This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS96.21 295.53 1298.26 196.26 9895.09 199.15 796.98 3493.39 1496.45 2298.79 890.17 1099.99 189.33 12199.25 699.70 3
PS-MVSNAJ94.17 2693.52 3796.10 995.65 11392.35 298.21 4295.79 14992.42 2196.24 2498.18 3671.04 20299.17 9396.77 3197.39 7596.79 152
OPU-MVS97.30 299.19 792.31 399.12 998.54 1992.06 399.84 1299.11 299.37 199.74 1
MSC_two_6792asdad97.14 399.05 992.19 496.83 4699.81 2198.08 1298.81 2499.43 11
No_MVS97.14 399.05 992.19 496.83 4699.81 2198.08 1298.81 2499.43 11
xiu_mvs_v2_base93.92 3193.26 4195.91 1095.07 13192.02 698.19 4395.68 15592.06 2596.01 2898.14 4070.83 20598.96 10796.74 3396.57 9496.76 155
DELS-MVS94.98 1394.49 2196.44 696.42 9590.59 799.21 497.02 3294.40 891.46 8497.08 10283.32 4599.69 4792.83 7798.70 3099.04 25
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS90.60 9988.64 12496.50 594.25 15690.53 893.33 28097.21 2277.59 28778.88 23197.31 9071.52 19799.69 4789.60 11698.03 5499.27 20
MM96.15 889.50 999.18 598.10 895.68 196.64 1897.92 5680.72 5999.80 2599.16 197.96 5699.15 24
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2197.10 3095.17 392.11 7698.46 2487.33 2499.97 297.21 2699.31 499.63 7
MG-MVS94.25 2593.72 3195.85 1199.38 389.35 1197.98 5798.09 989.99 4992.34 7296.97 10681.30 5698.99 10588.54 12798.88 2099.20 22
MVS_030495.36 995.20 1495.85 1194.89 13889.22 1298.83 2397.88 1194.68 495.14 3697.99 5080.80 5899.81 2198.60 497.95 5798.50 50
WTY-MVS92.65 5691.68 7195.56 1496.00 10588.90 1398.23 4197.65 1488.57 6789.82 10897.22 9679.29 7399.06 10289.57 11788.73 17698.73 39
canonicalmvs92.27 6391.22 7795.41 1695.80 11088.31 1497.09 12794.64 21288.49 6992.99 6797.31 9072.68 18398.57 12593.38 6988.58 17799.36 16
HY-MVS84.06 691.63 7590.37 9495.39 1796.12 10288.25 1590.22 31897.58 1688.33 7390.50 10191.96 21579.26 7499.06 10290.29 10989.07 17198.88 31
CANet94.89 1494.64 1995.63 1397.55 7588.12 1699.06 1496.39 10694.07 1095.34 3297.80 6576.83 11599.87 897.08 2897.64 6698.89 30
MVSFormer91.36 8290.57 8893.73 5393.00 19488.08 1794.80 24694.48 22080.74 23194.90 4197.13 9978.84 8195.10 29583.77 16997.46 7098.02 79
lupinMVS93.87 3293.58 3694.75 2793.00 19488.08 1799.15 795.50 16491.03 3594.90 4197.66 7078.84 8197.56 16794.64 5597.46 7098.62 45
PAPM92.87 4792.40 5694.30 3592.25 21987.85 1996.40 17496.38 10791.07 3488.72 12496.90 10782.11 5397.37 18490.05 11297.70 6497.67 109
alignmvs92.97 4492.26 6095.12 1995.54 11687.77 2098.67 2796.38 10788.04 7893.01 6697.45 8379.20 7698.60 12393.25 7288.76 17598.99 29
FMVSNet384.71 20782.71 22490.70 16994.55 14687.71 2195.92 19994.67 20881.73 21875.82 27188.08 27266.99 22494.47 31171.23 28275.38 27689.91 262
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2299.06 1497.12 2894.66 596.79 1498.78 986.42 2999.95 397.59 2199.18 799.00 27
xiu_mvs_v1_base_debu90.54 10089.54 11193.55 6092.31 21287.58 2396.99 13194.87 19587.23 9893.27 6097.56 7957.43 29098.32 13892.72 7893.46 13694.74 205
xiu_mvs_v1_base90.54 10089.54 11193.55 6092.31 21287.58 2396.99 13194.87 19587.23 9893.27 6097.56 7957.43 29098.32 13892.72 7893.46 13694.74 205
xiu_mvs_v1_base_debi90.54 10089.54 11193.55 6092.31 21287.58 2396.99 13194.87 19587.23 9893.27 6097.56 7957.43 29098.32 13892.72 7893.46 13694.74 205
jason92.73 5092.23 6194.21 4090.50 26387.30 2698.65 2895.09 18590.61 4092.76 6997.13 9975.28 15097.30 18793.32 7096.75 9198.02 79
jason: jason.
VNet92.11 6691.22 7794.79 2596.91 9186.98 2797.91 6197.96 1086.38 11293.65 5795.74 13470.16 21098.95 10993.39 6788.87 17498.43 55
iter_conf0590.14 10889.79 10991.17 15495.85 10986.93 2897.68 7888.67 35189.93 5081.73 20492.80 20290.37 896.03 24090.44 10580.65 24290.56 246
baseline188.85 13387.49 14892.93 8495.21 12686.85 2995.47 21894.61 21487.29 9683.11 18494.99 16280.70 6096.89 21082.28 18673.72 28395.05 197
ET-MVSNet_ETH3D90.01 11089.03 11792.95 8294.38 15386.77 3098.14 4496.31 11489.30 5763.33 34796.72 11890.09 1193.63 32690.70 10082.29 23398.46 53
3Dnovator+82.88 889.63 11787.85 13794.99 2194.49 15286.76 3197.84 6595.74 15286.10 11675.47 27696.02 12965.00 23899.51 6982.91 18497.07 8298.72 40
OpenMVScopyleft79.58 1486.09 18583.62 20993.50 6390.95 25286.71 3297.44 9695.83 14775.35 30572.64 30095.72 13557.42 29399.64 5371.41 28095.85 10794.13 215
GG-mvs-BLEND93.49 6494.94 13586.26 3381.62 36597.00 3388.32 13094.30 17591.23 596.21 23688.49 12997.43 7398.00 84
CANet_DTU90.98 9190.04 10193.83 4894.76 14186.23 3496.32 17993.12 29493.11 1693.71 5696.82 11363.08 24899.48 7184.29 16195.12 11395.77 180
test_0728_SECOND95.14 1899.04 1486.14 3599.06 1496.77 5599.84 1297.90 1598.85 2199.45 10
HPM-MVS++copyleft95.32 1095.48 1394.85 2498.62 3486.04 3697.81 6896.93 4092.45 2095.69 2998.50 2285.38 3199.85 1094.75 5299.18 798.65 43
SF-MVS94.17 2694.05 3094.55 3197.56 7485.95 3797.73 7496.43 10084.02 16795.07 3998.74 1482.93 4899.38 7695.42 4798.51 3498.32 60
cascas86.50 17884.48 19592.55 9992.64 20785.95 3797.04 13095.07 18775.32 30680.50 21391.02 23054.33 31497.98 14886.79 14787.62 18593.71 223
SMA-MVScopyleft94.70 1894.68 1894.76 2698.02 5985.94 3997.47 9396.77 5585.32 13097.92 398.70 1583.09 4799.84 1295.79 4099.08 1098.49 51
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
QAPM86.88 17284.51 19393.98 4494.04 16585.89 4097.19 11296.05 13373.62 31975.12 27995.62 14062.02 25599.74 3770.88 28696.06 10396.30 171
gg-mvs-nofinetune85.48 19782.90 22093.24 7194.51 15185.82 4179.22 36996.97 3661.19 36787.33 13953.01 38590.58 696.07 23986.07 14997.23 7997.81 100
131488.94 12987.20 15594.17 4193.21 18685.73 4293.33 28096.64 7582.89 19675.98 26796.36 12266.83 22699.39 7583.52 17896.02 10497.39 130
3Dnovator82.32 1089.33 12287.64 14294.42 3393.73 17285.70 4397.73 7496.75 5986.73 11176.21 26495.93 13062.17 25299.68 4981.67 19097.81 6197.88 91
DeepC-MVS_fast89.06 294.48 2194.30 2695.02 2098.86 2185.68 4498.06 5396.64 7593.64 1291.74 8298.54 1980.17 6799.90 592.28 8298.75 2899.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
thres20088.92 13087.65 14192.73 9196.30 9685.62 4597.85 6498.86 184.38 15784.82 16293.99 18475.12 15398.01 14770.86 28786.67 19194.56 210
test1294.25 3798.34 4685.55 4696.35 11192.36 7180.84 5799.22 8598.31 4797.98 86
LFMVS89.27 12487.64 14294.16 4397.16 8885.52 4797.18 11394.66 20979.17 26889.63 11296.57 12055.35 30798.22 14289.52 11989.54 16798.74 35
FMVSNet282.79 24180.44 25789.83 19592.66 20485.43 4895.42 22094.35 22979.06 27174.46 28387.28 28156.38 30294.31 31469.72 29474.68 28089.76 264
DVP-MVS++96.05 496.41 394.96 2299.05 985.34 4998.13 4796.77 5588.38 7197.70 698.77 1092.06 399.84 1297.47 2299.37 199.70 3
IU-MVS99.03 1585.34 4996.86 4592.05 2698.74 198.15 998.97 1799.42 13
nrg03086.79 17585.43 17790.87 16488.76 28885.34 4997.06 12994.33 23184.31 15880.45 21591.98 21472.36 18696.36 23088.48 13071.13 29690.93 243
tfpn200view988.48 14387.15 15692.47 10096.21 9985.30 5297.44 9698.85 283.37 18483.99 17193.82 18775.36 14697.93 14969.04 29586.24 19894.17 212
thres40088.42 14687.15 15692.23 11496.21 9985.30 5297.44 9698.85 283.37 18483.99 17193.82 18775.36 14697.93 14969.04 29586.24 19893.45 228
DVP-MVScopyleft95.58 895.91 994.57 3099.05 985.18 5499.06 1496.46 9688.75 6296.69 1598.76 1287.69 2299.76 3097.90 1598.85 2198.77 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.05 985.18 5499.11 1296.78 4988.75 6297.65 998.91 287.69 22
test_yl91.46 7990.53 8994.24 3897.41 8085.18 5498.08 5097.72 1280.94 22689.85 10696.14 12675.61 13598.81 11790.42 10788.56 17898.74 35
DCV-MVSNet91.46 7990.53 8994.24 3897.41 8085.18 5498.08 5097.72 1280.94 22689.85 10696.14 12675.61 13598.81 11790.42 10788.56 17898.74 35
thres600view788.06 15486.70 16692.15 12096.10 10385.17 5897.14 12098.85 282.70 20183.41 17993.66 19175.43 14397.82 15667.13 30485.88 20293.45 228
NCCC95.63 695.94 894.69 2899.21 685.15 5999.16 696.96 3794.11 995.59 3098.64 1785.07 3399.91 495.61 4399.10 999.00 27
test_part298.90 1985.14 6096.07 26
SED-MVS95.88 596.22 494.87 2399.03 1585.03 6199.12 996.78 4988.72 6497.79 498.91 288.48 1799.82 1898.15 998.97 1799.74 1
test_241102_ONE99.03 1585.03 6196.78 4988.72 6497.79 498.90 588.48 1799.82 18
DP-MVS Recon91.72 7390.85 8294.34 3499.50 185.00 6398.51 3395.96 13980.57 23588.08 13397.63 7676.84 11399.89 785.67 15194.88 11498.13 74
MVS_Test90.29 10689.18 11693.62 5795.23 12484.93 6494.41 25194.66 20984.31 15890.37 10491.02 23075.13 15297.82 15683.11 18294.42 12198.12 75
thres100view90088.30 14986.95 16292.33 10896.10 10384.90 6597.14 12098.85 282.69 20283.41 17993.66 19175.43 14397.93 14969.04 29586.24 19894.17 212
DPE-MVScopyleft95.32 1095.55 1194.64 2998.79 2384.87 6697.77 7096.74 6086.11 11596.54 2198.89 688.39 1999.74 3797.67 2099.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PAPR92.74 4992.17 6394.45 3298.89 2084.87 6697.20 11196.20 12287.73 8688.40 12898.12 4178.71 8499.76 3087.99 13496.28 9798.74 35
MVSTER89.25 12588.92 12290.24 18195.98 10684.66 6896.79 14995.36 17487.19 10180.33 21790.61 23890.02 1295.97 24585.38 15478.64 25890.09 258
SD-MVS94.84 1595.02 1694.29 3697.87 6484.61 6997.76 7296.19 12489.59 5496.66 1798.17 3984.33 3699.60 5796.09 3598.50 3698.66 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_one_060198.91 1884.56 7096.70 6588.06 7796.57 2098.77 1088.04 20
iter_conf_final89.51 11889.21 11590.39 17695.60 11484.44 7197.22 10789.09 34489.11 6082.07 19892.80 20287.03 2596.03 24089.10 12380.89 23890.70 244
EPNet94.06 2994.15 2893.76 5097.27 8784.35 7298.29 3997.64 1594.57 695.36 3196.88 10979.96 6999.12 9891.30 9096.11 10197.82 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IB-MVS85.34 488.67 13887.14 15893.26 7093.12 19284.32 7398.76 2497.27 2087.19 10179.36 22890.45 24083.92 4298.53 12784.41 16069.79 30996.93 146
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ACMMP_NAP93.46 3693.23 4294.17 4197.16 8884.28 7496.82 14796.65 7286.24 11394.27 5097.99 5077.94 9499.83 1693.39 6798.57 3398.39 57
thisisatest051590.95 9390.26 9593.01 8094.03 16784.27 7597.91 6196.67 6983.18 18786.87 14595.51 14488.66 1697.85 15580.46 19789.01 17296.92 148
TSAR-MVS + MP.94.79 1795.17 1593.64 5597.66 6984.10 7695.85 20596.42 10191.26 3197.49 1096.80 11486.50 2898.49 12995.54 4599.03 1398.33 59
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSLP-MVS++94.28 2394.39 2493.97 4598.30 4984.06 7798.64 2996.93 4090.71 3893.08 6598.70 1579.98 6899.21 8694.12 6099.07 1198.63 44
CDPH-MVS93.12 4092.91 4693.74 5198.65 3083.88 7897.67 7996.26 11683.00 19493.22 6398.24 3381.31 5599.21 8689.12 12298.74 2998.14 73
PVSNet_BlendedMVS90.05 10989.96 10490.33 17997.47 7683.86 7998.02 5696.73 6187.98 7989.53 11489.61 25276.42 12299.57 6294.29 5779.59 24987.57 317
PVSNet_Blended93.13 3992.98 4593.57 5997.47 7683.86 7999.32 196.73 6191.02 3689.53 11496.21 12576.42 12299.57 6294.29 5795.81 10897.29 135
sss90.87 9589.96 10493.60 5894.15 15983.84 8197.14 12098.13 785.93 12089.68 11096.09 12871.67 19499.30 8187.69 13789.16 17097.66 110
TEST998.64 3183.71 8297.82 6696.65 7284.29 16295.16 3398.09 4384.39 3599.36 79
train_agg94.28 2394.45 2293.74 5198.64 3183.71 8297.82 6696.65 7284.50 15395.16 3398.09 4384.33 3699.36 7995.91 3998.96 1998.16 71
ab-mvs87.08 16884.94 18893.48 6593.34 18583.67 8488.82 32695.70 15481.18 22384.55 16790.14 24762.72 24998.94 11185.49 15382.54 23097.85 95
test_898.63 3383.64 8597.81 6896.63 7784.50 15395.10 3798.11 4284.33 3699.23 84
casdiffmvs_mvgpermissive91.13 8890.45 9193.17 7492.99 19783.58 8697.46 9594.56 21787.69 8787.19 14294.98 16374.50 16397.60 16491.88 8892.79 14398.34 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CHOSEN 1792x268891.07 9090.21 9793.64 5595.18 12783.53 8796.26 18296.13 12688.92 6184.90 16193.10 20072.86 18199.62 5688.86 12495.67 10997.79 101
Effi-MVS+90.70 9789.90 10793.09 7793.61 17383.48 8895.20 23092.79 29983.22 18691.82 8095.70 13671.82 19397.48 17791.25 9193.67 13298.32 60
VPNet84.69 20882.92 21990.01 18689.01 28783.45 8996.71 15595.46 16785.71 12379.65 22492.18 21056.66 29996.01 24483.05 18367.84 32990.56 246
APDe-MVScopyleft94.56 2094.75 1793.96 4698.84 2283.40 9098.04 5596.41 10285.79 12295.00 4098.28 3284.32 3999.18 9297.35 2498.77 2799.28 19
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
save fliter98.24 5183.34 9198.61 3196.57 8491.32 30
SDMVSNet87.02 16985.61 17491.24 15194.14 16083.30 9293.88 26895.98 13784.30 16079.63 22592.01 21158.23 28197.68 16090.28 11182.02 23492.75 231
APD-MVScopyleft93.61 3493.59 3593.69 5498.76 2483.26 9397.21 10996.09 12982.41 20894.65 4698.21 3481.96 5498.81 11794.65 5498.36 4599.01 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ZD-MVS99.09 883.22 9496.60 8182.88 19793.61 5998.06 4882.93 4899.14 9595.51 4698.49 37
agg_prior98.59 3583.13 9596.56 8694.19 5199.16 94
PCF-MVS84.09 586.77 17685.00 18792.08 12192.06 23183.07 9692.14 29994.47 22279.63 25876.90 25094.78 16671.15 20099.20 9072.87 27191.05 16093.98 218
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TSAR-MVS + GP.94.35 2294.50 2093.89 4797.38 8483.04 9798.10 4995.29 17991.57 2893.81 5597.45 8386.64 2799.43 7496.28 3494.01 12699.20 22
API-MVS90.18 10788.97 11993.80 4998.66 2882.95 9897.50 9295.63 15875.16 30886.31 14897.69 6872.49 18599.90 581.26 19296.07 10298.56 47
MVS_111021_HR93.41 3793.39 4093.47 6797.34 8582.83 9997.56 8698.27 689.16 5989.71 10997.14 9879.77 7099.56 6493.65 6597.94 5898.02 79
CHOSEN 280x42091.71 7491.85 6791.29 14994.94 13582.69 10087.89 33596.17 12585.94 11987.27 14094.31 17490.27 995.65 26794.04 6195.86 10695.53 186
VPA-MVSNet85.32 19883.83 20489.77 19890.25 26682.63 10196.36 17697.07 3183.03 19381.21 20789.02 25761.58 25996.31 23285.02 15770.95 29890.36 249
baseline90.76 9690.10 10092.74 9092.90 20082.56 10294.60 24894.56 21787.69 8789.06 12095.67 13873.76 17297.51 17490.43 10692.23 15298.16 71
MP-MVS-pluss92.58 5892.35 5793.29 6997.30 8682.53 10396.44 17096.04 13484.68 14889.12 11898.37 2777.48 10399.74 3793.31 7198.38 4397.59 116
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
casdiffmvspermissive90.95 9390.39 9292.63 9692.82 20182.53 10396.83 14594.47 22287.69 8788.47 12695.56 14374.04 16997.54 17190.90 9692.74 14497.83 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive91.17 8790.74 8592.44 10393.11 19382.50 10596.25 18393.62 27287.79 8490.40 10395.93 13073.44 17797.42 17993.62 6692.55 14697.41 128
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test250690.96 9290.39 9292.65 9493.54 17682.46 10696.37 17597.35 1886.78 10987.55 13695.25 14777.83 9897.50 17584.07 16394.80 11597.98 86
PVSNet_Blended_VisFu91.24 8590.77 8492.66 9395.09 12982.40 10797.77 7095.87 14688.26 7486.39 14793.94 18576.77 11699.27 8288.80 12694.00 12796.31 170
test_prior482.34 10897.75 73
PatchmatchNetpermissive86.83 17485.12 18591.95 12894.12 16282.27 10986.55 34695.64 15784.59 15182.98 18684.99 32377.26 10595.96 24868.61 29891.34 15997.64 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS87.47 16685.90 17292.18 11795.41 11982.26 11087.00 34296.28 11585.88 12184.23 16885.57 31175.07 15496.26 23371.14 28592.50 14798.03 78
fmvsm_s_conf0.5_n93.69 3394.13 2992.34 10694.56 14582.01 11199.07 1397.13 2692.09 2396.25 2398.53 2176.47 12099.80 2598.39 694.71 11795.22 195
GBi-Net82.42 24780.43 25888.39 22092.66 20481.95 11294.30 25793.38 28179.06 27175.82 27185.66 30756.38 30293.84 32171.23 28275.38 27689.38 269
test182.42 24780.43 25888.39 22092.66 20481.95 11294.30 25793.38 28179.06 27175.82 27185.66 30756.38 30293.84 32171.23 28275.38 27689.38 269
FMVSNet179.50 28276.54 29288.39 22088.47 29381.95 11294.30 25793.38 28173.14 32472.04 30585.66 30743.86 34693.84 32165.48 31372.53 28989.38 269
fmvsm_s_conf0.1_n92.93 4593.16 4492.24 11390.52 26281.92 11598.42 3596.24 11891.17 3296.02 2798.35 2975.34 14999.74 3797.84 1894.58 11995.05 197
test_prior93.09 7798.68 2681.91 11696.40 10499.06 10298.29 64
ETV-MVS92.72 5292.87 4792.28 11294.54 14781.89 11797.98 5795.21 18289.77 5393.11 6496.83 11177.23 10997.50 17595.74 4195.38 11197.44 126
DeepC-MVS86.58 391.53 7891.06 8192.94 8394.52 14881.89 11795.95 19795.98 13790.76 3783.76 17796.76 11573.24 17999.71 4391.67 8996.96 8397.22 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SCA85.63 19383.64 20891.60 14292.30 21581.86 11992.88 29195.56 16084.85 14282.52 18785.12 32158.04 28395.39 27873.89 26587.58 18797.54 117
VDDNet86.44 17984.51 19392.22 11591.56 24081.83 12097.10 12694.64 21269.50 34587.84 13495.19 15248.01 33497.92 15489.82 11486.92 18996.89 149
ZNCC-MVS92.75 4892.60 5393.23 7298.24 5181.82 12197.63 8096.50 9285.00 14191.05 9397.74 6778.38 8799.80 2590.48 10298.34 4698.07 77
PAPM_NR91.46 7990.82 8393.37 6898.50 4081.81 12295.03 24096.13 12684.65 14986.10 15197.65 7479.24 7599.75 3583.20 18096.88 8698.56 47
PHI-MVS93.59 3593.63 3493.48 6598.05 5881.76 12398.64 2997.13 2682.60 20494.09 5398.49 2380.35 6299.85 1094.74 5398.62 3298.83 32
114514_t88.79 13687.57 14692.45 10198.21 5381.74 12496.99 13195.45 16875.16 30882.48 18895.69 13768.59 21598.50 12880.33 19895.18 11297.10 142
MDTV_nov1_ep13_2view81.74 12486.80 34380.65 23385.65 15374.26 16576.52 23996.98 144
fmvsm_s_conf0.5_n_a93.34 3893.71 3292.22 11593.38 18481.71 12698.86 2296.98 3491.64 2796.85 1398.55 1875.58 13899.77 2997.88 1793.68 13195.18 196
mvs_anonymous88.68 13787.62 14491.86 13194.80 14081.69 12793.53 27694.92 19282.03 21578.87 23290.43 24175.77 13395.34 28185.04 15693.16 14098.55 49
GST-MVS92.43 6192.22 6293.04 7998.17 5481.64 12897.40 10296.38 10784.71 14790.90 9697.40 8877.55 10299.76 3089.75 11597.74 6397.72 105
fmvsm_s_conf0.1_n_a92.38 6292.49 5592.06 12388.08 29881.62 12997.97 5996.01 13590.62 3996.58 1998.33 3074.09 16899.71 4397.23 2593.46 13694.86 201
新几何193.12 7597.44 7881.60 13096.71 6474.54 31391.22 9197.57 7879.13 7799.51 6977.40 23198.46 3898.26 67
PVSNet82.34 989.02 12787.79 13992.71 9295.49 11781.50 13197.70 7697.29 1987.76 8585.47 15595.12 15756.90 29698.90 11380.33 19894.02 12597.71 107
XXY-MVS83.84 22282.00 23489.35 20287.13 30981.38 13295.72 20894.26 23480.15 24875.92 26990.63 23761.96 25796.52 22578.98 21473.28 28890.14 254
SteuartSystems-ACMMP94.13 2894.44 2393.20 7395.41 11981.35 13399.02 1896.59 8289.50 5594.18 5298.36 2883.68 4499.45 7394.77 5198.45 3998.81 33
Skip Steuart: Steuart Systems R&D Blog.
NR-MVSNet83.35 22981.52 24288.84 21188.76 28881.31 13494.45 25095.16 18384.65 14967.81 32590.82 23470.36 20894.87 30174.75 25666.89 33890.33 251
EI-MVSNet-Vis-set91.84 7091.77 7092.04 12597.60 7181.17 13596.61 15996.87 4388.20 7589.19 11797.55 8278.69 8599.14 9590.29 10990.94 16195.80 179
test_fmvsmconf_n93.99 3094.36 2592.86 8592.82 20181.12 13699.26 396.37 11093.47 1395.16 3398.21 3479.00 7899.64 5398.21 896.73 9297.83 97
HFP-MVS92.89 4692.86 4892.98 8198.71 2581.12 13697.58 8496.70 6585.20 13591.75 8197.97 5578.47 8699.71 4390.95 9398.41 4198.12 75
test_fmvsmvis_n_192092.12 6592.10 6592.17 11890.87 25581.04 13898.34 3893.90 25492.71 1887.24 14197.90 5974.83 15699.72 4196.96 2996.20 9895.76 181
MDTV_nov1_ep1383.69 20594.09 16381.01 13986.78 34496.09 12983.81 17684.75 16384.32 32874.44 16496.54 22463.88 32085.07 210
baseline290.39 10390.21 9790.93 16090.86 25680.99 14095.20 23097.41 1786.03 11880.07 22294.61 16990.58 697.47 17887.29 14189.86 16694.35 211
1112_ss88.60 14187.47 15092.00 12793.21 18680.97 14196.47 16792.46 30283.64 18180.86 21097.30 9280.24 6597.62 16377.60 22685.49 20697.40 129
test_fmvsm_n_192094.81 1695.60 1092.45 10195.29 12380.96 14299.29 297.21 2294.50 797.29 1198.44 2582.15 5299.78 2898.56 597.68 6596.61 159
CDS-MVSNet89.50 11988.96 12091.14 15691.94 23680.93 14397.09 12795.81 14884.26 16384.72 16494.20 17980.31 6395.64 26883.37 17988.96 17396.85 151
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Test_1112_low_res88.03 15586.73 16491.94 12993.15 18980.88 14496.44 17092.41 30483.59 18380.74 21291.16 22880.18 6697.59 16577.48 22985.40 20797.36 131
MTAPA92.45 6092.31 5892.86 8597.90 6180.85 14592.88 29196.33 11287.92 8190.20 10598.18 3676.71 11899.76 3092.57 8198.09 5197.96 89
test_fmvsmconf0.1_n93.08 4293.22 4392.65 9488.45 29480.81 14699.00 1995.11 18493.21 1594.00 5497.91 5876.84 11399.59 5897.91 1496.55 9597.54 117
thisisatest053089.65 11689.02 11891.53 14393.46 18280.78 14796.52 16496.67 6981.69 21983.79 17694.90 16488.85 1597.68 16077.80 22087.49 18896.14 173
HyFIR lowres test89.36 12188.60 12591.63 14194.91 13780.76 14895.60 21495.53 16182.56 20584.03 17091.24 22778.03 9396.81 21687.07 14488.41 18097.32 132
EI-MVSNet-UG-set91.35 8391.22 7791.73 13697.39 8280.68 14996.47 16796.83 4687.92 8188.30 13197.36 8977.84 9799.13 9789.43 12089.45 16895.37 190
MIMVSNet79.18 28675.99 29588.72 21587.37 30880.66 15079.96 36691.82 31177.38 29074.33 28481.87 34241.78 35590.74 35566.36 31183.10 22194.76 204
CSCG92.02 6791.65 7293.12 7598.53 3680.59 15197.47 9397.18 2577.06 29684.64 16697.98 5383.98 4199.52 6790.72 9997.33 7699.23 21
ACMMPR92.69 5492.67 5192.75 8998.66 2880.57 15297.58 8496.69 6785.20 13591.57 8397.92 5677.01 11099.67 5190.95 9398.41 4198.00 84
FA-MVS(test-final)87.71 16286.23 16992.17 11894.19 15880.55 15387.16 34196.07 13282.12 21385.98 15288.35 26772.04 19298.49 12980.26 20089.87 16597.48 125
UniMVSNet (Re)85.31 19984.23 19988.55 21789.75 27680.55 15396.72 15396.89 4285.42 12878.40 23588.93 25875.38 14595.52 27578.58 21768.02 32689.57 266
CLD-MVS87.97 15787.48 14989.44 20192.16 22480.54 15598.14 4494.92 19291.41 2979.43 22795.40 14662.34 25197.27 19090.60 10182.90 22590.50 248
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
region2R92.72 5292.70 5092.79 8898.68 2680.53 15697.53 8896.51 9085.22 13391.94 7997.98 5377.26 10599.67 5190.83 9798.37 4498.18 69
pmmvs482.54 24580.79 24987.79 23486.11 32180.49 15793.55 27593.18 29177.29 29173.35 29289.40 25465.26 23795.05 29975.32 25273.61 28487.83 311
WR-MVS84.32 21582.96 21888.41 21989.38 28580.32 15896.59 16096.25 11783.97 16976.63 25390.36 24267.53 21994.86 30275.82 24870.09 30790.06 260
XVS92.69 5492.71 4992.63 9698.52 3780.29 15997.37 10396.44 9887.04 10391.38 8597.83 6477.24 10799.59 5890.46 10398.07 5298.02 79
X-MVStestdata86.26 18384.14 20292.63 9698.52 3780.29 15997.37 10396.44 9887.04 10391.38 8520.73 39677.24 10799.59 5890.46 10398.07 5298.02 79
GA-MVS85.79 19184.04 20391.02 15989.47 28380.27 16196.90 14294.84 19885.57 12580.88 20989.08 25556.56 30096.47 22777.72 22385.35 20896.34 167
BH-RMVSNet86.84 17385.28 18091.49 14495.35 12180.26 16296.95 13892.21 30682.86 19881.77 20395.46 14559.34 27397.64 16269.79 29393.81 13096.57 161
FIs86.73 17786.10 17088.61 21690.05 27280.21 16396.14 19096.95 3885.56 12778.37 23692.30 20876.73 11795.28 28579.51 20779.27 25290.35 250
TESTMET0.1,189.83 11389.34 11491.31 14792.54 20980.19 16497.11 12396.57 8486.15 11486.85 14691.83 21979.32 7296.95 20681.30 19192.35 15096.77 154
VDD-MVS88.28 15087.02 16192.06 12395.09 12980.18 16597.55 8794.45 22483.09 19089.10 11995.92 13247.97 33598.49 12993.08 7686.91 19097.52 122
test_fmvsmconf0.01_n91.08 8990.68 8692.29 11182.43 35480.12 16697.94 6093.93 25092.07 2491.97 7797.60 7767.56 21899.53 6697.09 2795.56 11097.21 138
MSP-MVS95.62 796.54 192.86 8598.31 4880.10 16797.42 10096.78 4992.20 2297.11 1298.29 3193.46 199.10 9996.01 3699.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
AdaColmapbinary88.81 13487.61 14592.39 10599.33 479.95 16896.70 15795.58 15977.51 28883.05 18596.69 11961.90 25899.72 4184.29 16193.47 13597.50 123
tpmrst88.36 14787.38 15291.31 14794.36 15479.92 16987.32 33995.26 18185.32 13088.34 12986.13 30580.60 6196.70 22083.78 16885.34 20997.30 134
CP-MVS92.54 5992.60 5392.34 10698.50 4079.90 17098.40 3696.40 10484.75 14490.48 10298.09 4377.40 10499.21 8691.15 9298.23 5097.92 90
FE-MVS86.06 18684.15 20191.78 13594.33 15579.81 17184.58 35796.61 7876.69 29885.00 15987.38 28070.71 20698.37 13770.39 29091.70 15797.17 140
ADS-MVSNet81.26 26478.36 27789.96 19093.78 16979.78 17279.48 36793.60 27373.09 32580.14 21979.99 35262.15 25395.24 28759.49 33683.52 21694.85 202
miper_enhance_ethall85.95 18885.20 18188.19 22894.85 13979.76 17396.00 19494.06 24782.98 19577.74 24188.76 26079.42 7195.46 27780.58 19672.42 29089.36 272
CR-MVSNet83.53 22781.36 24490.06 18590.16 26979.75 17479.02 37191.12 32284.24 16482.27 19580.35 35075.45 14193.67 32563.37 32486.25 19696.75 156
RPMNet79.85 27775.92 29691.64 13990.16 26979.75 17479.02 37195.44 16958.43 37782.27 19572.55 37473.03 18098.41 13646.10 37586.25 19696.75 156
PGM-MVS91.93 6891.80 6992.32 11098.27 5079.74 17695.28 22497.27 2083.83 17590.89 9797.78 6676.12 12899.56 6488.82 12597.93 6097.66 110
dcpmvs_293.10 4193.46 3992.02 12697.77 6579.73 17794.82 24493.86 25786.91 10591.33 8896.76 11585.20 3298.06 14696.90 3097.60 6798.27 66
MP-MVScopyleft92.61 5792.67 5192.42 10498.13 5679.73 17797.33 10596.20 12285.63 12490.53 10097.66 7078.14 9299.70 4692.12 8498.30 4897.85 95
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
v2v48283.46 22881.86 23688.25 22586.19 31979.65 17996.34 17894.02 24881.56 22077.32 24488.23 26965.62 23196.03 24077.77 22169.72 31189.09 280
gm-plane-assit92.27 21679.64 18084.47 15595.15 15597.93 14985.81 150
旧先验197.39 8279.58 18196.54 8798.08 4684.00 4097.42 7497.62 114
KD-MVS_2432*160077.63 29774.92 30285.77 27590.86 25679.44 18288.08 33293.92 25276.26 30067.05 32982.78 33872.15 19091.92 34261.53 32841.62 38585.94 341
miper_refine_blended77.63 29774.92 30285.77 27590.86 25679.44 18288.08 33293.92 25276.26 30067.05 32982.78 33872.15 19091.92 34261.53 32841.62 38585.94 341
ECVR-MVScopyleft88.35 14887.25 15491.65 13893.54 17679.40 18496.56 16390.78 33086.78 10985.57 15495.25 14757.25 29497.56 16784.73 15994.80 11597.98 86
UniMVSNet_NR-MVSNet85.49 19684.59 19188.21 22789.44 28479.36 18596.71 15596.41 10285.22 13378.11 23890.98 23276.97 11295.14 29279.14 21268.30 32390.12 255
DU-MVS84.57 21183.33 21488.28 22388.76 28879.36 18596.43 17295.41 17385.42 12878.11 23890.82 23467.61 21695.14 29279.14 21268.30 32390.33 251
CNLPA86.96 17085.37 17991.72 13797.59 7279.34 18797.21 10991.05 32574.22 31478.90 23096.75 11767.21 22398.95 10974.68 25790.77 16296.88 150
tfpnnormal78.14 29175.42 29886.31 26888.33 29679.24 18894.41 25196.22 12073.51 32069.81 31985.52 31355.43 30695.75 26047.65 37367.86 32883.95 356
HPM-MVScopyleft91.62 7691.53 7491.89 13097.88 6379.22 18996.99 13195.73 15382.07 21489.50 11697.19 9775.59 13798.93 11290.91 9597.94 5897.54 117
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TAMVS88.48 14387.79 13990.56 17291.09 25079.18 19096.45 16995.88 14483.64 18183.12 18393.33 19575.94 13195.74 26382.40 18588.27 18196.75 156
Fast-Effi-MVS+87.93 15886.94 16390.92 16194.04 16579.16 19198.26 4093.72 26881.29 22283.94 17492.90 20169.83 21196.68 22176.70 23791.74 15696.93 146
CostFormer89.08 12688.39 12991.15 15593.13 19179.15 19288.61 32996.11 12883.14 18889.58 11386.93 28983.83 4396.87 21288.22 13385.92 20197.42 127
UGNet87.73 16186.55 16791.27 15095.16 12879.11 19396.35 17796.23 11988.14 7687.83 13590.48 23950.65 32499.09 10080.13 20394.03 12495.60 184
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MS-PatchMatch83.05 23681.82 23786.72 26389.64 27979.10 19494.88 24394.59 21679.70 25770.67 31389.65 25150.43 32696.82 21570.82 28995.99 10584.25 353
V4283.04 23781.53 24187.57 24386.27 31879.09 19595.87 20394.11 24480.35 24377.22 24686.79 29265.32 23696.02 24377.74 22270.14 30387.61 316
v114482.90 24081.27 24587.78 23586.29 31779.07 19696.14 19093.93 25080.05 25077.38 24286.80 29165.50 23295.93 25075.21 25370.13 30488.33 303
v881.88 25680.06 26487.32 24986.63 31279.04 19794.41 25193.65 27178.77 27573.19 29585.57 31166.87 22595.81 25673.84 26767.61 33187.11 325
v1081.43 26279.53 27087.11 25486.38 31478.87 19894.31 25693.43 27977.88 28373.24 29485.26 31565.44 23395.75 26072.14 27667.71 33086.72 329
cl2285.11 20284.17 20087.92 23295.06 13378.82 19995.51 21694.22 23779.74 25676.77 25187.92 27475.96 13095.68 26479.93 20572.42 29089.27 274
Vis-MVSNetpermissive88.67 13887.82 13891.24 15192.68 20378.82 19996.95 13893.85 25887.55 9087.07 14495.13 15663.43 24697.21 19277.58 22796.15 10097.70 108
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TranMVSNet+NR-MVSNet83.24 23381.71 23887.83 23387.71 30378.81 20196.13 19294.82 19984.52 15276.18 26590.78 23664.07 24394.60 30774.60 26066.59 34090.09 258
test111188.11 15387.04 16091.35 14693.15 18978.79 20296.57 16190.78 33086.88 10785.04 15895.20 15157.23 29597.39 18283.88 16694.59 11897.87 93
MVS_111021_LR91.60 7791.64 7391.47 14595.74 11178.79 20296.15 18996.77 5588.49 6988.64 12597.07 10372.33 18799.19 9193.13 7596.48 9696.43 164
tpm287.35 16786.26 16890.62 17092.93 19978.67 20488.06 33495.99 13679.33 26387.40 13786.43 30080.28 6496.40 22880.23 20185.73 20596.79 152
mPP-MVS91.88 6991.82 6892.07 12298.38 4478.63 20597.29 10696.09 12985.12 13788.45 12797.66 7075.53 13999.68 4989.83 11398.02 5597.88 91
BH-w/o88.24 15187.47 15090.54 17395.03 13478.54 20697.41 10193.82 25984.08 16578.23 23794.51 17269.34 21397.21 19280.21 20294.58 11995.87 178
HQP5-MVS78.48 207
DP-MVS81.47 26178.28 27891.04 15798.14 5578.48 20795.09 23986.97 35761.14 36871.12 31092.78 20559.59 26999.38 7653.11 35986.61 19295.27 194
HQP-MVS87.91 15987.55 14788.98 20992.08 22878.48 20797.63 8094.80 20090.52 4182.30 19194.56 17065.40 23497.32 18587.67 13883.01 22291.13 239
v119282.31 25080.55 25687.60 24085.94 32378.47 21095.85 20593.80 26279.33 26376.97 24986.51 29563.33 24795.87 25373.11 27070.13 30488.46 299
SR-MVS92.16 6492.27 5991.83 13498.37 4578.41 21196.67 15895.76 15082.19 21291.97 7798.07 4776.44 12198.64 12193.71 6497.27 7898.45 54
Anonymous20240521184.41 21481.93 23591.85 13396.78 9378.41 21197.44 9691.34 32070.29 34184.06 16994.26 17641.09 35998.96 10779.46 20882.65 22998.17 70
test22296.15 10178.41 21195.87 20396.46 9671.97 33389.66 11197.45 8376.33 12598.24 4998.30 63
MVP-Stereo82.65 24481.67 23985.59 28286.10 32278.29 21493.33 28092.82 29877.75 28569.17 32387.98 27359.28 27495.76 25971.77 27796.88 8682.73 361
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Anonymous2024052983.15 23480.60 25590.80 16595.74 11178.27 21596.81 14894.92 19260.10 37281.89 20192.54 20645.82 34398.82 11679.25 21178.32 26595.31 192
miper_ehance_all_eth84.57 21183.60 21087.50 24592.64 20778.25 21695.40 22293.47 27779.28 26676.41 25887.64 27776.53 11995.24 28778.58 21772.42 29089.01 285
ppachtmachnet_test77.19 30174.22 30986.13 27285.39 33178.22 21793.98 26491.36 31971.74 33567.11 32884.87 32456.67 29893.37 33152.21 36064.59 34486.80 328
v14419282.43 24680.73 25287.54 24485.81 32678.22 21795.98 19593.78 26479.09 27077.11 24786.49 29664.66 24295.91 25174.20 26369.42 31288.49 297
NP-MVS92.04 23278.22 21794.56 170
ACMMPcopyleft90.39 10389.97 10391.64 13997.58 7378.21 22096.78 15096.72 6384.73 14684.72 16497.23 9571.22 19999.63 5588.37 13292.41 14997.08 143
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MAR-MVS90.63 9890.22 9691.86 13198.47 4278.20 22197.18 11396.61 7883.87 17488.18 13298.18 3668.71 21499.75 3583.66 17497.15 8097.63 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
tpm cat183.63 22681.38 24390.39 17693.53 18178.19 22285.56 35395.09 18570.78 33978.51 23483.28 33674.80 15797.03 20166.77 30584.05 21495.95 175
原ACMM191.22 15397.77 6578.10 22396.61 7881.05 22591.28 9097.42 8777.92 9698.98 10679.85 20698.51 3496.59 160
FC-MVSNet-test85.96 18785.39 17887.66 23889.38 28578.02 22495.65 21296.87 4385.12 13777.34 24391.94 21776.28 12694.74 30477.09 23278.82 25690.21 253
FOURS198.51 3978.01 22598.13 4796.21 12183.04 19294.39 49
dp84.30 21682.31 22990.28 18094.24 15777.97 22686.57 34595.53 16179.94 25380.75 21185.16 31971.49 19896.39 22963.73 32183.36 21996.48 163
tpmvs83.04 23780.77 25089.84 19495.43 11877.96 22785.59 35295.32 17875.31 30776.27 26283.70 33373.89 17097.41 18059.53 33581.93 23694.14 214
HQP_MVS87.50 16587.09 15988.74 21491.86 23777.96 22797.18 11394.69 20589.89 5181.33 20594.15 18064.77 24097.30 18787.08 14282.82 22690.96 241
plane_prior77.96 22797.52 9190.36 4682.96 224
v192192082.02 25480.23 26087.41 24785.62 32877.92 23095.79 20793.69 26978.86 27476.67 25286.44 29862.50 25095.83 25572.69 27269.77 31088.47 298
plane_prior691.98 23377.92 23064.77 240
OMC-MVS88.80 13588.16 13390.72 16895.30 12277.92 23094.81 24594.51 21986.80 10884.97 16096.85 11067.53 21998.60 12385.08 15587.62 18595.63 183
patch_mono-295.14 1296.08 792.33 10898.44 4377.84 23398.43 3497.21 2292.58 1997.68 897.65 7486.88 2699.83 1698.25 797.60 6799.33 17
OPM-MVS85.84 18985.10 18688.06 22988.34 29577.83 23495.72 20894.20 23887.89 8380.45 21594.05 18258.57 27897.26 19183.88 16682.76 22889.09 280
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
sd_testset84.62 20983.11 21789.17 20494.14 16077.78 23591.54 30994.38 22884.30 16079.63 22592.01 21152.28 31996.98 20477.67 22582.02 23492.75 231
EC-MVSNet91.73 7192.11 6490.58 17193.54 17677.77 23698.07 5294.40 22787.44 9292.99 6797.11 10174.59 16296.87 21293.75 6397.08 8197.11 141
plane_prior377.75 23790.17 4881.33 205
c3_l83.80 22382.65 22587.25 25292.10 22777.74 23895.25 22793.04 29678.58 27776.01 26687.21 28575.25 15195.11 29477.54 22868.89 31788.91 291
v124081.70 25879.83 26887.30 25185.50 32977.70 23995.48 21793.44 27878.46 27976.53 25586.44 29860.85 26395.84 25471.59 27970.17 30288.35 302
TR-MVS86.30 18284.93 18990.42 17594.63 14377.58 24096.57 16193.82 25980.30 24482.42 19095.16 15458.74 27797.55 16974.88 25587.82 18496.13 174
plane_prior791.86 23777.55 241
BH-untuned86.95 17185.94 17189.99 18794.52 14877.46 24296.78 15093.37 28481.80 21776.62 25493.81 18966.64 22797.02 20276.06 24493.88 12995.48 188
EI-MVSNet85.80 19085.20 18187.59 24191.55 24177.41 24395.13 23495.36 17480.43 24180.33 21794.71 16773.72 17395.97 24576.96 23578.64 25889.39 267
IterMVS-LS83.93 22082.80 22387.31 25091.46 24477.39 24495.66 21193.43 27980.44 23975.51 27587.26 28373.72 17395.16 29176.99 23370.72 30089.39 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HPM-MVS_fast90.38 10590.17 9991.03 15897.61 7077.35 24597.15 11995.48 16579.51 26088.79 12296.90 10771.64 19698.81 11787.01 14597.44 7296.94 145
MSDG80.62 27377.77 28389.14 20593.43 18377.24 24691.89 30290.18 33469.86 34468.02 32491.94 21752.21 32098.84 11559.32 33883.12 22091.35 238
test-LLR88.48 14387.98 13589.98 18892.26 21777.23 24797.11 12395.96 13983.76 17886.30 14991.38 22372.30 18896.78 21880.82 19491.92 15495.94 176
test-mter88.95 12888.60 12589.98 18892.26 21777.23 24797.11 12395.96 13985.32 13086.30 14991.38 22376.37 12496.78 21880.82 19491.92 15495.94 176
UA-Net88.92 13088.48 12890.24 18194.06 16477.18 24993.04 28894.66 20987.39 9491.09 9293.89 18674.92 15598.18 14575.83 24791.43 15895.35 191
Anonymous2023121179.72 27977.19 28787.33 24895.59 11577.16 25095.18 23394.18 24059.31 37572.57 30186.20 30447.89 33795.66 26574.53 26169.24 31589.18 276
pmmvs581.34 26379.54 26986.73 26285.02 33676.91 25196.22 18491.65 31477.65 28673.55 28788.61 26255.70 30594.43 31274.12 26473.35 28788.86 292
CS-MVS-test92.98 4393.67 3390.90 16296.52 9476.87 25298.68 2694.73 20490.36 4694.84 4397.89 6077.94 9497.15 19894.28 5997.80 6298.70 41
IS-MVSNet88.67 13888.16 13390.20 18393.61 17376.86 25396.77 15293.07 29584.02 16783.62 17895.60 14174.69 16196.24 23578.43 21993.66 13397.49 124
v14882.41 24980.89 24886.99 25786.18 32076.81 25496.27 18193.82 25980.49 23875.28 27886.11 30667.32 22295.75 26075.48 25167.03 33788.42 301
our_test_377.90 29575.37 29985.48 28485.39 33176.74 25593.63 27291.67 31373.39 32365.72 33884.65 32658.20 28293.13 33257.82 34267.87 32786.57 332
PVSNet_077.72 1581.70 25878.95 27589.94 19190.77 25976.72 25695.96 19696.95 3885.01 14070.24 31788.53 26552.32 31898.20 14386.68 14844.08 38294.89 200
D2MVS82.67 24381.55 24086.04 27387.77 30276.47 25795.21 22996.58 8382.66 20370.26 31685.46 31460.39 26595.80 25776.40 24179.18 25385.83 343
PLCcopyleft83.97 788.00 15687.38 15289.83 19598.02 5976.46 25897.16 11794.43 22579.26 26781.98 19996.28 12469.36 21299.27 8277.71 22492.25 15193.77 222
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ACMH75.40 1777.99 29274.96 30087.10 25590.67 26076.41 25993.19 28791.64 31572.47 33163.44 34687.61 27843.34 34997.16 19558.34 34073.94 28287.72 312
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EIA-MVS91.73 7192.05 6690.78 16794.52 14876.40 26098.06 5395.34 17789.19 5888.90 12197.28 9477.56 10197.73 15990.77 9896.86 8898.20 68
APD-MVS_3200maxsize91.23 8691.35 7690.89 16397.89 6276.35 26196.30 18095.52 16379.82 25491.03 9497.88 6174.70 15898.54 12692.11 8596.89 8597.77 102
FMVSNet576.46 30674.16 31083.35 31590.05 27276.17 26289.58 32189.85 33671.39 33765.29 34080.42 34950.61 32587.70 36961.05 33369.24 31586.18 337
GeoE86.36 18085.20 18189.83 19593.17 18876.13 26397.53 8892.11 30779.58 25980.99 20894.01 18366.60 22896.17 23873.48 26989.30 16997.20 139
IterMVS80.67 27279.16 27285.20 28789.79 27476.08 26492.97 29091.86 31080.28 24571.20 30985.14 32057.93 28791.34 34972.52 27470.74 29988.18 306
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
h-mvs3389.30 12388.95 12190.36 17895.07 13176.04 26596.96 13797.11 2990.39 4492.22 7495.10 15874.70 15898.86 11493.14 7365.89 34196.16 172
SR-MVS-dyc-post91.29 8491.45 7590.80 16597.76 6776.03 26696.20 18795.44 16980.56 23690.72 9897.84 6275.76 13498.61 12291.99 8696.79 8997.75 103
RE-MVS-def91.18 8097.76 6776.03 26696.20 18795.44 16980.56 23690.72 9897.84 6273.36 17891.99 8696.79 8997.75 103
EPP-MVSNet89.76 11489.72 11089.87 19393.78 16976.02 26897.22 10796.51 9079.35 26285.11 15795.01 16184.82 3497.10 20087.46 14088.21 18296.50 162
tttt051788.57 14288.19 13289.71 19993.00 19475.99 26995.67 21096.67 6980.78 23081.82 20294.40 17388.97 1497.58 16676.05 24586.31 19595.57 185
cl____83.27 23182.12 23186.74 25992.20 22075.95 27095.11 23693.27 28778.44 28074.82 28187.02 28874.19 16695.19 28974.67 25869.32 31389.09 280
CS-MVS92.73 5093.48 3890.48 17496.27 9775.93 27198.55 3294.93 19189.32 5694.54 4897.67 6978.91 8097.02 20293.80 6297.32 7798.49 51
DIV-MVS_self_test83.27 23182.12 23186.74 25992.19 22175.92 27295.11 23693.26 28878.44 28074.81 28287.08 28774.19 16695.19 28974.66 25969.30 31489.11 279
pm-mvs180.05 27678.02 28186.15 27185.42 33075.81 27395.11 23692.69 30177.13 29370.36 31587.43 27958.44 28095.27 28671.36 28164.25 34787.36 323
Patchmtry77.36 30074.59 30585.67 27989.75 27675.75 27477.85 37491.12 32260.28 37071.23 30880.35 35075.45 14193.56 32757.94 34167.34 33487.68 314
PatchT79.75 27876.85 29088.42 21889.55 28175.49 27577.37 37594.61 21463.07 35882.46 18973.32 37175.52 14093.41 33051.36 36284.43 21296.36 165
tpm85.55 19584.47 19688.80 21390.19 26875.39 27688.79 32794.69 20584.83 14383.96 17385.21 31778.22 9094.68 30676.32 24378.02 26796.34 167
TransMVSNet (Re)76.94 30374.38 30784.62 29785.92 32475.25 27795.28 22489.18 34373.88 31867.22 32686.46 29759.64 26894.10 31759.24 33952.57 37184.50 351
Baseline_NR-MVSNet81.22 26580.07 26384.68 29485.32 33475.12 27896.48 16688.80 34776.24 30277.28 24586.40 30167.61 21694.39 31375.73 24966.73 33984.54 350
mvsmamba85.17 20184.54 19287.05 25687.94 30075.11 27996.22 18487.79 35586.91 10578.55 23391.77 22064.93 23995.91 25186.94 14679.80 24490.12 255
bld_raw_dy_0_6482.13 25280.76 25186.24 27085.78 32775.03 28094.40 25482.62 37583.12 18976.46 25690.96 23353.83 31694.55 30881.04 19378.60 26189.14 278
eth_miper_zixun_eth83.12 23582.01 23386.47 26491.85 23974.80 28194.33 25593.18 29179.11 26975.74 27487.25 28472.71 18295.32 28376.78 23667.13 33589.27 274
IterMVS-SCA-FT80.51 27479.10 27384.73 29389.63 28074.66 28292.98 28991.81 31280.05 25071.06 31185.18 31858.04 28391.40 34872.48 27570.70 30188.12 307
test_cas_vis1_n_192089.90 11290.02 10289.54 20090.14 27174.63 28398.71 2594.43 22593.04 1792.40 7096.35 12353.41 31799.08 10195.59 4496.16 9994.90 199
USDC78.65 28876.25 29385.85 27487.58 30474.60 28489.58 32190.58 33384.05 16663.13 34888.23 26940.69 36296.86 21466.57 30875.81 27486.09 339
PatchMatch-RL85.00 20483.66 20789.02 20895.86 10874.55 28592.49 29593.60 27379.30 26579.29 22991.47 22158.53 27998.45 13370.22 29192.17 15394.07 217
Vis-MVSNet (Re-imp)88.88 13288.87 12388.91 21093.89 16874.43 28696.93 14094.19 23984.39 15683.22 18295.67 13878.24 8994.70 30578.88 21594.40 12297.61 115
PS-MVSNAJss84.91 20584.30 19886.74 25985.89 32574.40 28794.95 24194.16 24183.93 17276.45 25790.11 24871.04 20295.77 25883.16 18179.02 25590.06 260
testdata90.13 18495.92 10774.17 28896.49 9573.49 32294.82 4597.99 5078.80 8397.93 14983.53 17797.52 6998.29 64
Patchmatch-test78.25 29074.72 30488.83 21291.20 24674.10 28973.91 38288.70 35059.89 37366.82 33185.12 32178.38 8794.54 30948.84 37179.58 25097.86 94
LS3D82.22 25179.94 26689.06 20697.43 7974.06 29093.20 28692.05 30861.90 36273.33 29395.21 15059.35 27299.21 8654.54 35592.48 14893.90 220
hse-mvs288.22 15288.21 13188.25 22593.54 17673.41 29195.41 22195.89 14390.39 4492.22 7494.22 17774.70 15896.66 22393.14 7364.37 34694.69 209
AUN-MVS86.25 18485.57 17588.26 22493.57 17573.38 29295.45 21995.88 14483.94 17185.47 15594.21 17873.70 17596.67 22283.54 17664.41 34594.73 208
pmmvs-eth3d73.59 31870.66 32582.38 32176.40 37473.38 29289.39 32489.43 34072.69 32960.34 36177.79 35846.43 34291.26 35166.42 31057.06 36182.51 362
CPTT-MVS89.72 11589.87 10889.29 20398.33 4773.30 29497.70 7695.35 17675.68 30487.40 13797.44 8670.43 20798.25 14189.56 11896.90 8496.33 169
dmvs_re84.10 21882.90 22087.70 23691.41 24573.28 29590.59 31693.19 28985.02 13977.96 24093.68 19057.92 28896.18 23775.50 25080.87 23993.63 224
EG-PatchMatch MVS74.92 31372.02 32083.62 31183.76 35173.28 29593.62 27392.04 30968.57 34758.88 36483.80 33231.87 37695.57 27456.97 34878.67 25782.00 367
TAPA-MVS81.61 1285.02 20383.67 20689.06 20696.79 9273.27 29795.92 19994.79 20274.81 31180.47 21496.83 11171.07 20198.19 14449.82 36892.57 14595.71 182
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LPG-MVS_test84.20 21783.49 21286.33 26590.88 25373.06 29895.28 22494.13 24282.20 21076.31 25993.20 19654.83 31296.95 20683.72 17180.83 24088.98 286
LGP-MVS_train86.33 26590.88 25373.06 29894.13 24282.20 21076.31 25993.20 19654.83 31296.95 20683.72 17180.83 24088.98 286
tt080581.20 26679.06 27487.61 23986.50 31372.97 30093.66 27195.48 16574.11 31576.23 26391.99 21341.36 35897.40 18177.44 23074.78 27992.45 234
ACMP81.66 1184.00 21983.22 21686.33 26591.53 24372.95 30195.91 20193.79 26383.70 18073.79 28692.22 20954.31 31596.89 21083.98 16479.74 24789.16 277
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v7n79.32 28577.34 28585.28 28684.05 34772.89 30293.38 27893.87 25675.02 31070.68 31284.37 32759.58 27095.62 27067.60 30067.50 33287.32 324
test0.0.03 182.79 24182.48 22783.74 30986.81 31172.22 30396.52 16495.03 18883.76 17873.00 29693.20 19672.30 18888.88 36264.15 31977.52 26890.12 255
F-COLMAP84.50 21383.44 21387.67 23795.22 12572.22 30395.95 19793.78 26475.74 30376.30 26195.18 15359.50 27198.45 13372.67 27386.59 19392.35 236
ADS-MVSNet279.57 28177.53 28485.71 27793.78 16972.13 30579.48 36786.11 36373.09 32580.14 21979.99 35262.15 25390.14 36059.49 33683.52 21694.85 202
RRT_MVS83.88 22183.27 21585.71 27787.53 30772.12 30695.35 22394.33 23183.81 17675.86 27091.28 22660.55 26495.09 29783.93 16576.76 27089.90 263
ACMM80.70 1383.72 22582.85 22286.31 26891.19 24772.12 30695.88 20294.29 23380.44 23977.02 24891.96 21555.24 30897.14 19979.30 21080.38 24389.67 265
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D80.86 27078.75 27687.22 25386.31 31672.02 30891.95 30093.76 26773.51 32075.06 28090.16 24643.04 35295.66 26576.37 24278.55 26293.98 218
LTVRE_ROB73.68 1877.99 29275.74 29784.74 29290.45 26472.02 30886.41 34791.12 32272.57 33066.63 33387.27 28254.95 31196.98 20456.29 35075.98 27185.21 347
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
miper_lstm_enhance81.66 26080.66 25484.67 29591.19 24771.97 31091.94 30193.19 28977.86 28472.27 30385.26 31573.46 17693.42 32973.71 26867.05 33688.61 293
MDA-MVSNet_test_wron73.54 31970.43 32782.86 31784.55 33971.85 31191.74 30591.32 32167.63 34846.73 37881.09 34755.11 30990.42 35855.91 35259.76 35786.31 335
OpenMVS_ROBcopyleft68.52 2073.02 32369.57 33083.37 31480.54 36071.82 31293.60 27488.22 35262.37 36061.98 35483.15 33735.31 37195.47 27645.08 37675.88 27382.82 359
test_040272.68 32469.54 33182.09 32488.67 29171.81 31392.72 29386.77 36061.52 36462.21 35383.91 33143.22 35093.76 32434.60 38372.23 29380.72 371
YYNet173.53 32070.43 32782.85 31884.52 34171.73 31491.69 30691.37 31867.63 34846.79 37781.21 34655.04 31090.43 35755.93 35159.70 35886.38 334
XVG-OURS85.18 20084.38 19787.59 24190.42 26571.73 31491.06 31394.07 24682.00 21683.29 18195.08 15956.42 30197.55 16983.70 17383.42 21893.49 227
ACMH+76.62 1677.47 29974.94 30185.05 28991.07 25171.58 31693.26 28490.01 33571.80 33464.76 34188.55 26341.62 35696.48 22662.35 32771.00 29787.09 326
XVG-OURS-SEG-HR85.74 19285.16 18487.49 24690.22 26771.45 31791.29 31094.09 24581.37 22183.90 17595.22 14960.30 26697.53 17385.58 15284.42 21393.50 226
EPNet_dtu87.65 16387.89 13686.93 25894.57 14471.37 31896.72 15396.50 9288.56 6887.12 14395.02 16075.91 13294.01 31966.62 30690.00 16495.42 189
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WR-MVS_H81.02 26780.09 26183.79 30788.08 29871.26 31994.46 24996.54 8780.08 24972.81 29986.82 29070.36 20892.65 33464.18 31867.50 33287.46 322
jajsoiax82.12 25381.15 24785.03 29084.19 34470.70 32094.22 26193.95 24983.07 19173.48 28889.75 25049.66 33095.37 28082.24 18779.76 24589.02 284
CP-MVSNet81.01 26880.08 26283.79 30787.91 30170.51 32194.29 26095.65 15680.83 22872.54 30288.84 25963.71 24492.32 33768.58 29968.36 32288.55 294
anonymousdsp80.98 26979.97 26584.01 30481.73 35670.44 32292.49 29593.58 27577.10 29572.98 29786.31 30257.58 28994.90 30079.32 20978.63 26086.69 330
mvs_tets81.74 25780.71 25384.84 29184.22 34370.29 32393.91 26793.78 26482.77 20073.37 29189.46 25347.36 34095.31 28481.99 18879.55 25188.92 290
DeepPCF-MVS89.82 194.61 1996.17 589.91 19297.09 9070.21 32498.99 2096.69 6795.57 295.08 3899.23 186.40 3099.87 897.84 1898.66 3199.65 6
pmmvs674.65 31571.67 32183.60 31279.13 36469.94 32593.31 28390.88 32961.05 36965.83 33784.15 33043.43 34894.83 30366.62 30660.63 35686.02 340
PS-CasMVS80.27 27579.18 27183.52 31387.56 30569.88 32694.08 26395.29 17980.27 24672.08 30488.51 26659.22 27592.23 33967.49 30168.15 32588.45 300
test_djsdf83.00 23982.45 22884.64 29684.07 34669.78 32794.80 24694.48 22080.74 23175.41 27787.70 27661.32 26295.10 29583.77 16979.76 24589.04 283
MVS-HIRNet71.36 33167.00 33684.46 30190.58 26169.74 32879.15 37087.74 35646.09 38261.96 35550.50 38645.14 34495.64 26853.74 35788.11 18388.00 309
TinyColmap72.41 32568.99 33482.68 31988.11 29769.59 32988.41 33085.20 36565.55 35457.91 36784.82 32530.80 37895.94 24951.38 36168.70 31882.49 364
PMMVS89.46 12089.92 10688.06 22994.64 14269.57 33096.22 18494.95 19087.27 9791.37 8796.54 12165.88 23097.39 18288.54 12793.89 12897.23 136
Fast-Effi-MVS+-dtu83.33 23082.60 22685.50 28389.55 28169.38 33196.09 19391.38 31782.30 20975.96 26891.41 22256.71 29795.58 27375.13 25484.90 21191.54 237
COLMAP_ROBcopyleft73.24 1975.74 31073.00 31783.94 30592.38 21069.08 33291.85 30386.93 35861.48 36565.32 33990.27 24342.27 35496.93 20950.91 36475.63 27585.80 344
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_vis1_n_192089.95 11190.59 8788.03 23192.36 21168.98 33399.12 994.34 23093.86 1193.64 5897.01 10551.54 32199.59 5896.76 3296.71 9395.53 186
PEN-MVS79.47 28378.26 27983.08 31686.36 31568.58 33493.85 26994.77 20379.76 25571.37 30688.55 26359.79 26792.46 33564.50 31765.40 34288.19 305
MDA-MVSNet-bldmvs71.45 33067.94 33581.98 32585.33 33368.50 33592.35 29888.76 34870.40 34042.99 38181.96 34146.57 34191.31 35048.75 37254.39 36586.11 338
UnsupCasMVSNet_bld68.60 33864.50 34280.92 33074.63 37767.80 33683.97 35992.94 29765.12 35654.63 37368.23 37935.97 36892.17 34160.13 33444.83 38082.78 360
CL-MVSNet_self_test75.81 30974.14 31180.83 33178.33 36667.79 33794.22 26193.52 27677.28 29269.82 31881.54 34461.47 26189.22 36157.59 34453.51 36785.48 345
AllTest75.92 30873.06 31684.47 29992.18 22267.29 33891.07 31284.43 36867.63 34863.48 34490.18 24438.20 36497.16 19557.04 34673.37 28588.97 288
TestCases84.47 29992.18 22267.29 33884.43 36867.63 34863.48 34490.18 24438.20 36497.16 19557.04 34673.37 28588.97 288
WAC-MVS67.18 34049.00 370
myMVS_eth3d81.93 25582.18 23081.18 32892.13 22567.18 34093.97 26594.23 23582.43 20673.39 28993.57 19376.98 11187.86 36650.53 36682.34 23188.51 295
mvsany_test187.58 16488.22 13085.67 27989.78 27567.18 34095.25 22787.93 35383.96 17088.79 12297.06 10472.52 18494.53 31092.21 8386.45 19495.30 193
DTE-MVSNet78.37 28977.06 28882.32 32385.22 33567.17 34393.40 27793.66 27078.71 27670.53 31488.29 26859.06 27692.23 33961.38 33163.28 35187.56 318
XVG-ACMP-BASELINE79.38 28477.90 28283.81 30684.98 33767.14 34489.03 32593.18 29180.26 24772.87 29888.15 27138.55 36396.26 23376.05 24578.05 26688.02 308
UnsupCasMVSNet_eth73.25 32170.57 32681.30 32677.53 36866.33 34587.24 34093.89 25580.38 24257.90 36881.59 34342.91 35390.56 35665.18 31548.51 37687.01 327
ITE_SJBPF82.38 32187.00 31065.59 34689.55 33879.99 25269.37 32191.30 22541.60 35795.33 28262.86 32674.63 28186.24 336
test_vis1_n85.60 19485.70 17385.33 28584.79 33864.98 34796.83 14591.61 31687.36 9591.00 9594.84 16536.14 36797.18 19495.66 4293.03 14193.82 221
pmmvs365.75 34162.18 34476.45 34967.12 38564.54 34888.68 32885.05 36654.77 38157.54 37073.79 36829.40 37986.21 37455.49 35447.77 37878.62 373
test_fmvs187.79 16088.52 12785.62 28192.98 19864.31 34997.88 6392.42 30387.95 8092.24 7395.82 13347.94 33698.44 13595.31 4894.09 12394.09 216
Patchmatch-RL test76.65 30574.01 31284.55 29877.37 37064.23 35078.49 37382.84 37478.48 27864.63 34273.40 37076.05 12991.70 34776.99 23357.84 36097.72 105
LCM-MVSNet-Re83.75 22483.54 21184.39 30393.54 17664.14 35192.51 29484.03 37083.90 17366.14 33686.59 29467.36 22192.68 33384.89 15892.87 14296.35 166
JIA-IIPM79.00 28777.20 28684.40 30289.74 27864.06 35275.30 37995.44 16962.15 36181.90 20059.08 38378.92 7995.59 27266.51 30985.78 20493.54 225
new-patchmatchnet68.85 33765.93 33977.61 34573.57 37963.94 35390.11 31988.73 34971.62 33655.08 37273.60 36940.84 36087.22 37251.35 36348.49 37781.67 370
test_fmvs1_n86.34 18186.72 16585.17 28887.54 30663.64 35496.91 14192.37 30587.49 9191.33 8895.58 14240.81 36198.46 13295.00 5093.49 13493.41 230
testing380.74 27181.17 24679.44 33791.15 24963.48 35597.16 11795.76 15080.83 22871.36 30793.15 19978.22 9087.30 37143.19 37879.67 24887.55 320
Anonymous2023120675.29 31273.64 31380.22 33380.75 35763.38 35693.36 27990.71 33273.09 32567.12 32783.70 33350.33 32790.85 35453.63 35870.10 30686.44 333
Effi-MVS+-dtu84.61 21084.90 19083.72 31091.96 23463.14 35794.95 24193.34 28585.57 12579.79 22387.12 28661.99 25695.61 27183.55 17585.83 20392.41 235
MIMVSNet169.44 33466.65 33877.84 34376.48 37362.84 35887.42 33888.97 34566.96 35357.75 36979.72 35432.77 37585.83 37546.32 37463.42 35084.85 349
TDRefinement69.20 33665.78 34079.48 33666.04 38662.21 35988.21 33186.12 36262.92 35961.03 35985.61 31033.23 37394.16 31655.82 35353.02 36982.08 366
testgi74.88 31473.40 31479.32 33880.13 36161.75 36093.21 28586.64 36179.49 26166.56 33591.06 22935.51 37088.67 36356.79 34971.25 29587.56 318
new_pmnet66.18 34063.18 34375.18 35476.27 37561.74 36183.79 36084.66 36756.64 37951.57 37571.85 37731.29 37787.93 36549.98 36762.55 35275.86 376
Anonymous2024052172.06 32869.91 32978.50 34277.11 37161.67 36291.62 30890.97 32765.52 35562.37 35279.05 35536.32 36690.96 35357.75 34368.52 32082.87 358
SixPastTwentyTwo76.04 30774.32 30881.22 32784.54 34061.43 36391.16 31189.30 34277.89 28264.04 34386.31 30248.23 33294.29 31563.54 32363.84 34987.93 310
test_vis1_rt73.96 31672.40 31978.64 34183.91 34861.16 36495.63 21368.18 39176.32 29960.09 36274.77 36529.01 38097.54 17187.74 13675.94 27277.22 375
CVMVSNet84.83 20685.57 17582.63 32091.55 24160.38 36595.13 23495.03 18880.60 23482.10 19794.71 16766.40 22990.19 35974.30 26290.32 16397.31 133
EGC-MVSNET52.46 35147.56 35467.15 35981.98 35560.11 36682.54 36472.44 3870.11 3990.70 40074.59 36625.11 38183.26 37829.04 38661.51 35558.09 384
OurMVSNet-221017-077.18 30276.06 29480.55 33283.78 35060.00 36790.35 31791.05 32577.01 29766.62 33487.92 27447.73 33894.03 31871.63 27868.44 32187.62 315
K. test v373.62 31771.59 32279.69 33582.98 35259.85 36890.85 31588.83 34677.13 29358.90 36382.11 34043.62 34791.72 34665.83 31254.10 36687.50 321
test20.0372.36 32671.15 32375.98 35177.79 36759.16 36992.40 29789.35 34174.09 31661.50 35684.32 32848.09 33385.54 37650.63 36562.15 35483.24 357
lessismore_v079.98 33480.59 35958.34 37080.87 37758.49 36583.46 33543.10 35193.89 32063.11 32548.68 37587.72 312
Syy-MVS77.97 29478.05 28077.74 34492.13 22556.85 37193.97 26594.23 23582.43 20673.39 28993.57 19357.95 28687.86 36632.40 38482.34 23188.51 295
LF4IMVS72.36 32670.82 32476.95 34679.18 36356.33 37286.12 34986.11 36369.30 34663.06 34986.66 29333.03 37492.25 33865.33 31468.64 31982.28 365
CMPMVSbinary54.94 2175.71 31174.56 30679.17 33979.69 36255.98 37389.59 32093.30 28660.28 37053.85 37489.07 25647.68 33996.33 23176.55 23881.02 23785.22 346
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PM-MVS69.32 33566.93 33776.49 34873.60 37855.84 37485.91 35079.32 38174.72 31261.09 35878.18 35721.76 38391.10 35270.86 28756.90 36282.51 362
test_fmvs279.59 28079.90 26778.67 34082.86 35355.82 37595.20 23089.55 33881.09 22480.12 22189.80 24934.31 37293.51 32887.82 13578.36 26486.69 330
RPSCF77.73 29676.63 29181.06 32988.66 29255.76 37687.77 33687.88 35464.82 35774.14 28592.79 20449.22 33196.81 21667.47 30276.88 26990.62 245
KD-MVS_self_test70.97 33269.31 33275.95 35276.24 37655.39 37787.45 33790.94 32870.20 34262.96 35177.48 35944.01 34588.09 36461.25 33253.26 36884.37 352
EU-MVSNet76.92 30476.95 28976.83 34784.10 34554.73 37891.77 30492.71 30072.74 32869.57 32088.69 26158.03 28587.43 37064.91 31670.00 30888.33 303
ambc76.02 35068.11 38351.43 37964.97 38789.59 33760.49 36074.49 36717.17 38692.46 33561.50 33052.85 37084.17 354
Gipumacopyleft45.11 35642.05 35854.30 37380.69 35851.30 38035.80 39183.81 37128.13 38727.94 39134.53 39111.41 39476.70 38721.45 39054.65 36334.90 391
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
mvsany_test367.19 33965.34 34172.72 35563.08 38748.57 38183.12 36278.09 38272.07 33261.21 35777.11 36122.94 38287.78 36878.59 21651.88 37281.80 368
test_fmvs369.56 33369.19 33370.67 35669.01 38147.05 38290.87 31486.81 35971.31 33866.79 33277.15 36016.40 38783.17 37981.84 18962.51 35381.79 369
DSMNet-mixed73.13 32272.45 31875.19 35377.51 36946.82 38385.09 35582.01 37667.61 35269.27 32281.33 34550.89 32386.28 37354.54 35583.80 21592.46 233
PMMVS250.90 35246.31 35564.67 36255.53 39146.67 38477.30 37671.02 38840.89 38334.16 38759.32 3829.83 39576.14 38840.09 38228.63 39071.21 377
APD_test156.56 34653.58 35065.50 36067.93 38446.51 38577.24 37772.95 38638.09 38442.75 38275.17 36413.38 39082.78 38040.19 38154.53 36467.23 381
ANet_high46.22 35341.28 36061.04 36839.91 39946.25 38670.59 38476.18 38458.87 37623.09 39248.00 38912.58 39266.54 39228.65 38713.62 39370.35 378
test_vis3_rt54.10 34951.04 35263.27 36658.16 38946.08 38784.17 35849.32 40156.48 38036.56 38549.48 3888.03 39791.91 34467.29 30349.87 37351.82 387
test_f64.01 34262.13 34569.65 35763.00 38845.30 38883.66 36180.68 37861.30 36655.70 37172.62 37314.23 38984.64 37769.84 29258.11 35979.00 372
DeepMVS_CXcopyleft64.06 36478.53 36543.26 38968.11 39369.94 34338.55 38376.14 36318.53 38579.34 38243.72 37741.62 38569.57 379
LCM-MVSNet52.52 35048.24 35365.35 36147.63 39741.45 39072.55 38383.62 37231.75 38637.66 38457.92 3849.19 39676.76 38649.26 36944.60 38177.84 374
test_method56.77 34554.53 34963.49 36576.49 37240.70 39175.68 37874.24 38519.47 39348.73 37671.89 37619.31 38465.80 39357.46 34547.51 37983.97 355
FPMVS55.09 34852.93 35161.57 36755.98 39040.51 39283.11 36383.41 37337.61 38534.95 38671.95 37514.40 38876.95 38529.81 38565.16 34367.25 380
testf145.70 35442.41 35655.58 37153.29 39440.02 39368.96 38562.67 39527.45 38829.85 38861.58 3805.98 39873.83 39028.49 38843.46 38352.90 385
APD_test245.70 35442.41 35655.58 37153.29 39440.02 39368.96 38562.67 39527.45 38829.85 38861.58 3805.98 39873.83 39028.49 38843.46 38352.90 385
MVEpermissive35.65 2233.85 35929.49 36446.92 37541.86 39836.28 39550.45 39056.52 39818.75 39418.28 39337.84 3902.41 40158.41 39418.71 39120.62 39146.06 389
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
WB-MVS57.26 34456.22 34760.39 36969.29 38035.91 39686.39 34870.06 38959.84 37446.46 37972.71 37251.18 32278.11 38315.19 39334.89 38867.14 382
SSC-MVS56.01 34754.96 34859.17 37068.42 38234.13 39784.98 35669.23 39058.08 37845.36 38071.67 37850.30 32877.46 38414.28 39432.33 38965.91 383
dmvs_testset72.00 32973.36 31567.91 35883.83 34931.90 39885.30 35477.12 38382.80 19963.05 35092.46 20761.54 26082.55 38142.22 38071.89 29489.29 273
PMVScopyleft34.80 2339.19 35835.53 36150.18 37429.72 40030.30 39959.60 38966.20 39426.06 39017.91 39449.53 3873.12 40074.09 38918.19 39249.40 37446.14 388
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt41.54 35741.93 35940.38 37620.10 40126.84 40061.93 38859.09 39714.81 39528.51 39080.58 34835.53 36948.33 39763.70 32213.11 39445.96 390
E-PMN32.70 36032.39 36233.65 37753.35 39325.70 40174.07 38153.33 39921.08 39117.17 39533.63 39311.85 39354.84 39512.98 39514.04 39220.42 392
EMVS31.70 36131.45 36332.48 37850.72 39623.95 40274.78 38052.30 40020.36 39216.08 39631.48 39412.80 39153.60 39611.39 39613.10 39519.88 393
wuyk23d14.10 36313.89 36614.72 37955.23 39222.91 40333.83 3923.56 4034.94 3964.11 3972.28 3992.06 40219.66 39810.23 3978.74 3961.59 396
N_pmnet61.30 34360.20 34664.60 36384.32 34217.00 40491.67 30710.98 40261.77 36358.45 36678.55 35649.89 32991.83 34542.27 37963.94 34884.97 348
test1239.07 36511.73 3681.11 3800.50 4030.77 40589.44 3230.20 4050.34 3982.15 39910.72 3980.34 4030.32 3991.79 3990.08 3982.23 394
testmvs9.92 36412.94 3670.84 3810.65 4020.29 40693.78 2700.39 4040.42 3972.85 39815.84 3970.17 4040.30 4002.18 3980.21 3971.91 395
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k21.43 36228.57 3650.00 3820.00 4040.00 4070.00 39395.93 1420.00 4000.00 40197.66 7063.57 2450.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas5.92 3677.89 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40071.04 2020.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re8.11 36610.81 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40197.30 920.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
PC_three_145291.12 3398.33 298.42 2692.51 299.81 2198.96 399.37 199.70 3
eth-test20.00 404
eth-test0.00 404
test_241102_TWO96.78 4988.72 6497.70 698.91 287.86 2199.82 1898.15 999.00 1599.47 9
9.1494.26 2798.10 5798.14 4496.52 8984.74 14594.83 4498.80 782.80 5099.37 7895.95 3898.42 40
test_0728_THIRD88.38 7196.69 1598.76 1289.64 1399.76 3097.47 2298.84 2399.38 14
GSMVS97.54 117
sam_mvs177.59 10097.54 117
sam_mvs75.35 148
MTGPAbinary96.33 112
test_post185.88 35130.24 39573.77 17195.07 29873.89 265
test_post33.80 39276.17 12795.97 245
patchmatchnet-post77.09 36277.78 9995.39 278
MTMP97.53 8868.16 392
test9_res96.00 3799.03 1398.31 62
agg_prior294.30 5699.00 1598.57 46
test_prior298.37 3786.08 11794.57 4798.02 4983.14 4695.05 4998.79 26
旧先验296.97 13674.06 31796.10 2597.76 15888.38 131
新几何296.42 173
无先验96.87 14396.78 4977.39 28999.52 6779.95 20498.43 55
原ACMM296.84 144
testdata299.48 7176.45 240
segment_acmp82.69 51
testdata195.57 21587.44 92
plane_prior594.69 20597.30 18787.08 14282.82 22690.96 241
plane_prior494.15 180
plane_prior297.18 11389.89 51
plane_prior191.95 235
n20.00 406
nn0.00 406
door-mid79.75 380
test1196.50 92
door80.13 379
HQP-NCC92.08 22897.63 8090.52 4182.30 191
ACMP_Plane92.08 22897.63 8090.52 4182.30 191
BP-MVS87.67 138
HQP4-MVS82.30 19197.32 18591.13 239
HQP3-MVS94.80 20083.01 222
HQP2-MVS65.40 234
ACMMP++_ref78.45 263
ACMMP++79.05 254
Test By Simon71.65 195