.82 31192.21 271
test_vis1_rt81.31 32380.05 32685.11 34291.29 31570.66 37598.98 12777.39 40385.76 25768.80 36782.40 37436.56 39099.44 11992.67 15586.55 24485.24 378
旧先验298.67 15685.75 25898.96 2198.97 15293.84 133
ab-mvs91.05 18989.17 20796.69 8295.96 19191.72 10192.62 35097.23 16585.61 25989.74 19993.89 25268.55 28899.42 12391.09 16687.84 23798.92 133
新几何197.40 4798.92 7792.51 9197.77 7585.52 26096.69 8499.06 5588.08 7699.89 5384.88 24199.62 4599.79 36
TR-MVS90.77 19389.44 20194.76 16596.31 17488.02 19797.92 23295.96 25285.52 26088.22 21197.23 16466.80 30598.09 19084.58 24592.38 19398.17 183
CP-MVSNet86.54 27185.45 27189.79 29691.02 31982.78 30597.38 25997.56 12285.37 26279.53 31493.03 27271.86 26895.25 33279.92 29073.43 33991.34 302
EU-MVSNet84.19 30684.42 29183.52 35388.64 35067.37 38296.04 30995.76 27585.29 26378.44 32593.18 26970.67 27691.48 37575.79 32075.98 31291.70 284
testdata95.26 14898.20 9687.28 21797.60 11285.21 26498.48 3499.15 4188.15 7498.72 16290.29 17999.45 5899.78 38
IterMVS-LS88.34 24287.44 24091.04 25994.10 25785.85 25698.10 22095.48 29185.12 26582.03 28391.21 30281.35 20095.63 32283.86 25875.73 31491.63 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet89.87 21389.38 20491.36 25494.32 25285.87 25597.61 25396.59 20885.10 26685.51 23797.10 17281.30 20196.56 27083.85 25983.03 27791.64 285
IterMVS85.81 28484.67 28589.22 30993.51 27783.67 29196.32 29894.80 32085.09 26778.69 32090.17 33566.57 30893.17 35879.48 29377.42 30890.81 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PCF-MVS89.78 591.26 18289.63 19796.16 11495.44 20791.58 10595.29 32496.10 24285.07 26882.75 26297.45 15478.28 22299.78 8480.60 28795.65 16197.12 209
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
cl2289.57 21788.79 21691.91 24097.94 10587.62 20597.98 23096.51 21585.03 26982.37 27591.79 29083.65 15496.50 27585.96 22877.89 30291.61 290
IterMVS-SCA-FT85.73 28784.64 28689.00 31493.46 28082.90 30196.27 29994.70 32385.02 27078.62 32290.35 32766.61 30693.33 35579.38 29477.36 30990.76 320
Fast-Effi-MVS+91.72 17490.79 18294.49 17595.89 19287.40 21399.54 5095.70 27885.01 27189.28 20495.68 22177.75 22597.57 23083.22 26295.06 16798.51 161
WR-MVS_H86.53 27285.49 27089.66 30191.04 31883.31 29697.53 25598.20 3684.95 27279.64 31190.90 30778.01 22495.33 33076.29 31672.81 34190.35 329
MVS93.92 11892.28 14798.83 795.69 19996.82 896.22 30498.17 3784.89 27384.34 24898.61 10579.32 21499.83 7393.88 13299.43 6099.86 29
PS-CasMVS85.81 28484.58 28789.49 30690.77 32182.11 31197.20 26997.36 15684.83 27479.12 31992.84 27567.42 30195.16 33478.39 30373.25 34091.21 307
dp90.16 20788.83 21594.14 19196.38 17286.42 23291.57 36097.06 18584.76 27588.81 20690.19 33484.29 14897.43 23675.05 32391.35 22198.56 159
UnsupCasMVSNet_eth78.90 33476.67 33985.58 34182.81 38174.94 35991.98 35496.31 22684.64 27665.84 38087.71 35051.33 36892.23 36972.89 34156.50 38789.56 346
v2v48287.27 26085.76 26591.78 24889.59 33687.58 20698.56 17195.54 28884.53 27782.51 26991.78 29173.11 25696.47 27882.07 27474.14 33191.30 304
EPP-MVSNet93.75 12593.67 11594.01 19895.86 19385.70 25998.67 15697.66 9584.46 27891.36 17597.18 16991.16 3097.79 20892.93 15093.75 17798.53 160
PEN-MVS85.21 29283.93 29689.07 31389.89 33281.31 32297.09 27297.24 16484.45 27978.66 32192.68 27768.44 29094.87 33975.98 31870.92 35691.04 311
SixPastTwentyTwo82.63 31681.58 31485.79 33988.12 35571.01 37495.17 32592.54 35984.33 28072.93 35792.08 28260.41 33895.61 32374.47 32874.15 33090.75 321
miper_ehance_all_eth88.94 22588.12 23291.40 25295.32 21286.93 22497.85 23795.55 28784.19 28181.97 28491.50 29684.16 14995.91 31384.69 24377.89 30291.36 301
eth_miper_zixun_eth87.76 25087.00 24990.06 28694.67 24482.65 30797.02 27695.37 29984.19 28181.86 28991.58 29581.47 19795.90 31483.24 26173.61 33491.61 290
XXY-MVS87.75 25186.02 26192.95 21990.46 32589.70 15897.71 24895.90 26584.02 28380.95 29694.05 24367.51 30097.10 24885.16 23678.41 29992.04 280
tpm291.77 17391.09 17293.82 20494.83 24085.56 26292.51 35197.16 17484.00 28493.83 13890.66 31587.54 8397.17 24487.73 20991.55 21298.72 150
anonymousdsp86.69 26785.75 26689.53 30386.46 36982.94 29996.39 29595.71 27783.97 28579.63 31290.70 31268.85 28695.94 30986.01 22684.02 26789.72 343
GeoE90.60 19889.56 19893.72 20795.10 22885.43 26399.41 6994.94 31583.96 28687.21 22196.83 19174.37 24397.05 25080.50 28993.73 17898.67 154
mvsany_test375.85 34674.52 34879.83 36373.53 39560.64 38891.73 35787.87 39083.91 28770.55 36282.52 37331.12 39293.66 35286.66 22162.83 37485.19 379
v14886.38 27585.06 27590.37 28189.47 34184.10 28598.52 17395.48 29183.80 28880.93 29790.22 33274.60 23996.31 29280.92 28371.55 35390.69 323
MS-PatchMatch86.75 26685.92 26389.22 30991.97 30182.47 30996.91 27896.14 24083.74 28977.73 32993.53 26258.19 34497.37 24076.75 31398.35 10787.84 359
test22298.32 9291.21 11098.08 22497.58 11883.74 28995.87 9999.02 6086.74 10599.64 4099.81 33
K. test v381.04 32479.77 32784.83 34587.41 36270.23 37795.60 32293.93 34283.70 29167.51 37489.35 34355.76 35293.58 35476.67 31468.03 36290.67 324
V4287.00 26285.68 26790.98 26189.91 33086.08 24798.32 20195.61 28483.67 29282.72 26390.67 31474.00 24896.53 27281.94 27774.28 32890.32 330
API-MVS94.78 9394.18 9896.59 8799.21 6190.06 14998.80 14297.78 7383.59 29393.85 13799.21 2983.79 15399.97 2192.37 15799.00 8099.74 47
DTE-MVSNet84.14 30782.80 30388.14 32188.95 34679.87 33396.81 28296.24 23283.50 29477.60 33092.52 27967.89 29794.24 35072.64 34369.05 35990.32 330
c3_l88.19 24687.23 24591.06 25894.97 23486.17 24497.72 24695.38 29883.43 29581.68 29191.37 29882.81 17295.72 31984.04 25673.70 33391.29 305
LFMVS92.23 16690.84 17996.42 9898.24 9591.08 11898.24 20696.22 23383.39 29694.74 12198.31 12061.12 33598.85 15494.45 12592.82 18599.32 95
LF4IMVS81.94 32081.17 31984.25 34987.23 36568.87 38193.35 34291.93 36983.35 29775.40 34193.00 27349.25 37796.65 26578.88 29878.11 30187.22 367
v114486.83 26585.31 27391.40 25289.75 33487.21 22298.31 20295.45 29383.22 29882.70 26490.78 30973.36 25096.36 28479.49 29274.69 32290.63 325
CPTT-MVS94.60 10194.43 9195.09 15399.66 1286.85 22599.44 6397.47 14183.22 29894.34 12998.96 6882.50 17999.55 10694.81 11699.50 5498.88 135
Patchmatch-RL test81.90 32180.13 32487.23 33080.71 38570.12 37884.07 38888.19 38983.16 30070.57 36182.18 37687.18 9392.59 36482.28 27362.78 37598.98 123
ADS-MVSNet287.62 25686.88 25089.86 29396.21 17979.14 33887.15 37792.99 35283.01 30189.91 19787.27 35778.87 21792.80 36274.20 33192.27 19797.64 194
ADS-MVSNet88.99 22387.30 24394.07 19496.21 17987.56 20787.15 37796.78 20083.01 30189.91 19787.27 35778.87 21797.01 25174.20 33192.27 19797.64 194
FE-MVS91.38 18090.16 19195.05 15696.46 16787.53 20889.69 37397.84 6182.97 30392.18 15992.00 28784.07 15198.93 15380.71 28595.52 16298.68 153
GBi-Net86.67 26884.96 27691.80 24495.11 22588.81 18196.77 28395.25 30382.94 30482.12 27990.25 32962.89 32794.97 33679.04 29580.24 29091.62 287
test186.67 26884.96 27691.80 24495.11 22588.81 18196.77 28395.25 30382.94 30482.12 27990.25 32962.89 32794.97 33679.04 29580.24 29091.62 287
FMVSNet286.90 26384.79 28293.24 21295.11 22592.54 9097.67 25195.86 27182.94 30480.55 30091.17 30362.89 32795.29 33177.23 30779.71 29691.90 282
DIV-MVS_self_test87.82 24886.81 25190.87 26594.87 23985.39 26597.81 23895.22 31182.92 30780.76 29891.31 30081.99 19095.81 31781.36 27975.04 31891.42 299
cl____87.82 24886.79 25290.89 26494.88 23885.43 26397.81 23895.24 30682.91 30880.71 29991.22 30181.97 19295.84 31581.34 28075.06 31791.40 300
CSCG94.87 9094.71 8595.36 14299.54 3686.49 23099.34 7898.15 4082.71 30990.15 19499.25 2389.48 5799.86 6394.97 11498.82 9199.72 50
OpenMVScopyleft85.28 1490.75 19488.84 21496.48 9393.58 27693.51 6898.80 14297.41 15182.59 31078.62 32297.49 15268.00 29599.82 7684.52 24798.55 10396.11 237
114514_t94.06 11393.05 13297.06 5899.08 6992.26 9498.97 12897.01 19182.58 31192.57 15498.22 12480.68 20499.30 13689.34 19299.02 7999.63 64
pmmvs487.58 25786.17 26091.80 24489.58 33788.92 17997.25 26595.28 30282.54 31280.49 30193.17 27075.62 23496.05 30482.75 26878.90 29790.42 328
v119286.32 27684.71 28491.17 25689.53 33986.40 23398.13 21595.44 29582.52 31382.42 27290.62 31871.58 27296.33 29177.23 30774.88 31990.79 318
test_fmvs375.09 34775.19 34474.81 36877.45 39154.08 39495.93 31090.64 37882.51 31473.29 35181.19 37922.29 39786.29 39085.50 23467.89 36384.06 381
v14419286.40 27484.89 27990.91 26289.48 34085.59 26098.21 20995.43 29682.45 31582.62 26790.58 32172.79 26096.36 28478.45 30274.04 33290.79 318
TAPA-MVS87.50 990.35 20089.05 21094.25 18798.48 9185.17 27098.42 18696.58 21182.44 31687.24 22098.53 10782.77 17398.84 15559.09 38297.88 11598.72 150
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
miper_lstm_enhance86.90 26386.20 25989.00 31494.53 24781.19 32496.74 28795.24 30682.33 31780.15 30590.51 32581.99 19094.68 34580.71 28573.58 33591.12 309
tt080586.50 27384.79 28291.63 25091.97 30181.49 31796.49 29397.38 15482.24 31882.44 27095.82 21951.22 36998.25 18384.55 24680.96 28995.13 244
v192192086.02 27984.44 29090.77 26889.32 34285.20 26898.10 22095.35 30182.19 31982.25 27790.71 31170.73 27596.30 29576.85 31274.49 32490.80 317
MVP-Stereo86.61 27085.83 26488.93 31688.70 34983.85 28996.07 30894.41 33382.15 32075.64 34091.96 28867.65 29896.45 28077.20 30998.72 9686.51 371
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v886.11 27884.45 28991.10 25789.99 32986.85 22597.24 26695.36 30081.99 32179.89 30989.86 33774.53 24196.39 28278.83 29972.32 34790.05 337
tpmvs89.16 22187.76 23593.35 21097.19 13784.75 27790.58 37197.36 15681.99 32184.56 24489.31 34483.98 15298.17 18574.85 32690.00 23197.12 209
pm-mvs184.68 29882.78 30590.40 27889.58 33785.18 26997.31 26194.73 32281.93 32376.05 33592.01 28565.48 31696.11 30278.75 30069.14 35889.91 340
v124085.77 28684.11 29390.73 26989.26 34385.15 27197.88 23595.23 31081.89 32482.16 27890.55 32369.60 28496.31 29275.59 32174.87 32090.72 322
test20.0378.51 33877.48 33481.62 36083.07 37971.03 37396.11 30792.83 35681.66 32569.31 36689.68 33957.53 34687.29 38958.65 38368.47 36086.53 370
pmmvs585.87 28184.40 29290.30 28288.53 35184.23 28298.60 16693.71 34581.53 32680.29 30392.02 28464.51 32095.52 32482.04 27678.34 30091.15 308
MIMVSNet84.48 30281.83 31292.42 23091.73 30887.36 21485.52 38094.42 33281.40 32781.91 28587.58 35151.92 36792.81 36173.84 33488.15 23697.08 213
our_test_384.47 30382.80 30389.50 30489.01 34483.90 28897.03 27494.56 32781.33 32875.36 34290.52 32471.69 27094.54 34768.81 35576.84 31090.07 335
v1085.73 28784.01 29590.87 26590.03 32886.73 22797.20 26995.22 31181.25 32979.85 31089.75 33873.30 25396.28 29676.87 31172.64 34389.61 345
CL-MVSNet_self_test79.89 33078.34 33184.54 34881.56 38375.01 35896.88 28095.62 28381.10 33075.86 33885.81 36668.49 28990.26 37763.21 37256.51 38688.35 356
ACMH+83.78 1584.21 30582.56 31089.15 31193.73 27479.16 33796.43 29494.28 33681.09 33174.00 34794.03 24654.58 36097.67 21976.10 31778.81 29890.63 325
ACMH83.09 1784.60 29982.61 30990.57 27293.18 28682.94 29996.27 29994.92 31681.01 33272.61 35993.61 25956.54 35097.79 20874.31 32981.07 28890.99 312
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PM-MVS74.88 34872.85 35180.98 36278.98 38964.75 38590.81 36885.77 39280.95 33368.23 37182.81 37229.08 39492.84 36076.54 31562.46 37785.36 376
QAPM91.41 17989.49 20097.17 5695.66 20193.42 7098.60 16697.51 13380.92 33481.39 29497.41 15672.89 25999.87 5882.33 27298.68 9798.21 180
v7n84.42 30482.75 30689.43 30788.15 35481.86 31396.75 28695.67 28180.53 33578.38 32689.43 34269.89 27996.35 28973.83 33572.13 34990.07 335
cascas90.93 19189.33 20595.76 12995.69 19993.03 7898.99 12596.59 20880.49 33686.79 22894.45 24165.23 31898.60 16893.52 13992.18 20095.66 241
KD-MVS_2432*160082.98 31480.52 32290.38 27994.32 25288.98 17392.87 34795.87 26980.46 33773.79 34887.49 35482.76 17593.29 35670.56 34946.53 39788.87 354
miper_refine_blended82.98 31480.52 32290.38 27994.32 25288.98 17392.87 34795.87 26980.46 33773.79 34887.49 35482.76 17593.29 35670.56 34946.53 39788.87 354
Baseline_NR-MVSNet85.83 28384.82 28188.87 31788.73 34883.34 29598.63 16191.66 37180.41 33982.44 27091.35 29974.63 23795.42 32884.13 25271.39 35487.84 359
Anonymous2023120680.76 32579.42 32984.79 34684.78 37472.98 36696.53 29192.97 35379.56 34074.33 34488.83 34561.27 33492.15 37060.59 37975.92 31389.24 350
DSMNet-mixed81.60 32281.43 31682.10 35884.36 37560.79 38793.63 34086.74 39179.00 34179.32 31687.15 35963.87 32389.78 38166.89 36391.92 20395.73 240
LTVRE_ROB81.71 1984.59 30082.72 30790.18 28392.89 29083.18 29793.15 34394.74 32178.99 34275.14 34392.69 27665.64 31397.63 22369.46 35281.82 28689.74 342
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ppachtmachnet_test83.63 31281.57 31589.80 29589.01 34485.09 27297.13 27194.50 32878.84 34376.14 33491.00 30569.78 28094.61 34663.40 37174.36 32689.71 344
TransMVSNet (Re)81.97 31979.61 32889.08 31289.70 33584.01 28697.26 26491.85 37078.84 34373.07 35691.62 29367.17 30395.21 33367.50 36059.46 38288.02 358
UniMVSNet_ETH3D85.65 28983.79 29791.21 25590.41 32680.75 33095.36 32395.78 27378.76 34581.83 29094.33 24249.86 37496.66 26484.30 24883.52 27496.22 235
tfpnnormal83.65 31181.35 31790.56 27491.37 31488.06 19597.29 26297.87 5878.51 34676.20 33390.91 30664.78 31996.47 27861.71 37673.50 33687.13 368
FMVSNet183.94 31081.32 31891.80 24491.94 30488.81 18196.77 28395.25 30377.98 34778.25 32790.25 32950.37 37394.97 33673.27 33877.81 30691.62 287
pmmvs-eth3d78.71 33676.16 34186.38 33480.25 38781.19 32494.17 33492.13 36677.97 34866.90 37782.31 37555.76 35292.56 36573.63 33762.31 37885.38 375
AllTest84.97 29583.12 30090.52 27596.82 15278.84 34095.89 31292.17 36477.96 34975.94 33695.50 22355.48 35499.18 13971.15 34587.14 23993.55 251
TestCases90.52 27596.82 15278.84 34092.17 36477.96 34975.94 33695.50 22355.48 35499.18 13971.15 34587.14 23993.55 251
MSDG88.29 24486.37 25694.04 19796.90 15086.15 24596.52 29294.36 33477.89 35179.22 31796.95 18169.72 28199.59 10473.20 33992.58 19196.37 234
new-patchmatchnet74.80 34972.40 35281.99 35978.36 39072.20 37094.44 33092.36 36177.06 35263.47 38279.98 38451.04 37088.85 38560.53 38054.35 38984.92 380
KD-MVS_self_test77.47 34275.88 34282.24 35681.59 38268.93 38092.83 34994.02 34177.03 35373.14 35383.39 37155.44 35690.42 37667.95 35857.53 38587.38 363
FMVSNet582.29 31780.54 32187.52 32693.79 27384.01 28693.73 33892.47 36076.92 35474.27 34586.15 36563.69 32589.24 38469.07 35474.79 32189.29 349
Anonymous20240521188.84 22987.03 24894.27 18598.14 10084.18 28498.44 18495.58 28676.79 35589.34 20396.88 18753.42 36499.54 10887.53 21187.12 24199.09 116
VDDNet90.08 20988.54 22594.69 16994.41 24987.68 20298.21 20996.40 22176.21 35693.33 14697.75 13854.93 35998.77 15794.71 12090.96 22297.61 198
tpm cat188.89 22787.27 24493.76 20595.79 19585.32 26790.76 36997.09 18376.14 35785.72 23588.59 34782.92 17098.04 19576.96 31091.43 21897.90 190
MDA-MVSNet-bldmvs77.82 34174.75 34787.03 33188.33 35278.52 34496.34 29792.85 35575.57 35848.87 39387.89 34957.32 34892.49 36760.79 37864.80 37390.08 334
test_f71.94 35270.82 35375.30 36772.77 39653.28 39591.62 35889.66 38475.44 35964.47 38178.31 38720.48 39889.56 38278.63 30166.02 37083.05 386
TinyColmap80.42 32777.94 33287.85 32392.09 29978.58 34393.74 33789.94 38174.99 36069.77 36491.78 29146.09 37997.58 22765.17 36977.89 30287.38 363
LS3D90.19 20588.72 21794.59 17498.97 7386.33 23896.90 27996.60 20774.96 36184.06 25198.74 9075.78 23399.83 7374.93 32497.57 12297.62 197
EG-PatchMatch MVS79.92 32877.59 33386.90 33287.06 36677.90 35096.20 30694.06 34074.61 36266.53 37888.76 34640.40 38896.20 29767.02 36283.66 27286.61 369
TDRefinement78.01 33975.31 34386.10 33870.06 39873.84 36393.59 34191.58 37374.51 36373.08 35591.04 30449.63 37697.12 24574.88 32559.47 38187.33 365
RPSCF85.33 29185.55 26984.67 34794.63 24662.28 38693.73 33893.76 34374.38 36485.23 24097.06 17564.09 32198.31 17880.98 28186.08 25093.41 253
MDA-MVSNet_test_wron79.65 33177.05 33687.45 32887.79 36080.13 33196.25 30294.44 32973.87 36551.80 39187.47 35668.04 29492.12 37166.02 36567.79 36490.09 333
YYNet179.64 33277.04 33787.43 32987.80 35979.98 33296.23 30394.44 32973.83 36651.83 39087.53 35267.96 29692.07 37266.00 36667.75 36590.23 332
Anonymous2024052178.63 33776.90 33883.82 35182.82 38072.86 36795.72 32193.57 34873.55 36772.17 36084.79 36849.69 37592.51 36665.29 36874.50 32386.09 373
MIMVSNet175.92 34573.30 35083.81 35281.29 38475.57 35692.26 35292.05 36773.09 36867.48 37586.18 36440.87 38787.64 38855.78 38670.68 35788.21 357
Patchmatch-test86.25 27784.06 29492.82 22094.42 24882.88 30382.88 39194.23 33771.58 36979.39 31590.62 31889.00 6296.42 28163.03 37391.37 22099.16 108
COLMAP_ROBcopyleft82.69 1884.54 30182.82 30289.70 29996.72 15878.85 33995.89 31292.83 35671.55 37077.54 33195.89 21859.40 34199.14 14567.26 36188.26 23591.11 310
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WB-MVS66.44 35666.29 35966.89 37674.84 39244.93 40393.00 34484.09 39771.15 37155.82 38881.63 37763.79 32480.31 39821.85 40250.47 39575.43 389
PatchT85.44 29083.19 29992.22 23293.13 28783.00 29883.80 39096.37 22370.62 37290.55 18679.63 38584.81 14394.87 33958.18 38491.59 21098.79 145
DP-MVS88.75 23586.56 25495.34 14398.92 7787.45 21197.64 25293.52 34970.55 37381.49 29297.25 16374.43 24299.88 5471.14 34794.09 17498.67 154
new_pmnet76.02 34473.71 34982.95 35483.88 37772.85 36891.26 36492.26 36370.44 37462.60 38381.37 37847.64 37892.32 36861.85 37572.10 35083.68 383
N_pmnet70.19 35369.87 35571.12 37388.24 35330.63 41295.85 31728.70 41170.18 37568.73 36886.55 36364.04 32293.81 35153.12 38973.46 33788.94 352
UnsupCasMVSNet_bld73.85 35070.14 35484.99 34479.44 38875.73 35588.53 37495.24 30670.12 37661.94 38474.81 39041.41 38693.62 35368.65 35651.13 39485.62 374
SSC-MVS65.42 35765.20 36066.06 37773.96 39343.83 40492.08 35383.54 39869.77 37754.73 38980.92 38163.30 32679.92 39920.48 40348.02 39674.44 390
JIA-IIPM85.97 28084.85 28089.33 30893.23 28573.68 36485.05 38397.13 17769.62 37891.56 16968.03 39388.03 7796.96 25277.89 30593.12 18297.34 203
Patchmtry83.61 31381.64 31389.50 30493.36 28282.84 30484.10 38794.20 33869.47 37979.57 31386.88 36184.43 14694.78 34268.48 35774.30 32790.88 315
test_040278.81 33576.33 34086.26 33691.18 31678.44 34595.88 31491.34 37568.55 38070.51 36389.91 33652.65 36694.99 33547.14 39279.78 29585.34 377
CMPMVSbinary58.40 2180.48 32680.11 32581.59 36185.10 37359.56 38994.14 33595.95 25468.54 38160.71 38593.31 26555.35 35797.87 20383.06 26684.85 25987.33 365
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
gg-mvs-nofinetune90.00 21087.71 23796.89 7396.15 18394.69 4585.15 38297.74 7768.32 38292.97 15160.16 39596.10 396.84 25793.89 13198.87 8999.14 110
pmmvs679.90 32977.31 33587.67 32584.17 37678.13 34795.86 31693.68 34667.94 38372.67 35889.62 34050.98 37195.75 31874.80 32766.04 36989.14 351
OpenMVS_ROBcopyleft73.86 2077.99 34075.06 34686.77 33383.81 37877.94 34996.38 29691.53 37467.54 38468.38 36987.13 36043.94 38196.08 30355.03 38781.83 28586.29 372
test_vis3_rt61.29 35958.75 36268.92 37567.41 39952.84 39791.18 36659.23 41066.96 38541.96 39858.44 39811.37 40694.72 34474.25 33057.97 38459.20 397
Anonymous2023121184.72 29782.65 30890.91 26297.71 11184.55 27997.28 26396.67 20266.88 38679.18 31890.87 30858.47 34396.60 26682.61 27074.20 32991.59 292
Anonymous2024052987.66 25585.58 26893.92 20097.59 11785.01 27398.13 21597.13 17766.69 38788.47 20996.01 21655.09 35899.51 11087.00 21484.12 26697.23 208
ANet_high50.71 36746.17 37064.33 37944.27 40952.30 39876.13 39678.73 40164.95 38827.37 40255.23 39914.61 40467.74 40236.01 39818.23 40272.95 392
RPMNet85.07 29481.88 31194.64 17293.47 27886.24 23984.97 38497.21 16764.85 38990.76 18378.80 38680.95 20399.27 13753.76 38892.17 20198.41 165
pmmvs372.86 35169.76 35682.17 35773.86 39474.19 36294.20 33389.01 38664.23 39067.72 37280.91 38241.48 38588.65 38662.40 37454.02 39083.68 383
MVS-HIRNet79.01 33375.13 34590.66 27093.82 27281.69 31585.16 38193.75 34454.54 39174.17 34659.15 39757.46 34796.58 26963.74 37094.38 17193.72 250
APD_test168.93 35566.98 35874.77 36980.62 38653.15 39687.97 37585.01 39453.76 39259.26 38687.52 35325.19 39589.95 37856.20 38567.33 36681.19 387
PMMVS258.97 36255.07 36570.69 37462.72 40255.37 39385.97 37980.52 40049.48 39345.94 39468.31 39215.73 40380.78 39649.79 39137.12 39975.91 388
FPMVS61.57 35860.32 36165.34 37860.14 40542.44 40691.02 36789.72 38344.15 39442.63 39780.93 38019.02 39980.59 39742.50 39472.76 34273.00 391
testf156.38 36353.73 36664.31 38064.84 40045.11 40180.50 39375.94 40538.87 39542.74 39575.07 38811.26 40781.19 39441.11 39553.27 39166.63 394
APD_test256.38 36353.73 36664.31 38064.84 40045.11 40180.50 39375.94 40538.87 39542.74 39575.07 38811.26 40781.19 39441.11 39553.27 39166.63 394
LCM-MVSNet60.07 36156.37 36371.18 37254.81 40748.67 40082.17 39289.48 38537.95 39749.13 39269.12 39113.75 40581.76 39259.28 38151.63 39383.10 385
Gipumacopyleft54.77 36552.22 36962.40 38286.50 36859.37 39050.20 40090.35 38036.52 39841.20 39949.49 40018.33 40181.29 39332.10 39965.34 37146.54 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method70.10 35468.66 35774.41 37086.30 37155.84 39294.47 32989.82 38235.18 39966.15 37984.75 36930.54 39377.96 40070.40 35160.33 38089.44 347
PMVScopyleft41.42 2345.67 36842.50 37155.17 38434.28 41032.37 41066.24 39878.71 40230.72 40022.04 40559.59 3964.59 40977.85 40127.49 40058.84 38355.29 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN41.02 37040.93 37241.29 38661.97 40333.83 40984.00 38965.17 40827.17 40127.56 40146.72 40217.63 40260.41 40519.32 40418.82 40129.61 401
EMVS39.96 37139.88 37340.18 38759.57 40632.12 41184.79 38664.57 40926.27 40226.14 40344.18 40518.73 40059.29 40617.03 40517.67 40329.12 402
MVEpermissive44.00 2241.70 36937.64 37453.90 38549.46 40843.37 40565.09 39966.66 40726.19 40325.77 40448.53 4013.58 41163.35 40426.15 40127.28 40054.97 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt53.66 36652.86 36856.05 38332.75 41141.97 40773.42 39776.12 40421.91 40439.68 40096.39 20542.59 38465.10 40378.00 30414.92 40461.08 396
wuyk23d16.71 37416.73 37816.65 38860.15 40425.22 41341.24 4015.17 4126.56 4055.48 4083.61 4083.64 41022.72 40715.20 4069.52 4051.99 405
testmvs18.81 37323.05 3766.10 3904.48 4122.29 41597.78 2403.00 4133.27 40618.60 40662.71 3941.53 4132.49 40914.26 4071.80 40613.50 404
test12316.58 37519.47 3777.91 3893.59 4135.37 41494.32 3311.39 4142.49 40713.98 40744.60 4042.91 4122.65 40811.35 4080.57 40715.70 403
EGC-MVSNET60.70 36055.37 36476.72 36586.35 37071.08 37289.96 37284.44 3960.38 4081.50 40984.09 37037.30 38988.10 38740.85 39773.44 33870.97 393
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k22.52 37230.03 3750.00 3910.00 4140.00 4160.00 40297.17 1730.00 4090.00 41098.77 8774.35 2440.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas6.87 3779.16 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40982.48 1810.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.21 37610.94 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41098.50 1100.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS79.74 33467.75 359
MSC_two_6792asdad99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
eth-test20.00 414
eth-test0.00 414
OPU-MVS99.49 499.64 1798.51 499.77 1899.19 3295.12 899.97 2199.90 199.92 399.99 1
test_0728_SECOND98.77 899.66 1296.37 1499.72 2497.68 9099.98 999.64 799.82 1999.96 10
GSMVS98.84 138
test_part299.54 3695.42 2098.13 43
sam_mvs188.39 6898.84 138
sam_mvs87.08 96
ambc79.60 36472.76 39756.61 39176.20 39592.01 36868.25 37080.23 38323.34 39694.73 34373.78 33660.81 37987.48 362
MTGPAbinary97.45 144
test_post190.74 37041.37 40685.38 13596.36 28483.16 263
test_post46.00 40387.37 8797.11 246
patchmatchnet-post84.86 36788.73 6596.81 259
GG-mvs-BLEND96.98 6596.53 16394.81 4187.20 37697.74 7793.91 13696.40 20396.56 296.94 25495.08 10998.95 8599.20 106
MTMP99.21 8991.09 376
test9_res98.60 3399.87 999.90 22
agg_prior297.84 5699.87 999.91 21
agg_prior99.54 3692.66 8697.64 10397.98 5299.61 102
test_prior492.00 9699.41 69
test_prior97.01 6099.58 3091.77 9997.57 12199.49 11299.79 36
新几何298.26 205
旧先验198.97 7392.90 8497.74 7799.15 4191.05 3499.33 6499.60 67
原ACMM298.69 153
testdata299.88 5484.16 251
segment_acmp90.56 43
test1297.83 3399.33 5394.45 4997.55 12397.56 5788.60 6699.50 11199.71 3499.55 72
plane_prior793.84 26985.73 258
plane_prior693.92 26686.02 25172.92 257
plane_prior596.30 22797.75 21693.46 14286.17 24892.67 258
plane_prior496.52 199
plane_prior193.90 268
n20.00 415
nn0.00 415
door-mid84.90 395
lessismore_v085.08 34385.59 37269.28 37990.56 37967.68 37390.21 33354.21 36295.46 32673.88 33362.64 37690.50 327
test1197.68 90
door85.30 393
HQP5-MVS86.39 234
BP-MVS93.82 135
HQP4-MVS87.57 21597.77 21092.72 256
HQP3-MVS96.37 22386.29 245
HQP2-MVS73.34 251
NP-MVS93.94 26586.22 24196.67 197
ACMMP++_ref82.64 281
ACMMP++83.83 269
Test By Simon83.62 155