This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
MM96.15 889.50 999.18 598.10 895.68 196.64 1897.92 5680.72 5999.80 2599.16 197.96 5699.15 24
DeepPCF-MVS89.82 194.61 1996.17 589.91 19297.09 9070.21 32498.99 2096.69 6795.57 295.08 3899.23 186.40 3099.87 897.84 1898.66 3199.65 6
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2197.10 3095.17 392.11 7698.46 2487.33 2499.97 297.21 2699.31 499.63 7
MVS_030495.36 995.20 1495.85 1194.89 13889.22 1298.83 2397.88 1194.68 495.14 3697.99 5080.80 5899.81 2198.60 497.95 5798.50 50
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2299.06 1497.12 2894.66 596.79 1498.78 986.42 2999.95 397.59 2199.18 799.00 27
EPNet94.06 2994.15 2893.76 5097.27 8784.35 7298.29 3997.64 1594.57 695.36 3196.88 10979.96 6999.12 9891.30 9096.11 10197.82 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsm_n_192094.81 1695.60 1092.45 10195.29 12380.96 14299.29 297.21 2294.50 797.29 1198.44 2582.15 5299.78 2898.56 597.68 6596.61 159
DELS-MVS94.98 1394.49 2196.44 696.42 9590.59 799.21 497.02 3294.40 891.46 8497.08 10283.32 4599.69 4792.83 7798.70 3099.04 25
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
NCCC95.63 695.94 894.69 2899.21 685.15 5999.16 696.96 3794.11 995.59 3098.64 1785.07 3399.91 495.61 4399.10 999.00 27
CANet94.89 1494.64 1995.63 1397.55 7588.12 1699.06 1496.39 10694.07 1095.34 3297.80 6576.83 11599.87 897.08 2897.64 6698.89 30
test_vis1_n_192089.95 11190.59 8788.03 23192.36 21168.98 33399.12 994.34 23093.86 1193.64 5897.01 10551.54 32199.59 5896.76 3296.71 9395.53 186
DeepC-MVS_fast89.06 294.48 2194.30 2695.02 2098.86 2185.68 4498.06 5396.64 7593.64 1291.74 8298.54 1980.17 6799.90 592.28 8298.75 2899.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsmconf_n93.99 3094.36 2592.86 8592.82 20181.12 13699.26 396.37 11093.47 1395.16 3398.21 3479.00 7899.64 5398.21 896.73 9297.83 97
DPM-MVS96.21 295.53 1298.26 196.26 9895.09 199.15 796.98 3493.39 1496.45 2298.79 890.17 1099.99 189.33 12199.25 699.70 3
test_fmvsmconf0.1_n93.08 4293.22 4392.65 9488.45 29480.81 14699.00 1995.11 18493.21 1594.00 5497.91 5876.84 11399.59 5897.91 1496.55 9597.54 117
CANet_DTU90.98 9190.04 10193.83 4894.76 14186.23 3496.32 17993.12 29493.11 1693.71 5696.82 11363.08 24899.48 7184.29 16195.12 11395.77 180
test_cas_vis1_n_192089.90 11290.02 10289.54 20090.14 27174.63 28398.71 2594.43 22593.04 1792.40 7096.35 12353.41 31799.08 10195.59 4496.16 9994.90 199
test_fmvsmvis_n_192092.12 6592.10 6592.17 11890.87 25581.04 13898.34 3893.90 25492.71 1887.24 14197.90 5974.83 15699.72 4196.96 2996.20 9895.76 181
patch_mono-295.14 1296.08 792.33 10898.44 4377.84 23398.43 3497.21 2292.58 1997.68 897.65 7486.88 2699.83 1698.25 797.60 6799.33 17
HPM-MVS++copyleft95.32 1095.48 1394.85 2498.62 3486.04 3697.81 6896.93 4092.45 2095.69 2998.50 2285.38 3199.85 1094.75 5299.18 798.65 43
PS-MVSNAJ94.17 2693.52 3796.10 995.65 11392.35 298.21 4295.79 14992.42 2196.24 2498.18 3671.04 20299.17 9396.77 3197.39 7596.79 152
MSP-MVS95.62 796.54 192.86 8598.31 4880.10 16797.42 10096.78 4992.20 2297.11 1298.29 3193.46 199.10 9996.01 3699.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
fmvsm_s_conf0.5_n93.69 3394.13 2992.34 10694.56 14582.01 11199.07 1397.13 2692.09 2396.25 2398.53 2176.47 12099.80 2598.39 694.71 11795.22 195
test_fmvsmconf0.01_n91.08 8990.68 8692.29 11182.43 35480.12 16697.94 6093.93 25092.07 2491.97 7797.60 7767.56 21899.53 6697.09 2795.56 11097.21 138
xiu_mvs_v2_base93.92 3193.26 4195.91 1095.07 13192.02 698.19 4395.68 15592.06 2596.01 2898.14 4070.83 20598.96 10796.74 3396.57 9496.76 155
IU-MVS99.03 1585.34 4996.86 4592.05 2698.74 198.15 998.97 1799.42 13
fmvsm_s_conf0.5_n_a93.34 3893.71 3292.22 11593.38 18481.71 12698.86 2296.98 3491.64 2796.85 1398.55 1875.58 13899.77 2997.88 1793.68 13195.18 196
TSAR-MVS + GP.94.35 2294.50 2093.89 4797.38 8483.04 9798.10 4995.29 17991.57 2893.81 5597.45 8386.64 2799.43 7496.28 3494.01 12699.20 22
CLD-MVS87.97 15787.48 14989.44 20192.16 22480.54 15598.14 4494.92 19291.41 2979.43 22795.40 14662.34 25197.27 19090.60 10182.90 22590.50 248
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
save fliter98.24 5183.34 9198.61 3196.57 8491.32 30
TSAR-MVS + MP.94.79 1795.17 1593.64 5597.66 6984.10 7695.85 20596.42 10191.26 3197.49 1096.80 11486.50 2898.49 12995.54 4599.03 1398.33 59
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
fmvsm_s_conf0.1_n92.93 4593.16 4492.24 11390.52 26281.92 11598.42 3596.24 11891.17 3296.02 2798.35 2975.34 14999.74 3797.84 1894.58 11995.05 197
PC_three_145291.12 3398.33 298.42 2692.51 299.81 2198.96 399.37 199.70 3
PAPM92.87 4792.40 5694.30 3592.25 21987.85 1996.40 17496.38 10791.07 3488.72 12496.90 10782.11 5397.37 18490.05 11297.70 6497.67 109
lupinMVS93.87 3293.58 3694.75 2793.00 19488.08 1799.15 795.50 16491.03 3594.90 4197.66 7078.84 8197.56 16794.64 5597.46 7098.62 45
PVSNet_Blended93.13 3992.98 4593.57 5997.47 7683.86 7999.32 196.73 6191.02 3689.53 11496.21 12576.42 12299.57 6294.29 5795.81 10897.29 135
DeepC-MVS86.58 391.53 7891.06 8192.94 8394.52 14881.89 11795.95 19795.98 13790.76 3783.76 17796.76 11573.24 17999.71 4391.67 8996.96 8397.22 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSLP-MVS++94.28 2394.39 2493.97 4598.30 4984.06 7798.64 2996.93 4090.71 3893.08 6598.70 1579.98 6899.21 8694.12 6099.07 1198.63 44
fmvsm_s_conf0.1_n_a92.38 6292.49 5592.06 12388.08 29881.62 12997.97 5996.01 13590.62 3996.58 1998.33 3074.09 16899.71 4397.23 2593.46 13694.86 201
jason92.73 5092.23 6194.21 4090.50 26387.30 2698.65 2895.09 18590.61 4092.76 6997.13 9975.28 15097.30 18793.32 7096.75 9198.02 79
jason: jason.
HQP-NCC92.08 22897.63 8090.52 4182.30 191
ACMP_Plane92.08 22897.63 8090.52 4182.30 191
HQP-MVS87.91 15987.55 14788.98 20992.08 22878.48 20797.63 8094.80 20090.52 4182.30 19194.56 17065.40 23497.32 18587.67 13883.01 22291.13 239
h-mvs3389.30 12388.95 12190.36 17895.07 13176.04 26596.96 13797.11 2990.39 4492.22 7495.10 15874.70 15898.86 11493.14 7365.89 34196.16 172
hse-mvs288.22 15288.21 13188.25 22593.54 17673.41 29195.41 22195.89 14390.39 4492.22 7494.22 17774.70 15896.66 22393.14 7364.37 34694.69 209
CS-MVS-test92.98 4393.67 3390.90 16296.52 9476.87 25298.68 2694.73 20490.36 4694.84 4397.89 6077.94 9497.15 19894.28 5997.80 6298.70 41
plane_prior77.96 22797.52 9190.36 4682.96 224
plane_prior377.75 23790.17 4881.33 205
MG-MVS94.25 2593.72 3195.85 1199.38 389.35 1197.98 5798.09 989.99 4992.34 7296.97 10681.30 5698.99 10588.54 12798.88 2099.20 22
iter_conf0590.14 10889.79 10991.17 15495.85 10986.93 2897.68 7888.67 35189.93 5081.73 20492.80 20290.37 896.03 24090.44 10580.65 24290.56 246
HQP_MVS87.50 16587.09 15988.74 21491.86 23777.96 22797.18 11394.69 20589.89 5181.33 20594.15 18064.77 24097.30 18787.08 14282.82 22690.96 241
plane_prior297.18 11389.89 51
ETV-MVS92.72 5292.87 4792.28 11294.54 14781.89 11797.98 5795.21 18289.77 5393.11 6496.83 11177.23 10997.50 17595.74 4195.38 11197.44 126
SD-MVS94.84 1595.02 1694.29 3697.87 6484.61 6997.76 7296.19 12489.59 5496.66 1798.17 3984.33 3699.60 5796.09 3598.50 3698.66 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SteuartSystems-ACMMP94.13 2894.44 2393.20 7395.41 11981.35 13399.02 1896.59 8289.50 5594.18 5298.36 2883.68 4499.45 7394.77 5198.45 3998.81 33
Skip Steuart: Steuart Systems R&D Blog.
CS-MVS92.73 5093.48 3890.48 17496.27 9775.93 27198.55 3294.93 19189.32 5694.54 4897.67 6978.91 8097.02 20293.80 6297.32 7798.49 51
ET-MVSNet_ETH3D90.01 11089.03 11792.95 8294.38 15386.77 3098.14 4496.31 11489.30 5763.33 34796.72 11890.09 1193.63 32690.70 10082.29 23398.46 53
EIA-MVS91.73 7192.05 6690.78 16794.52 14876.40 26098.06 5395.34 17789.19 5888.90 12197.28 9477.56 10197.73 15990.77 9896.86 8898.20 68
MVS_111021_HR93.41 3793.39 4093.47 6797.34 8582.83 9997.56 8698.27 689.16 5989.71 10997.14 9879.77 7099.56 6493.65 6597.94 5898.02 79
iter_conf_final89.51 11889.21 11590.39 17695.60 11484.44 7197.22 10789.09 34489.11 6082.07 19892.80 20287.03 2596.03 24089.10 12380.89 23890.70 244
CHOSEN 1792x268891.07 9090.21 9793.64 5595.18 12783.53 8796.26 18296.13 12688.92 6184.90 16193.10 20072.86 18199.62 5688.86 12495.67 10997.79 101
DVP-MVScopyleft95.58 895.91 994.57 3099.05 985.18 5499.06 1496.46 9688.75 6296.69 1598.76 1287.69 2299.76 3097.90 1598.85 2198.77 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.05 985.18 5499.11 1296.78 4988.75 6297.65 998.91 287.69 22
SED-MVS95.88 596.22 494.87 2399.03 1585.03 6199.12 996.78 4988.72 6497.79 498.91 288.48 1799.82 1898.15 998.97 1799.74 1
test_241102_TWO96.78 4988.72 6497.70 698.91 287.86 2199.82 1898.15 999.00 1599.47 9
test_241102_ONE99.03 1585.03 6196.78 4988.72 6497.79 498.90 588.48 1799.82 18
WTY-MVS92.65 5691.68 7195.56 1496.00 10588.90 1398.23 4197.65 1488.57 6789.82 10897.22 9679.29 7399.06 10289.57 11788.73 17698.73 39
EPNet_dtu87.65 16387.89 13686.93 25894.57 14471.37 31896.72 15396.50 9288.56 6887.12 14395.02 16075.91 13294.01 31966.62 30690.00 16495.42 189
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
canonicalmvs92.27 6391.22 7795.41 1695.80 11088.31 1497.09 12794.64 21288.49 6992.99 6797.31 9072.68 18398.57 12593.38 6988.58 17799.36 16
MVS_111021_LR91.60 7791.64 7391.47 14595.74 11178.79 20296.15 18996.77 5588.49 6988.64 12597.07 10372.33 18799.19 9193.13 7596.48 9696.43 164
DVP-MVS++96.05 496.41 394.96 2299.05 985.34 4998.13 4796.77 5588.38 7197.70 698.77 1092.06 399.84 1297.47 2299.37 199.70 3
test_0728_THIRD88.38 7196.69 1598.76 1289.64 1399.76 3097.47 2298.84 2399.38 14
HY-MVS84.06 691.63 7590.37 9495.39 1796.12 10288.25 1590.22 31897.58 1688.33 7390.50 10191.96 21579.26 7499.06 10290.29 10989.07 17198.88 31
PVSNet_Blended_VisFu91.24 8590.77 8492.66 9395.09 12982.40 10797.77 7095.87 14688.26 7486.39 14793.94 18576.77 11699.27 8288.80 12694.00 12796.31 170
EI-MVSNet-Vis-set91.84 7091.77 7092.04 12597.60 7181.17 13596.61 15996.87 4388.20 7589.19 11797.55 8278.69 8599.14 9590.29 10990.94 16195.80 179
UGNet87.73 16186.55 16791.27 15095.16 12879.11 19396.35 17796.23 11988.14 7687.83 13590.48 23950.65 32499.09 10080.13 20394.03 12495.60 184
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test_one_060198.91 1884.56 7096.70 6588.06 7796.57 2098.77 1088.04 20
alignmvs92.97 4492.26 6095.12 1995.54 11687.77 2098.67 2796.38 10788.04 7893.01 6697.45 8379.20 7698.60 12393.25 7288.76 17598.99 29
PVSNet_BlendedMVS90.05 10989.96 10490.33 17997.47 7683.86 7998.02 5696.73 6187.98 7989.53 11489.61 25276.42 12299.57 6294.29 5779.59 24987.57 317
test_fmvs187.79 16088.52 12785.62 28192.98 19864.31 34997.88 6392.42 30387.95 8092.24 7395.82 13347.94 33698.44 13595.31 4894.09 12394.09 216
MTAPA92.45 6092.31 5892.86 8597.90 6180.85 14592.88 29196.33 11287.92 8190.20 10598.18 3676.71 11899.76 3092.57 8198.09 5197.96 89
EI-MVSNet-UG-set91.35 8391.22 7791.73 13697.39 8280.68 14996.47 16796.83 4687.92 8188.30 13197.36 8977.84 9799.13 9789.43 12089.45 16895.37 190
OPM-MVS85.84 18985.10 18688.06 22988.34 29577.83 23495.72 20894.20 23887.89 8380.45 21594.05 18258.57 27897.26 19183.88 16682.76 22889.09 280
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
diffmvspermissive91.17 8790.74 8592.44 10393.11 19382.50 10596.25 18393.62 27287.79 8490.40 10395.93 13073.44 17797.42 17993.62 6692.55 14697.41 128
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet82.34 989.02 12787.79 13992.71 9295.49 11781.50 13197.70 7697.29 1987.76 8585.47 15595.12 15756.90 29698.90 11380.33 19894.02 12597.71 107
PAPR92.74 4992.17 6394.45 3298.89 2084.87 6697.20 11196.20 12287.73 8688.40 12898.12 4178.71 8499.76 3087.99 13496.28 9798.74 35
casdiffmvspermissive90.95 9390.39 9292.63 9692.82 20182.53 10396.83 14594.47 22287.69 8788.47 12695.56 14374.04 16997.54 17190.90 9692.74 14497.83 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive91.13 8890.45 9193.17 7492.99 19783.58 8697.46 9594.56 21787.69 8787.19 14294.98 16374.50 16397.60 16491.88 8892.79 14398.34 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline90.76 9690.10 10092.74 9092.90 20082.56 10294.60 24894.56 21787.69 8789.06 12095.67 13873.76 17297.51 17490.43 10692.23 15298.16 71
Vis-MVSNetpermissive88.67 13887.82 13891.24 15192.68 20378.82 19996.95 13893.85 25887.55 9087.07 14495.13 15663.43 24697.21 19277.58 22796.15 10097.70 108
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvs1_n86.34 18186.72 16585.17 28887.54 30663.64 35496.91 14192.37 30587.49 9191.33 8895.58 14240.81 36198.46 13295.00 5093.49 13493.41 230
testdata195.57 21587.44 92
EC-MVSNet91.73 7192.11 6490.58 17193.54 17677.77 23698.07 5294.40 22787.44 9292.99 6797.11 10174.59 16296.87 21293.75 6397.08 8197.11 141
UA-Net88.92 13088.48 12890.24 18194.06 16477.18 24993.04 28894.66 20987.39 9491.09 9293.89 18674.92 15598.18 14575.83 24791.43 15895.35 191
test_vis1_n85.60 19485.70 17385.33 28584.79 33864.98 34796.83 14591.61 31687.36 9591.00 9594.84 16536.14 36797.18 19495.66 4293.03 14193.82 221
baseline188.85 13387.49 14892.93 8495.21 12686.85 2995.47 21894.61 21487.29 9683.11 18494.99 16280.70 6096.89 21082.28 18673.72 28395.05 197
PMMVS89.46 12089.92 10688.06 22994.64 14269.57 33096.22 18494.95 19087.27 9791.37 8796.54 12165.88 23097.39 18288.54 12793.89 12897.23 136
xiu_mvs_v1_base_debu90.54 10089.54 11193.55 6092.31 21287.58 2396.99 13194.87 19587.23 9893.27 6097.56 7957.43 29098.32 13892.72 7893.46 13694.74 205
xiu_mvs_v1_base90.54 10089.54 11193.55 6092.31 21287.58 2396.99 13194.87 19587.23 9893.27 6097.56 7957.43 29098.32 13892.72 7893.46 13694.74 205
xiu_mvs_v1_base_debi90.54 10089.54 11193.55 6092.31 21287.58 2396.99 13194.87 19587.23 9893.27 6097.56 7957.43 29098.32 13892.72 7893.46 13694.74 205
MVSTER89.25 12588.92 12290.24 18195.98 10684.66 6896.79 14995.36 17487.19 10180.33 21790.61 23890.02 1295.97 24585.38 15478.64 25890.09 258
IB-MVS85.34 488.67 13887.14 15893.26 7093.12 19284.32 7398.76 2497.27 2087.19 10179.36 22890.45 24083.92 4298.53 12784.41 16069.79 30996.93 146
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
XVS92.69 5492.71 4992.63 9698.52 3780.29 15997.37 10396.44 9887.04 10391.38 8597.83 6477.24 10799.59 5890.46 10398.07 5298.02 79
X-MVStestdata86.26 18384.14 20292.63 9698.52 3780.29 15997.37 10396.44 9887.04 10391.38 8520.73 39677.24 10799.59 5890.46 10398.07 5298.02 79
dcpmvs_293.10 4193.46 3992.02 12697.77 6579.73 17794.82 24493.86 25786.91 10591.33 8896.76 11585.20 3298.06 14696.90 3097.60 6798.27 66
mvsmamba85.17 20184.54 19287.05 25687.94 30075.11 27996.22 18487.79 35586.91 10578.55 23391.77 22064.93 23995.91 25186.94 14679.80 24490.12 255
test111188.11 15387.04 16091.35 14693.15 18978.79 20296.57 16190.78 33086.88 10785.04 15895.20 15157.23 29597.39 18283.88 16694.59 11897.87 93
OMC-MVS88.80 13588.16 13390.72 16895.30 12277.92 23094.81 24594.51 21986.80 10884.97 16096.85 11067.53 21998.60 12385.08 15587.62 18595.63 183
test250690.96 9290.39 9292.65 9493.54 17682.46 10696.37 17597.35 1886.78 10987.55 13695.25 14777.83 9897.50 17584.07 16394.80 11597.98 86
ECVR-MVScopyleft88.35 14887.25 15491.65 13893.54 17679.40 18496.56 16390.78 33086.78 10985.57 15495.25 14757.25 29497.56 16784.73 15994.80 11597.98 86
3Dnovator82.32 1089.33 12287.64 14294.42 3393.73 17285.70 4397.73 7496.75 5986.73 11176.21 26495.93 13062.17 25299.68 4981.67 19097.81 6197.88 91
VNet92.11 6691.22 7794.79 2596.91 9186.98 2797.91 6197.96 1086.38 11293.65 5795.74 13470.16 21098.95 10993.39 6788.87 17498.43 55
ACMMP_NAP93.46 3693.23 4294.17 4197.16 8884.28 7496.82 14796.65 7286.24 11394.27 5097.99 5077.94 9499.83 1693.39 6798.57 3398.39 57
TESTMET0.1,189.83 11389.34 11491.31 14792.54 20980.19 16497.11 12396.57 8486.15 11486.85 14691.83 21979.32 7296.95 20681.30 19192.35 15096.77 154
DPE-MVScopyleft95.32 1095.55 1194.64 2998.79 2384.87 6697.77 7096.74 6086.11 11596.54 2198.89 688.39 1999.74 3797.67 2099.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
3Dnovator+82.88 889.63 11787.85 13794.99 2194.49 15286.76 3197.84 6595.74 15286.10 11675.47 27696.02 12965.00 23899.51 6982.91 18497.07 8298.72 40
test_prior298.37 3786.08 11794.57 4798.02 4983.14 4695.05 4998.79 26
baseline290.39 10390.21 9790.93 16090.86 25680.99 14095.20 23097.41 1786.03 11880.07 22294.61 16990.58 697.47 17887.29 14189.86 16694.35 211
CHOSEN 280x42091.71 7491.85 6791.29 14994.94 13582.69 10087.89 33596.17 12585.94 11987.27 14094.31 17490.27 995.65 26794.04 6195.86 10695.53 186
sss90.87 9589.96 10493.60 5894.15 15983.84 8197.14 12098.13 785.93 12089.68 11096.09 12871.67 19499.30 8187.69 13789.16 17097.66 110
EPMVS87.47 16685.90 17292.18 11795.41 11982.26 11087.00 34296.28 11585.88 12184.23 16885.57 31175.07 15496.26 23371.14 28592.50 14798.03 78
APDe-MVScopyleft94.56 2094.75 1793.96 4698.84 2283.40 9098.04 5596.41 10285.79 12295.00 4098.28 3284.32 3999.18 9297.35 2498.77 2799.28 19
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
VPNet84.69 20882.92 21990.01 18689.01 28783.45 8996.71 15595.46 16785.71 12379.65 22492.18 21056.66 29996.01 24483.05 18367.84 32990.56 246
MP-MVScopyleft92.61 5792.67 5192.42 10498.13 5679.73 17797.33 10596.20 12285.63 12490.53 10097.66 7078.14 9299.70 4692.12 8498.30 4897.85 95
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Effi-MVS+-dtu84.61 21084.90 19083.72 31091.96 23463.14 35794.95 24193.34 28585.57 12579.79 22387.12 28661.99 25695.61 27183.55 17585.83 20392.41 235
GA-MVS85.79 19184.04 20391.02 15989.47 28380.27 16196.90 14294.84 19885.57 12580.88 20989.08 25556.56 30096.47 22777.72 22385.35 20896.34 167
FIs86.73 17786.10 17088.61 21690.05 27280.21 16396.14 19096.95 3885.56 12778.37 23692.30 20876.73 11795.28 28579.51 20779.27 25290.35 250
DU-MVS84.57 21183.33 21488.28 22388.76 28879.36 18596.43 17295.41 17385.42 12878.11 23890.82 23467.61 21695.14 29279.14 21268.30 32390.33 251
UniMVSNet (Re)85.31 19984.23 19988.55 21789.75 27680.55 15396.72 15396.89 4285.42 12878.40 23588.93 25875.38 14595.52 27578.58 21768.02 32689.57 266
SMA-MVScopyleft94.70 1894.68 1894.76 2698.02 5985.94 3997.47 9396.77 5585.32 13097.92 398.70 1583.09 4799.84 1295.79 4099.08 1098.49 51
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test-mter88.95 12888.60 12589.98 18892.26 21777.23 24797.11 12395.96 13985.32 13086.30 14991.38 22376.37 12496.78 21880.82 19491.92 15495.94 176
tpmrst88.36 14787.38 15291.31 14794.36 15479.92 16987.32 33995.26 18185.32 13088.34 12986.13 30580.60 6196.70 22083.78 16885.34 20997.30 134
region2R92.72 5292.70 5092.79 8898.68 2680.53 15697.53 8896.51 9085.22 13391.94 7997.98 5377.26 10599.67 5190.83 9798.37 4498.18 69
UniMVSNet_NR-MVSNet85.49 19684.59 19188.21 22789.44 28479.36 18596.71 15596.41 10285.22 13378.11 23890.98 23276.97 11295.14 29279.14 21268.30 32390.12 255
HFP-MVS92.89 4692.86 4892.98 8198.71 2581.12 13697.58 8496.70 6585.20 13591.75 8197.97 5578.47 8699.71 4390.95 9398.41 4198.12 75
ACMMPR92.69 5492.67 5192.75 8998.66 2880.57 15297.58 8496.69 6785.20 13591.57 8397.92 5677.01 11099.67 5190.95 9398.41 4198.00 84
FC-MVSNet-test85.96 18785.39 17887.66 23889.38 28578.02 22495.65 21296.87 4385.12 13777.34 24391.94 21776.28 12694.74 30477.09 23278.82 25690.21 253
mPP-MVS91.88 6991.82 6892.07 12298.38 4478.63 20597.29 10696.09 12985.12 13788.45 12797.66 7075.53 13999.68 4989.83 11398.02 5597.88 91
dmvs_re84.10 21882.90 22087.70 23691.41 24573.28 29590.59 31693.19 28985.02 13977.96 24093.68 19057.92 28896.18 23775.50 25080.87 23993.63 224
PVSNet_077.72 1581.70 25878.95 27589.94 19190.77 25976.72 25695.96 19696.95 3885.01 14070.24 31788.53 26552.32 31898.20 14386.68 14844.08 38294.89 200
ZNCC-MVS92.75 4892.60 5393.23 7298.24 5181.82 12197.63 8096.50 9285.00 14191.05 9397.74 6778.38 8799.80 2590.48 10298.34 4698.07 77
SCA85.63 19383.64 20891.60 14292.30 21581.86 11992.88 29195.56 16084.85 14282.52 18785.12 32158.04 28395.39 27873.89 26587.58 18797.54 117
tpm85.55 19584.47 19688.80 21390.19 26875.39 27688.79 32794.69 20584.83 14383.96 17385.21 31778.22 9094.68 30676.32 24378.02 26796.34 167
CP-MVS92.54 5992.60 5392.34 10698.50 4079.90 17098.40 3696.40 10484.75 14490.48 10298.09 4377.40 10499.21 8691.15 9298.23 5097.92 90
9.1494.26 2798.10 5798.14 4496.52 8984.74 14594.83 4498.80 782.80 5099.37 7895.95 3898.42 40
ACMMPcopyleft90.39 10389.97 10391.64 13997.58 7378.21 22096.78 15096.72 6384.73 14684.72 16497.23 9571.22 19999.63 5588.37 13292.41 14997.08 143
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
GST-MVS92.43 6192.22 6293.04 7998.17 5481.64 12897.40 10296.38 10784.71 14790.90 9697.40 8877.55 10299.76 3089.75 11597.74 6397.72 105
MP-MVS-pluss92.58 5892.35 5793.29 6997.30 8682.53 10396.44 17096.04 13484.68 14889.12 11898.37 2777.48 10399.74 3793.31 7198.38 4397.59 116
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
NR-MVSNet83.35 22981.52 24288.84 21188.76 28881.31 13494.45 25095.16 18384.65 14967.81 32590.82 23470.36 20894.87 30174.75 25666.89 33890.33 251
PAPM_NR91.46 7990.82 8393.37 6898.50 4081.81 12295.03 24096.13 12684.65 14986.10 15197.65 7479.24 7599.75 3583.20 18096.88 8698.56 47
PatchmatchNetpermissive86.83 17485.12 18591.95 12894.12 16282.27 10986.55 34695.64 15784.59 15182.98 18684.99 32377.26 10595.96 24868.61 29891.34 15997.64 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TranMVSNet+NR-MVSNet83.24 23381.71 23887.83 23387.71 30378.81 20196.13 19294.82 19984.52 15276.18 26590.78 23664.07 24394.60 30774.60 26066.59 34090.09 258
train_agg94.28 2394.45 2293.74 5198.64 3183.71 8297.82 6696.65 7284.50 15395.16 3398.09 4384.33 3699.36 7995.91 3998.96 1998.16 71
test_898.63 3383.64 8597.81 6896.63 7784.50 15395.10 3798.11 4284.33 3699.23 84
gm-plane-assit92.27 21679.64 18084.47 15595.15 15597.93 14985.81 150
Vis-MVSNet (Re-imp)88.88 13288.87 12388.91 21093.89 16874.43 28696.93 14094.19 23984.39 15683.22 18295.67 13878.24 8994.70 30578.88 21594.40 12297.61 115
thres20088.92 13087.65 14192.73 9196.30 9685.62 4597.85 6498.86 184.38 15784.82 16293.99 18475.12 15398.01 14770.86 28786.67 19194.56 210
nrg03086.79 17585.43 17790.87 16488.76 28885.34 4997.06 12994.33 23184.31 15880.45 21591.98 21472.36 18696.36 23088.48 13071.13 29690.93 243
MVS_Test90.29 10689.18 11693.62 5795.23 12484.93 6494.41 25194.66 20984.31 15890.37 10491.02 23075.13 15297.82 15683.11 18294.42 12198.12 75
SDMVSNet87.02 16985.61 17491.24 15194.14 16083.30 9293.88 26895.98 13784.30 16079.63 22592.01 21158.23 28197.68 16090.28 11182.02 23492.75 231
sd_testset84.62 20983.11 21789.17 20494.14 16077.78 23591.54 30994.38 22884.30 16079.63 22592.01 21152.28 31996.98 20477.67 22582.02 23492.75 231
TEST998.64 3183.71 8297.82 6696.65 7284.29 16295.16 3398.09 4384.39 3599.36 79
CDS-MVSNet89.50 11988.96 12091.14 15691.94 23680.93 14397.09 12795.81 14884.26 16384.72 16494.20 17980.31 6395.64 26883.37 17988.96 17396.85 151
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CR-MVSNet83.53 22781.36 24490.06 18590.16 26979.75 17479.02 37191.12 32284.24 16482.27 19580.35 35075.45 14193.67 32563.37 32486.25 19696.75 156
BH-w/o88.24 15187.47 15090.54 17395.03 13478.54 20697.41 10193.82 25984.08 16578.23 23794.51 17269.34 21397.21 19280.21 20294.58 11995.87 178
USDC78.65 28876.25 29385.85 27487.58 30474.60 28489.58 32190.58 33384.05 16663.13 34888.23 26940.69 36296.86 21466.57 30875.81 27486.09 339
SF-MVS94.17 2694.05 3094.55 3197.56 7485.95 3797.73 7496.43 10084.02 16795.07 3998.74 1482.93 4899.38 7695.42 4798.51 3498.32 60
IS-MVSNet88.67 13888.16 13390.20 18393.61 17376.86 25396.77 15293.07 29584.02 16783.62 17895.60 14174.69 16196.24 23578.43 21993.66 13397.49 124
WR-MVS84.32 21582.96 21888.41 21989.38 28580.32 15896.59 16096.25 11783.97 16976.63 25390.36 24267.53 21994.86 30275.82 24870.09 30790.06 260
mvsany_test187.58 16488.22 13085.67 27989.78 27567.18 34095.25 22787.93 35383.96 17088.79 12297.06 10472.52 18494.53 31092.21 8386.45 19495.30 193
AUN-MVS86.25 18485.57 17588.26 22493.57 17573.38 29295.45 21995.88 14483.94 17185.47 15594.21 17873.70 17596.67 22283.54 17664.41 34594.73 208
PS-MVSNAJss84.91 20584.30 19886.74 25985.89 32574.40 28794.95 24194.16 24183.93 17276.45 25790.11 24871.04 20295.77 25883.16 18179.02 25590.06 260
LCM-MVSNet-Re83.75 22483.54 21184.39 30393.54 17664.14 35192.51 29484.03 37083.90 17366.14 33686.59 29467.36 22192.68 33384.89 15892.87 14296.35 166
MAR-MVS90.63 9890.22 9691.86 13198.47 4278.20 22197.18 11396.61 7883.87 17488.18 13298.18 3668.71 21499.75 3583.66 17497.15 8097.63 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PGM-MVS91.93 6891.80 6992.32 11098.27 5079.74 17695.28 22497.27 2083.83 17590.89 9797.78 6676.12 12899.56 6488.82 12597.93 6097.66 110
RRT_MVS83.88 22183.27 21585.71 27787.53 30772.12 30695.35 22394.33 23183.81 17675.86 27091.28 22660.55 26495.09 29783.93 16576.76 27089.90 263
MDTV_nov1_ep1383.69 20594.09 16381.01 13986.78 34496.09 12983.81 17684.75 16384.32 32874.44 16496.54 22463.88 32085.07 210
test-LLR88.48 14387.98 13589.98 18892.26 21777.23 24797.11 12395.96 13983.76 17886.30 14991.38 22372.30 18896.78 21880.82 19491.92 15495.94 176
test0.0.03 182.79 24182.48 22783.74 30986.81 31172.22 30396.52 16495.03 18883.76 17873.00 29693.20 19672.30 18888.88 36264.15 31977.52 26890.12 255
ACMP81.66 1184.00 21983.22 21686.33 26591.53 24372.95 30195.91 20193.79 26383.70 18073.79 28692.22 20954.31 31596.89 21083.98 16479.74 24789.16 277
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
1112_ss88.60 14187.47 15092.00 12793.21 18680.97 14196.47 16792.46 30283.64 18180.86 21097.30 9280.24 6597.62 16377.60 22685.49 20697.40 129
TAMVS88.48 14387.79 13990.56 17291.09 25079.18 19096.45 16995.88 14483.64 18183.12 18393.33 19575.94 13195.74 26382.40 18588.27 18196.75 156
Test_1112_low_res88.03 15586.73 16491.94 12993.15 18980.88 14496.44 17092.41 30483.59 18380.74 21291.16 22880.18 6697.59 16577.48 22985.40 20797.36 131
tfpn200view988.48 14387.15 15692.47 10096.21 9985.30 5297.44 9698.85 283.37 18483.99 17193.82 18775.36 14697.93 14969.04 29586.24 19894.17 212
thres40088.42 14687.15 15692.23 11496.21 9985.30 5297.44 9698.85 283.37 18483.99 17193.82 18775.36 14697.93 14969.04 29586.24 19893.45 228
Effi-MVS+90.70 9789.90 10793.09 7793.61 17383.48 8895.20 23092.79 29983.22 18691.82 8095.70 13671.82 19397.48 17791.25 9193.67 13298.32 60
thisisatest051590.95 9390.26 9593.01 8094.03 16784.27 7597.91 6196.67 6983.18 18786.87 14595.51 14488.66 1697.85 15580.46 19789.01 17296.92 148
CostFormer89.08 12688.39 12991.15 15593.13 19179.15 19288.61 32996.11 12883.14 18889.58 11386.93 28983.83 4396.87 21288.22 13385.92 20197.42 127
bld_raw_dy_0_6482.13 25280.76 25186.24 27085.78 32775.03 28094.40 25482.62 37583.12 18976.46 25690.96 23353.83 31694.55 30881.04 19378.60 26189.14 278
VDD-MVS88.28 15087.02 16192.06 12395.09 12980.18 16597.55 8794.45 22483.09 19089.10 11995.92 13247.97 33598.49 12993.08 7686.91 19097.52 122
jajsoiax82.12 25381.15 24785.03 29084.19 34470.70 32094.22 26193.95 24983.07 19173.48 28889.75 25049.66 33095.37 28082.24 18779.76 24589.02 284
FOURS198.51 3978.01 22598.13 4796.21 12183.04 19294.39 49
VPA-MVSNet85.32 19883.83 20489.77 19890.25 26682.63 10196.36 17697.07 3183.03 19381.21 20789.02 25761.58 25996.31 23285.02 15770.95 29890.36 249
CDPH-MVS93.12 4092.91 4693.74 5198.65 3083.88 7897.67 7996.26 11683.00 19493.22 6398.24 3381.31 5599.21 8689.12 12298.74 2998.14 73
miper_enhance_ethall85.95 18885.20 18188.19 22894.85 13979.76 17396.00 19494.06 24782.98 19577.74 24188.76 26079.42 7195.46 27780.58 19672.42 29089.36 272
131488.94 12987.20 15594.17 4193.21 18685.73 4293.33 28096.64 7582.89 19675.98 26796.36 12266.83 22699.39 7583.52 17896.02 10497.39 130
ZD-MVS99.09 883.22 9496.60 8182.88 19793.61 5998.06 4882.93 4899.14 9595.51 4698.49 37
BH-RMVSNet86.84 17385.28 18091.49 14495.35 12180.26 16296.95 13892.21 30682.86 19881.77 20395.46 14559.34 27397.64 16269.79 29393.81 13096.57 161
dmvs_testset72.00 32973.36 31567.91 35883.83 34931.90 39885.30 35477.12 38382.80 19963.05 35092.46 20761.54 26082.55 38142.22 38071.89 29489.29 273
mvs_tets81.74 25780.71 25384.84 29184.22 34370.29 32393.91 26793.78 26482.77 20073.37 29189.46 25347.36 34095.31 28481.99 18879.55 25188.92 290
thres600view788.06 15486.70 16692.15 12096.10 10385.17 5897.14 12098.85 282.70 20183.41 17993.66 19175.43 14397.82 15667.13 30485.88 20293.45 228
thres100view90088.30 14986.95 16292.33 10896.10 10384.90 6597.14 12098.85 282.69 20283.41 17993.66 19175.43 14397.93 14969.04 29586.24 19894.17 212
D2MVS82.67 24381.55 24086.04 27387.77 30276.47 25795.21 22996.58 8382.66 20370.26 31685.46 31460.39 26595.80 25776.40 24179.18 25385.83 343
PHI-MVS93.59 3593.63 3493.48 6598.05 5881.76 12398.64 2997.13 2682.60 20494.09 5398.49 2380.35 6299.85 1094.74 5398.62 3298.83 32
HyFIR lowres test89.36 12188.60 12591.63 14194.91 13780.76 14895.60 21495.53 16182.56 20584.03 17091.24 22778.03 9396.81 21687.07 14488.41 18097.32 132
Syy-MVS77.97 29478.05 28077.74 34492.13 22556.85 37193.97 26594.23 23582.43 20673.39 28993.57 19357.95 28687.86 36632.40 38482.34 23188.51 295
myMVS_eth3d81.93 25582.18 23081.18 32892.13 22567.18 34093.97 26594.23 23582.43 20673.39 28993.57 19376.98 11187.86 36650.53 36682.34 23188.51 295
APD-MVScopyleft93.61 3493.59 3593.69 5498.76 2483.26 9397.21 10996.09 12982.41 20894.65 4698.21 3481.96 5498.81 11794.65 5498.36 4599.01 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Fast-Effi-MVS+-dtu83.33 23082.60 22685.50 28389.55 28169.38 33196.09 19391.38 31782.30 20975.96 26891.41 22256.71 29795.58 27375.13 25484.90 21191.54 237
LPG-MVS_test84.20 21783.49 21286.33 26590.88 25373.06 29895.28 22494.13 24282.20 21076.31 25993.20 19654.83 31296.95 20683.72 17180.83 24088.98 286
LGP-MVS_train86.33 26590.88 25373.06 29894.13 24282.20 21076.31 25993.20 19654.83 31296.95 20683.72 17180.83 24088.98 286
SR-MVS92.16 6492.27 5991.83 13498.37 4578.41 21196.67 15895.76 15082.19 21291.97 7798.07 4776.44 12198.64 12193.71 6497.27 7898.45 54
FA-MVS(test-final)87.71 16286.23 16992.17 11894.19 15880.55 15387.16 34196.07 13282.12 21385.98 15288.35 26772.04 19298.49 12980.26 20089.87 16597.48 125
HPM-MVScopyleft91.62 7691.53 7491.89 13097.88 6379.22 18996.99 13195.73 15382.07 21489.50 11697.19 9775.59 13798.93 11290.91 9597.94 5897.54 117
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mvs_anonymous88.68 13787.62 14491.86 13194.80 14081.69 12793.53 27694.92 19282.03 21578.87 23290.43 24175.77 13395.34 28185.04 15693.16 14098.55 49
XVG-OURS85.18 20084.38 19787.59 24190.42 26571.73 31491.06 31394.07 24682.00 21683.29 18195.08 15956.42 30197.55 16983.70 17383.42 21893.49 227
BH-untuned86.95 17185.94 17189.99 18794.52 14877.46 24296.78 15093.37 28481.80 21776.62 25493.81 18966.64 22797.02 20276.06 24493.88 12995.48 188
FMVSNet384.71 20782.71 22490.70 16994.55 14687.71 2195.92 19994.67 20881.73 21875.82 27188.08 27266.99 22494.47 31171.23 28275.38 27689.91 262
thisisatest053089.65 11689.02 11891.53 14393.46 18280.78 14796.52 16496.67 6981.69 21983.79 17694.90 16488.85 1597.68 16077.80 22087.49 18896.14 173
v2v48283.46 22881.86 23688.25 22586.19 31979.65 17996.34 17894.02 24881.56 22077.32 24488.23 26965.62 23196.03 24077.77 22169.72 31189.09 280
XVG-OURS-SEG-HR85.74 19285.16 18487.49 24690.22 26771.45 31791.29 31094.09 24581.37 22183.90 17595.22 14960.30 26697.53 17385.58 15284.42 21393.50 226
Fast-Effi-MVS+87.93 15886.94 16390.92 16194.04 16579.16 19198.26 4093.72 26881.29 22283.94 17492.90 20169.83 21196.68 22176.70 23791.74 15696.93 146
ab-mvs87.08 16884.94 18893.48 6593.34 18583.67 8488.82 32695.70 15481.18 22384.55 16790.14 24762.72 24998.94 11185.49 15382.54 23097.85 95
test_fmvs279.59 28079.90 26778.67 34082.86 35355.82 37595.20 23089.55 33881.09 22480.12 22189.80 24934.31 37293.51 32887.82 13578.36 26486.69 330
原ACMM191.22 15397.77 6578.10 22396.61 7881.05 22591.28 9097.42 8777.92 9698.98 10679.85 20698.51 3496.59 160
test_yl91.46 7990.53 8994.24 3897.41 8085.18 5498.08 5097.72 1280.94 22689.85 10696.14 12675.61 13598.81 11790.42 10788.56 17898.74 35
DCV-MVSNet91.46 7990.53 8994.24 3897.41 8085.18 5498.08 5097.72 1280.94 22689.85 10696.14 12675.61 13598.81 11790.42 10788.56 17898.74 35
testing380.74 27181.17 24679.44 33791.15 24963.48 35597.16 11795.76 15080.83 22871.36 30793.15 19978.22 9087.30 37143.19 37879.67 24887.55 320
CP-MVSNet81.01 26880.08 26283.79 30787.91 30170.51 32194.29 26095.65 15680.83 22872.54 30288.84 25963.71 24492.32 33768.58 29968.36 32288.55 294
tttt051788.57 14288.19 13289.71 19993.00 19475.99 26995.67 21096.67 6980.78 23081.82 20294.40 17388.97 1497.58 16676.05 24586.31 19595.57 185
MVSFormer91.36 8290.57 8893.73 5393.00 19488.08 1794.80 24694.48 22080.74 23194.90 4197.13 9978.84 8195.10 29583.77 16997.46 7098.02 79
test_djsdf83.00 23982.45 22884.64 29684.07 34669.78 32794.80 24694.48 22080.74 23175.41 27787.70 27661.32 26295.10 29583.77 16979.76 24589.04 283
MDTV_nov1_ep13_2view81.74 12486.80 34380.65 23385.65 15374.26 16576.52 23996.98 144
CVMVSNet84.83 20685.57 17582.63 32091.55 24160.38 36595.13 23495.03 18880.60 23482.10 19794.71 16766.40 22990.19 35974.30 26290.32 16397.31 133
DP-MVS Recon91.72 7390.85 8294.34 3499.50 185.00 6398.51 3395.96 13980.57 23588.08 13397.63 7676.84 11399.89 785.67 15194.88 11498.13 74
SR-MVS-dyc-post91.29 8491.45 7590.80 16597.76 6776.03 26696.20 18795.44 16980.56 23690.72 9897.84 6275.76 13498.61 12291.99 8696.79 8997.75 103
RE-MVS-def91.18 8097.76 6776.03 26696.20 18795.44 16980.56 23690.72 9897.84 6273.36 17891.99 8696.79 8997.75 103
v14882.41 24980.89 24886.99 25786.18 32076.81 25496.27 18193.82 25980.49 23875.28 27886.11 30667.32 22295.75 26075.48 25167.03 33788.42 301
IterMVS-LS83.93 22082.80 22387.31 25091.46 24477.39 24495.66 21193.43 27980.44 23975.51 27587.26 28373.72 17395.16 29176.99 23370.72 30089.39 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMM80.70 1383.72 22582.85 22286.31 26891.19 24772.12 30695.88 20294.29 23380.44 23977.02 24891.96 21555.24 30897.14 19979.30 21080.38 24389.67 265
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EI-MVSNet85.80 19085.20 18187.59 24191.55 24177.41 24395.13 23495.36 17480.43 24180.33 21794.71 16773.72 17395.97 24576.96 23578.64 25889.39 267
UnsupCasMVSNet_eth73.25 32170.57 32681.30 32677.53 36866.33 34587.24 34093.89 25580.38 24257.90 36881.59 34342.91 35390.56 35665.18 31548.51 37687.01 327
V4283.04 23781.53 24187.57 24386.27 31879.09 19595.87 20394.11 24480.35 24377.22 24686.79 29265.32 23696.02 24377.74 22270.14 30387.61 316
TR-MVS86.30 18284.93 18990.42 17594.63 14377.58 24096.57 16193.82 25980.30 24482.42 19095.16 15458.74 27797.55 16974.88 25587.82 18496.13 174
IterMVS80.67 27279.16 27285.20 28789.79 27476.08 26492.97 29091.86 31080.28 24571.20 30985.14 32057.93 28791.34 34972.52 27470.74 29988.18 306
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PS-CasMVS80.27 27579.18 27183.52 31387.56 30569.88 32694.08 26395.29 17980.27 24672.08 30488.51 26659.22 27592.23 33967.49 30168.15 32588.45 300
XVG-ACMP-BASELINE79.38 28477.90 28283.81 30684.98 33767.14 34489.03 32593.18 29180.26 24772.87 29888.15 27138.55 36396.26 23376.05 24578.05 26688.02 308
XXY-MVS83.84 22282.00 23489.35 20287.13 30981.38 13295.72 20894.26 23480.15 24875.92 26990.63 23761.96 25796.52 22578.98 21473.28 28890.14 254
WR-MVS_H81.02 26780.09 26183.79 30788.08 29871.26 31994.46 24996.54 8780.08 24972.81 29986.82 29070.36 20892.65 33464.18 31867.50 33287.46 322
IterMVS-SCA-FT80.51 27479.10 27384.73 29389.63 28074.66 28292.98 28991.81 31280.05 25071.06 31185.18 31858.04 28391.40 34872.48 27570.70 30188.12 307
v114482.90 24081.27 24587.78 23586.29 31779.07 19696.14 19093.93 25080.05 25077.38 24286.80 29165.50 23295.93 25075.21 25370.13 30488.33 303
ITE_SJBPF82.38 32187.00 31065.59 34689.55 33879.99 25269.37 32191.30 22541.60 35795.33 28262.86 32674.63 28186.24 336
dp84.30 21682.31 22990.28 18094.24 15777.97 22686.57 34595.53 16179.94 25380.75 21185.16 31971.49 19896.39 22963.73 32183.36 21996.48 163
APD-MVS_3200maxsize91.23 8691.35 7690.89 16397.89 6276.35 26196.30 18095.52 16379.82 25491.03 9497.88 6174.70 15898.54 12692.11 8596.89 8597.77 102
PEN-MVS79.47 28378.26 27983.08 31686.36 31568.58 33493.85 26994.77 20379.76 25571.37 30688.55 26359.79 26792.46 33564.50 31765.40 34288.19 305
cl2285.11 20284.17 20087.92 23295.06 13378.82 19995.51 21694.22 23779.74 25676.77 25187.92 27475.96 13095.68 26479.93 20572.42 29089.27 274
MS-PatchMatch83.05 23681.82 23786.72 26389.64 27979.10 19494.88 24394.59 21679.70 25770.67 31389.65 25150.43 32696.82 21570.82 28995.99 10584.25 353
PCF-MVS84.09 586.77 17685.00 18792.08 12192.06 23183.07 9692.14 29994.47 22279.63 25876.90 25094.78 16671.15 20099.20 9072.87 27191.05 16093.98 218
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GeoE86.36 18085.20 18189.83 19593.17 18876.13 26397.53 8892.11 30779.58 25980.99 20894.01 18366.60 22896.17 23873.48 26989.30 16997.20 139
HPM-MVS_fast90.38 10590.17 9991.03 15897.61 7077.35 24597.15 11995.48 16579.51 26088.79 12296.90 10771.64 19698.81 11787.01 14597.44 7296.94 145
testgi74.88 31473.40 31479.32 33880.13 36161.75 36093.21 28586.64 36179.49 26166.56 33591.06 22935.51 37088.67 36356.79 34971.25 29587.56 318
EPP-MVSNet89.76 11489.72 11089.87 19393.78 16976.02 26897.22 10796.51 9079.35 26285.11 15795.01 16184.82 3497.10 20087.46 14088.21 18296.50 162
v119282.31 25080.55 25687.60 24085.94 32378.47 21095.85 20593.80 26279.33 26376.97 24986.51 29563.33 24795.87 25373.11 27070.13 30488.46 299
tpm287.35 16786.26 16890.62 17092.93 19978.67 20488.06 33495.99 13679.33 26387.40 13786.43 30080.28 6496.40 22880.23 20185.73 20596.79 152
PatchMatch-RL85.00 20483.66 20789.02 20895.86 10874.55 28592.49 29593.60 27379.30 26579.29 22991.47 22158.53 27998.45 13370.22 29192.17 15394.07 217
miper_ehance_all_eth84.57 21183.60 21087.50 24592.64 20778.25 21695.40 22293.47 27779.28 26676.41 25887.64 27776.53 11995.24 28778.58 21772.42 29089.01 285
PLCcopyleft83.97 788.00 15687.38 15289.83 19598.02 5976.46 25897.16 11794.43 22579.26 26781.98 19996.28 12469.36 21299.27 8277.71 22492.25 15193.77 222
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LFMVS89.27 12487.64 14294.16 4397.16 8885.52 4797.18 11394.66 20979.17 26889.63 11296.57 12055.35 30798.22 14289.52 11989.54 16798.74 35
eth_miper_zixun_eth83.12 23582.01 23386.47 26491.85 23974.80 28194.33 25593.18 29179.11 26975.74 27487.25 28472.71 18295.32 28376.78 23667.13 33589.27 274
v14419282.43 24680.73 25287.54 24485.81 32678.22 21795.98 19593.78 26479.09 27077.11 24786.49 29664.66 24295.91 25174.20 26369.42 31288.49 297
GBi-Net82.42 24780.43 25888.39 22092.66 20481.95 11294.30 25793.38 28179.06 27175.82 27185.66 30756.38 30293.84 32171.23 28275.38 27689.38 269
test182.42 24780.43 25888.39 22092.66 20481.95 11294.30 25793.38 28179.06 27175.82 27185.66 30756.38 30293.84 32171.23 28275.38 27689.38 269
FMVSNet282.79 24180.44 25789.83 19592.66 20485.43 4895.42 22094.35 22979.06 27174.46 28387.28 28156.38 30294.31 31469.72 29474.68 28089.76 264
v192192082.02 25480.23 26087.41 24785.62 32877.92 23095.79 20793.69 26978.86 27476.67 25286.44 29862.50 25095.83 25572.69 27269.77 31088.47 298
v881.88 25680.06 26487.32 24986.63 31279.04 19794.41 25193.65 27178.77 27573.19 29585.57 31166.87 22595.81 25673.84 26767.61 33187.11 325
DTE-MVSNet78.37 28977.06 28882.32 32385.22 33567.17 34393.40 27793.66 27078.71 27670.53 31488.29 26859.06 27692.23 33961.38 33163.28 35187.56 318
c3_l83.80 22382.65 22587.25 25292.10 22777.74 23895.25 22793.04 29678.58 27776.01 26687.21 28575.25 15195.11 29477.54 22868.89 31788.91 291
Patchmatch-RL test76.65 30574.01 31284.55 29877.37 37064.23 35078.49 37382.84 37478.48 27864.63 34273.40 37076.05 12991.70 34776.99 23357.84 36097.72 105
v124081.70 25879.83 26887.30 25185.50 32977.70 23995.48 21793.44 27878.46 27976.53 25586.44 29860.85 26395.84 25471.59 27970.17 30288.35 302
cl____83.27 23182.12 23186.74 25992.20 22075.95 27095.11 23693.27 28778.44 28074.82 28187.02 28874.19 16695.19 28974.67 25869.32 31389.09 280
DIV-MVS_self_test83.27 23182.12 23186.74 25992.19 22175.92 27295.11 23693.26 28878.44 28074.81 28287.08 28774.19 16695.19 28974.66 25969.30 31489.11 279
SixPastTwentyTwo76.04 30774.32 30881.22 32784.54 34061.43 36391.16 31189.30 34277.89 28264.04 34386.31 30248.23 33294.29 31563.54 32363.84 34987.93 310
v1081.43 26279.53 27087.11 25486.38 31478.87 19894.31 25693.43 27977.88 28373.24 29485.26 31565.44 23395.75 26072.14 27667.71 33086.72 329
miper_lstm_enhance81.66 26080.66 25484.67 29591.19 24771.97 31091.94 30193.19 28977.86 28472.27 30385.26 31573.46 17693.42 32973.71 26867.05 33688.61 293
MVP-Stereo82.65 24481.67 23985.59 28286.10 32278.29 21493.33 28092.82 29877.75 28569.17 32387.98 27359.28 27495.76 25971.77 27796.88 8682.73 361
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs581.34 26379.54 26986.73 26285.02 33676.91 25196.22 18491.65 31477.65 28673.55 28788.61 26255.70 30594.43 31274.12 26473.35 28788.86 292
MVS90.60 9988.64 12496.50 594.25 15690.53 893.33 28097.21 2277.59 28778.88 23197.31 9071.52 19799.69 4789.60 11698.03 5499.27 20
AdaColmapbinary88.81 13487.61 14592.39 10599.33 479.95 16896.70 15795.58 15977.51 28883.05 18596.69 11961.90 25899.72 4184.29 16193.47 13597.50 123
无先验96.87 14396.78 4977.39 28999.52 6779.95 20498.43 55
MIMVSNet79.18 28675.99 29588.72 21587.37 30880.66 15079.96 36691.82 31177.38 29074.33 28481.87 34241.78 35590.74 35566.36 31183.10 22194.76 204
pmmvs482.54 24580.79 24987.79 23486.11 32180.49 15793.55 27593.18 29177.29 29173.35 29289.40 25465.26 23795.05 29975.32 25273.61 28487.83 311
CL-MVSNet_self_test75.81 30974.14 31180.83 33178.33 36667.79 33794.22 26193.52 27677.28 29269.82 31881.54 34461.47 26189.22 36157.59 34453.51 36785.48 345
pm-mvs180.05 27678.02 28186.15 27185.42 33075.81 27395.11 23692.69 30177.13 29370.36 31587.43 27958.44 28095.27 28671.36 28164.25 34787.36 323
K. test v373.62 31771.59 32279.69 33582.98 35259.85 36890.85 31588.83 34677.13 29358.90 36382.11 34043.62 34791.72 34665.83 31254.10 36687.50 321
anonymousdsp80.98 26979.97 26584.01 30481.73 35670.44 32292.49 29593.58 27577.10 29572.98 29786.31 30257.58 28994.90 30079.32 20978.63 26086.69 330
CSCG92.02 6791.65 7293.12 7598.53 3680.59 15197.47 9397.18 2577.06 29684.64 16697.98 5383.98 4199.52 6790.72 9997.33 7699.23 21
OurMVSNet-221017-077.18 30276.06 29480.55 33283.78 35060.00 36790.35 31791.05 32577.01 29766.62 33487.92 27447.73 33894.03 31871.63 27868.44 32187.62 315
FE-MVS86.06 18684.15 20191.78 13594.33 15579.81 17184.58 35796.61 7876.69 29885.00 15987.38 28070.71 20698.37 13770.39 29091.70 15797.17 140
test_vis1_rt73.96 31672.40 31978.64 34183.91 34861.16 36495.63 21368.18 39176.32 29960.09 36274.77 36529.01 38097.54 17187.74 13675.94 27277.22 375
KD-MVS_2432*160077.63 29774.92 30285.77 27590.86 25679.44 18288.08 33293.92 25276.26 30067.05 32982.78 33872.15 19091.92 34261.53 32841.62 38585.94 341
miper_refine_blended77.63 29774.92 30285.77 27590.86 25679.44 18288.08 33293.92 25276.26 30067.05 32982.78 33872.15 19091.92 34261.53 32841.62 38585.94 341
Baseline_NR-MVSNet81.22 26580.07 26384.68 29485.32 33475.12 27896.48 16688.80 34776.24 30277.28 24586.40 30167.61 21694.39 31375.73 24966.73 33984.54 350
F-COLMAP84.50 21383.44 21387.67 23795.22 12572.22 30395.95 19793.78 26475.74 30376.30 26195.18 15359.50 27198.45 13372.67 27386.59 19392.35 236
CPTT-MVS89.72 11589.87 10889.29 20398.33 4773.30 29497.70 7695.35 17675.68 30487.40 13797.44 8670.43 20798.25 14189.56 11896.90 8496.33 169
OpenMVScopyleft79.58 1486.09 18583.62 20993.50 6390.95 25286.71 3297.44 9695.83 14775.35 30572.64 30095.72 13557.42 29399.64 5371.41 28095.85 10794.13 215
cascas86.50 17884.48 19592.55 9992.64 20785.95 3797.04 13095.07 18775.32 30680.50 21391.02 23054.33 31497.98 14886.79 14787.62 18593.71 223
tpmvs83.04 23780.77 25089.84 19495.43 11877.96 22785.59 35295.32 17875.31 30776.27 26283.70 33373.89 17097.41 18059.53 33581.93 23694.14 214
114514_t88.79 13687.57 14692.45 10198.21 5381.74 12496.99 13195.45 16875.16 30882.48 18895.69 13768.59 21598.50 12880.33 19895.18 11297.10 142
API-MVS90.18 10788.97 11993.80 4998.66 2882.95 9897.50 9295.63 15875.16 30886.31 14897.69 6872.49 18599.90 581.26 19296.07 10298.56 47
v7n79.32 28577.34 28585.28 28684.05 34772.89 30293.38 27893.87 25675.02 31070.68 31284.37 32759.58 27095.62 27067.60 30067.50 33287.32 324
TAPA-MVS81.61 1285.02 20383.67 20689.06 20696.79 9273.27 29795.92 19994.79 20274.81 31180.47 21496.83 11171.07 20198.19 14449.82 36892.57 14595.71 182
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PM-MVS69.32 33566.93 33776.49 34873.60 37855.84 37485.91 35079.32 38174.72 31261.09 35878.18 35721.76 38391.10 35270.86 28756.90 36282.51 362
新几何193.12 7597.44 7881.60 13096.71 6474.54 31391.22 9197.57 7879.13 7799.51 6977.40 23198.46 3898.26 67
CNLPA86.96 17085.37 17991.72 13797.59 7279.34 18797.21 10991.05 32574.22 31478.90 23096.75 11767.21 22398.95 10974.68 25790.77 16296.88 150
tt080581.20 26679.06 27487.61 23986.50 31372.97 30093.66 27195.48 16574.11 31576.23 26391.99 21341.36 35897.40 18177.44 23074.78 27992.45 234
test20.0372.36 32671.15 32375.98 35177.79 36759.16 36992.40 29789.35 34174.09 31661.50 35684.32 32848.09 33385.54 37650.63 36562.15 35483.24 357
旧先验296.97 13674.06 31796.10 2597.76 15888.38 131
TransMVSNet (Re)76.94 30374.38 30784.62 29785.92 32475.25 27795.28 22489.18 34373.88 31867.22 32686.46 29759.64 26894.10 31759.24 33952.57 37184.50 351
QAPM86.88 17284.51 19393.98 4494.04 16585.89 4097.19 11296.05 13373.62 31975.12 27995.62 14062.02 25599.74 3770.88 28696.06 10396.30 171
UniMVSNet_ETH3D80.86 27078.75 27687.22 25386.31 31672.02 30891.95 30093.76 26773.51 32075.06 28090.16 24643.04 35295.66 26576.37 24278.55 26293.98 218
tfpnnormal78.14 29175.42 29886.31 26888.33 29679.24 18894.41 25196.22 12073.51 32069.81 31985.52 31355.43 30695.75 26047.65 37367.86 32883.95 356
testdata90.13 18495.92 10774.17 28896.49 9573.49 32294.82 4597.99 5078.80 8397.93 14983.53 17797.52 6998.29 64
our_test_377.90 29575.37 29985.48 28485.39 33176.74 25593.63 27291.67 31373.39 32365.72 33884.65 32658.20 28293.13 33257.82 34267.87 32786.57 332
FMVSNet179.50 28276.54 29288.39 22088.47 29381.95 11294.30 25793.38 28173.14 32472.04 30585.66 30743.86 34693.84 32165.48 31372.53 28989.38 269
Anonymous2023120675.29 31273.64 31380.22 33380.75 35763.38 35693.36 27990.71 33273.09 32567.12 32783.70 33350.33 32790.85 35453.63 35870.10 30686.44 333
ADS-MVSNet279.57 28177.53 28485.71 27793.78 16972.13 30579.48 36786.11 36373.09 32580.14 21979.99 35262.15 25390.14 36059.49 33683.52 21694.85 202
ADS-MVSNet81.26 26478.36 27789.96 19093.78 16979.78 17279.48 36793.60 27373.09 32580.14 21979.99 35262.15 25395.24 28759.49 33683.52 21694.85 202
EU-MVSNet76.92 30476.95 28976.83 34784.10 34554.73 37891.77 30492.71 30072.74 32869.57 32088.69 26158.03 28587.43 37064.91 31670.00 30888.33 303
pmmvs-eth3d73.59 31870.66 32582.38 32176.40 37473.38 29289.39 32489.43 34072.69 32960.34 36177.79 35846.43 34291.26 35166.42 31057.06 36182.51 362
LTVRE_ROB73.68 1877.99 29275.74 29784.74 29290.45 26472.02 30886.41 34791.12 32272.57 33066.63 33387.27 28254.95 31196.98 20456.29 35075.98 27185.21 347
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH75.40 1777.99 29274.96 30087.10 25590.67 26076.41 25993.19 28791.64 31572.47 33163.44 34687.61 27843.34 34997.16 19558.34 34073.94 28287.72 312
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvsany_test367.19 33965.34 34172.72 35563.08 38748.57 38183.12 36278.09 38272.07 33261.21 35777.11 36122.94 38287.78 36878.59 21651.88 37281.80 368
test22296.15 10178.41 21195.87 20396.46 9671.97 33389.66 11197.45 8376.33 12598.24 4998.30 63
ACMH+76.62 1677.47 29974.94 30185.05 28991.07 25171.58 31693.26 28490.01 33571.80 33464.76 34188.55 26341.62 35696.48 22662.35 32771.00 29787.09 326
ppachtmachnet_test77.19 30174.22 30986.13 27285.39 33178.22 21793.98 26491.36 31971.74 33567.11 32884.87 32456.67 29893.37 33152.21 36064.59 34486.80 328
new-patchmatchnet68.85 33765.93 33977.61 34573.57 37963.94 35390.11 31988.73 34971.62 33655.08 37273.60 36940.84 36087.22 37251.35 36348.49 37781.67 370
FMVSNet576.46 30674.16 31083.35 31590.05 27276.17 26289.58 32189.85 33671.39 33765.29 34080.42 34950.61 32587.70 36961.05 33369.24 31586.18 337
test_fmvs369.56 33369.19 33370.67 35669.01 38147.05 38290.87 31486.81 35971.31 33866.79 33277.15 36016.40 38783.17 37981.84 18962.51 35381.79 369
tpm cat183.63 22681.38 24390.39 17693.53 18178.19 22285.56 35395.09 18570.78 33978.51 23483.28 33674.80 15797.03 20166.77 30584.05 21495.95 175
MDA-MVSNet-bldmvs71.45 33067.94 33581.98 32585.33 33368.50 33592.35 29888.76 34870.40 34042.99 38181.96 34146.57 34191.31 35048.75 37254.39 36586.11 338
Anonymous20240521184.41 21481.93 23591.85 13396.78 9378.41 21197.44 9691.34 32070.29 34184.06 16994.26 17641.09 35998.96 10779.46 20882.65 22998.17 70
KD-MVS_self_test70.97 33269.31 33275.95 35276.24 37655.39 37787.45 33790.94 32870.20 34262.96 35177.48 35944.01 34588.09 36461.25 33253.26 36884.37 352
DeepMVS_CXcopyleft64.06 36478.53 36543.26 38968.11 39369.94 34338.55 38376.14 36318.53 38579.34 38243.72 37741.62 38569.57 379
MSDG80.62 27377.77 28389.14 20593.43 18377.24 24691.89 30290.18 33469.86 34468.02 32491.94 21752.21 32098.84 11559.32 33883.12 22091.35 238
VDDNet86.44 17984.51 19392.22 11591.56 24081.83 12097.10 12694.64 21269.50 34587.84 13495.19 15248.01 33497.92 15489.82 11486.92 18996.89 149
LF4IMVS72.36 32670.82 32476.95 34679.18 36356.33 37286.12 34986.11 36369.30 34663.06 34986.66 29333.03 37492.25 33865.33 31468.64 31982.28 365
EG-PatchMatch MVS74.92 31372.02 32083.62 31183.76 35173.28 29593.62 27392.04 30968.57 34758.88 36483.80 33231.87 37695.57 27456.97 34878.67 25782.00 367
AllTest75.92 30873.06 31684.47 29992.18 22267.29 33891.07 31284.43 36867.63 34863.48 34490.18 24438.20 36497.16 19557.04 34673.37 28588.97 288
TestCases84.47 29992.18 22267.29 33884.43 36867.63 34863.48 34490.18 24438.20 36497.16 19557.04 34673.37 28588.97 288
YYNet173.53 32070.43 32782.85 31884.52 34171.73 31491.69 30691.37 31867.63 34846.79 37781.21 34655.04 31090.43 35755.93 35159.70 35886.38 334
MDA-MVSNet_test_wron73.54 31970.43 32782.86 31784.55 33971.85 31191.74 30591.32 32167.63 34846.73 37881.09 34755.11 30990.42 35855.91 35259.76 35786.31 335
DSMNet-mixed73.13 32272.45 31875.19 35377.51 36946.82 38385.09 35582.01 37667.61 35269.27 32281.33 34550.89 32386.28 37354.54 35583.80 21592.46 233
MIMVSNet169.44 33466.65 33877.84 34376.48 37362.84 35887.42 33888.97 34566.96 35357.75 36979.72 35432.77 37585.83 37546.32 37463.42 35084.85 349
TinyColmap72.41 32568.99 33482.68 31988.11 29769.59 32988.41 33085.20 36565.55 35457.91 36784.82 32530.80 37895.94 24951.38 36168.70 31882.49 364
Anonymous2024052172.06 32869.91 32978.50 34277.11 37161.67 36291.62 30890.97 32765.52 35562.37 35279.05 35536.32 36690.96 35357.75 34368.52 32082.87 358
UnsupCasMVSNet_bld68.60 33864.50 34280.92 33074.63 37767.80 33683.97 35992.94 29765.12 35654.63 37368.23 37935.97 36892.17 34160.13 33444.83 38082.78 360
RPSCF77.73 29676.63 29181.06 32988.66 29255.76 37687.77 33687.88 35464.82 35774.14 28592.79 20449.22 33196.81 21667.47 30276.88 26990.62 245
PatchT79.75 27876.85 29088.42 21889.55 28175.49 27577.37 37594.61 21463.07 35882.46 18973.32 37175.52 14093.41 33051.36 36284.43 21296.36 165
TDRefinement69.20 33665.78 34079.48 33666.04 38662.21 35988.21 33186.12 36262.92 35961.03 35985.61 31033.23 37394.16 31655.82 35353.02 36982.08 366
OpenMVS_ROBcopyleft68.52 2073.02 32369.57 33083.37 31480.54 36071.82 31293.60 27488.22 35262.37 36061.98 35483.15 33735.31 37195.47 27645.08 37675.88 27382.82 359
JIA-IIPM79.00 28777.20 28684.40 30289.74 27864.06 35275.30 37995.44 16962.15 36181.90 20059.08 38378.92 7995.59 27266.51 30985.78 20493.54 225
LS3D82.22 25179.94 26689.06 20697.43 7974.06 29093.20 28692.05 30861.90 36273.33 29395.21 15059.35 27299.21 8654.54 35592.48 14893.90 220
N_pmnet61.30 34360.20 34664.60 36384.32 34217.00 40491.67 30710.98 40261.77 36358.45 36678.55 35649.89 32991.83 34542.27 37963.94 34884.97 348
test_040272.68 32469.54 33182.09 32488.67 29171.81 31392.72 29386.77 36061.52 36462.21 35383.91 33143.22 35093.76 32434.60 38372.23 29380.72 371
COLMAP_ROBcopyleft73.24 1975.74 31073.00 31783.94 30592.38 21069.08 33291.85 30386.93 35861.48 36565.32 33990.27 24342.27 35496.93 20950.91 36475.63 27585.80 344
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_f64.01 34262.13 34569.65 35763.00 38845.30 38883.66 36180.68 37861.30 36655.70 37172.62 37314.23 38984.64 37769.84 29258.11 35979.00 372
gg-mvs-nofinetune85.48 19782.90 22093.24 7194.51 15185.82 4179.22 36996.97 3661.19 36787.33 13953.01 38590.58 696.07 23986.07 14997.23 7997.81 100
DP-MVS81.47 26178.28 27891.04 15798.14 5578.48 20795.09 23986.97 35761.14 36871.12 31092.78 20559.59 26999.38 7653.11 35986.61 19295.27 194
pmmvs674.65 31571.67 32183.60 31279.13 36469.94 32593.31 28390.88 32961.05 36965.83 33784.15 33043.43 34894.83 30366.62 30660.63 35686.02 340
Patchmtry77.36 30074.59 30585.67 27989.75 27675.75 27477.85 37491.12 32260.28 37071.23 30880.35 35075.45 14193.56 32757.94 34167.34 33487.68 314
CMPMVSbinary54.94 2175.71 31174.56 30679.17 33979.69 36255.98 37389.59 32093.30 28660.28 37053.85 37489.07 25647.68 33996.33 23176.55 23881.02 23785.22 346
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous2024052983.15 23480.60 25590.80 16595.74 11178.27 21596.81 14894.92 19260.10 37281.89 20192.54 20645.82 34398.82 11679.25 21178.32 26595.31 192
Patchmatch-test78.25 29074.72 30488.83 21291.20 24674.10 28973.91 38288.70 35059.89 37366.82 33185.12 32178.38 8794.54 30948.84 37179.58 25097.86 94
WB-MVS57.26 34456.22 34760.39 36969.29 38035.91 39686.39 34870.06 38959.84 37446.46 37972.71 37251.18 32278.11 38315.19 39334.89 38867.14 382
Anonymous2023121179.72 27977.19 28787.33 24895.59 11577.16 25095.18 23394.18 24059.31 37572.57 30186.20 30447.89 33795.66 26574.53 26169.24 31589.18 276
ANet_high46.22 35341.28 36061.04 36839.91 39946.25 38670.59 38476.18 38458.87 37623.09 39248.00 38912.58 39266.54 39228.65 38713.62 39370.35 378
RPMNet79.85 27775.92 29691.64 13990.16 26979.75 17479.02 37195.44 16958.43 37782.27 19572.55 37473.03 18098.41 13646.10 37586.25 19696.75 156
SSC-MVS56.01 34754.96 34859.17 37068.42 38234.13 39784.98 35669.23 39058.08 37845.36 38071.67 37850.30 32877.46 38414.28 39432.33 38965.91 383
new_pmnet66.18 34063.18 34375.18 35476.27 37561.74 36183.79 36084.66 36756.64 37951.57 37571.85 37731.29 37787.93 36549.98 36762.55 35275.86 376
test_vis3_rt54.10 34951.04 35263.27 36658.16 38946.08 38784.17 35849.32 40156.48 38036.56 38549.48 3888.03 39791.91 34467.29 30349.87 37351.82 387
pmmvs365.75 34162.18 34476.45 34967.12 38564.54 34888.68 32885.05 36654.77 38157.54 37073.79 36829.40 37986.21 37455.49 35447.77 37878.62 373
MVS-HIRNet71.36 33167.00 33684.46 30190.58 26169.74 32879.15 37087.74 35646.09 38261.96 35550.50 38645.14 34495.64 26853.74 35788.11 18388.00 309
PMMVS250.90 35246.31 35564.67 36255.53 39146.67 38477.30 37671.02 38840.89 38334.16 38759.32 3829.83 39576.14 38840.09 38228.63 39071.21 377
APD_test156.56 34653.58 35065.50 36067.93 38446.51 38577.24 37772.95 38638.09 38442.75 38275.17 36413.38 39082.78 38040.19 38154.53 36467.23 381
FPMVS55.09 34852.93 35161.57 36755.98 39040.51 39283.11 36383.41 37337.61 38534.95 38671.95 37514.40 38876.95 38529.81 38565.16 34367.25 380
LCM-MVSNet52.52 35048.24 35365.35 36147.63 39741.45 39072.55 38383.62 37231.75 38637.66 38457.92 3849.19 39676.76 38649.26 36944.60 38177.84 374
Gipumacopyleft45.11 35642.05 35854.30 37380.69 35851.30 38035.80 39183.81 37128.13 38727.94 39134.53 39111.41 39476.70 38721.45 39054.65 36334.90 391
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf145.70 35442.41 35655.58 37153.29 39440.02 39368.96 38562.67 39527.45 38829.85 38861.58 3805.98 39873.83 39028.49 38843.46 38352.90 385
APD_test245.70 35442.41 35655.58 37153.29 39440.02 39368.96 38562.67 39527.45 38829.85 38861.58 3805.98 39873.83 39028.49 38843.46 38352.90 385
PMVScopyleft34.80 2339.19 35835.53 36150.18 37429.72 40030.30 39959.60 38966.20 39426.06 39017.91 39449.53 3873.12 40074.09 38918.19 39249.40 37446.14 388
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN32.70 36032.39 36233.65 37753.35 39325.70 40174.07 38153.33 39921.08 39117.17 39533.63 39311.85 39354.84 39512.98 39514.04 39220.42 392
EMVS31.70 36131.45 36332.48 37850.72 39623.95 40274.78 38052.30 40020.36 39216.08 39631.48 39412.80 39153.60 39611.39 39613.10 39519.88 393
test_method56.77 34554.53 34963.49 36576.49 37240.70 39175.68 37874.24 38519.47 39348.73 37671.89 37619.31 38465.80 39357.46 34547.51 37983.97 355
MVEpermissive35.65 2233.85 35929.49 36446.92 37541.86 39836.28 39550.45 39056.52 39818.75 39418.28 39337.84 3902.41 40158.41 39418.71 39120.62 39146.06 389
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt41.54 35741.93 35940.38 37620.10 40126.84 40061.93 38859.09 39714.81 39528.51 39080.58 34835.53 36948.33 39763.70 32213.11 39445.96 390
wuyk23d14.10 36313.89 36614.72 37955.23 39222.91 40333.83 3923.56 4034.94 3964.11 3972.28 3992.06 40219.66 39810.23 3978.74 3961.59 396
testmvs9.92 36412.94 3670.84 3810.65 4020.29 40693.78 2700.39 4040.42 3972.85 39815.84 3970.17 4040.30 4002.18 3980.21 3971.91 395
test1239.07 36511.73 3681.11 3800.50 4030.77 40589.44 3230.20 4050.34 3982.15 39910.72 3980.34 4030.32 3991.79 3990.08 3982.23 394
EGC-MVSNET52.46 35147.56 35467.15 35981.98 35560.11 36682.54 36472.44 3870.11 3990.70 40074.59 36625.11 38183.26 37829.04 38661.51 35558.09 384
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k21.43 36228.57 3650.00 3820.00 4040.00 4070.00 39395.93 1420.00 4000.00 40197.66 7063.57 2450.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas5.92 3677.89 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40071.04 2020.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re8.11 36610.81 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40197.30 920.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
WAC-MVS67.18 34049.00 370
MSC_two_6792asdad97.14 399.05 992.19 496.83 4699.81 2198.08 1298.81 2499.43 11
No_MVS97.14 399.05 992.19 496.83 4699.81 2198.08 1298.81 2499.43 11
eth-test20.00 404
eth-test0.00 404
OPU-MVS97.30 299.19 792.31 399.12 998.54 1992.06 399.84 1299.11 299.37 199.74 1
test_0728_SECOND95.14 1899.04 1486.14 3599.06 1496.77 5599.84 1297.90 1598.85 2199.45 10
GSMVS97.54 117
test_part298.90 1985.14 6096.07 26
sam_mvs177.59 10097.54 117
sam_mvs75.35 148
ambc76.02 35068.11 38351.43 37964.97 38789.59 33760.49 36074.49 36717.17 38692.46 33561.50 33052.85 37084.17 354
MTGPAbinary96.33 112
test_post185.88 35130.24 39573.77 17195.07 29873.89 265
test_post33.80 39276.17 12795.97 245
patchmatchnet-post77.09 36277.78 9995.39 278
GG-mvs-BLEND93.49 6494.94 13586.26 3381.62 36597.00 3388.32 13094.30 17591.23 596.21 23688.49 12997.43 7398.00 84
MTMP97.53 8868.16 392
test9_res96.00 3799.03 1398.31 62
agg_prior294.30 5699.00 1598.57 46
agg_prior98.59 3583.13 9596.56 8694.19 5199.16 94
test_prior482.34 10897.75 73
test_prior93.09 7798.68 2681.91 11696.40 10499.06 10298.29 64
新几何296.42 173
旧先验197.39 8279.58 18196.54 8798.08 4684.00 4097.42 7497.62 114
原ACMM296.84 144
testdata299.48 7176.45 240
segment_acmp82.69 51
test1294.25 3798.34 4685.55 4696.35 11192.36 7180.84 5799.22 8598.31 4797.98 86
plane_prior791.86 23777.55 241
plane_prior691.98 23377.92 23064.77 240
plane_prior594.69 20597.30 18787.08 14282.82 22690.96 241
plane_prior494.15 180
plane_prior191.95 235
n20.00 406
nn0.00 406
door-mid79.75 380
lessismore_v079.98 33480.59 35958.34 37080.87 37758.49 36583.46 33543.10 35193.89 32063.11 32548.68 37587.72 312
test1196.50 92
door80.13 379
HQP5-MVS78.48 207
BP-MVS87.67 138
HQP4-MVS82.30 19197.32 18591.13 239
HQP3-MVS94.80 20083.01 222
HQP2-MVS65.40 234
NP-MVS92.04 23278.22 21794.56 170
ACMMP++_ref78.45 263
ACMMP++79.05 254
Test By Simon71.65 195