DeepPCF-MVS | | 89.82 1 | 94.61 17 | 96.17 5 | 89.91 180 | 97.09 90 | 70.21 309 | 98.99 15 | 96.69 62 | 95.57 1 | 95.08 30 | 99.23 1 | 86.40 30 | 99.87 8 | 97.84 11 | 98.66 31 | 99.65 6 |
|
MCST-MVS | | | 96.17 3 | 96.12 6 | 96.32 7 | 99.42 2 | 89.36 9 | 98.94 16 | 97.10 26 | 95.17 2 | 92.11 66 | 98.46 22 | 87.33 24 | 99.97 2 | 97.21 17 | 99.31 4 | 99.63 7 |
|
CNVR-MVS | | | 96.30 1 | 96.54 1 | 95.55 13 | 99.31 5 | 87.69 20 | 99.06 10 | 97.12 24 | 94.66 3 | 96.79 12 | 98.78 9 | 86.42 29 | 99.95 3 | 97.59 13 | 99.18 7 | 99.00 26 |
|
EPNet | | | 94.06 27 | 94.15 25 | 93.76 48 | 97.27 87 | 84.35 70 | 98.29 29 | 97.64 13 | 94.57 4 | 95.36 25 | 96.88 98 | 79.96 66 | 99.12 87 | 91.30 78 | 96.11 94 | 97.82 96 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DELS-MVS | | | 94.98 12 | 94.49 19 | 96.44 6 | 96.42 95 | 90.59 7 | 99.21 2 | 97.02 28 | 94.40 5 | 91.46 73 | 97.08 91 | 83.32 45 | 99.69 39 | 92.83 65 | 98.70 30 | 99.04 24 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
NCCC | | | 95.63 6 | 95.94 8 | 94.69 26 | 99.21 6 | 85.15 57 | 99.16 3 | 96.96 32 | 94.11 6 | 95.59 24 | 98.64 17 | 85.07 33 | 99.91 4 | 95.61 32 | 99.10 9 | 99.00 26 |
|
CANet | | | 94.89 13 | 94.64 17 | 95.63 11 | 97.55 75 | 88.12 14 | 99.06 10 | 96.39 101 | 94.07 7 | 95.34 26 | 97.80 55 | 76.83 108 | 99.87 8 | 97.08 18 | 97.64 63 | 98.89 29 |
|
test_vis1_n_1920 | | | 89.95 101 | 90.59 77 | 88.03 217 | 92.36 204 | 68.98 319 | 99.12 6 | 94.34 218 | 93.86 8 | 93.64 49 | 97.01 94 | 51.54 302 | 99.59 49 | 96.76 21 | 96.71 89 | 95.53 179 |
|
DeepC-MVS_fast | | 89.06 2 | 94.48 19 | 94.30 23 | 95.02 18 | 98.86 21 | 85.68 42 | 98.06 43 | 96.64 70 | 93.64 9 | 91.74 71 | 98.54 18 | 80.17 64 | 99.90 5 | 92.28 70 | 98.75 28 | 99.49 8 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DPM-MVS | | | 96.21 2 | 95.53 11 | 98.26 1 | 96.26 98 | 95.09 1 | 99.15 4 | 96.98 30 | 93.39 10 | 96.45 18 | 98.79 8 | 90.17 10 | 99.99 1 | 89.33 108 | 99.25 6 | 99.70 3 |
|
CANet_DTU | | | 90.98 81 | 90.04 91 | 93.83 46 | 94.76 139 | 86.23 32 | 96.32 166 | 93.12 277 | 93.11 11 | 93.71 47 | 96.82 102 | 63.08 235 | 99.48 60 | 84.29 148 | 95.12 105 | 95.77 174 |
|
patch_mono-2 | | | 95.14 11 | 96.08 7 | 92.33 102 | 98.44 43 | 77.84 221 | 98.43 26 | 97.21 20 | 92.58 12 | 97.68 8 | 97.65 64 | 86.88 26 | 99.83 16 | 98.25 3 | 97.60 64 | 99.33 17 |
|
HPM-MVS++ |  | | 95.32 9 | 95.48 12 | 94.85 22 | 98.62 34 | 86.04 34 | 97.81 56 | 96.93 35 | 92.45 13 | 95.69 23 | 98.50 20 | 85.38 31 | 99.85 10 | 94.75 40 | 99.18 7 | 98.65 42 |
|
PS-MVSNAJ | | | 94.17 24 | 93.52 32 | 96.10 8 | 95.65 113 | 92.35 2 | 98.21 32 | 95.79 140 | 92.42 14 | 96.24 19 | 98.18 30 | 71.04 190 | 99.17 82 | 96.77 20 | 97.39 72 | 96.79 147 |
|
MSP-MVS | | | 95.62 7 | 96.54 1 | 92.86 83 | 98.31 48 | 80.10 155 | 97.42 88 | 96.78 44 | 92.20 15 | 97.11 11 | 98.29 26 | 93.46 1 | 99.10 88 | 96.01 25 | 99.30 5 | 99.38 14 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
xiu_mvs_v2_base | | | 93.92 28 | 93.26 36 | 95.91 9 | 95.07 130 | 92.02 6 | 98.19 33 | 95.68 145 | 92.06 16 | 96.01 22 | 98.14 34 | 70.83 193 | 98.96 95 | 96.74 22 | 96.57 90 | 96.76 150 |
|
IU-MVS | | | | | | 99.03 15 | 85.34 47 | | 96.86 40 | 92.05 17 | 98.74 1 | | | | 98.15 4 | 98.97 17 | 99.42 13 |
|
TSAR-MVS + GP. | | | 94.35 20 | 94.50 18 | 93.89 45 | 97.38 84 | 83.04 94 | 98.10 39 | 95.29 169 | 91.57 18 | 93.81 46 | 97.45 72 | 86.64 27 | 99.43 63 | 96.28 23 | 94.01 116 | 99.20 22 |
|
CLD-MVS | | | 87.97 146 | 87.48 138 | 89.44 188 | 92.16 217 | 80.54 144 | 98.14 34 | 94.92 182 | 91.41 19 | 79.43 213 | 95.40 134 | 62.34 238 | 97.27 177 | 90.60 89 | 82.90 213 | 90.50 233 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
save fliter | | | | | | 98.24 51 | 83.34 89 | 98.61 23 | 96.57 79 | 91.32 20 | | | | | | | |
|
TSAR-MVS + MP. | | | 94.79 15 | 95.17 13 | 93.64 53 | 97.66 69 | 84.10 74 | 95.85 192 | 96.42 96 | 91.26 21 | 97.49 10 | 96.80 103 | 86.50 28 | 98.49 117 | 95.54 33 | 99.03 13 | 98.33 57 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
PC_three_1452 | | | | | | | | | | 91.12 22 | 98.33 2 | 98.42 23 | 92.51 2 | 99.81 21 | 98.96 2 | 99.37 1 | 99.70 3 |
|
PAPM | | | 92.87 40 | 92.40 48 | 94.30 33 | 92.25 212 | 87.85 17 | 96.40 161 | 96.38 102 | 91.07 23 | 88.72 113 | 96.90 96 | 82.11 52 | 97.37 171 | 90.05 99 | 97.70 62 | 97.67 106 |
|
lupinMVS | | | 93.87 29 | 93.58 31 | 94.75 25 | 93.00 188 | 88.08 15 | 99.15 4 | 95.50 154 | 91.03 24 | 94.90 33 | 97.66 60 | 78.84 77 | 97.56 154 | 94.64 43 | 97.46 67 | 98.62 44 |
|
PVSNet_Blended | | | 93.13 34 | 92.98 38 | 93.57 57 | 97.47 76 | 83.86 77 | 99.32 1 | 96.73 56 | 91.02 25 | 89.53 103 | 96.21 113 | 76.42 114 | 99.57 52 | 94.29 45 | 95.81 101 | 97.29 131 |
|
DeepC-MVS | | 86.58 3 | 91.53 69 | 91.06 72 | 92.94 81 | 94.52 145 | 81.89 112 | 95.95 184 | 95.98 129 | 90.76 26 | 83.76 165 | 96.76 104 | 73.24 167 | 99.71 36 | 91.67 77 | 96.96 80 | 97.22 133 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MSLP-MVS++ | | | 94.28 21 | 94.39 22 | 93.97 43 | 98.30 49 | 84.06 75 | 98.64 21 | 96.93 35 | 90.71 27 | 93.08 56 | 98.70 15 | 79.98 65 | 99.21 75 | 94.12 48 | 99.07 11 | 98.63 43 |
|
jason | | | 92.73 43 | 92.23 53 | 94.21 38 | 90.50 250 | 87.30 24 | 98.65 20 | 95.09 175 | 90.61 28 | 92.76 60 | 97.13 88 | 75.28 140 | 97.30 174 | 93.32 58 | 96.75 88 | 98.02 77 |
jason: jason. |
HQP-NCC | | | | | | 92.08 219 | | 97.63 68 | | 90.52 29 | 82.30 179 | | | | | | |
|
ACMP_Plane | | | | | | 92.08 219 | | 97.63 68 | | 90.52 29 | 82.30 179 | | | | | | |
|
HQP-MVS | | | 87.91 148 | 87.55 136 | 88.98 195 | 92.08 219 | 78.48 195 | 97.63 68 | 94.80 190 | 90.52 29 | 82.30 179 | 94.56 158 | 65.40 221 | 97.32 172 | 87.67 125 | 83.01 210 | 91.13 224 |
|
h-mvs33 | | | 89.30 112 | 88.95 110 | 90.36 166 | 95.07 130 | 76.04 252 | 96.96 124 | 97.11 25 | 90.39 32 | 92.22 64 | 95.10 146 | 74.70 147 | 98.86 102 | 93.14 61 | 65.89 323 | 96.16 166 |
|
hse-mvs2 | | | 88.22 141 | 88.21 120 | 88.25 211 | 93.54 171 | 73.41 277 | 95.41 208 | 95.89 134 | 90.39 32 | 92.22 64 | 94.22 165 | 74.70 147 | 96.66 209 | 93.14 61 | 64.37 328 | 94.69 197 |
|
CS-MVS-test | | | 92.98 37 | 93.67 28 | 90.90 150 | 96.52 94 | 76.87 239 | 98.68 18 | 94.73 194 | 90.36 34 | 94.84 35 | 97.89 50 | 77.94 89 | 97.15 185 | 94.28 47 | 97.80 60 | 98.70 40 |
|
plane_prior | | | | | | | 77.96 215 | 97.52 79 | | 90.36 34 | | | | | | 82.96 212 | |
|
plane_prior3 | | | | | | | 77.75 224 | | | 90.17 36 | 81.33 193 | | | | | | |
|
MG-MVS | | | 94.25 23 | 93.72 27 | 95.85 10 | 99.38 3 | 89.35 10 | 97.98 47 | 98.09 8 | 89.99 37 | 92.34 62 | 96.97 95 | 81.30 55 | 98.99 93 | 88.54 114 | 98.88 20 | 99.20 22 |
|
iter_conf05 | | | 90.14 98 | 89.79 98 | 91.17 142 | 95.85 109 | 86.93 26 | 97.68 66 | 88.67 334 | 89.93 38 | 81.73 192 | 92.80 186 | 90.37 8 | 96.03 225 | 90.44 93 | 80.65 225 | 90.56 231 |
|
HQP_MVS | | | 87.50 154 | 87.09 148 | 88.74 200 | 91.86 228 | 77.96 215 | 97.18 101 | 94.69 195 | 89.89 39 | 81.33 193 | 94.15 168 | 64.77 227 | 97.30 174 | 87.08 129 | 82.82 214 | 90.96 226 |
|
plane_prior2 | | | | | | | | 97.18 101 | | 89.89 39 | | | | | | | |
|
ETV-MVS | | | 92.72 45 | 92.87 40 | 92.28 105 | 94.54 144 | 81.89 112 | 97.98 47 | 95.21 172 | 89.77 41 | 93.11 55 | 96.83 100 | 77.23 104 | 97.50 162 | 95.74 30 | 95.38 103 | 97.44 122 |
|
SD-MVS | | | 94.84 14 | 95.02 14 | 94.29 34 | 97.87 64 | 84.61 67 | 97.76 60 | 96.19 117 | 89.59 42 | 96.66 15 | 98.17 33 | 84.33 36 | 99.60 48 | 96.09 24 | 98.50 36 | 98.66 41 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
SteuartSystems-ACMMP | | | 94.13 26 | 94.44 21 | 93.20 71 | 95.41 119 | 81.35 126 | 99.02 14 | 96.59 77 | 89.50 43 | 94.18 44 | 98.36 25 | 83.68 44 | 99.45 62 | 94.77 39 | 98.45 39 | 98.81 32 |
Skip Steuart: Steuart Systems R&D Blog. |
CS-MVS | | | 92.73 43 | 93.48 33 | 90.48 162 | 96.27 97 | 75.93 258 | 98.55 24 | 94.93 181 | 89.32 44 | 94.54 40 | 97.67 59 | 78.91 76 | 97.02 189 | 93.80 50 | 97.32 74 | 98.49 49 |
|
ET-MVSNet_ETH3D | | | 90.01 100 | 89.03 106 | 92.95 80 | 94.38 150 | 86.77 28 | 98.14 34 | 96.31 108 | 89.30 45 | 63.33 330 | 96.72 107 | 90.09 11 | 93.63 311 | 90.70 88 | 82.29 219 | 98.46 51 |
|
EIA-MVS | | | 91.73 62 | 92.05 57 | 90.78 155 | 94.52 145 | 76.40 247 | 98.06 43 | 95.34 167 | 89.19 46 | 88.90 110 | 97.28 83 | 77.56 96 | 97.73 147 | 90.77 86 | 96.86 85 | 98.20 66 |
|
MVS_111021_HR | | | 93.41 33 | 93.39 35 | 93.47 65 | 97.34 85 | 82.83 96 | 97.56 74 | 98.27 6 | 89.16 47 | 89.71 98 | 97.14 87 | 79.77 67 | 99.56 54 | 93.65 53 | 97.94 56 | 98.02 77 |
|
iter_conf_final | | | 89.51 107 | 89.21 104 | 90.39 164 | 95.60 114 | 84.44 69 | 97.22 95 | 89.09 327 | 89.11 48 | 82.07 186 | 92.80 186 | 87.03 25 | 96.03 225 | 89.10 110 | 80.89 222 | 90.70 229 |
|
CHOSEN 1792x2688 | | | 91.07 80 | 90.21 87 | 93.64 53 | 95.18 126 | 83.53 85 | 96.26 169 | 96.13 119 | 88.92 49 | 84.90 149 | 93.10 184 | 72.86 169 | 99.62 47 | 88.86 111 | 95.67 102 | 97.79 98 |
|
DVP-MVS |  | | 95.58 8 | 95.91 9 | 94.57 28 | 99.05 9 | 85.18 52 | 99.06 10 | 96.46 91 | 88.75 50 | 96.69 13 | 98.76 12 | 87.69 22 | 99.76 25 | 97.90 9 | 98.85 21 | 98.77 33 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 99.05 9 | 85.18 52 | 99.11 9 | 96.78 44 | 88.75 50 | 97.65 9 | 98.91 2 | 87.69 22 | | | | |
|
SED-MVS | | | 95.88 5 | 96.22 4 | 94.87 21 | 99.03 15 | 85.03 59 | 99.12 6 | 96.78 44 | 88.72 52 | 97.79 4 | 98.91 2 | 88.48 17 | 99.82 18 | 98.15 4 | 98.97 17 | 99.74 1 |
|
test_241102_TWO | | | | | | | | | 96.78 44 | 88.72 52 | 97.70 6 | 98.91 2 | 87.86 21 | 99.82 18 | 98.15 4 | 99.00 15 | 99.47 9 |
|
test_241102_ONE | | | | | | 99.03 15 | 85.03 59 | | 96.78 44 | 88.72 52 | 97.79 4 | 98.90 5 | 88.48 17 | 99.82 18 | | | |
|
WTY-MVS | | | 92.65 49 | 91.68 62 | 95.56 12 | 96.00 105 | 88.90 11 | 98.23 31 | 97.65 12 | 88.57 55 | 89.82 97 | 97.22 85 | 79.29 70 | 99.06 90 | 89.57 104 | 88.73 164 | 98.73 38 |
|
EPNet_dtu | | | 87.65 152 | 87.89 125 | 86.93 243 | 94.57 142 | 71.37 303 | 96.72 140 | 96.50 87 | 88.56 56 | 87.12 131 | 95.02 148 | 75.91 124 | 94.01 304 | 66.62 292 | 90.00 152 | 95.42 182 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
canonicalmvs | | | 92.27 55 | 91.22 68 | 95.41 14 | 95.80 110 | 88.31 12 | 97.09 114 | 94.64 202 | 88.49 57 | 92.99 58 | 97.31 79 | 72.68 171 | 98.57 113 | 93.38 57 | 88.58 165 | 99.36 16 |
|
MVS_111021_LR | | | 91.60 68 | 91.64 64 | 91.47 134 | 95.74 111 | 78.79 190 | 96.15 176 | 96.77 50 | 88.49 57 | 88.64 114 | 97.07 92 | 72.33 175 | 99.19 80 | 93.13 63 | 96.48 91 | 96.43 158 |
|
DVP-MVS++ | | | 96.05 4 | 96.41 3 | 94.96 20 | 99.05 9 | 85.34 47 | 98.13 37 | 96.77 50 | 88.38 59 | 97.70 6 | 98.77 10 | 92.06 3 | 99.84 12 | 97.47 14 | 99.37 1 | 99.70 3 |
|
test_0728_THIRD | | | | | | | | | | 88.38 59 | 96.69 13 | 98.76 12 | 89.64 13 | 99.76 25 | 97.47 14 | 98.84 23 | 99.38 14 |
|
HY-MVS | | 84.06 6 | 91.63 66 | 90.37 84 | 95.39 15 | 96.12 102 | 88.25 13 | 90.22 301 | 97.58 14 | 88.33 61 | 90.50 90 | 91.96 196 | 79.26 71 | 99.06 90 | 90.29 97 | 89.07 159 | 98.88 30 |
|
PVSNet_Blended_VisFu | | | 91.24 76 | 90.77 75 | 92.66 90 | 95.09 128 | 82.40 104 | 97.77 58 | 95.87 137 | 88.26 62 | 86.39 135 | 93.94 173 | 76.77 109 | 99.27 71 | 88.80 113 | 94.00 117 | 96.31 164 |
|
EI-MVSNet-Vis-set | | | 91.84 61 | 91.77 61 | 92.04 114 | 97.60 71 | 81.17 128 | 96.61 146 | 96.87 38 | 88.20 63 | 89.19 106 | 97.55 71 | 78.69 81 | 99.14 84 | 90.29 97 | 90.94 149 | 95.80 173 |
|
UGNet | | | 87.73 150 | 86.55 156 | 91.27 139 | 95.16 127 | 79.11 181 | 96.35 164 | 96.23 112 | 88.14 64 | 87.83 124 | 90.48 220 | 50.65 304 | 99.09 89 | 80.13 190 | 94.03 114 | 95.60 177 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
test_one_0601 | | | | | | 98.91 18 | 84.56 68 | | 96.70 60 | 88.06 65 | 96.57 16 | 98.77 10 | 88.04 20 | | | | |
|
alignmvs | | | 92.97 38 | 92.26 52 | 95.12 17 | 95.54 116 | 87.77 18 | 98.67 19 | 96.38 102 | 88.04 66 | 93.01 57 | 97.45 72 | 79.20 73 | 98.60 111 | 93.25 60 | 88.76 163 | 98.99 28 |
|
PVSNet_BlendedMVS | | | 90.05 99 | 89.96 93 | 90.33 167 | 97.47 76 | 83.86 77 | 98.02 46 | 96.73 56 | 87.98 67 | 89.53 103 | 89.61 233 | 76.42 114 | 99.57 52 | 94.29 45 | 79.59 232 | 87.57 300 |
|
test_fmvs1 | | | 87.79 149 | 88.52 116 | 85.62 266 | 92.98 192 | 64.31 333 | 97.88 51 | 92.42 286 | 87.95 68 | 92.24 63 | 95.82 121 | 47.94 315 | 98.44 123 | 95.31 36 | 94.09 113 | 94.09 204 |
|
MTAPA | | | 92.45 53 | 92.31 50 | 92.86 83 | 97.90 61 | 80.85 135 | 92.88 276 | 96.33 106 | 87.92 69 | 90.20 94 | 98.18 30 | 76.71 111 | 99.76 25 | 92.57 69 | 98.09 51 | 97.96 87 |
|
EI-MVSNet-UG-set | | | 91.35 74 | 91.22 68 | 91.73 125 | 97.39 82 | 80.68 138 | 96.47 154 | 96.83 41 | 87.92 69 | 88.30 120 | 97.36 78 | 77.84 92 | 99.13 86 | 89.43 107 | 89.45 156 | 95.37 183 |
|
OPM-MVS | | | 85.84 177 | 85.10 174 | 88.06 215 | 88.34 280 | 77.83 222 | 95.72 195 | 94.20 224 | 87.89 71 | 80.45 203 | 94.05 170 | 58.57 264 | 97.26 178 | 83.88 153 | 82.76 216 | 89.09 264 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
diffmvs |  | | 91.17 78 | 90.74 76 | 92.44 98 | 93.11 187 | 82.50 102 | 96.25 170 | 93.62 256 | 87.79 72 | 90.40 92 | 95.93 118 | 73.44 165 | 97.42 166 | 93.62 54 | 92.55 134 | 97.41 124 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
PVSNet | | 82.34 9 | 89.02 116 | 87.79 128 | 92.71 89 | 95.49 117 | 81.50 124 | 97.70 64 | 97.29 17 | 87.76 73 | 85.47 143 | 95.12 145 | 56.90 279 | 98.90 101 | 80.33 185 | 94.02 115 | 97.71 104 |
|
PAPR | | | 92.74 42 | 92.17 55 | 94.45 30 | 98.89 20 | 84.87 64 | 97.20 99 | 96.20 115 | 87.73 74 | 88.40 117 | 98.12 35 | 78.71 80 | 99.76 25 | 87.99 121 | 96.28 92 | 98.74 34 |
|
casdiffmvs |  | | 90.95 83 | 90.39 82 | 92.63 92 | 92.82 195 | 82.53 100 | 96.83 132 | 94.47 212 | 87.69 75 | 88.47 115 | 95.56 131 | 74.04 157 | 97.54 158 | 90.90 84 | 92.74 132 | 97.83 95 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
casdiffmvs_mvg |  | | 91.13 79 | 90.45 81 | 93.17 72 | 92.99 191 | 83.58 84 | 97.46 83 | 94.56 207 | 87.69 75 | 87.19 130 | 94.98 151 | 74.50 152 | 97.60 151 | 91.88 76 | 92.79 131 | 98.34 56 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
baseline | | | 90.76 86 | 90.10 90 | 92.74 87 | 92.90 194 | 82.56 99 | 94.60 235 | 94.56 207 | 87.69 75 | 89.06 109 | 95.67 126 | 73.76 160 | 97.51 161 | 90.43 94 | 92.23 140 | 98.16 69 |
|
Vis-MVSNet |  | | 88.67 127 | 87.82 127 | 91.24 140 | 92.68 196 | 78.82 187 | 96.95 125 | 93.85 242 | 87.55 78 | 87.07 132 | 95.13 144 | 63.43 233 | 97.21 179 | 77.58 213 | 96.15 93 | 97.70 105 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
test_fmvs1_n | | | 86.34 169 | 86.72 154 | 85.17 273 | 87.54 291 | 63.64 338 | 96.91 128 | 92.37 288 | 87.49 79 | 91.33 77 | 95.58 130 | 40.81 340 | 98.46 120 | 95.00 38 | 93.49 123 | 93.41 217 |
|
testdata1 | | | | | | | | 95.57 202 | | 87.44 80 | | | | | | | |
|
DROMVSNet | | | 91.73 62 | 92.11 56 | 90.58 159 | 93.54 171 | 77.77 223 | 98.07 42 | 94.40 216 | 87.44 80 | 92.99 58 | 97.11 90 | 74.59 151 | 96.87 198 | 93.75 51 | 97.08 78 | 97.11 136 |
|
UA-Net | | | 88.92 119 | 88.48 117 | 90.24 169 | 94.06 159 | 77.18 236 | 93.04 272 | 94.66 199 | 87.39 82 | 91.09 81 | 93.89 174 | 74.92 145 | 98.18 133 | 75.83 233 | 91.43 146 | 95.35 184 |
|
test_vis1_n | | | 85.60 182 | 85.70 162 | 85.33 270 | 84.79 323 | 64.98 331 | 96.83 132 | 91.61 299 | 87.36 83 | 91.00 84 | 94.84 153 | 36.14 346 | 97.18 181 | 95.66 31 | 93.03 129 | 93.82 209 |
|
baseline1 | | | 88.85 122 | 87.49 137 | 92.93 82 | 95.21 125 | 86.85 27 | 95.47 205 | 94.61 204 | 87.29 84 | 83.11 172 | 94.99 150 | 80.70 57 | 96.89 196 | 82.28 173 | 73.72 266 | 95.05 188 |
|
PMMVS | | | 89.46 109 | 89.92 95 | 88.06 215 | 94.64 140 | 69.57 316 | 96.22 171 | 94.95 180 | 87.27 85 | 91.37 76 | 96.54 110 | 65.88 217 | 97.39 169 | 88.54 114 | 93.89 118 | 97.23 132 |
|
xiu_mvs_v1_base_debu | | | 90.54 90 | 89.54 100 | 93.55 58 | 92.31 205 | 87.58 21 | 96.99 118 | 94.87 185 | 87.23 86 | 93.27 51 | 97.56 68 | 57.43 273 | 98.32 126 | 92.72 66 | 93.46 125 | 94.74 193 |
|
xiu_mvs_v1_base | | | 90.54 90 | 89.54 100 | 93.55 58 | 92.31 205 | 87.58 21 | 96.99 118 | 94.87 185 | 87.23 86 | 93.27 51 | 97.56 68 | 57.43 273 | 98.32 126 | 92.72 66 | 93.46 125 | 94.74 193 |
|
xiu_mvs_v1_base_debi | | | 90.54 90 | 89.54 100 | 93.55 58 | 92.31 205 | 87.58 21 | 96.99 118 | 94.87 185 | 87.23 86 | 93.27 51 | 97.56 68 | 57.43 273 | 98.32 126 | 92.72 66 | 93.46 125 | 94.74 193 |
|
MVSTER | | | 89.25 114 | 88.92 111 | 90.24 169 | 95.98 106 | 84.66 66 | 96.79 136 | 95.36 164 | 87.19 89 | 80.33 205 | 90.61 219 | 90.02 12 | 95.97 230 | 85.38 141 | 78.64 241 | 90.09 243 |
|
IB-MVS | | 85.34 4 | 88.67 127 | 87.14 147 | 93.26 68 | 93.12 186 | 84.32 71 | 98.76 17 | 97.27 18 | 87.19 89 | 79.36 214 | 90.45 221 | 83.92 42 | 98.53 115 | 84.41 147 | 69.79 291 | 96.93 141 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
XVS | | | 92.69 47 | 92.71 42 | 92.63 92 | 98.52 37 | 80.29 148 | 97.37 91 | 96.44 93 | 87.04 91 | 91.38 74 | 97.83 54 | 77.24 102 | 99.59 49 | 90.46 91 | 98.07 52 | 98.02 77 |
|
X-MVStestdata | | | 86.26 171 | 84.14 190 | 92.63 92 | 98.52 37 | 80.29 148 | 97.37 91 | 96.44 93 | 87.04 91 | 91.38 74 | 20.73 376 | 77.24 102 | 99.59 49 | 90.46 91 | 98.07 52 | 98.02 77 |
|
dcpmvs_2 | | | 93.10 36 | 93.46 34 | 92.02 115 | 97.77 65 | 79.73 165 | 94.82 231 | 93.86 241 | 86.91 93 | 91.33 77 | 96.76 104 | 85.20 32 | 98.06 134 | 96.90 19 | 97.60 64 | 98.27 64 |
|
mvsmamba | | | 85.17 189 | 84.54 180 | 87.05 241 | 87.94 285 | 75.11 266 | 96.22 171 | 87.79 338 | 86.91 93 | 78.55 220 | 91.77 201 | 64.93 226 | 95.91 236 | 86.94 133 | 79.80 228 | 90.12 240 |
|
test1111 | | | 88.11 142 | 87.04 149 | 91.35 135 | 93.15 183 | 78.79 190 | 96.57 148 | 90.78 313 | 86.88 95 | 85.04 146 | 95.20 139 | 57.23 278 | 97.39 169 | 83.88 153 | 94.59 109 | 97.87 91 |
|
OMC-MVS | | | 88.80 124 | 88.16 122 | 90.72 156 | 95.30 122 | 77.92 218 | 94.81 232 | 94.51 209 | 86.80 96 | 84.97 148 | 96.85 99 | 67.53 206 | 98.60 111 | 85.08 142 | 87.62 173 | 95.63 176 |
|
test2506 | | | 90.96 82 | 90.39 82 | 92.65 91 | 93.54 171 | 82.46 103 | 96.37 162 | 97.35 16 | 86.78 97 | 87.55 125 | 95.25 135 | 77.83 93 | 97.50 162 | 84.07 150 | 94.80 107 | 97.98 84 |
|
ECVR-MVS |  | | 88.35 137 | 87.25 143 | 91.65 127 | 93.54 171 | 79.40 172 | 96.56 150 | 90.78 313 | 86.78 97 | 85.57 142 | 95.25 135 | 57.25 277 | 97.56 154 | 84.73 146 | 94.80 107 | 97.98 84 |
|
3Dnovator | | 82.32 10 | 89.33 111 | 87.64 131 | 94.42 31 | 93.73 167 | 85.70 41 | 97.73 62 | 96.75 54 | 86.73 99 | 76.21 250 | 95.93 118 | 62.17 239 | 99.68 41 | 81.67 177 | 97.81 59 | 97.88 89 |
|
VNet | | | 92.11 57 | 91.22 68 | 94.79 23 | 96.91 91 | 86.98 25 | 97.91 49 | 97.96 9 | 86.38 100 | 93.65 48 | 95.74 122 | 70.16 198 | 98.95 97 | 93.39 55 | 88.87 162 | 98.43 53 |
|
ACMMP_NAP | | | 93.46 32 | 93.23 37 | 94.17 39 | 97.16 88 | 84.28 72 | 96.82 134 | 96.65 67 | 86.24 101 | 94.27 42 | 97.99 44 | 77.94 89 | 99.83 16 | 93.39 55 | 98.57 33 | 98.39 55 |
|
TESTMET0.1,1 | | | 89.83 102 | 89.34 103 | 91.31 136 | 92.54 202 | 80.19 153 | 97.11 110 | 96.57 79 | 86.15 102 | 86.85 134 | 91.83 200 | 79.32 69 | 96.95 192 | 81.30 178 | 92.35 138 | 96.77 149 |
|
DPE-MVS |  | | 95.32 9 | 95.55 10 | 94.64 27 | 98.79 23 | 84.87 64 | 97.77 58 | 96.74 55 | 86.11 103 | 96.54 17 | 98.89 6 | 88.39 19 | 99.74 32 | 97.67 12 | 99.05 12 | 99.31 18 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
3Dnovator+ | | 82.88 8 | 89.63 106 | 87.85 126 | 94.99 19 | 94.49 149 | 86.76 29 | 97.84 53 | 95.74 142 | 86.10 104 | 75.47 262 | 96.02 117 | 65.00 225 | 99.51 58 | 82.91 171 | 97.07 79 | 98.72 39 |
|
test_prior2 | | | | | | | | 98.37 28 | | 86.08 105 | 94.57 39 | 98.02 43 | 83.14 46 | | 95.05 37 | 98.79 26 | |
|
baseline2 | | | 90.39 93 | 90.21 87 | 90.93 148 | 90.86 244 | 80.99 131 | 95.20 217 | 97.41 15 | 86.03 106 | 80.07 210 | 94.61 157 | 90.58 6 | 97.47 165 | 87.29 128 | 89.86 154 | 94.35 199 |
|
CHOSEN 280x420 | | | 91.71 65 | 91.85 58 | 91.29 138 | 94.94 134 | 82.69 97 | 87.89 318 | 96.17 118 | 85.94 107 | 87.27 129 | 94.31 162 | 90.27 9 | 95.65 252 | 94.04 49 | 95.86 99 | 95.53 179 |
|
sss | | | 90.87 85 | 89.96 93 | 93.60 56 | 94.15 156 | 83.84 79 | 97.14 107 | 98.13 7 | 85.93 108 | 89.68 99 | 96.09 116 | 71.67 182 | 99.30 70 | 87.69 124 | 89.16 158 | 97.66 107 |
|
EPMVS | | | 87.47 155 | 85.90 161 | 92.18 108 | 95.41 119 | 82.26 107 | 87.00 325 | 96.28 109 | 85.88 109 | 84.23 156 | 85.57 292 | 75.07 144 | 96.26 219 | 71.14 270 | 92.50 135 | 98.03 76 |
|
APDe-MVS | | | 94.56 18 | 94.75 15 | 93.96 44 | 98.84 22 | 83.40 88 | 98.04 45 | 96.41 97 | 85.79 110 | 95.00 32 | 98.28 27 | 84.32 39 | 99.18 81 | 97.35 16 | 98.77 27 | 99.28 19 |
|
VPNet | | | 84.69 196 | 82.92 206 | 90.01 174 | 89.01 273 | 83.45 87 | 96.71 142 | 95.46 157 | 85.71 111 | 79.65 212 | 92.18 193 | 56.66 282 | 96.01 229 | 83.05 170 | 67.84 311 | 90.56 231 |
|
MP-MVS |  | | 92.61 50 | 92.67 44 | 92.42 99 | 98.13 56 | 79.73 165 | 97.33 93 | 96.20 115 | 85.63 112 | 90.53 89 | 97.66 60 | 78.14 87 | 99.70 38 | 92.12 72 | 98.30 48 | 97.85 93 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
Effi-MVS+-dtu | | | 84.61 197 | 84.90 178 | 83.72 295 | 91.96 225 | 63.14 340 | 94.95 228 | 93.34 269 | 85.57 113 | 79.79 211 | 87.12 267 | 61.99 243 | 95.61 256 | 83.55 162 | 85.83 191 | 92.41 220 |
|
GA-MVS | | | 85.79 179 | 84.04 191 | 91.02 147 | 89.47 269 | 80.27 150 | 96.90 129 | 94.84 188 | 85.57 113 | 80.88 197 | 89.08 236 | 56.56 283 | 96.47 213 | 77.72 210 | 85.35 196 | 96.34 161 |
|
FIs | | | 86.73 165 | 86.10 159 | 88.61 202 | 90.05 258 | 80.21 152 | 96.14 177 | 96.95 33 | 85.56 115 | 78.37 223 | 92.30 191 | 76.73 110 | 95.28 270 | 79.51 194 | 79.27 235 | 90.35 235 |
|
DU-MVS | | | 84.57 198 | 83.33 202 | 88.28 209 | 88.76 274 | 79.36 173 | 96.43 159 | 95.41 163 | 85.42 116 | 78.11 225 | 90.82 215 | 67.61 204 | 95.14 277 | 79.14 199 | 68.30 305 | 90.33 236 |
|
UniMVSNet (Re) | | | 85.31 187 | 84.23 187 | 88.55 203 | 89.75 262 | 80.55 142 | 96.72 140 | 96.89 37 | 85.42 116 | 78.40 222 | 88.93 239 | 75.38 136 | 95.52 260 | 78.58 204 | 68.02 308 | 89.57 251 |
|
SMA-MVS |  | | 94.70 16 | 94.68 16 | 94.76 24 | 98.02 59 | 85.94 37 | 97.47 81 | 96.77 50 | 85.32 118 | 97.92 3 | 98.70 15 | 83.09 47 | 99.84 12 | 95.79 29 | 99.08 10 | 98.49 49 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
test-mter | | | 88.95 117 | 88.60 114 | 89.98 176 | 92.26 210 | 77.23 234 | 97.11 110 | 95.96 130 | 85.32 118 | 86.30 137 | 91.38 204 | 76.37 116 | 96.78 204 | 80.82 181 | 91.92 142 | 95.94 170 |
|
tpmrst | | | 88.36 136 | 87.38 141 | 91.31 136 | 94.36 151 | 79.92 157 | 87.32 322 | 95.26 171 | 85.32 118 | 88.34 118 | 86.13 286 | 80.60 58 | 96.70 206 | 83.78 155 | 85.34 197 | 97.30 130 |
|
region2R | | | 92.72 45 | 92.70 43 | 92.79 85 | 98.68 26 | 80.53 145 | 97.53 76 | 96.51 85 | 85.22 121 | 91.94 68 | 97.98 46 | 77.26 100 | 99.67 43 | 90.83 85 | 98.37 44 | 98.18 67 |
|
UniMVSNet_NR-MVSNet | | | 85.49 184 | 84.59 179 | 88.21 213 | 89.44 270 | 79.36 173 | 96.71 142 | 96.41 97 | 85.22 121 | 78.11 225 | 90.98 213 | 76.97 106 | 95.14 277 | 79.14 199 | 68.30 305 | 90.12 240 |
|
HFP-MVS | | | 92.89 39 | 92.86 41 | 92.98 79 | 98.71 25 | 81.12 129 | 97.58 72 | 96.70 60 | 85.20 123 | 91.75 70 | 97.97 48 | 78.47 82 | 99.71 36 | 90.95 81 | 98.41 41 | 98.12 73 |
|
ACMMPR | | | 92.69 47 | 92.67 44 | 92.75 86 | 98.66 28 | 80.57 141 | 97.58 72 | 96.69 62 | 85.20 123 | 91.57 72 | 97.92 49 | 77.01 105 | 99.67 43 | 90.95 81 | 98.41 41 | 98.00 82 |
|
FC-MVSNet-test | | | 85.96 175 | 85.39 166 | 87.66 223 | 89.38 271 | 78.02 212 | 95.65 199 | 96.87 38 | 85.12 125 | 77.34 229 | 91.94 198 | 76.28 118 | 94.74 289 | 77.09 218 | 78.82 239 | 90.21 238 |
|
mPP-MVS | | | 91.88 60 | 91.82 59 | 92.07 112 | 98.38 44 | 78.63 193 | 97.29 94 | 96.09 122 | 85.12 125 | 88.45 116 | 97.66 60 | 75.53 130 | 99.68 41 | 89.83 100 | 98.02 55 | 97.88 89 |
|
PVSNet_0 | | 77.72 15 | 81.70 243 | 78.95 259 | 89.94 179 | 90.77 247 | 76.72 243 | 95.96 183 | 96.95 33 | 85.01 127 | 70.24 300 | 88.53 246 | 52.32 300 | 98.20 131 | 86.68 135 | 44.08 364 | 94.89 189 |
|
ZNCC-MVS | | | 92.75 41 | 92.60 46 | 93.23 70 | 98.24 51 | 81.82 116 | 97.63 68 | 96.50 87 | 85.00 128 | 91.05 82 | 97.74 57 | 78.38 83 | 99.80 24 | 90.48 90 | 98.34 46 | 98.07 75 |
|
SCA | | | 85.63 181 | 83.64 196 | 91.60 131 | 92.30 208 | 81.86 114 | 92.88 276 | 95.56 150 | 84.85 129 | 82.52 175 | 85.12 302 | 58.04 268 | 95.39 263 | 73.89 250 | 87.58 175 | 97.54 114 |
|
tpm | | | 85.55 183 | 84.47 184 | 88.80 199 | 90.19 255 | 75.39 263 | 88.79 310 | 94.69 195 | 84.83 130 | 83.96 161 | 85.21 298 | 78.22 86 | 94.68 291 | 76.32 229 | 78.02 250 | 96.34 161 |
|
CP-MVS | | | 92.54 52 | 92.60 46 | 92.34 101 | 98.50 40 | 79.90 158 | 98.40 27 | 96.40 99 | 84.75 131 | 90.48 91 | 98.09 37 | 77.40 99 | 99.21 75 | 91.15 80 | 98.23 50 | 97.92 88 |
|
9.14 | | | | 94.26 24 | | 98.10 57 | | 98.14 34 | 96.52 84 | 84.74 132 | 94.83 36 | 98.80 7 | 82.80 50 | 99.37 67 | 95.95 27 | 98.42 40 | |
|
ACMMP |  | | 90.39 93 | 89.97 92 | 91.64 128 | 97.58 73 | 78.21 208 | 96.78 137 | 96.72 58 | 84.73 133 | 84.72 152 | 97.23 84 | 71.22 187 | 99.63 46 | 88.37 119 | 92.41 137 | 97.08 138 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
GST-MVS | | | 92.43 54 | 92.22 54 | 93.04 77 | 98.17 54 | 81.64 122 | 97.40 90 | 96.38 102 | 84.71 134 | 90.90 85 | 97.40 77 | 77.55 97 | 99.76 25 | 89.75 102 | 97.74 61 | 97.72 102 |
|
MP-MVS-pluss | | | 92.58 51 | 92.35 49 | 93.29 67 | 97.30 86 | 82.53 100 | 96.44 157 | 96.04 127 | 84.68 135 | 89.12 107 | 98.37 24 | 77.48 98 | 99.74 32 | 93.31 59 | 98.38 43 | 97.59 113 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
NR-MVSNet | | | 83.35 215 | 81.52 227 | 88.84 197 | 88.76 274 | 81.31 127 | 94.45 237 | 95.16 173 | 84.65 136 | 67.81 308 | 90.82 215 | 70.36 196 | 94.87 286 | 74.75 241 | 66.89 320 | 90.33 236 |
|
PAPM_NR | | | 91.46 70 | 90.82 74 | 93.37 66 | 98.50 40 | 81.81 117 | 95.03 227 | 96.13 119 | 84.65 136 | 86.10 139 | 97.65 64 | 79.24 72 | 99.75 30 | 83.20 167 | 96.88 83 | 98.56 46 |
|
PatchmatchNet |  | | 86.83 162 | 85.12 173 | 91.95 117 | 94.12 157 | 82.27 106 | 86.55 329 | 95.64 147 | 84.59 138 | 82.98 174 | 84.99 304 | 77.26 100 | 95.96 233 | 68.61 284 | 91.34 147 | 97.64 109 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
TranMVSNet+NR-MVSNet | | | 83.24 219 | 81.71 223 | 87.83 219 | 87.71 288 | 78.81 189 | 96.13 179 | 94.82 189 | 84.52 139 | 76.18 251 | 90.78 217 | 64.07 230 | 94.60 292 | 74.60 245 | 66.59 322 | 90.09 243 |
|
train_agg | | | 94.28 21 | 94.45 20 | 93.74 49 | 98.64 31 | 83.71 80 | 97.82 54 | 96.65 67 | 84.50 140 | 95.16 27 | 98.09 37 | 84.33 36 | 99.36 68 | 95.91 28 | 98.96 19 | 98.16 69 |
|
test_8 | | | | | | 98.63 33 | 83.64 83 | 97.81 56 | 96.63 72 | 84.50 140 | 95.10 29 | 98.11 36 | 84.33 36 | 99.23 73 | | | |
|
gm-plane-assit | | | | | | 92.27 209 | 79.64 168 | | | 84.47 142 | | 95.15 143 | | 97.93 137 | 85.81 137 | | |
|
Vis-MVSNet (Re-imp) | | | 88.88 121 | 88.87 112 | 88.91 196 | 93.89 163 | 74.43 272 | 96.93 127 | 94.19 225 | 84.39 143 | 83.22 170 | 95.67 126 | 78.24 85 | 94.70 290 | 78.88 202 | 94.40 112 | 97.61 112 |
|
thres200 | | | 88.92 119 | 87.65 130 | 92.73 88 | 96.30 96 | 85.62 43 | 97.85 52 | 98.86 1 | 84.38 144 | 84.82 150 | 93.99 172 | 75.12 143 | 98.01 135 | 70.86 272 | 86.67 179 | 94.56 198 |
|
nrg030 | | | 86.79 163 | 85.43 165 | 90.87 152 | 88.76 274 | 85.34 47 | 97.06 116 | 94.33 219 | 84.31 145 | 80.45 203 | 91.98 195 | 72.36 174 | 96.36 216 | 88.48 117 | 71.13 278 | 90.93 228 |
|
MVS_Test | | | 90.29 96 | 89.18 105 | 93.62 55 | 95.23 123 | 84.93 62 | 94.41 238 | 94.66 199 | 84.31 145 | 90.37 93 | 91.02 211 | 75.13 142 | 97.82 144 | 83.11 169 | 94.42 111 | 98.12 73 |
|
TEST9 | | | | | | 98.64 31 | 83.71 80 | 97.82 54 | 96.65 67 | 84.29 147 | 95.16 27 | 98.09 37 | 84.39 35 | 99.36 68 | | | |
|
CDS-MVSNet | | | 89.50 108 | 88.96 109 | 91.14 144 | 91.94 227 | 80.93 133 | 97.09 114 | 95.81 139 | 84.26 148 | 84.72 152 | 94.20 167 | 80.31 60 | 95.64 253 | 83.37 166 | 88.96 161 | 96.85 146 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
CR-MVSNet | | | 83.53 213 | 81.36 229 | 90.06 173 | 90.16 256 | 79.75 162 | 79.02 351 | 91.12 305 | 84.24 149 | 82.27 183 | 80.35 331 | 75.45 132 | 93.67 310 | 63.37 310 | 86.25 184 | 96.75 151 |
|
BH-w/o | | | 88.24 140 | 87.47 139 | 90.54 161 | 95.03 133 | 78.54 194 | 97.41 89 | 93.82 243 | 84.08 150 | 78.23 224 | 94.51 160 | 69.34 201 | 97.21 179 | 80.21 189 | 94.58 110 | 95.87 172 |
|
USDC | | | 78.65 272 | 76.25 277 | 85.85 259 | 87.58 289 | 74.60 270 | 89.58 304 | 90.58 316 | 84.05 151 | 63.13 331 | 88.23 250 | 40.69 341 | 96.86 200 | 66.57 294 | 75.81 257 | 86.09 321 |
|
SF-MVS | | | 94.17 24 | 94.05 26 | 94.55 29 | 97.56 74 | 85.95 35 | 97.73 62 | 96.43 95 | 84.02 152 | 95.07 31 | 98.74 14 | 82.93 48 | 99.38 65 | 95.42 35 | 98.51 34 | 98.32 58 |
|
IS-MVSNet | | | 88.67 127 | 88.16 122 | 90.20 171 | 93.61 168 | 76.86 240 | 96.77 139 | 93.07 278 | 84.02 152 | 83.62 166 | 95.60 129 | 74.69 150 | 96.24 221 | 78.43 206 | 93.66 122 | 97.49 120 |
|
WR-MVS | | | 84.32 202 | 82.96 205 | 88.41 205 | 89.38 271 | 80.32 147 | 96.59 147 | 96.25 111 | 83.97 154 | 76.63 239 | 90.36 223 | 67.53 206 | 94.86 287 | 75.82 234 | 70.09 289 | 90.06 245 |
|
mvsany_test1 | | | 87.58 153 | 88.22 119 | 85.67 264 | 89.78 261 | 67.18 326 | 95.25 214 | 87.93 336 | 83.96 155 | 88.79 111 | 97.06 93 | 72.52 172 | 94.53 295 | 92.21 71 | 86.45 182 | 95.30 186 |
|
AUN-MVS | | | 86.25 172 | 85.57 163 | 88.26 210 | 93.57 170 | 73.38 278 | 95.45 206 | 95.88 135 | 83.94 156 | 85.47 143 | 94.21 166 | 73.70 163 | 96.67 208 | 83.54 163 | 64.41 327 | 94.73 196 |
|
PS-MVSNAJss | | | 84.91 193 | 84.30 186 | 86.74 244 | 85.89 310 | 74.40 273 | 94.95 228 | 94.16 227 | 83.93 157 | 76.45 243 | 90.11 229 | 71.04 190 | 95.77 243 | 83.16 168 | 79.02 238 | 90.06 245 |
|
LCM-MVSNet-Re | | | 83.75 210 | 83.54 199 | 84.39 288 | 93.54 171 | 64.14 335 | 92.51 279 | 84.03 353 | 83.90 158 | 66.14 319 | 86.59 275 | 67.36 208 | 92.68 319 | 84.89 145 | 92.87 130 | 96.35 160 |
|
MAR-MVS | | | 90.63 88 | 90.22 86 | 91.86 120 | 98.47 42 | 78.20 209 | 97.18 101 | 96.61 73 | 83.87 159 | 88.18 121 | 98.18 30 | 68.71 202 | 99.75 30 | 83.66 161 | 97.15 77 | 97.63 110 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PGM-MVS | | | 91.93 59 | 91.80 60 | 92.32 104 | 98.27 50 | 79.74 164 | 95.28 211 | 97.27 18 | 83.83 160 | 90.89 86 | 97.78 56 | 76.12 120 | 99.56 54 | 88.82 112 | 97.93 58 | 97.66 107 |
|
RRT_MVS | | | 83.88 207 | 83.27 203 | 85.71 262 | 87.53 292 | 72.12 291 | 95.35 210 | 94.33 219 | 83.81 161 | 75.86 256 | 91.28 207 | 60.55 250 | 95.09 282 | 83.93 152 | 76.76 253 | 89.90 248 |
|
MDTV_nov1_ep13 | | | | 83.69 193 | | 94.09 158 | 81.01 130 | 86.78 327 | 96.09 122 | 83.81 161 | 84.75 151 | 84.32 309 | 74.44 153 | 96.54 210 | 63.88 306 | 85.07 198 | |
|
test-LLR | | | 88.48 132 | 87.98 124 | 89.98 176 | 92.26 210 | 77.23 234 | 97.11 110 | 95.96 130 | 83.76 163 | 86.30 137 | 91.38 204 | 72.30 176 | 96.78 204 | 80.82 181 | 91.92 142 | 95.94 170 |
|
test0.0.03 1 | | | 82.79 227 | 82.48 213 | 83.74 294 | 86.81 296 | 72.22 288 | 96.52 151 | 95.03 178 | 83.76 163 | 73.00 280 | 93.20 181 | 72.30 176 | 88.88 348 | 64.15 305 | 77.52 251 | 90.12 240 |
|
ACMP | | 81.66 11 | 84.00 205 | 83.22 204 | 86.33 250 | 91.53 234 | 72.95 286 | 95.91 188 | 93.79 247 | 83.70 165 | 73.79 272 | 92.22 192 | 54.31 298 | 96.89 196 | 83.98 151 | 79.74 231 | 89.16 261 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
1112_ss | | | 88.60 130 | 87.47 139 | 92.00 116 | 93.21 180 | 80.97 132 | 96.47 154 | 92.46 285 | 83.64 166 | 80.86 198 | 97.30 81 | 80.24 62 | 97.62 150 | 77.60 212 | 85.49 194 | 97.40 125 |
|
TAMVS | | | 88.48 132 | 87.79 128 | 90.56 160 | 91.09 239 | 79.18 178 | 96.45 156 | 95.88 135 | 83.64 166 | 83.12 171 | 93.33 180 | 75.94 123 | 95.74 248 | 82.40 172 | 88.27 169 | 96.75 151 |
|
Test_1112_low_res | | | 88.03 144 | 86.73 153 | 91.94 118 | 93.15 183 | 80.88 134 | 96.44 157 | 92.41 287 | 83.59 168 | 80.74 200 | 91.16 209 | 80.18 63 | 97.59 152 | 77.48 215 | 85.40 195 | 97.36 127 |
|
tfpn200view9 | | | 88.48 132 | 87.15 145 | 92.47 96 | 96.21 99 | 85.30 50 | 97.44 84 | 98.85 2 | 83.37 169 | 83.99 159 | 93.82 175 | 75.36 137 | 97.93 137 | 69.04 280 | 86.24 186 | 94.17 200 |
|
thres400 | | | 88.42 135 | 87.15 145 | 92.23 106 | 96.21 99 | 85.30 50 | 97.44 84 | 98.85 2 | 83.37 169 | 83.99 159 | 93.82 175 | 75.36 137 | 97.93 137 | 69.04 280 | 86.24 186 | 93.45 215 |
|
Effi-MVS+ | | | 90.70 87 | 89.90 96 | 93.09 75 | 93.61 168 | 83.48 86 | 95.20 217 | 92.79 282 | 83.22 171 | 91.82 69 | 95.70 124 | 71.82 181 | 97.48 164 | 91.25 79 | 93.67 121 | 98.32 58 |
|
thisisatest0515 | | | 90.95 83 | 90.26 85 | 93.01 78 | 94.03 162 | 84.27 73 | 97.91 49 | 96.67 64 | 83.18 172 | 86.87 133 | 95.51 132 | 88.66 16 | 97.85 143 | 80.46 184 | 89.01 160 | 96.92 143 |
|
CostFormer | | | 89.08 115 | 88.39 118 | 91.15 143 | 93.13 185 | 79.15 180 | 88.61 312 | 96.11 121 | 83.14 173 | 89.58 102 | 86.93 270 | 83.83 43 | 96.87 198 | 88.22 120 | 85.92 189 | 97.42 123 |
|
bld_raw_dy_0_64 | | | 82.13 238 | 80.76 235 | 86.24 255 | 85.78 312 | 75.03 267 | 94.40 241 | 82.62 358 | 83.12 174 | 76.46 242 | 90.96 214 | 53.83 299 | 94.55 293 | 81.04 180 | 78.60 244 | 89.14 262 |
|
VDD-MVS | | | 88.28 139 | 87.02 150 | 92.06 113 | 95.09 128 | 80.18 154 | 97.55 75 | 94.45 214 | 83.09 175 | 89.10 108 | 95.92 120 | 47.97 314 | 98.49 117 | 93.08 64 | 86.91 178 | 97.52 118 |
|
jajsoiax | | | 82.12 239 | 81.15 231 | 85.03 275 | 84.19 329 | 70.70 305 | 94.22 248 | 93.95 235 | 83.07 176 | 73.48 274 | 89.75 231 | 49.66 309 | 95.37 265 | 82.24 174 | 79.76 229 | 89.02 268 |
|
FOURS1 | | | | | | 98.51 39 | 78.01 213 | 98.13 37 | 96.21 114 | 83.04 177 | 94.39 41 | | | | | | |
|
VPA-MVSNet | | | 85.32 186 | 83.83 192 | 89.77 186 | 90.25 253 | 82.63 98 | 96.36 163 | 97.07 27 | 83.03 178 | 81.21 195 | 89.02 238 | 61.58 246 | 96.31 218 | 85.02 144 | 70.95 280 | 90.36 234 |
|
CDPH-MVS | | | 93.12 35 | 92.91 39 | 93.74 49 | 98.65 30 | 83.88 76 | 97.67 67 | 96.26 110 | 83.00 179 | 93.22 54 | 98.24 28 | 81.31 54 | 99.21 75 | 89.12 109 | 98.74 29 | 98.14 71 |
|
miper_enhance_ethall | | | 85.95 176 | 85.20 169 | 88.19 214 | 94.85 137 | 79.76 161 | 96.00 181 | 94.06 233 | 82.98 180 | 77.74 227 | 88.76 241 | 79.42 68 | 95.46 262 | 80.58 183 | 72.42 273 | 89.36 257 |
|
1314 | | | 88.94 118 | 87.20 144 | 94.17 39 | 93.21 180 | 85.73 40 | 93.33 264 | 96.64 70 | 82.89 181 | 75.98 253 | 96.36 111 | 66.83 213 | 99.39 64 | 83.52 165 | 96.02 97 | 97.39 126 |
|
ZD-MVS | | | | | | 99.09 8 | 83.22 91 | | 96.60 76 | 82.88 182 | 93.61 50 | 98.06 42 | 82.93 48 | 99.14 84 | 95.51 34 | 98.49 37 | |
|
BH-RMVSNet | | | 86.84 161 | 85.28 168 | 91.49 133 | 95.35 121 | 80.26 151 | 96.95 125 | 92.21 289 | 82.86 183 | 81.77 191 | 95.46 133 | 59.34 259 | 97.64 149 | 69.79 278 | 93.81 120 | 96.57 155 |
|
mvs_tets | | | 81.74 242 | 80.71 237 | 84.84 276 | 84.22 328 | 70.29 308 | 93.91 252 | 93.78 248 | 82.77 184 | 73.37 275 | 89.46 234 | 47.36 319 | 95.31 269 | 81.99 175 | 79.55 234 | 88.92 274 |
|
thres600view7 | | | 88.06 143 | 86.70 155 | 92.15 110 | 96.10 103 | 85.17 56 | 97.14 107 | 98.85 2 | 82.70 185 | 83.41 167 | 93.66 178 | 75.43 134 | 97.82 144 | 67.13 290 | 85.88 190 | 93.45 215 |
|
thres100view900 | | | 88.30 138 | 86.95 151 | 92.33 102 | 96.10 103 | 84.90 63 | 97.14 107 | 98.85 2 | 82.69 186 | 83.41 167 | 93.66 178 | 75.43 134 | 97.93 137 | 69.04 280 | 86.24 186 | 94.17 200 |
|
D2MVS | | | 82.67 229 | 81.55 225 | 86.04 258 | 87.77 287 | 76.47 244 | 95.21 216 | 96.58 78 | 82.66 187 | 70.26 299 | 85.46 295 | 60.39 251 | 95.80 242 | 76.40 227 | 79.18 236 | 85.83 325 |
|
PHI-MVS | | | 93.59 31 | 93.63 29 | 93.48 63 | 98.05 58 | 81.76 118 | 98.64 21 | 97.13 23 | 82.60 188 | 94.09 45 | 98.49 21 | 80.35 59 | 99.85 10 | 94.74 41 | 98.62 32 | 98.83 31 |
|
HyFIR lowres test | | | 89.36 110 | 88.60 114 | 91.63 130 | 94.91 136 | 80.76 137 | 95.60 201 | 95.53 151 | 82.56 189 | 84.03 158 | 91.24 208 | 78.03 88 | 96.81 202 | 87.07 131 | 88.41 168 | 97.32 128 |
|
APD-MVS |  | | 93.61 30 | 93.59 30 | 93.69 52 | 98.76 24 | 83.26 90 | 97.21 97 | 96.09 122 | 82.41 190 | 94.65 38 | 98.21 29 | 81.96 53 | 98.81 105 | 94.65 42 | 98.36 45 | 99.01 25 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
Fast-Effi-MVS+-dtu | | | 83.33 216 | 82.60 212 | 85.50 268 | 89.55 267 | 69.38 317 | 96.09 180 | 91.38 300 | 82.30 191 | 75.96 254 | 91.41 203 | 56.71 280 | 95.58 258 | 75.13 239 | 84.90 199 | 91.54 222 |
|
LPG-MVS_test | | | 84.20 204 | 83.49 200 | 86.33 250 | 90.88 242 | 73.06 283 | 95.28 211 | 94.13 228 | 82.20 192 | 76.31 245 | 93.20 181 | 54.83 295 | 96.95 192 | 83.72 158 | 80.83 223 | 88.98 270 |
|
LGP-MVS_train | | | | | 86.33 250 | 90.88 242 | 73.06 283 | | 94.13 228 | 82.20 192 | 76.31 245 | 93.20 181 | 54.83 295 | 96.95 192 | 83.72 158 | 80.83 223 | 88.98 270 |
|
SR-MVS | | | 92.16 56 | 92.27 51 | 91.83 123 | 98.37 45 | 78.41 199 | 96.67 145 | 95.76 141 | 82.19 194 | 91.97 67 | 98.07 41 | 76.44 113 | 98.64 109 | 93.71 52 | 97.27 75 | 98.45 52 |
|
FA-MVS(test-final) | | | 87.71 151 | 86.23 158 | 92.17 109 | 94.19 155 | 80.55 142 | 87.16 324 | 96.07 125 | 82.12 195 | 85.98 140 | 88.35 248 | 72.04 180 | 98.49 117 | 80.26 187 | 89.87 153 | 97.48 121 |
|
HPM-MVS |  | | 91.62 67 | 91.53 65 | 91.89 119 | 97.88 63 | 79.22 177 | 96.99 118 | 95.73 143 | 82.07 196 | 89.50 105 | 97.19 86 | 75.59 129 | 98.93 100 | 90.91 83 | 97.94 56 | 97.54 114 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
mvs_anonymous | | | 88.68 126 | 87.62 133 | 91.86 120 | 94.80 138 | 81.69 121 | 93.53 260 | 94.92 182 | 82.03 197 | 78.87 218 | 90.43 222 | 75.77 125 | 95.34 266 | 85.04 143 | 93.16 128 | 98.55 48 |
|
XVG-OURS | | | 85.18 188 | 84.38 185 | 87.59 226 | 90.42 252 | 71.73 299 | 91.06 297 | 94.07 232 | 82.00 198 | 83.29 169 | 95.08 147 | 56.42 284 | 97.55 156 | 83.70 160 | 83.42 206 | 93.49 214 |
|
BH-untuned | | | 86.95 159 | 85.94 160 | 89.99 175 | 94.52 145 | 77.46 229 | 96.78 137 | 93.37 268 | 81.80 199 | 76.62 240 | 93.81 177 | 66.64 214 | 97.02 189 | 76.06 230 | 93.88 119 | 95.48 181 |
|
FMVSNet3 | | | 84.71 195 | 82.71 210 | 90.70 157 | 94.55 143 | 87.71 19 | 95.92 186 | 94.67 198 | 81.73 200 | 75.82 257 | 88.08 253 | 66.99 211 | 94.47 296 | 71.23 267 | 75.38 259 | 89.91 247 |
|
thisisatest0530 | | | 89.65 105 | 89.02 107 | 91.53 132 | 93.46 177 | 80.78 136 | 96.52 151 | 96.67 64 | 81.69 201 | 83.79 164 | 94.90 152 | 88.85 15 | 97.68 148 | 77.80 207 | 87.49 176 | 96.14 167 |
|
v2v482 | | | 83.46 214 | 81.86 221 | 88.25 211 | 86.19 304 | 79.65 167 | 96.34 165 | 94.02 234 | 81.56 202 | 77.32 230 | 88.23 250 | 65.62 218 | 96.03 225 | 77.77 208 | 69.72 293 | 89.09 264 |
|
XVG-OURS-SEG-HR | | | 85.74 180 | 85.16 172 | 87.49 231 | 90.22 254 | 71.45 302 | 91.29 294 | 94.09 231 | 81.37 203 | 83.90 163 | 95.22 137 | 60.30 252 | 97.53 160 | 85.58 139 | 84.42 201 | 93.50 213 |
|
Fast-Effi-MVS+ | | | 87.93 147 | 86.94 152 | 90.92 149 | 94.04 160 | 79.16 179 | 98.26 30 | 93.72 252 | 81.29 204 | 83.94 162 | 92.90 185 | 69.83 199 | 96.68 207 | 76.70 223 | 91.74 144 | 96.93 141 |
|
ab-mvs | | | 87.08 157 | 84.94 176 | 93.48 63 | 93.34 179 | 83.67 82 | 88.82 309 | 95.70 144 | 81.18 205 | 84.55 155 | 90.14 228 | 62.72 236 | 98.94 99 | 85.49 140 | 82.54 218 | 97.85 93 |
|
test_fmvs2 | | | 79.59 264 | 79.90 251 | 78.67 324 | 82.86 337 | 55.82 357 | 95.20 217 | 89.55 321 | 81.09 206 | 80.12 209 | 89.80 230 | 34.31 351 | 93.51 313 | 87.82 122 | 78.36 247 | 86.69 312 |
|
原ACMM1 | | | | | 91.22 141 | 97.77 65 | 78.10 211 | | 96.61 73 | 81.05 207 | 91.28 79 | 97.42 76 | 77.92 91 | 98.98 94 | 79.85 193 | 98.51 34 | 96.59 154 |
|
test_yl | | | 91.46 70 | 90.53 79 | 94.24 36 | 97.41 80 | 85.18 52 | 98.08 40 | 97.72 10 | 80.94 208 | 89.85 95 | 96.14 114 | 75.61 127 | 98.81 105 | 90.42 95 | 88.56 166 | 98.74 34 |
|
DCV-MVSNet | | | 91.46 70 | 90.53 79 | 94.24 36 | 97.41 80 | 85.18 52 | 98.08 40 | 97.72 10 | 80.94 208 | 89.85 95 | 96.14 114 | 75.61 127 | 98.81 105 | 90.42 95 | 88.56 166 | 98.74 34 |
|
CP-MVSNet | | | 81.01 253 | 80.08 246 | 83.79 292 | 87.91 286 | 70.51 306 | 94.29 247 | 95.65 146 | 80.83 210 | 72.54 286 | 88.84 240 | 63.71 231 | 92.32 323 | 68.58 285 | 68.36 304 | 88.55 278 |
|
tttt0517 | | | 88.57 131 | 88.19 121 | 89.71 187 | 93.00 188 | 75.99 256 | 95.67 197 | 96.67 64 | 80.78 211 | 81.82 190 | 94.40 161 | 88.97 14 | 97.58 153 | 76.05 231 | 86.31 183 | 95.57 178 |
|
MVSFormer | | | 91.36 73 | 90.57 78 | 93.73 51 | 93.00 188 | 88.08 15 | 94.80 233 | 94.48 210 | 80.74 212 | 94.90 33 | 97.13 88 | 78.84 77 | 95.10 280 | 83.77 156 | 97.46 67 | 98.02 77 |
|
test_djsdf | | | 83.00 225 | 82.45 214 | 84.64 281 | 84.07 331 | 69.78 313 | 94.80 233 | 94.48 210 | 80.74 212 | 75.41 263 | 87.70 257 | 61.32 248 | 95.10 280 | 83.77 156 | 79.76 229 | 89.04 267 |
|
MDTV_nov1_ep13_2view | | | | | | | 81.74 119 | 86.80 326 | | 80.65 214 | 85.65 141 | | 74.26 154 | | 76.52 225 | | 96.98 139 |
|
CVMVSNet | | | 84.83 194 | 85.57 163 | 82.63 306 | 91.55 232 | 60.38 348 | 95.13 221 | 95.03 178 | 80.60 215 | 82.10 185 | 94.71 155 | 66.40 216 | 90.19 345 | 74.30 247 | 90.32 151 | 97.31 129 |
|
DP-MVS Recon | | | 91.72 64 | 90.85 73 | 94.34 32 | 99.50 1 | 85.00 61 | 98.51 25 | 95.96 130 | 80.57 216 | 88.08 122 | 97.63 66 | 76.84 107 | 99.89 7 | 85.67 138 | 94.88 106 | 98.13 72 |
|
SR-MVS-dyc-post | | | 91.29 75 | 91.45 66 | 90.80 153 | 97.76 67 | 76.03 253 | 96.20 174 | 95.44 159 | 80.56 217 | 90.72 87 | 97.84 52 | 75.76 126 | 98.61 110 | 91.99 74 | 96.79 86 | 97.75 100 |
|
RE-MVS-def | | | | 91.18 71 | | 97.76 67 | 76.03 253 | 96.20 174 | 95.44 159 | 80.56 217 | 90.72 87 | 97.84 52 | 73.36 166 | | 91.99 74 | 96.79 86 | 97.75 100 |
|
v148 | | | 82.41 235 | 80.89 232 | 86.99 242 | 86.18 305 | 76.81 241 | 96.27 168 | 93.82 243 | 80.49 219 | 75.28 264 | 86.11 287 | 67.32 209 | 95.75 245 | 75.48 236 | 67.03 319 | 88.42 283 |
|
IterMVS-LS | | | 83.93 206 | 82.80 209 | 87.31 235 | 91.46 235 | 77.39 231 | 95.66 198 | 93.43 263 | 80.44 220 | 75.51 261 | 87.26 264 | 73.72 161 | 95.16 276 | 76.99 219 | 70.72 282 | 89.39 252 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
ACMM | | 80.70 13 | 83.72 211 | 82.85 208 | 86.31 253 | 91.19 237 | 72.12 291 | 95.88 189 | 94.29 221 | 80.44 220 | 77.02 234 | 91.96 196 | 55.24 291 | 97.14 186 | 79.30 197 | 80.38 226 | 89.67 250 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
EI-MVSNet | | | 85.80 178 | 85.20 169 | 87.59 226 | 91.55 232 | 77.41 230 | 95.13 221 | 95.36 164 | 80.43 222 | 80.33 205 | 94.71 155 | 73.72 161 | 95.97 230 | 76.96 221 | 78.64 241 | 89.39 252 |
|
UnsupCasMVSNet_eth | | | 73.25 305 | 70.57 309 | 81.30 312 | 77.53 351 | 66.33 329 | 87.24 323 | 93.89 239 | 80.38 223 | 57.90 350 | 81.59 324 | 42.91 332 | 90.56 342 | 65.18 301 | 48.51 358 | 87.01 309 |
|
V42 | | | 83.04 223 | 81.53 226 | 87.57 228 | 86.27 303 | 79.09 183 | 95.87 190 | 94.11 230 | 80.35 224 | 77.22 232 | 86.79 273 | 65.32 223 | 96.02 228 | 77.74 209 | 70.14 285 | 87.61 299 |
|
TR-MVS | | | 86.30 170 | 84.93 177 | 90.42 163 | 94.63 141 | 77.58 227 | 96.57 148 | 93.82 243 | 80.30 225 | 82.42 178 | 95.16 142 | 58.74 263 | 97.55 156 | 74.88 240 | 87.82 172 | 96.13 168 |
|
IterMVS | | | 80.67 256 | 79.16 256 | 85.20 272 | 89.79 260 | 76.08 251 | 92.97 274 | 91.86 293 | 80.28 226 | 71.20 292 | 85.14 301 | 57.93 271 | 91.34 335 | 72.52 259 | 70.74 281 | 88.18 288 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
PS-CasMVS | | | 80.27 259 | 79.18 255 | 83.52 299 | 87.56 290 | 69.88 311 | 94.08 250 | 95.29 169 | 80.27 227 | 72.08 288 | 88.51 247 | 59.22 261 | 92.23 325 | 67.49 287 | 68.15 307 | 88.45 282 |
|
XVG-ACMP-BASELINE | | | 79.38 268 | 77.90 265 | 83.81 291 | 84.98 322 | 67.14 328 | 89.03 308 | 93.18 274 | 80.26 228 | 72.87 282 | 88.15 252 | 38.55 342 | 96.26 219 | 76.05 231 | 78.05 249 | 88.02 290 |
|
XXY-MVS | | | 83.84 208 | 82.00 219 | 89.35 189 | 87.13 294 | 81.38 125 | 95.72 195 | 94.26 222 | 80.15 229 | 75.92 255 | 90.63 218 | 61.96 244 | 96.52 211 | 78.98 201 | 73.28 271 | 90.14 239 |
|
WR-MVS_H | | | 81.02 252 | 80.09 245 | 83.79 292 | 88.08 284 | 71.26 304 | 94.46 236 | 96.54 82 | 80.08 230 | 72.81 283 | 86.82 271 | 70.36 196 | 92.65 320 | 64.18 304 | 67.50 314 | 87.46 304 |
|
IterMVS-SCA-FT | | | 80.51 258 | 79.10 257 | 84.73 278 | 89.63 266 | 74.66 269 | 92.98 273 | 91.81 295 | 80.05 231 | 71.06 294 | 85.18 299 | 58.04 268 | 91.40 334 | 72.48 260 | 70.70 283 | 88.12 289 |
|
v1144 | | | 82.90 226 | 81.27 230 | 87.78 221 | 86.29 302 | 79.07 184 | 96.14 177 | 93.93 236 | 80.05 231 | 77.38 228 | 86.80 272 | 65.50 219 | 95.93 235 | 75.21 238 | 70.13 286 | 88.33 285 |
|
ITE_SJBPF | | | | | 82.38 307 | 87.00 295 | 65.59 330 | | 89.55 321 | 79.99 233 | 69.37 304 | 91.30 206 | 41.60 336 | 95.33 267 | 62.86 312 | 74.63 264 | 86.24 318 |
|
dp | | | 84.30 203 | 82.31 215 | 90.28 168 | 94.24 154 | 77.97 214 | 86.57 328 | 95.53 151 | 79.94 234 | 80.75 199 | 85.16 300 | 71.49 186 | 96.39 215 | 63.73 307 | 83.36 207 | 96.48 157 |
|
APD-MVS_3200maxsize | | | 91.23 77 | 91.35 67 | 90.89 151 | 97.89 62 | 76.35 248 | 96.30 167 | 95.52 153 | 79.82 235 | 91.03 83 | 97.88 51 | 74.70 147 | 98.54 114 | 92.11 73 | 96.89 82 | 97.77 99 |
|
PEN-MVS | | | 79.47 267 | 78.26 263 | 83.08 302 | 86.36 300 | 68.58 320 | 93.85 253 | 94.77 193 | 79.76 236 | 71.37 290 | 88.55 244 | 59.79 253 | 92.46 321 | 64.50 303 | 65.40 324 | 88.19 287 |
|
cl22 | | | 85.11 190 | 84.17 188 | 87.92 218 | 95.06 132 | 78.82 187 | 95.51 203 | 94.22 223 | 79.74 237 | 76.77 237 | 87.92 255 | 75.96 122 | 95.68 249 | 79.93 192 | 72.42 273 | 89.27 258 |
|
MS-PatchMatch | | | 83.05 222 | 81.82 222 | 86.72 248 | 89.64 265 | 79.10 182 | 94.88 230 | 94.59 206 | 79.70 238 | 70.67 296 | 89.65 232 | 50.43 306 | 96.82 201 | 70.82 274 | 95.99 98 | 84.25 335 |
|
PCF-MVS | | 84.09 5 | 86.77 164 | 85.00 175 | 92.08 111 | 92.06 222 | 83.07 93 | 92.14 284 | 94.47 212 | 79.63 239 | 76.90 236 | 94.78 154 | 71.15 188 | 99.20 79 | 72.87 256 | 91.05 148 | 93.98 206 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
GeoE | | | 86.36 168 | 85.20 169 | 89.83 183 | 93.17 182 | 76.13 250 | 97.53 76 | 92.11 290 | 79.58 240 | 80.99 196 | 94.01 171 | 66.60 215 | 96.17 223 | 73.48 254 | 89.30 157 | 97.20 134 |
|
HPM-MVS_fast | | | 90.38 95 | 90.17 89 | 91.03 146 | 97.61 70 | 77.35 232 | 97.15 106 | 95.48 155 | 79.51 241 | 88.79 111 | 96.90 96 | 71.64 184 | 98.81 105 | 87.01 132 | 97.44 69 | 96.94 140 |
|
testgi | | | 74.88 298 | 73.40 298 | 79.32 322 | 80.13 344 | 61.75 343 | 93.21 269 | 86.64 344 | 79.49 242 | 66.56 318 | 91.06 210 | 35.51 349 | 88.67 349 | 56.79 335 | 71.25 277 | 87.56 301 |
|
EPP-MVSNet | | | 89.76 103 | 89.72 99 | 89.87 181 | 93.78 164 | 76.02 255 | 97.22 95 | 96.51 85 | 79.35 243 | 85.11 145 | 95.01 149 | 84.82 34 | 97.10 187 | 87.46 127 | 88.21 170 | 96.50 156 |
|
v1192 | | | 82.31 236 | 80.55 240 | 87.60 225 | 85.94 308 | 78.47 198 | 95.85 192 | 93.80 246 | 79.33 244 | 76.97 235 | 86.51 276 | 63.33 234 | 95.87 238 | 73.11 255 | 70.13 286 | 88.46 281 |
|
tpm2 | | | 87.35 156 | 86.26 157 | 90.62 158 | 92.93 193 | 78.67 192 | 88.06 317 | 95.99 128 | 79.33 244 | 87.40 126 | 86.43 281 | 80.28 61 | 96.40 214 | 80.23 188 | 85.73 193 | 96.79 147 |
|
PatchMatch-RL | | | 85.00 192 | 83.66 195 | 89.02 194 | 95.86 108 | 74.55 271 | 92.49 280 | 93.60 257 | 79.30 246 | 79.29 215 | 91.47 202 | 58.53 265 | 98.45 121 | 70.22 276 | 92.17 141 | 94.07 205 |
|
miper_ehance_all_eth | | | 84.57 198 | 83.60 198 | 87.50 230 | 92.64 200 | 78.25 204 | 95.40 209 | 93.47 261 | 79.28 247 | 76.41 244 | 87.64 258 | 76.53 112 | 95.24 272 | 78.58 204 | 72.42 273 | 89.01 269 |
|
PLC |  | 83.97 7 | 88.00 145 | 87.38 141 | 89.83 183 | 98.02 59 | 76.46 245 | 97.16 105 | 94.43 215 | 79.26 248 | 81.98 187 | 96.28 112 | 69.36 200 | 99.27 71 | 77.71 211 | 92.25 139 | 93.77 210 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
LFMVS | | | 89.27 113 | 87.64 131 | 94.16 41 | 97.16 88 | 85.52 45 | 97.18 101 | 94.66 199 | 79.17 249 | 89.63 101 | 96.57 109 | 55.35 290 | 98.22 130 | 89.52 106 | 89.54 155 | 98.74 34 |
|
eth_miper_zixun_eth | | | 83.12 221 | 82.01 218 | 86.47 249 | 91.85 230 | 74.80 268 | 94.33 242 | 93.18 274 | 79.11 250 | 75.74 260 | 87.25 265 | 72.71 170 | 95.32 268 | 76.78 222 | 67.13 317 | 89.27 258 |
|
v144192 | | | 82.43 232 | 80.73 236 | 87.54 229 | 85.81 311 | 78.22 205 | 95.98 182 | 93.78 248 | 79.09 251 | 77.11 233 | 86.49 277 | 64.66 229 | 95.91 236 | 74.20 248 | 69.42 294 | 88.49 279 |
|
GBi-Net | | | 82.42 233 | 80.43 242 | 88.39 206 | 92.66 197 | 81.95 108 | 94.30 244 | 93.38 265 | 79.06 252 | 75.82 257 | 85.66 288 | 56.38 285 | 93.84 306 | 71.23 267 | 75.38 259 | 89.38 254 |
|
test1 | | | 82.42 233 | 80.43 242 | 88.39 206 | 92.66 197 | 81.95 108 | 94.30 244 | 93.38 265 | 79.06 252 | 75.82 257 | 85.66 288 | 56.38 285 | 93.84 306 | 71.23 267 | 75.38 259 | 89.38 254 |
|
FMVSNet2 | | | 82.79 227 | 80.44 241 | 89.83 183 | 92.66 197 | 85.43 46 | 95.42 207 | 94.35 217 | 79.06 252 | 74.46 269 | 87.28 262 | 56.38 285 | 94.31 299 | 69.72 279 | 74.68 263 | 89.76 249 |
|
v1921920 | | | 82.02 240 | 80.23 244 | 87.41 232 | 85.62 313 | 77.92 218 | 95.79 194 | 93.69 253 | 78.86 255 | 76.67 238 | 86.44 279 | 62.50 237 | 95.83 240 | 72.69 257 | 69.77 292 | 88.47 280 |
|
v8 | | | 81.88 241 | 80.06 248 | 87.32 234 | 86.63 297 | 79.04 185 | 94.41 238 | 93.65 255 | 78.77 256 | 73.19 279 | 85.57 292 | 66.87 212 | 95.81 241 | 73.84 252 | 67.61 313 | 87.11 307 |
|
DTE-MVSNet | | | 78.37 274 | 77.06 271 | 82.32 309 | 85.22 320 | 67.17 327 | 93.40 261 | 93.66 254 | 78.71 257 | 70.53 297 | 88.29 249 | 59.06 262 | 92.23 325 | 61.38 317 | 63.28 333 | 87.56 301 |
|
c3_l | | | 83.80 209 | 82.65 211 | 87.25 237 | 92.10 218 | 77.74 225 | 95.25 214 | 93.04 279 | 78.58 258 | 76.01 252 | 87.21 266 | 75.25 141 | 95.11 279 | 77.54 214 | 68.89 299 | 88.91 275 |
|
Patchmatch-RL test | | | 76.65 289 | 74.01 296 | 84.55 283 | 77.37 353 | 64.23 334 | 78.49 353 | 82.84 357 | 78.48 259 | 64.63 325 | 73.40 352 | 76.05 121 | 91.70 333 | 76.99 219 | 57.84 342 | 97.72 102 |
|
v1240 | | | 81.70 243 | 79.83 252 | 87.30 236 | 85.50 314 | 77.70 226 | 95.48 204 | 93.44 262 | 78.46 260 | 76.53 241 | 86.44 279 | 60.85 249 | 95.84 239 | 71.59 264 | 70.17 284 | 88.35 284 |
|
cl____ | | | 83.27 217 | 82.12 216 | 86.74 244 | 92.20 213 | 75.95 257 | 95.11 223 | 93.27 271 | 78.44 261 | 74.82 267 | 87.02 269 | 74.19 155 | 95.19 274 | 74.67 243 | 69.32 295 | 89.09 264 |
|
DIV-MVS_self_test | | | 83.27 217 | 82.12 216 | 86.74 244 | 92.19 214 | 75.92 259 | 95.11 223 | 93.26 272 | 78.44 261 | 74.81 268 | 87.08 268 | 74.19 155 | 95.19 274 | 74.66 244 | 69.30 296 | 89.11 263 |
|
SixPastTwentyTwo | | | 76.04 291 | 74.32 292 | 81.22 313 | 84.54 325 | 61.43 346 | 91.16 295 | 89.30 325 | 77.89 263 | 64.04 326 | 86.31 283 | 48.23 311 | 94.29 300 | 63.54 309 | 63.84 331 | 87.93 292 |
|
v10 | | | 81.43 247 | 79.53 254 | 87.11 239 | 86.38 299 | 78.87 186 | 94.31 243 | 93.43 263 | 77.88 264 | 73.24 278 | 85.26 296 | 65.44 220 | 95.75 245 | 72.14 261 | 67.71 312 | 86.72 311 |
|
miper_lstm_enhance | | | 81.66 245 | 80.66 238 | 84.67 280 | 91.19 237 | 71.97 295 | 91.94 286 | 93.19 273 | 77.86 265 | 72.27 287 | 85.26 296 | 73.46 164 | 93.42 314 | 73.71 253 | 67.05 318 | 88.61 277 |
|
MVP-Stereo | | | 82.65 230 | 81.67 224 | 85.59 267 | 86.10 307 | 78.29 202 | 93.33 264 | 92.82 281 | 77.75 266 | 69.17 306 | 87.98 254 | 59.28 260 | 95.76 244 | 71.77 262 | 96.88 83 | 82.73 343 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
pmmvs5 | | | 81.34 248 | 79.54 253 | 86.73 247 | 85.02 321 | 76.91 238 | 96.22 171 | 91.65 297 | 77.65 267 | 73.55 273 | 88.61 243 | 55.70 288 | 94.43 297 | 74.12 249 | 73.35 270 | 88.86 276 |
|
MVS | | | 90.60 89 | 88.64 113 | 96.50 5 | 94.25 153 | 90.53 8 | 93.33 264 | 97.21 20 | 77.59 268 | 78.88 217 | 97.31 79 | 71.52 185 | 99.69 39 | 89.60 103 | 98.03 54 | 99.27 20 |
|
AdaColmap |  | | 88.81 123 | 87.61 134 | 92.39 100 | 99.33 4 | 79.95 156 | 96.70 144 | 95.58 149 | 77.51 269 | 83.05 173 | 96.69 108 | 61.90 245 | 99.72 35 | 84.29 148 | 93.47 124 | 97.50 119 |
|
无先验 | | | | | | | | 96.87 130 | 96.78 44 | 77.39 270 | | | | 99.52 56 | 79.95 191 | | 98.43 53 |
|
MIMVSNet | | | 79.18 270 | 75.99 279 | 88.72 201 | 87.37 293 | 80.66 139 | 79.96 346 | 91.82 294 | 77.38 271 | 74.33 270 | 81.87 323 | 41.78 334 | 90.74 341 | 66.36 297 | 83.10 209 | 94.76 192 |
|
pmmvs4 | | | 82.54 231 | 80.79 233 | 87.79 220 | 86.11 306 | 80.49 146 | 93.55 259 | 93.18 274 | 77.29 272 | 73.35 276 | 89.40 235 | 65.26 224 | 95.05 284 | 75.32 237 | 73.61 267 | 87.83 293 |
|
CL-MVSNet_self_test | | | 75.81 293 | 74.14 295 | 80.83 316 | 78.33 349 | 67.79 323 | 94.22 248 | 93.52 260 | 77.28 273 | 69.82 301 | 81.54 325 | 61.47 247 | 89.22 347 | 57.59 330 | 53.51 349 | 85.48 327 |
|
pm-mvs1 | | | 80.05 260 | 78.02 264 | 86.15 256 | 85.42 315 | 75.81 260 | 95.11 223 | 92.69 284 | 77.13 274 | 70.36 298 | 87.43 260 | 58.44 266 | 95.27 271 | 71.36 266 | 64.25 329 | 87.36 305 |
|
K. test v3 | | | 73.62 301 | 71.59 305 | 79.69 320 | 82.98 336 | 59.85 351 | 90.85 299 | 88.83 329 | 77.13 274 | 58.90 345 | 82.11 321 | 43.62 326 | 91.72 332 | 65.83 298 | 54.10 348 | 87.50 303 |
|
anonymousdsp | | | 80.98 254 | 79.97 249 | 84.01 289 | 81.73 339 | 70.44 307 | 92.49 280 | 93.58 259 | 77.10 276 | 72.98 281 | 86.31 283 | 57.58 272 | 94.90 285 | 79.32 196 | 78.63 243 | 86.69 312 |
|
CSCG | | | 92.02 58 | 91.65 63 | 93.12 73 | 98.53 36 | 80.59 140 | 97.47 81 | 97.18 22 | 77.06 277 | 84.64 154 | 97.98 46 | 83.98 41 | 99.52 56 | 90.72 87 | 97.33 73 | 99.23 21 |
|
OurMVSNet-221017-0 | | | 77.18 286 | 76.06 278 | 80.55 317 | 83.78 334 | 60.00 350 | 90.35 300 | 91.05 308 | 77.01 278 | 66.62 317 | 87.92 255 | 47.73 317 | 94.03 303 | 71.63 263 | 68.44 303 | 87.62 298 |
|
FE-MVS | | | 86.06 174 | 84.15 189 | 91.78 124 | 94.33 152 | 79.81 159 | 84.58 337 | 96.61 73 | 76.69 279 | 85.00 147 | 87.38 261 | 70.71 194 | 98.37 125 | 70.39 275 | 91.70 145 | 97.17 135 |
|
test_vis1_rt | | | 73.96 300 | 72.40 302 | 78.64 325 | 83.91 333 | 61.16 347 | 95.63 200 | 68.18 371 | 76.32 280 | 60.09 344 | 74.77 347 | 29.01 360 | 97.54 158 | 87.74 123 | 75.94 255 | 77.22 357 |
|
KD-MVS_2432*1600 | | | 77.63 281 | 74.92 286 | 85.77 260 | 90.86 244 | 79.44 170 | 88.08 315 | 93.92 237 | 76.26 281 | 67.05 312 | 82.78 319 | 72.15 178 | 91.92 328 | 61.53 314 | 41.62 367 | 85.94 323 |
|
miper_refine_blended | | | 77.63 281 | 74.92 286 | 85.77 260 | 90.86 244 | 79.44 170 | 88.08 315 | 93.92 237 | 76.26 281 | 67.05 312 | 82.78 319 | 72.15 178 | 91.92 328 | 61.53 314 | 41.62 367 | 85.94 323 |
|
Baseline_NR-MVSNet | | | 81.22 250 | 80.07 247 | 84.68 279 | 85.32 319 | 75.12 265 | 96.48 153 | 88.80 330 | 76.24 283 | 77.28 231 | 86.40 282 | 67.61 204 | 94.39 298 | 75.73 235 | 66.73 321 | 84.54 332 |
|
F-COLMAP | | | 84.50 200 | 83.44 201 | 87.67 222 | 95.22 124 | 72.22 288 | 95.95 184 | 93.78 248 | 75.74 284 | 76.30 247 | 95.18 141 | 59.50 257 | 98.45 121 | 72.67 258 | 86.59 181 | 92.35 221 |
|
CPTT-MVS | | | 89.72 104 | 89.87 97 | 89.29 190 | 98.33 47 | 73.30 280 | 97.70 64 | 95.35 166 | 75.68 285 | 87.40 126 | 97.44 75 | 70.43 195 | 98.25 129 | 89.56 105 | 96.90 81 | 96.33 163 |
|
OpenMVS |  | 79.58 14 | 86.09 173 | 83.62 197 | 93.50 61 | 90.95 241 | 86.71 30 | 97.44 84 | 95.83 138 | 75.35 286 | 72.64 284 | 95.72 123 | 57.42 276 | 99.64 45 | 71.41 265 | 95.85 100 | 94.13 203 |
|
cascas | | | 86.50 166 | 84.48 183 | 92.55 95 | 92.64 200 | 85.95 35 | 97.04 117 | 95.07 177 | 75.32 287 | 80.50 201 | 91.02 211 | 54.33 297 | 97.98 136 | 86.79 134 | 87.62 173 | 93.71 211 |
|
tpmvs | | | 83.04 223 | 80.77 234 | 89.84 182 | 95.43 118 | 77.96 215 | 85.59 334 | 95.32 168 | 75.31 288 | 76.27 248 | 83.70 314 | 73.89 158 | 97.41 167 | 59.53 321 | 81.93 220 | 94.14 202 |
|
114514_t | | | 88.79 125 | 87.57 135 | 92.45 97 | 98.21 53 | 81.74 119 | 96.99 118 | 95.45 158 | 75.16 289 | 82.48 176 | 95.69 125 | 68.59 203 | 98.50 116 | 80.33 185 | 95.18 104 | 97.10 137 |
|
API-MVS | | | 90.18 97 | 88.97 108 | 93.80 47 | 98.66 28 | 82.95 95 | 97.50 80 | 95.63 148 | 75.16 289 | 86.31 136 | 97.69 58 | 72.49 173 | 99.90 5 | 81.26 179 | 96.07 95 | 98.56 46 |
|
v7n | | | 79.32 269 | 77.34 268 | 85.28 271 | 84.05 332 | 72.89 287 | 93.38 262 | 93.87 240 | 75.02 291 | 70.68 295 | 84.37 308 | 59.58 256 | 95.62 255 | 67.60 286 | 67.50 314 | 87.32 306 |
|
TAPA-MVS | | 81.61 12 | 85.02 191 | 83.67 194 | 89.06 192 | 96.79 92 | 73.27 282 | 95.92 186 | 94.79 192 | 74.81 292 | 80.47 202 | 96.83 100 | 71.07 189 | 98.19 132 | 49.82 353 | 92.57 133 | 95.71 175 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PM-MVS | | | 69.32 318 | 66.93 320 | 76.49 331 | 73.60 361 | 55.84 356 | 85.91 332 | 79.32 364 | 74.72 293 | 61.09 340 | 78.18 339 | 21.76 363 | 91.10 338 | 70.86 272 | 56.90 344 | 82.51 344 |
|
新几何1 | | | | | 93.12 73 | 97.44 78 | 81.60 123 | | 96.71 59 | 74.54 294 | 91.22 80 | 97.57 67 | 79.13 74 | 99.51 58 | 77.40 217 | 98.46 38 | 98.26 65 |
|
CNLPA | | | 86.96 158 | 85.37 167 | 91.72 126 | 97.59 72 | 79.34 175 | 97.21 97 | 91.05 308 | 74.22 295 | 78.90 216 | 96.75 106 | 67.21 210 | 98.95 97 | 74.68 242 | 90.77 150 | 96.88 145 |
|
tt0805 | | | 81.20 251 | 79.06 258 | 87.61 224 | 86.50 298 | 72.97 285 | 93.66 255 | 95.48 155 | 74.11 296 | 76.23 249 | 91.99 194 | 41.36 337 | 97.40 168 | 77.44 216 | 74.78 262 | 92.45 219 |
|
test20.03 | | | 72.36 310 | 71.15 306 | 75.98 334 | 77.79 350 | 59.16 352 | 92.40 282 | 89.35 324 | 74.09 297 | 61.50 338 | 84.32 309 | 48.09 312 | 85.54 359 | 50.63 351 | 62.15 336 | 83.24 339 |
|
旧先验2 | | | | | | | | 96.97 123 | | 74.06 298 | 96.10 20 | | | 97.76 146 | 88.38 118 | | |
|
TransMVSNet (Re) | | | 76.94 287 | 74.38 291 | 84.62 282 | 85.92 309 | 75.25 264 | 95.28 211 | 89.18 326 | 73.88 299 | 67.22 309 | 86.46 278 | 59.64 254 | 94.10 302 | 59.24 325 | 52.57 353 | 84.50 333 |
|
QAPM | | | 86.88 160 | 84.51 181 | 93.98 42 | 94.04 160 | 85.89 38 | 97.19 100 | 96.05 126 | 73.62 300 | 75.12 265 | 95.62 128 | 62.02 242 | 99.74 32 | 70.88 271 | 96.06 96 | 96.30 165 |
|
UniMVSNet_ETH3D | | | 80.86 255 | 78.75 260 | 87.22 238 | 86.31 301 | 72.02 293 | 91.95 285 | 93.76 251 | 73.51 301 | 75.06 266 | 90.16 227 | 43.04 331 | 95.66 250 | 76.37 228 | 78.55 245 | 93.98 206 |
|
tfpnnormal | | | 78.14 276 | 75.42 282 | 86.31 253 | 88.33 281 | 79.24 176 | 94.41 238 | 96.22 113 | 73.51 301 | 69.81 302 | 85.52 294 | 55.43 289 | 95.75 245 | 47.65 357 | 67.86 310 | 83.95 338 |
|
testdata | | | | | 90.13 172 | 95.92 107 | 74.17 274 | | 96.49 90 | 73.49 303 | 94.82 37 | 97.99 44 | 78.80 79 | 97.93 137 | 83.53 164 | 97.52 66 | 98.29 62 |
|
our_test_3 | | | 77.90 279 | 75.37 283 | 85.48 269 | 85.39 316 | 76.74 242 | 93.63 256 | 91.67 296 | 73.39 304 | 65.72 321 | 84.65 307 | 58.20 267 | 93.13 318 | 57.82 328 | 67.87 309 | 86.57 314 |
|
FMVSNet1 | | | 79.50 266 | 76.54 276 | 88.39 206 | 88.47 279 | 81.95 108 | 94.30 244 | 93.38 265 | 73.14 305 | 72.04 289 | 85.66 288 | 43.86 325 | 93.84 306 | 65.48 299 | 72.53 272 | 89.38 254 |
|
Anonymous20231206 | | | 75.29 296 | 73.64 297 | 80.22 318 | 80.75 340 | 63.38 339 | 93.36 263 | 90.71 315 | 73.09 306 | 67.12 310 | 83.70 314 | 50.33 307 | 90.85 340 | 53.63 344 | 70.10 288 | 86.44 315 |
|
ADS-MVSNet2 | | | 79.57 265 | 77.53 267 | 85.71 262 | 93.78 164 | 72.13 290 | 79.48 347 | 86.11 346 | 73.09 306 | 80.14 207 | 79.99 334 | 62.15 240 | 90.14 346 | 59.49 322 | 83.52 204 | 94.85 190 |
|
ADS-MVSNet | | | 81.26 249 | 78.36 261 | 89.96 178 | 93.78 164 | 79.78 160 | 79.48 347 | 93.60 257 | 73.09 306 | 80.14 207 | 79.99 334 | 62.15 240 | 95.24 272 | 59.49 322 | 83.52 204 | 94.85 190 |
|
EU-MVSNet | | | 76.92 288 | 76.95 272 | 76.83 330 | 84.10 330 | 54.73 360 | 91.77 289 | 92.71 283 | 72.74 309 | 69.57 303 | 88.69 242 | 58.03 270 | 87.43 354 | 64.91 302 | 70.00 290 | 88.33 285 |
|
pmmvs-eth3d | | | 73.59 302 | 70.66 308 | 82.38 307 | 76.40 357 | 73.38 278 | 89.39 307 | 89.43 323 | 72.69 310 | 60.34 343 | 77.79 340 | 46.43 321 | 91.26 337 | 66.42 296 | 57.06 343 | 82.51 344 |
|
LTVRE_ROB | | 73.68 18 | 77.99 277 | 75.74 281 | 84.74 277 | 90.45 251 | 72.02 293 | 86.41 330 | 91.12 305 | 72.57 311 | 66.63 316 | 87.27 263 | 54.95 294 | 96.98 191 | 56.29 336 | 75.98 254 | 85.21 329 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
ACMH | | 75.40 17 | 77.99 277 | 74.96 284 | 87.10 240 | 90.67 248 | 76.41 246 | 93.19 271 | 91.64 298 | 72.47 312 | 63.44 329 | 87.61 259 | 43.34 328 | 97.16 182 | 58.34 326 | 73.94 265 | 87.72 294 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
MVS_0304 | | | 78.43 273 | 76.70 274 | 83.60 297 | 88.22 282 | 69.81 312 | 92.91 275 | 95.10 174 | 72.32 313 | 78.71 219 | 80.29 333 | 33.78 352 | 93.37 316 | 68.77 283 | 80.23 227 | 87.63 297 |
|
mvsany_test3 | | | 67.19 322 | 65.34 324 | 72.72 338 | 63.08 368 | 48.57 363 | 83.12 342 | 78.09 365 | 72.07 314 | 61.21 339 | 77.11 343 | 22.94 362 | 87.78 352 | 78.59 203 | 51.88 354 | 81.80 350 |
|
test222 | | | | | | 96.15 101 | 78.41 199 | 95.87 190 | 96.46 91 | 71.97 315 | 89.66 100 | 97.45 72 | 76.33 117 | | | 98.24 49 | 98.30 61 |
|
ACMH+ | | 76.62 16 | 77.47 283 | 74.94 285 | 85.05 274 | 91.07 240 | 71.58 301 | 93.26 268 | 90.01 318 | 71.80 316 | 64.76 324 | 88.55 244 | 41.62 335 | 96.48 212 | 62.35 313 | 71.00 279 | 87.09 308 |
|
ppachtmachnet_test | | | 77.19 285 | 74.22 293 | 86.13 257 | 85.39 316 | 78.22 205 | 93.98 251 | 91.36 302 | 71.74 317 | 67.11 311 | 84.87 305 | 56.67 281 | 93.37 316 | 52.21 346 | 64.59 326 | 86.80 310 |
|
new-patchmatchnet | | | 68.85 320 | 65.93 322 | 77.61 328 | 73.57 362 | 63.94 337 | 90.11 302 | 88.73 332 | 71.62 318 | 55.08 354 | 73.60 351 | 40.84 339 | 87.22 355 | 51.35 349 | 48.49 359 | 81.67 352 |
|
FMVSNet5 | | | 76.46 290 | 74.16 294 | 83.35 301 | 90.05 258 | 76.17 249 | 89.58 304 | 89.85 319 | 71.39 319 | 65.29 323 | 80.42 330 | 50.61 305 | 87.70 353 | 61.05 319 | 69.24 297 | 86.18 319 |
|
test_fmvs3 | | | 69.56 316 | 69.19 316 | 70.67 339 | 69.01 363 | 47.05 364 | 90.87 298 | 86.81 342 | 71.31 320 | 66.79 315 | 77.15 342 | 16.40 367 | 83.17 362 | 81.84 176 | 62.51 335 | 81.79 351 |
|
tpm cat1 | | | 83.63 212 | 81.38 228 | 90.39 164 | 93.53 176 | 78.19 210 | 85.56 335 | 95.09 175 | 70.78 321 | 78.51 221 | 83.28 317 | 74.80 146 | 97.03 188 | 66.77 291 | 84.05 202 | 95.95 169 |
|
MDA-MVSNet-bldmvs | | | 71.45 313 | 67.94 318 | 81.98 311 | 85.33 318 | 68.50 321 | 92.35 283 | 88.76 331 | 70.40 322 | 42.99 361 | 81.96 322 | 46.57 320 | 91.31 336 | 48.75 356 | 54.39 347 | 86.11 320 |
|
Anonymous202405211 | | | 84.41 201 | 81.93 220 | 91.85 122 | 96.78 93 | 78.41 199 | 97.44 84 | 91.34 303 | 70.29 323 | 84.06 157 | 94.26 164 | 41.09 338 | 98.96 95 | 79.46 195 | 82.65 217 | 98.17 68 |
|
KD-MVS_self_test | | | 70.97 315 | 69.31 315 | 75.95 335 | 76.24 359 | 55.39 359 | 87.45 320 | 90.94 311 | 70.20 324 | 62.96 333 | 77.48 341 | 44.01 324 | 88.09 350 | 61.25 318 | 53.26 350 | 84.37 334 |
|
DeepMVS_CX |  | | | | 64.06 346 | 78.53 348 | 43.26 371 | | 68.11 373 | 69.94 325 | 38.55 363 | 76.14 345 | 18.53 365 | 79.34 364 | 43.72 361 | 41.62 367 | 69.57 361 |
|
MSDG | | | 80.62 257 | 77.77 266 | 89.14 191 | 93.43 178 | 77.24 233 | 91.89 287 | 90.18 317 | 69.86 326 | 68.02 307 | 91.94 198 | 52.21 301 | 98.84 103 | 59.32 324 | 83.12 208 | 91.35 223 |
|
VDDNet | | | 86.44 167 | 84.51 181 | 92.22 107 | 91.56 231 | 81.83 115 | 97.10 113 | 94.64 202 | 69.50 327 | 87.84 123 | 95.19 140 | 48.01 313 | 97.92 142 | 89.82 101 | 86.92 177 | 96.89 144 |
|
LF4IMVS | | | 72.36 310 | 70.82 307 | 76.95 329 | 79.18 346 | 56.33 354 | 86.12 331 | 86.11 346 | 69.30 328 | 63.06 332 | 86.66 274 | 33.03 354 | 92.25 324 | 65.33 300 | 68.64 301 | 82.28 347 |
|
EG-PatchMatch MVS | | | 74.92 297 | 72.02 303 | 83.62 296 | 83.76 335 | 73.28 281 | 93.62 257 | 92.04 292 | 68.57 329 | 58.88 346 | 83.80 313 | 31.87 356 | 95.57 259 | 56.97 334 | 78.67 240 | 82.00 349 |
|
AllTest | | | 75.92 292 | 73.06 299 | 84.47 284 | 92.18 215 | 67.29 324 | 91.07 296 | 84.43 351 | 67.63 330 | 63.48 327 | 90.18 225 | 38.20 343 | 97.16 182 | 57.04 332 | 73.37 268 | 88.97 272 |
|
TestCases | | | | | 84.47 284 | 92.18 215 | 67.29 324 | | 84.43 351 | 67.63 330 | 63.48 327 | 90.18 225 | 38.20 343 | 97.16 182 | 57.04 332 | 73.37 268 | 88.97 272 |
|
YYNet1 | | | 73.53 304 | 70.43 310 | 82.85 304 | 84.52 326 | 71.73 299 | 91.69 291 | 91.37 301 | 67.63 330 | 46.79 359 | 81.21 327 | 55.04 293 | 90.43 343 | 55.93 337 | 59.70 340 | 86.38 316 |
|
MDA-MVSNet_test_wron | | | 73.54 303 | 70.43 310 | 82.86 303 | 84.55 324 | 71.85 296 | 91.74 290 | 91.32 304 | 67.63 330 | 46.73 360 | 81.09 328 | 55.11 292 | 90.42 344 | 55.91 338 | 59.76 339 | 86.31 317 |
|
DSMNet-mixed | | | 73.13 306 | 72.45 301 | 75.19 336 | 77.51 352 | 46.82 365 | 85.09 336 | 82.01 359 | 67.61 334 | 69.27 305 | 81.33 326 | 50.89 303 | 86.28 356 | 54.54 341 | 83.80 203 | 92.46 218 |
|
MIMVSNet1 | | | 69.44 317 | 66.65 321 | 77.84 327 | 76.48 356 | 62.84 341 | 87.42 321 | 88.97 328 | 66.96 335 | 57.75 351 | 79.72 336 | 32.77 355 | 85.83 358 | 46.32 358 | 63.42 332 | 84.85 331 |
|
TinyColmap | | | 72.41 309 | 68.99 317 | 82.68 305 | 88.11 283 | 69.59 315 | 88.41 313 | 85.20 348 | 65.55 336 | 57.91 349 | 84.82 306 | 30.80 358 | 95.94 234 | 51.38 347 | 68.70 300 | 82.49 346 |
|
Anonymous20240521 | | | 72.06 312 | 69.91 312 | 78.50 326 | 77.11 354 | 61.67 345 | 91.62 293 | 90.97 310 | 65.52 337 | 62.37 334 | 79.05 337 | 36.32 345 | 90.96 339 | 57.75 329 | 68.52 302 | 82.87 340 |
|
UnsupCasMVSNet_bld | | | 68.60 321 | 64.50 325 | 80.92 315 | 74.63 360 | 67.80 322 | 83.97 339 | 92.94 280 | 65.12 338 | 54.63 355 | 68.23 359 | 35.97 347 | 92.17 327 | 60.13 320 | 44.83 362 | 82.78 342 |
|
RPSCF | | | 77.73 280 | 76.63 275 | 81.06 314 | 88.66 278 | 55.76 358 | 87.77 319 | 87.88 337 | 64.82 339 | 74.14 271 | 92.79 188 | 49.22 310 | 96.81 202 | 67.47 288 | 76.88 252 | 90.62 230 |
|
PatchT | | | 79.75 262 | 76.85 273 | 88.42 204 | 89.55 267 | 75.49 262 | 77.37 355 | 94.61 204 | 63.07 340 | 82.46 177 | 73.32 353 | 75.52 131 | 93.41 315 | 51.36 348 | 84.43 200 | 96.36 159 |
|
TDRefinement | | | 69.20 319 | 65.78 323 | 79.48 321 | 66.04 367 | 62.21 342 | 88.21 314 | 86.12 345 | 62.92 341 | 61.03 341 | 85.61 291 | 33.23 353 | 94.16 301 | 55.82 339 | 53.02 351 | 82.08 348 |
|
OpenMVS_ROB |  | 68.52 20 | 73.02 307 | 69.57 313 | 83.37 300 | 80.54 343 | 71.82 297 | 93.60 258 | 88.22 335 | 62.37 342 | 61.98 336 | 83.15 318 | 35.31 350 | 95.47 261 | 45.08 360 | 75.88 256 | 82.82 341 |
|
JIA-IIPM | | | 79.00 271 | 77.20 269 | 84.40 287 | 89.74 264 | 64.06 336 | 75.30 359 | 95.44 159 | 62.15 343 | 81.90 188 | 59.08 363 | 78.92 75 | 95.59 257 | 66.51 295 | 85.78 192 | 93.54 212 |
|
LS3D | | | 82.22 237 | 79.94 250 | 89.06 192 | 97.43 79 | 74.06 276 | 93.20 270 | 92.05 291 | 61.90 344 | 73.33 277 | 95.21 138 | 59.35 258 | 99.21 75 | 54.54 341 | 92.48 136 | 93.90 208 |
|
N_pmnet | | | 61.30 326 | 60.20 329 | 64.60 345 | 84.32 327 | 17.00 383 | 91.67 292 | 10.98 382 | 61.77 345 | 58.45 348 | 78.55 338 | 49.89 308 | 91.83 331 | 42.27 362 | 63.94 330 | 84.97 330 |
|
test_0402 | | | 72.68 308 | 69.54 314 | 82.09 310 | 88.67 277 | 71.81 298 | 92.72 278 | 86.77 343 | 61.52 346 | 62.21 335 | 83.91 312 | 43.22 329 | 93.76 309 | 34.60 365 | 72.23 276 | 80.72 353 |
|
COLMAP_ROB |  | 73.24 19 | 75.74 294 | 73.00 300 | 83.94 290 | 92.38 203 | 69.08 318 | 91.85 288 | 86.93 341 | 61.48 347 | 65.32 322 | 90.27 224 | 42.27 333 | 96.93 195 | 50.91 350 | 75.63 258 | 85.80 326 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
test_f | | | 64.01 325 | 62.13 328 | 69.65 340 | 63.00 369 | 45.30 370 | 83.66 341 | 80.68 361 | 61.30 348 | 55.70 353 | 72.62 354 | 14.23 369 | 84.64 360 | 69.84 277 | 58.11 341 | 79.00 354 |
|
gg-mvs-nofinetune | | | 85.48 185 | 82.90 207 | 93.24 69 | 94.51 148 | 85.82 39 | 79.22 349 | 96.97 31 | 61.19 349 | 87.33 128 | 53.01 365 | 90.58 6 | 96.07 224 | 86.07 136 | 97.23 76 | 97.81 97 |
|
DP-MVS | | | 81.47 246 | 78.28 262 | 91.04 145 | 98.14 55 | 78.48 195 | 95.09 226 | 86.97 340 | 61.14 350 | 71.12 293 | 92.78 189 | 59.59 255 | 99.38 65 | 53.11 345 | 86.61 180 | 95.27 187 |
|
pmmvs6 | | | 74.65 299 | 71.67 304 | 83.60 297 | 79.13 347 | 69.94 310 | 93.31 267 | 90.88 312 | 61.05 351 | 65.83 320 | 84.15 311 | 43.43 327 | 94.83 288 | 66.62 292 | 60.63 338 | 86.02 322 |
|
Patchmtry | | | 77.36 284 | 74.59 289 | 85.67 264 | 89.75 262 | 75.75 261 | 77.85 354 | 91.12 305 | 60.28 352 | 71.23 291 | 80.35 331 | 75.45 132 | 93.56 312 | 57.94 327 | 67.34 316 | 87.68 296 |
|
CMPMVS |  | 54.94 21 | 75.71 295 | 74.56 290 | 79.17 323 | 79.69 345 | 55.98 355 | 89.59 303 | 93.30 270 | 60.28 352 | 53.85 356 | 89.07 237 | 47.68 318 | 96.33 217 | 76.55 224 | 81.02 221 | 85.22 328 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
Anonymous20240529 | | | 83.15 220 | 80.60 239 | 90.80 153 | 95.74 111 | 78.27 203 | 96.81 135 | 94.92 182 | 60.10 354 | 81.89 189 | 92.54 190 | 45.82 322 | 98.82 104 | 79.25 198 | 78.32 248 | 95.31 185 |
|
Patchmatch-test | | | 78.25 275 | 74.72 288 | 88.83 198 | 91.20 236 | 74.10 275 | 73.91 362 | 88.70 333 | 59.89 355 | 66.82 314 | 85.12 302 | 78.38 83 | 94.54 294 | 48.84 355 | 79.58 233 | 97.86 92 |
|
Anonymous20231211 | | | 79.72 263 | 77.19 270 | 87.33 233 | 95.59 115 | 77.16 237 | 95.18 220 | 94.18 226 | 59.31 356 | 72.57 285 | 86.20 285 | 47.89 316 | 95.66 250 | 74.53 246 | 69.24 297 | 89.18 260 |
|
ANet_high | | | 46.22 334 | 41.28 341 | 61.04 350 | 39.91 380 | 46.25 368 | 70.59 364 | 76.18 366 | 58.87 357 | 23.09 372 | 48.00 369 | 12.58 372 | 66.54 372 | 28.65 368 | 13.62 373 | 70.35 360 |
|
RPMNet | | | 79.85 261 | 75.92 280 | 91.64 128 | 90.16 256 | 79.75 162 | 79.02 351 | 95.44 159 | 58.43 358 | 82.27 183 | 72.55 355 | 73.03 168 | 98.41 124 | 46.10 359 | 86.25 184 | 96.75 151 |
|
new_pmnet | | | 66.18 323 | 63.18 326 | 75.18 337 | 76.27 358 | 61.74 344 | 83.79 340 | 84.66 350 | 56.64 359 | 51.57 357 | 71.85 358 | 31.29 357 | 87.93 351 | 49.98 352 | 62.55 334 | 75.86 358 |
|
test_vis3_rt | | | 54.10 330 | 51.04 333 | 63.27 348 | 58.16 370 | 46.08 369 | 84.17 338 | 49.32 381 | 56.48 360 | 36.56 365 | 49.48 368 | 8.03 377 | 91.91 330 | 67.29 289 | 49.87 355 | 51.82 367 |
|
pmmvs3 | | | 65.75 324 | 62.18 327 | 76.45 332 | 67.12 366 | 64.54 332 | 88.68 311 | 85.05 349 | 54.77 361 | 57.54 352 | 73.79 350 | 29.40 359 | 86.21 357 | 55.49 340 | 47.77 360 | 78.62 355 |
|
MVS-HIRNet | | | 71.36 314 | 67.00 319 | 84.46 286 | 90.58 249 | 69.74 314 | 79.15 350 | 87.74 339 | 46.09 362 | 61.96 337 | 50.50 366 | 45.14 323 | 95.64 253 | 53.74 343 | 88.11 171 | 88.00 291 |
|
PMMVS2 | | | 50.90 333 | 46.31 336 | 64.67 344 | 55.53 372 | 46.67 366 | 77.30 356 | 71.02 370 | 40.89 363 | 34.16 367 | 59.32 362 | 9.83 375 | 76.14 368 | 40.09 364 | 28.63 370 | 71.21 359 |
|
APD_test1 | | | 56.56 328 | 53.58 331 | 65.50 342 | 67.93 365 | 46.51 367 | 77.24 357 | 72.95 368 | 38.09 364 | 42.75 362 | 75.17 346 | 13.38 370 | 82.78 363 | 40.19 363 | 54.53 346 | 67.23 363 |
|
FPMVS | | | 55.09 329 | 52.93 332 | 61.57 349 | 55.98 371 | 40.51 374 | 83.11 343 | 83.41 356 | 37.61 365 | 34.95 366 | 71.95 356 | 14.40 368 | 76.95 365 | 29.81 366 | 65.16 325 | 67.25 362 |
|
LCM-MVSNet | | | 52.52 331 | 48.24 334 | 65.35 343 | 47.63 378 | 41.45 372 | 72.55 363 | 83.62 355 | 31.75 366 | 37.66 364 | 57.92 364 | 9.19 376 | 76.76 366 | 49.26 354 | 44.60 363 | 77.84 356 |
|
Gipuma |  | | 45.11 337 | 42.05 339 | 54.30 353 | 80.69 341 | 51.30 362 | 35.80 371 | 83.81 354 | 28.13 367 | 27.94 371 | 34.53 371 | 11.41 374 | 76.70 367 | 21.45 371 | 54.65 345 | 34.90 371 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
testf1 | | | 45.70 335 | 42.41 337 | 55.58 351 | 53.29 375 | 40.02 375 | 68.96 365 | 62.67 375 | 27.45 368 | 29.85 368 | 61.58 360 | 5.98 378 | 73.83 370 | 28.49 369 | 43.46 365 | 52.90 365 |
|
APD_test2 | | | 45.70 335 | 42.41 337 | 55.58 351 | 53.29 375 | 40.02 375 | 68.96 365 | 62.67 375 | 27.45 368 | 29.85 368 | 61.58 360 | 5.98 378 | 73.83 370 | 28.49 369 | 43.46 365 | 52.90 365 |
|
PMVS |  | 34.80 23 | 39.19 339 | 35.53 342 | 50.18 354 | 29.72 381 | 30.30 378 | 59.60 369 | 66.20 374 | 26.06 370 | 17.91 374 | 49.53 367 | 3.12 380 | 74.09 369 | 18.19 373 | 49.40 356 | 46.14 368 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
E-PMN | | | 32.70 341 | 32.39 343 | 33.65 357 | 53.35 374 | 25.70 380 | 74.07 361 | 53.33 379 | 21.08 371 | 17.17 375 | 33.63 373 | 11.85 373 | 54.84 375 | 12.98 374 | 14.04 372 | 20.42 372 |
|
EMVS | | | 31.70 342 | 31.45 344 | 32.48 358 | 50.72 377 | 23.95 381 | 74.78 360 | 52.30 380 | 20.36 372 | 16.08 376 | 31.48 374 | 12.80 371 | 53.60 376 | 11.39 375 | 13.10 375 | 19.88 373 |
|
test_method | | | 56.77 327 | 54.53 330 | 63.49 347 | 76.49 355 | 40.70 373 | 75.68 358 | 74.24 367 | 19.47 373 | 48.73 358 | 71.89 357 | 19.31 364 | 65.80 373 | 57.46 331 | 47.51 361 | 83.97 337 |
|
MVE |  | 35.65 22 | 33.85 340 | 29.49 345 | 46.92 355 | 41.86 379 | 36.28 377 | 50.45 370 | 56.52 378 | 18.75 374 | 18.28 373 | 37.84 370 | 2.41 381 | 58.41 374 | 18.71 372 | 20.62 371 | 46.06 369 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
tmp_tt | | | 41.54 338 | 41.93 340 | 40.38 356 | 20.10 382 | 26.84 379 | 61.93 368 | 59.09 377 | 14.81 375 | 28.51 370 | 80.58 329 | 35.53 348 | 48.33 377 | 63.70 308 | 13.11 374 | 45.96 370 |
|
wuyk23d | | | 14.10 344 | 13.89 347 | 14.72 359 | 55.23 373 | 22.91 382 | 33.83 372 | 3.56 383 | 4.94 376 | 4.11 377 | 2.28 379 | 2.06 382 | 19.66 378 | 10.23 376 | 8.74 376 | 1.59 376 |
|
testmvs | | | 9.92 345 | 12.94 348 | 0.84 361 | 0.65 383 | 0.29 385 | 93.78 254 | 0.39 384 | 0.42 377 | 2.85 378 | 15.84 377 | 0.17 384 | 0.30 380 | 2.18 377 | 0.21 377 | 1.91 375 |
|
test123 | | | 9.07 346 | 11.73 349 | 1.11 360 | 0.50 384 | 0.77 384 | 89.44 306 | 0.20 385 | 0.34 378 | 2.15 379 | 10.72 378 | 0.34 383 | 0.32 379 | 1.79 378 | 0.08 378 | 2.23 374 |
|
EGC-MVSNET | | | 52.46 332 | 47.56 335 | 67.15 341 | 81.98 338 | 60.11 349 | 82.54 344 | 72.44 369 | 0.11 379 | 0.70 380 | 74.59 348 | 25.11 361 | 83.26 361 | 29.04 367 | 61.51 337 | 58.09 364 |
|
test_blank | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uanet_test | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
DCPMVS | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
cdsmvs_eth3d_5k | | | 21.43 343 | 28.57 346 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 95.93 133 | 0.00 380 | 0.00 381 | 97.66 60 | 63.57 232 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
pcd_1.5k_mvsjas | | | 5.92 348 | 7.89 351 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 71.04 190 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
sosnet-low-res | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
sosnet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uncertanet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
Regformer | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
ab-mvs-re | | | 8.11 347 | 10.81 350 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 97.30 81 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uanet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
MSC_two_6792asdad | | | | | 97.14 3 | 99.05 9 | 92.19 4 | | 96.83 41 | | | | | 99.81 21 | 98.08 7 | 98.81 24 | 99.43 11 |
|
No_MVS | | | | | 97.14 3 | 99.05 9 | 92.19 4 | | 96.83 41 | | | | | 99.81 21 | 98.08 7 | 98.81 24 | 99.43 11 |
|
eth-test2 | | | | | | 0.00 385 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 385 | | | | | | | | | | | |
|
OPU-MVS | | | | | 97.30 2 | 99.19 7 | 92.31 3 | 99.12 6 | | | | 98.54 18 | 92.06 3 | 99.84 12 | 99.11 1 | 99.37 1 | 99.74 1 |
|
test_0728_SECOND | | | | | 95.14 16 | 99.04 14 | 86.14 33 | 99.06 10 | 96.77 50 | | | | | 99.84 12 | 97.90 9 | 98.85 21 | 99.45 10 |
|
GSMVS | | | | | | | | | | | | | | | | | 97.54 114 |
|
test_part2 | | | | | | 98.90 19 | 85.14 58 | | | | 96.07 21 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 77.59 95 | | | | 97.54 114 |
|
sam_mvs | | | | | | | | | | | | | 75.35 139 | | | | |
|
ambc | | | | | 76.02 333 | 68.11 364 | 51.43 361 | 64.97 367 | 89.59 320 | | 60.49 342 | 74.49 349 | 17.17 366 | 92.46 321 | 61.50 316 | 52.85 352 | 84.17 336 |
|
MTGPA |  | | | | | | | | 96.33 106 | | | | | | | | |
|
test_post1 | | | | | | | | 85.88 333 | | | | 30.24 375 | 73.77 159 | 95.07 283 | 73.89 250 | | |
|
test_post | | | | | | | | | | | | 33.80 372 | 76.17 119 | 95.97 230 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 77.09 344 | 77.78 94 | 95.39 263 | | | |
|
GG-mvs-BLEND | | | | | 93.49 62 | 94.94 134 | 86.26 31 | 81.62 345 | 97.00 29 | | 88.32 119 | 94.30 163 | 91.23 5 | 96.21 222 | 88.49 116 | 97.43 70 | 98.00 82 |
|
MTMP | | | | | | | | 97.53 76 | 68.16 372 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 96.00 26 | 99.03 13 | 98.31 60 |
|
agg_prior2 | | | | | | | | | | | | | | | 94.30 44 | 99.00 15 | 98.57 45 |
|
agg_prior | | | | | | 98.59 35 | 83.13 92 | | 96.56 81 | | 94.19 43 | | | 99.16 83 | | | |
|
test_prior4 | | | | | | | 82.34 105 | 97.75 61 | | | | | | | | | |
|
test_prior | | | | | 93.09 75 | 98.68 26 | 81.91 111 | | 96.40 99 | | | | | 99.06 90 | | | 98.29 62 |
|
新几何2 | | | | | | | | 96.42 160 | | | | | | | | | |
|
旧先验1 | | | | | | 97.39 82 | 79.58 169 | | 96.54 82 | | | 98.08 40 | 84.00 40 | | | 97.42 71 | 97.62 111 |
|
原ACMM2 | | | | | | | | 96.84 131 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.48 60 | 76.45 226 | | |
|
segment_acmp | | | | | | | | | | | | | 82.69 51 | | | | |
|
test12 | | | | | 94.25 35 | 98.34 46 | 85.55 44 | | 96.35 105 | | 92.36 61 | | 80.84 56 | 99.22 74 | | 98.31 47 | 97.98 84 |
|
plane_prior7 | | | | | | 91.86 228 | 77.55 228 | | | | | | | | | | |
|
plane_prior6 | | | | | | 91.98 224 | 77.92 218 | | | | | | 64.77 227 | | | | |
|
plane_prior5 | | | | | | | | | 94.69 195 | | | | | 97.30 174 | 87.08 129 | 82.82 214 | 90.96 226 |
|
plane_prior4 | | | | | | | | | | | | 94.15 168 | | | | | |
|
plane_prior1 | | | | | | 91.95 226 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 386 | | | | | | | | |
|
nn | | | | | | | | | 0.00 386 | | | | | | | | |
|
door-mid | | | | | | | | | 79.75 363 | | | | | | | | |
|
lessismore_v0 | | | | | 79.98 319 | 80.59 342 | 58.34 353 | | 80.87 360 | | 58.49 347 | 83.46 316 | 43.10 330 | 93.89 305 | 63.11 311 | 48.68 357 | 87.72 294 |
|
test11 | | | | | | | | | 96.50 87 | | | | | | | | |
|
door | | | | | | | | | 80.13 362 | | | | | | | | |
|
HQP5-MVS | | | | | | | 78.48 195 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 87.67 125 | | |
|
HQP4-MVS | | | | | | | | | | | 82.30 179 | | | 97.32 172 | | | 91.13 224 |
|
HQP3-MVS | | | | | | | | | 94.80 190 | | | | | | | 83.01 210 | |
|
HQP2-MVS | | | | | | | | | | | | | 65.40 221 | | | | |
|
NP-MVS | | | | | | 92.04 223 | 78.22 205 | | | | | 94.56 158 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 78.45 246 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 79.05 237 | |
|
Test By Simon | | | | | | | | | | | | | 71.65 183 | | | | |
|