This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
MM95.85 695.74 1096.15 896.34 10289.50 999.18 698.10 895.68 196.64 2197.92 6180.72 6899.80 2599.16 197.96 5899.15 27
DeepPCF-MVS89.82 194.61 2296.17 589.91 20997.09 9470.21 34298.99 2396.69 7395.57 295.08 4199.23 186.40 2999.87 897.84 2098.66 3299.65 6
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2497.10 3195.17 392.11 8598.46 2687.33 2499.97 297.21 2999.31 499.63 7
MVS_030495.58 995.44 1596.01 1097.63 7089.26 1299.27 396.59 8894.71 497.08 1597.99 5578.69 9999.86 1099.15 297.85 6298.91 35
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2499.06 1797.12 2994.66 596.79 1798.78 986.42 2899.95 397.59 2399.18 799.00 31
EPNet94.06 3394.15 3293.76 5697.27 9184.35 8298.29 4197.64 1494.57 695.36 3596.88 11679.96 8299.12 10391.30 10496.11 10797.82 108
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsm_n_192094.81 1995.60 1192.45 11495.29 13880.96 15499.29 297.21 2294.50 797.29 1398.44 2782.15 6099.78 2898.56 797.68 6796.61 177
DELS-MVS94.98 1494.49 2496.44 696.42 10190.59 799.21 597.02 3694.40 891.46 9397.08 10983.32 5299.69 4992.83 8898.70 3199.04 29
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
NCCC95.63 795.94 894.69 3299.21 685.15 6899.16 796.96 4194.11 995.59 3498.64 1785.07 3499.91 495.61 4699.10 999.00 31
CANet94.89 1694.64 2295.63 1397.55 7688.12 1899.06 1796.39 11394.07 1095.34 3697.80 7076.83 13099.87 897.08 3197.64 6898.89 36
test_vis1_n_192089.95 12790.59 10188.03 24992.36 23168.98 35199.12 1294.34 25193.86 1193.64 6297.01 11251.54 34299.59 6096.76 3596.71 9995.53 206
DeepC-MVS_fast89.06 294.48 2594.30 2995.02 2298.86 2185.68 4998.06 5596.64 8193.64 1291.74 9198.54 2080.17 7799.90 592.28 9398.75 2999.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsmconf_n93.99 3494.36 2892.86 9792.82 22181.12 14799.26 496.37 11793.47 1395.16 3798.21 3979.00 9299.64 5598.21 1096.73 9897.83 106
DPM-MVS96.21 295.53 1398.26 196.26 10595.09 199.15 896.98 3893.39 1496.45 2598.79 890.17 999.99 189.33 13799.25 699.70 3
test_fmvsmconf0.1_n93.08 4693.22 4792.65 10788.45 31780.81 15999.00 2295.11 20193.21 1594.00 5797.91 6376.84 12899.59 6097.91 1696.55 10197.54 127
CANet_DTU90.98 10790.04 11893.83 5394.76 15686.23 3796.32 18993.12 31693.11 1693.71 6096.82 12063.08 26999.48 7384.29 17895.12 12195.77 199
test_cas_vis1_n_192089.90 12890.02 11989.54 21790.14 29274.63 30098.71 2794.43 24693.04 1792.40 7996.35 13053.41 33899.08 10695.59 4796.16 10594.90 219
test_fmvsmvis_n_192092.12 7692.10 7392.17 13190.87 27681.04 15098.34 4093.90 27492.71 1887.24 15697.90 6474.83 17199.72 4396.96 3296.20 10495.76 200
patch_mono-295.14 1396.08 792.33 12198.44 4377.84 24798.43 3697.21 2292.58 1997.68 1097.65 7986.88 2599.83 1798.25 997.60 6999.33 18
HPM-MVS++copyleft95.32 1195.48 1494.85 2698.62 3486.04 3997.81 7096.93 4492.45 2095.69 3398.50 2485.38 3299.85 1194.75 5999.18 798.65 50
PS-MVSNAJ94.17 3093.52 4196.10 995.65 12692.35 298.21 4495.79 16392.42 2196.24 2798.18 4171.04 22099.17 9896.77 3497.39 7796.79 170
MSP-MVS95.62 896.54 192.86 9798.31 4880.10 18197.42 10396.78 5592.20 2297.11 1498.29 3693.46 199.10 10496.01 3999.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
fmvsm_s_conf0.5_n93.69 3794.13 3392.34 11994.56 16082.01 12299.07 1697.13 2792.09 2396.25 2698.53 2276.47 13599.80 2598.39 894.71 12595.22 215
test_fmvsmconf0.01_n91.08 10490.68 10092.29 12482.43 37680.12 18097.94 6293.93 27092.07 2491.97 8697.60 8267.56 23899.53 6897.09 3095.56 11897.21 153
fmvsm_l_conf0.5_n94.89 1695.24 1793.86 5294.42 17084.61 7999.13 1196.15 13592.06 2597.92 398.52 2384.52 3899.74 3898.76 695.67 11697.22 151
xiu_mvs_v2_base93.92 3593.26 4595.91 1195.07 14692.02 698.19 4595.68 16992.06 2596.01 3198.14 4570.83 22498.96 11296.74 3696.57 10096.76 173
IU-MVS99.03 1585.34 5896.86 5192.05 2798.74 198.15 1198.97 1799.42 13
fmvsm_l_conf0.5_n_a94.91 1595.30 1693.72 6094.50 16784.30 8499.14 1096.00 14691.94 2897.91 598.60 1884.78 3699.77 2998.84 596.03 11097.08 159
fmvsm_s_conf0.5_n_a93.34 4293.71 3692.22 12893.38 20381.71 13798.86 2596.98 3891.64 2996.85 1698.55 1975.58 15399.77 2997.88 1993.68 14095.18 216
TSAR-MVS + GP.94.35 2694.50 2393.89 5197.38 8883.04 10898.10 5195.29 19691.57 3093.81 5997.45 8886.64 2699.43 7696.28 3794.01 13499.20 25
reproduce_monomvs87.80 17787.60 16388.40 23796.56 9880.26 17595.80 22096.32 12191.56 3173.60 30588.36 28388.53 1696.25 25290.47 11967.23 35288.67 309
CLD-MVS87.97 17487.48 16789.44 21892.16 24480.54 16898.14 4694.92 20991.41 3279.43 24595.40 15362.34 27297.27 20490.60 11782.90 24590.50 266
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
save fliter98.24 5183.34 10298.61 3396.57 9191.32 33
TSAR-MVS + MP.94.79 2095.17 1893.64 6497.66 6984.10 8795.85 21796.42 10891.26 3497.49 1296.80 12186.50 2798.49 13595.54 4899.03 1398.33 65
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
fmvsm_s_conf0.1_n92.93 4993.16 4892.24 12690.52 28381.92 12698.42 3796.24 12791.17 3596.02 3098.35 3475.34 16499.74 3897.84 2094.58 12795.05 217
balanced_conf0394.60 2394.30 2995.48 1696.45 10088.82 1496.33 18895.58 17391.12 3695.84 3293.87 20083.47 5198.37 14497.26 2798.81 2499.24 23
PC_three_145291.12 3698.33 298.42 3092.51 299.81 2298.96 499.37 199.70 3
PAPM92.87 5192.40 6394.30 3992.25 23987.85 2196.40 18396.38 11491.07 3888.72 13996.90 11482.11 6197.37 19890.05 12897.70 6697.67 118
lupinMVS93.87 3693.58 4094.75 3093.00 21488.08 1999.15 895.50 18091.03 3994.90 4497.66 7578.84 9597.56 18194.64 6297.46 7298.62 52
PVSNet_Blended93.13 4392.98 5193.57 6997.47 7783.86 9099.32 196.73 6791.02 4089.53 12396.21 13276.42 13799.57 6494.29 6595.81 11597.29 149
DeepC-MVS86.58 391.53 9291.06 9492.94 9494.52 16381.89 12895.95 20995.98 14890.76 4183.76 19696.76 12273.24 19499.71 4591.67 10396.96 8997.22 151
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSLP-MVS++94.28 2794.39 2793.97 4998.30 4984.06 8898.64 3196.93 4490.71 4293.08 6998.70 1579.98 8199.21 9094.12 6899.07 1198.63 51
fmvsm_s_conf0.1_n_a92.38 7192.49 6292.06 13688.08 32281.62 14097.97 6196.01 14590.62 4396.58 2298.33 3574.09 18399.71 4597.23 2893.46 14594.86 221
jason92.73 5492.23 6994.21 4490.50 28487.30 2998.65 3095.09 20290.61 4492.76 7597.13 10675.28 16597.30 20193.32 7996.75 9798.02 88
jason: jason.
HQP-NCC92.08 24897.63 8190.52 4582.30 210
ACMP_Plane92.08 24897.63 8190.52 4582.30 210
HQP-MVS87.91 17687.55 16588.98 22692.08 24878.48 22197.63 8194.80 21790.52 4582.30 21094.56 18365.40 25597.32 19987.67 15583.01 24291.13 259
h-mvs3389.30 13988.95 13690.36 19495.07 14676.04 28496.96 14497.11 3090.39 4892.22 8395.10 16974.70 17398.86 11993.14 8365.89 35996.16 190
hse-mvs288.22 16988.21 14888.25 24393.54 19573.41 30895.41 23795.89 15790.39 4892.22 8394.22 19074.70 17396.66 23893.14 8364.37 36494.69 229
CS-MVS-test92.98 4793.67 3790.90 17896.52 9976.87 27098.68 2894.73 22190.36 5094.84 4697.89 6577.94 10997.15 21294.28 6797.80 6498.70 48
plane_prior77.96 24197.52 9490.36 5082.96 244
plane_prior377.75 25490.17 5281.33 223
MG-MVS94.25 2993.72 3595.85 1299.38 389.35 1197.98 5998.09 989.99 5392.34 8196.97 11381.30 6698.99 11088.54 14498.88 2099.20 25
HQP_MVS87.50 18487.09 17788.74 23191.86 25777.96 24197.18 11894.69 22289.89 5481.33 22394.15 19364.77 26097.30 20187.08 15982.82 24690.96 261
plane_prior297.18 11889.89 54
ETV-MVS92.72 5692.87 5392.28 12594.54 16281.89 12897.98 5995.21 19989.77 5693.11 6896.83 11877.23 12497.50 18995.74 4495.38 11997.44 137
SD-MVS94.84 1895.02 1994.29 4097.87 6484.61 7997.76 7496.19 13389.59 5796.66 2098.17 4484.33 4099.60 5996.09 3898.50 3898.66 49
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SteuartSystems-ACMMP94.13 3294.44 2693.20 8395.41 13381.35 14499.02 2196.59 8889.50 5894.18 5598.36 3383.68 5099.45 7594.77 5898.45 4198.81 39
Skip Steuart: Steuart Systems R&D Blog.
CS-MVS92.73 5493.48 4290.48 19196.27 10475.93 29098.55 3494.93 20889.32 5994.54 5197.67 7478.91 9497.02 21693.80 7097.32 7998.49 57
ET-MVSNet_ETH3D90.01 12689.03 13292.95 9394.38 17186.77 3298.14 4696.31 12289.30 6063.33 36896.72 12590.09 1093.63 34690.70 11682.29 25398.46 59
EIA-MVS91.73 8592.05 7490.78 18394.52 16376.40 27998.06 5595.34 19489.19 6188.90 13497.28 10077.56 11697.73 17290.77 11396.86 9498.20 76
MVS_111021_HR93.41 4193.39 4493.47 7797.34 8982.83 11097.56 8898.27 689.16 6289.71 11897.14 10579.77 8399.56 6693.65 7397.94 5998.02 88
CHOSEN 1792x268891.07 10590.21 11393.64 6495.18 14283.53 9896.26 19296.13 13688.92 6384.90 17993.10 21572.86 19699.62 5888.86 14095.67 11697.79 110
DVP-MVScopyleft95.58 995.91 994.57 3499.05 985.18 6399.06 1796.46 10388.75 6496.69 1898.76 1287.69 2299.76 3197.90 1798.85 2198.77 40
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.05 985.18 6399.11 1596.78 5588.75 6497.65 1198.91 287.69 22
SED-MVS95.88 596.22 494.87 2599.03 1585.03 7199.12 1296.78 5588.72 6697.79 698.91 288.48 1799.82 1998.15 1198.97 1799.74 1
test_241102_TWO96.78 5588.72 6697.70 898.91 287.86 2199.82 1998.15 1199.00 1599.47 9
test_241102_ONE99.03 1585.03 7196.78 5588.72 6697.79 698.90 588.48 1799.82 19
WTY-MVS92.65 6391.68 8095.56 1496.00 11288.90 1398.23 4397.65 1388.57 6989.82 11797.22 10379.29 8799.06 10789.57 13388.73 18998.73 46
EPNet_dtu87.65 18287.89 15386.93 27694.57 15971.37 33696.72 16196.50 9988.56 7087.12 15895.02 17275.91 14794.01 33866.62 32590.00 17595.42 209
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
sasdasda92.27 7391.22 8995.41 1795.80 12188.31 1597.09 13294.64 22988.49 7192.99 7197.31 9572.68 19898.57 13093.38 7788.58 19199.36 16
canonicalmvs92.27 7391.22 8995.41 1795.80 12188.31 1597.09 13294.64 22988.49 7192.99 7197.31 9572.68 19898.57 13093.38 7788.58 19199.36 16
MVS_111021_LR91.60 9191.64 8291.47 16295.74 12378.79 21696.15 20096.77 6188.49 7188.64 14097.07 11072.33 20499.19 9693.13 8596.48 10296.43 182
DVP-MVS++96.05 496.41 394.96 2499.05 985.34 5898.13 4996.77 6188.38 7497.70 898.77 1092.06 399.84 1397.47 2499.37 199.70 3
test_0728_THIRD88.38 7496.69 1898.76 1289.64 1299.76 3197.47 2498.84 2399.38 14
HY-MVS84.06 691.63 8990.37 10995.39 1996.12 10988.25 1790.22 33697.58 1588.33 7690.50 11091.96 23379.26 8899.06 10790.29 12589.07 18398.88 37
PVSNet_Blended_VisFu91.24 9990.77 9892.66 10695.09 14482.40 11897.77 7295.87 16088.26 7786.39 16393.94 19876.77 13199.27 8488.80 14294.00 13596.31 188
MGCFI-Net91.95 7991.03 9594.72 3195.68 12586.38 3596.93 14794.48 23888.25 7892.78 7497.24 10172.34 20398.46 13893.13 8588.43 19599.32 19
mvsmamba90.53 11990.08 11791.88 14494.81 15480.93 15593.94 28294.45 24388.24 7987.02 16092.35 22468.04 23595.80 27294.86 5797.03 8798.92 34
EI-MVSNet-Vis-set91.84 8491.77 7992.04 13897.60 7281.17 14696.61 16796.87 4988.20 8089.19 12897.55 8778.69 9999.14 10090.29 12590.94 17095.80 198
UGNet87.73 17986.55 18791.27 16795.16 14379.11 20796.35 18696.23 12888.14 8187.83 15090.48 25450.65 34599.09 10580.13 22094.03 13295.60 203
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test_one_060198.91 1884.56 8196.70 7188.06 8296.57 2398.77 1088.04 20
alignmvs92.97 4892.26 6895.12 2195.54 13087.77 2298.67 2996.38 11488.04 8393.01 7097.45 8879.20 9098.60 12893.25 8188.76 18898.99 33
PVSNet_BlendedMVS90.05 12589.96 12190.33 19597.47 7783.86 9098.02 5896.73 6787.98 8489.53 12389.61 26776.42 13799.57 6494.29 6579.59 26687.57 334
test_fmvs187.79 17888.52 14485.62 29892.98 21864.31 37097.88 6592.42 32687.95 8592.24 8295.82 14047.94 35798.44 14295.31 5394.09 13194.09 236
UBG92.68 6292.35 6493.70 6195.61 12785.65 5297.25 11297.06 3487.92 8689.28 12795.03 17186.06 3198.07 15592.24 9490.69 17397.37 143
MTAPA92.45 6992.31 6692.86 9797.90 6180.85 15892.88 30896.33 11987.92 8690.20 11498.18 4176.71 13399.76 3192.57 9298.09 5397.96 98
EI-MVSNet-UG-set91.35 9791.22 8991.73 15297.39 8680.68 16296.47 17696.83 5287.92 8688.30 14697.36 9477.84 11299.13 10289.43 13689.45 17995.37 210
OPM-MVS85.84 20885.10 20688.06 24788.34 31977.83 24895.72 22294.20 25887.89 8980.45 23394.05 19558.57 29897.26 20583.88 18282.76 24889.09 296
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
diffmvspermissive91.17 10190.74 9992.44 11693.11 21382.50 11696.25 19393.62 29287.79 9090.40 11295.93 13773.44 19297.42 19393.62 7492.55 15597.41 139
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet82.34 989.02 14387.79 15692.71 10495.49 13181.50 14297.70 7897.29 1887.76 9185.47 17395.12 16856.90 31798.90 11880.33 21594.02 13397.71 116
PAPR92.74 5392.17 7194.45 3698.89 2084.87 7697.20 11696.20 13187.73 9288.40 14398.12 4678.71 9899.76 3187.99 15196.28 10398.74 42
casdiffmvspermissive90.95 10990.39 10792.63 10992.82 22182.53 11496.83 15394.47 24187.69 9388.47 14195.56 15074.04 18497.54 18590.90 11092.74 15397.83 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive91.13 10290.45 10693.17 8592.99 21783.58 9797.46 9894.56 23587.69 9387.19 15794.98 17574.50 17897.60 17891.88 10292.79 15298.34 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline90.76 11290.10 11692.74 10292.90 22082.56 11394.60 26394.56 23587.69 9389.06 13295.67 14573.76 18797.51 18890.43 12292.23 16198.16 79
Vis-MVSNetpermissive88.67 15487.82 15591.24 16892.68 22378.82 21396.95 14593.85 27887.55 9687.07 15995.13 16763.43 26697.21 20677.58 24596.15 10697.70 117
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
testing1192.48 6892.04 7593.78 5595.94 11686.00 4097.56 8897.08 3287.52 9789.32 12695.40 15384.60 3798.02 15791.93 10189.04 18497.32 145
test_fmvs1_n86.34 20086.72 18585.17 30587.54 32963.64 37596.91 14992.37 32887.49 9891.33 9795.58 14940.81 38498.46 13895.00 5693.49 14393.41 250
testdata195.57 23187.44 99
EC-MVSNet91.73 8592.11 7290.58 18793.54 19577.77 25198.07 5494.40 24887.44 9992.99 7197.11 10874.59 17796.87 22793.75 7197.08 8597.11 157
UA-Net88.92 14688.48 14590.24 19794.06 18377.18 26693.04 30494.66 22687.39 10191.09 10193.89 19974.92 17098.18 15375.83 26591.43 16795.35 211
test_vis1_n85.60 21485.70 19385.33 30284.79 36064.98 36896.83 15391.61 33987.36 10291.00 10494.84 17836.14 39197.18 20895.66 4593.03 15093.82 241
baseline188.85 14987.49 16692.93 9595.21 14186.85 3195.47 23494.61 23287.29 10383.11 20394.99 17480.70 6996.89 22582.28 20473.72 29995.05 217
MonoMVSNet85.68 21284.22 21990.03 20288.43 31877.83 24892.95 30791.46 34087.28 10478.11 25785.96 32566.31 25094.81 32090.71 11576.81 28697.46 136
PMMVS89.46 13689.92 12388.06 24794.64 15769.57 34896.22 19494.95 20787.27 10591.37 9696.54 12865.88 25197.39 19688.54 14493.89 13797.23 150
xiu_mvs_v1_base_debu90.54 11689.54 12793.55 7092.31 23287.58 2696.99 13794.87 21287.23 10693.27 6497.56 8457.43 31198.32 14692.72 8993.46 14594.74 225
xiu_mvs_v1_base90.54 11689.54 12793.55 7092.31 23287.58 2696.99 13794.87 21287.23 10693.27 6497.56 8457.43 31198.32 14692.72 8993.46 14594.74 225
xiu_mvs_v1_base_debi90.54 11689.54 12793.55 7092.31 23287.58 2696.99 13794.87 21287.23 10693.27 6497.56 8457.43 31198.32 14692.72 8993.46 14594.74 225
MVSTER89.25 14188.92 13790.24 19795.98 11484.66 7896.79 15795.36 19187.19 10980.33 23590.61 25390.02 1195.97 26185.38 17178.64 27590.09 276
IB-MVS85.34 488.67 15487.14 17693.26 8093.12 21284.32 8398.76 2697.27 2087.19 10979.36 24690.45 25583.92 4898.53 13384.41 17769.79 32696.93 164
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
XVS92.69 6092.71 5692.63 10998.52 3780.29 17297.37 10796.44 10587.04 11191.38 9497.83 6977.24 12299.59 6090.46 12098.07 5498.02 88
X-MVStestdata86.26 20284.14 22292.63 10998.52 3780.29 17297.37 10796.44 10587.04 11191.38 9420.73 42077.24 12299.59 6090.46 12098.07 5498.02 88
dcpmvs_293.10 4593.46 4392.02 13997.77 6579.73 19194.82 25993.86 27786.91 11391.33 9796.76 12285.20 3398.06 15696.90 3397.60 6998.27 72
test111188.11 17087.04 17891.35 16393.15 20978.79 21696.57 16990.78 35486.88 11485.04 17695.20 16257.23 31697.39 19683.88 18294.59 12697.87 102
testing9991.91 8191.35 8693.60 6795.98 11485.70 4797.31 11096.92 4686.82 11588.91 13395.25 15684.26 4497.89 16788.80 14287.94 20197.21 153
OMC-MVS88.80 15188.16 15090.72 18495.30 13777.92 24494.81 26094.51 23786.80 11684.97 17896.85 11767.53 23998.60 12885.08 17287.62 20495.63 202
test250690.96 10890.39 10792.65 10793.54 19582.46 11796.37 18497.35 1786.78 11787.55 15195.25 15677.83 11397.50 18984.07 18094.80 12397.98 95
ECVR-MVScopyleft88.35 16587.25 17291.65 15493.54 19579.40 19896.56 17190.78 35486.78 11785.57 17195.25 15657.25 31597.56 18184.73 17694.80 12397.98 95
testing9191.90 8291.31 8893.66 6395.99 11385.68 4997.39 10696.89 4786.75 11988.85 13595.23 15983.93 4797.90 16688.91 13987.89 20297.41 139
3Dnovator82.32 1089.33 13887.64 15994.42 3793.73 19185.70 4797.73 7696.75 6586.73 12076.21 28395.93 13762.17 27399.68 5181.67 20897.81 6397.88 100
VNet92.11 7791.22 8994.79 2896.91 9586.98 3097.91 6397.96 1086.38 12193.65 6195.74 14170.16 22998.95 11493.39 7588.87 18798.43 61
ACMMP_NAP93.46 4093.23 4694.17 4597.16 9284.28 8596.82 15596.65 7886.24 12294.27 5397.99 5577.94 10999.83 1793.39 7598.57 3498.39 63
TESTMET0.1,189.83 12989.34 13091.31 16492.54 22980.19 17897.11 12896.57 9186.15 12386.85 16291.83 23779.32 8696.95 22181.30 20992.35 15996.77 172
DPE-MVScopyleft95.32 1195.55 1294.64 3398.79 2384.87 7697.77 7296.74 6686.11 12496.54 2498.89 688.39 1999.74 3897.67 2299.05 1299.31 20
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
3Dnovator+82.88 889.63 13487.85 15494.99 2394.49 16886.76 3397.84 6795.74 16686.10 12575.47 29496.02 13665.00 25999.51 7182.91 20097.07 8698.72 47
test_prior298.37 3986.08 12694.57 5098.02 5483.14 5395.05 5598.79 27
testing22291.09 10390.49 10592.87 9695.82 11985.04 7096.51 17497.28 1986.05 12789.13 12995.34 15580.16 7896.62 23985.82 16688.31 19796.96 162
RRT-MVS89.67 13288.67 14092.67 10594.44 16981.08 14994.34 26994.45 24386.05 12785.79 16992.39 22363.39 26798.16 15493.22 8293.95 13698.76 41
baseline290.39 12090.21 11390.93 17690.86 27780.99 15295.20 24597.41 1686.03 12980.07 24094.61 18290.58 697.47 19287.29 15889.86 17794.35 231
CHOSEN 280x42091.71 8891.85 7691.29 16694.94 15082.69 11187.89 35696.17 13485.94 13087.27 15594.31 18790.27 895.65 28494.04 6995.86 11395.53 206
sss90.87 11189.96 12193.60 6794.15 17883.84 9297.14 12598.13 785.93 13189.68 11996.09 13571.67 21299.30 8387.69 15489.16 18297.66 119
EPMVS87.47 18585.90 19292.18 13095.41 13382.26 12187.00 36396.28 12385.88 13284.23 18785.57 33075.07 16996.26 25071.14 30392.50 15698.03 87
APDe-MVScopyleft94.56 2494.75 2093.96 5098.84 2283.40 10198.04 5796.41 10985.79 13395.00 4398.28 3784.32 4399.18 9797.35 2698.77 2899.28 21
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
VPNet84.69 22882.92 23990.01 20389.01 31083.45 10096.71 16395.46 18385.71 13479.65 24292.18 22856.66 32096.01 26083.05 19967.84 34690.56 265
MP-MVScopyleft92.61 6492.67 5892.42 11798.13 5679.73 19197.33 10996.20 13185.63 13590.53 10997.66 7578.14 10799.70 4892.12 9698.30 5097.85 104
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Effi-MVS+-dtu84.61 23084.90 21083.72 32791.96 25463.14 37894.95 25693.34 30685.57 13679.79 24187.12 30361.99 27795.61 28883.55 19185.83 22392.41 255
GA-MVS85.79 21084.04 22391.02 17589.47 30680.27 17496.90 15094.84 21585.57 13680.88 22789.08 27056.56 32196.47 24377.72 24185.35 22896.34 185
FIs86.73 19686.10 19088.61 23390.05 29380.21 17796.14 20196.95 4285.56 13878.37 25492.30 22576.73 13295.28 30279.51 22479.27 26990.35 268
ETVMVS90.99 10690.26 11093.19 8495.81 12085.64 5396.97 14297.18 2585.43 13988.77 13894.86 17782.00 6296.37 24682.70 20188.60 19097.57 126
DU-MVS84.57 23183.33 23588.28 24188.76 31179.36 19996.43 18195.41 19085.42 14078.11 25790.82 24967.61 23695.14 30979.14 23068.30 34090.33 269
UniMVSNet (Re)85.31 22084.23 21888.55 23489.75 29780.55 16696.72 16196.89 4785.42 14078.40 25388.93 27375.38 16095.52 29278.58 23568.02 34389.57 283
SMA-MVScopyleft94.70 2194.68 2194.76 2998.02 5985.94 4397.47 9696.77 6185.32 14297.92 398.70 1583.09 5599.84 1395.79 4399.08 1098.49 57
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test-mter88.95 14488.60 14289.98 20592.26 23777.23 26497.11 12895.96 15085.32 14286.30 16591.38 24076.37 13996.78 23380.82 21191.92 16395.94 195
tpmrst88.36 16487.38 17091.31 16494.36 17279.92 18387.32 36095.26 19885.32 14288.34 14486.13 32380.60 7196.70 23583.78 18485.34 22997.30 148
region2R92.72 5692.70 5792.79 10098.68 2680.53 16997.53 9196.51 9785.22 14591.94 8897.98 5877.26 12099.67 5390.83 11298.37 4698.18 77
UniMVSNet_NR-MVSNet85.49 21784.59 21188.21 24589.44 30779.36 19996.71 16396.41 10985.22 14578.11 25790.98 24876.97 12795.14 30979.14 23068.30 34090.12 274
HFP-MVS92.89 5092.86 5592.98 9298.71 2581.12 14797.58 8696.70 7185.20 14791.75 9097.97 6078.47 10199.71 4590.95 10798.41 4398.12 84
ACMMPR92.69 6092.67 5892.75 10198.66 2880.57 16597.58 8696.69 7385.20 14791.57 9297.92 6177.01 12599.67 5390.95 10798.41 4398.00 93
FC-MVSNet-test85.96 20685.39 19887.66 25689.38 30878.02 23895.65 22696.87 4985.12 14977.34 26391.94 23576.28 14194.74 32277.09 25078.82 27390.21 271
mPP-MVS91.88 8391.82 7792.07 13598.38 4478.63 21997.29 11196.09 13985.12 14988.45 14297.66 7575.53 15499.68 5189.83 12998.02 5797.88 100
dmvs_re84.10 23882.90 24087.70 25491.41 26573.28 31290.59 33493.19 31085.02 15177.96 26093.68 20457.92 30996.18 25575.50 26880.87 25893.63 244
PVSNet_077.72 1581.70 27778.95 29489.94 20890.77 28076.72 27495.96 20896.95 4285.01 15270.24 33788.53 28052.32 33998.20 15186.68 16444.08 40594.89 220
ZNCC-MVS92.75 5292.60 6093.23 8298.24 5181.82 13297.63 8196.50 9985.00 15391.05 10297.74 7278.38 10299.80 2590.48 11898.34 4898.07 86
UWE-MVS88.56 15988.91 13887.50 26394.17 17772.19 32295.82 21997.05 3584.96 15484.78 18193.51 20981.33 6494.75 32179.43 22689.17 18195.57 204
SCA85.63 21383.64 22891.60 15892.30 23581.86 13092.88 30895.56 17584.85 15582.52 20685.12 34058.04 30495.39 29573.89 28387.58 20697.54 127
tpm85.55 21584.47 21588.80 23090.19 28975.39 29588.79 34694.69 22284.83 15683.96 19285.21 33678.22 10594.68 32576.32 26178.02 28396.34 185
CP-MVS92.54 6692.60 6092.34 11998.50 4079.90 18498.40 3896.40 11184.75 15790.48 11198.09 4877.40 11999.21 9091.15 10698.23 5297.92 99
9.1494.26 3198.10 5798.14 4696.52 9684.74 15894.83 4798.80 782.80 5899.37 8095.95 4198.42 42
ACMMPcopyleft90.39 12089.97 12091.64 15597.58 7478.21 23496.78 15896.72 6984.73 15984.72 18397.23 10271.22 21799.63 5788.37 14992.41 15897.08 159
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
GST-MVS92.43 7092.22 7093.04 9098.17 5481.64 13997.40 10596.38 11484.71 16090.90 10597.40 9377.55 11799.76 3189.75 13197.74 6597.72 114
MP-MVS-pluss92.58 6592.35 6493.29 7997.30 9082.53 11496.44 17996.04 14484.68 16189.12 13098.37 3277.48 11899.74 3893.31 8098.38 4597.59 125
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
NR-MVSNet83.35 24981.52 26288.84 22888.76 31181.31 14594.45 26595.16 20084.65 16267.81 34590.82 24970.36 22794.87 31774.75 27466.89 35690.33 269
PAPM_NR91.46 9390.82 9793.37 7898.50 4081.81 13395.03 25596.13 13684.65 16286.10 16797.65 7979.24 8999.75 3683.20 19696.88 9298.56 54
PatchmatchNetpermissive86.83 19385.12 20591.95 14194.12 18182.27 12086.55 36795.64 17184.59 16482.98 20584.99 34277.26 12095.96 26468.61 31691.34 16897.64 121
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TranMVSNet+NR-MVSNet83.24 25381.71 25887.83 25187.71 32678.81 21596.13 20394.82 21684.52 16576.18 28490.78 25164.07 26394.60 32674.60 27866.59 35890.09 276
train_agg94.28 2794.45 2593.74 5798.64 3183.71 9397.82 6896.65 7884.50 16695.16 3798.09 4884.33 4099.36 8195.91 4298.96 1998.16 79
test_898.63 3383.64 9697.81 7096.63 8384.50 16695.10 4098.11 4784.33 4099.23 88
gm-plane-assit92.27 23679.64 19484.47 16895.15 16697.93 16085.81 167
Vis-MVSNet (Re-imp)88.88 14888.87 13988.91 22793.89 18774.43 30396.93 14794.19 25984.39 16983.22 20195.67 14578.24 10494.70 32378.88 23394.40 13097.61 124
thres20088.92 14687.65 15892.73 10396.30 10385.62 5497.85 6698.86 184.38 17084.82 18093.99 19775.12 16898.01 15870.86 30586.67 21194.56 230
nrg03086.79 19485.43 19790.87 18088.76 31185.34 5897.06 13594.33 25284.31 17180.45 23391.98 23272.36 20296.36 24788.48 14771.13 31390.93 263
MVS_Test90.29 12389.18 13193.62 6695.23 13984.93 7494.41 26694.66 22684.31 17190.37 11391.02 24675.13 16797.82 16983.11 19894.42 12998.12 84
SDMVSNet87.02 18885.61 19491.24 16894.14 17983.30 10393.88 28495.98 14884.30 17379.63 24392.01 22958.23 30197.68 17490.28 12782.02 25492.75 251
sd_testset84.62 22983.11 23789.17 22194.14 17977.78 25091.54 32794.38 24984.30 17379.63 24392.01 22952.28 34096.98 21977.67 24382.02 25492.75 251
TEST998.64 3183.71 9397.82 6896.65 7884.29 17595.16 3798.09 4884.39 3999.36 81
CDS-MVSNet89.50 13588.96 13591.14 17291.94 25680.93 15597.09 13295.81 16284.26 17684.72 18394.20 19280.31 7395.64 28583.37 19588.96 18696.85 169
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CR-MVSNet83.53 24781.36 26490.06 20190.16 29079.75 18879.02 39591.12 34684.24 17782.27 21480.35 37275.45 15693.67 34563.37 34386.25 21696.75 174
reproduce-ours92.70 5893.02 4991.75 15097.45 7977.77 25196.16 19895.94 15384.12 17892.45 7698.43 2880.06 7999.24 8695.35 5197.18 8298.24 74
our_new_method92.70 5893.02 4991.75 15097.45 7977.77 25196.16 19895.94 15384.12 17892.45 7698.43 2880.06 7999.24 8695.35 5197.18 8298.24 74
BH-w/o88.24 16887.47 16890.54 19095.03 14978.54 22097.41 10493.82 27984.08 18078.23 25694.51 18569.34 23297.21 20680.21 21994.58 12795.87 197
USDC78.65 30776.25 31385.85 29187.58 32774.60 30189.58 34090.58 35784.05 18163.13 36988.23 28640.69 38596.86 22966.57 32775.81 29086.09 356
SF-MVS94.17 3094.05 3494.55 3597.56 7585.95 4197.73 7696.43 10784.02 18295.07 4298.74 1482.93 5699.38 7895.42 5098.51 3698.32 66
IS-MVSNet88.67 15488.16 15090.20 19993.61 19276.86 27196.77 16093.07 31784.02 18283.62 19795.60 14874.69 17696.24 25378.43 23793.66 14297.49 134
WR-MVS84.32 23582.96 23888.41 23689.38 30880.32 17196.59 16896.25 12683.97 18476.63 27390.36 25767.53 23994.86 31875.82 26670.09 32490.06 278
mvsany_test187.58 18388.22 14785.67 29689.78 29667.18 35895.25 24287.93 37583.96 18588.79 13697.06 11172.52 20094.53 32892.21 9586.45 21495.30 213
AUN-MVS86.25 20385.57 19588.26 24293.57 19473.38 30995.45 23595.88 15883.94 18685.47 17394.21 19173.70 19096.67 23783.54 19264.41 36394.73 228
PS-MVSNAJss84.91 22584.30 21786.74 27785.89 34874.40 30494.95 25694.16 26183.93 18776.45 27690.11 26371.04 22095.77 27583.16 19779.02 27290.06 278
LCM-MVSNet-Re83.75 24483.54 23184.39 32093.54 19564.14 37292.51 31184.03 39583.90 18866.14 35686.59 31167.36 24192.68 35384.89 17592.87 15196.35 184
MAR-MVS90.63 11490.22 11291.86 14598.47 4278.20 23597.18 11896.61 8483.87 18988.18 14798.18 4168.71 23399.75 3683.66 19097.15 8497.63 122
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PGM-MVS91.93 8091.80 7892.32 12398.27 5079.74 19095.28 23997.27 2083.83 19090.89 10697.78 7176.12 14399.56 6688.82 14197.93 6197.66 119
MDTV_nov1_ep1383.69 22594.09 18281.01 15186.78 36596.09 13983.81 19184.75 18284.32 34774.44 17996.54 24063.88 33985.07 230
WBMVS87.73 17986.79 18290.56 18895.61 12785.68 4997.63 8195.52 17883.77 19278.30 25588.44 28286.14 3095.78 27482.54 20273.15 30590.21 271
test-LLR88.48 16087.98 15289.98 20592.26 23777.23 26497.11 12895.96 15083.76 19386.30 16591.38 24072.30 20596.78 23380.82 21191.92 16395.94 195
test0.0.03 182.79 26182.48 24783.74 32686.81 33472.22 32096.52 17295.03 20583.76 19373.00 31593.20 21172.30 20588.88 38264.15 33877.52 28490.12 274
ACMP81.66 1184.00 24083.22 23686.33 28391.53 26372.95 31895.91 21393.79 28383.70 19573.79 30492.22 22654.31 33696.89 22583.98 18179.74 26489.16 294
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
reproduce_model92.53 6792.87 5391.50 16097.41 8377.14 26896.02 20595.91 15683.65 19692.45 7698.39 3179.75 8499.21 9095.27 5496.98 8898.14 81
1112_ss88.60 15787.47 16892.00 14093.21 20680.97 15396.47 17692.46 32583.64 19780.86 22897.30 9880.24 7597.62 17777.60 24485.49 22697.40 141
TAMVS88.48 16087.79 15690.56 18891.09 27179.18 20496.45 17895.88 15883.64 19783.12 20293.33 21075.94 14695.74 28082.40 20388.27 19896.75 174
Test_1112_low_res88.03 17286.73 18491.94 14293.15 20980.88 15796.44 17992.41 32783.59 19980.74 23091.16 24480.18 7697.59 17977.48 24785.40 22797.36 144
tfpn200view988.48 16087.15 17492.47 11396.21 10685.30 6197.44 9998.85 283.37 20083.99 19093.82 20175.36 16197.93 16069.04 31386.24 21894.17 232
thres40088.42 16387.15 17492.23 12796.21 10685.30 6197.44 9998.85 283.37 20083.99 19093.82 20175.36 16197.93 16069.04 31386.24 21893.45 248
Effi-MVS+90.70 11389.90 12493.09 8893.61 19283.48 9995.20 24592.79 32283.22 20291.82 8995.70 14371.82 21197.48 19191.25 10593.67 14198.32 66
thisisatest051590.95 10990.26 11093.01 9194.03 18684.27 8697.91 6396.67 7583.18 20386.87 16195.51 15188.66 1597.85 16880.46 21489.01 18596.92 166
CostFormer89.08 14288.39 14691.15 17193.13 21179.15 20688.61 34896.11 13883.14 20489.58 12286.93 30683.83 4996.87 22788.22 15085.92 22197.42 138
VDD-MVS88.28 16787.02 17992.06 13695.09 14480.18 17997.55 9094.45 24383.09 20589.10 13195.92 13947.97 35698.49 13593.08 8786.91 21097.52 132
jajsoiax82.12 27281.15 26785.03 30784.19 36670.70 33894.22 27693.95 26983.07 20673.48 30789.75 26549.66 35195.37 29782.24 20579.76 26289.02 300
FOURS198.51 3978.01 23998.13 4996.21 13083.04 20794.39 52
VPA-MVSNet85.32 21983.83 22489.77 21590.25 28782.63 11296.36 18597.07 3383.03 20881.21 22589.02 27261.58 28096.31 24985.02 17470.95 31590.36 267
CDPH-MVS93.12 4492.91 5293.74 5798.65 3083.88 8997.67 8096.26 12583.00 20993.22 6798.24 3881.31 6599.21 9089.12 13898.74 3098.14 81
miper_enhance_ethall85.95 20785.20 20188.19 24694.85 15379.76 18796.00 20694.06 26782.98 21077.74 26188.76 27579.42 8595.46 29480.58 21372.42 30789.36 289
131488.94 14587.20 17394.17 4593.21 20685.73 4693.33 29696.64 8182.89 21175.98 28696.36 12966.83 24699.39 7783.52 19496.02 11197.39 142
ZD-MVS99.09 883.22 10596.60 8782.88 21293.61 6398.06 5382.93 5699.14 10095.51 4998.49 39
BH-RMVSNet86.84 19285.28 20091.49 16195.35 13680.26 17596.95 14592.21 32982.86 21381.77 22295.46 15259.34 29397.64 17669.79 31193.81 13996.57 179
dmvs_testset72.00 35073.36 33567.91 38283.83 37131.90 42285.30 37677.12 40782.80 21463.05 37192.46 22261.54 28182.55 40442.22 40371.89 31189.29 290
mvs_tets81.74 27680.71 27284.84 30884.22 36570.29 34193.91 28393.78 28482.77 21573.37 31089.46 26847.36 36195.31 30181.99 20679.55 26888.92 306
thres600view788.06 17186.70 18692.15 13396.10 11085.17 6797.14 12598.85 282.70 21683.41 19893.66 20575.43 15897.82 16967.13 32285.88 22293.45 248
thres100view90088.30 16686.95 18092.33 12196.10 11084.90 7597.14 12598.85 282.69 21783.41 19893.66 20575.43 15897.93 16069.04 31386.24 21894.17 232
D2MVS82.67 26381.55 26086.04 29087.77 32576.47 27695.21 24496.58 9082.66 21870.26 33685.46 33360.39 28595.80 27276.40 25979.18 27085.83 361
PHI-MVS93.59 3993.63 3893.48 7598.05 5881.76 13498.64 3197.13 2782.60 21994.09 5698.49 2580.35 7299.85 1194.74 6098.62 3398.83 38
HyFIR lowres test89.36 13788.60 14291.63 15794.91 15280.76 16195.60 22995.53 17682.56 22084.03 18991.24 24378.03 10896.81 23187.07 16188.41 19697.32 145
Syy-MVS77.97 31478.05 29977.74 36592.13 24556.85 39493.97 28094.23 25582.43 22173.39 30893.57 20757.95 30787.86 38732.40 40882.34 25188.51 312
myMVS_eth3d81.93 27482.18 25081.18 34792.13 24567.18 35893.97 28094.23 25582.43 22173.39 30893.57 20776.98 12687.86 38750.53 38782.34 25188.51 312
APD-MVScopyleft93.61 3893.59 3993.69 6298.76 2483.26 10497.21 11496.09 13982.41 22394.65 4998.21 3981.96 6398.81 12294.65 6198.36 4799.01 30
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Fast-Effi-MVS+-dtu83.33 25082.60 24685.50 30089.55 30469.38 34996.09 20491.38 34182.30 22475.96 28791.41 23956.71 31895.58 29075.13 27284.90 23191.54 257
LPG-MVS_test84.20 23783.49 23386.33 28390.88 27473.06 31595.28 23994.13 26282.20 22576.31 27893.20 21154.83 33396.95 22183.72 18780.83 25988.98 302
LGP-MVS_train86.33 28390.88 27473.06 31594.13 26282.20 22576.31 27893.20 21154.83 33396.95 22183.72 18780.83 25988.98 302
SR-MVS92.16 7592.27 6791.83 14898.37 4578.41 22596.67 16695.76 16482.19 22791.97 8698.07 5276.44 13698.64 12693.71 7297.27 8098.45 60
FA-MVS(test-final)87.71 18186.23 18992.17 13194.19 17680.55 16687.16 36296.07 14282.12 22885.98 16888.35 28472.04 20998.49 13580.26 21789.87 17697.48 135
HPM-MVScopyleft91.62 9091.53 8491.89 14397.88 6379.22 20396.99 13795.73 16782.07 22989.50 12597.19 10475.59 15298.93 11790.91 10997.94 5997.54 127
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mvs_anonymous88.68 15387.62 16191.86 14594.80 15581.69 13893.53 29294.92 20982.03 23078.87 25190.43 25675.77 14895.34 29885.04 17393.16 14998.55 56
XVG-OURS85.18 22184.38 21687.59 25990.42 28671.73 33191.06 33194.07 26682.00 23183.29 20095.08 17056.42 32297.55 18383.70 18983.42 23893.49 247
BH-untuned86.95 19085.94 19189.99 20494.52 16377.46 25996.78 15893.37 30581.80 23276.62 27493.81 20366.64 24797.02 21676.06 26293.88 13895.48 208
WB-MVSnew84.08 23983.51 23285.80 29291.34 26676.69 27595.62 22896.27 12481.77 23381.81 22192.81 21758.23 30194.70 32366.66 32487.06 20885.99 358
FMVSNet384.71 22782.71 24490.70 18594.55 16187.71 2395.92 21194.67 22581.73 23475.82 28988.08 28966.99 24494.47 32971.23 30075.38 29289.91 280
thisisatest053089.65 13389.02 13391.53 15993.46 20180.78 16096.52 17296.67 7581.69 23583.79 19594.90 17688.85 1497.68 17477.80 23887.49 20796.14 191
v2v48283.46 24881.86 25688.25 24386.19 34279.65 19396.34 18794.02 26881.56 23677.32 26488.23 28665.62 25296.03 25877.77 23969.72 32889.09 296
XVG-OURS-SEG-HR85.74 21185.16 20487.49 26590.22 28871.45 33491.29 32894.09 26581.37 23783.90 19495.22 16060.30 28697.53 18785.58 16984.42 23393.50 246
Fast-Effi-MVS+87.93 17586.94 18190.92 17794.04 18479.16 20598.26 4293.72 28881.29 23883.94 19392.90 21669.83 23096.68 23676.70 25591.74 16596.93 164
ab-mvs87.08 18784.94 20893.48 7593.34 20483.67 9588.82 34595.70 16881.18 23984.55 18690.14 26262.72 27098.94 11685.49 17082.54 25097.85 104
test_fmvs279.59 29979.90 28678.67 36182.86 37555.82 39895.20 24589.55 36281.09 24080.12 23989.80 26434.31 39693.51 34887.82 15278.36 28086.69 347
原ACMM191.22 17097.77 6578.10 23796.61 8481.05 24191.28 9997.42 9277.92 11198.98 11179.85 22398.51 3696.59 178
test_yl91.46 9390.53 10394.24 4297.41 8385.18 6398.08 5297.72 1180.94 24289.85 11596.14 13375.61 15098.81 12290.42 12388.56 19398.74 42
DCV-MVSNet91.46 9390.53 10394.24 4297.41 8385.18 6398.08 5297.72 1180.94 24289.85 11596.14 13375.61 15098.81 12290.42 12388.56 19398.74 42
testing380.74 29081.17 26679.44 35791.15 27063.48 37697.16 12295.76 16480.83 24471.36 32793.15 21478.22 10587.30 39243.19 40079.67 26587.55 337
CP-MVSNet81.01 28780.08 28183.79 32487.91 32470.51 33994.29 27595.65 17080.83 24472.54 32188.84 27463.71 26492.32 35768.58 31768.36 33988.55 311
tttt051788.57 15888.19 14989.71 21693.00 21475.99 28895.67 22496.67 7580.78 24681.82 22094.40 18688.97 1397.58 18076.05 26386.31 21595.57 204
MVSFormer91.36 9690.57 10293.73 5993.00 21488.08 1994.80 26194.48 23880.74 24794.90 4497.13 10678.84 9595.10 31283.77 18597.46 7298.02 88
test_djsdf83.00 25982.45 24884.64 31384.07 36869.78 34594.80 26194.48 23880.74 24775.41 29587.70 29361.32 28395.10 31283.77 18579.76 26289.04 299
MDTV_nov1_ep13_2view81.74 13586.80 36480.65 24985.65 17074.26 18076.52 25796.98 161
CVMVSNet84.83 22685.57 19582.63 33791.55 26160.38 38795.13 24995.03 20580.60 25082.10 21694.71 18066.40 24990.19 37974.30 28090.32 17497.31 147
DP-MVS Recon91.72 8790.85 9694.34 3899.50 185.00 7398.51 3595.96 15080.57 25188.08 14897.63 8176.84 12899.89 785.67 16894.88 12298.13 83
SR-MVS-dyc-post91.29 9891.45 8590.80 18197.76 6776.03 28596.20 19695.44 18580.56 25290.72 10797.84 6775.76 14998.61 12791.99 9996.79 9597.75 112
RE-MVS-def91.18 9397.76 6776.03 28596.20 19695.44 18580.56 25290.72 10797.84 6773.36 19391.99 9996.79 9597.75 112
v14882.41 26980.89 26886.99 27586.18 34376.81 27296.27 19193.82 27980.49 25475.28 29686.11 32467.32 24295.75 27775.48 26967.03 35588.42 318
IterMVS-LS83.93 24182.80 24387.31 26991.46 26477.39 26195.66 22593.43 30080.44 25575.51 29387.26 30073.72 18895.16 30876.99 25170.72 31789.39 284
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMM80.70 1383.72 24582.85 24286.31 28691.19 26872.12 32495.88 21494.29 25380.44 25577.02 26891.96 23355.24 32997.14 21379.30 22880.38 26189.67 282
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EI-MVSNet85.80 20985.20 20187.59 25991.55 26177.41 26095.13 24995.36 19180.43 25780.33 23594.71 18073.72 18895.97 26176.96 25378.64 27589.39 284
UnsupCasMVSNet_eth73.25 34270.57 34781.30 34577.53 39166.33 36487.24 36193.89 27580.38 25857.90 39081.59 36442.91 37590.56 37665.18 33448.51 39687.01 344
V4283.04 25781.53 26187.57 26186.27 34179.09 20995.87 21594.11 26480.35 25977.22 26686.79 30965.32 25796.02 25977.74 24070.14 32087.61 333
TR-MVS86.30 20184.93 20990.42 19294.63 15877.58 25796.57 16993.82 27980.30 26082.42 20995.16 16558.74 29797.55 18374.88 27387.82 20396.13 192
IterMVS80.67 29179.16 29185.20 30489.79 29576.08 28392.97 30691.86 33380.28 26171.20 32985.14 33957.93 30891.34 36972.52 29270.74 31688.18 323
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PS-CasMVS80.27 29479.18 29083.52 33087.56 32869.88 34494.08 27895.29 19680.27 26272.08 32388.51 28159.22 29592.23 35967.49 31968.15 34288.45 317
XVG-ACMP-BASELINE79.38 30377.90 30183.81 32384.98 35967.14 36289.03 34493.18 31280.26 26372.87 31788.15 28838.55 38696.26 25076.05 26378.05 28288.02 325
XXY-MVS83.84 24282.00 25489.35 21987.13 33181.38 14395.72 22294.26 25480.15 26475.92 28890.63 25261.96 27896.52 24178.98 23273.28 30490.14 273
WR-MVS_H81.02 28680.09 28083.79 32488.08 32271.26 33794.46 26496.54 9480.08 26572.81 31886.82 30770.36 22792.65 35464.18 33767.50 34987.46 339
IterMVS-SCA-FT80.51 29379.10 29284.73 31089.63 30274.66 29992.98 30591.81 33580.05 26671.06 33185.18 33758.04 30491.40 36872.48 29370.70 31888.12 324
v114482.90 26081.27 26587.78 25386.29 34079.07 21096.14 20193.93 27080.05 26677.38 26286.80 30865.50 25395.93 26675.21 27170.13 32188.33 320
ITE_SJBPF82.38 33887.00 33265.59 36689.55 36279.99 26869.37 34191.30 24241.60 37995.33 29962.86 34574.63 29786.24 353
dp84.30 23682.31 24990.28 19694.24 17577.97 24086.57 36695.53 17679.94 26980.75 22985.16 33871.49 21696.39 24563.73 34083.36 23996.48 181
APD-MVS_3200maxsize91.23 10091.35 8690.89 17997.89 6276.35 28096.30 19095.52 17879.82 27091.03 10397.88 6674.70 17398.54 13292.11 9796.89 9197.77 111
PEN-MVS79.47 30278.26 29883.08 33386.36 33868.58 35293.85 28594.77 22079.76 27171.37 32688.55 27859.79 28792.46 35564.50 33665.40 36088.19 322
cl2285.11 22284.17 22087.92 25095.06 14878.82 21395.51 23294.22 25779.74 27276.77 27187.92 29175.96 14595.68 28179.93 22272.42 30789.27 291
MS-PatchMatch83.05 25681.82 25786.72 28189.64 30179.10 20894.88 25894.59 23479.70 27370.67 33389.65 26650.43 34796.82 23070.82 30795.99 11284.25 371
PCF-MVS84.09 586.77 19585.00 20792.08 13492.06 25183.07 10792.14 31794.47 24179.63 27476.90 27094.78 17971.15 21899.20 9572.87 28991.05 16993.98 238
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GeoE86.36 19985.20 20189.83 21293.17 20876.13 28297.53 9192.11 33079.58 27580.99 22694.01 19666.60 24896.17 25673.48 28789.30 18097.20 155
HPM-MVS_fast90.38 12290.17 11591.03 17497.61 7177.35 26297.15 12495.48 18179.51 27688.79 13696.90 11471.64 21498.81 12287.01 16297.44 7496.94 163
testgi74.88 33473.40 33479.32 35880.13 38361.75 38293.21 30186.64 38479.49 27766.56 35591.06 24535.51 39488.67 38356.79 36971.25 31287.56 335
EPP-MVSNet89.76 13089.72 12689.87 21093.78 18876.02 28797.22 11396.51 9779.35 27885.11 17595.01 17384.82 3597.10 21487.46 15788.21 19996.50 180
v119282.31 27080.55 27587.60 25885.94 34678.47 22495.85 21793.80 28279.33 27976.97 26986.51 31263.33 26895.87 26873.11 28870.13 32188.46 316
tpm287.35 18686.26 18890.62 18692.93 21978.67 21888.06 35595.99 14779.33 27987.40 15286.43 31780.28 7496.40 24480.23 21885.73 22596.79 170
PatchMatch-RL85.00 22483.66 22789.02 22595.86 11874.55 30292.49 31293.60 29379.30 28179.29 24791.47 23858.53 29998.45 14070.22 30992.17 16294.07 237
miper_ehance_all_eth84.57 23183.60 23087.50 26392.64 22778.25 23095.40 23893.47 29779.28 28276.41 27787.64 29476.53 13495.24 30478.58 23572.42 30789.01 301
PLCcopyleft83.97 788.00 17387.38 17089.83 21298.02 5976.46 27797.16 12294.43 24679.26 28381.98 21796.28 13169.36 23199.27 8477.71 24292.25 16093.77 242
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LFMVS89.27 14087.64 15994.16 4797.16 9285.52 5697.18 11894.66 22679.17 28489.63 12196.57 12755.35 32898.22 15089.52 13589.54 17898.74 42
eth_miper_zixun_eth83.12 25582.01 25386.47 28291.85 25974.80 29894.33 27093.18 31279.11 28575.74 29287.25 30172.71 19795.32 30076.78 25467.13 35389.27 291
v14419282.43 26680.73 27187.54 26285.81 34978.22 23195.98 20793.78 28479.09 28677.11 26786.49 31364.66 26295.91 26774.20 28169.42 32988.49 314
GBi-Net82.42 26780.43 27788.39 23892.66 22481.95 12394.30 27293.38 30279.06 28775.82 28985.66 32656.38 32393.84 34171.23 30075.38 29289.38 286
test182.42 26780.43 27788.39 23892.66 22481.95 12394.30 27293.38 30279.06 28775.82 28985.66 32656.38 32393.84 34171.23 30075.38 29289.38 286
FMVSNet282.79 26180.44 27689.83 21292.66 22485.43 5795.42 23694.35 25079.06 28774.46 30187.28 29856.38 32394.31 33269.72 31274.68 29689.76 281
v192192082.02 27380.23 27987.41 26685.62 35077.92 24495.79 22193.69 28978.86 29076.67 27286.44 31562.50 27195.83 27072.69 29069.77 32788.47 315
v881.88 27580.06 28387.32 26886.63 33579.04 21194.41 26693.65 29178.77 29173.19 31485.57 33066.87 24595.81 27173.84 28567.61 34887.11 342
DTE-MVSNet78.37 30877.06 30782.32 34085.22 35767.17 36193.40 29393.66 29078.71 29270.53 33488.29 28559.06 29692.23 35961.38 35063.28 36987.56 335
c3_l83.80 24382.65 24587.25 27192.10 24777.74 25595.25 24293.04 31878.58 29376.01 28587.21 30275.25 16695.11 31177.54 24668.89 33488.91 307
Patchmatch-RL test76.65 32574.01 33284.55 31577.37 39364.23 37178.49 39782.84 39978.48 29464.63 36373.40 39476.05 14491.70 36776.99 25157.84 37897.72 114
v124081.70 27779.83 28787.30 27085.50 35177.70 25695.48 23393.44 29878.46 29576.53 27586.44 31560.85 28495.84 26971.59 29770.17 31988.35 319
cl____83.27 25182.12 25186.74 27792.20 24075.95 28995.11 25193.27 30878.44 29674.82 29987.02 30574.19 18195.19 30674.67 27669.32 33089.09 296
DIV-MVS_self_test83.27 25182.12 25186.74 27792.19 24175.92 29195.11 25193.26 30978.44 29674.81 30087.08 30474.19 18195.19 30674.66 27769.30 33189.11 295
SixPastTwentyTwo76.04 32774.32 32881.22 34684.54 36261.43 38591.16 32989.30 36677.89 29864.04 36486.31 31948.23 35394.29 33363.54 34263.84 36787.93 327
v1081.43 28179.53 28987.11 27386.38 33778.87 21294.31 27193.43 30077.88 29973.24 31385.26 33465.44 25495.75 27772.14 29467.71 34786.72 346
miper_lstm_enhance81.66 27980.66 27384.67 31291.19 26871.97 32791.94 31993.19 31077.86 30072.27 32285.26 33473.46 19193.42 34973.71 28667.05 35488.61 310
MVP-Stereo82.65 26481.67 25985.59 29986.10 34578.29 22893.33 29692.82 32177.75 30169.17 34387.98 29059.28 29495.76 27671.77 29596.88 9282.73 379
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs581.34 28279.54 28886.73 28085.02 35876.91 26996.22 19491.65 33777.65 30273.55 30688.61 27755.70 32694.43 33074.12 28273.35 30388.86 308
MVS90.60 11588.64 14196.50 594.25 17490.53 893.33 29697.21 2277.59 30378.88 25097.31 9571.52 21599.69 4989.60 13298.03 5699.27 22
AdaColmapbinary88.81 15087.61 16292.39 11899.33 479.95 18296.70 16595.58 17377.51 30483.05 20496.69 12661.90 27999.72 4384.29 17893.47 14497.50 133
无先验96.87 15196.78 5577.39 30599.52 6979.95 22198.43 61
MIMVSNet79.18 30575.99 31588.72 23287.37 33080.66 16379.96 38991.82 33477.38 30674.33 30281.87 36341.78 37790.74 37566.36 33083.10 24194.76 224
pmmvs482.54 26580.79 26987.79 25286.11 34480.49 17093.55 29193.18 31277.29 30773.35 31189.40 26965.26 25895.05 31575.32 27073.61 30087.83 328
CL-MVSNet_self_test75.81 32974.14 33180.83 35078.33 38967.79 35594.22 27693.52 29677.28 30869.82 33881.54 36661.47 28289.22 38157.59 36453.51 38685.48 363
pm-mvs180.05 29578.02 30086.15 28885.42 35275.81 29295.11 25192.69 32477.13 30970.36 33587.43 29658.44 30095.27 30371.36 29964.25 36587.36 340
K. test v373.62 33771.59 34379.69 35582.98 37459.85 39090.85 33388.83 36977.13 30958.90 38582.11 36143.62 36991.72 36665.83 33154.10 38587.50 338
anonymousdsp80.98 28879.97 28484.01 32181.73 37870.44 34092.49 31293.58 29577.10 31172.98 31686.31 31957.58 31094.90 31679.32 22778.63 27786.69 347
CSCG92.02 7891.65 8193.12 8698.53 3680.59 16497.47 9697.18 2577.06 31284.64 18597.98 5883.98 4699.52 6990.72 11497.33 7899.23 24
OurMVSNet-221017-077.18 32276.06 31480.55 35183.78 37260.00 38990.35 33591.05 34977.01 31366.62 35487.92 29147.73 35994.03 33771.63 29668.44 33887.62 332
mmtdpeth78.04 31176.76 31081.86 34389.60 30366.12 36592.34 31687.18 37876.83 31485.55 17276.49 38646.77 36297.02 21690.85 11145.24 40282.43 383
FE-MVS86.06 20584.15 22191.78 14994.33 17379.81 18584.58 38096.61 8476.69 31585.00 17787.38 29770.71 22598.37 14470.39 30891.70 16697.17 156
test_vis1_rt73.96 33672.40 33978.64 36283.91 37061.16 38695.63 22768.18 41576.32 31660.09 38374.77 38929.01 40497.54 18587.74 15375.94 28877.22 398
KD-MVS_2432*160077.63 31774.92 32285.77 29390.86 27779.44 19688.08 35393.92 27276.26 31767.05 34982.78 35972.15 20791.92 36261.53 34741.62 40885.94 359
miper_refine_blended77.63 31774.92 32285.77 29390.86 27779.44 19688.08 35393.92 27276.26 31767.05 34982.78 35972.15 20791.92 36261.53 34741.62 40885.94 359
Baseline_NR-MVSNet81.22 28480.07 28284.68 31185.32 35675.12 29796.48 17588.80 37076.24 31977.28 26586.40 31867.61 23694.39 33175.73 26766.73 35784.54 368
F-COLMAP84.50 23383.44 23487.67 25595.22 14072.22 32095.95 20993.78 28475.74 32076.30 28095.18 16459.50 29198.45 14072.67 29186.59 21392.35 256
CPTT-MVS89.72 13189.87 12589.29 22098.33 4773.30 31197.70 7895.35 19375.68 32187.40 15297.44 9170.43 22698.25 14989.56 13496.90 9096.33 187
OpenMVScopyleft79.58 1486.09 20483.62 22993.50 7390.95 27386.71 3497.44 9995.83 16175.35 32272.64 31995.72 14257.42 31499.64 5571.41 29895.85 11494.13 235
cascas86.50 19784.48 21492.55 11292.64 22785.95 4197.04 13695.07 20475.32 32380.50 23191.02 24654.33 33597.98 15986.79 16387.62 20493.71 243
tpmvs83.04 25780.77 27089.84 21195.43 13277.96 24185.59 37395.32 19575.31 32476.27 28183.70 35373.89 18597.41 19459.53 35581.93 25694.14 234
114514_t88.79 15287.57 16492.45 11498.21 5381.74 13596.99 13795.45 18475.16 32582.48 20795.69 14468.59 23498.50 13480.33 21595.18 12097.10 158
API-MVS90.18 12488.97 13493.80 5498.66 2882.95 10997.50 9595.63 17275.16 32586.31 16497.69 7372.49 20199.90 581.26 21096.07 10898.56 54
v7n79.32 30477.34 30485.28 30384.05 36972.89 31993.38 29493.87 27675.02 32770.68 33284.37 34659.58 29095.62 28767.60 31867.50 34987.32 341
TAPA-MVS81.61 1285.02 22383.67 22689.06 22396.79 9673.27 31495.92 21194.79 21974.81 32880.47 23296.83 11871.07 21998.19 15249.82 38992.57 15495.71 201
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PM-MVS69.32 35966.93 36076.49 37173.60 40355.84 39785.91 37179.32 40574.72 32961.09 37978.18 38021.76 40791.10 37270.86 30556.90 38082.51 380
MVSMamba_PlusPlus92.37 7291.55 8394.83 2795.37 13587.69 2495.60 22995.42 18974.65 33093.95 5892.81 21783.11 5497.70 17394.49 6398.53 3599.11 28
新几何193.12 8697.44 8181.60 14196.71 7074.54 33191.22 10097.57 8379.13 9199.51 7177.40 24998.46 4098.26 73
CNLPA86.96 18985.37 19991.72 15397.59 7379.34 20197.21 11491.05 34974.22 33278.90 24996.75 12467.21 24398.95 11474.68 27590.77 17196.88 168
tt080581.20 28579.06 29387.61 25786.50 33672.97 31793.66 28795.48 18174.11 33376.23 28291.99 23141.36 38097.40 19577.44 24874.78 29592.45 254
test20.0372.36 34771.15 34475.98 37477.79 39059.16 39192.40 31489.35 36574.09 33461.50 37784.32 34748.09 35485.54 39750.63 38662.15 37283.24 375
旧先验296.97 14274.06 33596.10 2897.76 17188.38 148
TransMVSNet (Re)76.94 32374.38 32784.62 31485.92 34775.25 29695.28 23989.18 36773.88 33667.22 34686.46 31459.64 28894.10 33659.24 35952.57 39084.50 369
QAPM86.88 19184.51 21293.98 4894.04 18485.89 4497.19 11796.05 14373.62 33775.12 29795.62 14762.02 27699.74 3870.88 30496.06 10996.30 189
UniMVSNet_ETH3D80.86 28978.75 29587.22 27286.31 33972.02 32591.95 31893.76 28773.51 33875.06 29890.16 26143.04 37495.66 28276.37 26078.55 27893.98 238
tfpnnormal78.14 31075.42 31886.31 28688.33 32079.24 20294.41 26696.22 12973.51 33869.81 33985.52 33255.43 32795.75 27747.65 39467.86 34583.95 374
testdata90.13 20095.92 11774.17 30596.49 10273.49 34094.82 4897.99 5578.80 9797.93 16083.53 19397.52 7198.29 70
our_test_377.90 31575.37 31985.48 30185.39 35376.74 27393.63 28891.67 33673.39 34165.72 35884.65 34558.20 30393.13 35257.82 36267.87 34486.57 349
FMVSNet179.50 30176.54 31288.39 23888.47 31681.95 12394.30 27293.38 30273.14 34272.04 32485.66 32643.86 36893.84 34165.48 33272.53 30689.38 286
Anonymous2023120675.29 33273.64 33380.22 35380.75 37963.38 37793.36 29590.71 35673.09 34367.12 34783.70 35350.33 34890.85 37453.63 37970.10 32386.44 350
ADS-MVSNet279.57 30077.53 30385.71 29593.78 18872.13 32379.48 39186.11 38673.09 34380.14 23779.99 37562.15 27490.14 38059.49 35683.52 23694.85 222
ADS-MVSNet81.26 28378.36 29689.96 20793.78 18879.78 18679.48 39193.60 29373.09 34380.14 23779.99 37562.15 27495.24 30459.49 35683.52 23694.85 222
EU-MVSNet76.92 32476.95 30876.83 37084.10 36754.73 40291.77 32292.71 32372.74 34669.57 34088.69 27658.03 30687.43 39164.91 33570.00 32588.33 320
pmmvs-eth3d73.59 33870.66 34682.38 33876.40 39773.38 30989.39 34389.43 36472.69 34760.34 38277.79 38146.43 36491.26 37166.42 32957.06 37982.51 380
LTVRE_ROB73.68 1877.99 31275.74 31784.74 30990.45 28572.02 32586.41 36891.12 34672.57 34866.63 35387.27 29954.95 33296.98 21956.29 37075.98 28785.21 365
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH75.40 1777.99 31274.96 32087.10 27490.67 28176.41 27893.19 30391.64 33872.47 34963.44 36787.61 29543.34 37197.16 20958.34 36073.94 29887.72 329
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvsany_test367.19 36365.34 36572.72 37863.08 41248.57 40583.12 38578.09 40672.07 35061.21 37877.11 38422.94 40687.78 38978.59 23451.88 39181.80 388
test22296.15 10878.41 22595.87 21596.46 10371.97 35189.66 12097.45 8876.33 14098.24 5198.30 69
ACMH+76.62 1677.47 31974.94 32185.05 30691.07 27271.58 33393.26 30090.01 35971.80 35264.76 36288.55 27841.62 37896.48 24262.35 34671.00 31487.09 343
ppachtmachnet_test77.19 32174.22 32986.13 28985.39 35378.22 23193.98 27991.36 34371.74 35367.11 34884.87 34356.67 31993.37 35152.21 38164.59 36286.80 345
new-patchmatchnet68.85 36165.93 36377.61 36673.57 40463.94 37490.11 33788.73 37271.62 35455.08 39573.60 39340.84 38387.22 39351.35 38448.49 39781.67 391
FMVSNet576.46 32674.16 33083.35 33290.05 29376.17 28189.58 34089.85 36071.39 35565.29 36180.42 37150.61 34687.70 39061.05 35269.24 33286.18 354
test_fmvs369.56 35669.19 35470.67 38069.01 40647.05 40690.87 33286.81 38171.31 35666.79 35277.15 38316.40 41183.17 40281.84 20762.51 37181.79 389
tpm cat183.63 24681.38 26390.39 19393.53 20078.19 23685.56 37495.09 20270.78 35778.51 25283.28 35774.80 17297.03 21566.77 32384.05 23495.95 194
MDA-MVSNet-bldmvs71.45 35167.94 35881.98 34285.33 35568.50 35392.35 31588.76 37170.40 35842.99 40581.96 36246.57 36391.31 37048.75 39354.39 38486.11 355
Anonymous20240521184.41 23481.93 25591.85 14796.78 9778.41 22597.44 9991.34 34470.29 35984.06 18894.26 18941.09 38198.96 11279.46 22582.65 24998.17 78
KD-MVS_self_test70.97 35469.31 35375.95 37576.24 39955.39 40087.45 35890.94 35270.20 36062.96 37277.48 38244.01 36788.09 38561.25 35153.26 38784.37 370
mamv485.50 21686.76 18381.72 34493.23 20554.93 40189.95 33892.94 31969.96 36179.00 24892.20 22780.69 7094.22 33492.06 9890.77 17196.01 193
DeepMVS_CXcopyleft64.06 38878.53 38843.26 41368.11 41769.94 36238.55 40776.14 38718.53 40979.34 40543.72 39941.62 40869.57 403
MSDG80.62 29277.77 30289.14 22293.43 20277.24 26391.89 32090.18 35869.86 36368.02 34491.94 23552.21 34198.84 12059.32 35883.12 24091.35 258
VDDNet86.44 19884.51 21292.22 12891.56 26081.83 13197.10 13194.64 22969.50 36487.84 14995.19 16348.01 35597.92 16589.82 13086.92 20996.89 167
LF4IMVS72.36 34770.82 34576.95 36979.18 38556.33 39586.12 37086.11 38669.30 36563.06 37086.66 31033.03 39892.25 35865.33 33368.64 33682.28 384
mvs5depth71.40 35268.36 35780.54 35275.31 40165.56 36779.94 39085.14 38969.11 36671.75 32581.59 36441.02 38293.94 33960.90 35350.46 39282.10 385
EG-PatchMatch MVS74.92 33372.02 34183.62 32883.76 37373.28 31293.62 28992.04 33268.57 36758.88 38683.80 35231.87 40095.57 29156.97 36878.67 27482.00 387
kuosan73.55 33972.39 34077.01 36889.68 30066.72 36385.24 37793.44 29867.76 36860.04 38483.40 35671.90 21084.25 39945.34 39754.75 38180.06 394
AllTest75.92 32873.06 33684.47 31692.18 24267.29 35691.07 33084.43 39267.63 36963.48 36590.18 25938.20 38797.16 20957.04 36673.37 30188.97 304
TestCases84.47 31692.18 24267.29 35684.43 39267.63 36963.48 36590.18 25938.20 38797.16 20957.04 36673.37 30188.97 304
YYNet173.53 34170.43 34882.85 33584.52 36371.73 33191.69 32491.37 34267.63 36946.79 40181.21 36855.04 33190.43 37755.93 37159.70 37686.38 351
MDA-MVSNet_test_wron73.54 34070.43 34882.86 33484.55 36171.85 32891.74 32391.32 34567.63 36946.73 40281.09 36955.11 33090.42 37855.91 37259.76 37586.31 352
DSMNet-mixed73.13 34372.45 33875.19 37677.51 39246.82 40785.09 37882.01 40067.61 37369.27 34281.33 36750.89 34486.28 39454.54 37683.80 23592.46 253
MIMVSNet169.44 35866.65 36277.84 36476.48 39662.84 37987.42 35988.97 36866.96 37457.75 39179.72 37732.77 39985.83 39646.32 39563.42 36884.85 367
TinyColmap72.41 34668.99 35582.68 33688.11 32169.59 34788.41 34985.20 38865.55 37557.91 38984.82 34430.80 40295.94 26551.38 38268.70 33582.49 382
Anonymous2024052172.06 34969.91 35078.50 36377.11 39461.67 38491.62 32690.97 35165.52 37662.37 37379.05 37836.32 39090.96 37357.75 36368.52 33782.87 376
UnsupCasMVSNet_bld68.60 36264.50 36680.92 34974.63 40267.80 35483.97 38292.94 31965.12 37754.63 39668.23 40335.97 39292.17 36160.13 35444.83 40382.78 378
RPSCF77.73 31676.63 31181.06 34888.66 31555.76 39987.77 35787.88 37664.82 37874.14 30392.79 21949.22 35296.81 23167.47 32076.88 28590.62 264
dongtai69.47 35768.98 35670.93 37986.87 33358.45 39288.19 35193.18 31263.98 37956.04 39380.17 37470.97 22379.24 40633.46 40747.94 39875.09 400
PatchT79.75 29776.85 30988.42 23589.55 30475.49 29477.37 39994.61 23263.07 38082.46 20873.32 39575.52 15593.41 35051.36 38384.43 23296.36 183
TDRefinement69.20 36065.78 36479.48 35666.04 41162.21 38188.21 35086.12 38562.92 38161.03 38085.61 32933.23 39794.16 33555.82 37353.02 38882.08 386
ttmdpeth69.58 35566.92 36177.54 36775.95 40062.40 38088.09 35284.32 39462.87 38265.70 35986.25 32136.53 38988.53 38455.65 37446.96 40181.70 390
OpenMVS_ROBcopyleft68.52 2073.02 34469.57 35183.37 33180.54 38271.82 32993.60 29088.22 37462.37 38361.98 37583.15 35835.31 39595.47 29345.08 39875.88 28982.82 377
JIA-IIPM79.00 30677.20 30584.40 31989.74 29964.06 37375.30 40395.44 18562.15 38481.90 21859.08 40778.92 9395.59 28966.51 32885.78 22493.54 245
LS3D82.22 27179.94 28589.06 22397.43 8274.06 30793.20 30292.05 33161.90 38573.33 31295.21 16159.35 29299.21 9054.54 37692.48 15793.90 240
N_pmnet61.30 36860.20 37164.60 38784.32 36417.00 42891.67 32510.98 42661.77 38658.45 38878.55 37949.89 35091.83 36542.27 40263.94 36684.97 366
test_040272.68 34569.54 35282.09 34188.67 31471.81 33092.72 31086.77 38361.52 38762.21 37483.91 35143.22 37293.76 34434.60 40672.23 31080.72 393
COLMAP_ROBcopyleft73.24 1975.74 33073.00 33783.94 32292.38 23069.08 35091.85 32186.93 38061.48 38865.32 36090.27 25842.27 37696.93 22450.91 38575.63 29185.80 362
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_f64.01 36762.13 37069.65 38163.00 41345.30 41283.66 38480.68 40261.30 38955.70 39472.62 39714.23 41384.64 39869.84 31058.11 37779.00 395
gg-mvs-nofinetune85.48 21882.90 24093.24 8194.51 16685.82 4579.22 39396.97 4061.19 39087.33 15453.01 40990.58 696.07 25786.07 16597.23 8197.81 109
DP-MVS81.47 28078.28 29791.04 17398.14 5578.48 22195.09 25486.97 37961.14 39171.12 33092.78 22059.59 28999.38 7853.11 38086.61 21295.27 214
pmmvs674.65 33571.67 34283.60 32979.13 38669.94 34393.31 29990.88 35361.05 39265.83 35784.15 34943.43 37094.83 31966.62 32560.63 37486.02 357
Patchmtry77.36 32074.59 32585.67 29689.75 29775.75 29377.85 39891.12 34660.28 39371.23 32880.35 37275.45 15693.56 34757.94 36167.34 35187.68 331
CMPMVSbinary54.94 2175.71 33174.56 32679.17 35979.69 38455.98 39689.59 33993.30 30760.28 39353.85 39789.07 27147.68 36096.33 24876.55 25681.02 25785.22 364
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous2024052983.15 25480.60 27490.80 18195.74 12378.27 22996.81 15694.92 20960.10 39581.89 21992.54 22145.82 36598.82 12179.25 22978.32 28195.31 212
Patchmatch-test78.25 30974.72 32488.83 22991.20 26774.10 30673.91 40688.70 37359.89 39666.82 35185.12 34078.38 10294.54 32748.84 39279.58 26797.86 103
WB-MVS57.26 36956.22 37260.39 39369.29 40535.91 42086.39 36970.06 41359.84 39746.46 40372.71 39651.18 34378.11 40715.19 41734.89 41267.14 406
Anonymous2023121179.72 29877.19 30687.33 26795.59 12977.16 26795.18 24894.18 26059.31 39872.57 32086.20 32247.89 35895.66 28274.53 27969.24 33289.18 293
ANet_high46.22 37841.28 38561.04 39239.91 42446.25 41070.59 40876.18 40858.87 39923.09 41648.00 41312.58 41666.54 41628.65 41113.62 41770.35 402
RPMNet79.85 29675.92 31691.64 15590.16 29079.75 18879.02 39595.44 18558.43 40082.27 21472.55 39873.03 19598.41 14346.10 39686.25 21696.75 174
SSC-MVS56.01 37254.96 37359.17 39468.42 40734.13 42184.98 37969.23 41458.08 40145.36 40471.67 40250.30 34977.46 40814.28 41832.33 41365.91 407
new_pmnet66.18 36563.18 36775.18 37776.27 39861.74 38383.79 38384.66 39156.64 40251.57 39871.85 40131.29 40187.93 38649.98 38862.55 37075.86 399
test_vis3_rt54.10 37451.04 37763.27 39058.16 41446.08 41184.17 38149.32 42556.48 40336.56 40949.48 4128.03 42191.91 36467.29 32149.87 39351.82 411
pmmvs365.75 36662.18 36976.45 37267.12 41064.54 36988.68 34785.05 39054.77 40457.54 39273.79 39229.40 40386.21 39555.49 37547.77 39978.62 396
MVStest166.93 36463.01 36878.69 36078.56 38771.43 33585.51 37586.81 38149.79 40548.57 40084.15 34953.46 33783.31 40043.14 40137.15 41181.34 392
MVS-HIRNet71.36 35367.00 35984.46 31890.58 28269.74 34679.15 39487.74 37746.09 40661.96 37650.50 41045.14 36695.64 28553.74 37888.11 20088.00 326
PMMVS250.90 37746.31 38064.67 38655.53 41646.67 40877.30 40071.02 41240.89 40734.16 41159.32 4069.83 41976.14 41240.09 40528.63 41471.21 401
APD_test156.56 37153.58 37565.50 38467.93 40946.51 40977.24 40172.95 41038.09 40842.75 40675.17 38813.38 41482.78 40340.19 40454.53 38367.23 405
FPMVS55.09 37352.93 37661.57 39155.98 41540.51 41683.11 38683.41 39837.61 40934.95 41071.95 39914.40 41276.95 40929.81 40965.16 36167.25 404
LCM-MVSNet52.52 37548.24 37865.35 38547.63 42241.45 41472.55 40783.62 39731.75 41037.66 40857.92 4089.19 42076.76 41049.26 39044.60 40477.84 397
Gipumacopyleft45.11 38142.05 38354.30 39780.69 38051.30 40435.80 41583.81 39628.13 41127.94 41534.53 41511.41 41876.70 41121.45 41454.65 38234.90 415
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf145.70 37942.41 38155.58 39553.29 41940.02 41768.96 40962.67 41927.45 41229.85 41261.58 4045.98 42273.83 41428.49 41243.46 40652.90 409
APD_test245.70 37942.41 38155.58 39553.29 41940.02 41768.96 40962.67 41927.45 41229.85 41261.58 4045.98 42273.83 41428.49 41243.46 40652.90 409
PMVScopyleft34.80 2339.19 38335.53 38650.18 39829.72 42530.30 42359.60 41366.20 41826.06 41417.91 41849.53 4113.12 42474.09 41318.19 41649.40 39446.14 412
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN32.70 38532.39 38733.65 40153.35 41825.70 42574.07 40553.33 42321.08 41517.17 41933.63 41711.85 41754.84 41912.98 41914.04 41620.42 416
EMVS31.70 38631.45 38832.48 40250.72 42123.95 42674.78 40452.30 42420.36 41616.08 42031.48 41812.80 41553.60 42011.39 42013.10 41919.88 417
test_method56.77 37054.53 37463.49 38976.49 39540.70 41575.68 40274.24 40919.47 41748.73 39971.89 40019.31 40865.80 41757.46 36547.51 40083.97 373
MVEpermissive35.65 2233.85 38429.49 38946.92 39941.86 42336.28 41950.45 41456.52 42218.75 41818.28 41737.84 4142.41 42558.41 41818.71 41520.62 41546.06 413
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt41.54 38241.93 38440.38 40020.10 42626.84 42461.93 41259.09 42114.81 41928.51 41480.58 37035.53 39348.33 42163.70 34113.11 41845.96 414
wuyk23d14.10 38813.89 39114.72 40355.23 41722.91 42733.83 4163.56 4274.94 4204.11 4212.28 4232.06 42619.66 42210.23 4218.74 4201.59 420
testmvs9.92 38912.94 3920.84 4050.65 4270.29 43093.78 2860.39 4280.42 4212.85 42215.84 4210.17 4280.30 4242.18 4220.21 4211.91 419
test1239.07 39011.73 3931.11 4040.50 4280.77 42989.44 3420.20 4290.34 4222.15 42310.72 4220.34 4270.32 4231.79 4230.08 4222.23 418
EGC-MVSNET52.46 37647.56 37967.15 38381.98 37760.11 38882.54 38772.44 4110.11 4230.70 42474.59 39025.11 40583.26 40129.04 41061.51 37358.09 408
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k21.43 38728.57 3900.00 4060.00 4290.00 4310.00 41795.93 1550.00 4240.00 42597.66 7563.57 2650.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas5.92 3927.89 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42471.04 2200.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re8.11 39110.81 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42597.30 980.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS67.18 35849.00 391
MSC_two_6792asdad97.14 399.05 992.19 496.83 5299.81 2298.08 1498.81 2499.43 11
No_MVS97.14 399.05 992.19 496.83 5299.81 2298.08 1498.81 2499.43 11
eth-test20.00 429
eth-test0.00 429
OPU-MVS97.30 299.19 792.31 399.12 1298.54 2092.06 399.84 1399.11 399.37 199.74 1
test_0728_SECOND95.14 2099.04 1486.14 3899.06 1796.77 6199.84 1397.90 1798.85 2199.45 10
GSMVS97.54 127
test_part298.90 1985.14 6996.07 29
sam_mvs177.59 11597.54 127
sam_mvs75.35 163
ambc76.02 37368.11 40851.43 40364.97 41189.59 36160.49 38174.49 39117.17 41092.46 35561.50 34952.85 38984.17 372
MTGPAbinary96.33 119
test_post185.88 37230.24 41973.77 18695.07 31473.89 283
test_post33.80 41676.17 14295.97 261
patchmatchnet-post77.09 38577.78 11495.39 295
GG-mvs-BLEND93.49 7494.94 15086.26 3681.62 38897.00 3788.32 14594.30 18891.23 596.21 25488.49 14697.43 7598.00 93
MTMP97.53 9168.16 416
test9_res96.00 4099.03 1398.31 68
agg_prior294.30 6499.00 1598.57 53
agg_prior98.59 3583.13 10696.56 9394.19 5499.16 99
test_prior482.34 11997.75 75
test_prior93.09 8898.68 2681.91 12796.40 11199.06 10798.29 70
新几何296.42 182
旧先验197.39 8679.58 19596.54 9498.08 5184.00 4597.42 7697.62 123
原ACMM296.84 152
testdata299.48 7376.45 258
segment_acmp82.69 59
test1294.25 4198.34 4685.55 5596.35 11892.36 8080.84 6799.22 8998.31 4997.98 95
plane_prior791.86 25777.55 258
plane_prior691.98 25377.92 24464.77 260
plane_prior594.69 22297.30 20187.08 15982.82 24690.96 261
plane_prior494.15 193
plane_prior191.95 255
n20.00 430
nn0.00 430
door-mid79.75 404
lessismore_v079.98 35480.59 38158.34 39380.87 40158.49 38783.46 35543.10 37393.89 34063.11 34448.68 39587.72 329
test1196.50 99
door80.13 403
HQP5-MVS78.48 221
BP-MVS87.67 155
HQP4-MVS82.30 21097.32 19991.13 259
HQP3-MVS94.80 21783.01 242
HQP2-MVS65.40 255
NP-MVS92.04 25278.22 23194.56 183
ACMMP++_ref78.45 279
ACMMP++79.05 271
Test By Simon71.65 213