This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS96.21 295.53 1398.26 196.26 10195.09 199.15 896.98 3893.39 1696.45 2598.79 890.17 1099.99 189.33 12699.25 699.70 3
PS-MVSNAJ94.17 2993.52 4096.10 995.65 12192.35 298.21 4595.79 15892.42 2396.24 2798.18 4071.04 20999.17 9596.77 3397.39 7696.79 161
OPU-MVS97.30 299.19 792.31 399.12 1298.54 2092.06 399.84 1299.11 299.37 199.74 1
MSC_two_6792asdad97.14 399.05 992.19 496.83 5299.81 2198.08 1498.81 2499.43 11
No_MVS97.14 399.05 992.19 496.83 5299.81 2198.08 1498.81 2499.43 11
xiu_mvs_v2_base93.92 3493.26 4495.91 1095.07 13892.02 698.19 4695.68 16492.06 2796.01 3198.14 4470.83 21298.96 10996.74 3596.57 9596.76 164
DELS-MVS94.98 1494.49 2496.44 696.42 9590.59 799.21 597.02 3694.40 991.46 8797.08 10683.32 4999.69 4992.83 8198.70 3199.04 27
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS90.60 10888.64 13396.50 594.25 16590.53 893.33 28997.21 2377.59 29678.88 24197.31 9471.52 20499.69 4989.60 12198.03 5599.27 20
MM95.85 695.74 1096.15 896.34 9689.50 999.18 698.10 895.68 196.64 2197.92 6080.72 6599.80 2599.16 197.96 5799.15 24
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2497.10 3295.17 392.11 7998.46 2887.33 2499.97 297.21 2899.31 499.63 7
MG-MVS94.25 2893.72 3495.85 1199.38 389.35 1197.98 6098.09 989.99 5392.34 7596.97 11081.30 6298.99 10788.54 13398.88 2099.20 22
MVS_030495.36 1095.20 1795.85 1194.89 14589.22 1298.83 2697.88 1194.68 495.14 3997.99 5480.80 6499.81 2198.60 697.95 5898.50 52
WTY-MVS92.65 5991.68 7595.56 1496.00 10888.90 1398.23 4497.65 1488.57 7089.82 11197.22 10079.29 8099.06 10489.57 12288.73 18198.73 41
canonicalmvs92.27 6791.22 8395.41 1695.80 11888.31 1497.09 13394.64 22188.49 7292.99 7097.31 9472.68 19098.57 12793.38 7388.58 18399.36 16
HY-MVS84.06 691.63 8290.37 10295.39 1796.12 10588.25 1590.22 32797.58 1688.33 7690.50 10491.96 22579.26 8199.06 10490.29 11489.07 17598.88 33
CANet94.89 1694.64 2295.63 1397.55 7588.12 1699.06 1796.39 11294.07 1295.34 3597.80 6976.83 12299.87 897.08 3097.64 6798.89 32
MVSFormer91.36 8990.57 9593.73 5793.00 20488.08 1794.80 25694.48 22980.74 24094.90 4497.13 10378.84 8895.10 30383.77 17697.46 7198.02 81
lupinMVS93.87 3593.58 3994.75 2793.00 20488.08 1799.15 895.50 17391.03 3994.90 4497.66 7478.84 8897.56 17494.64 5997.46 7198.62 47
PAPM92.87 5092.40 5994.30 3592.25 22987.85 1996.40 18296.38 11391.07 3888.72 13296.90 11182.11 5797.37 19190.05 11797.70 6597.67 111
alignmvs92.97 4792.26 6395.12 1995.54 12387.77 2098.67 3096.38 11388.04 8193.01 6997.45 8779.20 8398.60 12593.25 7688.76 18098.99 31
FMVSNet384.71 21782.71 23590.70 17894.55 15387.71 2195.92 20794.67 21781.73 22775.82 28088.08 28166.99 23194.47 32071.23 29075.38 28589.91 271
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2299.06 1797.12 3094.66 596.79 1798.78 986.42 2899.95 397.59 2399.18 799.00 29
xiu_mvs_v1_base_debu90.54 10989.54 12093.55 6792.31 22287.58 2396.99 13794.87 20487.23 10293.27 6397.56 8357.43 29898.32 14092.72 8293.46 13994.74 215
xiu_mvs_v1_base90.54 10989.54 12093.55 6792.31 22287.58 2396.99 13794.87 20487.23 10293.27 6397.56 8357.43 29898.32 14092.72 8293.46 13994.74 215
xiu_mvs_v1_base_debi90.54 10989.54 12093.55 6792.31 22287.58 2396.99 13794.87 20487.23 10293.27 6397.56 8357.43 29898.32 14092.72 8293.46 13994.74 215
jason92.73 5392.23 6494.21 4190.50 27487.30 2698.65 3195.09 19490.61 4492.76 7297.13 10375.28 15797.30 19493.32 7496.75 9298.02 81
jason: jason.
VNet92.11 7091.22 8394.79 2596.91 9186.98 2797.91 6497.96 1086.38 11893.65 6095.74 13870.16 21798.95 11193.39 7188.87 17998.43 57
iter_conf0590.14 11789.79 11891.17 16395.85 11586.93 2897.68 8188.67 36089.93 5481.73 21492.80 21390.37 896.03 24990.44 11080.65 25290.56 255
baseline188.85 14187.49 15792.93 9295.21 13386.85 2995.47 22894.61 22387.29 10083.11 19394.99 17080.70 6696.89 21782.28 19473.72 29295.05 207
ET-MVSNet_ETH3D90.01 11989.03 12592.95 9094.38 16286.77 3098.14 4796.31 12089.30 6163.33 35696.72 12290.09 1193.63 33590.70 10582.29 24398.46 55
3Dnovator+82.88 889.63 12687.85 14694.99 2194.49 16086.76 3197.84 6895.74 16186.10 12275.47 28596.02 13365.00 24599.51 7182.91 19197.07 8398.72 42
OpenMVScopyleft79.58 1486.09 19583.62 21993.50 7090.95 26386.71 3297.44 10095.83 15675.35 31472.64 30995.72 13957.42 30199.64 5571.41 28895.85 10994.13 225
GG-mvs-BLEND93.49 7194.94 14286.26 3381.62 37497.00 3788.32 13894.30 18491.23 596.21 24588.49 13597.43 7498.00 86
CANet_DTU90.98 10090.04 11093.83 5194.76 14886.23 3496.32 18793.12 30393.11 1893.71 5996.82 11763.08 25599.48 7384.29 16895.12 11695.77 189
test_0728_SECOND95.14 1899.04 1486.14 3599.06 1796.77 6199.84 1297.90 1798.85 2199.45 10
HPM-MVS++copyleft95.32 1195.48 1494.85 2498.62 3486.04 3697.81 7196.93 4492.45 2295.69 3298.50 2585.38 3099.85 1094.75 5699.18 798.65 45
testing1192.48 6392.04 7093.78 5395.94 11286.00 3797.56 8997.08 3387.52 9489.32 12095.40 15084.60 3598.02 15191.93 9289.04 17697.32 136
SF-MVS94.17 2994.05 3394.55 3197.56 7485.95 3897.73 7796.43 10684.02 17695.07 4298.74 1482.93 5299.38 7895.42 5198.51 3598.32 62
cascas86.50 18884.48 20592.55 10892.64 21785.95 3897.04 13695.07 19675.32 31580.50 22391.02 24054.33 32297.98 15386.79 15387.62 19493.71 233
SMA-MVScopyleft94.70 2194.68 2194.76 2698.02 5985.94 4097.47 9796.77 6185.32 13897.92 398.70 1583.09 5199.84 1295.79 4499.08 1098.49 53
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
QAPM86.88 18284.51 20393.98 4694.04 17585.89 4197.19 11796.05 14173.62 32875.12 28895.62 14462.02 26299.74 3870.88 29496.06 10496.30 180
gg-mvs-nofinetune85.48 20782.90 23193.24 7894.51 15885.82 4279.22 37896.97 4061.19 37687.33 14753.01 39490.58 696.07 24886.07 15597.23 8097.81 102
131488.94 13787.20 16494.17 4293.21 19685.73 4393.33 28996.64 8182.89 20475.98 27696.36 12666.83 23399.39 7783.52 18596.02 10697.39 134
testing9991.91 7491.35 8093.60 6495.98 11085.70 4497.31 11196.92 4686.82 11288.91 12695.25 15384.26 4297.89 16188.80 13187.94 19197.21 144
3Dnovator82.32 1089.33 13087.64 15194.42 3393.73 18285.70 4497.73 7796.75 6586.73 11776.21 27395.93 13462.17 25999.68 5181.67 19897.81 6297.88 93
testing9191.90 7591.31 8293.66 6095.99 10985.68 4697.39 10796.89 4786.75 11688.85 12895.23 15683.93 4597.90 16088.91 12887.89 19297.41 131
DeepC-MVS_fast89.06 294.48 2494.30 2995.02 2098.86 2185.68 4698.06 5696.64 8193.64 1491.74 8598.54 2080.17 7399.90 592.28 8698.75 2899.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETVMVS90.99 9990.26 10393.19 8195.81 11785.64 4896.97 14297.18 2685.43 13588.77 13194.86 17382.00 5896.37 23882.70 19288.60 18297.57 119
thres20088.92 13887.65 15092.73 10096.30 9985.62 4997.85 6798.86 184.38 16684.82 17093.99 19375.12 16098.01 15270.86 29586.67 20194.56 220
test1294.25 3898.34 4685.55 5096.35 11792.36 7480.84 6399.22 8798.31 4897.98 88
LFMVS89.27 13287.64 15194.16 4497.16 8885.52 5197.18 11994.66 21879.17 27789.63 11596.57 12455.35 31598.22 14689.52 12489.54 17098.74 37
iter_conf05_1191.95 7291.17 8794.29 3696.33 9785.50 5299.61 191.84 32094.36 1097.89 698.51 2446.72 34898.24 14596.54 3698.75 2899.13 25
FMVSNet282.79 25280.44 26789.83 20392.66 21485.43 5395.42 23094.35 23879.06 28074.46 29287.28 29056.38 31094.31 32369.72 30274.68 28989.76 273
DVP-MVS++96.05 496.41 394.96 2299.05 985.34 5498.13 5096.77 6188.38 7497.70 998.77 1092.06 399.84 1297.47 2499.37 199.70 3
IU-MVS99.03 1585.34 5496.86 5192.05 2998.74 198.15 1198.97 1799.42 13
nrg03086.79 18585.43 18790.87 17388.76 29985.34 5497.06 13594.33 24084.31 16780.45 22591.98 22472.36 19396.36 23988.48 13671.13 30590.93 253
tfpn200view988.48 15287.15 16592.47 10996.21 10285.30 5797.44 10098.85 283.37 19383.99 18093.82 19675.36 15397.93 15469.04 30386.24 20894.17 222
thres40088.42 15587.15 16592.23 12396.21 10285.30 5797.44 10098.85 283.37 19383.99 18093.82 19675.36 15397.93 15469.04 30386.24 20893.45 238
DVP-MVScopyleft95.58 995.91 994.57 3099.05 985.18 5999.06 1796.46 10288.75 6596.69 1898.76 1287.69 2299.76 3197.90 1798.85 2198.77 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.05 985.18 5999.11 1596.78 5588.75 6597.65 1298.91 287.69 22
test_yl91.46 8690.53 9694.24 3997.41 8085.18 5998.08 5397.72 1280.94 23589.85 10996.14 13075.61 14298.81 11990.42 11288.56 18498.74 37
DCV-MVSNet91.46 8690.53 9694.24 3997.41 8085.18 5998.08 5397.72 1280.94 23589.85 10996.14 13075.61 14298.81 11990.42 11288.56 18498.74 37
thres600view788.06 16486.70 17592.15 12996.10 10685.17 6397.14 12698.85 282.70 20983.41 18893.66 20075.43 15097.82 16367.13 31285.88 21293.45 238
NCCC95.63 795.94 894.69 2899.21 685.15 6499.16 796.96 4194.11 1195.59 3398.64 1785.07 3299.91 495.61 4799.10 999.00 29
test_part298.90 1985.14 6596.07 29
testing22291.09 9690.49 9892.87 9395.82 11685.04 6696.51 17397.28 2086.05 12489.13 12295.34 15280.16 7496.62 23185.82 15688.31 18796.96 153
SED-MVS95.88 596.22 494.87 2399.03 1585.03 6799.12 1296.78 5588.72 6797.79 798.91 288.48 1799.82 1898.15 1198.97 1799.74 1
test_241102_ONE99.03 1585.03 6796.78 5588.72 6797.79 798.90 588.48 1799.82 18
DP-MVS Recon91.72 8090.85 8994.34 3499.50 185.00 6998.51 3695.96 14880.57 24488.08 14197.63 8076.84 12099.89 785.67 15894.88 11798.13 76
MVS_Test90.29 11589.18 12493.62 6395.23 13184.93 7094.41 26194.66 21884.31 16790.37 10791.02 24075.13 15997.82 16383.11 18994.42 12498.12 77
thres100view90088.30 15986.95 17192.33 11796.10 10684.90 7197.14 12698.85 282.69 21083.41 18893.66 20075.43 15097.93 15469.04 30386.24 20894.17 222
DPE-MVScopyleft95.32 1195.55 1294.64 2998.79 2384.87 7297.77 7396.74 6686.11 12196.54 2498.89 688.39 1999.74 3897.67 2299.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PAPR92.74 5292.17 6694.45 3298.89 2084.87 7297.20 11696.20 12987.73 8988.40 13698.12 4578.71 9199.76 3187.99 14096.28 9898.74 37
bld_raw_dy_0_6488.31 15886.38 17794.07 4596.33 9784.79 7497.19 11784.75 37694.48 882.36 20098.47 2746.18 35198.30 14396.54 3681.13 24799.13 25
MVSTER89.25 13388.92 13090.24 18995.98 11084.66 7596.79 15695.36 18387.19 10580.33 22790.61 24790.02 1295.97 25385.38 16178.64 26890.09 267
fmvsm_l_conf0.5_n94.89 1695.24 1693.86 5094.42 16184.61 7699.13 1196.15 13392.06 2797.92 398.52 2384.52 3699.74 3898.76 595.67 11197.22 142
SD-MVS94.84 1895.02 1994.29 3697.87 6484.61 7697.76 7596.19 13189.59 5896.66 2098.17 4384.33 3899.60 5996.09 3998.50 3798.66 44
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_one_060198.91 1884.56 7896.70 7188.06 8096.57 2398.77 1088.04 20
EPNet94.06 3294.15 3193.76 5497.27 8784.35 7998.29 4297.64 1594.57 695.36 3496.88 11379.96 7699.12 10091.30 9596.11 10297.82 101
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IB-MVS85.34 488.67 14687.14 16793.26 7793.12 20284.32 8098.76 2797.27 2187.19 10579.36 23890.45 24983.92 4698.53 12984.41 16769.79 31896.93 155
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
fmvsm_l_conf0.5_n_a94.91 1595.30 1593.72 5894.50 15984.30 8199.14 1096.00 14491.94 3097.91 598.60 1884.78 3499.77 2998.84 496.03 10597.08 150
ACMMP_NAP93.46 3993.23 4594.17 4297.16 8884.28 8296.82 15496.65 7886.24 11994.27 5397.99 5477.94 10199.83 1693.39 7198.57 3498.39 59
thisisatest051590.95 10290.26 10393.01 8894.03 17784.27 8397.91 6496.67 7583.18 19686.87 15395.51 14888.66 1697.85 16280.46 20489.01 17796.92 157
TSAR-MVS + MP.94.79 2095.17 1893.64 6197.66 6984.10 8495.85 21396.42 10791.26 3597.49 1396.80 11886.50 2798.49 13195.54 4999.03 1398.33 61
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSLP-MVS++94.28 2694.39 2793.97 4798.30 4984.06 8598.64 3296.93 4490.71 4293.08 6898.70 1579.98 7599.21 8894.12 6499.07 1198.63 46
CDPH-MVS93.12 4392.91 4993.74 5598.65 3083.88 8697.67 8296.26 12383.00 20293.22 6698.24 3781.31 6199.21 8889.12 12798.74 3098.14 75
PVSNet_BlendedMVS90.05 11889.96 11390.33 18797.47 7683.86 8798.02 5996.73 6787.98 8289.53 11789.61 26176.42 12999.57 6494.29 6179.59 25987.57 325
PVSNet_Blended93.13 4292.98 4893.57 6697.47 7683.86 8799.32 296.73 6791.02 4089.53 11796.21 12976.42 12999.57 6494.29 6195.81 11097.29 140
sss90.87 10489.96 11393.60 6494.15 16983.84 8997.14 12698.13 785.93 12789.68 11396.09 13271.67 20199.30 8387.69 14389.16 17497.66 112
TEST998.64 3183.71 9097.82 6996.65 7884.29 17195.16 3698.09 4784.39 3799.36 81
train_agg94.28 2694.45 2593.74 5598.64 3183.71 9097.82 6996.65 7884.50 16295.16 3698.09 4784.33 3899.36 8195.91 4398.96 1998.16 73
ab-mvs87.08 17884.94 19893.48 7293.34 19583.67 9288.82 33595.70 16381.18 23284.55 17690.14 25662.72 25698.94 11385.49 16082.54 24097.85 97
test_898.63 3383.64 9397.81 7196.63 8384.50 16295.10 4098.11 4684.33 3899.23 86
casdiffmvs_mvgpermissive91.13 9590.45 9993.17 8292.99 20783.58 9497.46 9994.56 22687.69 9087.19 15094.98 17174.50 17097.60 17191.88 9392.79 14698.34 60
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CHOSEN 1792x268891.07 9890.21 10693.64 6195.18 13483.53 9596.26 19096.13 13488.92 6484.90 16993.10 21072.86 18899.62 5888.86 12995.67 11197.79 103
Effi-MVS+90.70 10689.90 11693.09 8593.61 18383.48 9695.20 24092.79 30883.22 19591.82 8395.70 14071.82 20097.48 18491.25 9693.67 13598.32 62
VPNet84.69 21882.92 23090.01 19489.01 29883.45 9796.71 16295.46 17685.71 13079.65 23492.18 22056.66 30796.01 25283.05 19067.84 33890.56 255
APDe-MVScopyleft94.56 2394.75 2093.96 4898.84 2283.40 9898.04 5896.41 10885.79 12995.00 4398.28 3684.32 4199.18 9497.35 2698.77 2799.28 19
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
save fliter98.24 5183.34 9998.61 3496.57 9091.32 34
SDMVSNet87.02 17985.61 18491.24 16094.14 17083.30 10093.88 27795.98 14684.30 16979.63 23592.01 22158.23 28897.68 16790.28 11682.02 24492.75 241
APD-MVScopyleft93.61 3793.59 3893.69 5998.76 2483.26 10197.21 11496.09 13782.41 21694.65 4998.21 3881.96 5998.81 11994.65 5898.36 4699.01 28
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ZD-MVS99.09 883.22 10296.60 8782.88 20593.61 6298.06 5282.93 5299.14 9795.51 5098.49 38
agg_prior98.59 3583.13 10396.56 9294.19 5499.16 96
PCF-MVS84.09 586.77 18685.00 19792.08 13092.06 24183.07 10492.14 30894.47 23179.63 26776.90 26094.78 17571.15 20799.20 9272.87 27991.05 16393.98 228
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TSAR-MVS + GP.94.35 2594.50 2393.89 4997.38 8483.04 10598.10 5295.29 18891.57 3293.81 5897.45 8786.64 2699.43 7696.28 3894.01 12999.20 22
API-MVS90.18 11688.97 12793.80 5298.66 2882.95 10697.50 9695.63 16775.16 31786.31 15697.69 7272.49 19299.90 581.26 20096.07 10398.56 49
MVS_111021_HR93.41 4093.39 4393.47 7497.34 8582.83 10797.56 8998.27 689.16 6389.71 11297.14 10279.77 7799.56 6693.65 6997.94 5998.02 81
CHOSEN 280x42091.71 8191.85 7191.29 15894.94 14282.69 10887.89 34496.17 13285.94 12687.27 14894.31 18390.27 995.65 27594.04 6595.86 10895.53 196
VPA-MVSNet85.32 20883.83 21489.77 20690.25 27782.63 10996.36 18497.07 3483.03 20181.21 21789.02 26661.58 26696.31 24185.02 16470.95 30790.36 258
baseline90.76 10590.10 10992.74 9992.90 21082.56 11094.60 25894.56 22687.69 9089.06 12595.67 14273.76 17997.51 18190.43 11192.23 15598.16 73
MP-MVS-pluss92.58 6192.35 6093.29 7697.30 8682.53 11196.44 17896.04 14284.68 15789.12 12398.37 3177.48 11099.74 3893.31 7598.38 4497.59 118
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
casdiffmvspermissive90.95 10290.39 10092.63 10592.82 21182.53 11196.83 15294.47 23187.69 9088.47 13495.56 14774.04 17697.54 17890.90 10192.74 14797.83 99
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive91.17 9490.74 9292.44 11293.11 20382.50 11396.25 19193.62 28187.79 8790.40 10695.93 13473.44 18497.42 18693.62 7092.55 14997.41 131
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test250690.96 10190.39 10092.65 10393.54 18682.46 11496.37 18397.35 1886.78 11487.55 14495.25 15377.83 10597.50 18284.07 17094.80 11897.98 88
PVSNet_Blended_VisFu91.24 9290.77 9192.66 10295.09 13682.40 11597.77 7395.87 15588.26 7786.39 15593.94 19476.77 12399.27 8488.80 13194.00 13096.31 179
test_prior482.34 11697.75 76
PatchmatchNetpermissive86.83 18485.12 19591.95 13794.12 17282.27 11786.55 35595.64 16684.59 16082.98 19584.99 33277.26 11295.96 25668.61 30691.34 16297.64 114
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS87.47 17685.90 18292.18 12695.41 12682.26 11887.00 35196.28 12185.88 12884.23 17785.57 32075.07 16196.26 24271.14 29392.50 15098.03 80
fmvsm_s_conf0.5_n93.69 3694.13 3292.34 11594.56 15282.01 11999.07 1697.13 2892.09 2596.25 2698.53 2276.47 12799.80 2598.39 894.71 12095.22 205
GBi-Net82.42 25880.43 26888.39 22892.66 21481.95 12094.30 26693.38 29079.06 28075.82 28085.66 31656.38 31093.84 33071.23 29075.38 28589.38 278
test182.42 25880.43 26888.39 22892.66 21481.95 12094.30 26693.38 29079.06 28075.82 28085.66 31656.38 31093.84 33071.23 29075.38 28589.38 278
FMVSNet179.50 29276.54 30288.39 22888.47 30481.95 12094.30 26693.38 29073.14 33372.04 31485.66 31643.86 35593.84 33065.48 32272.53 29889.38 278
fmvsm_s_conf0.1_n92.93 4893.16 4792.24 12290.52 27381.92 12398.42 3896.24 12591.17 3696.02 3098.35 3375.34 15699.74 3897.84 2094.58 12295.05 207
test_prior93.09 8598.68 2681.91 12496.40 11099.06 10498.29 66
ETV-MVS92.72 5592.87 5092.28 12194.54 15481.89 12597.98 6095.21 19189.77 5793.11 6796.83 11577.23 11697.50 18295.74 4595.38 11497.44 129
DeepC-MVS86.58 391.53 8591.06 8892.94 9194.52 15581.89 12595.95 20595.98 14690.76 4183.76 18696.76 11973.24 18699.71 4591.67 9496.96 8497.22 142
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SCA85.63 20383.64 21891.60 15192.30 22581.86 12792.88 30095.56 16984.85 15182.52 19685.12 33058.04 29195.39 28673.89 27387.58 19697.54 120
VDDNet86.44 18984.51 20392.22 12491.56 25081.83 12897.10 13294.64 22169.50 35487.84 14295.19 16048.01 34197.92 15989.82 11986.92 19996.89 158
ZNCC-MVS92.75 5192.60 5693.23 7998.24 5181.82 12997.63 8396.50 9885.00 14991.05 9697.74 7178.38 9499.80 2590.48 10798.34 4798.07 79
PAPM_NR91.46 8690.82 9093.37 7598.50 4081.81 13095.03 25096.13 13484.65 15886.10 15997.65 7879.24 8299.75 3683.20 18796.88 8798.56 49
PHI-MVS93.59 3893.63 3793.48 7298.05 5881.76 13198.64 3297.13 2882.60 21294.09 5698.49 2680.35 6899.85 1094.74 5798.62 3398.83 34
114514_t88.79 14487.57 15592.45 11098.21 5381.74 13296.99 13795.45 17775.16 31782.48 19795.69 14168.59 22298.50 13080.33 20595.18 11597.10 149
MDTV_nov1_ep13_2view81.74 13286.80 35280.65 24285.65 16174.26 17276.52 24796.98 152
fmvsm_s_conf0.5_n_a93.34 4193.71 3592.22 12493.38 19481.71 13498.86 2596.98 3891.64 3196.85 1698.55 1975.58 14599.77 2997.88 1993.68 13495.18 206
mvs_anonymous88.68 14587.62 15391.86 14094.80 14781.69 13593.53 28594.92 20182.03 22378.87 24290.43 25075.77 14095.34 28985.04 16393.16 14398.55 51
GST-MVS92.43 6592.22 6593.04 8798.17 5481.64 13697.40 10696.38 11384.71 15690.90 9997.40 9277.55 10999.76 3189.75 12097.74 6497.72 107
fmvsm_s_conf0.1_n_a92.38 6692.49 5892.06 13288.08 30981.62 13797.97 6296.01 14390.62 4396.58 2298.33 3474.09 17599.71 4597.23 2793.46 13994.86 211
新几何193.12 8397.44 7881.60 13896.71 7074.54 32291.22 9497.57 8279.13 8499.51 7177.40 23998.46 3998.26 69
PVSNet82.34 989.02 13587.79 14892.71 10195.49 12481.50 13997.70 7997.29 1987.76 8885.47 16395.12 16556.90 30498.90 11580.33 20594.02 12897.71 109
XXY-MVS83.84 23382.00 24589.35 21087.13 32081.38 14095.72 21794.26 24380.15 25775.92 27890.63 24661.96 26496.52 23378.98 22273.28 29790.14 263
SteuartSystems-ACMMP94.13 3194.44 2693.20 8095.41 12681.35 14199.02 2196.59 8889.50 5994.18 5598.36 3283.68 4899.45 7594.77 5598.45 4098.81 35
Skip Steuart: Steuart Systems R&D Blog.
NR-MVSNet83.35 24081.52 25388.84 21988.76 29981.31 14294.45 26095.16 19284.65 15867.81 33490.82 24370.36 21594.87 30974.75 26466.89 34790.33 260
EI-MVSNet-Vis-set91.84 7791.77 7492.04 13497.60 7181.17 14396.61 16696.87 4988.20 7889.19 12197.55 8678.69 9299.14 9790.29 11490.94 16495.80 188
test_fmvsmconf_n93.99 3394.36 2892.86 9492.82 21181.12 14499.26 496.37 11693.47 1595.16 3698.21 3879.00 8599.64 5598.21 1096.73 9397.83 99
HFP-MVS92.89 4992.86 5192.98 8998.71 2581.12 14497.58 8796.70 7185.20 14391.75 8497.97 5978.47 9399.71 4590.95 9898.41 4298.12 77
test_fmvsmvis_n_192092.12 6992.10 6892.17 12790.87 26681.04 14698.34 4193.90 26392.71 2087.24 14997.90 6374.83 16399.72 4396.96 3196.20 9995.76 190
MDTV_nov1_ep1383.69 21594.09 17381.01 14786.78 35396.09 13783.81 18584.75 17284.32 33774.44 17196.54 23263.88 32985.07 220
baseline290.39 11290.21 10690.93 16990.86 26780.99 14895.20 24097.41 1786.03 12580.07 23294.61 17890.58 697.47 18587.29 14789.86 16994.35 221
1112_ss88.60 14987.47 15992.00 13693.21 19680.97 14996.47 17592.46 31183.64 19080.86 22097.30 9680.24 7197.62 17077.60 23485.49 21697.40 133
test_fmvsm_n_192094.81 1995.60 1192.45 11095.29 13080.96 15099.29 397.21 2394.50 797.29 1498.44 2982.15 5699.78 2898.56 797.68 6696.61 168
CDS-MVSNet89.50 12788.96 12891.14 16591.94 24680.93 15197.09 13395.81 15784.26 17284.72 17394.20 18880.31 6995.64 27683.37 18688.96 17896.85 160
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Test_1112_low_res88.03 16586.73 17391.94 13893.15 19980.88 15296.44 17892.41 31383.59 19280.74 22291.16 23880.18 7297.59 17277.48 23785.40 21797.36 135
MTAPA92.45 6492.31 6192.86 9497.90 6180.85 15392.88 30096.33 11887.92 8490.20 10898.18 4076.71 12599.76 3192.57 8598.09 5297.96 91
test_fmvsmconf0.1_n93.08 4593.22 4692.65 10388.45 30580.81 15499.00 2295.11 19393.21 1794.00 5797.91 6276.84 12099.59 6097.91 1696.55 9697.54 120
thisisatest053089.65 12589.02 12691.53 15293.46 19280.78 15596.52 17196.67 7581.69 22883.79 18594.90 17288.85 1597.68 16777.80 22887.49 19796.14 182
HyFIR lowres test89.36 12988.60 13491.63 15094.91 14480.76 15695.60 22495.53 17082.56 21384.03 17991.24 23778.03 10096.81 22387.07 15088.41 18697.32 136
EI-MVSNet-UG-set91.35 9091.22 8391.73 14597.39 8280.68 15796.47 17596.83 5287.92 8488.30 13997.36 9377.84 10499.13 9989.43 12589.45 17195.37 200
MIMVSNet79.18 29675.99 30588.72 22387.37 31980.66 15879.96 37591.82 32177.38 29974.33 29381.87 35141.78 36490.74 36466.36 32083.10 23194.76 214
CSCG92.02 7191.65 7693.12 8398.53 3680.59 15997.47 9797.18 2677.06 30584.64 17597.98 5783.98 4499.52 6990.72 10497.33 7799.23 21
ACMMPR92.69 5792.67 5492.75 9898.66 2880.57 16097.58 8796.69 7385.20 14391.57 8697.92 6077.01 11799.67 5390.95 9898.41 4298.00 86
FA-MVS(test-final)87.71 17286.23 17992.17 12794.19 16780.55 16187.16 35096.07 14082.12 22185.98 16088.35 27672.04 19998.49 13180.26 20789.87 16897.48 128
UniMVSNet (Re)85.31 20984.23 20988.55 22589.75 28780.55 16196.72 16096.89 4785.42 13678.40 24588.93 26775.38 15295.52 28378.58 22568.02 33589.57 275
CLD-MVS87.97 16787.48 15889.44 20992.16 23480.54 16398.14 4794.92 20191.41 3379.43 23795.40 15062.34 25897.27 19790.60 10682.90 23590.50 257
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
region2R92.72 5592.70 5392.79 9798.68 2680.53 16497.53 9296.51 9685.22 14191.94 8297.98 5777.26 11299.67 5390.83 10298.37 4598.18 71
pmmvs482.54 25680.79 26087.79 24286.11 33280.49 16593.55 28493.18 30077.29 30073.35 30189.40 26365.26 24495.05 30775.32 26073.61 29387.83 319
WR-MVS84.32 22582.96 22988.41 22789.38 29680.32 16696.59 16796.25 12483.97 17876.63 26390.36 25167.53 22694.86 31075.82 25670.09 31690.06 269
XVS92.69 5792.71 5292.63 10598.52 3780.29 16797.37 10896.44 10487.04 10791.38 8897.83 6877.24 11499.59 6090.46 10898.07 5398.02 81
X-MVStestdata86.26 19384.14 21292.63 10598.52 3780.29 16797.37 10896.44 10487.04 10791.38 8820.73 40577.24 11499.59 6090.46 10898.07 5398.02 81
GA-MVS85.79 20184.04 21391.02 16889.47 29480.27 16996.90 14994.84 20785.57 13280.88 21989.08 26456.56 30896.47 23577.72 23185.35 21896.34 176
BH-RMVSNet86.84 18385.28 19091.49 15395.35 12880.26 17096.95 14592.21 31582.86 20681.77 21395.46 14959.34 28097.64 16969.79 30193.81 13396.57 170
FIs86.73 18786.10 18088.61 22490.05 28380.21 17196.14 19896.95 4285.56 13478.37 24692.30 21876.73 12495.28 29379.51 21479.27 26290.35 259
TESTMET0.1,189.83 12289.34 12391.31 15692.54 21980.19 17297.11 12996.57 9086.15 12086.85 15491.83 22979.32 7996.95 21381.30 19992.35 15396.77 163
VDD-MVS88.28 16087.02 17092.06 13295.09 13680.18 17397.55 9194.45 23383.09 19889.10 12495.92 13647.97 34298.49 13193.08 8086.91 20097.52 125
test_fmvsmconf0.01_n91.08 9790.68 9392.29 12082.43 36480.12 17497.94 6393.93 25992.07 2691.97 8097.60 8167.56 22599.53 6897.09 2995.56 11397.21 144
MSP-MVS95.62 896.54 192.86 9498.31 4880.10 17597.42 10496.78 5592.20 2497.11 1598.29 3593.46 199.10 10196.01 4099.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
AdaColmapbinary88.81 14287.61 15492.39 11499.33 479.95 17696.70 16495.58 16877.51 29783.05 19496.69 12361.90 26599.72 4384.29 16893.47 13897.50 126
tpmrst88.36 15687.38 16191.31 15694.36 16379.92 17787.32 34895.26 19085.32 13888.34 13786.13 31480.60 6796.70 22783.78 17585.34 21997.30 139
CP-MVS92.54 6292.60 5692.34 11598.50 4079.90 17898.40 3996.40 11084.75 15390.48 10598.09 4777.40 11199.21 8891.15 9798.23 5197.92 92
FE-MVS86.06 19684.15 21191.78 14494.33 16479.81 17984.58 36696.61 8476.69 30785.00 16787.38 28970.71 21398.37 13970.39 29891.70 16097.17 147
ADS-MVSNet81.26 27478.36 28789.96 19893.78 17979.78 18079.48 37693.60 28273.09 33480.14 22979.99 36162.15 26095.24 29559.49 34583.52 22694.85 212
miper_enhance_ethall85.95 19885.20 19188.19 23694.85 14679.76 18196.00 20294.06 25682.98 20377.74 25188.76 26979.42 7895.46 28580.58 20372.42 29989.36 281
CR-MVSNet83.53 23881.36 25590.06 19390.16 28079.75 18279.02 38091.12 33284.24 17382.27 20580.35 35975.45 14893.67 33463.37 33386.25 20696.75 165
RPMNet79.85 28775.92 30691.64 14890.16 28079.75 18279.02 38095.44 17858.43 38682.27 20572.55 38373.03 18798.41 13846.10 38486.25 20696.75 165
PGM-MVS91.93 7391.80 7392.32 11998.27 5079.74 18495.28 23497.27 2183.83 18490.89 10097.78 7076.12 13599.56 6688.82 13097.93 6197.66 112
dcpmvs_293.10 4493.46 4292.02 13597.77 6579.73 18594.82 25493.86 26686.91 10991.33 9196.76 11985.20 3198.06 15096.90 3297.60 6898.27 68
MP-MVScopyleft92.61 6092.67 5492.42 11398.13 5679.73 18597.33 11096.20 12985.63 13190.53 10397.66 7478.14 9999.70 4892.12 8898.30 4997.85 97
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
v2v48283.46 23981.86 24788.25 23386.19 33079.65 18796.34 18694.02 25781.56 22977.32 25488.23 27865.62 23896.03 24977.77 22969.72 32089.09 288
gm-plane-assit92.27 22679.64 18884.47 16495.15 16397.93 15485.81 157
旧先验197.39 8279.58 18996.54 9398.08 5084.00 4397.42 7597.62 116
KD-MVS_2432*160077.63 30774.92 31285.77 28490.86 26779.44 19088.08 34193.92 26176.26 30967.05 33882.78 34772.15 19791.92 35161.53 33741.62 39485.94 350
miper_refine_blended77.63 30774.92 31285.77 28490.86 26779.44 19088.08 34193.92 26176.26 30967.05 33882.78 34772.15 19791.92 35161.53 33741.62 39485.94 350
ECVR-MVScopyleft88.35 15787.25 16391.65 14793.54 18679.40 19296.56 17090.78 34086.78 11485.57 16295.25 15357.25 30297.56 17484.73 16694.80 11897.98 88
UniMVSNet_NR-MVSNet85.49 20684.59 20188.21 23589.44 29579.36 19396.71 16296.41 10885.22 14178.11 24890.98 24276.97 11995.14 30079.14 22068.30 33290.12 264
DU-MVS84.57 22183.33 22588.28 23188.76 29979.36 19396.43 18095.41 18285.42 13678.11 24890.82 24367.61 22395.14 30079.14 22068.30 33290.33 260
CNLPA86.96 18085.37 18991.72 14697.59 7279.34 19597.21 11491.05 33574.22 32378.90 24096.75 12167.21 23098.95 11174.68 26590.77 16596.88 159
tfpnnormal78.14 30175.42 30886.31 27788.33 30779.24 19694.41 26196.22 12773.51 32969.81 32885.52 32255.43 31495.75 26847.65 38267.86 33783.95 365
HPM-MVScopyleft91.62 8391.53 7891.89 13997.88 6379.22 19796.99 13795.73 16282.07 22289.50 11997.19 10175.59 14498.93 11490.91 10097.94 5997.54 120
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TAMVS88.48 15287.79 14890.56 18191.09 26179.18 19896.45 17795.88 15383.64 19083.12 19293.33 20575.94 13895.74 27182.40 19388.27 18896.75 165
Fast-Effi-MVS+87.93 16886.94 17290.92 17094.04 17579.16 19998.26 4393.72 27781.29 23183.94 18392.90 21169.83 21896.68 22876.70 24591.74 15996.93 155
CostFormer89.08 13488.39 13891.15 16493.13 20179.15 20088.61 33896.11 13683.14 19789.58 11686.93 29883.83 4796.87 21988.22 13985.92 21197.42 130
UGNet87.73 17186.55 17691.27 15995.16 13579.11 20196.35 18596.23 12688.14 7987.83 14390.48 24850.65 33199.09 10280.13 21094.03 12795.60 193
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MS-PatchMatch83.05 24781.82 24886.72 27289.64 29079.10 20294.88 25394.59 22579.70 26670.67 32289.65 26050.43 33396.82 22270.82 29795.99 10784.25 362
V4283.04 24881.53 25287.57 25186.27 32979.09 20395.87 21194.11 25380.35 25277.22 25686.79 30165.32 24396.02 25177.74 23070.14 31287.61 324
v114482.90 25181.27 25687.78 24386.29 32879.07 20496.14 19893.93 25980.05 25977.38 25286.80 30065.50 23995.93 25875.21 26170.13 31388.33 311
v881.88 26680.06 27487.32 25886.63 32379.04 20594.41 26193.65 28078.77 28473.19 30485.57 32066.87 23295.81 26473.84 27567.61 34087.11 333
v1081.43 27279.53 28087.11 26386.38 32578.87 20694.31 26593.43 28877.88 29273.24 30385.26 32465.44 24095.75 26872.14 28467.71 33986.72 337
cl2285.11 21284.17 21087.92 24095.06 14078.82 20795.51 22694.22 24679.74 26576.77 26187.92 28375.96 13795.68 27279.93 21272.42 29989.27 283
Vis-MVSNetpermissive88.67 14687.82 14791.24 16092.68 21378.82 20796.95 14593.85 26787.55 9387.07 15295.13 16463.43 25397.21 19977.58 23596.15 10197.70 110
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TranMVSNet+NR-MVSNet83.24 24481.71 24987.83 24187.71 31478.81 20996.13 20094.82 20884.52 16176.18 27490.78 24564.07 25094.60 31774.60 26866.59 34990.09 267
test111188.11 16387.04 16991.35 15593.15 19978.79 21096.57 16890.78 34086.88 11185.04 16695.20 15957.23 30397.39 18983.88 17394.59 12197.87 95
MVS_111021_LR91.60 8491.64 7791.47 15495.74 11978.79 21096.15 19796.77 6188.49 7288.64 13397.07 10772.33 19499.19 9393.13 7996.48 9796.43 173
tpm287.35 17786.26 17890.62 17992.93 20978.67 21288.06 34395.99 14579.33 27287.40 14586.43 30980.28 7096.40 23680.23 20885.73 21596.79 161
mPP-MVS91.88 7691.82 7292.07 13198.38 4478.63 21397.29 11296.09 13785.12 14588.45 13597.66 7475.53 14699.68 5189.83 11898.02 5697.88 93
BH-w/o88.24 16187.47 15990.54 18295.03 14178.54 21497.41 10593.82 26884.08 17478.23 24794.51 18169.34 22097.21 19980.21 20994.58 12295.87 187
HQP5-MVS78.48 215
DP-MVS81.47 27178.28 28891.04 16698.14 5578.48 21595.09 24986.97 36661.14 37771.12 31992.78 21559.59 27699.38 7853.11 36886.61 20295.27 204
HQP-MVS87.91 16987.55 15688.98 21792.08 23878.48 21597.63 8394.80 20990.52 4582.30 20194.56 17965.40 24197.32 19287.67 14483.01 23291.13 249
v119282.31 26180.55 26687.60 24885.94 33478.47 21895.85 21393.80 27179.33 27276.97 25986.51 30463.33 25495.87 26173.11 27870.13 31388.46 307
SR-MVS92.16 6892.27 6291.83 14398.37 4578.41 21996.67 16595.76 15982.19 22091.97 8098.07 5176.44 12898.64 12393.71 6897.27 7998.45 56
Anonymous20240521184.41 22481.93 24691.85 14296.78 9378.41 21997.44 10091.34 33070.29 35084.06 17894.26 18541.09 36898.96 10979.46 21582.65 23998.17 72
test22296.15 10478.41 21995.87 21196.46 10271.97 34289.66 11497.45 8776.33 13298.24 5098.30 65
MVP-Stereo82.65 25581.67 25085.59 29186.10 33378.29 22293.33 28992.82 30777.75 29469.17 33287.98 28259.28 28195.76 26771.77 28596.88 8782.73 370
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Anonymous2024052983.15 24580.60 26590.80 17495.74 11978.27 22396.81 15594.92 20160.10 38181.89 21092.54 21645.82 35298.82 11879.25 21978.32 27495.31 202
miper_ehance_all_eth84.57 22183.60 22087.50 25392.64 21778.25 22495.40 23293.47 28679.28 27576.41 26787.64 28676.53 12695.24 29578.58 22572.42 29989.01 293
ppachtmachnet_test77.19 31174.22 31986.13 28085.39 34178.22 22593.98 27391.36 32971.74 34467.11 33784.87 33356.67 30693.37 34052.21 36964.59 35386.80 336
v14419282.43 25780.73 26287.54 25285.81 33778.22 22595.98 20393.78 27379.09 27977.11 25786.49 30564.66 24995.91 25974.20 27169.42 32188.49 305
NP-MVS92.04 24278.22 22594.56 179
ACMMPcopyleft90.39 11289.97 11291.64 14897.58 7378.21 22896.78 15796.72 6984.73 15584.72 17397.23 9971.22 20699.63 5788.37 13892.41 15297.08 150
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MAR-MVS90.63 10790.22 10591.86 14098.47 4278.20 22997.18 11996.61 8483.87 18388.18 14098.18 4068.71 22199.75 3683.66 18197.15 8197.63 115
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
tpm cat183.63 23781.38 25490.39 18593.53 19178.19 23085.56 36295.09 19470.78 34878.51 24483.28 34574.80 16497.03 20866.77 31384.05 22495.95 184
原ACMM191.22 16297.77 6578.10 23196.61 8481.05 23491.28 9397.42 9177.92 10398.98 10879.85 21398.51 3596.59 169
FC-MVSNet-test85.96 19785.39 18887.66 24689.38 29678.02 23295.65 22196.87 4985.12 14577.34 25391.94 22776.28 13394.74 31377.09 24078.82 26690.21 262
FOURS198.51 3978.01 23398.13 5096.21 12883.04 20094.39 52
dp84.30 22682.31 24090.28 18894.24 16677.97 23486.57 35495.53 17079.94 26280.75 22185.16 32871.49 20596.39 23763.73 33083.36 22996.48 172
tpmvs83.04 24880.77 26189.84 20295.43 12577.96 23585.59 36195.32 18775.31 31676.27 27183.70 34273.89 17797.41 18759.53 34481.93 24694.14 224
HQP_MVS87.50 17587.09 16888.74 22291.86 24777.96 23597.18 11994.69 21489.89 5581.33 21594.15 18964.77 24797.30 19487.08 14882.82 23690.96 251
plane_prior77.96 23597.52 9590.36 5082.96 234
v192192082.02 26480.23 27087.41 25685.62 33877.92 23895.79 21693.69 27878.86 28376.67 26286.44 30762.50 25795.83 26372.69 28069.77 31988.47 306
plane_prior691.98 24377.92 23864.77 247
OMC-MVS88.80 14388.16 14290.72 17795.30 12977.92 23894.81 25594.51 22886.80 11384.97 16896.85 11467.53 22698.60 12585.08 16287.62 19495.63 192
patch_mono-295.14 1396.08 792.33 11798.44 4377.84 24198.43 3797.21 2392.58 2197.68 1197.65 7886.88 2599.83 1698.25 997.60 6899.33 17
OPM-MVS85.84 19985.10 19688.06 23788.34 30677.83 24295.72 21794.20 24787.89 8680.45 22594.05 19158.57 28597.26 19883.88 17382.76 23889.09 288
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
sd_testset84.62 21983.11 22889.17 21294.14 17077.78 24391.54 31894.38 23784.30 16979.63 23592.01 22152.28 32696.98 21177.67 23382.02 24492.75 241
EC-MVSNet91.73 7892.11 6790.58 18093.54 18677.77 24498.07 5594.40 23687.44 9692.99 7097.11 10574.59 16996.87 21993.75 6797.08 8297.11 148
plane_prior377.75 24590.17 5281.33 215
c3_l83.80 23482.65 23687.25 26192.10 23777.74 24695.25 23793.04 30578.58 28676.01 27587.21 29475.25 15895.11 30277.54 23668.89 32688.91 299
v124081.70 26879.83 27887.30 26085.50 33977.70 24795.48 22793.44 28778.46 28876.53 26586.44 30760.85 27095.84 26271.59 28770.17 31188.35 310
TR-MVS86.30 19284.93 19990.42 18494.63 15077.58 24896.57 16893.82 26880.30 25382.42 19995.16 16258.74 28497.55 17674.88 26387.82 19396.13 183
plane_prior791.86 24777.55 249
BH-untuned86.95 18185.94 18189.99 19594.52 15577.46 25096.78 15793.37 29381.80 22576.62 26493.81 19866.64 23497.02 20976.06 25293.88 13295.48 198
EI-MVSNet85.80 20085.20 19187.59 24991.55 25177.41 25195.13 24495.36 18380.43 25080.33 22794.71 17673.72 18095.97 25376.96 24378.64 26889.39 276
IterMVS-LS83.93 23182.80 23487.31 25991.46 25477.39 25295.66 22093.43 28880.44 24875.51 28487.26 29273.72 18095.16 29976.99 24170.72 30989.39 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HPM-MVS_fast90.38 11490.17 10891.03 16797.61 7077.35 25397.15 12595.48 17479.51 26988.79 12996.90 11171.64 20398.81 11987.01 15197.44 7396.94 154
MSDG80.62 28377.77 29389.14 21393.43 19377.24 25491.89 31190.18 34469.86 35368.02 33391.94 22752.21 32798.84 11759.32 34783.12 23091.35 248
test-LLR88.48 15287.98 14489.98 19692.26 22777.23 25597.11 12995.96 14883.76 18786.30 15791.38 23372.30 19596.78 22580.82 20191.92 15795.94 185
test-mter88.95 13688.60 13489.98 19692.26 22777.23 25597.11 12995.96 14885.32 13886.30 15791.38 23376.37 13196.78 22580.82 20191.92 15795.94 185
UA-Net88.92 13888.48 13790.24 18994.06 17477.18 25793.04 29794.66 21887.39 9891.09 9593.89 19574.92 16298.18 14975.83 25591.43 16195.35 201
Anonymous2023121179.72 28977.19 29787.33 25795.59 12277.16 25895.18 24394.18 24959.31 38472.57 31086.20 31347.89 34495.66 27374.53 26969.24 32489.18 285
pmmvs581.34 27379.54 27986.73 27185.02 34676.91 25996.22 19291.65 32477.65 29573.55 29688.61 27155.70 31394.43 32174.12 27273.35 29688.86 300
CS-MVS-test92.98 4693.67 3690.90 17196.52 9476.87 26098.68 2994.73 21390.36 5094.84 4697.89 6477.94 10197.15 20594.28 6397.80 6398.70 43
IS-MVSNet88.67 14688.16 14290.20 19193.61 18376.86 26196.77 15993.07 30484.02 17683.62 18795.60 14574.69 16896.24 24478.43 22793.66 13697.49 127
v14882.41 26080.89 25986.99 26686.18 33176.81 26296.27 18993.82 26880.49 24775.28 28786.11 31567.32 22995.75 26875.48 25967.03 34688.42 309
our_test_377.90 30575.37 30985.48 29385.39 34176.74 26393.63 28191.67 32373.39 33265.72 34784.65 33558.20 29093.13 34157.82 35167.87 33686.57 340
PVSNet_077.72 1581.70 26878.95 28589.94 19990.77 27076.72 26495.96 20496.95 4285.01 14870.24 32688.53 27452.32 32598.20 14786.68 15444.08 39194.89 210
WB-MVSnew84.08 22983.51 22285.80 28391.34 25676.69 26595.62 22396.27 12281.77 22681.81 21292.81 21258.23 28894.70 31466.66 31487.06 19885.99 349
D2MVS82.67 25481.55 25186.04 28187.77 31376.47 26695.21 23996.58 8982.66 21170.26 32585.46 32360.39 27295.80 26576.40 24979.18 26385.83 352
PLCcopyleft83.97 788.00 16687.38 16189.83 20398.02 5976.46 26797.16 12394.43 23479.26 27681.98 20896.28 12869.36 21999.27 8477.71 23292.25 15493.77 232
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ACMH75.40 1777.99 30274.96 31087.10 26490.67 27176.41 26893.19 29691.64 32572.47 34063.44 35587.61 28743.34 35897.16 20258.34 34973.94 29187.72 320
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EIA-MVS91.73 7892.05 6990.78 17694.52 15576.40 26998.06 5695.34 18689.19 6288.90 12797.28 9877.56 10897.73 16690.77 10396.86 8998.20 70
APD-MVS_3200maxsize91.23 9391.35 8090.89 17297.89 6276.35 27096.30 18895.52 17279.82 26391.03 9797.88 6574.70 16598.54 12892.11 8996.89 8697.77 104
FMVSNet576.46 31674.16 32083.35 32490.05 28376.17 27189.58 33089.85 34671.39 34665.29 34980.42 35850.61 33287.70 37861.05 34269.24 32486.18 345
GeoE86.36 19085.20 19189.83 20393.17 19876.13 27297.53 9292.11 31679.58 26880.99 21894.01 19266.60 23596.17 24773.48 27789.30 17297.20 146
IterMVS80.67 28279.16 28285.20 29689.79 28576.08 27392.97 29991.86 31980.28 25471.20 31885.14 32957.93 29591.34 35872.52 28270.74 30888.18 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
h-mvs3389.30 13188.95 12990.36 18695.07 13876.04 27496.96 14497.11 3190.39 4892.22 7795.10 16674.70 16598.86 11693.14 7765.89 35096.16 181
SR-MVS-dyc-post91.29 9191.45 7990.80 17497.76 6776.03 27596.20 19595.44 17880.56 24590.72 10197.84 6675.76 14198.61 12491.99 9096.79 9097.75 105
RE-MVS-def91.18 8697.76 6776.03 27596.20 19595.44 17880.56 24590.72 10197.84 6673.36 18591.99 9096.79 9097.75 105
EPP-MVSNet89.76 12389.72 11989.87 20193.78 17976.02 27797.22 11396.51 9679.35 27185.11 16595.01 16984.82 3397.10 20787.46 14688.21 18996.50 171
tttt051788.57 15088.19 14189.71 20793.00 20475.99 27895.67 21996.67 7580.78 23981.82 21194.40 18288.97 1497.58 17376.05 25386.31 20595.57 194
cl____83.27 24282.12 24286.74 26892.20 23075.95 27995.11 24693.27 29678.44 28974.82 29087.02 29774.19 17395.19 29774.67 26669.32 32289.09 288
CS-MVS92.73 5393.48 4190.48 18396.27 10075.93 28098.55 3594.93 20089.32 6094.54 5197.67 7378.91 8797.02 20993.80 6697.32 7898.49 53
DIV-MVS_self_test83.27 24282.12 24286.74 26892.19 23175.92 28195.11 24693.26 29778.44 28974.81 29187.08 29674.19 17395.19 29774.66 26769.30 32389.11 287
pm-mvs180.05 28678.02 29186.15 27985.42 34075.81 28295.11 24692.69 31077.13 30270.36 32487.43 28858.44 28795.27 29471.36 28964.25 35687.36 331
Patchmtry77.36 31074.59 31585.67 28889.75 28775.75 28377.85 38391.12 33260.28 37971.23 31780.35 35975.45 14893.56 33657.94 35067.34 34387.68 322
PatchT79.75 28876.85 30088.42 22689.55 29275.49 28477.37 38494.61 22363.07 36782.46 19873.32 38075.52 14793.41 33951.36 37184.43 22296.36 174
tpm85.55 20584.47 20688.80 22190.19 27975.39 28588.79 33694.69 21484.83 15283.96 18285.21 32678.22 9794.68 31676.32 25178.02 27696.34 176
TransMVSNet (Re)76.94 31374.38 31784.62 30685.92 33575.25 28695.28 23489.18 35373.88 32767.22 33586.46 30659.64 27594.10 32659.24 34852.57 38084.50 360
Baseline_NR-MVSNet81.22 27580.07 27384.68 30385.32 34475.12 28796.48 17488.80 35676.24 31177.28 25586.40 31067.61 22394.39 32275.73 25766.73 34884.54 359
mvsmamba85.17 21184.54 20287.05 26587.94 31175.11 28896.22 19287.79 36486.91 10978.55 24391.77 23064.93 24695.91 25986.94 15279.80 25490.12 264
eth_miper_zixun_eth83.12 24682.01 24486.47 27391.85 24974.80 28994.33 26493.18 30079.11 27875.74 28387.25 29372.71 18995.32 29176.78 24467.13 34489.27 283
IterMVS-SCA-FT80.51 28479.10 28384.73 30289.63 29174.66 29092.98 29891.81 32280.05 25971.06 32085.18 32758.04 29191.40 35772.48 28370.70 31088.12 315
test_cas_vis1_n_192089.90 12190.02 11189.54 20890.14 28274.63 29198.71 2894.43 23493.04 1992.40 7396.35 12753.41 32499.08 10395.59 4896.16 10094.90 209
USDC78.65 29876.25 30385.85 28287.58 31574.60 29289.58 33090.58 34384.05 17563.13 35788.23 27840.69 37196.86 22166.57 31775.81 28386.09 347
PatchMatch-RL85.00 21483.66 21789.02 21695.86 11474.55 29392.49 30493.60 28279.30 27479.29 23991.47 23158.53 28698.45 13570.22 29992.17 15694.07 227
Vis-MVSNet (Re-imp)88.88 14088.87 13288.91 21893.89 17874.43 29496.93 14794.19 24884.39 16583.22 19195.67 14278.24 9694.70 31478.88 22394.40 12597.61 117
PS-MVSNAJss84.91 21584.30 20886.74 26885.89 33674.40 29594.95 25194.16 25083.93 18176.45 26690.11 25771.04 20995.77 26683.16 18879.02 26590.06 269
testdata90.13 19295.92 11374.17 29696.49 10173.49 33194.82 4897.99 5478.80 9097.93 15483.53 18497.52 7098.29 66
Patchmatch-test78.25 30074.72 31488.83 22091.20 25774.10 29773.91 39188.70 35959.89 38266.82 34085.12 33078.38 9494.54 31848.84 38079.58 26097.86 96
LS3D82.22 26279.94 27689.06 21497.43 7974.06 29893.20 29592.05 31761.90 37173.33 30295.21 15859.35 27999.21 8854.54 36492.48 15193.90 230
hse-mvs288.22 16288.21 14088.25 23393.54 18673.41 29995.41 23195.89 15290.39 4892.22 7794.22 18674.70 16596.66 23093.14 7764.37 35594.69 219
AUN-MVS86.25 19485.57 18588.26 23293.57 18573.38 30095.45 22995.88 15383.94 18085.47 16394.21 18773.70 18296.67 22983.54 18364.41 35494.73 218
pmmvs-eth3d73.59 32870.66 33582.38 33076.40 38473.38 30089.39 33389.43 35072.69 33860.34 37077.79 36746.43 35091.26 36066.42 31957.06 37082.51 371
CPTT-MVS89.72 12489.87 11789.29 21198.33 4773.30 30297.70 7995.35 18575.68 31387.40 14597.44 9070.43 21498.25 14489.56 12396.90 8596.33 178
dmvs_re84.10 22882.90 23187.70 24491.41 25573.28 30390.59 32593.19 29885.02 14777.96 25093.68 19957.92 29696.18 24675.50 25880.87 24993.63 234
EG-PatchMatch MVS74.92 32372.02 33083.62 32083.76 36173.28 30393.62 28292.04 31868.57 35658.88 37383.80 34131.87 38595.57 28256.97 35778.67 26782.00 376
TAPA-MVS81.61 1285.02 21383.67 21689.06 21496.79 9273.27 30595.92 20794.79 21174.81 32080.47 22496.83 11571.07 20898.19 14849.82 37792.57 14895.71 191
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LPG-MVS_test84.20 22783.49 22386.33 27490.88 26473.06 30695.28 23494.13 25182.20 21876.31 26893.20 20654.83 32096.95 21383.72 17880.83 25088.98 294
LGP-MVS_train86.33 27490.88 26473.06 30694.13 25182.20 21876.31 26893.20 20654.83 32096.95 21383.72 17880.83 25088.98 294
tt080581.20 27679.06 28487.61 24786.50 32472.97 30893.66 28095.48 17474.11 32476.23 27291.99 22341.36 36797.40 18877.44 23874.78 28892.45 244
ACMP81.66 1184.00 23083.22 22786.33 27491.53 25372.95 30995.91 20993.79 27283.70 18973.79 29592.22 21954.31 32396.89 21783.98 17179.74 25789.16 286
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v7n79.32 29577.34 29585.28 29584.05 35772.89 31093.38 28793.87 26575.02 31970.68 32184.37 33659.58 27795.62 27867.60 30867.50 34187.32 332
test0.0.03 182.79 25282.48 23883.74 31886.81 32272.22 31196.52 17195.03 19783.76 18773.00 30593.20 20672.30 19588.88 37164.15 32877.52 27790.12 264
F-COLMAP84.50 22383.44 22487.67 24595.22 13272.22 31195.95 20593.78 27375.74 31276.30 27095.18 16159.50 27898.45 13572.67 28186.59 20392.35 246
UWE-MVS88.56 15188.91 13187.50 25394.17 16872.19 31395.82 21597.05 3584.96 15084.78 17193.51 20481.33 6094.75 31279.43 21689.17 17395.57 194
ADS-MVSNet279.57 29177.53 29485.71 28693.78 17972.13 31479.48 37686.11 37273.09 33480.14 22979.99 36162.15 26090.14 36959.49 34583.52 22694.85 212
RRT_MVS83.88 23283.27 22685.71 28687.53 31872.12 31595.35 23394.33 24083.81 18575.86 27991.28 23660.55 27195.09 30583.93 17276.76 27989.90 272
ACMM80.70 1383.72 23682.85 23386.31 27791.19 25872.12 31595.88 21094.29 24280.44 24877.02 25891.96 22555.24 31697.14 20679.30 21880.38 25389.67 274
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D80.86 28078.75 28687.22 26286.31 32772.02 31791.95 30993.76 27673.51 32975.06 28990.16 25543.04 36195.66 27376.37 25078.55 27193.98 228
LTVRE_ROB73.68 1877.99 30275.74 30784.74 30190.45 27572.02 31786.41 35691.12 33272.57 33966.63 34287.27 29154.95 31996.98 21156.29 35975.98 28085.21 356
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
miper_lstm_enhance81.66 27080.66 26484.67 30491.19 25871.97 31991.94 31093.19 29877.86 29372.27 31285.26 32473.46 18393.42 33873.71 27667.05 34588.61 301
MDA-MVSNet_test_wron73.54 32970.43 33782.86 32684.55 34971.85 32091.74 31491.32 33167.63 35746.73 38781.09 35655.11 31790.42 36755.91 36159.76 36686.31 343
OpenMVS_ROBcopyleft68.52 2073.02 33369.57 34083.37 32380.54 37071.82 32193.60 28388.22 36162.37 36961.98 36383.15 34635.31 38095.47 28445.08 38575.88 28282.82 368
test_040272.68 33469.54 34182.09 33388.67 30271.81 32292.72 30286.77 36961.52 37362.21 36283.91 34043.22 35993.76 33334.60 39272.23 30280.72 380
YYNet173.53 33070.43 33782.85 32784.52 35171.73 32391.69 31591.37 32867.63 35746.79 38681.21 35555.04 31890.43 36655.93 36059.70 36786.38 342
XVG-OURS85.18 21084.38 20787.59 24990.42 27671.73 32391.06 32294.07 25582.00 22483.29 19095.08 16756.42 30997.55 17683.70 18083.42 22893.49 237
ACMH+76.62 1677.47 30974.94 31185.05 29891.07 26271.58 32593.26 29390.01 34571.80 34364.76 35088.55 27241.62 36596.48 23462.35 33671.00 30687.09 334
XVG-OURS-SEG-HR85.74 20285.16 19487.49 25590.22 27871.45 32691.29 31994.09 25481.37 23083.90 18495.22 15760.30 27397.53 18085.58 15984.42 22393.50 236
EPNet_dtu87.65 17387.89 14586.93 26794.57 15171.37 32796.72 16096.50 9888.56 7187.12 15195.02 16875.91 13994.01 32866.62 31590.00 16795.42 199
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WR-MVS_H81.02 27780.09 27183.79 31688.08 30971.26 32894.46 25996.54 9380.08 25872.81 30886.82 29970.36 21592.65 34364.18 32767.50 34187.46 330
jajsoiax82.12 26381.15 25885.03 29984.19 35470.70 32994.22 27093.95 25883.07 19973.48 29789.75 25949.66 33795.37 28882.24 19579.76 25589.02 292
CP-MVSNet81.01 27880.08 27283.79 31687.91 31270.51 33094.29 26995.65 16580.83 23772.54 31188.84 26863.71 25192.32 34668.58 30768.36 33188.55 302
anonymousdsp80.98 27979.97 27584.01 31381.73 36670.44 33192.49 30493.58 28477.10 30472.98 30686.31 31157.58 29794.90 30879.32 21778.63 27086.69 338
mvs_tets81.74 26780.71 26384.84 30084.22 35370.29 33293.91 27693.78 27382.77 20873.37 30089.46 26247.36 34795.31 29281.99 19679.55 26188.92 298
DeepPCF-MVS89.82 194.61 2296.17 589.91 20097.09 9070.21 33398.99 2396.69 7395.57 295.08 4199.23 186.40 2999.87 897.84 2098.66 3299.65 6
pmmvs674.65 32571.67 33183.60 32179.13 37469.94 33493.31 29290.88 33961.05 37865.83 34684.15 33943.43 35794.83 31166.62 31560.63 36586.02 348
PS-CasMVS80.27 28579.18 28183.52 32287.56 31669.88 33594.08 27295.29 18880.27 25572.08 31388.51 27559.22 28292.23 34867.49 30968.15 33488.45 308
test_djsdf83.00 25082.45 23984.64 30584.07 35669.78 33694.80 25694.48 22980.74 24075.41 28687.70 28561.32 26995.10 30383.77 17679.76 25589.04 291
MVS-HIRNet71.36 34167.00 34684.46 31090.58 27269.74 33779.15 37987.74 36546.09 39161.96 36450.50 39545.14 35395.64 27653.74 36688.11 19088.00 317
TinyColmap72.41 33568.99 34482.68 32888.11 30869.59 33888.41 33985.20 37465.55 36357.91 37684.82 33430.80 38795.94 25751.38 37068.70 32782.49 373
PMMVS89.46 12889.92 11588.06 23794.64 14969.57 33996.22 19294.95 19987.27 10191.37 9096.54 12565.88 23797.39 18988.54 13393.89 13197.23 141
Fast-Effi-MVS+-dtu83.33 24182.60 23785.50 29289.55 29269.38 34096.09 20191.38 32782.30 21775.96 27791.41 23256.71 30595.58 28175.13 26284.90 22191.54 247
COLMAP_ROBcopyleft73.24 1975.74 32073.00 32783.94 31492.38 22069.08 34191.85 31286.93 36761.48 37465.32 34890.27 25242.27 36396.93 21650.91 37375.63 28485.80 353
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_vis1_n_192089.95 12090.59 9488.03 23992.36 22168.98 34299.12 1294.34 23993.86 1393.64 6197.01 10951.54 32899.59 6096.76 3496.71 9495.53 196
PEN-MVS79.47 29378.26 28983.08 32586.36 32668.58 34393.85 27894.77 21279.76 26471.37 31588.55 27259.79 27492.46 34464.50 32665.40 35188.19 313
MDA-MVSNet-bldmvs71.45 34067.94 34581.98 33485.33 34368.50 34492.35 30788.76 35770.40 34942.99 39081.96 35046.57 34991.31 35948.75 38154.39 37486.11 346
UnsupCasMVSNet_bld68.60 34864.50 35280.92 33974.63 38767.80 34583.97 36892.94 30665.12 36554.63 38268.23 38835.97 37792.17 35060.13 34344.83 38982.78 369
CL-MVSNet_self_test75.81 31974.14 32180.83 34078.33 37667.79 34694.22 27093.52 28577.28 30169.82 32781.54 35361.47 26889.22 37057.59 35353.51 37685.48 354
AllTest75.92 31873.06 32684.47 30892.18 23267.29 34791.07 32184.43 37867.63 35763.48 35390.18 25338.20 37397.16 20257.04 35573.37 29488.97 296
TestCases84.47 30892.18 23267.29 34784.43 37867.63 35763.48 35390.18 25338.20 37397.16 20257.04 35573.37 29488.97 296
WAC-MVS67.18 34949.00 379
myMVS_eth3d81.93 26582.18 24181.18 33792.13 23567.18 34993.97 27494.23 24482.43 21473.39 29893.57 20276.98 11887.86 37550.53 37582.34 24188.51 303
mvsany_test187.58 17488.22 13985.67 28889.78 28667.18 34995.25 23787.93 36283.96 17988.79 12997.06 10872.52 19194.53 31992.21 8786.45 20495.30 203
DTE-MVSNet78.37 29977.06 29882.32 33285.22 34567.17 35293.40 28693.66 27978.71 28570.53 32388.29 27759.06 28392.23 34861.38 34063.28 36087.56 326
XVG-ACMP-BASELINE79.38 29477.90 29283.81 31584.98 34767.14 35389.03 33493.18 30080.26 25672.87 30788.15 28038.55 37296.26 24276.05 25378.05 27588.02 316
UnsupCasMVSNet_eth73.25 33170.57 33681.30 33577.53 37866.33 35487.24 34993.89 26480.38 25157.90 37781.59 35242.91 36290.56 36565.18 32448.51 38587.01 335
ITE_SJBPF82.38 33087.00 32165.59 35589.55 34879.99 26169.37 33091.30 23541.60 36695.33 29062.86 33574.63 29086.24 344
test_vis1_n85.60 20485.70 18385.33 29484.79 34864.98 35696.83 15291.61 32687.36 9991.00 9894.84 17436.14 37697.18 20195.66 4693.03 14493.82 231
pmmvs365.75 35162.18 35476.45 35867.12 39564.54 35788.68 33785.05 37554.77 39057.54 37973.79 37729.40 38886.21 38355.49 36347.77 38778.62 382
test_fmvs187.79 17088.52 13685.62 29092.98 20864.31 35897.88 6692.42 31287.95 8392.24 7695.82 13747.94 34398.44 13795.31 5294.09 12694.09 226
Patchmatch-RL test76.65 31574.01 32284.55 30777.37 38064.23 35978.49 38282.84 38478.48 28764.63 35173.40 37976.05 13691.70 35676.99 24157.84 36997.72 107
LCM-MVSNet-Re83.75 23583.54 22184.39 31293.54 18664.14 36092.51 30384.03 38083.90 18266.14 34586.59 30367.36 22892.68 34284.89 16592.87 14596.35 175
JIA-IIPM79.00 29777.20 29684.40 31189.74 28964.06 36175.30 38895.44 17862.15 37081.90 20959.08 39278.92 8695.59 28066.51 31885.78 21493.54 235
new-patchmatchnet68.85 34765.93 34977.61 35473.57 38963.94 36290.11 32888.73 35871.62 34555.08 38173.60 37840.84 36987.22 38151.35 37248.49 38681.67 379
test_fmvs1_n86.34 19186.72 17485.17 29787.54 31763.64 36396.91 14892.37 31487.49 9591.33 9195.58 14640.81 37098.46 13495.00 5493.49 13793.41 240
testing380.74 28181.17 25779.44 34691.15 26063.48 36497.16 12395.76 15980.83 23771.36 31693.15 20978.22 9787.30 38043.19 38779.67 25887.55 328
Anonymous2023120675.29 32273.64 32380.22 34280.75 36763.38 36593.36 28890.71 34273.09 33467.12 33683.70 34250.33 33490.85 36353.63 36770.10 31586.44 341
Effi-MVS+-dtu84.61 22084.90 20083.72 31991.96 24463.14 36694.95 25193.34 29485.57 13279.79 23387.12 29561.99 26395.61 27983.55 18285.83 21392.41 245
MIMVSNet169.44 34466.65 34877.84 35276.48 38362.84 36787.42 34788.97 35466.96 36257.75 37879.72 36332.77 38485.83 38446.32 38363.42 35984.85 358
TDRefinement69.20 34665.78 35079.48 34566.04 39662.21 36888.21 34086.12 37162.92 36861.03 36885.61 31933.23 38294.16 32555.82 36253.02 37882.08 375
testgi74.88 32473.40 32479.32 34780.13 37161.75 36993.21 29486.64 37079.49 27066.56 34491.06 23935.51 37988.67 37256.79 35871.25 30487.56 326
new_pmnet66.18 35063.18 35375.18 36376.27 38561.74 37083.79 36984.66 37756.64 38851.57 38471.85 38631.29 38687.93 37449.98 37662.55 36175.86 385
Anonymous2024052172.06 33869.91 33978.50 35177.11 38161.67 37191.62 31790.97 33765.52 36462.37 36179.05 36436.32 37590.96 36257.75 35268.52 32982.87 367
SixPastTwentyTwo76.04 31774.32 31881.22 33684.54 35061.43 37291.16 32089.30 35277.89 29164.04 35286.31 31148.23 33994.29 32463.54 33263.84 35887.93 318
test_vis1_rt73.96 32672.40 32978.64 35083.91 35861.16 37395.63 22268.18 40076.32 30860.09 37174.77 37429.01 38997.54 17887.74 14275.94 28177.22 384
CVMVSNet84.83 21685.57 18582.63 32991.55 25160.38 37495.13 24495.03 19780.60 24382.10 20794.71 17666.40 23690.19 36874.30 27090.32 16697.31 138
EGC-MVSNET52.46 36147.56 36467.15 36881.98 36560.11 37582.54 37372.44 3960.11 4080.70 40974.59 37525.11 39083.26 38729.04 39561.51 36458.09 393
OurMVSNet-221017-077.18 31276.06 30480.55 34183.78 36060.00 37690.35 32691.05 33577.01 30666.62 34387.92 28347.73 34594.03 32771.63 28668.44 33087.62 323
K. test v373.62 32771.59 33279.69 34482.98 36259.85 37790.85 32488.83 35577.13 30258.90 37282.11 34943.62 35691.72 35565.83 32154.10 37587.50 329
test20.0372.36 33671.15 33375.98 36077.79 37759.16 37892.40 30689.35 35174.09 32561.50 36584.32 33748.09 34085.54 38550.63 37462.15 36383.24 366
lessismore_v079.98 34380.59 36958.34 37980.87 38658.49 37483.46 34443.10 36093.89 32963.11 33448.68 38487.72 320
Syy-MVS77.97 30478.05 29077.74 35392.13 23556.85 38093.97 27494.23 24482.43 21473.39 29893.57 20257.95 29487.86 37532.40 39382.34 24188.51 303
LF4IMVS72.36 33670.82 33476.95 35579.18 37356.33 38186.12 35886.11 37269.30 35563.06 35886.66 30233.03 38392.25 34765.33 32368.64 32882.28 374
CMPMVSbinary54.94 2175.71 32174.56 31679.17 34879.69 37255.98 38289.59 32993.30 29560.28 37953.85 38389.07 26547.68 34696.33 24076.55 24681.02 24885.22 355
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PM-MVS69.32 34566.93 34776.49 35773.60 38855.84 38385.91 35979.32 39074.72 32161.09 36778.18 36621.76 39291.10 36170.86 29556.90 37182.51 371
test_fmvs279.59 29079.90 27778.67 34982.86 36355.82 38495.20 24089.55 34881.09 23380.12 23189.80 25834.31 38193.51 33787.82 14178.36 27386.69 338
RPSCF77.73 30676.63 30181.06 33888.66 30355.76 38587.77 34587.88 36364.82 36674.14 29492.79 21449.22 33896.81 22367.47 31076.88 27890.62 254
KD-MVS_self_test70.97 34269.31 34275.95 36176.24 38655.39 38687.45 34690.94 33870.20 35162.96 36077.48 36844.01 35488.09 37361.25 34153.26 37784.37 361
EU-MVSNet76.92 31476.95 29976.83 35684.10 35554.73 38791.77 31392.71 30972.74 33769.57 32988.69 27058.03 29387.43 37964.91 32570.00 31788.33 311
ambc76.02 35968.11 39351.43 38864.97 39689.59 34760.49 36974.49 37617.17 39592.46 34461.50 33952.85 37984.17 363
Gipumacopyleft45.11 36642.05 36854.30 38280.69 36851.30 38935.80 40083.81 38128.13 39627.94 40034.53 40011.41 40376.70 39621.45 39954.65 37234.90 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
mvsany_test367.19 34965.34 35172.72 36463.08 39748.57 39083.12 37178.09 39172.07 34161.21 36677.11 37022.94 39187.78 37778.59 22451.88 38181.80 377
test_fmvs369.56 34369.19 34370.67 36569.01 39147.05 39190.87 32386.81 36871.31 34766.79 34177.15 36916.40 39683.17 38881.84 19762.51 36281.79 378
DSMNet-mixed73.13 33272.45 32875.19 36277.51 37946.82 39285.09 36482.01 38567.61 36169.27 33181.33 35450.89 33086.28 38254.54 36483.80 22592.46 243
PMMVS250.90 36246.31 36564.67 37155.53 40146.67 39377.30 38571.02 39740.89 39234.16 39659.32 3919.83 40476.14 39740.09 39128.63 39971.21 386
APD_test156.56 35653.58 36065.50 36967.93 39446.51 39477.24 38672.95 39538.09 39342.75 39175.17 37313.38 39982.78 38940.19 39054.53 37367.23 390
ANet_high46.22 36341.28 37061.04 37739.91 40946.25 39570.59 39376.18 39358.87 38523.09 40148.00 39812.58 40166.54 40128.65 39613.62 40270.35 387
test_vis3_rt54.10 35951.04 36263.27 37558.16 39946.08 39684.17 36749.32 41056.48 38936.56 39449.48 3978.03 40691.91 35367.29 31149.87 38251.82 396
test_f64.01 35262.13 35569.65 36663.00 39845.30 39783.66 37080.68 38761.30 37555.70 38072.62 38214.23 39884.64 38669.84 30058.11 36879.00 381
DeepMVS_CXcopyleft64.06 37378.53 37543.26 39868.11 40269.94 35238.55 39276.14 37218.53 39479.34 39143.72 38641.62 39469.57 388
LCM-MVSNet52.52 36048.24 36365.35 37047.63 40741.45 39972.55 39283.62 38231.75 39537.66 39357.92 3939.19 40576.76 39549.26 37844.60 39077.84 383
test_method56.77 35554.53 35963.49 37476.49 38240.70 40075.68 38774.24 39419.47 40248.73 38571.89 38519.31 39365.80 40257.46 35447.51 38883.97 364
FPMVS55.09 35852.93 36161.57 37655.98 40040.51 40183.11 37283.41 38337.61 39434.95 39571.95 38414.40 39776.95 39429.81 39465.16 35267.25 389
testf145.70 36442.41 36655.58 38053.29 40440.02 40268.96 39462.67 40427.45 39729.85 39761.58 3895.98 40773.83 39928.49 39743.46 39252.90 394
APD_test245.70 36442.41 36655.58 38053.29 40440.02 40268.96 39462.67 40427.45 39729.85 39761.58 3895.98 40773.83 39928.49 39743.46 39252.90 394
MVEpermissive35.65 2233.85 36929.49 37446.92 38441.86 40836.28 40450.45 39956.52 40718.75 40318.28 40237.84 3992.41 41058.41 40318.71 40020.62 40046.06 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
WB-MVS57.26 35456.22 35760.39 37869.29 39035.91 40586.39 35770.06 39859.84 38346.46 38872.71 38151.18 32978.11 39215.19 40234.89 39767.14 391
SSC-MVS56.01 35754.96 35859.17 37968.42 39234.13 40684.98 36569.23 39958.08 38745.36 38971.67 38750.30 33577.46 39314.28 40332.33 39865.91 392
dmvs_testset72.00 33973.36 32567.91 36783.83 35931.90 40785.30 36377.12 39282.80 20763.05 35992.46 21761.54 26782.55 39042.22 38971.89 30389.29 282
PMVScopyleft34.80 2339.19 36835.53 37150.18 38329.72 41030.30 40859.60 39866.20 40326.06 39917.91 40349.53 3963.12 40974.09 39818.19 40149.40 38346.14 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt41.54 36741.93 36940.38 38520.10 41126.84 40961.93 39759.09 40614.81 40428.51 39980.58 35735.53 37848.33 40663.70 33113.11 40345.96 399
E-PMN32.70 37032.39 37233.65 38653.35 40325.70 41074.07 39053.33 40821.08 40017.17 40433.63 40211.85 40254.84 40412.98 40414.04 40120.42 401
EMVS31.70 37131.45 37332.48 38750.72 40623.95 41174.78 38952.30 40920.36 40116.08 40531.48 40312.80 40053.60 40511.39 40513.10 40419.88 402
wuyk23d14.10 37313.89 37614.72 38855.23 40222.91 41233.83 4013.56 4124.94 4054.11 4062.28 4082.06 41119.66 40710.23 4068.74 4051.59 405
N_pmnet61.30 35360.20 35664.60 37284.32 35217.00 41391.67 31610.98 41161.77 37258.45 37578.55 36549.89 33691.83 35442.27 38863.94 35784.97 357
test1239.07 37511.73 3781.11 3890.50 4130.77 41489.44 3320.20 4140.34 4072.15 40810.72 4070.34 4120.32 4081.79 4080.08 4072.23 403
testmvs9.92 37412.94 3770.84 3900.65 4120.29 41593.78 2790.39 4130.42 4062.85 40715.84 4060.17 4130.30 4092.18 4070.21 4061.91 404
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k21.43 37228.57 3750.00 3910.00 4140.00 4160.00 40295.93 1510.00 4090.00 41097.66 7463.57 2520.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas5.92 3777.89 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40971.04 2090.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.11 37610.81 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41097.30 960.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
PC_three_145291.12 3798.33 298.42 3092.51 299.81 2198.96 399.37 199.70 3
eth-test20.00 414
eth-test0.00 414
test_241102_TWO96.78 5588.72 6797.70 998.91 287.86 2199.82 1898.15 1199.00 1599.47 9
9.1494.26 3098.10 5798.14 4796.52 9584.74 15494.83 4798.80 782.80 5499.37 8095.95 4298.42 41
test_0728_THIRD88.38 7496.69 1898.76 1289.64 1399.76 3197.47 2498.84 2399.38 14
GSMVS97.54 120
sam_mvs177.59 10797.54 120
sam_mvs75.35 155
MTGPAbinary96.33 118
test_post185.88 36030.24 40473.77 17895.07 30673.89 273
test_post33.80 40176.17 13495.97 253
patchmatchnet-post77.09 37177.78 10695.39 286
MTMP97.53 9268.16 401
test9_res96.00 4199.03 1398.31 64
agg_prior294.30 6099.00 1598.57 48
test_prior298.37 4086.08 12394.57 5098.02 5383.14 5095.05 5398.79 26
旧先验296.97 14274.06 32696.10 2897.76 16588.38 137
新几何296.42 181
无先验96.87 15096.78 5577.39 29899.52 6979.95 21198.43 57
原ACMM296.84 151
testdata299.48 7376.45 248
segment_acmp82.69 55
testdata195.57 22587.44 96
plane_prior594.69 21497.30 19487.08 14882.82 23690.96 251
plane_prior494.15 189
plane_prior297.18 11989.89 55
plane_prior191.95 245
n20.00 415
nn0.00 415
door-mid79.75 389
test1196.50 98
door80.13 388
HQP-NCC92.08 23897.63 8390.52 4582.30 201
ACMP_Plane92.08 23897.63 8390.52 4582.30 201
BP-MVS87.67 144
HQP4-MVS82.30 20197.32 19291.13 249
HQP3-MVS94.80 20983.01 232
HQP2-MVS65.40 241
ACMMP++_ref78.45 272
ACMMP++79.05 264
Test By Simon71.65 202